xref: /openbmc/linux/kernel/sched/fair.c (revision d159037a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 /*
26  * Targeted preemption latency for CPU-bound tasks:
27  *
28  * NOTE: this latency value is not the same as the concept of
29  * 'timeslice length' - timeslices in CFS are of variable length
30  * and have no persistent notion like in traditional, time-slice
31  * based scheduling concepts.
32  *
33  * (to see the precise effective timeslice length of your workload,
34  *  run vmstat and monitor the context-switches (cs) field)
35  *
36  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37  */
38 unsigned int sysctl_sched_latency			= 6000000ULL;
39 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
40 
41 /*
42  * The initial- and re-scaling of tunables is configurable
43  *
44  * Options are:
45  *
46  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
47  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49  *
50  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
51  */
52 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
53 
54 /*
55  * Minimal preemption granularity for CPU-bound tasks:
56  *
57  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58  */
59 unsigned int sysctl_sched_min_granularity			= 750000ULL;
60 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
61 
62 /*
63  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
64  */
65 static unsigned int sched_nr_latency = 8;
66 
67 /*
68  * After fork, child runs first. If set to 0 (default) then
69  * parent will (try to) run first.
70  */
71 unsigned int sysctl_sched_child_runs_first __read_mostly;
72 
73 /*
74  * SCHED_OTHER wake-up granularity.
75  *
76  * This option delays the preemption effects of decoupled workloads
77  * and reduces their over-scheduling. Synchronous workloads will still
78  * have immediate wakeup/sleep latencies.
79  *
80  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
81  */
82 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
83 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
84 
85 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
86 
87 int sched_thermal_decay_shift;
88 static int __init setup_sched_thermal_decay_shift(char *str)
89 {
90 	int _shift = 0;
91 
92 	if (kstrtoint(str, 0, &_shift))
93 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
94 
95 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
96 	return 1;
97 }
98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
99 
100 #ifdef CONFIG_SMP
101 /*
102  * For asym packing, by default the lower numbered CPU has higher priority.
103  */
104 int __weak arch_asym_cpu_priority(int cpu)
105 {
106 	return -cpu;
107 }
108 
109 /*
110  * The margin used when comparing utilization with CPU capacity.
111  *
112  * (default: ~20%)
113  */
114 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
115 
116 /*
117  * The margin used when comparing CPU capacities.
118  * is 'cap1' noticeably greater than 'cap2'
119  *
120  * (default: ~5%)
121  */
122 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
123 #endif
124 
125 #ifdef CONFIG_CFS_BANDWIDTH
126 /*
127  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
128  * each time a cfs_rq requests quota.
129  *
130  * Note: in the case that the slice exceeds the runtime remaining (either due
131  * to consumption or the quota being specified to be smaller than the slice)
132  * we will always only issue the remaining available time.
133  *
134  * (default: 5 msec, units: microseconds)
135  */
136 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
137 #endif
138 
139 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
140 {
141 	lw->weight += inc;
142 	lw->inv_weight = 0;
143 }
144 
145 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
146 {
147 	lw->weight -= dec;
148 	lw->inv_weight = 0;
149 }
150 
151 static inline void update_load_set(struct load_weight *lw, unsigned long w)
152 {
153 	lw->weight = w;
154 	lw->inv_weight = 0;
155 }
156 
157 /*
158  * Increase the granularity value when there are more CPUs,
159  * because with more CPUs the 'effective latency' as visible
160  * to users decreases. But the relationship is not linear,
161  * so pick a second-best guess by going with the log2 of the
162  * number of CPUs.
163  *
164  * This idea comes from the SD scheduler of Con Kolivas:
165  */
166 static unsigned int get_update_sysctl_factor(void)
167 {
168 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
169 	unsigned int factor;
170 
171 	switch (sysctl_sched_tunable_scaling) {
172 	case SCHED_TUNABLESCALING_NONE:
173 		factor = 1;
174 		break;
175 	case SCHED_TUNABLESCALING_LINEAR:
176 		factor = cpus;
177 		break;
178 	case SCHED_TUNABLESCALING_LOG:
179 	default:
180 		factor = 1 + ilog2(cpus);
181 		break;
182 	}
183 
184 	return factor;
185 }
186 
187 static void update_sysctl(void)
188 {
189 	unsigned int factor = get_update_sysctl_factor();
190 
191 #define SET_SYSCTL(name) \
192 	(sysctl_##name = (factor) * normalized_sysctl_##name)
193 	SET_SYSCTL(sched_min_granularity);
194 	SET_SYSCTL(sched_latency);
195 	SET_SYSCTL(sched_wakeup_granularity);
196 #undef SET_SYSCTL
197 }
198 
199 void __init sched_init_granularity(void)
200 {
201 	update_sysctl();
202 }
203 
204 #define WMULT_CONST	(~0U)
205 #define WMULT_SHIFT	32
206 
207 static void __update_inv_weight(struct load_weight *lw)
208 {
209 	unsigned long w;
210 
211 	if (likely(lw->inv_weight))
212 		return;
213 
214 	w = scale_load_down(lw->weight);
215 
216 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 		lw->inv_weight = 1;
218 	else if (unlikely(!w))
219 		lw->inv_weight = WMULT_CONST;
220 	else
221 		lw->inv_weight = WMULT_CONST / w;
222 }
223 
224 /*
225  * delta_exec * weight / lw.weight
226  *   OR
227  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
228  *
229  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
230  * we're guaranteed shift stays positive because inv_weight is guaranteed to
231  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
232  *
233  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
234  * weight/lw.weight <= 1, and therefore our shift will also be positive.
235  */
236 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
237 {
238 	u64 fact = scale_load_down(weight);
239 	u32 fact_hi = (u32)(fact >> 32);
240 	int shift = WMULT_SHIFT;
241 	int fs;
242 
243 	__update_inv_weight(lw);
244 
245 	if (unlikely(fact_hi)) {
246 		fs = fls(fact_hi);
247 		shift -= fs;
248 		fact >>= fs;
249 	}
250 
251 	fact = mul_u32_u32(fact, lw->inv_weight);
252 
253 	fact_hi = (u32)(fact >> 32);
254 	if (fact_hi) {
255 		fs = fls(fact_hi);
256 		shift -= fs;
257 		fact >>= fs;
258 	}
259 
260 	return mul_u64_u32_shr(delta_exec, fact, shift);
261 }
262 
263 
264 const struct sched_class fair_sched_class;
265 
266 /**************************************************************
267  * CFS operations on generic schedulable entities:
268  */
269 
270 #ifdef CONFIG_FAIR_GROUP_SCHED
271 
272 /* Walk up scheduling entities hierarchy */
273 #define for_each_sched_entity(se) \
274 		for (; se; se = se->parent)
275 
276 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
277 {
278 	if (!path)
279 		return;
280 
281 	if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
282 		autogroup_path(cfs_rq->tg, path, len);
283 	else if (cfs_rq && cfs_rq->tg->css.cgroup)
284 		cgroup_path(cfs_rq->tg->css.cgroup, path, len);
285 	else
286 		strlcpy(path, "(null)", len);
287 }
288 
289 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290 {
291 	struct rq *rq = rq_of(cfs_rq);
292 	int cpu = cpu_of(rq);
293 
294 	if (cfs_rq->on_list)
295 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
296 
297 	cfs_rq->on_list = 1;
298 
299 	/*
300 	 * Ensure we either appear before our parent (if already
301 	 * enqueued) or force our parent to appear after us when it is
302 	 * enqueued. The fact that we always enqueue bottom-up
303 	 * reduces this to two cases and a special case for the root
304 	 * cfs_rq. Furthermore, it also means that we will always reset
305 	 * tmp_alone_branch either when the branch is connected
306 	 * to a tree or when we reach the top of the tree
307 	 */
308 	if (cfs_rq->tg->parent &&
309 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
310 		/*
311 		 * If parent is already on the list, we add the child
312 		 * just before. Thanks to circular linked property of
313 		 * the list, this means to put the child at the tail
314 		 * of the list that starts by parent.
315 		 */
316 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
317 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
318 		/*
319 		 * The branch is now connected to its tree so we can
320 		 * reset tmp_alone_branch to the beginning of the
321 		 * list.
322 		 */
323 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
324 		return true;
325 	}
326 
327 	if (!cfs_rq->tg->parent) {
328 		/*
329 		 * cfs rq without parent should be put
330 		 * at the tail of the list.
331 		 */
332 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
333 			&rq->leaf_cfs_rq_list);
334 		/*
335 		 * We have reach the top of a tree so we can reset
336 		 * tmp_alone_branch to the beginning of the list.
337 		 */
338 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
339 		return true;
340 	}
341 
342 	/*
343 	 * The parent has not already been added so we want to
344 	 * make sure that it will be put after us.
345 	 * tmp_alone_branch points to the begin of the branch
346 	 * where we will add parent.
347 	 */
348 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
349 	/*
350 	 * update tmp_alone_branch to points to the new begin
351 	 * of the branch
352 	 */
353 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
354 	return false;
355 }
356 
357 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
358 {
359 	if (cfs_rq->on_list) {
360 		struct rq *rq = rq_of(cfs_rq);
361 
362 		/*
363 		 * With cfs_rq being unthrottled/throttled during an enqueue,
364 		 * it can happen the tmp_alone_branch points the a leaf that
365 		 * we finally want to del. In this case, tmp_alone_branch moves
366 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
367 		 * at the end of the enqueue.
368 		 */
369 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
370 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
371 
372 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
373 		cfs_rq->on_list = 0;
374 	}
375 }
376 
377 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
378 {
379 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
380 }
381 
382 /* Iterate thr' all leaf cfs_rq's on a runqueue */
383 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
384 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
385 				 leaf_cfs_rq_list)
386 
387 /* Do the two (enqueued) entities belong to the same group ? */
388 static inline struct cfs_rq *
389 is_same_group(struct sched_entity *se, struct sched_entity *pse)
390 {
391 	if (se->cfs_rq == pse->cfs_rq)
392 		return se->cfs_rq;
393 
394 	return NULL;
395 }
396 
397 static inline struct sched_entity *parent_entity(struct sched_entity *se)
398 {
399 	return se->parent;
400 }
401 
402 static void
403 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
404 {
405 	int se_depth, pse_depth;
406 
407 	/*
408 	 * preemption test can be made between sibling entities who are in the
409 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
410 	 * both tasks until we find their ancestors who are siblings of common
411 	 * parent.
412 	 */
413 
414 	/* First walk up until both entities are at same depth */
415 	se_depth = (*se)->depth;
416 	pse_depth = (*pse)->depth;
417 
418 	while (se_depth > pse_depth) {
419 		se_depth--;
420 		*se = parent_entity(*se);
421 	}
422 
423 	while (pse_depth > se_depth) {
424 		pse_depth--;
425 		*pse = parent_entity(*pse);
426 	}
427 
428 	while (!is_same_group(*se, *pse)) {
429 		*se = parent_entity(*se);
430 		*pse = parent_entity(*pse);
431 	}
432 }
433 
434 static int tg_is_idle(struct task_group *tg)
435 {
436 	return tg->idle > 0;
437 }
438 
439 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
440 {
441 	return cfs_rq->idle > 0;
442 }
443 
444 static int se_is_idle(struct sched_entity *se)
445 {
446 	if (entity_is_task(se))
447 		return task_has_idle_policy(task_of(se));
448 	return cfs_rq_is_idle(group_cfs_rq(se));
449 }
450 
451 #else	/* !CONFIG_FAIR_GROUP_SCHED */
452 
453 #define for_each_sched_entity(se) \
454 		for (; se; se = NULL)
455 
456 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
457 {
458 	if (path)
459 		strlcpy(path, "(null)", len);
460 }
461 
462 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
463 {
464 	return true;
465 }
466 
467 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
468 {
469 }
470 
471 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
472 {
473 }
474 
475 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
476 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
477 
478 static inline struct sched_entity *parent_entity(struct sched_entity *se)
479 {
480 	return NULL;
481 }
482 
483 static inline void
484 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
485 {
486 }
487 
488 static inline int tg_is_idle(struct task_group *tg)
489 {
490 	return 0;
491 }
492 
493 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
494 {
495 	return 0;
496 }
497 
498 static int se_is_idle(struct sched_entity *se)
499 {
500 	return 0;
501 }
502 
503 #endif	/* CONFIG_FAIR_GROUP_SCHED */
504 
505 static __always_inline
506 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
507 
508 /**************************************************************
509  * Scheduling class tree data structure manipulation methods:
510  */
511 
512 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
513 {
514 	s64 delta = (s64)(vruntime - max_vruntime);
515 	if (delta > 0)
516 		max_vruntime = vruntime;
517 
518 	return max_vruntime;
519 }
520 
521 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
522 {
523 	s64 delta = (s64)(vruntime - min_vruntime);
524 	if (delta < 0)
525 		min_vruntime = vruntime;
526 
527 	return min_vruntime;
528 }
529 
530 static inline bool entity_before(struct sched_entity *a,
531 				struct sched_entity *b)
532 {
533 	return (s64)(a->vruntime - b->vruntime) < 0;
534 }
535 
536 #define __node_2_se(node) \
537 	rb_entry((node), struct sched_entity, run_node)
538 
539 static void update_min_vruntime(struct cfs_rq *cfs_rq)
540 {
541 	struct sched_entity *curr = cfs_rq->curr;
542 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
543 
544 	u64 vruntime = cfs_rq->min_vruntime;
545 
546 	if (curr) {
547 		if (curr->on_rq)
548 			vruntime = curr->vruntime;
549 		else
550 			curr = NULL;
551 	}
552 
553 	if (leftmost) { /* non-empty tree */
554 		struct sched_entity *se = __node_2_se(leftmost);
555 
556 		if (!curr)
557 			vruntime = se->vruntime;
558 		else
559 			vruntime = min_vruntime(vruntime, se->vruntime);
560 	}
561 
562 	/* ensure we never gain time by being placed backwards. */
563 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
564 #ifndef CONFIG_64BIT
565 	smp_wmb();
566 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
567 #endif
568 }
569 
570 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
571 {
572 	return entity_before(__node_2_se(a), __node_2_se(b));
573 }
574 
575 /*
576  * Enqueue an entity into the rb-tree:
577  */
578 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
579 {
580 	rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
581 }
582 
583 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
584 {
585 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
586 }
587 
588 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
589 {
590 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
591 
592 	if (!left)
593 		return NULL;
594 
595 	return __node_2_se(left);
596 }
597 
598 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
599 {
600 	struct rb_node *next = rb_next(&se->run_node);
601 
602 	if (!next)
603 		return NULL;
604 
605 	return __node_2_se(next);
606 }
607 
608 #ifdef CONFIG_SCHED_DEBUG
609 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
610 {
611 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
612 
613 	if (!last)
614 		return NULL;
615 
616 	return __node_2_se(last);
617 }
618 
619 /**************************************************************
620  * Scheduling class statistics methods:
621  */
622 
623 int sched_update_scaling(void)
624 {
625 	unsigned int factor = get_update_sysctl_factor();
626 
627 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
628 					sysctl_sched_min_granularity);
629 
630 #define WRT_SYSCTL(name) \
631 	(normalized_sysctl_##name = sysctl_##name / (factor))
632 	WRT_SYSCTL(sched_min_granularity);
633 	WRT_SYSCTL(sched_latency);
634 	WRT_SYSCTL(sched_wakeup_granularity);
635 #undef WRT_SYSCTL
636 
637 	return 0;
638 }
639 #endif
640 
641 /*
642  * delta /= w
643  */
644 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
645 {
646 	if (unlikely(se->load.weight != NICE_0_LOAD))
647 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
648 
649 	return delta;
650 }
651 
652 /*
653  * The idea is to set a period in which each task runs once.
654  *
655  * When there are too many tasks (sched_nr_latency) we have to stretch
656  * this period because otherwise the slices get too small.
657  *
658  * p = (nr <= nl) ? l : l*nr/nl
659  */
660 static u64 __sched_period(unsigned long nr_running)
661 {
662 	if (unlikely(nr_running > sched_nr_latency))
663 		return nr_running * sysctl_sched_min_granularity;
664 	else
665 		return sysctl_sched_latency;
666 }
667 
668 /*
669  * We calculate the wall-time slice from the period by taking a part
670  * proportional to the weight.
671  *
672  * s = p*P[w/rw]
673  */
674 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
675 {
676 	unsigned int nr_running = cfs_rq->nr_running;
677 	u64 slice;
678 
679 	if (sched_feat(ALT_PERIOD))
680 		nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
681 
682 	slice = __sched_period(nr_running + !se->on_rq);
683 
684 	for_each_sched_entity(se) {
685 		struct load_weight *load;
686 		struct load_weight lw;
687 
688 		cfs_rq = cfs_rq_of(se);
689 		load = &cfs_rq->load;
690 
691 		if (unlikely(!se->on_rq)) {
692 			lw = cfs_rq->load;
693 
694 			update_load_add(&lw, se->load.weight);
695 			load = &lw;
696 		}
697 		slice = __calc_delta(slice, se->load.weight, load);
698 	}
699 
700 	if (sched_feat(BASE_SLICE))
701 		slice = max(slice, (u64)sysctl_sched_min_granularity);
702 
703 	return slice;
704 }
705 
706 /*
707  * We calculate the vruntime slice of a to-be-inserted task.
708  *
709  * vs = s/w
710  */
711 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
712 {
713 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
714 }
715 
716 #include "pelt.h"
717 #ifdef CONFIG_SMP
718 
719 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
720 static unsigned long task_h_load(struct task_struct *p);
721 static unsigned long capacity_of(int cpu);
722 
723 /* Give new sched_entity start runnable values to heavy its load in infant time */
724 void init_entity_runnable_average(struct sched_entity *se)
725 {
726 	struct sched_avg *sa = &se->avg;
727 
728 	memset(sa, 0, sizeof(*sa));
729 
730 	/*
731 	 * Tasks are initialized with full load to be seen as heavy tasks until
732 	 * they get a chance to stabilize to their real load level.
733 	 * Group entities are initialized with zero load to reflect the fact that
734 	 * nothing has been attached to the task group yet.
735 	 */
736 	if (entity_is_task(se))
737 		sa->load_avg = scale_load_down(se->load.weight);
738 
739 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
740 }
741 
742 static void attach_entity_cfs_rq(struct sched_entity *se);
743 
744 /*
745  * With new tasks being created, their initial util_avgs are extrapolated
746  * based on the cfs_rq's current util_avg:
747  *
748  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
749  *
750  * However, in many cases, the above util_avg does not give a desired
751  * value. Moreover, the sum of the util_avgs may be divergent, such
752  * as when the series is a harmonic series.
753  *
754  * To solve this problem, we also cap the util_avg of successive tasks to
755  * only 1/2 of the left utilization budget:
756  *
757  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
758  *
759  * where n denotes the nth task and cpu_scale the CPU capacity.
760  *
761  * For example, for a CPU with 1024 of capacity, a simplest series from
762  * the beginning would be like:
763  *
764  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
765  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
766  *
767  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
768  * if util_avg > util_avg_cap.
769  */
770 void post_init_entity_util_avg(struct task_struct *p)
771 {
772 	struct sched_entity *se = &p->se;
773 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
774 	struct sched_avg *sa = &se->avg;
775 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
776 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
777 
778 	if (cap > 0) {
779 		if (cfs_rq->avg.util_avg != 0) {
780 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
781 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
782 
783 			if (sa->util_avg > cap)
784 				sa->util_avg = cap;
785 		} else {
786 			sa->util_avg = cap;
787 		}
788 	}
789 
790 	sa->runnable_avg = sa->util_avg;
791 
792 	if (p->sched_class != &fair_sched_class) {
793 		/*
794 		 * For !fair tasks do:
795 		 *
796 		update_cfs_rq_load_avg(now, cfs_rq);
797 		attach_entity_load_avg(cfs_rq, se);
798 		switched_from_fair(rq, p);
799 		 *
800 		 * such that the next switched_to_fair() has the
801 		 * expected state.
802 		 */
803 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
804 		return;
805 	}
806 
807 	attach_entity_cfs_rq(se);
808 }
809 
810 #else /* !CONFIG_SMP */
811 void init_entity_runnable_average(struct sched_entity *se)
812 {
813 }
814 void post_init_entity_util_avg(struct task_struct *p)
815 {
816 }
817 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
818 {
819 }
820 #endif /* CONFIG_SMP */
821 
822 /*
823  * Update the current task's runtime statistics.
824  */
825 static void update_curr(struct cfs_rq *cfs_rq)
826 {
827 	struct sched_entity *curr = cfs_rq->curr;
828 	u64 now = rq_clock_task(rq_of(cfs_rq));
829 	u64 delta_exec;
830 
831 	if (unlikely(!curr))
832 		return;
833 
834 	delta_exec = now - curr->exec_start;
835 	if (unlikely((s64)delta_exec <= 0))
836 		return;
837 
838 	curr->exec_start = now;
839 
840 	schedstat_set(curr->statistics.exec_max,
841 		      max(delta_exec, curr->statistics.exec_max));
842 
843 	curr->sum_exec_runtime += delta_exec;
844 	schedstat_add(cfs_rq->exec_clock, delta_exec);
845 
846 	curr->vruntime += calc_delta_fair(delta_exec, curr);
847 	update_min_vruntime(cfs_rq);
848 
849 	if (entity_is_task(curr)) {
850 		struct task_struct *curtask = task_of(curr);
851 
852 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
853 		cgroup_account_cputime(curtask, delta_exec);
854 		account_group_exec_runtime(curtask, delta_exec);
855 	}
856 
857 	account_cfs_rq_runtime(cfs_rq, delta_exec);
858 }
859 
860 static void update_curr_fair(struct rq *rq)
861 {
862 	update_curr(cfs_rq_of(&rq->curr->se));
863 }
864 
865 static inline void
866 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
867 {
868 	u64 wait_start, prev_wait_start;
869 
870 	if (!schedstat_enabled())
871 		return;
872 
873 	wait_start = rq_clock(rq_of(cfs_rq));
874 	prev_wait_start = schedstat_val(se->statistics.wait_start);
875 
876 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
877 	    likely(wait_start > prev_wait_start))
878 		wait_start -= prev_wait_start;
879 
880 	__schedstat_set(se->statistics.wait_start, wait_start);
881 }
882 
883 static inline void
884 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
885 {
886 	struct task_struct *p;
887 	u64 delta;
888 
889 	if (!schedstat_enabled())
890 		return;
891 
892 	/*
893 	 * When the sched_schedstat changes from 0 to 1, some sched se
894 	 * maybe already in the runqueue, the se->statistics.wait_start
895 	 * will be 0.So it will let the delta wrong. We need to avoid this
896 	 * scenario.
897 	 */
898 	if (unlikely(!schedstat_val(se->statistics.wait_start)))
899 		return;
900 
901 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
902 
903 	if (entity_is_task(se)) {
904 		p = task_of(se);
905 		if (task_on_rq_migrating(p)) {
906 			/*
907 			 * Preserve migrating task's wait time so wait_start
908 			 * time stamp can be adjusted to accumulate wait time
909 			 * prior to migration.
910 			 */
911 			__schedstat_set(se->statistics.wait_start, delta);
912 			return;
913 		}
914 		trace_sched_stat_wait(p, delta);
915 	}
916 
917 	__schedstat_set(se->statistics.wait_max,
918 		      max(schedstat_val(se->statistics.wait_max), delta));
919 	__schedstat_inc(se->statistics.wait_count);
920 	__schedstat_add(se->statistics.wait_sum, delta);
921 	__schedstat_set(se->statistics.wait_start, 0);
922 }
923 
924 static inline void
925 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
926 {
927 	struct task_struct *tsk = NULL;
928 	u64 sleep_start, block_start;
929 
930 	if (!schedstat_enabled())
931 		return;
932 
933 	sleep_start = schedstat_val(se->statistics.sleep_start);
934 	block_start = schedstat_val(se->statistics.block_start);
935 
936 	if (entity_is_task(se))
937 		tsk = task_of(se);
938 
939 	if (sleep_start) {
940 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
941 
942 		if ((s64)delta < 0)
943 			delta = 0;
944 
945 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
946 			__schedstat_set(se->statistics.sleep_max, delta);
947 
948 		__schedstat_set(se->statistics.sleep_start, 0);
949 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
950 
951 		if (tsk) {
952 			account_scheduler_latency(tsk, delta >> 10, 1);
953 			trace_sched_stat_sleep(tsk, delta);
954 		}
955 	}
956 	if (block_start) {
957 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
958 
959 		if ((s64)delta < 0)
960 			delta = 0;
961 
962 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
963 			__schedstat_set(se->statistics.block_max, delta);
964 
965 		__schedstat_set(se->statistics.block_start, 0);
966 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
967 
968 		if (tsk) {
969 			if (tsk->in_iowait) {
970 				__schedstat_add(se->statistics.iowait_sum, delta);
971 				__schedstat_inc(se->statistics.iowait_count);
972 				trace_sched_stat_iowait(tsk, delta);
973 			}
974 
975 			trace_sched_stat_blocked(tsk, delta);
976 
977 			/*
978 			 * Blocking time is in units of nanosecs, so shift by
979 			 * 20 to get a milliseconds-range estimation of the
980 			 * amount of time that the task spent sleeping:
981 			 */
982 			if (unlikely(prof_on == SLEEP_PROFILING)) {
983 				profile_hits(SLEEP_PROFILING,
984 						(void *)get_wchan(tsk),
985 						delta >> 20);
986 			}
987 			account_scheduler_latency(tsk, delta >> 10, 0);
988 		}
989 	}
990 }
991 
992 /*
993  * Task is being enqueued - update stats:
994  */
995 static inline void
996 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
997 {
998 	if (!schedstat_enabled())
999 		return;
1000 
1001 	/*
1002 	 * Are we enqueueing a waiting task? (for current tasks
1003 	 * a dequeue/enqueue event is a NOP)
1004 	 */
1005 	if (se != cfs_rq->curr)
1006 		update_stats_wait_start(cfs_rq, se);
1007 
1008 	if (flags & ENQUEUE_WAKEUP)
1009 		update_stats_enqueue_sleeper(cfs_rq, se);
1010 }
1011 
1012 static inline void
1013 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1014 {
1015 
1016 	if (!schedstat_enabled())
1017 		return;
1018 
1019 	/*
1020 	 * Mark the end of the wait period if dequeueing a
1021 	 * waiting task:
1022 	 */
1023 	if (se != cfs_rq->curr)
1024 		update_stats_wait_end(cfs_rq, se);
1025 
1026 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1027 		struct task_struct *tsk = task_of(se);
1028 		unsigned int state;
1029 
1030 		/* XXX racy against TTWU */
1031 		state = READ_ONCE(tsk->__state);
1032 		if (state & TASK_INTERRUPTIBLE)
1033 			__schedstat_set(se->statistics.sleep_start,
1034 				      rq_clock(rq_of(cfs_rq)));
1035 		if (state & TASK_UNINTERRUPTIBLE)
1036 			__schedstat_set(se->statistics.block_start,
1037 				      rq_clock(rq_of(cfs_rq)));
1038 	}
1039 }
1040 
1041 /*
1042  * We are picking a new current task - update its stats:
1043  */
1044 static inline void
1045 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1046 {
1047 	/*
1048 	 * We are starting a new run period:
1049 	 */
1050 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1051 }
1052 
1053 /**************************************************
1054  * Scheduling class queueing methods:
1055  */
1056 
1057 #ifdef CONFIG_NUMA_BALANCING
1058 /*
1059  * Approximate time to scan a full NUMA task in ms. The task scan period is
1060  * calculated based on the tasks virtual memory size and
1061  * numa_balancing_scan_size.
1062  */
1063 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1064 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1065 
1066 /* Portion of address space to scan in MB */
1067 unsigned int sysctl_numa_balancing_scan_size = 256;
1068 
1069 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1070 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1071 
1072 struct numa_group {
1073 	refcount_t refcount;
1074 
1075 	spinlock_t lock; /* nr_tasks, tasks */
1076 	int nr_tasks;
1077 	pid_t gid;
1078 	int active_nodes;
1079 
1080 	struct rcu_head rcu;
1081 	unsigned long total_faults;
1082 	unsigned long max_faults_cpu;
1083 	/*
1084 	 * Faults_cpu is used to decide whether memory should move
1085 	 * towards the CPU. As a consequence, these stats are weighted
1086 	 * more by CPU use than by memory faults.
1087 	 */
1088 	unsigned long *faults_cpu;
1089 	unsigned long faults[];
1090 };
1091 
1092 /*
1093  * For functions that can be called in multiple contexts that permit reading
1094  * ->numa_group (see struct task_struct for locking rules).
1095  */
1096 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1097 {
1098 	return rcu_dereference_check(p->numa_group, p == current ||
1099 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1100 }
1101 
1102 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1103 {
1104 	return rcu_dereference_protected(p->numa_group, p == current);
1105 }
1106 
1107 static inline unsigned long group_faults_priv(struct numa_group *ng);
1108 static inline unsigned long group_faults_shared(struct numa_group *ng);
1109 
1110 static unsigned int task_nr_scan_windows(struct task_struct *p)
1111 {
1112 	unsigned long rss = 0;
1113 	unsigned long nr_scan_pages;
1114 
1115 	/*
1116 	 * Calculations based on RSS as non-present and empty pages are skipped
1117 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1118 	 * on resident pages
1119 	 */
1120 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1121 	rss = get_mm_rss(p->mm);
1122 	if (!rss)
1123 		rss = nr_scan_pages;
1124 
1125 	rss = round_up(rss, nr_scan_pages);
1126 	return rss / nr_scan_pages;
1127 }
1128 
1129 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1130 #define MAX_SCAN_WINDOW 2560
1131 
1132 static unsigned int task_scan_min(struct task_struct *p)
1133 {
1134 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1135 	unsigned int scan, floor;
1136 	unsigned int windows = 1;
1137 
1138 	if (scan_size < MAX_SCAN_WINDOW)
1139 		windows = MAX_SCAN_WINDOW / scan_size;
1140 	floor = 1000 / windows;
1141 
1142 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1143 	return max_t(unsigned int, floor, scan);
1144 }
1145 
1146 static unsigned int task_scan_start(struct task_struct *p)
1147 {
1148 	unsigned long smin = task_scan_min(p);
1149 	unsigned long period = smin;
1150 	struct numa_group *ng;
1151 
1152 	/* Scale the maximum scan period with the amount of shared memory. */
1153 	rcu_read_lock();
1154 	ng = rcu_dereference(p->numa_group);
1155 	if (ng) {
1156 		unsigned long shared = group_faults_shared(ng);
1157 		unsigned long private = group_faults_priv(ng);
1158 
1159 		period *= refcount_read(&ng->refcount);
1160 		period *= shared + 1;
1161 		period /= private + shared + 1;
1162 	}
1163 	rcu_read_unlock();
1164 
1165 	return max(smin, period);
1166 }
1167 
1168 static unsigned int task_scan_max(struct task_struct *p)
1169 {
1170 	unsigned long smin = task_scan_min(p);
1171 	unsigned long smax;
1172 	struct numa_group *ng;
1173 
1174 	/* Watch for min being lower than max due to floor calculations */
1175 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1176 
1177 	/* Scale the maximum scan period with the amount of shared memory. */
1178 	ng = deref_curr_numa_group(p);
1179 	if (ng) {
1180 		unsigned long shared = group_faults_shared(ng);
1181 		unsigned long private = group_faults_priv(ng);
1182 		unsigned long period = smax;
1183 
1184 		period *= refcount_read(&ng->refcount);
1185 		period *= shared + 1;
1186 		period /= private + shared + 1;
1187 
1188 		smax = max(smax, period);
1189 	}
1190 
1191 	return max(smin, smax);
1192 }
1193 
1194 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1195 {
1196 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1197 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1198 }
1199 
1200 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1201 {
1202 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1203 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1204 }
1205 
1206 /* Shared or private faults. */
1207 #define NR_NUMA_HINT_FAULT_TYPES 2
1208 
1209 /* Memory and CPU locality */
1210 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1211 
1212 /* Averaged statistics, and temporary buffers. */
1213 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1214 
1215 pid_t task_numa_group_id(struct task_struct *p)
1216 {
1217 	struct numa_group *ng;
1218 	pid_t gid = 0;
1219 
1220 	rcu_read_lock();
1221 	ng = rcu_dereference(p->numa_group);
1222 	if (ng)
1223 		gid = ng->gid;
1224 	rcu_read_unlock();
1225 
1226 	return gid;
1227 }
1228 
1229 /*
1230  * The averaged statistics, shared & private, memory & CPU,
1231  * occupy the first half of the array. The second half of the
1232  * array is for current counters, which are averaged into the
1233  * first set by task_numa_placement.
1234  */
1235 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1236 {
1237 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1238 }
1239 
1240 static inline unsigned long task_faults(struct task_struct *p, int nid)
1241 {
1242 	if (!p->numa_faults)
1243 		return 0;
1244 
1245 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1246 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1247 }
1248 
1249 static inline unsigned long group_faults(struct task_struct *p, int nid)
1250 {
1251 	struct numa_group *ng = deref_task_numa_group(p);
1252 
1253 	if (!ng)
1254 		return 0;
1255 
1256 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1257 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1258 }
1259 
1260 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1261 {
1262 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1263 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1264 }
1265 
1266 static inline unsigned long group_faults_priv(struct numa_group *ng)
1267 {
1268 	unsigned long faults = 0;
1269 	int node;
1270 
1271 	for_each_online_node(node) {
1272 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1273 	}
1274 
1275 	return faults;
1276 }
1277 
1278 static inline unsigned long group_faults_shared(struct numa_group *ng)
1279 {
1280 	unsigned long faults = 0;
1281 	int node;
1282 
1283 	for_each_online_node(node) {
1284 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1285 	}
1286 
1287 	return faults;
1288 }
1289 
1290 /*
1291  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1292  * considered part of a numa group's pseudo-interleaving set. Migrations
1293  * between these nodes are slowed down, to allow things to settle down.
1294  */
1295 #define ACTIVE_NODE_FRACTION 3
1296 
1297 static bool numa_is_active_node(int nid, struct numa_group *ng)
1298 {
1299 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1300 }
1301 
1302 /* Handle placement on systems where not all nodes are directly connected. */
1303 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1304 					int maxdist, bool task)
1305 {
1306 	unsigned long score = 0;
1307 	int node;
1308 
1309 	/*
1310 	 * All nodes are directly connected, and the same distance
1311 	 * from each other. No need for fancy placement algorithms.
1312 	 */
1313 	if (sched_numa_topology_type == NUMA_DIRECT)
1314 		return 0;
1315 
1316 	/*
1317 	 * This code is called for each node, introducing N^2 complexity,
1318 	 * which should be ok given the number of nodes rarely exceeds 8.
1319 	 */
1320 	for_each_online_node(node) {
1321 		unsigned long faults;
1322 		int dist = node_distance(nid, node);
1323 
1324 		/*
1325 		 * The furthest away nodes in the system are not interesting
1326 		 * for placement; nid was already counted.
1327 		 */
1328 		if (dist == sched_max_numa_distance || node == nid)
1329 			continue;
1330 
1331 		/*
1332 		 * On systems with a backplane NUMA topology, compare groups
1333 		 * of nodes, and move tasks towards the group with the most
1334 		 * memory accesses. When comparing two nodes at distance
1335 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1336 		 * of each group. Skip other nodes.
1337 		 */
1338 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1339 					dist >= maxdist)
1340 			continue;
1341 
1342 		/* Add up the faults from nearby nodes. */
1343 		if (task)
1344 			faults = task_faults(p, node);
1345 		else
1346 			faults = group_faults(p, node);
1347 
1348 		/*
1349 		 * On systems with a glueless mesh NUMA topology, there are
1350 		 * no fixed "groups of nodes". Instead, nodes that are not
1351 		 * directly connected bounce traffic through intermediate
1352 		 * nodes; a numa_group can occupy any set of nodes.
1353 		 * The further away a node is, the less the faults count.
1354 		 * This seems to result in good task placement.
1355 		 */
1356 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1357 			faults *= (sched_max_numa_distance - dist);
1358 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1359 		}
1360 
1361 		score += faults;
1362 	}
1363 
1364 	return score;
1365 }
1366 
1367 /*
1368  * These return the fraction of accesses done by a particular task, or
1369  * task group, on a particular numa node.  The group weight is given a
1370  * larger multiplier, in order to group tasks together that are almost
1371  * evenly spread out between numa nodes.
1372  */
1373 static inline unsigned long task_weight(struct task_struct *p, int nid,
1374 					int dist)
1375 {
1376 	unsigned long faults, total_faults;
1377 
1378 	if (!p->numa_faults)
1379 		return 0;
1380 
1381 	total_faults = p->total_numa_faults;
1382 
1383 	if (!total_faults)
1384 		return 0;
1385 
1386 	faults = task_faults(p, nid);
1387 	faults += score_nearby_nodes(p, nid, dist, true);
1388 
1389 	return 1000 * faults / total_faults;
1390 }
1391 
1392 static inline unsigned long group_weight(struct task_struct *p, int nid,
1393 					 int dist)
1394 {
1395 	struct numa_group *ng = deref_task_numa_group(p);
1396 	unsigned long faults, total_faults;
1397 
1398 	if (!ng)
1399 		return 0;
1400 
1401 	total_faults = ng->total_faults;
1402 
1403 	if (!total_faults)
1404 		return 0;
1405 
1406 	faults = group_faults(p, nid);
1407 	faults += score_nearby_nodes(p, nid, dist, false);
1408 
1409 	return 1000 * faults / total_faults;
1410 }
1411 
1412 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1413 				int src_nid, int dst_cpu)
1414 {
1415 	struct numa_group *ng = deref_curr_numa_group(p);
1416 	int dst_nid = cpu_to_node(dst_cpu);
1417 	int last_cpupid, this_cpupid;
1418 
1419 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1420 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1421 
1422 	/*
1423 	 * Allow first faults or private faults to migrate immediately early in
1424 	 * the lifetime of a task. The magic number 4 is based on waiting for
1425 	 * two full passes of the "multi-stage node selection" test that is
1426 	 * executed below.
1427 	 */
1428 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1429 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1430 		return true;
1431 
1432 	/*
1433 	 * Multi-stage node selection is used in conjunction with a periodic
1434 	 * migration fault to build a temporal task<->page relation. By using
1435 	 * a two-stage filter we remove short/unlikely relations.
1436 	 *
1437 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1438 	 * a task's usage of a particular page (n_p) per total usage of this
1439 	 * page (n_t) (in a given time-span) to a probability.
1440 	 *
1441 	 * Our periodic faults will sample this probability and getting the
1442 	 * same result twice in a row, given these samples are fully
1443 	 * independent, is then given by P(n)^2, provided our sample period
1444 	 * is sufficiently short compared to the usage pattern.
1445 	 *
1446 	 * This quadric squishes small probabilities, making it less likely we
1447 	 * act on an unlikely task<->page relation.
1448 	 */
1449 	if (!cpupid_pid_unset(last_cpupid) &&
1450 				cpupid_to_nid(last_cpupid) != dst_nid)
1451 		return false;
1452 
1453 	/* Always allow migrate on private faults */
1454 	if (cpupid_match_pid(p, last_cpupid))
1455 		return true;
1456 
1457 	/* A shared fault, but p->numa_group has not been set up yet. */
1458 	if (!ng)
1459 		return true;
1460 
1461 	/*
1462 	 * Destination node is much more heavily used than the source
1463 	 * node? Allow migration.
1464 	 */
1465 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1466 					ACTIVE_NODE_FRACTION)
1467 		return true;
1468 
1469 	/*
1470 	 * Distribute memory according to CPU & memory use on each node,
1471 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1472 	 *
1473 	 * faults_cpu(dst)   3   faults_cpu(src)
1474 	 * --------------- * - > ---------------
1475 	 * faults_mem(dst)   4   faults_mem(src)
1476 	 */
1477 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1478 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1479 }
1480 
1481 /*
1482  * 'numa_type' describes the node at the moment of load balancing.
1483  */
1484 enum numa_type {
1485 	/* The node has spare capacity that can be used to run more tasks.  */
1486 	node_has_spare = 0,
1487 	/*
1488 	 * The node is fully used and the tasks don't compete for more CPU
1489 	 * cycles. Nevertheless, some tasks might wait before running.
1490 	 */
1491 	node_fully_busy,
1492 	/*
1493 	 * The node is overloaded and can't provide expected CPU cycles to all
1494 	 * tasks.
1495 	 */
1496 	node_overloaded
1497 };
1498 
1499 /* Cached statistics for all CPUs within a node */
1500 struct numa_stats {
1501 	unsigned long load;
1502 	unsigned long runnable;
1503 	unsigned long util;
1504 	/* Total compute capacity of CPUs on a node */
1505 	unsigned long compute_capacity;
1506 	unsigned int nr_running;
1507 	unsigned int weight;
1508 	enum numa_type node_type;
1509 	int idle_cpu;
1510 };
1511 
1512 static inline bool is_core_idle(int cpu)
1513 {
1514 #ifdef CONFIG_SCHED_SMT
1515 	int sibling;
1516 
1517 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1518 		if (cpu == sibling)
1519 			continue;
1520 
1521 		if (!idle_cpu(sibling))
1522 			return false;
1523 	}
1524 #endif
1525 
1526 	return true;
1527 }
1528 
1529 struct task_numa_env {
1530 	struct task_struct *p;
1531 
1532 	int src_cpu, src_nid;
1533 	int dst_cpu, dst_nid;
1534 
1535 	struct numa_stats src_stats, dst_stats;
1536 
1537 	int imbalance_pct;
1538 	int dist;
1539 
1540 	struct task_struct *best_task;
1541 	long best_imp;
1542 	int best_cpu;
1543 };
1544 
1545 static unsigned long cpu_load(struct rq *rq);
1546 static unsigned long cpu_runnable(struct rq *rq);
1547 static unsigned long cpu_util(int cpu);
1548 static inline long adjust_numa_imbalance(int imbalance,
1549 					int dst_running, int dst_weight);
1550 
1551 static inline enum
1552 numa_type numa_classify(unsigned int imbalance_pct,
1553 			 struct numa_stats *ns)
1554 {
1555 	if ((ns->nr_running > ns->weight) &&
1556 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1557 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1558 		return node_overloaded;
1559 
1560 	if ((ns->nr_running < ns->weight) ||
1561 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1562 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1563 		return node_has_spare;
1564 
1565 	return node_fully_busy;
1566 }
1567 
1568 #ifdef CONFIG_SCHED_SMT
1569 /* Forward declarations of select_idle_sibling helpers */
1570 static inline bool test_idle_cores(int cpu, bool def);
1571 static inline int numa_idle_core(int idle_core, int cpu)
1572 {
1573 	if (!static_branch_likely(&sched_smt_present) ||
1574 	    idle_core >= 0 || !test_idle_cores(cpu, false))
1575 		return idle_core;
1576 
1577 	/*
1578 	 * Prefer cores instead of packing HT siblings
1579 	 * and triggering future load balancing.
1580 	 */
1581 	if (is_core_idle(cpu))
1582 		idle_core = cpu;
1583 
1584 	return idle_core;
1585 }
1586 #else
1587 static inline int numa_idle_core(int idle_core, int cpu)
1588 {
1589 	return idle_core;
1590 }
1591 #endif
1592 
1593 /*
1594  * Gather all necessary information to make NUMA balancing placement
1595  * decisions that are compatible with standard load balancer. This
1596  * borrows code and logic from update_sg_lb_stats but sharing a
1597  * common implementation is impractical.
1598  */
1599 static void update_numa_stats(struct task_numa_env *env,
1600 			      struct numa_stats *ns, int nid,
1601 			      bool find_idle)
1602 {
1603 	int cpu, idle_core = -1;
1604 
1605 	memset(ns, 0, sizeof(*ns));
1606 	ns->idle_cpu = -1;
1607 
1608 	rcu_read_lock();
1609 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1610 		struct rq *rq = cpu_rq(cpu);
1611 
1612 		ns->load += cpu_load(rq);
1613 		ns->runnable += cpu_runnable(rq);
1614 		ns->util += cpu_util(cpu);
1615 		ns->nr_running += rq->cfs.h_nr_running;
1616 		ns->compute_capacity += capacity_of(cpu);
1617 
1618 		if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1619 			if (READ_ONCE(rq->numa_migrate_on) ||
1620 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1621 				continue;
1622 
1623 			if (ns->idle_cpu == -1)
1624 				ns->idle_cpu = cpu;
1625 
1626 			idle_core = numa_idle_core(idle_core, cpu);
1627 		}
1628 	}
1629 	rcu_read_unlock();
1630 
1631 	ns->weight = cpumask_weight(cpumask_of_node(nid));
1632 
1633 	ns->node_type = numa_classify(env->imbalance_pct, ns);
1634 
1635 	if (idle_core >= 0)
1636 		ns->idle_cpu = idle_core;
1637 }
1638 
1639 static void task_numa_assign(struct task_numa_env *env,
1640 			     struct task_struct *p, long imp)
1641 {
1642 	struct rq *rq = cpu_rq(env->dst_cpu);
1643 
1644 	/* Check if run-queue part of active NUMA balance. */
1645 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1646 		int cpu;
1647 		int start = env->dst_cpu;
1648 
1649 		/* Find alternative idle CPU. */
1650 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1651 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1652 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1653 				continue;
1654 			}
1655 
1656 			env->dst_cpu = cpu;
1657 			rq = cpu_rq(env->dst_cpu);
1658 			if (!xchg(&rq->numa_migrate_on, 1))
1659 				goto assign;
1660 		}
1661 
1662 		/* Failed to find an alternative idle CPU */
1663 		return;
1664 	}
1665 
1666 assign:
1667 	/*
1668 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1669 	 * found a better CPU to move/swap.
