xref: /openbmc/linux/kernel/sched/fair.c (revision e657c18a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 #include <trace/events/sched.h>
26 
27 /*
28  * Targeted preemption latency for CPU-bound tasks:
29  *
30  * NOTE: this latency value is not the same as the concept of
31  * 'timeslice length' - timeslices in CFS are of variable length
32  * and have no persistent notion like in traditional, time-slice
33  * based scheduling concepts.
34  *
35  * (to see the precise effective timeslice length of your workload,
36  *  run vmstat and monitor the context-switches (cs) field)
37  *
38  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39  */
40 unsigned int sysctl_sched_latency			= 6000000ULL;
41 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
42 
43 /*
44  * The initial- and re-scaling of tunables is configurable
45  *
46  * Options are:
47  *
48  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
49  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51  *
52  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53  */
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55 
56 /*
57  * Minimal preemption granularity for CPU-bound tasks:
58  *
59  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60  */
61 unsigned int sysctl_sched_min_granularity			= 750000ULL;
62 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 
64 /*
65  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66  */
67 static unsigned int sched_nr_latency = 8;
68 
69 /*
70  * After fork, child runs first. If set to 0 (default) then
71  * parent will (try to) run first.
72  */
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
74 
75 /*
76  * SCHED_OTHER wake-up granularity.
77  *
78  * This option delays the preemption effects of decoupled workloads
79  * and reduces their over-scheduling. Synchronous workloads will still
80  * have immediate wakeup/sleep latencies.
81  *
82  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83  */
84 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
85 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 #ifdef CONFIG_SMP
90 /*
91  * For asym packing, by default the lower numbered CPU has higher priority.
92  */
93 int __weak arch_asym_cpu_priority(int cpu)
94 {
95 	return -cpu;
96 }
97 
98 /*
99  * The margin used when comparing utilization with CPU capacity:
100  * util * margin < capacity * 1024
101  *
102  * (default: ~20%)
103  */
104 static unsigned int capacity_margin			= 1280;
105 #endif
106 
107 #ifdef CONFIG_CFS_BANDWIDTH
108 /*
109  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110  * each time a cfs_rq requests quota.
111  *
112  * Note: in the case that the slice exceeds the runtime remaining (either due
113  * to consumption or the quota being specified to be smaller than the slice)
114  * we will always only issue the remaining available time.
115  *
116  * (default: 5 msec, units: microseconds)
117  */
118 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
119 #endif
120 
121 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 {
123 	lw->weight += inc;
124 	lw->inv_weight = 0;
125 }
126 
127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 {
129 	lw->weight -= dec;
130 	lw->inv_weight = 0;
131 }
132 
133 static inline void update_load_set(struct load_weight *lw, unsigned long w)
134 {
135 	lw->weight = w;
136 	lw->inv_weight = 0;
137 }
138 
139 /*
140  * Increase the granularity value when there are more CPUs,
141  * because with more CPUs the 'effective latency' as visible
142  * to users decreases. But the relationship is not linear,
143  * so pick a second-best guess by going with the log2 of the
144  * number of CPUs.
145  *
146  * This idea comes from the SD scheduler of Con Kolivas:
147  */
148 static unsigned int get_update_sysctl_factor(void)
149 {
150 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 	unsigned int factor;
152 
153 	switch (sysctl_sched_tunable_scaling) {
154 	case SCHED_TUNABLESCALING_NONE:
155 		factor = 1;
156 		break;
157 	case SCHED_TUNABLESCALING_LINEAR:
158 		factor = cpus;
159 		break;
160 	case SCHED_TUNABLESCALING_LOG:
161 	default:
162 		factor = 1 + ilog2(cpus);
163 		break;
164 	}
165 
166 	return factor;
167 }
168 
169 static void update_sysctl(void)
170 {
171 	unsigned int factor = get_update_sysctl_factor();
172 
173 #define SET_SYSCTL(name) \
174 	(sysctl_##name = (factor) * normalized_sysctl_##name)
175 	SET_SYSCTL(sched_min_granularity);
176 	SET_SYSCTL(sched_latency);
177 	SET_SYSCTL(sched_wakeup_granularity);
178 #undef SET_SYSCTL
179 }
180 
181 void sched_init_granularity(void)
182 {
183 	update_sysctl();
184 }
185 
186 #define WMULT_CONST	(~0U)
187 #define WMULT_SHIFT	32
188 
189 static void __update_inv_weight(struct load_weight *lw)
190 {
191 	unsigned long w;
192 
193 	if (likely(lw->inv_weight))
194 		return;
195 
196 	w = scale_load_down(lw->weight);
197 
198 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 		lw->inv_weight = 1;
200 	else if (unlikely(!w))
201 		lw->inv_weight = WMULT_CONST;
202 	else
203 		lw->inv_weight = WMULT_CONST / w;
204 }
205 
206 /*
207  * delta_exec * weight / lw.weight
208  *   OR
209  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210  *
211  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212  * we're guaranteed shift stays positive because inv_weight is guaranteed to
213  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214  *
215  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216  * weight/lw.weight <= 1, and therefore our shift will also be positive.
217  */
218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219 {
220 	u64 fact = scale_load_down(weight);
221 	int shift = WMULT_SHIFT;
222 
223 	__update_inv_weight(lw);
224 
225 	if (unlikely(fact >> 32)) {
226 		while (fact >> 32) {
227 			fact >>= 1;
228 			shift--;
229 		}
230 	}
231 
232 	/* hint to use a 32x32->64 mul */
233 	fact = (u64)(u32)fact * lw->inv_weight;
234 
235 	while (fact >> 32) {
236 		fact >>= 1;
237 		shift--;
238 	}
239 
240 	return mul_u64_u32_shr(delta_exec, fact, shift);
241 }
242 
243 
244 const struct sched_class fair_sched_class;
245 
246 /**************************************************************
247  * CFS operations on generic schedulable entities:
248  */
249 
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 static inline struct task_struct *task_of(struct sched_entity *se)
252 {
253 	SCHED_WARN_ON(!entity_is_task(se));
254 	return container_of(se, struct task_struct, se);
255 }
256 
257 /* Walk up scheduling entities hierarchy */
258 #define for_each_sched_entity(se) \
259 		for (; se; se = se->parent)
260 
261 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
262 {
263 	return p->se.cfs_rq;
264 }
265 
266 /* runqueue on which this entity is (to be) queued */
267 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268 {
269 	return se->cfs_rq;
270 }
271 
272 /* runqueue "owned" by this group */
273 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
274 {
275 	return grp->my_q;
276 }
277 
278 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
279 {
280 	struct rq *rq = rq_of(cfs_rq);
281 	int cpu = cpu_of(rq);
282 
283 	if (cfs_rq->on_list)
284 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
285 
286 	cfs_rq->on_list = 1;
287 
288 	/*
289 	 * Ensure we either appear before our parent (if already
290 	 * enqueued) or force our parent to appear after us when it is
291 	 * enqueued. The fact that we always enqueue bottom-up
292 	 * reduces this to two cases and a special case for the root
293 	 * cfs_rq. Furthermore, it also means that we will always reset
294 	 * tmp_alone_branch either when the branch is connected
295 	 * to a tree or when we reach the top of the tree
296 	 */
297 	if (cfs_rq->tg->parent &&
298 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
299 		/*
300 		 * If parent is already on the list, we add the child
301 		 * just before. Thanks to circular linked property of
302 		 * the list, this means to put the child at the tail
303 		 * of the list that starts by parent.
304 		 */
305 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
306 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
307 		/*
308 		 * The branch is now connected to its tree so we can
309 		 * reset tmp_alone_branch to the beginning of the
310 		 * list.
311 		 */
312 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
313 		return true;
314 	}
315 
316 	if (!cfs_rq->tg->parent) {
317 		/*
318 		 * cfs rq without parent should be put
319 		 * at the tail of the list.
320 		 */
321 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
322 			&rq->leaf_cfs_rq_list);
323 		/*
324 		 * We have reach the top of a tree so we can reset
325 		 * tmp_alone_branch to the beginning of the list.
326 		 */
327 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
328 		return true;
329 	}
330 
331 	/*
332 	 * The parent has not already been added so we want to
333 	 * make sure that it will be put after us.
334 	 * tmp_alone_branch points to the begin of the branch
335 	 * where we will add parent.
336 	 */
337 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
338 	/*
339 	 * update tmp_alone_branch to points to the new begin
340 	 * of the branch
341 	 */
342 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
343 	return false;
344 }
345 
346 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
347 {
348 	if (cfs_rq->on_list) {
349 		struct rq *rq = rq_of(cfs_rq);
350 
351 		/*
352 		 * With cfs_rq being unthrottled/throttled during an enqueue,
353 		 * it can happen the tmp_alone_branch points the a leaf that
354 		 * we finally want to del. In this case, tmp_alone_branch moves
355 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
356 		 * at the end of the enqueue.
357 		 */
358 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
359 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
360 
361 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
362 		cfs_rq->on_list = 0;
363 	}
364 }
365 
366 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
367 {
368 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
369 }
370 
371 /* Iterate thr' all leaf cfs_rq's on a runqueue */
372 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
373 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
374 				 leaf_cfs_rq_list)
375 
376 /* Do the two (enqueued) entities belong to the same group ? */
377 static inline struct cfs_rq *
378 is_same_group(struct sched_entity *se, struct sched_entity *pse)
379 {
380 	if (se->cfs_rq == pse->cfs_rq)
381 		return se->cfs_rq;
382 
383 	return NULL;
384 }
385 
386 static inline struct sched_entity *parent_entity(struct sched_entity *se)
387 {
388 	return se->parent;
389 }
390 
391 static void
392 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
393 {
394 	int se_depth, pse_depth;
395 
396 	/*
397 	 * preemption test can be made between sibling entities who are in the
398 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
399 	 * both tasks until we find their ancestors who are siblings of common
400 	 * parent.
401 	 */
402 
403 	/* First walk up until both entities are at same depth */
404 	se_depth = (*se)->depth;
405 	pse_depth = (*pse)->depth;
406 
407 	while (se_depth > pse_depth) {
408 		se_depth--;
409 		*se = parent_entity(*se);
410 	}
411 
412 	while (pse_depth > se_depth) {
413 		pse_depth--;
414 		*pse = parent_entity(*pse);
415 	}
416 
417 	while (!is_same_group(*se, *pse)) {
418 		*se = parent_entity(*se);
419 		*pse = parent_entity(*pse);
420 	}
421 }
422 
423 #else	/* !CONFIG_FAIR_GROUP_SCHED */
424 
425 static inline struct task_struct *task_of(struct sched_entity *se)
426 {
427 	return container_of(se, struct task_struct, se);
428 }
429 
430 #define for_each_sched_entity(se) \
431 		for (; se; se = NULL)
432 
433 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
434 {
435 	return &task_rq(p)->cfs;
436 }
437 
438 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
439 {
440 	struct task_struct *p = task_of(se);
441 	struct rq *rq = task_rq(p);
442 
443 	return &rq->cfs;
444 }
445 
446 /* runqueue "owned" by this group */
447 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
448 {
449 	return NULL;
450 }
451 
452 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
453 {
454 	return true;
455 }
456 
457 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
458 {
459 }
460 
461 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
462 {
463 }
464 
465 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
466 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
467 
468 static inline struct sched_entity *parent_entity(struct sched_entity *se)
469 {
470 	return NULL;
471 }
472 
473 static inline void
474 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
475 {
476 }
477 
478 #endif	/* CONFIG_FAIR_GROUP_SCHED */
479 
480 static __always_inline
481 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
482 
483 /**************************************************************
484  * Scheduling class tree data structure manipulation methods:
485  */
486 
487 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
488 {
489 	s64 delta = (s64)(vruntime - max_vruntime);
490 	if (delta > 0)
491 		max_vruntime = vruntime;
492 
493 	return max_vruntime;
494 }
495 
496 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
497 {
498 	s64 delta = (s64)(vruntime - min_vruntime);
499 	if (delta < 0)
500 		min_vruntime = vruntime;
501 
502 	return min_vruntime;
503 }
504 
505 static inline int entity_before(struct sched_entity *a,
506 				struct sched_entity *b)
507 {
508 	return (s64)(a->vruntime - b->vruntime) < 0;
509 }
510 
511 static void update_min_vruntime(struct cfs_rq *cfs_rq)
512 {
513 	struct sched_entity *curr = cfs_rq->curr;
514 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
515 
516 	u64 vruntime = cfs_rq->min_vruntime;
517 
518 	if (curr) {
519 		if (curr->on_rq)
520 			vruntime = curr->vruntime;
521 		else
522 			curr = NULL;
523 	}
524 
525 	if (leftmost) { /* non-empty tree */
526 		struct sched_entity *se;
527 		se = rb_entry(leftmost, struct sched_entity, run_node);
528 
529 		if (!curr)
530 			vruntime = se->vruntime;
531 		else
532 			vruntime = min_vruntime(vruntime, se->vruntime);
533 	}
534 
535 	/* ensure we never gain time by being placed backwards. */
536 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
537 #ifndef CONFIG_64BIT
538 	smp_wmb();
539 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
540 #endif
541 }
542 
543 /*
544  * Enqueue an entity into the rb-tree:
545  */
546 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
547 {
548 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
549 	struct rb_node *parent = NULL;
550 	struct sched_entity *entry;
551 	bool leftmost = true;
552 
553 	/*
554 	 * Find the right place in the rbtree:
555 	 */
556 	while (*link) {
557 		parent = *link;
558 		entry = rb_entry(parent, struct sched_entity, run_node);
559 		/*
560 		 * We dont care about collisions. Nodes with
561 		 * the same key stay together.
562 		 */
563 		if (entity_before(se, entry)) {
564 			link = &parent->rb_left;
565 		} else {
566 			link = &parent->rb_right;
567 			leftmost = false;
568 		}
569 	}
570 
571 	rb_link_node(&se->run_node, parent, link);
572 	rb_insert_color_cached(&se->run_node,
573 			       &cfs_rq->tasks_timeline, leftmost);
574 }
575 
576 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
577 {
578 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
579 }
580 
581 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
582 {
583 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
584 
585 	if (!left)
586 		return NULL;
587 
588 	return rb_entry(left, struct sched_entity, run_node);
589 }
590 
591 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
592 {
593 	struct rb_node *next = rb_next(&se->run_node);
594 
595 	if (!next)
596 		return NULL;
597 
598 	return rb_entry(next, struct sched_entity, run_node);
599 }
600 
601 #ifdef CONFIG_SCHED_DEBUG
602 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
603 {
604 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
605 
606 	if (!last)
607 		return NULL;
608 
609 	return rb_entry(last, struct sched_entity, run_node);
610 }
611 
612 /**************************************************************
613  * Scheduling class statistics methods:
614  */
615 
616 int sched_proc_update_handler(struct ctl_table *table, int write,
617 		void __user *buffer, size_t *lenp,
618 		loff_t *ppos)
619 {
620 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
621 	unsigned int factor = get_update_sysctl_factor();
622 
623 	if (ret || !write)
624 		return ret;
625 
626 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
627 					sysctl_sched_min_granularity);
628 
629 #define WRT_SYSCTL(name) \
630 	(normalized_sysctl_##name = sysctl_##name / (factor))
631 	WRT_SYSCTL(sched_min_granularity);
632 	WRT_SYSCTL(sched_latency);
633 	WRT_SYSCTL(sched_wakeup_granularity);
634 #undef WRT_SYSCTL
635 
636 	return 0;
637 }
638 #endif
639 
640 /*
641  * delta /= w
642  */
643 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
644 {
645 	if (unlikely(se->load.weight != NICE_0_LOAD))
646 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
647 
648 	return delta;
649 }
650 
651 /*
652  * The idea is to set a period in which each task runs once.
653  *
654  * When there are too many tasks (sched_nr_latency) we have to stretch
655  * this period because otherwise the slices get too small.
656  *
657  * p = (nr <= nl) ? l : l*nr/nl
658  */
659 static u64 __sched_period(unsigned long nr_running)
660 {
661 	if (unlikely(nr_running > sched_nr_latency))
662 		return nr_running * sysctl_sched_min_granularity;
663 	else
664 		return sysctl_sched_latency;
665 }
666 
667 /*
668  * We calculate the wall-time slice from the period by taking a part
669  * proportional to the weight.
670  *
671  * s = p*P[w/rw]
672  */
673 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
674 {
675 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
676 
677 	for_each_sched_entity(se) {
678 		struct load_weight *load;
679 		struct load_weight lw;
680 
681 		cfs_rq = cfs_rq_of(se);
682 		load = &cfs_rq->load;
683 
684 		if (unlikely(!se->on_rq)) {
685 			lw = cfs_rq->load;
686 
687 			update_load_add(&lw, se->load.weight);
688 			load = &lw;
689 		}
690 		slice = __calc_delta(slice, se->load.weight, load);
691 	}
692 	return slice;
693 }
694 
695 /*
696  * We calculate the vruntime slice of a to-be-inserted task.
697  *
698  * vs = s/w
699  */
700 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
701 {
702 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
703 }
704 
705 #include "pelt.h"
706 #ifdef CONFIG_SMP
707 
708 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
709 static unsigned long task_h_load(struct task_struct *p);
710 static unsigned long capacity_of(int cpu);
711 
712 /* Give new sched_entity start runnable values to heavy its load in infant time */
713 void init_entity_runnable_average(struct sched_entity *se)
714 {
715 	struct sched_avg *sa = &se->avg;
716 
717 	memset(sa, 0, sizeof(*sa));
718 
719 	/*
720 	 * Tasks are initialized with full load to be seen as heavy tasks until
721 	 * they get a chance to stabilize to their real load level.
722 	 * Group entities are initialized with zero load to reflect the fact that
723 	 * nothing has been attached to the task group yet.
724 	 */
725 	if (entity_is_task(se))
726 		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
727 
728 	se->runnable_weight = se->load.weight;
729 
730 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
731 }
732 
733 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
734 static void attach_entity_cfs_rq(struct sched_entity *se);
735 
736 /*
737  * With new tasks being created, their initial util_avgs are extrapolated
738  * based on the cfs_rq's current util_avg:
739  *
740  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
741  *
742  * However, in many cases, the above util_avg does not give a desired
743  * value. Moreover, the sum of the util_avgs may be divergent, such
744  * as when the series is a harmonic series.
745  *
746  * To solve this problem, we also cap the util_avg of successive tasks to
747  * only 1/2 of the left utilization budget:
748  *
749  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
750  *
751  * where n denotes the nth task and cpu_scale the CPU capacity.
752  *
753  * For example, for a CPU with 1024 of capacity, a simplest series from
754  * the beginning would be like:
755  *
756  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
757  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
758  *
759  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
760  * if util_avg > util_avg_cap.
761  */
762 void post_init_entity_util_avg(struct task_struct *p)
763 {
764 	struct sched_entity *se = &p->se;
765 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
766 	struct sched_avg *sa = &se->avg;
767 	long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
768 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
769 
770 	if (cap > 0) {
771 		if (cfs_rq->avg.util_avg != 0) {
772 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
773 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
774 
775 			if (sa->util_avg > cap)
776 				sa->util_avg = cap;
777 		} else {
778 			sa->util_avg = cap;
779 		}
780 	}
781 
782 	if (p->sched_class != &fair_sched_class) {
783 		/*
784 		 * For !fair tasks do:
785 		 *
786 		update_cfs_rq_load_avg(now, cfs_rq);
787 		attach_entity_load_avg(cfs_rq, se, 0);
788 		switched_from_fair(rq, p);
789 		 *
790 		 * such that the next switched_to_fair() has the
791 		 * expected state.
792 		 */
793 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
794 		return;
795 	}
796 
797 	attach_entity_cfs_rq(se);
798 }
799 
800 #else /* !CONFIG_SMP */
801 void init_entity_runnable_average(struct sched_entity *se)
802 {
803 }
804 void post_init_entity_util_avg(struct task_struct *p)
805 {
806 }
807 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
808 {
809 }
810 #endif /* CONFIG_SMP */
811 
812 /*
813  * Update the current task's runtime statistics.
814  */
815 static void update_curr(struct cfs_rq *cfs_rq)
816 {
817 	struct sched_entity *curr = cfs_rq->curr;
818 	u64 now = rq_clock_task(rq_of(cfs_rq));
819 	u64 delta_exec;
820 
821 	if (unlikely(!curr))
822 		return;
823 
824 	delta_exec = now - curr->exec_start;
825 	if (unlikely((s64)delta_exec <= 0))
826 		return;
827 
828 	curr->exec_start = now;
829 
830 	schedstat_set(curr->statistics.exec_max,
831 		      max(delta_exec, curr->statistics.exec_max));
832 
833 	curr->sum_exec_runtime += delta_exec;
834 	schedstat_add(cfs_rq->exec_clock, delta_exec);
835 
836 	curr->vruntime += calc_delta_fair(delta_exec, curr);
837 	update_min_vruntime(cfs_rq);
838 
839 	if (entity_is_task(curr)) {
840 		struct task_struct *curtask = task_of(curr);
841 
842 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
843 		cgroup_account_cputime(curtask, delta_exec);
844 		account_group_exec_runtime(curtask, delta_exec);
845 	}
846 
847 	account_cfs_rq_runtime(cfs_rq, delta_exec);
848 }
849 
850 static void update_curr_fair(struct rq *rq)
851 {
852 	update_curr(cfs_rq_of(&rq->curr->se));
853 }
854 
855 static inline void
856 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
857 {
858 	u64 wait_start, prev_wait_start;
859 
860 	if (!schedstat_enabled())
861 		return;
862 
863 	wait_start = rq_clock(rq_of(cfs_rq));
864 	prev_wait_start = schedstat_val(se->statistics.wait_start);
865 
866 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
867 	    likely(wait_start > prev_wait_start))
868 		wait_start -= prev_wait_start;
869 
870 	__schedstat_set(se->statistics.wait_start, wait_start);
871 }
872 
873 static inline void
874 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
875 {
876 	struct task_struct *p;
877 	u64 delta;
878 
879 	if (!schedstat_enabled())
880 		return;
881 
882 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
883 
884 	if (entity_is_task(se)) {
885 		p = task_of(se);
886 		if (task_on_rq_migrating(p)) {
887 			/*
888 			 * Preserve migrating task's wait time so wait_start
889 			 * time stamp can be adjusted to accumulate wait time
890 			 * prior to migration.
891 			 */
892 			__schedstat_set(se->statistics.wait_start, delta);
893 			return;
894 		}
895 		trace_sched_stat_wait(p, delta);
896 	}
897 
898 	__schedstat_set(se->statistics.wait_max,
899 		      max(schedstat_val(se->statistics.wait_max), delta));
900 	__schedstat_inc(se->statistics.wait_count);
901 	__schedstat_add(se->statistics.wait_sum, delta);
902 	__schedstat_set(se->statistics.wait_start, 0);
903 }
904 
905 static inline void
906 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
907 {
908 	struct task_struct *tsk = NULL;
909 	u64 sleep_start, block_start;
910 
911 	if (!schedstat_enabled())
912 		return;
913 
914 	sleep_start = schedstat_val(se->statistics.sleep_start);
915 	block_start = schedstat_val(se->statistics.block_start);
916 
917 	if (entity_is_task(se))
918 		tsk = task_of(se);
919 
920 	if (sleep_start) {
921 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
922 
923 		if ((s64)delta < 0)
924 			delta = 0;
925 
926 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
927 			__schedstat_set(se->statistics.sleep_max, delta);
928 
929 		__schedstat_set(se->statistics.sleep_start, 0);
930 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
931 
932 		if (tsk) {
933 			account_scheduler_latency(tsk, delta >> 10, 1);
934 			trace_sched_stat_sleep(tsk, delta);
935 		}
936 	}
937 	if (block_start) {
938 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
939 
940 		if ((s64)delta < 0)
941 			delta = 0;
942 
943 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
944 			__schedstat_set(se->statistics.block_max, delta);
945 
946 		__schedstat_set(se->statistics.block_start, 0);
947 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
948 
949 		if (tsk) {
950 			if (tsk->in_iowait) {
951 				__schedstat_add(se->statistics.iowait_sum, delta);
952 				__schedstat_inc(se->statistics.iowait_count);
953 				trace_sched_stat_iowait(tsk, delta);
954 			}
955 
956 			trace_sched_stat_blocked(tsk, delta);
957 
958 			/*
959 			 * Blocking time is in units of nanosecs, so shift by
960 			 * 20 to get a milliseconds-range estimation of the
961 			 * amount of time that the task spent sleeping:
962 			 */
963 			if (unlikely(prof_on == SLEEP_PROFILING)) {
964 				profile_hits(SLEEP_PROFILING,
965 						(void *)get_wchan(tsk),
966 						delta >> 20);
967 			}
968 			account_scheduler_latency(tsk, delta >> 10, 0);
969 		}
970 	}
971 }
972 
973 /*
974  * Task is being enqueued - update stats:
975  */
976 static inline void
977 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
978 {
979 	if (!schedstat_enabled())
980 		return;
981 
982 	/*
983 	 * Are we enqueueing a waiting task? (for current tasks
984 	 * a dequeue/enqueue event is a NOP)
985 	 */
986 	if (se != cfs_rq->curr)
987 		update_stats_wait_start(cfs_rq, se);
988 
989 	if (flags & ENQUEUE_WAKEUP)
990 		update_stats_enqueue_sleeper(cfs_rq, se);
991 }
992 
993 static inline void
994 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
995 {
996 
997 	if (!schedstat_enabled())
998 		return;
999 
1000 	/*
1001 	 * Mark the end of the wait period if dequeueing a
1002 	 * waiting task:
1003 	 */
1004 	if (se != cfs_rq->curr)
1005 		update_stats_wait_end(cfs_rq, se);
1006 
1007 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1008 		struct task_struct *tsk = task_of(se);
1009 
1010 		if (tsk->state & TASK_INTERRUPTIBLE)
1011 			__schedstat_set(se->statistics.sleep_start,
1012 				      rq_clock(rq_of(cfs_rq)));
1013 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1014 			__schedstat_set(se->statistics.block_start,
1015 				      rq_clock(rq_of(cfs_rq)));
1016 	}
1017 }
1018 
1019 /*
1020  * We are picking a new current task - update its stats:
1021  */
1022 static inline void
1023 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1024 {
1025 	/*
1026 	 * We are starting a new run period:
1027 	 */
1028 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1029 }
1030 
1031 /**************************************************
1032  * Scheduling class queueing methods:
1033  */
1034 
1035 #ifdef CONFIG_NUMA_BALANCING
1036 /*
1037  * Approximate time to scan a full NUMA task in ms. The task scan period is
1038  * calculated based on the tasks virtual memory size and
1039  * numa_balancing_scan_size.
1040  */
1041 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1042 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1043 
1044 /* Portion of address space to scan in MB */
1045 unsigned int sysctl_numa_balancing_scan_size = 256;
1046 
1047 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1048 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1049 
1050 struct numa_group {
1051 	refcount_t refcount;
1052 
1053 	spinlock_t lock; /* nr_tasks, tasks */
1054 	int nr_tasks;
1055 	pid_t gid;
1056 	int active_nodes;
1057 
1058 	struct rcu_head rcu;
1059 	unsigned long total_faults;
1060 	unsigned long max_faults_cpu;
1061 	/*
1062 	 * Faults_cpu is used to decide whether memory should move
1063 	 * towards the CPU. As a consequence, these stats are weighted
1064 	 * more by CPU use than by memory faults.
1065 	 */
1066 	unsigned long *faults_cpu;
1067 	unsigned long faults[0];
1068 };
1069 
1070 static inline unsigned long group_faults_priv(struct numa_group *ng);
1071 static inline unsigned long group_faults_shared(struct numa_group *ng);
1072 
1073 static unsigned int task_nr_scan_windows(struct task_struct *p)
1074 {
1075 	unsigned long rss = 0;
1076 	unsigned long nr_scan_pages;
1077 
1078 	/*
1079 	 * Calculations based on RSS as non-present and empty pages are skipped
1080 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1081 	 * on resident pages
1082 	 */
1083 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1084 	rss = get_mm_rss(p->mm);
1085 	if (!rss)
1086 		rss = nr_scan_pages;
1087 
1088 	rss = round_up(rss, nr_scan_pages);
1089 	return rss / nr_scan_pages;
1090 }
1091 
1092 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1093 #define MAX_SCAN_WINDOW 2560
1094 
1095 static unsigned int task_scan_min(struct task_struct *p)
1096 {
1097 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1098 	unsigned int scan, floor;
1099 	unsigned int windows = 1;
1100 
1101 	if (scan_size < MAX_SCAN_WINDOW)
1102 		windows = MAX_SCAN_WINDOW / scan_size;
1103 	floor = 1000 / windows;
1104 
1105 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1106 	return max_t(unsigned int, floor, scan);
1107 }
1108 
1109 static unsigned int task_scan_start(struct task_struct *p)
1110 {
1111 	unsigned long smin = task_scan_min(p);
1112 	unsigned long period = smin;
1113 
1114 	/* Scale the maximum scan period with the amount of shared memory. */
1115 	if (p->numa_group) {
1116 		struct numa_group *ng = p->numa_group;
1117 		unsigned long shared = group_faults_shared(ng);
1118 		unsigned long private = group_faults_priv(ng);
1119 
1120 		period *= refcount_read(&ng->refcount);
1121 		period *= shared + 1;
1122 		period /= private + shared + 1;
1123 	}
1124 
1125 	return max(smin, period);
1126 }
1127 
1128 static unsigned int task_scan_max(struct task_struct *p)
1129 {
1130 	unsigned long smin = task_scan_min(p);
1131 	unsigned long smax;
1132 
1133 	/* Watch for min being lower than max due to floor calculations */
1134 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1135 
1136 	/* Scale the maximum scan period with the amount of shared memory. */
1137 	if (p->numa_group) {
1138 		struct numa_group *ng = p->numa_group;
1139 		unsigned long shared = group_faults_shared(ng);
1140 		unsigned long private = group_faults_priv(ng);
1141 		unsigned long period = smax;
1142 
1143 		period *= refcount_read(&ng->refcount);
1144 		period *= shared + 1;
1145 		period /= private + shared + 1;
1146 
1147 		smax = max(smax, period);
1148 	}
1149 
1150 	return max(smin, smax);
1151 }
1152 
1153 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1154 {
1155 	int mm_users = 0;
1156 	struct mm_struct *mm = p->mm;
1157 
1158 	if (mm) {
1159 		mm_users = atomic_read(&mm->mm_users);
1160 		if (mm_users == 1) {
1161 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1162 			mm->numa_scan_seq = 0;
1163 		}
1164 	}
1165 	p->node_stamp			= 0;
1166 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
1167 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
1168 	p->numa_work.next		= &p->numa_work;
1169 	p->numa_faults			= NULL;
1170 	p->numa_group			= NULL;
1171 	p->last_task_numa_placement	= 0;
1172 	p->last_sum_exec_runtime	= 0;
1173 
1174 	/* New address space, reset the preferred nid */
1175 	if (!(clone_flags & CLONE_VM)) {
1176 		p->numa_preferred_nid = NUMA_NO_NODE;
1177 		return;
1178 	}
1179 
1180 	/*
1181 	 * New thread, keep existing numa_preferred_nid which should be copied
1182 	 * already by arch_dup_task_struct but stagger when scans start.
1183 	 */
1184 	if (mm) {
1185 		unsigned int delay;
1186 
1187 		delay = min_t(unsigned int, task_scan_max(current),
1188 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1189 		delay += 2 * TICK_NSEC;
1190 		p->node_stamp = delay;
1191 	}
1192 }
1193 
1194 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1195 {
1196 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1197 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1198 }
1199 
1200 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1201 {
1202 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1203 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1204 }
1205 
1206 /* Shared or private faults. */
1207 #define NR_NUMA_HINT_FAULT_TYPES 2
1208 
1209 /* Memory and CPU locality */
1210 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1211 
1212 /* Averaged statistics, and temporary buffers. */
1213 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1214 
1215 pid_t task_numa_group_id(struct task_struct *p)
1216 {
1217 	return p->numa_group ? p->numa_group->gid : 0;
1218 }
1219 
1220 /*
1221  * The averaged statistics, shared & private, memory & CPU,
1222  * occupy the first half of the array. The second half of the
1223  * array is for current counters, which are averaged into the
1224  * first set by task_numa_placement.
1225  */
1226 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1227 {
1228 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1229 }
1230 
1231 static inline unsigned long task_faults(struct task_struct *p, int nid)
1232 {
1233 	if (!p->numa_faults)
1234 		return 0;
1235 
1236 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1237 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1238 }
1239 
1240 static inline unsigned long group_faults(struct task_struct *p, int nid)
1241 {
1242 	if (!p->numa_group)
1243 		return 0;
1244 
1245 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1246 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1247 }
1248 
1249 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1250 {
1251 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1252 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1253 }
1254 
1255 static inline unsigned long group_faults_priv(struct numa_group *ng)
1256 {
1257 	unsigned long faults = 0;
1258 	int node;
1259 
1260 	for_each_online_node(node) {
1261 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1262 	}
1263 
1264 	return faults;
1265 }
1266 
1267 static inline unsigned long group_faults_shared(struct numa_group *ng)
1268 {
1269 	unsigned long faults = 0;
1270 	int node;
1271 
1272 	for_each_online_node(node) {
1273 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1274 	}
1275 
1276 	return faults;
1277 }
1278 
1279 /*
1280  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1281  * considered part of a numa group's pseudo-interleaving set. Migrations
1282  * between these nodes are slowed down, to allow things to settle down.
1283  */
1284 #define ACTIVE_NODE_FRACTION 3
1285 
1286 static bool numa_is_active_node(int nid, struct numa_group *ng)
1287 {
1288 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1289 }
1290 
1291 /* Handle placement on systems where not all nodes are directly connected. */
1292 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1293 					int maxdist, bool task)
1294 {
1295 	unsigned long score = 0;
1296 	int node;
1297 
1298 	/*
1299 	 * All nodes are directly connected, and the same distance
1300 	 * from each other. No need for fancy placement algorithms.
1301 	 */
1302 	if (sched_numa_topology_type == NUMA_DIRECT)
1303 		return 0;
1304 
1305 	/*
1306 	 * This code is called for each node, introducing N^2 complexity,
1307 	 * which should be ok given the number of nodes rarely exceeds 8.
1308 	 */
1309 	for_each_online_node(node) {
1310 		unsigned long faults;
1311 		int dist = node_distance(nid, node);
1312 
1313 		/*
1314 		 * The furthest away nodes in the system are not interesting
1315 		 * for placement; nid was already counted.
1316 		 */
1317 		if (dist == sched_max_numa_distance || node == nid)
1318 			continue;
1319 
1320 		/*
1321 		 * On systems with a backplane NUMA topology, compare groups
1322 		 * of nodes, and move tasks towards the group with the most
1323 		 * memory accesses. When comparing two nodes at distance
1324 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1325 		 * of each group. Skip other nodes.
1326 		 */
1327 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1328 					dist >= maxdist)
1329 			continue;
1330 
1331 		/* Add up the faults from nearby nodes. */
1332 		if (task)
1333 			faults = task_faults(p, node);
1334 		else
1335 			faults = group_faults(p, node);
1336 
1337 		/*
1338 		 * On systems with a glueless mesh NUMA topology, there are
1339 		 * no fixed "groups of nodes". Instead, nodes that are not
1340 		 * directly connected bounce traffic through intermediate
1341 		 * nodes; a numa_group can occupy any set of nodes.
1342 		 * The further away a node is, the less the faults count.
1343 		 * This seems to result in good task placement.
1344 		 */
1345 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1346 			faults *= (sched_max_numa_distance - dist);
1347 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1348 		}
1349 
1350 		score += faults;
1351 	}
1352 
1353 	return score;
1354 }
1355 
1356 /*
1357  * These return the fraction of accesses done by a particular task, or
1358  * task group, on a particular numa node.  The group weight is given a
1359  * larger multiplier, in order to group tasks together that are almost
1360  * evenly spread out between numa nodes.
1361  */
1362 static inline unsigned long task_weight(struct task_struct *p, int nid,
1363 					int dist)
1364 {
1365 	unsigned long faults, total_faults;
1366 
1367 	if (!p->numa_faults)
1368 		return 0;
1369 
1370 	total_faults = p->total_numa_faults;
1371 
1372 	if (!total_faults)
1373 		return 0;
1374 
1375 	faults = task_faults(p, nid);
1376 	faults += score_nearby_nodes(p, nid, dist, true);
1377 
1378 	return 1000 * faults / total_faults;
1379 }
1380 
1381 static inline unsigned long group_weight(struct task_struct *p, int nid,
1382 					 int dist)
1383 {
1384 	unsigned long faults, total_faults;
1385 
1386 	if (!p->numa_group)
1387 		return 0;
1388 
1389 	total_faults = p->numa_group->total_faults;
1390 
1391 	if (!total_faults)
1392 		return 0;
1393 
1394 	faults = group_faults(p, nid);
1395 	faults += score_nearby_nodes(p, nid, dist, false);
1396 
1397 	return 1000 * faults / total_faults;
1398 }
1399 
1400 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1401 				int src_nid, int dst_cpu)
1402 {
1403 	struct numa_group *ng = p->numa_group;
1404 	int dst_nid = cpu_to_node(dst_cpu);
1405 	int last_cpupid, this_cpupid;
1406 
1407 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1408 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1409 
1410 	/*
1411 	 * Allow first faults or private faults to migrate immediately early in
1412 	 * the lifetime of a task. The magic number 4 is based on waiting for
1413 	 * two full passes of the "multi-stage node selection" test that is
1414 	 * executed below.
1415 	 */
1416 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1417 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1418 		return true;
1419 
1420 	/*
1421 	 * Multi-stage node selection is used in conjunction with a periodic
1422 	 * migration fault to build a temporal task<->page relation. By using
1423 	 * a two-stage filter we remove short/unlikely relations.
1424 	 *
1425 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1426 	 * a task's usage of a particular page (n_p) per total usage of this
1427 	 * page (n_t) (in a given time-span) to a probability.
1428 	 *
1429 	 * Our periodic faults will sample this probability and getting the
1430 	 * same result twice in a row, given these samples are fully
1431 	 * independent, is then given by P(n)^2, provided our sample period
1432 	 * is sufficiently short compared to the usage pattern.
1433 	 *
1434 	 * This quadric squishes small probabilities, making it less likely we
1435 	 * act on an unlikely task<->page relation.
1436 	 */
1437 	if (!cpupid_pid_unset(last_cpupid) &&
1438 				cpupid_to_nid(last_cpupid) != dst_nid)
1439 		return false;
1440 
1441 	/* Always allow migrate on private faults */
1442 	if (cpupid_match_pid(p, last_cpupid))
1443 		return true;
1444 
1445 	/* A shared fault, but p->numa_group has not been set up yet. */
1446 	if (!ng)
1447 		return true;
1448 
1449 	/*
1450 	 * Destination node is much more heavily used than the source
1451 	 * node? Allow migration.
1452 	 */
1453 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1454 					ACTIVE_NODE_FRACTION)
1455 		return true;
1456 
1457 	/*
1458 	 * Distribute memory according to CPU & memory use on each node,
1459 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1460 	 *
1461 	 * faults_cpu(dst)   3   faults_cpu(src)
1462 	 * --------------- * - > ---------------
1463 	 * faults_mem(dst)   4   faults_mem(src)
1464 	 */
1465 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1466 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1467 }
1468 
1469 static unsigned long weighted_cpuload(struct rq *rq);
1470 static unsigned long source_load(int cpu, int type);
1471 static unsigned long target_load(int cpu, int type);
1472 
1473 /* Cached statistics for all CPUs within a node */
1474 struct numa_stats {
1475 	unsigned long load;
1476 
1477 	/* Total compute capacity of CPUs on a node */
1478 	unsigned long compute_capacity;
1479 };
1480 
1481 /*
1482  * XXX borrowed from update_sg_lb_stats
1483  */
1484 static void update_numa_stats(struct numa_stats *ns, int nid)
1485 {
1486 	int cpu;
1487 
1488 	memset(ns, 0, sizeof(*ns));
1489 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1490 		struct rq *rq = cpu_rq(cpu);
1491 
1492 		ns->load += weighted_cpuload(rq);
1493 		ns->compute_capacity += capacity_of(cpu);
1494 	}
1495 
1496 }
1497 
1498 struct task_numa_env {
1499 	struct task_struct *p;
1500 
1501 	int src_cpu, src_nid;
1502 	int dst_cpu, dst_nid;
1503 
1504 	struct numa_stats src_stats, dst_stats;
1505 
1506 	int imbalance_pct;
1507 	int dist;
1508 
1509 	struct task_struct *best_task;
1510 	long best_imp;
1511 	int best_cpu;
1512 };
1513 
1514 static void task_numa_assign(struct task_numa_env *env,
1515 			     struct task_struct *p, long imp)
1516 {
1517 	struct rq *rq = cpu_rq(env->dst_cpu);
1518 
1519 	/* Bail out if run-queue part of active NUMA balance. */
1520 	if (xchg(&rq->numa_migrate_on, 1))
1521 		return;
1522 
1523 	/*
1524 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1525 	 * found a better CPU to move/swap.
