xref: /openbmc/linux/kernel/sched/fair.c (revision de2bdb3d)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21  */
22 
23 #include <linux/sched.h>
24 #include <linux/latencytop.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33 
34 #include <trace/events/sched.h>
35 
36 #include "sched.h"
37 
38 /*
39  * Targeted preemption latency for CPU-bound tasks:
40  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41  *
42  * NOTE: this latency value is not the same as the concept of
43  * 'timeslice length' - timeslices in CFS are of variable length
44  * and have no persistent notion like in traditional, time-slice
45  * based scheduling concepts.
46  *
47  * (to see the precise effective timeslice length of your workload,
48  *  run vmstat and monitor the context-switches (cs) field)
49  */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52 
53 /*
54  * The initial- and re-scaling of tunables is configurable
55  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56  *
57  * Options are:
58  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61  */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 	= SCHED_TUNABLESCALING_LOG;
64 
65 /*
66  * Minimal preemption granularity for CPU-bound tasks:
67  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68  */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 
72 /*
73  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74  */
75 static unsigned int sched_nr_latency = 8;
76 
77 /*
78  * After fork, child runs first. If set to 0 (default) then
79  * parent will (try to) run first.
80  */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82 
83 /*
84  * SCHED_OTHER wake-up granularity.
85  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86  *
87  * This option delays the preemption effects of decoupled workloads
88  * and reduces their over-scheduling. Synchronous workloads will still
89  * have immediate wakeup/sleep latencies.
90  */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93 
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95 
96 /*
97  * The exponential sliding  window over which load is averaged for shares
98  * distribution.
99  * (default: 10msec)
100  */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102 
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106  * each time a cfs_rq requests quota.
107  *
108  * Note: in the case that the slice exceeds the runtime remaining (either due
109  * to consumption or the quota being specified to be smaller than the slice)
110  * we will always only issue the remaining available time.
111  *
112  * default: 5 msec, units: microseconds
113   */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116 
117 /*
118  * The margin used when comparing utilization with CPU capacity:
119  * util * 1024 < capacity * margin
120  */
121 unsigned int capacity_margin = 1280; /* ~20% */
122 
123 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
124 {
125 	lw->weight += inc;
126 	lw->inv_weight = 0;
127 }
128 
129 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
130 {
131 	lw->weight -= dec;
132 	lw->inv_weight = 0;
133 }
134 
135 static inline void update_load_set(struct load_weight *lw, unsigned long w)
136 {
137 	lw->weight = w;
138 	lw->inv_weight = 0;
139 }
140 
141 /*
142  * Increase the granularity value when there are more CPUs,
143  * because with more CPUs the 'effective latency' as visible
144  * to users decreases. But the relationship is not linear,
145  * so pick a second-best guess by going with the log2 of the
146  * number of CPUs.
147  *
148  * This idea comes from the SD scheduler of Con Kolivas:
149  */
150 static unsigned int get_update_sysctl_factor(void)
151 {
152 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
153 	unsigned int factor;
154 
155 	switch (sysctl_sched_tunable_scaling) {
156 	case SCHED_TUNABLESCALING_NONE:
157 		factor = 1;
158 		break;
159 	case SCHED_TUNABLESCALING_LINEAR:
160 		factor = cpus;
161 		break;
162 	case SCHED_TUNABLESCALING_LOG:
163 	default:
164 		factor = 1 + ilog2(cpus);
165 		break;
166 	}
167 
168 	return factor;
169 }
170 
171 static void update_sysctl(void)
172 {
173 	unsigned int factor = get_update_sysctl_factor();
174 
175 #define SET_SYSCTL(name) \
176 	(sysctl_##name = (factor) * normalized_sysctl_##name)
177 	SET_SYSCTL(sched_min_granularity);
178 	SET_SYSCTL(sched_latency);
179 	SET_SYSCTL(sched_wakeup_granularity);
180 #undef SET_SYSCTL
181 }
182 
183 void sched_init_granularity(void)
184 {
185 	update_sysctl();
186 }
187 
188 #define WMULT_CONST	(~0U)
189 #define WMULT_SHIFT	32
190 
191 static void __update_inv_weight(struct load_weight *lw)
192 {
193 	unsigned long w;
194 
195 	if (likely(lw->inv_weight))
196 		return;
197 
198 	w = scale_load_down(lw->weight);
199 
200 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
201 		lw->inv_weight = 1;
202 	else if (unlikely(!w))
203 		lw->inv_weight = WMULT_CONST;
204 	else
205 		lw->inv_weight = WMULT_CONST / w;
206 }
207 
208 /*
209  * delta_exec * weight / lw.weight
210  *   OR
211  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
212  *
213  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
214  * we're guaranteed shift stays positive because inv_weight is guaranteed to
215  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
216  *
217  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
218  * weight/lw.weight <= 1, and therefore our shift will also be positive.
219  */
220 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
221 {
222 	u64 fact = scale_load_down(weight);
223 	int shift = WMULT_SHIFT;
224 
225 	__update_inv_weight(lw);
226 
227 	if (unlikely(fact >> 32)) {
228 		while (fact >> 32) {
229 			fact >>= 1;
230 			shift--;
231 		}
232 	}
233 
234 	/* hint to use a 32x32->64 mul */
235 	fact = (u64)(u32)fact * lw->inv_weight;
236 
237 	while (fact >> 32) {
238 		fact >>= 1;
239 		shift--;
240 	}
241 
242 	return mul_u64_u32_shr(delta_exec, fact, shift);
243 }
244 
245 
246 const struct sched_class fair_sched_class;
247 
248 /**************************************************************
249  * CFS operations on generic schedulable entities:
250  */
251 
252 #ifdef CONFIG_FAIR_GROUP_SCHED
253 
254 /* cpu runqueue to which this cfs_rq is attached */
255 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
256 {
257 	return cfs_rq->rq;
258 }
259 
260 /* An entity is a task if it doesn't "own" a runqueue */
261 #define entity_is_task(se)	(!se->my_q)
262 
263 static inline struct task_struct *task_of(struct sched_entity *se)
264 {
265 	SCHED_WARN_ON(!entity_is_task(se));
266 	return container_of(se, struct task_struct, se);
267 }
268 
269 /* Walk up scheduling entities hierarchy */
270 #define for_each_sched_entity(se) \
271 		for (; se; se = se->parent)
272 
273 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
274 {
275 	return p->se.cfs_rq;
276 }
277 
278 /* runqueue on which this entity is (to be) queued */
279 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
280 {
281 	return se->cfs_rq;
282 }
283 
284 /* runqueue "owned" by this group */
285 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
286 {
287 	return grp->my_q;
288 }
289 
290 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
291 {
292 	if (!cfs_rq->on_list) {
293 		/*
294 		 * Ensure we either appear before our parent (if already
295 		 * enqueued) or force our parent to appear after us when it is
296 		 * enqueued.  The fact that we always enqueue bottom-up
297 		 * reduces this to two cases.
298 		 */
299 		if (cfs_rq->tg->parent &&
300 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
301 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
302 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
303 		} else {
304 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
305 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
306 		}
307 
308 		cfs_rq->on_list = 1;
309 	}
310 }
311 
312 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313 {
314 	if (cfs_rq->on_list) {
315 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 		cfs_rq->on_list = 0;
317 	}
318 }
319 
320 /* Iterate thr' all leaf cfs_rq's on a runqueue */
321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323 
324 /* Do the two (enqueued) entities belong to the same group ? */
325 static inline struct cfs_rq *
326 is_same_group(struct sched_entity *se, struct sched_entity *pse)
327 {
328 	if (se->cfs_rq == pse->cfs_rq)
329 		return se->cfs_rq;
330 
331 	return NULL;
332 }
333 
334 static inline struct sched_entity *parent_entity(struct sched_entity *se)
335 {
336 	return se->parent;
337 }
338 
339 static void
340 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341 {
342 	int se_depth, pse_depth;
343 
344 	/*
345 	 * preemption test can be made between sibling entities who are in the
346 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 	 * both tasks until we find their ancestors who are siblings of common
348 	 * parent.
349 	 */
350 
351 	/* First walk up until both entities are at same depth */
352 	se_depth = (*se)->depth;
353 	pse_depth = (*pse)->depth;
354 
355 	while (se_depth > pse_depth) {
356 		se_depth--;
357 		*se = parent_entity(*se);
358 	}
359 
360 	while (pse_depth > se_depth) {
361 		pse_depth--;
362 		*pse = parent_entity(*pse);
363 	}
364 
365 	while (!is_same_group(*se, *pse)) {
366 		*se = parent_entity(*se);
367 		*pse = parent_entity(*pse);
368 	}
369 }
370 
371 #else	/* !CONFIG_FAIR_GROUP_SCHED */
372 
373 static inline struct task_struct *task_of(struct sched_entity *se)
374 {
375 	return container_of(se, struct task_struct, se);
376 }
377 
378 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379 {
380 	return container_of(cfs_rq, struct rq, cfs);
381 }
382 
383 #define entity_is_task(se)	1
384 
385 #define for_each_sched_entity(se) \
386 		for (; se; se = NULL)
387 
388 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
389 {
390 	return &task_rq(p)->cfs;
391 }
392 
393 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394 {
395 	struct task_struct *p = task_of(se);
396 	struct rq *rq = task_rq(p);
397 
398 	return &rq->cfs;
399 }
400 
401 /* runqueue "owned" by this group */
402 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403 {
404 	return NULL;
405 }
406 
407 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 }
410 
411 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412 {
413 }
414 
415 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417 
418 static inline struct sched_entity *parent_entity(struct sched_entity *se)
419 {
420 	return NULL;
421 }
422 
423 static inline void
424 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425 {
426 }
427 
428 #endif	/* CONFIG_FAIR_GROUP_SCHED */
429 
430 static __always_inline
431 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
432 
433 /**************************************************************
434  * Scheduling class tree data structure manipulation methods:
435  */
436 
437 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
438 {
439 	s64 delta = (s64)(vruntime - max_vruntime);
440 	if (delta > 0)
441 		max_vruntime = vruntime;
442 
443 	return max_vruntime;
444 }
445 
446 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
447 {
448 	s64 delta = (s64)(vruntime - min_vruntime);
449 	if (delta < 0)
450 		min_vruntime = vruntime;
451 
452 	return min_vruntime;
453 }
454 
455 static inline int entity_before(struct sched_entity *a,
456 				struct sched_entity *b)
457 {
458 	return (s64)(a->vruntime - b->vruntime) < 0;
459 }
460 
461 static void update_min_vruntime(struct cfs_rq *cfs_rq)
462 {
463 	struct sched_entity *curr = cfs_rq->curr;
464 
465 	u64 vruntime = cfs_rq->min_vruntime;
466 
467 	if (curr) {
468 		if (curr->on_rq)
469 			vruntime = curr->vruntime;
470 		else
471 			curr = NULL;
472 	}
473 
474 	if (cfs_rq->rb_leftmost) {
475 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
476 						   struct sched_entity,
477 						   run_node);
478 
479 		if (!curr)
480 			vruntime = se->vruntime;
481 		else
482 			vruntime = min_vruntime(vruntime, se->vruntime);
483 	}
484 
485 	/* ensure we never gain time by being placed backwards. */
486 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
487 #ifndef CONFIG_64BIT
488 	smp_wmb();
489 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
490 #endif
491 }
492 
493 /*
494  * Enqueue an entity into the rb-tree:
495  */
496 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
497 {
498 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
499 	struct rb_node *parent = NULL;
500 	struct sched_entity *entry;
501 	int leftmost = 1;
502 
503 	/*
504 	 * Find the right place in the rbtree:
505 	 */
506 	while (*link) {
507 		parent = *link;
508 		entry = rb_entry(parent, struct sched_entity, run_node);
509 		/*
510 		 * We dont care about collisions. Nodes with
511 		 * the same key stay together.
512 		 */
513 		if (entity_before(se, entry)) {
514 			link = &parent->rb_left;
515 		} else {
516 			link = &parent->rb_right;
517 			leftmost = 0;
518 		}
519 	}
520 
521 	/*
522 	 * Maintain a cache of leftmost tree entries (it is frequently
523 	 * used):
524 	 */
525 	if (leftmost)
526 		cfs_rq->rb_leftmost = &se->run_node;
527 
528 	rb_link_node(&se->run_node, parent, link);
529 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
530 }
531 
532 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
533 {
534 	if (cfs_rq->rb_leftmost == &se->run_node) {
535 		struct rb_node *next_node;
536 
537 		next_node = rb_next(&se->run_node);
538 		cfs_rq->rb_leftmost = next_node;
539 	}
540 
541 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
542 }
543 
544 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
545 {
546 	struct rb_node *left = cfs_rq->rb_leftmost;
547 
548 	if (!left)
549 		return NULL;
550 
551 	return rb_entry(left, struct sched_entity, run_node);
552 }
553 
554 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
555 {
556 	struct rb_node *next = rb_next(&se->run_node);
557 
558 	if (!next)
559 		return NULL;
560 
561 	return rb_entry(next, struct sched_entity, run_node);
562 }
563 
564 #ifdef CONFIG_SCHED_DEBUG
565 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
566 {
567 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
568 
569 	if (!last)
570 		return NULL;
571 
572 	return rb_entry(last, struct sched_entity, run_node);
573 }
574 
575 /**************************************************************
576  * Scheduling class statistics methods:
577  */
578 
579 int sched_proc_update_handler(struct ctl_table *table, int write,
580 		void __user *buffer, size_t *lenp,
581 		loff_t *ppos)
582 {
583 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
584 	unsigned int factor = get_update_sysctl_factor();
585 
586 	if (ret || !write)
587 		return ret;
588 
589 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
590 					sysctl_sched_min_granularity);
591 
592 #define WRT_SYSCTL(name) \
593 	(normalized_sysctl_##name = sysctl_##name / (factor))
594 	WRT_SYSCTL(sched_min_granularity);
595 	WRT_SYSCTL(sched_latency);
596 	WRT_SYSCTL(sched_wakeup_granularity);
597 #undef WRT_SYSCTL
598 
599 	return 0;
600 }
601 #endif
602 
603 /*
604  * delta /= w
605  */
606 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
607 {
608 	if (unlikely(se->load.weight != NICE_0_LOAD))
609 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
610 
611 	return delta;
612 }
613 
614 /*
615  * The idea is to set a period in which each task runs once.
616  *
617  * When there are too many tasks (sched_nr_latency) we have to stretch
618  * this period because otherwise the slices get too small.
619  *
620  * p = (nr <= nl) ? l : l*nr/nl
621  */
622 static u64 __sched_period(unsigned long nr_running)
623 {
624 	if (unlikely(nr_running > sched_nr_latency))
625 		return nr_running * sysctl_sched_min_granularity;
626 	else
627 		return sysctl_sched_latency;
628 }
629 
630 /*
631  * We calculate the wall-time slice from the period by taking a part
632  * proportional to the weight.
633  *
634  * s = p*P[w/rw]
635  */
636 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
637 {
638 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
639 
640 	for_each_sched_entity(se) {
641 		struct load_weight *load;
642 		struct load_weight lw;
643 
644 		cfs_rq = cfs_rq_of(se);
645 		load = &cfs_rq->load;
646 
647 		if (unlikely(!se->on_rq)) {
648 			lw = cfs_rq->load;
649 
650 			update_load_add(&lw, se->load.weight);
651 			load = &lw;
652 		}
653 		slice = __calc_delta(slice, se->load.weight, load);
654 	}
655 	return slice;
656 }
657 
658 /*
659  * We calculate the vruntime slice of a to-be-inserted task.
660  *
661  * vs = s/w
662  */
663 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
664 {
665 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
666 }
667 
668 #ifdef CONFIG_SMP
669 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
670 static unsigned long task_h_load(struct task_struct *p);
671 
672 /*
673  * We choose a half-life close to 1 scheduling period.
674  * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
675  * dependent on this value.
676  */
677 #define LOAD_AVG_PERIOD 32
678 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
679 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
680 
681 /* Give new sched_entity start runnable values to heavy its load in infant time */
682 void init_entity_runnable_average(struct sched_entity *se)
683 {
684 	struct sched_avg *sa = &se->avg;
685 
686 	sa->last_update_time = 0;
687 	/*
688 	 * sched_avg's period_contrib should be strictly less then 1024, so
689 	 * we give it 1023 to make sure it is almost a period (1024us), and
690 	 * will definitely be update (after enqueue).
691 	 */
692 	sa->period_contrib = 1023;
693 	/*
694 	 * Tasks are intialized with full load to be seen as heavy tasks until
695 	 * they get a chance to stabilize to their real load level.
696 	 * Group entities are intialized with zero load to reflect the fact that
697 	 * nothing has been attached to the task group yet.
698 	 */
699 	if (entity_is_task(se))
700 		sa->load_avg = scale_load_down(se->load.weight);
701 	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
702 	/*
703 	 * At this point, util_avg won't be used in select_task_rq_fair anyway
704 	 */
705 	sa->util_avg = 0;
706 	sa->util_sum = 0;
707 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
708 }
709 
710 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
711 static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
712 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force);
713 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);
714 
715 /*
716  * With new tasks being created, their initial util_avgs are extrapolated
717  * based on the cfs_rq's current util_avg:
718  *
719  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
720  *
721  * However, in many cases, the above util_avg does not give a desired
722  * value. Moreover, the sum of the util_avgs may be divergent, such
723  * as when the series is a harmonic series.
724  *
725  * To solve this problem, we also cap the util_avg of successive tasks to
726  * only 1/2 of the left utilization budget:
727  *
728  *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
729  *
730  * where n denotes the nth task.
731  *
732  * For example, a simplest series from the beginning would be like:
733  *
734  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
735  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
736  *
737  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
738  * if util_avg > util_avg_cap.
739  */
740 void post_init_entity_util_avg(struct sched_entity *se)
741 {
742 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
743 	struct sched_avg *sa = &se->avg;
744 	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
745 	u64 now = cfs_rq_clock_task(cfs_rq);
746 
747 	if (cap > 0) {
748 		if (cfs_rq->avg.util_avg != 0) {
749 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
750 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
751 
752 			if (sa->util_avg > cap)
753 				sa->util_avg = cap;
754 		} else {
755 			sa->util_avg = cap;
756 		}
757 		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
758 	}
759 
760 	if (entity_is_task(se)) {
761 		struct task_struct *p = task_of(se);
762 		if (p->sched_class != &fair_sched_class) {
763 			/*
764 			 * For !fair tasks do:
765 			 *
766 			update_cfs_rq_load_avg(now, cfs_rq, false);
767 			attach_entity_load_avg(cfs_rq, se);
768 			switched_from_fair(rq, p);
769 			 *
770 			 * such that the next switched_to_fair() has the
771 			 * expected state.
772 			 */
773 			se->avg.last_update_time = now;
774 			return;
775 		}
776 	}
777 
778 	update_cfs_rq_load_avg(now, cfs_rq, false);
779 	attach_entity_load_avg(cfs_rq, se);
780 	update_tg_load_avg(cfs_rq, false);
781 }
782 
783 #else /* !CONFIG_SMP */
784 void init_entity_runnable_average(struct sched_entity *se)
785 {
786 }
787 void post_init_entity_util_avg(struct sched_entity *se)
788 {
789 }
790 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
791 {
792 }
793 #endif /* CONFIG_SMP */
794 
795 /*
796  * Update the current task's runtime statistics.
797  */
798 static void update_curr(struct cfs_rq *cfs_rq)
799 {
800 	struct sched_entity *curr = cfs_rq->curr;
801 	u64 now = rq_clock_task(rq_of(cfs_rq));
802 	u64 delta_exec;
803 
804 	if (unlikely(!curr))
805 		return;
806 
807 	delta_exec = now - curr->exec_start;
808 	if (unlikely((s64)delta_exec <= 0))
809 		return;
810 
811 	curr->exec_start = now;
812 
813 	schedstat_set(curr->statistics.exec_max,
814 		      max(delta_exec, curr->statistics.exec_max));
815 
816 	curr->sum_exec_runtime += delta_exec;
817 	schedstat_add(cfs_rq->exec_clock, delta_exec);
818 
819 	curr->vruntime += calc_delta_fair(delta_exec, curr);
820 	update_min_vruntime(cfs_rq);
821 
822 	if (entity_is_task(curr)) {
823 		struct task_struct *curtask = task_of(curr);
824 
825 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
826 		cpuacct_charge(curtask, delta_exec);
827 		account_group_exec_runtime(curtask, delta_exec);
828 	}
829 
830 	account_cfs_rq_runtime(cfs_rq, delta_exec);
831 }
832 
833 static void update_curr_fair(struct rq *rq)
834 {
835 	update_curr(cfs_rq_of(&rq->curr->se));
836 }
837 
838 static inline void
839 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
840 {
841 	u64 wait_start, prev_wait_start;
842 
843 	if (!schedstat_enabled())
844 		return;
845 
846 	wait_start = rq_clock(rq_of(cfs_rq));
847 	prev_wait_start = schedstat_val(se->statistics.wait_start);
848 
849 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
850 	    likely(wait_start > prev_wait_start))
851 		wait_start -= prev_wait_start;
852 
853 	schedstat_set(se->statistics.wait_start, wait_start);
854 }
855 
856 static inline void
857 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
858 {
859 	struct task_struct *p;
860 	u64 delta;
861 
862 	if (!schedstat_enabled())
863 		return;
864 
865 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
866 
867 	if (entity_is_task(se)) {
868 		p = task_of(se);
869 		if (task_on_rq_migrating(p)) {
870 			/*
871 			 * Preserve migrating task's wait time so wait_start
872 			 * time stamp can be adjusted to accumulate wait time
873 			 * prior to migration.
874 			 */
875 			schedstat_set(se->statistics.wait_start, delta);
876 			return;
877 		}
878 		trace_sched_stat_wait(p, delta);
879 	}
880 
881 	schedstat_set(se->statistics.wait_max,
882 		      max(schedstat_val(se->statistics.wait_max), delta));
883 	schedstat_inc(se->statistics.wait_count);
884 	schedstat_add(se->statistics.wait_sum, delta);
885 	schedstat_set(se->statistics.wait_start, 0);
886 }
887 
888 static inline void
889 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
890 {
891 	struct task_struct *tsk = NULL;
892 	u64 sleep_start, block_start;
893 
894 	if (!schedstat_enabled())
895 		return;
896 
897 	sleep_start = schedstat_val(se->statistics.sleep_start);
898 	block_start = schedstat_val(se->statistics.block_start);
899 
900 	if (entity_is_task(se))
901 		tsk = task_of(se);
902 
903 	if (sleep_start) {
904 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
905 
906 		if ((s64)delta < 0)
907 			delta = 0;
908 
909 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
910 			schedstat_set(se->statistics.sleep_max, delta);
911 
912 		schedstat_set(se->statistics.sleep_start, 0);
913 		schedstat_add(se->statistics.sum_sleep_runtime, delta);
914 
915 		if (tsk) {
916 			account_scheduler_latency(tsk, delta >> 10, 1);
917 			trace_sched_stat_sleep(tsk, delta);
918 		}
919 	}
920 	if (block_start) {
921 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
922 
923 		if ((s64)delta < 0)
924 			delta = 0;
925 
926 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
927 			schedstat_set(se->statistics.block_max, delta);
928 
929 		schedstat_set(se->statistics.block_start, 0);
930 		schedstat_add(se->statistics.sum_sleep_runtime, delta);
931 
932 		if (tsk) {
933 			if (tsk->in_iowait) {
934 				schedstat_add(se->statistics.iowait_sum, delta);
935 				schedstat_inc(se->statistics.iowait_count);
936 				trace_sched_stat_iowait(tsk, delta);
937 			}
938 
939 			trace_sched_stat_blocked(tsk, delta);
940 
941 			/*
942 			 * Blocking time is in units of nanosecs, so shift by
943 			 * 20 to get a milliseconds-range estimation of the
944 			 * amount of time that the task spent sleeping:
945 			 */
946 			if (unlikely(prof_on == SLEEP_PROFILING)) {
947 				profile_hits(SLEEP_PROFILING,
948 						(void *)get_wchan(tsk),
949 						delta >> 20);
950 			}
951 			account_scheduler_latency(tsk, delta >> 10, 0);
952 		}
953 	}
954 }
955 
956 /*
957  * Task is being enqueued - update stats:
958  */
959 static inline void
960 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
961 {
962 	if (!schedstat_enabled())
963 		return;
964 
965 	/*
966 	 * Are we enqueueing a waiting task? (for current tasks
967 	 * a dequeue/enqueue event is a NOP)
968 	 */
969 	if (se != cfs_rq->curr)
970 		update_stats_wait_start(cfs_rq, se);
971 
972 	if (flags & ENQUEUE_WAKEUP)
973 		update_stats_enqueue_sleeper(cfs_rq, se);
974 }
975 
976 static inline void
977 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
978 {
979 
980 	if (!schedstat_enabled())
981 		return;
982 
983 	/*
984 	 * Mark the end of the wait period if dequeueing a
985 	 * waiting task:
986 	 */
987 	if (se != cfs_rq->curr)
988 		update_stats_wait_end(cfs_rq, se);
989 
990 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
991 		struct task_struct *tsk = task_of(se);
992 
993 		if (tsk->state & TASK_INTERRUPTIBLE)
994 			schedstat_set(se->statistics.sleep_start,
995 				      rq_clock(rq_of(cfs_rq)));
996 		if (tsk->state & TASK_UNINTERRUPTIBLE)
997 			schedstat_set(se->statistics.block_start,
998 				      rq_clock(rq_of(cfs_rq)));
999 	}
1000 }
1001 
1002 /*
1003  * We are picking a new current task - update its stats:
1004  */
1005 static inline void
1006 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1007 {
1008 	/*
1009 	 * We are starting a new run period:
1010 	 */
1011 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1012 }
1013 
1014 /**************************************************
1015  * Scheduling class queueing methods:
1016  */
1017 
1018 #ifdef CONFIG_NUMA_BALANCING
1019 /*
1020  * Approximate time to scan a full NUMA task in ms. The task scan period is
1021  * calculated based on the tasks virtual memory size and
1022  * numa_balancing_scan_size.
1023  */
1024 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1025 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1026 
1027 /* Portion of address space to scan in MB */
1028 unsigned int sysctl_numa_balancing_scan_size = 256;
1029 
1030 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1031 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1032 
1033 static unsigned int task_nr_scan_windows(struct task_struct *p)
1034 {
1035 	unsigned long rss = 0;
1036 	unsigned long nr_scan_pages;
1037 
1038 	/*
1039 	 * Calculations based on RSS as non-present and empty pages are skipped
1040 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1041 	 * on resident pages
1042 	 */
1043 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1044 	rss = get_mm_rss(p->mm);
1045 	if (!rss)
1046 		rss = nr_scan_pages;
1047 
1048 	rss = round_up(rss, nr_scan_pages);
1049 	return rss / nr_scan_pages;
1050 }
1051 
1052 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1053 #define MAX_SCAN_WINDOW 2560
1054 
1055 static unsigned int task_scan_min(struct task_struct *p)
1056 {
1057 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1058 	unsigned int scan, floor;
1059 	unsigned int windows = 1;
1060 
1061 	if (scan_size < MAX_SCAN_WINDOW)
1062 		windows = MAX_SCAN_WINDOW / scan_size;
1063 	floor = 1000 / windows;
1064 
1065 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1066 	return max_t(unsigned int, floor, scan);
1067 }
1068 
1069 static unsigned int task_scan_max(struct task_struct *p)
1070 {
1071 	unsigned int smin = task_scan_min(p);
1072 	unsigned int smax;
1073 
1074 	/* Watch for min being lower than max due to floor calculations */
1075 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1076 	return max(smin, smax);
1077 }
1078 
1079 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1080 {
1081 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
1082 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1083 }
1084 
1085 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1086 {
1087 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1088 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1089 }
1090 
1091 struct numa_group {
1092 	atomic_t refcount;
1093 
1094 	spinlock_t lock; /* nr_tasks, tasks */
1095 	int nr_tasks;
1096 	pid_t gid;
1097 	int active_nodes;
1098 
1099 	struct rcu_head rcu;
1100 	unsigned long total_faults;
1101 	unsigned long max_faults_cpu;
1102 	/*
1103 	 * Faults_cpu is used to decide whether memory should move
1104 	 * towards the CPU. As a consequence, these stats are weighted
1105 	 * more by CPU use than by memory faults.
1106 	 */
1107 	unsigned long *faults_cpu;
1108 	unsigned long faults[0];
1109 };
1110 
1111 /* Shared or private faults. */
1112 #define NR_NUMA_HINT_FAULT_TYPES 2
1113 
1114 /* Memory and CPU locality */
1115 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1116 
1117 /* Averaged statistics, and temporary buffers. */
1118 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1119 
1120 pid_t task_numa_group_id(struct task_struct *p)
1121 {
1122 	return p->numa_group ? p->numa_group->gid : 0;
1123 }
1124 
1125 /*
1126  * The averaged statistics, shared & private, memory & cpu,
1127  * occupy the first half of the array. The second half of the
1128  * array is for current counters, which are averaged into the
1129  * first set by task_numa_placement.
1130  */
1131 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1132 {
1133 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1134 }
1135 
1136 static inline unsigned long task_faults(struct task_struct *p, int nid)
1137 {
1138 	if (!p->numa_faults)
1139 		return 0;
1140 
1141 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1142 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1143 }
1144 
1145 static inline unsigned long group_faults(struct task_struct *p, int nid)
1146 {
1147 	if (!p->numa_group)
1148 		return 0;
1149 
1150 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1151 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1152 }
1153 
1154 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1155 {
1156 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1157 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1158 }
1159 
1160 /*
1161  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1162  * considered part of a numa group's pseudo-interleaving set. Migrations
1163  * between these nodes are slowed down, to allow things to settle down.
1164  */
1165 #define ACTIVE_NODE_FRACTION 3
1166 
1167 static bool numa_is_active_node(int nid, struct numa_group *ng)
1168 {
1169 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1170 }
1171 
1172 /* Handle placement on systems where not all nodes are directly connected. */
1173 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1174 					int maxdist, bool task)
1175 {
1176 	unsigned long score = 0;
1177 	int node;
1178 
1179 	/*
1180 	 * All nodes are directly connected, and the same distance
1181 	 * from each other. No need for fancy placement algorithms.
1182 	 */
1183 	if (sched_numa_topology_type == NUMA_DIRECT)
1184 		return 0;
1185 
1186 	/*
1187 	 * This code is called for each node, introducing N^2 complexity,
1188 	 * which should be ok given the number of nodes rarely exceeds 8.
1189 	 */
1190 	for_each_online_node(node) {
1191 		unsigned long faults;
1192 		int dist = node_distance(nid, node);
1193 
1194 		/*
1195 		 * The furthest away nodes in the system are not interesting
1196 		 * for placement; nid was already counted.
1197 		 */
1198 		if (dist == sched_max_numa_distance || node == nid)
1199 			continue;
1200 
1201 		/*
1202 		 * On systems with a backplane NUMA topology, compare groups
1203 		 * of nodes, and move tasks towards the group with the most
1204 		 * memory accesses. When comparing two nodes at distance
1205 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1206 		 * of each group. Skip other nodes.
1207 		 */
1208 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1209 					dist > maxdist)
1210 			continue;
1211 
1212 		/* Add up the faults from nearby nodes. */
1213 		if (task)
1214 			faults = task_faults(p, node);
1215 		else
1216 			faults = group_faults(p, node);
1217 
1218 		/*
1219 		 * On systems with a glueless mesh NUMA topology, there are
1220 		 * no fixed "groups of nodes". Instead, nodes that are not
1221 		 * directly connected bounce traffic through intermediate
1222 		 * nodes; a numa_group can occupy any set of nodes.
1223 		 * The further away a node is, the less the faults count.
1224 		 * This seems to result in good task placement.
1225 		 */
1226 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1227 			faults *= (sched_max_numa_distance - dist);
1228 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1229 		}
1230 
1231 		score += faults;
1232 	}
1233 
1234 	return score;
1235 }
1236 
1237 /*
1238  * These return the fraction of accesses done by a particular task, or
1239  * task group, on a particular numa node.  The group weight is given a
1240  * larger multiplier, in order to group tasks together that are almost
1241  * evenly spread out between numa nodes.
1242  */
1243 static inline unsigned long task_weight(struct task_struct *p, int nid,
1244 					int dist)
1245 {
1246 	unsigned long faults, total_faults;
1247 
1248 	if (!p->numa_faults)
1249 		return 0;
1250 
1251 	total_faults = p->total_numa_faults;
1252 
1253 	if (!total_faults)
1254 		return 0;
1255 
1256 	faults = task_faults(p, nid);
1257 	faults += score_nearby_nodes(p, nid, dist, true);
1258 
1259 	return 1000 * faults / total_faults;
1260 }
1261 
1262 static inline unsigned long group_weight(struct task_struct *p, int nid,
1263 					 int dist)
1264 {
1265 	unsigned long faults, total_faults;
1266 
1267 	if (!p->numa_group)
1268 		return 0;
1269 
1270 	total_faults = p->numa_group->total_faults;
1271 
1272 	if (!total_faults)
1273 		return 0;
1274 
1275 	faults = group_faults(p, nid);
1276 	faults += score_nearby_nodes(p, nid, dist, false);
1277 
1278 	return 1000 * faults / total_faults;
1279 }
1280 
1281 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1282 				int src_nid, int dst_cpu)
1283 {
1284 	struct numa_group *ng = p->numa_group;
1285 	int dst_nid = cpu_to_node(dst_cpu);
1286 	int last_cpupid, this_cpupid;
1287 
1288 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1289 
1290 	/*
1291 	 * Multi-stage node selection is used in conjunction with a periodic
1292 	 * migration fault to build a temporal task<->page relation. By using
1293 	 * a two-stage filter we remove short/unlikely relations.
1294 	 *
1295 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1296 	 * a task's usage of a particular page (n_p) per total usage of this
1297 	 * page (n_t) (in a given time-span) to a probability.
1298 	 *
1299 	 * Our periodic faults will sample this probability and getting the
1300 	 * same result twice in a row, given these samples are fully
1301 	 * independent, is then given by P(n)^2, provided our sample period
1302 	 * is sufficiently short compared to the usage pattern.
1303 	 *
1304 	 * This quadric squishes small probabilities, making it less likely we
1305 	 * act on an unlikely task<->page relation.
1306 	 */
1307 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1308 	if (!cpupid_pid_unset(last_cpupid) &&
1309 				cpupid_to_nid(last_cpupid) != dst_nid)
1310 		return false;
1311 
1312 	/* Always allow migrate on private faults */
1313 	if (cpupid_match_pid(p, last_cpupid))
1314 		return true;
1315 
1316 	/* A shared fault, but p->numa_group has not been set up yet. */
1317 	if (!ng)
1318 		return true;
1319 
1320 	/*
1321 	 * Destination node is much more heavily used than the source
1322 	 * node? Allow migration.