1670 	 */
1671 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1672 		rq = cpu_rq(env->best_cpu);
1673 		WRITE_ONCE(rq->numa_migrate_on, 0);
1674 	}
1675 
1676 	if (env->best_task)
1677 		put_task_struct(env->best_task);
1678 	if (p)
1679 		get_task_struct(p);
1680 
1681 	env->best_task = p;
1682 	env->best_imp = imp;
1683 	env->best_cpu = env->dst_cpu;
1684 }
1685 
1686 static bool load_too_imbalanced(long src_load, long dst_load,
1687 				struct task_numa_env *env)
1688 {
1689 	long imb, old_imb;
1690 	long orig_src_load, orig_dst_load;
1691 	long src_capacity, dst_capacity;
1692 
1693 	/*
1694 	 * The load is corrected for the CPU capacity available on each node.
1695 	 *
1696 	 * src_load        dst_load
1697 	 * ------------ vs ---------
1698 	 * src_capacity    dst_capacity
1699 	 */
1700 	src_capacity = env->src_stats.compute_capacity;
1701 	dst_capacity = env->dst_stats.compute_capacity;
1702 
1703 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1704 
1705 	orig_src_load = env->src_stats.load;
1706 	orig_dst_load = env->dst_stats.load;
1707 
1708 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1709 
1710 	/* Would this change make things worse? */
1711 	return (imb > old_imb);
1712 }
1713 
1714 /*
1715  * Maximum NUMA importance can be 1998 (2*999);
1716  * SMALLIMP @ 30 would be close to 1998/64.
1717  * Used to deter task migration.
1718  */
1719 #define SMALLIMP	30
1720 
1721 /*
1722  * This checks if the overall compute and NUMA accesses of the system would
1723  * be improved if the source tasks was migrated to the target dst_cpu taking
1724  * into account that it might be best if task running on the dst_cpu should
1725  * be exchanged with the source task
1726  */
1727 static bool task_numa_compare(struct task_numa_env *env,
1728 			      long taskimp, long groupimp, bool maymove)
1729 {
1730 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1731 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1732 	long imp = p_ng ? groupimp : taskimp;
1733 	struct task_struct *cur;
1734 	long src_load, dst_load;
1735 	int dist = env->dist;
1736 	long moveimp = imp;
1737 	long load;
1738 	bool stopsearch = false;
1739 
1740 	if (READ_ONCE(dst_rq->numa_migrate_on))
1741 		return false;
1742 
1743 	rcu_read_lock();
1744 	cur = rcu_dereference(dst_rq->curr);
1745 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1746 		cur = NULL;
1747 
1748 	/*
1749 	 * Because we have preemption enabled we can get migrated around and
1750 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1751 	 */
1752 	if (cur == env->p) {
1753 		stopsearch = true;
1754 		goto unlock;
1755 	}
1756 
1757 	if (!cur) {
1758 		if (maymove && moveimp >= env->best_imp)
1759 			goto assign;
1760 		else
1761 			goto unlock;
1762 	}
1763 
1764 	/* Skip this swap candidate if cannot move to the source cpu. */
1765 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1766 		goto unlock;
1767 
1768 	/*
1769 	 * Skip this swap candidate if it is not moving to its preferred
1770 	 * node and the best task is.
1771 	 */
1772 	if (env->best_task &&
1773 	    env->best_task->numa_preferred_nid == env->src_nid &&
1774 	    cur->numa_preferred_nid != env->src_nid) {
1775 		goto unlock;
1776 	}
1777 
1778 	/*
1779 	 * "imp" is the fault differential for the source task between the
1780 	 * source and destination node. Calculate the total differential for
1781 	 * the source task and potential destination task. The more negative
1782 	 * the value is, the more remote accesses that would be expected to
1783 	 * be incurred if the tasks were swapped.
1784 	 *
1785 	 * If dst and source tasks are in the same NUMA group, or not
1786 	 * in any group then look only at task weights.
1787 	 */
1788 	cur_ng = rcu_dereference(cur->numa_group);
1789 	if (cur_ng == p_ng) {
1790 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1791 		      task_weight(cur, env->dst_nid, dist);
1792 		/*
1793 		 * Add some hysteresis to prevent swapping the
1794 		 * tasks within a group over tiny differences.
1795 		 */
1796 		if (cur_ng)
1797 			imp -= imp / 16;
1798 	} else {
1799 		/*
1800 		 * Compare the group weights. If a task is all by itself
1801 		 * (not part of a group), use the task weight instead.
1802 		 */
1803 		if (cur_ng && p_ng)
1804 			imp += group_weight(cur, env->src_nid, dist) -
1805 			       group_weight(cur, env->dst_nid, dist);
1806 		else
1807 			imp += task_weight(cur, env->src_nid, dist) -
1808 			       task_weight(cur, env->dst_nid, dist);
1809 	}
1810 
1811 	/* Discourage picking a task already on its preferred node */
1812 	if (cur->numa_preferred_nid == env->dst_nid)
1813 		imp -= imp / 16;
1814 
1815 	/*
1816 	 * Encourage picking a task that moves to its preferred node.
1817 	 * This potentially makes imp larger than it's maximum of
1818 	 * 1998 (see SMALLIMP and task_weight for why) but in this
1819 	 * case, it does not matter.
1820 	 */
1821 	if (cur->numa_preferred_nid == env->src_nid)
1822 		imp += imp / 8;
1823 
1824 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1825 		imp = moveimp;
1826 		cur = NULL;
1827 		goto assign;
1828 	}
1829 
1830 	/*
1831 	 * Prefer swapping with a task moving to its preferred node over a
1832 	 * task that is not.
1833 	 */
1834 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1835 	    env->best_task->numa_preferred_nid != env->src_nid) {
1836 		goto assign;
1837 	}
1838 
1839 	/*
1840 	 * If the NUMA importance is less than SMALLIMP,
1841 	 * task migration might only result in ping pong
1842 	 * of tasks and also hurt performance due to cache
1843 	 * misses.
1844 	 */
1845 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1846 		goto unlock;
1847 
1848 	/*
1849 	 * In the overloaded case, try and keep the load balanced.
1850 	 */
1851 	load = task_h_load(env->p) - task_h_load(cur);
1852 	if (!load)
1853 		goto assign;
1854 
1855 	dst_load = env->dst_stats.load + load;
1856 	src_load = env->src_stats.load - load;
1857 
1858 	if (load_too_imbalanced(src_load, dst_load, env))
1859 		goto unlock;
1860 
1861 assign:
1862 	/* Evaluate an idle CPU for a task numa move. */
1863 	if (!cur) {
1864 		int cpu = env->dst_stats.idle_cpu;
1865 
1866 		/* Nothing cached so current CPU went idle since the search. */
1867 		if (cpu < 0)
1868 			cpu = env->dst_cpu;
1869 
1870 		/*
1871 		 * If the CPU is no longer truly idle and the previous best CPU
1872 		 * is, keep using it.
1873 		 */
1874 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1875 		    idle_cpu(env->best_cpu)) {
1876 			cpu = env->best_cpu;
1877 		}
1878 
1879 		env->dst_cpu = cpu;
1880 	}
1881 
1882 	task_numa_assign(env, cur, imp);
1883 
1884 	/*
1885 	 * If a move to idle is allowed because there is capacity or load
1886 	 * balance improves then stop the search. While a better swap
1887 	 * candidate may exist, a search is not free.
1888 	 */
1889 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1890 		stopsearch = true;
1891 
1892 	/*
1893 	 * If a swap candidate must be identified and the current best task
1894 	 * moves its preferred node then stop the search.
1895 	 */
1896 	if (!maymove && env->best_task &&
1897 	    env->best_task->numa_preferred_nid == env->src_nid) {
1898 		stopsearch = true;
1899 	}
1900 unlock:
1901 	rcu_read_unlock();
1902 
1903 	return stopsearch;
1904 }
1905 
1906 static void task_numa_find_cpu(struct task_numa_env *env,
1907 				long taskimp, long groupimp)
1908 {
1909 	bool maymove = false;
1910 	int cpu;
1911 
1912 	/*
1913 	 * If dst node has spare capacity, then check if there is an
1914 	 * imbalance that would be overruled by the load balancer.
1915 	 */
1916 	if (env->dst_stats.node_type == node_has_spare) {
1917 		unsigned int imbalance;
1918 		int src_running, dst_running;
1919 
1920 		/*
1921 		 * Would movement cause an imbalance? Note that if src has
1922 		 * more running tasks that the imbalance is ignored as the
1923 		 * move improves the imbalance from the perspective of the
1924 		 * CPU load balancer.
1925 		 * */
1926 		src_running = env->src_stats.nr_running - 1;
1927 		dst_running = env->dst_stats.nr_running + 1;
1928 		imbalance = max(0, dst_running - src_running);
1929 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
1930 							env->dst_stats.weight);
1931 
1932 		/* Use idle CPU if there is no imbalance */
1933 		if (!imbalance) {
1934 			maymove = true;
1935 			if (env->dst_stats.idle_cpu >= 0) {
1936 				env->dst_cpu = env->dst_stats.idle_cpu;
1937 				task_numa_assign(env, NULL, 0);
1938 				return;
1939 			}
1940 		}
1941 	} else {
1942 		long src_load, dst_load, load;
1943 		/*
1944 		 * If the improvement from just moving env->p direction is better
1945 		 * than swapping tasks around, check if a move is possible.
1946 		 */
1947 		load = task_h_load(env->p);
1948 		dst_load = env->dst_stats.load + load;
1949 		src_load = env->src_stats.load - load;
1950 		maymove = !load_too_imbalanced(src_load, dst_load, env);
1951 	}
1952 
1953 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1954 		/* Skip this CPU if the source task cannot migrate */
1955 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1956 			continue;
1957 
1958 		env->dst_cpu = cpu;
1959 		if (task_numa_compare(env, taskimp, groupimp, maymove))
1960 			break;
1961 	}
1962 }
1963 
1964 static int task_numa_migrate(struct task_struct *p)
1965 {
1966 	struct task_numa_env env = {
1967 		.p = p,
1968 
1969 		.src_cpu = task_cpu(p),
1970 		.src_nid = task_node(p),
1971 
1972 		.imbalance_pct = 112,
1973 
1974 		.best_task = NULL,
1975 		.best_imp = 0,
1976 		.best_cpu = -1,
1977 	};
1978 	unsigned long taskweight, groupweight;
1979 	struct sched_domain *sd;
1980 	long taskimp, groupimp;
1981 	struct numa_group *ng;
1982 	struct rq *best_rq;
1983 	int nid, ret, dist;
1984 
1985 	/*
1986 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1987 	 * imbalance and would be the first to start moving tasks about.
1988 	 *
1989 	 * And we want to avoid any moving of tasks about, as that would create
1990 	 * random movement of tasks -- counter the numa conditions we're trying
1991 	 * to satisfy here.
1992 	 */
1993 	rcu_read_lock();
1994 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1995 	if (sd)
1996 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1997 	rcu_read_unlock();
1998 
1999 	/*
2000 	 * Cpusets can break the scheduler domain tree into smaller
2001 	 * balance domains, some of which do not cross NUMA boundaries.
2002 	 * Tasks that are "trapped" in such domains cannot be migrated
2003 	 * elsewhere, so there is no point in (re)trying.
2004 	 */
2005 	if (unlikely(!sd)) {
2006 		sched_setnuma(p, task_node(p));
2007 		return -EINVAL;
2008 	}
2009 
2010 	env.dst_nid = p->numa_preferred_nid;
2011 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2012 	taskweight = task_weight(p, env.src_nid, dist);
2013 	groupweight = group_weight(p, env.src_nid, dist);
2014 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2015 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2016 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2017 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2018 
2019 	/* Try to find a spot on the preferred nid. */
2020 	task_numa_find_cpu(&env, taskimp, groupimp);
2021 
2022 	/*
2023 	 * Look at other nodes in these cases:
2024 	 * - there is no space available on the preferred_nid
2025 	 * - the task is part of a numa_group that is interleaved across
2026 	 *   multiple NUMA nodes; in order to better consolidate the group,
2027 	 *   we need to check other locations.
2028 	 */
2029 	ng = deref_curr_numa_group(p);
2030 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2031 		for_each_online_node(nid) {
2032 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2033 				continue;
2034 
2035 			dist = node_distance(env.src_nid, env.dst_nid);
2036 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2037 						dist != env.dist) {
2038 				taskweight = task_weight(p, env.src_nid, dist);
2039 				groupweight = group_weight(p, env.src_nid, dist);
2040 			}
2041 
2042 			/* Only consider nodes where both task and groups benefit */
2043 			taskimp = task_weight(p, nid, dist) - taskweight;
2044 			groupimp = group_weight(p, nid, dist) - groupweight;
2045 			if (taskimp < 0 && groupimp < 0)
2046 				continue;
2047 
2048 			env.dist = dist;
2049 			env.dst_nid = nid;
2050 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2051 			task_numa_find_cpu(&env, taskimp, groupimp);
2052 		}
2053 	}
2054 
2055 	/*
2056 	 * If the task is part of a workload that spans multiple NUMA nodes,
2057 	 * and is migrating into one of the workload's active nodes, remember
2058 	 * this node as the task's preferred numa node, so the workload can
2059 	 * settle down.
2060 	 * A task that migrated to a second choice node will be better off
2061 	 * trying for a better one later. Do not set the preferred node here.
2062 	 */
2063 	if (ng) {
2064 		if (env.best_cpu == -1)
2065 			nid = env.src_nid;
2066 		else
2067 			nid = cpu_to_node(env.best_cpu);
2068 
2069 		if (nid != p->numa_preferred_nid)
2070 			sched_setnuma(p, nid);
2071 	}
2072 
2073 	/* No better CPU than the current one was found. */
2074 	if (env.best_cpu == -1) {
2075 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2076 		return -EAGAIN;
2077 	}
2078 
2079 	best_rq = cpu_rq(env.best_cpu);
2080 	if (env.best_task == NULL) {
2081 		ret = migrate_task_to(p, env.best_cpu);
2082 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2083 		if (ret != 0)
2084 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2085 		return ret;
2086 	}
2087 
2088 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2089 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2090 
2091 	if (ret != 0)
2092 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2093 	put_task_struct(env.best_task);
2094 	return ret;
2095 }
2096 
2097 /* Attempt to migrate a task to a CPU on the preferred node. */
2098 static void numa_migrate_preferred(struct task_struct *p)
2099 {
2100 	unsigned long interval = HZ;
2101 
2102 	/* This task has no NUMA fault statistics yet */
2103 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2104 		return;
2105 
2106 	/* Periodically retry migrating the task to the preferred node */
2107 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2108 	p->numa_migrate_retry = jiffies + interval;
2109 
2110 	/* Success if task is already running on preferred CPU */
2111 	if (task_node(p) == p->numa_preferred_nid)
2112 		return;
2113 
2114 	/* Otherwise, try migrate to a CPU on the preferred node */
2115 	task_numa_migrate(p);
2116 }
2117 
2118 /*
2119  * Find out how many nodes on the workload is actively running on. Do this by
2120  * tracking the nodes from which NUMA hinting faults are triggered. This can
2121  * be different from the set of nodes where the workload's memory is currently
2122  * located.
2123  */
2124 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2125 {
2126 	unsigned long faults, max_faults = 0;
2127 	int nid, active_nodes = 0;
2128 
2129 	for_each_online_node(nid) {
2130 		faults = group_faults_cpu(numa_group, nid);
2131 		if (faults > max_faults)
2132 			max_faults = faults;
2133 	}
2134 
2135 	for_each_online_node(nid) {
2136 		faults = group_faults_cpu(numa_group, nid);
2137 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2138 			active_nodes++;
2139 	}
2140 
2141 	numa_group->max_faults_cpu = max_faults;
2142 	numa_group->active_nodes = active_nodes;
2143 }
2144 
2145 /*
2146  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2147  * increments. The more local the fault statistics are, the higher the scan
2148  * period will be for the next scan window. If local/(local+remote) ratio is
2149  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2150  * the scan period will decrease. Aim for 70% local accesses.
2151  */
2152 #define NUMA_PERIOD_SLOTS 10
2153 #define NUMA_PERIOD_THRESHOLD 7
2154 
2155 /*
2156  * Increase the scan period (slow down scanning) if the majority of
2157  * our memory is already on our local node, or if the majority of
2158  * the page accesses are shared with other processes.
2159  * Otherwise, decrease the scan period.
2160  */
2161 static void update_task_scan_period(struct task_struct *p,
2162 			unsigned long shared, unsigned long private)
2163 {
2164 	unsigned int period_slot;
2165 	int lr_ratio, ps_ratio;
2166 	int diff;
2167 
2168 	unsigned long remote = p->numa_faults_locality[0];
2169 	unsigned long local = p->numa_faults_locality[1];
2170 
2171 	/*
2172 	 * If there were no record hinting faults then either the task is
2173 	 * completely idle or all activity is areas that are not of interest
2174 	 * to automatic numa balancing. Related to that, if there were failed
2175 	 * migration then it implies we are migrating too quickly or the local
2176 	 * node is overloaded. In either case, scan slower
2177 	 */
2178 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2179 		p->numa_scan_period = min(p->numa_scan_period_max,
2180 			p->numa_scan_period << 1);
2181 
2182 		p->mm->numa_next_scan = jiffies +
2183 			msecs_to_jiffies(p->numa_scan_period);
2184 
2185 		return;
2186 	}
2187 
2188 	/*
2189 	 * Prepare to scale scan period relative to the current period.
2190 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2191 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2192 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2193 	 */
2194 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2195 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2196 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2197 
2198 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2199 		/*
2200 		 * Most memory accesses are local. There is no need to
2201 		 * do fast NUMA scanning, since memory is already local.
2202 		 */
2203 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2204 		if (!slot)
2205 			slot = 1;
2206 		diff = slot * period_slot;
2207 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2208 		/*
2209 		 * Most memory accesses are shared with other tasks.
2210 		 * There is no point in continuing fast NUMA scanning,
2211 		 * since other tasks may just move the memory elsewhere.
2212 		 */
2213 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2214 		if (!slot)
2215 			slot = 1;
2216 		diff = slot * period_slot;
2217 	} else {
2218 		/*
2219 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2220 		 * yet they are not on the local NUMA node. Speed up
2221 		 * NUMA scanning to get the memory moved over.
2222 		 */
2223 		int ratio = max(lr_ratio, ps_ratio);
2224 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2225 	}
2226 
2227 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2228 			task_scan_min(p), task_scan_max(p));
2229 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2230 }
2231 
2232 /*
2233  * Get the fraction of time the task has been running since the last
2234  * NUMA placement cycle. The scheduler keeps similar statistics, but
2235  * decays those on a 32ms period, which is orders of magnitude off
2236  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2237  * stats only if the task is so new there are no NUMA statistics yet.
2238  */
2239 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2240 {
2241 	u64 runtime, delta, now;
2242 	/* Use the start of this time slice to avoid calculations. */
2243 	now = p->se.exec_start;
2244 	runtime = p->se.sum_exec_runtime;
2245 
2246 	if (p->last_task_numa_placement) {
2247 		delta = runtime - p->last_sum_exec_runtime;
2248 		*period = now - p->last_task_numa_placement;
2249 
2250 		/* Avoid time going backwards, prevent potential divide error: */
2251 		if (unlikely((s64)*period < 0))
2252 			*period = 0;
2253 	} else {
2254 		delta = p->se.avg.load_sum;
2255 		*period = LOAD_AVG_MAX;
2256 	}
2257 
2258 	p->last_sum_exec_runtime = runtime;
2259 	p->last_task_numa_placement = now;
2260 
2261 	return delta;
2262 }
2263 
2264 /*
2265  * Determine the preferred nid for a task in a numa_group. This needs to
2266  * be done in a way that produces consistent results with group_weight,
2267  * otherwise workloads might not converge.
2268  */
2269 static int preferred_group_nid(struct task_struct *p, int nid)
2270 {
2271 	nodemask_t nodes;
2272 	int dist;
2273 
2274 	/* Direct connections between all NUMA nodes. */
2275 	if (sched_numa_topology_type == NUMA_DIRECT)
2276 		return nid;
2277 
2278 	/*
2279 	 * On a system with glueless mesh NUMA topology, group_weight
2280 	 * scores nodes according to the number of NUMA hinting faults on
2281 	 * both the node itself, and on nearby nodes.
2282 	 */
2283 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2284 		unsigned long score, max_score = 0;
2285 		int node, max_node = nid;
2286 
2287 		dist = sched_max_numa_distance;
2288 
2289 		for_each_online_node(node) {
2290 			score = group_weight(p, node, dist);
2291 			if (score > max_score) {
2292 				max_score = score;
2293 				max_node = node;
2294 			}
2295 		}
2296 		return max_node;
2297 	}
2298 
2299 	/*
2300 	 * Finding the preferred nid in a system with NUMA backplane
2301 	 * interconnect topology is more involved. The goal is to locate
2302 	 * tasks from numa_groups near each other in the system, and
2303 	 * untangle workloads from different sides of the system. This requires
2304 	 * searching down the hierarchy of node groups, recursively searching
2305 	 * inside the highest scoring group of nodes. The nodemask tricks
2306 	 * keep the complexity of the search down.
2307 	 */
2308 	nodes = node_online_map;
2309 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2310 		unsigned long max_faults = 0;
2311 		nodemask_t max_group = NODE_MASK_NONE;
2312 		int a, b;
2313 
2314 		/* Are there nodes at this distance from each other? */
2315 		if (!find_numa_distance(dist))
2316 			continue;
2317 
2318 		for_each_node_mask(a, nodes) {
2319 			unsigned long faults = 0;
2320 			nodemask_t this_group;
2321 			nodes_clear(this_group);
2322 
2323 			/* Sum group's NUMA faults; includes a==b case. */
2324 			for_each_node_mask(b, nodes) {
2325 				if (node_distance(a, b) < dist) {
2326 					faults += group_faults(p, b);
2327 					node_set(b, this_group);
2328 					node_clear(b, nodes);
2329 				}
2330 			}
2331 
2332 			/* Remember the top group. */
2333 			if (faults > max_faults) {
2334 				max_faults = faults;
2335 				max_group = this_group;
2336 				/*
2337 				 * subtle: at the smallest distance there is
2338 				 * just one node left in each "group", the
2339 				 * winner is the preferred nid.
2340 				 */
2341 				nid = a;
2342 			}
2343 		}
2344 		/* Next round, evaluate the nodes within max_group. */
2345 		if (!max_faults)
2346 			break;
2347 		nodes = max_group;
2348 	}
2349 	return nid;
2350 }
2351 
2352 static void task_numa_placement(struct task_struct *p)
2353 {
2354 	int seq, nid, max_nid = NUMA_NO_NODE;
2355 	unsigned long max_faults = 0;
2356 	unsigned long fault_types[2] = { 0, 0 };
2357 	unsigned long total_faults;
2358 	u64 runtime, period;
2359 	spinlock_t *group_lock = NULL;
2360 	struct numa_group *ng;
2361 
2362 	/*
2363 	 * The p->mm->numa_scan_seq field gets updated without
2364 	 * exclusive access. Use READ_ONCE() here to ensure
2365 	 * that the field is read in a single access:
2366 	 */
2367 	seq = READ_ONCE(p->mm->numa_scan_seq);
2368 	if (p->numa_scan_seq == seq)
2369 		return;
2370 	p->numa_scan_seq = seq;
2371 	p->numa_scan_period_max = task_scan_max(p);
2372 
2373 	total_faults = p->numa_faults_locality[0] +
2374 		       p->numa_faults_locality[1];
2375 	runtime = numa_get_avg_runtime(p, &period);
2376 
2377 	/* If the task is part of a group prevent parallel updates to group stats */
2378 	ng = deref_curr_numa_group(p);
2379 	if (ng) {
2380 		group_lock = &ng->lock;
2381 		spin_lock_irq(group_lock);
2382 	}
2383 
2384 	/* Find the node with the highest number of faults */
2385 	for_each_online_node(nid) {
2386 		/* Keep track of the offsets in numa_faults array */
2387 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2388 		unsigned long faults = 0, group_faults = 0;
2389 		int priv;
2390 
2391 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2392 			long diff, f_diff, f_weight;
2393 
2394 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2395 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2396 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2397 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2398 
2399 			/* Decay existing window, copy faults since last scan */
2400 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2401 			fault_types[priv] += p->numa_faults[membuf_idx];
2402 			p->numa_faults[membuf_idx] = 0;
2403 
2404 			/*
2405 			 * Normalize the faults_from, so all tasks in a group
2406 			 * count according to CPU use, instead of by the raw
2407 			 * number of faults. Tasks with little runtime have
2408 			 * little over-all impact on throughput, and thus their
2409 			 * faults are less important.
2410 			 */
2411 			f_weight = div64_u64(runtime << 16, period + 1);
2412 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2413 				   (total_faults + 1);
2414 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2415 			p->numa_faults[cpubuf_idx] = 0;
2416 
2417 			p->numa_faults[mem_idx] += diff;
2418 			p->numa_faults[cpu_idx] += f_diff;
2419 			faults += p->numa_faults[mem_idx];
2420 			p->total_numa_faults += diff;
2421 			if (ng) {
2422 				/*
2423 				 * safe because we can only change our own group
2424 				 *
2425 				 * mem_idx represents the offset for a given
2426 				 * nid and priv in a specific region because it
2427 				 * is at the beginning of the numa_faults array.
2428 				 */
2429 				ng->faults[mem_idx] += diff;
2430 				ng->faults_cpu[mem_idx] += f_diff;
2431 				ng->total_faults += diff;
2432 				group_faults += ng->faults[mem_idx];
2433 			}
2434 		}
2435 
2436 		if (!ng) {
2437 			if (faults > max_faults) {
2438 				max_faults = faults;
2439 				max_nid = nid;
2440 			}
2441 		} else if (group_faults > max_faults) {
2442 			max_faults = group_faults;
2443 			max_nid = nid;
2444 		}
2445 	}
2446 
2447 	if (ng) {
2448 		numa_group_count_active_nodes(ng);
2449 		spin_unlock_irq(group_lock);
2450 		max_nid = preferred_group_nid(p, max_nid);
2451 	}
2452 
2453 	if (max_faults) {
2454 		/* Set the new preferred node */
2455 		if (max_nid != p->numa_preferred_nid)
2456 			sched_setnuma(p, max_nid);
2457 	}
2458 
2459 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2460 }
2461 
2462 static inline int get_numa_group(struct numa_group *grp)
2463 {
2464 	return refcount_inc_not_zero(&grp->refcount);
2465 }
2466 
2467 static inline void put_numa_group(struct numa_group *grp)
2468 {
2469 	if (refcount_dec_and_test(&grp->refcount))
2470 		kfree_rcu(grp, rcu);
2471 }
2472 
2473 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2474 			int *priv)
2475 {
2476 	struct numa_group *grp, *my_grp;
2477 	struct task_struct *tsk;
2478 	bool join = false;
2479 	int cpu = cpupid_to_cpu(cpupid);
2480 	int i;
2481 
2482 	if (unlikely(!deref_curr_numa_group(p))) {
2483 		unsigned int size = sizeof(struct numa_group) +
2484 				    4*nr_node_ids*sizeof(unsigned long);
2485 
2486 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2487 		if (!grp)
2488 			return;
2489 
2490 		refcount_set(&grp->refcount, 1);
2491 		grp->active_nodes = 1;
2492 		grp->max_faults_cpu = 0;
2493 		spin_lock_init(&grp->lock);
2494 		grp->gid = p->pid;
2495 		/* Second half of the array tracks nids where faults happen */
2496 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2497 						nr_node_ids;
2498 
2499 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2500 			grp->faults[i] = p->numa_faults[i];
2501 
2502 		grp->total_faults = p->total_numa_faults;
2503 
2504 		grp->nr_tasks++;
2505 		rcu_assign_pointer(p->numa_group, grp);
2506 	}
2507 
2508 	rcu_read_lock();
2509 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2510 
2511 	if (!cpupid_match_pid(tsk, cpupid))
2512 		goto no_join;
2513 
2514 	grp = rcu_dereference(tsk->numa_group);
2515 	if (!grp)
2516 		goto no_join;
2517 
2518 	my_grp = deref_curr_numa_group(p);
2519 	if (grp == my_grp)
2520 		goto no_join;
2521 
2522 	/*
2523 	 * Only join the other group if its bigger; if we're the bigger group,
2524 	 * the other task will join us.
2525 	 */
2526 	if (my_grp->nr_tasks > grp->nr_tasks)
2527 		goto no_join;
2528 
2529 	/*
2530 	 * Tie-break on the grp address.
2531 	 */
2532 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2533 		goto no_join;
2534 
2535 	/* Always join threads in the same process. */
2536 	if (tsk->mm == current->mm)
2537 		join = true;
2538 
2539 	/* Simple filter to avoid false positives due to PID collisions */
2540 	if (flags & TNF_SHARED)
2541 		join = true;
2542 
2543 	/* Update priv based on whether false sharing was detected */
2544 	*priv = !join;
2545 
2546 	if (join && !get_numa_group(grp))
2547 		goto no_join;
2548 
2549 	rcu_read_unlock();
2550 
2551 	if (!join)
2552 		return;
2553 
2554 	BUG_ON(irqs_disabled());
2555 	double_lock_irq(&my_grp->lock, &grp->lock);
2556 
2557 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2558 		my_grp->faults[i] -= p->numa_faults[i];
2559 		grp->faults[i] += p->numa_faults[i];
2560 	}
2561 	my_grp->total_faults -= p->total_numa_faults;
2562 	grp->total_faults += p->total_numa_faults;
2563 
2564 	my_grp->nr_tasks--;
2565 	grp->nr_tasks++;
2566 
2567 	spin_unlock(&my_grp->lock);
2568 	spin_unlock_irq(&grp->lock);
2569 
2570 	rcu_assign_pointer(p->numa_group, grp);
2571 
2572 	put_numa_group(my_grp);
2573 	return;
2574 
2575 no_join:
2576 	rcu_read_unlock();
2577 	return;
2578 }
2579 
2580 /*
2581  * Get rid of NUMA statistics associated with a task (either current or dead).
2582  * If @final is set, the task is dead and has reached refcount zero, so we can
2583  * safely free all relevant data structures. Otherwise, there might be
2584  * concurrent reads from places like load balancing and procfs, and we should
2585  * reset the data back to default state without freeing ->numa_faults.
2586  */
2587 void task_numa_free(struct task_struct *p, bool final)
2588 {
2589 	/* safe: p either is current or is being freed by current */
2590 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2591 	unsigned long *numa_faults = p->numa_faults;
2592 	unsigned long flags;
2593 	int i;
2594 
2595 	if (!numa_faults)
2596 		return;
2597 
2598 	if (grp) {
2599 		spin_lock_irqsave(&grp->lock, flags);
2600 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2601 			grp->faults[i] -= p->numa_faults[i];
2602 		grp->total_faults -= p->total_numa_faults;
2603 
2604 		grp->nr_tasks--;
2605 		spin_unlock_irqrestore(&grp->lock, flags);
2606 		RCU_INIT_POINTER(p->numa_group, NULL);
2607 		put_numa_group(grp);
2608 	}
2609 
2610 	if (final) {
2611 		p->numa_faults = NULL;
2612 		kfree(numa_faults);
2613 	} else {
2614 		p->total_numa_faults = 0;
2615 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2616 			numa_faults[i] = 0;
2617 	}
2618 }
2619 
2620 /*
2621  * Got a PROT_NONE fault for a page on @node.
2622  */
2623 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2624 {
2625 	struct task_struct *p = current;
2626 	bool migrated = flags & TNF_MIGRATED;
2627 	int cpu_node = task_node(current);
2628 	int local = !!(flags & TNF_FAULT_LOCAL);
2629 	struct numa_group *ng;
2630 	int priv;
2631 
2632 	if (!static_branch_likely(&sched_numa_balancing))
2633 		return;
2634 
2635 	/* for example, ksmd faulting in a user's mm */
2636 	if (!p->mm)
2637 		return;
2638 
2639 	/* Allocate buffer to track faults on a per-node basis */
2640 	if (unlikely(!p->numa_faults)) {
2641 		int size = sizeof(*p->numa_faults) *
2642 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2643 
2644 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2645 		if (!p->numa_faults)
2646 			return;
2647 
2648 		p->total_numa_faults = 0;
2649 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2650 	}
2651 
2652 	/*
2653 	 * First accesses are treated as private, otherwise consider accesses
2654 	 * to be private if the accessing pid has not changed
2655 	 */
2656 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2657 		priv = 1;
2658 	} else {
2659 		priv = cpupid_match_pid(p, last_cpupid);
2660 		if (!priv && !(flags & TNF_NO_GROUP))
2661 			task_numa_group(p, last_cpupid, flags, &priv);
2662 	}
2663 
2664 	/*
2665 	 * If a workload spans multiple NUMA nodes, a shared fault that
2666 	 * occurs wholly within the set of nodes that the workload is
2667 	 * actively using should be counted as local. This allows the
2668 	 * scan rate to slow down when a workload has settled down.
2669 	 */
2670 	ng = deref_curr_numa_group(p);
2671 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2672 				numa_is_active_node(cpu_node, ng) &&
2673 				numa_is_active_node(mem_node, ng))
2674 		local = 1;
2675 
2676 	/*
2677 	 * Retry to migrate task to preferred node periodically, in case it
2678 	 * previously failed, or the scheduler moved us.
2679 	 */
2680 	if (time_after(jiffies, p->numa_migrate_retry)) {
2681 		task_numa_placement(p);
2682 		numa_migrate_preferred(p);
2683 	}
2684 
2685 	if (migrated)
2686 		p->numa_pages_migrated += pages;
2687 	if (flags & TNF_MIGRATE_FAIL)
2688 		p->numa_faults_locality[2] += pages;
2689 
2690 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2691 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2692 	p->numa_faults_locality[local] += pages;
2693 }
2694 
2695 static void reset_ptenuma_scan(struct task_struct *p)
2696 {
2697 	/*
2698 	 * We only did a read acquisition of the mmap sem, so
2699 	 * p->mm->numa_scan_seq is written to without exclusive access
2700 	 * and the update is not guaranteed to be atomic. That's not
2701 	 * much of an issue though, since this is just used for
2702 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2703 	 * expensive, to avoid any form of compiler optimizations:
2704 	 */
2705 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2706 	p->mm->numa_scan_offset = 0;
2707 }
2708 
2709 /*
2710  * The expensive part of numa migration is done from task_work context.
2711  * Triggered from task_tick_numa().
2712  */
2713 static void task_numa_work(struct callback_head *work)
2714 {
2715 	unsigned long migrate, next_scan, now = jiffies;
2716 	struct task_struct *p = current;
2717 	struct mm_struct *mm = p->mm;
2718 	u64 runtime = p->se.sum_exec_runtime;
2719 	struct vm_area_struct *vma;
2720 	unsigned long start, end;
2721 	unsigned long nr_pte_updates = 0;
2722 	long pages, virtpages;
2723 
2724 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2725 
2726 	work->next = work;
2727 	/*
2728 	 * Who cares about NUMA placement when they're dying.
2729 	 *
2730 	 * NOTE: make sure not to dereference p->mm before this check,
2731 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2732 	 * without p->mm even though we still had it when we enqueued this
2733 	 * work.
2734 	 */
2735 	if (p->flags & PF_EXITING)
2736 		return;
2737 
2738 	if (!mm->numa_next_scan) {
2739 		mm->numa_next_scan = now +
2740 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2741 	}
2742 
2743 	/*
2744 	 * Enforce maximal scan/migration frequency..
2745 	 */
2746 	migrate = mm->numa_next_scan;
2747 	if (time_before(now, migrate))
2748 		return;
2749 
2750 	if (p->numa_scan_period == 0) {
2751 		p->numa_scan_period_max = task_scan_max(p);
2752 		p->numa_scan_period = task_scan_start(p);
2753 	}
2754 
2755 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2756 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2757 		return;
2758 
2759 	/*
2760 	 * Delay this task enough that another task of this mm will likely win
2761 	 * the next time around.
2762 	 */
2763 	p->node_stamp += 2 * TICK_NSEC;
2764 
2765 	start = mm->numa_scan_offset;
2766 	pages = sysctl_numa_balancing_scan_size;
2767 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2768 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2769 	if (!pages)
2770 		return;
2771 
2772 
2773 	if (!mmap_read_trylock(mm))
2774 		return;
2775 	vma = find_vma(mm, start);
2776 	if (!vma) {
2777 		reset_ptenuma_scan(p);
2778 		start = 0;
2779 		vma = mm->mmap;
2780 	}
2781 	for (; vma; vma = vma->vm_next) {
2782 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2783 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2784 			continue;
2785 		}
2786 
2787 		/*
2788 		 * Shared library pages mapped by multiple processes are not
2789 		 * migrated as it is expected they are cache replicated. Avoid
2790 		 * hinting faults in read-only file-backed mappings or the vdso
2791 		 * as migrating the pages will be of marginal benefit.
2792 		 */
2793 		if (!vma->vm_mm ||
2794 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2795 			continue;
2796 
2797 		/*
2798 		 * Skip inaccessible VMAs to avoid any confusion between
2799 		 * PROT_NONE and NUMA hinting ptes
2800 		 */
2801 		if (!vma_is_accessible(vma))
2802 			continue;
2803 
2804 		do {
2805 			start = max(start, vma->vm_start);
2806 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2807 			end = min(end, vma->vm_end);
2808 			nr_pte_updates = change_prot_numa(vma, start, end);
2809 
2810 			/*
2811 			 * Try to scan sysctl_numa_balancing_size worth of
2812 			 * hpages that have at least one present PTE that
2813 			 * is not already pte-numa. If the VMA contains
2814 			 * areas that are unused or already full of prot_numa
2815 			 * PTEs, scan up to virtpages, to skip through those
2816 			 * areas faster.
2817 			 */
2818 			if (nr_pte_updates)
2819 				pages -= (end - start) >> PAGE_SHIFT;
2820 			virtpages -= (end - start) >> PAGE_SHIFT;
2821 
2822 			start = end;
2823 			if (pages <= 0 || virtpages <= 0)
2824 				goto out;
2825 
2826 			cond_resched();
2827 		} while (end != vma->vm_end);
2828 	}
2829 
2830 out:
2831 	/*
2832 	 * It is possible to reach the end of the VMA list but the last few
2833 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2834 	 * would find the !migratable VMA on the next scan but not reset the
2835 	 * scanner to the start so check it now.
2836 	 */
2837 	if (vma)
2838 		mm->numa_scan_offset = start;
2839 	else
2840 		reset_ptenuma_scan(p);
2841 	mmap_read_unlock(mm);
2842 
2843 	/*
2844 	 * Make sure tasks use at least 32x as much time to run other code
2845 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2846 	 * Usually update_task_scan_period slows down scanning enough; on an
2847 	 * overloaded system we need to limit overhead on a per task basis.
2848 	 */
2849 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2850 		u64 diff = p->se.sum_exec_runtime - runtime;
2851 		p->node_stamp += 32 * diff;
2852 	}
2853 }
2854 
2855 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2856 {
2857 	int mm_users = 0;
2858 	struct mm_struct *mm = p->mm;
2859 
2860 	if (mm) {
2861 		mm_users = atomic_read(&mm->mm_users);
2862 		if (mm_users == 1) {
2863 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2864 			mm->numa_scan_seq = 0;
2865 		}
2866 	}
2867 	p->node_stamp			= 0;
2868 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
2869 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
2870 	/* Protect against double add, see task_tick_numa and task_numa_work */
2871 	p->numa_work.next		= &p->numa_work;
2872 	p->numa_faults			= NULL;
2873 	RCU_INIT_POINTER(p->numa_group, NULL);
2874 	p->last_task_numa_placement	= 0;
2875 	p->last_sum_exec_runtime	= 0;
2876 
2877 	init_task_work(&p->numa_work, task_numa_work);
2878 
2879 	/* New address space, reset the preferred nid */
2880 	if (!(clone_flags & CLONE_VM)) {
2881 		p->numa_preferred_nid = NUMA_NO_NODE;
2882 		return;
2883 	}
2884 
2885 	/*
2886 	 * New thread, keep existing numa_preferred_nid which should be copied
2887 	 * already by arch_dup_task_struct but stagger when scans start.
2888 	 */
2889 	if (mm) {
2890 		unsigned int delay;
2891 
2892 		delay = min_t(unsigned int, task_scan_max(current),
2893 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2894 		delay += 2 * TICK_NSEC;
2895 		p->node_stamp = delay;
2896 	}
2897 }
2898 
2899 /*
2900  * Drive the periodic memory faults..
2901  */
2902 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2903 {
2904 	struct callback_head *work = &curr->numa_work;
2905 	u64 period, now;
2906 
2907 	/*
2908 	 * We don't care about NUMA placement if we don't have memory.
2909 	 */
2910 	if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2911 		return;
2912 
2913 	/*
2914 	 * Using runtime rather than walltime has the dual advantage that
2915 	 * we (mostly) drive the selection from busy threads and that the
2916 	 * task needs to have done some actual work before we bother with
2917 	 * NUMA placement.
2918 	 */
2919 	now = curr->se.sum_exec_runtime;
2920 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2921 
2922 	if (now > curr->node_stamp + period) {
2923 		if (!curr->node_stamp)
2924 			curr->numa_scan_period = task_scan_start(curr);
2925 		curr->node_stamp += period;
2926 
2927 		if (!time_before(jiffies, curr->mm->numa_next_scan))
2928 			task_work_add(curr, work, TWA_RESUME);
2929 	}
2930 }
2931 
2932 static void update_scan_period(struct task_struct *p, int new_cpu)
2933 {
2934 	int src_nid = cpu_to_node(task_cpu(p));
2935 	int dst_nid = cpu_to_node(new_cpu);
2936 
2937 	if (!static_branch_likely(&sched_numa_balancing))
2938 		return;
2939 
2940 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2941 		return;
2942 
2943 	if (src_nid == dst_nid)
2944 		return;
2945 
2946 	/*
2947 	 * Allow resets if faults have been trapped before one scan
2948 	 * has completed. This is most likely due to a new task that
2949 	 * is pulled cross-node due to wakeups or load balancing.
2950 	 */
2951 	if (p->numa_scan_seq) {
2952 		/*
2953 		 * Avoid scan adjustments if moving to the preferred
2954 		 * node or if the task was not previously running on
2955 		 * the preferred node.
2956 		 */
2957 		if (dst_nid == p->numa_preferred_nid ||
2958 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2959 			src_nid != p->numa_preferred_nid))
2960 			return;
2961 	}
2962 
2963 	p->numa_scan_period = task_scan_start(p);
2964 }
2965 
2966 #else
2967 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2968 {
2969 }
2970 
2971 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2972 {
2973 }
2974 
2975 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2976 {
2977 }
2978 
2979 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2980 {
2981 }
2982 
2983 #endif /* CONFIG_NUMA_BALANCING */
2984 
2985 static void
2986 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2987 {
2988 	update_load_add(&cfs_rq->load, se->load.weight);
2989 #ifdef CONFIG_SMP
2990 	if (entity_is_task(se)) {
2991 		struct rq *rq = rq_of(cfs_rq);
2992 
2993 		account_numa_enqueue(rq, task_of(se));
2994 		list_add(&se->group_node, &rq->cfs_tasks);
2995 	}
2996 #endif
2997 	cfs_rq->nr_running++;
2998 }
2999 
3000 static void
3001 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3002 {
3003 	update_load_sub(&cfs_rq->load, se->load.weight);
3004 #ifdef CONFIG_SMP
3005 	if (entity_is_task(se)) {
3006 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3007 		list_del_init(&se->group_node);
3008 	}
3009 #endif
3010 	cfs_rq->nr_running--;
3011 }
3012 
3013 /*
3014  * Signed add and clamp on underflow.
3015  *
3016  * Explicitly do a load-store to ensure the intermediate value never hits
3017  * memory. This allows lockless observations without ever seeing the negative
3018  * values.
