1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 /* 26 * Targeted preemption latency for CPU-bound tasks: 27 * 28 * NOTE: this latency value is not the same as the concept of 29 * 'timeslice length' - timeslices in CFS are of variable length 30 * and have no persistent notion like in traditional, time-slice 31 * based scheduling concepts. 32 * 33 * (to see the precise effective timeslice length of your workload, 34 * run vmstat and monitor the context-switches (cs) field) 35 * 36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 37 */ 38 unsigned int sysctl_sched_latency = 6000000ULL; 39 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 40 41 /* 42 * The initial- and re-scaling of tunables is configurable 43 * 44 * Options are: 45 * 46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 49 * 50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 51 */ 52 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 53 54 /* 55 * Minimal preemption granularity for CPU-bound tasks: 56 * 57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 58 */ 59 unsigned int sysctl_sched_min_granularity = 750000ULL; 60 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 61 62 /* 63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 64 */ 65 static unsigned int sched_nr_latency = 8; 66 67 /* 68 * After fork, child runs first. If set to 0 (default) then 69 * parent will (try to) run first. 70 */ 71 unsigned int sysctl_sched_child_runs_first __read_mostly; 72 73 /* 74 * SCHED_OTHER wake-up granularity. 75 * 76 * This option delays the preemption effects of decoupled workloads 77 * and reduces their over-scheduling. Synchronous workloads will still 78 * have immediate wakeup/sleep latencies. 79 * 80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 81 */ 82 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 83 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 84 85 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 86 87 int sched_thermal_decay_shift; 88 static int __init setup_sched_thermal_decay_shift(char *str) 89 { 90 int _shift = 0; 91 92 if (kstrtoint(str, 0, &_shift)) 93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 94 95 sched_thermal_decay_shift = clamp(_shift, 0, 10); 96 return 1; 97 } 98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 99 100 #ifdef CONFIG_SMP 101 /* 102 * For asym packing, by default the lower numbered CPU has higher priority. 103 */ 104 int __weak arch_asym_cpu_priority(int cpu) 105 { 106 return -cpu; 107 } 108 109 /* 110 * The margin used when comparing utilization with CPU capacity. 111 * 112 * (default: ~20%) 113 */ 114 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 115 116 /* 117 * The margin used when comparing CPU capacities. 118 * is 'cap1' noticeably greater than 'cap2' 119 * 120 * (default: ~5%) 121 */ 122 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 123 #endif 124 125 #ifdef CONFIG_CFS_BANDWIDTH 126 /* 127 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 128 * each time a cfs_rq requests quota. 129 * 130 * Note: in the case that the slice exceeds the runtime remaining (either due 131 * to consumption or the quota being specified to be smaller than the slice) 132 * we will always only issue the remaining available time. 133 * 134 * (default: 5 msec, units: microseconds) 135 */ 136 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 137 #endif 138 139 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 140 { 141 lw->weight += inc; 142 lw->inv_weight = 0; 143 } 144 145 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 146 { 147 lw->weight -= dec; 148 lw->inv_weight = 0; 149 } 150 151 static inline void update_load_set(struct load_weight *lw, unsigned long w) 152 { 153 lw->weight = w; 154 lw->inv_weight = 0; 155 } 156 157 /* 158 * Increase the granularity value when there are more CPUs, 159 * because with more CPUs the 'effective latency' as visible 160 * to users decreases. But the relationship is not linear, 161 * so pick a second-best guess by going with the log2 of the 162 * number of CPUs. 163 * 164 * This idea comes from the SD scheduler of Con Kolivas: 165 */ 166 static unsigned int get_update_sysctl_factor(void) 167 { 168 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 169 unsigned int factor; 170 171 switch (sysctl_sched_tunable_scaling) { 172 case SCHED_TUNABLESCALING_NONE: 173 factor = 1; 174 break; 175 case SCHED_TUNABLESCALING_LINEAR: 176 factor = cpus; 177 break; 178 case SCHED_TUNABLESCALING_LOG: 179 default: 180 factor = 1 + ilog2(cpus); 181 break; 182 } 183 184 return factor; 185 } 186 187 static void update_sysctl(void) 188 { 189 unsigned int factor = get_update_sysctl_factor(); 190 191 #define SET_SYSCTL(name) \ 192 (sysctl_##name = (factor) * normalized_sysctl_##name) 193 SET_SYSCTL(sched_min_granularity); 194 SET_SYSCTL(sched_latency); 195 SET_SYSCTL(sched_wakeup_granularity); 196 #undef SET_SYSCTL 197 } 198 199 void __init sched_init_granularity(void) 200 { 201 update_sysctl(); 202 } 203 204 #define WMULT_CONST (~0U) 205 #define WMULT_SHIFT 32 206 207 static void __update_inv_weight(struct load_weight *lw) 208 { 209 unsigned long w; 210 211 if (likely(lw->inv_weight)) 212 return; 213 214 w = scale_load_down(lw->weight); 215 216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 217 lw->inv_weight = 1; 218 else if (unlikely(!w)) 219 lw->inv_weight = WMULT_CONST; 220 else 221 lw->inv_weight = WMULT_CONST / w; 222 } 223 224 /* 225 * delta_exec * weight / lw.weight 226 * OR 227 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 228 * 229 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 230 * we're guaranteed shift stays positive because inv_weight is guaranteed to 231 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 232 * 233 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 234 * weight/lw.weight <= 1, and therefore our shift will also be positive. 235 */ 236 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 237 { 238 u64 fact = scale_load_down(weight); 239 u32 fact_hi = (u32)(fact >> 32); 240 int shift = WMULT_SHIFT; 241 int fs; 242 243 __update_inv_weight(lw); 244 245 if (unlikely(fact_hi)) { 246 fs = fls(fact_hi); 247 shift -= fs; 248 fact >>= fs; 249 } 250 251 fact = mul_u32_u32(fact, lw->inv_weight); 252 253 fact_hi = (u32)(fact >> 32); 254 if (fact_hi) { 255 fs = fls(fact_hi); 256 shift -= fs; 257 fact >>= fs; 258 } 259 260 return mul_u64_u32_shr(delta_exec, fact, shift); 261 } 262 263 264 const struct sched_class fair_sched_class; 265 266 /************************************************************** 267 * CFS operations on generic schedulable entities: 268 */ 269 270 #ifdef CONFIG_FAIR_GROUP_SCHED 271 272 /* Walk up scheduling entities hierarchy */ 273 #define for_each_sched_entity(se) \ 274 for (; se; se = se->parent) 275 276 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 277 { 278 if (!path) 279 return; 280 281 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg)) 282 autogroup_path(cfs_rq->tg, path, len); 283 else if (cfs_rq && cfs_rq->tg->css.cgroup) 284 cgroup_path(cfs_rq->tg->css.cgroup, path, len); 285 else 286 strlcpy(path, "(null)", len); 287 } 288 289 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 290 { 291 struct rq *rq = rq_of(cfs_rq); 292 int cpu = cpu_of(rq); 293 294 if (cfs_rq->on_list) 295 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 296 297 cfs_rq->on_list = 1; 298 299 /* 300 * Ensure we either appear before our parent (if already 301 * enqueued) or force our parent to appear after us when it is 302 * enqueued. The fact that we always enqueue bottom-up 303 * reduces this to two cases and a special case for the root 304 * cfs_rq. Furthermore, it also means that we will always reset 305 * tmp_alone_branch either when the branch is connected 306 * to a tree or when we reach the top of the tree 307 */ 308 if (cfs_rq->tg->parent && 309 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 310 /* 311 * If parent is already on the list, we add the child 312 * just before. Thanks to circular linked property of 313 * the list, this means to put the child at the tail 314 * of the list that starts by parent. 315 */ 316 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 317 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 318 /* 319 * The branch is now connected to its tree so we can 320 * reset tmp_alone_branch to the beginning of the 321 * list. 322 */ 323 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 324 return true; 325 } 326 327 if (!cfs_rq->tg->parent) { 328 /* 329 * cfs rq without parent should be put 330 * at the tail of the list. 331 */ 332 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 333 &rq->leaf_cfs_rq_list); 334 /* 335 * We have reach the top of a tree so we can reset 336 * tmp_alone_branch to the beginning of the list. 337 */ 338 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 339 return true; 340 } 341 342 /* 343 * The parent has not already been added so we want to 344 * make sure that it will be put after us. 345 * tmp_alone_branch points to the begin of the branch 346 * where we will add parent. 347 */ 348 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 349 /* 350 * update tmp_alone_branch to points to the new begin 351 * of the branch 352 */ 353 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 354 return false; 355 } 356 357 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 358 { 359 if (cfs_rq->on_list) { 360 struct rq *rq = rq_of(cfs_rq); 361 362 /* 363 * With cfs_rq being unthrottled/throttled during an enqueue, 364 * it can happen the tmp_alone_branch points the a leaf that 365 * we finally want to del. In this case, tmp_alone_branch moves 366 * to the prev element but it will point to rq->leaf_cfs_rq_list 367 * at the end of the enqueue. 368 */ 369 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 370 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 371 372 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 373 cfs_rq->on_list = 0; 374 } 375 } 376 377 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 378 { 379 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 380 } 381 382 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 383 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 384 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 385 leaf_cfs_rq_list) 386 387 /* Do the two (enqueued) entities belong to the same group ? */ 388 static inline struct cfs_rq * 389 is_same_group(struct sched_entity *se, struct sched_entity *pse) 390 { 391 if (se->cfs_rq == pse->cfs_rq) 392 return se->cfs_rq; 393 394 return NULL; 395 } 396 397 static inline struct sched_entity *parent_entity(struct sched_entity *se) 398 { 399 return se->parent; 400 } 401 402 static void 403 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 404 { 405 int se_depth, pse_depth; 406 407 /* 408 * preemption test can be made between sibling entities who are in the 409 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 410 * both tasks until we find their ancestors who are siblings of common 411 * parent. 412 */ 413 414 /* First walk up until both entities are at same depth */ 415 se_depth = (*se)->depth; 416 pse_depth = (*pse)->depth; 417 418 while (se_depth > pse_depth) { 419 se_depth--; 420 *se = parent_entity(*se); 421 } 422 423 while (pse_depth > se_depth) { 424 pse_depth--; 425 *pse = parent_entity(*pse); 426 } 427 428 while (!is_same_group(*se, *pse)) { 429 *se = parent_entity(*se); 430 *pse = parent_entity(*pse); 431 } 432 } 433 434 static int tg_is_idle(struct task_group *tg) 435 { 436 return tg->idle > 0; 437 } 438 439 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 440 { 441 return cfs_rq->idle > 0; 442 } 443 444 static int se_is_idle(struct sched_entity *se) 445 { 446 if (entity_is_task(se)) 447 return task_has_idle_policy(task_of(se)); 448 return cfs_rq_is_idle(group_cfs_rq(se)); 449 } 450 451 #else /* !CONFIG_FAIR_GROUP_SCHED */ 452 453 #define for_each_sched_entity(se) \ 454 for (; se; se = NULL) 455 456 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 457 { 458 if (path) 459 strlcpy(path, "(null)", len); 460 } 461 462 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 463 { 464 return true; 465 } 466 467 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 468 { 469 } 470 471 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 472 { 473 } 474 475 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 476 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 477 478 static inline struct sched_entity *parent_entity(struct sched_entity *se) 479 { 480 return NULL; 481 } 482 483 static inline void 484 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 485 { 486 } 487 488 static inline int tg_is_idle(struct task_group *tg) 489 { 490 return 0; 491 } 492 493 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 494 { 495 return 0; 496 } 497 498 static int se_is_idle(struct sched_entity *se) 499 { 500 return 0; 501 } 502 503 #endif /* CONFIG_FAIR_GROUP_SCHED */ 504 505 static __always_inline 506 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 507 508 /************************************************************** 509 * Scheduling class tree data structure manipulation methods: 510 */ 511 512 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 513 { 514 s64 delta = (s64)(vruntime - max_vruntime); 515 if (delta > 0) 516 max_vruntime = vruntime; 517 518 return max_vruntime; 519 } 520 521 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 522 { 523 s64 delta = (s64)(vruntime - min_vruntime); 524 if (delta < 0) 525 min_vruntime = vruntime; 526 527 return min_vruntime; 528 } 529 530 static inline bool entity_before(struct sched_entity *a, 531 struct sched_entity *b) 532 { 533 return (s64)(a->vruntime - b->vruntime) < 0; 534 } 535 536 #define __node_2_se(node) \ 537 rb_entry((node), struct sched_entity, run_node) 538 539 static void update_min_vruntime(struct cfs_rq *cfs_rq) 540 { 541 struct sched_entity *curr = cfs_rq->curr; 542 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 543 544 u64 vruntime = cfs_rq->min_vruntime; 545 546 if (curr) { 547 if (curr->on_rq) 548 vruntime = curr->vruntime; 549 else 550 curr = NULL; 551 } 552 553 if (leftmost) { /* non-empty tree */ 554 struct sched_entity *se = __node_2_se(leftmost); 555 556 if (!curr) 557 vruntime = se->vruntime; 558 else 559 vruntime = min_vruntime(vruntime, se->vruntime); 560 } 561 562 /* ensure we never gain time by being placed backwards. */ 563 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 564 #ifndef CONFIG_64BIT 565 smp_wmb(); 566 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 567 #endif 568 } 569 570 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 571 { 572 return entity_before(__node_2_se(a), __node_2_se(b)); 573 } 574 575 /* 576 * Enqueue an entity into the rb-tree: 577 */ 578 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 579 { 580 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less); 581 } 582 583 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 584 { 585 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 586 } 587 588 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 589 { 590 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 591 592 if (!left) 593 return NULL; 594 595 return __node_2_se(left); 596 } 597 598 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 599 { 600 struct rb_node *next = rb_next(&se->run_node); 601 602 if (!next) 603 return NULL; 604 605 return __node_2_se(next); 606 } 607 608 #ifdef CONFIG_SCHED_DEBUG 609 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 610 { 611 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 612 613 if (!last) 614 return NULL; 615 616 return __node_2_se(last); 617 } 618 619 /************************************************************** 620 * Scheduling class statistics methods: 621 */ 622 623 int sched_update_scaling(void) 624 { 625 unsigned int factor = get_update_sysctl_factor(); 626 627 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 628 sysctl_sched_min_granularity); 629 630 #define WRT_SYSCTL(name) \ 631 (normalized_sysctl_##name = sysctl_##name / (factor)) 632 WRT_SYSCTL(sched_min_granularity); 633 WRT_SYSCTL(sched_latency); 634 WRT_SYSCTL(sched_wakeup_granularity); 635 #undef WRT_SYSCTL 636 637 return 0; 638 } 639 #endif 640 641 /* 642 * delta /= w 643 */ 644 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 645 { 646 if (unlikely(se->load.weight != NICE_0_LOAD)) 647 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 648 649 return delta; 650 } 651 652 /* 653 * The idea is to set a period in which each task runs once. 654 * 655 * When there are too many tasks (sched_nr_latency) we have to stretch 656 * this period because otherwise the slices get too small. 657 * 658 * p = (nr <= nl) ? l : l*nr/nl 659 */ 660 static u64 __sched_period(unsigned long nr_running) 661 { 662 if (unlikely(nr_running > sched_nr_latency)) 663 return nr_running * sysctl_sched_min_granularity; 664 else 665 return sysctl_sched_latency; 666 } 667 668 /* 669 * We calculate the wall-time slice from the period by taking a part 670 * proportional to the weight. 671 * 672 * s = p*P[w/rw] 673 */ 674 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 675 { 676 unsigned int nr_running = cfs_rq->nr_running; 677 u64 slice; 678 679 if (sched_feat(ALT_PERIOD)) 680 nr_running = rq_of(cfs_rq)->cfs.h_nr_running; 681 682 slice = __sched_period(nr_running + !se->on_rq); 683 684 for_each_sched_entity(se) { 685 struct load_weight *load; 686 struct load_weight lw; 687 688 cfs_rq = cfs_rq_of(se); 689 load = &cfs_rq->load; 690 691 if (unlikely(!se->on_rq)) { 692 lw = cfs_rq->load; 693 694 update_load_add(&lw, se->load.weight); 695 load = &lw; 696 } 697 slice = __calc_delta(slice, se->load.weight, load); 698 } 699 700 if (sched_feat(BASE_SLICE)) 701 slice = max(slice, (u64)sysctl_sched_min_granularity); 702 703 return slice; 704 } 705 706 /* 707 * We calculate the vruntime slice of a to-be-inserted task. 708 * 709 * vs = s/w 710 */ 711 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 712 { 713 return calc_delta_fair(sched_slice(cfs_rq, se), se); 714 } 715 716 #include "pelt.h" 717 #ifdef CONFIG_SMP 718 719 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 720 static unsigned long task_h_load(struct task_struct *p); 721 static unsigned long capacity_of(int cpu); 722 723 /* Give new sched_entity start runnable values to heavy its load in infant time */ 724 void init_entity_runnable_average(struct sched_entity *se) 725 { 726 struct sched_avg *sa = &se->avg; 727 728 memset(sa, 0, sizeof(*sa)); 729 730 /* 731 * Tasks are initialized with full load to be seen as heavy tasks until 732 * they get a chance to stabilize to their real load level. 733 * Group entities are initialized with zero load to reflect the fact that 734 * nothing has been attached to the task group yet. 735 */ 736 if (entity_is_task(se)) 737 sa->load_avg = scale_load_down(se->load.weight); 738 739 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 740 } 741 742 static void attach_entity_cfs_rq(struct sched_entity *se); 743 744 /* 745 * With new tasks being created, their initial util_avgs are extrapolated 746 * based on the cfs_rq's current util_avg: 747 * 748 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 749 * 750 * However, in many cases, the above util_avg does not give a desired 751 * value. Moreover, the sum of the util_avgs may be divergent, such 752 * as when the series is a harmonic series. 753 * 754 * To solve this problem, we also cap the util_avg of successive tasks to 755 * only 1/2 of the left utilization budget: 756 * 757 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 758 * 759 * where n denotes the nth task and cpu_scale the CPU capacity. 760 * 761 * For example, for a CPU with 1024 of capacity, a simplest series from 762 * the beginning would be like: 763 * 764 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 765 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 766 * 767 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 768 * if util_avg > util_avg_cap. 769 */ 770 void post_init_entity_util_avg(struct task_struct *p) 771 { 772 struct sched_entity *se = &p->se; 773 struct cfs_rq *cfs_rq = cfs_rq_of(se); 774 struct sched_avg *sa = &se->avg; 775 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 776 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 777 778 if (cap > 0) { 779 if (cfs_rq->avg.util_avg != 0) { 780 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 781 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 782 783 if (sa->util_avg > cap) 784 sa->util_avg = cap; 785 } else { 786 sa->util_avg = cap; 787 } 788 } 789 790 sa->runnable_avg = sa->util_avg; 791 792 if (p->sched_class != &fair_sched_class) { 793 /* 794 * For !fair tasks do: 795 * 796 update_cfs_rq_load_avg(now, cfs_rq); 797 attach_entity_load_avg(cfs_rq, se); 798 switched_from_fair(rq, p); 799 * 800 * such that the next switched_to_fair() has the 801 * expected state. 802 */ 803 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 804 return; 805 } 806 807 attach_entity_cfs_rq(se); 808 } 809 810 #else /* !CONFIG_SMP */ 811 void init_entity_runnable_average(struct sched_entity *se) 812 { 813 } 814 void post_init_entity_util_avg(struct task_struct *p) 815 { 816 } 817 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 818 { 819 } 820 #endif /* CONFIG_SMP */ 821 822 /* 823 * Update the current task's runtime statistics. 824 */ 825 static void update_curr(struct cfs_rq *cfs_rq) 826 { 827 struct sched_entity *curr = cfs_rq->curr; 828 u64 now = rq_clock_task(rq_of(cfs_rq)); 829 u64 delta_exec; 830 831 if (unlikely(!curr)) 832 return; 833 834 delta_exec = now - curr->exec_start; 835 if (unlikely((s64)delta_exec <= 0)) 836 return; 837 838 curr->exec_start = now; 839 840 schedstat_set(curr->statistics.exec_max, 841 max(delta_exec, curr->statistics.exec_max)); 842 843 curr->sum_exec_runtime += delta_exec; 844 schedstat_add(cfs_rq->exec_clock, delta_exec); 845 846 curr->vruntime += calc_delta_fair(delta_exec, curr); 847 update_min_vruntime(cfs_rq); 848 849 if (entity_is_task(curr)) { 850 struct task_struct *curtask = task_of(curr); 851 852 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 853 cgroup_account_cputime(curtask, delta_exec); 854 account_group_exec_runtime(curtask, delta_exec); 855 } 856 857 account_cfs_rq_runtime(cfs_rq, delta_exec); 858 } 859 860 static void update_curr_fair(struct rq *rq) 861 { 862 update_curr(cfs_rq_of(&rq->curr->se)); 863 } 864 865 static inline void 866 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 867 { 868 u64 wait_start, prev_wait_start; 869 870 if (!schedstat_enabled()) 871 return; 872 873 wait_start = rq_clock(rq_of(cfs_rq)); 874 prev_wait_start = schedstat_val(se->statistics.wait_start); 875 876 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 877 likely(wait_start > prev_wait_start)) 878 wait_start -= prev_wait_start; 879 880 __schedstat_set(se->statistics.wait_start, wait_start); 881 } 882 883 static inline void 884 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 885 { 886 struct task_struct *p; 887 u64 delta; 888 889 if (!schedstat_enabled()) 890 return; 891 892 /* 893 * When the sched_schedstat changes from 0 to 1, some sched se 894 * maybe already in the runqueue, the se->statistics.wait_start 895 * will be 0.So it will let the delta wrong. We need to avoid this 896 * scenario. 897 */ 898 if (unlikely(!schedstat_val(se->statistics.wait_start))) 899 return; 900 901 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 902 903 if (entity_is_task(se)) { 904 p = task_of(se); 905 if (task_on_rq_migrating(p)) { 906 /* 907 * Preserve migrating task's wait time so wait_start 908 * time stamp can be adjusted to accumulate wait time 909 * prior to migration. 