xref: /openbmc/linux/kernel/sched/fair.c (revision d28a1de5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 
51 #include <asm/switch_to.h>
52 
53 #include <linux/sched/cond_resched.h>
54 
55 #include "sched.h"
56 #include "stats.h"
57 #include "autogroup.h"
58 
59 /*
60  * Targeted preemption latency for CPU-bound tasks:
61  *
62  * NOTE: this latency value is not the same as the concept of
63  * 'timeslice length' - timeslices in CFS are of variable length
64  * and have no persistent notion like in traditional, time-slice
65  * based scheduling concepts.
66  *
67  * (to see the precise effective timeslice length of your workload,
68  *  run vmstat and monitor the context-switches (cs) field)
69  *
70  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
71  */
72 unsigned int sysctl_sched_latency			= 6000000ULL;
73 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
74 
75 /*
76  * The initial- and re-scaling of tunables is configurable
77  *
78  * Options are:
79  *
80  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
81  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
82  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
83  *
84  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
85  */
86 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
87 
88 /*
89  * Minimal preemption granularity for CPU-bound tasks:
90  *
91  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
92  */
93 unsigned int sysctl_sched_min_granularity			= 750000ULL;
94 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
95 
96 /*
97  * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
98  * Applies only when SCHED_IDLE tasks compete with normal tasks.
99  *
100  * (default: 0.75 msec)
101  */
102 unsigned int sysctl_sched_idle_min_granularity			= 750000ULL;
103 
104 /*
105  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
106  */
107 static unsigned int sched_nr_latency = 8;
108 
109 /*
110  * After fork, child runs first. If set to 0 (default) then
111  * parent will (try to) run first.
112  */
113 unsigned int sysctl_sched_child_runs_first __read_mostly;
114 
115 /*
116  * SCHED_OTHER wake-up granularity.
117  *
118  * This option delays the preemption effects of decoupled workloads
119  * and reduces their over-scheduling. Synchronous workloads will still
120  * have immediate wakeup/sleep latencies.
121  *
122  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
123  */
124 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
125 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
126 
127 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
128 
129 int sched_thermal_decay_shift;
130 static int __init setup_sched_thermal_decay_shift(char *str)
131 {
132 	int _shift = 0;
133 
134 	if (kstrtoint(str, 0, &_shift))
135 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
136 
137 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
138 	return 1;
139 }
140 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
141 
142 #ifdef CONFIG_SMP
143 /*
144  * For asym packing, by default the lower numbered CPU has higher priority.
145  */
146 int __weak arch_asym_cpu_priority(int cpu)
147 {
148 	return -cpu;
149 }
150 
151 /*
152  * The margin used when comparing utilization with CPU capacity.
153  *
154  * (default: ~20%)
155  */
156 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
157 
158 /*
159  * The margin used when comparing CPU capacities.
160  * is 'cap1' noticeably greater than 'cap2'
161  *
162  * (default: ~5%)
163  */
164 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
165 #endif
166 
167 #ifdef CONFIG_CFS_BANDWIDTH
168 /*
169  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
170  * each time a cfs_rq requests quota.
171  *
172  * Note: in the case that the slice exceeds the runtime remaining (either due
173  * to consumption or the quota being specified to be smaller than the slice)
174  * we will always only issue the remaining available time.
175  *
176  * (default: 5 msec, units: microseconds)
177  */
178 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
179 #endif
180 
181 #ifdef CONFIG_SYSCTL
182 static struct ctl_table sched_fair_sysctls[] = {
183 	{
184 		.procname       = "sched_child_runs_first",
185 		.data           = &sysctl_sched_child_runs_first,
186 		.maxlen         = sizeof(unsigned int),
187 		.mode           = 0644,
188 		.proc_handler   = proc_dointvec,
189 	},
190 #ifdef CONFIG_CFS_BANDWIDTH
191 	{
192 		.procname       = "sched_cfs_bandwidth_slice_us",
193 		.data           = &sysctl_sched_cfs_bandwidth_slice,
194 		.maxlen         = sizeof(unsigned int),
195 		.mode           = 0644,
196 		.proc_handler   = proc_dointvec_minmax,
197 		.extra1         = SYSCTL_ONE,
198 	},
199 #endif
200 	{}
201 };
202 
203 static int __init sched_fair_sysctl_init(void)
204 {
205 	register_sysctl_init("kernel", sched_fair_sysctls);
206 	return 0;
207 }
208 late_initcall(sched_fair_sysctl_init);
209 #endif
210 
211 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
212 {
213 	lw->weight += inc;
214 	lw->inv_weight = 0;
215 }
216 
217 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
218 {
219 	lw->weight -= dec;
220 	lw->inv_weight = 0;
221 }
222 
223 static inline void update_load_set(struct load_weight *lw, unsigned long w)
224 {
225 	lw->weight = w;
226 	lw->inv_weight = 0;
227 }
228 
229 /*
230  * Increase the granularity value when there are more CPUs,
231  * because with more CPUs the 'effective latency' as visible
232  * to users decreases. But the relationship is not linear,
233  * so pick a second-best guess by going with the log2 of the
234  * number of CPUs.
235  *
236  * This idea comes from the SD scheduler of Con Kolivas:
237  */
238 static unsigned int get_update_sysctl_factor(void)
239 {
240 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
241 	unsigned int factor;
242 
243 	switch (sysctl_sched_tunable_scaling) {
244 	case SCHED_TUNABLESCALING_NONE:
245 		factor = 1;
246 		break;
247 	case SCHED_TUNABLESCALING_LINEAR:
248 		factor = cpus;
249 		break;
250 	case SCHED_TUNABLESCALING_LOG:
251 	default:
252 		factor = 1 + ilog2(cpus);
253 		break;
254 	}
255 
256 	return factor;
257 }
258 
259 static void update_sysctl(void)
260 {
261 	unsigned int factor = get_update_sysctl_factor();
262 
263 #define SET_SYSCTL(name) \
264 	(sysctl_##name = (factor) * normalized_sysctl_##name)
265 	SET_SYSCTL(sched_min_granularity);
266 	SET_SYSCTL(sched_latency);
267 	SET_SYSCTL(sched_wakeup_granularity);
268 #undef SET_SYSCTL
269 }
270 
271 void __init sched_init_granularity(void)
272 {
273 	update_sysctl();
274 }
275 
276 #define WMULT_CONST	(~0U)
277 #define WMULT_SHIFT	32
278 
279 static void __update_inv_weight(struct load_weight *lw)
280 {
281 	unsigned long w;
282 
283 	if (likely(lw->inv_weight))
284 		return;
285 
286 	w = scale_load_down(lw->weight);
287 
288 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
289 		lw->inv_weight = 1;
290 	else if (unlikely(!w))
291 		lw->inv_weight = WMULT_CONST;
292 	else
293 		lw->inv_weight = WMULT_CONST / w;
294 }
295 
296 /*
297  * delta_exec * weight / lw.weight
298  *   OR
299  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
300  *
301  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
302  * we're guaranteed shift stays positive because inv_weight is guaranteed to
303  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
304  *
305  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
306  * weight/lw.weight <= 1, and therefore our shift will also be positive.
307  */
308 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
309 {
310 	u64 fact = scale_load_down(weight);
311 	u32 fact_hi = (u32)(fact >> 32);
312 	int shift = WMULT_SHIFT;
313 	int fs;
314 
315 	__update_inv_weight(lw);
316 
317 	if (unlikely(fact_hi)) {
318 		fs = fls(fact_hi);
319 		shift -= fs;
320 		fact >>= fs;
321 	}
322 
323 	fact = mul_u32_u32(fact, lw->inv_weight);
324 
325 	fact_hi = (u32)(fact >> 32);
326 	if (fact_hi) {
327 		fs = fls(fact_hi);
328 		shift -= fs;
329 		fact >>= fs;
330 	}
331 
332 	return mul_u64_u32_shr(delta_exec, fact, shift);
333 }
334 
335 
336 const struct sched_class fair_sched_class;
337 
338 /**************************************************************
339  * CFS operations on generic schedulable entities:
340  */
341 
342 #ifdef CONFIG_FAIR_GROUP_SCHED
343 
344 /* Walk up scheduling entities hierarchy */
345 #define for_each_sched_entity(se) \
346 		for (; se; se = se->parent)
347 
348 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
349 {
350 	struct rq *rq = rq_of(cfs_rq);
351 	int cpu = cpu_of(rq);
352 
353 	if (cfs_rq->on_list)
354 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
355 
356 	cfs_rq->on_list = 1;
357 
358 	/*
359 	 * Ensure we either appear before our parent (if already
360 	 * enqueued) or force our parent to appear after us when it is
361 	 * enqueued. The fact that we always enqueue bottom-up
362 	 * reduces this to two cases and a special case for the root
363 	 * cfs_rq. Furthermore, it also means that we will always reset
364 	 * tmp_alone_branch either when the branch is connected
365 	 * to a tree or when we reach the top of the tree
366 	 */
367 	if (cfs_rq->tg->parent &&
368 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
369 		/*
370 		 * If parent is already on the list, we add the child
371 		 * just before. Thanks to circular linked property of
372 		 * the list, this means to put the child at the tail
373 		 * of the list that starts by parent.
374 		 */
375 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
376 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
377 		/*
378 		 * The branch is now connected to its tree so we can
379 		 * reset tmp_alone_branch to the beginning of the
380 		 * list.
381 		 */
382 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
383 		return true;
384 	}
385 
386 	if (!cfs_rq->tg->parent) {
387 		/*
388 		 * cfs rq without parent should be put
389 		 * at the tail of the list.
390 		 */
391 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
392 			&rq->leaf_cfs_rq_list);
393 		/*
394 		 * We have reach the top of a tree so we can reset
395 		 * tmp_alone_branch to the beginning of the list.
396 		 */
397 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
398 		return true;
399 	}
400 
401 	/*
402 	 * The parent has not already been added so we want to
403 	 * make sure that it will be put after us.
404 	 * tmp_alone_branch points to the begin of the branch
405 	 * where we will add parent.
406 	 */
407 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
408 	/*
409 	 * update tmp_alone_branch to points to the new begin
410 	 * of the branch
411 	 */
412 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
413 	return false;
414 }
415 
416 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417 {
418 	if (cfs_rq->on_list) {
419 		struct rq *rq = rq_of(cfs_rq);
420 
421 		/*
422 		 * With cfs_rq being unthrottled/throttled during an enqueue,
423 		 * it can happen the tmp_alone_branch points the a leaf that
424 		 * we finally want to del. In this case, tmp_alone_branch moves
425 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
426 		 * at the end of the enqueue.
427 		 */
428 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
429 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
430 
431 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
432 		cfs_rq->on_list = 0;
433 	}
434 }
435 
436 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
437 {
438 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
439 }
440 
441 /* Iterate thr' all leaf cfs_rq's on a runqueue */
442 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
443 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
444 				 leaf_cfs_rq_list)
445 
446 /* Do the two (enqueued) entities belong to the same group ? */
447 static inline struct cfs_rq *
448 is_same_group(struct sched_entity *se, struct sched_entity *pse)
449 {
450 	if (se->cfs_rq == pse->cfs_rq)
451 		return se->cfs_rq;
452 
453 	return NULL;
454 }
455 
456 static inline struct sched_entity *parent_entity(struct sched_entity *se)
457 {
458 	return se->parent;
459 }
460 
461 static void
462 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
463 {
464 	int se_depth, pse_depth;
465 
466 	/*
467 	 * preemption test can be made between sibling entities who are in the
468 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
469 	 * both tasks until we find their ancestors who are siblings of common
470 	 * parent.
471 	 */
472 
473 	/* First walk up until both entities are at same depth */
474 	se_depth = (*se)->depth;
475 	pse_depth = (*pse)->depth;
476 
477 	while (se_depth > pse_depth) {
478 		se_depth--;
479 		*se = parent_entity(*se);
480 	}
481 
482 	while (pse_depth > se_depth) {
483 		pse_depth--;
484 		*pse = parent_entity(*pse);
485 	}
486 
487 	while (!is_same_group(*se, *pse)) {
488 		*se = parent_entity(*se);
489 		*pse = parent_entity(*pse);
490 	}
491 }
492 
493 static int tg_is_idle(struct task_group *tg)
494 {
495 	return tg->idle > 0;
496 }
497 
498 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
499 {
500 	return cfs_rq->idle > 0;
501 }
502 
503 static int se_is_idle(struct sched_entity *se)
504 {
505 	if (entity_is_task(se))
506 		return task_has_idle_policy(task_of(se));
507 	return cfs_rq_is_idle(group_cfs_rq(se));
508 }
509 
510 #else	/* !CONFIG_FAIR_GROUP_SCHED */
511 
512 #define for_each_sched_entity(se) \
513 		for (; se; se = NULL)
514 
515 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
516 {
517 	return true;
518 }
519 
520 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
521 {
522 }
523 
524 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
525 {
526 }
527 
528 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
529 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
530 
531 static inline struct sched_entity *parent_entity(struct sched_entity *se)
532 {
533 	return NULL;
534 }
535 
536 static inline void
537 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
538 {
539 }
540 
541 static inline int tg_is_idle(struct task_group *tg)
542 {
543 	return 0;
544 }
545 
546 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
547 {
548 	return 0;
549 }
550 
551 static int se_is_idle(struct sched_entity *se)
552 {
553 	return 0;
554 }
555 
556 #endif	/* CONFIG_FAIR_GROUP_SCHED */
557 
558 static __always_inline
559 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
560 
561 /**************************************************************
562  * Scheduling class tree data structure manipulation methods:
563  */
564 
565 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
566 {
567 	s64 delta = (s64)(vruntime - max_vruntime);
568 	if (delta > 0)
569 		max_vruntime = vruntime;
570 
571 	return max_vruntime;
572 }
573 
574 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
575 {
576 	s64 delta = (s64)(vruntime - min_vruntime);
577 	if (delta < 0)
578 		min_vruntime = vruntime;
579 
580 	return min_vruntime;
581 }
582 
583 static inline bool entity_before(struct sched_entity *a,
584 				struct sched_entity *b)
585 {
586 	return (s64)(a->vruntime - b->vruntime) < 0;
587 }
588 
589 #define __node_2_se(node) \
590 	rb_entry((node), struct sched_entity, run_node)
591 
592 static void update_min_vruntime(struct cfs_rq *cfs_rq)
593 {
594 	struct sched_entity *curr = cfs_rq->curr;
595 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
596 
597 	u64 vruntime = cfs_rq->min_vruntime;
598 
599 	if (curr) {
600 		if (curr->on_rq)
601 			vruntime = curr->vruntime;
602 		else
603 			curr = NULL;
604 	}
605 
606 	if (leftmost) { /* non-empty tree */
607 		struct sched_entity *se = __node_2_se(leftmost);
608 
609 		if (!curr)
610 			vruntime = se->vruntime;
611 		else
612 			vruntime = min_vruntime(vruntime, se->vruntime);
613 	}
614 
615 	/* ensure we never gain time by being placed backwards. */
616 	u64_u32_store(cfs_rq->min_vruntime,
617 		      max_vruntime(cfs_rq->min_vruntime, vruntime));
618 }
619 
620 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
621 {
622 	return entity_before(__node_2_se(a), __node_2_se(b));
623 }
624 
625 /*
626  * Enqueue an entity into the rb-tree:
627  */
628 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
629 {
630 	rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
631 }
632 
633 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
634 {
635 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
636 }
637 
638 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
639 {
640 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
641 
642 	if (!left)
643 		return NULL;
644 
645 	return __node_2_se(left);
646 }
647 
648 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
649 {
650 	struct rb_node *next = rb_next(&se->run_node);
651 
652 	if (!next)
653 		return NULL;
654 
655 	return __node_2_se(next);
656 }
657 
658 #ifdef CONFIG_SCHED_DEBUG
659 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
660 {
661 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
662 
663 	if (!last)
664 		return NULL;
665 
666 	return __node_2_se(last);
667 }
668 
669 /**************************************************************
670  * Scheduling class statistics methods:
671  */
672 
673 int sched_update_scaling(void)
674 {
675 	unsigned int factor = get_update_sysctl_factor();
676 
677 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
678 					sysctl_sched_min_granularity);
679 
680 #define WRT_SYSCTL(name) \
681 	(normalized_sysctl_##name = sysctl_##name / (factor))
682 	WRT_SYSCTL(sched_min_granularity);
683 	WRT_SYSCTL(sched_latency);
684 	WRT_SYSCTL(sched_wakeup_granularity);
685 #undef WRT_SYSCTL
686 
687 	return 0;
688 }
689 #endif
690 
691 /*
692  * delta /= w
693  */
694 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
695 {
696 	if (unlikely(se->load.weight != NICE_0_LOAD))
697 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
698 
699 	return delta;
700 }
701 
702 /*
703  * The idea is to set a period in which each task runs once.
704  *
705  * When there are too many tasks (sched_nr_latency) we have to stretch
706  * this period because otherwise the slices get too small.
707  *
708  * p = (nr <= nl) ? l : l*nr/nl
709  */
710 static u64 __sched_period(unsigned long nr_running)
711 {
712 	if (unlikely(nr_running > sched_nr_latency))
713 		return nr_running * sysctl_sched_min_granularity;
714 	else
715 		return sysctl_sched_latency;
716 }
717 
718 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
719 
720 /*
721  * We calculate the wall-time slice from the period by taking a part
722  * proportional to the weight.
723  *
724  * s = p*P[w/rw]
725  */
726 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
727 {
728 	unsigned int nr_running = cfs_rq->nr_running;
729 	struct sched_entity *init_se = se;
730 	unsigned int min_gran;
731 	u64 slice;
732 
733 	if (sched_feat(ALT_PERIOD))
734 		nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
735 
736 	slice = __sched_period(nr_running + !se->on_rq);
737 
738 	for_each_sched_entity(se) {
739 		struct load_weight *load;
740 		struct load_weight lw;
741 		struct cfs_rq *qcfs_rq;
742 
743 		qcfs_rq = cfs_rq_of(se);
744 		load = &qcfs_rq->load;
745 
746 		if (unlikely(!se->on_rq)) {
747 			lw = qcfs_rq->load;
748 
749 			update_load_add(&lw, se->load.weight);
750 			load = &lw;
751 		}
752 		slice = __calc_delta(slice, se->load.weight, load);
753 	}
754 
755 	if (sched_feat(BASE_SLICE)) {
756 		if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
757 			min_gran = sysctl_sched_idle_min_granularity;
758 		else
759 			min_gran = sysctl_sched_min_granularity;
760 
761 		slice = max_t(u64, slice, min_gran);
762 	}
763 
764 	return slice;
765 }
766 
767 /*
768  * We calculate the vruntime slice of a to-be-inserted task.
769  *
770  * vs = s/w
771  */
772 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
773 {
774 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
775 }
776 
777 #include "pelt.h"
778 #ifdef CONFIG_SMP
779 
780 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
781 static unsigned long task_h_load(struct task_struct *p);
782 static unsigned long capacity_of(int cpu);
783 
784 /* Give new sched_entity start runnable values to heavy its load in infant time */
785 void init_entity_runnable_average(struct sched_entity *se)
786 {
787 	struct sched_avg *sa = &se->avg;
788 
789 	memset(sa, 0, sizeof(*sa));
790 
791 	/*
792 	 * Tasks are initialized with full load to be seen as heavy tasks until
793 	 * they get a chance to stabilize to their real load level.
794 	 * Group entities are initialized with zero load to reflect the fact that
795 	 * nothing has been attached to the task group yet.
796 	 */
797 	if (entity_is_task(se))
798 		sa->load_avg = scale_load_down(se->load.weight);
799 
800 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
801 }
802 
803 /*
804  * With new tasks being created, their initial util_avgs are extrapolated
805  * based on the cfs_rq's current util_avg:
806  *
807  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
808  *
809  * However, in many cases, the above util_avg does not give a desired
810  * value. Moreover, the sum of the util_avgs may be divergent, such
811  * as when the series is a harmonic series.
812  *
813  * To solve this problem, we also cap the util_avg of successive tasks to
814  * only 1/2 of the left utilization budget:
815  *
816  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
817  *
818  * where n denotes the nth task and cpu_scale the CPU capacity.
819  *
820  * For example, for a CPU with 1024 of capacity, a simplest series from
821  * the beginning would be like:
822  *
823  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
824  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
825  *
826  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
827  * if util_avg > util_avg_cap.
828  */
829 void post_init_entity_util_avg(struct task_struct *p)
830 {
831 	struct sched_entity *se = &p->se;
832 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
833 	struct sched_avg *sa = &se->avg;
834 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
835 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
836 
837 	if (p->sched_class != &fair_sched_class) {
838 		/*
839 		 * For !fair tasks do:
840 		 *
841 		update_cfs_rq_load_avg(now, cfs_rq);
842 		attach_entity_load_avg(cfs_rq, se);
843 		switched_from_fair(rq, p);
844 		 *
845 		 * such that the next switched_to_fair() has the
846 		 * expected state.
847 		 */
848 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
849 		return;
850 	}
851 
852 	if (cap > 0) {
853 		if (cfs_rq->avg.util_avg != 0) {
854 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
855 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
856 
857 			if (sa->util_avg > cap)
858 				sa->util_avg = cap;
859 		} else {
860 			sa->util_avg = cap;
861 		}
862 	}
863 
864 	sa->runnable_avg = sa->util_avg;
865 }
866 
867 #else /* !CONFIG_SMP */
868 void init_entity_runnable_average(struct sched_entity *se)
869 {
870 }
871 void post_init_entity_util_avg(struct task_struct *p)
872 {
873 }
874 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
875 {
876 }
877 #endif /* CONFIG_SMP */
878 
879 /*
880  * Update the current task's runtime statistics.
881  */
882 static void update_curr(struct cfs_rq *cfs_rq)
883 {
884 	struct sched_entity *curr = cfs_rq->curr;
885 	u64 now = rq_clock_task(rq_of(cfs_rq));
886 	u64 delta_exec;
887 
888 	if (unlikely(!curr))
889 		return;
890 
891 	delta_exec = now - curr->exec_start;
892 	if (unlikely((s64)delta_exec <= 0))
893 		return;
894 
895 	curr->exec_start = now;
896 
897 	if (schedstat_enabled()) {
898 		struct sched_statistics *stats;
899 
900 		stats = __schedstats_from_se(curr);
901 		__schedstat_set(stats->exec_max,
902 				max(delta_exec, stats->exec_max));
903 	}
904 
905 	curr->sum_exec_runtime += delta_exec;
906 	schedstat_add(cfs_rq->exec_clock, delta_exec);
907 
908 	curr->vruntime += calc_delta_fair(delta_exec, curr);
909 	update_min_vruntime(cfs_rq);
910 
911 	if (entity_is_task(curr)) {
912 		struct task_struct *curtask = task_of(curr);
913 
914 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
915 		cgroup_account_cputime(curtask, delta_exec);
916 		account_group_exec_runtime(curtask, delta_exec);
917 	}
918 
919 	account_cfs_rq_runtime(cfs_rq, delta_exec);
920 }
921 
922 static void update_curr_fair(struct rq *rq)
923 {
924 	update_curr(cfs_rq_of(&rq->curr->se));
925 }
926 
927 static inline void
928 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
929 {
930 	struct sched_statistics *stats;
931 	struct task_struct *p = NULL;
932 
933 	if (!schedstat_enabled())
934 		return;
935 
936 	stats = __schedstats_from_se(se);
937 
938 	if (entity_is_task(se))
939 		p = task_of(se);
940 
941 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
942 }
943 
944 static inline void
945 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
946 {
947 	struct sched_statistics *stats;
948 	struct task_struct *p = NULL;
949 
950 	if (!schedstat_enabled())
951 		return;
952 
953 	stats = __schedstats_from_se(se);
954 
955 	/*
956 	 * When the sched_schedstat changes from 0 to 1, some sched se
957 	 * maybe already in the runqueue, the se->statistics.wait_start
958 	 * will be 0.So it will let the delta wrong. We need to avoid this
959 	 * scenario.
960 	 */
961 	if (unlikely(!schedstat_val(stats->wait_start)))
962 		return;
963 
964 	if (entity_is_task(se))
965 		p = task_of(se);
966 
967 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
968 }
969 
970 static inline void
971 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
972 {
973 	struct sched_statistics *stats;
974 	struct task_struct *tsk = NULL;
975 
976 	if (!schedstat_enabled())
977 		return;
978 
979 	stats = __schedstats_from_se(se);
980 
981 	if (entity_is_task(se))
982 		tsk = task_of(se);
983 
984 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
985 }
986 
987 /*
988  * Task is being enqueued - update stats:
989  */
990 static inline void
991 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
992 {
993 	if (!schedstat_enabled())
994 		return;
995 
996 	/*
997 	 * Are we enqueueing a waiting task? (for current tasks
998 	 * a dequeue/enqueue event is a NOP)
999 	 */
1000 	if (se != cfs_rq->curr)
1001 		update_stats_wait_start_fair(cfs_rq, se);
1002 
1003 	if (flags & ENQUEUE_WAKEUP)
1004 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1005 }
1006 
1007 static inline void
1008 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1009 {
1010 
1011 	if (!schedstat_enabled())
1012 		return;
1013 
1014 	/*
1015 	 * Mark the end of the wait period if dequeueing a
1016 	 * waiting task:
1017 	 */
1018 	if (se != cfs_rq->curr)
1019 		update_stats_wait_end_fair(cfs_rq, se);
1020 
1021 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1022 		struct task_struct *tsk = task_of(se);
1023 		unsigned int state;
1024 
1025 		/* XXX racy against TTWU */
1026 		state = READ_ONCE(tsk->__state);
1027 		if (state & TASK_INTERRUPTIBLE)
1028 			__schedstat_set(tsk->stats.sleep_start,
1029 				      rq_clock(rq_of(cfs_rq)));
1030 		if (state & TASK_UNINTERRUPTIBLE)
1031 			__schedstat_set(tsk->stats.block_start,
1032 				      rq_clock(rq_of(cfs_rq)));
1033 	}
1034 }
1035 
1036 /*
1037  * We are picking a new current task - update its stats:
1038  */
1039 static inline void
1040 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1041 {
1042 	/*
1043 	 * We are starting a new run period:
1044 	 */
1045 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1046 }
1047 
1048 /**************************************************
1049  * Scheduling class queueing methods:
1050  */
1051 
1052 #ifdef CONFIG_NUMA
1053 #define NUMA_IMBALANCE_MIN 2
1054 
1055 static inline long
1056 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1057 {
1058 	/*
1059 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1060 	 * threshold. Above this threshold, individual tasks may be contending
1061 	 * for both memory bandwidth and any shared HT resources.  This is an
1062 	 * approximation as the number of running tasks may not be related to
1063 	 * the number of busy CPUs due to sched_setaffinity.
1064 	 */
1065 	if (dst_running > imb_numa_nr)
1066 		return imbalance;
1067 
1068 	/*
1069 	 * Allow a small imbalance based on a simple pair of communicating
1070 	 * tasks that remain local when the destination is lightly loaded.
1071 	 */
1072 	if (imbalance <= NUMA_IMBALANCE_MIN)
1073 		return 0;
1074 
1075 	return imbalance;
1076 }
1077 #endif /* CONFIG_NUMA */
1078 
1079 #ifdef CONFIG_NUMA_BALANCING
1080 /*
1081  * Approximate time to scan a full NUMA task in ms. The task scan period is
1082  * calculated based on the tasks virtual memory size and
1083  * numa_balancing_scan_size.
1084  */
1085 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1086 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1087 
1088 /* Portion of address space to scan in MB */
1089 unsigned int sysctl_numa_balancing_scan_size = 256;
1090 
1091 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1092 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1093 
1094 /* The page with hint page fault latency < threshold in ms is considered hot */
1095 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1096 
1097 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
1098 unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
1099 
1100 struct numa_group {
1101 	refcount_t refcount;
1102 
1103 	spinlock_t lock; /* nr_tasks, tasks */
1104 	int nr_tasks;
1105 	pid_t gid;
1106 	int active_nodes;
1107 
1108 	struct rcu_head rcu;
1109 	unsigned long total_faults;
1110 	unsigned long max_faults_cpu;
1111 	/*
1112 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1113 	 *
1114 	 * Faults_cpu is used to decide whether memory should move
1115 	 * towards the CPU. As a consequence, these stats are weighted
1116 	 * more by CPU use than by memory faults.
1117 	 */
1118 	unsigned long faults[];
1119 };
1120 
1121 /*
1122  * For functions that can be called in multiple contexts that permit reading
1123  * ->numa_group (see struct task_struct for locking rules).
1124  */
1125 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1126 {
1127 	return rcu_dereference_check(p->numa_group, p == current ||
1128 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1129 }
1130 
1131 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1132 {
1133 	return rcu_dereference_protected(p->numa_group, p == current);
1134 }
1135 
1136 static inline unsigned long group_faults_priv(struct numa_group *ng);
1137 static inline unsigned long group_faults_shared(struct numa_group *ng);
1138 
1139 static unsigned int task_nr_scan_windows(struct task_struct *p)
1140 {
1141 	unsigned long rss = 0;
1142 	unsigned long nr_scan_pages;
1143 
1144 	/*
1145 	 * Calculations based on RSS as non-present and empty pages are skipped
1146 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1147 	 * on resident pages
1148 	 */
1149 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1150 	rss = get_mm_rss(p->mm);
1151 	if (!rss)
1152 		rss = nr_scan_pages;
1153 
1154 	rss = round_up(rss, nr_scan_pages);
1155 	return rss / nr_scan_pages;
1156 }
1157 
1158 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1159 #define MAX_SCAN_WINDOW 2560
1160 
1161 static unsigned int task_scan_min(struct task_struct *p)
1162 {
1163 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1164 	unsigned int scan, floor;
1165 	unsigned int windows = 1;
1166 
1167 	if (scan_size < MAX_SCAN_WINDOW)
1168 		windows = MAX_SCAN_WINDOW / scan_size;
1169 	floor = 1000 / windows;
1170 
1171 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1172 	return max_t(unsigned int, floor, scan);
1173 }
1174 
1175 static unsigned int task_scan_start(struct task_struct *p)
1176 {
1177 	unsigned long smin = task_scan_min(p);
1178 	unsigned long period = smin;
1179 	struct numa_group *ng;
1180 
1181 	/* Scale the maximum scan period with the amount of shared memory. */
1182 	rcu_read_lock();
1183 	ng = rcu_dereference(p->numa_group);
1184 	if (ng) {
1185 		unsigned long shared = group_faults_shared(ng);
1186 		unsigned long private = group_faults_priv(ng);
1187 
1188 		period *= refcount_read(&ng->refcount);
1189 		period *= shared + 1;
1190 		period /= private + shared + 1;
1191 	}
1192 	rcu_read_unlock();
1193 
1194 	return max(smin, period);
1195 }
1196 
1197 static unsigned int task_scan_max(struct task_struct *p)
1198 {
1199 	unsigned long smin = task_scan_min(p);
1200 	unsigned long smax;
1201 	struct numa_group *ng;
1202 
1203 	/* Watch for min being lower than max due to floor calculations */
1204 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1205 
1206 	/* Scale the maximum scan period with the amount of shared memory. */
1207 	ng = deref_curr_numa_group(p);
1208 	if (ng) {
1209 		unsigned long shared = group_faults_shared(ng);
1210 		unsigned long private = group_faults_priv(ng);
1211 		unsigned long period = smax;
1212 
1213 		period *= refcount_read(&ng->refcount);
1214 		period *= shared + 1;
1215 		period /= private + shared + 1;
1216 
1217 		smax = max(smax, period);
1218 	}
1219 
1220 	return max(smin, smax);
1221 }
1222 
1223 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1224 {
1225 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1226 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1227 }
1228 
1229 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1230 {
1231 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1232 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1233 }
1234 
1235 /* Shared or private faults. */
1236 #define NR_NUMA_HINT_FAULT_TYPES 2
1237 
1238 /* Memory and CPU locality */
1239 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1240 
1241 /* Averaged statistics, and temporary buffers. */
1242 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1243 
1244 pid_t task_numa_group_id(struct task_struct *p)
1245 {
1246 	struct numa_group *ng;
1247 	pid_t gid = 0;
1248 
1249 	rcu_read_lock();
1250 	ng = rcu_dereference(p->numa_group);
1251 	if (ng)
1252 		gid = ng->gid;
1253 	rcu_read_unlock();
1254 
1255 	return gid;
1256 }
1257 
1258 /*
1259  * The averaged statistics, shared & private, memory & CPU,
1260  * occupy the first half of the array. The second half of the
1261  * array is for current counters, which are averaged into the
1262  * first set by task_numa_placement.
1263  */
1264 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1265 {
1266 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1267 }
1268 
1269 static inline unsigned long task_faults(struct task_struct *p, int nid)
1270 {
1271 	if (!p->numa_faults)
1272 		return 0;
1273 
1274 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1275 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1276 }
1277 
1278 static inline unsigned long group_faults(struct task_struct *p, int nid)
1279 {
1280 	struct numa_group *ng = deref_task_numa_group(p);
1281 
1282 	if (!ng)
1283 		return 0;
1284 
1285 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1286 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1287 }
1288 
1289 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1290 {
1291 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1292 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1293 }
1294 
1295 static inline unsigned long group_faults_priv(struct numa_group *ng)
1296 {
1297 	unsigned long faults = 0;
1298 	int node;
1299 
1300 	for_each_online_node(node) {
1301 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1302 	}
1303 
1304 	return faults;
1305 }
1306 
1307 static inline unsigned long group_faults_shared(struct numa_group *ng)
1308 {
1309 	unsigned long faults = 0;
1310 	int node;
1311 
1312 	for_each_online_node(node) {
1313 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1314 	}
1315 
1316 	return faults;
1317 }
1318 
1319 /*
1320  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1321  * considered part of a numa group's pseudo-interleaving set. Migrations
1322  * between these nodes are slowed down, to allow things to settle down.
1323  */
1324 #define ACTIVE_NODE_FRACTION 3
1325 
1326 static bool numa_is_active_node(int nid, struct numa_group *ng)
1327 {
1328 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1329 }
1330 
1331 /* Handle placement on systems where not all nodes are directly connected. */
1332 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1333 					int lim_dist, bool task)
1334 {
1335 	unsigned long score = 0;
1336 	int node, max_dist;
1337 
1338 	/*
1339 	 * All nodes are directly connected, and the same distance
1340 	 * from each other. No need for fancy placement algorithms.
1341 	 */
1342 	if (sched_numa_topology_type == NUMA_DIRECT)
1343 		return 0;
1344 
1345 	/* sched_max_numa_distance may be changed in parallel. */
1346 	max_dist = READ_ONCE(sched_max_numa_distance);
1347 	/*
1348 	 * This code is called for each node, introducing N^2 complexity,
1349 	 * which should be ok given the number of nodes rarely exceeds 8.
1350 	 */
1351 	for_each_online_node(node) {
1352 		unsigned long faults;
1353 		int dist = node_distance(nid, node);
1354 
1355 		/*
1356 		 * The furthest away nodes in the system are not interesting
1357 		 * for placement; nid was already counted.
1358 		 */
1359 		if (dist >= max_dist || node == nid)
1360 			continue;
1361 
1362 		/*
1363 		 * On systems with a backplane NUMA topology, compare groups
1364 		 * of nodes, and move tasks towards the group with the most
1365 		 * memory accesses. When comparing two nodes at distance
1366 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1367 		 * of each group. Skip other nodes.
1368 		 */
1369 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1370 			continue;
1371 
1372 		/* Add up the faults from nearby nodes. */
1373 		if (task)
1374 			faults = task_faults(p, node);
1375 		else
1376 			faults = group_faults(p, node);
1377 
1378 		/*
1379 		 * On systems with a glueless mesh NUMA topology, there are
1380 		 * no fixed "groups of nodes". Instead, nodes that are not
1381 		 * directly connected bounce traffic through intermediate
1382 		 * nodes; a numa_group can occupy any set of nodes.
1383 		 * The further away a node is, the less the faults count.
1384 		 * This seems to result in good task placement.
1385 		 */
1386 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1387 			faults *= (max_dist - dist);
1388 			faults /= (max_dist - LOCAL_DISTANCE);
1389 		}
1390 
1391 		score += faults;
1392 	}
1393 
1394 	return score;
1395 }
1396 
1397 /*
1398  * These return the fraction of accesses done by a particular task, or
1399  * task group, on a particular numa node.  The group weight is given a
1400  * larger multiplier, in order to group tasks together that are almost
1401  * evenly spread out between numa nodes.
1402  */
1403 static inline unsigned long task_weight(struct task_struct *p, int nid,
1404 					int dist)
1405 {
1406 	unsigned long faults, total_faults;
1407 
1408 	if (!p->numa_faults)
1409 		return 0;
1410 
1411 	total_faults = p->total_numa_faults;
1412 
1413 	if (!total_faults)
1414 		return 0;
1415 
1416 	faults = task_faults(p, nid);
1417 	faults += score_nearby_nodes(p, nid, dist, true);
1418 
1419 	return 1000 * faults / total_faults;
1420 }
1421 
1422 static inline unsigned long group_weight(struct task_struct *p, int nid,
1423 					 int dist)
1424 {
1425 	struct numa_group *ng = deref_task_numa_group(p);
1426 	unsigned long faults, total_faults;
1427 
1428 	if (!ng)
1429 		return 0;
1430 
1431 	total_faults = ng->total_faults;
1432 
1433 	if (!total_faults)
1434 		return 0;
1435 
1436 	faults = group_faults(p, nid);
1437 	faults += score_nearby_nodes(p, nid, dist, false);
1438 
1439 	return 1000 * faults / total_faults;
1440 }
1441 
1442 /*
1443  * If memory tiering mode is enabled, cpupid of slow memory page is
1444  * used to record scan time instead of CPU and PID.  When tiering mode
1445  * is disabled at run time, the scan time (in cpupid) will be
1446  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1447  * access out of array bound.
1448  */
1449 static inline bool cpupid_valid(int cpupid)
1450 {
1451 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1452 }
1453 
1454 /*
1455  * For memory tiering mode, if there are enough free pages (more than
1456  * enough watermark defined here) in fast memory node, to take full
1457  * advantage of fast memory capacity, all recently accessed slow
1458  * memory pages will be migrated to fast memory node without
1459  * considering hot threshold.
1460  */
1461 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1462 {
1463 	int z;
1464 	unsigned long enough_wmark;
1465 
1466 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1467 			   pgdat->node_present_pages >> 4);
1468 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1469 		struct zone *zone = pgdat->node_zones + z;
1470 
1471 		if (!populated_zone(zone))
1472 			continue;
1473 
1474 		if (zone_watermark_ok(zone, 0,
1475 				      wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1476 				      ZONE_MOVABLE, 0))
1477 			return true;
1478 	}
1479 	return false;
1480 }
1481 
1482 /*
1483  * For memory tiering mode, when page tables are scanned, the scan
1484  * time will be recorded in struct page in addition to make page
1485  * PROT_NONE for slow memory page.  So when the page is accessed, in
1486  * hint page fault handler, the hint page fault latency is calculated
1487  * via,
1488  *
1489  *	hint page fault latency = hint page fault time - scan time
1490  *
1491  * The smaller the hint page fault latency, the higher the possibility
1492  * for the page to be hot.
1493  */
1494 static int numa_hint_fault_latency(struct page *page)
1495 {
1496 	int last_time, time;
1497 
1498 	time = jiffies_to_msecs(jiffies);
1499 	last_time = xchg_page_access_time(page, time);
1500 
1501 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1502 }
1503 
1504 /*
1505  * For memory tiering mode, too high promotion/demotion throughput may
1506  * hurt application latency.  So we provide a mechanism to rate limit
1507  * the number of pages that are tried to be promoted.
1508  */
1509 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1510 				      unsigned long rate_limit, int nr)
1511 {
1512 	unsigned long nr_cand;
1513 	unsigned int now, start;
1514 
1515 	now = jiffies_to_msecs(jiffies);
1516 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1517 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1518 	start = pgdat->nbp_rl_start;
1519 	if (now - start > MSEC_PER_SEC &&
1520 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1521 		pgdat->nbp_rl_nr_cand = nr_cand;
1522 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1523 		return true;
1524 	return false;
1525 }
1526 
1527 #define NUMA_MIGRATION_ADJUST_STEPS	16
1528 
1529 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1530 					    unsigned long rate_limit,
1531 					    unsigned int ref_th)
1532 {
1533 	unsigned int now, start, th_period, unit_th, th;
1534 	unsigned long nr_cand, ref_cand, diff_cand;
1535 
1536 	now = jiffies_to_msecs(jiffies);
1537 	th_period = sysctl_numa_balancing_scan_period_max;
1538 	start = pgdat->nbp_th_start;
1539 	if (now - start > th_period &&
1540 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1541 		ref_cand = rate_limit *
1542 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1543 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1544 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1545 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1546 		th = pgdat->nbp_threshold ? : ref_th;
1547 		if (diff_cand > ref_cand * 11 / 10)
1548 			th = max(th - unit_th, unit_th);
1549 		else if (diff_cand < ref_cand * 9 / 10)
1550 			th = min(th + unit_th, ref_th * 2);
1551 		pgdat->nbp_th_nr_cand = nr_cand;
1552 		pgdat->nbp_threshold = th;
1553 	}
1554 }
1555 
1556 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1557 				int src_nid, int dst_cpu)
1558 {
1559 	struct numa_group *ng = deref_curr_numa_group(p);
1560 	int dst_nid = cpu_to_node(dst_cpu);
1561 	int last_cpupid, this_cpupid;
1562 
1563 	/*
1564 	 * The pages in slow memory node should be migrated according
1565 	 * to hot/cold instead of private/shared.
1566 	 */
1567 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1568 	    !node_is_toptier(src_nid)) {
1569 		struct pglist_data *pgdat;
1570 		unsigned long rate_limit;
1571 		unsigned int latency, th, def_th;
1572 
1573 		pgdat = NODE_DATA(dst_nid);
1574 		if (pgdat_free_space_enough(pgdat)) {
1575 			/* workload changed, reset hot threshold */
1576 			pgdat->nbp_threshold = 0;
1577 			return true;
1578 		}
1579 
1580 		def_th = sysctl_numa_balancing_hot_threshold;
1581 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1582 			(20 - PAGE_SHIFT);
1583 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1584 
1585 		th = pgdat->nbp_threshold ? : def_th;
1586 		latency = numa_hint_fault_latency(page);
1587 		if (latency >= th)
1588 			return false;
1589 
1590 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1591 						  thp_nr_pages(page));
1592 	}
1593 
1594 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1595 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1596 
1597 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1598 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1599 		return false;
1600 
1601 	/*
1602 	 * Allow first faults or private faults to migrate immediately early in
1603 	 * the lifetime of a task. The magic number 4 is based on waiting for
1604 	 * two full passes of the "multi-stage node selection" test that is
1605 	 * executed below.
1606 	 */
1607 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1608 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1609 		return true;
1610 
1611 	/*
1612 	 * Multi-stage node selection is used in conjunction with a periodic
1613 	 * migration fault to build a temporal task<->page relation. By using
1614 	 * a two-stage filter we remove short/unlikely relations.
1615 	 *
1616 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1617 	 * a task's usage of a particular page (n_p) per total usage of this
1618 	 * page (n_t) (in a given time-span) to a probability.
1619 	 *
1620 	 * Our periodic faults will sample this probability and getting the
1621 	 * same result twice in a row, given these samples are fully
1622 	 * independent, is then given by P(n)^2, provided our sample period
1623 	 * is sufficiently short compared to the usage pattern.
1624 	 *
1625 	 * This quadric squishes small probabilities, making it less likely we
1626 	 * act on an unlikely task<->page relation.
1627 	 */
1628 	if (!cpupid_pid_unset(last_cpupid) &&
1629 				cpupid_to_nid(last_cpupid) != dst_nid)
1630 		return false;
1631 
1632 	/* Always allow migrate on private faults */
1633 	if (cpupid_match_pid(p, last_cpupid))
1634 		return true;
1635 
1636 	/* A shared fault, but p->numa_group has not been set up yet. */
1637 	if (!ng)
1638 		return true;
1639 
1640 	/*
1641 	 * Destination node is much more heavily used than the source
1642 	 * node? Allow migration.
1643 	 */
1644 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1645 					ACTIVE_NODE_FRACTION)
1646 		return true;
1647 
1648 	/*
1649 	 * Distribute memory according to CPU & memory use on each node,
1650 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1651 	 *
1652 	 * faults_cpu(dst)   3   faults_cpu(src)
1653 	 * --------------- * - > ---------------
1654 	 * faults_mem(dst)   4   faults_mem(src)
1655 	 */
1656 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1657 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1658 }
1659 
1660 /*
1661  * 'numa_type' describes the node at the moment of load balancing.
1662  */
1663 enum numa_type {
1664 	/* The node has spare capacity that can be used to run more tasks.  */
1665 	node_has_spare = 0,
1666 	/*
1667 	 * The node is fully used and the tasks don't compete for more CPU
1668 	 * cycles. Nevertheless, some tasks might wait before running.
1669 	 */
1670 	node_fully_busy,
1671 	/*
1672 	 * The node is overloaded and can't provide expected CPU cycles to all
1673 	 * tasks.
1674 	 */
1675 	node_overloaded
1676 };
1677 
1678 /* Cached statistics for all CPUs within a node */
1679 struct numa_stats {
1680 	unsigned long load;
1681 	unsigned long runnable;
1682 	unsigned long util;
1683 	/* Total compute capacity of CPUs on a node */
1684 	unsigned long compute_capacity;
1685 	unsigned int nr_running;
1686 	unsigned int weight;
1687 	enum numa_type node_type;
1688 	int idle_cpu;
1689 };
1690 
1691 static inline bool is_core_idle(int cpu)
1692 {
1693 #ifdef CONFIG_SCHED_SMT
1694 	int sibling;
1695 
1696 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1697 		if (cpu == sibling)
1698 			continue;
1699 
1700 		if (!idle_cpu(sibling))
1701 			return false;
1702 	}
1703 #endif
1704 
1705 	return true;
1706 }
1707 
1708 struct task_numa_env {
1709 	struct task_struct *p;
1710 
1711 	int src_cpu, src_nid;
1712 	int dst_cpu, dst_nid;
1713 	int imb_numa_nr;
1714 
1715 	struct numa_stats src_stats, dst_stats;
1716 
1717 	int imbalance_pct;
1718 	int dist;
1719 
1720 	struct task_struct *best_task;
1721 	long best_imp;
1722 	int best_cpu;
1723 };
1724 
1725 static unsigned long cpu_load(struct rq *rq);
1726 static unsigned long cpu_runnable(struct rq *rq);
1727 
1728 static inline enum
1729 numa_type numa_classify(unsigned int imbalance_pct,
1730 			 struct numa_stats *ns)
1731 {
1732 	if ((ns->nr_running > ns->weight) &&
1733 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1734 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1735 		return node_overloaded;
1736 
1737 	if ((ns->nr_running < ns->weight) ||
1738 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1739 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1740 		return node_has_spare;
1741 
1742 	return node_fully_busy;
1743 }
1744 
1745 #ifdef CONFIG_SCHED_SMT
1746 /* Forward declarations of select_idle_sibling helpers */
1747 static inline bool test_idle_cores(int cpu);
1748 static inline int numa_idle_core(int idle_core, int cpu)
1749 {
1750 	if (!static_branch_likely(&sched_smt_present) ||
1751 	    idle_core >= 0 || !test_idle_cores(cpu))
1752 		return idle_core;
1753 
1754 	/*
1755 	 * Prefer cores instead of packing HT siblings
1756 	 * and triggering future load balancing.
