1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 #include <trace/events/sched.h> 26 27 /* 28 * Targeted preemption latency for CPU-bound tasks: 29 * 30 * NOTE: this latency value is not the same as the concept of 31 * 'timeslice length' - timeslices in CFS are of variable length 32 * and have no persistent notion like in traditional, time-slice 33 * based scheduling concepts. 34 * 35 * (to see the precise effective timeslice length of your workload, 36 * run vmstat and monitor the context-switches (cs) field) 37 * 38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 39 */ 40 unsigned int sysctl_sched_latency = 6000000ULL; 41 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 42 43 /* 44 * The initial- and re-scaling of tunables is configurable 45 * 46 * Options are: 47 * 48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 51 * 52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 53 */ 54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 55 56 /* 57 * Minimal preemption granularity for CPU-bound tasks: 58 * 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 60 */ 61 unsigned int sysctl_sched_min_granularity = 750000ULL; 62 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 63 64 /* 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 66 */ 67 static unsigned int sched_nr_latency = 8; 68 69 /* 70 * After fork, child runs first. If set to 0 (default) then 71 * parent will (try to) run first. 72 */ 73 unsigned int sysctl_sched_child_runs_first __read_mostly; 74 75 /* 76 * SCHED_OTHER wake-up granularity. 77 * 78 * This option delays the preemption effects of decoupled workloads 79 * and reduces their over-scheduling. Synchronous workloads will still 80 * have immediate wakeup/sleep latencies. 81 * 82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 83 */ 84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 85 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 #ifdef CONFIG_SMP 90 /* 91 * For asym packing, by default the lower numbered CPU has higher priority. 92 */ 93 int __weak arch_asym_cpu_priority(int cpu) 94 { 95 return -cpu; 96 } 97 98 /* 99 * The margin used when comparing utilization with CPU capacity. 100 * 101 * (default: ~20%) 102 */ 103 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 104 105 #endif 106 107 #ifdef CONFIG_CFS_BANDWIDTH 108 /* 109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 110 * each time a cfs_rq requests quota. 111 * 112 * Note: in the case that the slice exceeds the runtime remaining (either due 113 * to consumption or the quota being specified to be smaller than the slice) 114 * we will always only issue the remaining available time. 115 * 116 * (default: 5 msec, units: microseconds) 117 */ 118 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 119 #endif 120 121 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 122 { 123 lw->weight += inc; 124 lw->inv_weight = 0; 125 } 126 127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 128 { 129 lw->weight -= dec; 130 lw->inv_weight = 0; 131 } 132 133 static inline void update_load_set(struct load_weight *lw, unsigned long w) 134 { 135 lw->weight = w; 136 lw->inv_weight = 0; 137 } 138 139 /* 140 * Increase the granularity value when there are more CPUs, 141 * because with more CPUs the 'effective latency' as visible 142 * to users decreases. But the relationship is not linear, 143 * so pick a second-best guess by going with the log2 of the 144 * number of CPUs. 145 * 146 * This idea comes from the SD scheduler of Con Kolivas: 147 */ 148 static unsigned int get_update_sysctl_factor(void) 149 { 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 151 unsigned int factor; 152 153 switch (sysctl_sched_tunable_scaling) { 154 case SCHED_TUNABLESCALING_NONE: 155 factor = 1; 156 break; 157 case SCHED_TUNABLESCALING_LINEAR: 158 factor = cpus; 159 break; 160 case SCHED_TUNABLESCALING_LOG: 161 default: 162 factor = 1 + ilog2(cpus); 163 break; 164 } 165 166 return factor; 167 } 168 169 static void update_sysctl(void) 170 { 171 unsigned int factor = get_update_sysctl_factor(); 172 173 #define SET_SYSCTL(name) \ 174 (sysctl_##name = (factor) * normalized_sysctl_##name) 175 SET_SYSCTL(sched_min_granularity); 176 SET_SYSCTL(sched_latency); 177 SET_SYSCTL(sched_wakeup_granularity); 178 #undef SET_SYSCTL 179 } 180 181 void sched_init_granularity(void) 182 { 183 update_sysctl(); 184 } 185 186 #define WMULT_CONST (~0U) 187 #define WMULT_SHIFT 32 188 189 static void __update_inv_weight(struct load_weight *lw) 190 { 191 unsigned long w; 192 193 if (likely(lw->inv_weight)) 194 return; 195 196 w = scale_load_down(lw->weight); 197 198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 199 lw->inv_weight = 1; 200 else if (unlikely(!w)) 201 lw->inv_weight = WMULT_CONST; 202 else 203 lw->inv_weight = WMULT_CONST / w; 204 } 205 206 /* 207 * delta_exec * weight / lw.weight 208 * OR 209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 210 * 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 212 * we're guaranteed shift stays positive because inv_weight is guaranteed to 213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 214 * 215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 216 * weight/lw.weight <= 1, and therefore our shift will also be positive. 217 */ 218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 219 { 220 u64 fact = scale_load_down(weight); 221 int shift = WMULT_SHIFT; 222 223 __update_inv_weight(lw); 224 225 if (unlikely(fact >> 32)) { 226 while (fact >> 32) { 227 fact >>= 1; 228 shift--; 229 } 230 } 231 232 /* hint to use a 32x32->64 mul */ 233 fact = (u64)(u32)fact * lw->inv_weight; 234 235 while (fact >> 32) { 236 fact >>= 1; 237 shift--; 238 } 239 240 return mul_u64_u32_shr(delta_exec, fact, shift); 241 } 242 243 244 const struct sched_class fair_sched_class; 245 246 /************************************************************** 247 * CFS operations on generic schedulable entities: 248 */ 249 250 #ifdef CONFIG_FAIR_GROUP_SCHED 251 static inline struct task_struct *task_of(struct sched_entity *se) 252 { 253 SCHED_WARN_ON(!entity_is_task(se)); 254 return container_of(se, struct task_struct, se); 255 } 256 257 /* Walk up scheduling entities hierarchy */ 258 #define for_each_sched_entity(se) \ 259 for (; se; se = se->parent) 260 261 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 262 { 263 return p->se.cfs_rq; 264 } 265 266 /* runqueue on which this entity is (to be) queued */ 267 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 268 { 269 return se->cfs_rq; 270 } 271 272 /* runqueue "owned" by this group */ 273 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 274 { 275 return grp->my_q; 276 } 277 278 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 279 { 280 if (!path) 281 return; 282 283 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg)) 284 autogroup_path(cfs_rq->tg, path, len); 285 else if (cfs_rq && cfs_rq->tg->css.cgroup) 286 cgroup_path(cfs_rq->tg->css.cgroup, path, len); 287 else 288 strlcpy(path, "(null)", len); 289 } 290 291 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 292 { 293 struct rq *rq = rq_of(cfs_rq); 294 int cpu = cpu_of(rq); 295 296 if (cfs_rq->on_list) 297 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 298 299 cfs_rq->on_list = 1; 300 301 /* 302 * Ensure we either appear before our parent (if already 303 * enqueued) or force our parent to appear after us when it is 304 * enqueued. The fact that we always enqueue bottom-up 305 * reduces this to two cases and a special case for the root 306 * cfs_rq. Furthermore, it also means that we will always reset 307 * tmp_alone_branch either when the branch is connected 308 * to a tree or when we reach the top of the tree 309 */ 310 if (cfs_rq->tg->parent && 311 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 312 /* 313 * If parent is already on the list, we add the child 314 * just before. Thanks to circular linked property of 315 * the list, this means to put the child at the tail 316 * of the list that starts by parent. 317 */ 318 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 319 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 320 /* 321 * The branch is now connected to its tree so we can 322 * reset tmp_alone_branch to the beginning of the 323 * list. 324 */ 325 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 326 return true; 327 } 328 329 if (!cfs_rq->tg->parent) { 330 /* 331 * cfs rq without parent should be put 332 * at the tail of the list. 333 */ 334 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 335 &rq->leaf_cfs_rq_list); 336 /* 337 * We have reach the top of a tree so we can reset 338 * tmp_alone_branch to the beginning of the list. 339 */ 340 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 341 return true; 342 } 343 344 /* 345 * The parent has not already been added so we want to 346 * make sure that it will be put after us. 347 * tmp_alone_branch points to the begin of the branch 348 * where we will add parent. 349 */ 350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 351 /* 352 * update tmp_alone_branch to points to the new begin 353 * of the branch 354 */ 355 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 356 return false; 357 } 358 359 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 360 { 361 if (cfs_rq->on_list) { 362 struct rq *rq = rq_of(cfs_rq); 363 364 /* 365 * With cfs_rq being unthrottled/throttled during an enqueue, 366 * it can happen the tmp_alone_branch points the a leaf that 367 * we finally want to del. In this case, tmp_alone_branch moves 368 * to the prev element but it will point to rq->leaf_cfs_rq_list 369 * at the end of the enqueue. 370 */ 371 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 372 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 373 374 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 375 cfs_rq->on_list = 0; 376 } 377 } 378 379 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 380 { 381 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 382 } 383 384 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 385 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 386 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 387 leaf_cfs_rq_list) 388 389 /* Do the two (enqueued) entities belong to the same group ? */ 390 static inline struct cfs_rq * 391 is_same_group(struct sched_entity *se, struct sched_entity *pse) 392 { 393 if (se->cfs_rq == pse->cfs_rq) 394 return se->cfs_rq; 395 396 return NULL; 397 } 398 399 static inline struct sched_entity *parent_entity(struct sched_entity *se) 400 { 401 return se->parent; 402 } 403 404 static void 405 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 406 { 407 int se_depth, pse_depth; 408 409 /* 410 * preemption test can be made between sibling entities who are in the 411 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 412 * both tasks until we find their ancestors who are siblings of common 413 * parent. 414 */ 415 416 /* First walk up until both entities are at same depth */ 417 se_depth = (*se)->depth; 418 pse_depth = (*pse)->depth; 419 420 while (se_depth > pse_depth) { 421 se_depth--; 422 *se = parent_entity(*se); 423 } 424 425 while (pse_depth > se_depth) { 426 pse_depth--; 427 *pse = parent_entity(*pse); 428 } 429 430 while (!is_same_group(*se, *pse)) { 431 *se = parent_entity(*se); 432 *pse = parent_entity(*pse); 433 } 434 } 435 436 #else /* !CONFIG_FAIR_GROUP_SCHED */ 437 438 static inline struct task_struct *task_of(struct sched_entity *se) 439 { 440 return container_of(se, struct task_struct, se); 441 } 442 443 #define for_each_sched_entity(se) \ 444 for (; se; se = NULL) 445 446 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 447 { 448 return &task_rq(p)->cfs; 449 } 450 451 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 452 { 453 struct task_struct *p = task_of(se); 454 struct rq *rq = task_rq(p); 455 456 return &rq->cfs; 457 } 458 459 /* runqueue "owned" by this group */ 460 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 461 { 462 return NULL; 463 } 464 465 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 466 { 467 if (path) 468 strlcpy(path, "(null)", len); 469 } 470 471 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 472 { 473 return true; 474 } 475 476 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 477 { 478 } 479 480 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 481 { 482 } 483 484 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 485 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 486 487 static inline struct sched_entity *parent_entity(struct sched_entity *se) 488 { 489 return NULL; 490 } 491 492 static inline void 493 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 494 { 495 } 496 497 #endif /* CONFIG_FAIR_GROUP_SCHED */ 498 499 static __always_inline 500 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 501 502 /************************************************************** 503 * Scheduling class tree data structure manipulation methods: 504 */ 505 506 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 507 { 508 s64 delta = (s64)(vruntime - max_vruntime); 509 if (delta > 0) 510 max_vruntime = vruntime; 511 512 return max_vruntime; 513 } 514 515 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 516 { 517 s64 delta = (s64)(vruntime - min_vruntime); 518 if (delta < 0) 519 min_vruntime = vruntime; 520 521 return min_vruntime; 522 } 523 524 static inline int entity_before(struct sched_entity *a, 525 struct sched_entity *b) 526 { 527 return (s64)(a->vruntime - b->vruntime) < 0; 528 } 529 530 static void update_min_vruntime(struct cfs_rq *cfs_rq) 531 { 532 struct sched_entity *curr = cfs_rq->curr; 533 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 534 535 u64 vruntime = cfs_rq->min_vruntime; 536 537 if (curr) { 538 if (curr->on_rq) 539 vruntime = curr->vruntime; 540 else 541 curr = NULL; 542 } 543 544 if (leftmost) { /* non-empty tree */ 545 struct sched_entity *se; 546 se = rb_entry(leftmost, struct sched_entity, run_node); 547 548 if (!curr) 549 vruntime = se->vruntime; 550 else 551 vruntime = min_vruntime(vruntime, se->vruntime); 552 } 553 554 /* ensure we never gain time by being placed backwards. */ 555 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 556 #ifndef CONFIG_64BIT 557 smp_wmb(); 558 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 559 #endif 560 } 561 562 /* 563 * Enqueue an entity into the rb-tree: 564 */ 565 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 566 { 567 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 568 struct rb_node *parent = NULL; 569 struct sched_entity *entry; 570 bool leftmost = true; 571 572 /* 573 * Find the right place in the rbtree: 574 */ 575 while (*link) { 576 parent = *link; 577 entry = rb_entry(parent, struct sched_entity, run_node); 578 /* 579 * We dont care about collisions. Nodes with 580 * the same key stay together. 581 */ 582 if (entity_before(se, entry)) { 583 link = &parent->rb_left; 584 } else { 585 link = &parent->rb_right; 586 leftmost = false; 587 } 588 } 589 590 rb_link_node(&se->run_node, parent, link); 591 rb_insert_color_cached(&se->run_node, 592 &cfs_rq->tasks_timeline, leftmost); 593 } 594 595 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 596 { 597 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 598 } 599 600 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 601 { 602 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 603 604 if (!left) 605 return NULL; 606 607 return rb_entry(left, struct sched_entity, run_node); 608 } 609 610 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 611 { 612 struct rb_node *next = rb_next(&se->run_node); 613 614 if (!next) 615 return NULL; 616 617 return rb_entry(next, struct sched_entity, run_node); 618 } 619 620 #ifdef CONFIG_SCHED_DEBUG 621 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 622 { 623 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 624 625 if (!last) 626 return NULL; 627 628 return rb_entry(last, struct sched_entity, run_node); 629 } 630 631 /************************************************************** 632 * Scheduling class statistics methods: 633 */ 634 635 int sched_proc_update_handler(struct ctl_table *table, int write, 636 void __user *buffer, size_t *lenp, 637 loff_t *ppos) 638 { 639 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 640 unsigned int factor = get_update_sysctl_factor(); 641 642 if (ret || !write) 643 return ret; 644 645 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 646 sysctl_sched_min_granularity); 647 648 #define WRT_SYSCTL(name) \ 649 (normalized_sysctl_##name = sysctl_##name / (factor)) 650 WRT_SYSCTL(sched_min_granularity); 651 WRT_SYSCTL(sched_latency); 652 WRT_SYSCTL(sched_wakeup_granularity); 653 #undef WRT_SYSCTL 654 655 return 0; 656 } 657 #endif 658 659 /* 660 * delta /= w 661 */ 662 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 663 { 664 if (unlikely(se->load.weight != NICE_0_LOAD)) 665 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 666 667 return delta; 668 } 669 670 /* 671 * The idea is to set a period in which each task runs once. 672 * 673 * When there are too many tasks (sched_nr_latency) we have to stretch 674 * this period because otherwise the slices get too small. 675 * 676 * p = (nr <= nl) ? l : l*nr/nl 677 */ 678 static u64 __sched_period(unsigned long nr_running) 679 { 680 if (unlikely(nr_running > sched_nr_latency)) 681 return nr_running * sysctl_sched_min_granularity; 682 else 683 return sysctl_sched_latency; 684 } 685 686 /* 687 * We calculate the wall-time slice from the period by taking a part 688 * proportional to the weight. 689 * 690 * s = p*P[w/rw] 691 */ 692 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 693 { 694 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 695 696 for_each_sched_entity(se) { 697 struct load_weight *load; 698 struct load_weight lw; 699 700 cfs_rq = cfs_rq_of(se); 701 load = &cfs_rq->load; 702 703 if (unlikely(!se->on_rq)) { 704 lw = cfs_rq->load; 705 706 update_load_add(&lw, se->load.weight); 707 load = &lw; 708 } 709 slice = __calc_delta(slice, se->load.weight, load); 710 } 711 return slice; 712 } 713 714 /* 715 * We calculate the vruntime slice of a to-be-inserted task. 716 * 717 * vs = s/w 718 */ 719 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 720 { 721 return calc_delta_fair(sched_slice(cfs_rq, se), se); 722 } 723 724 #include "pelt.h" 725 #ifdef CONFIG_SMP 726 727 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 728 static unsigned long task_h_load(struct task_struct *p); 729 static unsigned long capacity_of(int cpu); 730 731 /* Give new sched_entity start runnable values to heavy its load in infant time */ 732 void init_entity_runnable_average(struct sched_entity *se) 733 { 734 struct sched_avg *sa = &se->avg; 735 736 memset(sa, 0, sizeof(*sa)); 737 738 /* 739 * Tasks are initialized with full load to be seen as heavy tasks until 740 * they get a chance to stabilize to their real load level. 741 * Group entities are initialized with zero load to reflect the fact that 742 * nothing has been attached to the task group yet. 743 */ 744 if (entity_is_task(se)) 745 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight); 746 747 se->runnable_weight = se->load.weight; 748 749 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 750 } 751 752 static void attach_entity_cfs_rq(struct sched_entity *se); 753 754 /* 755 * With new tasks being created, their initial util_avgs are extrapolated 756 * based on the cfs_rq's current util_avg: 757 * 758 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 759 * 760 * However, in many cases, the above util_avg does not give a desired 761 * value. Moreover, the sum of the util_avgs may be divergent, such 762 * as when the series is a harmonic series. 763 * 764 * To solve this problem, we also cap the util_avg of successive tasks to 765 * only 1/2 of the left utilization budget: 766 * 767 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 768 * 769 * where n denotes the nth task and cpu_scale the CPU capacity. 770 * 771 * For example, for a CPU with 1024 of capacity, a simplest series from 772 * the beginning would be like: 773 * 774 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 775 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 776 * 777 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 778 * if util_avg > util_avg_cap. 779 */ 780 void post_init_entity_util_avg(struct task_struct *p) 781 { 782 struct sched_entity *se = &p->se; 783 struct cfs_rq *cfs_rq = cfs_rq_of(se); 784 struct sched_avg *sa = &se->avg; 785 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 786 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 787 788 if (cap > 0) { 789 if (cfs_rq->avg.util_avg != 0) { 790 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 791 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 792 793 if (sa->util_avg > cap) 794 sa->util_avg = cap; 795 } else { 796 sa->util_avg = cap; 797 } 798 } 799 800 if (p->sched_class != &fair_sched_class) { 801 /* 802 * For !fair tasks do: 803 * 804 update_cfs_rq_load_avg(now, cfs_rq); 805 attach_entity_load_avg(cfs_rq, se, 0); 806 switched_from_fair(rq, p); 807 * 808 * such that the next switched_to_fair() has the 809 * expected state. 810 */ 811 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 812 return; 813 } 814 815 attach_entity_cfs_rq(se); 816 } 817 818 #else /* !CONFIG_SMP */ 819 void init_entity_runnable_average(struct sched_entity *se) 820 { 821 } 822 void post_init_entity_util_avg(struct task_struct *p) 823 { 824 } 825 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 826 { 827 } 828 #endif /* CONFIG_SMP */ 829 830 /* 831 * Update the current task's runtime statistics. 832 */ 833 static void update_curr(struct cfs_rq *cfs_rq) 834 { 835 struct sched_entity *curr = cfs_rq->curr; 836 u64 now = rq_clock_task(rq_of(cfs_rq)); 837 u64 delta_exec; 838 839 if (unlikely(!curr)) 840 return; 841 842 delta_exec = now - curr->exec_start; 843 if (unlikely((s64)delta_exec <= 0)) 844 return; 845 846 curr->exec_start = now; 847 848 schedstat_set(curr->statistics.exec_max, 849 max(delta_exec, curr->statistics.exec_max)); 850 851 curr->sum_exec_runtime += delta_exec; 852 schedstat_add(cfs_rq->exec_clock, delta_exec); 853 854 curr->vruntime += calc_delta_fair(delta_exec, curr); 855 update_min_vruntime(cfs_rq); 856 857 if (entity_is_task(curr)) { 858 struct task_struct *curtask = task_of(curr); 859 860 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 861 cgroup_account_cputime(curtask, delta_exec); 862 account_group_exec_runtime(curtask, delta_exec); 863 } 864 865 account_cfs_rq_runtime(cfs_rq, delta_exec); 866 } 867 868 static void update_curr_fair(struct rq *rq) 869 { 870 update_curr(cfs_rq_of(&rq->curr->se)); 871 } 872 873 static inline void 874 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 875 { 876 u64 wait_start, prev_wait_start; 877 878 if (!schedstat_enabled()) 879 return; 880 881 wait_start = rq_clock(rq_of(cfs_rq)); 882 prev_wait_start = schedstat_val(se->statistics.wait_start); 883 884 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 885 likely(wait_start > prev_wait_start)) 886 wait_start -= prev_wait_start; 887 888 __schedstat_set(se->statistics.wait_start, wait_start); 889 } 890 891 static inline void 892 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 893 { 894 struct task_struct *p; 895 u64 delta; 896 897 if (!schedstat_enabled()) 898 return; 899 900 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 901 902 if (entity_is_task(se)) { 903 p = task_of(se); 904 if (task_on_rq_migrating(p)) { 905 /* 906 * Preserve migrating task's wait time so wait_start 907 * time stamp can be adjusted to accumulate wait time 908 * prior to migration. 909 */ 910 __schedstat_set(se->statistics.wait_start, delta); 911 return; 912 } 913 trace_sched_stat_wait(p, delta); 914 } 915 916 __schedstat_set(se->statistics.wait_max, 917 max(schedstat_val(se->statistics.wait_max), delta)); 918 __schedstat_inc(se->statistics.wait_count); 919 __schedstat_add(se->statistics.wait_sum, delta); 920 __schedstat_set(se->statistics.wait_start, 0); 921 } 922 923 static inline void 924 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 925 { 926 struct task_struct *tsk = NULL; 927 u64 sleep_start, block_start; 928 929 if (!schedstat_enabled()) 930 return; 931 932 sleep_start = schedstat_val(se->statistics.sleep_start); 933 block_start = schedstat_val(se->statistics.block_start); 934 935 if (entity_is_task(se)) 936 tsk = task_of(se); 937 938 if (sleep_start) { 939 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 940 941 if ((s64)delta < 0) 942 delta = 0; 943 944 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 945 __schedstat_set(se->statistics.sleep_max, delta); 946 947 __schedstat_set(se->statistics.sleep_start, 0); 948 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 949 950 if (tsk) { 951 account_scheduler_latency(tsk, delta >> 10, 1); 952 trace_sched_stat_sleep(tsk, delta); 953 } 954 } 955 if (block_start) { 956 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 957 958 if ((s64)delta < 0) 959 delta = 0; 960 961 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 962 __schedstat_set(se->statistics.block_max, delta); 963 964 __schedstat_set(se->statistics.block_start, 0); 965 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 966 967 if (tsk) { 968 if (tsk->in_iowait) { 969 __schedstat_add(se->statistics.iowait_sum, delta); 970 __schedstat_inc(se->statistics.iowait_count); 971 trace_sched_stat_iowait(tsk, delta); 972 } 973 974 trace_sched_stat_blocked(tsk, delta); 975 976 /* 977 * Blocking time is in units of nanosecs, so shift by 978 * 20 to get a milliseconds-range estimation of the 979 * amount of time that the task spent sleeping: 980 */ 981 if (unlikely(prof_on == SLEEP_PROFILING)) { 982 profile_hits(SLEEP_PROFILING, 983 (void *)get_wchan(tsk), 984 delta >> 20); 985 } 986 account_scheduler_latency(tsk, delta >> 10, 0); 987 } 988 } 989 } 990 991 /* 992 * Task is being enqueued - update stats: 993 */ 994 static inline void 995 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 996 { 997 if (!schedstat_enabled()) 998 return; 999 1000 /* 1001 * Are we enqueueing a waiting task? (for current tasks 1002 * a dequeue/enqueue event is a NOP) 1003 */ 1004 if (se != cfs_rq->curr) 1005 update_stats_wait_start(cfs_rq, se); 1006 1007 if (flags & ENQUEUE_WAKEUP) 1008 update_stats_enqueue_sleeper(cfs_rq, se); 1009 } 1010 1011 static inline void 1012 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1013 { 1014 1015 if (!schedstat_enabled()) 1016 return; 1017 1018 /* 1019 * Mark the end of the wait period if dequeueing a 1020 * waiting task: 1021 */ 1022 if (se != cfs_rq->curr) 1023 update_stats_wait_end(cfs_rq, se); 1024 1025 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1026 struct task_struct *tsk = task_of(se); 1027 1028 if (tsk->state & TASK_INTERRUPTIBLE) 1029 __schedstat_set(se->statistics.sleep_start, 1030 rq_clock(rq_of(cfs_rq))); 1031 if (tsk->state & TASK_UNINTERRUPTIBLE) 1032 __schedstat_set(se->statistics.block_start, 1033 rq_clock(rq_of(cfs_rq))); 1034 } 1035 } 1036 1037 /* 1038 * We are picking a new current task - update its stats: 1039 */ 1040 static inline void 1041 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1042 { 1043 /* 1044 * We are starting a new run period: 1045 */ 1046 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1047 } 1048 1049 /************************************************** 1050 * Scheduling class queueing methods: 1051 */ 1052 1053 #ifdef CONFIG_NUMA_BALANCING 1054 /* 1055 * Approximate time to scan a full NUMA task in ms. The task scan period is 1056 * calculated based on the tasks virtual memory size and 1057 * numa_balancing_scan_size. 1058 */ 1059 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1060 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1061 1062 /* Portion of address space to scan in MB */ 1063 unsigned int sysctl_numa_balancing_scan_size = 256; 1064 1065 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1066 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1067 1068 struct numa_group { 1069 refcount_t refcount; 1070 1071 spinlock_t lock; /* nr_tasks, tasks */ 1072 int nr_tasks; 1073 pid_t gid; 1074 int active_nodes; 1075 1076 struct rcu_head rcu; 1077 unsigned long total_faults; 1078 unsigned long max_faults_cpu; 1079 /* 1080 * Faults_cpu is used to decide whether memory should move 1081 * towards the CPU. As a consequence, these stats are weighted 1082 * more by CPU use than by memory faults. 1083 */ 1084 unsigned long *faults_cpu; 1085 unsigned long faults[0]; 1086 }; 1087 1088 /* 1089 * For functions that can be called in multiple contexts that permit reading 1090 * ->numa_group (see struct task_struct for locking rules). 1091 */ 1092 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1093 { 1094 return rcu_dereference_check(p->numa_group, p == current || 1095 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu))); 1096 } 1097 1098 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1099 { 1100 return rcu_dereference_protected(p->numa_group, p == current); 1101 } 1102 1103 static inline unsigned long group_faults_priv(struct numa_group *ng); 1104 static inline unsigned long group_faults_shared(struct numa_group *ng); 1105 1106 static unsigned int task_nr_scan_windows(struct task_struct *p) 1107 { 1108 unsigned long rss = 0; 1109 unsigned long nr_scan_pages; 1110 1111 /* 1112 * Calculations based on RSS as non-present and empty pages are skipped 1113 * by the PTE scanner and NUMA hinting faults should be trapped based 1114 * on resident pages 1115 */ 1116 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1117 rss = get_mm_rss(p->mm); 1118 if (!rss) 1119 rss = nr_scan_pages; 1120 1121 rss = round_up(rss, nr_scan_pages); 1122 return rss / nr_scan_pages; 1123 } 1124 1125 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1126 #define MAX_SCAN_WINDOW 2560 1127 1128 static unsigned int task_scan_min(struct task_struct *p) 1129 { 1130 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1131 unsigned int scan, floor; 1132 unsigned int windows = 1; 1133 1134 if (scan_size < MAX_SCAN_WINDOW) 1135 windows = MAX_SCAN_WINDOW / scan_size; 1136 floor = 1000 / windows; 1137 1138 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1139 return max_t(unsigned int, floor, scan); 1140 } 1141 1142 static unsigned int task_scan_start(struct task_struct *p) 1143 { 1144 unsigned long smin = task_scan_min(p); 1145 unsigned long period = smin; 1146 struct numa_group *ng; 1147 1148 /* Scale the maximum scan period with the amount of shared memory. */ 1149 rcu_read_lock(); 1150 ng = rcu_dereference(p->numa_group); 1151 if (ng) { 1152 unsigned long shared = group_faults_shared(ng); 1153 unsigned long private = group_faults_priv(ng); 1154 1155 period *= refcount_read(&ng->refcount); 1156 period *= shared + 1; 1157 period /= private + shared + 1; 1158 } 1159 rcu_read_unlock(); 1160 1161 return max(smin, period); 1162 } 1163 1164 static unsigned int task_scan_max(struct task_struct *p) 1165 { 1166 unsigned long smin = task_scan_min(p); 1167 unsigned long smax; 1168 struct numa_group *ng; 1169 1170 /* Watch for min being lower than max due to floor calculations */ 1171 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1172 1173 /* Scale the maximum scan period with the amount of shared memory. */ 1174 ng = deref_curr_numa_group(p); 1175 if (ng) { 1176 unsigned long shared = group_faults_shared(ng); 1177 unsigned long private = group_faults_priv(ng); 1178 unsigned long period = smax; 1179 1180 period *= refcount_read(&ng->refcount); 1181 period *= shared + 1; 1182 period /= private + shared + 1; 1183 1184 smax = max(smax, period); 1185 } 1186 1187 return max(smin, smax); 1188 } 1189 1190 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1191 { 1192 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1193 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1194 } 1195 1196 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1197 { 1198 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1199 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1200 } 1201 1202 /* Shared or private faults. */ 1203 #define NR_NUMA_HINT_FAULT_TYPES 2 1204 1205 /* Memory and CPU locality */ 1206 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1207 1208 /* Averaged statistics, and temporary buffers. */ 1209 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1210 1211 pid_t task_numa_group_id(struct task_struct *p) 1212 { 1213 struct numa_group *ng; 1214 pid_t gid = 0; 1215 1216 rcu_read_lock(); 1217 ng = rcu_dereference(p->numa_group); 1218 if (ng) 1219 gid = ng->gid; 1220 rcu_read_unlock(); 1221 1222 return gid; 1223 } 1224 1225 /* 1226 * The averaged statistics, shared & private, memory & CPU, 1227 * occupy the first half of the array. The second half of the 1228 * array is for current counters, which are averaged into the 1229 * first set by task_numa_placement. 1230 */ 1231 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1232 { 1233 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1234 } 1235 1236 static inline unsigned long task_faults(struct task_struct *p, int nid) 1237 { 1238 if (!p->numa_faults) 1239 return 0; 1240 1241 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1242 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1243 } 1244 1245 static inline unsigned long group_faults(struct task_struct *p, int nid) 1246 { 1247 struct numa_group *ng = deref_task_numa_group(p); 1248 1249 if (!ng) 1250 return 0; 1251 1252 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1253 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1254 } 1255 1256 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1257 { 1258 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1259 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1260 } 1261 1262 static inline unsigned long group_faults_priv(struct numa_group *ng) 1263 { 1264 unsigned long faults = 0; 1265 int node; 1266 1267 for_each_online_node(node) { 1268 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1269 } 1270 1271 return faults; 1272 } 1273 1274 static inline unsigned long group_faults_shared(struct numa_group *ng) 1275 { 1276 unsigned long faults = 0; 1277 int node; 1278 1279 for_each_online_node(node) { 1280 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1281 } 1282 1283 return faults; 1284 } 1285 1286 /* 1287 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1288 * considered part of a numa group's pseudo-interleaving set. Migrations 1289 * between these nodes are slowed down, to allow things to settle down. 1290 */ 1291 #define ACTIVE_NODE_FRACTION 3 1292 1293 static bool numa_is_active_node(int nid, struct numa_group *ng) 1294 { 1295 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1296 } 1297 1298 /* Handle placement on systems where not all nodes are directly connected. */ 1299 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1300 int maxdist, bool task) 1301 { 1302 unsigned long score = 0; 1303 int node; 1304 1305 /* 1306 * All nodes are directly connected, and the same distance 1307 * from each other. No need for fancy placement algorithms. 1308 */ 1309 if (sched_numa_topology_type == NUMA_DIRECT) 1310 return 0; 1311 1312 /* 1313 * This code is called for each node, introducing N^2 complexity, 1314 * which should be ok given the number of nodes rarely exceeds 8. 1315 */ 1316 for_each_online_node(node) { 1317 unsigned long faults; 1318 int dist = node_distance(nid, node); 1319 1320 /* 1321 * The furthest away nodes in the system are not interesting 1322 * for placement; nid was already counted. 1323 */ 1324 if (dist == sched_max_numa_distance || node == nid) 1325 continue; 1326 1327 /* 1328 * On systems with a backplane NUMA topology, compare groups 1329 * of nodes, and move tasks towards the group with the most 1330 * memory accesses. When comparing two nodes at distance 1331 * "hoplimit", only nodes closer by than "hoplimit" are part 1332 * of each group. Skip other nodes. 1333 */ 1334 if (sched_numa_topology_type == NUMA_BACKPLANE && 1335 dist >= maxdist) 1336 continue; 1337 1338 /* Add up the faults from nearby nodes. */ 1339 if (task) 1340 faults = task_faults(p, node); 1341 else 1342 faults = group_faults(p, node); 1343 1344 /* 1345 * On systems with a glueless mesh NUMA topology, there are 1346 * no fixed "groups of nodes". Instead, nodes that are not 1347 * directly connected bounce traffic through intermediate 1348 * nodes; a numa_group can occupy any set of nodes. 1349 * The further away a node is, the less the faults count. 1350 * This seems to result in good task placement. 1351 */ 1352 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1353 faults *= (sched_max_numa_distance - dist); 1354 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1355 } 1356 1357 score += faults; 1358 } 1359 1360 return score; 1361 } 1362 1363 /* 1364 * These return the fraction of accesses done by a particular task, or 1365 * task group, on a particular numa node. The group weight is given a 1366 * larger multiplier, in order to group tasks together that are almost 1367 * evenly spread out between numa nodes. 1368 */ 1369 static inline unsigned long task_weight(struct task_struct *p, int nid, 1370 int dist) 1371 { 1372 unsigned long faults, total_faults; 1373 1374 if (!p->numa_faults) 1375 return 0; 1376 1377 total_faults = p->total_numa_faults; 1378 1379 if (!total_faults) 1380 return 0; 1381 1382 faults = task_faults(p, nid); 1383 faults += score_nearby_nodes(p, nid, dist, true); 1384 1385 return 1000 * faults / total_faults; 1386 } 1387 1388 static inline unsigned long group_weight(struct task_struct *p, int nid, 1389 int dist) 1390 { 1391 struct numa_group *ng = deref_task_numa_group(p); 1392 unsigned long faults, total_faults; 1393 1394 if (!ng) 1395 return 0; 1396 1397 total_faults = ng->total_faults; 1398 1399 if (!total_faults) 1400 return 0; 1401 1402 faults = group_faults(p, nid); 1403 faults += score_nearby_nodes(p, nid, dist, false); 1404 1405 return 1000 * faults / total_faults; 1406 } 1407 1408 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1409 int src_nid, int dst_cpu) 1410 { 1411 struct numa_group *ng = deref_curr_numa_group(p); 1412 int dst_nid = cpu_to_node(dst_cpu); 1413 int last_cpupid, this_cpupid; 1414 1415 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1416 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1417 1418 /* 1419 * Allow first faults or private faults to migrate immediately early in 1420 * the lifetime of a task. The magic number 4 is based on waiting for 1421 * two full passes of the "multi-stage node selection" test that is 1422 * executed below. 1423 */ 1424 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1425 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1426 return true; 1427 1428 /* 1429 * Multi-stage node selection is used in conjunction with a periodic 1430 * migration fault to build a temporal task<->page relation. By using 1431 * a two-stage filter we remove short/unlikely relations. 