910 */ 911 __schedstat_set(se->statistics.wait_start, delta); 912 return; 913 } 914 trace_sched_stat_wait(p, delta); 915 } 916 917 __schedstat_set(se->statistics.wait_max, 918 max(schedstat_val(se->statistics.wait_max), delta)); 919 __schedstat_inc(se->statistics.wait_count); 920 __schedstat_add(se->statistics.wait_sum, delta); 921 __schedstat_set(se->statistics.wait_start, 0); 922 } 923 924 static inline void 925 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 926 { 927 struct task_struct *tsk = NULL; 928 u64 sleep_start, block_start; 929 930 if (!schedstat_enabled()) 931 return; 932 933 sleep_start = schedstat_val(se->statistics.sleep_start); 934 block_start = schedstat_val(se->statistics.block_start); 935 936 if (entity_is_task(se)) 937 tsk = task_of(se); 938 939 if (sleep_start) { 940 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 941 942 if ((s64)delta < 0) 943 delta = 0; 944 945 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 946 __schedstat_set(se->statistics.sleep_max, delta); 947 948 __schedstat_set(se->statistics.sleep_start, 0); 949 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 950 951 if (tsk) { 952 account_scheduler_latency(tsk, delta >> 10, 1); 953 trace_sched_stat_sleep(tsk, delta); 954 } 955 } 956 if (block_start) { 957 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 958 959 if ((s64)delta < 0) 960 delta = 0; 961 962 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 963 __schedstat_set(se->statistics.block_max, delta); 964 965 __schedstat_set(se->statistics.block_start, 0); 966 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 967 968 if (tsk) { 969 if (tsk->in_iowait) { 970 __schedstat_add(se->statistics.iowait_sum, delta); 971 __schedstat_inc(se->statistics.iowait_count); 972 trace_sched_stat_iowait(tsk, delta); 973 } 974 975 trace_sched_stat_blocked(tsk, delta); 976 977 /* 978 * Blocking time is in units of nanosecs, so shift by 979 * 20 to get a milliseconds-range estimation of the 980 * amount of time that the task spent sleeping: 981 */ 982 if (unlikely(prof_on == SLEEP_PROFILING)) { 983 profile_hits(SLEEP_PROFILING, 984 (void *)get_wchan(tsk), 985 delta >> 20); 986 } 987 account_scheduler_latency(tsk, delta >> 10, 0); 988 } 989 } 990 } 991 992 /* 993 * Task is being enqueued - update stats: 994 */ 995 static inline void 996 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 997 { 998 if (!schedstat_enabled()) 999 return; 1000 1001 /* 1002 * Are we enqueueing a waiting task? (for current tasks 1003 * a dequeue/enqueue event is a NOP) 1004 */ 1005 if (se != cfs_rq->curr) 1006 update_stats_wait_start(cfs_rq, se); 1007 1008 if (flags & ENQUEUE_WAKEUP) 1009 update_stats_enqueue_sleeper(cfs_rq, se); 1010 } 1011 1012 static inline void 1013 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1014 { 1015 1016 if (!schedstat_enabled()) 1017 return; 1018 1019 /* 1020 * Mark the end of the wait period if dequeueing a 1021 * waiting task: 1022 */ 1023 if (se != cfs_rq->curr) 1024 update_stats_wait_end(cfs_rq, se); 1025 1026 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1027 struct task_struct *tsk = task_of(se); 1028 unsigned int state; 1029 1030 /* XXX racy against TTWU */ 1031 state = READ_ONCE(tsk->__state); 1032 if (state & TASK_INTERRUPTIBLE) 1033 __schedstat_set(se->statistics.sleep_start, 1034 rq_clock(rq_of(cfs_rq))); 1035 if (state & TASK_UNINTERRUPTIBLE) 1036 __schedstat_set(se->statistics.block_start, 1037 rq_clock(rq_of(cfs_rq))); 1038 } 1039 } 1040 1041 /* 1042 * We are picking a new current task - update its stats: 1043 */ 1044 static inline void 1045 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1046 { 1047 /* 1048 * We are starting a new run period: 1049 */ 1050 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1051 } 1052 1053 /************************************************** 1054 * Scheduling class queueing methods: 1055 */ 1056 1057 #ifdef CONFIG_NUMA_BALANCING 1058 /* 1059 * Approximate time to scan a full NUMA task in ms. The task scan period is 1060 * calculated based on the tasks virtual memory size and 1061 * numa_balancing_scan_size. 1062 */ 1063 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1064 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1065 1066 /* Portion of address space to scan in MB */ 1067 unsigned int sysctl_numa_balancing_scan_size = 256; 1068 1069 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1070 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1071 1072 struct numa_group { 1073 refcount_t refcount; 1074 1075 spinlock_t lock; /* nr_tasks, tasks */ 1076 int nr_tasks; 1077 pid_t gid; 1078 int active_nodes; 1079 1080 struct rcu_head rcu; 1081 unsigned long total_faults; 1082 unsigned long max_faults_cpu; 1083 /* 1084 * Faults_cpu is used to decide whether memory should move 1085 * towards the CPU. As a consequence, these stats are weighted 1086 * more by CPU use than by memory faults. 1087 */ 1088 unsigned long *faults_cpu; 1089 unsigned long faults[]; 1090 }; 1091 1092 /* 1093 * For functions that can be called in multiple contexts that permit reading 1094 * ->numa_group (see struct task_struct for locking rules). 1095 */ 1096 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1097 { 1098 return rcu_dereference_check(p->numa_group, p == current || 1099 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1100 } 1101 1102 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1103 { 1104 return rcu_dereference_protected(p->numa_group, p == current); 1105 } 1106 1107 static inline unsigned long group_faults_priv(struct numa_group *ng); 1108 static inline unsigned long group_faults_shared(struct numa_group *ng); 1109 1110 static unsigned int task_nr_scan_windows(struct task_struct *p) 1111 { 1112 unsigned long rss = 0; 1113 unsigned long nr_scan_pages; 1114 1115 /* 1116 * Calculations based on RSS as non-present and empty pages are skipped 1117 * by the PTE scanner and NUMA hinting faults should be trapped based 1118 * on resident pages 1119 */ 1120 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1121 rss = get_mm_rss(p->mm); 1122 if (!rss) 1123 rss = nr_scan_pages; 1124 1125 rss = round_up(rss, nr_scan_pages); 1126 return rss / nr_scan_pages; 1127 } 1128 1129 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1130 #define MAX_SCAN_WINDOW 2560 1131 1132 static unsigned int task_scan_min(struct task_struct *p) 1133 { 1134 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1135 unsigned int scan, floor; 1136 unsigned int windows = 1; 1137 1138 if (scan_size < MAX_SCAN_WINDOW) 1139 windows = MAX_SCAN_WINDOW / scan_size; 1140 floor = 1000 / windows; 1141 1142 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1143 return max_t(unsigned int, floor, scan); 1144 } 1145 1146 static unsigned int task_scan_start(struct task_struct *p) 1147 { 1148 unsigned long smin = task_scan_min(p); 1149 unsigned long period = smin; 1150 struct numa_group *ng; 1151 1152 /* Scale the maximum scan period with the amount of shared memory. */ 1153 rcu_read_lock(); 1154 ng = rcu_dereference(p->numa_group); 1155 if (ng) { 1156 unsigned long shared = group_faults_shared(ng); 1157 unsigned long private = group_faults_priv(ng); 1158 1159 period *= refcount_read(&ng->refcount); 1160 period *= shared + 1; 1161 period /= private + shared + 1; 1162 } 1163 rcu_read_unlock(); 1164 1165 return max(smin, period); 1166 } 1167 1168 static unsigned int task_scan_max(struct task_struct *p) 1169 { 1170 unsigned long smin = task_scan_min(p); 1171 unsigned long smax; 1172 struct numa_group *ng; 1173 1174 /* Watch for min being lower than max due to floor calculations */ 1175 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1176 1177 /* Scale the maximum scan period with the amount of shared memory. */ 1178 ng = deref_curr_numa_group(p); 1179 if (ng) { 1180 unsigned long shared = group_faults_shared(ng); 1181 unsigned long private = group_faults_priv(ng); 1182 unsigned long period = smax; 1183 1184 period *= refcount_read(&ng->refcount); 1185 period *= shared + 1; 1186 period /= private + shared + 1; 1187 1188 smax = max(smax, period); 1189 } 1190 1191 return max(smin, smax); 1192 } 1193 1194 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1195 { 1196 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1197 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1198 } 1199 1200 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1201 { 1202 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1203 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1204 } 1205 1206 /* Shared or private faults. */ 1207 #define NR_NUMA_HINT_FAULT_TYPES 2 1208 1209 /* Memory and CPU locality */ 1210 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1211 1212 /* Averaged statistics, and temporary buffers. */ 1213 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1214 1215 pid_t task_numa_group_id(struct task_struct *p) 1216 { 1217 struct numa_group *ng; 1218 pid_t gid = 0; 1219 1220 rcu_read_lock(); 1221 ng = rcu_dereference(p->numa_group); 1222 if (ng) 1223 gid = ng->gid; 1224 rcu_read_unlock(); 1225 1226 return gid; 1227 } 1228 1229 /* 1230 * The averaged statistics, shared & private, memory & CPU, 1231 * occupy the first half of the array. The second half of the 1232 * array is for current counters, which are averaged into the 1233 * first set by task_numa_placement. 1234 */ 1235 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1236 { 1237 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1238 } 1239 1240 static inline unsigned long task_faults(struct task_struct *p, int nid) 1241 { 1242 if (!p->numa_faults) 1243 return 0; 1244 1245 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1246 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1247 } 1248 1249 static inline unsigned long group_faults(struct task_struct *p, int nid) 1250 { 1251 struct numa_group *ng = deref_task_numa_group(p); 1252 1253 if (!ng) 1254 return 0; 1255 1256 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1257 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1258 } 1259 1260 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1261 { 1262 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1263 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1264 } 1265 1266 static inline unsigned long group_faults_priv(struct numa_group *ng) 1267 { 1268 unsigned long faults = 0; 1269 int node; 1270 1271 for_each_online_node(node) { 1272 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1273 } 1274 1275 return faults; 1276 } 1277 1278 static inline unsigned long group_faults_shared(struct numa_group *ng) 1279 { 1280 unsigned long faults = 0; 1281 int node; 1282 1283 for_each_online_node(node) { 1284 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1285 } 1286 1287 return faults; 1288 } 1289 1290 /* 1291 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1292 * considered part of a numa group's pseudo-interleaving set. Migrations 1293 * between these nodes are slowed down, to allow things to settle down. 1294 */ 1295 #define ACTIVE_NODE_FRACTION 3 1296 1297 static bool numa_is_active_node(int nid, struct numa_group *ng) 1298 { 1299 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1300 } 1301 1302 /* Handle placement on systems where not all nodes are directly connected. */ 1303 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1304 int maxdist, bool task) 1305 { 1306 unsigned long score = 0; 1307 int node; 1308 1309 /* 1310 * All nodes are directly connected, and the same distance 1311 * from each other. No need for fancy placement algorithms. 1312 */ 1313 if (sched_numa_topology_type == NUMA_DIRECT) 1314 return 0; 1315 1316 /* 1317 * This code is called for each node, introducing N^2 complexity, 1318 * which should be ok given the number of nodes rarely exceeds 8. 1319 */ 1320 for_each_online_node(node) { 1321 unsigned long faults; 1322 int dist = node_distance(nid, node); 1323 1324 /* 1325 * The furthest away nodes in the system are not interesting 1326 * for placement; nid was already counted. 1327 */ 1328 if (dist == sched_max_numa_distance || node == nid) 1329 continue; 1330 1331 /* 1332 * On systems with a backplane NUMA topology, compare groups 1333 * of nodes, and move tasks towards the group with the most 1334 * memory accesses. When comparing two nodes at distance 1335 * "hoplimit", only nodes closer by than "hoplimit" are part 1336 * of each group. Skip other nodes. 1337 */ 1338 if (sched_numa_topology_type == NUMA_BACKPLANE && 1339 dist >= maxdist) 1340 continue; 1341 1342 /* Add up the faults from nearby nodes. */ 1343 if (task) 1344 faults = task_faults(p, node); 1345 else 1346 faults = group_faults(p, node); 1347 1348 /* 1349 * On systems with a glueless mesh NUMA topology, there are 1350 * no fixed "groups of nodes". Instead, nodes that are not 1351 * directly connected bounce traffic through intermediate 1352 * nodes; a numa_group can occupy any set of nodes. 1353 * The further away a node is, the less the faults count. 1354 * This seems to result in good task placement. 1355 */ 1356 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1357 faults *= (sched_max_numa_distance - dist); 1358 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1359 } 1360 1361 score += faults; 1362 } 1363 1364 return score; 1365 } 1366 1367 /* 1368 * These return the fraction of accesses done by a particular task, or 1369 * task group, on a particular numa node. The group weight is given a 1370 * larger multiplier, in order to group tasks together that are almost 1371 * evenly spread out between numa nodes. 1372 */ 1373 static inline unsigned long task_weight(struct task_struct *p, int nid, 1374 int dist) 1375 { 1376 unsigned long faults, total_faults; 1377 1378 if (!p->numa_faults) 1379 return 0; 1380 1381 total_faults = p->total_numa_faults; 1382 1383 if (!total_faults) 1384 return 0; 1385 1386 faults = task_faults(p, nid); 1387 faults += score_nearby_nodes(p, nid, dist, true); 1388 1389 return 1000 * faults / total_faults; 1390 } 1391 1392 static inline unsigned long group_weight(struct task_struct *p, int nid, 1393 int dist) 1394 { 1395 struct numa_group *ng = deref_task_numa_group(p); 1396 unsigned long faults, total_faults; 1397 1398 if (!ng) 1399 return 0; 1400 1401 total_faults = ng->total_faults; 1402 1403 if (!total_faults) 1404 return 0; 1405 1406 faults = group_faults(p, nid); 1407 faults += score_nearby_nodes(p, nid, dist, false); 1408 1409 return 1000 * faults / total_faults; 1410 } 1411 1412 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1413 int src_nid, int dst_cpu) 1414 { 1415 struct numa_group *ng = deref_curr_numa_group(p); 1416 int dst_nid = cpu_to_node(dst_cpu); 1417 int last_cpupid, this_cpupid; 1418 1419 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1420 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1421 1422 /* 1423 * Allow first faults or private faults to migrate immediately early in 1424 * the lifetime of a task. The magic number 4 is based on waiting for 1425 * two full passes of the "multi-stage node selection" test that is 1426 * executed below. 1427 */ 1428 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1429 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1430 return true; 1431 1432 /* 1433 * Multi-stage node selection is used in conjunction with a periodic 1434 * migration fault to build a temporal task<->page relation. By using 1435 * a two-stage filter we remove short/unlikely relations. 1436 * 1437 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1438 * a task's usage of a particular page (n_p) per total usage of this 1439 * page (n_t) (in a given time-span) to a probability. 1440 * 1441 * Our periodic faults will sample this probability and getting the 1442 * same result twice in a row, given these samples are fully 1443 * independent, is then given by P(n)^2, provided our sample period 1444 * is sufficiently short compared to the usage pattern. 1445 * 1446 * This quadric squishes small probabilities, making it less likely we 1447 * act on an unlikely task<->page relation. 1448 */ 1449 if (!cpupid_pid_unset(last_cpupid) && 1450 cpupid_to_nid(last_cpupid) != dst_nid) 1451 return false; 1452 1453 /* Always allow migrate on private faults */ 1454 if (cpupid_match_pid(p, last_cpupid)) 1455 return true; 1456 1457 /* A shared fault, but p->numa_group has not been set up yet. */ 1458 if (!ng) 1459 return true; 1460 1461 /* 1462 * Destination node is much more heavily used than the source 1463 * node? Allow migration. 1464 */ 1465 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1466 ACTIVE_NODE_FRACTION) 1467 return true; 1468 1469 /* 1470 * Distribute memory according to CPU & memory use on each node, 1471 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1472 * 1473 * faults_cpu(dst) 3 faults_cpu(src) 1474 * --------------- * - > --------------- 1475 * faults_mem(dst) 4 faults_mem(src) 1476 */ 1477 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1478 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1479 } 1480 1481 /* 1482 * 'numa_type' describes the node at the moment of load balancing. 1483 */ 1484 enum numa_type { 1485 /* The node has spare capacity that can be used to run more tasks. */ 1486 node_has_spare = 0, 1487 /* 1488 * The node is fully used and the tasks don't compete for more CPU 1489 * cycles. Nevertheless, some tasks might wait before running. 1490 */ 1491 node_fully_busy, 1492 /* 1493 * The node is overloaded and can't provide expected CPU cycles to all 1494 * tasks. 1495 */ 1496 node_overloaded 1497 }; 1498 1499 /* Cached statistics for all CPUs within a node */ 1500 struct numa_stats { 1501 unsigned long load; 1502 unsigned long runnable; 1503 unsigned long util; 1504 /* Total compute capacity of CPUs on a node */ 1505 unsigned long compute_capacity; 1506 unsigned int nr_running; 1507 unsigned int weight; 1508 enum numa_type node_type; 1509 int idle_cpu; 1510 }; 1511 1512 static inline bool is_core_idle(int cpu) 1513 { 1514 #ifdef CONFIG_SCHED_SMT 1515 int sibling; 1516 1517 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1518 if (cpu == sibling) 1519 continue; 1520 1521 if (!idle_cpu(sibling)) 1522 return false; 1523 } 1524 #endif 1525 1526 return true; 1527 } 1528 1529 struct task_numa_env { 1530 struct task_struct *p; 1531 1532 int src_cpu, src_nid; 1533 int dst_cpu, dst_nid; 1534 1535 struct numa_stats src_stats, dst_stats; 1536 1537 int imbalance_pct; 1538 int dist; 1539 1540 struct task_struct *best_task; 1541 long best_imp; 1542 int best_cpu; 1543 }; 1544 1545 static unsigned long cpu_load(struct rq *rq); 1546 static unsigned long cpu_runnable(struct rq *rq); 1547 static unsigned long cpu_util(int cpu); 1548 static inline long adjust_numa_imbalance(int imbalance, 1549 int dst_running, int dst_weight); 1550 1551 static inline enum 1552 numa_type numa_classify(unsigned int imbalance_pct, 1553 struct numa_stats *ns) 1554 { 1555 if ((ns->nr_running > ns->weight) && 1556 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1557 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1558 return node_overloaded; 1559 1560 if ((ns->nr_running < ns->weight) || 1561 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1562 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1563 return node_has_spare; 1564 1565 return node_fully_busy; 1566 } 1567 1568 #ifdef CONFIG_SCHED_SMT 1569 /* Forward declarations of select_idle_sibling helpers */ 1570 static inline bool test_idle_cores(int cpu, bool def); 1571 static inline int numa_idle_core(int idle_core, int cpu) 1572 { 1573 if (!static_branch_likely(&sched_smt_present) || 1574 idle_core >= 0 || !test_idle_cores(cpu, false)) 1575 return idle_core; 1576 1577 /* 1578 * Prefer cores instead of packing HT siblings 1579 * and triggering future load balancing. 1580 */ 1581 if (is_core_idle(cpu)) 1582 idle_core = cpu; 1583 1584 return idle_core; 1585 } 1586 #else 1587 static inline int numa_idle_core(int idle_core, int cpu) 1588 { 1589 return idle_core; 1590 } 1591 #endif 1592 1593 /* 1594 * Gather all necessary information to make NUMA balancing placement 1595 * decisions that are compatible with standard load balancer. This 1596 * borrows code and logic from update_sg_lb_stats but sharing a 1597 * common implementation is impractical. 1598 */ 1599 static void update_numa_stats(struct task_numa_env *env, 1600 struct numa_stats *ns, int nid, 1601 bool find_idle) 1602 { 1603 int cpu, idle_core = -1; 1604 1605 memset(ns, 0, sizeof(*ns)); 1606 ns->idle_cpu = -1; 1607 1608 rcu_read_lock(); 1609 for_each_cpu(cpu, cpumask_of_node(nid)) { 1610 struct rq *rq = cpu_rq(cpu); 1611 1612 ns->load += cpu_load(rq); 1613 ns->runnable += cpu_runnable(rq); 1614 ns->util += cpu_util(cpu); 1615 ns->nr_running += rq->cfs.h_nr_running; 1616 ns->compute_capacity += capacity_of(cpu); 1617 1618 if (find_idle && !rq->nr_running && idle_cpu(cpu)) { 1619 if (READ_ONCE(rq->numa_migrate_on) || 1620 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1621 continue; 1622 1623 if (ns->idle_cpu == -1) 1624 ns->idle_cpu = cpu; 1625 1626 idle_core = numa_idle_core(idle_core, cpu); 1627 } 1628 } 1629 rcu_read_unlock(); 1630 1631 ns->weight = cpumask_weight(cpumask_of_node(nid)); 1632 1633 ns->node_type = numa_classify(env->imbalance_pct, ns); 1634 1635 if (idle_core >= 0) 1636 ns->idle_cpu = idle_core; 1637 } 1638 1639 static void task_numa_assign(struct task_numa_env *env, 1640 struct task_struct *p, long imp) 1641 { 1642 struct rq *rq = cpu_rq(env->dst_cpu); 1643 1644 /* Check if run-queue part of active NUMA balance. */ 1645 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 1646 int cpu; 1647 int start = env->dst_cpu; 1648 1649 /* Find alternative idle CPU. */ 1650 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) { 1651 if (cpu == env->best_cpu || !idle_cpu(cpu) || 1652 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 1653 continue; 1654 } 1655 1656 env->dst_cpu = cpu; 1657 rq = cpu_rq(env->dst_cpu); 1658 if (!xchg(&rq->numa_migrate_on, 1)) 1659 goto assign; 1660 } 1661 1662 /* Failed to find an alternative idle CPU */ 1663 return; 1664 } 1665 1666 assign: 1667 /* 1668 * Clear previous best_cpu/rq numa-migrate flag, since task now 1669 * found a better CPU to move/swap. 1670 */ 1671 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 1672 rq = cpu_rq(env->best_cpu); 1673 WRITE_ONCE(rq->numa_migrate_on, 0); 1674 } 1675 1676 if (env->best_task) 1677 put_task_struct(env->best_task); 1678 if (p) 1679 get_task_struct(p); 1680 1681 env->best_task = p; 1682 env->best_imp = imp; 1683 env->best_cpu = env->dst_cpu; 1684 } 1685 1686 static bool load_too_imbalanced(long src_load, long dst_load, 1687 struct task_numa_env *env) 1688 { 1689 long imb, old_imb; 1690 long orig_src_load, orig_dst_load; 1691 long src_capacity, dst_capacity; 1692 1693 /* 1694 * The load is corrected for the CPU capacity available on each node. 1695 * 1696 * src_load dst_load 1697 * ------------ vs --------- 1698 * src_capacity dst_capacity 1699 */ 1700 src_capacity = env->src_stats.compute_capacity; 1701 dst_capacity = env->dst_stats.compute_capacity; 1702 1703 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1704 1705 orig_src_load = env->src_stats.load; 1706 orig_dst_load = env->dst_stats.load; 1707 1708 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1709 1710 /* Would this change make things worse? */ 1711 return (imb > old_imb); 1712 } 1713 1714 /* 1715 * Maximum NUMA importance can be 1998 (2*999); 1716 * SMALLIMP @ 30 would be close to 1998/64. 1717 * Used to deter task migration. 1718 */ 1719 #define SMALLIMP 30 1720 1721 /* 1722 * This checks if the overall compute and NUMA accesses of the system would 1723 * be improved if the source tasks was migrated to the target dst_cpu taking 1724 * into account that it might be best if task running on the dst_cpu should 1725 * be exchanged with the source task 1726 */ 1727 static bool task_numa_compare(struct task_numa_env *env, 1728 long taskimp, long groupimp, bool maymove) 1729 { 1730 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1731 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1732 long imp = p_ng ? groupimp : taskimp; 1733 struct task_struct *cur; 1734 long src_load, dst_load; 1735 int dist = env->dist; 1736 long moveimp = imp; 1737 long load; 1738 bool stopsearch = false; 1739 1740 if (READ_ONCE(dst_rq->numa_migrate_on)) 1741 return false; 1742 1743 rcu_read_lock(); 1744 cur = rcu_dereference(dst_rq->curr); 1745 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1746 cur = NULL; 1747 1748 /* 1749 * Because we have preemption enabled we can get migrated around and 1750 * end try selecting ourselves (current == env->p) as a swap candidate. 1751 */ 1752 if (cur == env->p) { 1753 stopsearch = true; 1754 goto unlock; 1755 } 1756 1757 if (!cur) { 1758 if (maymove && moveimp >= env->best_imp) 1759 goto assign; 1760 else 1761 goto unlock; 1762 } 1763 1764 /* Skip this swap candidate if cannot move to the source cpu. */ 1765 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1766 goto unlock; 1767 1768 /* 1769 * Skip this swap candidate if it is not moving to its preferred 1770 * node and the best task is. 1771 */ 1772 if (env->best_task && 1773 env->best_task->numa_preferred_nid == env->src_nid && 1774 cur->numa_preferred_nid != env->src_nid) { 1775 goto unlock; 1776 } 1777 1778 /* 1779 * "imp" is the fault differential for the source task between the 1780 * source and destination node. Calculate the total differential for 1781 * the source task and potential destination task. The more negative 1782 * the value is, the more remote accesses that would be expected to 1783 * be incurred if the tasks were swapped. 1784 * 1785 * If dst and source tasks are in the same NUMA group, or not 1786 * in any group then look only at task weights. 1787 */ 1788 cur_ng = rcu_dereference(cur->numa_group); 1789 if (cur_ng == p_ng) { 1790 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1791 task_weight(cur, env->dst_nid, dist); 1792 /* 1793 * Add some hysteresis to prevent swapping the 1794 * tasks within a group over tiny differences. 1795 */ 1796 if (cur_ng) 1797 imp -= imp / 16; 1798 } else { 1799 /* 1800 * Compare the group weights. If a task is all by itself 1801 * (not part of a group), use the task weight instead. 1802 */ 1803 if (cur_ng && p_ng) 1804 imp += group_weight(cur, env->src_nid, dist) - 1805 group_weight(cur, env->dst_nid, dist); 1806 else 1807 imp += task_weight(cur, env->src_nid, dist) - 1808 task_weight(cur, env->dst_nid, dist); 1809 } 1810 1811 /* Discourage picking a task already on its preferred node */ 1812 if (cur->numa_preferred_nid == env->dst_nid) 1813 imp -= imp / 16; 1814 1815 /* 1816 * Encourage picking a task that moves to its preferred node. 1817 * This potentially makes imp larger than it's maximum of 1818 * 1998 (see SMALLIMP and task_weight for why) but in this 1819 * case, it does not matter. 1820 */ 1821 if (cur->numa_preferred_nid == env->src_nid) 1822 imp += imp / 8; 1823 1824 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1825 imp = moveimp; 1826 cur = NULL; 1827 goto assign; 1828 } 1829 1830 /* 1831 * Prefer swapping with a task moving to its preferred node over a 1832 * task that is not. 1833 */ 1834 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 1835 env->best_task->numa_preferred_nid != env->src_nid) { 1836 goto assign; 1837 } 1838 1839 /* 1840 * If the NUMA importance is less than SMALLIMP, 1841 * task migration might only result in ping pong 1842 * of tasks and also hurt performance due to cache 1843 * misses. 1844 */ 1845 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1846 goto unlock; 1847 1848 /* 1849 * In the overloaded case, try and keep the load balanced. 1850 */ 1851 load = task_h_load(env->p) - task_h_load(cur); 1852 if (!load) 1853 goto assign; 1854 1855 dst_load = env->dst_stats.load + load; 1856 src_load = env->src_stats.load - load; 1857 1858 if (load_too_imbalanced(src_load, dst_load, env)) 1859 goto unlock; 1860 1861 assign: 1862 /* Evaluate an idle CPU for a task numa move. */ 1863 if (!cur) { 1864 int cpu = env->dst_stats.idle_cpu; 1865 1866 /* Nothing cached so current CPU went idle since the search. */ 1867 if (cpu < 0) 1868 cpu = env->dst_cpu; 1869 1870 /* 1871 * If the CPU is no longer truly idle and the previous best CPU 1872 * is, keep using it. 1873 */ 1874 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 1875 idle_cpu(env->best_cpu)) { 1876 cpu = env->best_cpu; 1877 } 1878 1879 env->dst_cpu = cpu; 1880 } 1881 1882 task_numa_assign(env, cur, imp); 1883 1884 /* 1885 * If a move to idle is allowed because there is capacity or load 1886 * balance improves then stop the search. While a better swap 1887 * candidate may exist, a search is not free. 1888 */ 1889 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 1890 stopsearch = true; 1891 1892 /* 1893 * If a swap candidate must be identified and the current best task 1894 * moves its preferred node then stop the search. 