1526 	 */
1527 	if (env->best_cpu != -1) {
1528 		rq = cpu_rq(env->best_cpu);
1529 		WRITE_ONCE(rq->numa_migrate_on, 0);
1530 	}
1531 
1532 	if (env->best_task)
1533 		put_task_struct(env->best_task);
1534 	if (p)
1535 		get_task_struct(p);
1536 
1537 	env->best_task = p;
1538 	env->best_imp = imp;
1539 	env->best_cpu = env->dst_cpu;
1540 }
1541 
1542 static bool load_too_imbalanced(long src_load, long dst_load,
1543 				struct task_numa_env *env)
1544 {
1545 	long imb, old_imb;
1546 	long orig_src_load, orig_dst_load;
1547 	long src_capacity, dst_capacity;
1548 
1549 	/*
1550 	 * The load is corrected for the CPU capacity available on each node.
1551 	 *
1552 	 * src_load        dst_load
1553 	 * ------------ vs ---------
1554 	 * src_capacity    dst_capacity
1555 	 */
1556 	src_capacity = env->src_stats.compute_capacity;
1557 	dst_capacity = env->dst_stats.compute_capacity;
1558 
1559 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1560 
1561 	orig_src_load = env->src_stats.load;
1562 	orig_dst_load = env->dst_stats.load;
1563 
1564 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1565 
1566 	/* Would this change make things worse? */
1567 	return (imb > old_imb);
1568 }
1569 
1570 /*
1571  * Maximum NUMA importance can be 1998 (2*999);
1572  * SMALLIMP @ 30 would be close to 1998/64.
1573  * Used to deter task migration.
1574  */
1575 #define SMALLIMP	30
1576 
1577 /*
1578  * This checks if the overall compute and NUMA accesses of the system would
1579  * be improved if the source tasks was migrated to the target dst_cpu taking
1580  * into account that it might be best if task running on the dst_cpu should
1581  * be exchanged with the source task
1582  */
1583 static void task_numa_compare(struct task_numa_env *env,
1584 			      long taskimp, long groupimp, bool maymove)
1585 {
1586 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1587 	struct task_struct *cur;
1588 	long src_load, dst_load;
1589 	long load;
1590 	long imp = env->p->numa_group ? groupimp : taskimp;
1591 	long moveimp = imp;
1592 	int dist = env->dist;
1593 
1594 	if (READ_ONCE(dst_rq->numa_migrate_on))
1595 		return;
1596 
1597 	rcu_read_lock();
1598 	cur = task_rcu_dereference(&dst_rq->curr);
1599 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1600 		cur = NULL;
1601 
1602 	/*
1603 	 * Because we have preemption enabled we can get migrated around and
1604 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1605 	 */
1606 	if (cur == env->p)
1607 		goto unlock;
1608 
1609 	if (!cur) {
1610 		if (maymove && moveimp >= env->best_imp)
1611 			goto assign;
1612 		else
1613 			goto unlock;
1614 	}
1615 
1616 	/*
1617 	 * "imp" is the fault differential for the source task between the
1618 	 * source and destination node. Calculate the total differential for
1619 	 * the source task and potential destination task. The more negative
1620 	 * the value is, the more remote accesses that would be expected to
1621 	 * be incurred if the tasks were swapped.
1622 	 */
1623 	/* Skip this swap candidate if cannot move to the source cpu */
1624 	if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1625 		goto unlock;
1626 
1627 	/*
1628 	 * If dst and source tasks are in the same NUMA group, or not
1629 	 * in any group then look only at task weights.
1630 	 */
1631 	if (cur->numa_group == env->p->numa_group) {
1632 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1633 		      task_weight(cur, env->dst_nid, dist);
1634 		/*
1635 		 * Add some hysteresis to prevent swapping the
1636 		 * tasks within a group over tiny differences.
1637 		 */
1638 		if (cur->numa_group)
1639 			imp -= imp / 16;
1640 	} else {
1641 		/*
1642 		 * Compare the group weights. If a task is all by itself
1643 		 * (not part of a group), use the task weight instead.
1644 		 */
1645 		if (cur->numa_group && env->p->numa_group)
1646 			imp += group_weight(cur, env->src_nid, dist) -
1647 			       group_weight(cur, env->dst_nid, dist);
1648 		else
1649 			imp += task_weight(cur, env->src_nid, dist) -
1650 			       task_weight(cur, env->dst_nid, dist);
1651 	}
1652 
1653 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1654 		imp = moveimp;
1655 		cur = NULL;
1656 		goto assign;
1657 	}
1658 
1659 	/*
1660 	 * If the NUMA importance is less than SMALLIMP,
1661 	 * task migration might only result in ping pong
1662 	 * of tasks and also hurt performance due to cache
1663 	 * misses.
1664 	 */
1665 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1666 		goto unlock;
1667 
1668 	/*
1669 	 * In the overloaded case, try and keep the load balanced.
1670 	 */
1671 	load = task_h_load(env->p) - task_h_load(cur);
1672 	if (!load)
1673 		goto assign;
1674 
1675 	dst_load = env->dst_stats.load + load;
1676 	src_load = env->src_stats.load - load;
1677 
1678 	if (load_too_imbalanced(src_load, dst_load, env))
1679 		goto unlock;
1680 
1681 assign:
1682 	/*
1683 	 * One idle CPU per node is evaluated for a task numa move.
1684 	 * Call select_idle_sibling to maybe find a better one.
1685 	 */
1686 	if (!cur) {
1687 		/*
1688 		 * select_idle_siblings() uses an per-CPU cpumask that
1689 		 * can be used from IRQ context.
1690 		 */
1691 		local_irq_disable();
1692 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1693 						   env->dst_cpu);
1694 		local_irq_enable();
1695 	}
1696 
1697 	task_numa_assign(env, cur, imp);
1698 unlock:
1699 	rcu_read_unlock();
1700 }
1701 
1702 static void task_numa_find_cpu(struct task_numa_env *env,
1703 				long taskimp, long groupimp)
1704 {
1705 	long src_load, dst_load, load;
1706 	bool maymove = false;
1707 	int cpu;
1708 
1709 	load = task_h_load(env->p);
1710 	dst_load = env->dst_stats.load + load;
1711 	src_load = env->src_stats.load - load;
1712 
1713 	/*
1714 	 * If the improvement from just moving env->p direction is better
1715 	 * than swapping tasks around, check if a move is possible.
1716 	 */
1717 	maymove = !load_too_imbalanced(src_load, dst_load, env);
1718 
1719 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1720 		/* Skip this CPU if the source task cannot migrate */
1721 		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1722 			continue;
1723 
1724 		env->dst_cpu = cpu;
1725 		task_numa_compare(env, taskimp, groupimp, maymove);
1726 	}
1727 }
1728 
1729 static int task_numa_migrate(struct task_struct *p)
1730 {
1731 	struct task_numa_env env = {
1732 		.p = p,
1733 
1734 		.src_cpu = task_cpu(p),
1735 		.src_nid = task_node(p),
1736 
1737 		.imbalance_pct = 112,
1738 
1739 		.best_task = NULL,
1740 		.best_imp = 0,
1741 		.best_cpu = -1,
1742 	};
1743 	struct sched_domain *sd;
1744 	struct rq *best_rq;
1745 	unsigned long taskweight, groupweight;
1746 	int nid, ret, dist;
1747 	long taskimp, groupimp;
1748 
1749 	/*
1750 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1751 	 * imbalance and would be the first to start moving tasks about.
1752 	 *
1753 	 * And we want to avoid any moving of tasks about, as that would create
1754 	 * random movement of tasks -- counter the numa conditions we're trying
1755 	 * to satisfy here.
1756 	 */
1757 	rcu_read_lock();
1758 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1759 	if (sd)
1760 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1761 	rcu_read_unlock();
1762 
1763 	/*
1764 	 * Cpusets can break the scheduler domain tree into smaller
1765 	 * balance domains, some of which do not cross NUMA boundaries.
1766 	 * Tasks that are "trapped" in such domains cannot be migrated
1767 	 * elsewhere, so there is no point in (re)trying.
1768 	 */
1769 	if (unlikely(!sd)) {
1770 		sched_setnuma(p, task_node(p));
1771 		return -EINVAL;
1772 	}
1773 
1774 	env.dst_nid = p->numa_preferred_nid;
1775 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1776 	taskweight = task_weight(p, env.src_nid, dist);
1777 	groupweight = group_weight(p, env.src_nid, dist);
1778 	update_numa_stats(&env.src_stats, env.src_nid);
1779 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1780 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1781 	update_numa_stats(&env.dst_stats, env.dst_nid);
1782 
1783 	/* Try to find a spot on the preferred nid. */
1784 	task_numa_find_cpu(&env, taskimp, groupimp);
1785 
1786 	/*
1787 	 * Look at other nodes in these cases:
1788 	 * - there is no space available on the preferred_nid
1789 	 * - the task is part of a numa_group that is interleaved across
1790 	 *   multiple NUMA nodes; in order to better consolidate the group,
1791 	 *   we need to check other locations.
1792 	 */
1793 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1794 		for_each_online_node(nid) {
1795 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1796 				continue;
1797 
1798 			dist = node_distance(env.src_nid, env.dst_nid);
1799 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1800 						dist != env.dist) {
1801 				taskweight = task_weight(p, env.src_nid, dist);
1802 				groupweight = group_weight(p, env.src_nid, dist);
1803 			}
1804 
1805 			/* Only consider nodes where both task and groups benefit */
1806 			taskimp = task_weight(p, nid, dist) - taskweight;
1807 			groupimp = group_weight(p, nid, dist) - groupweight;
1808 			if (taskimp < 0 && groupimp < 0)
1809 				continue;
1810 
1811 			env.dist = dist;
1812 			env.dst_nid = nid;
1813 			update_numa_stats(&env.dst_stats, env.dst_nid);
1814 			task_numa_find_cpu(&env, taskimp, groupimp);
1815 		}
1816 	}
1817 
1818 	/*
1819 	 * If the task is part of a workload that spans multiple NUMA nodes,
1820 	 * and is migrating into one of the workload's active nodes, remember
1821 	 * this node as the task's preferred numa node, so the workload can
1822 	 * settle down.
1823 	 * A task that migrated to a second choice node will be better off
1824 	 * trying for a better one later. Do not set the preferred node here.
1825 	 */
1826 	if (p->numa_group) {
1827 		if (env.best_cpu == -1)
1828 			nid = env.src_nid;
1829 		else
1830 			nid = cpu_to_node(env.best_cpu);
1831 
1832 		if (nid != p->numa_preferred_nid)
1833 			sched_setnuma(p, nid);
1834 	}
1835 
1836 	/* No better CPU than the current one was found. */
1837 	if (env.best_cpu == -1)
1838 		return -EAGAIN;
1839 
1840 	best_rq = cpu_rq(env.best_cpu);
1841 	if (env.best_task == NULL) {
1842 		ret = migrate_task_to(p, env.best_cpu);
1843 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
1844 		if (ret != 0)
1845 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1846 		return ret;
1847 	}
1848 
1849 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1850 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
1851 
1852 	if (ret != 0)
1853 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1854 	put_task_struct(env.best_task);
1855 	return ret;
1856 }
1857 
1858 /* Attempt to migrate a task to a CPU on the preferred node. */
1859 static void numa_migrate_preferred(struct task_struct *p)
1860 {
1861 	unsigned long interval = HZ;
1862 
1863 	/* This task has no NUMA fault statistics yet */
1864 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
1865 		return;
1866 
1867 	/* Periodically retry migrating the task to the preferred node */
1868 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1869 	p->numa_migrate_retry = jiffies + interval;
1870 
1871 	/* Success if task is already running on preferred CPU */
1872 	if (task_node(p) == p->numa_preferred_nid)
1873 		return;
1874 
1875 	/* Otherwise, try migrate to a CPU on the preferred node */
1876 	task_numa_migrate(p);
1877 }
1878 
1879 /*
1880  * Find out how many nodes on the workload is actively running on. Do this by
1881  * tracking the nodes from which NUMA hinting faults are triggered. This can
1882  * be different from the set of nodes where the workload's memory is currently
1883  * located.
1884  */
1885 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1886 {
1887 	unsigned long faults, max_faults = 0;
1888 	int nid, active_nodes = 0;
1889 
1890 	for_each_online_node(nid) {
1891 		faults = group_faults_cpu(numa_group, nid);
1892 		if (faults > max_faults)
1893 			max_faults = faults;
1894 	}
1895 
1896 	for_each_online_node(nid) {
1897 		faults = group_faults_cpu(numa_group, nid);
1898 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1899 			active_nodes++;
1900 	}
1901 
1902 	numa_group->max_faults_cpu = max_faults;
1903 	numa_group->active_nodes = active_nodes;
1904 }
1905 
1906 /*
1907  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1908  * increments. The more local the fault statistics are, the higher the scan
1909  * period will be for the next scan window. If local/(local+remote) ratio is
1910  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1911  * the scan period will decrease. Aim for 70% local accesses.
1912  */
1913 #define NUMA_PERIOD_SLOTS 10
1914 #define NUMA_PERIOD_THRESHOLD 7
1915 
1916 /*
1917  * Increase the scan period (slow down scanning) if the majority of
1918  * our memory is already on our local node, or if the majority of
1919  * the page accesses are shared with other processes.
1920  * Otherwise, decrease the scan period.
1921  */
1922 static void update_task_scan_period(struct task_struct *p,
1923 			unsigned long shared, unsigned long private)
1924 {
1925 	unsigned int period_slot;
1926 	int lr_ratio, ps_ratio;
1927 	int diff;
1928 
1929 	unsigned long remote = p->numa_faults_locality[0];
1930 	unsigned long local = p->numa_faults_locality[1];
1931 
1932 	/*
1933 	 * If there were no record hinting faults then either the task is
1934 	 * completely idle or all activity is areas that are not of interest
1935 	 * to automatic numa balancing. Related to that, if there were failed
1936 	 * migration then it implies we are migrating too quickly or the local
1937 	 * node is overloaded. In either case, scan slower
1938 	 */
1939 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1940 		p->numa_scan_period = min(p->numa_scan_period_max,
1941 			p->numa_scan_period << 1);
1942 
1943 		p->mm->numa_next_scan = jiffies +
1944 			msecs_to_jiffies(p->numa_scan_period);
1945 
1946 		return;
1947 	}
1948 
1949 	/*
1950 	 * Prepare to scale scan period relative to the current period.
1951 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1952 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1953 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1954 	 */
1955 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1956 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1957 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1958 
1959 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1960 		/*
1961 		 * Most memory accesses are local. There is no need to
1962 		 * do fast NUMA scanning, since memory is already local.
1963 		 */
1964 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1965 		if (!slot)
1966 			slot = 1;
1967 		diff = slot * period_slot;
1968 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1969 		/*
1970 		 * Most memory accesses are shared with other tasks.
1971 		 * There is no point in continuing fast NUMA scanning,
1972 		 * since other tasks may just move the memory elsewhere.
1973 		 */
1974 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1975 		if (!slot)
1976 			slot = 1;
1977 		diff = slot * period_slot;
1978 	} else {
1979 		/*
1980 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1981 		 * yet they are not on the local NUMA node. Speed up
1982 		 * NUMA scanning to get the memory moved over.
1983 		 */
1984 		int ratio = max(lr_ratio, ps_ratio);
1985 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1986 	}
1987 
1988 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1989 			task_scan_min(p), task_scan_max(p));
1990 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1991 }
1992 
1993 /*
1994  * Get the fraction of time the task has been running since the last
1995  * NUMA placement cycle. The scheduler keeps similar statistics, but
1996  * decays those on a 32ms period, which is orders of magnitude off
1997  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1998  * stats only if the task is so new there are no NUMA statistics yet.
1999  */
2000 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2001 {
2002 	u64 runtime, delta, now;
2003 	/* Use the start of this time slice to avoid calculations. */
2004 	now = p->se.exec_start;
2005 	runtime = p->se.sum_exec_runtime;
2006 
2007 	if (p->last_task_numa_placement) {
2008 		delta = runtime - p->last_sum_exec_runtime;
2009 		*period = now - p->last_task_numa_placement;
2010 	} else {
2011 		delta = p->se.avg.load_sum;
2012 		*period = LOAD_AVG_MAX;
2013 	}
2014 
2015 	p->last_sum_exec_runtime = runtime;
2016 	p->last_task_numa_placement = now;
2017 
2018 	return delta;
2019 }
2020 
2021 /*
2022  * Determine the preferred nid for a task in a numa_group. This needs to
2023  * be done in a way that produces consistent results with group_weight,
2024  * otherwise workloads might not converge.
2025  */
2026 static int preferred_group_nid(struct task_struct *p, int nid)
2027 {
2028 	nodemask_t nodes;
2029 	int dist;
2030 
2031 	/* Direct connections between all NUMA nodes. */
2032 	if (sched_numa_topology_type == NUMA_DIRECT)
2033 		return nid;
2034 
2035 	/*
2036 	 * On a system with glueless mesh NUMA topology, group_weight
2037 	 * scores nodes according to the number of NUMA hinting faults on
2038 	 * both the node itself, and on nearby nodes.
2039 	 */
2040 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2041 		unsigned long score, max_score = 0;
2042 		int node, max_node = nid;
2043 
2044 		dist = sched_max_numa_distance;
2045 
2046 		for_each_online_node(node) {
2047 			score = group_weight(p, node, dist);
2048 			if (score > max_score) {
2049 				max_score = score;
2050 				max_node = node;
2051 			}
2052 		}
2053 		return max_node;
2054 	}
2055 
2056 	/*
2057 	 * Finding the preferred nid in a system with NUMA backplane
2058 	 * interconnect topology is more involved. The goal is to locate
2059 	 * tasks from numa_groups near each other in the system, and
2060 	 * untangle workloads from different sides of the system. This requires
2061 	 * searching down the hierarchy of node groups, recursively searching
2062 	 * inside the highest scoring group of nodes. The nodemask tricks
2063 	 * keep the complexity of the search down.
2064 	 */
2065 	nodes = node_online_map;
2066 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2067 		unsigned long max_faults = 0;
2068 		nodemask_t max_group = NODE_MASK_NONE;
2069 		int a, b;
2070 
2071 		/* Are there nodes at this distance from each other? */
2072 		if (!find_numa_distance(dist))
2073 			continue;
2074 
2075 		for_each_node_mask(a, nodes) {
2076 			unsigned long faults = 0;
2077 			nodemask_t this_group;
2078 			nodes_clear(this_group);
2079 
2080 			/* Sum group's NUMA faults; includes a==b case. */
2081 			for_each_node_mask(b, nodes) {
2082 				if (node_distance(a, b) < dist) {
2083 					faults += group_faults(p, b);
2084 					node_set(b, this_group);
2085 					node_clear(b, nodes);
2086 				}
2087 			}
2088 
2089 			/* Remember the top group. */
2090 			if (faults > max_faults) {
2091 				max_faults = faults;
2092 				max_group = this_group;
2093 				/*
2094 				 * subtle: at the smallest distance there is
2095 				 * just one node left in each "group", the
2096 				 * winner is the preferred nid.
2097 				 */
2098 				nid = a;
2099 			}
2100 		}
2101 		/* Next round, evaluate the nodes within max_group. */
2102 		if (!max_faults)
2103 			break;
2104 		nodes = max_group;
2105 	}
2106 	return nid;
2107 }
2108 
2109 static void task_numa_placement(struct task_struct *p)
2110 {
2111 	int seq, nid, max_nid = NUMA_NO_NODE;
2112 	unsigned long max_faults = 0;
2113 	unsigned long fault_types[2] = { 0, 0 };
2114 	unsigned long total_faults;
2115 	u64 runtime, period;
2116 	spinlock_t *group_lock = NULL;
2117 
2118 	/*
2119 	 * The p->mm->numa_scan_seq field gets updated without
2120 	 * exclusive access. Use READ_ONCE() here to ensure
2121 	 * that the field is read in a single access:
2122 	 */
2123 	seq = READ_ONCE(p->mm->numa_scan_seq);
2124 	if (p->numa_scan_seq == seq)
2125 		return;
2126 	p->numa_scan_seq = seq;
2127 	p->numa_scan_period_max = task_scan_max(p);
2128 
2129 	total_faults = p->numa_faults_locality[0] +
2130 		       p->numa_faults_locality[1];
2131 	runtime = numa_get_avg_runtime(p, &period);
2132 
2133 	/* If the task is part of a group prevent parallel updates to group stats */
2134 	if (p->numa_group) {
2135 		group_lock = &p->numa_group->lock;
2136 		spin_lock_irq(group_lock);
2137 	}
2138 
2139 	/* Find the node with the highest number of faults */
2140 	for_each_online_node(nid) {
2141 		/* Keep track of the offsets in numa_faults array */
2142 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2143 		unsigned long faults = 0, group_faults = 0;
2144 		int priv;
2145 
2146 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2147 			long diff, f_diff, f_weight;
2148 
2149 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2150 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2151 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2152 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2153 
2154 			/* Decay existing window, copy faults since last scan */
2155 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2156 			fault_types[priv] += p->numa_faults[membuf_idx];
2157 			p->numa_faults[membuf_idx] = 0;
2158 
2159 			/*
2160 			 * Normalize the faults_from, so all tasks in a group
2161 			 * count according to CPU use, instead of by the raw
2162 			 * number of faults. Tasks with little runtime have
2163 			 * little over-all impact on throughput, and thus their
2164 			 * faults are less important.
2165 			 */
2166 			f_weight = div64_u64(runtime << 16, period + 1);
2167 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2168 				   (total_faults + 1);
2169 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2170 			p->numa_faults[cpubuf_idx] = 0;
2171 
2172 			p->numa_faults[mem_idx] += diff;
2173 			p->numa_faults[cpu_idx] += f_diff;
2174 			faults += p->numa_faults[mem_idx];
2175 			p->total_numa_faults += diff;
2176 			if (p->numa_group) {
2177 				/*
2178 				 * safe because we can only change our own group
2179 				 *
2180 				 * mem_idx represents the offset for a given
2181 				 * nid and priv in a specific region because it
2182 				 * is at the beginning of the numa_faults array.
2183 				 */
2184 				p->numa_group->faults[mem_idx] += diff;
2185 				p->numa_group->faults_cpu[mem_idx] += f_diff;
2186 				p->numa_group->total_faults += diff;
2187 				group_faults += p->numa_group->faults[mem_idx];
2188 			}
2189 		}
2190 
2191 		if (!p->numa_group) {
2192 			if (faults > max_faults) {
2193 				max_faults = faults;
2194 				max_nid = nid;
2195 			}
2196 		} else if (group_faults > max_faults) {
2197 			max_faults = group_faults;
2198 			max_nid = nid;
2199 		}
2200 	}
2201 
2202 	if (p->numa_group) {
2203 		numa_group_count_active_nodes(p->numa_group);
2204 		spin_unlock_irq(group_lock);
2205 		max_nid = preferred_group_nid(p, max_nid);
2206 	}
2207 
2208 	if (max_faults) {
2209 		/* Set the new preferred node */
2210 		if (max_nid != p->numa_preferred_nid)
2211 			sched_setnuma(p, max_nid);
2212 	}
2213 
2214 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2215 }
2216 
2217 static inline int get_numa_group(struct numa_group *grp)
2218 {
2219 	return refcount_inc_not_zero(&grp->refcount);
2220 }
2221 
2222 static inline void put_numa_group(struct numa_group *grp)
2223 {
2224 	if (refcount_dec_and_test(&grp->refcount))
2225 		kfree_rcu(grp, rcu);
2226 }
2227 
2228 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2229 			int *priv)
2230 {
2231 	struct numa_group *grp, *my_grp;
2232 	struct task_struct *tsk;
2233 	bool join = false;
2234 	int cpu = cpupid_to_cpu(cpupid);
2235 	int i;
2236 
2237 	if (unlikely(!p->numa_group)) {
2238 		unsigned int size = sizeof(struct numa_group) +
2239 				    4*nr_node_ids*sizeof(unsigned long);
2240 
2241 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2242 		if (!grp)
2243 			return;
2244 
2245 		refcount_set(&grp->refcount, 1);
2246 		grp->active_nodes = 1;
2247 		grp->max_faults_cpu = 0;
2248 		spin_lock_init(&grp->lock);
2249 		grp->gid = p->pid;
2250 		/* Second half of the array tracks nids where faults happen */
2251 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2252 						nr_node_ids;
2253 
2254 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2255 			grp->faults[i] = p->numa_faults[i];
2256 
2257 		grp->total_faults = p->total_numa_faults;
2258 
2259 		grp->nr_tasks++;
2260 		rcu_assign_pointer(p->numa_group, grp);
2261 	}
2262 
2263 	rcu_read_lock();
2264 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2265 
2266 	if (!cpupid_match_pid(tsk, cpupid))
2267 		goto no_join;
2268 
2269 	grp = rcu_dereference(tsk->numa_group);
2270 	if (!grp)
2271 		goto no_join;
2272 
2273 	my_grp = p->numa_group;
2274 	if (grp == my_grp)
2275 		goto no_join;
2276 
2277 	/*
2278 	 * Only join the other group if its bigger; if we're the bigger group,
2279 	 * the other task will join us.
2280 	 */
2281 	if (my_grp->nr_tasks > grp->nr_tasks)
2282 		goto no_join;
2283 
2284 	/*
2285 	 * Tie-break on the grp address.
2286 	 */
2287 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2288 		goto no_join;
2289 
2290 	/* Always join threads in the same process. */
2291 	if (tsk->mm == current->mm)
2292 		join = true;
2293 
2294 	/* Simple filter to avoid false positives due to PID collisions */
2295 	if (flags & TNF_SHARED)
2296 		join = true;
2297 
2298 	/* Update priv based on whether false sharing was detected */
2299 	*priv = !join;
2300 
2301 	if (join && !get_numa_group(grp))
2302 		goto no_join;
2303 
2304 	rcu_read_unlock();
2305 
2306 	if (!join)
2307 		return;
2308 
2309 	BUG_ON(irqs_disabled());
2310 	double_lock_irq(&my_grp->lock, &grp->lock);
2311 
2312 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2313 		my_grp->faults[i] -= p->numa_faults[i];
2314 		grp->faults[i] += p->numa_faults[i];
2315 	}
2316 	my_grp->total_faults -= p->total_numa_faults;
2317 	grp->total_faults += p->total_numa_faults;
2318 
2319 	my_grp->nr_tasks--;
2320 	grp->nr_tasks++;
2321 
2322 	spin_unlock(&my_grp->lock);
2323 	spin_unlock_irq(&grp->lock);
2324 
2325 	rcu_assign_pointer(p->numa_group, grp);
2326 
2327 	put_numa_group(my_grp);
2328 	return;
2329 
2330 no_join:
2331 	rcu_read_unlock();
2332 	return;
2333 }
2334 
2335 void task_numa_free(struct task_struct *p)
2336 {
2337 	struct numa_group *grp = p->numa_group;
2338 	void *numa_faults = p->numa_faults;
2339 	unsigned long flags;
2340 	int i;
2341 
2342 	if (grp) {
2343 		spin_lock_irqsave(&grp->lock, flags);
2344 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2345 			grp->faults[i] -= p->numa_faults[i];
2346 		grp->total_faults -= p->total_numa_faults;
2347 
2348 		grp->nr_tasks--;
2349 		spin_unlock_irqrestore(&grp->lock, flags);
2350 		RCU_INIT_POINTER(p->numa_group, NULL);
2351 		put_numa_group(grp);
2352 	}
2353 
2354 	p->numa_faults = NULL;
2355 	kfree(numa_faults);
2356 }
2357 
2358 /*
2359  * Got a PROT_NONE fault for a page on @node.
2360  */
2361 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2362 {
2363 	struct task_struct *p = current;
2364 	bool migrated = flags & TNF_MIGRATED;
2365 	int cpu_node = task_node(current);
2366 	int local = !!(flags & TNF_FAULT_LOCAL);
2367 	struct numa_group *ng;
2368 	int priv;
2369 
2370 	if (!static_branch_likely(&sched_numa_balancing))
2371 		return;
2372 
2373 	/* for example, ksmd faulting in a user's mm */
2374 	if (!p->mm)
2375 		return;
2376 
2377 	/* Allocate buffer to track faults on a per-node basis */
2378 	if (unlikely(!p->numa_faults)) {
2379 		int size = sizeof(*p->numa_faults) *
2380 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2381 
2382 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2383 		if (!p->numa_faults)
2384 			return;
2385 
2386 		p->total_numa_faults = 0;
2387 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2388 	}
2389 
2390 	/*
2391 	 * First accesses are treated as private, otherwise consider accesses
2392 	 * to be private if the accessing pid has not changed
2393 	 */
2394 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2395 		priv = 1;
2396 	} else {
2397 		priv = cpupid_match_pid(p, last_cpupid);
2398 		if (!priv && !(flags & TNF_NO_GROUP))
2399 			task_numa_group(p, last_cpupid, flags, &priv);
2400 	}
2401 
2402 	/*
2403 	 * If a workload spans multiple NUMA nodes, a shared fault that
2404 	 * occurs wholly within the set of nodes that the workload is
2405 	 * actively using should be counted as local. This allows the
2406 	 * scan rate to slow down when a workload has settled down.
2407 	 */
2408 	ng = p->numa_group;
2409 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2410 				numa_is_active_node(cpu_node, ng) &&
2411 				numa_is_active_node(mem_node, ng))
2412 		local = 1;
2413 
2414 	/*
2415 	 * Retry to migrate task to preferred node periodically, in case it
2416 	 * previously failed, or the scheduler moved us.
2417 	 */
2418 	if (time_after(jiffies, p->numa_migrate_retry)) {
2419 		task_numa_placement(p);
2420 		numa_migrate_preferred(p);
2421 	}
2422 
2423 	if (migrated)
2424 		p->numa_pages_migrated += pages;
2425 	if (flags & TNF_MIGRATE_FAIL)
2426 		p->numa_faults_locality[2] += pages;
2427 
2428 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2429 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2430 	p->numa_faults_locality[local] += pages;
2431 }
2432 
2433 static void reset_ptenuma_scan(struct task_struct *p)
2434 {
2435 	/*
2436 	 * We only did a read acquisition of the mmap sem, so
2437 	 * p->mm->numa_scan_seq is written to without exclusive access
2438 	 * and the update is not guaranteed to be atomic. That's not
2439 	 * much of an issue though, since this is just used for
2440 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2441 	 * expensive, to avoid any form of compiler optimizations:
2442 	 */
2443 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2444 	p->mm->numa_scan_offset = 0;
2445 }
2446 
2447 /*
2448  * The expensive part of numa migration is done from task_work context.
2449  * Triggered from task_tick_numa().
2450  */
2451 void task_numa_work(struct callback_head *work)
2452 {
2453 	unsigned long migrate, next_scan, now = jiffies;
2454 	struct task_struct *p = current;
2455 	struct mm_struct *mm = p->mm;
2456 	u64 runtime = p->se.sum_exec_runtime;
2457 	struct vm_area_struct *vma;
2458 	unsigned long start, end;
2459 	unsigned long nr_pte_updates = 0;
2460 	long pages, virtpages;
2461 
2462 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2463 
2464 	work->next = work; /* protect against double add */
2465 	/*
2466 	 * Who cares about NUMA placement when they're dying.
2467 	 *
2468 	 * NOTE: make sure not to dereference p->mm before this check,
2469 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2470 	 * without p->mm even though we still had it when we enqueued this
2471 	 * work.
2472 	 */
2473 	if (p->flags & PF_EXITING)
2474 		return;
2475 
2476 	if (!mm->numa_next_scan) {
2477 		mm->numa_next_scan = now +
2478 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2479 	}
2480 
2481 	/*
2482 	 * Enforce maximal scan/migration frequency..
2483 	 */
2484 	migrate = mm->numa_next_scan;
2485 	if (time_before(now, migrate))
2486 		return;
2487 
2488 	if (p->numa_scan_period == 0) {
2489 		p->numa_scan_period_max = task_scan_max(p);
2490 		p->numa_scan_period = task_scan_start(p);
2491 	}
2492 
2493 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2494 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2495 		return;
2496 
2497 	/*
2498 	 * Delay this task enough that another task of this mm will likely win
2499 	 * the next time around.
2500 	 */
2501 	p->node_stamp += 2 * TICK_NSEC;
2502 
2503 	start = mm->numa_scan_offset;
2504 	pages = sysctl_numa_balancing_scan_size;
2505 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2506 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2507 	if (!pages)
2508 		return;
2509 
2510 
2511 	if (!down_read_trylock(&mm->mmap_sem))
2512 		return;
2513 	vma = find_vma(mm, start);
2514 	if (!vma) {
2515 		reset_ptenuma_scan(p);
2516 		start = 0;
2517 		vma = mm->mmap;
2518 	}
2519 	for (; vma; vma = vma->vm_next) {
2520 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2521 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2522 			continue;
2523 		}
2524 
2525 		/*
2526 		 * Shared library pages mapped by multiple processes are not
2527 		 * migrated as it is expected they are cache replicated. Avoid
2528 		 * hinting faults in read-only file-backed mappings or the vdso
2529 		 * as migrating the pages will be of marginal benefit.
2530 		 */
2531 		if (!vma->vm_mm ||
2532 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2533 			continue;
2534 
2535 		/*
2536 		 * Skip inaccessible VMAs to avoid any confusion between
2537 		 * PROT_NONE and NUMA hinting ptes
2538 		 */
2539 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2540 			continue;
2541 
2542 		do {
2543 			start = max(start, vma->vm_start);
2544 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2545 			end = min(end, vma->vm_end);
2546 			nr_pte_updates = change_prot_numa(vma, start, end);
2547 
2548 			/*
2549 			 * Try to scan sysctl_numa_balancing_size worth of
2550 			 * hpages that have at least one present PTE that
2551 			 * is not already pte-numa. If the VMA contains
2552 			 * areas that are unused or already full of prot_numa
2553 			 * PTEs, scan up to virtpages, to skip through those
2554 			 * areas faster.
2555 			 */
2556 			if (nr_pte_updates)
2557 				pages -= (end - start) >> PAGE_SHIFT;
2558 			virtpages -= (end - start) >> PAGE_SHIFT;
2559 
2560 			start = end;
2561 			if (pages <= 0 || virtpages <= 0)
2562 				goto out;
2563 
2564 			cond_resched();
2565 		} while (end != vma->vm_end);
2566 	}
2567 
2568 out:
2569 	/*
2570 	 * It is possible to reach the end of the VMA list but the last few
2571 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2572 	 * would find the !migratable VMA on the next scan but not reset the
2573 	 * scanner to the start so check it now.
2574 	 */
2575 	if (vma)
2576 		mm->numa_scan_offset = start;
2577 	else
2578 		reset_ptenuma_scan(p);
2579 	up_read(&mm->mmap_sem);
2580 
2581 	/*
2582 	 * Make sure tasks use at least 32x as much time to run other code
2583 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2584 	 * Usually update_task_scan_period slows down scanning enough; on an
2585 	 * overloaded system we need to limit overhead on a per task basis.
2586 	 */
2587 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2588 		u64 diff = p->se.sum_exec_runtime - runtime;
2589 		p->node_stamp += 32 * diff;
2590 	}
2591 }
2592 
2593 /*
2594  * Drive the periodic memory faults..
2595  */
2596 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2597 {
2598 	struct callback_head *work = &curr->numa_work;
2599 	u64 period, now;
2600 
2601 	/*
2602 	 * We don't care about NUMA placement if we don't have memory.
2603 	 */
2604 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2605 		return;
2606 
2607 	/*
2608 	 * Using runtime rather than walltime has the dual advantage that
2609 	 * we (mostly) drive the selection from busy threads and that the
2610 	 * task needs to have done some actual work before we bother with
2611 	 * NUMA placement.
2612 	 */
2613 	now = curr->se.sum_exec_runtime;
2614 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2615 
2616 	if (now > curr->node_stamp + period) {
2617 		if (!curr->node_stamp)
2618 			curr->numa_scan_period = task_scan_start(curr);
2619 		curr->node_stamp += period;
2620 
2621 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2622 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2623 			task_work_add(curr, work, true);
2624 		}
2625 	}
2626 }
2627 
2628 static void update_scan_period(struct task_struct *p, int new_cpu)
2629 {
2630 	int src_nid = cpu_to_node(task_cpu(p));
2631 	int dst_nid = cpu_to_node(new_cpu);
2632 
2633 	if (!static_branch_likely(&sched_numa_balancing))
2634 		return;
2635 
2636 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2637 		return;
2638 
2639 	if (src_nid == dst_nid)
2640 		return;
2641 
2642 	/*
2643 	 * Allow resets if faults have been trapped before one scan
2644 	 * has completed. This is most likely due to a new task that
2645 	 * is pulled cross-node due to wakeups or load balancing.
2646 	 */
2647 	if (p->numa_scan_seq) {
2648 		/*
2649 		 * Avoid scan adjustments if moving to the preferred
2650 		 * node or if the task was not previously running on
2651 		 * the preferred node.
2652 		 */
2653 		if (dst_nid == p->numa_preferred_nid ||
2654 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2655 			src_nid != p->numa_preferred_nid))
2656 			return;
2657 	}
2658 
2659 	p->numa_scan_period = task_scan_start(p);
2660 }
2661 
2662 #else
2663 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2664 {
2665 }
2666 
2667 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2668 {
2669 }
2670 
2671 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2672 {
2673 }
2674 
2675 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2676 {
2677 }
2678 
2679 #endif /* CONFIG_NUMA_BALANCING */
2680 
2681 static void
2682 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2683 {
2684 	update_load_add(&cfs_rq->load, se->load.weight);
2685 	if (!parent_entity(se))
2686 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2687 #ifdef CONFIG_SMP
2688 	if (entity_is_task(se)) {
2689 		struct rq *rq = rq_of(cfs_rq);
2690 
2691 		account_numa_enqueue(rq, task_of(se));
2692 		list_add(&se->group_node, &rq->cfs_tasks);
2693 	}
2694 #endif
2695 	cfs_rq->nr_running++;
2696 }
2697 
2698 static void
2699 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2700 {
2701 	update_load_sub(&cfs_rq->load, se->load.weight);
2702 	if (!parent_entity(se))
2703 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2704 #ifdef CONFIG_SMP
2705 	if (entity_is_task(se)) {
2706 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2707 		list_del_init(&se->group_node);
2708 	}
2709 #endif
2710 	cfs_rq->nr_running--;
2711 }
2712 
2713 /*
2714  * Signed add and clamp on underflow.
2715  *
2716  * Explicitly do a load-store to ensure the intermediate value never hits
2717  * memory. This allows lockless observations without ever seeing the negative
2718  * values.
2719  */
2720 #define add_positive(_ptr, _val) do {                           \
2721 	typeof(_ptr) ptr = (_ptr);                              \
2722 	typeof(_val) val = (_val);                              \
2723 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2724 								\
2725 	res = var + val;                                        \
2726 								\
2727 	if (val < 0 && res > var)                               \
2728 		res = 0;                                        \
2729 								\
2730 	WRITE_ONCE(*ptr, res);                                  \
2731 } while (0)
2732 
2733 /*
2734  * Unsigned subtract and clamp on underflow.
2735  *
2736  * Explicitly do a load-store to ensure the intermediate value never hits
2737  * memory. This allows lockless observations without ever seeing the negative
2738  * values.
2739  */
2740 #define sub_positive(_ptr, _val) do {				\
2741 	typeof(_ptr) ptr = (_ptr);				\
2742 	typeof(*ptr) val = (_val);				\
2743 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
2744 	res = var - val;					\
2745 	if (res > var)						\
2746 		res = 0;					\
2747 	WRITE_ONCE(*ptr, res);					\
2748 } while (0)
2749 
2750 /*
2751  * Remove and clamp on negative, from a local variable.
2752  *
2753  * A variant of sub_positive(), which does not use explicit load-store
2754  * and is thus optimized for local variable updates.