1757 	 */
1758 	if (is_core_idle(cpu))
1759 		idle_core = cpu;
1760 
1761 	return idle_core;
1762 }
1763 #else
1764 static inline int numa_idle_core(int idle_core, int cpu)
1765 {
1766 	return idle_core;
1767 }
1768 #endif
1769 
1770 /*
1771  * Gather all necessary information to make NUMA balancing placement
1772  * decisions that are compatible with standard load balancer. This
1773  * borrows code and logic from update_sg_lb_stats but sharing a
1774  * common implementation is impractical.
1775  */
1776 static void update_numa_stats(struct task_numa_env *env,
1777 			      struct numa_stats *ns, int nid,
1778 			      bool find_idle)
1779 {
1780 	int cpu, idle_core = -1;
1781 
1782 	memset(ns, 0, sizeof(*ns));
1783 	ns->idle_cpu = -1;
1784 
1785 	rcu_read_lock();
1786 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1787 		struct rq *rq = cpu_rq(cpu);
1788 
1789 		ns->load += cpu_load(rq);
1790 		ns->runnable += cpu_runnable(rq);
1791 		ns->util += cpu_util_cfs(cpu);
1792 		ns->nr_running += rq->cfs.h_nr_running;
1793 		ns->compute_capacity += capacity_of(cpu);
1794 
1795 		if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1796 			if (READ_ONCE(rq->numa_migrate_on) ||
1797 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1798 				continue;
1799 
1800 			if (ns->idle_cpu == -1)
1801 				ns->idle_cpu = cpu;
1802 
1803 			idle_core = numa_idle_core(idle_core, cpu);
1804 		}
1805 	}
1806 	rcu_read_unlock();
1807 
1808 	ns->weight = cpumask_weight(cpumask_of_node(nid));
1809 
1810 	ns->node_type = numa_classify(env->imbalance_pct, ns);
1811 
1812 	if (idle_core >= 0)
1813 		ns->idle_cpu = idle_core;
1814 }
1815 
1816 static void task_numa_assign(struct task_numa_env *env,
1817 			     struct task_struct *p, long imp)
1818 {
1819 	struct rq *rq = cpu_rq(env->dst_cpu);
1820 
1821 	/* Check if run-queue part of active NUMA balance. */
1822 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1823 		int cpu;
1824 		int start = env->dst_cpu;
1825 
1826 		/* Find alternative idle CPU. */
1827 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1828 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1829 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1830 				continue;
1831 			}
1832 
1833 			env->dst_cpu = cpu;
1834 			rq = cpu_rq(env->dst_cpu);
1835 			if (!xchg(&rq->numa_migrate_on, 1))
1836 				goto assign;
1837 		}
1838 
1839 		/* Failed to find an alternative idle CPU */
1840 		return;
1841 	}
1842 
1843 assign:
1844 	/*
1845 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1846 	 * found a better CPU to move/swap.
1847 	 */
1848 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1849 		rq = cpu_rq(env->best_cpu);
1850 		WRITE_ONCE(rq->numa_migrate_on, 0);
1851 	}
1852 
1853 	if (env->best_task)
1854 		put_task_struct(env->best_task);
1855 	if (p)
1856 		get_task_struct(p);
1857 
1858 	env->best_task = p;
1859 	env->best_imp = imp;
1860 	env->best_cpu = env->dst_cpu;
1861 }
1862 
1863 static bool load_too_imbalanced(long src_load, long dst_load,
1864 				struct task_numa_env *env)
1865 {
1866 	long imb, old_imb;
1867 	long orig_src_load, orig_dst_load;
1868 	long src_capacity, dst_capacity;
1869 
1870 	/*
1871 	 * The load is corrected for the CPU capacity available on each node.
1872 	 *
1873 	 * src_load        dst_load
1874 	 * ------------ vs ---------
1875 	 * src_capacity    dst_capacity
1876 	 */
1877 	src_capacity = env->src_stats.compute_capacity;
1878 	dst_capacity = env->dst_stats.compute_capacity;
1879 
1880 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1881 
1882 	orig_src_load = env->src_stats.load;
1883 	orig_dst_load = env->dst_stats.load;
1884 
1885 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1886 
1887 	/* Would this change make things worse? */
1888 	return (imb > old_imb);
1889 }
1890 
1891 /*
1892  * Maximum NUMA importance can be 1998 (2*999);
1893  * SMALLIMP @ 30 would be close to 1998/64.
1894  * Used to deter task migration.
1895  */
1896 #define SMALLIMP	30
1897 
1898 /*
1899  * This checks if the overall compute and NUMA accesses of the system would
1900  * be improved if the source tasks was migrated to the target dst_cpu taking
1901  * into account that it might be best if task running on the dst_cpu should
1902  * be exchanged with the source task
1903  */
1904 static bool task_numa_compare(struct task_numa_env *env,
1905 			      long taskimp, long groupimp, bool maymove)
1906 {
1907 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1908 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1909 	long imp = p_ng ? groupimp : taskimp;
1910 	struct task_struct *cur;
1911 	long src_load, dst_load;
1912 	int dist = env->dist;
1913 	long moveimp = imp;
1914 	long load;
1915 	bool stopsearch = false;
1916 
1917 	if (READ_ONCE(dst_rq->numa_migrate_on))
1918 		return false;
1919 
1920 	rcu_read_lock();
1921 	cur = rcu_dereference(dst_rq->curr);
1922 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1923 		cur = NULL;
1924 
1925 	/*
1926 	 * Because we have preemption enabled we can get migrated around and
1927 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1928 	 */
1929 	if (cur == env->p) {
1930 		stopsearch = true;
1931 		goto unlock;
1932 	}
1933 
1934 	if (!cur) {
1935 		if (maymove && moveimp >= env->best_imp)
1936 			goto assign;
1937 		else
1938 			goto unlock;
1939 	}
1940 
1941 	/* Skip this swap candidate if cannot move to the source cpu. */
1942 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1943 		goto unlock;
1944 
1945 	/*
1946 	 * Skip this swap candidate if it is not moving to its preferred
1947 	 * node and the best task is.
1948 	 */
1949 	if (env->best_task &&
1950 	    env->best_task->numa_preferred_nid == env->src_nid &&
1951 	    cur->numa_preferred_nid != env->src_nid) {
1952 		goto unlock;
1953 	}
1954 
1955 	/*
1956 	 * "imp" is the fault differential for the source task between the
1957 	 * source and destination node. Calculate the total differential for
1958 	 * the source task and potential destination task. The more negative
1959 	 * the value is, the more remote accesses that would be expected to
1960 	 * be incurred if the tasks were swapped.
1961 	 *
1962 	 * If dst and source tasks are in the same NUMA group, or not
1963 	 * in any group then look only at task weights.
1964 	 */
1965 	cur_ng = rcu_dereference(cur->numa_group);
1966 	if (cur_ng == p_ng) {
1967 		/*
1968 		 * Do not swap within a group or between tasks that have
1969 		 * no group if there is spare capacity. Swapping does
1970 		 * not address the load imbalance and helps one task at
1971 		 * the cost of punishing another.
1972 		 */
1973 		if (env->dst_stats.node_type == node_has_spare)
1974 			goto unlock;
1975 
1976 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1977 		      task_weight(cur, env->dst_nid, dist);
1978 		/*
1979 		 * Add some hysteresis to prevent swapping the
1980 		 * tasks within a group over tiny differences.
1981 		 */
1982 		if (cur_ng)
1983 			imp -= imp / 16;
1984 	} else {
1985 		/*
1986 		 * Compare the group weights. If a task is all by itself
1987 		 * (not part of a group), use the task weight instead.
1988 		 */
1989 		if (cur_ng && p_ng)
1990 			imp += group_weight(cur, env->src_nid, dist) -
1991 			       group_weight(cur, env->dst_nid, dist);
1992 		else
1993 			imp += task_weight(cur, env->src_nid, dist) -
1994 			       task_weight(cur, env->dst_nid, dist);
1995 	}
1996 
1997 	/* Discourage picking a task already on its preferred node */
1998 	if (cur->numa_preferred_nid == env->dst_nid)
1999 		imp -= imp / 16;
2000 
2001 	/*
2002 	 * Encourage picking a task that moves to its preferred node.
2003 	 * This potentially makes imp larger than it's maximum of
2004 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2005 	 * case, it does not matter.
2006 	 */
2007 	if (cur->numa_preferred_nid == env->src_nid)
2008 		imp += imp / 8;
2009 
2010 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2011 		imp = moveimp;
2012 		cur = NULL;
2013 		goto assign;
2014 	}
2015 
2016 	/*
2017 	 * Prefer swapping with a task moving to its preferred node over a
2018 	 * task that is not.
2019 	 */
2020 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2021 	    env->best_task->numa_preferred_nid != env->src_nid) {
2022 		goto assign;
2023 	}
2024 
2025 	/*
2026 	 * If the NUMA importance is less than SMALLIMP,
2027 	 * task migration might only result in ping pong
2028 	 * of tasks and also hurt performance due to cache
2029 	 * misses.
2030 	 */
2031 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2032 		goto unlock;
2033 
2034 	/*
2035 	 * In the overloaded case, try and keep the load balanced.
2036 	 */
2037 	load = task_h_load(env->p) - task_h_load(cur);
2038 	if (!load)
2039 		goto assign;
2040 
2041 	dst_load = env->dst_stats.load + load;
2042 	src_load = env->src_stats.load - load;
2043 
2044 	if (load_too_imbalanced(src_load, dst_load, env))
2045 		goto unlock;
2046 
2047 assign:
2048 	/* Evaluate an idle CPU for a task numa move. */
2049 	if (!cur) {
2050 		int cpu = env->dst_stats.idle_cpu;
2051 
2052 		/* Nothing cached so current CPU went idle since the search. */
2053 		if (cpu < 0)
2054 			cpu = env->dst_cpu;
2055 
2056 		/*
2057 		 * If the CPU is no longer truly idle and the previous best CPU
2058 		 * is, keep using it.
2059 		 */
2060 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2061 		    idle_cpu(env->best_cpu)) {
2062 			cpu = env->best_cpu;
2063 		}
2064 
2065 		env->dst_cpu = cpu;
2066 	}
2067 
2068 	task_numa_assign(env, cur, imp);
2069 
2070 	/*
2071 	 * If a move to idle is allowed because there is capacity or load
2072 	 * balance improves then stop the search. While a better swap
2073 	 * candidate may exist, a search is not free.
2074 	 */
2075 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2076 		stopsearch = true;
2077 
2078 	/*
2079 	 * If a swap candidate must be identified and the current best task
2080 	 * moves its preferred node then stop the search.
2081 	 */
2082 	if (!maymove && env->best_task &&
2083 	    env->best_task->numa_preferred_nid == env->src_nid) {
2084 		stopsearch = true;
2085 	}
2086 unlock:
2087 	rcu_read_unlock();
2088 
2089 	return stopsearch;
2090 }
2091 
2092 static void task_numa_find_cpu(struct task_numa_env *env,
2093 				long taskimp, long groupimp)
2094 {
2095 	bool maymove = false;
2096 	int cpu;
2097 
2098 	/*
2099 	 * If dst node has spare capacity, then check if there is an
2100 	 * imbalance that would be overruled by the load balancer.
2101 	 */
2102 	if (env->dst_stats.node_type == node_has_spare) {
2103 		unsigned int imbalance;
2104 		int src_running, dst_running;
2105 
2106 		/*
2107 		 * Would movement cause an imbalance? Note that if src has
2108 		 * more running tasks that the imbalance is ignored as the
2109 		 * move improves the imbalance from the perspective of the
2110 		 * CPU load balancer.
2111 		 * */
2112 		src_running = env->src_stats.nr_running - 1;
2113 		dst_running = env->dst_stats.nr_running + 1;
2114 		imbalance = max(0, dst_running - src_running);
2115 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2116 						  env->imb_numa_nr);
2117 
2118 		/* Use idle CPU if there is no imbalance */
2119 		if (!imbalance) {
2120 			maymove = true;
2121 			if (env->dst_stats.idle_cpu >= 0) {
2122 				env->dst_cpu = env->dst_stats.idle_cpu;
2123 				task_numa_assign(env, NULL, 0);
2124 				return;
2125 			}
2126 		}
2127 	} else {
2128 		long src_load, dst_load, load;
2129 		/*
2130 		 * If the improvement from just moving env->p direction is better
2131 		 * than swapping tasks around, check if a move is possible.
2132 		 */
2133 		load = task_h_load(env->p);
2134 		dst_load = env->dst_stats.load + load;
2135 		src_load = env->src_stats.load - load;
2136 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2137 	}
2138 
2139 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2140 		/* Skip this CPU if the source task cannot migrate */
2141 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2142 			continue;
2143 
2144 		env->dst_cpu = cpu;
2145 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2146 			break;
2147 	}
2148 }
2149 
2150 static int task_numa_migrate(struct task_struct *p)
2151 {
2152 	struct task_numa_env env = {
2153 		.p = p,
2154 
2155 		.src_cpu = task_cpu(p),
2156 		.src_nid = task_node(p),
2157 
2158 		.imbalance_pct = 112,
2159 
2160 		.best_task = NULL,
2161 		.best_imp = 0,
2162 		.best_cpu = -1,
2163 	};
2164 	unsigned long taskweight, groupweight;
2165 	struct sched_domain *sd;
2166 	long taskimp, groupimp;
2167 	struct numa_group *ng;
2168 	struct rq *best_rq;
2169 	int nid, ret, dist;
2170 
2171 	/*
2172 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2173 	 * imbalance and would be the first to start moving tasks about.
2174 	 *
2175 	 * And we want to avoid any moving of tasks about, as that would create
2176 	 * random movement of tasks -- counter the numa conditions we're trying
2177 	 * to satisfy here.
2178 	 */
2179 	rcu_read_lock();
2180 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2181 	if (sd) {
2182 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2183 		env.imb_numa_nr = sd->imb_numa_nr;
2184 	}
2185 	rcu_read_unlock();
2186 
2187 	/*
2188 	 * Cpusets can break the scheduler domain tree into smaller
2189 	 * balance domains, some of which do not cross NUMA boundaries.
2190 	 * Tasks that are "trapped" in such domains cannot be migrated
2191 	 * elsewhere, so there is no point in (re)trying.
2192 	 */
2193 	if (unlikely(!sd)) {
2194 		sched_setnuma(p, task_node(p));
2195 		return -EINVAL;
2196 	}
2197 
2198 	env.dst_nid = p->numa_preferred_nid;
2199 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2200 	taskweight = task_weight(p, env.src_nid, dist);
2201 	groupweight = group_weight(p, env.src_nid, dist);
2202 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2203 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2204 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2205 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2206 
2207 	/* Try to find a spot on the preferred nid. */
2208 	task_numa_find_cpu(&env, taskimp, groupimp);
2209 
2210 	/*
2211 	 * Look at other nodes in these cases:
2212 	 * - there is no space available on the preferred_nid
2213 	 * - the task is part of a numa_group that is interleaved across
2214 	 *   multiple NUMA nodes; in order to better consolidate the group,
2215 	 *   we need to check other locations.
2216 	 */
2217 	ng = deref_curr_numa_group(p);
2218 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2219 		for_each_node_state(nid, N_CPU) {
2220 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2221 				continue;
2222 
2223 			dist = node_distance(env.src_nid, env.dst_nid);
2224 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2225 						dist != env.dist) {
2226 				taskweight = task_weight(p, env.src_nid, dist);
2227 				groupweight = group_weight(p, env.src_nid, dist);
2228 			}
2229 
2230 			/* Only consider nodes where both task and groups benefit */
2231 			taskimp = task_weight(p, nid, dist) - taskweight;
2232 			groupimp = group_weight(p, nid, dist) - groupweight;
2233 			if (taskimp < 0 && groupimp < 0)
2234 				continue;
2235 
2236 			env.dist = dist;
2237 			env.dst_nid = nid;
2238 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2239 			task_numa_find_cpu(&env, taskimp, groupimp);
2240 		}
2241 	}
2242 
2243 	/*
2244 	 * If the task is part of a workload that spans multiple NUMA nodes,
2245 	 * and is migrating into one of the workload's active nodes, remember
2246 	 * this node as the task's preferred numa node, so the workload can
2247 	 * settle down.
2248 	 * A task that migrated to a second choice node will be better off
2249 	 * trying for a better one later. Do not set the preferred node here.
2250 	 */
2251 	if (ng) {
2252 		if (env.best_cpu == -1)
2253 			nid = env.src_nid;
2254 		else
2255 			nid = cpu_to_node(env.best_cpu);
2256 
2257 		if (nid != p->numa_preferred_nid)
2258 			sched_setnuma(p, nid);
2259 	}
2260 
2261 	/* No better CPU than the current one was found. */
2262 	if (env.best_cpu == -1) {
2263 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2264 		return -EAGAIN;
2265 	}
2266 
2267 	best_rq = cpu_rq(env.best_cpu);
2268 	if (env.best_task == NULL) {
2269 		ret = migrate_task_to(p, env.best_cpu);
2270 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2271 		if (ret != 0)
2272 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2273 		return ret;
2274 	}
2275 
2276 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2277 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2278 
2279 	if (ret != 0)
2280 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2281 	put_task_struct(env.best_task);
2282 	return ret;
2283 }
2284 
2285 /* Attempt to migrate a task to a CPU on the preferred node. */
2286 static void numa_migrate_preferred(struct task_struct *p)
2287 {
2288 	unsigned long interval = HZ;
2289 
2290 	/* This task has no NUMA fault statistics yet */
2291 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2292 		return;
2293 
2294 	/* Periodically retry migrating the task to the preferred node */
2295 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2296 	p->numa_migrate_retry = jiffies + interval;
2297 
2298 	/* Success if task is already running on preferred CPU */
2299 	if (task_node(p) == p->numa_preferred_nid)
2300 		return;
2301 
2302 	/* Otherwise, try migrate to a CPU on the preferred node */
2303 	task_numa_migrate(p);
2304 }
2305 
2306 /*
2307  * Find out how many nodes the workload is actively running on. Do this by
2308  * tracking the nodes from which NUMA hinting faults are triggered. This can
2309  * be different from the set of nodes where the workload's memory is currently
2310  * located.
2311  */
2312 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2313 {
2314 	unsigned long faults, max_faults = 0;
2315 	int nid, active_nodes = 0;
2316 
2317 	for_each_node_state(nid, N_CPU) {
2318 		faults = group_faults_cpu(numa_group, nid);
2319 		if (faults > max_faults)
2320 			max_faults = faults;
2321 	}
2322 
2323 	for_each_node_state(nid, N_CPU) {
2324 		faults = group_faults_cpu(numa_group, nid);
2325 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2326 			active_nodes++;
2327 	}
2328 
2329 	numa_group->max_faults_cpu = max_faults;
2330 	numa_group->active_nodes = active_nodes;
2331 }
2332 
2333 /*
2334  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2335  * increments. The more local the fault statistics are, the higher the scan
2336  * period will be for the next scan window. If local/(local+remote) ratio is
2337  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2338  * the scan period will decrease. Aim for 70% local accesses.
2339  */
2340 #define NUMA_PERIOD_SLOTS 10
2341 #define NUMA_PERIOD_THRESHOLD 7
2342 
2343 /*
2344  * Increase the scan period (slow down scanning) if the majority of
2345  * our memory is already on our local node, or if the majority of
2346  * the page accesses are shared with other processes.
2347  * Otherwise, decrease the scan period.
2348  */
2349 static void update_task_scan_period(struct task_struct *p,
2350 			unsigned long shared, unsigned long private)
2351 {
2352 	unsigned int period_slot;
2353 	int lr_ratio, ps_ratio;
2354 	int diff;
2355 
2356 	unsigned long remote = p->numa_faults_locality[0];
2357 	unsigned long local = p->numa_faults_locality[1];
2358 
2359 	/*
2360 	 * If there were no record hinting faults then either the task is
2361 	 * completely idle or all activity is in areas that are not of interest
2362 	 * to automatic numa balancing. Related to that, if there were failed
2363 	 * migration then it implies we are migrating too quickly or the local
2364 	 * node is overloaded. In either case, scan slower
2365 	 */
2366 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2367 		p->numa_scan_period = min(p->numa_scan_period_max,
2368 			p->numa_scan_period << 1);
2369 
2370 		p->mm->numa_next_scan = jiffies +
2371 			msecs_to_jiffies(p->numa_scan_period);
2372 
2373 		return;
2374 	}
2375 
2376 	/*
2377 	 * Prepare to scale scan period relative to the current period.
2378 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2379 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2380 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2381 	 */
2382 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2383 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2384 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2385 
2386 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2387 		/*
2388 		 * Most memory accesses are local. There is no need to
2389 		 * do fast NUMA scanning, since memory is already local.
2390 		 */
2391 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2392 		if (!slot)
2393 			slot = 1;
2394 		diff = slot * period_slot;
2395 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2396 		/*
2397 		 * Most memory accesses are shared with other tasks.
2398 		 * There is no point in continuing fast NUMA scanning,
2399 		 * since other tasks may just move the memory elsewhere.
2400 		 */
2401 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2402 		if (!slot)
2403 			slot = 1;
2404 		diff = slot * period_slot;
2405 	} else {
2406 		/*
2407 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2408 		 * yet they are not on the local NUMA node. Speed up
2409 		 * NUMA scanning to get the memory moved over.
2410 		 */
2411 		int ratio = max(lr_ratio, ps_ratio);
2412 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2413 	}
2414 
2415 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2416 			task_scan_min(p), task_scan_max(p));
2417 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2418 }
2419 
2420 /*
2421  * Get the fraction of time the task has been running since the last
2422  * NUMA placement cycle. The scheduler keeps similar statistics, but
2423  * decays those on a 32ms period, which is orders of magnitude off
2424  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2425  * stats only if the task is so new there are no NUMA statistics yet.
2426  */
2427 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2428 {
2429 	u64 runtime, delta, now;
2430 	/* Use the start of this time slice to avoid calculations. */
2431 	now = p->se.exec_start;
2432 	runtime = p->se.sum_exec_runtime;
2433 
2434 	if (p->last_task_numa_placement) {
2435 		delta = runtime - p->last_sum_exec_runtime;
2436 		*period = now - p->last_task_numa_placement;
2437 
2438 		/* Avoid time going backwards, prevent potential divide error: */
2439 		if (unlikely((s64)*period < 0))
2440 			*period = 0;
2441 	} else {
2442 		delta = p->se.avg.load_sum;
2443 		*period = LOAD_AVG_MAX;
2444 	}
2445 
2446 	p->last_sum_exec_runtime = runtime;
2447 	p->last_task_numa_placement = now;
2448 
2449 	return delta;
2450 }
2451 
2452 /*
2453  * Determine the preferred nid for a task in a numa_group. This needs to
2454  * be done in a way that produces consistent results with group_weight,
2455  * otherwise workloads might not converge.
2456  */
2457 static int preferred_group_nid(struct task_struct *p, int nid)
2458 {
2459 	nodemask_t nodes;
2460 	int dist;
2461 
2462 	/* Direct connections between all NUMA nodes. */
2463 	if (sched_numa_topology_type == NUMA_DIRECT)
2464 		return nid;
2465 
2466 	/*
2467 	 * On a system with glueless mesh NUMA topology, group_weight
2468 	 * scores nodes according to the number of NUMA hinting faults on
2469 	 * both the node itself, and on nearby nodes.
2470 	 */
2471 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2472 		unsigned long score, max_score = 0;
2473 		int node, max_node = nid;
2474 
2475 		dist = sched_max_numa_distance;
2476 
2477 		for_each_node_state(node, N_CPU) {
2478 			score = group_weight(p, node, dist);
2479 			if (score > max_score) {
2480 				max_score = score;
2481 				max_node = node;
2482 			}
2483 		}
2484 		return max_node;
2485 	}
2486 
2487 	/*
2488 	 * Finding the preferred nid in a system with NUMA backplane
2489 	 * interconnect topology is more involved. The goal is to locate
2490 	 * tasks from numa_groups near each other in the system, and
2491 	 * untangle workloads from different sides of the system. This requires
2492 	 * searching down the hierarchy of node groups, recursively searching
2493 	 * inside the highest scoring group of nodes. The nodemask tricks
2494 	 * keep the complexity of the search down.
2495 	 */
2496 	nodes = node_states[N_CPU];
2497 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2498 		unsigned long max_faults = 0;
2499 		nodemask_t max_group = NODE_MASK_NONE;
2500 		int a, b;
2501 
2502 		/* Are there nodes at this distance from each other? */
2503 		if (!find_numa_distance(dist))
2504 			continue;
2505 
2506 		for_each_node_mask(a, nodes) {
2507 			unsigned long faults = 0;
2508 			nodemask_t this_group;
2509 			nodes_clear(this_group);
2510 
2511 			/* Sum group's NUMA faults; includes a==b case. */
2512 			for_each_node_mask(b, nodes) {
2513 				if (node_distance(a, b) < dist) {
2514 					faults += group_faults(p, b);
2515 					node_set(b, this_group);
2516 					node_clear(b, nodes);
2517 				}
2518 			}
2519 
2520 			/* Remember the top group. */
2521 			if (faults > max_faults) {
2522 				max_faults = faults;
2523 				max_group = this_group;
2524 				/*
2525 				 * subtle: at the smallest distance there is
2526 				 * just one node left in each "group", the
2527 				 * winner is the preferred nid.
2528 				 */
2529 				nid = a;
2530 			}
2531 		}
2532 		/* Next round, evaluate the nodes within max_group. */
2533 		if (!max_faults)
2534 			break;
2535 		nodes = max_group;
2536 	}
2537 	return nid;
2538 }
2539 
2540 static void task_numa_placement(struct task_struct *p)
2541 {
2542 	int seq, nid, max_nid = NUMA_NO_NODE;
2543 	unsigned long max_faults = 0;
2544 	unsigned long fault_types[2] = { 0, 0 };
2545 	unsigned long total_faults;
2546 	u64 runtime, period;
2547 	spinlock_t *group_lock = NULL;
2548 	struct numa_group *ng;
2549 
2550 	/*
2551 	 * The p->mm->numa_scan_seq field gets updated without
2552 	 * exclusive access. Use READ_ONCE() here to ensure
2553 	 * that the field is read in a single access:
2554 	 */
2555 	seq = READ_ONCE(p->mm->numa_scan_seq);
2556 	if (p->numa_scan_seq == seq)
2557 		return;
2558 	p->numa_scan_seq = seq;
2559 	p->numa_scan_period_max = task_scan_max(p);
2560 
2561 	total_faults = p->numa_faults_locality[0] +
2562 		       p->numa_faults_locality[1];
2563 	runtime = numa_get_avg_runtime(p, &period);
2564 
2565 	/* If the task is part of a group prevent parallel updates to group stats */
2566 	ng = deref_curr_numa_group(p);
2567 	if (ng) {
2568 		group_lock = &ng->lock;
2569 		spin_lock_irq(group_lock);
2570 	}
2571 
2572 	/* Find the node with the highest number of faults */
2573 	for_each_online_node(nid) {
2574 		/* Keep track of the offsets in numa_faults array */
2575 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2576 		unsigned long faults = 0, group_faults = 0;
2577 		int priv;
2578 
2579 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2580 			long diff, f_diff, f_weight;
2581 
2582 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2583 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2584 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2585 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2586 
2587 			/* Decay existing window, copy faults since last scan */
2588 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2589 			fault_types[priv] += p->numa_faults[membuf_idx];
2590 			p->numa_faults[membuf_idx] = 0;
2591 
2592 			/*
2593 			 * Normalize the faults_from, so all tasks in a group
2594 			 * count according to CPU use, instead of by the raw
2595 			 * number of faults. Tasks with little runtime have
2596 			 * little over-all impact on throughput, and thus their
2597 			 * faults are less important.
2598 			 */
2599 			f_weight = div64_u64(runtime << 16, period + 1);
2600 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2601 				   (total_faults + 1);
2602 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2603 			p->numa_faults[cpubuf_idx] = 0;
2604 
2605 			p->numa_faults[mem_idx] += diff;
2606 			p->numa_faults[cpu_idx] += f_diff;
2607 			faults += p->numa_faults[mem_idx];
2608 			p->total_numa_faults += diff;
2609 			if (ng) {
2610 				/*
2611 				 * safe because we can only change our own group
2612 				 *
2613 				 * mem_idx represents the offset for a given
2614 				 * nid and priv in a specific region because it
2615 				 * is at the beginning of the numa_faults array.
2616 				 */
2617 				ng->faults[mem_idx] += diff;
2618 				ng->faults[cpu_idx] += f_diff;
2619 				ng->total_faults += diff;
2620 				group_faults += ng->faults[mem_idx];
2621 			}
2622 		}
2623 
2624 		if (!ng) {
2625 			if (faults > max_faults) {
2626 				max_faults = faults;
2627 				max_nid = nid;
2628 			}
2629 		} else if (group_faults > max_faults) {
2630 			max_faults = group_faults;
2631 			max_nid = nid;
2632 		}
2633 	}
2634 
2635 	/* Cannot migrate task to CPU-less node */
2636 	if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
2637 		int near_nid = max_nid;
2638 		int distance, near_distance = INT_MAX;
2639 
2640 		for_each_node_state(nid, N_CPU) {
2641 			distance = node_distance(max_nid, nid);
2642 			if (distance < near_distance) {
2643 				near_nid = nid;
2644 				near_distance = distance;
2645 			}
2646 		}
2647 		max_nid = near_nid;
2648 	}
2649 
2650 	if (ng) {
2651 		numa_group_count_active_nodes(ng);
2652 		spin_unlock_irq(group_lock);
2653 		max_nid = preferred_group_nid(p, max_nid);
2654 	}
2655 
2656 	if (max_faults) {
2657 		/* Set the new preferred node */
2658 		if (max_nid != p->numa_preferred_nid)
2659 			sched_setnuma(p, max_nid);
2660 	}
2661 
2662 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2663 }
2664 
2665 static inline int get_numa_group(struct numa_group *grp)
2666 {
2667 	return refcount_inc_not_zero(&grp->refcount);
2668 }
2669 
2670 static inline void put_numa_group(struct numa_group *grp)
2671 {
2672 	if (refcount_dec_and_test(&grp->refcount))
2673 		kfree_rcu(grp, rcu);
2674 }
2675 
2676 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2677 			int *priv)
2678 {
2679 	struct numa_group *grp, *my_grp;
2680 	struct task_struct *tsk;
2681 	bool join = false;
2682 	int cpu = cpupid_to_cpu(cpupid);
2683 	int i;
2684 
2685 	if (unlikely(!deref_curr_numa_group(p))) {
2686 		unsigned int size = sizeof(struct numa_group) +
2687 				    NR_NUMA_HINT_FAULT_STATS *
2688 				    nr_node_ids * sizeof(unsigned long);
2689 
2690 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2691 		if (!grp)
2692 			return;
2693 
2694 		refcount_set(&grp->refcount, 1);
2695 		grp->active_nodes = 1;
2696 		grp->max_faults_cpu = 0;
2697 		spin_lock_init(&grp->lock);
2698 		grp->gid = p->pid;
2699 
2700 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2701 			grp->faults[i] = p->numa_faults[i];
2702 
2703 		grp->total_faults = p->total_numa_faults;
2704 
2705 		grp->nr_tasks++;
2706 		rcu_assign_pointer(p->numa_group, grp);
2707 	}
2708 
2709 	rcu_read_lock();
2710 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2711 
2712 	if (!cpupid_match_pid(tsk, cpupid))
2713 		goto no_join;
2714 
2715 	grp = rcu_dereference(tsk->numa_group);
2716 	if (!grp)
2717 		goto no_join;
2718 
2719 	my_grp = deref_curr_numa_group(p);
2720 	if (grp == my_grp)
2721 		goto no_join;
2722 
2723 	/*
2724 	 * Only join the other group if its bigger; if we're the bigger group,
2725 	 * the other task will join us.
2726 	 */
2727 	if (my_grp->nr_tasks > grp->nr_tasks)
2728 		goto no_join;
2729 
2730 	/*
2731 	 * Tie-break on the grp address.
2732 	 */
2733 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2734 		goto no_join;
2735 
2736 	/* Always join threads in the same process. */
2737 	if (tsk->mm == current->mm)
2738 		join = true;
2739 
2740 	/* Simple filter to avoid false positives due to PID collisions */
2741 	if (flags & TNF_SHARED)
2742 		join = true;
2743 
2744 	/* Update priv based on whether false sharing was detected */
2745 	*priv = !join;
2746 
2747 	if (join && !get_numa_group(grp))
2748 		goto no_join;
2749 
2750 	rcu_read_unlock();
2751 
2752 	if (!join)
2753 		return;
2754 
2755 	WARN_ON_ONCE(irqs_disabled());
2756 	double_lock_irq(&my_grp->lock, &grp->lock);
2757 
2758 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2759 		my_grp->faults[i] -= p->numa_faults[i];
2760 		grp->faults[i] += p->numa_faults[i];
2761 	}
2762 	my_grp->total_faults -= p->total_numa_faults;
2763 	grp->total_faults += p->total_numa_faults;
2764 
2765 	my_grp->nr_tasks--;
2766 	grp->nr_tasks++;
2767 
2768 	spin_unlock(&my_grp->lock);
2769 	spin_unlock_irq(&grp->lock);
2770 
2771 	rcu_assign_pointer(p->numa_group, grp);
2772 
2773 	put_numa_group(my_grp);
2774 	return;
2775 
2776 no_join:
2777 	rcu_read_unlock();
2778 	return;
2779 }
2780 
2781 /*
2782  * Get rid of NUMA statistics associated with a task (either current or dead).
2783  * If @final is set, the task is dead and has reached refcount zero, so we can
2784  * safely free all relevant data structures. Otherwise, there might be
2785  * concurrent reads from places like load balancing and procfs, and we should
2786  * reset the data back to default state without freeing ->numa_faults.
2787  */
2788 void task_numa_free(struct task_struct *p, bool final)
2789 {
2790 	/* safe: p either is current or is being freed by current */
2791 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2792 	unsigned long *numa_faults = p->numa_faults;
2793 	unsigned long flags;
2794 	int i;
2795 
2796 	if (!numa_faults)
2797 		return;
2798 
2799 	if (grp) {
2800 		spin_lock_irqsave(&grp->lock, flags);
2801 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2802 			grp->faults[i] -= p->numa_faults[i];
2803 		grp->total_faults -= p->total_numa_faults;
2804 
2805 		grp->nr_tasks--;
2806 		spin_unlock_irqrestore(&grp->lock, flags);
2807 		RCU_INIT_POINTER(p->numa_group, NULL);
2808 		put_numa_group(grp);
2809 	}
2810 
2811 	if (final) {
2812 		p->numa_faults = NULL;
2813 		kfree(numa_faults);
2814 	} else {
2815 		p->total_numa_faults = 0;
2816 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2817 			numa_faults[i] = 0;
2818 	}
2819 }
2820 
2821 /*
2822  * Got a PROT_NONE fault for a page on @node.
2823  */
2824 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2825 {
2826 	struct task_struct *p = current;
2827 	bool migrated = flags & TNF_MIGRATED;
2828 	int cpu_node = task_node(current);
2829 	int local = !!(flags & TNF_FAULT_LOCAL);
2830 	struct numa_group *ng;
2831 	int priv;
2832 
2833 	if (!static_branch_likely(&sched_numa_balancing))
2834 		return;
2835 
2836 	/* for example, ksmd faulting in a user's mm */
2837 	if (!p->mm)
2838 		return;
2839 
2840 	/*
2841 	 * NUMA faults statistics are unnecessary for the slow memory
2842 	 * node for memory tiering mode.
2843 	 */
2844 	if (!node_is_toptier(mem_node) &&
2845 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
2846 	     !cpupid_valid(last_cpupid)))
2847 		return;
2848 
2849 	/* Allocate buffer to track faults on a per-node basis */
2850 	if (unlikely(!p->numa_faults)) {
2851 		int size = sizeof(*p->numa_faults) *
2852 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2853 
2854 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2855 		if (!p->numa_faults)
2856 			return;
2857 
2858 		p->total_numa_faults = 0;
2859 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2860 	}
2861 
2862 	/*
2863 	 * First accesses are treated as private, otherwise consider accesses
2864 	 * to be private if the accessing pid has not changed
2865 	 */
2866 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2867 		priv = 1;
2868 	} else {
2869 		priv = cpupid_match_pid(p, last_cpupid);
2870 		if (!priv && !(flags & TNF_NO_GROUP))
2871 			task_numa_group(p, last_cpupid, flags, &priv);
2872 	}
2873 
2874 	/*
2875 	 * If a workload spans multiple NUMA nodes, a shared fault that
2876 	 * occurs wholly within the set of nodes that the workload is
2877 	 * actively using should be counted as local. This allows the
2878 	 * scan rate to slow down when a workload has settled down.
2879 	 */
2880 	ng = deref_curr_numa_group(p);
2881 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2882 				numa_is_active_node(cpu_node, ng) &&
2883 				numa_is_active_node(mem_node, ng))
2884 		local = 1;
2885 
2886 	/*
2887 	 * Retry to migrate task to preferred node periodically, in case it
2888 	 * previously failed, or the scheduler moved us.
2889 	 */
2890 	if (time_after(jiffies, p->numa_migrate_retry)) {
2891 		task_numa_placement(p);
2892 		numa_migrate_preferred(p);
2893 	}
2894 
2895 	if (migrated)
2896 		p->numa_pages_migrated += pages;
2897 	if (flags & TNF_MIGRATE_FAIL)
2898 		p->numa_faults_locality[2] += pages;
2899 
2900 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2901 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2902 	p->numa_faults_locality[local] += pages;
2903 }
2904 
2905 static void reset_ptenuma_scan(struct task_struct *p)
2906 {
2907 	/*
2908 	 * We only did a read acquisition of the mmap sem, so
2909 	 * p->mm->numa_scan_seq is written to without exclusive access
2910 	 * and the update is not guaranteed to be atomic. That's not
2911 	 * much of an issue though, since this is just used for
2912 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2913 	 * expensive, to avoid any form of compiler optimizations:
2914 	 */
2915 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2916 	p->mm->numa_scan_offset = 0;
2917 }
2918 
2919 /*
2920  * The expensive part of numa migration is done from task_work context.
2921  * Triggered from task_tick_numa().
2922  */
2923 static void task_numa_work(struct callback_head *work)
2924 {
2925 	unsigned long migrate, next_scan, now = jiffies;
2926 	struct task_struct *p = current;
2927 	struct mm_struct *mm = p->mm;
2928 	u64 runtime = p->se.sum_exec_runtime;
2929 	MA_STATE(mas, &mm->mm_mt, 0, 0);
2930 	struct vm_area_struct *vma;
2931 	unsigned long start, end;
2932 	unsigned long nr_pte_updates = 0;
2933 	long pages, virtpages;
2934 
2935 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2936 
2937 	work->next = work;
2938 	/*
2939 	 * Who cares about NUMA placement when they're dying.
2940 	 *
2941 	 * NOTE: make sure not to dereference p->mm before this check,
2942 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2943 	 * without p->mm even though we still had it when we enqueued this
2944 	 * work.
2945 	 */
2946 	if (p->flags & PF_EXITING)
2947 		return;
2948 
2949 	if (!mm->numa_next_scan) {
2950 		mm->numa_next_scan = now +
2951 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2952 	}
2953 
2954 	/*
2955 	 * Enforce maximal scan/migration frequency..
2956 	 */
2957 	migrate = mm->numa_next_scan;
2958 	if (time_before(now, migrate))
2959 		return;
2960 
2961 	if (p->numa_scan_period == 0) {
2962 		p->numa_scan_period_max = task_scan_max(p);
2963 		p->numa_scan_period = task_scan_start(p);
2964 	}
2965 
2966 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2967 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2968 		return;
2969 
2970 	/*
2971 	 * Delay this task enough that another task of this mm will likely win
2972 	 * the next time around.
2973 	 */
2974 	p->node_stamp += 2 * TICK_NSEC;
2975 
2976 	start = mm->numa_scan_offset;
2977 	pages = sysctl_numa_balancing_scan_size;
2978 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2979 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2980 	if (!pages)
2981 		return;
2982 
2983 
2984 	if (!mmap_read_trylock(mm))
2985 		return;
2986 	mas_set(&mas, start);
2987 	vma = mas_find(&mas, ULONG_MAX);
2988 	if (!vma) {
2989 		reset_ptenuma_scan(p);
2990 		start = 0;
2991 		mas_set(&mas, start);
2992 		vma = mas_find(&mas, ULONG_MAX);
2993 	}
2994 
2995 	for (; vma; vma = mas_find(&mas, ULONG_MAX)) {
2996 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2997 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2998 			continue;
2999 		}
3000 
3001 		/*
3002 		 * Shared library pages mapped by multiple processes are not
3003 		 * migrated as it is expected they are cache replicated. Avoid
3004 		 * hinting faults in read-only file-backed mappings or the vdso
3005 		 * as migrating the pages will be of marginal benefit.
3006 		 */
3007 		if (!vma->vm_mm ||
3008 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
3009 			continue;
3010 
3011 		/*
3012 		 * Skip inaccessible VMAs to avoid any confusion between
3013 		 * PROT_NONE and NUMA hinting ptes
3014 		 */
3015 		if (!vma_is_accessible(vma))
3016 			continue;
3017 
3018 		do {
3019 			start = max(start, vma->vm_start);
3020 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3021 			end = min(end, vma->vm_end);
3022 			nr_pte_updates = change_prot_numa(vma, start, end);
3023 
3024 			/*
3025 			 * Try to scan sysctl_numa_balancing_size worth of
3026 			 * hpages that have at least one present PTE that
3027 			 * is not already pte-numa. If the VMA contains
3028 			 * areas that are unused or already full of prot_numa
3029 			 * PTEs, scan up to virtpages, to skip through those
3030 			 * areas faster.
3031 			 */
3032 			if (nr_pte_updates)
3033 				pages -= (end - start) >> PAGE_SHIFT;
3034 			virtpages -= (end - start) >> PAGE_SHIFT;
3035 
3036 			start = end;
3037 			if (pages <= 0 || virtpages <= 0)
3038 				goto out;
3039 
3040 			cond_resched();
3041 		} while (end != vma->vm_end);
3042 	}
3043 
3044 out:
3045 	/*
3046 	 * It is possible to reach the end of the VMA list but the last few
3047 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3048 	 * would find the !migratable VMA on the next scan but not reset the
3049 	 * scanner to the start so check it now.
3050 	 */
3051 	if (vma)
3052 		mm->numa_scan_offset = start;
3053 	else
3054 		reset_ptenuma_scan(p);
3055 	mmap_read_unlock(mm);
3056 
3057 	/*
3058 	 * Make sure tasks use at least 32x as much time to run other code
3059 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3060 	 * Usually update_task_scan_period slows down scanning enough; on an
3061 	 * overloaded system we need to limit overhead on a per task basis.
3062 	 */
3063 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3064 		u64 diff = p->se.sum_exec_runtime - runtime;
3065 		p->node_stamp += 32 * diff;
3066 	}
3067 }
3068 
3069 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3070 {
3071 	int mm_users = 0;
3072 	struct mm_struct *mm = p->mm;
3073 
3074 	if (mm) {
3075 		mm_users = atomic_read(&mm->mm_users);
3076 		if (mm_users == 1) {
3077 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3078 			mm->numa_scan_seq = 0;
3079 		}
3080 	}
3081 	p->node_stamp			= 0;
3082 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3083 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3084 	p->numa_migrate_retry		= 0;
3085 	/* Protect against double add, see task_tick_numa and task_numa_work */
3086 	p->numa_work.next		= &p->numa_work;
3087 	p->numa_faults			= NULL;
3088 	p->numa_pages_migrated		= 0;
3089 	p->total_numa_faults		= 0;
3090 	RCU_INIT_POINTER(p->numa_group, NULL);
3091 	p->last_task_numa_placement	= 0;
3092 	p->last_sum_exec_runtime	= 0;
3093 
3094 	init_task_work(&p->numa_work, task_numa_work);
3095 
3096 	/* New address space, reset the preferred nid */
3097 	if (!(clone_flags & CLONE_VM)) {
3098 		p->numa_preferred_nid = NUMA_NO_NODE;
3099 		return;
3100 	}
3101 
3102 	/*
3103 	 * New thread, keep existing numa_preferred_nid which should be copied
3104 	 * already by arch_dup_task_struct but stagger when scans start.
3105 	 */
3106 	if (mm) {
3107 		unsigned int delay;
3108 
3109 		delay = min_t(unsigned int, task_scan_max(current),
3110 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3111 		delay += 2 * TICK_NSEC;
3112 		p->node_stamp = delay;
3113 	}
3114 }
3115 
3116 /*
3117  * Drive the periodic memory faults..
3118  */
3119 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3120 {
3121 	struct callback_head *work = &curr->numa_work;
3122 	u64 period, now;
3123 
3124 	/*
3125 	 * We don't care about NUMA placement if we don't have memory.
3126 	 */
3127 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3128 		return;
3129 
3130 	/*
3131 	 * Using runtime rather than walltime has the dual advantage that
3132 	 * we (mostly) drive the selection from busy threads and that the
3133 	 * task needs to have done some actual work before we bother with
3134 	 * NUMA placement.
3135 	 */
3136 	now = curr->se.sum_exec_runtime;
3137 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3138 
3139 	if (now > curr->node_stamp + period) {
3140 		if (!curr->node_stamp)
3141 			curr->numa_scan_period = task_scan_start(curr);
3142 		curr->node_stamp += period;
3143 
3144 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3145 			task_work_add(curr, work, TWA_RESUME);
3146 	}
3147 }
3148 
3149 static void update_scan_period(struct task_struct *p, int new_cpu)
3150 {
3151 	int src_nid = cpu_to_node(task_cpu(p));
3152 	int dst_nid = cpu_to_node(new_cpu);
3153 
3154 	if (!static_branch_likely(&sched_numa_balancing))
3155 		return;
3156 
3157 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3158 		return;
3159 
3160 	if (src_nid == dst_nid)
3161 		return;
3162 
3163 	/*
3164 	 * Allow resets if faults have been trapped before one scan
3165 	 * has completed. This is most likely due to a new task that
3166 	 * is pulled cross-node due to wakeups or load balancing.