1895 */ 1896 if (!maymove && env->best_task && 1897 env->best_task->numa_preferred_nid == env->src_nid) { 1898 stopsearch = true; 1899 } 1900 unlock: 1901 rcu_read_unlock(); 1902 1903 return stopsearch; 1904 } 1905 1906 static void task_numa_find_cpu(struct task_numa_env *env, 1907 long taskimp, long groupimp) 1908 { 1909 bool maymove = false; 1910 int cpu; 1911 1912 /* 1913 * If dst node has spare capacity, then check if there is an 1914 * imbalance that would be overruled by the load balancer. 1915 */ 1916 if (env->dst_stats.node_type == node_has_spare) { 1917 unsigned int imbalance; 1918 int src_running, dst_running; 1919 1920 /* 1921 * Would movement cause an imbalance? Note that if src has 1922 * more running tasks that the imbalance is ignored as the 1923 * move improves the imbalance from the perspective of the 1924 * CPU load balancer. 1925 * */ 1926 src_running = env->src_stats.nr_running - 1; 1927 dst_running = env->dst_stats.nr_running + 1; 1928 imbalance = max(0, dst_running - src_running); 1929 imbalance = adjust_numa_imbalance(imbalance, dst_running, 1930 env->dst_stats.weight); 1931 1932 /* Use idle CPU if there is no imbalance */ 1933 if (!imbalance) { 1934 maymove = true; 1935 if (env->dst_stats.idle_cpu >= 0) { 1936 env->dst_cpu = env->dst_stats.idle_cpu; 1937 task_numa_assign(env, NULL, 0); 1938 return; 1939 } 1940 } 1941 } else { 1942 long src_load, dst_load, load; 1943 /* 1944 * If the improvement from just moving env->p direction is better 1945 * than swapping tasks around, check if a move is possible. 1946 */ 1947 load = task_h_load(env->p); 1948 dst_load = env->dst_stats.load + load; 1949 src_load = env->src_stats.load - load; 1950 maymove = !load_too_imbalanced(src_load, dst_load, env); 1951 } 1952 1953 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1954 /* Skip this CPU if the source task cannot migrate */ 1955 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1956 continue; 1957 1958 env->dst_cpu = cpu; 1959 if (task_numa_compare(env, taskimp, groupimp, maymove)) 1960 break; 1961 } 1962 } 1963 1964 static int task_numa_migrate(struct task_struct *p) 1965 { 1966 struct task_numa_env env = { 1967 .p = p, 1968 1969 .src_cpu = task_cpu(p), 1970 .src_nid = task_node(p), 1971 1972 .imbalance_pct = 112, 1973 1974 .best_task = NULL, 1975 .best_imp = 0, 1976 .best_cpu = -1, 1977 }; 1978 unsigned long taskweight, groupweight; 1979 struct sched_domain *sd; 1980 long taskimp, groupimp; 1981 struct numa_group *ng; 1982 struct rq *best_rq; 1983 int nid, ret, dist; 1984 1985 /* 1986 * Pick the lowest SD_NUMA domain, as that would have the smallest 1987 * imbalance and would be the first to start moving tasks about. 1988 * 1989 * And we want to avoid any moving of tasks about, as that would create 1990 * random movement of tasks -- counter the numa conditions we're trying 1991 * to satisfy here. 1992 */ 1993 rcu_read_lock(); 1994 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1995 if (sd) 1996 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1997 rcu_read_unlock(); 1998 1999 /* 2000 * Cpusets can break the scheduler domain tree into smaller 2001 * balance domains, some of which do not cross NUMA boundaries. 2002 * Tasks that are "trapped" in such domains cannot be migrated 2003 * elsewhere, so there is no point in (re)trying. 2004 */ 2005 if (unlikely(!sd)) { 2006 sched_setnuma(p, task_node(p)); 2007 return -EINVAL; 2008 } 2009 2010 env.dst_nid = p->numa_preferred_nid; 2011 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2012 taskweight = task_weight(p, env.src_nid, dist); 2013 groupweight = group_weight(p, env.src_nid, dist); 2014 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2015 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2016 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2017 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2018 2019 /* Try to find a spot on the preferred nid. */ 2020 task_numa_find_cpu(&env, taskimp, groupimp); 2021 2022 /* 2023 * Look at other nodes in these cases: 2024 * - there is no space available on the preferred_nid 2025 * - the task is part of a numa_group that is interleaved across 2026 * multiple NUMA nodes; in order to better consolidate the group, 2027 * we need to check other locations. 2028 */ 2029 ng = deref_curr_numa_group(p); 2030 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2031 for_each_online_node(nid) { 2032 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2033 continue; 2034 2035 dist = node_distance(env.src_nid, env.dst_nid); 2036 if (sched_numa_topology_type == NUMA_BACKPLANE && 2037 dist != env.dist) { 2038 taskweight = task_weight(p, env.src_nid, dist); 2039 groupweight = group_weight(p, env.src_nid, dist); 2040 } 2041 2042 /* Only consider nodes where both task and groups benefit */ 2043 taskimp = task_weight(p, nid, dist) - taskweight; 2044 groupimp = group_weight(p, nid, dist) - groupweight; 2045 if (taskimp < 0 && groupimp < 0) 2046 continue; 2047 2048 env.dist = dist; 2049 env.dst_nid = nid; 2050 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2051 task_numa_find_cpu(&env, taskimp, groupimp); 2052 } 2053 } 2054 2055 /* 2056 * If the task is part of a workload that spans multiple NUMA nodes, 2057 * and is migrating into one of the workload's active nodes, remember 2058 * this node as the task's preferred numa node, so the workload can 2059 * settle down. 2060 * A task that migrated to a second choice node will be better off 2061 * trying for a better one later. Do not set the preferred node here. 2062 */ 2063 if (ng) { 2064 if (env.best_cpu == -1) 2065 nid = env.src_nid; 2066 else 2067 nid = cpu_to_node(env.best_cpu); 2068 2069 if (nid != p->numa_preferred_nid) 2070 sched_setnuma(p, nid); 2071 } 2072 2073 /* No better CPU than the current one was found. */ 2074 if (env.best_cpu == -1) { 2075 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2076 return -EAGAIN; 2077 } 2078 2079 best_rq = cpu_rq(env.best_cpu); 2080 if (env.best_task == NULL) { 2081 ret = migrate_task_to(p, env.best_cpu); 2082 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2083 if (ret != 0) 2084 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2085 return ret; 2086 } 2087 2088 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2089 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2090 2091 if (ret != 0) 2092 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2093 put_task_struct(env.best_task); 2094 return ret; 2095 } 2096 2097 /* Attempt to migrate a task to a CPU on the preferred node. */ 2098 static void numa_migrate_preferred(struct task_struct *p) 2099 { 2100 unsigned long interval = HZ; 2101 2102 /* This task has no NUMA fault statistics yet */ 2103 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2104 return; 2105 2106 /* Periodically retry migrating the task to the preferred node */ 2107 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2108 p->numa_migrate_retry = jiffies + interval; 2109 2110 /* Success if task is already running on preferred CPU */ 2111 if (task_node(p) == p->numa_preferred_nid) 2112 return; 2113 2114 /* Otherwise, try migrate to a CPU on the preferred node */ 2115 task_numa_migrate(p); 2116 } 2117 2118 /* 2119 * Find out how many nodes on the workload is actively running on. Do this by 2120 * tracking the nodes from which NUMA hinting faults are triggered. This can 2121 * be different from the set of nodes where the workload's memory is currently 2122 * located. 2123 */ 2124 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2125 { 2126 unsigned long faults, max_faults = 0; 2127 int nid, active_nodes = 0; 2128 2129 for_each_online_node(nid) { 2130 faults = group_faults_cpu(numa_group, nid); 2131 if (faults > max_faults) 2132 max_faults = faults; 2133 } 2134 2135 for_each_online_node(nid) { 2136 faults = group_faults_cpu(numa_group, nid); 2137 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2138 active_nodes++; 2139 } 2140 2141 numa_group->max_faults_cpu = max_faults; 2142 numa_group->active_nodes = active_nodes; 2143 } 2144 2145 /* 2146 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2147 * increments. The more local the fault statistics are, the higher the scan 2148 * period will be for the next scan window. If local/(local+remote) ratio is 2149 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2150 * the scan period will decrease. Aim for 70% local accesses. 2151 */ 2152 #define NUMA_PERIOD_SLOTS 10 2153 #define NUMA_PERIOD_THRESHOLD 7 2154 2155 /* 2156 * Increase the scan period (slow down scanning) if the majority of 2157 * our memory is already on our local node, or if the majority of 2158 * the page accesses are shared with other processes. 2159 * Otherwise, decrease the scan period. 2160 */ 2161 static void update_task_scan_period(struct task_struct *p, 2162 unsigned long shared, unsigned long private) 2163 { 2164 unsigned int period_slot; 2165 int lr_ratio, ps_ratio; 2166 int diff; 2167 2168 unsigned long remote = p->numa_faults_locality[0]; 2169 unsigned long local = p->numa_faults_locality[1]; 2170 2171 /* 2172 * If there were no record hinting faults then either the task is 2173 * completely idle or all activity is areas that are not of interest 2174 * to automatic numa balancing. Related to that, if there were failed 2175 * migration then it implies we are migrating too quickly or the local 2176 * node is overloaded. In either case, scan slower 2177 */ 2178 if (local + shared == 0 || p->numa_faults_locality[2]) { 2179 p->numa_scan_period = min(p->numa_scan_period_max, 2180 p->numa_scan_period << 1); 2181 2182 p->mm->numa_next_scan = jiffies + 2183 msecs_to_jiffies(p->numa_scan_period); 2184 2185 return; 2186 } 2187 2188 /* 2189 * Prepare to scale scan period relative to the current period. 2190 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2191 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2192 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2193 */ 2194 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2195 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2196 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2197 2198 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2199 /* 2200 * Most memory accesses are local. There is no need to 2201 * do fast NUMA scanning, since memory is already local. 2202 */ 2203 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2204 if (!slot) 2205 slot = 1; 2206 diff = slot * period_slot; 2207 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2208 /* 2209 * Most memory accesses are shared with other tasks. 2210 * There is no point in continuing fast NUMA scanning, 2211 * since other tasks may just move the memory elsewhere. 2212 */ 2213 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2214 if (!slot) 2215 slot = 1; 2216 diff = slot * period_slot; 2217 } else { 2218 /* 2219 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2220 * yet they are not on the local NUMA node. Speed up 2221 * NUMA scanning to get the memory moved over. 2222 */ 2223 int ratio = max(lr_ratio, ps_ratio); 2224 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2225 } 2226 2227 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2228 task_scan_min(p), task_scan_max(p)); 2229 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2230 } 2231 2232 /* 2233 * Get the fraction of time the task has been running since the last 2234 * NUMA placement cycle. The scheduler keeps similar statistics, but 2235 * decays those on a 32ms period, which is orders of magnitude off 2236 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2237 * stats only if the task is so new there are no NUMA statistics yet. 2238 */ 2239 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2240 { 2241 u64 runtime, delta, now; 2242 /* Use the start of this time slice to avoid calculations. */ 2243 now = p->se.exec_start; 2244 runtime = p->se.sum_exec_runtime; 2245 2246 if (p->last_task_numa_placement) { 2247 delta = runtime - p->last_sum_exec_runtime; 2248 *period = now - p->last_task_numa_placement; 2249 2250 /* Avoid time going backwards, prevent potential divide error: */ 2251 if (unlikely((s64)*period < 0)) 2252 *period = 0; 2253 } else { 2254 delta = p->se.avg.load_sum; 2255 *period = LOAD_AVG_MAX; 2256 } 2257 2258 p->last_sum_exec_runtime = runtime; 2259 p->last_task_numa_placement = now; 2260 2261 return delta; 2262 } 2263 2264 /* 2265 * Determine the preferred nid for a task in a numa_group. This needs to 2266 * be done in a way that produces consistent results with group_weight, 2267 * otherwise workloads might not converge. 2268 */ 2269 static int preferred_group_nid(struct task_struct *p, int nid) 2270 { 2271 nodemask_t nodes; 2272 int dist; 2273 2274 /* Direct connections between all NUMA nodes. */ 2275 if (sched_numa_topology_type == NUMA_DIRECT) 2276 return nid; 2277 2278 /* 2279 * On a system with glueless mesh NUMA topology, group_weight 2280 * scores nodes according to the number of NUMA hinting faults on 2281 * both the node itself, and on nearby nodes. 2282 */ 2283 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2284 unsigned long score, max_score = 0; 2285 int node, max_node = nid; 2286 2287 dist = sched_max_numa_distance; 2288 2289 for_each_online_node(node) { 2290 score = group_weight(p, node, dist); 2291 if (score > max_score) { 2292 max_score = score; 2293 max_node = node; 2294 } 2295 } 2296 return max_node; 2297 } 2298 2299 /* 2300 * Finding the preferred nid in a system with NUMA backplane 2301 * interconnect topology is more involved. The goal is to locate 2302 * tasks from numa_groups near each other in the system, and 2303 * untangle workloads from different sides of the system. This requires 2304 * searching down the hierarchy of node groups, recursively searching 2305 * inside the highest scoring group of nodes. The nodemask tricks 2306 * keep the complexity of the search down. 2307 */ 2308 nodes = node_online_map; 2309 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2310 unsigned long max_faults = 0; 2311 nodemask_t max_group = NODE_MASK_NONE; 2312 int a, b; 2313 2314 /* Are there nodes at this distance from each other? */ 2315 if (!find_numa_distance(dist)) 2316 continue; 2317 2318 for_each_node_mask(a, nodes) { 2319 unsigned long faults = 0; 2320 nodemask_t this_group; 2321 nodes_clear(this_group); 2322 2323 /* Sum group's NUMA faults; includes a==b case. */ 2324 for_each_node_mask(b, nodes) { 2325 if (node_distance(a, b) < dist) { 2326 faults += group_faults(p, b); 2327 node_set(b, this_group); 2328 node_clear(b, nodes); 2329 } 2330 } 2331 2332 /* Remember the top group. */ 2333 if (faults > max_faults) { 2334 max_faults = faults; 2335 max_group = this_group; 2336 /* 2337 * subtle: at the smallest distance there is 2338 * just one node left in each "group", the 2339 * winner is the preferred nid. 2340 */ 2341 nid = a; 2342 } 2343 } 2344 /* Next round, evaluate the nodes within max_group. */ 2345 if (!max_faults) 2346 break; 2347 nodes = max_group; 2348 } 2349 return nid; 2350 } 2351 2352 static void task_numa_placement(struct task_struct *p) 2353 { 2354 int seq, nid, max_nid = NUMA_NO_NODE; 2355 unsigned long max_faults = 0; 2356 unsigned long fault_types[2] = { 0, 0 }; 2357 unsigned long total_faults; 2358 u64 runtime, period; 2359 spinlock_t *group_lock = NULL; 2360 struct numa_group *ng; 2361 2362 /* 2363 * The p->mm->numa_scan_seq field gets updated without 2364 * exclusive access. Use READ_ONCE() here to ensure 2365 * that the field is read in a single access: 2366 */ 2367 seq = READ_ONCE(p->mm->numa_scan_seq); 2368 if (p->numa_scan_seq == seq) 2369 return; 2370 p->numa_scan_seq = seq; 2371 p->numa_scan_period_max = task_scan_max(p); 2372 2373 total_faults = p->numa_faults_locality[0] + 2374 p->numa_faults_locality[1]; 2375 runtime = numa_get_avg_runtime(p, &period); 2376 2377 /* If the task is part of a group prevent parallel updates to group stats */ 2378 ng = deref_curr_numa_group(p); 2379 if (ng) { 2380 group_lock = &ng->lock; 2381 spin_lock_irq(group_lock); 2382 } 2383 2384 /* Find the node with the highest number of faults */ 2385 for_each_online_node(nid) { 2386 /* Keep track of the offsets in numa_faults array */ 2387 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2388 unsigned long faults = 0, group_faults = 0; 2389 int priv; 2390 2391 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2392 long diff, f_diff, f_weight; 2393 2394 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2395 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2396 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2397 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2398 2399 /* Decay existing window, copy faults since last scan */ 2400 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2401 fault_types[priv] += p->numa_faults[membuf_idx]; 2402 p->numa_faults[membuf_idx] = 0; 2403 2404 /* 2405 * Normalize the faults_from, so all tasks in a group 2406 * count according to CPU use, instead of by the raw 2407 * number of faults. Tasks with little runtime have 2408 * little over-all impact on throughput, and thus their 2409 * faults are less important. 2410 */ 2411 f_weight = div64_u64(runtime << 16, period + 1); 2412 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2413 (total_faults + 1); 2414 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2415 p->numa_faults[cpubuf_idx] = 0; 2416 2417 p->numa_faults[mem_idx] += diff; 2418 p->numa_faults[cpu_idx] += f_diff; 2419 faults += p->numa_faults[mem_idx]; 2420 p->total_numa_faults += diff; 2421 if (ng) { 2422 /* 2423 * safe because we can only change our own group 2424 * 2425 * mem_idx represents the offset for a given 2426 * nid and priv in a specific region because it 2427 * is at the beginning of the numa_faults array. 2428 */ 2429 ng->faults[mem_idx] += diff; 2430 ng->faults_cpu[mem_idx] += f_diff; 2431 ng->total_faults += diff; 2432 group_faults += ng->faults[mem_idx]; 2433 } 2434 } 2435 2436 if (!ng) { 2437 if (faults > max_faults) { 2438 max_faults = faults; 2439 max_nid = nid; 2440 } 2441 } else if (group_faults > max_faults) { 2442 max_faults = group_faults; 2443 max_nid = nid; 2444 } 2445 } 2446 2447 if (ng) { 2448 numa_group_count_active_nodes(ng); 2449 spin_unlock_irq(group_lock); 2450 max_nid = preferred_group_nid(p, max_nid); 2451 } 2452 2453 if (max_faults) { 2454 /* Set the new preferred node */ 2455 if (max_nid != p->numa_preferred_nid) 2456 sched_setnuma(p, max_nid); 2457 } 2458 2459 update_task_scan_period(p, fault_types[0], fault_types[1]); 2460 } 2461 2462 static inline int get_numa_group(struct numa_group *grp) 2463 { 2464 return refcount_inc_not_zero(&grp->refcount); 2465 } 2466 2467 static inline void put_numa_group(struct numa_group *grp) 2468 { 2469 if (refcount_dec_and_test(&grp->refcount)) 2470 kfree_rcu(grp, rcu); 2471 } 2472 2473 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2474 int *priv) 2475 { 2476 struct numa_group *grp, *my_grp; 2477 struct task_struct *tsk; 2478 bool join = false; 2479 int cpu = cpupid_to_cpu(cpupid); 2480 int i; 2481 2482 if (unlikely(!deref_curr_numa_group(p))) { 2483 unsigned int size = sizeof(struct numa_group) + 2484 4*nr_node_ids*sizeof(unsigned long); 2485 2486 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2487 if (!grp) 2488 return; 2489 2490 refcount_set(&grp->refcount, 1); 2491 grp->active_nodes = 1; 2492 grp->max_faults_cpu = 0; 2493 spin_lock_init(&grp->lock); 2494 grp->gid = p->pid; 2495 /* Second half of the array tracks nids where faults happen */ 2496 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2497 nr_node_ids; 2498 2499 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2500 grp->faults[i] = p->numa_faults[i]; 2501 2502 grp->total_faults = p->total_numa_faults; 2503 2504 grp->nr_tasks++; 2505 rcu_assign_pointer(p->numa_group, grp); 2506 } 2507 2508 rcu_read_lock(); 2509 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2510 2511 if (!cpupid_match_pid(tsk, cpupid)) 2512 goto no_join; 2513 2514 grp = rcu_dereference(tsk->numa_group); 2515 if (!grp) 2516 goto no_join; 2517 2518 my_grp = deref_curr_numa_group(p); 2519 if (grp == my_grp) 2520 goto no_join; 2521 2522 /* 2523 * Only join the other group if its bigger; if we're the bigger group, 2524 * the other task will join us. 2525 */ 2526 if (my_grp->nr_tasks > grp->nr_tasks) 2527 goto no_join; 2528 2529 /* 2530 * Tie-break on the grp address. 2531 */ 2532 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2533 goto no_join; 2534 2535 /* Always join threads in the same process. */ 2536 if (tsk->mm == current->mm) 2537 join = true; 2538 2539 /* Simple filter to avoid false positives due to PID collisions */ 2540 if (flags & TNF_SHARED) 2541 join = true; 2542 2543 /* Update priv based on whether false sharing was detected */ 2544 *priv = !join; 2545 2546 if (join && !get_numa_group(grp)) 2547 goto no_join; 2548 2549 rcu_read_unlock(); 2550 2551 if (!join) 2552 return; 2553 2554 BUG_ON(irqs_disabled()); 2555 double_lock_irq(&my_grp->lock, &grp->lock); 2556 2557 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2558 my_grp->faults[i] -= p->numa_faults[i]; 2559 grp->faults[i] += p->numa_faults[i]; 2560 } 2561 my_grp->total_faults -= p->total_numa_faults; 2562 grp->total_faults += p->total_numa_faults; 2563 2564 my_grp->nr_tasks--; 2565 grp->nr_tasks++; 2566 2567 spin_unlock(&my_grp->lock); 2568 spin_unlock_irq(&grp->lock); 2569 2570 rcu_assign_pointer(p->numa_group, grp); 2571 2572 put_numa_group(my_grp); 2573 return; 2574 2575 no_join: 2576 rcu_read_unlock(); 2577 return; 2578 } 2579 2580 /* 2581 * Get rid of NUMA statistics associated with a task (either current or dead). 2582 * If @final is set, the task is dead and has reached refcount zero, so we can 2583 * safely free all relevant data structures. Otherwise, there might be 2584 * concurrent reads from places like load balancing and procfs, and we should 2585 * reset the data back to default state without freeing ->numa_faults. 2586 */ 2587 void task_numa_free(struct task_struct *p, bool final) 2588 { 2589 /* safe: p either is current or is being freed by current */ 2590 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2591 unsigned long *numa_faults = p->numa_faults; 2592 unsigned long flags; 2593 int i; 2594 2595 if (!numa_faults) 2596 return; 2597 2598 if (grp) { 2599 spin_lock_irqsave(&grp->lock, flags); 2600 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2601 grp->faults[i] -= p->numa_faults[i]; 2602 grp->total_faults -= p->total_numa_faults; 2603 2604 grp->nr_tasks--; 2605 spin_unlock_irqrestore(&grp->lock, flags); 2606 RCU_INIT_POINTER(p->numa_group, NULL); 2607 put_numa_group(grp); 2608 } 2609 2610 if (final) { 2611 p->numa_faults = NULL; 2612 kfree(numa_faults); 2613 } else { 2614 p->total_numa_faults = 0; 2615 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2616 numa_faults[i] = 0; 2617 } 2618 } 2619 2620 /* 2621 * Got a PROT_NONE fault for a page on @node. 2622 */ 2623 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2624 { 2625 struct task_struct *p = current; 2626 bool migrated = flags & TNF_MIGRATED; 2627 int cpu_node = task_node(current); 2628 int local = !!(flags & TNF_FAULT_LOCAL); 2629 struct numa_group *ng; 2630 int priv; 2631 2632 if (!static_branch_likely(&sched_numa_balancing)) 2633 return; 2634 2635 /* for example, ksmd faulting in a user's mm */ 2636 if (!p->mm) 2637 return; 2638 2639 /* Allocate buffer to track faults on a per-node basis */ 2640 if (unlikely(!p->numa_faults)) { 2641 int size = sizeof(*p->numa_faults) * 2642 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2643 2644 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2645 if (!p->numa_faults) 2646 return; 2647 2648 p->total_numa_faults = 0; 2649 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2650 } 2651 2652 /* 2653 * First accesses are treated as private, otherwise consider accesses 2654 * to be private if the accessing pid has not changed 2655 */ 2656 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2657 priv = 1; 2658 } else { 2659 priv = cpupid_match_pid(p, last_cpupid); 2660 if (!priv && !(flags & TNF_NO_GROUP)) 2661 task_numa_group(p, last_cpupid, flags, &priv); 2662 } 2663 2664 /* 2665 * If a workload spans multiple NUMA nodes, a shared fault that 2666 * occurs wholly within the set of nodes that the workload is 2667 * actively using should be counted as local. This allows the 2668 * scan rate to slow down when a workload has settled down. 2669 */ 2670 ng = deref_curr_numa_group(p); 2671 if (!priv && !local && ng && ng->active_nodes > 1 && 2672 numa_is_active_node(cpu_node, ng) && 2673 numa_is_active_node(mem_node, ng)) 2674 local = 1; 2675 2676 /* 2677 * Retry to migrate task to preferred node periodically, in case it 2678 * previously failed, or the scheduler moved us. 2679 */ 2680 if (time_after(jiffies, p->numa_migrate_retry)) { 2681 task_numa_placement(p); 2682 numa_migrate_preferred(p); 2683 } 2684 2685 if (migrated) 2686 p->numa_pages_migrated += pages; 2687 if (flags & TNF_MIGRATE_FAIL) 2688 p->numa_faults_locality[2] += pages; 2689 2690 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2691 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2692 p->numa_faults_locality[local] += pages; 2693 } 2694 2695 static void reset_ptenuma_scan(struct task_struct *p) 2696 { 2697 /* 2698 * We only did a read acquisition of the mmap sem, so 2699 * p->mm->numa_scan_seq is written to without exclusive access 2700 * and the update is not guaranteed to be atomic. That's not 2701 * much of an issue though, since this is just used for 2702 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2703 * expensive, to avoid any form of compiler optimizations: 2704 */ 2705 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2706 p->mm->numa_scan_offset = 0; 2707 } 2708 2709 /* 2710 * The expensive part of numa migration is done from task_work context. 