1432 * 1433 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1434 * a task's usage of a particular page (n_p) per total usage of this 1435 * page (n_t) (in a given time-span) to a probability. 1436 * 1437 * Our periodic faults will sample this probability and getting the 1438 * same result twice in a row, given these samples are fully 1439 * independent, is then given by P(n)^2, provided our sample period 1440 * is sufficiently short compared to the usage pattern. 1441 * 1442 * This quadric squishes small probabilities, making it less likely we 1443 * act on an unlikely task<->page relation. 1444 */ 1445 if (!cpupid_pid_unset(last_cpupid) && 1446 cpupid_to_nid(last_cpupid) != dst_nid) 1447 return false; 1448 1449 /* Always allow migrate on private faults */ 1450 if (cpupid_match_pid(p, last_cpupid)) 1451 return true; 1452 1453 /* A shared fault, but p->numa_group has not been set up yet. */ 1454 if (!ng) 1455 return true; 1456 1457 /* 1458 * Destination node is much more heavily used than the source 1459 * node? Allow migration. 1460 */ 1461 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1462 ACTIVE_NODE_FRACTION) 1463 return true; 1464 1465 /* 1466 * Distribute memory according to CPU & memory use on each node, 1467 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1468 * 1469 * faults_cpu(dst) 3 faults_cpu(src) 1470 * --------------- * - > --------------- 1471 * faults_mem(dst) 4 faults_mem(src) 1472 */ 1473 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1474 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1475 } 1476 1477 static unsigned long cpu_runnable_load(struct rq *rq); 1478 1479 /* Cached statistics for all CPUs within a node */ 1480 struct numa_stats { 1481 unsigned long load; 1482 1483 /* Total compute capacity of CPUs on a node */ 1484 unsigned long compute_capacity; 1485 }; 1486 1487 /* 1488 * XXX borrowed from update_sg_lb_stats 1489 */ 1490 static void update_numa_stats(struct numa_stats *ns, int nid) 1491 { 1492 int cpu; 1493 1494 memset(ns, 0, sizeof(*ns)); 1495 for_each_cpu(cpu, cpumask_of_node(nid)) { 1496 struct rq *rq = cpu_rq(cpu); 1497 1498 ns->load += cpu_runnable_load(rq); 1499 ns->compute_capacity += capacity_of(cpu); 1500 } 1501 1502 } 1503 1504 struct task_numa_env { 1505 struct task_struct *p; 1506 1507 int src_cpu, src_nid; 1508 int dst_cpu, dst_nid; 1509 1510 struct numa_stats src_stats, dst_stats; 1511 1512 int imbalance_pct; 1513 int dist; 1514 1515 struct task_struct *best_task; 1516 long best_imp; 1517 int best_cpu; 1518 }; 1519 1520 static void task_numa_assign(struct task_numa_env *env, 1521 struct task_struct *p, long imp) 1522 { 1523 struct rq *rq = cpu_rq(env->dst_cpu); 1524 1525 /* Bail out if run-queue part of active NUMA balance. */ 1526 if (xchg(&rq->numa_migrate_on, 1)) 1527 return; 1528 1529 /* 1530 * Clear previous best_cpu/rq numa-migrate flag, since task now 1531 * found a better CPU to move/swap. 1532 */ 1533 if (env->best_cpu != -1) { 1534 rq = cpu_rq(env->best_cpu); 1535 WRITE_ONCE(rq->numa_migrate_on, 0); 1536 } 1537 1538 if (env->best_task) 1539 put_task_struct(env->best_task); 1540 if (p) 1541 get_task_struct(p); 1542 1543 env->best_task = p; 1544 env->best_imp = imp; 1545 env->best_cpu = env->dst_cpu; 1546 } 1547 1548 static bool load_too_imbalanced(long src_load, long dst_load, 1549 struct task_numa_env *env) 1550 { 1551 long imb, old_imb; 1552 long orig_src_load, orig_dst_load; 1553 long src_capacity, dst_capacity; 1554 1555 /* 1556 * The load is corrected for the CPU capacity available on each node. 1557 * 1558 * src_load dst_load 1559 * ------------ vs --------- 1560 * src_capacity dst_capacity 1561 */ 1562 src_capacity = env->src_stats.compute_capacity; 1563 dst_capacity = env->dst_stats.compute_capacity; 1564 1565 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1566 1567 orig_src_load = env->src_stats.load; 1568 orig_dst_load = env->dst_stats.load; 1569 1570 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1571 1572 /* Would this change make things worse? */ 1573 return (imb > old_imb); 1574 } 1575 1576 /* 1577 * Maximum NUMA importance can be 1998 (2*999); 1578 * SMALLIMP @ 30 would be close to 1998/64. 1579 * Used to deter task migration. 1580 */ 1581 #define SMALLIMP 30 1582 1583 /* 1584 * This checks if the overall compute and NUMA accesses of the system would 1585 * be improved if the source tasks was migrated to the target dst_cpu taking 1586 * into account that it might be best if task running on the dst_cpu should 1587 * be exchanged with the source task 1588 */ 1589 static void task_numa_compare(struct task_numa_env *env, 1590 long taskimp, long groupimp, bool maymove) 1591 { 1592 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1593 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1594 long imp = p_ng ? groupimp : taskimp; 1595 struct task_struct *cur; 1596 long src_load, dst_load; 1597 int dist = env->dist; 1598 long moveimp = imp; 1599 long load; 1600 1601 if (READ_ONCE(dst_rq->numa_migrate_on)) 1602 return; 1603 1604 rcu_read_lock(); 1605 cur = rcu_dereference(dst_rq->curr); 1606 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1607 cur = NULL; 1608 1609 /* 1610 * Because we have preemption enabled we can get migrated around and 1611 * end try selecting ourselves (current == env->p) as a swap candidate. 1612 */ 1613 if (cur == env->p) 1614 goto unlock; 1615 1616 if (!cur) { 1617 if (maymove && moveimp >= env->best_imp) 1618 goto assign; 1619 else 1620 goto unlock; 1621 } 1622 1623 /* 1624 * "imp" is the fault differential for the source task between the 1625 * source and destination node. Calculate the total differential for 1626 * the source task and potential destination task. The more negative 1627 * the value is, the more remote accesses that would be expected to 1628 * be incurred if the tasks were swapped. 1629 */ 1630 /* Skip this swap candidate if cannot move to the source cpu */ 1631 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1632 goto unlock; 1633 1634 /* 1635 * If dst and source tasks are in the same NUMA group, or not 1636 * in any group then look only at task weights. 1637 */ 1638 cur_ng = rcu_dereference(cur->numa_group); 1639 if (cur_ng == p_ng) { 1640 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1641 task_weight(cur, env->dst_nid, dist); 1642 /* 1643 * Add some hysteresis to prevent swapping the 1644 * tasks within a group over tiny differences. 1645 */ 1646 if (cur_ng) 1647 imp -= imp / 16; 1648 } else { 1649 /* 1650 * Compare the group weights. If a task is all by itself 1651 * (not part of a group), use the task weight instead. 1652 */ 1653 if (cur_ng && p_ng) 1654 imp += group_weight(cur, env->src_nid, dist) - 1655 group_weight(cur, env->dst_nid, dist); 1656 else 1657 imp += task_weight(cur, env->src_nid, dist) - 1658 task_weight(cur, env->dst_nid, dist); 1659 } 1660 1661 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1662 imp = moveimp; 1663 cur = NULL; 1664 goto assign; 1665 } 1666 1667 /* 1668 * If the NUMA importance is less than SMALLIMP, 1669 * task migration might only result in ping pong 1670 * of tasks and also hurt performance due to cache 1671 * misses. 1672 */ 1673 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1674 goto unlock; 1675 1676 /* 1677 * In the overloaded case, try and keep the load balanced. 1678 */ 1679 load = task_h_load(env->p) - task_h_load(cur); 1680 if (!load) 1681 goto assign; 1682 1683 dst_load = env->dst_stats.load + load; 1684 src_load = env->src_stats.load - load; 1685 1686 if (load_too_imbalanced(src_load, dst_load, env)) 1687 goto unlock; 1688 1689 assign: 1690 /* 1691 * One idle CPU per node is evaluated for a task numa move. 1692 * Call select_idle_sibling to maybe find a better one. 1693 */ 1694 if (!cur) { 1695 /* 1696 * select_idle_siblings() uses an per-CPU cpumask that 1697 * can be used from IRQ context. 1698 */ 1699 local_irq_disable(); 1700 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1701 env->dst_cpu); 1702 local_irq_enable(); 1703 } 1704 1705 task_numa_assign(env, cur, imp); 1706 unlock: 1707 rcu_read_unlock(); 1708 } 1709 1710 static void task_numa_find_cpu(struct task_numa_env *env, 1711 long taskimp, long groupimp) 1712 { 1713 long src_load, dst_load, load; 1714 bool maymove = false; 1715 int cpu; 1716 1717 load = task_h_load(env->p); 1718 dst_load = env->dst_stats.load + load; 1719 src_load = env->src_stats.load - load; 1720 1721 /* 1722 * If the improvement from just moving env->p direction is better 1723 * than swapping tasks around, check if a move is possible. 1724 */ 1725 maymove = !load_too_imbalanced(src_load, dst_load, env); 1726 1727 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1728 /* Skip this CPU if the source task cannot migrate */ 1729 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1730 continue; 1731 1732 env->dst_cpu = cpu; 1733 task_numa_compare(env, taskimp, groupimp, maymove); 1734 } 1735 } 1736 1737 static int task_numa_migrate(struct task_struct *p) 1738 { 1739 struct task_numa_env env = { 1740 .p = p, 1741 1742 .src_cpu = task_cpu(p), 1743 .src_nid = task_node(p), 1744 1745 .imbalance_pct = 112, 1746 1747 .best_task = NULL, 1748 .best_imp = 0, 1749 .best_cpu = -1, 1750 }; 1751 unsigned long taskweight, groupweight; 1752 struct sched_domain *sd; 1753 long taskimp, groupimp; 1754 struct numa_group *ng; 1755 struct rq *best_rq; 1756 int nid, ret, dist; 1757 1758 /* 1759 * Pick the lowest SD_NUMA domain, as that would have the smallest 1760 * imbalance and would be the first to start moving tasks about. 1761 * 1762 * And we want to avoid any moving of tasks about, as that would create 1763 * random movement of tasks -- counter the numa conditions we're trying 1764 * to satisfy here. 1765 */ 1766 rcu_read_lock(); 1767 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1768 if (sd) 1769 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1770 rcu_read_unlock(); 1771 1772 /* 1773 * Cpusets can break the scheduler domain tree into smaller 1774 * balance domains, some of which do not cross NUMA boundaries. 1775 * Tasks that are "trapped" in such domains cannot be migrated 1776 * elsewhere, so there is no point in (re)trying. 1777 */ 1778 if (unlikely(!sd)) { 1779 sched_setnuma(p, task_node(p)); 1780 return -EINVAL; 1781 } 1782 1783 env.dst_nid = p->numa_preferred_nid; 1784 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1785 taskweight = task_weight(p, env.src_nid, dist); 1786 groupweight = group_weight(p, env.src_nid, dist); 1787 update_numa_stats(&env.src_stats, env.src_nid); 1788 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1789 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1790 update_numa_stats(&env.dst_stats, env.dst_nid); 1791 1792 /* Try to find a spot on the preferred nid. */ 1793 task_numa_find_cpu(&env, taskimp, groupimp); 1794 1795 /* 1796 * Look at other nodes in these cases: 1797 * - there is no space available on the preferred_nid 1798 * - the task is part of a numa_group that is interleaved across 1799 * multiple NUMA nodes; in order to better consolidate the group, 1800 * we need to check other locations. 1801 */ 1802 ng = deref_curr_numa_group(p); 1803 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 1804 for_each_online_node(nid) { 1805 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1806 continue; 1807 1808 dist = node_distance(env.src_nid, env.dst_nid); 1809 if (sched_numa_topology_type == NUMA_BACKPLANE && 1810 dist != env.dist) { 1811 taskweight = task_weight(p, env.src_nid, dist); 1812 groupweight = group_weight(p, env.src_nid, dist); 1813 } 1814 1815 /* Only consider nodes where both task and groups benefit */ 1816 taskimp = task_weight(p, nid, dist) - taskweight; 1817 groupimp = group_weight(p, nid, dist) - groupweight; 1818 if (taskimp < 0 && groupimp < 0) 1819 continue; 1820 1821 env.dist = dist; 1822 env.dst_nid = nid; 1823 update_numa_stats(&env.dst_stats, env.dst_nid); 1824 task_numa_find_cpu(&env, taskimp, groupimp); 1825 } 1826 } 1827 1828 /* 1829 * If the task is part of a workload that spans multiple NUMA nodes, 1830 * and is migrating into one of the workload's active nodes, remember 1831 * this node as the task's preferred numa node, so the workload can 1832 * settle down. 1833 * A task that migrated to a second choice node will be better off 1834 * trying for a better one later. Do not set the preferred node here. 1835 */ 1836 if (ng) { 1837 if (env.best_cpu == -1) 1838 nid = env.src_nid; 1839 else 1840 nid = cpu_to_node(env.best_cpu); 1841 1842 if (nid != p->numa_preferred_nid) 1843 sched_setnuma(p, nid); 1844 } 1845 1846 /* No better CPU than the current one was found. */ 1847 if (env.best_cpu == -1) 1848 return -EAGAIN; 1849 1850 best_rq = cpu_rq(env.best_cpu); 1851 if (env.best_task == NULL) { 1852 ret = migrate_task_to(p, env.best_cpu); 1853 WRITE_ONCE(best_rq->numa_migrate_on, 0); 1854 if (ret != 0) 1855 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1856 return ret; 1857 } 1858 1859 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 1860 WRITE_ONCE(best_rq->numa_migrate_on, 0); 1861 1862 if (ret != 0) 1863 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1864 put_task_struct(env.best_task); 1865 return ret; 1866 } 1867 1868 /* Attempt to migrate a task to a CPU on the preferred node. */ 1869 static void numa_migrate_preferred(struct task_struct *p) 1870 { 1871 unsigned long interval = HZ; 1872 1873 /* This task has no NUMA fault statistics yet */ 1874 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 1875 return; 1876 1877 /* Periodically retry migrating the task to the preferred node */ 1878 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1879 p->numa_migrate_retry = jiffies + interval; 1880 1881 /* Success if task is already running on preferred CPU */ 1882 if (task_node(p) == p->numa_preferred_nid) 1883 return; 1884 1885 /* Otherwise, try migrate to a CPU on the preferred node */ 1886 task_numa_migrate(p); 1887 } 1888 1889 /* 1890 * Find out how many nodes on the workload is actively running on. Do this by 1891 * tracking the nodes from which NUMA hinting faults are triggered. This can 1892 * be different from the set of nodes where the workload's memory is currently 1893 * located. 1894 */ 1895 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1896 { 1897 unsigned long faults, max_faults = 0; 1898 int nid, active_nodes = 0; 1899 1900 for_each_online_node(nid) { 1901 faults = group_faults_cpu(numa_group, nid); 1902 if (faults > max_faults) 1903 max_faults = faults; 1904 } 1905 1906 for_each_online_node(nid) { 1907 faults = group_faults_cpu(numa_group, nid); 1908 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1909 active_nodes++; 1910 } 1911 1912 numa_group->max_faults_cpu = max_faults; 1913 numa_group->active_nodes = active_nodes; 1914 } 1915 1916 /* 1917 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1918 * increments. The more local the fault statistics are, the higher the scan 1919 * period will be for the next scan window. If local/(local+remote) ratio is 1920 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1921 * the scan period will decrease. Aim for 70% local accesses. 1922 */ 1923 #define NUMA_PERIOD_SLOTS 10 1924 #define NUMA_PERIOD_THRESHOLD 7 1925 1926 /* 1927 * Increase the scan period (slow down scanning) if the majority of 1928 * our memory is already on our local node, or if the majority of 1929 * the page accesses are shared with other processes. 1930 * Otherwise, decrease the scan period. 1931 */ 1932 static void update_task_scan_period(struct task_struct *p, 1933 unsigned long shared, unsigned long private) 1934 { 1935 unsigned int period_slot; 1936 int lr_ratio, ps_ratio; 1937 int diff; 1938 1939 unsigned long remote = p->numa_faults_locality[0]; 1940 unsigned long local = p->numa_faults_locality[1]; 1941 1942 /* 1943 * If there were no record hinting faults then either the task is 1944 * completely idle or all activity is areas that are not of interest 1945 * to automatic numa balancing. Related to that, if there were failed 1946 * migration then it implies we are migrating too quickly or the local 1947 * node is overloaded. In either case, scan slower 1948 */ 1949 if (local + shared == 0 || p->numa_faults_locality[2]) { 1950 p->numa_scan_period = min(p->numa_scan_period_max, 1951 p->numa_scan_period << 1); 1952 1953 p->mm->numa_next_scan = jiffies + 1954 msecs_to_jiffies(p->numa_scan_period); 1955 1956 return; 1957 } 1958 1959 /* 1960 * Prepare to scale scan period relative to the current period. 1961 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1962 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1963 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1964 */ 1965 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1966 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1967 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 1968 1969 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 1970 /* 1971 * Most memory accesses are local. There is no need to 1972 * do fast NUMA scanning, since memory is already local. 1973 */ 1974 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 1975 if (!slot) 1976 slot = 1; 1977 diff = slot * period_slot; 1978 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 1979 /* 1980 * Most memory accesses are shared with other tasks. 1981 * There is no point in continuing fast NUMA scanning, 1982 * since other tasks may just move the memory elsewhere. 1983 */ 1984 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 1985 if (!slot) 1986 slot = 1; 1987 diff = slot * period_slot; 1988 } else { 1989 /* 1990 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 1991 * yet they are not on the local NUMA node. Speed up 1992 * NUMA scanning to get the memory moved over. 1993 */ 1994 int ratio = max(lr_ratio, ps_ratio); 1995 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1996 } 1997 1998 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1999 task_scan_min(p), task_scan_max(p)); 2000 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2001 } 2002 2003 /* 2004 * Get the fraction of time the task has been running since the last 2005 * NUMA placement cycle. The scheduler keeps similar statistics, but 2006 * decays those on a 32ms period, which is orders of magnitude off 2007 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2008 * stats only if the task is so new there are no NUMA statistics yet. 2009 */ 2010 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2011 { 2012 u64 runtime, delta, now; 2013 /* Use the start of this time slice to avoid calculations. */ 2014 now = p->se.exec_start; 2015 runtime = p->se.sum_exec_runtime; 2016 2017 if (p->last_task_numa_placement) { 2018 delta = runtime - p->last_sum_exec_runtime; 2019 *period = now - p->last_task_numa_placement; 2020 2021 /* Avoid time going backwards, prevent potential divide error: */ 2022 if (unlikely((s64)*period < 0)) 2023 *period = 0; 2024 } else { 2025 delta = p->se.avg.load_sum; 2026 *period = LOAD_AVG_MAX; 2027 } 2028 2029 p->last_sum_exec_runtime = runtime; 2030 p->last_task_numa_placement = now; 2031 2032 return delta; 2033 } 2034 2035 /* 2036 * Determine the preferred nid for a task in a numa_group. This needs to 2037 * be done in a way that produces consistent results with group_weight, 2038 * otherwise workloads might not converge. 2039 */ 2040 static int preferred_group_nid(struct task_struct *p, int nid) 2041 { 2042 nodemask_t nodes; 2043 int dist; 2044 2045 /* Direct connections between all NUMA nodes. */ 2046 if (sched_numa_topology_type == NUMA_DIRECT) 2047 return nid; 2048 2049 /* 2050 * On a system with glueless mesh NUMA topology, group_weight 2051 * scores nodes according to the number of NUMA hinting faults on 2052 * both the node itself, and on nearby nodes. 2053 */ 2054 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2055 unsigned long score, max_score = 0; 2056 int node, max_node = nid; 2057 2058 dist = sched_max_numa_distance; 2059 2060 for_each_online_node(node) { 2061 score = group_weight(p, node, dist); 2062 if (score > max_score) { 2063 max_score = score; 2064 max_node = node; 2065 } 2066 } 2067 return max_node; 2068 } 2069 2070 /* 2071 * Finding the preferred nid in a system with NUMA backplane 2072 * interconnect topology is more involved. The goal is to locate 2073 * tasks from numa_groups near each other in the system, and 2074 * untangle workloads from different sides of the system. This requires 2075 * searching down the hierarchy of node groups, recursively searching 2076 * inside the highest scoring group of nodes. The nodemask tricks 2077 * keep the complexity of the search down. 2078 */ 2079 nodes = node_online_map; 2080 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2081 unsigned long max_faults = 0; 2082 nodemask_t max_group = NODE_MASK_NONE; 2083 int a, b; 2084 2085 /* Are there nodes at this distance from each other? */ 2086 if (!find_numa_distance(dist)) 2087 continue; 2088 2089 for_each_node_mask(a, nodes) { 2090 unsigned long faults = 0; 2091 nodemask_t this_group; 2092 nodes_clear(this_group); 2093 2094 /* Sum group's NUMA faults; includes a==b case. */ 2095 for_each_node_mask(b, nodes) { 2096 if (node_distance(a, b) < dist) { 2097 faults += group_faults(p, b); 2098 node_set(b, this_group); 2099 node_clear(b, nodes); 2100 } 2101 } 2102 2103 /* Remember the top group. */ 2104 if (faults > max_faults) { 2105 max_faults = faults; 2106 max_group = this_group; 2107 /* 2108 * subtle: at the smallest distance there is 2109 * just one node left in each "group", the 2110 * winner is the preferred nid. 2111 */ 2112 nid = a; 2113 } 2114 } 2115 /* Next round, evaluate the nodes within max_group. */ 2116 if (!max_faults) 2117 break; 2118 nodes = max_group; 2119 } 2120 return nid; 2121 } 2122 2123 static void task_numa_placement(struct task_struct *p) 2124 { 2125 int seq, nid, max_nid = NUMA_NO_NODE; 2126 unsigned long max_faults = 0; 2127 unsigned long fault_types[2] = { 0, 0 }; 2128 unsigned long total_faults; 2129 u64 runtime, period; 2130 spinlock_t *group_lock = NULL; 2131 struct numa_group *ng; 2132 2133 /* 2134 * The p->mm->numa_scan_seq field gets updated without 2135 * exclusive access. Use READ_ONCE() here to ensure 2136 * that the field is read in a single access: 2137 */ 2138 seq = READ_ONCE(p->mm->numa_scan_seq); 2139 if (p->numa_scan_seq == seq) 2140 return; 2141 p->numa_scan_seq = seq; 2142 p->numa_scan_period_max = task_scan_max(p); 2143 2144 total_faults = p->numa_faults_locality[0] + 2145 p->numa_faults_locality[1]; 2146 runtime = numa_get_avg_runtime(p, &period); 2147 2148 /* If the task is part of a group prevent parallel updates to group stats */ 2149 ng = deref_curr_numa_group(p); 2150 if (ng) { 2151 group_lock = &ng->lock; 2152 spin_lock_irq(group_lock); 2153 } 2154 2155 /* Find the node with the highest number of faults */ 2156 for_each_online_node(nid) { 2157 /* Keep track of the offsets in numa_faults array */ 2158 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2159 unsigned long faults = 0, group_faults = 0; 2160 int priv; 2161 2162 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2163 long diff, f_diff, f_weight; 2164 2165 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2166 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2167 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2168 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2169 2170 /* Decay existing window, copy faults since last scan */ 2171 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2172 fault_types[priv] += p->numa_faults[membuf_idx]; 2173 p->numa_faults[membuf_idx] = 0; 2174 2175 /* 2176 * Normalize the faults_from, so all tasks in a group 2177 * count according to CPU use, instead of by the raw 2178 * number of faults. Tasks with little runtime have 2179 * little over-all impact on throughput, and thus their 2180 * faults are less important. 2181 */ 2182 f_weight = div64_u64(runtime << 16, period + 1); 2183 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2184 (total_faults + 1); 2185 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2186 p->numa_faults[cpubuf_idx] = 0; 2187 2188 p->numa_faults[mem_idx] += diff; 2189 p->numa_faults[cpu_idx] += f_diff; 2190 faults += p->numa_faults[mem_idx]; 2191 p->total_numa_faults += diff; 2192 if (ng) { 2193 /* 2194 * safe because we can only change our own group 2195 * 2196 * mem_idx represents the offset for a given 2197 * nid and priv in a specific region because it 2198 * is at the beginning of the numa_faults array. 2199 */ 2200 ng->faults[mem_idx] += diff; 2201 ng->faults_cpu[mem_idx] += f_diff; 2202 ng->total_faults += diff; 2203 group_faults += ng->faults[mem_idx]; 2204 } 2205 } 2206 2207 if (!ng) { 2208 if (faults > max_faults) { 2209 max_faults = faults; 2210 max_nid = nid; 2211 } 2212 } else if (group_faults > max_faults) { 2213 max_faults = group_faults; 2214 max_nid = nid; 2215 } 2216 } 2217 2218 if (ng) { 2219 numa_group_count_active_nodes(ng); 2220 spin_unlock_irq(group_lock); 2221 max_nid = preferred_group_nid(p, max_nid); 2222 } 2223 2224 if (max_faults) { 2225 /* Set the new preferred node */ 2226 if (max_nid != p->numa_preferred_nid) 2227 sched_setnuma(p, max_nid); 2228 } 2229 2230 update_task_scan_period(p, fault_types[0], fault_types[1]); 2231 } 2232 2233 static inline int get_numa_group(struct numa_group *grp) 2234 { 2235 return refcount_inc_not_zero(&grp->refcount); 2236 } 2237 2238 static inline void put_numa_group(struct numa_group *grp) 2239 { 2240 if (refcount_dec_and_test(&grp->refcount)) 2241 kfree_rcu(grp, rcu); 2242 } 2243 2244 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2245 int *priv) 2246 { 2247 struct numa_group *grp, *my_grp; 2248 struct task_struct *tsk; 2249 bool join = false; 2250 int cpu = cpupid_to_cpu(cpupid); 2251 int i; 2252 2253 if (unlikely(!deref_curr_numa_group(p))) { 2254 unsigned int size = sizeof(struct numa_group) + 2255 4*nr_node_ids*sizeof(unsigned long); 2256 2257 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2258 if (!grp) 2259 return; 2260 2261 refcount_set(&grp->refcount, 1); 2262 grp->active_nodes = 1; 2263 grp->max_faults_cpu = 0; 2264 spin_lock_init(&grp->lock); 2265 grp->gid = p->pid; 2266 /* Second half of the array tracks nids where faults happen */ 2267 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2268 nr_node_ids; 2269 2270 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2271 grp->faults[i] = p->numa_faults[i]; 2272 2273 grp->total_faults = p->total_numa_faults; 2274 2275 grp->nr_tasks++; 2276 rcu_assign_pointer(p->numa_group, grp); 2277 } 2278 2279 rcu_read_lock(); 2280 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2281 2282 if (!cpupid_match_pid(tsk, cpupid)) 2283 goto no_join; 2284 2285 grp = rcu_dereference(tsk->numa_group); 2286 if (!grp) 2287 goto no_join; 2288 2289 my_grp = deref_curr_numa_group(p); 2290 if (grp == my_grp) 2291 goto no_join; 2292 2293 /* 2294 * Only join the other group if its bigger; if we're the bigger group, 2295 * the other task will join us. 2296 */ 2297 if (my_grp->nr_tasks > grp->nr_tasks) 2298 goto no_join; 2299 2300 /* 2301 * Tie-break on the grp address. 2302 */ 2303 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2304 goto no_join; 2305 2306 /* Always join threads in the same process. */ 2307 if (tsk->mm == current->mm) 2308 join = true; 2309 2310 /* Simple filter to avoid false positives due to PID collisions */ 2311 if (flags & TNF_SHARED) 2312 join = true; 2313 2314 /* Update priv based on whether false sharing was detected */ 2315 *priv = !join; 2316 2317 if (join && !get_numa_group(grp)) 2318 goto no_join; 2319 2320 rcu_read_unlock(); 2321 2322 if (!join) 2323 return; 2324 2325 BUG_ON(irqs_disabled()); 2326 double_lock_irq(&my_grp->lock, &grp->lock); 2327 2328 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2329 my_grp->faults[i] -= p->numa_faults[i]; 2330 grp->faults[i] += p->numa_faults[i]; 2331 } 2332 my_grp->total_faults -= p->total_numa_faults; 2333 grp->total_faults += p->total_numa_faults; 2334 2335 my_grp->nr_tasks--; 2336 grp->nr_tasks++; 2337 2338 spin_unlock(&my_grp->lock); 2339 spin_unlock_irq(&grp->lock); 2340 2341 rcu_assign_pointer(p->numa_group, grp); 2342 2343 put_numa_group(my_grp); 2344 return; 2345 2346 no_join: 2347 rcu_read_unlock(); 2348 return; 2349 } 2350 2351 /* 2352 * Get rid of NUMA staticstics associated with a task (either current or dead). 2353 * If @final is set, the task is dead and has reached refcount zero, so we can 2354 * safely free all relevant data structures. Otherwise, there might be 2355 * concurrent reads from places like load balancing and procfs, and we should 2356 * reset the data back to default state without freeing ->numa_faults. 2357 */ 2358 void task_numa_free(struct task_struct *p, bool final) 2359 { 2360 /* safe: p either is current or is being freed by current */ 2361 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2362 unsigned long *numa_faults = p->numa_faults; 2363 unsigned long flags; 2364 int i; 2365 2366 if (!numa_faults) 2367 return; 2368 2369 if (grp) { 2370 spin_lock_irqsave(&grp->lock, flags); 2371 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2372 grp->faults[i] -= p->numa_faults[i]; 2373 grp->total_faults -= p->total_numa_faults; 2374 2375 grp->nr_tasks--; 2376 spin_unlock_irqrestore(&grp->lock, flags); 2377 RCU_INIT_POINTER(p->numa_group, NULL); 2378 put_numa_group(grp); 2379 } 2380 2381 if (final) { 2382 p->numa_faults = NULL; 2383 kfree(numa_faults); 2384 } else { 2385 p->total_numa_faults = 0; 2386 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2387 numa_faults[i] = 0; 2388 } 2389 } 2390 2391 /* 2392 * Got a PROT_NONE fault for a page on @node. 2393 */ 2394 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2395 { 2396 struct task_struct *p = current; 2397 bool migrated = flags & TNF_MIGRATED; 2398 int cpu_node = task_node(current); 2399 int local = !!(flags & TNF_FAULT_LOCAL); 2400 struct numa_group *ng; 2401 int priv; 2402 2403 if (!static_branch_likely(&sched_numa_balancing)) 2404 return; 2405 2406 /* for example, ksmd faulting in a user's mm */ 2407 if (!p->mm) 2408 return; 2409 2410 /* Allocate buffer to track faults on a per-node basis */ 2411 if (unlikely(!p->numa_faults)) { 2412 int size = sizeof(*p->numa_faults) * 2413 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2414 2415 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2416 if (!p->numa_faults) 2417 return; 2418 2419 p->total_numa_faults = 0; 2420 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2421 } 2422 2423 /* 2424 * First accesses are treated as private, otherwise consider accesses 2425 * to be private if the accessing pid has not changed 2426 */ 2427 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2428 priv = 1; 2429 } else { 2430 priv = cpupid_match_pid(p, last_cpupid); 2431 if (!priv && !(flags & TNF_NO_GROUP)) 2432 task_numa_group(p, last_cpupid, flags, &priv); 2433 } 2434 2435 /* 2436 * If a workload spans multiple NUMA nodes, a shared fault that 2437 * occurs wholly within the set of nodes that the workload is 2438 * actively using should be counted as local. This allows the 2439 * scan rate to slow down when a workload has settled down. 2440 */ 2441 ng = deref_curr_numa_group(p); 2442 if (!priv && !local && ng && ng->active_nodes > 1 && 2443 numa_is_active_node(cpu_node, ng) && 2444 numa_is_active_node(mem_node, ng)) 2445 local = 1; 2446 2447 /* 2448 * Retry to migrate task to preferred node periodically, in case it 2449 * previously failed, or the scheduler moved us. 2450 */ 2451 if (time_after(jiffies, p->numa_migrate_retry)) { 2452 task_numa_placement(p); 2453 numa_migrate_preferred(p); 2454 } 2455 2456 if (migrated) 2457 p->numa_pages_migrated += pages; 2458 if (flags & TNF_MIGRATE_FAIL) 2459 p->numa_faults_locality[2] += pages; 2460 2461 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2462 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2463 p->numa_faults_locality[local] += pages; 2464 } 2465 2466 static void reset_ptenuma_scan(struct task_struct *p) 2467 { 2468 /* 2469 * We only did a read acquisition of the mmap sem, so 2470 * p->mm->numa_scan_seq is written to without exclusive access 2471 * and the update is not guaranteed to be atomic. That's not 2472 * much of an issue though, since this is just used for 2473 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2474 * expensive, to avoid any form of compiler optimizations: 2475 */ 2476 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2477 p->mm->numa_scan_offset = 0; 2478 } 2479 2480 /* 2481 * The expensive part of numa migration is done from task_work context. 2482 * Triggered from task_tick_numa(). 2483 */ 2484 static void task_numa_work(struct callback_head *work) 2485 { 2486 unsigned long migrate, next_scan, now = jiffies; 2487 struct task_struct *p = current; 2488 struct mm_struct *mm = p->mm; 2489 u64 runtime = p->se.sum_exec_runtime; 2490 struct vm_area_struct *vma; 2491 unsigned long start, end; 2492 unsigned long nr_pte_updates = 0; 2493 long pages, virtpages; 2494 2495 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2496 2497 work->next = work; 2498 /* 2499 * Who cares about NUMA placement when they're dying. 2500 * 2501 * NOTE: make sure not to dereference p->mm before this check, 2502 * exit_task_work() happens _after_ exit_mm() so we could be called 2503 * without p->mm even though we still had it when we enqueued this 2504 * work. 2505 */ 2506 if (p->flags & PF_EXITING) 2507 return; 2508 2509 if (!mm->numa_next_scan) { 2510 mm->numa_next_scan = now + 2511 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2512 } 2513 2514 /* 2515 * Enforce maximal scan/migration frequency.. 2516 */ 2517 migrate = mm->numa_next_scan; 2518 if (time_before(now, migrate)) 2519 return; 2520 2521 if (p->numa_scan_period == 0) { 2522 p->numa_scan_period_max = task_scan_max(p); 2523 p->numa_scan_period = task_scan_start(p); 2524 } 2525 2526 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2527 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2528 return; 2529 2530 /* 2531 * Delay this task enough that another task of this mm will likely win 2532 * the next time around. 2533 */ 2534 p->node_stamp += 2 * TICK_NSEC; 2535 2536 start = mm->numa_scan_offset; 2537 pages = sysctl_numa_balancing_scan_size; 2538 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2539 virtpages = pages * 8; /* Scan up to this much virtual space */ 2540 if (!pages) 2541 return; 2542 2543 2544 if (!down_read_trylock(&mm->mmap_sem)) 2545 return; 2546 vma = find_vma(mm, start); 2547 if (!vma) { 2548 reset_ptenuma_scan(p); 2549 start = 0; 2550 vma = mm->mmap; 2551 } 2552 for (; vma; vma = vma->vm_next) { 2553 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2554 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2555 continue; 2556 } 2557 2558 /* 2559 * Shared library pages mapped by multiple processes are not 2560 * migrated as it is expected they are cache replicated. Avoid 2561 * hinting faults in read-only file-backed mappings or the vdso 2562 * as migrating the pages will be of marginal benefit. 2563 */ 2564 if (!vma->vm_mm || 2565 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2566 continue; 2567 2568 /* 2569 * Skip inaccessible VMAs to avoid any confusion between 2570 * PROT_NONE and NUMA hinting ptes 2571 */ 2572 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2573 continue; 2574 2575 do { 2576 start = max(start, vma->vm_start); 2577 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2578 end = min(end, vma->vm_end); 2579 nr_pte_updates = change_prot_numa(vma, start, end); 2580 2581 /* 2582 * Try to scan sysctl_numa_balancing_size worth of 2583 * hpages that have at least one present PTE that 2584 * is not already pte-numa. If the VMA contains 2585 * areas that are unused or already full of prot_numa 2586 * PTEs, scan up to virtpages, to skip through those 2587 * areas faster. 2588 */ 2589 if (nr_pte_updates) 2590 pages -= (end - start) >> PAGE_SHIFT; 2591 virtpages -= (end - start) >> PAGE_SHIFT; 2592 2593 start = end; 2594 if (pages <= 0 || virtpages <= 0) 2595 goto out; 2596 2597 cond_resched(); 2598 } while (end != vma->vm_end); 2599 } 2600 2601 out: 2602 /* 2603 * It is possible to reach the end of the VMA list but the last few 2604 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2605 * would find the !migratable VMA on the next scan but not reset the 2606 * scanner to the start so check it now. 2607 */ 2608 if (vma) 2609 mm->numa_scan_offset = start; 2610 else 2611 reset_ptenuma_scan(p); 2612 up_read(&mm->mmap_sem); 2613 2614 /* 2615 * Make sure tasks use at least 32x as much time to run other code 2616 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2617 * Usually update_task_scan_period slows down scanning enough; on an 2618 * overloaded system we need to limit overhead on a per task basis. 2619 */ 2620 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2621 u64 diff = p->se.sum_exec_runtime - runtime; 2622 p->node_stamp += 32 * diff; 2623 } 2624 } 2625 2626 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 2627 { 2628 int mm_users = 0; 2629 struct mm_struct *mm = p->mm; 2630 2631 if (mm) { 2632 mm_users = atomic_read(&mm->mm_users); 2633 if (mm_users == 1) { 2634 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2635 mm->numa_scan_seq = 0; 2636 } 2637 } 2638 p->node_stamp = 0; 2639 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 2640 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2641 /* Protect against double add, see task_tick_numa and task_numa_work */ 2642 p->numa_work.next = &p->numa_work; 2643 p->numa_faults = NULL; 2644 RCU_INIT_POINTER(p->numa_group, NULL); 2645 p->last_task_numa_placement = 0; 2646 p->last_sum_exec_runtime = 0; 2647 2648 init_task_work(&p->numa_work, task_numa_work); 2649 2650 /* New address space, reset the preferred nid */ 2651 if (!(clone_flags & CLONE_VM)) { 2652 p->numa_preferred_nid = NUMA_NO_NODE; 2653 return; 2654 } 2655 2656 /* 2657 * New thread, keep existing numa_preferred_nid which should be copied 2658 * already by arch_dup_task_struct but stagger when scans start. 2659 */ 2660 if (mm) { 2661 unsigned int delay; 2662 2663 delay = min_t(unsigned int, task_scan_max(current), 2664 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 2665 delay += 2 * TICK_NSEC; 2666 p->node_stamp = delay; 2667 } 2668 } 2669 2670 /* 2671 * Drive the periodic memory faults.. 2672 */ 2673 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2674 { 2675 struct callback_head *work = &curr->numa_work; 2676 u64 period, now; 2677 2678 /* 2679 * We don't care about NUMA placement if we don't have memory. 2680 */ 2681 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2682 return; 2683 2684 /* 2685 * Using runtime rather than walltime has the dual advantage that 2686 * we (mostly) drive the selection from busy threads and that the 2687 * task needs to have done some actual work before we bother with 2688 * NUMA placement. 