xref: /openbmc/linux/kernel/sched/fair.c (revision e620a1e0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 #include <trace/events/sched.h>
26 
27 /*
28  * Targeted preemption latency for CPU-bound tasks:
29  *
30  * NOTE: this latency value is not the same as the concept of
31  * 'timeslice length' - timeslices in CFS are of variable length
32  * and have no persistent notion like in traditional, time-slice
33  * based scheduling concepts.
34  *
35  * (to see the precise effective timeslice length of your workload,
36  *  run vmstat and monitor the context-switches (cs) field)
37  *
38  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39  */
40 unsigned int sysctl_sched_latency			= 6000000ULL;
41 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
42 
43 /*
44  * The initial- and re-scaling of tunables is configurable
45  *
46  * Options are:
47  *
48  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
49  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51  *
52  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53  */
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55 
56 /*
57  * Minimal preemption granularity for CPU-bound tasks:
58  *
59  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60  */
61 unsigned int sysctl_sched_min_granularity			= 750000ULL;
62 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 
64 /*
65  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66  */
67 static unsigned int sched_nr_latency = 8;
68 
69 /*
70  * After fork, child runs first. If set to 0 (default) then
71  * parent will (try to) run first.
72  */
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
74 
75 /*
76  * SCHED_OTHER wake-up granularity.
77  *
78  * This option delays the preemption effects of decoupled workloads
79  * and reduces their over-scheduling. Synchronous workloads will still
80  * have immediate wakeup/sleep latencies.
81  *
82  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83  */
84 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
85 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 #ifdef CONFIG_SMP
90 /*
91  * For asym packing, by default the lower numbered CPU has higher priority.
92  */
93 int __weak arch_asym_cpu_priority(int cpu)
94 {
95 	return -cpu;
96 }
97 
98 /*
99  * The margin used when comparing utilization with CPU capacity.
100  *
101  * (default: ~20%)
102  */
103 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
104 
105 #endif
106 
107 #ifdef CONFIG_CFS_BANDWIDTH
108 /*
109  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110  * each time a cfs_rq requests quota.
111  *
112  * Note: in the case that the slice exceeds the runtime remaining (either due
113  * to consumption or the quota being specified to be smaller than the slice)
114  * we will always only issue the remaining available time.
115  *
116  * (default: 5 msec, units: microseconds)
117  */
118 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
119 #endif
120 
121 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 {
123 	lw->weight += inc;
124 	lw->inv_weight = 0;
125 }
126 
127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 {
129 	lw->weight -= dec;
130 	lw->inv_weight = 0;
131 }
132 
133 static inline void update_load_set(struct load_weight *lw, unsigned long w)
134 {
135 	lw->weight = w;
136 	lw->inv_weight = 0;
137 }
138 
139 /*
140  * Increase the granularity value when there are more CPUs,
141  * because with more CPUs the 'effective latency' as visible
142  * to users decreases. But the relationship is not linear,
143  * so pick a second-best guess by going with the log2 of the
144  * number of CPUs.
145  *
146  * This idea comes from the SD scheduler of Con Kolivas:
147  */
148 static unsigned int get_update_sysctl_factor(void)
149 {
150 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 	unsigned int factor;
152 
153 	switch (sysctl_sched_tunable_scaling) {
154 	case SCHED_TUNABLESCALING_NONE:
155 		factor = 1;
156 		break;
157 	case SCHED_TUNABLESCALING_LINEAR:
158 		factor = cpus;
159 		break;
160 	case SCHED_TUNABLESCALING_LOG:
161 	default:
162 		factor = 1 + ilog2(cpus);
163 		break;
164 	}
165 
166 	return factor;
167 }
168 
169 static void update_sysctl(void)
170 {
171 	unsigned int factor = get_update_sysctl_factor();
172 
173 #define SET_SYSCTL(name) \
174 	(sysctl_##name = (factor) * normalized_sysctl_##name)
175 	SET_SYSCTL(sched_min_granularity);
176 	SET_SYSCTL(sched_latency);
177 	SET_SYSCTL(sched_wakeup_granularity);
178 #undef SET_SYSCTL
179 }
180 
181 void sched_init_granularity(void)
182 {
183 	update_sysctl();
184 }
185 
186 #define WMULT_CONST	(~0U)
187 #define WMULT_SHIFT	32
188 
189 static void __update_inv_weight(struct load_weight *lw)
190 {
191 	unsigned long w;
192 
193 	if (likely(lw->inv_weight))
194 		return;
195 
196 	w = scale_load_down(lw->weight);
197 
198 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 		lw->inv_weight = 1;
200 	else if (unlikely(!w))
201 		lw->inv_weight = WMULT_CONST;
202 	else
203 		lw->inv_weight = WMULT_CONST / w;
204 }
205 
206 /*
207  * delta_exec * weight / lw.weight
208  *   OR
209  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210  *
211  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212  * we're guaranteed shift stays positive because inv_weight is guaranteed to
213  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214  *
215  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216  * weight/lw.weight <= 1, and therefore our shift will also be positive.
217  */
218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219 {
220 	u64 fact = scale_load_down(weight);
221 	int shift = WMULT_SHIFT;
222 
223 	__update_inv_weight(lw);
224 
225 	if (unlikely(fact >> 32)) {
226 		while (fact >> 32) {
227 			fact >>= 1;
228 			shift--;
229 		}
230 	}
231 
232 	/* hint to use a 32x32->64 mul */
233 	fact = (u64)(u32)fact * lw->inv_weight;
234 
235 	while (fact >> 32) {
236 		fact >>= 1;
237 		shift--;
238 	}
239 
240 	return mul_u64_u32_shr(delta_exec, fact, shift);
241 }
242 
243 
244 const struct sched_class fair_sched_class;
245 
246 /**************************************************************
247  * CFS operations on generic schedulable entities:
248  */
249 
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 static inline struct task_struct *task_of(struct sched_entity *se)
252 {
253 	SCHED_WARN_ON(!entity_is_task(se));
254 	return container_of(se, struct task_struct, se);
255 }
256 
257 /* Walk up scheduling entities hierarchy */
258 #define for_each_sched_entity(se) \
259 		for (; se; se = se->parent)
260 
261 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
262 {
263 	return p->se.cfs_rq;
264 }
265 
266 /* runqueue on which this entity is (to be) queued */
267 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268 {
269 	return se->cfs_rq;
270 }
271 
272 /* runqueue "owned" by this group */
273 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
274 {
275 	return grp->my_q;
276 }
277 
278 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
279 {
280 	if (!path)
281 		return;
282 
283 	if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
284 		autogroup_path(cfs_rq->tg, path, len);
285 	else if (cfs_rq && cfs_rq->tg->css.cgroup)
286 		cgroup_path(cfs_rq->tg->css.cgroup, path, len);
287 	else
288 		strlcpy(path, "(null)", len);
289 }
290 
291 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
292 {
293 	struct rq *rq = rq_of(cfs_rq);
294 	int cpu = cpu_of(rq);
295 
296 	if (cfs_rq->on_list)
297 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
298 
299 	cfs_rq->on_list = 1;
300 
301 	/*
302 	 * Ensure we either appear before our parent (if already
303 	 * enqueued) or force our parent to appear after us when it is
304 	 * enqueued. The fact that we always enqueue bottom-up
305 	 * reduces this to two cases and a special case for the root
306 	 * cfs_rq. Furthermore, it also means that we will always reset
307 	 * tmp_alone_branch either when the branch is connected
308 	 * to a tree or when we reach the top of the tree
309 	 */
310 	if (cfs_rq->tg->parent &&
311 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
312 		/*
313 		 * If parent is already on the list, we add the child
314 		 * just before. Thanks to circular linked property of
315 		 * the list, this means to put the child at the tail
316 		 * of the list that starts by parent.
317 		 */
318 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
319 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
320 		/*
321 		 * The branch is now connected to its tree so we can
322 		 * reset tmp_alone_branch to the beginning of the
323 		 * list.
324 		 */
325 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
326 		return true;
327 	}
328 
329 	if (!cfs_rq->tg->parent) {
330 		/*
331 		 * cfs rq without parent should be put
332 		 * at the tail of the list.
333 		 */
334 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
335 			&rq->leaf_cfs_rq_list);
336 		/*
337 		 * We have reach the top of a tree so we can reset
338 		 * tmp_alone_branch to the beginning of the list.
339 		 */
340 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
341 		return true;
342 	}
343 
344 	/*
345 	 * The parent has not already been added so we want to
346 	 * make sure that it will be put after us.
347 	 * tmp_alone_branch points to the begin of the branch
348 	 * where we will add parent.
349 	 */
350 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
351 	/*
352 	 * update tmp_alone_branch to points to the new begin
353 	 * of the branch
354 	 */
355 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
356 	return false;
357 }
358 
359 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
360 {
361 	if (cfs_rq->on_list) {
362 		struct rq *rq = rq_of(cfs_rq);
363 
364 		/*
365 		 * With cfs_rq being unthrottled/throttled during an enqueue,
366 		 * it can happen the tmp_alone_branch points the a leaf that
367 		 * we finally want to del. In this case, tmp_alone_branch moves
368 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
369 		 * at the end of the enqueue.
370 		 */
371 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
372 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
373 
374 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
375 		cfs_rq->on_list = 0;
376 	}
377 }
378 
379 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
380 {
381 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
382 }
383 
384 /* Iterate thr' all leaf cfs_rq's on a runqueue */
385 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
386 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
387 				 leaf_cfs_rq_list)
388 
389 /* Do the two (enqueued) entities belong to the same group ? */
390 static inline struct cfs_rq *
391 is_same_group(struct sched_entity *se, struct sched_entity *pse)
392 {
393 	if (se->cfs_rq == pse->cfs_rq)
394 		return se->cfs_rq;
395 
396 	return NULL;
397 }
398 
399 static inline struct sched_entity *parent_entity(struct sched_entity *se)
400 {
401 	return se->parent;
402 }
403 
404 static void
405 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
406 {
407 	int se_depth, pse_depth;
408 
409 	/*
410 	 * preemption test can be made between sibling entities who are in the
411 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
412 	 * both tasks until we find their ancestors who are siblings of common
413 	 * parent.
414 	 */
415 
416 	/* First walk up until both entities are at same depth */
417 	se_depth = (*se)->depth;
418 	pse_depth = (*pse)->depth;
419 
420 	while (se_depth > pse_depth) {
421 		se_depth--;
422 		*se = parent_entity(*se);
423 	}
424 
425 	while (pse_depth > se_depth) {
426 		pse_depth--;
427 		*pse = parent_entity(*pse);
428 	}
429 
430 	while (!is_same_group(*se, *pse)) {
431 		*se = parent_entity(*se);
432 		*pse = parent_entity(*pse);
433 	}
434 }
435 
436 #else	/* !CONFIG_FAIR_GROUP_SCHED */
437 
438 static inline struct task_struct *task_of(struct sched_entity *se)
439 {
440 	return container_of(se, struct task_struct, se);
441 }
442 
443 #define for_each_sched_entity(se) \
444 		for (; se; se = NULL)
445 
446 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
447 {
448 	return &task_rq(p)->cfs;
449 }
450 
451 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
452 {
453 	struct task_struct *p = task_of(se);
454 	struct rq *rq = task_rq(p);
455 
456 	return &rq->cfs;
457 }
458 
459 /* runqueue "owned" by this group */
460 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
461 {
462 	return NULL;
463 }
464 
465 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
466 {
467 	if (path)
468 		strlcpy(path, "(null)", len);
469 }
470 
471 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
472 {
473 	return true;
474 }
475 
476 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
477 {
478 }
479 
480 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
481 {
482 }
483 
484 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
485 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
486 
487 static inline struct sched_entity *parent_entity(struct sched_entity *se)
488 {
489 	return NULL;
490 }
491 
492 static inline void
493 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
494 {
495 }
496 
497 #endif	/* CONFIG_FAIR_GROUP_SCHED */
498 
499 static __always_inline
500 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
501 
502 /**************************************************************
503  * Scheduling class tree data structure manipulation methods:
504  */
505 
506 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
507 {
508 	s64 delta = (s64)(vruntime - max_vruntime);
509 	if (delta > 0)
510 		max_vruntime = vruntime;
511 
512 	return max_vruntime;
513 }
514 
515 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
516 {
517 	s64 delta = (s64)(vruntime - min_vruntime);
518 	if (delta < 0)
519 		min_vruntime = vruntime;
520 
521 	return min_vruntime;
522 }
523 
524 static inline int entity_before(struct sched_entity *a,
525 				struct sched_entity *b)
526 {
527 	return (s64)(a->vruntime - b->vruntime) < 0;
528 }
529 
530 static void update_min_vruntime(struct cfs_rq *cfs_rq)
531 {
532 	struct sched_entity *curr = cfs_rq->curr;
533 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
534 
535 	u64 vruntime = cfs_rq->min_vruntime;
536 
537 	if (curr) {
538 		if (curr->on_rq)
539 			vruntime = curr->vruntime;
540 		else
541 			curr = NULL;
542 	}
543 
544 	if (leftmost) { /* non-empty tree */
545 		struct sched_entity *se;
546 		se = rb_entry(leftmost, struct sched_entity, run_node);
547 
548 		if (!curr)
549 			vruntime = se->vruntime;
550 		else
551 			vruntime = min_vruntime(vruntime, se->vruntime);
552 	}
553 
554 	/* ensure we never gain time by being placed backwards. */
555 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
556 #ifndef CONFIG_64BIT
557 	smp_wmb();
558 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
559 #endif
560 }
561 
562 /*
563  * Enqueue an entity into the rb-tree:
564  */
565 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
566 {
567 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
568 	struct rb_node *parent = NULL;
569 	struct sched_entity *entry;
570 	bool leftmost = true;
571 
572 	/*
573 	 * Find the right place in the rbtree:
574 	 */
575 	while (*link) {
576 		parent = *link;
577 		entry = rb_entry(parent, struct sched_entity, run_node);
578 		/*
579 		 * We dont care about collisions. Nodes with
580 		 * the same key stay together.
581 		 */
582 		if (entity_before(se, entry)) {
583 			link = &parent->rb_left;
584 		} else {
585 			link = &parent->rb_right;
586 			leftmost = false;
587 		}
588 	}
589 
590 	rb_link_node(&se->run_node, parent, link);
591 	rb_insert_color_cached(&se->run_node,
592 			       &cfs_rq->tasks_timeline, leftmost);
593 }
594 
595 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
596 {
597 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
598 }
599 
600 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
601 {
602 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
603 
604 	if (!left)
605 		return NULL;
606 
607 	return rb_entry(left, struct sched_entity, run_node);
608 }
609 
610 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
611 {
612 	struct rb_node *next = rb_next(&se->run_node);
613 
614 	if (!next)
615 		return NULL;
616 
617 	return rb_entry(next, struct sched_entity, run_node);
618 }
619 
620 #ifdef CONFIG_SCHED_DEBUG
621 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
622 {
623 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
624 
625 	if (!last)
626 		return NULL;
627 
628 	return rb_entry(last, struct sched_entity, run_node);
629 }
630 
631 /**************************************************************
632  * Scheduling class statistics methods:
633  */
634 
635 int sched_proc_update_handler(struct ctl_table *table, int write,
636 		void __user *buffer, size_t *lenp,
637 		loff_t *ppos)
638 {
639 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
640 	unsigned int factor = get_update_sysctl_factor();
641 
642 	if (ret || !write)
643 		return ret;
644 
645 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
646 					sysctl_sched_min_granularity);
647 
648 #define WRT_SYSCTL(name) \
649 	(normalized_sysctl_##name = sysctl_##name / (factor))
650 	WRT_SYSCTL(sched_min_granularity);
651 	WRT_SYSCTL(sched_latency);
652 	WRT_SYSCTL(sched_wakeup_granularity);
653 #undef WRT_SYSCTL
654 
655 	return 0;
656 }
657 #endif
658 
659 /*
660  * delta /= w
661  */
662 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
663 {
664 	if (unlikely(se->load.weight != NICE_0_LOAD))
665 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
666 
667 	return delta;
668 }
669 
670 /*
671  * The idea is to set a period in which each task runs once.
672  *
673  * When there are too many tasks (sched_nr_latency) we have to stretch
674  * this period because otherwise the slices get too small.
675  *
676  * p = (nr <= nl) ? l : l*nr/nl
677  */
678 static u64 __sched_period(unsigned long nr_running)
679 {
680 	if (unlikely(nr_running > sched_nr_latency))
681 		return nr_running * sysctl_sched_min_granularity;
682 	else
683 		return sysctl_sched_latency;
684 }
685 
686 /*
687  * We calculate the wall-time slice from the period by taking a part
688  * proportional to the weight.
689  *
690  * s = p*P[w/rw]
691  */
692 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
693 {
694 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
695 
696 	for_each_sched_entity(se) {
697 		struct load_weight *load;
698 		struct load_weight lw;
699 
700 		cfs_rq = cfs_rq_of(se);
701 		load = &cfs_rq->load;
702 
703 		if (unlikely(!se->on_rq)) {
704 			lw = cfs_rq->load;
705 
706 			update_load_add(&lw, se->load.weight);
707 			load = &lw;
708 		}
709 		slice = __calc_delta(slice, se->load.weight, load);
710 	}
711 	return slice;
712 }
713 
714 /*
715  * We calculate the vruntime slice of a to-be-inserted task.
716  *
717  * vs = s/w
718  */
719 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
720 {
721 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
722 }
723 
724 #include "pelt.h"
725 #ifdef CONFIG_SMP
726 
727 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
728 static unsigned long task_h_load(struct task_struct *p);
729 static unsigned long capacity_of(int cpu);
730 
731 /* Give new sched_entity start runnable values to heavy its load in infant time */
732 void init_entity_runnable_average(struct sched_entity *se)
733 {
734 	struct sched_avg *sa = &se->avg;
735 
736 	memset(sa, 0, sizeof(*sa));
737 
738 	/*
739 	 * Tasks are initialized with full load to be seen as heavy tasks until
740 	 * they get a chance to stabilize to their real load level.
741 	 * Group entities are initialized with zero load to reflect the fact that
742 	 * nothing has been attached to the task group yet.
743 	 */
744 	if (entity_is_task(se))
745 		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
746 
747 	se->runnable_weight = se->load.weight;
748 
749 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
750 }
751 
752 static void attach_entity_cfs_rq(struct sched_entity *se);
753 
754 /*
755  * With new tasks being created, their initial util_avgs are extrapolated
756  * based on the cfs_rq's current util_avg:
757  *
758  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
759  *
760  * However, in many cases, the above util_avg does not give a desired
761  * value. Moreover, the sum of the util_avgs may be divergent, such
762  * as when the series is a harmonic series.
763  *
764  * To solve this problem, we also cap the util_avg of successive tasks to
765  * only 1/2 of the left utilization budget:
766  *
767  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
768  *
769  * where n denotes the nth task and cpu_scale the CPU capacity.
770  *
771  * For example, for a CPU with 1024 of capacity, a simplest series from
772  * the beginning would be like:
773  *
774  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
775  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
776  *
777  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
778  * if util_avg > util_avg_cap.
779  */
780 void post_init_entity_util_avg(struct task_struct *p)
781 {
782 	struct sched_entity *se = &p->se;
783 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
784 	struct sched_avg *sa = &se->avg;
785 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
786 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
787 
788 	if (cap > 0) {
789 		if (cfs_rq->avg.util_avg != 0) {
790 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
791 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
792 
793 			if (sa->util_avg > cap)
794 				sa->util_avg = cap;
795 		} else {
796 			sa->util_avg = cap;
797 		}
798 	}
799 
800 	if (p->sched_class != &fair_sched_class) {
801 		/*
802 		 * For !fair tasks do:
803 		 *
804 		update_cfs_rq_load_avg(now, cfs_rq);
805 		attach_entity_load_avg(cfs_rq, se, 0);
806 		switched_from_fair(rq, p);
807 		 *
808 		 * such that the next switched_to_fair() has the
809 		 * expected state.
810 		 */
811 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
812 		return;
813 	}
814 
815 	attach_entity_cfs_rq(se);
816 }
817 
818 #else /* !CONFIG_SMP */
819 void init_entity_runnable_average(struct sched_entity *se)
820 {
821 }
822 void post_init_entity_util_avg(struct task_struct *p)
823 {
824 }
825 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
826 {
827 }
828 #endif /* CONFIG_SMP */
829 
830 /*
831  * Update the current task's runtime statistics.
832  */
833 static void update_curr(struct cfs_rq *cfs_rq)
834 {
835 	struct sched_entity *curr = cfs_rq->curr;
836 	u64 now = rq_clock_task(rq_of(cfs_rq));
837 	u64 delta_exec;
838 
839 	if (unlikely(!curr))
840 		return;
841 
842 	delta_exec = now - curr->exec_start;
843 	if (unlikely((s64)delta_exec <= 0))
844 		return;
845 
846 	curr->exec_start = now;
847 
848 	schedstat_set(curr->statistics.exec_max,
849 		      max(delta_exec, curr->statistics.exec_max));
850 
851 	curr->sum_exec_runtime += delta_exec;
852 	schedstat_add(cfs_rq->exec_clock, delta_exec);
853 
854 	curr->vruntime += calc_delta_fair(delta_exec, curr);
855 	update_min_vruntime(cfs_rq);
856 
857 	if (entity_is_task(curr)) {
858 		struct task_struct *curtask = task_of(curr);
859 
860 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
861 		cgroup_account_cputime(curtask, delta_exec);
862 		account_group_exec_runtime(curtask, delta_exec);
863 	}
864 
865 	account_cfs_rq_runtime(cfs_rq, delta_exec);
866 }
867 
868 static void update_curr_fair(struct rq *rq)
869 {
870 	update_curr(cfs_rq_of(&rq->curr->se));
871 }
872 
873 static inline void
874 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
875 {
876 	u64 wait_start, prev_wait_start;
877 
878 	if (!schedstat_enabled())
879 		return;
880 
881 	wait_start = rq_clock(rq_of(cfs_rq));
882 	prev_wait_start = schedstat_val(se->statistics.wait_start);
883 
884 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
885 	    likely(wait_start > prev_wait_start))
886 		wait_start -= prev_wait_start;
887 
888 	__schedstat_set(se->statistics.wait_start, wait_start);
889 }
890 
891 static inline void
892 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
893 {
894 	struct task_struct *p;
895 	u64 delta;
896 
897 	if (!schedstat_enabled())
898 		return;
899 
900 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
901 
902 	if (entity_is_task(se)) {
903 		p = task_of(se);
904 		if (task_on_rq_migrating(p)) {
905 			/*
906 			 * Preserve migrating task's wait time so wait_start
907 			 * time stamp can be adjusted to accumulate wait time
908 			 * prior to migration.
909 			 */
910 			__schedstat_set(se->statistics.wait_start, delta);
911 			return;
912 		}
913 		trace_sched_stat_wait(p, delta);
914 	}
915 
916 	__schedstat_set(se->statistics.wait_max,
917 		      max(schedstat_val(se->statistics.wait_max), delta));
918 	__schedstat_inc(se->statistics.wait_count);
919 	__schedstat_add(se->statistics.wait_sum, delta);
920 	__schedstat_set(se->statistics.wait_start, 0);
921 }
922 
923 static inline void
924 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
925 {
926 	struct task_struct *tsk = NULL;
927 	u64 sleep_start, block_start;
928 
929 	if (!schedstat_enabled())
930 		return;
931 
932 	sleep_start = schedstat_val(se->statistics.sleep_start);
933 	block_start = schedstat_val(se->statistics.block_start);
934 
935 	if (entity_is_task(se))
936 		tsk = task_of(se);
937 
938 	if (sleep_start) {
939 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
940 
941 		if ((s64)delta < 0)
942 			delta = 0;
943 
944 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
945 			__schedstat_set(se->statistics.sleep_max, delta);
946 
947 		__schedstat_set(se->statistics.sleep_start, 0);
948 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
949 
950 		if (tsk) {
951 			account_scheduler_latency(tsk, delta >> 10, 1);
952 			trace_sched_stat_sleep(tsk, delta);
953 		}
954 	}
955 	if (block_start) {
956 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
957 
958 		if ((s64)delta < 0)
959 			delta = 0;
960 
961 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
962 			__schedstat_set(se->statistics.block_max, delta);
963 
964 		__schedstat_set(se->statistics.block_start, 0);
965 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
966 
967 		if (tsk) {
968 			if (tsk->in_iowait) {
969 				__schedstat_add(se->statistics.iowait_sum, delta);
970 				__schedstat_inc(se->statistics.iowait_count);
971 				trace_sched_stat_iowait(tsk, delta);
972 			}
973 
974 			trace_sched_stat_blocked(tsk, delta);
975 
976 			/*
977 			 * Blocking time is in units of nanosecs, so shift by
978 			 * 20 to get a milliseconds-range estimation of the
979 			 * amount of time that the task spent sleeping:
980 			 */
981 			if (unlikely(prof_on == SLEEP_PROFILING)) {
982 				profile_hits(SLEEP_PROFILING,
983 						(void *)get_wchan(tsk),
984 						delta >> 20);
985 			}
986 			account_scheduler_latency(tsk, delta >> 10, 0);
987 		}
988 	}
989 }
990 
991 /*
992  * Task is being enqueued - update stats:
993  */
994 static inline void
995 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
996 {
997 	if (!schedstat_enabled())
998 		return;
999 
1000 	/*
1001 	 * Are we enqueueing a waiting task? (for current tasks
1002 	 * a dequeue/enqueue event is a NOP)
1003 	 */
1004 	if (se != cfs_rq->curr)
1005 		update_stats_wait_start(cfs_rq, se);
1006 
1007 	if (flags & ENQUEUE_WAKEUP)
1008 		update_stats_enqueue_sleeper(cfs_rq, se);
1009 }
1010 
1011 static inline void
1012 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1013 {
1014 
1015 	if (!schedstat_enabled())
1016 		return;
1017 
1018 	/*
1019 	 * Mark the end of the wait period if dequeueing a
1020 	 * waiting task:
1021 	 */
1022 	if (se != cfs_rq->curr)
1023 		update_stats_wait_end(cfs_rq, se);
1024 
1025 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1026 		struct task_struct *tsk = task_of(se);
1027 
1028 		if (tsk->state & TASK_INTERRUPTIBLE)
1029 			__schedstat_set(se->statistics.sleep_start,
1030 				      rq_clock(rq_of(cfs_rq)));
1031 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1032 			__schedstat_set(se->statistics.block_start,
1033 				      rq_clock(rq_of(cfs_rq)));
1034 	}
1035 }
1036 
1037 /*
1038  * We are picking a new current task - update its stats:
1039  */
1040 static inline void
1041 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1042 {
1043 	/*
1044 	 * We are starting a new run period:
1045 	 */
1046 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1047 }
1048 
1049 /**************************************************
1050  * Scheduling class queueing methods:
1051  */
1052 
1053 #ifdef CONFIG_NUMA_BALANCING
1054 /*
1055  * Approximate time to scan a full NUMA task in ms. The task scan period is
1056  * calculated based on the tasks virtual memory size and
1057  * numa_balancing_scan_size.
1058  */
1059 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1060 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1061 
1062 /* Portion of address space to scan in MB */
1063 unsigned int sysctl_numa_balancing_scan_size = 256;
1064 
1065 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1066 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1067 
1068 struct numa_group {
1069 	refcount_t refcount;
1070 
1071 	spinlock_t lock; /* nr_tasks, tasks */
1072 	int nr_tasks;
1073 	pid_t gid;
1074 	int active_nodes;
1075 
1076 	struct rcu_head rcu;
1077 	unsigned long total_faults;
1078 	unsigned long max_faults_cpu;
1079 	/*
1080 	 * Faults_cpu is used to decide whether memory should move
1081 	 * towards the CPU. As a consequence, these stats are weighted
1082 	 * more by CPU use than by memory faults.
1083 	 */
1084 	unsigned long *faults_cpu;
1085 	unsigned long faults[0];
1086 };
1087 
1088 /*
1089  * For functions that can be called in multiple contexts that permit reading
1090  * ->numa_group (see struct task_struct for locking rules).
1091  */
1092 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1093 {
1094 	return rcu_dereference_check(p->numa_group, p == current ||
1095 		(lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1096 }
1097 
1098 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1099 {
1100 	return rcu_dereference_protected(p->numa_group, p == current);
1101 }
1102 
1103 static inline unsigned long group_faults_priv(struct numa_group *ng);
1104 static inline unsigned long group_faults_shared(struct numa_group *ng);
1105 
1106 static unsigned int task_nr_scan_windows(struct task_struct *p)
1107 {
1108 	unsigned long rss = 0;
1109 	unsigned long nr_scan_pages;
1110 
1111 	/*
1112 	 * Calculations based on RSS as non-present and empty pages are skipped
1113 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1114 	 * on resident pages
1115 	 */
1116 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1117 	rss = get_mm_rss(p->mm);
1118 	if (!rss)
1119 		rss = nr_scan_pages;
1120 
1121 	rss = round_up(rss, nr_scan_pages);
1122 	return rss / nr_scan_pages;
1123 }
1124 
1125 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1126 #define MAX_SCAN_WINDOW 2560
1127 
1128 static unsigned int task_scan_min(struct task_struct *p)
1129 {
1130 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1131 	unsigned int scan, floor;
1132 	unsigned int windows = 1;
1133 
1134 	if (scan_size < MAX_SCAN_WINDOW)
1135 		windows = MAX_SCAN_WINDOW / scan_size;
1136 	floor = 1000 / windows;
1137 
1138 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1139 	return max_t(unsigned int, floor, scan);
1140 }
1141 
1142 static unsigned int task_scan_start(struct task_struct *p)
1143 {
1144 	unsigned long smin = task_scan_min(p);
1145 	unsigned long period = smin;
1146 	struct numa_group *ng;
1147 
1148 	/* Scale the maximum scan period with the amount of shared memory. */
1149 	rcu_read_lock();
1150 	ng = rcu_dereference(p->numa_group);
1151 	if (ng) {
1152 		unsigned long shared = group_faults_shared(ng);
1153 		unsigned long private = group_faults_priv(ng);
1154 
1155 		period *= refcount_read(&ng->refcount);
1156 		period *= shared + 1;
1157 		period /= private + shared + 1;
1158 	}
1159 	rcu_read_unlock();
1160 
1161 	return max(smin, period);
1162 }
1163 
1164 static unsigned int task_scan_max(struct task_struct *p)
1165 {
1166 	unsigned long smin = task_scan_min(p);
1167 	unsigned long smax;
1168 	struct numa_group *ng;
1169 
1170 	/* Watch for min being lower than max due to floor calculations */
1171 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1172 
1173 	/* Scale the maximum scan period with the amount of shared memory. */
1174 	ng = deref_curr_numa_group(p);
1175 	if (ng) {
1176 		unsigned long shared = group_faults_shared(ng);
1177 		unsigned long private = group_faults_priv(ng);
1178 		unsigned long period = smax;
1179 
1180 		period *= refcount_read(&ng->refcount);
1181 		period *= shared + 1;
1182 		period /= private + shared + 1;
1183 
1184 		smax = max(smax, period);
1185 	}
1186 
1187 	return max(smin, smax);
1188 }
1189 
1190 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1191 {
1192 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1193 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1194 }
1195 
1196 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1197 {
1198 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1199 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1200 }
1201 
1202 /* Shared or private faults. */
1203 #define NR_NUMA_HINT_FAULT_TYPES 2
1204 
1205 /* Memory and CPU locality */
1206 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1207 
1208 /* Averaged statistics, and temporary buffers. */
1209 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1210 
1211 pid_t task_numa_group_id(struct task_struct *p)
1212 {
1213 	struct numa_group *ng;
1214 	pid_t gid = 0;
1215 
1216 	rcu_read_lock();
1217 	ng = rcu_dereference(p->numa_group);
1218 	if (ng)
1219 		gid = ng->gid;
1220 	rcu_read_unlock();
1221 
1222 	return gid;
1223 }
1224 
1225 /*
1226  * The averaged statistics, shared & private, memory & CPU,
1227  * occupy the first half of the array. The second half of the
1228  * array is for current counters, which are averaged into the
1229  * first set by task_numa_placement.
1230  */
1231 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1232 {
1233 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1234 }
1235 
1236 static inline unsigned long task_faults(struct task_struct *p, int nid)
1237 {
1238 	if (!p->numa_faults)
1239 		return 0;
1240 
1241 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1242 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1243 }
1244 
1245 static inline unsigned long group_faults(struct task_struct *p, int nid)
1246 {
1247 	struct numa_group *ng = deref_task_numa_group(p);
1248 
1249 	if (!ng)
1250 		return 0;
1251 
1252 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1253 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1254 }
1255 
1256 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1257 {
1258 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1259 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1260 }
1261 
1262 static inline unsigned long group_faults_priv(struct numa_group *ng)
1263 {
1264 	unsigned long faults = 0;
1265 	int node;
1266 
1267 	for_each_online_node(node) {
1268 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1269 	}
1270 
1271 	return faults;
1272 }
1273 
1274 static inline unsigned long group_faults_shared(struct numa_group *ng)
1275 {
1276 	unsigned long faults = 0;
1277 	int node;
1278 
1279 	for_each_online_node(node) {
1280 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1281 	}
1282 
1283 	return faults;
1284 }
1285 
1286 /*
1287  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1288  * considered part of a numa group's pseudo-interleaving set. Migrations
1289  * between these nodes are slowed down, to allow things to settle down.
1290  */
1291 #define ACTIVE_NODE_FRACTION 3
1292 
1293 static bool numa_is_active_node(int nid, struct numa_group *ng)
1294 {
1295 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1296 }
1297 
1298 /* Handle placement on systems where not all nodes are directly connected. */
1299 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1300 					int maxdist, bool task)
1301 {
1302 	unsigned long score = 0;
1303 	int node;
1304 
1305 	/*
1306 	 * All nodes are directly connected, and the same distance
1307 	 * from each other. No need for fancy placement algorithms.
1308 	 */
1309 	if (sched_numa_topology_type == NUMA_DIRECT)
1310 		return 0;
1311 
1312 	/*
1313 	 * This code is called for each node, introducing N^2 complexity,
1314 	 * which should be ok given the number of nodes rarely exceeds 8.
1315 	 */
1316 	for_each_online_node(node) {
1317 		unsigned long faults;
1318 		int dist = node_distance(nid, node);
1319 
1320 		/*
1321 		 * The furthest away nodes in the system are not interesting
1322 		 * for placement; nid was already counted.
1323 		 */
1324 		if (dist == sched_max_numa_distance || node == nid)
1325 			continue;
1326 
1327 		/*
1328 		 * On systems with a backplane NUMA topology, compare groups
1329 		 * of nodes, and move tasks towards the group with the most
1330 		 * memory accesses. When comparing two nodes at distance
1331 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1332 		 * of each group. Skip other nodes.
1333 		 */
1334 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1335 					dist >= maxdist)
1336 			continue;
1337 
1338 		/* Add up the faults from nearby nodes. */
1339 		if (task)
1340 			faults = task_faults(p, node);
1341 		else
1342 			faults = group_faults(p, node);
1343 
1344 		/*
1345 		 * On systems with a glueless mesh NUMA topology, there are
1346 		 * no fixed "groups of nodes". Instead, nodes that are not
1347 		 * directly connected bounce traffic through intermediate
1348 		 * nodes; a numa_group can occupy any set of nodes.
1349 		 * The further away a node is, the less the faults count.
1350 		 * This seems to result in good task placement.
1351 		 */
1352 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1353 			faults *= (sched_max_numa_distance - dist);
1354 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1355 		}
1356 
1357 		score += faults;
1358 	}
1359 
1360 	return score;
1361 }
1362 
1363 /*
1364  * These return the fraction of accesses done by a particular task, or
1365  * task group, on a particular numa node.  The group weight is given a
1366  * larger multiplier, in order to group tasks together that are almost
1367  * evenly spread out between numa nodes.
1368  */
1369 static inline unsigned long task_weight(struct task_struct *p, int nid,
1370 					int dist)
1371 {
1372 	unsigned long faults, total_faults;
1373 
1374 	if (!p->numa_faults)
1375 		return 0;
1376 
1377 	total_faults = p->total_numa_faults;
1378 
1379 	if (!total_faults)
1380 		return 0;
1381 
1382 	faults = task_faults(p, nid);
1383 	faults += score_nearby_nodes(p, nid, dist, true);
1384 
1385 	return 1000 * faults / total_faults;
1386 }
1387 
1388 static inline unsigned long group_weight(struct task_struct *p, int nid,
1389 					 int dist)
1390 {
1391 	struct numa_group *ng = deref_task_numa_group(p);
1392 	unsigned long faults, total_faults;
1393 
1394 	if (!ng)
1395 		return 0;
1396 
1397 	total_faults = ng->total_faults;
1398 
1399 	if (!total_faults)
1400 		return 0;
1401 
1402 	faults = group_faults(p, nid);
1403 	faults += score_nearby_nodes(p, nid, dist, false);
1404 
1405 	return 1000 * faults / total_faults;
1406 }
1407 
1408 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1409 				int src_nid, int dst_cpu)
1410 {
1411 	struct numa_group *ng = deref_curr_numa_group(p);
1412 	int dst_nid = cpu_to_node(dst_cpu);
1413 	int last_cpupid, this_cpupid;
1414 
1415 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1416 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1417 
1418 	/*
1419 	 * Allow first faults or private faults to migrate immediately early in
1420 	 * the lifetime of a task. The magic number 4 is based on waiting for
1421 	 * two full passes of the "multi-stage node selection" test that is
1422 	 * executed below.
1423 	 */
1424 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1425 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1426 		return true;
1427 
1428 	/*
1429 	 * Multi-stage node selection is used in conjunction with a periodic
1430 	 * migration fault to build a temporal task<->page relation. By using
1431 	 * a two-stage filter we remove short/unlikely relations.
1432 	 *
1433 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1434 	 * a task's usage of a particular page (n_p) per total usage of this
1435 	 * page (n_t) (in a given time-span) to a probability.
1436 	 *
1437 	 * Our periodic faults will sample this probability and getting the
1438 	 * same result twice in a row, given these samples are fully
1439 	 * independent, is then given by P(n)^2, provided our sample period
1440 	 * is sufficiently short compared to the usage pattern.
1441 	 *
1442 	 * This quadric squishes small probabilities, making it less likely we
1443 	 * act on an unlikely task<->page relation.
1444 	 */
1445 	if (!cpupid_pid_unset(last_cpupid) &&
1446 				cpupid_to_nid(last_cpupid) != dst_nid)
1447 		return false;
1448 
1449 	/* Always allow migrate on private faults */
1450 	if (cpupid_match_pid(p, last_cpupid))
1451 		return true;
1452 
1453 	/* A shared fault, but p->numa_group has not been set up yet. */
1454 	if (!ng)
1455 		return true;
1456 
1457 	/*
1458 	 * Destination node is much more heavily used than the source
1459 	 * node? Allow migration.
1460 	 */
1461 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1462 					ACTIVE_NODE_FRACTION)
1463 		return true;
1464 
1465 	/*
1466 	 * Distribute memory according to CPU & memory use on each node,
1467 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1468 	 *
1469 	 * faults_cpu(dst)   3   faults_cpu(src)
1470 	 * --------------- * - > ---------------
1471 	 * faults_mem(dst)   4   faults_mem(src)
1472 	 */
1473 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1474 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1475 }
1476 
1477 static unsigned long cpu_runnable_load(struct rq *rq);
1478 
1479 /* Cached statistics for all CPUs within a node */
1480 struct numa_stats {
1481 	unsigned long load;
1482 
1483 	/* Total compute capacity of CPUs on a node */
1484 	unsigned long compute_capacity;
1485 };
1486 
1487 /*
1488  * XXX borrowed from update_sg_lb_stats
1489  */
1490 static void update_numa_stats(struct numa_stats *ns, int nid)
1491 {
1492 	int cpu;
1493 
1494 	memset(ns, 0, sizeof(*ns));
1495 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1496 		struct rq *rq = cpu_rq(cpu);
1497 
1498 		ns->load += cpu_runnable_load(rq);
1499 		ns->compute_capacity += capacity_of(cpu);
1500 	}
1501 
1502 }
1503 
1504 struct task_numa_env {
1505 	struct task_struct *p;
1506 
1507 	int src_cpu, src_nid;
1508 	int dst_cpu, dst_nid;
1509 
1510 	struct numa_stats src_stats, dst_stats;
1511 
1512 	int imbalance_pct;
1513 	int dist;
1514 
1515 	struct task_struct *best_task;
1516 	long best_imp;
1517 	int best_cpu;
1518 };
1519 
1520 static void task_numa_assign(struct task_numa_env *env,
1521 			     struct task_struct *p, long imp)
1522 {
1523 	struct rq *rq = cpu_rq(env->dst_cpu);
1524 
1525 	/* Bail out if run-queue part of active NUMA balance. */
1526 	if (xchg(&rq->numa_migrate_on, 1))
1527 		return;
1528 
1529 	/*
1530 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1531 	 * found a better CPU to move/swap.