2711 * Triggered from task_tick_numa(). 2712 */ 2713 static void task_numa_work(struct callback_head *work) 2714 { 2715 unsigned long migrate, next_scan, now = jiffies; 2716 struct task_struct *p = current; 2717 struct mm_struct *mm = p->mm; 2718 u64 runtime = p->se.sum_exec_runtime; 2719 struct vm_area_struct *vma; 2720 unsigned long start, end; 2721 unsigned long nr_pte_updates = 0; 2722 long pages, virtpages; 2723 2724 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2725 2726 work->next = work; 2727 /* 2728 * Who cares about NUMA placement when they're dying. 2729 * 2730 * NOTE: make sure not to dereference p->mm before this check, 2731 * exit_task_work() happens _after_ exit_mm() so we could be called 2732 * without p->mm even though we still had it when we enqueued this 2733 * work. 2734 */ 2735 if (p->flags & PF_EXITING) 2736 return; 2737 2738 if (!mm->numa_next_scan) { 2739 mm->numa_next_scan = now + 2740 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2741 } 2742 2743 /* 2744 * Enforce maximal scan/migration frequency.. 2745 */ 2746 migrate = mm->numa_next_scan; 2747 if (time_before(now, migrate)) 2748 return; 2749 2750 if (p->numa_scan_period == 0) { 2751 p->numa_scan_period_max = task_scan_max(p); 2752 p->numa_scan_period = task_scan_start(p); 2753 } 2754 2755 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2756 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2757 return; 2758 2759 /* 2760 * Delay this task enough that another task of this mm will likely win 2761 * the next time around. 2762 */ 2763 p->node_stamp += 2 * TICK_NSEC; 2764 2765 start = mm->numa_scan_offset; 2766 pages = sysctl_numa_balancing_scan_size; 2767 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2768 virtpages = pages * 8; /* Scan up to this much virtual space */ 2769 if (!pages) 2770 return; 2771 2772 2773 if (!mmap_read_trylock(mm)) 2774 return; 2775 vma = find_vma(mm, start); 2776 if (!vma) { 2777 reset_ptenuma_scan(p); 2778 start = 0; 2779 vma = mm->mmap; 2780 } 2781 for (; vma; vma = vma->vm_next) { 2782 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2783 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2784 continue; 2785 } 2786 2787 /* 2788 * Shared library pages mapped by multiple processes are not 2789 * migrated as it is expected they are cache replicated. Avoid 2790 * hinting faults in read-only file-backed mappings or the vdso 2791 * as migrating the pages will be of marginal benefit. 2792 */ 2793 if (!vma->vm_mm || 2794 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2795 continue; 2796 2797 /* 2798 * Skip inaccessible VMAs to avoid any confusion between 2799 * PROT_NONE and NUMA hinting ptes 2800 */ 2801 if (!vma_is_accessible(vma)) 2802 continue; 2803 2804 do { 2805 start = max(start, vma->vm_start); 2806 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2807 end = min(end, vma->vm_end); 2808 nr_pte_updates = change_prot_numa(vma, start, end); 2809 2810 /* 2811 * Try to scan sysctl_numa_balancing_size worth of 2812 * hpages that have at least one present PTE that 2813 * is not already pte-numa. If the VMA contains 2814 * areas that are unused or already full of prot_numa 2815 * PTEs, scan up to virtpages, to skip through those 2816 * areas faster. 2817 */ 2818 if (nr_pte_updates) 2819 pages -= (end - start) >> PAGE_SHIFT; 2820 virtpages -= (end - start) >> PAGE_SHIFT; 2821 2822 start = end; 2823 if (pages <= 0 || virtpages <= 0) 2824 goto out; 2825 2826 cond_resched(); 2827 } while (end != vma->vm_end); 2828 } 2829 2830 out: 2831 /* 2832 * It is possible to reach the end of the VMA list but the last few 2833 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2834 * would find the !migratable VMA on the next scan but not reset the 2835 * scanner to the start so check it now. 2836 */ 2837 if (vma) 2838 mm->numa_scan_offset = start; 2839 else 2840 reset_ptenuma_scan(p); 2841 mmap_read_unlock(mm); 2842 2843 /* 2844 * Make sure tasks use at least 32x as much time to run other code 2845 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2846 * Usually update_task_scan_period slows down scanning enough; on an 2847 * overloaded system we need to limit overhead on a per task basis. 2848 */ 2849 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2850 u64 diff = p->se.sum_exec_runtime - runtime; 2851 p->node_stamp += 32 * diff; 2852 } 2853 } 2854 2855 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 2856 { 2857 int mm_users = 0; 2858 struct mm_struct *mm = p->mm; 2859 2860 if (mm) { 2861 mm_users = atomic_read(&mm->mm_users); 2862 if (mm_users == 1) { 2863 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2864 mm->numa_scan_seq = 0; 2865 } 2866 } 2867 p->node_stamp = 0; 2868 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 2869 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2870 /* Protect against double add, see task_tick_numa and task_numa_work */ 2871 p->numa_work.next = &p->numa_work; 2872 p->numa_faults = NULL; 2873 RCU_INIT_POINTER(p->numa_group, NULL); 2874 p->last_task_numa_placement = 0; 2875 p->last_sum_exec_runtime = 0; 2876 2877 init_task_work(&p->numa_work, task_numa_work); 2878 2879 /* New address space, reset the preferred nid */ 2880 if (!(clone_flags & CLONE_VM)) { 2881 p->numa_preferred_nid = NUMA_NO_NODE; 2882 return; 2883 } 2884 2885 /* 2886 * New thread, keep existing numa_preferred_nid which should be copied 2887 * already by arch_dup_task_struct but stagger when scans start. 2888 */ 2889 if (mm) { 2890 unsigned int delay; 2891 2892 delay = min_t(unsigned int, task_scan_max(current), 2893 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 2894 delay += 2 * TICK_NSEC; 2895 p->node_stamp = delay; 2896 } 2897 } 2898 2899 /* 2900 * Drive the periodic memory faults.. 2901 */ 2902 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2903 { 2904 struct callback_head *work = &curr->numa_work; 2905 u64 period, now; 2906 2907 /* 2908 * We don't care about NUMA placement if we don't have memory. 2909 */ 2910 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 2911 return; 2912 2913 /* 2914 * Using runtime rather than walltime has the dual advantage that 2915 * we (mostly) drive the selection from busy threads and that the 2916 * task needs to have done some actual work before we bother with 2917 * NUMA placement. 2918 */ 2919 now = curr->se.sum_exec_runtime; 2920 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2921 2922 if (now > curr->node_stamp + period) { 2923 if (!curr->node_stamp) 2924 curr->numa_scan_period = task_scan_start(curr); 2925 curr->node_stamp += period; 2926 2927 if (!time_before(jiffies, curr->mm->numa_next_scan)) 2928 task_work_add(curr, work, TWA_RESUME); 2929 } 2930 } 2931 2932 static void update_scan_period(struct task_struct *p, int new_cpu) 2933 { 2934 int src_nid = cpu_to_node(task_cpu(p)); 2935 int dst_nid = cpu_to_node(new_cpu); 2936 2937 if (!static_branch_likely(&sched_numa_balancing)) 2938 return; 2939 2940 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2941 return; 2942 2943 if (src_nid == dst_nid) 2944 return; 2945 2946 /* 2947 * Allow resets if faults have been trapped before one scan 2948 * has completed. This is most likely due to a new task that 2949 * is pulled cross-node due to wakeups or load balancing. 2950 */ 2951 if (p->numa_scan_seq) { 2952 /* 2953 * Avoid scan adjustments if moving to the preferred 2954 * node or if the task was not previously running on 2955 * the preferred node. 2956 */ 2957 if (dst_nid == p->numa_preferred_nid || 2958 (p->numa_preferred_nid != NUMA_NO_NODE && 2959 src_nid != p->numa_preferred_nid)) 2960 return; 2961 } 2962 2963 p->numa_scan_period = task_scan_start(p); 2964 } 2965 2966 #else 2967 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2968 { 2969 } 2970 2971 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2972 { 2973 } 2974 2975 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2976 { 2977 } 2978 2979 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2980 { 2981 } 2982 2983 #endif /* CONFIG_NUMA_BALANCING */ 2984 2985 static void 2986 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2987 { 2988 update_load_add(&cfs_rq->load, se->load.weight); 2989 #ifdef CONFIG_SMP 2990 if (entity_is_task(se)) { 2991 struct rq *rq = rq_of(cfs_rq); 2992 2993 account_numa_enqueue(rq, task_of(se)); 2994 list_add(&se->group_node, &rq->cfs_tasks); 2995 } 2996 #endif 2997 cfs_rq->nr_running++; 2998 } 2999 3000 static void 3001 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3002 { 3003 update_load_sub(&cfs_rq->load, se->load.weight); 3004 #ifdef CONFIG_SMP 3005 if (entity_is_task(se)) { 3006 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3007 list_del_init(&se->group_node); 3008 } 3009 #endif 3010 cfs_rq->nr_running--; 3011 } 3012 3013 /* 3014 * Signed add and clamp on underflow. 3015 * 3016 * Explicitly do a load-store to ensure the intermediate value never hits 3017 * memory. This allows lockless observations without ever seeing the negative 3018 * values. 3019 */ 3020 #define add_positive(_ptr, _val) do { \ 3021 typeof(_ptr) ptr = (_ptr); \ 3022 typeof(_val) val = (_val); \ 3023 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3024 \ 3025 res = var + val; \ 3026 \ 3027 if (val < 0 && res > var) \ 3028 res = 0; \ 3029 \ 3030 WRITE_ONCE(*ptr, res); \ 3031 } while (0) 3032 3033 /* 3034 * Unsigned subtract and clamp on underflow. 3035 * 3036 * Explicitly do a load-store to ensure the intermediate value never hits 3037 * memory. This allows lockless observations without ever seeing the negative 3038 * values. 3039 */ 3040 #define sub_positive(_ptr, _val) do { \ 3041 typeof(_ptr) ptr = (_ptr); \ 3042 typeof(*ptr) val = (_val); \ 3043 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3044 res = var - val; \ 3045 if (res > var) \ 3046 res = 0; \ 3047 WRITE_ONCE(*ptr, res); \ 3048 } while (0) 3049 3050 /* 3051 * Remove and clamp on negative, from a local variable. 3052 * 3053 * A variant of sub_positive(), which does not use explicit load-store 3054 * and is thus optimized for local variable updates. 3055 */ 3056 #define lsub_positive(_ptr, _val) do { \ 3057 typeof(_ptr) ptr = (_ptr); \ 3058 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3059 } while (0) 3060 3061 #ifdef CONFIG_SMP 3062 static inline void 3063 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3064 { 3065 cfs_rq->avg.load_avg += se->avg.load_avg; 3066 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3067 } 3068 3069 static inline void 3070 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3071 { 3072 u32 divider = get_pelt_divider(&se->avg); 3073 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3074 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider; 3075 } 3076 #else 3077 static inline void 3078 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3079 static inline void 3080 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3081 #endif 3082 3083 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3084 unsigned long weight) 3085 { 3086 if (se->on_rq) { 3087 /* commit outstanding execution time */ 3088 if (cfs_rq->curr == se) 3089 update_curr(cfs_rq); 3090 update_load_sub(&cfs_rq->load, se->load.weight); 3091 } 3092 dequeue_load_avg(cfs_rq, se); 3093 3094 update_load_set(&se->load, weight); 3095 3096 #ifdef CONFIG_SMP 3097 do { 3098 u32 divider = get_pelt_divider(&se->avg); 3099 3100 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3101 } while (0); 3102 #endif 3103 3104 enqueue_load_avg(cfs_rq, se); 3105 if (se->on_rq) 3106 update_load_add(&cfs_rq->load, se->load.weight); 3107 3108 } 3109 3110 void reweight_task(struct task_struct *p, int prio) 3111 { 3112 struct sched_entity *se = &p->se; 3113 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3114 struct load_weight *load = &se->load; 3115 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3116 3117 reweight_entity(cfs_rq, se, weight); 3118 load->inv_weight = sched_prio_to_wmult[prio]; 3119 } 3120 3121 #ifdef CONFIG_FAIR_GROUP_SCHED 3122 #ifdef CONFIG_SMP 3123 /* 3124 * All this does is approximate the hierarchical proportion which includes that 3125 * global sum we all love to hate. 3126 * 3127 * That is, the weight of a group entity, is the proportional share of the 3128 * group weight based on the group runqueue weights. That is: 3129 * 3130 * tg->weight * grq->load.weight 3131 * ge->load.weight = ----------------------------- (1) 3132 * \Sum grq->load.weight 3133 * 3134 * Now, because computing that sum is prohibitively expensive to compute (been 3135 * there, done that) we approximate it with this average stuff. The average 3136 * moves slower and therefore the approximation is cheaper and more stable. 3137 * 3138 * So instead of the above, we substitute: 3139 * 3140 * grq->load.weight -> grq->avg.load_avg (2) 3141 * 3142 * which yields the following: 3143 * 3144 * tg->weight * grq->avg.load_avg 3145 * ge->load.weight = ------------------------------ (3) 3146 * tg->load_avg 3147 * 3148 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3149 * 3150 * That is shares_avg, and it is right (given the approximation (2)). 3151 * 3152 * The problem with it is that because the average is slow -- it was designed 3153 * to be exactly that of course -- this leads to transients in boundary 3154 * conditions. In specific, the case where the group was idle and we start the 3155 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3156 * yielding bad latency etc.. 3157 * 3158 * Now, in that special case (1) reduces to: 3159 * 3160 * tg->weight * grq->load.weight 3161 * ge->load.weight = ----------------------------- = tg->weight (4) 3162 * grp->load.weight 3163 * 3164 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3165 * 3166 * So what we do is modify our approximation (3) to approach (4) in the (near) 3167 * UP case, like: 3168 * 3169 * ge->load.weight = 3170 * 3171 * tg->weight * grq->load.weight 3172 * --------------------------------------------------- (5) 3173 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3174 * 3175 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3176 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3177 * 3178 * 3179 * tg->weight * grq->load.weight 3180 * ge->load.weight = ----------------------------- (6) 3181 * tg_load_avg' 3182 * 3183 * Where: 3184 * 3185 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3186 * max(grq->load.weight, grq->avg.load_avg) 3187 * 3188 * And that is shares_weight and is icky. In the (near) UP case it approaches 3189 * (4) while in the normal case it approaches (3). It consistently 3190 * overestimates the ge->load.weight and therefore: 3191 * 3192 * \Sum ge->load.weight >= tg->weight 3193 * 3194 * hence icky! 3195 */ 3196 static long calc_group_shares(struct cfs_rq *cfs_rq) 3197 { 3198 long tg_weight, tg_shares, load, shares; 3199 struct task_group *tg = cfs_rq->tg; 3200 3201 tg_shares = READ_ONCE(tg->shares); 3202 3203 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3204 3205 tg_weight = atomic_long_read(&tg->load_avg); 3206 3207 /* Ensure tg_weight >= load */ 3208 tg_weight -= cfs_rq->tg_load_avg_contrib; 3209 tg_weight += load; 3210 3211 shares = (tg_shares * load); 3212 if (tg_weight) 3213 shares /= tg_weight; 3214 3215 /* 3216 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3217 * of a group with small tg->shares value. It is a floor value which is 3218 * assigned as a minimum load.weight to the sched_entity representing 3219 * the group on a CPU. 3220 * 3221 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3222 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3223 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3224 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3225 * instead of 0. 3226 */ 3227 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3228 } 3229 #endif /* CONFIG_SMP */ 3230 3231 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3232 3233 /* 3234 * Recomputes the group entity based on the current state of its group 3235 * runqueue. 3236 */ 3237 static void update_cfs_group(struct sched_entity *se) 3238 { 3239 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3240 long shares; 3241 3242 if (!gcfs_rq) 3243 return; 3244 3245 if (throttled_hierarchy(gcfs_rq)) 3246 return; 3247 3248 #ifndef CONFIG_SMP 3249 shares = READ_ONCE(gcfs_rq->tg->shares); 3250 3251 if (likely(se->load.weight == shares)) 3252 return; 3253 #else 3254 shares = calc_group_shares(gcfs_rq); 3255 #endif 3256 3257 reweight_entity(cfs_rq_of(se), se, shares); 3258 } 3259 3260 #else /* CONFIG_FAIR_GROUP_SCHED */ 3261 static inline void update_cfs_group(struct sched_entity *se) 3262 { 3263 } 3264 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3265 3266 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3267 { 3268 struct rq *rq = rq_of(cfs_rq); 3269 3270 if (&rq->cfs == cfs_rq) { 3271 /* 3272 * There are a few boundary cases this might miss but it should 3273 * get called often enough that that should (hopefully) not be 3274 * a real problem. 3275 * 3276 * It will not get called when we go idle, because the idle 3277 * thread is a different class (!fair), nor will the utilization 3278 * number include things like RT tasks. 3279 * 3280 * As is, the util number is not freq-invariant (we'd have to 3281 * implement arch_scale_freq_capacity() for that). 3282 * 3283 * See cpu_util(). 3284 */ 3285 cpufreq_update_util(rq, flags); 3286 } 3287 } 3288 3289 #ifdef CONFIG_SMP 3290 #ifdef CONFIG_FAIR_GROUP_SCHED 3291 /* 3292 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 3293 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 3294 * bottom-up, we only have to test whether the cfs_rq before us on the list 3295 * is our child. 3296 * If cfs_rq is not on the list, test whether a child needs its to be added to 3297 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 3298 */ 3299 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 3300 { 3301 struct cfs_rq *prev_cfs_rq; 3302 struct list_head *prev; 3303 3304 if (cfs_rq->on_list) { 3305 prev = cfs_rq->leaf_cfs_rq_list.prev; 3306 } else { 3307 struct rq *rq = rq_of(cfs_rq); 3308 3309 prev = rq->tmp_alone_branch; 3310 } 3311 3312 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 3313 3314 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 3315 } 3316 3317 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 3318 { 3319 if (cfs_rq->load.weight) 3320 return false; 3321 3322 if (cfs_rq->avg.load_sum) 3323 return false; 3324 3325 if (cfs_rq->avg.util_sum) 3326 return false; 3327 3328 if (cfs_rq->avg.runnable_sum) 3329 return false; 3330 3331 if (child_cfs_rq_on_list(cfs_rq)) 3332 return false; 3333 3334 /* 3335 * _avg must be null when _sum are null because _avg = _sum / divider 3336 * Make sure that rounding and/or propagation of PELT values never 3337 * break this. 3338 */ 3339 SCHED_WARN_ON(cfs_rq->avg.load_avg || 3340 cfs_rq->avg.util_avg || 3341 cfs_rq->avg.runnable_avg); 3342 3343 return true; 3344 } 3345 3346 /** 3347 * update_tg_load_avg - update the tg's load avg 3348 * @cfs_rq: the cfs_rq whose avg changed 3349 * 3350 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3351 * However, because tg->load_avg is a global value there are performance 3352 * considerations. 3353 * 3354 * In order to avoid having to look at the other cfs_rq's, we use a 3355 * differential update where we store the last value we propagated. This in 3356 * turn allows skipping updates if the differential is 'small'. 3357 * 3358 * Updating tg's load_avg is necessary before update_cfs_share(). 3359 */ 3360 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 3361 { 3362 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3363 3364 /* 3365 * No need to update load_avg for root_task_group as it is not used. 3366 */ 3367 if (cfs_rq->tg == &root_task_group) 3368 return; 3369 3370 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3371 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3372 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3373 } 3374 } 3375 3376 /* 3377 * Called within set_task_rq() right before setting a task's CPU. The 3378 * caller only guarantees p->pi_lock is held; no other assumptions, 3379 * including the state of rq->lock, should be made. 3380 */ 3381 void set_task_rq_fair(struct sched_entity *se, 3382 struct cfs_rq *prev, struct cfs_rq *next) 3383 { 3384 u64 p_last_update_time; 3385 u64 n_last_update_time; 3386 3387 if (!sched_feat(ATTACH_AGE_LOAD)) 3388 return; 3389 3390 /* 3391 * We are supposed to update the task to "current" time, then its up to 3392 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3393 * getting what current time is, so simply throw away the out-of-date 3394 * time. This will result in the wakee task is less decayed, but giving 3395 * the wakee more load sounds not bad. 3396 */ 3397 if (!(se->avg.last_update_time && prev)) 3398 return; 3399 3400 #ifndef CONFIG_64BIT 3401 { 3402 u64 p_last_update_time_copy; 3403 u64 n_last_update_time_copy; 3404 3405 do { 3406 p_last_update_time_copy = prev->load_last_update_time_copy; 3407 n_last_update_time_copy = next->load_last_update_time_copy; 3408 3409 smp_rmb(); 3410 3411 p_last_update_time = prev->avg.last_update_time; 3412 n_last_update_time = next->avg.last_update_time; 3413 3414 } while (p_last_update_time != p_last_update_time_copy || 3415 n_last_update_time != n_last_update_time_copy); 3416 } 3417 #else 3418 p_last_update_time = prev->avg.last_update_time; 3419 n_last_update_time = next->avg.last_update_time; 3420 #endif 3421 __update_load_avg_blocked_se(p_last_update_time, se); 3422 se->avg.last_update_time = n_last_update_time; 3423 } 3424 3425 3426 /* 3427 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3428 * propagate its contribution. The key to this propagation is the invariant 3429 * that for each group: 3430 * 3431 * ge->avg == grq->avg (1) 3432 * 3433 * _IFF_ we look at the pure running and runnable sums. Because they 3434 * represent the very same entity, just at different points in the hierarchy. 3435 * 3436 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3437 * and simply copies the running/runnable sum over (but still wrong, because 3438 * the group entity and group rq do not have their PELT windows aligned). 3439 * 3440 * However, update_tg_cfs_load() is more complex. So we have: 3441 * 3442 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3443 * 3444 * And since, like util, the runnable part should be directly transferable, 3445 * the following would _appear_ to be the straight forward approach: 3446 * 3447 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3448 * 3449 * And per (1) we have: 3450 * 3451 * ge->avg.runnable_avg == grq->avg.runnable_avg 3452 * 3453 * Which gives: 3454 * 3455 * ge->load.weight * grq->avg.load_avg 3456 * ge->avg.load_avg = ----------------------------------- (4) 3457 * grq->load.weight 3458 * 3459 * Except that is wrong! 3460 * 3461 * Because while for entities historical weight is not important and we 3462 * really only care about our future and therefore can consider a pure 3463 * runnable sum, runqueues can NOT do this. 3464 * 3465 * We specifically want runqueues to have a load_avg that includes 3466 * historical weights. Those represent the blocked load, the load we expect 3467 * to (shortly) return to us. This only works by keeping the weights as 3468 * integral part of the sum. We therefore cannot decompose as per (3). 3469 * 3470 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3471 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3472 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3473 * runnable section of these tasks overlap (or not). If they were to perfectly 3474 * align the rq as a whole would be runnable 2/3 of the time. If however we 3475 * always have at least 1 runnable task, the rq as a whole is always runnable. 3476 * 3477 * So we'll have to approximate.. :/ 3478 * 3479 * Given the constraint: 3480 * 3481 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3482 * 3483 * We can construct a rule that adds runnable to a rq by assuming minimal 3484 * overlap. 3485 * 3486 * On removal, we'll assume each task is equally runnable; which yields: 3487 * 3488 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3489 * 3490 * XXX: only do this for the part of runnable > running ? 3491 * 3492 */ 3493 3494 static inline void 3495 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3496 { 3497 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3498 u32 divider; 3499 3500 /* Nothing to update */ 3501 if (!delta) 3502 return; 3503 3504 /* 3505 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3506 * See ___update_load_avg() for details. 3507 */ 3508 divider = get_pelt_divider(&cfs_rq->avg); 3509 3510 /* Set new sched_entity's utilization */ 3511 se->avg.util_avg = gcfs_rq->avg.util_avg; 3512 se->avg.util_sum = se->avg.util_avg * divider; 3513 3514 /* Update parent cfs_rq utilization */ 3515 add_positive(&cfs_rq->avg.util_avg, delta); 3516 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider; 3517 } 3518 3519 static inline void 3520 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3521 { 3522 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 3523 u32 divider; 3524 3525 /* Nothing to update */ 3526 if (!delta) 3527 return; 3528 3529 /* 3530 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3531 * See ___update_load_avg() for details. 3532 */ 3533 divider = get_pelt_divider(&cfs_rq->avg); 3534 3535 /* Set new sched_entity's runnable */ 3536 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 3537 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3538 3539 /* Update parent cfs_rq runnable */ 3540 add_positive(&cfs_rq->avg.runnable_avg, delta); 3541 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider; 3542 } 3543 3544 static inline void 3545 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3546 { 3547 long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3548 unsigned long load_avg; 3549 u64 load_sum = 0; 3550 u32 divider; 3551 3552 if (!runnable_sum) 3553 return; 3554 3555 gcfs_rq->prop_runnable_sum = 0; 3556 3557 /* 3558 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3559 * See ___update_load_avg() for details. 