3167 	 */
3168 	if (p->numa_scan_seq) {
3169 		/*
3170 		 * Avoid scan adjustments if moving to the preferred
3171 		 * node or if the task was not previously running on
3172 		 * the preferred node.
3173 		 */
3174 		if (dst_nid == p->numa_preferred_nid ||
3175 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3176 			src_nid != p->numa_preferred_nid))
3177 			return;
3178 	}
3179 
3180 	p->numa_scan_period = task_scan_start(p);
3181 }
3182 
3183 #else
3184 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3185 {
3186 }
3187 
3188 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3189 {
3190 }
3191 
3192 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3193 {
3194 }
3195 
3196 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3197 {
3198 }
3199 
3200 #endif /* CONFIG_NUMA_BALANCING */
3201 
3202 static void
3203 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3204 {
3205 	update_load_add(&cfs_rq->load, se->load.weight);
3206 #ifdef CONFIG_SMP
3207 	if (entity_is_task(se)) {
3208 		struct rq *rq = rq_of(cfs_rq);
3209 
3210 		account_numa_enqueue(rq, task_of(se));
3211 		list_add(&se->group_node, &rq->cfs_tasks);
3212 	}
3213 #endif
3214 	cfs_rq->nr_running++;
3215 	if (se_is_idle(se))
3216 		cfs_rq->idle_nr_running++;
3217 }
3218 
3219 static void
3220 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3221 {
3222 	update_load_sub(&cfs_rq->load, se->load.weight);
3223 #ifdef CONFIG_SMP
3224 	if (entity_is_task(se)) {
3225 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3226 		list_del_init(&se->group_node);
3227 	}
3228 #endif
3229 	cfs_rq->nr_running--;
3230 	if (se_is_idle(se))
3231 		cfs_rq->idle_nr_running--;
3232 }
3233 
3234 /*
3235  * Signed add and clamp on underflow.
3236  *
3237  * Explicitly do a load-store to ensure the intermediate value never hits
3238  * memory. This allows lockless observations without ever seeing the negative
3239  * values.
3240  */
3241 #define add_positive(_ptr, _val) do {                           \
3242 	typeof(_ptr) ptr = (_ptr);                              \
3243 	typeof(_val) val = (_val);                              \
3244 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3245 								\
3246 	res = var + val;                                        \
3247 								\
3248 	if (val < 0 && res > var)                               \
3249 		res = 0;                                        \
3250 								\
3251 	WRITE_ONCE(*ptr, res);                                  \
3252 } while (0)
3253 
3254 /*
3255  * Unsigned subtract and clamp on underflow.
3256  *
3257  * Explicitly do a load-store to ensure the intermediate value never hits
3258  * memory. This allows lockless observations without ever seeing the negative
3259  * values.
3260  */
3261 #define sub_positive(_ptr, _val) do {				\
3262 	typeof(_ptr) ptr = (_ptr);				\
3263 	typeof(*ptr) val = (_val);				\
3264 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3265 	res = var - val;					\
3266 	if (res > var)						\
3267 		res = 0;					\
3268 	WRITE_ONCE(*ptr, res);					\
3269 } while (0)
3270 
3271 /*
3272  * Remove and clamp on negative, from a local variable.
3273  *
3274  * A variant of sub_positive(), which does not use explicit load-store
3275  * and is thus optimized for local variable updates.
3276  */
3277 #define lsub_positive(_ptr, _val) do {				\
3278 	typeof(_ptr) ptr = (_ptr);				\
3279 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3280 } while (0)
3281 
3282 #ifdef CONFIG_SMP
3283 static inline void
3284 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3285 {
3286 	cfs_rq->avg.load_avg += se->avg.load_avg;
3287 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3288 }
3289 
3290 static inline void
3291 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3292 {
3293 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3294 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3295 	/* See update_cfs_rq_load_avg() */
3296 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3297 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3298 }
3299 #else
3300 static inline void
3301 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3302 static inline void
3303 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3304 #endif
3305 
3306 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3307 			    unsigned long weight)
3308 {
3309 	if (se->on_rq) {
3310 		/* commit outstanding execution time */
3311 		if (cfs_rq->curr == se)
3312 			update_curr(cfs_rq);
3313 		update_load_sub(&cfs_rq->load, se->load.weight);
3314 	}
3315 	dequeue_load_avg(cfs_rq, se);
3316 
3317 	update_load_set(&se->load, weight);
3318 
3319 #ifdef CONFIG_SMP
3320 	do {
3321 		u32 divider = get_pelt_divider(&se->avg);
3322 
3323 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3324 	} while (0);
3325 #endif
3326 
3327 	enqueue_load_avg(cfs_rq, se);
3328 	if (se->on_rq)
3329 		update_load_add(&cfs_rq->load, se->load.weight);
3330 
3331 }
3332 
3333 void reweight_task(struct task_struct *p, int prio)
3334 {
3335 	struct sched_entity *se = &p->se;
3336 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3337 	struct load_weight *load = &se->load;
3338 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3339 
3340 	reweight_entity(cfs_rq, se, weight);
3341 	load->inv_weight = sched_prio_to_wmult[prio];
3342 }
3343 
3344 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3345 
3346 #ifdef CONFIG_FAIR_GROUP_SCHED
3347 #ifdef CONFIG_SMP
3348 /*
3349  * All this does is approximate the hierarchical proportion which includes that
3350  * global sum we all love to hate.
3351  *
3352  * That is, the weight of a group entity, is the proportional share of the
3353  * group weight based on the group runqueue weights. That is:
3354  *
3355  *                     tg->weight * grq->load.weight
3356  *   ge->load.weight = -----------------------------               (1)
3357  *                       \Sum grq->load.weight
3358  *
3359  * Now, because computing that sum is prohibitively expensive to compute (been
3360  * there, done that) we approximate it with this average stuff. The average
3361  * moves slower and therefore the approximation is cheaper and more stable.
3362  *
3363  * So instead of the above, we substitute:
3364  *
3365  *   grq->load.weight -> grq->avg.load_avg                         (2)
3366  *
3367  * which yields the following:
3368  *
3369  *                     tg->weight * grq->avg.load_avg
3370  *   ge->load.weight = ------------------------------              (3)
3371  *                             tg->load_avg
3372  *
3373  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3374  *
3375  * That is shares_avg, and it is right (given the approximation (2)).
3376  *
3377  * The problem with it is that because the average is slow -- it was designed
3378  * to be exactly that of course -- this leads to transients in boundary
3379  * conditions. In specific, the case where the group was idle and we start the
3380  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3381  * yielding bad latency etc..
3382  *
3383  * Now, in that special case (1) reduces to:
3384  *
3385  *                     tg->weight * grq->load.weight
3386  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3387  *                         grp->load.weight
3388  *
3389  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3390  *
3391  * So what we do is modify our approximation (3) to approach (4) in the (near)
3392  * UP case, like:
3393  *
3394  *   ge->load.weight =
3395  *
3396  *              tg->weight * grq->load.weight
3397  *     ---------------------------------------------------         (5)
3398  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3399  *
3400  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3401  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3402  *
3403  *
3404  *                     tg->weight * grq->load.weight
3405  *   ge->load.weight = -----------------------------		   (6)
3406  *                             tg_load_avg'
3407  *
3408  * Where:
3409  *
3410  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3411  *                  max(grq->load.weight, grq->avg.load_avg)
3412  *
3413  * And that is shares_weight and is icky. In the (near) UP case it approaches
3414  * (4) while in the normal case it approaches (3). It consistently
3415  * overestimates the ge->load.weight and therefore:
3416  *
3417  *   \Sum ge->load.weight >= tg->weight
3418  *
3419  * hence icky!
3420  */
3421 static long calc_group_shares(struct cfs_rq *cfs_rq)
3422 {
3423 	long tg_weight, tg_shares, load, shares;
3424 	struct task_group *tg = cfs_rq->tg;
3425 
3426 	tg_shares = READ_ONCE(tg->shares);
3427 
3428 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3429 
3430 	tg_weight = atomic_long_read(&tg->load_avg);
3431 
3432 	/* Ensure tg_weight >= load */
3433 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3434 	tg_weight += load;
3435 
3436 	shares = (tg_shares * load);
3437 	if (tg_weight)
3438 		shares /= tg_weight;
3439 
3440 	/*
3441 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3442 	 * of a group with small tg->shares value. It is a floor value which is
3443 	 * assigned as a minimum load.weight to the sched_entity representing
3444 	 * the group on a CPU.
3445 	 *
3446 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3447 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3448 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3449 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3450 	 * instead of 0.
3451 	 */
3452 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3453 }
3454 #endif /* CONFIG_SMP */
3455 
3456 /*
3457  * Recomputes the group entity based on the current state of its group
3458  * runqueue.
3459  */
3460 static void update_cfs_group(struct sched_entity *se)
3461 {
3462 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3463 	long shares;
3464 
3465 	if (!gcfs_rq)
3466 		return;
3467 
3468 	if (throttled_hierarchy(gcfs_rq))
3469 		return;
3470 
3471 #ifndef CONFIG_SMP
3472 	shares = READ_ONCE(gcfs_rq->tg->shares);
3473 
3474 	if (likely(se->load.weight == shares))
3475 		return;
3476 #else
3477 	shares   = calc_group_shares(gcfs_rq);
3478 #endif
3479 
3480 	reweight_entity(cfs_rq_of(se), se, shares);
3481 }
3482 
3483 #else /* CONFIG_FAIR_GROUP_SCHED */
3484 static inline void update_cfs_group(struct sched_entity *se)
3485 {
3486 }
3487 #endif /* CONFIG_FAIR_GROUP_SCHED */
3488 
3489 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3490 {
3491 	struct rq *rq = rq_of(cfs_rq);
3492 
3493 	if (&rq->cfs == cfs_rq) {
3494 		/*
3495 		 * There are a few boundary cases this might miss but it should
3496 		 * get called often enough that that should (hopefully) not be
3497 		 * a real problem.
3498 		 *
3499 		 * It will not get called when we go idle, because the idle
3500 		 * thread is a different class (!fair), nor will the utilization
3501 		 * number include things like RT tasks.
3502 		 *
3503 		 * As is, the util number is not freq-invariant (we'd have to
3504 		 * implement arch_scale_freq_capacity() for that).
3505 		 *
3506 		 * See cpu_util_cfs().
3507 		 */
3508 		cpufreq_update_util(rq, flags);
3509 	}
3510 }
3511 
3512 #ifdef CONFIG_SMP
3513 static inline bool load_avg_is_decayed(struct sched_avg *sa)
3514 {
3515 	if (sa->load_sum)
3516 		return false;
3517 
3518 	if (sa->util_sum)
3519 		return false;
3520 
3521 	if (sa->runnable_sum)
3522 		return false;
3523 
3524 	/*
3525 	 * _avg must be null when _sum are null because _avg = _sum / divider
3526 	 * Make sure that rounding and/or propagation of PELT values never
3527 	 * break this.
3528 	 */
3529 	SCHED_WARN_ON(sa->load_avg ||
3530 		      sa->util_avg ||
3531 		      sa->runnable_avg);
3532 
3533 	return true;
3534 }
3535 
3536 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3537 {
3538 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
3539 				 cfs_rq->last_update_time_copy);
3540 }
3541 #ifdef CONFIG_FAIR_GROUP_SCHED
3542 /*
3543  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3544  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3545  * bottom-up, we only have to test whether the cfs_rq before us on the list
3546  * is our child.
3547  * If cfs_rq is not on the list, test whether a child needs its to be added to
3548  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
3549  */
3550 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3551 {
3552 	struct cfs_rq *prev_cfs_rq;
3553 	struct list_head *prev;
3554 
3555 	if (cfs_rq->on_list) {
3556 		prev = cfs_rq->leaf_cfs_rq_list.prev;
3557 	} else {
3558 		struct rq *rq = rq_of(cfs_rq);
3559 
3560 		prev = rq->tmp_alone_branch;
3561 	}
3562 
3563 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3564 
3565 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3566 }
3567 
3568 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3569 {
3570 	if (cfs_rq->load.weight)
3571 		return false;
3572 
3573 	if (!load_avg_is_decayed(&cfs_rq->avg))
3574 		return false;
3575 
3576 	if (child_cfs_rq_on_list(cfs_rq))
3577 		return false;
3578 
3579 	return true;
3580 }
3581 
3582 /**
3583  * update_tg_load_avg - update the tg's load avg
3584  * @cfs_rq: the cfs_rq whose avg changed
3585  *
3586  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3587  * However, because tg->load_avg is a global value there are performance
3588  * considerations.
3589  *
3590  * In order to avoid having to look at the other cfs_rq's, we use a
3591  * differential update where we store the last value we propagated. This in
3592  * turn allows skipping updates if the differential is 'small'.
3593  *
3594  * Updating tg's load_avg is necessary before update_cfs_share().
3595  */
3596 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3597 {
3598 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3599 
3600 	/*
3601 	 * No need to update load_avg for root_task_group as it is not used.
3602 	 */
3603 	if (cfs_rq->tg == &root_task_group)
3604 		return;
3605 
3606 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3607 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3608 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3609 	}
3610 }
3611 
3612 /*
3613  * Called within set_task_rq() right before setting a task's CPU. The
3614  * caller only guarantees p->pi_lock is held; no other assumptions,
3615  * including the state of rq->lock, should be made.
3616  */
3617 void set_task_rq_fair(struct sched_entity *se,
3618 		      struct cfs_rq *prev, struct cfs_rq *next)
3619 {
3620 	u64 p_last_update_time;
3621 	u64 n_last_update_time;
3622 
3623 	if (!sched_feat(ATTACH_AGE_LOAD))
3624 		return;
3625 
3626 	/*
3627 	 * We are supposed to update the task to "current" time, then its up to
3628 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3629 	 * getting what current time is, so simply throw away the out-of-date
3630 	 * time. This will result in the wakee task is less decayed, but giving
3631 	 * the wakee more load sounds not bad.
3632 	 */
3633 	if (!(se->avg.last_update_time && prev))
3634 		return;
3635 
3636 	p_last_update_time = cfs_rq_last_update_time(prev);
3637 	n_last_update_time = cfs_rq_last_update_time(next);
3638 
3639 	__update_load_avg_blocked_se(p_last_update_time, se);
3640 	se->avg.last_update_time = n_last_update_time;
3641 }
3642 
3643 /*
3644  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3645  * propagate its contribution. The key to this propagation is the invariant
3646  * that for each group:
3647  *
3648  *   ge->avg == grq->avg						(1)
3649  *
3650  * _IFF_ we look at the pure running and runnable sums. Because they
3651  * represent the very same entity, just at different points in the hierarchy.
3652  *
3653  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3654  * and simply copies the running/runnable sum over (but still wrong, because
3655  * the group entity and group rq do not have their PELT windows aligned).
3656  *
3657  * However, update_tg_cfs_load() is more complex. So we have:
3658  *
3659  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3660  *
3661  * And since, like util, the runnable part should be directly transferable,
3662  * the following would _appear_ to be the straight forward approach:
3663  *
3664  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3665  *
3666  * And per (1) we have:
3667  *
3668  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3669  *
3670  * Which gives:
3671  *
3672  *                      ge->load.weight * grq->avg.load_avg
3673  *   ge->avg.load_avg = -----------------------------------		(4)
3674  *                               grq->load.weight
3675  *
3676  * Except that is wrong!
3677  *
3678  * Because while for entities historical weight is not important and we
3679  * really only care about our future and therefore can consider a pure
3680  * runnable sum, runqueues can NOT do this.
3681  *
3682  * We specifically want runqueues to have a load_avg that includes
3683  * historical weights. Those represent the blocked load, the load we expect
3684  * to (shortly) return to us. This only works by keeping the weights as
3685  * integral part of the sum. We therefore cannot decompose as per (3).
3686  *
3687  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3688  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3689  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3690  * runnable section of these tasks overlap (or not). If they were to perfectly
3691  * align the rq as a whole would be runnable 2/3 of the time. If however we
3692  * always have at least 1 runnable task, the rq as a whole is always runnable.
3693  *
3694  * So we'll have to approximate.. :/
3695  *
3696  * Given the constraint:
3697  *
3698  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3699  *
3700  * We can construct a rule that adds runnable to a rq by assuming minimal
3701  * overlap.
3702  *
3703  * On removal, we'll assume each task is equally runnable; which yields:
3704  *
3705  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3706  *
3707  * XXX: only do this for the part of runnable > running ?
3708  *
3709  */
3710 static inline void
3711 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3712 {
3713 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
3714 	u32 new_sum, divider;
3715 
3716 	/* Nothing to update */
3717 	if (!delta_avg)
3718 		return;
3719 
3720 	/*
3721 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3722 	 * See ___update_load_avg() for details.
3723 	 */
3724 	divider = get_pelt_divider(&cfs_rq->avg);
3725 
3726 
3727 	/* Set new sched_entity's utilization */
3728 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3729 	new_sum = se->avg.util_avg * divider;
3730 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
3731 	se->avg.util_sum = new_sum;
3732 
3733 	/* Update parent cfs_rq utilization */
3734 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
3735 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
3736 
3737 	/* See update_cfs_rq_load_avg() */
3738 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
3739 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
3740 }
3741 
3742 static inline void
3743 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3744 {
3745 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3746 	u32 new_sum, divider;
3747 
3748 	/* Nothing to update */
3749 	if (!delta_avg)
3750 		return;
3751 
3752 	/*
3753 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3754 	 * See ___update_load_avg() for details.
3755 	 */
3756 	divider = get_pelt_divider(&cfs_rq->avg);
3757 
3758 	/* Set new sched_entity's runnable */
3759 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3760 	new_sum = se->avg.runnable_avg * divider;
3761 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
3762 	se->avg.runnable_sum = new_sum;
3763 
3764 	/* Update parent cfs_rq runnable */
3765 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
3766 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
3767 	/* See update_cfs_rq_load_avg() */
3768 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
3769 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
3770 }
3771 
3772 static inline void
3773 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3774 {
3775 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3776 	unsigned long load_avg;
3777 	u64 load_sum = 0;
3778 	s64 delta_sum;
3779 	u32 divider;
3780 
3781 	if (!runnable_sum)
3782 		return;
3783 
3784 	gcfs_rq->prop_runnable_sum = 0;
3785 
3786 	/*
3787 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3788 	 * See ___update_load_avg() for details.
3789 	 */
3790 	divider = get_pelt_divider(&cfs_rq->avg);
3791 
3792 	if (runnable_sum >= 0) {
3793 		/*
3794 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3795 		 * the CPU is saturated running == runnable.
3796 		 */
3797 		runnable_sum += se->avg.load_sum;
3798 		runnable_sum = min_t(long, runnable_sum, divider);
3799 	} else {
3800 		/*
3801 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3802 		 * assuming all tasks are equally runnable.
3803 		 */
3804 		if (scale_load_down(gcfs_rq->load.weight)) {
3805 			load_sum = div_u64(gcfs_rq->avg.load_sum,
3806 				scale_load_down(gcfs_rq->load.weight));
3807 		}
3808 
3809 		/* But make sure to not inflate se's runnable */
3810 		runnable_sum = min(se->avg.load_sum, load_sum);
3811 	}
3812 
3813 	/*
3814 	 * runnable_sum can't be lower than running_sum
3815 	 * Rescale running sum to be in the same range as runnable sum
3816 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3817 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3818 	 */
3819 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3820 	runnable_sum = max(runnable_sum, running_sum);
3821 
3822 	load_sum = se_weight(se) * runnable_sum;
3823 	load_avg = div_u64(load_sum, divider);
3824 
3825 	delta_avg = load_avg - se->avg.load_avg;
3826 	if (!delta_avg)
3827 		return;
3828 
3829 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3830 
3831 	se->avg.load_sum = runnable_sum;
3832 	se->avg.load_avg = load_avg;
3833 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3834 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3835 	/* See update_cfs_rq_load_avg() */
3836 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3837 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3838 }
3839 
3840 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3841 {
3842 	cfs_rq->propagate = 1;
3843 	cfs_rq->prop_runnable_sum += runnable_sum;
3844 }
3845 
3846 /* Update task and its cfs_rq load average */
3847 static inline int propagate_entity_load_avg(struct sched_entity *se)
3848 {
3849 	struct cfs_rq *cfs_rq, *gcfs_rq;
3850 
3851 	if (entity_is_task(se))
3852 		return 0;
3853 
3854 	gcfs_rq = group_cfs_rq(se);
3855 	if (!gcfs_rq->propagate)
3856 		return 0;
3857 
3858 	gcfs_rq->propagate = 0;
3859 
3860 	cfs_rq = cfs_rq_of(se);
3861 
3862 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3863 
3864 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3865 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3866 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3867 
3868 	trace_pelt_cfs_tp(cfs_rq);
3869 	trace_pelt_se_tp(se);
3870 
3871 	return 1;
3872 }
3873 
3874 /*
3875  * Check if we need to update the load and the utilization of a blocked
3876  * group_entity:
3877  */
3878 static inline bool skip_blocked_update(struct sched_entity *se)
3879 {
3880 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3881 
3882 	/*
3883 	 * If sched_entity still have not zero load or utilization, we have to
3884 	 * decay it:
3885 	 */
3886 	if (se->avg.load_avg || se->avg.util_avg)
3887 		return false;
3888 
3889 	/*
3890 	 * If there is a pending propagation, we have to update the load and
3891 	 * the utilization of the sched_entity:
3892 	 */
3893 	if (gcfs_rq->propagate)
3894 		return false;
3895 
3896 	/*
3897 	 * Otherwise, the load and the utilization of the sched_entity is
3898 	 * already zero and there is no pending propagation, so it will be a
3899 	 * waste of time to try to decay it:
3900 	 */
3901 	return true;
3902 }
3903 
3904 #else /* CONFIG_FAIR_GROUP_SCHED */
3905 
3906 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3907 
3908 static inline int propagate_entity_load_avg(struct sched_entity *se)
3909 {
3910 	return 0;
3911 }
3912 
3913 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3914 
3915 #endif /* CONFIG_FAIR_GROUP_SCHED */
3916 
3917 #ifdef CONFIG_NO_HZ_COMMON
3918 static inline void migrate_se_pelt_lag(struct sched_entity *se)
3919 {
3920 	u64 throttled = 0, now, lut;
3921 	struct cfs_rq *cfs_rq;
3922 	struct rq *rq;
3923 	bool is_idle;
3924 
3925 	if (load_avg_is_decayed(&se->avg))
3926 		return;
3927 
3928 	cfs_rq = cfs_rq_of(se);
3929 	rq = rq_of(cfs_rq);
3930 
3931 	rcu_read_lock();
3932 	is_idle = is_idle_task(rcu_dereference(rq->curr));
3933 	rcu_read_unlock();
3934 
3935 	/*
3936 	 * The lag estimation comes with a cost we don't want to pay all the
3937 	 * time. Hence, limiting to the case where the source CPU is idle and
3938 	 * we know we are at the greatest risk to have an outdated clock.
3939 	 */
3940 	if (!is_idle)
3941 		return;
3942 
3943 	/*
3944 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
3945 	 *
3946 	 *   last_update_time (the cfs_rq's last_update_time)
3947 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
3948 	 *      = rq_clock_pelt()@cfs_rq_idle
3949 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
3950 	 *
3951 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
3952 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
3953 	 *
3954 	 *   rq_idle_lag (delta between now and rq's update)
3955 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
3956 	 *
3957 	 * We can then write:
3958 	 *
3959 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
3960 	 *          sched_clock_cpu() - rq_clock()@rq_idle
3961 	 * Where:
3962 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
3963 	 *      rq_clock()@rq_idle      is rq->clock_idle
3964 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
3965 	 *                              is cfs_rq->throttled_pelt_idle
3966 	 */
3967 
3968 #ifdef CONFIG_CFS_BANDWIDTH
3969 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
3970 	/* The clock has been stopped for throttling */
3971 	if (throttled == U64_MAX)
3972 		return;
3973 #endif
3974 	now = u64_u32_load(rq->clock_pelt_idle);
3975 	/*
3976 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
3977 	 * is observed the old clock_pelt_idle value and the new clock_idle,
3978 	 * which lead to an underestimation. The opposite would lead to an
3979 	 * overestimation.
3980 	 */
3981 	smp_rmb();
3982 	lut = cfs_rq_last_update_time(cfs_rq);
3983 
3984 	now -= throttled;
3985 	if (now < lut)
3986 		/*
3987 		 * cfs_rq->avg.last_update_time is more recent than our
3988 		 * estimation, let's use it.
3989 		 */
3990 		now = lut;
3991 	else
3992 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
3993 
3994 	__update_load_avg_blocked_se(now, se);
3995 }
3996 #else
3997 static void migrate_se_pelt_lag(struct sched_entity *se) {}
3998 #endif
3999 
4000 /**
4001  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4002  * @now: current time, as per cfs_rq_clock_pelt()
4003  * @cfs_rq: cfs_rq to update
4004  *
4005  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4006  * avg. The immediate corollary is that all (fair) tasks must be attached.
4007  *
4008  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4009  *
4010  * Return: true if the load decayed or we removed load.
4011  *
4012  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4013  * call update_tg_load_avg() when this function returns true.
4014  */
4015 static inline int
4016 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4017 {
4018 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4019 	struct sched_avg *sa = &cfs_rq->avg;
4020 	int decayed = 0;
4021 
4022 	if (cfs_rq->removed.nr) {
4023 		unsigned long r;
4024 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4025 
4026 		raw_spin_lock(&cfs_rq->removed.lock);
4027 		swap(cfs_rq->removed.util_avg, removed_util);
4028 		swap(cfs_rq->removed.load_avg, removed_load);
4029 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4030 		cfs_rq->removed.nr = 0;
4031 		raw_spin_unlock(&cfs_rq->removed.lock);
4032 
4033 		r = removed_load;
4034 		sub_positive(&sa->load_avg, r);
4035 		sub_positive(&sa->load_sum, r * divider);
4036 		/* See sa->util_sum below */
4037 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4038 
4039 		r = removed_util;
4040 		sub_positive(&sa->util_avg, r);
4041 		sub_positive(&sa->util_sum, r * divider);
4042 		/*
4043 		 * Because of rounding, se->util_sum might ends up being +1 more than
4044 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4045 		 * a lot of tasks with the rounding problem between 2 updates of
4046 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4047 		 * cfs_util_avg is not.
4048 		 * Check that util_sum is still above its lower bound for the new
4049 		 * util_avg. Given that period_contrib might have moved since the last
4050 		 * sync, we are only sure that util_sum must be above or equal to
4051 		 *    util_avg * minimum possible divider
4052 		 */
4053 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4054 
4055 		r = removed_runnable;
4056 		sub_positive(&sa->runnable_avg, r);
4057 		sub_positive(&sa->runnable_sum, r * divider);
4058 		/* See sa->util_sum above */
4059 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4060 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4061 
4062 		/*
4063 		 * removed_runnable is the unweighted version of removed_load so we
4064 		 * can use it to estimate removed_load_sum.
4065 		 */
4066 		add_tg_cfs_propagate(cfs_rq,
4067 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4068 
4069 		decayed = 1;
4070 	}
4071 
4072 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4073 	u64_u32_store_copy(sa->last_update_time,
4074 			   cfs_rq->last_update_time_copy,
4075 			   sa->last_update_time);
4076 	return decayed;
4077 }
4078 
4079 /**
4080  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4081  * @cfs_rq: cfs_rq to attach to
4082  * @se: sched_entity to attach
4083  *
4084  * Must call update_cfs_rq_load_avg() before this, since we rely on
4085  * cfs_rq->avg.last_update_time being current.
4086  */
4087 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4088 {
4089 	/*
4090 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4091 	 * See ___update_load_avg() for details.
4092 	 */
4093 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4094 
4095 	/*
4096 	 * When we attach the @se to the @cfs_rq, we must align the decay
4097 	 * window because without that, really weird and wonderful things can
4098 	 * happen.
4099 	 *
4100 	 * XXX illustrate
4101 	 */
4102 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4103 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4104 
4105 	/*
4106 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4107 	 * period_contrib. This isn't strictly correct, but since we're
4108 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4109 	 * _sum a little.
4110 	 */
4111 	se->avg.util_sum = se->avg.util_avg * divider;
4112 
4113 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4114 
4115 	se->avg.load_sum = se->avg.load_avg * divider;
4116 	if (se_weight(se) < se->avg.load_sum)
4117 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4118 	else
4119 		se->avg.load_sum = 1;
4120 
4121 	enqueue_load_avg(cfs_rq, se);
4122 	cfs_rq->avg.util_avg += se->avg.util_avg;
4123 	cfs_rq->avg.util_sum += se->avg.util_sum;
4124 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4125 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4126 
4127 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4128 
4129 	cfs_rq_util_change(cfs_rq, 0);
4130 
4131 	trace_pelt_cfs_tp(cfs_rq);
4132 }
4133 
4134 /**
4135  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4136  * @cfs_rq: cfs_rq to detach from
4137  * @se: sched_entity to detach
4138  *
4139  * Must call update_cfs_rq_load_avg() before this, since we rely on
4140  * cfs_rq->avg.last_update_time being current.
4141  */
4142 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4143 {
4144 	dequeue_load_avg(cfs_rq, se);
4145 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4146 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4147 	/* See update_cfs_rq_load_avg() */
4148 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4149 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4150 
4151 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4152 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4153 	/* See update_cfs_rq_load_avg() */
4154 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4155 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4156 
4157 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4158 
4159 	cfs_rq_util_change(cfs_rq, 0);
4160 
4161 	trace_pelt_cfs_tp(cfs_rq);
4162 }
4163 
4164 /*
4165  * Optional action to be done while updating the load average
4166  */
4167 #define UPDATE_TG	0x1
4168 #define SKIP_AGE_LOAD	0x2
4169 #define DO_ATTACH	0x4
4170 #define DO_DETACH	0x8
4171 
4172 /* Update task and its cfs_rq load average */
4173 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4174 {
4175 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4176 	int decayed;
4177 
4178 	/*
4179 	 * Track task load average for carrying it to new CPU after migrated, and
4180 	 * track group sched_entity load average for task_h_load calc in migration
4181 	 */
4182 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4183 		__update_load_avg_se(now, cfs_rq, se);
4184 
4185 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4186 	decayed |= propagate_entity_load_avg(se);
4187 
4188 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4189 
4190 		/*
4191 		 * DO_ATTACH means we're here from enqueue_entity().
4192 		 * !last_update_time means we've passed through
4193 		 * migrate_task_rq_fair() indicating we migrated.
4194 		 *
4195 		 * IOW we're enqueueing a task on a new CPU.
4196 		 */
4197 		attach_entity_load_avg(cfs_rq, se);
4198 		update_tg_load_avg(cfs_rq);
4199 
4200 	} else if (flags & DO_DETACH) {
4201 		/*
4202 		 * DO_DETACH means we're here from dequeue_entity()
4203 		 * and we are migrating task out of the CPU.
4204 		 */
4205 		detach_entity_load_avg(cfs_rq, se);
4206 		update_tg_load_avg(cfs_rq);
4207 	} else if (decayed) {
4208 		cfs_rq_util_change(cfs_rq, 0);
4209 
4210 		if (flags & UPDATE_TG)
4211 			update_tg_load_avg(cfs_rq);
4212 	}
4213 }
4214 
4215 /*
4216  * Synchronize entity load avg of dequeued entity without locking
4217  * the previous rq.
4218  */
4219 static void sync_entity_load_avg(struct sched_entity *se)
4220 {
4221 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4222 	u64 last_update_time;
4223 
4224 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4225 	__update_load_avg_blocked_se(last_update_time, se);
4226 }
4227 
4228 /*
4229  * Task first catches up with cfs_rq, and then subtract
4230  * itself from the cfs_rq (task must be off the queue now).
4231  */
4232 static void remove_entity_load_avg(struct sched_entity *se)
4233 {
4234 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4235 	unsigned long flags;
4236 
4237 	/*
4238 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4239 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4240 	 * so we can remove unconditionally.
4241 	 */
4242 
4243 	sync_entity_load_avg(se);
4244 
4245 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4246 	++cfs_rq->removed.nr;
4247 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4248 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4249 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4250 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4251 }
4252 
4253 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4254 {
4255 	return cfs_rq->avg.runnable_avg;
4256 }
4257 
4258 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4259 {
4260 	return cfs_rq->avg.load_avg;
4261 }
4262 
4263 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4264 
4265 static inline unsigned long task_util(struct task_struct *p)
4266 {
4267 	return READ_ONCE(p->se.avg.util_avg);
4268 }
4269 
4270 static inline unsigned long _task_util_est(struct task_struct *p)
4271 {
4272 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
4273 
4274 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4275 }
4276 
4277 static inline unsigned long task_util_est(struct task_struct *p)
4278 {
4279 	return max(task_util(p), _task_util_est(p));
4280 }
4281 
4282 #ifdef CONFIG_UCLAMP_TASK
4283 static inline unsigned long uclamp_task_util(struct task_struct *p)
4284 {
4285 	return clamp(task_util_est(p),
4286 		     uclamp_eff_value(p, UCLAMP_MIN),
4287 		     uclamp_eff_value(p, UCLAMP_MAX));
4288 }
4289 #else
4290 static inline unsigned long uclamp_task_util(struct task_struct *p)
4291 {
4292 	return task_util_est(p);
4293 }
4294 #endif
4295 
4296 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4297 				    struct task_struct *p)
4298 {
4299 	unsigned int enqueued;
4300 
4301 	if (!sched_feat(UTIL_EST))
4302 		return;
4303 
4304 	/* Update root cfs_rq's estimated utilization */
4305 	enqueued  = cfs_rq->avg.util_est.enqueued;
4306 	enqueued += _task_util_est(p);
4307 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4308 
4309 	trace_sched_util_est_cfs_tp(cfs_rq);
4310 }
4311 
4312 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4313 				    struct task_struct *p)
4314 {
4315 	unsigned int enqueued;
4316 
4317 	if (!sched_feat(UTIL_EST))
4318 		return;
4319 
4320 	/* Update root cfs_rq's estimated utilization */
4321 	enqueued  = cfs_rq->avg.util_est.enqueued;
4322 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4323 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4324 
4325 	trace_sched_util_est_cfs_tp(cfs_rq);
4326 }
4327 
4328 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4329 
4330 /*
4331  * Check if a (signed) value is within a specified (unsigned) margin,
4332  * based on the observation that:
4333  *
4334  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4335  *
4336  * NOTE: this only works when value + margin < INT_MAX.
4337  */
4338 static inline bool within_margin(int value, int margin)
4339 {
4340 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4341 }
4342 
4343 static inline void util_est_update(struct cfs_rq *cfs_rq,
4344 				   struct task_struct *p,
4345 				   bool task_sleep)
4346 {
4347 	long last_ewma_diff, last_enqueued_diff;
4348 	struct util_est ue;
4349 
4350 	if (!sched_feat(UTIL_EST))
4351 		return;
4352 
4353 	/*
4354 	 * Skip update of task's estimated utilization when the task has not
4355 	 * yet completed an activation, e.g. being migrated.
4356 	 */
4357 	if (!task_sleep)
4358 		return;
4359 
4360 	/*
4361 	 * If the PELT values haven't changed since enqueue time,
4362 	 * skip the util_est update.
4363 	 */
4364 	ue = p->se.avg.util_est;
4365 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4366 		return;
4367 
4368 	last_enqueued_diff = ue.enqueued;
4369 
4370 	/*
4371 	 * Reset EWMA on utilization increases, the moving average is used only
4372 	 * to smooth utilization decreases.
4373 	 */
4374 	ue.enqueued = task_util(p);
4375 	if (sched_feat(UTIL_EST_FASTUP)) {
4376 		if (ue.ewma < ue.enqueued) {
4377 			ue.ewma = ue.enqueued;
4378 			goto done;
4379 		}
4380 	}
4381 
4382 	/*
4383 	 * Skip update of task's estimated utilization when its members are
4384 	 * already ~1% close to its last activation value.
4385 	 */
4386 	last_ewma_diff = ue.enqueued - ue.ewma;
4387 	last_enqueued_diff -= ue.enqueued;
4388 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4389 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4390 			goto done;
4391 
4392 		return;
4393 	}
4394 
4395 	/*
4396 	 * To avoid overestimation of actual task utilization, skip updates if
4397 	 * we cannot grant there is idle time in this CPU.
4398 	 */
4399 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4400 		return;
4401 
4402 	/*
4403 	 * Update Task's estimated utilization
4404 	 *
4405 	 * When *p completes an activation we can consolidate another sample
4406 	 * of the task size. This is done by storing the current PELT value
4407 	 * as ue.enqueued and by using this value to update the Exponential
4408 	 * Weighted Moving Average (EWMA):
4409 	 *
4410 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4411 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4412 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4413 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4414 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4415 	 *
4416 	 * Where 'w' is the weight of new samples, which is configured to be
4417 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4418 	 */
4419 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4420 	ue.ewma  += last_ewma_diff;
4421 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4422 done:
4423 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4424 	WRITE_ONCE(p->se.avg.util_est, ue);
4425 
4426 	trace_sched_util_est_se_tp(&p->se);
4427 }
4428 
4429 static inline int task_fits_capacity(struct task_struct *p,
4430 				     unsigned long capacity)
4431 {
4432 	return fits_capacity(uclamp_task_util(p), capacity);
4433 }
4434 
4435 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4436 {
4437 	if (!sched_asym_cpucap_active())
4438 		return;
4439 
4440 	if (!p || p->nr_cpus_allowed == 1) {
4441 		rq->misfit_task_load = 0;
4442 		return;
4443 	}
4444 
4445 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4446 		rq->misfit_task_load = 0;
4447 		return;
4448 	}
4449 
4450 	/*
4451 	 * Make sure that misfit_task_load will not be null even if
4452 	 * task_h_load() returns 0.
4453 	 */
4454 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4455 }
4456 
4457 #else /* CONFIG_SMP */
4458 
4459 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4460 {
4461 	return true;
4462 }
4463 
4464 #define UPDATE_TG	0x0
4465 #define SKIP_AGE_LOAD	0x0
4466 #define DO_ATTACH	0x0
4467 #define DO_DETACH	0x0
4468 
4469 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4470 {
4471 	cfs_rq_util_change(cfs_rq, 0);
4472 }
4473 
4474 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4475 
4476 static inline void
4477 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4478 static inline void
4479 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4480 
4481 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4482 {
4483 	return 0;
4484 }
4485 
4486 static inline void
4487 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4488 
4489 static inline void
4490 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4491 
4492 static inline void
4493 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4494 		bool task_sleep) {}
4495 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4496 
4497 #endif /* CONFIG_SMP */
4498 
4499 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4500 {
4501 #ifdef CONFIG_SCHED_DEBUG
4502 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4503 
4504 	if (d < 0)
4505 		d = -d;
4506 
4507 	if (d > 3*sysctl_sched_latency)
4508 		schedstat_inc(cfs_rq->nr_spread_over);
4509 #endif
4510 }
4511 
4512 static void
4513 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4514 {
4515 	u64 vruntime = cfs_rq->min_vruntime;
4516 
4517 	/*
4518 	 * The 'current' period is already promised to the current tasks,
4519 	 * however the extra weight of the new task will slow them down a
4520 	 * little, place the new task so that it fits in the slot that
4521 	 * stays open at the end.
4522 	 */
4523 	if (initial && sched_feat(START_DEBIT))
4524 		vruntime += sched_vslice(cfs_rq, se);
4525 
4526 	/* sleeps up to a single latency don't count. */
4527 	if (!initial) {
4528 		unsigned long thresh;
4529 
4530 		if (se_is_idle(se))
4531 			thresh = sysctl_sched_min_granularity;
4532 		else
4533 			thresh = sysctl_sched_latency;
4534 
4535 		/*
4536 		 * Halve their sleep time's effect, to allow
4537 		 * for a gentler effect of sleepers:
4538 		 */
4539 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4540 			thresh >>= 1;
4541 
4542 		vruntime -= thresh;
4543 	}
4544 
4545 	/* ensure we never gain time by being placed backwards. */
4546 	se->vruntime = max_vruntime(se->vruntime, vruntime);
4547 }
4548 
4549 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4550 
4551 static inline bool cfs_bandwidth_used(void);
4552 
4553 /*
4554  * MIGRATION
4555  *
4556  *	dequeue
4557  *	  update_curr()
4558  *	    update_min_vruntime()
4559  *	  vruntime -= min_vruntime
4560  *
4561  *	enqueue
4562  *	  update_curr()
4563  *	    update_min_vruntime()
4564  *	  vruntime += min_vruntime
4565  *
4566  * this way the vruntime transition between RQs is done when both
4567  * min_vruntime are up-to-date.
4568  *
4569  * WAKEUP (remote)
4570  *
4571  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4572  *	  vruntime -= min_vruntime
4573  *
4574  *	enqueue
4575  *	  update_curr()
4576  *	    update_min_vruntime()
4577  *	  vruntime += min_vruntime
4578  *
4579  * this way we don't have the most up-to-date min_vruntime on the originating
4580  * CPU and an up-to-date min_vruntime on the destination CPU.
4581  */
4582 
4583 static void
4584 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4585 {
4586 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4587 	bool curr = cfs_rq->curr == se;
4588 
4589 	/*
4590 	 * If we're the current task, we must renormalise before calling
4591 	 * update_curr().
4592 	 */
4593 	if (renorm && curr)
4594 		se->vruntime += cfs_rq->min_vruntime;
4595 
4596 	update_curr(cfs_rq);
4597 
4598 	/*
4599 	 * Otherwise, renormalise after, such that we're placed at the current
4600 	 * moment in time, instead of some random moment in the past. Being
4601 	 * placed in the past could significantly boost this task to the
4602 	 * fairness detriment of existing tasks.
4603 	 */
4604 	if (renorm && !curr)
4605 		se->vruntime += cfs_rq->min_vruntime;
4606 
4607 	/*
4608 	 * When enqueuing a sched_entity, we must:
4609 	 *   - Update loads to have both entity and cfs_rq synced with now.
4610 	 *   - For group_entity, update its runnable_weight to reflect the new
4611 	 *     h_nr_running of its group cfs_rq.
4612 	 *   - For group_entity, update its weight to reflect the new share of
4613 	 *     its group cfs_rq
4614 	 *   - Add its new weight to cfs_rq->load.weight
4615 	 */
4616 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4617 	se_update_runnable(se);
4618 	update_cfs_group(se);
4619 	account_entity_enqueue(cfs_rq, se);
4620 
4621 	if (flags & ENQUEUE_WAKEUP)
4622 		place_entity(cfs_rq, se, 0);
4623 
4624 	check_schedstat_required();
4625 	update_stats_enqueue_fair(cfs_rq, se, flags);
4626 	check_spread(cfs_rq, se);
4627 	if (!curr)
4628 		__enqueue_entity(cfs_rq, se);
4629 	se->on_rq = 1;
4630 
4631 	if (cfs_rq->nr_running == 1) {
4632 		check_enqueue_throttle(cfs_rq);
4633 		if (!throttled_hierarchy(cfs_rq))
4634 			list_add_leaf_cfs_rq(cfs_rq);
4635 	}
4636 }
4637 
4638 static void __clear_buddies_last(struct sched_entity *se)
4639 {
4640 	for_each_sched_entity(se) {
4641 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4642 		if (cfs_rq->last != se)
4643 			break;
4644 
4645 		cfs_rq->last = NULL;
4646 	}
4647 }
4648 
4649 static void __clear_buddies_next(struct sched_entity *se)
4650 {
4651 	for_each_sched_entity(se) {
4652 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4653 		if (cfs_rq->next != se)
4654 			break;
4655 
4656 		cfs_rq->next = NULL;
4657 	}
4658 }
4659 
4660 static void __clear_buddies_skip(struct sched_entity *se)
4661 {
4662 	for_each_sched_entity(se) {
4663 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4664 		if (cfs_rq->skip != se)
4665 			break;
4666 
4667 		cfs_rq->skip = NULL;
4668 	}
4669 }
4670 
4671 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4672 {
4673 	if (cfs_rq->last == se)
4674 		__clear_buddies_last(se);
4675 
4676 	if (cfs_rq->next == se)
4677 		__clear_buddies_next(se);
4678 
4679 	if (cfs_rq->skip == se)
4680 		__clear_buddies_skip(se);
4681 }
4682 
4683 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4684 
4685 static void
4686 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4687 {
4688 	int action = UPDATE_TG;
4689 
4690 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
4691 		action |= DO_DETACH;
4692 
4693 	/*
4694 	 * Update run-time statistics of the 'current'.
4695 	 */
4696 	update_curr(cfs_rq);
4697 
4698 	/*
4699 	 * When dequeuing a sched_entity, we must:
4700 	 *   - Update loads to have both entity and cfs_rq synced with now.
4701 	 *   - For group_entity, update its runnable_weight to reflect the new
4702 	 *     h_nr_running of its group cfs_rq.
4703 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4704 	 *   - For group entity, update its weight to reflect the new share
4705 	 *     of its group cfs_rq.
4706 	 */
4707 	update_load_avg(cfs_rq, se, action);
4708 	se_update_runnable(se);
4709 
4710 	update_stats_dequeue_fair(cfs_rq, se, flags);
4711 
4712 	clear_buddies(cfs_rq, se);
4713 
4714 	if (se != cfs_rq->curr)
4715 		__dequeue_entity(cfs_rq, se);
4716 	se->on_rq = 0;
4717 	account_entity_dequeue(cfs_rq, se);
4718 
4719 	/*
4720 	 * Normalize after update_curr(); which will also have moved
4721 	 * min_vruntime if @se is the one holding it back. But before doing
4722 	 * update_min_vruntime() again, which will discount @se's position and
4723 	 * can move min_vruntime forward still more.
4724 	 */
4725 	if (!(flags & DEQUEUE_SLEEP))
4726 		se->vruntime -= cfs_rq->min_vruntime;
4727 
4728 	/* return excess runtime on last dequeue */
4729 	return_cfs_rq_runtime(cfs_rq);
4730 
4731 	update_cfs_group(se);
4732 
4733 	/*
4734 	 * Now advance min_vruntime if @se was the entity holding it back,
4735 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4736 	 * put back on, and if we advance min_vruntime, we'll be placed back
4737 	 * further than we started -- ie. we'll be penalized.