1323 	 */
1324 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1325 					ACTIVE_NODE_FRACTION)
1326 		return true;
1327 
1328 	/*
1329 	 * Distribute memory according to CPU & memory use on each node,
1330 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1331 	 *
1332 	 * faults_cpu(dst)   3   faults_cpu(src)
1333 	 * --------------- * - > ---------------
1334 	 * faults_mem(dst)   4   faults_mem(src)
1335 	 */
1336 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1337 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1338 }
1339 
1340 static unsigned long weighted_cpuload(const int cpu);
1341 static unsigned long source_load(int cpu, int type);
1342 static unsigned long target_load(int cpu, int type);
1343 static unsigned long capacity_of(int cpu);
1344 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1345 
1346 /* Cached statistics for all CPUs within a node */
1347 struct numa_stats {
1348 	unsigned long nr_running;
1349 	unsigned long load;
1350 
1351 	/* Total compute capacity of CPUs on a node */
1352 	unsigned long compute_capacity;
1353 
1354 	/* Approximate capacity in terms of runnable tasks on a node */
1355 	unsigned long task_capacity;
1356 	int has_free_capacity;
1357 };
1358 
1359 /*
1360  * XXX borrowed from update_sg_lb_stats
1361  */
1362 static void update_numa_stats(struct numa_stats *ns, int nid)
1363 {
1364 	int smt, cpu, cpus = 0;
1365 	unsigned long capacity;
1366 
1367 	memset(ns, 0, sizeof(*ns));
1368 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1369 		struct rq *rq = cpu_rq(cpu);
1370 
1371 		ns->nr_running += rq->nr_running;
1372 		ns->load += weighted_cpuload(cpu);
1373 		ns->compute_capacity += capacity_of(cpu);
1374 
1375 		cpus++;
1376 	}
1377 
1378 	/*
1379 	 * If we raced with hotplug and there are no CPUs left in our mask
1380 	 * the @ns structure is NULL'ed and task_numa_compare() will
1381 	 * not find this node attractive.
1382 	 *
1383 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1384 	 * imbalance and bail there.
1385 	 */
1386 	if (!cpus)
1387 		return;
1388 
1389 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1390 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1391 	capacity = cpus / smt; /* cores */
1392 
1393 	ns->task_capacity = min_t(unsigned, capacity,
1394 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1395 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1396 }
1397 
1398 struct task_numa_env {
1399 	struct task_struct *p;
1400 
1401 	int src_cpu, src_nid;
1402 	int dst_cpu, dst_nid;
1403 
1404 	struct numa_stats src_stats, dst_stats;
1405 
1406 	int imbalance_pct;
1407 	int dist;
1408 
1409 	struct task_struct *best_task;
1410 	long best_imp;
1411 	int best_cpu;
1412 };
1413 
1414 static void task_numa_assign(struct task_numa_env *env,
1415 			     struct task_struct *p, long imp)
1416 {
1417 	if (env->best_task)
1418 		put_task_struct(env->best_task);
1419 	if (p)
1420 		get_task_struct(p);
1421 
1422 	env->best_task = p;
1423 	env->best_imp = imp;
1424 	env->best_cpu = env->dst_cpu;
1425 }
1426 
1427 static bool load_too_imbalanced(long src_load, long dst_load,
1428 				struct task_numa_env *env)
1429 {
1430 	long imb, old_imb;
1431 	long orig_src_load, orig_dst_load;
1432 	long src_capacity, dst_capacity;
1433 
1434 	/*
1435 	 * The load is corrected for the CPU capacity available on each node.
1436 	 *
1437 	 * src_load        dst_load
1438 	 * ------------ vs ---------
1439 	 * src_capacity    dst_capacity
1440 	 */
1441 	src_capacity = env->src_stats.compute_capacity;
1442 	dst_capacity = env->dst_stats.compute_capacity;
1443 
1444 	/* We care about the slope of the imbalance, not the direction. */
1445 	if (dst_load < src_load)
1446 		swap(dst_load, src_load);
1447 
1448 	/* Is the difference below the threshold? */
1449 	imb = dst_load * src_capacity * 100 -
1450 	      src_load * dst_capacity * env->imbalance_pct;
1451 	if (imb <= 0)
1452 		return false;
1453 
1454 	/*
1455 	 * The imbalance is above the allowed threshold.
1456 	 * Compare it with the old imbalance.
1457 	 */
1458 	orig_src_load = env->src_stats.load;
1459 	orig_dst_load = env->dst_stats.load;
1460 
1461 	if (orig_dst_load < orig_src_load)
1462 		swap(orig_dst_load, orig_src_load);
1463 
1464 	old_imb = orig_dst_load * src_capacity * 100 -
1465 		  orig_src_load * dst_capacity * env->imbalance_pct;
1466 
1467 	/* Would this change make things worse? */
1468 	return (imb > old_imb);
1469 }
1470 
1471 /*
1472  * This checks if the overall compute and NUMA accesses of the system would
1473  * be improved if the source tasks was migrated to the target dst_cpu taking
1474  * into account that it might be best if task running on the dst_cpu should
1475  * be exchanged with the source task
1476  */
1477 static void task_numa_compare(struct task_numa_env *env,
1478 			      long taskimp, long groupimp)
1479 {
1480 	struct rq *src_rq = cpu_rq(env->src_cpu);
1481 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1482 	struct task_struct *cur;
1483 	long src_load, dst_load;
1484 	long load;
1485 	long imp = env->p->numa_group ? groupimp : taskimp;
1486 	long moveimp = imp;
1487 	int dist = env->dist;
1488 
1489 	rcu_read_lock();
1490 	cur = task_rcu_dereference(&dst_rq->curr);
1491 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1492 		cur = NULL;
1493 
1494 	/*
1495 	 * Because we have preemption enabled we can get migrated around and
1496 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1497 	 */
1498 	if (cur == env->p)
1499 		goto unlock;
1500 
1501 	/*
1502 	 * "imp" is the fault differential for the source task between the
1503 	 * source and destination node. Calculate the total differential for
1504 	 * the source task and potential destination task. The more negative
1505 	 * the value is, the more rmeote accesses that would be expected to
1506 	 * be incurred if the tasks were swapped.
1507 	 */
1508 	if (cur) {
1509 		/* Skip this swap candidate if cannot move to the source cpu */
1510 		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1511 			goto unlock;
1512 
1513 		/*
1514 		 * If dst and source tasks are in the same NUMA group, or not
1515 		 * in any group then look only at task weights.
1516 		 */
1517 		if (cur->numa_group == env->p->numa_group) {
1518 			imp = taskimp + task_weight(cur, env->src_nid, dist) -
1519 			      task_weight(cur, env->dst_nid, dist);
1520 			/*
1521 			 * Add some hysteresis to prevent swapping the
1522 			 * tasks within a group over tiny differences.
1523 			 */
1524 			if (cur->numa_group)
1525 				imp -= imp/16;
1526 		} else {
1527 			/*
1528 			 * Compare the group weights. If a task is all by
1529 			 * itself (not part of a group), use the task weight
1530 			 * instead.
1531 			 */
1532 			if (cur->numa_group)
1533 				imp += group_weight(cur, env->src_nid, dist) -
1534 				       group_weight(cur, env->dst_nid, dist);
1535 			else
1536 				imp += task_weight(cur, env->src_nid, dist) -
1537 				       task_weight(cur, env->dst_nid, dist);
1538 		}
1539 	}
1540 
1541 	if (imp <= env->best_imp && moveimp <= env->best_imp)
1542 		goto unlock;
1543 
1544 	if (!cur) {
1545 		/* Is there capacity at our destination? */
1546 		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1547 		    !env->dst_stats.has_free_capacity)
1548 			goto unlock;
1549 
1550 		goto balance;
1551 	}
1552 
1553 	/* Balance doesn't matter much if we're running a task per cpu */
1554 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1555 			dst_rq->nr_running == 1)
1556 		goto assign;
1557 
1558 	/*
1559 	 * In the overloaded case, try and keep the load balanced.
1560 	 */
1561 balance:
1562 	load = task_h_load(env->p);
1563 	dst_load = env->dst_stats.load + load;
1564 	src_load = env->src_stats.load - load;
1565 
1566 	if (moveimp > imp && moveimp > env->best_imp) {
1567 		/*
1568 		 * If the improvement from just moving env->p direction is
1569 		 * better than swapping tasks around, check if a move is
1570 		 * possible. Store a slightly smaller score than moveimp,
1571 		 * so an actually idle CPU will win.
1572 		 */
1573 		if (!load_too_imbalanced(src_load, dst_load, env)) {
1574 			imp = moveimp - 1;
1575 			cur = NULL;
1576 			goto assign;
1577 		}
1578 	}
1579 
1580 	if (imp <= env->best_imp)
1581 		goto unlock;
1582 
1583 	if (cur) {
1584 		load = task_h_load(cur);
1585 		dst_load -= load;
1586 		src_load += load;
1587 	}
1588 
1589 	if (load_too_imbalanced(src_load, dst_load, env))
1590 		goto unlock;
1591 
1592 	/*
1593 	 * One idle CPU per node is evaluated for a task numa move.
1594 	 * Call select_idle_sibling to maybe find a better one.
1595 	 */
1596 	if (!cur) {
1597 		/*
1598 		 * select_idle_siblings() uses an per-cpu cpumask that
1599 		 * can be used from IRQ context.
1600 		 */
1601 		local_irq_disable();
1602 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1603 						   env->dst_cpu);
1604 		local_irq_enable();
1605 	}
1606 
1607 assign:
1608 	task_numa_assign(env, cur, imp);
1609 unlock:
1610 	rcu_read_unlock();
1611 }
1612 
1613 static void task_numa_find_cpu(struct task_numa_env *env,
1614 				long taskimp, long groupimp)
1615 {
1616 	int cpu;
1617 
1618 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1619 		/* Skip this CPU if the source task cannot migrate */
1620 		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1621 			continue;
1622 
1623 		env->dst_cpu = cpu;
1624 		task_numa_compare(env, taskimp, groupimp);
1625 	}
1626 }
1627 
1628 /* Only move tasks to a NUMA node less busy than the current node. */
1629 static bool numa_has_capacity(struct task_numa_env *env)
1630 {
1631 	struct numa_stats *src = &env->src_stats;
1632 	struct numa_stats *dst = &env->dst_stats;
1633 
1634 	if (src->has_free_capacity && !dst->has_free_capacity)
1635 		return false;
1636 
1637 	/*
1638 	 * Only consider a task move if the source has a higher load
1639 	 * than the destination, corrected for CPU capacity on each node.
1640 	 *
1641 	 *      src->load                dst->load
1642 	 * --------------------- vs ---------------------
1643 	 * src->compute_capacity    dst->compute_capacity
1644 	 */
1645 	if (src->load * dst->compute_capacity * env->imbalance_pct >
1646 
1647 	    dst->load * src->compute_capacity * 100)
1648 		return true;
1649 
1650 	return false;
1651 }
1652 
1653 static int task_numa_migrate(struct task_struct *p)
1654 {
1655 	struct task_numa_env env = {
1656 		.p = p,
1657 
1658 		.src_cpu = task_cpu(p),
1659 		.src_nid = task_node(p),
1660 
1661 		.imbalance_pct = 112,
1662 
1663 		.best_task = NULL,
1664 		.best_imp = 0,
1665 		.best_cpu = -1,
1666 	};
1667 	struct sched_domain *sd;
1668 	unsigned long taskweight, groupweight;
1669 	int nid, ret, dist;
1670 	long taskimp, groupimp;
1671 
1672 	/*
1673 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1674 	 * imbalance and would be the first to start moving tasks about.
1675 	 *
1676 	 * And we want to avoid any moving of tasks about, as that would create
1677 	 * random movement of tasks -- counter the numa conditions we're trying
1678 	 * to satisfy here.
1679 	 */
1680 	rcu_read_lock();
1681 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1682 	if (sd)
1683 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1684 	rcu_read_unlock();
1685 
1686 	/*
1687 	 * Cpusets can break the scheduler domain tree into smaller
1688 	 * balance domains, some of which do not cross NUMA boundaries.
1689 	 * Tasks that are "trapped" in such domains cannot be migrated
1690 	 * elsewhere, so there is no point in (re)trying.
1691 	 */
1692 	if (unlikely(!sd)) {
1693 		p->numa_preferred_nid = task_node(p);
1694 		return -EINVAL;
1695 	}
1696 
1697 	env.dst_nid = p->numa_preferred_nid;
1698 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1699 	taskweight = task_weight(p, env.src_nid, dist);
1700 	groupweight = group_weight(p, env.src_nid, dist);
1701 	update_numa_stats(&env.src_stats, env.src_nid);
1702 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1703 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1704 	update_numa_stats(&env.dst_stats, env.dst_nid);
1705 
1706 	/* Try to find a spot on the preferred nid. */
1707 	if (numa_has_capacity(&env))
1708 		task_numa_find_cpu(&env, taskimp, groupimp);
1709 
1710 	/*
1711 	 * Look at other nodes in these cases:
1712 	 * - there is no space available on the preferred_nid
1713 	 * - the task is part of a numa_group that is interleaved across
1714 	 *   multiple NUMA nodes; in order to better consolidate the group,
1715 	 *   we need to check other locations.
1716 	 */
1717 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1718 		for_each_online_node(nid) {
1719 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1720 				continue;
1721 
1722 			dist = node_distance(env.src_nid, env.dst_nid);
1723 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1724 						dist != env.dist) {
1725 				taskweight = task_weight(p, env.src_nid, dist);
1726 				groupweight = group_weight(p, env.src_nid, dist);
1727 			}
1728 
1729 			/* Only consider nodes where both task and groups benefit */
1730 			taskimp = task_weight(p, nid, dist) - taskweight;
1731 			groupimp = group_weight(p, nid, dist) - groupweight;
1732 			if (taskimp < 0 && groupimp < 0)
1733 				continue;
1734 
1735 			env.dist = dist;
1736 			env.dst_nid = nid;
1737 			update_numa_stats(&env.dst_stats, env.dst_nid);
1738 			if (numa_has_capacity(&env))
1739 				task_numa_find_cpu(&env, taskimp, groupimp);
1740 		}
1741 	}
1742 
1743 	/*
1744 	 * If the task is part of a workload that spans multiple NUMA nodes,
1745 	 * and is migrating into one of the workload's active nodes, remember
1746 	 * this node as the task's preferred numa node, so the workload can
1747 	 * settle down.
1748 	 * A task that migrated to a second choice node will be better off
1749 	 * trying for a better one later. Do not set the preferred node here.
1750 	 */
1751 	if (p->numa_group) {
1752 		struct numa_group *ng = p->numa_group;
1753 
1754 		if (env.best_cpu == -1)
1755 			nid = env.src_nid;
1756 		else
1757 			nid = env.dst_nid;
1758 
1759 		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1760 			sched_setnuma(p, env.dst_nid);
1761 	}
1762 
1763 	/* No better CPU than the current one was found. */
1764 	if (env.best_cpu == -1)
1765 		return -EAGAIN;
1766 
1767 	/*
1768 	 * Reset the scan period if the task is being rescheduled on an
1769 	 * alternative node to recheck if the tasks is now properly placed.
1770 	 */
1771 	p->numa_scan_period = task_scan_min(p);
1772 
1773 	if (env.best_task == NULL) {
1774 		ret = migrate_task_to(p, env.best_cpu);
1775 		if (ret != 0)
1776 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1777 		return ret;
1778 	}
1779 
1780 	ret = migrate_swap(p, env.best_task);
1781 	if (ret != 0)
1782 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1783 	put_task_struct(env.best_task);
1784 	return ret;
1785 }
1786 
1787 /* Attempt to migrate a task to a CPU on the preferred node. */
1788 static void numa_migrate_preferred(struct task_struct *p)
1789 {
1790 	unsigned long interval = HZ;
1791 
1792 	/* This task has no NUMA fault statistics yet */
1793 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1794 		return;
1795 
1796 	/* Periodically retry migrating the task to the preferred node */
1797 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1798 	p->numa_migrate_retry = jiffies + interval;
1799 
1800 	/* Success if task is already running on preferred CPU */
1801 	if (task_node(p) == p->numa_preferred_nid)
1802 		return;
1803 
1804 	/* Otherwise, try migrate to a CPU on the preferred node */
1805 	task_numa_migrate(p);
1806 }
1807 
1808 /*
1809  * Find out how many nodes on the workload is actively running on. Do this by
1810  * tracking the nodes from which NUMA hinting faults are triggered. This can
1811  * be different from the set of nodes where the workload's memory is currently
1812  * located.
1813  */
1814 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1815 {
1816 	unsigned long faults, max_faults = 0;
1817 	int nid, active_nodes = 0;
1818 
1819 	for_each_online_node(nid) {
1820 		faults = group_faults_cpu(numa_group, nid);
1821 		if (faults > max_faults)
1822 			max_faults = faults;
1823 	}
1824 
1825 	for_each_online_node(nid) {
1826 		faults = group_faults_cpu(numa_group, nid);
1827 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1828 			active_nodes++;
1829 	}
1830 
1831 	numa_group->max_faults_cpu = max_faults;
1832 	numa_group->active_nodes = active_nodes;
1833 }
1834 
1835 /*
1836  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1837  * increments. The more local the fault statistics are, the higher the scan
1838  * period will be for the next scan window. If local/(local+remote) ratio is
1839  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1840  * the scan period will decrease. Aim for 70% local accesses.
1841  */
1842 #define NUMA_PERIOD_SLOTS 10
1843 #define NUMA_PERIOD_THRESHOLD 7
1844 
1845 /*
1846  * Increase the scan period (slow down scanning) if the majority of
1847  * our memory is already on our local node, or if the majority of
1848  * the page accesses are shared with other processes.
1849  * Otherwise, decrease the scan period.
1850  */
1851 static void update_task_scan_period(struct task_struct *p,
1852 			unsigned long shared, unsigned long private)
1853 {
1854 	unsigned int period_slot;
1855 	int ratio;
1856 	int diff;
1857 
1858 	unsigned long remote = p->numa_faults_locality[0];
1859 	unsigned long local = p->numa_faults_locality[1];
1860 
1861 	/*
1862 	 * If there were no record hinting faults then either the task is
1863 	 * completely idle or all activity is areas that are not of interest
1864 	 * to automatic numa balancing. Related to that, if there were failed
1865 	 * migration then it implies we are migrating too quickly or the local
1866 	 * node is overloaded. In either case, scan slower
1867 	 */
1868 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1869 		p->numa_scan_period = min(p->numa_scan_period_max,
1870 			p->numa_scan_period << 1);
1871 
1872 		p->mm->numa_next_scan = jiffies +
1873 			msecs_to_jiffies(p->numa_scan_period);
1874 
1875 		return;
1876 	}
1877 
1878 	/*
1879 	 * Prepare to scale scan period relative to the current period.
1880 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1881 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1882 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1883 	 */
1884 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1885 	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1886 	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1887 		int slot = ratio - NUMA_PERIOD_THRESHOLD;
1888 		if (!slot)
1889 			slot = 1;
1890 		diff = slot * period_slot;
1891 	} else {
1892 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1893 
1894 		/*
1895 		 * Scale scan rate increases based on sharing. There is an
1896 		 * inverse relationship between the degree of sharing and
1897 		 * the adjustment made to the scanning period. Broadly
1898 		 * speaking the intent is that there is little point
1899 		 * scanning faster if shared accesses dominate as it may
1900 		 * simply bounce migrations uselessly
1901 		 */
1902 		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1903 		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1904 	}
1905 
1906 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1907 			task_scan_min(p), task_scan_max(p));
1908 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1909 }
1910 
1911 /*
1912  * Get the fraction of time the task has been running since the last
1913  * NUMA placement cycle. The scheduler keeps similar statistics, but
1914  * decays those on a 32ms period, which is orders of magnitude off
1915  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1916  * stats only if the task is so new there are no NUMA statistics yet.
1917  */
1918 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1919 {
1920 	u64 runtime, delta, now;
1921 	/* Use the start of this time slice to avoid calculations. */
1922 	now = p->se.exec_start;
1923 	runtime = p->se.sum_exec_runtime;
1924 
1925 	if (p->last_task_numa_placement) {
1926 		delta = runtime - p->last_sum_exec_runtime;
1927 		*period = now - p->last_task_numa_placement;
1928 	} else {
1929 		delta = p->se.avg.load_sum / p->se.load.weight;
1930 		*period = LOAD_AVG_MAX;
1931 	}
1932 
1933 	p->last_sum_exec_runtime = runtime;
1934 	p->last_task_numa_placement = now;
1935 
1936 	return delta;
1937 }
1938 
1939 /*
1940  * Determine the preferred nid for a task in a numa_group. This needs to
1941  * be done in a way that produces consistent results with group_weight,
1942  * otherwise workloads might not converge.
1943  */
1944 static int preferred_group_nid(struct task_struct *p, int nid)
1945 {
1946 	nodemask_t nodes;
1947 	int dist;
1948 
1949 	/* Direct connections between all NUMA nodes. */
1950 	if (sched_numa_topology_type == NUMA_DIRECT)
1951 		return nid;
1952 
1953 	/*
1954 	 * On a system with glueless mesh NUMA topology, group_weight
1955 	 * scores nodes according to the number of NUMA hinting faults on
1956 	 * both the node itself, and on nearby nodes.
1957 	 */
1958 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1959 		unsigned long score, max_score = 0;
1960 		int node, max_node = nid;
1961 
1962 		dist = sched_max_numa_distance;
1963 
1964 		for_each_online_node(node) {
1965 			score = group_weight(p, node, dist);
1966 			if (score > max_score) {
1967 				max_score = score;
1968 				max_node = node;
1969 			}
1970 		}
1971 		return max_node;
1972 	}
1973 
1974 	/*
1975 	 * Finding the preferred nid in a system with NUMA backplane
1976 	 * interconnect topology is more involved. The goal is to locate
1977 	 * tasks from numa_groups near each other in the system, and
1978 	 * untangle workloads from different sides of the system. This requires
1979 	 * searching down the hierarchy of node groups, recursively searching
1980 	 * inside the highest scoring group of nodes. The nodemask tricks
1981 	 * keep the complexity of the search down.
1982 	 */
1983 	nodes = node_online_map;
1984 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1985 		unsigned long max_faults = 0;
1986 		nodemask_t max_group = NODE_MASK_NONE;
1987 		int a, b;
1988 
1989 		/* Are there nodes at this distance from each other? */
1990 		if (!find_numa_distance(dist))
1991 			continue;
1992 
1993 		for_each_node_mask(a, nodes) {
1994 			unsigned long faults = 0;
1995 			nodemask_t this_group;
1996 			nodes_clear(this_group);
1997 
1998 			/* Sum group's NUMA faults; includes a==b case. */
1999 			for_each_node_mask(b, nodes) {
2000 				if (node_distance(a, b) < dist) {
2001 					faults += group_faults(p, b);
2002 					node_set(b, this_group);
2003 					node_clear(b, nodes);
2004 				}
2005 			}
2006 
2007 			/* Remember the top group. */
2008 			if (faults > max_faults) {
2009 				max_faults = faults;
2010 				max_group = this_group;
2011 				/*
2012 				 * subtle: at the smallest distance there is
2013 				 * just one node left in each "group", the
2014 				 * winner is the preferred nid.
2015 				 */
2016 				nid = a;
2017 			}
2018 		}
2019 		/* Next round, evaluate the nodes within max_group. */
2020 		if (!max_faults)
2021 			break;
2022 		nodes = max_group;
2023 	}
2024 	return nid;
2025 }
2026 
2027 static void task_numa_placement(struct task_struct *p)
2028 {
2029 	int seq, nid, max_nid = -1, max_group_nid = -1;
2030 	unsigned long max_faults = 0, max_group_faults = 0;
2031 	unsigned long fault_types[2] = { 0, 0 };
2032 	unsigned long total_faults;
2033 	u64 runtime, period;
2034 	spinlock_t *group_lock = NULL;
2035 
2036 	/*
2037 	 * The p->mm->numa_scan_seq field gets updated without
2038 	 * exclusive access. Use READ_ONCE() here to ensure
2039 	 * that the field is read in a single access:
2040 	 */
2041 	seq = READ_ONCE(p->mm->numa_scan_seq);
2042 	if (p->numa_scan_seq == seq)
2043 		return;
2044 	p->numa_scan_seq = seq;
2045 	p->numa_scan_period_max = task_scan_max(p);
2046 
2047 	total_faults = p->numa_faults_locality[0] +
2048 		       p->numa_faults_locality[1];
2049 	runtime = numa_get_avg_runtime(p, &period);
2050 
2051 	/* If the task is part of a group prevent parallel updates to group stats */
2052 	if (p->numa_group) {
2053 		group_lock = &p->numa_group->lock;
2054 		spin_lock_irq(group_lock);
2055 	}
2056 
2057 	/* Find the node with the highest number of faults */
2058 	for_each_online_node(nid) {
2059 		/* Keep track of the offsets in numa_faults array */
2060 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2061 		unsigned long faults = 0, group_faults = 0;
2062 		int priv;
2063 
2064 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2065 			long diff, f_diff, f_weight;
2066 
2067 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2068 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2069 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2070 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2071 
2072 			/* Decay existing window, copy faults since last scan */
2073 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2074 			fault_types[priv] += p->numa_faults[membuf_idx];
2075 			p->numa_faults[membuf_idx] = 0;
2076 
2077 			/*
2078 			 * Normalize the faults_from, so all tasks in a group
2079 			 * count according to CPU use, instead of by the raw
2080 			 * number of faults. Tasks with little runtime have
2081 			 * little over-all impact on throughput, and thus their
2082 			 * faults are less important.
2083 			 */
2084 			f_weight = div64_u64(runtime << 16, period + 1);
2085 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2086 				   (total_faults + 1);
2087 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2088 			p->numa_faults[cpubuf_idx] = 0;
2089 
2090 			p->numa_faults[mem_idx] += diff;
2091 			p->numa_faults[cpu_idx] += f_diff;
2092 			faults += p->numa_faults[mem_idx];
2093 			p->total_numa_faults += diff;
2094 			if (p->numa_group) {
2095 				/*
2096 				 * safe because we can only change our own group
2097 				 *
2098 				 * mem_idx represents the offset for a given
2099 				 * nid and priv in a specific region because it
2100 				 * is at the beginning of the numa_faults array.
2101 				 */
2102 				p->numa_group->faults[mem_idx] += diff;
2103 				p->numa_group->faults_cpu[mem_idx] += f_diff;
2104 				p->numa_group->total_faults += diff;
2105 				group_faults += p->numa_group->faults[mem_idx];
2106 			}
2107 		}
2108 
2109 		if (faults > max_faults) {
2110 			max_faults = faults;
2111 			max_nid = nid;
2112 		}
2113 
2114 		if (group_faults > max_group_faults) {
2115 			max_group_faults = group_faults;
2116 			max_group_nid = nid;
2117 		}
2118 	}
2119 
2120 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2121 
2122 	if (p->numa_group) {
2123 		numa_group_count_active_nodes(p->numa_group);
2124 		spin_unlock_irq(group_lock);
2125 		max_nid = preferred_group_nid(p, max_group_nid);
2126 	}
2127 
2128 	if (max_faults) {
2129 		/* Set the new preferred node */
2130 		if (max_nid != p->numa_preferred_nid)
2131 			sched_setnuma(p, max_nid);
2132 
2133 		if (task_node(p) != p->numa_preferred_nid)
2134 			numa_migrate_preferred(p);
2135 	}
2136 }
2137 
2138 static inline int get_numa_group(struct numa_group *grp)
2139 {
2140 	return atomic_inc_not_zero(&grp->refcount);
2141 }
2142 
2143 static inline void put_numa_group(struct numa_group *grp)
2144 {
2145 	if (atomic_dec_and_test(&grp->refcount))
2146 		kfree_rcu(grp, rcu);
2147 }
2148 
2149 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2150 			int *priv)
2151 {
2152 	struct numa_group *grp, *my_grp;
2153 	struct task_struct *tsk;
2154 	bool join = false;
2155 	int cpu = cpupid_to_cpu(cpupid);
2156 	int i;
2157 
2158 	if (unlikely(!p->numa_group)) {
2159 		unsigned int size = sizeof(struct numa_group) +
2160 				    4*nr_node_ids*sizeof(unsigned long);
2161 
2162 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2163 		if (!grp)
2164 			return;
2165 
2166 		atomic_set(&grp->refcount, 1);
2167 		grp->active_nodes = 1;
2168 		grp->max_faults_cpu = 0;
2169 		spin_lock_init(&grp->lock);
2170 		grp->gid = p->pid;
2171 		/* Second half of the array tracks nids where faults happen */
2172 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2173 						nr_node_ids;
2174 
2175 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2176 			grp->faults[i] = p->numa_faults[i];
2177 
2178 		grp->total_faults = p->total_numa_faults;
2179 
2180 		grp->nr_tasks++;
2181 		rcu_assign_pointer(p->numa_group, grp);
2182 	}
2183 
2184 	rcu_read_lock();
2185 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2186 
2187 	if (!cpupid_match_pid(tsk, cpupid))
2188 		goto no_join;
2189 
2190 	grp = rcu_dereference(tsk->numa_group);
2191 	if (!grp)
2192 		goto no_join;
2193 
2194 	my_grp = p->numa_group;
2195 	if (grp == my_grp)
2196 		goto no_join;
2197 
2198 	/*
2199 	 * Only join the other group if its bigger; if we're the bigger group,
2200 	 * the other task will join us.
2201 	 */
2202 	if (my_grp->nr_tasks > grp->nr_tasks)
2203 		goto no_join;
2204 
2205 	/*
2206 	 * Tie-break on the grp address.
2207 	 */
2208 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2209 		goto no_join;
2210 
2211 	/* Always join threads in the same process. */
2212 	if (tsk->mm == current->mm)
2213 		join = true;
2214 
2215 	/* Simple filter to avoid false positives due to PID collisions */
2216 	if (flags & TNF_SHARED)
2217 		join = true;
2218 
2219 	/* Update priv based on whether false sharing was detected */
2220 	*priv = !join;
2221 
2222 	if (join && !get_numa_group(grp))
2223 		goto no_join;
2224 
2225 	rcu_read_unlock();
2226 
2227 	if (!join)
2228 		return;
2229 
2230 	BUG_ON(irqs_disabled());
2231 	double_lock_irq(&my_grp->lock, &grp->lock);
2232 
2233 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2234 		my_grp->faults[i] -= p->numa_faults[i];
2235 		grp->faults[i] += p->numa_faults[i];
2236 	}
2237 	my_grp->total_faults -= p->total_numa_faults;
2238 	grp->total_faults += p->total_numa_faults;
2239 
2240 	my_grp->nr_tasks--;
2241 	grp->nr_tasks++;
2242 
2243 	spin_unlock(&my_grp->lock);
2244 	spin_unlock_irq(&grp->lock);
2245 
2246 	rcu_assign_pointer(p->numa_group, grp);
2247 
2248 	put_numa_group(my_grp);
2249 	return;
2250 
2251 no_join:
2252 	rcu_read_unlock();
2253 	return;
2254 }
2255 
2256 void task_numa_free(struct task_struct *p)
2257 {
2258 	struct numa_group *grp = p->numa_group;
2259 	void *numa_faults = p->numa_faults;
2260 	unsigned long flags;
2261 	int i;
2262 
2263 	if (grp) {
2264 		spin_lock_irqsave(&grp->lock, flags);
2265 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2266 			grp->faults[i] -= p->numa_faults[i];
2267 		grp->total_faults -= p->total_numa_faults;
2268 
2269 		grp->nr_tasks--;
2270 		spin_unlock_irqrestore(&grp->lock, flags);
2271 		RCU_INIT_POINTER(p->numa_group, NULL);
2272 		put_numa_group(grp);
2273 	}
2274 
2275 	p->numa_faults = NULL;
2276 	kfree(numa_faults);
2277 }
2278 
2279 /*
2280  * Got a PROT_NONE fault for a page on @node.
2281  */
2282 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2283 {
2284 	struct task_struct *p = current;
2285 	bool migrated = flags & TNF_MIGRATED;
2286 	int cpu_node = task_node(current);
2287 	int local = !!(flags & TNF_FAULT_LOCAL);
2288 	struct numa_group *ng;
2289 	int priv;
2290 
2291 	if (!static_branch_likely(&sched_numa_balancing))
2292 		return;
2293 
2294 	/* for example, ksmd faulting in a user's mm */
2295 	if (!p->mm)
2296 		return;
2297 
2298 	/* Allocate buffer to track faults on a per-node basis */
2299 	if (unlikely(!p->numa_faults)) {
2300 		int size = sizeof(*p->numa_faults) *
2301 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2302 
2303 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2304 		if (!p->numa_faults)
2305 			return;
2306 
2307 		p->total_numa_faults = 0;
2308 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2309 	}
2310 
2311 	/*
2312 	 * First accesses are treated as private, otherwise consider accesses
2313 	 * to be private if the accessing pid has not changed
2314 	 */
2315 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2316 		priv = 1;
2317 	} else {
2318 		priv = cpupid_match_pid(p, last_cpupid);
2319 		if (!priv && !(flags & TNF_NO_GROUP))
2320 			task_numa_group(p, last_cpupid, flags, &priv);
2321 	}
2322 
2323 	/*
2324 	 * If a workload spans multiple NUMA nodes, a shared fault that
2325 	 * occurs wholly within the set of nodes that the workload is
2326 	 * actively using should be counted as local. This allows the
2327 	 * scan rate to slow down when a workload has settled down.
2328 	 */
2329 	ng = p->numa_group;
2330 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2331 				numa_is_active_node(cpu_node, ng) &&
2332 				numa_is_active_node(mem_node, ng))
2333 		local = 1;
2334 
2335 	task_numa_placement(p);
2336 
2337 	/*
2338 	 * Retry task to preferred node migration periodically, in case it
2339 	 * case it previously failed, or the scheduler moved us.
2340 	 */
2341 	if (time_after(jiffies, p->numa_migrate_retry))
2342 		numa_migrate_preferred(p);
2343 
2344 	if (migrated)
2345 		p->numa_pages_migrated += pages;
2346 	if (flags & TNF_MIGRATE_FAIL)
2347 		p->numa_faults_locality[2] += pages;
2348 
2349 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2350 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2351 	p->numa_faults_locality[local] += pages;
2352 }
2353 
2354 static void reset_ptenuma_scan(struct task_struct *p)
2355 {
2356 	/*
2357 	 * We only did a read acquisition of the mmap sem, so
2358 	 * p->mm->numa_scan_seq is written to without exclusive access
2359 	 * and the update is not guaranteed to be atomic. That's not
2360 	 * much of an issue though, since this is just used for
2361 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2362 	 * expensive, to avoid any form of compiler optimizations:
2363 	 */
2364 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2365 	p->mm->numa_scan_offset = 0;
2366 }
2367 
2368 /*
2369  * The expensive part of numa migration is done from task_work context.
2370  * Triggered from task_tick_numa().
2371  */
2372 void task_numa_work(struct callback_head *work)
2373 {
2374 	unsigned long migrate, next_scan, now = jiffies;
2375 	struct task_struct *p = current;
2376 	struct mm_struct *mm = p->mm;
2377 	u64 runtime = p->se.sum_exec_runtime;
2378 	struct vm_area_struct *vma;
2379 	unsigned long start, end;
2380 	unsigned long nr_pte_updates = 0;
2381 	long pages, virtpages;
2382 
2383 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2384 
2385 	work->next = work; /* protect against double add */
2386 	/*
2387 	 * Who cares about NUMA placement when they're dying.