3560 */ 3561 divider = get_pelt_divider(&cfs_rq->avg); 3562 3563 if (runnable_sum >= 0) { 3564 /* 3565 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3566 * the CPU is saturated running == runnable. 3567 */ 3568 runnable_sum += se->avg.load_sum; 3569 runnable_sum = min_t(long, runnable_sum, divider); 3570 } else { 3571 /* 3572 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3573 * assuming all tasks are equally runnable. 3574 */ 3575 if (scale_load_down(gcfs_rq->load.weight)) { 3576 load_sum = div_s64(gcfs_rq->avg.load_sum, 3577 scale_load_down(gcfs_rq->load.weight)); 3578 } 3579 3580 /* But make sure to not inflate se's runnable */ 3581 runnable_sum = min(se->avg.load_sum, load_sum); 3582 } 3583 3584 /* 3585 * runnable_sum can't be lower than running_sum 3586 * Rescale running sum to be in the same range as runnable sum 3587 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3588 * runnable_sum is in [0 : LOAD_AVG_MAX] 3589 */ 3590 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3591 runnable_sum = max(runnable_sum, running_sum); 3592 3593 load_sum = (s64)se_weight(se) * runnable_sum; 3594 load_avg = div_s64(load_sum, divider); 3595 3596 se->avg.load_sum = runnable_sum; 3597 3598 delta = load_avg - se->avg.load_avg; 3599 if (!delta) 3600 return; 3601 3602 se->avg.load_avg = load_avg; 3603 3604 add_positive(&cfs_rq->avg.load_avg, delta); 3605 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider; 3606 } 3607 3608 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3609 { 3610 cfs_rq->propagate = 1; 3611 cfs_rq->prop_runnable_sum += runnable_sum; 3612 } 3613 3614 /* Update task and its cfs_rq load average */ 3615 static inline int propagate_entity_load_avg(struct sched_entity *se) 3616 { 3617 struct cfs_rq *cfs_rq, *gcfs_rq; 3618 3619 if (entity_is_task(se)) 3620 return 0; 3621 3622 gcfs_rq = group_cfs_rq(se); 3623 if (!gcfs_rq->propagate) 3624 return 0; 3625 3626 gcfs_rq->propagate = 0; 3627 3628 cfs_rq = cfs_rq_of(se); 3629 3630 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3631 3632 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3633 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3634 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 3635 3636 trace_pelt_cfs_tp(cfs_rq); 3637 trace_pelt_se_tp(se); 3638 3639 return 1; 3640 } 3641 3642 /* 3643 * Check if we need to update the load and the utilization of a blocked 3644 * group_entity: 3645 */ 3646 static inline bool skip_blocked_update(struct sched_entity *se) 3647 { 3648 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3649 3650 /* 3651 * If sched_entity still have not zero load or utilization, we have to 3652 * decay it: 3653 */ 3654 if (se->avg.load_avg || se->avg.util_avg) 3655 return false; 3656 3657 /* 3658 * If there is a pending propagation, we have to update the load and 3659 * the utilization of the sched_entity: 3660 */ 3661 if (gcfs_rq->propagate) 3662 return false; 3663 3664 /* 3665 * Otherwise, the load and the utilization of the sched_entity is 3666 * already zero and there is no pending propagation, so it will be a 3667 * waste of time to try to decay it: 3668 */ 3669 return true; 3670 } 3671 3672 #else /* CONFIG_FAIR_GROUP_SCHED */ 3673 3674 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 3675 3676 static inline int propagate_entity_load_avg(struct sched_entity *se) 3677 { 3678 return 0; 3679 } 3680 3681 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3682 3683 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3684 3685 /** 3686 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3687 * @now: current time, as per cfs_rq_clock_pelt() 3688 * @cfs_rq: cfs_rq to update 3689 * 3690 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3691 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3692 * post_init_entity_util_avg(). 3693 * 3694 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3695 * 3696 * Returns true if the load decayed or we removed load. 3697 * 3698 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3699 * call update_tg_load_avg() when this function returns true. 3700 */ 3701 static inline int 3702 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3703 { 3704 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 3705 struct sched_avg *sa = &cfs_rq->avg; 3706 int decayed = 0; 3707 3708 if (cfs_rq->removed.nr) { 3709 unsigned long r; 3710 u32 divider = get_pelt_divider(&cfs_rq->avg); 3711 3712 raw_spin_lock(&cfs_rq->removed.lock); 3713 swap(cfs_rq->removed.util_avg, removed_util); 3714 swap(cfs_rq->removed.load_avg, removed_load); 3715 swap(cfs_rq->removed.runnable_avg, removed_runnable); 3716 cfs_rq->removed.nr = 0; 3717 raw_spin_unlock(&cfs_rq->removed.lock); 3718 3719 r = removed_load; 3720 sub_positive(&sa->load_avg, r); 3721 sa->load_sum = sa->load_avg * divider; 3722 3723 r = removed_util; 3724 sub_positive(&sa->util_avg, r); 3725 sa->util_sum = sa->util_avg * divider; 3726 3727 r = removed_runnable; 3728 sub_positive(&sa->runnable_avg, r); 3729 sa->runnable_sum = sa->runnable_avg * divider; 3730 3731 /* 3732 * removed_runnable is the unweighted version of removed_load so we 3733 * can use it to estimate removed_load_sum. 3734 */ 3735 add_tg_cfs_propagate(cfs_rq, 3736 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 3737 3738 decayed = 1; 3739 } 3740 3741 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3742 3743 #ifndef CONFIG_64BIT 3744 smp_wmb(); 3745 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3746 #endif 3747 3748 return decayed; 3749 } 3750 3751 /** 3752 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3753 * @cfs_rq: cfs_rq to attach to 3754 * @se: sched_entity to attach 3755 * 3756 * Must call update_cfs_rq_load_avg() before this, since we rely on 3757 * cfs_rq->avg.last_update_time being current. 3758 */ 3759 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3760 { 3761 /* 3762 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3763 * See ___update_load_avg() for details. 3764 */ 3765 u32 divider = get_pelt_divider(&cfs_rq->avg); 3766 3767 /* 3768 * When we attach the @se to the @cfs_rq, we must align the decay 3769 * window because without that, really weird and wonderful things can 3770 * happen. 3771 * 3772 * XXX illustrate 3773 */ 3774 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3775 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3776 3777 /* 3778 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3779 * period_contrib. This isn't strictly correct, but since we're 3780 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3781 * _sum a little. 3782 */ 3783 se->avg.util_sum = se->avg.util_avg * divider; 3784 3785 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3786 3787 se->avg.load_sum = divider; 3788 if (se_weight(se)) { 3789 se->avg.load_sum = 3790 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3791 } 3792 3793 enqueue_load_avg(cfs_rq, se); 3794 cfs_rq->avg.util_avg += se->avg.util_avg; 3795 cfs_rq->avg.util_sum += se->avg.util_sum; 3796 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 3797 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 3798 3799 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3800 3801 cfs_rq_util_change(cfs_rq, 0); 3802 3803 trace_pelt_cfs_tp(cfs_rq); 3804 } 3805 3806 /** 3807 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3808 * @cfs_rq: cfs_rq to detach from 3809 * @se: sched_entity to detach 3810 * 3811 * Must call update_cfs_rq_load_avg() before this, since we rely on 3812 * cfs_rq->avg.last_update_time being current. 3813 */ 3814 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3815 { 3816 /* 3817 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3818 * See ___update_load_avg() for details. 3819 */ 3820 u32 divider = get_pelt_divider(&cfs_rq->avg); 3821 3822 dequeue_load_avg(cfs_rq, se); 3823 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3824 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider; 3825 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 3826 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider; 3827 3828 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3829 3830 cfs_rq_util_change(cfs_rq, 0); 3831 3832 trace_pelt_cfs_tp(cfs_rq); 3833 } 3834 3835 /* 3836 * Optional action to be done while updating the load average 3837 */ 3838 #define UPDATE_TG 0x1 3839 #define SKIP_AGE_LOAD 0x2 3840 #define DO_ATTACH 0x4 3841 3842 /* Update task and its cfs_rq load average */ 3843 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3844 { 3845 u64 now = cfs_rq_clock_pelt(cfs_rq); 3846 int decayed; 3847 3848 /* 3849 * Track task load average for carrying it to new CPU after migrated, and 3850 * track group sched_entity load average for task_h_load calc in migration 3851 */ 3852 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3853 __update_load_avg_se(now, cfs_rq, se); 3854 3855 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3856 decayed |= propagate_entity_load_avg(se); 3857 3858 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3859 3860 /* 3861 * DO_ATTACH means we're here from enqueue_entity(). 3862 * !last_update_time means we've passed through 3863 * migrate_task_rq_fair() indicating we migrated. 3864 * 3865 * IOW we're enqueueing a task on a new CPU. 3866 */ 3867 attach_entity_load_avg(cfs_rq, se); 3868 update_tg_load_avg(cfs_rq); 3869 3870 } else if (decayed) { 3871 cfs_rq_util_change(cfs_rq, 0); 3872 3873 if (flags & UPDATE_TG) 3874 update_tg_load_avg(cfs_rq); 3875 } 3876 } 3877 3878 #ifndef CONFIG_64BIT 3879 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3880 { 3881 u64 last_update_time_copy; 3882 u64 last_update_time; 3883 3884 do { 3885 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3886 smp_rmb(); 3887 last_update_time = cfs_rq->avg.last_update_time; 3888 } while (last_update_time != last_update_time_copy); 3889 3890 return last_update_time; 3891 } 3892 #else 3893 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3894 { 3895 return cfs_rq->avg.last_update_time; 3896 } 3897 #endif 3898 3899 /* 3900 * Synchronize entity load avg of dequeued entity without locking 3901 * the previous rq. 3902 */ 3903 static void sync_entity_load_avg(struct sched_entity *se) 3904 { 3905 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3906 u64 last_update_time; 3907 3908 last_update_time = cfs_rq_last_update_time(cfs_rq); 3909 __update_load_avg_blocked_se(last_update_time, se); 3910 } 3911 3912 /* 3913 * Task first catches up with cfs_rq, and then subtract 3914 * itself from the cfs_rq (task must be off the queue now). 3915 */ 3916 static void remove_entity_load_avg(struct sched_entity *se) 3917 { 3918 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3919 unsigned long flags; 3920 3921 /* 3922 * tasks cannot exit without having gone through wake_up_new_task() -> 3923 * post_init_entity_util_avg() which will have added things to the 3924 * cfs_rq, so we can remove unconditionally. 3925 */ 3926 3927 sync_entity_load_avg(se); 3928 3929 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3930 ++cfs_rq->removed.nr; 3931 cfs_rq->removed.util_avg += se->avg.util_avg; 3932 cfs_rq->removed.load_avg += se->avg.load_avg; 3933 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 3934 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3935 } 3936 3937 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 3938 { 3939 return cfs_rq->avg.runnable_avg; 3940 } 3941 3942 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3943 { 3944 return cfs_rq->avg.load_avg; 3945 } 3946 3947 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 3948 3949 static inline unsigned long task_util(struct task_struct *p) 3950 { 3951 return READ_ONCE(p->se.avg.util_avg); 3952 } 3953 3954 static inline unsigned long _task_util_est(struct task_struct *p) 3955 { 3956 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3957 3958 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 3959 } 3960 3961 static inline unsigned long task_util_est(struct task_struct *p) 3962 { 3963 return max(task_util(p), _task_util_est(p)); 3964 } 3965 3966 #ifdef CONFIG_UCLAMP_TASK 3967 static inline unsigned long uclamp_task_util(struct task_struct *p) 3968 { 3969 return clamp(task_util_est(p), 3970 uclamp_eff_value(p, UCLAMP_MIN), 3971 uclamp_eff_value(p, UCLAMP_MAX)); 3972 } 3973 #else 3974 static inline unsigned long uclamp_task_util(struct task_struct *p) 3975 { 3976 return task_util_est(p); 3977 } 3978 #endif 3979 3980 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3981 struct task_struct *p) 3982 { 3983 unsigned int enqueued; 3984 3985 if (!sched_feat(UTIL_EST)) 3986 return; 3987 3988 /* Update root cfs_rq's estimated utilization */ 3989 enqueued = cfs_rq->avg.util_est.enqueued; 3990 enqueued += _task_util_est(p); 3991 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3992 3993 trace_sched_util_est_cfs_tp(cfs_rq); 3994 } 3995 3996 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 3997 struct task_struct *p) 3998 { 3999 unsigned int enqueued; 4000 4001 if (!sched_feat(UTIL_EST)) 4002 return; 4003 4004 /* Update root cfs_rq's estimated utilization */ 4005 enqueued = cfs_rq->avg.util_est.enqueued; 4006 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4007 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4008 4009 trace_sched_util_est_cfs_tp(cfs_rq); 4010 } 4011 4012 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4013 4014 /* 4015 * Check if a (signed) value is within a specified (unsigned) margin, 4016 * based on the observation that: 4017 * 4018 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 4019 * 4020 * NOTE: this only works when value + margin < INT_MAX. 4021 */ 4022 static inline bool within_margin(int value, int margin) 4023 { 4024 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 4025 } 4026 4027 static inline void util_est_update(struct cfs_rq *cfs_rq, 4028 struct task_struct *p, 4029 bool task_sleep) 4030 { 4031 long last_ewma_diff, last_enqueued_diff; 4032 struct util_est ue; 4033 4034 if (!sched_feat(UTIL_EST)) 4035 return; 4036 4037 /* 4038 * Skip update of task's estimated utilization when the task has not 4039 * yet completed an activation, e.g. being migrated. 4040 */ 4041 if (!task_sleep) 4042 return; 4043 4044 /* 4045 * If the PELT values haven't changed since enqueue time, 4046 * skip the util_est update. 4047 */ 4048 ue = p->se.avg.util_est; 4049 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4050 return; 4051 4052 last_enqueued_diff = ue.enqueued; 4053 4054 /* 4055 * Reset EWMA on utilization increases, the moving average is used only 4056 * to smooth utilization decreases. 4057 */ 4058 ue.enqueued = task_util(p); 4059 if (sched_feat(UTIL_EST_FASTUP)) { 4060 if (ue.ewma < ue.enqueued) { 4061 ue.ewma = ue.enqueued; 4062 goto done; 4063 } 4064 } 4065 4066 /* 4067 * Skip update of task's estimated utilization when its members are 4068 * already ~1% close to its last activation value. 4069 */ 4070 last_ewma_diff = ue.enqueued - ue.ewma; 4071 last_enqueued_diff -= ue.enqueued; 4072 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4073 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4074 goto done; 4075 4076 return; 4077 } 4078 4079 /* 4080 * To avoid overestimation of actual task utilization, skip updates if 4081 * we cannot grant there is idle time in this CPU. 4082 */ 4083 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4084 return; 4085 4086 /* 4087 * Update Task's estimated utilization 4088 * 4089 * When *p completes an activation we can consolidate another sample 4090 * of the task size. This is done by storing the current PELT value 4091 * as ue.enqueued and by using this value to update the Exponential 4092 * Weighted Moving Average (EWMA): 4093 * 4094 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4095 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4096 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4097 * = w * ( last_ewma_diff ) + ewma(t-1) 4098 * = w * (last_ewma_diff + ewma(t-1) / w) 4099 * 4100 * Where 'w' is the weight of new samples, which is configured to be 4101 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4102 */ 4103 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4104 ue.ewma += last_ewma_diff; 4105 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4106 done: 4107 ue.enqueued |= UTIL_AVG_UNCHANGED; 4108 WRITE_ONCE(p->se.avg.util_est, ue); 4109 4110 trace_sched_util_est_se_tp(&p->se); 4111 } 4112 4113 static inline int task_fits_capacity(struct task_struct *p, long capacity) 4114 { 4115 return fits_capacity(uclamp_task_util(p), capacity); 4116 } 4117 4118 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4119 { 4120 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 4121 return; 4122 4123 if (!p || p->nr_cpus_allowed == 1) { 4124 rq->misfit_task_load = 0; 4125 return; 4126 } 4127 4128 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 4129 rq->misfit_task_load = 0; 4130 return; 4131 } 4132 4133 /* 4134 * Make sure that misfit_task_load will not be null even if 4135 * task_h_load() returns 0. 4136 */ 4137 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4138 } 4139 4140 #else /* CONFIG_SMP */ 4141 4142 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4143 { 4144 return true; 4145 } 4146 4147 #define UPDATE_TG 0x0 4148 #define SKIP_AGE_LOAD 0x0 4149 #define DO_ATTACH 0x0 4150 4151 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4152 { 4153 cfs_rq_util_change(cfs_rq, 0); 4154 } 4155 4156 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4157 4158 static inline void 4159 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4160 static inline void 4161 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4162 4163 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4164 { 4165 return 0; 4166 } 4167 4168 static inline void 4169 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4170 4171 static inline void 4172 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4173 4174 static inline void 4175 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 4176 bool task_sleep) {} 4177 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4178 4179 #endif /* CONFIG_SMP */ 4180 4181 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4182 { 4183 #ifdef CONFIG_SCHED_DEBUG 4184 s64 d = se->vruntime - cfs_rq->min_vruntime; 4185 4186 if (d < 0) 4187 d = -d; 4188 4189 if (d > 3*sysctl_sched_latency) 4190 schedstat_inc(cfs_rq->nr_spread_over); 4191 #endif 4192 } 4193 4194 static void 4195 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4196 { 4197 u64 vruntime = cfs_rq->min_vruntime; 4198 4199 /* 4200 * The 'current' period is already promised to the current tasks, 4201 * however the extra weight of the new task will slow them down a 4202 * little, place the new task so that it fits in the slot that 4203 * stays open at the end. 4204 */ 4205 if (initial && sched_feat(START_DEBIT)) 4206 vruntime += sched_vslice(cfs_rq, se); 4207 4208 /* sleeps up to a single latency don't count. */ 4209 if (!initial) { 4210 unsigned long thresh = sysctl_sched_latency; 4211 4212 /* 4213 * Halve their sleep time's effect, to allow 4214 * for a gentler effect of sleepers: 4215 */ 4216 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4217 thresh >>= 1; 4218 4219 vruntime -= thresh; 4220 } 4221 4222 /* ensure we never gain time by being placed backwards. */ 4223 se->vruntime = max_vruntime(se->vruntime, vruntime); 4224 } 4225 4226 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4227 4228 static inline void check_schedstat_required(void) 4229 { 4230 #ifdef CONFIG_SCHEDSTATS 4231 if (schedstat_enabled()) 4232 return; 4233 4234 /* Force schedstat enabled if a dependent tracepoint is active */ 4235 if (trace_sched_stat_wait_enabled() || 4236 trace_sched_stat_sleep_enabled() || 4237 trace_sched_stat_iowait_enabled() || 4238 trace_sched_stat_blocked_enabled() || 4239 trace_sched_stat_runtime_enabled()) { 4240 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 4241 "stat_blocked and stat_runtime require the " 4242 "kernel parameter schedstats=enable or " 4243 "kernel.sched_schedstats=1\n"); 4244 } 4245 #endif 4246 } 4247 4248 static inline bool cfs_bandwidth_used(void); 4249 4250 /* 4251 * MIGRATION 4252 * 4253 * dequeue 4254 * update_curr() 4255 * update_min_vruntime() 4256 * vruntime -= min_vruntime 4257 * 4258 * enqueue 4259 * update_curr() 4260 * update_min_vruntime() 4261 * vruntime += min_vruntime 4262 * 4263 * this way the vruntime transition between RQs is done when both 4264 * min_vruntime are up-to-date. 4265 * 4266 * WAKEUP (remote) 4267 * 4268 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4269 * vruntime -= min_vruntime 4270 * 4271 * enqueue 4272 * update_curr() 4273 * update_min_vruntime() 4274 * vruntime += min_vruntime 4275 * 4276 * this way we don't have the most up-to-date min_vruntime on the originating 4277 * CPU and an up-to-date min_vruntime on the destination CPU. 4278 */ 4279 4280 static void 4281 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4282 { 4283 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4284 bool curr = cfs_rq->curr == se; 4285 4286 /* 4287 * If we're the current task, we must renormalise before calling 4288 * update_curr(). 4289 */ 4290 if (renorm && curr) 4291 se->vruntime += cfs_rq->min_vruntime; 4292 4293 update_curr(cfs_rq); 4294 4295 /* 4296 * Otherwise, renormalise after, such that we're placed at the current 4297 * moment in time, instead of some random moment in the past. Being 4298 * placed in the past could significantly boost this task to the 4299 * fairness detriment of existing tasks. 4300 */ 4301 if (renorm && !curr) 4302 se->vruntime += cfs_rq->min_vruntime; 4303 4304 /* 4305 * When enqueuing a sched_entity, we must: 4306 * - Update loads to have both entity and cfs_rq synced with now. 4307 * - Add its load to cfs_rq->runnable_avg 4308 * - For group_entity, update its weight to reflect the new share of 4309 * its group cfs_rq 4310 * - Add its new weight to cfs_rq->load.weight 4311 */ 4312 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4313 se_update_runnable(se); 4314 update_cfs_group(se); 4315 account_entity_enqueue(cfs_rq, se); 4316 4317 if (flags & ENQUEUE_WAKEUP) 4318 place_entity(cfs_rq, se, 0); 4319 4320 check_schedstat_required(); 4321 update_stats_enqueue(cfs_rq, se, flags); 4322 check_spread(cfs_rq, se); 4323 if (!curr) 4324 __enqueue_entity(cfs_rq, se); 4325 se->on_rq = 1; 4326 4327 /* 4328 * When bandwidth control is enabled, cfs might have been removed 4329 * because of a parent been throttled but cfs->nr_running > 1. Try to 4330 * add it unconditionally. 4331 */ 4332 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used()) 4333 list_add_leaf_cfs_rq(cfs_rq); 4334 4335 if (cfs_rq->nr_running == 1) 4336 check_enqueue_throttle(cfs_rq); 4337 } 4338 4339 static void __clear_buddies_last(struct sched_entity *se) 4340 { 4341 for_each_sched_entity(se) { 4342 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4343 if (cfs_rq->last != se) 4344 break; 4345 4346 cfs_rq->last = NULL; 4347 } 4348 } 4349 4350 static void __clear_buddies_next(struct sched_entity *se) 4351 { 4352 for_each_sched_entity(se) { 4353 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4354 if (cfs_rq->next != se) 4355 break; 4356 4357 cfs_rq->next = NULL; 4358 } 4359 } 4360 4361 static void __clear_buddies_skip(struct sched_entity *se) 4362 { 4363 for_each_sched_entity(se) { 4364 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4365 if (cfs_rq->skip != se) 4366 break; 4367 4368 cfs_rq->skip = NULL; 4369 } 4370 } 4371 4372 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4373 { 4374 if (cfs_rq->last == se) 4375 __clear_buddies_last(se); 4376 4377 if (cfs_rq->next == se) 4378 __clear_buddies_next(se); 4379 4380 if (cfs_rq->skip == se) 4381 __clear_buddies_skip(se); 4382 } 4383 4384 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4385 4386 static void 4387 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4388 { 4389 /* 4390 * Update run-time statistics of the 'current'. 4391 */ 4392 update_curr(cfs_rq); 4393 4394 /* 4395 * When dequeuing a sched_entity, we must: 4396 * - Update loads to have both entity and cfs_rq synced with now. 4397 * - Subtract its load from the cfs_rq->runnable_avg. 4398 * - Subtract its previous weight from cfs_rq->load.weight. 4399 * - For group entity, update its weight to reflect the new share 4400 * of its group cfs_rq. 4401 */ 4402 update_load_avg(cfs_rq, se, UPDATE_TG); 4403 se_update_runnable(se); 4404 4405 update_stats_dequeue(cfs_rq, se, flags); 4406 4407 clear_buddies(cfs_rq, se); 4408 4409 if (se != cfs_rq->curr) 4410 __dequeue_entity(cfs_rq, se); 4411 se->on_rq = 0; 4412 account_entity_dequeue(cfs_rq, se); 4413 4414 /* 4415 * Normalize after update_curr(); which will also have moved 4416 * min_vruntime if @se is the one holding it back. But before doing 4417 * update_min_vruntime() again, which will discount @se's position and 4418 * can move min_vruntime forward still more. 4419 */ 4420 if (!(flags & DEQUEUE_SLEEP)) 4421 se->vruntime -= cfs_rq->min_vruntime; 4422 4423 /* return excess runtime on last dequeue */ 4424 return_cfs_rq_runtime(cfs_rq); 4425 4426 update_cfs_group(se); 4427 4428 /* 4429 * Now advance min_vruntime if @se was the entity holding it back, 4430 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4431 * put back on, and if we advance min_vruntime, we'll be placed back 4432 * further than we started -- ie. we'll be penalized. 4433 */ 4434 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4435 update_min_vruntime(cfs_rq); 4436 } 4437 4438 /* 4439 * Preempt the current task with a newly woken task if needed: 4440 */ 4441 static void 4442 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4443 { 4444 unsigned long ideal_runtime, delta_exec; 4445 struct sched_entity *se; 4446 s64 delta; 4447 4448 ideal_runtime = sched_slice(cfs_rq, curr); 4449 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4450 if (delta_exec > ideal_runtime) { 4451 resched_curr(rq_of(cfs_rq)); 4452 /* 4453 * The current task ran long enough, ensure it doesn't get 4454 * re-elected due to buddy favours. 4455 */ 4456 clear_buddies(cfs_rq, curr); 4457 return; 4458 } 4459 4460 /* 4461 * Ensure that a task that missed wakeup preemption by a 4462 * narrow margin doesn't have to wait for a full slice. 