2689 */ 2690 now = curr->se.sum_exec_runtime; 2691 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2692 2693 if (now > curr->node_stamp + period) { 2694 if (!curr->node_stamp) 2695 curr->numa_scan_period = task_scan_start(curr); 2696 curr->node_stamp += period; 2697 2698 if (!time_before(jiffies, curr->mm->numa_next_scan)) 2699 task_work_add(curr, work, true); 2700 } 2701 } 2702 2703 static void update_scan_period(struct task_struct *p, int new_cpu) 2704 { 2705 int src_nid = cpu_to_node(task_cpu(p)); 2706 int dst_nid = cpu_to_node(new_cpu); 2707 2708 if (!static_branch_likely(&sched_numa_balancing)) 2709 return; 2710 2711 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2712 return; 2713 2714 if (src_nid == dst_nid) 2715 return; 2716 2717 /* 2718 * Allow resets if faults have been trapped before one scan 2719 * has completed. This is most likely due to a new task that 2720 * is pulled cross-node due to wakeups or load balancing. 2721 */ 2722 if (p->numa_scan_seq) { 2723 /* 2724 * Avoid scan adjustments if moving to the preferred 2725 * node or if the task was not previously running on 2726 * the preferred node. 2727 */ 2728 if (dst_nid == p->numa_preferred_nid || 2729 (p->numa_preferred_nid != NUMA_NO_NODE && 2730 src_nid != p->numa_preferred_nid)) 2731 return; 2732 } 2733 2734 p->numa_scan_period = task_scan_start(p); 2735 } 2736 2737 #else 2738 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2739 { 2740 } 2741 2742 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2743 { 2744 } 2745 2746 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2747 { 2748 } 2749 2750 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2751 { 2752 } 2753 2754 #endif /* CONFIG_NUMA_BALANCING */ 2755 2756 static void 2757 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2758 { 2759 update_load_add(&cfs_rq->load, se->load.weight); 2760 #ifdef CONFIG_SMP 2761 if (entity_is_task(se)) { 2762 struct rq *rq = rq_of(cfs_rq); 2763 2764 account_numa_enqueue(rq, task_of(se)); 2765 list_add(&se->group_node, &rq->cfs_tasks); 2766 } 2767 #endif 2768 cfs_rq->nr_running++; 2769 } 2770 2771 static void 2772 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2773 { 2774 update_load_sub(&cfs_rq->load, se->load.weight); 2775 #ifdef CONFIG_SMP 2776 if (entity_is_task(se)) { 2777 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2778 list_del_init(&se->group_node); 2779 } 2780 #endif 2781 cfs_rq->nr_running--; 2782 } 2783 2784 /* 2785 * Signed add and clamp on underflow. 2786 * 2787 * Explicitly do a load-store to ensure the intermediate value never hits 2788 * memory. This allows lockless observations without ever seeing the negative 2789 * values. 2790 */ 2791 #define add_positive(_ptr, _val) do { \ 2792 typeof(_ptr) ptr = (_ptr); \ 2793 typeof(_val) val = (_val); \ 2794 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2795 \ 2796 res = var + val; \ 2797 \ 2798 if (val < 0 && res > var) \ 2799 res = 0; \ 2800 \ 2801 WRITE_ONCE(*ptr, res); \ 2802 } while (0) 2803 2804 /* 2805 * Unsigned subtract and clamp on underflow. 2806 * 2807 * Explicitly do a load-store to ensure the intermediate value never hits 2808 * memory. This allows lockless observations without ever seeing the negative 2809 * values. 2810 */ 2811 #define sub_positive(_ptr, _val) do { \ 2812 typeof(_ptr) ptr = (_ptr); \ 2813 typeof(*ptr) val = (_val); \ 2814 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2815 res = var - val; \ 2816 if (res > var) \ 2817 res = 0; \ 2818 WRITE_ONCE(*ptr, res); \ 2819 } while (0) 2820 2821 /* 2822 * Remove and clamp on negative, from a local variable. 2823 * 2824 * A variant of sub_positive(), which does not use explicit load-store 2825 * and is thus optimized for local variable updates. 2826 */ 2827 #define lsub_positive(_ptr, _val) do { \ 2828 typeof(_ptr) ptr = (_ptr); \ 2829 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 2830 } while (0) 2831 2832 #ifdef CONFIG_SMP 2833 static inline void 2834 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2835 { 2836 cfs_rq->runnable_weight += se->runnable_weight; 2837 2838 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg; 2839 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum; 2840 } 2841 2842 static inline void 2843 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2844 { 2845 cfs_rq->runnable_weight -= se->runnable_weight; 2846 2847 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg); 2848 sub_positive(&cfs_rq->avg.runnable_load_sum, 2849 se_runnable(se) * se->avg.runnable_load_sum); 2850 } 2851 2852 static inline void 2853 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2854 { 2855 cfs_rq->avg.load_avg += se->avg.load_avg; 2856 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 2857 } 2858 2859 static inline void 2860 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2861 { 2862 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 2863 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 2864 } 2865 #else 2866 static inline void 2867 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2868 static inline void 2869 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2870 static inline void 2871 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2872 static inline void 2873 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2874 #endif 2875 2876 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2877 unsigned long weight, unsigned long runnable) 2878 { 2879 if (se->on_rq) { 2880 /* commit outstanding execution time */ 2881 if (cfs_rq->curr == se) 2882 update_curr(cfs_rq); 2883 account_entity_dequeue(cfs_rq, se); 2884 dequeue_runnable_load_avg(cfs_rq, se); 2885 } 2886 dequeue_load_avg(cfs_rq, se); 2887 2888 se->runnable_weight = runnable; 2889 update_load_set(&se->load, weight); 2890 2891 #ifdef CONFIG_SMP 2892 do { 2893 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib; 2894 2895 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 2896 se->avg.runnable_load_avg = 2897 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider); 2898 } while (0); 2899 #endif 2900 2901 enqueue_load_avg(cfs_rq, se); 2902 if (se->on_rq) { 2903 account_entity_enqueue(cfs_rq, se); 2904 enqueue_runnable_load_avg(cfs_rq, se); 2905 } 2906 } 2907 2908 void reweight_task(struct task_struct *p, int prio) 2909 { 2910 struct sched_entity *se = &p->se; 2911 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2912 struct load_weight *load = &se->load; 2913 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 2914 2915 reweight_entity(cfs_rq, se, weight, weight); 2916 load->inv_weight = sched_prio_to_wmult[prio]; 2917 } 2918 2919 #ifdef CONFIG_FAIR_GROUP_SCHED 2920 #ifdef CONFIG_SMP 2921 /* 2922 * All this does is approximate the hierarchical proportion which includes that 2923 * global sum we all love to hate. 2924 * 2925 * That is, the weight of a group entity, is the proportional share of the 2926 * group weight based on the group runqueue weights. That is: 2927 * 2928 * tg->weight * grq->load.weight 2929 * ge->load.weight = ----------------------------- (1) 2930 * \Sum grq->load.weight 2931 * 2932 * Now, because computing that sum is prohibitively expensive to compute (been 2933 * there, done that) we approximate it with this average stuff. The average 2934 * moves slower and therefore the approximation is cheaper and more stable. 2935 * 2936 * So instead of the above, we substitute: 2937 * 2938 * grq->load.weight -> grq->avg.load_avg (2) 2939 * 2940 * which yields the following: 2941 * 2942 * tg->weight * grq->avg.load_avg 2943 * ge->load.weight = ------------------------------ (3) 2944 * tg->load_avg 2945 * 2946 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 2947 * 2948 * That is shares_avg, and it is right (given the approximation (2)). 2949 * 2950 * The problem with it is that because the average is slow -- it was designed 2951 * to be exactly that of course -- this leads to transients in boundary 2952 * conditions. In specific, the case where the group was idle and we start the 2953 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 2954 * yielding bad latency etc.. 2955 * 2956 * Now, in that special case (1) reduces to: 2957 * 2958 * tg->weight * grq->load.weight 2959 * ge->load.weight = ----------------------------- = tg->weight (4) 2960 * grp->load.weight 2961 * 2962 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 2963 * 2964 * So what we do is modify our approximation (3) to approach (4) in the (near) 2965 * UP case, like: 2966 * 2967 * ge->load.weight = 2968 * 2969 * tg->weight * grq->load.weight 2970 * --------------------------------------------------- (5) 2971 * tg->load_avg - grq->avg.load_avg + grq->load.weight 2972 * 2973 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 2974 * we need to use grq->avg.load_avg as its lower bound, which then gives: 2975 * 2976 * 2977 * tg->weight * grq->load.weight 2978 * ge->load.weight = ----------------------------- (6) 2979 * tg_load_avg' 2980 * 2981 * Where: 2982 * 2983 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 2984 * max(grq->load.weight, grq->avg.load_avg) 2985 * 2986 * And that is shares_weight and is icky. In the (near) UP case it approaches 2987 * (4) while in the normal case it approaches (3). It consistently 2988 * overestimates the ge->load.weight and therefore: 2989 * 2990 * \Sum ge->load.weight >= tg->weight 2991 * 2992 * hence icky! 2993 */ 2994 static long calc_group_shares(struct cfs_rq *cfs_rq) 2995 { 2996 long tg_weight, tg_shares, load, shares; 2997 struct task_group *tg = cfs_rq->tg; 2998 2999 tg_shares = READ_ONCE(tg->shares); 3000 3001 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3002 3003 tg_weight = atomic_long_read(&tg->load_avg); 3004 3005 /* Ensure tg_weight >= load */ 3006 tg_weight -= cfs_rq->tg_load_avg_contrib; 3007 tg_weight += load; 3008 3009 shares = (tg_shares * load); 3010 if (tg_weight) 3011 shares /= tg_weight; 3012 3013 /* 3014 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3015 * of a group with small tg->shares value. It is a floor value which is 3016 * assigned as a minimum load.weight to the sched_entity representing 3017 * the group on a CPU. 3018 * 3019 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3020 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3021 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3022 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3023 * instead of 0. 3024 */ 3025 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3026 } 3027 3028 /* 3029 * This calculates the effective runnable weight for a group entity based on 3030 * the group entity weight calculated above. 3031 * 3032 * Because of the above approximation (2), our group entity weight is 3033 * an load_avg based ratio (3). This means that it includes blocked load and 3034 * does not represent the runnable weight. 3035 * 3036 * Approximate the group entity's runnable weight per ratio from the group 3037 * runqueue: 3038 * 3039 * grq->avg.runnable_load_avg 3040 * ge->runnable_weight = ge->load.weight * -------------------------- (7) 3041 * grq->avg.load_avg 3042 * 3043 * However, analogous to above, since the avg numbers are slow, this leads to 3044 * transients in the from-idle case. Instead we use: 3045 * 3046 * ge->runnable_weight = ge->load.weight * 3047 * 3048 * max(grq->avg.runnable_load_avg, grq->runnable_weight) 3049 * ----------------------------------------------------- (8) 3050 * max(grq->avg.load_avg, grq->load.weight) 3051 * 3052 * Where these max() serve both to use the 'instant' values to fix the slow 3053 * from-idle and avoid the /0 on to-idle, similar to (6). 3054 */ 3055 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares) 3056 { 3057 long runnable, load_avg; 3058 3059 load_avg = max(cfs_rq->avg.load_avg, 3060 scale_load_down(cfs_rq->load.weight)); 3061 3062 runnable = max(cfs_rq->avg.runnable_load_avg, 3063 scale_load_down(cfs_rq->runnable_weight)); 3064 3065 runnable *= shares; 3066 if (load_avg) 3067 runnable /= load_avg; 3068 3069 return clamp_t(long, runnable, MIN_SHARES, shares); 3070 } 3071 #endif /* CONFIG_SMP */ 3072 3073 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3074 3075 /* 3076 * Recomputes the group entity based on the current state of its group 3077 * runqueue. 3078 */ 3079 static void update_cfs_group(struct sched_entity *se) 3080 { 3081 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3082 long shares, runnable; 3083 3084 if (!gcfs_rq) 3085 return; 3086 3087 if (throttled_hierarchy(gcfs_rq)) 3088 return; 3089 3090 #ifndef CONFIG_SMP 3091 runnable = shares = READ_ONCE(gcfs_rq->tg->shares); 3092 3093 if (likely(se->load.weight == shares)) 3094 return; 3095 #else 3096 shares = calc_group_shares(gcfs_rq); 3097 runnable = calc_group_runnable(gcfs_rq, shares); 3098 #endif 3099 3100 reweight_entity(cfs_rq_of(se), se, shares, runnable); 3101 } 3102 3103 #else /* CONFIG_FAIR_GROUP_SCHED */ 3104 static inline void update_cfs_group(struct sched_entity *se) 3105 { 3106 } 3107 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3108 3109 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3110 { 3111 struct rq *rq = rq_of(cfs_rq); 3112 3113 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) { 3114 /* 3115 * There are a few boundary cases this might miss but it should 3116 * get called often enough that that should (hopefully) not be 3117 * a real problem. 3118 * 3119 * It will not get called when we go idle, because the idle 3120 * thread is a different class (!fair), nor will the utilization 3121 * number include things like RT tasks. 3122 * 3123 * As is, the util number is not freq-invariant (we'd have to 3124 * implement arch_scale_freq_capacity() for that). 3125 * 3126 * See cpu_util(). 3127 */ 3128 cpufreq_update_util(rq, flags); 3129 } 3130 } 3131 3132 #ifdef CONFIG_SMP 3133 #ifdef CONFIG_FAIR_GROUP_SCHED 3134 /** 3135 * update_tg_load_avg - update the tg's load avg 3136 * @cfs_rq: the cfs_rq whose avg changed 3137 * @force: update regardless of how small the difference 3138 * 3139 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3140 * However, because tg->load_avg is a global value there are performance 3141 * considerations. 3142 * 3143 * In order to avoid having to look at the other cfs_rq's, we use a 3144 * differential update where we store the last value we propagated. This in 3145 * turn allows skipping updates if the differential is 'small'. 3146 * 3147 * Updating tg's load_avg is necessary before update_cfs_share(). 3148 */ 3149 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3150 { 3151 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3152 3153 /* 3154 * No need to update load_avg for root_task_group as it is not used. 3155 */ 3156 if (cfs_rq->tg == &root_task_group) 3157 return; 3158 3159 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3160 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3161 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3162 } 3163 } 3164 3165 /* 3166 * Called within set_task_rq() right before setting a task's CPU. The 3167 * caller only guarantees p->pi_lock is held; no other assumptions, 3168 * including the state of rq->lock, should be made. 3169 */ 3170 void set_task_rq_fair(struct sched_entity *se, 3171 struct cfs_rq *prev, struct cfs_rq *next) 3172 { 3173 u64 p_last_update_time; 3174 u64 n_last_update_time; 3175 3176 if (!sched_feat(ATTACH_AGE_LOAD)) 3177 return; 3178 3179 /* 3180 * We are supposed to update the task to "current" time, then its up to 3181 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3182 * getting what current time is, so simply throw away the out-of-date 3183 * time. This will result in the wakee task is less decayed, but giving 3184 * the wakee more load sounds not bad. 3185 */ 3186 if (!(se->avg.last_update_time && prev)) 3187 return; 3188 3189 #ifndef CONFIG_64BIT 3190 { 3191 u64 p_last_update_time_copy; 3192 u64 n_last_update_time_copy; 3193 3194 do { 3195 p_last_update_time_copy = prev->load_last_update_time_copy; 3196 n_last_update_time_copy = next->load_last_update_time_copy; 3197 3198 smp_rmb(); 3199 3200 p_last_update_time = prev->avg.last_update_time; 3201 n_last_update_time = next->avg.last_update_time; 3202 3203 } while (p_last_update_time != p_last_update_time_copy || 3204 n_last_update_time != n_last_update_time_copy); 3205 } 3206 #else 3207 p_last_update_time = prev->avg.last_update_time; 3208 n_last_update_time = next->avg.last_update_time; 3209 #endif 3210 __update_load_avg_blocked_se(p_last_update_time, se); 3211 se->avg.last_update_time = n_last_update_time; 3212 } 3213 3214 3215 /* 3216 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3217 * propagate its contribution. The key to this propagation is the invariant 3218 * that for each group: 3219 * 3220 * ge->avg == grq->avg (1) 3221 * 3222 * _IFF_ we look at the pure running and runnable sums. Because they 3223 * represent the very same entity, just at different points in the hierarchy. 3224 * 3225 * Per the above update_tg_cfs_util() is trivial and simply copies the running 3226 * sum over (but still wrong, because the group entity and group rq do not have 3227 * their PELT windows aligned). 3228 * 3229 * However, update_tg_cfs_runnable() is more complex. So we have: 3230 * 3231 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3232 * 3233 * And since, like util, the runnable part should be directly transferable, 3234 * the following would _appear_ to be the straight forward approach: 3235 * 3236 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3237 * 3238 * And per (1) we have: 3239 * 3240 * ge->avg.runnable_avg == grq->avg.runnable_avg 3241 * 3242 * Which gives: 3243 * 3244 * ge->load.weight * grq->avg.load_avg 3245 * ge->avg.load_avg = ----------------------------------- (4) 3246 * grq->load.weight 3247 * 3248 * Except that is wrong! 3249 * 3250 * Because while for entities historical weight is not important and we 3251 * really only care about our future and therefore can consider a pure 3252 * runnable sum, runqueues can NOT do this. 3253 * 3254 * We specifically want runqueues to have a load_avg that includes 3255 * historical weights. Those represent the blocked load, the load we expect 3256 * to (shortly) return to us. This only works by keeping the weights as 3257 * integral part of the sum. We therefore cannot decompose as per (3). 3258 * 3259 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3260 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3261 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3262 * runnable section of these tasks overlap (or not). If they were to perfectly 3263 * align the rq as a whole would be runnable 2/3 of the time. If however we 3264 * always have at least 1 runnable task, the rq as a whole is always runnable. 3265 * 3266 * So we'll have to approximate.. :/ 3267 * 3268 * Given the constraint: 3269 * 3270 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3271 * 3272 * We can construct a rule that adds runnable to a rq by assuming minimal 3273 * overlap. 3274 * 3275 * On removal, we'll assume each task is equally runnable; which yields: 3276 * 3277 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3278 * 3279 * XXX: only do this for the part of runnable > running ? 3280 * 3281 */ 3282 3283 static inline void 3284 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3285 { 3286 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3287 3288 /* Nothing to update */ 3289 if (!delta) 3290 return; 3291 3292 /* 3293 * The relation between sum and avg is: 3294 * 3295 * LOAD_AVG_MAX - 1024 + sa->period_contrib 3296 * 3297 * however, the PELT windows are not aligned between grq and gse. 3298 */ 3299 3300 /* Set new sched_entity's utilization */ 3301 se->avg.util_avg = gcfs_rq->avg.util_avg; 3302 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3303 3304 /* Update parent cfs_rq utilization */ 3305 add_positive(&cfs_rq->avg.util_avg, delta); 3306 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3307 } 3308 3309 static inline void 3310 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3311 { 3312 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3313 unsigned long runnable_load_avg, load_avg; 3314 u64 runnable_load_sum, load_sum = 0; 3315 s64 delta_sum; 3316 3317 if (!runnable_sum) 3318 return; 3319 3320 gcfs_rq->prop_runnable_sum = 0; 3321 3322 if (runnable_sum >= 0) { 3323 /* 3324 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3325 * the CPU is saturated running == runnable. 3326 */ 3327 runnable_sum += se->avg.load_sum; 3328 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX); 3329 } else { 3330 /* 3331 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3332 * assuming all tasks are equally runnable. 3333 */ 3334 if (scale_load_down(gcfs_rq->load.weight)) { 3335 load_sum = div_s64(gcfs_rq->avg.load_sum, 3336 scale_load_down(gcfs_rq->load.weight)); 3337 } 3338 3339 /* But make sure to not inflate se's runnable */ 3340 runnable_sum = min(se->avg.load_sum, load_sum); 3341 } 3342 3343 /* 3344 * runnable_sum can't be lower than running_sum 3345 * Rescale running sum to be in the same range as runnable sum 3346 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3347 * runnable_sum is in [0 : LOAD_AVG_MAX] 3348 */ 3349 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3350 runnable_sum = max(runnable_sum, running_sum); 3351 3352 load_sum = (s64)se_weight(se) * runnable_sum; 3353 load_avg = div_s64(load_sum, LOAD_AVG_MAX); 3354 3355 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3356 delta_avg = load_avg - se->avg.load_avg; 3357 3358 se->avg.load_sum = runnable_sum; 3359 se->avg.load_avg = load_avg; 3360 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3361 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3362 3363 runnable_load_sum = (s64)se_runnable(se) * runnable_sum; 3364 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX); 3365 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum; 3366 delta_avg = runnable_load_avg - se->avg.runnable_load_avg; 3367 3368 se->avg.runnable_load_sum = runnable_sum; 3369 se->avg.runnable_load_avg = runnable_load_avg; 3370 3371 if (se->on_rq) { 3372 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg); 3373 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum); 3374 } 3375 } 3376 3377 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3378 { 3379 cfs_rq->propagate = 1; 3380 cfs_rq->prop_runnable_sum += runnable_sum; 3381 } 3382 3383 /* Update task and its cfs_rq load average */ 3384 static inline int propagate_entity_load_avg(struct sched_entity *se) 3385 { 3386 struct cfs_rq *cfs_rq, *gcfs_rq; 3387 3388 if (entity_is_task(se)) 3389 return 0; 3390 3391 gcfs_rq = group_cfs_rq(se); 3392 if (!gcfs_rq->propagate) 3393 return 0; 3394 3395 gcfs_rq->propagate = 0; 3396 3397 cfs_rq = cfs_rq_of(se); 3398 3399 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3400 3401 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3402 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3403 3404 trace_pelt_cfs_tp(cfs_rq); 3405 trace_pelt_se_tp(se); 3406 3407 return 1; 3408 } 3409 3410 /* 3411 * Check if we need to update the load and the utilization of a blocked 3412 * group_entity: 3413 */ 3414 static inline bool skip_blocked_update(struct sched_entity *se) 3415 { 3416 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3417 3418 /* 3419 * If sched_entity still have not zero load or utilization, we have to 3420 * decay it: 3421 */ 3422 if (se->avg.load_avg || se->avg.util_avg) 3423 return false; 3424 3425 /* 3426 * If there is a pending propagation, we have to update the load and 3427 * the utilization of the sched_entity: 3428 */ 3429 if (gcfs_rq->propagate) 3430 return false; 3431 3432 /* 3433 * Otherwise, the load and the utilization of the sched_entity is 3434 * already zero and there is no pending propagation, so it will be a 3435 * waste of time to try to decay it: 3436 */ 3437 return true; 3438 } 3439 3440 #else /* CONFIG_FAIR_GROUP_SCHED */ 3441 3442 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3443 3444 static inline int propagate_entity_load_avg(struct sched_entity *se) 3445 { 3446 return 0; 3447 } 3448 3449 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3450 3451 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3452 3453 /** 3454 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3455 * @now: current time, as per cfs_rq_clock_pelt() 3456 * @cfs_rq: cfs_rq to update 3457 * 3458 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3459 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3460 * post_init_entity_util_avg(). 3461 * 3462 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3463 * 3464 * Returns true if the load decayed or we removed load. 3465 * 3466 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3467 * call update_tg_load_avg() when this function returns true. 3468 */ 3469 static inline int 3470 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3471 { 3472 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0; 3473 struct sched_avg *sa = &cfs_rq->avg; 3474 int decayed = 0; 3475 3476 if (cfs_rq->removed.nr) { 3477 unsigned long r; 3478 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3479 3480 raw_spin_lock(&cfs_rq->removed.lock); 3481 swap(cfs_rq->removed.util_avg, removed_util); 3482 swap(cfs_rq->removed.load_avg, removed_load); 3483 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum); 3484 cfs_rq->removed.nr = 0; 3485 raw_spin_unlock(&cfs_rq->removed.lock); 3486 3487 r = removed_load; 3488 sub_positive(&sa->load_avg, r); 3489 sub_positive(&sa->load_sum, r * divider); 3490 3491 r = removed_util; 3492 sub_positive(&sa->util_avg, r); 3493 sub_positive(&sa->util_sum, r * divider); 3494 3495 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum); 3496 3497 decayed = 1; 3498 } 3499 3500 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3501 3502 #ifndef CONFIG_64BIT 3503 smp_wmb(); 3504 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3505 #endif 3506 3507 if (decayed) 3508 cfs_rq_util_change(cfs_rq, 0); 3509 3510 return decayed; 3511 } 3512 3513 /** 3514 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3515 * @cfs_rq: cfs_rq to attach to 3516 * @se: sched_entity to attach 3517 * @flags: migration hints 3518 * 3519 * Must call update_cfs_rq_load_avg() before this, since we rely on 3520 * cfs_rq->avg.last_update_time being current. 3521 */ 3522 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3523 { 3524 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3525 3526 /* 3527 * When we attach the @se to the @cfs_rq, we must align the decay 3528 * window because without that, really weird and wonderful things can 3529 * happen. 3530 * 3531 * XXX illustrate 3532 */ 3533 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3534 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3535 3536 /* 3537 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3538 * period_contrib. This isn't strictly correct, but since we're 3539 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3540 * _sum a little. 3541 */ 3542 se->avg.util_sum = se->avg.util_avg * divider; 3543 3544 se->avg.load_sum = divider; 3545 if (se_weight(se)) { 3546 se->avg.load_sum = 3547 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3548 } 3549 3550 se->avg.runnable_load_sum = se->avg.load_sum; 3551 3552 enqueue_load_avg(cfs_rq, se); 3553 cfs_rq->avg.util_avg += se->avg.util_avg; 3554 cfs_rq->avg.util_sum += se->avg.util_sum; 3555 3556 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3557 3558 cfs_rq_util_change(cfs_rq, flags); 3559 3560 trace_pelt_cfs_tp(cfs_rq); 3561 } 3562 3563 /** 3564 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3565 * @cfs_rq: cfs_rq to detach from 3566 * @se: sched_entity to detach 3567 * 3568 * Must call update_cfs_rq_load_avg() before this, since we rely on 3569 * cfs_rq->avg.last_update_time being current. 3570 */ 3571 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3572 { 3573 dequeue_load_avg(cfs_rq, se); 3574 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3575 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3576 3577 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3578 3579 cfs_rq_util_change(cfs_rq, 0); 3580 3581 trace_pelt_cfs_tp(cfs_rq); 3582 } 3583 3584 /* 3585 * Optional action to be done while updating the load average 3586 */ 3587 #define UPDATE_TG 0x1 3588 #define SKIP_AGE_LOAD 0x2 3589 #define DO_ATTACH 0x4 3590 3591 /* Update task and its cfs_rq load average */ 3592 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3593 { 3594 u64 now = cfs_rq_clock_pelt(cfs_rq); 3595 int decayed; 3596 3597 /* 3598 * Track task load average for carrying it to new CPU after migrated, and 3599 * track group sched_entity load average for task_h_load calc in migration 3600 */ 3601 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3602 __update_load_avg_se(now, cfs_rq, se); 3603 3604 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3605 decayed |= propagate_entity_load_avg(se); 3606 3607 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3608 3609 /* 3610 * DO_ATTACH means we're here from enqueue_entity(). 3611 * !last_update_time means we've passed through 3612 * migrate_task_rq_fair() indicating we migrated. 3613 * 3614 * IOW we're enqueueing a task on a new CPU. 3615 */ 3616 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION); 3617 update_tg_load_avg(cfs_rq, 0); 3618 3619 } else if (decayed && (flags & UPDATE_TG)) 3620 update_tg_load_avg(cfs_rq, 0); 3621 } 3622 3623 #ifndef CONFIG_64BIT 3624 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3625 { 3626 u64 last_update_time_copy; 3627 u64 last_update_time; 3628 3629 do { 3630 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3631 smp_rmb(); 3632 last_update_time = cfs_rq->avg.last_update_time; 3633 } while (last_update_time != last_update_time_copy); 3634 3635 return last_update_time; 3636 } 3637 #else 3638 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3639 { 3640 return cfs_rq->avg.last_update_time; 3641 } 3642 #endif 3643 3644 /* 3645 * Synchronize entity load avg of dequeued entity without locking 3646 * the previous rq. 3647 */ 3648 static void sync_entity_load_avg(struct sched_entity *se) 3649 { 3650 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3651 u64 last_update_time; 3652 3653 last_update_time = cfs_rq_last_update_time(cfs_rq); 3654 __update_load_avg_blocked_se(last_update_time, se); 3655 } 3656 3657 /* 3658 * Task first catches up with cfs_rq, and then subtract 3659 * itself from the cfs_rq (task must be off the queue now). 3660 */ 3661 static void remove_entity_load_avg(struct sched_entity *se) 3662 { 3663 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3664 unsigned long flags; 3665 3666 /* 3667 * tasks cannot exit without having gone through wake_up_new_task() -> 3668 * post_init_entity_util_avg() which will have added things to the 3669 * cfs_rq, so we can remove unconditionally. 3670 */ 3671 3672 sync_entity_load_avg(se); 3673 3674 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3675 ++cfs_rq->removed.nr; 3676 cfs_rq->removed.util_avg += se->avg.util_avg; 3677 cfs_rq->removed.load_avg += se->avg.load_avg; 3678 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */ 3679 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3680 } 3681 3682 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3683 { 3684 return cfs_rq->avg.runnable_load_avg; 3685 } 3686 3687 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3688 { 3689 return cfs_rq->avg.load_avg; 3690 } 3691 3692 static inline unsigned long task_util(struct task_struct *p) 3693 { 3694 return READ_ONCE(p->se.avg.util_avg); 3695 } 3696 3697 static inline unsigned long _task_util_est(struct task_struct *p) 3698 { 3699 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3700 3701 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED); 3702 } 3703 3704 static inline unsigned long task_util_est(struct task_struct *p) 3705 { 3706 return max(task_util(p), _task_util_est(p)); 3707 } 3708 3709 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3710 struct task_struct *p) 3711 { 3712 unsigned int enqueued; 3713 3714 if (!sched_feat(UTIL_EST)) 3715 return; 3716 3717 /* Update root cfs_rq's estimated utilization */ 3718 enqueued = cfs_rq->avg.util_est.enqueued; 3719 enqueued += _task_util_est(p); 3720 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3721 } 3722 3723 /* 3724 * Check if a (signed) value is within a specified (unsigned) margin, 3725 * based on the observation that: 3726 * 3727 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3728 * 3729 * NOTE: this only works when value + maring < INT_MAX. 3730 */ 3731 static inline bool within_margin(int value, int margin) 3732 { 3733 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3734 } 3735 3736 static void 3737 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) 3738 { 3739 long last_ewma_diff; 3740 struct util_est ue; 3741 int cpu; 3742 3743 if (!sched_feat(UTIL_EST)) 3744 return; 3745 3746 /* Update root cfs_rq's estimated utilization */ 3747 ue.enqueued = cfs_rq->avg.util_est.enqueued; 3748 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p)); 3749 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); 3750 3751 /* 3752 * Skip update of task's estimated utilization when the task has not 3753 * yet completed an activation, e.g. being migrated. 3754 */ 3755 if (!task_sleep) 3756 return; 3757 3758 /* 3759 * If the PELT values haven't changed since enqueue time, 3760 * skip the util_est update. 3761 */ 3762 ue = p->se.avg.util_est; 3763 if (ue.enqueued & UTIL_AVG_UNCHANGED) 3764 return; 3765 3766 /* 3767 * Skip update of task's estimated utilization when its EWMA is 3768 * already ~1% close to its last activation value. 3769 */ 3770 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); 3771 last_ewma_diff = ue.enqueued - ue.ewma; 3772 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) 3773 return; 3774 3775 /* 3776 * To avoid overestimation of actual task utilization, skip updates if 3777 * we cannot grant there is idle time in this CPU. 3778 */ 3779 cpu = cpu_of(rq_of(cfs_rq)); 3780 if (task_util(p) > capacity_orig_of(cpu)) 3781 return; 3782 3783 /* 3784 * Update Task's estimated utilization 3785 * 3786 * When *p completes an activation we can consolidate another sample 3787 * of the task size. This is done by storing the current PELT value 3788 * as ue.enqueued and by using this value to update the Exponential 3789 * Weighted Moving Average (EWMA): 3790 * 3791 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 3792 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 3793 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 3794 * = w * ( last_ewma_diff ) + ewma(t-1) 3795 * = w * (last_ewma_diff + ewma(t-1) / w) 3796 * 3797 * Where 'w' is the weight of new samples, which is configured to be 3798 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 3799 */ 3800 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 3801 ue.ewma += last_ewma_diff; 3802 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 3803 WRITE_ONCE(p->se.avg.util_est, ue); 3804 } 3805 3806 static inline int task_fits_capacity(struct task_struct *p, long capacity) 3807 { 3808 return fits_capacity(task_util_est(p), capacity); 3809 } 3810 3811 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 3812 { 3813 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 3814 return; 3815 3816 if (!p) { 3817 rq->misfit_task_load = 0; 3818 return; 3819 } 3820 3821 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 3822 rq->misfit_task_load = 0; 3823 return; 3824 } 3825 3826 rq->misfit_task_load = task_h_load(p); 3827 } 3828 3829 #else /* CONFIG_SMP */ 3830 3831 #define UPDATE_TG 0x0 3832 #define SKIP_AGE_LOAD 0x0 3833 #define DO_ATTACH 0x0 3834 3835 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 3836 { 3837 cfs_rq_util_change(cfs_rq, 0); 3838 } 3839 3840 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3841 3842 static inline void 3843 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {} 3844 static inline void 3845 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3846 3847 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 3848 { 3849 return 0; 3850 } 3851 3852 static inline void 3853 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 3854 3855 static inline void 3856 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, 3857 bool task_sleep) {} 3858 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 3859 3860 #endif /* CONFIG_SMP */ 3861 3862 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3863 { 3864 #ifdef CONFIG_SCHED_DEBUG 3865 s64 d = se->vruntime - cfs_rq->min_vruntime; 3866 3867 if (d < 0) 3868 d = -d; 3869 3870 if (d > 3*sysctl_sched_latency) 3871 schedstat_inc(cfs_rq->nr_spread_over); 3872 #endif 3873 } 3874 3875 static void 3876 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3877 { 3878 u64 vruntime = cfs_rq->min_vruntime; 3879 3880 /* 3881 * The 'current' period is already promised to the current tasks, 3882 * however the extra weight of the new task will slow them down a 3883 * little, place the new task so that it fits in the slot that 3884 * stays open at the end. 3885 */ 3886 if (initial && sched_feat(START_DEBIT)) 3887 vruntime += sched_vslice(cfs_rq, se); 3888 3889 /* sleeps up to a single latency don't count. */ 3890 if (!initial) { 3891 unsigned long thresh = sysctl_sched_latency; 3892 3893 /* 3894 * Halve their sleep time's effect, to allow 3895 * for a gentler effect of sleepers: 3896 */ 3897 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3898 thresh >>= 1; 3899 3900 vruntime -= thresh; 3901 } 3902 3903 /* ensure we never gain time by being placed backwards. */ 3904 se->vruntime = max_vruntime(se->vruntime, vruntime); 3905 } 3906 3907 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3908 3909 static inline void check_schedstat_required(void) 3910 { 3911 #ifdef CONFIG_SCHEDSTATS 3912 if (schedstat_enabled()) 3913 return; 3914 3915 /* Force schedstat enabled if a dependent tracepoint is active */ 3916 if (trace_sched_stat_wait_enabled() || 3917 trace_sched_stat_sleep_enabled() || 3918 trace_sched_stat_iowait_enabled() || 3919 trace_sched_stat_blocked_enabled() || 3920 trace_sched_stat_runtime_enabled()) { 3921 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3922 "stat_blocked and stat_runtime require the " 3923 "kernel parameter schedstats=enable or " 3924 "kernel.sched_schedstats=1\n"); 3925 } 3926 #endif 3927 } 3928 3929 3930 /* 3931 * MIGRATION 3932 * 3933 * dequeue 3934 * update_curr() 3935 * update_min_vruntime() 3936 * vruntime -= min_vruntime 3937 * 3938 * enqueue 3939 * update_curr() 3940 * update_min_vruntime() 3941 * vruntime += min_vruntime 3942 * 3943 * this way the vruntime transition between RQs is done when both 3944 * min_vruntime are up-to-date. 3945 * 3946 * WAKEUP (remote) 3947 * 3948 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3949 * vruntime -= min_vruntime 3950 * 3951 * enqueue 3952 * update_curr() 3953 * update_min_vruntime() 3954 * vruntime += min_vruntime 3955 * 3956 * this way we don't have the most up-to-date min_vruntime on the originating 3957 * CPU and an up-to-date min_vruntime on the destination CPU. 3958 */ 3959 3960 static void 3961 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3962 { 3963 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 3964 bool curr = cfs_rq->curr == se; 3965 3966 /* 3967 * If we're the current task, we must renormalise before calling 3968 * update_curr(). 