1532 	 */
1533 	if (env->best_cpu != -1) {
1534 		rq = cpu_rq(env->best_cpu);
1535 		WRITE_ONCE(rq->numa_migrate_on, 0);
1536 	}
1537 
1538 	if (env->best_task)
1539 		put_task_struct(env->best_task);
1540 	if (p)
1541 		get_task_struct(p);
1542 
1543 	env->best_task = p;
1544 	env->best_imp = imp;
1545 	env->best_cpu = env->dst_cpu;
1546 }
1547 
1548 static bool load_too_imbalanced(long src_load, long dst_load,
1549 				struct task_numa_env *env)
1550 {
1551 	long imb, old_imb;
1552 	long orig_src_load, orig_dst_load;
1553 	long src_capacity, dst_capacity;
1554 
1555 	/*
1556 	 * The load is corrected for the CPU capacity available on each node.
1557 	 *
1558 	 * src_load        dst_load
1559 	 * ------------ vs ---------
1560 	 * src_capacity    dst_capacity
1561 	 */
1562 	src_capacity = env->src_stats.compute_capacity;
1563 	dst_capacity = env->dst_stats.compute_capacity;
1564 
1565 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1566 
1567 	orig_src_load = env->src_stats.load;
1568 	orig_dst_load = env->dst_stats.load;
1569 
1570 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1571 
1572 	/* Would this change make things worse? */
1573 	return (imb > old_imb);
1574 }
1575 
1576 /*
1577  * Maximum NUMA importance can be 1998 (2*999);
1578  * SMALLIMP @ 30 would be close to 1998/64.
1579  * Used to deter task migration.
1580  */
1581 #define SMALLIMP	30
1582 
1583 /*
1584  * This checks if the overall compute and NUMA accesses of the system would
1585  * be improved if the source tasks was migrated to the target dst_cpu taking
1586  * into account that it might be best if task running on the dst_cpu should
1587  * be exchanged with the source task
1588  */
1589 static void task_numa_compare(struct task_numa_env *env,
1590 			      long taskimp, long groupimp, bool maymove)
1591 {
1592 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1593 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1594 	long imp = p_ng ? groupimp : taskimp;
1595 	struct task_struct *cur;
1596 	long src_load, dst_load;
1597 	int dist = env->dist;
1598 	long moveimp = imp;
1599 	long load;
1600 
1601 	if (READ_ONCE(dst_rq->numa_migrate_on))
1602 		return;
1603 
1604 	rcu_read_lock();
1605 	cur = rcu_dereference(dst_rq->curr);
1606 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1607 		cur = NULL;
1608 
1609 	/*
1610 	 * Because we have preemption enabled we can get migrated around and
1611 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1612 	 */
1613 	if (cur == env->p)
1614 		goto unlock;
1615 
1616 	if (!cur) {
1617 		if (maymove && moveimp >= env->best_imp)
1618 			goto assign;
1619 		else
1620 			goto unlock;
1621 	}
1622 
1623 	/*
1624 	 * "imp" is the fault differential for the source task between the
1625 	 * source and destination node. Calculate the total differential for
1626 	 * the source task and potential destination task. The more negative
1627 	 * the value is, the more remote accesses that would be expected to
1628 	 * be incurred if the tasks were swapped.
1629 	 */
1630 	/* Skip this swap candidate if cannot move to the source cpu */
1631 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1632 		goto unlock;
1633 
1634 	/*
1635 	 * If dst and source tasks are in the same NUMA group, or not
1636 	 * in any group then look only at task weights.
1637 	 */
1638 	cur_ng = rcu_dereference(cur->numa_group);
1639 	if (cur_ng == p_ng) {
1640 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1641 		      task_weight(cur, env->dst_nid, dist);
1642 		/*
1643 		 * Add some hysteresis to prevent swapping the
1644 		 * tasks within a group over tiny differences.
1645 		 */
1646 		if (cur_ng)
1647 			imp -= imp / 16;
1648 	} else {
1649 		/*
1650 		 * Compare the group weights. If a task is all by itself
1651 		 * (not part of a group), use the task weight instead.
1652 		 */
1653 		if (cur_ng && p_ng)
1654 			imp += group_weight(cur, env->src_nid, dist) -
1655 			       group_weight(cur, env->dst_nid, dist);
1656 		else
1657 			imp += task_weight(cur, env->src_nid, dist) -
1658 			       task_weight(cur, env->dst_nid, dist);
1659 	}
1660 
1661 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1662 		imp = moveimp;
1663 		cur = NULL;
1664 		goto assign;
1665 	}
1666 
1667 	/*
1668 	 * If the NUMA importance is less than SMALLIMP,
1669 	 * task migration might only result in ping pong
1670 	 * of tasks and also hurt performance due to cache
1671 	 * misses.
1672 	 */
1673 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1674 		goto unlock;
1675 
1676 	/*
1677 	 * In the overloaded case, try and keep the load balanced.
1678 	 */
1679 	load = task_h_load(env->p) - task_h_load(cur);
1680 	if (!load)
1681 		goto assign;
1682 
1683 	dst_load = env->dst_stats.load + load;
1684 	src_load = env->src_stats.load - load;
1685 
1686 	if (load_too_imbalanced(src_load, dst_load, env))
1687 		goto unlock;
1688 
1689 assign:
1690 	/*
1691 	 * One idle CPU per node is evaluated for a task numa move.
1692 	 * Call select_idle_sibling to maybe find a better one.
1693 	 */
1694 	if (!cur) {
1695 		/*
1696 		 * select_idle_siblings() uses an per-CPU cpumask that
1697 		 * can be used from IRQ context.
1698 		 */
1699 		local_irq_disable();
1700 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1701 						   env->dst_cpu);
1702 		local_irq_enable();
1703 	}
1704 
1705 	task_numa_assign(env, cur, imp);
1706 unlock:
1707 	rcu_read_unlock();
1708 }
1709 
1710 static void task_numa_find_cpu(struct task_numa_env *env,
1711 				long taskimp, long groupimp)
1712 {
1713 	long src_load, dst_load, load;
1714 	bool maymove = false;
1715 	int cpu;
1716 
1717 	load = task_h_load(env->p);
1718 	dst_load = env->dst_stats.load + load;
1719 	src_load = env->src_stats.load - load;
1720 
1721 	/*
1722 	 * If the improvement from just moving env->p direction is better
1723 	 * than swapping tasks around, check if a move is possible.
1724 	 */
1725 	maymove = !load_too_imbalanced(src_load, dst_load, env);
1726 
1727 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1728 		/* Skip this CPU if the source task cannot migrate */
1729 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1730 			continue;
1731 
1732 		env->dst_cpu = cpu;
1733 		task_numa_compare(env, taskimp, groupimp, maymove);
1734 	}
1735 }
1736 
1737 static int task_numa_migrate(struct task_struct *p)
1738 {
1739 	struct task_numa_env env = {
1740 		.p = p,
1741 
1742 		.src_cpu = task_cpu(p),
1743 		.src_nid = task_node(p),
1744 
1745 		.imbalance_pct = 112,
1746 
1747 		.best_task = NULL,
1748 		.best_imp = 0,
1749 		.best_cpu = -1,
1750 	};
1751 	unsigned long taskweight, groupweight;
1752 	struct sched_domain *sd;
1753 	long taskimp, groupimp;
1754 	struct numa_group *ng;
1755 	struct rq *best_rq;
1756 	int nid, ret, dist;
1757 
1758 	/*
1759 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1760 	 * imbalance and would be the first to start moving tasks about.
1761 	 *
1762 	 * And we want to avoid any moving of tasks about, as that would create
1763 	 * random movement of tasks -- counter the numa conditions we're trying
1764 	 * to satisfy here.
1765 	 */
1766 	rcu_read_lock();
1767 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1768 	if (sd)
1769 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1770 	rcu_read_unlock();
1771 
1772 	/*
1773 	 * Cpusets can break the scheduler domain tree into smaller
1774 	 * balance domains, some of which do not cross NUMA boundaries.
1775 	 * Tasks that are "trapped" in such domains cannot be migrated
1776 	 * elsewhere, so there is no point in (re)trying.
1777 	 */
1778 	if (unlikely(!sd)) {
1779 		sched_setnuma(p, task_node(p));
1780 		return -EINVAL;
1781 	}
1782 
1783 	env.dst_nid = p->numa_preferred_nid;
1784 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1785 	taskweight = task_weight(p, env.src_nid, dist);
1786 	groupweight = group_weight(p, env.src_nid, dist);
1787 	update_numa_stats(&env.src_stats, env.src_nid);
1788 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1789 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1790 	update_numa_stats(&env.dst_stats, env.dst_nid);
1791 
1792 	/* Try to find a spot on the preferred nid. */
1793 	task_numa_find_cpu(&env, taskimp, groupimp);
1794 
1795 	/*
1796 	 * Look at other nodes in these cases:
1797 	 * - there is no space available on the preferred_nid
1798 	 * - the task is part of a numa_group that is interleaved across
1799 	 *   multiple NUMA nodes; in order to better consolidate the group,
1800 	 *   we need to check other locations.
1801 	 */
1802 	ng = deref_curr_numa_group(p);
1803 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
1804 		for_each_online_node(nid) {
1805 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1806 				continue;
1807 
1808 			dist = node_distance(env.src_nid, env.dst_nid);
1809 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1810 						dist != env.dist) {
1811 				taskweight = task_weight(p, env.src_nid, dist);
1812 				groupweight = group_weight(p, env.src_nid, dist);
1813 			}
1814 
1815 			/* Only consider nodes where both task and groups benefit */
1816 			taskimp = task_weight(p, nid, dist) - taskweight;
1817 			groupimp = group_weight(p, nid, dist) - groupweight;
1818 			if (taskimp < 0 && groupimp < 0)
1819 				continue;
1820 
1821 			env.dist = dist;
1822 			env.dst_nid = nid;
1823 			update_numa_stats(&env.dst_stats, env.dst_nid);
1824 			task_numa_find_cpu(&env, taskimp, groupimp);
1825 		}
1826 	}
1827 
1828 	/*
1829 	 * If the task is part of a workload that spans multiple NUMA nodes,
1830 	 * and is migrating into one of the workload's active nodes, remember
1831 	 * this node as the task's preferred numa node, so the workload can
1832 	 * settle down.
1833 	 * A task that migrated to a second choice node will be better off
1834 	 * trying for a better one later. Do not set the preferred node here.
1835 	 */
1836 	if (ng) {
1837 		if (env.best_cpu == -1)
1838 			nid = env.src_nid;
1839 		else
1840 			nid = cpu_to_node(env.best_cpu);
1841 
1842 		if (nid != p->numa_preferred_nid)
1843 			sched_setnuma(p, nid);
1844 	}
1845 
1846 	/* No better CPU than the current one was found. */
1847 	if (env.best_cpu == -1)
1848 		return -EAGAIN;
1849 
1850 	best_rq = cpu_rq(env.best_cpu);
1851 	if (env.best_task == NULL) {
1852 		ret = migrate_task_to(p, env.best_cpu);
1853 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
1854 		if (ret != 0)
1855 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1856 		return ret;
1857 	}
1858 
1859 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1860 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
1861 
1862 	if (ret != 0)
1863 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1864 	put_task_struct(env.best_task);
1865 	return ret;
1866 }
1867 
1868 /* Attempt to migrate a task to a CPU on the preferred node. */
1869 static void numa_migrate_preferred(struct task_struct *p)
1870 {
1871 	unsigned long interval = HZ;
1872 
1873 	/* This task has no NUMA fault statistics yet */
1874 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
1875 		return;
1876 
1877 	/* Periodically retry migrating the task to the preferred node */
1878 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1879 	p->numa_migrate_retry = jiffies + interval;
1880 
1881 	/* Success if task is already running on preferred CPU */
1882 	if (task_node(p) == p->numa_preferred_nid)
1883 		return;
1884 
1885 	/* Otherwise, try migrate to a CPU on the preferred node */
1886 	task_numa_migrate(p);
1887 }
1888 
1889 /*
1890  * Find out how many nodes on the workload is actively running on. Do this by
1891  * tracking the nodes from which NUMA hinting faults are triggered. This can
1892  * be different from the set of nodes where the workload's memory is currently
1893  * located.
1894  */
1895 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1896 {
1897 	unsigned long faults, max_faults = 0;
1898 	int nid, active_nodes = 0;
1899 
1900 	for_each_online_node(nid) {
1901 		faults = group_faults_cpu(numa_group, nid);
1902 		if (faults > max_faults)
1903 			max_faults = faults;
1904 	}
1905 
1906 	for_each_online_node(nid) {
1907 		faults = group_faults_cpu(numa_group, nid);
1908 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1909 			active_nodes++;
1910 	}
1911 
1912 	numa_group->max_faults_cpu = max_faults;
1913 	numa_group->active_nodes = active_nodes;
1914 }
1915 
1916 /*
1917  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1918  * increments. The more local the fault statistics are, the higher the scan
1919  * period will be for the next scan window. If local/(local+remote) ratio is
1920  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1921  * the scan period will decrease. Aim for 70% local accesses.
1922  */
1923 #define NUMA_PERIOD_SLOTS 10
1924 #define NUMA_PERIOD_THRESHOLD 7
1925 
1926 /*
1927  * Increase the scan period (slow down scanning) if the majority of
1928  * our memory is already on our local node, or if the majority of
1929  * the page accesses are shared with other processes.
1930  * Otherwise, decrease the scan period.
1931  */
1932 static void update_task_scan_period(struct task_struct *p,
1933 			unsigned long shared, unsigned long private)
1934 {
1935 	unsigned int period_slot;
1936 	int lr_ratio, ps_ratio;
1937 	int diff;
1938 
1939 	unsigned long remote = p->numa_faults_locality[0];
1940 	unsigned long local = p->numa_faults_locality[1];
1941 
1942 	/*
1943 	 * If there were no record hinting faults then either the task is
1944 	 * completely idle or all activity is areas that are not of interest
1945 	 * to automatic numa balancing. Related to that, if there were failed
1946 	 * migration then it implies we are migrating too quickly or the local
1947 	 * node is overloaded. In either case, scan slower
1948 	 */
1949 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1950 		p->numa_scan_period = min(p->numa_scan_period_max,
1951 			p->numa_scan_period << 1);
1952 
1953 		p->mm->numa_next_scan = jiffies +
1954 			msecs_to_jiffies(p->numa_scan_period);
1955 
1956 		return;
1957 	}
1958 
1959 	/*
1960 	 * Prepare to scale scan period relative to the current period.
1961 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1962 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1963 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1964 	 */
1965 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1966 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1967 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1968 
1969 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1970 		/*
1971 		 * Most memory accesses are local. There is no need to
1972 		 * do fast NUMA scanning, since memory is already local.
1973 		 */
1974 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1975 		if (!slot)
1976 			slot = 1;
1977 		diff = slot * period_slot;
1978 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1979 		/*
1980 		 * Most memory accesses are shared with other tasks.
1981 		 * There is no point in continuing fast NUMA scanning,
1982 		 * since other tasks may just move the memory elsewhere.
1983 		 */
1984 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1985 		if (!slot)
1986 			slot = 1;
1987 		diff = slot * period_slot;
1988 	} else {
1989 		/*
1990 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1991 		 * yet they are not on the local NUMA node. Speed up
1992 		 * NUMA scanning to get the memory moved over.
1993 		 */
1994 		int ratio = max(lr_ratio, ps_ratio);
1995 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1996 	}
1997 
1998 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1999 			task_scan_min(p), task_scan_max(p));
2000 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2001 }
2002 
2003 /*
2004  * Get the fraction of time the task has been running since the last
2005  * NUMA placement cycle. The scheduler keeps similar statistics, but
2006  * decays those on a 32ms period, which is orders of magnitude off
2007  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2008  * stats only if the task is so new there are no NUMA statistics yet.
2009  */
2010 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2011 {
2012 	u64 runtime, delta, now;
2013 	/* Use the start of this time slice to avoid calculations. */
2014 	now = p->se.exec_start;
2015 	runtime = p->se.sum_exec_runtime;
2016 
2017 	if (p->last_task_numa_placement) {
2018 		delta = runtime - p->last_sum_exec_runtime;
2019 		*period = now - p->last_task_numa_placement;
2020 
2021 		/* Avoid time going backwards, prevent potential divide error: */
2022 		if (unlikely((s64)*period < 0))
2023 			*period = 0;
2024 	} else {
2025 		delta = p->se.avg.load_sum;
2026 		*period = LOAD_AVG_MAX;
2027 	}
2028 
2029 	p->last_sum_exec_runtime = runtime;
2030 	p->last_task_numa_placement = now;
2031 
2032 	return delta;
2033 }
2034 
2035 /*
2036  * Determine the preferred nid for a task in a numa_group. This needs to
2037  * be done in a way that produces consistent results with group_weight,
2038  * otherwise workloads might not converge.
2039  */
2040 static int preferred_group_nid(struct task_struct *p, int nid)
2041 {
2042 	nodemask_t nodes;
2043 	int dist;
2044 
2045 	/* Direct connections between all NUMA nodes. */
2046 	if (sched_numa_topology_type == NUMA_DIRECT)
2047 		return nid;
2048 
2049 	/*
2050 	 * On a system with glueless mesh NUMA topology, group_weight
2051 	 * scores nodes according to the number of NUMA hinting faults on
2052 	 * both the node itself, and on nearby nodes.
2053 	 */
2054 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2055 		unsigned long score, max_score = 0;
2056 		int node, max_node = nid;
2057 
2058 		dist = sched_max_numa_distance;
2059 
2060 		for_each_online_node(node) {
2061 			score = group_weight(p, node, dist);
2062 			if (score > max_score) {
2063 				max_score = score;
2064 				max_node = node;
2065 			}
2066 		}
2067 		return max_node;
2068 	}
2069 
2070 	/*
2071 	 * Finding the preferred nid in a system with NUMA backplane
2072 	 * interconnect topology is more involved. The goal is to locate
2073 	 * tasks from numa_groups near each other in the system, and
2074 	 * untangle workloads from different sides of the system. This requires
2075 	 * searching down the hierarchy of node groups, recursively searching
2076 	 * inside the highest scoring group of nodes. The nodemask tricks
2077 	 * keep the complexity of the search down.
2078 	 */
2079 	nodes = node_online_map;
2080 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2081 		unsigned long max_faults = 0;
2082 		nodemask_t max_group = NODE_MASK_NONE;
2083 		int a, b;
2084 
2085 		/* Are there nodes at this distance from each other? */
2086 		if (!find_numa_distance(dist))
2087 			continue;
2088 
2089 		for_each_node_mask(a, nodes) {
2090 			unsigned long faults = 0;
2091 			nodemask_t this_group;
2092 			nodes_clear(this_group);
2093 
2094 			/* Sum group's NUMA faults; includes a==b case. */
2095 			for_each_node_mask(b, nodes) {
2096 				if (node_distance(a, b) < dist) {
2097 					faults += group_faults(p, b);
2098 					node_set(b, this_group);
2099 					node_clear(b, nodes);
2100 				}
2101 			}
2102 
2103 			/* Remember the top group. */
2104 			if (faults > max_faults) {
2105 				max_faults = faults;
2106 				max_group = this_group;
2107 				/*
2108 				 * subtle: at the smallest distance there is
2109 				 * just one node left in each "group", the
2110 				 * winner is the preferred nid.
2111 				 */
2112 				nid = a;
2113 			}
2114 		}
2115 		/* Next round, evaluate the nodes within max_group. */
2116 		if (!max_faults)
2117 			break;
2118 		nodes = max_group;
2119 	}
2120 	return nid;
2121 }
2122 
2123 static void task_numa_placement(struct task_struct *p)
2124 {
2125 	int seq, nid, max_nid = NUMA_NO_NODE;
2126 	unsigned long max_faults = 0;
2127 	unsigned long fault_types[2] = { 0, 0 };
2128 	unsigned long total_faults;
2129 	u64 runtime, period;
2130 	spinlock_t *group_lock = NULL;
2131 	struct numa_group *ng;
2132 
2133 	/*
2134 	 * The p->mm->numa_scan_seq field gets updated without
2135 	 * exclusive access. Use READ_ONCE() here to ensure
2136 	 * that the field is read in a single access:
2137 	 */
2138 	seq = READ_ONCE(p->mm->numa_scan_seq);
2139 	if (p->numa_scan_seq == seq)
2140 		return;
2141 	p->numa_scan_seq = seq;
2142 	p->numa_scan_period_max = task_scan_max(p);
2143 
2144 	total_faults = p->numa_faults_locality[0] +
2145 		       p->numa_faults_locality[1];
2146 	runtime = numa_get_avg_runtime(p, &period);
2147 
2148 	/* If the task is part of a group prevent parallel updates to group stats */
2149 	ng = deref_curr_numa_group(p);
2150 	if (ng) {
2151 		group_lock = &ng->lock;
2152 		spin_lock_irq(group_lock);
2153 	}
2154 
2155 	/* Find the node with the highest number of faults */
2156 	for_each_online_node(nid) {
2157 		/* Keep track of the offsets in numa_faults array */
2158 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2159 		unsigned long faults = 0, group_faults = 0;
2160 		int priv;
2161 
2162 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2163 			long diff, f_diff, f_weight;
2164 
2165 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2166 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2167 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2168 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2169 
2170 			/* Decay existing window, copy faults since last scan */
2171 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2172 			fault_types[priv] += p->numa_faults[membuf_idx];
2173 			p->numa_faults[membuf_idx] = 0;
2174 
2175 			/*
2176 			 * Normalize the faults_from, so all tasks in a group
2177 			 * count according to CPU use, instead of by the raw
2178 			 * number of faults. Tasks with little runtime have
2179 			 * little over-all impact on throughput, and thus their
2180 			 * faults are less important.
2181 			 */
2182 			f_weight = div64_u64(runtime << 16, period + 1);
2183 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2184 				   (total_faults + 1);
2185 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2186 			p->numa_faults[cpubuf_idx] = 0;
2187 
2188 			p->numa_faults[mem_idx] += diff;
2189 			p->numa_faults[cpu_idx] += f_diff;
2190 			faults += p->numa_faults[mem_idx];
2191 			p->total_numa_faults += diff;
2192 			if (ng) {
2193 				/*
2194 				 * safe because we can only change our own group
2195 				 *
2196 				 * mem_idx represents the offset for a given
2197 				 * nid and priv in a specific region because it
2198 				 * is at the beginning of the numa_faults array.
2199 				 */
2200 				ng->faults[mem_idx] += diff;
2201 				ng->faults_cpu[mem_idx] += f_diff;
2202 				ng->total_faults += diff;
2203 				group_faults += ng->faults[mem_idx];
2204 			}
2205 		}
2206 
2207 		if (!ng) {
2208 			if (faults > max_faults) {
2209 				max_faults = faults;
2210 				max_nid = nid;
2211 			}
2212 		} else if (group_faults > max_faults) {
2213 			max_faults = group_faults;
2214 			max_nid = nid;
2215 		}
2216 	}
2217 
2218 	if (ng) {
2219 		numa_group_count_active_nodes(ng);
2220 		spin_unlock_irq(group_lock);
2221 		max_nid = preferred_group_nid(p, max_nid);
2222 	}
2223 
2224 	if (max_faults) {
2225 		/* Set the new preferred node */
2226 		if (max_nid != p->numa_preferred_nid)
2227 			sched_setnuma(p, max_nid);
2228 	}
2229 
2230 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2231 }
2232 
2233 static inline int get_numa_group(struct numa_group *grp)
2234 {
2235 	return refcount_inc_not_zero(&grp->refcount);
2236 }
2237 
2238 static inline void put_numa_group(struct numa_group *grp)
2239 {
2240 	if (refcount_dec_and_test(&grp->refcount))
2241 		kfree_rcu(grp, rcu);
2242 }
2243 
2244 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2245 			int *priv)
2246 {
2247 	struct numa_group *grp, *my_grp;
2248 	struct task_struct *tsk;
2249 	bool join = false;
2250 	int cpu = cpupid_to_cpu(cpupid);
2251 	int i;
2252 
2253 	if (unlikely(!deref_curr_numa_group(p))) {
2254 		unsigned int size = sizeof(struct numa_group) +
2255 				    4*nr_node_ids*sizeof(unsigned long);
2256 
2257 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2258 		if (!grp)
2259 			return;
2260 
2261 		refcount_set(&grp->refcount, 1);
2262 		grp->active_nodes = 1;
2263 		grp->max_faults_cpu = 0;
2264 		spin_lock_init(&grp->lock);
2265 		grp->gid = p->pid;
2266 		/* Second half of the array tracks nids where faults happen */
2267 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2268 						nr_node_ids;
2269 
2270 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2271 			grp->faults[i] = p->numa_faults[i];
2272 
2273 		grp->total_faults = p->total_numa_faults;
2274 
2275 		grp->nr_tasks++;
2276 		rcu_assign_pointer(p->numa_group, grp);
2277 	}
2278 
2279 	rcu_read_lock();
2280 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2281 
2282 	if (!cpupid_match_pid(tsk, cpupid))
2283 		goto no_join;
2284 
2285 	grp = rcu_dereference(tsk->numa_group);
2286 	if (!grp)
2287 		goto no_join;
2288 
2289 	my_grp = deref_curr_numa_group(p);
2290 	if (grp == my_grp)
2291 		goto no_join;
2292 
2293 	/*
2294 	 * Only join the other group if its bigger; if we're the bigger group,
2295 	 * the other task will join us.
2296 	 */
2297 	if (my_grp->nr_tasks > grp->nr_tasks)
2298 		goto no_join;
2299 
2300 	/*
2301 	 * Tie-break on the grp address.
2302 	 */
2303 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2304 		goto no_join;
2305 
2306 	/* Always join threads in the same process. */
2307 	if (tsk->mm == current->mm)
2308 		join = true;
2309 
2310 	/* Simple filter to avoid false positives due to PID collisions */
2311 	if (flags & TNF_SHARED)
2312 		join = true;
2313 
2314 	/* Update priv based on whether false sharing was detected */
2315 	*priv = !join;
2316 
2317 	if (join && !get_numa_group(grp))
2318 		goto no_join;
2319 
2320 	rcu_read_unlock();
2321 
2322 	if (!join)
2323 		return;
2324 
2325 	BUG_ON(irqs_disabled());
2326 	double_lock_irq(&my_grp->lock, &grp->lock);
2327 
2328 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2329 		my_grp->faults[i] -= p->numa_faults[i];
2330 		grp->faults[i] += p->numa_faults[i];
2331 	}
2332 	my_grp->total_faults -= p->total_numa_faults;
2333 	grp->total_faults += p->total_numa_faults;
2334 
2335 	my_grp->nr_tasks--;
2336 	grp->nr_tasks++;
2337 
2338 	spin_unlock(&my_grp->lock);
2339 	spin_unlock_irq(&grp->lock);
2340 
2341 	rcu_assign_pointer(p->numa_group, grp);
2342 
2343 	put_numa_group(my_grp);
2344 	return;
2345 
2346 no_join:
2347 	rcu_read_unlock();
2348 	return;
2349 }
2350 
2351 /*
2352  * Get rid of NUMA staticstics associated with a task (either current or dead).
2353  * If @final is set, the task is dead and has reached refcount zero, so we can
2354  * safely free all relevant data structures. Otherwise, there might be
2355  * concurrent reads from places like load balancing and procfs, and we should
2356  * reset the data back to default state without freeing ->numa_faults.
2357  */
2358 void task_numa_free(struct task_struct *p, bool final)
2359 {
2360 	/* safe: p either is current or is being freed by current */
2361 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2362 	unsigned long *numa_faults = p->numa_faults;
2363 	unsigned long flags;
2364 	int i;
2365 
2366 	if (!numa_faults)
2367 		return;
2368 
2369 	if (grp) {
2370 		spin_lock_irqsave(&grp->lock, flags);
2371 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2372 			grp->faults[i] -= p->numa_faults[i];
2373 		grp->total_faults -= p->total_numa_faults;
2374 
2375 		grp->nr_tasks--;
2376 		spin_unlock_irqrestore(&grp->lock, flags);
2377 		RCU_INIT_POINTER(p->numa_group, NULL);
2378 		put_numa_group(grp);
2379 	}
2380 
2381 	if (final) {
2382 		p->numa_faults = NULL;
2383 		kfree(numa_faults);
2384 	} else {
2385 		p->total_numa_faults = 0;
2386 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2387 			numa_faults[i] = 0;
2388 	}
2389 }
2390 
2391 /*
2392  * Got a PROT_NONE fault for a page on @node.
2393  */
2394 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2395 {
2396 	struct task_struct *p = current;
2397 	bool migrated = flags & TNF_MIGRATED;
2398 	int cpu_node = task_node(current);
2399 	int local = !!(flags & TNF_FAULT_LOCAL);
2400 	struct numa_group *ng;
2401 	int priv;
2402 
2403 	if (!static_branch_likely(&sched_numa_balancing))
2404 		return;
2405 
2406 	/* for example, ksmd faulting in a user's mm */
2407 	if (!p->mm)
2408 		return;
2409 
2410 	/* Allocate buffer to track faults on a per-node basis */
2411 	if (unlikely(!p->numa_faults)) {
2412 		int size = sizeof(*p->numa_faults) *
2413 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2414 
2415 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2416 		if (!p->numa_faults)
2417 			return;
2418 
2419 		p->total_numa_faults = 0;
2420 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2421 	}
2422 
2423 	/*
2424 	 * First accesses are treated as private, otherwise consider accesses
2425 	 * to be private if the accessing pid has not changed
2426 	 */
2427 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2428 		priv = 1;
2429 	} else {
2430 		priv = cpupid_match_pid(p, last_cpupid);
2431 		if (!priv && !(flags & TNF_NO_GROUP))
2432 			task_numa_group(p, last_cpupid, flags, &priv);
2433 	}
2434 
2435 	/*
2436 	 * If a workload spans multiple NUMA nodes, a shared fault that
2437 	 * occurs wholly within the set of nodes that the workload is
2438 	 * actively using should be counted as local. This allows the
2439 	 * scan rate to slow down when a workload has settled down.
2440 	 */
2441 	ng = deref_curr_numa_group(p);
2442 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2443 				numa_is_active_node(cpu_node, ng) &&
2444 				numa_is_active_node(mem_node, ng))
2445 		local = 1;
2446 
2447 	/*
2448 	 * Retry to migrate task to preferred node periodically, in case it
2449 	 * previously failed, or the scheduler moved us.
2450 	 */
2451 	if (time_after(jiffies, p->numa_migrate_retry)) {
2452 		task_numa_placement(p);
2453 		numa_migrate_preferred(p);
2454 	}
2455 
2456 	if (migrated)
2457 		p->numa_pages_migrated += pages;
2458 	if (flags & TNF_MIGRATE_FAIL)
2459 		p->numa_faults_locality[2] += pages;
2460 
2461 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2462 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2463 	p->numa_faults_locality[local] += pages;
2464 }
2465 
2466 static void reset_ptenuma_scan(struct task_struct *p)
2467 {
2468 	/*
2469 	 * We only did a read acquisition of the mmap sem, so
2470 	 * p->mm->numa_scan_seq is written to without exclusive access
2471 	 * and the update is not guaranteed to be atomic. That's not
2472 	 * much of an issue though, since this is just used for
2473 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2474 	 * expensive, to avoid any form of compiler optimizations:
2475 	 */
2476 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2477 	p->mm->numa_scan_offset = 0;
2478 }
2479 
2480 /*
2481  * The expensive part of numa migration is done from task_work context.
2482  * Triggered from task_tick_numa().
2483  */
2484 static void task_numa_work(struct callback_head *work)
2485 {
2486 	unsigned long migrate, next_scan, now = jiffies;
2487 	struct task_struct *p = current;
2488 	struct mm_struct *mm = p->mm;
2489 	u64 runtime = p->se.sum_exec_runtime;
2490 	struct vm_area_struct *vma;
2491 	unsigned long start, end;
2492 	unsigned long nr_pte_updates = 0;
2493 	long pages, virtpages;
2494 
2495 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2496 
2497 	work->next = work;
2498 	/*
2499 	 * Who cares about NUMA placement when they're dying.
2500 	 *
2501 	 * NOTE: make sure not to dereference p->mm before this check,
2502 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2503 	 * without p->mm even though we still had it when we enqueued this
2504 	 * work.
2505 	 */
2506 	if (p->flags & PF_EXITING)
2507 		return;
2508 
2509 	if (!mm->numa_next_scan) {
2510 		mm->numa_next_scan = now +
2511 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2512 	}
2513 
2514 	/*
2515 	 * Enforce maximal scan/migration frequency..
2516 	 */
2517 	migrate = mm->numa_next_scan;
2518 	if (time_before(now, migrate))
2519 		return;
2520 
2521 	if (p->numa_scan_period == 0) {
2522 		p->numa_scan_period_max = task_scan_max(p);
2523 		p->numa_scan_period = task_scan_start(p);
2524 	}
2525 
2526 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2527 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2528 		return;
2529 
2530 	/*
2531 	 * Delay this task enough that another task of this mm will likely win
2532 	 * the next time around.
2533 	 */
2534 	p->node_stamp += 2 * TICK_NSEC;
2535 
2536 	start = mm->numa_scan_offset;
2537 	pages = sysctl_numa_balancing_scan_size;
2538 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2539 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2540 	if (!pages)
2541 		return;
2542 
2543 
2544 	if (!down_read_trylock(&mm->mmap_sem))
2545 		return;
2546 	vma = find_vma(mm, start);
2547 	if (!vma) {
2548 		reset_ptenuma_scan(p);
2549 		start = 0;
2550 		vma = mm->mmap;
2551 	}
2552 	for (; vma; vma = vma->vm_next) {
2553 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2554 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2555 			continue;
2556 		}
2557 
2558 		/*
2559 		 * Shared library pages mapped by multiple processes are not
2560 		 * migrated as it is expected they are cache replicated. Avoid
2561 		 * hinting faults in read-only file-backed mappings or the vdso
2562 		 * as migrating the pages will be of marginal benefit.
2563 		 */
2564 		if (!vma->vm_mm ||
2565 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2566 			continue;
2567 
2568 		/*
2569 		 * Skip inaccessible VMAs to avoid any confusion between
2570 		 * PROT_NONE and NUMA hinting ptes
2571 		 */
2572 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2573 			continue;
2574 
2575 		do {
2576 			start = max(start, vma->vm_start);
2577 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2578 			end = min(end, vma->vm_end);
2579 			nr_pte_updates = change_prot_numa(vma, start, end);
2580 
2581 			/*
2582 			 * Try to scan sysctl_numa_balancing_size worth of
2583 			 * hpages that have at least one present PTE that
2584 			 * is not already pte-numa. If the VMA contains
2585 			 * areas that are unused or already full of prot_numa
2586 			 * PTEs, scan up to virtpages, to skip through those
2587 			 * areas faster.
2588 			 */
2589 			if (nr_pte_updates)
2590 				pages -= (end - start) >> PAGE_SHIFT;
2591 			virtpages -= (end - start) >> PAGE_SHIFT;
2592 
2593 			start = end;
2594 			if (pages <= 0 || virtpages <= 0)
2595 				goto out;
2596 
2597 			cond_resched();
2598 		} while (end != vma->vm_end);
2599 	}
2600 
2601 out:
2602 	/*
2603 	 * It is possible to reach the end of the VMA list but the last few
2604 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2605 	 * would find the !migratable VMA on the next scan but not reset the
2606 	 * scanner to the start so check it now.
2607 	 */
2608 	if (vma)
2609 		mm->numa_scan_offset = start;
2610 	else
2611 		reset_ptenuma_scan(p);
2612 	up_read(&mm->mmap_sem);
2613 
2614 	/*
2615 	 * Make sure tasks use at least 32x as much time to run other code
2616 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2617 	 * Usually update_task_scan_period slows down scanning enough; on an
2618 	 * overloaded system we need to limit overhead on a per task basis.
2619 	 */
2620 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2621 		u64 diff = p->se.sum_exec_runtime - runtime;
2622 		p->node_stamp += 32 * diff;
2623 	}
2624 }
2625 
2626 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2627 {
2628 	int mm_users = 0;
2629 	struct mm_struct *mm = p->mm;
2630 
2631 	if (mm) {
2632 		mm_users = atomic_read(&mm->mm_users);
2633 		if (mm_users == 1) {
2634 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2635 			mm->numa_scan_seq = 0;
2636 		}
2637 	}
2638 	p->node_stamp			= 0;
2639 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
2640 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
2641 	/* Protect against double add, see task_tick_numa and task_numa_work */
2642 	p->numa_work.next		= &p->numa_work;
2643 	p->numa_faults			= NULL;
2644 	RCU_INIT_POINTER(p->numa_group, NULL);
2645 	p->last_task_numa_placement	= 0;
2646 	p->last_sum_exec_runtime	= 0;
2647 
2648 	init_task_work(&p->numa_work, task_numa_work);
2649 
2650 	/* New address space, reset the preferred nid */
2651 	if (!(clone_flags & CLONE_VM)) {
2652 		p->numa_preferred_nid = NUMA_NO_NODE;
2653 		return;
2654 	}
2655 
2656 	/*
2657 	 * New thread, keep existing numa_preferred_nid which should be copied
2658 	 * already by arch_dup_task_struct but stagger when scans start.
2659 	 */
2660 	if (mm) {
2661 		unsigned int delay;
2662 
2663 		delay = min_t(unsigned int, task_scan_max(current),
2664 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2665 		delay += 2 * TICK_NSEC;
2666 		p->node_stamp = delay;
2667 	}
2668 }
2669 
2670 /*
2671  * Drive the periodic memory faults..
2672  */
2673 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2674 {
2675 	struct callback_head *work = &curr->numa_work;
2676 	u64 period, now;
2677 
2678 	/*
2679 	 * We don't care about NUMA placement if we don't have memory.
2680 	 */
2681 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2682 		return;
2683 
2684 	/*
2685 	 * Using runtime rather than walltime has the dual advantage that
2686 	 * we (mostly) drive the selection from busy threads and that the
2687 	 * task needs to have done some actual work before we bother with
2688 	 * NUMA placement.
2689 	 */
2690 	now = curr->se.sum_exec_runtime;
2691 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2692 
2693 	if (now > curr->node_stamp + period) {
2694 		if (!curr->node_stamp)
2695 			curr->numa_scan_period = task_scan_start(curr);
2696 		curr->node_stamp += period;
2697 
2698 		if (!time_before(jiffies, curr->mm->numa_next_scan))
2699 			task_work_add(curr, work, true);
2700 	}
2701 }
2702 
2703 static void update_scan_period(struct task_struct *p, int new_cpu)
2704 {
2705 	int src_nid = cpu_to_node(task_cpu(p));
2706 	int dst_nid = cpu_to_node(new_cpu);
2707 
2708 	if (!static_branch_likely(&sched_numa_balancing))
2709 		return;
2710 
2711 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2712 		return;
2713 
2714 	if (src_nid == dst_nid)
2715 		return;
2716 
2717 	/*
2718 	 * Allow resets if faults have been trapped before one scan
2719 	 * has completed. This is most likely due to a new task that
2720 	 * is pulled cross-node due to wakeups or load balancing.
2721 	 */
2722 	if (p->numa_scan_seq) {
2723 		/*
2724 		 * Avoid scan adjustments if moving to the preferred
2725 		 * node or if the task was not previously running on
2726 		 * the preferred node.