2388 	 *
2389 	 * NOTE: make sure not to dereference p->mm before this check,
2390 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2391 	 * without p->mm even though we still had it when we enqueued this
2392 	 * work.
2393 	 */
2394 	if (p->flags & PF_EXITING)
2395 		return;
2396 
2397 	if (!mm->numa_next_scan) {
2398 		mm->numa_next_scan = now +
2399 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2400 	}
2401 
2402 	/*
2403 	 * Enforce maximal scan/migration frequency..
2404 	 */
2405 	migrate = mm->numa_next_scan;
2406 	if (time_before(now, migrate))
2407 		return;
2408 
2409 	if (p->numa_scan_period == 0) {
2410 		p->numa_scan_period_max = task_scan_max(p);
2411 		p->numa_scan_period = task_scan_min(p);
2412 	}
2413 
2414 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2415 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2416 		return;
2417 
2418 	/*
2419 	 * Delay this task enough that another task of this mm will likely win
2420 	 * the next time around.
2421 	 */
2422 	p->node_stamp += 2 * TICK_NSEC;
2423 
2424 	start = mm->numa_scan_offset;
2425 	pages = sysctl_numa_balancing_scan_size;
2426 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2427 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2428 	if (!pages)
2429 		return;
2430 
2431 
2432 	down_read(&mm->mmap_sem);
2433 	vma = find_vma(mm, start);
2434 	if (!vma) {
2435 		reset_ptenuma_scan(p);
2436 		start = 0;
2437 		vma = mm->mmap;
2438 	}
2439 	for (; vma; vma = vma->vm_next) {
2440 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2441 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2442 			continue;
2443 		}
2444 
2445 		/*
2446 		 * Shared library pages mapped by multiple processes are not
2447 		 * migrated as it is expected they are cache replicated. Avoid
2448 		 * hinting faults in read-only file-backed mappings or the vdso
2449 		 * as migrating the pages will be of marginal benefit.
2450 		 */
2451 		if (!vma->vm_mm ||
2452 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2453 			continue;
2454 
2455 		/*
2456 		 * Skip inaccessible VMAs to avoid any confusion between
2457 		 * PROT_NONE and NUMA hinting ptes
2458 		 */
2459 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2460 			continue;
2461 
2462 		do {
2463 			start = max(start, vma->vm_start);
2464 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2465 			end = min(end, vma->vm_end);
2466 			nr_pte_updates = change_prot_numa(vma, start, end);
2467 
2468 			/*
2469 			 * Try to scan sysctl_numa_balancing_size worth of
2470 			 * hpages that have at least one present PTE that
2471 			 * is not already pte-numa. If the VMA contains
2472 			 * areas that are unused or already full of prot_numa
2473 			 * PTEs, scan up to virtpages, to skip through those
2474 			 * areas faster.
2475 			 */
2476 			if (nr_pte_updates)
2477 				pages -= (end - start) >> PAGE_SHIFT;
2478 			virtpages -= (end - start) >> PAGE_SHIFT;
2479 
2480 			start = end;
2481 			if (pages <= 0 || virtpages <= 0)
2482 				goto out;
2483 
2484 			cond_resched();
2485 		} while (end != vma->vm_end);
2486 	}
2487 
2488 out:
2489 	/*
2490 	 * It is possible to reach the end of the VMA list but the last few
2491 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2492 	 * would find the !migratable VMA on the next scan but not reset the
2493 	 * scanner to the start so check it now.
2494 	 */
2495 	if (vma)
2496 		mm->numa_scan_offset = start;
2497 	else
2498 		reset_ptenuma_scan(p);
2499 	up_read(&mm->mmap_sem);
2500 
2501 	/*
2502 	 * Make sure tasks use at least 32x as much time to run other code
2503 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2504 	 * Usually update_task_scan_period slows down scanning enough; on an
2505 	 * overloaded system we need to limit overhead on a per task basis.
2506 	 */
2507 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2508 		u64 diff = p->se.sum_exec_runtime - runtime;
2509 		p->node_stamp += 32 * diff;
2510 	}
2511 }
2512 
2513 /*
2514  * Drive the periodic memory faults..
2515  */
2516 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2517 {
2518 	struct callback_head *work = &curr->numa_work;
2519 	u64 period, now;
2520 
2521 	/*
2522 	 * We don't care about NUMA placement if we don't have memory.
2523 	 */
2524 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2525 		return;
2526 
2527 	/*
2528 	 * Using runtime rather than walltime has the dual advantage that
2529 	 * we (mostly) drive the selection from busy threads and that the
2530 	 * task needs to have done some actual work before we bother with
2531 	 * NUMA placement.
2532 	 */
2533 	now = curr->se.sum_exec_runtime;
2534 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2535 
2536 	if (now > curr->node_stamp + period) {
2537 		if (!curr->node_stamp)
2538 			curr->numa_scan_period = task_scan_min(curr);
2539 		curr->node_stamp += period;
2540 
2541 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2542 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2543 			task_work_add(curr, work, true);
2544 		}
2545 	}
2546 }
2547 #else
2548 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2549 {
2550 }
2551 
2552 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2553 {
2554 }
2555 
2556 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2557 {
2558 }
2559 #endif /* CONFIG_NUMA_BALANCING */
2560 
2561 static void
2562 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2563 {
2564 	update_load_add(&cfs_rq->load, se->load.weight);
2565 	if (!parent_entity(se))
2566 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2567 #ifdef CONFIG_SMP
2568 	if (entity_is_task(se)) {
2569 		struct rq *rq = rq_of(cfs_rq);
2570 
2571 		account_numa_enqueue(rq, task_of(se));
2572 		list_add(&se->group_node, &rq->cfs_tasks);
2573 	}
2574 #endif
2575 	cfs_rq->nr_running++;
2576 }
2577 
2578 static void
2579 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2580 {
2581 	update_load_sub(&cfs_rq->load, se->load.weight);
2582 	if (!parent_entity(se))
2583 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2584 #ifdef CONFIG_SMP
2585 	if (entity_is_task(se)) {
2586 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2587 		list_del_init(&se->group_node);
2588 	}
2589 #endif
2590 	cfs_rq->nr_running--;
2591 }
2592 
2593 #ifdef CONFIG_FAIR_GROUP_SCHED
2594 # ifdef CONFIG_SMP
2595 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2596 {
2597 	long tg_weight, load, shares;
2598 
2599 	/*
2600 	 * This really should be: cfs_rq->avg.load_avg, but instead we use
2601 	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2602 	 * the shares for small weight interactive tasks.
2603 	 */
2604 	load = scale_load_down(cfs_rq->load.weight);
2605 
2606 	tg_weight = atomic_long_read(&tg->load_avg);
2607 
2608 	/* Ensure tg_weight >= load */
2609 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2610 	tg_weight += load;
2611 
2612 	shares = (tg->shares * load);
2613 	if (tg_weight)
2614 		shares /= tg_weight;
2615 
2616 	if (shares < MIN_SHARES)
2617 		shares = MIN_SHARES;
2618 	if (shares > tg->shares)
2619 		shares = tg->shares;
2620 
2621 	return shares;
2622 }
2623 # else /* CONFIG_SMP */
2624 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2625 {
2626 	return tg->shares;
2627 }
2628 # endif /* CONFIG_SMP */
2629 
2630 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2631 			    unsigned long weight)
2632 {
2633 	if (se->on_rq) {
2634 		/* commit outstanding execution time */
2635 		if (cfs_rq->curr == se)
2636 			update_curr(cfs_rq);
2637 		account_entity_dequeue(cfs_rq, se);
2638 	}
2639 
2640 	update_load_set(&se->load, weight);
2641 
2642 	if (se->on_rq)
2643 		account_entity_enqueue(cfs_rq, se);
2644 }
2645 
2646 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2647 
2648 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2649 {
2650 	struct task_group *tg;
2651 	struct sched_entity *se;
2652 	long shares;
2653 
2654 	tg = cfs_rq->tg;
2655 	se = tg->se[cpu_of(rq_of(cfs_rq))];
2656 	if (!se || throttled_hierarchy(cfs_rq))
2657 		return;
2658 #ifndef CONFIG_SMP
2659 	if (likely(se->load.weight == tg->shares))
2660 		return;
2661 #endif
2662 	shares = calc_cfs_shares(cfs_rq, tg);
2663 
2664 	reweight_entity(cfs_rq_of(se), se, shares);
2665 }
2666 #else /* CONFIG_FAIR_GROUP_SCHED */
2667 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2668 {
2669 }
2670 #endif /* CONFIG_FAIR_GROUP_SCHED */
2671 
2672 #ifdef CONFIG_SMP
2673 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2674 static const u32 runnable_avg_yN_inv[] = {
2675 	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2676 	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2677 	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2678 	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2679 	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2680 	0x85aac367, 0x82cd8698,
2681 };
2682 
2683 /*
2684  * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2685  * over-estimates when re-combining.
2686  */
2687 static const u32 runnable_avg_yN_sum[] = {
2688 	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2689 	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2690 	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2691 };
2692 
2693 /*
2694  * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2695  * lower integers. See Documentation/scheduler/sched-avg.txt how these
2696  * were generated:
2697  */
2698 static const u32 __accumulated_sum_N32[] = {
2699 	    0, 23371, 35056, 40899, 43820, 45281,
2700 	46011, 46376, 46559, 46650, 46696, 46719,
2701 };
2702 
2703 /*
2704  * Approximate:
2705  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2706  */
2707 static __always_inline u64 decay_load(u64 val, u64 n)
2708 {
2709 	unsigned int local_n;
2710 
2711 	if (!n)
2712 		return val;
2713 	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2714 		return 0;
2715 
2716 	/* after bounds checking we can collapse to 32-bit */
2717 	local_n = n;
2718 
2719 	/*
2720 	 * As y^PERIOD = 1/2, we can combine
2721 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2722 	 * With a look-up table which covers y^n (n<PERIOD)
2723 	 *
2724 	 * To achieve constant time decay_load.
2725 	 */
2726 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2727 		val >>= local_n / LOAD_AVG_PERIOD;
2728 		local_n %= LOAD_AVG_PERIOD;
2729 	}
2730 
2731 	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2732 	return val;
2733 }
2734 
2735 /*
2736  * For updates fully spanning n periods, the contribution to runnable
2737  * average will be: \Sum 1024*y^n
2738  *
2739  * We can compute this reasonably efficiently by combining:
2740  *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2741  */
2742 static u32 __compute_runnable_contrib(u64 n)
2743 {
2744 	u32 contrib = 0;
2745 
2746 	if (likely(n <= LOAD_AVG_PERIOD))
2747 		return runnable_avg_yN_sum[n];
2748 	else if (unlikely(n >= LOAD_AVG_MAX_N))
2749 		return LOAD_AVG_MAX;
2750 
2751 	/* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2752 	contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2753 	n %= LOAD_AVG_PERIOD;
2754 	contrib = decay_load(contrib, n);
2755 	return contrib + runnable_avg_yN_sum[n];
2756 }
2757 
2758 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2759 
2760 /*
2761  * We can represent the historical contribution to runnable average as the
2762  * coefficients of a geometric series.  To do this we sub-divide our runnable
2763  * history into segments of approximately 1ms (1024us); label the segment that
2764  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2765  *
2766  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2767  *      p0            p1           p2
2768  *     (now)       (~1ms ago)  (~2ms ago)
2769  *
2770  * Let u_i denote the fraction of p_i that the entity was runnable.
2771  *
2772  * We then designate the fractions u_i as our co-efficients, yielding the
2773  * following representation of historical load:
2774  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2775  *
2776  * We choose y based on the with of a reasonably scheduling period, fixing:
2777  *   y^32 = 0.5
2778  *
2779  * This means that the contribution to load ~32ms ago (u_32) will be weighted
2780  * approximately half as much as the contribution to load within the last ms
2781  * (u_0).
2782  *
2783  * When a period "rolls over" and we have new u_0`, multiplying the previous
2784  * sum again by y is sufficient to update:
2785  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2786  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2787  */
2788 static __always_inline int
2789 __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2790 		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2791 {
2792 	u64 delta, scaled_delta, periods;
2793 	u32 contrib;
2794 	unsigned int delta_w, scaled_delta_w, decayed = 0;
2795 	unsigned long scale_freq, scale_cpu;
2796 
2797 	delta = now - sa->last_update_time;
2798 	/*
2799 	 * This should only happen when time goes backwards, which it
2800 	 * unfortunately does during sched clock init when we swap over to TSC.
2801 	 */
2802 	if ((s64)delta < 0) {
2803 		sa->last_update_time = now;
2804 		return 0;
2805 	}
2806 
2807 	/*
2808 	 * Use 1024ns as the unit of measurement since it's a reasonable
2809 	 * approximation of 1us and fast to compute.
2810 	 */
2811 	delta >>= 10;
2812 	if (!delta)
2813 		return 0;
2814 	sa->last_update_time = now;
2815 
2816 	scale_freq = arch_scale_freq_capacity(NULL, cpu);
2817 	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2818 
2819 	/* delta_w is the amount already accumulated against our next period */
2820 	delta_w = sa->period_contrib;
2821 	if (delta + delta_w >= 1024) {
2822 		decayed = 1;
2823 
2824 		/* how much left for next period will start over, we don't know yet */
2825 		sa->period_contrib = 0;
2826 
2827 		/*
2828 		 * Now that we know we're crossing a period boundary, figure
2829 		 * out how much from delta we need to complete the current
2830 		 * period and accrue it.
2831 		 */
2832 		delta_w = 1024 - delta_w;
2833 		scaled_delta_w = cap_scale(delta_w, scale_freq);
2834 		if (weight) {
2835 			sa->load_sum += weight * scaled_delta_w;
2836 			if (cfs_rq) {
2837 				cfs_rq->runnable_load_sum +=
2838 						weight * scaled_delta_w;
2839 			}
2840 		}
2841 		if (running)
2842 			sa->util_sum += scaled_delta_w * scale_cpu;
2843 
2844 		delta -= delta_w;
2845 
2846 		/* Figure out how many additional periods this update spans */
2847 		periods = delta / 1024;
2848 		delta %= 1024;
2849 
2850 		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2851 		if (cfs_rq) {
2852 			cfs_rq->runnable_load_sum =
2853 				decay_load(cfs_rq->runnable_load_sum, periods + 1);
2854 		}
2855 		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2856 
2857 		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2858 		contrib = __compute_runnable_contrib(periods);
2859 		contrib = cap_scale(contrib, scale_freq);
2860 		if (weight) {
2861 			sa->load_sum += weight * contrib;
2862 			if (cfs_rq)
2863 				cfs_rq->runnable_load_sum += weight * contrib;
2864 		}
2865 		if (running)
2866 			sa->util_sum += contrib * scale_cpu;
2867 	}
2868 
2869 	/* Remainder of delta accrued against u_0` */
2870 	scaled_delta = cap_scale(delta, scale_freq);
2871 	if (weight) {
2872 		sa->load_sum += weight * scaled_delta;
2873 		if (cfs_rq)
2874 			cfs_rq->runnable_load_sum += weight * scaled_delta;
2875 	}
2876 	if (running)
2877 		sa->util_sum += scaled_delta * scale_cpu;
2878 
2879 	sa->period_contrib += delta;
2880 
2881 	if (decayed) {
2882 		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2883 		if (cfs_rq) {
2884 			cfs_rq->runnable_load_avg =
2885 				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2886 		}
2887 		sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2888 	}
2889 
2890 	return decayed;
2891 }
2892 
2893 #ifdef CONFIG_FAIR_GROUP_SCHED
2894 /**
2895  * update_tg_load_avg - update the tg's load avg
2896  * @cfs_rq: the cfs_rq whose avg changed
2897  * @force: update regardless of how small the difference
2898  *
2899  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2900  * However, because tg->load_avg is a global value there are performance
2901  * considerations.
2902  *
2903  * In order to avoid having to look at the other cfs_rq's, we use a
2904  * differential update where we store the last value we propagated. This in
2905  * turn allows skipping updates if the differential is 'small'.
2906  *
2907  * Updating tg's load_avg is necessary before update_cfs_share() (which is
2908  * done) and effective_load() (which is not done because it is too costly).
2909  */
2910 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2911 {
2912 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2913 
2914 	/*
2915 	 * No need to update load_avg for root_task_group as it is not used.
2916 	 */
2917 	if (cfs_rq->tg == &root_task_group)
2918 		return;
2919 
2920 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2921 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
2922 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2923 	}
2924 }
2925 
2926 /*
2927  * Called within set_task_rq() right before setting a task's cpu. The
2928  * caller only guarantees p->pi_lock is held; no other assumptions,
2929  * including the state of rq->lock, should be made.
2930  */
2931 void set_task_rq_fair(struct sched_entity *se,
2932 		      struct cfs_rq *prev, struct cfs_rq *next)
2933 {
2934 	if (!sched_feat(ATTACH_AGE_LOAD))
2935 		return;
2936 
2937 	/*
2938 	 * We are supposed to update the task to "current" time, then its up to
2939 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2940 	 * getting what current time is, so simply throw away the out-of-date
2941 	 * time. This will result in the wakee task is less decayed, but giving
2942 	 * the wakee more load sounds not bad.
2943 	 */
2944 	if (se->avg.last_update_time && prev) {
2945 		u64 p_last_update_time;
2946 		u64 n_last_update_time;
2947 
2948 #ifndef CONFIG_64BIT
2949 		u64 p_last_update_time_copy;
2950 		u64 n_last_update_time_copy;
2951 
2952 		do {
2953 			p_last_update_time_copy = prev->load_last_update_time_copy;
2954 			n_last_update_time_copy = next->load_last_update_time_copy;
2955 
2956 			smp_rmb();
2957 
2958 			p_last_update_time = prev->avg.last_update_time;
2959 			n_last_update_time = next->avg.last_update_time;
2960 
2961 		} while (p_last_update_time != p_last_update_time_copy ||
2962 			 n_last_update_time != n_last_update_time_copy);
2963 #else
2964 		p_last_update_time = prev->avg.last_update_time;
2965 		n_last_update_time = next->avg.last_update_time;
2966 #endif
2967 		__update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2968 				  &se->avg, 0, 0, NULL);
2969 		se->avg.last_update_time = n_last_update_time;
2970 	}
2971 }
2972 #else /* CONFIG_FAIR_GROUP_SCHED */
2973 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2974 #endif /* CONFIG_FAIR_GROUP_SCHED */
2975 
2976 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2977 {
2978 	if (&this_rq()->cfs == cfs_rq) {
2979 		/*
2980 		 * There are a few boundary cases this might miss but it should
2981 		 * get called often enough that that should (hopefully) not be
2982 		 * a real problem -- added to that it only calls on the local
2983 		 * CPU, so if we enqueue remotely we'll miss an update, but
2984 		 * the next tick/schedule should update.
2985 		 *
2986 		 * It will not get called when we go idle, because the idle
2987 		 * thread is a different class (!fair), nor will the utilization
2988 		 * number include things like RT tasks.
2989 		 *
2990 		 * As is, the util number is not freq-invariant (we'd have to
2991 		 * implement arch_scale_freq_capacity() for that).
2992 		 *
2993 		 * See cpu_util().
2994 		 */
2995 		cpufreq_update_util(rq_of(cfs_rq), 0);
2996 	}
2997 }
2998 
2999 /*
3000  * Unsigned subtract and clamp on underflow.
3001  *
3002  * Explicitly do a load-store to ensure the intermediate value never hits
3003  * memory. This allows lockless observations without ever seeing the negative
3004  * values.
3005  */
3006 #define sub_positive(_ptr, _val) do {				\
3007 	typeof(_ptr) ptr = (_ptr);				\
3008 	typeof(*ptr) val = (_val);				\
3009 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3010 	res = var - val;					\
3011 	if (res > var)						\
3012 		res = 0;					\
3013 	WRITE_ONCE(*ptr, res);					\
3014 } while (0)
3015 
3016 /**
3017  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3018  * @now: current time, as per cfs_rq_clock_task()
3019  * @cfs_rq: cfs_rq to update
3020  * @update_freq: should we call cfs_rq_util_change() or will the call do so
3021  *
3022  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3023  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3024  * post_init_entity_util_avg().
3025  *
3026  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3027  *
3028  * Returns true if the load decayed or we removed load.
3029  *
3030  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3031  * call update_tg_load_avg() when this function returns true.
3032  */
3033 static inline int
3034 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3035 {
3036 	struct sched_avg *sa = &cfs_rq->avg;
3037 	int decayed, removed_load = 0, removed_util = 0;
3038 
3039 	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3040 		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3041 		sub_positive(&sa->load_avg, r);
3042 		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3043 		removed_load = 1;
3044 	}
3045 
3046 	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3047 		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3048 		sub_positive(&sa->util_avg, r);
3049 		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3050 		removed_util = 1;
3051 	}
3052 
3053 	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3054 		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
3055 
3056 #ifndef CONFIG_64BIT
3057 	smp_wmb();
3058 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3059 #endif
3060 
3061 	if (update_freq && (decayed || removed_util))
3062 		cfs_rq_util_change(cfs_rq);
3063 
3064 	return decayed || removed_load;
3065 }
3066 
3067 /* Update task and its cfs_rq load average */
3068 static inline void update_load_avg(struct sched_entity *se, int update_tg)
3069 {
3070 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3071 	u64 now = cfs_rq_clock_task(cfs_rq);
3072 	struct rq *rq = rq_of(cfs_rq);
3073 	int cpu = cpu_of(rq);
3074 
3075 	/*
3076 	 * Track task load average for carrying it to new CPU after migrated, and
3077 	 * track group sched_entity load average for task_h_load calc in migration
3078 	 */
3079 	__update_load_avg(now, cpu, &se->avg,
3080 			  se->on_rq * scale_load_down(se->load.weight),
3081 			  cfs_rq->curr == se, NULL);
3082 
3083 	if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
3084 		update_tg_load_avg(cfs_rq, 0);
3085 }
3086 
3087 /**
3088  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3089  * @cfs_rq: cfs_rq to attach to
3090  * @se: sched_entity to attach
3091  *
3092  * Must call update_cfs_rq_load_avg() before this, since we rely on
3093  * cfs_rq->avg.last_update_time being current.
3094  */
3095 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3096 {
3097 	if (!sched_feat(ATTACH_AGE_LOAD))
3098 		goto skip_aging;
3099 
3100 	/*
3101 	 * If we got migrated (either between CPUs or between cgroups) we'll
3102 	 * have aged the average right before clearing @last_update_time.
3103 	 *
3104 	 * Or we're fresh through post_init_entity_util_avg().
3105 	 */
3106 	if (se->avg.last_update_time) {
3107 		__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3108 				  &se->avg, 0, 0, NULL);
3109 
3110 		/*
3111 		 * XXX: we could have just aged the entire load away if we've been
3112 		 * absent from the fair class for too long.
3113 		 */
3114 	}
3115 
3116 skip_aging:
3117 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3118 	cfs_rq->avg.load_avg += se->avg.load_avg;
3119 	cfs_rq->avg.load_sum += se->avg.load_sum;
3120 	cfs_rq->avg.util_avg += se->avg.util_avg;
3121 	cfs_rq->avg.util_sum += se->avg.util_sum;
3122 
3123 	cfs_rq_util_change(cfs_rq);
3124 }
3125 
3126 /**
3127  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3128  * @cfs_rq: cfs_rq to detach from
3129  * @se: sched_entity to detach
3130  *
3131  * Must call update_cfs_rq_load_avg() before this, since we rely on
3132  * cfs_rq->avg.last_update_time being current.
3133  */
3134 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3135 {
3136 	__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3137 			  &se->avg, se->on_rq * scale_load_down(se->load.weight),
3138 			  cfs_rq->curr == se, NULL);
3139 
3140 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3141 	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3142 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3143 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3144 
3145 	cfs_rq_util_change(cfs_rq);
3146 }
3147 
3148 /* Add the load generated by se into cfs_rq's load average */
3149 static inline void
3150 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3151 {
3152 	struct sched_avg *sa = &se->avg;
3153 	u64 now = cfs_rq_clock_task(cfs_rq);
3154 	int migrated, decayed;
3155 
3156 	migrated = !sa->last_update_time;
3157 	if (!migrated) {
3158 		__update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3159 			se->on_rq * scale_load_down(se->load.weight),
3160 			cfs_rq->curr == se, NULL);
3161 	}
3162 
3163 	decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
3164 
3165 	cfs_rq->runnable_load_avg += sa->load_avg;
3166 	cfs_rq->runnable_load_sum += sa->load_sum;
3167 
3168 	if (migrated)
3169 		attach_entity_load_avg(cfs_rq, se);
3170 
3171 	if (decayed || migrated)
3172 		update_tg_load_avg(cfs_rq, 0);
3173 }
3174 
3175 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
3176 static inline void
3177 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3178 {
3179 	update_load_avg(se, 1);
3180 
3181 	cfs_rq->runnable_load_avg =
3182 		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3183 	cfs_rq->runnable_load_sum =
3184 		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3185 }
3186 
3187 #ifndef CONFIG_64BIT
3188 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3189 {
3190 	u64 last_update_time_copy;
3191 	u64 last_update_time;
3192 
3193 	do {
3194 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3195 		smp_rmb();
3196 		last_update_time = cfs_rq->avg.last_update_time;
3197 	} while (last_update_time != last_update_time_copy);
3198 
3199 	return last_update_time;
3200 }
3201 #else
3202 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3203 {
3204 	return cfs_rq->avg.last_update_time;
3205 }
3206 #endif
3207 
3208 /*
3209  * Task first catches up with cfs_rq, and then subtract
3210  * itself from the cfs_rq (task must be off the queue now).
3211  */
3212 void remove_entity_load_avg(struct sched_entity *se)
3213 {
3214 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3215 	u64 last_update_time;
3216 
3217 	/*
3218 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3219 	 * post_init_entity_util_avg() which will have added things to the
3220 	 * cfs_rq, so we can remove unconditionally.
3221 	 *
3222 	 * Similarly for groups, they will have passed through
3223 	 * post_init_entity_util_avg() before unregister_sched_fair_group()
3224 	 * calls this.
3225 	 */
3226 
3227 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3228 
3229 	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3230 	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3231 	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3232 }
3233 
3234 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3235 {
3236 	return cfs_rq->runnable_load_avg;
3237 }
3238 
3239 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3240 {
3241 	return cfs_rq->avg.load_avg;
3242 }
3243 
3244 static int idle_balance(struct rq *this_rq);
3245 
3246 #else /* CONFIG_SMP */
3247 
3248 static inline int
3249 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3250 {
3251 	return 0;
3252 }
3253 
3254 static inline void update_load_avg(struct sched_entity *se, int not_used)
3255 {
3256 	cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
3257 }
3258 
3259 static inline void
3260 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3261 static inline void
3262 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3263 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3264 
3265 static inline void
3266 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3267 static inline void
3268 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3269 
3270 static inline int idle_balance(struct rq *rq)
3271 {
3272 	return 0;
3273 }
3274 
3275 #endif /* CONFIG_SMP */
3276 
3277 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3278 {
3279 #ifdef CONFIG_SCHED_DEBUG
3280 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3281 
3282 	if (d < 0)
3283 		d = -d;
3284 
3285 	if (d > 3*sysctl_sched_latency)
3286 		schedstat_inc(cfs_rq->nr_spread_over);
3287 #endif
3288 }
3289 
3290 static void
3291 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3292 {
3293 	u64 vruntime = cfs_rq->min_vruntime;
3294 
3295 	/*
3296 	 * The 'current' period is already promised to the current tasks,
3297 	 * however the extra weight of the new task will slow them down a
3298 	 * little, place the new task so that it fits in the slot that
3299 	 * stays open at the end.
3300 	 */
3301 	if (initial && sched_feat(START_DEBIT))
3302 		vruntime += sched_vslice(cfs_rq, se);
3303 
3304 	/* sleeps up to a single latency don't count. */
3305 	if (!initial) {
3306 		unsigned long thresh = sysctl_sched_latency;
3307 
3308 		/*
3309 		 * Halve their sleep time's effect, to allow
3310 		 * for a gentler effect of sleepers:
3311 		 */
3312 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3313 			thresh >>= 1;
3314 
3315 		vruntime -= thresh;
3316 	}
3317 
3318 	/* ensure we never gain time by being placed backwards. */
3319 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3320 }
3321 
3322 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3323 
3324 static inline void check_schedstat_required(void)
3325 {
3326 #ifdef CONFIG_SCHEDSTATS
3327 	if (schedstat_enabled())
3328 		return;
3329 
3330 	/* Force schedstat enabled if a dependent tracepoint is active */
3331 	if (trace_sched_stat_wait_enabled()    ||
3332 			trace_sched_stat_sleep_enabled()   ||
3333 			trace_sched_stat_iowait_enabled()  ||
3334 			trace_sched_stat_blocked_enabled() ||
3335 			trace_sched_stat_runtime_enabled())  {
3336 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3337 			     "stat_blocked and stat_runtime require the "
3338 			     "kernel parameter schedstats=enabled or "
3339 			     "kernel.sched_schedstats=1\n");
3340 	}
3341 #endif
3342 }
3343 
3344 
3345 /*
3346  * MIGRATION
3347  *
3348  *	dequeue
3349  *	  update_curr()
3350  *	    update_min_vruntime()
3351  *	  vruntime -= min_vruntime
3352  *
3353  *	enqueue
3354  *	  update_curr()
3355  *	    update_min_vruntime()
3356  *	  vruntime += min_vruntime
3357  *
3358  * this way the vruntime transition between RQs is done when both
3359  * min_vruntime are up-to-date.
3360  *
3361  * WAKEUP (remote)
3362  *
3363  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3364  *	  vruntime -= min_vruntime
3365  *
3366  *	enqueue
3367  *	  update_curr()
3368  *	    update_min_vruntime()
3369  *	  vruntime += min_vruntime
3370  *
3371  * this way we don't have the most up-to-date min_vruntime on the originating
3372  * CPU and an up-to-date min_vruntime on the destination CPU.
3373  */
3374 
3375 static void
3376 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3377 {
3378 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3379 	bool curr = cfs_rq->curr == se;
3380 
3381 	/*
3382 	 * If we're the current task, we must renormalise before calling
3383 	 * update_curr().
3384 	 */
3385 	if (renorm && curr)
3386 		se->vruntime += cfs_rq->min_vruntime;
3387 
3388 	update_curr(cfs_rq);
3389 
3390 	/*
3391 	 * Otherwise, renormalise after, such that we're placed at the current
3392 	 * moment in time, instead of some random moment in the past. Being
3393 	 * placed in the past could significantly boost this task to the
3394 	 * fairness detriment of existing tasks.
3395 	 */
3396 	if (renorm && !curr)
3397 		se->vruntime += cfs_rq->min_vruntime;
3398 
3399 	enqueue_entity_load_avg(cfs_rq, se);
3400 	account_entity_enqueue(cfs_rq, se);
3401 	update_cfs_shares(cfs_rq);
3402 
3403 	if (flags & ENQUEUE_WAKEUP)
3404 		place_entity(cfs_rq, se, 0);
3405 
3406 	check_schedstat_required();
3407 	update_stats_enqueue(cfs_rq, se, flags);
3408 	check_spread(cfs_rq, se);
3409 	if (!curr)
3410 		__enqueue_entity(cfs_rq, se);
3411 	se->on_rq = 1;
3412 
3413 	if (cfs_rq->nr_running == 1) {
3414 		list_add_leaf_cfs_rq(cfs_rq);
3415 		check_enqueue_throttle(cfs_rq);
3416 	}
3417 }
3418 
3419 static void __clear_buddies_last(struct sched_entity *se)
3420 {
3421 	for_each_sched_entity(se) {
3422 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3423 		if (cfs_rq->last != se)
3424 			break;
3425 
3426 		cfs_rq->last = NULL;
3427 	}
3428 }
3429 
3430 static void __clear_buddies_next(struct sched_entity *se)
3431 {
3432 	for_each_sched_entity(se) {
3433 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3434 		if (cfs_rq->next != se)
3435 			break;
3436 
3437 		cfs_rq->next = NULL;
3438 	}
3439 }
3440 
3441 static void __clear_buddies_skip(struct sched_entity *se)
3442 {
3443 	for_each_sched_entity(se) {
3444 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3445 		if (cfs_rq->skip != se)
3446 			break;
3447 
3448 		cfs_rq->skip = NULL;
3449 	}
3450 }
3451 
3452 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3453 {
3454 	if (cfs_rq->last == se)
3455 		__clear_buddies_last(se);
3456 
3457 	if (cfs_rq->next == se)
3458 		__clear_buddies_next(se);
3459 
3460 	if (cfs_rq->skip == se)
3461 		__clear_buddies_skip(se);
3462 }
3463 
3464 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3465 
3466 static void
3467 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3468 {
3469 	/*
3470 	 * Update run-time statistics of the 'current'.
3471 	 */
3472 	update_curr(cfs_rq);
3473 	dequeue_entity_load_avg(cfs_rq, se);
3474 
3475 	update_stats_dequeue(cfs_rq, se, flags);
3476 
3477 	clear_buddies(cfs_rq, se);
3478 
3479 	if (se != cfs_rq->curr)
3480 		__dequeue_entity(cfs_rq, se);
3481 	se->on_rq = 0;
3482 	account_entity_dequeue(cfs_rq, se);
3483 
3484 	/*
3485 	 * Normalize after update_curr(); which will also have moved
3486 	 * min_vruntime if @se is the one holding it back. But before doing
3487 	 * update_min_vruntime() again, which will discount @se's position and
3488 	 * can move min_vruntime forward still more.
3489 	 */
3490 	if (!(flags & DEQUEUE_SLEEP))
3491 		se->vruntime -= cfs_rq->min_vruntime;
3492 
3493 	/* return excess runtime on last dequeue */
3494 	return_cfs_rq_runtime(cfs_rq);
3495 
3496 	update_cfs_shares(cfs_rq);
3497 
3498 	/*
3499 	 * Now advance min_vruntime if @se was the entity holding it back,
3500 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3501 	 * put back on, and if we advance min_vruntime, we'll be placed back
3502 	 * further than we started -- ie. we'll be penalized.
3503 	 */
3504 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3505 		update_min_vruntime(cfs_rq);
3506 }
3507 
3508 /*
3509  * Preempt the current task with a newly woken task if needed:
3510  */
3511 static void
3512 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3513 {
3514 	unsigned long ideal_runtime, delta_exec;
3515 	struct sched_entity *se;
3516 	s64 delta;
3517 
3518 	ideal_runtime = sched_slice(cfs_rq, curr);
3519 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3520 	if (delta_exec > ideal_runtime) {
3521 		resched_curr(rq_of(cfs_rq));
3522 		/*
3523 		 * The current task ran long enough, ensure it doesn't get
3524 		 * re-elected due to buddy favours.
3525 		 */
3526 		clear_buddies(cfs_rq, curr);
3527 		return;
3528 	}
3529 
3530 	/*
3531 	 * Ensure that a task that missed wakeup preemption by a
3532 	 * narrow margin doesn't have to wait for a full slice.
3533 	 * This also mitigates buddy induced latencies under load.