3969 */ 3970 if (renorm && curr) 3971 se->vruntime += cfs_rq->min_vruntime; 3972 3973 update_curr(cfs_rq); 3974 3975 /* 3976 * Otherwise, renormalise after, such that we're placed at the current 3977 * moment in time, instead of some random moment in the past. Being 3978 * placed in the past could significantly boost this task to the 3979 * fairness detriment of existing tasks. 3980 */ 3981 if (renorm && !curr) 3982 se->vruntime += cfs_rq->min_vruntime; 3983 3984 /* 3985 * When enqueuing a sched_entity, we must: 3986 * - Update loads to have both entity and cfs_rq synced with now. 3987 * - Add its load to cfs_rq->runnable_avg 3988 * - For group_entity, update its weight to reflect the new share of 3989 * its group cfs_rq 3990 * - Add its new weight to cfs_rq->load.weight 3991 */ 3992 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 3993 update_cfs_group(se); 3994 enqueue_runnable_load_avg(cfs_rq, se); 3995 account_entity_enqueue(cfs_rq, se); 3996 3997 if (flags & ENQUEUE_WAKEUP) 3998 place_entity(cfs_rq, se, 0); 3999 4000 check_schedstat_required(); 4001 update_stats_enqueue(cfs_rq, se, flags); 4002 check_spread(cfs_rq, se); 4003 if (!curr) 4004 __enqueue_entity(cfs_rq, se); 4005 se->on_rq = 1; 4006 4007 if (cfs_rq->nr_running == 1) { 4008 list_add_leaf_cfs_rq(cfs_rq); 4009 check_enqueue_throttle(cfs_rq); 4010 } 4011 } 4012 4013 static void __clear_buddies_last(struct sched_entity *se) 4014 { 4015 for_each_sched_entity(se) { 4016 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4017 if (cfs_rq->last != se) 4018 break; 4019 4020 cfs_rq->last = NULL; 4021 } 4022 } 4023 4024 static void __clear_buddies_next(struct sched_entity *se) 4025 { 4026 for_each_sched_entity(se) { 4027 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4028 if (cfs_rq->next != se) 4029 break; 4030 4031 cfs_rq->next = NULL; 4032 } 4033 } 4034 4035 static void __clear_buddies_skip(struct sched_entity *se) 4036 { 4037 for_each_sched_entity(se) { 4038 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4039 if (cfs_rq->skip != se) 4040 break; 4041 4042 cfs_rq->skip = NULL; 4043 } 4044 } 4045 4046 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4047 { 4048 if (cfs_rq->last == se) 4049 __clear_buddies_last(se); 4050 4051 if (cfs_rq->next == se) 4052 __clear_buddies_next(se); 4053 4054 if (cfs_rq->skip == se) 4055 __clear_buddies_skip(se); 4056 } 4057 4058 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4059 4060 static void 4061 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4062 { 4063 /* 4064 * Update run-time statistics of the 'current'. 4065 */ 4066 update_curr(cfs_rq); 4067 4068 /* 4069 * When dequeuing a sched_entity, we must: 4070 * - Update loads to have both entity and cfs_rq synced with now. 4071 * - Subtract its load from the cfs_rq->runnable_avg. 4072 * - Subtract its previous weight from cfs_rq->load.weight. 4073 * - For group entity, update its weight to reflect the new share 4074 * of its group cfs_rq. 4075 */ 4076 update_load_avg(cfs_rq, se, UPDATE_TG); 4077 dequeue_runnable_load_avg(cfs_rq, se); 4078 4079 update_stats_dequeue(cfs_rq, se, flags); 4080 4081 clear_buddies(cfs_rq, se); 4082 4083 if (se != cfs_rq->curr) 4084 __dequeue_entity(cfs_rq, se); 4085 se->on_rq = 0; 4086 account_entity_dequeue(cfs_rq, se); 4087 4088 /* 4089 * Normalize after update_curr(); which will also have moved 4090 * min_vruntime if @se is the one holding it back. But before doing 4091 * update_min_vruntime() again, which will discount @se's position and 4092 * can move min_vruntime forward still more. 4093 */ 4094 if (!(flags & DEQUEUE_SLEEP)) 4095 se->vruntime -= cfs_rq->min_vruntime; 4096 4097 /* return excess runtime on last dequeue */ 4098 return_cfs_rq_runtime(cfs_rq); 4099 4100 update_cfs_group(se); 4101 4102 /* 4103 * Now advance min_vruntime if @se was the entity holding it back, 4104 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4105 * put back on, and if we advance min_vruntime, we'll be placed back 4106 * further than we started -- ie. we'll be penalized. 4107 */ 4108 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4109 update_min_vruntime(cfs_rq); 4110 } 4111 4112 /* 4113 * Preempt the current task with a newly woken task if needed: 4114 */ 4115 static void 4116 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4117 { 4118 unsigned long ideal_runtime, delta_exec; 4119 struct sched_entity *se; 4120 s64 delta; 4121 4122 ideal_runtime = sched_slice(cfs_rq, curr); 4123 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4124 if (delta_exec > ideal_runtime) { 4125 resched_curr(rq_of(cfs_rq)); 4126 /* 4127 * The current task ran long enough, ensure it doesn't get 4128 * re-elected due to buddy favours. 4129 */ 4130 clear_buddies(cfs_rq, curr); 4131 return; 4132 } 4133 4134 /* 4135 * Ensure that a task that missed wakeup preemption by a 4136 * narrow margin doesn't have to wait for a full slice. 4137 * This also mitigates buddy induced latencies under load. 4138 */ 4139 if (delta_exec < sysctl_sched_min_granularity) 4140 return; 4141 4142 se = __pick_first_entity(cfs_rq); 4143 delta = curr->vruntime - se->vruntime; 4144 4145 if (delta < 0) 4146 return; 4147 4148 if (delta > ideal_runtime) 4149 resched_curr(rq_of(cfs_rq)); 4150 } 4151 4152 static void 4153 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4154 { 4155 /* 'current' is not kept within the tree. */ 4156 if (se->on_rq) { 4157 /* 4158 * Any task has to be enqueued before it get to execute on 4159 * a CPU. So account for the time it spent waiting on the 4160 * runqueue. 4161 */ 4162 update_stats_wait_end(cfs_rq, se); 4163 __dequeue_entity(cfs_rq, se); 4164 update_load_avg(cfs_rq, se, UPDATE_TG); 4165 } 4166 4167 update_stats_curr_start(cfs_rq, se); 4168 cfs_rq->curr = se; 4169 4170 /* 4171 * Track our maximum slice length, if the CPU's load is at 4172 * least twice that of our own weight (i.e. dont track it 4173 * when there are only lesser-weight tasks around): 4174 */ 4175 if (schedstat_enabled() && 4176 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4177 schedstat_set(se->statistics.slice_max, 4178 max((u64)schedstat_val(se->statistics.slice_max), 4179 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4180 } 4181 4182 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4183 } 4184 4185 static int 4186 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4187 4188 /* 4189 * Pick the next process, keeping these things in mind, in this order: 4190 * 1) keep things fair between processes/task groups 4191 * 2) pick the "next" process, since someone really wants that to run 4192 * 3) pick the "last" process, for cache locality 4193 * 4) do not run the "skip" process, if something else is available 4194 */ 4195 static struct sched_entity * 4196 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4197 { 4198 struct sched_entity *left = __pick_first_entity(cfs_rq); 4199 struct sched_entity *se; 4200 4201 /* 4202 * If curr is set we have to see if its left of the leftmost entity 4203 * still in the tree, provided there was anything in the tree at all. 4204 */ 4205 if (!left || (curr && entity_before(curr, left))) 4206 left = curr; 4207 4208 se = left; /* ideally we run the leftmost entity */ 4209 4210 /* 4211 * Avoid running the skip buddy, if running something else can 4212 * be done without getting too unfair. 4213 */ 4214 if (cfs_rq->skip == se) { 4215 struct sched_entity *second; 4216 4217 if (se == curr) { 4218 second = __pick_first_entity(cfs_rq); 4219 } else { 4220 second = __pick_next_entity(se); 4221 if (!second || (curr && entity_before(curr, second))) 4222 second = curr; 4223 } 4224 4225 if (second && wakeup_preempt_entity(second, left) < 1) 4226 se = second; 4227 } 4228 4229 /* 4230 * Prefer last buddy, try to return the CPU to a preempted task. 4231 */ 4232 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 4233 se = cfs_rq->last; 4234 4235 /* 4236 * Someone really wants this to run. If it's not unfair, run it. 4237 */ 4238 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 4239 se = cfs_rq->next; 4240 4241 clear_buddies(cfs_rq, se); 4242 4243 return se; 4244 } 4245 4246 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4247 4248 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4249 { 4250 /* 4251 * If still on the runqueue then deactivate_task() 4252 * was not called and update_curr() has to be done: 4253 */ 4254 if (prev->on_rq) 4255 update_curr(cfs_rq); 4256 4257 /* throttle cfs_rqs exceeding runtime */ 4258 check_cfs_rq_runtime(cfs_rq); 4259 4260 check_spread(cfs_rq, prev); 4261 4262 if (prev->on_rq) { 4263 update_stats_wait_start(cfs_rq, prev); 4264 /* Put 'current' back into the tree. */ 4265 __enqueue_entity(cfs_rq, prev); 4266 /* in !on_rq case, update occurred at dequeue */ 4267 update_load_avg(cfs_rq, prev, 0); 4268 } 4269 cfs_rq->curr = NULL; 4270 } 4271 4272 static void 4273 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4274 { 4275 /* 4276 * Update run-time statistics of the 'current'. 4277 */ 4278 update_curr(cfs_rq); 4279 4280 /* 4281 * Ensure that runnable average is periodically updated. 4282 */ 4283 update_load_avg(cfs_rq, curr, UPDATE_TG); 4284 update_cfs_group(curr); 4285 4286 #ifdef CONFIG_SCHED_HRTICK 4287 /* 4288 * queued ticks are scheduled to match the slice, so don't bother 4289 * validating it and just reschedule. 4290 */ 4291 if (queued) { 4292 resched_curr(rq_of(cfs_rq)); 4293 return; 4294 } 4295 /* 4296 * don't let the period tick interfere with the hrtick preemption 4297 */ 4298 if (!sched_feat(DOUBLE_TICK) && 4299 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4300 return; 4301 #endif 4302 4303 if (cfs_rq->nr_running > 1) 4304 check_preempt_tick(cfs_rq, curr); 4305 } 4306 4307 4308 /************************************************** 4309 * CFS bandwidth control machinery 4310 */ 4311 4312 #ifdef CONFIG_CFS_BANDWIDTH 4313 4314 #ifdef CONFIG_JUMP_LABEL 4315 static struct static_key __cfs_bandwidth_used; 4316 4317 static inline bool cfs_bandwidth_used(void) 4318 { 4319 return static_key_false(&__cfs_bandwidth_used); 4320 } 4321 4322 void cfs_bandwidth_usage_inc(void) 4323 { 4324 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4325 } 4326 4327 void cfs_bandwidth_usage_dec(void) 4328 { 4329 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4330 } 4331 #else /* CONFIG_JUMP_LABEL */ 4332 static bool cfs_bandwidth_used(void) 4333 { 4334 return true; 4335 } 4336 4337 void cfs_bandwidth_usage_inc(void) {} 4338 void cfs_bandwidth_usage_dec(void) {} 4339 #endif /* CONFIG_JUMP_LABEL */ 4340 4341 /* 4342 * default period for cfs group bandwidth. 4343 * default: 0.1s, units: nanoseconds 4344 */ 4345 static inline u64 default_cfs_period(void) 4346 { 4347 return 100000000ULL; 4348 } 4349 4350 static inline u64 sched_cfs_bandwidth_slice(void) 4351 { 4352 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4353 } 4354 4355 /* 4356 * Replenish runtime according to assigned quota. We use sched_clock_cpu 4357 * directly instead of rq->clock to avoid adding additional synchronization 4358 * around rq->lock. 4359 * 4360 * requires cfs_b->lock 4361 */ 4362 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4363 { 4364 if (cfs_b->quota != RUNTIME_INF) 4365 cfs_b->runtime = cfs_b->quota; 4366 } 4367 4368 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4369 { 4370 return &tg->cfs_bandwidth; 4371 } 4372 4373 /* returns 0 on failure to allocate runtime */ 4374 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4375 { 4376 struct task_group *tg = cfs_rq->tg; 4377 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4378 u64 amount = 0, min_amount; 4379 4380 /* note: this is a positive sum as runtime_remaining <= 0 */ 4381 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4382 4383 raw_spin_lock(&cfs_b->lock); 4384 if (cfs_b->quota == RUNTIME_INF) 4385 amount = min_amount; 4386 else { 4387 start_cfs_bandwidth(cfs_b); 4388 4389 if (cfs_b->runtime > 0) { 4390 amount = min(cfs_b->runtime, min_amount); 4391 cfs_b->runtime -= amount; 4392 cfs_b->idle = 0; 4393 } 4394 } 4395 raw_spin_unlock(&cfs_b->lock); 4396 4397 cfs_rq->runtime_remaining += amount; 4398 4399 return cfs_rq->runtime_remaining > 0; 4400 } 4401 4402 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4403 { 4404 /* dock delta_exec before expiring quota (as it could span periods) */ 4405 cfs_rq->runtime_remaining -= delta_exec; 4406 4407 if (likely(cfs_rq->runtime_remaining > 0)) 4408 return; 4409 4410 if (cfs_rq->throttled) 4411 return; 4412 /* 4413 * if we're unable to extend our runtime we resched so that the active 4414 * hierarchy can be throttled 4415 */ 4416 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4417 resched_curr(rq_of(cfs_rq)); 4418 } 4419 4420 static __always_inline 4421 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4422 { 4423 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4424 return; 4425 4426 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4427 } 4428 4429 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4430 { 4431 return cfs_bandwidth_used() && cfs_rq->throttled; 4432 } 4433 4434 /* check whether cfs_rq, or any parent, is throttled */ 4435 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4436 { 4437 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4438 } 4439 4440 /* 4441 * Ensure that neither of the group entities corresponding to src_cpu or 4442 * dest_cpu are members of a throttled hierarchy when performing group 4443 * load-balance operations. 4444 */ 4445 static inline int throttled_lb_pair(struct task_group *tg, 4446 int src_cpu, int dest_cpu) 4447 { 4448 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4449 4450 src_cfs_rq = tg->cfs_rq[src_cpu]; 4451 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4452 4453 return throttled_hierarchy(src_cfs_rq) || 4454 throttled_hierarchy(dest_cfs_rq); 4455 } 4456 4457 static int tg_unthrottle_up(struct task_group *tg, void *data) 4458 { 4459 struct rq *rq = data; 4460 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4461 4462 cfs_rq->throttle_count--; 4463 if (!cfs_rq->throttle_count) { 4464 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4465 cfs_rq->throttled_clock_task; 4466 4467 /* Add cfs_rq with already running entity in the list */ 4468 if (cfs_rq->nr_running >= 1) 4469 list_add_leaf_cfs_rq(cfs_rq); 4470 } 4471 4472 return 0; 4473 } 4474 4475 static int tg_throttle_down(struct task_group *tg, void *data) 4476 { 4477 struct rq *rq = data; 4478 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4479 4480 /* group is entering throttled state, stop time */ 4481 if (!cfs_rq->throttle_count) { 4482 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4483 list_del_leaf_cfs_rq(cfs_rq); 4484 } 4485 cfs_rq->throttle_count++; 4486 4487 return 0; 4488 } 4489 4490 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4491 { 4492 struct rq *rq = rq_of(cfs_rq); 4493 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4494 struct sched_entity *se; 4495 long task_delta, idle_task_delta, dequeue = 1; 4496 bool empty; 4497 4498 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4499 4500 /* freeze hierarchy runnable averages while throttled */ 4501 rcu_read_lock(); 4502 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4503 rcu_read_unlock(); 4504 4505 task_delta = cfs_rq->h_nr_running; 4506 idle_task_delta = cfs_rq->idle_h_nr_running; 4507 for_each_sched_entity(se) { 4508 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4509 /* throttled entity or throttle-on-deactivate */ 4510 if (!se->on_rq) 4511 break; 4512 4513 if (dequeue) 4514 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4515 qcfs_rq->h_nr_running -= task_delta; 4516 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4517 4518 if (qcfs_rq->load.weight) 4519 dequeue = 0; 4520 } 4521 4522 if (!se) 4523 sub_nr_running(rq, task_delta); 4524 4525 cfs_rq->throttled = 1; 4526 cfs_rq->throttled_clock = rq_clock(rq); 4527 raw_spin_lock(&cfs_b->lock); 4528 empty = list_empty(&cfs_b->throttled_cfs_rq); 4529 4530 /* 4531 * Add to the _head_ of the list, so that an already-started 4532 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is 4533 * not running add to the tail so that later runqueues don't get starved. 4534 */ 4535 if (cfs_b->distribute_running) 4536 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4537 else 4538 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4539 4540 /* 4541 * If we're the first throttled task, make sure the bandwidth 4542 * timer is running. 4543 */ 4544 if (empty) 4545 start_cfs_bandwidth(cfs_b); 4546 4547 raw_spin_unlock(&cfs_b->lock); 4548 } 4549 4550 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4551 { 4552 struct rq *rq = rq_of(cfs_rq); 4553 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4554 struct sched_entity *se; 4555 int enqueue = 1; 4556 long task_delta, idle_task_delta; 4557 4558 se = cfs_rq->tg->se[cpu_of(rq)]; 4559 4560 cfs_rq->throttled = 0; 4561 4562 update_rq_clock(rq); 4563 4564 raw_spin_lock(&cfs_b->lock); 4565 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4566 list_del_rcu(&cfs_rq->throttled_list); 4567 raw_spin_unlock(&cfs_b->lock); 4568 4569 /* update hierarchical throttle state */ 4570 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4571 4572 if (!cfs_rq->load.weight) 4573 return; 4574 4575 task_delta = cfs_rq->h_nr_running; 4576 idle_task_delta = cfs_rq->idle_h_nr_running; 4577 for_each_sched_entity(se) { 4578 if (se->on_rq) 4579 enqueue = 0; 4580 4581 cfs_rq = cfs_rq_of(se); 4582 if (enqueue) 4583 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4584 cfs_rq->h_nr_running += task_delta; 4585 cfs_rq->idle_h_nr_running += idle_task_delta; 4586 4587 if (cfs_rq_throttled(cfs_rq)) 4588 break; 4589 } 4590 4591 assert_list_leaf_cfs_rq(rq); 4592 4593 if (!se) 4594 add_nr_running(rq, task_delta); 4595 4596 /* Determine whether we need to wake up potentially idle CPU: */ 4597 if (rq->curr == rq->idle && rq->cfs.nr_running) 4598 resched_curr(rq); 4599 } 4600 4601 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, u64 remaining) 4602 { 4603 struct cfs_rq *cfs_rq; 4604 u64 runtime; 4605 u64 starting_runtime = remaining; 4606 4607 rcu_read_lock(); 4608 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4609 throttled_list) { 4610 struct rq *rq = rq_of(cfs_rq); 4611 struct rq_flags rf; 4612 4613 rq_lock_irqsave(rq, &rf); 4614 if (!cfs_rq_throttled(cfs_rq)) 4615 goto next; 4616 4617 /* By the above check, this should never be true */ 4618 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 4619 4620 runtime = -cfs_rq->runtime_remaining + 1; 4621 if (runtime > remaining) 4622 runtime = remaining; 4623 remaining -= runtime; 4624 4625 cfs_rq->runtime_remaining += runtime; 4626 4627 /* we check whether we're throttled above */ 4628 if (cfs_rq->runtime_remaining > 0) 4629 unthrottle_cfs_rq(cfs_rq); 4630 4631 next: 4632 rq_unlock_irqrestore(rq, &rf); 4633 4634 if (!remaining) 4635 break; 4636 } 4637 rcu_read_unlock(); 4638 4639 return starting_runtime - remaining; 4640 } 4641 4642 /* 4643 * Responsible for refilling a task_group's bandwidth and unthrottling its 4644 * cfs_rqs as appropriate. If there has been no activity within the last 4645 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4646 * used to track this state. 4647 */ 4648 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 4649 { 4650 u64 runtime; 4651 int throttled; 4652 4653 /* no need to continue the timer with no bandwidth constraint */ 4654 if (cfs_b->quota == RUNTIME_INF) 4655 goto out_deactivate; 4656 4657 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4658 cfs_b->nr_periods += overrun; 4659 4660 /* 4661 * idle depends on !throttled (for the case of a large deficit), and if 4662 * we're going inactive then everything else can be deferred 4663 */ 4664 if (cfs_b->idle && !throttled) 4665 goto out_deactivate; 4666 4667 __refill_cfs_bandwidth_runtime(cfs_b); 4668 4669 if (!throttled) { 4670 /* mark as potentially idle for the upcoming period */ 4671 cfs_b->idle = 1; 4672 return 0; 4673 } 4674 4675 /* account preceding periods in which throttling occurred */ 4676 cfs_b->nr_throttled += overrun; 4677 4678 /* 4679 * This check is repeated as we are holding onto the new bandwidth while 4680 * we unthrottle. This can potentially race with an unthrottled group 4681 * trying to acquire new bandwidth from the global pool. This can result 4682 * in us over-using our runtime if it is all used during this loop, but 4683 * only by limited amounts in that extreme case. 4684 */ 4685 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) { 4686 runtime = cfs_b->runtime; 4687 cfs_b->distribute_running = 1; 4688 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4689 /* we can't nest cfs_b->lock while distributing bandwidth */ 4690 runtime = distribute_cfs_runtime(cfs_b, runtime); 4691 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4692 4693 cfs_b->distribute_running = 0; 4694 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4695 4696 lsub_positive(&cfs_b->runtime, runtime); 4697 } 4698 4699 /* 4700 * While we are ensured activity in the period following an 4701 * unthrottle, this also covers the case in which the new bandwidth is 4702 * insufficient to cover the existing bandwidth deficit. (Forcing the 4703 * timer to remain active while there are any throttled entities.) 4704 */ 4705 cfs_b->idle = 0; 4706 4707 return 0; 4708 4709 out_deactivate: 4710 return 1; 4711 } 4712 4713 /* a cfs_rq won't donate quota below this amount */ 4714 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4715 /* minimum remaining period time to redistribute slack quota */ 4716 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4717 /* how long we wait to gather additional slack before distributing */ 4718 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4719 4720 /* 4721 * Are we near the end of the current quota period? 4722 * 4723 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4724 * hrtimer base being cleared by hrtimer_start. In the case of 4725 * migrate_hrtimers, base is never cleared, so we are fine. 4726 */ 4727 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4728 { 4729 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4730 u64 remaining; 4731 4732 /* if the call-back is running a quota refresh is already occurring */ 4733 if (hrtimer_callback_running(refresh_timer)) 4734 return 1; 4735 4736 /* is a quota refresh about to occur? */ 4737 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4738 if (remaining < min_expire) 4739 return 1; 4740 4741 return 0; 4742 } 4743 4744 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4745 { 4746 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4747 4748 /* if there's a quota refresh soon don't bother with slack */ 4749 if (runtime_refresh_within(cfs_b, min_left)) 4750 return; 4751 4752 /* don't push forwards an existing deferred unthrottle */ 4753 if (cfs_b->slack_started) 4754 return; 4755 cfs_b->slack_started = true; 4756 4757 hrtimer_start(&cfs_b->slack_timer, 4758 ns_to_ktime(cfs_bandwidth_slack_period), 4759 HRTIMER_MODE_REL); 4760 } 4761 4762 /* we know any runtime found here is valid as update_curr() precedes return */ 4763 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4764 { 4765 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4766 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4767 4768 if (slack_runtime <= 0) 4769 return; 4770 4771 raw_spin_lock(&cfs_b->lock); 4772 if (cfs_b->quota != RUNTIME_INF) { 4773 cfs_b->runtime += slack_runtime; 4774 4775 /* we are under rq->lock, defer unthrottling using a timer */ 4776 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4777 !list_empty(&cfs_b->throttled_cfs_rq)) 4778 start_cfs_slack_bandwidth(cfs_b); 4779 } 4780 raw_spin_unlock(&cfs_b->lock); 4781 4782 /* even if it's not valid for return we don't want to try again */ 4783 cfs_rq->runtime_remaining -= slack_runtime; 4784 } 4785 4786 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4787 { 4788 if (!cfs_bandwidth_used()) 4789 return; 4790 4791 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4792 return; 4793 4794 __return_cfs_rq_runtime(cfs_rq); 4795 } 4796 4797 /* 4798 * This is done with a timer (instead of inline with bandwidth return) since 4799 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4800 */ 4801 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4802 { 4803 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4804 unsigned long flags; 4805 4806 /* confirm we're still not at a refresh boundary */ 4807 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4808 cfs_b->slack_started = false; 4809 if (cfs_b->distribute_running) { 4810 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4811 return; 4812 } 4813 4814 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4815 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4816 return; 4817 } 4818 4819 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4820 runtime = cfs_b->runtime; 4821 4822 if (runtime) 4823 cfs_b->distribute_running = 1; 4824 4825 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4826 4827 if (!runtime) 4828 return; 4829 4830 runtime = distribute_cfs_runtime(cfs_b, runtime); 4831 4832 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4833 lsub_positive(&cfs_b->runtime, runtime); 4834 cfs_b->distribute_running = 0; 4835 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4836 } 4837 4838 /* 4839 * When a group wakes up we want to make sure that its quota is not already 4840 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4841 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4842 */ 4843 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4844 { 4845 if (!cfs_bandwidth_used()) 4846 return; 4847 4848 /* an active group must be handled by the update_curr()->put() path */ 4849 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4850 return; 4851 4852 /* ensure the group is not already throttled */ 4853 if (cfs_rq_throttled(cfs_rq)) 4854 return; 4855 4856 /* update runtime allocation */ 4857 account_cfs_rq_runtime(cfs_rq, 0); 4858 if (cfs_rq->runtime_remaining <= 0) 4859 throttle_cfs_rq(cfs_rq); 4860 } 4861 4862 static void sync_throttle(struct task_group *tg, int cpu) 4863 { 4864 struct cfs_rq *pcfs_rq, *cfs_rq; 4865 4866 if (!cfs_bandwidth_used()) 4867 return; 4868 4869 if (!tg->parent) 4870 return; 4871 4872 cfs_rq = tg->cfs_rq[cpu]; 4873 pcfs_rq = tg->parent->cfs_rq[cpu]; 4874 4875 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4876 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 4877 } 4878 4879 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4880 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4881 { 4882 if (!cfs_bandwidth_used()) 4883 return false; 4884 4885 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4886 return false; 4887 4888 /* 4889 * it's possible for a throttled entity to be forced into a running 4890 * state (e.g. set_curr_task), in this case we're finished. 4891 */ 4892 if (cfs_rq_throttled(cfs_rq)) 4893 return true; 4894 4895 throttle_cfs_rq(cfs_rq); 4896 return true; 4897 } 4898 4899 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4900 { 4901 struct cfs_bandwidth *cfs_b = 4902 container_of(timer, struct cfs_bandwidth, slack_timer); 4903 4904 do_sched_cfs_slack_timer(cfs_b); 4905 4906 return HRTIMER_NORESTART; 4907 } 4908 4909 extern const u64 max_cfs_quota_period; 4910 4911 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4912 { 4913 struct cfs_bandwidth *cfs_b = 4914 container_of(timer, struct cfs_bandwidth, period_timer); 4915 unsigned long flags; 4916 int overrun; 4917 int idle = 0; 4918 int count = 0; 4919 4920 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4921 for (;;) { 4922 overrun = hrtimer_forward_now(timer, cfs_b->period); 4923 if (!overrun) 4924 break; 4925 4926 if (++count > 3) { 4927 u64 new, old = ktime_to_ns(cfs_b->period); 4928 4929 new = (old * 147) / 128; /* ~115% */ 4930 new = min(new, max_cfs_quota_period); 4931 4932 cfs_b->period = ns_to_ktime(new); 4933 4934 /* since max is 1s, this is limited to 1e9^2, which fits in u64 */ 4935 cfs_b->quota *= new; 4936 cfs_b->quota = div64_u64(cfs_b->quota, old); 4937 4938 pr_warn_ratelimited( 4939 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us %lld, cfs_quota_us = %lld)\n", 4940 smp_processor_id(), 4941 div_u64(new, NSEC_PER_USEC), 4942 div_u64(cfs_b->quota, NSEC_PER_USEC)); 4943 4944 /* reset count so we don't come right back in here */ 4945 count = 0; 4946 } 4947 4948 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 4949 } 4950 if (idle) 4951 cfs_b->period_active = 0; 4952 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4953 4954 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 4955 } 4956 4957 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4958 { 4959 raw_spin_lock_init(&cfs_b->lock); 4960 cfs_b->runtime = 0; 4961 cfs_b->quota = RUNTIME_INF; 4962 cfs_b->period = ns_to_ktime(default_cfs_period()); 4963 4964 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 4965 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 4966 cfs_b->period_timer.function = sched_cfs_period_timer; 4967 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 4968 cfs_b->slack_timer.function = sched_cfs_slack_timer; 4969 cfs_b->distribute_running = 0; 4970 cfs_b->slack_started = false; 4971 } 4972 4973 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4974 { 4975 cfs_rq->runtime_enabled = 0; 4976 INIT_LIST_HEAD(&cfs_rq->throttled_list); 4977 } 4978 4979 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4980 { 4981 lockdep_assert_held(&cfs_b->lock); 4982 4983 if (cfs_b->period_active) 4984 return; 4985 4986 cfs_b->period_active = 1; 4987 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 4988 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 4989 } 4990 4991 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4992 { 4993 /* init_cfs_bandwidth() was not called */ 4994 if (!cfs_b->throttled_cfs_rq.next) 4995 return; 4996 4997 hrtimer_cancel(&cfs_b->period_timer); 4998 hrtimer_cancel(&cfs_b->slack_timer); 4999 } 5000 5001 /* 5002 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5003 * 5004 * The race is harmless, since modifying bandwidth settings of unhooked group 5005 * bits doesn't do much. 5006 */ 5007 5008 /* cpu online calback */ 5009 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5010 { 5011 struct task_group *tg; 5012 5013 lockdep_assert_held(&rq->lock); 5014 5015 rcu_read_lock(); 5016 list_for_each_entry_rcu(tg, &task_groups, list) { 5017 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5018 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5019 5020 raw_spin_lock(&cfs_b->lock); 5021 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5022 raw_spin_unlock(&cfs_b->lock); 5023 } 5024 rcu_read_unlock(); 5025 } 5026 5027 /* cpu offline callback */ 5028 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5029 { 5030 struct task_group *tg; 5031 5032 lockdep_assert_held(&rq->lock); 5033 5034 rcu_read_lock(); 5035 list_for_each_entry_rcu(tg, &task_groups, list) { 5036 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5037 5038 if (!cfs_rq->runtime_enabled) 5039 continue; 5040 5041 /* 5042 * clock_task is not advancing so we just need to make sure 5043 * there's some valid quota amount 5044 */ 5045 cfs_rq->runtime_remaining = 1; 5046 /* 5047 * Offline rq is schedulable till CPU is completely disabled 5048 * in take_cpu_down(), so we prevent new cfs throttling here. 5049 */ 5050 cfs_rq->runtime_enabled = 0; 5051 5052 if (cfs_rq_throttled(cfs_rq)) 5053 unthrottle_cfs_rq(cfs_rq); 5054 } 5055 rcu_read_unlock(); 5056 } 5057 5058 #else /* CONFIG_CFS_BANDWIDTH */ 5059 5060 static inline bool cfs_bandwidth_used(void) 5061 { 5062 return false; 5063 } 5064 5065 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5066 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5067 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5068 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5069 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5070 5071 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5072 { 5073 return 0; 5074 } 5075 5076 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5077 { 5078 return 0; 5079 } 5080 5081 static inline int throttled_lb_pair(struct task_group *tg, 5082 int src_cpu, int dest_cpu) 5083 { 5084 return 0; 5085 } 5086 5087 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5088 5089 #ifdef CONFIG_FAIR_GROUP_SCHED 5090 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5091 #endif 5092 5093 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5094 { 5095 return NULL; 5096 } 5097 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5098 static inline void update_runtime_enabled(struct rq *rq) {} 5099 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5100 5101 #endif /* CONFIG_CFS_BANDWIDTH */ 5102 5103 /************************************************** 5104 * CFS operations on tasks: 5105 */ 5106 5107 #ifdef CONFIG_SCHED_HRTICK 5108 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5109 { 5110 struct sched_entity *se = &p->se; 5111 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5112 5113 SCHED_WARN_ON(task_rq(p) != rq); 5114 5115 if (rq->cfs.h_nr_running > 1) { 5116 u64 slice = sched_slice(cfs_rq, se); 5117 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5118 s64 delta = slice - ran; 5119 5120 if (delta < 0) { 5121 if (rq->curr == p) 5122 resched_curr(rq); 5123 return; 5124 } 5125 hrtick_start(rq, delta); 5126 } 5127 } 5128 5129 /* 5130 * called from enqueue/dequeue and updates the hrtick when the 5131 * current task is from our class and nr_running is low enough 5132 * to matter. 5133 */ 5134 static void hrtick_update(struct rq *rq) 5135 { 5136 struct task_struct *curr = rq->curr; 5137 5138 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 5139 return; 5140 5141 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5142 hrtick_start_fair(rq, curr); 5143 } 5144 #else /* !CONFIG_SCHED_HRTICK */ 5145 static inline void 5146 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5147 { 5148 } 5149 5150 static inline void hrtick_update(struct rq *rq) 5151 { 5152 } 5153 #endif 5154 5155 #ifdef CONFIG_SMP 5156 static inline unsigned long cpu_util(int cpu); 5157 5158 static inline bool cpu_overutilized(int cpu) 5159 { 5160 return !fits_capacity(cpu_util(cpu), capacity_of(cpu)); 5161 } 5162 5163 static inline void update_overutilized_status(struct rq *rq) 5164 { 5165 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5166 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5167 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5168 } 5169 } 5170 #else 5171 static inline void update_overutilized_status(struct rq *rq) { } 5172 #endif 5173 5174 /* 5175 * The enqueue_task method is called before nr_running is 5176 * increased. Here we update the fair scheduling stats and 5177 * then put the task into the rbtree: 5178 */ 5179 static void 5180 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5181 { 5182 struct cfs_rq *cfs_rq; 5183 struct sched_entity *se = &p->se; 5184 int idle_h_nr_running = task_has_idle_policy(p); 5185 5186 /* 5187 * The code below (indirectly) updates schedutil which looks at 5188 * the cfs_rq utilization to select a frequency. 5189 * Let's add the task's estimated utilization to the cfs_rq's 5190 * estimated utilization, before we update schedutil. 5191 */ 5192 util_est_enqueue(&rq->cfs, p); 5193 5194 /* 5195 * If in_iowait is set, the code below may not trigger any cpufreq 5196 * utilization updates, so do it here explicitly with the IOWAIT flag 5197 * passed. 5198 */ 5199 if (p->in_iowait) 5200 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5201 5202 for_each_sched_entity(se) { 5203 if (se->on_rq) 5204 break; 5205 cfs_rq = cfs_rq_of(se); 5206 enqueue_entity(cfs_rq, se, flags); 5207 5208 /* 5209 * end evaluation on encountering a throttled cfs_rq 5210 * 5211 * note: in the case of encountering a throttled cfs_rq we will 5212 * post the final h_nr_running increment below. 5213 */ 5214 if (cfs_rq_throttled(cfs_rq)) 5215 break; 5216 cfs_rq->h_nr_running++; 5217 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5218 5219 flags = ENQUEUE_WAKEUP; 5220 } 5221 5222 for_each_sched_entity(se) { 5223 cfs_rq = cfs_rq_of(se); 5224 cfs_rq->h_nr_running++; 5225 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5226 5227 if (cfs_rq_throttled(cfs_rq)) 5228 break; 5229 5230 update_load_avg(cfs_rq, se, UPDATE_TG); 5231 update_cfs_group(se); 5232 } 5233 5234 if (!se) { 5235 add_nr_running(rq, 1); 5236 /* 5237 * Since new tasks are assigned an initial util_avg equal to 5238 * half of the spare capacity of their CPU, tiny tasks have the 5239 * ability to cross the overutilized threshold, which will 5240 * result in the load balancer ruining all the task placement 5241 * done by EAS. As a way to mitigate that effect, do not account 5242 * for the first enqueue operation of new tasks during the 5243 * overutilized flag detection. 5244 * 5245 * A better way of solving this problem would be to wait for 5246 * the PELT signals of tasks to converge before taking them 5247 * into account, but that is not straightforward to implement, 5248 * and the following generally works well enough in practice. 5249 */ 5250 if (flags & ENQUEUE_WAKEUP) 5251 update_overutilized_status(rq); 5252 5253 } 5254 5255 if (cfs_bandwidth_used()) { 5256 /* 5257 * When bandwidth control is enabled; the cfs_rq_throttled() 5258 * breaks in the above iteration can result in incomplete 5259 * leaf list maintenance, resulting in triggering the assertion 5260 * below. 5261 */ 5262 for_each_sched_entity(se) { 5263 cfs_rq = cfs_rq_of(se); 5264 5265 if (list_add_leaf_cfs_rq(cfs_rq)) 5266 break; 5267 } 5268 } 5269 5270 assert_list_leaf_cfs_rq(rq); 5271 5272 hrtick_update(rq); 5273 } 5274 5275 static void set_next_buddy(struct sched_entity *se); 5276 5277 /* 5278 * The dequeue_task method is called before nr_running is 5279 * decreased. We remove the task from the rbtree and 5280 * update the fair scheduling stats: 5281 */ 5282 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5283 { 5284 struct cfs_rq *cfs_rq; 5285 struct sched_entity *se = &p->se; 5286 int task_sleep = flags & DEQUEUE_SLEEP; 5287 int idle_h_nr_running = task_has_idle_policy(p); 5288 5289 for_each_sched_entity(se) { 5290 cfs_rq = cfs_rq_of(se); 5291 dequeue_entity(cfs_rq, se, flags); 5292 5293 /* 5294 * end evaluation on encountering a throttled cfs_rq 5295 * 5296 * note: in the case of encountering a throttled cfs_rq we will 5297 * post the final h_nr_running decrement below. 