3019  */
3020 #define add_positive(_ptr, _val) do {                           \
3021 	typeof(_ptr) ptr = (_ptr);                              \
3022 	typeof(_val) val = (_val);                              \
3023 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3024 								\
3025 	res = var + val;                                        \
3026 								\
3027 	if (val < 0 && res > var)                               \
3028 		res = 0;                                        \
3029 								\
3030 	WRITE_ONCE(*ptr, res);                                  \
3031 } while (0)
3032 
3033 /*
3034  * Unsigned subtract and clamp on underflow.
3035  *
3036  * Explicitly do a load-store to ensure the intermediate value never hits
3037  * memory. This allows lockless observations without ever seeing the negative
3038  * values.
3039  */
3040 #define sub_positive(_ptr, _val) do {				\
3041 	typeof(_ptr) ptr = (_ptr);				\
3042 	typeof(*ptr) val = (_val);				\
3043 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3044 	res = var - val;					\
3045 	if (res > var)						\
3046 		res = 0;					\
3047 	WRITE_ONCE(*ptr, res);					\
3048 } while (0)
3049 
3050 /*
3051  * Remove and clamp on negative, from a local variable.
3052  *
3053  * A variant of sub_positive(), which does not use explicit load-store
3054  * and is thus optimized for local variable updates.
3055  */
3056 #define lsub_positive(_ptr, _val) do {				\
3057 	typeof(_ptr) ptr = (_ptr);				\
3058 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3059 } while (0)
3060 
3061 #ifdef CONFIG_SMP
3062 static inline void
3063 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3064 {
3065 	cfs_rq->avg.load_avg += se->avg.load_avg;
3066 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3067 }
3068 
3069 static inline void
3070 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3071 {
3072 	u32 divider = get_pelt_divider(&se->avg);
3073 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3074 	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3075 }
3076 #else
3077 static inline void
3078 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3079 static inline void
3080 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3081 #endif
3082 
3083 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3084 			    unsigned long weight)
3085 {
3086 	if (se->on_rq) {
3087 		/* commit outstanding execution time */
3088 		if (cfs_rq->curr == se)
3089 			update_curr(cfs_rq);
3090 		update_load_sub(&cfs_rq->load, se->load.weight);
3091 	}
3092 	dequeue_load_avg(cfs_rq, se);
3093 
3094 	update_load_set(&se->load, weight);
3095 
3096 #ifdef CONFIG_SMP
3097 	do {
3098 		u32 divider = get_pelt_divider(&se->avg);
3099 
3100 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3101 	} while (0);
3102 #endif
3103 
3104 	enqueue_load_avg(cfs_rq, se);
3105 	if (se->on_rq)
3106 		update_load_add(&cfs_rq->load, se->load.weight);
3107 
3108 }
3109 
3110 void reweight_task(struct task_struct *p, int prio)
3111 {
3112 	struct sched_entity *se = &p->se;
3113 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3114 	struct load_weight *load = &se->load;
3115 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3116 
3117 	reweight_entity(cfs_rq, se, weight);
3118 	load->inv_weight = sched_prio_to_wmult[prio];
3119 }
3120 
3121 #ifdef CONFIG_FAIR_GROUP_SCHED
3122 #ifdef CONFIG_SMP
3123 /*
3124  * All this does is approximate the hierarchical proportion which includes that
3125  * global sum we all love to hate.
3126  *
3127  * That is, the weight of a group entity, is the proportional share of the
3128  * group weight based on the group runqueue weights. That is:
3129  *
3130  *                     tg->weight * grq->load.weight
3131  *   ge->load.weight = -----------------------------               (1)
3132  *                       \Sum grq->load.weight
3133  *
3134  * Now, because computing that sum is prohibitively expensive to compute (been
3135  * there, done that) we approximate it with this average stuff. The average
3136  * moves slower and therefore the approximation is cheaper and more stable.
3137  *
3138  * So instead of the above, we substitute:
3139  *
3140  *   grq->load.weight -> grq->avg.load_avg                         (2)
3141  *
3142  * which yields the following:
3143  *
3144  *                     tg->weight * grq->avg.load_avg
3145  *   ge->load.weight = ------------------------------              (3)
3146  *                             tg->load_avg
3147  *
3148  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3149  *
3150  * That is shares_avg, and it is right (given the approximation (2)).
3151  *
3152  * The problem with it is that because the average is slow -- it was designed
3153  * to be exactly that of course -- this leads to transients in boundary
3154  * conditions. In specific, the case where the group was idle and we start the
3155  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3156  * yielding bad latency etc..
3157  *
3158  * Now, in that special case (1) reduces to:
3159  *
3160  *                     tg->weight * grq->load.weight
3161  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3162  *                         grp->load.weight
3163  *
3164  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3165  *
3166  * So what we do is modify our approximation (3) to approach (4) in the (near)
3167  * UP case, like:
3168  *
3169  *   ge->load.weight =
3170  *
3171  *              tg->weight * grq->load.weight
3172  *     ---------------------------------------------------         (5)
3173  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3174  *
3175  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3176  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3177  *
3178  *
3179  *                     tg->weight * grq->load.weight
3180  *   ge->load.weight = -----------------------------		   (6)
3181  *                             tg_load_avg'
3182  *
3183  * Where:
3184  *
3185  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3186  *                  max(grq->load.weight, grq->avg.load_avg)
3187  *
3188  * And that is shares_weight and is icky. In the (near) UP case it approaches
3189  * (4) while in the normal case it approaches (3). It consistently
3190  * overestimates the ge->load.weight and therefore:
3191  *
3192  *   \Sum ge->load.weight >= tg->weight
3193  *
3194  * hence icky!
3195  */
3196 static long calc_group_shares(struct cfs_rq *cfs_rq)
3197 {
3198 	long tg_weight, tg_shares, load, shares;
3199 	struct task_group *tg = cfs_rq->tg;
3200 
3201 	tg_shares = READ_ONCE(tg->shares);
3202 
3203 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3204 
3205 	tg_weight = atomic_long_read(&tg->load_avg);
3206 
3207 	/* Ensure tg_weight >= load */
3208 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3209 	tg_weight += load;
3210 
3211 	shares = (tg_shares * load);
3212 	if (tg_weight)
3213 		shares /= tg_weight;
3214 
3215 	/*
3216 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3217 	 * of a group with small tg->shares value. It is a floor value which is
3218 	 * assigned as a minimum load.weight to the sched_entity representing
3219 	 * the group on a CPU.
3220 	 *
3221 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3222 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3223 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3224 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3225 	 * instead of 0.
3226 	 */
3227 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3228 }
3229 #endif /* CONFIG_SMP */
3230 
3231 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3232 
3233 /*
3234  * Recomputes the group entity based on the current state of its group
3235  * runqueue.
3236  */
3237 static void update_cfs_group(struct sched_entity *se)
3238 {
3239 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3240 	long shares;
3241 
3242 	if (!gcfs_rq)
3243 		return;
3244 
3245 	if (throttled_hierarchy(gcfs_rq))
3246 		return;
3247 
3248 #ifndef CONFIG_SMP
3249 	shares = READ_ONCE(gcfs_rq->tg->shares);
3250 
3251 	if (likely(se->load.weight == shares))
3252 		return;
3253 #else
3254 	shares   = calc_group_shares(gcfs_rq);
3255 #endif
3256 
3257 	reweight_entity(cfs_rq_of(se), se, shares);
3258 }
3259 
3260 #else /* CONFIG_FAIR_GROUP_SCHED */
3261 static inline void update_cfs_group(struct sched_entity *se)
3262 {
3263 }
3264 #endif /* CONFIG_FAIR_GROUP_SCHED */
3265 
3266 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3267 {
3268 	struct rq *rq = rq_of(cfs_rq);
3269 
3270 	if (&rq->cfs == cfs_rq) {
3271 		/*
3272 		 * There are a few boundary cases this might miss but it should
3273 		 * get called often enough that that should (hopefully) not be
3274 		 * a real problem.
3275 		 *
3276 		 * It will not get called when we go idle, because the idle
3277 		 * thread is a different class (!fair), nor will the utilization
3278 		 * number include things like RT tasks.
3279 		 *
3280 		 * As is, the util number is not freq-invariant (we'd have to
3281 		 * implement arch_scale_freq_capacity() for that).
3282 		 *
3283 		 * See cpu_util().
3284 		 */
3285 		cpufreq_update_util(rq, flags);
3286 	}
3287 }
3288 
3289 #ifdef CONFIG_SMP
3290 #ifdef CONFIG_FAIR_GROUP_SCHED
3291 /*
3292  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3293  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3294  * bottom-up, we only have to test whether the cfs_rq before us on the list
3295  * is our child.
3296  * If cfs_rq is not on the list, test whether a child needs its to be added to
3297  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
3298  */
3299 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3300 {
3301 	struct cfs_rq *prev_cfs_rq;
3302 	struct list_head *prev;
3303 
3304 	if (cfs_rq->on_list) {
3305 		prev = cfs_rq->leaf_cfs_rq_list.prev;
3306 	} else {
3307 		struct rq *rq = rq_of(cfs_rq);
3308 
3309 		prev = rq->tmp_alone_branch;
3310 	}
3311 
3312 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3313 
3314 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3315 }
3316 
3317 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3318 {
3319 	if (cfs_rq->load.weight)
3320 		return false;
3321 
3322 	if (cfs_rq->avg.load_sum)
3323 		return false;
3324 
3325 	if (cfs_rq->avg.util_sum)
3326 		return false;
3327 
3328 	if (cfs_rq->avg.runnable_sum)
3329 		return false;
3330 
3331 	if (child_cfs_rq_on_list(cfs_rq))
3332 		return false;
3333 
3334 	/*
3335 	 * _avg must be null when _sum are null because _avg = _sum / divider
3336 	 * Make sure that rounding and/or propagation of PELT values never
3337 	 * break this.
3338 	 */
3339 	SCHED_WARN_ON(cfs_rq->avg.load_avg ||
3340 		      cfs_rq->avg.util_avg ||
3341 		      cfs_rq->avg.runnable_avg);
3342 
3343 	return true;
3344 }
3345 
3346 /**
3347  * update_tg_load_avg - update the tg's load avg
3348  * @cfs_rq: the cfs_rq whose avg changed
3349  *
3350  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3351  * However, because tg->load_avg is a global value there are performance
3352  * considerations.
3353  *
3354  * In order to avoid having to look at the other cfs_rq's, we use a
3355  * differential update where we store the last value we propagated. This in
3356  * turn allows skipping updates if the differential is 'small'.
3357  *
3358  * Updating tg's load_avg is necessary before update_cfs_share().
3359  */
3360 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3361 {
3362 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3363 
3364 	/*
3365 	 * No need to update load_avg for root_task_group as it is not used.
3366 	 */
3367 	if (cfs_rq->tg == &root_task_group)
3368 		return;
3369 
3370 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3371 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3372 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3373 	}
3374 }
3375 
3376 /*
3377  * Called within set_task_rq() right before setting a task's CPU. The
3378  * caller only guarantees p->pi_lock is held; no other assumptions,
3379  * including the state of rq->lock, should be made.
3380  */
3381 void set_task_rq_fair(struct sched_entity *se,
3382 		      struct cfs_rq *prev, struct cfs_rq *next)
3383 {
3384 	u64 p_last_update_time;
3385 	u64 n_last_update_time;
3386 
3387 	if (!sched_feat(ATTACH_AGE_LOAD))
3388 		return;
3389 
3390 	/*
3391 	 * We are supposed to update the task to "current" time, then its up to
3392 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3393 	 * getting what current time is, so simply throw away the out-of-date
3394 	 * time. This will result in the wakee task is less decayed, but giving
3395 	 * the wakee more load sounds not bad.
3396 	 */
3397 	if (!(se->avg.last_update_time && prev))
3398 		return;
3399 
3400 #ifndef CONFIG_64BIT
3401 	{
3402 		u64 p_last_update_time_copy;
3403 		u64 n_last_update_time_copy;
3404 
3405 		do {
3406 			p_last_update_time_copy = prev->load_last_update_time_copy;
3407 			n_last_update_time_copy = next->load_last_update_time_copy;
3408 
3409 			smp_rmb();
3410 
3411 			p_last_update_time = prev->avg.last_update_time;
3412 			n_last_update_time = next->avg.last_update_time;
3413 
3414 		} while (p_last_update_time != p_last_update_time_copy ||
3415 			 n_last_update_time != n_last_update_time_copy);
3416 	}
3417 #else
3418 	p_last_update_time = prev->avg.last_update_time;
3419 	n_last_update_time = next->avg.last_update_time;
3420 #endif
3421 	__update_load_avg_blocked_se(p_last_update_time, se);
3422 	se->avg.last_update_time = n_last_update_time;
3423 }
3424 
3425 
3426 /*
3427  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3428  * propagate its contribution. The key to this propagation is the invariant
3429  * that for each group:
3430  *
3431  *   ge->avg == grq->avg						(1)
3432  *
3433  * _IFF_ we look at the pure running and runnable sums. Because they
3434  * represent the very same entity, just at different points in the hierarchy.
3435  *
3436  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3437  * and simply copies the running/runnable sum over (but still wrong, because
3438  * the group entity and group rq do not have their PELT windows aligned).
3439  *
3440  * However, update_tg_cfs_load() is more complex. So we have:
3441  *
3442  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3443  *
3444  * And since, like util, the runnable part should be directly transferable,
3445  * the following would _appear_ to be the straight forward approach:
3446  *
3447  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3448  *
3449  * And per (1) we have:
3450  *
3451  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3452  *
3453  * Which gives:
3454  *
3455  *                      ge->load.weight * grq->avg.load_avg
3456  *   ge->avg.load_avg = -----------------------------------		(4)
3457  *                               grq->load.weight
3458  *
3459  * Except that is wrong!
3460  *
3461  * Because while for entities historical weight is not important and we
3462  * really only care about our future and therefore can consider a pure
3463  * runnable sum, runqueues can NOT do this.
3464  *
3465  * We specifically want runqueues to have a load_avg that includes
3466  * historical weights. Those represent the blocked load, the load we expect
3467  * to (shortly) return to us. This only works by keeping the weights as
3468  * integral part of the sum. We therefore cannot decompose as per (3).
3469  *
3470  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3471  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3472  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3473  * runnable section of these tasks overlap (or not). If they were to perfectly
3474  * align the rq as a whole would be runnable 2/3 of the time. If however we
3475  * always have at least 1 runnable task, the rq as a whole is always runnable.
3476  *
3477  * So we'll have to approximate.. :/
3478  *
3479  * Given the constraint:
3480  *
3481  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3482  *
3483  * We can construct a rule that adds runnable to a rq by assuming minimal
3484  * overlap.
3485  *
3486  * On removal, we'll assume each task is equally runnable; which yields:
3487  *
3488  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3489  *
3490  * XXX: only do this for the part of runnable > running ?
3491  *
3492  */
3493 
3494 static inline void
3495 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3496 {
3497 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3498 	u32 divider;
3499 
3500 	/* Nothing to update */
3501 	if (!delta)
3502 		return;
3503 
3504 	/*
3505 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3506 	 * See ___update_load_avg() for details.
3507 	 */
3508 	divider = get_pelt_divider(&cfs_rq->avg);
3509 
3510 	/* Set new sched_entity's utilization */
3511 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3512 	se->avg.util_sum = se->avg.util_avg * divider;
3513 
3514 	/* Update parent cfs_rq utilization */
3515 	add_positive(&cfs_rq->avg.util_avg, delta);
3516 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3517 }
3518 
3519 static inline void
3520 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3521 {
3522 	long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3523 	u32 divider;
3524 
3525 	/* Nothing to update */
3526 	if (!delta)
3527 		return;
3528 
3529 	/*
3530 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3531 	 * See ___update_load_avg() for details.
3532 	 */
3533 	divider = get_pelt_divider(&cfs_rq->avg);
3534 
3535 	/* Set new sched_entity's runnable */
3536 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3537 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3538 
3539 	/* Update parent cfs_rq runnable */
3540 	add_positive(&cfs_rq->avg.runnable_avg, delta);
3541 	cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3542 }
3543 
3544 static inline void
3545 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3546 {
3547 	long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3548 	unsigned long load_avg;
3549 	u64 load_sum = 0;
3550 	u32 divider;
3551 
3552 	if (!runnable_sum)
3553 		return;
3554 
3555 	gcfs_rq->prop_runnable_sum = 0;
3556 
3557 	/*
3558 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3559 	 * See ___update_load_avg() for details.
3560 	 */
3561 	divider = get_pelt_divider(&cfs_rq->avg);
3562 
3563 	if (runnable_sum >= 0) {
3564 		/*
3565 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3566 		 * the CPU is saturated running == runnable.
3567 		 */
3568 		runnable_sum += se->avg.load_sum;
3569 		runnable_sum = min_t(long, runnable_sum, divider);
3570 	} else {
3571 		/*
3572 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3573 		 * assuming all tasks are equally runnable.
3574 		 */
3575 		if (scale_load_down(gcfs_rq->load.weight)) {
3576 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3577 				scale_load_down(gcfs_rq->load.weight));
3578 		}
3579 
3580 		/* But make sure to not inflate se's runnable */
3581 		runnable_sum = min(se->avg.load_sum, load_sum);
3582 	}
3583 
3584 	/*
3585 	 * runnable_sum can't be lower than running_sum
3586 	 * Rescale running sum to be in the same range as runnable sum
3587 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3588 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3589 	 */
3590 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3591 	runnable_sum = max(runnable_sum, running_sum);
3592 
3593 	load_sum = (s64)se_weight(se) * runnable_sum;
3594 	load_avg = div_s64(load_sum, divider);
3595 
3596 	se->avg.load_sum = runnable_sum;
3597 
3598 	delta = load_avg - se->avg.load_avg;
3599 	if (!delta)
3600 		return;
3601 
3602 	se->avg.load_avg = load_avg;
3603 
3604 	add_positive(&cfs_rq->avg.load_avg, delta);
3605 	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3606 }
3607 
3608 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3609 {
3610 	cfs_rq->propagate = 1;
3611 	cfs_rq->prop_runnable_sum += runnable_sum;
3612 }
3613 
3614 /* Update task and its cfs_rq load average */
3615 static inline int propagate_entity_load_avg(struct sched_entity *se)
3616 {
3617 	struct cfs_rq *cfs_rq, *gcfs_rq;
3618 
3619 	if (entity_is_task(se))
3620 		return 0;
3621 
3622 	gcfs_rq = group_cfs_rq(se);
3623 	if (!gcfs_rq->propagate)
3624 		return 0;
3625 
3626 	gcfs_rq->propagate = 0;
3627 
3628 	cfs_rq = cfs_rq_of(se);
3629 
3630 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3631 
3632 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3633 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3634 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3635 
3636 	trace_pelt_cfs_tp(cfs_rq);
3637 	trace_pelt_se_tp(se);
3638 
3639 	return 1;
3640 }
3641 
3642 /*
3643  * Check if we need to update the load and the utilization of a blocked
3644  * group_entity:
3645  */
3646 static inline bool skip_blocked_update(struct sched_entity *se)
3647 {
3648 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3649 
3650 	/*
3651 	 * If sched_entity still have not zero load or utilization, we have to
3652 	 * decay it:
3653 	 */
3654 	if (se->avg.load_avg || se->avg.util_avg)
3655 		return false;
3656 
3657 	/*
3658 	 * If there is a pending propagation, we have to update the load and
3659 	 * the utilization of the sched_entity:
3660 	 */
3661 	if (gcfs_rq->propagate)
3662 		return false;
3663 
3664 	/*
3665 	 * Otherwise, the load and the utilization of the sched_entity is
3666 	 * already zero and there is no pending propagation, so it will be a
3667 	 * waste of time to try to decay it:
3668 	 */
3669 	return true;
3670 }
3671 
3672 #else /* CONFIG_FAIR_GROUP_SCHED */
3673 
3674 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3675 
3676 static inline int propagate_entity_load_avg(struct sched_entity *se)
3677 {
3678 	return 0;
3679 }
3680 
3681 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3682 
3683 #endif /* CONFIG_FAIR_GROUP_SCHED */
3684 
3685 /**
3686  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3687  * @now: current time, as per cfs_rq_clock_pelt()
3688  * @cfs_rq: cfs_rq to update
3689  *
3690  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3691  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3692  * post_init_entity_util_avg().
3693  *
3694  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3695  *
3696  * Returns true if the load decayed or we removed load.
3697  *
3698  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3699  * call update_tg_load_avg() when this function returns true.
3700  */
3701 static inline int
3702 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3703 {
3704 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3705 	struct sched_avg *sa = &cfs_rq->avg;
3706 	int decayed = 0;
3707 
3708 	if (cfs_rq->removed.nr) {
3709 		unsigned long r;
3710 		u32 divider = get_pelt_divider(&cfs_rq->avg);
3711 
3712 		raw_spin_lock(&cfs_rq->removed.lock);
3713 		swap(cfs_rq->removed.util_avg, removed_util);
3714 		swap(cfs_rq->removed.load_avg, removed_load);
3715 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
3716 		cfs_rq->removed.nr = 0;
3717 		raw_spin_unlock(&cfs_rq->removed.lock);
3718 
3719 		r = removed_load;
3720 		sub_positive(&sa->load_avg, r);
3721 		sa->load_sum = sa->load_avg * divider;
3722 
3723 		r = removed_util;
3724 		sub_positive(&sa->util_avg, r);
3725 		sa->util_sum = sa->util_avg * divider;
3726 
3727 		r = removed_runnable;
3728 		sub_positive(&sa->runnable_avg, r);
3729 		sa->runnable_sum = sa->runnable_avg * divider;
3730 
3731 		/*
3732 		 * removed_runnable is the unweighted version of removed_load so we
3733 		 * can use it to estimate removed_load_sum.
3734 		 */
3735 		add_tg_cfs_propagate(cfs_rq,
3736 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3737 
3738 		decayed = 1;
3739 	}
3740 
3741 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3742 
3743 #ifndef CONFIG_64BIT
3744 	smp_wmb();
3745 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3746 #endif
3747 
3748 	return decayed;
3749 }
3750 
3751 /**
3752  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3753  * @cfs_rq: cfs_rq to attach to
3754  * @se: sched_entity to attach
3755  *
3756  * Must call update_cfs_rq_load_avg() before this, since we rely on
3757  * cfs_rq->avg.last_update_time being current.
3758  */
3759 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3760 {
3761 	/*
3762 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3763 	 * See ___update_load_avg() for details.
3764 	 */
3765 	u32 divider = get_pelt_divider(&cfs_rq->avg);
3766 
3767 	/*
3768 	 * When we attach the @se to the @cfs_rq, we must align the decay
3769 	 * window because without that, really weird and wonderful things can
3770 	 * happen.
3771 	 *
3772 	 * XXX illustrate
3773 	 */
3774 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3775 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3776 
3777 	/*
3778 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3779 	 * period_contrib. This isn't strictly correct, but since we're
3780 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3781 	 * _sum a little.
3782 	 */
3783 	se->avg.util_sum = se->avg.util_avg * divider;
3784 
3785 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3786 
3787 	se->avg.load_sum = divider;
3788 	if (se_weight(se)) {
3789 		se->avg.load_sum =
3790 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3791 	}
3792 
3793 	enqueue_load_avg(cfs_rq, se);
3794 	cfs_rq->avg.util_avg += se->avg.util_avg;
3795 	cfs_rq->avg.util_sum += se->avg.util_sum;
3796 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3797 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3798 
3799 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3800 
3801 	cfs_rq_util_change(cfs_rq, 0);
3802 
3803 	trace_pelt_cfs_tp(cfs_rq);
3804 }
3805 
3806 /**
3807  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3808  * @cfs_rq: cfs_rq to detach from
3809  * @se: sched_entity to detach
3810  *
3811  * Must call update_cfs_rq_load_avg() before this, since we rely on
3812  * cfs_rq->avg.last_update_time being current.
3813  */
3814 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3815 {
3816 	/*
3817 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3818 	 * See ___update_load_avg() for details.
3819 	 */
3820 	u32 divider = get_pelt_divider(&cfs_rq->avg);
3821 
3822 	dequeue_load_avg(cfs_rq, se);
3823 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3824 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3825 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3826 	cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3827 
3828 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3829 
3830 	cfs_rq_util_change(cfs_rq, 0);
3831 
3832 	trace_pelt_cfs_tp(cfs_rq);
3833 }
3834 
3835 /*
3836  * Optional action to be done while updating the load average
3837  */
3838 #define UPDATE_TG	0x1
3839 #define SKIP_AGE_LOAD	0x2
3840 #define DO_ATTACH	0x4
3841 
3842 /* Update task and its cfs_rq load average */
3843 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3844 {
3845 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3846 	int decayed;
3847 
3848 	/*
3849 	 * Track task load average for carrying it to new CPU after migrated, and
3850 	 * track group sched_entity load average for task_h_load calc in migration
3851 	 */
3852 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3853 		__update_load_avg_se(now, cfs_rq, se);
3854 
3855 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3856 	decayed |= propagate_entity_load_avg(se);
3857 
3858 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3859 
3860 		/*
3861 		 * DO_ATTACH means we're here from enqueue_entity().
3862 		 * !last_update_time means we've passed through
3863 		 * migrate_task_rq_fair() indicating we migrated.
3864 		 *
3865 		 * IOW we're enqueueing a task on a new CPU.
3866 		 */
3867 		attach_entity_load_avg(cfs_rq, se);
3868 		update_tg_load_avg(cfs_rq);
3869 
3870 	} else if (decayed) {
3871 		cfs_rq_util_change(cfs_rq, 0);
3872 
3873 		if (flags & UPDATE_TG)
3874 			update_tg_load_avg(cfs_rq);
3875 	}
3876 }
3877 
3878 #ifndef CONFIG_64BIT
3879 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3880 {
3881 	u64 last_update_time_copy;
3882 	u64 last_update_time;
3883 
3884 	do {
3885 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3886 		smp_rmb();
3887 		last_update_time = cfs_rq->avg.last_update_time;
3888 	} while (last_update_time != last_update_time_copy);
3889 
3890 	return last_update_time;
3891 }
3892 #else
3893 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3894 {
3895 	return cfs_rq->avg.last_update_time;
3896 }
3897 #endif
3898 
3899 /*
3900  * Synchronize entity load avg of dequeued entity without locking
3901  * the previous rq.
3902  */
3903 static void sync_entity_load_avg(struct sched_entity *se)
3904 {
3905 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3906 	u64 last_update_time;
3907 
3908 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3909 	__update_load_avg_blocked_se(last_update_time, se);
3910 }
3911 
3912 /*
3913  * Task first catches up with cfs_rq, and then subtract
3914  * itself from the cfs_rq (task must be off the queue now).
3915  */
3916 static void remove_entity_load_avg(struct sched_entity *se)
3917 {
3918 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3919 	unsigned long flags;
3920 
3921 	/*
3922 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3923 	 * post_init_entity_util_avg() which will have added things to the
3924 	 * cfs_rq, so we can remove unconditionally.
3925 	 */
3926 
3927 	sync_entity_load_avg(se);
3928 
3929 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3930 	++cfs_rq->removed.nr;
3931 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3932 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3933 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
3934 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3935 }
3936 
3937 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3938 {
3939 	return cfs_rq->avg.runnable_avg;
3940 }
3941 
3942 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3943 {
3944 	return cfs_rq->avg.load_avg;
3945 }
3946 
3947 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3948 
3949 static inline unsigned long task_util(struct task_struct *p)
3950 {
3951 	return READ_ONCE(p->se.avg.util_avg);
3952 }
3953 
3954 static inline unsigned long _task_util_est(struct task_struct *p)
3955 {
3956 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3957 
3958 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
3959 }
3960 
3961 static inline unsigned long task_util_est(struct task_struct *p)
3962 {
3963 	return max(task_util(p), _task_util_est(p));
3964 }
3965 
3966 #ifdef CONFIG_UCLAMP_TASK
3967 static inline unsigned long uclamp_task_util(struct task_struct *p)
3968 {
3969 	return clamp(task_util_est(p),
3970 		     uclamp_eff_value(p, UCLAMP_MIN),
3971 		     uclamp_eff_value(p, UCLAMP_MAX));
3972 }
3973 #else
3974 static inline unsigned long uclamp_task_util(struct task_struct *p)
3975 {
3976 	return task_util_est(p);
3977 }
3978 #endif
3979 
3980 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3981 				    struct task_struct *p)
3982 {
3983 	unsigned int enqueued;
3984 
3985 	if (!sched_feat(UTIL_EST))
3986 		return;
3987 
3988 	/* Update root cfs_rq's estimated utilization */
3989 	enqueued  = cfs_rq->avg.util_est.enqueued;
3990 	enqueued += _task_util_est(p);
3991 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3992 
3993 	trace_sched_util_est_cfs_tp(cfs_rq);
3994 }
3995 
3996 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
3997 				    struct task_struct *p)
3998 {
3999 	unsigned int enqueued;
4000 
4001 	if (!sched_feat(UTIL_EST))
4002 		return;
4003 
4004 	/* Update root cfs_rq's estimated utilization */
4005 	enqueued  = cfs_rq->avg.util_est.enqueued;
4006 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4007 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4008 
4009 	trace_sched_util_est_cfs_tp(cfs_rq);
4010 }
4011 
4012 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4013 
4014 /*
4015  * Check if a (signed) value is within a specified (unsigned) margin,
4016  * based on the observation that:
4017  *
4018  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4019  *
4020  * NOTE: this only works when value + margin < INT_MAX.
4021  */
4022 static inline bool within_margin(int value, int margin)
4023 {
4024 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4025 }
4026 
4027 static inline void util_est_update(struct cfs_rq *cfs_rq,
4028 				   struct task_struct *p,
4029 				   bool task_sleep)
4030 {
4031 	long last_ewma_diff, last_enqueued_diff;
4032 	struct util_est ue;
4033 
4034 	if (!sched_feat(UTIL_EST))
4035 		return;
4036 
4037 	/*
4038 	 * Skip update of task's estimated utilization when the task has not
4039 	 * yet completed an activation, e.g. being migrated.
4040 	 */
4041 	if (!task_sleep)
4042 		return;
4043 
4044 	/*
4045 	 * If the PELT values haven't changed since enqueue time,
4046 	 * skip the util_est update.
4047 	 */
4048 	ue = p->se.avg.util_est;
4049 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4050 		return;
4051 
4052 	last_enqueued_diff = ue.enqueued;
4053 
4054 	/*
4055 	 * Reset EWMA on utilization increases, the moving average is used only
4056 	 * to smooth utilization decreases.
4057 	 */
4058 	ue.enqueued = task_util(p);
4059 	if (sched_feat(UTIL_EST_FASTUP)) {
4060 		if (ue.ewma < ue.enqueued) {
4061 			ue.ewma = ue.enqueued;
4062 			goto done;
4063 		}
4064 	}
4065 
4066 	/*
4067 	 * Skip update of task's estimated utilization when its members are
4068 	 * already ~1% close to its last activation value.
4069 	 */
4070 	last_ewma_diff = ue.enqueued - ue.ewma;
4071 	last_enqueued_diff -= ue.enqueued;
4072 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4073 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4074 			goto done;
4075 
4076 		return;
4077 	}
4078 
4079 	/*
4080 	 * To avoid overestimation of actual task utilization, skip updates if
4081 	 * we cannot grant there is idle time in this CPU.
4082 	 */
4083 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4084 		return;
4085 
4086 	/*
4087 	 * Update Task's estimated utilization
4088 	 *
4089 	 * When *p completes an activation we can consolidate another sample
4090 	 * of the task size. This is done by storing the current PELT value
4091 	 * as ue.enqueued and by using this value to update the Exponential
4092 	 * Weighted Moving Average (EWMA):
4093 	 *
4094 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4095 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4096 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4097 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4098 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4099 	 *
4100 	 * Where 'w' is the weight of new samples, which is configured to be
4101 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4102 	 */
4103 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4104 	ue.ewma  += last_ewma_diff;
4105 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4106 done:
4107 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4108 	WRITE_ONCE(p->se.avg.util_est, ue);
4109 
4110 	trace_sched_util_est_se_tp(&p->se);
4111 }
4112 
4113 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4114 {
4115 	return fits_capacity(uclamp_task_util(p), capacity);
4116 }
4117 
4118 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4119 {
4120 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
4121 		return;
4122 
4123 	if (!p || p->nr_cpus_allowed == 1) {
4124 		rq->misfit_task_load = 0;
4125 		return;
4126 	}
4127 
4128 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4129 		rq->misfit_task_load = 0;
4130 		return;
4131 	}
4132 
4133 	/*
4134 	 * Make sure that misfit_task_load will not be null even if
4135 	 * task_h_load() returns 0.
4136 	 */
4137 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4138 }
4139 
4140 #else /* CONFIG_SMP */
4141 
4142 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4143 {
4144 	return true;
4145 }
4146 
4147 #define UPDATE_TG	0x0
4148 #define SKIP_AGE_LOAD	0x0
4149 #define DO_ATTACH	0x0
4150 
4151 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4152 {
4153 	cfs_rq_util_change(cfs_rq, 0);
4154 }
4155 
4156 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4157 
4158 static inline void
4159 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4160 static inline void
4161 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4162 
4163 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4164 {
4165 	return 0;
4166 }
4167 
4168 static inline void
4169 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4170 
4171 static inline void
4172 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4173 
4174 static inline void
4175 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4176 		bool task_sleep) {}
4177 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4178 
4179 #endif /* CONFIG_SMP */
4180 
4181 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4182 {
4183 #ifdef CONFIG_SCHED_DEBUG
4184 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4185 
4186 	if (d < 0)
4187 		d = -d;
4188 
4189 	if (d > 3*sysctl_sched_latency)
4190 		schedstat_inc(cfs_rq->nr_spread_over);
4191 #endif
4192 }
4193 
4194 static void
4195 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4196 {
4197 	u64 vruntime = cfs_rq->min_vruntime;
4198 
4199 	/*
4200 	 * The 'current' period is already promised to the current tasks,
4201 	 * however the extra weight of the new task will slow them down a
4202 	 * little, place the new task so that it fits in the slot that
4203 	 * stays open at the end.
4204 	 */
4205 	if (initial && sched_feat(START_DEBIT))
4206 		vruntime += sched_vslice(cfs_rq, se);
4207 
4208 	/* sleeps up to a single latency don't count. */
4209 	if (!initial) {
4210 		unsigned long thresh = sysctl_sched_latency;
4211 
4212 		/*
4213 		 * Halve their sleep time's effect, to allow
4214 		 * for a gentler effect of sleepers:
4215 		 */
4216 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4217 			thresh >>= 1;
4218 
4219 		vruntime -= thresh;
4220 	}
4221 
4222 	/* ensure we never gain time by being placed backwards. */
4223 	se->vruntime = max_vruntime(se->vruntime, vruntime);
4224 }
4225 
4226 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4227 
4228 static inline void check_schedstat_required(void)
4229 {
4230 #ifdef CONFIG_SCHEDSTATS
4231 	if (schedstat_enabled())
4232 		return;
4233 
4234 	/* Force schedstat enabled if a dependent tracepoint is active */
4235 	if (trace_sched_stat_wait_enabled()    ||
4236 			trace_sched_stat_sleep_enabled()   ||
4237 			trace_sched_stat_iowait_enabled()  ||
4238 			trace_sched_stat_blocked_enabled() ||
4239 			trace_sched_stat_runtime_enabled())  {
4240 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4241 			     "stat_blocked and stat_runtime require the "
4242 			     "kernel parameter schedstats=enable or "
4243 			     "kernel.sched_schedstats=1\n");
4244 	}
4245 #endif
4246 }
4247 
4248 static inline bool cfs_bandwidth_used(void);
4249 
4250 /*
4251  * MIGRATION
4252  *
4253  *	dequeue
4254  *	  update_curr()
4255  *	    update_min_vruntime()
4256  *	  vruntime -= min_vruntime
4257  *
4258  *	enqueue
4259  *	  update_curr()
4260  *	    update_min_vruntime()
4261  *	  vruntime += min_vruntime
4262  *
4263  * this way the vruntime transition between RQs is done when both
4264  * min_vruntime are up-to-date.
4265  *
4266  * WAKEUP (remote)
4267  *
4268  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4269  *	  vruntime -= min_vruntime
4270  *
4271  *	enqueue
4272  *	  update_curr()
4273  *	    update_min_vruntime()
4274  *	  vruntime += min_vruntime
4275  *
4276  * this way we don't have the most up-to-date min_vruntime on the originating
4277  * CPU and an up-to-date min_vruntime on the destination CPU.
4278  */
4279 
4280 static void
4281 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4282 {
4283 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4284 	bool curr = cfs_rq->curr == se;
4285 
4286 	/*
4287 	 * If we're the current task, we must renormalise before calling
4288 	 * update_curr().
4289 	 */
4290 	if (renorm && curr)
4291 		se->vruntime += cfs_rq->min_vruntime;
4292 
4293 	update_curr(cfs_rq);
4294 
4295 	/*
4296 	 * Otherwise, renormalise after, such that we're placed at the current
4297 	 * moment in time, instead of some random moment in the past. Being
4298 	 * placed in the past could significantly boost this task to the
4299 	 * fairness detriment of existing tasks.
4300 	 */
4301 	if (renorm && !curr)
4302 		se->vruntime += cfs_rq->min_vruntime;
4303 
4304 	/*
4305 	 * When enqueuing a sched_entity, we must:
4306 	 *   - Update loads to have both entity and cfs_rq synced with now.
4307 	 *   - Add its load to cfs_rq->runnable_avg
4308 	 *   - For group_entity, update its weight to reflect the new share of
4309 	 *     its group cfs_rq
4310 	 *   - Add its new weight to cfs_rq->load.weight
4311 	 */
4312 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4313 	se_update_runnable(se);
4314 	update_cfs_group(se);
4315 	account_entity_enqueue(cfs_rq, se);
4316 
4317 	if (flags & ENQUEUE_WAKEUP)
4318 		place_entity(cfs_rq, se, 0);
4319 
4320 	check_schedstat_required();
4321 	update_stats_enqueue(cfs_rq, se, flags);
4322 	check_spread(cfs_rq, se);
4323 	if (!curr)
4324 		__enqueue_entity(cfs_rq, se);
4325 	se->on_rq = 1;
4326 
4327 	/*
4328 	 * When bandwidth control is enabled, cfs might have been removed
4329 	 * because of a parent been throttled but cfs->nr_running > 1. Try to
4330 	 * add it unconditionally.
4331 	 */
4332 	if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4333 		list_add_leaf_cfs_rq(cfs_rq);
4334 
4335 	if (cfs_rq->nr_running == 1)
4336 		check_enqueue_throttle(cfs_rq);
4337 }
4338 
4339 static void __clear_buddies_last(struct sched_entity *se)
4340 {
4341 	for_each_sched_entity(se) {
4342 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4343 		if (cfs_rq->last != se)
4344 			break;
4345 
4346 		cfs_rq->last = NULL;
4347 	}
4348 }
4349 
4350 static void __clear_buddies_next(struct sched_entity *se)
4351 {
4352 	for_each_sched_entity(se) {
4353 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4354 		if (cfs_rq->next != se)
4355 			break;
4356 
4357 		cfs_rq->next = NULL;
4358 	}
4359 }
4360 
4361 static void __clear_buddies_skip(struct sched_entity *se)
4362 {
4363 	for_each_sched_entity(se) {
4364 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4365 		if (cfs_rq->skip != se)
4366 			break;
4367 
4368 		cfs_rq->skip = NULL;
4369 	}
4370 }
4371 
4372 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4373 {
4374 	if (cfs_rq->last == se)
4375 		__clear_buddies_last(se);
4376 
4377 	if (cfs_rq->next == se)
4378 		__clear_buddies_next(se);
4379 
4380 	if (cfs_rq->skip == se)
4381 		__clear_buddies_skip(se);
4382 }
4383 
4384 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4385 
4386 static void
4387 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4388 {
4389 	/*
4390 	 * Update run-time statistics of the 'current'.
4391 	 */
4392 	update_curr(cfs_rq);
4393 
4394 	/*
4395 	 * When dequeuing a sched_entity, we must:
4396 	 *   - Update loads to have both entity and cfs_rq synced with now.
4397 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4398 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4399 	 *   - For group entity, update its weight to reflect the new share
4400 	 *     of its group cfs_rq.
4401 	 */
4402 	update_load_avg(cfs_rq, se, UPDATE_TG);
4403 	se_update_runnable(se);
4404 
4405 	update_stats_dequeue(cfs_rq, se, flags);
4406 
4407 	clear_buddies(cfs_rq, se);
4408 
4409 	if (se != cfs_rq->curr)
4410 		__dequeue_entity(cfs_rq, se);
4411 	se->on_rq = 0;
4412 	account_entity_dequeue(cfs_rq, se);
4413 
4414 	/*
4415 	 * Normalize after update_curr(); which will also have moved
4416 	 * min_vruntime if @se is the one holding it back. But before doing
4417 	 * update_min_vruntime() again, which will discount @se's position and
4418 	 * can move min_vruntime forward still more.
4419 	 */
4420 	if (!(flags & DEQUEUE_SLEEP))
4421 		se->vruntime -= cfs_rq->min_vruntime;
4422 
4423 	/* return excess runtime on last dequeue */
4424 	return_cfs_rq_runtime(cfs_rq);
4425 
4426 	update_cfs_group(se);
4427 
4428 	/*
4429 	 * Now advance min_vruntime if @se was the entity holding it back,
4430 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4431 	 * put back on, and if we advance min_vruntime, we'll be placed back
4432 	 * further than we started -- ie. we'll be penalized.
4433 	 */
4434 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4435 		update_min_vruntime(cfs_rq);
4436 }
4437 
4438 /*
4439  * Preempt the current task with a newly woken task if needed:
4440  */
4441 static void
4442 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4443 {
4444 	unsigned long ideal_runtime, delta_exec;
4445 	struct sched_entity *se;
4446 	s64 delta;
4447 
4448 	ideal_runtime = sched_slice(cfs_rq, curr);
4449 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4450 	if (delta_exec > ideal_runtime) {
4451 		resched_curr(rq_of(cfs_rq));
4452 		/*
4453 		 * The current task ran long enough, ensure it doesn't get
4454 		 * re-elected due to buddy favours.
4455 		 */
4456 		clear_buddies(cfs_rq, curr);
4457 		return;
4458 	}
4459 
4460 	/*
4461 	 * Ensure that a task that missed wakeup preemption by a
4462 	 * narrow margin doesn't have to wait for a full slice.
4463 	 * This also mitigates buddy induced latencies under load.
4464 	 */
4465 	if (delta_exec < sysctl_sched_min_granularity)
4466 		return;
4467 
4468 	se = __pick_first_entity(cfs_rq);
4469 	delta = curr->vruntime - se->vruntime;
4470 
4471 	if (delta < 0)
4472 		return;
4473 
4474 	if (delta > ideal_runtime)
4475 		resched_curr(rq_of(cfs_rq));
4476 }
4477 
4478 static void
4479 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4480 {
4481 	clear_buddies(cfs_rq, se);
4482 
4483 	/* 'current' is not kept within the tree. */
4484 	if (se->on_rq) {
4485 		/*
4486 		 * Any task has to be enqueued before it get to execute on
4487 		 * a CPU. So account for the time it spent waiting on the
4488 		 * runqueue.
4489 		 */
4490 		update_stats_wait_end(cfs_rq, se);
4491 		__dequeue_entity(cfs_rq, se);
4492 		update_load_avg(cfs_rq, se, UPDATE_TG);
4493 	}
4494 
4495 	update_stats_curr_start(cfs_rq, se);
4496 	cfs_rq->curr = se;
4497 
4498 	/*
4499 	 * Track our maximum slice length, if the CPU's load is at
4500 	 * least twice that of our own weight (i.e. dont track it
4501 	 * when there are only lesser-weight tasks around):
4502 	 */
4503 	if (schedstat_enabled() &&
4504 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4505 		schedstat_set(se->statistics.slice_max,
4506 			max((u64)schedstat_val(se->statistics.slice_max),
4507 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4508 	}
4509 
4510 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4511 }
4512 
4513 static int
4514 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4515 
4516 /*
4517  * Pick the next process, keeping these things in mind, in this order:
4518  * 1) keep things fair between processes/task groups
4519  * 2) pick the "next" process, since someone really wants that to run
4520  * 3) pick the "last" process, for cache locality
4521  * 4) do not run the "skip" process, if something else is available
4522  */
4523 static struct sched_entity *
4524 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4525 {
4526 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4527 	struct sched_entity *se;
4528 
4529 	/*
4530 	 * If curr is set we have to see if its left of the leftmost entity
4531 	 * still in the tree, provided there was anything in the tree at all.
4532 	 */
4533 	if (!left || (curr && entity_before(curr, left)))
4534 		left = curr;
4535 
4536 	se = left; /* ideally we run the leftmost entity */
4537 
4538 	/*
4539 	 * Avoid running the skip buddy, if running something else can
4540 	 * be done without getting too unfair.