2727 		 */
2728 		if (dst_nid == p->numa_preferred_nid ||
2729 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2730 			src_nid != p->numa_preferred_nid))
2731 			return;
2732 	}
2733 
2734 	p->numa_scan_period = task_scan_start(p);
2735 }
2736 
2737 #else
2738 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2739 {
2740 }
2741 
2742 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2743 {
2744 }
2745 
2746 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2747 {
2748 }
2749 
2750 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2751 {
2752 }
2753 
2754 #endif /* CONFIG_NUMA_BALANCING */
2755 
2756 static void
2757 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2758 {
2759 	update_load_add(&cfs_rq->load, se->load.weight);
2760 #ifdef CONFIG_SMP
2761 	if (entity_is_task(se)) {
2762 		struct rq *rq = rq_of(cfs_rq);
2763 
2764 		account_numa_enqueue(rq, task_of(se));
2765 		list_add(&se->group_node, &rq->cfs_tasks);
2766 	}
2767 #endif
2768 	cfs_rq->nr_running++;
2769 }
2770 
2771 static void
2772 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2773 {
2774 	update_load_sub(&cfs_rq->load, se->load.weight);
2775 #ifdef CONFIG_SMP
2776 	if (entity_is_task(se)) {
2777 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2778 		list_del_init(&se->group_node);
2779 	}
2780 #endif
2781 	cfs_rq->nr_running--;
2782 }
2783 
2784 /*
2785  * Signed add and clamp on underflow.
2786  *
2787  * Explicitly do a load-store to ensure the intermediate value never hits
2788  * memory. This allows lockless observations without ever seeing the negative
2789  * values.
2790  */
2791 #define add_positive(_ptr, _val) do {                           \
2792 	typeof(_ptr) ptr = (_ptr);                              \
2793 	typeof(_val) val = (_val);                              \
2794 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2795 								\
2796 	res = var + val;                                        \
2797 								\
2798 	if (val < 0 && res > var)                               \
2799 		res = 0;                                        \
2800 								\
2801 	WRITE_ONCE(*ptr, res);                                  \
2802 } while (0)
2803 
2804 /*
2805  * Unsigned subtract and clamp on underflow.
2806  *
2807  * Explicitly do a load-store to ensure the intermediate value never hits
2808  * memory. This allows lockless observations without ever seeing the negative
2809  * values.
2810  */
2811 #define sub_positive(_ptr, _val) do {				\
2812 	typeof(_ptr) ptr = (_ptr);				\
2813 	typeof(*ptr) val = (_val);				\
2814 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
2815 	res = var - val;					\
2816 	if (res > var)						\
2817 		res = 0;					\
2818 	WRITE_ONCE(*ptr, res);					\
2819 } while (0)
2820 
2821 /*
2822  * Remove and clamp on negative, from a local variable.
2823  *
2824  * A variant of sub_positive(), which does not use explicit load-store
2825  * and is thus optimized for local variable updates.
2826  */
2827 #define lsub_positive(_ptr, _val) do {				\
2828 	typeof(_ptr) ptr = (_ptr);				\
2829 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
2830 } while (0)
2831 
2832 #ifdef CONFIG_SMP
2833 static inline void
2834 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2835 {
2836 	cfs_rq->runnable_weight += se->runnable_weight;
2837 
2838 	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2839 	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2840 }
2841 
2842 static inline void
2843 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2844 {
2845 	cfs_rq->runnable_weight -= se->runnable_weight;
2846 
2847 	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2848 	sub_positive(&cfs_rq->avg.runnable_load_sum,
2849 		     se_runnable(se) * se->avg.runnable_load_sum);
2850 }
2851 
2852 static inline void
2853 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2854 {
2855 	cfs_rq->avg.load_avg += se->avg.load_avg;
2856 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2857 }
2858 
2859 static inline void
2860 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2861 {
2862 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2863 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2864 }
2865 #else
2866 static inline void
2867 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2868 static inline void
2869 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2870 static inline void
2871 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2872 static inline void
2873 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2874 #endif
2875 
2876 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2877 			    unsigned long weight, unsigned long runnable)
2878 {
2879 	if (se->on_rq) {
2880 		/* commit outstanding execution time */
2881 		if (cfs_rq->curr == se)
2882 			update_curr(cfs_rq);
2883 		account_entity_dequeue(cfs_rq, se);
2884 		dequeue_runnable_load_avg(cfs_rq, se);
2885 	}
2886 	dequeue_load_avg(cfs_rq, se);
2887 
2888 	se->runnable_weight = runnable;
2889 	update_load_set(&se->load, weight);
2890 
2891 #ifdef CONFIG_SMP
2892 	do {
2893 		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2894 
2895 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2896 		se->avg.runnable_load_avg =
2897 			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2898 	} while (0);
2899 #endif
2900 
2901 	enqueue_load_avg(cfs_rq, se);
2902 	if (se->on_rq) {
2903 		account_entity_enqueue(cfs_rq, se);
2904 		enqueue_runnable_load_avg(cfs_rq, se);
2905 	}
2906 }
2907 
2908 void reweight_task(struct task_struct *p, int prio)
2909 {
2910 	struct sched_entity *se = &p->se;
2911 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2912 	struct load_weight *load = &se->load;
2913 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2914 
2915 	reweight_entity(cfs_rq, se, weight, weight);
2916 	load->inv_weight = sched_prio_to_wmult[prio];
2917 }
2918 
2919 #ifdef CONFIG_FAIR_GROUP_SCHED
2920 #ifdef CONFIG_SMP
2921 /*
2922  * All this does is approximate the hierarchical proportion which includes that
2923  * global sum we all love to hate.
2924  *
2925  * That is, the weight of a group entity, is the proportional share of the
2926  * group weight based on the group runqueue weights. That is:
2927  *
2928  *                     tg->weight * grq->load.weight
2929  *   ge->load.weight = -----------------------------               (1)
2930  *			  \Sum grq->load.weight
2931  *
2932  * Now, because computing that sum is prohibitively expensive to compute (been
2933  * there, done that) we approximate it with this average stuff. The average
2934  * moves slower and therefore the approximation is cheaper and more stable.
2935  *
2936  * So instead of the above, we substitute:
2937  *
2938  *   grq->load.weight -> grq->avg.load_avg                         (2)
2939  *
2940  * which yields the following:
2941  *
2942  *                     tg->weight * grq->avg.load_avg
2943  *   ge->load.weight = ------------------------------              (3)
2944  *				tg->load_avg
2945  *
2946  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2947  *
2948  * That is shares_avg, and it is right (given the approximation (2)).
2949  *
2950  * The problem with it is that because the average is slow -- it was designed
2951  * to be exactly that of course -- this leads to transients in boundary
2952  * conditions. In specific, the case where the group was idle and we start the
2953  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2954  * yielding bad latency etc..
2955  *
2956  * Now, in that special case (1) reduces to:
2957  *
2958  *                     tg->weight * grq->load.weight
2959  *   ge->load.weight = ----------------------------- = tg->weight   (4)
2960  *			    grp->load.weight
2961  *
2962  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2963  *
2964  * So what we do is modify our approximation (3) to approach (4) in the (near)
2965  * UP case, like:
2966  *
2967  *   ge->load.weight =
2968  *
2969  *              tg->weight * grq->load.weight
2970  *     ---------------------------------------------------         (5)
2971  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
2972  *
2973  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2974  * we need to use grq->avg.load_avg as its lower bound, which then gives:
2975  *
2976  *
2977  *                     tg->weight * grq->load.weight
2978  *   ge->load.weight = -----------------------------		   (6)
2979  *				tg_load_avg'
2980  *
2981  * Where:
2982  *
2983  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2984  *                  max(grq->load.weight, grq->avg.load_avg)
2985  *
2986  * And that is shares_weight and is icky. In the (near) UP case it approaches
2987  * (4) while in the normal case it approaches (3). It consistently
2988  * overestimates the ge->load.weight and therefore:
2989  *
2990  *   \Sum ge->load.weight >= tg->weight
2991  *
2992  * hence icky!
2993  */
2994 static long calc_group_shares(struct cfs_rq *cfs_rq)
2995 {
2996 	long tg_weight, tg_shares, load, shares;
2997 	struct task_group *tg = cfs_rq->tg;
2998 
2999 	tg_shares = READ_ONCE(tg->shares);
3000 
3001 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3002 
3003 	tg_weight = atomic_long_read(&tg->load_avg);
3004 
3005 	/* Ensure tg_weight >= load */
3006 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3007 	tg_weight += load;
3008 
3009 	shares = (tg_shares * load);
3010 	if (tg_weight)
3011 		shares /= tg_weight;
3012 
3013 	/*
3014 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3015 	 * of a group with small tg->shares value. It is a floor value which is
3016 	 * assigned as a minimum load.weight to the sched_entity representing
3017 	 * the group on a CPU.
3018 	 *
3019 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3020 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3021 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3022 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3023 	 * instead of 0.
3024 	 */
3025 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3026 }
3027 
3028 /*
3029  * This calculates the effective runnable weight for a group entity based on
3030  * the group entity weight calculated above.
3031  *
3032  * Because of the above approximation (2), our group entity weight is
3033  * an load_avg based ratio (3). This means that it includes blocked load and
3034  * does not represent the runnable weight.
3035  *
3036  * Approximate the group entity's runnable weight per ratio from the group
3037  * runqueue:
3038  *
3039  *					     grq->avg.runnable_load_avg
3040  *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
3041  *						 grq->avg.load_avg
3042  *
3043  * However, analogous to above, since the avg numbers are slow, this leads to
3044  * transients in the from-idle case. Instead we use:
3045  *
3046  *   ge->runnable_weight = ge->load.weight *
3047  *
3048  *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
3049  *		-----------------------------------------------------	(8)
3050  *		      max(grq->avg.load_avg, grq->load.weight)
3051  *
3052  * Where these max() serve both to use the 'instant' values to fix the slow
3053  * from-idle and avoid the /0 on to-idle, similar to (6).
3054  */
3055 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
3056 {
3057 	long runnable, load_avg;
3058 
3059 	load_avg = max(cfs_rq->avg.load_avg,
3060 		       scale_load_down(cfs_rq->load.weight));
3061 
3062 	runnable = max(cfs_rq->avg.runnable_load_avg,
3063 		       scale_load_down(cfs_rq->runnable_weight));
3064 
3065 	runnable *= shares;
3066 	if (load_avg)
3067 		runnable /= load_avg;
3068 
3069 	return clamp_t(long, runnable, MIN_SHARES, shares);
3070 }
3071 #endif /* CONFIG_SMP */
3072 
3073 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3074 
3075 /*
3076  * Recomputes the group entity based on the current state of its group
3077  * runqueue.
3078  */
3079 static void update_cfs_group(struct sched_entity *se)
3080 {
3081 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3082 	long shares, runnable;
3083 
3084 	if (!gcfs_rq)
3085 		return;
3086 
3087 	if (throttled_hierarchy(gcfs_rq))
3088 		return;
3089 
3090 #ifndef CONFIG_SMP
3091 	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3092 
3093 	if (likely(se->load.weight == shares))
3094 		return;
3095 #else
3096 	shares   = calc_group_shares(gcfs_rq);
3097 	runnable = calc_group_runnable(gcfs_rq, shares);
3098 #endif
3099 
3100 	reweight_entity(cfs_rq_of(se), se, shares, runnable);
3101 }
3102 
3103 #else /* CONFIG_FAIR_GROUP_SCHED */
3104 static inline void update_cfs_group(struct sched_entity *se)
3105 {
3106 }
3107 #endif /* CONFIG_FAIR_GROUP_SCHED */
3108 
3109 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3110 {
3111 	struct rq *rq = rq_of(cfs_rq);
3112 
3113 	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3114 		/*
3115 		 * There are a few boundary cases this might miss but it should
3116 		 * get called often enough that that should (hopefully) not be
3117 		 * a real problem.
3118 		 *
3119 		 * It will not get called when we go idle, because the idle
3120 		 * thread is a different class (!fair), nor will the utilization
3121 		 * number include things like RT tasks.
3122 		 *
3123 		 * As is, the util number is not freq-invariant (we'd have to
3124 		 * implement arch_scale_freq_capacity() for that).
3125 		 *
3126 		 * See cpu_util().
3127 		 */
3128 		cpufreq_update_util(rq, flags);
3129 	}
3130 }
3131 
3132 #ifdef CONFIG_SMP
3133 #ifdef CONFIG_FAIR_GROUP_SCHED
3134 /**
3135  * update_tg_load_avg - update the tg's load avg
3136  * @cfs_rq: the cfs_rq whose avg changed
3137  * @force: update regardless of how small the difference
3138  *
3139  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3140  * However, because tg->load_avg is a global value there are performance
3141  * considerations.
3142  *
3143  * In order to avoid having to look at the other cfs_rq's, we use a
3144  * differential update where we store the last value we propagated. This in
3145  * turn allows skipping updates if the differential is 'small'.
3146  *
3147  * Updating tg's load_avg is necessary before update_cfs_share().
3148  */
3149 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3150 {
3151 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3152 
3153 	/*
3154 	 * No need to update load_avg for root_task_group as it is not used.
3155 	 */
3156 	if (cfs_rq->tg == &root_task_group)
3157 		return;
3158 
3159 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3160 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3161 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3162 	}
3163 }
3164 
3165 /*
3166  * Called within set_task_rq() right before setting a task's CPU. The
3167  * caller only guarantees p->pi_lock is held; no other assumptions,
3168  * including the state of rq->lock, should be made.
3169  */
3170 void set_task_rq_fair(struct sched_entity *se,
3171 		      struct cfs_rq *prev, struct cfs_rq *next)
3172 {
3173 	u64 p_last_update_time;
3174 	u64 n_last_update_time;
3175 
3176 	if (!sched_feat(ATTACH_AGE_LOAD))
3177 		return;
3178 
3179 	/*
3180 	 * We are supposed to update the task to "current" time, then its up to
3181 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3182 	 * getting what current time is, so simply throw away the out-of-date
3183 	 * time. This will result in the wakee task is less decayed, but giving
3184 	 * the wakee more load sounds not bad.
3185 	 */
3186 	if (!(se->avg.last_update_time && prev))
3187 		return;
3188 
3189 #ifndef CONFIG_64BIT
3190 	{
3191 		u64 p_last_update_time_copy;
3192 		u64 n_last_update_time_copy;
3193 
3194 		do {
3195 			p_last_update_time_copy = prev->load_last_update_time_copy;
3196 			n_last_update_time_copy = next->load_last_update_time_copy;
3197 
3198 			smp_rmb();
3199 
3200 			p_last_update_time = prev->avg.last_update_time;
3201 			n_last_update_time = next->avg.last_update_time;
3202 
3203 		} while (p_last_update_time != p_last_update_time_copy ||
3204 			 n_last_update_time != n_last_update_time_copy);
3205 	}
3206 #else
3207 	p_last_update_time = prev->avg.last_update_time;
3208 	n_last_update_time = next->avg.last_update_time;
3209 #endif
3210 	__update_load_avg_blocked_se(p_last_update_time, se);
3211 	se->avg.last_update_time = n_last_update_time;
3212 }
3213 
3214 
3215 /*
3216  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3217  * propagate its contribution. The key to this propagation is the invariant
3218  * that for each group:
3219  *
3220  *   ge->avg == grq->avg						(1)
3221  *
3222  * _IFF_ we look at the pure running and runnable sums. Because they
3223  * represent the very same entity, just at different points in the hierarchy.
3224  *
3225  * Per the above update_tg_cfs_util() is trivial and simply copies the running
3226  * sum over (but still wrong, because the group entity and group rq do not have
3227  * their PELT windows aligned).
3228  *
3229  * However, update_tg_cfs_runnable() is more complex. So we have:
3230  *
3231  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3232  *
3233  * And since, like util, the runnable part should be directly transferable,
3234  * the following would _appear_ to be the straight forward approach:
3235  *
3236  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3237  *
3238  * And per (1) we have:
3239  *
3240  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3241  *
3242  * Which gives:
3243  *
3244  *                      ge->load.weight * grq->avg.load_avg
3245  *   ge->avg.load_avg = -----------------------------------		(4)
3246  *                               grq->load.weight
3247  *
3248  * Except that is wrong!
3249  *
3250  * Because while for entities historical weight is not important and we
3251  * really only care about our future and therefore can consider a pure
3252  * runnable sum, runqueues can NOT do this.
3253  *
3254  * We specifically want runqueues to have a load_avg that includes
3255  * historical weights. Those represent the blocked load, the load we expect
3256  * to (shortly) return to us. This only works by keeping the weights as
3257  * integral part of the sum. We therefore cannot decompose as per (3).
3258  *
3259  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3260  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3261  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3262  * runnable section of these tasks overlap (or not). If they were to perfectly
3263  * align the rq as a whole would be runnable 2/3 of the time. If however we
3264  * always have at least 1 runnable task, the rq as a whole is always runnable.
3265  *
3266  * So we'll have to approximate.. :/
3267  *
3268  * Given the constraint:
3269  *
3270  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3271  *
3272  * We can construct a rule that adds runnable to a rq by assuming minimal
3273  * overlap.
3274  *
3275  * On removal, we'll assume each task is equally runnable; which yields:
3276  *
3277  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3278  *
3279  * XXX: only do this for the part of runnable > running ?
3280  *
3281  */
3282 
3283 static inline void
3284 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3285 {
3286 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3287 
3288 	/* Nothing to update */
3289 	if (!delta)
3290 		return;
3291 
3292 	/*
3293 	 * The relation between sum and avg is:
3294 	 *
3295 	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
3296 	 *
3297 	 * however, the PELT windows are not aligned between grq and gse.
3298 	 */
3299 
3300 	/* Set new sched_entity's utilization */
3301 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3302 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3303 
3304 	/* Update parent cfs_rq utilization */
3305 	add_positive(&cfs_rq->avg.util_avg, delta);
3306 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3307 }
3308 
3309 static inline void
3310 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3311 {
3312 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3313 	unsigned long runnable_load_avg, load_avg;
3314 	u64 runnable_load_sum, load_sum = 0;
3315 	s64 delta_sum;
3316 
3317 	if (!runnable_sum)
3318 		return;
3319 
3320 	gcfs_rq->prop_runnable_sum = 0;
3321 
3322 	if (runnable_sum >= 0) {
3323 		/*
3324 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3325 		 * the CPU is saturated running == runnable.
3326 		 */
3327 		runnable_sum += se->avg.load_sum;
3328 		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3329 	} else {
3330 		/*
3331 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3332 		 * assuming all tasks are equally runnable.
3333 		 */
3334 		if (scale_load_down(gcfs_rq->load.weight)) {
3335 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3336 				scale_load_down(gcfs_rq->load.weight));
3337 		}
3338 
3339 		/* But make sure to not inflate se's runnable */
3340 		runnable_sum = min(se->avg.load_sum, load_sum);
3341 	}
3342 
3343 	/*
3344 	 * runnable_sum can't be lower than running_sum
3345 	 * Rescale running sum to be in the same range as runnable sum
3346 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3347 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3348 	 */
3349 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3350 	runnable_sum = max(runnable_sum, running_sum);
3351 
3352 	load_sum = (s64)se_weight(se) * runnable_sum;
3353 	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3354 
3355 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3356 	delta_avg = load_avg - se->avg.load_avg;
3357 
3358 	se->avg.load_sum = runnable_sum;
3359 	se->avg.load_avg = load_avg;
3360 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3361 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3362 
3363 	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3364 	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3365 	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3366 	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3367 
3368 	se->avg.runnable_load_sum = runnable_sum;
3369 	se->avg.runnable_load_avg = runnable_load_avg;
3370 
3371 	if (se->on_rq) {
3372 		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3373 		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3374 	}
3375 }
3376 
3377 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3378 {
3379 	cfs_rq->propagate = 1;
3380 	cfs_rq->prop_runnable_sum += runnable_sum;
3381 }
3382 
3383 /* Update task and its cfs_rq load average */
3384 static inline int propagate_entity_load_avg(struct sched_entity *se)
3385 {
3386 	struct cfs_rq *cfs_rq, *gcfs_rq;
3387 
3388 	if (entity_is_task(se))
3389 		return 0;
3390 
3391 	gcfs_rq = group_cfs_rq(se);
3392 	if (!gcfs_rq->propagate)
3393 		return 0;
3394 
3395 	gcfs_rq->propagate = 0;
3396 
3397 	cfs_rq = cfs_rq_of(se);
3398 
3399 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3400 
3401 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3402 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3403 
3404 	trace_pelt_cfs_tp(cfs_rq);
3405 	trace_pelt_se_tp(se);
3406 
3407 	return 1;
3408 }
3409 
3410 /*
3411  * Check if we need to update the load and the utilization of a blocked
3412  * group_entity:
3413  */
3414 static inline bool skip_blocked_update(struct sched_entity *se)
3415 {
3416 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3417 
3418 	/*
3419 	 * If sched_entity still have not zero load or utilization, we have to
3420 	 * decay it:
3421 	 */
3422 	if (se->avg.load_avg || se->avg.util_avg)
3423 		return false;
3424 
3425 	/*
3426 	 * If there is a pending propagation, we have to update the load and
3427 	 * the utilization of the sched_entity:
3428 	 */
3429 	if (gcfs_rq->propagate)
3430 		return false;
3431 
3432 	/*
3433 	 * Otherwise, the load and the utilization of the sched_entity is
3434 	 * already zero and there is no pending propagation, so it will be a
3435 	 * waste of time to try to decay it:
3436 	 */
3437 	return true;
3438 }
3439 
3440 #else /* CONFIG_FAIR_GROUP_SCHED */
3441 
3442 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3443 
3444 static inline int propagate_entity_load_avg(struct sched_entity *se)
3445 {
3446 	return 0;
3447 }
3448 
3449 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3450 
3451 #endif /* CONFIG_FAIR_GROUP_SCHED */
3452 
3453 /**
3454  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3455  * @now: current time, as per cfs_rq_clock_pelt()
3456  * @cfs_rq: cfs_rq to update
3457  *
3458  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3459  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3460  * post_init_entity_util_avg().
3461  *
3462  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3463  *
3464  * Returns true if the load decayed or we removed load.
3465  *
3466  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3467  * call update_tg_load_avg() when this function returns true.
3468  */
3469 static inline int
3470 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3471 {
3472 	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3473 	struct sched_avg *sa = &cfs_rq->avg;
3474 	int decayed = 0;
3475 
3476 	if (cfs_rq->removed.nr) {
3477 		unsigned long r;
3478 		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3479 
3480 		raw_spin_lock(&cfs_rq->removed.lock);
3481 		swap(cfs_rq->removed.util_avg, removed_util);
3482 		swap(cfs_rq->removed.load_avg, removed_load);
3483 		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3484 		cfs_rq->removed.nr = 0;
3485 		raw_spin_unlock(&cfs_rq->removed.lock);
3486 
3487 		r = removed_load;
3488 		sub_positive(&sa->load_avg, r);
3489 		sub_positive(&sa->load_sum, r * divider);
3490 
3491 		r = removed_util;
3492 		sub_positive(&sa->util_avg, r);
3493 		sub_positive(&sa->util_sum, r * divider);
3494 
3495 		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3496 
3497 		decayed = 1;
3498 	}
3499 
3500 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3501 
3502 #ifndef CONFIG_64BIT
3503 	smp_wmb();
3504 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3505 #endif
3506 
3507 	if (decayed)
3508 		cfs_rq_util_change(cfs_rq, 0);
3509 
3510 	return decayed;
3511 }
3512 
3513 /**
3514  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3515  * @cfs_rq: cfs_rq to attach to
3516  * @se: sched_entity to attach
3517  * @flags: migration hints
3518  *
3519  * Must call update_cfs_rq_load_avg() before this, since we rely on
3520  * cfs_rq->avg.last_update_time being current.
3521  */
3522 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3523 {
3524 	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3525 
3526 	/*
3527 	 * When we attach the @se to the @cfs_rq, we must align the decay
3528 	 * window because without that, really weird and wonderful things can
3529 	 * happen.
3530 	 *
3531 	 * XXX illustrate
3532 	 */
3533 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3534 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3535 
3536 	/*
3537 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3538 	 * period_contrib. This isn't strictly correct, but since we're
3539 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3540 	 * _sum a little.
3541 	 */
3542 	se->avg.util_sum = se->avg.util_avg * divider;
3543 
3544 	se->avg.load_sum = divider;
3545 	if (se_weight(se)) {
3546 		se->avg.load_sum =
3547 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3548 	}
3549 
3550 	se->avg.runnable_load_sum = se->avg.load_sum;
3551 
3552 	enqueue_load_avg(cfs_rq, se);
3553 	cfs_rq->avg.util_avg += se->avg.util_avg;
3554 	cfs_rq->avg.util_sum += se->avg.util_sum;
3555 
3556 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3557 
3558 	cfs_rq_util_change(cfs_rq, flags);
3559 
3560 	trace_pelt_cfs_tp(cfs_rq);
3561 }
3562 
3563 /**
3564  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3565  * @cfs_rq: cfs_rq to detach from
3566  * @se: sched_entity to detach
3567  *
3568  * Must call update_cfs_rq_load_avg() before this, since we rely on
3569  * cfs_rq->avg.last_update_time being current.
3570  */
3571 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3572 {
3573 	dequeue_load_avg(cfs_rq, se);
3574 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3575 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3576 
3577 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3578 
3579 	cfs_rq_util_change(cfs_rq, 0);
3580 
3581 	trace_pelt_cfs_tp(cfs_rq);
3582 }
3583 
3584 /*
3585  * Optional action to be done while updating the load average
3586  */
3587 #define UPDATE_TG	0x1
3588 #define SKIP_AGE_LOAD	0x2
3589 #define DO_ATTACH	0x4
3590 
3591 /* Update task and its cfs_rq load average */
3592 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3593 {
3594 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3595 	int decayed;
3596 
3597 	/*
3598 	 * Track task load average for carrying it to new CPU after migrated, and
3599 	 * track group sched_entity load average for task_h_load calc in migration
3600 	 */
3601 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3602 		__update_load_avg_se(now, cfs_rq, se);
3603 
3604 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3605 	decayed |= propagate_entity_load_avg(se);
3606 
3607 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3608 
3609 		/*
3610 		 * DO_ATTACH means we're here from enqueue_entity().
3611 		 * !last_update_time means we've passed through
3612 		 * migrate_task_rq_fair() indicating we migrated.
3613 		 *
3614 		 * IOW we're enqueueing a task on a new CPU.
3615 		 */
3616 		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3617 		update_tg_load_avg(cfs_rq, 0);
3618 
3619 	} else if (decayed && (flags & UPDATE_TG))
3620 		update_tg_load_avg(cfs_rq, 0);
3621 }
3622 
3623 #ifndef CONFIG_64BIT
3624 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3625 {
3626 	u64 last_update_time_copy;
3627 	u64 last_update_time;
3628 
3629 	do {
3630 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3631 		smp_rmb();
3632 		last_update_time = cfs_rq->avg.last_update_time;
3633 	} while (last_update_time != last_update_time_copy);
3634 
3635 	return last_update_time;
3636 }
3637 #else
3638 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3639 {
3640 	return cfs_rq->avg.last_update_time;
3641 }
3642 #endif
3643 
3644 /*
3645  * Synchronize entity load avg of dequeued entity without locking
3646  * the previous rq.
3647  */
3648 static void sync_entity_load_avg(struct sched_entity *se)
3649 {
3650 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3651 	u64 last_update_time;
3652 
3653 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3654 	__update_load_avg_blocked_se(last_update_time, se);
3655 }
3656 
3657 /*
3658  * Task first catches up with cfs_rq, and then subtract
3659  * itself from the cfs_rq (task must be off the queue now).
3660  */
3661 static void remove_entity_load_avg(struct sched_entity *se)
3662 {
3663 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3664 	unsigned long flags;
3665 
3666 	/*
3667 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3668 	 * post_init_entity_util_avg() which will have added things to the
3669 	 * cfs_rq, so we can remove unconditionally.
3670 	 */
3671 
3672 	sync_entity_load_avg(se);
3673 
3674 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3675 	++cfs_rq->removed.nr;
3676 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3677 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3678 	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3679 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3680 }
3681 
3682 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3683 {
3684 	return cfs_rq->avg.runnable_load_avg;
3685 }
3686 
3687 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3688 {
3689 	return cfs_rq->avg.load_avg;
3690 }
3691 
3692 static inline unsigned long task_util(struct task_struct *p)
3693 {
3694 	return READ_ONCE(p->se.avg.util_avg);
3695 }
3696 
3697 static inline unsigned long _task_util_est(struct task_struct *p)
3698 {
3699 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3700 
3701 	return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3702 }
3703 
3704 static inline unsigned long task_util_est(struct task_struct *p)
3705 {
3706 	return max(task_util(p), _task_util_est(p));
3707 }
3708 
3709 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3710 				    struct task_struct *p)
3711 {
3712 	unsigned int enqueued;
3713 
3714 	if (!sched_feat(UTIL_EST))
3715 		return;
3716 
3717 	/* Update root cfs_rq's estimated utilization */
3718 	enqueued  = cfs_rq->avg.util_est.enqueued;
3719 	enqueued += _task_util_est(p);
3720 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3721 }
3722 
3723 /*
3724  * Check if a (signed) value is within a specified (unsigned) margin,
3725  * based on the observation that:
3726  *
3727  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3728  *
3729  * NOTE: this only works when value + maring < INT_MAX.
3730  */
3731 static inline bool within_margin(int value, int margin)
3732 {
3733 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3734 }
3735 
3736 static void
3737 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3738 {
3739 	long last_ewma_diff;
3740 	struct util_est ue;
3741 	int cpu;
3742 
3743 	if (!sched_feat(UTIL_EST))
3744 		return;
3745 
3746 	/* Update root cfs_rq's estimated utilization */
3747 	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3748 	ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3749 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3750 
3751 	/*
3752 	 * Skip update of task's estimated utilization when the task has not
3753 	 * yet completed an activation, e.g. being migrated.
3754 	 */
3755 	if (!task_sleep)
3756 		return;
3757 
3758 	/*
3759 	 * If the PELT values haven't changed since enqueue time,
3760 	 * skip the util_est update.
3761 	 */
3762 	ue = p->se.avg.util_est;
3763 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
3764 		return;
3765 
3766 	/*
3767 	 * Skip update of task's estimated utilization when its EWMA is
3768 	 * already ~1% close to its last activation value.
3769 	 */
3770 	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3771 	last_ewma_diff = ue.enqueued - ue.ewma;
3772 	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3773 		return;
3774 
3775 	/*
3776 	 * To avoid overestimation of actual task utilization, skip updates if
3777 	 * we cannot grant there is idle time in this CPU.
3778 	 */
3779 	cpu = cpu_of(rq_of(cfs_rq));
3780 	if (task_util(p) > capacity_orig_of(cpu))
3781 		return;
3782 
3783 	/*
3784 	 * Update Task's estimated utilization
3785 	 *
3786 	 * When *p completes an activation we can consolidate another sample
3787 	 * of the task size. This is done by storing the current PELT value
3788 	 * as ue.enqueued and by using this value to update the Exponential
3789 	 * Weighted Moving Average (EWMA):
3790 	 *
3791 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
3792 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
3793 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
3794 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
3795 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
3796 	 *
3797 	 * Where 'w' is the weight of new samples, which is configured to be
3798 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3799 	 */
3800 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3801 	ue.ewma  += last_ewma_diff;
3802 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3803 	WRITE_ONCE(p->se.avg.util_est, ue);
3804 }
3805 
3806 static inline int task_fits_capacity(struct task_struct *p, long capacity)
3807 {
3808 	return fits_capacity(task_util_est(p), capacity);
3809 }
3810 
3811 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3812 {
3813 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
3814 		return;
3815 
3816 	if (!p) {
3817 		rq->misfit_task_load = 0;
3818 		return;
3819 	}
3820 
3821 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3822 		rq->misfit_task_load = 0;
3823 		return;
3824 	}
3825 
3826 	rq->misfit_task_load = task_h_load(p);
3827 }
3828 
3829 #else /* CONFIG_SMP */
3830 
3831 #define UPDATE_TG	0x0
3832 #define SKIP_AGE_LOAD	0x0
3833 #define DO_ATTACH	0x0
3834 
3835 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3836 {
3837 	cfs_rq_util_change(cfs_rq, 0);
3838 }
3839 
3840 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3841 
3842 static inline void
3843 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3844 static inline void
3845 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3846 
3847 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3848 {
3849 	return 0;
3850 }
3851 
3852 static inline void
3853 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3854 
3855 static inline void
3856 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3857 		 bool task_sleep) {}
3858 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
3859 
3860 #endif /* CONFIG_SMP */
3861 
3862 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3863 {
3864 #ifdef CONFIG_SCHED_DEBUG
3865 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3866 
3867 	if (d < 0)
3868 		d = -d;
3869 
3870 	if (d > 3*sysctl_sched_latency)
3871 		schedstat_inc(cfs_rq->nr_spread_over);
3872 #endif
3873 }
3874 
3875 static void
3876 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3877 {
3878 	u64 vruntime = cfs_rq->min_vruntime;
3879 
3880 	/*
3881 	 * The 'current' period is already promised to the current tasks,
3882 	 * however the extra weight of the new task will slow them down a
3883 	 * little, place the new task so that it fits in the slot that
3884 	 * stays open at the end.
3885 	 */
3886 	if (initial && sched_feat(START_DEBIT))
3887 		vruntime += sched_vslice(cfs_rq, se);
3888 
3889 	/* sleeps up to a single latency don't count. */
3890 	if (!initial) {
3891 		unsigned long thresh = sysctl_sched_latency;
3892 
3893 		/*
3894 		 * Halve their sleep time's effect, to allow
3895 		 * for a gentler effect of sleepers:
3896 		 */
3897 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3898 			thresh >>= 1;
3899 
3900 		vruntime -= thresh;
3901 	}
3902 
3903 	/* ensure we never gain time by being placed backwards. */
3904 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3905 }
3906 
3907 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3908 
3909 static inline void check_schedstat_required(void)
3910 {
3911 #ifdef CONFIG_SCHEDSTATS
3912 	if (schedstat_enabled())
3913 		return;
3914 
3915 	/* Force schedstat enabled if a dependent tracepoint is active */
3916 	if (trace_sched_stat_wait_enabled()    ||
3917 			trace_sched_stat_sleep_enabled()   ||
3918 			trace_sched_stat_iowait_enabled()  ||
3919 			trace_sched_stat_blocked_enabled() ||
3920 			trace_sched_stat_runtime_enabled())  {
3921 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3922 			     "stat_blocked and stat_runtime require the "
3923 			     "kernel parameter schedstats=enable or "
3924 			     "kernel.sched_schedstats=1\n");
3925 	}
3926 #endif
3927 }
3928 
3929 
3930 /*
3931  * MIGRATION
3932  *
3933  *	dequeue
3934  *	  update_curr()
3935  *	    update_min_vruntime()
3936  *	  vruntime -= min_vruntime
3937  *
3938  *	enqueue
3939  *	  update_curr()
3940  *	    update_min_vruntime()
3941  *	  vruntime += min_vruntime
3942  *
3943  * this way the vruntime transition between RQs is done when both
3944  * min_vruntime are up-to-date.
3945  *
3946  * WAKEUP (remote)
3947  *
3948  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3949  *	  vruntime -= min_vruntime
3950  *
3951  *	enqueue
3952  *	  update_curr()
3953  *	    update_min_vruntime()
3954  *	  vruntime += min_vruntime
3955  *
3956  * this way we don't have the most up-to-date min_vruntime on the originating
3957  * CPU and an up-to-date min_vruntime on the destination CPU.
3958  */
3959 
3960 static void
3961 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3962 {
3963 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3964 	bool curr = cfs_rq->curr == se;
3965 
3966 	/*
3967 	 * If we're the current task, we must renormalise before calling
3968 	 * update_curr().
3969 	 */
3970 	if (renorm && curr)
3971 		se->vruntime += cfs_rq->min_vruntime;
3972 
3973 	update_curr(cfs_rq);
3974 
3975 	/*
3976 	 * Otherwise, renormalise after, such that we're placed at the current
3977 	 * moment in time, instead of some random moment in the past. Being
3978 	 * placed in the past could significantly boost this task to the
3979 	 * fairness detriment of existing tasks.
3980 	 */
3981 	if (renorm && !curr)
3982 		se->vruntime += cfs_rq->min_vruntime;
3983 
3984 	/*
3985 	 * When enqueuing a sched_entity, we must:
3986 	 *   - Update loads to have both entity and cfs_rq synced with now.
3987 	 *   - Add its load to cfs_rq->runnable_avg
3988 	 *   - For group_entity, update its weight to reflect the new share of
3989 	 *     its group cfs_rq
3990 	 *   - Add its new weight to cfs_rq->load.weight
3991 	 */
3992 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3993 	update_cfs_group(se);
3994 	enqueue_runnable_load_avg(cfs_rq, se);
3995 	account_entity_enqueue(cfs_rq, se);
3996 
3997 	if (flags & ENQUEUE_WAKEUP)
3998 		place_entity(cfs_rq, se, 0);
3999 
4000 	check_schedstat_required();
4001 	update_stats_enqueue(cfs_rq, se, flags);
4002 	check_spread(cfs_rq, se);
4003 	if (!curr)
4004 		__enqueue_entity(cfs_rq, se);
4005 	se->on_rq = 1;
4006 
4007 	if (cfs_rq->nr_running == 1) {
4008 		list_add_leaf_cfs_rq(cfs_rq);
4009 		check_enqueue_throttle(cfs_rq);
4010 	}
4011 }
4012 
4013 static void __clear_buddies_last(struct sched_entity *se)
4014 {
4015 	for_each_sched_entity(se) {
4016 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4017 		if (cfs_rq->last != se)
4018 			break;
4019 
4020 		cfs_rq->last = NULL;
4021 	}
4022 }
4023 
4024 static void __clear_buddies_next(struct sched_entity *se)
4025 {
4026 	for_each_sched_entity(se) {
4027 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4028 		if (cfs_rq->next != se)
4029 			break;
4030 
4031 		cfs_rq->next = NULL;
4032 	}
4033 }
4034 
4035 static void __clear_buddies_skip(struct sched_entity *se)
4036 {
4037 	for_each_sched_entity(se) {
4038 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4039 		if (cfs_rq->skip != se)
4040 			break;
4041 
4042 		cfs_rq->skip = NULL;
4043 	}
4044 }
4045 
4046 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4047 {
4048 	if (cfs_rq->last == se)
4049 		__clear_buddies_last(se);
4050 
4051 	if (cfs_rq->next == se)
4052 		__clear_buddies_next(se);
4053 
4054 	if (cfs_rq->skip == se)
4055 		__clear_buddies_skip(se);
4056 }
4057 
4058 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4059 
4060 static void
4061 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4062 {
4063 	/*
4064 	 * Update run-time statistics of the 'current'.
4065 	 */
4066 	update_curr(cfs_rq);
4067 
4068 	/*
4069 	 * When dequeuing a sched_entity, we must:
4070 	 *   - Update loads to have both entity and cfs_rq synced with now.
4071 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4072 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4073 	 *   - For group entity, update its weight to reflect the new share
4074 	 *     of its group cfs_rq.
4075 	 */
4076 	update_load_avg(cfs_rq, se, UPDATE_TG);
4077 	dequeue_runnable_load_avg(cfs_rq, se);
4078 
4079 	update_stats_dequeue(cfs_rq, se, flags);
4080 
4081 	clear_buddies(cfs_rq, se);
4082 
4083 	if (se != cfs_rq->curr)
4084 		__dequeue_entity(cfs_rq, se);
4085 	se->on_rq = 0;
4086 	account_entity_dequeue(cfs_rq, se);
4087 
4088 	/*
4089 	 * Normalize after update_curr(); which will also have moved
4090 	 * min_vruntime if @se is the one holding it back. But before doing
4091 	 * update_min_vruntime() again, which will discount @se's position and
4092 	 * can move min_vruntime forward still more.
4093 	 */
4094 	if (!(flags & DEQUEUE_SLEEP))
4095 		se->vruntime -= cfs_rq->min_vruntime;
4096 
4097 	/* return excess runtime on last dequeue */
4098 	return_cfs_rq_runtime(cfs_rq);
4099 
4100 	update_cfs_group(se);
4101 
4102 	/*
4103 	 * Now advance min_vruntime if @se was the entity holding it back,
4104 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4105 	 * put back on, and if we advance min_vruntime, we'll be placed back
4106 	 * further than we started -- ie. we'll be penalized.