5298 */ 5299 if (cfs_rq_throttled(cfs_rq)) 5300 break; 5301 cfs_rq->h_nr_running--; 5302 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5303 5304 /* Don't dequeue parent if it has other entities besides us */ 5305 if (cfs_rq->load.weight) { 5306 /* Avoid re-evaluating load for this entity: */ 5307 se = parent_entity(se); 5308 /* 5309 * Bias pick_next to pick a task from this cfs_rq, as 5310 * p is sleeping when it is within its sched_slice. 5311 */ 5312 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5313 set_next_buddy(se); 5314 break; 5315 } 5316 flags |= DEQUEUE_SLEEP; 5317 } 5318 5319 for_each_sched_entity(se) { 5320 cfs_rq = cfs_rq_of(se); 5321 cfs_rq->h_nr_running--; 5322 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5323 5324 if (cfs_rq_throttled(cfs_rq)) 5325 break; 5326 5327 update_load_avg(cfs_rq, se, UPDATE_TG); 5328 update_cfs_group(se); 5329 } 5330 5331 if (!se) 5332 sub_nr_running(rq, 1); 5333 5334 util_est_dequeue(&rq->cfs, p, task_sleep); 5335 hrtick_update(rq); 5336 } 5337 5338 #ifdef CONFIG_SMP 5339 5340 /* Working cpumask for: load_balance, load_balance_newidle. */ 5341 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5342 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5343 5344 #ifdef CONFIG_NO_HZ_COMMON 5345 5346 static struct { 5347 cpumask_var_t idle_cpus_mask; 5348 atomic_t nr_cpus; 5349 int has_blocked; /* Idle CPUS has blocked load */ 5350 unsigned long next_balance; /* in jiffy units */ 5351 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5352 } nohz ____cacheline_aligned; 5353 5354 #endif /* CONFIG_NO_HZ_COMMON */ 5355 5356 /* CPU only has SCHED_IDLE tasks enqueued */ 5357 static int sched_idle_cpu(int cpu) 5358 { 5359 struct rq *rq = cpu_rq(cpu); 5360 5361 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 5362 rq->nr_running); 5363 } 5364 5365 static unsigned long cpu_runnable_load(struct rq *rq) 5366 { 5367 return cfs_rq_runnable_load_avg(&rq->cfs); 5368 } 5369 5370 static unsigned long capacity_of(int cpu) 5371 { 5372 return cpu_rq(cpu)->cpu_capacity; 5373 } 5374 5375 static unsigned long cpu_avg_load_per_task(int cpu) 5376 { 5377 struct rq *rq = cpu_rq(cpu); 5378 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 5379 unsigned long load_avg = cpu_runnable_load(rq); 5380 5381 if (nr_running) 5382 return load_avg / nr_running; 5383 5384 return 0; 5385 } 5386 5387 static void record_wakee(struct task_struct *p) 5388 { 5389 /* 5390 * Only decay a single time; tasks that have less then 1 wakeup per 5391 * jiffy will not have built up many flips. 5392 */ 5393 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5394 current->wakee_flips >>= 1; 5395 current->wakee_flip_decay_ts = jiffies; 5396 } 5397 5398 if (current->last_wakee != p) { 5399 current->last_wakee = p; 5400 current->wakee_flips++; 5401 } 5402 } 5403 5404 /* 5405 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5406 * 5407 * A waker of many should wake a different task than the one last awakened 5408 * at a frequency roughly N times higher than one of its wakees. 5409 * 5410 * In order to determine whether we should let the load spread vs consolidating 5411 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5412 * partner, and a factor of lls_size higher frequency in the other. 5413 * 5414 * With both conditions met, we can be relatively sure that the relationship is 5415 * non-monogamous, with partner count exceeding socket size. 5416 * 5417 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5418 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5419 * socket size. 5420 */ 5421 static int wake_wide(struct task_struct *p) 5422 { 5423 unsigned int master = current->wakee_flips; 5424 unsigned int slave = p->wakee_flips; 5425 int factor = this_cpu_read(sd_llc_size); 5426 5427 if (master < slave) 5428 swap(master, slave); 5429 if (slave < factor || master < slave * factor) 5430 return 0; 5431 return 1; 5432 } 5433 5434 /* 5435 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5436 * soonest. For the purpose of speed we only consider the waking and previous 5437 * CPU. 5438 * 5439 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5440 * cache-affine and is (or will be) idle. 5441 * 5442 * wake_affine_weight() - considers the weight to reflect the average 5443 * scheduling latency of the CPUs. This seems to work 5444 * for the overloaded case. 5445 */ 5446 static int 5447 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5448 { 5449 /* 5450 * If this_cpu is idle, it implies the wakeup is from interrupt 5451 * context. Only allow the move if cache is shared. Otherwise an 5452 * interrupt intensive workload could force all tasks onto one 5453 * node depending on the IO topology or IRQ affinity settings. 5454 * 5455 * If the prev_cpu is idle and cache affine then avoid a migration. 5456 * There is no guarantee that the cache hot data from an interrupt 5457 * is more important than cache hot data on the prev_cpu and from 5458 * a cpufreq perspective, it's better to have higher utilisation 5459 * on one CPU. 5460 */ 5461 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5462 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5463 5464 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5465 return this_cpu; 5466 5467 return nr_cpumask_bits; 5468 } 5469 5470 static int 5471 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5472 int this_cpu, int prev_cpu, int sync) 5473 { 5474 s64 this_eff_load, prev_eff_load; 5475 unsigned long task_load; 5476 5477 this_eff_load = cpu_runnable_load(cpu_rq(this_cpu)); 5478 5479 if (sync) { 5480 unsigned long current_load = task_h_load(current); 5481 5482 if (current_load > this_eff_load) 5483 return this_cpu; 5484 5485 this_eff_load -= current_load; 5486 } 5487 5488 task_load = task_h_load(p); 5489 5490 this_eff_load += task_load; 5491 if (sched_feat(WA_BIAS)) 5492 this_eff_load *= 100; 5493 this_eff_load *= capacity_of(prev_cpu); 5494 5495 prev_eff_load = cpu_runnable_load(cpu_rq(prev_cpu)); 5496 prev_eff_load -= task_load; 5497 if (sched_feat(WA_BIAS)) 5498 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5499 prev_eff_load *= capacity_of(this_cpu); 5500 5501 /* 5502 * If sync, adjust the weight of prev_eff_load such that if 5503 * prev_eff == this_eff that select_idle_sibling() will consider 5504 * stacking the wakee on top of the waker if no other CPU is 5505 * idle. 5506 */ 5507 if (sync) 5508 prev_eff_load += 1; 5509 5510 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5511 } 5512 5513 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5514 int this_cpu, int prev_cpu, int sync) 5515 { 5516 int target = nr_cpumask_bits; 5517 5518 if (sched_feat(WA_IDLE)) 5519 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5520 5521 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5522 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5523 5524 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5525 if (target == nr_cpumask_bits) 5526 return prev_cpu; 5527 5528 schedstat_inc(sd->ttwu_move_affine); 5529 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5530 return target; 5531 } 5532 5533 static unsigned long cpu_util_without(int cpu, struct task_struct *p); 5534 5535 static unsigned long capacity_spare_without(int cpu, struct task_struct *p) 5536 { 5537 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0); 5538 } 5539 5540 /* 5541 * find_idlest_group finds and returns the least busy CPU group within the 5542 * domain. 5543 * 5544 * Assumes p is allowed on at least one CPU in sd. 5545 */ 5546 static struct sched_group * 5547 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5548 int this_cpu, int sd_flag) 5549 { 5550 struct sched_group *idlest = NULL, *group = sd->groups; 5551 struct sched_group *most_spare_sg = NULL; 5552 unsigned long min_runnable_load = ULONG_MAX; 5553 unsigned long this_runnable_load = ULONG_MAX; 5554 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX; 5555 unsigned long most_spare = 0, this_spare = 0; 5556 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2; 5557 unsigned long imbalance = scale_load_down(NICE_0_LOAD) * 5558 (sd->imbalance_pct-100) / 100; 5559 5560 do { 5561 unsigned long load, avg_load, runnable_load; 5562 unsigned long spare_cap, max_spare_cap; 5563 int local_group; 5564 int i; 5565 5566 /* Skip over this group if it has no CPUs allowed */ 5567 if (!cpumask_intersects(sched_group_span(group), 5568 p->cpus_ptr)) 5569 continue; 5570 5571 local_group = cpumask_test_cpu(this_cpu, 5572 sched_group_span(group)); 5573 5574 /* 5575 * Tally up the load of all CPUs in the group and find 5576 * the group containing the CPU with most spare capacity. 5577 */ 5578 avg_load = 0; 5579 runnable_load = 0; 5580 max_spare_cap = 0; 5581 5582 for_each_cpu(i, sched_group_span(group)) { 5583 load = cpu_runnable_load(cpu_rq(i)); 5584 runnable_load += load; 5585 5586 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs); 5587 5588 spare_cap = capacity_spare_without(i, p); 5589 5590 if (spare_cap > max_spare_cap) 5591 max_spare_cap = spare_cap; 5592 } 5593 5594 /* Adjust by relative CPU capacity of the group */ 5595 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / 5596 group->sgc->capacity; 5597 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) / 5598 group->sgc->capacity; 5599 5600 if (local_group) { 5601 this_runnable_load = runnable_load; 5602 this_avg_load = avg_load; 5603 this_spare = max_spare_cap; 5604 } else { 5605 if (min_runnable_load > (runnable_load + imbalance)) { 5606 /* 5607 * The runnable load is significantly smaller 5608 * so we can pick this new CPU: 5609 */ 5610 min_runnable_load = runnable_load; 5611 min_avg_load = avg_load; 5612 idlest = group; 5613 } else if ((runnable_load < (min_runnable_load + imbalance)) && 5614 (100*min_avg_load > imbalance_scale*avg_load)) { 5615 /* 5616 * The runnable loads are close so take the 5617 * blocked load into account through avg_load: 5618 */ 5619 min_avg_load = avg_load; 5620 idlest = group; 5621 } 5622 5623 if (most_spare < max_spare_cap) { 5624 most_spare = max_spare_cap; 5625 most_spare_sg = group; 5626 } 5627 } 5628 } while (group = group->next, group != sd->groups); 5629 5630 /* 5631 * The cross-over point between using spare capacity or least load 5632 * is too conservative for high utilization tasks on partially 5633 * utilized systems if we require spare_capacity > task_util(p), 5634 * so we allow for some task stuffing by using 5635 * spare_capacity > task_util(p)/2. 5636 * 5637 * Spare capacity can't be used for fork because the utilization has 5638 * not been set yet, we must first select a rq to compute the initial 5639 * utilization. 5640 */ 5641 if (sd_flag & SD_BALANCE_FORK) 5642 goto skip_spare; 5643 5644 if (this_spare > task_util(p) / 2 && 5645 imbalance_scale*this_spare > 100*most_spare) 5646 return NULL; 5647 5648 if (most_spare > task_util(p) / 2) 5649 return most_spare_sg; 5650 5651 skip_spare: 5652 if (!idlest) 5653 return NULL; 5654 5655 /* 5656 * When comparing groups across NUMA domains, it's possible for the 5657 * local domain to be very lightly loaded relative to the remote 5658 * domains but "imbalance" skews the comparison making remote CPUs 5659 * look much more favourable. When considering cross-domain, add 5660 * imbalance to the runnable load on the remote node and consider 5661 * staying local. 5662 */ 5663 if ((sd->flags & SD_NUMA) && 5664 min_runnable_load + imbalance >= this_runnable_load) 5665 return NULL; 5666 5667 if (min_runnable_load > (this_runnable_load + imbalance)) 5668 return NULL; 5669 5670 if ((this_runnable_load < (min_runnable_load + imbalance)) && 5671 (100*this_avg_load < imbalance_scale*min_avg_load)) 5672 return NULL; 5673 5674 return idlest; 5675 } 5676 5677 /* 5678 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 5679 */ 5680 static int 5681 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5682 { 5683 unsigned long load, min_load = ULONG_MAX; 5684 unsigned int min_exit_latency = UINT_MAX; 5685 u64 latest_idle_timestamp = 0; 5686 int least_loaded_cpu = this_cpu; 5687 int shallowest_idle_cpu = -1, si_cpu = -1; 5688 int i; 5689 5690 /* Check if we have any choice: */ 5691 if (group->group_weight == 1) 5692 return cpumask_first(sched_group_span(group)); 5693 5694 /* Traverse only the allowed CPUs */ 5695 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 5696 if (available_idle_cpu(i)) { 5697 struct rq *rq = cpu_rq(i); 5698 struct cpuidle_state *idle = idle_get_state(rq); 5699 if (idle && idle->exit_latency < min_exit_latency) { 5700 /* 5701 * We give priority to a CPU whose idle state 5702 * has the smallest exit latency irrespective 5703 * of any idle timestamp. 5704 */ 5705 min_exit_latency = idle->exit_latency; 5706 latest_idle_timestamp = rq->idle_stamp; 5707 shallowest_idle_cpu = i; 5708 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5709 rq->idle_stamp > latest_idle_timestamp) { 5710 /* 5711 * If equal or no active idle state, then 5712 * the most recently idled CPU might have 5713 * a warmer cache. 5714 */ 5715 latest_idle_timestamp = rq->idle_stamp; 5716 shallowest_idle_cpu = i; 5717 } 5718 } else if (shallowest_idle_cpu == -1 && si_cpu == -1) { 5719 if (sched_idle_cpu(i)) { 5720 si_cpu = i; 5721 continue; 5722 } 5723 5724 load = cpu_runnable_load(cpu_rq(i)); 5725 if (load < min_load) { 5726 min_load = load; 5727 least_loaded_cpu = i; 5728 } 5729 } 5730 } 5731 5732 if (shallowest_idle_cpu != -1) 5733 return shallowest_idle_cpu; 5734 if (si_cpu != -1) 5735 return si_cpu; 5736 return least_loaded_cpu; 5737 } 5738 5739 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 5740 int cpu, int prev_cpu, int sd_flag) 5741 { 5742 int new_cpu = cpu; 5743 5744 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 5745 return prev_cpu; 5746 5747 /* 5748 * We need task's util for capacity_spare_without, sync it up to 5749 * prev_cpu's last_update_time. 5750 */ 5751 if (!(sd_flag & SD_BALANCE_FORK)) 5752 sync_entity_load_avg(&p->se); 5753 5754 while (sd) { 5755 struct sched_group *group; 5756 struct sched_domain *tmp; 5757 int weight; 5758 5759 if (!(sd->flags & sd_flag)) { 5760 sd = sd->child; 5761 continue; 5762 } 5763 5764 group = find_idlest_group(sd, p, cpu, sd_flag); 5765 if (!group) { 5766 sd = sd->child; 5767 continue; 5768 } 5769 5770 new_cpu = find_idlest_group_cpu(group, p, cpu); 5771 if (new_cpu == cpu) { 5772 /* Now try balancing at a lower domain level of 'cpu': */ 5773 sd = sd->child; 5774 continue; 5775 } 5776 5777 /* Now try balancing at a lower domain level of 'new_cpu': */ 5778 cpu = new_cpu; 5779 weight = sd->span_weight; 5780 sd = NULL; 5781 for_each_domain(cpu, tmp) { 5782 if (weight <= tmp->span_weight) 5783 break; 5784 if (tmp->flags & sd_flag) 5785 sd = tmp; 5786 } 5787 } 5788 5789 return new_cpu; 5790 } 5791 5792 #ifdef CONFIG_SCHED_SMT 5793 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5794 EXPORT_SYMBOL_GPL(sched_smt_present); 5795 5796 static inline void set_idle_cores(int cpu, int val) 5797 { 5798 struct sched_domain_shared *sds; 5799 5800 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5801 if (sds) 5802 WRITE_ONCE(sds->has_idle_cores, val); 5803 } 5804 5805 static inline bool test_idle_cores(int cpu, bool def) 5806 { 5807 struct sched_domain_shared *sds; 5808 5809 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5810 if (sds) 5811 return READ_ONCE(sds->has_idle_cores); 5812 5813 return def; 5814 } 5815 5816 /* 5817 * Scans the local SMT mask to see if the entire core is idle, and records this 5818 * information in sd_llc_shared->has_idle_cores. 5819 * 5820 * Since SMT siblings share all cache levels, inspecting this limited remote 5821 * state should be fairly cheap. 5822 */ 5823 void __update_idle_core(struct rq *rq) 5824 { 5825 int core = cpu_of(rq); 5826 int cpu; 5827 5828 rcu_read_lock(); 5829 if (test_idle_cores(core, true)) 5830 goto unlock; 5831 5832 for_each_cpu(cpu, cpu_smt_mask(core)) { 5833 if (cpu == core) 5834 continue; 5835 5836 if (!available_idle_cpu(cpu)) 5837 goto unlock; 5838 } 5839 5840 set_idle_cores(core, 1); 5841 unlock: 5842 rcu_read_unlock(); 5843 } 5844 5845 /* 5846 * Scan the entire LLC domain for idle cores; this dynamically switches off if 5847 * there are no idle cores left in the system; tracked through 5848 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 5849 */ 5850 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5851 { 5852 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 5853 int core, cpu; 5854 5855 if (!static_branch_likely(&sched_smt_present)) 5856 return -1; 5857 5858 if (!test_idle_cores(target, false)) 5859 return -1; 5860 5861 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 5862 5863 for_each_cpu_wrap(core, cpus, target) { 5864 bool idle = true; 5865 5866 for_each_cpu(cpu, cpu_smt_mask(core)) { 5867 __cpumask_clear_cpu(cpu, cpus); 5868 if (!available_idle_cpu(cpu)) 5869 idle = false; 5870 } 5871 5872 if (idle) 5873 return core; 5874 } 5875 5876 /* 5877 * Failed to find an idle core; stop looking for one. 5878 */ 5879 set_idle_cores(target, 0); 5880 5881 return -1; 5882 } 5883 5884 /* 5885 * Scan the local SMT mask for idle CPUs. 5886 */ 5887 static int select_idle_smt(struct task_struct *p, int target) 5888 { 5889 int cpu, si_cpu = -1; 5890 5891 if (!static_branch_likely(&sched_smt_present)) 5892 return -1; 5893 5894 for_each_cpu(cpu, cpu_smt_mask(target)) { 5895 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 5896 continue; 5897 if (available_idle_cpu(cpu)) 5898 return cpu; 5899 if (si_cpu == -1 && sched_idle_cpu(cpu)) 5900 si_cpu = cpu; 5901 } 5902 5903 return si_cpu; 5904 } 5905 5906 #else /* CONFIG_SCHED_SMT */ 5907 5908 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5909 { 5910 return -1; 5911 } 5912 5913 static inline int select_idle_smt(struct task_struct *p, int target) 5914 { 5915 return -1; 5916 } 5917 5918 #endif /* CONFIG_SCHED_SMT */ 5919 5920 /* 5921 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 5922 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 5923 * average idle time for this rq (as found in rq->avg_idle). 5924 */ 5925 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 5926 { 5927 struct sched_domain *this_sd; 5928 u64 avg_cost, avg_idle; 5929 u64 time, cost; 5930 s64 delta; 5931 int this = smp_processor_id(); 5932 int cpu, nr = INT_MAX, si_cpu = -1; 5933 5934 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 5935 if (!this_sd) 5936 return -1; 5937 5938 /* 5939 * Due to large variance we need a large fuzz factor; hackbench in 5940 * particularly is sensitive here. 5941 */ 5942 avg_idle = this_rq()->avg_idle / 512; 5943 avg_cost = this_sd->avg_scan_cost + 1; 5944 5945 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 5946 return -1; 5947 5948 if (sched_feat(SIS_PROP)) { 5949 u64 span_avg = sd->span_weight * avg_idle; 5950 if (span_avg > 4*avg_cost) 5951 nr = div_u64(span_avg, avg_cost); 5952 else 5953 nr = 4; 5954 } 5955 5956 time = cpu_clock(this); 5957 5958 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) { 5959 if (!--nr) 5960 return si_cpu; 5961 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 5962 continue; 5963 if (available_idle_cpu(cpu)) 5964 break; 5965 if (si_cpu == -1 && sched_idle_cpu(cpu)) 5966 si_cpu = cpu; 5967 } 5968 5969 time = cpu_clock(this) - time; 5970 cost = this_sd->avg_scan_cost; 5971 delta = (s64)(time - cost) / 8; 5972 this_sd->avg_scan_cost += delta; 5973 5974 return cpu; 5975 } 5976 5977 /* 5978 * Try and locate an idle core/thread in the LLC cache domain. 5979 */ 5980 static int select_idle_sibling(struct task_struct *p, int prev, int target) 5981 { 5982 struct sched_domain *sd; 5983 int i, recent_used_cpu; 5984 5985 if (available_idle_cpu(target) || sched_idle_cpu(target)) 5986 return target; 5987 5988 /* 5989 * If the previous CPU is cache affine and idle, don't be stupid: 5990 */ 5991 if (prev != target && cpus_share_cache(prev, target) && 5992 (available_idle_cpu(prev) || sched_idle_cpu(prev))) 5993 return prev; 5994 5995 /* Check a recently used CPU as a potential idle candidate: */ 5996 recent_used_cpu = p->recent_used_cpu; 5997 if (recent_used_cpu != prev && 5998 recent_used_cpu != target && 5999 cpus_share_cache(recent_used_cpu, target) && 6000 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 6001 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) { 6002 /* 6003 * Replace recent_used_cpu with prev as it is a potential 6004 * candidate for the next wake: 6005 */ 6006 p->recent_used_cpu = prev; 6007 return recent_used_cpu; 6008 } 6009 6010 sd = rcu_dereference(per_cpu(sd_llc, target)); 6011 if (!sd) 6012 return target; 6013 6014 i = select_idle_core(p, sd, target); 6015 if ((unsigned)i < nr_cpumask_bits) 6016 return i; 6017 6018 i = select_idle_cpu(p, sd, target); 6019 if ((unsigned)i < nr_cpumask_bits) 6020 return i; 6021 6022 i = select_idle_smt(p, target); 6023 if ((unsigned)i < nr_cpumask_bits) 6024 return i; 6025 6026 return target; 6027 } 6028 6029 /** 6030 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks 6031 * @cpu: the CPU to get the utilization of 6032 * 6033 * The unit of the return value must be the one of capacity so we can compare 6034 * the utilization with the capacity of the CPU that is available for CFS task 6035 * (ie cpu_capacity). 6036 * 6037 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6038 * recent utilization of currently non-runnable tasks on a CPU. It represents 6039 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6040 * capacity_orig is the cpu_capacity available at the highest frequency 6041 * (arch_scale_freq_capacity()). 6042 * The utilization of a CPU converges towards a sum equal to or less than the 6043 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6044 * the running time on this CPU scaled by capacity_curr. 6045 * 6046 * The estimated utilization of a CPU is defined to be the maximum between its 6047 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6048 * currently RUNNABLE on that CPU. 6049 * This allows to properly represent the expected utilization of a CPU which 6050 * has just got a big task running since a long sleep period. At the same time 6051 * however it preserves the benefits of the "blocked utilization" in 6052 * describing the potential for other tasks waking up on the same CPU. 6053 * 6054 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6055 * higher than capacity_orig because of unfortunate rounding in 6056 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6057 * the average stabilizes with the new running time. We need to check that the 6058 * utilization stays within the range of [0..capacity_orig] and cap it if 6059 * necessary. Without utilization capping, a group could be seen as overloaded 6060 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6061 * available capacity. We allow utilization to overshoot capacity_curr (but not 6062 * capacity_orig) as it useful for predicting the capacity required after task 6063 * migrations (scheduler-driven DVFS). 6064 * 6065 * Return: the (estimated) utilization for the specified CPU 6066 */ 6067 static inline unsigned long cpu_util(int cpu) 6068 { 6069 struct cfs_rq *cfs_rq; 6070 unsigned int util; 6071 6072 cfs_rq = &cpu_rq(cpu)->cfs; 6073 util = READ_ONCE(cfs_rq->avg.util_avg); 6074 6075 if (sched_feat(UTIL_EST)) 6076 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6077 6078 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6079 } 6080 6081 /* 6082 * cpu_util_without: compute cpu utilization without any contributions from *p 6083 * @cpu: the CPU which utilization is requested 6084 * @p: the task which utilization should be discounted 6085 * 6086 * The utilization of a CPU is defined by the utilization of tasks currently 6087 * enqueued on that CPU as well as tasks which are currently sleeping after an 6088 * execution on that CPU. 6089 * 6090 * This method returns the utilization of the specified CPU by discounting the 6091 * utilization of the specified task, whenever the task is currently 6092 * contributing to the CPU utilization. 6093 */ 6094 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6095 { 6096 struct cfs_rq *cfs_rq; 6097 unsigned int util; 6098 6099 /* Task has no contribution or is new */ 6100 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6101 return cpu_util(cpu); 6102 6103 cfs_rq = &cpu_rq(cpu)->cfs; 6104 util = READ_ONCE(cfs_rq->avg.util_avg); 6105 6106 /* Discount task's util from CPU's util */ 6107 lsub_positive(&util, task_util(p)); 6108 6109 /* 6110 * Covered cases: 6111 * 6112 * a) if *p is the only task sleeping on this CPU, then: 6113 * cpu_util (== task_util) > util_est (== 0) 6114 * and thus we return: 6115 * cpu_util_without = (cpu_util - task_util) = 0 6116 * 6117 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6118 * IDLE, then: 6119 * cpu_util >= task_util 6120 * cpu_util > util_est (== 0) 6121 * and thus we discount *p's blocked utilization to return: 6122 * cpu_util_without = (cpu_util - task_util) >= 0 6123 * 6124 * c) if other tasks are RUNNABLE on that CPU and 6125 * util_est > cpu_util 6126 * then we use util_est since it returns a more restrictive 6127 * estimation of the spare capacity on that CPU, by just 6128 * considering the expected utilization of tasks already 6129 * runnable on that CPU. 6130 * 6131 * Cases a) and b) are covered by the above code, while case c) is 6132 * covered by the following code when estimated utilization is 6133 * enabled. 6134 */ 6135 if (sched_feat(UTIL_EST)) { 6136 unsigned int estimated = 6137 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6138 6139 /* 6140 * Despite the following checks we still have a small window 6141 * for a possible race, when an execl's select_task_rq_fair() 6142 * races with LB's detach_task(): 6143 * 6144 * detach_task() 6145 * p->on_rq = TASK_ON_RQ_MIGRATING; 6146 * ---------------------------------- A 6147 * deactivate_task() \ 6148 * dequeue_task() + RaceTime 6149 * util_est_dequeue() / 6150 * ---------------------------------- B 6151 * 6152 * The additional check on "current == p" it's required to 6153 * properly fix the execl regression and it helps in further 6154 * reducing the chances for the above race. 6155 */ 6156 if (unlikely(task_on_rq_queued(p) || current == p)) 6157 lsub_positive(&estimated, _task_util_est(p)); 6158 6159 util = max(util, estimated); 6160 } 6161 6162 /* 6163 * Utilization (estimated) can exceed the CPU capacity, thus let's 6164 * clamp to the maximum CPU capacity to ensure consistency with 6165 * the cpu_util call. 6166 */ 6167 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6168 } 6169 6170 /* 6171 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 6172 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 6173 * 6174 * In that case WAKE_AFFINE doesn't make sense and we'll let 6175 * BALANCE_WAKE sort things out. 6176 */ 6177 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 6178 { 6179 long min_cap, max_cap; 6180 6181 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 6182 return 0; 6183 6184 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 6185 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 6186 6187 /* Minimum capacity is close to max, no need to abort wake_affine */ 6188 if (max_cap - min_cap < max_cap >> 3) 6189 return 0; 6190 6191 /* Bring task utilization in sync with prev_cpu */ 6192 sync_entity_load_avg(&p->se); 6193 6194 return !task_fits_capacity(p, min_cap); 6195 } 6196 6197 /* 6198 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) 6199 * to @dst_cpu. 6200 */ 6201 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6202 { 6203 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6204 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); 6205 6206 /* 6207 * If @p migrates from @cpu to another, remove its contribution. Or, 6208 * if @p migrates from another CPU to @cpu, add its contribution. In 6209 * the other cases, @cpu is not impacted by the migration, so the 6210 * util_avg should already be correct. 6211 */ 6212 if (task_cpu(p) == cpu && dst_cpu != cpu) 6213 sub_positive(&util, task_util(p)); 6214 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6215 util += task_util(p); 6216 6217 if (sched_feat(UTIL_EST)) { 6218 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6219 6220 /* 6221 * During wake-up, the task isn't enqueued yet and doesn't 6222 * appear in the cfs_rq->avg.util_est.enqueued of any rq, 6223 * so just add it (if needed) to "simulate" what will be 6224 * cpu_util() after the task has been enqueued. 6225 */ 6226 if (dst_cpu == cpu) 6227 util_est += _task_util_est(p); 6228 6229 util = max(util, util_est); 6230 } 6231 6232 return min(util, capacity_orig_of(cpu)); 6233 } 6234 6235 /* 6236 * compute_energy(): Estimates the energy that @pd would consume if @p was 6237 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6238 * landscape of @pd's CPUs after the task migration, and uses the Energy Model 6239 * to compute what would be the energy if we decided to actually migrate that 6240 * task. 6241 */ 6242 static long 6243 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6244 { 6245 struct cpumask *pd_mask = perf_domain_span(pd); 6246 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask)); 6247 unsigned long max_util = 0, sum_util = 0; 6248 int cpu; 6249 6250 /* 6251 * The capacity state of CPUs of the current rd can be driven by CPUs 6252 * of another rd if they belong to the same pd. So, account for the 6253 * utilization of these CPUs too by masking pd with cpu_online_mask 6254 * instead of the rd span. 6255 * 6256 * If an entire pd is outside of the current rd, it will not appear in 6257 * its pd list and will not be accounted by compute_energy(). 6258 */ 6259 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) { 6260 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu); 6261 struct task_struct *tsk = cpu == dst_cpu ? p : NULL; 6262 6263 /* 6264 * Busy time computation: utilization clamping is not 6265 * required since the ratio (sum_util / cpu_capacity) 6266 * is already enough to scale the EM reported power 6267 * consumption at the (eventually clamped) cpu_capacity. 6268 */ 6269 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap, 6270 ENERGY_UTIL, NULL); 6271 6272 /* 6273 * Performance domain frequency: utilization clamping 6274 * must be considered since it affects the selection 6275 * of the performance domain frequency. 6276 * NOTE: in case RT tasks are running, by default the 6277 * FREQUENCY_UTIL's utilization can be max OPP. 6278 */ 6279 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap, 6280 FREQUENCY_UTIL, tsk); 6281 max_util = max(max_util, cpu_util); 6282 } 6283 6284 return em_pd_energy(pd->em_pd, max_util, sum_util); 6285 } 6286 6287 /* 6288 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6289 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6290 * spare capacity in each performance domain and uses it as a potential 6291 * candidate to execute the task. Then, it uses the Energy Model to figure 6292 * out which of the CPU candidates is the most energy-efficient. 6293 * 6294 * The rationale for this heuristic is as follows. In a performance domain, 6295 * all the most energy efficient CPU candidates (according to the Energy 6296 * Model) are those for which we'll request a low frequency. When there are 6297 * several CPUs for which the frequency request will be the same, we don't 6298 * have enough data to break the tie between them, because the Energy Model 6299 * only includes active power costs. With this model, if we assume that 6300 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6301 * the maximum spare capacity in a performance domain is guaranteed to be among 6302 * the best candidates of the performance domain. 6303 * 6304 * In practice, it could be preferable from an energy standpoint to pack 6305 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6306 * but that could also hurt our chances to go cluster idle, and we have no 6307 * ways to tell with the current Energy Model if this is actually a good 6308 * idea or not. So, find_energy_efficient_cpu() basically favors 6309 * cluster-packing, and spreading inside a cluster. That should at least be 6310 * a good thing for latency, and this is consistent with the idea that most 6311 * of the energy savings of EAS come from the asymmetry of the system, and 6312 * not so much from breaking the tie between identical CPUs. That's also the 6313 * reason why EAS is enabled in the topology code only for systems where 6314 * SD_ASYM_CPUCAPACITY is set. 6315 * 6316 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6317 * they don't have any useful utilization data yet and it's not possible to 6318 * forecast their impact on energy consumption. Consequently, they will be 6319 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6320 * to be energy-inefficient in some use-cases. The alternative would be to 6321 * bias new tasks towards specific types of CPUs first, or to try to infer 6322 * their util_avg from the parent task, but those heuristics could hurt 6323 * other use-cases too. So, until someone finds a better way to solve this, 6324 * let's keep things simple by re-using the existing slow path. 6325 */ 6326 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6327 { 6328 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 6329 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6330 unsigned long cpu_cap, util, base_energy = 0; 6331 int cpu, best_energy_cpu = prev_cpu; 6332 struct sched_domain *sd; 6333 struct perf_domain *pd; 6334 6335 rcu_read_lock(); 6336 pd = rcu_dereference(rd->pd); 6337 if (!pd || READ_ONCE(rd->overutilized)) 6338 goto fail; 6339 6340 /* 6341 * Energy-aware wake-up happens on the lowest sched_domain starting 6342 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6343 */ 6344 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6345 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6346 sd = sd->parent; 6347 if (!sd) 6348 goto fail; 6349 6350 sync_entity_load_avg(&p->se); 6351 if (!task_util_est(p)) 6352 goto unlock; 6353 6354 for (; pd; pd = pd->next) { 6355 unsigned long cur_delta, spare_cap, max_spare_cap = 0; 6356 unsigned long base_energy_pd; 6357 int max_spare_cap_cpu = -1; 6358 6359 /* Compute the 'base' energy of the pd, without @p */ 6360 base_energy_pd = compute_energy(p, -1, pd); 6361 base_energy += base_energy_pd; 6362 6363 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6364 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6365 continue; 6366 6367 /* Skip CPUs that will be overutilized. */ 6368 util = cpu_util_next(cpu, p, cpu); 6369 cpu_cap = capacity_of(cpu); 6370 if (!fits_capacity(util, cpu_cap)) 6371 continue; 6372 6373 /* Always use prev_cpu as a candidate. */ 6374 if (cpu == prev_cpu) { 6375 prev_delta = compute_energy(p, prev_cpu, pd); 6376 prev_delta -= base_energy_pd; 6377 best_delta = min(best_delta, prev_delta); 6378 } 6379 6380 /* 6381 * Find the CPU with the maximum spare capacity in 6382 * the performance domain 6383 */ 6384 spare_cap = cpu_cap - util; 6385 if (spare_cap > max_spare_cap) { 6386 max_spare_cap = spare_cap; 6387 max_spare_cap_cpu = cpu; 6388 } 6389 } 6390 6391 /* Evaluate the energy impact of using this CPU. */ 6392 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) { 6393 cur_delta = compute_energy(p, max_spare_cap_cpu, pd); 6394 cur_delta -= base_energy_pd; 6395 if (cur_delta < best_delta) { 6396 best_delta = cur_delta; 6397 best_energy_cpu = max_spare_cap_cpu; 6398 } 6399 } 6400 } 6401 unlock: 6402 rcu_read_unlock(); 6403 6404 /* 6405 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6406 * least 6% of the energy used by prev_cpu. 6407 */ 6408 if (prev_delta == ULONG_MAX) 6409 return best_energy_cpu; 6410 6411 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4)) 6412 return best_energy_cpu; 6413 6414 return prev_cpu; 6415 6416 fail: 6417 rcu_read_unlock(); 6418 6419 return -1; 6420 } 6421 6422 /* 6423 * select_task_rq_fair: Select target runqueue for the waking task in domains 6424 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 6425 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6426 * 6427 * Balances load by selecting the idlest CPU in the idlest group, or under 6428 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6429 * 6430 * Returns the target CPU number. 6431 * 6432 * preempt must be disabled. 6433 */ 6434 static int 6435 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 6436 { 6437 struct sched_domain *tmp, *sd = NULL; 6438 int cpu = smp_processor_id(); 6439 int new_cpu = prev_cpu; 6440 int want_affine = 0; 6441 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6442 6443 if (sd_flag & SD_BALANCE_WAKE) { 6444 record_wakee(p); 6445 6446 if (sched_energy_enabled()) { 6447 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6448 if (new_cpu >= 0) 6449 return new_cpu; 6450 new_cpu = prev_cpu; 6451 } 6452 6453 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) && 6454 cpumask_test_cpu(cpu, p->cpus_ptr); 6455 } 6456 6457 rcu_read_lock(); 6458 for_each_domain(cpu, tmp) { 6459 if (!(tmp->flags & SD_LOAD_BALANCE)) 6460 break; 6461 6462 /* 6463 * If both 'cpu' and 'prev_cpu' are part of this domain, 6464 * cpu is a valid SD_WAKE_AFFINE target. 6465 */ 6466 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6467 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6468 if (cpu != prev_cpu) 6469 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6470 6471 sd = NULL; /* Prefer wake_affine over balance flags */ 6472 break; 6473 } 6474 6475 if (tmp->flags & sd_flag) 6476 sd = tmp; 6477 else if (!want_affine) 6478 break; 6479 } 6480 6481 if (unlikely(sd)) { 6482 /* Slow path */ 6483 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6484 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ 6485 /* Fast path */ 6486 6487 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6488 6489 if (want_affine) 6490 current->recent_used_cpu = cpu; 6491 } 6492 rcu_read_unlock(); 6493 6494 return new_cpu; 6495 } 6496 6497 static void detach_entity_cfs_rq(struct sched_entity *se); 6498 6499 /* 6500 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6501 * cfs_rq_of(p) references at time of call are still valid and identify the 6502 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6503 */ 6504 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6505 { 6506 /* 6507 * As blocked tasks retain absolute vruntime the migration needs to 6508 * deal with this by subtracting the old and adding the new 6509 * min_vruntime -- the latter is done by enqueue_entity() when placing 6510 * the task on the new runqueue. 6511 */ 6512 if (p->state == TASK_WAKING) { 6513 struct sched_entity *se = &p->se; 6514 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6515 u64 min_vruntime; 6516 6517 #ifndef CONFIG_64BIT 6518 u64 min_vruntime_copy; 6519 6520 do { 6521 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6522 smp_rmb(); 6523 min_vruntime = cfs_rq->min_vruntime; 6524 } while (min_vruntime != min_vruntime_copy); 6525 #else 6526 min_vruntime = cfs_rq->min_vruntime; 6527 #endif 6528 6529 se->vruntime -= min_vruntime; 6530 } 6531 6532 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6533 /* 6534 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6535 * rq->lock and can modify state directly. 