4463 * This also mitigates buddy induced latencies under load. 4464 */ 4465 if (delta_exec < sysctl_sched_min_granularity) 4466 return; 4467 4468 se = __pick_first_entity(cfs_rq); 4469 delta = curr->vruntime - se->vruntime; 4470 4471 if (delta < 0) 4472 return; 4473 4474 if (delta > ideal_runtime) 4475 resched_curr(rq_of(cfs_rq)); 4476 } 4477 4478 static void 4479 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4480 { 4481 clear_buddies(cfs_rq, se); 4482 4483 /* 'current' is not kept within the tree. */ 4484 if (se->on_rq) { 4485 /* 4486 * Any task has to be enqueued before it get to execute on 4487 * a CPU. So account for the time it spent waiting on the 4488 * runqueue. 4489 */ 4490 update_stats_wait_end(cfs_rq, se); 4491 __dequeue_entity(cfs_rq, se); 4492 update_load_avg(cfs_rq, se, UPDATE_TG); 4493 } 4494 4495 update_stats_curr_start(cfs_rq, se); 4496 cfs_rq->curr = se; 4497 4498 /* 4499 * Track our maximum slice length, if the CPU's load is at 4500 * least twice that of our own weight (i.e. dont track it 4501 * when there are only lesser-weight tasks around): 4502 */ 4503 if (schedstat_enabled() && 4504 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4505 schedstat_set(se->statistics.slice_max, 4506 max((u64)schedstat_val(se->statistics.slice_max), 4507 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4508 } 4509 4510 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4511 } 4512 4513 static int 4514 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4515 4516 /* 4517 * Pick the next process, keeping these things in mind, in this order: 4518 * 1) keep things fair between processes/task groups 4519 * 2) pick the "next" process, since someone really wants that to run 4520 * 3) pick the "last" process, for cache locality 4521 * 4) do not run the "skip" process, if something else is available 4522 */ 4523 static struct sched_entity * 4524 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4525 { 4526 struct sched_entity *left = __pick_first_entity(cfs_rq); 4527 struct sched_entity *se; 4528 4529 /* 4530 * If curr is set we have to see if its left of the leftmost entity 4531 * still in the tree, provided there was anything in the tree at all. 4532 */ 4533 if (!left || (curr && entity_before(curr, left))) 4534 left = curr; 4535 4536 se = left; /* ideally we run the leftmost entity */ 4537 4538 /* 4539 * Avoid running the skip buddy, if running something else can 4540 * be done without getting too unfair. 4541 */ 4542 if (cfs_rq->skip && cfs_rq->skip == se) { 4543 struct sched_entity *second; 4544 4545 if (se == curr) { 4546 second = __pick_first_entity(cfs_rq); 4547 } else { 4548 second = __pick_next_entity(se); 4549 if (!second || (curr && entity_before(curr, second))) 4550 second = curr; 4551 } 4552 4553 if (second && wakeup_preempt_entity(second, left) < 1) 4554 se = second; 4555 } 4556 4557 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) { 4558 /* 4559 * Someone really wants this to run. If it's not unfair, run it. 4560 */ 4561 se = cfs_rq->next; 4562 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) { 4563 /* 4564 * Prefer last buddy, try to return the CPU to a preempted task. 4565 */ 4566 se = cfs_rq->last; 4567 } 4568 4569 return se; 4570 } 4571 4572 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4573 4574 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4575 { 4576 /* 4577 * If still on the runqueue then deactivate_task() 4578 * was not called and update_curr() has to be done: 4579 */ 4580 if (prev->on_rq) 4581 update_curr(cfs_rq); 4582 4583 /* throttle cfs_rqs exceeding runtime */ 4584 check_cfs_rq_runtime(cfs_rq); 4585 4586 check_spread(cfs_rq, prev); 4587 4588 if (prev->on_rq) { 4589 update_stats_wait_start(cfs_rq, prev); 4590 /* Put 'current' back into the tree. */ 4591 __enqueue_entity(cfs_rq, prev); 4592 /* in !on_rq case, update occurred at dequeue */ 4593 update_load_avg(cfs_rq, prev, 0); 4594 } 4595 cfs_rq->curr = NULL; 4596 } 4597 4598 static void 4599 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4600 { 4601 /* 4602 * Update run-time statistics of the 'current'. 4603 */ 4604 update_curr(cfs_rq); 4605 4606 /* 4607 * Ensure that runnable average is periodically updated. 4608 */ 4609 update_load_avg(cfs_rq, curr, UPDATE_TG); 4610 update_cfs_group(curr); 4611 4612 #ifdef CONFIG_SCHED_HRTICK 4613 /* 4614 * queued ticks are scheduled to match the slice, so don't bother 4615 * validating it and just reschedule. 4616 */ 4617 if (queued) { 4618 resched_curr(rq_of(cfs_rq)); 4619 return; 4620 } 4621 /* 4622 * don't let the period tick interfere with the hrtick preemption 4623 */ 4624 if (!sched_feat(DOUBLE_TICK) && 4625 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4626 return; 4627 #endif 4628 4629 if (cfs_rq->nr_running > 1) 4630 check_preempt_tick(cfs_rq, curr); 4631 } 4632 4633 4634 /************************************************** 4635 * CFS bandwidth control machinery 4636 */ 4637 4638 #ifdef CONFIG_CFS_BANDWIDTH 4639 4640 #ifdef CONFIG_JUMP_LABEL 4641 static struct static_key __cfs_bandwidth_used; 4642 4643 static inline bool cfs_bandwidth_used(void) 4644 { 4645 return static_key_false(&__cfs_bandwidth_used); 4646 } 4647 4648 void cfs_bandwidth_usage_inc(void) 4649 { 4650 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4651 } 4652 4653 void cfs_bandwidth_usage_dec(void) 4654 { 4655 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4656 } 4657 #else /* CONFIG_JUMP_LABEL */ 4658 static bool cfs_bandwidth_used(void) 4659 { 4660 return true; 4661 } 4662 4663 void cfs_bandwidth_usage_inc(void) {} 4664 void cfs_bandwidth_usage_dec(void) {} 4665 #endif /* CONFIG_JUMP_LABEL */ 4666 4667 /* 4668 * default period for cfs group bandwidth. 4669 * default: 0.1s, units: nanoseconds 4670 */ 4671 static inline u64 default_cfs_period(void) 4672 { 4673 return 100000000ULL; 4674 } 4675 4676 static inline u64 sched_cfs_bandwidth_slice(void) 4677 { 4678 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4679 } 4680 4681 /* 4682 * Replenish runtime according to assigned quota. We use sched_clock_cpu 4683 * directly instead of rq->clock to avoid adding additional synchronization 4684 * around rq->lock. 4685 * 4686 * requires cfs_b->lock 4687 */ 4688 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4689 { 4690 if (unlikely(cfs_b->quota == RUNTIME_INF)) 4691 return; 4692 4693 cfs_b->runtime += cfs_b->quota; 4694 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 4695 } 4696 4697 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4698 { 4699 return &tg->cfs_bandwidth; 4700 } 4701 4702 /* returns 0 on failure to allocate runtime */ 4703 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 4704 struct cfs_rq *cfs_rq, u64 target_runtime) 4705 { 4706 u64 min_amount, amount = 0; 4707 4708 lockdep_assert_held(&cfs_b->lock); 4709 4710 /* note: this is a positive sum as runtime_remaining <= 0 */ 4711 min_amount = target_runtime - cfs_rq->runtime_remaining; 4712 4713 if (cfs_b->quota == RUNTIME_INF) 4714 amount = min_amount; 4715 else { 4716 start_cfs_bandwidth(cfs_b); 4717 4718 if (cfs_b->runtime > 0) { 4719 amount = min(cfs_b->runtime, min_amount); 4720 cfs_b->runtime -= amount; 4721 cfs_b->idle = 0; 4722 } 4723 } 4724 4725 cfs_rq->runtime_remaining += amount; 4726 4727 return cfs_rq->runtime_remaining > 0; 4728 } 4729 4730 /* returns 0 on failure to allocate runtime */ 4731 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4732 { 4733 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4734 int ret; 4735 4736 raw_spin_lock(&cfs_b->lock); 4737 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 4738 raw_spin_unlock(&cfs_b->lock); 4739 4740 return ret; 4741 } 4742 4743 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4744 { 4745 /* dock delta_exec before expiring quota (as it could span periods) */ 4746 cfs_rq->runtime_remaining -= delta_exec; 4747 4748 if (likely(cfs_rq->runtime_remaining > 0)) 4749 return; 4750 4751 if (cfs_rq->throttled) 4752 return; 4753 /* 4754 * if we're unable to extend our runtime we resched so that the active 4755 * hierarchy can be throttled 4756 */ 4757 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4758 resched_curr(rq_of(cfs_rq)); 4759 } 4760 4761 static __always_inline 4762 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4763 { 4764 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4765 return; 4766 4767 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4768 } 4769 4770 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4771 { 4772 return cfs_bandwidth_used() && cfs_rq->throttled; 4773 } 4774 4775 /* check whether cfs_rq, or any parent, is throttled */ 4776 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4777 { 4778 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4779 } 4780 4781 /* 4782 * Ensure that neither of the group entities corresponding to src_cpu or 4783 * dest_cpu are members of a throttled hierarchy when performing group 4784 * load-balance operations. 4785 */ 4786 static inline int throttled_lb_pair(struct task_group *tg, 4787 int src_cpu, int dest_cpu) 4788 { 4789 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4790 4791 src_cfs_rq = tg->cfs_rq[src_cpu]; 4792 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4793 4794 return throttled_hierarchy(src_cfs_rq) || 4795 throttled_hierarchy(dest_cfs_rq); 4796 } 4797 4798 static int tg_unthrottle_up(struct task_group *tg, void *data) 4799 { 4800 struct rq *rq = data; 4801 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4802 4803 cfs_rq->throttle_count--; 4804 if (!cfs_rq->throttle_count) { 4805 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4806 cfs_rq->throttled_clock_task; 4807 4808 /* Add cfs_rq with load or one or more already running entities to the list */ 4809 if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running) 4810 list_add_leaf_cfs_rq(cfs_rq); 4811 } 4812 4813 return 0; 4814 } 4815 4816 static int tg_throttle_down(struct task_group *tg, void *data) 4817 { 4818 struct rq *rq = data; 4819 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4820 4821 /* group is entering throttled state, stop time */ 4822 if (!cfs_rq->throttle_count) { 4823 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4824 list_del_leaf_cfs_rq(cfs_rq); 4825 } 4826 cfs_rq->throttle_count++; 4827 4828 return 0; 4829 } 4830 4831 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 4832 { 4833 struct rq *rq = rq_of(cfs_rq); 4834 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4835 struct sched_entity *se; 4836 long task_delta, idle_task_delta, dequeue = 1; 4837 4838 raw_spin_lock(&cfs_b->lock); 4839 /* This will start the period timer if necessary */ 4840 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 4841 /* 4842 * We have raced with bandwidth becoming available, and if we 4843 * actually throttled the timer might not unthrottle us for an 4844 * entire period. We additionally needed to make sure that any 4845 * subsequent check_cfs_rq_runtime calls agree not to throttle 4846 * us, as we may commit to do cfs put_prev+pick_next, so we ask 4847 * for 1ns of runtime rather than just check cfs_b. 4848 */ 4849 dequeue = 0; 4850 } else { 4851 list_add_tail_rcu(&cfs_rq->throttled_list, 4852 &cfs_b->throttled_cfs_rq); 4853 } 4854 raw_spin_unlock(&cfs_b->lock); 4855 4856 if (!dequeue) 4857 return false; /* Throttle no longer required. */ 4858 4859 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4860 4861 /* freeze hierarchy runnable averages while throttled */ 4862 rcu_read_lock(); 4863 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4864 rcu_read_unlock(); 4865 4866 task_delta = cfs_rq->h_nr_running; 4867 idle_task_delta = cfs_rq->idle_h_nr_running; 4868 for_each_sched_entity(se) { 4869 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4870 /* throttled entity or throttle-on-deactivate */ 4871 if (!se->on_rq) 4872 goto done; 4873 4874 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4875 4876 if (cfs_rq_is_idle(group_cfs_rq(se))) 4877 idle_task_delta = cfs_rq->h_nr_running; 4878 4879 qcfs_rq->h_nr_running -= task_delta; 4880 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4881 4882 if (qcfs_rq->load.weight) { 4883 /* Avoid re-evaluating load for this entity: */ 4884 se = parent_entity(se); 4885 break; 4886 } 4887 } 4888 4889 for_each_sched_entity(se) { 4890 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4891 /* throttled entity or throttle-on-deactivate */ 4892 if (!se->on_rq) 4893 goto done; 4894 4895 update_load_avg(qcfs_rq, se, 0); 4896 se_update_runnable(se); 4897 4898 if (cfs_rq_is_idle(group_cfs_rq(se))) 4899 idle_task_delta = cfs_rq->h_nr_running; 4900 4901 qcfs_rq->h_nr_running -= task_delta; 4902 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4903 } 4904 4905 /* At this point se is NULL and we are at root level*/ 4906 sub_nr_running(rq, task_delta); 4907 4908 done: 4909 /* 4910 * Note: distribution will already see us throttled via the 4911 * throttled-list. rq->lock protects completion. 4912 */ 4913 cfs_rq->throttled = 1; 4914 cfs_rq->throttled_clock = rq_clock(rq); 4915 return true; 4916 } 4917 4918 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4919 { 4920 struct rq *rq = rq_of(cfs_rq); 4921 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4922 struct sched_entity *se; 4923 long task_delta, idle_task_delta; 4924 4925 se = cfs_rq->tg->se[cpu_of(rq)]; 4926 4927 cfs_rq->throttled = 0; 4928 4929 update_rq_clock(rq); 4930 4931 raw_spin_lock(&cfs_b->lock); 4932 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4933 list_del_rcu(&cfs_rq->throttled_list); 4934 raw_spin_unlock(&cfs_b->lock); 4935 4936 /* update hierarchical throttle state */ 4937 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4938 4939 /* Nothing to run but something to decay (on_list)? Complete the branch */ 4940 if (!cfs_rq->load.weight) { 4941 if (cfs_rq->on_list) 4942 goto unthrottle_throttle; 4943 return; 4944 } 4945 4946 task_delta = cfs_rq->h_nr_running; 4947 idle_task_delta = cfs_rq->idle_h_nr_running; 4948 for_each_sched_entity(se) { 4949 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4950 4951 if (se->on_rq) 4952 break; 4953 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 4954 4955 if (cfs_rq_is_idle(group_cfs_rq(se))) 4956 idle_task_delta = cfs_rq->h_nr_running; 4957 4958 qcfs_rq->h_nr_running += task_delta; 4959 qcfs_rq->idle_h_nr_running += idle_task_delta; 4960 4961 /* end evaluation on encountering a throttled cfs_rq */ 4962 if (cfs_rq_throttled(qcfs_rq)) 4963 goto unthrottle_throttle; 4964 } 4965 4966 for_each_sched_entity(se) { 4967 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4968 4969 update_load_avg(qcfs_rq, se, UPDATE_TG); 4970 se_update_runnable(se); 4971 4972 if (cfs_rq_is_idle(group_cfs_rq(se))) 4973 idle_task_delta = cfs_rq->h_nr_running; 4974 4975 qcfs_rq->h_nr_running += task_delta; 4976 qcfs_rq->idle_h_nr_running += idle_task_delta; 4977 4978 /* end evaluation on encountering a throttled cfs_rq */ 4979 if (cfs_rq_throttled(qcfs_rq)) 4980 goto unthrottle_throttle; 4981 4982 /* 4983 * One parent has been throttled and cfs_rq removed from the 4984 * list. Add it back to not break the leaf list. 4985 */ 4986 if (throttled_hierarchy(qcfs_rq)) 4987 list_add_leaf_cfs_rq(qcfs_rq); 4988 } 4989 4990 /* At this point se is NULL and we are at root level*/ 4991 add_nr_running(rq, task_delta); 4992 4993 unthrottle_throttle: 4994 /* 4995 * The cfs_rq_throttled() breaks in the above iteration can result in 4996 * incomplete leaf list maintenance, resulting in triggering the 4997 * assertion below. 4998 */ 4999 for_each_sched_entity(se) { 5000 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5001 5002 if (list_add_leaf_cfs_rq(qcfs_rq)) 5003 break; 5004 } 5005 5006 assert_list_leaf_cfs_rq(rq); 5007 5008 /* Determine whether we need to wake up potentially idle CPU: */ 5009 if (rq->curr == rq->idle && rq->cfs.nr_running) 5010 resched_curr(rq); 5011 } 5012 5013 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 5014 { 5015 struct cfs_rq *cfs_rq; 5016 u64 runtime, remaining = 1; 5017 5018 rcu_read_lock(); 5019 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 5020 throttled_list) { 5021 struct rq *rq = rq_of(cfs_rq); 5022 struct rq_flags rf; 5023 5024 rq_lock_irqsave(rq, &rf); 5025 if (!cfs_rq_throttled(cfs_rq)) 5026 goto next; 5027 5028 /* By the above check, this should never be true */ 5029 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 5030 5031 raw_spin_lock(&cfs_b->lock); 5032 runtime = -cfs_rq->runtime_remaining + 1; 5033 if (runtime > cfs_b->runtime) 5034 runtime = cfs_b->runtime; 5035 cfs_b->runtime -= runtime; 5036 remaining = cfs_b->runtime; 5037 raw_spin_unlock(&cfs_b->lock); 5038 5039 cfs_rq->runtime_remaining += runtime; 5040 5041 /* we check whether we're throttled above */ 5042 if (cfs_rq->runtime_remaining > 0) 5043 unthrottle_cfs_rq(cfs_rq); 5044 5045 next: 5046 rq_unlock_irqrestore(rq, &rf); 5047 5048 if (!remaining) 5049 break; 5050 } 5051 rcu_read_unlock(); 5052 } 5053 5054 /* 5055 * Responsible for refilling a task_group's bandwidth and unthrottling its 5056 * cfs_rqs as appropriate. If there has been no activity within the last 5057 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 5058 * used to track this state. 5059 */ 5060 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 5061 { 5062 int throttled; 5063 5064 /* no need to continue the timer with no bandwidth constraint */ 5065 if (cfs_b->quota == RUNTIME_INF) 5066 goto out_deactivate; 5067 5068 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5069 cfs_b->nr_periods += overrun; 5070 5071 /* Refill extra burst quota even if cfs_b->idle */ 5072 __refill_cfs_bandwidth_runtime(cfs_b); 5073 5074 /* 5075 * idle depends on !throttled (for the case of a large deficit), and if 5076 * we're going inactive then everything else can be deferred 5077 */ 5078 if (cfs_b->idle && !throttled) 5079 goto out_deactivate; 5080 5081 if (!throttled) { 5082 /* mark as potentially idle for the upcoming period */ 5083 cfs_b->idle = 1; 5084 return 0; 5085 } 5086 5087 /* account preceding periods in which throttling occurred */ 5088 cfs_b->nr_throttled += overrun; 5089 5090 /* 5091 * This check is repeated as we release cfs_b->lock while we unthrottle. 5092 */ 5093 while (throttled && cfs_b->runtime > 0) { 5094 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5095 /* we can't nest cfs_b->lock while distributing bandwidth */ 5096 distribute_cfs_runtime(cfs_b); 5097 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5098 5099 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5100 } 5101 5102 /* 5103 * While we are ensured activity in the period following an 5104 * unthrottle, this also covers the case in which the new bandwidth is 5105 * insufficient to cover the existing bandwidth deficit. (Forcing the 5106 * timer to remain active while there are any throttled entities.) 5107 */ 5108 cfs_b->idle = 0; 5109 5110 return 0; 5111 5112 out_deactivate: 5113 return 1; 5114 } 5115 5116 /* a cfs_rq won't donate quota below this amount */ 5117 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 5118 /* minimum remaining period time to redistribute slack quota */ 5119 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 5120 /* how long we wait to gather additional slack before distributing */ 5121 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 5122 5123 /* 5124 * Are we near the end of the current quota period? 5125 * 5126 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 5127 * hrtimer base being cleared by hrtimer_start. In the case of 5128 * migrate_hrtimers, base is never cleared, so we are fine. 5129 */ 5130 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5131 { 5132 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5133 s64 remaining; 5134 5135 /* if the call-back is running a quota refresh is already occurring */ 5136 if (hrtimer_callback_running(refresh_timer)) 5137 return 1; 5138 5139 /* is a quota refresh about to occur? */ 5140 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5141 if (remaining < (s64)min_expire) 5142 return 1; 5143 5144 return 0; 5145 } 5146 5147 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5148 { 5149 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5150 5151 /* if there's a quota refresh soon don't bother with slack */ 5152 if (runtime_refresh_within(cfs_b, min_left)) 5153 return; 5154 5155 /* don't push forwards an existing deferred unthrottle */ 5156 if (cfs_b->slack_started) 5157 return; 5158 cfs_b->slack_started = true; 5159 5160 hrtimer_start(&cfs_b->slack_timer, 5161 ns_to_ktime(cfs_bandwidth_slack_period), 5162 HRTIMER_MODE_REL); 5163 } 5164 5165 /* we know any runtime found here is valid as update_curr() precedes return */ 5166 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5167 { 5168 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5169 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5170 5171 if (slack_runtime <= 0) 5172 return; 5173 5174 raw_spin_lock(&cfs_b->lock); 5175 if (cfs_b->quota != RUNTIME_INF) { 5176 cfs_b->runtime += slack_runtime; 5177 5178 /* we are under rq->lock, defer unthrottling using a timer */ 5179 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5180 !list_empty(&cfs_b->throttled_cfs_rq)) 5181 start_cfs_slack_bandwidth(cfs_b); 5182 } 5183 raw_spin_unlock(&cfs_b->lock); 5184 5185 /* even if it's not valid for return we don't want to try again */ 5186 cfs_rq->runtime_remaining -= slack_runtime; 5187 } 5188 5189 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5190 { 5191 if (!cfs_bandwidth_used()) 5192 return; 5193 5194 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5195 return; 5196 5197 __return_cfs_rq_runtime(cfs_rq); 5198 } 5199 5200 /* 5201 * This is done with a timer (instead of inline with bandwidth return) since 5202 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5203 */ 5204 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5205 { 5206 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5207 unsigned long flags; 5208 5209 /* confirm we're still not at a refresh boundary */ 5210 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5211 cfs_b->slack_started = false; 5212 5213 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5214 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5215 return; 5216 } 5217 5218 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5219 runtime = cfs_b->runtime; 5220 5221 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5222 5223 if (!runtime) 5224 return; 5225 5226 distribute_cfs_runtime(cfs_b); 5227 } 5228 5229 /* 5230 * When a group wakes up we want to make sure that its quota is not already 5231 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5232 * runtime as update_curr() throttling can not trigger until it's on-rq. 5233 */ 5234 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5235 { 5236 if (!cfs_bandwidth_used()) 5237 return; 5238 5239 /* an active group must be handled by the update_curr()->put() path */ 5240 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5241 return; 5242 5243 /* ensure the group is not already throttled */ 5244 if (cfs_rq_throttled(cfs_rq)) 5245 return; 5246 5247 /* update runtime allocation */ 5248 account_cfs_rq_runtime(cfs_rq, 0); 5249 if (cfs_rq->runtime_remaining <= 0) 5250 throttle_cfs_rq(cfs_rq); 5251 } 5252 5253 static void sync_throttle(struct task_group *tg, int cpu) 5254 { 5255 struct cfs_rq *pcfs_rq, *cfs_rq; 5256 5257 if (!cfs_bandwidth_used()) 5258 return; 5259 5260 if (!tg->parent) 5261 return; 5262 5263 cfs_rq = tg->cfs_rq[cpu]; 5264 pcfs_rq = tg->parent->cfs_rq[cpu]; 5265 5266 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5267 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 5268 } 5269 5270 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5271 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5272 { 5273 if (!cfs_bandwidth_used()) 5274 return false; 5275 5276 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5277 return false; 5278 5279 /* 5280 * it's possible for a throttled entity to be forced into a running 5281 * state (e.g. set_curr_task), in this case we're finished. 5282 */ 5283 if (cfs_rq_throttled(cfs_rq)) 5284 return true; 5285 5286 return throttle_cfs_rq(cfs_rq); 5287 } 5288 5289 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5290 { 5291 struct cfs_bandwidth *cfs_b = 5292 container_of(timer, struct cfs_bandwidth, slack_timer); 5293 5294 do_sched_cfs_slack_timer(cfs_b); 5295 5296 return HRTIMER_NORESTART; 5297 } 5298 5299 extern const u64 max_cfs_quota_period; 5300 5301 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5302 { 5303 struct cfs_bandwidth *cfs_b = 5304 container_of(timer, struct cfs_bandwidth, period_timer); 5305 unsigned long flags; 5306 int overrun; 5307 int idle = 0; 5308 int count = 0; 5309 5310 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5311 for (;;) { 5312 overrun = hrtimer_forward_now(timer, cfs_b->period); 5313 if (!overrun) 5314 break; 5315 5316 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5317 5318 if (++count > 3) { 5319 u64 new, old = ktime_to_ns(cfs_b->period); 5320 5321 /* 5322 * Grow period by a factor of 2 to avoid losing precision. 