4738 	 */
4739 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4740 		update_min_vruntime(cfs_rq);
4741 
4742 	if (cfs_rq->nr_running == 0)
4743 		update_idle_cfs_rq_clock_pelt(cfs_rq);
4744 }
4745 
4746 /*
4747  * Preempt the current task with a newly woken task if needed:
4748  */
4749 static void
4750 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4751 {
4752 	unsigned long ideal_runtime, delta_exec;
4753 	struct sched_entity *se;
4754 	s64 delta;
4755 
4756 	ideal_runtime = sched_slice(cfs_rq, curr);
4757 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4758 	if (delta_exec > ideal_runtime) {
4759 		resched_curr(rq_of(cfs_rq));
4760 		/*
4761 		 * The current task ran long enough, ensure it doesn't get
4762 		 * re-elected due to buddy favours.
4763 		 */
4764 		clear_buddies(cfs_rq, curr);
4765 		return;
4766 	}
4767 
4768 	/*
4769 	 * Ensure that a task that missed wakeup preemption by a
4770 	 * narrow margin doesn't have to wait for a full slice.
4771 	 * This also mitigates buddy induced latencies under load.
4772 	 */
4773 	if (delta_exec < sysctl_sched_min_granularity)
4774 		return;
4775 
4776 	se = __pick_first_entity(cfs_rq);
4777 	delta = curr->vruntime - se->vruntime;
4778 
4779 	if (delta < 0)
4780 		return;
4781 
4782 	if (delta > ideal_runtime)
4783 		resched_curr(rq_of(cfs_rq));
4784 }
4785 
4786 static void
4787 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4788 {
4789 	clear_buddies(cfs_rq, se);
4790 
4791 	/* 'current' is not kept within the tree. */
4792 	if (se->on_rq) {
4793 		/*
4794 		 * Any task has to be enqueued before it get to execute on
4795 		 * a CPU. So account for the time it spent waiting on the
4796 		 * runqueue.
4797 		 */
4798 		update_stats_wait_end_fair(cfs_rq, se);
4799 		__dequeue_entity(cfs_rq, se);
4800 		update_load_avg(cfs_rq, se, UPDATE_TG);
4801 	}
4802 
4803 	update_stats_curr_start(cfs_rq, se);
4804 	cfs_rq->curr = se;
4805 
4806 	/*
4807 	 * Track our maximum slice length, if the CPU's load is at
4808 	 * least twice that of our own weight (i.e. dont track it
4809 	 * when there are only lesser-weight tasks around):
4810 	 */
4811 	if (schedstat_enabled() &&
4812 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4813 		struct sched_statistics *stats;
4814 
4815 		stats = __schedstats_from_se(se);
4816 		__schedstat_set(stats->slice_max,
4817 				max((u64)stats->slice_max,
4818 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4819 	}
4820 
4821 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4822 }
4823 
4824 static int
4825 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4826 
4827 /*
4828  * Pick the next process, keeping these things in mind, in this order:
4829  * 1) keep things fair between processes/task groups
4830  * 2) pick the "next" process, since someone really wants that to run
4831  * 3) pick the "last" process, for cache locality
4832  * 4) do not run the "skip" process, if something else is available
4833  */
4834 static struct sched_entity *
4835 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4836 {
4837 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4838 	struct sched_entity *se;
4839 
4840 	/*
4841 	 * If curr is set we have to see if its left of the leftmost entity
4842 	 * still in the tree, provided there was anything in the tree at all.
4843 	 */
4844 	if (!left || (curr && entity_before(curr, left)))
4845 		left = curr;
4846 
4847 	se = left; /* ideally we run the leftmost entity */
4848 
4849 	/*
4850 	 * Avoid running the skip buddy, if running something else can
4851 	 * be done without getting too unfair.
4852 	 */
4853 	if (cfs_rq->skip && cfs_rq->skip == se) {
4854 		struct sched_entity *second;
4855 
4856 		if (se == curr) {
4857 			second = __pick_first_entity(cfs_rq);
4858 		} else {
4859 			second = __pick_next_entity(se);
4860 			if (!second || (curr && entity_before(curr, second)))
4861 				second = curr;
4862 		}
4863 
4864 		if (second && wakeup_preempt_entity(second, left) < 1)
4865 			se = second;
4866 	}
4867 
4868 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4869 		/*
4870 		 * Someone really wants this to run. If it's not unfair, run it.
4871 		 */
4872 		se = cfs_rq->next;
4873 	} else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4874 		/*
4875 		 * Prefer last buddy, try to return the CPU to a preempted task.
4876 		 */
4877 		se = cfs_rq->last;
4878 	}
4879 
4880 	return se;
4881 }
4882 
4883 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4884 
4885 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4886 {
4887 	/*
4888 	 * If still on the runqueue then deactivate_task()
4889 	 * was not called and update_curr() has to be done:
4890 	 */
4891 	if (prev->on_rq)
4892 		update_curr(cfs_rq);
4893 
4894 	/* throttle cfs_rqs exceeding runtime */
4895 	check_cfs_rq_runtime(cfs_rq);
4896 
4897 	check_spread(cfs_rq, prev);
4898 
4899 	if (prev->on_rq) {
4900 		update_stats_wait_start_fair(cfs_rq, prev);
4901 		/* Put 'current' back into the tree. */
4902 		__enqueue_entity(cfs_rq, prev);
4903 		/* in !on_rq case, update occurred at dequeue */
4904 		update_load_avg(cfs_rq, prev, 0);
4905 	}
4906 	cfs_rq->curr = NULL;
4907 }
4908 
4909 static void
4910 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4911 {
4912 	/*
4913 	 * Update run-time statistics of the 'current'.
4914 	 */
4915 	update_curr(cfs_rq);
4916 
4917 	/*
4918 	 * Ensure that runnable average is periodically updated.
4919 	 */
4920 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4921 	update_cfs_group(curr);
4922 
4923 #ifdef CONFIG_SCHED_HRTICK
4924 	/*
4925 	 * queued ticks are scheduled to match the slice, so don't bother
4926 	 * validating it and just reschedule.
4927 	 */
4928 	if (queued) {
4929 		resched_curr(rq_of(cfs_rq));
4930 		return;
4931 	}
4932 	/*
4933 	 * don't let the period tick interfere with the hrtick preemption
4934 	 */
4935 	if (!sched_feat(DOUBLE_TICK) &&
4936 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4937 		return;
4938 #endif
4939 
4940 	if (cfs_rq->nr_running > 1)
4941 		check_preempt_tick(cfs_rq, curr);
4942 }
4943 
4944 
4945 /**************************************************
4946  * CFS bandwidth control machinery
4947  */
4948 
4949 #ifdef CONFIG_CFS_BANDWIDTH
4950 
4951 #ifdef CONFIG_JUMP_LABEL
4952 static struct static_key __cfs_bandwidth_used;
4953 
4954 static inline bool cfs_bandwidth_used(void)
4955 {
4956 	return static_key_false(&__cfs_bandwidth_used);
4957 }
4958 
4959 void cfs_bandwidth_usage_inc(void)
4960 {
4961 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4962 }
4963 
4964 void cfs_bandwidth_usage_dec(void)
4965 {
4966 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4967 }
4968 #else /* CONFIG_JUMP_LABEL */
4969 static bool cfs_bandwidth_used(void)
4970 {
4971 	return true;
4972 }
4973 
4974 void cfs_bandwidth_usage_inc(void) {}
4975 void cfs_bandwidth_usage_dec(void) {}
4976 #endif /* CONFIG_JUMP_LABEL */
4977 
4978 /*
4979  * default period for cfs group bandwidth.
4980  * default: 0.1s, units: nanoseconds
4981  */
4982 static inline u64 default_cfs_period(void)
4983 {
4984 	return 100000000ULL;
4985 }
4986 
4987 static inline u64 sched_cfs_bandwidth_slice(void)
4988 {
4989 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4990 }
4991 
4992 /*
4993  * Replenish runtime according to assigned quota. We use sched_clock_cpu
4994  * directly instead of rq->clock to avoid adding additional synchronization
4995  * around rq->lock.
4996  *
4997  * requires cfs_b->lock
4998  */
4999 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5000 {
5001 	s64 runtime;
5002 
5003 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5004 		return;
5005 
5006 	cfs_b->runtime += cfs_b->quota;
5007 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5008 	if (runtime > 0) {
5009 		cfs_b->burst_time += runtime;
5010 		cfs_b->nr_burst++;
5011 	}
5012 
5013 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5014 	cfs_b->runtime_snap = cfs_b->runtime;
5015 }
5016 
5017 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5018 {
5019 	return &tg->cfs_bandwidth;
5020 }
5021 
5022 /* returns 0 on failure to allocate runtime */
5023 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5024 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5025 {
5026 	u64 min_amount, amount = 0;
5027 
5028 	lockdep_assert_held(&cfs_b->lock);
5029 
5030 	/* note: this is a positive sum as runtime_remaining <= 0 */
5031 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5032 
5033 	if (cfs_b->quota == RUNTIME_INF)
5034 		amount = min_amount;
5035 	else {
5036 		start_cfs_bandwidth(cfs_b);
5037 
5038 		if (cfs_b->runtime > 0) {
5039 			amount = min(cfs_b->runtime, min_amount);
5040 			cfs_b->runtime -= amount;
5041 			cfs_b->idle = 0;
5042 		}
5043 	}
5044 
5045 	cfs_rq->runtime_remaining += amount;
5046 
5047 	return cfs_rq->runtime_remaining > 0;
5048 }
5049 
5050 /* returns 0 on failure to allocate runtime */
5051 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5052 {
5053 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5054 	int ret;
5055 
5056 	raw_spin_lock(&cfs_b->lock);
5057 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5058 	raw_spin_unlock(&cfs_b->lock);
5059 
5060 	return ret;
5061 }
5062 
5063 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5064 {
5065 	/* dock delta_exec before expiring quota (as it could span periods) */
5066 	cfs_rq->runtime_remaining -= delta_exec;
5067 
5068 	if (likely(cfs_rq->runtime_remaining > 0))
5069 		return;
5070 
5071 	if (cfs_rq->throttled)
5072 		return;
5073 	/*
5074 	 * if we're unable to extend our runtime we resched so that the active
5075 	 * hierarchy can be throttled
5076 	 */
5077 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5078 		resched_curr(rq_of(cfs_rq));
5079 }
5080 
5081 static __always_inline
5082 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5083 {
5084 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5085 		return;
5086 
5087 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5088 }
5089 
5090 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5091 {
5092 	return cfs_bandwidth_used() && cfs_rq->throttled;
5093 }
5094 
5095 /* check whether cfs_rq, or any parent, is throttled */
5096 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5097 {
5098 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5099 }
5100 
5101 /*
5102  * Ensure that neither of the group entities corresponding to src_cpu or
5103  * dest_cpu are members of a throttled hierarchy when performing group
5104  * load-balance operations.
5105  */
5106 static inline int throttled_lb_pair(struct task_group *tg,
5107 				    int src_cpu, int dest_cpu)
5108 {
5109 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5110 
5111 	src_cfs_rq = tg->cfs_rq[src_cpu];
5112 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5113 
5114 	return throttled_hierarchy(src_cfs_rq) ||
5115 	       throttled_hierarchy(dest_cfs_rq);
5116 }
5117 
5118 static int tg_unthrottle_up(struct task_group *tg, void *data)
5119 {
5120 	struct rq *rq = data;
5121 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5122 
5123 	cfs_rq->throttle_count--;
5124 	if (!cfs_rq->throttle_count) {
5125 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5126 					     cfs_rq->throttled_clock_pelt;
5127 
5128 		/* Add cfs_rq with load or one or more already running entities to the list */
5129 		if (!cfs_rq_is_decayed(cfs_rq))
5130 			list_add_leaf_cfs_rq(cfs_rq);
5131 	}
5132 
5133 	return 0;
5134 }
5135 
5136 static int tg_throttle_down(struct task_group *tg, void *data)
5137 {
5138 	struct rq *rq = data;
5139 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5140 
5141 	/* group is entering throttled state, stop time */
5142 	if (!cfs_rq->throttle_count) {
5143 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5144 		list_del_leaf_cfs_rq(cfs_rq);
5145 	}
5146 	cfs_rq->throttle_count++;
5147 
5148 	return 0;
5149 }
5150 
5151 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5152 {
5153 	struct rq *rq = rq_of(cfs_rq);
5154 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5155 	struct sched_entity *se;
5156 	long task_delta, idle_task_delta, dequeue = 1;
5157 
5158 	raw_spin_lock(&cfs_b->lock);
5159 	/* This will start the period timer if necessary */
5160 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5161 		/*
5162 		 * We have raced with bandwidth becoming available, and if we
5163 		 * actually throttled the timer might not unthrottle us for an
5164 		 * entire period. We additionally needed to make sure that any
5165 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5166 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5167 		 * for 1ns of runtime rather than just check cfs_b.
5168 		 */
5169 		dequeue = 0;
5170 	} else {
5171 		list_add_tail_rcu(&cfs_rq->throttled_list,
5172 				  &cfs_b->throttled_cfs_rq);
5173 	}
5174 	raw_spin_unlock(&cfs_b->lock);
5175 
5176 	if (!dequeue)
5177 		return false;  /* Throttle no longer required. */
5178 
5179 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5180 
5181 	/* freeze hierarchy runnable averages while throttled */
5182 	rcu_read_lock();
5183 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5184 	rcu_read_unlock();
5185 
5186 	task_delta = cfs_rq->h_nr_running;
5187 	idle_task_delta = cfs_rq->idle_h_nr_running;
5188 	for_each_sched_entity(se) {
5189 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5190 		/* throttled entity or throttle-on-deactivate */
5191 		if (!se->on_rq)
5192 			goto done;
5193 
5194 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5195 
5196 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5197 			idle_task_delta = cfs_rq->h_nr_running;
5198 
5199 		qcfs_rq->h_nr_running -= task_delta;
5200 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5201 
5202 		if (qcfs_rq->load.weight) {
5203 			/* Avoid re-evaluating load for this entity: */
5204 			se = parent_entity(se);
5205 			break;
5206 		}
5207 	}
5208 
5209 	for_each_sched_entity(se) {
5210 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5211 		/* throttled entity or throttle-on-deactivate */
5212 		if (!se->on_rq)
5213 			goto done;
5214 
5215 		update_load_avg(qcfs_rq, se, 0);
5216 		se_update_runnable(se);
5217 
5218 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5219 			idle_task_delta = cfs_rq->h_nr_running;
5220 
5221 		qcfs_rq->h_nr_running -= task_delta;
5222 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5223 	}
5224 
5225 	/* At this point se is NULL and we are at root level*/
5226 	sub_nr_running(rq, task_delta);
5227 
5228 done:
5229 	/*
5230 	 * Note: distribution will already see us throttled via the
5231 	 * throttled-list.  rq->lock protects completion.
5232 	 */
5233 	cfs_rq->throttled = 1;
5234 	cfs_rq->throttled_clock = rq_clock(rq);
5235 	return true;
5236 }
5237 
5238 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5239 {
5240 	struct rq *rq = rq_of(cfs_rq);
5241 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5242 	struct sched_entity *se;
5243 	long task_delta, idle_task_delta;
5244 
5245 	se = cfs_rq->tg->se[cpu_of(rq)];
5246 
5247 	cfs_rq->throttled = 0;
5248 
5249 	update_rq_clock(rq);
5250 
5251 	raw_spin_lock(&cfs_b->lock);
5252 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5253 	list_del_rcu(&cfs_rq->throttled_list);
5254 	raw_spin_unlock(&cfs_b->lock);
5255 
5256 	/* update hierarchical throttle state */
5257 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5258 
5259 	if (!cfs_rq->load.weight) {
5260 		if (!cfs_rq->on_list)
5261 			return;
5262 		/*
5263 		 * Nothing to run but something to decay (on_list)?
5264 		 * Complete the branch.
5265 		 */
5266 		for_each_sched_entity(se) {
5267 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5268 				break;
5269 		}
5270 		goto unthrottle_throttle;
5271 	}
5272 
5273 	task_delta = cfs_rq->h_nr_running;
5274 	idle_task_delta = cfs_rq->idle_h_nr_running;
5275 	for_each_sched_entity(se) {
5276 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5277 
5278 		if (se->on_rq)
5279 			break;
5280 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5281 
5282 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5283 			idle_task_delta = cfs_rq->h_nr_running;
5284 
5285 		qcfs_rq->h_nr_running += task_delta;
5286 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5287 
5288 		/* end evaluation on encountering a throttled cfs_rq */
5289 		if (cfs_rq_throttled(qcfs_rq))
5290 			goto unthrottle_throttle;
5291 	}
5292 
5293 	for_each_sched_entity(se) {
5294 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5295 
5296 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5297 		se_update_runnable(se);
5298 
5299 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5300 			idle_task_delta = cfs_rq->h_nr_running;
5301 
5302 		qcfs_rq->h_nr_running += task_delta;
5303 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5304 
5305 		/* end evaluation on encountering a throttled cfs_rq */
5306 		if (cfs_rq_throttled(qcfs_rq))
5307 			goto unthrottle_throttle;
5308 	}
5309 
5310 	/* At this point se is NULL and we are at root level*/
5311 	add_nr_running(rq, task_delta);
5312 
5313 unthrottle_throttle:
5314 	assert_list_leaf_cfs_rq(rq);
5315 
5316 	/* Determine whether we need to wake up potentially idle CPU: */
5317 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5318 		resched_curr(rq);
5319 }
5320 
5321 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5322 {
5323 	struct cfs_rq *cfs_rq;
5324 	u64 runtime, remaining = 1;
5325 
5326 	rcu_read_lock();
5327 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5328 				throttled_list) {
5329 		struct rq *rq = rq_of(cfs_rq);
5330 		struct rq_flags rf;
5331 
5332 		rq_lock_irqsave(rq, &rf);
5333 		if (!cfs_rq_throttled(cfs_rq))
5334 			goto next;
5335 
5336 		/* By the above check, this should never be true */
5337 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5338 
5339 		raw_spin_lock(&cfs_b->lock);
5340 		runtime = -cfs_rq->runtime_remaining + 1;
5341 		if (runtime > cfs_b->runtime)
5342 			runtime = cfs_b->runtime;
5343 		cfs_b->runtime -= runtime;
5344 		remaining = cfs_b->runtime;
5345 		raw_spin_unlock(&cfs_b->lock);
5346 
5347 		cfs_rq->runtime_remaining += runtime;
5348 
5349 		/* we check whether we're throttled above */
5350 		if (cfs_rq->runtime_remaining > 0)
5351 			unthrottle_cfs_rq(cfs_rq);
5352 
5353 next:
5354 		rq_unlock_irqrestore(rq, &rf);
5355 
5356 		if (!remaining)
5357 			break;
5358 	}
5359 	rcu_read_unlock();
5360 }
5361 
5362 /*
5363  * Responsible for refilling a task_group's bandwidth and unthrottling its
5364  * cfs_rqs as appropriate. If there has been no activity within the last
5365  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5366  * used to track this state.
5367  */
5368 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5369 {
5370 	int throttled;
5371 
5372 	/* no need to continue the timer with no bandwidth constraint */
5373 	if (cfs_b->quota == RUNTIME_INF)
5374 		goto out_deactivate;
5375 
5376 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5377 	cfs_b->nr_periods += overrun;
5378 
5379 	/* Refill extra burst quota even if cfs_b->idle */
5380 	__refill_cfs_bandwidth_runtime(cfs_b);
5381 
5382 	/*
5383 	 * idle depends on !throttled (for the case of a large deficit), and if
5384 	 * we're going inactive then everything else can be deferred
5385 	 */
5386 	if (cfs_b->idle && !throttled)
5387 		goto out_deactivate;
5388 
5389 	if (!throttled) {
5390 		/* mark as potentially idle for the upcoming period */
5391 		cfs_b->idle = 1;
5392 		return 0;
5393 	}
5394 
5395 	/* account preceding periods in which throttling occurred */
5396 	cfs_b->nr_throttled += overrun;
5397 
5398 	/*
5399 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
5400 	 */
5401 	while (throttled && cfs_b->runtime > 0) {
5402 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5403 		/* we can't nest cfs_b->lock while distributing bandwidth */
5404 		distribute_cfs_runtime(cfs_b);
5405 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
5406 
5407 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5408 	}
5409 
5410 	/*
5411 	 * While we are ensured activity in the period following an
5412 	 * unthrottle, this also covers the case in which the new bandwidth is
5413 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
5414 	 * timer to remain active while there are any throttled entities.)
5415 	 */
5416 	cfs_b->idle = 0;
5417 
5418 	return 0;
5419 
5420 out_deactivate:
5421 	return 1;
5422 }
5423 
5424 /* a cfs_rq won't donate quota below this amount */
5425 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5426 /* minimum remaining period time to redistribute slack quota */
5427 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5428 /* how long we wait to gather additional slack before distributing */
5429 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5430 
5431 /*
5432  * Are we near the end of the current quota period?
5433  *
5434  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5435  * hrtimer base being cleared by hrtimer_start. In the case of
5436  * migrate_hrtimers, base is never cleared, so we are fine.
5437  */
5438 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5439 {
5440 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
5441 	s64 remaining;
5442 
5443 	/* if the call-back is running a quota refresh is already occurring */
5444 	if (hrtimer_callback_running(refresh_timer))
5445 		return 1;
5446 
5447 	/* is a quota refresh about to occur? */
5448 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5449 	if (remaining < (s64)min_expire)
5450 		return 1;
5451 
5452 	return 0;
5453 }
5454 
5455 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5456 {
5457 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5458 
5459 	/* if there's a quota refresh soon don't bother with slack */
5460 	if (runtime_refresh_within(cfs_b, min_left))
5461 		return;
5462 
5463 	/* don't push forwards an existing deferred unthrottle */
5464 	if (cfs_b->slack_started)
5465 		return;
5466 	cfs_b->slack_started = true;
5467 
5468 	hrtimer_start(&cfs_b->slack_timer,
5469 			ns_to_ktime(cfs_bandwidth_slack_period),
5470 			HRTIMER_MODE_REL);
5471 }
5472 
5473 /* we know any runtime found here is valid as update_curr() precedes return */
5474 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5475 {
5476 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5477 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5478 
5479 	if (slack_runtime <= 0)
5480 		return;
5481 
5482 	raw_spin_lock(&cfs_b->lock);
5483 	if (cfs_b->quota != RUNTIME_INF) {
5484 		cfs_b->runtime += slack_runtime;
5485 
5486 		/* we are under rq->lock, defer unthrottling using a timer */
5487 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5488 		    !list_empty(&cfs_b->throttled_cfs_rq))
5489 			start_cfs_slack_bandwidth(cfs_b);
5490 	}
5491 	raw_spin_unlock(&cfs_b->lock);
5492 
5493 	/* even if it's not valid for return we don't want to try again */
5494 	cfs_rq->runtime_remaining -= slack_runtime;
5495 }
5496 
5497 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5498 {
5499 	if (!cfs_bandwidth_used())
5500 		return;
5501 
5502 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5503 		return;
5504 
5505 	__return_cfs_rq_runtime(cfs_rq);
5506 }
5507 
5508 /*
5509  * This is done with a timer (instead of inline with bandwidth return) since
5510  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5511  */
5512 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5513 {
5514 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5515 	unsigned long flags;
5516 
5517 	/* confirm we're still not at a refresh boundary */
5518 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5519 	cfs_b->slack_started = false;
5520 
5521 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5522 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5523 		return;
5524 	}
5525 
5526 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5527 		runtime = cfs_b->runtime;
5528 
5529 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5530 
5531 	if (!runtime)
5532 		return;
5533 
5534 	distribute_cfs_runtime(cfs_b);
5535 }
5536 
5537 /*
5538  * When a group wakes up we want to make sure that its quota is not already
5539  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5540  * runtime as update_curr() throttling can not trigger until it's on-rq.
5541  */
5542 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5543 {
5544 	if (!cfs_bandwidth_used())
5545 		return;
5546 
5547 	/* an active group must be handled by the update_curr()->put() path */
5548 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5549 		return;
5550 
5551 	/* ensure the group is not already throttled */
5552 	if (cfs_rq_throttled(cfs_rq))
5553 		return;
5554 
5555 	/* update runtime allocation */
5556 	account_cfs_rq_runtime(cfs_rq, 0);
5557 	if (cfs_rq->runtime_remaining <= 0)
5558 		throttle_cfs_rq(cfs_rq);
5559 }
5560 
5561 static void sync_throttle(struct task_group *tg, int cpu)
5562 {
5563 	struct cfs_rq *pcfs_rq, *cfs_rq;
5564 
5565 	if (!cfs_bandwidth_used())
5566 		return;
5567 
5568 	if (!tg->parent)
5569 		return;
5570 
5571 	cfs_rq = tg->cfs_rq[cpu];
5572 	pcfs_rq = tg->parent->cfs_rq[cpu];
5573 
5574 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5575 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
5576 }
5577 
5578 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5579 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5580 {
5581 	if (!cfs_bandwidth_used())
5582 		return false;
5583 
5584 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5585 		return false;
5586 
5587 	/*
5588 	 * it's possible for a throttled entity to be forced into a running
5589 	 * state (e.g. set_curr_task), in this case we're finished.
5590 	 */
5591 	if (cfs_rq_throttled(cfs_rq))
5592 		return true;
5593 
5594 	return throttle_cfs_rq(cfs_rq);
5595 }
5596 
5597 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5598 {
5599 	struct cfs_bandwidth *cfs_b =
5600 		container_of(timer, struct cfs_bandwidth, slack_timer);
5601 
5602 	do_sched_cfs_slack_timer(cfs_b);
5603 
5604 	return HRTIMER_NORESTART;
5605 }
5606 
5607 extern const u64 max_cfs_quota_period;
5608 
5609 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5610 {
5611 	struct cfs_bandwidth *cfs_b =
5612 		container_of(timer, struct cfs_bandwidth, period_timer);
5613 	unsigned long flags;
5614 	int overrun;
5615 	int idle = 0;
5616 	int count = 0;
5617 
5618 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5619 	for (;;) {
5620 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5621 		if (!overrun)
5622 			break;
5623 
5624 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5625 
5626 		if (++count > 3) {
5627 			u64 new, old = ktime_to_ns(cfs_b->period);
5628 
5629 			/*
5630 			 * Grow period by a factor of 2 to avoid losing precision.
5631 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5632 			 * to fail.
5633 			 */
5634 			new = old * 2;
5635 			if (new < max_cfs_quota_period) {
5636 				cfs_b->period = ns_to_ktime(new);
5637 				cfs_b->quota *= 2;
5638 				cfs_b->burst *= 2;
5639 
5640 				pr_warn_ratelimited(
5641 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5642 					smp_processor_id(),
5643 					div_u64(new, NSEC_PER_USEC),
5644 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5645 			} else {
5646 				pr_warn_ratelimited(
5647 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5648 					smp_processor_id(),
5649 					div_u64(old, NSEC_PER_USEC),
5650 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5651 			}
5652 
5653 			/* reset count so we don't come right back in here */
5654 			count = 0;
5655 		}
5656 	}
5657 	if (idle)
5658 		cfs_b->period_active = 0;
5659 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5660 
5661 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5662 }
5663 
5664 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5665 {
5666 	raw_spin_lock_init(&cfs_b->lock);
5667 	cfs_b->runtime = 0;
5668 	cfs_b->quota = RUNTIME_INF;
5669 	cfs_b->period = ns_to_ktime(default_cfs_period());
5670 	cfs_b->burst = 0;
5671 
5672 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5673 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5674 	cfs_b->period_timer.function = sched_cfs_period_timer;
5675 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5676 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5677 	cfs_b->slack_started = false;
5678 }
5679 
5680 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5681 {
5682 	cfs_rq->runtime_enabled = 0;
5683 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5684 }
5685 
5686 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5687 {
5688 	lockdep_assert_held(&cfs_b->lock);
5689 
5690 	if (cfs_b->period_active)
5691 		return;
5692 
5693 	cfs_b->period_active = 1;
5694 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5695 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5696 }
5697 
5698 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5699 {
5700 	/* init_cfs_bandwidth() was not called */
5701 	if (!cfs_b->throttled_cfs_rq.next)
5702 		return;
5703 
5704 	hrtimer_cancel(&cfs_b->period_timer);
5705 	hrtimer_cancel(&cfs_b->slack_timer);
5706 }
5707 
5708 /*
5709  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5710  *
5711  * The race is harmless, since modifying bandwidth settings of unhooked group
5712  * bits doesn't do much.
5713  */
5714 
5715 /* cpu online callback */
5716 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5717 {
5718 	struct task_group *tg;
5719 
5720 	lockdep_assert_rq_held(rq);
5721 
5722 	rcu_read_lock();
5723 	list_for_each_entry_rcu(tg, &task_groups, list) {
5724 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5725 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5726 
5727 		raw_spin_lock(&cfs_b->lock);
5728 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5729 		raw_spin_unlock(&cfs_b->lock);
5730 	}
5731 	rcu_read_unlock();
5732 }
5733 
5734 /* cpu offline callback */
5735 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5736 {
5737 	struct task_group *tg;
5738 
5739 	lockdep_assert_rq_held(rq);
5740 
5741 	rcu_read_lock();
5742 	list_for_each_entry_rcu(tg, &task_groups, list) {
5743 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5744 
5745 		if (!cfs_rq->runtime_enabled)
5746 			continue;
5747 
5748 		/*
5749 		 * clock_task is not advancing so we just need to make sure
5750 		 * there's some valid quota amount
5751 		 */
5752 		cfs_rq->runtime_remaining = 1;
5753 		/*
5754 		 * Offline rq is schedulable till CPU is completely disabled
5755 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5756 		 */
5757 		cfs_rq->runtime_enabled = 0;
5758 
5759 		if (cfs_rq_throttled(cfs_rq))
5760 			unthrottle_cfs_rq(cfs_rq);
5761 	}
5762 	rcu_read_unlock();
5763 }
5764 
5765 #else /* CONFIG_CFS_BANDWIDTH */
5766 
5767 static inline bool cfs_bandwidth_used(void)
5768 {
5769 	return false;
5770 }
5771 
5772 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5773 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5774 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5775 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5776 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5777 
5778 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5779 {
5780 	return 0;
5781 }
5782 
5783 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5784 {
5785 	return 0;
5786 }
5787 
5788 static inline int throttled_lb_pair(struct task_group *tg,
5789 				    int src_cpu, int dest_cpu)
5790 {
5791 	return 0;
5792 }
5793 
5794 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5795 
5796 #ifdef CONFIG_FAIR_GROUP_SCHED
5797 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5798 #endif
5799 
5800 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5801 {
5802 	return NULL;
5803 }
5804 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5805 static inline void update_runtime_enabled(struct rq *rq) {}
5806 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5807 
5808 #endif /* CONFIG_CFS_BANDWIDTH */
5809 
5810 /**************************************************
5811  * CFS operations on tasks:
5812  */
5813 
5814 #ifdef CONFIG_SCHED_HRTICK
5815 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5816 {
5817 	struct sched_entity *se = &p->se;
5818 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5819 
5820 	SCHED_WARN_ON(task_rq(p) != rq);
5821 
5822 	if (rq->cfs.h_nr_running > 1) {
5823 		u64 slice = sched_slice(cfs_rq, se);
5824 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5825 		s64 delta = slice - ran;
5826 
5827 		if (delta < 0) {
5828 			if (task_current(rq, p))
5829 				resched_curr(rq);
5830 			return;
5831 		}
5832 		hrtick_start(rq, delta);
5833 	}
5834 }
5835 
5836 /*
5837  * called from enqueue/dequeue and updates the hrtick when the
5838  * current task is from our class and nr_running is low enough
5839  * to matter.
5840  */
5841 static void hrtick_update(struct rq *rq)
5842 {
5843 	struct task_struct *curr = rq->curr;
5844 
5845 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5846 		return;
5847 
5848 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5849 		hrtick_start_fair(rq, curr);
5850 }
5851 #else /* !CONFIG_SCHED_HRTICK */
5852 static inline void
5853 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5854 {
5855 }
5856 
5857 static inline void hrtick_update(struct rq *rq)
5858 {
5859 }
5860 #endif
5861 
5862 #ifdef CONFIG_SMP
5863 static inline bool cpu_overutilized(int cpu)
5864 {
5865 	return !fits_capacity(cpu_util_cfs(cpu), capacity_of(cpu));
5866 }
5867 
5868 static inline void update_overutilized_status(struct rq *rq)
5869 {
5870 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5871 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5872 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5873 	}
5874 }
5875 #else
5876 static inline void update_overutilized_status(struct rq *rq) { }
5877 #endif
5878 
5879 /* Runqueue only has SCHED_IDLE tasks enqueued */
5880 static int sched_idle_rq(struct rq *rq)
5881 {
5882 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5883 			rq->nr_running);
5884 }
5885 
5886 /*
5887  * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
5888  * of idle_nr_running, which does not consider idle descendants of normal
5889  * entities.
5890  */
5891 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
5892 {
5893 	return cfs_rq->nr_running &&
5894 		cfs_rq->nr_running == cfs_rq->idle_nr_running;
5895 }
5896 
5897 #ifdef CONFIG_SMP
5898 static int sched_idle_cpu(int cpu)
5899 {
5900 	return sched_idle_rq(cpu_rq(cpu));
5901 }
5902 #endif
5903 
5904 /*
5905  * The enqueue_task method is called before nr_running is
5906  * increased. Here we update the fair scheduling stats and
5907  * then put the task into the rbtree:
5908  */
5909 static void
5910 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5911 {
5912 	struct cfs_rq *cfs_rq;
5913 	struct sched_entity *se = &p->se;
5914 	int idle_h_nr_running = task_has_idle_policy(p);
5915 	int task_new = !(flags & ENQUEUE_WAKEUP);
5916 
5917 	/*
5918 	 * The code below (indirectly) updates schedutil which looks at
5919 	 * the cfs_rq utilization to select a frequency.
5920 	 * Let's add the task's estimated utilization to the cfs_rq's
5921 	 * estimated utilization, before we update schedutil.
5922 	 */
5923 	util_est_enqueue(&rq->cfs, p);
5924 
5925 	/*
5926 	 * If in_iowait is set, the code below may not trigger any cpufreq
5927 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5928 	 * passed.
5929 	 */
5930 	if (p->in_iowait)
5931 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5932 
5933 	for_each_sched_entity(se) {
5934 		if (se->on_rq)
5935 			break;
5936 		cfs_rq = cfs_rq_of(se);
5937 		enqueue_entity(cfs_rq, se, flags);
5938 
5939 		cfs_rq->h_nr_running++;
5940 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5941 
5942 		if (cfs_rq_is_idle(cfs_rq))
5943 			idle_h_nr_running = 1;
5944 
5945 		/* end evaluation on encountering a throttled cfs_rq */
5946 		if (cfs_rq_throttled(cfs_rq))
5947 			goto enqueue_throttle;
5948 
5949 		flags = ENQUEUE_WAKEUP;
5950 	}
5951 
5952 	for_each_sched_entity(se) {
5953 		cfs_rq = cfs_rq_of(se);
5954 
5955 		update_load_avg(cfs_rq, se, UPDATE_TG);
5956 		se_update_runnable(se);
5957 		update_cfs_group(se);
5958 
5959 		cfs_rq->h_nr_running++;
5960 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5961 
5962 		if (cfs_rq_is_idle(cfs_rq))
5963 			idle_h_nr_running = 1;
5964 
5965 		/* end evaluation on encountering a throttled cfs_rq */
5966 		if (cfs_rq_throttled(cfs_rq))
5967 			goto enqueue_throttle;
5968 	}
5969 
5970 	/* At this point se is NULL and we are at root level*/
5971 	add_nr_running(rq, 1);
5972 
5973 	/*
5974 	 * Since new tasks are assigned an initial util_avg equal to
5975 	 * half of the spare capacity of their CPU, tiny tasks have the
5976 	 * ability to cross the overutilized threshold, which will
5977 	 * result in the load balancer ruining all the task placement
5978 	 * done by EAS. As a way to mitigate that effect, do not account
5979 	 * for the first enqueue operation of new tasks during the
5980 	 * overutilized flag detection.
5981 	 *
5982 	 * A better way of solving this problem would be to wait for
5983 	 * the PELT signals of tasks to converge before taking them
5984 	 * into account, but that is not straightforward to implement,
5985 	 * and the following generally works well enough in practice.
5986 	 */
5987 	if (!task_new)
5988 		update_overutilized_status(rq);
5989 
5990 enqueue_throttle:
5991 	assert_list_leaf_cfs_rq(rq);
5992 
5993 	hrtick_update(rq);
5994 }
5995 
5996 static void set_next_buddy(struct sched_entity *se);
5997 
5998 /*
5999  * The dequeue_task method is called before nr_running is
6000  * decreased. We remove the task from the rbtree and
6001  * update the fair scheduling stats:
6002  */
6003 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6004 {
6005 	struct cfs_rq *cfs_rq;
6006 	struct sched_entity *se = &p->se;
6007 	int task_sleep = flags & DEQUEUE_SLEEP;
6008 	int idle_h_nr_running = task_has_idle_policy(p);
6009 	bool was_sched_idle = sched_idle_rq(rq);
6010 
6011 	util_est_dequeue(&rq->cfs, p);
6012 
6013 	for_each_sched_entity(se) {
6014 		cfs_rq = cfs_rq_of(se);
6015 		dequeue_entity(cfs_rq, se, flags);
6016 
6017 		cfs_rq->h_nr_running--;
6018 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6019 
6020 		if (cfs_rq_is_idle(cfs_rq))
6021 			idle_h_nr_running = 1;
6022 
6023 		/* end evaluation on encountering a throttled cfs_rq */
6024 		if (cfs_rq_throttled(cfs_rq))
6025 			goto dequeue_throttle;
6026 
6027 		/* Don't dequeue parent if it has other entities besides us */
6028 		if (cfs_rq->load.weight) {
6029 			/* Avoid re-evaluating load for this entity: */
6030 			se = parent_entity(se);
6031 			/*
6032 			 * Bias pick_next to pick a task from this cfs_rq, as
6033 			 * p is sleeping when it is within its sched_slice.
6034 			 */
6035 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6036 				set_next_buddy(se);
6037 			break;
6038 		}
6039 		flags |= DEQUEUE_SLEEP;
6040 	}
6041 
6042 	for_each_sched_entity(se) {
6043 		cfs_rq = cfs_rq_of(se);
6044 
6045 		update_load_avg(cfs_rq, se, UPDATE_TG);
6046 		se_update_runnable(se);
6047 		update_cfs_group(se);
6048 
6049 		cfs_rq->h_nr_running--;
6050 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6051 
6052 		if (cfs_rq_is_idle(cfs_rq))
6053 			idle_h_nr_running = 1;
6054 
6055 		/* end evaluation on encountering a throttled cfs_rq */
6056 		if (cfs_rq_throttled(cfs_rq))
6057 			goto dequeue_throttle;
6058 
6059 	}
6060 
6061 	/* At this point se is NULL and we are at root level*/
6062 	sub_nr_running(rq, 1);
6063 
6064 	/* balance early to pull high priority tasks */
6065 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6066 		rq->next_balance = jiffies;
6067 
6068 dequeue_throttle:
6069 	util_est_update(&rq->cfs, p, task_sleep);
6070 	hrtick_update(rq);
6071 }
6072 
6073 #ifdef CONFIG_SMP
6074 
6075 /* Working cpumask for: load_balance, load_balance_newidle. */
6076 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6077 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6078 
6079 #ifdef CONFIG_NO_HZ_COMMON
6080 
6081 static struct {
6082 	cpumask_var_t idle_cpus_mask;
6083 	atomic_t nr_cpus;
6084 	int has_blocked;		/* Idle CPUS has blocked load */
6085 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
6086 	unsigned long next_balance;     /* in jiffy units */
6087 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
6088 } nohz ____cacheline_aligned;
6089 
6090 #endif /* CONFIG_NO_HZ_COMMON */
6091 
6092 static unsigned long cpu_load(struct rq *rq)
6093 {
6094 	return cfs_rq_load_avg(&rq->cfs);
6095 }
6096 
6097 /*
6098  * cpu_load_without - compute CPU load without any contributions from *p
6099  * @cpu: the CPU which load is requested
6100  * @p: the task which load should be discounted
6101  *
6102  * The load of a CPU is defined by the load of tasks currently enqueued on that
6103  * CPU as well as tasks which are currently sleeping after an execution on that
6104  * CPU.
6105  *
6106  * This method returns the load of the specified CPU by discounting the load of
6107  * the specified task, whenever the task is currently contributing to the CPU
6108  * load.
6109  */
6110 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6111 {
6112 	struct cfs_rq *cfs_rq;
6113 	unsigned int load;
6114 
6115 	/* Task has no contribution or is new */
6116 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6117 		return cpu_load(rq);
6118 
6119 	cfs_rq = &rq->cfs;
6120 	load = READ_ONCE(cfs_rq->avg.load_avg);
6121 
6122 	/* Discount task's util from CPU's util */
6123 	lsub_positive(&load, task_h_load(p));
6124 
6125 	return load;
6126 }
6127 
6128 static unsigned long cpu_runnable(struct rq *rq)
6129 {
6130 	return cfs_rq_runnable_avg(&rq->cfs);
6131 }
6132 
6133 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6134 {
6135 	struct cfs_rq *cfs_rq;
6136 	unsigned int runnable;
6137 
6138 	/* Task has no contribution or is new */
6139 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6140 		return cpu_runnable(rq);
6141 
6142 	cfs_rq = &rq->cfs;
6143 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6144 
6145 	/* Discount task's runnable from CPU's runnable */
6146 	lsub_positive(&runnable, p->se.avg.runnable_avg);
6147 
6148 	return runnable;
6149 }
6150 
6151 static unsigned long capacity_of(int cpu)
6152 {
6153 	return cpu_rq(cpu)->cpu_capacity;
6154 }
6155 
6156 static void record_wakee(struct task_struct *p)
6157 {
6158 	/*
6159 	 * Only decay a single time; tasks that have less then 1 wakeup per
6160 	 * jiffy will not have built up many flips.
6161 	 */
6162 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6163 		current->wakee_flips >>= 1;
6164 		current->wakee_flip_decay_ts = jiffies;
6165 	}
6166 
6167 	if (current->last_wakee != p) {
6168 		current->last_wakee = p;
6169 		current->wakee_flips++;
6170 	}
6171 }
6172 
6173 /*
6174  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6175  *
6176  * A waker of many should wake a different task than the one last awakened
6177  * at a frequency roughly N times higher than one of its wakees.
6178  *
6179  * In order to determine whether we should let the load spread vs consolidating
6180  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6181  * partner, and a factor of lls_size higher frequency in the other.
6182  *
6183  * With both conditions met, we can be relatively sure that the relationship is
6184  * non-monogamous, with partner count exceeding socket size.
6185  *
6186  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6187  * whatever is irrelevant, spread criteria is apparent partner count exceeds
6188  * socket size.
6189  */
6190 static int wake_wide(struct task_struct *p)
6191 {
6192 	unsigned int master = current->wakee_flips;
6193 	unsigned int slave = p->wakee_flips;
6194 	int factor = __this_cpu_read(sd_llc_size);
6195 
6196 	if (master < slave)
6197 		swap(master, slave);
6198 	if (slave < factor || master < slave * factor)
6199 		return 0;
6200 	return 1;
6201 }
6202 
6203 /*
6204  * The purpose of wake_affine() is to quickly determine on which CPU we can run
6205  * soonest. For the purpose of speed we only consider the waking and previous
6206  * CPU.
6207  *
6208  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
6209  *			cache-affine and is (or	will be) idle.
6210  *
6211  * wake_affine_weight() - considers the weight to reflect the average
6212  *			  scheduling latency of the CPUs. This seems to work
6213  *			  for the overloaded case.
6214  */
6215 static int
6216 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
6217 {
6218 	/*
6219 	 * If this_cpu is idle, it implies the wakeup is from interrupt
6220 	 * context. Only allow the move if cache is shared. Otherwise an
6221 	 * interrupt intensive workload could force all tasks onto one
6222 	 * node depending on the IO topology or IRQ affinity settings.
6223 	 *
6224 	 * If the prev_cpu is idle and cache affine then avoid a migration.
6225 	 * There is no guarantee that the cache hot data from an interrupt
6226 	 * is more important than cache hot data on the prev_cpu and from
6227 	 * a cpufreq perspective, it's better to have higher utilisation
6228 	 * on one CPU.
6229 	 */
6230 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
6231 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
6232 
6233 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
6234 		return this_cpu;
6235 
6236 	if (available_idle_cpu(prev_cpu))
6237 		return prev_cpu;
6238 
6239 	return nr_cpumask_bits;
6240 }
6241 
6242 static int
6243 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
6244 		   int this_cpu, int prev_cpu, int sync)
6245 {
6246 	s64 this_eff_load, prev_eff_load;
6247 	unsigned long task_load;
6248 
6249 	this_eff_load = cpu_load(cpu_rq(this_cpu));
6250 
6251 	if (sync) {
6252 		unsigned long current_load = task_h_load(current);
6253 
6254 		if (current_load > this_eff_load)
6255 			return this_cpu;
6256 
6257 		this_eff_load -= current_load;
6258 	}
6259 
6260 	task_load = task_h_load(p);
6261 
6262 	this_eff_load += task_load;
6263 	if (sched_feat(WA_BIAS))
6264 		this_eff_load *= 100;
6265 	this_eff_load *= capacity_of(prev_cpu);
6266 
6267 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
6268 	prev_eff_load -= task_load;
6269 	if (sched_feat(WA_BIAS))
6270 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
6271 	prev_eff_load *= capacity_of(this_cpu);
6272 
6273 	/*
6274 	 * If sync, adjust the weight of prev_eff_load such that if
6275 	 * prev_eff == this_eff that select_idle_sibling() will consider
6276 	 * stacking the wakee on top of the waker if no other CPU is
6277 	 * idle.