4107 	 */
4108 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4109 		update_min_vruntime(cfs_rq);
4110 }
4111 
4112 /*
4113  * Preempt the current task with a newly woken task if needed:
4114  */
4115 static void
4116 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4117 {
4118 	unsigned long ideal_runtime, delta_exec;
4119 	struct sched_entity *se;
4120 	s64 delta;
4121 
4122 	ideal_runtime = sched_slice(cfs_rq, curr);
4123 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4124 	if (delta_exec > ideal_runtime) {
4125 		resched_curr(rq_of(cfs_rq));
4126 		/*
4127 		 * The current task ran long enough, ensure it doesn't get
4128 		 * re-elected due to buddy favours.
4129 		 */
4130 		clear_buddies(cfs_rq, curr);
4131 		return;
4132 	}
4133 
4134 	/*
4135 	 * Ensure that a task that missed wakeup preemption by a
4136 	 * narrow margin doesn't have to wait for a full slice.
4137 	 * This also mitigates buddy induced latencies under load.
4138 	 */
4139 	if (delta_exec < sysctl_sched_min_granularity)
4140 		return;
4141 
4142 	se = __pick_first_entity(cfs_rq);
4143 	delta = curr->vruntime - se->vruntime;
4144 
4145 	if (delta < 0)
4146 		return;
4147 
4148 	if (delta > ideal_runtime)
4149 		resched_curr(rq_of(cfs_rq));
4150 }
4151 
4152 static void
4153 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4154 {
4155 	/* 'current' is not kept within the tree. */
4156 	if (se->on_rq) {
4157 		/*
4158 		 * Any task has to be enqueued before it get to execute on
4159 		 * a CPU. So account for the time it spent waiting on the
4160 		 * runqueue.
4161 		 */
4162 		update_stats_wait_end(cfs_rq, se);
4163 		__dequeue_entity(cfs_rq, se);
4164 		update_load_avg(cfs_rq, se, UPDATE_TG);
4165 	}
4166 
4167 	update_stats_curr_start(cfs_rq, se);
4168 	cfs_rq->curr = se;
4169 
4170 	/*
4171 	 * Track our maximum slice length, if the CPU's load is at
4172 	 * least twice that of our own weight (i.e. dont track it
4173 	 * when there are only lesser-weight tasks around):
4174 	 */
4175 	if (schedstat_enabled() &&
4176 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4177 		schedstat_set(se->statistics.slice_max,
4178 			max((u64)schedstat_val(se->statistics.slice_max),
4179 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4180 	}
4181 
4182 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4183 }
4184 
4185 static int
4186 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4187 
4188 /*
4189  * Pick the next process, keeping these things in mind, in this order:
4190  * 1) keep things fair between processes/task groups
4191  * 2) pick the "next" process, since someone really wants that to run
4192  * 3) pick the "last" process, for cache locality
4193  * 4) do not run the "skip" process, if something else is available
4194  */
4195 static struct sched_entity *
4196 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4197 {
4198 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4199 	struct sched_entity *se;
4200 
4201 	/*
4202 	 * If curr is set we have to see if its left of the leftmost entity
4203 	 * still in the tree, provided there was anything in the tree at all.
4204 	 */
4205 	if (!left || (curr && entity_before(curr, left)))
4206 		left = curr;
4207 
4208 	se = left; /* ideally we run the leftmost entity */
4209 
4210 	/*
4211 	 * Avoid running the skip buddy, if running something else can
4212 	 * be done without getting too unfair.
4213 	 */
4214 	if (cfs_rq->skip == se) {
4215 		struct sched_entity *second;
4216 
4217 		if (se == curr) {
4218 			second = __pick_first_entity(cfs_rq);
4219 		} else {
4220 			second = __pick_next_entity(se);
4221 			if (!second || (curr && entity_before(curr, second)))
4222 				second = curr;
4223 		}
4224 
4225 		if (second && wakeup_preempt_entity(second, left) < 1)
4226 			se = second;
4227 	}
4228 
4229 	/*
4230 	 * Prefer last buddy, try to return the CPU to a preempted task.
4231 	 */
4232 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4233 		se = cfs_rq->last;
4234 
4235 	/*
4236 	 * Someone really wants this to run. If it's not unfair, run it.
4237 	 */
4238 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4239 		se = cfs_rq->next;
4240 
4241 	clear_buddies(cfs_rq, se);
4242 
4243 	return se;
4244 }
4245 
4246 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4247 
4248 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4249 {
4250 	/*
4251 	 * If still on the runqueue then deactivate_task()
4252 	 * was not called and update_curr() has to be done:
4253 	 */
4254 	if (prev->on_rq)
4255 		update_curr(cfs_rq);
4256 
4257 	/* throttle cfs_rqs exceeding runtime */
4258 	check_cfs_rq_runtime(cfs_rq);
4259 
4260 	check_spread(cfs_rq, prev);
4261 
4262 	if (prev->on_rq) {
4263 		update_stats_wait_start(cfs_rq, prev);
4264 		/* Put 'current' back into the tree. */
4265 		__enqueue_entity(cfs_rq, prev);
4266 		/* in !on_rq case, update occurred at dequeue */
4267 		update_load_avg(cfs_rq, prev, 0);
4268 	}
4269 	cfs_rq->curr = NULL;
4270 }
4271 
4272 static void
4273 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4274 {
4275 	/*
4276 	 * Update run-time statistics of the 'current'.
4277 	 */
4278 	update_curr(cfs_rq);
4279 
4280 	/*
4281 	 * Ensure that runnable average is periodically updated.
4282 	 */
4283 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4284 	update_cfs_group(curr);
4285 
4286 #ifdef CONFIG_SCHED_HRTICK
4287 	/*
4288 	 * queued ticks are scheduled to match the slice, so don't bother
4289 	 * validating it and just reschedule.
4290 	 */
4291 	if (queued) {
4292 		resched_curr(rq_of(cfs_rq));
4293 		return;
4294 	}
4295 	/*
4296 	 * don't let the period tick interfere with the hrtick preemption
4297 	 */
4298 	if (!sched_feat(DOUBLE_TICK) &&
4299 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4300 		return;
4301 #endif
4302 
4303 	if (cfs_rq->nr_running > 1)
4304 		check_preempt_tick(cfs_rq, curr);
4305 }
4306 
4307 
4308 /**************************************************
4309  * CFS bandwidth control machinery
4310  */
4311 
4312 #ifdef CONFIG_CFS_BANDWIDTH
4313 
4314 #ifdef CONFIG_JUMP_LABEL
4315 static struct static_key __cfs_bandwidth_used;
4316 
4317 static inline bool cfs_bandwidth_used(void)
4318 {
4319 	return static_key_false(&__cfs_bandwidth_used);
4320 }
4321 
4322 void cfs_bandwidth_usage_inc(void)
4323 {
4324 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4325 }
4326 
4327 void cfs_bandwidth_usage_dec(void)
4328 {
4329 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4330 }
4331 #else /* CONFIG_JUMP_LABEL */
4332 static bool cfs_bandwidth_used(void)
4333 {
4334 	return true;
4335 }
4336 
4337 void cfs_bandwidth_usage_inc(void) {}
4338 void cfs_bandwidth_usage_dec(void) {}
4339 #endif /* CONFIG_JUMP_LABEL */
4340 
4341 /*
4342  * default period for cfs group bandwidth.
4343  * default: 0.1s, units: nanoseconds
4344  */
4345 static inline u64 default_cfs_period(void)
4346 {
4347 	return 100000000ULL;
4348 }
4349 
4350 static inline u64 sched_cfs_bandwidth_slice(void)
4351 {
4352 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4353 }
4354 
4355 /*
4356  * Replenish runtime according to assigned quota. We use sched_clock_cpu
4357  * directly instead of rq->clock to avoid adding additional synchronization
4358  * around rq->lock.
4359  *
4360  * requires cfs_b->lock
4361  */
4362 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4363 {
4364 	if (cfs_b->quota != RUNTIME_INF)
4365 		cfs_b->runtime = cfs_b->quota;
4366 }
4367 
4368 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4369 {
4370 	return &tg->cfs_bandwidth;
4371 }
4372 
4373 /* returns 0 on failure to allocate runtime */
4374 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4375 {
4376 	struct task_group *tg = cfs_rq->tg;
4377 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4378 	u64 amount = 0, min_amount;
4379 
4380 	/* note: this is a positive sum as runtime_remaining <= 0 */
4381 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4382 
4383 	raw_spin_lock(&cfs_b->lock);
4384 	if (cfs_b->quota == RUNTIME_INF)
4385 		amount = min_amount;
4386 	else {
4387 		start_cfs_bandwidth(cfs_b);
4388 
4389 		if (cfs_b->runtime > 0) {
4390 			amount = min(cfs_b->runtime, min_amount);
4391 			cfs_b->runtime -= amount;
4392 			cfs_b->idle = 0;
4393 		}
4394 	}
4395 	raw_spin_unlock(&cfs_b->lock);
4396 
4397 	cfs_rq->runtime_remaining += amount;
4398 
4399 	return cfs_rq->runtime_remaining > 0;
4400 }
4401 
4402 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4403 {
4404 	/* dock delta_exec before expiring quota (as it could span periods) */
4405 	cfs_rq->runtime_remaining -= delta_exec;
4406 
4407 	if (likely(cfs_rq->runtime_remaining > 0))
4408 		return;
4409 
4410 	if (cfs_rq->throttled)
4411 		return;
4412 	/*
4413 	 * if we're unable to extend our runtime we resched so that the active
4414 	 * hierarchy can be throttled
4415 	 */
4416 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4417 		resched_curr(rq_of(cfs_rq));
4418 }
4419 
4420 static __always_inline
4421 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4422 {
4423 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4424 		return;
4425 
4426 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4427 }
4428 
4429 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4430 {
4431 	return cfs_bandwidth_used() && cfs_rq->throttled;
4432 }
4433 
4434 /* check whether cfs_rq, or any parent, is throttled */
4435 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4436 {
4437 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4438 }
4439 
4440 /*
4441  * Ensure that neither of the group entities corresponding to src_cpu or
4442  * dest_cpu are members of a throttled hierarchy when performing group
4443  * load-balance operations.
4444  */
4445 static inline int throttled_lb_pair(struct task_group *tg,
4446 				    int src_cpu, int dest_cpu)
4447 {
4448 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4449 
4450 	src_cfs_rq = tg->cfs_rq[src_cpu];
4451 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4452 
4453 	return throttled_hierarchy(src_cfs_rq) ||
4454 	       throttled_hierarchy(dest_cfs_rq);
4455 }
4456 
4457 static int tg_unthrottle_up(struct task_group *tg, void *data)
4458 {
4459 	struct rq *rq = data;
4460 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4461 
4462 	cfs_rq->throttle_count--;
4463 	if (!cfs_rq->throttle_count) {
4464 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4465 					     cfs_rq->throttled_clock_task;
4466 
4467 		/* Add cfs_rq with already running entity in the list */
4468 		if (cfs_rq->nr_running >= 1)
4469 			list_add_leaf_cfs_rq(cfs_rq);
4470 	}
4471 
4472 	return 0;
4473 }
4474 
4475 static int tg_throttle_down(struct task_group *tg, void *data)
4476 {
4477 	struct rq *rq = data;
4478 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4479 
4480 	/* group is entering throttled state, stop time */
4481 	if (!cfs_rq->throttle_count) {
4482 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4483 		list_del_leaf_cfs_rq(cfs_rq);
4484 	}
4485 	cfs_rq->throttle_count++;
4486 
4487 	return 0;
4488 }
4489 
4490 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4491 {
4492 	struct rq *rq = rq_of(cfs_rq);
4493 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4494 	struct sched_entity *se;
4495 	long task_delta, idle_task_delta, dequeue = 1;
4496 	bool empty;
4497 
4498 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4499 
4500 	/* freeze hierarchy runnable averages while throttled */
4501 	rcu_read_lock();
4502 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4503 	rcu_read_unlock();
4504 
4505 	task_delta = cfs_rq->h_nr_running;
4506 	idle_task_delta = cfs_rq->idle_h_nr_running;
4507 	for_each_sched_entity(se) {
4508 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4509 		/* throttled entity or throttle-on-deactivate */
4510 		if (!se->on_rq)
4511 			break;
4512 
4513 		if (dequeue)
4514 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4515 		qcfs_rq->h_nr_running -= task_delta;
4516 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4517 
4518 		if (qcfs_rq->load.weight)
4519 			dequeue = 0;
4520 	}
4521 
4522 	if (!se)
4523 		sub_nr_running(rq, task_delta);
4524 
4525 	cfs_rq->throttled = 1;
4526 	cfs_rq->throttled_clock = rq_clock(rq);
4527 	raw_spin_lock(&cfs_b->lock);
4528 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4529 
4530 	/*
4531 	 * Add to the _head_ of the list, so that an already-started
4532 	 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4533 	 * not running add to the tail so that later runqueues don't get starved.
4534 	 */
4535 	if (cfs_b->distribute_running)
4536 		list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4537 	else
4538 		list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4539 
4540 	/*
4541 	 * If we're the first throttled task, make sure the bandwidth
4542 	 * timer is running.
4543 	 */
4544 	if (empty)
4545 		start_cfs_bandwidth(cfs_b);
4546 
4547 	raw_spin_unlock(&cfs_b->lock);
4548 }
4549 
4550 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4551 {
4552 	struct rq *rq = rq_of(cfs_rq);
4553 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4554 	struct sched_entity *se;
4555 	int enqueue = 1;
4556 	long task_delta, idle_task_delta;
4557 
4558 	se = cfs_rq->tg->se[cpu_of(rq)];
4559 
4560 	cfs_rq->throttled = 0;
4561 
4562 	update_rq_clock(rq);
4563 
4564 	raw_spin_lock(&cfs_b->lock);
4565 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4566 	list_del_rcu(&cfs_rq->throttled_list);
4567 	raw_spin_unlock(&cfs_b->lock);
4568 
4569 	/* update hierarchical throttle state */
4570 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4571 
4572 	if (!cfs_rq->load.weight)
4573 		return;
4574 
4575 	task_delta = cfs_rq->h_nr_running;
4576 	idle_task_delta = cfs_rq->idle_h_nr_running;
4577 	for_each_sched_entity(se) {
4578 		if (se->on_rq)
4579 			enqueue = 0;
4580 
4581 		cfs_rq = cfs_rq_of(se);
4582 		if (enqueue)
4583 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4584 		cfs_rq->h_nr_running += task_delta;
4585 		cfs_rq->idle_h_nr_running += idle_task_delta;
4586 
4587 		if (cfs_rq_throttled(cfs_rq))
4588 			break;
4589 	}
4590 
4591 	assert_list_leaf_cfs_rq(rq);
4592 
4593 	if (!se)
4594 		add_nr_running(rq, task_delta);
4595 
4596 	/* Determine whether we need to wake up potentially idle CPU: */
4597 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4598 		resched_curr(rq);
4599 }
4600 
4601 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, u64 remaining)
4602 {
4603 	struct cfs_rq *cfs_rq;
4604 	u64 runtime;
4605 	u64 starting_runtime = remaining;
4606 
4607 	rcu_read_lock();
4608 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4609 				throttled_list) {
4610 		struct rq *rq = rq_of(cfs_rq);
4611 		struct rq_flags rf;
4612 
4613 		rq_lock_irqsave(rq, &rf);
4614 		if (!cfs_rq_throttled(cfs_rq))
4615 			goto next;
4616 
4617 		/* By the above check, this should never be true */
4618 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4619 
4620 		runtime = -cfs_rq->runtime_remaining + 1;
4621 		if (runtime > remaining)
4622 			runtime = remaining;
4623 		remaining -= runtime;
4624 
4625 		cfs_rq->runtime_remaining += runtime;
4626 
4627 		/* we check whether we're throttled above */
4628 		if (cfs_rq->runtime_remaining > 0)
4629 			unthrottle_cfs_rq(cfs_rq);
4630 
4631 next:
4632 		rq_unlock_irqrestore(rq, &rf);
4633 
4634 		if (!remaining)
4635 			break;
4636 	}
4637 	rcu_read_unlock();
4638 
4639 	return starting_runtime - remaining;
4640 }
4641 
4642 /*
4643  * Responsible for refilling a task_group's bandwidth and unthrottling its
4644  * cfs_rqs as appropriate. If there has been no activity within the last
4645  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4646  * used to track this state.
4647  */
4648 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4649 {
4650 	u64 runtime;
4651 	int throttled;
4652 
4653 	/* no need to continue the timer with no bandwidth constraint */
4654 	if (cfs_b->quota == RUNTIME_INF)
4655 		goto out_deactivate;
4656 
4657 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4658 	cfs_b->nr_periods += overrun;
4659 
4660 	/*
4661 	 * idle depends on !throttled (for the case of a large deficit), and if
4662 	 * we're going inactive then everything else can be deferred
4663 	 */
4664 	if (cfs_b->idle && !throttled)
4665 		goto out_deactivate;
4666 
4667 	__refill_cfs_bandwidth_runtime(cfs_b);
4668 
4669 	if (!throttled) {
4670 		/* mark as potentially idle for the upcoming period */
4671 		cfs_b->idle = 1;
4672 		return 0;
4673 	}
4674 
4675 	/* account preceding periods in which throttling occurred */
4676 	cfs_b->nr_throttled += overrun;
4677 
4678 	/*
4679 	 * This check is repeated as we are holding onto the new bandwidth while
4680 	 * we unthrottle. This can potentially race with an unthrottled group
4681 	 * trying to acquire new bandwidth from the global pool. This can result
4682 	 * in us over-using our runtime if it is all used during this loop, but
4683 	 * only by limited amounts in that extreme case.
4684 	 */
4685 	while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4686 		runtime = cfs_b->runtime;
4687 		cfs_b->distribute_running = 1;
4688 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4689 		/* we can't nest cfs_b->lock while distributing bandwidth */
4690 		runtime = distribute_cfs_runtime(cfs_b, runtime);
4691 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
4692 
4693 		cfs_b->distribute_running = 0;
4694 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4695 
4696 		lsub_positive(&cfs_b->runtime, runtime);
4697 	}
4698 
4699 	/*
4700 	 * While we are ensured activity in the period following an
4701 	 * unthrottle, this also covers the case in which the new bandwidth is
4702 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4703 	 * timer to remain active while there are any throttled entities.)
4704 	 */
4705 	cfs_b->idle = 0;
4706 
4707 	return 0;
4708 
4709 out_deactivate:
4710 	return 1;
4711 }
4712 
4713 /* a cfs_rq won't donate quota below this amount */
4714 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4715 /* minimum remaining period time to redistribute slack quota */
4716 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4717 /* how long we wait to gather additional slack before distributing */
4718 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4719 
4720 /*
4721  * Are we near the end of the current quota period?
4722  *
4723  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4724  * hrtimer base being cleared by hrtimer_start. In the case of
4725  * migrate_hrtimers, base is never cleared, so we are fine.
4726  */
4727 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4728 {
4729 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4730 	u64 remaining;
4731 
4732 	/* if the call-back is running a quota refresh is already occurring */
4733 	if (hrtimer_callback_running(refresh_timer))
4734 		return 1;
4735 
4736 	/* is a quota refresh about to occur? */
4737 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4738 	if (remaining < min_expire)
4739 		return 1;
4740 
4741 	return 0;
4742 }
4743 
4744 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4745 {
4746 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4747 
4748 	/* if there's a quota refresh soon don't bother with slack */
4749 	if (runtime_refresh_within(cfs_b, min_left))
4750 		return;
4751 
4752 	/* don't push forwards an existing deferred unthrottle */
4753 	if (cfs_b->slack_started)
4754 		return;
4755 	cfs_b->slack_started = true;
4756 
4757 	hrtimer_start(&cfs_b->slack_timer,
4758 			ns_to_ktime(cfs_bandwidth_slack_period),
4759 			HRTIMER_MODE_REL);
4760 }
4761 
4762 /* we know any runtime found here is valid as update_curr() precedes return */
4763 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4764 {
4765 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4766 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4767 
4768 	if (slack_runtime <= 0)
4769 		return;
4770 
4771 	raw_spin_lock(&cfs_b->lock);
4772 	if (cfs_b->quota != RUNTIME_INF) {
4773 		cfs_b->runtime += slack_runtime;
4774 
4775 		/* we are under rq->lock, defer unthrottling using a timer */
4776 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4777 		    !list_empty(&cfs_b->throttled_cfs_rq))
4778 			start_cfs_slack_bandwidth(cfs_b);
4779 	}
4780 	raw_spin_unlock(&cfs_b->lock);
4781 
4782 	/* even if it's not valid for return we don't want to try again */
4783 	cfs_rq->runtime_remaining -= slack_runtime;
4784 }
4785 
4786 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4787 {
4788 	if (!cfs_bandwidth_used())
4789 		return;
4790 
4791 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4792 		return;
4793 
4794 	__return_cfs_rq_runtime(cfs_rq);
4795 }
4796 
4797 /*
4798  * This is done with a timer (instead of inline with bandwidth return) since
4799  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4800  */
4801 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4802 {
4803 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4804 	unsigned long flags;
4805 
4806 	/* confirm we're still not at a refresh boundary */
4807 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
4808 	cfs_b->slack_started = false;
4809 	if (cfs_b->distribute_running) {
4810 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4811 		return;
4812 	}
4813 
4814 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4815 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4816 		return;
4817 	}
4818 
4819 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4820 		runtime = cfs_b->runtime;
4821 
4822 	if (runtime)
4823 		cfs_b->distribute_running = 1;
4824 
4825 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4826 
4827 	if (!runtime)
4828 		return;
4829 
4830 	runtime = distribute_cfs_runtime(cfs_b, runtime);
4831 
4832 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
4833 	lsub_positive(&cfs_b->runtime, runtime);
4834 	cfs_b->distribute_running = 0;
4835 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4836 }
4837 
4838 /*
4839  * When a group wakes up we want to make sure that its quota is not already
4840  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4841  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4842  */
4843 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4844 {
4845 	if (!cfs_bandwidth_used())
4846 		return;
4847 
4848 	/* an active group must be handled by the update_curr()->put() path */
4849 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4850 		return;
4851 
4852 	/* ensure the group is not already throttled */
4853 	if (cfs_rq_throttled(cfs_rq))
4854 		return;
4855 
4856 	/* update runtime allocation */
4857 	account_cfs_rq_runtime(cfs_rq, 0);
4858 	if (cfs_rq->runtime_remaining <= 0)
4859 		throttle_cfs_rq(cfs_rq);
4860 }
4861 
4862 static void sync_throttle(struct task_group *tg, int cpu)
4863 {
4864 	struct cfs_rq *pcfs_rq, *cfs_rq;
4865 
4866 	if (!cfs_bandwidth_used())
4867 		return;
4868 
4869 	if (!tg->parent)
4870 		return;
4871 
4872 	cfs_rq = tg->cfs_rq[cpu];
4873 	pcfs_rq = tg->parent->cfs_rq[cpu];
4874 
4875 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4876 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4877 }
4878 
4879 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4880 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4881 {
4882 	if (!cfs_bandwidth_used())
4883 		return false;
4884 
4885 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4886 		return false;
4887 
4888 	/*
4889 	 * it's possible for a throttled entity to be forced into a running
4890 	 * state (e.g. set_curr_task), in this case we're finished.
4891 	 */
4892 	if (cfs_rq_throttled(cfs_rq))
4893 		return true;
4894 
4895 	throttle_cfs_rq(cfs_rq);
4896 	return true;
4897 }
4898 
4899 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4900 {
4901 	struct cfs_bandwidth *cfs_b =
4902 		container_of(timer, struct cfs_bandwidth, slack_timer);
4903 
4904 	do_sched_cfs_slack_timer(cfs_b);
4905 
4906 	return HRTIMER_NORESTART;
4907 }
4908 
4909 extern const u64 max_cfs_quota_period;
4910 
4911 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4912 {
4913 	struct cfs_bandwidth *cfs_b =
4914 		container_of(timer, struct cfs_bandwidth, period_timer);
4915 	unsigned long flags;
4916 	int overrun;
4917 	int idle = 0;
4918 	int count = 0;
4919 
4920 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
4921 	for (;;) {
4922 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4923 		if (!overrun)
4924 			break;
4925 
4926 		if (++count > 3) {
4927 			u64 new, old = ktime_to_ns(cfs_b->period);
4928 
4929 			new = (old * 147) / 128; /* ~115% */
4930 			new = min(new, max_cfs_quota_period);
4931 
4932 			cfs_b->period = ns_to_ktime(new);
4933 
4934 			/* since max is 1s, this is limited to 1e9^2, which fits in u64 */
4935 			cfs_b->quota *= new;
4936 			cfs_b->quota = div64_u64(cfs_b->quota, old);
4937 
4938 			pr_warn_ratelimited(
4939 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us %lld, cfs_quota_us = %lld)\n",
4940 				smp_processor_id(),
4941 				div_u64(new, NSEC_PER_USEC),
4942 				div_u64(cfs_b->quota, NSEC_PER_USEC));
4943 
4944 			/* reset count so we don't come right back in here */
4945 			count = 0;
4946 		}
4947 
4948 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
4949 	}
4950 	if (idle)
4951 		cfs_b->period_active = 0;
4952 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4953 
4954 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4955 }
4956 
4957 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4958 {
4959 	raw_spin_lock_init(&cfs_b->lock);
4960 	cfs_b->runtime = 0;
4961 	cfs_b->quota = RUNTIME_INF;
4962 	cfs_b->period = ns_to_ktime(default_cfs_period());
4963 
4964 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4965 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4966 	cfs_b->period_timer.function = sched_cfs_period_timer;
4967 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4968 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4969 	cfs_b->distribute_running = 0;
4970 	cfs_b->slack_started = false;
4971 }
4972 
4973 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4974 {
4975 	cfs_rq->runtime_enabled = 0;
4976 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4977 }
4978 
4979 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4980 {
4981 	lockdep_assert_held(&cfs_b->lock);
4982 
4983 	if (cfs_b->period_active)
4984 		return;
4985 
4986 	cfs_b->period_active = 1;
4987 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4988 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4989 }
4990 
4991 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4992 {
4993 	/* init_cfs_bandwidth() was not called */
4994 	if (!cfs_b->throttled_cfs_rq.next)
4995 		return;
4996 
4997 	hrtimer_cancel(&cfs_b->period_timer);
4998 	hrtimer_cancel(&cfs_b->slack_timer);
4999 }
5000 
5001 /*
5002  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5003  *
5004  * The race is harmless, since modifying bandwidth settings of unhooked group
5005  * bits doesn't do much.
5006  */
5007 
5008 /* cpu online calback */
5009 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5010 {
5011 	struct task_group *tg;
5012 
5013 	lockdep_assert_held(&rq->lock);
5014 
5015 	rcu_read_lock();
5016 	list_for_each_entry_rcu(tg, &task_groups, list) {
5017 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5018 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5019 
5020 		raw_spin_lock(&cfs_b->lock);
5021 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5022 		raw_spin_unlock(&cfs_b->lock);
5023 	}
5024 	rcu_read_unlock();
5025 }
5026 
5027 /* cpu offline callback */
5028 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5029 {
5030 	struct task_group *tg;
5031 
5032 	lockdep_assert_held(&rq->lock);
5033 
5034 	rcu_read_lock();
5035 	list_for_each_entry_rcu(tg, &task_groups, list) {
5036 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5037 
5038 		if (!cfs_rq->runtime_enabled)
5039 			continue;
5040 
5041 		/*
5042 		 * clock_task is not advancing so we just need to make sure
5043 		 * there's some valid quota amount
5044 		 */
5045 		cfs_rq->runtime_remaining = 1;
5046 		/*
5047 		 * Offline rq is schedulable till CPU is completely disabled
5048 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5049 		 */
5050 		cfs_rq->runtime_enabled = 0;
5051 
5052 		if (cfs_rq_throttled(cfs_rq))
5053 			unthrottle_cfs_rq(cfs_rq);
5054 	}
5055 	rcu_read_unlock();
5056 }
5057 
5058 #else /* CONFIG_CFS_BANDWIDTH */
5059 
5060 static inline bool cfs_bandwidth_used(void)
5061 {
5062 	return false;
5063 }
5064 
5065 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5066 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5067 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5068 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5069 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5070 
5071 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5072 {
5073 	return 0;
5074 }
5075 
5076 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5077 {
5078 	return 0;
5079 }
5080 
5081 static inline int throttled_lb_pair(struct task_group *tg,
5082 				    int src_cpu, int dest_cpu)
5083 {
5084 	return 0;
5085 }
5086 
5087 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5088 
5089 #ifdef CONFIG_FAIR_GROUP_SCHED
5090 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5091 #endif
5092 
5093 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5094 {
5095 	return NULL;
5096 }
5097 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5098 static inline void update_runtime_enabled(struct rq *rq) {}
5099 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5100 
5101 #endif /* CONFIG_CFS_BANDWIDTH */
5102 
5103 /**************************************************
5104  * CFS operations on tasks:
5105  */
5106 
5107 #ifdef CONFIG_SCHED_HRTICK
5108 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5109 {
5110 	struct sched_entity *se = &p->se;
5111 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5112 
5113 	SCHED_WARN_ON(task_rq(p) != rq);
5114 
5115 	if (rq->cfs.h_nr_running > 1) {
5116 		u64 slice = sched_slice(cfs_rq, se);
5117 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5118 		s64 delta = slice - ran;
5119 
5120 		if (delta < 0) {
5121 			if (rq->curr == p)
5122 				resched_curr(rq);
5123 			return;
5124 		}
5125 		hrtick_start(rq, delta);
5126 	}
5127 }
5128 
5129 /*
5130  * called from enqueue/dequeue and updates the hrtick when the
5131  * current task is from our class and nr_running is low enough
5132  * to matter.
5133  */
5134 static void hrtick_update(struct rq *rq)
5135 {
5136 	struct task_struct *curr = rq->curr;
5137 
5138 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5139 		return;
5140 
5141 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5142 		hrtick_start_fair(rq, curr);
5143 }
5144 #else /* !CONFIG_SCHED_HRTICK */
5145 static inline void
5146 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5147 {
5148 }
5149 
5150 static inline void hrtick_update(struct rq *rq)
5151 {
5152 }
5153 #endif
5154 
5155 #ifdef CONFIG_SMP
5156 static inline unsigned long cpu_util(int cpu);
5157 
5158 static inline bool cpu_overutilized(int cpu)
5159 {
5160 	return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5161 }
5162 
5163 static inline void update_overutilized_status(struct rq *rq)
5164 {
5165 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5166 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5167 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5168 	}
5169 }
5170 #else
5171 static inline void update_overutilized_status(struct rq *rq) { }
5172 #endif
5173 
5174 /*
5175  * The enqueue_task method is called before nr_running is
5176  * increased. Here we update the fair scheduling stats and
5177  * then put the task into the rbtree:
5178  */
5179 static void
5180 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5181 {
5182 	struct cfs_rq *cfs_rq;
5183 	struct sched_entity *se = &p->se;
5184 	int idle_h_nr_running = task_has_idle_policy(p);
5185 
5186 	/*
5187 	 * The code below (indirectly) updates schedutil which looks at
5188 	 * the cfs_rq utilization to select a frequency.
5189 	 * Let's add the task's estimated utilization to the cfs_rq's
5190 	 * estimated utilization, before we update schedutil.
5191 	 */
5192 	util_est_enqueue(&rq->cfs, p);
5193 
5194 	/*
5195 	 * If in_iowait is set, the code below may not trigger any cpufreq
5196 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5197 	 * passed.
5198 	 */
5199 	if (p->in_iowait)
5200 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5201 
5202 	for_each_sched_entity(se) {
5203 		if (se->on_rq)
5204 			break;
5205 		cfs_rq = cfs_rq_of(se);
5206 		enqueue_entity(cfs_rq, se, flags);
5207 
5208 		/*
5209 		 * end evaluation on encountering a throttled cfs_rq
5210 		 *
5211 		 * note: in the case of encountering a throttled cfs_rq we will
5212 		 * post the final h_nr_running increment below.
5213 		 */
5214 		if (cfs_rq_throttled(cfs_rq))
5215 			break;
5216 		cfs_rq->h_nr_running++;
5217 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5218 
5219 		flags = ENQUEUE_WAKEUP;
5220 	}
5221 
5222 	for_each_sched_entity(se) {
5223 		cfs_rq = cfs_rq_of(se);
5224 		cfs_rq->h_nr_running++;
5225 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5226 
5227 		if (cfs_rq_throttled(cfs_rq))
5228 			break;
5229 
5230 		update_load_avg(cfs_rq, se, UPDATE_TG);
5231 		update_cfs_group(se);
5232 	}
5233 
5234 	if (!se) {
5235 		add_nr_running(rq, 1);
5236 		/*
5237 		 * Since new tasks are assigned an initial util_avg equal to
5238 		 * half of the spare capacity of their CPU, tiny tasks have the
5239 		 * ability to cross the overutilized threshold, which will
5240 		 * result in the load balancer ruining all the task placement
5241 		 * done by EAS. As a way to mitigate that effect, do not account
5242 		 * for the first enqueue operation of new tasks during the
5243 		 * overutilized flag detection.
5244 		 *
5245 		 * A better way of solving this problem would be to wait for
5246 		 * the PELT signals of tasks to converge before taking them
5247 		 * into account, but that is not straightforward to implement,
5248 		 * and the following generally works well enough in practice.
5249 		 */
5250 		if (flags & ENQUEUE_WAKEUP)
5251 			update_overutilized_status(rq);
5252 
5253 	}
5254 
5255 	if (cfs_bandwidth_used()) {
5256 		/*
5257 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5258 		 * breaks in the above iteration can result in incomplete
5259 		 * leaf list maintenance, resulting in triggering the assertion
5260 		 * below.
5261 		 */
5262 		for_each_sched_entity(se) {
5263 			cfs_rq = cfs_rq_of(se);
5264 
5265 			if (list_add_leaf_cfs_rq(cfs_rq))
5266 				break;
5267 		}
5268 	}
5269 
5270 	assert_list_leaf_cfs_rq(rq);
5271 
5272 	hrtick_update(rq);
5273 }
5274 
5275 static void set_next_buddy(struct sched_entity *se);
5276 
5277 /*
5278  * The dequeue_task method is called before nr_running is
5279  * decreased. We remove the task from the rbtree and
5280  * update the fair scheduling stats:
5281  */
5282 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5283 {
5284 	struct cfs_rq *cfs_rq;
5285 	struct sched_entity *se = &p->se;
5286 	int task_sleep = flags & DEQUEUE_SLEEP;
5287 	int idle_h_nr_running = task_has_idle_policy(p);
5288 
5289 	for_each_sched_entity(se) {
5290 		cfs_rq = cfs_rq_of(se);
5291 		dequeue_entity(cfs_rq, se, flags);
5292 
5293 		/*
5294 		 * end evaluation on encountering a throttled cfs_rq
5295 		 *
5296 		 * note: in the case of encountering a throttled cfs_rq we will
5297 		 * post the final h_nr_running decrement below.
5298 		*/
5299 		if (cfs_rq_throttled(cfs_rq))
5300 			break;
5301 		cfs_rq->h_nr_running--;
5302 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5303 
5304 		/* Don't dequeue parent if it has other entities besides us */
5305 		if (cfs_rq->load.weight) {
5306 			/* Avoid re-evaluating load for this entity: */
5307 			se = parent_entity(se);
5308 			/*
5309 			 * Bias pick_next to pick a task from this cfs_rq, as
5310 			 * p is sleeping when it is within its sched_slice.
5311 			 */
5312 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5313 				set_next_buddy(se);
5314 			break;
5315 		}
5316 		flags |= DEQUEUE_SLEEP;
5317 	}
5318 
5319 	for_each_sched_entity(se) {
5320 		cfs_rq = cfs_rq_of(se);
5321 		cfs_rq->h_nr_running--;
5322 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5323 
5324 		if (cfs_rq_throttled(cfs_rq))
5325 			break;
5326 
5327 		update_load_avg(cfs_rq, se, UPDATE_TG);
5328 		update_cfs_group(se);
5329 	}
5330 
5331 	if (!se)
5332 		sub_nr_running(rq, 1);
5333 
5334 	util_est_dequeue(&rq->cfs, p, task_sleep);
5335 	hrtick_update(rq);
5336 }
5337 
5338 #ifdef CONFIG_SMP
5339 
5340 /* Working cpumask for: load_balance, load_balance_newidle. */
5341 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5342 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5343 
5344 #ifdef CONFIG_NO_HZ_COMMON
5345 
5346 static struct {
5347 	cpumask_var_t idle_cpus_mask;
5348 	atomic_t nr_cpus;
5349 	int has_blocked;		/* Idle CPUS has blocked load */
5350 	unsigned long next_balance;     /* in jiffy units */
5351 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5352 } nohz ____cacheline_aligned;
5353 
5354 #endif /* CONFIG_NO_HZ_COMMON */
5355 
5356 /* CPU only has SCHED_IDLE tasks enqueued */
5357 static int sched_idle_cpu(int cpu)
5358 {
5359 	struct rq *rq = cpu_rq(cpu);
5360 
5361 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5362 			rq->nr_running);
5363 }
5364 
5365 static unsigned long cpu_runnable_load(struct rq *rq)
5366 {
5367 	return cfs_rq_runnable_load_avg(&rq->cfs);
5368 }
5369 
5370 static unsigned long capacity_of(int cpu)
5371 {
5372 	return cpu_rq(cpu)->cpu_capacity;
5373 }
5374 
5375 static unsigned long cpu_avg_load_per_task(int cpu)
5376 {
5377 	struct rq *rq = cpu_rq(cpu);
5378 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5379 	unsigned long load_avg = cpu_runnable_load(rq);
5380 
5381 	if (nr_running)
5382 		return load_avg / nr_running;
5383 
5384 	return 0;
5385 }
5386 
5387 static void record_wakee(struct task_struct *p)
5388 {
5389 	/*
5390 	 * Only decay a single time; tasks that have less then 1 wakeup per
5391 	 * jiffy will not have built up many flips.
5392 	 */
5393 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5394 		current->wakee_flips >>= 1;
5395 		current->wakee_flip_decay_ts = jiffies;
5396 	}
5397 
5398 	if (current->last_wakee != p) {
5399 		current->last_wakee = p;
5400 		current->wakee_flips++;
5401 	}
5402 }
5403 
5404 /*
5405  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5406  *
5407  * A waker of many should wake a different task than the one last awakened
5408  * at a frequency roughly N times higher than one of its wakees.
5409  *
5410  * In order to determine whether we should let the load spread vs consolidating
5411  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5412  * partner, and a factor of lls_size higher frequency in the other.
5413  *
5414  * With both conditions met, we can be relatively sure that the relationship is
5415  * non-monogamous, with partner count exceeding socket size.
5416  *
5417  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5418  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5419  * socket size.
5420  */
5421 static int wake_wide(struct task_struct *p)
5422 {
5423 	unsigned int master = current->wakee_flips;
5424 	unsigned int slave = p->wakee_flips;
5425 	int factor = this_cpu_read(sd_llc_size);
5426 
5427 	if (master < slave)
5428 		swap(master, slave);
5429 	if (slave < factor || master < slave * factor)
5430 		return 0;
5431 	return 1;
5432 }
5433 
5434 /*
5435  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5436  * soonest. For the purpose of speed we only consider the waking and previous
5437  * CPU.
5438  *
5439  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5440  *			cache-affine and is (or	will be) idle.
5441  *
5442  * wake_affine_weight() - considers the weight to reflect the average
5443  *			  scheduling latency of the CPUs. This seems to work
5444  *			  for the overloaded case.
5445  */
5446 static int
5447 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5448 {
5449 	/*
5450 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5451 	 * context. Only allow the move if cache is shared. Otherwise an
5452 	 * interrupt intensive workload could force all tasks onto one
5453 	 * node depending on the IO topology or IRQ affinity settings.
5454 	 *
5455 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5456 	 * There is no guarantee that the cache hot data from an interrupt
5457 	 * is more important than cache hot data on the prev_cpu and from
5458 	 * a cpufreq perspective, it's better to have higher utilisation
5459 	 * on one CPU.
