xref: /openbmc/linux/kernel/sched/fair.c (revision e3d786a3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 #include <trace/events/sched.h>
26 
27 /*
28  * Targeted preemption latency for CPU-bound tasks:
29  *
30  * NOTE: this latency value is not the same as the concept of
31  * 'timeslice length' - timeslices in CFS are of variable length
32  * and have no persistent notion like in traditional, time-slice
33  * based scheduling concepts.
34  *
35  * (to see the precise effective timeslice length of your workload,
36  *  run vmstat and monitor the context-switches (cs) field)
37  *
38  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39  */
40 unsigned int sysctl_sched_latency			= 6000000ULL;
41 unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
42 
43 /*
44  * The initial- and re-scaling of tunables is configurable
45  *
46  * Options are:
47  *
48  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
49  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51  *
52  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53  */
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55 
56 /*
57  * Minimal preemption granularity for CPU-bound tasks:
58  *
59  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60  */
61 unsigned int sysctl_sched_min_granularity		= 750000ULL;
62 unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 
64 /*
65  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66  */
67 static unsigned int sched_nr_latency = 8;
68 
69 /*
70  * After fork, child runs first. If set to 0 (default) then
71  * parent will (try to) run first.
72  */
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
74 
75 /*
76  * SCHED_OTHER wake-up granularity.
77  *
78  * This option delays the preemption effects of decoupled workloads
79  * and reduces their over-scheduling. Synchronous workloads will still
80  * have immediate wakeup/sleep latencies.
81  *
82  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83  */
84 unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
85 unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 #ifdef CONFIG_SMP
90 /*
91  * For asym packing, by default the lower numbered CPU has higher priority.
92  */
93 int __weak arch_asym_cpu_priority(int cpu)
94 {
95 	return -cpu;
96 }
97 #endif
98 
99 #ifdef CONFIG_CFS_BANDWIDTH
100 /*
101  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102  * each time a cfs_rq requests quota.
103  *
104  * Note: in the case that the slice exceeds the runtime remaining (either due
105  * to consumption or the quota being specified to be smaller than the slice)
106  * we will always only issue the remaining available time.
107  *
108  * (default: 5 msec, units: microseconds)
109  */
110 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
111 #endif
112 
113 /*
114  * The margin used when comparing utilization with CPU capacity:
115  * util * margin < capacity * 1024
116  *
117  * (default: ~20%)
118  */
119 unsigned int capacity_margin				= 1280;
120 
121 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 {
123 	lw->weight += inc;
124 	lw->inv_weight = 0;
125 }
126 
127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 {
129 	lw->weight -= dec;
130 	lw->inv_weight = 0;
131 }
132 
133 static inline void update_load_set(struct load_weight *lw, unsigned long w)
134 {
135 	lw->weight = w;
136 	lw->inv_weight = 0;
137 }
138 
139 /*
140  * Increase the granularity value when there are more CPUs,
141  * because with more CPUs the 'effective latency' as visible
142  * to users decreases. But the relationship is not linear,
143  * so pick a second-best guess by going with the log2 of the
144  * number of CPUs.
145  *
146  * This idea comes from the SD scheduler of Con Kolivas:
147  */
148 static unsigned int get_update_sysctl_factor(void)
149 {
150 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 	unsigned int factor;
152 
153 	switch (sysctl_sched_tunable_scaling) {
154 	case SCHED_TUNABLESCALING_NONE:
155 		factor = 1;
156 		break;
157 	case SCHED_TUNABLESCALING_LINEAR:
158 		factor = cpus;
159 		break;
160 	case SCHED_TUNABLESCALING_LOG:
161 	default:
162 		factor = 1 + ilog2(cpus);
163 		break;
164 	}
165 
166 	return factor;
167 }
168 
169 static void update_sysctl(void)
170 {
171 	unsigned int factor = get_update_sysctl_factor();
172 
173 #define SET_SYSCTL(name) \
174 	(sysctl_##name = (factor) * normalized_sysctl_##name)
175 	SET_SYSCTL(sched_min_granularity);
176 	SET_SYSCTL(sched_latency);
177 	SET_SYSCTL(sched_wakeup_granularity);
178 #undef SET_SYSCTL
179 }
180 
181 void sched_init_granularity(void)
182 {
183 	update_sysctl();
184 }
185 
186 #define WMULT_CONST	(~0U)
187 #define WMULT_SHIFT	32
188 
189 static void __update_inv_weight(struct load_weight *lw)
190 {
191 	unsigned long w;
192 
193 	if (likely(lw->inv_weight))
194 		return;
195 
196 	w = scale_load_down(lw->weight);
197 
198 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 		lw->inv_weight = 1;
200 	else if (unlikely(!w))
201 		lw->inv_weight = WMULT_CONST;
202 	else
203 		lw->inv_weight = WMULT_CONST / w;
204 }
205 
206 /*
207  * delta_exec * weight / lw.weight
208  *   OR
209  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210  *
211  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212  * we're guaranteed shift stays positive because inv_weight is guaranteed to
213  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214  *
215  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216  * weight/lw.weight <= 1, and therefore our shift will also be positive.
217  */
218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219 {
220 	u64 fact = scale_load_down(weight);
221 	int shift = WMULT_SHIFT;
222 
223 	__update_inv_weight(lw);
224 
225 	if (unlikely(fact >> 32)) {
226 		while (fact >> 32) {
227 			fact >>= 1;
228 			shift--;
229 		}
230 	}
231 
232 	/* hint to use a 32x32->64 mul */
233 	fact = (u64)(u32)fact * lw->inv_weight;
234 
235 	while (fact >> 32) {
236 		fact >>= 1;
237 		shift--;
238 	}
239 
240 	return mul_u64_u32_shr(delta_exec, fact, shift);
241 }
242 
243 
244 const struct sched_class fair_sched_class;
245 
246 /**************************************************************
247  * CFS operations on generic schedulable entities:
248  */
249 
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 
252 /* cpu runqueue to which this cfs_rq is attached */
253 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
254 {
255 	return cfs_rq->rq;
256 }
257 
258 static inline struct task_struct *task_of(struct sched_entity *se)
259 {
260 	SCHED_WARN_ON(!entity_is_task(se));
261 	return container_of(se, struct task_struct, se);
262 }
263 
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 		for (; se; se = se->parent)
267 
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269 {
270 	return p->se.cfs_rq;
271 }
272 
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275 {
276 	return se->cfs_rq;
277 }
278 
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281 {
282 	return grp->my_q;
283 }
284 
285 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
286 {
287 	if (!cfs_rq->on_list) {
288 		struct rq *rq = rq_of(cfs_rq);
289 		int cpu = cpu_of(rq);
290 		/*
291 		 * Ensure we either appear before our parent (if already
292 		 * enqueued) or force our parent to appear after us when it is
293 		 * enqueued. The fact that we always enqueue bottom-up
294 		 * reduces this to two cases and a special case for the root
295 		 * cfs_rq. Furthermore, it also means that we will always reset
296 		 * tmp_alone_branch either when the branch is connected
297 		 * to a tree or when we reach the beg of the tree
298 		 */
299 		if (cfs_rq->tg->parent &&
300 		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
301 			/*
302 			 * If parent is already on the list, we add the child
303 			 * just before. Thanks to circular linked property of
304 			 * the list, this means to put the child at the tail
305 			 * of the list that starts by parent.
306 			 */
307 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
308 				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
309 			/*
310 			 * The branch is now connected to its tree so we can
311 			 * reset tmp_alone_branch to the beginning of the
312 			 * list.
313 			 */
314 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
315 		} else if (!cfs_rq->tg->parent) {
316 			/*
317 			 * cfs rq without parent should be put
318 			 * at the tail of the list.
319 			 */
320 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
321 				&rq->leaf_cfs_rq_list);
322 			/*
323 			 * We have reach the beg of a tree so we can reset
324 			 * tmp_alone_branch to the beginning of the list.
325 			 */
326 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
327 		} else {
328 			/*
329 			 * The parent has not already been added so we want to
330 			 * make sure that it will be put after us.
331 			 * tmp_alone_branch points to the beg of the branch
332 			 * where we will add parent.
333 			 */
334 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
335 				rq->tmp_alone_branch);
336 			/*
337 			 * update tmp_alone_branch to points to the new beg
338 			 * of the branch
339 			 */
340 			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
341 		}
342 
343 		cfs_rq->on_list = 1;
344 	}
345 }
346 
347 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
348 {
349 	if (cfs_rq->on_list) {
350 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
351 		cfs_rq->on_list = 0;
352 	}
353 }
354 
355 /* Iterate thr' all leaf cfs_rq's on a runqueue */
356 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
357 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
358 				 leaf_cfs_rq_list)
359 
360 /* Do the two (enqueued) entities belong to the same group ? */
361 static inline struct cfs_rq *
362 is_same_group(struct sched_entity *se, struct sched_entity *pse)
363 {
364 	if (se->cfs_rq == pse->cfs_rq)
365 		return se->cfs_rq;
366 
367 	return NULL;
368 }
369 
370 static inline struct sched_entity *parent_entity(struct sched_entity *se)
371 {
372 	return se->parent;
373 }
374 
375 static void
376 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
377 {
378 	int se_depth, pse_depth;
379 
380 	/*
381 	 * preemption test can be made between sibling entities who are in the
382 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
383 	 * both tasks until we find their ancestors who are siblings of common
384 	 * parent.
385 	 */
386 
387 	/* First walk up until both entities are at same depth */
388 	se_depth = (*se)->depth;
389 	pse_depth = (*pse)->depth;
390 
391 	while (se_depth > pse_depth) {
392 		se_depth--;
393 		*se = parent_entity(*se);
394 	}
395 
396 	while (pse_depth > se_depth) {
397 		pse_depth--;
398 		*pse = parent_entity(*pse);
399 	}
400 
401 	while (!is_same_group(*se, *pse)) {
402 		*se = parent_entity(*se);
403 		*pse = parent_entity(*pse);
404 	}
405 }
406 
407 #else	/* !CONFIG_FAIR_GROUP_SCHED */
408 
409 static inline struct task_struct *task_of(struct sched_entity *se)
410 {
411 	return container_of(se, struct task_struct, se);
412 }
413 
414 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
415 {
416 	return container_of(cfs_rq, struct rq, cfs);
417 }
418 
419 
420 #define for_each_sched_entity(se) \
421 		for (; se; se = NULL)
422 
423 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
424 {
425 	return &task_rq(p)->cfs;
426 }
427 
428 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
429 {
430 	struct task_struct *p = task_of(se);
431 	struct rq *rq = task_rq(p);
432 
433 	return &rq->cfs;
434 }
435 
436 /* runqueue "owned" by this group */
437 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
438 {
439 	return NULL;
440 }
441 
442 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
443 {
444 }
445 
446 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
447 {
448 }
449 
450 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
451 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
452 
453 static inline struct sched_entity *parent_entity(struct sched_entity *se)
454 {
455 	return NULL;
456 }
457 
458 static inline void
459 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
460 {
461 }
462 
463 #endif	/* CONFIG_FAIR_GROUP_SCHED */
464 
465 static __always_inline
466 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
467 
468 /**************************************************************
469  * Scheduling class tree data structure manipulation methods:
470  */
471 
472 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
473 {
474 	s64 delta = (s64)(vruntime - max_vruntime);
475 	if (delta > 0)
476 		max_vruntime = vruntime;
477 
478 	return max_vruntime;
479 }
480 
481 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
482 {
483 	s64 delta = (s64)(vruntime - min_vruntime);
484 	if (delta < 0)
485 		min_vruntime = vruntime;
486 
487 	return min_vruntime;
488 }
489 
490 static inline int entity_before(struct sched_entity *a,
491 				struct sched_entity *b)
492 {
493 	return (s64)(a->vruntime - b->vruntime) < 0;
494 }
495 
496 static void update_min_vruntime(struct cfs_rq *cfs_rq)
497 {
498 	struct sched_entity *curr = cfs_rq->curr;
499 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
500 
501 	u64 vruntime = cfs_rq->min_vruntime;
502 
503 	if (curr) {
504 		if (curr->on_rq)
505 			vruntime = curr->vruntime;
506 		else
507 			curr = NULL;
508 	}
509 
510 	if (leftmost) { /* non-empty tree */
511 		struct sched_entity *se;
512 		se = rb_entry(leftmost, struct sched_entity, run_node);
513 
514 		if (!curr)
515 			vruntime = se->vruntime;
516 		else
517 			vruntime = min_vruntime(vruntime, se->vruntime);
518 	}
519 
520 	/* ensure we never gain time by being placed backwards. */
521 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
522 #ifndef CONFIG_64BIT
523 	smp_wmb();
524 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
525 #endif
526 }
527 
528 /*
529  * Enqueue an entity into the rb-tree:
530  */
531 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
532 {
533 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
534 	struct rb_node *parent = NULL;
535 	struct sched_entity *entry;
536 	bool leftmost = true;
537 
538 	/*
539 	 * Find the right place in the rbtree:
540 	 */
541 	while (*link) {
542 		parent = *link;
543 		entry = rb_entry(parent, struct sched_entity, run_node);
544 		/*
545 		 * We dont care about collisions. Nodes with
546 		 * the same key stay together.
547 		 */
548 		if (entity_before(se, entry)) {
549 			link = &parent->rb_left;
550 		} else {
551 			link = &parent->rb_right;
552 			leftmost = false;
553 		}
554 	}
555 
556 	rb_link_node(&se->run_node, parent, link);
557 	rb_insert_color_cached(&se->run_node,
558 			       &cfs_rq->tasks_timeline, leftmost);
559 }
560 
561 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
562 {
563 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
564 }
565 
566 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
567 {
568 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
569 
570 	if (!left)
571 		return NULL;
572 
573 	return rb_entry(left, struct sched_entity, run_node);
574 }
575 
576 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
577 {
578 	struct rb_node *next = rb_next(&se->run_node);
579 
580 	if (!next)
581 		return NULL;
582 
583 	return rb_entry(next, struct sched_entity, run_node);
584 }
585 
586 #ifdef CONFIG_SCHED_DEBUG
587 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
588 {
589 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
590 
591 	if (!last)
592 		return NULL;
593 
594 	return rb_entry(last, struct sched_entity, run_node);
595 }
596 
597 /**************************************************************
598  * Scheduling class statistics methods:
599  */
600 
601 int sched_proc_update_handler(struct ctl_table *table, int write,
602 		void __user *buffer, size_t *lenp,
603 		loff_t *ppos)
604 {
605 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
606 	unsigned int factor = get_update_sysctl_factor();
607 
608 	if (ret || !write)
609 		return ret;
610 
611 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
612 					sysctl_sched_min_granularity);
613 
614 #define WRT_SYSCTL(name) \
615 	(normalized_sysctl_##name = sysctl_##name / (factor))
616 	WRT_SYSCTL(sched_min_granularity);
617 	WRT_SYSCTL(sched_latency);
618 	WRT_SYSCTL(sched_wakeup_granularity);
619 #undef WRT_SYSCTL
620 
621 	return 0;
622 }
623 #endif
624 
625 /*
626  * delta /= w
627  */
628 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
629 {
630 	if (unlikely(se->load.weight != NICE_0_LOAD))
631 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
632 
633 	return delta;
634 }
635 
636 /*
637  * The idea is to set a period in which each task runs once.
638  *
639  * When there are too many tasks (sched_nr_latency) we have to stretch
640  * this period because otherwise the slices get too small.
641  *
642  * p = (nr <= nl) ? l : l*nr/nl
643  */
644 static u64 __sched_period(unsigned long nr_running)
645 {
646 	if (unlikely(nr_running > sched_nr_latency))
647 		return nr_running * sysctl_sched_min_granularity;
648 	else
649 		return sysctl_sched_latency;
650 }
651 
652 /*
653  * We calculate the wall-time slice from the period by taking a part
654  * proportional to the weight.
655  *
656  * s = p*P[w/rw]
657  */
658 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
659 {
660 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
661 
662 	for_each_sched_entity(se) {
663 		struct load_weight *load;
664 		struct load_weight lw;
665 
666 		cfs_rq = cfs_rq_of(se);
667 		load = &cfs_rq->load;
668 
669 		if (unlikely(!se->on_rq)) {
670 			lw = cfs_rq->load;
671 
672 			update_load_add(&lw, se->load.weight);
673 			load = &lw;
674 		}
675 		slice = __calc_delta(slice, se->load.weight, load);
676 	}
677 	return slice;
678 }
679 
680 /*
681  * We calculate the vruntime slice of a to-be-inserted task.
682  *
683  * vs = s/w
684  */
685 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
686 {
687 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
688 }
689 
690 #ifdef CONFIG_SMP
691 #include "pelt.h"
692 #include "sched-pelt.h"
693 
694 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
695 static unsigned long task_h_load(struct task_struct *p);
696 static unsigned long capacity_of(int cpu);
697 
698 /* Give new sched_entity start runnable values to heavy its load in infant time */
699 void init_entity_runnable_average(struct sched_entity *se)
700 {
701 	struct sched_avg *sa = &se->avg;
702 
703 	memset(sa, 0, sizeof(*sa));
704 
705 	/*
706 	 * Tasks are intialized with full load to be seen as heavy tasks until
707 	 * they get a chance to stabilize to their real load level.
708 	 * Group entities are intialized with zero load to reflect the fact that
709 	 * nothing has been attached to the task group yet.
710 	 */
711 	if (entity_is_task(se))
712 		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
713 
714 	se->runnable_weight = se->load.weight;
715 
716 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
717 }
718 
719 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
720 static void attach_entity_cfs_rq(struct sched_entity *se);
721 
722 /*
723  * With new tasks being created, their initial util_avgs are extrapolated
724  * based on the cfs_rq's current util_avg:
725  *
726  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
727  *
728  * However, in many cases, the above util_avg does not give a desired
729  * value. Moreover, the sum of the util_avgs may be divergent, such
730  * as when the series is a harmonic series.
731  *
732  * To solve this problem, we also cap the util_avg of successive tasks to
733  * only 1/2 of the left utilization budget:
734  *
735  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
736  *
737  * where n denotes the nth task and cpu_scale the CPU capacity.
738  *
739  * For example, for a CPU with 1024 of capacity, a simplest series from
740  * the beginning would be like:
741  *
742  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
743  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
744  *
745  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
746  * if util_avg > util_avg_cap.
747  */
748 void post_init_entity_util_avg(struct sched_entity *se)
749 {
750 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
751 	struct sched_avg *sa = &se->avg;
752 	long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
753 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
754 
755 	if (cap > 0) {
756 		if (cfs_rq->avg.util_avg != 0) {
757 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
758 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
759 
760 			if (sa->util_avg > cap)
761 				sa->util_avg = cap;
762 		} else {
763 			sa->util_avg = cap;
764 		}
765 	}
766 
767 	if (entity_is_task(se)) {
768 		struct task_struct *p = task_of(se);
769 		if (p->sched_class != &fair_sched_class) {
770 			/*
771 			 * For !fair tasks do:
772 			 *
773 			update_cfs_rq_load_avg(now, cfs_rq);
774 			attach_entity_load_avg(cfs_rq, se, 0);
775 			switched_from_fair(rq, p);
776 			 *
777 			 * such that the next switched_to_fair() has the
778 			 * expected state.
779 			 */
780 			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
781 			return;
782 		}
783 	}
784 
785 	attach_entity_cfs_rq(se);
786 }
787 
788 #else /* !CONFIG_SMP */
789 void init_entity_runnable_average(struct sched_entity *se)
790 {
791 }
792 void post_init_entity_util_avg(struct sched_entity *se)
793 {
794 }
795 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
796 {
797 }
798 #endif /* CONFIG_SMP */
799 
800 /*
801  * Update the current task's runtime statistics.
802  */
803 static void update_curr(struct cfs_rq *cfs_rq)
804 {
805 	struct sched_entity *curr = cfs_rq->curr;
806 	u64 now = rq_clock_task(rq_of(cfs_rq));
807 	u64 delta_exec;
808 
809 	if (unlikely(!curr))
810 		return;
811 
812 	delta_exec = now - curr->exec_start;
813 	if (unlikely((s64)delta_exec <= 0))
814 		return;
815 
816 	curr->exec_start = now;
817 
818 	schedstat_set(curr->statistics.exec_max,
819 		      max(delta_exec, curr->statistics.exec_max));
820 
821 	curr->sum_exec_runtime += delta_exec;
822 	schedstat_add(cfs_rq->exec_clock, delta_exec);
823 
824 	curr->vruntime += calc_delta_fair(delta_exec, curr);
825 	update_min_vruntime(cfs_rq);
826 
827 	if (entity_is_task(curr)) {
828 		struct task_struct *curtask = task_of(curr);
829 
830 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
831 		cgroup_account_cputime(curtask, delta_exec);
832 		account_group_exec_runtime(curtask, delta_exec);
833 	}
834 
835 	account_cfs_rq_runtime(cfs_rq, delta_exec);
836 }
837 
838 static void update_curr_fair(struct rq *rq)
839 {
840 	update_curr(cfs_rq_of(&rq->curr->se));
841 }
842 
843 static inline void
844 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
845 {
846 	u64 wait_start, prev_wait_start;
847 
848 	if (!schedstat_enabled())
849 		return;
850 
851 	wait_start = rq_clock(rq_of(cfs_rq));
852 	prev_wait_start = schedstat_val(se->statistics.wait_start);
853 
854 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
855 	    likely(wait_start > prev_wait_start))
856 		wait_start -= prev_wait_start;
857 
858 	__schedstat_set(se->statistics.wait_start, wait_start);
859 }
860 
861 static inline void
862 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
863 {
864 	struct task_struct *p;
865 	u64 delta;
866 
867 	if (!schedstat_enabled())
868 		return;
869 
870 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
871 
872 	if (entity_is_task(se)) {
873 		p = task_of(se);
874 		if (task_on_rq_migrating(p)) {
875 			/*
876 			 * Preserve migrating task's wait time so wait_start
877 			 * time stamp can be adjusted to accumulate wait time
878 			 * prior to migration.
879 			 */
880 			__schedstat_set(se->statistics.wait_start, delta);
881 			return;
882 		}
883 		trace_sched_stat_wait(p, delta);
884 	}
885 
886 	__schedstat_set(se->statistics.wait_max,
887 		      max(schedstat_val(se->statistics.wait_max), delta));
888 	__schedstat_inc(se->statistics.wait_count);
889 	__schedstat_add(se->statistics.wait_sum, delta);
890 	__schedstat_set(se->statistics.wait_start, 0);
891 }
892 
893 static inline void
894 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
895 {
896 	struct task_struct *tsk = NULL;
897 	u64 sleep_start, block_start;
898 
899 	if (!schedstat_enabled())
900 		return;
901 
902 	sleep_start = schedstat_val(se->statistics.sleep_start);
903 	block_start = schedstat_val(se->statistics.block_start);
904 
905 	if (entity_is_task(se))
906 		tsk = task_of(se);
907 
908 	if (sleep_start) {
909 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
910 
911 		if ((s64)delta < 0)
912 			delta = 0;
913 
914 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
915 			__schedstat_set(se->statistics.sleep_max, delta);
916 
917 		__schedstat_set(se->statistics.sleep_start, 0);
918 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
919 
920 		if (tsk) {
921 			account_scheduler_latency(tsk, delta >> 10, 1);
922 			trace_sched_stat_sleep(tsk, delta);
923 		}
924 	}
925 	if (block_start) {
926 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
927 
928 		if ((s64)delta < 0)
929 			delta = 0;
930 
931 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
932 			__schedstat_set(se->statistics.block_max, delta);
933 
934 		__schedstat_set(se->statistics.block_start, 0);
935 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
936 
937 		if (tsk) {
938 			if (tsk->in_iowait) {
939 				__schedstat_add(se->statistics.iowait_sum, delta);
940 				__schedstat_inc(se->statistics.iowait_count);
941 				trace_sched_stat_iowait(tsk, delta);
942 			}
943 
944 			trace_sched_stat_blocked(tsk, delta);
945 
946 			/*
947 			 * Blocking time is in units of nanosecs, so shift by
948 			 * 20 to get a milliseconds-range estimation of the
949 			 * amount of time that the task spent sleeping:
950 			 */
951 			if (unlikely(prof_on == SLEEP_PROFILING)) {
952 				profile_hits(SLEEP_PROFILING,
953 						(void *)get_wchan(tsk),
954 						delta >> 20);
955 			}
956 			account_scheduler_latency(tsk, delta >> 10, 0);
957 		}
958 	}
959 }
960 
961 /*
962  * Task is being enqueued - update stats:
963  */
964 static inline void
965 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
966 {
967 	if (!schedstat_enabled())
968 		return;
969 
970 	/*
971 	 * Are we enqueueing a waiting task? (for current tasks
972 	 * a dequeue/enqueue event is a NOP)
973 	 */
974 	if (se != cfs_rq->curr)
975 		update_stats_wait_start(cfs_rq, se);
976 
977 	if (flags & ENQUEUE_WAKEUP)
978 		update_stats_enqueue_sleeper(cfs_rq, se);
979 }
980 
981 static inline void
982 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
983 {
984 
985 	if (!schedstat_enabled())
986 		return;
987 
988 	/*
989 	 * Mark the end of the wait period if dequeueing a
990 	 * waiting task:
991 	 */
992 	if (se != cfs_rq->curr)
993 		update_stats_wait_end(cfs_rq, se);
994 
995 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
996 		struct task_struct *tsk = task_of(se);
997 
998 		if (tsk->state & TASK_INTERRUPTIBLE)
999 			__schedstat_set(se->statistics.sleep_start,
1000 				      rq_clock(rq_of(cfs_rq)));
1001 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1002 			__schedstat_set(se->statistics.block_start,
1003 				      rq_clock(rq_of(cfs_rq)));
1004 	}
1005 }
1006 
1007 /*
1008  * We are picking a new current task - update its stats:
1009  */
1010 static inline void
1011 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1012 {
1013 	/*
1014 	 * We are starting a new run period:
1015 	 */
1016 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1017 }
1018 
1019 /**************************************************
1020  * Scheduling class queueing methods:
1021  */
1022 
1023 #ifdef CONFIG_NUMA_BALANCING
1024 /*
1025  * Approximate time to scan a full NUMA task in ms. The task scan period is
1026  * calculated based on the tasks virtual memory size and
1027  * numa_balancing_scan_size.
1028  */
1029 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1030 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1031 
1032 /* Portion of address space to scan in MB */
1033 unsigned int sysctl_numa_balancing_scan_size = 256;
1034 
1035 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1036 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1037 
1038 struct numa_group {
1039 	atomic_t refcount;
1040 
1041 	spinlock_t lock; /* nr_tasks, tasks */
1042 	int nr_tasks;
1043 	pid_t gid;
1044 	int active_nodes;
1045 
1046 	struct rcu_head rcu;
1047 	unsigned long total_faults;
1048 	unsigned long max_faults_cpu;
1049 	/*
1050 	 * Faults_cpu is used to decide whether memory should move
1051 	 * towards the CPU. As a consequence, these stats are weighted
1052 	 * more by CPU use than by memory faults.
1053 	 */
1054 	unsigned long *faults_cpu;
1055 	unsigned long faults[0];
1056 };
1057 
1058 static inline unsigned long group_faults_priv(struct numa_group *ng);
1059 static inline unsigned long group_faults_shared(struct numa_group *ng);
1060 
1061 static unsigned int task_nr_scan_windows(struct task_struct *p)
1062 {
1063 	unsigned long rss = 0;
1064 	unsigned long nr_scan_pages;
1065 
1066 	/*
1067 	 * Calculations based on RSS as non-present and empty pages are skipped
1068 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1069 	 * on resident pages
1070 	 */
1071 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1072 	rss = get_mm_rss(p->mm);
1073 	if (!rss)
1074 		rss = nr_scan_pages;
1075 
1076 	rss = round_up(rss, nr_scan_pages);
1077 	return rss / nr_scan_pages;
1078 }
1079 
1080 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1081 #define MAX_SCAN_WINDOW 2560
1082 
1083 static unsigned int task_scan_min(struct task_struct *p)
1084 {
1085 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1086 	unsigned int scan, floor;
1087 	unsigned int windows = 1;
1088 
1089 	if (scan_size < MAX_SCAN_WINDOW)
1090 		windows = MAX_SCAN_WINDOW / scan_size;
1091 	floor = 1000 / windows;
1092 
1093 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1094 	return max_t(unsigned int, floor, scan);
1095 }
1096 
1097 static unsigned int task_scan_start(struct task_struct *p)
1098 {
1099 	unsigned long smin = task_scan_min(p);
1100 	unsigned long period = smin;
1101 
1102 	/* Scale the maximum scan period with the amount of shared memory. */
1103 	if (p->numa_group) {
1104 		struct numa_group *ng = p->numa_group;
1105 		unsigned long shared = group_faults_shared(ng);
1106 		unsigned long private = group_faults_priv(ng);
1107 
1108 		period *= atomic_read(&ng->refcount);
1109 		period *= shared + 1;
1110 		period /= private + shared + 1;
1111 	}
1112 
1113 	return max(smin, period);
1114 }
1115 
1116 static unsigned int task_scan_max(struct task_struct *p)
1117 {
1118 	unsigned long smin = task_scan_min(p);
1119 	unsigned long smax;
1120 
1121 	/* Watch for min being lower than max due to floor calculations */
1122 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1123 
1124 	/* Scale the maximum scan period with the amount of shared memory. */
1125 	if (p->numa_group) {
1126 		struct numa_group *ng = p->numa_group;
1127 		unsigned long shared = group_faults_shared(ng);
1128 		unsigned long private = group_faults_priv(ng);
1129 		unsigned long period = smax;
1130 
1131 		period *= atomic_read(&ng->refcount);
1132 		period *= shared + 1;
1133 		period /= private + shared + 1;
1134 
1135 		smax = max(smax, period);
1136 	}
1137 
1138 	return max(smin, smax);
1139 }
1140 
1141 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1142 {
1143 	int mm_users = 0;
1144 	struct mm_struct *mm = p->mm;
1145 
1146 	if (mm) {
1147 		mm_users = atomic_read(&mm->mm_users);
1148 		if (mm_users == 1) {
1149 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1150 			mm->numa_scan_seq = 0;
1151 		}
1152 	}
1153 	p->node_stamp			= 0;
1154 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
1155 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
1156 	p->numa_work.next		= &p->numa_work;
1157 	p->numa_faults			= NULL;
1158 	p->numa_group			= NULL;
1159 	p->last_task_numa_placement	= 0;
1160 	p->last_sum_exec_runtime	= 0;
1161 
1162 	/* New address space, reset the preferred nid */
1163 	if (!(clone_flags & CLONE_VM)) {
1164 		p->numa_preferred_nid = -1;
1165 		return;
1166 	}
1167 
1168 	/*
1169 	 * New thread, keep existing numa_preferred_nid which should be copied
1170 	 * already by arch_dup_task_struct but stagger when scans start.
1171 	 */
1172 	if (mm) {
1173 		unsigned int delay;
1174 
1175 		delay = min_t(unsigned int, task_scan_max(current),
1176 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1177 		delay += 2 * TICK_NSEC;
1178 		p->node_stamp = delay;
1179 	}
1180 }
1181 
1182 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1183 {
1184 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
1185 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1186 }
1187 
1188 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1189 {
1190 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1191 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1192 }
1193 
1194 /* Shared or private faults. */
1195 #define NR_NUMA_HINT_FAULT_TYPES 2
1196 
1197 /* Memory and CPU locality */
1198 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1199 
1200 /* Averaged statistics, and temporary buffers. */
1201 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1202 
1203 pid_t task_numa_group_id(struct task_struct *p)
1204 {
1205 	return p->numa_group ? p->numa_group->gid : 0;
1206 }
1207 
1208 /*
1209  * The averaged statistics, shared & private, memory & CPU,
1210  * occupy the first half of the array. The second half of the
1211  * array is for current counters, which are averaged into the
1212  * first set by task_numa_placement.
1213  */
1214 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1215 {
1216 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1217 }
1218 
1219 static inline unsigned long task_faults(struct task_struct *p, int nid)
1220 {
1221 	if (!p->numa_faults)
1222 		return 0;
1223 
1224 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1225 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1226 }
1227 
1228 static inline unsigned long group_faults(struct task_struct *p, int nid)
1229 {
1230 	if (!p->numa_group)
1231 		return 0;
1232 
1233 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1234 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1235 }
1236 
1237 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1238 {
1239 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1240 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1241 }
1242 
1243 static inline unsigned long group_faults_priv(struct numa_group *ng)
1244 {
1245 	unsigned long faults = 0;
1246 	int node;
1247 
1248 	for_each_online_node(node) {
1249 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1250 	}
1251 
1252 	return faults;
1253 }
1254 
1255 static inline unsigned long group_faults_shared(struct numa_group *ng)
1256 {
1257 	unsigned long faults = 0;
1258 	int node;
1259 
1260 	for_each_online_node(node) {
1261 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1262 	}
1263 
1264 	return faults;
1265 }
1266 
1267 /*
1268  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1269  * considered part of a numa group's pseudo-interleaving set. Migrations
1270  * between these nodes are slowed down, to allow things to settle down.
1271  */
1272 #define ACTIVE_NODE_FRACTION 3
1273 
1274 static bool numa_is_active_node(int nid, struct numa_group *ng)
1275 {
1276 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1277 }
1278 
1279 /* Handle placement on systems where not all nodes are directly connected. */
1280 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1281 					int maxdist, bool task)
1282 {
1283 	unsigned long score = 0;
1284 	int node;
1285 
1286 	/*
1287 	 * All nodes are directly connected, and the same distance
1288 	 * from each other. No need for fancy placement algorithms.
1289 	 */
1290 	if (sched_numa_topology_type == NUMA_DIRECT)
1291 		return 0;
1292 
1293 	/*
1294 	 * This code is called for each node, introducing N^2 complexity,
1295 	 * which should be ok given the number of nodes rarely exceeds 8.
1296 	 */
1297 	for_each_online_node(node) {
1298 		unsigned long faults;
1299 		int dist = node_distance(nid, node);
1300 
1301 		/*
1302 		 * The furthest away nodes in the system are not interesting
1303 		 * for placement; nid was already counted.
1304 		 */
1305 		if (dist == sched_max_numa_distance || node == nid)
1306 			continue;
1307 
1308 		/*
1309 		 * On systems with a backplane NUMA topology, compare groups
1310 		 * of nodes, and move tasks towards the group with the most
1311 		 * memory accesses. When comparing two nodes at distance
1312 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1313 		 * of each group. Skip other nodes.
1314 		 */
1315 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1316 					dist >= maxdist)
1317 			continue;
1318 
1319 		/* Add up the faults from nearby nodes. */
1320 		if (task)
1321 			faults = task_faults(p, node);
1322 		else
1323 			faults = group_faults(p, node);
1324 
1325 		/*
1326 		 * On systems with a glueless mesh NUMA topology, there are
1327 		 * no fixed "groups of nodes". Instead, nodes that are not
1328 		 * directly connected bounce traffic through intermediate
1329 		 * nodes; a numa_group can occupy any set of nodes.
1330 		 * The further away a node is, the less the faults count.
1331 		 * This seems to result in good task placement.
1332 		 */
1333 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1334 			faults *= (sched_max_numa_distance - dist);
1335 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1336 		}
1337 
1338 		score += faults;
1339 	}
1340 
1341 	return score;
1342 }
1343 
1344 /*
1345  * These return the fraction of accesses done by a particular task, or
1346  * task group, on a particular numa node.  The group weight is given a
1347  * larger multiplier, in order to group tasks together that are almost
1348  * evenly spread out between numa nodes.
1349  */
1350 static inline unsigned long task_weight(struct task_struct *p, int nid,
1351 					int dist)
1352 {
1353 	unsigned long faults, total_faults;
1354 
1355 	if (!p->numa_faults)
1356 		return 0;
1357 
1358 	total_faults = p->total_numa_faults;
1359 
1360 	if (!total_faults)
1361 		return 0;
1362 
1363 	faults = task_faults(p, nid);
1364 	faults += score_nearby_nodes(p, nid, dist, true);
1365 
1366 	return 1000 * faults / total_faults;
1367 }
1368 
1369 static inline unsigned long group_weight(struct task_struct *p, int nid,
1370 					 int dist)
1371 {
1372 	unsigned long faults, total_faults;
1373 
1374 	if (!p->numa_group)
1375 		return 0;
1376 
1377 	total_faults = p->numa_group->total_faults;
1378 
1379 	if (!total_faults)
1380 		return 0;
1381 
1382 	faults = group_faults(p, nid);
1383 	faults += score_nearby_nodes(p, nid, dist, false);
1384 
1385 	return 1000 * faults / total_faults;
1386 }
1387 
1388 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1389 				int src_nid, int dst_cpu)
1390 {
1391 	struct numa_group *ng = p->numa_group;
1392 	int dst_nid = cpu_to_node(dst_cpu);
1393 	int last_cpupid, this_cpupid;
1394 
1395 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1396 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1397 
1398 	/*
1399 	 * Allow first faults or private faults to migrate immediately early in
1400 	 * the lifetime of a task. The magic number 4 is based on waiting for
1401 	 * two full passes of the "multi-stage node selection" test that is
1402 	 * executed below.
1403 	 */
1404 	if ((p->numa_preferred_nid == -1 || p->numa_scan_seq <= 4) &&
1405 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1406 		return true;
1407 
1408 	/*
1409 	 * Multi-stage node selection is used in conjunction with a periodic
1410 	 * migration fault to build a temporal task<->page relation. By using
1411 	 * a two-stage filter we remove short/unlikely relations.
1412 	 *
1413 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1414 	 * a task's usage of a particular page (n_p) per total usage of this
1415 	 * page (n_t) (in a given time-span) to a probability.
1416 	 *
1417 	 * Our periodic faults will sample this probability and getting the
1418 	 * same result twice in a row, given these samples are fully
1419 	 * independent, is then given by P(n)^2, provided our sample period
1420 	 * is sufficiently short compared to the usage pattern.
1421 	 *
1422 	 * This quadric squishes small probabilities, making it less likely we
1423 	 * act on an unlikely task<->page relation.
1424 	 */
1425 	if (!cpupid_pid_unset(last_cpupid) &&
1426 				cpupid_to_nid(last_cpupid) != dst_nid)
1427 		return false;
1428 
1429 	/* Always allow migrate on private faults */
1430 	if (cpupid_match_pid(p, last_cpupid))
1431 		return true;
1432 
1433 	/* A shared fault, but p->numa_group has not been set up yet. */
1434 	if (!ng)
1435 		return true;
1436 
1437 	/*
1438 	 * Destination node is much more heavily used than the source
1439 	 * node? Allow migration.