4541 	 */
4542 	if (cfs_rq->skip && cfs_rq->skip == se) {
4543 		struct sched_entity *second;
4544 
4545 		if (se == curr) {
4546 			second = __pick_first_entity(cfs_rq);
4547 		} else {
4548 			second = __pick_next_entity(se);
4549 			if (!second || (curr && entity_before(curr, second)))
4550 				second = curr;
4551 		}
4552 
4553 		if (second && wakeup_preempt_entity(second, left) < 1)
4554 			se = second;
4555 	}
4556 
4557 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4558 		/*
4559 		 * Someone really wants this to run. If it's not unfair, run it.
4560 		 */
4561 		se = cfs_rq->next;
4562 	} else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4563 		/*
4564 		 * Prefer last buddy, try to return the CPU to a preempted task.
4565 		 */
4566 		se = cfs_rq->last;
4567 	}
4568 
4569 	return se;
4570 }
4571 
4572 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4573 
4574 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4575 {
4576 	/*
4577 	 * If still on the runqueue then deactivate_task()
4578 	 * was not called and update_curr() has to be done:
4579 	 */
4580 	if (prev->on_rq)
4581 		update_curr(cfs_rq);
4582 
4583 	/* throttle cfs_rqs exceeding runtime */
4584 	check_cfs_rq_runtime(cfs_rq);
4585 
4586 	check_spread(cfs_rq, prev);
4587 
4588 	if (prev->on_rq) {
4589 		update_stats_wait_start(cfs_rq, prev);
4590 		/* Put 'current' back into the tree. */
4591 		__enqueue_entity(cfs_rq, prev);
4592 		/* in !on_rq case, update occurred at dequeue */
4593 		update_load_avg(cfs_rq, prev, 0);
4594 	}
4595 	cfs_rq->curr = NULL;
4596 }
4597 
4598 static void
4599 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4600 {
4601 	/*
4602 	 * Update run-time statistics of the 'current'.
4603 	 */
4604 	update_curr(cfs_rq);
4605 
4606 	/*
4607 	 * Ensure that runnable average is periodically updated.
4608 	 */
4609 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4610 	update_cfs_group(curr);
4611 
4612 #ifdef CONFIG_SCHED_HRTICK
4613 	/*
4614 	 * queued ticks are scheduled to match the slice, so don't bother
4615 	 * validating it and just reschedule.
4616 	 */
4617 	if (queued) {
4618 		resched_curr(rq_of(cfs_rq));
4619 		return;
4620 	}
4621 	/*
4622 	 * don't let the period tick interfere with the hrtick preemption
4623 	 */
4624 	if (!sched_feat(DOUBLE_TICK) &&
4625 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4626 		return;
4627 #endif
4628 
4629 	if (cfs_rq->nr_running > 1)
4630 		check_preempt_tick(cfs_rq, curr);
4631 }
4632 
4633 
4634 /**************************************************
4635  * CFS bandwidth control machinery
4636  */
4637 
4638 #ifdef CONFIG_CFS_BANDWIDTH
4639 
4640 #ifdef CONFIG_JUMP_LABEL
4641 static struct static_key __cfs_bandwidth_used;
4642 
4643 static inline bool cfs_bandwidth_used(void)
4644 {
4645 	return static_key_false(&__cfs_bandwidth_used);
4646 }
4647 
4648 void cfs_bandwidth_usage_inc(void)
4649 {
4650 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4651 }
4652 
4653 void cfs_bandwidth_usage_dec(void)
4654 {
4655 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4656 }
4657 #else /* CONFIG_JUMP_LABEL */
4658 static bool cfs_bandwidth_used(void)
4659 {
4660 	return true;
4661 }
4662 
4663 void cfs_bandwidth_usage_inc(void) {}
4664 void cfs_bandwidth_usage_dec(void) {}
4665 #endif /* CONFIG_JUMP_LABEL */
4666 
4667 /*
4668  * default period for cfs group bandwidth.
4669  * default: 0.1s, units: nanoseconds
4670  */
4671 static inline u64 default_cfs_period(void)
4672 {
4673 	return 100000000ULL;
4674 }
4675 
4676 static inline u64 sched_cfs_bandwidth_slice(void)
4677 {
4678 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4679 }
4680 
4681 /*
4682  * Replenish runtime according to assigned quota. We use sched_clock_cpu
4683  * directly instead of rq->clock to avoid adding additional synchronization
4684  * around rq->lock.
4685  *
4686  * requires cfs_b->lock
4687  */
4688 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4689 {
4690 	if (unlikely(cfs_b->quota == RUNTIME_INF))
4691 		return;
4692 
4693 	cfs_b->runtime += cfs_b->quota;
4694 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
4695 }
4696 
4697 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4698 {
4699 	return &tg->cfs_bandwidth;
4700 }
4701 
4702 /* returns 0 on failure to allocate runtime */
4703 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4704 				   struct cfs_rq *cfs_rq, u64 target_runtime)
4705 {
4706 	u64 min_amount, amount = 0;
4707 
4708 	lockdep_assert_held(&cfs_b->lock);
4709 
4710 	/* note: this is a positive sum as runtime_remaining <= 0 */
4711 	min_amount = target_runtime - cfs_rq->runtime_remaining;
4712 
4713 	if (cfs_b->quota == RUNTIME_INF)
4714 		amount = min_amount;
4715 	else {
4716 		start_cfs_bandwidth(cfs_b);
4717 
4718 		if (cfs_b->runtime > 0) {
4719 			amount = min(cfs_b->runtime, min_amount);
4720 			cfs_b->runtime -= amount;
4721 			cfs_b->idle = 0;
4722 		}
4723 	}
4724 
4725 	cfs_rq->runtime_remaining += amount;
4726 
4727 	return cfs_rq->runtime_remaining > 0;
4728 }
4729 
4730 /* returns 0 on failure to allocate runtime */
4731 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4732 {
4733 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4734 	int ret;
4735 
4736 	raw_spin_lock(&cfs_b->lock);
4737 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4738 	raw_spin_unlock(&cfs_b->lock);
4739 
4740 	return ret;
4741 }
4742 
4743 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4744 {
4745 	/* dock delta_exec before expiring quota (as it could span periods) */
4746 	cfs_rq->runtime_remaining -= delta_exec;
4747 
4748 	if (likely(cfs_rq->runtime_remaining > 0))
4749 		return;
4750 
4751 	if (cfs_rq->throttled)
4752 		return;
4753 	/*
4754 	 * if we're unable to extend our runtime we resched so that the active
4755 	 * hierarchy can be throttled
4756 	 */
4757 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4758 		resched_curr(rq_of(cfs_rq));
4759 }
4760 
4761 static __always_inline
4762 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4763 {
4764 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4765 		return;
4766 
4767 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4768 }
4769 
4770 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4771 {
4772 	return cfs_bandwidth_used() && cfs_rq->throttled;
4773 }
4774 
4775 /* check whether cfs_rq, or any parent, is throttled */
4776 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4777 {
4778 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4779 }
4780 
4781 /*
4782  * Ensure that neither of the group entities corresponding to src_cpu or
4783  * dest_cpu are members of a throttled hierarchy when performing group
4784  * load-balance operations.
4785  */
4786 static inline int throttled_lb_pair(struct task_group *tg,
4787 				    int src_cpu, int dest_cpu)
4788 {
4789 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4790 
4791 	src_cfs_rq = tg->cfs_rq[src_cpu];
4792 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4793 
4794 	return throttled_hierarchy(src_cfs_rq) ||
4795 	       throttled_hierarchy(dest_cfs_rq);
4796 }
4797 
4798 static int tg_unthrottle_up(struct task_group *tg, void *data)
4799 {
4800 	struct rq *rq = data;
4801 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4802 
4803 	cfs_rq->throttle_count--;
4804 	if (!cfs_rq->throttle_count) {
4805 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4806 					     cfs_rq->throttled_clock_task;
4807 
4808 		/* Add cfs_rq with load or one or more already running entities to the list */
4809 		if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
4810 			list_add_leaf_cfs_rq(cfs_rq);
4811 	}
4812 
4813 	return 0;
4814 }
4815 
4816 static int tg_throttle_down(struct task_group *tg, void *data)
4817 {
4818 	struct rq *rq = data;
4819 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4820 
4821 	/* group is entering throttled state, stop time */
4822 	if (!cfs_rq->throttle_count) {
4823 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4824 		list_del_leaf_cfs_rq(cfs_rq);
4825 	}
4826 	cfs_rq->throttle_count++;
4827 
4828 	return 0;
4829 }
4830 
4831 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4832 {
4833 	struct rq *rq = rq_of(cfs_rq);
4834 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4835 	struct sched_entity *se;
4836 	long task_delta, idle_task_delta, dequeue = 1;
4837 
4838 	raw_spin_lock(&cfs_b->lock);
4839 	/* This will start the period timer if necessary */
4840 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4841 		/*
4842 		 * We have raced with bandwidth becoming available, and if we
4843 		 * actually throttled the timer might not unthrottle us for an
4844 		 * entire period. We additionally needed to make sure that any
4845 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
4846 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4847 		 * for 1ns of runtime rather than just check cfs_b.
4848 		 */
4849 		dequeue = 0;
4850 	} else {
4851 		list_add_tail_rcu(&cfs_rq->throttled_list,
4852 				  &cfs_b->throttled_cfs_rq);
4853 	}
4854 	raw_spin_unlock(&cfs_b->lock);
4855 
4856 	if (!dequeue)
4857 		return false;  /* Throttle no longer required. */
4858 
4859 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4860 
4861 	/* freeze hierarchy runnable averages while throttled */
4862 	rcu_read_lock();
4863 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4864 	rcu_read_unlock();
4865 
4866 	task_delta = cfs_rq->h_nr_running;
4867 	idle_task_delta = cfs_rq->idle_h_nr_running;
4868 	for_each_sched_entity(se) {
4869 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4870 		/* throttled entity or throttle-on-deactivate */
4871 		if (!se->on_rq)
4872 			goto done;
4873 
4874 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4875 
4876 		if (cfs_rq_is_idle(group_cfs_rq(se)))
4877 			idle_task_delta = cfs_rq->h_nr_running;
4878 
4879 		qcfs_rq->h_nr_running -= task_delta;
4880 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4881 
4882 		if (qcfs_rq->load.weight) {
4883 			/* Avoid re-evaluating load for this entity: */
4884 			se = parent_entity(se);
4885 			break;
4886 		}
4887 	}
4888 
4889 	for_each_sched_entity(se) {
4890 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4891 		/* throttled entity or throttle-on-deactivate */
4892 		if (!se->on_rq)
4893 			goto done;
4894 
4895 		update_load_avg(qcfs_rq, se, 0);
4896 		se_update_runnable(se);
4897 
4898 		if (cfs_rq_is_idle(group_cfs_rq(se)))
4899 			idle_task_delta = cfs_rq->h_nr_running;
4900 
4901 		qcfs_rq->h_nr_running -= task_delta;
4902 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4903 	}
4904 
4905 	/* At this point se is NULL and we are at root level*/
4906 	sub_nr_running(rq, task_delta);
4907 
4908 done:
4909 	/*
4910 	 * Note: distribution will already see us throttled via the
4911 	 * throttled-list.  rq->lock protects completion.
4912 	 */
4913 	cfs_rq->throttled = 1;
4914 	cfs_rq->throttled_clock = rq_clock(rq);
4915 	return true;
4916 }
4917 
4918 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4919 {
4920 	struct rq *rq = rq_of(cfs_rq);
4921 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4922 	struct sched_entity *se;
4923 	long task_delta, idle_task_delta;
4924 
4925 	se = cfs_rq->tg->se[cpu_of(rq)];
4926 
4927 	cfs_rq->throttled = 0;
4928 
4929 	update_rq_clock(rq);
4930 
4931 	raw_spin_lock(&cfs_b->lock);
4932 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4933 	list_del_rcu(&cfs_rq->throttled_list);
4934 	raw_spin_unlock(&cfs_b->lock);
4935 
4936 	/* update hierarchical throttle state */
4937 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4938 
4939 	/* Nothing to run but something to decay (on_list)? Complete the branch */
4940 	if (!cfs_rq->load.weight) {
4941 		if (cfs_rq->on_list)
4942 			goto unthrottle_throttle;
4943 		return;
4944 	}
4945 
4946 	task_delta = cfs_rq->h_nr_running;
4947 	idle_task_delta = cfs_rq->idle_h_nr_running;
4948 	for_each_sched_entity(se) {
4949 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4950 
4951 		if (se->on_rq)
4952 			break;
4953 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
4954 
4955 		if (cfs_rq_is_idle(group_cfs_rq(se)))
4956 			idle_task_delta = cfs_rq->h_nr_running;
4957 
4958 		qcfs_rq->h_nr_running += task_delta;
4959 		qcfs_rq->idle_h_nr_running += idle_task_delta;
4960 
4961 		/* end evaluation on encountering a throttled cfs_rq */
4962 		if (cfs_rq_throttled(qcfs_rq))
4963 			goto unthrottle_throttle;
4964 	}
4965 
4966 	for_each_sched_entity(se) {
4967 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4968 
4969 		update_load_avg(qcfs_rq, se, UPDATE_TG);
4970 		se_update_runnable(se);
4971 
4972 		if (cfs_rq_is_idle(group_cfs_rq(se)))
4973 			idle_task_delta = cfs_rq->h_nr_running;
4974 
4975 		qcfs_rq->h_nr_running += task_delta;
4976 		qcfs_rq->idle_h_nr_running += idle_task_delta;
4977 
4978 		/* end evaluation on encountering a throttled cfs_rq */
4979 		if (cfs_rq_throttled(qcfs_rq))
4980 			goto unthrottle_throttle;
4981 
4982 		/*
4983 		 * One parent has been throttled and cfs_rq removed from the
4984 		 * list. Add it back to not break the leaf list.
4985 		 */
4986 		if (throttled_hierarchy(qcfs_rq))
4987 			list_add_leaf_cfs_rq(qcfs_rq);
4988 	}
4989 
4990 	/* At this point se is NULL and we are at root level*/
4991 	add_nr_running(rq, task_delta);
4992 
4993 unthrottle_throttle:
4994 	/*
4995 	 * The cfs_rq_throttled() breaks in the above iteration can result in
4996 	 * incomplete leaf list maintenance, resulting in triggering the
4997 	 * assertion below.
4998 	 */
4999 	for_each_sched_entity(se) {
5000 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5001 
5002 		if (list_add_leaf_cfs_rq(qcfs_rq))
5003 			break;
5004 	}
5005 
5006 	assert_list_leaf_cfs_rq(rq);
5007 
5008 	/* Determine whether we need to wake up potentially idle CPU: */
5009 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5010 		resched_curr(rq);
5011 }
5012 
5013 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5014 {
5015 	struct cfs_rq *cfs_rq;
5016 	u64 runtime, remaining = 1;
5017 
5018 	rcu_read_lock();
5019 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5020 				throttled_list) {
5021 		struct rq *rq = rq_of(cfs_rq);
5022 		struct rq_flags rf;
5023 
5024 		rq_lock_irqsave(rq, &rf);
5025 		if (!cfs_rq_throttled(cfs_rq))
5026 			goto next;
5027 
5028 		/* By the above check, this should never be true */
5029 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5030 
5031 		raw_spin_lock(&cfs_b->lock);
5032 		runtime = -cfs_rq->runtime_remaining + 1;
5033 		if (runtime > cfs_b->runtime)
5034 			runtime = cfs_b->runtime;
5035 		cfs_b->runtime -= runtime;
5036 		remaining = cfs_b->runtime;
5037 		raw_spin_unlock(&cfs_b->lock);
5038 
5039 		cfs_rq->runtime_remaining += runtime;
5040 
5041 		/* we check whether we're throttled above */
5042 		if (cfs_rq->runtime_remaining > 0)
5043 			unthrottle_cfs_rq(cfs_rq);
5044 
5045 next:
5046 		rq_unlock_irqrestore(rq, &rf);
5047 
5048 		if (!remaining)
5049 			break;
5050 	}
5051 	rcu_read_unlock();
5052 }
5053 
5054 /*
5055  * Responsible for refilling a task_group's bandwidth and unthrottling its
5056  * cfs_rqs as appropriate. If there has been no activity within the last
5057  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5058  * used to track this state.
5059  */
5060 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5061 {
5062 	int throttled;
5063 
5064 	/* no need to continue the timer with no bandwidth constraint */
5065 	if (cfs_b->quota == RUNTIME_INF)
5066 		goto out_deactivate;
5067 
5068 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5069 	cfs_b->nr_periods += overrun;
5070 
5071 	/* Refill extra burst quota even if cfs_b->idle */
5072 	__refill_cfs_bandwidth_runtime(cfs_b);
5073 
5074 	/*
5075 	 * idle depends on !throttled (for the case of a large deficit), and if
5076 	 * we're going inactive then everything else can be deferred
5077 	 */
5078 	if (cfs_b->idle && !throttled)
5079 		goto out_deactivate;
5080 
5081 	if (!throttled) {
5082 		/* mark as potentially idle for the upcoming period */
5083 		cfs_b->idle = 1;
5084 		return 0;
5085 	}
5086 
5087 	/* account preceding periods in which throttling occurred */
5088 	cfs_b->nr_throttled += overrun;
5089 
5090 	/*
5091 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
5092 	 */
5093 	while (throttled && cfs_b->runtime > 0) {
5094 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5095 		/* we can't nest cfs_b->lock while distributing bandwidth */
5096 		distribute_cfs_runtime(cfs_b);
5097 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
5098 
5099 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5100 	}
5101 
5102 	/*
5103 	 * While we are ensured activity in the period following an
5104 	 * unthrottle, this also covers the case in which the new bandwidth is
5105 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
5106 	 * timer to remain active while there are any throttled entities.)
5107 	 */
5108 	cfs_b->idle = 0;
5109 
5110 	return 0;
5111 
5112 out_deactivate:
5113 	return 1;
5114 }
5115 
5116 /* a cfs_rq won't donate quota below this amount */
5117 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5118 /* minimum remaining period time to redistribute slack quota */
5119 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5120 /* how long we wait to gather additional slack before distributing */
5121 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5122 
5123 /*
5124  * Are we near the end of the current quota period?
5125  *
5126  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5127  * hrtimer base being cleared by hrtimer_start. In the case of
5128  * migrate_hrtimers, base is never cleared, so we are fine.
5129  */
5130 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5131 {
5132 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
5133 	s64 remaining;
5134 
5135 	/* if the call-back is running a quota refresh is already occurring */
5136 	if (hrtimer_callback_running(refresh_timer))
5137 		return 1;
5138 
5139 	/* is a quota refresh about to occur? */
5140 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5141 	if (remaining < (s64)min_expire)
5142 		return 1;
5143 
5144 	return 0;
5145 }
5146 
5147 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5148 {
5149 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5150 
5151 	/* if there's a quota refresh soon don't bother with slack */
5152 	if (runtime_refresh_within(cfs_b, min_left))
5153 		return;
5154 
5155 	/* don't push forwards an existing deferred unthrottle */
5156 	if (cfs_b->slack_started)
5157 		return;
5158 	cfs_b->slack_started = true;
5159 
5160 	hrtimer_start(&cfs_b->slack_timer,
5161 			ns_to_ktime(cfs_bandwidth_slack_period),
5162 			HRTIMER_MODE_REL);
5163 }
5164 
5165 /* we know any runtime found here is valid as update_curr() precedes return */
5166 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5167 {
5168 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5169 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5170 
5171 	if (slack_runtime <= 0)
5172 		return;
5173 
5174 	raw_spin_lock(&cfs_b->lock);
5175 	if (cfs_b->quota != RUNTIME_INF) {
5176 		cfs_b->runtime += slack_runtime;
5177 
5178 		/* we are under rq->lock, defer unthrottling using a timer */
5179 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5180 		    !list_empty(&cfs_b->throttled_cfs_rq))
5181 			start_cfs_slack_bandwidth(cfs_b);
5182 	}
5183 	raw_spin_unlock(&cfs_b->lock);
5184 
5185 	/* even if it's not valid for return we don't want to try again */
5186 	cfs_rq->runtime_remaining -= slack_runtime;
5187 }
5188 
5189 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5190 {
5191 	if (!cfs_bandwidth_used())
5192 		return;
5193 
5194 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5195 		return;
5196 
5197 	__return_cfs_rq_runtime(cfs_rq);
5198 }
5199 
5200 /*
5201  * This is done with a timer (instead of inline with bandwidth return) since
5202  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5203  */
5204 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5205 {
5206 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5207 	unsigned long flags;
5208 
5209 	/* confirm we're still not at a refresh boundary */
5210 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5211 	cfs_b->slack_started = false;
5212 
5213 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5214 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5215 		return;
5216 	}
5217 
5218 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5219 		runtime = cfs_b->runtime;
5220 
5221 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5222 
5223 	if (!runtime)
5224 		return;
5225 
5226 	distribute_cfs_runtime(cfs_b);
5227 }
5228 
5229 /*
5230  * When a group wakes up we want to make sure that its quota is not already
5231  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5232  * runtime as update_curr() throttling can not trigger until it's on-rq.
5233  */
5234 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5235 {
5236 	if (!cfs_bandwidth_used())
5237 		return;
5238 
5239 	/* an active group must be handled by the update_curr()->put() path */
5240 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5241 		return;
5242 
5243 	/* ensure the group is not already throttled */
5244 	if (cfs_rq_throttled(cfs_rq))
5245 		return;
5246 
5247 	/* update runtime allocation */
5248 	account_cfs_rq_runtime(cfs_rq, 0);
5249 	if (cfs_rq->runtime_remaining <= 0)
5250 		throttle_cfs_rq(cfs_rq);
5251 }
5252 
5253 static void sync_throttle(struct task_group *tg, int cpu)
5254 {
5255 	struct cfs_rq *pcfs_rq, *cfs_rq;
5256 
5257 	if (!cfs_bandwidth_used())
5258 		return;
5259 
5260 	if (!tg->parent)
5261 		return;
5262 
5263 	cfs_rq = tg->cfs_rq[cpu];
5264 	pcfs_rq = tg->parent->cfs_rq[cpu];
5265 
5266 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5267 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5268 }
5269 
5270 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5271 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5272 {
5273 	if (!cfs_bandwidth_used())
5274 		return false;
5275 
5276 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5277 		return false;
5278 
5279 	/*
5280 	 * it's possible for a throttled entity to be forced into a running
5281 	 * state (e.g. set_curr_task), in this case we're finished.
5282 	 */
5283 	if (cfs_rq_throttled(cfs_rq))
5284 		return true;
5285 
5286 	return throttle_cfs_rq(cfs_rq);
5287 }
5288 
5289 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5290 {
5291 	struct cfs_bandwidth *cfs_b =
5292 		container_of(timer, struct cfs_bandwidth, slack_timer);
5293 
5294 	do_sched_cfs_slack_timer(cfs_b);
5295 
5296 	return HRTIMER_NORESTART;
5297 }
5298 
5299 extern const u64 max_cfs_quota_period;
5300 
5301 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5302 {
5303 	struct cfs_bandwidth *cfs_b =
5304 		container_of(timer, struct cfs_bandwidth, period_timer);
5305 	unsigned long flags;
5306 	int overrun;
5307 	int idle = 0;
5308 	int count = 0;
5309 
5310 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5311 	for (;;) {
5312 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5313 		if (!overrun)
5314 			break;
5315 
5316 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5317 
5318 		if (++count > 3) {
5319 			u64 new, old = ktime_to_ns(cfs_b->period);
5320 
5321 			/*
5322 			 * Grow period by a factor of 2 to avoid losing precision.
5323 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5324 			 * to fail.
5325 			 */
5326 			new = old * 2;
5327 			if (new < max_cfs_quota_period) {
5328 				cfs_b->period = ns_to_ktime(new);
5329 				cfs_b->quota *= 2;
5330 				cfs_b->burst *= 2;
5331 
5332 				pr_warn_ratelimited(
5333 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5334 					smp_processor_id(),
5335 					div_u64(new, NSEC_PER_USEC),
5336 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5337 			} else {
5338 				pr_warn_ratelimited(
5339 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5340 					smp_processor_id(),
5341 					div_u64(old, NSEC_PER_USEC),
5342 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5343 			}
5344 
5345 			/* reset count so we don't come right back in here */
5346 			count = 0;
5347 		}
5348 	}
5349 	if (idle)
5350 		cfs_b->period_active = 0;
5351 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5352 
5353 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5354 }
5355 
5356 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5357 {
5358 	raw_spin_lock_init(&cfs_b->lock);
5359 	cfs_b->runtime = 0;
5360 	cfs_b->quota = RUNTIME_INF;
5361 	cfs_b->period = ns_to_ktime(default_cfs_period());
5362 	cfs_b->burst = 0;
5363 
5364 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5365 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5366 	cfs_b->period_timer.function = sched_cfs_period_timer;
5367 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5368 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5369 	cfs_b->slack_started = false;
5370 }
5371 
5372 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5373 {
5374 	cfs_rq->runtime_enabled = 0;
5375 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5376 }
5377 
5378 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5379 {
5380 	lockdep_assert_held(&cfs_b->lock);
5381 
5382 	if (cfs_b->period_active)
5383 		return;
5384 
5385 	cfs_b->period_active = 1;
5386 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5387 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5388 }
5389 
5390 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5391 {
5392 	/* init_cfs_bandwidth() was not called */
5393 	if (!cfs_b->throttled_cfs_rq.next)
5394 		return;
5395 
5396 	hrtimer_cancel(&cfs_b->period_timer);
5397 	hrtimer_cancel(&cfs_b->slack_timer);
5398 }
5399 
5400 /*
5401  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5402  *
5403  * The race is harmless, since modifying bandwidth settings of unhooked group
5404  * bits doesn't do much.
5405  */
5406 
5407 /* cpu online callback */
5408 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5409 {
5410 	struct task_group *tg;
5411 
5412 	lockdep_assert_rq_held(rq);
5413 
5414 	rcu_read_lock();
5415 	list_for_each_entry_rcu(tg, &task_groups, list) {
5416 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5417 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5418 
5419 		raw_spin_lock(&cfs_b->lock);
5420 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5421 		raw_spin_unlock(&cfs_b->lock);
5422 	}
5423 	rcu_read_unlock();
5424 }
5425 
5426 /* cpu offline callback */
5427 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5428 {
5429 	struct task_group *tg;
5430 
5431 	lockdep_assert_rq_held(rq);
5432 
5433 	rcu_read_lock();
5434 	list_for_each_entry_rcu(tg, &task_groups, list) {
5435 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5436 
5437 		if (!cfs_rq->runtime_enabled)
5438 			continue;
5439 
5440 		/*
5441 		 * clock_task is not advancing so we just need to make sure
5442 		 * there's some valid quota amount
5443 		 */
5444 		cfs_rq->runtime_remaining = 1;
5445 		/*
5446 		 * Offline rq is schedulable till CPU is completely disabled
5447 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5448 		 */
5449 		cfs_rq->runtime_enabled = 0;
5450 
5451 		if (cfs_rq_throttled(cfs_rq))
5452 			unthrottle_cfs_rq(cfs_rq);
5453 	}
5454 	rcu_read_unlock();
5455 }
5456 
5457 #else /* CONFIG_CFS_BANDWIDTH */
5458 
5459 static inline bool cfs_bandwidth_used(void)
5460 {
5461 	return false;
5462 }
5463 
5464 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5465 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5466 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5467 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5468 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5469 
5470 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5471 {
5472 	return 0;
5473 }
5474 
5475 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5476 {
5477 	return 0;
5478 }
5479 
5480 static inline int throttled_lb_pair(struct task_group *tg,
5481 				    int src_cpu, int dest_cpu)
5482 {
5483 	return 0;
5484 }
5485 
5486 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5487 
5488 #ifdef CONFIG_FAIR_GROUP_SCHED
5489 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5490 #endif
5491 
5492 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5493 {
5494 	return NULL;
5495 }
5496 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5497 static inline void update_runtime_enabled(struct rq *rq) {}
5498 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5499 
5500 #endif /* CONFIG_CFS_BANDWIDTH */
5501 
5502 /**************************************************
5503  * CFS operations on tasks:
5504  */
5505 
5506 #ifdef CONFIG_SCHED_HRTICK
5507 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5508 {
5509 	struct sched_entity *se = &p->se;
5510 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5511 
5512 	SCHED_WARN_ON(task_rq(p) != rq);
5513 
5514 	if (rq->cfs.h_nr_running > 1) {
5515 		u64 slice = sched_slice(cfs_rq, se);
5516 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5517 		s64 delta = slice - ran;
5518 
5519 		if (delta < 0) {
5520 			if (task_current(rq, p))
5521 				resched_curr(rq);
5522 			return;
5523 		}
5524 		hrtick_start(rq, delta);
5525 	}
5526 }
5527 
5528 /*
5529  * called from enqueue/dequeue and updates the hrtick when the
5530  * current task is from our class and nr_running is low enough
5531  * to matter.
5532  */
5533 static void hrtick_update(struct rq *rq)
5534 {
5535 	struct task_struct *curr = rq->curr;
5536 
5537 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5538 		return;
5539 
5540 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5541 		hrtick_start_fair(rq, curr);
5542 }
5543 #else /* !CONFIG_SCHED_HRTICK */
5544 static inline void
5545 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5546 {
5547 }
5548 
5549 static inline void hrtick_update(struct rq *rq)
5550 {
5551 }
5552 #endif
5553 
5554 #ifdef CONFIG_SMP
5555 static inline unsigned long cpu_util(int cpu);
5556 
5557 static inline bool cpu_overutilized(int cpu)
5558 {
5559 	return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5560 }
5561 
5562 static inline void update_overutilized_status(struct rq *rq)
5563 {
5564 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5565 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5566 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5567 	}
5568 }
5569 #else
5570 static inline void update_overutilized_status(struct rq *rq) { }
5571 #endif
5572 
5573 /* Runqueue only has SCHED_IDLE tasks enqueued */
5574 static int sched_idle_rq(struct rq *rq)
5575 {
5576 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5577 			rq->nr_running);
5578 }
5579 
5580 #ifdef CONFIG_SMP
5581 static int sched_idle_cpu(int cpu)
5582 {
5583 	return sched_idle_rq(cpu_rq(cpu));
5584 }
5585 #endif
5586 
5587 /*
5588  * The enqueue_task method is called before nr_running is
5589  * increased. Here we update the fair scheduling stats and
5590  * then put the task into the rbtree:
5591  */
5592 static void
5593 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5594 {
5595 	struct cfs_rq *cfs_rq;
5596 	struct sched_entity *se = &p->se;
5597 	int idle_h_nr_running = task_has_idle_policy(p);
5598 	int task_new = !(flags & ENQUEUE_WAKEUP);
5599 
5600 	/*
5601 	 * The code below (indirectly) updates schedutil which looks at
5602 	 * the cfs_rq utilization to select a frequency.
5603 	 * Let's add the task's estimated utilization to the cfs_rq's
5604 	 * estimated utilization, before we update schedutil.
5605 	 */
5606 	util_est_enqueue(&rq->cfs, p);
5607 
5608 	/*
5609 	 * If in_iowait is set, the code below may not trigger any cpufreq
5610 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5611 	 * passed.
5612 	 */
5613 	if (p->in_iowait)
5614 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5615 
5616 	for_each_sched_entity(se) {
5617 		if (se->on_rq)
5618 			break;
5619 		cfs_rq = cfs_rq_of(se);
5620 		enqueue_entity(cfs_rq, se, flags);
5621 
5622 		cfs_rq->h_nr_running++;
5623 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5624 
5625 		if (cfs_rq_is_idle(cfs_rq))
5626 			idle_h_nr_running = 1;
5627 
5628 		/* end evaluation on encountering a throttled cfs_rq */
5629 		if (cfs_rq_throttled(cfs_rq))
5630 			goto enqueue_throttle;
5631 
5632 		flags = ENQUEUE_WAKEUP;
5633 	}
5634 
5635 	for_each_sched_entity(se) {
5636 		cfs_rq = cfs_rq_of(se);
5637 
5638 		update_load_avg(cfs_rq, se, UPDATE_TG);
5639 		se_update_runnable(se);
5640 		update_cfs_group(se);
5641 
5642 		cfs_rq->h_nr_running++;
5643 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5644 
5645 		if (cfs_rq_is_idle(cfs_rq))
5646 			idle_h_nr_running = 1;
5647 
5648 		/* end evaluation on encountering a throttled cfs_rq */
5649 		if (cfs_rq_throttled(cfs_rq))
5650 			goto enqueue_throttle;
5651 
5652                /*
5653                 * One parent has been throttled and cfs_rq removed from the
5654                 * list. Add it back to not break the leaf list.
5655                 */
5656                if (throttled_hierarchy(cfs_rq))
5657                        list_add_leaf_cfs_rq(cfs_rq);
5658 	}
5659 
5660 	/* At this point se is NULL and we are at root level*/
5661 	add_nr_running(rq, 1);
5662 
5663 	/*
5664 	 * Since new tasks are assigned an initial util_avg equal to
5665 	 * half of the spare capacity of their CPU, tiny tasks have the
5666 	 * ability to cross the overutilized threshold, which will
5667 	 * result in the load balancer ruining all the task placement
5668 	 * done by EAS. As a way to mitigate that effect, do not account
5669 	 * for the first enqueue operation of new tasks during the
5670 	 * overutilized flag detection.
5671 	 *
5672 	 * A better way of solving this problem would be to wait for
5673 	 * the PELT signals of tasks to converge before taking them
5674 	 * into account, but that is not straightforward to implement,
5675 	 * and the following generally works well enough in practice.
5676 	 */
5677 	if (!task_new)
5678 		update_overutilized_status(rq);
5679 
5680 enqueue_throttle:
5681 	if (cfs_bandwidth_used()) {
5682 		/*
5683 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5684 		 * breaks in the above iteration can result in incomplete
5685 		 * leaf list maintenance, resulting in triggering the assertion
5686 		 * below.
5687 		 */
5688 		for_each_sched_entity(se) {
5689 			cfs_rq = cfs_rq_of(se);
5690 
5691 			if (list_add_leaf_cfs_rq(cfs_rq))
5692 				break;
5693 		}
5694 	}
5695 
5696 	assert_list_leaf_cfs_rq(rq);
5697 
5698 	hrtick_update(rq);
5699 }
5700 
5701 static void set_next_buddy(struct sched_entity *se);
5702 
5703 /*
5704  * The dequeue_task method is called before nr_running is
5705  * decreased. We remove the task from the rbtree and
5706  * update the fair scheduling stats:
5707  */
5708 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5709 {
5710 	struct cfs_rq *cfs_rq;
5711 	struct sched_entity *se = &p->se;
5712 	int task_sleep = flags & DEQUEUE_SLEEP;
5713 	int idle_h_nr_running = task_has_idle_policy(p);
5714 	bool was_sched_idle = sched_idle_rq(rq);
5715 
5716 	util_est_dequeue(&rq->cfs, p);
5717 
5718 	for_each_sched_entity(se) {
5719 		cfs_rq = cfs_rq_of(se);
5720 		dequeue_entity(cfs_rq, se, flags);
5721 
5722 		cfs_rq->h_nr_running--;
5723 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5724 
5725 		if (cfs_rq_is_idle(cfs_rq))
5726 			idle_h_nr_running = 1;
5727 
5728 		/* end evaluation on encountering a throttled cfs_rq */
5729 		if (cfs_rq_throttled(cfs_rq))
5730 			goto dequeue_throttle;
5731 
5732 		/* Don't dequeue parent if it has other entities besides us */
5733 		if (cfs_rq->load.weight) {
5734 			/* Avoid re-evaluating load for this entity: */
5735 			se = parent_entity(se);
5736 			/*
5737 			 * Bias pick_next to pick a task from this cfs_rq, as
5738 			 * p is sleeping when it is within its sched_slice.
5739 			 */
5740 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5741 				set_next_buddy(se);
5742 			break;
5743 		}
5744 		flags |= DEQUEUE_SLEEP;
5745 	}
5746 
5747 	for_each_sched_entity(se) {
5748 		cfs_rq = cfs_rq_of(se);
5749 
5750 		update_load_avg(cfs_rq, se, UPDATE_TG);
5751 		se_update_runnable(se);
5752 		update_cfs_group(se);
5753 
5754 		cfs_rq->h_nr_running--;
5755 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5756 
5757 		if (cfs_rq_is_idle(cfs_rq))
5758 			idle_h_nr_running = 1;
5759 
5760 		/* end evaluation on encountering a throttled cfs_rq */
5761 		if (cfs_rq_throttled(cfs_rq))
5762 			goto dequeue_throttle;
5763 
5764 	}
5765 
5766 	/* At this point se is NULL and we are at root level*/
5767 	sub_nr_running(rq, 1);
5768 
5769 	/* balance early to pull high priority tasks */
5770 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5771 		rq->next_balance = jiffies;
5772 
5773 dequeue_throttle:
5774 	util_est_update(&rq->cfs, p, task_sleep);
5775 	hrtick_update(rq);
5776 }
5777 
5778 #ifdef CONFIG_SMP
5779 
5780 /* Working cpumask for: load_balance, load_balance_newidle. */
5781 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5782 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5783 
5784 #ifdef CONFIG_NO_HZ_COMMON
5785 
5786 static struct {
5787 	cpumask_var_t idle_cpus_mask;
5788 	atomic_t nr_cpus;
5789 	int has_blocked;		/* Idle CPUS has blocked load */
5790 	unsigned long next_balance;     /* in jiffy units */
5791 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5792 } nohz ____cacheline_aligned;
5793 
5794 #endif /* CONFIG_NO_HZ_COMMON */
5795 
5796 static unsigned long cpu_load(struct rq *rq)
5797 {
5798 	return cfs_rq_load_avg(&rq->cfs);
5799 }
5800 
5801 /*
5802  * cpu_load_without - compute CPU load without any contributions from *p
5803  * @cpu: the CPU which load is requested
5804  * @p: the task which load should be discounted
5805  *
5806  * The load of a CPU is defined by the load of tasks currently enqueued on that
5807  * CPU as well as tasks which are currently sleeping after an execution on that
5808  * CPU.
5809  *
5810  * This method returns the load of the specified CPU by discounting the load of
5811  * the specified task, whenever the task is currently contributing to the CPU
5812  * load.
5813  */
5814 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5815 {
5816 	struct cfs_rq *cfs_rq;
5817 	unsigned int load;
5818 
5819 	/* Task has no contribution or is new */
5820 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5821 		return cpu_load(rq);
5822 
5823 	cfs_rq = &rq->cfs;
5824 	load = READ_ONCE(cfs_rq->avg.load_avg);
5825 
5826 	/* Discount task's util from CPU's util */
5827 	lsub_positive(&load, task_h_load(p));
5828 
5829 	return load;
5830 }
5831 
5832 static unsigned long cpu_runnable(struct rq *rq)
5833 {
5834 	return cfs_rq_runnable_avg(&rq->cfs);
5835 }
5836 
5837 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5838 {
5839 	struct cfs_rq *cfs_rq;
5840 	unsigned int runnable;
5841 
5842 	/* Task has no contribution or is new */
5843 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5844 		return cpu_runnable(rq);
5845 
5846 	cfs_rq = &rq->cfs;
5847 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5848 
5849 	/* Discount task's runnable from CPU's runnable */
5850 	lsub_positive(&runnable, p->se.avg.runnable_avg);
5851 
5852 	return runnable;
5853 }
5854 
5855 static unsigned long capacity_of(int cpu)
5856 {
5857 	return cpu_rq(cpu)->cpu_capacity;
5858 }
5859 
5860 static void record_wakee(struct task_struct *p)
5861 {
5862 	/*
5863 	 * Only decay a single time; tasks that have less then 1 wakeup per
5864 	 * jiffy will not have built up many flips.
5865 	 */
5866 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5867 		current->wakee_flips >>= 1;
5868 		current->wakee_flip_decay_ts = jiffies;
5869 	}
5870 
5871 	if (current->last_wakee != p) {
5872 		current->last_wakee = p;
5873 		current->wakee_flips++;
5874 	}
5875 }
5876 
5877 /*
5878  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5879  *
5880  * A waker of many should wake a different task than the one last awakened
5881  * at a frequency roughly N times higher than one of its wakees.
5882  *
5883  * In order to determine whether we should let the load spread vs consolidating
5884  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5885  * partner, and a factor of lls_size higher frequency in the other.
5886  *
5887  * With both conditions met, we can be relatively sure that the relationship is
5888  * non-monogamous, with partner count exceeding socket size.
5889  *
5890  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5891  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5892  * socket size.
5893  */
5894 static int wake_wide(struct task_struct *p)
5895 {
5896 	unsigned int master = current->wakee_flips;
5897 	unsigned int slave = p->wakee_flips;
5898 	int factor = __this_cpu_read(sd_llc_size);
5899 
5900 	if (master < slave)
5901 		swap(master, slave);
5902 	if (slave < factor || master < slave * factor)
5903 		return 0;
5904 	return 1;
5905 }
5906 
5907 /*
5908  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5909  * soonest. For the purpose of speed we only consider the waking and previous
5910  * CPU.
5911  *
5912  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5913  *			cache-affine and is (or	will be) idle.
5914  *
5915  * wake_affine_weight() - considers the weight to reflect the average
5916  *			  scheduling latency of the CPUs. This seems to work
5917  *			  for the overloaded case.
5918  */
5919 static int
5920 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5921 {
5922 	/*
5923 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5924 	 * context. Only allow the move if cache is shared. Otherwise an
5925 	 * interrupt intensive workload could force all tasks onto one
5926 	 * node depending on the IO topology or IRQ affinity settings.
5927 	 *
5928 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5929 	 * There is no guarantee that the cache hot data from an interrupt
5930 	 * is more important than cache hot data on the prev_cpu and from
5931 	 * a cpufreq perspective, it's better to have higher utilisation
5932 	 * on one CPU.
5933 	 */
5934 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5935 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5936 
5937 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5938 		return this_cpu;
5939 
5940 	if (available_idle_cpu(prev_cpu))
5941 		return prev_cpu;
5942 
5943 	return nr_cpumask_bits;
5944 }
5945 
5946 static int
5947 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5948 		   int this_cpu, int prev_cpu, int sync)
5949 {
5950 	s64 this_eff_load, prev_eff_load;
5951 	unsigned long task_load;
5952 
5953 	this_eff_load = cpu_load(cpu_rq(this_cpu));
5954 
5955 	if (sync) {
5956 		unsigned long current_load = task_h_load(current);
5957 
5958 		if (current_load > this_eff_load)
5959 			return this_cpu;
5960 
5961 		this_eff_load -= current_load;
5962 	}
5963 
5964 	task_load = task_h_load(p);
5965 
5966 	this_eff_load += task_load;
5967 	if (sched_feat(WA_BIAS))
5968 		this_eff_load *= 100;
5969 	this_eff_load *= capacity_of(prev_cpu);
5970 
5971 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5972 	prev_eff_load -= task_load;
5973 	if (sched_feat(WA_BIAS))
5974 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5975 	prev_eff_load *= capacity_of(this_cpu);
5976 
5977 	/*
5978 	 * If sync, adjust the weight of prev_eff_load such that if
5979 	 * prev_eff == this_eff that select_idle_sibling() will consider
5980 	 * stacking the wakee on top of the waker if no other CPU is
5981 	 * idle.
5982 	 */
5983 	if (sync)
5984 		prev_eff_load += 1;
5985 
5986 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5987 }
5988 
5989 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5990 		       int this_cpu, int prev_cpu, int sync)
5991 {
5992 	int target = nr_cpumask_bits;
5993 
5994 	if (sched_feat(WA_IDLE))
5995 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5996 
5997 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5998 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5999 
6000 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
6001 	if (target == nr_cpumask_bits)
6002 		return prev_cpu;
6003 
6004 	schedstat_inc(sd->ttwu_move_affine);
6005 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
6006 	return target;
6007 }
6008 
6009 static struct sched_group *
6010 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6011 
6012 /*
6013  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6014  */
6015 static int
6016 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6017 {
6018 	unsigned long load, min_load = ULONG_MAX;
6019 	unsigned int min_exit_latency = UINT_MAX;
6020 	u64 latest_idle_timestamp = 0;
6021 	int least_loaded_cpu = this_cpu;
6022 	int shallowest_idle_cpu = -1;
6023 	int i;
6024 
6025 	/* Check if we have any choice: */
6026 	if (group->group_weight == 1)
6027 		return cpumask_first(sched_group_span(group));
6028 
6029 	/* Traverse only the allowed CPUs */
6030 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6031 		struct rq *rq = cpu_rq(i);
6032 
6033 		if (!sched_core_cookie_match(rq, p))
6034 			continue;
6035 
6036 		if (sched_idle_cpu(i))
6037 			return i;
6038 
6039 		if (available_idle_cpu(i)) {
6040 			struct cpuidle_state *idle = idle_get_state(rq);
6041 			if (idle && idle->exit_latency < min_exit_latency) {
6042 				/*
6043 				 * We give priority to a CPU whose idle state
6044 				 * has the smallest exit latency irrespective
6045 				 * of any idle timestamp.