3534 	 */
3535 	if (delta_exec < sysctl_sched_min_granularity)
3536 		return;
3537 
3538 	se = __pick_first_entity(cfs_rq);
3539 	delta = curr->vruntime - se->vruntime;
3540 
3541 	if (delta < 0)
3542 		return;
3543 
3544 	if (delta > ideal_runtime)
3545 		resched_curr(rq_of(cfs_rq));
3546 }
3547 
3548 static void
3549 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3550 {
3551 	/* 'current' is not kept within the tree. */
3552 	if (se->on_rq) {
3553 		/*
3554 		 * Any task has to be enqueued before it get to execute on
3555 		 * a CPU. So account for the time it spent waiting on the
3556 		 * runqueue.
3557 		 */
3558 		update_stats_wait_end(cfs_rq, se);
3559 		__dequeue_entity(cfs_rq, se);
3560 		update_load_avg(se, 1);
3561 	}
3562 
3563 	update_stats_curr_start(cfs_rq, se);
3564 	cfs_rq->curr = se;
3565 
3566 	/*
3567 	 * Track our maximum slice length, if the CPU's load is at
3568 	 * least twice that of our own weight (i.e. dont track it
3569 	 * when there are only lesser-weight tasks around):
3570 	 */
3571 	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3572 		schedstat_set(se->statistics.slice_max,
3573 			max((u64)schedstat_val(se->statistics.slice_max),
3574 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
3575 	}
3576 
3577 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3578 }
3579 
3580 static int
3581 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3582 
3583 /*
3584  * Pick the next process, keeping these things in mind, in this order:
3585  * 1) keep things fair between processes/task groups
3586  * 2) pick the "next" process, since someone really wants that to run
3587  * 3) pick the "last" process, for cache locality
3588  * 4) do not run the "skip" process, if something else is available
3589  */
3590 static struct sched_entity *
3591 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3592 {
3593 	struct sched_entity *left = __pick_first_entity(cfs_rq);
3594 	struct sched_entity *se;
3595 
3596 	/*
3597 	 * If curr is set we have to see if its left of the leftmost entity
3598 	 * still in the tree, provided there was anything in the tree at all.
3599 	 */
3600 	if (!left || (curr && entity_before(curr, left)))
3601 		left = curr;
3602 
3603 	se = left; /* ideally we run the leftmost entity */
3604 
3605 	/*
3606 	 * Avoid running the skip buddy, if running something else can
3607 	 * be done without getting too unfair.
3608 	 */
3609 	if (cfs_rq->skip == se) {
3610 		struct sched_entity *second;
3611 
3612 		if (se == curr) {
3613 			second = __pick_first_entity(cfs_rq);
3614 		} else {
3615 			second = __pick_next_entity(se);
3616 			if (!second || (curr && entity_before(curr, second)))
3617 				second = curr;
3618 		}
3619 
3620 		if (second && wakeup_preempt_entity(second, left) < 1)
3621 			se = second;
3622 	}
3623 
3624 	/*
3625 	 * Prefer last buddy, try to return the CPU to a preempted task.
3626 	 */
3627 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3628 		se = cfs_rq->last;
3629 
3630 	/*
3631 	 * Someone really wants this to run. If it's not unfair, run it.
3632 	 */
3633 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3634 		se = cfs_rq->next;
3635 
3636 	clear_buddies(cfs_rq, se);
3637 
3638 	return se;
3639 }
3640 
3641 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3642 
3643 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3644 {
3645 	/*
3646 	 * If still on the runqueue then deactivate_task()
3647 	 * was not called and update_curr() has to be done:
3648 	 */
3649 	if (prev->on_rq)
3650 		update_curr(cfs_rq);
3651 
3652 	/* throttle cfs_rqs exceeding runtime */
3653 	check_cfs_rq_runtime(cfs_rq);
3654 
3655 	check_spread(cfs_rq, prev);
3656 
3657 	if (prev->on_rq) {
3658 		update_stats_wait_start(cfs_rq, prev);
3659 		/* Put 'current' back into the tree. */
3660 		__enqueue_entity(cfs_rq, prev);
3661 		/* in !on_rq case, update occurred at dequeue */
3662 		update_load_avg(prev, 0);
3663 	}
3664 	cfs_rq->curr = NULL;
3665 }
3666 
3667 static void
3668 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3669 {
3670 	/*
3671 	 * Update run-time statistics of the 'current'.
3672 	 */
3673 	update_curr(cfs_rq);
3674 
3675 	/*
3676 	 * Ensure that runnable average is periodically updated.
3677 	 */
3678 	update_load_avg(curr, 1);
3679 	update_cfs_shares(cfs_rq);
3680 
3681 #ifdef CONFIG_SCHED_HRTICK
3682 	/*
3683 	 * queued ticks are scheduled to match the slice, so don't bother
3684 	 * validating it and just reschedule.
3685 	 */
3686 	if (queued) {
3687 		resched_curr(rq_of(cfs_rq));
3688 		return;
3689 	}
3690 	/*
3691 	 * don't let the period tick interfere with the hrtick preemption
3692 	 */
3693 	if (!sched_feat(DOUBLE_TICK) &&
3694 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3695 		return;
3696 #endif
3697 
3698 	if (cfs_rq->nr_running > 1)
3699 		check_preempt_tick(cfs_rq, curr);
3700 }
3701 
3702 
3703 /**************************************************
3704  * CFS bandwidth control machinery
3705  */
3706 
3707 #ifdef CONFIG_CFS_BANDWIDTH
3708 
3709 #ifdef HAVE_JUMP_LABEL
3710 static struct static_key __cfs_bandwidth_used;
3711 
3712 static inline bool cfs_bandwidth_used(void)
3713 {
3714 	return static_key_false(&__cfs_bandwidth_used);
3715 }
3716 
3717 void cfs_bandwidth_usage_inc(void)
3718 {
3719 	static_key_slow_inc(&__cfs_bandwidth_used);
3720 }
3721 
3722 void cfs_bandwidth_usage_dec(void)
3723 {
3724 	static_key_slow_dec(&__cfs_bandwidth_used);
3725 }
3726 #else /* HAVE_JUMP_LABEL */
3727 static bool cfs_bandwidth_used(void)
3728 {
3729 	return true;
3730 }
3731 
3732 void cfs_bandwidth_usage_inc(void) {}
3733 void cfs_bandwidth_usage_dec(void) {}
3734 #endif /* HAVE_JUMP_LABEL */
3735 
3736 /*
3737  * default period for cfs group bandwidth.
3738  * default: 0.1s, units: nanoseconds
3739  */
3740 static inline u64 default_cfs_period(void)
3741 {
3742 	return 100000000ULL;
3743 }
3744 
3745 static inline u64 sched_cfs_bandwidth_slice(void)
3746 {
3747 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3748 }
3749 
3750 /*
3751  * Replenish runtime according to assigned quota and update expiration time.
3752  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3753  * additional synchronization around rq->lock.
3754  *
3755  * requires cfs_b->lock
3756  */
3757 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3758 {
3759 	u64 now;
3760 
3761 	if (cfs_b->quota == RUNTIME_INF)
3762 		return;
3763 
3764 	now = sched_clock_cpu(smp_processor_id());
3765 	cfs_b->runtime = cfs_b->quota;
3766 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3767 }
3768 
3769 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3770 {
3771 	return &tg->cfs_bandwidth;
3772 }
3773 
3774 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3775 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3776 {
3777 	if (unlikely(cfs_rq->throttle_count))
3778 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
3779 
3780 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3781 }
3782 
3783 /* returns 0 on failure to allocate runtime */
3784 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3785 {
3786 	struct task_group *tg = cfs_rq->tg;
3787 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3788 	u64 amount = 0, min_amount, expires;
3789 
3790 	/* note: this is a positive sum as runtime_remaining <= 0 */
3791 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3792 
3793 	raw_spin_lock(&cfs_b->lock);
3794 	if (cfs_b->quota == RUNTIME_INF)
3795 		amount = min_amount;
3796 	else {
3797 		start_cfs_bandwidth(cfs_b);
3798 
3799 		if (cfs_b->runtime > 0) {
3800 			amount = min(cfs_b->runtime, min_amount);
3801 			cfs_b->runtime -= amount;
3802 			cfs_b->idle = 0;
3803 		}
3804 	}
3805 	expires = cfs_b->runtime_expires;
3806 	raw_spin_unlock(&cfs_b->lock);
3807 
3808 	cfs_rq->runtime_remaining += amount;
3809 	/*
3810 	 * we may have advanced our local expiration to account for allowed
3811 	 * spread between our sched_clock and the one on which runtime was
3812 	 * issued.
3813 	 */
3814 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3815 		cfs_rq->runtime_expires = expires;
3816 
3817 	return cfs_rq->runtime_remaining > 0;
3818 }
3819 
3820 /*
3821  * Note: This depends on the synchronization provided by sched_clock and the
3822  * fact that rq->clock snapshots this value.
3823  */
3824 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3825 {
3826 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3827 
3828 	/* if the deadline is ahead of our clock, nothing to do */
3829 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3830 		return;
3831 
3832 	if (cfs_rq->runtime_remaining < 0)
3833 		return;
3834 
3835 	/*
3836 	 * If the local deadline has passed we have to consider the
3837 	 * possibility that our sched_clock is 'fast' and the global deadline
3838 	 * has not truly expired.
3839 	 *
3840 	 * Fortunately we can check determine whether this the case by checking
3841 	 * whether the global deadline has advanced. It is valid to compare
3842 	 * cfs_b->runtime_expires without any locks since we only care about
3843 	 * exact equality, so a partial write will still work.
3844 	 */
3845 
3846 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3847 		/* extend local deadline, drift is bounded above by 2 ticks */
3848 		cfs_rq->runtime_expires += TICK_NSEC;
3849 	} else {
3850 		/* global deadline is ahead, expiration has passed */
3851 		cfs_rq->runtime_remaining = 0;
3852 	}
3853 }
3854 
3855 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3856 {
3857 	/* dock delta_exec before expiring quota (as it could span periods) */
3858 	cfs_rq->runtime_remaining -= delta_exec;
3859 	expire_cfs_rq_runtime(cfs_rq);
3860 
3861 	if (likely(cfs_rq->runtime_remaining > 0))
3862 		return;
3863 
3864 	/*
3865 	 * if we're unable to extend our runtime we resched so that the active
3866 	 * hierarchy can be throttled
3867 	 */
3868 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3869 		resched_curr(rq_of(cfs_rq));
3870 }
3871 
3872 static __always_inline
3873 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3874 {
3875 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3876 		return;
3877 
3878 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
3879 }
3880 
3881 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3882 {
3883 	return cfs_bandwidth_used() && cfs_rq->throttled;
3884 }
3885 
3886 /* check whether cfs_rq, or any parent, is throttled */
3887 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3888 {
3889 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3890 }
3891 
3892 /*
3893  * Ensure that neither of the group entities corresponding to src_cpu or
3894  * dest_cpu are members of a throttled hierarchy when performing group
3895  * load-balance operations.
3896  */
3897 static inline int throttled_lb_pair(struct task_group *tg,
3898 				    int src_cpu, int dest_cpu)
3899 {
3900 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3901 
3902 	src_cfs_rq = tg->cfs_rq[src_cpu];
3903 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
3904 
3905 	return throttled_hierarchy(src_cfs_rq) ||
3906 	       throttled_hierarchy(dest_cfs_rq);
3907 }
3908 
3909 /* updated child weight may affect parent so we have to do this bottom up */
3910 static int tg_unthrottle_up(struct task_group *tg, void *data)
3911 {
3912 	struct rq *rq = data;
3913 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3914 
3915 	cfs_rq->throttle_count--;
3916 	if (!cfs_rq->throttle_count) {
3917 		/* adjust cfs_rq_clock_task() */
3918 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3919 					     cfs_rq->throttled_clock_task;
3920 	}
3921 
3922 	return 0;
3923 }
3924 
3925 static int tg_throttle_down(struct task_group *tg, void *data)
3926 {
3927 	struct rq *rq = data;
3928 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3929 
3930 	/* group is entering throttled state, stop time */
3931 	if (!cfs_rq->throttle_count)
3932 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3933 	cfs_rq->throttle_count++;
3934 
3935 	return 0;
3936 }
3937 
3938 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3939 {
3940 	struct rq *rq = rq_of(cfs_rq);
3941 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3942 	struct sched_entity *se;
3943 	long task_delta, dequeue = 1;
3944 	bool empty;
3945 
3946 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3947 
3948 	/* freeze hierarchy runnable averages while throttled */
3949 	rcu_read_lock();
3950 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3951 	rcu_read_unlock();
3952 
3953 	task_delta = cfs_rq->h_nr_running;
3954 	for_each_sched_entity(se) {
3955 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3956 		/* throttled entity or throttle-on-deactivate */
3957 		if (!se->on_rq)
3958 			break;
3959 
3960 		if (dequeue)
3961 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3962 		qcfs_rq->h_nr_running -= task_delta;
3963 
3964 		if (qcfs_rq->load.weight)
3965 			dequeue = 0;
3966 	}
3967 
3968 	if (!se)
3969 		sub_nr_running(rq, task_delta);
3970 
3971 	cfs_rq->throttled = 1;
3972 	cfs_rq->throttled_clock = rq_clock(rq);
3973 	raw_spin_lock(&cfs_b->lock);
3974 	empty = list_empty(&cfs_b->throttled_cfs_rq);
3975 
3976 	/*
3977 	 * Add to the _head_ of the list, so that an already-started
3978 	 * distribute_cfs_runtime will not see us
3979 	 */
3980 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3981 
3982 	/*
3983 	 * If we're the first throttled task, make sure the bandwidth
3984 	 * timer is running.
3985 	 */
3986 	if (empty)
3987 		start_cfs_bandwidth(cfs_b);
3988 
3989 	raw_spin_unlock(&cfs_b->lock);
3990 }
3991 
3992 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3993 {
3994 	struct rq *rq = rq_of(cfs_rq);
3995 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3996 	struct sched_entity *se;
3997 	int enqueue = 1;
3998 	long task_delta;
3999 
4000 	se = cfs_rq->tg->se[cpu_of(rq)];
4001 
4002 	cfs_rq->throttled = 0;
4003 
4004 	update_rq_clock(rq);
4005 
4006 	raw_spin_lock(&cfs_b->lock);
4007 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4008 	list_del_rcu(&cfs_rq->throttled_list);
4009 	raw_spin_unlock(&cfs_b->lock);
4010 
4011 	/* update hierarchical throttle state */
4012 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4013 
4014 	if (!cfs_rq->load.weight)
4015 		return;
4016 
4017 	task_delta = cfs_rq->h_nr_running;
4018 	for_each_sched_entity(se) {
4019 		if (se->on_rq)
4020 			enqueue = 0;
4021 
4022 		cfs_rq = cfs_rq_of(se);
4023 		if (enqueue)
4024 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4025 		cfs_rq->h_nr_running += task_delta;
4026 
4027 		if (cfs_rq_throttled(cfs_rq))
4028 			break;
4029 	}
4030 
4031 	if (!se)
4032 		add_nr_running(rq, task_delta);
4033 
4034 	/* determine whether we need to wake up potentially idle cpu */
4035 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4036 		resched_curr(rq);
4037 }
4038 
4039 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4040 		u64 remaining, u64 expires)
4041 {
4042 	struct cfs_rq *cfs_rq;
4043 	u64 runtime;
4044 	u64 starting_runtime = remaining;
4045 
4046 	rcu_read_lock();
4047 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4048 				throttled_list) {
4049 		struct rq *rq = rq_of(cfs_rq);
4050 
4051 		raw_spin_lock(&rq->lock);
4052 		if (!cfs_rq_throttled(cfs_rq))
4053 			goto next;
4054 
4055 		runtime = -cfs_rq->runtime_remaining + 1;
4056 		if (runtime > remaining)
4057 			runtime = remaining;
4058 		remaining -= runtime;
4059 
4060 		cfs_rq->runtime_remaining += runtime;
4061 		cfs_rq->runtime_expires = expires;
4062 
4063 		/* we check whether we're throttled above */
4064 		if (cfs_rq->runtime_remaining > 0)
4065 			unthrottle_cfs_rq(cfs_rq);
4066 
4067 next:
4068 		raw_spin_unlock(&rq->lock);
4069 
4070 		if (!remaining)
4071 			break;
4072 	}
4073 	rcu_read_unlock();
4074 
4075 	return starting_runtime - remaining;
4076 }
4077 
4078 /*
4079  * Responsible for refilling a task_group's bandwidth and unthrottling its
4080  * cfs_rqs as appropriate. If there has been no activity within the last
4081  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4082  * used to track this state.
4083  */
4084 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4085 {
4086 	u64 runtime, runtime_expires;
4087 	int throttled;
4088 
4089 	/* no need to continue the timer with no bandwidth constraint */
4090 	if (cfs_b->quota == RUNTIME_INF)
4091 		goto out_deactivate;
4092 
4093 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4094 	cfs_b->nr_periods += overrun;
4095 
4096 	/*
4097 	 * idle depends on !throttled (for the case of a large deficit), and if
4098 	 * we're going inactive then everything else can be deferred
4099 	 */
4100 	if (cfs_b->idle && !throttled)
4101 		goto out_deactivate;
4102 
4103 	__refill_cfs_bandwidth_runtime(cfs_b);
4104 
4105 	if (!throttled) {
4106 		/* mark as potentially idle for the upcoming period */
4107 		cfs_b->idle = 1;
4108 		return 0;
4109 	}
4110 
4111 	/* account preceding periods in which throttling occurred */
4112 	cfs_b->nr_throttled += overrun;
4113 
4114 	runtime_expires = cfs_b->runtime_expires;
4115 
4116 	/*
4117 	 * This check is repeated as we are holding onto the new bandwidth while
4118 	 * we unthrottle. This can potentially race with an unthrottled group
4119 	 * trying to acquire new bandwidth from the global pool. This can result
4120 	 * in us over-using our runtime if it is all used during this loop, but
4121 	 * only by limited amounts in that extreme case.
4122 	 */
4123 	while (throttled && cfs_b->runtime > 0) {
4124 		runtime = cfs_b->runtime;
4125 		raw_spin_unlock(&cfs_b->lock);
4126 		/* we can't nest cfs_b->lock while distributing bandwidth */
4127 		runtime = distribute_cfs_runtime(cfs_b, runtime,
4128 						 runtime_expires);
4129 		raw_spin_lock(&cfs_b->lock);
4130 
4131 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4132 
4133 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4134 	}
4135 
4136 	/*
4137 	 * While we are ensured activity in the period following an
4138 	 * unthrottle, this also covers the case in which the new bandwidth is
4139 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4140 	 * timer to remain active while there are any throttled entities.)
4141 	 */
4142 	cfs_b->idle = 0;
4143 
4144 	return 0;
4145 
4146 out_deactivate:
4147 	return 1;
4148 }
4149 
4150 /* a cfs_rq won't donate quota below this amount */
4151 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4152 /* minimum remaining period time to redistribute slack quota */
4153 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4154 /* how long we wait to gather additional slack before distributing */
4155 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4156 
4157 /*
4158  * Are we near the end of the current quota period?
4159  *
4160  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4161  * hrtimer base being cleared by hrtimer_start. In the case of
4162  * migrate_hrtimers, base is never cleared, so we are fine.
4163  */
4164 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4165 {
4166 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4167 	u64 remaining;
4168 
4169 	/* if the call-back is running a quota refresh is already occurring */
4170 	if (hrtimer_callback_running(refresh_timer))
4171 		return 1;
4172 
4173 	/* is a quota refresh about to occur? */
4174 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4175 	if (remaining < min_expire)
4176 		return 1;
4177 
4178 	return 0;
4179 }
4180 
4181 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4182 {
4183 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4184 
4185 	/* if there's a quota refresh soon don't bother with slack */
4186 	if (runtime_refresh_within(cfs_b, min_left))
4187 		return;
4188 
4189 	hrtimer_start(&cfs_b->slack_timer,
4190 			ns_to_ktime(cfs_bandwidth_slack_period),
4191 			HRTIMER_MODE_REL);
4192 }
4193 
4194 /* we know any runtime found here is valid as update_curr() precedes return */
4195 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4196 {
4197 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4198 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4199 
4200 	if (slack_runtime <= 0)
4201 		return;
4202 
4203 	raw_spin_lock(&cfs_b->lock);
4204 	if (cfs_b->quota != RUNTIME_INF &&
4205 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4206 		cfs_b->runtime += slack_runtime;
4207 
4208 		/* we are under rq->lock, defer unthrottling using a timer */
4209 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4210 		    !list_empty(&cfs_b->throttled_cfs_rq))
4211 			start_cfs_slack_bandwidth(cfs_b);
4212 	}
4213 	raw_spin_unlock(&cfs_b->lock);
4214 
4215 	/* even if it's not valid for return we don't want to try again */
4216 	cfs_rq->runtime_remaining -= slack_runtime;
4217 }
4218 
4219 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4220 {
4221 	if (!cfs_bandwidth_used())
4222 		return;
4223 
4224 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4225 		return;
4226 
4227 	__return_cfs_rq_runtime(cfs_rq);
4228 }
4229 
4230 /*
4231  * This is done with a timer (instead of inline with bandwidth return) since
4232  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4233  */
4234 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4235 {
4236 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4237 	u64 expires;
4238 
4239 	/* confirm we're still not at a refresh boundary */
4240 	raw_spin_lock(&cfs_b->lock);
4241 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4242 		raw_spin_unlock(&cfs_b->lock);
4243 		return;
4244 	}
4245 
4246 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4247 		runtime = cfs_b->runtime;
4248 
4249 	expires = cfs_b->runtime_expires;
4250 	raw_spin_unlock(&cfs_b->lock);
4251 
4252 	if (!runtime)
4253 		return;
4254 
4255 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4256 
4257 	raw_spin_lock(&cfs_b->lock);
4258 	if (expires == cfs_b->runtime_expires)
4259 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4260 	raw_spin_unlock(&cfs_b->lock);
4261 }
4262 
4263 /*
4264  * When a group wakes up we want to make sure that its quota is not already
4265  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4266  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4267  */
4268 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4269 {
4270 	if (!cfs_bandwidth_used())
4271 		return;
4272 
4273 	/* an active group must be handled by the update_curr()->put() path */
4274 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4275 		return;
4276 
4277 	/* ensure the group is not already throttled */
4278 	if (cfs_rq_throttled(cfs_rq))
4279 		return;
4280 
4281 	/* update runtime allocation */
4282 	account_cfs_rq_runtime(cfs_rq, 0);
4283 	if (cfs_rq->runtime_remaining <= 0)
4284 		throttle_cfs_rq(cfs_rq);
4285 }
4286 
4287 static void sync_throttle(struct task_group *tg, int cpu)
4288 {
4289 	struct cfs_rq *pcfs_rq, *cfs_rq;
4290 
4291 	if (!cfs_bandwidth_used())
4292 		return;
4293 
4294 	if (!tg->parent)
4295 		return;
4296 
4297 	cfs_rq = tg->cfs_rq[cpu];
4298 	pcfs_rq = tg->parent->cfs_rq[cpu];
4299 
4300 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4301 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4302 }
4303 
4304 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4305 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4306 {
4307 	if (!cfs_bandwidth_used())
4308 		return false;
4309 
4310 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4311 		return false;
4312 
4313 	/*
4314 	 * it's possible for a throttled entity to be forced into a running
4315 	 * state (e.g. set_curr_task), in this case we're finished.
4316 	 */
4317 	if (cfs_rq_throttled(cfs_rq))
4318 		return true;
4319 
4320 	throttle_cfs_rq(cfs_rq);
4321 	return true;
4322 }
4323 
4324 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4325 {
4326 	struct cfs_bandwidth *cfs_b =
4327 		container_of(timer, struct cfs_bandwidth, slack_timer);
4328 
4329 	do_sched_cfs_slack_timer(cfs_b);
4330 
4331 	return HRTIMER_NORESTART;
4332 }
4333 
4334 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4335 {
4336 	struct cfs_bandwidth *cfs_b =
4337 		container_of(timer, struct cfs_bandwidth, period_timer);
4338 	int overrun;
4339 	int idle = 0;
4340 
4341 	raw_spin_lock(&cfs_b->lock);
4342 	for (;;) {
4343 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4344 		if (!overrun)
4345 			break;
4346 
4347 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
4348 	}
4349 	if (idle)
4350 		cfs_b->period_active = 0;
4351 	raw_spin_unlock(&cfs_b->lock);
4352 
4353 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4354 }
4355 
4356 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4357 {
4358 	raw_spin_lock_init(&cfs_b->lock);
4359 	cfs_b->runtime = 0;
4360 	cfs_b->quota = RUNTIME_INF;
4361 	cfs_b->period = ns_to_ktime(default_cfs_period());
4362 
4363 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4364 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4365 	cfs_b->period_timer.function = sched_cfs_period_timer;
4366 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4367 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4368 }
4369 
4370 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4371 {
4372 	cfs_rq->runtime_enabled = 0;
4373 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4374 }
4375 
4376 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4377 {
4378 	lockdep_assert_held(&cfs_b->lock);
4379 
4380 	if (!cfs_b->period_active) {
4381 		cfs_b->period_active = 1;
4382 		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4383 		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4384 	}
4385 }
4386 
4387 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4388 {
4389 	/* init_cfs_bandwidth() was not called */
4390 	if (!cfs_b->throttled_cfs_rq.next)
4391 		return;
4392 
4393 	hrtimer_cancel(&cfs_b->period_timer);
4394 	hrtimer_cancel(&cfs_b->slack_timer);
4395 }
4396 
4397 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4398 {
4399 	struct cfs_rq *cfs_rq;
4400 
4401 	for_each_leaf_cfs_rq(rq, cfs_rq) {
4402 		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4403 
4404 		raw_spin_lock(&cfs_b->lock);
4405 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4406 		raw_spin_unlock(&cfs_b->lock);
4407 	}
4408 }
4409 
4410 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4411 {
4412 	struct cfs_rq *cfs_rq;
4413 
4414 	for_each_leaf_cfs_rq(rq, cfs_rq) {
4415 		if (!cfs_rq->runtime_enabled)
4416 			continue;
4417 
4418 		/*
4419 		 * clock_task is not advancing so we just need to make sure
4420 		 * there's some valid quota amount
4421 		 */
4422 		cfs_rq->runtime_remaining = 1;
4423 		/*
4424 		 * Offline rq is schedulable till cpu is completely disabled
4425 		 * in take_cpu_down(), so we prevent new cfs throttling here.
4426 		 */
4427 		cfs_rq->runtime_enabled = 0;
4428 
4429 		if (cfs_rq_throttled(cfs_rq))
4430 			unthrottle_cfs_rq(cfs_rq);
4431 	}
4432 }
4433 
4434 #else /* CONFIG_CFS_BANDWIDTH */
4435 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4436 {
4437 	return rq_clock_task(rq_of(cfs_rq));
4438 }
4439 
4440 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4441 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4442 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4443 static inline void sync_throttle(struct task_group *tg, int cpu) {}
4444 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4445 
4446 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4447 {
4448 	return 0;
4449 }
4450 
4451 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4452 {
4453 	return 0;
4454 }
4455 
4456 static inline int throttled_lb_pair(struct task_group *tg,
4457 				    int src_cpu, int dest_cpu)
4458 {
4459 	return 0;
4460 }
4461 
4462 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4463 
4464 #ifdef CONFIG_FAIR_GROUP_SCHED
4465 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4466 #endif
4467 
4468 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4469 {
4470 	return NULL;
4471 }
4472 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4473 static inline void update_runtime_enabled(struct rq *rq) {}
4474 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4475 
4476 #endif /* CONFIG_CFS_BANDWIDTH */
4477 
4478 /**************************************************
4479  * CFS operations on tasks:
4480  */
4481 
4482 #ifdef CONFIG_SCHED_HRTICK
4483 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4484 {
4485 	struct sched_entity *se = &p->se;
4486 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4487 
4488 	SCHED_WARN_ON(task_rq(p) != rq);
4489 
4490 	if (rq->cfs.h_nr_running > 1) {
4491 		u64 slice = sched_slice(cfs_rq, se);
4492 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4493 		s64 delta = slice - ran;
4494 
4495 		if (delta < 0) {
4496 			if (rq->curr == p)
4497 				resched_curr(rq);
4498 			return;
4499 		}
4500 		hrtick_start(rq, delta);
4501 	}
4502 }
4503 
4504 /*
4505  * called from enqueue/dequeue and updates the hrtick when the
4506  * current task is from our class and nr_running is low enough
4507  * to matter.
4508  */
4509 static void hrtick_update(struct rq *rq)
4510 {
4511 	struct task_struct *curr = rq->curr;
4512 
4513 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4514 		return;
4515 
4516 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4517 		hrtick_start_fair(rq, curr);
4518 }
4519 #else /* !CONFIG_SCHED_HRTICK */
4520 static inline void
4521 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4522 {
4523 }
4524 
4525 static inline void hrtick_update(struct rq *rq)
4526 {
4527 }
4528 #endif
4529 
4530 /*
4531  * The enqueue_task method is called before nr_running is
4532  * increased. Here we update the fair scheduling stats and
4533  * then put the task into the rbtree:
4534  */
4535 static void
4536 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4537 {
4538 	struct cfs_rq *cfs_rq;
4539 	struct sched_entity *se = &p->se;
4540 
4541 	/*
4542 	 * If in_iowait is set, the code below may not trigger any cpufreq
4543 	 * utilization updates, so do it here explicitly with the IOWAIT flag
4544 	 * passed.
4545 	 */
4546 	if (p->in_iowait)
4547 		cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);
4548 
4549 	for_each_sched_entity(se) {
4550 		if (se->on_rq)
4551 			break;
4552 		cfs_rq = cfs_rq_of(se);
4553 		enqueue_entity(cfs_rq, se, flags);
4554 
4555 		/*
4556 		 * end evaluation on encountering a throttled cfs_rq
4557 		 *
4558 		 * note: in the case of encountering a throttled cfs_rq we will
4559 		 * post the final h_nr_running increment below.
4560 		 */
4561 		if (cfs_rq_throttled(cfs_rq))
4562 			break;
4563 		cfs_rq->h_nr_running++;
4564 
4565 		flags = ENQUEUE_WAKEUP;
4566 	}
4567 
4568 	for_each_sched_entity(se) {
4569 		cfs_rq = cfs_rq_of(se);
4570 		cfs_rq->h_nr_running++;
4571 
4572 		if (cfs_rq_throttled(cfs_rq))
4573 			break;
4574 
4575 		update_load_avg(se, 1);
4576 		update_cfs_shares(cfs_rq);
4577 	}
4578 
4579 	if (!se)
4580 		add_nr_running(rq, 1);
4581 
4582 	hrtick_update(rq);
4583 }
4584 
4585 static void set_next_buddy(struct sched_entity *se);
4586 
4587 /*
4588  * The dequeue_task method is called before nr_running is
4589  * decreased. We remove the task from the rbtree and
4590  * update the fair scheduling stats:
4591  */
4592 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4593 {
4594 	struct cfs_rq *cfs_rq;
4595 	struct sched_entity *se = &p->se;
4596 	int task_sleep = flags & DEQUEUE_SLEEP;
4597 
4598 	for_each_sched_entity(se) {
4599 		cfs_rq = cfs_rq_of(se);
4600 		dequeue_entity(cfs_rq, se, flags);
4601 
4602 		/*
4603 		 * end evaluation on encountering a throttled cfs_rq
4604 		 *
4605 		 * note: in the case of encountering a throttled cfs_rq we will
4606 		 * post the final h_nr_running decrement below.
4607 		*/
4608 		if (cfs_rq_throttled(cfs_rq))
4609 			break;
4610 		cfs_rq->h_nr_running--;
4611 
4612 		/* Don't dequeue parent if it has other entities besides us */
4613 		if (cfs_rq->load.weight) {
4614 			/* Avoid re-evaluating load for this entity: */
4615 			se = parent_entity(se);
4616 			/*
4617 			 * Bias pick_next to pick a task from this cfs_rq, as
4618 			 * p is sleeping when it is within its sched_slice.
4619 			 */
4620 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4621 				set_next_buddy(se);
4622 			break;
4623 		}
4624 		flags |= DEQUEUE_SLEEP;
4625 	}
4626 
4627 	for_each_sched_entity(se) {
4628 		cfs_rq = cfs_rq_of(se);
4629 		cfs_rq->h_nr_running--;
4630 
4631 		if (cfs_rq_throttled(cfs_rq))
4632 			break;
4633 
4634 		update_load_avg(se, 1);
4635 		update_cfs_shares(cfs_rq);
4636 	}
4637 
4638 	if (!se)
4639 		sub_nr_running(rq, 1);
4640 
4641 	hrtick_update(rq);
4642 }
4643 
4644 #ifdef CONFIG_SMP
4645 
4646 /* Working cpumask for: load_balance, load_balance_newidle. */
4647 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4648 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4649 
4650 #ifdef CONFIG_NO_HZ_COMMON
4651 /*
4652  * per rq 'load' arrray crap; XXX kill this.
4653  */
4654 
4655 /*
4656  * The exact cpuload calculated at every tick would be:
4657  *
4658  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4659  *
4660  * If a cpu misses updates for n ticks (as it was idle) and update gets
4661  * called on the n+1-th tick when cpu may be busy, then we have:
4662  *
4663  *   load_n   = (1 - 1/2^i)^n * load_0
4664  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4665  *
4666  * decay_load_missed() below does efficient calculation of
4667  *
4668  *   load' = (1 - 1/2^i)^n * load
4669  *
4670  * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4671  * This allows us to precompute the above in said factors, thereby allowing the
4672  * reduction of an arbitrary n in O(log_2 n) steps. (See also
4673  * fixed_power_int())
4674  *
4675  * The calculation is approximated on a 128 point scale.
4676  */
4677 #define DEGRADE_SHIFT		7
4678 
4679 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4680 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4681 	{   0,   0,  0,  0,  0,  0, 0, 0 },
4682 	{  64,  32,  8,  0,  0,  0, 0, 0 },
4683 	{  96,  72, 40, 12,  1,  0, 0, 0 },
4684 	{ 112,  98, 75, 43, 15,  1, 0, 0 },
4685 	{ 120, 112, 98, 76, 45, 16, 2, 0 }
4686 };
4687 
4688 /*
4689  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4690  * would be when CPU is idle and so we just decay the old load without
4691  * adding any new load.
4692  */
4693 static unsigned long
4694 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4695 {
4696 	int j = 0;
4697 
4698 	if (!missed_updates)
4699 		return load;
4700 
4701 	if (missed_updates >= degrade_zero_ticks[idx])
4702 		return 0;
4703 
4704 	if (idx == 1)
4705 		return load >> missed_updates;
4706 
4707 	while (missed_updates) {
4708 		if (missed_updates % 2)
4709 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4710 
4711 		missed_updates >>= 1;
4712 		j++;
4713 	}
4714 	return load;
4715 }
4716 #endif /* CONFIG_NO_HZ_COMMON */
4717 
4718 /**
4719  * __cpu_load_update - update the rq->cpu_load[] statistics
4720  * @this_rq: The rq to update statistics for
4721  * @this_load: The current load
4722  * @pending_updates: The number of missed updates
4723  *
4724  * Update rq->cpu_load[] statistics. This function is usually called every
4725  * scheduler tick (TICK_NSEC).