2755  */
2756 #define lsub_positive(_ptr, _val) do {				\
2757 	typeof(_ptr) ptr = (_ptr);				\
2758 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
2759 } while (0)
2760 
2761 #ifdef CONFIG_SMP
2762 static inline void
2763 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2764 {
2765 	cfs_rq->runnable_weight += se->runnable_weight;
2766 
2767 	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2768 	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2769 }
2770 
2771 static inline void
2772 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2773 {
2774 	cfs_rq->runnable_weight -= se->runnable_weight;
2775 
2776 	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2777 	sub_positive(&cfs_rq->avg.runnable_load_sum,
2778 		     se_runnable(se) * se->avg.runnable_load_sum);
2779 }
2780 
2781 static inline void
2782 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2783 {
2784 	cfs_rq->avg.load_avg += se->avg.load_avg;
2785 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2786 }
2787 
2788 static inline void
2789 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2790 {
2791 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2792 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2793 }
2794 #else
2795 static inline void
2796 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2797 static inline void
2798 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2799 static inline void
2800 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2801 static inline void
2802 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2803 #endif
2804 
2805 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2806 			    unsigned long weight, unsigned long runnable)
2807 {
2808 	if (se->on_rq) {
2809 		/* commit outstanding execution time */
2810 		if (cfs_rq->curr == se)
2811 			update_curr(cfs_rq);
2812 		account_entity_dequeue(cfs_rq, se);
2813 		dequeue_runnable_load_avg(cfs_rq, se);
2814 	}
2815 	dequeue_load_avg(cfs_rq, se);
2816 
2817 	se->runnable_weight = runnable;
2818 	update_load_set(&se->load, weight);
2819 
2820 #ifdef CONFIG_SMP
2821 	do {
2822 		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2823 
2824 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2825 		se->avg.runnable_load_avg =
2826 			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2827 	} while (0);
2828 #endif
2829 
2830 	enqueue_load_avg(cfs_rq, se);
2831 	if (se->on_rq) {
2832 		account_entity_enqueue(cfs_rq, se);
2833 		enqueue_runnable_load_avg(cfs_rq, se);
2834 	}
2835 }
2836 
2837 void reweight_task(struct task_struct *p, int prio)
2838 {
2839 	struct sched_entity *se = &p->se;
2840 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2841 	struct load_weight *load = &se->load;
2842 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2843 
2844 	reweight_entity(cfs_rq, se, weight, weight);
2845 	load->inv_weight = sched_prio_to_wmult[prio];
2846 }
2847 
2848 #ifdef CONFIG_FAIR_GROUP_SCHED
2849 #ifdef CONFIG_SMP
2850 /*
2851  * All this does is approximate the hierarchical proportion which includes that
2852  * global sum we all love to hate.
2853  *
2854  * That is, the weight of a group entity, is the proportional share of the
2855  * group weight based on the group runqueue weights. That is:
2856  *
2857  *                     tg->weight * grq->load.weight
2858  *   ge->load.weight = -----------------------------               (1)
2859  *			  \Sum grq->load.weight
2860  *
2861  * Now, because computing that sum is prohibitively expensive to compute (been
2862  * there, done that) we approximate it with this average stuff. The average
2863  * moves slower and therefore the approximation is cheaper and more stable.
2864  *
2865  * So instead of the above, we substitute:
2866  *
2867  *   grq->load.weight -> grq->avg.load_avg                         (2)
2868  *
2869  * which yields the following:
2870  *
2871  *                     tg->weight * grq->avg.load_avg
2872  *   ge->load.weight = ------------------------------              (3)
2873  *				tg->load_avg
2874  *
2875  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2876  *
2877  * That is shares_avg, and it is right (given the approximation (2)).
2878  *
2879  * The problem with it is that because the average is slow -- it was designed
2880  * to be exactly that of course -- this leads to transients in boundary
2881  * conditions. In specific, the case where the group was idle and we start the
2882  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2883  * yielding bad latency etc..
2884  *
2885  * Now, in that special case (1) reduces to:
2886  *
2887  *                     tg->weight * grq->load.weight
2888  *   ge->load.weight = ----------------------------- = tg->weight   (4)
2889  *			    grp->load.weight
2890  *
2891  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2892  *
2893  * So what we do is modify our approximation (3) to approach (4) in the (near)
2894  * UP case, like:
2895  *
2896  *   ge->load.weight =
2897  *
2898  *              tg->weight * grq->load.weight
2899  *     ---------------------------------------------------         (5)
2900  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
2901  *
2902  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2903  * we need to use grq->avg.load_avg as its lower bound, which then gives:
2904  *
2905  *
2906  *                     tg->weight * grq->load.weight
2907  *   ge->load.weight = -----------------------------		   (6)
2908  *				tg_load_avg'
2909  *
2910  * Where:
2911  *
2912  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2913  *                  max(grq->load.weight, grq->avg.load_avg)
2914  *
2915  * And that is shares_weight and is icky. In the (near) UP case it approaches
2916  * (4) while in the normal case it approaches (3). It consistently
2917  * overestimates the ge->load.weight and therefore:
2918  *
2919  *   \Sum ge->load.weight >= tg->weight
2920  *
2921  * hence icky!
2922  */
2923 static long calc_group_shares(struct cfs_rq *cfs_rq)
2924 {
2925 	long tg_weight, tg_shares, load, shares;
2926 	struct task_group *tg = cfs_rq->tg;
2927 
2928 	tg_shares = READ_ONCE(tg->shares);
2929 
2930 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2931 
2932 	tg_weight = atomic_long_read(&tg->load_avg);
2933 
2934 	/* Ensure tg_weight >= load */
2935 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2936 	tg_weight += load;
2937 
2938 	shares = (tg_shares * load);
2939 	if (tg_weight)
2940 		shares /= tg_weight;
2941 
2942 	/*
2943 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2944 	 * of a group with small tg->shares value. It is a floor value which is
2945 	 * assigned as a minimum load.weight to the sched_entity representing
2946 	 * the group on a CPU.
2947 	 *
2948 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2949 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2950 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2951 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2952 	 * instead of 0.
2953 	 */
2954 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
2955 }
2956 
2957 /*
2958  * This calculates the effective runnable weight for a group entity based on
2959  * the group entity weight calculated above.
2960  *
2961  * Because of the above approximation (2), our group entity weight is
2962  * an load_avg based ratio (3). This means that it includes blocked load and
2963  * does not represent the runnable weight.
2964  *
2965  * Approximate the group entity's runnable weight per ratio from the group
2966  * runqueue:
2967  *
2968  *					     grq->avg.runnable_load_avg
2969  *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
2970  *						 grq->avg.load_avg
2971  *
2972  * However, analogous to above, since the avg numbers are slow, this leads to
2973  * transients in the from-idle case. Instead we use:
2974  *
2975  *   ge->runnable_weight = ge->load.weight *
2976  *
2977  *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
2978  *		-----------------------------------------------------	(8)
2979  *		      max(grq->avg.load_avg, grq->load.weight)
2980  *
2981  * Where these max() serve both to use the 'instant' values to fix the slow
2982  * from-idle and avoid the /0 on to-idle, similar to (6).
2983  */
2984 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2985 {
2986 	long runnable, load_avg;
2987 
2988 	load_avg = max(cfs_rq->avg.load_avg,
2989 		       scale_load_down(cfs_rq->load.weight));
2990 
2991 	runnable = max(cfs_rq->avg.runnable_load_avg,
2992 		       scale_load_down(cfs_rq->runnable_weight));
2993 
2994 	runnable *= shares;
2995 	if (load_avg)
2996 		runnable /= load_avg;
2997 
2998 	return clamp_t(long, runnable, MIN_SHARES, shares);
2999 }
3000 #endif /* CONFIG_SMP */
3001 
3002 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3003 
3004 /*
3005  * Recomputes the group entity based on the current state of its group
3006  * runqueue.
3007  */
3008 static void update_cfs_group(struct sched_entity *se)
3009 {
3010 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3011 	long shares, runnable;
3012 
3013 	if (!gcfs_rq)
3014 		return;
3015 
3016 	if (throttled_hierarchy(gcfs_rq))
3017 		return;
3018 
3019 #ifndef CONFIG_SMP
3020 	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3021 
3022 	if (likely(se->load.weight == shares))
3023 		return;
3024 #else
3025 	shares   = calc_group_shares(gcfs_rq);
3026 	runnable = calc_group_runnable(gcfs_rq, shares);
3027 #endif
3028 
3029 	reweight_entity(cfs_rq_of(se), se, shares, runnable);
3030 }
3031 
3032 #else /* CONFIG_FAIR_GROUP_SCHED */
3033 static inline void update_cfs_group(struct sched_entity *se)
3034 {
3035 }
3036 #endif /* CONFIG_FAIR_GROUP_SCHED */
3037 
3038 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3039 {
3040 	struct rq *rq = rq_of(cfs_rq);
3041 
3042 	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3043 		/*
3044 		 * There are a few boundary cases this might miss but it should
3045 		 * get called often enough that that should (hopefully) not be
3046 		 * a real problem.
3047 		 *
3048 		 * It will not get called when we go idle, because the idle
3049 		 * thread is a different class (!fair), nor will the utilization
3050 		 * number include things like RT tasks.
3051 		 *
3052 		 * As is, the util number is not freq-invariant (we'd have to
3053 		 * implement arch_scale_freq_capacity() for that).
3054 		 *
3055 		 * See cpu_util().
3056 		 */
3057 		cpufreq_update_util(rq, flags);
3058 	}
3059 }
3060 
3061 #ifdef CONFIG_SMP
3062 #ifdef CONFIG_FAIR_GROUP_SCHED
3063 /**
3064  * update_tg_load_avg - update the tg's load avg
3065  * @cfs_rq: the cfs_rq whose avg changed
3066  * @force: update regardless of how small the difference
3067  *
3068  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3069  * However, because tg->load_avg is a global value there are performance
3070  * considerations.
3071  *
3072  * In order to avoid having to look at the other cfs_rq's, we use a
3073  * differential update where we store the last value we propagated. This in
3074  * turn allows skipping updates if the differential is 'small'.
3075  *
3076  * Updating tg's load_avg is necessary before update_cfs_share().
3077  */
3078 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3079 {
3080 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3081 
3082 	/*
3083 	 * No need to update load_avg for root_task_group as it is not used.
3084 	 */
3085 	if (cfs_rq->tg == &root_task_group)
3086 		return;
3087 
3088 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3089 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3090 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3091 	}
3092 }
3093 
3094 /*
3095  * Called within set_task_rq() right before setting a task's CPU. The
3096  * caller only guarantees p->pi_lock is held; no other assumptions,
3097  * including the state of rq->lock, should be made.
3098  */
3099 void set_task_rq_fair(struct sched_entity *se,
3100 		      struct cfs_rq *prev, struct cfs_rq *next)
3101 {
3102 	u64 p_last_update_time;
3103 	u64 n_last_update_time;
3104 
3105 	if (!sched_feat(ATTACH_AGE_LOAD))
3106 		return;
3107 
3108 	/*
3109 	 * We are supposed to update the task to "current" time, then its up to
3110 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3111 	 * getting what current time is, so simply throw away the out-of-date
3112 	 * time. This will result in the wakee task is less decayed, but giving
3113 	 * the wakee more load sounds not bad.
3114 	 */
3115 	if (!(se->avg.last_update_time && prev))
3116 		return;
3117 
3118 #ifndef CONFIG_64BIT
3119 	{
3120 		u64 p_last_update_time_copy;
3121 		u64 n_last_update_time_copy;
3122 
3123 		do {
3124 			p_last_update_time_copy = prev->load_last_update_time_copy;
3125 			n_last_update_time_copy = next->load_last_update_time_copy;
3126 
3127 			smp_rmb();
3128 
3129 			p_last_update_time = prev->avg.last_update_time;
3130 			n_last_update_time = next->avg.last_update_time;
3131 
3132 		} while (p_last_update_time != p_last_update_time_copy ||
3133 			 n_last_update_time != n_last_update_time_copy);
3134 	}
3135 #else
3136 	p_last_update_time = prev->avg.last_update_time;
3137 	n_last_update_time = next->avg.last_update_time;
3138 #endif
3139 	__update_load_avg_blocked_se(p_last_update_time, se);
3140 	se->avg.last_update_time = n_last_update_time;
3141 }
3142 
3143 
3144 /*
3145  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3146  * propagate its contribution. The key to this propagation is the invariant
3147  * that for each group:
3148  *
3149  *   ge->avg == grq->avg						(1)
3150  *
3151  * _IFF_ we look at the pure running and runnable sums. Because they
3152  * represent the very same entity, just at different points in the hierarchy.
3153  *
3154  * Per the above update_tg_cfs_util() is trivial and simply copies the running
3155  * sum over (but still wrong, because the group entity and group rq do not have
3156  * their PELT windows aligned).
3157  *
3158  * However, update_tg_cfs_runnable() is more complex. So we have:
3159  *
3160  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3161  *
3162  * And since, like util, the runnable part should be directly transferable,
3163  * the following would _appear_ to be the straight forward approach:
3164  *
3165  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3166  *
3167  * And per (1) we have:
3168  *
3169  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3170  *
3171  * Which gives:
3172  *
3173  *                      ge->load.weight * grq->avg.load_avg
3174  *   ge->avg.load_avg = -----------------------------------		(4)
3175  *                               grq->load.weight
3176  *
3177  * Except that is wrong!
3178  *
3179  * Because while for entities historical weight is not important and we
3180  * really only care about our future and therefore can consider a pure
3181  * runnable sum, runqueues can NOT do this.
3182  *
3183  * We specifically want runqueues to have a load_avg that includes
3184  * historical weights. Those represent the blocked load, the load we expect
3185  * to (shortly) return to us. This only works by keeping the weights as
3186  * integral part of the sum. We therefore cannot decompose as per (3).
3187  *
3188  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3189  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3190  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3191  * runnable section of these tasks overlap (or not). If they were to perfectly
3192  * align the rq as a whole would be runnable 2/3 of the time. If however we
3193  * always have at least 1 runnable task, the rq as a whole is always runnable.
3194  *
3195  * So we'll have to approximate.. :/
3196  *
3197  * Given the constraint:
3198  *
3199  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3200  *
3201  * We can construct a rule that adds runnable to a rq by assuming minimal
3202  * overlap.
3203  *
3204  * On removal, we'll assume each task is equally runnable; which yields:
3205  *
3206  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3207  *
3208  * XXX: only do this for the part of runnable > running ?
3209  *
3210  */
3211 
3212 static inline void
3213 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3214 {
3215 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3216 
3217 	/* Nothing to update */
3218 	if (!delta)
3219 		return;
3220 
3221 	/*
3222 	 * The relation between sum and avg is:
3223 	 *
3224 	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
3225 	 *
3226 	 * however, the PELT windows are not aligned between grq and gse.
3227 	 */
3228 
3229 	/* Set new sched_entity's utilization */
3230 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3231 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3232 
3233 	/* Update parent cfs_rq utilization */
3234 	add_positive(&cfs_rq->avg.util_avg, delta);
3235 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3236 }
3237 
3238 static inline void
3239 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3240 {
3241 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3242 	unsigned long runnable_load_avg, load_avg;
3243 	u64 runnable_load_sum, load_sum = 0;
3244 	s64 delta_sum;
3245 
3246 	if (!runnable_sum)
3247 		return;
3248 
3249 	gcfs_rq->prop_runnable_sum = 0;
3250 
3251 	if (runnable_sum >= 0) {
3252 		/*
3253 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3254 		 * the CPU is saturated running == runnable.
3255 		 */
3256 		runnable_sum += se->avg.load_sum;
3257 		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3258 	} else {
3259 		/*
3260 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3261 		 * assuming all tasks are equally runnable.
3262 		 */
3263 		if (scale_load_down(gcfs_rq->load.weight)) {
3264 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3265 				scale_load_down(gcfs_rq->load.weight));
3266 		}
3267 
3268 		/* But make sure to not inflate se's runnable */
3269 		runnable_sum = min(se->avg.load_sum, load_sum);
3270 	}
3271 
3272 	/*
3273 	 * runnable_sum can't be lower than running_sum
3274 	 * Rescale running sum to be in the same range as runnable sum
3275 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3276 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3277 	 */
3278 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3279 	runnable_sum = max(runnable_sum, running_sum);
3280 
3281 	load_sum = (s64)se_weight(se) * runnable_sum;
3282 	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3283 
3284 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3285 	delta_avg = load_avg - se->avg.load_avg;
3286 
3287 	se->avg.load_sum = runnable_sum;
3288 	se->avg.load_avg = load_avg;
3289 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3290 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3291 
3292 	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3293 	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3294 	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3295 	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3296 
3297 	se->avg.runnable_load_sum = runnable_sum;
3298 	se->avg.runnable_load_avg = runnable_load_avg;
3299 
3300 	if (se->on_rq) {
3301 		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3302 		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3303 	}
3304 }
3305 
3306 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3307 {
3308 	cfs_rq->propagate = 1;
3309 	cfs_rq->prop_runnable_sum += runnable_sum;
3310 }
3311 
3312 /* Update task and its cfs_rq load average */
3313 static inline int propagate_entity_load_avg(struct sched_entity *se)
3314 {
3315 	struct cfs_rq *cfs_rq, *gcfs_rq;
3316 
3317 	if (entity_is_task(se))
3318 		return 0;
3319 
3320 	gcfs_rq = group_cfs_rq(se);
3321 	if (!gcfs_rq->propagate)
3322 		return 0;
3323 
3324 	gcfs_rq->propagate = 0;
3325 
3326 	cfs_rq = cfs_rq_of(se);
3327 
3328 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3329 
3330 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3331 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3332 
3333 	return 1;
3334 }
3335 
3336 /*
3337  * Check if we need to update the load and the utilization of a blocked
3338  * group_entity:
3339  */
3340 static inline bool skip_blocked_update(struct sched_entity *se)
3341 {
3342 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3343 
3344 	/*
3345 	 * If sched_entity still have not zero load or utilization, we have to
3346 	 * decay it:
3347 	 */
3348 	if (se->avg.load_avg || se->avg.util_avg)
3349 		return false;
3350 
3351 	/*
3352 	 * If there is a pending propagation, we have to update the load and
3353 	 * the utilization of the sched_entity:
3354 	 */
3355 	if (gcfs_rq->propagate)
3356 		return false;
3357 
3358 	/*
3359 	 * Otherwise, the load and the utilization of the sched_entity is
3360 	 * already zero and there is no pending propagation, so it will be a
3361 	 * waste of time to try to decay it:
3362 	 */
3363 	return true;
3364 }
3365 
3366 #else /* CONFIG_FAIR_GROUP_SCHED */
3367 
3368 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3369 
3370 static inline int propagate_entity_load_avg(struct sched_entity *se)
3371 {
3372 	return 0;
3373 }
3374 
3375 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3376 
3377 #endif /* CONFIG_FAIR_GROUP_SCHED */
3378 
3379 /**
3380  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3381  * @now: current time, as per cfs_rq_clock_pelt()
3382  * @cfs_rq: cfs_rq to update
3383  *
3384  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3385  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3386  * post_init_entity_util_avg().
3387  *
3388  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3389  *
3390  * Returns true if the load decayed or we removed load.
3391  *
3392  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3393  * call update_tg_load_avg() when this function returns true.
3394  */
3395 static inline int
3396 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3397 {
3398 	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3399 	struct sched_avg *sa = &cfs_rq->avg;
3400 	int decayed = 0;
3401 
3402 	if (cfs_rq->removed.nr) {
3403 		unsigned long r;
3404 		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3405 
3406 		raw_spin_lock(&cfs_rq->removed.lock);
3407 		swap(cfs_rq->removed.util_avg, removed_util);
3408 		swap(cfs_rq->removed.load_avg, removed_load);
3409 		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3410 		cfs_rq->removed.nr = 0;
3411 		raw_spin_unlock(&cfs_rq->removed.lock);
3412 
3413 		r = removed_load;
3414 		sub_positive(&sa->load_avg, r);
3415 		sub_positive(&sa->load_sum, r * divider);
3416 
3417 		r = removed_util;
3418 		sub_positive(&sa->util_avg, r);
3419 		sub_positive(&sa->util_sum, r * divider);
3420 
3421 		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3422 
3423 		decayed = 1;
3424 	}
3425 
3426 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3427 
3428 #ifndef CONFIG_64BIT
3429 	smp_wmb();
3430 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3431 #endif
3432 
3433 	if (decayed)
3434 		cfs_rq_util_change(cfs_rq, 0);
3435 
3436 	return decayed;
3437 }
3438 
3439 /**
3440  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3441  * @cfs_rq: cfs_rq to attach to
3442  * @se: sched_entity to attach
3443  * @flags: migration hints
3444  *
3445  * Must call update_cfs_rq_load_avg() before this, since we rely on
3446  * cfs_rq->avg.last_update_time being current.
3447  */
3448 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3449 {
3450 	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3451 
3452 	/*
3453 	 * When we attach the @se to the @cfs_rq, we must align the decay
3454 	 * window because without that, really weird and wonderful things can
3455 	 * happen.
3456 	 *
3457 	 * XXX illustrate
3458 	 */
3459 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3460 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3461 
3462 	/*
3463 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3464 	 * period_contrib. This isn't strictly correct, but since we're
3465 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3466 	 * _sum a little.
3467 	 */
3468 	se->avg.util_sum = se->avg.util_avg * divider;
3469 
3470 	se->avg.load_sum = divider;
3471 	if (se_weight(se)) {
3472 		se->avg.load_sum =
3473 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3474 	}
3475 
3476 	se->avg.runnable_load_sum = se->avg.load_sum;
3477 
3478 	enqueue_load_avg(cfs_rq, se);
3479 	cfs_rq->avg.util_avg += se->avg.util_avg;
3480 	cfs_rq->avg.util_sum += se->avg.util_sum;
3481 
3482 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3483 
3484 	cfs_rq_util_change(cfs_rq, flags);
3485 }
3486 
3487 /**
3488  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3489  * @cfs_rq: cfs_rq to detach from
3490  * @se: sched_entity to detach
3491  *
3492  * Must call update_cfs_rq_load_avg() before this, since we rely on
3493  * cfs_rq->avg.last_update_time being current.
3494  */
3495 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3496 {
3497 	dequeue_load_avg(cfs_rq, se);
3498 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3499 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3500 
3501 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3502 
3503 	cfs_rq_util_change(cfs_rq, 0);
3504 }
3505 
3506 /*
3507  * Optional action to be done while updating the load average
3508  */
3509 #define UPDATE_TG	0x1
3510 #define SKIP_AGE_LOAD	0x2
3511 #define DO_ATTACH	0x4
3512 
3513 /* Update task and its cfs_rq load average */
3514 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3515 {
3516 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3517 	int decayed;
3518 
3519 	/*
3520 	 * Track task load average for carrying it to new CPU after migrated, and
3521 	 * track group sched_entity load average for task_h_load calc in migration
3522 	 */
3523 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3524 		__update_load_avg_se(now, cfs_rq, se);
3525 
3526 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3527 	decayed |= propagate_entity_load_avg(se);
3528 
3529 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3530 
3531 		/*
3532 		 * DO_ATTACH means we're here from enqueue_entity().
3533 		 * !last_update_time means we've passed through
3534 		 * migrate_task_rq_fair() indicating we migrated.
3535 		 *
3536 		 * IOW we're enqueueing a task on a new CPU.
3537 		 */
3538 		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3539 		update_tg_load_avg(cfs_rq, 0);
3540 
3541 	} else if (decayed && (flags & UPDATE_TG))
3542 		update_tg_load_avg(cfs_rq, 0);
3543 }
3544 
3545 #ifndef CONFIG_64BIT
3546 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3547 {
3548 	u64 last_update_time_copy;
3549 	u64 last_update_time;
3550 
3551 	do {
3552 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3553 		smp_rmb();
3554 		last_update_time = cfs_rq->avg.last_update_time;
3555 	} while (last_update_time != last_update_time_copy);
3556 
3557 	return last_update_time;
3558 }
3559 #else
3560 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3561 {
3562 	return cfs_rq->avg.last_update_time;
3563 }
3564 #endif
3565 
3566 /*
3567  * Synchronize entity load avg of dequeued entity without locking
3568  * the previous rq.
3569  */
3570 void sync_entity_load_avg(struct sched_entity *se)
3571 {
3572 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3573 	u64 last_update_time;
3574 
3575 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3576 	__update_load_avg_blocked_se(last_update_time, se);
3577 }
3578 
3579 /*
3580  * Task first catches up with cfs_rq, and then subtract
3581  * itself from the cfs_rq (task must be off the queue now).
3582  */
3583 void remove_entity_load_avg(struct sched_entity *se)
3584 {
3585 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3586 	unsigned long flags;
3587 
3588 	/*
3589 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3590 	 * post_init_entity_util_avg() which will have added things to the
3591 	 * cfs_rq, so we can remove unconditionally.
3592 	 */
3593 
3594 	sync_entity_load_avg(se);
3595 
3596 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3597 	++cfs_rq->removed.nr;
3598 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3599 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3600 	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3601 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3602 }
3603 
3604 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3605 {
3606 	return cfs_rq->avg.runnable_load_avg;
3607 }
3608 
3609 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3610 {
3611 	return cfs_rq->avg.load_avg;
3612 }
3613 
3614 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3615 
3616 static inline unsigned long task_util(struct task_struct *p)
3617 {
3618 	return READ_ONCE(p->se.avg.util_avg);
3619 }
3620 
3621 static inline unsigned long _task_util_est(struct task_struct *p)
3622 {
3623 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3624 
3625 	return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3626 }
3627 
3628 static inline unsigned long task_util_est(struct task_struct *p)
3629 {
3630 	return max(task_util(p), _task_util_est(p));
3631 }
3632 
3633 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3634 				    struct task_struct *p)
3635 {
3636 	unsigned int enqueued;
3637 
3638 	if (!sched_feat(UTIL_EST))
3639 		return;
3640 
3641 	/* Update root cfs_rq's estimated utilization */
3642 	enqueued  = cfs_rq->avg.util_est.enqueued;
3643 	enqueued += _task_util_est(p);
3644 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3645 }
3646 
3647 /*
3648  * Check if a (signed) value is within a specified (unsigned) margin,
3649  * based on the observation that:
3650  *
3651  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3652  *
3653  * NOTE: this only works when value + maring < INT_MAX.
3654  */
3655 static inline bool within_margin(int value, int margin)
3656 {
3657 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3658 }
3659 
3660 static void
3661 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3662 {
3663 	long last_ewma_diff;
3664 	struct util_est ue;
3665 	int cpu;
3666 
3667 	if (!sched_feat(UTIL_EST))
3668 		return;
3669 
3670 	/* Update root cfs_rq's estimated utilization */
3671 	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3672 	ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3673 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3674 
3675 	/*
3676 	 * Skip update of task's estimated utilization when the task has not
3677 	 * yet completed an activation, e.g. being migrated.
3678 	 */
3679 	if (!task_sleep)
3680 		return;
3681 
3682 	/*
3683 	 * If the PELT values haven't changed since enqueue time,
3684 	 * skip the util_est update.
3685 	 */
3686 	ue = p->se.avg.util_est;
3687 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
3688 		return;
3689 
3690 	/*
3691 	 * Skip update of task's estimated utilization when its EWMA is
3692 	 * already ~1% close to its last activation value.
3693 	 */
3694 	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3695 	last_ewma_diff = ue.enqueued - ue.ewma;
3696 	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3697 		return;
3698 
3699 	/*
3700 	 * To avoid overestimation of actual task utilization, skip updates if
3701 	 * we cannot grant there is idle time in this CPU.
3702 	 */
3703 	cpu = cpu_of(rq_of(cfs_rq));
3704 	if (task_util(p) > capacity_orig_of(cpu))
3705 		return;
3706 
3707 	/*
3708 	 * Update Task's estimated utilization
3709 	 *
3710 	 * When *p completes an activation we can consolidate another sample
3711 	 * of the task size. This is done by storing the current PELT value
3712 	 * as ue.enqueued and by using this value to update the Exponential
3713 	 * Weighted Moving Average (EWMA):
3714 	 *
3715 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
3716 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
3717 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
3718 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
3719 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
3720 	 *
3721 	 * Where 'w' is the weight of new samples, which is configured to be
3722 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3723 	 */
3724 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3725 	ue.ewma  += last_ewma_diff;
3726 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3727 	WRITE_ONCE(p->se.avg.util_est, ue);
3728 }
3729 
3730 static inline int task_fits_capacity(struct task_struct *p, long capacity)
3731 {
3732 	return capacity * 1024 > task_util_est(p) * capacity_margin;
3733 }
3734 
3735 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3736 {
3737 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
3738 		return;
3739 
3740 	if (!p) {
3741 		rq->misfit_task_load = 0;
3742 		return;
3743 	}
3744 
3745 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3746 		rq->misfit_task_load = 0;
3747 		return;
3748 	}
3749 
3750 	rq->misfit_task_load = task_h_load(p);
3751 }
3752 
3753 #else /* CONFIG_SMP */
3754 
3755 #define UPDATE_TG	0x0
3756 #define SKIP_AGE_LOAD	0x0
3757 #define DO_ATTACH	0x0
3758 
3759 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3760 {
3761 	cfs_rq_util_change(cfs_rq, 0);
3762 }
3763 
3764 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3765 
3766 static inline void
3767 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3768 static inline void
3769 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3770 
3771 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3772 {
3773 	return 0;
3774 }
3775 
3776 static inline void
3777 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3778 
3779 static inline void
3780 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3781 		 bool task_sleep) {}
3782 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
3783 
3784 #endif /* CONFIG_SMP */
3785 
3786 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3787 {
3788 #ifdef CONFIG_SCHED_DEBUG
3789 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3790 
3791 	if (d < 0)
3792 		d = -d;
3793 
3794 	if (d > 3*sysctl_sched_latency)
3795 		schedstat_inc(cfs_rq->nr_spread_over);
3796 #endif
3797 }
3798 
3799 static void
3800 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3801 {
3802 	u64 vruntime = cfs_rq->min_vruntime;
3803 
3804 	/*
3805 	 * The 'current' period is already promised to the current tasks,
3806 	 * however the extra weight of the new task will slow them down a
3807 	 * little, place the new task so that it fits in the slot that
3808 	 * stays open at the end.
3809 	 */
3810 	if (initial && sched_feat(START_DEBIT))
3811 		vruntime += sched_vslice(cfs_rq, se);
3812 
3813 	/* sleeps up to a single latency don't count. */
3814 	if (!initial) {
3815 		unsigned long thresh = sysctl_sched_latency;
3816 
3817 		/*
3818 		 * Halve their sleep time's effect, to allow
3819 		 * for a gentler effect of sleepers:
3820 		 */
3821 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3822 			thresh >>= 1;
3823 
3824 		vruntime -= thresh;
3825 	}
3826 
3827 	/* ensure we never gain time by being placed backwards. */
3828 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3829 }
3830 
3831 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3832 
3833 static inline void check_schedstat_required(void)
3834 {
3835 #ifdef CONFIG_SCHEDSTATS
3836 	if (schedstat_enabled())
3837 		return;
3838 
3839 	/* Force schedstat enabled if a dependent tracepoint is active */
3840 	if (trace_sched_stat_wait_enabled()    ||
3841 			trace_sched_stat_sleep_enabled()   ||
3842 			trace_sched_stat_iowait_enabled()  ||
3843 			trace_sched_stat_blocked_enabled() ||
3844 			trace_sched_stat_runtime_enabled())  {
3845 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3846 			     "stat_blocked and stat_runtime require the "
3847 			     "kernel parameter schedstats=enable or "
3848 			     "kernel.sched_schedstats=1\n");
3849 	}
3850 #endif
3851 }
3852 
3853 
3854 /*
3855  * MIGRATION
3856  *
3857  *	dequeue
3858  *	  update_curr()
3859  *	    update_min_vruntime()
3860  *	  vruntime -= min_vruntime
3861  *
3862  *	enqueue
3863  *	  update_curr()
3864  *	    update_min_vruntime()
3865  *	  vruntime += min_vruntime
3866  *
3867  * this way the vruntime transition between RQs is done when both
3868  * min_vruntime are up-to-date.
3869  *
3870  * WAKEUP (remote)
3871  *
3872  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3873  *	  vruntime -= min_vruntime
3874  *
3875  *	enqueue
3876  *	  update_curr()
3877  *	    update_min_vruntime()
3878  *	  vruntime += min_vruntime
3879  *
3880  * this way we don't have the most up-to-date min_vruntime on the originating
3881  * CPU and an up-to-date min_vruntime on the destination CPU.
3882  */
3883 
3884 static void
3885 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3886 {
3887 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3888 	bool curr = cfs_rq->curr == se;
3889 
3890 	/*
3891 	 * If we're the current task, we must renormalise before calling
3892 	 * update_curr().
3893 	 */
3894 	if (renorm && curr)
3895 		se->vruntime += cfs_rq->min_vruntime;
3896 
3897 	update_curr(cfs_rq);
3898 
3899 	/*
3900 	 * Otherwise, renormalise after, such that we're placed at the current
3901 	 * moment in time, instead of some random moment in the past. Being
3902 	 * placed in the past could significantly boost this task to the
3903 	 * fairness detriment of existing tasks.
3904 	 */
3905 	if (renorm && !curr)
3906 		se->vruntime += cfs_rq->min_vruntime;
3907 
3908 	/*
3909 	 * When enqueuing a sched_entity, we must:
3910 	 *   - Update loads to have both entity and cfs_rq synced with now.
3911 	 *   - Add its load to cfs_rq->runnable_avg
3912 	 *   - For group_entity, update its weight to reflect the new share of
3913 	 *     its group cfs_rq
3914 	 *   - Add its new weight to cfs_rq->load.weight
3915 	 */
3916 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3917 	update_cfs_group(se);
3918 	enqueue_runnable_load_avg(cfs_rq, se);
3919 	account_entity_enqueue(cfs_rq, se);
3920 
3921 	if (flags & ENQUEUE_WAKEUP)
3922 		place_entity(cfs_rq, se, 0);
3923 
3924 	check_schedstat_required();
3925 	update_stats_enqueue(cfs_rq, se, flags);
3926 	check_spread(cfs_rq, se);
3927 	if (!curr)
3928 		__enqueue_entity(cfs_rq, se);
3929 	se->on_rq = 1;
3930 
3931 	if (cfs_rq->nr_running == 1) {
3932 		list_add_leaf_cfs_rq(cfs_rq);
3933 		check_enqueue_throttle(cfs_rq);
3934 	}
3935 }
3936 
3937 static void __clear_buddies_last(struct sched_entity *se)
3938 {
3939 	for_each_sched_entity(se) {
3940 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3941 		if (cfs_rq->last != se)
3942 			break;
3943 
3944 		cfs_rq->last = NULL;
3945 	}
3946 }
3947 
3948 static void __clear_buddies_next(struct sched_entity *se)
3949 {
3950 	for_each_sched_entity(se) {
3951 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3952 		if (cfs_rq->next != se)
3953 			break;
3954 
3955 		cfs_rq->next = NULL;
3956 	}
3957 }
3958 
3959 static void __clear_buddies_skip(struct sched_entity *se)
3960 {
3961 	for_each_sched_entity(se) {
3962 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3963 		if (cfs_rq->skip != se)
3964 			break;
3965 
3966 		cfs_rq->skip = NULL;
3967 	}
3968 }
3969 
3970 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3971 {
3972 	if (cfs_rq->last == se)
3973 		__clear_buddies_last(se);
3974 
3975 	if (cfs_rq->next == se)
3976 		__clear_buddies_next(se);
3977 
3978 	if (cfs_rq->skip == se)
3979 		__clear_buddies_skip(se);
3980 }
3981 
3982 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3983 
3984 static void
3985 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3986 {
3987 	/*
3988 	 * Update run-time statistics of the 'current'.
3989 	 */
3990 	update_curr(cfs_rq);
3991 
3992 	/*
3993 	 * When dequeuing a sched_entity, we must:
3994 	 *   - Update loads to have both entity and cfs_rq synced with now.
3995 	 *   - Subtract its load from the cfs_rq->runnable_avg.
3996 	 *   - Subtract its previous weight from cfs_rq->load.weight.
3997 	 *   - For group entity, update its weight to reflect the new share
3998 	 *     of its group cfs_rq.
3999 	 */
4000 	update_load_avg(cfs_rq, se, UPDATE_TG);
4001 	dequeue_runnable_load_avg(cfs_rq, se);
4002 
4003 	update_stats_dequeue(cfs_rq, se, flags);
4004 
4005 	clear_buddies(cfs_rq, se);
4006 
4007 	if (se != cfs_rq->curr)
4008 		__dequeue_entity(cfs_rq, se);
4009 	se->on_rq = 0;
4010 	account_entity_dequeue(cfs_rq, se);
4011 
4012 	/*
4013 	 * Normalize after update_curr(); which will also have moved
4014 	 * min_vruntime if @se is the one holding it back. But before doing
4015 	 * update_min_vruntime() again, which will discount @se's position and
4016 	 * can move min_vruntime forward still more.
4017 	 */
4018 	if (!(flags & DEQUEUE_SLEEP))
4019 		se->vruntime -= cfs_rq->min_vruntime;
4020 
4021 	/* return excess runtime on last dequeue */
4022 	return_cfs_rq_runtime(cfs_rq);
4023 
4024 	update_cfs_group(se);
4025 
4026 	/*
4027 	 * Now advance min_vruntime if @se was the entity holding it back,
4028 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4029 	 * put back on, and if we advance min_vruntime, we'll be placed back
4030 	 * further than we started -- ie. we'll be penalized.
4031 	 */
4032 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4033 		update_min_vruntime(cfs_rq);
4034 }
4035 
4036 /*
4037  * Preempt the current task with a newly woken task if needed:
4038  */
4039 static void
4040 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4041 {
4042 	unsigned long ideal_runtime, delta_exec;
4043 	struct sched_entity *se;
4044 	s64 delta;
4045 
4046 	ideal_runtime = sched_slice(cfs_rq, curr);
4047 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4048 	if (delta_exec > ideal_runtime) {
4049 		resched_curr(rq_of(cfs_rq));
4050 		/*
4051 		 * The current task ran long enough, ensure it doesn't get
4052 		 * re-elected due to buddy favours.
4053 		 */
4054 		clear_buddies(cfs_rq, curr);
4055 		return;
4056 	}
4057 
4058 	/*
4059 	 * Ensure that a task that missed wakeup preemption by a
4060 	 * narrow margin doesn't have to wait for a full slice.
4061 	 * This also mitigates buddy induced latencies under load.
4062 	 */
4063 	if (delta_exec < sysctl_sched_min_granularity)
4064 		return;
4065 
4066 	se = __pick_first_entity(cfs_rq);
4067 	delta = curr->vruntime - se->vruntime;
4068 
4069 	if (delta < 0)
4070 		return;
4071 
4072 	if (delta > ideal_runtime)
4073 		resched_curr(rq_of(cfs_rq));
4074 }
4075 
4076 static void
4077 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4078 {
4079 	/* 'current' is not kept within the tree. */
4080 	if (se->on_rq) {
4081 		/*
4082 		 * Any task has to be enqueued before it get to execute on
4083 		 * a CPU. So account for the time it spent waiting on the
4084 		 * runqueue.
4085 		 */
4086 		update_stats_wait_end(cfs_rq, se);
4087 		__dequeue_entity(cfs_rq, se);
4088 		update_load_avg(cfs_rq, se, UPDATE_TG);
4089 	}
4090 
4091 	update_stats_curr_start(cfs_rq, se);
4092 	cfs_rq->curr = se;
4093 
4094 	/*
4095 	 * Track our maximum slice length, if the CPU's load is at
4096 	 * least twice that of our own weight (i.e. dont track it
4097 	 * when there are only lesser-weight tasks around):
4098 	 */
4099 	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4100 		schedstat_set(se->statistics.slice_max,
4101 			max((u64)schedstat_val(se->statistics.slice_max),
4102 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4103 	}
4104 
4105 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4106 }
4107 
4108 static int
4109 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4110 
4111 /*
4112  * Pick the next process, keeping these things in mind, in this order:
4113  * 1) keep things fair between processes/task groups
4114  * 2) pick the "next" process, since someone really wants that to run
4115  * 3) pick the "last" process, for cache locality
4116  * 4) do not run the "skip" process, if something else is available
4117  */
4118 static struct sched_entity *
4119 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4120 {
4121 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4122 	struct sched_entity *se;
4123 
4124 	/*
4125 	 * If curr is set we have to see if its left of the leftmost entity
4126 	 * still in the tree, provided there was anything in the tree at all.
4127 	 */
4128 	if (!left || (curr && entity_before(curr, left)))
4129 		left = curr;
4130 
4131 	se = left; /* ideally we run the leftmost entity */
4132 
4133 	/*
4134 	 * Avoid running the skip buddy, if running something else can
4135 	 * be done without getting too unfair.
4136 	 */
4137 	if (cfs_rq->skip == se) {
4138 		struct sched_entity *second;
4139 
4140 		if (se == curr) {
4141 			second = __pick_first_entity(cfs_rq);
4142 		} else {
4143 			second = __pick_next_entity(se);
4144 			if (!second || (curr && entity_before(curr, second)))
4145 				second = curr;
4146 		}
4147 
4148 		if (second && wakeup_preempt_entity(second, left) < 1)
4149 			se = second;
4150 	}
4151 
4152 	/*
4153 	 * Prefer last buddy, try to return the CPU to a preempted task.
4154 	 */
4155 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4156 		se = cfs_rq->last;
4157 
4158 	/*
4159 	 * Someone really wants this to run. If it's not unfair, run it.