6046 				 */
6047 				min_exit_latency = idle->exit_latency;
6048 				latest_idle_timestamp = rq->idle_stamp;
6049 				shallowest_idle_cpu = i;
6050 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
6051 				   rq->idle_stamp > latest_idle_timestamp) {
6052 				/*
6053 				 * If equal or no active idle state, then
6054 				 * the most recently idled CPU might have
6055 				 * a warmer cache.
6056 				 */
6057 				latest_idle_timestamp = rq->idle_stamp;
6058 				shallowest_idle_cpu = i;
6059 			}
6060 		} else if (shallowest_idle_cpu == -1) {
6061 			load = cpu_load(cpu_rq(i));
6062 			if (load < min_load) {
6063 				min_load = load;
6064 				least_loaded_cpu = i;
6065 			}
6066 		}
6067 	}
6068 
6069 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6070 }
6071 
6072 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6073 				  int cpu, int prev_cpu, int sd_flag)
6074 {
6075 	int new_cpu = cpu;
6076 
6077 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6078 		return prev_cpu;
6079 
6080 	/*
6081 	 * We need task's util for cpu_util_without, sync it up to
6082 	 * prev_cpu's last_update_time.
6083 	 */
6084 	if (!(sd_flag & SD_BALANCE_FORK))
6085 		sync_entity_load_avg(&p->se);
6086 
6087 	while (sd) {
6088 		struct sched_group *group;
6089 		struct sched_domain *tmp;
6090 		int weight;
6091 
6092 		if (!(sd->flags & sd_flag)) {
6093 			sd = sd->child;
6094 			continue;
6095 		}
6096 
6097 		group = find_idlest_group(sd, p, cpu);
6098 		if (!group) {
6099 			sd = sd->child;
6100 			continue;
6101 		}
6102 
6103 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6104 		if (new_cpu == cpu) {
6105 			/* Now try balancing at a lower domain level of 'cpu': */
6106 			sd = sd->child;
6107 			continue;
6108 		}
6109 
6110 		/* Now try balancing at a lower domain level of 'new_cpu': */
6111 		cpu = new_cpu;
6112 		weight = sd->span_weight;
6113 		sd = NULL;
6114 		for_each_domain(cpu, tmp) {
6115 			if (weight <= tmp->span_weight)
6116 				break;
6117 			if (tmp->flags & sd_flag)
6118 				sd = tmp;
6119 		}
6120 	}
6121 
6122 	return new_cpu;
6123 }
6124 
6125 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6126 {
6127 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6128 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
6129 		return cpu;
6130 
6131 	return -1;
6132 }
6133 
6134 #ifdef CONFIG_SCHED_SMT
6135 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6136 EXPORT_SYMBOL_GPL(sched_smt_present);
6137 
6138 static inline void set_idle_cores(int cpu, int val)
6139 {
6140 	struct sched_domain_shared *sds;
6141 
6142 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6143 	if (sds)
6144 		WRITE_ONCE(sds->has_idle_cores, val);
6145 }
6146 
6147 static inline bool test_idle_cores(int cpu, bool def)
6148 {
6149 	struct sched_domain_shared *sds;
6150 
6151 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6152 	if (sds)
6153 		return READ_ONCE(sds->has_idle_cores);
6154 
6155 	return def;
6156 }
6157 
6158 /*
6159  * Scans the local SMT mask to see if the entire core is idle, and records this
6160  * information in sd_llc_shared->has_idle_cores.
6161  *
6162  * Since SMT siblings share all cache levels, inspecting this limited remote
6163  * state should be fairly cheap.
6164  */
6165 void __update_idle_core(struct rq *rq)
6166 {
6167 	int core = cpu_of(rq);
6168 	int cpu;
6169 
6170 	rcu_read_lock();
6171 	if (test_idle_cores(core, true))
6172 		goto unlock;
6173 
6174 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6175 		if (cpu == core)
6176 			continue;
6177 
6178 		if (!available_idle_cpu(cpu))
6179 			goto unlock;
6180 	}
6181 
6182 	set_idle_cores(core, 1);
6183 unlock:
6184 	rcu_read_unlock();
6185 }
6186 
6187 /*
6188  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6189  * there are no idle cores left in the system; tracked through
6190  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6191  */
6192 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6193 {
6194 	bool idle = true;
6195 	int cpu;
6196 
6197 	if (!static_branch_likely(&sched_smt_present))
6198 		return __select_idle_cpu(core, p);
6199 
6200 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6201 		if (!available_idle_cpu(cpu)) {
6202 			idle = false;
6203 			if (*idle_cpu == -1) {
6204 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6205 					*idle_cpu = cpu;
6206 					break;
6207 				}
6208 				continue;
6209 			}
6210 			break;
6211 		}
6212 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6213 			*idle_cpu = cpu;
6214 	}
6215 
6216 	if (idle)
6217 		return core;
6218 
6219 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6220 	return -1;
6221 }
6222 
6223 /*
6224  * Scan the local SMT mask for idle CPUs.
6225  */
6226 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6227 {
6228 	int cpu;
6229 
6230 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6231 		if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6232 		    !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6233 			continue;
6234 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6235 			return cpu;
6236 	}
6237 
6238 	return -1;
6239 }
6240 
6241 #else /* CONFIG_SCHED_SMT */
6242 
6243 static inline void set_idle_cores(int cpu, int val)
6244 {
6245 }
6246 
6247 static inline bool test_idle_cores(int cpu, bool def)
6248 {
6249 	return def;
6250 }
6251 
6252 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6253 {
6254 	return __select_idle_cpu(core, p);
6255 }
6256 
6257 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6258 {
6259 	return -1;
6260 }
6261 
6262 #endif /* CONFIG_SCHED_SMT */
6263 
6264 /*
6265  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6266  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6267  * average idle time for this rq (as found in rq->avg_idle).
6268  */
6269 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6270 {
6271 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6272 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
6273 	struct rq *this_rq = this_rq();
6274 	int this = smp_processor_id();
6275 	struct sched_domain *this_sd;
6276 	u64 time = 0;
6277 
6278 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6279 	if (!this_sd)
6280 		return -1;
6281 
6282 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6283 
6284 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6285 		u64 avg_cost, avg_idle, span_avg;
6286 		unsigned long now = jiffies;
6287 
6288 		/*
6289 		 * If we're busy, the assumption that the last idle period
6290 		 * predicts the future is flawed; age away the remaining
6291 		 * predicted idle time.
6292 		 */
6293 		if (unlikely(this_rq->wake_stamp < now)) {
6294 			while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6295 				this_rq->wake_stamp++;
6296 				this_rq->wake_avg_idle >>= 1;
6297 			}
6298 		}
6299 
6300 		avg_idle = this_rq->wake_avg_idle;
6301 		avg_cost = this_sd->avg_scan_cost + 1;
6302 
6303 		span_avg = sd->span_weight * avg_idle;
6304 		if (span_avg > 4*avg_cost)
6305 			nr = div_u64(span_avg, avg_cost);
6306 		else
6307 			nr = 4;
6308 
6309 		time = cpu_clock(this);
6310 	}
6311 
6312 	for_each_cpu_wrap(cpu, cpus, target + 1) {
6313 		if (has_idle_core) {
6314 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
6315 			if ((unsigned int)i < nr_cpumask_bits)
6316 				return i;
6317 
6318 		} else {
6319 			if (!--nr)
6320 				return -1;
6321 			idle_cpu = __select_idle_cpu(cpu, p);
6322 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
6323 				break;
6324 		}
6325 	}
6326 
6327 	if (has_idle_core)
6328 		set_idle_cores(target, false);
6329 
6330 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6331 		time = cpu_clock(this) - time;
6332 
6333 		/*
6334 		 * Account for the scan cost of wakeups against the average
6335 		 * idle time.
6336 		 */
6337 		this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6338 
6339 		update_avg(&this_sd->avg_scan_cost, time);
6340 	}
6341 
6342 	return idle_cpu;
6343 }
6344 
6345 /*
6346  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6347  * the task fits. If no CPU is big enough, but there are idle ones, try to
6348  * maximize capacity.
6349  */
6350 static int
6351 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6352 {
6353 	unsigned long task_util, best_cap = 0;
6354 	int cpu, best_cpu = -1;
6355 	struct cpumask *cpus;
6356 
6357 	cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6358 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6359 
6360 	task_util = uclamp_task_util(p);
6361 
6362 	for_each_cpu_wrap(cpu, cpus, target) {
6363 		unsigned long cpu_cap = capacity_of(cpu);
6364 
6365 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6366 			continue;
6367 		if (fits_capacity(task_util, cpu_cap))
6368 			return cpu;
6369 
6370 		if (cpu_cap > best_cap) {
6371 			best_cap = cpu_cap;
6372 			best_cpu = cpu;
6373 		}
6374 	}
6375 
6376 	return best_cpu;
6377 }
6378 
6379 static inline bool asym_fits_capacity(int task_util, int cpu)
6380 {
6381 	if (static_branch_unlikely(&sched_asym_cpucapacity))
6382 		return fits_capacity(task_util, capacity_of(cpu));
6383 
6384 	return true;
6385 }
6386 
6387 /*
6388  * Try and locate an idle core/thread in the LLC cache domain.
6389  */
6390 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6391 {
6392 	bool has_idle_core = false;
6393 	struct sched_domain *sd;
6394 	unsigned long task_util;
6395 	int i, recent_used_cpu;
6396 
6397 	/*
6398 	 * On asymmetric system, update task utilization because we will check
6399 	 * that the task fits with cpu's capacity.
6400 	 */
6401 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6402 		sync_entity_load_avg(&p->se);
6403 		task_util = uclamp_task_util(p);
6404 	}
6405 
6406 	/*
6407 	 * per-cpu select_idle_mask usage
6408 	 */
6409 	lockdep_assert_irqs_disabled();
6410 
6411 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6412 	    asym_fits_capacity(task_util, target))
6413 		return target;
6414 
6415 	/*
6416 	 * If the previous CPU is cache affine and idle, don't be stupid:
6417 	 */
6418 	if (prev != target && cpus_share_cache(prev, target) &&
6419 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6420 	    asym_fits_capacity(task_util, prev))
6421 		return prev;
6422 
6423 	/*
6424 	 * Allow a per-cpu kthread to stack with the wakee if the
6425 	 * kworker thread and the tasks previous CPUs are the same.
6426 	 * The assumption is that the wakee queued work for the
6427 	 * per-cpu kthread that is now complete and the wakeup is
6428 	 * essentially a sync wakeup. An obvious example of this
6429 	 * pattern is IO completions.
6430 	 */
6431 	if (is_per_cpu_kthread(current) &&
6432 	    prev == smp_processor_id() &&
6433 	    this_rq()->nr_running <= 1) {
6434 		return prev;
6435 	}
6436 
6437 	/* Check a recently used CPU as a potential idle candidate: */
6438 	recent_used_cpu = p->recent_used_cpu;
6439 	p->recent_used_cpu = prev;
6440 	if (recent_used_cpu != prev &&
6441 	    recent_used_cpu != target &&
6442 	    cpus_share_cache(recent_used_cpu, target) &&
6443 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6444 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6445 	    asym_fits_capacity(task_util, recent_used_cpu)) {
6446 		/*
6447 		 * Replace recent_used_cpu with prev as it is a potential
6448 		 * candidate for the next wake:
6449 		 */
6450 		p->recent_used_cpu = prev;
6451 		return recent_used_cpu;
6452 	}
6453 
6454 	/*
6455 	 * For asymmetric CPU capacity systems, our domain of interest is
6456 	 * sd_asym_cpucapacity rather than sd_llc.
6457 	 */
6458 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6459 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6460 		/*
6461 		 * On an asymmetric CPU capacity system where an exclusive
6462 		 * cpuset defines a symmetric island (i.e. one unique
6463 		 * capacity_orig value through the cpuset), the key will be set
6464 		 * but the CPUs within that cpuset will not have a domain with
6465 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6466 		 * capacity path.
6467 		 */
6468 		if (sd) {
6469 			i = select_idle_capacity(p, sd, target);
6470 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
6471 		}
6472 	}
6473 
6474 	sd = rcu_dereference(per_cpu(sd_llc, target));
6475 	if (!sd)
6476 		return target;
6477 
6478 	if (sched_smt_active()) {
6479 		has_idle_core = test_idle_cores(target, false);
6480 
6481 		if (!has_idle_core && cpus_share_cache(prev, target)) {
6482 			i = select_idle_smt(p, sd, prev);
6483 			if ((unsigned int)i < nr_cpumask_bits)
6484 				return i;
6485 		}
6486 	}
6487 
6488 	i = select_idle_cpu(p, sd, has_idle_core, target);
6489 	if ((unsigned)i < nr_cpumask_bits)
6490 		return i;
6491 
6492 	return target;
6493 }
6494 
6495 /**
6496  * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
6497  * @cpu: the CPU to get the utilization of
6498  *
6499  * The unit of the return value must be the one of capacity so we can compare
6500  * the utilization with the capacity of the CPU that is available for CFS task
6501  * (ie cpu_capacity).
6502  *
6503  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6504  * recent utilization of currently non-runnable tasks on a CPU. It represents
6505  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6506  * capacity_orig is the cpu_capacity available at the highest frequency
6507  * (arch_scale_freq_capacity()).
6508  * The utilization of a CPU converges towards a sum equal to or less than the
6509  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6510  * the running time on this CPU scaled by capacity_curr.
6511  *
6512  * The estimated utilization of a CPU is defined to be the maximum between its
6513  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6514  * currently RUNNABLE on that CPU.
6515  * This allows to properly represent the expected utilization of a CPU which
6516  * has just got a big task running since a long sleep period. At the same time
6517  * however it preserves the benefits of the "blocked utilization" in
6518  * describing the potential for other tasks waking up on the same CPU.
6519  *
6520  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6521  * higher than capacity_orig because of unfortunate rounding in
6522  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6523  * the average stabilizes with the new running time. We need to check that the
6524  * utilization stays within the range of [0..capacity_orig] and cap it if
6525  * necessary. Without utilization capping, a group could be seen as overloaded
6526  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6527  * available capacity. We allow utilization to overshoot capacity_curr (but not
6528  * capacity_orig) as it useful for predicting the capacity required after task
6529  * migrations (scheduler-driven DVFS).
6530  *
6531  * Return: the (estimated) utilization for the specified CPU
6532  */
6533 static inline unsigned long cpu_util(int cpu)
6534 {
6535 	struct cfs_rq *cfs_rq;
6536 	unsigned int util;
6537 
6538 	cfs_rq = &cpu_rq(cpu)->cfs;
6539 	util = READ_ONCE(cfs_rq->avg.util_avg);
6540 
6541 	if (sched_feat(UTIL_EST))
6542 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6543 
6544 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6545 }
6546 
6547 /*
6548  * cpu_util_without: compute cpu utilization without any contributions from *p
6549  * @cpu: the CPU which utilization is requested
6550  * @p: the task which utilization should be discounted
6551  *
6552  * The utilization of a CPU is defined by the utilization of tasks currently
6553  * enqueued on that CPU as well as tasks which are currently sleeping after an
6554  * execution on that CPU.
6555  *
6556  * This method returns the utilization of the specified CPU by discounting the
6557  * utilization of the specified task, whenever the task is currently
6558  * contributing to the CPU utilization.
6559  */
6560 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6561 {
6562 	struct cfs_rq *cfs_rq;
6563 	unsigned int util;
6564 
6565 	/* Task has no contribution or is new */
6566 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6567 		return cpu_util(cpu);
6568 
6569 	cfs_rq = &cpu_rq(cpu)->cfs;
6570 	util = READ_ONCE(cfs_rq->avg.util_avg);
6571 
6572 	/* Discount task's util from CPU's util */
6573 	lsub_positive(&util, task_util(p));
6574 
6575 	/*
6576 	 * Covered cases:
6577 	 *
6578 	 * a) if *p is the only task sleeping on this CPU, then:
6579 	 *      cpu_util (== task_util) > util_est (== 0)
6580 	 *    and thus we return:
6581 	 *      cpu_util_without = (cpu_util - task_util) = 0
6582 	 *
6583 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6584 	 *    IDLE, then:
6585 	 *      cpu_util >= task_util
6586 	 *      cpu_util > util_est (== 0)
6587 	 *    and thus we discount *p's blocked utilization to return:
6588 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6589 	 *
6590 	 * c) if other tasks are RUNNABLE on that CPU and
6591 	 *      util_est > cpu_util
6592 	 *    then we use util_est since it returns a more restrictive
6593 	 *    estimation of the spare capacity on that CPU, by just
6594 	 *    considering the expected utilization of tasks already
6595 	 *    runnable on that CPU.
6596 	 *
6597 	 * Cases a) and b) are covered by the above code, while case c) is
6598 	 * covered by the following code when estimated utilization is
6599 	 * enabled.
6600 	 */
6601 	if (sched_feat(UTIL_EST)) {
6602 		unsigned int estimated =
6603 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6604 
6605 		/*
6606 		 * Despite the following checks we still have a small window
6607 		 * for a possible race, when an execl's select_task_rq_fair()
6608 		 * races with LB's detach_task():
6609 		 *
6610 		 *   detach_task()
6611 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6612 		 *     ---------------------------------- A
6613 		 *     deactivate_task()                   \
6614 		 *       dequeue_task()                     + RaceTime
6615 		 *         util_est_dequeue()              /
6616 		 *     ---------------------------------- B
6617 		 *
6618 		 * The additional check on "current == p" it's required to
6619 		 * properly fix the execl regression and it helps in further
6620 		 * reducing the chances for the above race.
6621 		 */
6622 		if (unlikely(task_on_rq_queued(p) || current == p))
6623 			lsub_positive(&estimated, _task_util_est(p));
6624 
6625 		util = max(util, estimated);
6626 	}
6627 
6628 	/*
6629 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6630 	 * clamp to the maximum CPU capacity to ensure consistency with
6631 	 * the cpu_util call.
6632 	 */
6633 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6634 }
6635 
6636 /*
6637  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6638  * to @dst_cpu.
6639  */
6640 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6641 {
6642 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6643 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6644 
6645 	/*
6646 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6647 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6648 	 * the other cases, @cpu is not impacted by the migration, so the
6649 	 * util_avg should already be correct.
6650 	 */
6651 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6652 		lsub_positive(&util, task_util(p));
6653 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6654 		util += task_util(p);
6655 
6656 	if (sched_feat(UTIL_EST)) {
6657 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6658 
6659 		/*
6660 		 * During wake-up, the task isn't enqueued yet and doesn't
6661 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6662 		 * so just add it (if needed) to "simulate" what will be
6663 		 * cpu_util() after the task has been enqueued.
6664 		 */
6665 		if (dst_cpu == cpu)
6666 			util_est += _task_util_est(p);
6667 
6668 		util = max(util, util_est);
6669 	}
6670 
6671 	return min(util, capacity_orig_of(cpu));
6672 }
6673 
6674 /*
6675  * compute_energy(): Estimates the energy that @pd would consume if @p was
6676  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6677  * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6678  * to compute what would be the energy if we decided to actually migrate that
6679  * task.
6680  */
6681 static long
6682 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6683 {
6684 	struct cpumask *pd_mask = perf_domain_span(pd);
6685 	unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6686 	unsigned long max_util = 0, sum_util = 0;
6687 	unsigned long _cpu_cap = cpu_cap;
6688 	int cpu;
6689 
6690 	_cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask));
6691 
6692 	/*
6693 	 * The capacity state of CPUs of the current rd can be driven by CPUs
6694 	 * of another rd if they belong to the same pd. So, account for the
6695 	 * utilization of these CPUs too by masking pd with cpu_online_mask
6696 	 * instead of the rd span.
6697 	 *
6698 	 * If an entire pd is outside of the current rd, it will not appear in
6699 	 * its pd list and will not be accounted by compute_energy().
6700 	 */
6701 	for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6702 		unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6703 		unsigned long cpu_util, util_running = util_freq;
6704 		struct task_struct *tsk = NULL;
6705 
6706 		/*
6707 		 * When @p is placed on @cpu:
6708 		 *
6709 		 * util_running = max(cpu_util, cpu_util_est) +
6710 		 *		  max(task_util, _task_util_est)
6711 		 *
6712 		 * while cpu_util_next is: max(cpu_util + task_util,
6713 		 *			       cpu_util_est + _task_util_est)
6714 		 */
6715 		if (cpu == dst_cpu) {
6716 			tsk = p;
6717 			util_running =
6718 				cpu_util_next(cpu, p, -1) + task_util_est(p);
6719 		}
6720 
6721 		/*
6722 		 * Busy time computation: utilization clamping is not
6723 		 * required since the ratio (sum_util / cpu_capacity)
6724 		 * is already enough to scale the EM reported power
6725 		 * consumption at the (eventually clamped) cpu_capacity.
6726 		 */
6727 		cpu_util = effective_cpu_util(cpu, util_running, cpu_cap,
6728 					      ENERGY_UTIL, NULL);
6729 
6730 		sum_util += min(cpu_util, _cpu_cap);
6731 
6732 		/*
6733 		 * Performance domain frequency: utilization clamping
6734 		 * must be considered since it affects the selection
6735 		 * of the performance domain frequency.
6736 		 * NOTE: in case RT tasks are running, by default the
6737 		 * FREQUENCY_UTIL's utilization can be max OPP.
6738 		 */
6739 		cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
6740 					      FREQUENCY_UTIL, tsk);
6741 		max_util = max(max_util, min(cpu_util, _cpu_cap));
6742 	}
6743 
6744 	return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap);
6745 }
6746 
6747 /*
6748  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6749  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6750  * spare capacity in each performance domain and uses it as a potential
6751  * candidate to execute the task. Then, it uses the Energy Model to figure
6752  * out which of the CPU candidates is the most energy-efficient.
6753  *
6754  * The rationale for this heuristic is as follows. In a performance domain,
6755  * all the most energy efficient CPU candidates (according to the Energy
6756  * Model) are those for which we'll request a low frequency. When there are
6757  * several CPUs for which the frequency request will be the same, we don't
6758  * have enough data to break the tie between them, because the Energy Model
6759  * only includes active power costs. With this model, if we assume that
6760  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6761  * the maximum spare capacity in a performance domain is guaranteed to be among
6762  * the best candidates of the performance domain.
6763  *
6764  * In practice, it could be preferable from an energy standpoint to pack
6765  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6766  * but that could also hurt our chances to go cluster idle, and we have no
6767  * ways to tell with the current Energy Model if this is actually a good
6768  * idea or not. So, find_energy_efficient_cpu() basically favors
6769  * cluster-packing, and spreading inside a cluster. That should at least be
6770  * a good thing for latency, and this is consistent with the idea that most
6771  * of the energy savings of EAS come from the asymmetry of the system, and
6772  * not so much from breaking the tie between identical CPUs. That's also the
6773  * reason why EAS is enabled in the topology code only for systems where
6774  * SD_ASYM_CPUCAPACITY is set.
6775  *
6776  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6777  * they don't have any useful utilization data yet and it's not possible to
6778  * forecast their impact on energy consumption. Consequently, they will be
6779  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6780  * to be energy-inefficient in some use-cases. The alternative would be to
6781  * bias new tasks towards specific types of CPUs first, or to try to infer
6782  * their util_avg from the parent task, but those heuristics could hurt
6783  * other use-cases too. So, until someone finds a better way to solve this,
6784  * let's keep things simple by re-using the existing slow path.
6785  */
6786 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6787 {
6788 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6789 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6790 	int cpu, best_energy_cpu = prev_cpu, target = -1;
6791 	unsigned long cpu_cap, util, base_energy = 0;
6792 	struct sched_domain *sd;
6793 	struct perf_domain *pd;
6794 
6795 	rcu_read_lock();
6796 	pd = rcu_dereference(rd->pd);
6797 	if (!pd || READ_ONCE(rd->overutilized))
6798 		goto unlock;
6799 
6800 	/*
6801 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6802 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6803 	 */
6804 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6805 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6806 		sd = sd->parent;
6807 	if (!sd)
6808 		goto unlock;
6809 
6810 	target = prev_cpu;
6811 
6812 	sync_entity_load_avg(&p->se);
6813 	if (!task_util_est(p))
6814 		goto unlock;
6815 
6816 	for (; pd; pd = pd->next) {
6817 		unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6818 		bool compute_prev_delta = false;
6819 		unsigned long base_energy_pd;
6820 		int max_spare_cap_cpu = -1;
6821 
6822 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6823 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6824 				continue;
6825 
6826 			util = cpu_util_next(cpu, p, cpu);
6827 			cpu_cap = capacity_of(cpu);
6828 			spare_cap = cpu_cap;
6829 			lsub_positive(&spare_cap, util);
6830 
6831 			/*
6832 			 * Skip CPUs that cannot satisfy the capacity request.
6833 			 * IOW, placing the task there would make the CPU
6834 			 * overutilized. Take uclamp into account to see how
6835 			 * much capacity we can get out of the CPU; this is
6836 			 * aligned with sched_cpu_util().
6837 			 */
6838 			util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6839 			if (!fits_capacity(util, cpu_cap))
6840 				continue;
6841 
6842 			if (cpu == prev_cpu) {
6843 				/* Always use prev_cpu as a candidate. */
6844 				compute_prev_delta = true;
6845 			} else if (spare_cap > max_spare_cap) {
6846 				/*
6847 				 * Find the CPU with the maximum spare capacity
6848 				 * in the performance domain.
6849 				 */
6850 				max_spare_cap = spare_cap;
6851 				max_spare_cap_cpu = cpu;
6852 			}
6853 		}
6854 
6855 		if (max_spare_cap_cpu < 0 && !compute_prev_delta)
6856 			continue;
6857 
6858 		/* Compute the 'base' energy of the pd, without @p */
6859 		base_energy_pd = compute_energy(p, -1, pd);
6860 		base_energy += base_energy_pd;
6861 
6862 		/* Evaluate the energy impact of using prev_cpu. */
6863 		if (compute_prev_delta) {
6864 			prev_delta = compute_energy(p, prev_cpu, pd);
6865 			if (prev_delta < base_energy_pd)
6866 				goto unlock;
6867 			prev_delta -= base_energy_pd;
6868 			best_delta = min(best_delta, prev_delta);
6869 		}
6870 
6871 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
6872 		if (max_spare_cap_cpu >= 0) {
6873 			cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6874 			if (cur_delta < base_energy_pd)
6875 				goto unlock;
6876 			cur_delta -= base_energy_pd;
6877 			if (cur_delta < best_delta) {
6878 				best_delta = cur_delta;
6879 				best_energy_cpu = max_spare_cap_cpu;
6880 			}
6881 		}
6882 	}
6883 	rcu_read_unlock();
6884 
6885 	/*
6886 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6887 	 * least 6% of the energy used by prev_cpu.
6888 	 */
6889 	if ((prev_delta == ULONG_MAX) ||
6890 	    (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6891 		target = best_energy_cpu;
6892 
6893 	return target;
6894 
6895 unlock:
6896 	rcu_read_unlock();
6897 
6898 	return target;
6899 }
6900 
6901 /*
6902  * select_task_rq_fair: Select target runqueue for the waking task in domains
6903  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
6904  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6905  *
6906  * Balances load by selecting the idlest CPU in the idlest group, or under
6907  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6908  *
6909  * Returns the target CPU number.
6910  */
6911 static int
6912 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
6913 {
6914 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6915 	struct sched_domain *tmp, *sd = NULL;
6916 	int cpu = smp_processor_id();
6917 	int new_cpu = prev_cpu;
6918 	int want_affine = 0;
6919 	/* SD_flags and WF_flags share the first nibble */
6920 	int sd_flag = wake_flags & 0xF;
6921 
6922 	/*
6923 	 * required for stable ->cpus_allowed
6924 	 */
6925 	lockdep_assert_held(&p->pi_lock);
6926 	if (wake_flags & WF_TTWU) {
6927 		record_wakee(p);
6928 
6929 		if (sched_energy_enabled()) {
6930 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6931 			if (new_cpu >= 0)
6932 				return new_cpu;
6933 			new_cpu = prev_cpu;
6934 		}
6935 
6936 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6937 	}
6938 
6939 	rcu_read_lock();
6940 	for_each_domain(cpu, tmp) {
6941 		/*
6942 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6943 		 * cpu is a valid SD_WAKE_AFFINE target.
6944 		 */
6945 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6946 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6947 			if (cpu != prev_cpu)
6948 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6949 
6950 			sd = NULL; /* Prefer wake_affine over balance flags */
6951 			break;
6952 		}
6953 
6954 		if (tmp->flags & sd_flag)
6955 			sd = tmp;
6956 		else if (!want_affine)
6957 			break;
6958 	}
6959 
6960 	if (unlikely(sd)) {
6961 		/* Slow path */
6962 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6963 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
6964 		/* Fast path */
6965 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6966 	}
6967 	rcu_read_unlock();
6968 
6969 	return new_cpu;
6970 }
6971 
6972 static void detach_entity_cfs_rq(struct sched_entity *se);
6973 
6974 /*
6975  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6976  * cfs_rq_of(p) references at time of call are still valid and identify the
6977  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6978  */
6979 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6980 {
6981 	/*
6982 	 * As blocked tasks retain absolute vruntime the migration needs to
6983 	 * deal with this by subtracting the old and adding the new
6984 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6985 	 * the task on the new runqueue.
6986 	 */
6987 	if (READ_ONCE(p->__state) == TASK_WAKING) {
6988 		struct sched_entity *se = &p->se;
6989 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6990 		u64 min_vruntime;
6991 
6992 #ifndef CONFIG_64BIT
6993 		u64 min_vruntime_copy;
6994 
6995 		do {
6996 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6997 			smp_rmb();
6998 			min_vruntime = cfs_rq->min_vruntime;
6999 		} while (min_vruntime != min_vruntime_copy);
7000 #else
7001 		min_vruntime = cfs_rq->min_vruntime;
7002 #endif
7003 
7004 		se->vruntime -= min_vruntime;
7005 	}
7006 
7007 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
7008 		/*
7009 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
7010 		 * rq->lock and can modify state directly.
7011 		 */
7012 		lockdep_assert_rq_held(task_rq(p));
7013 		detach_entity_cfs_rq(&p->se);
7014 
7015 	} else {
7016 		/*
7017 		 * We are supposed to update the task to "current" time, then
7018 		 * its up to date and ready to go to new CPU/cfs_rq. But we
7019 		 * have difficulty in getting what current time is, so simply
7020 		 * throw away the out-of-date time. This will result in the
7021 		 * wakee task is less decayed, but giving the wakee more load
7022 		 * sounds not bad.
7023 		 */
7024 		remove_entity_load_avg(&p->se);
7025 	}
7026 
7027 	/* Tell new CPU we are migrated */
7028 	p->se.avg.last_update_time = 0;
7029 
7030 	/* We have migrated, no longer consider this task hot */
7031 	p->se.exec_start = 0;
7032 
7033 	update_scan_period(p, new_cpu);
7034 }
7035 
7036 static void task_dead_fair(struct task_struct *p)
7037 {
7038 	remove_entity_load_avg(&p->se);
7039 }
7040 
7041 static int
7042 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7043 {
7044 	if (rq->nr_running)
7045 		return 1;
7046 
7047 	return newidle_balance(rq, rf) != 0;
7048 }
7049 #endif /* CONFIG_SMP */
7050 
7051 static unsigned long wakeup_gran(struct sched_entity *se)
7052 {
7053 	unsigned long gran = sysctl_sched_wakeup_granularity;
7054 
7055 	/*
7056 	 * Since its curr running now, convert the gran from real-time
7057 	 * to virtual-time in his units.
7058 	 *
7059 	 * By using 'se' instead of 'curr' we penalize light tasks, so
7060 	 * they get preempted easier. That is, if 'se' < 'curr' then
7061 	 * the resulting gran will be larger, therefore penalizing the
7062 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7063 	 * be smaller, again penalizing the lighter task.
7064 	 *
7065 	 * This is especially important for buddies when the leftmost
7066 	 * task is higher priority than the buddy.
7067 	 */
7068 	return calc_delta_fair(gran, se);
7069 }
7070 
7071 /*
7072  * Should 'se' preempt 'curr'.
7073  *
7074  *             |s1
7075  *        |s2
7076  *   |s3
7077  *         g
7078  *      |<--->|c
7079  *
7080  *  w(c, s1) = -1
7081  *  w(c, s2) =  0
7082  *  w(c, s3) =  1
7083  *
7084  */
7085 static int
7086 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7087 {
7088 	s64 gran, vdiff = curr->vruntime - se->vruntime;
7089 
7090 	if (vdiff <= 0)
7091 		return -1;
7092 
7093 	gran = wakeup_gran(se);
7094 	if (vdiff > gran)
7095 		return 1;
7096 
7097 	return 0;
7098 }
7099 
7100 static void set_last_buddy(struct sched_entity *se)
7101 {
7102 	for_each_sched_entity(se) {
7103 		if (SCHED_WARN_ON(!se->on_rq))
7104 			return;
7105 		if (se_is_idle(se))
7106 			return;
7107 		cfs_rq_of(se)->last = se;
7108 	}
7109 }
7110 
7111 static void set_next_buddy(struct sched_entity *se)
7112 {
7113 	for_each_sched_entity(se) {
7114 		if (SCHED_WARN_ON(!se->on_rq))
7115 			return;
7116 		if (se_is_idle(se))
7117 			return;
7118 		cfs_rq_of(se)->next = se;
7119 	}
7120 }
7121 
7122 static void set_skip_buddy(struct sched_entity *se)
7123 {
7124 	for_each_sched_entity(se)
7125 		cfs_rq_of(se)->skip = se;
7126 }
7127 
7128 /*
7129  * Preempt the current task with a newly woken task if needed:
7130  */
7131 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7132 {
7133 	struct task_struct *curr = rq->curr;
7134 	struct sched_entity *se = &curr->se, *pse = &p->se;
7135 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7136 	int scale = cfs_rq->nr_running >= sched_nr_latency;
7137 	int next_buddy_marked = 0;
7138 	int cse_is_idle, pse_is_idle;
7139 
7140 	if (unlikely(se == pse))
7141 		return;
7142 
7143 	/*
7144 	 * This is possible from callers such as attach_tasks(), in which we
7145 	 * unconditionally check_preempt_curr() after an enqueue (which may have
7146 	 * lead to a throttle).  This both saves work and prevents false
7147 	 * next-buddy nomination below.
7148 	 */
7149 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7150 		return;
7151 
7152 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7153 		set_next_buddy(pse);
7154 		next_buddy_marked = 1;
7155 	}
7156 
7157 	/*
7158 	 * We can come here with TIF_NEED_RESCHED already set from new task
7159 	 * wake up path.
7160 	 *
7161 	 * Note: this also catches the edge-case of curr being in a throttled
7162 	 * group (e.g. via set_curr_task), since update_curr() (in the
7163 	 * enqueue of curr) will have resulted in resched being set.  This
7164 	 * prevents us from potentially nominating it as a false LAST_BUDDY
7165 	 * below.
7166 	 */
7167 	if (test_tsk_need_resched(curr))
7168 		return;
7169 
7170 	/* Idle tasks are by definition preempted by non-idle tasks. */
7171 	if (unlikely(task_has_idle_policy(curr)) &&
7172 	    likely(!task_has_idle_policy(p)))
7173 		goto preempt;
7174 
7175 	/*
7176 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7177 	 * is driven by the tick):
7178 	 */
7179 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7180 		return;
7181 
7182 	find_matching_se(&se, &pse);
7183 	BUG_ON(!pse);
7184 
7185 	cse_is_idle = se_is_idle(se);
7186 	pse_is_idle = se_is_idle(pse);
7187 
7188 	/*
7189 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
7190 	 * in the inverse case).
7191 	 */
7192 	if (cse_is_idle && !pse_is_idle)
7193 		goto preempt;
7194 	if (cse_is_idle != pse_is_idle)
7195 		return;
7196 
7197 	update_curr(cfs_rq_of(se));
7198 	if (wakeup_preempt_entity(se, pse) == 1) {
7199 		/*
7200 		 * Bias pick_next to pick the sched entity that is
7201 		 * triggering this preemption.
7202 		 */
7203 		if (!next_buddy_marked)
7204 			set_next_buddy(pse);
7205 		goto preempt;
7206 	}
7207 
7208 	return;
7209 
7210 preempt:
7211 	resched_curr(rq);
7212 	/*
7213 	 * Only set the backward buddy when the current task is still
7214 	 * on the rq. This can happen when a wakeup gets interleaved
7215 	 * with schedule on the ->pre_schedule() or idle_balance()
7216 	 * point, either of which can * drop the rq lock.
7217 	 *
7218 	 * Also, during early boot the idle thread is in the fair class,
7219 	 * for obvious reasons its a bad idea to schedule back to it.
7220 	 */
7221 	if (unlikely(!se->on_rq || curr == rq->idle))
7222 		return;
7223 
7224 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7225 		set_last_buddy(se);
7226 }
7227 
7228 #ifdef CONFIG_SMP
7229 static struct task_struct *pick_task_fair(struct rq *rq)
7230 {
7231 	struct sched_entity *se;
7232 	struct cfs_rq *cfs_rq;
7233 
7234 again:
7235 	cfs_rq = &rq->cfs;
7236 	if (!cfs_rq->nr_running)
7237 		return NULL;
7238 
7239 	do {
7240 		struct sched_entity *curr = cfs_rq->curr;
7241 
7242 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7243 		if (curr) {
7244 			if (curr->on_rq)
7245 				update_curr(cfs_rq);
7246 			else
7247 				curr = NULL;
7248 
7249 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7250 				goto again;
7251 		}
7252 
7253 		se = pick_next_entity(cfs_rq, curr);
7254 		cfs_rq = group_cfs_rq(se);
7255 	} while (cfs_rq);
7256 
7257 	return task_of(se);
7258 }
7259 #endif
7260 
7261 struct task_struct *
7262 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7263 {
7264 	struct cfs_rq *cfs_rq = &rq->cfs;
7265 	struct sched_entity *se;
7266 	struct task_struct *p;
7267 	int new_tasks;
7268 
7269 again:
7270 	if (!sched_fair_runnable(rq))
7271 		goto idle;
7272 
7273 #ifdef CONFIG_FAIR_GROUP_SCHED
7274 	if (!prev || prev->sched_class != &fair_sched_class)
7275 		goto simple;
7276 
7277 	/*
7278 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7279 	 * likely that a next task is from the same cgroup as the current.
7280 	 *
7281 	 * Therefore attempt to avoid putting and setting the entire cgroup
7282 	 * hierarchy, only change the part that actually changes.
7283 	 */
7284 
7285 	do {
7286 		struct sched_entity *curr = cfs_rq->curr;
7287 
7288 		/*
7289 		 * Since we got here without doing put_prev_entity() we also
7290 		 * have to consider cfs_rq->curr. If it is still a runnable
7291 		 * entity, update_curr() will update its vruntime, otherwise
7292 		 * forget we've ever seen it.
7293 		 */
7294 		if (curr) {
7295 			if (curr->on_rq)
7296 				update_curr(cfs_rq);
7297 			else
7298 				curr = NULL;
7299 
7300 			/*
7301 			 * This call to check_cfs_rq_runtime() will do the
7302 			 * throttle and dequeue its entity in the parent(s).
7303 			 * Therefore the nr_running test will indeed
7304 			 * be correct.
7305 			 */
7306 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7307 				cfs_rq = &rq->cfs;
7308 
7309 				if (!cfs_rq->nr_running)
7310 					goto idle;
7311 
7312 				goto simple;
7313 			}
7314 		}
7315 
7316 		se = pick_next_entity(cfs_rq, curr);
7317 		cfs_rq = group_cfs_rq(se);
7318 	} while (cfs_rq);
7319 
7320 	p = task_of(se);
7321 
7322 	/*
7323 	 * Since we haven't yet done put_prev_entity and if the selected task
7324 	 * is a different task than we started out with, try and touch the
7325 	 * least amount of cfs_rqs.
7326 	 */
7327 	if (prev != p) {
7328 		struct sched_entity *pse = &prev->se;
7329 
7330 		while (!(cfs_rq = is_same_group(se, pse))) {
7331 			int se_depth = se->depth;
7332 			int pse_depth = pse->depth;
7333 
7334 			if (se_depth <= pse_depth) {
7335 				put_prev_entity(cfs_rq_of(pse), pse);
7336 				pse = parent_entity(pse);
7337 			}
7338 			if (se_depth >= pse_depth) {
7339 				set_next_entity(cfs_rq_of(se), se);
7340 				se = parent_entity(se);
7341 			}
7342 		}
7343 
7344 		put_prev_entity(cfs_rq, pse);
7345 		set_next_entity(cfs_rq, se);
7346 	}
7347 
7348 	goto done;
7349 simple:
7350 #endif
7351 	if (prev)
7352 		put_prev_task(rq, prev);
7353 
7354 	do {
7355 		se = pick_next_entity(cfs_rq, NULL);
7356 		set_next_entity(cfs_rq, se);
7357 		cfs_rq = group_cfs_rq(se);
7358 	} while (cfs_rq);
7359 
7360 	p = task_of(se);
7361 
7362 done: __maybe_unused;
7363 #ifdef CONFIG_SMP
7364 	/*
7365 	 * Move the next running task to the front of
7366 	 * the list, so our cfs_tasks list becomes MRU
7367 	 * one.
7368 	 */
7369 	list_move(&p->se.group_node, &rq->cfs_tasks);
7370 #endif
7371 
7372 	if (hrtick_enabled_fair(rq))
7373 		hrtick_start_fair(rq, p);
7374 
7375 	update_misfit_status(p, rq);
7376 
7377 	return p;
7378 
7379 idle:
7380 	if (!rf)
7381 		return NULL;
7382 
7383 	new_tasks = newidle_balance(rq, rf);
7384 
7385 	/*
7386 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7387 	 * possible for any higher priority task to appear. In that case we
7388 	 * must re-start the pick_next_entity() loop.
7389 	 */
7390 	if (new_tasks < 0)
7391 		return RETRY_TASK;
7392 
7393 	if (new_tasks > 0)
7394 		goto again;
7395 
7396 	/*
7397 	 * rq is about to be idle, check if we need to update the
7398 	 * lost_idle_time of clock_pelt
7399 	 */
7400 	update_idle_rq_clock_pelt(rq);
7401 
7402 	return NULL;
7403 }
7404 
7405 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7406 {
7407 	return pick_next_task_fair(rq, NULL, NULL);
7408 }
7409 
7410 /*
7411  * Account for a descheduled task:
7412  */
7413 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7414 {
7415 	struct sched_entity *se = &prev->se;
7416 	struct cfs_rq *cfs_rq;
7417 
7418 	for_each_sched_entity(se) {
7419 		cfs_rq = cfs_rq_of(se);
7420 		put_prev_entity(cfs_rq, se);
7421 	}
7422 }
7423 
7424 /*
7425  * sched_yield() is very simple
7426  *
7427  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7428  */
7429 static void yield_task_fair(struct rq *rq)
7430 {
7431 	struct task_struct *curr = rq->curr;
7432 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7433 	struct sched_entity *se = &curr->se;
7434 
7435 	/*
7436 	 * Are we the only task in the tree?
7437 	 */
7438 	if (unlikely(rq->nr_running == 1))
7439 		return;
7440 
7441 	clear_buddies(cfs_rq, se);
7442 
7443 	if (curr->policy != SCHED_BATCH) {
7444 		update_rq_clock(rq);
7445 		/*
7446 		 * Update run-time statistics of the 'current'.
7447 		 */
7448 		update_curr(cfs_rq);
7449 		/*
7450 		 * Tell update_rq_clock() that we've just updated,
7451 		 * so we don't do microscopic update in schedule()
7452 		 * and double the fastpath cost.
7453 		 */
7454 		rq_clock_skip_update(rq);
7455 	}
7456 
7457 	set_skip_buddy(se);
7458 }
7459 
7460 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7461 {
7462 	struct sched_entity *se = &p->se;
7463 
7464 	/* throttled hierarchies are not runnable */
7465 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7466 		return false;
7467 
7468 	/* Tell the scheduler that we'd really like pse to run next. */
7469 	set_next_buddy(se);
7470 
7471 	yield_task_fair(rq);
7472 
7473 	return true;
7474 }
7475 
7476 #ifdef CONFIG_SMP
7477 /**************************************************
7478  * Fair scheduling class load-balancing methods.
7479  *
7480  * BASICS
7481  *
7482  * The purpose of load-balancing is to achieve the same basic fairness the
7483  * per-CPU scheduler provides, namely provide a proportional amount of compute
7484  * time to each task. This is expressed in the following equation:
7485  *
7486  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7487  *
7488  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7489  * W_i,0 is defined as:
7490  *
7491  *   W_i,0 = \Sum_j w_i,j                                             (2)
7492  *
7493  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7494  * is derived from the nice value as per sched_prio_to_weight[].
7495  *
7496  * The weight average is an exponential decay average of the instantaneous
7497  * weight:
7498  *
7499  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7500  *
7501  * C_i is the compute capacity of CPU i, typically it is the
7502  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7503  * can also include other factors [XXX].