5460 	 */
5461 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5462 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5463 
5464 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5465 		return this_cpu;
5466 
5467 	return nr_cpumask_bits;
5468 }
5469 
5470 static int
5471 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5472 		   int this_cpu, int prev_cpu, int sync)
5473 {
5474 	s64 this_eff_load, prev_eff_load;
5475 	unsigned long task_load;
5476 
5477 	this_eff_load = cpu_runnable_load(cpu_rq(this_cpu));
5478 
5479 	if (sync) {
5480 		unsigned long current_load = task_h_load(current);
5481 
5482 		if (current_load > this_eff_load)
5483 			return this_cpu;
5484 
5485 		this_eff_load -= current_load;
5486 	}
5487 
5488 	task_load = task_h_load(p);
5489 
5490 	this_eff_load += task_load;
5491 	if (sched_feat(WA_BIAS))
5492 		this_eff_load *= 100;
5493 	this_eff_load *= capacity_of(prev_cpu);
5494 
5495 	prev_eff_load = cpu_runnable_load(cpu_rq(prev_cpu));
5496 	prev_eff_load -= task_load;
5497 	if (sched_feat(WA_BIAS))
5498 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5499 	prev_eff_load *= capacity_of(this_cpu);
5500 
5501 	/*
5502 	 * If sync, adjust the weight of prev_eff_load such that if
5503 	 * prev_eff == this_eff that select_idle_sibling() will consider
5504 	 * stacking the wakee on top of the waker if no other CPU is
5505 	 * idle.
5506 	 */
5507 	if (sync)
5508 		prev_eff_load += 1;
5509 
5510 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5511 }
5512 
5513 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5514 		       int this_cpu, int prev_cpu, int sync)
5515 {
5516 	int target = nr_cpumask_bits;
5517 
5518 	if (sched_feat(WA_IDLE))
5519 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5520 
5521 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5522 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5523 
5524 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5525 	if (target == nr_cpumask_bits)
5526 		return prev_cpu;
5527 
5528 	schedstat_inc(sd->ttwu_move_affine);
5529 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5530 	return target;
5531 }
5532 
5533 static unsigned long cpu_util_without(int cpu, struct task_struct *p);
5534 
5535 static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
5536 {
5537 	return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
5538 }
5539 
5540 /*
5541  * find_idlest_group finds and returns the least busy CPU group within the
5542  * domain.
5543  *
5544  * Assumes p is allowed on at least one CPU in sd.
5545  */
5546 static struct sched_group *
5547 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5548 		  int this_cpu, int sd_flag)
5549 {
5550 	struct sched_group *idlest = NULL, *group = sd->groups;
5551 	struct sched_group *most_spare_sg = NULL;
5552 	unsigned long min_runnable_load = ULONG_MAX;
5553 	unsigned long this_runnable_load = ULONG_MAX;
5554 	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5555 	unsigned long most_spare = 0, this_spare = 0;
5556 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5557 	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5558 				(sd->imbalance_pct-100) / 100;
5559 
5560 	do {
5561 		unsigned long load, avg_load, runnable_load;
5562 		unsigned long spare_cap, max_spare_cap;
5563 		int local_group;
5564 		int i;
5565 
5566 		/* Skip over this group if it has no CPUs allowed */
5567 		if (!cpumask_intersects(sched_group_span(group),
5568 					p->cpus_ptr))
5569 			continue;
5570 
5571 		local_group = cpumask_test_cpu(this_cpu,
5572 					       sched_group_span(group));
5573 
5574 		/*
5575 		 * Tally up the load of all CPUs in the group and find
5576 		 * the group containing the CPU with most spare capacity.
5577 		 */
5578 		avg_load = 0;
5579 		runnable_load = 0;
5580 		max_spare_cap = 0;
5581 
5582 		for_each_cpu(i, sched_group_span(group)) {
5583 			load = cpu_runnable_load(cpu_rq(i));
5584 			runnable_load += load;
5585 
5586 			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5587 
5588 			spare_cap = capacity_spare_without(i, p);
5589 
5590 			if (spare_cap > max_spare_cap)
5591 				max_spare_cap = spare_cap;
5592 		}
5593 
5594 		/* Adjust by relative CPU capacity of the group */
5595 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5596 					group->sgc->capacity;
5597 		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5598 					group->sgc->capacity;
5599 
5600 		if (local_group) {
5601 			this_runnable_load = runnable_load;
5602 			this_avg_load = avg_load;
5603 			this_spare = max_spare_cap;
5604 		} else {
5605 			if (min_runnable_load > (runnable_load + imbalance)) {
5606 				/*
5607 				 * The runnable load is significantly smaller
5608 				 * so we can pick this new CPU:
5609 				 */
5610 				min_runnable_load = runnable_load;
5611 				min_avg_load = avg_load;
5612 				idlest = group;
5613 			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
5614 				   (100*min_avg_load > imbalance_scale*avg_load)) {
5615 				/*
5616 				 * The runnable loads are close so take the
5617 				 * blocked load into account through avg_load:
5618 				 */
5619 				min_avg_load = avg_load;
5620 				idlest = group;
5621 			}
5622 
5623 			if (most_spare < max_spare_cap) {
5624 				most_spare = max_spare_cap;
5625 				most_spare_sg = group;
5626 			}
5627 		}
5628 	} while (group = group->next, group != sd->groups);
5629 
5630 	/*
5631 	 * The cross-over point between using spare capacity or least load
5632 	 * is too conservative for high utilization tasks on partially
5633 	 * utilized systems if we require spare_capacity > task_util(p),
5634 	 * so we allow for some task stuffing by using
5635 	 * spare_capacity > task_util(p)/2.
5636 	 *
5637 	 * Spare capacity can't be used for fork because the utilization has
5638 	 * not been set yet, we must first select a rq to compute the initial
5639 	 * utilization.
5640 	 */
5641 	if (sd_flag & SD_BALANCE_FORK)
5642 		goto skip_spare;
5643 
5644 	if (this_spare > task_util(p) / 2 &&
5645 	    imbalance_scale*this_spare > 100*most_spare)
5646 		return NULL;
5647 
5648 	if (most_spare > task_util(p) / 2)
5649 		return most_spare_sg;
5650 
5651 skip_spare:
5652 	if (!idlest)
5653 		return NULL;
5654 
5655 	/*
5656 	 * When comparing groups across NUMA domains, it's possible for the
5657 	 * local domain to be very lightly loaded relative to the remote
5658 	 * domains but "imbalance" skews the comparison making remote CPUs
5659 	 * look much more favourable. When considering cross-domain, add
5660 	 * imbalance to the runnable load on the remote node and consider
5661 	 * staying local.
5662 	 */
5663 	if ((sd->flags & SD_NUMA) &&
5664 	    min_runnable_load + imbalance >= this_runnable_load)
5665 		return NULL;
5666 
5667 	if (min_runnable_load > (this_runnable_load + imbalance))
5668 		return NULL;
5669 
5670 	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5671 	     (100*this_avg_load < imbalance_scale*min_avg_load))
5672 		return NULL;
5673 
5674 	return idlest;
5675 }
5676 
5677 /*
5678  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5679  */
5680 static int
5681 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5682 {
5683 	unsigned long load, min_load = ULONG_MAX;
5684 	unsigned int min_exit_latency = UINT_MAX;
5685 	u64 latest_idle_timestamp = 0;
5686 	int least_loaded_cpu = this_cpu;
5687 	int shallowest_idle_cpu = -1, si_cpu = -1;
5688 	int i;
5689 
5690 	/* Check if we have any choice: */
5691 	if (group->group_weight == 1)
5692 		return cpumask_first(sched_group_span(group));
5693 
5694 	/* Traverse only the allowed CPUs */
5695 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5696 		if (available_idle_cpu(i)) {
5697 			struct rq *rq = cpu_rq(i);
5698 			struct cpuidle_state *idle = idle_get_state(rq);
5699 			if (idle && idle->exit_latency < min_exit_latency) {
5700 				/*
5701 				 * We give priority to a CPU whose idle state
5702 				 * has the smallest exit latency irrespective
5703 				 * of any idle timestamp.
5704 				 */
5705 				min_exit_latency = idle->exit_latency;
5706 				latest_idle_timestamp = rq->idle_stamp;
5707 				shallowest_idle_cpu = i;
5708 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5709 				   rq->idle_stamp > latest_idle_timestamp) {
5710 				/*
5711 				 * If equal or no active idle state, then
5712 				 * the most recently idled CPU might have
5713 				 * a warmer cache.
5714 				 */
5715 				latest_idle_timestamp = rq->idle_stamp;
5716 				shallowest_idle_cpu = i;
5717 			}
5718 		} else if (shallowest_idle_cpu == -1 && si_cpu == -1) {
5719 			if (sched_idle_cpu(i)) {
5720 				si_cpu = i;
5721 				continue;
5722 			}
5723 
5724 			load = cpu_runnable_load(cpu_rq(i));
5725 			if (load < min_load) {
5726 				min_load = load;
5727 				least_loaded_cpu = i;
5728 			}
5729 		}
5730 	}
5731 
5732 	if (shallowest_idle_cpu != -1)
5733 		return shallowest_idle_cpu;
5734 	if (si_cpu != -1)
5735 		return si_cpu;
5736 	return least_loaded_cpu;
5737 }
5738 
5739 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5740 				  int cpu, int prev_cpu, int sd_flag)
5741 {
5742 	int new_cpu = cpu;
5743 
5744 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
5745 		return prev_cpu;
5746 
5747 	/*
5748 	 * We need task's util for capacity_spare_without, sync it up to
5749 	 * prev_cpu's last_update_time.
5750 	 */
5751 	if (!(sd_flag & SD_BALANCE_FORK))
5752 		sync_entity_load_avg(&p->se);
5753 
5754 	while (sd) {
5755 		struct sched_group *group;
5756 		struct sched_domain *tmp;
5757 		int weight;
5758 
5759 		if (!(sd->flags & sd_flag)) {
5760 			sd = sd->child;
5761 			continue;
5762 		}
5763 
5764 		group = find_idlest_group(sd, p, cpu, sd_flag);
5765 		if (!group) {
5766 			sd = sd->child;
5767 			continue;
5768 		}
5769 
5770 		new_cpu = find_idlest_group_cpu(group, p, cpu);
5771 		if (new_cpu == cpu) {
5772 			/* Now try balancing at a lower domain level of 'cpu': */
5773 			sd = sd->child;
5774 			continue;
5775 		}
5776 
5777 		/* Now try balancing at a lower domain level of 'new_cpu': */
5778 		cpu = new_cpu;
5779 		weight = sd->span_weight;
5780 		sd = NULL;
5781 		for_each_domain(cpu, tmp) {
5782 			if (weight <= tmp->span_weight)
5783 				break;
5784 			if (tmp->flags & sd_flag)
5785 				sd = tmp;
5786 		}
5787 	}
5788 
5789 	return new_cpu;
5790 }
5791 
5792 #ifdef CONFIG_SCHED_SMT
5793 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5794 EXPORT_SYMBOL_GPL(sched_smt_present);
5795 
5796 static inline void set_idle_cores(int cpu, int val)
5797 {
5798 	struct sched_domain_shared *sds;
5799 
5800 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5801 	if (sds)
5802 		WRITE_ONCE(sds->has_idle_cores, val);
5803 }
5804 
5805 static inline bool test_idle_cores(int cpu, bool def)
5806 {
5807 	struct sched_domain_shared *sds;
5808 
5809 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5810 	if (sds)
5811 		return READ_ONCE(sds->has_idle_cores);
5812 
5813 	return def;
5814 }
5815 
5816 /*
5817  * Scans the local SMT mask to see if the entire core is idle, and records this
5818  * information in sd_llc_shared->has_idle_cores.
5819  *
5820  * Since SMT siblings share all cache levels, inspecting this limited remote
5821  * state should be fairly cheap.
5822  */
5823 void __update_idle_core(struct rq *rq)
5824 {
5825 	int core = cpu_of(rq);
5826 	int cpu;
5827 
5828 	rcu_read_lock();
5829 	if (test_idle_cores(core, true))
5830 		goto unlock;
5831 
5832 	for_each_cpu(cpu, cpu_smt_mask(core)) {
5833 		if (cpu == core)
5834 			continue;
5835 
5836 		if (!available_idle_cpu(cpu))
5837 			goto unlock;
5838 	}
5839 
5840 	set_idle_cores(core, 1);
5841 unlock:
5842 	rcu_read_unlock();
5843 }
5844 
5845 /*
5846  * Scan the entire LLC domain for idle cores; this dynamically switches off if
5847  * there are no idle cores left in the system; tracked through
5848  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5849  */
5850 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5851 {
5852 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5853 	int core, cpu;
5854 
5855 	if (!static_branch_likely(&sched_smt_present))
5856 		return -1;
5857 
5858 	if (!test_idle_cores(target, false))
5859 		return -1;
5860 
5861 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
5862 
5863 	for_each_cpu_wrap(core, cpus, target) {
5864 		bool idle = true;
5865 
5866 		for_each_cpu(cpu, cpu_smt_mask(core)) {
5867 			__cpumask_clear_cpu(cpu, cpus);
5868 			if (!available_idle_cpu(cpu))
5869 				idle = false;
5870 		}
5871 
5872 		if (idle)
5873 			return core;
5874 	}
5875 
5876 	/*
5877 	 * Failed to find an idle core; stop looking for one.
5878 	 */
5879 	set_idle_cores(target, 0);
5880 
5881 	return -1;
5882 }
5883 
5884 /*
5885  * Scan the local SMT mask for idle CPUs.
5886  */
5887 static int select_idle_smt(struct task_struct *p, int target)
5888 {
5889 	int cpu, si_cpu = -1;
5890 
5891 	if (!static_branch_likely(&sched_smt_present))
5892 		return -1;
5893 
5894 	for_each_cpu(cpu, cpu_smt_mask(target)) {
5895 		if (!cpumask_test_cpu(cpu, p->cpus_ptr))
5896 			continue;
5897 		if (available_idle_cpu(cpu))
5898 			return cpu;
5899 		if (si_cpu == -1 && sched_idle_cpu(cpu))
5900 			si_cpu = cpu;
5901 	}
5902 
5903 	return si_cpu;
5904 }
5905 
5906 #else /* CONFIG_SCHED_SMT */
5907 
5908 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5909 {
5910 	return -1;
5911 }
5912 
5913 static inline int select_idle_smt(struct task_struct *p, int target)
5914 {
5915 	return -1;
5916 }
5917 
5918 #endif /* CONFIG_SCHED_SMT */
5919 
5920 /*
5921  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5922  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5923  * average idle time for this rq (as found in rq->avg_idle).
5924  */
5925 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5926 {
5927 	struct sched_domain *this_sd;
5928 	u64 avg_cost, avg_idle;
5929 	u64 time, cost;
5930 	s64 delta;
5931 	int this = smp_processor_id();
5932 	int cpu, nr = INT_MAX, si_cpu = -1;
5933 
5934 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5935 	if (!this_sd)
5936 		return -1;
5937 
5938 	/*
5939 	 * Due to large variance we need a large fuzz factor; hackbench in
5940 	 * particularly is sensitive here.
5941 	 */
5942 	avg_idle = this_rq()->avg_idle / 512;
5943 	avg_cost = this_sd->avg_scan_cost + 1;
5944 
5945 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
5946 		return -1;
5947 
5948 	if (sched_feat(SIS_PROP)) {
5949 		u64 span_avg = sd->span_weight * avg_idle;
5950 		if (span_avg > 4*avg_cost)
5951 			nr = div_u64(span_avg, avg_cost);
5952 		else
5953 			nr = 4;
5954 	}
5955 
5956 	time = cpu_clock(this);
5957 
5958 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
5959 		if (!--nr)
5960 			return si_cpu;
5961 		if (!cpumask_test_cpu(cpu, p->cpus_ptr))
5962 			continue;
5963 		if (available_idle_cpu(cpu))
5964 			break;
5965 		if (si_cpu == -1 && sched_idle_cpu(cpu))
5966 			si_cpu = cpu;
5967 	}
5968 
5969 	time = cpu_clock(this) - time;
5970 	cost = this_sd->avg_scan_cost;
5971 	delta = (s64)(time - cost) / 8;
5972 	this_sd->avg_scan_cost += delta;
5973 
5974 	return cpu;
5975 }
5976 
5977 /*
5978  * Try and locate an idle core/thread in the LLC cache domain.
5979  */
5980 static int select_idle_sibling(struct task_struct *p, int prev, int target)
5981 {
5982 	struct sched_domain *sd;
5983 	int i, recent_used_cpu;
5984 
5985 	if (available_idle_cpu(target) || sched_idle_cpu(target))
5986 		return target;
5987 
5988 	/*
5989 	 * If the previous CPU is cache affine and idle, don't be stupid:
5990 	 */
5991 	if (prev != target && cpus_share_cache(prev, target) &&
5992 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)))
5993 		return prev;
5994 
5995 	/* Check a recently used CPU as a potential idle candidate: */
5996 	recent_used_cpu = p->recent_used_cpu;
5997 	if (recent_used_cpu != prev &&
5998 	    recent_used_cpu != target &&
5999 	    cpus_share_cache(recent_used_cpu, target) &&
6000 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6001 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
6002 		/*
6003 		 * Replace recent_used_cpu with prev as it is a potential
6004 		 * candidate for the next wake:
6005 		 */
6006 		p->recent_used_cpu = prev;
6007 		return recent_used_cpu;
6008 	}
6009 
6010 	sd = rcu_dereference(per_cpu(sd_llc, target));
6011 	if (!sd)
6012 		return target;
6013 
6014 	i = select_idle_core(p, sd, target);
6015 	if ((unsigned)i < nr_cpumask_bits)
6016 		return i;
6017 
6018 	i = select_idle_cpu(p, sd, target);
6019 	if ((unsigned)i < nr_cpumask_bits)
6020 		return i;
6021 
6022 	i = select_idle_smt(p, target);
6023 	if ((unsigned)i < nr_cpumask_bits)
6024 		return i;
6025 
6026 	return target;
6027 }
6028 
6029 /**
6030  * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6031  * @cpu: the CPU to get the utilization of
6032  *
6033  * The unit of the return value must be the one of capacity so we can compare
6034  * the utilization with the capacity of the CPU that is available for CFS task
6035  * (ie cpu_capacity).
6036  *
6037  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6038  * recent utilization of currently non-runnable tasks on a CPU. It represents
6039  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6040  * capacity_orig is the cpu_capacity available at the highest frequency
6041  * (arch_scale_freq_capacity()).
6042  * The utilization of a CPU converges towards a sum equal to or less than the
6043  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6044  * the running time on this CPU scaled by capacity_curr.
6045  *
6046  * The estimated utilization of a CPU is defined to be the maximum between its
6047  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6048  * currently RUNNABLE on that CPU.
6049  * This allows to properly represent the expected utilization of a CPU which
6050  * has just got a big task running since a long sleep period. At the same time
6051  * however it preserves the benefits of the "blocked utilization" in
6052  * describing the potential for other tasks waking up on the same CPU.
6053  *
6054  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6055  * higher than capacity_orig because of unfortunate rounding in
6056  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6057  * the average stabilizes with the new running time. We need to check that the
6058  * utilization stays within the range of [0..capacity_orig] and cap it if
6059  * necessary. Without utilization capping, a group could be seen as overloaded
6060  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6061  * available capacity. We allow utilization to overshoot capacity_curr (but not
6062  * capacity_orig) as it useful for predicting the capacity required after task
6063  * migrations (scheduler-driven DVFS).
6064  *
6065  * Return: the (estimated) utilization for the specified CPU
6066  */
6067 static inline unsigned long cpu_util(int cpu)
6068 {
6069 	struct cfs_rq *cfs_rq;
6070 	unsigned int util;
6071 
6072 	cfs_rq = &cpu_rq(cpu)->cfs;
6073 	util = READ_ONCE(cfs_rq->avg.util_avg);
6074 
6075 	if (sched_feat(UTIL_EST))
6076 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6077 
6078 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6079 }
6080 
6081 /*
6082  * cpu_util_without: compute cpu utilization without any contributions from *p
6083  * @cpu: the CPU which utilization is requested
6084  * @p: the task which utilization should be discounted
6085  *
6086  * The utilization of a CPU is defined by the utilization of tasks currently
6087  * enqueued on that CPU as well as tasks which are currently sleeping after an
6088  * execution on that CPU.
6089  *
6090  * This method returns the utilization of the specified CPU by discounting the
6091  * utilization of the specified task, whenever the task is currently
6092  * contributing to the CPU utilization.
6093  */
6094 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6095 {
6096 	struct cfs_rq *cfs_rq;
6097 	unsigned int util;
6098 
6099 	/* Task has no contribution or is new */
6100 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6101 		return cpu_util(cpu);
6102 
6103 	cfs_rq = &cpu_rq(cpu)->cfs;
6104 	util = READ_ONCE(cfs_rq->avg.util_avg);
6105 
6106 	/* Discount task's util from CPU's util */
6107 	lsub_positive(&util, task_util(p));
6108 
6109 	/*
6110 	 * Covered cases:
6111 	 *
6112 	 * a) if *p is the only task sleeping on this CPU, then:
6113 	 *      cpu_util (== task_util) > util_est (== 0)
6114 	 *    and thus we return:
6115 	 *      cpu_util_without = (cpu_util - task_util) = 0
6116 	 *
6117 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6118 	 *    IDLE, then:
6119 	 *      cpu_util >= task_util
6120 	 *      cpu_util > util_est (== 0)
6121 	 *    and thus we discount *p's blocked utilization to return:
6122 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6123 	 *
6124 	 * c) if other tasks are RUNNABLE on that CPU and
6125 	 *      util_est > cpu_util
6126 	 *    then we use util_est since it returns a more restrictive
6127 	 *    estimation of the spare capacity on that CPU, by just
6128 	 *    considering the expected utilization of tasks already
6129 	 *    runnable on that CPU.
6130 	 *
6131 	 * Cases a) and b) are covered by the above code, while case c) is
6132 	 * covered by the following code when estimated utilization is
6133 	 * enabled.
6134 	 */
6135 	if (sched_feat(UTIL_EST)) {
6136 		unsigned int estimated =
6137 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6138 
6139 		/*
6140 		 * Despite the following checks we still have a small window
6141 		 * for a possible race, when an execl's select_task_rq_fair()
6142 		 * races with LB's detach_task():
6143 		 *
6144 		 *   detach_task()
6145 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6146 		 *     ---------------------------------- A
6147 		 *     deactivate_task()                   \
6148 		 *       dequeue_task()                     + RaceTime
6149 		 *         util_est_dequeue()              /
6150 		 *     ---------------------------------- B
6151 		 *
6152 		 * The additional check on "current == p" it's required to
6153 		 * properly fix the execl regression and it helps in further
6154 		 * reducing the chances for the above race.
6155 		 */
6156 		if (unlikely(task_on_rq_queued(p) || current == p))
6157 			lsub_positive(&estimated, _task_util_est(p));
6158 
6159 		util = max(util, estimated);
6160 	}
6161 
6162 	/*
6163 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6164 	 * clamp to the maximum CPU capacity to ensure consistency with
6165 	 * the cpu_util call.
6166 	 */
6167 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6168 }
6169 
6170 /*
6171  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6172  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6173  *
6174  * In that case WAKE_AFFINE doesn't make sense and we'll let
6175  * BALANCE_WAKE sort things out.
6176  */
6177 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6178 {
6179 	long min_cap, max_cap;
6180 
6181 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
6182 		return 0;
6183 
6184 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6185 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6186 
6187 	/* Minimum capacity is close to max, no need to abort wake_affine */
6188 	if (max_cap - min_cap < max_cap >> 3)
6189 		return 0;
6190 
6191 	/* Bring task utilization in sync with prev_cpu */
6192 	sync_entity_load_avg(&p->se);
6193 
6194 	return !task_fits_capacity(p, min_cap);
6195 }
6196 
6197 /*
6198  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6199  * to @dst_cpu.
6200  */
6201 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6202 {
6203 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6204 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6205 
6206 	/*
6207 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6208 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6209 	 * the other cases, @cpu is not impacted by the migration, so the
6210 	 * util_avg should already be correct.
6211 	 */
6212 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6213 		sub_positive(&util, task_util(p));
6214 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6215 		util += task_util(p);
6216 
6217 	if (sched_feat(UTIL_EST)) {
6218 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6219 
6220 		/*
6221 		 * During wake-up, the task isn't enqueued yet and doesn't
6222 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6223 		 * so just add it (if needed) to "simulate" what will be
6224 		 * cpu_util() after the task has been enqueued.
6225 		 */
6226 		if (dst_cpu == cpu)
6227 			util_est += _task_util_est(p);
6228 
6229 		util = max(util, util_est);
6230 	}
6231 
6232 	return min(util, capacity_orig_of(cpu));
6233 }
6234 
6235 /*
6236  * compute_energy(): Estimates the energy that @pd would consume if @p was
6237  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6238  * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6239  * to compute what would be the energy if we decided to actually migrate that
6240  * task.
6241  */
6242 static long
6243 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6244 {
6245 	struct cpumask *pd_mask = perf_domain_span(pd);
6246 	unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6247 	unsigned long max_util = 0, sum_util = 0;
6248 	int cpu;
6249 
6250 	/*
6251 	 * The capacity state of CPUs of the current rd can be driven by CPUs
6252 	 * of another rd if they belong to the same pd. So, account for the
6253 	 * utilization of these CPUs too by masking pd with cpu_online_mask
6254 	 * instead of the rd span.
6255 	 *
6256 	 * If an entire pd is outside of the current rd, it will not appear in
6257 	 * its pd list and will not be accounted by compute_energy().
6258 	 */
6259 	for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6260 		unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6261 		struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
6262 
6263 		/*
6264 		 * Busy time computation: utilization clamping is not
6265 		 * required since the ratio (sum_util / cpu_capacity)
6266 		 * is already enough to scale the EM reported power
6267 		 * consumption at the (eventually clamped) cpu_capacity.
6268 		 */
6269 		sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6270 					       ENERGY_UTIL, NULL);
6271 
6272 		/*
6273 		 * Performance domain frequency: utilization clamping
6274 		 * must be considered since it affects the selection
6275 		 * of the performance domain frequency.
6276 		 * NOTE: in case RT tasks are running, by default the
6277 		 * FREQUENCY_UTIL's utilization can be max OPP.
6278 		 */
6279 		cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6280 					      FREQUENCY_UTIL, tsk);
6281 		max_util = max(max_util, cpu_util);
6282 	}
6283 
6284 	return em_pd_energy(pd->em_pd, max_util, sum_util);
6285 }
6286 
6287 /*
6288  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6289  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6290  * spare capacity in each performance domain and uses it as a potential
6291  * candidate to execute the task. Then, it uses the Energy Model to figure
6292  * out which of the CPU candidates is the most energy-efficient.
6293  *
6294  * The rationale for this heuristic is as follows. In a performance domain,
6295  * all the most energy efficient CPU candidates (according to the Energy
6296  * Model) are those for which we'll request a low frequency. When there are
6297  * several CPUs for which the frequency request will be the same, we don't
6298  * have enough data to break the tie between them, because the Energy Model
6299  * only includes active power costs. With this model, if we assume that
6300  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6301  * the maximum spare capacity in a performance domain is guaranteed to be among
6302  * the best candidates of the performance domain.
6303  *
6304  * In practice, it could be preferable from an energy standpoint to pack
6305  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6306  * but that could also hurt our chances to go cluster idle, and we have no
6307  * ways to tell with the current Energy Model if this is actually a good
6308  * idea or not. So, find_energy_efficient_cpu() basically favors
6309  * cluster-packing, and spreading inside a cluster. That should at least be
6310  * a good thing for latency, and this is consistent with the idea that most
6311  * of the energy savings of EAS come from the asymmetry of the system, and
6312  * not so much from breaking the tie between identical CPUs. That's also the
6313  * reason why EAS is enabled in the topology code only for systems where
6314  * SD_ASYM_CPUCAPACITY is set.
6315  *
6316  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6317  * they don't have any useful utilization data yet and it's not possible to
6318  * forecast their impact on energy consumption. Consequently, they will be
6319  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6320  * to be energy-inefficient in some use-cases. The alternative would be to
6321  * bias new tasks towards specific types of CPUs first, or to try to infer
6322  * their util_avg from the parent task, but those heuristics could hurt
6323  * other use-cases too. So, until someone finds a better way to solve this,
6324  * let's keep things simple by re-using the existing slow path.
6325  */
6326 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6327 {
6328 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6329 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6330 	unsigned long cpu_cap, util, base_energy = 0;
6331 	int cpu, best_energy_cpu = prev_cpu;
6332 	struct sched_domain *sd;
6333 	struct perf_domain *pd;
6334 
6335 	rcu_read_lock();
6336 	pd = rcu_dereference(rd->pd);
6337 	if (!pd || READ_ONCE(rd->overutilized))
6338 		goto fail;
6339 
6340 	/*
6341 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6342 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6343 	 */
6344 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6345 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6346 		sd = sd->parent;
6347 	if (!sd)
6348 		goto fail;
6349 
6350 	sync_entity_load_avg(&p->se);
6351 	if (!task_util_est(p))
6352 		goto unlock;
6353 
6354 	for (; pd; pd = pd->next) {
6355 		unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6356 		unsigned long base_energy_pd;
6357 		int max_spare_cap_cpu = -1;
6358 
6359 		/* Compute the 'base' energy of the pd, without @p */
6360 		base_energy_pd = compute_energy(p, -1, pd);
6361 		base_energy += base_energy_pd;
6362 
6363 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6364 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6365 				continue;
6366 
6367 			/* Skip CPUs that will be overutilized. */
6368 			util = cpu_util_next(cpu, p, cpu);
6369 			cpu_cap = capacity_of(cpu);
6370 			if (!fits_capacity(util, cpu_cap))
6371 				continue;
6372 
6373 			/* Always use prev_cpu as a candidate. */
6374 			if (cpu == prev_cpu) {
6375 				prev_delta = compute_energy(p, prev_cpu, pd);
6376 				prev_delta -= base_energy_pd;
6377 				best_delta = min(best_delta, prev_delta);
6378 			}
6379 
6380 			/*
6381 			 * Find the CPU with the maximum spare capacity in
6382 			 * the performance domain
6383 			 */
6384 			spare_cap = cpu_cap - util;
6385 			if (spare_cap > max_spare_cap) {
6386 				max_spare_cap = spare_cap;
6387 				max_spare_cap_cpu = cpu;
6388 			}
6389 		}
6390 
6391 		/* Evaluate the energy impact of using this CPU. */
6392 		if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
6393 			cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6394 			cur_delta -= base_energy_pd;
6395 			if (cur_delta < best_delta) {
6396 				best_delta = cur_delta;
6397 				best_energy_cpu = max_spare_cap_cpu;
6398 			}
6399 		}
6400 	}
6401 unlock:
6402 	rcu_read_unlock();
6403 
6404 	/*
6405 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6406 	 * least 6% of the energy used by prev_cpu.
6407 	 */
6408 	if (prev_delta == ULONG_MAX)
6409 		return best_energy_cpu;
6410 
6411 	if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6412 		return best_energy_cpu;
6413 
6414 	return prev_cpu;
6415 
6416 fail:
6417 	rcu_read_unlock();
6418 
6419 	return -1;
6420 }
6421 
6422 /*
6423  * select_task_rq_fair: Select target runqueue for the waking task in domains
6424  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6425  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6426  *
6427  * Balances load by selecting the idlest CPU in the idlest group, or under
6428  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6429  *
6430  * Returns the target CPU number.
6431  *
6432  * preempt must be disabled.
6433  */
6434 static int
6435 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6436 {
6437 	struct sched_domain *tmp, *sd = NULL;
6438 	int cpu = smp_processor_id();
6439 	int new_cpu = prev_cpu;
6440 	int want_affine = 0;
6441 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6442 
6443 	if (sd_flag & SD_BALANCE_WAKE) {
6444 		record_wakee(p);
6445 
6446 		if (sched_energy_enabled()) {
6447 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6448 			if (new_cpu >= 0)
6449 				return new_cpu;
6450 			new_cpu = prev_cpu;
6451 		}
6452 
6453 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
6454 			      cpumask_test_cpu(cpu, p->cpus_ptr);
6455 	}
6456 
6457 	rcu_read_lock();
6458 	for_each_domain(cpu, tmp) {
6459 		if (!(tmp->flags & SD_LOAD_BALANCE))
6460 			break;
6461 
6462 		/*
6463 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6464 		 * cpu is a valid SD_WAKE_AFFINE target.
6465 		 */
6466 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6467 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6468 			if (cpu != prev_cpu)
6469 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6470 
6471 			sd = NULL; /* Prefer wake_affine over balance flags */
6472 			break;
6473 		}
6474 
6475 		if (tmp->flags & sd_flag)
6476 			sd = tmp;
6477 		else if (!want_affine)
6478 			break;
6479 	}
6480 
6481 	if (unlikely(sd)) {
6482 		/* Slow path */
6483 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6484 	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6485 		/* Fast path */
6486 
6487 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6488 
6489 		if (want_affine)
6490 			current->recent_used_cpu = cpu;
6491 	}
6492 	rcu_read_unlock();
6493 
6494 	return new_cpu;
6495 }
6496 
6497 static void detach_entity_cfs_rq(struct sched_entity *se);
6498 
6499 /*
6500  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6501  * cfs_rq_of(p) references at time of call are still valid and identify the
6502  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6503  */
6504 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6505 {
6506 	/*
6507 	 * As blocked tasks retain absolute vruntime the migration needs to
6508 	 * deal with this by subtracting the old and adding the new
6509 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6510 	 * the task on the new runqueue.
6511 	 */
6512 	if (p->state == TASK_WAKING) {
6513 		struct sched_entity *se = &p->se;
6514 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6515 		u64 min_vruntime;
6516 
6517 #ifndef CONFIG_64BIT
6518 		u64 min_vruntime_copy;
6519 
6520 		do {
6521 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6522 			smp_rmb();
6523 			min_vruntime = cfs_rq->min_vruntime;
6524 		} while (min_vruntime != min_vruntime_copy);
6525 #else
6526 		min_vruntime = cfs_rq->min_vruntime;
6527 #endif
6528 
6529 		se->vruntime -= min_vruntime;
6530 	}
6531 
6532 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6533 		/*
6534 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6535 		 * rq->lock and can modify state directly.
6536 		 */
6537 		lockdep_assert_held(&task_rq(p)->lock);
6538 		detach_entity_cfs_rq(&p->se);
6539 
6540 	} else {
6541 		/*
6542 		 * We are supposed to update the task to "current" time, then
6543 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6544 		 * have difficulty in getting what current time is, so simply
6545 		 * throw away the out-of-date time. This will result in the
6546 		 * wakee task is less decayed, but giving the wakee more load
6547 		 * sounds not bad.
6548 		 */
6549 		remove_entity_load_avg(&p->se);
6550 	}
6551 
6552 	/* Tell new CPU we are migrated */
6553 	p->se.avg.last_update_time = 0;
6554 
6555 	/* We have migrated, no longer consider this task hot */
6556 	p->se.exec_start = 0;
6557 
6558 	update_scan_period(p, new_cpu);
6559 }
6560 
6561 static void task_dead_fair(struct task_struct *p)
6562 {
6563 	remove_entity_load_avg(&p->se);
6564 }
6565 #endif /* CONFIG_SMP */
6566 
6567 static unsigned long wakeup_gran(struct sched_entity *se)
6568 {
6569 	unsigned long gran = sysctl_sched_wakeup_granularity;
6570 
6571 	/*
6572 	 * Since its curr running now, convert the gran from real-time
6573 	 * to virtual-time in his units.
6574 	 *
6575 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6576 	 * they get preempted easier. That is, if 'se' < 'curr' then
6577 	 * the resulting gran will be larger, therefore penalizing the
6578 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6579 	 * be smaller, again penalizing the lighter task.
6580 	 *
6581 	 * This is especially important for buddies when the leftmost
6582 	 * task is higher priority than the buddy.
6583 	 */
6584 	return calc_delta_fair(gran, se);
6585 }
6586 
6587 /*
6588  * Should 'se' preempt 'curr'.
6589  *
6590  *             |s1
6591  *        |s2
6592  *   |s3
6593  *         g
6594  *      |<--->|c
6595  *
6596  *  w(c, s1) = -1
6597  *  w(c, s2) =  0
6598  *  w(c, s3) =  1
6599  *
6600  */
6601 static int
6602 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6603 {
6604 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6605 
6606 	if (vdiff <= 0)
6607 		return -1;
6608 
6609 	gran = wakeup_gran(se);
6610 	if (vdiff > gran)
6611 		return 1;
6612 
6613 	return 0;
6614 }
6615 
6616 static void set_last_buddy(struct sched_entity *se)
6617 {
6618 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6619 		return;
6620 
6621 	for_each_sched_entity(se) {
6622 		if (SCHED_WARN_ON(!se->on_rq))
6623 			return;
6624 		cfs_rq_of(se)->last = se;
6625 	}
6626 }
6627 
6628 static void set_next_buddy(struct sched_entity *se)
6629 {
6630 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6631 		return;
6632 
6633 	for_each_sched_entity(se) {
6634 		if (SCHED_WARN_ON(!se->on_rq))
6635 			return;
6636 		cfs_rq_of(se)->next = se;
6637 	}
6638 }
6639 
6640 static void set_skip_buddy(struct sched_entity *se)
6641 {
6642 	for_each_sched_entity(se)
6643 		cfs_rq_of(se)->skip = se;
6644 }
6645 
6646 /*
6647  * Preempt the current task with a newly woken task if needed:
6648  */
6649 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6650 {
6651 	struct task_struct *curr = rq->curr;
6652 	struct sched_entity *se = &curr->se, *pse = &p->se;
6653 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6654 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6655 	int next_buddy_marked = 0;
6656 
6657 	if (unlikely(se == pse))
6658 		return;
6659 
6660 	/*
6661 	 * This is possible from callers such as attach_tasks(), in which we
6662 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6663 	 * lead to a throttle).  This both saves work and prevents false
6664 	 * next-buddy nomination below.
6665 	 */
6666 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6667 		return;
6668 
6669 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6670 		set_next_buddy(pse);
6671 		next_buddy_marked = 1;
6672 	}
6673 
6674 	/*
6675 	 * We can come here with TIF_NEED_RESCHED already set from new task
6676 	 * wake up path.
6677 	 *
6678 	 * Note: this also catches the edge-case of curr being in a throttled
6679 	 * group (e.g. via set_curr_task), since update_curr() (in the
6680 	 * enqueue of curr) will have resulted in resched being set.  This
6681 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6682 	 * below.
6683 	 */
6684 	if (test_tsk_need_resched(curr))
6685 		return;
6686 
6687 	/* Idle tasks are by definition preempted by non-idle tasks. */
6688 	if (unlikely(task_has_idle_policy(curr)) &&
6689 	    likely(!task_has_idle_policy(p)))
6690 		goto preempt;
6691 
6692 	/*
6693 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6694 	 * is driven by the tick):
6695 	 */
6696 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6697 		return;
6698 
6699 	find_matching_se(&se, &pse);
6700 	update_curr(cfs_rq_of(se));
6701 	BUG_ON(!pse);
6702 	if (wakeup_preempt_entity(se, pse) == 1) {
6703 		/*
6704 		 * Bias pick_next to pick the sched entity that is
6705 		 * triggering this preemption.
6706 		 */
6707 		if (!next_buddy_marked)
6708 			set_next_buddy(pse);
6709 		goto preempt;
6710 	}
6711 
6712 	return;
6713 
6714 preempt:
6715 	resched_curr(rq);
6716 	/*
6717 	 * Only set the backward buddy when the current task is still
6718 	 * on the rq. This can happen when a wakeup gets interleaved
6719 	 * with schedule on the ->pre_schedule() or idle_balance()
6720 	 * point, either of which can * drop the rq lock.
6721 	 *
6722 	 * Also, during early boot the idle thread is in the fair class,
6723 	 * for obvious reasons its a bad idea to schedule back to it.
6724 	 */
6725 	if (unlikely(!se->on_rq || curr == rq->idle))
6726 		return;
6727 
6728 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6729 		set_last_buddy(se);
6730 }
6731 
6732 static struct task_struct *
6733 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6734 {
6735 	struct cfs_rq *cfs_rq = &rq->cfs;
6736 	struct sched_entity *se;
6737 	struct task_struct *p;
6738 	int new_tasks;
6739 
6740 again:
6741 	if (!cfs_rq->nr_running)
6742 		goto idle;
6743 
6744 #ifdef CONFIG_FAIR_GROUP_SCHED
6745 	if (!prev || prev->sched_class != &fair_sched_class)
6746 		goto simple;
6747 
6748 	/*
6749 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6750 	 * likely that a next task is from the same cgroup as the current.
6751 	 *
6752 	 * Therefore attempt to avoid putting and setting the entire cgroup
6753 	 * hierarchy, only change the part that actually changes.