6278 	 */
6279 	if (sync)
6280 		prev_eff_load += 1;
6281 
6282 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
6283 }
6284 
6285 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
6286 		       int this_cpu, int prev_cpu, int sync)
6287 {
6288 	int target = nr_cpumask_bits;
6289 
6290 	if (sched_feat(WA_IDLE))
6291 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
6292 
6293 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
6294 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6295 
6296 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
6297 	if (target == nr_cpumask_bits)
6298 		return prev_cpu;
6299 
6300 	schedstat_inc(sd->ttwu_move_affine);
6301 	schedstat_inc(p->stats.nr_wakeups_affine);
6302 	return target;
6303 }
6304 
6305 static struct sched_group *
6306 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6307 
6308 /*
6309  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6310  */
6311 static int
6312 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6313 {
6314 	unsigned long load, min_load = ULONG_MAX;
6315 	unsigned int min_exit_latency = UINT_MAX;
6316 	u64 latest_idle_timestamp = 0;
6317 	int least_loaded_cpu = this_cpu;
6318 	int shallowest_idle_cpu = -1;
6319 	int i;
6320 
6321 	/* Check if we have any choice: */
6322 	if (group->group_weight == 1)
6323 		return cpumask_first(sched_group_span(group));
6324 
6325 	/* Traverse only the allowed CPUs */
6326 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6327 		struct rq *rq = cpu_rq(i);
6328 
6329 		if (!sched_core_cookie_match(rq, p))
6330 			continue;
6331 
6332 		if (sched_idle_cpu(i))
6333 			return i;
6334 
6335 		if (available_idle_cpu(i)) {
6336 			struct cpuidle_state *idle = idle_get_state(rq);
6337 			if (idle && idle->exit_latency < min_exit_latency) {
6338 				/*
6339 				 * We give priority to a CPU whose idle state
6340 				 * has the smallest exit latency irrespective
6341 				 * of any idle timestamp.
6342 				 */
6343 				min_exit_latency = idle->exit_latency;
6344 				latest_idle_timestamp = rq->idle_stamp;
6345 				shallowest_idle_cpu = i;
6346 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
6347 				   rq->idle_stamp > latest_idle_timestamp) {
6348 				/*
6349 				 * If equal or no active idle state, then
6350 				 * the most recently idled CPU might have
6351 				 * a warmer cache.
6352 				 */
6353 				latest_idle_timestamp = rq->idle_stamp;
6354 				shallowest_idle_cpu = i;
6355 			}
6356 		} else if (shallowest_idle_cpu == -1) {
6357 			load = cpu_load(cpu_rq(i));
6358 			if (load < min_load) {
6359 				min_load = load;
6360 				least_loaded_cpu = i;
6361 			}
6362 		}
6363 	}
6364 
6365 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6366 }
6367 
6368 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6369 				  int cpu, int prev_cpu, int sd_flag)
6370 {
6371 	int new_cpu = cpu;
6372 
6373 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6374 		return prev_cpu;
6375 
6376 	/*
6377 	 * We need task's util for cpu_util_without, sync it up to
6378 	 * prev_cpu's last_update_time.
6379 	 */
6380 	if (!(sd_flag & SD_BALANCE_FORK))
6381 		sync_entity_load_avg(&p->se);
6382 
6383 	while (sd) {
6384 		struct sched_group *group;
6385 		struct sched_domain *tmp;
6386 		int weight;
6387 
6388 		if (!(sd->flags & sd_flag)) {
6389 			sd = sd->child;
6390 			continue;
6391 		}
6392 
6393 		group = find_idlest_group(sd, p, cpu);
6394 		if (!group) {
6395 			sd = sd->child;
6396 			continue;
6397 		}
6398 
6399 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6400 		if (new_cpu == cpu) {
6401 			/* Now try balancing at a lower domain level of 'cpu': */
6402 			sd = sd->child;
6403 			continue;
6404 		}
6405 
6406 		/* Now try balancing at a lower domain level of 'new_cpu': */
6407 		cpu = new_cpu;
6408 		weight = sd->span_weight;
6409 		sd = NULL;
6410 		for_each_domain(cpu, tmp) {
6411 			if (weight <= tmp->span_weight)
6412 				break;
6413 			if (tmp->flags & sd_flag)
6414 				sd = tmp;
6415 		}
6416 	}
6417 
6418 	return new_cpu;
6419 }
6420 
6421 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6422 {
6423 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6424 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
6425 		return cpu;
6426 
6427 	return -1;
6428 }
6429 
6430 #ifdef CONFIG_SCHED_SMT
6431 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6432 EXPORT_SYMBOL_GPL(sched_smt_present);
6433 
6434 static inline void set_idle_cores(int cpu, int val)
6435 {
6436 	struct sched_domain_shared *sds;
6437 
6438 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6439 	if (sds)
6440 		WRITE_ONCE(sds->has_idle_cores, val);
6441 }
6442 
6443 static inline bool test_idle_cores(int cpu)
6444 {
6445 	struct sched_domain_shared *sds;
6446 
6447 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6448 	if (sds)
6449 		return READ_ONCE(sds->has_idle_cores);
6450 
6451 	return false;
6452 }
6453 
6454 /*
6455  * Scans the local SMT mask to see if the entire core is idle, and records this
6456  * information in sd_llc_shared->has_idle_cores.
6457  *
6458  * Since SMT siblings share all cache levels, inspecting this limited remote
6459  * state should be fairly cheap.
6460  */
6461 void __update_idle_core(struct rq *rq)
6462 {
6463 	int core = cpu_of(rq);
6464 	int cpu;
6465 
6466 	rcu_read_lock();
6467 	if (test_idle_cores(core))
6468 		goto unlock;
6469 
6470 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6471 		if (cpu == core)
6472 			continue;
6473 
6474 		if (!available_idle_cpu(cpu))
6475 			goto unlock;
6476 	}
6477 
6478 	set_idle_cores(core, 1);
6479 unlock:
6480 	rcu_read_unlock();
6481 }
6482 
6483 /*
6484  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6485  * there are no idle cores left in the system; tracked through
6486  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6487  */
6488 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6489 {
6490 	bool idle = true;
6491 	int cpu;
6492 
6493 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6494 		if (!available_idle_cpu(cpu)) {
6495 			idle = false;
6496 			if (*idle_cpu == -1) {
6497 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6498 					*idle_cpu = cpu;
6499 					break;
6500 				}
6501 				continue;
6502 			}
6503 			break;
6504 		}
6505 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6506 			*idle_cpu = cpu;
6507 	}
6508 
6509 	if (idle)
6510 		return core;
6511 
6512 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6513 	return -1;
6514 }
6515 
6516 /*
6517  * Scan the local SMT mask for idle CPUs.
6518  */
6519 static int select_idle_smt(struct task_struct *p, int target)
6520 {
6521 	int cpu;
6522 
6523 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
6524 		if (cpu == target)
6525 			continue;
6526 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6527 			return cpu;
6528 	}
6529 
6530 	return -1;
6531 }
6532 
6533 #else /* CONFIG_SCHED_SMT */
6534 
6535 static inline void set_idle_cores(int cpu, int val)
6536 {
6537 }
6538 
6539 static inline bool test_idle_cores(int cpu)
6540 {
6541 	return false;
6542 }
6543 
6544 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6545 {
6546 	return __select_idle_cpu(core, p);
6547 }
6548 
6549 static inline int select_idle_smt(struct task_struct *p, int target)
6550 {
6551 	return -1;
6552 }
6553 
6554 #endif /* CONFIG_SCHED_SMT */
6555 
6556 /*
6557  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6558  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6559  * average idle time for this rq (as found in rq->avg_idle).
6560  */
6561 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6562 {
6563 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
6564 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
6565 	struct sched_domain_shared *sd_share;
6566 	struct rq *this_rq = this_rq();
6567 	int this = smp_processor_id();
6568 	struct sched_domain *this_sd = NULL;
6569 	u64 time = 0;
6570 
6571 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6572 
6573 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6574 		u64 avg_cost, avg_idle, span_avg;
6575 		unsigned long now = jiffies;
6576 
6577 		this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6578 		if (!this_sd)
6579 			return -1;
6580 
6581 		/*
6582 		 * If we're busy, the assumption that the last idle period
6583 		 * predicts the future is flawed; age away the remaining
6584 		 * predicted idle time.
6585 		 */
6586 		if (unlikely(this_rq->wake_stamp < now)) {
6587 			while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6588 				this_rq->wake_stamp++;
6589 				this_rq->wake_avg_idle >>= 1;
6590 			}
6591 		}
6592 
6593 		avg_idle = this_rq->wake_avg_idle;
6594 		avg_cost = this_sd->avg_scan_cost + 1;
6595 
6596 		span_avg = sd->span_weight * avg_idle;
6597 		if (span_avg > 4*avg_cost)
6598 			nr = div_u64(span_avg, avg_cost);
6599 		else
6600 			nr = 4;
6601 
6602 		time = cpu_clock(this);
6603 	}
6604 
6605 	if (sched_feat(SIS_UTIL)) {
6606 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
6607 		if (sd_share) {
6608 			/* because !--nr is the condition to stop scan */
6609 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
6610 			/* overloaded LLC is unlikely to have idle cpu/core */
6611 			if (nr == 1)
6612 				return -1;
6613 		}
6614 	}
6615 
6616 	for_each_cpu_wrap(cpu, cpus, target + 1) {
6617 		if (has_idle_core) {
6618 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
6619 			if ((unsigned int)i < nr_cpumask_bits)
6620 				return i;
6621 
6622 		} else {
6623 			if (!--nr)
6624 				return -1;
6625 			idle_cpu = __select_idle_cpu(cpu, p);
6626 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
6627 				break;
6628 		}
6629 	}
6630 
6631 	if (has_idle_core)
6632 		set_idle_cores(target, false);
6633 
6634 	if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) {
6635 		time = cpu_clock(this) - time;
6636 
6637 		/*
6638 		 * Account for the scan cost of wakeups against the average
6639 		 * idle time.
6640 		 */
6641 		this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6642 
6643 		update_avg(&this_sd->avg_scan_cost, time);
6644 	}
6645 
6646 	return idle_cpu;
6647 }
6648 
6649 /*
6650  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6651  * the task fits. If no CPU is big enough, but there are idle ones, try to
6652  * maximize capacity.
6653  */
6654 static int
6655 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6656 {
6657 	unsigned long task_util, best_cap = 0;
6658 	int cpu, best_cpu = -1;
6659 	struct cpumask *cpus;
6660 
6661 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
6662 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6663 
6664 	task_util = uclamp_task_util(p);
6665 
6666 	for_each_cpu_wrap(cpu, cpus, target) {
6667 		unsigned long cpu_cap = capacity_of(cpu);
6668 
6669 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6670 			continue;
6671 		if (fits_capacity(task_util, cpu_cap))
6672 			return cpu;
6673 
6674 		if (cpu_cap > best_cap) {
6675 			best_cap = cpu_cap;
6676 			best_cpu = cpu;
6677 		}
6678 	}
6679 
6680 	return best_cpu;
6681 }
6682 
6683 static inline bool asym_fits_capacity(unsigned long task_util, int cpu)
6684 {
6685 	if (sched_asym_cpucap_active())
6686 		return fits_capacity(task_util, capacity_of(cpu));
6687 
6688 	return true;
6689 }
6690 
6691 /*
6692  * Try and locate an idle core/thread in the LLC cache domain.
6693  */
6694 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6695 {
6696 	bool has_idle_core = false;
6697 	struct sched_domain *sd;
6698 	unsigned long task_util;
6699 	int i, recent_used_cpu;
6700 
6701 	/*
6702 	 * On asymmetric system, update task utilization because we will check
6703 	 * that the task fits with cpu's capacity.
6704 	 */
6705 	if (sched_asym_cpucap_active()) {
6706 		sync_entity_load_avg(&p->se);
6707 		task_util = uclamp_task_util(p);
6708 	}
6709 
6710 	/*
6711 	 * per-cpu select_rq_mask usage
6712 	 */
6713 	lockdep_assert_irqs_disabled();
6714 
6715 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6716 	    asym_fits_capacity(task_util, target))
6717 		return target;
6718 
6719 	/*
6720 	 * If the previous CPU is cache affine and idle, don't be stupid:
6721 	 */
6722 	if (prev != target && cpus_share_cache(prev, target) &&
6723 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6724 	    asym_fits_capacity(task_util, prev))
6725 		return prev;
6726 
6727 	/*
6728 	 * Allow a per-cpu kthread to stack with the wakee if the
6729 	 * kworker thread and the tasks previous CPUs are the same.
6730 	 * The assumption is that the wakee queued work for the
6731 	 * per-cpu kthread that is now complete and the wakeup is
6732 	 * essentially a sync wakeup. An obvious example of this
6733 	 * pattern is IO completions.
6734 	 */
6735 	if (is_per_cpu_kthread(current) &&
6736 	    in_task() &&
6737 	    prev == smp_processor_id() &&
6738 	    this_rq()->nr_running <= 1 &&
6739 	    asym_fits_capacity(task_util, prev)) {
6740 		return prev;
6741 	}
6742 
6743 	/* Check a recently used CPU as a potential idle candidate: */
6744 	recent_used_cpu = p->recent_used_cpu;
6745 	p->recent_used_cpu = prev;
6746 	if (recent_used_cpu != prev &&
6747 	    recent_used_cpu != target &&
6748 	    cpus_share_cache(recent_used_cpu, target) &&
6749 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6750 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6751 	    asym_fits_capacity(task_util, recent_used_cpu)) {
6752 		return recent_used_cpu;
6753 	}
6754 
6755 	/*
6756 	 * For asymmetric CPU capacity systems, our domain of interest is
6757 	 * sd_asym_cpucapacity rather than sd_llc.
6758 	 */
6759 	if (sched_asym_cpucap_active()) {
6760 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6761 		/*
6762 		 * On an asymmetric CPU capacity system where an exclusive
6763 		 * cpuset defines a symmetric island (i.e. one unique
6764 		 * capacity_orig value through the cpuset), the key will be set
6765 		 * but the CPUs within that cpuset will not have a domain with
6766 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6767 		 * capacity path.
6768 		 */
6769 		if (sd) {
6770 			i = select_idle_capacity(p, sd, target);
6771 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
6772 		}
6773 	}
6774 
6775 	sd = rcu_dereference(per_cpu(sd_llc, target));
6776 	if (!sd)
6777 		return target;
6778 
6779 	if (sched_smt_active()) {
6780 		has_idle_core = test_idle_cores(target);
6781 
6782 		if (!has_idle_core && cpus_share_cache(prev, target)) {
6783 			i = select_idle_smt(p, prev);
6784 			if ((unsigned int)i < nr_cpumask_bits)
6785 				return i;
6786 		}
6787 	}
6788 
6789 	i = select_idle_cpu(p, sd, has_idle_core, target);
6790 	if ((unsigned)i < nr_cpumask_bits)
6791 		return i;
6792 
6793 	return target;
6794 }
6795 
6796 /*
6797  * Predicts what cpu_util(@cpu) would return if @p was removed from @cpu
6798  * (@dst_cpu = -1) or migrated to @dst_cpu.
6799  */
6800 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6801 {
6802 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6803 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
6804 
6805 	/*
6806 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
6807 	 * contribution. If @p migrates from another CPU to @cpu add its
6808 	 * contribution. In all the other cases @cpu is not impacted by the
6809 	 * migration so its util_avg is already correct.
6810 	 */
6811 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6812 		lsub_positive(&util, task_util(p));
6813 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6814 		util += task_util(p);
6815 
6816 	if (sched_feat(UTIL_EST)) {
6817 		unsigned long util_est;
6818 
6819 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6820 
6821 		/*
6822 		 * During wake-up @p isn't enqueued yet and doesn't contribute
6823 		 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
6824 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
6825 		 * has been enqueued.
6826 		 *
6827 		 * During exec (@dst_cpu = -1) @p is enqueued and does
6828 		 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
6829 		 * Remove it to "simulate" cpu_util without @p's contribution.
6830 		 *
6831 		 * Despite the task_on_rq_queued(@p) check there is still a
6832 		 * small window for a possible race when an exec
6833 		 * select_task_rq_fair() races with LB's detach_task().
6834 		 *
6835 		 *   detach_task()
6836 		 *     deactivate_task()
6837 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
6838 		 *       -------------------------------- A
6839 		 *       dequeue_task()                    \
6840 		 *         dequeue_task_fair()              + Race Time
6841 		 *           util_est_dequeue()            /
6842 		 *       -------------------------------- B
6843 		 *
6844 		 * The additional check "current == p" is required to further
6845 		 * reduce the race window.
6846 		 */
6847 		if (dst_cpu == cpu)
6848 			util_est += _task_util_est(p);
6849 		else if (unlikely(task_on_rq_queued(p) || current == p))
6850 			lsub_positive(&util_est, _task_util_est(p));
6851 
6852 		util = max(util, util_est);
6853 	}
6854 
6855 	return min(util, capacity_orig_of(cpu));
6856 }
6857 
6858 /*
6859  * cpu_util_without: compute cpu utilization without any contributions from *p
6860  * @cpu: the CPU which utilization is requested
6861  * @p: the task which utilization should be discounted
6862  *
6863  * The utilization of a CPU is defined by the utilization of tasks currently
6864  * enqueued on that CPU as well as tasks which are currently sleeping after an
6865  * execution on that CPU.
6866  *
6867  * This method returns the utilization of the specified CPU by discounting the
6868  * utilization of the specified task, whenever the task is currently
6869  * contributing to the CPU utilization.
6870  */
6871 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6872 {
6873 	/* Task has no contribution or is new */
6874 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6875 		return cpu_util_cfs(cpu);
6876 
6877 	return cpu_util_next(cpu, p, -1);
6878 }
6879 
6880 /*
6881  * energy_env - Utilization landscape for energy estimation.
6882  * @task_busy_time: Utilization contribution by the task for which we test the
6883  *                  placement. Given by eenv_task_busy_time().
6884  * @pd_busy_time:   Utilization of the whole perf domain without the task
6885  *                  contribution. Given by eenv_pd_busy_time().
6886  * @cpu_cap:        Maximum CPU capacity for the perf domain.
6887  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
6888  */
6889 struct energy_env {
6890 	unsigned long task_busy_time;
6891 	unsigned long pd_busy_time;
6892 	unsigned long cpu_cap;
6893 	unsigned long pd_cap;
6894 };
6895 
6896 /*
6897  * Compute the task busy time for compute_energy(). This time cannot be
6898  * injected directly into effective_cpu_util() because of the IRQ scaling.
6899  * The latter only makes sense with the most recent CPUs where the task has
6900  * run.
6901  */
6902 static inline void eenv_task_busy_time(struct energy_env *eenv,
6903 				       struct task_struct *p, int prev_cpu)
6904 {
6905 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
6906 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
6907 
6908 	if (unlikely(irq >= max_cap))
6909 		busy_time = max_cap;
6910 	else
6911 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
6912 
6913 	eenv->task_busy_time = busy_time;
6914 }
6915 
6916 /*
6917  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
6918  * utilization for each @pd_cpus, it however doesn't take into account
6919  * clamping since the ratio (utilization / cpu_capacity) is already enough to
6920  * scale the EM reported power consumption at the (eventually clamped)
6921  * cpu_capacity.
6922  *
6923  * The contribution of the task @p for which we want to estimate the
6924  * energy cost is removed (by cpu_util_next()) and must be calculated
6925  * separately (see eenv_task_busy_time). This ensures:
6926  *
6927  *   - A stable PD utilization, no matter which CPU of that PD we want to place
6928  *     the task on.
6929  *
6930  *   - A fair comparison between CPUs as the task contribution (task_util())
6931  *     will always be the same no matter which CPU utilization we rely on
6932  *     (util_avg or util_est).
6933  *
6934  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
6935  * exceed @eenv->pd_cap.
6936  */
6937 static inline void eenv_pd_busy_time(struct energy_env *eenv,
6938 				     struct cpumask *pd_cpus,
6939 				     struct task_struct *p)
6940 {
6941 	unsigned long busy_time = 0;
6942 	int cpu;
6943 
6944 	for_each_cpu(cpu, pd_cpus) {
6945 		unsigned long util = cpu_util_next(cpu, p, -1);
6946 
6947 		busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
6948 	}
6949 
6950 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
6951 }
6952 
6953 /*
6954  * Compute the maximum utilization for compute_energy() when the task @p
6955  * is placed on the cpu @dst_cpu.
6956  *
6957  * Returns the maximum utilization among @eenv->cpus. This utilization can't
6958  * exceed @eenv->cpu_cap.
6959  */
6960 static inline unsigned long
6961 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
6962 		 struct task_struct *p, int dst_cpu)
6963 {
6964 	unsigned long max_util = 0;
6965 	int cpu;
6966 
6967 	for_each_cpu(cpu, pd_cpus) {
6968 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
6969 		unsigned long util = cpu_util_next(cpu, p, dst_cpu);
6970 		unsigned long cpu_util;
6971 
6972 		/*
6973 		 * Performance domain frequency: utilization clamping
6974 		 * must be considered since it affects the selection
6975 		 * of the performance domain frequency.
6976 		 * NOTE: in case RT tasks are running, by default the
6977 		 * FREQUENCY_UTIL's utilization can be max OPP.
6978 		 */
6979 		cpu_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
6980 		max_util = max(max_util, cpu_util);
6981 	}
6982 
6983 	return min(max_util, eenv->cpu_cap);
6984 }
6985 
6986 /*
6987  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
6988  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
6989  * contribution is ignored.
6990  */
6991 static inline unsigned long
6992 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
6993 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
6994 {
6995 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
6996 	unsigned long busy_time = eenv->pd_busy_time;
6997 
6998 	if (dst_cpu >= 0)
6999 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7000 
7001 	return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7002 }
7003 
7004 /*
7005  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7006  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7007  * spare capacity in each performance domain and uses it as a potential
7008  * candidate to execute the task. Then, it uses the Energy Model to figure
7009  * out which of the CPU candidates is the most energy-efficient.
7010  *
7011  * The rationale for this heuristic is as follows. In a performance domain,
7012  * all the most energy efficient CPU candidates (according to the Energy
7013  * Model) are those for which we'll request a low frequency. When there are
7014  * several CPUs for which the frequency request will be the same, we don't
7015  * have enough data to break the tie between them, because the Energy Model
7016  * only includes active power costs. With this model, if we assume that
7017  * frequency requests follow utilization (e.g. using schedutil), the CPU with
7018  * the maximum spare capacity in a performance domain is guaranteed to be among
7019  * the best candidates of the performance domain.
7020  *
7021  * In practice, it could be preferable from an energy standpoint to pack
7022  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7023  * but that could also hurt our chances to go cluster idle, and we have no
7024  * ways to tell with the current Energy Model if this is actually a good
7025  * idea or not. So, find_energy_efficient_cpu() basically favors
7026  * cluster-packing, and spreading inside a cluster. That should at least be
7027  * a good thing for latency, and this is consistent with the idea that most
7028  * of the energy savings of EAS come from the asymmetry of the system, and
7029  * not so much from breaking the tie between identical CPUs. That's also the
7030  * reason why EAS is enabled in the topology code only for systems where
7031  * SD_ASYM_CPUCAPACITY is set.
7032  *
7033  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7034  * they don't have any useful utilization data yet and it's not possible to
7035  * forecast their impact on energy consumption. Consequently, they will be
7036  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7037  * to be energy-inefficient in some use-cases. The alternative would be to
7038  * bias new tasks towards specific types of CPUs first, or to try to infer
7039  * their util_avg from the parent task, but those heuristics could hurt
7040  * other use-cases too. So, until someone finds a better way to solve this,
7041  * let's keep things simple by re-using the existing slow path.
7042  */
7043 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7044 {
7045 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7046 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7047 	struct root_domain *rd = this_rq()->rd;
7048 	int cpu, best_energy_cpu, target = -1;
7049 	struct sched_domain *sd;
7050 	struct perf_domain *pd;
7051 	struct energy_env eenv;
7052 
7053 	rcu_read_lock();
7054 	pd = rcu_dereference(rd->pd);
7055 	if (!pd || READ_ONCE(rd->overutilized))
7056 		goto unlock;
7057 
7058 	/*
7059 	 * Energy-aware wake-up happens on the lowest sched_domain starting
7060 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7061 	 */
7062 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7063 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7064 		sd = sd->parent;
7065 	if (!sd)
7066 		goto unlock;
7067 
7068 	target = prev_cpu;
7069 
7070 	sync_entity_load_avg(&p->se);
7071 	if (!task_util_est(p))
7072 		goto unlock;
7073 
7074 	eenv_task_busy_time(&eenv, p, prev_cpu);
7075 
7076 	for (; pd; pd = pd->next) {
7077 		unsigned long cpu_cap, cpu_thermal_cap, util;
7078 		unsigned long cur_delta, max_spare_cap = 0;
7079 		bool compute_prev_delta = false;
7080 		int max_spare_cap_cpu = -1;
7081 		unsigned long base_energy;
7082 
7083 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
7084 
7085 		if (cpumask_empty(cpus))
7086 			continue;
7087 
7088 		/* Account thermal pressure for the energy estimation */
7089 		cpu = cpumask_first(cpus);
7090 		cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
7091 		cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
7092 
7093 		eenv.cpu_cap = cpu_thermal_cap;
7094 		eenv.pd_cap = 0;
7095 
7096 		for_each_cpu(cpu, cpus) {
7097 			eenv.pd_cap += cpu_thermal_cap;
7098 
7099 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7100 				continue;
7101 
7102 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
7103 				continue;
7104 
7105 			util = cpu_util_next(cpu, p, cpu);
7106 			cpu_cap = capacity_of(cpu);
7107 
7108 			/*
7109 			 * Skip CPUs that cannot satisfy the capacity request.
7110 			 * IOW, placing the task there would make the CPU
7111 			 * overutilized. Take uclamp into account to see how
7112 			 * much capacity we can get out of the CPU; this is
7113 			 * aligned with sched_cpu_util().
7114 			 */
7115 			util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
7116 			if (!fits_capacity(util, cpu_cap))
7117 				continue;
7118 
7119 			lsub_positive(&cpu_cap, util);
7120 
7121 			if (cpu == prev_cpu) {
7122 				/* Always use prev_cpu as a candidate. */
7123 				compute_prev_delta = true;
7124 			} else if (cpu_cap > max_spare_cap) {
7125 				/*
7126 				 * Find the CPU with the maximum spare capacity
7127 				 * in the performance domain.
7128 				 */
7129 				max_spare_cap = cpu_cap;
7130 				max_spare_cap_cpu = cpu;
7131 			}
7132 		}
7133 
7134 		if (max_spare_cap_cpu < 0 && !compute_prev_delta)
7135 			continue;
7136 
7137 		eenv_pd_busy_time(&eenv, cpus, p);
7138 		/* Compute the 'base' energy of the pd, without @p */
7139 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
7140 
7141 		/* Evaluate the energy impact of using prev_cpu. */
7142 		if (compute_prev_delta) {
7143 			prev_delta = compute_energy(&eenv, pd, cpus, p,
7144 						    prev_cpu);
7145 			/* CPU utilization has changed */
7146 			if (prev_delta < base_energy)
7147 				goto unlock;
7148 			prev_delta -= base_energy;
7149 			best_delta = min(best_delta, prev_delta);
7150 		}
7151 
7152 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
7153 		if (max_spare_cap_cpu >= 0) {
7154 			cur_delta = compute_energy(&eenv, pd, cpus, p,
7155 						   max_spare_cap_cpu);
7156 			/* CPU utilization has changed */
7157 			if (cur_delta < base_energy)
7158 				goto unlock;
7159 			cur_delta -= base_energy;
7160 			if (cur_delta < best_delta) {
7161 				best_delta = cur_delta;
7162 				best_energy_cpu = max_spare_cap_cpu;
7163 			}
7164 		}
7165 	}
7166 	rcu_read_unlock();
7167 
7168 	if (best_delta < prev_delta)
7169 		target = best_energy_cpu;
7170 
7171 	return target;
7172 
7173 unlock:
7174 	rcu_read_unlock();
7175 
7176 	return target;
7177 }
7178 
7179 /*
7180  * select_task_rq_fair: Select target runqueue for the waking task in domains
7181  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
7182  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
7183  *
7184  * Balances load by selecting the idlest CPU in the idlest group, or under
7185  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
7186  *
7187  * Returns the target CPU number.
7188  */
7189 static int
7190 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
7191 {
7192 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
7193 	struct sched_domain *tmp, *sd = NULL;
7194 	int cpu = smp_processor_id();
7195 	int new_cpu = prev_cpu;
7196 	int want_affine = 0;
7197 	/* SD_flags and WF_flags share the first nibble */
7198 	int sd_flag = wake_flags & 0xF;
7199 
7200 	/*
7201 	 * required for stable ->cpus_allowed
7202 	 */
7203 	lockdep_assert_held(&p->pi_lock);
7204 	if (wake_flags & WF_TTWU) {
7205 		record_wakee(p);
7206 
7207 		if (sched_energy_enabled()) {
7208 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
7209 			if (new_cpu >= 0)
7210 				return new_cpu;
7211 			new_cpu = prev_cpu;
7212 		}
7213 
7214 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
7215 	}
7216 
7217 	rcu_read_lock();
7218 	for_each_domain(cpu, tmp) {
7219 		/*
7220 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
7221 		 * cpu is a valid SD_WAKE_AFFINE target.
7222 		 */
7223 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
7224 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
7225 			if (cpu != prev_cpu)
7226 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
7227 
7228 			sd = NULL; /* Prefer wake_affine over balance flags */
7229 			break;
7230 		}
7231 
7232 		/*
7233 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
7234 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
7235 		 * will usually go to the fast path.
7236 		 */
7237 		if (tmp->flags & sd_flag)
7238 			sd = tmp;
7239 		else if (!want_affine)
7240 			break;
7241 	}
7242 
7243 	if (unlikely(sd)) {
7244 		/* Slow path */
7245 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
7246 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
7247 		/* Fast path */
7248 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
7249 	}
7250 	rcu_read_unlock();
7251 
7252 	return new_cpu;
7253 }
7254 
7255 /*
7256  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
7257  * cfs_rq_of(p) references at time of call are still valid and identify the
7258  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
7259  */
7260 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
7261 {
7262 	struct sched_entity *se = &p->se;
7263 
7264 	/*
7265 	 * As blocked tasks retain absolute vruntime the migration needs to
7266 	 * deal with this by subtracting the old and adding the new
7267 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
7268 	 * the task on the new runqueue.
7269 	 */
7270 	if (READ_ONCE(p->__state) == TASK_WAKING) {
7271 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7272 
7273 		se->vruntime -= u64_u32_load(cfs_rq->min_vruntime);
7274 	}
7275 
7276 	if (!task_on_rq_migrating(p)) {
7277 		remove_entity_load_avg(se);
7278 
7279 		/*
7280 		 * Here, the task's PELT values have been updated according to
7281 		 * the current rq's clock. But if that clock hasn't been
7282 		 * updated in a while, a substantial idle time will be missed,
7283 		 * leading to an inflation after wake-up on the new rq.
7284 		 *
7285 		 * Estimate the missing time from the cfs_rq last_update_time
7286 		 * and update sched_avg to improve the PELT continuity after
7287 		 * migration.
7288 		 */
7289 		migrate_se_pelt_lag(se);
7290 	}
7291 
7292 	/* Tell new CPU we are migrated */
7293 	se->avg.last_update_time = 0;
7294 
7295 	/* We have migrated, no longer consider this task hot */
7296 	se->exec_start = 0;
7297 
7298 	update_scan_period(p, new_cpu);
7299 }
7300 
7301 static void task_dead_fair(struct task_struct *p)
7302 {
7303 	remove_entity_load_avg(&p->se);
7304 }
7305 
7306 static int
7307 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7308 {
7309 	if (rq->nr_running)
7310 		return 1;
7311 
7312 	return newidle_balance(rq, rf) != 0;
7313 }
7314 #endif /* CONFIG_SMP */
7315 
7316 static unsigned long wakeup_gran(struct sched_entity *se)
7317 {
7318 	unsigned long gran = sysctl_sched_wakeup_granularity;
7319 
7320 	/*
7321 	 * Since its curr running now, convert the gran from real-time
7322 	 * to virtual-time in his units.
7323 	 *
7324 	 * By using 'se' instead of 'curr' we penalize light tasks, so
7325 	 * they get preempted easier. That is, if 'se' < 'curr' then
7326 	 * the resulting gran will be larger, therefore penalizing the
7327 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7328 	 * be smaller, again penalizing the lighter task.
7329 	 *
7330 	 * This is especially important for buddies when the leftmost
7331 	 * task is higher priority than the buddy.
7332 	 */
7333 	return calc_delta_fair(gran, se);
7334 }
7335 
7336 /*
7337  * Should 'se' preempt 'curr'.
7338  *
7339  *             |s1
7340  *        |s2
7341  *   |s3
7342  *         g
7343  *      |<--->|c
7344  *
7345  *  w(c, s1) = -1
7346  *  w(c, s2) =  0
7347  *  w(c, s3) =  1
7348  *
7349  */
7350 static int
7351 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7352 {
7353 	s64 gran, vdiff = curr->vruntime - se->vruntime;
7354 
7355 	if (vdiff <= 0)
7356 		return -1;
7357 
7358 	gran = wakeup_gran(se);
7359 	if (vdiff > gran)
7360 		return 1;
7361 
7362 	return 0;
7363 }
7364 
7365 static void set_last_buddy(struct sched_entity *se)
7366 {
7367 	for_each_sched_entity(se) {
7368 		if (SCHED_WARN_ON(!se->on_rq))
7369 			return;
7370 		if (se_is_idle(se))
7371 			return;
7372 		cfs_rq_of(se)->last = se;
7373 	}
7374 }
7375 
7376 static void set_next_buddy(struct sched_entity *se)
7377 {
7378 	for_each_sched_entity(se) {
7379 		if (SCHED_WARN_ON(!se->on_rq))
7380 			return;
7381 		if (se_is_idle(se))
7382 			return;
7383 		cfs_rq_of(se)->next = se;
7384 	}
7385 }
7386 
7387 static void set_skip_buddy(struct sched_entity *se)
7388 {
7389 	for_each_sched_entity(se)
7390 		cfs_rq_of(se)->skip = se;
7391 }
7392 
7393 /*
7394  * Preempt the current task with a newly woken task if needed:
7395  */
7396 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7397 {
7398 	struct task_struct *curr = rq->curr;
7399 	struct sched_entity *se = &curr->se, *pse = &p->se;
7400 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7401 	int scale = cfs_rq->nr_running >= sched_nr_latency;
7402 	int next_buddy_marked = 0;
7403 	int cse_is_idle, pse_is_idle;
7404 
7405 	if (unlikely(se == pse))
7406 		return;
7407 
7408 	/*
7409 	 * This is possible from callers such as attach_tasks(), in which we
7410 	 * unconditionally check_preempt_curr() after an enqueue (which may have
7411 	 * lead to a throttle).  This both saves work and prevents false
7412 	 * next-buddy nomination below.
7413 	 */
7414 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7415 		return;
7416 
7417 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7418 		set_next_buddy(pse);
7419 		next_buddy_marked = 1;
7420 	}
7421 
7422 	/*
7423 	 * We can come here with TIF_NEED_RESCHED already set from new task
7424 	 * wake up path.
7425 	 *
7426 	 * Note: this also catches the edge-case of curr being in a throttled
7427 	 * group (e.g. via set_curr_task), since update_curr() (in the
7428 	 * enqueue of curr) will have resulted in resched being set.  This
7429 	 * prevents us from potentially nominating it as a false LAST_BUDDY
7430 	 * below.
7431 	 */
7432 	if (test_tsk_need_resched(curr))
7433 		return;
7434 
7435 	/* Idle tasks are by definition preempted by non-idle tasks. */
7436 	if (unlikely(task_has_idle_policy(curr)) &&
7437 	    likely(!task_has_idle_policy(p)))
7438 		goto preempt;
7439 
7440 	/*
7441 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7442 	 * is driven by the tick):
7443 	 */
7444 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7445 		return;
7446 
7447 	find_matching_se(&se, &pse);
7448 	WARN_ON_ONCE(!pse);
7449 
7450 	cse_is_idle = se_is_idle(se);
7451 	pse_is_idle = se_is_idle(pse);
7452 
7453 	/*
7454 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
7455 	 * in the inverse case).
7456 	 */
7457 	if (cse_is_idle && !pse_is_idle)
7458 		goto preempt;
7459 	if (cse_is_idle != pse_is_idle)
7460 		return;
7461 
7462 	update_curr(cfs_rq_of(se));
7463 	if (wakeup_preempt_entity(se, pse) == 1) {
7464 		/*
7465 		 * Bias pick_next to pick the sched entity that is
7466 		 * triggering this preemption.
7467 		 */
7468 		if (!next_buddy_marked)
7469 			set_next_buddy(pse);
7470 		goto preempt;
7471 	}
7472 
7473 	return;
7474 
7475 preempt:
7476 	resched_curr(rq);
7477 	/*
7478 	 * Only set the backward buddy when the current task is still
7479 	 * on the rq. This can happen when a wakeup gets interleaved
7480 	 * with schedule on the ->pre_schedule() or idle_balance()
7481 	 * point, either of which can * drop the rq lock.
7482 	 *
7483 	 * Also, during early boot the idle thread is in the fair class,
7484 	 * for obvious reasons its a bad idea to schedule back to it.
7485 	 */
7486 	if (unlikely(!se->on_rq || curr == rq->idle))
7487 		return;
7488 
7489 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7490 		set_last_buddy(se);
7491 }
7492 
7493 #ifdef CONFIG_SMP
7494 static struct task_struct *pick_task_fair(struct rq *rq)
7495 {
7496 	struct sched_entity *se;
7497 	struct cfs_rq *cfs_rq;
7498 
7499 again:
7500 	cfs_rq = &rq->cfs;
7501 	if (!cfs_rq->nr_running)
7502 		return NULL;
7503 
7504 	do {
7505 		struct sched_entity *curr = cfs_rq->curr;
7506 
7507 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7508 		if (curr) {
7509 			if (curr->on_rq)
7510 				update_curr(cfs_rq);
7511 			else
7512 				curr = NULL;
7513 
7514 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7515 				goto again;
7516 		}
7517 
7518 		se = pick_next_entity(cfs_rq, curr);
7519 		cfs_rq = group_cfs_rq(se);
7520 	} while (cfs_rq);
7521 
7522 	return task_of(se);
7523 }
7524 #endif
7525 
7526 struct task_struct *
7527 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7528 {
7529 	struct cfs_rq *cfs_rq = &rq->cfs;
7530 	struct sched_entity *se;
7531 	struct task_struct *p;
7532 	int new_tasks;
7533 
7534 again:
7535 	if (!sched_fair_runnable(rq))
7536 		goto idle;
7537 
7538 #ifdef CONFIG_FAIR_GROUP_SCHED
7539 	if (!prev || prev->sched_class != &fair_sched_class)
7540 		goto simple;
7541 
7542 	/*
7543 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7544 	 * likely that a next task is from the same cgroup as the current.
7545 	 *
7546 	 * Therefore attempt to avoid putting and setting the entire cgroup
7547 	 * hierarchy, only change the part that actually changes.
7548 	 */
7549 
7550 	do {
7551 		struct sched_entity *curr = cfs_rq->curr;
7552 
7553 		/*
7554 		 * Since we got here without doing put_prev_entity() we also
7555 		 * have to consider cfs_rq->curr. If it is still a runnable
7556 		 * entity, update_curr() will update its vruntime, otherwise
7557 		 * forget we've ever seen it.
7558 		 */
7559 		if (curr) {
7560 			if (curr->on_rq)
7561 				update_curr(cfs_rq);
7562 			else
7563 				curr = NULL;
7564 
7565 			/*
7566 			 * This call to check_cfs_rq_runtime() will do the
7567 			 * throttle and dequeue its entity in the parent(s).
7568 			 * Therefore the nr_running test will indeed
7569 			 * be correct.
7570 			 */
7571 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7572 				cfs_rq = &rq->cfs;
7573 
7574 				if (!cfs_rq->nr_running)
7575 					goto idle;
7576 
7577 				goto simple;
7578 			}
7579 		}
7580 
7581 		se = pick_next_entity(cfs_rq, curr);
7582 		cfs_rq = group_cfs_rq(se);
7583 	} while (cfs_rq);
7584 
7585 	p = task_of(se);
7586 
7587 	/*
7588 	 * Since we haven't yet done put_prev_entity and if the selected task
7589 	 * is a different task than we started out with, try and touch the
7590 	 * least amount of cfs_rqs.
7591 	 */
7592 	if (prev != p) {
7593 		struct sched_entity *pse = &prev->se;
7594 
7595 		while (!(cfs_rq = is_same_group(se, pse))) {
7596 			int se_depth = se->depth;
7597 			int pse_depth = pse->depth;
7598 
7599 			if (se_depth <= pse_depth) {
7600 				put_prev_entity(cfs_rq_of(pse), pse);
7601 				pse = parent_entity(pse);
7602 			}
7603 			if (se_depth >= pse_depth) {
7604 				set_next_entity(cfs_rq_of(se), se);
7605 				se = parent_entity(se);
7606 			}
7607 		}
7608 
7609 		put_prev_entity(cfs_rq, pse);
7610 		set_next_entity(cfs_rq, se);
7611 	}
7612 
7613 	goto done;
7614 simple:
7615 #endif
7616 	if (prev)
7617 		put_prev_task(rq, prev);
7618 
7619 	do {
7620 		se = pick_next_entity(cfs_rq, NULL);
7621 		set_next_entity(cfs_rq, se);
7622 		cfs_rq = group_cfs_rq(se);
7623 	} while (cfs_rq);
7624 
7625 	p = task_of(se);
7626 
7627 done: __maybe_unused;
7628 #ifdef CONFIG_SMP
7629 	/*
7630 	 * Move the next running task to the front of
7631 	 * the list, so our cfs_tasks list becomes MRU
7632 	 * one.
7633 	 */
7634 	list_move(&p->se.group_node, &rq->cfs_tasks);
7635 #endif
7636 
7637 	if (hrtick_enabled_fair(rq))
7638 		hrtick_start_fair(rq, p);
7639 
7640 	update_misfit_status(p, rq);
7641 
7642 	return p;
7643 
7644 idle:
7645 	if (!rf)
7646 		return NULL;
7647 
7648 	new_tasks = newidle_balance(rq, rf);
7649 
7650 	/*
7651 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7652 	 * possible for any higher priority task to appear. In that case we
7653 	 * must re-start the pick_next_entity() loop.
7654 	 */
7655 	if (new_tasks < 0)
7656 		return RETRY_TASK;
7657 
7658 	if (new_tasks > 0)
7659 		goto again;
7660 
7661 	/*
7662 	 * rq is about to be idle, check if we need to update the
7663 	 * lost_idle_time of clock_pelt
7664 	 */
7665 	update_idle_rq_clock_pelt(rq);
7666 
7667 	return NULL;
7668 }
7669 
7670 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7671 {
7672 	return pick_next_task_fair(rq, NULL, NULL);
7673 }
7674 
7675 /*
7676  * Account for a descheduled task:
7677  */
7678 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7679 {
7680 	struct sched_entity *se = &prev->se;
7681 	struct cfs_rq *cfs_rq;
7682 
7683 	for_each_sched_entity(se) {
7684 		cfs_rq = cfs_rq_of(se);
7685 		put_prev_entity(cfs_rq, se);
7686 	}
7687 }
7688 
7689 /*
7690  * sched_yield() is very simple
7691  *
7692  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7693  */
7694 static void yield_task_fair(struct rq *rq)
7695 {
7696 	struct task_struct *curr = rq->curr;
7697 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7698 	struct sched_entity *se = &curr->se;
7699 
7700 	/*
7701 	 * Are we the only task in the tree?
7702 	 */
7703 	if (unlikely(rq->nr_running == 1))
7704 		return;
7705 
7706 	clear_buddies(cfs_rq, se);
7707 
7708 	if (curr->policy != SCHED_BATCH) {
7709 		update_rq_clock(rq);
7710 		/*
7711 		 * Update run-time statistics of the 'current'.
7712 		 */
7713 		update_curr(cfs_rq);
7714 		/*
7715 		 * Tell update_rq_clock() that we've just updated,
7716 		 * so we don't do microscopic update in schedule()
7717 		 * and double the fastpath cost.
7718 		 */
7719 		rq_clock_skip_update(rq);
7720 	}
7721 
7722 	set_skip_buddy(se);
7723 }
7724 
7725 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7726 {
7727 	struct sched_entity *se = &p->se;
7728 
7729 	/* throttled hierarchies are not runnable */
7730 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7731 		return false;
7732 
7733 	/* Tell the scheduler that we'd really like pse to run next. */
7734 	set_next_buddy(se);
7735 
7736 	yield_task_fair(rq);
7737 
7738 	return true;
7739 }
7740 
7741 #ifdef CONFIG_SMP
7742 /**************************************************
7743  * Fair scheduling class load-balancing methods.
7744  *
7745  * BASICS
7746  *
7747  * The purpose of load-balancing is to achieve the same basic fairness the
7748  * per-CPU scheduler provides, namely provide a proportional amount of compute
7749  * time to each task. This is expressed in the following equation:
7750  *
7751  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7752  *
7753  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7754  * W_i,0 is defined as:
7755  *
7756  *   W_i,0 = \Sum_j w_i,j                                             (2)
7757  *
7758  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7759  * is derived from the nice value as per sched_prio_to_weight[].
7760  *
7761  * The weight average is an exponential decay average of the instantaneous
7762  * weight:
7763  *
7764  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7765  *
7766  * C_i is the compute capacity of CPU i, typically it is the
7767  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7768  * can also include other factors [XXX].
7769  *
7770  * To achieve this balance we define a measure of imbalance which follows
7771  * directly from (1):
7772  *
7773  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7774  *
7775  * We them move tasks around to minimize the imbalance. In the continuous
7776  * function space it is obvious this converges, in the discrete case we get
7777  * a few fun cases generally called infeasible weight scenarios.
7778  *
7779  * [XXX expand on:
7780  *     - infeasible weights;
7781  *     - local vs global optima in the discrete case. ]
7782  *
7783  *
7784  * SCHED DOMAINS
7785  *
7786  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7787  * for all i,j solution, we create a tree of CPUs that follows the hardware
7788  * topology where each level pairs two lower groups (or better). This results
7789  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7790  * tree to only the first of the previous level and we decrease the frequency
7791  * of load-balance at each level inv. proportional to the number of CPUs in
7792  * the groups.
7793  *
7794  * This yields:
7795  *
7796  *     log_2 n     1     n
7797  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7798  *     i = 0      2^i   2^i
7799  *                               `- size of each group
7800  *         |         |     `- number of CPUs doing load-balance
7801  *         |         `- freq
7802  *         `- sum over all levels
7803  *
7804  * Coupled with a limit on how many tasks we can migrate every balance pass,
7805  * this makes (5) the runtime complexity of the balancer.
7806  *
7807  * An important property here is that each CPU is still (indirectly) connected
7808  * to every other CPU in at most O(log n) steps:
7809  *
7810  * The adjacency matrix of the resulting graph is given by:
7811  *
7812  *             log_2 n
7813  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7814  *             k = 0
7815  *
7816  * And you'll find that:
7817  *
7818  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7819  *
7820  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7821  * The task movement gives a factor of O(m), giving a convergence complexity
7822  * of:
7823  *
7824  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7825  *
7826  *
7827  * WORK CONSERVING
7828  *
7829  * In order to avoid CPUs going idle while there's still work to do, new idle
7830  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7831  * tree itself instead of relying on other CPUs to bring it work.