7504  *
7505  * To achieve this balance we define a measure of imbalance which follows
7506  * directly from (1):
7507  *
7508  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7509  *
7510  * We them move tasks around to minimize the imbalance. In the continuous
7511  * function space it is obvious this converges, in the discrete case we get
7512  * a few fun cases generally called infeasible weight scenarios.
7513  *
7514  * [XXX expand on:
7515  *     - infeasible weights;
7516  *     - local vs global optima in the discrete case. ]
7517  *
7518  *
7519  * SCHED DOMAINS
7520  *
7521  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7522  * for all i,j solution, we create a tree of CPUs that follows the hardware
7523  * topology where each level pairs two lower groups (or better). This results
7524  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7525  * tree to only the first of the previous level and we decrease the frequency
7526  * of load-balance at each level inv. proportional to the number of CPUs in
7527  * the groups.
7528  *
7529  * This yields:
7530  *
7531  *     log_2 n     1     n
7532  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7533  *     i = 0      2^i   2^i
7534  *                               `- size of each group
7535  *         |         |     `- number of CPUs doing load-balance
7536  *         |         `- freq
7537  *         `- sum over all levels
7538  *
7539  * Coupled with a limit on how many tasks we can migrate every balance pass,
7540  * this makes (5) the runtime complexity of the balancer.
7541  *
7542  * An important property here is that each CPU is still (indirectly) connected
7543  * to every other CPU in at most O(log n) steps:
7544  *
7545  * The adjacency matrix of the resulting graph is given by:
7546  *
7547  *             log_2 n
7548  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7549  *             k = 0
7550  *
7551  * And you'll find that:
7552  *
7553  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7554  *
7555  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7556  * The task movement gives a factor of O(m), giving a convergence complexity
7557  * of:
7558  *
7559  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7560  *
7561  *
7562  * WORK CONSERVING
7563  *
7564  * In order to avoid CPUs going idle while there's still work to do, new idle
7565  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7566  * tree itself instead of relying on other CPUs to bring it work.
7567  *
7568  * This adds some complexity to both (5) and (8) but it reduces the total idle
7569  * time.
7570  *
7571  * [XXX more?]
7572  *
7573  *
7574  * CGROUPS
7575  *
7576  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7577  *
7578  *                                s_k,i
7579  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7580  *                                 S_k
7581  *
7582  * Where
7583  *
7584  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7585  *
7586  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7587  *
7588  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7589  * property.
7590  *
7591  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7592  *      rewrite all of this once again.]
7593  */
7594 
7595 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7596 
7597 enum fbq_type { regular, remote, all };
7598 
7599 /*
7600  * 'group_type' describes the group of CPUs at the moment of load balancing.
7601  *
7602  * The enum is ordered by pulling priority, with the group with lowest priority
7603  * first so the group_type can simply be compared when selecting the busiest
7604  * group. See update_sd_pick_busiest().
7605  */
7606 enum group_type {
7607 	/* The group has spare capacity that can be used to run more tasks.  */
7608 	group_has_spare = 0,
7609 	/*
7610 	 * The group is fully used and the tasks don't compete for more CPU
7611 	 * cycles. Nevertheless, some tasks might wait before running.
7612 	 */
7613 	group_fully_busy,
7614 	/*
7615 	 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7616 	 * and must be migrated to a more powerful CPU.
7617 	 */
7618 	group_misfit_task,
7619 	/*
7620 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7621 	 * and the task should be migrated to it instead of running on the
7622 	 * current CPU.
7623 	 */
7624 	group_asym_packing,
7625 	/*
7626 	 * The tasks' affinity constraints previously prevented the scheduler
7627 	 * from balancing the load across the system.
7628 	 */
7629 	group_imbalanced,
7630 	/*
7631 	 * The CPU is overloaded and can't provide expected CPU cycles to all
7632 	 * tasks.
7633 	 */
7634 	group_overloaded
7635 };
7636 
7637 enum migration_type {
7638 	migrate_load = 0,
7639 	migrate_util,
7640 	migrate_task,
7641 	migrate_misfit
7642 };
7643 
7644 #define LBF_ALL_PINNED	0x01
7645 #define LBF_NEED_BREAK	0x02
7646 #define LBF_DST_PINNED  0x04
7647 #define LBF_SOME_PINNED	0x08
7648 #define LBF_ACTIVE_LB	0x10
7649 
7650 struct lb_env {
7651 	struct sched_domain	*sd;
7652 
7653 	struct rq		*src_rq;
7654 	int			src_cpu;
7655 
7656 	int			dst_cpu;
7657 	struct rq		*dst_rq;
7658 
7659 	struct cpumask		*dst_grpmask;
7660 	int			new_dst_cpu;
7661 	enum cpu_idle_type	idle;
7662 	long			imbalance;
7663 	/* The set of CPUs under consideration for load-balancing */
7664 	struct cpumask		*cpus;
7665 
7666 	unsigned int		flags;
7667 
7668 	unsigned int		loop;
7669 	unsigned int		loop_break;
7670 	unsigned int		loop_max;
7671 
7672 	enum fbq_type		fbq_type;
7673 	enum migration_type	migration_type;
7674 	struct list_head	tasks;
7675 };
7676 
7677 /*
7678  * Is this task likely cache-hot:
7679  */
7680 static int task_hot(struct task_struct *p, struct lb_env *env)
7681 {
7682 	s64 delta;
7683 
7684 	lockdep_assert_rq_held(env->src_rq);
7685 
7686 	if (p->sched_class != &fair_sched_class)
7687 		return 0;
7688 
7689 	if (unlikely(task_has_idle_policy(p)))
7690 		return 0;
7691 
7692 	/* SMT siblings share cache */
7693 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7694 		return 0;
7695 
7696 	/*
7697 	 * Buddy candidates are cache hot:
7698 	 */
7699 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7700 			(&p->se == cfs_rq_of(&p->se)->next ||
7701 			 &p->se == cfs_rq_of(&p->se)->last))
7702 		return 1;
7703 
7704 	if (sysctl_sched_migration_cost == -1)
7705 		return 1;
7706 
7707 	/*
7708 	 * Don't migrate task if the task's cookie does not match
7709 	 * with the destination CPU's core cookie.
7710 	 */
7711 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
7712 		return 1;
7713 
7714 	if (sysctl_sched_migration_cost == 0)
7715 		return 0;
7716 
7717 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7718 
7719 	return delta < (s64)sysctl_sched_migration_cost;
7720 }
7721 
7722 #ifdef CONFIG_NUMA_BALANCING
7723 /*
7724  * Returns 1, if task migration degrades locality
7725  * Returns 0, if task migration improves locality i.e migration preferred.
7726  * Returns -1, if task migration is not affected by locality.
7727  */
7728 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7729 {
7730 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7731 	unsigned long src_weight, dst_weight;
7732 	int src_nid, dst_nid, dist;
7733 
7734 	if (!static_branch_likely(&sched_numa_balancing))
7735 		return -1;
7736 
7737 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7738 		return -1;
7739 
7740 	src_nid = cpu_to_node(env->src_cpu);
7741 	dst_nid = cpu_to_node(env->dst_cpu);
7742 
7743 	if (src_nid == dst_nid)
7744 		return -1;
7745 
7746 	/* Migrating away from the preferred node is always bad. */
7747 	if (src_nid == p->numa_preferred_nid) {
7748 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7749 			return 1;
7750 		else
7751 			return -1;
7752 	}
7753 
7754 	/* Encourage migration to the preferred node. */
7755 	if (dst_nid == p->numa_preferred_nid)
7756 		return 0;
7757 
7758 	/* Leaving a core idle is often worse than degrading locality. */
7759 	if (env->idle == CPU_IDLE)
7760 		return -1;
7761 
7762 	dist = node_distance(src_nid, dst_nid);
7763 	if (numa_group) {
7764 		src_weight = group_weight(p, src_nid, dist);
7765 		dst_weight = group_weight(p, dst_nid, dist);
7766 	} else {
7767 		src_weight = task_weight(p, src_nid, dist);
7768 		dst_weight = task_weight(p, dst_nid, dist);
7769 	}
7770 
7771 	return dst_weight < src_weight;
7772 }
7773 
7774 #else
7775 static inline int migrate_degrades_locality(struct task_struct *p,
7776 					     struct lb_env *env)
7777 {
7778 	return -1;
7779 }
7780 #endif
7781 
7782 /*
7783  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7784  */
7785 static
7786 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7787 {
7788 	int tsk_cache_hot;
7789 
7790 	lockdep_assert_rq_held(env->src_rq);
7791 
7792 	/*
7793 	 * We do not migrate tasks that are:
7794 	 * 1) throttled_lb_pair, or
7795 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7796 	 * 3) running (obviously), or
7797 	 * 4) are cache-hot on their current CPU.
7798 	 */
7799 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7800 		return 0;
7801 
7802 	/* Disregard pcpu kthreads; they are where they need to be. */
7803 	if (kthread_is_per_cpu(p))
7804 		return 0;
7805 
7806 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7807 		int cpu;
7808 
7809 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7810 
7811 		env->flags |= LBF_SOME_PINNED;
7812 
7813 		/*
7814 		 * Remember if this task can be migrated to any other CPU in
7815 		 * our sched_group. We may want to revisit it if we couldn't
7816 		 * meet load balance goals by pulling other tasks on src_cpu.
7817 		 *
7818 		 * Avoid computing new_dst_cpu
7819 		 * - for NEWLY_IDLE
7820 		 * - if we have already computed one in current iteration
7821 		 * - if it's an active balance
7822 		 */
7823 		if (env->idle == CPU_NEWLY_IDLE ||
7824 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
7825 			return 0;
7826 
7827 		/* Prevent to re-select dst_cpu via env's CPUs: */
7828 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7829 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7830 				env->flags |= LBF_DST_PINNED;
7831 				env->new_dst_cpu = cpu;
7832 				break;
7833 			}
7834 		}
7835 
7836 		return 0;
7837 	}
7838 
7839 	/* Record that we found at least one task that could run on dst_cpu */
7840 	env->flags &= ~LBF_ALL_PINNED;
7841 
7842 	if (task_running(env->src_rq, p)) {
7843 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7844 		return 0;
7845 	}
7846 
7847 	/*
7848 	 * Aggressive migration if:
7849 	 * 1) active balance
7850 	 * 2) destination numa is preferred
7851 	 * 3) task is cache cold, or
7852 	 * 4) too many balance attempts have failed.
7853 	 */
7854 	if (env->flags & LBF_ACTIVE_LB)
7855 		return 1;
7856 
7857 	tsk_cache_hot = migrate_degrades_locality(p, env);
7858 	if (tsk_cache_hot == -1)
7859 		tsk_cache_hot = task_hot(p, env);
7860 
7861 	if (tsk_cache_hot <= 0 ||
7862 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7863 		if (tsk_cache_hot == 1) {
7864 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7865 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7866 		}
7867 		return 1;
7868 	}
7869 
7870 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7871 	return 0;
7872 }
7873 
7874 /*
7875  * detach_task() -- detach the task for the migration specified in env
7876  */
7877 static void detach_task(struct task_struct *p, struct lb_env *env)
7878 {
7879 	lockdep_assert_rq_held(env->src_rq);
7880 
7881 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7882 	set_task_cpu(p, env->dst_cpu);
7883 }
7884 
7885 /*
7886  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7887  * part of active balancing operations within "domain".
7888  *
7889  * Returns a task if successful and NULL otherwise.
7890  */
7891 static struct task_struct *detach_one_task(struct lb_env *env)
7892 {
7893 	struct task_struct *p;
7894 
7895 	lockdep_assert_rq_held(env->src_rq);
7896 
7897 	list_for_each_entry_reverse(p,
7898 			&env->src_rq->cfs_tasks, se.group_node) {
7899 		if (!can_migrate_task(p, env))
7900 			continue;
7901 
7902 		detach_task(p, env);
7903 
7904 		/*
7905 		 * Right now, this is only the second place where
7906 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7907 		 * so we can safely collect stats here rather than
7908 		 * inside detach_tasks().
7909 		 */
7910 		schedstat_inc(env->sd->lb_gained[env->idle]);
7911 		return p;
7912 	}
7913 	return NULL;
7914 }
7915 
7916 static const unsigned int sched_nr_migrate_break = 32;
7917 
7918 /*
7919  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7920  * busiest_rq, as part of a balancing operation within domain "sd".
7921  *
7922  * Returns number of detached tasks if successful and 0 otherwise.
7923  */
7924 static int detach_tasks(struct lb_env *env)
7925 {
7926 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7927 	unsigned long util, load;
7928 	struct task_struct *p;
7929 	int detached = 0;
7930 
7931 	lockdep_assert_rq_held(env->src_rq);
7932 
7933 	/*
7934 	 * Source run queue has been emptied by another CPU, clear
7935 	 * LBF_ALL_PINNED flag as we will not test any task.
7936 	 */
7937 	if (env->src_rq->nr_running <= 1) {
7938 		env->flags &= ~LBF_ALL_PINNED;
7939 		return 0;
7940 	}
7941 
7942 	if (env->imbalance <= 0)
7943 		return 0;
7944 
7945 	while (!list_empty(tasks)) {
7946 		/*
7947 		 * We don't want to steal all, otherwise we may be treated likewise,
7948 		 * which could at worst lead to a livelock crash.
7949 		 */
7950 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7951 			break;
7952 
7953 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7954 
7955 		env->loop++;
7956 		/* We've more or less seen every task there is, call it quits */
7957 		if (env->loop > env->loop_max)
7958 			break;
7959 
7960 		/* take a breather every nr_migrate tasks */
7961 		if (env->loop > env->loop_break) {
7962 			env->loop_break += sched_nr_migrate_break;
7963 			env->flags |= LBF_NEED_BREAK;
7964 			break;
7965 		}
7966 
7967 		if (!can_migrate_task(p, env))
7968 			goto next;
7969 
7970 		switch (env->migration_type) {
7971 		case migrate_load:
7972 			/*
7973 			 * Depending of the number of CPUs and tasks and the
7974 			 * cgroup hierarchy, task_h_load() can return a null
7975 			 * value. Make sure that env->imbalance decreases
7976 			 * otherwise detach_tasks() will stop only after
7977 			 * detaching up to loop_max tasks.
7978 			 */
7979 			load = max_t(unsigned long, task_h_load(p), 1);
7980 
7981 			if (sched_feat(LB_MIN) &&
7982 			    load < 16 && !env->sd->nr_balance_failed)
7983 				goto next;
7984 
7985 			/*
7986 			 * Make sure that we don't migrate too much load.
7987 			 * Nevertheless, let relax the constraint if
7988 			 * scheduler fails to find a good waiting task to
7989 			 * migrate.
7990 			 */
7991 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
7992 				goto next;
7993 
7994 			env->imbalance -= load;
7995 			break;
7996 
7997 		case migrate_util:
7998 			util = task_util_est(p);
7999 
8000 			if (util > env->imbalance)
8001 				goto next;
8002 
8003 			env->imbalance -= util;
8004 			break;
8005 
8006 		case migrate_task:
8007 			env->imbalance--;
8008 			break;
8009 
8010 		case migrate_misfit:
8011 			/* This is not a misfit task */
8012 			if (task_fits_capacity(p, capacity_of(env->src_cpu)))
8013 				goto next;
8014 
8015 			env->imbalance = 0;
8016 			break;
8017 		}
8018 
8019 		detach_task(p, env);
8020 		list_add(&p->se.group_node, &env->tasks);
8021 
8022 		detached++;
8023 
8024 #ifdef CONFIG_PREEMPTION
8025 		/*
8026 		 * NEWIDLE balancing is a source of latency, so preemptible
8027 		 * kernels will stop after the first task is detached to minimize
8028 		 * the critical section.
8029 		 */
8030 		if (env->idle == CPU_NEWLY_IDLE)
8031 			break;
8032 #endif
8033 
8034 		/*
8035 		 * We only want to steal up to the prescribed amount of
8036 		 * load/util/tasks.
8037 		 */
8038 		if (env->imbalance <= 0)
8039 			break;
8040 
8041 		continue;
8042 next:
8043 		list_move(&p->se.group_node, tasks);
8044 	}
8045 
8046 	/*
8047 	 * Right now, this is one of only two places we collect this stat
8048 	 * so we can safely collect detach_one_task() stats here rather
8049 	 * than inside detach_one_task().
8050 	 */
8051 	schedstat_add(env->sd->lb_gained[env->idle], detached);
8052 
8053 	return detached;
8054 }
8055 
8056 /*
8057  * attach_task() -- attach the task detached by detach_task() to its new rq.
8058  */
8059 static void attach_task(struct rq *rq, struct task_struct *p)
8060 {
8061 	lockdep_assert_rq_held(rq);
8062 
8063 	BUG_ON(task_rq(p) != rq);
8064 	activate_task(rq, p, ENQUEUE_NOCLOCK);
8065 	check_preempt_curr(rq, p, 0);
8066 }
8067 
8068 /*
8069  * attach_one_task() -- attaches the task returned from detach_one_task() to
8070  * its new rq.
8071  */
8072 static void attach_one_task(struct rq *rq, struct task_struct *p)
8073 {
8074 	struct rq_flags rf;
8075 
8076 	rq_lock(rq, &rf);
8077 	update_rq_clock(rq);
8078 	attach_task(rq, p);
8079 	rq_unlock(rq, &rf);
8080 }
8081 
8082 /*
8083  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8084  * new rq.
8085  */
8086 static void attach_tasks(struct lb_env *env)
8087 {
8088 	struct list_head *tasks = &env->tasks;
8089 	struct task_struct *p;
8090 	struct rq_flags rf;
8091 
8092 	rq_lock(env->dst_rq, &rf);
8093 	update_rq_clock(env->dst_rq);
8094 
8095 	while (!list_empty(tasks)) {
8096 		p = list_first_entry(tasks, struct task_struct, se.group_node);
8097 		list_del_init(&p->se.group_node);
8098 
8099 		attach_task(env->dst_rq, p);
8100 	}
8101 
8102 	rq_unlock(env->dst_rq, &rf);
8103 }
8104 
8105 #ifdef CONFIG_NO_HZ_COMMON
8106 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8107 {
8108 	if (cfs_rq->avg.load_avg)
8109 		return true;
8110 
8111 	if (cfs_rq->avg.util_avg)
8112 		return true;
8113 
8114 	return false;
8115 }
8116 
8117 static inline bool others_have_blocked(struct rq *rq)
8118 {
8119 	if (READ_ONCE(rq->avg_rt.util_avg))
8120 		return true;
8121 
8122 	if (READ_ONCE(rq->avg_dl.util_avg))
8123 		return true;
8124 
8125 	if (thermal_load_avg(rq))
8126 		return true;
8127 
8128 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8129 	if (READ_ONCE(rq->avg_irq.util_avg))
8130 		return true;
8131 #endif
8132 
8133 	return false;
8134 }
8135 
8136 static inline void update_blocked_load_tick(struct rq *rq)
8137 {
8138 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8139 }
8140 
8141 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8142 {
8143 	if (!has_blocked)
8144 		rq->has_blocked_load = 0;
8145 }
8146 #else
8147 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8148 static inline bool others_have_blocked(struct rq *rq) { return false; }
8149 static inline void update_blocked_load_tick(struct rq *rq) {}
8150 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8151 #endif
8152 
8153 static bool __update_blocked_others(struct rq *rq, bool *done)
8154 {
8155 	const struct sched_class *curr_class;
8156 	u64 now = rq_clock_pelt(rq);
8157 	unsigned long thermal_pressure;
8158 	bool decayed;
8159 
8160 	/*
8161 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8162 	 * DL and IRQ signals have been updated before updating CFS.
8163 	 */
8164 	curr_class = rq->curr->sched_class;
8165 
8166 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8167 
8168 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8169 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8170 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8171 		  update_irq_load_avg(rq, 0);
8172 
8173 	if (others_have_blocked(rq))
8174 		*done = false;
8175 
8176 	return decayed;
8177 }
8178 
8179 #ifdef CONFIG_FAIR_GROUP_SCHED
8180 
8181 static bool __update_blocked_fair(struct rq *rq, bool *done)
8182 {
8183 	struct cfs_rq *cfs_rq, *pos;
8184 	bool decayed = false;
8185 	int cpu = cpu_of(rq);
8186 
8187 	/*
8188 	 * Iterates the task_group tree in a bottom up fashion, see
8189 	 * list_add_leaf_cfs_rq() for details.
8190 	 */
8191 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8192 		struct sched_entity *se;
8193 
8194 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8195 			update_tg_load_avg(cfs_rq);
8196 
8197 			if (cfs_rq == &rq->cfs)
8198 				decayed = true;
8199 		}
8200 
8201 		/* Propagate pending load changes to the parent, if any: */
8202 		se = cfs_rq->tg->se[cpu];
8203 		if (se && !skip_blocked_update(se))
8204 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8205 
8206 		/*
8207 		 * There can be a lot of idle CPU cgroups.  Don't let fully
8208 		 * decayed cfs_rqs linger on the list.
8209 		 */
8210 		if (cfs_rq_is_decayed(cfs_rq))
8211 			list_del_leaf_cfs_rq(cfs_rq);
8212 
8213 		/* Don't need periodic decay once load/util_avg are null */
8214 		if (cfs_rq_has_blocked(cfs_rq))
8215 			*done = false;
8216 	}
8217 
8218 	return decayed;
8219 }
8220 
8221 /*
8222  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8223  * This needs to be done in a top-down fashion because the load of a child
8224  * group is a fraction of its parents load.
8225  */
8226 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8227 {
8228 	struct rq *rq = rq_of(cfs_rq);
8229 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8230 	unsigned long now = jiffies;
8231 	unsigned long load;
8232 
8233 	if (cfs_rq->last_h_load_update == now)
8234 		return;
8235 
8236 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
8237 	for_each_sched_entity(se) {
8238 		cfs_rq = cfs_rq_of(se);
8239 		WRITE_ONCE(cfs_rq->h_load_next, se);
8240 		if (cfs_rq->last_h_load_update == now)
8241 			break;
8242 	}
8243 
8244 	if (!se) {
8245 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8246 		cfs_rq->last_h_load_update = now;
8247 	}
8248 
8249 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8250 		load = cfs_rq->h_load;
8251 		load = div64_ul(load * se->avg.load_avg,
8252 			cfs_rq_load_avg(cfs_rq) + 1);
8253 		cfs_rq = group_cfs_rq(se);
8254 		cfs_rq->h_load = load;
8255 		cfs_rq->last_h_load_update = now;
8256 	}
8257 }
8258 
8259 static unsigned long task_h_load(struct task_struct *p)
8260 {
8261 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
8262 
8263 	update_cfs_rq_h_load(cfs_rq);
8264 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8265 			cfs_rq_load_avg(cfs_rq) + 1);
8266 }
8267 #else
8268 static bool __update_blocked_fair(struct rq *rq, bool *done)
8269 {
8270 	struct cfs_rq *cfs_rq = &rq->cfs;
8271 	bool decayed;
8272 
8273 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8274 	if (cfs_rq_has_blocked(cfs_rq))
8275 		*done = false;
8276 
8277 	return decayed;
8278 }
8279 
8280 static unsigned long task_h_load(struct task_struct *p)
8281 {
8282 	return p->se.avg.load_avg;
8283 }
8284 #endif
8285 
8286 static void update_blocked_averages(int cpu)
8287 {
8288 	bool decayed = false, done = true;
8289 	struct rq *rq = cpu_rq(cpu);
8290 	struct rq_flags rf;
8291 
8292 	rq_lock_irqsave(rq, &rf);
8293 	update_blocked_load_tick(rq);
8294 	update_rq_clock(rq);
8295 
8296 	decayed |= __update_blocked_others(rq, &done);
8297 	decayed |= __update_blocked_fair(rq, &done);
8298 
8299 	update_blocked_load_status(rq, !done);
8300 	if (decayed)
8301 		cpufreq_update_util(rq, 0);
8302 	rq_unlock_irqrestore(rq, &rf);
8303 }
8304 
8305 /********** Helpers for find_busiest_group ************************/
8306 
8307 /*
8308  * sg_lb_stats - stats of a sched_group required for load_balancing
8309  */
8310 struct sg_lb_stats {
8311 	unsigned long avg_load; /*Avg load across the CPUs of the group */
8312 	unsigned long group_load; /* Total load over the CPUs of the group */
8313 	unsigned long group_capacity;
8314 	unsigned long group_util; /* Total utilization over the CPUs of the group */
8315 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8316 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
8317 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8318 	unsigned int idle_cpus;
8319 	unsigned int group_weight;
8320 	enum group_type group_type;
8321 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8322 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8323 #ifdef CONFIG_NUMA_BALANCING
8324 	unsigned int nr_numa_running;
8325 	unsigned int nr_preferred_running;
8326 #endif
8327 };
8328 
8329 /*
8330  * sd_lb_stats - Structure to store the statistics of a sched_domain
8331  *		 during load balancing.
8332  */
8333 struct sd_lb_stats {
8334 	struct sched_group *busiest;	/* Busiest group in this sd */
8335 	struct sched_group *local;	/* Local group in this sd */
8336 	unsigned long total_load;	/* Total load of all groups in sd */
8337 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
8338 	unsigned long avg_load;	/* Average load across all groups in sd */
8339 	unsigned int prefer_sibling; /* tasks should go to sibling first */
8340 
8341 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8342 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
8343 };
8344 
8345 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8346 {
8347 	/*
8348 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8349 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8350 	 * We must however set busiest_stat::group_type and
8351 	 * busiest_stat::idle_cpus to the worst busiest group because
8352 	 * update_sd_pick_busiest() reads these before assignment.
8353 	 */
8354 	*sds = (struct sd_lb_stats){
8355 		.busiest = NULL,
8356 		.local = NULL,
8357 		.total_load = 0UL,
8358 		.total_capacity = 0UL,
8359 		.busiest_stat = {
8360 			.idle_cpus = UINT_MAX,
8361 			.group_type = group_has_spare,
8362 		},
8363 	};
8364 }
8365 
8366 static unsigned long scale_rt_capacity(int cpu)
8367 {
8368 	struct rq *rq = cpu_rq(cpu);
8369 	unsigned long max = arch_scale_cpu_capacity(cpu);
8370 	unsigned long used, free;
8371 	unsigned long irq;
8372 
8373 	irq = cpu_util_irq(rq);
8374 
8375 	if (unlikely(irq >= max))
8376 		return 1;
8377 
8378 	/*
8379 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8380 	 * (running and not running) with weights 0 and 1024 respectively.
8381 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
8382 	 * average uses the actual delta max capacity(load).
8383 	 */
8384 	used = READ_ONCE(rq->avg_rt.util_avg);
8385 	used += READ_ONCE(rq->avg_dl.util_avg);
8386 	used += thermal_load_avg(rq);
8387 
8388 	if (unlikely(used >= max))
8389 		return 1;
8390 
8391 	free = max - used;
8392 
8393 	return scale_irq_capacity(free, irq, max);
8394 }
8395 
8396 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8397 {
8398 	unsigned long capacity = scale_rt_capacity(cpu);
8399 	struct sched_group *sdg = sd->groups;
8400 
8401 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8402 
8403 	if (!capacity)
8404 		capacity = 1;
8405 
8406 	cpu_rq(cpu)->cpu_capacity = capacity;
8407 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8408 
8409 	sdg->sgc->capacity = capacity;
8410 	sdg->sgc->min_capacity = capacity;
8411 	sdg->sgc->max_capacity = capacity;
8412 }
8413 
8414 void update_group_capacity(struct sched_domain *sd, int cpu)
8415 {
8416 	struct sched_domain *child = sd->child;
8417 	struct sched_group *group, *sdg = sd->groups;
8418 	unsigned long capacity, min_capacity, max_capacity;
8419 	unsigned long interval;
8420 
8421 	interval = msecs_to_jiffies(sd->balance_interval);
8422 	interval = clamp(interval, 1UL, max_load_balance_interval);
8423 	sdg->sgc->next_update = jiffies + interval;
8424 
8425 	if (!child) {
8426 		update_cpu_capacity(sd, cpu);
8427 		return;
8428 	}
8429 
8430 	capacity = 0;
8431 	min_capacity = ULONG_MAX;
8432 	max_capacity = 0;
8433 
8434 	if (child->flags & SD_OVERLAP) {
8435 		/*
8436 		 * SD_OVERLAP domains cannot assume that child groups
8437 		 * span the current group.
8438 		 */
8439 
8440 		for_each_cpu(cpu, sched_group_span(sdg)) {
8441 			unsigned long cpu_cap = capacity_of(cpu);
8442 
8443 			capacity += cpu_cap;
8444 			min_capacity = min(cpu_cap, min_capacity);
8445 			max_capacity = max(cpu_cap, max_capacity);
8446 		}
8447 	} else  {
8448 		/*
8449 		 * !SD_OVERLAP domains can assume that child groups
8450 		 * span the current group.
8451 		 */
8452 
8453 		group = child->groups;
8454 		do {
8455 			struct sched_group_capacity *sgc = group->sgc;
8456 
8457 			capacity += sgc->capacity;
8458 			min_capacity = min(sgc->min_capacity, min_capacity);
8459 			max_capacity = max(sgc->max_capacity, max_capacity);
8460 			group = group->next;
8461 		} while (group != child->groups);
8462 	}
8463 
8464 	sdg->sgc->capacity = capacity;
8465 	sdg->sgc->min_capacity = min_capacity;
8466 	sdg->sgc->max_capacity = max_capacity;
8467 }
8468 
8469 /*
8470  * Check whether the capacity of the rq has been noticeably reduced by side
8471  * activity. The imbalance_pct is used for the threshold.
8472  * Return true is the capacity is reduced
8473  */
8474 static inline int
8475 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8476 {
8477 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8478 				(rq->cpu_capacity_orig * 100));
8479 }
8480 
8481 /*
8482  * Check whether a rq has a misfit task and if it looks like we can actually
8483  * help that task: we can migrate the task to a CPU of higher capacity, or
8484  * the task's current CPU is heavily pressured.
8485  */
8486 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8487 {
8488 	return rq->misfit_task_load &&
8489 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8490 		 check_cpu_capacity(rq, sd));
8491 }
8492 
8493 /*
8494  * Group imbalance indicates (and tries to solve) the problem where balancing
8495  * groups is inadequate due to ->cpus_ptr constraints.
8496  *
8497  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8498  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8499  * Something like:
8500  *
8501  *	{ 0 1 2 3 } { 4 5 6 7 }
8502  *	        *     * * *
8503  *
8504  * If we were to balance group-wise we'd place two tasks in the first group and
8505  * two tasks in the second group. Clearly this is undesired as it will overload
8506  * cpu 3 and leave one of the CPUs in the second group unused.
8507  *
8508  * The current solution to this issue is detecting the skew in the first group
8509  * by noticing the lower domain failed to reach balance and had difficulty
8510  * moving tasks due to affinity constraints.
8511  *
8512  * When this is so detected; this group becomes a candidate for busiest; see
8513  * update_sd_pick_busiest(). And calculate_imbalance() and
8514  * find_busiest_group() avoid some of the usual balance conditions to allow it
8515  * to create an effective group imbalance.
8516  *
8517  * This is a somewhat tricky proposition since the next run might not find the
8518  * group imbalance and decide the groups need to be balanced again. A most
8519  * subtle and fragile situation.
8520  */
8521 
8522 static inline int sg_imbalanced(struct sched_group *group)
8523 {
8524 	return group->sgc->imbalance;
8525 }
8526 
8527 /*
8528  * group_has_capacity returns true if the group has spare capacity that could
8529  * be used by some tasks.
8530  * We consider that a group has spare capacity if the  * number of task is
8531  * smaller than the number of CPUs or if the utilization is lower than the
8532  * available capacity for CFS tasks.
8533  * For the latter, we use a threshold to stabilize the state, to take into
8534  * account the variance of the tasks' load and to return true if the available
8535  * capacity in meaningful for the load balancer.
8536  * As an example, an available capacity of 1% can appear but it doesn't make
8537  * any benefit for the load balance.
8538  */
8539 static inline bool
8540 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8541 {
8542 	if (sgs->sum_nr_running < sgs->group_weight)
8543 		return true;
8544 
8545 	if ((sgs->group_capacity * imbalance_pct) <
8546 			(sgs->group_runnable * 100))
8547 		return false;
8548 
8549 	if ((sgs->group_capacity * 100) >
8550 			(sgs->group_util * imbalance_pct))
8551 		return true;
8552 
8553 	return false;
8554 }
8555 
8556 /*
8557  *  group_is_overloaded returns true if the group has more tasks than it can
8558  *  handle.
8559  *  group_is_overloaded is not equals to !group_has_capacity because a group
8560  *  with the exact right number of tasks, has no more spare capacity but is not
8561  *  overloaded so both group_has_capacity and group_is_overloaded return
8562  *  false.
8563  */
8564 static inline bool
8565 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8566 {
8567 	if (sgs->sum_nr_running <= sgs->group_weight)
8568 		return false;
8569 
8570 	if ((sgs->group_capacity * 100) <
8571 			(sgs->group_util * imbalance_pct))
8572 		return true;
8573 
8574 	if ((sgs->group_capacity * imbalance_pct) <
8575 			(sgs->group_runnable * 100))
8576 		return true;
8577 
8578 	return false;
8579 }
8580 
8581 static inline enum
8582 group_type group_classify(unsigned int imbalance_pct,
8583 			  struct sched_group *group,
8584 			  struct sg_lb_stats *sgs)
8585 {
8586 	if (group_is_overloaded(imbalance_pct, sgs))
8587 		return group_overloaded;
8588 
8589 	if (sg_imbalanced(group))
8590 		return group_imbalanced;
8591 
8592 	if (sgs->group_asym_packing)
8593 		return group_asym_packing;
8594 
8595 	if (sgs->group_misfit_task_load)
8596 		return group_misfit_task;
8597 
8598 	if (!group_has_capacity(imbalance_pct, sgs))
8599 		return group_fully_busy;
8600 
8601 	return group_has_spare;
8602 }
8603 
8604 /**
8605  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8606  * @env: The load balancing environment.
8607  * @group: sched_group whose statistics are to be updated.
8608  * @sgs: variable to hold the statistics for this group.
8609  * @sg_status: Holds flag indicating the status of the sched_group
8610  */
8611 static inline void update_sg_lb_stats(struct lb_env *env,
8612 				      struct sched_group *group,
8613 				      struct sg_lb_stats *sgs,
8614 				      int *sg_status)
8615 {
8616 	int i, nr_running, local_group;
8617 
8618 	memset(sgs, 0, sizeof(*sgs));
8619 
8620 	local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8621 
8622 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8623 		struct rq *rq = cpu_rq(i);
8624 
8625 		sgs->group_load += cpu_load(rq);
8626 		sgs->group_util += cpu_util(i);
8627 		sgs->group_runnable += cpu_runnable(rq);
8628 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8629 
8630 		nr_running = rq->nr_running;
8631 		sgs->sum_nr_running += nr_running;
8632 
8633 		if (nr_running > 1)
8634 			*sg_status |= SG_OVERLOAD;
8635 
8636 		if (cpu_overutilized(i))
8637 			*sg_status |= SG_OVERUTILIZED;
8638 
8639 #ifdef CONFIG_NUMA_BALANCING
8640 		sgs->nr_numa_running += rq->nr_numa_running;
8641 		sgs->nr_preferred_running += rq->nr_preferred_running;
8642 #endif
8643 		/*
8644 		 * No need to call idle_cpu() if nr_running is not 0
8645 		 */
8646 		if (!nr_running && idle_cpu(i)) {
8647 			sgs->idle_cpus++;
8648 			/* Idle cpu can't have misfit task */
8649 			continue;
8650 		}
8651 
8652 		if (local_group)
8653 			continue;
8654 
8655 		/* Check for a misfit task on the cpu */
8656 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8657 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8658 			sgs->group_misfit_task_load = rq->misfit_task_load;
8659 			*sg_status |= SG_OVERLOAD;
8660 		}
8661 	}
8662 
8663 	/* Check if dst CPU is idle and preferred to this group */
8664 	if (env->sd->flags & SD_ASYM_PACKING &&
8665 	    env->idle != CPU_NOT_IDLE &&
8666 	    sgs->sum_h_nr_running &&
8667 	    sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8668 		sgs->group_asym_packing = 1;
8669 	}
8670 
8671 	sgs->group_capacity = group->sgc->capacity;
8672 
8673 	sgs->group_weight = group->group_weight;
8674 
8675 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8676 
8677 	/* Computing avg_load makes sense only when group is overloaded */
8678 	if (sgs->group_type == group_overloaded)
8679 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8680 				sgs->group_capacity;
8681 }
8682 
8683 /**
8684  * update_sd_pick_busiest - return 1 on busiest group
8685  * @env: The load balancing environment.
8686  * @sds: sched_domain statistics
8687  * @sg: sched_group candidate to be checked for being the busiest
8688  * @sgs: sched_group statistics
8689  *
8690  * Determine if @sg is a busier group than the previously selected
8691  * busiest group.
8692  *
8693  * Return: %true if @sg is a busier group than the previously selected
8694  * busiest group. %false otherwise.
8695  */
8696 static bool update_sd_pick_busiest(struct lb_env *env,
8697 				   struct sd_lb_stats *sds,
8698 				   struct sched_group *sg,
8699 				   struct sg_lb_stats *sgs)
8700 {
8701 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8702 
8703 	/* Make sure that there is at least one task to pull */
8704 	if (!sgs->sum_h_nr_running)
8705 		return false;
8706 
8707 	/*
8708 	 * Don't try to pull misfit tasks we can't help.
8709 	 * We can use max_capacity here as reduction in capacity on some
8710 	 * CPUs in the group should either be possible to resolve
8711 	 * internally or be covered by avg_load imbalance (eventually).
8712 	 */
8713 	if (sgs->group_type == group_misfit_task &&
8714 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
8715 	     sds->local_stat.group_type != group_has_spare))
8716 		return false;
8717 
8718 	if (sgs->group_type > busiest->group_type)
8719 		return true;
8720 
8721 	if (sgs->group_type < busiest->group_type)
8722 		return false;
8723 
8724 	/*
8725 	 * The candidate and the current busiest group are the same type of
8726 	 * group. Let check which one is the busiest according to the type.
8727 	 */
8728 
8729 	switch (sgs->group_type) {
8730 	case group_overloaded:
8731 		/* Select the overloaded group with highest avg_load. */
8732 		if (sgs->avg_load <= busiest->avg_load)
8733 			return false;
8734 		break;
8735 
8736 	case group_imbalanced:
8737 		/*
8738 		 * Select the 1st imbalanced group as we don't have any way to
8739 		 * choose one more than another.
8740 		 */
8741 		return false;
8742 
8743 	case group_asym_packing:
8744 		/* Prefer to move from lowest priority CPU's work */
8745 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8746 			return false;
8747 		break;
8748 
8749 	case group_misfit_task:
8750 		/*
8751 		 * If we have more than one misfit sg go with the biggest
8752 		 * misfit.
8753 		 */
8754 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8755 			return false;
8756 		break;
8757 
8758 	case group_fully_busy:
8759 		/*
8760 		 * Select the fully busy group with highest avg_load. In
8761 		 * theory, there is no need to pull task from such kind of
8762 		 * group because tasks have all compute capacity that they need
8763 		 * but we can still improve the overall throughput by reducing
8764 		 * contention when accessing shared HW resources.
8765 		 *
8766 		 * XXX for now avg_load is not computed and always 0 so we
8767 		 * select the 1st one.
8768 		 */
8769 		if (sgs->avg_load <= busiest->avg_load)
8770 			return false;
8771 		break;
8772 
8773 	case group_has_spare:
8774 		/*
8775 		 * Select not overloaded group with lowest number of idle cpus
8776 		 * and highest number of running tasks. We could also compare
8777 		 * the spare capacity which is more stable but it can end up
8778 		 * that the group has less spare capacity but finally more idle
8779 		 * CPUs which means less opportunity to pull tasks.
8780 		 */
8781 		if (sgs->idle_cpus > busiest->idle_cpus)
8782 			return false;
8783 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8784 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
8785 			return false;
8786 
8787 		break;
8788 	}
8789 
8790 	/*
8791 	 * Candidate sg has no more than one task per CPU and has higher
8792 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8793 	 * throughput. Maximize throughput, power/energy consequences are not
8794 	 * considered.
8795 	 */
8796 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8797 	    (sgs->group_type <= group_fully_busy) &&
8798 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
8799 		return false;
8800 
8801 	return true;
8802 }
8803 
8804 #ifdef CONFIG_NUMA_BALANCING
8805 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8806 {
8807 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8808 		return regular;
8809 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8810 		return remote;
8811 	return all;
8812 }
8813 
8814 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8815 {
8816 	if (rq->nr_running > rq->nr_numa_running)
8817 		return regular;
8818 	if (rq->nr_running > rq->nr_preferred_running)
8819 		return remote;
8820 	return all;
8821 }
8822 #else
8823 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8824 {
8825 	return all;
8826 }
8827 
8828 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8829 {
8830 	return regular;
8831 }
8832 #endif /* CONFIG_NUMA_BALANCING */
8833 
8834 
8835 struct sg_lb_stats;
8836 
8837 /*
8838  * task_running_on_cpu - return 1 if @p is running on @cpu.
8839  */
8840 
8841 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8842 {
8843 	/* Task has no contribution or is new */
8844 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8845 		return 0;
8846 
8847 	if (task_on_rq_queued(p))
8848 		return 1;
8849 
8850 	return 0;
8851 }
8852 
8853 /**
8854  * idle_cpu_without - would a given CPU be idle without p ?
8855  * @cpu: the processor on which idleness is tested.
8856  * @p: task which should be ignored.
8857  *
8858  * Return: 1 if the CPU would be idle. 0 otherwise.
8859  */
8860 static int idle_cpu_without(int cpu, struct task_struct *p)
8861 {
8862 	struct rq *rq = cpu_rq(cpu);
8863 
8864 	if (rq->curr != rq->idle && rq->curr != p)
8865 		return 0;
8866 
8867 	/*
8868 	 * rq->nr_running can't be used but an updated version without the
8869 	 * impact of p on cpu must be used instead. The updated nr_running
8870 	 * be computed and tested before calling idle_cpu_without().
8871 	 */
8872 
8873 #ifdef CONFIG_SMP
8874 	if (rq->ttwu_pending)
8875 		return 0;
8876 #endif
8877 
8878 	return 1;
8879 }
8880 
8881 /*
8882  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8883  * @sd: The sched_domain level to look for idlest group.
8884  * @group: sched_group whose statistics are to be updated.
8885  * @sgs: variable to hold the statistics for this group.
8886  * @p: The task for which we look for the idlest group/CPU.
8887  */
8888 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8889 					  struct sched_group *group,
8890 					  struct sg_lb_stats *sgs,
8891 					  struct task_struct *p)
8892 {
8893 	int i, nr_running;
8894 
8895 	memset(sgs, 0, sizeof(*sgs));
8896 
8897 	for_each_cpu(i, sched_group_span(group)) {
8898 		struct rq *rq = cpu_rq(i);
8899 		unsigned int local;
8900 
8901 		sgs->group_load += cpu_load_without(rq, p);
8902 		sgs->group_util += cpu_util_without(i, p);
8903 		sgs->group_runnable += cpu_runnable_without(rq, p);
8904 		local = task_running_on_cpu(i, p);
8905 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8906 
8907 		nr_running = rq->nr_running - local;
8908 		sgs->sum_nr_running += nr_running;
8909 
8910 		/*
8911 		 * No need to call idle_cpu_without() if nr_running is not 0
8912 		 */
8913 		if (!nr_running && idle_cpu_without(i, p))
8914 			sgs->idle_cpus++;
8915 
8916 	}
8917 
8918 	/* Check if task fits in the group */
8919 	if (sd->flags & SD_ASYM_CPUCAPACITY &&
8920 	    !task_fits_capacity(p, group->sgc->max_capacity)) {
8921 		sgs->group_misfit_task_load = 1;
8922 	}
8923 
8924 	sgs->group_capacity = group->sgc->capacity;
8925 
8926 	sgs->group_weight = group->group_weight;
8927 
8928 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8929 
8930 	/*
8931 	 * Computing avg_load makes sense only when group is fully busy or
8932 	 * overloaded
8933 	 */
8934 	if (sgs->group_type == group_fully_busy ||
8935 		sgs->group_type == group_overloaded)
8936 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8937 				sgs->group_capacity;
8938 }
8939 
8940 static bool update_pick_idlest(struct sched_group *idlest,
8941 			       struct sg_lb_stats *idlest_sgs,
8942 			       struct sched_group *group,
8943 			       struct sg_lb_stats *sgs)
8944 {
8945 	if (sgs->group_type < idlest_sgs->group_type)
8946 		return true;
8947 
8948 	if (sgs->group_type > idlest_sgs->group_type)
8949 		return false;
8950 
8951 	/*
8952 	 * The candidate and the current idlest group are the same type of
8953 	 * group. Let check which one is the idlest according to the type.