4726  *
4727  * This function computes a decaying average:
4728  *
4729  *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4730  *
4731  * Because of NOHZ it might not get called on every tick which gives need for
4732  * the @pending_updates argument.
4733  *
4734  *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4735  *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4736  *             = A * (A * load[i]_n-2 + B) + B
4737  *             = A * (A * (A * load[i]_n-3 + B) + B) + B
4738  *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4739  *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4740  *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4741  *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4742  *
4743  * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4744  * any change in load would have resulted in the tick being turned back on.
4745  *
4746  * For regular NOHZ, this reduces to:
4747  *
4748  *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
4749  *
4750  * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4751  * term.
4752  */
4753 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4754 			    unsigned long pending_updates)
4755 {
4756 	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
4757 	int i, scale;
4758 
4759 	this_rq->nr_load_updates++;
4760 
4761 	/* Update our load: */
4762 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4763 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4764 		unsigned long old_load, new_load;
4765 
4766 		/* scale is effectively 1 << i now, and >> i divides by scale */
4767 
4768 		old_load = this_rq->cpu_load[i];
4769 #ifdef CONFIG_NO_HZ_COMMON
4770 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
4771 		if (tickless_load) {
4772 			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4773 			/*
4774 			 * old_load can never be a negative value because a
4775 			 * decayed tickless_load cannot be greater than the
4776 			 * original tickless_load.
4777 			 */
4778 			old_load += tickless_load;
4779 		}
4780 #endif
4781 		new_load = this_load;
4782 		/*
4783 		 * Round up the averaging division if load is increasing. This
4784 		 * prevents us from getting stuck on 9 if the load is 10, for
4785 		 * example.
4786 		 */
4787 		if (new_load > old_load)
4788 			new_load += scale - 1;
4789 
4790 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4791 	}
4792 
4793 	sched_avg_update(this_rq);
4794 }
4795 
4796 /* Used instead of source_load when we know the type == 0 */
4797 static unsigned long weighted_cpuload(const int cpu)
4798 {
4799 	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4800 }
4801 
4802 #ifdef CONFIG_NO_HZ_COMMON
4803 /*
4804  * There is no sane way to deal with nohz on smp when using jiffies because the
4805  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4806  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4807  *
4808  * Therefore we need to avoid the delta approach from the regular tick when
4809  * possible since that would seriously skew the load calculation. This is why we
4810  * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4811  * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4812  * loop exit, nohz_idle_balance, nohz full exit...)
4813  *
4814  * This means we might still be one tick off for nohz periods.
4815  */
4816 
4817 static void cpu_load_update_nohz(struct rq *this_rq,
4818 				 unsigned long curr_jiffies,
4819 				 unsigned long load)
4820 {
4821 	unsigned long pending_updates;
4822 
4823 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4824 	if (pending_updates) {
4825 		this_rq->last_load_update_tick = curr_jiffies;
4826 		/*
4827 		 * In the regular NOHZ case, we were idle, this means load 0.
4828 		 * In the NOHZ_FULL case, we were non-idle, we should consider
4829 		 * its weighted load.
4830 		 */
4831 		cpu_load_update(this_rq, load, pending_updates);
4832 	}
4833 }
4834 
4835 /*
4836  * Called from nohz_idle_balance() to update the load ratings before doing the
4837  * idle balance.
4838  */
4839 static void cpu_load_update_idle(struct rq *this_rq)
4840 {
4841 	/*
4842 	 * bail if there's load or we're actually up-to-date.
4843 	 */
4844 	if (weighted_cpuload(cpu_of(this_rq)))
4845 		return;
4846 
4847 	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
4848 }
4849 
4850 /*
4851  * Record CPU load on nohz entry so we know the tickless load to account
4852  * on nohz exit. cpu_load[0] happens then to be updated more frequently
4853  * than other cpu_load[idx] but it should be fine as cpu_load readers
4854  * shouldn't rely into synchronized cpu_load[*] updates.
4855  */
4856 void cpu_load_update_nohz_start(void)
4857 {
4858 	struct rq *this_rq = this_rq();
4859 
4860 	/*
4861 	 * This is all lockless but should be fine. If weighted_cpuload changes
4862 	 * concurrently we'll exit nohz. And cpu_load write can race with
4863 	 * cpu_load_update_idle() but both updater would be writing the same.
4864 	 */
4865 	this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4866 }
4867 
4868 /*
4869  * Account the tickless load in the end of a nohz frame.
4870  */
4871 void cpu_load_update_nohz_stop(void)
4872 {
4873 	unsigned long curr_jiffies = READ_ONCE(jiffies);
4874 	struct rq *this_rq = this_rq();
4875 	unsigned long load;
4876 
4877 	if (curr_jiffies == this_rq->last_load_update_tick)
4878 		return;
4879 
4880 	load = weighted_cpuload(cpu_of(this_rq));
4881 	raw_spin_lock(&this_rq->lock);
4882 	update_rq_clock(this_rq);
4883 	cpu_load_update_nohz(this_rq, curr_jiffies, load);
4884 	raw_spin_unlock(&this_rq->lock);
4885 }
4886 #else /* !CONFIG_NO_HZ_COMMON */
4887 static inline void cpu_load_update_nohz(struct rq *this_rq,
4888 					unsigned long curr_jiffies,
4889 					unsigned long load) { }
4890 #endif /* CONFIG_NO_HZ_COMMON */
4891 
4892 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4893 {
4894 #ifdef CONFIG_NO_HZ_COMMON
4895 	/* See the mess around cpu_load_update_nohz(). */
4896 	this_rq->last_load_update_tick = READ_ONCE(jiffies);
4897 #endif
4898 	cpu_load_update(this_rq, load, 1);
4899 }
4900 
4901 /*
4902  * Called from scheduler_tick()
4903  */
4904 void cpu_load_update_active(struct rq *this_rq)
4905 {
4906 	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4907 
4908 	if (tick_nohz_tick_stopped())
4909 		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4910 	else
4911 		cpu_load_update_periodic(this_rq, load);
4912 }
4913 
4914 /*
4915  * Return a low guess at the load of a migration-source cpu weighted
4916  * according to the scheduling class and "nice" value.
4917  *
4918  * We want to under-estimate the load of migration sources, to
4919  * balance conservatively.
4920  */
4921 static unsigned long source_load(int cpu, int type)
4922 {
4923 	struct rq *rq = cpu_rq(cpu);
4924 	unsigned long total = weighted_cpuload(cpu);
4925 
4926 	if (type == 0 || !sched_feat(LB_BIAS))
4927 		return total;
4928 
4929 	return min(rq->cpu_load[type-1], total);
4930 }
4931 
4932 /*
4933  * Return a high guess at the load of a migration-target cpu weighted
4934  * according to the scheduling class and "nice" value.
4935  */
4936 static unsigned long target_load(int cpu, int type)
4937 {
4938 	struct rq *rq = cpu_rq(cpu);
4939 	unsigned long total = weighted_cpuload(cpu);
4940 
4941 	if (type == 0 || !sched_feat(LB_BIAS))
4942 		return total;
4943 
4944 	return max(rq->cpu_load[type-1], total);
4945 }
4946 
4947 static unsigned long capacity_of(int cpu)
4948 {
4949 	return cpu_rq(cpu)->cpu_capacity;
4950 }
4951 
4952 static unsigned long capacity_orig_of(int cpu)
4953 {
4954 	return cpu_rq(cpu)->cpu_capacity_orig;
4955 }
4956 
4957 static unsigned long cpu_avg_load_per_task(int cpu)
4958 {
4959 	struct rq *rq = cpu_rq(cpu);
4960 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4961 	unsigned long load_avg = weighted_cpuload(cpu);
4962 
4963 	if (nr_running)
4964 		return load_avg / nr_running;
4965 
4966 	return 0;
4967 }
4968 
4969 #ifdef CONFIG_FAIR_GROUP_SCHED
4970 /*
4971  * effective_load() calculates the load change as seen from the root_task_group
4972  *
4973  * Adding load to a group doesn't make a group heavier, but can cause movement
4974  * of group shares between cpus. Assuming the shares were perfectly aligned one
4975  * can calculate the shift in shares.
4976  *
4977  * Calculate the effective load difference if @wl is added (subtracted) to @tg
4978  * on this @cpu and results in a total addition (subtraction) of @wg to the
4979  * total group weight.
4980  *
4981  * Given a runqueue weight distribution (rw_i) we can compute a shares
4982  * distribution (s_i) using:
4983  *
4984  *   s_i = rw_i / \Sum rw_j						(1)
4985  *
4986  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4987  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4988  * shares distribution (s_i):
4989  *
4990  *   rw_i = {   2,   4,   1,   0 }
4991  *   s_i  = { 2/7, 4/7, 1/7,   0 }
4992  *
4993  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4994  * task used to run on and the CPU the waker is running on), we need to
4995  * compute the effect of waking a task on either CPU and, in case of a sync
4996  * wakeup, compute the effect of the current task going to sleep.
4997  *
4998  * So for a change of @wl to the local @cpu with an overall group weight change
4999  * of @wl we can compute the new shares distribution (s'_i) using:
5000  *
5001  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
5002  *
5003  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
5004  * differences in waking a task to CPU 0. The additional task changes the
5005  * weight and shares distributions like:
5006  *
5007  *   rw'_i = {   3,   4,   1,   0 }
5008  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
5009  *
5010  * We can then compute the difference in effective weight by using:
5011  *
5012  *   dw_i = S * (s'_i - s_i)						(3)
5013  *
5014  * Where 'S' is the group weight as seen by its parent.
5015  *
5016  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
5017  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
5018  * 4/7) times the weight of the group.
5019  */
5020 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5021 {
5022 	struct sched_entity *se = tg->se[cpu];
5023 
5024 	if (!tg->parent)	/* the trivial, non-cgroup case */
5025 		return wl;
5026 
5027 	for_each_sched_entity(se) {
5028 		struct cfs_rq *cfs_rq = se->my_q;
5029 		long W, w = cfs_rq_load_avg(cfs_rq);
5030 
5031 		tg = cfs_rq->tg;
5032 
5033 		/*
5034 		 * W = @wg + \Sum rw_j
5035 		 */
5036 		W = wg + atomic_long_read(&tg->load_avg);
5037 
5038 		/* Ensure \Sum rw_j >= rw_i */
5039 		W -= cfs_rq->tg_load_avg_contrib;
5040 		W += w;
5041 
5042 		/*
5043 		 * w = rw_i + @wl
5044 		 */
5045 		w += wl;
5046 
5047 		/*
5048 		 * wl = S * s'_i; see (2)
5049 		 */
5050 		if (W > 0 && w < W)
5051 			wl = (w * (long)scale_load_down(tg->shares)) / W;
5052 		else
5053 			wl = scale_load_down(tg->shares);
5054 
5055 		/*
5056 		 * Per the above, wl is the new se->load.weight value; since
5057 		 * those are clipped to [MIN_SHARES, ...) do so now. See
5058 		 * calc_cfs_shares().
5059 		 */
5060 		if (wl < MIN_SHARES)
5061 			wl = MIN_SHARES;
5062 
5063 		/*
5064 		 * wl = dw_i = S * (s'_i - s_i); see (3)
5065 		 */
5066 		wl -= se->avg.load_avg;
5067 
5068 		/*
5069 		 * Recursively apply this logic to all parent groups to compute
5070 		 * the final effective load change on the root group. Since
5071 		 * only the @tg group gets extra weight, all parent groups can
5072 		 * only redistribute existing shares. @wl is the shift in shares
5073 		 * resulting from this level per the above.
5074 		 */
5075 		wg = 0;
5076 	}
5077 
5078 	return wl;
5079 }
5080 #else
5081 
5082 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5083 {
5084 	return wl;
5085 }
5086 
5087 #endif
5088 
5089 static void record_wakee(struct task_struct *p)
5090 {
5091 	/*
5092 	 * Only decay a single time; tasks that have less then 1 wakeup per
5093 	 * jiffy will not have built up many flips.
5094 	 */
5095 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5096 		current->wakee_flips >>= 1;
5097 		current->wakee_flip_decay_ts = jiffies;
5098 	}
5099 
5100 	if (current->last_wakee != p) {
5101 		current->last_wakee = p;
5102 		current->wakee_flips++;
5103 	}
5104 }
5105 
5106 /*
5107  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5108  *
5109  * A waker of many should wake a different task than the one last awakened
5110  * at a frequency roughly N times higher than one of its wakees.
5111  *
5112  * In order to determine whether we should let the load spread vs consolidating
5113  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5114  * partner, and a factor of lls_size higher frequency in the other.
5115  *
5116  * With both conditions met, we can be relatively sure that the relationship is
5117  * non-monogamous, with partner count exceeding socket size.
5118  *
5119  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5120  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5121  * socket size.
5122  */
5123 static int wake_wide(struct task_struct *p)
5124 {
5125 	unsigned int master = current->wakee_flips;
5126 	unsigned int slave = p->wakee_flips;
5127 	int factor = this_cpu_read(sd_llc_size);
5128 
5129 	if (master < slave)
5130 		swap(master, slave);
5131 	if (slave < factor || master < slave * factor)
5132 		return 0;
5133 	return 1;
5134 }
5135 
5136 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5137 		       int prev_cpu, int sync)
5138 {
5139 	s64 this_load, load;
5140 	s64 this_eff_load, prev_eff_load;
5141 	int idx, this_cpu;
5142 	struct task_group *tg;
5143 	unsigned long weight;
5144 	int balanced;
5145 
5146 	idx	  = sd->wake_idx;
5147 	this_cpu  = smp_processor_id();
5148 	load	  = source_load(prev_cpu, idx);
5149 	this_load = target_load(this_cpu, idx);
5150 
5151 	/*
5152 	 * If sync wakeup then subtract the (maximum possible)
5153 	 * effect of the currently running task from the load
5154 	 * of the current CPU:
5155 	 */
5156 	if (sync) {
5157 		tg = task_group(current);
5158 		weight = current->se.avg.load_avg;
5159 
5160 		this_load += effective_load(tg, this_cpu, -weight, -weight);
5161 		load += effective_load(tg, prev_cpu, 0, -weight);
5162 	}
5163 
5164 	tg = task_group(p);
5165 	weight = p->se.avg.load_avg;
5166 
5167 	/*
5168 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5169 	 * due to the sync cause above having dropped this_load to 0, we'll
5170 	 * always have an imbalance, but there's really nothing you can do
5171 	 * about that, so that's good too.
5172 	 *
5173 	 * Otherwise check if either cpus are near enough in load to allow this
5174 	 * task to be woken on this_cpu.
5175 	 */
5176 	this_eff_load = 100;
5177 	this_eff_load *= capacity_of(prev_cpu);
5178 
5179 	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5180 	prev_eff_load *= capacity_of(this_cpu);
5181 
5182 	if (this_load > 0) {
5183 		this_eff_load *= this_load +
5184 			effective_load(tg, this_cpu, weight, weight);
5185 
5186 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5187 	}
5188 
5189 	balanced = this_eff_load <= prev_eff_load;
5190 
5191 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5192 
5193 	if (!balanced)
5194 		return 0;
5195 
5196 	schedstat_inc(sd->ttwu_move_affine);
5197 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5198 
5199 	return 1;
5200 }
5201 
5202 /*
5203  * find_idlest_group finds and returns the least busy CPU group within the
5204  * domain.
5205  */
5206 static struct sched_group *
5207 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5208 		  int this_cpu, int sd_flag)
5209 {
5210 	struct sched_group *idlest = NULL, *group = sd->groups;
5211 	unsigned long min_load = ULONG_MAX, this_load = 0;
5212 	int load_idx = sd->forkexec_idx;
5213 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
5214 
5215 	if (sd_flag & SD_BALANCE_WAKE)
5216 		load_idx = sd->wake_idx;
5217 
5218 	do {
5219 		unsigned long load, avg_load;
5220 		int local_group;
5221 		int i;
5222 
5223 		/* Skip over this group if it has no CPUs allowed */
5224 		if (!cpumask_intersects(sched_group_cpus(group),
5225 					tsk_cpus_allowed(p)))
5226 			continue;
5227 
5228 		local_group = cpumask_test_cpu(this_cpu,
5229 					       sched_group_cpus(group));
5230 
5231 		/* Tally up the load of all CPUs in the group */
5232 		avg_load = 0;
5233 
5234 		for_each_cpu(i, sched_group_cpus(group)) {
5235 			/* Bias balancing toward cpus of our domain */
5236 			if (local_group)
5237 				load = source_load(i, load_idx);
5238 			else
5239 				load = target_load(i, load_idx);
5240 
5241 			avg_load += load;
5242 		}
5243 
5244 		/* Adjust by relative CPU capacity of the group */
5245 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
5246 
5247 		if (local_group) {
5248 			this_load = avg_load;
5249 		} else if (avg_load < min_load) {
5250 			min_load = avg_load;
5251 			idlest = group;
5252 		}
5253 	} while (group = group->next, group != sd->groups);
5254 
5255 	if (!idlest || 100*this_load < imbalance*min_load)
5256 		return NULL;
5257 	return idlest;
5258 }
5259 
5260 /*
5261  * find_idlest_cpu - find the idlest cpu among the cpus in group.
5262  */
5263 static int
5264 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5265 {
5266 	unsigned long load, min_load = ULONG_MAX;
5267 	unsigned int min_exit_latency = UINT_MAX;
5268 	u64 latest_idle_timestamp = 0;
5269 	int least_loaded_cpu = this_cpu;
5270 	int shallowest_idle_cpu = -1;
5271 	int i;
5272 
5273 	/* Check if we have any choice: */
5274 	if (group->group_weight == 1)
5275 		return cpumask_first(sched_group_cpus(group));
5276 
5277 	/* Traverse only the allowed CPUs */
5278 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5279 		if (idle_cpu(i)) {
5280 			struct rq *rq = cpu_rq(i);
5281 			struct cpuidle_state *idle = idle_get_state(rq);
5282 			if (idle && idle->exit_latency < min_exit_latency) {
5283 				/*
5284 				 * We give priority to a CPU whose idle state
5285 				 * has the smallest exit latency irrespective
5286 				 * of any idle timestamp.
5287 				 */
5288 				min_exit_latency = idle->exit_latency;
5289 				latest_idle_timestamp = rq->idle_stamp;
5290 				shallowest_idle_cpu = i;
5291 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5292 				   rq->idle_stamp > latest_idle_timestamp) {
5293 				/*
5294 				 * If equal or no active idle state, then
5295 				 * the most recently idled CPU might have
5296 				 * a warmer cache.
5297 				 */
5298 				latest_idle_timestamp = rq->idle_stamp;
5299 				shallowest_idle_cpu = i;
5300 			}
5301 		} else if (shallowest_idle_cpu == -1) {
5302 			load = weighted_cpuload(i);
5303 			if (load < min_load || (load == min_load && i == this_cpu)) {
5304 				min_load = load;
5305 				least_loaded_cpu = i;
5306 			}
5307 		}
5308 	}
5309 
5310 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5311 }
5312 
5313 /*
5314  * Implement a for_each_cpu() variant that starts the scan at a given cpu
5315  * (@start), and wraps around.
5316  *
5317  * This is used to scan for idle CPUs; such that not all CPUs looking for an
5318  * idle CPU find the same CPU. The down-side is that tasks tend to cycle
5319  * through the LLC domain.
5320  *
5321  * Especially tbench is found sensitive to this.
5322  */
5323 
5324 static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped)
5325 {
5326 	int next;
5327 
5328 again:
5329 	next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1);
5330 
5331 	if (*wrapped) {
5332 		if (next >= start)
5333 			return nr_cpumask_bits;
5334 	} else {
5335 		if (next >= nr_cpumask_bits) {
5336 			*wrapped = 1;
5337 			n = -1;
5338 			goto again;
5339 		}
5340 	}
5341 
5342 	return next;
5343 }
5344 
5345 #define for_each_cpu_wrap(cpu, mask, start, wrap)				\
5346 	for ((wrap) = 0, (cpu) = (start)-1;					\
5347 		(cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)),	\
5348 		(cpu) < nr_cpumask_bits; )
5349 
5350 #ifdef CONFIG_SCHED_SMT
5351 
5352 static inline void set_idle_cores(int cpu, int val)
5353 {
5354 	struct sched_domain_shared *sds;
5355 
5356 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5357 	if (sds)
5358 		WRITE_ONCE(sds->has_idle_cores, val);
5359 }
5360 
5361 static inline bool test_idle_cores(int cpu, bool def)
5362 {
5363 	struct sched_domain_shared *sds;
5364 
5365 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5366 	if (sds)
5367 		return READ_ONCE(sds->has_idle_cores);
5368 
5369 	return def;
5370 }
5371 
5372 /*
5373  * Scans the local SMT mask to see if the entire core is idle, and records this
5374  * information in sd_llc_shared->has_idle_cores.
5375  *
5376  * Since SMT siblings share all cache levels, inspecting this limited remote
5377  * state should be fairly cheap.
5378  */
5379 void __update_idle_core(struct rq *rq)
5380 {
5381 	int core = cpu_of(rq);
5382 	int cpu;
5383 
5384 	rcu_read_lock();
5385 	if (test_idle_cores(core, true))
5386 		goto unlock;
5387 
5388 	for_each_cpu(cpu, cpu_smt_mask(core)) {
5389 		if (cpu == core)
5390 			continue;
5391 
5392 		if (!idle_cpu(cpu))
5393 			goto unlock;
5394 	}
5395 
5396 	set_idle_cores(core, 1);
5397 unlock:
5398 	rcu_read_unlock();
5399 }
5400 
5401 /*
5402  * Scan the entire LLC domain for idle cores; this dynamically switches off if
5403  * there are no idle cores left in the system; tracked through
5404  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5405  */
5406 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5407 {
5408 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5409 	int core, cpu, wrap;
5410 
5411 	if (!static_branch_likely(&sched_smt_present))
5412 		return -1;
5413 
5414 	if (!test_idle_cores(target, false))
5415 		return -1;
5416 
5417 	cpumask_and(cpus, sched_domain_span(sd), tsk_cpus_allowed(p));
5418 
5419 	for_each_cpu_wrap(core, cpus, target, wrap) {
5420 		bool idle = true;
5421 
5422 		for_each_cpu(cpu, cpu_smt_mask(core)) {
5423 			cpumask_clear_cpu(cpu, cpus);
5424 			if (!idle_cpu(cpu))
5425 				idle = false;
5426 		}
5427 
5428 		if (idle)
5429 			return core;
5430 	}
5431 
5432 	/*
5433 	 * Failed to find an idle core; stop looking for one.
5434 	 */
5435 	set_idle_cores(target, 0);
5436 
5437 	return -1;
5438 }
5439 
5440 /*
5441  * Scan the local SMT mask for idle CPUs.
5442  */
5443 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5444 {
5445 	int cpu;
5446 
5447 	if (!static_branch_likely(&sched_smt_present))
5448 		return -1;
5449 
5450 	for_each_cpu(cpu, cpu_smt_mask(target)) {
5451 		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
5452 			continue;
5453 		if (idle_cpu(cpu))
5454 			return cpu;
5455 	}
5456 
5457 	return -1;
5458 }
5459 
5460 #else /* CONFIG_SCHED_SMT */
5461 
5462 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5463 {
5464 	return -1;
5465 }
5466 
5467 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5468 {
5469 	return -1;
5470 }
5471 
5472 #endif /* CONFIG_SCHED_SMT */
5473 
5474 /*
5475  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5476  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5477  * average idle time for this rq (as found in rq->avg_idle).
5478  */
5479 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5480 {
5481 	struct sched_domain *this_sd;
5482 	u64 avg_cost, avg_idle = this_rq()->avg_idle;
5483 	u64 time, cost;
5484 	s64 delta;
5485 	int cpu, wrap;
5486 
5487 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5488 	if (!this_sd)
5489 		return -1;
5490 
5491 	avg_cost = this_sd->avg_scan_cost;
5492 
5493 	/*
5494 	 * Due to large variance we need a large fuzz factor; hackbench in
5495 	 * particularly is sensitive here.
5496 	 */
5497 	if ((avg_idle / 512) < avg_cost)
5498 		return -1;
5499 
5500 	time = local_clock();
5501 
5502 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
5503 		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
5504 			continue;
5505 		if (idle_cpu(cpu))
5506 			break;
5507 	}
5508 
5509 	time = local_clock() - time;
5510 	cost = this_sd->avg_scan_cost;
5511 	delta = (s64)(time - cost) / 8;
5512 	this_sd->avg_scan_cost += delta;
5513 
5514 	return cpu;
5515 }
5516 
5517 /*
5518  * Try and locate an idle core/thread in the LLC cache domain.
5519  */
5520 static int select_idle_sibling(struct task_struct *p, int prev, int target)
5521 {
5522 	struct sched_domain *sd;
5523 	int i;
5524 
5525 	if (idle_cpu(target))
5526 		return target;
5527 
5528 	/*
5529 	 * If the previous cpu is cache affine and idle, don't be stupid.
5530 	 */
5531 	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5532 		return prev;
5533 
5534 	sd = rcu_dereference(per_cpu(sd_llc, target));
5535 	if (!sd)
5536 		return target;
5537 
5538 	i = select_idle_core(p, sd, target);
5539 	if ((unsigned)i < nr_cpumask_bits)
5540 		return i;
5541 
5542 	i = select_idle_cpu(p, sd, target);
5543 	if ((unsigned)i < nr_cpumask_bits)
5544 		return i;
5545 
5546 	i = select_idle_smt(p, sd, target);
5547 	if ((unsigned)i < nr_cpumask_bits)
5548 		return i;
5549 
5550 	return target;
5551 }
5552 
5553 /*
5554  * cpu_util returns the amount of capacity of a CPU that is used by CFS
5555  * tasks. The unit of the return value must be the one of capacity so we can
5556  * compare the utilization with the capacity of the CPU that is available for
5557  * CFS task (ie cpu_capacity).
5558  *
5559  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5560  * recent utilization of currently non-runnable tasks on a CPU. It represents
5561  * the amount of utilization of a CPU in the range [0..capacity_orig] where
5562  * capacity_orig is the cpu_capacity available at the highest frequency
5563  * (arch_scale_freq_capacity()).
5564  * The utilization of a CPU converges towards a sum equal to or less than the
5565  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5566  * the running time on this CPU scaled by capacity_curr.
5567  *
5568  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5569  * higher than capacity_orig because of unfortunate rounding in
5570  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5571  * the average stabilizes with the new running time. We need to check that the
5572  * utilization stays within the range of [0..capacity_orig] and cap it if
5573  * necessary. Without utilization capping, a group could be seen as overloaded
5574  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5575  * available capacity. We allow utilization to overshoot capacity_curr (but not
5576  * capacity_orig) as it useful for predicting the capacity required after task
5577  * migrations (scheduler-driven DVFS).
5578  */
5579 static int cpu_util(int cpu)
5580 {
5581 	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5582 	unsigned long capacity = capacity_orig_of(cpu);
5583 
5584 	return (util >= capacity) ? capacity : util;
5585 }
5586 
5587 static inline int task_util(struct task_struct *p)
5588 {
5589 	return p->se.avg.util_avg;
5590 }
5591 
5592 /*
5593  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5594  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5595  *
5596  * In that case WAKE_AFFINE doesn't make sense and we'll let
5597  * BALANCE_WAKE sort things out.
5598  */
5599 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5600 {
5601 	long min_cap, max_cap;
5602 
5603 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5604 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5605 
5606 	/* Minimum capacity is close to max, no need to abort wake_affine */
5607 	if (max_cap - min_cap < max_cap >> 3)
5608 		return 0;
5609 
5610 	return min_cap * 1024 < task_util(p) * capacity_margin;
5611 }
5612 
5613 /*
5614  * select_task_rq_fair: Select target runqueue for the waking task in domains
5615  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5616  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5617  *
5618  * Balances load by selecting the idlest cpu in the idlest group, or under
5619  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5620  *
5621  * Returns the target cpu number.
5622  *
5623  * preempt must be disabled.
5624  */
5625 static int
5626 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5627 {
5628 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5629 	int cpu = smp_processor_id();
5630 	int new_cpu = prev_cpu;
5631 	int want_affine = 0;
5632 	int sync = wake_flags & WF_SYNC;
5633 
5634 	if (sd_flag & SD_BALANCE_WAKE) {
5635 		record_wakee(p);
5636 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
5637 			      && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
5638 	}
5639 
5640 	rcu_read_lock();
5641 	for_each_domain(cpu, tmp) {
5642 		if (!(tmp->flags & SD_LOAD_BALANCE))
5643 			break;
5644 
5645 		/*
5646 		 * If both cpu and prev_cpu are part of this domain,
5647 		 * cpu is a valid SD_WAKE_AFFINE target.
5648 		 */
5649 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5650 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5651 			affine_sd = tmp;
5652 			break;
5653 		}
5654 
5655 		if (tmp->flags & sd_flag)
5656 			sd = tmp;
5657 		else if (!want_affine)
5658 			break;
5659 	}
5660 
5661 	if (affine_sd) {
5662 		sd = NULL; /* Prefer wake_affine over balance flags */
5663 		if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
5664 			new_cpu = cpu;
5665 	}
5666 
5667 	if (!sd) {
5668 		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5669 			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
5670 
5671 	} else while (sd) {
5672 		struct sched_group *group;
5673 		int weight;
5674 
5675 		if (!(sd->flags & sd_flag)) {
5676 			sd = sd->child;
5677 			continue;
5678 		}
5679 
5680 		group = find_idlest_group(sd, p, cpu, sd_flag);
5681 		if (!group) {
5682 			sd = sd->child;
5683 			continue;
5684 		}
5685 
5686 		new_cpu = find_idlest_cpu(group, p, cpu);
5687 		if (new_cpu == -1 || new_cpu == cpu) {
5688 			/* Now try balancing at a lower domain level of cpu */
5689 			sd = sd->child;
5690 			continue;
5691 		}
5692 
5693 		/* Now try balancing at a lower domain level of new_cpu */
5694 		cpu = new_cpu;
5695 		weight = sd->span_weight;
5696 		sd = NULL;
5697 		for_each_domain(cpu, tmp) {
5698 			if (weight <= tmp->span_weight)
5699 				break;
5700 			if (tmp->flags & sd_flag)
5701 				sd = tmp;
5702 		}
5703 		/* while loop will break here if sd == NULL */
5704 	}
5705 	rcu_read_unlock();
5706 
5707 	return new_cpu;
5708 }
5709 
5710 /*
5711  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5712  * cfs_rq_of(p) references at time of call are still valid and identify the
5713  * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5714  */
5715 static void migrate_task_rq_fair(struct task_struct *p)
5716 {
5717 	/*
5718 	 * As blocked tasks retain absolute vruntime the migration needs to
5719 	 * deal with this by subtracting the old and adding the new
5720 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
5721 	 * the task on the new runqueue.
5722 	 */
5723 	if (p->state == TASK_WAKING) {
5724 		struct sched_entity *se = &p->se;
5725 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5726 		u64 min_vruntime;
5727 
5728 #ifndef CONFIG_64BIT
5729 		u64 min_vruntime_copy;
5730 
5731 		do {
5732 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
5733 			smp_rmb();
5734 			min_vruntime = cfs_rq->min_vruntime;
5735 		} while (min_vruntime != min_vruntime_copy);
5736 #else
5737 		min_vruntime = cfs_rq->min_vruntime;
5738 #endif
5739 
5740 		se->vruntime -= min_vruntime;
5741 	}
5742 
5743 	/*
5744 	 * We are supposed to update the task to "current" time, then its up to date
5745 	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5746 	 * what current time is, so simply throw away the out-of-date time. This
5747 	 * will result in the wakee task is less decayed, but giving the wakee more
5748 	 * load sounds not bad.
5749 	 */
5750 	remove_entity_load_avg(&p->se);
5751 
5752 	/* Tell new CPU we are migrated */
5753 	p->se.avg.last_update_time = 0;
5754 
5755 	/* We have migrated, no longer consider this task hot */
5756 	p->se.exec_start = 0;
5757 }
5758 
5759 static void task_dead_fair(struct task_struct *p)
5760 {
5761 	remove_entity_load_avg(&p->se);
5762 }
5763 #endif /* CONFIG_SMP */
5764 
5765 static unsigned long
5766 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5767 {
5768 	unsigned long gran = sysctl_sched_wakeup_granularity;
5769 
5770 	/*
5771 	 * Since its curr running now, convert the gran from real-time
5772 	 * to virtual-time in his units.
5773 	 *
5774 	 * By using 'se' instead of 'curr' we penalize light tasks, so
5775 	 * they get preempted easier. That is, if 'se' < 'curr' then
5776 	 * the resulting gran will be larger, therefore penalizing the
5777 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5778 	 * be smaller, again penalizing the lighter task.
5779 	 *
5780 	 * This is especially important for buddies when the leftmost
5781 	 * task is higher priority than the buddy.
5782 	 */
5783 	return calc_delta_fair(gran, se);
5784 }
5785 
5786 /*
5787  * Should 'se' preempt 'curr'.
5788  *
5789  *             |s1
5790  *        |s2
5791  *   |s3
5792  *         g
5793  *      |<--->|c
5794  *
5795  *  w(c, s1) = -1
5796  *  w(c, s2) =  0
5797  *  w(c, s3) =  1
5798  *
5799  */
5800 static int
5801 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5802 {
5803 	s64 gran, vdiff = curr->vruntime - se->vruntime;
5804 
5805 	if (vdiff <= 0)
5806 		return -1;
5807 
5808 	gran = wakeup_gran(curr, se);
5809 	if (vdiff > gran)
5810 		return 1;
5811 
5812 	return 0;
5813 }
5814 
5815 static void set_last_buddy(struct sched_entity *se)
5816 {
5817 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5818 		return;
5819 
5820 	for_each_sched_entity(se)
5821 		cfs_rq_of(se)->last = se;
5822 }
5823 
5824 static void set_next_buddy(struct sched_entity *se)
5825 {
5826 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5827 		return;
5828 
5829 	for_each_sched_entity(se)
5830 		cfs_rq_of(se)->next = se;
5831 }
5832 
5833 static void set_skip_buddy(struct sched_entity *se)
5834 {
5835 	for_each_sched_entity(se)
5836 		cfs_rq_of(se)->skip = se;
5837 }
5838 
5839 /*
5840  * Preempt the current task with a newly woken task if needed:
5841  */
5842 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5843 {
5844 	struct task_struct *curr = rq->curr;
5845 	struct sched_entity *se = &curr->se, *pse = &p->se;
5846 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5847 	int scale = cfs_rq->nr_running >= sched_nr_latency;
5848 	int next_buddy_marked = 0;
5849 
5850 	if (unlikely(se == pse))
5851 		return;
5852 
5853 	/*
5854 	 * This is possible from callers such as attach_tasks(), in which we
5855 	 * unconditionally check_prempt_curr() after an enqueue (which may have
5856 	 * lead to a throttle).  This both saves work and prevents false
5857 	 * next-buddy nomination below.
5858 	 */
5859 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5860 		return;
5861 
5862 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5863 		set_next_buddy(pse);
5864 		next_buddy_marked = 1;
5865 	}
5866 
5867 	/*
5868 	 * We can come here with TIF_NEED_RESCHED already set from new task
5869 	 * wake up path.