4160 	 */
4161 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4162 		se = cfs_rq->next;
4163 
4164 	clear_buddies(cfs_rq, se);
4165 
4166 	return se;
4167 }
4168 
4169 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4170 
4171 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4172 {
4173 	/*
4174 	 * If still on the runqueue then deactivate_task()
4175 	 * was not called and update_curr() has to be done:
4176 	 */
4177 	if (prev->on_rq)
4178 		update_curr(cfs_rq);
4179 
4180 	/* throttle cfs_rqs exceeding runtime */
4181 	check_cfs_rq_runtime(cfs_rq);
4182 
4183 	check_spread(cfs_rq, prev);
4184 
4185 	if (prev->on_rq) {
4186 		update_stats_wait_start(cfs_rq, prev);
4187 		/* Put 'current' back into the tree. */
4188 		__enqueue_entity(cfs_rq, prev);
4189 		/* in !on_rq case, update occurred at dequeue */
4190 		update_load_avg(cfs_rq, prev, 0);
4191 	}
4192 	cfs_rq->curr = NULL;
4193 }
4194 
4195 static void
4196 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4197 {
4198 	/*
4199 	 * Update run-time statistics of the 'current'.
4200 	 */
4201 	update_curr(cfs_rq);
4202 
4203 	/*
4204 	 * Ensure that runnable average is periodically updated.
4205 	 */
4206 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4207 	update_cfs_group(curr);
4208 
4209 #ifdef CONFIG_SCHED_HRTICK
4210 	/*
4211 	 * queued ticks are scheduled to match the slice, so don't bother
4212 	 * validating it and just reschedule.
4213 	 */
4214 	if (queued) {
4215 		resched_curr(rq_of(cfs_rq));
4216 		return;
4217 	}
4218 	/*
4219 	 * don't let the period tick interfere with the hrtick preemption
4220 	 */
4221 	if (!sched_feat(DOUBLE_TICK) &&
4222 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4223 		return;
4224 #endif
4225 
4226 	if (cfs_rq->nr_running > 1)
4227 		check_preempt_tick(cfs_rq, curr);
4228 }
4229 
4230 
4231 /**************************************************
4232  * CFS bandwidth control machinery
4233  */
4234 
4235 #ifdef CONFIG_CFS_BANDWIDTH
4236 
4237 #ifdef CONFIG_JUMP_LABEL
4238 static struct static_key __cfs_bandwidth_used;
4239 
4240 static inline bool cfs_bandwidth_used(void)
4241 {
4242 	return static_key_false(&__cfs_bandwidth_used);
4243 }
4244 
4245 void cfs_bandwidth_usage_inc(void)
4246 {
4247 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4248 }
4249 
4250 void cfs_bandwidth_usage_dec(void)
4251 {
4252 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4253 }
4254 #else /* CONFIG_JUMP_LABEL */
4255 static bool cfs_bandwidth_used(void)
4256 {
4257 	return true;
4258 }
4259 
4260 void cfs_bandwidth_usage_inc(void) {}
4261 void cfs_bandwidth_usage_dec(void) {}
4262 #endif /* CONFIG_JUMP_LABEL */
4263 
4264 /*
4265  * default period for cfs group bandwidth.
4266  * default: 0.1s, units: nanoseconds
4267  */
4268 static inline u64 default_cfs_period(void)
4269 {
4270 	return 100000000ULL;
4271 }
4272 
4273 static inline u64 sched_cfs_bandwidth_slice(void)
4274 {
4275 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4276 }
4277 
4278 /*
4279  * Replenish runtime according to assigned quota and update expiration time.
4280  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4281  * additional synchronization around rq->lock.
4282  *
4283  * requires cfs_b->lock
4284  */
4285 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4286 {
4287 	u64 now;
4288 
4289 	if (cfs_b->quota == RUNTIME_INF)
4290 		return;
4291 
4292 	now = sched_clock_cpu(smp_processor_id());
4293 	cfs_b->runtime = cfs_b->quota;
4294 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4295 	cfs_b->expires_seq++;
4296 }
4297 
4298 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4299 {
4300 	return &tg->cfs_bandwidth;
4301 }
4302 
4303 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4304 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4305 {
4306 	if (unlikely(cfs_rq->throttle_count))
4307 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4308 
4309 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4310 }
4311 
4312 /* returns 0 on failure to allocate runtime */
4313 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4314 {
4315 	struct task_group *tg = cfs_rq->tg;
4316 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4317 	u64 amount = 0, min_amount, expires;
4318 	int expires_seq;
4319 
4320 	/* note: this is a positive sum as runtime_remaining <= 0 */
4321 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4322 
4323 	raw_spin_lock(&cfs_b->lock);
4324 	if (cfs_b->quota == RUNTIME_INF)
4325 		amount = min_amount;
4326 	else {
4327 		start_cfs_bandwidth(cfs_b);
4328 
4329 		if (cfs_b->runtime > 0) {
4330 			amount = min(cfs_b->runtime, min_amount);
4331 			cfs_b->runtime -= amount;
4332 			cfs_b->idle = 0;
4333 		}
4334 	}
4335 	expires_seq = cfs_b->expires_seq;
4336 	expires = cfs_b->runtime_expires;
4337 	raw_spin_unlock(&cfs_b->lock);
4338 
4339 	cfs_rq->runtime_remaining += amount;
4340 	/*
4341 	 * we may have advanced our local expiration to account for allowed
4342 	 * spread between our sched_clock and the one on which runtime was
4343 	 * issued.
4344 	 */
4345 	if (cfs_rq->expires_seq != expires_seq) {
4346 		cfs_rq->expires_seq = expires_seq;
4347 		cfs_rq->runtime_expires = expires;
4348 	}
4349 
4350 	return cfs_rq->runtime_remaining > 0;
4351 }
4352 
4353 /*
4354  * Note: This depends on the synchronization provided by sched_clock and the
4355  * fact that rq->clock snapshots this value.
4356  */
4357 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4358 {
4359 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4360 
4361 	/* if the deadline is ahead of our clock, nothing to do */
4362 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4363 		return;
4364 
4365 	if (cfs_rq->runtime_remaining < 0)
4366 		return;
4367 
4368 	/*
4369 	 * If the local deadline has passed we have to consider the
4370 	 * possibility that our sched_clock is 'fast' and the global deadline
4371 	 * has not truly expired.
4372 	 *
4373 	 * Fortunately we can check determine whether this the case by checking
4374 	 * whether the global deadline(cfs_b->expires_seq) has advanced.
4375 	 */
4376 	if (cfs_rq->expires_seq == cfs_b->expires_seq) {
4377 		/* extend local deadline, drift is bounded above by 2 ticks */
4378 		cfs_rq->runtime_expires += TICK_NSEC;
4379 	} else {
4380 		/* global deadline is ahead, expiration has passed */
4381 		cfs_rq->runtime_remaining = 0;
4382 	}
4383 }
4384 
4385 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4386 {
4387 	/* dock delta_exec before expiring quota (as it could span periods) */
4388 	cfs_rq->runtime_remaining -= delta_exec;
4389 	expire_cfs_rq_runtime(cfs_rq);
4390 
4391 	if (likely(cfs_rq->runtime_remaining > 0))
4392 		return;
4393 
4394 	/*
4395 	 * if we're unable to extend our runtime we resched so that the active
4396 	 * hierarchy can be throttled
4397 	 */
4398 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4399 		resched_curr(rq_of(cfs_rq));
4400 }
4401 
4402 static __always_inline
4403 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4404 {
4405 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4406 		return;
4407 
4408 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4409 }
4410 
4411 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4412 {
4413 	return cfs_bandwidth_used() && cfs_rq->throttled;
4414 }
4415 
4416 /* check whether cfs_rq, or any parent, is throttled */
4417 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4418 {
4419 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4420 }
4421 
4422 /*
4423  * Ensure that neither of the group entities corresponding to src_cpu or
4424  * dest_cpu are members of a throttled hierarchy when performing group
4425  * load-balance operations.
4426  */
4427 static inline int throttled_lb_pair(struct task_group *tg,
4428 				    int src_cpu, int dest_cpu)
4429 {
4430 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4431 
4432 	src_cfs_rq = tg->cfs_rq[src_cpu];
4433 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4434 
4435 	return throttled_hierarchy(src_cfs_rq) ||
4436 	       throttled_hierarchy(dest_cfs_rq);
4437 }
4438 
4439 static int tg_unthrottle_up(struct task_group *tg, void *data)
4440 {
4441 	struct rq *rq = data;
4442 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4443 
4444 	cfs_rq->throttle_count--;
4445 	if (!cfs_rq->throttle_count) {
4446 		/* adjust cfs_rq_clock_task() */
4447 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4448 					     cfs_rq->throttled_clock_task;
4449 
4450 		/* Add cfs_rq with already running entity in the list */
4451 		if (cfs_rq->nr_running >= 1)
4452 			list_add_leaf_cfs_rq(cfs_rq);
4453 	}
4454 
4455 	return 0;
4456 }
4457 
4458 static int tg_throttle_down(struct task_group *tg, void *data)
4459 {
4460 	struct rq *rq = data;
4461 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4462 
4463 	/* group is entering throttled state, stop time */
4464 	if (!cfs_rq->throttle_count) {
4465 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4466 		list_del_leaf_cfs_rq(cfs_rq);
4467 	}
4468 	cfs_rq->throttle_count++;
4469 
4470 	return 0;
4471 }
4472 
4473 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4474 {
4475 	struct rq *rq = rq_of(cfs_rq);
4476 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4477 	struct sched_entity *se;
4478 	long task_delta, dequeue = 1;
4479 	bool empty;
4480 
4481 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4482 
4483 	/* freeze hierarchy runnable averages while throttled */
4484 	rcu_read_lock();
4485 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4486 	rcu_read_unlock();
4487 
4488 	task_delta = cfs_rq->h_nr_running;
4489 	for_each_sched_entity(se) {
4490 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4491 		/* throttled entity or throttle-on-deactivate */
4492 		if (!se->on_rq)
4493 			break;
4494 
4495 		if (dequeue)
4496 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4497 		qcfs_rq->h_nr_running -= task_delta;
4498 
4499 		if (qcfs_rq->load.weight)
4500 			dequeue = 0;
4501 	}
4502 
4503 	if (!se)
4504 		sub_nr_running(rq, task_delta);
4505 
4506 	cfs_rq->throttled = 1;
4507 	cfs_rq->throttled_clock = rq_clock(rq);
4508 	raw_spin_lock(&cfs_b->lock);
4509 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4510 
4511 	/*
4512 	 * Add to the _head_ of the list, so that an already-started
4513 	 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4514 	 * not running add to the tail so that later runqueues don't get starved.
4515 	 */
4516 	if (cfs_b->distribute_running)
4517 		list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4518 	else
4519 		list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4520 
4521 	/*
4522 	 * If we're the first throttled task, make sure the bandwidth
4523 	 * timer is running.
4524 	 */
4525 	if (empty)
4526 		start_cfs_bandwidth(cfs_b);
4527 
4528 	raw_spin_unlock(&cfs_b->lock);
4529 }
4530 
4531 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4532 {
4533 	struct rq *rq = rq_of(cfs_rq);
4534 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4535 	struct sched_entity *se;
4536 	int enqueue = 1;
4537 	long task_delta;
4538 
4539 	se = cfs_rq->tg->se[cpu_of(rq)];
4540 
4541 	cfs_rq->throttled = 0;
4542 
4543 	update_rq_clock(rq);
4544 
4545 	raw_spin_lock(&cfs_b->lock);
4546 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4547 	list_del_rcu(&cfs_rq->throttled_list);
4548 	raw_spin_unlock(&cfs_b->lock);
4549 
4550 	/* update hierarchical throttle state */
4551 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4552 
4553 	if (!cfs_rq->load.weight)
4554 		return;
4555 
4556 	task_delta = cfs_rq->h_nr_running;
4557 	for_each_sched_entity(se) {
4558 		if (se->on_rq)
4559 			enqueue = 0;
4560 
4561 		cfs_rq = cfs_rq_of(se);
4562 		if (enqueue)
4563 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4564 		cfs_rq->h_nr_running += task_delta;
4565 
4566 		if (cfs_rq_throttled(cfs_rq))
4567 			break;
4568 	}
4569 
4570 	assert_list_leaf_cfs_rq(rq);
4571 
4572 	if (!se)
4573 		add_nr_running(rq, task_delta);
4574 
4575 	/* Determine whether we need to wake up potentially idle CPU: */
4576 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4577 		resched_curr(rq);
4578 }
4579 
4580 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4581 		u64 remaining, u64 expires)
4582 {
4583 	struct cfs_rq *cfs_rq;
4584 	u64 runtime;
4585 	u64 starting_runtime = remaining;
4586 
4587 	rcu_read_lock();
4588 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4589 				throttled_list) {
4590 		struct rq *rq = rq_of(cfs_rq);
4591 		struct rq_flags rf;
4592 
4593 		rq_lock_irqsave(rq, &rf);
4594 		if (!cfs_rq_throttled(cfs_rq))
4595 			goto next;
4596 
4597 		runtime = -cfs_rq->runtime_remaining + 1;
4598 		if (runtime > remaining)
4599 			runtime = remaining;
4600 		remaining -= runtime;
4601 
4602 		cfs_rq->runtime_remaining += runtime;
4603 		cfs_rq->runtime_expires = expires;
4604 
4605 		/* we check whether we're throttled above */
4606 		if (cfs_rq->runtime_remaining > 0)
4607 			unthrottle_cfs_rq(cfs_rq);
4608 
4609 next:
4610 		rq_unlock_irqrestore(rq, &rf);
4611 
4612 		if (!remaining)
4613 			break;
4614 	}
4615 	rcu_read_unlock();
4616 
4617 	return starting_runtime - remaining;
4618 }
4619 
4620 /*
4621  * Responsible for refilling a task_group's bandwidth and unthrottling its
4622  * cfs_rqs as appropriate. If there has been no activity within the last
4623  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4624  * used to track this state.
4625  */
4626 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4627 {
4628 	u64 runtime, runtime_expires;
4629 	int throttled;
4630 
4631 	/* no need to continue the timer with no bandwidth constraint */
4632 	if (cfs_b->quota == RUNTIME_INF)
4633 		goto out_deactivate;
4634 
4635 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4636 	cfs_b->nr_periods += overrun;
4637 
4638 	/*
4639 	 * idle depends on !throttled (for the case of a large deficit), and if
4640 	 * we're going inactive then everything else can be deferred
4641 	 */
4642 	if (cfs_b->idle && !throttled)
4643 		goto out_deactivate;
4644 
4645 	__refill_cfs_bandwidth_runtime(cfs_b);
4646 
4647 	if (!throttled) {
4648 		/* mark as potentially idle for the upcoming period */
4649 		cfs_b->idle = 1;
4650 		return 0;
4651 	}
4652 
4653 	/* account preceding periods in which throttling occurred */
4654 	cfs_b->nr_throttled += overrun;
4655 
4656 	runtime_expires = cfs_b->runtime_expires;
4657 
4658 	/*
4659 	 * This check is repeated as we are holding onto the new bandwidth while
4660 	 * we unthrottle. This can potentially race with an unthrottled group
4661 	 * trying to acquire new bandwidth from the global pool. This can result
4662 	 * in us over-using our runtime if it is all used during this loop, but
4663 	 * only by limited amounts in that extreme case.
4664 	 */
4665 	while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4666 		runtime = cfs_b->runtime;
4667 		cfs_b->distribute_running = 1;
4668 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4669 		/* we can't nest cfs_b->lock while distributing bandwidth */
4670 		runtime = distribute_cfs_runtime(cfs_b, runtime,
4671 						 runtime_expires);
4672 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
4673 
4674 		cfs_b->distribute_running = 0;
4675 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4676 
4677 		lsub_positive(&cfs_b->runtime, runtime);
4678 	}
4679 
4680 	/*
4681 	 * While we are ensured activity in the period following an
4682 	 * unthrottle, this also covers the case in which the new bandwidth is
4683 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4684 	 * timer to remain active while there are any throttled entities.)
4685 	 */
4686 	cfs_b->idle = 0;
4687 
4688 	return 0;
4689 
4690 out_deactivate:
4691 	return 1;
4692 }
4693 
4694 /* a cfs_rq won't donate quota below this amount */
4695 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4696 /* minimum remaining period time to redistribute slack quota */
4697 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4698 /* how long we wait to gather additional slack before distributing */
4699 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4700 
4701 /*
4702  * Are we near the end of the current quota period?
4703  *
4704  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4705  * hrtimer base being cleared by hrtimer_start. In the case of
4706  * migrate_hrtimers, base is never cleared, so we are fine.
4707  */
4708 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4709 {
4710 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4711 	u64 remaining;
4712 
4713 	/* if the call-back is running a quota refresh is already occurring */
4714 	if (hrtimer_callback_running(refresh_timer))
4715 		return 1;
4716 
4717 	/* is a quota refresh about to occur? */
4718 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4719 	if (remaining < min_expire)
4720 		return 1;
4721 
4722 	return 0;
4723 }
4724 
4725 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4726 {
4727 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4728 
4729 	/* if there's a quota refresh soon don't bother with slack */
4730 	if (runtime_refresh_within(cfs_b, min_left))
4731 		return;
4732 
4733 	hrtimer_start(&cfs_b->slack_timer,
4734 			ns_to_ktime(cfs_bandwidth_slack_period),
4735 			HRTIMER_MODE_REL);
4736 }
4737 
4738 /* we know any runtime found here is valid as update_curr() precedes return */
4739 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4740 {
4741 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4742 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4743 
4744 	if (slack_runtime <= 0)
4745 		return;
4746 
4747 	raw_spin_lock(&cfs_b->lock);
4748 	if (cfs_b->quota != RUNTIME_INF &&
4749 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4750 		cfs_b->runtime += slack_runtime;
4751 
4752 		/* we are under rq->lock, defer unthrottling using a timer */
4753 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4754 		    !list_empty(&cfs_b->throttled_cfs_rq))
4755 			start_cfs_slack_bandwidth(cfs_b);
4756 	}
4757 	raw_spin_unlock(&cfs_b->lock);
4758 
4759 	/* even if it's not valid for return we don't want to try again */
4760 	cfs_rq->runtime_remaining -= slack_runtime;
4761 }
4762 
4763 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4764 {
4765 	if (!cfs_bandwidth_used())
4766 		return;
4767 
4768 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4769 		return;
4770 
4771 	__return_cfs_rq_runtime(cfs_rq);
4772 }
4773 
4774 /*
4775  * This is done with a timer (instead of inline with bandwidth return) since
4776  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4777  */
4778 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4779 {
4780 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4781 	unsigned long flags;
4782 	u64 expires;
4783 
4784 	/* confirm we're still not at a refresh boundary */
4785 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
4786 	if (cfs_b->distribute_running) {
4787 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4788 		return;
4789 	}
4790 
4791 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4792 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4793 		return;
4794 	}
4795 
4796 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4797 		runtime = cfs_b->runtime;
4798 
4799 	expires = cfs_b->runtime_expires;
4800 	if (runtime)
4801 		cfs_b->distribute_running = 1;
4802 
4803 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4804 
4805 	if (!runtime)
4806 		return;
4807 
4808 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4809 
4810 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
4811 	if (expires == cfs_b->runtime_expires)
4812 		lsub_positive(&cfs_b->runtime, runtime);
4813 	cfs_b->distribute_running = 0;
4814 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4815 }
4816 
4817 /*
4818  * When a group wakes up we want to make sure that its quota is not already
4819  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4820  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4821  */
4822 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4823 {
4824 	if (!cfs_bandwidth_used())
4825 		return;
4826 
4827 	/* an active group must be handled by the update_curr()->put() path */
4828 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4829 		return;
4830 
4831 	/* ensure the group is not already throttled */
4832 	if (cfs_rq_throttled(cfs_rq))
4833 		return;
4834 
4835 	/* update runtime allocation */
4836 	account_cfs_rq_runtime(cfs_rq, 0);
4837 	if (cfs_rq->runtime_remaining <= 0)
4838 		throttle_cfs_rq(cfs_rq);
4839 }
4840 
4841 static void sync_throttle(struct task_group *tg, int cpu)
4842 {
4843 	struct cfs_rq *pcfs_rq, *cfs_rq;
4844 
4845 	if (!cfs_bandwidth_used())
4846 		return;
4847 
4848 	if (!tg->parent)
4849 		return;
4850 
4851 	cfs_rq = tg->cfs_rq[cpu];
4852 	pcfs_rq = tg->parent->cfs_rq[cpu];
4853 
4854 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4855 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4856 }
4857 
4858 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4859 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4860 {
4861 	if (!cfs_bandwidth_used())
4862 		return false;
4863 
4864 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4865 		return false;
4866 
4867 	/*
4868 	 * it's possible for a throttled entity to be forced into a running
4869 	 * state (e.g. set_curr_task), in this case we're finished.
4870 	 */
4871 	if (cfs_rq_throttled(cfs_rq))
4872 		return true;
4873 
4874 	throttle_cfs_rq(cfs_rq);
4875 	return true;
4876 }
4877 
4878 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4879 {
4880 	struct cfs_bandwidth *cfs_b =
4881 		container_of(timer, struct cfs_bandwidth, slack_timer);
4882 
4883 	do_sched_cfs_slack_timer(cfs_b);
4884 
4885 	return HRTIMER_NORESTART;
4886 }
4887 
4888 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4889 {
4890 	struct cfs_bandwidth *cfs_b =
4891 		container_of(timer, struct cfs_bandwidth, period_timer);
4892 	unsigned long flags;
4893 	int overrun;
4894 	int idle = 0;
4895 
4896 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
4897 	for (;;) {
4898 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4899 		if (!overrun)
4900 			break;
4901 
4902 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
4903 	}
4904 	if (idle)
4905 		cfs_b->period_active = 0;
4906 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4907 
4908 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4909 }
4910 
4911 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4912 {
4913 	raw_spin_lock_init(&cfs_b->lock);
4914 	cfs_b->runtime = 0;
4915 	cfs_b->quota = RUNTIME_INF;
4916 	cfs_b->period = ns_to_ktime(default_cfs_period());
4917 
4918 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4919 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4920 	cfs_b->period_timer.function = sched_cfs_period_timer;
4921 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4922 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4923 	cfs_b->distribute_running = 0;
4924 }
4925 
4926 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4927 {
4928 	cfs_rq->runtime_enabled = 0;
4929 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4930 }
4931 
4932 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4933 {
4934 	u64 overrun;
4935 
4936 	lockdep_assert_held(&cfs_b->lock);
4937 
4938 	if (cfs_b->period_active)
4939 		return;
4940 
4941 	cfs_b->period_active = 1;
4942 	overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4943 	cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
4944 	cfs_b->expires_seq++;
4945 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4946 }
4947 
4948 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4949 {
4950 	/* init_cfs_bandwidth() was not called */
4951 	if (!cfs_b->throttled_cfs_rq.next)
4952 		return;
4953 
4954 	hrtimer_cancel(&cfs_b->period_timer);
4955 	hrtimer_cancel(&cfs_b->slack_timer);
4956 }
4957 
4958 /*
4959  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
4960  *
4961  * The race is harmless, since modifying bandwidth settings of unhooked group
4962  * bits doesn't do much.
4963  */
4964 
4965 /* cpu online calback */
4966 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4967 {
4968 	struct task_group *tg;
4969 
4970 	lockdep_assert_held(&rq->lock);
4971 
4972 	rcu_read_lock();
4973 	list_for_each_entry_rcu(tg, &task_groups, list) {
4974 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4975 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4976 
4977 		raw_spin_lock(&cfs_b->lock);
4978 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4979 		raw_spin_unlock(&cfs_b->lock);
4980 	}
4981 	rcu_read_unlock();
4982 }
4983 
4984 /* cpu offline callback */
4985 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4986 {
4987 	struct task_group *tg;
4988 
4989 	lockdep_assert_held(&rq->lock);
4990 
4991 	rcu_read_lock();
4992 	list_for_each_entry_rcu(tg, &task_groups, list) {
4993 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4994 
4995 		if (!cfs_rq->runtime_enabled)
4996 			continue;
4997 
4998 		/*
4999 		 * clock_task is not advancing so we just need to make sure
5000 		 * there's some valid quota amount
5001 		 */
5002 		cfs_rq->runtime_remaining = 1;
5003 		/*
5004 		 * Offline rq is schedulable till CPU is completely disabled
5005 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5006 		 */
5007 		cfs_rq->runtime_enabled = 0;
5008 
5009 		if (cfs_rq_throttled(cfs_rq))
5010 			unthrottle_cfs_rq(cfs_rq);
5011 	}
5012 	rcu_read_unlock();
5013 }
5014 
5015 #else /* CONFIG_CFS_BANDWIDTH */
5016 
5017 static inline bool cfs_bandwidth_used(void)
5018 {
5019 	return false;
5020 }
5021 
5022 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
5023 {
5024 	return rq_clock_task(rq_of(cfs_rq));
5025 }
5026 
5027 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5028 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5029 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5030 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5031 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5032 
5033 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5034 {
5035 	return 0;
5036 }
5037 
5038 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5039 {
5040 	return 0;
5041 }
5042 
5043 static inline int throttled_lb_pair(struct task_group *tg,
5044 				    int src_cpu, int dest_cpu)
5045 {
5046 	return 0;
5047 }
5048 
5049 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5050 
5051 #ifdef CONFIG_FAIR_GROUP_SCHED
5052 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5053 #endif
5054 
5055 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5056 {
5057 	return NULL;
5058 }
5059 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5060 static inline void update_runtime_enabled(struct rq *rq) {}
5061 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5062 
5063 #endif /* CONFIG_CFS_BANDWIDTH */
5064 
5065 /**************************************************
5066  * CFS operations on tasks:
5067  */
5068 
5069 #ifdef CONFIG_SCHED_HRTICK
5070 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5071 {
5072 	struct sched_entity *se = &p->se;
5073 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5074 
5075 	SCHED_WARN_ON(task_rq(p) != rq);
5076 
5077 	if (rq->cfs.h_nr_running > 1) {
5078 		u64 slice = sched_slice(cfs_rq, se);
5079 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5080 		s64 delta = slice - ran;
5081 
5082 		if (delta < 0) {
5083 			if (rq->curr == p)
5084 				resched_curr(rq);
5085 			return;
5086 		}
5087 		hrtick_start(rq, delta);
5088 	}
5089 }
5090 
5091 /*
5092  * called from enqueue/dequeue and updates the hrtick when the
5093  * current task is from our class and nr_running is low enough
5094  * to matter.
5095  */
5096 static void hrtick_update(struct rq *rq)
5097 {
5098 	struct task_struct *curr = rq->curr;
5099 
5100 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5101 		return;
5102 
5103 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5104 		hrtick_start_fair(rq, curr);
5105 }
5106 #else /* !CONFIG_SCHED_HRTICK */
5107 static inline void
5108 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5109 {
5110 }
5111 
5112 static inline void hrtick_update(struct rq *rq)
5113 {
5114 }
5115 #endif
5116 
5117 #ifdef CONFIG_SMP
5118 static inline unsigned long cpu_util(int cpu);
5119 static unsigned long capacity_of(int cpu);
5120 
5121 static inline bool cpu_overutilized(int cpu)
5122 {
5123 	return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin);
5124 }
5125 
5126 static inline void update_overutilized_status(struct rq *rq)
5127 {
5128 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu))
5129 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5130 }
5131 #else
5132 static inline void update_overutilized_status(struct rq *rq) { }
5133 #endif
5134 
5135 /*
5136  * The enqueue_task method is called before nr_running is
5137  * increased. Here we update the fair scheduling stats and
5138  * then put the task into the rbtree:
5139  */
5140 static void
5141 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5142 {
5143 	struct cfs_rq *cfs_rq;
5144 	struct sched_entity *se = &p->se;
5145 
5146 	/*
5147 	 * The code below (indirectly) updates schedutil which looks at
5148 	 * the cfs_rq utilization to select a frequency.
5149 	 * Let's add the task's estimated utilization to the cfs_rq's
5150 	 * estimated utilization, before we update schedutil.
5151 	 */
5152 	util_est_enqueue(&rq->cfs, p);
5153 
5154 	/*
5155 	 * If in_iowait is set, the code below may not trigger any cpufreq
5156 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5157 	 * passed.
5158 	 */
5159 	if (p->in_iowait)
5160 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5161 
5162 	for_each_sched_entity(se) {
5163 		if (se->on_rq)
5164 			break;
5165 		cfs_rq = cfs_rq_of(se);
5166 		enqueue_entity(cfs_rq, se, flags);
5167 
5168 		/*
5169 		 * end evaluation on encountering a throttled cfs_rq
5170 		 *
5171 		 * note: in the case of encountering a throttled cfs_rq we will
5172 		 * post the final h_nr_running increment below.
5173 		 */
5174 		if (cfs_rq_throttled(cfs_rq))
5175 			break;
5176 		cfs_rq->h_nr_running++;
5177 
5178 		flags = ENQUEUE_WAKEUP;
5179 	}
5180 
5181 	for_each_sched_entity(se) {
5182 		cfs_rq = cfs_rq_of(se);
5183 		cfs_rq->h_nr_running++;
5184 
5185 		if (cfs_rq_throttled(cfs_rq))
5186 			break;
5187 
5188 		update_load_avg(cfs_rq, se, UPDATE_TG);
5189 		update_cfs_group(se);
5190 	}
5191 
5192 	if (!se) {
5193 		add_nr_running(rq, 1);
5194 		/*
5195 		 * Since new tasks are assigned an initial util_avg equal to
5196 		 * half of the spare capacity of their CPU, tiny tasks have the
5197 		 * ability to cross the overutilized threshold, which will
5198 		 * result in the load balancer ruining all the task placement
5199 		 * done by EAS. As a way to mitigate that effect, do not account
5200 		 * for the first enqueue operation of new tasks during the
5201 		 * overutilized flag detection.
5202 		 *
5203 		 * A better way of solving this problem would be to wait for
5204 		 * the PELT signals of tasks to converge before taking them
5205 		 * into account, but that is not straightforward to implement,
5206 		 * and the following generally works well enough in practice.
5207 		 */
5208 		if (flags & ENQUEUE_WAKEUP)
5209 			update_overutilized_status(rq);
5210 
5211 	}
5212 
5213 	if (cfs_bandwidth_used()) {
5214 		/*
5215 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5216 		 * breaks in the above iteration can result in incomplete
5217 		 * leaf list maintenance, resulting in triggering the assertion
5218 		 * below.
5219 		 */
5220 		for_each_sched_entity(se) {
5221 			cfs_rq = cfs_rq_of(se);
5222 
5223 			if (list_add_leaf_cfs_rq(cfs_rq))
5224 				break;
5225 		}
5226 	}
5227 
5228 	assert_list_leaf_cfs_rq(rq);
5229 
5230 	hrtick_update(rq);
5231 }
5232 
5233 static void set_next_buddy(struct sched_entity *se);
5234 
5235 /*
5236  * The dequeue_task method is called before nr_running is
5237  * decreased. We remove the task from the rbtree and
5238  * update the fair scheduling stats:
5239  */
5240 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5241 {
5242 	struct cfs_rq *cfs_rq;
5243 	struct sched_entity *se = &p->se;
5244 	int task_sleep = flags & DEQUEUE_SLEEP;
5245 
5246 	for_each_sched_entity(se) {
5247 		cfs_rq = cfs_rq_of(se);
5248 		dequeue_entity(cfs_rq, se, flags);
5249 
5250 		/*
5251 		 * end evaluation on encountering a throttled cfs_rq
5252 		 *
5253 		 * note: in the case of encountering a throttled cfs_rq we will
5254 		 * post the final h_nr_running decrement below.
5255 		*/
5256 		if (cfs_rq_throttled(cfs_rq))
5257 			break;
5258 		cfs_rq->h_nr_running--;
5259 
5260 		/* Don't dequeue parent if it has other entities besides us */
5261 		if (cfs_rq->load.weight) {
5262 			/* Avoid re-evaluating load for this entity: */
5263 			se = parent_entity(se);
5264 			/*
5265 			 * Bias pick_next to pick a task from this cfs_rq, as
5266 			 * p is sleeping when it is within its sched_slice.
5267 			 */
5268 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5269 				set_next_buddy(se);
5270 			break;
5271 		}
5272 		flags |= DEQUEUE_SLEEP;
5273 	}
5274 
5275 	for_each_sched_entity(se) {
5276 		cfs_rq = cfs_rq_of(se);
5277 		cfs_rq->h_nr_running--;
5278 
5279 		if (cfs_rq_throttled(cfs_rq))
5280 			break;
5281 
5282 		update_load_avg(cfs_rq, se, UPDATE_TG);
5283 		update_cfs_group(se);
5284 	}
5285 
5286 	if (!se)
5287 		sub_nr_running(rq, 1);
5288 
5289 	util_est_dequeue(&rq->cfs, p, task_sleep);
5290 	hrtick_update(rq);
5291 }
5292 
5293 #ifdef CONFIG_SMP
5294 
5295 /* Working cpumask for: load_balance, load_balance_newidle. */
5296 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5297 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5298 
5299 #ifdef CONFIG_NO_HZ_COMMON
5300 /*
5301  * per rq 'load' arrray crap; XXX kill this.
5302  */
5303 
5304 /*
5305  * The exact cpuload calculated at every tick would be:
5306  *
5307  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5308  *
5309  * If a CPU misses updates for n ticks (as it was idle) and update gets
5310  * called on the n+1-th tick when CPU may be busy, then we have:
5311  *
5312  *   load_n   = (1 - 1/2^i)^n * load_0
5313  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5314  *
5315  * decay_load_missed() below does efficient calculation of
5316  *
5317  *   load' = (1 - 1/2^i)^n * load
5318  *
5319  * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5320  * This allows us to precompute the above in said factors, thereby allowing the
5321  * reduction of an arbitrary n in O(log_2 n) steps. (See also
5322  * fixed_power_int())
5323  *
5324  * The calculation is approximated on a 128 point scale.
5325  */
5326 #define DEGRADE_SHIFT		7
5327 
5328 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5329 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5330 	{   0,   0,  0,  0,  0,  0, 0, 0 },
5331 	{  64,  32,  8,  0,  0,  0, 0, 0 },
5332 	{  96,  72, 40, 12,  1,  0, 0, 0 },
5333 	{ 112,  98, 75, 43, 15,  1, 0, 0 },
5334 	{ 120, 112, 98, 76, 45, 16, 2, 0 }
5335 };
5336 
5337 /*
5338  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5339  * would be when CPU is idle and so we just decay the old load without
5340  * adding any new load.
5341  */
5342 static unsigned long
5343 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5344 {
5345 	int j = 0;
5346 
5347 	if (!missed_updates)
5348 		return load;
5349 
5350 	if (missed_updates >= degrade_zero_ticks[idx])
5351 		return 0;
5352 
5353 	if (idx == 1)
5354 		return load >> missed_updates;
5355 
5356 	while (missed_updates) {
5357 		if (missed_updates % 2)
5358 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5359 
5360 		missed_updates >>= 1;
5361 		j++;
5362 	}
5363 	return load;
5364 }
5365 
5366 static struct {
5367 	cpumask_var_t idle_cpus_mask;
5368 	atomic_t nr_cpus;
5369 	int has_blocked;		/* Idle CPUS has blocked load */
5370 	unsigned long next_balance;     /* in jiffy units */
5371 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5372 } nohz ____cacheline_aligned;
5373 
5374 #endif /* CONFIG_NO_HZ_COMMON */
5375 
5376 /**
5377  * __cpu_load_update - update the rq->cpu_load[] statistics
5378  * @this_rq: The rq to update statistics for
5379  * @this_load: The current load
5380  * @pending_updates: The number of missed updates
5381  *
5382  * Update rq->cpu_load[] statistics. This function is usually called every
5383  * scheduler tick (TICK_NSEC).
5384  *
5385  * This function computes a decaying average:
5386  *
5387  *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5388  *
5389  * Because of NOHZ it might not get called on every tick which gives need for
5390  * the @pending_updates argument.
5391  *
5392  *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5393  *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5394  *             = A * (A * load[i]_n-2 + B) + B
5395  *             = A * (A * (A * load[i]_n-3 + B) + B) + B
5396  *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5397  *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5398  *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5399  *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5400  *
5401  * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5402  * any change in load would have resulted in the tick being turned back on.
5403  *
5404  * For regular NOHZ, this reduces to:
5405  *
5406  *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
5407  *
5408  * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5409  * term.
5410  */
5411 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5412 			    unsigned long pending_updates)
5413 {
5414 	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5415 	int i, scale;
5416 
5417 	this_rq->nr_load_updates++;
5418 
5419 	/* Update our load: */
5420 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5421 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5422 		unsigned long old_load, new_load;
5423 
5424 		/* scale is effectively 1 << i now, and >> i divides by scale */
5425 
5426 		old_load = this_rq->cpu_load[i];
5427 #ifdef CONFIG_NO_HZ_COMMON
5428 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5429 		if (tickless_load) {
5430 			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5431 			/*
5432 			 * old_load can never be a negative value because a
5433 			 * decayed tickless_load cannot be greater than the
5434 			 * original tickless_load.
5435 			 */
5436 			old_load += tickless_load;
5437 		}
5438 #endif
5439 		new_load = this_load;
5440 		/*
5441 		 * Round up the averaging division if load is increasing. This
5442 		 * prevents us from getting stuck on 9 if the load is 10, for
5443 		 * example.
5444 		 */
5445 		if (new_load > old_load)
5446 			new_load += scale - 1;
5447 
5448 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5449 	}
5450 }
5451 
5452 /* Used instead of source_load when we know the type == 0 */
5453 static unsigned long weighted_cpuload(struct rq *rq)
5454 {
5455 	return cfs_rq_runnable_load_avg(&rq->cfs);
5456 }
5457 
5458 #ifdef CONFIG_NO_HZ_COMMON
5459 /*
5460  * There is no sane way to deal with nohz on smp when using jiffies because the
5461  * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5462  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5463  *
5464  * Therefore we need to avoid the delta approach from the regular tick when
5465  * possible since that would seriously skew the load calculation. This is why we
5466  * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5467  * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5468  * loop exit, nohz_idle_balance, nohz full exit...)
5469  *
5470  * This means we might still be one tick off for nohz periods.
5471  */
5472 
5473 static void cpu_load_update_nohz(struct rq *this_rq,
5474 				 unsigned long curr_jiffies,
5475 				 unsigned long load)
5476 {
5477 	unsigned long pending_updates;
5478 
5479 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5480 	if (pending_updates) {
5481 		this_rq->last_load_update_tick = curr_jiffies;
5482 		/*
5483 		 * In the regular NOHZ case, we were idle, this means load 0.
5484 		 * In the NOHZ_FULL case, we were non-idle, we should consider
5485 		 * its weighted load.
5486 		 */
5487 		cpu_load_update(this_rq, load, pending_updates);
5488 	}
5489 }
5490 
5491 /*
5492  * Called from nohz_idle_balance() to update the load ratings before doing the
5493  * idle balance.
5494  */
5495 static void cpu_load_update_idle(struct rq *this_rq)
5496 {
5497 	/*
5498 	 * bail if there's load or we're actually up-to-date.
5499 	 */
5500 	if (weighted_cpuload(this_rq))
5501 		return;
5502 
5503 	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5504 }
5505 
5506 /*
5507  * Record CPU load on nohz entry so we know the tickless load to account
5508  * on nohz exit. cpu_load[0] happens then to be updated more frequently
5509  * than other cpu_load[idx] but it should be fine as cpu_load readers
5510  * shouldn't rely into synchronized cpu_load[*] updates.
5511  */
5512 void cpu_load_update_nohz_start(void)
5513 {
5514 	struct rq *this_rq = this_rq();
5515 
5516 	/*
5517 	 * This is all lockless but should be fine. If weighted_cpuload changes
5518 	 * concurrently we'll exit nohz. And cpu_load write can race with
5519 	 * cpu_load_update_idle() but both updater would be writing the same.
5520 	 */
5521 	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5522 }
5523 
5524 /*
5525  * Account the tickless load in the end of a nohz frame.
5526  */
5527 void cpu_load_update_nohz_stop(void)
5528 {
5529 	unsigned long curr_jiffies = READ_ONCE(jiffies);
5530 	struct rq *this_rq = this_rq();
5531 	unsigned long load;
5532 	struct rq_flags rf;
5533 
5534 	if (curr_jiffies == this_rq->last_load_update_tick)
5535 		return;
5536 
5537 	load = weighted_cpuload(this_rq);
5538 	rq_lock(this_rq, &rf);
5539 	update_rq_clock(this_rq);
5540 	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5541 	rq_unlock(this_rq, &rf);
5542 }
5543 #else /* !CONFIG_NO_HZ_COMMON */
5544 static inline void cpu_load_update_nohz(struct rq *this_rq,
5545 					unsigned long curr_jiffies,
5546 					unsigned long load) { }
5547 #endif /* CONFIG_NO_HZ_COMMON */
5548 
5549 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5550 {
5551 #ifdef CONFIG_NO_HZ_COMMON
5552 	/* See the mess around cpu_load_update_nohz(). */
5553 	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5554 #endif
5555 	cpu_load_update(this_rq, load, 1);
5556 }
5557 
5558 /*
5559  * Called from scheduler_tick()
5560  */
5561 void cpu_load_update_active(struct rq *this_rq)
5562 {
5563 	unsigned long load = weighted_cpuload(this_rq);
5564 
5565 	if (tick_nohz_tick_stopped())
5566 		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5567 	else
5568 		cpu_load_update_periodic(this_rq, load);
5569 }
5570 
5571 /*
5572  * Return a low guess at the load of a migration-source CPU weighted
5573  * according to the scheduling class and "nice" value.