7832  *
7833  * This adds some complexity to both (5) and (8) but it reduces the total idle
7834  * time.
7835  *
7836  * [XXX more?]
7837  *
7838  *
7839  * CGROUPS
7840  *
7841  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7842  *
7843  *                                s_k,i
7844  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7845  *                                 S_k
7846  *
7847  * Where
7848  *
7849  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7850  *
7851  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7852  *
7853  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7854  * property.
7855  *
7856  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7857  *      rewrite all of this once again.]
7858  */
7859 
7860 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7861 
7862 enum fbq_type { regular, remote, all };
7863 
7864 /*
7865  * 'group_type' describes the group of CPUs at the moment of load balancing.
7866  *
7867  * The enum is ordered by pulling priority, with the group with lowest priority
7868  * first so the group_type can simply be compared when selecting the busiest
7869  * group. See update_sd_pick_busiest().
7870  */
7871 enum group_type {
7872 	/* The group has spare capacity that can be used to run more tasks.  */
7873 	group_has_spare = 0,
7874 	/*
7875 	 * The group is fully used and the tasks don't compete for more CPU
7876 	 * cycles. Nevertheless, some tasks might wait before running.
7877 	 */
7878 	group_fully_busy,
7879 	/*
7880 	 * One task doesn't fit with CPU's capacity and must be migrated to a
7881 	 * more powerful CPU.
7882 	 */
7883 	group_misfit_task,
7884 	/*
7885 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7886 	 * and the task should be migrated to it instead of running on the
7887 	 * current CPU.
7888 	 */
7889 	group_asym_packing,
7890 	/*
7891 	 * The tasks' affinity constraints previously prevented the scheduler
7892 	 * from balancing the load across the system.
7893 	 */
7894 	group_imbalanced,
7895 	/*
7896 	 * The CPU is overloaded and can't provide expected CPU cycles to all
7897 	 * tasks.
7898 	 */
7899 	group_overloaded
7900 };
7901 
7902 enum migration_type {
7903 	migrate_load = 0,
7904 	migrate_util,
7905 	migrate_task,
7906 	migrate_misfit
7907 };
7908 
7909 #define LBF_ALL_PINNED	0x01
7910 #define LBF_NEED_BREAK	0x02
7911 #define LBF_DST_PINNED  0x04
7912 #define LBF_SOME_PINNED	0x08
7913 #define LBF_ACTIVE_LB	0x10
7914 
7915 struct lb_env {
7916 	struct sched_domain	*sd;
7917 
7918 	struct rq		*src_rq;
7919 	int			src_cpu;
7920 
7921 	int			dst_cpu;
7922 	struct rq		*dst_rq;
7923 
7924 	struct cpumask		*dst_grpmask;
7925 	int			new_dst_cpu;
7926 	enum cpu_idle_type	idle;
7927 	long			imbalance;
7928 	/* The set of CPUs under consideration for load-balancing */
7929 	struct cpumask		*cpus;
7930 
7931 	unsigned int		flags;
7932 
7933 	unsigned int		loop;
7934 	unsigned int		loop_break;
7935 	unsigned int		loop_max;
7936 
7937 	enum fbq_type		fbq_type;
7938 	enum migration_type	migration_type;
7939 	struct list_head	tasks;
7940 };
7941 
7942 /*
7943  * Is this task likely cache-hot:
7944  */
7945 static int task_hot(struct task_struct *p, struct lb_env *env)
7946 {
7947 	s64 delta;
7948 
7949 	lockdep_assert_rq_held(env->src_rq);
7950 
7951 	if (p->sched_class != &fair_sched_class)
7952 		return 0;
7953 
7954 	if (unlikely(task_has_idle_policy(p)))
7955 		return 0;
7956 
7957 	/* SMT siblings share cache */
7958 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7959 		return 0;
7960 
7961 	/*
7962 	 * Buddy candidates are cache hot:
7963 	 */
7964 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7965 			(&p->se == cfs_rq_of(&p->se)->next ||
7966 			 &p->se == cfs_rq_of(&p->se)->last))
7967 		return 1;
7968 
7969 	if (sysctl_sched_migration_cost == -1)
7970 		return 1;
7971 
7972 	/*
7973 	 * Don't migrate task if the task's cookie does not match
7974 	 * with the destination CPU's core cookie.
7975 	 */
7976 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
7977 		return 1;
7978 
7979 	if (sysctl_sched_migration_cost == 0)
7980 		return 0;
7981 
7982 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7983 
7984 	return delta < (s64)sysctl_sched_migration_cost;
7985 }
7986 
7987 #ifdef CONFIG_NUMA_BALANCING
7988 /*
7989  * Returns 1, if task migration degrades locality
7990  * Returns 0, if task migration improves locality i.e migration preferred.
7991  * Returns -1, if task migration is not affected by locality.
7992  */
7993 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7994 {
7995 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7996 	unsigned long src_weight, dst_weight;
7997 	int src_nid, dst_nid, dist;
7998 
7999 	if (!static_branch_likely(&sched_numa_balancing))
8000 		return -1;
8001 
8002 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8003 		return -1;
8004 
8005 	src_nid = cpu_to_node(env->src_cpu);
8006 	dst_nid = cpu_to_node(env->dst_cpu);
8007 
8008 	if (src_nid == dst_nid)
8009 		return -1;
8010 
8011 	/* Migrating away from the preferred node is always bad. */
8012 	if (src_nid == p->numa_preferred_nid) {
8013 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8014 			return 1;
8015 		else
8016 			return -1;
8017 	}
8018 
8019 	/* Encourage migration to the preferred node. */
8020 	if (dst_nid == p->numa_preferred_nid)
8021 		return 0;
8022 
8023 	/* Leaving a core idle is often worse than degrading locality. */
8024 	if (env->idle == CPU_IDLE)
8025 		return -1;
8026 
8027 	dist = node_distance(src_nid, dst_nid);
8028 	if (numa_group) {
8029 		src_weight = group_weight(p, src_nid, dist);
8030 		dst_weight = group_weight(p, dst_nid, dist);
8031 	} else {
8032 		src_weight = task_weight(p, src_nid, dist);
8033 		dst_weight = task_weight(p, dst_nid, dist);
8034 	}
8035 
8036 	return dst_weight < src_weight;
8037 }
8038 
8039 #else
8040 static inline int migrate_degrades_locality(struct task_struct *p,
8041 					     struct lb_env *env)
8042 {
8043 	return -1;
8044 }
8045 #endif
8046 
8047 /*
8048  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8049  */
8050 static
8051 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8052 {
8053 	int tsk_cache_hot;
8054 
8055 	lockdep_assert_rq_held(env->src_rq);
8056 
8057 	/*
8058 	 * We do not migrate tasks that are:
8059 	 * 1) throttled_lb_pair, or
8060 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8061 	 * 3) running (obviously), or
8062 	 * 4) are cache-hot on their current CPU.
8063 	 */
8064 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8065 		return 0;
8066 
8067 	/* Disregard pcpu kthreads; they are where they need to be. */
8068 	if (kthread_is_per_cpu(p))
8069 		return 0;
8070 
8071 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8072 		int cpu;
8073 
8074 		schedstat_inc(p->stats.nr_failed_migrations_affine);
8075 
8076 		env->flags |= LBF_SOME_PINNED;
8077 
8078 		/*
8079 		 * Remember if this task can be migrated to any other CPU in
8080 		 * our sched_group. We may want to revisit it if we couldn't
8081 		 * meet load balance goals by pulling other tasks on src_cpu.
8082 		 *
8083 		 * Avoid computing new_dst_cpu
8084 		 * - for NEWLY_IDLE
8085 		 * - if we have already computed one in current iteration
8086 		 * - if it's an active balance
8087 		 */
8088 		if (env->idle == CPU_NEWLY_IDLE ||
8089 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8090 			return 0;
8091 
8092 		/* Prevent to re-select dst_cpu via env's CPUs: */
8093 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8094 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8095 				env->flags |= LBF_DST_PINNED;
8096 				env->new_dst_cpu = cpu;
8097 				break;
8098 			}
8099 		}
8100 
8101 		return 0;
8102 	}
8103 
8104 	/* Record that we found at least one task that could run on dst_cpu */
8105 	env->flags &= ~LBF_ALL_PINNED;
8106 
8107 	if (task_on_cpu(env->src_rq, p)) {
8108 		schedstat_inc(p->stats.nr_failed_migrations_running);
8109 		return 0;
8110 	}
8111 
8112 	/*
8113 	 * Aggressive migration if:
8114 	 * 1) active balance
8115 	 * 2) destination numa is preferred
8116 	 * 3) task is cache cold, or
8117 	 * 4) too many balance attempts have failed.
8118 	 */
8119 	if (env->flags & LBF_ACTIVE_LB)
8120 		return 1;
8121 
8122 	tsk_cache_hot = migrate_degrades_locality(p, env);
8123 	if (tsk_cache_hot == -1)
8124 		tsk_cache_hot = task_hot(p, env);
8125 
8126 	if (tsk_cache_hot <= 0 ||
8127 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8128 		if (tsk_cache_hot == 1) {
8129 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8130 			schedstat_inc(p->stats.nr_forced_migrations);
8131 		}
8132 		return 1;
8133 	}
8134 
8135 	schedstat_inc(p->stats.nr_failed_migrations_hot);
8136 	return 0;
8137 }
8138 
8139 /*
8140  * detach_task() -- detach the task for the migration specified in env
8141  */
8142 static void detach_task(struct task_struct *p, struct lb_env *env)
8143 {
8144 	lockdep_assert_rq_held(env->src_rq);
8145 
8146 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
8147 	set_task_cpu(p, env->dst_cpu);
8148 }
8149 
8150 /*
8151  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
8152  * part of active balancing operations within "domain".
8153  *
8154  * Returns a task if successful and NULL otherwise.
8155  */
8156 static struct task_struct *detach_one_task(struct lb_env *env)
8157 {
8158 	struct task_struct *p;
8159 
8160 	lockdep_assert_rq_held(env->src_rq);
8161 
8162 	list_for_each_entry_reverse(p,
8163 			&env->src_rq->cfs_tasks, se.group_node) {
8164 		if (!can_migrate_task(p, env))
8165 			continue;
8166 
8167 		detach_task(p, env);
8168 
8169 		/*
8170 		 * Right now, this is only the second place where
8171 		 * lb_gained[env->idle] is updated (other is detach_tasks)
8172 		 * so we can safely collect stats here rather than
8173 		 * inside detach_tasks().
8174 		 */
8175 		schedstat_inc(env->sd->lb_gained[env->idle]);
8176 		return p;
8177 	}
8178 	return NULL;
8179 }
8180 
8181 /*
8182  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
8183  * busiest_rq, as part of a balancing operation within domain "sd".
8184  *
8185  * Returns number of detached tasks if successful and 0 otherwise.
8186  */
8187 static int detach_tasks(struct lb_env *env)
8188 {
8189 	struct list_head *tasks = &env->src_rq->cfs_tasks;
8190 	unsigned long util, load;
8191 	struct task_struct *p;
8192 	int detached = 0;
8193 
8194 	lockdep_assert_rq_held(env->src_rq);
8195 
8196 	/*
8197 	 * Source run queue has been emptied by another CPU, clear
8198 	 * LBF_ALL_PINNED flag as we will not test any task.
8199 	 */
8200 	if (env->src_rq->nr_running <= 1) {
8201 		env->flags &= ~LBF_ALL_PINNED;
8202 		return 0;
8203 	}
8204 
8205 	if (env->imbalance <= 0)
8206 		return 0;
8207 
8208 	while (!list_empty(tasks)) {
8209 		/*
8210 		 * We don't want to steal all, otherwise we may be treated likewise,
8211 		 * which could at worst lead to a livelock crash.
8212 		 */
8213 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
8214 			break;
8215 
8216 		env->loop++;
8217 		/*
8218 		 * We've more or less seen every task there is, call it quits
8219 		 * unless we haven't found any movable task yet.
8220 		 */
8221 		if (env->loop > env->loop_max &&
8222 		    !(env->flags & LBF_ALL_PINNED))
8223 			break;
8224 
8225 		/* take a breather every nr_migrate tasks */
8226 		if (env->loop > env->loop_break) {
8227 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
8228 			env->flags |= LBF_NEED_BREAK;
8229 			break;
8230 		}
8231 
8232 		p = list_last_entry(tasks, struct task_struct, se.group_node);
8233 
8234 		if (!can_migrate_task(p, env))
8235 			goto next;
8236 
8237 		switch (env->migration_type) {
8238 		case migrate_load:
8239 			/*
8240 			 * Depending of the number of CPUs and tasks and the
8241 			 * cgroup hierarchy, task_h_load() can return a null
8242 			 * value. Make sure that env->imbalance decreases
8243 			 * otherwise detach_tasks() will stop only after
8244 			 * detaching up to loop_max tasks.
8245 			 */
8246 			load = max_t(unsigned long, task_h_load(p), 1);
8247 
8248 			if (sched_feat(LB_MIN) &&
8249 			    load < 16 && !env->sd->nr_balance_failed)
8250 				goto next;
8251 
8252 			/*
8253 			 * Make sure that we don't migrate too much load.
8254 			 * Nevertheless, let relax the constraint if
8255 			 * scheduler fails to find a good waiting task to
8256 			 * migrate.
8257 			 */
8258 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
8259 				goto next;
8260 
8261 			env->imbalance -= load;
8262 			break;
8263 
8264 		case migrate_util:
8265 			util = task_util_est(p);
8266 
8267 			if (util > env->imbalance)
8268 				goto next;
8269 
8270 			env->imbalance -= util;
8271 			break;
8272 
8273 		case migrate_task:
8274 			env->imbalance--;
8275 			break;
8276 
8277 		case migrate_misfit:
8278 			/* This is not a misfit task */
8279 			if (task_fits_capacity(p, capacity_of(env->src_cpu)))
8280 				goto next;
8281 
8282 			env->imbalance = 0;
8283 			break;
8284 		}
8285 
8286 		detach_task(p, env);
8287 		list_add(&p->se.group_node, &env->tasks);
8288 
8289 		detached++;
8290 
8291 #ifdef CONFIG_PREEMPTION
8292 		/*
8293 		 * NEWIDLE balancing is a source of latency, so preemptible
8294 		 * kernels will stop after the first task is detached to minimize
8295 		 * the critical section.
8296 		 */
8297 		if (env->idle == CPU_NEWLY_IDLE)
8298 			break;
8299 #endif
8300 
8301 		/*
8302 		 * We only want to steal up to the prescribed amount of
8303 		 * load/util/tasks.
8304 		 */
8305 		if (env->imbalance <= 0)
8306 			break;
8307 
8308 		continue;
8309 next:
8310 		list_move(&p->se.group_node, tasks);
8311 	}
8312 
8313 	/*
8314 	 * Right now, this is one of only two places we collect this stat
8315 	 * so we can safely collect detach_one_task() stats here rather
8316 	 * than inside detach_one_task().
8317 	 */
8318 	schedstat_add(env->sd->lb_gained[env->idle], detached);
8319 
8320 	return detached;
8321 }
8322 
8323 /*
8324  * attach_task() -- attach the task detached by detach_task() to its new rq.
8325  */
8326 static void attach_task(struct rq *rq, struct task_struct *p)
8327 {
8328 	lockdep_assert_rq_held(rq);
8329 
8330 	WARN_ON_ONCE(task_rq(p) != rq);
8331 	activate_task(rq, p, ENQUEUE_NOCLOCK);
8332 	check_preempt_curr(rq, p, 0);
8333 }
8334 
8335 /*
8336  * attach_one_task() -- attaches the task returned from detach_one_task() to
8337  * its new rq.
8338  */
8339 static void attach_one_task(struct rq *rq, struct task_struct *p)
8340 {
8341 	struct rq_flags rf;
8342 
8343 	rq_lock(rq, &rf);
8344 	update_rq_clock(rq);
8345 	attach_task(rq, p);
8346 	rq_unlock(rq, &rf);
8347 }
8348 
8349 /*
8350  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8351  * new rq.
8352  */
8353 static void attach_tasks(struct lb_env *env)
8354 {
8355 	struct list_head *tasks = &env->tasks;
8356 	struct task_struct *p;
8357 	struct rq_flags rf;
8358 
8359 	rq_lock(env->dst_rq, &rf);
8360 	update_rq_clock(env->dst_rq);
8361 
8362 	while (!list_empty(tasks)) {
8363 		p = list_first_entry(tasks, struct task_struct, se.group_node);
8364 		list_del_init(&p->se.group_node);
8365 
8366 		attach_task(env->dst_rq, p);
8367 	}
8368 
8369 	rq_unlock(env->dst_rq, &rf);
8370 }
8371 
8372 #ifdef CONFIG_NO_HZ_COMMON
8373 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8374 {
8375 	if (cfs_rq->avg.load_avg)
8376 		return true;
8377 
8378 	if (cfs_rq->avg.util_avg)
8379 		return true;
8380 
8381 	return false;
8382 }
8383 
8384 static inline bool others_have_blocked(struct rq *rq)
8385 {
8386 	if (READ_ONCE(rq->avg_rt.util_avg))
8387 		return true;
8388 
8389 	if (READ_ONCE(rq->avg_dl.util_avg))
8390 		return true;
8391 
8392 	if (thermal_load_avg(rq))
8393 		return true;
8394 
8395 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8396 	if (READ_ONCE(rq->avg_irq.util_avg))
8397 		return true;
8398 #endif
8399 
8400 	return false;
8401 }
8402 
8403 static inline void update_blocked_load_tick(struct rq *rq)
8404 {
8405 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8406 }
8407 
8408 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8409 {
8410 	if (!has_blocked)
8411 		rq->has_blocked_load = 0;
8412 }
8413 #else
8414 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8415 static inline bool others_have_blocked(struct rq *rq) { return false; }
8416 static inline void update_blocked_load_tick(struct rq *rq) {}
8417 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8418 #endif
8419 
8420 static bool __update_blocked_others(struct rq *rq, bool *done)
8421 {
8422 	const struct sched_class *curr_class;
8423 	u64 now = rq_clock_pelt(rq);
8424 	unsigned long thermal_pressure;
8425 	bool decayed;
8426 
8427 	/*
8428 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8429 	 * DL and IRQ signals have been updated before updating CFS.
8430 	 */
8431 	curr_class = rq->curr->sched_class;
8432 
8433 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8434 
8435 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8436 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8437 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8438 		  update_irq_load_avg(rq, 0);
8439 
8440 	if (others_have_blocked(rq))
8441 		*done = false;
8442 
8443 	return decayed;
8444 }
8445 
8446 #ifdef CONFIG_FAIR_GROUP_SCHED
8447 
8448 static bool __update_blocked_fair(struct rq *rq, bool *done)
8449 {
8450 	struct cfs_rq *cfs_rq, *pos;
8451 	bool decayed = false;
8452 	int cpu = cpu_of(rq);
8453 
8454 	/*
8455 	 * Iterates the task_group tree in a bottom up fashion, see
8456 	 * list_add_leaf_cfs_rq() for details.
8457 	 */
8458 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8459 		struct sched_entity *se;
8460 
8461 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8462 			update_tg_load_avg(cfs_rq);
8463 
8464 			if (cfs_rq->nr_running == 0)
8465 				update_idle_cfs_rq_clock_pelt(cfs_rq);
8466 
8467 			if (cfs_rq == &rq->cfs)
8468 				decayed = true;
8469 		}
8470 
8471 		/* Propagate pending load changes to the parent, if any: */
8472 		se = cfs_rq->tg->se[cpu];
8473 		if (se && !skip_blocked_update(se))
8474 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8475 
8476 		/*
8477 		 * There can be a lot of idle CPU cgroups.  Don't let fully
8478 		 * decayed cfs_rqs linger on the list.
8479 		 */
8480 		if (cfs_rq_is_decayed(cfs_rq))
8481 			list_del_leaf_cfs_rq(cfs_rq);
8482 
8483 		/* Don't need periodic decay once load/util_avg are null */
8484 		if (cfs_rq_has_blocked(cfs_rq))
8485 			*done = false;
8486 	}
8487 
8488 	return decayed;
8489 }
8490 
8491 /*
8492  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8493  * This needs to be done in a top-down fashion because the load of a child
8494  * group is a fraction of its parents load.
8495  */
8496 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8497 {
8498 	struct rq *rq = rq_of(cfs_rq);
8499 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8500 	unsigned long now = jiffies;
8501 	unsigned long load;
8502 
8503 	if (cfs_rq->last_h_load_update == now)
8504 		return;
8505 
8506 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
8507 	for_each_sched_entity(se) {
8508 		cfs_rq = cfs_rq_of(se);
8509 		WRITE_ONCE(cfs_rq->h_load_next, se);
8510 		if (cfs_rq->last_h_load_update == now)
8511 			break;
8512 	}
8513 
8514 	if (!se) {
8515 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8516 		cfs_rq->last_h_load_update = now;
8517 	}
8518 
8519 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8520 		load = cfs_rq->h_load;
8521 		load = div64_ul(load * se->avg.load_avg,
8522 			cfs_rq_load_avg(cfs_rq) + 1);
8523 		cfs_rq = group_cfs_rq(se);
8524 		cfs_rq->h_load = load;
8525 		cfs_rq->last_h_load_update = now;
8526 	}
8527 }
8528 
8529 static unsigned long task_h_load(struct task_struct *p)
8530 {
8531 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
8532 
8533 	update_cfs_rq_h_load(cfs_rq);
8534 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8535 			cfs_rq_load_avg(cfs_rq) + 1);
8536 }
8537 #else
8538 static bool __update_blocked_fair(struct rq *rq, bool *done)
8539 {
8540 	struct cfs_rq *cfs_rq = &rq->cfs;
8541 	bool decayed;
8542 
8543 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8544 	if (cfs_rq_has_blocked(cfs_rq))
8545 		*done = false;
8546 
8547 	return decayed;
8548 }
8549 
8550 static unsigned long task_h_load(struct task_struct *p)
8551 {
8552 	return p->se.avg.load_avg;
8553 }
8554 #endif
8555 
8556 static void update_blocked_averages(int cpu)
8557 {
8558 	bool decayed = false, done = true;
8559 	struct rq *rq = cpu_rq(cpu);
8560 	struct rq_flags rf;
8561 
8562 	rq_lock_irqsave(rq, &rf);
8563 	update_blocked_load_tick(rq);
8564 	update_rq_clock(rq);
8565 
8566 	decayed |= __update_blocked_others(rq, &done);
8567 	decayed |= __update_blocked_fair(rq, &done);
8568 
8569 	update_blocked_load_status(rq, !done);
8570 	if (decayed)
8571 		cpufreq_update_util(rq, 0);
8572 	rq_unlock_irqrestore(rq, &rf);
8573 }
8574 
8575 /********** Helpers for find_busiest_group ************************/
8576 
8577 /*
8578  * sg_lb_stats - stats of a sched_group required for load_balancing
8579  */
8580 struct sg_lb_stats {
8581 	unsigned long avg_load; /*Avg load across the CPUs of the group */
8582 	unsigned long group_load; /* Total load over the CPUs of the group */
8583 	unsigned long group_capacity;
8584 	unsigned long group_util; /* Total utilization over the CPUs of the group */
8585 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8586 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
8587 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8588 	unsigned int idle_cpus;
8589 	unsigned int group_weight;
8590 	enum group_type group_type;
8591 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8592 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8593 #ifdef CONFIG_NUMA_BALANCING
8594 	unsigned int nr_numa_running;
8595 	unsigned int nr_preferred_running;
8596 #endif
8597 };
8598 
8599 /*
8600  * sd_lb_stats - Structure to store the statistics of a sched_domain
8601  *		 during load balancing.
8602  */
8603 struct sd_lb_stats {
8604 	struct sched_group *busiest;	/* Busiest group in this sd */
8605 	struct sched_group *local;	/* Local group in this sd */
8606 	unsigned long total_load;	/* Total load of all groups in sd */
8607 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
8608 	unsigned long avg_load;	/* Average load across all groups in sd */
8609 	unsigned int prefer_sibling; /* tasks should go to sibling first */
8610 
8611 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8612 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
8613 };
8614 
8615 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8616 {
8617 	/*
8618 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8619 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8620 	 * We must however set busiest_stat::group_type and
8621 	 * busiest_stat::idle_cpus to the worst busiest group because
8622 	 * update_sd_pick_busiest() reads these before assignment.
8623 	 */
8624 	*sds = (struct sd_lb_stats){
8625 		.busiest = NULL,
8626 		.local = NULL,
8627 		.total_load = 0UL,
8628 		.total_capacity = 0UL,
8629 		.busiest_stat = {
8630 			.idle_cpus = UINT_MAX,
8631 			.group_type = group_has_spare,
8632 		},
8633 	};
8634 }
8635 
8636 static unsigned long scale_rt_capacity(int cpu)
8637 {
8638 	struct rq *rq = cpu_rq(cpu);
8639 	unsigned long max = arch_scale_cpu_capacity(cpu);
8640 	unsigned long used, free;
8641 	unsigned long irq;
8642 
8643 	irq = cpu_util_irq(rq);
8644 
8645 	if (unlikely(irq >= max))
8646 		return 1;
8647 
8648 	/*
8649 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8650 	 * (running and not running) with weights 0 and 1024 respectively.
8651 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
8652 	 * average uses the actual delta max capacity(load).
8653 	 */
8654 	used = READ_ONCE(rq->avg_rt.util_avg);
8655 	used += READ_ONCE(rq->avg_dl.util_avg);
8656 	used += thermal_load_avg(rq);
8657 
8658 	if (unlikely(used >= max))
8659 		return 1;
8660 
8661 	free = max - used;
8662 
8663 	return scale_irq_capacity(free, irq, max);
8664 }
8665 
8666 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8667 {
8668 	unsigned long capacity = scale_rt_capacity(cpu);
8669 	struct sched_group *sdg = sd->groups;
8670 
8671 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8672 
8673 	if (!capacity)
8674 		capacity = 1;
8675 
8676 	cpu_rq(cpu)->cpu_capacity = capacity;
8677 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8678 
8679 	sdg->sgc->capacity = capacity;
8680 	sdg->sgc->min_capacity = capacity;
8681 	sdg->sgc->max_capacity = capacity;
8682 }
8683 
8684 void update_group_capacity(struct sched_domain *sd, int cpu)
8685 {
8686 	struct sched_domain *child = sd->child;
8687 	struct sched_group *group, *sdg = sd->groups;
8688 	unsigned long capacity, min_capacity, max_capacity;
8689 	unsigned long interval;
8690 
8691 	interval = msecs_to_jiffies(sd->balance_interval);
8692 	interval = clamp(interval, 1UL, max_load_balance_interval);
8693 	sdg->sgc->next_update = jiffies + interval;
8694 
8695 	if (!child) {
8696 		update_cpu_capacity(sd, cpu);
8697 		return;
8698 	}
8699 
8700 	capacity = 0;
8701 	min_capacity = ULONG_MAX;
8702 	max_capacity = 0;
8703 
8704 	if (child->flags & SD_OVERLAP) {
8705 		/*
8706 		 * SD_OVERLAP domains cannot assume that child groups
8707 		 * span the current group.
8708 		 */
8709 
8710 		for_each_cpu(cpu, sched_group_span(sdg)) {
8711 			unsigned long cpu_cap = capacity_of(cpu);
8712 
8713 			capacity += cpu_cap;
8714 			min_capacity = min(cpu_cap, min_capacity);
8715 			max_capacity = max(cpu_cap, max_capacity);
8716 		}
8717 	} else  {
8718 		/*
8719 		 * !SD_OVERLAP domains can assume that child groups
8720 		 * span the current group.
8721 		 */
8722 
8723 		group = child->groups;
8724 		do {
8725 			struct sched_group_capacity *sgc = group->sgc;
8726 
8727 			capacity += sgc->capacity;
8728 			min_capacity = min(sgc->min_capacity, min_capacity);
8729 			max_capacity = max(sgc->max_capacity, max_capacity);
8730 			group = group->next;
8731 		} while (group != child->groups);
8732 	}
8733 
8734 	sdg->sgc->capacity = capacity;
8735 	sdg->sgc->min_capacity = min_capacity;
8736 	sdg->sgc->max_capacity = max_capacity;
8737 }
8738 
8739 /*
8740  * Check whether the capacity of the rq has been noticeably reduced by side
8741  * activity. The imbalance_pct is used for the threshold.
8742  * Return true is the capacity is reduced
8743  */
8744 static inline int
8745 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8746 {
8747 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8748 				(rq->cpu_capacity_orig * 100));
8749 }
8750 
8751 /*
8752  * Check whether a rq has a misfit task and if it looks like we can actually
8753  * help that task: we can migrate the task to a CPU of higher capacity, or
8754  * the task's current CPU is heavily pressured.
8755  */
8756 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8757 {
8758 	return rq->misfit_task_load &&
8759 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8760 		 check_cpu_capacity(rq, sd));
8761 }
8762 
8763 /*
8764  * Group imbalance indicates (and tries to solve) the problem where balancing
8765  * groups is inadequate due to ->cpus_ptr constraints.
8766  *
8767  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8768  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8769  * Something like:
8770  *
8771  *	{ 0 1 2 3 } { 4 5 6 7 }
8772  *	        *     * * *
8773  *
8774  * If we were to balance group-wise we'd place two tasks in the first group and
8775  * two tasks in the second group. Clearly this is undesired as it will overload
8776  * cpu 3 and leave one of the CPUs in the second group unused.
8777  *
8778  * The current solution to this issue is detecting the skew in the first group
8779  * by noticing the lower domain failed to reach balance and had difficulty
8780  * moving tasks due to affinity constraints.
8781  *
8782  * When this is so detected; this group becomes a candidate for busiest; see
8783  * update_sd_pick_busiest(). And calculate_imbalance() and
8784  * find_busiest_group() avoid some of the usual balance conditions to allow it
8785  * to create an effective group imbalance.
8786  *
8787  * This is a somewhat tricky proposition since the next run might not find the
8788  * group imbalance and decide the groups need to be balanced again. A most
8789  * subtle and fragile situation.
8790  */
8791 
8792 static inline int sg_imbalanced(struct sched_group *group)
8793 {
8794 	return group->sgc->imbalance;
8795 }
8796 
8797 /*
8798  * group_has_capacity returns true if the group has spare capacity that could
8799  * be used by some tasks.
8800  * We consider that a group has spare capacity if the number of task is
8801  * smaller than the number of CPUs or if the utilization is lower than the
8802  * available capacity for CFS tasks.
8803  * For the latter, we use a threshold to stabilize the state, to take into
8804  * account the variance of the tasks' load and to return true if the available
8805  * capacity in meaningful for the load balancer.
8806  * As an example, an available capacity of 1% can appear but it doesn't make
8807  * any benefit for the load balance.
8808  */
8809 static inline bool
8810 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8811 {
8812 	if (sgs->sum_nr_running < sgs->group_weight)
8813 		return true;
8814 
8815 	if ((sgs->group_capacity * imbalance_pct) <
8816 			(sgs->group_runnable * 100))
8817 		return false;
8818 
8819 	if ((sgs->group_capacity * 100) >
8820 			(sgs->group_util * imbalance_pct))
8821 		return true;
8822 
8823 	return false;
8824 }
8825 
8826 /*
8827  *  group_is_overloaded returns true if the group has more tasks than it can
8828  *  handle.
8829  *  group_is_overloaded is not equals to !group_has_capacity because a group
8830  *  with the exact right number of tasks, has no more spare capacity but is not
8831  *  overloaded so both group_has_capacity and group_is_overloaded return
8832  *  false.
8833  */
8834 static inline bool
8835 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8836 {
8837 	if (sgs->sum_nr_running <= sgs->group_weight)
8838 		return false;
8839 
8840 	if ((sgs->group_capacity * 100) <
8841 			(sgs->group_util * imbalance_pct))
8842 		return true;
8843 
8844 	if ((sgs->group_capacity * imbalance_pct) <
8845 			(sgs->group_runnable * 100))
8846 		return true;
8847 
8848 	return false;
8849 }
8850 
8851 static inline enum
8852 group_type group_classify(unsigned int imbalance_pct,
8853 			  struct sched_group *group,
8854 			  struct sg_lb_stats *sgs)
8855 {
8856 	if (group_is_overloaded(imbalance_pct, sgs))
8857 		return group_overloaded;
8858 
8859 	if (sg_imbalanced(group))
8860 		return group_imbalanced;
8861 
8862 	if (sgs->group_asym_packing)
8863 		return group_asym_packing;
8864 
8865 	if (sgs->group_misfit_task_load)
8866 		return group_misfit_task;
8867 
8868 	if (!group_has_capacity(imbalance_pct, sgs))
8869 		return group_fully_busy;
8870 
8871 	return group_has_spare;
8872 }
8873 
8874 /**
8875  * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks
8876  * @dst_cpu:	Destination CPU of the load balancing
8877  * @sds:	Load-balancing data with statistics of the local group
8878  * @sgs:	Load-balancing statistics of the candidate busiest group
8879  * @sg:		The candidate busiest group
8880  *
8881  * Check the state of the SMT siblings of both @sds::local and @sg and decide
8882  * if @dst_cpu can pull tasks.
8883  *
8884  * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of
8885  * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks
8886  * only if @dst_cpu has higher priority.
8887  *
8888  * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more
8889  * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority.
8890  * Bigger imbalances in the number of busy CPUs will be dealt with in
8891  * update_sd_pick_busiest().
8892  *
8893  * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings
8894  * of @dst_cpu are idle and @sg has lower priority.
8895  *
8896  * Return: true if @dst_cpu can pull tasks, false otherwise.
8897  */
8898 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds,
8899 				    struct sg_lb_stats *sgs,
8900 				    struct sched_group *sg)
8901 {
8902 #ifdef CONFIG_SCHED_SMT
8903 	bool local_is_smt, sg_is_smt;
8904 	int sg_busy_cpus;
8905 
8906 	local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY;
8907 	sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY;
8908 
8909 	sg_busy_cpus = sgs->group_weight - sgs->idle_cpus;
8910 
8911 	if (!local_is_smt) {
8912 		/*
8913 		 * If we are here, @dst_cpu is idle and does not have SMT
8914 		 * siblings. Pull tasks if candidate group has two or more
8915 		 * busy CPUs.
8916 		 */
8917 		if (sg_busy_cpus >= 2) /* implies sg_is_smt */
8918 			return true;
8919 
8920 		/*
8921 		 * @dst_cpu does not have SMT siblings. @sg may have SMT
8922 		 * siblings and only one is busy. In such case, @dst_cpu
8923 		 * can help if it has higher priority and is idle (i.e.,
8924 		 * it has no running tasks).
8925 		 */
8926 		return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8927 	}
8928 
8929 	/* @dst_cpu has SMT siblings. */
8930 
8931 	if (sg_is_smt) {
8932 		int local_busy_cpus = sds->local->group_weight -
8933 				      sds->local_stat.idle_cpus;
8934 		int busy_cpus_delta = sg_busy_cpus - local_busy_cpus;
8935 
8936 		if (busy_cpus_delta == 1)
8937 			return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8938 
8939 		return false;
8940 	}
8941 
8942 	/*
8943 	 * @sg does not have SMT siblings. Ensure that @sds::local does not end
8944 	 * up with more than one busy SMT sibling and only pull tasks if there
8945 	 * are not busy CPUs (i.e., no CPU has running tasks).
8946 	 */
8947 	if (!sds->local_stat.sum_nr_running)
8948 		return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8949 
8950 	return false;
8951 #else
8952 	/* Always return false so that callers deal with non-SMT cases. */
8953 	return false;
8954 #endif
8955 }
8956 
8957 static inline bool
8958 sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
8959 	   struct sched_group *group)
8960 {
8961 	/* Only do SMT checks if either local or candidate have SMT siblings */
8962 	if ((sds->local->flags & SD_SHARE_CPUCAPACITY) ||
8963 	    (group->flags & SD_SHARE_CPUCAPACITY))
8964 		return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group);
8965 
8966 	return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
8967 }
8968 
8969 static inline bool
8970 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
8971 {
8972 	/*
8973 	 * When there is more than 1 task, the group_overloaded case already
8974 	 * takes care of cpu with reduced capacity
8975 	 */
8976 	if (rq->cfs.h_nr_running != 1)
8977 		return false;
8978 
8979 	return check_cpu_capacity(rq, sd);
8980 }
8981 
8982 /**
8983  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8984  * @env: The load balancing environment.
8985  * @sds: Load-balancing data with statistics of the local group.
8986  * @group: sched_group whose statistics are to be updated.
8987  * @sgs: variable to hold the statistics for this group.
8988  * @sg_status: Holds flag indicating the status of the sched_group
8989  */
8990 static inline void update_sg_lb_stats(struct lb_env *env,
8991 				      struct sd_lb_stats *sds,
8992 				      struct sched_group *group,
8993 				      struct sg_lb_stats *sgs,
8994 				      int *sg_status)
8995 {
8996 	int i, nr_running, local_group;
8997 
8998 	memset(sgs, 0, sizeof(*sgs));
8999 
9000 	local_group = group == sds->local;
9001 
9002 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9003 		struct rq *rq = cpu_rq(i);
9004 		unsigned long load = cpu_load(rq);
9005 
9006 		sgs->group_load += load;
9007 		sgs->group_util += cpu_util_cfs(i);
9008 		sgs->group_runnable += cpu_runnable(rq);
9009 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9010 
9011 		nr_running = rq->nr_running;
9012 		sgs->sum_nr_running += nr_running;
9013 
9014 		if (nr_running > 1)
9015 			*sg_status |= SG_OVERLOAD;
9016 
9017 		if (cpu_overutilized(i))
9018 			*sg_status |= SG_OVERUTILIZED;
9019 
9020 #ifdef CONFIG_NUMA_BALANCING
9021 		sgs->nr_numa_running += rq->nr_numa_running;
9022 		sgs->nr_preferred_running += rq->nr_preferred_running;
9023 #endif
9024 		/*
9025 		 * No need to call idle_cpu() if nr_running is not 0
9026 		 */
9027 		if (!nr_running && idle_cpu(i)) {
9028 			sgs->idle_cpus++;
9029 			/* Idle cpu can't have misfit task */
9030 			continue;
9031 		}
9032 
9033 		if (local_group)
9034 			continue;
9035 
9036 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9037 			/* Check for a misfit task on the cpu */
9038 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9039 				sgs->group_misfit_task_load = rq->misfit_task_load;
9040 				*sg_status |= SG_OVERLOAD;
9041 			}
9042 		} else if ((env->idle != CPU_NOT_IDLE) &&
9043 			   sched_reduced_capacity(rq, env->sd)) {
9044 			/* Check for a task running on a CPU with reduced capacity */
9045 			if (sgs->group_misfit_task_load < load)
9046 				sgs->group_misfit_task_load = load;
9047 		}
9048 	}
9049 
9050 	sgs->group_capacity = group->sgc->capacity;
9051 
9052 	sgs->group_weight = group->group_weight;
9053 
9054 	/* Check if dst CPU is idle and preferred to this group */
9055 	if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
9056 	    env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9057 	    sched_asym(env, sds, sgs, group)) {
9058 		sgs->group_asym_packing = 1;
9059 	}
9060 
9061 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9062 
9063 	/* Computing avg_load makes sense only when group is overloaded */
9064 	if (sgs->group_type == group_overloaded)
9065 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9066 				sgs->group_capacity;
9067 }
9068 
9069 /**
9070  * update_sd_pick_busiest - return 1 on busiest group
9071  * @env: The load balancing environment.
9072  * @sds: sched_domain statistics
9073  * @sg: sched_group candidate to be checked for being the busiest
9074  * @sgs: sched_group statistics
9075  *
9076  * Determine if @sg is a busier group than the previously selected
9077  * busiest group.
9078  *
9079  * Return: %true if @sg is a busier group than the previously selected
9080  * busiest group. %false otherwise.
9081  */
9082 static bool update_sd_pick_busiest(struct lb_env *env,
9083 				   struct sd_lb_stats *sds,
9084 				   struct sched_group *sg,
9085 				   struct sg_lb_stats *sgs)
9086 {
9087 	struct sg_lb_stats *busiest = &sds->busiest_stat;
9088 
9089 	/* Make sure that there is at least one task to pull */
9090 	if (!sgs->sum_h_nr_running)
9091 		return false;
9092 
9093 	/*
9094 	 * Don't try to pull misfit tasks we can't help.
9095 	 * We can use max_capacity here as reduction in capacity on some
9096 	 * CPUs in the group should either be possible to resolve
9097 	 * internally or be covered by avg_load imbalance (eventually).
9098 	 */
9099 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9100 	    (sgs->group_type == group_misfit_task) &&
9101 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
9102 	     sds->local_stat.group_type != group_has_spare))
9103 		return false;
9104 
9105 	if (sgs->group_type > busiest->group_type)
9106 		return true;
9107 
9108 	if (sgs->group_type < busiest->group_type)
9109 		return false;
9110 
9111 	/*
9112 	 * The candidate and the current busiest group are the same type of
9113 	 * group. Let check which one is the busiest according to the type.
9114 	 */
9115 
9116 	switch (sgs->group_type) {
9117 	case group_overloaded:
9118 		/* Select the overloaded group with highest avg_load. */
9119 		if (sgs->avg_load <= busiest->avg_load)
9120 			return false;
9121 		break;
9122 
9123 	case group_imbalanced:
9124 		/*
9125 		 * Select the 1st imbalanced group as we don't have any way to
9126 		 * choose one more than another.
9127 		 */
9128 		return false;
9129 
9130 	case group_asym_packing:
9131 		/* Prefer to move from lowest priority CPU's work */
9132 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
9133 			return false;
9134 		break;
9135 
9136 	case group_misfit_task:
9137 		/*
9138 		 * If we have more than one misfit sg go with the biggest
9139 		 * misfit.
9140 		 */
9141 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9142 			return false;
9143 		break;
9144 
9145 	case group_fully_busy:
9146 		/*
9147 		 * Select the fully busy group with highest avg_load. In
9148 		 * theory, there is no need to pull task from such kind of
9149 		 * group because tasks have all compute capacity that they need
9150 		 * but we can still improve the overall throughput by reducing
9151 		 * contention when accessing shared HW resources.
9152 		 *
9153 		 * XXX for now avg_load is not computed and always 0 so we
9154 		 * select the 1st one.
9155 		 */
9156 		if (sgs->avg_load <= busiest->avg_load)
9157 			return false;
9158 		break;
9159 
9160 	case group_has_spare:
9161 		/*
9162 		 * Select not overloaded group with lowest number of idle cpus
9163 		 * and highest number of running tasks. We could also compare
9164 		 * the spare capacity which is more stable but it can end up
9165 		 * that the group has less spare capacity but finally more idle
9166 		 * CPUs which means less opportunity to pull tasks.
9167 		 */
9168 		if (sgs->idle_cpus > busiest->idle_cpus)
9169 			return false;
9170 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
9171 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
9172 			return false;
9173 
9174 		break;
9175 	}
9176 
9177 	/*
9178 	 * Candidate sg has no more than one task per CPU and has higher
9179 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
9180 	 * throughput. Maximize throughput, power/energy consequences are not
9181 	 * considered.
9182 	 */
9183 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9184 	    (sgs->group_type <= group_fully_busy) &&
9185 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
9186 		return false;
9187 
9188 	return true;
9189 }
9190 
9191 #ifdef CONFIG_NUMA_BALANCING
9192 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9193 {
9194 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
9195 		return regular;
9196 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
9197 		return remote;
9198 	return all;
9199 }
9200 
9201 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9202 {
9203 	if (rq->nr_running > rq->nr_numa_running)
9204 		return regular;
9205 	if (rq->nr_running > rq->nr_preferred_running)
9206 		return remote;
9207 	return all;
9208 }
9209 #else
9210 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9211 {
9212 	return all;
9213 }
9214 
9215 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9216 {
9217 	return regular;
9218 }
9219 #endif /* CONFIG_NUMA_BALANCING */
9220 
9221 
9222 struct sg_lb_stats;
9223 
9224 /*
9225  * task_running_on_cpu - return 1 if @p is running on @cpu.
9226  */
9227 
9228 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
9229 {
9230 	/* Task has no contribution or is new */
9231 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
9232 		return 0;
9233 
9234 	if (task_on_rq_queued(p))
9235 		return 1;
9236 
9237 	return 0;
9238 }
9239 
9240 /**
9241  * idle_cpu_without - would a given CPU be idle without p ?
9242  * @cpu: the processor on which idleness is tested.
9243  * @p: task which should be ignored.
9244  *
9245  * Return: 1 if the CPU would be idle. 0 otherwise.
9246  */
9247 static int idle_cpu_without(int cpu, struct task_struct *p)
9248 {
9249 	struct rq *rq = cpu_rq(cpu);
9250 
9251 	if (rq->curr != rq->idle && rq->curr != p)
9252 		return 0;
9253 
9254 	/*
9255 	 * rq->nr_running can't be used but an updated version without the
9256 	 * impact of p on cpu must be used instead. The updated nr_running
9257 	 * be computed and tested before calling idle_cpu_without().
9258 	 */
9259 
9260 #ifdef CONFIG_SMP
9261 	if (rq->ttwu_pending)
9262 		return 0;
9263 #endif
9264 
9265 	return 1;
9266 }
9267 
9268 /*
9269  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
9270  * @sd: The sched_domain level to look for idlest group.
9271  * @group: sched_group whose statistics are to be updated.
9272  * @sgs: variable to hold the statistics for this group.
9273  * @p: The task for which we look for the idlest group/CPU.