1440 	 */
1441 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1442 					ACTIVE_NODE_FRACTION)
1443 		return true;
1444 
1445 	/*
1446 	 * Distribute memory according to CPU & memory use on each node,
1447 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1448 	 *
1449 	 * faults_cpu(dst)   3   faults_cpu(src)
1450 	 * --------------- * - > ---------------
1451 	 * faults_mem(dst)   4   faults_mem(src)
1452 	 */
1453 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1454 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1455 }
1456 
1457 static unsigned long weighted_cpuload(struct rq *rq);
1458 static unsigned long source_load(int cpu, int type);
1459 static unsigned long target_load(int cpu, int type);
1460 
1461 /* Cached statistics for all CPUs within a node */
1462 struct numa_stats {
1463 	unsigned long load;
1464 
1465 	/* Total compute capacity of CPUs on a node */
1466 	unsigned long compute_capacity;
1467 };
1468 
1469 /*
1470  * XXX borrowed from update_sg_lb_stats
1471  */
1472 static void update_numa_stats(struct numa_stats *ns, int nid)
1473 {
1474 	int cpu;
1475 
1476 	memset(ns, 0, sizeof(*ns));
1477 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1478 		struct rq *rq = cpu_rq(cpu);
1479 
1480 		ns->load += weighted_cpuload(rq);
1481 		ns->compute_capacity += capacity_of(cpu);
1482 	}
1483 
1484 }
1485 
1486 struct task_numa_env {
1487 	struct task_struct *p;
1488 
1489 	int src_cpu, src_nid;
1490 	int dst_cpu, dst_nid;
1491 
1492 	struct numa_stats src_stats, dst_stats;
1493 
1494 	int imbalance_pct;
1495 	int dist;
1496 
1497 	struct task_struct *best_task;
1498 	long best_imp;
1499 	int best_cpu;
1500 };
1501 
1502 static void task_numa_assign(struct task_numa_env *env,
1503 			     struct task_struct *p, long imp)
1504 {
1505 	struct rq *rq = cpu_rq(env->dst_cpu);
1506 
1507 	/* Bail out if run-queue part of active NUMA balance. */
1508 	if (xchg(&rq->numa_migrate_on, 1))
1509 		return;
1510 
1511 	/*
1512 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1513 	 * found a better CPU to move/swap.
1514 	 */
1515 	if (env->best_cpu != -1) {
1516 		rq = cpu_rq(env->best_cpu);
1517 		WRITE_ONCE(rq->numa_migrate_on, 0);
1518 	}
1519 
1520 	if (env->best_task)
1521 		put_task_struct(env->best_task);
1522 	if (p)
1523 		get_task_struct(p);
1524 
1525 	env->best_task = p;
1526 	env->best_imp = imp;
1527 	env->best_cpu = env->dst_cpu;
1528 }
1529 
1530 static bool load_too_imbalanced(long src_load, long dst_load,
1531 				struct task_numa_env *env)
1532 {
1533 	long imb, old_imb;
1534 	long orig_src_load, orig_dst_load;
1535 	long src_capacity, dst_capacity;
1536 
1537 	/*
1538 	 * The load is corrected for the CPU capacity available on each node.
1539 	 *
1540 	 * src_load        dst_load
1541 	 * ------------ vs ---------
1542 	 * src_capacity    dst_capacity
1543 	 */
1544 	src_capacity = env->src_stats.compute_capacity;
1545 	dst_capacity = env->dst_stats.compute_capacity;
1546 
1547 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1548 
1549 	orig_src_load = env->src_stats.load;
1550 	orig_dst_load = env->dst_stats.load;
1551 
1552 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1553 
1554 	/* Would this change make things worse? */
1555 	return (imb > old_imb);
1556 }
1557 
1558 /*
1559  * Maximum NUMA importance can be 1998 (2*999);
1560  * SMALLIMP @ 30 would be close to 1998/64.
1561  * Used to deter task migration.
1562  */
1563 #define SMALLIMP	30
1564 
1565 /*
1566  * This checks if the overall compute and NUMA accesses of the system would
1567  * be improved if the source tasks was migrated to the target dst_cpu taking
1568  * into account that it might be best if task running on the dst_cpu should
1569  * be exchanged with the source task
1570  */
1571 static void task_numa_compare(struct task_numa_env *env,
1572 			      long taskimp, long groupimp, bool maymove)
1573 {
1574 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1575 	struct task_struct *cur;
1576 	long src_load, dst_load;
1577 	long load;
1578 	long imp = env->p->numa_group ? groupimp : taskimp;
1579 	long moveimp = imp;
1580 	int dist = env->dist;
1581 
1582 	if (READ_ONCE(dst_rq->numa_migrate_on))
1583 		return;
1584 
1585 	rcu_read_lock();
1586 	cur = task_rcu_dereference(&dst_rq->curr);
1587 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1588 		cur = NULL;
1589 
1590 	/*
1591 	 * Because we have preemption enabled we can get migrated around and
1592 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1593 	 */
1594 	if (cur == env->p)
1595 		goto unlock;
1596 
1597 	if (!cur) {
1598 		if (maymove && moveimp >= env->best_imp)
1599 			goto assign;
1600 		else
1601 			goto unlock;
1602 	}
1603 
1604 	/*
1605 	 * "imp" is the fault differential for the source task between the
1606 	 * source and destination node. Calculate the total differential for
1607 	 * the source task and potential destination task. The more negative
1608 	 * the value is, the more remote accesses that would be expected to
1609 	 * be incurred if the tasks were swapped.
1610 	 */
1611 	/* Skip this swap candidate if cannot move to the source cpu */
1612 	if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1613 		goto unlock;
1614 
1615 	/*
1616 	 * If dst and source tasks are in the same NUMA group, or not
1617 	 * in any group then look only at task weights.
1618 	 */
1619 	if (cur->numa_group == env->p->numa_group) {
1620 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1621 		      task_weight(cur, env->dst_nid, dist);
1622 		/*
1623 		 * Add some hysteresis to prevent swapping the
1624 		 * tasks within a group over tiny differences.
1625 		 */
1626 		if (cur->numa_group)
1627 			imp -= imp / 16;
1628 	} else {
1629 		/*
1630 		 * Compare the group weights. If a task is all by itself
1631 		 * (not part of a group), use the task weight instead.
1632 		 */
1633 		if (cur->numa_group && env->p->numa_group)
1634 			imp += group_weight(cur, env->src_nid, dist) -
1635 			       group_weight(cur, env->dst_nid, dist);
1636 		else
1637 			imp += task_weight(cur, env->src_nid, dist) -
1638 			       task_weight(cur, env->dst_nid, dist);
1639 	}
1640 
1641 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1642 		imp = moveimp;
1643 		cur = NULL;
1644 		goto assign;
1645 	}
1646 
1647 	/*
1648 	 * If the NUMA importance is less than SMALLIMP,
1649 	 * task migration might only result in ping pong
1650 	 * of tasks and also hurt performance due to cache
1651 	 * misses.
1652 	 */
1653 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1654 		goto unlock;
1655 
1656 	/*
1657 	 * In the overloaded case, try and keep the load balanced.
1658 	 */
1659 	load = task_h_load(env->p) - task_h_load(cur);
1660 	if (!load)
1661 		goto assign;
1662 
1663 	dst_load = env->dst_stats.load + load;
1664 	src_load = env->src_stats.load - load;
1665 
1666 	if (load_too_imbalanced(src_load, dst_load, env))
1667 		goto unlock;
1668 
1669 assign:
1670 	/*
1671 	 * One idle CPU per node is evaluated for a task numa move.
1672 	 * Call select_idle_sibling to maybe find a better one.
1673 	 */
1674 	if (!cur) {
1675 		/*
1676 		 * select_idle_siblings() uses an per-CPU cpumask that
1677 		 * can be used from IRQ context.
1678 		 */
1679 		local_irq_disable();
1680 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1681 						   env->dst_cpu);
1682 		local_irq_enable();
1683 	}
1684 
1685 	task_numa_assign(env, cur, imp);
1686 unlock:
1687 	rcu_read_unlock();
1688 }
1689 
1690 static void task_numa_find_cpu(struct task_numa_env *env,
1691 				long taskimp, long groupimp)
1692 {
1693 	long src_load, dst_load, load;
1694 	bool maymove = false;
1695 	int cpu;
1696 
1697 	load = task_h_load(env->p);
1698 	dst_load = env->dst_stats.load + load;
1699 	src_load = env->src_stats.load - load;
1700 
1701 	/*
1702 	 * If the improvement from just moving env->p direction is better
1703 	 * than swapping tasks around, check if a move is possible.
1704 	 */
1705 	maymove = !load_too_imbalanced(src_load, dst_load, env);
1706 
1707 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1708 		/* Skip this CPU if the source task cannot migrate */
1709 		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1710 			continue;
1711 
1712 		env->dst_cpu = cpu;
1713 		task_numa_compare(env, taskimp, groupimp, maymove);
1714 	}
1715 }
1716 
1717 static int task_numa_migrate(struct task_struct *p)
1718 {
1719 	struct task_numa_env env = {
1720 		.p = p,
1721 
1722 		.src_cpu = task_cpu(p),
1723 		.src_nid = task_node(p),
1724 
1725 		.imbalance_pct = 112,
1726 
1727 		.best_task = NULL,
1728 		.best_imp = 0,
1729 		.best_cpu = -1,
1730 	};
1731 	struct sched_domain *sd;
1732 	struct rq *best_rq;
1733 	unsigned long taskweight, groupweight;
1734 	int nid, ret, dist;
1735 	long taskimp, groupimp;
1736 
1737 	/*
1738 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1739 	 * imbalance and would be the first to start moving tasks about.
1740 	 *
1741 	 * And we want to avoid any moving of tasks about, as that would create
1742 	 * random movement of tasks -- counter the numa conditions we're trying
1743 	 * to satisfy here.
1744 	 */
1745 	rcu_read_lock();
1746 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1747 	if (sd)
1748 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1749 	rcu_read_unlock();
1750 
1751 	/*
1752 	 * Cpusets can break the scheduler domain tree into smaller
1753 	 * balance domains, some of which do not cross NUMA boundaries.
1754 	 * Tasks that are "trapped" in such domains cannot be migrated
1755 	 * elsewhere, so there is no point in (re)trying.
1756 	 */
1757 	if (unlikely(!sd)) {
1758 		sched_setnuma(p, task_node(p));
1759 		return -EINVAL;
1760 	}
1761 
1762 	env.dst_nid = p->numa_preferred_nid;
1763 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1764 	taskweight = task_weight(p, env.src_nid, dist);
1765 	groupweight = group_weight(p, env.src_nid, dist);
1766 	update_numa_stats(&env.src_stats, env.src_nid);
1767 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1768 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1769 	update_numa_stats(&env.dst_stats, env.dst_nid);
1770 
1771 	/* Try to find a spot on the preferred nid. */
1772 	task_numa_find_cpu(&env, taskimp, groupimp);
1773 
1774 	/*
1775 	 * Look at other nodes in these cases:
1776 	 * - there is no space available on the preferred_nid
1777 	 * - the task is part of a numa_group that is interleaved across
1778 	 *   multiple NUMA nodes; in order to better consolidate the group,
1779 	 *   we need to check other locations.
1780 	 */
1781 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1782 		for_each_online_node(nid) {
1783 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1784 				continue;
1785 
1786 			dist = node_distance(env.src_nid, env.dst_nid);
1787 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1788 						dist != env.dist) {
1789 				taskweight = task_weight(p, env.src_nid, dist);
1790 				groupweight = group_weight(p, env.src_nid, dist);
1791 			}
1792 
1793 			/* Only consider nodes where both task and groups benefit */
1794 			taskimp = task_weight(p, nid, dist) - taskweight;
1795 			groupimp = group_weight(p, nid, dist) - groupweight;
1796 			if (taskimp < 0 && groupimp < 0)
1797 				continue;
1798 
1799 			env.dist = dist;
1800 			env.dst_nid = nid;
1801 			update_numa_stats(&env.dst_stats, env.dst_nid);
1802 			task_numa_find_cpu(&env, taskimp, groupimp);
1803 		}
1804 	}
1805 
1806 	/*
1807 	 * If the task is part of a workload that spans multiple NUMA nodes,
1808 	 * and is migrating into one of the workload's active nodes, remember
1809 	 * this node as the task's preferred numa node, so the workload can
1810 	 * settle down.
1811 	 * A task that migrated to a second choice node will be better off
1812 	 * trying for a better one later. Do not set the preferred node here.
1813 	 */
1814 	if (p->numa_group) {
1815 		if (env.best_cpu == -1)
1816 			nid = env.src_nid;
1817 		else
1818 			nid = cpu_to_node(env.best_cpu);
1819 
1820 		if (nid != p->numa_preferred_nid)
1821 			sched_setnuma(p, nid);
1822 	}
1823 
1824 	/* No better CPU than the current one was found. */
1825 	if (env.best_cpu == -1)
1826 		return -EAGAIN;
1827 
1828 	best_rq = cpu_rq(env.best_cpu);
1829 	if (env.best_task == NULL) {
1830 		ret = migrate_task_to(p, env.best_cpu);
1831 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
1832 		if (ret != 0)
1833 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1834 		return ret;
1835 	}
1836 
1837 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1838 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
1839 
1840 	if (ret != 0)
1841 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1842 	put_task_struct(env.best_task);
1843 	return ret;
1844 }
1845 
1846 /* Attempt to migrate a task to a CPU on the preferred node. */
1847 static void numa_migrate_preferred(struct task_struct *p)
1848 {
1849 	unsigned long interval = HZ;
1850 
1851 	/* This task has no NUMA fault statistics yet */
1852 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1853 		return;
1854 
1855 	/* Periodically retry migrating the task to the preferred node */
1856 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1857 	p->numa_migrate_retry = jiffies + interval;
1858 
1859 	/* Success if task is already running on preferred CPU */
1860 	if (task_node(p) == p->numa_preferred_nid)
1861 		return;
1862 
1863 	/* Otherwise, try migrate to a CPU on the preferred node */
1864 	task_numa_migrate(p);
1865 }
1866 
1867 /*
1868  * Find out how many nodes on the workload is actively running on. Do this by
1869  * tracking the nodes from which NUMA hinting faults are triggered. This can
1870  * be different from the set of nodes where the workload's memory is currently
1871  * located.
1872  */
1873 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1874 {
1875 	unsigned long faults, max_faults = 0;
1876 	int nid, active_nodes = 0;
1877 
1878 	for_each_online_node(nid) {
1879 		faults = group_faults_cpu(numa_group, nid);
1880 		if (faults > max_faults)
1881 			max_faults = faults;
1882 	}
1883 
1884 	for_each_online_node(nid) {
1885 		faults = group_faults_cpu(numa_group, nid);
1886 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1887 			active_nodes++;
1888 	}
1889 
1890 	numa_group->max_faults_cpu = max_faults;
1891 	numa_group->active_nodes = active_nodes;
1892 }
1893 
1894 /*
1895  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1896  * increments. The more local the fault statistics are, the higher the scan
1897  * period will be for the next scan window. If local/(local+remote) ratio is
1898  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1899  * the scan period will decrease. Aim for 70% local accesses.
1900  */
1901 #define NUMA_PERIOD_SLOTS 10
1902 #define NUMA_PERIOD_THRESHOLD 7
1903 
1904 /*
1905  * Increase the scan period (slow down scanning) if the majority of
1906  * our memory is already on our local node, or if the majority of
1907  * the page accesses are shared with other processes.
1908  * Otherwise, decrease the scan period.
1909  */
1910 static void update_task_scan_period(struct task_struct *p,
1911 			unsigned long shared, unsigned long private)
1912 {
1913 	unsigned int period_slot;
1914 	int lr_ratio, ps_ratio;
1915 	int diff;
1916 
1917 	unsigned long remote = p->numa_faults_locality[0];
1918 	unsigned long local = p->numa_faults_locality[1];
1919 
1920 	/*
1921 	 * If there were no record hinting faults then either the task is
1922 	 * completely idle or all activity is areas that are not of interest
1923 	 * to automatic numa balancing. Related to that, if there were failed
1924 	 * migration then it implies we are migrating too quickly or the local
1925 	 * node is overloaded. In either case, scan slower
1926 	 */
1927 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1928 		p->numa_scan_period = min(p->numa_scan_period_max,
1929 			p->numa_scan_period << 1);
1930 
1931 		p->mm->numa_next_scan = jiffies +
1932 			msecs_to_jiffies(p->numa_scan_period);
1933 
1934 		return;
1935 	}
1936 
1937 	/*
1938 	 * Prepare to scale scan period relative to the current period.
1939 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1940 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1941 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1942 	 */
1943 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1944 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1945 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1946 
1947 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1948 		/*
1949 		 * Most memory accesses are local. There is no need to
1950 		 * do fast NUMA scanning, since memory is already local.
1951 		 */
1952 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1953 		if (!slot)
1954 			slot = 1;
1955 		diff = slot * period_slot;
1956 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1957 		/*
1958 		 * Most memory accesses are shared with other tasks.
1959 		 * There is no point in continuing fast NUMA scanning,
1960 		 * since other tasks may just move the memory elsewhere.
1961 		 */
1962 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1963 		if (!slot)
1964 			slot = 1;
1965 		diff = slot * period_slot;
1966 	} else {
1967 		/*
1968 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1969 		 * yet they are not on the local NUMA node. Speed up
1970 		 * NUMA scanning to get the memory moved over.
1971 		 */
1972 		int ratio = max(lr_ratio, ps_ratio);
1973 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1974 	}
1975 
1976 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1977 			task_scan_min(p), task_scan_max(p));
1978 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1979 }
1980 
1981 /*
1982  * Get the fraction of time the task has been running since the last
1983  * NUMA placement cycle. The scheduler keeps similar statistics, but
1984  * decays those on a 32ms period, which is orders of magnitude off
1985  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1986  * stats only if the task is so new there are no NUMA statistics yet.
1987  */
1988 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1989 {
1990 	u64 runtime, delta, now;
1991 	/* Use the start of this time slice to avoid calculations. */
1992 	now = p->se.exec_start;
1993 	runtime = p->se.sum_exec_runtime;
1994 
1995 	if (p->last_task_numa_placement) {
1996 		delta = runtime - p->last_sum_exec_runtime;
1997 		*period = now - p->last_task_numa_placement;
1998 	} else {
1999 		delta = p->se.avg.load_sum;
2000 		*period = LOAD_AVG_MAX;
2001 	}
2002 
2003 	p->last_sum_exec_runtime = runtime;
2004 	p->last_task_numa_placement = now;
2005 
2006 	return delta;
2007 }
2008 
2009 /*
2010  * Determine the preferred nid for a task in a numa_group. This needs to
2011  * be done in a way that produces consistent results with group_weight,
2012  * otherwise workloads might not converge.
2013  */
2014 static int preferred_group_nid(struct task_struct *p, int nid)
2015 {
2016 	nodemask_t nodes;
2017 	int dist;
2018 
2019 	/* Direct connections between all NUMA nodes. */
2020 	if (sched_numa_topology_type == NUMA_DIRECT)
2021 		return nid;
2022 
2023 	/*
2024 	 * On a system with glueless mesh NUMA topology, group_weight
2025 	 * scores nodes according to the number of NUMA hinting faults on
2026 	 * both the node itself, and on nearby nodes.
2027 	 */
2028 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2029 		unsigned long score, max_score = 0;
2030 		int node, max_node = nid;
2031 
2032 		dist = sched_max_numa_distance;
2033 
2034 		for_each_online_node(node) {
2035 			score = group_weight(p, node, dist);
2036 			if (score > max_score) {
2037 				max_score = score;
2038 				max_node = node;
2039 			}
2040 		}
2041 		return max_node;
2042 	}
2043 
2044 	/*
2045 	 * Finding the preferred nid in a system with NUMA backplane
2046 	 * interconnect topology is more involved. The goal is to locate
2047 	 * tasks from numa_groups near each other in the system, and
2048 	 * untangle workloads from different sides of the system. This requires
2049 	 * searching down the hierarchy of node groups, recursively searching
2050 	 * inside the highest scoring group of nodes. The nodemask tricks
2051 	 * keep the complexity of the search down.
2052 	 */
2053 	nodes = node_online_map;
2054 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2055 		unsigned long max_faults = 0;
2056 		nodemask_t max_group = NODE_MASK_NONE;
2057 		int a, b;
2058 
2059 		/* Are there nodes at this distance from each other? */
2060 		if (!find_numa_distance(dist))
2061 			continue;
2062 
2063 		for_each_node_mask(a, nodes) {
2064 			unsigned long faults = 0;
2065 			nodemask_t this_group;
2066 			nodes_clear(this_group);
2067 
2068 			/* Sum group's NUMA faults; includes a==b case. */
2069 			for_each_node_mask(b, nodes) {
2070 				if (node_distance(a, b) < dist) {
2071 					faults += group_faults(p, b);
2072 					node_set(b, this_group);
2073 					node_clear(b, nodes);
2074 				}
2075 			}
2076 
2077 			/* Remember the top group. */
2078 			if (faults > max_faults) {
2079 				max_faults = faults;
2080 				max_group = this_group;
2081 				/*
2082 				 * subtle: at the smallest distance there is
2083 				 * just one node left in each "group", the
2084 				 * winner is the preferred nid.
2085 				 */
2086 				nid = a;
2087 			}
2088 		}
2089 		/* Next round, evaluate the nodes within max_group. */
2090 		if (!max_faults)
2091 			break;
2092 		nodes = max_group;
2093 	}
2094 	return nid;
2095 }
2096 
2097 static void task_numa_placement(struct task_struct *p)
2098 {
2099 	int seq, nid, max_nid = -1;
2100 	unsigned long max_faults = 0;
2101 	unsigned long fault_types[2] = { 0, 0 };
2102 	unsigned long total_faults;
2103 	u64 runtime, period;
2104 	spinlock_t *group_lock = NULL;
2105 
2106 	/*
2107 	 * The p->mm->numa_scan_seq field gets updated without
2108 	 * exclusive access. Use READ_ONCE() here to ensure
2109 	 * that the field is read in a single access:
2110 	 */
2111 	seq = READ_ONCE(p->mm->numa_scan_seq);
2112 	if (p->numa_scan_seq == seq)
2113 		return;
2114 	p->numa_scan_seq = seq;
2115 	p->numa_scan_period_max = task_scan_max(p);
2116 
2117 	total_faults = p->numa_faults_locality[0] +
2118 		       p->numa_faults_locality[1];
2119 	runtime = numa_get_avg_runtime(p, &period);
2120 
2121 	/* If the task is part of a group prevent parallel updates to group stats */
2122 	if (p->numa_group) {
2123 		group_lock = &p->numa_group->lock;
2124 		spin_lock_irq(group_lock);
2125 	}
2126 
2127 	/* Find the node with the highest number of faults */
2128 	for_each_online_node(nid) {
2129 		/* Keep track of the offsets in numa_faults array */
2130 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2131 		unsigned long faults = 0, group_faults = 0;
2132 		int priv;
2133 
2134 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2135 			long diff, f_diff, f_weight;
2136 
2137 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2138 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2139 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2140 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2141 
2142 			/* Decay existing window, copy faults since last scan */
2143 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2144 			fault_types[priv] += p->numa_faults[membuf_idx];
2145 			p->numa_faults[membuf_idx] = 0;
2146 
2147 			/*
2148 			 * Normalize the faults_from, so all tasks in a group
2149 			 * count according to CPU use, instead of by the raw
2150 			 * number of faults. Tasks with little runtime have
2151 			 * little over-all impact on throughput, and thus their
2152 			 * faults are less important.
2153 			 */
2154 			f_weight = div64_u64(runtime << 16, period + 1);
2155 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2156 				   (total_faults + 1);
2157 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2158 			p->numa_faults[cpubuf_idx] = 0;
2159 
2160 			p->numa_faults[mem_idx] += diff;
2161 			p->numa_faults[cpu_idx] += f_diff;
2162 			faults += p->numa_faults[mem_idx];
2163 			p->total_numa_faults += diff;
2164 			if (p->numa_group) {
2165 				/*
2166 				 * safe because we can only change our own group
2167 				 *
2168 				 * mem_idx represents the offset for a given
2169 				 * nid and priv in a specific region because it
2170 				 * is at the beginning of the numa_faults array.
2171 				 */
2172 				p->numa_group->faults[mem_idx] += diff;
2173 				p->numa_group->faults_cpu[mem_idx] += f_diff;
2174 				p->numa_group->total_faults += diff;
2175 				group_faults += p->numa_group->faults[mem_idx];
2176 			}
2177 		}
2178 
2179 		if (!p->numa_group) {
2180 			if (faults > max_faults) {
2181 				max_faults = faults;
2182 				max_nid = nid;
2183 			}
2184 		} else if (group_faults > max_faults) {
2185 			max_faults = group_faults;
2186 			max_nid = nid;
2187 		}
2188 	}
2189 
2190 	if (p->numa_group) {
2191 		numa_group_count_active_nodes(p->numa_group);
2192 		spin_unlock_irq(group_lock);
2193 		max_nid = preferred_group_nid(p, max_nid);
2194 	}
2195 
2196 	if (max_faults) {
2197 		/* Set the new preferred node */
2198 		if (max_nid != p->numa_preferred_nid)
2199 			sched_setnuma(p, max_nid);
2200 	}
2201 
2202 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2203 }
2204 
2205 static inline int get_numa_group(struct numa_group *grp)
2206 {
2207 	return atomic_inc_not_zero(&grp->refcount);
2208 }
2209 
2210 static inline void put_numa_group(struct numa_group *grp)
2211 {
2212 	if (atomic_dec_and_test(&grp->refcount))
2213 		kfree_rcu(grp, rcu);
2214 }
2215 
2216 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2217 			int *priv)
2218 {
2219 	struct numa_group *grp, *my_grp;
2220 	struct task_struct *tsk;
2221 	bool join = false;
2222 	int cpu = cpupid_to_cpu(cpupid);
2223 	int i;
2224 
2225 	if (unlikely(!p->numa_group)) {
2226 		unsigned int size = sizeof(struct numa_group) +
2227 				    4*nr_node_ids*sizeof(unsigned long);
2228 
2229 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2230 		if (!grp)
2231 			return;
2232 
2233 		atomic_set(&grp->refcount, 1);
2234 		grp->active_nodes = 1;
2235 		grp->max_faults_cpu = 0;
2236 		spin_lock_init(&grp->lock);
2237 		grp->gid = p->pid;
2238 		/* Second half of the array tracks nids where faults happen */
2239 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2240 						nr_node_ids;
2241 
2242 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2243 			grp->faults[i] = p->numa_faults[i];
2244 
2245 		grp->total_faults = p->total_numa_faults;
2246 
2247 		grp->nr_tasks++;
2248 		rcu_assign_pointer(p->numa_group, grp);
2249 	}
2250 
2251 	rcu_read_lock();
2252 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2253 
2254 	if (!cpupid_match_pid(tsk, cpupid))
2255 		goto no_join;
2256 
2257 	grp = rcu_dereference(tsk->numa_group);
2258 	if (!grp)
2259 		goto no_join;
2260 
2261 	my_grp = p->numa_group;
2262 	if (grp == my_grp)
2263 		goto no_join;
2264 
2265 	/*
2266 	 * Only join the other group if its bigger; if we're the bigger group,
2267 	 * the other task will join us.
2268 	 */
2269 	if (my_grp->nr_tasks > grp->nr_tasks)
2270 		goto no_join;
2271 
2272 	/*
2273 	 * Tie-break on the grp address.
2274 	 */
2275 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2276 		goto no_join;
2277 
2278 	/* Always join threads in the same process. */
2279 	if (tsk->mm == current->mm)
2280 		join = true;
2281 
2282 	/* Simple filter to avoid false positives due to PID collisions */
2283 	if (flags & TNF_SHARED)
2284 		join = true;
2285 
2286 	/* Update priv based on whether false sharing was detected */
2287 	*priv = !join;
2288 
2289 	if (join && !get_numa_group(grp))
2290 		goto no_join;
2291 
2292 	rcu_read_unlock();
2293 
2294 	if (!join)
2295 		return;
2296 
2297 	BUG_ON(irqs_disabled());
2298 	double_lock_irq(&my_grp->lock, &grp->lock);
2299 
2300 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2301 		my_grp->faults[i] -= p->numa_faults[i];
2302 		grp->faults[i] += p->numa_faults[i];
2303 	}
2304 	my_grp->total_faults -= p->total_numa_faults;
2305 	grp->total_faults += p->total_numa_faults;
2306 
2307 	my_grp->nr_tasks--;
2308 	grp->nr_tasks++;
2309 
2310 	spin_unlock(&my_grp->lock);
2311 	spin_unlock_irq(&grp->lock);
2312 
2313 	rcu_assign_pointer(p->numa_group, grp);
2314 
2315 	put_numa_group(my_grp);
2316 	return;
2317 
2318 no_join:
2319 	rcu_read_unlock();
2320 	return;
2321 }
2322 
2323 void task_numa_free(struct task_struct *p)
2324 {
2325 	struct numa_group *grp = p->numa_group;
2326 	void *numa_faults = p->numa_faults;
2327 	unsigned long flags;
2328 	int i;
2329 
2330 	if (grp) {
2331 		spin_lock_irqsave(&grp->lock, flags);
2332 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2333 			grp->faults[i] -= p->numa_faults[i];
2334 		grp->total_faults -= p->total_numa_faults;
2335 
2336 		grp->nr_tasks--;
2337 		spin_unlock_irqrestore(&grp->lock, flags);
2338 		RCU_INIT_POINTER(p->numa_group, NULL);
2339 		put_numa_group(grp);
2340 	}
2341 
2342 	p->numa_faults = NULL;
2343 	kfree(numa_faults);
2344 }
2345 
2346 /*
2347  * Got a PROT_NONE fault for a page on @node.
2348  */
2349 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2350 {
2351 	struct task_struct *p = current;
2352 	bool migrated = flags & TNF_MIGRATED;
2353 	int cpu_node = task_node(current);
2354 	int local = !!(flags & TNF_FAULT_LOCAL);
2355 	struct numa_group *ng;
2356 	int priv;
2357 
2358 	if (!static_branch_likely(&sched_numa_balancing))
2359 		return;
2360 
2361 	/* for example, ksmd faulting in a user's mm */
2362 	if (!p->mm)
2363 		return;
2364 
2365 	/* Allocate buffer to track faults on a per-node basis */
2366 	if (unlikely(!p->numa_faults)) {
2367 		int size = sizeof(*p->numa_faults) *
2368 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2369 
2370 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2371 		if (!p->numa_faults)
2372 			return;
2373 
2374 		p->total_numa_faults = 0;
2375 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2376 	}
2377 
2378 	/*
2379 	 * First accesses are treated as private, otherwise consider accesses
2380 	 * to be private if the accessing pid has not changed
2381 	 */
2382 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2383 		priv = 1;
2384 	} else {
2385 		priv = cpupid_match_pid(p, last_cpupid);
2386 		if (!priv && !(flags & TNF_NO_GROUP))
2387 			task_numa_group(p, last_cpupid, flags, &priv);
2388 	}
2389 
2390 	/*
2391 	 * If a workload spans multiple NUMA nodes, a shared fault that
2392 	 * occurs wholly within the set of nodes that the workload is
2393 	 * actively using should be counted as local. This allows the
2394 	 * scan rate to slow down when a workload has settled down.
2395 	 */
2396 	ng = p->numa_group;
2397 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2398 				numa_is_active_node(cpu_node, ng) &&
2399 				numa_is_active_node(mem_node, ng))
2400 		local = 1;
2401 
2402 	/*
2403 	 * Retry task to preferred node migration periodically, in case it
2404 	 * case it previously failed, or the scheduler moved us.
2405 	 */
2406 	if (time_after(jiffies, p->numa_migrate_retry)) {
2407 		task_numa_placement(p);
2408 		numa_migrate_preferred(p);
2409 	}
2410 
2411 	if (migrated)
2412 		p->numa_pages_migrated += pages;
2413 	if (flags & TNF_MIGRATE_FAIL)
2414 		p->numa_faults_locality[2] += pages;
2415 
2416 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2417 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2418 	p->numa_faults_locality[local] += pages;
2419 }
2420 
2421 static void reset_ptenuma_scan(struct task_struct *p)
2422 {
2423 	/*
2424 	 * We only did a read acquisition of the mmap sem, so
2425 	 * p->mm->numa_scan_seq is written to without exclusive access
2426 	 * and the update is not guaranteed to be atomic. That's not
2427 	 * much of an issue though, since this is just used for
2428 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2429 	 * expensive, to avoid any form of compiler optimizations:
2430 	 */
2431 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2432 	p->mm->numa_scan_offset = 0;
2433 }
2434 
2435 /*
2436  * The expensive part of numa migration is done from task_work context.
2437  * Triggered from task_tick_numa().
2438  */
2439 void task_numa_work(struct callback_head *work)
2440 {
2441 	unsigned long migrate, next_scan, now = jiffies;
2442 	struct task_struct *p = current;
2443 	struct mm_struct *mm = p->mm;
2444 	u64 runtime = p->se.sum_exec_runtime;
2445 	struct vm_area_struct *vma;
2446 	unsigned long start, end;
2447 	unsigned long nr_pte_updates = 0;
2448 	long pages, virtpages;
2449 
2450 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2451 
2452 	work->next = work; /* protect against double add */
2453 	/*
2454 	 * Who cares about NUMA placement when they're dying.
2455 	 *
2456 	 * NOTE: make sure not to dereference p->mm before this check,
2457 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2458 	 * without p->mm even though we still had it when we enqueued this
2459 	 * work.
2460 	 */
2461 	if (p->flags & PF_EXITING)
2462 		return;
2463 
2464 	if (!mm->numa_next_scan) {
2465 		mm->numa_next_scan = now +
2466 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2467 	}
2468 
2469 	/*
2470 	 * Enforce maximal scan/migration frequency..
2471 	 */
2472 	migrate = mm->numa_next_scan;
2473 	if (time_before(now, migrate))
2474 		return;
2475 
2476 	if (p->numa_scan_period == 0) {
2477 		p->numa_scan_period_max = task_scan_max(p);
2478 		p->numa_scan_period = task_scan_start(p);
2479 	}
2480 
2481 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2482 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2483 		return;
2484 
2485 	/*
2486 	 * Delay this task enough that another task of this mm will likely win
2487 	 * the next time around.
2488 	 */
2489 	p->node_stamp += 2 * TICK_NSEC;
2490 
2491 	start = mm->numa_scan_offset;
2492 	pages = sysctl_numa_balancing_scan_size;
2493 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2494 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2495 	if (!pages)
2496 		return;
2497 
2498 
2499 	if (!down_read_trylock(&mm->mmap_sem))
2500 		return;
2501 	vma = find_vma(mm, start);
2502 	if (!vma) {
2503 		reset_ptenuma_scan(p);
2504 		start = 0;
2505 		vma = mm->mmap;
2506 	}
2507 	for (; vma; vma = vma->vm_next) {
2508 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2509 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2510 			continue;
2511 		}
2512 
2513 		/*
2514 		 * Shared library pages mapped by multiple processes are not
2515 		 * migrated as it is expected they are cache replicated. Avoid
2516 		 * hinting faults in read-only file-backed mappings or the vdso
2517 		 * as migrating the pages will be of marginal benefit.
2518 		 */
2519 		if (!vma->vm_mm ||
2520 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2521 			continue;
2522 
2523 		/*
2524 		 * Skip inaccessible VMAs to avoid any confusion between
2525 		 * PROT_NONE and NUMA hinting ptes
2526 		 */
2527 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2528 			continue;
2529 
2530 		do {
2531 			start = max(start, vma->vm_start);
2532 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2533 			end = min(end, vma->vm_end);
2534 			nr_pte_updates = change_prot_numa(vma, start, end);
2535 
2536 			/*
2537 			 * Try to scan sysctl_numa_balancing_size worth of
2538 			 * hpages that have at least one present PTE that
2539 			 * is not already pte-numa. If the VMA contains
2540 			 * areas that are unused or already full of prot_numa
2541 			 * PTEs, scan up to virtpages, to skip through those
2542 			 * areas faster.
2543 			 */
2544 			if (nr_pte_updates)
2545 				pages -= (end - start) >> PAGE_SHIFT;
2546 			virtpages -= (end - start) >> PAGE_SHIFT;
2547 
2548 			start = end;
2549 			if (pages <= 0 || virtpages <= 0)
2550 				goto out;
2551 
2552 			cond_resched();
2553 		} while (end != vma->vm_end);
2554 	}
2555 
2556 out:
2557 	/*
2558 	 * It is possible to reach the end of the VMA list but the last few
2559 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2560 	 * would find the !migratable VMA on the next scan but not reset the
2561 	 * scanner to the start so check it now.
2562 	 */
2563 	if (vma)
2564 		mm->numa_scan_offset = start;
2565 	else
2566 		reset_ptenuma_scan(p);
2567 	up_read(&mm->mmap_sem);
2568 
2569 	/*
2570 	 * Make sure tasks use at least 32x as much time to run other code
2571 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2572 	 * Usually update_task_scan_period slows down scanning enough; on an
2573 	 * overloaded system we need to limit overhead on a per task basis.
2574 	 */
2575 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2576 		u64 diff = p->se.sum_exec_runtime - runtime;
2577 		p->node_stamp += 32 * diff;
2578 	}
2579 }
2580 
2581 /*
2582  * Drive the periodic memory faults..
2583  */
2584 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2585 {
2586 	struct callback_head *work = &curr->numa_work;
2587 	u64 period, now;
2588 
2589 	/*
2590 	 * We don't care about NUMA placement if we don't have memory.
2591 	 */
2592 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2593 		return;
2594 
2595 	/*
2596 	 * Using runtime rather than walltime has the dual advantage that
2597 	 * we (mostly) drive the selection from busy threads and that the
2598 	 * task needs to have done some actual work before we bother with
2599 	 * NUMA placement.
2600 	 */
2601 	now = curr->se.sum_exec_runtime;
2602 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2603 
2604 	if (now > curr->node_stamp + period) {
2605 		if (!curr->node_stamp)
2606 			curr->numa_scan_period = task_scan_start(curr);
2607 		curr->node_stamp += period;
2608 
2609 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2610 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2611 			task_work_add(curr, work, true);
2612 		}
2613 	}
2614 }
2615 
2616 static void update_scan_period(struct task_struct *p, int new_cpu)
2617 {
2618 	int src_nid = cpu_to_node(task_cpu(p));
2619 	int dst_nid = cpu_to_node(new_cpu);
2620 
2621 	if (!static_branch_likely(&sched_numa_balancing))
2622 		return;
2623 
2624 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2625 		return;
2626 
2627 	if (src_nid == dst_nid)
2628 		return;
2629 
2630 	/*
2631 	 * Allow resets if faults have been trapped before one scan
2632 	 * has completed. This is most likely due to a new task that
2633 	 * is pulled cross-node due to wakeups or load balancing.
2634 	 */
2635 	if (p->numa_scan_seq) {
2636 		/*
2637 		 * Avoid scan adjustments if moving to the preferred
2638 		 * node or if the task was not previously running on
2639 		 * the preferred node.
2640 		 */
2641 		if (dst_nid == p->numa_preferred_nid ||
2642 		    (p->numa_preferred_nid != -1 && src_nid != p->numa_preferred_nid))
2643 			return;
2644 	}
2645 
2646 	p->numa_scan_period = task_scan_start(p);
2647 }
2648 
2649 #else
2650 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2651 {
2652 }
2653 
2654 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2655 {
2656 }
2657 
2658 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2659 {
2660 }
2661 
2662 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2663 {
2664 }
2665 
2666 #endif /* CONFIG_NUMA_BALANCING */
2667 
2668 static void
2669 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2670 {
2671 	update_load_add(&cfs_rq->load, se->load.weight);
2672 	if (!parent_entity(se))
2673 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2674 #ifdef CONFIG_SMP
2675 	if (entity_is_task(se)) {
2676 		struct rq *rq = rq_of(cfs_rq);
2677 
2678 		account_numa_enqueue(rq, task_of(se));
2679 		list_add(&se->group_node, &rq->cfs_tasks);
2680 	}
2681 #endif
2682 	cfs_rq->nr_running++;
2683 }
2684 
2685 static void
2686 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2687 {
2688 	update_load_sub(&cfs_rq->load, se->load.weight);
2689 	if (!parent_entity(se))
2690 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2691 #ifdef CONFIG_SMP
2692 	if (entity_is_task(se)) {
2693 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2694 		list_del_init(&se->group_node);
2695 	}
2696 #endif
2697 	cfs_rq->nr_running--;
2698 }
2699 
2700 /*
2701  * Signed add and clamp on underflow.