6536 */ 6537 lockdep_assert_held(&task_rq(p)->lock); 6538 detach_entity_cfs_rq(&p->se); 6539 6540 } else { 6541 /* 6542 * We are supposed to update the task to "current" time, then 6543 * its up to date and ready to go to new CPU/cfs_rq. But we 6544 * have difficulty in getting what current time is, so simply 6545 * throw away the out-of-date time. This will result in the 6546 * wakee task is less decayed, but giving the wakee more load 6547 * sounds not bad. 6548 */ 6549 remove_entity_load_avg(&p->se); 6550 } 6551 6552 /* Tell new CPU we are migrated */ 6553 p->se.avg.last_update_time = 0; 6554 6555 /* We have migrated, no longer consider this task hot */ 6556 p->se.exec_start = 0; 6557 6558 update_scan_period(p, new_cpu); 6559 } 6560 6561 static void task_dead_fair(struct task_struct *p) 6562 { 6563 remove_entity_load_avg(&p->se); 6564 } 6565 #endif /* CONFIG_SMP */ 6566 6567 static unsigned long wakeup_gran(struct sched_entity *se) 6568 { 6569 unsigned long gran = sysctl_sched_wakeup_granularity; 6570 6571 /* 6572 * Since its curr running now, convert the gran from real-time 6573 * to virtual-time in his units. 6574 * 6575 * By using 'se' instead of 'curr' we penalize light tasks, so 6576 * they get preempted easier. That is, if 'se' < 'curr' then 6577 * the resulting gran will be larger, therefore penalizing the 6578 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6579 * be smaller, again penalizing the lighter task. 6580 * 6581 * This is especially important for buddies when the leftmost 6582 * task is higher priority than the buddy. 6583 */ 6584 return calc_delta_fair(gran, se); 6585 } 6586 6587 /* 6588 * Should 'se' preempt 'curr'. 6589 * 6590 * |s1 6591 * |s2 6592 * |s3 6593 * g 6594 * |<--->|c 6595 * 6596 * w(c, s1) = -1 6597 * w(c, s2) = 0 6598 * w(c, s3) = 1 6599 * 6600 */ 6601 static int 6602 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6603 { 6604 s64 gran, vdiff = curr->vruntime - se->vruntime; 6605 6606 if (vdiff <= 0) 6607 return -1; 6608 6609 gran = wakeup_gran(se); 6610 if (vdiff > gran) 6611 return 1; 6612 6613 return 0; 6614 } 6615 6616 static void set_last_buddy(struct sched_entity *se) 6617 { 6618 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6619 return; 6620 6621 for_each_sched_entity(se) { 6622 if (SCHED_WARN_ON(!se->on_rq)) 6623 return; 6624 cfs_rq_of(se)->last = se; 6625 } 6626 } 6627 6628 static void set_next_buddy(struct sched_entity *se) 6629 { 6630 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6631 return; 6632 6633 for_each_sched_entity(se) { 6634 if (SCHED_WARN_ON(!se->on_rq)) 6635 return; 6636 cfs_rq_of(se)->next = se; 6637 } 6638 } 6639 6640 static void set_skip_buddy(struct sched_entity *se) 6641 { 6642 for_each_sched_entity(se) 6643 cfs_rq_of(se)->skip = se; 6644 } 6645 6646 /* 6647 * Preempt the current task with a newly woken task if needed: 6648 */ 6649 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6650 { 6651 struct task_struct *curr = rq->curr; 6652 struct sched_entity *se = &curr->se, *pse = &p->se; 6653 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6654 int scale = cfs_rq->nr_running >= sched_nr_latency; 6655 int next_buddy_marked = 0; 6656 6657 if (unlikely(se == pse)) 6658 return; 6659 6660 /* 6661 * This is possible from callers such as attach_tasks(), in which we 6662 * unconditionally check_prempt_curr() after an enqueue (which may have 6663 * lead to a throttle). This both saves work and prevents false 6664 * next-buddy nomination below. 6665 */ 6666 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6667 return; 6668 6669 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6670 set_next_buddy(pse); 6671 next_buddy_marked = 1; 6672 } 6673 6674 /* 6675 * We can come here with TIF_NEED_RESCHED already set from new task 6676 * wake up path. 6677 * 6678 * Note: this also catches the edge-case of curr being in a throttled 6679 * group (e.g. via set_curr_task), since update_curr() (in the 6680 * enqueue of curr) will have resulted in resched being set. This 6681 * prevents us from potentially nominating it as a false LAST_BUDDY 6682 * below. 6683 */ 6684 if (test_tsk_need_resched(curr)) 6685 return; 6686 6687 /* Idle tasks are by definition preempted by non-idle tasks. */ 6688 if (unlikely(task_has_idle_policy(curr)) && 6689 likely(!task_has_idle_policy(p))) 6690 goto preempt; 6691 6692 /* 6693 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6694 * is driven by the tick): 6695 */ 6696 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6697 return; 6698 6699 find_matching_se(&se, &pse); 6700 update_curr(cfs_rq_of(se)); 6701 BUG_ON(!pse); 6702 if (wakeup_preempt_entity(se, pse) == 1) { 6703 /* 6704 * Bias pick_next to pick the sched entity that is 6705 * triggering this preemption. 6706 */ 6707 if (!next_buddy_marked) 6708 set_next_buddy(pse); 6709 goto preempt; 6710 } 6711 6712 return; 6713 6714 preempt: 6715 resched_curr(rq); 6716 /* 6717 * Only set the backward buddy when the current task is still 6718 * on the rq. This can happen when a wakeup gets interleaved 6719 * with schedule on the ->pre_schedule() or idle_balance() 6720 * point, either of which can * drop the rq lock. 6721 * 6722 * Also, during early boot the idle thread is in the fair class, 6723 * for obvious reasons its a bad idea to schedule back to it. 6724 */ 6725 if (unlikely(!se->on_rq || curr == rq->idle)) 6726 return; 6727 6728 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6729 set_last_buddy(se); 6730 } 6731 6732 static struct task_struct * 6733 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6734 { 6735 struct cfs_rq *cfs_rq = &rq->cfs; 6736 struct sched_entity *se; 6737 struct task_struct *p; 6738 int new_tasks; 6739 6740 again: 6741 if (!cfs_rq->nr_running) 6742 goto idle; 6743 6744 #ifdef CONFIG_FAIR_GROUP_SCHED 6745 if (!prev || prev->sched_class != &fair_sched_class) 6746 goto simple; 6747 6748 /* 6749 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6750 * likely that a next task is from the same cgroup as the current. 6751 * 6752 * Therefore attempt to avoid putting and setting the entire cgroup 6753 * hierarchy, only change the part that actually changes. 6754 */ 6755 6756 do { 6757 struct sched_entity *curr = cfs_rq->curr; 6758 6759 /* 6760 * Since we got here without doing put_prev_entity() we also 6761 * have to consider cfs_rq->curr. If it is still a runnable 6762 * entity, update_curr() will update its vruntime, otherwise 6763 * forget we've ever seen it. 6764 */ 6765 if (curr) { 6766 if (curr->on_rq) 6767 update_curr(cfs_rq); 6768 else 6769 curr = NULL; 6770 6771 /* 6772 * This call to check_cfs_rq_runtime() will do the 6773 * throttle and dequeue its entity in the parent(s). 6774 * Therefore the nr_running test will indeed 6775 * be correct. 6776 */ 6777 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 6778 cfs_rq = &rq->cfs; 6779 6780 if (!cfs_rq->nr_running) 6781 goto idle; 6782 6783 goto simple; 6784 } 6785 } 6786 6787 se = pick_next_entity(cfs_rq, curr); 6788 cfs_rq = group_cfs_rq(se); 6789 } while (cfs_rq); 6790 6791 p = task_of(se); 6792 6793 /* 6794 * Since we haven't yet done put_prev_entity and if the selected task 6795 * is a different task than we started out with, try and touch the 6796 * least amount of cfs_rqs. 6797 */ 6798 if (prev != p) { 6799 struct sched_entity *pse = &prev->se; 6800 6801 while (!(cfs_rq = is_same_group(se, pse))) { 6802 int se_depth = se->depth; 6803 int pse_depth = pse->depth; 6804 6805 if (se_depth <= pse_depth) { 6806 put_prev_entity(cfs_rq_of(pse), pse); 6807 pse = parent_entity(pse); 6808 } 6809 if (se_depth >= pse_depth) { 6810 set_next_entity(cfs_rq_of(se), se); 6811 se = parent_entity(se); 6812 } 6813 } 6814 6815 put_prev_entity(cfs_rq, pse); 6816 set_next_entity(cfs_rq, se); 6817 } 6818 6819 goto done; 6820 simple: 6821 #endif 6822 if (prev) 6823 put_prev_task(rq, prev); 6824 6825 do { 6826 se = pick_next_entity(cfs_rq, NULL); 6827 set_next_entity(cfs_rq, se); 6828 cfs_rq = group_cfs_rq(se); 6829 } while (cfs_rq); 6830 6831 p = task_of(se); 6832 6833 done: __maybe_unused; 6834 #ifdef CONFIG_SMP 6835 /* 6836 * Move the next running task to the front of 6837 * the list, so our cfs_tasks list becomes MRU 6838 * one. 6839 */ 6840 list_move(&p->se.group_node, &rq->cfs_tasks); 6841 #endif 6842 6843 if (hrtick_enabled(rq)) 6844 hrtick_start_fair(rq, p); 6845 6846 update_misfit_status(p, rq); 6847 6848 return p; 6849 6850 idle: 6851 if (!rf) 6852 return NULL; 6853 6854 new_tasks = newidle_balance(rq, rf); 6855 6856 /* 6857 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 6858 * possible for any higher priority task to appear. In that case we 6859 * must re-start the pick_next_entity() loop. 6860 */ 6861 if (new_tasks < 0) 6862 return RETRY_TASK; 6863 6864 if (new_tasks > 0) 6865 goto again; 6866 6867 /* 6868 * rq is about to be idle, check if we need to update the 6869 * lost_idle_time of clock_pelt 6870 */ 6871 update_idle_rq_clock_pelt(rq); 6872 6873 return NULL; 6874 } 6875 6876 /* 6877 * Account for a descheduled task: 6878 */ 6879 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6880 { 6881 struct sched_entity *se = &prev->se; 6882 struct cfs_rq *cfs_rq; 6883 6884 for_each_sched_entity(se) { 6885 cfs_rq = cfs_rq_of(se); 6886 put_prev_entity(cfs_rq, se); 6887 } 6888 } 6889 6890 /* 6891 * sched_yield() is very simple 6892 * 6893 * The magic of dealing with the ->skip buddy is in pick_next_entity. 6894 */ 6895 static void yield_task_fair(struct rq *rq) 6896 { 6897 struct task_struct *curr = rq->curr; 6898 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6899 struct sched_entity *se = &curr->se; 6900 6901 /* 6902 * Are we the only task in the tree? 6903 */ 6904 if (unlikely(rq->nr_running == 1)) 6905 return; 6906 6907 clear_buddies(cfs_rq, se); 6908 6909 if (curr->policy != SCHED_BATCH) { 6910 update_rq_clock(rq); 6911 /* 6912 * Update run-time statistics of the 'current'. 6913 */ 6914 update_curr(cfs_rq); 6915 /* 6916 * Tell update_rq_clock() that we've just updated, 6917 * so we don't do microscopic update in schedule() 6918 * and double the fastpath cost. 6919 */ 6920 rq_clock_skip_update(rq); 6921 } 6922 6923 set_skip_buddy(se); 6924 } 6925 6926 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 6927 { 6928 struct sched_entity *se = &p->se; 6929 6930 /* throttled hierarchies are not runnable */ 6931 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 6932 return false; 6933 6934 /* Tell the scheduler that we'd really like pse to run next. */ 6935 set_next_buddy(se); 6936 6937 yield_task_fair(rq); 6938 6939 return true; 6940 } 6941 6942 #ifdef CONFIG_SMP 6943 /************************************************** 6944 * Fair scheduling class load-balancing methods. 6945 * 6946 * BASICS 6947 * 6948 * The purpose of load-balancing is to achieve the same basic fairness the 6949 * per-CPU scheduler provides, namely provide a proportional amount of compute 6950 * time to each task. This is expressed in the following equation: 6951 * 6952 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 6953 * 6954 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 6955 * W_i,0 is defined as: 6956 * 6957 * W_i,0 = \Sum_j w_i,j (2) 6958 * 6959 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 6960 * is derived from the nice value as per sched_prio_to_weight[]. 6961 * 6962 * The weight average is an exponential decay average of the instantaneous 6963 * weight: 6964 * 6965 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 6966 * 6967 * C_i is the compute capacity of CPU i, typically it is the 6968 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 6969 * can also include other factors [XXX]. 6970 * 6971 * To achieve this balance we define a measure of imbalance which follows 6972 * directly from (1): 6973 * 6974 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 6975 * 6976 * We them move tasks around to minimize the imbalance. In the continuous 6977 * function space it is obvious this converges, in the discrete case we get 6978 * a few fun cases generally called infeasible weight scenarios. 6979 * 6980 * [XXX expand on: 6981 * - infeasible weights; 6982 * - local vs global optima in the discrete case. ] 6983 * 6984 * 6985 * SCHED DOMAINS 6986 * 6987 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 6988 * for all i,j solution, we create a tree of CPUs that follows the hardware 6989 * topology where each level pairs two lower groups (or better). This results 6990 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 6991 * tree to only the first of the previous level and we decrease the frequency 6992 * of load-balance at each level inv. proportional to the number of CPUs in 6993 * the groups. 6994 * 6995 * This yields: 6996 * 6997 * log_2 n 1 n 6998 * \Sum { --- * --- * 2^i } = O(n) (5) 6999 * i = 0 2^i 2^i 7000 * `- size of each group 7001 * | | `- number of CPUs doing load-balance 7002 * | `- freq 7003 * `- sum over all levels 7004 * 7005 * Coupled with a limit on how many tasks we can migrate every balance pass, 7006 * this makes (5) the runtime complexity of the balancer. 7007 * 7008 * An important property here is that each CPU is still (indirectly) connected 7009 * to every other CPU in at most O(log n) steps: 7010 * 7011 * The adjacency matrix of the resulting graph is given by: 7012 * 7013 * log_2 n 7014 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7015 * k = 0 7016 * 7017 * And you'll find that: 7018 * 7019 * A^(log_2 n)_i,j != 0 for all i,j (7) 7020 * 7021 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7022 * The task movement gives a factor of O(m), giving a convergence complexity 7023 * of: 7024 * 7025 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7026 * 7027 * 7028 * WORK CONSERVING 7029 * 7030 * In order to avoid CPUs going idle while there's still work to do, new idle 7031 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7032 * tree itself instead of relying on other CPUs to bring it work. 7033 * 7034 * This adds some complexity to both (5) and (8) but it reduces the total idle 7035 * time. 7036 * 7037 * [XXX more?] 7038 * 7039 * 7040 * CGROUPS 7041 * 7042 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7043 * 7044 * s_k,i 7045 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7046 * S_k 7047 * 7048 * Where 7049 * 7050 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7051 * 7052 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7053 * 7054 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7055 * property. 7056 * 7057 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7058 * rewrite all of this once again.] 7059 */ 7060 7061 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7062 7063 enum fbq_type { regular, remote, all }; 7064 7065 enum group_type { 7066 group_other = 0, 7067 group_misfit_task, 7068 group_imbalanced, 7069 group_overloaded, 7070 }; 7071 7072 #define LBF_ALL_PINNED 0x01 7073 #define LBF_NEED_BREAK 0x02 7074 #define LBF_DST_PINNED 0x04 7075 #define LBF_SOME_PINNED 0x08 7076 #define LBF_NOHZ_STATS 0x10 7077 #define LBF_NOHZ_AGAIN 0x20 7078 7079 struct lb_env { 7080 struct sched_domain *sd; 7081 7082 struct rq *src_rq; 7083 int src_cpu; 7084 7085 int dst_cpu; 7086 struct rq *dst_rq; 7087 7088 struct cpumask *dst_grpmask; 7089 int new_dst_cpu; 7090 enum cpu_idle_type idle; 7091 long imbalance; 7092 /* The set of CPUs under consideration for load-balancing */ 7093 struct cpumask *cpus; 7094 7095 unsigned int flags; 7096 7097 unsigned int loop; 7098 unsigned int loop_break; 7099 unsigned int loop_max; 7100 7101 enum fbq_type fbq_type; 7102 enum group_type src_grp_type; 7103 struct list_head tasks; 7104 }; 7105 7106 /* 7107 * Is this task likely cache-hot: 7108 */ 7109 static int task_hot(struct task_struct *p, struct lb_env *env) 7110 { 7111 s64 delta; 7112 7113 lockdep_assert_held(&env->src_rq->lock); 7114 7115 if (p->sched_class != &fair_sched_class) 7116 return 0; 7117 7118 if (unlikely(task_has_idle_policy(p))) 7119 return 0; 7120 7121 /* 7122 * Buddy candidates are cache hot: 7123 */ 7124 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7125 (&p->se == cfs_rq_of(&p->se)->next || 7126 &p->se == cfs_rq_of(&p->se)->last)) 7127 return 1; 7128 7129 if (sysctl_sched_migration_cost == -1) 7130 return 1; 7131 if (sysctl_sched_migration_cost == 0) 7132 return 0; 7133 7134 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7135 7136 return delta < (s64)sysctl_sched_migration_cost; 7137 } 7138 7139 #ifdef CONFIG_NUMA_BALANCING 7140 /* 7141 * Returns 1, if task migration degrades locality 7142 * Returns 0, if task migration improves locality i.e migration preferred. 7143 * Returns -1, if task migration is not affected by locality. 7144 */ 7145 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7146 { 7147 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7148 unsigned long src_weight, dst_weight; 7149 int src_nid, dst_nid, dist; 7150 7151 if (!static_branch_likely(&sched_numa_balancing)) 7152 return -1; 7153 7154 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7155 return -1; 7156 7157 src_nid = cpu_to_node(env->src_cpu); 7158 dst_nid = cpu_to_node(env->dst_cpu); 7159 7160 if (src_nid == dst_nid) 7161 return -1; 7162 7163 /* Migrating away from the preferred node is always bad. */ 7164 if (src_nid == p->numa_preferred_nid) { 7165 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7166 return 1; 7167 else 7168 return -1; 7169 } 7170 7171 /* Encourage migration to the preferred node. */ 7172 if (dst_nid == p->numa_preferred_nid) 7173 return 0; 7174 7175 /* Leaving a core idle is often worse than degrading locality. */ 7176 if (env->idle == CPU_IDLE) 7177 return -1; 7178 7179 dist = node_distance(src_nid, dst_nid); 7180 if (numa_group) { 7181 src_weight = group_weight(p, src_nid, dist); 7182 dst_weight = group_weight(p, dst_nid, dist); 7183 } else { 7184 src_weight = task_weight(p, src_nid, dist); 7185 dst_weight = task_weight(p, dst_nid, dist); 7186 } 7187 7188 return dst_weight < src_weight; 7189 } 7190 7191 #else 7192 static inline int migrate_degrades_locality(struct task_struct *p, 7193 struct lb_env *env) 7194 { 7195 return -1; 7196 } 7197 #endif 7198 7199 /* 7200 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7201 */ 7202 static 7203 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7204 { 7205 int tsk_cache_hot; 7206 7207 lockdep_assert_held(&env->src_rq->lock); 7208 7209 /* 7210 * We do not migrate tasks that are: 7211 * 1) throttled_lb_pair, or 7212 * 2) cannot be migrated to this CPU due to cpus_ptr, or 7213 * 3) running (obviously), or 7214 * 4) are cache-hot on their current CPU. 7215 */ 7216 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7217 return 0; 7218 7219 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 7220 int cpu; 7221 7222 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7223 7224 env->flags |= LBF_SOME_PINNED; 7225 7226 /* 7227 * Remember if this task can be migrated to any other CPU in 7228 * our sched_group. We may want to revisit it if we couldn't 7229 * meet load balance goals by pulling other tasks on src_cpu. 7230 * 7231 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 7232 * already computed one in current iteration. 7233 */ 7234 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 7235 return 0; 7236 7237 /* Prevent to re-select dst_cpu via env's CPUs: */ 7238 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7239 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 7240 env->flags |= LBF_DST_PINNED; 7241 env->new_dst_cpu = cpu; 7242 break; 7243 } 7244 } 7245 7246 return 0; 7247 } 7248 7249 /* Record that we found atleast one task that could run on dst_cpu */ 7250 env->flags &= ~LBF_ALL_PINNED; 7251 7252 if (task_running(env->src_rq, p)) { 7253 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7254 return 0; 7255 } 7256 7257 /* 7258 * Aggressive migration if: 7259 * 1) destination numa is preferred 7260 * 2) task is cache cold, or 7261 * 3) too many balance attempts have failed. 7262 */ 7263 tsk_cache_hot = migrate_degrades_locality(p, env); 7264 if (tsk_cache_hot == -1) 7265 tsk_cache_hot = task_hot(p, env); 7266 7267 if (tsk_cache_hot <= 0 || 7268 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7269 if (tsk_cache_hot == 1) { 7270 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7271 schedstat_inc(p->se.statistics.nr_forced_migrations); 7272 } 7273 return 1; 7274 } 7275 7276 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7277 return 0; 7278 } 7279 7280 /* 7281 * detach_task() -- detach the task for the migration specified in env 7282 */ 7283 static void detach_task(struct task_struct *p, struct lb_env *env) 7284 { 7285 lockdep_assert_held(&env->src_rq->lock); 7286 7287 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7288 set_task_cpu(p, env->dst_cpu); 7289 } 7290 7291 /* 7292 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7293 * part of active balancing operations within "domain". 7294 * 7295 * Returns a task if successful and NULL otherwise. 7296 */ 7297 static struct task_struct *detach_one_task(struct lb_env *env) 7298 { 7299 struct task_struct *p; 7300 7301 lockdep_assert_held(&env->src_rq->lock); 7302 7303 list_for_each_entry_reverse(p, 7304 &env->src_rq->cfs_tasks, se.group_node) { 7305 if (!can_migrate_task(p, env)) 7306 continue; 7307 7308 detach_task(p, env); 7309 7310 /* 7311 * Right now, this is only the second place where 7312 * lb_gained[env->idle] is updated (other is detach_tasks) 7313 * so we can safely collect stats here rather than 7314 * inside detach_tasks(). 7315 */ 7316 schedstat_inc(env->sd->lb_gained[env->idle]); 7317 return p; 7318 } 7319 return NULL; 7320 } 7321 7322 static const unsigned int sched_nr_migrate_break = 32; 7323 7324 /* 7325 * detach_tasks() -- tries to detach up to imbalance runnable load from 7326 * busiest_rq, as part of a balancing operation within domain "sd". 7327 * 7328 * Returns number of detached tasks if successful and 0 otherwise. 7329 */ 7330 static int detach_tasks(struct lb_env *env) 7331 { 7332 struct list_head *tasks = &env->src_rq->cfs_tasks; 7333 struct task_struct *p; 7334 unsigned long load; 7335 int detached = 0; 7336 7337 lockdep_assert_held(&env->src_rq->lock); 7338 7339 if (env->imbalance <= 0) 7340 return 0; 7341 7342 while (!list_empty(tasks)) { 7343 /* 7344 * We don't want to steal all, otherwise we may be treated likewise, 7345 * which could at worst lead to a livelock crash. 7346 */ 7347 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7348 break; 7349 7350 p = list_last_entry(tasks, struct task_struct, se.group_node); 7351 7352 env->loop++; 7353 /* We've more or less seen every task there is, call it quits */ 7354 if (env->loop > env->loop_max) 7355 break; 7356 7357 /* take a breather every nr_migrate tasks */ 7358 if (env->loop > env->loop_break) { 7359 env->loop_break += sched_nr_migrate_break; 7360 env->flags |= LBF_NEED_BREAK; 7361 break; 7362 } 7363 7364 if (!can_migrate_task(p, env)) 7365 goto next; 7366 7367 load = task_h_load(p); 7368 7369 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 7370 goto next; 7371 7372 if ((load / 2) > env->imbalance) 7373 goto next; 7374 7375 detach_task(p, env); 7376 list_add(&p->se.group_node, &env->tasks); 7377 7378 detached++; 7379 env->imbalance -= load; 7380 7381 #ifdef CONFIG_PREEMPTION 7382 /* 7383 * NEWIDLE balancing is a source of latency, so preemptible 7384 * kernels will stop after the first task is detached to minimize 7385 * the critical section. 7386 */ 7387 if (env->idle == CPU_NEWLY_IDLE) 7388 break; 7389 #endif 7390 7391 /* 7392 * We only want to steal up to the prescribed amount of 7393 * runnable load. 7394 */ 7395 if (env->imbalance <= 0) 7396 break; 7397 7398 continue; 7399 next: 7400 list_move(&p->se.group_node, tasks); 7401 } 7402 7403 /* 7404 * Right now, this is one of only two places we collect this stat 7405 * so we can safely collect detach_one_task() stats here rather 7406 * than inside detach_one_task(). 7407 */ 7408 schedstat_add(env->sd->lb_gained[env->idle], detached); 7409 7410 return detached; 7411 } 7412 7413 /* 7414 * attach_task() -- attach the task detached by detach_task() to its new rq. 7415 */ 7416 static void attach_task(struct rq *rq, struct task_struct *p) 7417 { 7418 lockdep_assert_held(&rq->lock); 7419 7420 BUG_ON(task_rq(p) != rq); 7421 activate_task(rq, p, ENQUEUE_NOCLOCK); 7422 check_preempt_curr(rq, p, 0); 7423 } 7424 7425 /* 7426 * attach_one_task() -- attaches the task returned from detach_one_task() to 7427 * its new rq. 7428 */ 7429 static void attach_one_task(struct rq *rq, struct task_struct *p) 7430 { 7431 struct rq_flags rf; 7432 7433 rq_lock(rq, &rf); 7434 update_rq_clock(rq); 7435 attach_task(rq, p); 7436 rq_unlock(rq, &rf); 7437 } 7438 7439 /* 7440 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7441 * new rq. 7442 */ 7443 static void attach_tasks(struct lb_env *env) 7444 { 7445 struct list_head *tasks = &env->tasks; 7446 struct task_struct *p; 7447 struct rq_flags rf; 7448 7449 rq_lock(env->dst_rq, &rf); 7450 update_rq_clock(env->dst_rq); 7451 7452 while (!list_empty(tasks)) { 7453 p = list_first_entry(tasks, struct task_struct, se.group_node); 7454 list_del_init(&p->se.group_node); 7455 7456 attach_task(env->dst_rq, p); 7457 } 7458 7459 rq_unlock(env->dst_rq, &rf); 7460 } 7461 7462 #ifdef CONFIG_NO_HZ_COMMON 7463 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7464 { 7465 if (cfs_rq->avg.load_avg) 7466 return true; 7467 7468 if (cfs_rq->avg.util_avg) 7469 return true; 7470 7471 return false; 7472 } 7473 7474 static inline bool others_have_blocked(struct rq *rq) 7475 { 7476 if (READ_ONCE(rq->avg_rt.util_avg)) 7477 return true; 7478 7479 if (READ_ONCE(rq->avg_dl.util_avg)) 7480 return true; 7481 7482 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 7483 if (READ_ONCE(rq->avg_irq.util_avg)) 7484 return true; 7485 #endif 7486 7487 return false; 7488 } 7489 7490 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 7491 { 7492 rq->last_blocked_load_update_tick = jiffies; 7493 7494 if (!has_blocked) 7495 rq->has_blocked_load = 0; 7496 } 7497 #else 7498 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 7499 static inline bool others_have_blocked(struct rq *rq) { return false; } 7500 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 7501 #endif 7502 7503 #ifdef CONFIG_FAIR_GROUP_SCHED 7504 7505 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7506 { 7507 if (cfs_rq->load.weight) 7508 return false; 7509 7510 if (cfs_rq->avg.load_sum) 7511 return false; 7512 7513 if (cfs_rq->avg.util_sum) 7514 return false; 7515 7516 if (cfs_rq->avg.runnable_load_sum) 7517 return false; 7518 7519 return true; 7520 } 7521 7522 static void update_blocked_averages(int cpu) 7523 { 7524 struct rq *rq = cpu_rq(cpu); 7525 struct cfs_rq *cfs_rq, *pos; 7526 const struct sched_class *curr_class; 7527 struct rq_flags rf; 7528 bool done = true; 7529 7530 rq_lock_irqsave(rq, &rf); 7531 update_rq_clock(rq); 7532 7533 /* 7534 * Iterates the task_group tree in a bottom up fashion, see 7535 * list_add_leaf_cfs_rq() for details. 7536 */ 7537 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7538 struct sched_entity *se; 7539 7540 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) 7541 update_tg_load_avg(cfs_rq, 0); 7542 7543 /* Propagate pending load changes to the parent, if any: */ 7544 se = cfs_rq->tg->se[cpu]; 7545 if (se && !skip_blocked_update(se)) 7546 update_load_avg(cfs_rq_of(se), se, 0); 7547 7548 /* 7549 * There can be a lot of idle CPU cgroups. Don't let fully 7550 * decayed cfs_rqs linger on the list. 7551 */ 7552 if (cfs_rq_is_decayed(cfs_rq)) 7553 list_del_leaf_cfs_rq(cfs_rq); 7554 7555 /* Don't need periodic decay once load/util_avg are null */ 7556 if (cfs_rq_has_blocked(cfs_rq)) 7557 done = false; 7558 } 7559 7560 curr_class = rq->curr->sched_class; 7561 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class); 7562 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class); 7563 update_irq_load_avg(rq, 0); 7564 /* Don't need periodic decay once load/util_avg are null */ 7565 if (others_have_blocked(rq)) 7566 done = false; 7567 7568 update_blocked_load_status(rq, !done); 7569 rq_unlock_irqrestore(rq, &rf); 7570 } 7571 7572 /* 7573 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7574 * This needs to be done in a top-down fashion because the load of a child 7575 * group is a fraction of its parents load. 7576 */ 7577 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7578 { 7579 struct rq *rq = rq_of(cfs_rq); 7580 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7581 unsigned long now = jiffies; 7582 unsigned long load; 7583 7584 if (cfs_rq->last_h_load_update == now) 7585 return; 7586 7587 WRITE_ONCE(cfs_rq->h_load_next, NULL); 7588 for_each_sched_entity(se) { 7589 cfs_rq = cfs_rq_of(se); 7590 WRITE_ONCE(cfs_rq->h_load_next, se); 7591 if (cfs_rq->last_h_load_update == now) 7592 break; 7593 } 7594 7595 if (!se) { 7596 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7597 cfs_rq->last_h_load_update = now; 7598 } 7599 7600 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 7601 load = cfs_rq->h_load; 7602 load = div64_ul(load * se->avg.load_avg, 7603 cfs_rq_load_avg(cfs_rq) + 1); 7604 cfs_rq = group_cfs_rq(se); 7605 cfs_rq->h_load = load; 7606 cfs_rq->last_h_load_update = now; 7607 } 7608 } 7609 7610 static unsigned long task_h_load(struct task_struct *p) 7611 { 7612 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7613 7614 update_cfs_rq_h_load(cfs_rq); 7615 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7616 cfs_rq_load_avg(cfs_rq) + 1); 7617 } 7618 #else 7619 static inline void update_blocked_averages(int cpu) 7620 { 7621 struct rq *rq = cpu_rq(cpu); 7622 struct cfs_rq *cfs_rq = &rq->cfs; 7623 const struct sched_class *curr_class; 7624 struct rq_flags rf; 7625 7626 rq_lock_irqsave(rq, &rf); 7627 update_rq_clock(rq); 7628 update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 7629 7630 curr_class = rq->curr->sched_class; 7631 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class); 7632 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class); 7633 update_irq_load_avg(rq, 0); 7634 update_blocked_load_status(rq, cfs_rq_has_blocked(cfs_rq) || others_have_blocked(rq)); 7635 rq_unlock_irqrestore(rq, &rf); 7636 } 7637 7638 static unsigned long task_h_load(struct task_struct *p) 7639 { 7640 return p->se.avg.load_avg; 7641 } 7642 #endif 7643 7644 /********** Helpers for find_busiest_group ************************/ 7645 7646 /* 7647 * sg_lb_stats - stats of a sched_group required for load_balancing 7648 */ 7649 struct sg_lb_stats { 7650 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7651 unsigned long group_load; /* Total load over the CPUs of the group */ 7652 unsigned long load_per_task; 7653 unsigned long group_capacity; 7654 unsigned long group_util; /* Total utilization of the group */ 7655 unsigned int sum_nr_running; /* Nr tasks running in the group */ 7656 unsigned int idle_cpus; 7657 unsigned int group_weight; 7658 enum group_type group_type; 7659 int group_no_capacity; 7660 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 7661 #ifdef CONFIG_NUMA_BALANCING 7662 unsigned int nr_numa_running; 7663 unsigned int nr_preferred_running; 7664 #endif 7665 }; 7666 7667 /* 7668 * sd_lb_stats - Structure to store the statistics of a sched_domain 7669 * during load balancing. 7670 */ 7671 struct sd_lb_stats { 7672 struct sched_group *busiest; /* Busiest group in this sd */ 7673 struct sched_group *local; /* Local group in this sd */ 7674 unsigned long total_running; 7675 unsigned long total_load; /* Total load of all groups in sd */ 7676 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7677 unsigned long avg_load; /* Average load across all groups in sd */ 7678 7679 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7680 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7681 }; 7682 7683 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7684 { 7685 /* 7686 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7687 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7688 * We must however clear busiest_stat::avg_load because 7689 * update_sd_pick_busiest() reads this before assignment. 7690 */ 7691 *sds = (struct sd_lb_stats){ 7692 .busiest = NULL, 7693 .local = NULL, 7694 .total_running = 0UL, 7695 .total_load = 0UL, 7696 .total_capacity = 0UL, 7697 .busiest_stat = { 7698 .avg_load = 0UL, 7699 .sum_nr_running = 0, 7700 .group_type = group_other, 7701 }, 7702 }; 7703 } 7704 7705 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu) 7706 { 7707 struct rq *rq = cpu_rq(cpu); 7708 unsigned long max = arch_scale_cpu_capacity(cpu); 7709 unsigned long used, free; 7710 unsigned long irq; 7711 7712 irq = cpu_util_irq(rq); 7713 7714 if (unlikely(irq >= max)) 7715 return 1; 7716 7717 used = READ_ONCE(rq->avg_rt.util_avg); 7718 used += READ_ONCE(rq->avg_dl.util_avg); 7719 7720 if (unlikely(used >= max)) 7721 return 1; 7722 7723 free = max - used; 7724 7725 return scale_irq_capacity(free, irq, max); 7726 } 7727 7728 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 7729 { 7730 unsigned long capacity = scale_rt_capacity(sd, cpu); 7731 struct sched_group *sdg = sd->groups; 7732 7733 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 7734 7735 if (!capacity) 7736 capacity = 1; 7737 7738 cpu_rq(cpu)->cpu_capacity = capacity; 7739 sdg->sgc->capacity = capacity; 7740 sdg->sgc->min_capacity = capacity; 7741 sdg->sgc->max_capacity = capacity; 7742 } 7743 7744 void update_group_capacity(struct sched_domain *sd, int cpu) 7745 { 7746 struct sched_domain *child = sd->child; 7747 struct sched_group *group, *sdg = sd->groups; 7748 unsigned long capacity, min_capacity, max_capacity; 7749 unsigned long interval; 7750 7751 interval = msecs_to_jiffies(sd->balance_interval); 7752 interval = clamp(interval, 1UL, max_load_balance_interval); 7753 sdg->sgc->next_update = jiffies + interval; 7754 7755 if (!child) { 7756 update_cpu_capacity(sd, cpu); 7757 return; 7758 } 7759 7760 capacity = 0; 7761 min_capacity = ULONG_MAX; 7762 max_capacity = 0; 7763 7764 if (child->flags & SD_OVERLAP) { 7765 /* 7766 * SD_OVERLAP domains cannot assume that child groups 7767 * span the current group. 7768 */ 7769 7770 for_each_cpu(cpu, sched_group_span(sdg)) { 7771 struct sched_group_capacity *sgc; 7772 struct rq *rq = cpu_rq(cpu); 7773 7774 /* 7775 * build_sched_domains() -> init_sched_groups_capacity() 7776 * gets here before we've attached the domains to the 7777 * runqueues. 7778 * 7779 * Use capacity_of(), which is set irrespective of domains 7780 * in update_cpu_capacity(). 7781 * 7782 * This avoids capacity from being 0 and 7783 * causing divide-by-zero issues on boot. 7784 */ 7785 if (unlikely(!rq->sd)) { 7786 capacity += capacity_of(cpu); 7787 } else { 7788 sgc = rq->sd->groups->sgc; 7789 capacity += sgc->capacity; 7790 } 7791 7792 min_capacity = min(capacity, min_capacity); 7793 max_capacity = max(capacity, max_capacity); 7794 } 7795 } else { 7796 /* 7797 * !SD_OVERLAP domains can assume that child groups 7798 * span the current group. 7799 */ 7800 7801 group = child->groups; 7802 do { 7803 struct sched_group_capacity *sgc = group->sgc; 7804 7805 capacity += sgc->capacity; 7806 min_capacity = min(sgc->min_capacity, min_capacity); 7807 max_capacity = max(sgc->max_capacity, max_capacity); 7808 group = group->next; 7809 } while (group != child->groups); 7810 } 7811 7812 sdg->sgc->capacity = capacity; 7813 sdg->sgc->min_capacity = min_capacity; 7814 sdg->sgc->max_capacity = max_capacity; 7815 } 7816 7817 /* 7818 * Check whether the capacity of the rq has been noticeably reduced by side 7819 * activity. The imbalance_pct is used for the threshold. 7820 * Return true is the capacity is reduced 7821 */ 7822 static inline int 7823 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 7824 { 7825 return ((rq->cpu_capacity * sd->imbalance_pct) < 7826 (rq->cpu_capacity_orig * 100)); 7827 } 7828 7829 /* 7830 * Check whether a rq has a misfit task and if it looks like we can actually 7831 * help that task: we can migrate the task to a CPU of higher capacity, or 7832 * the task's current CPU is heavily pressured. 7833 */ 7834 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 7835 { 7836 return rq->misfit_task_load && 7837 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 7838 check_cpu_capacity(rq, sd)); 7839 } 7840 7841 /* 7842 * Group imbalance indicates (and tries to solve) the problem where balancing 7843 * groups is inadequate due to ->cpus_ptr constraints. 7844 * 7845 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 7846 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 7847 * Something like: 7848 * 7849 * { 0 1 2 3 } { 4 5 6 7 } 7850 * * * * * 7851 * 7852 * If we were to balance group-wise we'd place two tasks in the first group and 7853 * two tasks in the second group. Clearly this is undesired as it will overload 7854 * cpu 3 and leave one of the CPUs in the second group unused. 7855 * 7856 * The current solution to this issue is detecting the skew in the first group 7857 * by noticing the lower domain failed to reach balance and had difficulty 7858 * moving tasks due to affinity constraints. 7859 * 7860 * When this is so detected; this group becomes a candidate for busiest; see 7861 * update_sd_pick_busiest(). And calculate_imbalance() and 7862 * find_busiest_group() avoid some of the usual balance conditions to allow it 7863 * to create an effective group imbalance. 7864 * 7865 * This is a somewhat tricky proposition since the next run might not find the 7866 * group imbalance and decide the groups need to be balanced again. A most 7867 * subtle and fragile situation. 7868 */ 7869 7870 static inline int sg_imbalanced(struct sched_group *group) 7871 { 7872 return group->sgc->imbalance; 7873 } 7874 7875 /* 7876 * group_has_capacity returns true if the group has spare capacity that could 7877 * be used by some tasks. 7878 * We consider that a group has spare capacity if the * number of task is 7879 * smaller than the number of CPUs or if the utilization is lower than the 7880 * available capacity for CFS tasks. 7881 * For the latter, we use a threshold to stabilize the state, to take into 7882 * account the variance of the tasks' load and to return true if the available 7883 * capacity in meaningful for the load balancer. 7884 * As an example, an available capacity of 1% can appear but it doesn't make 7885 * any benefit for the load balance. 7886 */ 7887 static inline bool 7888 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 7889 { 7890 if (sgs->sum_nr_running < sgs->group_weight) 7891 return true; 7892 7893 if ((sgs->group_capacity * 100) > 7894 (sgs->group_util * env->sd->imbalance_pct)) 7895 return true; 7896 7897 return false; 7898 } 7899 7900 /* 7901 * group_is_overloaded returns true if the group has more tasks than it can 7902 * handle. 7903 * group_is_overloaded is not equals to !group_has_capacity because a group 7904 * with the exact right number of tasks, has no more spare capacity but is not 7905 * overloaded so both group_has_capacity and group_is_overloaded return 7906 * false. 