5323 * Precision loss in the quota/period ratio can cause __cfs_schedulable 5324 * to fail. 5325 */ 5326 new = old * 2; 5327 if (new < max_cfs_quota_period) { 5328 cfs_b->period = ns_to_ktime(new); 5329 cfs_b->quota *= 2; 5330 cfs_b->burst *= 2; 5331 5332 pr_warn_ratelimited( 5333 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5334 smp_processor_id(), 5335 div_u64(new, NSEC_PER_USEC), 5336 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5337 } else { 5338 pr_warn_ratelimited( 5339 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5340 smp_processor_id(), 5341 div_u64(old, NSEC_PER_USEC), 5342 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5343 } 5344 5345 /* reset count so we don't come right back in here */ 5346 count = 0; 5347 } 5348 } 5349 if (idle) 5350 cfs_b->period_active = 0; 5351 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5352 5353 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5354 } 5355 5356 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5357 { 5358 raw_spin_lock_init(&cfs_b->lock); 5359 cfs_b->runtime = 0; 5360 cfs_b->quota = RUNTIME_INF; 5361 cfs_b->period = ns_to_ktime(default_cfs_period()); 5362 cfs_b->burst = 0; 5363 5364 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5365 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5366 cfs_b->period_timer.function = sched_cfs_period_timer; 5367 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5368 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5369 cfs_b->slack_started = false; 5370 } 5371 5372 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5373 { 5374 cfs_rq->runtime_enabled = 0; 5375 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5376 } 5377 5378 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5379 { 5380 lockdep_assert_held(&cfs_b->lock); 5381 5382 if (cfs_b->period_active) 5383 return; 5384 5385 cfs_b->period_active = 1; 5386 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5387 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5388 } 5389 5390 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5391 { 5392 /* init_cfs_bandwidth() was not called */ 5393 if (!cfs_b->throttled_cfs_rq.next) 5394 return; 5395 5396 hrtimer_cancel(&cfs_b->period_timer); 5397 hrtimer_cancel(&cfs_b->slack_timer); 5398 } 5399 5400 /* 5401 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5402 * 5403 * The race is harmless, since modifying bandwidth settings of unhooked group 5404 * bits doesn't do much. 5405 */ 5406 5407 /* cpu online callback */ 5408 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5409 { 5410 struct task_group *tg; 5411 5412 lockdep_assert_rq_held(rq); 5413 5414 rcu_read_lock(); 5415 list_for_each_entry_rcu(tg, &task_groups, list) { 5416 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5417 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5418 5419 raw_spin_lock(&cfs_b->lock); 5420 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5421 raw_spin_unlock(&cfs_b->lock); 5422 } 5423 rcu_read_unlock(); 5424 } 5425 5426 /* cpu offline callback */ 5427 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5428 { 5429 struct task_group *tg; 5430 5431 lockdep_assert_rq_held(rq); 5432 5433 rcu_read_lock(); 5434 list_for_each_entry_rcu(tg, &task_groups, list) { 5435 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5436 5437 if (!cfs_rq->runtime_enabled) 5438 continue; 5439 5440 /* 5441 * clock_task is not advancing so we just need to make sure 5442 * there's some valid quota amount 5443 */ 5444 cfs_rq->runtime_remaining = 1; 5445 /* 5446 * Offline rq is schedulable till CPU is completely disabled 5447 * in take_cpu_down(), so we prevent new cfs throttling here. 5448 */ 5449 cfs_rq->runtime_enabled = 0; 5450 5451 if (cfs_rq_throttled(cfs_rq)) 5452 unthrottle_cfs_rq(cfs_rq); 5453 } 5454 rcu_read_unlock(); 5455 } 5456 5457 #else /* CONFIG_CFS_BANDWIDTH */ 5458 5459 static inline bool cfs_bandwidth_used(void) 5460 { 5461 return false; 5462 } 5463 5464 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5465 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5466 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5467 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5468 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5469 5470 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5471 { 5472 return 0; 5473 } 5474 5475 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5476 { 5477 return 0; 5478 } 5479 5480 static inline int throttled_lb_pair(struct task_group *tg, 5481 int src_cpu, int dest_cpu) 5482 { 5483 return 0; 5484 } 5485 5486 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5487 5488 #ifdef CONFIG_FAIR_GROUP_SCHED 5489 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5490 #endif 5491 5492 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5493 { 5494 return NULL; 5495 } 5496 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5497 static inline void update_runtime_enabled(struct rq *rq) {} 5498 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5499 5500 #endif /* CONFIG_CFS_BANDWIDTH */ 5501 5502 /************************************************** 5503 * CFS operations on tasks: 5504 */ 5505 5506 #ifdef CONFIG_SCHED_HRTICK 5507 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5508 { 5509 struct sched_entity *se = &p->se; 5510 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5511 5512 SCHED_WARN_ON(task_rq(p) != rq); 5513 5514 if (rq->cfs.h_nr_running > 1) { 5515 u64 slice = sched_slice(cfs_rq, se); 5516 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5517 s64 delta = slice - ran; 5518 5519 if (delta < 0) { 5520 if (task_current(rq, p)) 5521 resched_curr(rq); 5522 return; 5523 } 5524 hrtick_start(rq, delta); 5525 } 5526 } 5527 5528 /* 5529 * called from enqueue/dequeue and updates the hrtick when the 5530 * current task is from our class and nr_running is low enough 5531 * to matter. 5532 */ 5533 static void hrtick_update(struct rq *rq) 5534 { 5535 struct task_struct *curr = rq->curr; 5536 5537 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 5538 return; 5539 5540 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5541 hrtick_start_fair(rq, curr); 5542 } 5543 #else /* !CONFIG_SCHED_HRTICK */ 5544 static inline void 5545 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5546 { 5547 } 5548 5549 static inline void hrtick_update(struct rq *rq) 5550 { 5551 } 5552 #endif 5553 5554 #ifdef CONFIG_SMP 5555 static inline unsigned long cpu_util(int cpu); 5556 5557 static inline bool cpu_overutilized(int cpu) 5558 { 5559 return !fits_capacity(cpu_util(cpu), capacity_of(cpu)); 5560 } 5561 5562 static inline void update_overutilized_status(struct rq *rq) 5563 { 5564 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5565 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5566 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5567 } 5568 } 5569 #else 5570 static inline void update_overutilized_status(struct rq *rq) { } 5571 #endif 5572 5573 /* Runqueue only has SCHED_IDLE tasks enqueued */ 5574 static int sched_idle_rq(struct rq *rq) 5575 { 5576 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 5577 rq->nr_running); 5578 } 5579 5580 #ifdef CONFIG_SMP 5581 static int sched_idle_cpu(int cpu) 5582 { 5583 return sched_idle_rq(cpu_rq(cpu)); 5584 } 5585 #endif 5586 5587 /* 5588 * The enqueue_task method is called before nr_running is 5589 * increased. Here we update the fair scheduling stats and 5590 * then put the task into the rbtree: 5591 */ 5592 static void 5593 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5594 { 5595 struct cfs_rq *cfs_rq; 5596 struct sched_entity *se = &p->se; 5597 int idle_h_nr_running = task_has_idle_policy(p); 5598 int task_new = !(flags & ENQUEUE_WAKEUP); 5599 5600 /* 5601 * The code below (indirectly) updates schedutil which looks at 5602 * the cfs_rq utilization to select a frequency. 5603 * Let's add the task's estimated utilization to the cfs_rq's 5604 * estimated utilization, before we update schedutil. 5605 */ 5606 util_est_enqueue(&rq->cfs, p); 5607 5608 /* 5609 * If in_iowait is set, the code below may not trigger any cpufreq 5610 * utilization updates, so do it here explicitly with the IOWAIT flag 5611 * passed. 5612 */ 5613 if (p->in_iowait) 5614 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5615 5616 for_each_sched_entity(se) { 5617 if (se->on_rq) 5618 break; 5619 cfs_rq = cfs_rq_of(se); 5620 enqueue_entity(cfs_rq, se, flags); 5621 5622 cfs_rq->h_nr_running++; 5623 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5624 5625 if (cfs_rq_is_idle(cfs_rq)) 5626 idle_h_nr_running = 1; 5627 5628 /* end evaluation on encountering a throttled cfs_rq */ 5629 if (cfs_rq_throttled(cfs_rq)) 5630 goto enqueue_throttle; 5631 5632 flags = ENQUEUE_WAKEUP; 5633 } 5634 5635 for_each_sched_entity(se) { 5636 cfs_rq = cfs_rq_of(se); 5637 5638 update_load_avg(cfs_rq, se, UPDATE_TG); 5639 se_update_runnable(se); 5640 update_cfs_group(se); 5641 5642 cfs_rq->h_nr_running++; 5643 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5644 5645 if (cfs_rq_is_idle(cfs_rq)) 5646 idle_h_nr_running = 1; 5647 5648 /* end evaluation on encountering a throttled cfs_rq */ 5649 if (cfs_rq_throttled(cfs_rq)) 5650 goto enqueue_throttle; 5651 5652 /* 5653 * One parent has been throttled and cfs_rq removed from the 5654 * list. Add it back to not break the leaf list. 5655 */ 5656 if (throttled_hierarchy(cfs_rq)) 5657 list_add_leaf_cfs_rq(cfs_rq); 5658 } 5659 5660 /* At this point se is NULL and we are at root level*/ 5661 add_nr_running(rq, 1); 5662 5663 /* 5664 * Since new tasks are assigned an initial util_avg equal to 5665 * half of the spare capacity of their CPU, tiny tasks have the 5666 * ability to cross the overutilized threshold, which will 5667 * result in the load balancer ruining all the task placement 5668 * done by EAS. As a way to mitigate that effect, do not account 5669 * for the first enqueue operation of new tasks during the 5670 * overutilized flag detection. 5671 * 5672 * A better way of solving this problem would be to wait for 5673 * the PELT signals of tasks to converge before taking them 5674 * into account, but that is not straightforward to implement, 5675 * and the following generally works well enough in practice. 5676 */ 5677 if (!task_new) 5678 update_overutilized_status(rq); 5679 5680 enqueue_throttle: 5681 if (cfs_bandwidth_used()) { 5682 /* 5683 * When bandwidth control is enabled; the cfs_rq_throttled() 5684 * breaks in the above iteration can result in incomplete 5685 * leaf list maintenance, resulting in triggering the assertion 5686 * below. 5687 */ 5688 for_each_sched_entity(se) { 5689 cfs_rq = cfs_rq_of(se); 5690 5691 if (list_add_leaf_cfs_rq(cfs_rq)) 5692 break; 5693 } 5694 } 5695 5696 assert_list_leaf_cfs_rq(rq); 5697 5698 hrtick_update(rq); 5699 } 5700 5701 static void set_next_buddy(struct sched_entity *se); 5702 5703 /* 5704 * The dequeue_task method is called before nr_running is 5705 * decreased. We remove the task from the rbtree and 5706 * update the fair scheduling stats: 5707 */ 5708 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5709 { 5710 struct cfs_rq *cfs_rq; 5711 struct sched_entity *se = &p->se; 5712 int task_sleep = flags & DEQUEUE_SLEEP; 5713 int idle_h_nr_running = task_has_idle_policy(p); 5714 bool was_sched_idle = sched_idle_rq(rq); 5715 5716 util_est_dequeue(&rq->cfs, p); 5717 5718 for_each_sched_entity(se) { 5719 cfs_rq = cfs_rq_of(se); 5720 dequeue_entity(cfs_rq, se, flags); 5721 5722 cfs_rq->h_nr_running--; 5723 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5724 5725 if (cfs_rq_is_idle(cfs_rq)) 5726 idle_h_nr_running = 1; 5727 5728 /* end evaluation on encountering a throttled cfs_rq */ 5729 if (cfs_rq_throttled(cfs_rq)) 5730 goto dequeue_throttle; 5731 5732 /* Don't dequeue parent if it has other entities besides us */ 5733 if (cfs_rq->load.weight) { 5734 /* Avoid re-evaluating load for this entity: */ 5735 se = parent_entity(se); 5736 /* 5737 * Bias pick_next to pick a task from this cfs_rq, as 5738 * p is sleeping when it is within its sched_slice. 5739 */ 5740 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5741 set_next_buddy(se); 5742 break; 5743 } 5744 flags |= DEQUEUE_SLEEP; 5745 } 5746 5747 for_each_sched_entity(se) { 5748 cfs_rq = cfs_rq_of(se); 5749 5750 update_load_avg(cfs_rq, se, UPDATE_TG); 5751 se_update_runnable(se); 5752 update_cfs_group(se); 5753 5754 cfs_rq->h_nr_running--; 5755 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5756 5757 if (cfs_rq_is_idle(cfs_rq)) 5758 idle_h_nr_running = 1; 5759 5760 /* end evaluation on encountering a throttled cfs_rq */ 5761 if (cfs_rq_throttled(cfs_rq)) 5762 goto dequeue_throttle; 5763 5764 } 5765 5766 /* At this point se is NULL and we are at root level*/ 5767 sub_nr_running(rq, 1); 5768 5769 /* balance early to pull high priority tasks */ 5770 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 5771 rq->next_balance = jiffies; 5772 5773 dequeue_throttle: 5774 util_est_update(&rq->cfs, p, task_sleep); 5775 hrtick_update(rq); 5776 } 5777 5778 #ifdef CONFIG_SMP 5779 5780 /* Working cpumask for: load_balance, load_balance_newidle. */ 5781 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5782 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5783 5784 #ifdef CONFIG_NO_HZ_COMMON 5785 5786 static struct { 5787 cpumask_var_t idle_cpus_mask; 5788 atomic_t nr_cpus; 5789 int has_blocked; /* Idle CPUS has blocked load */ 5790 unsigned long next_balance; /* in jiffy units */ 5791 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5792 } nohz ____cacheline_aligned; 5793 5794 #endif /* CONFIG_NO_HZ_COMMON */ 5795 5796 static unsigned long cpu_load(struct rq *rq) 5797 { 5798 return cfs_rq_load_avg(&rq->cfs); 5799 } 5800 5801 /* 5802 * cpu_load_without - compute CPU load without any contributions from *p 5803 * @cpu: the CPU which load is requested 5804 * @p: the task which load should be discounted 5805 * 5806 * The load of a CPU is defined by the load of tasks currently enqueued on that 5807 * CPU as well as tasks which are currently sleeping after an execution on that 5808 * CPU. 5809 * 5810 * This method returns the load of the specified CPU by discounting the load of 5811 * the specified task, whenever the task is currently contributing to the CPU 5812 * load. 5813 */ 5814 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 5815 { 5816 struct cfs_rq *cfs_rq; 5817 unsigned int load; 5818 5819 /* Task has no contribution or is new */ 5820 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5821 return cpu_load(rq); 5822 5823 cfs_rq = &rq->cfs; 5824 load = READ_ONCE(cfs_rq->avg.load_avg); 5825 5826 /* Discount task's util from CPU's util */ 5827 lsub_positive(&load, task_h_load(p)); 5828 5829 return load; 5830 } 5831 5832 static unsigned long cpu_runnable(struct rq *rq) 5833 { 5834 return cfs_rq_runnable_avg(&rq->cfs); 5835 } 5836 5837 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 5838 { 5839 struct cfs_rq *cfs_rq; 5840 unsigned int runnable; 5841 5842 /* Task has no contribution or is new */ 5843 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5844 return cpu_runnable(rq); 5845 5846 cfs_rq = &rq->cfs; 5847 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 5848 5849 /* Discount task's runnable from CPU's runnable */ 5850 lsub_positive(&runnable, p->se.avg.runnable_avg); 5851 5852 return runnable; 5853 } 5854 5855 static unsigned long capacity_of(int cpu) 5856 { 5857 return cpu_rq(cpu)->cpu_capacity; 5858 } 5859 5860 static void record_wakee(struct task_struct *p) 5861 { 5862 /* 5863 * Only decay a single time; tasks that have less then 1 wakeup per 5864 * jiffy will not have built up many flips. 5865 */ 5866 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5867 current->wakee_flips >>= 1; 5868 current->wakee_flip_decay_ts = jiffies; 5869 } 5870 5871 if (current->last_wakee != p) { 5872 current->last_wakee = p; 5873 current->wakee_flips++; 5874 } 5875 } 5876 5877 /* 5878 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5879 * 5880 * A waker of many should wake a different task than the one last awakened 5881 * at a frequency roughly N times higher than one of its wakees. 5882 * 5883 * In order to determine whether we should let the load spread vs consolidating 5884 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5885 * partner, and a factor of lls_size higher frequency in the other. 5886 * 5887 * With both conditions met, we can be relatively sure that the relationship is 5888 * non-monogamous, with partner count exceeding socket size. 5889 * 5890 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5891 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5892 * socket size. 5893 */ 5894 static int wake_wide(struct task_struct *p) 5895 { 5896 unsigned int master = current->wakee_flips; 5897 unsigned int slave = p->wakee_flips; 5898 int factor = __this_cpu_read(sd_llc_size); 5899 5900 if (master < slave) 5901 swap(master, slave); 5902 if (slave < factor || master < slave * factor) 5903 return 0; 5904 return 1; 5905 } 5906 5907 /* 5908 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5909 * soonest. For the purpose of speed we only consider the waking and previous 5910 * CPU. 5911 * 5912 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5913 * cache-affine and is (or will be) idle. 5914 * 5915 * wake_affine_weight() - considers the weight to reflect the average 5916 * scheduling latency of the CPUs. This seems to work 5917 * for the overloaded case. 5918 */ 5919 static int 5920 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5921 { 5922 /* 5923 * If this_cpu is idle, it implies the wakeup is from interrupt 5924 * context. Only allow the move if cache is shared. Otherwise an 5925 * interrupt intensive workload could force all tasks onto one 5926 * node depending on the IO topology or IRQ affinity settings. 5927 * 5928 * If the prev_cpu is idle and cache affine then avoid a migration. 5929 * There is no guarantee that the cache hot data from an interrupt 5930 * is more important than cache hot data on the prev_cpu and from 5931 * a cpufreq perspective, it's better to have higher utilisation 5932 * on one CPU. 5933 */ 5934 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5935 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5936 5937 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5938 return this_cpu; 5939 5940 if (available_idle_cpu(prev_cpu)) 5941 return prev_cpu; 5942 5943 return nr_cpumask_bits; 5944 } 5945 5946 static int 5947 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5948 int this_cpu, int prev_cpu, int sync) 5949 { 5950 s64 this_eff_load, prev_eff_load; 5951 unsigned long task_load; 5952 5953 this_eff_load = cpu_load(cpu_rq(this_cpu)); 5954 5955 if (sync) { 5956 unsigned long current_load = task_h_load(current); 5957 5958 if (current_load > this_eff_load) 5959 return this_cpu; 5960 5961 this_eff_load -= current_load; 5962 } 5963 5964 task_load = task_h_load(p); 5965 5966 this_eff_load += task_load; 5967 if (sched_feat(WA_BIAS)) 5968 this_eff_load *= 100; 5969 this_eff_load *= capacity_of(prev_cpu); 5970 5971 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 5972 prev_eff_load -= task_load; 5973 if (sched_feat(WA_BIAS)) 5974 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5975 prev_eff_load *= capacity_of(this_cpu); 5976 5977 /* 5978 * If sync, adjust the weight of prev_eff_load such that if 5979 * prev_eff == this_eff that select_idle_sibling() will consider 5980 * stacking the wakee on top of the waker if no other CPU is 5981 * idle. 5982 */ 5983 if (sync) 5984 prev_eff_load += 1; 5985 5986 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5987 } 5988 5989 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5990 int this_cpu, int prev_cpu, int sync) 5991 { 5992 int target = nr_cpumask_bits; 5993 5994 if (sched_feat(WA_IDLE)) 5995 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5996 5997 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5998 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5999 6000 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 6001 if (target == nr_cpumask_bits) 6002 return prev_cpu; 6003 6004 schedstat_inc(sd->ttwu_move_affine); 6005 schedstat_inc(p->se.statistics.nr_wakeups_affine); 6006 return target; 6007 } 6008 6009 static struct sched_group * 6010 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 6011 6012 /* 6013 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 6014 */ 6015 static int 6016 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 6017 { 6018 unsigned long load, min_load = ULONG_MAX; 6019 unsigned int min_exit_latency = UINT_MAX; 6020 u64 latest_idle_timestamp = 0; 6021 int least_loaded_cpu = this_cpu; 6022 int shallowest_idle_cpu = -1; 6023 int i; 6024 6025 /* Check if we have any choice: */ 6026 if (group->group_weight == 1) 6027 return cpumask_first(sched_group_span(group)); 6028 6029 /* Traverse only the allowed CPUs */ 6030 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 6031 struct rq *rq = cpu_rq(i); 6032 6033 if (!sched_core_cookie_match(rq, p)) 6034 continue; 6035 6036 if (sched_idle_cpu(i)) 6037 return i; 6038 6039 if (available_idle_cpu(i)) { 6040 struct cpuidle_state *idle = idle_get_state(rq); 6041 if (idle && idle->exit_latency < min_exit_latency) { 6042 /* 6043 * We give priority to a CPU whose idle state 6044 * has the smallest exit latency irrespective 6045 * of any idle timestamp. 6046 */ 6047 min_exit_latency = idle->exit_latency; 6048 latest_idle_timestamp = rq->idle_stamp; 6049 shallowest_idle_cpu = i; 6050 } else if ((!idle || idle->exit_latency == min_exit_latency) && 6051 rq->idle_stamp > latest_idle_timestamp) { 6052 /* 6053 * If equal or no active idle state, then 6054 * the most recently idled CPU might have 6055 * a warmer cache. 6056 */ 6057 latest_idle_timestamp = rq->idle_stamp; 6058 shallowest_idle_cpu = i; 6059 } 6060 } else if (shallowest_idle_cpu == -1) { 6061 load = cpu_load(cpu_rq(i)); 6062 if (load < min_load) { 6063 min_load = load; 6064 least_loaded_cpu = i; 6065 } 6066 } 6067 } 6068 6069 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 6070 } 6071 6072 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 6073 int cpu, int prev_cpu, int sd_flag) 6074 { 6075 int new_cpu = cpu; 6076 6077 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 6078 return prev_cpu; 6079 6080 /* 6081 * We need task's util for cpu_util_without, sync it up to 6082 * prev_cpu's last_update_time. 6083 */ 6084 if (!(sd_flag & SD_BALANCE_FORK)) 6085 sync_entity_load_avg(&p->se); 6086 6087 while (sd) { 6088 struct sched_group *group; 6089 struct sched_domain *tmp; 6090 int weight; 6091 6092 if (!(sd->flags & sd_flag)) { 6093 sd = sd->child; 6094 continue; 6095 } 6096 6097 group = find_idlest_group(sd, p, cpu); 6098 if (!group) { 6099 sd = sd->child; 6100 continue; 6101 } 6102 6103 new_cpu = find_idlest_group_cpu(group, p, cpu); 6104 if (new_cpu == cpu) { 6105 /* Now try balancing at a lower domain level of 'cpu': */ 6106 sd = sd->child; 6107 continue; 6108 } 6109 6110 /* Now try balancing at a lower domain level of 'new_cpu': */ 6111 cpu = new_cpu; 6112 weight = sd->span_weight; 6113 sd = NULL; 6114 for_each_domain(cpu, tmp) { 6115 if (weight <= tmp->span_weight) 6116 break; 6117 if (tmp->flags & sd_flag) 6118 sd = tmp; 6119 } 6120 } 6121 6122 return new_cpu; 6123 } 6124 6125 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 6126 { 6127 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 6128 sched_cpu_cookie_match(cpu_rq(cpu), p)) 6129 return cpu; 6130 6131 return -1; 6132 } 6133 6134 #ifdef CONFIG_SCHED_SMT 6135 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6136 EXPORT_SYMBOL_GPL(sched_smt_present); 6137 6138 static inline void set_idle_cores(int cpu, int val) 6139 { 6140 struct sched_domain_shared *sds; 6141 6142 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6143 if (sds) 6144 WRITE_ONCE(sds->has_idle_cores, val); 6145 } 6146 6147 static inline bool test_idle_cores(int cpu, bool def) 6148 { 6149 struct sched_domain_shared *sds; 6150 6151 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6152 if (sds) 6153 return READ_ONCE(sds->has_idle_cores); 6154 6155 return def; 6156 } 6157 6158 /* 6159 * Scans the local SMT mask to see if the entire core is idle, and records this 6160 * information in sd_llc_shared->has_idle_cores. 6161 * 6162 * Since SMT siblings share all cache levels, inspecting this limited remote 6163 * state should be fairly cheap. 6164 */ 6165 void __update_idle_core(struct rq *rq) 6166 { 6167 int core = cpu_of(rq); 6168 int cpu; 6169 6170 rcu_read_lock(); 6171 if (test_idle_cores(core, true)) 6172 goto unlock; 6173 6174 for_each_cpu(cpu, cpu_smt_mask(core)) { 6175 if (cpu == core) 6176 continue; 6177 6178 if (!available_idle_cpu(cpu)) 6179 goto unlock; 6180 } 6181 6182 set_idle_cores(core, 1); 6183 unlock: 6184 rcu_read_unlock(); 6185 } 6186 6187 /* 6188 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6189 * there are no idle cores left in the system; tracked through 6190 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6191 */ 6192 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6193 { 6194 bool idle = true; 6195 int cpu; 6196 6197 if (!static_branch_likely(&sched_smt_present)) 6198 return __select_idle_cpu(core, p); 6199 6200 for_each_cpu(cpu, cpu_smt_mask(core)) { 6201 if (!available_idle_cpu(cpu)) { 6202 idle = false; 6203 if (*idle_cpu == -1) { 6204 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 6205 *idle_cpu = cpu; 6206 break; 6207 } 6208 continue; 6209 } 6210 break; 6211 } 6212 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 6213 *idle_cpu = cpu; 6214 } 6215 6216 if (idle) 6217 return core; 6218 6219 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 6220 return -1; 6221 } 6222 6223 /* 6224 * Scan the local SMT mask for idle CPUs. 6225 */ 6226 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6227 { 6228 int cpu; 6229 6230 for_each_cpu(cpu, cpu_smt_mask(target)) { 6231 if (!cpumask_test_cpu(cpu, p->cpus_ptr) || 6232 !cpumask_test_cpu(cpu, sched_domain_span(sd))) 6233 continue; 6234 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6235 return cpu; 6236 } 6237 6238 return -1; 6239 } 6240 6241 #else /* CONFIG_SCHED_SMT */ 6242 6243 static inline void set_idle_cores(int cpu, int val) 6244 { 6245 } 6246 6247 static inline bool test_idle_cores(int cpu, bool def) 6248 { 6249 return def; 6250 } 6251 6252 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6253 { 6254 return __select_idle_cpu(core, p); 6255 } 6256 6257 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6258 { 6259 return -1; 6260 } 6261 6262 #endif /* CONFIG_SCHED_SMT */ 6263 6264 /* 6265 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6266 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6267 * average idle time for this rq (as found in rq->avg_idle). 