2702  *
2703  * Explicitly do a load-store to ensure the intermediate value never hits
2704  * memory. This allows lockless observations without ever seeing the negative
2705  * values.
2706  */
2707 #define add_positive(_ptr, _val) do {                           \
2708 	typeof(_ptr) ptr = (_ptr);                              \
2709 	typeof(_val) val = (_val);                              \
2710 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2711 								\
2712 	res = var + val;                                        \
2713 								\
2714 	if (val < 0 && res > var)                               \
2715 		res = 0;                                        \
2716 								\
2717 	WRITE_ONCE(*ptr, res);                                  \
2718 } while (0)
2719 
2720 /*
2721  * Unsigned subtract and clamp on underflow.
2722  *
2723  * Explicitly do a load-store to ensure the intermediate value never hits
2724  * memory. This allows lockless observations without ever seeing the negative
2725  * values.
2726  */
2727 #define sub_positive(_ptr, _val) do {				\
2728 	typeof(_ptr) ptr = (_ptr);				\
2729 	typeof(*ptr) val = (_val);				\
2730 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
2731 	res = var - val;					\
2732 	if (res > var)						\
2733 		res = 0;					\
2734 	WRITE_ONCE(*ptr, res);					\
2735 } while (0)
2736 
2737 #ifdef CONFIG_SMP
2738 static inline void
2739 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2740 {
2741 	cfs_rq->runnable_weight += se->runnable_weight;
2742 
2743 	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2744 	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2745 }
2746 
2747 static inline void
2748 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2749 {
2750 	cfs_rq->runnable_weight -= se->runnable_weight;
2751 
2752 	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2753 	sub_positive(&cfs_rq->avg.runnable_load_sum,
2754 		     se_runnable(se) * se->avg.runnable_load_sum);
2755 }
2756 
2757 static inline void
2758 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2759 {
2760 	cfs_rq->avg.load_avg += se->avg.load_avg;
2761 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2762 }
2763 
2764 static inline void
2765 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2766 {
2767 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2768 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2769 }
2770 #else
2771 static inline void
2772 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2773 static inline void
2774 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2775 static inline void
2776 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2777 static inline void
2778 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2779 #endif
2780 
2781 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2782 			    unsigned long weight, unsigned long runnable)
2783 {
2784 	if (se->on_rq) {
2785 		/* commit outstanding execution time */
2786 		if (cfs_rq->curr == se)
2787 			update_curr(cfs_rq);
2788 		account_entity_dequeue(cfs_rq, se);
2789 		dequeue_runnable_load_avg(cfs_rq, se);
2790 	}
2791 	dequeue_load_avg(cfs_rq, se);
2792 
2793 	se->runnable_weight = runnable;
2794 	update_load_set(&se->load, weight);
2795 
2796 #ifdef CONFIG_SMP
2797 	do {
2798 		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2799 
2800 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2801 		se->avg.runnable_load_avg =
2802 			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2803 	} while (0);
2804 #endif
2805 
2806 	enqueue_load_avg(cfs_rq, se);
2807 	if (se->on_rq) {
2808 		account_entity_enqueue(cfs_rq, se);
2809 		enqueue_runnable_load_avg(cfs_rq, se);
2810 	}
2811 }
2812 
2813 void reweight_task(struct task_struct *p, int prio)
2814 {
2815 	struct sched_entity *se = &p->se;
2816 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2817 	struct load_weight *load = &se->load;
2818 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2819 
2820 	reweight_entity(cfs_rq, se, weight, weight);
2821 	load->inv_weight = sched_prio_to_wmult[prio];
2822 }
2823 
2824 #ifdef CONFIG_FAIR_GROUP_SCHED
2825 #ifdef CONFIG_SMP
2826 /*
2827  * All this does is approximate the hierarchical proportion which includes that
2828  * global sum we all love to hate.
2829  *
2830  * That is, the weight of a group entity, is the proportional share of the
2831  * group weight based on the group runqueue weights. That is:
2832  *
2833  *                     tg->weight * grq->load.weight
2834  *   ge->load.weight = -----------------------------               (1)
2835  *			  \Sum grq->load.weight
2836  *
2837  * Now, because computing that sum is prohibitively expensive to compute (been
2838  * there, done that) we approximate it with this average stuff. The average
2839  * moves slower and therefore the approximation is cheaper and more stable.
2840  *
2841  * So instead of the above, we substitute:
2842  *
2843  *   grq->load.weight -> grq->avg.load_avg                         (2)
2844  *
2845  * which yields the following:
2846  *
2847  *                     tg->weight * grq->avg.load_avg
2848  *   ge->load.weight = ------------------------------              (3)
2849  *				tg->load_avg
2850  *
2851  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2852  *
2853  * That is shares_avg, and it is right (given the approximation (2)).
2854  *
2855  * The problem with it is that because the average is slow -- it was designed
2856  * to be exactly that of course -- this leads to transients in boundary
2857  * conditions. In specific, the case where the group was idle and we start the
2858  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2859  * yielding bad latency etc..
2860  *
2861  * Now, in that special case (1) reduces to:
2862  *
2863  *                     tg->weight * grq->load.weight
2864  *   ge->load.weight = ----------------------------- = tg->weight   (4)
2865  *			    grp->load.weight
2866  *
2867  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2868  *
2869  * So what we do is modify our approximation (3) to approach (4) in the (near)
2870  * UP case, like:
2871  *
2872  *   ge->load.weight =
2873  *
2874  *              tg->weight * grq->load.weight
2875  *     ---------------------------------------------------         (5)
2876  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
2877  *
2878  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2879  * we need to use grq->avg.load_avg as its lower bound, which then gives:
2880  *
2881  *
2882  *                     tg->weight * grq->load.weight
2883  *   ge->load.weight = -----------------------------		   (6)
2884  *				tg_load_avg'
2885  *
2886  * Where:
2887  *
2888  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2889  *                  max(grq->load.weight, grq->avg.load_avg)
2890  *
2891  * And that is shares_weight and is icky. In the (near) UP case it approaches
2892  * (4) while in the normal case it approaches (3). It consistently
2893  * overestimates the ge->load.weight and therefore:
2894  *
2895  *   \Sum ge->load.weight >= tg->weight
2896  *
2897  * hence icky!
2898  */
2899 static long calc_group_shares(struct cfs_rq *cfs_rq)
2900 {
2901 	long tg_weight, tg_shares, load, shares;
2902 	struct task_group *tg = cfs_rq->tg;
2903 
2904 	tg_shares = READ_ONCE(tg->shares);
2905 
2906 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2907 
2908 	tg_weight = atomic_long_read(&tg->load_avg);
2909 
2910 	/* Ensure tg_weight >= load */
2911 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2912 	tg_weight += load;
2913 
2914 	shares = (tg_shares * load);
2915 	if (tg_weight)
2916 		shares /= tg_weight;
2917 
2918 	/*
2919 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2920 	 * of a group with small tg->shares value. It is a floor value which is
2921 	 * assigned as a minimum load.weight to the sched_entity representing
2922 	 * the group on a CPU.
2923 	 *
2924 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2925 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2926 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2927 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2928 	 * instead of 0.
2929 	 */
2930 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
2931 }
2932 
2933 /*
2934  * This calculates the effective runnable weight for a group entity based on
2935  * the group entity weight calculated above.
2936  *
2937  * Because of the above approximation (2), our group entity weight is
2938  * an load_avg based ratio (3). This means that it includes blocked load and
2939  * does not represent the runnable weight.
2940  *
2941  * Approximate the group entity's runnable weight per ratio from the group
2942  * runqueue:
2943  *
2944  *					     grq->avg.runnable_load_avg
2945  *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
2946  *						 grq->avg.load_avg
2947  *
2948  * However, analogous to above, since the avg numbers are slow, this leads to
2949  * transients in the from-idle case. Instead we use:
2950  *
2951  *   ge->runnable_weight = ge->load.weight *
2952  *
2953  *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
2954  *		-----------------------------------------------------	(8)
2955  *		      max(grq->avg.load_avg, grq->load.weight)
2956  *
2957  * Where these max() serve both to use the 'instant' values to fix the slow
2958  * from-idle and avoid the /0 on to-idle, similar to (6).
2959  */
2960 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2961 {
2962 	long runnable, load_avg;
2963 
2964 	load_avg = max(cfs_rq->avg.load_avg,
2965 		       scale_load_down(cfs_rq->load.weight));
2966 
2967 	runnable = max(cfs_rq->avg.runnable_load_avg,
2968 		       scale_load_down(cfs_rq->runnable_weight));
2969 
2970 	runnable *= shares;
2971 	if (load_avg)
2972 		runnable /= load_avg;
2973 
2974 	return clamp_t(long, runnable, MIN_SHARES, shares);
2975 }
2976 #endif /* CONFIG_SMP */
2977 
2978 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2979 
2980 /*
2981  * Recomputes the group entity based on the current state of its group
2982  * runqueue.
2983  */
2984 static void update_cfs_group(struct sched_entity *se)
2985 {
2986 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
2987 	long shares, runnable;
2988 
2989 	if (!gcfs_rq)
2990 		return;
2991 
2992 	if (throttled_hierarchy(gcfs_rq))
2993 		return;
2994 
2995 #ifndef CONFIG_SMP
2996 	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
2997 
2998 	if (likely(se->load.weight == shares))
2999 		return;
3000 #else
3001 	shares   = calc_group_shares(gcfs_rq);
3002 	runnable = calc_group_runnable(gcfs_rq, shares);
3003 #endif
3004 
3005 	reweight_entity(cfs_rq_of(se), se, shares, runnable);
3006 }
3007 
3008 #else /* CONFIG_FAIR_GROUP_SCHED */
3009 static inline void update_cfs_group(struct sched_entity *se)
3010 {
3011 }
3012 #endif /* CONFIG_FAIR_GROUP_SCHED */
3013 
3014 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3015 {
3016 	struct rq *rq = rq_of(cfs_rq);
3017 
3018 	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3019 		/*
3020 		 * There are a few boundary cases this might miss but it should
3021 		 * get called often enough that that should (hopefully) not be
3022 		 * a real problem.
3023 		 *
3024 		 * It will not get called when we go idle, because the idle
3025 		 * thread is a different class (!fair), nor will the utilization
3026 		 * number include things like RT tasks.
3027 		 *
3028 		 * As is, the util number is not freq-invariant (we'd have to
3029 		 * implement arch_scale_freq_capacity() for that).
3030 		 *
3031 		 * See cpu_util().
3032 		 */
3033 		cpufreq_update_util(rq, flags);
3034 	}
3035 }
3036 
3037 #ifdef CONFIG_SMP
3038 #ifdef CONFIG_FAIR_GROUP_SCHED
3039 /**
3040  * update_tg_load_avg - update the tg's load avg
3041  * @cfs_rq: the cfs_rq whose avg changed
3042  * @force: update regardless of how small the difference
3043  *
3044  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3045  * However, because tg->load_avg is a global value there are performance
3046  * considerations.
3047  *
3048  * In order to avoid having to look at the other cfs_rq's, we use a
3049  * differential update where we store the last value we propagated. This in
3050  * turn allows skipping updates if the differential is 'small'.
3051  *
3052  * Updating tg's load_avg is necessary before update_cfs_share().
3053  */
3054 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3055 {
3056 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3057 
3058 	/*
3059 	 * No need to update load_avg for root_task_group as it is not used.
3060 	 */
3061 	if (cfs_rq->tg == &root_task_group)
3062 		return;
3063 
3064 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3065 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3066 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3067 	}
3068 }
3069 
3070 /*
3071  * Called within set_task_rq() right before setting a task's CPU. The
3072  * caller only guarantees p->pi_lock is held; no other assumptions,
3073  * including the state of rq->lock, should be made.
3074  */
3075 void set_task_rq_fair(struct sched_entity *se,
3076 		      struct cfs_rq *prev, struct cfs_rq *next)
3077 {
3078 	u64 p_last_update_time;
3079 	u64 n_last_update_time;
3080 
3081 	if (!sched_feat(ATTACH_AGE_LOAD))
3082 		return;
3083 
3084 	/*
3085 	 * We are supposed to update the task to "current" time, then its up to
3086 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3087 	 * getting what current time is, so simply throw away the out-of-date
3088 	 * time. This will result in the wakee task is less decayed, but giving
3089 	 * the wakee more load sounds not bad.
3090 	 */
3091 	if (!(se->avg.last_update_time && prev))
3092 		return;
3093 
3094 #ifndef CONFIG_64BIT
3095 	{
3096 		u64 p_last_update_time_copy;
3097 		u64 n_last_update_time_copy;
3098 
3099 		do {
3100 			p_last_update_time_copy = prev->load_last_update_time_copy;
3101 			n_last_update_time_copy = next->load_last_update_time_copy;
3102 
3103 			smp_rmb();
3104 
3105 			p_last_update_time = prev->avg.last_update_time;
3106 			n_last_update_time = next->avg.last_update_time;
3107 
3108 		} while (p_last_update_time != p_last_update_time_copy ||
3109 			 n_last_update_time != n_last_update_time_copy);
3110 	}
3111 #else
3112 	p_last_update_time = prev->avg.last_update_time;
3113 	n_last_update_time = next->avg.last_update_time;
3114 #endif
3115 	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3116 	se->avg.last_update_time = n_last_update_time;
3117 }
3118 
3119 
3120 /*
3121  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3122  * propagate its contribution. The key to this propagation is the invariant
3123  * that for each group:
3124  *
3125  *   ge->avg == grq->avg						(1)
3126  *
3127  * _IFF_ we look at the pure running and runnable sums. Because they
3128  * represent the very same entity, just at different points in the hierarchy.
3129  *
3130  * Per the above update_tg_cfs_util() is trivial and simply copies the running
3131  * sum over (but still wrong, because the group entity and group rq do not have
3132  * their PELT windows aligned).
3133  *
3134  * However, update_tg_cfs_runnable() is more complex. So we have:
3135  *
3136  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3137  *
3138  * And since, like util, the runnable part should be directly transferable,
3139  * the following would _appear_ to be the straight forward approach:
3140  *
3141  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3142  *
3143  * And per (1) we have:
3144  *
3145  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3146  *
3147  * Which gives:
3148  *
3149  *                      ge->load.weight * grq->avg.load_avg
3150  *   ge->avg.load_avg = -----------------------------------		(4)
3151  *                               grq->load.weight
3152  *
3153  * Except that is wrong!
3154  *
3155  * Because while for entities historical weight is not important and we
3156  * really only care about our future and therefore can consider a pure
3157  * runnable sum, runqueues can NOT do this.
3158  *
3159  * We specifically want runqueues to have a load_avg that includes
3160  * historical weights. Those represent the blocked load, the load we expect
3161  * to (shortly) return to us. This only works by keeping the weights as
3162  * integral part of the sum. We therefore cannot decompose as per (3).
3163  *
3164  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3165  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3166  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3167  * runnable section of these tasks overlap (or not). If they were to perfectly
3168  * align the rq as a whole would be runnable 2/3 of the time. If however we
3169  * always have at least 1 runnable task, the rq as a whole is always runnable.
3170  *
3171  * So we'll have to approximate.. :/
3172  *
3173  * Given the constraint:
3174  *
3175  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3176  *
3177  * We can construct a rule that adds runnable to a rq by assuming minimal
3178  * overlap.
3179  *
3180  * On removal, we'll assume each task is equally runnable; which yields:
3181  *
3182  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3183  *
3184  * XXX: only do this for the part of runnable > running ?
3185  *
3186  */
3187 
3188 static inline void
3189 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3190 {
3191 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3192 
3193 	/* Nothing to update */
3194 	if (!delta)
3195 		return;
3196 
3197 	/*
3198 	 * The relation between sum and avg is:
3199 	 *
3200 	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
3201 	 *
3202 	 * however, the PELT windows are not aligned between grq and gse.
3203 	 */
3204 
3205 	/* Set new sched_entity's utilization */
3206 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3207 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3208 
3209 	/* Update parent cfs_rq utilization */
3210 	add_positive(&cfs_rq->avg.util_avg, delta);
3211 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3212 }
3213 
3214 static inline void
3215 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3216 {
3217 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3218 	unsigned long runnable_load_avg, load_avg;
3219 	u64 runnable_load_sum, load_sum = 0;
3220 	s64 delta_sum;
3221 
3222 	if (!runnable_sum)
3223 		return;
3224 
3225 	gcfs_rq->prop_runnable_sum = 0;
3226 
3227 	if (runnable_sum >= 0) {
3228 		/*
3229 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3230 		 * the CPU is saturated running == runnable.
3231 		 */
3232 		runnable_sum += se->avg.load_sum;
3233 		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3234 	} else {
3235 		/*
3236 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3237 		 * assuming all tasks are equally runnable.
3238 		 */
3239 		if (scale_load_down(gcfs_rq->load.weight)) {
3240 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3241 				scale_load_down(gcfs_rq->load.weight));
3242 		}
3243 
3244 		/* But make sure to not inflate se's runnable */
3245 		runnable_sum = min(se->avg.load_sum, load_sum);
3246 	}
3247 
3248 	/*
3249 	 * runnable_sum can't be lower than running_sum
3250 	 * As running sum is scale with CPU capacity wehreas the runnable sum
3251 	 * is not we rescale running_sum 1st
3252 	 */
3253 	running_sum = se->avg.util_sum /
3254 		arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
3255 	runnable_sum = max(runnable_sum, running_sum);
3256 
3257 	load_sum = (s64)se_weight(se) * runnable_sum;
3258 	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3259 
3260 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3261 	delta_avg = load_avg - se->avg.load_avg;
3262 
3263 	se->avg.load_sum = runnable_sum;
3264 	se->avg.load_avg = load_avg;
3265 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3266 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3267 
3268 	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3269 	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3270 	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3271 	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3272 
3273 	se->avg.runnable_load_sum = runnable_sum;
3274 	se->avg.runnable_load_avg = runnable_load_avg;
3275 
3276 	if (se->on_rq) {
3277 		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3278 		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3279 	}
3280 }
3281 
3282 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3283 {
3284 	cfs_rq->propagate = 1;
3285 	cfs_rq->prop_runnable_sum += runnable_sum;
3286 }
3287 
3288 /* Update task and its cfs_rq load average */
3289 static inline int propagate_entity_load_avg(struct sched_entity *se)
3290 {
3291 	struct cfs_rq *cfs_rq, *gcfs_rq;
3292 
3293 	if (entity_is_task(se))
3294 		return 0;
3295 
3296 	gcfs_rq = group_cfs_rq(se);
3297 	if (!gcfs_rq->propagate)
3298 		return 0;
3299 
3300 	gcfs_rq->propagate = 0;
3301 
3302 	cfs_rq = cfs_rq_of(se);
3303 
3304 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3305 
3306 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3307 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3308 
3309 	return 1;
3310 }
3311 
3312 /*
3313  * Check if we need to update the load and the utilization of a blocked
3314  * group_entity:
3315  */
3316 static inline bool skip_blocked_update(struct sched_entity *se)
3317 {
3318 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3319 
3320 	/*
3321 	 * If sched_entity still have not zero load or utilization, we have to
3322 	 * decay it:
3323 	 */
3324 	if (se->avg.load_avg || se->avg.util_avg)
3325 		return false;
3326 
3327 	/*
3328 	 * If there is a pending propagation, we have to update the load and
3329 	 * the utilization of the sched_entity:
3330 	 */
3331 	if (gcfs_rq->propagate)
3332 		return false;
3333 
3334 	/*
3335 	 * Otherwise, the load and the utilization of the sched_entity is
3336 	 * already zero and there is no pending propagation, so it will be a
3337 	 * waste of time to try to decay it:
3338 	 */
3339 	return true;
3340 }
3341 
3342 #else /* CONFIG_FAIR_GROUP_SCHED */
3343 
3344 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3345 
3346 static inline int propagate_entity_load_avg(struct sched_entity *se)
3347 {
3348 	return 0;
3349 }
3350 
3351 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3352 
3353 #endif /* CONFIG_FAIR_GROUP_SCHED */
3354 
3355 /**
3356  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3357  * @now: current time, as per cfs_rq_clock_task()
3358  * @cfs_rq: cfs_rq to update
3359  *
3360  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3361  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3362  * post_init_entity_util_avg().
3363  *
3364  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3365  *
3366  * Returns true if the load decayed or we removed load.
3367  *
3368  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3369  * call update_tg_load_avg() when this function returns true.
3370  */
3371 static inline int
3372 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3373 {
3374 	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3375 	struct sched_avg *sa = &cfs_rq->avg;
3376 	int decayed = 0;
3377 
3378 	if (cfs_rq->removed.nr) {
3379 		unsigned long r;
3380 		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3381 
3382 		raw_spin_lock(&cfs_rq->removed.lock);
3383 		swap(cfs_rq->removed.util_avg, removed_util);
3384 		swap(cfs_rq->removed.load_avg, removed_load);
3385 		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3386 		cfs_rq->removed.nr = 0;
3387 		raw_spin_unlock(&cfs_rq->removed.lock);
3388 
3389 		r = removed_load;
3390 		sub_positive(&sa->load_avg, r);
3391 		sub_positive(&sa->load_sum, r * divider);
3392 
3393 		r = removed_util;
3394 		sub_positive(&sa->util_avg, r);
3395 		sub_positive(&sa->util_sum, r * divider);
3396 
3397 		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3398 
3399 		decayed = 1;
3400 	}
3401 
3402 	decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3403 
3404 #ifndef CONFIG_64BIT
3405 	smp_wmb();
3406 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3407 #endif
3408 
3409 	if (decayed)
3410 		cfs_rq_util_change(cfs_rq, 0);
3411 
3412 	return decayed;
3413 }
3414 
3415 /**
3416  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3417  * @cfs_rq: cfs_rq to attach to
3418  * @se: sched_entity to attach
3419  * @flags: migration hints
3420  *
3421  * Must call update_cfs_rq_load_avg() before this, since we rely on
3422  * cfs_rq->avg.last_update_time being current.
3423  */
3424 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3425 {
3426 	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3427 
3428 	/*
3429 	 * When we attach the @se to the @cfs_rq, we must align the decay
3430 	 * window because without that, really weird and wonderful things can
3431 	 * happen.
3432 	 *
3433 	 * XXX illustrate
3434 	 */
3435 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3436 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3437 
3438 	/*
3439 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3440 	 * period_contrib. This isn't strictly correct, but since we're
3441 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3442 	 * _sum a little.
3443 	 */
3444 	se->avg.util_sum = se->avg.util_avg * divider;
3445 
3446 	se->avg.load_sum = divider;
3447 	if (se_weight(se)) {
3448 		se->avg.load_sum =
3449 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3450 	}
3451 
3452 	se->avg.runnable_load_sum = se->avg.load_sum;
3453 
3454 	enqueue_load_avg(cfs_rq, se);
3455 	cfs_rq->avg.util_avg += se->avg.util_avg;
3456 	cfs_rq->avg.util_sum += se->avg.util_sum;
3457 
3458 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3459 
3460 	cfs_rq_util_change(cfs_rq, flags);
3461 }
3462 
3463 /**
3464  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3465  * @cfs_rq: cfs_rq to detach from
3466  * @se: sched_entity to detach
3467  *
3468  * Must call update_cfs_rq_load_avg() before this, since we rely on
3469  * cfs_rq->avg.last_update_time being current.
3470  */
3471 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3472 {
3473 	dequeue_load_avg(cfs_rq, se);
3474 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3475 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3476 
3477 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3478 
3479 	cfs_rq_util_change(cfs_rq, 0);
3480 }
3481 
3482 /*
3483  * Optional action to be done while updating the load average
3484  */
3485 #define UPDATE_TG	0x1
3486 #define SKIP_AGE_LOAD	0x2
3487 #define DO_ATTACH	0x4
3488 
3489 /* Update task and its cfs_rq load average */
3490 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3491 {
3492 	u64 now = cfs_rq_clock_task(cfs_rq);
3493 	struct rq *rq = rq_of(cfs_rq);
3494 	int cpu = cpu_of(rq);
3495 	int decayed;
3496 
3497 	/*
3498 	 * Track task load average for carrying it to new CPU after migrated, and
3499 	 * track group sched_entity load average for task_h_load calc in migration
3500 	 */
3501 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3502 		__update_load_avg_se(now, cpu, cfs_rq, se);
3503 
3504 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3505 	decayed |= propagate_entity_load_avg(se);
3506 
3507 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3508 
3509 		/*
3510 		 * DO_ATTACH means we're here from enqueue_entity().
3511 		 * !last_update_time means we've passed through
3512 		 * migrate_task_rq_fair() indicating we migrated.
3513 		 *
3514 		 * IOW we're enqueueing a task on a new CPU.
3515 		 */
3516 		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3517 		update_tg_load_avg(cfs_rq, 0);
3518 
3519 	} else if (decayed && (flags & UPDATE_TG))
3520 		update_tg_load_avg(cfs_rq, 0);
3521 }
3522 
3523 #ifndef CONFIG_64BIT
3524 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3525 {
3526 	u64 last_update_time_copy;
3527 	u64 last_update_time;
3528 
3529 	do {
3530 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3531 		smp_rmb();
3532 		last_update_time = cfs_rq->avg.last_update_time;
3533 	} while (last_update_time != last_update_time_copy);
3534 
3535 	return last_update_time;
3536 }
3537 #else
3538 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3539 {
3540 	return cfs_rq->avg.last_update_time;
3541 }
3542 #endif
3543 
3544 /*
3545  * Synchronize entity load avg of dequeued entity without locking
3546  * the previous rq.
3547  */
3548 void sync_entity_load_avg(struct sched_entity *se)
3549 {
3550 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3551 	u64 last_update_time;
3552 
3553 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3554 	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3555 }
3556 
3557 /*
3558  * Task first catches up with cfs_rq, and then subtract
3559  * itself from the cfs_rq (task must be off the queue now).
3560  */
3561 void remove_entity_load_avg(struct sched_entity *se)
3562 {
3563 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3564 	unsigned long flags;
3565 
3566 	/*
3567 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3568 	 * post_init_entity_util_avg() which will have added things to the
3569 	 * cfs_rq, so we can remove unconditionally.
3570 	 *
3571 	 * Similarly for groups, they will have passed through
3572 	 * post_init_entity_util_avg() before unregister_sched_fair_group()
3573 	 * calls this.
3574 	 */
3575 
3576 	sync_entity_load_avg(se);
3577 
3578 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3579 	++cfs_rq->removed.nr;
3580 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3581 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3582 	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3583 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3584 }
3585 
3586 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3587 {
3588 	return cfs_rq->avg.runnable_load_avg;
3589 }
3590 
3591 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3592 {
3593 	return cfs_rq->avg.load_avg;
3594 }
3595 
3596 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3597 
3598 static inline unsigned long task_util(struct task_struct *p)
3599 {
3600 	return READ_ONCE(p->se.avg.util_avg);
3601 }
3602 
3603 static inline unsigned long _task_util_est(struct task_struct *p)
3604 {
3605 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3606 
3607 	return max(ue.ewma, ue.enqueued);
3608 }
3609 
3610 static inline unsigned long task_util_est(struct task_struct *p)
3611 {
3612 	return max(task_util(p), _task_util_est(p));
3613 }
3614 
3615 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3616 				    struct task_struct *p)
3617 {
3618 	unsigned int enqueued;
3619 
3620 	if (!sched_feat(UTIL_EST))
3621 		return;
3622 
3623 	/* Update root cfs_rq's estimated utilization */
3624 	enqueued  = cfs_rq->avg.util_est.enqueued;
3625 	enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED);
3626 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3627 }
3628 
3629 /*
3630  * Check if a (signed) value is within a specified (unsigned) margin,
3631  * based on the observation that:
3632  *
3633  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3634  *
3635  * NOTE: this only works when value + maring < INT_MAX.
3636  */
3637 static inline bool within_margin(int value, int margin)
3638 {
3639 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3640 }
3641 
3642 static void
3643 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3644 {
3645 	long last_ewma_diff;
3646 	struct util_est ue;
3647 
3648 	if (!sched_feat(UTIL_EST))
3649 		return;
3650 
3651 	/* Update root cfs_rq's estimated utilization */
3652 	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3653 	ue.enqueued -= min_t(unsigned int, ue.enqueued,
3654 			     (_task_util_est(p) | UTIL_AVG_UNCHANGED));
3655 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3656 
3657 	/*
3658 	 * Skip update of task's estimated utilization when the task has not
3659 	 * yet completed an activation, e.g. being migrated.
3660 	 */
3661 	if (!task_sleep)
3662 		return;
3663 
3664 	/*
3665 	 * If the PELT values haven't changed since enqueue time,
3666 	 * skip the util_est update.
3667 	 */
3668 	ue = p->se.avg.util_est;
3669 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
3670 		return;
3671 
3672 	/*
3673 	 * Skip update of task's estimated utilization when its EWMA is
3674 	 * already ~1% close to its last activation value.
3675 	 */
3676 	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3677 	last_ewma_diff = ue.enqueued - ue.ewma;
3678 	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3679 		return;
3680 
3681 	/*
3682 	 * Update Task's estimated utilization
3683 	 *
3684 	 * When *p completes an activation we can consolidate another sample
3685 	 * of the task size. This is done by storing the current PELT value
3686 	 * as ue.enqueued and by using this value to update the Exponential
3687 	 * Weighted Moving Average (EWMA):
3688 	 *
3689 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
3690 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
3691 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
3692 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
3693 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
3694 	 *
3695 	 * Where 'w' is the weight of new samples, which is configured to be
3696 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3697 	 */
3698 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3699 	ue.ewma  += last_ewma_diff;
3700 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3701 	WRITE_ONCE(p->se.avg.util_est, ue);
3702 }
3703 
3704 static inline int task_fits_capacity(struct task_struct *p, long capacity)
3705 {
3706 	return capacity * 1024 > task_util_est(p) * capacity_margin;
3707 }
3708 
3709 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3710 {
3711 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
3712 		return;
3713 
3714 	if (!p) {
3715 		rq->misfit_task_load = 0;
3716 		return;
3717 	}
3718 
3719 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3720 		rq->misfit_task_load = 0;
3721 		return;
3722 	}
3723 
3724 	rq->misfit_task_load = task_h_load(p);
3725 }
3726 
3727 #else /* CONFIG_SMP */
3728 
3729 #define UPDATE_TG	0x0
3730 #define SKIP_AGE_LOAD	0x0
3731 #define DO_ATTACH	0x0
3732 
3733 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3734 {
3735 	cfs_rq_util_change(cfs_rq, 0);
3736 }
3737 
3738 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3739 
3740 static inline void
3741 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3742 static inline void
3743 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3744 
3745 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3746 {
3747 	return 0;
3748 }
3749 
3750 static inline void
3751 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3752 
3753 static inline void
3754 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3755 		 bool task_sleep) {}
3756 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
3757 
3758 #endif /* CONFIG_SMP */
3759 
3760 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3761 {
3762 #ifdef CONFIG_SCHED_DEBUG
3763 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3764 
3765 	if (d < 0)
3766 		d = -d;
3767 
3768 	if (d > 3*sysctl_sched_latency)
3769 		schedstat_inc(cfs_rq->nr_spread_over);
3770 #endif
3771 }
3772 
3773 static void
3774 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3775 {
3776 	u64 vruntime = cfs_rq->min_vruntime;
3777 
3778 	/*
3779 	 * The 'current' period is already promised to the current tasks,
3780 	 * however the extra weight of the new task will slow them down a
3781 	 * little, place the new task so that it fits in the slot that
3782 	 * stays open at the end.
3783 	 */
3784 	if (initial && sched_feat(START_DEBIT))
3785 		vruntime += sched_vslice(cfs_rq, se);
3786 
3787 	/* sleeps up to a single latency don't count. */
3788 	if (!initial) {
3789 		unsigned long thresh = sysctl_sched_latency;
3790 
3791 		/*
3792 		 * Halve their sleep time's effect, to allow
3793 		 * for a gentler effect of sleepers:
3794 		 */
3795 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3796 			thresh >>= 1;
3797 
3798 		vruntime -= thresh;
3799 	}
3800 
3801 	/* ensure we never gain time by being placed backwards. */
3802 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3803 }
3804 
3805 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3806 
3807 static inline void check_schedstat_required(void)
3808 {
3809 #ifdef CONFIG_SCHEDSTATS
3810 	if (schedstat_enabled())
3811 		return;
3812 
3813 	/* Force schedstat enabled if a dependent tracepoint is active */
3814 	if (trace_sched_stat_wait_enabled()    ||
3815 			trace_sched_stat_sleep_enabled()   ||
3816 			trace_sched_stat_iowait_enabled()  ||
3817 			trace_sched_stat_blocked_enabled() ||
3818 			trace_sched_stat_runtime_enabled())  {
3819 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3820 			     "stat_blocked and stat_runtime require the "
3821 			     "kernel parameter schedstats=enable or "
3822 			     "kernel.sched_schedstats=1\n");
3823 	}
3824 #endif
3825 }
3826 
3827 
3828 /*
3829  * MIGRATION
3830  *
3831  *	dequeue
3832  *	  update_curr()
3833  *	    update_min_vruntime()
3834  *	  vruntime -= min_vruntime
3835  *
3836  *	enqueue
3837  *	  update_curr()
3838  *	    update_min_vruntime()
3839  *	  vruntime += min_vruntime
3840  *
3841  * this way the vruntime transition between RQs is done when both
3842  * min_vruntime are up-to-date.
3843  *
3844  * WAKEUP (remote)
3845  *
3846  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3847  *	  vruntime -= min_vruntime
3848  *
3849  *	enqueue
3850  *	  update_curr()
3851  *	    update_min_vruntime()
3852  *	  vruntime += min_vruntime
3853  *
3854  * this way we don't have the most up-to-date min_vruntime on the originating
3855  * CPU and an up-to-date min_vruntime on the destination CPU.
3856  */
3857 
3858 static void
3859 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3860 {
3861 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3862 	bool curr = cfs_rq->curr == se;
3863 
3864 	/*
3865 	 * If we're the current task, we must renormalise before calling
3866 	 * update_curr().
3867 	 */
3868 	if (renorm && curr)
3869 		se->vruntime += cfs_rq->min_vruntime;
3870 
3871 	update_curr(cfs_rq);
3872 
3873 	/*
3874 	 * Otherwise, renormalise after, such that we're placed at the current
3875 	 * moment in time, instead of some random moment in the past. Being
3876 	 * placed in the past could significantly boost this task to the
3877 	 * fairness detriment of existing tasks.
3878 	 */
3879 	if (renorm && !curr)
3880 		se->vruntime += cfs_rq->min_vruntime;
3881 
3882 	/*
3883 	 * When enqueuing a sched_entity, we must:
3884 	 *   - Update loads to have both entity and cfs_rq synced with now.
3885 	 *   - Add its load to cfs_rq->runnable_avg
3886 	 *   - For group_entity, update its weight to reflect the new share of
3887 	 *     its group cfs_rq
3888 	 *   - Add its new weight to cfs_rq->load.weight
3889 	 */
3890 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3891 	update_cfs_group(se);
3892 	enqueue_runnable_load_avg(cfs_rq, se);
3893 	account_entity_enqueue(cfs_rq, se);
3894 
3895 	if (flags & ENQUEUE_WAKEUP)
3896 		place_entity(cfs_rq, se, 0);
3897 
3898 	check_schedstat_required();
3899 	update_stats_enqueue(cfs_rq, se, flags);
3900 	check_spread(cfs_rq, se);
3901 	if (!curr)
3902 		__enqueue_entity(cfs_rq, se);
3903 	se->on_rq = 1;
3904 
3905 	if (cfs_rq->nr_running == 1) {
3906 		list_add_leaf_cfs_rq(cfs_rq);
3907 		check_enqueue_throttle(cfs_rq);
3908 	}
3909 }
3910 
3911 static void __clear_buddies_last(struct sched_entity *se)
3912 {
3913 	for_each_sched_entity(se) {
3914 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3915 		if (cfs_rq->last != se)
3916 			break;
3917 
3918 		cfs_rq->last = NULL;
3919 	}
3920 }
3921 
3922 static void __clear_buddies_next(struct sched_entity *se)
3923 {
3924 	for_each_sched_entity(se) {
3925 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3926 		if (cfs_rq->next != se)
3927 			break;
3928 
3929 		cfs_rq->next = NULL;
3930 	}
3931 }
3932 
3933 static void __clear_buddies_skip(struct sched_entity *se)
3934 {
3935 	for_each_sched_entity(se) {
3936 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3937 		if (cfs_rq->skip != se)
3938 			break;
3939 
3940 		cfs_rq->skip = NULL;
3941 	}
3942 }
3943 
3944 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3945 {
3946 	if (cfs_rq->last == se)
3947 		__clear_buddies_last(se);
3948 
3949 	if (cfs_rq->next == se)
3950 		__clear_buddies_next(se);
3951 
3952 	if (cfs_rq->skip == se)
3953 		__clear_buddies_skip(se);
3954 }
3955 
3956 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3957 
3958 static void
3959 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3960 {
3961 	/*
3962 	 * Update run-time statistics of the 'current'.
3963 	 */
3964 	update_curr(cfs_rq);
3965 
3966 	/*
3967 	 * When dequeuing a sched_entity, we must:
3968 	 *   - Update loads to have both entity and cfs_rq synced with now.
3969 	 *   - Substract its load from the cfs_rq->runnable_avg.
3970 	 *   - Substract its previous weight from cfs_rq->load.weight.
3971 	 *   - For group entity, update its weight to reflect the new share
3972 	 *     of its group cfs_rq.
3973 	 */
3974 	update_load_avg(cfs_rq, se, UPDATE_TG);
3975 	dequeue_runnable_load_avg(cfs_rq, se);
3976 
3977 	update_stats_dequeue(cfs_rq, se, flags);
3978 
3979 	clear_buddies(cfs_rq, se);
3980 
3981 	if (se != cfs_rq->curr)
3982 		__dequeue_entity(cfs_rq, se);
3983 	se->on_rq = 0;
3984 	account_entity_dequeue(cfs_rq, se);
3985 
3986 	/*
3987 	 * Normalize after update_curr(); which will also have moved
3988 	 * min_vruntime if @se is the one holding it back. But before doing
3989 	 * update_min_vruntime() again, which will discount @se's position and
3990 	 * can move min_vruntime forward still more.
3991 	 */
3992 	if (!(flags & DEQUEUE_SLEEP))
3993 		se->vruntime -= cfs_rq->min_vruntime;
3994 
3995 	/* return excess runtime on last dequeue */
3996 	return_cfs_rq_runtime(cfs_rq);
3997 
3998 	update_cfs_group(se);
3999 
4000 	/*
4001 	 * Now advance min_vruntime if @se was the entity holding it back,
4002 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4003 	 * put back on, and if we advance min_vruntime, we'll be placed back
4004 	 * further than we started -- ie. we'll be penalized.