5574  *
5575  * We want to under-estimate the load of migration sources, to
5576  * balance conservatively.
5577  */
5578 static unsigned long source_load(int cpu, int type)
5579 {
5580 	struct rq *rq = cpu_rq(cpu);
5581 	unsigned long total = weighted_cpuload(rq);
5582 
5583 	if (type == 0 || !sched_feat(LB_BIAS))
5584 		return total;
5585 
5586 	return min(rq->cpu_load[type-1], total);
5587 }
5588 
5589 /*
5590  * Return a high guess at the load of a migration-target CPU weighted
5591  * according to the scheduling class and "nice" value.
5592  */
5593 static unsigned long target_load(int cpu, int type)
5594 {
5595 	struct rq *rq = cpu_rq(cpu);
5596 	unsigned long total = weighted_cpuload(rq);
5597 
5598 	if (type == 0 || !sched_feat(LB_BIAS))
5599 		return total;
5600 
5601 	return max(rq->cpu_load[type-1], total);
5602 }
5603 
5604 static unsigned long capacity_of(int cpu)
5605 {
5606 	return cpu_rq(cpu)->cpu_capacity;
5607 }
5608 
5609 static unsigned long cpu_avg_load_per_task(int cpu)
5610 {
5611 	struct rq *rq = cpu_rq(cpu);
5612 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5613 	unsigned long load_avg = weighted_cpuload(rq);
5614 
5615 	if (nr_running)
5616 		return load_avg / nr_running;
5617 
5618 	return 0;
5619 }
5620 
5621 static void record_wakee(struct task_struct *p)
5622 {
5623 	/*
5624 	 * Only decay a single time; tasks that have less then 1 wakeup per
5625 	 * jiffy will not have built up many flips.
5626 	 */
5627 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5628 		current->wakee_flips >>= 1;
5629 		current->wakee_flip_decay_ts = jiffies;
5630 	}
5631 
5632 	if (current->last_wakee != p) {
5633 		current->last_wakee = p;
5634 		current->wakee_flips++;
5635 	}
5636 }
5637 
5638 /*
5639  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5640  *
5641  * A waker of many should wake a different task than the one last awakened
5642  * at a frequency roughly N times higher than one of its wakees.
5643  *
5644  * In order to determine whether we should let the load spread vs consolidating
5645  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5646  * partner, and a factor of lls_size higher frequency in the other.
5647  *
5648  * With both conditions met, we can be relatively sure that the relationship is
5649  * non-monogamous, with partner count exceeding socket size.
5650  *
5651  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5652  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5653  * socket size.
5654  */
5655 static int wake_wide(struct task_struct *p)
5656 {
5657 	unsigned int master = current->wakee_flips;
5658 	unsigned int slave = p->wakee_flips;
5659 	int factor = this_cpu_read(sd_llc_size);
5660 
5661 	if (master < slave)
5662 		swap(master, slave);
5663 	if (slave < factor || master < slave * factor)
5664 		return 0;
5665 	return 1;
5666 }
5667 
5668 /*
5669  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5670  * soonest. For the purpose of speed we only consider the waking and previous
5671  * CPU.
5672  *
5673  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5674  *			cache-affine and is (or	will be) idle.
5675  *
5676  * wake_affine_weight() - considers the weight to reflect the average
5677  *			  scheduling latency of the CPUs. This seems to work
5678  *			  for the overloaded case.
5679  */
5680 static int
5681 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5682 {
5683 	/*
5684 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5685 	 * context. Only allow the move if cache is shared. Otherwise an
5686 	 * interrupt intensive workload could force all tasks onto one
5687 	 * node depending on the IO topology or IRQ affinity settings.
5688 	 *
5689 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5690 	 * There is no guarantee that the cache hot data from an interrupt
5691 	 * is more important than cache hot data on the prev_cpu and from
5692 	 * a cpufreq perspective, it's better to have higher utilisation
5693 	 * on one CPU.
5694 	 */
5695 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5696 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5697 
5698 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5699 		return this_cpu;
5700 
5701 	return nr_cpumask_bits;
5702 }
5703 
5704 static int
5705 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5706 		   int this_cpu, int prev_cpu, int sync)
5707 {
5708 	s64 this_eff_load, prev_eff_load;
5709 	unsigned long task_load;
5710 
5711 	this_eff_load = target_load(this_cpu, sd->wake_idx);
5712 
5713 	if (sync) {
5714 		unsigned long current_load = task_h_load(current);
5715 
5716 		if (current_load > this_eff_load)
5717 			return this_cpu;
5718 
5719 		this_eff_load -= current_load;
5720 	}
5721 
5722 	task_load = task_h_load(p);
5723 
5724 	this_eff_load += task_load;
5725 	if (sched_feat(WA_BIAS))
5726 		this_eff_load *= 100;
5727 	this_eff_load *= capacity_of(prev_cpu);
5728 
5729 	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5730 	prev_eff_load -= task_load;
5731 	if (sched_feat(WA_BIAS))
5732 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5733 	prev_eff_load *= capacity_of(this_cpu);
5734 
5735 	/*
5736 	 * If sync, adjust the weight of prev_eff_load such that if
5737 	 * prev_eff == this_eff that select_idle_sibling() will consider
5738 	 * stacking the wakee on top of the waker if no other CPU is
5739 	 * idle.
5740 	 */
5741 	if (sync)
5742 		prev_eff_load += 1;
5743 
5744 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5745 }
5746 
5747 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5748 		       int this_cpu, int prev_cpu, int sync)
5749 {
5750 	int target = nr_cpumask_bits;
5751 
5752 	if (sched_feat(WA_IDLE))
5753 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5754 
5755 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5756 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5757 
5758 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5759 	if (target == nr_cpumask_bits)
5760 		return prev_cpu;
5761 
5762 	schedstat_inc(sd->ttwu_move_affine);
5763 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5764 	return target;
5765 }
5766 
5767 static unsigned long cpu_util_without(int cpu, struct task_struct *p);
5768 
5769 static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
5770 {
5771 	return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
5772 }
5773 
5774 /*
5775  * find_idlest_group finds and returns the least busy CPU group within the
5776  * domain.
5777  *
5778  * Assumes p is allowed on at least one CPU in sd.
5779  */
5780 static struct sched_group *
5781 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5782 		  int this_cpu, int sd_flag)
5783 {
5784 	struct sched_group *idlest = NULL, *group = sd->groups;
5785 	struct sched_group *most_spare_sg = NULL;
5786 	unsigned long min_runnable_load = ULONG_MAX;
5787 	unsigned long this_runnable_load = ULONG_MAX;
5788 	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5789 	unsigned long most_spare = 0, this_spare = 0;
5790 	int load_idx = sd->forkexec_idx;
5791 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5792 	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5793 				(sd->imbalance_pct-100) / 100;
5794 
5795 	if (sd_flag & SD_BALANCE_WAKE)
5796 		load_idx = sd->wake_idx;
5797 
5798 	do {
5799 		unsigned long load, avg_load, runnable_load;
5800 		unsigned long spare_cap, max_spare_cap;
5801 		int local_group;
5802 		int i;
5803 
5804 		/* Skip over this group if it has no CPUs allowed */
5805 		if (!cpumask_intersects(sched_group_span(group),
5806 					&p->cpus_allowed))
5807 			continue;
5808 
5809 		local_group = cpumask_test_cpu(this_cpu,
5810 					       sched_group_span(group));
5811 
5812 		/*
5813 		 * Tally up the load of all CPUs in the group and find
5814 		 * the group containing the CPU with most spare capacity.
5815 		 */
5816 		avg_load = 0;
5817 		runnable_load = 0;
5818 		max_spare_cap = 0;
5819 
5820 		for_each_cpu(i, sched_group_span(group)) {
5821 			/* Bias balancing toward CPUs of our domain */
5822 			if (local_group)
5823 				load = source_load(i, load_idx);
5824 			else
5825 				load = target_load(i, load_idx);
5826 
5827 			runnable_load += load;
5828 
5829 			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5830 
5831 			spare_cap = capacity_spare_without(i, p);
5832 
5833 			if (spare_cap > max_spare_cap)
5834 				max_spare_cap = spare_cap;
5835 		}
5836 
5837 		/* Adjust by relative CPU capacity of the group */
5838 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5839 					group->sgc->capacity;
5840 		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5841 					group->sgc->capacity;
5842 
5843 		if (local_group) {
5844 			this_runnable_load = runnable_load;
5845 			this_avg_load = avg_load;
5846 			this_spare = max_spare_cap;
5847 		} else {
5848 			if (min_runnable_load > (runnable_load + imbalance)) {
5849 				/*
5850 				 * The runnable load is significantly smaller
5851 				 * so we can pick this new CPU:
5852 				 */
5853 				min_runnable_load = runnable_load;
5854 				min_avg_load = avg_load;
5855 				idlest = group;
5856 			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
5857 				   (100*min_avg_load > imbalance_scale*avg_load)) {
5858 				/*
5859 				 * The runnable loads are close so take the
5860 				 * blocked load into account through avg_load:
5861 				 */
5862 				min_avg_load = avg_load;
5863 				idlest = group;
5864 			}
5865 
5866 			if (most_spare < max_spare_cap) {
5867 				most_spare = max_spare_cap;
5868 				most_spare_sg = group;
5869 			}
5870 		}
5871 	} while (group = group->next, group != sd->groups);
5872 
5873 	/*
5874 	 * The cross-over point between using spare capacity or least load
5875 	 * is too conservative for high utilization tasks on partially
5876 	 * utilized systems if we require spare_capacity > task_util(p),
5877 	 * so we allow for some task stuffing by using
5878 	 * spare_capacity > task_util(p)/2.
5879 	 *
5880 	 * Spare capacity can't be used for fork because the utilization has
5881 	 * not been set yet, we must first select a rq to compute the initial
5882 	 * utilization.
5883 	 */
5884 	if (sd_flag & SD_BALANCE_FORK)
5885 		goto skip_spare;
5886 
5887 	if (this_spare > task_util(p) / 2 &&
5888 	    imbalance_scale*this_spare > 100*most_spare)
5889 		return NULL;
5890 
5891 	if (most_spare > task_util(p) / 2)
5892 		return most_spare_sg;
5893 
5894 skip_spare:
5895 	if (!idlest)
5896 		return NULL;
5897 
5898 	/*
5899 	 * When comparing groups across NUMA domains, it's possible for the
5900 	 * local domain to be very lightly loaded relative to the remote
5901 	 * domains but "imbalance" skews the comparison making remote CPUs
5902 	 * look much more favourable. When considering cross-domain, add
5903 	 * imbalance to the runnable load on the remote node and consider
5904 	 * staying local.
5905 	 */
5906 	if ((sd->flags & SD_NUMA) &&
5907 	    min_runnable_load + imbalance >= this_runnable_load)
5908 		return NULL;
5909 
5910 	if (min_runnable_load > (this_runnable_load + imbalance))
5911 		return NULL;
5912 
5913 	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5914 	     (100*this_avg_load < imbalance_scale*min_avg_load))
5915 		return NULL;
5916 
5917 	return idlest;
5918 }
5919 
5920 /*
5921  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5922  */
5923 static int
5924 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5925 {
5926 	unsigned long load, min_load = ULONG_MAX;
5927 	unsigned int min_exit_latency = UINT_MAX;
5928 	u64 latest_idle_timestamp = 0;
5929 	int least_loaded_cpu = this_cpu;
5930 	int shallowest_idle_cpu = -1;
5931 	int i;
5932 
5933 	/* Check if we have any choice: */
5934 	if (group->group_weight == 1)
5935 		return cpumask_first(sched_group_span(group));
5936 
5937 	/* Traverse only the allowed CPUs */
5938 	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5939 		if (available_idle_cpu(i)) {
5940 			struct rq *rq = cpu_rq(i);
5941 			struct cpuidle_state *idle = idle_get_state(rq);
5942 			if (idle && idle->exit_latency < min_exit_latency) {
5943 				/*
5944 				 * We give priority to a CPU whose idle state
5945 				 * has the smallest exit latency irrespective
5946 				 * of any idle timestamp.
5947 				 */
5948 				min_exit_latency = idle->exit_latency;
5949 				latest_idle_timestamp = rq->idle_stamp;
5950 				shallowest_idle_cpu = i;
5951 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5952 				   rq->idle_stamp > latest_idle_timestamp) {
5953 				/*
5954 				 * If equal or no active idle state, then
5955 				 * the most recently idled CPU might have
5956 				 * a warmer cache.
5957 				 */
5958 				latest_idle_timestamp = rq->idle_stamp;
5959 				shallowest_idle_cpu = i;
5960 			}
5961 		} else if (shallowest_idle_cpu == -1) {
5962 			load = weighted_cpuload(cpu_rq(i));
5963 			if (load < min_load) {
5964 				min_load = load;
5965 				least_loaded_cpu = i;
5966 			}
5967 		}
5968 	}
5969 
5970 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5971 }
5972 
5973 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5974 				  int cpu, int prev_cpu, int sd_flag)
5975 {
5976 	int new_cpu = cpu;
5977 
5978 	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
5979 		return prev_cpu;
5980 
5981 	/*
5982 	 * We need task's util for capacity_spare_without, sync it up to
5983 	 * prev_cpu's last_update_time.
5984 	 */
5985 	if (!(sd_flag & SD_BALANCE_FORK))
5986 		sync_entity_load_avg(&p->se);
5987 
5988 	while (sd) {
5989 		struct sched_group *group;
5990 		struct sched_domain *tmp;
5991 		int weight;
5992 
5993 		if (!(sd->flags & sd_flag)) {
5994 			sd = sd->child;
5995 			continue;
5996 		}
5997 
5998 		group = find_idlest_group(sd, p, cpu, sd_flag);
5999 		if (!group) {
6000 			sd = sd->child;
6001 			continue;
6002 		}
6003 
6004 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6005 		if (new_cpu == cpu) {
6006 			/* Now try balancing at a lower domain level of 'cpu': */
6007 			sd = sd->child;
6008 			continue;
6009 		}
6010 
6011 		/* Now try balancing at a lower domain level of 'new_cpu': */
6012 		cpu = new_cpu;
6013 		weight = sd->span_weight;
6014 		sd = NULL;
6015 		for_each_domain(cpu, tmp) {
6016 			if (weight <= tmp->span_weight)
6017 				break;
6018 			if (tmp->flags & sd_flag)
6019 				sd = tmp;
6020 		}
6021 	}
6022 
6023 	return new_cpu;
6024 }
6025 
6026 #ifdef CONFIG_SCHED_SMT
6027 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6028 EXPORT_SYMBOL_GPL(sched_smt_present);
6029 
6030 static inline void set_idle_cores(int cpu, int val)
6031 {
6032 	struct sched_domain_shared *sds;
6033 
6034 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6035 	if (sds)
6036 		WRITE_ONCE(sds->has_idle_cores, val);
6037 }
6038 
6039 static inline bool test_idle_cores(int cpu, bool def)
6040 {
6041 	struct sched_domain_shared *sds;
6042 
6043 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6044 	if (sds)
6045 		return READ_ONCE(sds->has_idle_cores);
6046 
6047 	return def;
6048 }
6049 
6050 /*
6051  * Scans the local SMT mask to see if the entire core is idle, and records this
6052  * information in sd_llc_shared->has_idle_cores.
6053  *
6054  * Since SMT siblings share all cache levels, inspecting this limited remote
6055  * state should be fairly cheap.
6056  */
6057 void __update_idle_core(struct rq *rq)
6058 {
6059 	int core = cpu_of(rq);
6060 	int cpu;
6061 
6062 	rcu_read_lock();
6063 	if (test_idle_cores(core, true))
6064 		goto unlock;
6065 
6066 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6067 		if (cpu == core)
6068 			continue;
6069 
6070 		if (!available_idle_cpu(cpu))
6071 			goto unlock;
6072 	}
6073 
6074 	set_idle_cores(core, 1);
6075 unlock:
6076 	rcu_read_unlock();
6077 }
6078 
6079 /*
6080  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6081  * there are no idle cores left in the system; tracked through
6082  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6083  */
6084 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6085 {
6086 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6087 	int core, cpu;
6088 
6089 	if (!static_branch_likely(&sched_smt_present))
6090 		return -1;
6091 
6092 	if (!test_idle_cores(target, false))
6093 		return -1;
6094 
6095 	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
6096 
6097 	for_each_cpu_wrap(core, cpus, target) {
6098 		bool idle = true;
6099 
6100 		for_each_cpu(cpu, cpu_smt_mask(core)) {
6101 			__cpumask_clear_cpu(cpu, cpus);
6102 			if (!available_idle_cpu(cpu))
6103 				idle = false;
6104 		}
6105 
6106 		if (idle)
6107 			return core;
6108 	}
6109 
6110 	/*
6111 	 * Failed to find an idle core; stop looking for one.
6112 	 */
6113 	set_idle_cores(target, 0);
6114 
6115 	return -1;
6116 }
6117 
6118 /*
6119  * Scan the local SMT mask for idle CPUs.
6120  */
6121 static int select_idle_smt(struct task_struct *p, int target)
6122 {
6123 	int cpu;
6124 
6125 	if (!static_branch_likely(&sched_smt_present))
6126 		return -1;
6127 
6128 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6129 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6130 			continue;
6131 		if (available_idle_cpu(cpu))
6132 			return cpu;
6133 	}
6134 
6135 	return -1;
6136 }
6137 
6138 #else /* CONFIG_SCHED_SMT */
6139 
6140 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6141 {
6142 	return -1;
6143 }
6144 
6145 static inline int select_idle_smt(struct task_struct *p, int target)
6146 {
6147 	return -1;
6148 }
6149 
6150 #endif /* CONFIG_SCHED_SMT */
6151 
6152 /*
6153  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6154  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6155  * average idle time for this rq (as found in rq->avg_idle).
6156  */
6157 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6158 {
6159 	struct sched_domain *this_sd;
6160 	u64 avg_cost, avg_idle;
6161 	u64 time, cost;
6162 	s64 delta;
6163 	int cpu, nr = INT_MAX;
6164 
6165 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6166 	if (!this_sd)
6167 		return -1;
6168 
6169 	/*
6170 	 * Due to large variance we need a large fuzz factor; hackbench in
6171 	 * particularly is sensitive here.
6172 	 */
6173 	avg_idle = this_rq()->avg_idle / 512;
6174 	avg_cost = this_sd->avg_scan_cost + 1;
6175 
6176 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6177 		return -1;
6178 
6179 	if (sched_feat(SIS_PROP)) {
6180 		u64 span_avg = sd->span_weight * avg_idle;
6181 		if (span_avg > 4*avg_cost)
6182 			nr = div_u64(span_avg, avg_cost);
6183 		else
6184 			nr = 4;
6185 	}
6186 
6187 	time = local_clock();
6188 
6189 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6190 		if (!--nr)
6191 			return -1;
6192 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6193 			continue;
6194 		if (available_idle_cpu(cpu))
6195 			break;
6196 	}
6197 
6198 	time = local_clock() - time;
6199 	cost = this_sd->avg_scan_cost;
6200 	delta = (s64)(time - cost) / 8;
6201 	this_sd->avg_scan_cost += delta;
6202 
6203 	return cpu;
6204 }
6205 
6206 /*
6207  * Try and locate an idle core/thread in the LLC cache domain.
6208  */
6209 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6210 {
6211 	struct sched_domain *sd;
6212 	int i, recent_used_cpu;
6213 
6214 	if (available_idle_cpu(target))
6215 		return target;
6216 
6217 	/*
6218 	 * If the previous CPU is cache affine and idle, don't be stupid:
6219 	 */
6220 	if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
6221 		return prev;
6222 
6223 	/* Check a recently used CPU as a potential idle candidate: */
6224 	recent_used_cpu = p->recent_used_cpu;
6225 	if (recent_used_cpu != prev &&
6226 	    recent_used_cpu != target &&
6227 	    cpus_share_cache(recent_used_cpu, target) &&
6228 	    available_idle_cpu(recent_used_cpu) &&
6229 	    cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6230 		/*
6231 		 * Replace recent_used_cpu with prev as it is a potential
6232 		 * candidate for the next wake:
6233 		 */
6234 		p->recent_used_cpu = prev;
6235 		return recent_used_cpu;
6236 	}
6237 
6238 	sd = rcu_dereference(per_cpu(sd_llc, target));
6239 	if (!sd)
6240 		return target;
6241 
6242 	i = select_idle_core(p, sd, target);
6243 	if ((unsigned)i < nr_cpumask_bits)
6244 		return i;
6245 
6246 	i = select_idle_cpu(p, sd, target);
6247 	if ((unsigned)i < nr_cpumask_bits)
6248 		return i;
6249 
6250 	i = select_idle_smt(p, target);
6251 	if ((unsigned)i < nr_cpumask_bits)
6252 		return i;
6253 
6254 	return target;
6255 }
6256 
6257 /**
6258  * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6259  * @cpu: the CPU to get the utilization of
6260  *
6261  * The unit of the return value must be the one of capacity so we can compare
6262  * the utilization with the capacity of the CPU that is available for CFS task
6263  * (ie cpu_capacity).
6264  *
6265  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6266  * recent utilization of currently non-runnable tasks on a CPU. It represents
6267  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6268  * capacity_orig is the cpu_capacity available at the highest frequency
6269  * (arch_scale_freq_capacity()).
6270  * The utilization of a CPU converges towards a sum equal to or less than the
6271  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6272  * the running time on this CPU scaled by capacity_curr.
6273  *
6274  * The estimated utilization of a CPU is defined to be the maximum between its
6275  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6276  * currently RUNNABLE on that CPU.
6277  * This allows to properly represent the expected utilization of a CPU which
6278  * has just got a big task running since a long sleep period. At the same time
6279  * however it preserves the benefits of the "blocked utilization" in
6280  * describing the potential for other tasks waking up on the same CPU.
6281  *
6282  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6283  * higher than capacity_orig because of unfortunate rounding in
6284  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6285  * the average stabilizes with the new running time. We need to check that the
6286  * utilization stays within the range of [0..capacity_orig] and cap it if
6287  * necessary. Without utilization capping, a group could be seen as overloaded
6288  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6289  * available capacity. We allow utilization to overshoot capacity_curr (but not
6290  * capacity_orig) as it useful for predicting the capacity required after task
6291  * migrations (scheduler-driven DVFS).
6292  *
6293  * Return: the (estimated) utilization for the specified CPU
6294  */
6295 static inline unsigned long cpu_util(int cpu)
6296 {
6297 	struct cfs_rq *cfs_rq;
6298 	unsigned int util;
6299 
6300 	cfs_rq = &cpu_rq(cpu)->cfs;
6301 	util = READ_ONCE(cfs_rq->avg.util_avg);
6302 
6303 	if (sched_feat(UTIL_EST))
6304 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6305 
6306 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6307 }
6308 
6309 /*
6310  * cpu_util_without: compute cpu utilization without any contributions from *p
6311  * @cpu: the CPU which utilization is requested
6312  * @p: the task which utilization should be discounted
6313  *
6314  * The utilization of a CPU is defined by the utilization of tasks currently
6315  * enqueued on that CPU as well as tasks which are currently sleeping after an
6316  * execution on that CPU.
6317  *
6318  * This method returns the utilization of the specified CPU by discounting the
6319  * utilization of the specified task, whenever the task is currently
6320  * contributing to the CPU utilization.
6321  */
6322 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6323 {
6324 	struct cfs_rq *cfs_rq;
6325 	unsigned int util;
6326 
6327 	/* Task has no contribution or is new */
6328 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6329 		return cpu_util(cpu);
6330 
6331 	cfs_rq = &cpu_rq(cpu)->cfs;
6332 	util = READ_ONCE(cfs_rq->avg.util_avg);
6333 
6334 	/* Discount task's util from CPU's util */
6335 	lsub_positive(&util, task_util(p));
6336 
6337 	/*
6338 	 * Covered cases:
6339 	 *
6340 	 * a) if *p is the only task sleeping on this CPU, then:
6341 	 *      cpu_util (== task_util) > util_est (== 0)
6342 	 *    and thus we return:
6343 	 *      cpu_util_without = (cpu_util - task_util) = 0
6344 	 *
6345 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6346 	 *    IDLE, then:
6347 	 *      cpu_util >= task_util
6348 	 *      cpu_util > util_est (== 0)
6349 	 *    and thus we discount *p's blocked utilization to return:
6350 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6351 	 *
6352 	 * c) if other tasks are RUNNABLE on that CPU and
6353 	 *      util_est > cpu_util
6354 	 *    then we use util_est since it returns a more restrictive
6355 	 *    estimation of the spare capacity on that CPU, by just
6356 	 *    considering the expected utilization of tasks already
6357 	 *    runnable on that CPU.
6358 	 *
6359 	 * Cases a) and b) are covered by the above code, while case c) is
6360 	 * covered by the following code when estimated utilization is
6361 	 * enabled.
6362 	 */
6363 	if (sched_feat(UTIL_EST)) {
6364 		unsigned int estimated =
6365 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6366 
6367 		/*
6368 		 * Despite the following checks we still have a small window
6369 		 * for a possible race, when an execl's select_task_rq_fair()
6370 		 * races with LB's detach_task():
6371 		 *
6372 		 *   detach_task()
6373 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6374 		 *     ---------------------------------- A
6375 		 *     deactivate_task()                   \
6376 		 *       dequeue_task()                     + RaceTime
6377 		 *         util_est_dequeue()              /
6378 		 *     ---------------------------------- B
6379 		 *
6380 		 * The additional check on "current == p" it's required to
6381 		 * properly fix the execl regression and it helps in further
6382 		 * reducing the chances for the above race.
6383 		 */
6384 		if (unlikely(task_on_rq_queued(p) || current == p))
6385 			lsub_positive(&estimated, _task_util_est(p));
6386 
6387 		util = max(util, estimated);
6388 	}
6389 
6390 	/*
6391 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6392 	 * clamp to the maximum CPU capacity to ensure consistency with
6393 	 * the cpu_util call.
6394 	 */
6395 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6396 }
6397 
6398 /*
6399  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6400  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6401  *
6402  * In that case WAKE_AFFINE doesn't make sense and we'll let
6403  * BALANCE_WAKE sort things out.
6404  */
6405 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6406 {
6407 	long min_cap, max_cap;
6408 
6409 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
6410 		return 0;
6411 
6412 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6413 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6414 
6415 	/* Minimum capacity is close to max, no need to abort wake_affine */
6416 	if (max_cap - min_cap < max_cap >> 3)
6417 		return 0;
6418 
6419 	/* Bring task utilization in sync with prev_cpu */
6420 	sync_entity_load_avg(&p->se);
6421 
6422 	return !task_fits_capacity(p, min_cap);
6423 }
6424 
6425 /*
6426  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6427  * to @dst_cpu.
6428  */
6429 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6430 {
6431 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6432 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6433 
6434 	/*
6435 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6436 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6437 	 * the other cases, @cpu is not impacted by the migration, so the
6438 	 * util_avg should already be correct.
6439 	 */
6440 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6441 		sub_positive(&util, task_util(p));
6442 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6443 		util += task_util(p);
6444 
6445 	if (sched_feat(UTIL_EST)) {
6446 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6447 
6448 		/*
6449 		 * During wake-up, the task isn't enqueued yet and doesn't
6450 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6451 		 * so just add it (if needed) to "simulate" what will be
6452 		 * cpu_util() after the task has been enqueued.
6453 		 */
6454 		if (dst_cpu == cpu)
6455 			util_est += _task_util_est(p);
6456 
6457 		util = max(util, util_est);
6458 	}
6459 
6460 	return min(util, capacity_orig_of(cpu));
6461 }
6462 
6463 /*
6464  * compute_energy(): Estimates the energy that would be consumed if @p was
6465  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6466  * landscape of the * CPUs after the task migration, and uses the Energy Model
6467  * to compute what would be the energy if we decided to actually migrate that
6468  * task.
6469  */
6470 static long
6471 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6472 {
6473 	long util, max_util, sum_util, energy = 0;
6474 	int cpu;
6475 
6476 	for (; pd; pd = pd->next) {
6477 		max_util = sum_util = 0;
6478 		/*
6479 		 * The capacity state of CPUs of the current rd can be driven by
6480 		 * CPUs of another rd if they belong to the same performance
6481 		 * domain. So, account for the utilization of these CPUs too
6482 		 * by masking pd with cpu_online_mask instead of the rd span.
6483 		 *
6484 		 * If an entire performance domain is outside of the current rd,
6485 		 * it will not appear in its pd list and will not be accounted
6486 		 * by compute_energy().
6487 		 */
6488 		for_each_cpu_and(cpu, perf_domain_span(pd), cpu_online_mask) {
6489 			util = cpu_util_next(cpu, p, dst_cpu);
6490 			util = schedutil_energy_util(cpu, util);
6491 			max_util = max(util, max_util);
6492 			sum_util += util;
6493 		}
6494 
6495 		energy += em_pd_energy(pd->em_pd, max_util, sum_util);
6496 	}
6497 
6498 	return energy;
6499 }
6500 
6501 /*
6502  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6503  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6504  * spare capacity in each performance domain and uses it as a potential
6505  * candidate to execute the task. Then, it uses the Energy Model to figure
6506  * out which of the CPU candidates is the most energy-efficient.
6507  *
6508  * The rationale for this heuristic is as follows. In a performance domain,
6509  * all the most energy efficient CPU candidates (according to the Energy
6510  * Model) are those for which we'll request a low frequency. When there are
6511  * several CPUs for which the frequency request will be the same, we don't
6512  * have enough data to break the tie between them, because the Energy Model
6513  * only includes active power costs. With this model, if we assume that
6514  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6515  * the maximum spare capacity in a performance domain is guaranteed to be among
6516  * the best candidates of the performance domain.
6517  *
6518  * In practice, it could be preferable from an energy standpoint to pack
6519  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6520  * but that could also hurt our chances to go cluster idle, and we have no
6521  * ways to tell with the current Energy Model if this is actually a good
6522  * idea or not. So, find_energy_efficient_cpu() basically favors
6523  * cluster-packing, and spreading inside a cluster. That should at least be
6524  * a good thing for latency, and this is consistent with the idea that most
6525  * of the energy savings of EAS come from the asymmetry of the system, and
6526  * not so much from breaking the tie between identical CPUs. That's also the
6527  * reason why EAS is enabled in the topology code only for systems where
6528  * SD_ASYM_CPUCAPACITY is set.
6529  *
6530  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6531  * they don't have any useful utilization data yet and it's not possible to
6532  * forecast their impact on energy consumption. Consequently, they will be
6533  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6534  * to be energy-inefficient in some use-cases. The alternative would be to
6535  * bias new tasks towards specific types of CPUs first, or to try to infer
6536  * their util_avg from the parent task, but those heuristics could hurt
6537  * other use-cases too. So, until someone finds a better way to solve this,
6538  * let's keep things simple by re-using the existing slow path.
6539  */
6540 
6541 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6542 {
6543 	unsigned long prev_energy = ULONG_MAX, best_energy = ULONG_MAX;
6544 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6545 	int cpu, best_energy_cpu = prev_cpu;
6546 	struct perf_domain *head, *pd;
6547 	unsigned long cpu_cap, util;
6548 	struct sched_domain *sd;
6549 
6550 	rcu_read_lock();
6551 	pd = rcu_dereference(rd->pd);
6552 	if (!pd || READ_ONCE(rd->overutilized))
6553 		goto fail;
6554 	head = pd;
6555 
6556 	/*
6557 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6558 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6559 	 */
6560 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6561 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6562 		sd = sd->parent;
6563 	if (!sd)
6564 		goto fail;
6565 
6566 	sync_entity_load_avg(&p->se);
6567 	if (!task_util_est(p))
6568 		goto unlock;
6569 
6570 	for (; pd; pd = pd->next) {
6571 		unsigned long cur_energy, spare_cap, max_spare_cap = 0;
6572 		int max_spare_cap_cpu = -1;
6573 
6574 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6575 			if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6576 				continue;
6577 
6578 			/* Skip CPUs that will be overutilized. */
6579 			util = cpu_util_next(cpu, p, cpu);
6580 			cpu_cap = capacity_of(cpu);
6581 			if (cpu_cap * 1024 < util * capacity_margin)
6582 				continue;
6583 
6584 			/* Always use prev_cpu as a candidate. */
6585 			if (cpu == prev_cpu) {
6586 				prev_energy = compute_energy(p, prev_cpu, head);
6587 				best_energy = min(best_energy, prev_energy);
6588 				continue;
6589 			}
6590 
6591 			/*
6592 			 * Find the CPU with the maximum spare capacity in
6593 			 * the performance domain
6594 			 */
6595 			spare_cap = cpu_cap - util;
6596 			if (spare_cap > max_spare_cap) {
6597 				max_spare_cap = spare_cap;
6598 				max_spare_cap_cpu = cpu;
6599 			}
6600 		}
6601 
6602 		/* Evaluate the energy impact of using this CPU. */
6603 		if (max_spare_cap_cpu >= 0) {
6604 			cur_energy = compute_energy(p, max_spare_cap_cpu, head);
6605 			if (cur_energy < best_energy) {
6606 				best_energy = cur_energy;
6607 				best_energy_cpu = max_spare_cap_cpu;
6608 			}
6609 		}
6610 	}
6611 unlock:
6612 	rcu_read_unlock();
6613 
6614 	/*
6615 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6616 	 * least 6% of the energy used by prev_cpu.
6617 	 */
6618 	if (prev_energy == ULONG_MAX)
6619 		return best_energy_cpu;
6620 
6621 	if ((prev_energy - best_energy) > (prev_energy >> 4))
6622 		return best_energy_cpu;
6623 
6624 	return prev_cpu;
6625 
6626 fail:
6627 	rcu_read_unlock();
6628 
6629 	return -1;
6630 }
6631 
6632 /*
6633  * select_task_rq_fair: Select target runqueue for the waking task in domains
6634  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6635  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6636  *
6637  * Balances load by selecting the idlest CPU in the idlest group, or under
6638  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6639  *
6640  * Returns the target CPU number.
6641  *
6642  * preempt must be disabled.
6643  */
6644 static int
6645 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6646 {
6647 	struct sched_domain *tmp, *sd = NULL;
6648 	int cpu = smp_processor_id();
6649 	int new_cpu = prev_cpu;
6650 	int want_affine = 0;
6651 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6652 
6653 	if (sd_flag & SD_BALANCE_WAKE) {
6654 		record_wakee(p);
6655 
6656 		if (sched_energy_enabled()) {
6657 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6658 			if (new_cpu >= 0)
6659 				return new_cpu;
6660 			new_cpu = prev_cpu;
6661 		}
6662 
6663 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
6664 			      cpumask_test_cpu(cpu, &p->cpus_allowed);
6665 	}
6666 
6667 	rcu_read_lock();
6668 	for_each_domain(cpu, tmp) {
6669 		if (!(tmp->flags & SD_LOAD_BALANCE))
6670 			break;
6671 
6672 		/*
6673 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6674 		 * cpu is a valid SD_WAKE_AFFINE target.
6675 		 */
6676 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6677 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6678 			if (cpu != prev_cpu)
6679 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6680 
6681 			sd = NULL; /* Prefer wake_affine over balance flags */
6682 			break;
6683 		}
6684 
6685 		if (tmp->flags & sd_flag)
6686 			sd = tmp;
6687 		else if (!want_affine)
6688 			break;
6689 	}
6690 
6691 	if (unlikely(sd)) {
6692 		/* Slow path */
6693 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6694 	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6695 		/* Fast path */
6696 
6697 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6698 
6699 		if (want_affine)
6700 			current->recent_used_cpu = cpu;
6701 	}
6702 	rcu_read_unlock();
6703 
6704 	return new_cpu;
6705 }
6706 
6707 static void detach_entity_cfs_rq(struct sched_entity *se);
6708 
6709 /*
6710  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6711  * cfs_rq_of(p) references at time of call are still valid and identify the
6712  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6713  */
6714 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6715 {
6716 	/*
6717 	 * As blocked tasks retain absolute vruntime the migration needs to
6718 	 * deal with this by subtracting the old and adding the new
6719 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6720 	 * the task on the new runqueue.
6721 	 */
6722 	if (p->state == TASK_WAKING) {
6723 		struct sched_entity *se = &p->se;
6724 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6725 		u64 min_vruntime;
6726 
6727 #ifndef CONFIG_64BIT
6728 		u64 min_vruntime_copy;
6729 
6730 		do {
6731 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6732 			smp_rmb();
6733 			min_vruntime = cfs_rq->min_vruntime;
6734 		} while (min_vruntime != min_vruntime_copy);
6735 #else
6736 		min_vruntime = cfs_rq->min_vruntime;
6737 #endif
6738 
6739 		se->vruntime -= min_vruntime;
6740 	}
6741 
6742 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6743 		/*
6744 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6745 		 * rq->lock and can modify state directly.
6746 		 */
6747 		lockdep_assert_held(&task_rq(p)->lock);
6748 		detach_entity_cfs_rq(&p->se);
6749 
6750 	} else {
6751 		/*
6752 		 * We are supposed to update the task to "current" time, then
6753 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6754 		 * have difficulty in getting what current time is, so simply
6755 		 * throw away the out-of-date time. This will result in the
6756 		 * wakee task is less decayed, but giving the wakee more load
6757 		 * sounds not bad.
6758 		 */
6759 		remove_entity_load_avg(&p->se);
6760 	}
6761 
6762 	/* Tell new CPU we are migrated */
6763 	p->se.avg.last_update_time = 0;
6764 
6765 	/* We have migrated, no longer consider this task hot */
6766 	p->se.exec_start = 0;
6767 
6768 	update_scan_period(p, new_cpu);
6769 }
6770 
6771 static void task_dead_fair(struct task_struct *p)
6772 {
6773 	remove_entity_load_avg(&p->se);
6774 }
6775 #endif /* CONFIG_SMP */
6776 
6777 static unsigned long wakeup_gran(struct sched_entity *se)
6778 {
6779 	unsigned long gran = sysctl_sched_wakeup_granularity;
6780 
6781 	/*
6782 	 * Since its curr running now, convert the gran from real-time
6783 	 * to virtual-time in his units.
6784 	 *
6785 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6786 	 * they get preempted easier. That is, if 'se' < 'curr' then
6787 	 * the resulting gran will be larger, therefore penalizing the
6788 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6789 	 * be smaller, again penalizing the lighter task.
6790 	 *
6791 	 * This is especially important for buddies when the leftmost
6792 	 * task is higher priority than the buddy.
6793 	 */
6794 	return calc_delta_fair(gran, se);
6795 }
6796 
6797 /*
6798  * Should 'se' preempt 'curr'.
6799  *
6800  *             |s1
6801  *        |s2
6802  *   |s3
6803  *         g
6804  *      |<--->|c
6805  *
6806  *  w(c, s1) = -1
6807  *  w(c, s2) =  0
6808  *  w(c, s3) =  1
6809  *
6810  */
6811 static int
6812 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6813 {
6814 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6815 
6816 	if (vdiff <= 0)
6817 		return -1;
6818 
6819 	gran = wakeup_gran(se);
6820 	if (vdiff > gran)
6821 		return 1;
6822 
6823 	return 0;
6824 }
6825 
6826 static void set_last_buddy(struct sched_entity *se)
6827 {
6828 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6829 		return;
6830 
6831 	for_each_sched_entity(se) {
6832 		if (SCHED_WARN_ON(!se->on_rq))
6833 			return;
6834 		cfs_rq_of(se)->last = se;
6835 	}
6836 }
6837 
6838 static void set_next_buddy(struct sched_entity *se)
6839 {
6840 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6841 		return;
6842 
6843 	for_each_sched_entity(se) {
6844 		if (SCHED_WARN_ON(!se->on_rq))
6845 			return;
6846 		cfs_rq_of(se)->next = se;
6847 	}
6848 }
6849 
6850 static void set_skip_buddy(struct sched_entity *se)
6851 {
6852 	for_each_sched_entity(se)
6853 		cfs_rq_of(se)->skip = se;
6854 }
6855 
6856 /*
6857  * Preempt the current task with a newly woken task if needed:
6858  */
6859 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6860 {
6861 	struct task_struct *curr = rq->curr;
6862 	struct sched_entity *se = &curr->se, *pse = &p->se;
6863 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6864 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6865 	int next_buddy_marked = 0;
6866 
6867 	if (unlikely(se == pse))
6868 		return;
6869 
6870 	/*
6871 	 * This is possible from callers such as attach_tasks(), in which we
6872 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6873 	 * lead to a throttle).  This both saves work and prevents false
6874 	 * next-buddy nomination below.