5870 	 *
5871 	 * Note: this also catches the edge-case of curr being in a throttled
5872 	 * group (e.g. via set_curr_task), since update_curr() (in the
5873 	 * enqueue of curr) will have resulted in resched being set.  This
5874 	 * prevents us from potentially nominating it as a false LAST_BUDDY
5875 	 * below.
5876 	 */
5877 	if (test_tsk_need_resched(curr))
5878 		return;
5879 
5880 	/* Idle tasks are by definition preempted by non-idle tasks. */
5881 	if (unlikely(curr->policy == SCHED_IDLE) &&
5882 	    likely(p->policy != SCHED_IDLE))
5883 		goto preempt;
5884 
5885 	/*
5886 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5887 	 * is driven by the tick):
5888 	 */
5889 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5890 		return;
5891 
5892 	find_matching_se(&se, &pse);
5893 	update_curr(cfs_rq_of(se));
5894 	BUG_ON(!pse);
5895 	if (wakeup_preempt_entity(se, pse) == 1) {
5896 		/*
5897 		 * Bias pick_next to pick the sched entity that is
5898 		 * triggering this preemption.
5899 		 */
5900 		if (!next_buddy_marked)
5901 			set_next_buddy(pse);
5902 		goto preempt;
5903 	}
5904 
5905 	return;
5906 
5907 preempt:
5908 	resched_curr(rq);
5909 	/*
5910 	 * Only set the backward buddy when the current task is still
5911 	 * on the rq. This can happen when a wakeup gets interleaved
5912 	 * with schedule on the ->pre_schedule() or idle_balance()
5913 	 * point, either of which can * drop the rq lock.
5914 	 *
5915 	 * Also, during early boot the idle thread is in the fair class,
5916 	 * for obvious reasons its a bad idea to schedule back to it.
5917 	 */
5918 	if (unlikely(!se->on_rq || curr == rq->idle))
5919 		return;
5920 
5921 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5922 		set_last_buddy(se);
5923 }
5924 
5925 static struct task_struct *
5926 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
5927 {
5928 	struct cfs_rq *cfs_rq = &rq->cfs;
5929 	struct sched_entity *se;
5930 	struct task_struct *p;
5931 	int new_tasks;
5932 
5933 again:
5934 #ifdef CONFIG_FAIR_GROUP_SCHED
5935 	if (!cfs_rq->nr_running)
5936 		goto idle;
5937 
5938 	if (prev->sched_class != &fair_sched_class)
5939 		goto simple;
5940 
5941 	/*
5942 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5943 	 * likely that a next task is from the same cgroup as the current.
5944 	 *
5945 	 * Therefore attempt to avoid putting and setting the entire cgroup
5946 	 * hierarchy, only change the part that actually changes.
5947 	 */
5948 
5949 	do {
5950 		struct sched_entity *curr = cfs_rq->curr;
5951 
5952 		/*
5953 		 * Since we got here without doing put_prev_entity() we also
5954 		 * have to consider cfs_rq->curr. If it is still a runnable
5955 		 * entity, update_curr() will update its vruntime, otherwise
5956 		 * forget we've ever seen it.
5957 		 */
5958 		if (curr) {
5959 			if (curr->on_rq)
5960 				update_curr(cfs_rq);
5961 			else
5962 				curr = NULL;
5963 
5964 			/*
5965 			 * This call to check_cfs_rq_runtime() will do the
5966 			 * throttle and dequeue its entity in the parent(s).
5967 			 * Therefore the 'simple' nr_running test will indeed
5968 			 * be correct.
5969 			 */
5970 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5971 				goto simple;
5972 		}
5973 
5974 		se = pick_next_entity(cfs_rq, curr);
5975 		cfs_rq = group_cfs_rq(se);
5976 	} while (cfs_rq);
5977 
5978 	p = task_of(se);
5979 
5980 	/*
5981 	 * Since we haven't yet done put_prev_entity and if the selected task
5982 	 * is a different task than we started out with, try and touch the
5983 	 * least amount of cfs_rqs.
5984 	 */
5985 	if (prev != p) {
5986 		struct sched_entity *pse = &prev->se;
5987 
5988 		while (!(cfs_rq = is_same_group(se, pse))) {
5989 			int se_depth = se->depth;
5990 			int pse_depth = pse->depth;
5991 
5992 			if (se_depth <= pse_depth) {
5993 				put_prev_entity(cfs_rq_of(pse), pse);
5994 				pse = parent_entity(pse);
5995 			}
5996 			if (se_depth >= pse_depth) {
5997 				set_next_entity(cfs_rq_of(se), se);
5998 				se = parent_entity(se);
5999 			}
6000 		}
6001 
6002 		put_prev_entity(cfs_rq, pse);
6003 		set_next_entity(cfs_rq, se);
6004 	}
6005 
6006 	if (hrtick_enabled(rq))
6007 		hrtick_start_fair(rq, p);
6008 
6009 	return p;
6010 simple:
6011 	cfs_rq = &rq->cfs;
6012 #endif
6013 
6014 	if (!cfs_rq->nr_running)
6015 		goto idle;
6016 
6017 	put_prev_task(rq, prev);
6018 
6019 	do {
6020 		se = pick_next_entity(cfs_rq, NULL);
6021 		set_next_entity(cfs_rq, se);
6022 		cfs_rq = group_cfs_rq(se);
6023 	} while (cfs_rq);
6024 
6025 	p = task_of(se);
6026 
6027 	if (hrtick_enabled(rq))
6028 		hrtick_start_fair(rq, p);
6029 
6030 	return p;
6031 
6032 idle:
6033 	/*
6034 	 * This is OK, because current is on_cpu, which avoids it being picked
6035 	 * for load-balance and preemption/IRQs are still disabled avoiding
6036 	 * further scheduler activity on it and we're being very careful to
6037 	 * re-start the picking loop.
6038 	 */
6039 	lockdep_unpin_lock(&rq->lock, cookie);
6040 	new_tasks = idle_balance(rq);
6041 	lockdep_repin_lock(&rq->lock, cookie);
6042 	/*
6043 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6044 	 * possible for any higher priority task to appear. In that case we
6045 	 * must re-start the pick_next_entity() loop.
6046 	 */
6047 	if (new_tasks < 0)
6048 		return RETRY_TASK;
6049 
6050 	if (new_tasks > 0)
6051 		goto again;
6052 
6053 	return NULL;
6054 }
6055 
6056 /*
6057  * Account for a descheduled task:
6058  */
6059 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6060 {
6061 	struct sched_entity *se = &prev->se;
6062 	struct cfs_rq *cfs_rq;
6063 
6064 	for_each_sched_entity(se) {
6065 		cfs_rq = cfs_rq_of(se);
6066 		put_prev_entity(cfs_rq, se);
6067 	}
6068 }
6069 
6070 /*
6071  * sched_yield() is very simple
6072  *
6073  * The magic of dealing with the ->skip buddy is in pick_next_entity.
6074  */
6075 static void yield_task_fair(struct rq *rq)
6076 {
6077 	struct task_struct *curr = rq->curr;
6078 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6079 	struct sched_entity *se = &curr->se;
6080 
6081 	/*
6082 	 * Are we the only task in the tree?
6083 	 */
6084 	if (unlikely(rq->nr_running == 1))
6085 		return;
6086 
6087 	clear_buddies(cfs_rq, se);
6088 
6089 	if (curr->policy != SCHED_BATCH) {
6090 		update_rq_clock(rq);
6091 		/*
6092 		 * Update run-time statistics of the 'current'.
6093 		 */
6094 		update_curr(cfs_rq);
6095 		/*
6096 		 * Tell update_rq_clock() that we've just updated,
6097 		 * so we don't do microscopic update in schedule()
6098 		 * and double the fastpath cost.
6099 		 */
6100 		rq_clock_skip_update(rq, true);
6101 	}
6102 
6103 	set_skip_buddy(se);
6104 }
6105 
6106 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6107 {
6108 	struct sched_entity *se = &p->se;
6109 
6110 	/* throttled hierarchies are not runnable */
6111 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6112 		return false;
6113 
6114 	/* Tell the scheduler that we'd really like pse to run next. */
6115 	set_next_buddy(se);
6116 
6117 	yield_task_fair(rq);
6118 
6119 	return true;
6120 }
6121 
6122 #ifdef CONFIG_SMP
6123 /**************************************************
6124  * Fair scheduling class load-balancing methods.
6125  *
6126  * BASICS
6127  *
6128  * The purpose of load-balancing is to achieve the same basic fairness the
6129  * per-cpu scheduler provides, namely provide a proportional amount of compute
6130  * time to each task. This is expressed in the following equation:
6131  *
6132  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
6133  *
6134  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6135  * W_i,0 is defined as:
6136  *
6137  *   W_i,0 = \Sum_j w_i,j                                             (2)
6138  *
6139  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6140  * is derived from the nice value as per sched_prio_to_weight[].
6141  *
6142  * The weight average is an exponential decay average of the instantaneous
6143  * weight:
6144  *
6145  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
6146  *
6147  * C_i is the compute capacity of cpu i, typically it is the
6148  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6149  * can also include other factors [XXX].
6150  *
6151  * To achieve this balance we define a measure of imbalance which follows
6152  * directly from (1):
6153  *
6154  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
6155  *
6156  * We them move tasks around to minimize the imbalance. In the continuous
6157  * function space it is obvious this converges, in the discrete case we get
6158  * a few fun cases generally called infeasible weight scenarios.
6159  *
6160  * [XXX expand on:
6161  *     - infeasible weights;
6162  *     - local vs global optima in the discrete case. ]
6163  *
6164  *
6165  * SCHED DOMAINS
6166  *
6167  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6168  * for all i,j solution, we create a tree of cpus that follows the hardware
6169  * topology where each level pairs two lower groups (or better). This results
6170  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6171  * tree to only the first of the previous level and we decrease the frequency
6172  * of load-balance at each level inv. proportional to the number of cpus in
6173  * the groups.
6174  *
6175  * This yields:
6176  *
6177  *     log_2 n     1     n
6178  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
6179  *     i = 0      2^i   2^i
6180  *                               `- size of each group
6181  *         |         |     `- number of cpus doing load-balance
6182  *         |         `- freq
6183  *         `- sum over all levels
6184  *
6185  * Coupled with a limit on how many tasks we can migrate every balance pass,
6186  * this makes (5) the runtime complexity of the balancer.
6187  *
6188  * An important property here is that each CPU is still (indirectly) connected
6189  * to every other cpu in at most O(log n) steps:
6190  *
6191  * The adjacency matrix of the resulting graph is given by:
6192  *
6193  *             log_2 n
6194  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
6195  *             k = 0
6196  *
6197  * And you'll find that:
6198  *
6199  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
6200  *
6201  * Showing there's indeed a path between every cpu in at most O(log n) steps.
6202  * The task movement gives a factor of O(m), giving a convergence complexity
6203  * of:
6204  *
6205  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
6206  *
6207  *
6208  * WORK CONSERVING
6209  *
6210  * In order to avoid CPUs going idle while there's still work to do, new idle
6211  * balancing is more aggressive and has the newly idle cpu iterate up the domain
6212  * tree itself instead of relying on other CPUs to bring it work.
6213  *
6214  * This adds some complexity to both (5) and (8) but it reduces the total idle
6215  * time.
6216  *
6217  * [XXX more?]
6218  *
6219  *
6220  * CGROUPS
6221  *
6222  * Cgroups make a horror show out of (2), instead of a simple sum we get:
6223  *
6224  *                                s_k,i
6225  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
6226  *                                 S_k
6227  *
6228  * Where
6229  *
6230  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
6231  *
6232  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6233  *
6234  * The big problem is S_k, its a global sum needed to compute a local (W_i)
6235  * property.
6236  *
6237  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6238  *      rewrite all of this once again.]
6239  */
6240 
6241 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6242 
6243 enum fbq_type { regular, remote, all };
6244 
6245 #define LBF_ALL_PINNED	0x01
6246 #define LBF_NEED_BREAK	0x02
6247 #define LBF_DST_PINNED  0x04
6248 #define LBF_SOME_PINNED	0x08
6249 
6250 struct lb_env {
6251 	struct sched_domain	*sd;
6252 
6253 	struct rq		*src_rq;
6254 	int			src_cpu;
6255 
6256 	int			dst_cpu;
6257 	struct rq		*dst_rq;
6258 
6259 	struct cpumask		*dst_grpmask;
6260 	int			new_dst_cpu;
6261 	enum cpu_idle_type	idle;
6262 	long			imbalance;
6263 	/* The set of CPUs under consideration for load-balancing */
6264 	struct cpumask		*cpus;
6265 
6266 	unsigned int		flags;
6267 
6268 	unsigned int		loop;
6269 	unsigned int		loop_break;
6270 	unsigned int		loop_max;
6271 
6272 	enum fbq_type		fbq_type;
6273 	struct list_head	tasks;
6274 };
6275 
6276 /*
6277  * Is this task likely cache-hot:
6278  */
6279 static int task_hot(struct task_struct *p, struct lb_env *env)
6280 {
6281 	s64 delta;
6282 
6283 	lockdep_assert_held(&env->src_rq->lock);
6284 
6285 	if (p->sched_class != &fair_sched_class)
6286 		return 0;
6287 
6288 	if (unlikely(p->policy == SCHED_IDLE))
6289 		return 0;
6290 
6291 	/*
6292 	 * Buddy candidates are cache hot:
6293 	 */
6294 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6295 			(&p->se == cfs_rq_of(&p->se)->next ||
6296 			 &p->se == cfs_rq_of(&p->se)->last))
6297 		return 1;
6298 
6299 	if (sysctl_sched_migration_cost == -1)
6300 		return 1;
6301 	if (sysctl_sched_migration_cost == 0)
6302 		return 0;
6303 
6304 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6305 
6306 	return delta < (s64)sysctl_sched_migration_cost;
6307 }
6308 
6309 #ifdef CONFIG_NUMA_BALANCING
6310 /*
6311  * Returns 1, if task migration degrades locality
6312  * Returns 0, if task migration improves locality i.e migration preferred.
6313  * Returns -1, if task migration is not affected by locality.
6314  */
6315 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6316 {
6317 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6318 	unsigned long src_faults, dst_faults;
6319 	int src_nid, dst_nid;
6320 
6321 	if (!static_branch_likely(&sched_numa_balancing))
6322 		return -1;
6323 
6324 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6325 		return -1;
6326 
6327 	src_nid = cpu_to_node(env->src_cpu);
6328 	dst_nid = cpu_to_node(env->dst_cpu);
6329 
6330 	if (src_nid == dst_nid)
6331 		return -1;
6332 
6333 	/* Migrating away from the preferred node is always bad. */
6334 	if (src_nid == p->numa_preferred_nid) {
6335 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6336 			return 1;
6337 		else
6338 			return -1;
6339 	}
6340 
6341 	/* Encourage migration to the preferred node. */
6342 	if (dst_nid == p->numa_preferred_nid)
6343 		return 0;
6344 
6345 	if (numa_group) {
6346 		src_faults = group_faults(p, src_nid);
6347 		dst_faults = group_faults(p, dst_nid);
6348 	} else {
6349 		src_faults = task_faults(p, src_nid);
6350 		dst_faults = task_faults(p, dst_nid);
6351 	}
6352 
6353 	return dst_faults < src_faults;
6354 }
6355 
6356 #else
6357 static inline int migrate_degrades_locality(struct task_struct *p,
6358 					     struct lb_env *env)
6359 {
6360 	return -1;
6361 }
6362 #endif
6363 
6364 /*
6365  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6366  */
6367 static
6368 int can_migrate_task(struct task_struct *p, struct lb_env *env)
6369 {
6370 	int tsk_cache_hot;
6371 
6372 	lockdep_assert_held(&env->src_rq->lock);
6373 
6374 	/*
6375 	 * We do not migrate tasks that are:
6376 	 * 1) throttled_lb_pair, or
6377 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6378 	 * 3) running (obviously), or
6379 	 * 4) are cache-hot on their current CPU.
6380 	 */
6381 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6382 		return 0;
6383 
6384 	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
6385 		int cpu;
6386 
6387 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6388 
6389 		env->flags |= LBF_SOME_PINNED;
6390 
6391 		/*
6392 		 * Remember if this task can be migrated to any other cpu in
6393 		 * our sched_group. We may want to revisit it if we couldn't
6394 		 * meet load balance goals by pulling other tasks on src_cpu.
6395 		 *
6396 		 * Also avoid computing new_dst_cpu if we have already computed
6397 		 * one in current iteration.
6398 		 */
6399 		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6400 			return 0;
6401 
6402 		/* Prevent to re-select dst_cpu via env's cpus */
6403 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6404 			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6405 				env->flags |= LBF_DST_PINNED;
6406 				env->new_dst_cpu = cpu;
6407 				break;
6408 			}
6409 		}
6410 
6411 		return 0;
6412 	}
6413 
6414 	/* Record that we found atleast one task that could run on dst_cpu */
6415 	env->flags &= ~LBF_ALL_PINNED;
6416 
6417 	if (task_running(env->src_rq, p)) {
6418 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6419 		return 0;
6420 	}
6421 
6422 	/*
6423 	 * Aggressive migration if:
6424 	 * 1) destination numa is preferred
6425 	 * 2) task is cache cold, or
6426 	 * 3) too many balance attempts have failed.
6427 	 */
6428 	tsk_cache_hot = migrate_degrades_locality(p, env);
6429 	if (tsk_cache_hot == -1)
6430 		tsk_cache_hot = task_hot(p, env);
6431 
6432 	if (tsk_cache_hot <= 0 ||
6433 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6434 		if (tsk_cache_hot == 1) {
6435 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6436 			schedstat_inc(p->se.statistics.nr_forced_migrations);
6437 		}
6438 		return 1;
6439 	}
6440 
6441 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
6442 	return 0;
6443 }
6444 
6445 /*
6446  * detach_task() -- detach the task for the migration specified in env
6447  */
6448 static void detach_task(struct task_struct *p, struct lb_env *env)
6449 {
6450 	lockdep_assert_held(&env->src_rq->lock);
6451 
6452 	p->on_rq = TASK_ON_RQ_MIGRATING;
6453 	deactivate_task(env->src_rq, p, 0);
6454 	set_task_cpu(p, env->dst_cpu);
6455 }
6456 
6457 /*
6458  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6459  * part of active balancing operations within "domain".
6460  *
6461  * Returns a task if successful and NULL otherwise.
6462  */
6463 static struct task_struct *detach_one_task(struct lb_env *env)
6464 {
6465 	struct task_struct *p, *n;
6466 
6467 	lockdep_assert_held(&env->src_rq->lock);
6468 
6469 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
6470 		if (!can_migrate_task(p, env))
6471 			continue;
6472 
6473 		detach_task(p, env);
6474 
6475 		/*
6476 		 * Right now, this is only the second place where
6477 		 * lb_gained[env->idle] is updated (other is detach_tasks)
6478 		 * so we can safely collect stats here rather than
6479 		 * inside detach_tasks().
6480 		 */
6481 		schedstat_inc(env->sd->lb_gained[env->idle]);
6482 		return p;
6483 	}
6484 	return NULL;
6485 }
6486 
6487 static const unsigned int sched_nr_migrate_break = 32;
6488 
6489 /*
6490  * detach_tasks() -- tries to detach up to imbalance weighted load from
6491  * busiest_rq, as part of a balancing operation within domain "sd".
6492  *
6493  * Returns number of detached tasks if successful and 0 otherwise.
6494  */
6495 static int detach_tasks(struct lb_env *env)
6496 {
6497 	struct list_head *tasks = &env->src_rq->cfs_tasks;
6498 	struct task_struct *p;
6499 	unsigned long load;
6500 	int detached = 0;
6501 
6502 	lockdep_assert_held(&env->src_rq->lock);
6503 
6504 	if (env->imbalance <= 0)
6505 		return 0;
6506 
6507 	while (!list_empty(tasks)) {
6508 		/*
6509 		 * We don't want to steal all, otherwise we may be treated likewise,
6510 		 * which could at worst lead to a livelock crash.
6511 		 */
6512 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6513 			break;
6514 
6515 		p = list_first_entry(tasks, struct task_struct, se.group_node);
6516 
6517 		env->loop++;
6518 		/* We've more or less seen every task there is, call it quits */
6519 		if (env->loop > env->loop_max)
6520 			break;
6521 
6522 		/* take a breather every nr_migrate tasks */
6523 		if (env->loop > env->loop_break) {
6524 			env->loop_break += sched_nr_migrate_break;
6525 			env->flags |= LBF_NEED_BREAK;
6526 			break;
6527 		}
6528 
6529 		if (!can_migrate_task(p, env))
6530 			goto next;
6531 
6532 		load = task_h_load(p);
6533 
6534 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6535 			goto next;
6536 
6537 		if ((load / 2) > env->imbalance)
6538 			goto next;
6539 
6540 		detach_task(p, env);
6541 		list_add(&p->se.group_node, &env->tasks);
6542 
6543 		detached++;
6544 		env->imbalance -= load;
6545 
6546 #ifdef CONFIG_PREEMPT
6547 		/*
6548 		 * NEWIDLE balancing is a source of latency, so preemptible
6549 		 * kernels will stop after the first task is detached to minimize
6550 		 * the critical section.
6551 		 */
6552 		if (env->idle == CPU_NEWLY_IDLE)
6553 			break;
6554 #endif
6555 
6556 		/*
6557 		 * We only want to steal up to the prescribed amount of
6558 		 * weighted load.
6559 		 */
6560 		if (env->imbalance <= 0)
6561 			break;
6562 
6563 		continue;
6564 next:
6565 		list_move_tail(&p->se.group_node, tasks);
6566 	}
6567 
6568 	/*
6569 	 * Right now, this is one of only two places we collect this stat
6570 	 * so we can safely collect detach_one_task() stats here rather
6571 	 * than inside detach_one_task().
6572 	 */
6573 	schedstat_add(env->sd->lb_gained[env->idle], detached);
6574 
6575 	return detached;
6576 }
6577 
6578 /*
6579  * attach_task() -- attach the task detached by detach_task() to its new rq.
6580  */
6581 static void attach_task(struct rq *rq, struct task_struct *p)
6582 {
6583 	lockdep_assert_held(&rq->lock);
6584 
6585 	BUG_ON(task_rq(p) != rq);
6586 	activate_task(rq, p, 0);
6587 	p->on_rq = TASK_ON_RQ_QUEUED;
6588 	check_preempt_curr(rq, p, 0);
6589 }
6590 
6591 /*
6592  * attach_one_task() -- attaches the task returned from detach_one_task() to
6593  * its new rq.
6594  */
6595 static void attach_one_task(struct rq *rq, struct task_struct *p)
6596 {
6597 	raw_spin_lock(&rq->lock);
6598 	attach_task(rq, p);
6599 	raw_spin_unlock(&rq->lock);
6600 }
6601 
6602 /*
6603  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6604  * new rq.
6605  */
6606 static void attach_tasks(struct lb_env *env)
6607 {
6608 	struct list_head *tasks = &env->tasks;
6609 	struct task_struct *p;
6610 
6611 	raw_spin_lock(&env->dst_rq->lock);
6612 
6613 	while (!list_empty(tasks)) {
6614 		p = list_first_entry(tasks, struct task_struct, se.group_node);
6615 		list_del_init(&p->se.group_node);
6616 
6617 		attach_task(env->dst_rq, p);
6618 	}
6619 
6620 	raw_spin_unlock(&env->dst_rq->lock);
6621 }
6622 
6623 #ifdef CONFIG_FAIR_GROUP_SCHED
6624 static void update_blocked_averages(int cpu)
6625 {
6626 	struct rq *rq = cpu_rq(cpu);
6627 	struct cfs_rq *cfs_rq;
6628 	unsigned long flags;
6629 
6630 	raw_spin_lock_irqsave(&rq->lock, flags);
6631 	update_rq_clock(rq);
6632 
6633 	/*
6634 	 * Iterates the task_group tree in a bottom up fashion, see
6635 	 * list_add_leaf_cfs_rq() for details.
6636 	 */
6637 	for_each_leaf_cfs_rq(rq, cfs_rq) {
6638 		/* throttled entities do not contribute to load */
6639 		if (throttled_hierarchy(cfs_rq))
6640 			continue;
6641 
6642 		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6643 			update_tg_load_avg(cfs_rq, 0);
6644 	}
6645 	raw_spin_unlock_irqrestore(&rq->lock, flags);
6646 }
6647 
6648 /*
6649  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6650  * This needs to be done in a top-down fashion because the load of a child
6651  * group is a fraction of its parents load.
6652  */
6653 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6654 {
6655 	struct rq *rq = rq_of(cfs_rq);
6656 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6657 	unsigned long now = jiffies;
6658 	unsigned long load;
6659 
6660 	if (cfs_rq->last_h_load_update == now)
6661 		return;
6662 
6663 	cfs_rq->h_load_next = NULL;
6664 	for_each_sched_entity(se) {
6665 		cfs_rq = cfs_rq_of(se);
6666 		cfs_rq->h_load_next = se;
6667 		if (cfs_rq->last_h_load_update == now)
6668 			break;
6669 	}
6670 
6671 	if (!se) {
6672 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6673 		cfs_rq->last_h_load_update = now;
6674 	}
6675 
6676 	while ((se = cfs_rq->h_load_next) != NULL) {
6677 		load = cfs_rq->h_load;
6678 		load = div64_ul(load * se->avg.load_avg,
6679 			cfs_rq_load_avg(cfs_rq) + 1);
6680 		cfs_rq = group_cfs_rq(se);
6681 		cfs_rq->h_load = load;
6682 		cfs_rq->last_h_load_update = now;
6683 	}
6684 }
6685 
6686 static unsigned long task_h_load(struct task_struct *p)
6687 {
6688 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6689 
6690 	update_cfs_rq_h_load(cfs_rq);
6691 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6692 			cfs_rq_load_avg(cfs_rq) + 1);
6693 }
6694 #else
6695 static inline void update_blocked_averages(int cpu)
6696 {
6697 	struct rq *rq = cpu_rq(cpu);
6698 	struct cfs_rq *cfs_rq = &rq->cfs;
6699 	unsigned long flags;
6700 
6701 	raw_spin_lock_irqsave(&rq->lock, flags);
6702 	update_rq_clock(rq);
6703 	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6704 	raw_spin_unlock_irqrestore(&rq->lock, flags);
6705 }
6706 
6707 static unsigned long task_h_load(struct task_struct *p)
6708 {
6709 	return p->se.avg.load_avg;
6710 }
6711 #endif
6712 
6713 /********** Helpers for find_busiest_group ************************/
6714 
6715 enum group_type {
6716 	group_other = 0,
6717 	group_imbalanced,
6718 	group_overloaded,
6719 };
6720 
6721 /*
6722  * sg_lb_stats - stats of a sched_group required for load_balancing
6723  */
6724 struct sg_lb_stats {
6725 	unsigned long avg_load; /*Avg load across the CPUs of the group */
6726 	unsigned long group_load; /* Total load over the CPUs of the group */
6727 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
6728 	unsigned long load_per_task;
6729 	unsigned long group_capacity;
6730 	unsigned long group_util; /* Total utilization of the group */
6731 	unsigned int sum_nr_running; /* Nr tasks running in the group */
6732 	unsigned int idle_cpus;
6733 	unsigned int group_weight;
6734 	enum group_type group_type;
6735 	int group_no_capacity;
6736 #ifdef CONFIG_NUMA_BALANCING
6737 	unsigned int nr_numa_running;
6738 	unsigned int nr_preferred_running;
6739 #endif
6740 };
6741 
6742 /*
6743  * sd_lb_stats - Structure to store the statistics of a sched_domain
6744  *		 during load balancing.
6745  */
6746 struct sd_lb_stats {
6747 	struct sched_group *busiest;	/* Busiest group in this sd */
6748 	struct sched_group *local;	/* Local group in this sd */
6749 	unsigned long total_load;	/* Total load of all groups in sd */
6750 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
6751 	unsigned long avg_load;	/* Average load across all groups in sd */
6752 
6753 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6754 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
6755 };
6756 
6757 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6758 {
6759 	/*
6760 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6761 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6762 	 * We must however clear busiest_stat::avg_load because
6763 	 * update_sd_pick_busiest() reads this before assignment.
6764 	 */
6765 	*sds = (struct sd_lb_stats){
6766 		.busiest = NULL,
6767 		.local = NULL,
6768 		.total_load = 0UL,
6769 		.total_capacity = 0UL,
6770 		.busiest_stat = {
6771 			.avg_load = 0UL,
6772 			.sum_nr_running = 0,
6773 			.group_type = group_other,
6774 		},
6775 	};
6776 }
6777 
6778 /**
6779  * get_sd_load_idx - Obtain the load index for a given sched domain.
6780  * @sd: The sched_domain whose load_idx is to be obtained.
6781  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6782  *
6783  * Return: The load index.
6784  */
6785 static inline int get_sd_load_idx(struct sched_domain *sd,
6786 					enum cpu_idle_type idle)
6787 {
6788 	int load_idx;
6789 
6790 	switch (idle) {
6791 	case CPU_NOT_IDLE:
6792 		load_idx = sd->busy_idx;
6793 		break;
6794 
6795 	case CPU_NEWLY_IDLE:
6796 		load_idx = sd->newidle_idx;
6797 		break;
6798 	default:
6799 		load_idx = sd->idle_idx;
6800 		break;
6801 	}
6802 
6803 	return load_idx;
6804 }
6805 
6806 static unsigned long scale_rt_capacity(int cpu)
6807 {
6808 	struct rq *rq = cpu_rq(cpu);
6809 	u64 total, used, age_stamp, avg;
6810 	s64 delta;
6811 
6812 	/*
6813 	 * Since we're reading these variables without serialization make sure
6814 	 * we read them once before doing sanity checks on them.
6815 	 */
6816 	age_stamp = READ_ONCE(rq->age_stamp);
6817 	avg = READ_ONCE(rq->rt_avg);
6818 	delta = __rq_clock_broken(rq) - age_stamp;
6819 
6820 	if (unlikely(delta < 0))
6821 		delta = 0;
6822 
6823 	total = sched_avg_period() + delta;
6824 
6825 	used = div_u64(avg, total);
6826 
6827 	if (likely(used < SCHED_CAPACITY_SCALE))
6828 		return SCHED_CAPACITY_SCALE - used;
6829 
6830 	return 1;
6831 }
6832 
6833 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6834 {
6835 	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6836 	struct sched_group *sdg = sd->groups;
6837 
6838 	cpu_rq(cpu)->cpu_capacity_orig = capacity;
6839 
6840 	capacity *= scale_rt_capacity(cpu);
6841 	capacity >>= SCHED_CAPACITY_SHIFT;
6842 
6843 	if (!capacity)
6844 		capacity = 1;
6845 
6846 	cpu_rq(cpu)->cpu_capacity = capacity;
6847 	sdg->sgc->capacity = capacity;
6848 }
6849 
6850 void update_group_capacity(struct sched_domain *sd, int cpu)
6851 {
6852 	struct sched_domain *child = sd->child;
6853 	struct sched_group *group, *sdg = sd->groups;
6854 	unsigned long capacity;
6855 	unsigned long interval;
6856 
6857 	interval = msecs_to_jiffies(sd->balance_interval);
6858 	interval = clamp(interval, 1UL, max_load_balance_interval);
6859 	sdg->sgc->next_update = jiffies + interval;
6860 
6861 	if (!child) {
6862 		update_cpu_capacity(sd, cpu);
6863 		return;
6864 	}
6865 
6866 	capacity = 0;
6867 
6868 	if (child->flags & SD_OVERLAP) {
6869 		/*
6870 		 * SD_OVERLAP domains cannot assume that child groups
6871 		 * span the current group.
6872 		 */
6873 
6874 		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6875 			struct sched_group_capacity *sgc;
6876 			struct rq *rq = cpu_rq(cpu);
6877 
6878 			/*
6879 			 * build_sched_domains() -> init_sched_groups_capacity()
6880 			 * gets here before we've attached the domains to the
6881 			 * runqueues.
6882 			 *
6883 			 * Use capacity_of(), which is set irrespective of domains
6884 			 * in update_cpu_capacity().
6885 			 *
6886 			 * This avoids capacity from being 0 and
6887 			 * causing divide-by-zero issues on boot.
6888 			 */
6889 			if (unlikely(!rq->sd)) {
6890 				capacity += capacity_of(cpu);
6891 				continue;
6892 			}
6893 
6894 			sgc = rq->sd->groups->sgc;
6895 			capacity += sgc->capacity;
6896 		}
6897 	} else  {
6898 		/*
6899 		 * !SD_OVERLAP domains can assume that child groups
6900 		 * span the current group.
6901 		 */
6902 
6903 		group = child->groups;
6904 		do {
6905 			capacity += group->sgc->capacity;
6906 			group = group->next;
6907 		} while (group != child->groups);
6908 	}
6909 
6910 	sdg->sgc->capacity = capacity;
6911 }
6912 
6913 /*
6914  * Check whether the capacity of the rq has been noticeably reduced by side
6915  * activity. The imbalance_pct is used for the threshold.
6916  * Return true is the capacity is reduced
6917  */
6918 static inline int
6919 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6920 {
6921 	return ((rq->cpu_capacity * sd->imbalance_pct) <
6922 				(rq->cpu_capacity_orig * 100));
6923 }
6924 
6925 /*
6926  * Group imbalance indicates (and tries to solve) the problem where balancing
6927  * groups is inadequate due to tsk_cpus_allowed() constraints.
6928  *
6929  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6930  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6931  * Something like:
6932  *
6933  * 	{ 0 1 2 3 } { 4 5 6 7 }
6934  * 	        *     * * *
6935  *
6936  * If we were to balance group-wise we'd place two tasks in the first group and
6937  * two tasks in the second group. Clearly this is undesired as it will overload
6938  * cpu 3 and leave one of the cpus in the second group unused.
6939  *
6940  * The current solution to this issue is detecting the skew in the first group
6941  * by noticing the lower domain failed to reach balance and had difficulty
6942  * moving tasks due to affinity constraints.
6943  *
6944  * When this is so detected; this group becomes a candidate for busiest; see
6945  * update_sd_pick_busiest(). And calculate_imbalance() and
6946  * find_busiest_group() avoid some of the usual balance conditions to allow it
6947  * to create an effective group imbalance.
6948  *
6949  * This is a somewhat tricky proposition since the next run might not find the
6950  * group imbalance and decide the groups need to be balanced again. A most
6951  * subtle and fragile situation.
6952  */
6953 
6954 static inline int sg_imbalanced(struct sched_group *group)
6955 {
6956 	return group->sgc->imbalance;
6957 }
6958 
6959 /*
6960  * group_has_capacity returns true if the group has spare capacity that could
6961  * be used by some tasks.
6962  * We consider that a group has spare capacity if the  * number of task is
6963  * smaller than the number of CPUs or if the utilization is lower than the
6964  * available capacity for CFS tasks.
6965  * For the latter, we use a threshold to stabilize the state, to take into
6966  * account the variance of the tasks' load and to return true if the available
6967  * capacity in meaningful for the load balancer.