4005 	 */
4006 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4007 		update_min_vruntime(cfs_rq);
4008 }
4009 
4010 /*
4011  * Preempt the current task with a newly woken task if needed:
4012  */
4013 static void
4014 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4015 {
4016 	unsigned long ideal_runtime, delta_exec;
4017 	struct sched_entity *se;
4018 	s64 delta;
4019 
4020 	ideal_runtime = sched_slice(cfs_rq, curr);
4021 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4022 	if (delta_exec > ideal_runtime) {
4023 		resched_curr(rq_of(cfs_rq));
4024 		/*
4025 		 * The current task ran long enough, ensure it doesn't get
4026 		 * re-elected due to buddy favours.
4027 		 */
4028 		clear_buddies(cfs_rq, curr);
4029 		return;
4030 	}
4031 
4032 	/*
4033 	 * Ensure that a task that missed wakeup preemption by a
4034 	 * narrow margin doesn't have to wait for a full slice.
4035 	 * This also mitigates buddy induced latencies under load.
4036 	 */
4037 	if (delta_exec < sysctl_sched_min_granularity)
4038 		return;
4039 
4040 	se = __pick_first_entity(cfs_rq);
4041 	delta = curr->vruntime - se->vruntime;
4042 
4043 	if (delta < 0)
4044 		return;
4045 
4046 	if (delta > ideal_runtime)
4047 		resched_curr(rq_of(cfs_rq));
4048 }
4049 
4050 static void
4051 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4052 {
4053 	/* 'current' is not kept within the tree. */
4054 	if (se->on_rq) {
4055 		/*
4056 		 * Any task has to be enqueued before it get to execute on
4057 		 * a CPU. So account for the time it spent waiting on the
4058 		 * runqueue.
4059 		 */
4060 		update_stats_wait_end(cfs_rq, se);
4061 		__dequeue_entity(cfs_rq, se);
4062 		update_load_avg(cfs_rq, se, UPDATE_TG);
4063 	}
4064 
4065 	update_stats_curr_start(cfs_rq, se);
4066 	cfs_rq->curr = se;
4067 
4068 	/*
4069 	 * Track our maximum slice length, if the CPU's load is at
4070 	 * least twice that of our own weight (i.e. dont track it
4071 	 * when there are only lesser-weight tasks around):
4072 	 */
4073 	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4074 		schedstat_set(se->statistics.slice_max,
4075 			max((u64)schedstat_val(se->statistics.slice_max),
4076 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4077 	}
4078 
4079 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4080 }
4081 
4082 static int
4083 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4084 
4085 /*
4086  * Pick the next process, keeping these things in mind, in this order:
4087  * 1) keep things fair between processes/task groups
4088  * 2) pick the "next" process, since someone really wants that to run
4089  * 3) pick the "last" process, for cache locality
4090  * 4) do not run the "skip" process, if something else is available
4091  */
4092 static struct sched_entity *
4093 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4094 {
4095 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4096 	struct sched_entity *se;
4097 
4098 	/*
4099 	 * If curr is set we have to see if its left of the leftmost entity
4100 	 * still in the tree, provided there was anything in the tree at all.
4101 	 */
4102 	if (!left || (curr && entity_before(curr, left)))
4103 		left = curr;
4104 
4105 	se = left; /* ideally we run the leftmost entity */
4106 
4107 	/*
4108 	 * Avoid running the skip buddy, if running something else can
4109 	 * be done without getting too unfair.
4110 	 */
4111 	if (cfs_rq->skip == se) {
4112 		struct sched_entity *second;
4113 
4114 		if (se == curr) {
4115 			second = __pick_first_entity(cfs_rq);
4116 		} else {
4117 			second = __pick_next_entity(se);
4118 			if (!second || (curr && entity_before(curr, second)))
4119 				second = curr;
4120 		}
4121 
4122 		if (second && wakeup_preempt_entity(second, left) < 1)
4123 			se = second;
4124 	}
4125 
4126 	/*
4127 	 * Prefer last buddy, try to return the CPU to a preempted task.
4128 	 */
4129 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4130 		se = cfs_rq->last;
4131 
4132 	/*
4133 	 * Someone really wants this to run. If it's not unfair, run it.
4134 	 */
4135 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4136 		se = cfs_rq->next;
4137 
4138 	clear_buddies(cfs_rq, se);
4139 
4140 	return se;
4141 }
4142 
4143 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4144 
4145 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4146 {
4147 	/*
4148 	 * If still on the runqueue then deactivate_task()
4149 	 * was not called and update_curr() has to be done:
4150 	 */
4151 	if (prev->on_rq)
4152 		update_curr(cfs_rq);
4153 
4154 	/* throttle cfs_rqs exceeding runtime */
4155 	check_cfs_rq_runtime(cfs_rq);
4156 
4157 	check_spread(cfs_rq, prev);
4158 
4159 	if (prev->on_rq) {
4160 		update_stats_wait_start(cfs_rq, prev);
4161 		/* Put 'current' back into the tree. */
4162 		__enqueue_entity(cfs_rq, prev);
4163 		/* in !on_rq case, update occurred at dequeue */
4164 		update_load_avg(cfs_rq, prev, 0);
4165 	}
4166 	cfs_rq->curr = NULL;
4167 }
4168 
4169 static void
4170 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4171 {
4172 	/*
4173 	 * Update run-time statistics of the 'current'.
4174 	 */
4175 	update_curr(cfs_rq);
4176 
4177 	/*
4178 	 * Ensure that runnable average is periodically updated.
4179 	 */
4180 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4181 	update_cfs_group(curr);
4182 
4183 #ifdef CONFIG_SCHED_HRTICK
4184 	/*
4185 	 * queued ticks are scheduled to match the slice, so don't bother
4186 	 * validating it and just reschedule.
4187 	 */
4188 	if (queued) {
4189 		resched_curr(rq_of(cfs_rq));
4190 		return;
4191 	}
4192 	/*
4193 	 * don't let the period tick interfere with the hrtick preemption
4194 	 */
4195 	if (!sched_feat(DOUBLE_TICK) &&
4196 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4197 		return;
4198 #endif
4199 
4200 	if (cfs_rq->nr_running > 1)
4201 		check_preempt_tick(cfs_rq, curr);
4202 }
4203 
4204 
4205 /**************************************************
4206  * CFS bandwidth control machinery
4207  */
4208 
4209 #ifdef CONFIG_CFS_BANDWIDTH
4210 
4211 #ifdef HAVE_JUMP_LABEL
4212 static struct static_key __cfs_bandwidth_used;
4213 
4214 static inline bool cfs_bandwidth_used(void)
4215 {
4216 	return static_key_false(&__cfs_bandwidth_used);
4217 }
4218 
4219 void cfs_bandwidth_usage_inc(void)
4220 {
4221 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4222 }
4223 
4224 void cfs_bandwidth_usage_dec(void)
4225 {
4226 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4227 }
4228 #else /* HAVE_JUMP_LABEL */
4229 static bool cfs_bandwidth_used(void)
4230 {
4231 	return true;
4232 }
4233 
4234 void cfs_bandwidth_usage_inc(void) {}
4235 void cfs_bandwidth_usage_dec(void) {}
4236 #endif /* HAVE_JUMP_LABEL */
4237 
4238 /*
4239  * default period for cfs group bandwidth.
4240  * default: 0.1s, units: nanoseconds
4241  */
4242 static inline u64 default_cfs_period(void)
4243 {
4244 	return 100000000ULL;
4245 }
4246 
4247 static inline u64 sched_cfs_bandwidth_slice(void)
4248 {
4249 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4250 }
4251 
4252 /*
4253  * Replenish runtime according to assigned quota and update expiration time.
4254  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4255  * additional synchronization around rq->lock.
4256  *
4257  * requires cfs_b->lock
4258  */
4259 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4260 {
4261 	u64 now;
4262 
4263 	if (cfs_b->quota == RUNTIME_INF)
4264 		return;
4265 
4266 	now = sched_clock_cpu(smp_processor_id());
4267 	cfs_b->runtime = cfs_b->quota;
4268 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4269 	cfs_b->expires_seq++;
4270 }
4271 
4272 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4273 {
4274 	return &tg->cfs_bandwidth;
4275 }
4276 
4277 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4278 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4279 {
4280 	if (unlikely(cfs_rq->throttle_count))
4281 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4282 
4283 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4284 }
4285 
4286 /* returns 0 on failure to allocate runtime */
4287 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4288 {
4289 	struct task_group *tg = cfs_rq->tg;
4290 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4291 	u64 amount = 0, min_amount, expires;
4292 	int expires_seq;
4293 
4294 	/* note: this is a positive sum as runtime_remaining <= 0 */
4295 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4296 
4297 	raw_spin_lock(&cfs_b->lock);
4298 	if (cfs_b->quota == RUNTIME_INF)
4299 		amount = min_amount;
4300 	else {
4301 		start_cfs_bandwidth(cfs_b);
4302 
4303 		if (cfs_b->runtime > 0) {
4304 			amount = min(cfs_b->runtime, min_amount);
4305 			cfs_b->runtime -= amount;
4306 			cfs_b->idle = 0;
4307 		}
4308 	}
4309 	expires_seq = cfs_b->expires_seq;
4310 	expires = cfs_b->runtime_expires;
4311 	raw_spin_unlock(&cfs_b->lock);
4312 
4313 	cfs_rq->runtime_remaining += amount;
4314 	/*
4315 	 * we may have advanced our local expiration to account for allowed
4316 	 * spread between our sched_clock and the one on which runtime was
4317 	 * issued.
4318 	 */
4319 	if (cfs_rq->expires_seq != expires_seq) {
4320 		cfs_rq->expires_seq = expires_seq;
4321 		cfs_rq->runtime_expires = expires;
4322 	}
4323 
4324 	return cfs_rq->runtime_remaining > 0;
4325 }
4326 
4327 /*
4328  * Note: This depends on the synchronization provided by sched_clock and the
4329  * fact that rq->clock snapshots this value.
4330  */
4331 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4332 {
4333 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4334 
4335 	/* if the deadline is ahead of our clock, nothing to do */
4336 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4337 		return;
4338 
4339 	if (cfs_rq->runtime_remaining < 0)
4340 		return;
4341 
4342 	/*
4343 	 * If the local deadline has passed we have to consider the
4344 	 * possibility that our sched_clock is 'fast' and the global deadline
4345 	 * has not truly expired.
4346 	 *
4347 	 * Fortunately we can check determine whether this the case by checking
4348 	 * whether the global deadline(cfs_b->expires_seq) has advanced.
4349 	 */
4350 	if (cfs_rq->expires_seq == cfs_b->expires_seq) {
4351 		/* extend local deadline, drift is bounded above by 2 ticks */
4352 		cfs_rq->runtime_expires += TICK_NSEC;
4353 	} else {
4354 		/* global deadline is ahead, expiration has passed */
4355 		cfs_rq->runtime_remaining = 0;
4356 	}
4357 }
4358 
4359 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4360 {
4361 	/* dock delta_exec before expiring quota (as it could span periods) */
4362 	cfs_rq->runtime_remaining -= delta_exec;
4363 	expire_cfs_rq_runtime(cfs_rq);
4364 
4365 	if (likely(cfs_rq->runtime_remaining > 0))
4366 		return;
4367 
4368 	/*
4369 	 * if we're unable to extend our runtime we resched so that the active
4370 	 * hierarchy can be throttled
4371 	 */
4372 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4373 		resched_curr(rq_of(cfs_rq));
4374 }
4375 
4376 static __always_inline
4377 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4378 {
4379 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4380 		return;
4381 
4382 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4383 }
4384 
4385 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4386 {
4387 	return cfs_bandwidth_used() && cfs_rq->throttled;
4388 }
4389 
4390 /* check whether cfs_rq, or any parent, is throttled */
4391 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4392 {
4393 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4394 }
4395 
4396 /*
4397  * Ensure that neither of the group entities corresponding to src_cpu or
4398  * dest_cpu are members of a throttled hierarchy when performing group
4399  * load-balance operations.
4400  */
4401 static inline int throttled_lb_pair(struct task_group *tg,
4402 				    int src_cpu, int dest_cpu)
4403 {
4404 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4405 
4406 	src_cfs_rq = tg->cfs_rq[src_cpu];
4407 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4408 
4409 	return throttled_hierarchy(src_cfs_rq) ||
4410 	       throttled_hierarchy(dest_cfs_rq);
4411 }
4412 
4413 static int tg_unthrottle_up(struct task_group *tg, void *data)
4414 {
4415 	struct rq *rq = data;
4416 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4417 
4418 	cfs_rq->throttle_count--;
4419 	if (!cfs_rq->throttle_count) {
4420 		/* adjust cfs_rq_clock_task() */
4421 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4422 					     cfs_rq->throttled_clock_task;
4423 	}
4424 
4425 	return 0;
4426 }
4427 
4428 static int tg_throttle_down(struct task_group *tg, void *data)
4429 {
4430 	struct rq *rq = data;
4431 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4432 
4433 	/* group is entering throttled state, stop time */
4434 	if (!cfs_rq->throttle_count)
4435 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4436 	cfs_rq->throttle_count++;
4437 
4438 	return 0;
4439 }
4440 
4441 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4442 {
4443 	struct rq *rq = rq_of(cfs_rq);
4444 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4445 	struct sched_entity *se;
4446 	long task_delta, dequeue = 1;
4447 	bool empty;
4448 
4449 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4450 
4451 	/* freeze hierarchy runnable averages while throttled */
4452 	rcu_read_lock();
4453 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4454 	rcu_read_unlock();
4455 
4456 	task_delta = cfs_rq->h_nr_running;
4457 	for_each_sched_entity(se) {
4458 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4459 		/* throttled entity or throttle-on-deactivate */
4460 		if (!se->on_rq)
4461 			break;
4462 
4463 		if (dequeue)
4464 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4465 		qcfs_rq->h_nr_running -= task_delta;
4466 
4467 		if (qcfs_rq->load.weight)
4468 			dequeue = 0;
4469 	}
4470 
4471 	if (!se)
4472 		sub_nr_running(rq, task_delta);
4473 
4474 	cfs_rq->throttled = 1;
4475 	cfs_rq->throttled_clock = rq_clock(rq);
4476 	raw_spin_lock(&cfs_b->lock);
4477 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4478 
4479 	/*
4480 	 * Add to the _head_ of the list, so that an already-started
4481 	 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4482 	 * not running add to the tail so that later runqueues don't get starved.
4483 	 */
4484 	if (cfs_b->distribute_running)
4485 		list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4486 	else
4487 		list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4488 
4489 	/*
4490 	 * If we're the first throttled task, make sure the bandwidth
4491 	 * timer is running.
4492 	 */
4493 	if (empty)
4494 		start_cfs_bandwidth(cfs_b);
4495 
4496 	raw_spin_unlock(&cfs_b->lock);
4497 }
4498 
4499 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4500 {
4501 	struct rq *rq = rq_of(cfs_rq);
4502 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4503 	struct sched_entity *se;
4504 	int enqueue = 1;
4505 	long task_delta;
4506 
4507 	se = cfs_rq->tg->se[cpu_of(rq)];
4508 
4509 	cfs_rq->throttled = 0;
4510 
4511 	update_rq_clock(rq);
4512 
4513 	raw_spin_lock(&cfs_b->lock);
4514 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4515 	list_del_rcu(&cfs_rq->throttled_list);
4516 	raw_spin_unlock(&cfs_b->lock);
4517 
4518 	/* update hierarchical throttle state */
4519 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4520 
4521 	if (!cfs_rq->load.weight)
4522 		return;
4523 
4524 	task_delta = cfs_rq->h_nr_running;
4525 	for_each_sched_entity(se) {
4526 		if (se->on_rq)
4527 			enqueue = 0;
4528 
4529 		cfs_rq = cfs_rq_of(se);
4530 		if (enqueue)
4531 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4532 		cfs_rq->h_nr_running += task_delta;
4533 
4534 		if (cfs_rq_throttled(cfs_rq))
4535 			break;
4536 	}
4537 
4538 	if (!se)
4539 		add_nr_running(rq, task_delta);
4540 
4541 	/* Determine whether we need to wake up potentially idle CPU: */
4542 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4543 		resched_curr(rq);
4544 }
4545 
4546 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4547 		u64 remaining, u64 expires)
4548 {
4549 	struct cfs_rq *cfs_rq;
4550 	u64 runtime;
4551 	u64 starting_runtime = remaining;
4552 
4553 	rcu_read_lock();
4554 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4555 				throttled_list) {
4556 		struct rq *rq = rq_of(cfs_rq);
4557 		struct rq_flags rf;
4558 
4559 		rq_lock(rq, &rf);
4560 		if (!cfs_rq_throttled(cfs_rq))
4561 			goto next;
4562 
4563 		runtime = -cfs_rq->runtime_remaining + 1;
4564 		if (runtime > remaining)
4565 			runtime = remaining;
4566 		remaining -= runtime;
4567 
4568 		cfs_rq->runtime_remaining += runtime;
4569 		cfs_rq->runtime_expires = expires;
4570 
4571 		/* we check whether we're throttled above */
4572 		if (cfs_rq->runtime_remaining > 0)
4573 			unthrottle_cfs_rq(cfs_rq);
4574 
4575 next:
4576 		rq_unlock(rq, &rf);
4577 
4578 		if (!remaining)
4579 			break;
4580 	}
4581 	rcu_read_unlock();
4582 
4583 	return starting_runtime - remaining;
4584 }
4585 
4586 /*
4587  * Responsible for refilling a task_group's bandwidth and unthrottling its
4588  * cfs_rqs as appropriate. If there has been no activity within the last
4589  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4590  * used to track this state.
4591  */
4592 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4593 {
4594 	u64 runtime, runtime_expires;
4595 	int throttled;
4596 
4597 	/* no need to continue the timer with no bandwidth constraint */
4598 	if (cfs_b->quota == RUNTIME_INF)
4599 		goto out_deactivate;
4600 
4601 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4602 	cfs_b->nr_periods += overrun;
4603 
4604 	/*
4605 	 * idle depends on !throttled (for the case of a large deficit), and if
4606 	 * we're going inactive then everything else can be deferred
4607 	 */
4608 	if (cfs_b->idle && !throttled)
4609 		goto out_deactivate;
4610 
4611 	__refill_cfs_bandwidth_runtime(cfs_b);
4612 
4613 	if (!throttled) {
4614 		/* mark as potentially idle for the upcoming period */
4615 		cfs_b->idle = 1;
4616 		return 0;
4617 	}
4618 
4619 	/* account preceding periods in which throttling occurred */
4620 	cfs_b->nr_throttled += overrun;
4621 
4622 	runtime_expires = cfs_b->runtime_expires;
4623 
4624 	/*
4625 	 * This check is repeated as we are holding onto the new bandwidth while
4626 	 * we unthrottle. This can potentially race with an unthrottled group
4627 	 * trying to acquire new bandwidth from the global pool. This can result
4628 	 * in us over-using our runtime if it is all used during this loop, but
4629 	 * only by limited amounts in that extreme case.
4630 	 */
4631 	while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4632 		runtime = cfs_b->runtime;
4633 		cfs_b->distribute_running = 1;
4634 		raw_spin_unlock(&cfs_b->lock);
4635 		/* we can't nest cfs_b->lock while distributing bandwidth */
4636 		runtime = distribute_cfs_runtime(cfs_b, runtime,
4637 						 runtime_expires);
4638 		raw_spin_lock(&cfs_b->lock);
4639 
4640 		cfs_b->distribute_running = 0;
4641 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4642 
4643 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4644 	}
4645 
4646 	/*
4647 	 * While we are ensured activity in the period following an
4648 	 * unthrottle, this also covers the case in which the new bandwidth is
4649 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4650 	 * timer to remain active while there are any throttled entities.)
4651 	 */
4652 	cfs_b->idle = 0;
4653 
4654 	return 0;
4655 
4656 out_deactivate:
4657 	return 1;
4658 }
4659 
4660 /* a cfs_rq won't donate quota below this amount */
4661 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4662 /* minimum remaining period time to redistribute slack quota */
4663 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4664 /* how long we wait to gather additional slack before distributing */
4665 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4666 
4667 /*
4668  * Are we near the end of the current quota period?
4669  *
4670  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4671  * hrtimer base being cleared by hrtimer_start. In the case of
4672  * migrate_hrtimers, base is never cleared, so we are fine.
4673  */
4674 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4675 {
4676 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4677 	u64 remaining;
4678 
4679 	/* if the call-back is running a quota refresh is already occurring */
4680 	if (hrtimer_callback_running(refresh_timer))
4681 		return 1;
4682 
4683 	/* is a quota refresh about to occur? */
4684 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4685 	if (remaining < min_expire)
4686 		return 1;
4687 
4688 	return 0;
4689 }
4690 
4691 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4692 {
4693 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4694 
4695 	/* if there's a quota refresh soon don't bother with slack */
4696 	if (runtime_refresh_within(cfs_b, min_left))
4697 		return;
4698 
4699 	hrtimer_start(&cfs_b->slack_timer,
4700 			ns_to_ktime(cfs_bandwidth_slack_period),
4701 			HRTIMER_MODE_REL);
4702 }
4703 
4704 /* we know any runtime found here is valid as update_curr() precedes return */
4705 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4706 {
4707 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4708 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4709 
4710 	if (slack_runtime <= 0)
4711 		return;
4712 
4713 	raw_spin_lock(&cfs_b->lock);
4714 	if (cfs_b->quota != RUNTIME_INF &&
4715 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4716 		cfs_b->runtime += slack_runtime;
4717 
4718 		/* we are under rq->lock, defer unthrottling using a timer */
4719 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4720 		    !list_empty(&cfs_b->throttled_cfs_rq))
4721 			start_cfs_slack_bandwidth(cfs_b);
4722 	}
4723 	raw_spin_unlock(&cfs_b->lock);
4724 
4725 	/* even if it's not valid for return we don't want to try again */
4726 	cfs_rq->runtime_remaining -= slack_runtime;
4727 }
4728 
4729 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4730 {
4731 	if (!cfs_bandwidth_used())
4732 		return;
4733 
4734 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4735 		return;
4736 
4737 	__return_cfs_rq_runtime(cfs_rq);
4738 }
4739 
4740 /*
4741  * This is done with a timer (instead of inline with bandwidth return) since
4742  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4743  */
4744 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4745 {
4746 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4747 	u64 expires;
4748 
4749 	/* confirm we're still not at a refresh boundary */
4750 	raw_spin_lock(&cfs_b->lock);
4751 	if (cfs_b->distribute_running) {
4752 		raw_spin_unlock(&cfs_b->lock);
4753 		return;
4754 	}
4755 
4756 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4757 		raw_spin_unlock(&cfs_b->lock);
4758 		return;
4759 	}
4760 
4761 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4762 		runtime = cfs_b->runtime;
4763 
4764 	expires = cfs_b->runtime_expires;
4765 	if (runtime)
4766 		cfs_b->distribute_running = 1;
4767 
4768 	raw_spin_unlock(&cfs_b->lock);
4769 
4770 	if (!runtime)
4771 		return;
4772 
4773 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4774 
4775 	raw_spin_lock(&cfs_b->lock);
4776 	if (expires == cfs_b->runtime_expires)
4777 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4778 	cfs_b->distribute_running = 0;
4779 	raw_spin_unlock(&cfs_b->lock);
4780 }
4781 
4782 /*
4783  * When a group wakes up we want to make sure that its quota is not already
4784  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4785  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4786  */
4787 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4788 {
4789 	if (!cfs_bandwidth_used())
4790 		return;
4791 
4792 	/* an active group must be handled by the update_curr()->put() path */
4793 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4794 		return;
4795 
4796 	/* ensure the group is not already throttled */
4797 	if (cfs_rq_throttled(cfs_rq))
4798 		return;
4799 
4800 	/* update runtime allocation */
4801 	account_cfs_rq_runtime(cfs_rq, 0);
4802 	if (cfs_rq->runtime_remaining <= 0)
4803 		throttle_cfs_rq(cfs_rq);
4804 }
4805 
4806 static void sync_throttle(struct task_group *tg, int cpu)
4807 {
4808 	struct cfs_rq *pcfs_rq, *cfs_rq;
4809 
4810 	if (!cfs_bandwidth_used())
4811 		return;
4812 
4813 	if (!tg->parent)
4814 		return;
4815 
4816 	cfs_rq = tg->cfs_rq[cpu];
4817 	pcfs_rq = tg->parent->cfs_rq[cpu];
4818 
4819 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4820 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4821 }
4822 
4823 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4824 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4825 {
4826 	if (!cfs_bandwidth_used())
4827 		return false;
4828 
4829 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4830 		return false;
4831 
4832 	/*
4833 	 * it's possible for a throttled entity to be forced into a running
4834 	 * state (e.g. set_curr_task), in this case we're finished.
4835 	 */
4836 	if (cfs_rq_throttled(cfs_rq))
4837 		return true;
4838 
4839 	throttle_cfs_rq(cfs_rq);
4840 	return true;
4841 }
4842 
4843 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4844 {
4845 	struct cfs_bandwidth *cfs_b =
4846 		container_of(timer, struct cfs_bandwidth, slack_timer);
4847 
4848 	do_sched_cfs_slack_timer(cfs_b);
4849 
4850 	return HRTIMER_NORESTART;
4851 }
4852 
4853 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4854 {
4855 	struct cfs_bandwidth *cfs_b =
4856 		container_of(timer, struct cfs_bandwidth, period_timer);
4857 	int overrun;
4858 	int idle = 0;
4859 
4860 	raw_spin_lock(&cfs_b->lock);
4861 	for (;;) {
4862 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4863 		if (!overrun)
4864 			break;
4865 
4866 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
4867 	}
4868 	if (idle)
4869 		cfs_b->period_active = 0;
4870 	raw_spin_unlock(&cfs_b->lock);
4871 
4872 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4873 }
4874 
4875 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4876 {
4877 	raw_spin_lock_init(&cfs_b->lock);
4878 	cfs_b->runtime = 0;
4879 	cfs_b->quota = RUNTIME_INF;
4880 	cfs_b->period = ns_to_ktime(default_cfs_period());
4881 
4882 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4883 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4884 	cfs_b->period_timer.function = sched_cfs_period_timer;
4885 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4886 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4887 	cfs_b->distribute_running = 0;
4888 }
4889 
4890 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4891 {
4892 	cfs_rq->runtime_enabled = 0;
4893 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4894 }
4895 
4896 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4897 {
4898 	u64 overrun;
4899 
4900 	lockdep_assert_held(&cfs_b->lock);
4901 
4902 	if (cfs_b->period_active)
4903 		return;
4904 
4905 	cfs_b->period_active = 1;
4906 	overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4907 	cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
4908 	cfs_b->expires_seq++;
4909 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4910 }
4911 
4912 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4913 {
4914 	/* init_cfs_bandwidth() was not called */
4915 	if (!cfs_b->throttled_cfs_rq.next)
4916 		return;
4917 
4918 	hrtimer_cancel(&cfs_b->period_timer);
4919 	hrtimer_cancel(&cfs_b->slack_timer);
4920 }
4921 
4922 /*
4923  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
4924  *
4925  * The race is harmless, since modifying bandwidth settings of unhooked group
4926  * bits doesn't do much.
4927  */
4928 
4929 /* cpu online calback */
4930 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4931 {
4932 	struct task_group *tg;
4933 
4934 	lockdep_assert_held(&rq->lock);
4935 
4936 	rcu_read_lock();
4937 	list_for_each_entry_rcu(tg, &task_groups, list) {
4938 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4939 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4940 
4941 		raw_spin_lock(&cfs_b->lock);
4942 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4943 		raw_spin_unlock(&cfs_b->lock);
4944 	}
4945 	rcu_read_unlock();
4946 }
4947 
4948 /* cpu offline callback */
4949 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4950 {
4951 	struct task_group *tg;
4952 
4953 	lockdep_assert_held(&rq->lock);
4954 
4955 	rcu_read_lock();
4956 	list_for_each_entry_rcu(tg, &task_groups, list) {
4957 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4958 
4959 		if (!cfs_rq->runtime_enabled)
4960 			continue;
4961 
4962 		/*
4963 		 * clock_task is not advancing so we just need to make sure
4964 		 * there's some valid quota amount
4965 		 */
4966 		cfs_rq->runtime_remaining = 1;
4967 		/*
4968 		 * Offline rq is schedulable till CPU is completely disabled
4969 		 * in take_cpu_down(), so we prevent new cfs throttling here.
4970 		 */
4971 		cfs_rq->runtime_enabled = 0;
4972 
4973 		if (cfs_rq_throttled(cfs_rq))
4974 			unthrottle_cfs_rq(cfs_rq);
4975 	}
4976 	rcu_read_unlock();
4977 }
4978 
4979 #else /* CONFIG_CFS_BANDWIDTH */
4980 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4981 {
4982 	return rq_clock_task(rq_of(cfs_rq));
4983 }
4984 
4985 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4986 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4987 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4988 static inline void sync_throttle(struct task_group *tg, int cpu) {}
4989 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4990 
4991 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4992 {
4993 	return 0;
4994 }
4995 
4996 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4997 {
4998 	return 0;
4999 }
5000 
5001 static inline int throttled_lb_pair(struct task_group *tg,
5002 				    int src_cpu, int dest_cpu)
5003 {
5004 	return 0;
5005 }
5006 
5007 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5008 
5009 #ifdef CONFIG_FAIR_GROUP_SCHED
5010 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5011 #endif
5012 
5013 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5014 {
5015 	return NULL;
5016 }
5017 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5018 static inline void update_runtime_enabled(struct rq *rq) {}
5019 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5020 
5021 #endif /* CONFIG_CFS_BANDWIDTH */
5022 
5023 /**************************************************
5024  * CFS operations on tasks:
5025  */
5026 
5027 #ifdef CONFIG_SCHED_HRTICK
5028 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5029 {
5030 	struct sched_entity *se = &p->se;
5031 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5032 
5033 	SCHED_WARN_ON(task_rq(p) != rq);
5034 
5035 	if (rq->cfs.h_nr_running > 1) {
5036 		u64 slice = sched_slice(cfs_rq, se);
5037 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5038 		s64 delta = slice - ran;
5039 
5040 		if (delta < 0) {
5041 			if (rq->curr == p)
5042 				resched_curr(rq);
5043 			return;
5044 		}
5045 		hrtick_start(rq, delta);
5046 	}
5047 }
5048 
5049 /*
5050  * called from enqueue/dequeue and updates the hrtick when the
5051  * current task is from our class and nr_running is low enough
5052  * to matter.
5053  */
5054 static void hrtick_update(struct rq *rq)
5055 {
5056 	struct task_struct *curr = rq->curr;
5057 
5058 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5059 		return;
5060 
5061 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5062 		hrtick_start_fair(rq, curr);
5063 }
5064 #else /* !CONFIG_SCHED_HRTICK */
5065 static inline void
5066 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5067 {
5068 }
5069 
5070 static inline void hrtick_update(struct rq *rq)
5071 {
5072 }
5073 #endif
5074 
5075 /*
5076  * The enqueue_task method is called before nr_running is
5077  * increased. Here we update the fair scheduling stats and
5078  * then put the task into the rbtree:
5079  */
5080 static void
5081 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5082 {
5083 	struct cfs_rq *cfs_rq;
5084 	struct sched_entity *se = &p->se;
5085 
5086 	/*
5087 	 * The code below (indirectly) updates schedutil which looks at
5088 	 * the cfs_rq utilization to select a frequency.
5089 	 * Let's add the task's estimated utilization to the cfs_rq's
5090 	 * estimated utilization, before we update schedutil.
5091 	 */
5092 	util_est_enqueue(&rq->cfs, p);
5093 
5094 	/*
5095 	 * If in_iowait is set, the code below may not trigger any cpufreq
5096 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5097 	 * passed.
5098 	 */
5099 	if (p->in_iowait)
5100 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5101 
5102 	for_each_sched_entity(se) {
5103 		if (se->on_rq)
5104 			break;
5105 		cfs_rq = cfs_rq_of(se);
5106 		enqueue_entity(cfs_rq, se, flags);
5107 
5108 		/*
5109 		 * end evaluation on encountering a throttled cfs_rq
5110 		 *
5111 		 * note: in the case of encountering a throttled cfs_rq we will
5112 		 * post the final h_nr_running increment below.
5113 		 */
5114 		if (cfs_rq_throttled(cfs_rq))
5115 			break;
5116 		cfs_rq->h_nr_running++;
5117 
5118 		flags = ENQUEUE_WAKEUP;
5119 	}
5120 
5121 	for_each_sched_entity(se) {
5122 		cfs_rq = cfs_rq_of(se);
5123 		cfs_rq->h_nr_running++;
5124 
5125 		if (cfs_rq_throttled(cfs_rq))
5126 			break;
5127 
5128 		update_load_avg(cfs_rq, se, UPDATE_TG);
5129 		update_cfs_group(se);
5130 	}
5131 
5132 	if (!se)
5133 		add_nr_running(rq, 1);
5134 
5135 	hrtick_update(rq);
5136 }
5137 
5138 static void set_next_buddy(struct sched_entity *se);
5139 
5140 /*
5141  * The dequeue_task method is called before nr_running is
5142  * decreased. We remove the task from the rbtree and
5143  * update the fair scheduling stats:
5144  */
5145 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5146 {
5147 	struct cfs_rq *cfs_rq;
5148 	struct sched_entity *se = &p->se;
5149 	int task_sleep = flags & DEQUEUE_SLEEP;
5150 
5151 	for_each_sched_entity(se) {
5152 		cfs_rq = cfs_rq_of(se);
5153 		dequeue_entity(cfs_rq, se, flags);
5154 
5155 		/*
5156 		 * end evaluation on encountering a throttled cfs_rq
5157 		 *
5158 		 * note: in the case of encountering a throttled cfs_rq we will
5159 		 * post the final h_nr_running decrement below.
5160 		*/
5161 		if (cfs_rq_throttled(cfs_rq))
5162 			break;
5163 		cfs_rq->h_nr_running--;
5164 
5165 		/* Don't dequeue parent if it has other entities besides us */
5166 		if (cfs_rq->load.weight) {
5167 			/* Avoid re-evaluating load for this entity: */
5168 			se = parent_entity(se);
5169 			/*
5170 			 * Bias pick_next to pick a task from this cfs_rq, as
5171 			 * p is sleeping when it is within its sched_slice.
5172 			 */
5173 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5174 				set_next_buddy(se);
5175 			break;
5176 		}
5177 		flags |= DEQUEUE_SLEEP;
5178 	}
5179 
5180 	for_each_sched_entity(se) {
5181 		cfs_rq = cfs_rq_of(se);
5182 		cfs_rq->h_nr_running--;
5183 
5184 		if (cfs_rq_throttled(cfs_rq))
5185 			break;
5186 
5187 		update_load_avg(cfs_rq, se, UPDATE_TG);
5188 		update_cfs_group(se);
5189 	}
5190 
5191 	if (!se)
5192 		sub_nr_running(rq, 1);
5193 
5194 	util_est_dequeue(&rq->cfs, p, task_sleep);
5195 	hrtick_update(rq);
5196 }
5197 
5198 #ifdef CONFIG_SMP
5199 
5200 /* Working cpumask for: load_balance, load_balance_newidle. */
5201 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5202 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5203 
5204 #ifdef CONFIG_NO_HZ_COMMON
5205 /*
5206  * per rq 'load' arrray crap; XXX kill this.
5207  */
5208 
5209 /*
5210  * The exact cpuload calculated at every tick would be:
5211  *
5212  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5213  *
5214  * If a CPU misses updates for n ticks (as it was idle) and update gets
5215  * called on the n+1-th tick when CPU may be busy, then we have:
5216  *
5217  *   load_n   = (1 - 1/2^i)^n * load_0
5218  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5219  *
5220  * decay_load_missed() below does efficient calculation of
5221  *
5222  *   load' = (1 - 1/2^i)^n * load
5223  *
5224  * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5225  * This allows us to precompute the above in said factors, thereby allowing the
5226  * reduction of an arbitrary n in O(log_2 n) steps. (See also
5227  * fixed_power_int())
5228  *
5229  * The calculation is approximated on a 128 point scale.
5230  */
5231 #define DEGRADE_SHIFT		7
5232 
5233 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5234 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5235 	{   0,   0,  0,  0,  0,  0, 0, 0 },
5236 	{  64,  32,  8,  0,  0,  0, 0, 0 },
5237 	{  96,  72, 40, 12,  1,  0, 0, 0 },
5238 	{ 112,  98, 75, 43, 15,  1, 0, 0 },
5239 	{ 120, 112, 98, 76, 45, 16, 2, 0 }
5240 };
5241 
5242 /*
5243  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5244  * would be when CPU is idle and so we just decay the old load without
5245  * adding any new load.
5246  */
5247 static unsigned long
5248 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5249 {
5250 	int j = 0;
5251 
5252 	if (!missed_updates)
5253 		return load;
5254 
5255 	if (missed_updates >= degrade_zero_ticks[idx])
5256 		return 0;
5257 
5258 	if (idx == 1)
5259 		return load >> missed_updates;
5260 
5261 	while (missed_updates) {
5262 		if (missed_updates % 2)
5263 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5264 
5265 		missed_updates >>= 1;
5266 		j++;
5267 	}
5268 	return load;
5269 }
5270 
5271 static struct {
5272 	cpumask_var_t idle_cpus_mask;
5273 	atomic_t nr_cpus;
5274 	int has_blocked;		/* Idle CPUS has blocked load */
5275 	unsigned long next_balance;     /* in jiffy units */
5276 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5277 } nohz ____cacheline_aligned;
5278 
5279 #endif /* CONFIG_NO_HZ_COMMON */
5280 
5281 /**
5282  * __cpu_load_update - update the rq->cpu_load[] statistics
5283  * @this_rq: The rq to update statistics for
5284  * @this_load: The current load
5285  * @pending_updates: The number of missed updates
5286  *
5287  * Update rq->cpu_load[] statistics. This function is usually called every
5288  * scheduler tick (TICK_NSEC).
5289  *
5290  * This function computes a decaying average:
5291  *
5292  *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5293  *
5294  * Because of NOHZ it might not get called on every tick which gives need for
5295  * the @pending_updates argument.
5296  *
5297  *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5298  *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5299  *             = A * (A * load[i]_n-2 + B) + B
5300  *             = A * (A * (A * load[i]_n-3 + B) + B) + B
5301  *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5302  *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5303  *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5304  *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5305  *
5306  * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5307  * any change in load would have resulted in the tick being turned back on.
5308  *
5309  * For regular NOHZ, this reduces to:
5310  *
5311  *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
5312  *
5313  * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5314  * term.
5315  */
5316 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5317 			    unsigned long pending_updates)
5318 {
5319 	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5320 	int i, scale;
5321 
5322 	this_rq->nr_load_updates++;
5323 
5324 	/* Update our load: */
5325 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5326 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5327 		unsigned long old_load, new_load;
5328 
5329 		/* scale is effectively 1 << i now, and >> i divides by scale */
5330 
5331 		old_load = this_rq->cpu_load[i];
5332 #ifdef CONFIG_NO_HZ_COMMON
5333 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5334 		if (tickless_load) {
5335 			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5336 			/*
5337 			 * old_load can never be a negative value because a
5338 			 * decayed tickless_load cannot be greater than the
5339 			 * original tickless_load.
5340 			 */
5341 			old_load += tickless_load;
5342 		}
5343 #endif
5344 		new_load = this_load;
5345 		/*
5346 		 * Round up the averaging division if load is increasing. This
5347 		 * prevents us from getting stuck on 9 if the load is 10, for
5348 		 * example.