6754 	 */
6755 
6756 	do {
6757 		struct sched_entity *curr = cfs_rq->curr;
6758 
6759 		/*
6760 		 * Since we got here without doing put_prev_entity() we also
6761 		 * have to consider cfs_rq->curr. If it is still a runnable
6762 		 * entity, update_curr() will update its vruntime, otherwise
6763 		 * forget we've ever seen it.
6764 		 */
6765 		if (curr) {
6766 			if (curr->on_rq)
6767 				update_curr(cfs_rq);
6768 			else
6769 				curr = NULL;
6770 
6771 			/*
6772 			 * This call to check_cfs_rq_runtime() will do the
6773 			 * throttle and dequeue its entity in the parent(s).
6774 			 * Therefore the nr_running test will indeed
6775 			 * be correct.
6776 			 */
6777 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6778 				cfs_rq = &rq->cfs;
6779 
6780 				if (!cfs_rq->nr_running)
6781 					goto idle;
6782 
6783 				goto simple;
6784 			}
6785 		}
6786 
6787 		se = pick_next_entity(cfs_rq, curr);
6788 		cfs_rq = group_cfs_rq(se);
6789 	} while (cfs_rq);
6790 
6791 	p = task_of(se);
6792 
6793 	/*
6794 	 * Since we haven't yet done put_prev_entity and if the selected task
6795 	 * is a different task than we started out with, try and touch the
6796 	 * least amount of cfs_rqs.
6797 	 */
6798 	if (prev != p) {
6799 		struct sched_entity *pse = &prev->se;
6800 
6801 		while (!(cfs_rq = is_same_group(se, pse))) {
6802 			int se_depth = se->depth;
6803 			int pse_depth = pse->depth;
6804 
6805 			if (se_depth <= pse_depth) {
6806 				put_prev_entity(cfs_rq_of(pse), pse);
6807 				pse = parent_entity(pse);
6808 			}
6809 			if (se_depth >= pse_depth) {
6810 				set_next_entity(cfs_rq_of(se), se);
6811 				se = parent_entity(se);
6812 			}
6813 		}
6814 
6815 		put_prev_entity(cfs_rq, pse);
6816 		set_next_entity(cfs_rq, se);
6817 	}
6818 
6819 	goto done;
6820 simple:
6821 #endif
6822 	if (prev)
6823 		put_prev_task(rq, prev);
6824 
6825 	do {
6826 		se = pick_next_entity(cfs_rq, NULL);
6827 		set_next_entity(cfs_rq, se);
6828 		cfs_rq = group_cfs_rq(se);
6829 	} while (cfs_rq);
6830 
6831 	p = task_of(se);
6832 
6833 done: __maybe_unused;
6834 #ifdef CONFIG_SMP
6835 	/*
6836 	 * Move the next running task to the front of
6837 	 * the list, so our cfs_tasks list becomes MRU
6838 	 * one.
6839 	 */
6840 	list_move(&p->se.group_node, &rq->cfs_tasks);
6841 #endif
6842 
6843 	if (hrtick_enabled(rq))
6844 		hrtick_start_fair(rq, p);
6845 
6846 	update_misfit_status(p, rq);
6847 
6848 	return p;
6849 
6850 idle:
6851 	if (!rf)
6852 		return NULL;
6853 
6854 	new_tasks = newidle_balance(rq, rf);
6855 
6856 	/*
6857 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
6858 	 * possible for any higher priority task to appear. In that case we
6859 	 * must re-start the pick_next_entity() loop.
6860 	 */
6861 	if (new_tasks < 0)
6862 		return RETRY_TASK;
6863 
6864 	if (new_tasks > 0)
6865 		goto again;
6866 
6867 	/*
6868 	 * rq is about to be idle, check if we need to update the
6869 	 * lost_idle_time of clock_pelt
6870 	 */
6871 	update_idle_rq_clock_pelt(rq);
6872 
6873 	return NULL;
6874 }
6875 
6876 /*
6877  * Account for a descheduled task:
6878  */
6879 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6880 {
6881 	struct sched_entity *se = &prev->se;
6882 	struct cfs_rq *cfs_rq;
6883 
6884 	for_each_sched_entity(se) {
6885 		cfs_rq = cfs_rq_of(se);
6886 		put_prev_entity(cfs_rq, se);
6887 	}
6888 }
6889 
6890 /*
6891  * sched_yield() is very simple
6892  *
6893  * The magic of dealing with the ->skip buddy is in pick_next_entity.
6894  */
6895 static void yield_task_fair(struct rq *rq)
6896 {
6897 	struct task_struct *curr = rq->curr;
6898 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6899 	struct sched_entity *se = &curr->se;
6900 
6901 	/*
6902 	 * Are we the only task in the tree?
6903 	 */
6904 	if (unlikely(rq->nr_running == 1))
6905 		return;
6906 
6907 	clear_buddies(cfs_rq, se);
6908 
6909 	if (curr->policy != SCHED_BATCH) {
6910 		update_rq_clock(rq);
6911 		/*
6912 		 * Update run-time statistics of the 'current'.
6913 		 */
6914 		update_curr(cfs_rq);
6915 		/*
6916 		 * Tell update_rq_clock() that we've just updated,
6917 		 * so we don't do microscopic update in schedule()
6918 		 * and double the fastpath cost.
6919 		 */
6920 		rq_clock_skip_update(rq);
6921 	}
6922 
6923 	set_skip_buddy(se);
6924 }
6925 
6926 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6927 {
6928 	struct sched_entity *se = &p->se;
6929 
6930 	/* throttled hierarchies are not runnable */
6931 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6932 		return false;
6933 
6934 	/* Tell the scheduler that we'd really like pse to run next. */
6935 	set_next_buddy(se);
6936 
6937 	yield_task_fair(rq);
6938 
6939 	return true;
6940 }
6941 
6942 #ifdef CONFIG_SMP
6943 /**************************************************
6944  * Fair scheduling class load-balancing methods.
6945  *
6946  * BASICS
6947  *
6948  * The purpose of load-balancing is to achieve the same basic fairness the
6949  * per-CPU scheduler provides, namely provide a proportional amount of compute
6950  * time to each task. This is expressed in the following equation:
6951  *
6952  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
6953  *
6954  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
6955  * W_i,0 is defined as:
6956  *
6957  *   W_i,0 = \Sum_j w_i,j                                             (2)
6958  *
6959  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
6960  * is derived from the nice value as per sched_prio_to_weight[].
6961  *
6962  * The weight average is an exponential decay average of the instantaneous
6963  * weight:
6964  *
6965  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
6966  *
6967  * C_i is the compute capacity of CPU i, typically it is the
6968  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6969  * can also include other factors [XXX].
6970  *
6971  * To achieve this balance we define a measure of imbalance which follows
6972  * directly from (1):
6973  *
6974  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
6975  *
6976  * We them move tasks around to minimize the imbalance. In the continuous
6977  * function space it is obvious this converges, in the discrete case we get
6978  * a few fun cases generally called infeasible weight scenarios.
6979  *
6980  * [XXX expand on:
6981  *     - infeasible weights;
6982  *     - local vs global optima in the discrete case. ]
6983  *
6984  *
6985  * SCHED DOMAINS
6986  *
6987  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6988  * for all i,j solution, we create a tree of CPUs that follows the hardware
6989  * topology where each level pairs two lower groups (or better). This results
6990  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
6991  * tree to only the first of the previous level and we decrease the frequency
6992  * of load-balance at each level inv. proportional to the number of CPUs in
6993  * the groups.
6994  *
6995  * This yields:
6996  *
6997  *     log_2 n     1     n
6998  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
6999  *     i = 0      2^i   2^i
7000  *                               `- size of each group
7001  *         |         |     `- number of CPUs doing load-balance
7002  *         |         `- freq
7003  *         `- sum over all levels
7004  *
7005  * Coupled with a limit on how many tasks we can migrate every balance pass,
7006  * this makes (5) the runtime complexity of the balancer.
7007  *
7008  * An important property here is that each CPU is still (indirectly) connected
7009  * to every other CPU in at most O(log n) steps:
7010  *
7011  * The adjacency matrix of the resulting graph is given by:
7012  *
7013  *             log_2 n
7014  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7015  *             k = 0
7016  *
7017  * And you'll find that:
7018  *
7019  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7020  *
7021  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7022  * The task movement gives a factor of O(m), giving a convergence complexity
7023  * of:
7024  *
7025  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7026  *
7027  *
7028  * WORK CONSERVING
7029  *
7030  * In order to avoid CPUs going idle while there's still work to do, new idle
7031  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7032  * tree itself instead of relying on other CPUs to bring it work.
7033  *
7034  * This adds some complexity to both (5) and (8) but it reduces the total idle
7035  * time.
7036  *
7037  * [XXX more?]
7038  *
7039  *
7040  * CGROUPS
7041  *
7042  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7043  *
7044  *                                s_k,i
7045  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7046  *                                 S_k
7047  *
7048  * Where
7049  *
7050  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7051  *
7052  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7053  *
7054  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7055  * property.
7056  *
7057  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7058  *      rewrite all of this once again.]
7059  */
7060 
7061 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7062 
7063 enum fbq_type { regular, remote, all };
7064 
7065 enum group_type {
7066 	group_other = 0,
7067 	group_misfit_task,
7068 	group_imbalanced,
7069 	group_overloaded,
7070 };
7071 
7072 #define LBF_ALL_PINNED	0x01
7073 #define LBF_NEED_BREAK	0x02
7074 #define LBF_DST_PINNED  0x04
7075 #define LBF_SOME_PINNED	0x08
7076 #define LBF_NOHZ_STATS	0x10
7077 #define LBF_NOHZ_AGAIN	0x20
7078 
7079 struct lb_env {
7080 	struct sched_domain	*sd;
7081 
7082 	struct rq		*src_rq;
7083 	int			src_cpu;
7084 
7085 	int			dst_cpu;
7086 	struct rq		*dst_rq;
7087 
7088 	struct cpumask		*dst_grpmask;
7089 	int			new_dst_cpu;
7090 	enum cpu_idle_type	idle;
7091 	long			imbalance;
7092 	/* The set of CPUs under consideration for load-balancing */
7093 	struct cpumask		*cpus;
7094 
7095 	unsigned int		flags;
7096 
7097 	unsigned int		loop;
7098 	unsigned int		loop_break;
7099 	unsigned int		loop_max;
7100 
7101 	enum fbq_type		fbq_type;
7102 	enum group_type		src_grp_type;
7103 	struct list_head	tasks;
7104 };
7105 
7106 /*
7107  * Is this task likely cache-hot:
7108  */
7109 static int task_hot(struct task_struct *p, struct lb_env *env)
7110 {
7111 	s64 delta;
7112 
7113 	lockdep_assert_held(&env->src_rq->lock);
7114 
7115 	if (p->sched_class != &fair_sched_class)
7116 		return 0;
7117 
7118 	if (unlikely(task_has_idle_policy(p)))
7119 		return 0;
7120 
7121 	/*
7122 	 * Buddy candidates are cache hot:
7123 	 */
7124 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7125 			(&p->se == cfs_rq_of(&p->se)->next ||
7126 			 &p->se == cfs_rq_of(&p->se)->last))
7127 		return 1;
7128 
7129 	if (sysctl_sched_migration_cost == -1)
7130 		return 1;
7131 	if (sysctl_sched_migration_cost == 0)
7132 		return 0;
7133 
7134 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7135 
7136 	return delta < (s64)sysctl_sched_migration_cost;
7137 }
7138 
7139 #ifdef CONFIG_NUMA_BALANCING
7140 /*
7141  * Returns 1, if task migration degrades locality
7142  * Returns 0, if task migration improves locality i.e migration preferred.
7143  * Returns -1, if task migration is not affected by locality.
7144  */
7145 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7146 {
7147 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7148 	unsigned long src_weight, dst_weight;
7149 	int src_nid, dst_nid, dist;
7150 
7151 	if (!static_branch_likely(&sched_numa_balancing))
7152 		return -1;
7153 
7154 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7155 		return -1;
7156 
7157 	src_nid = cpu_to_node(env->src_cpu);
7158 	dst_nid = cpu_to_node(env->dst_cpu);
7159 
7160 	if (src_nid == dst_nid)
7161 		return -1;
7162 
7163 	/* Migrating away from the preferred node is always bad. */
7164 	if (src_nid == p->numa_preferred_nid) {
7165 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7166 			return 1;
7167 		else
7168 			return -1;
7169 	}
7170 
7171 	/* Encourage migration to the preferred node. */
7172 	if (dst_nid == p->numa_preferred_nid)
7173 		return 0;
7174 
7175 	/* Leaving a core idle is often worse than degrading locality. */
7176 	if (env->idle == CPU_IDLE)
7177 		return -1;
7178 
7179 	dist = node_distance(src_nid, dst_nid);
7180 	if (numa_group) {
7181 		src_weight = group_weight(p, src_nid, dist);
7182 		dst_weight = group_weight(p, dst_nid, dist);
7183 	} else {
7184 		src_weight = task_weight(p, src_nid, dist);
7185 		dst_weight = task_weight(p, dst_nid, dist);
7186 	}
7187 
7188 	return dst_weight < src_weight;
7189 }
7190 
7191 #else
7192 static inline int migrate_degrades_locality(struct task_struct *p,
7193 					     struct lb_env *env)
7194 {
7195 	return -1;
7196 }
7197 #endif
7198 
7199 /*
7200  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7201  */
7202 static
7203 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7204 {
7205 	int tsk_cache_hot;
7206 
7207 	lockdep_assert_held(&env->src_rq->lock);
7208 
7209 	/*
7210 	 * We do not migrate tasks that are:
7211 	 * 1) throttled_lb_pair, or
7212 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7213 	 * 3) running (obviously), or
7214 	 * 4) are cache-hot on their current CPU.
7215 	 */
7216 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7217 		return 0;
7218 
7219 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7220 		int cpu;
7221 
7222 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7223 
7224 		env->flags |= LBF_SOME_PINNED;
7225 
7226 		/*
7227 		 * Remember if this task can be migrated to any other CPU in
7228 		 * our sched_group. We may want to revisit it if we couldn't
7229 		 * meet load balance goals by pulling other tasks on src_cpu.
7230 		 *
7231 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7232 		 * already computed one in current iteration.
7233 		 */
7234 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7235 			return 0;
7236 
7237 		/* Prevent to re-select dst_cpu via env's CPUs: */
7238 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7239 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7240 				env->flags |= LBF_DST_PINNED;
7241 				env->new_dst_cpu = cpu;
7242 				break;
7243 			}
7244 		}
7245 
7246 		return 0;
7247 	}
7248 
7249 	/* Record that we found atleast one task that could run on dst_cpu */
7250 	env->flags &= ~LBF_ALL_PINNED;
7251 
7252 	if (task_running(env->src_rq, p)) {
7253 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7254 		return 0;
7255 	}
7256 
7257 	/*
7258 	 * Aggressive migration if:
7259 	 * 1) destination numa is preferred
7260 	 * 2) task is cache cold, or
7261 	 * 3) too many balance attempts have failed.
7262 	 */
7263 	tsk_cache_hot = migrate_degrades_locality(p, env);
7264 	if (tsk_cache_hot == -1)
7265 		tsk_cache_hot = task_hot(p, env);
7266 
7267 	if (tsk_cache_hot <= 0 ||
7268 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7269 		if (tsk_cache_hot == 1) {
7270 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7271 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7272 		}
7273 		return 1;
7274 	}
7275 
7276 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7277 	return 0;
7278 }
7279 
7280 /*
7281  * detach_task() -- detach the task for the migration specified in env
7282  */
7283 static void detach_task(struct task_struct *p, struct lb_env *env)
7284 {
7285 	lockdep_assert_held(&env->src_rq->lock);
7286 
7287 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7288 	set_task_cpu(p, env->dst_cpu);
7289 }
7290 
7291 /*
7292  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7293  * part of active balancing operations within "domain".
7294  *
7295  * Returns a task if successful and NULL otherwise.
7296  */
7297 static struct task_struct *detach_one_task(struct lb_env *env)
7298 {
7299 	struct task_struct *p;
7300 
7301 	lockdep_assert_held(&env->src_rq->lock);
7302 
7303 	list_for_each_entry_reverse(p,
7304 			&env->src_rq->cfs_tasks, se.group_node) {
7305 		if (!can_migrate_task(p, env))
7306 			continue;
7307 
7308 		detach_task(p, env);
7309 
7310 		/*
7311 		 * Right now, this is only the second place where
7312 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7313 		 * so we can safely collect stats here rather than
7314 		 * inside detach_tasks().
7315 		 */
7316 		schedstat_inc(env->sd->lb_gained[env->idle]);
7317 		return p;
7318 	}
7319 	return NULL;
7320 }
7321 
7322 static const unsigned int sched_nr_migrate_break = 32;
7323 
7324 /*
7325  * detach_tasks() -- tries to detach up to imbalance runnable load from
7326  * busiest_rq, as part of a balancing operation within domain "sd".
7327  *
7328  * Returns number of detached tasks if successful and 0 otherwise.
7329  */
7330 static int detach_tasks(struct lb_env *env)
7331 {
7332 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7333 	struct task_struct *p;
7334 	unsigned long load;
7335 	int detached = 0;
7336 
7337 	lockdep_assert_held(&env->src_rq->lock);
7338 
7339 	if (env->imbalance <= 0)
7340 		return 0;
7341 
7342 	while (!list_empty(tasks)) {
7343 		/*
7344 		 * We don't want to steal all, otherwise we may be treated likewise,
7345 		 * which could at worst lead to a livelock crash.
7346 		 */
7347 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7348 			break;
7349 
7350 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7351 
7352 		env->loop++;
7353 		/* We've more or less seen every task there is, call it quits */
7354 		if (env->loop > env->loop_max)
7355 			break;
7356 
7357 		/* take a breather every nr_migrate tasks */
7358 		if (env->loop > env->loop_break) {
7359 			env->loop_break += sched_nr_migrate_break;
7360 			env->flags |= LBF_NEED_BREAK;
7361 			break;
7362 		}
7363 
7364 		if (!can_migrate_task(p, env))
7365 			goto next;
7366 
7367 		load = task_h_load(p);
7368 
7369 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7370 			goto next;
7371 
7372 		if ((load / 2) > env->imbalance)
7373 			goto next;
7374 
7375 		detach_task(p, env);
7376 		list_add(&p->se.group_node, &env->tasks);
7377 
7378 		detached++;
7379 		env->imbalance -= load;
7380 
7381 #ifdef CONFIG_PREEMPTION
7382 		/*
7383 		 * NEWIDLE balancing is a source of latency, so preemptible
7384 		 * kernels will stop after the first task is detached to minimize
7385 		 * the critical section.
7386 		 */
7387 		if (env->idle == CPU_NEWLY_IDLE)
7388 			break;
7389 #endif
7390 
7391 		/*
7392 		 * We only want to steal up to the prescribed amount of
7393 		 * runnable load.
7394 		 */
7395 		if (env->imbalance <= 0)
7396 			break;
7397 
7398 		continue;
7399 next:
7400 		list_move(&p->se.group_node, tasks);
7401 	}
7402 
7403 	/*
7404 	 * Right now, this is one of only two places we collect this stat
7405 	 * so we can safely collect detach_one_task() stats here rather
7406 	 * than inside detach_one_task().
7407 	 */
7408 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7409 
7410 	return detached;
7411 }
7412 
7413 /*
7414  * attach_task() -- attach the task detached by detach_task() to its new rq.
7415  */
7416 static void attach_task(struct rq *rq, struct task_struct *p)
7417 {
7418 	lockdep_assert_held(&rq->lock);
7419 
7420 	BUG_ON(task_rq(p) != rq);
7421 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7422 	check_preempt_curr(rq, p, 0);
7423 }
7424 
7425 /*
7426  * attach_one_task() -- attaches the task returned from detach_one_task() to
7427  * its new rq.
7428  */
7429 static void attach_one_task(struct rq *rq, struct task_struct *p)
7430 {
7431 	struct rq_flags rf;
7432 
7433 	rq_lock(rq, &rf);
7434 	update_rq_clock(rq);
7435 	attach_task(rq, p);
7436 	rq_unlock(rq, &rf);
7437 }
7438 
7439 /*
7440  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7441  * new rq.
7442  */
7443 static void attach_tasks(struct lb_env *env)
7444 {
7445 	struct list_head *tasks = &env->tasks;
7446 	struct task_struct *p;
7447 	struct rq_flags rf;
7448 
7449 	rq_lock(env->dst_rq, &rf);
7450 	update_rq_clock(env->dst_rq);
7451 
7452 	while (!list_empty(tasks)) {
7453 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7454 		list_del_init(&p->se.group_node);
7455 
7456 		attach_task(env->dst_rq, p);
7457 	}
7458 
7459 	rq_unlock(env->dst_rq, &rf);
7460 }
7461 
7462 #ifdef CONFIG_NO_HZ_COMMON
7463 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7464 {
7465 	if (cfs_rq->avg.load_avg)
7466 		return true;
7467 
7468 	if (cfs_rq->avg.util_avg)
7469 		return true;
7470 
7471 	return false;
7472 }
7473 
7474 static inline bool others_have_blocked(struct rq *rq)
7475 {
7476 	if (READ_ONCE(rq->avg_rt.util_avg))
7477 		return true;
7478 
7479 	if (READ_ONCE(rq->avg_dl.util_avg))
7480 		return true;
7481 
7482 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7483 	if (READ_ONCE(rq->avg_irq.util_avg))
7484 		return true;
7485 #endif
7486 
7487 	return false;
7488 }
7489 
7490 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7491 {
7492 	rq->last_blocked_load_update_tick = jiffies;
7493 
7494 	if (!has_blocked)
7495 		rq->has_blocked_load = 0;
7496 }
7497 #else
7498 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7499 static inline bool others_have_blocked(struct rq *rq) { return false; }
7500 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7501 #endif
7502 
7503 #ifdef CONFIG_FAIR_GROUP_SCHED
7504 
7505 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7506 {
7507 	if (cfs_rq->load.weight)
7508 		return false;
7509 
7510 	if (cfs_rq->avg.load_sum)
7511 		return false;
7512 
7513 	if (cfs_rq->avg.util_sum)
7514 		return false;
7515 
7516 	if (cfs_rq->avg.runnable_load_sum)
7517 		return false;
7518 
7519 	return true;
7520 }
7521 
7522 static void update_blocked_averages(int cpu)
7523 {
7524 	struct rq *rq = cpu_rq(cpu);
7525 	struct cfs_rq *cfs_rq, *pos;
7526 	const struct sched_class *curr_class;
7527 	struct rq_flags rf;
7528 	bool done = true;
7529 
7530 	rq_lock_irqsave(rq, &rf);
7531 	update_rq_clock(rq);
7532 
7533 	/*
7534 	 * Iterates the task_group tree in a bottom up fashion, see
7535 	 * list_add_leaf_cfs_rq() for details.
7536 	 */
7537 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7538 		struct sched_entity *se;
7539 
7540 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq))
7541 			update_tg_load_avg(cfs_rq, 0);
7542 
7543 		/* Propagate pending load changes to the parent, if any: */
7544 		se = cfs_rq->tg->se[cpu];
7545 		if (se && !skip_blocked_update(se))
7546 			update_load_avg(cfs_rq_of(se), se, 0);
7547 
7548 		/*
7549 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7550 		 * decayed cfs_rqs linger on the list.
7551 		 */
7552 		if (cfs_rq_is_decayed(cfs_rq))
7553 			list_del_leaf_cfs_rq(cfs_rq);
7554 
7555 		/* Don't need periodic decay once load/util_avg are null */
7556 		if (cfs_rq_has_blocked(cfs_rq))
7557 			done = false;
7558 	}
7559 
7560 	curr_class = rq->curr->sched_class;
7561 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7562 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
7563 	update_irq_load_avg(rq, 0);
7564 	/* Don't need periodic decay once load/util_avg are null */
7565 	if (others_have_blocked(rq))
7566 		done = false;
7567 
7568 	update_blocked_load_status(rq, !done);
7569 	rq_unlock_irqrestore(rq, &rf);
7570 }
7571 
7572 /*
7573  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7574  * This needs to be done in a top-down fashion because the load of a child
7575  * group is a fraction of its parents load.
7576  */
7577 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7578 {
7579 	struct rq *rq = rq_of(cfs_rq);
7580 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7581 	unsigned long now = jiffies;
7582 	unsigned long load;
7583 
7584 	if (cfs_rq->last_h_load_update == now)
7585 		return;
7586 
7587 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
7588 	for_each_sched_entity(se) {
7589 		cfs_rq = cfs_rq_of(se);
7590 		WRITE_ONCE(cfs_rq->h_load_next, se);
7591 		if (cfs_rq->last_h_load_update == now)
7592 			break;
7593 	}
7594 
7595 	if (!se) {
7596 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7597 		cfs_rq->last_h_load_update = now;
7598 	}
7599 
7600 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7601 		load = cfs_rq->h_load;
7602 		load = div64_ul(load * se->avg.load_avg,
7603 			cfs_rq_load_avg(cfs_rq) + 1);
7604 		cfs_rq = group_cfs_rq(se);
7605 		cfs_rq->h_load = load;
7606 		cfs_rq->last_h_load_update = now;
7607 	}
7608 }
7609 
7610 static unsigned long task_h_load(struct task_struct *p)
7611 {
7612 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7613 
7614 	update_cfs_rq_h_load(cfs_rq);
7615 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7616 			cfs_rq_load_avg(cfs_rq) + 1);
7617 }
7618 #else
7619 static inline void update_blocked_averages(int cpu)
7620 {
7621 	struct rq *rq = cpu_rq(cpu);
7622 	struct cfs_rq *cfs_rq = &rq->cfs;
7623 	const struct sched_class *curr_class;
7624 	struct rq_flags rf;
7625 
7626 	rq_lock_irqsave(rq, &rf);
7627 	update_rq_clock(rq);
7628 	update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7629 
7630 	curr_class = rq->curr->sched_class;
7631 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7632 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
7633 	update_irq_load_avg(rq, 0);
7634 	update_blocked_load_status(rq, cfs_rq_has_blocked(cfs_rq) || others_have_blocked(rq));
7635 	rq_unlock_irqrestore(rq, &rf);
7636 }
7637 
7638 static unsigned long task_h_load(struct task_struct *p)
7639 {
7640 	return p->se.avg.load_avg;
7641 }
7642 #endif
7643 
7644 /********** Helpers for find_busiest_group ************************/
7645 
7646 /*
7647  * sg_lb_stats - stats of a sched_group required for load_balancing
7648  */
7649 struct sg_lb_stats {
7650 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7651 	unsigned long group_load; /* Total load over the CPUs of the group */
7652 	unsigned long load_per_task;
7653 	unsigned long group_capacity;
7654 	unsigned long group_util; /* Total utilization of the group */
7655 	unsigned int sum_nr_running; /* Nr tasks running in the group */
7656 	unsigned int idle_cpus;
7657 	unsigned int group_weight;
7658 	enum group_type group_type;
7659 	int group_no_capacity;
7660 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
7661 #ifdef CONFIG_NUMA_BALANCING
7662 	unsigned int nr_numa_running;
7663 	unsigned int nr_preferred_running;
7664 #endif
7665 };
7666 
7667 /*
7668  * sd_lb_stats - Structure to store the statistics of a sched_domain
7669  *		 during load balancing.
7670  */
7671 struct sd_lb_stats {
7672 	struct sched_group *busiest;	/* Busiest group in this sd */
7673 	struct sched_group *local;	/* Local group in this sd */
7674 	unsigned long total_running;
7675 	unsigned long total_load;	/* Total load of all groups in sd */
7676 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7677 	unsigned long avg_load;	/* Average load across all groups in sd */
7678 
7679 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7680 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7681 };
7682 
7683 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7684 {
7685 	/*
7686 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7687 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7688 	 * We must however clear busiest_stat::avg_load because
7689 	 * update_sd_pick_busiest() reads this before assignment.
7690 	 */
7691 	*sds = (struct sd_lb_stats){
7692 		.busiest = NULL,
7693 		.local = NULL,
7694 		.total_running = 0UL,
7695 		.total_load = 0UL,
7696 		.total_capacity = 0UL,
7697 		.busiest_stat = {
7698 			.avg_load = 0UL,
7699 			.sum_nr_running = 0,
7700 			.group_type = group_other,
7701 		},
7702 	};
7703 }
7704 
7705 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7706 {
7707 	struct rq *rq = cpu_rq(cpu);
7708 	unsigned long max = arch_scale_cpu_capacity(cpu);
7709 	unsigned long used, free;
7710 	unsigned long irq;
7711 
7712 	irq = cpu_util_irq(rq);
7713 
7714 	if (unlikely(irq >= max))
7715 		return 1;
7716 
7717 	used = READ_ONCE(rq->avg_rt.util_avg);
7718 	used += READ_ONCE(rq->avg_dl.util_avg);
7719 
7720 	if (unlikely(used >= max))
7721 		return 1;
7722 
7723 	free = max - used;
7724 
7725 	return scale_irq_capacity(free, irq, max);
7726 }
7727 
7728 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7729 {
7730 	unsigned long capacity = scale_rt_capacity(sd, cpu);
7731 	struct sched_group *sdg = sd->groups;
7732 
7733 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
7734 
7735 	if (!capacity)
7736 		capacity = 1;
7737 
7738 	cpu_rq(cpu)->cpu_capacity = capacity;
7739 	sdg->sgc->capacity = capacity;
7740 	sdg->sgc->min_capacity = capacity;
7741 	sdg->sgc->max_capacity = capacity;
7742 }
7743 
7744 void update_group_capacity(struct sched_domain *sd, int cpu)
7745 {
7746 	struct sched_domain *child = sd->child;
7747 	struct sched_group *group, *sdg = sd->groups;
7748 	unsigned long capacity, min_capacity, max_capacity;
7749 	unsigned long interval;
7750 
7751 	interval = msecs_to_jiffies(sd->balance_interval);
7752 	interval = clamp(interval, 1UL, max_load_balance_interval);
7753 	sdg->sgc->next_update = jiffies + interval;
7754 
7755 	if (!child) {
7756 		update_cpu_capacity(sd, cpu);
7757 		return;
7758 	}
7759 
7760 	capacity = 0;
7761 	min_capacity = ULONG_MAX;
7762 	max_capacity = 0;
7763 
7764 	if (child->flags & SD_OVERLAP) {
7765 		/*
7766 		 * SD_OVERLAP domains cannot assume that child groups
7767 		 * span the current group.
7768 		 */
7769 
7770 		for_each_cpu(cpu, sched_group_span(sdg)) {
7771 			struct sched_group_capacity *sgc;
7772 			struct rq *rq = cpu_rq(cpu);
7773 
7774 			/*
7775 			 * build_sched_domains() -> init_sched_groups_capacity()
7776 			 * gets here before we've attached the domains to the
7777 			 * runqueues.
7778 			 *
7779 			 * Use capacity_of(), which is set irrespective of domains
7780 			 * in update_cpu_capacity().
7781 			 *
7782 			 * This avoids capacity from being 0 and
7783 			 * causing divide-by-zero issues on boot.
7784 			 */
7785 			if (unlikely(!rq->sd)) {
7786 				capacity += capacity_of(cpu);
7787 			} else {
7788 				sgc = rq->sd->groups->sgc;
7789 				capacity += sgc->capacity;
7790 			}
7791 
7792 			min_capacity = min(capacity, min_capacity);
7793 			max_capacity = max(capacity, max_capacity);
7794 		}
7795 	} else  {
7796 		/*
7797 		 * !SD_OVERLAP domains can assume that child groups
7798 		 * span the current group.
7799 		 */
7800 
7801 		group = child->groups;
7802 		do {
7803 			struct sched_group_capacity *sgc = group->sgc;
7804 
7805 			capacity += sgc->capacity;
7806 			min_capacity = min(sgc->min_capacity, min_capacity);
7807 			max_capacity = max(sgc->max_capacity, max_capacity);
7808 			group = group->next;
7809 		} while (group != child->groups);
7810 	}
7811 
7812 	sdg->sgc->capacity = capacity;
7813 	sdg->sgc->min_capacity = min_capacity;
7814 	sdg->sgc->max_capacity = max_capacity;
7815 }
7816 
7817 /*
7818  * Check whether the capacity of the rq has been noticeably reduced by side
7819  * activity. The imbalance_pct is used for the threshold.
7820  * Return true is the capacity is reduced
7821  */
7822 static inline int
7823 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7824 {
7825 	return ((rq->cpu_capacity * sd->imbalance_pct) <
7826 				(rq->cpu_capacity_orig * 100));
7827 }
7828 
7829 /*
7830  * Check whether a rq has a misfit task and if it looks like we can actually
7831  * help that task: we can migrate the task to a CPU of higher capacity, or
7832  * the task's current CPU is heavily pressured.
7833  */
7834 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
7835 {
7836 	return rq->misfit_task_load &&
7837 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
7838 		 check_cpu_capacity(rq, sd));
7839 }
7840 
7841 /*
7842  * Group imbalance indicates (and tries to solve) the problem where balancing
7843  * groups is inadequate due to ->cpus_ptr constraints.
7844  *
7845  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7846  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7847  * Something like:
7848  *
7849  *	{ 0 1 2 3 } { 4 5 6 7 }
7850  *	        *     * * *
7851  *
7852  * If we were to balance group-wise we'd place two tasks in the first group and
7853  * two tasks in the second group. Clearly this is undesired as it will overload
7854  * cpu 3 and leave one of the CPUs in the second group unused.
7855  *
7856  * The current solution to this issue is detecting the skew in the first group
7857  * by noticing the lower domain failed to reach balance and had difficulty
7858  * moving tasks due to affinity constraints.
7859  *
7860  * When this is so detected; this group becomes a candidate for busiest; see
7861  * update_sd_pick_busiest(). And calculate_imbalance() and
7862  * find_busiest_group() avoid some of the usual balance conditions to allow it
7863  * to create an effective group imbalance.
7864  *
7865  * This is a somewhat tricky proposition since the next run might not find the
7866  * group imbalance and decide the groups need to be balanced again. A most
7867  * subtle and fragile situation.
7868  */
7869 
7870 static inline int sg_imbalanced(struct sched_group *group)
7871 {
7872 	return group->sgc->imbalance;
7873 }
7874 
7875 /*
7876  * group_has_capacity returns true if the group has spare capacity that could
7877  * be used by some tasks.
7878  * We consider that a group has spare capacity if the  * number of task is
7879  * smaller than the number of CPUs or if the utilization is lower than the
7880  * available capacity for CFS tasks.
7881  * For the latter, we use a threshold to stabilize the state, to take into
7882  * account the variance of the tasks' load and to return true if the available
7883  * capacity in meaningful for the load balancer.
7884  * As an example, an available capacity of 1% can appear but it doesn't make
7885  * any benefit for the load balance.
7886  */
7887 static inline bool
7888 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7889 {
7890 	if (sgs->sum_nr_running < sgs->group_weight)
7891 		return true;
7892 
7893 	if ((sgs->group_capacity * 100) >
7894 			(sgs->group_util * env->sd->imbalance_pct))
7895 		return true;
7896 
7897 	return false;
7898 }
7899 
7900 /*
7901  *  group_is_overloaded returns true if the group has more tasks than it can
7902  *  handle.
7903  *  group_is_overloaded is not equals to !group_has_capacity because a group
7904  *  with the exact right number of tasks, has no more spare capacity but is not
7905  *  overloaded so both group_has_capacity and group_is_overloaded return
7906  *  false.
7907  */
7908 static inline bool
7909 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7910 {
7911 	if (sgs->sum_nr_running <= sgs->group_weight)
7912 		return false;
7913 
7914 	if ((sgs->group_capacity * 100) <
7915 			(sgs->group_util * env->sd->imbalance_pct))
7916 		return true;
7917 
7918 	return false;
7919 }
7920 
7921 /*
7922  * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
7923  * per-CPU capacity than sched_group ref.
7924  */
7925 static inline bool
7926 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7927 {
7928 	return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
7929 }
7930 
7931 /*
7932  * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
7933  * per-CPU capacity_orig than sched_group ref.
7934  */
7935 static inline bool
7936 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7937 {
7938 	return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
7939 }
7940 
7941 static inline enum
7942 group_type group_classify(struct sched_group *group,
7943 			  struct sg_lb_stats *sgs)
7944 {
7945 	if (sgs->group_no_capacity)
7946 		return group_overloaded;
7947 
7948 	if (sg_imbalanced(group))
7949 		return group_imbalanced;
7950 
7951 	if (sgs->group_misfit_task_load)
7952 		return group_misfit_task;
7953 
7954 	return group_other;
7955 }
7956 
7957 static bool update_nohz_stats(struct rq *rq, bool force)
7958 {
7959 #ifdef CONFIG_NO_HZ_COMMON
7960 	unsigned int cpu = rq->cpu;
7961 
7962 	if (!rq->has_blocked_load)
7963 		return false;
7964 
7965 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
7966 		return false;
7967 
7968 	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
7969 		return true;
7970 
7971 	update_blocked_averages(cpu);
7972 
7973 	return rq->has_blocked_load;
7974 #else
7975 	return false;
7976 #endif
7977 }
7978 
7979 /**
7980  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7981  * @env: The load balancing environment.
7982  * @group: sched_group whose statistics are to be updated.
7983  * @sgs: variable to hold the statistics for this group.
7984  * @sg_status: Holds flag indicating the status of the sched_group
7985  */
7986 static inline void update_sg_lb_stats(struct lb_env *env,
7987 				      struct sched_group *group,
7988 				      struct sg_lb_stats *sgs,
7989 				      int *sg_status)
7990 {
7991 	int i, nr_running;
7992 
7993 	memset(sgs, 0, sizeof(*sgs));
7994 
7995 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7996 		struct rq *rq = cpu_rq(i);
7997 
7998 		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
7999 			env->flags |= LBF_NOHZ_AGAIN;
8000 
8001 		sgs->group_load += cpu_runnable_load(rq);
8002 		sgs->group_util += cpu_util(i);
8003 		sgs->sum_nr_running += rq->cfs.h_nr_running;
8004 
8005 		nr_running = rq->nr_running;
8006 		if (nr_running > 1)
8007 			*sg_status |= SG_OVERLOAD;
8008 
8009 		if (cpu_overutilized(i))
8010 			*sg_status |= SG_OVERUTILIZED;
8011 
8012 #ifdef CONFIG_NUMA_BALANCING
8013 		sgs->nr_numa_running += rq->nr_numa_running;
8014 		sgs->nr_preferred_running += rq->nr_preferred_running;
8015 #endif
8016 		/*
8017 		 * No need to call idle_cpu() if nr_running is not 0
8018 		 */
8019 		if (!nr_running && idle_cpu(i))
8020 			sgs->idle_cpus++;
8021 
8022 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8023 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8024 			sgs->group_misfit_task_load = rq->misfit_task_load;
8025 			*sg_status |= SG_OVERLOAD;
8026 		}
8027 	}
8028 
8029 	/* Adjust by relative CPU capacity of the group */
8030 	sgs->group_capacity = group->sgc->capacity;
8031 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
8032 
8033 	if (sgs->sum_nr_running)
8034 		sgs->load_per_task = sgs->group_load / sgs->sum_nr_running;
8035 
8036 	sgs->group_weight = group->group_weight;
8037 
8038 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
8039 	sgs->group_type = group_classify(group, sgs);
8040 }
8041 
8042 /**
8043  * update_sd_pick_busiest - return 1 on busiest group
8044  * @env: The load balancing environment.
8045  * @sds: sched_domain statistics
8046  * @sg: sched_group candidate to be checked for being the busiest
8047  * @sgs: sched_group statistics
8048  *
8049  * Determine if @sg is a busier group than the previously selected
8050  * busiest group.
8051  *
8052  * Return: %true if @sg is a busier group than the previously selected
8053  * busiest group. %false otherwise.
8054  */
8055 static bool update_sd_pick_busiest(struct lb_env *env,
8056 				   struct sd_lb_stats *sds,
8057 				   struct sched_group *sg,
8058 				   struct sg_lb_stats *sgs)
8059 {
8060 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8061 
8062 	/*
8063 	 * Don't try to pull misfit tasks we can't help.
8064 	 * We can use max_capacity here as reduction in capacity on some
8065 	 * CPUs in the group should either be possible to resolve
8066 	 * internally or be covered by avg_load imbalance (eventually).