7907 */ 7908 static inline bool 7909 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 7910 { 7911 if (sgs->sum_nr_running <= sgs->group_weight) 7912 return false; 7913 7914 if ((sgs->group_capacity * 100) < 7915 (sgs->group_util * env->sd->imbalance_pct)) 7916 return true; 7917 7918 return false; 7919 } 7920 7921 /* 7922 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller 7923 * per-CPU capacity than sched_group ref. 7924 */ 7925 static inline bool 7926 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7927 { 7928 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity); 7929 } 7930 7931 /* 7932 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller 7933 * per-CPU capacity_orig than sched_group ref. 7934 */ 7935 static inline bool 7936 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7937 { 7938 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity); 7939 } 7940 7941 static inline enum 7942 group_type group_classify(struct sched_group *group, 7943 struct sg_lb_stats *sgs) 7944 { 7945 if (sgs->group_no_capacity) 7946 return group_overloaded; 7947 7948 if (sg_imbalanced(group)) 7949 return group_imbalanced; 7950 7951 if (sgs->group_misfit_task_load) 7952 return group_misfit_task; 7953 7954 return group_other; 7955 } 7956 7957 static bool update_nohz_stats(struct rq *rq, bool force) 7958 { 7959 #ifdef CONFIG_NO_HZ_COMMON 7960 unsigned int cpu = rq->cpu; 7961 7962 if (!rq->has_blocked_load) 7963 return false; 7964 7965 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 7966 return false; 7967 7968 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) 7969 return true; 7970 7971 update_blocked_averages(cpu); 7972 7973 return rq->has_blocked_load; 7974 #else 7975 return false; 7976 #endif 7977 } 7978 7979 /** 7980 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 7981 * @env: The load balancing environment. 7982 * @group: sched_group whose statistics are to be updated. 7983 * @sgs: variable to hold the statistics for this group. 7984 * @sg_status: Holds flag indicating the status of the sched_group 7985 */ 7986 static inline void update_sg_lb_stats(struct lb_env *env, 7987 struct sched_group *group, 7988 struct sg_lb_stats *sgs, 7989 int *sg_status) 7990 { 7991 int i, nr_running; 7992 7993 memset(sgs, 0, sizeof(*sgs)); 7994 7995 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 7996 struct rq *rq = cpu_rq(i); 7997 7998 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) 7999 env->flags |= LBF_NOHZ_AGAIN; 8000 8001 sgs->group_load += cpu_runnable_load(rq); 8002 sgs->group_util += cpu_util(i); 8003 sgs->sum_nr_running += rq->cfs.h_nr_running; 8004 8005 nr_running = rq->nr_running; 8006 if (nr_running > 1) 8007 *sg_status |= SG_OVERLOAD; 8008 8009 if (cpu_overutilized(i)) 8010 *sg_status |= SG_OVERUTILIZED; 8011 8012 #ifdef CONFIG_NUMA_BALANCING 8013 sgs->nr_numa_running += rq->nr_numa_running; 8014 sgs->nr_preferred_running += rq->nr_preferred_running; 8015 #endif 8016 /* 8017 * No need to call idle_cpu() if nr_running is not 0 8018 */ 8019 if (!nr_running && idle_cpu(i)) 8020 sgs->idle_cpus++; 8021 8022 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8023 sgs->group_misfit_task_load < rq->misfit_task_load) { 8024 sgs->group_misfit_task_load = rq->misfit_task_load; 8025 *sg_status |= SG_OVERLOAD; 8026 } 8027 } 8028 8029 /* Adjust by relative CPU capacity of the group */ 8030 sgs->group_capacity = group->sgc->capacity; 8031 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 8032 8033 if (sgs->sum_nr_running) 8034 sgs->load_per_task = sgs->group_load / sgs->sum_nr_running; 8035 8036 sgs->group_weight = group->group_weight; 8037 8038 sgs->group_no_capacity = group_is_overloaded(env, sgs); 8039 sgs->group_type = group_classify(group, sgs); 8040 } 8041 8042 /** 8043 * update_sd_pick_busiest - return 1 on busiest group 8044 * @env: The load balancing environment. 8045 * @sds: sched_domain statistics 8046 * @sg: sched_group candidate to be checked for being the busiest 8047 * @sgs: sched_group statistics 8048 * 8049 * Determine if @sg is a busier group than the previously selected 8050 * busiest group. 8051 * 8052 * Return: %true if @sg is a busier group than the previously selected 8053 * busiest group. %false otherwise. 8054 */ 8055 static bool update_sd_pick_busiest(struct lb_env *env, 8056 struct sd_lb_stats *sds, 8057 struct sched_group *sg, 8058 struct sg_lb_stats *sgs) 8059 { 8060 struct sg_lb_stats *busiest = &sds->busiest_stat; 8061 8062 /* 8063 * Don't try to pull misfit tasks we can't help. 8064 * We can use max_capacity here as reduction in capacity on some 8065 * CPUs in the group should either be possible to resolve 8066 * internally or be covered by avg_load imbalance (eventually). 8067 */ 8068 if (sgs->group_type == group_misfit_task && 8069 (!group_smaller_max_cpu_capacity(sg, sds->local) || 8070 !group_has_capacity(env, &sds->local_stat))) 8071 return false; 8072 8073 if (sgs->group_type > busiest->group_type) 8074 return true; 8075 8076 if (sgs->group_type < busiest->group_type) 8077 return false; 8078 8079 if (sgs->avg_load <= busiest->avg_load) 8080 return false; 8081 8082 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) 8083 goto asym_packing; 8084 8085 /* 8086 * Candidate sg has no more than one task per CPU and 8087 * has higher per-CPU capacity. Migrating tasks to less 8088 * capable CPUs may harm throughput. Maximize throughput, 8089 * power/energy consequences are not considered. 8090 */ 8091 if (sgs->sum_nr_running <= sgs->group_weight && 8092 group_smaller_min_cpu_capacity(sds->local, sg)) 8093 return false; 8094 8095 /* 8096 * If we have more than one misfit sg go with the biggest misfit. 8097 */ 8098 if (sgs->group_type == group_misfit_task && 8099 sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8100 return false; 8101 8102 asym_packing: 8103 /* This is the busiest node in its class. */ 8104 if (!(env->sd->flags & SD_ASYM_PACKING)) 8105 return true; 8106 8107 /* No ASYM_PACKING if target CPU is already busy */ 8108 if (env->idle == CPU_NOT_IDLE) 8109 return true; 8110 /* 8111 * ASYM_PACKING needs to move all the work to the highest 8112 * prority CPUs in the group, therefore mark all groups 8113 * of lower priority than ourself as busy. 8114 */ 8115 if (sgs->sum_nr_running && 8116 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) { 8117 if (!sds->busiest) 8118 return true; 8119 8120 /* Prefer to move from lowest priority CPU's work */ 8121 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu, 8122 sg->asym_prefer_cpu)) 8123 return true; 8124 } 8125 8126 return false; 8127 } 8128 8129 #ifdef CONFIG_NUMA_BALANCING 8130 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8131 { 8132 if (sgs->sum_nr_running > sgs->nr_numa_running) 8133 return regular; 8134 if (sgs->sum_nr_running > sgs->nr_preferred_running) 8135 return remote; 8136 return all; 8137 } 8138 8139 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8140 { 8141 if (rq->nr_running > rq->nr_numa_running) 8142 return regular; 8143 if (rq->nr_running > rq->nr_preferred_running) 8144 return remote; 8145 return all; 8146 } 8147 #else 8148 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8149 { 8150 return all; 8151 } 8152 8153 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8154 { 8155 return regular; 8156 } 8157 #endif /* CONFIG_NUMA_BALANCING */ 8158 8159 /** 8160 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 8161 * @env: The load balancing environment. 8162 * @sds: variable to hold the statistics for this sched_domain. 8163 */ 8164 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 8165 { 8166 struct sched_domain *child = env->sd->child; 8167 struct sched_group *sg = env->sd->groups; 8168 struct sg_lb_stats *local = &sds->local_stat; 8169 struct sg_lb_stats tmp_sgs; 8170 bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 8171 int sg_status = 0; 8172 8173 #ifdef CONFIG_NO_HZ_COMMON 8174 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) 8175 env->flags |= LBF_NOHZ_STATS; 8176 #endif 8177 8178 do { 8179 struct sg_lb_stats *sgs = &tmp_sgs; 8180 int local_group; 8181 8182 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 8183 if (local_group) { 8184 sds->local = sg; 8185 sgs = local; 8186 8187 if (env->idle != CPU_NEWLY_IDLE || 8188 time_after_eq(jiffies, sg->sgc->next_update)) 8189 update_group_capacity(env->sd, env->dst_cpu); 8190 } 8191 8192 update_sg_lb_stats(env, sg, sgs, &sg_status); 8193 8194 if (local_group) 8195 goto next_group; 8196 8197 /* 8198 * In case the child domain prefers tasks go to siblings 8199 * first, lower the sg capacity so that we'll try 8200 * and move all the excess tasks away. We lower the capacity 8201 * of a group only if the local group has the capacity to fit 8202 * these excess tasks. The extra check prevents the case where 8203 * you always pull from the heaviest group when it is already 8204 * under-utilized (possible with a large weight task outweighs 8205 * the tasks on the system). 8206 */ 8207 if (prefer_sibling && sds->local && 8208 group_has_capacity(env, local) && 8209 (sgs->sum_nr_running > local->sum_nr_running + 1)) { 8210 sgs->group_no_capacity = 1; 8211 sgs->group_type = group_classify(sg, sgs); 8212 } 8213 8214 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 8215 sds->busiest = sg; 8216 sds->busiest_stat = *sgs; 8217 } 8218 8219 next_group: 8220 /* Now, start updating sd_lb_stats */ 8221 sds->total_running += sgs->sum_nr_running; 8222 sds->total_load += sgs->group_load; 8223 sds->total_capacity += sgs->group_capacity; 8224 8225 sg = sg->next; 8226 } while (sg != env->sd->groups); 8227 8228 #ifdef CONFIG_NO_HZ_COMMON 8229 if ((env->flags & LBF_NOHZ_AGAIN) && 8230 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { 8231 8232 WRITE_ONCE(nohz.next_blocked, 8233 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); 8234 } 8235 #endif 8236 8237 if (env->sd->flags & SD_NUMA) 8238 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 8239 8240 if (!env->sd->parent) { 8241 struct root_domain *rd = env->dst_rq->rd; 8242 8243 /* update overload indicator if we are at root domain */ 8244 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 8245 8246 /* Update over-utilization (tipping point, U >= 0) indicator */ 8247 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 8248 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 8249 } else if (sg_status & SG_OVERUTILIZED) { 8250 struct root_domain *rd = env->dst_rq->rd; 8251 8252 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 8253 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 8254 } 8255 } 8256 8257 /** 8258 * check_asym_packing - Check to see if the group is packed into the 8259 * sched domain. 8260 * 8261 * This is primarily intended to used at the sibling level. Some 8262 * cores like POWER7 prefer to use lower numbered SMT threads. In the 8263 * case of POWER7, it can move to lower SMT modes only when higher 8264 * threads are idle. When in lower SMT modes, the threads will 8265 * perform better since they share less core resources. Hence when we 8266 * have idle threads, we want them to be the higher ones. 8267 * 8268 * This packing function is run on idle threads. It checks to see if 8269 * the busiest CPU in this domain (core in the P7 case) has a higher 8270 * CPU number than the packing function is being run on. Here we are 8271 * assuming lower CPU number will be equivalent to lower a SMT thread 8272 * number. 8273 * 8274 * Return: 1 when packing is required and a task should be moved to 8275 * this CPU. The amount of the imbalance is returned in env->imbalance. 8276 * 8277 * @env: The load balancing environment. 8278 * @sds: Statistics of the sched_domain which is to be packed 8279 */ 8280 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 8281 { 8282 int busiest_cpu; 8283 8284 if (!(env->sd->flags & SD_ASYM_PACKING)) 8285 return 0; 8286 8287 if (env->idle == CPU_NOT_IDLE) 8288 return 0; 8289 8290 if (!sds->busiest) 8291 return 0; 8292 8293 busiest_cpu = sds->busiest->asym_prefer_cpu; 8294 if (sched_asym_prefer(busiest_cpu, env->dst_cpu)) 8295 return 0; 8296 8297 env->imbalance = sds->busiest_stat.group_load; 8298 8299 return 1; 8300 } 8301 8302 /** 8303 * fix_small_imbalance - Calculate the minor imbalance that exists 8304 * amongst the groups of a sched_domain, during 8305 * load balancing. 8306 * @env: The load balancing environment. 8307 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 8308 */ 8309 static inline 8310 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8311 { 8312 unsigned long tmp, capa_now = 0, capa_move = 0; 8313 unsigned int imbn = 2; 8314 unsigned long scaled_busy_load_per_task; 8315 struct sg_lb_stats *local, *busiest; 8316 8317 local = &sds->local_stat; 8318 busiest = &sds->busiest_stat; 8319 8320 if (!local->sum_nr_running) 8321 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 8322 else if (busiest->load_per_task > local->load_per_task) 8323 imbn = 1; 8324 8325 scaled_busy_load_per_task = 8326 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8327 busiest->group_capacity; 8328 8329 if (busiest->avg_load + scaled_busy_load_per_task >= 8330 local->avg_load + (scaled_busy_load_per_task * imbn)) { 8331 env->imbalance = busiest->load_per_task; 8332 return; 8333 } 8334 8335 /* 8336 * OK, we don't have enough imbalance to justify moving tasks, 8337 * however we may be able to increase total CPU capacity used by 8338 * moving them. 8339 */ 8340 8341 capa_now += busiest->group_capacity * 8342 min(busiest->load_per_task, busiest->avg_load); 8343 capa_now += local->group_capacity * 8344 min(local->load_per_task, local->avg_load); 8345 capa_now /= SCHED_CAPACITY_SCALE; 8346 8347 /* Amount of load we'd subtract */ 8348 if (busiest->avg_load > scaled_busy_load_per_task) { 8349 capa_move += busiest->group_capacity * 8350 min(busiest->load_per_task, 8351 busiest->avg_load - scaled_busy_load_per_task); 8352 } 8353 8354 /* Amount of load we'd add */ 8355 if (busiest->avg_load * busiest->group_capacity < 8356 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 8357 tmp = (busiest->avg_load * busiest->group_capacity) / 8358 local->group_capacity; 8359 } else { 8360 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8361 local->group_capacity; 8362 } 8363 capa_move += local->group_capacity * 8364 min(local->load_per_task, local->avg_load + tmp); 8365 capa_move /= SCHED_CAPACITY_SCALE; 8366 8367 /* Move if we gain throughput */ 8368 if (capa_move > capa_now) 8369 env->imbalance = busiest->load_per_task; 8370 } 8371 8372 /** 8373 * calculate_imbalance - Calculate the amount of imbalance present within the 8374 * groups of a given sched_domain during load balance. 8375 * @env: load balance environment 8376 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 8377 */ 8378 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8379 { 8380 unsigned long max_pull, load_above_capacity = ~0UL; 8381 struct sg_lb_stats *local, *busiest; 8382 8383 local = &sds->local_stat; 8384 busiest = &sds->busiest_stat; 8385 8386 if (busiest->group_type == group_imbalanced) { 8387 /* 8388 * In the group_imb case we cannot rely on group-wide averages 8389 * to ensure CPU-load equilibrium, look at wider averages. XXX 8390 */ 8391 busiest->load_per_task = 8392 min(busiest->load_per_task, sds->avg_load); 8393 } 8394 8395 /* 8396 * Avg load of busiest sg can be less and avg load of local sg can 8397 * be greater than avg load across all sgs of sd because avg load 8398 * factors in sg capacity and sgs with smaller group_type are 8399 * skipped when updating the busiest sg: 8400 */ 8401 if (busiest->group_type != group_misfit_task && 8402 (busiest->avg_load <= sds->avg_load || 8403 local->avg_load >= sds->avg_load)) { 8404 env->imbalance = 0; 8405 return fix_small_imbalance(env, sds); 8406 } 8407 8408 /* 8409 * If there aren't any idle CPUs, avoid creating some. 8410 */ 8411 if (busiest->group_type == group_overloaded && 8412 local->group_type == group_overloaded) { 8413 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 8414 if (load_above_capacity > busiest->group_capacity) { 8415 load_above_capacity -= busiest->group_capacity; 8416 load_above_capacity *= scale_load_down(NICE_0_LOAD); 8417 load_above_capacity /= busiest->group_capacity; 8418 } else 8419 load_above_capacity = ~0UL; 8420 } 8421 8422 /* 8423 * We're trying to get all the CPUs to the average_load, so we don't 8424 * want to push ourselves above the average load, nor do we wish to 8425 * reduce the max loaded CPU below the average load. At the same time, 8426 * we also don't want to reduce the group load below the group 8427 * capacity. Thus we look for the minimum possible imbalance. 8428 */ 8429 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 8430 8431 /* How much load to actually move to equalise the imbalance */ 8432 env->imbalance = min( 8433 max_pull * busiest->group_capacity, 8434 (sds->avg_load - local->avg_load) * local->group_capacity 8435 ) / SCHED_CAPACITY_SCALE; 8436 8437 /* Boost imbalance to allow misfit task to be balanced. */ 8438 if (busiest->group_type == group_misfit_task) { 8439 env->imbalance = max_t(long, env->imbalance, 8440 busiest->group_misfit_task_load); 8441 } 8442 8443 /* 8444 * if *imbalance is less than the average load per runnable task 8445 * there is no guarantee that any tasks will be moved so we'll have 8446 * a think about bumping its value to force at least one task to be 8447 * moved 8448 */ 8449 if (env->imbalance < busiest->load_per_task) 8450 return fix_small_imbalance(env, sds); 8451 } 8452 8453 /******* find_busiest_group() helpers end here *********************/ 8454 8455 /** 8456 * find_busiest_group - Returns the busiest group within the sched_domain 8457 * if there is an imbalance. 8458 * 8459 * Also calculates the amount of runnable load which should be moved 8460 * to restore balance. 8461 * 8462 * @env: The load balancing environment. 8463 * 8464 * Return: - The busiest group if imbalance exists. 8465 */ 8466 static struct sched_group *find_busiest_group(struct lb_env *env) 8467 { 8468 struct sg_lb_stats *local, *busiest; 8469 struct sd_lb_stats sds; 8470 8471 init_sd_lb_stats(&sds); 8472 8473 /* 8474 * Compute the various statistics relavent for load balancing at 8475 * this level. 8476 */ 8477 update_sd_lb_stats(env, &sds); 8478 8479 if (sched_energy_enabled()) { 8480 struct root_domain *rd = env->dst_rq->rd; 8481 8482 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 8483 goto out_balanced; 8484 } 8485 8486 local = &sds.local_stat; 8487 busiest = &sds.busiest_stat; 8488 8489 /* ASYM feature bypasses nice load balance check */ 8490 if (check_asym_packing(env, &sds)) 8491 return sds.busiest; 8492 8493 /* There is no busy sibling group to pull tasks from */ 8494 if (!sds.busiest || busiest->sum_nr_running == 0) 8495 goto out_balanced; 8496 8497 /* XXX broken for overlapping NUMA groups */ 8498 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 8499 / sds.total_capacity; 8500 8501 /* 8502 * If the busiest group is imbalanced the below checks don't 8503 * work because they assume all things are equal, which typically 8504 * isn't true due to cpus_ptr constraints and the like. 8505 */ 8506 if (busiest->group_type == group_imbalanced) 8507 goto force_balance; 8508 8509 /* 8510 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group 8511 * capacities from resulting in underutilization due to avg_load. 8512 */ 8513 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) && 8514 busiest->group_no_capacity) 8515 goto force_balance; 8516 8517 /* Misfit tasks should be dealt with regardless of the avg load */ 8518 if (busiest->group_type == group_misfit_task) 8519 goto force_balance; 8520 8521 /* 8522 * If the local group is busier than the selected busiest group 8523 * don't try and pull any tasks. 8524 */ 8525 if (local->avg_load >= busiest->avg_load) 8526 goto out_balanced; 8527 8528 /* 8529 * Don't pull any tasks if this group is already above the domain 8530 * average load. 8531 */ 8532 if (local->avg_load >= sds.avg_load) 8533 goto out_balanced; 8534 8535 if (env->idle == CPU_IDLE) { 8536 /* 8537 * This CPU is idle. If the busiest group is not overloaded 8538 * and there is no imbalance between this and busiest group 8539 * wrt idle CPUs, it is balanced. The imbalance becomes 8540 * significant if the diff is greater than 1 otherwise we 8541 * might end up to just move the imbalance on another group 8542 */ 8543 if ((busiest->group_type != group_overloaded) && 8544 (local->idle_cpus <= (busiest->idle_cpus + 1))) 8545 goto out_balanced; 8546 } else { 8547 /* 8548 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 8549 * imbalance_pct to be conservative. 8550 */ 8551 if (100 * busiest->avg_load <= 8552 env->sd->imbalance_pct * local->avg_load) 8553 goto out_balanced; 8554 } 8555 8556 force_balance: 8557 /* Looks like there is an imbalance. Compute it */ 8558 env->src_grp_type = busiest->group_type; 8559 calculate_imbalance(env, &sds); 8560 return env->imbalance ? sds.busiest : NULL; 8561 8562 out_balanced: 8563 env->imbalance = 0; 8564 return NULL; 8565 } 8566 8567 /* 8568 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 8569 */ 8570 static struct rq *find_busiest_queue(struct lb_env *env, 8571 struct sched_group *group) 8572 { 8573 struct rq *busiest = NULL, *rq; 8574 unsigned long busiest_load = 0, busiest_capacity = 1; 8575 int i; 8576 8577 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8578 unsigned long capacity, load; 8579 enum fbq_type rt; 8580 8581 rq = cpu_rq(i); 8582 rt = fbq_classify_rq(rq); 8583 8584 /* 8585 * We classify groups/runqueues into three groups: 8586 * - regular: there are !numa tasks 8587 * - remote: there are numa tasks that run on the 'wrong' node 8588 * - all: there is no distinction 8589 * 8590 * In order to avoid migrating ideally placed numa tasks, 8591 * ignore those when there's better options. 8592 * 8593 * If we ignore the actual busiest queue to migrate another 8594 * task, the next balance pass can still reduce the busiest 8595 * queue by moving tasks around inside the node. 8596 * 8597 * If we cannot move enough load due to this classification 8598 * the next pass will adjust the group classification and 8599 * allow migration of more tasks. 8600 * 8601 * Both cases only affect the total convergence complexity. 8602 */ 8603 if (rt > env->fbq_type) 8604 continue; 8605 8606 /* 8607 * For ASYM_CPUCAPACITY domains with misfit tasks we simply 8608 * seek the "biggest" misfit task. 8609 */ 8610 if (env->src_grp_type == group_misfit_task) { 8611 if (rq->misfit_task_load > busiest_load) { 8612 busiest_load = rq->misfit_task_load; 8613 busiest = rq; 8614 } 8615 8616 continue; 8617 } 8618 8619 capacity = capacity_of(i); 8620 8621 /* 8622 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 8623 * eventually lead to active_balancing high->low capacity. 8624 * Higher per-CPU capacity is considered better than balancing 8625 * average load. 8626 */ 8627 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8628 capacity_of(env->dst_cpu) < capacity && 8629 rq->nr_running == 1) 8630 continue; 8631 8632 load = cpu_runnable_load(rq); 8633 8634 /* 8635 * When comparing with imbalance, use cpu_runnable_load() 8636 * which is not scaled with the CPU capacity. 8637 */ 8638 8639 if (rq->nr_running == 1 && load > env->imbalance && 8640 !check_cpu_capacity(rq, env->sd)) 8641 continue; 8642 8643 /* 8644 * For the load comparisons with the other CPU's, consider 8645 * the cpu_runnable_load() scaled with the CPU capacity, so 8646 * that the load can be moved away from the CPU that is 8647 * potentially running at a lower capacity. 8648 * 8649 * Thus we're looking for max(load_i / capacity_i), crosswise 8650 * multiplication to rid ourselves of the division works out 8651 * to: load_i * capacity_j > load_j * capacity_i; where j is 8652 * our previous maximum. 8653 */ 8654 if (load * busiest_capacity > busiest_load * capacity) { 8655 busiest_load = load; 8656 busiest_capacity = capacity; 8657 busiest = rq; 8658 } 8659 } 8660 8661 return busiest; 8662 } 8663 8664 /* 8665 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 8666 * so long as it is large enough. 8667 */ 8668 #define MAX_PINNED_INTERVAL 512 8669 8670 static inline bool 8671 asym_active_balance(struct lb_env *env) 8672 { 8673 /* 8674 * ASYM_PACKING needs to force migrate tasks from busy but 8675 * lower priority CPUs in order to pack all tasks in the 8676 * highest priority CPUs. 8677 */ 8678 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 8679 sched_asym_prefer(env->dst_cpu, env->src_cpu); 8680 } 8681 8682 static inline bool 8683 voluntary_active_balance(struct lb_env *env) 8684 { 8685 struct sched_domain *sd = env->sd; 8686 8687 if (asym_active_balance(env)) 8688 return 1; 8689 8690 /* 8691 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 8692 * It's worth migrating the task if the src_cpu's capacity is reduced 8693 * because of other sched_class or IRQs if more capacity stays 8694 * available on dst_cpu. 8695 */ 8696 if ((env->idle != CPU_NOT_IDLE) && 8697 (env->src_rq->cfs.h_nr_running == 1)) { 8698 if ((check_cpu_capacity(env->src_rq, sd)) && 8699 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 8700 return 1; 8701 } 8702 8703 if (env->src_grp_type == group_misfit_task) 8704 return 1; 8705 8706 return 0; 8707 } 8708 8709 static int need_active_balance(struct lb_env *env) 8710 { 8711 struct sched_domain *sd = env->sd; 8712 8713 if (voluntary_active_balance(env)) 8714 return 1; 8715 8716 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 8717 } 8718 8719 static int active_load_balance_cpu_stop(void *data); 8720 8721 static int should_we_balance(struct lb_env *env) 8722 { 8723 struct sched_group *sg = env->sd->groups; 8724 int cpu, balance_cpu = -1; 8725 8726 /* 8727 * Ensure the balancing environment is consistent; can happen 8728 * when the softirq triggers 'during' hotplug. 8729 */ 8730 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 8731 return 0; 8732 8733 /* 8734 * In the newly idle case, we will allow all the CPUs 8735 * to do the newly idle load balance. 8736 */ 8737 if (env->idle == CPU_NEWLY_IDLE) 8738 return 1; 8739 8740 /* Try to find first idle CPU */ 8741 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 8742 if (!idle_cpu(cpu)) 8743 continue; 8744 8745 balance_cpu = cpu; 8746 break; 8747 } 8748 8749 if (balance_cpu == -1) 8750 balance_cpu = group_balance_cpu(sg); 8751 8752 /* 8753 * First idle CPU or the first CPU(busiest) in this sched group 8754 * is eligible for doing load balancing at this and above domains. 8755 */ 8756 return balance_cpu == env->dst_cpu; 8757 } 8758 8759 /* 8760 * Check this_cpu to ensure it is balanced within domain. Attempt to move 8761 * tasks if there is an imbalance. 8762 */ 8763 static int load_balance(int this_cpu, struct rq *this_rq, 8764 struct sched_domain *sd, enum cpu_idle_type idle, 8765 int *continue_balancing) 8766 { 8767 int ld_moved, cur_ld_moved, active_balance = 0; 8768 struct sched_domain *sd_parent = sd->parent; 8769 struct sched_group *group; 8770 struct rq *busiest; 8771 struct rq_flags rf; 8772 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 8773 8774 struct lb_env env = { 8775 .sd = sd, 8776 .dst_cpu = this_cpu, 8777 .dst_rq = this_rq, 8778 .dst_grpmask = sched_group_span(sd->groups), 8779 .idle = idle, 8780 .loop_break = sched_nr_migrate_break, 8781 .cpus = cpus, 8782 .fbq_type = all, 8783 .tasks = LIST_HEAD_INIT(env.tasks), 8784 }; 8785 8786 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 8787 8788 schedstat_inc(sd->lb_count[idle]); 8789 8790 redo: 8791 if (!should_we_balance(&env)) { 8792 *continue_balancing = 0; 8793 goto out_balanced; 8794 } 8795 8796 group = find_busiest_group(&env); 8797 if (!group) { 8798 schedstat_inc(sd->lb_nobusyg[idle]); 8799 goto out_balanced; 8800 } 8801 8802 busiest = find_busiest_queue(&env, group); 8803 if (!busiest) { 8804 schedstat_inc(sd->lb_nobusyq[idle]); 8805 goto out_balanced; 8806 } 8807 8808 BUG_ON(busiest == env.dst_rq); 8809 8810 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 8811 8812 env.src_cpu = busiest->cpu; 8813 env.src_rq = busiest; 8814 8815 ld_moved = 0; 8816 if (busiest->nr_running > 1) { 8817 /* 8818 * Attempt to move tasks. If find_busiest_group has found 8819 * an imbalance but busiest->nr_running <= 1, the group is 8820 * still unbalanced. ld_moved simply stays zero, so it is 8821 * correctly treated as an imbalance. 8822 */ 8823 env.flags |= LBF_ALL_PINNED; 8824 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 8825 8826 more_balance: 8827 rq_lock_irqsave(busiest, &rf); 8828 update_rq_clock(busiest); 8829 8830 /* 8831 * cur_ld_moved - load moved in current iteration 8832 * ld_moved - cumulative load moved across iterations 8833 */ 8834 cur_ld_moved = detach_tasks(&env); 8835 8836 /* 8837 * We've detached some tasks from busiest_rq. Every 8838 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 8839 * unlock busiest->lock, and we are able to be sure 8840 * that nobody can manipulate the tasks in parallel. 8841 * See task_rq_lock() family for the details. 8842 */ 8843 8844 rq_unlock(busiest, &rf); 8845 8846 if (cur_ld_moved) { 8847 attach_tasks(&env); 8848 ld_moved += cur_ld_moved; 8849 } 8850 8851 local_irq_restore(rf.flags); 8852 8853 if (env.flags & LBF_NEED_BREAK) { 8854 env.flags &= ~LBF_NEED_BREAK; 8855 goto more_balance; 8856 } 8857 8858 /* 8859 * Revisit (affine) tasks on src_cpu that couldn't be moved to 8860 * us and move them to an alternate dst_cpu in our sched_group 8861 * where they can run. The upper limit on how many times we 8862 * iterate on same src_cpu is dependent on number of CPUs in our 8863 * sched_group. 8864 * 8865 * This changes load balance semantics a bit on who can move 8866 * load to a given_cpu. In addition to the given_cpu itself 8867 * (or a ilb_cpu acting on its behalf where given_cpu is 8868 * nohz-idle), we now have balance_cpu in a position to move 8869 * load to given_cpu. In rare situations, this may cause 8870 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 8871 * _independently_ and at _same_ time to move some load to 8872 * given_cpu) causing exceess load to be moved to given_cpu. 8873 * This however should not happen so much in practice and 8874 * moreover subsequent load balance cycles should correct the 8875 * excess load moved. 8876 */ 8877 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 8878 8879 /* Prevent to re-select dst_cpu via env's CPUs */ 8880 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 8881 8882 env.dst_rq = cpu_rq(env.new_dst_cpu); 8883 env.dst_cpu = env.new_dst_cpu; 8884 env.flags &= ~LBF_DST_PINNED; 8885 env.loop = 0; 8886 env.loop_break = sched_nr_migrate_break; 8887 8888 /* 8889 * Go back to "more_balance" rather than "redo" since we 8890 * need to continue with same src_cpu. 8891 */ 8892 goto more_balance; 8893 } 8894 8895 /* 8896 * We failed to reach balance because of affinity. 8897 */ 8898 if (sd_parent) { 8899 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8900 8901 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 8902 *group_imbalance = 1; 8903 } 8904 8905 /* All tasks on this runqueue were pinned by CPU affinity */ 8906 if (unlikely(env.flags & LBF_ALL_PINNED)) { 8907 __cpumask_clear_cpu(cpu_of(busiest), cpus); 8908 /* 8909 * Attempting to continue load balancing at the current 8910 * sched_domain level only makes sense if there are 8911 * active CPUs remaining as possible busiest CPUs to 8912 * pull load from which are not contained within the 8913 * destination group that is receiving any migrated 8914 * load. 8915 */ 8916 if (!cpumask_subset(cpus, env.dst_grpmask)) { 8917 env.loop = 0; 8918 env.loop_break = sched_nr_migrate_break; 8919 goto redo; 8920 } 8921 goto out_all_pinned; 8922 } 8923 } 8924 8925 if (!ld_moved) { 8926 schedstat_inc(sd->lb_failed[idle]); 8927 /* 8928 * Increment the failure counter only on periodic balance. 8929 * We do not want newidle balance, which can be very 8930 * frequent, pollute the failure counter causing 8931 * excessive cache_hot migrations and active balances. 8932 */ 8933 if (idle != CPU_NEWLY_IDLE) 8934 sd->nr_balance_failed++; 8935 8936 if (need_active_balance(&env)) { 8937 unsigned long flags; 8938 8939 raw_spin_lock_irqsave(&busiest->lock, flags); 8940 8941 /* 8942 * Don't kick the active_load_balance_cpu_stop, 8943 * if the curr task on busiest CPU can't be 8944 * moved to this_cpu: 8945 */ 8946 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 8947 raw_spin_unlock_irqrestore(&busiest->lock, 8948 flags); 8949 env.flags |= LBF_ALL_PINNED; 8950 goto out_one_pinned; 8951 } 8952 8953 /* 8954 * ->active_balance synchronizes accesses to 8955 * ->active_balance_work. Once set, it's cleared 8956 * only after active load balance is finished. 8957 */ 8958 if (!busiest->active_balance) { 8959 busiest->active_balance = 1; 8960 busiest->push_cpu = this_cpu; 8961 active_balance = 1; 8962 } 8963 raw_spin_unlock_irqrestore(&busiest->lock, flags); 8964 8965 if (active_balance) { 8966 stop_one_cpu_nowait(cpu_of(busiest), 8967 active_load_balance_cpu_stop, busiest, 8968 &busiest->active_balance_work); 8969 } 8970 8971 /* We've kicked active balancing, force task migration. */ 8972 sd->nr_balance_failed = sd->cache_nice_tries+1; 8973 } 8974 } else 8975 sd->nr_balance_failed = 0; 8976 8977 if (likely(!active_balance) || voluntary_active_balance(&env)) { 8978 /* We were unbalanced, so reset the balancing interval */ 8979 sd->balance_interval = sd->min_interval; 8980 } else { 8981 /* 8982 * If we've begun active balancing, start to back off. This 8983 * case may not be covered by the all_pinned logic if there 8984 * is only 1 task on the busy runqueue (because we don't call 8985 * detach_tasks). 8986 */ 8987 if (sd->balance_interval < sd->max_interval) 8988 sd->balance_interval *= 2; 8989 } 8990 8991 goto out; 8992 8993 out_balanced: 8994 /* 8995 * We reach balance although we may have faced some affinity 8996 * constraints. Clear the imbalance flag only if other tasks got 8997 * a chance to move and fix the imbalance. 8998 */ 8999 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 9000 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9001 9002 if (*group_imbalance) 9003 *group_imbalance = 0; 9004 } 9005 9006 out_all_pinned: 9007 /* 9008 * We reach balance because all tasks are pinned at this level so 9009 * we can't migrate them. Let the imbalance flag set so parent level 9010 * can try to migrate them. 9011 */ 9012 schedstat_inc(sd->lb_balanced[idle]); 9013 9014 sd->nr_balance_failed = 0; 9015 9016 out_one_pinned: 9017 ld_moved = 0; 9018 9019 /* 9020 * newidle_balance() disregards balance intervals, so we could 9021 * repeatedly reach this code, which would lead to balance_interval 9022 * skyrocketting in a short amount of time. Skip the balance_interval 9023 * increase logic to avoid that. 9024 */ 9025 if (env.idle == CPU_NEWLY_IDLE) 9026 goto out; 9027 9028 /* tune up the balancing interval */ 9029 if ((env.flags & LBF_ALL_PINNED && 9030 sd->balance_interval < MAX_PINNED_INTERVAL) || 9031 sd->balance_interval < sd->max_interval) 9032 sd->balance_interval *= 2; 9033 out: 9034 return ld_moved; 9035 } 9036 9037 static inline unsigned long 9038 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 9039 { 9040 unsigned long interval = sd->balance_interval; 9041 9042 if (cpu_busy) 9043 interval *= sd->busy_factor; 9044 9045 /* scale ms to jiffies */ 9046 interval = msecs_to_jiffies(interval); 9047 interval = clamp(interval, 1UL, max_load_balance_interval); 9048 9049 return interval; 9050 } 9051 9052 static inline void 9053 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 9054 { 9055 unsigned long interval, next; 9056 9057 /* used by idle balance, so cpu_busy = 0 */ 9058 interval = get_sd_balance_interval(sd, 0); 9059 next = sd->last_balance + interval; 9060 9061 if (time_after(*next_balance, next)) 9062 *next_balance = next; 9063 } 9064 9065 /* 9066 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 9067 * running tasks off the busiest CPU onto idle CPUs. It requires at 9068 * least 1 task to be running on each physical CPU where possible, and 9069 * avoids physical / logical imbalances. 9070 */ 9071 static int active_load_balance_cpu_stop(void *data) 9072 { 9073 struct rq *busiest_rq = data; 9074 int busiest_cpu = cpu_of(busiest_rq); 9075 int target_cpu = busiest_rq->push_cpu; 9076 struct rq *target_rq = cpu_rq(target_cpu); 9077 struct sched_domain *sd; 9078 struct task_struct *p = NULL; 9079 struct rq_flags rf; 9080 9081 rq_lock_irq(busiest_rq, &rf); 9082 /* 9083 * Between queueing the stop-work and running it is a hole in which 9084 * CPUs can become inactive. We should not move tasks from or to 9085 * inactive CPUs. 9086 */ 9087 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 9088 goto out_unlock; 9089 9090 /* Make sure the requested CPU hasn't gone down in the meantime: */ 9091 if (unlikely(busiest_cpu != smp_processor_id() || 9092 !busiest_rq->active_balance)) 9093 goto out_unlock; 9094 9095 /* Is there any task to move? */ 9096 if (busiest_rq->nr_running <= 1) 9097 goto out_unlock; 9098 9099 /* 9100 * This condition is "impossible", if it occurs 9101 * we need to fix it. Originally reported by 9102 * Bjorn Helgaas on a 128-CPU setup. 9103 */ 9104 BUG_ON(busiest_rq == target_rq); 9105 9106 /* Search for an sd spanning us and the target CPU. */ 9107 rcu_read_lock(); 9108 for_each_domain(target_cpu, sd) { 9109 if ((sd->flags & SD_LOAD_BALANCE) && 9110 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 9111 break; 9112 } 9113 9114 if (likely(sd)) { 9115 struct lb_env env = { 9116 .sd = sd, 9117 .dst_cpu = target_cpu, 9118 .dst_rq = target_rq, 9119 .src_cpu = busiest_rq->cpu, 9120 .src_rq = busiest_rq, 9121 .idle = CPU_IDLE, 9122 /* 9123 * can_migrate_task() doesn't need to compute new_dst_cpu 9124 * for active balancing. Since we have CPU_IDLE, but no 9125 * @dst_grpmask we need to make that test go away with lying 9126 * about DST_PINNED. 9127 */ 9128 .flags = LBF_DST_PINNED, 9129 }; 9130 9131 schedstat_inc(sd->alb_count); 9132 update_rq_clock(busiest_rq); 9133 9134 p = detach_one_task(&env); 9135 if (p) { 9136 schedstat_inc(sd->alb_pushed); 9137 /* Active balancing done, reset the failure counter. */ 9138 sd->nr_balance_failed = 0; 9139 } else { 9140 schedstat_inc(sd->alb_failed); 9141 } 9142 } 9143 rcu_read_unlock(); 9144 out_unlock: 9145 busiest_rq->active_balance = 0; 9146 rq_unlock(busiest_rq, &rf); 9147 9148 if (p) 9149 attach_one_task(target_rq, p); 9150 9151 local_irq_enable(); 9152 9153 return 0; 9154 } 9155 9156 static DEFINE_SPINLOCK(balancing); 9157 9158 /* 9159 * Scale the max load_balance interval with the number of CPUs in the system. 9160 * This trades load-balance latency on larger machines for less cross talk. 9161 */ 9162 void update_max_interval(void) 9163 { 9164 max_load_balance_interval = HZ*num_online_cpus()/10; 9165 } 9166 9167 /* 9168 * It checks each scheduling domain to see if it is due to be balanced, 9169 * and initiates a balancing operation if so. 9170 * 9171 * Balancing parameters are set up in init_sched_domains. 