5349 		 */
5350 		if (new_load > old_load)
5351 			new_load += scale - 1;
5352 
5353 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5354 	}
5355 }
5356 
5357 /* Used instead of source_load when we know the type == 0 */
5358 static unsigned long weighted_cpuload(struct rq *rq)
5359 {
5360 	return cfs_rq_runnable_load_avg(&rq->cfs);
5361 }
5362 
5363 #ifdef CONFIG_NO_HZ_COMMON
5364 /*
5365  * There is no sane way to deal with nohz on smp when using jiffies because the
5366  * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5367  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5368  *
5369  * Therefore we need to avoid the delta approach from the regular tick when
5370  * possible since that would seriously skew the load calculation. This is why we
5371  * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5372  * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5373  * loop exit, nohz_idle_balance, nohz full exit...)
5374  *
5375  * This means we might still be one tick off for nohz periods.
5376  */
5377 
5378 static void cpu_load_update_nohz(struct rq *this_rq,
5379 				 unsigned long curr_jiffies,
5380 				 unsigned long load)
5381 {
5382 	unsigned long pending_updates;
5383 
5384 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5385 	if (pending_updates) {
5386 		this_rq->last_load_update_tick = curr_jiffies;
5387 		/*
5388 		 * In the regular NOHZ case, we were idle, this means load 0.
5389 		 * In the NOHZ_FULL case, we were non-idle, we should consider
5390 		 * its weighted load.
5391 		 */
5392 		cpu_load_update(this_rq, load, pending_updates);
5393 	}
5394 }
5395 
5396 /*
5397  * Called from nohz_idle_balance() to update the load ratings before doing the
5398  * idle balance.
5399  */
5400 static void cpu_load_update_idle(struct rq *this_rq)
5401 {
5402 	/*
5403 	 * bail if there's load or we're actually up-to-date.
5404 	 */
5405 	if (weighted_cpuload(this_rq))
5406 		return;
5407 
5408 	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5409 }
5410 
5411 /*
5412  * Record CPU load on nohz entry so we know the tickless load to account
5413  * on nohz exit. cpu_load[0] happens then to be updated more frequently
5414  * than other cpu_load[idx] but it should be fine as cpu_load readers
5415  * shouldn't rely into synchronized cpu_load[*] updates.
5416  */
5417 void cpu_load_update_nohz_start(void)
5418 {
5419 	struct rq *this_rq = this_rq();
5420 
5421 	/*
5422 	 * This is all lockless but should be fine. If weighted_cpuload changes
5423 	 * concurrently we'll exit nohz. And cpu_load write can race with
5424 	 * cpu_load_update_idle() but both updater would be writing the same.
5425 	 */
5426 	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5427 }
5428 
5429 /*
5430  * Account the tickless load in the end of a nohz frame.
5431  */
5432 void cpu_load_update_nohz_stop(void)
5433 {
5434 	unsigned long curr_jiffies = READ_ONCE(jiffies);
5435 	struct rq *this_rq = this_rq();
5436 	unsigned long load;
5437 	struct rq_flags rf;
5438 
5439 	if (curr_jiffies == this_rq->last_load_update_tick)
5440 		return;
5441 
5442 	load = weighted_cpuload(this_rq);
5443 	rq_lock(this_rq, &rf);
5444 	update_rq_clock(this_rq);
5445 	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5446 	rq_unlock(this_rq, &rf);
5447 }
5448 #else /* !CONFIG_NO_HZ_COMMON */
5449 static inline void cpu_load_update_nohz(struct rq *this_rq,
5450 					unsigned long curr_jiffies,
5451 					unsigned long load) { }
5452 #endif /* CONFIG_NO_HZ_COMMON */
5453 
5454 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5455 {
5456 #ifdef CONFIG_NO_HZ_COMMON
5457 	/* See the mess around cpu_load_update_nohz(). */
5458 	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5459 #endif
5460 	cpu_load_update(this_rq, load, 1);
5461 }
5462 
5463 /*
5464  * Called from scheduler_tick()
5465  */
5466 void cpu_load_update_active(struct rq *this_rq)
5467 {
5468 	unsigned long load = weighted_cpuload(this_rq);
5469 
5470 	if (tick_nohz_tick_stopped())
5471 		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5472 	else
5473 		cpu_load_update_periodic(this_rq, load);
5474 }
5475 
5476 /*
5477  * Return a low guess at the load of a migration-source CPU weighted
5478  * according to the scheduling class and "nice" value.
5479  *
5480  * We want to under-estimate the load of migration sources, to
5481  * balance conservatively.
5482  */
5483 static unsigned long source_load(int cpu, int type)
5484 {
5485 	struct rq *rq = cpu_rq(cpu);
5486 	unsigned long total = weighted_cpuload(rq);
5487 
5488 	if (type == 0 || !sched_feat(LB_BIAS))
5489 		return total;
5490 
5491 	return min(rq->cpu_load[type-1], total);
5492 }
5493 
5494 /*
5495  * Return a high guess at the load of a migration-target CPU weighted
5496  * according to the scheduling class and "nice" value.
5497  */
5498 static unsigned long target_load(int cpu, int type)
5499 {
5500 	struct rq *rq = cpu_rq(cpu);
5501 	unsigned long total = weighted_cpuload(rq);
5502 
5503 	if (type == 0 || !sched_feat(LB_BIAS))
5504 		return total;
5505 
5506 	return max(rq->cpu_load[type-1], total);
5507 }
5508 
5509 static unsigned long capacity_of(int cpu)
5510 {
5511 	return cpu_rq(cpu)->cpu_capacity;
5512 }
5513 
5514 static unsigned long capacity_orig_of(int cpu)
5515 {
5516 	return cpu_rq(cpu)->cpu_capacity_orig;
5517 }
5518 
5519 static unsigned long cpu_avg_load_per_task(int cpu)
5520 {
5521 	struct rq *rq = cpu_rq(cpu);
5522 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5523 	unsigned long load_avg = weighted_cpuload(rq);
5524 
5525 	if (nr_running)
5526 		return load_avg / nr_running;
5527 
5528 	return 0;
5529 }
5530 
5531 static void record_wakee(struct task_struct *p)
5532 {
5533 	/*
5534 	 * Only decay a single time; tasks that have less then 1 wakeup per
5535 	 * jiffy will not have built up many flips.
5536 	 */
5537 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5538 		current->wakee_flips >>= 1;
5539 		current->wakee_flip_decay_ts = jiffies;
5540 	}
5541 
5542 	if (current->last_wakee != p) {
5543 		current->last_wakee = p;
5544 		current->wakee_flips++;
5545 	}
5546 }
5547 
5548 /*
5549  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5550  *
5551  * A waker of many should wake a different task than the one last awakened
5552  * at a frequency roughly N times higher than one of its wakees.
5553  *
5554  * In order to determine whether we should let the load spread vs consolidating
5555  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5556  * partner, and a factor of lls_size higher frequency in the other.
5557  *
5558  * With both conditions met, we can be relatively sure that the relationship is
5559  * non-monogamous, with partner count exceeding socket size.
5560  *
5561  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5562  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5563  * socket size.
5564  */
5565 static int wake_wide(struct task_struct *p)
5566 {
5567 	unsigned int master = current->wakee_flips;
5568 	unsigned int slave = p->wakee_flips;
5569 	int factor = this_cpu_read(sd_llc_size);
5570 
5571 	if (master < slave)
5572 		swap(master, slave);
5573 	if (slave < factor || master < slave * factor)
5574 		return 0;
5575 	return 1;
5576 }
5577 
5578 /*
5579  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5580  * soonest. For the purpose of speed we only consider the waking and previous
5581  * CPU.
5582  *
5583  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5584  *			cache-affine and is (or	will be) idle.
5585  *
5586  * wake_affine_weight() - considers the weight to reflect the average
5587  *			  scheduling latency of the CPUs. This seems to work
5588  *			  for the overloaded case.
5589  */
5590 static int
5591 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5592 {
5593 	/*
5594 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5595 	 * context. Only allow the move if cache is shared. Otherwise an
5596 	 * interrupt intensive workload could force all tasks onto one
5597 	 * node depending on the IO topology or IRQ affinity settings.
5598 	 *
5599 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5600 	 * There is no guarantee that the cache hot data from an interrupt
5601 	 * is more important than cache hot data on the prev_cpu and from
5602 	 * a cpufreq perspective, it's better to have higher utilisation
5603 	 * on one CPU.
5604 	 */
5605 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5606 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5607 
5608 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5609 		return this_cpu;
5610 
5611 	return nr_cpumask_bits;
5612 }
5613 
5614 static int
5615 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5616 		   int this_cpu, int prev_cpu, int sync)
5617 {
5618 	s64 this_eff_load, prev_eff_load;
5619 	unsigned long task_load;
5620 
5621 	this_eff_load = target_load(this_cpu, sd->wake_idx);
5622 
5623 	if (sync) {
5624 		unsigned long current_load = task_h_load(current);
5625 
5626 		if (current_load > this_eff_load)
5627 			return this_cpu;
5628 
5629 		this_eff_load -= current_load;
5630 	}
5631 
5632 	task_load = task_h_load(p);
5633 
5634 	this_eff_load += task_load;
5635 	if (sched_feat(WA_BIAS))
5636 		this_eff_load *= 100;
5637 	this_eff_load *= capacity_of(prev_cpu);
5638 
5639 	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5640 	prev_eff_load -= task_load;
5641 	if (sched_feat(WA_BIAS))
5642 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5643 	prev_eff_load *= capacity_of(this_cpu);
5644 
5645 	/*
5646 	 * If sync, adjust the weight of prev_eff_load such that if
5647 	 * prev_eff == this_eff that select_idle_sibling() will consider
5648 	 * stacking the wakee on top of the waker if no other CPU is
5649 	 * idle.
5650 	 */
5651 	if (sync)
5652 		prev_eff_load += 1;
5653 
5654 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5655 }
5656 
5657 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5658 		       int this_cpu, int prev_cpu, int sync)
5659 {
5660 	int target = nr_cpumask_bits;
5661 
5662 	if (sched_feat(WA_IDLE))
5663 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5664 
5665 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5666 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5667 
5668 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5669 	if (target == nr_cpumask_bits)
5670 		return prev_cpu;
5671 
5672 	schedstat_inc(sd->ttwu_move_affine);
5673 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5674 	return target;
5675 }
5676 
5677 static unsigned long cpu_util_wake(int cpu, struct task_struct *p);
5678 
5679 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5680 {
5681 	return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0);
5682 }
5683 
5684 /*
5685  * find_idlest_group finds and returns the least busy CPU group within the
5686  * domain.
5687  *
5688  * Assumes p is allowed on at least one CPU in sd.
5689  */
5690 static struct sched_group *
5691 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5692 		  int this_cpu, int sd_flag)
5693 {
5694 	struct sched_group *idlest = NULL, *group = sd->groups;
5695 	struct sched_group *most_spare_sg = NULL;
5696 	unsigned long min_runnable_load = ULONG_MAX;
5697 	unsigned long this_runnable_load = ULONG_MAX;
5698 	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5699 	unsigned long most_spare = 0, this_spare = 0;
5700 	int load_idx = sd->forkexec_idx;
5701 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5702 	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5703 				(sd->imbalance_pct-100) / 100;
5704 
5705 	if (sd_flag & SD_BALANCE_WAKE)
5706 		load_idx = sd->wake_idx;
5707 
5708 	do {
5709 		unsigned long load, avg_load, runnable_load;
5710 		unsigned long spare_cap, max_spare_cap;
5711 		int local_group;
5712 		int i;
5713 
5714 		/* Skip over this group if it has no CPUs allowed */
5715 		if (!cpumask_intersects(sched_group_span(group),
5716 					&p->cpus_allowed))
5717 			continue;
5718 
5719 		local_group = cpumask_test_cpu(this_cpu,
5720 					       sched_group_span(group));
5721 
5722 		/*
5723 		 * Tally up the load of all CPUs in the group and find
5724 		 * the group containing the CPU with most spare capacity.
5725 		 */
5726 		avg_load = 0;
5727 		runnable_load = 0;
5728 		max_spare_cap = 0;
5729 
5730 		for_each_cpu(i, sched_group_span(group)) {
5731 			/* Bias balancing toward CPUs of our domain */
5732 			if (local_group)
5733 				load = source_load(i, load_idx);
5734 			else
5735 				load = target_load(i, load_idx);
5736 
5737 			runnable_load += load;
5738 
5739 			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5740 
5741 			spare_cap = capacity_spare_wake(i, p);
5742 
5743 			if (spare_cap > max_spare_cap)
5744 				max_spare_cap = spare_cap;
5745 		}
5746 
5747 		/* Adjust by relative CPU capacity of the group */
5748 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5749 					group->sgc->capacity;
5750 		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5751 					group->sgc->capacity;
5752 
5753 		if (local_group) {
5754 			this_runnable_load = runnable_load;
5755 			this_avg_load = avg_load;
5756 			this_spare = max_spare_cap;
5757 		} else {
5758 			if (min_runnable_load > (runnable_load + imbalance)) {
5759 				/*
5760 				 * The runnable load is significantly smaller
5761 				 * so we can pick this new CPU:
5762 				 */
5763 				min_runnable_load = runnable_load;
5764 				min_avg_load = avg_load;
5765 				idlest = group;
5766 			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
5767 				   (100*min_avg_load > imbalance_scale*avg_load)) {
5768 				/*
5769 				 * The runnable loads are close so take the
5770 				 * blocked load into account through avg_load:
5771 				 */
5772 				min_avg_load = avg_load;
5773 				idlest = group;
5774 			}
5775 
5776 			if (most_spare < max_spare_cap) {
5777 				most_spare = max_spare_cap;
5778 				most_spare_sg = group;
5779 			}
5780 		}
5781 	} while (group = group->next, group != sd->groups);
5782 
5783 	/*
5784 	 * The cross-over point between using spare capacity or least load
5785 	 * is too conservative for high utilization tasks on partially
5786 	 * utilized systems if we require spare_capacity > task_util(p),
5787 	 * so we allow for some task stuffing by using
5788 	 * spare_capacity > task_util(p)/2.
5789 	 *
5790 	 * Spare capacity can't be used for fork because the utilization has
5791 	 * not been set yet, we must first select a rq to compute the initial
5792 	 * utilization.
5793 	 */
5794 	if (sd_flag & SD_BALANCE_FORK)
5795 		goto skip_spare;
5796 
5797 	if (this_spare > task_util(p) / 2 &&
5798 	    imbalance_scale*this_spare > 100*most_spare)
5799 		return NULL;
5800 
5801 	if (most_spare > task_util(p) / 2)
5802 		return most_spare_sg;
5803 
5804 skip_spare:
5805 	if (!idlest)
5806 		return NULL;
5807 
5808 	/*
5809 	 * When comparing groups across NUMA domains, it's possible for the
5810 	 * local domain to be very lightly loaded relative to the remote
5811 	 * domains but "imbalance" skews the comparison making remote CPUs
5812 	 * look much more favourable. When considering cross-domain, add
5813 	 * imbalance to the runnable load on the remote node and consider
5814 	 * staying local.
5815 	 */
5816 	if ((sd->flags & SD_NUMA) &&
5817 	    min_runnable_load + imbalance >= this_runnable_load)
5818 		return NULL;
5819 
5820 	if (min_runnable_load > (this_runnable_load + imbalance))
5821 		return NULL;
5822 
5823 	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5824 	     (100*this_avg_load < imbalance_scale*min_avg_load))
5825 		return NULL;
5826 
5827 	return idlest;
5828 }
5829 
5830 /*
5831  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5832  */
5833 static int
5834 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5835 {
5836 	unsigned long load, min_load = ULONG_MAX;
5837 	unsigned int min_exit_latency = UINT_MAX;
5838 	u64 latest_idle_timestamp = 0;
5839 	int least_loaded_cpu = this_cpu;
5840 	int shallowest_idle_cpu = -1;
5841 	int i;
5842 
5843 	/* Check if we have any choice: */
5844 	if (group->group_weight == 1)
5845 		return cpumask_first(sched_group_span(group));
5846 
5847 	/* Traverse only the allowed CPUs */
5848 	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5849 		if (available_idle_cpu(i)) {
5850 			struct rq *rq = cpu_rq(i);
5851 			struct cpuidle_state *idle = idle_get_state(rq);
5852 			if (idle && idle->exit_latency < min_exit_latency) {
5853 				/*
5854 				 * We give priority to a CPU whose idle state
5855 				 * has the smallest exit latency irrespective
5856 				 * of any idle timestamp.
5857 				 */
5858 				min_exit_latency = idle->exit_latency;
5859 				latest_idle_timestamp = rq->idle_stamp;
5860 				shallowest_idle_cpu = i;
5861 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5862 				   rq->idle_stamp > latest_idle_timestamp) {
5863 				/*
5864 				 * If equal or no active idle state, then
5865 				 * the most recently idled CPU might have
5866 				 * a warmer cache.
5867 				 */
5868 				latest_idle_timestamp = rq->idle_stamp;
5869 				shallowest_idle_cpu = i;
5870 			}
5871 		} else if (shallowest_idle_cpu == -1) {
5872 			load = weighted_cpuload(cpu_rq(i));
5873 			if (load < min_load) {
5874 				min_load = load;
5875 				least_loaded_cpu = i;
5876 			}
5877 		}
5878 	}
5879 
5880 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5881 }
5882 
5883 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5884 				  int cpu, int prev_cpu, int sd_flag)
5885 {
5886 	int new_cpu = cpu;
5887 
5888 	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
5889 		return prev_cpu;
5890 
5891 	/*
5892 	 * We need task's util for capacity_spare_wake, sync it up to prev_cpu's
5893 	 * last_update_time.
5894 	 */
5895 	if (!(sd_flag & SD_BALANCE_FORK))
5896 		sync_entity_load_avg(&p->se);
5897 
5898 	while (sd) {
5899 		struct sched_group *group;
5900 		struct sched_domain *tmp;
5901 		int weight;
5902 
5903 		if (!(sd->flags & sd_flag)) {
5904 			sd = sd->child;
5905 			continue;
5906 		}
5907 
5908 		group = find_idlest_group(sd, p, cpu, sd_flag);
5909 		if (!group) {
5910 			sd = sd->child;
5911 			continue;
5912 		}
5913 
5914 		new_cpu = find_idlest_group_cpu(group, p, cpu);
5915 		if (new_cpu == cpu) {
5916 			/* Now try balancing at a lower domain level of 'cpu': */
5917 			sd = sd->child;
5918 			continue;
5919 		}
5920 
5921 		/* Now try balancing at a lower domain level of 'new_cpu': */
5922 		cpu = new_cpu;
5923 		weight = sd->span_weight;
5924 		sd = NULL;
5925 		for_each_domain(cpu, tmp) {
5926 			if (weight <= tmp->span_weight)
5927 				break;
5928 			if (tmp->flags & sd_flag)
5929 				sd = tmp;
5930 		}
5931 	}
5932 
5933 	return new_cpu;
5934 }
5935 
5936 #ifdef CONFIG_SCHED_SMT
5937 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5938 
5939 static inline void set_idle_cores(int cpu, int val)
5940 {
5941 	struct sched_domain_shared *sds;
5942 
5943 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5944 	if (sds)
5945 		WRITE_ONCE(sds->has_idle_cores, val);
5946 }
5947 
5948 static inline bool test_idle_cores(int cpu, bool def)
5949 {
5950 	struct sched_domain_shared *sds;
5951 
5952 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5953 	if (sds)
5954 		return READ_ONCE(sds->has_idle_cores);
5955 
5956 	return def;
5957 }
5958 
5959 /*
5960  * Scans the local SMT mask to see if the entire core is idle, and records this
5961  * information in sd_llc_shared->has_idle_cores.
5962  *
5963  * Since SMT siblings share all cache levels, inspecting this limited remote
5964  * state should be fairly cheap.
5965  */
5966 void __update_idle_core(struct rq *rq)
5967 {
5968 	int core = cpu_of(rq);
5969 	int cpu;
5970 
5971 	rcu_read_lock();
5972 	if (test_idle_cores(core, true))
5973 		goto unlock;
5974 
5975 	for_each_cpu(cpu, cpu_smt_mask(core)) {
5976 		if (cpu == core)
5977 			continue;
5978 
5979 		if (!available_idle_cpu(cpu))
5980 			goto unlock;
5981 	}
5982 
5983 	set_idle_cores(core, 1);
5984 unlock:
5985 	rcu_read_unlock();
5986 }
5987 
5988 /*
5989  * Scan the entire LLC domain for idle cores; this dynamically switches off if
5990  * there are no idle cores left in the system; tracked through
5991  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5992  */
5993 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5994 {
5995 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5996 	int core, cpu;
5997 
5998 	if (!static_branch_likely(&sched_smt_present))
5999 		return -1;
6000 
6001 	if (!test_idle_cores(target, false))
6002 		return -1;
6003 
6004 	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
6005 
6006 	for_each_cpu_wrap(core, cpus, target) {
6007 		bool idle = true;
6008 
6009 		for_each_cpu(cpu, cpu_smt_mask(core)) {
6010 			cpumask_clear_cpu(cpu, cpus);
6011 			if (!available_idle_cpu(cpu))
6012 				idle = false;
6013 		}
6014 
6015 		if (idle)
6016 			return core;
6017 	}
6018 
6019 	/*
6020 	 * Failed to find an idle core; stop looking for one.
6021 	 */
6022 	set_idle_cores(target, 0);
6023 
6024 	return -1;
6025 }
6026 
6027 /*
6028  * Scan the local SMT mask for idle CPUs.
6029  */
6030 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6031 {
6032 	int cpu;
6033 
6034 	if (!static_branch_likely(&sched_smt_present))
6035 		return -1;
6036 
6037 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6038 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6039 			continue;
6040 		if (available_idle_cpu(cpu))
6041 			return cpu;
6042 	}
6043 
6044 	return -1;
6045 }
6046 
6047 #else /* CONFIG_SCHED_SMT */
6048 
6049 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6050 {
6051 	return -1;
6052 }
6053 
6054 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6055 {
6056 	return -1;
6057 }
6058 
6059 #endif /* CONFIG_SCHED_SMT */
6060 
6061 /*
6062  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6063  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6064  * average idle time for this rq (as found in rq->avg_idle).
6065  */
6066 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6067 {
6068 	struct sched_domain *this_sd;
6069 	u64 avg_cost, avg_idle;
6070 	u64 time, cost;
6071 	s64 delta;
6072 	int cpu, nr = INT_MAX;
6073 
6074 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6075 	if (!this_sd)
6076 		return -1;
6077 
6078 	/*
6079 	 * Due to large variance we need a large fuzz factor; hackbench in
6080 	 * particularly is sensitive here.
6081 	 */
6082 	avg_idle = this_rq()->avg_idle / 512;
6083 	avg_cost = this_sd->avg_scan_cost + 1;
6084 
6085 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6086 		return -1;
6087 
6088 	if (sched_feat(SIS_PROP)) {
6089 		u64 span_avg = sd->span_weight * avg_idle;
6090 		if (span_avg > 4*avg_cost)
6091 			nr = div_u64(span_avg, avg_cost);
6092 		else
6093 			nr = 4;
6094 	}
6095 
6096 	time = local_clock();
6097 
6098 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6099 		if (!--nr)
6100 			return -1;
6101 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6102 			continue;
6103 		if (available_idle_cpu(cpu))
6104 			break;
6105 	}
6106 
6107 	time = local_clock() - time;
6108 	cost = this_sd->avg_scan_cost;
6109 	delta = (s64)(time - cost) / 8;
6110 	this_sd->avg_scan_cost += delta;
6111 
6112 	return cpu;
6113 }
6114 
6115 /*
6116  * Try and locate an idle core/thread in the LLC cache domain.
6117  */
6118 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6119 {
6120 	struct sched_domain *sd;
6121 	int i, recent_used_cpu;
6122 
6123 	if (available_idle_cpu(target))
6124 		return target;
6125 
6126 	/*
6127 	 * If the previous CPU is cache affine and idle, don't be stupid:
6128 	 */
6129 	if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
6130 		return prev;
6131 
6132 	/* Check a recently used CPU as a potential idle candidate: */
6133 	recent_used_cpu = p->recent_used_cpu;
6134 	if (recent_used_cpu != prev &&
6135 	    recent_used_cpu != target &&
6136 	    cpus_share_cache(recent_used_cpu, target) &&
6137 	    available_idle_cpu(recent_used_cpu) &&
6138 	    cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6139 		/*
6140 		 * Replace recent_used_cpu with prev as it is a potential
6141 		 * candidate for the next wake:
6142 		 */
6143 		p->recent_used_cpu = prev;
6144 		return recent_used_cpu;
6145 	}
6146 
6147 	sd = rcu_dereference(per_cpu(sd_llc, target));
6148 	if (!sd)
6149 		return target;
6150 
6151 	i = select_idle_core(p, sd, target);
6152 	if ((unsigned)i < nr_cpumask_bits)
6153 		return i;
6154 
6155 	i = select_idle_cpu(p, sd, target);
6156 	if ((unsigned)i < nr_cpumask_bits)
6157 		return i;
6158 
6159 	i = select_idle_smt(p, sd, target);
6160 	if ((unsigned)i < nr_cpumask_bits)
6161 		return i;
6162 
6163 	return target;
6164 }
6165 
6166 /**
6167  * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6168  * @cpu: the CPU to get the utilization of
6169  *
6170  * The unit of the return value must be the one of capacity so we can compare
6171  * the utilization with the capacity of the CPU that is available for CFS task
6172  * (ie cpu_capacity).
6173  *
6174  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6175  * recent utilization of currently non-runnable tasks on a CPU. It represents
6176  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6177  * capacity_orig is the cpu_capacity available at the highest frequency
6178  * (arch_scale_freq_capacity()).
6179  * The utilization of a CPU converges towards a sum equal to or less than the
6180  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6181  * the running time on this CPU scaled by capacity_curr.
6182  *
6183  * The estimated utilization of a CPU is defined to be the maximum between its
6184  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6185  * currently RUNNABLE on that CPU.
6186  * This allows to properly represent the expected utilization of a CPU which
6187  * has just got a big task running since a long sleep period. At the same time
6188  * however it preserves the benefits of the "blocked utilization" in
6189  * describing the potential for other tasks waking up on the same CPU.
6190  *
6191  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6192  * higher than capacity_orig because of unfortunate rounding in
6193  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6194  * the average stabilizes with the new running time. We need to check that the
6195  * utilization stays within the range of [0..capacity_orig] and cap it if
6196  * necessary. Without utilization capping, a group could be seen as overloaded
6197  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6198  * available capacity. We allow utilization to overshoot capacity_curr (but not
6199  * capacity_orig) as it useful for predicting the capacity required after task
6200  * migrations (scheduler-driven DVFS).
6201  *
6202  * Return: the (estimated) utilization for the specified CPU
6203  */
6204 static inline unsigned long cpu_util(int cpu)
6205 {
6206 	struct cfs_rq *cfs_rq;
6207 	unsigned int util;
6208 
6209 	cfs_rq = &cpu_rq(cpu)->cfs;
6210 	util = READ_ONCE(cfs_rq->avg.util_avg);
6211 
6212 	if (sched_feat(UTIL_EST))
6213 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6214 
6215 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6216 }
6217 
6218 /*
6219  * cpu_util_wake: Compute CPU utilization with any contributions from
6220  * the waking task p removed.
6221  */
6222 static unsigned long cpu_util_wake(int cpu, struct task_struct *p)
6223 {
6224 	struct cfs_rq *cfs_rq;
6225 	unsigned int util;
6226 
6227 	/* Task has no contribution or is new */
6228 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6229 		return cpu_util(cpu);
6230 
6231 	cfs_rq = &cpu_rq(cpu)->cfs;
6232 	util = READ_ONCE(cfs_rq->avg.util_avg);
6233 
6234 	/* Discount task's blocked util from CPU's util */
6235 	util -= min_t(unsigned int, util, task_util(p));
6236 
6237 	/*
6238 	 * Covered cases:
6239 	 *
6240 	 * a) if *p is the only task sleeping on this CPU, then:
6241 	 *      cpu_util (== task_util) > util_est (== 0)
6242 	 *    and thus we return:
6243 	 *      cpu_util_wake = (cpu_util - task_util) = 0
6244 	 *
6245 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6246 	 *    IDLE, then:
6247 	 *      cpu_util >= task_util
6248 	 *      cpu_util > util_est (== 0)
6249 	 *    and thus we discount *p's blocked utilization to return:
6250 	 *      cpu_util_wake = (cpu_util - task_util) >= 0
6251 	 *
6252 	 * c) if other tasks are RUNNABLE on that CPU and
6253 	 *      util_est > cpu_util
6254 	 *    then we use util_est since it returns a more restrictive
6255 	 *    estimation of the spare capacity on that CPU, by just
6256 	 *    considering the expected utilization of tasks already
6257 	 *    runnable on that CPU.
6258 	 *
6259 	 * Cases a) and b) are covered by the above code, while case c) is
6260 	 * covered by the following code when estimated utilization is
6261 	 * enabled.
6262 	 */
6263 	if (sched_feat(UTIL_EST))
6264 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6265 
6266 	/*
6267 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6268 	 * clamp to the maximum CPU capacity to ensure consistency with
6269 	 * the cpu_util call.
6270 	 */
6271 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6272 }
6273 
6274 /*
6275  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6276  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6277  *
6278  * In that case WAKE_AFFINE doesn't make sense and we'll let
6279  * BALANCE_WAKE sort things out.
6280  */
6281 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6282 {
6283 	long min_cap, max_cap;
6284 
6285 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
6286 		return 0;
6287 
6288 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6289 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6290 
6291 	/* Minimum capacity is close to max, no need to abort wake_affine */
6292 	if (max_cap - min_cap < max_cap >> 3)
6293 		return 0;
6294 
6295 	/* Bring task utilization in sync with prev_cpu */
6296 	sync_entity_load_avg(&p->se);
6297 
6298 	return !task_fits_capacity(p, min_cap);
6299 }
6300 
6301 /*
6302  * select_task_rq_fair: Select target runqueue for the waking task in domains
6303  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6304  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6305  *
6306  * Balances load by selecting the idlest CPU in the idlest group, or under
6307  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6308  *
6309  * Returns the target CPU number.
6310  *
6311  * preempt must be disabled.
6312  */
6313 static int
6314 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6315 {
6316 	struct sched_domain *tmp, *sd = NULL;
6317 	int cpu = smp_processor_id();
6318 	int new_cpu = prev_cpu;
6319 	int want_affine = 0;
6320 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6321 
6322 	if (sd_flag & SD_BALANCE_WAKE) {
6323 		record_wakee(p);
6324 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6325 			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
6326 	}
6327 
6328 	rcu_read_lock();
6329 	for_each_domain(cpu, tmp) {
6330 		if (!(tmp->flags & SD_LOAD_BALANCE))
6331 			break;
6332 
6333 		/*
6334 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6335 		 * cpu is a valid SD_WAKE_AFFINE target.
6336 		 */
6337 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6338 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6339 			if (cpu != prev_cpu)
6340 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6341 
6342 			sd = NULL; /* Prefer wake_affine over balance flags */
6343 			break;
6344 		}
6345 
6346 		if (tmp->flags & sd_flag)
6347 			sd = tmp;
6348 		else if (!want_affine)
6349 			break;
6350 	}
6351 
6352 	if (unlikely(sd)) {
6353 		/* Slow path */
6354 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6355 	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6356 		/* Fast path */
6357 
6358 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6359 
6360 		if (want_affine)
6361 			current->recent_used_cpu = cpu;
6362 	}
6363 	rcu_read_unlock();
6364 
6365 	return new_cpu;
6366 }
6367 
6368 static void detach_entity_cfs_rq(struct sched_entity *se);
6369 
6370 /*
6371  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6372  * cfs_rq_of(p) references at time of call are still valid and identify the
6373  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6374  */
6375 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6376 {
6377 	/*
6378 	 * As blocked tasks retain absolute vruntime the migration needs to
6379 	 * deal with this by subtracting the old and adding the new
6380 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6381 	 * the task on the new runqueue.
6382 	 */
6383 	if (p->state == TASK_WAKING) {
6384 		struct sched_entity *se = &p->se;
6385 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6386 		u64 min_vruntime;
6387 
6388 #ifndef CONFIG_64BIT
6389 		u64 min_vruntime_copy;
6390 
6391 		do {
6392 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6393 			smp_rmb();
6394 			min_vruntime = cfs_rq->min_vruntime;
6395 		} while (min_vruntime != min_vruntime_copy);
6396 #else
6397 		min_vruntime = cfs_rq->min_vruntime;
6398 #endif
6399 
6400 		se->vruntime -= min_vruntime;
6401 	}
6402 
6403 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6404 		/*
6405 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6406 		 * rq->lock and can modify state directly.
6407 		 */
6408 		lockdep_assert_held(&task_rq(p)->lock);
6409 		detach_entity_cfs_rq(&p->se);
6410 
6411 	} else {
6412 		/*
6413 		 * We are supposed to update the task to "current" time, then
6414 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6415 		 * have difficulty in getting what current time is, so simply
6416 		 * throw away the out-of-date time. This will result in the
6417 		 * wakee task is less decayed, but giving the wakee more load
6418 		 * sounds not bad.
6419 		 */
6420 		remove_entity_load_avg(&p->se);
6421 	}
6422 
6423 	/* Tell new CPU we are migrated */
6424 	p->se.avg.last_update_time = 0;
6425 
6426 	/* We have migrated, no longer consider this task hot */
6427 	p->se.exec_start = 0;
6428 
6429 	update_scan_period(p, new_cpu);
6430 }
6431 
6432 static void task_dead_fair(struct task_struct *p)
6433 {
6434 	remove_entity_load_avg(&p->se);
6435 }
6436 #endif /* CONFIG_SMP */
6437 
6438 static unsigned long wakeup_gran(struct sched_entity *se)
6439 {
6440 	unsigned long gran = sysctl_sched_wakeup_granularity;
6441 
6442 	/*
6443 	 * Since its curr running now, convert the gran from real-time
6444 	 * to virtual-time in his units.
6445 	 *
6446 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6447 	 * they get preempted easier. That is, if 'se' < 'curr' then
6448 	 * the resulting gran will be larger, therefore penalizing the
6449 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6450 	 * be smaller, again penalizing the lighter task.
6451 	 *
6452 	 * This is especially important for buddies when the leftmost
6453 	 * task is higher priority than the buddy.
6454 	 */
6455 	return calc_delta_fair(gran, se);
6456 }
6457 
6458 /*
6459  * Should 'se' preempt 'curr'.
6460  *
6461  *             |s1
6462  *        |s2
6463  *   |s3
6464  *         g
6465  *      |<--->|c
6466  *
6467  *  w(c, s1) = -1
6468  *  w(c, s2) =  0
6469  *  w(c, s3) =  1
6470  *
6471  */
6472 static int
6473 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6474 {
6475 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6476 
6477 	if (vdiff <= 0)
6478 		return -1;
6479 
6480 	gran = wakeup_gran(se);
6481 	if (vdiff > gran)
6482 		return 1;
6483 
6484 	return 0;
6485 }
6486 
6487 static void set_last_buddy(struct sched_entity *se)
6488 {
6489 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6490 		return;
6491 
6492 	for_each_sched_entity(se) {
6493 		if (SCHED_WARN_ON(!se->on_rq))
6494 			return;
6495 		cfs_rq_of(se)->last = se;
6496 	}
6497 }
6498 
6499 static void set_next_buddy(struct sched_entity *se)
6500 {
6501 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6502 		return;
6503 
6504 	for_each_sched_entity(se) {
6505 		if (SCHED_WARN_ON(!se->on_rq))
6506 			return;
6507 		cfs_rq_of(se)->next = se;
6508 	}
6509 }
6510 
6511 static void set_skip_buddy(struct sched_entity *se)
6512 {
6513 	for_each_sched_entity(se)
6514 		cfs_rq_of(se)->skip = se;
6515 }
6516 
6517 /*
6518  * Preempt the current task with a newly woken task if needed:
6519  */
6520 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6521 {
6522 	struct task_struct *curr = rq->curr;
6523 	struct sched_entity *se = &curr->se, *pse = &p->se;
6524 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6525 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6526 	int next_buddy_marked = 0;
6527 
6528 	if (unlikely(se == pse))
6529 		return;
6530 
6531 	/*
6532 	 * This is possible from callers such as attach_tasks(), in which we
6533 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6534 	 * lead to a throttle).  This both saves work and prevents false
6535 	 * next-buddy nomination below.
6536 	 */
6537 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6538 		return;
6539 
6540 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6541 		set_next_buddy(pse);
6542 		next_buddy_marked = 1;
6543 	}
6544 
6545 	/*
6546 	 * We can come here with TIF_NEED_RESCHED already set from new task
6547 	 * wake up path.
6548 	 *
6549 	 * Note: this also catches the edge-case of curr being in a throttled
6550 	 * group (e.g. via set_curr_task), since update_curr() (in the
6551 	 * enqueue of curr) will have resulted in resched being set.  This
6552 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6553 	 * below.
6554 	 */
6555 	if (test_tsk_need_resched(curr))
6556 		return;
6557 
6558 	/* Idle tasks are by definition preempted by non-idle tasks. */
6559 	if (unlikely(curr->policy == SCHED_IDLE) &&
6560 	    likely(p->policy != SCHED_IDLE))
6561 		goto preempt;
6562 
6563 	/*
6564 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6565 	 * is driven by the tick):
6566 	 */
6567 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6568 		return;
6569 
6570 	find_matching_se(&se, &pse);
6571 	update_curr(cfs_rq_of(se));
6572 	BUG_ON(!pse);
6573 	if (wakeup_preempt_entity(se, pse) == 1) {
6574 		/*
6575 		 * Bias pick_next to pick the sched entity that is
6576 		 * triggering this preemption.
6577 		 */
6578 		if (!next_buddy_marked)
6579 			set_next_buddy(pse);
6580 		goto preempt;
6581 	}
6582 
6583 	return;
6584 
6585 preempt:
6586 	resched_curr(rq);
6587 	/*
6588 	 * Only set the backward buddy when the current task is still
6589 	 * on the rq. This can happen when a wakeup gets interleaved
6590 	 * with schedule on the ->pre_schedule() or idle_balance()
6591 	 * point, either of which can * drop the rq lock.
6592 	 *
6593 	 * Also, during early boot the idle thread is in the fair class,
6594 	 * for obvious reasons its a bad idea to schedule back to it.
6595 	 */
6596 	if (unlikely(!se->on_rq || curr == rq->idle))
6597 		return;
6598 
6599 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6600 		set_last_buddy(se);
6601 }
6602 
6603 static struct task_struct *
6604 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6605 {
6606 	struct cfs_rq *cfs_rq = &rq->cfs;
6607 	struct sched_entity *se;
6608 	struct task_struct *p;
6609 	int new_tasks;
6610 
6611 again:
6612 	if (!cfs_rq->nr_running)
6613 		goto idle;
6614 
6615 #ifdef CONFIG_FAIR_GROUP_SCHED
6616 	if (prev->sched_class != &fair_sched_class)
6617 		goto simple;
6618 
6619 	/*
6620 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6621 	 * likely that a next task is from the same cgroup as the current.
6622 	 *
6623 	 * Therefore attempt to avoid putting and setting the entire cgroup
6624 	 * hierarchy, only change the part that actually changes.