8067 	 */
8068 	if (sgs->group_type == group_misfit_task &&
8069 	    (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8070 	     !group_has_capacity(env, &sds->local_stat)))
8071 		return false;
8072 
8073 	if (sgs->group_type > busiest->group_type)
8074 		return true;
8075 
8076 	if (sgs->group_type < busiest->group_type)
8077 		return false;
8078 
8079 	if (sgs->avg_load <= busiest->avg_load)
8080 		return false;
8081 
8082 	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8083 		goto asym_packing;
8084 
8085 	/*
8086 	 * Candidate sg has no more than one task per CPU and
8087 	 * has higher per-CPU capacity. Migrating tasks to less
8088 	 * capable CPUs may harm throughput. Maximize throughput,
8089 	 * power/energy consequences are not considered.
8090 	 */
8091 	if (sgs->sum_nr_running <= sgs->group_weight &&
8092 	    group_smaller_min_cpu_capacity(sds->local, sg))
8093 		return false;
8094 
8095 	/*
8096 	 * If we have more than one misfit sg go with the biggest misfit.
8097 	 */
8098 	if (sgs->group_type == group_misfit_task &&
8099 	    sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8100 		return false;
8101 
8102 asym_packing:
8103 	/* This is the busiest node in its class. */
8104 	if (!(env->sd->flags & SD_ASYM_PACKING))
8105 		return true;
8106 
8107 	/* No ASYM_PACKING if target CPU is already busy */
8108 	if (env->idle == CPU_NOT_IDLE)
8109 		return true;
8110 	/*
8111 	 * ASYM_PACKING needs to move all the work to the highest
8112 	 * prority CPUs in the group, therefore mark all groups
8113 	 * of lower priority than ourself as busy.
8114 	 */
8115 	if (sgs->sum_nr_running &&
8116 	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
8117 		if (!sds->busiest)
8118 			return true;
8119 
8120 		/* Prefer to move from lowest priority CPU's work */
8121 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8122 				      sg->asym_prefer_cpu))
8123 			return true;
8124 	}
8125 
8126 	return false;
8127 }
8128 
8129 #ifdef CONFIG_NUMA_BALANCING
8130 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8131 {
8132 	if (sgs->sum_nr_running > sgs->nr_numa_running)
8133 		return regular;
8134 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
8135 		return remote;
8136 	return all;
8137 }
8138 
8139 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8140 {
8141 	if (rq->nr_running > rq->nr_numa_running)
8142 		return regular;
8143 	if (rq->nr_running > rq->nr_preferred_running)
8144 		return remote;
8145 	return all;
8146 }
8147 #else
8148 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8149 {
8150 	return all;
8151 }
8152 
8153 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8154 {
8155 	return regular;
8156 }
8157 #endif /* CONFIG_NUMA_BALANCING */
8158 
8159 /**
8160  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8161  * @env: The load balancing environment.
8162  * @sds: variable to hold the statistics for this sched_domain.
8163  */
8164 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8165 {
8166 	struct sched_domain *child = env->sd->child;
8167 	struct sched_group *sg = env->sd->groups;
8168 	struct sg_lb_stats *local = &sds->local_stat;
8169 	struct sg_lb_stats tmp_sgs;
8170 	bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8171 	int sg_status = 0;
8172 
8173 #ifdef CONFIG_NO_HZ_COMMON
8174 	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8175 		env->flags |= LBF_NOHZ_STATS;
8176 #endif
8177 
8178 	do {
8179 		struct sg_lb_stats *sgs = &tmp_sgs;
8180 		int local_group;
8181 
8182 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8183 		if (local_group) {
8184 			sds->local = sg;
8185 			sgs = local;
8186 
8187 			if (env->idle != CPU_NEWLY_IDLE ||
8188 			    time_after_eq(jiffies, sg->sgc->next_update))
8189 				update_group_capacity(env->sd, env->dst_cpu);
8190 		}
8191 
8192 		update_sg_lb_stats(env, sg, sgs, &sg_status);
8193 
8194 		if (local_group)
8195 			goto next_group;
8196 
8197 		/*
8198 		 * In case the child domain prefers tasks go to siblings
8199 		 * first, lower the sg capacity so that we'll try
8200 		 * and move all the excess tasks away. We lower the capacity
8201 		 * of a group only if the local group has the capacity to fit
8202 		 * these excess tasks. The extra check prevents the case where
8203 		 * you always pull from the heaviest group when it is already
8204 		 * under-utilized (possible with a large weight task outweighs
8205 		 * the tasks on the system).
8206 		 */
8207 		if (prefer_sibling && sds->local &&
8208 		    group_has_capacity(env, local) &&
8209 		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8210 			sgs->group_no_capacity = 1;
8211 			sgs->group_type = group_classify(sg, sgs);
8212 		}
8213 
8214 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8215 			sds->busiest = sg;
8216 			sds->busiest_stat = *sgs;
8217 		}
8218 
8219 next_group:
8220 		/* Now, start updating sd_lb_stats */
8221 		sds->total_running += sgs->sum_nr_running;
8222 		sds->total_load += sgs->group_load;
8223 		sds->total_capacity += sgs->group_capacity;
8224 
8225 		sg = sg->next;
8226 	} while (sg != env->sd->groups);
8227 
8228 #ifdef CONFIG_NO_HZ_COMMON
8229 	if ((env->flags & LBF_NOHZ_AGAIN) &&
8230 	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8231 
8232 		WRITE_ONCE(nohz.next_blocked,
8233 			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8234 	}
8235 #endif
8236 
8237 	if (env->sd->flags & SD_NUMA)
8238 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8239 
8240 	if (!env->sd->parent) {
8241 		struct root_domain *rd = env->dst_rq->rd;
8242 
8243 		/* update overload indicator if we are at root domain */
8244 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8245 
8246 		/* Update over-utilization (tipping point, U >= 0) indicator */
8247 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8248 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
8249 	} else if (sg_status & SG_OVERUTILIZED) {
8250 		struct root_domain *rd = env->dst_rq->rd;
8251 
8252 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8253 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
8254 	}
8255 }
8256 
8257 /**
8258  * check_asym_packing - Check to see if the group is packed into the
8259  *			sched domain.
8260  *
8261  * This is primarily intended to used at the sibling level.  Some
8262  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
8263  * case of POWER7, it can move to lower SMT modes only when higher
8264  * threads are idle.  When in lower SMT modes, the threads will
8265  * perform better since they share less core resources.  Hence when we
8266  * have idle threads, we want them to be the higher ones.
8267  *
8268  * This packing function is run on idle threads.  It checks to see if
8269  * the busiest CPU in this domain (core in the P7 case) has a higher
8270  * CPU number than the packing function is being run on.  Here we are
8271  * assuming lower CPU number will be equivalent to lower a SMT thread
8272  * number.
8273  *
8274  * Return: 1 when packing is required and a task should be moved to
8275  * this CPU.  The amount of the imbalance is returned in env->imbalance.
8276  *
8277  * @env: The load balancing environment.
8278  * @sds: Statistics of the sched_domain which is to be packed
8279  */
8280 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8281 {
8282 	int busiest_cpu;
8283 
8284 	if (!(env->sd->flags & SD_ASYM_PACKING))
8285 		return 0;
8286 
8287 	if (env->idle == CPU_NOT_IDLE)
8288 		return 0;
8289 
8290 	if (!sds->busiest)
8291 		return 0;
8292 
8293 	busiest_cpu = sds->busiest->asym_prefer_cpu;
8294 	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8295 		return 0;
8296 
8297 	env->imbalance = sds->busiest_stat.group_load;
8298 
8299 	return 1;
8300 }
8301 
8302 /**
8303  * fix_small_imbalance - Calculate the minor imbalance that exists
8304  *			amongst the groups of a sched_domain, during
8305  *			load balancing.
8306  * @env: The load balancing environment.
8307  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8308  */
8309 static inline
8310 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8311 {
8312 	unsigned long tmp, capa_now = 0, capa_move = 0;
8313 	unsigned int imbn = 2;
8314 	unsigned long scaled_busy_load_per_task;
8315 	struct sg_lb_stats *local, *busiest;
8316 
8317 	local = &sds->local_stat;
8318 	busiest = &sds->busiest_stat;
8319 
8320 	if (!local->sum_nr_running)
8321 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8322 	else if (busiest->load_per_task > local->load_per_task)
8323 		imbn = 1;
8324 
8325 	scaled_busy_load_per_task =
8326 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8327 		busiest->group_capacity;
8328 
8329 	if (busiest->avg_load + scaled_busy_load_per_task >=
8330 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
8331 		env->imbalance = busiest->load_per_task;
8332 		return;
8333 	}
8334 
8335 	/*
8336 	 * OK, we don't have enough imbalance to justify moving tasks,
8337 	 * however we may be able to increase total CPU capacity used by
8338 	 * moving them.
8339 	 */
8340 
8341 	capa_now += busiest->group_capacity *
8342 			min(busiest->load_per_task, busiest->avg_load);
8343 	capa_now += local->group_capacity *
8344 			min(local->load_per_task, local->avg_load);
8345 	capa_now /= SCHED_CAPACITY_SCALE;
8346 
8347 	/* Amount of load we'd subtract */
8348 	if (busiest->avg_load > scaled_busy_load_per_task) {
8349 		capa_move += busiest->group_capacity *
8350 			    min(busiest->load_per_task,
8351 				busiest->avg_load - scaled_busy_load_per_task);
8352 	}
8353 
8354 	/* Amount of load we'd add */
8355 	if (busiest->avg_load * busiest->group_capacity <
8356 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8357 		tmp = (busiest->avg_load * busiest->group_capacity) /
8358 		      local->group_capacity;
8359 	} else {
8360 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8361 		      local->group_capacity;
8362 	}
8363 	capa_move += local->group_capacity *
8364 		    min(local->load_per_task, local->avg_load + tmp);
8365 	capa_move /= SCHED_CAPACITY_SCALE;
8366 
8367 	/* Move if we gain throughput */
8368 	if (capa_move > capa_now)
8369 		env->imbalance = busiest->load_per_task;
8370 }
8371 
8372 /**
8373  * calculate_imbalance - Calculate the amount of imbalance present within the
8374  *			 groups of a given sched_domain during load balance.
8375  * @env: load balance environment
8376  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8377  */
8378 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8379 {
8380 	unsigned long max_pull, load_above_capacity = ~0UL;
8381 	struct sg_lb_stats *local, *busiest;
8382 
8383 	local = &sds->local_stat;
8384 	busiest = &sds->busiest_stat;
8385 
8386 	if (busiest->group_type == group_imbalanced) {
8387 		/*
8388 		 * In the group_imb case we cannot rely on group-wide averages
8389 		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8390 		 */
8391 		busiest->load_per_task =
8392 			min(busiest->load_per_task, sds->avg_load);
8393 	}
8394 
8395 	/*
8396 	 * Avg load of busiest sg can be less and avg load of local sg can
8397 	 * be greater than avg load across all sgs of sd because avg load
8398 	 * factors in sg capacity and sgs with smaller group_type are
8399 	 * skipped when updating the busiest sg:
8400 	 */
8401 	if (busiest->group_type != group_misfit_task &&
8402 	    (busiest->avg_load <= sds->avg_load ||
8403 	     local->avg_load >= sds->avg_load)) {
8404 		env->imbalance = 0;
8405 		return fix_small_imbalance(env, sds);
8406 	}
8407 
8408 	/*
8409 	 * If there aren't any idle CPUs, avoid creating some.
8410 	 */
8411 	if (busiest->group_type == group_overloaded &&
8412 	    local->group_type   == group_overloaded) {
8413 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8414 		if (load_above_capacity > busiest->group_capacity) {
8415 			load_above_capacity -= busiest->group_capacity;
8416 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8417 			load_above_capacity /= busiest->group_capacity;
8418 		} else
8419 			load_above_capacity = ~0UL;
8420 	}
8421 
8422 	/*
8423 	 * We're trying to get all the CPUs to the average_load, so we don't
8424 	 * want to push ourselves above the average load, nor do we wish to
8425 	 * reduce the max loaded CPU below the average load. At the same time,
8426 	 * we also don't want to reduce the group load below the group
8427 	 * capacity. Thus we look for the minimum possible imbalance.
8428 	 */
8429 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8430 
8431 	/* How much load to actually move to equalise the imbalance */
8432 	env->imbalance = min(
8433 		max_pull * busiest->group_capacity,
8434 		(sds->avg_load - local->avg_load) * local->group_capacity
8435 	) / SCHED_CAPACITY_SCALE;
8436 
8437 	/* Boost imbalance to allow misfit task to be balanced. */
8438 	if (busiest->group_type == group_misfit_task) {
8439 		env->imbalance = max_t(long, env->imbalance,
8440 				       busiest->group_misfit_task_load);
8441 	}
8442 
8443 	/*
8444 	 * if *imbalance is less than the average load per runnable task
8445 	 * there is no guarantee that any tasks will be moved so we'll have
8446 	 * a think about bumping its value to force at least one task to be
8447 	 * moved
8448 	 */
8449 	if (env->imbalance < busiest->load_per_task)
8450 		return fix_small_imbalance(env, sds);
8451 }
8452 
8453 /******* find_busiest_group() helpers end here *********************/
8454 
8455 /**
8456  * find_busiest_group - Returns the busiest group within the sched_domain
8457  * if there is an imbalance.
8458  *
8459  * Also calculates the amount of runnable load which should be moved
8460  * to restore balance.
8461  *
8462  * @env: The load balancing environment.
8463  *
8464  * Return:	- The busiest group if imbalance exists.
8465  */
8466 static struct sched_group *find_busiest_group(struct lb_env *env)
8467 {
8468 	struct sg_lb_stats *local, *busiest;
8469 	struct sd_lb_stats sds;
8470 
8471 	init_sd_lb_stats(&sds);
8472 
8473 	/*
8474 	 * Compute the various statistics relavent for load balancing at
8475 	 * this level.
8476 	 */
8477 	update_sd_lb_stats(env, &sds);
8478 
8479 	if (sched_energy_enabled()) {
8480 		struct root_domain *rd = env->dst_rq->rd;
8481 
8482 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8483 			goto out_balanced;
8484 	}
8485 
8486 	local = &sds.local_stat;
8487 	busiest = &sds.busiest_stat;
8488 
8489 	/* ASYM feature bypasses nice load balance check */
8490 	if (check_asym_packing(env, &sds))
8491 		return sds.busiest;
8492 
8493 	/* There is no busy sibling group to pull tasks from */
8494 	if (!sds.busiest || busiest->sum_nr_running == 0)
8495 		goto out_balanced;
8496 
8497 	/* XXX broken for overlapping NUMA groups */
8498 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8499 						/ sds.total_capacity;
8500 
8501 	/*
8502 	 * If the busiest group is imbalanced the below checks don't
8503 	 * work because they assume all things are equal, which typically
8504 	 * isn't true due to cpus_ptr constraints and the like.
8505 	 */
8506 	if (busiest->group_type == group_imbalanced)
8507 		goto force_balance;
8508 
8509 	/*
8510 	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8511 	 * capacities from resulting in underutilization due to avg_load.
8512 	 */
8513 	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8514 	    busiest->group_no_capacity)
8515 		goto force_balance;
8516 
8517 	/* Misfit tasks should be dealt with regardless of the avg load */
8518 	if (busiest->group_type == group_misfit_task)
8519 		goto force_balance;
8520 
8521 	/*
8522 	 * If the local group is busier than the selected busiest group
8523 	 * don't try and pull any tasks.
8524 	 */
8525 	if (local->avg_load >= busiest->avg_load)
8526 		goto out_balanced;
8527 
8528 	/*
8529 	 * Don't pull any tasks if this group is already above the domain
8530 	 * average load.
8531 	 */
8532 	if (local->avg_load >= sds.avg_load)
8533 		goto out_balanced;
8534 
8535 	if (env->idle == CPU_IDLE) {
8536 		/*
8537 		 * This CPU is idle. If the busiest group is not overloaded
8538 		 * and there is no imbalance between this and busiest group
8539 		 * wrt idle CPUs, it is balanced. The imbalance becomes
8540 		 * significant if the diff is greater than 1 otherwise we
8541 		 * might end up to just move the imbalance on another group
8542 		 */
8543 		if ((busiest->group_type != group_overloaded) &&
8544 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8545 			goto out_balanced;
8546 	} else {
8547 		/*
8548 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8549 		 * imbalance_pct to be conservative.
8550 		 */
8551 		if (100 * busiest->avg_load <=
8552 				env->sd->imbalance_pct * local->avg_load)
8553 			goto out_balanced;
8554 	}
8555 
8556 force_balance:
8557 	/* Looks like there is an imbalance. Compute it */
8558 	env->src_grp_type = busiest->group_type;
8559 	calculate_imbalance(env, &sds);
8560 	return env->imbalance ? sds.busiest : NULL;
8561 
8562 out_balanced:
8563 	env->imbalance = 0;
8564 	return NULL;
8565 }
8566 
8567 /*
8568  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8569  */
8570 static struct rq *find_busiest_queue(struct lb_env *env,
8571 				     struct sched_group *group)
8572 {
8573 	struct rq *busiest = NULL, *rq;
8574 	unsigned long busiest_load = 0, busiest_capacity = 1;
8575 	int i;
8576 
8577 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8578 		unsigned long capacity, load;
8579 		enum fbq_type rt;
8580 
8581 		rq = cpu_rq(i);
8582 		rt = fbq_classify_rq(rq);
8583 
8584 		/*
8585 		 * We classify groups/runqueues into three groups:
8586 		 *  - regular: there are !numa tasks
8587 		 *  - remote:  there are numa tasks that run on the 'wrong' node
8588 		 *  - all:     there is no distinction
8589 		 *
8590 		 * In order to avoid migrating ideally placed numa tasks,
8591 		 * ignore those when there's better options.
8592 		 *
8593 		 * If we ignore the actual busiest queue to migrate another
8594 		 * task, the next balance pass can still reduce the busiest
8595 		 * queue by moving tasks around inside the node.
8596 		 *
8597 		 * If we cannot move enough load due to this classification
8598 		 * the next pass will adjust the group classification and
8599 		 * allow migration of more tasks.
8600 		 *
8601 		 * Both cases only affect the total convergence complexity.
8602 		 */
8603 		if (rt > env->fbq_type)
8604 			continue;
8605 
8606 		/*
8607 		 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8608 		 * seek the "biggest" misfit task.
8609 		 */
8610 		if (env->src_grp_type == group_misfit_task) {
8611 			if (rq->misfit_task_load > busiest_load) {
8612 				busiest_load = rq->misfit_task_load;
8613 				busiest = rq;
8614 			}
8615 
8616 			continue;
8617 		}
8618 
8619 		capacity = capacity_of(i);
8620 
8621 		/*
8622 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8623 		 * eventually lead to active_balancing high->low capacity.
8624 		 * Higher per-CPU capacity is considered better than balancing
8625 		 * average load.
8626 		 */
8627 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8628 		    capacity_of(env->dst_cpu) < capacity &&
8629 		    rq->nr_running == 1)
8630 			continue;
8631 
8632 		load = cpu_runnable_load(rq);
8633 
8634 		/*
8635 		 * When comparing with imbalance, use cpu_runnable_load()
8636 		 * which is not scaled with the CPU capacity.
8637 		 */
8638 
8639 		if (rq->nr_running == 1 && load > env->imbalance &&
8640 		    !check_cpu_capacity(rq, env->sd))
8641 			continue;
8642 
8643 		/*
8644 		 * For the load comparisons with the other CPU's, consider
8645 		 * the cpu_runnable_load() scaled with the CPU capacity, so
8646 		 * that the load can be moved away from the CPU that is
8647 		 * potentially running at a lower capacity.
8648 		 *
8649 		 * Thus we're looking for max(load_i / capacity_i), crosswise
8650 		 * multiplication to rid ourselves of the division works out
8651 		 * to: load_i * capacity_j > load_j * capacity_i;  where j is
8652 		 * our previous maximum.
8653 		 */
8654 		if (load * busiest_capacity > busiest_load * capacity) {
8655 			busiest_load = load;
8656 			busiest_capacity = capacity;
8657 			busiest = rq;
8658 		}
8659 	}
8660 
8661 	return busiest;
8662 }
8663 
8664 /*
8665  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8666  * so long as it is large enough.
8667  */
8668 #define MAX_PINNED_INTERVAL	512
8669 
8670 static inline bool
8671 asym_active_balance(struct lb_env *env)
8672 {
8673 	/*
8674 	 * ASYM_PACKING needs to force migrate tasks from busy but
8675 	 * lower priority CPUs in order to pack all tasks in the
8676 	 * highest priority CPUs.
8677 	 */
8678 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
8679 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
8680 }
8681 
8682 static inline bool
8683 voluntary_active_balance(struct lb_env *env)
8684 {
8685 	struct sched_domain *sd = env->sd;
8686 
8687 	if (asym_active_balance(env))
8688 		return 1;
8689 
8690 	/*
8691 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8692 	 * It's worth migrating the task if the src_cpu's capacity is reduced
8693 	 * because of other sched_class or IRQs if more capacity stays
8694 	 * available on dst_cpu.
8695 	 */
8696 	if ((env->idle != CPU_NOT_IDLE) &&
8697 	    (env->src_rq->cfs.h_nr_running == 1)) {
8698 		if ((check_cpu_capacity(env->src_rq, sd)) &&
8699 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8700 			return 1;
8701 	}
8702 
8703 	if (env->src_grp_type == group_misfit_task)
8704 		return 1;
8705 
8706 	return 0;
8707 }
8708 
8709 static int need_active_balance(struct lb_env *env)
8710 {
8711 	struct sched_domain *sd = env->sd;
8712 
8713 	if (voluntary_active_balance(env))
8714 		return 1;
8715 
8716 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8717 }
8718 
8719 static int active_load_balance_cpu_stop(void *data);
8720 
8721 static int should_we_balance(struct lb_env *env)
8722 {
8723 	struct sched_group *sg = env->sd->groups;
8724 	int cpu, balance_cpu = -1;
8725 
8726 	/*
8727 	 * Ensure the balancing environment is consistent; can happen
8728 	 * when the softirq triggers 'during' hotplug.
8729 	 */
8730 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8731 		return 0;
8732 
8733 	/*
8734 	 * In the newly idle case, we will allow all the CPUs
8735 	 * to do the newly idle load balance.
8736 	 */
8737 	if (env->idle == CPU_NEWLY_IDLE)
8738 		return 1;
8739 
8740 	/* Try to find first idle CPU */
8741 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8742 		if (!idle_cpu(cpu))
8743 			continue;
8744 
8745 		balance_cpu = cpu;
8746 		break;
8747 	}
8748 
8749 	if (balance_cpu == -1)
8750 		balance_cpu = group_balance_cpu(sg);
8751 
8752 	/*
8753 	 * First idle CPU or the first CPU(busiest) in this sched group
8754 	 * is eligible for doing load balancing at this and above domains.
8755 	 */
8756 	return balance_cpu == env->dst_cpu;
8757 }
8758 
8759 /*
8760  * Check this_cpu to ensure it is balanced within domain. Attempt to move
8761  * tasks if there is an imbalance.
8762  */
8763 static int load_balance(int this_cpu, struct rq *this_rq,
8764 			struct sched_domain *sd, enum cpu_idle_type idle,
8765 			int *continue_balancing)
8766 {
8767 	int ld_moved, cur_ld_moved, active_balance = 0;
8768 	struct sched_domain *sd_parent = sd->parent;
8769 	struct sched_group *group;
8770 	struct rq *busiest;
8771 	struct rq_flags rf;
8772 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8773 
8774 	struct lb_env env = {
8775 		.sd		= sd,
8776 		.dst_cpu	= this_cpu,
8777 		.dst_rq		= this_rq,
8778 		.dst_grpmask    = sched_group_span(sd->groups),
8779 		.idle		= idle,
8780 		.loop_break	= sched_nr_migrate_break,
8781 		.cpus		= cpus,
8782 		.fbq_type	= all,
8783 		.tasks		= LIST_HEAD_INIT(env.tasks),
8784 	};
8785 
8786 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8787 
8788 	schedstat_inc(sd->lb_count[idle]);
8789 
8790 redo:
8791 	if (!should_we_balance(&env)) {
8792 		*continue_balancing = 0;
8793 		goto out_balanced;
8794 	}
8795 
8796 	group = find_busiest_group(&env);
8797 	if (!group) {
8798 		schedstat_inc(sd->lb_nobusyg[idle]);
8799 		goto out_balanced;
8800 	}
8801 
8802 	busiest = find_busiest_queue(&env, group);
8803 	if (!busiest) {
8804 		schedstat_inc(sd->lb_nobusyq[idle]);
8805 		goto out_balanced;
8806 	}
8807 
8808 	BUG_ON(busiest == env.dst_rq);
8809 
8810 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8811 
8812 	env.src_cpu = busiest->cpu;
8813 	env.src_rq = busiest;
8814 
8815 	ld_moved = 0;
8816 	if (busiest->nr_running > 1) {
8817 		/*
8818 		 * Attempt to move tasks. If find_busiest_group has found
8819 		 * an imbalance but busiest->nr_running <= 1, the group is
8820 		 * still unbalanced. ld_moved simply stays zero, so it is
8821 		 * correctly treated as an imbalance.
8822 		 */
8823 		env.flags |= LBF_ALL_PINNED;
8824 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8825 
8826 more_balance:
8827 		rq_lock_irqsave(busiest, &rf);
8828 		update_rq_clock(busiest);
8829 
8830 		/*
8831 		 * cur_ld_moved - load moved in current iteration
8832 		 * ld_moved     - cumulative load moved across iterations
8833 		 */
8834 		cur_ld_moved = detach_tasks(&env);
8835 
8836 		/*
8837 		 * We've detached some tasks from busiest_rq. Every
8838 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8839 		 * unlock busiest->lock, and we are able to be sure
8840 		 * that nobody can manipulate the tasks in parallel.
8841 		 * See task_rq_lock() family for the details.
8842 		 */
8843 
8844 		rq_unlock(busiest, &rf);
8845 
8846 		if (cur_ld_moved) {
8847 			attach_tasks(&env);
8848 			ld_moved += cur_ld_moved;
8849 		}
8850 
8851 		local_irq_restore(rf.flags);
8852 
8853 		if (env.flags & LBF_NEED_BREAK) {
8854 			env.flags &= ~LBF_NEED_BREAK;
8855 			goto more_balance;
8856 		}
8857 
8858 		/*
8859 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8860 		 * us and move them to an alternate dst_cpu in our sched_group
8861 		 * where they can run. The upper limit on how many times we
8862 		 * iterate on same src_cpu is dependent on number of CPUs in our
8863 		 * sched_group.
8864 		 *
8865 		 * This changes load balance semantics a bit on who can move
8866 		 * load to a given_cpu. In addition to the given_cpu itself
8867 		 * (or a ilb_cpu acting on its behalf where given_cpu is
8868 		 * nohz-idle), we now have balance_cpu in a position to move
8869 		 * load to given_cpu. In rare situations, this may cause
8870 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8871 		 * _independently_ and at _same_ time to move some load to
8872 		 * given_cpu) causing exceess load to be moved to given_cpu.
8873 		 * This however should not happen so much in practice and
8874 		 * moreover subsequent load balance cycles should correct the
8875 		 * excess load moved.
8876 		 */
8877 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8878 
8879 			/* Prevent to re-select dst_cpu via env's CPUs */
8880 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
8881 
8882 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8883 			env.dst_cpu	 = env.new_dst_cpu;
8884 			env.flags	&= ~LBF_DST_PINNED;
8885 			env.loop	 = 0;
8886 			env.loop_break	 = sched_nr_migrate_break;
8887 
8888 			/*
8889 			 * Go back to "more_balance" rather than "redo" since we
8890 			 * need to continue with same src_cpu.
8891 			 */
8892 			goto more_balance;
8893 		}
8894 
8895 		/*
8896 		 * We failed to reach balance because of affinity.
8897 		 */
8898 		if (sd_parent) {
8899 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8900 
8901 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8902 				*group_imbalance = 1;
8903 		}
8904 
8905 		/* All tasks on this runqueue were pinned by CPU affinity */
8906 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8907 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
8908 			/*
8909 			 * Attempting to continue load balancing at the current
8910 			 * sched_domain level only makes sense if there are
8911 			 * active CPUs remaining as possible busiest CPUs to
8912 			 * pull load from which are not contained within the
8913 			 * destination group that is receiving any migrated
8914 			 * load.
8915 			 */
8916 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8917 				env.loop = 0;
8918 				env.loop_break = sched_nr_migrate_break;
8919 				goto redo;
8920 			}
8921 			goto out_all_pinned;
8922 		}
8923 	}
8924 
8925 	if (!ld_moved) {
8926 		schedstat_inc(sd->lb_failed[idle]);
8927 		/*
8928 		 * Increment the failure counter only on periodic balance.
8929 		 * We do not want newidle balance, which can be very
8930 		 * frequent, pollute the failure counter causing
8931 		 * excessive cache_hot migrations and active balances.
8932 		 */
8933 		if (idle != CPU_NEWLY_IDLE)
8934 			sd->nr_balance_failed++;
8935 
8936 		if (need_active_balance(&env)) {
8937 			unsigned long flags;
8938 
8939 			raw_spin_lock_irqsave(&busiest->lock, flags);
8940 
8941 			/*
8942 			 * Don't kick the active_load_balance_cpu_stop,
8943 			 * if the curr task on busiest CPU can't be
8944 			 * moved to this_cpu:
8945 			 */
8946 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
8947 				raw_spin_unlock_irqrestore(&busiest->lock,
8948 							    flags);
8949 				env.flags |= LBF_ALL_PINNED;
8950 				goto out_one_pinned;
8951 			}
8952 
8953 			/*
8954 			 * ->active_balance synchronizes accesses to
8955 			 * ->active_balance_work.  Once set, it's cleared
8956 			 * only after active load balance is finished.
8957 			 */
8958 			if (!busiest->active_balance) {
8959 				busiest->active_balance = 1;
8960 				busiest->push_cpu = this_cpu;
8961 				active_balance = 1;
8962 			}
8963 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8964 
8965 			if (active_balance) {
8966 				stop_one_cpu_nowait(cpu_of(busiest),
8967 					active_load_balance_cpu_stop, busiest,
8968 					&busiest->active_balance_work);
8969 			}
8970 
8971 			/* We've kicked active balancing, force task migration. */
8972 			sd->nr_balance_failed = sd->cache_nice_tries+1;
8973 		}
8974 	} else
8975 		sd->nr_balance_failed = 0;
8976 
8977 	if (likely(!active_balance) || voluntary_active_balance(&env)) {
8978 		/* We were unbalanced, so reset the balancing interval */
8979 		sd->balance_interval = sd->min_interval;
8980 	} else {
8981 		/*
8982 		 * If we've begun active balancing, start to back off. This
8983 		 * case may not be covered by the all_pinned logic if there
8984 		 * is only 1 task on the busy runqueue (because we don't call
8985 		 * detach_tasks).
8986 		 */
8987 		if (sd->balance_interval < sd->max_interval)
8988 			sd->balance_interval *= 2;
8989 	}
8990 
8991 	goto out;
8992 
8993 out_balanced:
8994 	/*
8995 	 * We reach balance although we may have faced some affinity
8996 	 * constraints. Clear the imbalance flag only if other tasks got
8997 	 * a chance to move and fix the imbalance.
8998 	 */
8999 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9000 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9001 
9002 		if (*group_imbalance)
9003 			*group_imbalance = 0;
9004 	}
9005 
9006 out_all_pinned:
9007 	/*
9008 	 * We reach balance because all tasks are pinned at this level so
9009 	 * we can't migrate them. Let the imbalance flag set so parent level
9010 	 * can try to migrate them.
9011 	 */
9012 	schedstat_inc(sd->lb_balanced[idle]);
9013 
9014 	sd->nr_balance_failed = 0;
9015 
9016 out_one_pinned:
9017 	ld_moved = 0;
9018 
9019 	/*
9020 	 * newidle_balance() disregards balance intervals, so we could
9021 	 * repeatedly reach this code, which would lead to balance_interval
9022 	 * skyrocketting in a short amount of time. Skip the balance_interval
9023 	 * increase logic to avoid that.
9024 	 */
9025 	if (env.idle == CPU_NEWLY_IDLE)
9026 		goto out;
9027 
9028 	/* tune up the balancing interval */
9029 	if ((env.flags & LBF_ALL_PINNED &&
9030 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
9031 	    sd->balance_interval < sd->max_interval)
9032 		sd->balance_interval *= 2;
9033 out:
9034 	return ld_moved;
9035 }
9036 
9037 static inline unsigned long
9038 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9039 {
9040 	unsigned long interval = sd->balance_interval;
9041 
9042 	if (cpu_busy)
9043 		interval *= sd->busy_factor;
9044 
9045 	/* scale ms to jiffies */
9046 	interval = msecs_to_jiffies(interval);
9047 	interval = clamp(interval, 1UL, max_load_balance_interval);
9048 
9049 	return interval;
9050 }
9051 
9052 static inline void
9053 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9054 {
9055 	unsigned long interval, next;
9056 
9057 	/* used by idle balance, so cpu_busy = 0 */
9058 	interval = get_sd_balance_interval(sd, 0);
9059 	next = sd->last_balance + interval;
9060 
9061 	if (time_after(*next_balance, next))
9062 		*next_balance = next;
9063 }
9064 
9065 /*
9066  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9067  * running tasks off the busiest CPU onto idle CPUs. It requires at
9068  * least 1 task to be running on each physical CPU where possible, and
9069  * avoids physical / logical imbalances.
9070  */
9071 static int active_load_balance_cpu_stop(void *data)
9072 {
9073 	struct rq *busiest_rq = data;
9074 	int busiest_cpu = cpu_of(busiest_rq);
9075 	int target_cpu = busiest_rq->push_cpu;
9076 	struct rq *target_rq = cpu_rq(target_cpu);
9077 	struct sched_domain *sd;
9078 	struct task_struct *p = NULL;
9079 	struct rq_flags rf;
9080 
9081 	rq_lock_irq(busiest_rq, &rf);
9082 	/*
9083 	 * Between queueing the stop-work and running it is a hole in which
9084 	 * CPUs can become inactive. We should not move tasks from or to
9085 	 * inactive CPUs.
9086 	 */
9087 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9088 		goto out_unlock;
9089 
9090 	/* Make sure the requested CPU hasn't gone down in the meantime: */
9091 	if (unlikely(busiest_cpu != smp_processor_id() ||
9092 		     !busiest_rq->active_balance))
9093 		goto out_unlock;
9094 
9095 	/* Is there any task to move? */
9096 	if (busiest_rq->nr_running <= 1)
9097 		goto out_unlock;
9098 
9099 	/*
9100 	 * This condition is "impossible", if it occurs
9101 	 * we need to fix it. Originally reported by
9102 	 * Bjorn Helgaas on a 128-CPU setup.
9103 	 */
9104 	BUG_ON(busiest_rq == target_rq);
9105 
9106 	/* Search for an sd spanning us and the target CPU. */
9107 	rcu_read_lock();
9108 	for_each_domain(target_cpu, sd) {
9109 		if ((sd->flags & SD_LOAD_BALANCE) &&
9110 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9111 				break;
9112 	}
9113 
9114 	if (likely(sd)) {
9115 		struct lb_env env = {
9116 			.sd		= sd,
9117 			.dst_cpu	= target_cpu,
9118 			.dst_rq		= target_rq,
9119 			.src_cpu	= busiest_rq->cpu,
9120 			.src_rq		= busiest_rq,
9121 			.idle		= CPU_IDLE,
9122 			/*
9123 			 * can_migrate_task() doesn't need to compute new_dst_cpu
9124 			 * for active balancing. Since we have CPU_IDLE, but no
9125 			 * @dst_grpmask we need to make that test go away with lying
9126 			 * about DST_PINNED.
9127 			 */
9128 			.flags		= LBF_DST_PINNED,
9129 		};
9130 
9131 		schedstat_inc(sd->alb_count);
9132 		update_rq_clock(busiest_rq);
9133 
9134 		p = detach_one_task(&env);
9135 		if (p) {
9136 			schedstat_inc(sd->alb_pushed);
9137 			/* Active balancing done, reset the failure counter. */
9138 			sd->nr_balance_failed = 0;
9139 		} else {
9140 			schedstat_inc(sd->alb_failed);
9141 		}
9142 	}
9143 	rcu_read_unlock();
9144 out_unlock:
9145 	busiest_rq->active_balance = 0;
9146 	rq_unlock(busiest_rq, &rf);
9147 
9148 	if (p)
9149 		attach_one_task(target_rq, p);
9150 
9151 	local_irq_enable();
9152 
9153 	return 0;
9154 }
9155 
9156 static DEFINE_SPINLOCK(balancing);
9157 
9158 /*
9159  * Scale the max load_balance interval with the number of CPUs in the system.
9160  * This trades load-balance latency on larger machines for less cross talk.
9161  */
9162 void update_max_interval(void)
9163 {
9164 	max_load_balance_interval = HZ*num_online_cpus()/10;
9165 }
9166 
9167 /*
9168  * It checks each scheduling domain to see if it is due to be balanced,
9169  * and initiates a balancing operation if so.
9170  *
9171  * Balancing parameters are set up in init_sched_domains.
9172  */
9173 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9174 {
9175 	int continue_balancing = 1;
9176 	int cpu = rq->cpu;
9177 	unsigned long interval;
9178 	struct sched_domain *sd;
9179 	/* Earliest time when we have to do rebalance again */
9180 	unsigned long next_balance = jiffies + 60*HZ;
9181 	int update_next_balance = 0;
9182 	int need_serialize, need_decay = 0;
9183 	u64 max_cost = 0;
9184 
9185 	rcu_read_lock();
9186 	for_each_domain(cpu, sd) {
9187 		/*
9188 		 * Decay the newidle max times here because this is a regular
9189 		 * visit to all the domains. Decay ~1% per second.
9190 		 */
9191 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9192 			sd->max_newidle_lb_cost =
9193 				(sd->max_newidle_lb_cost * 253) / 256;
9194 			sd->next_decay_max_lb_cost = jiffies + HZ;
9195 			need_decay = 1;
9196 		}
9197 		max_cost += sd->max_newidle_lb_cost;
9198 
9199 		if (!(sd->flags & SD_LOAD_BALANCE))
9200 			continue;
9201 
9202 		/*
9203 		 * Stop the load balance at this level. There is another
9204 		 * CPU in our sched group which is doing load balancing more
9205 		 * actively.
9206 		 */
9207 		if (!continue_balancing) {
9208 			if (need_decay)
9209 				continue;
9210 			break;
9211 		}
9212 
9213 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9214 
9215 		need_serialize = sd->flags & SD_SERIALIZE;
9216 		if (need_serialize) {
9217 			if (!spin_trylock(&balancing))
9218 				goto out;
9219 		}
9220 
9221 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
9222 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9223 				/*
9224 				 * The LBF_DST_PINNED logic could have changed
9225 				 * env->dst_cpu, so we can't know our idle
9226 				 * state even if we migrated tasks. Update it.
9227 				 */
9228 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9229 			}
9230 			sd->last_balance = jiffies;
9231 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9232 		}
9233 		if (need_serialize)
9234 			spin_unlock(&balancing);
9235 out:
9236 		if (time_after(next_balance, sd->last_balance + interval)) {
9237 			next_balance = sd->last_balance + interval;
9238 			update_next_balance = 1;
9239 		}
9240 	}
9241 	if (need_decay) {
9242 		/*
9243 		 * Ensure the rq-wide value also decays but keep it at a
9244 		 * reasonable floor to avoid funnies with rq->avg_idle.
9245 		 */
9246 		rq->max_idle_balance_cost =
9247 			max((u64)sysctl_sched_migration_cost, max_cost);
9248 	}
9249 	rcu_read_unlock();
9250 
9251 	/*
9252 	 * next_balance will be updated only when there is a need.
9253 	 * When the cpu is attached to null domain for ex, it will not be
9254 	 * updated.
9255 	 */
9256 	if (likely(update_next_balance)) {
9257 		rq->next_balance = next_balance;
9258 
9259 #ifdef CONFIG_NO_HZ_COMMON
9260 		/*
9261 		 * If this CPU has been elected to perform the nohz idle
9262 		 * balance. Other idle CPUs have already rebalanced with
9263 		 * nohz_idle_balance() and nohz.next_balance has been
9264 		 * updated accordingly. This CPU is now running the idle load
9265 		 * balance for itself and we need to update the
9266 		 * nohz.next_balance accordingly.