6968  * As an example, an available capacity of 1% can appear but it doesn't make
6969  * any benefit for the load balance.
6970  */
6971 static inline bool
6972 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6973 {
6974 	if (sgs->sum_nr_running < sgs->group_weight)
6975 		return true;
6976 
6977 	if ((sgs->group_capacity * 100) >
6978 			(sgs->group_util * env->sd->imbalance_pct))
6979 		return true;
6980 
6981 	return false;
6982 }
6983 
6984 /*
6985  *  group_is_overloaded returns true if the group has more tasks than it can
6986  *  handle.
6987  *  group_is_overloaded is not equals to !group_has_capacity because a group
6988  *  with the exact right number of tasks, has no more spare capacity but is not
6989  *  overloaded so both group_has_capacity and group_is_overloaded return
6990  *  false.
6991  */
6992 static inline bool
6993 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6994 {
6995 	if (sgs->sum_nr_running <= sgs->group_weight)
6996 		return false;
6997 
6998 	if ((sgs->group_capacity * 100) <
6999 			(sgs->group_util * env->sd->imbalance_pct))
7000 		return true;
7001 
7002 	return false;
7003 }
7004 
7005 static inline enum
7006 group_type group_classify(struct sched_group *group,
7007 			  struct sg_lb_stats *sgs)
7008 {
7009 	if (sgs->group_no_capacity)
7010 		return group_overloaded;
7011 
7012 	if (sg_imbalanced(group))
7013 		return group_imbalanced;
7014 
7015 	return group_other;
7016 }
7017 
7018 /**
7019  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7020  * @env: The load balancing environment.
7021  * @group: sched_group whose statistics are to be updated.
7022  * @load_idx: Load index of sched_domain of this_cpu for load calc.
7023  * @local_group: Does group contain this_cpu.
7024  * @sgs: variable to hold the statistics for this group.
7025  * @overload: Indicate more than one runnable task for any CPU.
7026  */
7027 static inline void update_sg_lb_stats(struct lb_env *env,
7028 			struct sched_group *group, int load_idx,
7029 			int local_group, struct sg_lb_stats *sgs,
7030 			bool *overload)
7031 {
7032 	unsigned long load;
7033 	int i, nr_running;
7034 
7035 	memset(sgs, 0, sizeof(*sgs));
7036 
7037 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7038 		struct rq *rq = cpu_rq(i);
7039 
7040 		/* Bias balancing toward cpus of our domain */
7041 		if (local_group)
7042 			load = target_load(i, load_idx);
7043 		else
7044 			load = source_load(i, load_idx);
7045 
7046 		sgs->group_load += load;
7047 		sgs->group_util += cpu_util(i);
7048 		sgs->sum_nr_running += rq->cfs.h_nr_running;
7049 
7050 		nr_running = rq->nr_running;
7051 		if (nr_running > 1)
7052 			*overload = true;
7053 
7054 #ifdef CONFIG_NUMA_BALANCING
7055 		sgs->nr_numa_running += rq->nr_numa_running;
7056 		sgs->nr_preferred_running += rq->nr_preferred_running;
7057 #endif
7058 		sgs->sum_weighted_load += weighted_cpuload(i);
7059 		/*
7060 		 * No need to call idle_cpu() if nr_running is not 0
7061 		 */
7062 		if (!nr_running && idle_cpu(i))
7063 			sgs->idle_cpus++;
7064 	}
7065 
7066 	/* Adjust by relative CPU capacity of the group */
7067 	sgs->group_capacity = group->sgc->capacity;
7068 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7069 
7070 	if (sgs->sum_nr_running)
7071 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7072 
7073 	sgs->group_weight = group->group_weight;
7074 
7075 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7076 	sgs->group_type = group_classify(group, sgs);
7077 }
7078 
7079 /**
7080  * update_sd_pick_busiest - return 1 on busiest group
7081  * @env: The load balancing environment.
7082  * @sds: sched_domain statistics
7083  * @sg: sched_group candidate to be checked for being the busiest
7084  * @sgs: sched_group statistics
7085  *
7086  * Determine if @sg is a busier group than the previously selected
7087  * busiest group.
7088  *
7089  * Return: %true if @sg is a busier group than the previously selected
7090  * busiest group. %false otherwise.
7091  */
7092 static bool update_sd_pick_busiest(struct lb_env *env,
7093 				   struct sd_lb_stats *sds,
7094 				   struct sched_group *sg,
7095 				   struct sg_lb_stats *sgs)
7096 {
7097 	struct sg_lb_stats *busiest = &sds->busiest_stat;
7098 
7099 	if (sgs->group_type > busiest->group_type)
7100 		return true;
7101 
7102 	if (sgs->group_type < busiest->group_type)
7103 		return false;
7104 
7105 	if (sgs->avg_load <= busiest->avg_load)
7106 		return false;
7107 
7108 	/* This is the busiest node in its class. */
7109 	if (!(env->sd->flags & SD_ASYM_PACKING))
7110 		return true;
7111 
7112 	/* No ASYM_PACKING if target cpu is already busy */
7113 	if (env->idle == CPU_NOT_IDLE)
7114 		return true;
7115 	/*
7116 	 * ASYM_PACKING needs to move all the work to the lowest
7117 	 * numbered CPUs in the group, therefore mark all groups
7118 	 * higher than ourself as busy.
7119 	 */
7120 	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
7121 		if (!sds->busiest)
7122 			return true;
7123 
7124 		/* Prefer to move from highest possible cpu's work */
7125 		if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
7126 			return true;
7127 	}
7128 
7129 	return false;
7130 }
7131 
7132 #ifdef CONFIG_NUMA_BALANCING
7133 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7134 {
7135 	if (sgs->sum_nr_running > sgs->nr_numa_running)
7136 		return regular;
7137 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
7138 		return remote;
7139 	return all;
7140 }
7141 
7142 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7143 {
7144 	if (rq->nr_running > rq->nr_numa_running)
7145 		return regular;
7146 	if (rq->nr_running > rq->nr_preferred_running)
7147 		return remote;
7148 	return all;
7149 }
7150 #else
7151 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7152 {
7153 	return all;
7154 }
7155 
7156 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7157 {
7158 	return regular;
7159 }
7160 #endif /* CONFIG_NUMA_BALANCING */
7161 
7162 /**
7163  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7164  * @env: The load balancing environment.
7165  * @sds: variable to hold the statistics for this sched_domain.
7166  */
7167 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7168 {
7169 	struct sched_domain *child = env->sd->child;
7170 	struct sched_group *sg = env->sd->groups;
7171 	struct sg_lb_stats tmp_sgs;
7172 	int load_idx, prefer_sibling = 0;
7173 	bool overload = false;
7174 
7175 	if (child && child->flags & SD_PREFER_SIBLING)
7176 		prefer_sibling = 1;
7177 
7178 	load_idx = get_sd_load_idx(env->sd, env->idle);
7179 
7180 	do {
7181 		struct sg_lb_stats *sgs = &tmp_sgs;
7182 		int local_group;
7183 
7184 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
7185 		if (local_group) {
7186 			sds->local = sg;
7187 			sgs = &sds->local_stat;
7188 
7189 			if (env->idle != CPU_NEWLY_IDLE ||
7190 			    time_after_eq(jiffies, sg->sgc->next_update))
7191 				update_group_capacity(env->sd, env->dst_cpu);
7192 		}
7193 
7194 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7195 						&overload);
7196 
7197 		if (local_group)
7198 			goto next_group;
7199 
7200 		/*
7201 		 * In case the child domain prefers tasks go to siblings
7202 		 * first, lower the sg capacity so that we'll try
7203 		 * and move all the excess tasks away. We lower the capacity
7204 		 * of a group only if the local group has the capacity to fit
7205 		 * these excess tasks. The extra check prevents the case where
7206 		 * you always pull from the heaviest group when it is already
7207 		 * under-utilized (possible with a large weight task outweighs
7208 		 * the tasks on the system).
7209 		 */
7210 		if (prefer_sibling && sds->local &&
7211 		    group_has_capacity(env, &sds->local_stat) &&
7212 		    (sgs->sum_nr_running > 1)) {
7213 			sgs->group_no_capacity = 1;
7214 			sgs->group_type = group_classify(sg, sgs);
7215 		}
7216 
7217 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7218 			sds->busiest = sg;
7219 			sds->busiest_stat = *sgs;
7220 		}
7221 
7222 next_group:
7223 		/* Now, start updating sd_lb_stats */
7224 		sds->total_load += sgs->group_load;
7225 		sds->total_capacity += sgs->group_capacity;
7226 
7227 		sg = sg->next;
7228 	} while (sg != env->sd->groups);
7229 
7230 	if (env->sd->flags & SD_NUMA)
7231 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7232 
7233 	if (!env->sd->parent) {
7234 		/* update overload indicator if we are at root domain */
7235 		if (env->dst_rq->rd->overload != overload)
7236 			env->dst_rq->rd->overload = overload;
7237 	}
7238 
7239 }
7240 
7241 /**
7242  * check_asym_packing - Check to see if the group is packed into the
7243  *			sched doman.
7244  *
7245  * This is primarily intended to used at the sibling level.  Some
7246  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
7247  * case of POWER7, it can move to lower SMT modes only when higher
7248  * threads are idle.  When in lower SMT modes, the threads will
7249  * perform better since they share less core resources.  Hence when we
7250  * have idle threads, we want them to be the higher ones.
7251  *
7252  * This packing function is run on idle threads.  It checks to see if
7253  * the busiest CPU in this domain (core in the P7 case) has a higher
7254  * CPU number than the packing function is being run on.  Here we are
7255  * assuming lower CPU number will be equivalent to lower a SMT thread
7256  * number.
7257  *
7258  * Return: 1 when packing is required and a task should be moved to
7259  * this CPU.  The amount of the imbalance is returned in *imbalance.
7260  *
7261  * @env: The load balancing environment.
7262  * @sds: Statistics of the sched_domain which is to be packed
7263  */
7264 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7265 {
7266 	int busiest_cpu;
7267 
7268 	if (!(env->sd->flags & SD_ASYM_PACKING))
7269 		return 0;
7270 
7271 	if (env->idle == CPU_NOT_IDLE)
7272 		return 0;
7273 
7274 	if (!sds->busiest)
7275 		return 0;
7276 
7277 	busiest_cpu = group_first_cpu(sds->busiest);
7278 	if (env->dst_cpu > busiest_cpu)
7279 		return 0;
7280 
7281 	env->imbalance = DIV_ROUND_CLOSEST(
7282 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7283 		SCHED_CAPACITY_SCALE);
7284 
7285 	return 1;
7286 }
7287 
7288 /**
7289  * fix_small_imbalance - Calculate the minor imbalance that exists
7290  *			amongst the groups of a sched_domain, during
7291  *			load balancing.
7292  * @env: The load balancing environment.
7293  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
7294  */
7295 static inline
7296 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7297 {
7298 	unsigned long tmp, capa_now = 0, capa_move = 0;
7299 	unsigned int imbn = 2;
7300 	unsigned long scaled_busy_load_per_task;
7301 	struct sg_lb_stats *local, *busiest;
7302 
7303 	local = &sds->local_stat;
7304 	busiest = &sds->busiest_stat;
7305 
7306 	if (!local->sum_nr_running)
7307 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7308 	else if (busiest->load_per_task > local->load_per_task)
7309 		imbn = 1;
7310 
7311 	scaled_busy_load_per_task =
7312 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7313 		busiest->group_capacity;
7314 
7315 	if (busiest->avg_load + scaled_busy_load_per_task >=
7316 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
7317 		env->imbalance = busiest->load_per_task;
7318 		return;
7319 	}
7320 
7321 	/*
7322 	 * OK, we don't have enough imbalance to justify moving tasks,
7323 	 * however we may be able to increase total CPU capacity used by
7324 	 * moving them.
7325 	 */
7326 
7327 	capa_now += busiest->group_capacity *
7328 			min(busiest->load_per_task, busiest->avg_load);
7329 	capa_now += local->group_capacity *
7330 			min(local->load_per_task, local->avg_load);
7331 	capa_now /= SCHED_CAPACITY_SCALE;
7332 
7333 	/* Amount of load we'd subtract */
7334 	if (busiest->avg_load > scaled_busy_load_per_task) {
7335 		capa_move += busiest->group_capacity *
7336 			    min(busiest->load_per_task,
7337 				busiest->avg_load - scaled_busy_load_per_task);
7338 	}
7339 
7340 	/* Amount of load we'd add */
7341 	if (busiest->avg_load * busiest->group_capacity <
7342 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7343 		tmp = (busiest->avg_load * busiest->group_capacity) /
7344 		      local->group_capacity;
7345 	} else {
7346 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7347 		      local->group_capacity;
7348 	}
7349 	capa_move += local->group_capacity *
7350 		    min(local->load_per_task, local->avg_load + tmp);
7351 	capa_move /= SCHED_CAPACITY_SCALE;
7352 
7353 	/* Move if we gain throughput */
7354 	if (capa_move > capa_now)
7355 		env->imbalance = busiest->load_per_task;
7356 }
7357 
7358 /**
7359  * calculate_imbalance - Calculate the amount of imbalance present within the
7360  *			 groups of a given sched_domain during load balance.
7361  * @env: load balance environment
7362  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
7363  */
7364 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7365 {
7366 	unsigned long max_pull, load_above_capacity = ~0UL;
7367 	struct sg_lb_stats *local, *busiest;
7368 
7369 	local = &sds->local_stat;
7370 	busiest = &sds->busiest_stat;
7371 
7372 	if (busiest->group_type == group_imbalanced) {
7373 		/*
7374 		 * In the group_imb case we cannot rely on group-wide averages
7375 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
7376 		 */
7377 		busiest->load_per_task =
7378 			min(busiest->load_per_task, sds->avg_load);
7379 	}
7380 
7381 	/*
7382 	 * Avg load of busiest sg can be less and avg load of local sg can
7383 	 * be greater than avg load across all sgs of sd because avg load
7384 	 * factors in sg capacity and sgs with smaller group_type are
7385 	 * skipped when updating the busiest sg:
7386 	 */
7387 	if (busiest->avg_load <= sds->avg_load ||
7388 	    local->avg_load >= sds->avg_load) {
7389 		env->imbalance = 0;
7390 		return fix_small_imbalance(env, sds);
7391 	}
7392 
7393 	/*
7394 	 * If there aren't any idle cpus, avoid creating some.
7395 	 */
7396 	if (busiest->group_type == group_overloaded &&
7397 	    local->group_type   == group_overloaded) {
7398 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7399 		if (load_above_capacity > busiest->group_capacity) {
7400 			load_above_capacity -= busiest->group_capacity;
7401 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
7402 			load_above_capacity /= busiest->group_capacity;
7403 		} else
7404 			load_above_capacity = ~0UL;
7405 	}
7406 
7407 	/*
7408 	 * We're trying to get all the cpus to the average_load, so we don't
7409 	 * want to push ourselves above the average load, nor do we wish to
7410 	 * reduce the max loaded cpu below the average load. At the same time,
7411 	 * we also don't want to reduce the group load below the group
7412 	 * capacity. Thus we look for the minimum possible imbalance.
7413 	 */
7414 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7415 
7416 	/* How much load to actually move to equalise the imbalance */
7417 	env->imbalance = min(
7418 		max_pull * busiest->group_capacity,
7419 		(sds->avg_load - local->avg_load) * local->group_capacity
7420 	) / SCHED_CAPACITY_SCALE;
7421 
7422 	/*
7423 	 * if *imbalance is less than the average load per runnable task
7424 	 * there is no guarantee that any tasks will be moved so we'll have
7425 	 * a think about bumping its value to force at least one task to be
7426 	 * moved
7427 	 */
7428 	if (env->imbalance < busiest->load_per_task)
7429 		return fix_small_imbalance(env, sds);
7430 }
7431 
7432 /******* find_busiest_group() helpers end here *********************/
7433 
7434 /**
7435  * find_busiest_group - Returns the busiest group within the sched_domain
7436  * if there is an imbalance.
7437  *
7438  * Also calculates the amount of weighted load which should be moved
7439  * to restore balance.
7440  *
7441  * @env: The load balancing environment.
7442  *
7443  * Return:	- The busiest group if imbalance exists.
7444  */
7445 static struct sched_group *find_busiest_group(struct lb_env *env)
7446 {
7447 	struct sg_lb_stats *local, *busiest;
7448 	struct sd_lb_stats sds;
7449 
7450 	init_sd_lb_stats(&sds);
7451 
7452 	/*
7453 	 * Compute the various statistics relavent for load balancing at
7454 	 * this level.
7455 	 */
7456 	update_sd_lb_stats(env, &sds);
7457 	local = &sds.local_stat;
7458 	busiest = &sds.busiest_stat;
7459 
7460 	/* ASYM feature bypasses nice load balance check */
7461 	if (check_asym_packing(env, &sds))
7462 		return sds.busiest;
7463 
7464 	/* There is no busy sibling group to pull tasks from */
7465 	if (!sds.busiest || busiest->sum_nr_running == 0)
7466 		goto out_balanced;
7467 
7468 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7469 						/ sds.total_capacity;
7470 
7471 	/*
7472 	 * If the busiest group is imbalanced the below checks don't
7473 	 * work because they assume all things are equal, which typically
7474 	 * isn't true due to cpus_allowed constraints and the like.
7475 	 */
7476 	if (busiest->group_type == group_imbalanced)
7477 		goto force_balance;
7478 
7479 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7480 	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7481 	    busiest->group_no_capacity)
7482 		goto force_balance;
7483 
7484 	/*
7485 	 * If the local group is busier than the selected busiest group
7486 	 * don't try and pull any tasks.
7487 	 */
7488 	if (local->avg_load >= busiest->avg_load)
7489 		goto out_balanced;
7490 
7491 	/*
7492 	 * Don't pull any tasks if this group is already above the domain
7493 	 * average load.
7494 	 */
7495 	if (local->avg_load >= sds.avg_load)
7496 		goto out_balanced;
7497 
7498 	if (env->idle == CPU_IDLE) {
7499 		/*
7500 		 * This cpu is idle. If the busiest group is not overloaded
7501 		 * and there is no imbalance between this and busiest group
7502 		 * wrt idle cpus, it is balanced. The imbalance becomes
7503 		 * significant if the diff is greater than 1 otherwise we
7504 		 * might end up to just move the imbalance on another group
7505 		 */
7506 		if ((busiest->group_type != group_overloaded) &&
7507 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7508 			goto out_balanced;
7509 	} else {
7510 		/*
7511 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7512 		 * imbalance_pct to be conservative.
7513 		 */
7514 		if (100 * busiest->avg_load <=
7515 				env->sd->imbalance_pct * local->avg_load)
7516 			goto out_balanced;
7517 	}
7518 
7519 force_balance:
7520 	/* Looks like there is an imbalance. Compute it */
7521 	calculate_imbalance(env, &sds);
7522 	return sds.busiest;
7523 
7524 out_balanced:
7525 	env->imbalance = 0;
7526 	return NULL;
7527 }
7528 
7529 /*
7530  * find_busiest_queue - find the busiest runqueue among the cpus in group.
7531  */
7532 static struct rq *find_busiest_queue(struct lb_env *env,
7533 				     struct sched_group *group)
7534 {
7535 	struct rq *busiest = NULL, *rq;
7536 	unsigned long busiest_load = 0, busiest_capacity = 1;
7537 	int i;
7538 
7539 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7540 		unsigned long capacity, wl;
7541 		enum fbq_type rt;
7542 
7543 		rq = cpu_rq(i);
7544 		rt = fbq_classify_rq(rq);
7545 
7546 		/*
7547 		 * We classify groups/runqueues into three groups:
7548 		 *  - regular: there are !numa tasks
7549 		 *  - remote:  there are numa tasks that run on the 'wrong' node
7550 		 *  - all:     there is no distinction
7551 		 *
7552 		 * In order to avoid migrating ideally placed numa tasks,
7553 		 * ignore those when there's better options.
7554 		 *
7555 		 * If we ignore the actual busiest queue to migrate another
7556 		 * task, the next balance pass can still reduce the busiest
7557 		 * queue by moving tasks around inside the node.
7558 		 *
7559 		 * If we cannot move enough load due to this classification
7560 		 * the next pass will adjust the group classification and
7561 		 * allow migration of more tasks.
7562 		 *
7563 		 * Both cases only affect the total convergence complexity.
7564 		 */
7565 		if (rt > env->fbq_type)
7566 			continue;
7567 
7568 		capacity = capacity_of(i);
7569 
7570 		wl = weighted_cpuload(i);
7571 
7572 		/*
7573 		 * When comparing with imbalance, use weighted_cpuload()
7574 		 * which is not scaled with the cpu capacity.
7575 		 */
7576 
7577 		if (rq->nr_running == 1 && wl > env->imbalance &&
7578 		    !check_cpu_capacity(rq, env->sd))
7579 			continue;
7580 
7581 		/*
7582 		 * For the load comparisons with the other cpu's, consider
7583 		 * the weighted_cpuload() scaled with the cpu capacity, so
7584 		 * that the load can be moved away from the cpu that is
7585 		 * potentially running at a lower capacity.
7586 		 *
7587 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7588 		 * multiplication to rid ourselves of the division works out
7589 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
7590 		 * our previous maximum.
7591 		 */
7592 		if (wl * busiest_capacity > busiest_load * capacity) {
7593 			busiest_load = wl;
7594 			busiest_capacity = capacity;
7595 			busiest = rq;
7596 		}
7597 	}
7598 
7599 	return busiest;
7600 }
7601 
7602 /*
7603  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7604  * so long as it is large enough.
7605  */
7606 #define MAX_PINNED_INTERVAL	512
7607 
7608 static int need_active_balance(struct lb_env *env)
7609 {
7610 	struct sched_domain *sd = env->sd;
7611 
7612 	if (env->idle == CPU_NEWLY_IDLE) {
7613 
7614 		/*
7615 		 * ASYM_PACKING needs to force migrate tasks from busy but
7616 		 * higher numbered CPUs in order to pack all tasks in the
7617 		 * lowest numbered CPUs.
7618 		 */
7619 		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7620 			return 1;
7621 	}
7622 
7623 	/*
7624 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7625 	 * It's worth migrating the task if the src_cpu's capacity is reduced
7626 	 * because of other sched_class or IRQs if more capacity stays
7627 	 * available on dst_cpu.
7628 	 */
7629 	if ((env->idle != CPU_NOT_IDLE) &&
7630 	    (env->src_rq->cfs.h_nr_running == 1)) {
7631 		if ((check_cpu_capacity(env->src_rq, sd)) &&
7632 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7633 			return 1;
7634 	}
7635 
7636 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7637 }
7638 
7639 static int active_load_balance_cpu_stop(void *data);
7640 
7641 static int should_we_balance(struct lb_env *env)
7642 {
7643 	struct sched_group *sg = env->sd->groups;
7644 	struct cpumask *sg_cpus, *sg_mask;
7645 	int cpu, balance_cpu = -1;
7646 
7647 	/*
7648 	 * In the newly idle case, we will allow all the cpu's
7649 	 * to do the newly idle load balance.
7650 	 */
7651 	if (env->idle == CPU_NEWLY_IDLE)
7652 		return 1;
7653 
7654 	sg_cpus = sched_group_cpus(sg);
7655 	sg_mask = sched_group_mask(sg);
7656 	/* Try to find first idle cpu */
7657 	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7658 		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7659 			continue;
7660 
7661 		balance_cpu = cpu;
7662 		break;
7663 	}
7664 
7665 	if (balance_cpu == -1)
7666 		balance_cpu = group_balance_cpu(sg);
7667 
7668 	/*
7669 	 * First idle cpu or the first cpu(busiest) in this sched group
7670 	 * is eligible for doing load balancing at this and above domains.
7671 	 */
7672 	return balance_cpu == env->dst_cpu;
7673 }
7674 
7675 /*
7676  * Check this_cpu to ensure it is balanced within domain. Attempt to move
7677  * tasks if there is an imbalance.
7678  */
7679 static int load_balance(int this_cpu, struct rq *this_rq,
7680 			struct sched_domain *sd, enum cpu_idle_type idle,
7681 			int *continue_balancing)
7682 {
7683 	int ld_moved, cur_ld_moved, active_balance = 0;
7684 	struct sched_domain *sd_parent = sd->parent;
7685 	struct sched_group *group;
7686 	struct rq *busiest;
7687 	unsigned long flags;
7688 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7689 
7690 	struct lb_env env = {
7691 		.sd		= sd,
7692 		.dst_cpu	= this_cpu,
7693 		.dst_rq		= this_rq,
7694 		.dst_grpmask    = sched_group_cpus(sd->groups),
7695 		.idle		= idle,
7696 		.loop_break	= sched_nr_migrate_break,
7697 		.cpus		= cpus,
7698 		.fbq_type	= all,
7699 		.tasks		= LIST_HEAD_INIT(env.tasks),
7700 	};
7701 
7702 	/*
7703 	 * For NEWLY_IDLE load_balancing, we don't need to consider
7704 	 * other cpus in our group
7705 	 */
7706 	if (idle == CPU_NEWLY_IDLE)
7707 		env.dst_grpmask = NULL;
7708 
7709 	cpumask_copy(cpus, cpu_active_mask);
7710 
7711 	schedstat_inc(sd->lb_count[idle]);
7712 
7713 redo:
7714 	if (!should_we_balance(&env)) {
7715 		*continue_balancing = 0;
7716 		goto out_balanced;
7717 	}
7718 
7719 	group = find_busiest_group(&env);
7720 	if (!group) {
7721 		schedstat_inc(sd->lb_nobusyg[idle]);
7722 		goto out_balanced;
7723 	}
7724 
7725 	busiest = find_busiest_queue(&env, group);
7726 	if (!busiest) {
7727 		schedstat_inc(sd->lb_nobusyq[idle]);
7728 		goto out_balanced;
7729 	}
7730 
7731 	BUG_ON(busiest == env.dst_rq);
7732 
7733 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
7734 
7735 	env.src_cpu = busiest->cpu;
7736 	env.src_rq = busiest;
7737 
7738 	ld_moved = 0;
7739 	if (busiest->nr_running > 1) {
7740 		/*
7741 		 * Attempt to move tasks. If find_busiest_group has found
7742 		 * an imbalance but busiest->nr_running <= 1, the group is
7743 		 * still unbalanced. ld_moved simply stays zero, so it is
7744 		 * correctly treated as an imbalance.
7745 		 */
7746 		env.flags |= LBF_ALL_PINNED;
7747 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
7748 
7749 more_balance:
7750 		raw_spin_lock_irqsave(&busiest->lock, flags);
7751 
7752 		/*
7753 		 * cur_ld_moved - load moved in current iteration
7754 		 * ld_moved     - cumulative load moved across iterations
7755 		 */
7756 		cur_ld_moved = detach_tasks(&env);
7757 
7758 		/*
7759 		 * We've detached some tasks from busiest_rq. Every
7760 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7761 		 * unlock busiest->lock, and we are able to be sure
7762 		 * that nobody can manipulate the tasks in parallel.
7763 		 * See task_rq_lock() family for the details.
7764 		 */
7765 
7766 		raw_spin_unlock(&busiest->lock);
7767 
7768 		if (cur_ld_moved) {
7769 			attach_tasks(&env);
7770 			ld_moved += cur_ld_moved;
7771 		}
7772 
7773 		local_irq_restore(flags);
7774 
7775 		if (env.flags & LBF_NEED_BREAK) {
7776 			env.flags &= ~LBF_NEED_BREAK;
7777 			goto more_balance;
7778 		}
7779 
7780 		/*
7781 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7782 		 * us and move them to an alternate dst_cpu in our sched_group
7783 		 * where they can run. The upper limit on how many times we
7784 		 * iterate on same src_cpu is dependent on number of cpus in our
7785 		 * sched_group.
7786 		 *
7787 		 * This changes load balance semantics a bit on who can move
7788 		 * load to a given_cpu. In addition to the given_cpu itself
7789 		 * (or a ilb_cpu acting on its behalf where given_cpu is
7790 		 * nohz-idle), we now have balance_cpu in a position to move
7791 		 * load to given_cpu. In rare situations, this may cause
7792 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7793 		 * _independently_ and at _same_ time to move some load to
7794 		 * given_cpu) causing exceess load to be moved to given_cpu.
7795 		 * This however should not happen so much in practice and
7796 		 * moreover subsequent load balance cycles should correct the
7797 		 * excess load moved.
7798 		 */
7799 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7800 
7801 			/* Prevent to re-select dst_cpu via env's cpus */
7802 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
7803 
7804 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
7805 			env.dst_cpu	 = env.new_dst_cpu;
7806 			env.flags	&= ~LBF_DST_PINNED;
7807 			env.loop	 = 0;
7808 			env.loop_break	 = sched_nr_migrate_break;
7809 
7810 			/*
7811 			 * Go back to "more_balance" rather than "redo" since we
7812 			 * need to continue with same src_cpu.
7813 			 */
7814 			goto more_balance;
7815 		}
7816 
7817 		/*
7818 		 * We failed to reach balance because of affinity.
7819 		 */
7820 		if (sd_parent) {
7821 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7822 
7823 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7824 				*group_imbalance = 1;
7825 		}
7826 
7827 		/* All tasks on this runqueue were pinned by CPU affinity */
7828 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
7829 			cpumask_clear_cpu(cpu_of(busiest), cpus);
7830 			if (!cpumask_empty(cpus)) {
7831 				env.loop = 0;
7832 				env.loop_break = sched_nr_migrate_break;
7833 				goto redo;
7834 			}
7835 			goto out_all_pinned;
7836 		}
7837 	}
7838 
7839 	if (!ld_moved) {
7840 		schedstat_inc(sd->lb_failed[idle]);
7841 		/*
7842 		 * Increment the failure counter only on periodic balance.
7843 		 * We do not want newidle balance, which can be very
7844 		 * frequent, pollute the failure counter causing
7845 		 * excessive cache_hot migrations and active balances.
7846 		 */
7847 		if (idle != CPU_NEWLY_IDLE)
7848 			sd->nr_balance_failed++;
7849 
7850 		if (need_active_balance(&env)) {
7851 			raw_spin_lock_irqsave(&busiest->lock, flags);
7852 
7853 			/* don't kick the active_load_balance_cpu_stop,
7854 			 * if the curr task on busiest cpu can't be
7855 			 * moved to this_cpu
7856 			 */
7857 			if (!cpumask_test_cpu(this_cpu,
7858 					tsk_cpus_allowed(busiest->curr))) {
7859 				raw_spin_unlock_irqrestore(&busiest->lock,
7860 							    flags);
7861 				env.flags |= LBF_ALL_PINNED;
7862 				goto out_one_pinned;
7863 			}
7864 
7865 			/*
7866 			 * ->active_balance synchronizes accesses to
7867 			 * ->active_balance_work.  Once set, it's cleared
7868 			 * only after active load balance is finished.
7869 			 */
7870 			if (!busiest->active_balance) {
7871 				busiest->active_balance = 1;
7872 				busiest->push_cpu = this_cpu;
7873 				active_balance = 1;
7874 			}
7875 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7876 
7877 			if (active_balance) {
7878 				stop_one_cpu_nowait(cpu_of(busiest),
7879 					active_load_balance_cpu_stop, busiest,
7880 					&busiest->active_balance_work);
7881 			}
7882 
7883 			/* We've kicked active balancing, force task migration. */
7884 			sd->nr_balance_failed = sd->cache_nice_tries+1;
7885 		}
7886 	} else
7887 		sd->nr_balance_failed = 0;
7888 
7889 	if (likely(!active_balance)) {
7890 		/* We were unbalanced, so reset the balancing interval */
7891 		sd->balance_interval = sd->min_interval;
7892 	} else {
7893 		/*
7894 		 * If we've begun active balancing, start to back off. This
7895 		 * case may not be covered by the all_pinned logic if there
7896 		 * is only 1 task on the busy runqueue (because we don't call
7897 		 * detach_tasks).
7898 		 */
7899 		if (sd->balance_interval < sd->max_interval)
7900 			sd->balance_interval *= 2;
7901 	}
7902 
7903 	goto out;
7904 
7905 out_balanced:
7906 	/*
7907 	 * We reach balance although we may have faced some affinity
7908 	 * constraints. Clear the imbalance flag if it was set.
7909 	 */
7910 	if (sd_parent) {
7911 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7912 
7913 		if (*group_imbalance)
7914 			*group_imbalance = 0;
7915 	}
7916 
7917 out_all_pinned:
7918 	/*
7919 	 * We reach balance because all tasks are pinned at this level so
7920 	 * we can't migrate them. Let the imbalance flag set so parent level
7921 	 * can try to migrate them.
7922 	 */
7923 	schedstat_inc(sd->lb_balanced[idle]);
7924 
7925 	sd->nr_balance_failed = 0;
7926 
7927 out_one_pinned:
7928 	/* tune up the balancing interval */
7929 	if (((env.flags & LBF_ALL_PINNED) &&
7930 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7931 			(sd->balance_interval < sd->max_interval))
7932 		sd->balance_interval *= 2;
7933 
7934 	ld_moved = 0;
7935 out:
7936 	return ld_moved;
7937 }
7938 
7939 static inline unsigned long
7940 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7941 {
7942 	unsigned long interval = sd->balance_interval;
7943 
7944 	if (cpu_busy)
7945 		interval *= sd->busy_factor;
7946 
7947 	/* scale ms to jiffies */
7948 	interval = msecs_to_jiffies(interval);
7949 	interval = clamp(interval, 1UL, max_load_balance_interval);
7950 
7951 	return interval;
7952 }
7953 
7954 static inline void
7955 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
7956 {
7957 	unsigned long interval, next;
7958 
7959 	/* used by idle balance, so cpu_busy = 0 */
7960 	interval = get_sd_balance_interval(sd, 0);
7961 	next = sd->last_balance + interval;
7962 
7963 	if (time_after(*next_balance, next))
7964 		*next_balance = next;
7965 }
7966 
7967 /*
7968  * idle_balance is called by schedule() if this_cpu is about to become
7969  * idle. Attempts to pull tasks from other CPUs.
7970  */
7971 static int idle_balance(struct rq *this_rq)
7972 {
7973 	unsigned long next_balance = jiffies + HZ;
7974 	int this_cpu = this_rq->cpu;
7975 	struct sched_domain *sd;
7976 	int pulled_task = 0;
7977 	u64 curr_cost = 0;
7978 
7979 	/*
7980 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
7981 	 * measure the duration of idle_balance() as idle time.