6625 	 */
6626 
6627 	do {
6628 		struct sched_entity *curr = cfs_rq->curr;
6629 
6630 		/*
6631 		 * Since we got here without doing put_prev_entity() we also
6632 		 * have to consider cfs_rq->curr. If it is still a runnable
6633 		 * entity, update_curr() will update its vruntime, otherwise
6634 		 * forget we've ever seen it.
6635 		 */
6636 		if (curr) {
6637 			if (curr->on_rq)
6638 				update_curr(cfs_rq);
6639 			else
6640 				curr = NULL;
6641 
6642 			/*
6643 			 * This call to check_cfs_rq_runtime() will do the
6644 			 * throttle and dequeue its entity in the parent(s).
6645 			 * Therefore the nr_running test will indeed
6646 			 * be correct.
6647 			 */
6648 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6649 				cfs_rq = &rq->cfs;
6650 
6651 				if (!cfs_rq->nr_running)
6652 					goto idle;
6653 
6654 				goto simple;
6655 			}
6656 		}
6657 
6658 		se = pick_next_entity(cfs_rq, curr);
6659 		cfs_rq = group_cfs_rq(se);
6660 	} while (cfs_rq);
6661 
6662 	p = task_of(se);
6663 
6664 	/*
6665 	 * Since we haven't yet done put_prev_entity and if the selected task
6666 	 * is a different task than we started out with, try and touch the
6667 	 * least amount of cfs_rqs.
6668 	 */
6669 	if (prev != p) {
6670 		struct sched_entity *pse = &prev->se;
6671 
6672 		while (!(cfs_rq = is_same_group(se, pse))) {
6673 			int se_depth = se->depth;
6674 			int pse_depth = pse->depth;
6675 
6676 			if (se_depth <= pse_depth) {
6677 				put_prev_entity(cfs_rq_of(pse), pse);
6678 				pse = parent_entity(pse);
6679 			}
6680 			if (se_depth >= pse_depth) {
6681 				set_next_entity(cfs_rq_of(se), se);
6682 				se = parent_entity(se);
6683 			}
6684 		}
6685 
6686 		put_prev_entity(cfs_rq, pse);
6687 		set_next_entity(cfs_rq, se);
6688 	}
6689 
6690 	goto done;
6691 simple:
6692 #endif
6693 
6694 	put_prev_task(rq, prev);
6695 
6696 	do {
6697 		se = pick_next_entity(cfs_rq, NULL);
6698 		set_next_entity(cfs_rq, se);
6699 		cfs_rq = group_cfs_rq(se);
6700 	} while (cfs_rq);
6701 
6702 	p = task_of(se);
6703 
6704 done: __maybe_unused;
6705 #ifdef CONFIG_SMP
6706 	/*
6707 	 * Move the next running task to the front of
6708 	 * the list, so our cfs_tasks list becomes MRU
6709 	 * one.
6710 	 */
6711 	list_move(&p->se.group_node, &rq->cfs_tasks);
6712 #endif
6713 
6714 	if (hrtick_enabled(rq))
6715 		hrtick_start_fair(rq, p);
6716 
6717 	update_misfit_status(p, rq);
6718 
6719 	return p;
6720 
6721 idle:
6722 	update_misfit_status(NULL, rq);
6723 	new_tasks = idle_balance(rq, rf);
6724 
6725 	/*
6726 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6727 	 * possible for any higher priority task to appear. In that case we
6728 	 * must re-start the pick_next_entity() loop.
6729 	 */
6730 	if (new_tasks < 0)
6731 		return RETRY_TASK;
6732 
6733 	if (new_tasks > 0)
6734 		goto again;
6735 
6736 	return NULL;
6737 }
6738 
6739 /*
6740  * Account for a descheduled task:
6741  */
6742 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6743 {
6744 	struct sched_entity *se = &prev->se;
6745 	struct cfs_rq *cfs_rq;
6746 
6747 	for_each_sched_entity(se) {
6748 		cfs_rq = cfs_rq_of(se);
6749 		put_prev_entity(cfs_rq, se);
6750 	}
6751 }
6752 
6753 /*
6754  * sched_yield() is very simple
6755  *
6756  * The magic of dealing with the ->skip buddy is in pick_next_entity.
6757  */
6758 static void yield_task_fair(struct rq *rq)
6759 {
6760 	struct task_struct *curr = rq->curr;
6761 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6762 	struct sched_entity *se = &curr->se;
6763 
6764 	/*
6765 	 * Are we the only task in the tree?
6766 	 */
6767 	if (unlikely(rq->nr_running == 1))
6768 		return;
6769 
6770 	clear_buddies(cfs_rq, se);
6771 
6772 	if (curr->policy != SCHED_BATCH) {
6773 		update_rq_clock(rq);
6774 		/*
6775 		 * Update run-time statistics of the 'current'.
6776 		 */
6777 		update_curr(cfs_rq);
6778 		/*
6779 		 * Tell update_rq_clock() that we've just updated,
6780 		 * so we don't do microscopic update in schedule()
6781 		 * and double the fastpath cost.
6782 		 */
6783 		rq_clock_skip_update(rq);
6784 	}
6785 
6786 	set_skip_buddy(se);
6787 }
6788 
6789 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6790 {
6791 	struct sched_entity *se = &p->se;
6792 
6793 	/* throttled hierarchies are not runnable */
6794 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6795 		return false;
6796 
6797 	/* Tell the scheduler that we'd really like pse to run next. */
6798 	set_next_buddy(se);
6799 
6800 	yield_task_fair(rq);
6801 
6802 	return true;
6803 }
6804 
6805 #ifdef CONFIG_SMP
6806 /**************************************************
6807  * Fair scheduling class load-balancing methods.
6808  *
6809  * BASICS
6810  *
6811  * The purpose of load-balancing is to achieve the same basic fairness the
6812  * per-CPU scheduler provides, namely provide a proportional amount of compute
6813  * time to each task. This is expressed in the following equation:
6814  *
6815  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
6816  *
6817  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
6818  * W_i,0 is defined as:
6819  *
6820  *   W_i,0 = \Sum_j w_i,j                                             (2)
6821  *
6822  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
6823  * is derived from the nice value as per sched_prio_to_weight[].
6824  *
6825  * The weight average is an exponential decay average of the instantaneous
6826  * weight:
6827  *
6828  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
6829  *
6830  * C_i is the compute capacity of CPU i, typically it is the
6831  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6832  * can also include other factors [XXX].
6833  *
6834  * To achieve this balance we define a measure of imbalance which follows
6835  * directly from (1):
6836  *
6837  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
6838  *
6839  * We them move tasks around to minimize the imbalance. In the continuous
6840  * function space it is obvious this converges, in the discrete case we get
6841  * a few fun cases generally called infeasible weight scenarios.
6842  *
6843  * [XXX expand on:
6844  *     - infeasible weights;
6845  *     - local vs global optima in the discrete case. ]
6846  *
6847  *
6848  * SCHED DOMAINS
6849  *
6850  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6851  * for all i,j solution, we create a tree of CPUs that follows the hardware
6852  * topology where each level pairs two lower groups (or better). This results
6853  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
6854  * tree to only the first of the previous level and we decrease the frequency
6855  * of load-balance at each level inv. proportional to the number of CPUs in
6856  * the groups.
6857  *
6858  * This yields:
6859  *
6860  *     log_2 n     1     n
6861  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
6862  *     i = 0      2^i   2^i
6863  *                               `- size of each group
6864  *         |         |     `- number of CPUs doing load-balance
6865  *         |         `- freq
6866  *         `- sum over all levels
6867  *
6868  * Coupled with a limit on how many tasks we can migrate every balance pass,
6869  * this makes (5) the runtime complexity of the balancer.
6870  *
6871  * An important property here is that each CPU is still (indirectly) connected
6872  * to every other CPU in at most O(log n) steps:
6873  *
6874  * The adjacency matrix of the resulting graph is given by:
6875  *
6876  *             log_2 n
6877  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
6878  *             k = 0
6879  *
6880  * And you'll find that:
6881  *
6882  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
6883  *
6884  * Showing there's indeed a path between every CPU in at most O(log n) steps.
6885  * The task movement gives a factor of O(m), giving a convergence complexity
6886  * of:
6887  *
6888  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
6889  *
6890  *
6891  * WORK CONSERVING
6892  *
6893  * In order to avoid CPUs going idle while there's still work to do, new idle
6894  * balancing is more aggressive and has the newly idle CPU iterate up the domain
6895  * tree itself instead of relying on other CPUs to bring it work.
6896  *
6897  * This adds some complexity to both (5) and (8) but it reduces the total idle
6898  * time.
6899  *
6900  * [XXX more?]
6901  *
6902  *
6903  * CGROUPS
6904  *
6905  * Cgroups make a horror show out of (2), instead of a simple sum we get:
6906  *
6907  *                                s_k,i
6908  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
6909  *                                 S_k
6910  *
6911  * Where
6912  *
6913  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
6914  *
6915  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
6916  *
6917  * The big problem is S_k, its a global sum needed to compute a local (W_i)
6918  * property.
6919  *
6920  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6921  *      rewrite all of this once again.]
6922  */
6923 
6924 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6925 
6926 enum fbq_type { regular, remote, all };
6927 
6928 enum group_type {
6929 	group_other = 0,
6930 	group_misfit_task,
6931 	group_imbalanced,
6932 	group_overloaded,
6933 };
6934 
6935 #define LBF_ALL_PINNED	0x01
6936 #define LBF_NEED_BREAK	0x02
6937 #define LBF_DST_PINNED  0x04
6938 #define LBF_SOME_PINNED	0x08
6939 #define LBF_NOHZ_STATS	0x10
6940 #define LBF_NOHZ_AGAIN	0x20
6941 
6942 struct lb_env {
6943 	struct sched_domain	*sd;
6944 
6945 	struct rq		*src_rq;
6946 	int			src_cpu;
6947 
6948 	int			dst_cpu;
6949 	struct rq		*dst_rq;
6950 
6951 	struct cpumask		*dst_grpmask;
6952 	int			new_dst_cpu;
6953 	enum cpu_idle_type	idle;
6954 	long			imbalance;
6955 	/* The set of CPUs under consideration for load-balancing */
6956 	struct cpumask		*cpus;
6957 
6958 	unsigned int		flags;
6959 
6960 	unsigned int		loop;
6961 	unsigned int		loop_break;
6962 	unsigned int		loop_max;
6963 
6964 	enum fbq_type		fbq_type;
6965 	enum group_type		src_grp_type;
6966 	struct list_head	tasks;
6967 };
6968 
6969 /*
6970  * Is this task likely cache-hot:
6971  */
6972 static int task_hot(struct task_struct *p, struct lb_env *env)
6973 {
6974 	s64 delta;
6975 
6976 	lockdep_assert_held(&env->src_rq->lock);
6977 
6978 	if (p->sched_class != &fair_sched_class)
6979 		return 0;
6980 
6981 	if (unlikely(p->policy == SCHED_IDLE))
6982 		return 0;
6983 
6984 	/*
6985 	 * Buddy candidates are cache hot:
6986 	 */
6987 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6988 			(&p->se == cfs_rq_of(&p->se)->next ||
6989 			 &p->se == cfs_rq_of(&p->se)->last))
6990 		return 1;
6991 
6992 	if (sysctl_sched_migration_cost == -1)
6993 		return 1;
6994 	if (sysctl_sched_migration_cost == 0)
6995 		return 0;
6996 
6997 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6998 
6999 	return delta < (s64)sysctl_sched_migration_cost;
7000 }
7001 
7002 #ifdef CONFIG_NUMA_BALANCING
7003 /*
7004  * Returns 1, if task migration degrades locality
7005  * Returns 0, if task migration improves locality i.e migration preferred.
7006  * Returns -1, if task migration is not affected by locality.
7007  */
7008 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7009 {
7010 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7011 	unsigned long src_weight, dst_weight;
7012 	int src_nid, dst_nid, dist;
7013 
7014 	if (!static_branch_likely(&sched_numa_balancing))
7015 		return -1;
7016 
7017 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7018 		return -1;
7019 
7020 	src_nid = cpu_to_node(env->src_cpu);
7021 	dst_nid = cpu_to_node(env->dst_cpu);
7022 
7023 	if (src_nid == dst_nid)
7024 		return -1;
7025 
7026 	/* Migrating away from the preferred node is always bad. */
7027 	if (src_nid == p->numa_preferred_nid) {
7028 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7029 			return 1;
7030 		else
7031 			return -1;
7032 	}
7033 
7034 	/* Encourage migration to the preferred node. */
7035 	if (dst_nid == p->numa_preferred_nid)
7036 		return 0;
7037 
7038 	/* Leaving a core idle is often worse than degrading locality. */
7039 	if (env->idle == CPU_IDLE)
7040 		return -1;
7041 
7042 	dist = node_distance(src_nid, dst_nid);
7043 	if (numa_group) {
7044 		src_weight = group_weight(p, src_nid, dist);
7045 		dst_weight = group_weight(p, dst_nid, dist);
7046 	} else {
7047 		src_weight = task_weight(p, src_nid, dist);
7048 		dst_weight = task_weight(p, dst_nid, dist);
7049 	}
7050 
7051 	return dst_weight < src_weight;
7052 }
7053 
7054 #else
7055 static inline int migrate_degrades_locality(struct task_struct *p,
7056 					     struct lb_env *env)
7057 {
7058 	return -1;
7059 }
7060 #endif
7061 
7062 /*
7063  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7064  */
7065 static
7066 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7067 {
7068 	int tsk_cache_hot;
7069 
7070 	lockdep_assert_held(&env->src_rq->lock);
7071 
7072 	/*
7073 	 * We do not migrate tasks that are:
7074 	 * 1) throttled_lb_pair, or
7075 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7076 	 * 3) running (obviously), or
7077 	 * 4) are cache-hot on their current CPU.
7078 	 */
7079 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7080 		return 0;
7081 
7082 	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7083 		int cpu;
7084 
7085 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7086 
7087 		env->flags |= LBF_SOME_PINNED;
7088 
7089 		/*
7090 		 * Remember if this task can be migrated to any other CPU in
7091 		 * our sched_group. We may want to revisit it if we couldn't
7092 		 * meet load balance goals by pulling other tasks on src_cpu.
7093 		 *
7094 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7095 		 * already computed one in current iteration.
7096 		 */
7097 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7098 			return 0;
7099 
7100 		/* Prevent to re-select dst_cpu via env's CPUs: */
7101 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7102 			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7103 				env->flags |= LBF_DST_PINNED;
7104 				env->new_dst_cpu = cpu;
7105 				break;
7106 			}
7107 		}
7108 
7109 		return 0;
7110 	}
7111 
7112 	/* Record that we found atleast one task that could run on dst_cpu */
7113 	env->flags &= ~LBF_ALL_PINNED;
7114 
7115 	if (task_running(env->src_rq, p)) {
7116 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7117 		return 0;
7118 	}
7119 
7120 	/*
7121 	 * Aggressive migration if:
7122 	 * 1) destination numa is preferred
7123 	 * 2) task is cache cold, or
7124 	 * 3) too many balance attempts have failed.
7125 	 */
7126 	tsk_cache_hot = migrate_degrades_locality(p, env);
7127 	if (tsk_cache_hot == -1)
7128 		tsk_cache_hot = task_hot(p, env);
7129 
7130 	if (tsk_cache_hot <= 0 ||
7131 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7132 		if (tsk_cache_hot == 1) {
7133 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7134 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7135 		}
7136 		return 1;
7137 	}
7138 
7139 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7140 	return 0;
7141 }
7142 
7143 /*
7144  * detach_task() -- detach the task for the migration specified in env
7145  */
7146 static void detach_task(struct task_struct *p, struct lb_env *env)
7147 {
7148 	lockdep_assert_held(&env->src_rq->lock);
7149 
7150 	p->on_rq = TASK_ON_RQ_MIGRATING;
7151 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7152 	set_task_cpu(p, env->dst_cpu);
7153 }
7154 
7155 /*
7156  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7157  * part of active balancing operations within "domain".
7158  *
7159  * Returns a task if successful and NULL otherwise.
7160  */
7161 static struct task_struct *detach_one_task(struct lb_env *env)
7162 {
7163 	struct task_struct *p;
7164 
7165 	lockdep_assert_held(&env->src_rq->lock);
7166 
7167 	list_for_each_entry_reverse(p,
7168 			&env->src_rq->cfs_tasks, se.group_node) {
7169 		if (!can_migrate_task(p, env))
7170 			continue;
7171 
7172 		detach_task(p, env);
7173 
7174 		/*
7175 		 * Right now, this is only the second place where
7176 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7177 		 * so we can safely collect stats here rather than
7178 		 * inside detach_tasks().
7179 		 */
7180 		schedstat_inc(env->sd->lb_gained[env->idle]);
7181 		return p;
7182 	}
7183 	return NULL;
7184 }
7185 
7186 static const unsigned int sched_nr_migrate_break = 32;
7187 
7188 /*
7189  * detach_tasks() -- tries to detach up to imbalance weighted load from
7190  * busiest_rq, as part of a balancing operation within domain "sd".
7191  *
7192  * Returns number of detached tasks if successful and 0 otherwise.
7193  */
7194 static int detach_tasks(struct lb_env *env)
7195 {
7196 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7197 	struct task_struct *p;
7198 	unsigned long load;
7199 	int detached = 0;
7200 
7201 	lockdep_assert_held(&env->src_rq->lock);
7202 
7203 	if (env->imbalance <= 0)
7204 		return 0;
7205 
7206 	while (!list_empty(tasks)) {
7207 		/*
7208 		 * We don't want to steal all, otherwise we may be treated likewise,
7209 		 * which could at worst lead to a livelock crash.
7210 		 */
7211 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7212 			break;
7213 
7214 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7215 
7216 		env->loop++;
7217 		/* We've more or less seen every task there is, call it quits */
7218 		if (env->loop > env->loop_max)
7219 			break;
7220 
7221 		/* take a breather every nr_migrate tasks */
7222 		if (env->loop > env->loop_break) {
7223 			env->loop_break += sched_nr_migrate_break;
7224 			env->flags |= LBF_NEED_BREAK;
7225 			break;
7226 		}
7227 
7228 		if (!can_migrate_task(p, env))
7229 			goto next;
7230 
7231 		load = task_h_load(p);
7232 
7233 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7234 			goto next;
7235 
7236 		if ((load / 2) > env->imbalance)
7237 			goto next;
7238 
7239 		detach_task(p, env);
7240 		list_add(&p->se.group_node, &env->tasks);
7241 
7242 		detached++;
7243 		env->imbalance -= load;
7244 
7245 #ifdef CONFIG_PREEMPT
7246 		/*
7247 		 * NEWIDLE balancing is a source of latency, so preemptible
7248 		 * kernels will stop after the first task is detached to minimize
7249 		 * the critical section.
7250 		 */
7251 		if (env->idle == CPU_NEWLY_IDLE)
7252 			break;
7253 #endif
7254 
7255 		/*
7256 		 * We only want to steal up to the prescribed amount of
7257 		 * weighted load.
7258 		 */
7259 		if (env->imbalance <= 0)
7260 			break;
7261 
7262 		continue;
7263 next:
7264 		list_move(&p->se.group_node, tasks);
7265 	}
7266 
7267 	/*
7268 	 * Right now, this is one of only two places we collect this stat
7269 	 * so we can safely collect detach_one_task() stats here rather
7270 	 * than inside detach_one_task().
7271 	 */
7272 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7273 
7274 	return detached;
7275 }
7276 
7277 /*
7278  * attach_task() -- attach the task detached by detach_task() to its new rq.
7279  */
7280 static void attach_task(struct rq *rq, struct task_struct *p)
7281 {
7282 	lockdep_assert_held(&rq->lock);
7283 
7284 	BUG_ON(task_rq(p) != rq);
7285 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7286 	p->on_rq = TASK_ON_RQ_QUEUED;
7287 	check_preempt_curr(rq, p, 0);
7288 }
7289 
7290 /*
7291  * attach_one_task() -- attaches the task returned from detach_one_task() to
7292  * its new rq.
7293  */
7294 static void attach_one_task(struct rq *rq, struct task_struct *p)
7295 {
7296 	struct rq_flags rf;
7297 
7298 	rq_lock(rq, &rf);
7299 	update_rq_clock(rq);
7300 	attach_task(rq, p);
7301 	rq_unlock(rq, &rf);
7302 }
7303 
7304 /*
7305  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7306  * new rq.
7307  */
7308 static void attach_tasks(struct lb_env *env)
7309 {
7310 	struct list_head *tasks = &env->tasks;
7311 	struct task_struct *p;
7312 	struct rq_flags rf;
7313 
7314 	rq_lock(env->dst_rq, &rf);
7315 	update_rq_clock(env->dst_rq);
7316 
7317 	while (!list_empty(tasks)) {
7318 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7319 		list_del_init(&p->se.group_node);
7320 
7321 		attach_task(env->dst_rq, p);
7322 	}
7323 
7324 	rq_unlock(env->dst_rq, &rf);
7325 }
7326 
7327 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7328 {
7329 	if (cfs_rq->avg.load_avg)
7330 		return true;
7331 
7332 	if (cfs_rq->avg.util_avg)
7333 		return true;
7334 
7335 	return false;
7336 }
7337 
7338 static inline bool others_have_blocked(struct rq *rq)
7339 {
7340 	if (READ_ONCE(rq->avg_rt.util_avg))
7341 		return true;
7342 
7343 	if (READ_ONCE(rq->avg_dl.util_avg))
7344 		return true;
7345 
7346 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7347 	if (READ_ONCE(rq->avg_irq.util_avg))
7348 		return true;
7349 #endif
7350 
7351 	return false;
7352 }
7353 
7354 #ifdef CONFIG_FAIR_GROUP_SCHED
7355 
7356 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7357 {
7358 	if (cfs_rq->load.weight)
7359 		return false;
7360 
7361 	if (cfs_rq->avg.load_sum)
7362 		return false;
7363 
7364 	if (cfs_rq->avg.util_sum)
7365 		return false;
7366 
7367 	if (cfs_rq->avg.runnable_load_sum)
7368 		return false;
7369 
7370 	return true;
7371 }
7372 
7373 static void update_blocked_averages(int cpu)
7374 {
7375 	struct rq *rq = cpu_rq(cpu);
7376 	struct cfs_rq *cfs_rq, *pos;
7377 	const struct sched_class *curr_class;
7378 	struct rq_flags rf;
7379 	bool done = true;
7380 
7381 	rq_lock_irqsave(rq, &rf);
7382 	update_rq_clock(rq);
7383 
7384 	/*
7385 	 * Iterates the task_group tree in a bottom up fashion, see
7386 	 * list_add_leaf_cfs_rq() for details.
7387 	 */
7388 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7389 		struct sched_entity *se;
7390 
7391 		/* throttled entities do not contribute to load */
7392 		if (throttled_hierarchy(cfs_rq))
7393 			continue;
7394 
7395 		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7396 			update_tg_load_avg(cfs_rq, 0);
7397 
7398 		/* Propagate pending load changes to the parent, if any: */
7399 		se = cfs_rq->tg->se[cpu];
7400 		if (se && !skip_blocked_update(se))
7401 			update_load_avg(cfs_rq_of(se), se, 0);
7402 
7403 		/*
7404 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7405 		 * decayed cfs_rqs linger on the list.
7406 		 */
7407 		if (cfs_rq_is_decayed(cfs_rq))
7408 			list_del_leaf_cfs_rq(cfs_rq);
7409 
7410 		/* Don't need periodic decay once load/util_avg are null */
7411 		if (cfs_rq_has_blocked(cfs_rq))
7412 			done = false;
7413 	}
7414 
7415 	curr_class = rq->curr->sched_class;
7416 	update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
7417 	update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7418 	update_irq_load_avg(rq, 0);
7419 	/* Don't need periodic decay once load/util_avg are null */
7420 	if (others_have_blocked(rq))
7421 		done = false;
7422 
7423 #ifdef CONFIG_NO_HZ_COMMON
7424 	rq->last_blocked_load_update_tick = jiffies;
7425 	if (done)
7426 		rq->has_blocked_load = 0;
7427 #endif
7428 	rq_unlock_irqrestore(rq, &rf);
7429 }
7430 
7431 /*
7432  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7433  * This needs to be done in a top-down fashion because the load of a child
7434  * group is a fraction of its parents load.
7435  */
7436 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7437 {
7438 	struct rq *rq = rq_of(cfs_rq);
7439 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7440 	unsigned long now = jiffies;
7441 	unsigned long load;
7442 
7443 	if (cfs_rq->last_h_load_update == now)
7444 		return;
7445 
7446 	cfs_rq->h_load_next = NULL;
7447 	for_each_sched_entity(se) {
7448 		cfs_rq = cfs_rq_of(se);
7449 		cfs_rq->h_load_next = se;
7450 		if (cfs_rq->last_h_load_update == now)
7451 			break;
7452 	}
7453 
7454 	if (!se) {
7455 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7456 		cfs_rq->last_h_load_update = now;
7457 	}
7458 
7459 	while ((se = cfs_rq->h_load_next) != NULL) {
7460 		load = cfs_rq->h_load;
7461 		load = div64_ul(load * se->avg.load_avg,
7462 			cfs_rq_load_avg(cfs_rq) + 1);
7463 		cfs_rq = group_cfs_rq(se);
7464 		cfs_rq->h_load = load;
7465 		cfs_rq->last_h_load_update = now;
7466 	}
7467 }
7468 
7469 static unsigned long task_h_load(struct task_struct *p)
7470 {
7471 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7472 
7473 	update_cfs_rq_h_load(cfs_rq);
7474 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7475 			cfs_rq_load_avg(cfs_rq) + 1);
7476 }
7477 #else
7478 static inline void update_blocked_averages(int cpu)
7479 {
7480 	struct rq *rq = cpu_rq(cpu);
7481 	struct cfs_rq *cfs_rq = &rq->cfs;
7482 	const struct sched_class *curr_class;
7483 	struct rq_flags rf;
7484 
7485 	rq_lock_irqsave(rq, &rf);
7486 	update_rq_clock(rq);
7487 	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7488 
7489 	curr_class = rq->curr->sched_class;
7490 	update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
7491 	update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7492 	update_irq_load_avg(rq, 0);
7493 #ifdef CONFIG_NO_HZ_COMMON
7494 	rq->last_blocked_load_update_tick = jiffies;
7495 	if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
7496 		rq->has_blocked_load = 0;
7497 #endif
7498 	rq_unlock_irqrestore(rq, &rf);
7499 }
7500 
7501 static unsigned long task_h_load(struct task_struct *p)
7502 {
7503 	return p->se.avg.load_avg;
7504 }
7505 #endif
7506 
7507 /********** Helpers for find_busiest_group ************************/
7508 
7509 /*
7510  * sg_lb_stats - stats of a sched_group required for load_balancing
7511  */
7512 struct sg_lb_stats {
7513 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7514 	unsigned long group_load; /* Total load over the CPUs of the group */
7515 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7516 	unsigned long load_per_task;
7517 	unsigned long group_capacity;
7518 	unsigned long group_util; /* Total utilization of the group */
7519 	unsigned int sum_nr_running; /* Nr tasks running in the group */
7520 	unsigned int idle_cpus;
7521 	unsigned int group_weight;
7522 	enum group_type group_type;
7523 	int group_no_capacity;
7524 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
7525 #ifdef CONFIG_NUMA_BALANCING
7526 	unsigned int nr_numa_running;
7527 	unsigned int nr_preferred_running;
7528 #endif
7529 };
7530 
7531 /*
7532  * sd_lb_stats - Structure to store the statistics of a sched_domain
7533  *		 during load balancing.
7534  */
7535 struct sd_lb_stats {
7536 	struct sched_group *busiest;	/* Busiest group in this sd */
7537 	struct sched_group *local;	/* Local group in this sd */
7538 	unsigned long total_running;
7539 	unsigned long total_load;	/* Total load of all groups in sd */
7540 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7541 	unsigned long avg_load;	/* Average load across all groups in sd */
7542 
7543 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7544 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7545 };
7546 
7547 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7548 {
7549 	/*
7550 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7551 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7552 	 * We must however clear busiest_stat::avg_load because
7553 	 * update_sd_pick_busiest() reads this before assignment.
7554 	 */
7555 	*sds = (struct sd_lb_stats){
7556 		.busiest = NULL,
7557 		.local = NULL,
7558 		.total_running = 0UL,
7559 		.total_load = 0UL,
7560 		.total_capacity = 0UL,
7561 		.busiest_stat = {
7562 			.avg_load = 0UL,
7563 			.sum_nr_running = 0,
7564 			.group_type = group_other,
7565 		},
7566 	};
7567 }
7568 
7569 /**
7570  * get_sd_load_idx - Obtain the load index for a given sched domain.
7571  * @sd: The sched_domain whose load_idx is to be obtained.
7572  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7573  *
7574  * Return: The load index.
7575  */
7576 static inline int get_sd_load_idx(struct sched_domain *sd,
7577 					enum cpu_idle_type idle)
7578 {
7579 	int load_idx;
7580 
7581 	switch (idle) {
7582 	case CPU_NOT_IDLE:
7583 		load_idx = sd->busy_idx;
7584 		break;
7585 
7586 	case CPU_NEWLY_IDLE:
7587 		load_idx = sd->newidle_idx;
7588 		break;
7589 	default:
7590 		load_idx = sd->idle_idx;
7591 		break;
7592 	}
7593 
7594 	return load_idx;
7595 }
7596 
7597 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7598 {
7599 	struct rq *rq = cpu_rq(cpu);
7600 	unsigned long max = arch_scale_cpu_capacity(sd, cpu);
7601 	unsigned long used, free;
7602 	unsigned long irq;
7603 
7604 	irq = cpu_util_irq(rq);
7605 
7606 	if (unlikely(irq >= max))
7607 		return 1;
7608 
7609 	used = READ_ONCE(rq->avg_rt.util_avg);
7610 	used += READ_ONCE(rq->avg_dl.util_avg);
7611 
7612 	if (unlikely(used >= max))
7613 		return 1;
7614 
7615 	free = max - used;
7616 
7617 	return scale_irq_capacity(free, irq, max);
7618 }
7619 
7620 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7621 {
7622 	unsigned long capacity = scale_rt_capacity(sd, cpu);
7623 	struct sched_group *sdg = sd->groups;
7624 
7625 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
7626 
7627 	if (!capacity)
7628 		capacity = 1;
7629 
7630 	cpu_rq(cpu)->cpu_capacity = capacity;
7631 	sdg->sgc->capacity = capacity;
7632 	sdg->sgc->min_capacity = capacity;
7633 	sdg->sgc->max_capacity = capacity;
7634 }
7635 
7636 void update_group_capacity(struct sched_domain *sd, int cpu)
7637 {
7638 	struct sched_domain *child = sd->child;
7639 	struct sched_group *group, *sdg = sd->groups;
7640 	unsigned long capacity, min_capacity, max_capacity;
7641 	unsigned long interval;
7642 
7643 	interval = msecs_to_jiffies(sd->balance_interval);
7644 	interval = clamp(interval, 1UL, max_load_balance_interval);
7645 	sdg->sgc->next_update = jiffies + interval;
7646 
7647 	if (!child) {
7648 		update_cpu_capacity(sd, cpu);
7649 		return;
7650 	}
7651 
7652 	capacity = 0;
7653 	min_capacity = ULONG_MAX;
7654 	max_capacity = 0;
7655 
7656 	if (child->flags & SD_OVERLAP) {
7657 		/*
7658 		 * SD_OVERLAP domains cannot assume that child groups
7659 		 * span the current group.
7660 		 */
7661 
7662 		for_each_cpu(cpu, sched_group_span(sdg)) {
7663 			struct sched_group_capacity *sgc;
7664 			struct rq *rq = cpu_rq(cpu);
7665 
7666 			/*
7667 			 * build_sched_domains() -> init_sched_groups_capacity()
7668 			 * gets here before we've attached the domains to the
7669 			 * runqueues.
7670 			 *
7671 			 * Use capacity_of(), which is set irrespective of domains
7672 			 * in update_cpu_capacity().
7673 			 *
7674 			 * This avoids capacity from being 0 and
7675 			 * causing divide-by-zero issues on boot.
7676 			 */
7677 			if (unlikely(!rq->sd)) {
7678 				capacity += capacity_of(cpu);
7679 			} else {
7680 				sgc = rq->sd->groups->sgc;
7681 				capacity += sgc->capacity;
7682 			}
7683 
7684 			min_capacity = min(capacity, min_capacity);
7685 			max_capacity = max(capacity, max_capacity);
7686 		}
7687 	} else  {
7688 		/*
7689 		 * !SD_OVERLAP domains can assume that child groups
7690 		 * span the current group.
7691 		 */
7692 
7693 		group = child->groups;
7694 		do {
7695 			struct sched_group_capacity *sgc = group->sgc;
7696 
7697 			capacity += sgc->capacity;
7698 			min_capacity = min(sgc->min_capacity, min_capacity);
7699 			max_capacity = max(sgc->max_capacity, max_capacity);
7700 			group = group->next;
7701 		} while (group != child->groups);
7702 	}
7703 
7704 	sdg->sgc->capacity = capacity;
7705 	sdg->sgc->min_capacity = min_capacity;
7706 	sdg->sgc->max_capacity = max_capacity;
7707 }
7708 
7709 /*
7710  * Check whether the capacity of the rq has been noticeably reduced by side
7711  * activity. The imbalance_pct is used for the threshold.
7712  * Return true is the capacity is reduced
7713  */
7714 static inline int
7715 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7716 {
7717 	return ((rq->cpu_capacity * sd->imbalance_pct) <
7718 				(rq->cpu_capacity_orig * 100));
7719 }
7720 
7721 /*
7722  * Group imbalance indicates (and tries to solve) the problem where balancing
7723  * groups is inadequate due to ->cpus_allowed constraints.
7724  *
7725  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7726  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7727  * Something like:
7728  *
7729  *	{ 0 1 2 3 } { 4 5 6 7 }
7730  *	        *     * * *
7731  *
7732  * If we were to balance group-wise we'd place two tasks in the first group and
7733  * two tasks in the second group. Clearly this is undesired as it will overload
7734  * cpu 3 and leave one of the CPUs in the second group unused.
7735  *
7736  * The current solution to this issue is detecting the skew in the first group
7737  * by noticing the lower domain failed to reach balance and had difficulty
7738  * moving tasks due to affinity constraints.
7739  *
7740  * When this is so detected; this group becomes a candidate for busiest; see
7741  * update_sd_pick_busiest(). And calculate_imbalance() and
7742  * find_busiest_group() avoid some of the usual balance conditions to allow it
7743  * to create an effective group imbalance.
7744  *
7745  * This is a somewhat tricky proposition since the next run might not find the
7746  * group imbalance and decide the groups need to be balanced again. A most
7747  * subtle and fragile situation.
7748  */
7749 
7750 static inline int sg_imbalanced(struct sched_group *group)
7751 {
7752 	return group->sgc->imbalance;
7753 }
7754 
7755 /*
7756  * group_has_capacity returns true if the group has spare capacity that could
7757  * be used by some tasks.
7758  * We consider that a group has spare capacity if the  * number of task is
7759  * smaller than the number of CPUs or if the utilization is lower than the
7760  * available capacity for CFS tasks.
7761  * For the latter, we use a threshold to stabilize the state, to take into
7762  * account the variance of the tasks' load and to return true if the available
7763  * capacity in meaningful for the load balancer.
7764  * As an example, an available capacity of 1% can appear but it doesn't make
7765  * any benefit for the load balance.
7766  */
7767 static inline bool
7768 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7769 {
7770 	if (sgs->sum_nr_running < sgs->group_weight)
7771 		return true;
7772 
7773 	if ((sgs->group_capacity * 100) >
7774 			(sgs->group_util * env->sd->imbalance_pct))
7775 		return true;
7776 
7777 	return false;
7778 }
7779 
7780 /*
7781  *  group_is_overloaded returns true if the group has more tasks than it can
7782  *  handle.
7783  *  group_is_overloaded is not equals to !group_has_capacity because a group
7784  *  with the exact right number of tasks, has no more spare capacity but is not
7785  *  overloaded so both group_has_capacity and group_is_overloaded return
7786  *  false.
7787  */
7788 static inline bool
7789 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7790 {
7791 	if (sgs->sum_nr_running <= sgs->group_weight)
7792 		return false;
7793 
7794 	if ((sgs->group_capacity * 100) <
7795 			(sgs->group_util * env->sd->imbalance_pct))
7796 		return true;
7797 
7798 	return false;
7799 }
7800 
7801 /*
7802  * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
7803  * per-CPU capacity than sched_group ref.
7804  */
7805 static inline bool
7806 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7807 {
7808 	return sg->sgc->min_capacity * capacity_margin <
7809 						ref->sgc->min_capacity * 1024;
7810 }
7811 
7812 /*
7813  * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
7814  * per-CPU capacity_orig than sched_group ref.
7815  */
7816 static inline bool
7817 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7818 {
7819 	return sg->sgc->max_capacity * capacity_margin <
7820 						ref->sgc->max_capacity * 1024;
7821 }
7822 
7823 static inline enum
7824 group_type group_classify(struct sched_group *group,
7825 			  struct sg_lb_stats *sgs)
7826 {
7827 	if (sgs->group_no_capacity)
7828 		return group_overloaded;
7829 
7830 	if (sg_imbalanced(group))
7831 		return group_imbalanced;
7832 
7833 	if (sgs->group_misfit_task_load)
7834 		return group_misfit_task;
7835 
7836 	return group_other;
7837 }
7838 
7839 static bool update_nohz_stats(struct rq *rq, bool force)
7840 {
7841 #ifdef CONFIG_NO_HZ_COMMON
7842 	unsigned int cpu = rq->cpu;
7843 
7844 	if (!rq->has_blocked_load)
7845 		return false;
7846 
7847 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
7848 		return false;
7849 
7850 	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
7851 		return true;
7852 
7853 	update_blocked_averages(cpu);
7854 
7855 	return rq->has_blocked_load;
7856 #else
7857 	return false;
7858 #endif
7859 }
7860 
7861 /**
7862  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7863  * @env: The load balancing environment.
7864  * @group: sched_group whose statistics are to be updated.
7865  * @load_idx: Load index of sched_domain of this_cpu for load calc.
7866  * @local_group: Does group contain this_cpu.
7867  * @sgs: variable to hold the statistics for this group.
7868  * @overload: Indicate pullable load (e.g. >1 runnable task).
7869  */
7870 static inline void update_sg_lb_stats(struct lb_env *env,
7871 			struct sched_group *group, int load_idx,
7872 			int local_group, struct sg_lb_stats *sgs,
7873 			bool *overload)
7874 {
7875 	unsigned long load;
7876 	int i, nr_running;
7877 
7878 	memset(sgs, 0, sizeof(*sgs));
7879 
7880 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7881 		struct rq *rq = cpu_rq(i);
7882 
7883 		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
7884 			env->flags |= LBF_NOHZ_AGAIN;
7885 
7886 		/* Bias balancing toward CPUs of our domain: */
7887 		if (local_group)
7888 			load = target_load(i, load_idx);
7889 		else
7890 			load = source_load(i, load_idx);
7891 
7892 		sgs->group_load += load;
7893 		sgs->group_util += cpu_util(i);
7894 		sgs->sum_nr_running += rq->cfs.h_nr_running;
7895 
7896 		nr_running = rq->nr_running;
7897 		if (nr_running > 1)
7898 			*overload = true;
7899 
7900 #ifdef CONFIG_NUMA_BALANCING
7901 		sgs->nr_numa_running += rq->nr_numa_running;
7902 		sgs->nr_preferred_running += rq->nr_preferred_running;
7903 #endif
7904 		sgs->sum_weighted_load += weighted_cpuload(rq);
7905 		/*
7906 		 * No need to call idle_cpu() if nr_running is not 0
7907 		 */
7908 		if (!nr_running && idle_cpu(i))
7909 			sgs->idle_cpus++;
7910 
7911 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
7912 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
7913 			sgs->group_misfit_task_load = rq->misfit_task_load;
7914 			*overload = 1;
7915 		}
7916 	}
7917 
7918 	/* Adjust by relative CPU capacity of the group */
7919 	sgs->group_capacity = group->sgc->capacity;
7920 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7921 
7922 	if (sgs->sum_nr_running)
7923 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7924 
7925 	sgs->group_weight = group->group_weight;
7926 
7927 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7928 	sgs->group_type = group_classify(group, sgs);
7929 }
7930 
7931 /**
7932  * update_sd_pick_busiest - return 1 on busiest group
7933  * @env: The load balancing environment.