9267 		 */
9268 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9269 			nohz.next_balance = rq->next_balance;
9270 #endif
9271 	}
9272 }
9273 
9274 static inline int on_null_domain(struct rq *rq)
9275 {
9276 	return unlikely(!rcu_dereference_sched(rq->sd));
9277 }
9278 
9279 #ifdef CONFIG_NO_HZ_COMMON
9280 /*
9281  * idle load balancing details
9282  * - When one of the busy CPUs notice that there may be an idle rebalancing
9283  *   needed, they will kick the idle load balancer, which then does idle
9284  *   load balancing for all the idle CPUs.
9285  * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9286  *   anywhere yet.
9287  */
9288 
9289 static inline int find_new_ilb(void)
9290 {
9291 	int ilb;
9292 
9293 	for_each_cpu_and(ilb, nohz.idle_cpus_mask,
9294 			      housekeeping_cpumask(HK_FLAG_MISC)) {
9295 		if (idle_cpu(ilb))
9296 			return ilb;
9297 	}
9298 
9299 	return nr_cpu_ids;
9300 }
9301 
9302 /*
9303  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
9304  * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
9305  */
9306 static void kick_ilb(unsigned int flags)
9307 {
9308 	int ilb_cpu;
9309 
9310 	nohz.next_balance++;
9311 
9312 	ilb_cpu = find_new_ilb();
9313 
9314 	if (ilb_cpu >= nr_cpu_ids)
9315 		return;
9316 
9317 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
9318 	if (flags & NOHZ_KICK_MASK)
9319 		return;
9320 
9321 	/*
9322 	 * Use smp_send_reschedule() instead of resched_cpu().
9323 	 * This way we generate a sched IPI on the target CPU which
9324 	 * is idle. And the softirq performing nohz idle load balance
9325 	 * will be run before returning from the IPI.
9326 	 */
9327 	smp_send_reschedule(ilb_cpu);
9328 }
9329 
9330 /*
9331  * Current decision point for kicking the idle load balancer in the presence
9332  * of idle CPUs in the system.
9333  */
9334 static void nohz_balancer_kick(struct rq *rq)
9335 {
9336 	unsigned long now = jiffies;
9337 	struct sched_domain_shared *sds;
9338 	struct sched_domain *sd;
9339 	int nr_busy, i, cpu = rq->cpu;
9340 	unsigned int flags = 0;
9341 
9342 	if (unlikely(rq->idle_balance))
9343 		return;
9344 
9345 	/*
9346 	 * We may be recently in ticked or tickless idle mode. At the first
9347 	 * busy tick after returning from idle, we will update the busy stats.
9348 	 */
9349 	nohz_balance_exit_idle(rq);
9350 
9351 	/*
9352 	 * None are in tickless mode and hence no need for NOHZ idle load
9353 	 * balancing.
9354 	 */
9355 	if (likely(!atomic_read(&nohz.nr_cpus)))
9356 		return;
9357 
9358 	if (READ_ONCE(nohz.has_blocked) &&
9359 	    time_after(now, READ_ONCE(nohz.next_blocked)))
9360 		flags = NOHZ_STATS_KICK;
9361 
9362 	if (time_before(now, nohz.next_balance))
9363 		goto out;
9364 
9365 	if (rq->nr_running >= 2) {
9366 		flags = NOHZ_KICK_MASK;
9367 		goto out;
9368 	}
9369 
9370 	rcu_read_lock();
9371 
9372 	sd = rcu_dereference(rq->sd);
9373 	if (sd) {
9374 		/*
9375 		 * If there's a CFS task and the current CPU has reduced
9376 		 * capacity; kick the ILB to see if there's a better CPU to run
9377 		 * on.
9378 		 */
9379 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
9380 			flags = NOHZ_KICK_MASK;
9381 			goto unlock;
9382 		}
9383 	}
9384 
9385 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
9386 	if (sd) {
9387 		/*
9388 		 * When ASYM_PACKING; see if there's a more preferred CPU
9389 		 * currently idle; in which case, kick the ILB to move tasks
9390 		 * around.
9391 		 */
9392 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
9393 			if (sched_asym_prefer(i, cpu)) {
9394 				flags = NOHZ_KICK_MASK;
9395 				goto unlock;
9396 			}
9397 		}
9398 	}
9399 
9400 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
9401 	if (sd) {
9402 		/*
9403 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
9404 		 * to run the misfit task on.
9405 		 */
9406 		if (check_misfit_status(rq, sd)) {
9407 			flags = NOHZ_KICK_MASK;
9408 			goto unlock;
9409 		}
9410 
9411 		/*
9412 		 * For asymmetric systems, we do not want to nicely balance
9413 		 * cache use, instead we want to embrace asymmetry and only
9414 		 * ensure tasks have enough CPU capacity.
9415 		 *
9416 		 * Skip the LLC logic because it's not relevant in that case.
9417 		 */
9418 		goto unlock;
9419 	}
9420 
9421 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9422 	if (sds) {
9423 		/*
9424 		 * If there is an imbalance between LLC domains (IOW we could
9425 		 * increase the overall cache use), we need some less-loaded LLC
9426 		 * domain to pull some load. Likewise, we may need to spread
9427 		 * load within the current LLC domain (e.g. packed SMT cores but
9428 		 * other CPUs are idle). We can't really know from here how busy
9429 		 * the others are - so just get a nohz balance going if it looks
9430 		 * like this LLC domain has tasks we could move.
9431 		 */
9432 		nr_busy = atomic_read(&sds->nr_busy_cpus);
9433 		if (nr_busy > 1) {
9434 			flags = NOHZ_KICK_MASK;
9435 			goto unlock;
9436 		}
9437 	}
9438 unlock:
9439 	rcu_read_unlock();
9440 out:
9441 	if (flags)
9442 		kick_ilb(flags);
9443 }
9444 
9445 static void set_cpu_sd_state_busy(int cpu)
9446 {
9447 	struct sched_domain *sd;
9448 
9449 	rcu_read_lock();
9450 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9451 
9452 	if (!sd || !sd->nohz_idle)
9453 		goto unlock;
9454 	sd->nohz_idle = 0;
9455 
9456 	atomic_inc(&sd->shared->nr_busy_cpus);
9457 unlock:
9458 	rcu_read_unlock();
9459 }
9460 
9461 void nohz_balance_exit_idle(struct rq *rq)
9462 {
9463 	SCHED_WARN_ON(rq != this_rq());
9464 
9465 	if (likely(!rq->nohz_tick_stopped))
9466 		return;
9467 
9468 	rq->nohz_tick_stopped = 0;
9469 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9470 	atomic_dec(&nohz.nr_cpus);
9471 
9472 	set_cpu_sd_state_busy(rq->cpu);
9473 }
9474 
9475 static void set_cpu_sd_state_idle(int cpu)
9476 {
9477 	struct sched_domain *sd;
9478 
9479 	rcu_read_lock();
9480 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9481 
9482 	if (!sd || sd->nohz_idle)
9483 		goto unlock;
9484 	sd->nohz_idle = 1;
9485 
9486 	atomic_dec(&sd->shared->nr_busy_cpus);
9487 unlock:
9488 	rcu_read_unlock();
9489 }
9490 
9491 /*
9492  * This routine will record that the CPU is going idle with tick stopped.
9493  * This info will be used in performing idle load balancing in the future.
9494  */
9495 void nohz_balance_enter_idle(int cpu)
9496 {
9497 	struct rq *rq = cpu_rq(cpu);
9498 
9499 	SCHED_WARN_ON(cpu != smp_processor_id());
9500 
9501 	/* If this CPU is going down, then nothing needs to be done: */
9502 	if (!cpu_active(cpu))
9503 		return;
9504 
9505 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9506 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9507 		return;
9508 
9509 	/*
9510 	 * Can be set safely without rq->lock held
9511 	 * If a clear happens, it will have evaluated last additions because
9512 	 * rq->lock is held during the check and the clear
9513 	 */
9514 	rq->has_blocked_load = 1;
9515 
9516 	/*
9517 	 * The tick is still stopped but load could have been added in the
9518 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
9519 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9520 	 * of nohz.has_blocked can only happen after checking the new load
9521 	 */
9522 	if (rq->nohz_tick_stopped)
9523 		goto out;
9524 
9525 	/* If we're a completely isolated CPU, we don't play: */
9526 	if (on_null_domain(rq))
9527 		return;
9528 
9529 	rq->nohz_tick_stopped = 1;
9530 
9531 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9532 	atomic_inc(&nohz.nr_cpus);
9533 
9534 	/*
9535 	 * Ensures that if nohz_idle_balance() fails to observe our
9536 	 * @idle_cpus_mask store, it must observe the @has_blocked
9537 	 * store.
9538 	 */
9539 	smp_mb__after_atomic();
9540 
9541 	set_cpu_sd_state_idle(cpu);
9542 
9543 out:
9544 	/*
9545 	 * Each time a cpu enter idle, we assume that it has blocked load and
9546 	 * enable the periodic update of the load of idle cpus
9547 	 */
9548 	WRITE_ONCE(nohz.has_blocked, 1);
9549 }
9550 
9551 /*
9552  * Internal function that runs load balance for all idle cpus. The load balance
9553  * can be a simple update of blocked load or a complete load balance with
9554  * tasks movement depending of flags.
9555  * The function returns false if the loop has stopped before running
9556  * through all idle CPUs.
9557  */
9558 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9559 			       enum cpu_idle_type idle)
9560 {
9561 	/* Earliest time when we have to do rebalance again */
9562 	unsigned long now = jiffies;
9563 	unsigned long next_balance = now + 60*HZ;
9564 	bool has_blocked_load = false;
9565 	int update_next_balance = 0;
9566 	int this_cpu = this_rq->cpu;
9567 	int balance_cpu;
9568 	int ret = false;
9569 	struct rq *rq;
9570 
9571 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9572 
9573 	/*
9574 	 * We assume there will be no idle load after this update and clear
9575 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9576 	 * set the has_blocked flag and trig another update of idle load.
9577 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9578 	 * setting the flag, we are sure to not clear the state and not
9579 	 * check the load of an idle cpu.
9580 	 */
9581 	WRITE_ONCE(nohz.has_blocked, 0);
9582 
9583 	/*
9584 	 * Ensures that if we miss the CPU, we must see the has_blocked
9585 	 * store from nohz_balance_enter_idle().
9586 	 */
9587 	smp_mb();
9588 
9589 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9590 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9591 			continue;
9592 
9593 		/*
9594 		 * If this CPU gets work to do, stop the load balancing
9595 		 * work being done for other CPUs. Next load
9596 		 * balancing owner will pick it up.
9597 		 */
9598 		if (need_resched()) {
9599 			has_blocked_load = true;
9600 			goto abort;
9601 		}
9602 
9603 		rq = cpu_rq(balance_cpu);
9604 
9605 		has_blocked_load |= update_nohz_stats(rq, true);
9606 
9607 		/*
9608 		 * If time for next balance is due,
9609 		 * do the balance.
9610 		 */
9611 		if (time_after_eq(jiffies, rq->next_balance)) {
9612 			struct rq_flags rf;
9613 
9614 			rq_lock_irqsave(rq, &rf);
9615 			update_rq_clock(rq);
9616 			rq_unlock_irqrestore(rq, &rf);
9617 
9618 			if (flags & NOHZ_BALANCE_KICK)
9619 				rebalance_domains(rq, CPU_IDLE);
9620 		}
9621 
9622 		if (time_after(next_balance, rq->next_balance)) {
9623 			next_balance = rq->next_balance;
9624 			update_next_balance = 1;
9625 		}
9626 	}
9627 
9628 	/* Newly idle CPU doesn't need an update */
9629 	if (idle != CPU_NEWLY_IDLE) {
9630 		update_blocked_averages(this_cpu);
9631 		has_blocked_load |= this_rq->has_blocked_load;
9632 	}
9633 
9634 	if (flags & NOHZ_BALANCE_KICK)
9635 		rebalance_domains(this_rq, CPU_IDLE);
9636 
9637 	WRITE_ONCE(nohz.next_blocked,
9638 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9639 
9640 	/* The full idle balance loop has been done */
9641 	ret = true;
9642 
9643 abort:
9644 	/* There is still blocked load, enable periodic update */
9645 	if (has_blocked_load)
9646 		WRITE_ONCE(nohz.has_blocked, 1);
9647 
9648 	/*
9649 	 * next_balance will be updated only when there is a need.
9650 	 * When the CPU is attached to null domain for ex, it will not be
9651 	 * updated.
9652 	 */
9653 	if (likely(update_next_balance))
9654 		nohz.next_balance = next_balance;
9655 
9656 	return ret;
9657 }
9658 
9659 /*
9660  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9661  * rebalancing for all the cpus for whom scheduler ticks are stopped.
9662  */
9663 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9664 {
9665 	int this_cpu = this_rq->cpu;
9666 	unsigned int flags;
9667 
9668 	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9669 		return false;
9670 
9671 	if (idle != CPU_IDLE) {
9672 		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9673 		return false;
9674 	}
9675 
9676 	/* could be _relaxed() */
9677 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9678 	if (!(flags & NOHZ_KICK_MASK))
9679 		return false;
9680 
9681 	_nohz_idle_balance(this_rq, flags, idle);
9682 
9683 	return true;
9684 }
9685 
9686 static void nohz_newidle_balance(struct rq *this_rq)
9687 {
9688 	int this_cpu = this_rq->cpu;
9689 
9690 	/*
9691 	 * This CPU doesn't want to be disturbed by scheduler
9692 	 * housekeeping
9693 	 */
9694 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9695 		return;
9696 
9697 	/* Will wake up very soon. No time for doing anything else*/
9698 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
9699 		return;
9700 
9701 	/* Don't need to update blocked load of idle CPUs*/
9702 	if (!READ_ONCE(nohz.has_blocked) ||
9703 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9704 		return;
9705 
9706 	raw_spin_unlock(&this_rq->lock);
9707 	/*
9708 	 * This CPU is going to be idle and blocked load of idle CPUs
9709 	 * need to be updated. Run the ilb locally as it is a good
9710 	 * candidate for ilb instead of waking up another idle CPU.
9711 	 * Kick an normal ilb if we failed to do the update.
9712 	 */
9713 	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9714 		kick_ilb(NOHZ_STATS_KICK);
9715 	raw_spin_lock(&this_rq->lock);
9716 }
9717 
9718 #else /* !CONFIG_NO_HZ_COMMON */
9719 static inline void nohz_balancer_kick(struct rq *rq) { }
9720 
9721 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9722 {
9723 	return false;
9724 }
9725 
9726 static inline void nohz_newidle_balance(struct rq *this_rq) { }
9727 #endif /* CONFIG_NO_HZ_COMMON */
9728 
9729 /*
9730  * idle_balance is called by schedule() if this_cpu is about to become
9731  * idle. Attempts to pull tasks from other CPUs.
9732  */
9733 int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
9734 {
9735 	unsigned long next_balance = jiffies + HZ;
9736 	int this_cpu = this_rq->cpu;
9737 	struct sched_domain *sd;
9738 	int pulled_task = 0;
9739 	u64 curr_cost = 0;
9740 
9741 	update_misfit_status(NULL, this_rq);
9742 	/*
9743 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
9744 	 * measure the duration of idle_balance() as idle time.
9745 	 */
9746 	this_rq->idle_stamp = rq_clock(this_rq);
9747 
9748 	/*
9749 	 * Do not pull tasks towards !active CPUs...
9750 	 */
9751 	if (!cpu_active(this_cpu))
9752 		return 0;
9753 
9754 	/*
9755 	 * This is OK, because current is on_cpu, which avoids it being picked
9756 	 * for load-balance and preemption/IRQs are still disabled avoiding
9757 	 * further scheduler activity on it and we're being very careful to
9758 	 * re-start the picking loop.
9759 	 */
9760 	rq_unpin_lock(this_rq, rf);
9761 
9762 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
9763 	    !READ_ONCE(this_rq->rd->overload)) {
9764 
9765 		rcu_read_lock();
9766 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
9767 		if (sd)
9768 			update_next_balance(sd, &next_balance);
9769 		rcu_read_unlock();
9770 
9771 		nohz_newidle_balance(this_rq);
9772 
9773 		goto out;
9774 	}
9775 
9776 	raw_spin_unlock(&this_rq->lock);
9777 
9778 	update_blocked_averages(this_cpu);
9779 	rcu_read_lock();
9780 	for_each_domain(this_cpu, sd) {
9781 		int continue_balancing = 1;
9782 		u64 t0, domain_cost;
9783 
9784 		if (!(sd->flags & SD_LOAD_BALANCE))
9785 			continue;
9786 
9787 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9788 			update_next_balance(sd, &next_balance);
9789 			break;
9790 		}
9791 
9792 		if (sd->flags & SD_BALANCE_NEWIDLE) {
9793 			t0 = sched_clock_cpu(this_cpu);
9794 
9795 			pulled_task = load_balance(this_cpu, this_rq,
9796 						   sd, CPU_NEWLY_IDLE,
9797 						   &continue_balancing);
9798 
9799 			domain_cost = sched_clock_cpu(this_cpu) - t0;
9800 			if (domain_cost > sd->max_newidle_lb_cost)
9801 				sd->max_newidle_lb_cost = domain_cost;
9802 
9803 			curr_cost += domain_cost;
9804 		}
9805 
9806 		update_next_balance(sd, &next_balance);
9807 
9808 		/*
9809 		 * Stop searching for tasks to pull if there are
9810 		 * now runnable tasks on this rq.
9811 		 */
9812 		if (pulled_task || this_rq->nr_running > 0)
9813 			break;
9814 	}
9815 	rcu_read_unlock();
9816 
9817 	raw_spin_lock(&this_rq->lock);
9818 
9819 	if (curr_cost > this_rq->max_idle_balance_cost)
9820 		this_rq->max_idle_balance_cost = curr_cost;
9821 
9822 out:
9823 	/*
9824 	 * While browsing the domains, we released the rq lock, a task could
9825 	 * have been enqueued in the meantime. Since we're not going idle,
9826 	 * pretend we pulled a task.
9827 	 */
9828 	if (this_rq->cfs.h_nr_running && !pulled_task)
9829 		pulled_task = 1;
9830 
9831 	/* Move the next balance forward */
9832 	if (time_after(this_rq->next_balance, next_balance))
9833 		this_rq->next_balance = next_balance;
9834 
9835 	/* Is there a task of a high priority class? */
9836 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9837 		pulled_task = -1;
9838 
9839 	if (pulled_task)
9840 		this_rq->idle_stamp = 0;
9841 
9842 	rq_repin_lock(this_rq, rf);
9843 
9844 	return pulled_task;
9845 }
9846 
9847 /*
9848  * run_rebalance_domains is triggered when needed from the scheduler tick.
9849  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9850  */
9851 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9852 {
9853 	struct rq *this_rq = this_rq();
9854 	enum cpu_idle_type idle = this_rq->idle_balance ?
9855 						CPU_IDLE : CPU_NOT_IDLE;
9856 
9857 	/*
9858 	 * If this CPU has a pending nohz_balance_kick, then do the
9859 	 * balancing on behalf of the other idle CPUs whose ticks are
9860 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9861 	 * give the idle CPUs a chance to load balance. Else we may
9862 	 * load balance only within the local sched_domain hierarchy
9863 	 * and abort nohz_idle_balance altogether if we pull some load.
9864 	 */
9865 	if (nohz_idle_balance(this_rq, idle))
9866 		return;
9867 
9868 	/* normal load balance */
9869 	update_blocked_averages(this_rq->cpu);
9870 	rebalance_domains(this_rq, idle);
9871 }
9872 
9873 /*
9874  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9875  */
9876 void trigger_load_balance(struct rq *rq)
9877 {
9878 	/* Don't need to rebalance while attached to NULL domain */
9879 	if (unlikely(on_null_domain(rq)))
9880 		return;
9881 
9882 	if (time_after_eq(jiffies, rq->next_balance))
9883 		raise_softirq(SCHED_SOFTIRQ);
9884 
9885 	nohz_balancer_kick(rq);
9886 }
9887 
9888 static void rq_online_fair(struct rq *rq)
9889 {
9890 	update_sysctl();
9891 
9892 	update_runtime_enabled(rq);
9893 }
9894 
9895 static void rq_offline_fair(struct rq *rq)
9896 {
9897 	update_sysctl();
9898 
9899 	/* Ensure any throttled groups are reachable by pick_next_task */
9900 	unthrottle_offline_cfs_rqs(rq);
9901 }
9902 
9903 #endif /* CONFIG_SMP */
9904 
9905 /*
9906  * scheduler tick hitting a task of our scheduling class.
9907  *
9908  * NOTE: This function can be called remotely by the tick offload that
9909  * goes along full dynticks. Therefore no local assumption can be made
9910  * and everything must be accessed through the @rq and @curr passed in
9911  * parameters.
9912  */
9913 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9914 {
9915 	struct cfs_rq *cfs_rq;
9916 	struct sched_entity *se = &curr->se;
9917 
9918 	for_each_sched_entity(se) {
9919 		cfs_rq = cfs_rq_of(se);
9920 		entity_tick(cfs_rq, se, queued);
9921 	}
9922 
9923 	if (static_branch_unlikely(&sched_numa_balancing))
9924 		task_tick_numa(rq, curr);
9925 
9926 	update_misfit_status(curr, rq);
9927 	update_overutilized_status(task_rq(curr));
9928 }
9929 
9930 /*
9931  * called on fork with the child task as argument from the parent's context
9932  *  - child not yet on the tasklist
9933  *  - preemption disabled
9934  */
9935 static void task_fork_fair(struct task_struct *p)
9936 {
9937 	struct cfs_rq *cfs_rq;
9938 	struct sched_entity *se = &p->se, *curr;
9939 	struct rq *rq = this_rq();
9940 	struct rq_flags rf;
9941 
9942 	rq_lock(rq, &rf);
9943 	update_rq_clock(rq);
9944 
9945 	cfs_rq = task_cfs_rq(current);
9946 	curr = cfs_rq->curr;
9947 	if (curr) {
9948 		update_curr(cfs_rq);
9949 		se->vruntime = curr->vruntime;
9950 	}
9951 	place_entity(cfs_rq, se, 1);
9952 
9953 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9954 		/*
9955 		 * Upon rescheduling, sched_class::put_prev_task() will place
9956 		 * 'current' within the tree based on its new key value.
9957 		 */
9958 		swap(curr->vruntime, se->vruntime);
9959 		resched_curr(rq);
9960 	}
9961 
9962 	se->vruntime -= cfs_rq->min_vruntime;
9963 	rq_unlock(rq, &rf);
9964 }
9965 
9966 /*
9967  * Priority of the task has changed. Check to see if we preempt
9968  * the current task.
9969  */
9970 static void
9971 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9972 {
9973 	if (!task_on_rq_queued(p))
9974 		return;
9975 
9976 	/*
9977 	 * Reschedule if we are currently running on this runqueue and
9978 	 * our priority decreased, or if we are not currently running on
9979 	 * this runqueue and our priority is higher than the current's
9980 	 */
9981 	if (rq->curr == p) {
9982 		if (p->prio > oldprio)
9983 			resched_curr(rq);
9984 	} else
9985 		check_preempt_curr(rq, p, 0);
9986 }
9987 
9988 static inline bool vruntime_normalized(struct task_struct *p)
9989 {
9990 	struct sched_entity *se = &p->se;
9991 
9992 	/*
9993 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9994 	 * the dequeue_entity(.flags=0) will already have normalized the
9995 	 * vruntime.
9996 	 */
9997 	if (p->on_rq)
9998 		return true;
9999 
10000 	/*
10001 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
10002 	 * But there are some cases where it has already been normalized:
10003 	 *
10004 	 * - A forked child which is waiting for being woken up by
10005 	 *   wake_up_new_task().
10006 	 * - A task which has been woken up by try_to_wake_up() and
10007 	 *   waiting for actually being woken up by sched_ttwu_pending().
10008 	 */
10009 	if (!se->sum_exec_runtime ||
10010 	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
10011 		return true;
10012 
10013 	return false;
10014 }
10015 
10016 #ifdef CONFIG_FAIR_GROUP_SCHED
10017 /*
10018  * Propagate the changes of the sched_entity across the tg tree to make it
10019  * visible to the root
10020  */
10021 static void propagate_entity_cfs_rq(struct sched_entity *se)
10022 {
10023 	struct cfs_rq *cfs_rq;
10024 
10025 	/* Start to propagate at parent */
10026 	se = se->parent;
10027 
10028 	for_each_sched_entity(se) {
10029 		cfs_rq = cfs_rq_of(se);
10030 
10031 		if (cfs_rq_throttled(cfs_rq))
10032 			break;
10033 
10034 		update_load_avg(cfs_rq, se, UPDATE_TG);
10035 	}
10036 }
10037 #else
10038 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10039 #endif
10040 
10041 static void detach_entity_cfs_rq(struct sched_entity *se)
10042 {
10043 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10044 
10045 	/* Catch up with the cfs_rq and remove our load when we leave */
10046 	update_load_avg(cfs_rq, se, 0);
10047 	detach_entity_load_avg(cfs_rq, se);
10048 	update_tg_load_avg(cfs_rq, false);
10049 	propagate_entity_cfs_rq(se);
10050 }
10051 
10052 static void attach_entity_cfs_rq(struct sched_entity *se)
10053 {
10054 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10055 
10056 #ifdef CONFIG_FAIR_GROUP_SCHED
10057 	/*
10058 	 * Since the real-depth could have been changed (only FAIR
10059 	 * class maintain depth value), reset depth properly.
10060 	 */
10061 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10062 #endif
10063 
10064 	/* Synchronize entity with its cfs_rq */
10065 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10066 	attach_entity_load_avg(cfs_rq, se, 0);
10067 	update_tg_load_avg(cfs_rq, false);
10068 	propagate_entity_cfs_rq(se);
10069 }
10070 
10071 static void detach_task_cfs_rq(struct task_struct *p)
10072 {
10073 	struct sched_entity *se = &p->se;
10074 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10075 
10076 	if (!vruntime_normalized(p)) {
10077 		/*
10078 		 * Fix up our vruntime so that the current sleep doesn't
10079 		 * cause 'unlimited' sleep bonus.
10080 		 */
10081 		place_entity(cfs_rq, se, 0);
10082 		se->vruntime -= cfs_rq->min_vruntime;
10083 	}
10084 
10085 	detach_entity_cfs_rq(se);
10086 }
10087 
10088 static void attach_task_cfs_rq(struct task_struct *p)
10089 {
10090 	struct sched_entity *se = &p->se;
10091 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10092 
10093 	attach_entity_cfs_rq(se);
10094 
10095 	if (!vruntime_normalized(p))
10096 		se->vruntime += cfs_rq->min_vruntime;
10097 }
10098 
10099 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10100 {
10101 	detach_task_cfs_rq(p);
10102 }
10103 
10104 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10105 {
10106 	attach_task_cfs_rq(p);
10107 
10108 	if (task_on_rq_queued(p)) {
10109 		/*
10110 		 * We were most likely switched from sched_rt, so
10111 		 * kick off the schedule if running, otherwise just see
10112 		 * if we can still preempt the current task.
10113 		 */
10114 		if (rq->curr == p)
10115 			resched_curr(rq);
10116 		else
10117 			check_preempt_curr(rq, p, 0);
10118 	}
10119 }
10120 
10121 /* Account for a task changing its policy or group.
10122  *
10123  * This routine is mostly called to set cfs_rq->curr field when a task
10124  * migrates between groups/classes.
10125  */
10126 static void set_next_task_fair(struct rq *rq, struct task_struct *p)
10127 {
10128 	struct sched_entity *se = &p->se;
10129 
10130 #ifdef CONFIG_SMP
10131 	if (task_on_rq_queued(p)) {
10132 		/*
10133 		 * Move the next running task to the front of the list, so our
10134 		 * cfs_tasks list becomes MRU one.
10135 		 */
10136 		list_move(&se->group_node, &rq->cfs_tasks);
10137 	}
10138 #endif
10139 
10140 	for_each_sched_entity(se) {
10141 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
10142 
10143 		set_next_entity(cfs_rq, se);
10144 		/* ensure bandwidth has been allocated on our new cfs_rq */
10145 		account_cfs_rq_runtime(cfs_rq, 0);
10146 	}
10147 }
10148 
10149 void init_cfs_rq(struct cfs_rq *cfs_rq)
10150 {
10151 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10152 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10153 #ifndef CONFIG_64BIT
10154 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10155 #endif
10156 #ifdef CONFIG_SMP
10157 	raw_spin_lock_init(&cfs_rq->removed.lock);
10158 #endif
10159 }
10160 
10161 #ifdef CONFIG_FAIR_GROUP_SCHED
10162 static void task_set_group_fair(struct task_struct *p)
10163 {
10164 	struct sched_entity *se = &p->se;
10165 
10166 	set_task_rq(p, task_cpu(p));
10167 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10168 }
10169 
10170 static void task_move_group_fair(struct task_struct *p)
10171 {
10172 	detach_task_cfs_rq(p);
10173 	set_task_rq(p, task_cpu(p));
10174 
10175 #ifdef CONFIG_SMP
10176 	/* Tell se's cfs_rq has been changed -- migrated */
10177 	p->se.avg.last_update_time = 0;
10178 #endif
10179 	attach_task_cfs_rq(p);
10180 }
10181 
10182 static void task_change_group_fair(struct task_struct *p, int type)
10183 {
10184 	switch (type) {
10185 	case TASK_SET_GROUP:
10186 		task_set_group_fair(p);
10187 		break;
10188 
10189 	case TASK_MOVE_GROUP:
10190 		task_move_group_fair(p);
10191 		break;
10192 	}
10193 }
10194 
10195 void free_fair_sched_group(struct task_group *tg)
10196 {
10197 	int i;
10198 
10199 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10200 
10201 	for_each_possible_cpu(i) {
10202 		if (tg->cfs_rq)
10203 			kfree(tg->cfs_rq[i]);
10204 		if (tg->se)
10205 			kfree(tg->se[i]);
10206 	}
10207 
10208 	kfree(tg->cfs_rq);
10209 	kfree(tg->se);
10210 }
10211 
10212 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10213 {
10214 	struct sched_entity *se;
10215 	struct cfs_rq *cfs_rq;
10216 	int i;
10217 
10218 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10219 	if (!tg->cfs_rq)
10220 		goto err;
10221 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10222 	if (!tg->se)
10223 		goto err;
10224 
10225 	tg->shares = NICE_0_LOAD;
10226 
10227 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10228 
10229 	for_each_possible_cpu(i) {
10230 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10231 				      GFP_KERNEL, cpu_to_node(i));
10232 		if (!cfs_rq)
10233 			goto err;
10234 
10235 		se = kzalloc_node(sizeof(struct sched_entity),
10236 				  GFP_KERNEL, cpu_to_node(i));
10237 		if (!se)
10238 			goto err_free_rq;
10239 
10240 		init_cfs_rq(cfs_rq);
10241 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10242 		init_entity_runnable_average(se);
10243 	}
10244 
10245 	return 1;
10246 
10247 err_free_rq:
10248 	kfree(cfs_rq);
10249 err:
10250 	return 0;
10251 }
10252 
10253 void online_fair_sched_group(struct task_group *tg)
10254 {
10255 	struct sched_entity *se;
10256 	struct rq_flags rf;
10257 	struct rq *rq;
10258 	int i;
10259 
10260 	for_each_possible_cpu(i) {
10261 		rq = cpu_rq(i);
10262 		se = tg->se[i];
10263 		rq_lock_irq(rq, &rf);
10264 		update_rq_clock(rq);
10265 		attach_entity_cfs_rq(se);
10266 		sync_throttle(tg, i);
10267 		rq_unlock_irq(rq, &rf);
10268 	}
10269 }
10270 
10271 void unregister_fair_sched_group(struct task_group *tg)
10272 {
10273 	unsigned long flags;
10274 	struct rq *rq;
10275 	int cpu;
10276 
10277 	for_each_possible_cpu(cpu) {
10278 		if (tg->se[cpu])
10279 			remove_entity_load_avg(tg->se[cpu]);
10280 
10281 		/*
10282 		 * Only empty task groups can be destroyed; so we can speculatively
10283 		 * check on_list without danger of it being re-added.
10284 		 */
10285 		if (!tg->cfs_rq[cpu]->on_list)
10286 			continue;
10287 
10288 		rq = cpu_rq(cpu);
10289 
10290 		raw_spin_lock_irqsave(&rq->lock, flags);
10291 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10292 		raw_spin_unlock_irqrestore(&rq->lock, flags);
10293 	}
10294 }
10295 
10296 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10297 			struct sched_entity *se, int cpu,
10298 			struct sched_entity *parent)
10299 {
10300 	struct rq *rq = cpu_rq(cpu);
10301 
10302 	cfs_rq->tg = tg;
10303 	cfs_rq->rq = rq;
10304 	init_cfs_rq_runtime(cfs_rq);
10305 
10306 	tg->cfs_rq[cpu] = cfs_rq;
10307 	tg->se[cpu] = se;
10308 
10309 	/* se could be NULL for root_task_group */
10310 	if (!se)
10311 		return;
10312 
10313 	if (!parent) {
10314 		se->cfs_rq = &rq->cfs;
10315 		se->depth = 0;
10316 	} else {
10317 		se->cfs_rq = parent->my_q;
10318 		se->depth = parent->depth + 1;
10319 	}
10320 
10321 	se->my_q = cfs_rq;
10322 	/* guarantee group entities always have weight */
10323 	update_load_set(&se->load, NICE_0_LOAD);
10324 	se->parent = parent;
10325 }
10326 
10327 static DEFINE_MUTEX(shares_mutex);
10328 
10329 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10330 {
10331 	int i;
10332 
10333 	/*
10334 	 * We can't change the weight of the root cgroup.
10335 	 */
10336 	if (!tg->se[0])
10337 		return -EINVAL;
10338 
10339 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10340 
10341 	mutex_lock(&shares_mutex);
10342 	if (tg->shares == shares)
10343 		goto done;
10344 
10345 	tg->shares = shares;
10346 	for_each_possible_cpu(i) {
10347 		struct rq *rq = cpu_rq(i);
10348 		struct sched_entity *se = tg->se[i];
10349 		struct rq_flags rf;
10350 
10351 		/* Propagate contribution to hierarchy */
10352 		rq_lock_irqsave(rq, &rf);
10353 		update_rq_clock(rq);
10354 		for_each_sched_entity(se) {
10355 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10356 			update_cfs_group(se);
10357 		}
10358 		rq_unlock_irqrestore(rq, &rf);
10359 	}
10360 
10361 done:
10362 	mutex_unlock(&shares_mutex);
10363 	return 0;
10364 }
10365 #else /* CONFIG_FAIR_GROUP_SCHED */
10366 
10367 void free_fair_sched_group(struct task_group *tg) { }
10368 
10369 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10370 {
10371 	return 1;
10372 }
10373 
10374 void online_fair_sched_group(struct task_group *tg) { }
10375 
10376 void unregister_fair_sched_group(struct task_group *tg) { }
10377 
10378 #endif /* CONFIG_FAIR_GROUP_SCHED */
10379 
10380 
10381 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10382 {
10383 	struct sched_entity *se = &task->se;
10384 	unsigned int rr_interval = 0;
10385 
10386 	/*
10387 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10388 	 * idle runqueue:
10389 	 */
10390 	if (rq->cfs.load.weight)
10391 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10392 
10393 	return rr_interval;
10394 }
10395 
10396 /*
10397  * All the scheduling class methods:
10398  */
10399 const struct sched_class fair_sched_class = {
10400 	.next			= &idle_sched_class,
10401 	.enqueue_task		= enqueue_task_fair,
10402 	.dequeue_task		= dequeue_task_fair,
10403 	.yield_task		= yield_task_fair,
10404 	.yield_to_task		= yield_to_task_fair,
10405 
10406 	.check_preempt_curr	= check_preempt_wakeup,
10407 
10408 	.pick_next_task		= pick_next_task_fair,
10409 
10410 	.put_prev_task		= put_prev_task_fair,
10411 	.set_next_task          = set_next_task_fair,
10412 
10413 #ifdef CONFIG_SMP
10414 	.select_task_rq		= select_task_rq_fair,
10415 	.migrate_task_rq	= migrate_task_rq_fair,
10416 
10417 	.rq_online		= rq_online_fair,
10418 	.rq_offline		= rq_offline_fair,
10419 
10420 	.task_dead		= task_dead_fair,
10421 	.set_cpus_allowed	= set_cpus_allowed_common,
10422 #endif
10423 
10424 	.task_tick		= task_tick_fair,
10425 	.task_fork		= task_fork_fair,
10426 
10427 	.prio_changed		= prio_changed_fair,
10428 	.switched_from		= switched_from_fair,
10429 	.switched_to		= switched_to_fair,
10430 
10431 	.get_rr_interval	= get_rr_interval_fair,
10432 
10433 	.update_curr		= update_curr_fair,
10434 
10435 #ifdef CONFIG_FAIR_GROUP_SCHED
10436 	.task_change_group	= task_change_group_fair,
10437 #endif
10438 
10439 #ifdef CONFIG_UCLAMP_TASK
10440 	.uclamp_enabled		= 1,
10441 #endif
10442 };
10443 
10444 #ifdef CONFIG_SCHED_DEBUG
10445 void print_cfs_stats(struct seq_file *m, int cpu)
10446 {
10447 	struct cfs_rq *cfs_rq, *pos;
10448 
10449 	rcu_read_lock();
10450 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10451 		print_cfs_rq(m, cpu, cfs_rq);
10452 	rcu_read_unlock();
10453 }
10454 
10455 #ifdef CONFIG_NUMA_BALANCING
10456 void show_numa_stats(struct task_struct *p, struct seq_file *m)
10457 {
10458 	int node;
10459 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10460 	struct numa_group *ng;
10461 
10462 	rcu_read_lock();
10463 	ng = rcu_dereference(p->numa_group);
10464 	for_each_online_node(node) {
10465 		if (p->numa_faults) {
10466 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10467 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10468 		}
10469 		if (ng) {
10470 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
10471 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
10472 		}
10473 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10474 	}
10475 	rcu_read_unlock();
10476 }
10477 #endif /* CONFIG_NUMA_BALANCING */
10478 #endif /* CONFIG_SCHED_DEBUG */
10479 
10480 __init void init_sched_fair_class(void)
10481 {
10482 #ifdef CONFIG_SMP
10483 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10484 
10485 #ifdef CONFIG_NO_HZ_COMMON
10486 	nohz.next_balance = jiffies;
10487 	nohz.next_blocked = jiffies;
10488 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10489 #endif
10490 #endif /* SMP */
10491 
10492 }
10493 
10494 /*
10495  * Helper functions to facilitate extracting info from tracepoints.
10496  */
10497 
10498 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
10499 {
10500 #ifdef CONFIG_SMP
10501 	return cfs_rq ? &cfs_rq->avg : NULL;
10502 #else
10503 	return NULL;
10504 #endif
10505 }
10506 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
10507 
10508 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
10509 {
10510 	if (!cfs_rq) {
10511 		if (str)
10512 			strlcpy(str, "(null)", len);
10513 		else
10514 			return NULL;
10515 	}
10516 
10517 	cfs_rq_tg_path(cfs_rq, str, len);
10518 	return str;
10519 }
10520 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
10521 
10522 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
10523 {
10524 	return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
10525 }
10526 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
10527 
10528 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
10529 {
10530 #ifdef CONFIG_SMP
10531 	return rq ? &rq->avg_rt : NULL;
10532 #else
10533 	return NULL;
10534 #endif
10535 }
10536 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
10537 
10538 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
10539 {
10540 #ifdef CONFIG_SMP
10541 	return rq ? &rq->avg_dl : NULL;
10542 #else
10543 	return NULL;
10544 #endif
10545 }
10546 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
10547 
10548 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
10549 {
10550 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
10551 	return rq ? &rq->avg_irq : NULL;
10552 #else
10553 	return NULL;
10554 #endif
10555 }
10556 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
10557 
10558 int sched_trace_rq_cpu(struct rq *rq)
10559 {
10560 	return rq ? cpu_of(rq) : -1;
10561 }
10562 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
10563 
10564 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
10565 {
10566 #ifdef CONFIG_SMP
10567 	return rd ? rd->span : NULL;
10568 #else
10569 	return NULL;
10570 #endif
10571 }
10572 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
10573