8954 	 */
8955 
8956 	switch (sgs->group_type) {
8957 	case group_overloaded:
8958 	case group_fully_busy:
8959 		/* Select the group with lowest avg_load. */
8960 		if (idlest_sgs->avg_load <= sgs->avg_load)
8961 			return false;
8962 		break;
8963 
8964 	case group_imbalanced:
8965 	case group_asym_packing:
8966 		/* Those types are not used in the slow wakeup path */
8967 		return false;
8968 
8969 	case group_misfit_task:
8970 		/* Select group with the highest max capacity */
8971 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8972 			return false;
8973 		break;
8974 
8975 	case group_has_spare:
8976 		/* Select group with most idle CPUs */
8977 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
8978 			return false;
8979 
8980 		/* Select group with lowest group_util */
8981 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8982 			idlest_sgs->group_util <= sgs->group_util)
8983 			return false;
8984 
8985 		break;
8986 	}
8987 
8988 	return true;
8989 }
8990 
8991 /*
8992  * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
8993  * This is an approximation as the number of running tasks may not be
8994  * related to the number of busy CPUs due to sched_setaffinity.
8995  */
8996 static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
8997 {
8998 	return (dst_running < (dst_weight >> 2));
8999 }
9000 
9001 /*
9002  * find_idlest_group() finds and returns the least busy CPU group within the
9003  * domain.
9004  *
9005  * Assumes p is allowed on at least one CPU in sd.
9006  */
9007 static struct sched_group *
9008 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9009 {
9010 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9011 	struct sg_lb_stats local_sgs, tmp_sgs;
9012 	struct sg_lb_stats *sgs;
9013 	unsigned long imbalance;
9014 	struct sg_lb_stats idlest_sgs = {
9015 			.avg_load = UINT_MAX,
9016 			.group_type = group_overloaded,
9017 	};
9018 
9019 	do {
9020 		int local_group;
9021 
9022 		/* Skip over this group if it has no CPUs allowed */
9023 		if (!cpumask_intersects(sched_group_span(group),
9024 					p->cpus_ptr))
9025 			continue;
9026 
9027 		/* Skip over this group if no cookie matched */
9028 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9029 			continue;
9030 
9031 		local_group = cpumask_test_cpu(this_cpu,
9032 					       sched_group_span(group));
9033 
9034 		if (local_group) {
9035 			sgs = &local_sgs;
9036 			local = group;
9037 		} else {
9038 			sgs = &tmp_sgs;
9039 		}
9040 
9041 		update_sg_wakeup_stats(sd, group, sgs, p);
9042 
9043 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9044 			idlest = group;
9045 			idlest_sgs = *sgs;
9046 		}
9047 
9048 	} while (group = group->next, group != sd->groups);
9049 
9050 
9051 	/* There is no idlest group to push tasks to */
9052 	if (!idlest)
9053 		return NULL;
9054 
9055 	/* The local group has been skipped because of CPU affinity */
9056 	if (!local)
9057 		return idlest;
9058 
9059 	/*
9060 	 * If the local group is idler than the selected idlest group
9061 	 * don't try and push the task.
9062 	 */
9063 	if (local_sgs.group_type < idlest_sgs.group_type)
9064 		return NULL;
9065 
9066 	/*
9067 	 * If the local group is busier than the selected idlest group
9068 	 * try and push the task.
9069 	 */
9070 	if (local_sgs.group_type > idlest_sgs.group_type)
9071 		return idlest;
9072 
9073 	switch (local_sgs.group_type) {
9074 	case group_overloaded:
9075 	case group_fully_busy:
9076 
9077 		/* Calculate allowed imbalance based on load */
9078 		imbalance = scale_load_down(NICE_0_LOAD) *
9079 				(sd->imbalance_pct-100) / 100;
9080 
9081 		/*
9082 		 * When comparing groups across NUMA domains, it's possible for
9083 		 * the local domain to be very lightly loaded relative to the
9084 		 * remote domains but "imbalance" skews the comparison making
9085 		 * remote CPUs look much more favourable. When considering
9086 		 * cross-domain, add imbalance to the load on the remote node
9087 		 * and consider staying local.
9088 		 */
9089 
9090 		if ((sd->flags & SD_NUMA) &&
9091 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9092 			return NULL;
9093 
9094 		/*
9095 		 * If the local group is less loaded than the selected
9096 		 * idlest group don't try and push any tasks.
9097 		 */
9098 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9099 			return NULL;
9100 
9101 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9102 			return NULL;
9103 		break;
9104 
9105 	case group_imbalanced:
9106 	case group_asym_packing:
9107 		/* Those type are not used in the slow wakeup path */
9108 		return NULL;
9109 
9110 	case group_misfit_task:
9111 		/* Select group with the highest max capacity */
9112 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9113 			return NULL;
9114 		break;
9115 
9116 	case group_has_spare:
9117 		if (sd->flags & SD_NUMA) {
9118 #ifdef CONFIG_NUMA_BALANCING
9119 			int idlest_cpu;
9120 			/*
9121 			 * If there is spare capacity at NUMA, try to select
9122 			 * the preferred node
9123 			 */
9124 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9125 				return NULL;
9126 
9127 			idlest_cpu = cpumask_first(sched_group_span(idlest));
9128 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9129 				return idlest;
9130 #endif
9131 			/*
9132 			 * Otherwise, keep the task on this node to stay close
9133 			 * its wakeup source and improve locality. If there is
9134 			 * a real need of migration, periodic load balance will
9135 			 * take care of it.
9136 			 */
9137 			if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
9138 				return NULL;
9139 		}
9140 
9141 		/*
9142 		 * Select group with highest number of idle CPUs. We could also
9143 		 * compare the utilization which is more stable but it can end
9144 		 * up that the group has less spare capacity but finally more
9145 		 * idle CPUs which means more opportunity to run task.
9146 		 */
9147 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9148 			return NULL;
9149 		break;
9150 	}
9151 
9152 	return idlest;
9153 }
9154 
9155 /**
9156  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9157  * @env: The load balancing environment.
9158  * @sds: variable to hold the statistics for this sched_domain.
9159  */
9160 
9161 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9162 {
9163 	struct sched_domain *child = env->sd->child;
9164 	struct sched_group *sg = env->sd->groups;
9165 	struct sg_lb_stats *local = &sds->local_stat;
9166 	struct sg_lb_stats tmp_sgs;
9167 	int sg_status = 0;
9168 
9169 	do {
9170 		struct sg_lb_stats *sgs = &tmp_sgs;
9171 		int local_group;
9172 
9173 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9174 		if (local_group) {
9175 			sds->local = sg;
9176 			sgs = local;
9177 
9178 			if (env->idle != CPU_NEWLY_IDLE ||
9179 			    time_after_eq(jiffies, sg->sgc->next_update))
9180 				update_group_capacity(env->sd, env->dst_cpu);
9181 		}
9182 
9183 		update_sg_lb_stats(env, sg, sgs, &sg_status);
9184 
9185 		if (local_group)
9186 			goto next_group;
9187 
9188 
9189 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9190 			sds->busiest = sg;
9191 			sds->busiest_stat = *sgs;
9192 		}
9193 
9194 next_group:
9195 		/* Now, start updating sd_lb_stats */
9196 		sds->total_load += sgs->group_load;
9197 		sds->total_capacity += sgs->group_capacity;
9198 
9199 		sg = sg->next;
9200 	} while (sg != env->sd->groups);
9201 
9202 	/* Tag domain that child domain prefers tasks go to siblings first */
9203 	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9204 
9205 
9206 	if (env->sd->flags & SD_NUMA)
9207 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9208 
9209 	if (!env->sd->parent) {
9210 		struct root_domain *rd = env->dst_rq->rd;
9211 
9212 		/* update overload indicator if we are at root domain */
9213 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9214 
9215 		/* Update over-utilization (tipping point, U >= 0) indicator */
9216 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9217 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9218 	} else if (sg_status & SG_OVERUTILIZED) {
9219 		struct root_domain *rd = env->dst_rq->rd;
9220 
9221 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9222 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9223 	}
9224 }
9225 
9226 #define NUMA_IMBALANCE_MIN 2
9227 
9228 static inline long adjust_numa_imbalance(int imbalance,
9229 				int dst_running, int dst_weight)
9230 {
9231 	if (!allow_numa_imbalance(dst_running, dst_weight))
9232 		return imbalance;
9233 
9234 	/*
9235 	 * Allow a small imbalance based on a simple pair of communicating
9236 	 * tasks that remain local when the destination is lightly loaded.
9237 	 */
9238 	if (imbalance <= NUMA_IMBALANCE_MIN)
9239 		return 0;
9240 
9241 	return imbalance;
9242 }
9243 
9244 /**
9245  * calculate_imbalance - Calculate the amount of imbalance present within the
9246  *			 groups of a given sched_domain during load balance.
9247  * @env: load balance environment
9248  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9249  */
9250 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9251 {
9252 	struct sg_lb_stats *local, *busiest;
9253 
9254 	local = &sds->local_stat;
9255 	busiest = &sds->busiest_stat;
9256 
9257 	if (busiest->group_type == group_misfit_task) {
9258 		/* Set imbalance to allow misfit tasks to be balanced. */
9259 		env->migration_type = migrate_misfit;
9260 		env->imbalance = 1;
9261 		return;
9262 	}
9263 
9264 	if (busiest->group_type == group_asym_packing) {
9265 		/*
9266 		 * In case of asym capacity, we will try to migrate all load to
9267 		 * the preferred CPU.
9268 		 */
9269 		env->migration_type = migrate_task;
9270 		env->imbalance = busiest->sum_h_nr_running;
9271 		return;
9272 	}
9273 
9274 	if (busiest->group_type == group_imbalanced) {
9275 		/*
9276 		 * In the group_imb case we cannot rely on group-wide averages
9277 		 * to ensure CPU-load equilibrium, try to move any task to fix
9278 		 * the imbalance. The next load balance will take care of
9279 		 * balancing back the system.
9280 		 */
9281 		env->migration_type = migrate_task;
9282 		env->imbalance = 1;
9283 		return;
9284 	}
9285 
9286 	/*
9287 	 * Try to use spare capacity of local group without overloading it or
9288 	 * emptying busiest.
9289 	 */
9290 	if (local->group_type == group_has_spare) {
9291 		if ((busiest->group_type > group_fully_busy) &&
9292 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9293 			/*
9294 			 * If busiest is overloaded, try to fill spare
9295 			 * capacity. This might end up creating spare capacity
9296 			 * in busiest or busiest still being overloaded but
9297 			 * there is no simple way to directly compute the
9298 			 * amount of load to migrate in order to balance the
9299 			 * system.
9300 			 */
9301 			env->migration_type = migrate_util;
9302 			env->imbalance = max(local->group_capacity, local->group_util) -
9303 					 local->group_util;
9304 
9305 			/*
9306 			 * In some cases, the group's utilization is max or even
9307 			 * higher than capacity because of migrations but the
9308 			 * local CPU is (newly) idle. There is at least one
9309 			 * waiting task in this overloaded busiest group. Let's
9310 			 * try to pull it.
9311 			 */
9312 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9313 				env->migration_type = migrate_task;
9314 				env->imbalance = 1;
9315 			}
9316 
9317 			return;
9318 		}
9319 
9320 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
9321 			unsigned int nr_diff = busiest->sum_nr_running;
9322 			/*
9323 			 * When prefer sibling, evenly spread running tasks on
9324 			 * groups.
9325 			 */
9326 			env->migration_type = migrate_task;
9327 			lsub_positive(&nr_diff, local->sum_nr_running);
9328 			env->imbalance = nr_diff >> 1;
9329 		} else {
9330 
9331 			/*
9332 			 * If there is no overload, we just want to even the number of
9333 			 * idle cpus.
9334 			 */
9335 			env->migration_type = migrate_task;
9336 			env->imbalance = max_t(long, 0, (local->idle_cpus -
9337 						 busiest->idle_cpus) >> 1);
9338 		}
9339 
9340 		/* Consider allowing a small imbalance between NUMA groups */
9341 		if (env->sd->flags & SD_NUMA) {
9342 			env->imbalance = adjust_numa_imbalance(env->imbalance,
9343 				busiest->sum_nr_running, busiest->group_weight);
9344 		}
9345 
9346 		return;
9347 	}
9348 
9349 	/*
9350 	 * Local is fully busy but has to take more load to relieve the
9351 	 * busiest group
9352 	 */
9353 	if (local->group_type < group_overloaded) {
9354 		/*
9355 		 * Local will become overloaded so the avg_load metrics are
9356 		 * finally needed.
9357 		 */
9358 
9359 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9360 				  local->group_capacity;
9361 
9362 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9363 				sds->total_capacity;
9364 		/*
9365 		 * If the local group is more loaded than the selected
9366 		 * busiest group don't try to pull any tasks.
9367 		 */
9368 		if (local->avg_load >= busiest->avg_load) {
9369 			env->imbalance = 0;
9370 			return;
9371 		}
9372 	}
9373 
9374 	/*
9375 	 * Both group are or will become overloaded and we're trying to get all
9376 	 * the CPUs to the average_load, so we don't want to push ourselves
9377 	 * above the average load, nor do we wish to reduce the max loaded CPU
9378 	 * below the average load. At the same time, we also don't want to
9379 	 * reduce the group load below the group capacity. Thus we look for
9380 	 * the minimum possible imbalance.
9381 	 */
9382 	env->migration_type = migrate_load;
9383 	env->imbalance = min(
9384 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9385 		(sds->avg_load - local->avg_load) * local->group_capacity
9386 	) / SCHED_CAPACITY_SCALE;
9387 }
9388 
9389 /******* find_busiest_group() helpers end here *********************/
9390 
9391 /*
9392  * Decision matrix according to the local and busiest group type:
9393  *
9394  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9395  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
9396  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
9397  * misfit_task      force     N/A        N/A    N/A  force      force
9398  * asym_packing     force     force      N/A    N/A  force      force
9399  * imbalanced       force     force      N/A    N/A  force      force
9400  * overloaded       force     force      N/A    N/A  force      avg_load
9401  *
9402  * N/A :      Not Applicable because already filtered while updating
9403  *            statistics.
9404  * balanced : The system is balanced for these 2 groups.
9405  * force :    Calculate the imbalance as load migration is probably needed.
9406  * avg_load : Only if imbalance is significant enough.
9407  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
9408  *            different in groups.
9409  */
9410 
9411 /**
9412  * find_busiest_group - Returns the busiest group within the sched_domain
9413  * if there is an imbalance.
9414  *
9415  * Also calculates the amount of runnable load which should be moved
9416  * to restore balance.
9417  *
9418  * @env: The load balancing environment.
9419  *
9420  * Return:	- The busiest group if imbalance exists.
9421  */
9422 static struct sched_group *find_busiest_group(struct lb_env *env)
9423 {
9424 	struct sg_lb_stats *local, *busiest;
9425 	struct sd_lb_stats sds;
9426 
9427 	init_sd_lb_stats(&sds);
9428 
9429 	/*
9430 	 * Compute the various statistics relevant for load balancing at
9431 	 * this level.
9432 	 */
9433 	update_sd_lb_stats(env, &sds);
9434 
9435 	if (sched_energy_enabled()) {
9436 		struct root_domain *rd = env->dst_rq->rd;
9437 
9438 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9439 			goto out_balanced;
9440 	}
9441 
9442 	local = &sds.local_stat;
9443 	busiest = &sds.busiest_stat;
9444 
9445 	/* There is no busy sibling group to pull tasks from */
9446 	if (!sds.busiest)
9447 		goto out_balanced;
9448 
9449 	/* Misfit tasks should be dealt with regardless of the avg load */
9450 	if (busiest->group_type == group_misfit_task)
9451 		goto force_balance;
9452 
9453 	/* ASYM feature bypasses nice load balance check */
9454 	if (busiest->group_type == group_asym_packing)
9455 		goto force_balance;
9456 
9457 	/*
9458 	 * If the busiest group is imbalanced the below checks don't
9459 	 * work because they assume all things are equal, which typically
9460 	 * isn't true due to cpus_ptr constraints and the like.
9461 	 */
9462 	if (busiest->group_type == group_imbalanced)
9463 		goto force_balance;
9464 
9465 	/*
9466 	 * If the local group is busier than the selected busiest group
9467 	 * don't try and pull any tasks.
9468 	 */
9469 	if (local->group_type > busiest->group_type)
9470 		goto out_balanced;
9471 
9472 	/*
9473 	 * When groups are overloaded, use the avg_load to ensure fairness
9474 	 * between tasks.
9475 	 */
9476 	if (local->group_type == group_overloaded) {
9477 		/*
9478 		 * If the local group is more loaded than the selected
9479 		 * busiest group don't try to pull any tasks.
9480 		 */
9481 		if (local->avg_load >= busiest->avg_load)
9482 			goto out_balanced;
9483 
9484 		/* XXX broken for overlapping NUMA groups */
9485 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9486 				sds.total_capacity;
9487 
9488 		/*
9489 		 * Don't pull any tasks if this group is already above the
9490 		 * domain average load.
9491 		 */
9492 		if (local->avg_load >= sds.avg_load)
9493 			goto out_balanced;
9494 
9495 		/*
9496 		 * If the busiest group is more loaded, use imbalance_pct to be
9497 		 * conservative.
9498 		 */
9499 		if (100 * busiest->avg_load <=
9500 				env->sd->imbalance_pct * local->avg_load)
9501 			goto out_balanced;
9502 	}
9503 
9504 	/* Try to move all excess tasks to child's sibling domain */
9505 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
9506 	    busiest->sum_nr_running > local->sum_nr_running + 1)
9507 		goto force_balance;
9508 
9509 	if (busiest->group_type != group_overloaded) {
9510 		if (env->idle == CPU_NOT_IDLE)
9511 			/*
9512 			 * If the busiest group is not overloaded (and as a
9513 			 * result the local one too) but this CPU is already
9514 			 * busy, let another idle CPU try to pull task.
9515 			 */
9516 			goto out_balanced;
9517 
9518 		if (busiest->group_weight > 1 &&
9519 		    local->idle_cpus <= (busiest->idle_cpus + 1))
9520 			/*
9521 			 * If the busiest group is not overloaded
9522 			 * and there is no imbalance between this and busiest
9523 			 * group wrt idle CPUs, it is balanced. The imbalance
9524 			 * becomes significant if the diff is greater than 1
9525 			 * otherwise we might end up to just move the imbalance
9526 			 * on another group. Of course this applies only if
9527 			 * there is more than 1 CPU per group.
9528 			 */
9529 			goto out_balanced;
9530 
9531 		if (busiest->sum_h_nr_running == 1)
9532 			/*
9533 			 * busiest doesn't have any tasks waiting to run
9534 			 */
9535 			goto out_balanced;
9536 	}
9537 
9538 force_balance:
9539 	/* Looks like there is an imbalance. Compute it */
9540 	calculate_imbalance(env, &sds);
9541 	return env->imbalance ? sds.busiest : NULL;
9542 
9543 out_balanced:
9544 	env->imbalance = 0;
9545 	return NULL;
9546 }
9547 
9548 /*
9549  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9550  */
9551 static struct rq *find_busiest_queue(struct lb_env *env,
9552 				     struct sched_group *group)
9553 {
9554 	struct rq *busiest = NULL, *rq;
9555 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9556 	unsigned int busiest_nr = 0;
9557 	int i;
9558 
9559 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9560 		unsigned long capacity, load, util;
9561 		unsigned int nr_running;
9562 		enum fbq_type rt;
9563 
9564 		rq = cpu_rq(i);
9565 		rt = fbq_classify_rq(rq);
9566 
9567 		/*
9568 		 * We classify groups/runqueues into three groups:
9569 		 *  - regular: there are !numa tasks
9570 		 *  - remote:  there are numa tasks that run on the 'wrong' node
9571 		 *  - all:     there is no distinction
9572 		 *
9573 		 * In order to avoid migrating ideally placed numa tasks,
9574 		 * ignore those when there's better options.
9575 		 *
9576 		 * If we ignore the actual busiest queue to migrate another
9577 		 * task, the next balance pass can still reduce the busiest
9578 		 * queue by moving tasks around inside the node.
9579 		 *
9580 		 * If we cannot move enough load due to this classification
9581 		 * the next pass will adjust the group classification and
9582 		 * allow migration of more tasks.
9583 		 *
9584 		 * Both cases only affect the total convergence complexity.
9585 		 */
9586 		if (rt > env->fbq_type)
9587 			continue;
9588 
9589 		nr_running = rq->cfs.h_nr_running;
9590 		if (!nr_running)
9591 			continue;
9592 
9593 		capacity = capacity_of(i);
9594 
9595 		/*
9596 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9597 		 * eventually lead to active_balancing high->low capacity.
9598 		 * Higher per-CPU capacity is considered better than balancing
9599 		 * average load.
9600 		 */
9601 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9602 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
9603 		    nr_running == 1)
9604 			continue;
9605 
9606 		switch (env->migration_type) {
9607 		case migrate_load:
9608 			/*
9609 			 * When comparing with load imbalance, use cpu_load()
9610 			 * which is not scaled with the CPU capacity.
9611 			 */
9612 			load = cpu_load(rq);
9613 
9614 			if (nr_running == 1 && load > env->imbalance &&
9615 			    !check_cpu_capacity(rq, env->sd))
9616 				break;
9617 
9618 			/*
9619 			 * For the load comparisons with the other CPUs,
9620 			 * consider the cpu_load() scaled with the CPU
9621 			 * capacity, so that the load can be moved away
9622 			 * from the CPU that is potentially running at a
9623 			 * lower capacity.
9624 			 *
9625 			 * Thus we're looking for max(load_i / capacity_i),
9626 			 * crosswise multiplication to rid ourselves of the
9627 			 * division works out to:
9628 			 * load_i * capacity_j > load_j * capacity_i;
9629 			 * where j is our previous maximum.
9630 			 */
9631 			if (load * busiest_capacity > busiest_load * capacity) {
9632 				busiest_load = load;
9633 				busiest_capacity = capacity;
9634 				busiest = rq;
9635 			}
9636 			break;
9637 
9638 		case migrate_util:
9639 			util = cpu_util(cpu_of(rq));
9640 
9641 			/*
9642 			 * Don't try to pull utilization from a CPU with one
9643 			 * running task. Whatever its utilization, we will fail
9644 			 * detach the task.
9645 			 */
9646 			if (nr_running <= 1)
9647 				continue;
9648 
9649 			if (busiest_util < util) {
9650 				busiest_util = util;
9651 				busiest = rq;
9652 			}
9653 			break;
9654 
9655 		case migrate_task:
9656 			if (busiest_nr < nr_running) {
9657 				busiest_nr = nr_running;
9658 				busiest = rq;
9659 			}
9660 			break;
9661 
9662 		case migrate_misfit:
9663 			/*
9664 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
9665 			 * simply seek the "biggest" misfit task.
9666 			 */
9667 			if (rq->misfit_task_load > busiest_load) {
9668 				busiest_load = rq->misfit_task_load;
9669 				busiest = rq;
9670 			}
9671 
9672 			break;
9673 
9674 		}
9675 	}
9676 
9677 	return busiest;
9678 }
9679 
9680 /*
9681  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9682  * so long as it is large enough.
9683  */
9684 #define MAX_PINNED_INTERVAL	512
9685 
9686 static inline bool
9687 asym_active_balance(struct lb_env *env)
9688 {
9689 	/*
9690 	 * ASYM_PACKING needs to force migrate tasks from busy but
9691 	 * lower priority CPUs in order to pack all tasks in the
9692 	 * highest priority CPUs.
9693 	 */
9694 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9695 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
9696 }
9697 
9698 static inline bool
9699 imbalanced_active_balance(struct lb_env *env)
9700 {
9701 	struct sched_domain *sd = env->sd;
9702 
9703 	/*
9704 	 * The imbalanced case includes the case of pinned tasks preventing a fair
9705 	 * distribution of the load on the system but also the even distribution of the
9706 	 * threads on a system with spare capacity
9707 	 */
9708 	if ((env->migration_type == migrate_task) &&
9709 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
9710 		return 1;
9711 
9712 	return 0;
9713 }
9714 
9715 static int need_active_balance(struct lb_env *env)
9716 {
9717 	struct sched_domain *sd = env->sd;
9718 
9719 	if (asym_active_balance(env))
9720 		return 1;
9721 
9722 	if (imbalanced_active_balance(env))
9723 		return 1;
9724 
9725 	/*
9726 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9727 	 * It's worth migrating the task if the src_cpu's capacity is reduced
9728 	 * because of other sched_class or IRQs if more capacity stays
9729 	 * available on dst_cpu.
9730 	 */
9731 	if ((env->idle != CPU_NOT_IDLE) &&
9732 	    (env->src_rq->cfs.h_nr_running == 1)) {
9733 		if ((check_cpu_capacity(env->src_rq, sd)) &&
9734 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9735 			return 1;
9736 	}
9737 
9738 	if (env->migration_type == migrate_misfit)
9739 		return 1;
9740 
9741 	return 0;
9742 }
9743 
9744 static int active_load_balance_cpu_stop(void *data);
9745 
9746 static int should_we_balance(struct lb_env *env)
9747 {
9748 	struct sched_group *sg = env->sd->groups;
9749 	int cpu;
9750 
9751 	/*
9752 	 * Ensure the balancing environment is consistent; can happen
9753 	 * when the softirq triggers 'during' hotplug.
9754 	 */
9755 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9756 		return 0;
9757 
9758 	/*
9759 	 * In the newly idle case, we will allow all the CPUs
9760 	 * to do the newly idle load balance.
9761 	 */
9762 	if (env->idle == CPU_NEWLY_IDLE)
9763 		return 1;
9764 
9765 	/* Try to find first idle CPU */
9766 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9767 		if (!idle_cpu(cpu))
9768 			continue;
9769 
9770 		/* Are we the first idle CPU? */
9771 		return cpu == env->dst_cpu;
9772 	}
9773 
9774 	/* Are we the first CPU of this group ? */
9775 	return group_balance_cpu(sg) == env->dst_cpu;
9776 }
9777 
9778 /*
9779  * Check this_cpu to ensure it is balanced within domain. Attempt to move
9780  * tasks if there is an imbalance.
9781  */
9782 static int load_balance(int this_cpu, struct rq *this_rq,
9783 			struct sched_domain *sd, enum cpu_idle_type idle,
9784 			int *continue_balancing)
9785 {
9786 	int ld_moved, cur_ld_moved, active_balance = 0;
9787 	struct sched_domain *sd_parent = sd->parent;
9788 	struct sched_group *group;
9789 	struct rq *busiest;
9790 	struct rq_flags rf;
9791 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9792 
9793 	struct lb_env env = {
9794 		.sd		= sd,
9795 		.dst_cpu	= this_cpu,
9796 		.dst_rq		= this_rq,
9797 		.dst_grpmask    = sched_group_span(sd->groups),
9798 		.idle		= idle,
9799 		.loop_break	= sched_nr_migrate_break,
9800 		.cpus		= cpus,
9801 		.fbq_type	= all,
9802 		.tasks		= LIST_HEAD_INIT(env.tasks),
9803 	};
9804 
9805 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9806 
9807 	schedstat_inc(sd->lb_count[idle]);
9808 
9809 redo:
9810 	if (!should_we_balance(&env)) {
9811 		*continue_balancing = 0;
9812 		goto out_balanced;
9813 	}
9814 
9815 	group = find_busiest_group(&env);
9816 	if (!group) {
9817 		schedstat_inc(sd->lb_nobusyg[idle]);
9818 		goto out_balanced;
9819 	}
9820 
9821 	busiest = find_busiest_queue(&env, group);
9822 	if (!busiest) {
9823 		schedstat_inc(sd->lb_nobusyq[idle]);
9824 		goto out_balanced;
9825 	}
9826 
9827 	BUG_ON(busiest == env.dst_rq);
9828 
9829 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9830 
9831 	env.src_cpu = busiest->cpu;
9832 	env.src_rq = busiest;
9833 
9834 	ld_moved = 0;
9835 	/* Clear this flag as soon as we find a pullable task */
9836 	env.flags |= LBF_ALL_PINNED;
9837 	if (busiest->nr_running > 1) {
9838 		/*
9839 		 * Attempt to move tasks. If find_busiest_group has found
9840 		 * an imbalance but busiest->nr_running <= 1, the group is
9841 		 * still unbalanced. ld_moved simply stays zero, so it is
9842 		 * correctly treated as an imbalance.
9843 		 */
9844 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
9845 
9846 more_balance:
9847 		rq_lock_irqsave(busiest, &rf);
9848 		update_rq_clock(busiest);
9849 
9850 		/*
9851 		 * cur_ld_moved - load moved in current iteration
9852 		 * ld_moved     - cumulative load moved across iterations
9853 		 */
9854 		cur_ld_moved = detach_tasks(&env);
9855 
9856 		/*
9857 		 * We've detached some tasks from busiest_rq. Every
9858 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9859 		 * unlock busiest->lock, and we are able to be sure
9860 		 * that nobody can manipulate the tasks in parallel.
9861 		 * See task_rq_lock() family for the details.
9862 		 */
9863 
9864 		rq_unlock(busiest, &rf);
9865 
9866 		if (cur_ld_moved) {
9867 			attach_tasks(&env);
9868 			ld_moved += cur_ld_moved;
9869 		}
9870 
9871 		local_irq_restore(rf.flags);
9872 
9873 		if (env.flags & LBF_NEED_BREAK) {
9874 			env.flags &= ~LBF_NEED_BREAK;
9875 			goto more_balance;
9876 		}
9877 
9878 		/*
9879 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9880 		 * us and move them to an alternate dst_cpu in our sched_group
9881 		 * where they can run. The upper limit on how many times we
9882 		 * iterate on same src_cpu is dependent on number of CPUs in our
9883 		 * sched_group.
9884 		 *
9885 		 * This changes load balance semantics a bit on who can move
9886 		 * load to a given_cpu. In addition to the given_cpu itself
9887 		 * (or a ilb_cpu acting on its behalf where given_cpu is
9888 		 * nohz-idle), we now have balance_cpu in a position to move
9889 		 * load to given_cpu. In rare situations, this may cause
9890 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9891 		 * _independently_ and at _same_ time to move some load to
9892 		 * given_cpu) causing excess load to be moved to given_cpu.
9893 		 * This however should not happen so much in practice and
9894 		 * moreover subsequent load balance cycles should correct the
9895 		 * excess load moved.
9896 		 */
9897 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9898 
9899 			/* Prevent to re-select dst_cpu via env's CPUs */
9900 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
9901 
9902 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
9903 			env.dst_cpu	 = env.new_dst_cpu;
9904 			env.flags	&= ~LBF_DST_PINNED;
9905 			env.loop	 = 0;
9906 			env.loop_break	 = sched_nr_migrate_break;
9907 
9908 			/*
9909 			 * Go back to "more_balance" rather than "redo" since we
9910 			 * need to continue with same src_cpu.
9911 			 */
9912 			goto more_balance;
9913 		}
9914 
9915 		/*
9916 		 * We failed to reach balance because of affinity.
9917 		 */
9918 		if (sd_parent) {
9919 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9920 
9921 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9922 				*group_imbalance = 1;
9923 		}
9924 
9925 		/* All tasks on this runqueue were pinned by CPU affinity */
9926 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
9927 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
9928 			/*
9929 			 * Attempting to continue load balancing at the current
9930 			 * sched_domain level only makes sense if there are
9931 			 * active CPUs remaining as possible busiest CPUs to
9932 			 * pull load from which are not contained within the
9933 			 * destination group that is receiving any migrated
9934 			 * load.
9935 			 */
9936 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
9937 				env.loop = 0;
9938 				env.loop_break = sched_nr_migrate_break;
9939 				goto redo;
9940 			}
9941 			goto out_all_pinned;
9942 		}
9943 	}
9944 
9945 	if (!ld_moved) {
9946 		schedstat_inc(sd->lb_failed[idle]);
9947 		/*
9948 		 * Increment the failure counter only on periodic balance.
9949 		 * We do not want newidle balance, which can be very
9950 		 * frequent, pollute the failure counter causing
9951 		 * excessive cache_hot migrations and active balances.
9952 		 */
9953 		if (idle != CPU_NEWLY_IDLE)
9954 			sd->nr_balance_failed++;
9955 
9956 		if (need_active_balance(&env)) {
9957 			unsigned long flags;
9958 
9959 			raw_spin_rq_lock_irqsave(busiest, flags);
9960 
9961 			/*
9962 			 * Don't kick the active_load_balance_cpu_stop,
9963 			 * if the curr task on busiest CPU can't be
9964 			 * moved to this_cpu:
9965 			 */
9966 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9967 				raw_spin_rq_unlock_irqrestore(busiest, flags);
9968 				goto out_one_pinned;
9969 			}
9970 
9971 			/* Record that we found at least one task that could run on this_cpu */
9972 			env.flags &= ~LBF_ALL_PINNED;
9973 
9974 			/*
9975 			 * ->active_balance synchronizes accesses to
9976 			 * ->active_balance_work.  Once set, it's cleared
9977 			 * only after active load balance is finished.
9978 			 */
9979 			if (!busiest->active_balance) {
9980 				busiest->active_balance = 1;
9981 				busiest->push_cpu = this_cpu;
9982 				active_balance = 1;
9983 			}
9984 			raw_spin_rq_unlock_irqrestore(busiest, flags);
9985 
9986 			if (active_balance) {
9987 				stop_one_cpu_nowait(cpu_of(busiest),
9988 					active_load_balance_cpu_stop, busiest,
9989 					&busiest->active_balance_work);
9990 			}
9991 		}
9992 	} else {
9993 		sd->nr_balance_failed = 0;
9994 	}
9995 
9996 	if (likely(!active_balance) || need_active_balance(&env)) {
9997 		/* We were unbalanced, so reset the balancing interval */
9998 		sd->balance_interval = sd->min_interval;
9999 	}
10000 
10001 	goto out;
10002 
10003 out_balanced:
10004 	/*
10005 	 * We reach balance although we may have faced some affinity
10006 	 * constraints. Clear the imbalance flag only if other tasks got
10007 	 * a chance to move and fix the imbalance.
10008 	 */
10009 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10010 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10011 
10012 		if (*group_imbalance)
10013 			*group_imbalance = 0;
10014 	}
10015 
10016 out_all_pinned:
10017 	/*
10018 	 * We reach balance because all tasks are pinned at this level so
10019 	 * we can't migrate them. Let the imbalance flag set so parent level
10020 	 * can try to migrate them.
10021 	 */
10022 	schedstat_inc(sd->lb_balanced[idle]);
10023 
10024 	sd->nr_balance_failed = 0;
10025 
10026 out_one_pinned:
10027 	ld_moved = 0;
10028 
10029 	/*
10030 	 * newidle_balance() disregards balance intervals, so we could
10031 	 * repeatedly reach this code, which would lead to balance_interval
10032 	 * skyrocketing in a short amount of time. Skip the balance_interval
10033 	 * increase logic to avoid that.
10034 	 */
10035 	if (env.idle == CPU_NEWLY_IDLE)
10036 		goto out;
10037 
10038 	/* tune up the balancing interval */
10039 	if ((env.flags & LBF_ALL_PINNED &&
10040 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
10041 	    sd->balance_interval < sd->max_interval)
10042 		sd->balance_interval *= 2;
10043 out:
10044 	return ld_moved;
10045 }
10046 
10047 static inline unsigned long
10048 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10049 {
10050 	unsigned long interval = sd->balance_interval;
10051 
10052 	if (cpu_busy)
10053 		interval *= sd->busy_factor;
10054 
10055 	/* scale ms to jiffies */
10056 	interval = msecs_to_jiffies(interval);
10057 
10058 	/*
10059 	 * Reduce likelihood of busy balancing at higher domains racing with
10060 	 * balancing at lower domains by preventing their balancing periods
10061 	 * from being multiples of each other.
10062 	 */
10063 	if (cpu_busy)
10064 		interval -= 1;
10065 
10066 	interval = clamp(interval, 1UL, max_load_balance_interval);
10067 
10068 	return interval;
10069 }
10070 
10071 static inline void
10072 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10073 {
10074 	unsigned long interval, next;
10075 
10076 	/* used by idle balance, so cpu_busy = 0 */
10077 	interval = get_sd_balance_interval(sd, 0);
10078 	next = sd->last_balance + interval;
10079 
10080 	if (time_after(*next_balance, next))
10081 		*next_balance = next;
10082 }
10083 
10084 /*
10085  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10086  * running tasks off the busiest CPU onto idle CPUs. It requires at
10087  * least 1 task to be running on each physical CPU where possible, and
10088  * avoids physical / logical imbalances.
10089  */
10090 static int active_load_balance_cpu_stop(void *data)
10091 {
10092 	struct rq *busiest_rq = data;
10093 	int busiest_cpu = cpu_of(busiest_rq);
10094 	int target_cpu = busiest_rq->push_cpu;
10095 	struct rq *target_rq = cpu_rq(target_cpu);
10096 	struct sched_domain *sd;
10097 	struct task_struct *p = NULL;
10098 	struct rq_flags rf;
10099 
10100 	rq_lock_irq(busiest_rq, &rf);
10101 	/*
10102 	 * Between queueing the stop-work and running it is a hole in which
10103 	 * CPUs can become inactive. We should not move tasks from or to
10104 	 * inactive CPUs.
10105 	 */
10106 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10107 		goto out_unlock;
10108 
10109 	/* Make sure the requested CPU hasn't gone down in the meantime: */
10110 	if (unlikely(busiest_cpu != smp_processor_id() ||
10111 		     !busiest_rq->active_balance))
10112 		goto out_unlock;
10113 
10114 	/* Is there any task to move? */
10115 	if (busiest_rq->nr_running <= 1)
10116 		goto out_unlock;
10117 
10118 	/*
10119 	 * This condition is "impossible", if it occurs
10120 	 * we need to fix it. Originally reported by
10121 	 * Bjorn Helgaas on a 128-CPU setup.
10122 	 */
10123 	BUG_ON(busiest_rq == target_rq);
10124 
10125 	/* Search for an sd spanning us and the target CPU. */
10126 	rcu_read_lock();
10127 	for_each_domain(target_cpu, sd) {
10128 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10129 			break;
10130 	}
10131 
10132 	if (likely(sd)) {
10133 		struct lb_env env = {
10134 			.sd		= sd,
10135 			.dst_cpu	= target_cpu,
10136 			.dst_rq		= target_rq,
10137 			.src_cpu	= busiest_rq->cpu,
10138 			.src_rq		= busiest_rq,
10139 			.idle		= CPU_IDLE,
10140 			.flags		= LBF_ACTIVE_LB,
10141 		};
10142 
10143 		schedstat_inc(sd->alb_count);
10144 		update_rq_clock(busiest_rq);
10145 
10146 		p = detach_one_task(&env);
10147 		if (p) {
10148 			schedstat_inc(sd->alb_pushed);
10149 			/* Active balancing done, reset the failure counter. */
10150 			sd->nr_balance_failed = 0;
10151 		} else {
10152 			schedstat_inc(sd->alb_failed);
10153 		}
10154 	}
10155 	rcu_read_unlock();
10156 out_unlock:
10157 	busiest_rq->active_balance = 0;
10158 	rq_unlock(busiest_rq, &rf);
10159 
10160 	if (p)
10161 		attach_one_task(target_rq, p);
10162 
10163 	local_irq_enable();
10164 
10165 	return 0;
10166 }
10167 
10168 static DEFINE_SPINLOCK(balancing);
10169 
10170 /*
10171  * Scale the max load_balance interval with the number of CPUs in the system.
10172  * This trades load-balance latency on larger machines for less cross talk.
10173  */
10174 void update_max_interval(void)
10175 {
10176 	max_load_balance_interval = HZ*num_online_cpus()/10;
10177 }
10178 
10179 /*
10180  * It checks each scheduling domain to see if it is due to be balanced,
10181  * and initiates a balancing operation if so.
10182  *
10183  * Balancing parameters are set up in init_sched_domains.
10184  */
10185 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10186 {
10187 	int continue_balancing = 1;
10188 	int cpu = rq->cpu;
10189 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10190 	unsigned long interval;
10191 	struct sched_domain *sd;
10192 	/* Earliest time when we have to do rebalance again */
10193 	unsigned long next_balance = jiffies + 60*HZ;
10194 	int update_next_balance = 0;
10195 	int need_serialize, need_decay = 0;
10196 	u64 max_cost = 0;
10197 
10198 	rcu_read_lock();
10199 	for_each_domain(cpu, sd) {
10200 		/*
10201 		 * Decay the newidle max times here because this is a regular
10202 		 * visit to all the domains. Decay ~1% per second.
10203 		 */
10204 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10205 			sd->max_newidle_lb_cost =
10206 				(sd->max_newidle_lb_cost * 253) / 256;
10207 			sd->next_decay_max_lb_cost = jiffies + HZ;
10208 			need_decay = 1;
10209 		}
10210 		max_cost += sd->max_newidle_lb_cost;
10211 
10212 		/*
10213 		 * Stop the load balance at this level. There is another
10214 		 * CPU in our sched group which is doing load balancing more
10215 		 * actively.
10216 		 */
10217 		if (!continue_balancing) {
10218 			if (need_decay)
10219 				continue;
10220 			break;
10221 		}
10222 
10223 		interval = get_sd_balance_interval(sd, busy);
10224 
10225 		need_serialize = sd->flags & SD_SERIALIZE;
10226 		if (need_serialize) {
10227 			if (!spin_trylock(&balancing))
10228 				goto out;
10229 		}
10230 
10231 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
10232 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10233 				/*
10234 				 * The LBF_DST_PINNED logic could have changed
10235 				 * env->dst_cpu, so we can't know our idle
10236 				 * state even if we migrated tasks. Update it.
10237 				 */
10238 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10239 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10240 			}
10241 			sd->last_balance = jiffies;
10242 			interval = get_sd_balance_interval(sd, busy);
10243 		}
10244 		if (need_serialize)
10245 			spin_unlock(&balancing);
10246 out:
10247 		if (time_after(next_balance, sd->last_balance + interval)) {
10248 			next_balance = sd->last_balance + interval;
10249 			update_next_balance = 1;
10250 		}
10251 	}
10252 	if (need_decay) {
10253 		/*
10254 		 * Ensure the rq-wide value also decays but keep it at a
10255 		 * reasonable floor to avoid funnies with rq->avg_idle.
10256 		 */
10257 		rq->max_idle_balance_cost =
10258 			max((u64)sysctl_sched_migration_cost, max_cost);
10259 	}
10260 	rcu_read_unlock();
10261 
10262 	/*
10263 	 * next_balance will be updated only when there is a need.
10264 	 * When the cpu is attached to null domain for ex, it will not be
10265 	 * updated.
10266 	 */
10267 	if (likely(update_next_balance))
10268 		rq->next_balance = next_balance;
10269 
10270 }
10271 
10272 static inline int on_null_domain(struct rq *rq)
10273 {
10274 	return unlikely(!rcu_dereference_sched(rq->sd));
10275 }
10276 
10277 #ifdef CONFIG_NO_HZ_COMMON
10278 /*
10279  * idle load balancing details
10280  * - When one of the busy CPUs notice that there may be an idle rebalancing
10281  *   needed, they will kick the idle load balancer, which then does idle
10282  *   load balancing for all the idle CPUs.
10283  * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10284  *   anywhere yet.
10285  */
10286 
10287 static inline int find_new_ilb(void)
10288 {
10289 	int ilb;
10290 	const struct cpumask *hk_mask;
10291 
10292 	hk_mask = housekeeping_cpumask(HK_FLAG_MISC);
10293 
10294 	for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
10295 
10296 		if (ilb == smp_processor_id())
10297 			continue;
10298 
10299 		if (idle_cpu(ilb))
10300 			return ilb;
10301 	}
10302 
10303 	return nr_cpu_ids;
10304 }
10305 
10306 /*
10307  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10308  * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10309  */
10310 static void kick_ilb(unsigned int flags)
10311 {
10312 	int ilb_cpu;
10313 
10314 	/*
10315 	 * Increase nohz.next_balance only when if full ilb is triggered but
10316 	 * not if we only update stats.
10317 	 */
10318 	if (flags & NOHZ_BALANCE_KICK)
10319 		nohz.next_balance = jiffies+1;
10320 
10321 	ilb_cpu = find_new_ilb();
10322 
10323 	if (ilb_cpu >= nr_cpu_ids)
10324 		return;
10325 
10326 	/*
10327 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10328 	 * the first flag owns it; cleared by nohz_csd_func().
10329 	 */
10330 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10331 	if (flags & NOHZ_KICK_MASK)
10332 		return;
10333 
10334 	/*
10335 	 * This way we generate an IPI on the target CPU which
10336 	 * is idle. And the softirq performing nohz idle load balance
10337 	 * will be run before returning from the IPI.
10338 	 */
10339 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10340 }
10341 
10342 /*
10343  * Current decision point for kicking the idle load balancer in the presence
10344  * of idle CPUs in the system.