7934  * @sds: sched_domain statistics
7935  * @sg: sched_group candidate to be checked for being the busiest
7936  * @sgs: sched_group statistics
7937  *
7938  * Determine if @sg is a busier group than the previously selected
7939  * busiest group.
7940  *
7941  * Return: %true if @sg is a busier group than the previously selected
7942  * busiest group. %false otherwise.
7943  */
7944 static bool update_sd_pick_busiest(struct lb_env *env,
7945 				   struct sd_lb_stats *sds,
7946 				   struct sched_group *sg,
7947 				   struct sg_lb_stats *sgs)
7948 {
7949 	struct sg_lb_stats *busiest = &sds->busiest_stat;
7950 
7951 	/*
7952 	 * Don't try to pull misfit tasks we can't help.
7953 	 * We can use max_capacity here as reduction in capacity on some
7954 	 * CPUs in the group should either be possible to resolve
7955 	 * internally or be covered by avg_load imbalance (eventually).
7956 	 */
7957 	if (sgs->group_type == group_misfit_task &&
7958 	    (!group_smaller_max_cpu_capacity(sg, sds->local) ||
7959 	     !group_has_capacity(env, &sds->local_stat)))
7960 		return false;
7961 
7962 	if (sgs->group_type > busiest->group_type)
7963 		return true;
7964 
7965 	if (sgs->group_type < busiest->group_type)
7966 		return false;
7967 
7968 	if (sgs->avg_load <= busiest->avg_load)
7969 		return false;
7970 
7971 	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7972 		goto asym_packing;
7973 
7974 	/*
7975 	 * Candidate sg has no more than one task per CPU and
7976 	 * has higher per-CPU capacity. Migrating tasks to less
7977 	 * capable CPUs may harm throughput. Maximize throughput,
7978 	 * power/energy consequences are not considered.
7979 	 */
7980 	if (sgs->sum_nr_running <= sgs->group_weight &&
7981 	    group_smaller_min_cpu_capacity(sds->local, sg))
7982 		return false;
7983 
7984 	/*
7985 	 * If we have more than one misfit sg go with the biggest misfit.
7986 	 */
7987 	if (sgs->group_type == group_misfit_task &&
7988 	    sgs->group_misfit_task_load < busiest->group_misfit_task_load)
7989 		return false;
7990 
7991 asym_packing:
7992 	/* This is the busiest node in its class. */
7993 	if (!(env->sd->flags & SD_ASYM_PACKING))
7994 		return true;
7995 
7996 	/* No ASYM_PACKING if target CPU is already busy */
7997 	if (env->idle == CPU_NOT_IDLE)
7998 		return true;
7999 	/*
8000 	 * ASYM_PACKING needs to move all the work to the highest
8001 	 * prority CPUs in the group, therefore mark all groups
8002 	 * of lower priority than ourself as busy.
8003 	 */
8004 	if (sgs->sum_nr_running &&
8005 	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
8006 		if (!sds->busiest)
8007 			return true;
8008 
8009 		/* Prefer to move from lowest priority CPU's work */
8010 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8011 				      sg->asym_prefer_cpu))
8012 			return true;
8013 	}
8014 
8015 	return false;
8016 }
8017 
8018 #ifdef CONFIG_NUMA_BALANCING
8019 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8020 {
8021 	if (sgs->sum_nr_running > sgs->nr_numa_running)
8022 		return regular;
8023 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
8024 		return remote;
8025 	return all;
8026 }
8027 
8028 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8029 {
8030 	if (rq->nr_running > rq->nr_numa_running)
8031 		return regular;
8032 	if (rq->nr_running > rq->nr_preferred_running)
8033 		return remote;
8034 	return all;
8035 }
8036 #else
8037 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8038 {
8039 	return all;
8040 }
8041 
8042 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8043 {
8044 	return regular;
8045 }
8046 #endif /* CONFIG_NUMA_BALANCING */
8047 
8048 /**
8049  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8050  * @env: The load balancing environment.
8051  * @sds: variable to hold the statistics for this sched_domain.
8052  */
8053 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8054 {
8055 	struct sched_domain *child = env->sd->child;
8056 	struct sched_group *sg = env->sd->groups;
8057 	struct sg_lb_stats *local = &sds->local_stat;
8058 	struct sg_lb_stats tmp_sgs;
8059 	int load_idx;
8060 	bool overload = false;
8061 	bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8062 
8063 #ifdef CONFIG_NO_HZ_COMMON
8064 	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8065 		env->flags |= LBF_NOHZ_STATS;
8066 #endif
8067 
8068 	load_idx = get_sd_load_idx(env->sd, env->idle);
8069 
8070 	do {
8071 		struct sg_lb_stats *sgs = &tmp_sgs;
8072 		int local_group;
8073 
8074 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8075 		if (local_group) {
8076 			sds->local = sg;
8077 			sgs = local;
8078 
8079 			if (env->idle != CPU_NEWLY_IDLE ||
8080 			    time_after_eq(jiffies, sg->sgc->next_update))
8081 				update_group_capacity(env->sd, env->dst_cpu);
8082 		}
8083 
8084 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
8085 						&overload);
8086 
8087 		if (local_group)
8088 			goto next_group;
8089 
8090 		/*
8091 		 * In case the child domain prefers tasks go to siblings
8092 		 * first, lower the sg capacity so that we'll try
8093 		 * and move all the excess tasks away. We lower the capacity
8094 		 * of a group only if the local group has the capacity to fit
8095 		 * these excess tasks. The extra check prevents the case where
8096 		 * you always pull from the heaviest group when it is already
8097 		 * under-utilized (possible with a large weight task outweighs
8098 		 * the tasks on the system).
8099 		 */
8100 		if (prefer_sibling && sds->local &&
8101 		    group_has_capacity(env, local) &&
8102 		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8103 			sgs->group_no_capacity = 1;
8104 			sgs->group_type = group_classify(sg, sgs);
8105 		}
8106 
8107 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8108 			sds->busiest = sg;
8109 			sds->busiest_stat = *sgs;
8110 		}
8111 
8112 next_group:
8113 		/* Now, start updating sd_lb_stats */
8114 		sds->total_running += sgs->sum_nr_running;
8115 		sds->total_load += sgs->group_load;
8116 		sds->total_capacity += sgs->group_capacity;
8117 
8118 		sg = sg->next;
8119 	} while (sg != env->sd->groups);
8120 
8121 #ifdef CONFIG_NO_HZ_COMMON
8122 	if ((env->flags & LBF_NOHZ_AGAIN) &&
8123 	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8124 
8125 		WRITE_ONCE(nohz.next_blocked,
8126 			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8127 	}
8128 #endif
8129 
8130 	if (env->sd->flags & SD_NUMA)
8131 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8132 
8133 	if (!env->sd->parent) {
8134 		/* update overload indicator if we are at root domain */
8135 		if (READ_ONCE(env->dst_rq->rd->overload) != overload)
8136 			WRITE_ONCE(env->dst_rq->rd->overload, overload);
8137 	}
8138 }
8139 
8140 /**
8141  * check_asym_packing - Check to see if the group is packed into the
8142  *			sched domain.
8143  *
8144  * This is primarily intended to used at the sibling level.  Some
8145  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
8146  * case of POWER7, it can move to lower SMT modes only when higher
8147  * threads are idle.  When in lower SMT modes, the threads will
8148  * perform better since they share less core resources.  Hence when we
8149  * have idle threads, we want them to be the higher ones.
8150  *
8151  * This packing function is run on idle threads.  It checks to see if
8152  * the busiest CPU in this domain (core in the P7 case) has a higher
8153  * CPU number than the packing function is being run on.  Here we are
8154  * assuming lower CPU number will be equivalent to lower a SMT thread
8155  * number.
8156  *
8157  * Return: 1 when packing is required and a task should be moved to
8158  * this CPU.  The amount of the imbalance is returned in env->imbalance.
8159  *
8160  * @env: The load balancing environment.
8161  * @sds: Statistics of the sched_domain which is to be packed
8162  */
8163 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8164 {
8165 	int busiest_cpu;
8166 
8167 	if (!(env->sd->flags & SD_ASYM_PACKING))
8168 		return 0;
8169 
8170 	if (env->idle == CPU_NOT_IDLE)
8171 		return 0;
8172 
8173 	if (!sds->busiest)
8174 		return 0;
8175 
8176 	busiest_cpu = sds->busiest->asym_prefer_cpu;
8177 	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8178 		return 0;
8179 
8180 	env->imbalance = DIV_ROUND_CLOSEST(
8181 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8182 		SCHED_CAPACITY_SCALE);
8183 
8184 	return 1;
8185 }
8186 
8187 /**
8188  * fix_small_imbalance - Calculate the minor imbalance that exists
8189  *			amongst the groups of a sched_domain, during
8190  *			load balancing.
8191  * @env: The load balancing environment.
8192  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8193  */
8194 static inline
8195 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8196 {
8197 	unsigned long tmp, capa_now = 0, capa_move = 0;
8198 	unsigned int imbn = 2;
8199 	unsigned long scaled_busy_load_per_task;
8200 	struct sg_lb_stats *local, *busiest;
8201 
8202 	local = &sds->local_stat;
8203 	busiest = &sds->busiest_stat;
8204 
8205 	if (!local->sum_nr_running)
8206 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8207 	else if (busiest->load_per_task > local->load_per_task)
8208 		imbn = 1;
8209 
8210 	scaled_busy_load_per_task =
8211 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8212 		busiest->group_capacity;
8213 
8214 	if (busiest->avg_load + scaled_busy_load_per_task >=
8215 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
8216 		env->imbalance = busiest->load_per_task;
8217 		return;
8218 	}
8219 
8220 	/*
8221 	 * OK, we don't have enough imbalance to justify moving tasks,
8222 	 * however we may be able to increase total CPU capacity used by
8223 	 * moving them.
8224 	 */
8225 
8226 	capa_now += busiest->group_capacity *
8227 			min(busiest->load_per_task, busiest->avg_load);
8228 	capa_now += local->group_capacity *
8229 			min(local->load_per_task, local->avg_load);
8230 	capa_now /= SCHED_CAPACITY_SCALE;
8231 
8232 	/* Amount of load we'd subtract */
8233 	if (busiest->avg_load > scaled_busy_load_per_task) {
8234 		capa_move += busiest->group_capacity *
8235 			    min(busiest->load_per_task,
8236 				busiest->avg_load - scaled_busy_load_per_task);
8237 	}
8238 
8239 	/* Amount of load we'd add */
8240 	if (busiest->avg_load * busiest->group_capacity <
8241 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8242 		tmp = (busiest->avg_load * busiest->group_capacity) /
8243 		      local->group_capacity;
8244 	} else {
8245 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8246 		      local->group_capacity;
8247 	}
8248 	capa_move += local->group_capacity *
8249 		    min(local->load_per_task, local->avg_load + tmp);
8250 	capa_move /= SCHED_CAPACITY_SCALE;
8251 
8252 	/* Move if we gain throughput */
8253 	if (capa_move > capa_now)
8254 		env->imbalance = busiest->load_per_task;
8255 }
8256 
8257 /**
8258  * calculate_imbalance - Calculate the amount of imbalance present within the
8259  *			 groups of a given sched_domain during load balance.
8260  * @env: load balance environment
8261  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8262  */
8263 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8264 {
8265 	unsigned long max_pull, load_above_capacity = ~0UL;
8266 	struct sg_lb_stats *local, *busiest;
8267 
8268 	local = &sds->local_stat;
8269 	busiest = &sds->busiest_stat;
8270 
8271 	if (busiest->group_type == group_imbalanced) {
8272 		/*
8273 		 * In the group_imb case we cannot rely on group-wide averages
8274 		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8275 		 */
8276 		busiest->load_per_task =
8277 			min(busiest->load_per_task, sds->avg_load);
8278 	}
8279 
8280 	/*
8281 	 * Avg load of busiest sg can be less and avg load of local sg can
8282 	 * be greater than avg load across all sgs of sd because avg load
8283 	 * factors in sg capacity and sgs with smaller group_type are
8284 	 * skipped when updating the busiest sg:
8285 	 */
8286 	if (busiest->group_type != group_misfit_task &&
8287 	    (busiest->avg_load <= sds->avg_load ||
8288 	     local->avg_load >= sds->avg_load)) {
8289 		env->imbalance = 0;
8290 		return fix_small_imbalance(env, sds);
8291 	}
8292 
8293 	/*
8294 	 * If there aren't any idle CPUs, avoid creating some.
8295 	 */
8296 	if (busiest->group_type == group_overloaded &&
8297 	    local->group_type   == group_overloaded) {
8298 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8299 		if (load_above_capacity > busiest->group_capacity) {
8300 			load_above_capacity -= busiest->group_capacity;
8301 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8302 			load_above_capacity /= busiest->group_capacity;
8303 		} else
8304 			load_above_capacity = ~0UL;
8305 	}
8306 
8307 	/*
8308 	 * We're trying to get all the CPUs to the average_load, so we don't
8309 	 * want to push ourselves above the average load, nor do we wish to
8310 	 * reduce the max loaded CPU below the average load. At the same time,
8311 	 * we also don't want to reduce the group load below the group
8312 	 * capacity. Thus we look for the minimum possible imbalance.
8313 	 */
8314 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8315 
8316 	/* How much load to actually move to equalise the imbalance */
8317 	env->imbalance = min(
8318 		max_pull * busiest->group_capacity,
8319 		(sds->avg_load - local->avg_load) * local->group_capacity
8320 	) / SCHED_CAPACITY_SCALE;
8321 
8322 	/* Boost imbalance to allow misfit task to be balanced. */
8323 	if (busiest->group_type == group_misfit_task) {
8324 		env->imbalance = max_t(long, env->imbalance,
8325 				       busiest->group_misfit_task_load);
8326 	}
8327 
8328 	/*
8329 	 * if *imbalance is less than the average load per runnable task
8330 	 * there is no guarantee that any tasks will be moved so we'll have
8331 	 * a think about bumping its value to force at least one task to be
8332 	 * moved
8333 	 */
8334 	if (env->imbalance < busiest->load_per_task)
8335 		return fix_small_imbalance(env, sds);
8336 }
8337 
8338 /******* find_busiest_group() helpers end here *********************/
8339 
8340 /**
8341  * find_busiest_group - Returns the busiest group within the sched_domain
8342  * if there is an imbalance.
8343  *
8344  * Also calculates the amount of weighted load which should be moved
8345  * to restore balance.
8346  *
8347  * @env: The load balancing environment.
8348  *
8349  * Return:	- The busiest group if imbalance exists.
8350  */
8351 static struct sched_group *find_busiest_group(struct lb_env *env)
8352 {
8353 	struct sg_lb_stats *local, *busiest;
8354 	struct sd_lb_stats sds;
8355 
8356 	init_sd_lb_stats(&sds);
8357 
8358 	/*
8359 	 * Compute the various statistics relavent for load balancing at
8360 	 * this level.
8361 	 */
8362 	update_sd_lb_stats(env, &sds);
8363 	local = &sds.local_stat;
8364 	busiest = &sds.busiest_stat;
8365 
8366 	/* ASYM feature bypasses nice load balance check */
8367 	if (check_asym_packing(env, &sds))
8368 		return sds.busiest;
8369 
8370 	/* There is no busy sibling group to pull tasks from */
8371 	if (!sds.busiest || busiest->sum_nr_running == 0)
8372 		goto out_balanced;
8373 
8374 	/* XXX broken for overlapping NUMA groups */
8375 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8376 						/ sds.total_capacity;
8377 
8378 	/*
8379 	 * If the busiest group is imbalanced the below checks don't
8380 	 * work because they assume all things are equal, which typically
8381 	 * isn't true due to cpus_allowed constraints and the like.
8382 	 */
8383 	if (busiest->group_type == group_imbalanced)
8384 		goto force_balance;
8385 
8386 	/*
8387 	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8388 	 * capacities from resulting in underutilization due to avg_load.
8389 	 */
8390 	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8391 	    busiest->group_no_capacity)
8392 		goto force_balance;
8393 
8394 	/* Misfit tasks should be dealt with regardless of the avg load */
8395 	if (busiest->group_type == group_misfit_task)
8396 		goto force_balance;
8397 
8398 	/*
8399 	 * If the local group is busier than the selected busiest group
8400 	 * don't try and pull any tasks.
8401 	 */
8402 	if (local->avg_load >= busiest->avg_load)
8403 		goto out_balanced;
8404 
8405 	/*
8406 	 * Don't pull any tasks if this group is already above the domain
8407 	 * average load.
8408 	 */
8409 	if (local->avg_load >= sds.avg_load)
8410 		goto out_balanced;
8411 
8412 	if (env->idle == CPU_IDLE) {
8413 		/*
8414 		 * This CPU is idle. If the busiest group is not overloaded
8415 		 * and there is no imbalance between this and busiest group
8416 		 * wrt idle CPUs, it is balanced. The imbalance becomes
8417 		 * significant if the diff is greater than 1 otherwise we
8418 		 * might end up to just move the imbalance on another group
8419 		 */
8420 		if ((busiest->group_type != group_overloaded) &&
8421 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8422 			goto out_balanced;
8423 	} else {
8424 		/*
8425 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8426 		 * imbalance_pct to be conservative.
8427 		 */
8428 		if (100 * busiest->avg_load <=
8429 				env->sd->imbalance_pct * local->avg_load)
8430 			goto out_balanced;
8431 	}
8432 
8433 force_balance:
8434 	/* Looks like there is an imbalance. Compute it */
8435 	env->src_grp_type = busiest->group_type;
8436 	calculate_imbalance(env, &sds);
8437 	return env->imbalance ? sds.busiest : NULL;
8438 
8439 out_balanced:
8440 	env->imbalance = 0;
8441 	return NULL;
8442 }
8443 
8444 /*
8445  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8446  */
8447 static struct rq *find_busiest_queue(struct lb_env *env,
8448 				     struct sched_group *group)
8449 {
8450 	struct rq *busiest = NULL, *rq;
8451 	unsigned long busiest_load = 0, busiest_capacity = 1;
8452 	int i;
8453 
8454 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8455 		unsigned long capacity, wl;
8456 		enum fbq_type rt;
8457 
8458 		rq = cpu_rq(i);
8459 		rt = fbq_classify_rq(rq);
8460 
8461 		/*
8462 		 * We classify groups/runqueues into three groups:
8463 		 *  - regular: there are !numa tasks
8464 		 *  - remote:  there are numa tasks that run on the 'wrong' node
8465 		 *  - all:     there is no distinction
8466 		 *
8467 		 * In order to avoid migrating ideally placed numa tasks,
8468 		 * ignore those when there's better options.
8469 		 *
8470 		 * If we ignore the actual busiest queue to migrate another
8471 		 * task, the next balance pass can still reduce the busiest
8472 		 * queue by moving tasks around inside the node.
8473 		 *
8474 		 * If we cannot move enough load due to this classification
8475 		 * the next pass will adjust the group classification and
8476 		 * allow migration of more tasks.
8477 		 *
8478 		 * Both cases only affect the total convergence complexity.
8479 		 */
8480 		if (rt > env->fbq_type)
8481 			continue;
8482 
8483 		/*
8484 		 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8485 		 * seek the "biggest" misfit task.
8486 		 */
8487 		if (env->src_grp_type == group_misfit_task) {
8488 			if (rq->misfit_task_load > busiest_load) {
8489 				busiest_load = rq->misfit_task_load;
8490 				busiest = rq;
8491 			}
8492 
8493 			continue;
8494 		}
8495 
8496 		capacity = capacity_of(i);
8497 
8498 		/*
8499 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8500 		 * eventually lead to active_balancing high->low capacity.
8501 		 * Higher per-CPU capacity is considered better than balancing
8502 		 * average load.
8503 		 */
8504 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8505 		    capacity_of(env->dst_cpu) < capacity &&
8506 		    rq->nr_running == 1)
8507 			continue;
8508 
8509 		wl = weighted_cpuload(rq);
8510 
8511 		/*
8512 		 * When comparing with imbalance, use weighted_cpuload()
8513 		 * which is not scaled with the CPU capacity.
8514 		 */
8515 
8516 		if (rq->nr_running == 1 && wl > env->imbalance &&
8517 		    !check_cpu_capacity(rq, env->sd))
8518 			continue;
8519 
8520 		/*
8521 		 * For the load comparisons with the other CPU's, consider
8522 		 * the weighted_cpuload() scaled with the CPU capacity, so
8523 		 * that the load can be moved away from the CPU that is
8524 		 * potentially running at a lower capacity.
8525 		 *
8526 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8527 		 * multiplication to rid ourselves of the division works out
8528 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
8529 		 * our previous maximum.
8530 		 */
8531 		if (wl * busiest_capacity > busiest_load * capacity) {
8532 			busiest_load = wl;
8533 			busiest_capacity = capacity;
8534 			busiest = rq;
8535 		}
8536 	}
8537 
8538 	return busiest;
8539 }
8540 
8541 /*
8542  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8543  * so long as it is large enough.
8544  */
8545 #define MAX_PINNED_INTERVAL	512
8546 
8547 static int need_active_balance(struct lb_env *env)
8548 {
8549 	struct sched_domain *sd = env->sd;
8550 
8551 	if (env->idle == CPU_NEWLY_IDLE) {
8552 
8553 		/*
8554 		 * ASYM_PACKING needs to force migrate tasks from busy but
8555 		 * lower priority CPUs in order to pack all tasks in the
8556 		 * highest priority CPUs.
8557 		 */
8558 		if ((sd->flags & SD_ASYM_PACKING) &&
8559 		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8560 			return 1;
8561 	}
8562 
8563 	/*
8564 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8565 	 * It's worth migrating the task if the src_cpu's capacity is reduced
8566 	 * because of other sched_class or IRQs if more capacity stays
8567 	 * available on dst_cpu.
8568 	 */
8569 	if ((env->idle != CPU_NOT_IDLE) &&
8570 	    (env->src_rq->cfs.h_nr_running == 1)) {
8571 		if ((check_cpu_capacity(env->src_rq, sd)) &&
8572 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8573 			return 1;
8574 	}
8575 
8576 	if (env->src_grp_type == group_misfit_task)
8577 		return 1;
8578 
8579 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8580 }
8581 
8582 static int active_load_balance_cpu_stop(void *data);
8583 
8584 static int should_we_balance(struct lb_env *env)
8585 {
8586 	struct sched_group *sg = env->sd->groups;
8587 	int cpu, balance_cpu = -1;
8588 
8589 	/*
8590 	 * Ensure the balancing environment is consistent; can happen
8591 	 * when the softirq triggers 'during' hotplug.
8592 	 */
8593 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8594 		return 0;
8595 
8596 	/*
8597 	 * In the newly idle case, we will allow all the CPUs
8598 	 * to do the newly idle load balance.
8599 	 */
8600 	if (env->idle == CPU_NEWLY_IDLE)
8601 		return 1;
8602 
8603 	/* Try to find first idle CPU */
8604 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8605 		if (!idle_cpu(cpu))
8606 			continue;
8607 
8608 		balance_cpu = cpu;
8609 		break;
8610 	}
8611 
8612 	if (balance_cpu == -1)
8613 		balance_cpu = group_balance_cpu(sg);
8614 
8615 	/*
8616 	 * First idle CPU or the first CPU(busiest) in this sched group
8617 	 * is eligible for doing load balancing at this and above domains.
8618 	 */
8619 	return balance_cpu == env->dst_cpu;
8620 }
8621 
8622 /*
8623  * Check this_cpu to ensure it is balanced within domain. Attempt to move
8624  * tasks if there is an imbalance.
8625  */
8626 static int load_balance(int this_cpu, struct rq *this_rq,
8627 			struct sched_domain *sd, enum cpu_idle_type idle,
8628 			int *continue_balancing)
8629 {
8630 	int ld_moved, cur_ld_moved, active_balance = 0;
8631 	struct sched_domain *sd_parent = sd->parent;
8632 	struct sched_group *group;
8633 	struct rq *busiest;
8634 	struct rq_flags rf;
8635 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8636 
8637 	struct lb_env env = {
8638 		.sd		= sd,
8639 		.dst_cpu	= this_cpu,
8640 		.dst_rq		= this_rq,
8641 		.dst_grpmask    = sched_group_span(sd->groups),
8642 		.idle		= idle,
8643 		.loop_break	= sched_nr_migrate_break,
8644 		.cpus		= cpus,
8645 		.fbq_type	= all,
8646 		.tasks		= LIST_HEAD_INIT(env.tasks),
8647 	};
8648 
8649 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8650 
8651 	schedstat_inc(sd->lb_count[idle]);
8652 
8653 redo:
8654 	if (!should_we_balance(&env)) {
8655 		*continue_balancing = 0;
8656 		goto out_balanced;
8657 	}
8658 
8659 	group = find_busiest_group(&env);
8660 	if (!group) {
8661 		schedstat_inc(sd->lb_nobusyg[idle]);
8662 		goto out_balanced;
8663 	}
8664 
8665 	busiest = find_busiest_queue(&env, group);
8666 	if (!busiest) {
8667 		schedstat_inc(sd->lb_nobusyq[idle]);
8668 		goto out_balanced;
8669 	}
8670 
8671 	BUG_ON(busiest == env.dst_rq);
8672 
8673 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8674 
8675 	env.src_cpu = busiest->cpu;
8676 	env.src_rq = busiest;
8677 
8678 	ld_moved = 0;
8679 	if (busiest->nr_running > 1) {
8680 		/*
8681 		 * Attempt to move tasks. If find_busiest_group has found
8682 		 * an imbalance but busiest->nr_running <= 1, the group is
8683 		 * still unbalanced. ld_moved simply stays zero, so it is
8684 		 * correctly treated as an imbalance.
8685 		 */
8686 		env.flags |= LBF_ALL_PINNED;
8687 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8688 
8689 more_balance:
8690 		rq_lock_irqsave(busiest, &rf);
8691 		update_rq_clock(busiest);
8692 
8693 		/*
8694 		 * cur_ld_moved - load moved in current iteration
8695 		 * ld_moved     - cumulative load moved across iterations
8696 		 */
8697 		cur_ld_moved = detach_tasks(&env);
8698 
8699 		/*
8700 		 * We've detached some tasks from busiest_rq. Every
8701 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8702 		 * unlock busiest->lock, and we are able to be sure
8703 		 * that nobody can manipulate the tasks in parallel.
8704 		 * See task_rq_lock() family for the details.
8705 		 */
8706 
8707 		rq_unlock(busiest, &rf);
8708 
8709 		if (cur_ld_moved) {
8710 			attach_tasks(&env);
8711 			ld_moved += cur_ld_moved;
8712 		}
8713 
8714 		local_irq_restore(rf.flags);
8715 
8716 		if (env.flags & LBF_NEED_BREAK) {
8717 			env.flags &= ~LBF_NEED_BREAK;
8718 			goto more_balance;
8719 		}
8720 
8721 		/*
8722 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8723 		 * us and move them to an alternate dst_cpu in our sched_group
8724 		 * where they can run. The upper limit on how many times we
8725 		 * iterate on same src_cpu is dependent on number of CPUs in our
8726 		 * sched_group.
8727 		 *
8728 		 * This changes load balance semantics a bit on who can move
8729 		 * load to a given_cpu. In addition to the given_cpu itself
8730 		 * (or a ilb_cpu acting on its behalf where given_cpu is
8731 		 * nohz-idle), we now have balance_cpu in a position to move
8732 		 * load to given_cpu. In rare situations, this may cause
8733 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8734 		 * _independently_ and at _same_ time to move some load to
8735 		 * given_cpu) causing exceess load to be moved to given_cpu.
8736 		 * This however should not happen so much in practice and
8737 		 * moreover subsequent load balance cycles should correct the
8738 		 * excess load moved.
8739 		 */
8740 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8741 
8742 			/* Prevent to re-select dst_cpu via env's CPUs */
8743 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
8744 
8745 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8746 			env.dst_cpu	 = env.new_dst_cpu;
8747 			env.flags	&= ~LBF_DST_PINNED;
8748 			env.loop	 = 0;
8749 			env.loop_break	 = sched_nr_migrate_break;
8750 
8751 			/*
8752 			 * Go back to "more_balance" rather than "redo" since we
8753 			 * need to continue with same src_cpu.
8754 			 */
8755 			goto more_balance;
8756 		}
8757 
8758 		/*
8759 		 * We failed to reach balance because of affinity.
8760 		 */
8761 		if (sd_parent) {
8762 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8763 
8764 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8765 				*group_imbalance = 1;
8766 		}
8767 
8768 		/* All tasks on this runqueue were pinned by CPU affinity */
8769 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8770 			cpumask_clear_cpu(cpu_of(busiest), cpus);
8771 			/*
8772 			 * Attempting to continue load balancing at the current
8773 			 * sched_domain level only makes sense if there are
8774 			 * active CPUs remaining as possible busiest CPUs to
8775 			 * pull load from which are not contained within the
8776 			 * destination group that is receiving any migrated
8777 			 * load.
8778 			 */
8779 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8780 				env.loop = 0;
8781 				env.loop_break = sched_nr_migrate_break;
8782 				goto redo;
8783 			}
8784 			goto out_all_pinned;
8785 		}
8786 	}
8787 
8788 	if (!ld_moved) {
8789 		schedstat_inc(sd->lb_failed[idle]);
8790 		/*
8791 		 * Increment the failure counter only on periodic balance.
8792 		 * We do not want newidle balance, which can be very
8793 		 * frequent, pollute the failure counter causing
8794 		 * excessive cache_hot migrations and active balances.
8795 		 */
8796 		if (idle != CPU_NEWLY_IDLE)
8797 			sd->nr_balance_failed++;
8798 
8799 		if (need_active_balance(&env)) {
8800 			unsigned long flags;
8801 
8802 			raw_spin_lock_irqsave(&busiest->lock, flags);
8803 
8804 			/*
8805 			 * Don't kick the active_load_balance_cpu_stop,
8806 			 * if the curr task on busiest CPU can't be
8807 			 * moved to this_cpu:
8808 			 */
8809 			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8810 				raw_spin_unlock_irqrestore(&busiest->lock,
8811 							    flags);
8812 				env.flags |= LBF_ALL_PINNED;
8813 				goto out_one_pinned;
8814 			}
8815 
8816 			/*
8817 			 * ->active_balance synchronizes accesses to
8818 			 * ->active_balance_work.  Once set, it's cleared
8819 			 * only after active load balance is finished.
8820 			 */
8821 			if (!busiest->active_balance) {
8822 				busiest->active_balance = 1;
8823 				busiest->push_cpu = this_cpu;
8824 				active_balance = 1;
8825 			}
8826 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8827 
8828 			if (active_balance) {
8829 				stop_one_cpu_nowait(cpu_of(busiest),
8830 					active_load_balance_cpu_stop, busiest,
8831 					&busiest->active_balance_work);
8832 			}
8833 
8834 			/* We've kicked active balancing, force task migration. */
8835 			sd->nr_balance_failed = sd->cache_nice_tries+1;
8836 		}
8837 	} else
8838 		sd->nr_balance_failed = 0;
8839 
8840 	if (likely(!active_balance)) {
8841 		/* We were unbalanced, so reset the balancing interval */
8842 		sd->balance_interval = sd->min_interval;
8843 	} else {
8844 		/*
8845 		 * If we've begun active balancing, start to back off. This
8846 		 * case may not be covered by the all_pinned logic if there
8847 		 * is only 1 task on the busy runqueue (because we don't call
8848 		 * detach_tasks).
8849 		 */
8850 		if (sd->balance_interval < sd->max_interval)
8851 			sd->balance_interval *= 2;
8852 	}
8853 
8854 	goto out;
8855 
8856 out_balanced:
8857 	/*
8858 	 * We reach balance although we may have faced some affinity
8859 	 * constraints. Clear the imbalance flag if it was set.
8860 	 */
8861 	if (sd_parent) {
8862 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8863 
8864 		if (*group_imbalance)
8865 			*group_imbalance = 0;
8866 	}
8867 
8868 out_all_pinned:
8869 	/*
8870 	 * We reach balance because all tasks are pinned at this level so
8871 	 * we can't migrate them. Let the imbalance flag set so parent level
8872 	 * can try to migrate them.
8873 	 */
8874 	schedstat_inc(sd->lb_balanced[idle]);
8875 
8876 	sd->nr_balance_failed = 0;
8877 
8878 out_one_pinned:
8879 	/* tune up the balancing interval */
8880 	if (((env.flags & LBF_ALL_PINNED) &&
8881 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8882 			(sd->balance_interval < sd->max_interval))
8883 		sd->balance_interval *= 2;
8884 
8885 	ld_moved = 0;
8886 out:
8887 	return ld_moved;
8888 }
8889 
8890 static inline unsigned long
8891 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8892 {
8893 	unsigned long interval = sd->balance_interval;
8894 
8895 	if (cpu_busy)
8896 		interval *= sd->busy_factor;
8897 
8898 	/* scale ms to jiffies */
8899 	interval = msecs_to_jiffies(interval);
8900 	interval = clamp(interval, 1UL, max_load_balance_interval);
8901 
8902 	return interval;
8903 }
8904 
8905 static inline void
8906 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8907 {
8908 	unsigned long interval, next;
8909 
8910 	/* used by idle balance, so cpu_busy = 0 */
8911 	interval = get_sd_balance_interval(sd, 0);
8912 	next = sd->last_balance + interval;
8913 
8914 	if (time_after(*next_balance, next))
8915 		*next_balance = next;
8916 }
8917 
8918 /*
8919  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
8920  * running tasks off the busiest CPU onto idle CPUs. It requires at
8921  * least 1 task to be running on each physical CPU where possible, and
8922  * avoids physical / logical imbalances.
8923  */
8924 static int active_load_balance_cpu_stop(void *data)
8925 {
8926 	struct rq *busiest_rq = data;
8927 	int busiest_cpu = cpu_of(busiest_rq);
8928 	int target_cpu = busiest_rq->push_cpu;
8929 	struct rq *target_rq = cpu_rq(target_cpu);
8930 	struct sched_domain *sd;
8931 	struct task_struct *p = NULL;
8932 	struct rq_flags rf;
8933 
8934 	rq_lock_irq(busiest_rq, &rf);
8935 	/*
8936 	 * Between queueing the stop-work and running it is a hole in which
8937 	 * CPUs can become inactive. We should not move tasks from or to
8938 	 * inactive CPUs.
8939 	 */
8940 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
8941 		goto out_unlock;
8942 
8943 	/* Make sure the requested CPU hasn't gone down in the meantime: */
8944 	if (unlikely(busiest_cpu != smp_processor_id() ||
8945 		     !busiest_rq->active_balance))
8946 		goto out_unlock;
8947 
8948 	/* Is there any task to move? */
8949 	if (busiest_rq->nr_running <= 1)
8950 		goto out_unlock;
8951 
8952 	/*
8953 	 * This condition is "impossible", if it occurs
8954 	 * we need to fix it. Originally reported by
8955 	 * Bjorn Helgaas on a 128-CPU setup.
8956 	 */
8957 	BUG_ON(busiest_rq == target_rq);
8958 
8959 	/* Search for an sd spanning us and the target CPU. */
8960 	rcu_read_lock();
8961 	for_each_domain(target_cpu, sd) {
8962 		if ((sd->flags & SD_LOAD_BALANCE) &&
8963 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8964 				break;
8965 	}
8966 
8967 	if (likely(sd)) {
8968 		struct lb_env env = {
8969 			.sd		= sd,
8970 			.dst_cpu	= target_cpu,
8971 			.dst_rq		= target_rq,
8972 			.src_cpu	= busiest_rq->cpu,
8973 			.src_rq		= busiest_rq,
8974 			.idle		= CPU_IDLE,
8975 			/*
8976 			 * can_migrate_task() doesn't need to compute new_dst_cpu
8977 			 * for active balancing. Since we have CPU_IDLE, but no
8978 			 * @dst_grpmask we need to make that test go away with lying
8979 			 * about DST_PINNED.
8980 			 */
8981 			.flags		= LBF_DST_PINNED,
8982 		};
8983 
8984 		schedstat_inc(sd->alb_count);
8985 		update_rq_clock(busiest_rq);
8986 
8987 		p = detach_one_task(&env);
8988 		if (p) {
8989 			schedstat_inc(sd->alb_pushed);
8990 			/* Active balancing done, reset the failure counter. */
8991 			sd->nr_balance_failed = 0;
8992 		} else {
8993 			schedstat_inc(sd->alb_failed);
8994 		}
8995 	}
8996 	rcu_read_unlock();
8997 out_unlock:
8998 	busiest_rq->active_balance = 0;
8999 	rq_unlock(busiest_rq, &rf);
9000 
9001 	if (p)
9002 		attach_one_task(target_rq, p);
9003 
9004 	local_irq_enable();
9005 
9006 	return 0;
9007 }
9008 
9009 static DEFINE_SPINLOCK(balancing);
9010 
9011 /*
9012  * Scale the max load_balance interval with the number of CPUs in the system.
9013  * This trades load-balance latency on larger machines for less cross talk.
9014  */
9015 void update_max_interval(void)
9016 {
9017 	max_load_balance_interval = HZ*num_online_cpus()/10;
9018 }
9019 
9020 /*
9021  * It checks each scheduling domain to see if it is due to be balanced,
9022  * and initiates a balancing operation if so.
9023  *
9024  * Balancing parameters are set up in init_sched_domains.
9025  */
9026 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9027 {
9028 	int continue_balancing = 1;
9029 	int cpu = rq->cpu;
9030 	unsigned long interval;
9031 	struct sched_domain *sd;
9032 	/* Earliest time when we have to do rebalance again */
9033 	unsigned long next_balance = jiffies + 60*HZ;
9034 	int update_next_balance = 0;
9035 	int need_serialize, need_decay = 0;
9036 	u64 max_cost = 0;
9037 
9038 	rcu_read_lock();
9039 	for_each_domain(cpu, sd) {
9040 		/*
9041 		 * Decay the newidle max times here because this is a regular
9042 		 * visit to all the domains. Decay ~1% per second.
9043 		 */
9044 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9045 			sd->max_newidle_lb_cost =
9046 				(sd->max_newidle_lb_cost * 253) / 256;
9047 			sd->next_decay_max_lb_cost = jiffies + HZ;
9048 			need_decay = 1;
9049 		}
9050 		max_cost += sd->max_newidle_lb_cost;
9051 
9052 		if (!(sd->flags & SD_LOAD_BALANCE))
9053 			continue;
9054 
9055 		/*
9056 		 * Stop the load balance at this level. There is another
9057 		 * CPU in our sched group which is doing load balancing more
9058 		 * actively.