9274  */
9275 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
9276 					  struct sched_group *group,
9277 					  struct sg_lb_stats *sgs,
9278 					  struct task_struct *p)
9279 {
9280 	int i, nr_running;
9281 
9282 	memset(sgs, 0, sizeof(*sgs));
9283 
9284 	for_each_cpu(i, sched_group_span(group)) {
9285 		struct rq *rq = cpu_rq(i);
9286 		unsigned int local;
9287 
9288 		sgs->group_load += cpu_load_without(rq, p);
9289 		sgs->group_util += cpu_util_without(i, p);
9290 		sgs->group_runnable += cpu_runnable_without(rq, p);
9291 		local = task_running_on_cpu(i, p);
9292 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
9293 
9294 		nr_running = rq->nr_running - local;
9295 		sgs->sum_nr_running += nr_running;
9296 
9297 		/*
9298 		 * No need to call idle_cpu_without() if nr_running is not 0
9299 		 */
9300 		if (!nr_running && idle_cpu_without(i, p))
9301 			sgs->idle_cpus++;
9302 
9303 	}
9304 
9305 	/* Check if task fits in the group */
9306 	if (sd->flags & SD_ASYM_CPUCAPACITY &&
9307 	    !task_fits_capacity(p, group->sgc->max_capacity)) {
9308 		sgs->group_misfit_task_load = 1;
9309 	}
9310 
9311 	sgs->group_capacity = group->sgc->capacity;
9312 
9313 	sgs->group_weight = group->group_weight;
9314 
9315 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
9316 
9317 	/*
9318 	 * Computing avg_load makes sense only when group is fully busy or
9319 	 * overloaded
9320 	 */
9321 	if (sgs->group_type == group_fully_busy ||
9322 		sgs->group_type == group_overloaded)
9323 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9324 				sgs->group_capacity;
9325 }
9326 
9327 static bool update_pick_idlest(struct sched_group *idlest,
9328 			       struct sg_lb_stats *idlest_sgs,
9329 			       struct sched_group *group,
9330 			       struct sg_lb_stats *sgs)
9331 {
9332 	if (sgs->group_type < idlest_sgs->group_type)
9333 		return true;
9334 
9335 	if (sgs->group_type > idlest_sgs->group_type)
9336 		return false;
9337 
9338 	/*
9339 	 * The candidate and the current idlest group are the same type of
9340 	 * group. Let check which one is the idlest according to the type.
9341 	 */
9342 
9343 	switch (sgs->group_type) {
9344 	case group_overloaded:
9345 	case group_fully_busy:
9346 		/* Select the group with lowest avg_load. */
9347 		if (idlest_sgs->avg_load <= sgs->avg_load)
9348 			return false;
9349 		break;
9350 
9351 	case group_imbalanced:
9352 	case group_asym_packing:
9353 		/* Those types are not used in the slow wakeup path */
9354 		return false;
9355 
9356 	case group_misfit_task:
9357 		/* Select group with the highest max capacity */
9358 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
9359 			return false;
9360 		break;
9361 
9362 	case group_has_spare:
9363 		/* Select group with most idle CPUs */
9364 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
9365 			return false;
9366 
9367 		/* Select group with lowest group_util */
9368 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
9369 			idlest_sgs->group_util <= sgs->group_util)
9370 			return false;
9371 
9372 		break;
9373 	}
9374 
9375 	return true;
9376 }
9377 
9378 /*
9379  * find_idlest_group() finds and returns the least busy CPU group within the
9380  * domain.
9381  *
9382  * Assumes p is allowed on at least one CPU in sd.
9383  */
9384 static struct sched_group *
9385 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9386 {
9387 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9388 	struct sg_lb_stats local_sgs, tmp_sgs;
9389 	struct sg_lb_stats *sgs;
9390 	unsigned long imbalance;
9391 	struct sg_lb_stats idlest_sgs = {
9392 			.avg_load = UINT_MAX,
9393 			.group_type = group_overloaded,
9394 	};
9395 
9396 	do {
9397 		int local_group;
9398 
9399 		/* Skip over this group if it has no CPUs allowed */
9400 		if (!cpumask_intersects(sched_group_span(group),
9401 					p->cpus_ptr))
9402 			continue;
9403 
9404 		/* Skip over this group if no cookie matched */
9405 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9406 			continue;
9407 
9408 		local_group = cpumask_test_cpu(this_cpu,
9409 					       sched_group_span(group));
9410 
9411 		if (local_group) {
9412 			sgs = &local_sgs;
9413 			local = group;
9414 		} else {
9415 			sgs = &tmp_sgs;
9416 		}
9417 
9418 		update_sg_wakeup_stats(sd, group, sgs, p);
9419 
9420 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9421 			idlest = group;
9422 			idlest_sgs = *sgs;
9423 		}
9424 
9425 	} while (group = group->next, group != sd->groups);
9426 
9427 
9428 	/* There is no idlest group to push tasks to */
9429 	if (!idlest)
9430 		return NULL;
9431 
9432 	/* The local group has been skipped because of CPU affinity */
9433 	if (!local)
9434 		return idlest;
9435 
9436 	/*
9437 	 * If the local group is idler than the selected idlest group
9438 	 * don't try and push the task.
9439 	 */
9440 	if (local_sgs.group_type < idlest_sgs.group_type)
9441 		return NULL;
9442 
9443 	/*
9444 	 * If the local group is busier than the selected idlest group
9445 	 * try and push the task.
9446 	 */
9447 	if (local_sgs.group_type > idlest_sgs.group_type)
9448 		return idlest;
9449 
9450 	switch (local_sgs.group_type) {
9451 	case group_overloaded:
9452 	case group_fully_busy:
9453 
9454 		/* Calculate allowed imbalance based on load */
9455 		imbalance = scale_load_down(NICE_0_LOAD) *
9456 				(sd->imbalance_pct-100) / 100;
9457 
9458 		/*
9459 		 * When comparing groups across NUMA domains, it's possible for
9460 		 * the local domain to be very lightly loaded relative to the
9461 		 * remote domains but "imbalance" skews the comparison making
9462 		 * remote CPUs look much more favourable. When considering
9463 		 * cross-domain, add imbalance to the load on the remote node
9464 		 * and consider staying local.
9465 		 */
9466 
9467 		if ((sd->flags & SD_NUMA) &&
9468 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9469 			return NULL;
9470 
9471 		/*
9472 		 * If the local group is less loaded than the selected
9473 		 * idlest group don't try and push any tasks.
9474 		 */
9475 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9476 			return NULL;
9477 
9478 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9479 			return NULL;
9480 		break;
9481 
9482 	case group_imbalanced:
9483 	case group_asym_packing:
9484 		/* Those type are not used in the slow wakeup path */
9485 		return NULL;
9486 
9487 	case group_misfit_task:
9488 		/* Select group with the highest max capacity */
9489 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9490 			return NULL;
9491 		break;
9492 
9493 	case group_has_spare:
9494 #ifdef CONFIG_NUMA
9495 		if (sd->flags & SD_NUMA) {
9496 			int imb_numa_nr = sd->imb_numa_nr;
9497 #ifdef CONFIG_NUMA_BALANCING
9498 			int idlest_cpu;
9499 			/*
9500 			 * If there is spare capacity at NUMA, try to select
9501 			 * the preferred node
9502 			 */
9503 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9504 				return NULL;
9505 
9506 			idlest_cpu = cpumask_first(sched_group_span(idlest));
9507 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9508 				return idlest;
9509 #endif /* CONFIG_NUMA_BALANCING */
9510 			/*
9511 			 * Otherwise, keep the task close to the wakeup source
9512 			 * and improve locality if the number of running tasks
9513 			 * would remain below threshold where an imbalance is
9514 			 * allowed while accounting for the possibility the
9515 			 * task is pinned to a subset of CPUs. If there is a
9516 			 * real need of migration, periodic load balance will
9517 			 * take care of it.
9518 			 */
9519 			if (p->nr_cpus_allowed != NR_CPUS) {
9520 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
9521 
9522 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
9523 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
9524 			}
9525 
9526 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
9527 			if (!adjust_numa_imbalance(imbalance,
9528 						   local_sgs.sum_nr_running + 1,
9529 						   imb_numa_nr)) {
9530 				return NULL;
9531 			}
9532 		}
9533 #endif /* CONFIG_NUMA */
9534 
9535 		/*
9536 		 * Select group with highest number of idle CPUs. We could also
9537 		 * compare the utilization which is more stable but it can end
9538 		 * up that the group has less spare capacity but finally more
9539 		 * idle CPUs which means more opportunity to run task.
9540 		 */
9541 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9542 			return NULL;
9543 		break;
9544 	}
9545 
9546 	return idlest;
9547 }
9548 
9549 static void update_idle_cpu_scan(struct lb_env *env,
9550 				 unsigned long sum_util)
9551 {
9552 	struct sched_domain_shared *sd_share;
9553 	int llc_weight, pct;
9554 	u64 x, y, tmp;
9555 	/*
9556 	 * Update the number of CPUs to scan in LLC domain, which could
9557 	 * be used as a hint in select_idle_cpu(). The update of sd_share
9558 	 * could be expensive because it is within a shared cache line.
9559 	 * So the write of this hint only occurs during periodic load
9560 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
9561 	 * can fire way more frequently than the former.
9562 	 */
9563 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
9564 		return;
9565 
9566 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
9567 	if (env->sd->span_weight != llc_weight)
9568 		return;
9569 
9570 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
9571 	if (!sd_share)
9572 		return;
9573 
9574 	/*
9575 	 * The number of CPUs to search drops as sum_util increases, when
9576 	 * sum_util hits 85% or above, the scan stops.
9577 	 * The reason to choose 85% as the threshold is because this is the
9578 	 * imbalance_pct(117) when a LLC sched group is overloaded.
9579 	 *
9580 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
9581 	 * and y'= y / SCHED_CAPACITY_SCALE
9582 	 *
9583 	 * x is the ratio of sum_util compared to the CPU capacity:
9584 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
9585 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
9586 	 * and the number of CPUs to scan is calculated by:
9587 	 *
9588 	 * nr_scan = llc_weight * y'                                    [2]
9589 	 *
9590 	 * When x hits the threshold of overloaded, AKA, when
9591 	 * x = 100 / pct, y drops to 0. According to [1],
9592 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
9593 	 *
9594 	 * Scale x by SCHED_CAPACITY_SCALE:
9595 	 * x' = sum_util / llc_weight;                                  [3]
9596 	 *
9597 	 * and finally [1] becomes:
9598 	 * y = SCHED_CAPACITY_SCALE -
9599 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
9600 	 *
9601 	 */
9602 	/* equation [3] */
9603 	x = sum_util;
9604 	do_div(x, llc_weight);
9605 
9606 	/* equation [4] */
9607 	pct = env->sd->imbalance_pct;
9608 	tmp = x * x * pct * pct;
9609 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
9610 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
9611 	y = SCHED_CAPACITY_SCALE - tmp;
9612 
9613 	/* equation [2] */
9614 	y *= llc_weight;
9615 	do_div(y, SCHED_CAPACITY_SCALE);
9616 	if ((int)y != sd_share->nr_idle_scan)
9617 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
9618 }
9619 
9620 /**
9621  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9622  * @env: The load balancing environment.
9623  * @sds: variable to hold the statistics for this sched_domain.
9624  */
9625 
9626 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9627 {
9628 	struct sched_domain *child = env->sd->child;
9629 	struct sched_group *sg = env->sd->groups;
9630 	struct sg_lb_stats *local = &sds->local_stat;
9631 	struct sg_lb_stats tmp_sgs;
9632 	unsigned long sum_util = 0;
9633 	int sg_status = 0;
9634 
9635 	do {
9636 		struct sg_lb_stats *sgs = &tmp_sgs;
9637 		int local_group;
9638 
9639 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9640 		if (local_group) {
9641 			sds->local = sg;
9642 			sgs = local;
9643 
9644 			if (env->idle != CPU_NEWLY_IDLE ||
9645 			    time_after_eq(jiffies, sg->sgc->next_update))
9646 				update_group_capacity(env->sd, env->dst_cpu);
9647 		}
9648 
9649 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
9650 
9651 		if (local_group)
9652 			goto next_group;
9653 
9654 
9655 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9656 			sds->busiest = sg;
9657 			sds->busiest_stat = *sgs;
9658 		}
9659 
9660 next_group:
9661 		/* Now, start updating sd_lb_stats */
9662 		sds->total_load += sgs->group_load;
9663 		sds->total_capacity += sgs->group_capacity;
9664 
9665 		sum_util += sgs->group_util;
9666 		sg = sg->next;
9667 	} while (sg != env->sd->groups);
9668 
9669 	/* Tag domain that child domain prefers tasks go to siblings first */
9670 	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9671 
9672 
9673 	if (env->sd->flags & SD_NUMA)
9674 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9675 
9676 	if (!env->sd->parent) {
9677 		struct root_domain *rd = env->dst_rq->rd;
9678 
9679 		/* update overload indicator if we are at root domain */
9680 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9681 
9682 		/* Update over-utilization (tipping point, U >= 0) indicator */
9683 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9684 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9685 	} else if (sg_status & SG_OVERUTILIZED) {
9686 		struct root_domain *rd = env->dst_rq->rd;
9687 
9688 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9689 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9690 	}
9691 
9692 	update_idle_cpu_scan(env, sum_util);
9693 }
9694 
9695 /**
9696  * calculate_imbalance - Calculate the amount of imbalance present within the
9697  *			 groups of a given sched_domain during load balance.
9698  * @env: load balance environment
9699  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9700  */
9701 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9702 {
9703 	struct sg_lb_stats *local, *busiest;
9704 
9705 	local = &sds->local_stat;
9706 	busiest = &sds->busiest_stat;
9707 
9708 	if (busiest->group_type == group_misfit_task) {
9709 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9710 			/* Set imbalance to allow misfit tasks to be balanced. */
9711 			env->migration_type = migrate_misfit;
9712 			env->imbalance = 1;
9713 		} else {
9714 			/*
9715 			 * Set load imbalance to allow moving task from cpu
9716 			 * with reduced capacity.
9717 			 */
9718 			env->migration_type = migrate_load;
9719 			env->imbalance = busiest->group_misfit_task_load;
9720 		}
9721 		return;
9722 	}
9723 
9724 	if (busiest->group_type == group_asym_packing) {
9725 		/*
9726 		 * In case of asym capacity, we will try to migrate all load to
9727 		 * the preferred CPU.
9728 		 */
9729 		env->migration_type = migrate_task;
9730 		env->imbalance = busiest->sum_h_nr_running;
9731 		return;
9732 	}
9733 
9734 	if (busiest->group_type == group_imbalanced) {
9735 		/*
9736 		 * In the group_imb case we cannot rely on group-wide averages
9737 		 * to ensure CPU-load equilibrium, try to move any task to fix
9738 		 * the imbalance. The next load balance will take care of
9739 		 * balancing back the system.
9740 		 */
9741 		env->migration_type = migrate_task;
9742 		env->imbalance = 1;
9743 		return;
9744 	}
9745 
9746 	/*
9747 	 * Try to use spare capacity of local group without overloading it or
9748 	 * emptying busiest.
9749 	 */
9750 	if (local->group_type == group_has_spare) {
9751 		if ((busiest->group_type > group_fully_busy) &&
9752 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9753 			/*
9754 			 * If busiest is overloaded, try to fill spare
9755 			 * capacity. This might end up creating spare capacity
9756 			 * in busiest or busiest still being overloaded but
9757 			 * there is no simple way to directly compute the
9758 			 * amount of load to migrate in order to balance the
9759 			 * system.
9760 			 */
9761 			env->migration_type = migrate_util;
9762 			env->imbalance = max(local->group_capacity, local->group_util) -
9763 					 local->group_util;
9764 
9765 			/*
9766 			 * In some cases, the group's utilization is max or even
9767 			 * higher than capacity because of migrations but the
9768 			 * local CPU is (newly) idle. There is at least one
9769 			 * waiting task in this overloaded busiest group. Let's
9770 			 * try to pull it.
9771 			 */
9772 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9773 				env->migration_type = migrate_task;
9774 				env->imbalance = 1;
9775 			}
9776 
9777 			return;
9778 		}
9779 
9780 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
9781 			unsigned int nr_diff = busiest->sum_nr_running;
9782 			/*
9783 			 * When prefer sibling, evenly spread running tasks on
9784 			 * groups.
9785 			 */
9786 			env->migration_type = migrate_task;
9787 			lsub_positive(&nr_diff, local->sum_nr_running);
9788 			env->imbalance = nr_diff;
9789 		} else {
9790 
9791 			/*
9792 			 * If there is no overload, we just want to even the number of
9793 			 * idle cpus.
9794 			 */
9795 			env->migration_type = migrate_task;
9796 			env->imbalance = max_t(long, 0,
9797 					       (local->idle_cpus - busiest->idle_cpus));
9798 		}
9799 
9800 #ifdef CONFIG_NUMA
9801 		/* Consider allowing a small imbalance between NUMA groups */
9802 		if (env->sd->flags & SD_NUMA) {
9803 			env->imbalance = adjust_numa_imbalance(env->imbalance,
9804 							       local->sum_nr_running + 1,
9805 							       env->sd->imb_numa_nr);
9806 		}
9807 #endif
9808 
9809 		/* Number of tasks to move to restore balance */
9810 		env->imbalance >>= 1;
9811 
9812 		return;
9813 	}
9814 
9815 	/*
9816 	 * Local is fully busy but has to take more load to relieve the
9817 	 * busiest group
9818 	 */
9819 	if (local->group_type < group_overloaded) {
9820 		/*
9821 		 * Local will become overloaded so the avg_load metrics are
9822 		 * finally needed.
9823 		 */
9824 
9825 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9826 				  local->group_capacity;
9827 
9828 		/*
9829 		 * If the local group is more loaded than the selected
9830 		 * busiest group don't try to pull any tasks.
9831 		 */
9832 		if (local->avg_load >= busiest->avg_load) {
9833 			env->imbalance = 0;
9834 			return;
9835 		}
9836 
9837 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9838 				sds->total_capacity;
9839 	}
9840 
9841 	/*
9842 	 * Both group are or will become overloaded and we're trying to get all
9843 	 * the CPUs to the average_load, so we don't want to push ourselves
9844 	 * above the average load, nor do we wish to reduce the max loaded CPU
9845 	 * below the average load. At the same time, we also don't want to
9846 	 * reduce the group load below the group capacity. Thus we look for
9847 	 * the minimum possible imbalance.
9848 	 */
9849 	env->migration_type = migrate_load;
9850 	env->imbalance = min(
9851 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9852 		(sds->avg_load - local->avg_load) * local->group_capacity
9853 	) / SCHED_CAPACITY_SCALE;
9854 }
9855 
9856 /******* find_busiest_group() helpers end here *********************/
9857 
9858 /*
9859  * Decision matrix according to the local and busiest group type:
9860  *
9861  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9862  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
9863  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
9864  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
9865  * asym_packing     force     force      N/A    N/A  force      force
9866  * imbalanced       force     force      N/A    N/A  force      force
9867  * overloaded       force     force      N/A    N/A  force      avg_load
9868  *
9869  * N/A :      Not Applicable because already filtered while updating
9870  *            statistics.
9871  * balanced : The system is balanced for these 2 groups.
9872  * force :    Calculate the imbalance as load migration is probably needed.
9873  * avg_load : Only if imbalance is significant enough.
9874  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
9875  *            different in groups.
9876  */
9877 
9878 /**
9879  * find_busiest_group - Returns the busiest group within the sched_domain
9880  * if there is an imbalance.
9881  * @env: The load balancing environment.
9882  *
9883  * Also calculates the amount of runnable load which should be moved
9884  * to restore balance.
9885  *
9886  * Return:	- The busiest group if imbalance exists.
9887  */
9888 static struct sched_group *find_busiest_group(struct lb_env *env)
9889 {
9890 	struct sg_lb_stats *local, *busiest;
9891 	struct sd_lb_stats sds;
9892 
9893 	init_sd_lb_stats(&sds);
9894 
9895 	/*
9896 	 * Compute the various statistics relevant for load balancing at
9897 	 * this level.
9898 	 */
9899 	update_sd_lb_stats(env, &sds);
9900 
9901 	if (sched_energy_enabled()) {
9902 		struct root_domain *rd = env->dst_rq->rd;
9903 
9904 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9905 			goto out_balanced;
9906 	}
9907 
9908 	local = &sds.local_stat;
9909 	busiest = &sds.busiest_stat;
9910 
9911 	/* There is no busy sibling group to pull tasks from */
9912 	if (!sds.busiest)
9913 		goto out_balanced;
9914 
9915 	/* Misfit tasks should be dealt with regardless of the avg load */
9916 	if (busiest->group_type == group_misfit_task)
9917 		goto force_balance;
9918 
9919 	/* ASYM feature bypasses nice load balance check */
9920 	if (busiest->group_type == group_asym_packing)
9921 		goto force_balance;
9922 
9923 	/*
9924 	 * If the busiest group is imbalanced the below checks don't
9925 	 * work because they assume all things are equal, which typically
9926 	 * isn't true due to cpus_ptr constraints and the like.
9927 	 */
9928 	if (busiest->group_type == group_imbalanced)
9929 		goto force_balance;
9930 
9931 	/*
9932 	 * If the local group is busier than the selected busiest group
9933 	 * don't try and pull any tasks.
9934 	 */
9935 	if (local->group_type > busiest->group_type)
9936 		goto out_balanced;
9937 
9938 	/*
9939 	 * When groups are overloaded, use the avg_load to ensure fairness
9940 	 * between tasks.
9941 	 */
9942 	if (local->group_type == group_overloaded) {
9943 		/*
9944 		 * If the local group is more loaded than the selected
9945 		 * busiest group don't try to pull any tasks.
9946 		 */
9947 		if (local->avg_load >= busiest->avg_load)
9948 			goto out_balanced;
9949 
9950 		/* XXX broken for overlapping NUMA groups */
9951 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9952 				sds.total_capacity;
9953 
9954 		/*
9955 		 * Don't pull any tasks if this group is already above the
9956 		 * domain average load.
9957 		 */
9958 		if (local->avg_load >= sds.avg_load)
9959 			goto out_balanced;
9960 
9961 		/*
9962 		 * If the busiest group is more loaded, use imbalance_pct to be
9963 		 * conservative.
9964 		 */
9965 		if (100 * busiest->avg_load <=
9966 				env->sd->imbalance_pct * local->avg_load)
9967 			goto out_balanced;
9968 	}
9969 
9970 	/* Try to move all excess tasks to child's sibling domain */
9971 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
9972 	    busiest->sum_nr_running > local->sum_nr_running + 1)
9973 		goto force_balance;
9974 
9975 	if (busiest->group_type != group_overloaded) {
9976 		if (env->idle == CPU_NOT_IDLE)
9977 			/*
9978 			 * If the busiest group is not overloaded (and as a
9979 			 * result the local one too) but this CPU is already
9980 			 * busy, let another idle CPU try to pull task.
9981 			 */
9982 			goto out_balanced;
9983 
9984 		if (busiest->group_weight > 1 &&
9985 		    local->idle_cpus <= (busiest->idle_cpus + 1))
9986 			/*
9987 			 * If the busiest group is not overloaded
9988 			 * and there is no imbalance between this and busiest
9989 			 * group wrt idle CPUs, it is balanced. The imbalance
9990 			 * becomes significant if the diff is greater than 1
9991 			 * otherwise we might end up to just move the imbalance
9992 			 * on another group. Of course this applies only if
9993 			 * there is more than 1 CPU per group.
9994 			 */
9995 			goto out_balanced;
9996 
9997 		if (busiest->sum_h_nr_running == 1)
9998 			/*
9999 			 * busiest doesn't have any tasks waiting to run
10000 			 */
10001 			goto out_balanced;
10002 	}
10003 
10004 force_balance:
10005 	/* Looks like there is an imbalance. Compute it */
10006 	calculate_imbalance(env, &sds);
10007 	return env->imbalance ? sds.busiest : NULL;
10008 
10009 out_balanced:
10010 	env->imbalance = 0;
10011 	return NULL;
10012 }
10013 
10014 /*
10015  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10016  */
10017 static struct rq *find_busiest_queue(struct lb_env *env,
10018 				     struct sched_group *group)
10019 {
10020 	struct rq *busiest = NULL, *rq;
10021 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10022 	unsigned int busiest_nr = 0;
10023 	int i;
10024 
10025 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10026 		unsigned long capacity, load, util;
10027 		unsigned int nr_running;
10028 		enum fbq_type rt;
10029 
10030 		rq = cpu_rq(i);
10031 		rt = fbq_classify_rq(rq);
10032 
10033 		/*
10034 		 * We classify groups/runqueues into three groups:
10035 		 *  - regular: there are !numa tasks
10036 		 *  - remote:  there are numa tasks that run on the 'wrong' node
10037 		 *  - all:     there is no distinction
10038 		 *
10039 		 * In order to avoid migrating ideally placed numa tasks,
10040 		 * ignore those when there's better options.
10041 		 *
10042 		 * If we ignore the actual busiest queue to migrate another
10043 		 * task, the next balance pass can still reduce the busiest
10044 		 * queue by moving tasks around inside the node.
10045 		 *
10046 		 * If we cannot move enough load due to this classification
10047 		 * the next pass will adjust the group classification and
10048 		 * allow migration of more tasks.
10049 		 *
10050 		 * Both cases only affect the total convergence complexity.
10051 		 */
10052 		if (rt > env->fbq_type)
10053 			continue;
10054 
10055 		nr_running = rq->cfs.h_nr_running;
10056 		if (!nr_running)
10057 			continue;
10058 
10059 		capacity = capacity_of(i);
10060 
10061 		/*
10062 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
10063 		 * eventually lead to active_balancing high->low capacity.
10064 		 * Higher per-CPU capacity is considered better than balancing
10065 		 * average load.
10066 		 */
10067 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
10068 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
10069 		    nr_running == 1)
10070 			continue;
10071 
10072 		/* Make sure we only pull tasks from a CPU of lower priority */
10073 		if ((env->sd->flags & SD_ASYM_PACKING) &&
10074 		    sched_asym_prefer(i, env->dst_cpu) &&
10075 		    nr_running == 1)
10076 			continue;
10077 
10078 		switch (env->migration_type) {
10079 		case migrate_load:
10080 			/*
10081 			 * When comparing with load imbalance, use cpu_load()
10082 			 * which is not scaled with the CPU capacity.
10083 			 */
10084 			load = cpu_load(rq);
10085 
10086 			if (nr_running == 1 && load > env->imbalance &&
10087 			    !check_cpu_capacity(rq, env->sd))
10088 				break;
10089 
10090 			/*
10091 			 * For the load comparisons with the other CPUs,
10092 			 * consider the cpu_load() scaled with the CPU
10093 			 * capacity, so that the load can be moved away
10094 			 * from the CPU that is potentially running at a
10095 			 * lower capacity.
10096 			 *
10097 			 * Thus we're looking for max(load_i / capacity_i),
10098 			 * crosswise multiplication to rid ourselves of the
10099 			 * division works out to:
10100 			 * load_i * capacity_j > load_j * capacity_i;
10101 			 * where j is our previous maximum.
10102 			 */
10103 			if (load * busiest_capacity > busiest_load * capacity) {
10104 				busiest_load = load;
10105 				busiest_capacity = capacity;
10106 				busiest = rq;
10107 			}
10108 			break;
10109 
10110 		case migrate_util:
10111 			util = cpu_util_cfs(i);
10112 
10113 			/*
10114 			 * Don't try to pull utilization from a CPU with one
10115 			 * running task. Whatever its utilization, we will fail
10116 			 * detach the task.
10117 			 */
10118 			if (nr_running <= 1)
10119 				continue;
10120 
10121 			if (busiest_util < util) {
10122 				busiest_util = util;
10123 				busiest = rq;
10124 			}
10125 			break;
10126 
10127 		case migrate_task:
10128 			if (busiest_nr < nr_running) {
10129 				busiest_nr = nr_running;
10130 				busiest = rq;
10131 			}
10132 			break;
10133 
10134 		case migrate_misfit:
10135 			/*
10136 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
10137 			 * simply seek the "biggest" misfit task.
10138 			 */
10139 			if (rq->misfit_task_load > busiest_load) {
10140 				busiest_load = rq->misfit_task_load;
10141 				busiest = rq;
10142 			}
10143 
10144 			break;
10145 
10146 		}
10147 	}
10148 
10149 	return busiest;
10150 }
10151 
10152 /*
10153  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
10154  * so long as it is large enough.
10155  */
10156 #define MAX_PINNED_INTERVAL	512
10157 
10158 static inline bool
10159 asym_active_balance(struct lb_env *env)
10160 {
10161 	/*
10162 	 * ASYM_PACKING needs to force migrate tasks from busy but
10163 	 * lower priority CPUs in order to pack all tasks in the
10164 	 * highest priority CPUs.
10165 	 */
10166 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
10167 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
10168 }
10169 
10170 static inline bool
10171 imbalanced_active_balance(struct lb_env *env)
10172 {
10173 	struct sched_domain *sd = env->sd;
10174 
10175 	/*
10176 	 * The imbalanced case includes the case of pinned tasks preventing a fair
10177 	 * distribution of the load on the system but also the even distribution of the
10178 	 * threads on a system with spare capacity
10179 	 */
10180 	if ((env->migration_type == migrate_task) &&
10181 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
10182 		return 1;
10183 
10184 	return 0;
10185 }
10186 
10187 static int need_active_balance(struct lb_env *env)
10188 {
10189 	struct sched_domain *sd = env->sd;
10190 
10191 	if (asym_active_balance(env))
10192 		return 1;
10193 
10194 	if (imbalanced_active_balance(env))
10195 		return 1;
10196 
10197 	/*
10198 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
10199 	 * It's worth migrating the task if the src_cpu's capacity is reduced
10200 	 * because of other sched_class or IRQs if more capacity stays
10201 	 * available on dst_cpu.
10202 	 */
10203 	if ((env->idle != CPU_NOT_IDLE) &&
10204 	    (env->src_rq->cfs.h_nr_running == 1)) {
10205 		if ((check_cpu_capacity(env->src_rq, sd)) &&
10206 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
10207 			return 1;
10208 	}
10209 
10210 	if (env->migration_type == migrate_misfit)
10211 		return 1;
10212 
10213 	return 0;
10214 }
10215 
10216 static int active_load_balance_cpu_stop(void *data);
10217 
10218 static int should_we_balance(struct lb_env *env)
10219 {
10220 	struct sched_group *sg = env->sd->groups;
10221 	int cpu;
10222 
10223 	/*
10224 	 * Ensure the balancing environment is consistent; can happen
10225 	 * when the softirq triggers 'during' hotplug.
10226 	 */
10227 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
10228 		return 0;
10229 
10230 	/*
10231 	 * In the newly idle case, we will allow all the CPUs
10232 	 * to do the newly idle load balance.
10233 	 *
10234 	 * However, we bail out if we already have tasks or a wakeup pending,
10235 	 * to optimize wakeup latency.
10236 	 */
10237 	if (env->idle == CPU_NEWLY_IDLE) {
10238 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
10239 			return 0;
10240 		return 1;
10241 	}
10242 
10243 	/* Try to find first idle CPU */
10244 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
10245 		if (!idle_cpu(cpu))
10246 			continue;
10247 
10248 		/* Are we the first idle CPU? */
10249 		return cpu == env->dst_cpu;
10250 	}
10251 
10252 	/* Are we the first CPU of this group ? */
10253 	return group_balance_cpu(sg) == env->dst_cpu;
10254 }
10255 
10256 /*
10257  * Check this_cpu to ensure it is balanced within domain. Attempt to move
10258  * tasks if there is an imbalance.
10259  */
10260 static int load_balance(int this_cpu, struct rq *this_rq,
10261 			struct sched_domain *sd, enum cpu_idle_type idle,
10262 			int *continue_balancing)
10263 {
10264 	int ld_moved, cur_ld_moved, active_balance = 0;
10265 	struct sched_domain *sd_parent = sd->parent;
10266 	struct sched_group *group;
10267 	struct rq *busiest;
10268 	struct rq_flags rf;
10269 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
10270 	struct lb_env env = {
10271 		.sd		= sd,
10272 		.dst_cpu	= this_cpu,
10273 		.dst_rq		= this_rq,
10274 		.dst_grpmask    = sched_group_span(sd->groups),
10275 		.idle		= idle,
10276 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
10277 		.cpus		= cpus,
10278 		.fbq_type	= all,
10279 		.tasks		= LIST_HEAD_INIT(env.tasks),
10280 	};
10281 
10282 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
10283 
10284 	schedstat_inc(sd->lb_count[idle]);
10285 
10286 redo:
10287 	if (!should_we_balance(&env)) {
10288 		*continue_balancing = 0;
10289 		goto out_balanced;
10290 	}
10291 
10292 	group = find_busiest_group(&env);
10293 	if (!group) {
10294 		schedstat_inc(sd->lb_nobusyg[idle]);
10295 		goto out_balanced;
10296 	}
10297 
10298 	busiest = find_busiest_queue(&env, group);
10299 	if (!busiest) {
10300 		schedstat_inc(sd->lb_nobusyq[idle]);
10301 		goto out_balanced;
10302 	}
10303 
10304 	WARN_ON_ONCE(busiest == env.dst_rq);
10305 
10306 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
10307 
10308 	env.src_cpu = busiest->cpu;
10309 	env.src_rq = busiest;
10310 
10311 	ld_moved = 0;
10312 	/* Clear this flag as soon as we find a pullable task */
10313 	env.flags |= LBF_ALL_PINNED;
10314 	if (busiest->nr_running > 1) {
10315 		/*
10316 		 * Attempt to move tasks. If find_busiest_group has found
10317 		 * an imbalance but busiest->nr_running <= 1, the group is
10318 		 * still unbalanced. ld_moved simply stays zero, so it is
10319 		 * correctly treated as an imbalance.
10320 		 */
10321 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
10322 
10323 more_balance:
10324 		rq_lock_irqsave(busiest, &rf);
10325 		update_rq_clock(busiest);
10326 
10327 		/*
10328 		 * cur_ld_moved - load moved in current iteration
10329 		 * ld_moved     - cumulative load moved across iterations
10330 		 */
10331 		cur_ld_moved = detach_tasks(&env);
10332 
10333 		/*
10334 		 * We've detached some tasks from busiest_rq. Every
10335 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
10336 		 * unlock busiest->lock, and we are able to be sure
10337 		 * that nobody can manipulate the tasks in parallel.
10338 		 * See task_rq_lock() family for the details.
10339 		 */
10340 
10341 		rq_unlock(busiest, &rf);
10342 
10343 		if (cur_ld_moved) {
10344 			attach_tasks(&env);
10345 			ld_moved += cur_ld_moved;
10346 		}
10347 
10348 		local_irq_restore(rf.flags);
10349 
10350 		if (env.flags & LBF_NEED_BREAK) {
10351 			env.flags &= ~LBF_NEED_BREAK;
10352 			/* Stop if we tried all running tasks */
10353 			if (env.loop < busiest->nr_running)
10354 				goto more_balance;
10355 		}
10356 
10357 		/*
10358 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
10359 		 * us and move them to an alternate dst_cpu in our sched_group
10360 		 * where they can run. The upper limit on how many times we
10361 		 * iterate on same src_cpu is dependent on number of CPUs in our
10362 		 * sched_group.
10363 		 *
10364 		 * This changes load balance semantics a bit on who can move
10365 		 * load to a given_cpu. In addition to the given_cpu itself
10366 		 * (or a ilb_cpu acting on its behalf where given_cpu is
10367 		 * nohz-idle), we now have balance_cpu in a position to move
10368 		 * load to given_cpu. In rare situations, this may cause
10369 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
10370 		 * _independently_ and at _same_ time to move some load to
10371 		 * given_cpu) causing excess load to be moved to given_cpu.
10372 		 * This however should not happen so much in practice and
10373 		 * moreover subsequent load balance cycles should correct the
10374 		 * excess load moved.
10375 		 */
10376 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
10377 
10378 			/* Prevent to re-select dst_cpu via env's CPUs */
10379 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
10380 
10381 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
10382 			env.dst_cpu	 = env.new_dst_cpu;
10383 			env.flags	&= ~LBF_DST_PINNED;
10384 			env.loop	 = 0;
10385 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
10386 
10387 			/*
10388 			 * Go back to "more_balance" rather than "redo" since we
10389 			 * need to continue with same src_cpu.
10390 			 */
10391 			goto more_balance;
10392 		}
10393 
10394 		/*
10395 		 * We failed to reach balance because of affinity.
10396 		 */
10397 		if (sd_parent) {
10398 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10399 
10400 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
10401 				*group_imbalance = 1;
10402 		}
10403 
10404 		/* All tasks on this runqueue were pinned by CPU affinity */
10405 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
10406 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
10407 			/*
10408 			 * Attempting to continue load balancing at the current
10409 			 * sched_domain level only makes sense if there are
10410 			 * active CPUs remaining as possible busiest CPUs to
10411 			 * pull load from which are not contained within the
10412 			 * destination group that is receiving any migrated
10413 			 * load.
10414 			 */
10415 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
10416 				env.loop = 0;
10417 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
10418 				goto redo;
10419 			}
10420 			goto out_all_pinned;
10421 		}
10422 	}
10423 
10424 	if (!ld_moved) {
10425 		schedstat_inc(sd->lb_failed[idle]);
10426 		/*
10427 		 * Increment the failure counter only on periodic balance.
10428 		 * We do not want newidle balance, which can be very
10429 		 * frequent, pollute the failure counter causing
10430 		 * excessive cache_hot migrations and active balances.
10431 		 */
10432 		if (idle != CPU_NEWLY_IDLE)
10433 			sd->nr_balance_failed++;
10434 
10435 		if (need_active_balance(&env)) {
10436 			unsigned long flags;
10437 
10438 			raw_spin_rq_lock_irqsave(busiest, flags);
10439 
10440 			/*
10441 			 * Don't kick the active_load_balance_cpu_stop,
10442 			 * if the curr task on busiest CPU can't be
10443 			 * moved to this_cpu:
10444 			 */
10445 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
10446 				raw_spin_rq_unlock_irqrestore(busiest, flags);
10447 				goto out_one_pinned;
10448 			}
10449 
10450 			/* Record that we found at least one task that could run on this_cpu */
10451 			env.flags &= ~LBF_ALL_PINNED;
10452 
10453 			/*
10454 			 * ->active_balance synchronizes accesses to
10455 			 * ->active_balance_work.  Once set, it's cleared
10456 			 * only after active load balance is finished.
10457 			 */
10458 			if (!busiest->active_balance) {
10459 				busiest->active_balance = 1;
10460 				busiest->push_cpu = this_cpu;
10461 				active_balance = 1;
10462 			}
10463 			raw_spin_rq_unlock_irqrestore(busiest, flags);
10464 
10465 			if (active_balance) {
10466 				stop_one_cpu_nowait(cpu_of(busiest),
10467 					active_load_balance_cpu_stop, busiest,
10468 					&busiest->active_balance_work);
10469 			}
10470 		}
10471 	} else {
10472 		sd->nr_balance_failed = 0;
10473 	}
10474 
10475 	if (likely(!active_balance) || need_active_balance(&env)) {
10476 		/* We were unbalanced, so reset the balancing interval */
10477 		sd->balance_interval = sd->min_interval;
10478 	}
10479 
10480 	goto out;
10481 
10482 out_balanced:
10483 	/*
10484 	 * We reach balance although we may have faced some affinity
10485 	 * constraints. Clear the imbalance flag only if other tasks got
10486 	 * a chance to move and fix the imbalance.
10487 	 */
10488 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10489 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10490 
10491 		if (*group_imbalance)
10492 			*group_imbalance = 0;
10493 	}
10494 
10495 out_all_pinned:
10496 	/*
10497 	 * We reach balance because all tasks are pinned at this level so
10498 	 * we can't migrate them. Let the imbalance flag set so parent level
10499 	 * can try to migrate them.
10500 	 */
10501 	schedstat_inc(sd->lb_balanced[idle]);
10502 
10503 	sd->nr_balance_failed = 0;
10504 
10505 out_one_pinned:
10506 	ld_moved = 0;
10507 
10508 	/*
10509 	 * newidle_balance() disregards balance intervals, so we could
10510 	 * repeatedly reach this code, which would lead to balance_interval
10511 	 * skyrocketing in a short amount of time. Skip the balance_interval
10512 	 * increase logic to avoid that.
10513 	 */
10514 	if (env.idle == CPU_NEWLY_IDLE)
10515 		goto out;
10516 
10517 	/* tune up the balancing interval */
10518 	if ((env.flags & LBF_ALL_PINNED &&
10519 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
10520 	    sd->balance_interval < sd->max_interval)
10521 		sd->balance_interval *= 2;
10522 out:
10523 	return ld_moved;
10524 }
10525 
10526 static inline unsigned long
10527 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10528 {
10529 	unsigned long interval = sd->balance_interval;
10530 
10531 	if (cpu_busy)
10532 		interval *= sd->busy_factor;
10533 
10534 	/* scale ms to jiffies */
10535 	interval = msecs_to_jiffies(interval);
10536 
10537 	/*
10538 	 * Reduce likelihood of busy balancing at higher domains racing with
10539 	 * balancing at lower domains by preventing their balancing periods
10540 	 * from being multiples of each other.
10541 	 */
10542 	if (cpu_busy)
10543 		interval -= 1;
10544 
10545 	interval = clamp(interval, 1UL, max_load_balance_interval);
10546 
10547 	return interval;
10548 }
10549 
10550 static inline void
10551 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10552 {
10553 	unsigned long interval, next;
10554 
10555 	/* used by idle balance, so cpu_busy = 0 */
10556 	interval = get_sd_balance_interval(sd, 0);
10557 	next = sd->last_balance + interval;
10558 
10559 	if (time_after(*next_balance, next))
10560 		*next_balance = next;
10561 }
10562 
10563 /*
10564  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10565  * running tasks off the busiest CPU onto idle CPUs. It requires at
10566  * least 1 task to be running on each physical CPU where possible, and
10567  * avoids physical / logical imbalances.
10568  */
10569 static int active_load_balance_cpu_stop(void *data)
10570 {
10571 	struct rq *busiest_rq = data;
10572 	int busiest_cpu = cpu_of(busiest_rq);
10573 	int target_cpu = busiest_rq->push_cpu;
10574 	struct rq *target_rq = cpu_rq(target_cpu);
10575 	struct sched_domain *sd;
10576 	struct task_struct *p = NULL;
10577 	struct rq_flags rf;
10578 
10579 	rq_lock_irq(busiest_rq, &rf);
10580 	/*
10581 	 * Between queueing the stop-work and running it is a hole in which
10582 	 * CPUs can become inactive. We should not move tasks from or to
10583 	 * inactive CPUs.
10584 	 */
10585 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10586 		goto out_unlock;
10587 
10588 	/* Make sure the requested CPU hasn't gone down in the meantime: */
10589 	if (unlikely(busiest_cpu != smp_processor_id() ||
10590 		     !busiest_rq->active_balance))
10591 		goto out_unlock;
10592 
10593 	/* Is there any task to move? */
10594 	if (busiest_rq->nr_running <= 1)
10595 		goto out_unlock;
10596 
10597 	/*
10598 	 * This condition is "impossible", if it occurs
10599 	 * we need to fix it. Originally reported by
10600 	 * Bjorn Helgaas on a 128-CPU setup.
10601 	 */
10602 	WARN_ON_ONCE(busiest_rq == target_rq);
10603 
10604 	/* Search for an sd spanning us and the target CPU. */
10605 	rcu_read_lock();
10606 	for_each_domain(target_cpu, sd) {
10607 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10608 			break;
10609 	}
10610 
10611 	if (likely(sd)) {
10612 		struct lb_env env = {
10613 			.sd		= sd,
10614 			.dst_cpu	= target_cpu,
10615 			.dst_rq		= target_rq,
10616 			.src_cpu	= busiest_rq->cpu,
10617 			.src_rq		= busiest_rq,
10618 			.idle		= CPU_IDLE,
10619 			.flags		= LBF_ACTIVE_LB,
10620 		};
10621 
10622 		schedstat_inc(sd->alb_count);
10623 		update_rq_clock(busiest_rq);
10624 
10625 		p = detach_one_task(&env);
10626 		if (p) {
10627 			schedstat_inc(sd->alb_pushed);
10628 			/* Active balancing done, reset the failure counter. */
10629 			sd->nr_balance_failed = 0;
10630 		} else {
10631 			schedstat_inc(sd->alb_failed);
10632 		}
10633 	}
10634 	rcu_read_unlock();
10635 out_unlock:
10636 	busiest_rq->active_balance = 0;
10637 	rq_unlock(busiest_rq, &rf);
10638 
10639 	if (p)
10640 		attach_one_task(target_rq, p);
10641 
10642 	local_irq_enable();
10643 
10644 	return 0;
10645 }
10646 
10647 static DEFINE_SPINLOCK(balancing);
10648 
10649 /*
10650  * Scale the max load_balance interval with the number of CPUs in the system.
10651  * This trades load-balance latency on larger machines for less cross talk.
10652  */
10653 void update_max_interval(void)
10654 {
10655 	max_load_balance_interval = HZ*num_online_cpus()/10;
10656 }
10657 
10658 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
10659 {
10660 	if (cost > sd->max_newidle_lb_cost) {
10661 		/*
10662 		 * Track max cost of a domain to make sure to not delay the
10663 		 * next wakeup on the CPU.
10664 		 */
10665 		sd->max_newidle_lb_cost = cost;
10666 		sd->last_decay_max_lb_cost = jiffies;
10667 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
10668 		/*
10669 		 * Decay the newidle max times by ~1% per second to ensure that
10670 		 * it is not outdated and the current max cost is actually
10671 		 * shorter.
10672 		 */
10673 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
10674 		sd->last_decay_max_lb_cost = jiffies;
10675 
10676 		return true;
10677 	}
10678 
10679 	return false;
10680 }
10681 
10682 /*
10683  * It checks each scheduling domain to see if it is due to be balanced,
10684  * and initiates a balancing operation if so.
10685  *
10686  * Balancing parameters are set up in init_sched_domains.
10687  */
10688 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10689 {
10690 	int continue_balancing = 1;
10691 	int cpu = rq->cpu;
10692 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10693 	unsigned long interval;
10694 	struct sched_domain *sd;
10695 	/* Earliest time when we have to do rebalance again */
10696 	unsigned long next_balance = jiffies + 60*HZ;
10697 	int update_next_balance = 0;
10698 	int need_serialize, need_decay = 0;
10699 	u64 max_cost = 0;
10700 
10701 	rcu_read_lock();
10702 	for_each_domain(cpu, sd) {
10703 		/*
10704 		 * Decay the newidle max times here because this is a regular
10705 		 * visit to all the domains.
10706 		 */
10707 		need_decay = update_newidle_cost(sd, 0);
10708 		max_cost += sd->max_newidle_lb_cost;
10709 
10710 		/*
10711 		 * Stop the load balance at this level. There is another
10712 		 * CPU in our sched group which is doing load balancing more
10713 		 * actively.
10714 		 */
10715 		if (!continue_balancing) {
10716 			if (need_decay)
10717 				continue;
10718 			break;
10719 		}
10720 
10721 		interval = get_sd_balance_interval(sd, busy);
10722 
10723 		need_serialize = sd->flags & SD_SERIALIZE;
10724 		if (need_serialize) {
10725 			if (!spin_trylock(&balancing))
10726 				goto out;
10727 		}
10728 
10729 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
10730 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10731 				/*
10732 				 * The LBF_DST_PINNED logic could have changed
10733 				 * env->dst_cpu, so we can't know our idle
10734 				 * state even if we migrated tasks. Update it.