7982 	 */
7983 	this_rq->idle_stamp = rq_clock(this_rq);
7984 
7985 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7986 	    !this_rq->rd->overload) {
7987 		rcu_read_lock();
7988 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
7989 		if (sd)
7990 			update_next_balance(sd, &next_balance);
7991 		rcu_read_unlock();
7992 
7993 		goto out;
7994 	}
7995 
7996 	raw_spin_unlock(&this_rq->lock);
7997 
7998 	update_blocked_averages(this_cpu);
7999 	rcu_read_lock();
8000 	for_each_domain(this_cpu, sd) {
8001 		int continue_balancing = 1;
8002 		u64 t0, domain_cost;
8003 
8004 		if (!(sd->flags & SD_LOAD_BALANCE))
8005 			continue;
8006 
8007 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8008 			update_next_balance(sd, &next_balance);
8009 			break;
8010 		}
8011 
8012 		if (sd->flags & SD_BALANCE_NEWIDLE) {
8013 			t0 = sched_clock_cpu(this_cpu);
8014 
8015 			pulled_task = load_balance(this_cpu, this_rq,
8016 						   sd, CPU_NEWLY_IDLE,
8017 						   &continue_balancing);
8018 
8019 			domain_cost = sched_clock_cpu(this_cpu) - t0;
8020 			if (domain_cost > sd->max_newidle_lb_cost)
8021 				sd->max_newidle_lb_cost = domain_cost;
8022 
8023 			curr_cost += domain_cost;
8024 		}
8025 
8026 		update_next_balance(sd, &next_balance);
8027 
8028 		/*
8029 		 * Stop searching for tasks to pull if there are
8030 		 * now runnable tasks on this rq.
8031 		 */
8032 		if (pulled_task || this_rq->nr_running > 0)
8033 			break;
8034 	}
8035 	rcu_read_unlock();
8036 
8037 	raw_spin_lock(&this_rq->lock);
8038 
8039 	if (curr_cost > this_rq->max_idle_balance_cost)
8040 		this_rq->max_idle_balance_cost = curr_cost;
8041 
8042 	/*
8043 	 * While browsing the domains, we released the rq lock, a task could
8044 	 * have been enqueued in the meantime. Since we're not going idle,
8045 	 * pretend we pulled a task.
8046 	 */
8047 	if (this_rq->cfs.h_nr_running && !pulled_task)
8048 		pulled_task = 1;
8049 
8050 out:
8051 	/* Move the next balance forward */
8052 	if (time_after(this_rq->next_balance, next_balance))
8053 		this_rq->next_balance = next_balance;
8054 
8055 	/* Is there a task of a high priority class? */
8056 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8057 		pulled_task = -1;
8058 
8059 	if (pulled_task)
8060 		this_rq->idle_stamp = 0;
8061 
8062 	return pulled_task;
8063 }
8064 
8065 /*
8066  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8067  * running tasks off the busiest CPU onto idle CPUs. It requires at
8068  * least 1 task to be running on each physical CPU where possible, and
8069  * avoids physical / logical imbalances.
8070  */
8071 static int active_load_balance_cpu_stop(void *data)
8072 {
8073 	struct rq *busiest_rq = data;
8074 	int busiest_cpu = cpu_of(busiest_rq);
8075 	int target_cpu = busiest_rq->push_cpu;
8076 	struct rq *target_rq = cpu_rq(target_cpu);
8077 	struct sched_domain *sd;
8078 	struct task_struct *p = NULL;
8079 
8080 	raw_spin_lock_irq(&busiest_rq->lock);
8081 
8082 	/* make sure the requested cpu hasn't gone down in the meantime */
8083 	if (unlikely(busiest_cpu != smp_processor_id() ||
8084 		     !busiest_rq->active_balance))
8085 		goto out_unlock;
8086 
8087 	/* Is there any task to move? */
8088 	if (busiest_rq->nr_running <= 1)
8089 		goto out_unlock;
8090 
8091 	/*
8092 	 * This condition is "impossible", if it occurs
8093 	 * we need to fix it. Originally reported by
8094 	 * Bjorn Helgaas on a 128-cpu setup.
8095 	 */
8096 	BUG_ON(busiest_rq == target_rq);
8097 
8098 	/* Search for an sd spanning us and the target CPU. */
8099 	rcu_read_lock();
8100 	for_each_domain(target_cpu, sd) {
8101 		if ((sd->flags & SD_LOAD_BALANCE) &&
8102 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8103 				break;
8104 	}
8105 
8106 	if (likely(sd)) {
8107 		struct lb_env env = {
8108 			.sd		= sd,
8109 			.dst_cpu	= target_cpu,
8110 			.dst_rq		= target_rq,
8111 			.src_cpu	= busiest_rq->cpu,
8112 			.src_rq		= busiest_rq,
8113 			.idle		= CPU_IDLE,
8114 		};
8115 
8116 		schedstat_inc(sd->alb_count);
8117 
8118 		p = detach_one_task(&env);
8119 		if (p) {
8120 			schedstat_inc(sd->alb_pushed);
8121 			/* Active balancing done, reset the failure counter. */
8122 			sd->nr_balance_failed = 0;
8123 		} else {
8124 			schedstat_inc(sd->alb_failed);
8125 		}
8126 	}
8127 	rcu_read_unlock();
8128 out_unlock:
8129 	busiest_rq->active_balance = 0;
8130 	raw_spin_unlock(&busiest_rq->lock);
8131 
8132 	if (p)
8133 		attach_one_task(target_rq, p);
8134 
8135 	local_irq_enable();
8136 
8137 	return 0;
8138 }
8139 
8140 static inline int on_null_domain(struct rq *rq)
8141 {
8142 	return unlikely(!rcu_dereference_sched(rq->sd));
8143 }
8144 
8145 #ifdef CONFIG_NO_HZ_COMMON
8146 /*
8147  * idle load balancing details
8148  * - When one of the busy CPUs notice that there may be an idle rebalancing
8149  *   needed, they will kick the idle load balancer, which then does idle
8150  *   load balancing for all the idle CPUs.
8151  */
8152 static struct {
8153 	cpumask_var_t idle_cpus_mask;
8154 	atomic_t nr_cpus;
8155 	unsigned long next_balance;     /* in jiffy units */
8156 } nohz ____cacheline_aligned;
8157 
8158 static inline int find_new_ilb(void)
8159 {
8160 	int ilb = cpumask_first(nohz.idle_cpus_mask);
8161 
8162 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
8163 		return ilb;
8164 
8165 	return nr_cpu_ids;
8166 }
8167 
8168 /*
8169  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8170  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8171  * CPU (if there is one).
8172  */
8173 static void nohz_balancer_kick(void)
8174 {
8175 	int ilb_cpu;
8176 
8177 	nohz.next_balance++;
8178 
8179 	ilb_cpu = find_new_ilb();
8180 
8181 	if (ilb_cpu >= nr_cpu_ids)
8182 		return;
8183 
8184 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8185 		return;
8186 	/*
8187 	 * Use smp_send_reschedule() instead of resched_cpu().
8188 	 * This way we generate a sched IPI on the target cpu which
8189 	 * is idle. And the softirq performing nohz idle load balance
8190 	 * will be run before returning from the IPI.
8191 	 */
8192 	smp_send_reschedule(ilb_cpu);
8193 	return;
8194 }
8195 
8196 void nohz_balance_exit_idle(unsigned int cpu)
8197 {
8198 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8199 		/*
8200 		 * Completely isolated CPUs don't ever set, so we must test.
8201 		 */
8202 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8203 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8204 			atomic_dec(&nohz.nr_cpus);
8205 		}
8206 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8207 	}
8208 }
8209 
8210 static inline void set_cpu_sd_state_busy(void)
8211 {
8212 	struct sched_domain *sd;
8213 	int cpu = smp_processor_id();
8214 
8215 	rcu_read_lock();
8216 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
8217 
8218 	if (!sd || !sd->nohz_idle)
8219 		goto unlock;
8220 	sd->nohz_idle = 0;
8221 
8222 	atomic_inc(&sd->shared->nr_busy_cpus);
8223 unlock:
8224 	rcu_read_unlock();
8225 }
8226 
8227 void set_cpu_sd_state_idle(void)
8228 {
8229 	struct sched_domain *sd;
8230 	int cpu = smp_processor_id();
8231 
8232 	rcu_read_lock();
8233 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
8234 
8235 	if (!sd || sd->nohz_idle)
8236 		goto unlock;
8237 	sd->nohz_idle = 1;
8238 
8239 	atomic_dec(&sd->shared->nr_busy_cpus);
8240 unlock:
8241 	rcu_read_unlock();
8242 }
8243 
8244 /*
8245  * This routine will record that the cpu is going idle with tick stopped.
8246  * This info will be used in performing idle load balancing in the future.
8247  */
8248 void nohz_balance_enter_idle(int cpu)
8249 {
8250 	/*
8251 	 * If this cpu is going down, then nothing needs to be done.
8252 	 */
8253 	if (!cpu_active(cpu))
8254 		return;
8255 
8256 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8257 		return;
8258 
8259 	/*
8260 	 * If we're a completely isolated CPU, we don't play.
8261 	 */
8262 	if (on_null_domain(cpu_rq(cpu)))
8263 		return;
8264 
8265 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8266 	atomic_inc(&nohz.nr_cpus);
8267 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8268 }
8269 #endif
8270 
8271 static DEFINE_SPINLOCK(balancing);
8272 
8273 /*
8274  * Scale the max load_balance interval with the number of CPUs in the system.
8275  * This trades load-balance latency on larger machines for less cross talk.
8276  */
8277 void update_max_interval(void)
8278 {
8279 	max_load_balance_interval = HZ*num_online_cpus()/10;
8280 }
8281 
8282 /*
8283  * It checks each scheduling domain to see if it is due to be balanced,
8284  * and initiates a balancing operation if so.
8285  *
8286  * Balancing parameters are set up in init_sched_domains.
8287  */
8288 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8289 {
8290 	int continue_balancing = 1;
8291 	int cpu = rq->cpu;
8292 	unsigned long interval;
8293 	struct sched_domain *sd;
8294 	/* Earliest time when we have to do rebalance again */
8295 	unsigned long next_balance = jiffies + 60*HZ;
8296 	int update_next_balance = 0;
8297 	int need_serialize, need_decay = 0;
8298 	u64 max_cost = 0;
8299 
8300 	update_blocked_averages(cpu);
8301 
8302 	rcu_read_lock();
8303 	for_each_domain(cpu, sd) {
8304 		/*
8305 		 * Decay the newidle max times here because this is a regular
8306 		 * visit to all the domains. Decay ~1% per second.
8307 		 */
8308 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8309 			sd->max_newidle_lb_cost =
8310 				(sd->max_newidle_lb_cost * 253) / 256;
8311 			sd->next_decay_max_lb_cost = jiffies + HZ;
8312 			need_decay = 1;
8313 		}
8314 		max_cost += sd->max_newidle_lb_cost;
8315 
8316 		if (!(sd->flags & SD_LOAD_BALANCE))
8317 			continue;
8318 
8319 		/*
8320 		 * Stop the load balance at this level. There is another
8321 		 * CPU in our sched group which is doing load balancing more
8322 		 * actively.
8323 		 */
8324 		if (!continue_balancing) {
8325 			if (need_decay)
8326 				continue;
8327 			break;
8328 		}
8329 
8330 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8331 
8332 		need_serialize = sd->flags & SD_SERIALIZE;
8333 		if (need_serialize) {
8334 			if (!spin_trylock(&balancing))
8335 				goto out;
8336 		}
8337 
8338 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8339 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8340 				/*
8341 				 * The LBF_DST_PINNED logic could have changed
8342 				 * env->dst_cpu, so we can't know our idle
8343 				 * state even if we migrated tasks. Update it.
8344 				 */
8345 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8346 			}
8347 			sd->last_balance = jiffies;
8348 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8349 		}
8350 		if (need_serialize)
8351 			spin_unlock(&balancing);
8352 out:
8353 		if (time_after(next_balance, sd->last_balance + interval)) {
8354 			next_balance = sd->last_balance + interval;
8355 			update_next_balance = 1;
8356 		}
8357 	}
8358 	if (need_decay) {
8359 		/*
8360 		 * Ensure the rq-wide value also decays but keep it at a
8361 		 * reasonable floor to avoid funnies with rq->avg_idle.
8362 		 */
8363 		rq->max_idle_balance_cost =
8364 			max((u64)sysctl_sched_migration_cost, max_cost);
8365 	}
8366 	rcu_read_unlock();
8367 
8368 	/*
8369 	 * next_balance will be updated only when there is a need.
8370 	 * When the cpu is attached to null domain for ex, it will not be
8371 	 * updated.
8372 	 */
8373 	if (likely(update_next_balance)) {
8374 		rq->next_balance = next_balance;
8375 
8376 #ifdef CONFIG_NO_HZ_COMMON
8377 		/*
8378 		 * If this CPU has been elected to perform the nohz idle
8379 		 * balance. Other idle CPUs have already rebalanced with
8380 		 * nohz_idle_balance() and nohz.next_balance has been
8381 		 * updated accordingly. This CPU is now running the idle load
8382 		 * balance for itself and we need to update the
8383 		 * nohz.next_balance accordingly.
8384 		 */
8385 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8386 			nohz.next_balance = rq->next_balance;
8387 #endif
8388 	}
8389 }
8390 
8391 #ifdef CONFIG_NO_HZ_COMMON
8392 /*
8393  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8394  * rebalancing for all the cpus for whom scheduler ticks are stopped.
8395  */
8396 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8397 {
8398 	int this_cpu = this_rq->cpu;
8399 	struct rq *rq;
8400 	int balance_cpu;
8401 	/* Earliest time when we have to do rebalance again */
8402 	unsigned long next_balance = jiffies + 60*HZ;
8403 	int update_next_balance = 0;
8404 
8405 	if (idle != CPU_IDLE ||
8406 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8407 		goto end;
8408 
8409 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8410 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8411 			continue;
8412 
8413 		/*
8414 		 * If this cpu gets work to do, stop the load balancing
8415 		 * work being done for other cpus. Next load
8416 		 * balancing owner will pick it up.
8417 		 */
8418 		if (need_resched())
8419 			break;
8420 
8421 		rq = cpu_rq(balance_cpu);
8422 
8423 		/*
8424 		 * If time for next balance is due,
8425 		 * do the balance.
8426 		 */
8427 		if (time_after_eq(jiffies, rq->next_balance)) {
8428 			raw_spin_lock_irq(&rq->lock);
8429 			update_rq_clock(rq);
8430 			cpu_load_update_idle(rq);
8431 			raw_spin_unlock_irq(&rq->lock);
8432 			rebalance_domains(rq, CPU_IDLE);
8433 		}
8434 
8435 		if (time_after(next_balance, rq->next_balance)) {
8436 			next_balance = rq->next_balance;
8437 			update_next_balance = 1;
8438 		}
8439 	}
8440 
8441 	/*
8442 	 * next_balance will be updated only when there is a need.
8443 	 * When the CPU is attached to null domain for ex, it will not be
8444 	 * updated.
8445 	 */
8446 	if (likely(update_next_balance))
8447 		nohz.next_balance = next_balance;
8448 end:
8449 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8450 }
8451 
8452 /*
8453  * Current heuristic for kicking the idle load balancer in the presence
8454  * of an idle cpu in the system.
8455  *   - This rq has more than one task.
8456  *   - This rq has at least one CFS task and the capacity of the CPU is
8457  *     significantly reduced because of RT tasks or IRQs.
8458  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
8459  *     multiple busy cpu.
8460  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8461  *     domain span are idle.
8462  */
8463 static inline bool nohz_kick_needed(struct rq *rq)
8464 {
8465 	unsigned long now = jiffies;
8466 	struct sched_domain_shared *sds;
8467 	struct sched_domain *sd;
8468 	int nr_busy, cpu = rq->cpu;
8469 	bool kick = false;
8470 
8471 	if (unlikely(rq->idle_balance))
8472 		return false;
8473 
8474        /*
8475 	* We may be recently in ticked or tickless idle mode. At the first
8476 	* busy tick after returning from idle, we will update the busy stats.
8477 	*/
8478 	set_cpu_sd_state_busy();
8479 	nohz_balance_exit_idle(cpu);
8480 
8481 	/*
8482 	 * None are in tickless mode and hence no need for NOHZ idle load
8483 	 * balancing.
8484 	 */
8485 	if (likely(!atomic_read(&nohz.nr_cpus)))
8486 		return false;
8487 
8488 	if (time_before(now, nohz.next_balance))
8489 		return false;
8490 
8491 	if (rq->nr_running >= 2)
8492 		return true;
8493 
8494 	rcu_read_lock();
8495 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8496 	if (sds) {
8497 		/*
8498 		 * XXX: write a coherent comment on why we do this.
8499 		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8500 		 */
8501 		nr_busy = atomic_read(&sds->nr_busy_cpus);
8502 		if (nr_busy > 1) {
8503 			kick = true;
8504 			goto unlock;
8505 		}
8506 
8507 	}
8508 
8509 	sd = rcu_dereference(rq->sd);
8510 	if (sd) {
8511 		if ((rq->cfs.h_nr_running >= 1) &&
8512 				check_cpu_capacity(rq, sd)) {
8513 			kick = true;
8514 			goto unlock;
8515 		}
8516 	}
8517 
8518 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
8519 	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
8520 				  sched_domain_span(sd)) < cpu)) {
8521 		kick = true;
8522 		goto unlock;
8523 	}
8524 
8525 unlock:
8526 	rcu_read_unlock();
8527 	return kick;
8528 }
8529 #else
8530 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8531 #endif
8532 
8533 /*
8534  * run_rebalance_domains is triggered when needed from the scheduler tick.
8535  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8536  */
8537 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
8538 {
8539 	struct rq *this_rq = this_rq();
8540 	enum cpu_idle_type idle = this_rq->idle_balance ?
8541 						CPU_IDLE : CPU_NOT_IDLE;
8542 
8543 	/*
8544 	 * If this cpu has a pending nohz_balance_kick, then do the
8545 	 * balancing on behalf of the other idle cpus whose ticks are
8546 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8547 	 * give the idle cpus a chance to load balance. Else we may
8548 	 * load balance only within the local sched_domain hierarchy
8549 	 * and abort nohz_idle_balance altogether if we pull some load.
8550 	 */
8551 	nohz_idle_balance(this_rq, idle);
8552 	rebalance_domains(this_rq, idle);
8553 }
8554 
8555 /*
8556  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8557  */
8558 void trigger_load_balance(struct rq *rq)
8559 {
8560 	/* Don't need to rebalance while attached to NULL domain */
8561 	if (unlikely(on_null_domain(rq)))
8562 		return;
8563 
8564 	if (time_after_eq(jiffies, rq->next_balance))
8565 		raise_softirq(SCHED_SOFTIRQ);
8566 #ifdef CONFIG_NO_HZ_COMMON
8567 	if (nohz_kick_needed(rq))
8568 		nohz_balancer_kick();
8569 #endif
8570 }
8571 
8572 static void rq_online_fair(struct rq *rq)
8573 {
8574 	update_sysctl();
8575 
8576 	update_runtime_enabled(rq);
8577 }
8578 
8579 static void rq_offline_fair(struct rq *rq)
8580 {
8581 	update_sysctl();
8582 
8583 	/* Ensure any throttled groups are reachable by pick_next_task */
8584 	unthrottle_offline_cfs_rqs(rq);
8585 }
8586 
8587 #endif /* CONFIG_SMP */
8588 
8589 /*
8590  * scheduler tick hitting a task of our scheduling class:
8591  */
8592 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8593 {
8594 	struct cfs_rq *cfs_rq;
8595 	struct sched_entity *se = &curr->se;
8596 
8597 	for_each_sched_entity(se) {
8598 		cfs_rq = cfs_rq_of(se);
8599 		entity_tick(cfs_rq, se, queued);
8600 	}
8601 
8602 	if (static_branch_unlikely(&sched_numa_balancing))
8603 		task_tick_numa(rq, curr);
8604 }
8605 
8606 /*
8607  * called on fork with the child task as argument from the parent's context
8608  *  - child not yet on the tasklist
8609  *  - preemption disabled
8610  */
8611 static void task_fork_fair(struct task_struct *p)
8612 {
8613 	struct cfs_rq *cfs_rq;
8614 	struct sched_entity *se = &p->se, *curr;
8615 	struct rq *rq = this_rq();
8616 
8617 	raw_spin_lock(&rq->lock);
8618 	update_rq_clock(rq);
8619 
8620 	cfs_rq = task_cfs_rq(current);
8621 	curr = cfs_rq->curr;
8622 	if (curr) {
8623 		update_curr(cfs_rq);
8624 		se->vruntime = curr->vruntime;
8625 	}
8626 	place_entity(cfs_rq, se, 1);
8627 
8628 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
8629 		/*
8630 		 * Upon rescheduling, sched_class::put_prev_task() will place
8631 		 * 'current' within the tree based on its new key value.
8632 		 */
8633 		swap(curr->vruntime, se->vruntime);
8634 		resched_curr(rq);
8635 	}
8636 
8637 	se->vruntime -= cfs_rq->min_vruntime;
8638 	raw_spin_unlock(&rq->lock);
8639 }
8640 
8641 /*
8642  * Priority of the task has changed. Check to see if we preempt
8643  * the current task.
8644  */
8645 static void
8646 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8647 {
8648 	if (!task_on_rq_queued(p))
8649 		return;
8650 
8651 	/*
8652 	 * Reschedule if we are currently running on this runqueue and
8653 	 * our priority decreased, or if we are not currently running on
8654 	 * this runqueue and our priority is higher than the current's
8655 	 */
8656 	if (rq->curr == p) {
8657 		if (p->prio > oldprio)
8658 			resched_curr(rq);
8659 	} else
8660 		check_preempt_curr(rq, p, 0);
8661 }
8662 
8663 static inline bool vruntime_normalized(struct task_struct *p)
8664 {
8665 	struct sched_entity *se = &p->se;
8666 
8667 	/*
8668 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8669 	 * the dequeue_entity(.flags=0) will already have normalized the
8670 	 * vruntime.
8671 	 */
8672 	if (p->on_rq)
8673 		return true;
8674 
8675 	/*
8676 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
8677 	 * But there are some cases where it has already been normalized:
8678 	 *
8679 	 * - A forked child which is waiting for being woken up by
8680 	 *   wake_up_new_task().
8681 	 * - A task which has been woken up by try_to_wake_up() and
8682 	 *   waiting for actually being woken up by sched_ttwu_pending().
8683 	 */
8684 	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8685 		return true;
8686 
8687 	return false;
8688 }
8689 
8690 static void detach_task_cfs_rq(struct task_struct *p)
8691 {
8692 	struct sched_entity *se = &p->se;
8693 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8694 	u64 now = cfs_rq_clock_task(cfs_rq);
8695 
8696 	if (!vruntime_normalized(p)) {
8697 		/*
8698 		 * Fix up our vruntime so that the current sleep doesn't
8699 		 * cause 'unlimited' sleep bonus.
8700 		 */
8701 		place_entity(cfs_rq, se, 0);
8702 		se->vruntime -= cfs_rq->min_vruntime;
8703 	}
8704 
8705 	/* Catch up with the cfs_rq and remove our load when we leave */
8706 	update_cfs_rq_load_avg(now, cfs_rq, false);
8707 	detach_entity_load_avg(cfs_rq, se);
8708 	update_tg_load_avg(cfs_rq, false);
8709 }
8710 
8711 static void attach_task_cfs_rq(struct task_struct *p)
8712 {
8713 	struct sched_entity *se = &p->se;
8714 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8715 	u64 now = cfs_rq_clock_task(cfs_rq);
8716 
8717 #ifdef CONFIG_FAIR_GROUP_SCHED
8718 	/*
8719 	 * Since the real-depth could have been changed (only FAIR
8720 	 * class maintain depth value), reset depth properly.
8721 	 */
8722 	se->depth = se->parent ? se->parent->depth + 1 : 0;
8723 #endif
8724 
8725 	/* Synchronize task with its cfs_rq */
8726 	update_cfs_rq_load_avg(now, cfs_rq, false);
8727 	attach_entity_load_avg(cfs_rq, se);
8728 	update_tg_load_avg(cfs_rq, false);
8729 
8730 	if (!vruntime_normalized(p))
8731 		se->vruntime += cfs_rq->min_vruntime;
8732 }
8733 
8734 static void switched_from_fair(struct rq *rq, struct task_struct *p)
8735 {
8736 	detach_task_cfs_rq(p);
8737 }
8738 
8739 static void switched_to_fair(struct rq *rq, struct task_struct *p)
8740 {
8741 	attach_task_cfs_rq(p);
8742 
8743 	if (task_on_rq_queued(p)) {
8744 		/*
8745 		 * We were most likely switched from sched_rt, so
8746 		 * kick off the schedule if running, otherwise just see
8747 		 * if we can still preempt the current task.
8748 		 */
8749 		if (rq->curr == p)
8750 			resched_curr(rq);
8751 		else
8752 			check_preempt_curr(rq, p, 0);
8753 	}
8754 }
8755 
8756 /* Account for a task changing its policy or group.
8757  *
8758  * This routine is mostly called to set cfs_rq->curr field when a task
8759  * migrates between groups/classes.
8760  */
8761 static void set_curr_task_fair(struct rq *rq)
8762 {
8763 	struct sched_entity *se = &rq->curr->se;
8764 
8765 	for_each_sched_entity(se) {
8766 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
8767 
8768 		set_next_entity(cfs_rq, se);
8769 		/* ensure bandwidth has been allocated on our new cfs_rq */
8770 		account_cfs_rq_runtime(cfs_rq, 0);
8771 	}
8772 }
8773 
8774 void init_cfs_rq(struct cfs_rq *cfs_rq)
8775 {
8776 	cfs_rq->tasks_timeline = RB_ROOT;
8777 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8778 #ifndef CONFIG_64BIT
8779 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8780 #endif
8781 #ifdef CONFIG_SMP
8782 	atomic_long_set(&cfs_rq->removed_load_avg, 0);
8783 	atomic_long_set(&cfs_rq->removed_util_avg, 0);
8784 #endif
8785 }
8786 
8787 #ifdef CONFIG_FAIR_GROUP_SCHED
8788 static void task_set_group_fair(struct task_struct *p)
8789 {
8790 	struct sched_entity *se = &p->se;
8791 
8792 	set_task_rq(p, task_cpu(p));
8793 	se->depth = se->parent ? se->parent->depth + 1 : 0;
8794 }
8795 
8796 static void task_move_group_fair(struct task_struct *p)
8797 {
8798 	detach_task_cfs_rq(p);
8799 	set_task_rq(p, task_cpu(p));
8800 
8801 #ifdef CONFIG_SMP
8802 	/* Tell se's cfs_rq has been changed -- migrated */
8803 	p->se.avg.last_update_time = 0;
8804 #endif
8805 	attach_task_cfs_rq(p);
8806 }
8807 
8808 static void task_change_group_fair(struct task_struct *p, int type)
8809 {
8810 	switch (type) {
8811 	case TASK_SET_GROUP:
8812 		task_set_group_fair(p);
8813 		break;
8814 
8815 	case TASK_MOVE_GROUP:
8816 		task_move_group_fair(p);
8817 		break;
8818 	}
8819 }
8820 
8821 void free_fair_sched_group(struct task_group *tg)
8822 {
8823 	int i;
8824 
8825 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8826 
8827 	for_each_possible_cpu(i) {
8828 		if (tg->cfs_rq)
8829 			kfree(tg->cfs_rq[i]);
8830 		if (tg->se)
8831 			kfree(tg->se[i]);
8832 	}
8833 
8834 	kfree(tg->cfs_rq);
8835 	kfree(tg->se);
8836 }
8837 
8838 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8839 {
8840 	struct sched_entity *se;
8841 	struct cfs_rq *cfs_rq;
8842 	int i;
8843 
8844 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8845 	if (!tg->cfs_rq)
8846 		goto err;
8847 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8848 	if (!tg->se)
8849 		goto err;
8850 
8851 	tg->shares = NICE_0_LOAD;
8852 
8853 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8854 
8855 	for_each_possible_cpu(i) {
8856 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8857 				      GFP_KERNEL, cpu_to_node(i));
8858 		if (!cfs_rq)
8859 			goto err;
8860 
8861 		se = kzalloc_node(sizeof(struct sched_entity),
8862 				  GFP_KERNEL, cpu_to_node(i));
8863 		if (!se)
8864 			goto err_free_rq;
8865 
8866 		init_cfs_rq(cfs_rq);
8867 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8868 		init_entity_runnable_average(se);
8869 	}
8870 
8871 	return 1;
8872 
8873 err_free_rq:
8874 	kfree(cfs_rq);
8875 err:
8876 	return 0;
8877 }
8878 
8879 void online_fair_sched_group(struct task_group *tg)
8880 {
8881 	struct sched_entity *se;
8882 	struct rq *rq;
8883 	int i;
8884 
8885 	for_each_possible_cpu(i) {
8886 		rq = cpu_rq(i);
8887 		se = tg->se[i];
8888 
8889 		raw_spin_lock_irq(&rq->lock);
8890 		post_init_entity_util_avg(se);
8891 		sync_throttle(tg, i);
8892 		raw_spin_unlock_irq(&rq->lock);
8893 	}
8894 }
8895 
8896 void unregister_fair_sched_group(struct task_group *tg)
8897 {
8898 	unsigned long flags;
8899 	struct rq *rq;
8900 	int cpu;
8901 
8902 	for_each_possible_cpu(cpu) {
8903 		if (tg->se[cpu])
8904 			remove_entity_load_avg(tg->se[cpu]);
8905 
8906 		/*
8907 		 * Only empty task groups can be destroyed; so we can speculatively
8908 		 * check on_list without danger of it being re-added.
8909 		 */
8910 		if (!tg->cfs_rq[cpu]->on_list)
8911 			continue;
8912 
8913 		rq = cpu_rq(cpu);
8914 
8915 		raw_spin_lock_irqsave(&rq->lock, flags);
8916 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8917 		raw_spin_unlock_irqrestore(&rq->lock, flags);
8918 	}
8919 }
8920 
8921 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8922 			struct sched_entity *se, int cpu,
8923 			struct sched_entity *parent)
8924 {
8925 	struct rq *rq = cpu_rq(cpu);
8926 
8927 	cfs_rq->tg = tg;
8928 	cfs_rq->rq = rq;
8929 	init_cfs_rq_runtime(cfs_rq);
8930 
8931 	tg->cfs_rq[cpu] = cfs_rq;
8932 	tg->se[cpu] = se;
8933 
8934 	/* se could be NULL for root_task_group */
8935 	if (!se)
8936 		return;
8937 
8938 	if (!parent) {
8939 		se->cfs_rq = &rq->cfs;
8940 		se->depth = 0;
8941 	} else {
8942 		se->cfs_rq = parent->my_q;
8943 		se->depth = parent->depth + 1;
8944 	}
8945 
8946 	se->my_q = cfs_rq;
8947 	/* guarantee group entities always have weight */
8948 	update_load_set(&se->load, NICE_0_LOAD);
8949 	se->parent = parent;
8950 }
8951 
8952 static DEFINE_MUTEX(shares_mutex);
8953 
8954 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8955 {
8956 	int i;
8957 	unsigned long flags;
8958 
8959 	/*
8960 	 * We can't change the weight of the root cgroup.
8961 	 */
8962 	if (!tg->se[0])
8963 		return -EINVAL;
8964 
8965 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8966 
8967 	mutex_lock(&shares_mutex);
8968 	if (tg->shares == shares)
8969 		goto done;
8970 
8971 	tg->shares = shares;
8972 	for_each_possible_cpu(i) {
8973 		struct rq *rq = cpu_rq(i);
8974 		struct sched_entity *se;
8975 
8976 		se = tg->se[i];
8977 		/* Propagate contribution to hierarchy */
8978 		raw_spin_lock_irqsave(&rq->lock, flags);
8979 
8980 		/* Possible calls to update_curr() need rq clock */
8981 		update_rq_clock(rq);
8982 		for_each_sched_entity(se)
8983 			update_cfs_shares(group_cfs_rq(se));
8984 		raw_spin_unlock_irqrestore(&rq->lock, flags);
8985 	}
8986 
8987 done:
8988 	mutex_unlock(&shares_mutex);
8989 	return 0;
8990 }
8991 #else /* CONFIG_FAIR_GROUP_SCHED */
8992 
8993 void free_fair_sched_group(struct task_group *tg) { }
8994 
8995 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8996 {
8997 	return 1;
8998 }
8999 
9000 void online_fair_sched_group(struct task_group *tg) { }
9001 
9002 void unregister_fair_sched_group(struct task_group *tg) { }
9003 
9004 #endif /* CONFIG_FAIR_GROUP_SCHED */
9005 
9006 
9007 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9008 {
9009 	struct sched_entity *se = &task->se;
9010 	unsigned int rr_interval = 0;
9011 
9012 	/*
9013 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9014 	 * idle runqueue:
9015 	 */
9016 	if (rq->cfs.load.weight)
9017 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9018 
9019 	return rr_interval;
9020 }
9021 
9022 /*
9023  * All the scheduling class methods:
9024  */
9025 const struct sched_class fair_sched_class = {
9026 	.next			= &idle_sched_class,
9027 	.enqueue_task		= enqueue_task_fair,
9028 	.dequeue_task		= dequeue_task_fair,
9029 	.yield_task		= yield_task_fair,
9030 	.yield_to_task		= yield_to_task_fair,
9031 
9032 	.check_preempt_curr	= check_preempt_wakeup,
9033 
9034 	.pick_next_task		= pick_next_task_fair,
9035 	.put_prev_task		= put_prev_task_fair,
9036 
9037 #ifdef CONFIG_SMP
9038 	.select_task_rq		= select_task_rq_fair,
9039 	.migrate_task_rq	= migrate_task_rq_fair,
9040 
9041 	.rq_online		= rq_online_fair,
9042 	.rq_offline		= rq_offline_fair,
9043 
9044 	.task_dead		= task_dead_fair,
9045 	.set_cpus_allowed	= set_cpus_allowed_common,
9046 #endif
9047 
9048 	.set_curr_task          = set_curr_task_fair,
9049 	.task_tick		= task_tick_fair,
9050 	.task_fork		= task_fork_fair,
9051 
9052 	.prio_changed		= prio_changed_fair,
9053 	.switched_from		= switched_from_fair,
9054 	.switched_to		= switched_to_fair,
9055 
9056 	.get_rr_interval	= get_rr_interval_fair,
9057 
9058 	.update_curr		= update_curr_fair,
9059 
9060 #ifdef CONFIG_FAIR_GROUP_SCHED
9061 	.task_change_group	= task_change_group_fair,
9062 #endif
9063 };
9064 
9065 #ifdef CONFIG_SCHED_DEBUG
9066 void print_cfs_stats(struct seq_file *m, int cpu)
9067 {
9068 	struct cfs_rq *cfs_rq;
9069 
9070 	rcu_read_lock();
9071 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
9072 		print_cfs_rq(m, cpu, cfs_rq);
9073 	rcu_read_unlock();
9074 }
9075 
9076 #ifdef CONFIG_NUMA_BALANCING
9077 void show_numa_stats(struct task_struct *p, struct seq_file *m)
9078 {
9079 	int node;
9080 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9081 
9082 	for_each_online_node(node) {
9083 		if (p->numa_faults) {
9084 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9085 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9086 		}
9087 		if (p->numa_group) {
9088 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9089 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9090 		}
9091 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9092 	}
9093 }
9094 #endif /* CONFIG_NUMA_BALANCING */
9095 #endif /* CONFIG_SCHED_DEBUG */
9096 
9097 __init void init_sched_fair_class(void)
9098 {
9099 #ifdef CONFIG_SMP
9100 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9101 
9102 #ifdef CONFIG_NO_HZ_COMMON
9103 	nohz.next_balance = jiffies;
9104 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
9105 #endif
9106 #endif /* SMP */
9107 
9108 }
9109