9059 		 */
9060 		if (!continue_balancing) {
9061 			if (need_decay)
9062 				continue;
9063 			break;
9064 		}
9065 
9066 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9067 
9068 		need_serialize = sd->flags & SD_SERIALIZE;
9069 		if (need_serialize) {
9070 			if (!spin_trylock(&balancing))
9071 				goto out;
9072 		}
9073 
9074 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
9075 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9076 				/*
9077 				 * The LBF_DST_PINNED logic could have changed
9078 				 * env->dst_cpu, so we can't know our idle
9079 				 * state even if we migrated tasks. Update it.
9080 				 */
9081 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9082 			}
9083 			sd->last_balance = jiffies;
9084 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9085 		}
9086 		if (need_serialize)
9087 			spin_unlock(&balancing);
9088 out:
9089 		if (time_after(next_balance, sd->last_balance + interval)) {
9090 			next_balance = sd->last_balance + interval;
9091 			update_next_balance = 1;
9092 		}
9093 	}
9094 	if (need_decay) {
9095 		/*
9096 		 * Ensure the rq-wide value also decays but keep it at a
9097 		 * reasonable floor to avoid funnies with rq->avg_idle.
9098 		 */
9099 		rq->max_idle_balance_cost =
9100 			max((u64)sysctl_sched_migration_cost, max_cost);
9101 	}
9102 	rcu_read_unlock();
9103 
9104 	/*
9105 	 * next_balance will be updated only when there is a need.
9106 	 * When the cpu is attached to null domain for ex, it will not be
9107 	 * updated.
9108 	 */
9109 	if (likely(update_next_balance)) {
9110 		rq->next_balance = next_balance;
9111 
9112 #ifdef CONFIG_NO_HZ_COMMON
9113 		/*
9114 		 * If this CPU has been elected to perform the nohz idle
9115 		 * balance. Other idle CPUs have already rebalanced with
9116 		 * nohz_idle_balance() and nohz.next_balance has been
9117 		 * updated accordingly. This CPU is now running the idle load
9118 		 * balance for itself and we need to update the
9119 		 * nohz.next_balance accordingly.
9120 		 */
9121 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9122 			nohz.next_balance = rq->next_balance;
9123 #endif
9124 	}
9125 }
9126 
9127 static inline int on_null_domain(struct rq *rq)
9128 {
9129 	return unlikely(!rcu_dereference_sched(rq->sd));
9130 }
9131 
9132 #ifdef CONFIG_NO_HZ_COMMON
9133 /*
9134  * idle load balancing details
9135  * - When one of the busy CPUs notice that there may be an idle rebalancing
9136  *   needed, they will kick the idle load balancer, which then does idle
9137  *   load balancing for all the idle CPUs.
9138  */
9139 
9140 static inline int find_new_ilb(void)
9141 {
9142 	int ilb = cpumask_first(nohz.idle_cpus_mask);
9143 
9144 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
9145 		return ilb;
9146 
9147 	return nr_cpu_ids;
9148 }
9149 
9150 /*
9151  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
9152  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
9153  * CPU (if there is one).
9154  */
9155 static void kick_ilb(unsigned int flags)
9156 {
9157 	int ilb_cpu;
9158 
9159 	nohz.next_balance++;
9160 
9161 	ilb_cpu = find_new_ilb();
9162 
9163 	if (ilb_cpu >= nr_cpu_ids)
9164 		return;
9165 
9166 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
9167 	if (flags & NOHZ_KICK_MASK)
9168 		return;
9169 
9170 	/*
9171 	 * Use smp_send_reschedule() instead of resched_cpu().
9172 	 * This way we generate a sched IPI on the target CPU which
9173 	 * is idle. And the softirq performing nohz idle load balance
9174 	 * will be run before returning from the IPI.
9175 	 */
9176 	smp_send_reschedule(ilb_cpu);
9177 }
9178 
9179 /*
9180  * Current heuristic for kicking the idle load balancer in the presence
9181  * of an idle cpu in the system.
9182  *   - This rq has more than one task.
9183  *   - This rq has at least one CFS task and the capacity of the CPU is
9184  *     significantly reduced because of RT tasks or IRQs.
9185  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
9186  *     multiple busy cpu.
9187  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9188  *     domain span are idle.
9189  */
9190 static void nohz_balancer_kick(struct rq *rq)
9191 {
9192 	unsigned long now = jiffies;
9193 	struct sched_domain_shared *sds;
9194 	struct sched_domain *sd;
9195 	int nr_busy, i, cpu = rq->cpu;
9196 	unsigned int flags = 0;
9197 
9198 	if (unlikely(rq->idle_balance))
9199 		return;
9200 
9201 	/*
9202 	 * We may be recently in ticked or tickless idle mode. At the first
9203 	 * busy tick after returning from idle, we will update the busy stats.
9204 	 */
9205 	nohz_balance_exit_idle(rq);
9206 
9207 	/*
9208 	 * None are in tickless mode and hence no need for NOHZ idle load
9209 	 * balancing.
9210 	 */
9211 	if (likely(!atomic_read(&nohz.nr_cpus)))
9212 		return;
9213 
9214 	if (READ_ONCE(nohz.has_blocked) &&
9215 	    time_after(now, READ_ONCE(nohz.next_blocked)))
9216 		flags = NOHZ_STATS_KICK;
9217 
9218 	if (time_before(now, nohz.next_balance))
9219 		goto out;
9220 
9221 	if (rq->nr_running >= 2 || rq->misfit_task_load) {
9222 		flags = NOHZ_KICK_MASK;
9223 		goto out;
9224 	}
9225 
9226 	rcu_read_lock();
9227 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9228 	if (sds) {
9229 		/*
9230 		 * XXX: write a coherent comment on why we do this.
9231 		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9232 		 */
9233 		nr_busy = atomic_read(&sds->nr_busy_cpus);
9234 		if (nr_busy > 1) {
9235 			flags = NOHZ_KICK_MASK;
9236 			goto unlock;
9237 		}
9238 
9239 	}
9240 
9241 	sd = rcu_dereference(rq->sd);
9242 	if (sd) {
9243 		if ((rq->cfs.h_nr_running >= 1) &&
9244 				check_cpu_capacity(rq, sd)) {
9245 			flags = NOHZ_KICK_MASK;
9246 			goto unlock;
9247 		}
9248 	}
9249 
9250 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
9251 	if (sd) {
9252 		for_each_cpu(i, sched_domain_span(sd)) {
9253 			if (i == cpu ||
9254 			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9255 				continue;
9256 
9257 			if (sched_asym_prefer(i, cpu)) {
9258 				flags = NOHZ_KICK_MASK;
9259 				goto unlock;
9260 			}
9261 		}
9262 	}
9263 unlock:
9264 	rcu_read_unlock();
9265 out:
9266 	if (flags)
9267 		kick_ilb(flags);
9268 }
9269 
9270 static void set_cpu_sd_state_busy(int cpu)
9271 {
9272 	struct sched_domain *sd;
9273 
9274 	rcu_read_lock();
9275 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9276 
9277 	if (!sd || !sd->nohz_idle)
9278 		goto unlock;
9279 	sd->nohz_idle = 0;
9280 
9281 	atomic_inc(&sd->shared->nr_busy_cpus);
9282 unlock:
9283 	rcu_read_unlock();
9284 }
9285 
9286 void nohz_balance_exit_idle(struct rq *rq)
9287 {
9288 	SCHED_WARN_ON(rq != this_rq());
9289 
9290 	if (likely(!rq->nohz_tick_stopped))
9291 		return;
9292 
9293 	rq->nohz_tick_stopped = 0;
9294 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9295 	atomic_dec(&nohz.nr_cpus);
9296 
9297 	set_cpu_sd_state_busy(rq->cpu);
9298 }
9299 
9300 static void set_cpu_sd_state_idle(int cpu)
9301 {
9302 	struct sched_domain *sd;
9303 
9304 	rcu_read_lock();
9305 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9306 
9307 	if (!sd || sd->nohz_idle)
9308 		goto unlock;
9309 	sd->nohz_idle = 1;
9310 
9311 	atomic_dec(&sd->shared->nr_busy_cpus);
9312 unlock:
9313 	rcu_read_unlock();
9314 }
9315 
9316 /*
9317  * This routine will record that the CPU is going idle with tick stopped.
9318  * This info will be used in performing idle load balancing in the future.
9319  */
9320 void nohz_balance_enter_idle(int cpu)
9321 {
9322 	struct rq *rq = cpu_rq(cpu);
9323 
9324 	SCHED_WARN_ON(cpu != smp_processor_id());
9325 
9326 	/* If this CPU is going down, then nothing needs to be done: */
9327 	if (!cpu_active(cpu))
9328 		return;
9329 
9330 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9331 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9332 		return;
9333 
9334 	/*
9335 	 * Can be set safely without rq->lock held
9336 	 * If a clear happens, it will have evaluated last additions because
9337 	 * rq->lock is held during the check and the clear
9338 	 */
9339 	rq->has_blocked_load = 1;
9340 
9341 	/*
9342 	 * The tick is still stopped but load could have been added in the
9343 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
9344 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9345 	 * of nohz.has_blocked can only happen after checking the new load
9346 	 */
9347 	if (rq->nohz_tick_stopped)
9348 		goto out;
9349 
9350 	/* If we're a completely isolated CPU, we don't play: */
9351 	if (on_null_domain(rq))
9352 		return;
9353 
9354 	rq->nohz_tick_stopped = 1;
9355 
9356 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9357 	atomic_inc(&nohz.nr_cpus);
9358 
9359 	/*
9360 	 * Ensures that if nohz_idle_balance() fails to observe our
9361 	 * @idle_cpus_mask store, it must observe the @has_blocked
9362 	 * store.
9363 	 */
9364 	smp_mb__after_atomic();
9365 
9366 	set_cpu_sd_state_idle(cpu);
9367 
9368 out:
9369 	/*
9370 	 * Each time a cpu enter idle, we assume that it has blocked load and
9371 	 * enable the periodic update of the load of idle cpus
9372 	 */
9373 	WRITE_ONCE(nohz.has_blocked, 1);
9374 }
9375 
9376 /*
9377  * Internal function that runs load balance for all idle cpus. The load balance
9378  * can be a simple update of blocked load or a complete load balance with
9379  * tasks movement depending of flags.
9380  * The function returns false if the loop has stopped before running
9381  * through all idle CPUs.
9382  */
9383 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9384 			       enum cpu_idle_type idle)
9385 {
9386 	/* Earliest time when we have to do rebalance again */
9387 	unsigned long now = jiffies;
9388 	unsigned long next_balance = now + 60*HZ;
9389 	bool has_blocked_load = false;
9390 	int update_next_balance = 0;
9391 	int this_cpu = this_rq->cpu;
9392 	int balance_cpu;
9393 	int ret = false;
9394 	struct rq *rq;
9395 
9396 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9397 
9398 	/*
9399 	 * We assume there will be no idle load after this update and clear
9400 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9401 	 * set the has_blocked flag and trig another update of idle load.
9402 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9403 	 * setting the flag, we are sure to not clear the state and not
9404 	 * check the load of an idle cpu.
9405 	 */
9406 	WRITE_ONCE(nohz.has_blocked, 0);
9407 
9408 	/*
9409 	 * Ensures that if we miss the CPU, we must see the has_blocked
9410 	 * store from nohz_balance_enter_idle().
9411 	 */
9412 	smp_mb();
9413 
9414 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9415 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9416 			continue;
9417 
9418 		/*
9419 		 * If this CPU gets work to do, stop the load balancing
9420 		 * work being done for other CPUs. Next load
9421 		 * balancing owner will pick it up.
9422 		 */
9423 		if (need_resched()) {
9424 			has_blocked_load = true;
9425 			goto abort;
9426 		}
9427 
9428 		rq = cpu_rq(balance_cpu);
9429 
9430 		has_blocked_load |= update_nohz_stats(rq, true);
9431 
9432 		/*
9433 		 * If time for next balance is due,
9434 		 * do the balance.
9435 		 */
9436 		if (time_after_eq(jiffies, rq->next_balance)) {
9437 			struct rq_flags rf;
9438 
9439 			rq_lock_irqsave(rq, &rf);
9440 			update_rq_clock(rq);
9441 			cpu_load_update_idle(rq);
9442 			rq_unlock_irqrestore(rq, &rf);
9443 
9444 			if (flags & NOHZ_BALANCE_KICK)
9445 				rebalance_domains(rq, CPU_IDLE);
9446 		}
9447 
9448 		if (time_after(next_balance, rq->next_balance)) {
9449 			next_balance = rq->next_balance;
9450 			update_next_balance = 1;
9451 		}
9452 	}
9453 
9454 	/* Newly idle CPU doesn't need an update */
9455 	if (idle != CPU_NEWLY_IDLE) {
9456 		update_blocked_averages(this_cpu);
9457 		has_blocked_load |= this_rq->has_blocked_load;
9458 	}
9459 
9460 	if (flags & NOHZ_BALANCE_KICK)
9461 		rebalance_domains(this_rq, CPU_IDLE);
9462 
9463 	WRITE_ONCE(nohz.next_blocked,
9464 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9465 
9466 	/* The full idle balance loop has been done */
9467 	ret = true;
9468 
9469 abort:
9470 	/* There is still blocked load, enable periodic update */
9471 	if (has_blocked_load)
9472 		WRITE_ONCE(nohz.has_blocked, 1);
9473 
9474 	/*
9475 	 * next_balance will be updated only when there is a need.
9476 	 * When the CPU is attached to null domain for ex, it will not be
9477 	 * updated.
9478 	 */
9479 	if (likely(update_next_balance))
9480 		nohz.next_balance = next_balance;
9481 
9482 	return ret;
9483 }
9484 
9485 /*
9486  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9487  * rebalancing for all the cpus for whom scheduler ticks are stopped.
9488  */
9489 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9490 {
9491 	int this_cpu = this_rq->cpu;
9492 	unsigned int flags;
9493 
9494 	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9495 		return false;
9496 
9497 	if (idle != CPU_IDLE) {
9498 		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9499 		return false;
9500 	}
9501 
9502 	/*
9503 	 * barrier, pairs with nohz_balance_enter_idle(), ensures ...
9504 	 */
9505 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9506 	if (!(flags & NOHZ_KICK_MASK))
9507 		return false;
9508 
9509 	_nohz_idle_balance(this_rq, flags, idle);
9510 
9511 	return true;
9512 }
9513 
9514 static void nohz_newidle_balance(struct rq *this_rq)
9515 {
9516 	int this_cpu = this_rq->cpu;
9517 
9518 	/*
9519 	 * This CPU doesn't want to be disturbed by scheduler
9520 	 * housekeeping
9521 	 */
9522 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9523 		return;
9524 
9525 	/* Will wake up very soon. No time for doing anything else*/
9526 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
9527 		return;
9528 
9529 	/* Don't need to update blocked load of idle CPUs*/
9530 	if (!READ_ONCE(nohz.has_blocked) ||
9531 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9532 		return;
9533 
9534 	raw_spin_unlock(&this_rq->lock);
9535 	/*
9536 	 * This CPU is going to be idle and blocked load of idle CPUs
9537 	 * need to be updated. Run the ilb locally as it is a good
9538 	 * candidate for ilb instead of waking up another idle CPU.
9539 	 * Kick an normal ilb if we failed to do the update.
9540 	 */
9541 	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9542 		kick_ilb(NOHZ_STATS_KICK);
9543 	raw_spin_lock(&this_rq->lock);
9544 }
9545 
9546 #else /* !CONFIG_NO_HZ_COMMON */
9547 static inline void nohz_balancer_kick(struct rq *rq) { }
9548 
9549 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9550 {
9551 	return false;
9552 }
9553 
9554 static inline void nohz_newidle_balance(struct rq *this_rq) { }
9555 #endif /* CONFIG_NO_HZ_COMMON */
9556 
9557 /*
9558  * idle_balance is called by schedule() if this_cpu is about to become
9559  * idle. Attempts to pull tasks from other CPUs.
9560  */
9561 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9562 {
9563 	unsigned long next_balance = jiffies + HZ;
9564 	int this_cpu = this_rq->cpu;
9565 	struct sched_domain *sd;
9566 	int pulled_task = 0;
9567 	u64 curr_cost = 0;
9568 
9569 	/*
9570 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
9571 	 * measure the duration of idle_balance() as idle time.
9572 	 */
9573 	this_rq->idle_stamp = rq_clock(this_rq);
9574 
9575 	/*
9576 	 * Do not pull tasks towards !active CPUs...
9577 	 */
9578 	if (!cpu_active(this_cpu))
9579 		return 0;
9580 
9581 	/*
9582 	 * This is OK, because current is on_cpu, which avoids it being picked
9583 	 * for load-balance and preemption/IRQs are still disabled avoiding
9584 	 * further scheduler activity on it and we're being very careful to
9585 	 * re-start the picking loop.
9586 	 */
9587 	rq_unpin_lock(this_rq, rf);
9588 
9589 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
9590 	    !READ_ONCE(this_rq->rd->overload)) {
9591 
9592 		rcu_read_lock();
9593 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
9594 		if (sd)
9595 			update_next_balance(sd, &next_balance);
9596 		rcu_read_unlock();
9597 
9598 		nohz_newidle_balance(this_rq);
9599 
9600 		goto out;
9601 	}
9602 
9603 	raw_spin_unlock(&this_rq->lock);
9604 
9605 	update_blocked_averages(this_cpu);
9606 	rcu_read_lock();
9607 	for_each_domain(this_cpu, sd) {
9608 		int continue_balancing = 1;
9609 		u64 t0, domain_cost;
9610 
9611 		if (!(sd->flags & SD_LOAD_BALANCE))
9612 			continue;
9613 
9614 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9615 			update_next_balance(sd, &next_balance);
9616 			break;
9617 		}
9618 
9619 		if (sd->flags & SD_BALANCE_NEWIDLE) {
9620 			t0 = sched_clock_cpu(this_cpu);
9621 
9622 			pulled_task = load_balance(this_cpu, this_rq,
9623 						   sd, CPU_NEWLY_IDLE,
9624 						   &continue_balancing);
9625 
9626 			domain_cost = sched_clock_cpu(this_cpu) - t0;
9627 			if (domain_cost > sd->max_newidle_lb_cost)
9628 				sd->max_newidle_lb_cost = domain_cost;
9629 
9630 			curr_cost += domain_cost;
9631 		}
9632 
9633 		update_next_balance(sd, &next_balance);
9634 
9635 		/*
9636 		 * Stop searching for tasks to pull if there are
9637 		 * now runnable tasks on this rq.
9638 		 */
9639 		if (pulled_task || this_rq->nr_running > 0)
9640 			break;
9641 	}
9642 	rcu_read_unlock();
9643 
9644 	raw_spin_lock(&this_rq->lock);
9645 
9646 	if (curr_cost > this_rq->max_idle_balance_cost)
9647 		this_rq->max_idle_balance_cost = curr_cost;
9648 
9649 out:
9650 	/*
9651 	 * While browsing the domains, we released the rq lock, a task could
9652 	 * have been enqueued in the meantime. Since we're not going idle,
9653 	 * pretend we pulled a task.
9654 	 */
9655 	if (this_rq->cfs.h_nr_running && !pulled_task)
9656 		pulled_task = 1;
9657 
9658 	/* Move the next balance forward */
9659 	if (time_after(this_rq->next_balance, next_balance))
9660 		this_rq->next_balance = next_balance;
9661 
9662 	/* Is there a task of a high priority class? */
9663 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9664 		pulled_task = -1;
9665 
9666 	if (pulled_task)
9667 		this_rq->idle_stamp = 0;
9668 
9669 	rq_repin_lock(this_rq, rf);
9670 
9671 	return pulled_task;
9672 }
9673 
9674 /*
9675  * run_rebalance_domains is triggered when needed from the scheduler tick.
9676  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9677  */
9678 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9679 {
9680 	struct rq *this_rq = this_rq();
9681 	enum cpu_idle_type idle = this_rq->idle_balance ?
9682 						CPU_IDLE : CPU_NOT_IDLE;
9683 
9684 	/*
9685 	 * If this CPU has a pending nohz_balance_kick, then do the
9686 	 * balancing on behalf of the other idle CPUs whose ticks are
9687 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9688 	 * give the idle CPUs a chance to load balance. Else we may
9689 	 * load balance only within the local sched_domain hierarchy
9690 	 * and abort nohz_idle_balance altogether if we pull some load.
9691 	 */
9692 	if (nohz_idle_balance(this_rq, idle))
9693 		return;
9694 
9695 	/* normal load balance */
9696 	update_blocked_averages(this_rq->cpu);
9697 	rebalance_domains(this_rq, idle);
9698 }
9699 
9700 /*
9701  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9702  */
9703 void trigger_load_balance(struct rq *rq)
9704 {
9705 	/* Don't need to rebalance while attached to NULL domain */
9706 	if (unlikely(on_null_domain(rq)))
9707 		return;
9708 
9709 	if (time_after_eq(jiffies, rq->next_balance))
9710 		raise_softirq(SCHED_SOFTIRQ);
9711 
9712 	nohz_balancer_kick(rq);
9713 }
9714 
9715 static void rq_online_fair(struct rq *rq)
9716 {
9717 	update_sysctl();
9718 
9719 	update_runtime_enabled(rq);
9720 }
9721 
9722 static void rq_offline_fair(struct rq *rq)
9723 {
9724 	update_sysctl();
9725 
9726 	/* Ensure any throttled groups are reachable by pick_next_task */
9727 	unthrottle_offline_cfs_rqs(rq);
9728 }
9729 
9730 #endif /* CONFIG_SMP */
9731 
9732 /*
9733  * scheduler tick hitting a task of our scheduling class.
9734  *
9735  * NOTE: This function can be called remotely by the tick offload that
9736  * goes along full dynticks. Therefore no local assumption can be made
9737  * and everything must be accessed through the @rq and @curr passed in
9738  * parameters.
9739  */
9740 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9741 {
9742 	struct cfs_rq *cfs_rq;
9743 	struct sched_entity *se = &curr->se;
9744 
9745 	for_each_sched_entity(se) {
9746 		cfs_rq = cfs_rq_of(se);
9747 		entity_tick(cfs_rq, se, queued);
9748 	}
9749 
9750 	if (static_branch_unlikely(&sched_numa_balancing))
9751 		task_tick_numa(rq, curr);
9752 
9753 	update_misfit_status(curr, rq);
9754 }
9755 
9756 /*
9757  * called on fork with the child task as argument from the parent's context
9758  *  - child not yet on the tasklist
9759  *  - preemption disabled
9760  */
9761 static void task_fork_fair(struct task_struct *p)
9762 {
9763 	struct cfs_rq *cfs_rq;
9764 	struct sched_entity *se = &p->se, *curr;
9765 	struct rq *rq = this_rq();
9766 	struct rq_flags rf;
9767 
9768 	rq_lock(rq, &rf);
9769 	update_rq_clock(rq);
9770 
9771 	cfs_rq = task_cfs_rq(current);
9772 	curr = cfs_rq->curr;
9773 	if (curr) {
9774 		update_curr(cfs_rq);
9775 		se->vruntime = curr->vruntime;
9776 	}
9777 	place_entity(cfs_rq, se, 1);
9778 
9779 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9780 		/*
9781 		 * Upon rescheduling, sched_class::put_prev_task() will place
9782 		 * 'current' within the tree based on its new key value.
9783 		 */
9784 		swap(curr->vruntime, se->vruntime);
9785 		resched_curr(rq);
9786 	}
9787 
9788 	se->vruntime -= cfs_rq->min_vruntime;
9789 	rq_unlock(rq, &rf);
9790 }
9791 
9792 /*
9793  * Priority of the task has changed. Check to see if we preempt
9794  * the current task.
9795  */
9796 static void
9797 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9798 {
9799 	if (!task_on_rq_queued(p))
9800 		return;
9801 
9802 	/*
9803 	 * Reschedule if we are currently running on this runqueue and
9804 	 * our priority decreased, or if we are not currently running on
9805 	 * this runqueue and our priority is higher than the current's
9806 	 */
9807 	if (rq->curr == p) {
9808 		if (p->prio > oldprio)
9809 			resched_curr(rq);
9810 	} else
9811 		check_preempt_curr(rq, p, 0);
9812 }
9813 
9814 static inline bool vruntime_normalized(struct task_struct *p)
9815 {
9816 	struct sched_entity *se = &p->se;
9817 
9818 	/*
9819 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9820 	 * the dequeue_entity(.flags=0) will already have normalized the
9821 	 * vruntime.
9822 	 */
9823 	if (p->on_rq)
9824 		return true;
9825 
9826 	/*
9827 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
9828 	 * But there are some cases where it has already been normalized:
9829 	 *
9830 	 * - A forked child which is waiting for being woken up by
9831 	 *   wake_up_new_task().
9832 	 * - A task which has been woken up by try_to_wake_up() and
9833 	 *   waiting for actually being woken up by sched_ttwu_pending().
9834 	 */
9835 	if (!se->sum_exec_runtime ||
9836 	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
9837 		return true;
9838 
9839 	return false;
9840 }
9841 
9842 #ifdef CONFIG_FAIR_GROUP_SCHED
9843 /*
9844  * Propagate the changes of the sched_entity across the tg tree to make it
9845  * visible to the root
9846  */
9847 static void propagate_entity_cfs_rq(struct sched_entity *se)
9848 {
9849 	struct cfs_rq *cfs_rq;
9850 
9851 	/* Start to propagate at parent */
9852 	se = se->parent;
9853 
9854 	for_each_sched_entity(se) {
9855 		cfs_rq = cfs_rq_of(se);
9856 
9857 		if (cfs_rq_throttled(cfs_rq))
9858 			break;
9859 
9860 		update_load_avg(cfs_rq, se, UPDATE_TG);
9861 	}
9862 }
9863 #else
9864 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9865 #endif
9866 
9867 static void detach_entity_cfs_rq(struct sched_entity *se)
9868 {
9869 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9870 
9871 	/* Catch up with the cfs_rq and remove our load when we leave */
9872 	update_load_avg(cfs_rq, se, 0);
9873 	detach_entity_load_avg(cfs_rq, se);
9874 	update_tg_load_avg(cfs_rq, false);
9875 	propagate_entity_cfs_rq(se);
9876 }
9877 
9878 static void attach_entity_cfs_rq(struct sched_entity *se)
9879 {
9880 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9881 
9882 #ifdef CONFIG_FAIR_GROUP_SCHED
9883 	/*
9884 	 * Since the real-depth could have been changed (only FAIR
9885 	 * class maintain depth value), reset depth properly.
9886 	 */
9887 	se->depth = se->parent ? se->parent->depth + 1 : 0;
9888 #endif
9889 
9890 	/* Synchronize entity with its cfs_rq */
9891 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9892 	attach_entity_load_avg(cfs_rq, se, 0);
9893 	update_tg_load_avg(cfs_rq, false);
9894 	propagate_entity_cfs_rq(se);
9895 }
9896 
9897 static void detach_task_cfs_rq(struct task_struct *p)
9898 {
9899 	struct sched_entity *se = &p->se;
9900 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9901 
9902 	if (!vruntime_normalized(p)) {
9903 		/*
9904 		 * Fix up our vruntime so that the current sleep doesn't
9905 		 * cause 'unlimited' sleep bonus.
9906 		 */
9907 		place_entity(cfs_rq, se, 0);
9908 		se->vruntime -= cfs_rq->min_vruntime;
9909 	}
9910 
9911 	detach_entity_cfs_rq(se);
9912 }
9913 
9914 static void attach_task_cfs_rq(struct task_struct *p)
9915 {
9916 	struct sched_entity *se = &p->se;
9917 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9918 
9919 	attach_entity_cfs_rq(se);
9920 
9921 	if (!vruntime_normalized(p))
9922 		se->vruntime += cfs_rq->min_vruntime;
9923 }
9924 
9925 static void switched_from_fair(struct rq *rq, struct task_struct *p)
9926 {
9927 	detach_task_cfs_rq(p);
9928 }
9929 
9930 static void switched_to_fair(struct rq *rq, struct task_struct *p)
9931 {
9932 	attach_task_cfs_rq(p);
9933 
9934 	if (task_on_rq_queued(p)) {
9935 		/*
9936 		 * We were most likely switched from sched_rt, so
9937 		 * kick off the schedule if running, otherwise just see
9938 		 * if we can still preempt the current task.
9939 		 */
9940 		if (rq->curr == p)
9941 			resched_curr(rq);
9942 		else
9943 			check_preempt_curr(rq, p, 0);
9944 	}
9945 }
9946 
9947 /* Account for a task changing its policy or group.
9948  *
9949  * This routine is mostly called to set cfs_rq->curr field when a task
9950  * migrates between groups/classes.
9951  */
9952 static void set_curr_task_fair(struct rq *rq)
9953 {
9954 	struct sched_entity *se = &rq->curr->se;
9955 
9956 	for_each_sched_entity(se) {
9957 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
9958 
9959 		set_next_entity(cfs_rq, se);
9960 		/* ensure bandwidth has been allocated on our new cfs_rq */
9961 		account_cfs_rq_runtime(cfs_rq, 0);
9962 	}
9963 }
9964 
9965 void init_cfs_rq(struct cfs_rq *cfs_rq)
9966 {
9967 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
9968 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9969 #ifndef CONFIG_64BIT
9970 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9971 #endif
9972 #ifdef CONFIG_SMP
9973 	raw_spin_lock_init(&cfs_rq->removed.lock);
9974 #endif
9975 }
9976 
9977 #ifdef CONFIG_FAIR_GROUP_SCHED
9978 static void task_set_group_fair(struct task_struct *p)
9979 {
9980 	struct sched_entity *se = &p->se;
9981 
9982 	set_task_rq(p, task_cpu(p));
9983 	se->depth = se->parent ? se->parent->depth + 1 : 0;
9984 }
9985 
9986 static void task_move_group_fair(struct task_struct *p)
9987 {
9988 	detach_task_cfs_rq(p);
9989 	set_task_rq(p, task_cpu(p));
9990 
9991 #ifdef CONFIG_SMP
9992 	/* Tell se's cfs_rq has been changed -- migrated */
9993 	p->se.avg.last_update_time = 0;
9994 #endif
9995 	attach_task_cfs_rq(p);
9996 }
9997 
9998 static void task_change_group_fair(struct task_struct *p, int type)
9999 {
10000 	switch (type) {
10001 	case TASK_SET_GROUP:
10002 		task_set_group_fair(p);
10003 		break;
10004 
10005 	case TASK_MOVE_GROUP:
10006 		task_move_group_fair(p);
10007 		break;
10008 	}
10009 }
10010 
10011 void free_fair_sched_group(struct task_group *tg)
10012 {
10013 	int i;
10014 
10015 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10016 
10017 	for_each_possible_cpu(i) {
10018 		if (tg->cfs_rq)
10019 			kfree(tg->cfs_rq[i]);
10020 		if (tg->se)
10021 			kfree(tg->se[i]);
10022 	}
10023 
10024 	kfree(tg->cfs_rq);
10025 	kfree(tg->se);
10026 }
10027 
10028 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10029 {
10030 	struct sched_entity *se;
10031 	struct cfs_rq *cfs_rq;
10032 	int i;
10033 
10034 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10035 	if (!tg->cfs_rq)
10036 		goto err;
10037 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10038 	if (!tg->se)
10039 		goto err;
10040 
10041 	tg->shares = NICE_0_LOAD;
10042 
10043 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10044 
10045 	for_each_possible_cpu(i) {
10046 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10047 				      GFP_KERNEL, cpu_to_node(i));
10048 		if (!cfs_rq)
10049 			goto err;
10050 
10051 		se = kzalloc_node(sizeof(struct sched_entity),
10052 				  GFP_KERNEL, cpu_to_node(i));
10053 		if (!se)
10054 			goto err_free_rq;
10055 
10056 		init_cfs_rq(cfs_rq);
10057 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10058 		init_entity_runnable_average(se);
10059 	}
10060 
10061 	return 1;
10062 
10063 err_free_rq:
10064 	kfree(cfs_rq);
10065 err:
10066 	return 0;
10067 }
10068 
10069 void online_fair_sched_group(struct task_group *tg)
10070 {
10071 	struct sched_entity *se;
10072 	struct rq *rq;
10073 	int i;
10074 
10075 	for_each_possible_cpu(i) {
10076 		rq = cpu_rq(i);
10077 		se = tg->se[i];
10078 
10079 		raw_spin_lock_irq(&rq->lock);
10080 		update_rq_clock(rq);
10081 		attach_entity_cfs_rq(se);
10082 		sync_throttle(tg, i);
10083 		raw_spin_unlock_irq(&rq->lock);
10084 	}
10085 }
10086 
10087 void unregister_fair_sched_group(struct task_group *tg)
10088 {
10089 	unsigned long flags;
10090 	struct rq *rq;
10091 	int cpu;
10092 
10093 	for_each_possible_cpu(cpu) {
10094 		if (tg->se[cpu])
10095 			remove_entity_load_avg(tg->se[cpu]);
10096 
10097 		/*
10098 		 * Only empty task groups can be destroyed; so we can speculatively
10099 		 * check on_list without danger of it being re-added.
10100 		 */
10101 		if (!tg->cfs_rq[cpu]->on_list)
10102 			continue;
10103 
10104 		rq = cpu_rq(cpu);
10105 
10106 		raw_spin_lock_irqsave(&rq->lock, flags);
10107 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10108 		raw_spin_unlock_irqrestore(&rq->lock, flags);
10109 	}
10110 }
10111 
10112 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10113 			struct sched_entity *se, int cpu,
10114 			struct sched_entity *parent)
10115 {
10116 	struct rq *rq = cpu_rq(cpu);
10117 
10118 	cfs_rq->tg = tg;
10119 	cfs_rq->rq = rq;
10120 	init_cfs_rq_runtime(cfs_rq);
10121 
10122 	tg->cfs_rq[cpu] = cfs_rq;
10123 	tg->se[cpu] = se;
10124 
10125 	/* se could be NULL for root_task_group */
10126 	if (!se)
10127 		return;
10128 
10129 	if (!parent) {
10130 		se->cfs_rq = &rq->cfs;
10131 		se->depth = 0;
10132 	} else {
10133 		se->cfs_rq = parent->my_q;
10134 		se->depth = parent->depth + 1;
10135 	}
10136 
10137 	se->my_q = cfs_rq;
10138 	/* guarantee group entities always have weight */
10139 	update_load_set(&se->load, NICE_0_LOAD);
10140 	se->parent = parent;
10141 }
10142 
10143 static DEFINE_MUTEX(shares_mutex);
10144 
10145 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10146 {
10147 	int i;
10148 
10149 	/*
10150 	 * We can't change the weight of the root cgroup.
10151 	 */
10152 	if (!tg->se[0])
10153 		return -EINVAL;
10154 
10155 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10156 
10157 	mutex_lock(&shares_mutex);
10158 	if (tg->shares == shares)
10159 		goto done;
10160 
10161 	tg->shares = shares;
10162 	for_each_possible_cpu(i) {
10163 		struct rq *rq = cpu_rq(i);
10164 		struct sched_entity *se = tg->se[i];
10165 		struct rq_flags rf;
10166 
10167 		/* Propagate contribution to hierarchy */
10168 		rq_lock_irqsave(rq, &rf);
10169 		update_rq_clock(rq);
10170 		for_each_sched_entity(se) {
10171 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10172 			update_cfs_group(se);
10173 		}
10174 		rq_unlock_irqrestore(rq, &rf);
10175 	}
10176 
10177 done:
10178 	mutex_unlock(&shares_mutex);
10179 	return 0;
10180 }
10181 #else /* CONFIG_FAIR_GROUP_SCHED */
10182 
10183 void free_fair_sched_group(struct task_group *tg) { }
10184 
10185 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10186 {
10187 	return 1;
10188 }
10189 
10190 void online_fair_sched_group(struct task_group *tg) { }
10191 
10192 void unregister_fair_sched_group(struct task_group *tg) { }
10193 
10194 #endif /* CONFIG_FAIR_GROUP_SCHED */
10195 
10196 
10197 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10198 {
10199 	struct sched_entity *se = &task->se;
10200 	unsigned int rr_interval = 0;
10201 
10202 	/*
10203 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10204 	 * idle runqueue:
10205 	 */
10206 	if (rq->cfs.load.weight)
10207 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10208 
10209 	return rr_interval;
10210 }
10211 
10212 /*
10213  * All the scheduling class methods:
10214  */
10215 const struct sched_class fair_sched_class = {
10216 	.next			= &idle_sched_class,
10217 	.enqueue_task		= enqueue_task_fair,
10218 	.dequeue_task		= dequeue_task_fair,
10219 	.yield_task		= yield_task_fair,
10220 	.yield_to_task		= yield_to_task_fair,
10221 
10222 	.check_preempt_curr	= check_preempt_wakeup,
10223 
10224 	.pick_next_task		= pick_next_task_fair,
10225 	.put_prev_task		= put_prev_task_fair,
10226 
10227 #ifdef CONFIG_SMP
10228 	.select_task_rq		= select_task_rq_fair,
10229 	.migrate_task_rq	= migrate_task_rq_fair,
10230 
10231 	.rq_online		= rq_online_fair,
10232 	.rq_offline		= rq_offline_fair,
10233 
10234 	.task_dead		= task_dead_fair,
10235 	.set_cpus_allowed	= set_cpus_allowed_common,
10236 #endif
10237 
10238 	.set_curr_task          = set_curr_task_fair,
10239 	.task_tick		= task_tick_fair,
10240 	.task_fork		= task_fork_fair,
10241 
10242 	.prio_changed		= prio_changed_fair,
10243 	.switched_from		= switched_from_fair,
10244 	.switched_to		= switched_to_fair,
10245 
10246 	.get_rr_interval	= get_rr_interval_fair,
10247 
10248 	.update_curr		= update_curr_fair,
10249 
10250 #ifdef CONFIG_FAIR_GROUP_SCHED
10251 	.task_change_group	= task_change_group_fair,
10252 #endif
10253 };
10254 
10255 #ifdef CONFIG_SCHED_DEBUG
10256 void print_cfs_stats(struct seq_file *m, int cpu)
10257 {
10258 	struct cfs_rq *cfs_rq, *pos;
10259 
10260 	rcu_read_lock();
10261 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10262 		print_cfs_rq(m, cpu, cfs_rq);
10263 	rcu_read_unlock();
10264 }
10265 
10266 #ifdef CONFIG_NUMA_BALANCING
10267 void show_numa_stats(struct task_struct *p, struct seq_file *m)
10268 {
10269 	int node;
10270 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10271 
10272 	for_each_online_node(node) {
10273 		if (p->numa_faults) {
10274 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10275 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10276 		}
10277 		if (p->numa_group) {
10278 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10279 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10280 		}
10281 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10282 	}
10283 }
10284 #endif /* CONFIG_NUMA_BALANCING */
10285 #endif /* CONFIG_SCHED_DEBUG */
10286 
10287 __init void init_sched_fair_class(void)
10288 {
10289 #ifdef CONFIG_SMP
10290 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10291 
10292 #ifdef CONFIG_NO_HZ_COMMON
10293 	nohz.next_balance = jiffies;
10294 	nohz.next_blocked = jiffies;
10295 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10296 #endif
10297 #endif /* SMP */
10298 
10299 }
10300