9172 */ 9173 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 9174 { 9175 int continue_balancing = 1; 9176 int cpu = rq->cpu; 9177 unsigned long interval; 9178 struct sched_domain *sd; 9179 /* Earliest time when we have to do rebalance again */ 9180 unsigned long next_balance = jiffies + 60*HZ; 9181 int update_next_balance = 0; 9182 int need_serialize, need_decay = 0; 9183 u64 max_cost = 0; 9184 9185 rcu_read_lock(); 9186 for_each_domain(cpu, sd) { 9187 /* 9188 * Decay the newidle max times here because this is a regular 9189 * visit to all the domains. Decay ~1% per second. 9190 */ 9191 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 9192 sd->max_newidle_lb_cost = 9193 (sd->max_newidle_lb_cost * 253) / 256; 9194 sd->next_decay_max_lb_cost = jiffies + HZ; 9195 need_decay = 1; 9196 } 9197 max_cost += sd->max_newidle_lb_cost; 9198 9199 if (!(sd->flags & SD_LOAD_BALANCE)) 9200 continue; 9201 9202 /* 9203 * Stop the load balance at this level. There is another 9204 * CPU in our sched group which is doing load balancing more 9205 * actively. 9206 */ 9207 if (!continue_balancing) { 9208 if (need_decay) 9209 continue; 9210 break; 9211 } 9212 9213 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9214 9215 need_serialize = sd->flags & SD_SERIALIZE; 9216 if (need_serialize) { 9217 if (!spin_trylock(&balancing)) 9218 goto out; 9219 } 9220 9221 if (time_after_eq(jiffies, sd->last_balance + interval)) { 9222 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 9223 /* 9224 * The LBF_DST_PINNED logic could have changed 9225 * env->dst_cpu, so we can't know our idle 9226 * state even if we migrated tasks. Update it. 9227 */ 9228 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 9229 } 9230 sd->last_balance = jiffies; 9231 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9232 } 9233 if (need_serialize) 9234 spin_unlock(&balancing); 9235 out: 9236 if (time_after(next_balance, sd->last_balance + interval)) { 9237 next_balance = sd->last_balance + interval; 9238 update_next_balance = 1; 9239 } 9240 } 9241 if (need_decay) { 9242 /* 9243 * Ensure the rq-wide value also decays but keep it at a 9244 * reasonable floor to avoid funnies with rq->avg_idle. 9245 */ 9246 rq->max_idle_balance_cost = 9247 max((u64)sysctl_sched_migration_cost, max_cost); 9248 } 9249 rcu_read_unlock(); 9250 9251 /* 9252 * next_balance will be updated only when there is a need. 9253 * When the cpu is attached to null domain for ex, it will not be 9254 * updated. 9255 */ 9256 if (likely(update_next_balance)) { 9257 rq->next_balance = next_balance; 9258 9259 #ifdef CONFIG_NO_HZ_COMMON 9260 /* 9261 * If this CPU has been elected to perform the nohz idle 9262 * balance. Other idle CPUs have already rebalanced with 9263 * nohz_idle_balance() and nohz.next_balance has been 9264 * updated accordingly. This CPU is now running the idle load 9265 * balance for itself and we need to update the 9266 * nohz.next_balance accordingly. 9267 */ 9268 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 9269 nohz.next_balance = rq->next_balance; 9270 #endif 9271 } 9272 } 9273 9274 static inline int on_null_domain(struct rq *rq) 9275 { 9276 return unlikely(!rcu_dereference_sched(rq->sd)); 9277 } 9278 9279 #ifdef CONFIG_NO_HZ_COMMON 9280 /* 9281 * idle load balancing details 9282 * - When one of the busy CPUs notice that there may be an idle rebalancing 9283 * needed, they will kick the idle load balancer, which then does idle 9284 * load balancing for all the idle CPUs. 9285 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set 9286 * anywhere yet. 9287 */ 9288 9289 static inline int find_new_ilb(void) 9290 { 9291 int ilb; 9292 9293 for_each_cpu_and(ilb, nohz.idle_cpus_mask, 9294 housekeeping_cpumask(HK_FLAG_MISC)) { 9295 if (idle_cpu(ilb)) 9296 return ilb; 9297 } 9298 9299 return nr_cpu_ids; 9300 } 9301 9302 /* 9303 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 9304 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one). 9305 */ 9306 static void kick_ilb(unsigned int flags) 9307 { 9308 int ilb_cpu; 9309 9310 nohz.next_balance++; 9311 9312 ilb_cpu = find_new_ilb(); 9313 9314 if (ilb_cpu >= nr_cpu_ids) 9315 return; 9316 9317 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 9318 if (flags & NOHZ_KICK_MASK) 9319 return; 9320 9321 /* 9322 * Use smp_send_reschedule() instead of resched_cpu(). 9323 * This way we generate a sched IPI on the target CPU which 9324 * is idle. And the softirq performing nohz idle load balance 9325 * will be run before returning from the IPI. 9326 */ 9327 smp_send_reschedule(ilb_cpu); 9328 } 9329 9330 /* 9331 * Current decision point for kicking the idle load balancer in the presence 9332 * of idle CPUs in the system. 9333 */ 9334 static void nohz_balancer_kick(struct rq *rq) 9335 { 9336 unsigned long now = jiffies; 9337 struct sched_domain_shared *sds; 9338 struct sched_domain *sd; 9339 int nr_busy, i, cpu = rq->cpu; 9340 unsigned int flags = 0; 9341 9342 if (unlikely(rq->idle_balance)) 9343 return; 9344 9345 /* 9346 * We may be recently in ticked or tickless idle mode. At the first 9347 * busy tick after returning from idle, we will update the busy stats. 9348 */ 9349 nohz_balance_exit_idle(rq); 9350 9351 /* 9352 * None are in tickless mode and hence no need for NOHZ idle load 9353 * balancing. 9354 */ 9355 if (likely(!atomic_read(&nohz.nr_cpus))) 9356 return; 9357 9358 if (READ_ONCE(nohz.has_blocked) && 9359 time_after(now, READ_ONCE(nohz.next_blocked))) 9360 flags = NOHZ_STATS_KICK; 9361 9362 if (time_before(now, nohz.next_balance)) 9363 goto out; 9364 9365 if (rq->nr_running >= 2) { 9366 flags = NOHZ_KICK_MASK; 9367 goto out; 9368 } 9369 9370 rcu_read_lock(); 9371 9372 sd = rcu_dereference(rq->sd); 9373 if (sd) { 9374 /* 9375 * If there's a CFS task and the current CPU has reduced 9376 * capacity; kick the ILB to see if there's a better CPU to run 9377 * on. 9378 */ 9379 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 9380 flags = NOHZ_KICK_MASK; 9381 goto unlock; 9382 } 9383 } 9384 9385 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 9386 if (sd) { 9387 /* 9388 * When ASYM_PACKING; see if there's a more preferred CPU 9389 * currently idle; in which case, kick the ILB to move tasks 9390 * around. 9391 */ 9392 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 9393 if (sched_asym_prefer(i, cpu)) { 9394 flags = NOHZ_KICK_MASK; 9395 goto unlock; 9396 } 9397 } 9398 } 9399 9400 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 9401 if (sd) { 9402 /* 9403 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 9404 * to run the misfit task on. 9405 */ 9406 if (check_misfit_status(rq, sd)) { 9407 flags = NOHZ_KICK_MASK; 9408 goto unlock; 9409 } 9410 9411 /* 9412 * For asymmetric systems, we do not want to nicely balance 9413 * cache use, instead we want to embrace asymmetry and only 9414 * ensure tasks have enough CPU capacity. 9415 * 9416 * Skip the LLC logic because it's not relevant in that case. 9417 */ 9418 goto unlock; 9419 } 9420 9421 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 9422 if (sds) { 9423 /* 9424 * If there is an imbalance between LLC domains (IOW we could 9425 * increase the overall cache use), we need some less-loaded LLC 9426 * domain to pull some load. Likewise, we may need to spread 9427 * load within the current LLC domain (e.g. packed SMT cores but 9428 * other CPUs are idle). We can't really know from here how busy 9429 * the others are - so just get a nohz balance going if it looks 9430 * like this LLC domain has tasks we could move. 9431 */ 9432 nr_busy = atomic_read(&sds->nr_busy_cpus); 9433 if (nr_busy > 1) { 9434 flags = NOHZ_KICK_MASK; 9435 goto unlock; 9436 } 9437 } 9438 unlock: 9439 rcu_read_unlock(); 9440 out: 9441 if (flags) 9442 kick_ilb(flags); 9443 } 9444 9445 static void set_cpu_sd_state_busy(int cpu) 9446 { 9447 struct sched_domain *sd; 9448 9449 rcu_read_lock(); 9450 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9451 9452 if (!sd || !sd->nohz_idle) 9453 goto unlock; 9454 sd->nohz_idle = 0; 9455 9456 atomic_inc(&sd->shared->nr_busy_cpus); 9457 unlock: 9458 rcu_read_unlock(); 9459 } 9460 9461 void nohz_balance_exit_idle(struct rq *rq) 9462 { 9463 SCHED_WARN_ON(rq != this_rq()); 9464 9465 if (likely(!rq->nohz_tick_stopped)) 9466 return; 9467 9468 rq->nohz_tick_stopped = 0; 9469 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 9470 atomic_dec(&nohz.nr_cpus); 9471 9472 set_cpu_sd_state_busy(rq->cpu); 9473 } 9474 9475 static void set_cpu_sd_state_idle(int cpu) 9476 { 9477 struct sched_domain *sd; 9478 9479 rcu_read_lock(); 9480 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9481 9482 if (!sd || sd->nohz_idle) 9483 goto unlock; 9484 sd->nohz_idle = 1; 9485 9486 atomic_dec(&sd->shared->nr_busy_cpus); 9487 unlock: 9488 rcu_read_unlock(); 9489 } 9490 9491 /* 9492 * This routine will record that the CPU is going idle with tick stopped. 9493 * This info will be used in performing idle load balancing in the future. 9494 */ 9495 void nohz_balance_enter_idle(int cpu) 9496 { 9497 struct rq *rq = cpu_rq(cpu); 9498 9499 SCHED_WARN_ON(cpu != smp_processor_id()); 9500 9501 /* If this CPU is going down, then nothing needs to be done: */ 9502 if (!cpu_active(cpu)) 9503 return; 9504 9505 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 9506 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 9507 return; 9508 9509 /* 9510 * Can be set safely without rq->lock held 9511 * If a clear happens, it will have evaluated last additions because 9512 * rq->lock is held during the check and the clear 9513 */ 9514 rq->has_blocked_load = 1; 9515 9516 /* 9517 * The tick is still stopped but load could have been added in the 9518 * meantime. We set the nohz.has_blocked flag to trig a check of the 9519 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 9520 * of nohz.has_blocked can only happen after checking the new load 9521 */ 9522 if (rq->nohz_tick_stopped) 9523 goto out; 9524 9525 /* If we're a completely isolated CPU, we don't play: */ 9526 if (on_null_domain(rq)) 9527 return; 9528 9529 rq->nohz_tick_stopped = 1; 9530 9531 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 9532 atomic_inc(&nohz.nr_cpus); 9533 9534 /* 9535 * Ensures that if nohz_idle_balance() fails to observe our 9536 * @idle_cpus_mask store, it must observe the @has_blocked 9537 * store. 9538 */ 9539 smp_mb__after_atomic(); 9540 9541 set_cpu_sd_state_idle(cpu); 9542 9543 out: 9544 /* 9545 * Each time a cpu enter idle, we assume that it has blocked load and 9546 * enable the periodic update of the load of idle cpus 9547 */ 9548 WRITE_ONCE(nohz.has_blocked, 1); 9549 } 9550 9551 /* 9552 * Internal function that runs load balance for all idle cpus. The load balance 9553 * can be a simple update of blocked load or a complete load balance with 9554 * tasks movement depending of flags. 9555 * The function returns false if the loop has stopped before running 9556 * through all idle CPUs. 9557 */ 9558 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 9559 enum cpu_idle_type idle) 9560 { 9561 /* Earliest time when we have to do rebalance again */ 9562 unsigned long now = jiffies; 9563 unsigned long next_balance = now + 60*HZ; 9564 bool has_blocked_load = false; 9565 int update_next_balance = 0; 9566 int this_cpu = this_rq->cpu; 9567 int balance_cpu; 9568 int ret = false; 9569 struct rq *rq; 9570 9571 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 9572 9573 /* 9574 * We assume there will be no idle load after this update and clear 9575 * the has_blocked flag. If a cpu enters idle in the mean time, it will 9576 * set the has_blocked flag and trig another update of idle load. 9577 * Because a cpu that becomes idle, is added to idle_cpus_mask before 9578 * setting the flag, we are sure to not clear the state and not 9579 * check the load of an idle cpu. 9580 */ 9581 WRITE_ONCE(nohz.has_blocked, 0); 9582 9583 /* 9584 * Ensures that if we miss the CPU, we must see the has_blocked 9585 * store from nohz_balance_enter_idle(). 9586 */ 9587 smp_mb(); 9588 9589 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 9590 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 9591 continue; 9592 9593 /* 9594 * If this CPU gets work to do, stop the load balancing 9595 * work being done for other CPUs. Next load 9596 * balancing owner will pick it up. 9597 */ 9598 if (need_resched()) { 9599 has_blocked_load = true; 9600 goto abort; 9601 } 9602 9603 rq = cpu_rq(balance_cpu); 9604 9605 has_blocked_load |= update_nohz_stats(rq, true); 9606 9607 /* 9608 * If time for next balance is due, 9609 * do the balance. 9610 */ 9611 if (time_after_eq(jiffies, rq->next_balance)) { 9612 struct rq_flags rf; 9613 9614 rq_lock_irqsave(rq, &rf); 9615 update_rq_clock(rq); 9616 rq_unlock_irqrestore(rq, &rf); 9617 9618 if (flags & NOHZ_BALANCE_KICK) 9619 rebalance_domains(rq, CPU_IDLE); 9620 } 9621 9622 if (time_after(next_balance, rq->next_balance)) { 9623 next_balance = rq->next_balance; 9624 update_next_balance = 1; 9625 } 9626 } 9627 9628 /* Newly idle CPU doesn't need an update */ 9629 if (idle != CPU_NEWLY_IDLE) { 9630 update_blocked_averages(this_cpu); 9631 has_blocked_load |= this_rq->has_blocked_load; 9632 } 9633 9634 if (flags & NOHZ_BALANCE_KICK) 9635 rebalance_domains(this_rq, CPU_IDLE); 9636 9637 WRITE_ONCE(nohz.next_blocked, 9638 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 9639 9640 /* The full idle balance loop has been done */ 9641 ret = true; 9642 9643 abort: 9644 /* There is still blocked load, enable periodic update */ 9645 if (has_blocked_load) 9646 WRITE_ONCE(nohz.has_blocked, 1); 9647 9648 /* 9649 * next_balance will be updated only when there is a need. 9650 * When the CPU is attached to null domain for ex, it will not be 9651 * updated. 9652 */ 9653 if (likely(update_next_balance)) 9654 nohz.next_balance = next_balance; 9655 9656 return ret; 9657 } 9658 9659 /* 9660 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 9661 * rebalancing for all the cpus for whom scheduler ticks are stopped. 9662 */ 9663 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9664 { 9665 int this_cpu = this_rq->cpu; 9666 unsigned int flags; 9667 9668 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK)) 9669 return false; 9670 9671 if (idle != CPU_IDLE) { 9672 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9673 return false; 9674 } 9675 9676 /* could be _relaxed() */ 9677 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9678 if (!(flags & NOHZ_KICK_MASK)) 9679 return false; 9680 9681 _nohz_idle_balance(this_rq, flags, idle); 9682 9683 return true; 9684 } 9685 9686 static void nohz_newidle_balance(struct rq *this_rq) 9687 { 9688 int this_cpu = this_rq->cpu; 9689 9690 /* 9691 * This CPU doesn't want to be disturbed by scheduler 9692 * housekeeping 9693 */ 9694 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 9695 return; 9696 9697 /* Will wake up very soon. No time for doing anything else*/ 9698 if (this_rq->avg_idle < sysctl_sched_migration_cost) 9699 return; 9700 9701 /* Don't need to update blocked load of idle CPUs*/ 9702 if (!READ_ONCE(nohz.has_blocked) || 9703 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 9704 return; 9705 9706 raw_spin_unlock(&this_rq->lock); 9707 /* 9708 * This CPU is going to be idle and blocked load of idle CPUs 9709 * need to be updated. Run the ilb locally as it is a good 9710 * candidate for ilb instead of waking up another idle CPU. 9711 * Kick an normal ilb if we failed to do the update. 9712 */ 9713 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) 9714 kick_ilb(NOHZ_STATS_KICK); 9715 raw_spin_lock(&this_rq->lock); 9716 } 9717 9718 #else /* !CONFIG_NO_HZ_COMMON */ 9719 static inline void nohz_balancer_kick(struct rq *rq) { } 9720 9721 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9722 { 9723 return false; 9724 } 9725 9726 static inline void nohz_newidle_balance(struct rq *this_rq) { } 9727 #endif /* CONFIG_NO_HZ_COMMON */ 9728 9729 /* 9730 * idle_balance is called by schedule() if this_cpu is about to become 9731 * idle. Attempts to pull tasks from other CPUs. 9732 */ 9733 int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 9734 { 9735 unsigned long next_balance = jiffies + HZ; 9736 int this_cpu = this_rq->cpu; 9737 struct sched_domain *sd; 9738 int pulled_task = 0; 9739 u64 curr_cost = 0; 9740 9741 update_misfit_status(NULL, this_rq); 9742 /* 9743 * We must set idle_stamp _before_ calling idle_balance(), such that we 9744 * measure the duration of idle_balance() as idle time. 9745 */ 9746 this_rq->idle_stamp = rq_clock(this_rq); 9747 9748 /* 9749 * Do not pull tasks towards !active CPUs... 9750 */ 9751 if (!cpu_active(this_cpu)) 9752 return 0; 9753 9754 /* 9755 * This is OK, because current is on_cpu, which avoids it being picked 9756 * for load-balance and preemption/IRQs are still disabled avoiding 9757 * further scheduler activity on it and we're being very careful to 9758 * re-start the picking loop. 9759 */ 9760 rq_unpin_lock(this_rq, rf); 9761 9762 if (this_rq->avg_idle < sysctl_sched_migration_cost || 9763 !READ_ONCE(this_rq->rd->overload)) { 9764 9765 rcu_read_lock(); 9766 sd = rcu_dereference_check_sched_domain(this_rq->sd); 9767 if (sd) 9768 update_next_balance(sd, &next_balance); 9769 rcu_read_unlock(); 9770 9771 nohz_newidle_balance(this_rq); 9772 9773 goto out; 9774 } 9775 9776 raw_spin_unlock(&this_rq->lock); 9777 9778 update_blocked_averages(this_cpu); 9779 rcu_read_lock(); 9780 for_each_domain(this_cpu, sd) { 9781 int continue_balancing = 1; 9782 u64 t0, domain_cost; 9783 9784 if (!(sd->flags & SD_LOAD_BALANCE)) 9785 continue; 9786 9787 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 9788 update_next_balance(sd, &next_balance); 9789 break; 9790 } 9791 9792 if (sd->flags & SD_BALANCE_NEWIDLE) { 9793 t0 = sched_clock_cpu(this_cpu); 9794 9795 pulled_task = load_balance(this_cpu, this_rq, 9796 sd, CPU_NEWLY_IDLE, 9797 &continue_balancing); 9798 9799 domain_cost = sched_clock_cpu(this_cpu) - t0; 9800 if (domain_cost > sd->max_newidle_lb_cost) 9801 sd->max_newidle_lb_cost = domain_cost; 9802 9803 curr_cost += domain_cost; 9804 } 9805 9806 update_next_balance(sd, &next_balance); 9807 9808 /* 9809 * Stop searching for tasks to pull if there are 9810 * now runnable tasks on this rq. 9811 */ 9812 if (pulled_task || this_rq->nr_running > 0) 9813 break; 9814 } 9815 rcu_read_unlock(); 9816 9817 raw_spin_lock(&this_rq->lock); 9818 9819 if (curr_cost > this_rq->max_idle_balance_cost) 9820 this_rq->max_idle_balance_cost = curr_cost; 9821 9822 out: 9823 /* 9824 * While browsing the domains, we released the rq lock, a task could 9825 * have been enqueued in the meantime. Since we're not going idle, 9826 * pretend we pulled a task. 9827 */ 9828 if (this_rq->cfs.h_nr_running && !pulled_task) 9829 pulled_task = 1; 9830 9831 /* Move the next balance forward */ 9832 if (time_after(this_rq->next_balance, next_balance)) 9833 this_rq->next_balance = next_balance; 9834 9835 /* Is there a task of a high priority class? */ 9836 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 9837 pulled_task = -1; 9838 9839 if (pulled_task) 9840 this_rq->idle_stamp = 0; 9841 9842 rq_repin_lock(this_rq, rf); 9843 9844 return pulled_task; 9845 } 9846 9847 /* 9848 * run_rebalance_domains is triggered when needed from the scheduler tick. 9849 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 9850 */ 9851 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 9852 { 9853 struct rq *this_rq = this_rq(); 9854 enum cpu_idle_type idle = this_rq->idle_balance ? 9855 CPU_IDLE : CPU_NOT_IDLE; 9856 9857 /* 9858 * If this CPU has a pending nohz_balance_kick, then do the 9859 * balancing on behalf of the other idle CPUs whose ticks are 9860 * stopped. Do nohz_idle_balance *before* rebalance_domains to 9861 * give the idle CPUs a chance to load balance. Else we may 9862 * load balance only within the local sched_domain hierarchy 9863 * and abort nohz_idle_balance altogether if we pull some load. 9864 */ 9865 if (nohz_idle_balance(this_rq, idle)) 9866 return; 9867 9868 /* normal load balance */ 9869 update_blocked_averages(this_rq->cpu); 9870 rebalance_domains(this_rq, idle); 9871 } 9872 9873 /* 9874 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 9875 */ 9876 void trigger_load_balance(struct rq *rq) 9877 { 9878 /* Don't need to rebalance while attached to NULL domain */ 9879 if (unlikely(on_null_domain(rq))) 9880 return; 9881 9882 if (time_after_eq(jiffies, rq->next_balance)) 9883 raise_softirq(SCHED_SOFTIRQ); 9884 9885 nohz_balancer_kick(rq); 9886 } 9887 9888 static void rq_online_fair(struct rq *rq) 9889 { 9890 update_sysctl(); 9891 9892 update_runtime_enabled(rq); 9893 } 9894 9895 static void rq_offline_fair(struct rq *rq) 9896 { 9897 update_sysctl(); 9898 9899 /* Ensure any throttled groups are reachable by pick_next_task */ 9900 unthrottle_offline_cfs_rqs(rq); 9901 } 9902 9903 #endif /* CONFIG_SMP */ 9904 9905 /* 9906 * scheduler tick hitting a task of our scheduling class. 9907 * 9908 * NOTE: This function can be called remotely by the tick offload that 9909 * goes along full dynticks. Therefore no local assumption can be made 9910 * and everything must be accessed through the @rq and @curr passed in 9911 * parameters. 9912 */ 9913 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 9914 { 9915 struct cfs_rq *cfs_rq; 9916 struct sched_entity *se = &curr->se; 9917 9918 for_each_sched_entity(se) { 9919 cfs_rq = cfs_rq_of(se); 9920 entity_tick(cfs_rq, se, queued); 9921 } 9922 9923 if (static_branch_unlikely(&sched_numa_balancing)) 9924 task_tick_numa(rq, curr); 9925 9926 update_misfit_status(curr, rq); 9927 update_overutilized_status(task_rq(curr)); 9928 } 9929 9930 /* 9931 * called on fork with the child task as argument from the parent's context 9932 * - child not yet on the tasklist 9933 * - preemption disabled 9934 */ 9935 static void task_fork_fair(struct task_struct *p) 9936 { 9937 struct cfs_rq *cfs_rq; 9938 struct sched_entity *se = &p->se, *curr; 9939 struct rq *rq = this_rq(); 9940 struct rq_flags rf; 9941 9942 rq_lock(rq, &rf); 9943 update_rq_clock(rq); 9944 9945 cfs_rq = task_cfs_rq(current); 9946 curr = cfs_rq->curr; 9947 if (curr) { 9948 update_curr(cfs_rq); 9949 se->vruntime = curr->vruntime; 9950 } 9951 place_entity(cfs_rq, se, 1); 9952 9953 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 9954 /* 9955 * Upon rescheduling, sched_class::put_prev_task() will place 9956 * 'current' within the tree based on its new key value. 9957 */ 9958 swap(curr->vruntime, se->vruntime); 9959 resched_curr(rq); 9960 } 9961 9962 se->vruntime -= cfs_rq->min_vruntime; 9963 rq_unlock(rq, &rf); 9964 } 9965 9966 /* 9967 * Priority of the task has changed. Check to see if we preempt 9968 * the current task. 9969 */ 9970 static void 9971 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 9972 { 9973 if (!task_on_rq_queued(p)) 9974 return; 9975 9976 /* 9977 * Reschedule if we are currently running on this runqueue and 9978 * our priority decreased, or if we are not currently running on 9979 * this runqueue and our priority is higher than the current's 9980 */ 9981 if (rq->curr == p) { 9982 if (p->prio > oldprio) 9983 resched_curr(rq); 9984 } else 9985 check_preempt_curr(rq, p, 0); 9986 } 9987 9988 static inline bool vruntime_normalized(struct task_struct *p) 9989 { 9990 struct sched_entity *se = &p->se; 9991 9992 /* 9993 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 9994 * the dequeue_entity(.flags=0) will already have normalized the 9995 * vruntime. 9996 */ 9997 if (p->on_rq) 9998 return true; 9999 10000 /* 10001 * When !on_rq, vruntime of the task has usually NOT been normalized. 10002 * But there are some cases where it has already been normalized: 10003 * 10004 * - A forked child which is waiting for being woken up by 10005 * wake_up_new_task(). 10006 * - A task which has been woken up by try_to_wake_up() and 10007 * waiting for actually being woken up by sched_ttwu_pending(). 10008 */ 10009 if (!se->sum_exec_runtime || 10010 (p->state == TASK_WAKING && p->sched_remote_wakeup)) 10011 return true; 10012 10013 return false; 10014 } 10015 10016 #ifdef CONFIG_FAIR_GROUP_SCHED 10017 /* 10018 * Propagate the changes of the sched_entity across the tg tree to make it 10019 * visible to the root 10020 */ 10021 static void propagate_entity_cfs_rq(struct sched_entity *se) 10022 { 10023 struct cfs_rq *cfs_rq; 10024 10025 /* Start to propagate at parent */ 10026 se = se->parent; 10027 10028 for_each_sched_entity(se) { 10029 cfs_rq = cfs_rq_of(se); 10030 10031 if (cfs_rq_throttled(cfs_rq)) 10032 break; 10033 10034 update_load_avg(cfs_rq, se, UPDATE_TG); 10035 } 10036 } 10037 #else 10038 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 10039 #endif 10040 10041 static void detach_entity_cfs_rq(struct sched_entity *se) 10042 { 10043 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10044 10045 /* Catch up with the cfs_rq and remove our load when we leave */ 10046 update_load_avg(cfs_rq, se, 0); 10047 detach_entity_load_avg(cfs_rq, se); 10048 update_tg_load_avg(cfs_rq, false); 10049 propagate_entity_cfs_rq(se); 10050 } 10051 10052 static void attach_entity_cfs_rq(struct sched_entity *se) 10053 { 10054 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10055 10056 #ifdef CONFIG_FAIR_GROUP_SCHED 10057 /* 10058 * Since the real-depth could have been changed (only FAIR 10059 * class maintain depth value), reset depth properly. 10060 */ 10061 se->depth = se->parent ? se->parent->depth + 1 : 0; 10062 #endif 10063 10064 /* Synchronize entity with its cfs_rq */ 10065 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 10066 attach_entity_load_avg(cfs_rq, se, 0); 10067 update_tg_load_avg(cfs_rq, false); 10068 propagate_entity_cfs_rq(se); 10069 } 10070 10071 static void detach_task_cfs_rq(struct task_struct *p) 10072 { 10073 struct sched_entity *se = &p->se; 10074 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10075 10076 if (!vruntime_normalized(p)) { 10077 /* 10078 * Fix up our vruntime so that the current sleep doesn't 10079 * cause 'unlimited' sleep bonus. 10080 */ 10081 place_entity(cfs_rq, se, 0); 10082 se->vruntime -= cfs_rq->min_vruntime; 10083 } 10084 10085 detach_entity_cfs_rq(se); 10086 } 10087 10088 static void attach_task_cfs_rq(struct task_struct *p) 10089 { 10090 struct sched_entity *se = &p->se; 10091 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10092 10093 attach_entity_cfs_rq(se); 10094 10095 if (!vruntime_normalized(p)) 10096 se->vruntime += cfs_rq->min_vruntime; 10097 } 10098 10099 static void switched_from_fair(struct rq *rq, struct task_struct *p) 10100 { 10101 detach_task_cfs_rq(p); 10102 } 10103 10104 static void switched_to_fair(struct rq *rq, struct task_struct *p) 10105 { 10106 attach_task_cfs_rq(p); 10107 10108 if (task_on_rq_queued(p)) { 10109 /* 10110 * We were most likely switched from sched_rt, so 10111 * kick off the schedule if running, otherwise just see 10112 * if we can still preempt the current task. 10113 */ 10114 if (rq->curr == p) 10115 resched_curr(rq); 10116 else 10117 check_preempt_curr(rq, p, 0); 10118 } 10119 } 10120 10121 /* Account for a task changing its policy or group. 10122 * 10123 * This routine is mostly called to set cfs_rq->curr field when a task 10124 * migrates between groups/classes. 10125 */ 10126 static void set_next_task_fair(struct rq *rq, struct task_struct *p) 10127 { 10128 struct sched_entity *se = &p->se; 10129 10130 #ifdef CONFIG_SMP 10131 if (task_on_rq_queued(p)) { 10132 /* 10133 * Move the next running task to the front of the list, so our 10134 * cfs_tasks list becomes MRU one. 10135 */ 10136 list_move(&se->group_node, &rq->cfs_tasks); 10137 } 10138 #endif 10139 10140 for_each_sched_entity(se) { 10141 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10142 10143 set_next_entity(cfs_rq, se); 10144 /* ensure bandwidth has been allocated on our new cfs_rq */ 10145 account_cfs_rq_runtime(cfs_rq, 0); 10146 } 10147 } 10148 10149 void init_cfs_rq(struct cfs_rq *cfs_rq) 10150 { 10151 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 10152 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 10153 #ifndef CONFIG_64BIT 10154 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 10155 #endif 10156 #ifdef CONFIG_SMP 10157 raw_spin_lock_init(&cfs_rq->removed.lock); 10158 #endif 10159 } 10160 10161 #ifdef CONFIG_FAIR_GROUP_SCHED 10162 static void task_set_group_fair(struct task_struct *p) 10163 { 10164 struct sched_entity *se = &p->se; 10165 10166 set_task_rq(p, task_cpu(p)); 10167 se->depth = se->parent ? se->parent->depth + 1 : 0; 10168 } 10169 10170 static void task_move_group_fair(struct task_struct *p) 10171 { 10172 detach_task_cfs_rq(p); 10173 set_task_rq(p, task_cpu(p)); 10174 10175 #ifdef CONFIG_SMP 10176 /* Tell se's cfs_rq has been changed -- migrated */ 10177 p->se.avg.last_update_time = 0; 10178 #endif 10179 attach_task_cfs_rq(p); 10180 } 10181 10182 static void task_change_group_fair(struct task_struct *p, int type) 10183 { 10184 switch (type) { 10185 case TASK_SET_GROUP: 10186 task_set_group_fair(p); 10187 break; 10188 10189 case TASK_MOVE_GROUP: 10190 task_move_group_fair(p); 10191 break; 10192 } 10193 } 10194 10195 void free_fair_sched_group(struct task_group *tg) 10196 { 10197 int i; 10198 10199 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10200 10201 for_each_possible_cpu(i) { 10202 if (tg->cfs_rq) 10203 kfree(tg->cfs_rq[i]); 10204 if (tg->se) 10205 kfree(tg->se[i]); 10206 } 10207 10208 kfree(tg->cfs_rq); 10209 kfree(tg->se); 10210 } 10211 10212 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10213 { 10214 struct sched_entity *se; 10215 struct cfs_rq *cfs_rq; 10216 int i; 10217 10218 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 10219 if (!tg->cfs_rq) 10220 goto err; 10221 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 10222 if (!tg->se) 10223 goto err; 10224 10225 tg->shares = NICE_0_LOAD; 10226 10227 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10228 10229 for_each_possible_cpu(i) { 10230 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 10231 GFP_KERNEL, cpu_to_node(i)); 10232 if (!cfs_rq) 10233 goto err; 10234 10235 se = kzalloc_node(sizeof(struct sched_entity), 10236 GFP_KERNEL, cpu_to_node(i)); 10237 if (!se) 10238 goto err_free_rq; 10239 10240 init_cfs_rq(cfs_rq); 10241 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 10242 init_entity_runnable_average(se); 10243 } 10244 10245 return 1; 10246 10247 err_free_rq: 10248 kfree(cfs_rq); 10249 err: 10250 return 0; 10251 } 10252 10253 void online_fair_sched_group(struct task_group *tg) 10254 { 10255 struct sched_entity *se; 10256 struct rq_flags rf; 10257 struct rq *rq; 10258 int i; 10259 10260 for_each_possible_cpu(i) { 10261 rq = cpu_rq(i); 10262 se = tg->se[i]; 10263 rq_lock_irq(rq, &rf); 10264 update_rq_clock(rq); 10265 attach_entity_cfs_rq(se); 10266 sync_throttle(tg, i); 10267 rq_unlock_irq(rq, &rf); 10268 } 10269 } 10270 10271 void unregister_fair_sched_group(struct task_group *tg) 10272 { 10273 unsigned long flags; 10274 struct rq *rq; 10275 int cpu; 10276 10277 for_each_possible_cpu(cpu) { 10278 if (tg->se[cpu]) 10279 remove_entity_load_avg(tg->se[cpu]); 10280 10281 /* 10282 * Only empty task groups can be destroyed; so we can speculatively 10283 * check on_list without danger of it being re-added. 10284 */ 10285 if (!tg->cfs_rq[cpu]->on_list) 10286 continue; 10287 10288 rq = cpu_rq(cpu); 10289 10290 raw_spin_lock_irqsave(&rq->lock, flags); 10291 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 10292 raw_spin_unlock_irqrestore(&rq->lock, flags); 10293 } 10294 } 10295 10296 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 10297 struct sched_entity *se, int cpu, 10298 struct sched_entity *parent) 10299 { 10300 struct rq *rq = cpu_rq(cpu); 10301 10302 cfs_rq->tg = tg; 10303 cfs_rq->rq = rq; 10304 init_cfs_rq_runtime(cfs_rq); 10305 10306 tg->cfs_rq[cpu] = cfs_rq; 10307 tg->se[cpu] = se; 10308 10309 /* se could be NULL for root_task_group */ 10310 if (!se) 10311 return; 10312 10313 if (!parent) { 10314 se->cfs_rq = &rq->cfs; 10315 se->depth = 0; 10316 } else { 10317 se->cfs_rq = parent->my_q; 10318 se->depth = parent->depth + 1; 10319 } 10320 10321 se->my_q = cfs_rq; 10322 /* guarantee group entities always have weight */ 10323 update_load_set(&se->load, NICE_0_LOAD); 10324 se->parent = parent; 10325 } 10326 10327 static DEFINE_MUTEX(shares_mutex); 10328 10329 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 10330 { 10331 int i; 10332 10333 /* 10334 * We can't change the weight of the root cgroup. 10335 */ 10336 if (!tg->se[0]) 10337 return -EINVAL; 10338 10339 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 10340 10341 mutex_lock(&shares_mutex); 10342 if (tg->shares == shares) 10343 goto done; 10344 10345 tg->shares = shares; 10346 for_each_possible_cpu(i) { 10347 struct rq *rq = cpu_rq(i); 10348 struct sched_entity *se = tg->se[i]; 10349 struct rq_flags rf; 10350 10351 /* Propagate contribution to hierarchy */ 10352 rq_lock_irqsave(rq, &rf); 10353 update_rq_clock(rq); 10354 for_each_sched_entity(se) { 10355 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 10356 update_cfs_group(se); 10357 } 10358 rq_unlock_irqrestore(rq, &rf); 10359 } 10360 10361 done: 10362 mutex_unlock(&shares_mutex); 10363 return 0; 10364 } 10365 #else /* CONFIG_FAIR_GROUP_SCHED */ 10366 10367 void free_fair_sched_group(struct task_group *tg) { } 10368 10369 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10370 { 10371 return 1; 10372 } 10373 10374 void online_fair_sched_group(struct task_group *tg) { } 10375 10376 void unregister_fair_sched_group(struct task_group *tg) { } 10377 10378 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10379 10380 10381 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 10382 { 10383 struct sched_entity *se = &task->se; 10384 unsigned int rr_interval = 0; 10385 10386 /* 10387 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 10388 * idle runqueue: 10389 */ 10390 if (rq->cfs.load.weight) 10391 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 10392 10393 return rr_interval; 10394 } 10395 10396 /* 10397 * All the scheduling class methods: 10398 */ 10399 const struct sched_class fair_sched_class = { 10400 .next = &idle_sched_class, 10401 .enqueue_task = enqueue_task_fair, 10402 .dequeue_task = dequeue_task_fair, 10403 .yield_task = yield_task_fair, 10404 .yield_to_task = yield_to_task_fair, 10405 10406 .check_preempt_curr = check_preempt_wakeup, 10407 10408 .pick_next_task = pick_next_task_fair, 10409 10410 .put_prev_task = put_prev_task_fair, 10411 .set_next_task = set_next_task_fair, 10412 10413 #ifdef CONFIG_SMP 10414 .select_task_rq = select_task_rq_fair, 10415 .migrate_task_rq = migrate_task_rq_fair, 10416 10417 .rq_online = rq_online_fair, 10418 .rq_offline = rq_offline_fair, 10419 10420 .task_dead = task_dead_fair, 10421 .set_cpus_allowed = set_cpus_allowed_common, 10422 #endif 10423 10424 .task_tick = task_tick_fair, 10425 .task_fork = task_fork_fair, 10426 10427 .prio_changed = prio_changed_fair, 10428 .switched_from = switched_from_fair, 10429 .switched_to = switched_to_fair, 10430 10431 .get_rr_interval = get_rr_interval_fair, 10432 10433 .update_curr = update_curr_fair, 10434 10435 #ifdef CONFIG_FAIR_GROUP_SCHED 10436 .task_change_group = task_change_group_fair, 10437 #endif 10438 10439 #ifdef CONFIG_UCLAMP_TASK 10440 .uclamp_enabled = 1, 10441 #endif 10442 }; 10443 10444 #ifdef CONFIG_SCHED_DEBUG 10445 void print_cfs_stats(struct seq_file *m, int cpu) 10446 { 10447 struct cfs_rq *cfs_rq, *pos; 10448 10449 rcu_read_lock(); 10450 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 10451 print_cfs_rq(m, cpu, cfs_rq); 10452 rcu_read_unlock(); 10453 } 10454 10455 #ifdef CONFIG_NUMA_BALANCING 10456 void show_numa_stats(struct task_struct *p, struct seq_file *m) 10457 { 10458 int node; 10459 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 10460 struct numa_group *ng; 10461 10462 rcu_read_lock(); 10463 ng = rcu_dereference(p->numa_group); 10464 for_each_online_node(node) { 10465 if (p->numa_faults) { 10466 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 10467 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 10468 } 10469 if (ng) { 10470 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 10471 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 10472 } 10473 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 10474 } 10475 rcu_read_unlock(); 10476 } 10477 #endif /* CONFIG_NUMA_BALANCING */ 10478 #endif /* CONFIG_SCHED_DEBUG */ 10479 10480 __init void init_sched_fair_class(void) 10481 { 10482 #ifdef CONFIG_SMP 10483 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 10484 10485 #ifdef CONFIG_NO_HZ_COMMON 10486 nohz.next_balance = jiffies; 10487 nohz.next_blocked = jiffies; 10488 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 10489 #endif 10490 #endif /* SMP */ 10491 10492 } 10493 10494 /* 10495 * Helper functions to facilitate extracting info from tracepoints. 10496 */ 10497 10498 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq) 10499 { 10500 #ifdef CONFIG_SMP 10501 return cfs_rq ? &cfs_rq->avg : NULL; 10502 #else 10503 return NULL; 10504 #endif 10505 } 10506 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg); 10507 10508 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len) 10509 { 10510 if (!cfs_rq) { 10511 if (str) 10512 strlcpy(str, "(null)", len); 10513 else 10514 return NULL; 10515 } 10516 10517 cfs_rq_tg_path(cfs_rq, str, len); 10518 return str; 10519 } 10520 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path); 10521 10522 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq) 10523 { 10524 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1; 10525 } 10526 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu); 10527 10528 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq) 10529 { 10530 #ifdef CONFIG_SMP 10531 return rq ? &rq->avg_rt : NULL; 10532 #else 10533 return NULL; 10534 #endif 10535 } 10536 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt); 10537 10538 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq) 10539 { 10540 #ifdef CONFIG_SMP 10541 return rq ? &rq->avg_dl : NULL; 10542 #else 10543 return NULL; 10544 #endif 10545 } 10546 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl); 10547 10548 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq) 10549 { 10550 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ) 10551 return rq ? &rq->avg_irq : NULL; 10552 #else 10553 return NULL; 10554 #endif 10555 } 10556 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq); 10557 10558 int sched_trace_rq_cpu(struct rq *rq) 10559 { 10560 return rq ? cpu_of(rq) : -1; 10561 } 10562 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu); 10563 10564 const struct cpumask *sched_trace_rd_span(struct root_domain *rd) 10565 { 10566 #ifdef CONFIG_SMP 10567 return rd ? rd->span : NULL; 10568 #else 10569 return NULL; 10570 #endif 10571 } 10572 EXPORT_SYMBOL_GPL(sched_trace_rd_span); 10573