6875 	 */
6876 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6877 		return;
6878 
6879 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6880 		set_next_buddy(pse);
6881 		next_buddy_marked = 1;
6882 	}
6883 
6884 	/*
6885 	 * We can come here with TIF_NEED_RESCHED already set from new task
6886 	 * wake up path.
6887 	 *
6888 	 * Note: this also catches the edge-case of curr being in a throttled
6889 	 * group (e.g. via set_curr_task), since update_curr() (in the
6890 	 * enqueue of curr) will have resulted in resched being set.  This
6891 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6892 	 * below.
6893 	 */
6894 	if (test_tsk_need_resched(curr))
6895 		return;
6896 
6897 	/* Idle tasks are by definition preempted by non-idle tasks. */
6898 	if (unlikely(task_has_idle_policy(curr)) &&
6899 	    likely(!task_has_idle_policy(p)))
6900 		goto preempt;
6901 
6902 	/*
6903 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6904 	 * is driven by the tick):
6905 	 */
6906 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6907 		return;
6908 
6909 	find_matching_se(&se, &pse);
6910 	update_curr(cfs_rq_of(se));
6911 	BUG_ON(!pse);
6912 	if (wakeup_preempt_entity(se, pse) == 1) {
6913 		/*
6914 		 * Bias pick_next to pick the sched entity that is
6915 		 * triggering this preemption.
6916 		 */
6917 		if (!next_buddy_marked)
6918 			set_next_buddy(pse);
6919 		goto preempt;
6920 	}
6921 
6922 	return;
6923 
6924 preempt:
6925 	resched_curr(rq);
6926 	/*
6927 	 * Only set the backward buddy when the current task is still
6928 	 * on the rq. This can happen when a wakeup gets interleaved
6929 	 * with schedule on the ->pre_schedule() or idle_balance()
6930 	 * point, either of which can * drop the rq lock.
6931 	 *
6932 	 * Also, during early boot the idle thread is in the fair class,
6933 	 * for obvious reasons its a bad idea to schedule back to it.
6934 	 */
6935 	if (unlikely(!se->on_rq || curr == rq->idle))
6936 		return;
6937 
6938 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6939 		set_last_buddy(se);
6940 }
6941 
6942 static struct task_struct *
6943 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6944 {
6945 	struct cfs_rq *cfs_rq = &rq->cfs;
6946 	struct sched_entity *se;
6947 	struct task_struct *p;
6948 	int new_tasks;
6949 
6950 again:
6951 	if (!cfs_rq->nr_running)
6952 		goto idle;
6953 
6954 #ifdef CONFIG_FAIR_GROUP_SCHED
6955 	if (prev->sched_class != &fair_sched_class)
6956 		goto simple;
6957 
6958 	/*
6959 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6960 	 * likely that a next task is from the same cgroup as the current.
6961 	 *
6962 	 * Therefore attempt to avoid putting and setting the entire cgroup
6963 	 * hierarchy, only change the part that actually changes.
6964 	 */
6965 
6966 	do {
6967 		struct sched_entity *curr = cfs_rq->curr;
6968 
6969 		/*
6970 		 * Since we got here without doing put_prev_entity() we also
6971 		 * have to consider cfs_rq->curr. If it is still a runnable
6972 		 * entity, update_curr() will update its vruntime, otherwise
6973 		 * forget we've ever seen it.
6974 		 */
6975 		if (curr) {
6976 			if (curr->on_rq)
6977 				update_curr(cfs_rq);
6978 			else
6979 				curr = NULL;
6980 
6981 			/*
6982 			 * This call to check_cfs_rq_runtime() will do the
6983 			 * throttle and dequeue its entity in the parent(s).
6984 			 * Therefore the nr_running test will indeed
6985 			 * be correct.
6986 			 */
6987 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6988 				cfs_rq = &rq->cfs;
6989 
6990 				if (!cfs_rq->nr_running)
6991 					goto idle;
6992 
6993 				goto simple;
6994 			}
6995 		}
6996 
6997 		se = pick_next_entity(cfs_rq, curr);
6998 		cfs_rq = group_cfs_rq(se);
6999 	} while (cfs_rq);
7000 
7001 	p = task_of(se);
7002 
7003 	/*
7004 	 * Since we haven't yet done put_prev_entity and if the selected task
7005 	 * is a different task than we started out with, try and touch the
7006 	 * least amount of cfs_rqs.
7007 	 */
7008 	if (prev != p) {
7009 		struct sched_entity *pse = &prev->se;
7010 
7011 		while (!(cfs_rq = is_same_group(se, pse))) {
7012 			int se_depth = se->depth;
7013 			int pse_depth = pse->depth;
7014 
7015 			if (se_depth <= pse_depth) {
7016 				put_prev_entity(cfs_rq_of(pse), pse);
7017 				pse = parent_entity(pse);
7018 			}
7019 			if (se_depth >= pse_depth) {
7020 				set_next_entity(cfs_rq_of(se), se);
7021 				se = parent_entity(se);
7022 			}
7023 		}
7024 
7025 		put_prev_entity(cfs_rq, pse);
7026 		set_next_entity(cfs_rq, se);
7027 	}
7028 
7029 	goto done;
7030 simple:
7031 #endif
7032 
7033 	put_prev_task(rq, prev);
7034 
7035 	do {
7036 		se = pick_next_entity(cfs_rq, NULL);
7037 		set_next_entity(cfs_rq, se);
7038 		cfs_rq = group_cfs_rq(se);
7039 	} while (cfs_rq);
7040 
7041 	p = task_of(se);
7042 
7043 done: __maybe_unused;
7044 #ifdef CONFIG_SMP
7045 	/*
7046 	 * Move the next running task to the front of
7047 	 * the list, so our cfs_tasks list becomes MRU
7048 	 * one.
7049 	 */
7050 	list_move(&p->se.group_node, &rq->cfs_tasks);
7051 #endif
7052 
7053 	if (hrtick_enabled(rq))
7054 		hrtick_start_fair(rq, p);
7055 
7056 	update_misfit_status(p, rq);
7057 
7058 	return p;
7059 
7060 idle:
7061 	update_misfit_status(NULL, rq);
7062 	new_tasks = idle_balance(rq, rf);
7063 
7064 	/*
7065 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
7066 	 * possible for any higher priority task to appear. In that case we
7067 	 * must re-start the pick_next_entity() loop.
7068 	 */
7069 	if (new_tasks < 0)
7070 		return RETRY_TASK;
7071 
7072 	if (new_tasks > 0)
7073 		goto again;
7074 
7075 	/*
7076 	 * rq is about to be idle, check if we need to update the
7077 	 * lost_idle_time of clock_pelt
7078 	 */
7079 	update_idle_rq_clock_pelt(rq);
7080 
7081 	return NULL;
7082 }
7083 
7084 /*
7085  * Account for a descheduled task:
7086  */
7087 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7088 {
7089 	struct sched_entity *se = &prev->se;
7090 	struct cfs_rq *cfs_rq;
7091 
7092 	for_each_sched_entity(se) {
7093 		cfs_rq = cfs_rq_of(se);
7094 		put_prev_entity(cfs_rq, se);
7095 	}
7096 }
7097 
7098 /*
7099  * sched_yield() is very simple
7100  *
7101  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7102  */
7103 static void yield_task_fair(struct rq *rq)
7104 {
7105 	struct task_struct *curr = rq->curr;
7106 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7107 	struct sched_entity *se = &curr->se;
7108 
7109 	/*
7110 	 * Are we the only task in the tree?
7111 	 */
7112 	if (unlikely(rq->nr_running == 1))
7113 		return;
7114 
7115 	clear_buddies(cfs_rq, se);
7116 
7117 	if (curr->policy != SCHED_BATCH) {
7118 		update_rq_clock(rq);
7119 		/*
7120 		 * Update run-time statistics of the 'current'.
7121 		 */
7122 		update_curr(cfs_rq);
7123 		/*
7124 		 * Tell update_rq_clock() that we've just updated,
7125 		 * so we don't do microscopic update in schedule()
7126 		 * and double the fastpath cost.
7127 		 */
7128 		rq_clock_skip_update(rq);
7129 	}
7130 
7131 	set_skip_buddy(se);
7132 }
7133 
7134 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
7135 {
7136 	struct sched_entity *se = &p->se;
7137 
7138 	/* throttled hierarchies are not runnable */
7139 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7140 		return false;
7141 
7142 	/* Tell the scheduler that we'd really like pse to run next. */
7143 	set_next_buddy(se);
7144 
7145 	yield_task_fair(rq);
7146 
7147 	return true;
7148 }
7149 
7150 #ifdef CONFIG_SMP
7151 /**************************************************
7152  * Fair scheduling class load-balancing methods.
7153  *
7154  * BASICS
7155  *
7156  * The purpose of load-balancing is to achieve the same basic fairness the
7157  * per-CPU scheduler provides, namely provide a proportional amount of compute
7158  * time to each task. This is expressed in the following equation:
7159  *
7160  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7161  *
7162  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7163  * W_i,0 is defined as:
7164  *
7165  *   W_i,0 = \Sum_j w_i,j                                             (2)
7166  *
7167  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7168  * is derived from the nice value as per sched_prio_to_weight[].
7169  *
7170  * The weight average is an exponential decay average of the instantaneous
7171  * weight:
7172  *
7173  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7174  *
7175  * C_i is the compute capacity of CPU i, typically it is the
7176  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7177  * can also include other factors [XXX].
7178  *
7179  * To achieve this balance we define a measure of imbalance which follows
7180  * directly from (1):
7181  *
7182  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7183  *
7184  * We them move tasks around to minimize the imbalance. In the continuous
7185  * function space it is obvious this converges, in the discrete case we get
7186  * a few fun cases generally called infeasible weight scenarios.
7187  *
7188  * [XXX expand on:
7189  *     - infeasible weights;
7190  *     - local vs global optima in the discrete case. ]
7191  *
7192  *
7193  * SCHED DOMAINS
7194  *
7195  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7196  * for all i,j solution, we create a tree of CPUs that follows the hardware
7197  * topology where each level pairs two lower groups (or better). This results
7198  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7199  * tree to only the first of the previous level and we decrease the frequency
7200  * of load-balance at each level inv. proportional to the number of CPUs in
7201  * the groups.
7202  *
7203  * This yields:
7204  *
7205  *     log_2 n     1     n
7206  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7207  *     i = 0      2^i   2^i
7208  *                               `- size of each group
7209  *         |         |     `- number of CPUs doing load-balance
7210  *         |         `- freq
7211  *         `- sum over all levels
7212  *
7213  * Coupled with a limit on how many tasks we can migrate every balance pass,
7214  * this makes (5) the runtime complexity of the balancer.
7215  *
7216  * An important property here is that each CPU is still (indirectly) connected
7217  * to every other CPU in at most O(log n) steps:
7218  *
7219  * The adjacency matrix of the resulting graph is given by:
7220  *
7221  *             log_2 n
7222  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7223  *             k = 0
7224  *
7225  * And you'll find that:
7226  *
7227  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7228  *
7229  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7230  * The task movement gives a factor of O(m), giving a convergence complexity
7231  * of:
7232  *
7233  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7234  *
7235  *
7236  * WORK CONSERVING
7237  *
7238  * In order to avoid CPUs going idle while there's still work to do, new idle
7239  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7240  * tree itself instead of relying on other CPUs to bring it work.
7241  *
7242  * This adds some complexity to both (5) and (8) but it reduces the total idle
7243  * time.
7244  *
7245  * [XXX more?]
7246  *
7247  *
7248  * CGROUPS
7249  *
7250  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7251  *
7252  *                                s_k,i
7253  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7254  *                                 S_k
7255  *
7256  * Where
7257  *
7258  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7259  *
7260  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7261  *
7262  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7263  * property.
7264  *
7265  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7266  *      rewrite all of this once again.]
7267  */
7268 
7269 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7270 
7271 enum fbq_type { regular, remote, all };
7272 
7273 enum group_type {
7274 	group_other = 0,
7275 	group_misfit_task,
7276 	group_imbalanced,
7277 	group_overloaded,
7278 };
7279 
7280 #define LBF_ALL_PINNED	0x01
7281 #define LBF_NEED_BREAK	0x02
7282 #define LBF_DST_PINNED  0x04
7283 #define LBF_SOME_PINNED	0x08
7284 #define LBF_NOHZ_STATS	0x10
7285 #define LBF_NOHZ_AGAIN	0x20
7286 
7287 struct lb_env {
7288 	struct sched_domain	*sd;
7289 
7290 	struct rq		*src_rq;
7291 	int			src_cpu;
7292 
7293 	int			dst_cpu;
7294 	struct rq		*dst_rq;
7295 
7296 	struct cpumask		*dst_grpmask;
7297 	int			new_dst_cpu;
7298 	enum cpu_idle_type	idle;
7299 	long			imbalance;
7300 	/* The set of CPUs under consideration for load-balancing */
7301 	struct cpumask		*cpus;
7302 
7303 	unsigned int		flags;
7304 
7305 	unsigned int		loop;
7306 	unsigned int		loop_break;
7307 	unsigned int		loop_max;
7308 
7309 	enum fbq_type		fbq_type;
7310 	enum group_type		src_grp_type;
7311 	struct list_head	tasks;
7312 };
7313 
7314 /*
7315  * Is this task likely cache-hot:
7316  */
7317 static int task_hot(struct task_struct *p, struct lb_env *env)
7318 {
7319 	s64 delta;
7320 
7321 	lockdep_assert_held(&env->src_rq->lock);
7322 
7323 	if (p->sched_class != &fair_sched_class)
7324 		return 0;
7325 
7326 	if (unlikely(task_has_idle_policy(p)))
7327 		return 0;
7328 
7329 	/*
7330 	 * Buddy candidates are cache hot:
7331 	 */
7332 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7333 			(&p->se == cfs_rq_of(&p->se)->next ||
7334 			 &p->se == cfs_rq_of(&p->se)->last))
7335 		return 1;
7336 
7337 	if (sysctl_sched_migration_cost == -1)
7338 		return 1;
7339 	if (sysctl_sched_migration_cost == 0)
7340 		return 0;
7341 
7342 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7343 
7344 	return delta < (s64)sysctl_sched_migration_cost;
7345 }
7346 
7347 #ifdef CONFIG_NUMA_BALANCING
7348 /*
7349  * Returns 1, if task migration degrades locality
7350  * Returns 0, if task migration improves locality i.e migration preferred.
7351  * Returns -1, if task migration is not affected by locality.
7352  */
7353 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7354 {
7355 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7356 	unsigned long src_weight, dst_weight;
7357 	int src_nid, dst_nid, dist;
7358 
7359 	if (!static_branch_likely(&sched_numa_balancing))
7360 		return -1;
7361 
7362 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7363 		return -1;
7364 
7365 	src_nid = cpu_to_node(env->src_cpu);
7366 	dst_nid = cpu_to_node(env->dst_cpu);
7367 
7368 	if (src_nid == dst_nid)
7369 		return -1;
7370 
7371 	/* Migrating away from the preferred node is always bad. */
7372 	if (src_nid == p->numa_preferred_nid) {
7373 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7374 			return 1;
7375 		else
7376 			return -1;
7377 	}
7378 
7379 	/* Encourage migration to the preferred node. */
7380 	if (dst_nid == p->numa_preferred_nid)
7381 		return 0;
7382 
7383 	/* Leaving a core idle is often worse than degrading locality. */
7384 	if (env->idle == CPU_IDLE)
7385 		return -1;
7386 
7387 	dist = node_distance(src_nid, dst_nid);
7388 	if (numa_group) {
7389 		src_weight = group_weight(p, src_nid, dist);
7390 		dst_weight = group_weight(p, dst_nid, dist);
7391 	} else {
7392 		src_weight = task_weight(p, src_nid, dist);
7393 		dst_weight = task_weight(p, dst_nid, dist);
7394 	}
7395 
7396 	return dst_weight < src_weight;
7397 }
7398 
7399 #else
7400 static inline int migrate_degrades_locality(struct task_struct *p,
7401 					     struct lb_env *env)
7402 {
7403 	return -1;
7404 }
7405 #endif
7406 
7407 /*
7408  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7409  */
7410 static
7411 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7412 {
7413 	int tsk_cache_hot;
7414 
7415 	lockdep_assert_held(&env->src_rq->lock);
7416 
7417 	/*
7418 	 * We do not migrate tasks that are:
7419 	 * 1) throttled_lb_pair, or
7420 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7421 	 * 3) running (obviously), or
7422 	 * 4) are cache-hot on their current CPU.
7423 	 */
7424 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7425 		return 0;
7426 
7427 	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7428 		int cpu;
7429 
7430 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7431 
7432 		env->flags |= LBF_SOME_PINNED;
7433 
7434 		/*
7435 		 * Remember if this task can be migrated to any other CPU in
7436 		 * our sched_group. We may want to revisit it if we couldn't
7437 		 * meet load balance goals by pulling other tasks on src_cpu.
7438 		 *
7439 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7440 		 * already computed one in current iteration.
7441 		 */
7442 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7443 			return 0;
7444 
7445 		/* Prevent to re-select dst_cpu via env's CPUs: */
7446 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7447 			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7448 				env->flags |= LBF_DST_PINNED;
7449 				env->new_dst_cpu = cpu;
7450 				break;
7451 			}
7452 		}
7453 
7454 		return 0;
7455 	}
7456 
7457 	/* Record that we found atleast one task that could run on dst_cpu */
7458 	env->flags &= ~LBF_ALL_PINNED;
7459 
7460 	if (task_running(env->src_rq, p)) {
7461 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7462 		return 0;
7463 	}
7464 
7465 	/*
7466 	 * Aggressive migration if:
7467 	 * 1) destination numa is preferred
7468 	 * 2) task is cache cold, or
7469 	 * 3) too many balance attempts have failed.
7470 	 */
7471 	tsk_cache_hot = migrate_degrades_locality(p, env);
7472 	if (tsk_cache_hot == -1)
7473 		tsk_cache_hot = task_hot(p, env);
7474 
7475 	if (tsk_cache_hot <= 0 ||
7476 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7477 		if (tsk_cache_hot == 1) {
7478 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7479 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7480 		}
7481 		return 1;
7482 	}
7483 
7484 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7485 	return 0;
7486 }
7487 
7488 /*
7489  * detach_task() -- detach the task for the migration specified in env
7490  */
7491 static void detach_task(struct task_struct *p, struct lb_env *env)
7492 {
7493 	lockdep_assert_held(&env->src_rq->lock);
7494 
7495 	p->on_rq = TASK_ON_RQ_MIGRATING;
7496 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7497 	set_task_cpu(p, env->dst_cpu);
7498 }
7499 
7500 /*
7501  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7502  * part of active balancing operations within "domain".
7503  *
7504  * Returns a task if successful and NULL otherwise.
7505  */
7506 static struct task_struct *detach_one_task(struct lb_env *env)
7507 {
7508 	struct task_struct *p;
7509 
7510 	lockdep_assert_held(&env->src_rq->lock);
7511 
7512 	list_for_each_entry_reverse(p,
7513 			&env->src_rq->cfs_tasks, se.group_node) {
7514 		if (!can_migrate_task(p, env))
7515 			continue;
7516 
7517 		detach_task(p, env);
7518 
7519 		/*
7520 		 * Right now, this is only the second place where
7521 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7522 		 * so we can safely collect stats here rather than
7523 		 * inside detach_tasks().
7524 		 */
7525 		schedstat_inc(env->sd->lb_gained[env->idle]);
7526 		return p;
7527 	}
7528 	return NULL;
7529 }
7530 
7531 static const unsigned int sched_nr_migrate_break = 32;
7532 
7533 /*
7534  * detach_tasks() -- tries to detach up to imbalance weighted load from
7535  * busiest_rq, as part of a balancing operation within domain "sd".
7536  *
7537  * Returns number of detached tasks if successful and 0 otherwise.
7538  */
7539 static int detach_tasks(struct lb_env *env)
7540 {
7541 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7542 	struct task_struct *p;
7543 	unsigned long load;
7544 	int detached = 0;
7545 
7546 	lockdep_assert_held(&env->src_rq->lock);
7547 
7548 	if (env->imbalance <= 0)
7549 		return 0;
7550 
7551 	while (!list_empty(tasks)) {
7552 		/*
7553 		 * We don't want to steal all, otherwise we may be treated likewise,
7554 		 * which could at worst lead to a livelock crash.
7555 		 */
7556 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7557 			break;
7558 
7559 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7560 
7561 		env->loop++;
7562 		/* We've more or less seen every task there is, call it quits */
7563 		if (env->loop > env->loop_max)
7564 			break;
7565 
7566 		/* take a breather every nr_migrate tasks */
7567 		if (env->loop > env->loop_break) {
7568 			env->loop_break += sched_nr_migrate_break;
7569 			env->flags |= LBF_NEED_BREAK;
7570 			break;
7571 		}
7572 
7573 		if (!can_migrate_task(p, env))
7574 			goto next;
7575 
7576 		load = task_h_load(p);
7577 
7578 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7579 			goto next;
7580 
7581 		if ((load / 2) > env->imbalance)
7582 			goto next;
7583 
7584 		detach_task(p, env);
7585 		list_add(&p->se.group_node, &env->tasks);
7586 
7587 		detached++;
7588 		env->imbalance -= load;
7589 
7590 #ifdef CONFIG_PREEMPT
7591 		/*
7592 		 * NEWIDLE balancing is a source of latency, so preemptible
7593 		 * kernels will stop after the first task is detached to minimize
7594 		 * the critical section.
7595 		 */
7596 		if (env->idle == CPU_NEWLY_IDLE)
7597 			break;
7598 #endif
7599 
7600 		/*
7601 		 * We only want to steal up to the prescribed amount of
7602 		 * weighted load.
7603 		 */
7604 		if (env->imbalance <= 0)
7605 			break;
7606 
7607 		continue;
7608 next:
7609 		list_move(&p->se.group_node, tasks);
7610 	}
7611 
7612 	/*
7613 	 * Right now, this is one of only two places we collect this stat
7614 	 * so we can safely collect detach_one_task() stats here rather
7615 	 * than inside detach_one_task().
7616 	 */
7617 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7618 
7619 	return detached;
7620 }
7621 
7622 /*
7623  * attach_task() -- attach the task detached by detach_task() to its new rq.
7624  */
7625 static void attach_task(struct rq *rq, struct task_struct *p)
7626 {
7627 	lockdep_assert_held(&rq->lock);
7628 
7629 	BUG_ON(task_rq(p) != rq);
7630 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7631 	p->on_rq = TASK_ON_RQ_QUEUED;
7632 	check_preempt_curr(rq, p, 0);
7633 }
7634 
7635 /*
7636  * attach_one_task() -- attaches the task returned from detach_one_task() to
7637  * its new rq.
7638  */
7639 static void attach_one_task(struct rq *rq, struct task_struct *p)
7640 {
7641 	struct rq_flags rf;
7642 
7643 	rq_lock(rq, &rf);
7644 	update_rq_clock(rq);
7645 	attach_task(rq, p);
7646 	rq_unlock(rq, &rf);
7647 }
7648 
7649 /*
7650  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7651  * new rq.
7652  */
7653 static void attach_tasks(struct lb_env *env)
7654 {
7655 	struct list_head *tasks = &env->tasks;
7656 	struct task_struct *p;
7657 	struct rq_flags rf;
7658 
7659 	rq_lock(env->dst_rq, &rf);
7660 	update_rq_clock(env->dst_rq);
7661 
7662 	while (!list_empty(tasks)) {
7663 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7664 		list_del_init(&p->se.group_node);
7665 
7666 		attach_task(env->dst_rq, p);
7667 	}
7668 
7669 	rq_unlock(env->dst_rq, &rf);
7670 }
7671 
7672 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7673 {
7674 	if (cfs_rq->avg.load_avg)
7675 		return true;
7676 
7677 	if (cfs_rq->avg.util_avg)
7678 		return true;
7679 
7680 	return false;
7681 }
7682 
7683 static inline bool others_have_blocked(struct rq *rq)
7684 {
7685 	if (READ_ONCE(rq->avg_rt.util_avg))
7686 		return true;
7687 
7688 	if (READ_ONCE(rq->avg_dl.util_avg))
7689 		return true;
7690 
7691 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7692 	if (READ_ONCE(rq->avg_irq.util_avg))
7693 		return true;
7694 #endif
7695 
7696 	return false;
7697 }
7698 
7699 #ifdef CONFIG_FAIR_GROUP_SCHED
7700 
7701 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7702 {
7703 	if (cfs_rq->load.weight)
7704 		return false;
7705 
7706 	if (cfs_rq->avg.load_sum)
7707 		return false;
7708 
7709 	if (cfs_rq->avg.util_sum)
7710 		return false;
7711 
7712 	if (cfs_rq->avg.runnable_load_sum)
7713 		return false;
7714 
7715 	return true;
7716 }
7717 
7718 static void update_blocked_averages(int cpu)
7719 {
7720 	struct rq *rq = cpu_rq(cpu);
7721 	struct cfs_rq *cfs_rq, *pos;
7722 	const struct sched_class *curr_class;
7723 	struct rq_flags rf;
7724 	bool done = true;
7725 
7726 	rq_lock_irqsave(rq, &rf);
7727 	update_rq_clock(rq);
7728 
7729 	/*
7730 	 * Iterates the task_group tree in a bottom up fashion, see
7731 	 * list_add_leaf_cfs_rq() for details.
7732 	 */
7733 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7734 		struct sched_entity *se;
7735 
7736 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq))
7737 			update_tg_load_avg(cfs_rq, 0);
7738 
7739 		/* Propagate pending load changes to the parent, if any: */
7740 		se = cfs_rq->tg->se[cpu];
7741 		if (se && !skip_blocked_update(se))
7742 			update_load_avg(cfs_rq_of(se), se, 0);
7743 
7744 		/*
7745 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7746 		 * decayed cfs_rqs linger on the list.
7747 		 */
7748 		if (cfs_rq_is_decayed(cfs_rq))
7749 			list_del_leaf_cfs_rq(cfs_rq);
7750 
7751 		/* Don't need periodic decay once load/util_avg are null */
7752 		if (cfs_rq_has_blocked(cfs_rq))
7753 			done = false;
7754 	}
7755 
7756 	curr_class = rq->curr->sched_class;
7757 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7758 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
7759 	update_irq_load_avg(rq, 0);
7760 	/* Don't need periodic decay once load/util_avg are null */
7761 	if (others_have_blocked(rq))
7762 		done = false;
7763 
7764 #ifdef CONFIG_NO_HZ_COMMON
7765 	rq->last_blocked_load_update_tick = jiffies;
7766 	if (done)
7767 		rq->has_blocked_load = 0;
7768 #endif
7769 	rq_unlock_irqrestore(rq, &rf);
7770 }
7771 
7772 /*
7773  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7774  * This needs to be done in a top-down fashion because the load of a child
7775  * group is a fraction of its parents load.
7776  */
7777 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7778 {
7779 	struct rq *rq = rq_of(cfs_rq);
7780 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7781 	unsigned long now = jiffies;
7782 	unsigned long load;
7783 
7784 	if (cfs_rq->last_h_load_update == now)
7785 		return;
7786 
7787 	cfs_rq->h_load_next = NULL;
7788 	for_each_sched_entity(se) {
7789 		cfs_rq = cfs_rq_of(se);
7790 		cfs_rq->h_load_next = se;
7791 		if (cfs_rq->last_h_load_update == now)
7792 			break;
7793 	}
7794 
7795 	if (!se) {
7796 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7797 		cfs_rq->last_h_load_update = now;
7798 	}
7799 
7800 	while ((se = cfs_rq->h_load_next) != NULL) {
7801 		load = cfs_rq->h_load;
7802 		load = div64_ul(load * se->avg.load_avg,
7803 			cfs_rq_load_avg(cfs_rq) + 1);
7804 		cfs_rq = group_cfs_rq(se);
7805 		cfs_rq->h_load = load;
7806 		cfs_rq->last_h_load_update = now;
7807 	}
7808 }
7809 
7810 static unsigned long task_h_load(struct task_struct *p)
7811 {
7812 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7813 
7814 	update_cfs_rq_h_load(cfs_rq);
7815 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7816 			cfs_rq_load_avg(cfs_rq) + 1);
7817 }
7818 #else
7819 static inline void update_blocked_averages(int cpu)
7820 {
7821 	struct rq *rq = cpu_rq(cpu);
7822 	struct cfs_rq *cfs_rq = &rq->cfs;
7823 	const struct sched_class *curr_class;
7824 	struct rq_flags rf;
7825 
7826 	rq_lock_irqsave(rq, &rf);
7827 	update_rq_clock(rq);
7828 	update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7829 
7830 	curr_class = rq->curr->sched_class;
7831 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7832 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
7833 	update_irq_load_avg(rq, 0);
7834 #ifdef CONFIG_NO_HZ_COMMON
7835 	rq->last_blocked_load_update_tick = jiffies;
7836 	if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
7837 		rq->has_blocked_load = 0;
7838 #endif
7839 	rq_unlock_irqrestore(rq, &rf);
7840 }
7841 
7842 static unsigned long task_h_load(struct task_struct *p)
7843 {
7844 	return p->se.avg.load_avg;
7845 }
7846 #endif
7847 
7848 /********** Helpers for find_busiest_group ************************/
7849 
7850 /*
7851  * sg_lb_stats - stats of a sched_group required for load_balancing
7852  */
7853 struct sg_lb_stats {
7854 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7855 	unsigned long group_load; /* Total load over the CPUs of the group */
7856 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7857 	unsigned long load_per_task;
7858 	unsigned long group_capacity;
7859 	unsigned long group_util; /* Total utilization of the group */
7860 	unsigned int sum_nr_running; /* Nr tasks running in the group */
7861 	unsigned int idle_cpus;
7862 	unsigned int group_weight;
7863 	enum group_type group_type;
7864 	int group_no_capacity;
7865 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
7866 #ifdef CONFIG_NUMA_BALANCING
7867 	unsigned int nr_numa_running;
7868 	unsigned int nr_preferred_running;
7869 #endif
7870 };
7871 
7872 /*
7873  * sd_lb_stats - Structure to store the statistics of a sched_domain
7874  *		 during load balancing.
7875  */
7876 struct sd_lb_stats {
7877 	struct sched_group *busiest;	/* Busiest group in this sd */
7878 	struct sched_group *local;	/* Local group in this sd */
7879 	unsigned long total_running;
7880 	unsigned long total_load;	/* Total load of all groups in sd */
7881 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7882 	unsigned long avg_load;	/* Average load across all groups in sd */
7883 
7884 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7885 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7886 };
7887 
7888 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7889 {
7890 	/*
7891 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7892 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7893 	 * We must however clear busiest_stat::avg_load because
7894 	 * update_sd_pick_busiest() reads this before assignment.
7895 	 */
7896 	*sds = (struct sd_lb_stats){
7897 		.busiest = NULL,
7898 		.local = NULL,
7899 		.total_running = 0UL,
7900 		.total_load = 0UL,
7901 		.total_capacity = 0UL,
7902 		.busiest_stat = {
7903 			.avg_load = 0UL,
7904 			.sum_nr_running = 0,
7905 			.group_type = group_other,
7906 		},
7907 	};
7908 }
7909 
7910 /**
7911  * get_sd_load_idx - Obtain the load index for a given sched domain.
7912  * @sd: The sched_domain whose load_idx is to be obtained.
7913  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7914  *
7915  * Return: The load index.
7916  */
7917 static inline int get_sd_load_idx(struct sched_domain *sd,
7918 					enum cpu_idle_type idle)
7919 {
7920 	int load_idx;
7921 
7922 	switch (idle) {
7923 	case CPU_NOT_IDLE:
7924 		load_idx = sd->busy_idx;
7925 		break;
7926 
7927 	case CPU_NEWLY_IDLE:
7928 		load_idx = sd->newidle_idx;
7929 		break;
7930 	default:
7931 		load_idx = sd->idle_idx;
7932 		break;
7933 	}
7934 
7935 	return load_idx;
7936 }
7937 
7938 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7939 {
7940 	struct rq *rq = cpu_rq(cpu);
7941 	unsigned long max = arch_scale_cpu_capacity(sd, cpu);
7942 	unsigned long used, free;
7943 	unsigned long irq;
7944 
7945 	irq = cpu_util_irq(rq);
7946 
7947 	if (unlikely(irq >= max))
7948 		return 1;
7949 
7950 	used = READ_ONCE(rq->avg_rt.util_avg);
7951 	used += READ_ONCE(rq->avg_dl.util_avg);
7952 
7953 	if (unlikely(used >= max))
7954 		return 1;
7955 
7956 	free = max - used;
7957 
7958 	return scale_irq_capacity(free, irq, max);
7959 }
7960 
7961 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7962 {
7963 	unsigned long capacity = scale_rt_capacity(sd, cpu);
7964 	struct sched_group *sdg = sd->groups;
7965 
7966 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
7967 
7968 	if (!capacity)
7969 		capacity = 1;
7970 
7971 	cpu_rq(cpu)->cpu_capacity = capacity;
7972 	sdg->sgc->capacity = capacity;
7973 	sdg->sgc->min_capacity = capacity;
7974 	sdg->sgc->max_capacity = capacity;
7975 }
7976 
7977 void update_group_capacity(struct sched_domain *sd, int cpu)
7978 {
7979 	struct sched_domain *child = sd->child;
7980 	struct sched_group *group, *sdg = sd->groups;
7981 	unsigned long capacity, min_capacity, max_capacity;
7982 	unsigned long interval;
7983 
7984 	interval = msecs_to_jiffies(sd->balance_interval);
7985 	interval = clamp(interval, 1UL, max_load_balance_interval);
7986 	sdg->sgc->next_update = jiffies + interval;
7987 
7988 	if (!child) {
7989 		update_cpu_capacity(sd, cpu);
7990 		return;
7991 	}
7992 
7993 	capacity = 0;
7994 	min_capacity = ULONG_MAX;
7995 	max_capacity = 0;
7996 
7997 	if (child->flags & SD_OVERLAP) {
7998 		/*
7999 		 * SD_OVERLAP domains cannot assume that child groups
8000 		 * span the current group.
8001 		 */
8002 
8003 		for_each_cpu(cpu, sched_group_span(sdg)) {
8004 			struct sched_group_capacity *sgc;
8005 			struct rq *rq = cpu_rq(cpu);
8006 
8007 			/*
8008 			 * build_sched_domains() -> init_sched_groups_capacity()
8009 			 * gets here before we've attached the domains to the
8010 			 * runqueues.
8011 			 *
8012 			 * Use capacity_of(), which is set irrespective of domains
8013 			 * in update_cpu_capacity().
8014 			 *
8015 			 * This avoids capacity from being 0 and
8016 			 * causing divide-by-zero issues on boot.
8017 			 */
8018 			if (unlikely(!rq->sd)) {
8019 				capacity += capacity_of(cpu);
8020 			} else {
8021 				sgc = rq->sd->groups->sgc;
8022 				capacity += sgc->capacity;
8023 			}
8024 
8025 			min_capacity = min(capacity, min_capacity);
8026 			max_capacity = max(capacity, max_capacity);
8027 		}
8028 	} else  {
8029 		/*
8030 		 * !SD_OVERLAP domains can assume that child groups
8031 		 * span the current group.
8032 		 */
8033 
8034 		group = child->groups;
8035 		do {
8036 			struct sched_group_capacity *sgc = group->sgc;
8037 
8038 			capacity += sgc->capacity;
8039 			min_capacity = min(sgc->min_capacity, min_capacity);
8040 			max_capacity = max(sgc->max_capacity, max_capacity);
8041 			group = group->next;
8042 		} while (group != child->groups);
8043 	}
8044 
8045 	sdg->sgc->capacity = capacity;
8046 	sdg->sgc->min_capacity = min_capacity;
8047 	sdg->sgc->max_capacity = max_capacity;
8048 }
8049 
8050 /*
8051  * Check whether the capacity of the rq has been noticeably reduced by side
8052  * activity. The imbalance_pct is used for the threshold.
8053  * Return true is the capacity is reduced
8054  */
8055 static inline int
8056 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8057 {
8058 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8059 				(rq->cpu_capacity_orig * 100));
8060 }
8061 
8062 /*
8063  * Check whether a rq has a misfit task and if it looks like we can actually
8064  * help that task: we can migrate the task to a CPU of higher capacity, or
8065  * the task's current CPU is heavily pressured.
8066  */
8067 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8068 {
8069 	return rq->misfit_task_load &&
8070 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8071 		 check_cpu_capacity(rq, sd));
8072 }
8073 
8074 /*
8075  * Group imbalance indicates (and tries to solve) the problem where balancing
8076  * groups is inadequate due to ->cpus_allowed constraints.
8077  *
8078  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8079  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8080  * Something like:
8081  *
8082  *	{ 0 1 2 3 } { 4 5 6 7 }
8083  *	        *     * * *
8084  *
8085  * If we were to balance group-wise we'd place two tasks in the first group and
8086  * two tasks in the second group. Clearly this is undesired as it will overload
8087  * cpu 3 and leave one of the CPUs in the second group unused.
8088  *
8089  * The current solution to this issue is detecting the skew in the first group
8090  * by noticing the lower domain failed to reach balance and had difficulty
8091  * moving tasks due to affinity constraints.
8092  *
8093  * When this is so detected; this group becomes a candidate for busiest; see
8094  * update_sd_pick_busiest(). And calculate_imbalance() and
8095  * find_busiest_group() avoid some of the usual balance conditions to allow it
8096  * to create an effective group imbalance.
8097  *
8098  * This is a somewhat tricky proposition since the next run might not find the
8099  * group imbalance and decide the groups need to be balanced again. A most
8100  * subtle and fragile situation.
8101  */
8102 
8103 static inline int sg_imbalanced(struct sched_group *group)
8104 {
8105 	return group->sgc->imbalance;
8106 }
8107 
8108 /*
8109  * group_has_capacity returns true if the group has spare capacity that could
8110  * be used by some tasks.
8111  * We consider that a group has spare capacity if the  * number of task is
8112  * smaller than the number of CPUs or if the utilization is lower than the
8113  * available capacity for CFS tasks.
8114  * For the latter, we use a threshold to stabilize the state, to take into
8115  * account the variance of the tasks' load and to return true if the available
8116  * capacity in meaningful for the load balancer.
8117  * As an example, an available capacity of 1% can appear but it doesn't make
8118  * any benefit for the load balance.
8119  */
8120 static inline bool
8121 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
8122 {
8123 	if (sgs->sum_nr_running < sgs->group_weight)
8124 		return true;
8125 
8126 	if ((sgs->group_capacity * 100) >
8127 			(sgs->group_util * env->sd->imbalance_pct))
8128 		return true;
8129 
8130 	return false;
8131 }
8132 
8133 /*
8134  *  group_is_overloaded returns true if the group has more tasks than it can
8135  *  handle.
8136  *  group_is_overloaded is not equals to !group_has_capacity because a group
8137  *  with the exact right number of tasks, has no more spare capacity but is not
8138  *  overloaded so both group_has_capacity and group_is_overloaded return
8139  *  false.
8140  */
8141 static inline bool
8142 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
8143 {
8144 	if (sgs->sum_nr_running <= sgs->group_weight)
8145 		return false;
8146 
8147 	if ((sgs->group_capacity * 100) <
8148 			(sgs->group_util * env->sd->imbalance_pct))
8149 		return true;
8150 
8151 	return false;
8152 }
8153 
8154 /*
8155  * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8156  * per-CPU capacity than sched_group ref.
8157  */
8158 static inline bool
8159 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8160 {
8161 	return sg->sgc->min_capacity * capacity_margin <
8162 						ref->sgc->min_capacity * 1024;
8163 }
8164 
8165 /*
8166  * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8167  * per-CPU capacity_orig than sched_group ref.
8168  */
8169 static inline bool
8170 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8171 {
8172 	return sg->sgc->max_capacity * capacity_margin <
8173 						ref->sgc->max_capacity * 1024;
8174 }
8175 
8176 static inline enum
8177 group_type group_classify(struct sched_group *group,
8178 			  struct sg_lb_stats *sgs)
8179 {
8180 	if (sgs->group_no_capacity)
8181 		return group_overloaded;
8182 
8183 	if (sg_imbalanced(group))
8184 		return group_imbalanced;
8185 
8186 	if (sgs->group_misfit_task_load)
8187 		return group_misfit_task;
8188 
8189 	return group_other;
8190 }
8191 
8192 static bool update_nohz_stats(struct rq *rq, bool force)
8193 {
8194 #ifdef CONFIG_NO_HZ_COMMON
8195 	unsigned int cpu = rq->cpu;
8196 
8197 	if (!rq->has_blocked_load)
8198 		return false;
8199 
8200 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8201 		return false;
8202 
8203 	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8204 		return true;
8205 
8206 	update_blocked_averages(cpu);
8207 
8208 	return rq->has_blocked_load;
8209 #else
8210 	return false;
8211 #endif
8212 }
8213 
8214 /**
8215  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8216  * @env: The load balancing environment.