10345  */
10346 static void nohz_balancer_kick(struct rq *rq)
10347 {
10348 	unsigned long now = jiffies;
10349 	struct sched_domain_shared *sds;
10350 	struct sched_domain *sd;
10351 	int nr_busy, i, cpu = rq->cpu;
10352 	unsigned int flags = 0;
10353 
10354 	if (unlikely(rq->idle_balance))
10355 		return;
10356 
10357 	/*
10358 	 * We may be recently in ticked or tickless idle mode. At the first
10359 	 * busy tick after returning from idle, we will update the busy stats.
10360 	 */
10361 	nohz_balance_exit_idle(rq);
10362 
10363 	/*
10364 	 * None are in tickless mode and hence no need for NOHZ idle load
10365 	 * balancing.
10366 	 */
10367 	if (likely(!atomic_read(&nohz.nr_cpus)))
10368 		return;
10369 
10370 	if (READ_ONCE(nohz.has_blocked) &&
10371 	    time_after(now, READ_ONCE(nohz.next_blocked)))
10372 		flags = NOHZ_STATS_KICK;
10373 
10374 	if (time_before(now, nohz.next_balance))
10375 		goto out;
10376 
10377 	if (rq->nr_running >= 2) {
10378 		flags = NOHZ_KICK_MASK;
10379 		goto out;
10380 	}
10381 
10382 	rcu_read_lock();
10383 
10384 	sd = rcu_dereference(rq->sd);
10385 	if (sd) {
10386 		/*
10387 		 * If there's a CFS task and the current CPU has reduced
10388 		 * capacity; kick the ILB to see if there's a better CPU to run
10389 		 * on.
10390 		 */
10391 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10392 			flags = NOHZ_KICK_MASK;
10393 			goto unlock;
10394 		}
10395 	}
10396 
10397 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10398 	if (sd) {
10399 		/*
10400 		 * When ASYM_PACKING; see if there's a more preferred CPU
10401 		 * currently idle; in which case, kick the ILB to move tasks
10402 		 * around.
10403 		 */
10404 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10405 			if (sched_asym_prefer(i, cpu)) {
10406 				flags = NOHZ_KICK_MASK;
10407 				goto unlock;
10408 			}
10409 		}
10410 	}
10411 
10412 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10413 	if (sd) {
10414 		/*
10415 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10416 		 * to run the misfit task on.
10417 		 */
10418 		if (check_misfit_status(rq, sd)) {
10419 			flags = NOHZ_KICK_MASK;
10420 			goto unlock;
10421 		}
10422 
10423 		/*
10424 		 * For asymmetric systems, we do not want to nicely balance
10425 		 * cache use, instead we want to embrace asymmetry and only
10426 		 * ensure tasks have enough CPU capacity.
10427 		 *
10428 		 * Skip the LLC logic because it's not relevant in that case.
10429 		 */
10430 		goto unlock;
10431 	}
10432 
10433 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10434 	if (sds) {
10435 		/*
10436 		 * If there is an imbalance between LLC domains (IOW we could
10437 		 * increase the overall cache use), we need some less-loaded LLC
10438 		 * domain to pull some load. Likewise, we may need to spread
10439 		 * load within the current LLC domain (e.g. packed SMT cores but
10440 		 * other CPUs are idle). We can't really know from here how busy
10441 		 * the others are - so just get a nohz balance going if it looks
10442 		 * like this LLC domain has tasks we could move.
10443 		 */
10444 		nr_busy = atomic_read(&sds->nr_busy_cpus);
10445 		if (nr_busy > 1) {
10446 			flags = NOHZ_KICK_MASK;
10447 			goto unlock;
10448 		}
10449 	}
10450 unlock:
10451 	rcu_read_unlock();
10452 out:
10453 	if (flags)
10454 		kick_ilb(flags);
10455 }
10456 
10457 static void set_cpu_sd_state_busy(int cpu)
10458 {
10459 	struct sched_domain *sd;
10460 
10461 	rcu_read_lock();
10462 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10463 
10464 	if (!sd || !sd->nohz_idle)
10465 		goto unlock;
10466 	sd->nohz_idle = 0;
10467 
10468 	atomic_inc(&sd->shared->nr_busy_cpus);
10469 unlock:
10470 	rcu_read_unlock();
10471 }
10472 
10473 void nohz_balance_exit_idle(struct rq *rq)
10474 {
10475 	SCHED_WARN_ON(rq != this_rq());
10476 
10477 	if (likely(!rq->nohz_tick_stopped))
10478 		return;
10479 
10480 	rq->nohz_tick_stopped = 0;
10481 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10482 	atomic_dec(&nohz.nr_cpus);
10483 
10484 	set_cpu_sd_state_busy(rq->cpu);
10485 }
10486 
10487 static void set_cpu_sd_state_idle(int cpu)
10488 {
10489 	struct sched_domain *sd;
10490 
10491 	rcu_read_lock();
10492 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10493 
10494 	if (!sd || sd->nohz_idle)
10495 		goto unlock;
10496 	sd->nohz_idle = 1;
10497 
10498 	atomic_dec(&sd->shared->nr_busy_cpus);
10499 unlock:
10500 	rcu_read_unlock();
10501 }
10502 
10503 /*
10504  * This routine will record that the CPU is going idle with tick stopped.
10505  * This info will be used in performing idle load balancing in the future.
10506  */
10507 void nohz_balance_enter_idle(int cpu)
10508 {
10509 	struct rq *rq = cpu_rq(cpu);
10510 
10511 	SCHED_WARN_ON(cpu != smp_processor_id());
10512 
10513 	/* If this CPU is going down, then nothing needs to be done: */
10514 	if (!cpu_active(cpu))
10515 		return;
10516 
10517 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
10518 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10519 		return;
10520 
10521 	/*
10522 	 * Can be set safely without rq->lock held
10523 	 * If a clear happens, it will have evaluated last additions because
10524 	 * rq->lock is held during the check and the clear
10525 	 */
10526 	rq->has_blocked_load = 1;
10527 
10528 	/*
10529 	 * The tick is still stopped but load could have been added in the
10530 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
10531 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10532 	 * of nohz.has_blocked can only happen after checking the new load
10533 	 */
10534 	if (rq->nohz_tick_stopped)
10535 		goto out;
10536 
10537 	/* If we're a completely isolated CPU, we don't play: */
10538 	if (on_null_domain(rq))
10539 		return;
10540 
10541 	rq->nohz_tick_stopped = 1;
10542 
10543 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10544 	atomic_inc(&nohz.nr_cpus);
10545 
10546 	/*
10547 	 * Ensures that if nohz_idle_balance() fails to observe our
10548 	 * @idle_cpus_mask store, it must observe the @has_blocked
10549 	 * store.
10550 	 */
10551 	smp_mb__after_atomic();
10552 
10553 	set_cpu_sd_state_idle(cpu);
10554 
10555 out:
10556 	/*
10557 	 * Each time a cpu enter idle, we assume that it has blocked load and
10558 	 * enable the periodic update of the load of idle cpus
10559 	 */
10560 	WRITE_ONCE(nohz.has_blocked, 1);
10561 }
10562 
10563 static bool update_nohz_stats(struct rq *rq)
10564 {
10565 	unsigned int cpu = rq->cpu;
10566 
10567 	if (!rq->has_blocked_load)
10568 		return false;
10569 
10570 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10571 		return false;
10572 
10573 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10574 		return true;
10575 
10576 	update_blocked_averages(cpu);
10577 
10578 	return rq->has_blocked_load;
10579 }
10580 
10581 /*
10582  * Internal function that runs load balance for all idle cpus. The load balance
10583  * can be a simple update of blocked load or a complete load balance with
10584  * tasks movement depending of flags.
10585  */
10586 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10587 			       enum cpu_idle_type idle)
10588 {
10589 	/* Earliest time when we have to do rebalance again */
10590 	unsigned long now = jiffies;
10591 	unsigned long next_balance = now + 60*HZ;
10592 	bool has_blocked_load = false;
10593 	int update_next_balance = 0;
10594 	int this_cpu = this_rq->cpu;
10595 	int balance_cpu;
10596 	struct rq *rq;
10597 
10598 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10599 
10600 	/*
10601 	 * We assume there will be no idle load after this update and clear
10602 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10603 	 * set the has_blocked flag and trig another update of idle load.
10604 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10605 	 * setting the flag, we are sure to not clear the state and not
10606 	 * check the load of an idle cpu.
10607 	 */
10608 	WRITE_ONCE(nohz.has_blocked, 0);
10609 
10610 	/*
10611 	 * Ensures that if we miss the CPU, we must see the has_blocked
10612 	 * store from nohz_balance_enter_idle().
10613 	 */
10614 	smp_mb();
10615 
10616 	/*
10617 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10618 	 * chance for other idle cpu to pull load.
10619 	 */
10620 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
10621 		if (!idle_cpu(balance_cpu))
10622 			continue;
10623 
10624 		/*
10625 		 * If this CPU gets work to do, stop the load balancing
10626 		 * work being done for other CPUs. Next load
10627 		 * balancing owner will pick it up.
10628 		 */
10629 		if (need_resched()) {
10630 			has_blocked_load = true;
10631 			goto abort;
10632 		}
10633 
10634 		rq = cpu_rq(balance_cpu);
10635 
10636 		has_blocked_load |= update_nohz_stats(rq);
10637 
10638 		/*
10639 		 * If time for next balance is due,
10640 		 * do the balance.
10641 		 */
10642 		if (time_after_eq(jiffies, rq->next_balance)) {
10643 			struct rq_flags rf;
10644 
10645 			rq_lock_irqsave(rq, &rf);
10646 			update_rq_clock(rq);
10647 			rq_unlock_irqrestore(rq, &rf);
10648 
10649 			if (flags & NOHZ_BALANCE_KICK)
10650 				rebalance_domains(rq, CPU_IDLE);
10651 		}
10652 
10653 		if (time_after(next_balance, rq->next_balance)) {
10654 			next_balance = rq->next_balance;
10655 			update_next_balance = 1;
10656 		}
10657 	}
10658 
10659 	/*
10660 	 * next_balance will be updated only when there is a need.
10661 	 * When the CPU is attached to null domain for ex, it will not be
10662 	 * updated.
10663 	 */
10664 	if (likely(update_next_balance))
10665 		nohz.next_balance = next_balance;
10666 
10667 	WRITE_ONCE(nohz.next_blocked,
10668 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10669 
10670 abort:
10671 	/* There is still blocked load, enable periodic update */
10672 	if (has_blocked_load)
10673 		WRITE_ONCE(nohz.has_blocked, 1);
10674 }
10675 
10676 /*
10677  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10678  * rebalancing for all the cpus for whom scheduler ticks are stopped.
10679  */
10680 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10681 {
10682 	unsigned int flags = this_rq->nohz_idle_balance;
10683 
10684 	if (!flags)
10685 		return false;
10686 
10687 	this_rq->nohz_idle_balance = 0;
10688 
10689 	if (idle != CPU_IDLE)
10690 		return false;
10691 
10692 	_nohz_idle_balance(this_rq, flags, idle);
10693 
10694 	return true;
10695 }
10696 
10697 /*
10698  * Check if we need to run the ILB for updating blocked load before entering
10699  * idle state.
10700  */
10701 void nohz_run_idle_balance(int cpu)
10702 {
10703 	unsigned int flags;
10704 
10705 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10706 
10707 	/*
10708 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10709 	 * (ie NOHZ_STATS_KICK set) and will do the same.
10710 	 */
10711 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10712 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10713 }
10714 
10715 static void nohz_newidle_balance(struct rq *this_rq)
10716 {
10717 	int this_cpu = this_rq->cpu;
10718 
10719 	/*
10720 	 * This CPU doesn't want to be disturbed by scheduler
10721 	 * housekeeping
10722 	 */
10723 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10724 		return;
10725 
10726 	/* Will wake up very soon. No time for doing anything else*/
10727 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
10728 		return;
10729 
10730 	/* Don't need to update blocked load of idle CPUs*/
10731 	if (!READ_ONCE(nohz.has_blocked) ||
10732 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10733 		return;
10734 
10735 	/*
10736 	 * Set the need to trigger ILB in order to update blocked load
10737 	 * before entering idle state.
10738 	 */
10739 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
10740 }
10741 
10742 #else /* !CONFIG_NO_HZ_COMMON */
10743 static inline void nohz_balancer_kick(struct rq *rq) { }
10744 
10745 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10746 {
10747 	return false;
10748 }
10749 
10750 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10751 #endif /* CONFIG_NO_HZ_COMMON */
10752 
10753 /*
10754  * newidle_balance is called by schedule() if this_cpu is about to become
10755  * idle. Attempts to pull tasks from other CPUs.
10756  *
10757  * Returns:
10758  *   < 0 - we released the lock and there are !fair tasks present
10759  *     0 - failed, no new tasks
10760  *   > 0 - success, new (fair) tasks present
10761  */
10762 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10763 {
10764 	unsigned long next_balance = jiffies + HZ;
10765 	int this_cpu = this_rq->cpu;
10766 	struct sched_domain *sd;
10767 	int pulled_task = 0;
10768 	u64 curr_cost = 0;
10769 
10770 	update_misfit_status(NULL, this_rq);
10771 
10772 	/*
10773 	 * There is a task waiting to run. No need to search for one.
10774 	 * Return 0; the task will be enqueued when switching to idle.
10775 	 */
10776 	if (this_rq->ttwu_pending)
10777 		return 0;
10778 
10779 	/*
10780 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
10781 	 * measure the duration of idle_balance() as idle time.
10782 	 */
10783 	this_rq->idle_stamp = rq_clock(this_rq);
10784 
10785 	/*
10786 	 * Do not pull tasks towards !active CPUs...
10787 	 */
10788 	if (!cpu_active(this_cpu))
10789 		return 0;
10790 
10791 	/*
10792 	 * This is OK, because current is on_cpu, which avoids it being picked
10793 	 * for load-balance and preemption/IRQs are still disabled avoiding
10794 	 * further scheduler activity on it and we're being very careful to
10795 	 * re-start the picking loop.
10796 	 */
10797 	rq_unpin_lock(this_rq, rf);
10798 
10799 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10800 	    !READ_ONCE(this_rq->rd->overload)) {
10801 
10802 		rcu_read_lock();
10803 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
10804 		if (sd)
10805 			update_next_balance(sd, &next_balance);
10806 		rcu_read_unlock();
10807 
10808 		goto out;
10809 	}
10810 
10811 	raw_spin_rq_unlock(this_rq);
10812 
10813 	update_blocked_averages(this_cpu);
10814 	rcu_read_lock();
10815 	for_each_domain(this_cpu, sd) {
10816 		int continue_balancing = 1;
10817 		u64 t0, domain_cost;
10818 
10819 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10820 			update_next_balance(sd, &next_balance);
10821 			break;
10822 		}
10823 
10824 		if (sd->flags & SD_BALANCE_NEWIDLE) {
10825 			t0 = sched_clock_cpu(this_cpu);
10826 
10827 			pulled_task = load_balance(this_cpu, this_rq,
10828 						   sd, CPU_NEWLY_IDLE,
10829 						   &continue_balancing);
10830 
10831 			domain_cost = sched_clock_cpu(this_cpu) - t0;
10832 			if (domain_cost > sd->max_newidle_lb_cost)
10833 				sd->max_newidle_lb_cost = domain_cost;
10834 
10835 			curr_cost += domain_cost;
10836 		}
10837 
10838 		update_next_balance(sd, &next_balance);
10839 
10840 		/*
10841 		 * Stop searching for tasks to pull if there are
10842 		 * now runnable tasks on this rq.
10843 		 */
10844 		if (pulled_task || this_rq->nr_running > 0 ||
10845 		    this_rq->ttwu_pending)
10846 			break;
10847 	}
10848 	rcu_read_unlock();
10849 
10850 	raw_spin_rq_lock(this_rq);
10851 
10852 	if (curr_cost > this_rq->max_idle_balance_cost)
10853 		this_rq->max_idle_balance_cost = curr_cost;
10854 
10855 	/*
10856 	 * While browsing the domains, we released the rq lock, a task could
10857 	 * have been enqueued in the meantime. Since we're not going idle,
10858 	 * pretend we pulled a task.
10859 	 */
10860 	if (this_rq->cfs.h_nr_running && !pulled_task)
10861 		pulled_task = 1;
10862 
10863 	/* Is there a task of a high priority class? */
10864 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10865 		pulled_task = -1;
10866 
10867 out:
10868 	/* Move the next balance forward */
10869 	if (time_after(this_rq->next_balance, next_balance))
10870 		this_rq->next_balance = next_balance;
10871 
10872 	if (pulled_task)
10873 		this_rq->idle_stamp = 0;
10874 	else
10875 		nohz_newidle_balance(this_rq);
10876 
10877 	rq_repin_lock(this_rq, rf);
10878 
10879 	return pulled_task;
10880 }
10881 
10882 /*
10883  * run_rebalance_domains is triggered when needed from the scheduler tick.
10884  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10885  */
10886 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10887 {
10888 	struct rq *this_rq = this_rq();
10889 	enum cpu_idle_type idle = this_rq->idle_balance ?
10890 						CPU_IDLE : CPU_NOT_IDLE;
10891 
10892 	/*
10893 	 * If this CPU has a pending nohz_balance_kick, then do the
10894 	 * balancing on behalf of the other idle CPUs whose ticks are
10895 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10896 	 * give the idle CPUs a chance to load balance. Else we may
10897 	 * load balance only within the local sched_domain hierarchy
10898 	 * and abort nohz_idle_balance altogether if we pull some load.
10899 	 */
10900 	if (nohz_idle_balance(this_rq, idle))
10901 		return;
10902 
10903 	/* normal load balance */
10904 	update_blocked_averages(this_rq->cpu);
10905 	rebalance_domains(this_rq, idle);
10906 }
10907 
10908 /*
10909  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10910  */
10911 void trigger_load_balance(struct rq *rq)
10912 {
10913 	/*
10914 	 * Don't need to rebalance while attached to NULL domain or
10915 	 * runqueue CPU is not active
10916 	 */
10917 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
10918 		return;
10919 
10920 	if (time_after_eq(jiffies, rq->next_balance))
10921 		raise_softirq(SCHED_SOFTIRQ);
10922 
10923 	nohz_balancer_kick(rq);
10924 }
10925 
10926 static void rq_online_fair(struct rq *rq)
10927 {
10928 	update_sysctl();
10929 
10930 	update_runtime_enabled(rq);
10931 }
10932 
10933 static void rq_offline_fair(struct rq *rq)
10934 {
10935 	update_sysctl();
10936 
10937 	/* Ensure any throttled groups are reachable by pick_next_task */
10938 	unthrottle_offline_cfs_rqs(rq);
10939 }
10940 
10941 #endif /* CONFIG_SMP */
10942 
10943 #ifdef CONFIG_SCHED_CORE
10944 static inline bool
10945 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
10946 {
10947 	u64 slice = sched_slice(cfs_rq_of(se), se);
10948 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
10949 
10950 	return (rtime * min_nr_tasks > slice);
10951 }
10952 
10953 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
10954 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
10955 {
10956 	if (!sched_core_enabled(rq))
10957 		return;
10958 
10959 	/*
10960 	 * If runqueue has only one task which used up its slice and
10961 	 * if the sibling is forced idle, then trigger schedule to
10962 	 * give forced idle task a chance.
10963 	 *
10964 	 * sched_slice() considers only this active rq and it gets the
10965 	 * whole slice. But during force idle, we have siblings acting
10966 	 * like a single runqueue and hence we need to consider runnable
10967 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
10968 	 * go through the forced idle rq, but that would be a perf hit.
10969 	 * We can assume that the forced idle CPU has at least
10970 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
10971 	 * if we need to give up the CPU.
10972 	 */
10973 	if (rq->core->core_forceidle && rq->cfs.nr_running == 1 &&
10974 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
10975 		resched_curr(rq);
10976 }
10977 
10978 /*
10979  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
10980  */
10981 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
10982 {
10983 	for_each_sched_entity(se) {
10984 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
10985 
10986 		if (forceidle) {
10987 			if (cfs_rq->forceidle_seq == fi_seq)
10988 				break;
10989 			cfs_rq->forceidle_seq = fi_seq;
10990 		}
10991 
10992 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
10993 	}
10994 }
10995 
10996 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
10997 {
10998 	struct sched_entity *se = &p->se;
10999 
11000 	if (p->sched_class != &fair_sched_class)
11001 		return;
11002 
11003 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11004 }
11005 
11006 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
11007 {
11008 	struct rq *rq = task_rq(a);
11009 	struct sched_entity *sea = &a->se;
11010 	struct sched_entity *seb = &b->se;
11011 	struct cfs_rq *cfs_rqa;
11012 	struct cfs_rq *cfs_rqb;
11013 	s64 delta;
11014 
11015 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
11016 
11017 #ifdef CONFIG_FAIR_GROUP_SCHED
11018 	/*
11019 	 * Find an se in the hierarchy for tasks a and b, such that the se's
11020 	 * are immediate siblings.
11021 	 */
11022 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11023 		int sea_depth = sea->depth;
11024 		int seb_depth = seb->depth;
11025 
11026 		if (sea_depth >= seb_depth)
11027 			sea = parent_entity(sea);
11028 		if (sea_depth <= seb_depth)
11029 			seb = parent_entity(seb);
11030 	}
11031 
11032 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
11033 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
11034 
11035 	cfs_rqa = sea->cfs_rq;
11036 	cfs_rqb = seb->cfs_rq;
11037 #else
11038 	cfs_rqa = &task_rq(a)->cfs;
11039 	cfs_rqb = &task_rq(b)->cfs;
11040 #endif
11041 
11042 	/*
11043 	 * Find delta after normalizing se's vruntime with its cfs_rq's
11044 	 * min_vruntime_fi, which would have been updated in prior calls
11045 	 * to se_fi_update().
11046 	 */
11047 	delta = (s64)(sea->vruntime - seb->vruntime) +
11048 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
11049 
11050 	return delta > 0;
11051 }
11052 #else
11053 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
11054 #endif
11055 
11056 /*
11057  * scheduler tick hitting a task of our scheduling class.
11058  *
11059  * NOTE: This function can be called remotely by the tick offload that
11060  * goes along full dynticks. Therefore no local assumption can be made
11061  * and everything must be accessed through the @rq and @curr passed in
11062  * parameters.
11063  */
11064 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11065 {
11066 	struct cfs_rq *cfs_rq;
11067 	struct sched_entity *se = &curr->se;
11068 
11069 	for_each_sched_entity(se) {
11070 		cfs_rq = cfs_rq_of(se);
11071 		entity_tick(cfs_rq, se, queued);
11072 	}
11073 
11074 	if (static_branch_unlikely(&sched_numa_balancing))
11075 		task_tick_numa(rq, curr);
11076 
11077 	update_misfit_status(curr, rq);
11078 	update_overutilized_status(task_rq(curr));
11079 
11080 	task_tick_core(rq, curr);
11081 }
11082 
11083 /*
11084  * called on fork with the child task as argument from the parent's context
11085  *  - child not yet on the tasklist
11086  *  - preemption disabled
11087  */
11088 static void task_fork_fair(struct task_struct *p)
11089 {
11090 	struct cfs_rq *cfs_rq;
11091 	struct sched_entity *se = &p->se, *curr;
11092 	struct rq *rq = this_rq();
11093 	struct rq_flags rf;
11094 
11095 	rq_lock(rq, &rf);
11096 	update_rq_clock(rq);
11097 
11098 	cfs_rq = task_cfs_rq(current);
11099 	curr = cfs_rq->curr;
11100 	if (curr) {
11101 		update_curr(cfs_rq);
11102 		se->vruntime = curr->vruntime;
11103 	}
11104 	place_entity(cfs_rq, se, 1);
11105 
11106 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11107 		/*
11108 		 * Upon rescheduling, sched_class::put_prev_task() will place
11109 		 * 'current' within the tree based on its new key value.
11110 		 */
11111 		swap(curr->vruntime, se->vruntime);
11112 		resched_curr(rq);
11113 	}
11114 
11115 	se->vruntime -= cfs_rq->min_vruntime;
11116 	rq_unlock(rq, &rf);
11117 }
11118 
11119 /*
11120  * Priority of the task has changed. Check to see if we preempt
11121  * the current task.
11122  */
11123 static void
11124 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11125 {
11126 	if (!task_on_rq_queued(p))
11127 		return;
11128 
11129 	if (rq->cfs.nr_running == 1)
11130 		return;
11131 
11132 	/*
11133 	 * Reschedule if we are currently running on this runqueue and
11134 	 * our priority decreased, or if we are not currently running on
11135 	 * this runqueue and our priority is higher than the current's
11136 	 */
11137 	if (task_current(rq, p)) {
11138 		if (p->prio > oldprio)
11139 			resched_curr(rq);
11140 	} else
11141 		check_preempt_curr(rq, p, 0);
11142 }
11143 
11144 static inline bool vruntime_normalized(struct task_struct *p)
11145 {
11146 	struct sched_entity *se = &p->se;
11147 
11148 	/*
11149 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11150 	 * the dequeue_entity(.flags=0) will already have normalized the
11151 	 * vruntime.
11152 	 */
11153 	if (p->on_rq)
11154 		return true;
11155 
11156 	/*
11157 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
11158 	 * But there are some cases where it has already been normalized:
11159 	 *
11160 	 * - A forked child which is waiting for being woken up by
11161 	 *   wake_up_new_task().
11162 	 * - A task which has been woken up by try_to_wake_up() and
11163 	 *   waiting for actually being woken up by sched_ttwu_pending().
11164 	 */
11165 	if (!se->sum_exec_runtime ||
11166 	    (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
11167 		return true;
11168 
11169 	return false;
11170 }
11171 
11172 #ifdef CONFIG_FAIR_GROUP_SCHED
11173 /*
11174  * Propagate the changes of the sched_entity across the tg tree to make it
11175  * visible to the root
11176  */
11177 static void propagate_entity_cfs_rq(struct sched_entity *se)
11178 {
11179 	struct cfs_rq *cfs_rq;
11180 
11181 	list_add_leaf_cfs_rq(cfs_rq_of(se));
11182 
11183 	/* Start to propagate at parent */
11184 	se = se->parent;
11185 
11186 	for_each_sched_entity(se) {
11187 		cfs_rq = cfs_rq_of(se);
11188 
11189 		if (!cfs_rq_throttled(cfs_rq)){
11190 			update_load_avg(cfs_rq, se, UPDATE_TG);
11191 			list_add_leaf_cfs_rq(cfs_rq);
11192 			continue;
11193 		}
11194 
11195 		if (list_add_leaf_cfs_rq(cfs_rq))
11196 			break;
11197 	}
11198 }
11199 #else
11200 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11201 #endif
11202 
11203 static void detach_entity_cfs_rq(struct sched_entity *se)
11204 {
11205 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11206 
11207 	/* Catch up with the cfs_rq and remove our load when we leave */
11208 	update_load_avg(cfs_rq, se, 0);
11209 	detach_entity_load_avg(cfs_rq, se);
11210 	update_tg_load_avg(cfs_rq);
11211 	propagate_entity_cfs_rq(se);
11212 }
11213 
11214 static void attach_entity_cfs_rq(struct sched_entity *se)
11215 {
11216 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11217 
11218 #ifdef CONFIG_FAIR_GROUP_SCHED
11219 	/*
11220 	 * Since the real-depth could have been changed (only FAIR
11221 	 * class maintain depth value), reset depth properly.
11222 	 */
11223 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11224 #endif
11225 
11226 	/* Synchronize entity with its cfs_rq */
11227 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11228 	attach_entity_load_avg(cfs_rq, se);
11229 	update_tg_load_avg(cfs_rq);
11230 	propagate_entity_cfs_rq(se);
11231 }
11232 
11233 static void detach_task_cfs_rq(struct task_struct *p)
11234 {
11235 	struct sched_entity *se = &p->se;
11236 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11237 
11238 	if (!vruntime_normalized(p)) {
11239 		/*
11240 		 * Fix up our vruntime so that the current sleep doesn't
11241 		 * cause 'unlimited' sleep bonus.
11242 		 */
11243 		place_entity(cfs_rq, se, 0);
11244 		se->vruntime -= cfs_rq->min_vruntime;
11245 	}
11246 
11247 	detach_entity_cfs_rq(se);
11248 }
11249 
11250 static void attach_task_cfs_rq(struct task_struct *p)
11251 {
11252 	struct sched_entity *se = &p->se;
11253 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11254 
11255 	attach_entity_cfs_rq(se);
11256 
11257 	if (!vruntime_normalized(p))
11258 		se->vruntime += cfs_rq->min_vruntime;
11259 }
11260 
11261 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11262 {
11263 	detach_task_cfs_rq(p);
11264 }
11265 
11266 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11267 {
11268 	attach_task_cfs_rq(p);
11269 
11270 	if (task_on_rq_queued(p)) {
11271 		/*
11272 		 * We were most likely switched from sched_rt, so
11273 		 * kick off the schedule if running, otherwise just see
11274 		 * if we can still preempt the current task.
11275 		 */
11276 		if (task_current(rq, p))
11277 			resched_curr(rq);
11278 		else
11279 			check_preempt_curr(rq, p, 0);
11280 	}
11281 }
11282 
11283 /* Account for a task changing its policy or group.
11284  *
11285  * This routine is mostly called to set cfs_rq->curr field when a task
11286  * migrates between groups/classes.
11287  */
11288 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11289 {
11290 	struct sched_entity *se = &p->se;
11291 
11292 #ifdef CONFIG_SMP
11293 	if (task_on_rq_queued(p)) {
11294 		/*
11295 		 * Move the next running task to the front of the list, so our
11296 		 * cfs_tasks list becomes MRU one.
11297 		 */
11298 		list_move(&se->group_node, &rq->cfs_tasks);
11299 	}
11300 #endif
11301 
11302 	for_each_sched_entity(se) {
11303 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11304 
11305 		set_next_entity(cfs_rq, se);
11306 		/* ensure bandwidth has been allocated on our new cfs_rq */
11307 		account_cfs_rq_runtime(cfs_rq, 0);
11308 	}
11309 }
11310 
11311 void init_cfs_rq(struct cfs_rq *cfs_rq)
11312 {
11313 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11314 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11315 #ifndef CONFIG_64BIT
11316 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11317 #endif
11318 #ifdef CONFIG_SMP
11319 	raw_spin_lock_init(&cfs_rq->removed.lock);
11320 #endif
11321 }
11322 
11323 #ifdef CONFIG_FAIR_GROUP_SCHED
11324 static void task_set_group_fair(struct task_struct *p)
11325 {
11326 	struct sched_entity *se = &p->se;
11327 
11328 	set_task_rq(p, task_cpu(p));
11329 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11330 }
11331 
11332 static void task_move_group_fair(struct task_struct *p)
11333 {
11334 	detach_task_cfs_rq(p);
11335 	set_task_rq(p, task_cpu(p));
11336 
11337 #ifdef CONFIG_SMP
11338 	/* Tell se's cfs_rq has been changed -- migrated */
11339 	p->se.avg.last_update_time = 0;
11340 #endif
11341 	attach_task_cfs_rq(p);
11342 }
11343 
11344 static void task_change_group_fair(struct task_struct *p, int type)
11345 {
11346 	switch (type) {
11347 	case TASK_SET_GROUP:
11348 		task_set_group_fair(p);
11349 		break;
11350 
11351 	case TASK_MOVE_GROUP:
11352 		task_move_group_fair(p);
11353 		break;
11354 	}
11355 }
11356 
11357 void free_fair_sched_group(struct task_group *tg)
11358 {
11359 	int i;
11360 
11361 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11362 
11363 	for_each_possible_cpu(i) {
11364 		if (tg->cfs_rq)
11365 			kfree(tg->cfs_rq[i]);
11366 		if (tg->se)
11367 			kfree(tg->se[i]);
11368 	}
11369 
11370 	kfree(tg->cfs_rq);
11371 	kfree(tg->se);
11372 }
11373 
11374 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11375 {
11376 	struct sched_entity *se;
11377 	struct cfs_rq *cfs_rq;
11378 	int i;
11379 
11380 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11381 	if (!tg->cfs_rq)
11382 		goto err;
11383 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11384 	if (!tg->se)
11385 		goto err;
11386 
11387 	tg->shares = NICE_0_LOAD;
11388 
11389 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11390 
11391 	for_each_possible_cpu(i) {
11392 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11393 				      GFP_KERNEL, cpu_to_node(i));
11394 		if (!cfs_rq)
11395 			goto err;
11396 
11397 		se = kzalloc_node(sizeof(struct sched_entity),
11398 				  GFP_KERNEL, cpu_to_node(i));
11399 		if (!se)
11400 			goto err_free_rq;
11401 
11402 		init_cfs_rq(cfs_rq);
11403 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11404 		init_entity_runnable_average(se);
11405 	}
11406 
11407 	return 1;
11408 
11409 err_free_rq:
11410 	kfree(cfs_rq);
11411 err:
11412 	return 0;
11413 }
11414 
11415 void online_fair_sched_group(struct task_group *tg)
11416 {
11417 	struct sched_entity *se;
11418 	struct rq_flags rf;
11419 	struct rq *rq;
11420 	int i;
11421 
11422 	for_each_possible_cpu(i) {
11423 		rq = cpu_rq(i);
11424 		se = tg->se[i];
11425 		rq_lock_irq(rq, &rf);
11426 		update_rq_clock(rq);
11427 		attach_entity_cfs_rq(se);
11428 		sync_throttle(tg, i);
11429 		rq_unlock_irq(rq, &rf);
11430 	}
11431 }
11432 
11433 void unregister_fair_sched_group(struct task_group *tg)
11434 {
11435 	unsigned long flags;
11436 	struct rq *rq;
11437 	int cpu;
11438 
11439 	for_each_possible_cpu(cpu) {
11440 		if (tg->se[cpu])
11441 			remove_entity_load_avg(tg->se[cpu]);
11442 
11443 		/*
11444 		 * Only empty task groups can be destroyed; so we can speculatively
11445 		 * check on_list without danger of it being re-added.
11446 		 */
11447 		if (!tg->cfs_rq[cpu]->on_list)
11448 			continue;
11449 
11450 		rq = cpu_rq(cpu);
11451 
11452 		raw_spin_rq_lock_irqsave(rq, flags);
11453 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11454 		raw_spin_rq_unlock_irqrestore(rq, flags);
11455 	}
11456 }
11457 
11458 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11459 			struct sched_entity *se, int cpu,
11460 			struct sched_entity *parent)
11461 {
11462 	struct rq *rq = cpu_rq(cpu);
11463 
11464 	cfs_rq->tg = tg;
11465 	cfs_rq->rq = rq;
11466 	init_cfs_rq_runtime(cfs_rq);
11467 
11468 	tg->cfs_rq[cpu] = cfs_rq;
11469 	tg->se[cpu] = se;
11470 
11471 	/* se could be NULL for root_task_group */
11472 	if (!se)
11473 		return;
11474 
11475 	if (!parent) {
11476 		se->cfs_rq = &rq->cfs;
11477 		se->depth = 0;
11478 	} else {
11479 		se->cfs_rq = parent->my_q;
11480 		se->depth = parent->depth + 1;
11481 	}
11482 
11483 	se->my_q = cfs_rq;
11484 	/* guarantee group entities always have weight */
11485 	update_load_set(&se->load, NICE_0_LOAD);
11486 	se->parent = parent;
11487 }
11488 
11489 static DEFINE_MUTEX(shares_mutex);
11490 
11491 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
11492 {
11493 	int i;
11494 
11495 	lockdep_assert_held(&shares_mutex);
11496 
11497 	/*
11498 	 * We can't change the weight of the root cgroup.
11499 	 */
11500 	if (!tg->se[0])
11501 		return -EINVAL;
11502 
11503 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11504 
11505 	if (tg->shares == shares)
11506 		return 0;
11507 
11508 	tg->shares = shares;
11509 	for_each_possible_cpu(i) {
11510 		struct rq *rq = cpu_rq(i);
11511 		struct sched_entity *se = tg->se[i];
11512 		struct rq_flags rf;
11513 
11514 		/* Propagate contribution to hierarchy */
11515 		rq_lock_irqsave(rq, &rf);
11516 		update_rq_clock(rq);
11517 		for_each_sched_entity(se) {
11518 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11519 			update_cfs_group(se);
11520 		}
11521 		rq_unlock_irqrestore(rq, &rf);
11522 	}
11523 
11524 	return 0;
11525 }
11526 
11527 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11528 {
11529 	int ret;
11530 
11531 	mutex_lock(&shares_mutex);
11532 	if (tg_is_idle(tg))
11533 		ret = -EINVAL;
11534 	else
11535 		ret = __sched_group_set_shares(tg, shares);
11536 	mutex_unlock(&shares_mutex);
11537 
11538 	return ret;
11539 }
11540 
11541 int sched_group_set_idle(struct task_group *tg, long idle)
11542 {
11543 	int i;
11544 
11545 	if (tg == &root_task_group)
11546 		return -EINVAL;
11547 
11548 	if (idle < 0 || idle > 1)
11549 		return -EINVAL;
11550 
11551 	mutex_lock(&shares_mutex);
11552 
11553 	if (tg->idle == idle) {
11554 		mutex_unlock(&shares_mutex);
11555 		return 0;
11556 	}
11557 
11558 	tg->idle = idle;
11559 
11560 	for_each_possible_cpu(i) {
11561 		struct rq *rq = cpu_rq(i);
11562 		struct sched_entity *se = tg->se[i];
11563 		struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i];
11564 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
11565 		long idle_task_delta;
11566 		struct rq_flags rf;
11567 
11568 		rq_lock_irqsave(rq, &rf);
11569 
11570 		grp_cfs_rq->idle = idle;
11571 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
11572 			goto next_cpu;
11573 
11574 		idle_task_delta = grp_cfs_rq->h_nr_running -
11575 				  grp_cfs_rq->idle_h_nr_running;
11576 		if (!cfs_rq_is_idle(grp_cfs_rq))
11577 			idle_task_delta *= -1;
11578 
11579 		for_each_sched_entity(se) {
11580 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
11581 
11582 			if (!se->on_rq)
11583 				break;
11584 
11585 			cfs_rq->idle_h_nr_running += idle_task_delta;
11586 
11587 			/* Already accounted at parent level and above. */
11588 			if (cfs_rq_is_idle(cfs_rq))
11589 				break;
11590 		}
11591 
11592 next_cpu:
11593 		rq_unlock_irqrestore(rq, &rf);
11594 	}
11595 
11596 	/* Idle groups have minimum weight. */
11597 	if (tg_is_idle(tg))
11598 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
11599 	else
11600 		__sched_group_set_shares(tg, NICE_0_LOAD);
11601 
11602 	mutex_unlock(&shares_mutex);
11603 	return 0;
11604 }
11605 
11606 #else /* CONFIG_FAIR_GROUP_SCHED */
11607 
11608 void free_fair_sched_group(struct task_group *tg) { }
11609 
11610 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11611 {
11612 	return 1;
11613 }
11614 
11615 void online_fair_sched_group(struct task_group *tg) { }
11616 
11617 void unregister_fair_sched_group(struct task_group *tg) { }
11618 
11619 #endif /* CONFIG_FAIR_GROUP_SCHED */
11620 
11621 
11622 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11623 {
11624 	struct sched_entity *se = &task->se;
11625 	unsigned int rr_interval = 0;
11626 
11627 	/*
11628 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11629 	 * idle runqueue:
11630 	 */
11631 	if (rq->cfs.load.weight)
11632 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11633 
11634 	return rr_interval;
11635 }
11636 
11637 /*
11638  * All the scheduling class methods:
11639  */
11640 DEFINE_SCHED_CLASS(fair) = {
11641 
11642 	.enqueue_task		= enqueue_task_fair,
11643 	.dequeue_task		= dequeue_task_fair,
11644 	.yield_task		= yield_task_fair,
11645 	.yield_to_task		= yield_to_task_fair,
11646 
11647 	.check_preempt_curr	= check_preempt_wakeup,
11648 
11649 	.pick_next_task		= __pick_next_task_fair,
11650 	.put_prev_task		= put_prev_task_fair,
11651 	.set_next_task          = set_next_task_fair,
11652 
11653 #ifdef CONFIG_SMP
11654 	.balance		= balance_fair,
11655 	.pick_task		= pick_task_fair,
11656 	.select_task_rq		= select_task_rq_fair,
11657 	.migrate_task_rq	= migrate_task_rq_fair,
11658 
11659 	.rq_online		= rq_online_fair,
11660 	.rq_offline		= rq_offline_fair,
11661 
11662 	.task_dead		= task_dead_fair,
11663 	.set_cpus_allowed	= set_cpus_allowed_common,
11664 #endif
11665 
11666 	.task_tick		= task_tick_fair,
11667 	.task_fork		= task_fork_fair,
11668 
11669 	.prio_changed		= prio_changed_fair,
11670 	.switched_from		= switched_from_fair,
11671 	.switched_to		= switched_to_fair,
11672 
11673 	.get_rr_interval	= get_rr_interval_fair,
11674 
11675 	.update_curr		= update_curr_fair,
11676 
11677 #ifdef CONFIG_FAIR_GROUP_SCHED
11678 	.task_change_group	= task_change_group_fair,
11679 #endif
11680 
11681 #ifdef CONFIG_UCLAMP_TASK
11682 	.uclamp_enabled		= 1,
11683 #endif
11684 };
11685 
11686 #ifdef CONFIG_SCHED_DEBUG
11687 void print_cfs_stats(struct seq_file *m, int cpu)
11688 {
11689 	struct cfs_rq *cfs_rq, *pos;
11690 
11691 	rcu_read_lock();
11692 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11693 		print_cfs_rq(m, cpu, cfs_rq);
11694 	rcu_read_unlock();
11695 }
11696 
11697 #ifdef CONFIG_NUMA_BALANCING
11698 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11699 {
11700 	int node;
11701 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11702 	struct numa_group *ng;
11703 
11704 	rcu_read_lock();
11705 	ng = rcu_dereference(p->numa_group);
11706 	for_each_online_node(node) {
11707 		if (p->numa_faults) {
11708 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11709 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11710 		}
11711 		if (ng) {
11712 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11713 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11714 		}
11715 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11716 	}
11717 	rcu_read_unlock();
11718 }
11719 #endif /* CONFIG_NUMA_BALANCING */
11720 #endif /* CONFIG_SCHED_DEBUG */
11721 
11722 __init void init_sched_fair_class(void)
11723 {
11724 #ifdef CONFIG_SMP
11725 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11726 
11727 #ifdef CONFIG_NO_HZ_COMMON
11728 	nohz.next_balance = jiffies;
11729 	nohz.next_blocked = jiffies;
11730 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11731 #endif
11732 #endif /* SMP */
11733 
11734 }
11735 
11736 /*
11737  * Helper functions to facilitate extracting info from tracepoints.
11738  */
11739 
11740 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11741 {
11742 #ifdef CONFIG_SMP
11743 	return cfs_rq ? &cfs_rq->avg : NULL;
11744 #else
11745 	return NULL;
11746 #endif
11747 }
11748 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11749 
11750 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11751 {
11752 	if (!cfs_rq) {
11753 		if (str)
11754 			strlcpy(str, "(null)", len);
11755 		else
11756 			return NULL;
11757 	}
11758 
11759 	cfs_rq_tg_path(cfs_rq, str, len);
11760 	return str;
11761 }
11762 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11763 
11764 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11765 {
11766 	return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11767 }
11768 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11769 
11770 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11771 {
11772 #ifdef CONFIG_SMP
11773 	return rq ? &rq->avg_rt : NULL;
11774 #else
11775 	return NULL;
11776 #endif
11777 }
11778 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11779 
11780 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11781 {
11782 #ifdef CONFIG_SMP
11783 	return rq ? &rq->avg_dl : NULL;
11784 #else
11785 	return NULL;
11786 #endif
11787 }
11788 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11789 
11790 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11791 {
11792 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11793 	return rq ? &rq->avg_irq : NULL;
11794 #else
11795 	return NULL;
11796 #endif
11797 }
11798 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11799 
11800 int sched_trace_rq_cpu(struct rq *rq)
11801 {
11802 	return rq ? cpu_of(rq) : -1;
11803 }
11804 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11805 
11806 int sched_trace_rq_cpu_capacity(struct rq *rq)
11807 {
11808 	return rq ?
11809 #ifdef CONFIG_SMP
11810 		rq->cpu_capacity
11811 #else
11812 		SCHED_CAPACITY_SCALE
11813 #endif
11814 		: -1;
11815 }
11816 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11817 
11818 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11819 {
11820 #ifdef CONFIG_SMP
11821 	return rd ? rd->span : NULL;
11822 #else
11823 	return NULL;
11824 #endif
11825 }
11826 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11827 
11828 int sched_trace_rq_nr_running(struct rq *rq)
11829 {
11830         return rq ? rq->nr_running : -1;
11831 }
11832 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);
11833