10735 				 */
10736 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10737 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10738 			}
10739 			sd->last_balance = jiffies;
10740 			interval = get_sd_balance_interval(sd, busy);
10741 		}
10742 		if (need_serialize)
10743 			spin_unlock(&balancing);
10744 out:
10745 		if (time_after(next_balance, sd->last_balance + interval)) {
10746 			next_balance = sd->last_balance + interval;
10747 			update_next_balance = 1;
10748 		}
10749 	}
10750 	if (need_decay) {
10751 		/*
10752 		 * Ensure the rq-wide value also decays but keep it at a
10753 		 * reasonable floor to avoid funnies with rq->avg_idle.
10754 		 */
10755 		rq->max_idle_balance_cost =
10756 			max((u64)sysctl_sched_migration_cost, max_cost);
10757 	}
10758 	rcu_read_unlock();
10759 
10760 	/*
10761 	 * next_balance will be updated only when there is a need.
10762 	 * When the cpu is attached to null domain for ex, it will not be
10763 	 * updated.
10764 	 */
10765 	if (likely(update_next_balance))
10766 		rq->next_balance = next_balance;
10767 
10768 }
10769 
10770 static inline int on_null_domain(struct rq *rq)
10771 {
10772 	return unlikely(!rcu_dereference_sched(rq->sd));
10773 }
10774 
10775 #ifdef CONFIG_NO_HZ_COMMON
10776 /*
10777  * idle load balancing details
10778  * - When one of the busy CPUs notice that there may be an idle rebalancing
10779  *   needed, they will kick the idle load balancer, which then does idle
10780  *   load balancing for all the idle CPUs.
10781  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
10782  *   anywhere yet.
10783  */
10784 
10785 static inline int find_new_ilb(void)
10786 {
10787 	int ilb;
10788 	const struct cpumask *hk_mask;
10789 
10790 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
10791 
10792 	for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
10793 
10794 		if (ilb == smp_processor_id())
10795 			continue;
10796 
10797 		if (idle_cpu(ilb))
10798 			return ilb;
10799 	}
10800 
10801 	return nr_cpu_ids;
10802 }
10803 
10804 /*
10805  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10806  * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
10807  */
10808 static void kick_ilb(unsigned int flags)
10809 {
10810 	int ilb_cpu;
10811 
10812 	/*
10813 	 * Increase nohz.next_balance only when if full ilb is triggered but
10814 	 * not if we only update stats.
10815 	 */
10816 	if (flags & NOHZ_BALANCE_KICK)
10817 		nohz.next_balance = jiffies+1;
10818 
10819 	ilb_cpu = find_new_ilb();
10820 
10821 	if (ilb_cpu >= nr_cpu_ids)
10822 		return;
10823 
10824 	/*
10825 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10826 	 * the first flag owns it; cleared by nohz_csd_func().
10827 	 */
10828 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10829 	if (flags & NOHZ_KICK_MASK)
10830 		return;
10831 
10832 	/*
10833 	 * This way we generate an IPI on the target CPU which
10834 	 * is idle. And the softirq performing nohz idle load balance
10835 	 * will be run before returning from the IPI.
10836 	 */
10837 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10838 }
10839 
10840 /*
10841  * Current decision point for kicking the idle load balancer in the presence
10842  * of idle CPUs in the system.
10843  */
10844 static void nohz_balancer_kick(struct rq *rq)
10845 {
10846 	unsigned long now = jiffies;
10847 	struct sched_domain_shared *sds;
10848 	struct sched_domain *sd;
10849 	int nr_busy, i, cpu = rq->cpu;
10850 	unsigned int flags = 0;
10851 
10852 	if (unlikely(rq->idle_balance))
10853 		return;
10854 
10855 	/*
10856 	 * We may be recently in ticked or tickless idle mode. At the first
10857 	 * busy tick after returning from idle, we will update the busy stats.
10858 	 */
10859 	nohz_balance_exit_idle(rq);
10860 
10861 	/*
10862 	 * None are in tickless mode and hence no need for NOHZ idle load
10863 	 * balancing.
10864 	 */
10865 	if (likely(!atomic_read(&nohz.nr_cpus)))
10866 		return;
10867 
10868 	if (READ_ONCE(nohz.has_blocked) &&
10869 	    time_after(now, READ_ONCE(nohz.next_blocked)))
10870 		flags = NOHZ_STATS_KICK;
10871 
10872 	if (time_before(now, nohz.next_balance))
10873 		goto out;
10874 
10875 	if (rq->nr_running >= 2) {
10876 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10877 		goto out;
10878 	}
10879 
10880 	rcu_read_lock();
10881 
10882 	sd = rcu_dereference(rq->sd);
10883 	if (sd) {
10884 		/*
10885 		 * If there's a CFS task and the current CPU has reduced
10886 		 * capacity; kick the ILB to see if there's a better CPU to run
10887 		 * on.
10888 		 */
10889 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10890 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10891 			goto unlock;
10892 		}
10893 	}
10894 
10895 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10896 	if (sd) {
10897 		/*
10898 		 * When ASYM_PACKING; see if there's a more preferred CPU
10899 		 * currently idle; in which case, kick the ILB to move tasks
10900 		 * around.
10901 		 */
10902 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10903 			if (sched_asym_prefer(i, cpu)) {
10904 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10905 				goto unlock;
10906 			}
10907 		}
10908 	}
10909 
10910 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10911 	if (sd) {
10912 		/*
10913 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10914 		 * to run the misfit task on.
10915 		 */
10916 		if (check_misfit_status(rq, sd)) {
10917 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10918 			goto unlock;
10919 		}
10920 
10921 		/*
10922 		 * For asymmetric systems, we do not want to nicely balance
10923 		 * cache use, instead we want to embrace asymmetry and only
10924 		 * ensure tasks have enough CPU capacity.
10925 		 *
10926 		 * Skip the LLC logic because it's not relevant in that case.
10927 		 */
10928 		goto unlock;
10929 	}
10930 
10931 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10932 	if (sds) {
10933 		/*
10934 		 * If there is an imbalance between LLC domains (IOW we could
10935 		 * increase the overall cache use), we need some less-loaded LLC
10936 		 * domain to pull some load. Likewise, we may need to spread
10937 		 * load within the current LLC domain (e.g. packed SMT cores but
10938 		 * other CPUs are idle). We can't really know from here how busy
10939 		 * the others are - so just get a nohz balance going if it looks
10940 		 * like this LLC domain has tasks we could move.
10941 		 */
10942 		nr_busy = atomic_read(&sds->nr_busy_cpus);
10943 		if (nr_busy > 1) {
10944 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10945 			goto unlock;
10946 		}
10947 	}
10948 unlock:
10949 	rcu_read_unlock();
10950 out:
10951 	if (READ_ONCE(nohz.needs_update))
10952 		flags |= NOHZ_NEXT_KICK;
10953 
10954 	if (flags)
10955 		kick_ilb(flags);
10956 }
10957 
10958 static void set_cpu_sd_state_busy(int cpu)
10959 {
10960 	struct sched_domain *sd;
10961 
10962 	rcu_read_lock();
10963 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10964 
10965 	if (!sd || !sd->nohz_idle)
10966 		goto unlock;
10967 	sd->nohz_idle = 0;
10968 
10969 	atomic_inc(&sd->shared->nr_busy_cpus);
10970 unlock:
10971 	rcu_read_unlock();
10972 }
10973 
10974 void nohz_balance_exit_idle(struct rq *rq)
10975 {
10976 	SCHED_WARN_ON(rq != this_rq());
10977 
10978 	if (likely(!rq->nohz_tick_stopped))
10979 		return;
10980 
10981 	rq->nohz_tick_stopped = 0;
10982 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10983 	atomic_dec(&nohz.nr_cpus);
10984 
10985 	set_cpu_sd_state_busy(rq->cpu);
10986 }
10987 
10988 static void set_cpu_sd_state_idle(int cpu)
10989 {
10990 	struct sched_domain *sd;
10991 
10992 	rcu_read_lock();
10993 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10994 
10995 	if (!sd || sd->nohz_idle)
10996 		goto unlock;
10997 	sd->nohz_idle = 1;
10998 
10999 	atomic_dec(&sd->shared->nr_busy_cpus);
11000 unlock:
11001 	rcu_read_unlock();
11002 }
11003 
11004 /*
11005  * This routine will record that the CPU is going idle with tick stopped.
11006  * This info will be used in performing idle load balancing in the future.
11007  */
11008 void nohz_balance_enter_idle(int cpu)
11009 {
11010 	struct rq *rq = cpu_rq(cpu);
11011 
11012 	SCHED_WARN_ON(cpu != smp_processor_id());
11013 
11014 	/* If this CPU is going down, then nothing needs to be done: */
11015 	if (!cpu_active(cpu))
11016 		return;
11017 
11018 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
11019 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
11020 		return;
11021 
11022 	/*
11023 	 * Can be set safely without rq->lock held
11024 	 * If a clear happens, it will have evaluated last additions because
11025 	 * rq->lock is held during the check and the clear
11026 	 */
11027 	rq->has_blocked_load = 1;
11028 
11029 	/*
11030 	 * The tick is still stopped but load could have been added in the
11031 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
11032 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
11033 	 * of nohz.has_blocked can only happen after checking the new load
11034 	 */
11035 	if (rq->nohz_tick_stopped)
11036 		goto out;
11037 
11038 	/* If we're a completely isolated CPU, we don't play: */
11039 	if (on_null_domain(rq))
11040 		return;
11041 
11042 	rq->nohz_tick_stopped = 1;
11043 
11044 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
11045 	atomic_inc(&nohz.nr_cpus);
11046 
11047 	/*
11048 	 * Ensures that if nohz_idle_balance() fails to observe our
11049 	 * @idle_cpus_mask store, it must observe the @has_blocked
11050 	 * and @needs_update stores.
11051 	 */
11052 	smp_mb__after_atomic();
11053 
11054 	set_cpu_sd_state_idle(cpu);
11055 
11056 	WRITE_ONCE(nohz.needs_update, 1);
11057 out:
11058 	/*
11059 	 * Each time a cpu enter idle, we assume that it has blocked load and
11060 	 * enable the periodic update of the load of idle cpus
11061 	 */
11062 	WRITE_ONCE(nohz.has_blocked, 1);
11063 }
11064 
11065 static bool update_nohz_stats(struct rq *rq)
11066 {
11067 	unsigned int cpu = rq->cpu;
11068 
11069 	if (!rq->has_blocked_load)
11070 		return false;
11071 
11072 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
11073 		return false;
11074 
11075 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
11076 		return true;
11077 
11078 	update_blocked_averages(cpu);
11079 
11080 	return rq->has_blocked_load;
11081 }
11082 
11083 /*
11084  * Internal function that runs load balance for all idle cpus. The load balance
11085  * can be a simple update of blocked load or a complete load balance with
11086  * tasks movement depending of flags.
11087  */
11088 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
11089 {
11090 	/* Earliest time when we have to do rebalance again */
11091 	unsigned long now = jiffies;
11092 	unsigned long next_balance = now + 60*HZ;
11093 	bool has_blocked_load = false;
11094 	int update_next_balance = 0;
11095 	int this_cpu = this_rq->cpu;
11096 	int balance_cpu;
11097 	struct rq *rq;
11098 
11099 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
11100 
11101 	/*
11102 	 * We assume there will be no idle load after this update and clear
11103 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
11104 	 * set the has_blocked flag and trigger another update of idle load.
11105 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
11106 	 * setting the flag, we are sure to not clear the state and not
11107 	 * check the load of an idle cpu.
11108 	 *
11109 	 * Same applies to idle_cpus_mask vs needs_update.
11110 	 */
11111 	if (flags & NOHZ_STATS_KICK)
11112 		WRITE_ONCE(nohz.has_blocked, 0);
11113 	if (flags & NOHZ_NEXT_KICK)
11114 		WRITE_ONCE(nohz.needs_update, 0);
11115 
11116 	/*
11117 	 * Ensures that if we miss the CPU, we must see the has_blocked
11118 	 * store from nohz_balance_enter_idle().
11119 	 */
11120 	smp_mb();
11121 
11122 	/*
11123 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
11124 	 * chance for other idle cpu to pull load.
11125 	 */
11126 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
11127 		if (!idle_cpu(balance_cpu))
11128 			continue;
11129 
11130 		/*
11131 		 * If this CPU gets work to do, stop the load balancing
11132 		 * work being done for other CPUs. Next load
11133 		 * balancing owner will pick it up.
11134 		 */
11135 		if (need_resched()) {
11136 			if (flags & NOHZ_STATS_KICK)
11137 				has_blocked_load = true;
11138 			if (flags & NOHZ_NEXT_KICK)
11139 				WRITE_ONCE(nohz.needs_update, 1);
11140 			goto abort;
11141 		}
11142 
11143 		rq = cpu_rq(balance_cpu);
11144 
11145 		if (flags & NOHZ_STATS_KICK)
11146 			has_blocked_load |= update_nohz_stats(rq);
11147 
11148 		/*
11149 		 * If time for next balance is due,
11150 		 * do the balance.
11151 		 */
11152 		if (time_after_eq(jiffies, rq->next_balance)) {
11153 			struct rq_flags rf;
11154 
11155 			rq_lock_irqsave(rq, &rf);
11156 			update_rq_clock(rq);
11157 			rq_unlock_irqrestore(rq, &rf);
11158 
11159 			if (flags & NOHZ_BALANCE_KICK)
11160 				rebalance_domains(rq, CPU_IDLE);
11161 		}
11162 
11163 		if (time_after(next_balance, rq->next_balance)) {
11164 			next_balance = rq->next_balance;
11165 			update_next_balance = 1;
11166 		}
11167 	}
11168 
11169 	/*
11170 	 * next_balance will be updated only when there is a need.
11171 	 * When the CPU is attached to null domain for ex, it will not be
11172 	 * updated.
11173 	 */
11174 	if (likely(update_next_balance))
11175 		nohz.next_balance = next_balance;
11176 
11177 	if (flags & NOHZ_STATS_KICK)
11178 		WRITE_ONCE(nohz.next_blocked,
11179 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
11180 
11181 abort:
11182 	/* There is still blocked load, enable periodic update */
11183 	if (has_blocked_load)
11184 		WRITE_ONCE(nohz.has_blocked, 1);
11185 }
11186 
11187 /*
11188  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
11189  * rebalancing for all the cpus for whom scheduler ticks are stopped.
11190  */
11191 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11192 {
11193 	unsigned int flags = this_rq->nohz_idle_balance;
11194 
11195 	if (!flags)
11196 		return false;
11197 
11198 	this_rq->nohz_idle_balance = 0;
11199 
11200 	if (idle != CPU_IDLE)
11201 		return false;
11202 
11203 	_nohz_idle_balance(this_rq, flags);
11204 
11205 	return true;
11206 }
11207 
11208 /*
11209  * Check if we need to run the ILB for updating blocked load before entering
11210  * idle state.
11211  */
11212 void nohz_run_idle_balance(int cpu)
11213 {
11214 	unsigned int flags;
11215 
11216 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
11217 
11218 	/*
11219 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
11220 	 * (ie NOHZ_STATS_KICK set) and will do the same.
11221 	 */
11222 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
11223 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
11224 }
11225 
11226 static void nohz_newidle_balance(struct rq *this_rq)
11227 {
11228 	int this_cpu = this_rq->cpu;
11229 
11230 	/*
11231 	 * This CPU doesn't want to be disturbed by scheduler
11232 	 * housekeeping
11233 	 */
11234 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
11235 		return;
11236 
11237 	/* Will wake up very soon. No time for doing anything else*/
11238 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
11239 		return;
11240 
11241 	/* Don't need to update blocked load of idle CPUs*/
11242 	if (!READ_ONCE(nohz.has_blocked) ||
11243 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
11244 		return;
11245 
11246 	/*
11247 	 * Set the need to trigger ILB in order to update blocked load
11248 	 * before entering idle state.
11249 	 */
11250 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
11251 }
11252 
11253 #else /* !CONFIG_NO_HZ_COMMON */
11254 static inline void nohz_balancer_kick(struct rq *rq) { }
11255 
11256 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11257 {
11258 	return false;
11259 }
11260 
11261 static inline void nohz_newidle_balance(struct rq *this_rq) { }
11262 #endif /* CONFIG_NO_HZ_COMMON */
11263 
11264 /*
11265  * newidle_balance is called by schedule() if this_cpu is about to become
11266  * idle. Attempts to pull tasks from other CPUs.
11267  *
11268  * Returns:
11269  *   < 0 - we released the lock and there are !fair tasks present
11270  *     0 - failed, no new tasks
11271  *   > 0 - success, new (fair) tasks present
11272  */
11273 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
11274 {
11275 	unsigned long next_balance = jiffies + HZ;
11276 	int this_cpu = this_rq->cpu;
11277 	u64 t0, t1, curr_cost = 0;
11278 	struct sched_domain *sd;
11279 	int pulled_task = 0;
11280 
11281 	update_misfit_status(NULL, this_rq);
11282 
11283 	/*
11284 	 * There is a task waiting to run. No need to search for one.
11285 	 * Return 0; the task will be enqueued when switching to idle.
11286 	 */
11287 	if (this_rq->ttwu_pending)
11288 		return 0;
11289 
11290 	/*
11291 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
11292 	 * measure the duration of idle_balance() as idle time.
11293 	 */
11294 	this_rq->idle_stamp = rq_clock(this_rq);
11295 
11296 	/*
11297 	 * Do not pull tasks towards !active CPUs...
11298 	 */
11299 	if (!cpu_active(this_cpu))
11300 		return 0;
11301 
11302 	/*
11303 	 * This is OK, because current is on_cpu, which avoids it being picked
11304 	 * for load-balance and preemption/IRQs are still disabled avoiding
11305 	 * further scheduler activity on it and we're being very careful to
11306 	 * re-start the picking loop.
11307 	 */
11308 	rq_unpin_lock(this_rq, rf);
11309 
11310 	rcu_read_lock();
11311 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
11312 
11313 	if (!READ_ONCE(this_rq->rd->overload) ||
11314 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
11315 
11316 		if (sd)
11317 			update_next_balance(sd, &next_balance);
11318 		rcu_read_unlock();
11319 
11320 		goto out;
11321 	}
11322 	rcu_read_unlock();
11323 
11324 	raw_spin_rq_unlock(this_rq);
11325 
11326 	t0 = sched_clock_cpu(this_cpu);
11327 	update_blocked_averages(this_cpu);
11328 
11329 	rcu_read_lock();
11330 	for_each_domain(this_cpu, sd) {
11331 		int continue_balancing = 1;
11332 		u64 domain_cost;
11333 
11334 		update_next_balance(sd, &next_balance);
11335 
11336 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
11337 			break;
11338 
11339 		if (sd->flags & SD_BALANCE_NEWIDLE) {
11340 
11341 			pulled_task = load_balance(this_cpu, this_rq,
11342 						   sd, CPU_NEWLY_IDLE,
11343 						   &continue_balancing);
11344 
11345 			t1 = sched_clock_cpu(this_cpu);
11346 			domain_cost = t1 - t0;
11347 			update_newidle_cost(sd, domain_cost);
11348 
11349 			curr_cost += domain_cost;
11350 			t0 = t1;
11351 		}
11352 
11353 		/*
11354 		 * Stop searching for tasks to pull if there are
11355 		 * now runnable tasks on this rq.
11356 		 */
11357 		if (pulled_task || this_rq->nr_running > 0 ||
11358 		    this_rq->ttwu_pending)
11359 			break;
11360 	}
11361 	rcu_read_unlock();
11362 
11363 	raw_spin_rq_lock(this_rq);
11364 
11365 	if (curr_cost > this_rq->max_idle_balance_cost)
11366 		this_rq->max_idle_balance_cost = curr_cost;
11367 
11368 	/*
11369 	 * While browsing the domains, we released the rq lock, a task could
11370 	 * have been enqueued in the meantime. Since we're not going idle,
11371 	 * pretend we pulled a task.
11372 	 */
11373 	if (this_rq->cfs.h_nr_running && !pulled_task)
11374 		pulled_task = 1;
11375 
11376 	/* Is there a task of a high priority class? */
11377 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
11378 		pulled_task = -1;
11379 
11380 out:
11381 	/* Move the next balance forward */
11382 	if (time_after(this_rq->next_balance, next_balance))
11383 		this_rq->next_balance = next_balance;
11384 
11385 	if (pulled_task)
11386 		this_rq->idle_stamp = 0;
11387 	else
11388 		nohz_newidle_balance(this_rq);
11389 
11390 	rq_repin_lock(this_rq, rf);
11391 
11392 	return pulled_task;
11393 }
11394 
11395 /*
11396  * run_rebalance_domains is triggered when needed from the scheduler tick.
11397  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
11398  */
11399 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
11400 {
11401 	struct rq *this_rq = this_rq();
11402 	enum cpu_idle_type idle = this_rq->idle_balance ?
11403 						CPU_IDLE : CPU_NOT_IDLE;
11404 
11405 	/*
11406 	 * If this CPU has a pending nohz_balance_kick, then do the
11407 	 * balancing on behalf of the other idle CPUs whose ticks are
11408 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
11409 	 * give the idle CPUs a chance to load balance. Else we may
11410 	 * load balance only within the local sched_domain hierarchy
11411 	 * and abort nohz_idle_balance altogether if we pull some load.
11412 	 */
11413 	if (nohz_idle_balance(this_rq, idle))
11414 		return;
11415 
11416 	/* normal load balance */
11417 	update_blocked_averages(this_rq->cpu);
11418 	rebalance_domains(this_rq, idle);
11419 }
11420 
11421 /*
11422  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
11423  */
11424 void trigger_load_balance(struct rq *rq)
11425 {
11426 	/*
11427 	 * Don't need to rebalance while attached to NULL domain or
11428 	 * runqueue CPU is not active
11429 	 */
11430 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
11431 		return;
11432 
11433 	if (time_after_eq(jiffies, rq->next_balance))
11434 		raise_softirq(SCHED_SOFTIRQ);
11435 
11436 	nohz_balancer_kick(rq);
11437 }
11438 
11439 static void rq_online_fair(struct rq *rq)
11440 {
11441 	update_sysctl();
11442 
11443 	update_runtime_enabled(rq);
11444 }
11445 
11446 static void rq_offline_fair(struct rq *rq)
11447 {
11448 	update_sysctl();
11449 
11450 	/* Ensure any throttled groups are reachable by pick_next_task */
11451 	unthrottle_offline_cfs_rqs(rq);
11452 }
11453 
11454 #endif /* CONFIG_SMP */
11455 
11456 #ifdef CONFIG_SCHED_CORE
11457 static inline bool
11458 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
11459 {
11460 	u64 slice = sched_slice(cfs_rq_of(se), se);
11461 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
11462 
11463 	return (rtime * min_nr_tasks > slice);
11464 }
11465 
11466 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
11467 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
11468 {
11469 	if (!sched_core_enabled(rq))
11470 		return;
11471 
11472 	/*
11473 	 * If runqueue has only one task which used up its slice and
11474 	 * if the sibling is forced idle, then trigger schedule to
11475 	 * give forced idle task a chance.
11476 	 *
11477 	 * sched_slice() considers only this active rq and it gets the
11478 	 * whole slice. But during force idle, we have siblings acting
11479 	 * like a single runqueue and hence we need to consider runnable
11480 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
11481 	 * go through the forced idle rq, but that would be a perf hit.
11482 	 * We can assume that the forced idle CPU has at least
11483 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
11484 	 * if we need to give up the CPU.
11485 	 */
11486 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
11487 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
11488 		resched_curr(rq);
11489 }
11490 
11491 /*
11492  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
11493  */
11494 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
11495 {
11496 	for_each_sched_entity(se) {
11497 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11498 
11499 		if (forceidle) {
11500 			if (cfs_rq->forceidle_seq == fi_seq)
11501 				break;
11502 			cfs_rq->forceidle_seq = fi_seq;
11503 		}
11504 
11505 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
11506 	}
11507 }
11508 
11509 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
11510 {
11511 	struct sched_entity *se = &p->se;
11512 
11513 	if (p->sched_class != &fair_sched_class)
11514 		return;
11515 
11516 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11517 }
11518 
11519 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
11520 {
11521 	struct rq *rq = task_rq(a);
11522 	struct sched_entity *sea = &a->se;
11523 	struct sched_entity *seb = &b->se;
11524 	struct cfs_rq *cfs_rqa;
11525 	struct cfs_rq *cfs_rqb;
11526 	s64 delta;
11527 
11528 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
11529 
11530 #ifdef CONFIG_FAIR_GROUP_SCHED
11531 	/*
11532 	 * Find an se in the hierarchy for tasks a and b, such that the se's
11533 	 * are immediate siblings.
11534 	 */
11535 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11536 		int sea_depth = sea->depth;
11537 		int seb_depth = seb->depth;
11538 
11539 		if (sea_depth >= seb_depth)
11540 			sea = parent_entity(sea);
11541 		if (sea_depth <= seb_depth)
11542 			seb = parent_entity(seb);
11543 	}
11544 
11545 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
11546 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
11547 
11548 	cfs_rqa = sea->cfs_rq;
11549 	cfs_rqb = seb->cfs_rq;
11550 #else
11551 	cfs_rqa = &task_rq(a)->cfs;
11552 	cfs_rqb = &task_rq(b)->cfs;
11553 #endif
11554 
11555 	/*
11556 	 * Find delta after normalizing se's vruntime with its cfs_rq's
11557 	 * min_vruntime_fi, which would have been updated in prior calls
11558 	 * to se_fi_update().
11559 	 */
11560 	delta = (s64)(sea->vruntime - seb->vruntime) +
11561 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
11562 
11563 	return delta > 0;
11564 }
11565 #else
11566 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
11567 #endif
11568 
11569 /*
11570  * scheduler tick hitting a task of our scheduling class.
11571  *
11572  * NOTE: This function can be called remotely by the tick offload that
11573  * goes along full dynticks. Therefore no local assumption can be made
11574  * and everything must be accessed through the @rq and @curr passed in
11575  * parameters.
11576  */
11577 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11578 {
11579 	struct cfs_rq *cfs_rq;
11580 	struct sched_entity *se = &curr->se;
11581 
11582 	for_each_sched_entity(se) {
11583 		cfs_rq = cfs_rq_of(se);
11584 		entity_tick(cfs_rq, se, queued);
11585 	}
11586 
11587 	if (static_branch_unlikely(&sched_numa_balancing))
11588 		task_tick_numa(rq, curr);
11589 
11590 	update_misfit_status(curr, rq);
11591 	update_overutilized_status(task_rq(curr));
11592 
11593 	task_tick_core(rq, curr);
11594 }
11595 
11596 /*
11597  * called on fork with the child task as argument from the parent's context
11598  *  - child not yet on the tasklist
11599  *  - preemption disabled
11600  */
11601 static void task_fork_fair(struct task_struct *p)
11602 {
11603 	struct cfs_rq *cfs_rq;
11604 	struct sched_entity *se = &p->se, *curr;
11605 	struct rq *rq = this_rq();
11606 	struct rq_flags rf;
11607 
11608 	rq_lock(rq, &rf);
11609 	update_rq_clock(rq);
11610 
11611 	cfs_rq = task_cfs_rq(current);
11612 	curr = cfs_rq->curr;
11613 	if (curr) {
11614 		update_curr(cfs_rq);
11615 		se->vruntime = curr->vruntime;
11616 	}
11617 	place_entity(cfs_rq, se, 1);
11618 
11619 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11620 		/*
11621 		 * Upon rescheduling, sched_class::put_prev_task() will place
11622 		 * 'current' within the tree based on its new key value.
11623 		 */
11624 		swap(curr->vruntime, se->vruntime);
11625 		resched_curr(rq);
11626 	}
11627 
11628 	se->vruntime -= cfs_rq->min_vruntime;
11629 	rq_unlock(rq, &rf);
11630 }
11631 
11632 /*
11633  * Priority of the task has changed. Check to see if we preempt
11634  * the current task.
11635  */
11636 static void
11637 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11638 {
11639 	if (!task_on_rq_queued(p))
11640 		return;
11641 
11642 	if (rq->cfs.nr_running == 1)
11643 		return;
11644 
11645 	/*
11646 	 * Reschedule if we are currently running on this runqueue and
11647 	 * our priority decreased, or if we are not currently running on
11648 	 * this runqueue and our priority is higher than the current's
11649 	 */
11650 	if (task_current(rq, p)) {
11651 		if (p->prio > oldprio)
11652 			resched_curr(rq);
11653 	} else
11654 		check_preempt_curr(rq, p, 0);
11655 }
11656 
11657 static inline bool vruntime_normalized(struct task_struct *p)
11658 {
11659 	struct sched_entity *se = &p->se;
11660 
11661 	/*
11662 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11663 	 * the dequeue_entity(.flags=0) will already have normalized the
11664 	 * vruntime.
11665 	 */
11666 	if (p->on_rq)
11667 		return true;
11668 
11669 	/*
11670 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
11671 	 * But there are some cases where it has already been normalized:
11672 	 *
11673 	 * - A forked child which is waiting for being woken up by
11674 	 *   wake_up_new_task().
11675 	 * - A task which has been woken up by try_to_wake_up() and
11676 	 *   waiting for actually being woken up by sched_ttwu_pending().
11677 	 */
11678 	if (!se->sum_exec_runtime ||
11679 	    (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
11680 		return true;
11681 
11682 	return false;
11683 }
11684 
11685 #ifdef CONFIG_FAIR_GROUP_SCHED
11686 /*
11687  * Propagate the changes of the sched_entity across the tg tree to make it
11688  * visible to the root
11689  */
11690 static void propagate_entity_cfs_rq(struct sched_entity *se)
11691 {
11692 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11693 
11694 	if (cfs_rq_throttled(cfs_rq))
11695 		return;
11696 
11697 	if (!throttled_hierarchy(cfs_rq))
11698 		list_add_leaf_cfs_rq(cfs_rq);
11699 
11700 	/* Start to propagate at parent */
11701 	se = se->parent;
11702 
11703 	for_each_sched_entity(se) {
11704 		cfs_rq = cfs_rq_of(se);
11705 
11706 		update_load_avg(cfs_rq, se, UPDATE_TG);
11707 
11708 		if (cfs_rq_throttled(cfs_rq))
11709 			break;
11710 
11711 		if (!throttled_hierarchy(cfs_rq))
11712 			list_add_leaf_cfs_rq(cfs_rq);
11713 	}
11714 }
11715 #else
11716 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11717 #endif
11718 
11719 static void detach_entity_cfs_rq(struct sched_entity *se)
11720 {
11721 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11722 
11723 #ifdef CONFIG_SMP
11724 	/*
11725 	 * In case the task sched_avg hasn't been attached:
11726 	 * - A forked task which hasn't been woken up by wake_up_new_task().
11727 	 * - A task which has been woken up by try_to_wake_up() but is
11728 	 *   waiting for actually being woken up by sched_ttwu_pending().
11729 	 */
11730 	if (!se->avg.last_update_time)
11731 		return;
11732 #endif
11733 
11734 	/* Catch up with the cfs_rq and remove our load when we leave */
11735 	update_load_avg(cfs_rq, se, 0);
11736 	detach_entity_load_avg(cfs_rq, se);
11737 	update_tg_load_avg(cfs_rq);
11738 	propagate_entity_cfs_rq(se);
11739 }
11740 
11741 static void attach_entity_cfs_rq(struct sched_entity *se)
11742 {
11743 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11744 
11745 	/* Synchronize entity with its cfs_rq */
11746 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11747 	attach_entity_load_avg(cfs_rq, se);
11748 	update_tg_load_avg(cfs_rq);
11749 	propagate_entity_cfs_rq(se);
11750 }
11751 
11752 static void detach_task_cfs_rq(struct task_struct *p)
11753 {
11754 	struct sched_entity *se = &p->se;
11755 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11756 
11757 	if (!vruntime_normalized(p)) {
11758 		/*
11759 		 * Fix up our vruntime so that the current sleep doesn't
11760 		 * cause 'unlimited' sleep bonus.
11761 		 */
11762 		place_entity(cfs_rq, se, 0);
11763 		se->vruntime -= cfs_rq->min_vruntime;
11764 	}
11765 
11766 	detach_entity_cfs_rq(se);
11767 }
11768 
11769 static void attach_task_cfs_rq(struct task_struct *p)
11770 {
11771 	struct sched_entity *se = &p->se;
11772 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11773 
11774 	attach_entity_cfs_rq(se);
11775 
11776 	if (!vruntime_normalized(p))
11777 		se->vruntime += cfs_rq->min_vruntime;
11778 }
11779 
11780 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11781 {
11782 	detach_task_cfs_rq(p);
11783 }
11784 
11785 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11786 {
11787 	attach_task_cfs_rq(p);
11788 
11789 	if (task_on_rq_queued(p)) {
11790 		/*
11791 		 * We were most likely switched from sched_rt, so
11792 		 * kick off the schedule if running, otherwise just see
11793 		 * if we can still preempt the current task.
11794 		 */
11795 		if (task_current(rq, p))
11796 			resched_curr(rq);
11797 		else
11798 			check_preempt_curr(rq, p, 0);
11799 	}
11800 }
11801 
11802 /* Account for a task changing its policy or group.
11803  *
11804  * This routine is mostly called to set cfs_rq->curr field when a task
11805  * migrates between groups/classes.
11806  */
11807 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11808 {
11809 	struct sched_entity *se = &p->se;
11810 
11811 #ifdef CONFIG_SMP
11812 	if (task_on_rq_queued(p)) {
11813 		/*
11814 		 * Move the next running task to the front of the list, so our
11815 		 * cfs_tasks list becomes MRU one.
11816 		 */
11817 		list_move(&se->group_node, &rq->cfs_tasks);
11818 	}
11819 #endif
11820 
11821 	for_each_sched_entity(se) {
11822 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11823 
11824 		set_next_entity(cfs_rq, se);
11825 		/* ensure bandwidth has been allocated on our new cfs_rq */
11826 		account_cfs_rq_runtime(cfs_rq, 0);
11827 	}
11828 }
11829 
11830 void init_cfs_rq(struct cfs_rq *cfs_rq)
11831 {
11832 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11833 	u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
11834 #ifdef CONFIG_SMP
11835 	raw_spin_lock_init(&cfs_rq->removed.lock);
11836 #endif
11837 }
11838 
11839 #ifdef CONFIG_FAIR_GROUP_SCHED
11840 static void task_change_group_fair(struct task_struct *p)
11841 {
11842 	/*
11843 	 * We couldn't detach or attach a forked task which
11844 	 * hasn't been woken up by wake_up_new_task().
11845 	 */
11846 	if (READ_ONCE(p->__state) == TASK_NEW)
11847 		return;
11848 
11849 	detach_task_cfs_rq(p);
11850 
11851 #ifdef CONFIG_SMP
11852 	/* Tell se's cfs_rq has been changed -- migrated */
11853 	p->se.avg.last_update_time = 0;
11854 #endif
11855 	set_task_rq(p, task_cpu(p));
11856 	attach_task_cfs_rq(p);
11857 }
11858 
11859 void free_fair_sched_group(struct task_group *tg)
11860 {
11861 	int i;
11862 
11863 	for_each_possible_cpu(i) {
11864 		if (tg->cfs_rq)
11865 			kfree(tg->cfs_rq[i]);
11866 		if (tg->se)
11867 			kfree(tg->se[i]);
11868 	}
11869 
11870 	kfree(tg->cfs_rq);
11871 	kfree(tg->se);
11872 }
11873 
11874 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11875 {
11876 	struct sched_entity *se;
11877 	struct cfs_rq *cfs_rq;
11878 	int i;
11879 
11880 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11881 	if (!tg->cfs_rq)
11882 		goto err;
11883 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11884 	if (!tg->se)
11885 		goto err;
11886 
11887 	tg->shares = NICE_0_LOAD;
11888 
11889 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11890 
11891 	for_each_possible_cpu(i) {
11892 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11893 				      GFP_KERNEL, cpu_to_node(i));
11894 		if (!cfs_rq)
11895 			goto err;
11896 
11897 		se = kzalloc_node(sizeof(struct sched_entity_stats),
11898 				  GFP_KERNEL, cpu_to_node(i));
11899 		if (!se)
11900 			goto err_free_rq;
11901 
11902 		init_cfs_rq(cfs_rq);
11903 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11904 		init_entity_runnable_average(se);
11905 	}
11906 
11907 	return 1;
11908 
11909 err_free_rq:
11910 	kfree(cfs_rq);
11911 err:
11912 	return 0;
11913 }
11914 
11915 void online_fair_sched_group(struct task_group *tg)
11916 {
11917 	struct sched_entity *se;
11918 	struct rq_flags rf;
11919 	struct rq *rq;
11920 	int i;
11921 
11922 	for_each_possible_cpu(i) {
11923 		rq = cpu_rq(i);
11924 		se = tg->se[i];
11925 		rq_lock_irq(rq, &rf);
11926 		update_rq_clock(rq);
11927 		attach_entity_cfs_rq(se);
11928 		sync_throttle(tg, i);
11929 		rq_unlock_irq(rq, &rf);
11930 	}
11931 }
11932 
11933 void unregister_fair_sched_group(struct task_group *tg)
11934 {
11935 	unsigned long flags;
11936 	struct rq *rq;
11937 	int cpu;
11938 
11939 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11940 
11941 	for_each_possible_cpu(cpu) {
11942 		if (tg->se[cpu])
11943 			remove_entity_load_avg(tg->se[cpu]);
11944 
11945 		/*
11946 		 * Only empty task groups can be destroyed; so we can speculatively
11947 		 * check on_list without danger of it being re-added.
11948 		 */
11949 		if (!tg->cfs_rq[cpu]->on_list)
11950 			continue;
11951 
11952 		rq = cpu_rq(cpu);
11953 
11954 		raw_spin_rq_lock_irqsave(rq, flags);
11955 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11956 		raw_spin_rq_unlock_irqrestore(rq, flags);
11957 	}
11958 }
11959 
11960 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11961 			struct sched_entity *se, int cpu,
11962 			struct sched_entity *parent)
11963 {
11964 	struct rq *rq = cpu_rq(cpu);
11965 
11966 	cfs_rq->tg = tg;
11967 	cfs_rq->rq = rq;
11968 	init_cfs_rq_runtime(cfs_rq);
11969 
11970 	tg->cfs_rq[cpu] = cfs_rq;
11971 	tg->se[cpu] = se;
11972 
11973 	/* se could be NULL for root_task_group */
11974 	if (!se)
11975 		return;
11976 
11977 	if (!parent) {
11978 		se->cfs_rq = &rq->cfs;
11979 		se->depth = 0;
11980 	} else {
11981 		se->cfs_rq = parent->my_q;
11982 		se->depth = parent->depth + 1;
11983 	}
11984 
11985 	se->my_q = cfs_rq;
11986 	/* guarantee group entities always have weight */
11987 	update_load_set(&se->load, NICE_0_LOAD);
11988 	se->parent = parent;
11989 }
11990 
11991 static DEFINE_MUTEX(shares_mutex);
11992 
11993 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
11994 {
11995 	int i;
11996 
11997 	lockdep_assert_held(&shares_mutex);
11998 
11999 	/*
12000 	 * We can't change the weight of the root cgroup.
12001 	 */
12002 	if (!tg->se[0])
12003 		return -EINVAL;
12004 
12005 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12006 
12007 	if (tg->shares == shares)
12008 		return 0;
12009 
12010 	tg->shares = shares;
12011 	for_each_possible_cpu(i) {
12012 		struct rq *rq = cpu_rq(i);
12013 		struct sched_entity *se = tg->se[i];
12014 		struct rq_flags rf;
12015 
12016 		/* Propagate contribution to hierarchy */
12017 		rq_lock_irqsave(rq, &rf);
12018 		update_rq_clock(rq);
12019 		for_each_sched_entity(se) {
12020 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
12021 			update_cfs_group(se);
12022 		}
12023 		rq_unlock_irqrestore(rq, &rf);
12024 	}
12025 
12026 	return 0;
12027 }
12028 
12029 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
12030 {
12031 	int ret;
12032 
12033 	mutex_lock(&shares_mutex);
12034 	if (tg_is_idle(tg))
12035 		ret = -EINVAL;
12036 	else
12037 		ret = __sched_group_set_shares(tg, shares);
12038 	mutex_unlock(&shares_mutex);
12039 
12040 	return ret;
12041 }
12042 
12043 int sched_group_set_idle(struct task_group *tg, long idle)
12044 {
12045 	int i;
12046 
12047 	if (tg == &root_task_group)
12048 		return -EINVAL;
12049 
12050 	if (idle < 0 || idle > 1)
12051 		return -EINVAL;
12052 
12053 	mutex_lock(&shares_mutex);
12054 
12055 	if (tg->idle == idle) {
12056 		mutex_unlock(&shares_mutex);
12057 		return 0;
12058 	}
12059 
12060 	tg->idle = idle;
12061 
12062 	for_each_possible_cpu(i) {
12063 		struct rq *rq = cpu_rq(i);
12064 		struct sched_entity *se = tg->se[i];
12065 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
12066 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
12067 		long idle_task_delta;
12068 		struct rq_flags rf;
12069 
12070 		rq_lock_irqsave(rq, &rf);
12071 
12072 		grp_cfs_rq->idle = idle;
12073 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
12074 			goto next_cpu;
12075 
12076 		if (se->on_rq) {
12077 			parent_cfs_rq = cfs_rq_of(se);
12078 			if (cfs_rq_is_idle(grp_cfs_rq))
12079 				parent_cfs_rq->idle_nr_running++;
12080 			else
12081 				parent_cfs_rq->idle_nr_running--;
12082 		}
12083 
12084 		idle_task_delta = grp_cfs_rq->h_nr_running -
12085 				  grp_cfs_rq->idle_h_nr_running;
12086 		if (!cfs_rq_is_idle(grp_cfs_rq))
12087 			idle_task_delta *= -1;
12088 
12089 		for_each_sched_entity(se) {
12090 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
12091 
12092 			if (!se->on_rq)
12093 				break;
12094 
12095 			cfs_rq->idle_h_nr_running += idle_task_delta;
12096 
12097 			/* Already accounted at parent level and above. */
12098 			if (cfs_rq_is_idle(cfs_rq))
12099 				break;
12100 		}
12101 
12102 next_cpu:
12103 		rq_unlock_irqrestore(rq, &rf);
12104 	}
12105 
12106 	/* Idle groups have minimum weight. */
12107 	if (tg_is_idle(tg))
12108 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
12109 	else
12110 		__sched_group_set_shares(tg, NICE_0_LOAD);
12111 
12112 	mutex_unlock(&shares_mutex);
12113 	return 0;
12114 }
12115 
12116 #else /* CONFIG_FAIR_GROUP_SCHED */
12117 
12118 void free_fair_sched_group(struct task_group *tg) { }
12119 
12120 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12121 {
12122 	return 1;
12123 }
12124 
12125 void online_fair_sched_group(struct task_group *tg) { }
12126 
12127 void unregister_fair_sched_group(struct task_group *tg) { }
12128 
12129 #endif /* CONFIG_FAIR_GROUP_SCHED */
12130 
12131 
12132 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
12133 {
12134 	struct sched_entity *se = &task->se;
12135 	unsigned int rr_interval = 0;
12136 
12137 	/*
12138 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
12139 	 * idle runqueue:
12140 	 */
12141 	if (rq->cfs.load.weight)
12142 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
12143 
12144 	return rr_interval;
12145 }
12146 
12147 /*
12148  * All the scheduling class methods:
12149  */
12150 DEFINE_SCHED_CLASS(fair) = {
12151 
12152 	.enqueue_task		= enqueue_task_fair,
12153 	.dequeue_task		= dequeue_task_fair,
12154 	.yield_task		= yield_task_fair,
12155 	.yield_to_task		= yield_to_task_fair,
12156 
12157 	.check_preempt_curr	= check_preempt_wakeup,
12158 
12159 	.pick_next_task		= __pick_next_task_fair,
12160 	.put_prev_task		= put_prev_task_fair,
12161 	.set_next_task          = set_next_task_fair,
12162 
12163 #ifdef CONFIG_SMP
12164 	.balance		= balance_fair,
12165 	.pick_task		= pick_task_fair,
12166 	.select_task_rq		= select_task_rq_fair,
12167 	.migrate_task_rq	= migrate_task_rq_fair,
12168 
12169 	.rq_online		= rq_online_fair,
12170 	.rq_offline		= rq_offline_fair,
12171 
12172 	.task_dead		= task_dead_fair,
12173 	.set_cpus_allowed	= set_cpus_allowed_common,
12174 #endif
12175 
12176 	.task_tick		= task_tick_fair,
12177 	.task_fork		= task_fork_fair,
12178 
12179 	.prio_changed		= prio_changed_fair,
12180 	.switched_from		= switched_from_fair,
12181 	.switched_to		= switched_to_fair,
12182 
12183 	.get_rr_interval	= get_rr_interval_fair,
12184 
12185 	.update_curr		= update_curr_fair,
12186 
12187 #ifdef CONFIG_FAIR_GROUP_SCHED
12188 	.task_change_group	= task_change_group_fair,
12189 #endif
12190 
12191 #ifdef CONFIG_UCLAMP_TASK
12192 	.uclamp_enabled		= 1,
12193 #endif
12194 };
12195 
12196 #ifdef CONFIG_SCHED_DEBUG
12197 void print_cfs_stats(struct seq_file *m, int cpu)
12198 {
12199 	struct cfs_rq *cfs_rq, *pos;
12200 
12201 	rcu_read_lock();
12202 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
12203 		print_cfs_rq(m, cpu, cfs_rq);
12204 	rcu_read_unlock();
12205 }
12206 
12207 #ifdef CONFIG_NUMA_BALANCING
12208 void show_numa_stats(struct task_struct *p, struct seq_file *m)
12209 {
12210 	int node;
12211 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
12212 	struct numa_group *ng;
12213 
12214 	rcu_read_lock();
12215 	ng = rcu_dereference(p->numa_group);
12216 	for_each_online_node(node) {
12217 		if (p->numa_faults) {
12218 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
12219 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
12220 		}
12221 		if (ng) {
12222 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
12223 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
12224 		}
12225 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
12226 	}
12227 	rcu_read_unlock();
12228 }
12229 #endif /* CONFIG_NUMA_BALANCING */
12230 #endif /* CONFIG_SCHED_DEBUG */
12231 
12232 __init void init_sched_fair_class(void)
12233 {
12234 #ifdef CONFIG_SMP
12235 	int i;
12236 
12237 	for_each_possible_cpu(i) {
12238 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
12239 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
12240 	}
12241 
12242 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
12243 
12244 #ifdef CONFIG_NO_HZ_COMMON
12245 	nohz.next_balance = jiffies;
12246 	nohz.next_blocked = jiffies;
12247 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
12248 #endif
12249 #endif /* SMP */
12250 
12251 }
12252