8217  * @group: sched_group whose statistics are to be updated.
8218  * @sgs: variable to hold the statistics for this group.
8219  * @sg_status: Holds flag indicating the status of the sched_group
8220  */
8221 static inline void update_sg_lb_stats(struct lb_env *env,
8222 				      struct sched_group *group,
8223 				      struct sg_lb_stats *sgs,
8224 				      int *sg_status)
8225 {
8226 	int local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8227 	int load_idx = get_sd_load_idx(env->sd, env->idle);
8228 	unsigned long load;
8229 	int i, nr_running;
8230 
8231 	memset(sgs, 0, sizeof(*sgs));
8232 
8233 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8234 		struct rq *rq = cpu_rq(i);
8235 
8236 		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8237 			env->flags |= LBF_NOHZ_AGAIN;
8238 
8239 		/* Bias balancing toward CPUs of our domain: */
8240 		if (local_group)
8241 			load = target_load(i, load_idx);
8242 		else
8243 			load = source_load(i, load_idx);
8244 
8245 		sgs->group_load += load;
8246 		sgs->group_util += cpu_util(i);
8247 		sgs->sum_nr_running += rq->cfs.h_nr_running;
8248 
8249 		nr_running = rq->nr_running;
8250 		if (nr_running > 1)
8251 			*sg_status |= SG_OVERLOAD;
8252 
8253 		if (cpu_overutilized(i))
8254 			*sg_status |= SG_OVERUTILIZED;
8255 
8256 #ifdef CONFIG_NUMA_BALANCING
8257 		sgs->nr_numa_running += rq->nr_numa_running;
8258 		sgs->nr_preferred_running += rq->nr_preferred_running;
8259 #endif
8260 		sgs->sum_weighted_load += weighted_cpuload(rq);
8261 		/*
8262 		 * No need to call idle_cpu() if nr_running is not 0
8263 		 */
8264 		if (!nr_running && idle_cpu(i))
8265 			sgs->idle_cpus++;
8266 
8267 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8268 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8269 			sgs->group_misfit_task_load = rq->misfit_task_load;
8270 			*sg_status |= SG_OVERLOAD;
8271 		}
8272 	}
8273 
8274 	/* Adjust by relative CPU capacity of the group */
8275 	sgs->group_capacity = group->sgc->capacity;
8276 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
8277 
8278 	if (sgs->sum_nr_running)
8279 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
8280 
8281 	sgs->group_weight = group->group_weight;
8282 
8283 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
8284 	sgs->group_type = group_classify(group, sgs);
8285 }
8286 
8287 /**
8288  * update_sd_pick_busiest - return 1 on busiest group
8289  * @env: The load balancing environment.
8290  * @sds: sched_domain statistics
8291  * @sg: sched_group candidate to be checked for being the busiest
8292  * @sgs: sched_group statistics
8293  *
8294  * Determine if @sg is a busier group than the previously selected
8295  * busiest group.
8296  *
8297  * Return: %true if @sg is a busier group than the previously selected
8298  * busiest group. %false otherwise.
8299  */
8300 static bool update_sd_pick_busiest(struct lb_env *env,
8301 				   struct sd_lb_stats *sds,
8302 				   struct sched_group *sg,
8303 				   struct sg_lb_stats *sgs)
8304 {
8305 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8306 
8307 	/*
8308 	 * Don't try to pull misfit tasks we can't help.
8309 	 * We can use max_capacity here as reduction in capacity on some
8310 	 * CPUs in the group should either be possible to resolve
8311 	 * internally or be covered by avg_load imbalance (eventually).
8312 	 */
8313 	if (sgs->group_type == group_misfit_task &&
8314 	    (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8315 	     !group_has_capacity(env, &sds->local_stat)))
8316 		return false;
8317 
8318 	if (sgs->group_type > busiest->group_type)
8319 		return true;
8320 
8321 	if (sgs->group_type < busiest->group_type)
8322 		return false;
8323 
8324 	if (sgs->avg_load <= busiest->avg_load)
8325 		return false;
8326 
8327 	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8328 		goto asym_packing;
8329 
8330 	/*
8331 	 * Candidate sg has no more than one task per CPU and
8332 	 * has higher per-CPU capacity. Migrating tasks to less
8333 	 * capable CPUs may harm throughput. Maximize throughput,
8334 	 * power/energy consequences are not considered.
8335 	 */
8336 	if (sgs->sum_nr_running <= sgs->group_weight &&
8337 	    group_smaller_min_cpu_capacity(sds->local, sg))
8338 		return false;
8339 
8340 	/*
8341 	 * If we have more than one misfit sg go with the biggest misfit.
8342 	 */
8343 	if (sgs->group_type == group_misfit_task &&
8344 	    sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8345 		return false;
8346 
8347 asym_packing:
8348 	/* This is the busiest node in its class. */
8349 	if (!(env->sd->flags & SD_ASYM_PACKING))
8350 		return true;
8351 
8352 	/* No ASYM_PACKING if target CPU is already busy */
8353 	if (env->idle == CPU_NOT_IDLE)
8354 		return true;
8355 	/*
8356 	 * ASYM_PACKING needs to move all the work to the highest
8357 	 * prority CPUs in the group, therefore mark all groups
8358 	 * of lower priority than ourself as busy.
8359 	 */
8360 	if (sgs->sum_nr_running &&
8361 	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
8362 		if (!sds->busiest)
8363 			return true;
8364 
8365 		/* Prefer to move from lowest priority CPU's work */
8366 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8367 				      sg->asym_prefer_cpu))
8368 			return true;
8369 	}
8370 
8371 	return false;
8372 }
8373 
8374 #ifdef CONFIG_NUMA_BALANCING
8375 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8376 {
8377 	if (sgs->sum_nr_running > sgs->nr_numa_running)
8378 		return regular;
8379 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
8380 		return remote;
8381 	return all;
8382 }
8383 
8384 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8385 {
8386 	if (rq->nr_running > rq->nr_numa_running)
8387 		return regular;
8388 	if (rq->nr_running > rq->nr_preferred_running)
8389 		return remote;
8390 	return all;
8391 }
8392 #else
8393 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8394 {
8395 	return all;
8396 }
8397 
8398 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8399 {
8400 	return regular;
8401 }
8402 #endif /* CONFIG_NUMA_BALANCING */
8403 
8404 /**
8405  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8406  * @env: The load balancing environment.
8407  * @sds: variable to hold the statistics for this sched_domain.
8408  */
8409 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8410 {
8411 	struct sched_domain *child = env->sd->child;
8412 	struct sched_group *sg = env->sd->groups;
8413 	struct sg_lb_stats *local = &sds->local_stat;
8414 	struct sg_lb_stats tmp_sgs;
8415 	bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8416 	int sg_status = 0;
8417 
8418 #ifdef CONFIG_NO_HZ_COMMON
8419 	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8420 		env->flags |= LBF_NOHZ_STATS;
8421 #endif
8422 
8423 	do {
8424 		struct sg_lb_stats *sgs = &tmp_sgs;
8425 		int local_group;
8426 
8427 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8428 		if (local_group) {
8429 			sds->local = sg;
8430 			sgs = local;
8431 
8432 			if (env->idle != CPU_NEWLY_IDLE ||
8433 			    time_after_eq(jiffies, sg->sgc->next_update))
8434 				update_group_capacity(env->sd, env->dst_cpu);
8435 		}
8436 
8437 		update_sg_lb_stats(env, sg, sgs, &sg_status);
8438 
8439 		if (local_group)
8440 			goto next_group;
8441 
8442 		/*
8443 		 * In case the child domain prefers tasks go to siblings
8444 		 * first, lower the sg capacity so that we'll try
8445 		 * and move all the excess tasks away. We lower the capacity
8446 		 * of a group only if the local group has the capacity to fit
8447 		 * these excess tasks. The extra check prevents the case where
8448 		 * you always pull from the heaviest group when it is already
8449 		 * under-utilized (possible with a large weight task outweighs
8450 		 * the tasks on the system).
8451 		 */
8452 		if (prefer_sibling && sds->local &&
8453 		    group_has_capacity(env, local) &&
8454 		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8455 			sgs->group_no_capacity = 1;
8456 			sgs->group_type = group_classify(sg, sgs);
8457 		}
8458 
8459 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8460 			sds->busiest = sg;
8461 			sds->busiest_stat = *sgs;
8462 		}
8463 
8464 next_group:
8465 		/* Now, start updating sd_lb_stats */
8466 		sds->total_running += sgs->sum_nr_running;
8467 		sds->total_load += sgs->group_load;
8468 		sds->total_capacity += sgs->group_capacity;
8469 
8470 		sg = sg->next;
8471 	} while (sg != env->sd->groups);
8472 
8473 #ifdef CONFIG_NO_HZ_COMMON
8474 	if ((env->flags & LBF_NOHZ_AGAIN) &&
8475 	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8476 
8477 		WRITE_ONCE(nohz.next_blocked,
8478 			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8479 	}
8480 #endif
8481 
8482 	if (env->sd->flags & SD_NUMA)
8483 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8484 
8485 	if (!env->sd->parent) {
8486 		struct root_domain *rd = env->dst_rq->rd;
8487 
8488 		/* update overload indicator if we are at root domain */
8489 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8490 
8491 		/* Update over-utilization (tipping point, U >= 0) indicator */
8492 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8493 	} else if (sg_status & SG_OVERUTILIZED) {
8494 		WRITE_ONCE(env->dst_rq->rd->overutilized, SG_OVERUTILIZED);
8495 	}
8496 }
8497 
8498 /**
8499  * check_asym_packing - Check to see if the group is packed into the
8500  *			sched domain.
8501  *
8502  * This is primarily intended to used at the sibling level.  Some
8503  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
8504  * case of POWER7, it can move to lower SMT modes only when higher
8505  * threads are idle.  When in lower SMT modes, the threads will
8506  * perform better since they share less core resources.  Hence when we
8507  * have idle threads, we want them to be the higher ones.
8508  *
8509  * This packing function is run on idle threads.  It checks to see if
8510  * the busiest CPU in this domain (core in the P7 case) has a higher
8511  * CPU number than the packing function is being run on.  Here we are
8512  * assuming lower CPU number will be equivalent to lower a SMT thread
8513  * number.
8514  *
8515  * Return: 1 when packing is required and a task should be moved to
8516  * this CPU.  The amount of the imbalance is returned in env->imbalance.
8517  *
8518  * @env: The load balancing environment.
8519  * @sds: Statistics of the sched_domain which is to be packed
8520  */
8521 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8522 {
8523 	int busiest_cpu;
8524 
8525 	if (!(env->sd->flags & SD_ASYM_PACKING))
8526 		return 0;
8527 
8528 	if (env->idle == CPU_NOT_IDLE)
8529 		return 0;
8530 
8531 	if (!sds->busiest)
8532 		return 0;
8533 
8534 	busiest_cpu = sds->busiest->asym_prefer_cpu;
8535 	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8536 		return 0;
8537 
8538 	env->imbalance = sds->busiest_stat.group_load;
8539 
8540 	return 1;
8541 }
8542 
8543 /**
8544  * fix_small_imbalance - Calculate the minor imbalance that exists
8545  *			amongst the groups of a sched_domain, during
8546  *			load balancing.
8547  * @env: The load balancing environment.
8548  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8549  */
8550 static inline
8551 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8552 {
8553 	unsigned long tmp, capa_now = 0, capa_move = 0;
8554 	unsigned int imbn = 2;
8555 	unsigned long scaled_busy_load_per_task;
8556 	struct sg_lb_stats *local, *busiest;
8557 
8558 	local = &sds->local_stat;
8559 	busiest = &sds->busiest_stat;
8560 
8561 	if (!local->sum_nr_running)
8562 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8563 	else if (busiest->load_per_task > local->load_per_task)
8564 		imbn = 1;
8565 
8566 	scaled_busy_load_per_task =
8567 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8568 		busiest->group_capacity;
8569 
8570 	if (busiest->avg_load + scaled_busy_load_per_task >=
8571 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
8572 		env->imbalance = busiest->load_per_task;
8573 		return;
8574 	}
8575 
8576 	/*
8577 	 * OK, we don't have enough imbalance to justify moving tasks,
8578 	 * however we may be able to increase total CPU capacity used by
8579 	 * moving them.
8580 	 */
8581 
8582 	capa_now += busiest->group_capacity *
8583 			min(busiest->load_per_task, busiest->avg_load);
8584 	capa_now += local->group_capacity *
8585 			min(local->load_per_task, local->avg_load);
8586 	capa_now /= SCHED_CAPACITY_SCALE;
8587 
8588 	/* Amount of load we'd subtract */
8589 	if (busiest->avg_load > scaled_busy_load_per_task) {
8590 		capa_move += busiest->group_capacity *
8591 			    min(busiest->load_per_task,
8592 				busiest->avg_load - scaled_busy_load_per_task);
8593 	}
8594 
8595 	/* Amount of load we'd add */
8596 	if (busiest->avg_load * busiest->group_capacity <
8597 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8598 		tmp = (busiest->avg_load * busiest->group_capacity) /
8599 		      local->group_capacity;
8600 	} else {
8601 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8602 		      local->group_capacity;
8603 	}
8604 	capa_move += local->group_capacity *
8605 		    min(local->load_per_task, local->avg_load + tmp);
8606 	capa_move /= SCHED_CAPACITY_SCALE;
8607 
8608 	/* Move if we gain throughput */
8609 	if (capa_move > capa_now)
8610 		env->imbalance = busiest->load_per_task;
8611 }
8612 
8613 /**
8614  * calculate_imbalance - Calculate the amount of imbalance present within the
8615  *			 groups of a given sched_domain during load balance.
8616  * @env: load balance environment
8617  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8618  */
8619 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8620 {
8621 	unsigned long max_pull, load_above_capacity = ~0UL;
8622 	struct sg_lb_stats *local, *busiest;
8623 
8624 	local = &sds->local_stat;
8625 	busiest = &sds->busiest_stat;
8626 
8627 	if (busiest->group_type == group_imbalanced) {
8628 		/*
8629 		 * In the group_imb case we cannot rely on group-wide averages
8630 		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8631 		 */
8632 		busiest->load_per_task =
8633 			min(busiest->load_per_task, sds->avg_load);
8634 	}
8635 
8636 	/*
8637 	 * Avg load of busiest sg can be less and avg load of local sg can
8638 	 * be greater than avg load across all sgs of sd because avg load
8639 	 * factors in sg capacity and sgs with smaller group_type are
8640 	 * skipped when updating the busiest sg:
8641 	 */
8642 	if (busiest->group_type != group_misfit_task &&
8643 	    (busiest->avg_load <= sds->avg_load ||
8644 	     local->avg_load >= sds->avg_load)) {
8645 		env->imbalance = 0;
8646 		return fix_small_imbalance(env, sds);
8647 	}
8648 
8649 	/*
8650 	 * If there aren't any idle CPUs, avoid creating some.
8651 	 */
8652 	if (busiest->group_type == group_overloaded &&
8653 	    local->group_type   == group_overloaded) {
8654 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8655 		if (load_above_capacity > busiest->group_capacity) {
8656 			load_above_capacity -= busiest->group_capacity;
8657 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8658 			load_above_capacity /= busiest->group_capacity;
8659 		} else
8660 			load_above_capacity = ~0UL;
8661 	}
8662 
8663 	/*
8664 	 * We're trying to get all the CPUs to the average_load, so we don't
8665 	 * want to push ourselves above the average load, nor do we wish to
8666 	 * reduce the max loaded CPU below the average load. At the same time,
8667 	 * we also don't want to reduce the group load below the group
8668 	 * capacity. Thus we look for the minimum possible imbalance.
8669 	 */
8670 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8671 
8672 	/* How much load to actually move to equalise the imbalance */
8673 	env->imbalance = min(
8674 		max_pull * busiest->group_capacity,
8675 		(sds->avg_load - local->avg_load) * local->group_capacity
8676 	) / SCHED_CAPACITY_SCALE;
8677 
8678 	/* Boost imbalance to allow misfit task to be balanced. */
8679 	if (busiest->group_type == group_misfit_task) {
8680 		env->imbalance = max_t(long, env->imbalance,
8681 				       busiest->group_misfit_task_load);
8682 	}
8683 
8684 	/*
8685 	 * if *imbalance is less than the average load per runnable task
8686 	 * there is no guarantee that any tasks will be moved so we'll have
8687 	 * a think about bumping its value to force at least one task to be
8688 	 * moved
8689 	 */
8690 	if (env->imbalance < busiest->load_per_task)
8691 		return fix_small_imbalance(env, sds);
8692 }
8693 
8694 /******* find_busiest_group() helpers end here *********************/
8695 
8696 /**
8697  * find_busiest_group - Returns the busiest group within the sched_domain
8698  * if there is an imbalance.
8699  *
8700  * Also calculates the amount of weighted load which should be moved
8701  * to restore balance.
8702  *
8703  * @env: The load balancing environment.
8704  *
8705  * Return:	- The busiest group if imbalance exists.
8706  */
8707 static struct sched_group *find_busiest_group(struct lb_env *env)
8708 {
8709 	struct sg_lb_stats *local, *busiest;
8710 	struct sd_lb_stats sds;
8711 
8712 	init_sd_lb_stats(&sds);
8713 
8714 	/*
8715 	 * Compute the various statistics relavent for load balancing at
8716 	 * this level.
8717 	 */
8718 	update_sd_lb_stats(env, &sds);
8719 
8720 	if (sched_energy_enabled()) {
8721 		struct root_domain *rd = env->dst_rq->rd;
8722 
8723 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8724 			goto out_balanced;
8725 	}
8726 
8727 	local = &sds.local_stat;
8728 	busiest = &sds.busiest_stat;
8729 
8730 	/* ASYM feature bypasses nice load balance check */
8731 	if (check_asym_packing(env, &sds))
8732 		return sds.busiest;
8733 
8734 	/* There is no busy sibling group to pull tasks from */
8735 	if (!sds.busiest || busiest->sum_nr_running == 0)
8736 		goto out_balanced;
8737 
8738 	/* XXX broken for overlapping NUMA groups */
8739 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8740 						/ sds.total_capacity;
8741 
8742 	/*
8743 	 * If the busiest group is imbalanced the below checks don't
8744 	 * work because they assume all things are equal, which typically
8745 	 * isn't true due to cpus_allowed constraints and the like.
8746 	 */
8747 	if (busiest->group_type == group_imbalanced)
8748 		goto force_balance;
8749 
8750 	/*
8751 	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8752 	 * capacities from resulting in underutilization due to avg_load.
8753 	 */
8754 	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8755 	    busiest->group_no_capacity)
8756 		goto force_balance;
8757 
8758 	/* Misfit tasks should be dealt with regardless of the avg load */
8759 	if (busiest->group_type == group_misfit_task)
8760 		goto force_balance;
8761 
8762 	/*
8763 	 * If the local group is busier than the selected busiest group
8764 	 * don't try and pull any tasks.
8765 	 */
8766 	if (local->avg_load >= busiest->avg_load)
8767 		goto out_balanced;
8768 
8769 	/*
8770 	 * Don't pull any tasks if this group is already above the domain
8771 	 * average load.
8772 	 */
8773 	if (local->avg_load >= sds.avg_load)
8774 		goto out_balanced;
8775 
8776 	if (env->idle == CPU_IDLE) {
8777 		/*
8778 		 * This CPU is idle. If the busiest group is not overloaded
8779 		 * and there is no imbalance between this and busiest group
8780 		 * wrt idle CPUs, it is balanced. The imbalance becomes
8781 		 * significant if the diff is greater than 1 otherwise we
8782 		 * might end up to just move the imbalance on another group
8783 		 */
8784 		if ((busiest->group_type != group_overloaded) &&
8785 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8786 			goto out_balanced;
8787 	} else {
8788 		/*
8789 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8790 		 * imbalance_pct to be conservative.
8791 		 */
8792 		if (100 * busiest->avg_load <=
8793 				env->sd->imbalance_pct * local->avg_load)
8794 			goto out_balanced;
8795 	}
8796 
8797 force_balance:
8798 	/* Looks like there is an imbalance. Compute it */
8799 	env->src_grp_type = busiest->group_type;
8800 	calculate_imbalance(env, &sds);
8801 	return env->imbalance ? sds.busiest : NULL;
8802 
8803 out_balanced:
8804 	env->imbalance = 0;
8805 	return NULL;
8806 }
8807 
8808 /*
8809  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8810  */
8811 static struct rq *find_busiest_queue(struct lb_env *env,
8812 				     struct sched_group *group)
8813 {
8814 	struct rq *busiest = NULL, *rq;
8815 	unsigned long busiest_load = 0, busiest_capacity = 1;
8816 	int i;
8817 
8818 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8819 		unsigned long capacity, wl;
8820 		enum fbq_type rt;
8821 
8822 		rq = cpu_rq(i);
8823 		rt = fbq_classify_rq(rq);
8824 
8825 		/*
8826 		 * We classify groups/runqueues into three groups:
8827 		 *  - regular: there are !numa tasks
8828 		 *  - remote:  there are numa tasks that run on the 'wrong' node
8829 		 *  - all:     there is no distinction
8830 		 *
8831 		 * In order to avoid migrating ideally placed numa tasks,
8832 		 * ignore those when there's better options.
8833 		 *
8834 		 * If we ignore the actual busiest queue to migrate another
8835 		 * task, the next balance pass can still reduce the busiest
8836 		 * queue by moving tasks around inside the node.
8837 		 *
8838 		 * If we cannot move enough load due to this classification
8839 		 * the next pass will adjust the group classification and
8840 		 * allow migration of more tasks.
8841 		 *
8842 		 * Both cases only affect the total convergence complexity.
8843 		 */
8844 		if (rt > env->fbq_type)
8845 			continue;
8846 
8847 		/*
8848 		 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8849 		 * seek the "biggest" misfit task.
8850 		 */
8851 		if (env->src_grp_type == group_misfit_task) {
8852 			if (rq->misfit_task_load > busiest_load) {
8853 				busiest_load = rq->misfit_task_load;
8854 				busiest = rq;
8855 			}
8856 
8857 			continue;
8858 		}
8859 
8860 		capacity = capacity_of(i);
8861 
8862 		/*
8863 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8864 		 * eventually lead to active_balancing high->low capacity.
8865 		 * Higher per-CPU capacity is considered better than balancing
8866 		 * average load.
8867 		 */
8868 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8869 		    capacity_of(env->dst_cpu) < capacity &&
8870 		    rq->nr_running == 1)
8871 			continue;
8872 
8873 		wl = weighted_cpuload(rq);
8874 
8875 		/*
8876 		 * When comparing with imbalance, use weighted_cpuload()
8877 		 * which is not scaled with the CPU capacity.
8878 		 */
8879 
8880 		if (rq->nr_running == 1 && wl > env->imbalance &&
8881 		    !check_cpu_capacity(rq, env->sd))
8882 			continue;
8883 
8884 		/*
8885 		 * For the load comparisons with the other CPU's, consider
8886 		 * the weighted_cpuload() scaled with the CPU capacity, so
8887 		 * that the load can be moved away from the CPU that is
8888 		 * potentially running at a lower capacity.
8889 		 *
8890 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8891 		 * multiplication to rid ourselves of the division works out
8892 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
8893 		 * our previous maximum.
8894 		 */
8895 		if (wl * busiest_capacity > busiest_load * capacity) {
8896 			busiest_load = wl;
8897 			busiest_capacity = capacity;
8898 			busiest = rq;
8899 		}
8900 	}
8901 
8902 	return busiest;
8903 }
8904 
8905 /*
8906  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8907  * so long as it is large enough.
8908  */
8909 #define MAX_PINNED_INTERVAL	512
8910 
8911 static inline bool
8912 asym_active_balance(struct lb_env *env)
8913 {
8914 	/*
8915 	 * ASYM_PACKING needs to force migrate tasks from busy but
8916 	 * lower priority CPUs in order to pack all tasks in the
8917 	 * highest priority CPUs.
8918 	 */
8919 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
8920 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
8921 }
8922 
8923 static inline bool
8924 voluntary_active_balance(struct lb_env *env)
8925 {
8926 	struct sched_domain *sd = env->sd;
8927 
8928 	if (asym_active_balance(env))
8929 		return 1;
8930 
8931 	/*
8932 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8933 	 * It's worth migrating the task if the src_cpu's capacity is reduced
8934 	 * because of other sched_class or IRQs if more capacity stays
8935 	 * available on dst_cpu.
8936 	 */
8937 	if ((env->idle != CPU_NOT_IDLE) &&
8938 	    (env->src_rq->cfs.h_nr_running == 1)) {
8939 		if ((check_cpu_capacity(env->src_rq, sd)) &&
8940 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8941 			return 1;
8942 	}
8943 
8944 	if (env->src_grp_type == group_misfit_task)
8945 		return 1;
8946 
8947 	return 0;
8948 }
8949 
8950 static int need_active_balance(struct lb_env *env)
8951 {
8952 	struct sched_domain *sd = env->sd;
8953 
8954 	if (voluntary_active_balance(env))
8955 		return 1;
8956 
8957 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8958 }
8959 
8960 static int active_load_balance_cpu_stop(void *data);
8961 
8962 static int should_we_balance(struct lb_env *env)
8963 {
8964 	struct sched_group *sg = env->sd->groups;
8965 	int cpu, balance_cpu = -1;
8966 
8967 	/*
8968 	 * Ensure the balancing environment is consistent; can happen
8969 	 * when the softirq triggers 'during' hotplug.
8970 	 */
8971 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8972 		return 0;
8973 
8974 	/*
8975 	 * In the newly idle case, we will allow all the CPUs
8976 	 * to do the newly idle load balance.
8977 	 */
8978 	if (env->idle == CPU_NEWLY_IDLE)
8979 		return 1;
8980 
8981 	/* Try to find first idle CPU */
8982 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8983 		if (!idle_cpu(cpu))
8984 			continue;
8985 
8986 		balance_cpu = cpu;
8987 		break;
8988 	}
8989 
8990 	if (balance_cpu == -1)
8991 		balance_cpu = group_balance_cpu(sg);
8992 
8993 	/*
8994 	 * First idle CPU or the first CPU(busiest) in this sched group
8995 	 * is eligible for doing load balancing at this and above domains.
8996 	 */
8997 	return balance_cpu == env->dst_cpu;
8998 }
8999 
9000 /*
9001  * Check this_cpu to ensure it is balanced within domain. Attempt to move
9002  * tasks if there is an imbalance.
9003  */
9004 static int load_balance(int this_cpu, struct rq *this_rq,
9005 			struct sched_domain *sd, enum cpu_idle_type idle,
9006 			int *continue_balancing)
9007 {
9008 	int ld_moved, cur_ld_moved, active_balance = 0;
9009 	struct sched_domain *sd_parent = sd->parent;
9010 	struct sched_group *group;
9011 	struct rq *busiest;
9012 	struct rq_flags rf;
9013 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9014 
9015 	struct lb_env env = {
9016 		.sd		= sd,
9017 		.dst_cpu	= this_cpu,
9018 		.dst_rq		= this_rq,
9019 		.dst_grpmask    = sched_group_span(sd->groups),
9020 		.idle		= idle,
9021 		.loop_break	= sched_nr_migrate_break,
9022 		.cpus		= cpus,
9023 		.fbq_type	= all,
9024 		.tasks		= LIST_HEAD_INIT(env.tasks),
9025 	};
9026 
9027 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9028 
9029 	schedstat_inc(sd->lb_count[idle]);
9030 
9031 redo:
9032 	if (!should_we_balance(&env)) {
9033 		*continue_balancing = 0;
9034 		goto out_balanced;
9035 	}
9036 
9037 	group = find_busiest_group(&env);
9038 	if (!group) {
9039 		schedstat_inc(sd->lb_nobusyg[idle]);
9040 		goto out_balanced;
9041 	}
9042 
9043 	busiest = find_busiest_queue(&env, group);
9044 	if (!busiest) {
9045 		schedstat_inc(sd->lb_nobusyq[idle]);
9046 		goto out_balanced;
9047 	}
9048 
9049 	BUG_ON(busiest == env.dst_rq);
9050 
9051 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9052 
9053 	env.src_cpu = busiest->cpu;
9054 	env.src_rq = busiest;
9055 
9056 	ld_moved = 0;
9057 	if (busiest->nr_running > 1) {
9058 		/*
9059 		 * Attempt to move tasks. If find_busiest_group has found
9060 		 * an imbalance but busiest->nr_running <= 1, the group is
9061 		 * still unbalanced. ld_moved simply stays zero, so it is
9062 		 * correctly treated as an imbalance.
9063 		 */
9064 		env.flags |= LBF_ALL_PINNED;
9065 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
9066 
9067 more_balance:
9068 		rq_lock_irqsave(busiest, &rf);
9069 		update_rq_clock(busiest);
9070 
9071 		/*
9072 		 * cur_ld_moved - load moved in current iteration
9073 		 * ld_moved     - cumulative load moved across iterations
9074 		 */
9075 		cur_ld_moved = detach_tasks(&env);
9076 
9077 		/*
9078 		 * We've detached some tasks from busiest_rq. Every
9079 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9080 		 * unlock busiest->lock, and we are able to be sure
9081 		 * that nobody can manipulate the tasks in parallel.
9082 		 * See task_rq_lock() family for the details.
9083 		 */
9084 
9085 		rq_unlock(busiest, &rf);
9086 
9087 		if (cur_ld_moved) {
9088 			attach_tasks(&env);
9089 			ld_moved += cur_ld_moved;
9090 		}
9091 
9092 		local_irq_restore(rf.flags);
9093 
9094 		if (env.flags & LBF_NEED_BREAK) {
9095 			env.flags &= ~LBF_NEED_BREAK;
9096 			goto more_balance;
9097 		}
9098 
9099 		/*
9100 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9101 		 * us and move them to an alternate dst_cpu in our sched_group
9102 		 * where they can run. The upper limit on how many times we
9103 		 * iterate on same src_cpu is dependent on number of CPUs in our
9104 		 * sched_group.
9105 		 *
9106 		 * This changes load balance semantics a bit on who can move
9107 		 * load to a given_cpu. In addition to the given_cpu itself
9108 		 * (or a ilb_cpu acting on its behalf where given_cpu is
9109 		 * nohz-idle), we now have balance_cpu in a position to move
9110 		 * load to given_cpu. In rare situations, this may cause
9111 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9112 		 * _independently_ and at _same_ time to move some load to
9113 		 * given_cpu) causing exceess load to be moved to given_cpu.
9114 		 * This however should not happen so much in practice and
9115 		 * moreover subsequent load balance cycles should correct the
9116 		 * excess load moved.
9117 		 */
9118 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9119 
9120 			/* Prevent to re-select dst_cpu via env's CPUs */
9121 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
9122 
9123 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
9124 			env.dst_cpu	 = env.new_dst_cpu;
9125 			env.flags	&= ~LBF_DST_PINNED;
9126 			env.loop	 = 0;
9127 			env.loop_break	 = sched_nr_migrate_break;
9128 
9129 			/*
9130 			 * Go back to "more_balance" rather than "redo" since we
9131 			 * need to continue with same src_cpu.
9132 			 */
9133 			goto more_balance;
9134 		}
9135 
9136 		/*
9137 		 * We failed to reach balance because of affinity.
9138 		 */
9139 		if (sd_parent) {
9140 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9141 
9142 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9143 				*group_imbalance = 1;
9144 		}
9145 
9146 		/* All tasks on this runqueue were pinned by CPU affinity */
9147 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
9148 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
9149 			/*
9150 			 * Attempting to continue load balancing at the current
9151 			 * sched_domain level only makes sense if there are
9152 			 * active CPUs remaining as possible busiest CPUs to
9153 			 * pull load from which are not contained within the
9154 			 * destination group that is receiving any migrated
9155 			 * load.
9156 			 */
9157 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
9158 				env.loop = 0;
9159 				env.loop_break = sched_nr_migrate_break;
9160 				goto redo;
9161 			}
9162 			goto out_all_pinned;
9163 		}
9164 	}
9165 
9166 	if (!ld_moved) {
9167 		schedstat_inc(sd->lb_failed[idle]);
9168 		/*
9169 		 * Increment the failure counter only on periodic balance.
9170 		 * We do not want newidle balance, which can be very
9171 		 * frequent, pollute the failure counter causing
9172 		 * excessive cache_hot migrations and active balances.
9173 		 */
9174 		if (idle != CPU_NEWLY_IDLE)
9175 			sd->nr_balance_failed++;
9176 
9177 		if (need_active_balance(&env)) {
9178 			unsigned long flags;
9179 
9180 			raw_spin_lock_irqsave(&busiest->lock, flags);
9181 
9182 			/*
9183 			 * Don't kick the active_load_balance_cpu_stop,
9184 			 * if the curr task on busiest CPU can't be
9185 			 * moved to this_cpu:
9186 			 */
9187 			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
9188 				raw_spin_unlock_irqrestore(&busiest->lock,
9189 							    flags);
9190 				env.flags |= LBF_ALL_PINNED;
9191 				goto out_one_pinned;
9192 			}
9193 
9194 			/*
9195 			 * ->active_balance synchronizes accesses to
9196 			 * ->active_balance_work.  Once set, it's cleared
9197 			 * only after active load balance is finished.
9198 			 */
9199 			if (!busiest->active_balance) {
9200 				busiest->active_balance = 1;
9201 				busiest->push_cpu = this_cpu;
9202 				active_balance = 1;
9203 			}
9204 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
9205 
9206 			if (active_balance) {
9207 				stop_one_cpu_nowait(cpu_of(busiest),
9208 					active_load_balance_cpu_stop, busiest,
9209 					&busiest->active_balance_work);
9210 			}
9211 
9212 			/* We've kicked active balancing, force task migration. */
9213 			sd->nr_balance_failed = sd->cache_nice_tries+1;
9214 		}
9215 	} else
9216 		sd->nr_balance_failed = 0;
9217 
9218 	if (likely(!active_balance) || voluntary_active_balance(&env)) {
9219 		/* We were unbalanced, so reset the balancing interval */
9220 		sd->balance_interval = sd->min_interval;
9221 	} else {
9222 		/*
9223 		 * If we've begun active balancing, start to back off. This
9224 		 * case may not be covered by the all_pinned logic if there
9225 		 * is only 1 task on the busy runqueue (because we don't call
9226 		 * detach_tasks).
9227 		 */
9228 		if (sd->balance_interval < sd->max_interval)
9229 			sd->balance_interval *= 2;
9230 	}
9231 
9232 	goto out;
9233 
9234 out_balanced:
9235 	/*
9236 	 * We reach balance although we may have faced some affinity
9237 	 * constraints. Clear the imbalance flag if it was set.
9238 	 */
9239 	if (sd_parent) {
9240 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9241 
9242 		if (*group_imbalance)
9243 			*group_imbalance = 0;
9244 	}
9245 
9246 out_all_pinned:
9247 	/*
9248 	 * We reach balance because all tasks are pinned at this level so
9249 	 * we can't migrate them. Let the imbalance flag set so parent level
9250 	 * can try to migrate them.
9251 	 */
9252 	schedstat_inc(sd->lb_balanced[idle]);
9253 
9254 	sd->nr_balance_failed = 0;
9255 
9256 out_one_pinned:
9257 	ld_moved = 0;
9258 
9259 	/*
9260 	 * idle_balance() disregards balance intervals, so we could repeatedly
9261 	 * reach this code, which would lead to balance_interval skyrocketting
9262 	 * in a short amount of time. Skip the balance_interval increase logic
9263 	 * to avoid that.
9264 	 */
9265 	if (env.idle == CPU_NEWLY_IDLE)
9266 		goto out;
9267 
9268 	/* tune up the balancing interval */
9269 	if ((env.flags & LBF_ALL_PINNED &&
9270 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
9271 	    sd->balance_interval < sd->max_interval)
9272 		sd->balance_interval *= 2;
9273 out:
9274 	return ld_moved;
9275 }
9276 
9277 static inline unsigned long
9278 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9279 {
9280 	unsigned long interval = sd->balance_interval;
9281 
9282 	if (cpu_busy)
9283 		interval *= sd->busy_factor;
9284 
9285 	/* scale ms to jiffies */
9286 	interval = msecs_to_jiffies(interval);
9287 	interval = clamp(interval, 1UL, max_load_balance_interval);
9288 
9289 	return interval;
9290 }
9291 
9292 static inline void
9293 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9294 {
9295 	unsigned long interval, next;
9296 
9297 	/* used by idle balance, so cpu_busy = 0 */
9298 	interval = get_sd_balance_interval(sd, 0);
9299 	next = sd->last_balance + interval;
9300 
9301 	if (time_after(*next_balance, next))
9302 		*next_balance = next;
9303 }
9304 
9305 /*
9306  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9307  * running tasks off the busiest CPU onto idle CPUs. It requires at
9308  * least 1 task to be running on each physical CPU where possible, and
9309  * avoids physical / logical imbalances.
9310  */
9311 static int active_load_balance_cpu_stop(void *data)
9312 {
9313 	struct rq *busiest_rq = data;
9314 	int busiest_cpu = cpu_of(busiest_rq);
9315 	int target_cpu = busiest_rq->push_cpu;
9316 	struct rq *target_rq = cpu_rq(target_cpu);
9317 	struct sched_domain *sd;
9318 	struct task_struct *p = NULL;
9319 	struct rq_flags rf;
9320 
9321 	rq_lock_irq(busiest_rq, &rf);
9322 	/*
9323 	 * Between queueing the stop-work and running it is a hole in which
9324 	 * CPUs can become inactive. We should not move tasks from or to
9325 	 * inactive CPUs.
9326 	 */
9327 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9328 		goto out_unlock;
9329 
9330 	/* Make sure the requested CPU hasn't gone down in the meantime: */
9331 	if (unlikely(busiest_cpu != smp_processor_id() ||
9332 		     !busiest_rq->active_balance))
9333 		goto out_unlock;
9334 
9335 	/* Is there any task to move? */
9336 	if (busiest_rq->nr_running <= 1)
9337 		goto out_unlock;
9338 
9339 	/*
9340 	 * This condition is "impossible", if it occurs
9341 	 * we need to fix it. Originally reported by
9342 	 * Bjorn Helgaas on a 128-CPU setup.
9343 	 */
9344 	BUG_ON(busiest_rq == target_rq);
9345 
9346 	/* Search for an sd spanning us and the target CPU. */
9347 	rcu_read_lock();
9348 	for_each_domain(target_cpu, sd) {
9349 		if ((sd->flags & SD_LOAD_BALANCE) &&
9350 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9351 				break;
9352 	}
9353 
9354 	if (likely(sd)) {
9355 		struct lb_env env = {
9356 			.sd		= sd,
9357 			.dst_cpu	= target_cpu,
9358 			.dst_rq		= target_rq,
9359 			.src_cpu	= busiest_rq->cpu,
9360 			.src_rq		= busiest_rq,
9361 			.idle		= CPU_IDLE,
9362 			/*
9363 			 * can_migrate_task() doesn't need to compute new_dst_cpu
9364 			 * for active balancing. Since we have CPU_IDLE, but no
9365 			 * @dst_grpmask we need to make that test go away with lying
9366 			 * about DST_PINNED.
9367 			 */
9368 			.flags		= LBF_DST_PINNED,
9369 		};
9370 
9371 		schedstat_inc(sd->alb_count);
9372 		update_rq_clock(busiest_rq);
9373 
9374 		p = detach_one_task(&env);
9375 		if (p) {
9376 			schedstat_inc(sd->alb_pushed);
9377 			/* Active balancing done, reset the failure counter. */
9378 			sd->nr_balance_failed = 0;
9379 		} else {
9380 			schedstat_inc(sd->alb_failed);
9381 		}
9382 	}
9383 	rcu_read_unlock();
9384 out_unlock:
9385 	busiest_rq->active_balance = 0;
9386 	rq_unlock(busiest_rq, &rf);
9387 
9388 	if (p)
9389 		attach_one_task(target_rq, p);
9390 
9391 	local_irq_enable();
9392 
9393 	return 0;
9394 }
9395 
9396 static DEFINE_SPINLOCK(balancing);
9397 
9398 /*
9399  * Scale the max load_balance interval with the number of CPUs in the system.
9400  * This trades load-balance latency on larger machines for less cross talk.
9401  */
9402 void update_max_interval(void)
9403 {
9404 	max_load_balance_interval = HZ*num_online_cpus()/10;
9405 }
9406 
9407 /*
9408  * It checks each scheduling domain to see if it is due to be balanced,
9409  * and initiates a balancing operation if so.
9410  *
9411  * Balancing parameters are set up in init_sched_domains.
9412  */
9413 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9414 {
9415 	int continue_balancing = 1;
9416 	int cpu = rq->cpu;
9417 	unsigned long interval;
9418 	struct sched_domain *sd;
9419 	/* Earliest time when we have to do rebalance again */
9420 	unsigned long next_balance = jiffies + 60*HZ;
9421 	int update_next_balance = 0;
9422 	int need_serialize, need_decay = 0;
9423 	u64 max_cost = 0;
9424 
9425 	rcu_read_lock();
9426 	for_each_domain(cpu, sd) {
9427 		/*
9428 		 * Decay the newidle max times here because this is a regular
9429 		 * visit to all the domains. Decay ~1% per second.
9430 		 */
9431 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9432 			sd->max_newidle_lb_cost =
9433 				(sd->max_newidle_lb_cost * 253) / 256;
9434 			sd->next_decay_max_lb_cost = jiffies + HZ;
9435 			need_decay = 1;
9436 		}
9437 		max_cost += sd->max_newidle_lb_cost;
9438 
9439 		if (!(sd->flags & SD_LOAD_BALANCE))
9440 			continue;
9441 
9442 		/*
9443 		 * Stop the load balance at this level. There is another
9444 		 * CPU in our sched group which is doing load balancing more
9445 		 * actively.
9446 		 */
9447 		if (!continue_balancing) {
9448 			if (need_decay)
9449 				continue;
9450 			break;
9451 		}
9452 
9453 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9454 
9455 		need_serialize = sd->flags & SD_SERIALIZE;
9456 		if (need_serialize) {
9457 			if (!spin_trylock(&balancing))
9458 				goto out;
9459 		}
9460 
9461 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
9462 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9463 				/*
9464 				 * The LBF_DST_PINNED logic could have changed
9465 				 * env->dst_cpu, so we can't know our idle
9466 				 * state even if we migrated tasks. Update it.
9467 				 */
9468 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9469 			}
9470 			sd->last_balance = jiffies;
9471 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9472 		}
9473 		if (need_serialize)
9474 			spin_unlock(&balancing);
9475 out:
9476 		if (time_after(next_balance, sd->last_balance + interval)) {
9477 			next_balance = sd->last_balance + interval;
9478 			update_next_balance = 1;
9479 		}
9480 	}
9481 	if (need_decay) {
9482 		/*
9483 		 * Ensure the rq-wide value also decays but keep it at a
9484 		 * reasonable floor to avoid funnies with rq->avg_idle.
9485 		 */
9486 		rq->max_idle_balance_cost =
9487 			max((u64)sysctl_sched_migration_cost, max_cost);
9488 	}
9489 	rcu_read_unlock();
9490 
9491 	/*
9492 	 * next_balance will be updated only when there is a need.
9493 	 * When the cpu is attached to null domain for ex, it will not be
9494 	 * updated.
9495 	 */
9496 	if (likely(update_next_balance)) {
9497 		rq->next_balance = next_balance;
9498 
9499 #ifdef CONFIG_NO_HZ_COMMON
9500 		/*
9501 		 * If this CPU has been elected to perform the nohz idle
9502 		 * balance. Other idle CPUs have already rebalanced with
9503 		 * nohz_idle_balance() and nohz.next_balance has been
9504 		 * updated accordingly. This CPU is now running the idle load
9505 		 * balance for itself and we need to update the
9506 		 * nohz.next_balance accordingly.
9507 		 */
9508 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9509 			nohz.next_balance = rq->next_balance;
9510 #endif
9511 	}
9512 }
9513 
9514 static inline int on_null_domain(struct rq *rq)
9515 {
9516 	return unlikely(!rcu_dereference_sched(rq->sd));
9517 }
9518 
9519 #ifdef CONFIG_NO_HZ_COMMON
9520 /*
9521  * idle load balancing details
9522  * - When one of the busy CPUs notice that there may be an idle rebalancing
9523  *   needed, they will kick the idle load balancer, which then does idle
9524  *   load balancing for all the idle CPUs.
9525  */
9526 
9527 static inline int find_new_ilb(void)
9528 {
9529 	int ilb = cpumask_first(nohz.idle_cpus_mask);
9530 
9531 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
9532 		return ilb;
9533 
9534 	return nr_cpu_ids;
9535 }
9536 
9537 /*
9538  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
9539  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
9540  * CPU (if there is one).
9541  */
9542 static void kick_ilb(unsigned int flags)
9543 {
9544 	int ilb_cpu;
9545 
9546 	nohz.next_balance++;
9547 
9548 	ilb_cpu = find_new_ilb();
9549 
9550 	if (ilb_cpu >= nr_cpu_ids)
9551 		return;
9552 
9553 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
9554 	if (flags & NOHZ_KICK_MASK)
9555 		return;
9556 
9557 	/*
9558 	 * Use smp_send_reschedule() instead of resched_cpu().
9559 	 * This way we generate a sched IPI on the target CPU which
9560 	 * is idle. And the softirq performing nohz idle load balance
9561 	 * will be run before returning from the IPI.
9562 	 */
9563 	smp_send_reschedule(ilb_cpu);
9564 }
9565 
9566 /*
9567  * Current decision point for kicking the idle load balancer in the presence
9568  * of idle CPUs in the system.
9569  */
9570 static void nohz_balancer_kick(struct rq *rq)
9571 {
9572 	unsigned long now = jiffies;
9573 	struct sched_domain_shared *sds;
9574 	struct sched_domain *sd;
9575 	int nr_busy, i, cpu = rq->cpu;
9576 	unsigned int flags = 0;
9577 
9578 	if (unlikely(rq->idle_balance))
9579 		return;
9580 
9581 	/*
9582 	 * We may be recently in ticked or tickless idle mode. At the first
9583 	 * busy tick after returning from idle, we will update the busy stats.
9584 	 */
9585 	nohz_balance_exit_idle(rq);
9586 
9587 	/*
9588 	 * None are in tickless mode and hence no need for NOHZ idle load
9589 	 * balancing.
9590 	 */
9591 	if (likely(!atomic_read(&nohz.nr_cpus)))
9592 		return;
9593 
9594 	if (READ_ONCE(nohz.has_blocked) &&
9595 	    time_after(now, READ_ONCE(nohz.next_blocked)))
9596 		flags = NOHZ_STATS_KICK;
9597 
9598 	if (time_before(now, nohz.next_balance))
9599 		goto out;
9600 
9601 	if (rq->nr_running >= 2) {
9602 		flags = NOHZ_KICK_MASK;
9603 		goto out;
9604 	}
9605 
9606 	rcu_read_lock();
9607 
9608 	sd = rcu_dereference(rq->sd);
9609 	if (sd) {
9610 		/*
9611 		 * If there's a CFS task and the current CPU has reduced
9612 		 * capacity; kick the ILB to see if there's a better CPU to run
9613 		 * on.
9614 		 */
9615 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
9616 			flags = NOHZ_KICK_MASK;
9617 			goto unlock;
9618 		}
9619 	}
9620 
9621 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
9622 	if (sd) {
9623 		/*
9624 		 * When ASYM_PACKING; see if there's a more preferred CPU
9625 		 * currently idle; in which case, kick the ILB to move tasks
9626 		 * around.
9627 		 */
9628 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
9629 			if (sched_asym_prefer(i, cpu)) {
9630 				flags = NOHZ_KICK_MASK;
9631 				goto unlock;
9632 			}
9633 		}
9634 	}
9635 
9636 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
9637 	if (sd) {
9638 		/*
9639 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
9640 		 * to run the misfit task on.
9641 		 */
9642 		if (check_misfit_status(rq, sd)) {
9643 			flags = NOHZ_KICK_MASK;
9644 			goto unlock;
9645 		}
9646 
9647 		/*
9648 		 * For asymmetric systems, we do not want to nicely balance
9649 		 * cache use, instead we want to embrace asymmetry and only
9650 		 * ensure tasks have enough CPU capacity.
9651 		 *
9652 		 * Skip the LLC logic because it's not relevant in that case.
9653 		 */
9654 		goto unlock;
9655 	}
9656 
9657 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9658 	if (sds) {
9659 		/*
9660 		 * If there is an imbalance between LLC domains (IOW we could
9661 		 * increase the overall cache use), we need some less-loaded LLC
9662 		 * domain to pull some load. Likewise, we may need to spread
9663 		 * load within the current LLC domain (e.g. packed SMT cores but
9664 		 * other CPUs are idle). We can't really know from here how busy
9665 		 * the others are - so just get a nohz balance going if it looks
9666 		 * like this LLC domain has tasks we could move.
9667 		 */
9668 		nr_busy = atomic_read(&sds->nr_busy_cpus);
9669 		if (nr_busy > 1) {
9670 			flags = NOHZ_KICK_MASK;
9671 			goto unlock;
9672 		}
9673 	}
9674 unlock:
9675 	rcu_read_unlock();
9676 out:
9677 	if (flags)
9678 		kick_ilb(flags);
9679 }
9680 
9681 static void set_cpu_sd_state_busy(int cpu)
9682 {
9683 	struct sched_domain *sd;
9684 
9685 	rcu_read_lock();
9686 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9687 
9688 	if (!sd || !sd->nohz_idle)
9689 		goto unlock;
9690 	sd->nohz_idle = 0;
9691 
9692 	atomic_inc(&sd->shared->nr_busy_cpus);
9693 unlock:
9694 	rcu_read_unlock();
9695 }
9696 
9697 void nohz_balance_exit_idle(struct rq *rq)
9698 {
9699 	SCHED_WARN_ON(rq != this_rq());
9700 
9701 	if (likely(!rq->nohz_tick_stopped))
9702 		return;
9703 
9704 	rq->nohz_tick_stopped = 0;
9705 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9706 	atomic_dec(&nohz.nr_cpus);
9707 
9708 	set_cpu_sd_state_busy(rq->cpu);
9709 }
9710 
9711 static void set_cpu_sd_state_idle(int cpu)
9712 {
9713 	struct sched_domain *sd;
9714 
9715 	rcu_read_lock();
9716 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9717 
9718 	if (!sd || sd->nohz_idle)
9719 		goto unlock;
9720 	sd->nohz_idle = 1;
9721 
9722 	atomic_dec(&sd->shared->nr_busy_cpus);
9723 unlock:
9724 	rcu_read_unlock();
9725 }
9726 
9727 /*
9728  * This routine will record that the CPU is going idle with tick stopped.
9729  * This info will be used in performing idle load balancing in the future.
9730  */
9731 void nohz_balance_enter_idle(int cpu)
9732 {
9733 	struct rq *rq = cpu_rq(cpu);
9734 
9735 	SCHED_WARN_ON(cpu != smp_processor_id());
9736 
9737 	/* If this CPU is going down, then nothing needs to be done: */
9738 	if (!cpu_active(cpu))
9739 		return;
9740 
9741 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9742 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9743 		return;
9744 
9745 	/*
9746 	 * Can be set safely without rq->lock held
9747 	 * If a clear happens, it will have evaluated last additions because
9748 	 * rq->lock is held during the check and the clear
9749 	 */
9750 	rq->has_blocked_load = 1;
9751 
9752 	/*
9753 	 * The tick is still stopped but load could have been added in the
9754 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
9755 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9756 	 * of nohz.has_blocked can only happen after checking the new load
9757 	 */
9758 	if (rq->nohz_tick_stopped)
9759 		goto out;
9760 
9761 	/* If we're a completely isolated CPU, we don't play: */
9762 	if (on_null_domain(rq))
9763 		return;
9764 
9765 	rq->nohz_tick_stopped = 1;
9766 
9767 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9768 	atomic_inc(&nohz.nr_cpus);
9769 
9770 	/*
9771 	 * Ensures that if nohz_idle_balance() fails to observe our
9772 	 * @idle_cpus_mask store, it must observe the @has_blocked
9773 	 * store.
9774 	 */
9775 	smp_mb__after_atomic();
9776 
9777 	set_cpu_sd_state_idle(cpu);
9778 
9779 out:
9780 	/*
9781 	 * Each time a cpu enter idle, we assume that it has blocked load and
9782 	 * enable the periodic update of the load of idle cpus
9783 	 */
9784 	WRITE_ONCE(nohz.has_blocked, 1);
9785 }
9786 
9787 /*
9788  * Internal function that runs load balance for all idle cpus. The load balance
9789  * can be a simple update of blocked load or a complete load balance with
9790  * tasks movement depending of flags.
9791  * The function returns false if the loop has stopped before running
9792  * through all idle CPUs.
9793  */
9794 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9795 			       enum cpu_idle_type idle)
9796 {
9797 	/* Earliest time when we have to do rebalance again */
9798 	unsigned long now = jiffies;
9799 	unsigned long next_balance = now + 60*HZ;
9800 	bool has_blocked_load = false;
9801 	int update_next_balance = 0;
9802 	int this_cpu = this_rq->cpu;
9803 	int balance_cpu;
9804 	int ret = false;
9805 	struct rq *rq;
9806 
9807 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9808 
9809 	/*
9810 	 * We assume there will be no idle load after this update and clear
9811 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9812 	 * set the has_blocked flag and trig another update of idle load.
9813 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9814 	 * setting the flag, we are sure to not clear the state and not
9815 	 * check the load of an idle cpu.
9816 	 */
9817 	WRITE_ONCE(nohz.has_blocked, 0);
9818 
9819 	/*
9820 	 * Ensures that if we miss the CPU, we must see the has_blocked
9821 	 * store from nohz_balance_enter_idle().
9822 	 */
9823 	smp_mb();
9824 
9825 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9826 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9827 			continue;
9828 
9829 		/*
9830 		 * If this CPU gets work to do, stop the load balancing
9831 		 * work being done for other CPUs. Next load
9832 		 * balancing owner will pick it up.
9833 		 */
9834 		if (need_resched()) {
9835 			has_blocked_load = true;
9836 			goto abort;
9837 		}
9838 
9839 		rq = cpu_rq(balance_cpu);
9840 
9841 		has_blocked_load |= update_nohz_stats(rq, true);
9842 
9843 		/*
9844 		 * If time for next balance is due,
9845 		 * do the balance.
9846 		 */
9847 		if (time_after_eq(jiffies, rq->next_balance)) {
9848 			struct rq_flags rf;
9849 
9850 			rq_lock_irqsave(rq, &rf);
9851 			update_rq_clock(rq);
9852 			cpu_load_update_idle(rq);
9853 			rq_unlock_irqrestore(rq, &rf);
9854 
9855 			if (flags & NOHZ_BALANCE_KICK)
9856 				rebalance_domains(rq, CPU_IDLE);
9857 		}
9858 
9859 		if (time_after(next_balance, rq->next_balance)) {
9860 			next_balance = rq->next_balance;
9861 			update_next_balance = 1;
9862 		}
9863 	}
9864 
9865 	/* Newly idle CPU doesn't need an update */
9866 	if (idle != CPU_NEWLY_IDLE) {
9867 		update_blocked_averages(this_cpu);
9868 		has_blocked_load |= this_rq->has_blocked_load;
9869 	}
9870 
9871 	if (flags & NOHZ_BALANCE_KICK)
9872 		rebalance_domains(this_rq, CPU_IDLE);
9873 
9874 	WRITE_ONCE(nohz.next_blocked,
9875 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9876 
9877 	/* The full idle balance loop has been done */
9878 	ret = true;
9879 
9880 abort:
9881 	/* There is still blocked load, enable periodic update */
9882 	if (has_blocked_load)
9883 		WRITE_ONCE(nohz.has_blocked, 1);
9884 
9885 	/*
9886 	 * next_balance will be updated only when there is a need.
9887 	 * When the CPU is attached to null domain for ex, it will not be
9888 	 * updated.
9889 	 */
9890 	if (likely(update_next_balance))
9891 		nohz.next_balance = next_balance;
9892 
9893 	return ret;
9894 }
9895 
9896 /*
9897  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9898  * rebalancing for all the cpus for whom scheduler ticks are stopped.
9899  */
9900 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9901 {
9902 	int this_cpu = this_rq->cpu;
9903 	unsigned int flags;
9904 
9905 	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9906 		return false;
9907 
9908 	if (idle != CPU_IDLE) {
9909 		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9910 		return false;
9911 	}
9912 
9913 	/* could be _relaxed() */
9914 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9915 	if (!(flags & NOHZ_KICK_MASK))
9916 		return false;
9917 
9918 	_nohz_idle_balance(this_rq, flags, idle);
9919 
9920 	return true;
9921 }
9922 
9923 static void nohz_newidle_balance(struct rq *this_rq)
9924 {
9925 	int this_cpu = this_rq->cpu;
9926 
9927 	/*
9928 	 * This CPU doesn't want to be disturbed by scheduler
9929 	 * housekeeping
9930 	 */
9931 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9932 		return;
9933 
9934 	/* Will wake up very soon. No time for doing anything else*/
9935 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
9936 		return;
9937 
9938 	/* Don't need to update blocked load of idle CPUs*/
9939 	if (!READ_ONCE(nohz.has_blocked) ||
9940 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9941 		return;
9942 
9943 	raw_spin_unlock(&this_rq->lock);
9944 	/*
9945 	 * This CPU is going to be idle and blocked load of idle CPUs
9946 	 * need to be updated. Run the ilb locally as it is a good
9947 	 * candidate for ilb instead of waking up another idle CPU.
9948 	 * Kick an normal ilb if we failed to do the update.
9949 	 */
9950 	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9951 		kick_ilb(NOHZ_STATS_KICK);
9952 	raw_spin_lock(&this_rq->lock);
9953 }
9954 
9955 #else /* !CONFIG_NO_HZ_COMMON */
9956 static inline void nohz_balancer_kick(struct rq *rq) { }
9957 
9958 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9959 {
9960 	return false;
9961 }
9962 
9963 static inline void nohz_newidle_balance(struct rq *this_rq) { }
9964 #endif /* CONFIG_NO_HZ_COMMON */
9965 
9966 /*
9967  * idle_balance is called by schedule() if this_cpu is about to become
9968  * idle. Attempts to pull tasks from other CPUs.
9969  */
9970 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9971 {
9972 	unsigned long next_balance = jiffies + HZ;
9973 	int this_cpu = this_rq->cpu;
9974 	struct sched_domain *sd;
9975 	int pulled_task = 0;
9976 	u64 curr_cost = 0;
9977 
9978 	/*
9979 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
9980 	 * measure the duration of idle_balance() as idle time.
9981 	 */
9982 	this_rq->idle_stamp = rq_clock(this_rq);
9983 
9984 	/*
9985 	 * Do not pull tasks towards !active CPUs...
9986 	 */
9987 	if (!cpu_active(this_cpu))
9988 		return 0;
9989 
9990 	/*
9991 	 * This is OK, because current is on_cpu, which avoids it being picked
9992 	 * for load-balance and preemption/IRQs are still disabled avoiding
9993 	 * further scheduler activity on it and we're being very careful to
9994 	 * re-start the picking loop.
9995 	 */
9996 	rq_unpin_lock(this_rq, rf);
9997 
9998 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
9999 	    !READ_ONCE(this_rq->rd->overload)) {
10000 
10001 		rcu_read_lock();
10002 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
10003 		if (sd)
10004 			update_next_balance(sd, &next_balance);
10005 		rcu_read_unlock();
10006 
10007 		nohz_newidle_balance(this_rq);
10008 
10009 		goto out;
10010 	}
10011 
10012 	raw_spin_unlock(&this_rq->lock);
10013 
10014 	update_blocked_averages(this_cpu);
10015 	rcu_read_lock();
10016 	for_each_domain(this_cpu, sd) {
10017 		int continue_balancing = 1;
10018 		u64 t0, domain_cost;
10019 
10020 		if (!(sd->flags & SD_LOAD_BALANCE))
10021 			continue;
10022 
10023 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10024 			update_next_balance(sd, &next_balance);
10025 			break;
10026 		}
10027 
10028 		if (sd->flags & SD_BALANCE_NEWIDLE) {
10029 			t0 = sched_clock_cpu(this_cpu);
10030 
10031 			pulled_task = load_balance(this_cpu, this_rq,
10032 						   sd, CPU_NEWLY_IDLE,
10033 						   &continue_balancing);
10034 
10035 			domain_cost = sched_clock_cpu(this_cpu) - t0;
10036 			if (domain_cost > sd->max_newidle_lb_cost)
10037 				sd->max_newidle_lb_cost = domain_cost;
10038 
10039 			curr_cost += domain_cost;
10040 		}
10041 
10042 		update_next_balance(sd, &next_balance);
10043 
10044 		/*
10045 		 * Stop searching for tasks to pull if there are
10046 		 * now runnable tasks on this rq.
10047 		 */
10048 		if (pulled_task || this_rq->nr_running > 0)
10049 			break;
10050 	}
10051 	rcu_read_unlock();
10052 
10053 	raw_spin_lock(&this_rq->lock);
10054 
10055 	if (curr_cost > this_rq->max_idle_balance_cost)
10056 		this_rq->max_idle_balance_cost = curr_cost;
10057 
10058 out:
10059 	/*
10060 	 * While browsing the domains, we released the rq lock, a task could
10061 	 * have been enqueued in the meantime. Since we're not going idle,
10062 	 * pretend we pulled a task.
10063 	 */
10064 	if (this_rq->cfs.h_nr_running && !pulled_task)
10065 		pulled_task = 1;
10066 
10067 	/* Move the next balance forward */
10068 	if (time_after(this_rq->next_balance, next_balance))
10069 		this_rq->next_balance = next_balance;
10070 
10071 	/* Is there a task of a high priority class? */
10072 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10073 		pulled_task = -1;
10074 
10075 	if (pulled_task)
10076 		this_rq->idle_stamp = 0;
10077 
10078 	rq_repin_lock(this_rq, rf);
10079 
10080 	return pulled_task;
10081 }
10082 
10083 /*
10084  * run_rebalance_domains is triggered when needed from the scheduler tick.
10085  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10086  */
10087 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10088 {
10089 	struct rq *this_rq = this_rq();
10090 	enum cpu_idle_type idle = this_rq->idle_balance ?
10091 						CPU_IDLE : CPU_NOT_IDLE;
10092 
10093 	/*
10094 	 * If this CPU has a pending nohz_balance_kick, then do the
10095 	 * balancing on behalf of the other idle CPUs whose ticks are
10096 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10097 	 * give the idle CPUs a chance to load balance. Else we may
10098 	 * load balance only within the local sched_domain hierarchy
10099 	 * and abort nohz_idle_balance altogether if we pull some load.
10100 	 */
10101 	if (nohz_idle_balance(this_rq, idle))
10102 		return;
10103 
10104 	/* normal load balance */
10105 	update_blocked_averages(this_rq->cpu);
10106 	rebalance_domains(this_rq, idle);
10107 }
10108 
10109 /*
10110  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10111  */
10112 void trigger_load_balance(struct rq *rq)
10113 {
10114 	/* Don't need to rebalance while attached to NULL domain */
10115 	if (unlikely(on_null_domain(rq)))
10116 		return;
10117 
10118 	if (time_after_eq(jiffies, rq->next_balance))
10119 		raise_softirq(SCHED_SOFTIRQ);
10120 
10121 	nohz_balancer_kick(rq);
10122 }
10123 
10124 static void rq_online_fair(struct rq *rq)
10125 {
10126 	update_sysctl();
10127 
10128 	update_runtime_enabled(rq);
10129 }
10130 
10131 static void rq_offline_fair(struct rq *rq)
10132 {
10133 	update_sysctl();
10134 
10135 	/* Ensure any throttled groups are reachable by pick_next_task */
10136 	unthrottle_offline_cfs_rqs(rq);
10137 }
10138 
10139 #endif /* CONFIG_SMP */
10140 
10141 /*
10142  * scheduler tick hitting a task of our scheduling class.
10143  *
10144  * NOTE: This function can be called remotely by the tick offload that
10145  * goes along full dynticks. Therefore no local assumption can be made
10146  * and everything must be accessed through the @rq and @curr passed in
10147  * parameters.
10148  */
10149 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10150 {
10151 	struct cfs_rq *cfs_rq;
10152 	struct sched_entity *se = &curr->se;
10153 
10154 	for_each_sched_entity(se) {
10155 		cfs_rq = cfs_rq_of(se);
10156 		entity_tick(cfs_rq, se, queued);
10157 	}
10158 
10159 	if (static_branch_unlikely(&sched_numa_balancing))
10160 		task_tick_numa(rq, curr);
10161 
10162 	update_misfit_status(curr, rq);
10163 	update_overutilized_status(task_rq(curr));
10164 }
10165 
10166 /*
10167  * called on fork with the child task as argument from the parent's context
10168  *  - child not yet on the tasklist
10169  *  - preemption disabled
10170  */
10171 static void task_fork_fair(struct task_struct *p)
10172 {
10173 	struct cfs_rq *cfs_rq;
10174 	struct sched_entity *se = &p->se, *curr;
10175 	struct rq *rq = this_rq();
10176 	struct rq_flags rf;
10177 
10178 	rq_lock(rq, &rf);
10179 	update_rq_clock(rq);
10180 
10181 	cfs_rq = task_cfs_rq(current);
10182 	curr = cfs_rq->curr;
10183 	if (curr) {
10184 		update_curr(cfs_rq);
10185 		se->vruntime = curr->vruntime;
10186 	}
10187 	place_entity(cfs_rq, se, 1);
10188 
10189 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10190 		/*
10191 		 * Upon rescheduling, sched_class::put_prev_task() will place
10192 		 * 'current' within the tree based on its new key value.
10193 		 */
10194 		swap(curr->vruntime, se->vruntime);
10195 		resched_curr(rq);
10196 	}
10197 
10198 	se->vruntime -= cfs_rq->min_vruntime;
10199 	rq_unlock(rq, &rf);
10200 }
10201 
10202 /*
10203  * Priority of the task has changed. Check to see if we preempt
10204  * the current task.
10205  */
10206 static void
10207 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10208 {
10209 	if (!task_on_rq_queued(p))
10210 		return;
10211 
10212 	/*
10213 	 * Reschedule if we are currently running on this runqueue and
10214 	 * our priority decreased, or if we are not currently running on
10215 	 * this runqueue and our priority is higher than the current's
10216 	 */
10217 	if (rq->curr == p) {
10218 		if (p->prio > oldprio)
10219 			resched_curr(rq);
10220 	} else
10221 		check_preempt_curr(rq, p, 0);
10222 }
10223 
10224 static inline bool vruntime_normalized(struct task_struct *p)
10225 {
10226 	struct sched_entity *se = &p->se;
10227 
10228 	/*
10229 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10230 	 * the dequeue_entity(.flags=0) will already have normalized the
10231 	 * vruntime.
10232 	 */
10233 	if (p->on_rq)
10234 		return true;
10235 
10236 	/*
10237 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
10238 	 * But there are some cases where it has already been normalized:
10239 	 *
10240 	 * - A forked child which is waiting for being woken up by
10241 	 *   wake_up_new_task().
10242 	 * - A task which has been woken up by try_to_wake_up() and
10243 	 *   waiting for actually being woken up by sched_ttwu_pending().
10244 	 */
10245 	if (!se->sum_exec_runtime ||
10246 	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
10247 		return true;
10248 
10249 	return false;
10250 }
10251 
10252 #ifdef CONFIG_FAIR_GROUP_SCHED
10253 /*
10254  * Propagate the changes of the sched_entity across the tg tree to make it
10255  * visible to the root
10256  */
10257 static void propagate_entity_cfs_rq(struct sched_entity *se)
10258 {
10259 	struct cfs_rq *cfs_rq;
10260 
10261 	/* Start to propagate at parent */
10262 	se = se->parent;
10263 
10264 	for_each_sched_entity(se) {
10265 		cfs_rq = cfs_rq_of(se);
10266 
10267 		if (cfs_rq_throttled(cfs_rq))
10268 			break;
10269 
10270 		update_load_avg(cfs_rq, se, UPDATE_TG);
10271 	}
10272 }
10273 #else
10274 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10275 #endif
10276 
10277 static void detach_entity_cfs_rq(struct sched_entity *se)
10278 {
10279 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10280 
10281 	/* Catch up with the cfs_rq and remove our load when we leave */
10282 	update_load_avg(cfs_rq, se, 0);
10283 	detach_entity_load_avg(cfs_rq, se);
10284 	update_tg_load_avg(cfs_rq, false);
10285 	propagate_entity_cfs_rq(se);
10286 }
10287 
10288 static void attach_entity_cfs_rq(struct sched_entity *se)
10289 {
10290 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10291 
10292 #ifdef CONFIG_FAIR_GROUP_SCHED
10293 	/*
10294 	 * Since the real-depth could have been changed (only FAIR
10295 	 * class maintain depth value), reset depth properly.
10296 	 */
10297 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10298 #endif
10299 
10300 	/* Synchronize entity with its cfs_rq */
10301 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10302 	attach_entity_load_avg(cfs_rq, se, 0);
10303 	update_tg_load_avg(cfs_rq, false);
10304 	propagate_entity_cfs_rq(se);
10305 }
10306 
10307 static void detach_task_cfs_rq(struct task_struct *p)
10308 {
10309 	struct sched_entity *se = &p->se;
10310 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10311 
10312 	if (!vruntime_normalized(p)) {
10313 		/*
10314 		 * Fix up our vruntime so that the current sleep doesn't
10315 		 * cause 'unlimited' sleep bonus.
10316 		 */
10317 		place_entity(cfs_rq, se, 0);
10318 		se->vruntime -= cfs_rq->min_vruntime;
10319 	}
10320 
10321 	detach_entity_cfs_rq(se);
10322 }
10323 
10324 static void attach_task_cfs_rq(struct task_struct *p)
10325 {
10326 	struct sched_entity *se = &p->se;
10327 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10328 
10329 	attach_entity_cfs_rq(se);
10330 
10331 	if (!vruntime_normalized(p))
10332 		se->vruntime += cfs_rq->min_vruntime;
10333 }
10334 
10335 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10336 {
10337 	detach_task_cfs_rq(p);
10338 }
10339 
10340 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10341 {
10342 	attach_task_cfs_rq(p);
10343 
10344 	if (task_on_rq_queued(p)) {
10345 		/*
10346 		 * We were most likely switched from sched_rt, so
10347 		 * kick off the schedule if running, otherwise just see
10348 		 * if we can still preempt the current task.
10349 		 */
10350 		if (rq->curr == p)
10351 			resched_curr(rq);
10352 		else
10353 			check_preempt_curr(rq, p, 0);
10354 	}
10355 }
10356 
10357 /* Account for a task changing its policy or group.
10358  *
10359  * This routine is mostly called to set cfs_rq->curr field when a task
10360  * migrates between groups/classes.
10361  */
10362 static void set_curr_task_fair(struct rq *rq)
10363 {
10364 	struct sched_entity *se = &rq->curr->se;
10365 
10366 	for_each_sched_entity(se) {
10367 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
10368 
10369 		set_next_entity(cfs_rq, se);
10370 		/* ensure bandwidth has been allocated on our new cfs_rq */
10371 		account_cfs_rq_runtime(cfs_rq, 0);
10372 	}
10373 }
10374 
10375 void init_cfs_rq(struct cfs_rq *cfs_rq)
10376 {
10377 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10378 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10379 #ifndef CONFIG_64BIT
10380 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10381 #endif
10382 #ifdef CONFIG_SMP
10383 	raw_spin_lock_init(&cfs_rq->removed.lock);
10384 #endif
10385 }
10386 
10387 #ifdef CONFIG_FAIR_GROUP_SCHED
10388 static void task_set_group_fair(struct task_struct *p)
10389 {
10390 	struct sched_entity *se = &p->se;
10391 
10392 	set_task_rq(p, task_cpu(p));
10393 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10394 }
10395 
10396 static void task_move_group_fair(struct task_struct *p)
10397 {
10398 	detach_task_cfs_rq(p);
10399 	set_task_rq(p, task_cpu(p));
10400 
10401 #ifdef CONFIG_SMP
10402 	/* Tell se's cfs_rq has been changed -- migrated */
10403 	p->se.avg.last_update_time = 0;
10404 #endif
10405 	attach_task_cfs_rq(p);
10406 }
10407 
10408 static void task_change_group_fair(struct task_struct *p, int type)
10409 {
10410 	switch (type) {
10411 	case TASK_SET_GROUP:
10412 		task_set_group_fair(p);
10413 		break;
10414 
10415 	case TASK_MOVE_GROUP:
10416 		task_move_group_fair(p);
10417 		break;
10418 	}
10419 }
10420 
10421 void free_fair_sched_group(struct task_group *tg)
10422 {
10423 	int i;
10424 
10425 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10426 
10427 	for_each_possible_cpu(i) {
10428 		if (tg->cfs_rq)
10429 			kfree(tg->cfs_rq[i]);
10430 		if (tg->se)
10431 			kfree(tg->se[i]);
10432 	}
10433 
10434 	kfree(tg->cfs_rq);
10435 	kfree(tg->se);
10436 }
10437 
10438 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10439 {
10440 	struct sched_entity *se;
10441 	struct cfs_rq *cfs_rq;
10442 	int i;
10443 
10444 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10445 	if (!tg->cfs_rq)
10446 		goto err;
10447 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10448 	if (!tg->se)
10449 		goto err;
10450 
10451 	tg->shares = NICE_0_LOAD;
10452 
10453 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10454 
10455 	for_each_possible_cpu(i) {
10456 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10457 				      GFP_KERNEL, cpu_to_node(i));
10458 		if (!cfs_rq)
10459 			goto err;
10460 
10461 		se = kzalloc_node(sizeof(struct sched_entity),
10462 				  GFP_KERNEL, cpu_to_node(i));
10463 		if (!se)
10464 			goto err_free_rq;
10465 
10466 		init_cfs_rq(cfs_rq);
10467 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10468 		init_entity_runnable_average(se);
10469 	}
10470 
10471 	return 1;
10472 
10473 err_free_rq:
10474 	kfree(cfs_rq);
10475 err:
10476 	return 0;
10477 }
10478 
10479 void online_fair_sched_group(struct task_group *tg)
10480 {
10481 	struct sched_entity *se;
10482 	struct rq *rq;
10483 	int i;
10484 
10485 	for_each_possible_cpu(i) {
10486 		rq = cpu_rq(i);
10487 		se = tg->se[i];
10488 
10489 		raw_spin_lock_irq(&rq->lock);
10490 		update_rq_clock(rq);
10491 		attach_entity_cfs_rq(se);
10492 		sync_throttle(tg, i);
10493 		raw_spin_unlock_irq(&rq->lock);
10494 	}
10495 }
10496 
10497 void unregister_fair_sched_group(struct task_group *tg)
10498 {
10499 	unsigned long flags;
10500 	struct rq *rq;
10501 	int cpu;
10502 
10503 	for_each_possible_cpu(cpu) {
10504 		if (tg->se[cpu])
10505 			remove_entity_load_avg(tg->se[cpu]);
10506 
10507 		/*
10508 		 * Only empty task groups can be destroyed; so we can speculatively
10509 		 * check on_list without danger of it being re-added.
10510 		 */
10511 		if (!tg->cfs_rq[cpu]->on_list)
10512 			continue;
10513 
10514 		rq = cpu_rq(cpu);
10515 
10516 		raw_spin_lock_irqsave(&rq->lock, flags);
10517 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10518 		raw_spin_unlock_irqrestore(&rq->lock, flags);
10519 	}
10520 }
10521 
10522 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10523 			struct sched_entity *se, int cpu,
10524 			struct sched_entity *parent)
10525 {
10526 	struct rq *rq = cpu_rq(cpu);
10527 
10528 	cfs_rq->tg = tg;
10529 	cfs_rq->rq = rq;
10530 	init_cfs_rq_runtime(cfs_rq);
10531 
10532 	tg->cfs_rq[cpu] = cfs_rq;
10533 	tg->se[cpu] = se;
10534 
10535 	/* se could be NULL for root_task_group */
10536 	if (!se)
10537 		return;
10538 
10539 	if (!parent) {
10540 		se->cfs_rq = &rq->cfs;
10541 		se->depth = 0;
10542 	} else {
10543 		se->cfs_rq = parent->my_q;
10544 		se->depth = parent->depth + 1;
10545 	}
10546 
10547 	se->my_q = cfs_rq;
10548 	/* guarantee group entities always have weight */
10549 	update_load_set(&se->load, NICE_0_LOAD);
10550 	se->parent = parent;
10551 }
10552 
10553 static DEFINE_MUTEX(shares_mutex);
10554 
10555 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10556 {
10557 	int i;
10558 
10559 	/*
10560 	 * We can't change the weight of the root cgroup.
10561 	 */
10562 	if (!tg->se[0])
10563 		return -EINVAL;
10564 
10565 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10566 
10567 	mutex_lock(&shares_mutex);
10568 	if (tg->shares == shares)
10569 		goto done;
10570 
10571 	tg->shares = shares;
10572 	for_each_possible_cpu(i) {
10573 		struct rq *rq = cpu_rq(i);
10574 		struct sched_entity *se = tg->se[i];
10575 		struct rq_flags rf;
10576 
10577 		/* Propagate contribution to hierarchy */
10578 		rq_lock_irqsave(rq, &rf);
10579 		update_rq_clock(rq);
10580 		for_each_sched_entity(se) {
10581 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10582 			update_cfs_group(se);
10583 		}
10584 		rq_unlock_irqrestore(rq, &rf);
10585 	}
10586 
10587 done:
10588 	mutex_unlock(&shares_mutex);
10589 	return 0;
10590 }
10591 #else /* CONFIG_FAIR_GROUP_SCHED */
10592 
10593 void free_fair_sched_group(struct task_group *tg) { }
10594 
10595 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10596 {
10597 	return 1;
10598 }
10599 
10600 void online_fair_sched_group(struct task_group *tg) { }
10601 
10602 void unregister_fair_sched_group(struct task_group *tg) { }
10603 
10604 #endif /* CONFIG_FAIR_GROUP_SCHED */
10605 
10606 
10607 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10608 {
10609 	struct sched_entity *se = &task->se;
10610 	unsigned int rr_interval = 0;
10611 
10612 	/*
10613 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10614 	 * idle runqueue:
10615 	 */
10616 	if (rq->cfs.load.weight)
10617 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10618 
10619 	return rr_interval;
10620 }
10621 
10622 /*
10623  * All the scheduling class methods:
10624  */
10625 const struct sched_class fair_sched_class = {
10626 	.next			= &idle_sched_class,
10627 	.enqueue_task		= enqueue_task_fair,
10628 	.dequeue_task		= dequeue_task_fair,
10629 	.yield_task		= yield_task_fair,
10630 	.yield_to_task		= yield_to_task_fair,
10631 
10632 	.check_preempt_curr	= check_preempt_wakeup,
10633 
10634 	.pick_next_task		= pick_next_task_fair,
10635 	.put_prev_task		= put_prev_task_fair,
10636 
10637 #ifdef CONFIG_SMP
10638 	.select_task_rq		= select_task_rq_fair,
10639 	.migrate_task_rq	= migrate_task_rq_fair,
10640 
10641 	.rq_online		= rq_online_fair,
10642 	.rq_offline		= rq_offline_fair,
10643 
10644 	.task_dead		= task_dead_fair,
10645 	.set_cpus_allowed	= set_cpus_allowed_common,
10646 #endif
10647 
10648 	.set_curr_task          = set_curr_task_fair,
10649 	.task_tick		= task_tick_fair,
10650 	.task_fork		= task_fork_fair,
10651 
10652 	.prio_changed		= prio_changed_fair,
10653 	.switched_from		= switched_from_fair,
10654 	.switched_to		= switched_to_fair,
10655 
10656 	.get_rr_interval	= get_rr_interval_fair,
10657 
10658 	.update_curr		= update_curr_fair,
10659 
10660 #ifdef CONFIG_FAIR_GROUP_SCHED
10661 	.task_change_group	= task_change_group_fair,
10662 #endif
10663 };
10664 
10665 #ifdef CONFIG_SCHED_DEBUG
10666 void print_cfs_stats(struct seq_file *m, int cpu)
10667 {
10668 	struct cfs_rq *cfs_rq, *pos;
10669 
10670 	rcu_read_lock();
10671 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10672 		print_cfs_rq(m, cpu, cfs_rq);
10673 	rcu_read_unlock();
10674 }
10675 
10676 #ifdef CONFIG_NUMA_BALANCING
10677 void show_numa_stats(struct task_struct *p, struct seq_file *m)
10678 {
10679 	int node;
10680 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10681 
10682 	for_each_online_node(node) {
10683 		if (p->numa_faults) {
10684 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10685 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10686 		}
10687 		if (p->numa_group) {
10688 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10689 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10690 		}
10691 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10692 	}
10693 }
10694 #endif /* CONFIG_NUMA_BALANCING */
10695 #endif /* CONFIG_SCHED_DEBUG */
10696 
10697 __init void init_sched_fair_class(void)
10698 {
10699 #ifdef CONFIG_SMP
10700 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10701 
10702 #ifdef CONFIG_NO_HZ_COMMON
10703 	nohz.next_balance = jiffies;
10704 	nohz.next_blocked = jiffies;
10705 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10706 #endif
10707 #endif /* SMP */
10708 
10709 }
10710