6268 */ 6269 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 6270 { 6271 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6272 int i, cpu, idle_cpu = -1, nr = INT_MAX; 6273 struct rq *this_rq = this_rq(); 6274 int this = smp_processor_id(); 6275 struct sched_domain *this_sd; 6276 u64 time = 0; 6277 6278 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6279 if (!this_sd) 6280 return -1; 6281 6282 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6283 6284 if (sched_feat(SIS_PROP) && !has_idle_core) { 6285 u64 avg_cost, avg_idle, span_avg; 6286 unsigned long now = jiffies; 6287 6288 /* 6289 * If we're busy, the assumption that the last idle period 6290 * predicts the future is flawed; age away the remaining 6291 * predicted idle time. 6292 */ 6293 if (unlikely(this_rq->wake_stamp < now)) { 6294 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) { 6295 this_rq->wake_stamp++; 6296 this_rq->wake_avg_idle >>= 1; 6297 } 6298 } 6299 6300 avg_idle = this_rq->wake_avg_idle; 6301 avg_cost = this_sd->avg_scan_cost + 1; 6302 6303 span_avg = sd->span_weight * avg_idle; 6304 if (span_avg > 4*avg_cost) 6305 nr = div_u64(span_avg, avg_cost); 6306 else 6307 nr = 4; 6308 6309 time = cpu_clock(this); 6310 } 6311 6312 for_each_cpu_wrap(cpu, cpus, target + 1) { 6313 if (has_idle_core) { 6314 i = select_idle_core(p, cpu, cpus, &idle_cpu); 6315 if ((unsigned int)i < nr_cpumask_bits) 6316 return i; 6317 6318 } else { 6319 if (!--nr) 6320 return -1; 6321 idle_cpu = __select_idle_cpu(cpu, p); 6322 if ((unsigned int)idle_cpu < nr_cpumask_bits) 6323 break; 6324 } 6325 } 6326 6327 if (has_idle_core) 6328 set_idle_cores(target, false); 6329 6330 if (sched_feat(SIS_PROP) && !has_idle_core) { 6331 time = cpu_clock(this) - time; 6332 6333 /* 6334 * Account for the scan cost of wakeups against the average 6335 * idle time. 6336 */ 6337 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time); 6338 6339 update_avg(&this_sd->avg_scan_cost, time); 6340 } 6341 6342 return idle_cpu; 6343 } 6344 6345 /* 6346 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 6347 * the task fits. If no CPU is big enough, but there are idle ones, try to 6348 * maximize capacity. 6349 */ 6350 static int 6351 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 6352 { 6353 unsigned long task_util, best_cap = 0; 6354 int cpu, best_cpu = -1; 6355 struct cpumask *cpus; 6356 6357 cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6358 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6359 6360 task_util = uclamp_task_util(p); 6361 6362 for_each_cpu_wrap(cpu, cpus, target) { 6363 unsigned long cpu_cap = capacity_of(cpu); 6364 6365 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 6366 continue; 6367 if (fits_capacity(task_util, cpu_cap)) 6368 return cpu; 6369 6370 if (cpu_cap > best_cap) { 6371 best_cap = cpu_cap; 6372 best_cpu = cpu; 6373 } 6374 } 6375 6376 return best_cpu; 6377 } 6378 6379 static inline bool asym_fits_capacity(int task_util, int cpu) 6380 { 6381 if (static_branch_unlikely(&sched_asym_cpucapacity)) 6382 return fits_capacity(task_util, capacity_of(cpu)); 6383 6384 return true; 6385 } 6386 6387 /* 6388 * Try and locate an idle core/thread in the LLC cache domain. 6389 */ 6390 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6391 { 6392 bool has_idle_core = false; 6393 struct sched_domain *sd; 6394 unsigned long task_util; 6395 int i, recent_used_cpu; 6396 6397 /* 6398 * On asymmetric system, update task utilization because we will check 6399 * that the task fits with cpu's capacity. 6400 */ 6401 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6402 sync_entity_load_avg(&p->se); 6403 task_util = uclamp_task_util(p); 6404 } 6405 6406 /* 6407 * per-cpu select_idle_mask usage 6408 */ 6409 lockdep_assert_irqs_disabled(); 6410 6411 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 6412 asym_fits_capacity(task_util, target)) 6413 return target; 6414 6415 /* 6416 * If the previous CPU is cache affine and idle, don't be stupid: 6417 */ 6418 if (prev != target && cpus_share_cache(prev, target) && 6419 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 6420 asym_fits_capacity(task_util, prev)) 6421 return prev; 6422 6423 /* 6424 * Allow a per-cpu kthread to stack with the wakee if the 6425 * kworker thread and the tasks previous CPUs are the same. 6426 * The assumption is that the wakee queued work for the 6427 * per-cpu kthread that is now complete and the wakeup is 6428 * essentially a sync wakeup. An obvious example of this 6429 * pattern is IO completions. 6430 */ 6431 if (is_per_cpu_kthread(current) && 6432 prev == smp_processor_id() && 6433 this_rq()->nr_running <= 1) { 6434 return prev; 6435 } 6436 6437 /* Check a recently used CPU as a potential idle candidate: */ 6438 recent_used_cpu = p->recent_used_cpu; 6439 p->recent_used_cpu = prev; 6440 if (recent_used_cpu != prev && 6441 recent_used_cpu != target && 6442 cpus_share_cache(recent_used_cpu, target) && 6443 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 6444 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) && 6445 asym_fits_capacity(task_util, recent_used_cpu)) { 6446 /* 6447 * Replace recent_used_cpu with prev as it is a potential 6448 * candidate for the next wake: 6449 */ 6450 p->recent_used_cpu = prev; 6451 return recent_used_cpu; 6452 } 6453 6454 /* 6455 * For asymmetric CPU capacity systems, our domain of interest is 6456 * sd_asym_cpucapacity rather than sd_llc. 6457 */ 6458 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6459 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 6460 /* 6461 * On an asymmetric CPU capacity system where an exclusive 6462 * cpuset defines a symmetric island (i.e. one unique 6463 * capacity_orig value through the cpuset), the key will be set 6464 * but the CPUs within that cpuset will not have a domain with 6465 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 6466 * capacity path. 6467 */ 6468 if (sd) { 6469 i = select_idle_capacity(p, sd, target); 6470 return ((unsigned)i < nr_cpumask_bits) ? i : target; 6471 } 6472 } 6473 6474 sd = rcu_dereference(per_cpu(sd_llc, target)); 6475 if (!sd) 6476 return target; 6477 6478 if (sched_smt_active()) { 6479 has_idle_core = test_idle_cores(target, false); 6480 6481 if (!has_idle_core && cpus_share_cache(prev, target)) { 6482 i = select_idle_smt(p, sd, prev); 6483 if ((unsigned int)i < nr_cpumask_bits) 6484 return i; 6485 } 6486 } 6487 6488 i = select_idle_cpu(p, sd, has_idle_core, target); 6489 if ((unsigned)i < nr_cpumask_bits) 6490 return i; 6491 6492 return target; 6493 } 6494 6495 /** 6496 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks. 6497 * @cpu: the CPU to get the utilization of 6498 * 6499 * The unit of the return value must be the one of capacity so we can compare 6500 * the utilization with the capacity of the CPU that is available for CFS task 6501 * (ie cpu_capacity). 6502 * 6503 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6504 * recent utilization of currently non-runnable tasks on a CPU. It represents 6505 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6506 * capacity_orig is the cpu_capacity available at the highest frequency 6507 * (arch_scale_freq_capacity()). 6508 * The utilization of a CPU converges towards a sum equal to or less than the 6509 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6510 * the running time on this CPU scaled by capacity_curr. 6511 * 6512 * The estimated utilization of a CPU is defined to be the maximum between its 6513 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6514 * currently RUNNABLE on that CPU. 6515 * This allows to properly represent the expected utilization of a CPU which 6516 * has just got a big task running since a long sleep period. At the same time 6517 * however it preserves the benefits of the "blocked utilization" in 6518 * describing the potential for other tasks waking up on the same CPU. 6519 * 6520 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6521 * higher than capacity_orig because of unfortunate rounding in 6522 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6523 * the average stabilizes with the new running time. We need to check that the 6524 * utilization stays within the range of [0..capacity_orig] and cap it if 6525 * necessary. Without utilization capping, a group could be seen as overloaded 6526 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6527 * available capacity. We allow utilization to overshoot capacity_curr (but not 6528 * capacity_orig) as it useful for predicting the capacity required after task 6529 * migrations (scheduler-driven DVFS). 6530 * 6531 * Return: the (estimated) utilization for the specified CPU 6532 */ 6533 static inline unsigned long cpu_util(int cpu) 6534 { 6535 struct cfs_rq *cfs_rq; 6536 unsigned int util; 6537 6538 cfs_rq = &cpu_rq(cpu)->cfs; 6539 util = READ_ONCE(cfs_rq->avg.util_avg); 6540 6541 if (sched_feat(UTIL_EST)) 6542 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6543 6544 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6545 } 6546 6547 /* 6548 * cpu_util_without: compute cpu utilization without any contributions from *p 6549 * @cpu: the CPU which utilization is requested 6550 * @p: the task which utilization should be discounted 6551 * 6552 * The utilization of a CPU is defined by the utilization of tasks currently 6553 * enqueued on that CPU as well as tasks which are currently sleeping after an 6554 * execution on that CPU. 6555 * 6556 * This method returns the utilization of the specified CPU by discounting the 6557 * utilization of the specified task, whenever the task is currently 6558 * contributing to the CPU utilization. 6559 */ 6560 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6561 { 6562 struct cfs_rq *cfs_rq; 6563 unsigned int util; 6564 6565 /* Task has no contribution or is new */ 6566 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6567 return cpu_util(cpu); 6568 6569 cfs_rq = &cpu_rq(cpu)->cfs; 6570 util = READ_ONCE(cfs_rq->avg.util_avg); 6571 6572 /* Discount task's util from CPU's util */ 6573 lsub_positive(&util, task_util(p)); 6574 6575 /* 6576 * Covered cases: 6577 * 6578 * a) if *p is the only task sleeping on this CPU, then: 6579 * cpu_util (== task_util) > util_est (== 0) 6580 * and thus we return: 6581 * cpu_util_without = (cpu_util - task_util) = 0 6582 * 6583 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6584 * IDLE, then: 6585 * cpu_util >= task_util 6586 * cpu_util > util_est (== 0) 6587 * and thus we discount *p's blocked utilization to return: 6588 * cpu_util_without = (cpu_util - task_util) >= 0 6589 * 6590 * c) if other tasks are RUNNABLE on that CPU and 6591 * util_est > cpu_util 6592 * then we use util_est since it returns a more restrictive 6593 * estimation of the spare capacity on that CPU, by just 6594 * considering the expected utilization of tasks already 6595 * runnable on that CPU. 6596 * 6597 * Cases a) and b) are covered by the above code, while case c) is 6598 * covered by the following code when estimated utilization is 6599 * enabled. 6600 */ 6601 if (sched_feat(UTIL_EST)) { 6602 unsigned int estimated = 6603 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6604 6605 /* 6606 * Despite the following checks we still have a small window 6607 * for a possible race, when an execl's select_task_rq_fair() 6608 * races with LB's detach_task(): 6609 * 6610 * detach_task() 6611 * p->on_rq = TASK_ON_RQ_MIGRATING; 6612 * ---------------------------------- A 6613 * deactivate_task() \ 6614 * dequeue_task() + RaceTime 6615 * util_est_dequeue() / 6616 * ---------------------------------- B 6617 * 6618 * The additional check on "current == p" it's required to 6619 * properly fix the execl regression and it helps in further 6620 * reducing the chances for the above race. 6621 */ 6622 if (unlikely(task_on_rq_queued(p) || current == p)) 6623 lsub_positive(&estimated, _task_util_est(p)); 6624 6625 util = max(util, estimated); 6626 } 6627 6628 /* 6629 * Utilization (estimated) can exceed the CPU capacity, thus let's 6630 * clamp to the maximum CPU capacity to ensure consistency with 6631 * the cpu_util call. 6632 */ 6633 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6634 } 6635 6636 /* 6637 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) 6638 * to @dst_cpu. 6639 */ 6640 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6641 { 6642 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6643 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); 6644 6645 /* 6646 * If @p migrates from @cpu to another, remove its contribution. Or, 6647 * if @p migrates from another CPU to @cpu, add its contribution. In 6648 * the other cases, @cpu is not impacted by the migration, so the 6649 * util_avg should already be correct. 6650 */ 6651 if (task_cpu(p) == cpu && dst_cpu != cpu) 6652 lsub_positive(&util, task_util(p)); 6653 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6654 util += task_util(p); 6655 6656 if (sched_feat(UTIL_EST)) { 6657 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6658 6659 /* 6660 * During wake-up, the task isn't enqueued yet and doesn't 6661 * appear in the cfs_rq->avg.util_est.enqueued of any rq, 6662 * so just add it (if needed) to "simulate" what will be 6663 * cpu_util() after the task has been enqueued. 6664 */ 6665 if (dst_cpu == cpu) 6666 util_est += _task_util_est(p); 6667 6668 util = max(util, util_est); 6669 } 6670 6671 return min(util, capacity_orig_of(cpu)); 6672 } 6673 6674 /* 6675 * compute_energy(): Estimates the energy that @pd would consume if @p was 6676 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6677 * landscape of @pd's CPUs after the task migration, and uses the Energy Model 6678 * to compute what would be the energy if we decided to actually migrate that 6679 * task. 6680 */ 6681 static long 6682 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6683 { 6684 struct cpumask *pd_mask = perf_domain_span(pd); 6685 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask)); 6686 unsigned long max_util = 0, sum_util = 0; 6687 unsigned long _cpu_cap = cpu_cap; 6688 int cpu; 6689 6690 _cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask)); 6691 6692 /* 6693 * The capacity state of CPUs of the current rd can be driven by CPUs 6694 * of another rd if they belong to the same pd. So, account for the 6695 * utilization of these CPUs too by masking pd with cpu_online_mask 6696 * instead of the rd span. 6697 * 6698 * If an entire pd is outside of the current rd, it will not appear in 6699 * its pd list and will not be accounted by compute_energy(). 6700 */ 6701 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) { 6702 unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu); 6703 unsigned long cpu_util, util_running = util_freq; 6704 struct task_struct *tsk = NULL; 6705 6706 /* 6707 * When @p is placed on @cpu: 6708 * 6709 * util_running = max(cpu_util, cpu_util_est) + 6710 * max(task_util, _task_util_est) 6711 * 6712 * while cpu_util_next is: max(cpu_util + task_util, 6713 * cpu_util_est + _task_util_est) 6714 */ 6715 if (cpu == dst_cpu) { 6716 tsk = p; 6717 util_running = 6718 cpu_util_next(cpu, p, -1) + task_util_est(p); 6719 } 6720 6721 /* 6722 * Busy time computation: utilization clamping is not 6723 * required since the ratio (sum_util / cpu_capacity) 6724 * is already enough to scale the EM reported power 6725 * consumption at the (eventually clamped) cpu_capacity. 6726 */ 6727 cpu_util = effective_cpu_util(cpu, util_running, cpu_cap, 6728 ENERGY_UTIL, NULL); 6729 6730 sum_util += min(cpu_util, _cpu_cap); 6731 6732 /* 6733 * Performance domain frequency: utilization clamping 6734 * must be considered since it affects the selection 6735 * of the performance domain frequency. 6736 * NOTE: in case RT tasks are running, by default the 6737 * FREQUENCY_UTIL's utilization can be max OPP. 6738 */ 6739 cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap, 6740 FREQUENCY_UTIL, tsk); 6741 max_util = max(max_util, min(cpu_util, _cpu_cap)); 6742 } 6743 6744 return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap); 6745 } 6746 6747 /* 6748 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6749 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6750 * spare capacity in each performance domain and uses it as a potential 6751 * candidate to execute the task. Then, it uses the Energy Model to figure 6752 * out which of the CPU candidates is the most energy-efficient. 6753 * 6754 * The rationale for this heuristic is as follows. In a performance domain, 6755 * all the most energy efficient CPU candidates (according to the Energy 6756 * Model) are those for which we'll request a low frequency. When there are 6757 * several CPUs for which the frequency request will be the same, we don't 6758 * have enough data to break the tie between them, because the Energy Model 6759 * only includes active power costs. With this model, if we assume that 6760 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6761 * the maximum spare capacity in a performance domain is guaranteed to be among 6762 * the best candidates of the performance domain. 6763 * 6764 * In practice, it could be preferable from an energy standpoint to pack 6765 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6766 * but that could also hurt our chances to go cluster idle, and we have no 6767 * ways to tell with the current Energy Model if this is actually a good 6768 * idea or not. So, find_energy_efficient_cpu() basically favors 6769 * cluster-packing, and spreading inside a cluster. That should at least be 6770 * a good thing for latency, and this is consistent with the idea that most 6771 * of the energy savings of EAS come from the asymmetry of the system, and 6772 * not so much from breaking the tie between identical CPUs. That's also the 6773 * reason why EAS is enabled in the topology code only for systems where 6774 * SD_ASYM_CPUCAPACITY is set. 6775 * 6776 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6777 * they don't have any useful utilization data yet and it's not possible to 6778 * forecast their impact on energy consumption. Consequently, they will be 6779 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6780 * to be energy-inefficient in some use-cases. The alternative would be to 6781 * bias new tasks towards specific types of CPUs first, or to try to infer 6782 * their util_avg from the parent task, but those heuristics could hurt 6783 * other use-cases too. So, until someone finds a better way to solve this, 6784 * let's keep things simple by re-using the existing slow path. 6785 */ 6786 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6787 { 6788 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 6789 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6790 int cpu, best_energy_cpu = prev_cpu, target = -1; 6791 unsigned long cpu_cap, util, base_energy = 0; 6792 struct sched_domain *sd; 6793 struct perf_domain *pd; 6794 6795 rcu_read_lock(); 6796 pd = rcu_dereference(rd->pd); 6797 if (!pd || READ_ONCE(rd->overutilized)) 6798 goto unlock; 6799 6800 /* 6801 * Energy-aware wake-up happens on the lowest sched_domain starting 6802 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6803 */ 6804 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6805 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6806 sd = sd->parent; 6807 if (!sd) 6808 goto unlock; 6809 6810 target = prev_cpu; 6811 6812 sync_entity_load_avg(&p->se); 6813 if (!task_util_est(p)) 6814 goto unlock; 6815 6816 for (; pd; pd = pd->next) { 6817 unsigned long cur_delta, spare_cap, max_spare_cap = 0; 6818 bool compute_prev_delta = false; 6819 unsigned long base_energy_pd; 6820 int max_spare_cap_cpu = -1; 6821 6822 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6823 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6824 continue; 6825 6826 util = cpu_util_next(cpu, p, cpu); 6827 cpu_cap = capacity_of(cpu); 6828 spare_cap = cpu_cap; 6829 lsub_positive(&spare_cap, util); 6830 6831 /* 6832 * Skip CPUs that cannot satisfy the capacity request. 6833 * IOW, placing the task there would make the CPU 6834 * overutilized. Take uclamp into account to see how 6835 * much capacity we can get out of the CPU; this is 6836 * aligned with sched_cpu_util(). 6837 */ 6838 util = uclamp_rq_util_with(cpu_rq(cpu), util, p); 6839 if (!fits_capacity(util, cpu_cap)) 6840 continue; 6841 6842 if (cpu == prev_cpu) { 6843 /* Always use prev_cpu as a candidate. */ 6844 compute_prev_delta = true; 6845 } else if (spare_cap > max_spare_cap) { 6846 /* 6847 * Find the CPU with the maximum spare capacity 6848 * in the performance domain. 6849 */ 6850 max_spare_cap = spare_cap; 6851 max_spare_cap_cpu = cpu; 6852 } 6853 } 6854 6855 if (max_spare_cap_cpu < 0 && !compute_prev_delta) 6856 continue; 6857 6858 /* Compute the 'base' energy of the pd, without @p */ 6859 base_energy_pd = compute_energy(p, -1, pd); 6860 base_energy += base_energy_pd; 6861 6862 /* Evaluate the energy impact of using prev_cpu. */ 6863 if (compute_prev_delta) { 6864 prev_delta = compute_energy(p, prev_cpu, pd); 6865 if (prev_delta < base_energy_pd) 6866 goto unlock; 6867 prev_delta -= base_energy_pd; 6868 best_delta = min(best_delta, prev_delta); 6869 } 6870 6871 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 6872 if (max_spare_cap_cpu >= 0) { 6873 cur_delta = compute_energy(p, max_spare_cap_cpu, pd); 6874 if (cur_delta < base_energy_pd) 6875 goto unlock; 6876 cur_delta -= base_energy_pd; 6877 if (cur_delta < best_delta) { 6878 best_delta = cur_delta; 6879 best_energy_cpu = max_spare_cap_cpu; 6880 } 6881 } 6882 } 6883 rcu_read_unlock(); 6884 6885 /* 6886 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6887 * least 6% of the energy used by prev_cpu. 6888 */ 6889 if ((prev_delta == ULONG_MAX) || 6890 (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4)) 6891 target = best_energy_cpu; 6892 6893 return target; 6894 6895 unlock: 6896 rcu_read_unlock(); 6897 6898 return target; 6899 } 6900 6901 /* 6902 * select_task_rq_fair: Select target runqueue for the waking task in domains 6903 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 6904 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6905 * 6906 * Balances load by selecting the idlest CPU in the idlest group, or under 6907 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6908 * 6909 * Returns the target CPU number. 6910 */ 6911 static int 6912 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 6913 { 6914 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6915 struct sched_domain *tmp, *sd = NULL; 6916 int cpu = smp_processor_id(); 6917 int new_cpu = prev_cpu; 6918 int want_affine = 0; 6919 /* SD_flags and WF_flags share the first nibble */ 6920 int sd_flag = wake_flags & 0xF; 6921 6922 /* 6923 * required for stable ->cpus_allowed 6924 */ 6925 lockdep_assert_held(&p->pi_lock); 6926 if (wake_flags & WF_TTWU) { 6927 record_wakee(p); 6928 6929 if (sched_energy_enabled()) { 6930 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6931 if (new_cpu >= 0) 6932 return new_cpu; 6933 new_cpu = prev_cpu; 6934 } 6935 6936 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 6937 } 6938 6939 rcu_read_lock(); 6940 for_each_domain(cpu, tmp) { 6941 /* 6942 * If both 'cpu' and 'prev_cpu' are part of this domain, 6943 * cpu is a valid SD_WAKE_AFFINE target. 6944 */ 6945 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6946 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6947 if (cpu != prev_cpu) 6948 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6949 6950 sd = NULL; /* Prefer wake_affine over balance flags */ 6951 break; 6952 } 6953 6954 if (tmp->flags & sd_flag) 6955 sd = tmp; 6956 else if (!want_affine) 6957 break; 6958 } 6959 6960 if (unlikely(sd)) { 6961 /* Slow path */ 6962 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6963 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 6964 /* Fast path */ 6965 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6966 } 6967 rcu_read_unlock(); 6968 6969 return new_cpu; 6970 } 6971 6972 static void detach_entity_cfs_rq(struct sched_entity *se); 6973 6974 /* 6975 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6976 * cfs_rq_of(p) references at time of call are still valid and identify the 6977 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6978 */ 6979 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6980 { 6981 /* 6982 * As blocked tasks retain absolute vruntime the migration needs to 6983 * deal with this by subtracting the old and adding the new 6984 * min_vruntime -- the latter is done by enqueue_entity() when placing 6985 * the task on the new runqueue. 6986 */ 6987 if (READ_ONCE(p->__state) == TASK_WAKING) { 6988 struct sched_entity *se = &p->se; 6989 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6990 u64 min_vruntime; 6991 6992 #ifndef CONFIG_64BIT 6993 u64 min_vruntime_copy; 6994 6995 do { 6996 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6997 smp_rmb(); 6998 min_vruntime = cfs_rq->min_vruntime; 6999 } while (min_vruntime != min_vruntime_copy); 7000 #else 7001 min_vruntime = cfs_rq->min_vruntime; 7002 #endif 7003 7004 se->vruntime -= min_vruntime; 7005 } 7006 7007 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 7008 /* 7009 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 7010 * rq->lock and can modify state directly. 7011 */ 7012 lockdep_assert_rq_held(task_rq(p)); 7013 detach_entity_cfs_rq(&p->se); 7014 7015 } else { 7016 /* 7017 * We are supposed to update the task to "current" time, then 7018 * its up to date and ready to go to new CPU/cfs_rq. But we 7019 * have difficulty in getting what current time is, so simply 7020 * throw away the out-of-date time. This will result in the 7021 * wakee task is less decayed, but giving the wakee more load 7022 * sounds not bad. 7023 */ 7024 remove_entity_load_avg(&p->se); 7025 } 7026 7027 /* Tell new CPU we are migrated */ 7028 p->se.avg.last_update_time = 0; 7029 7030 /* We have migrated, no longer consider this task hot */ 7031 p->se.exec_start = 0; 7032 7033 update_scan_period(p, new_cpu); 7034 } 7035 7036 static void task_dead_fair(struct task_struct *p) 7037 { 7038 remove_entity_load_avg(&p->se); 7039 } 7040 7041 static int 7042 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7043 { 7044 if (rq->nr_running) 7045 return 1; 7046 7047 return newidle_balance(rq, rf) != 0; 7048 } 7049 #endif /* CONFIG_SMP */ 7050 7051 static unsigned long wakeup_gran(struct sched_entity *se) 7052 { 7053 unsigned long gran = sysctl_sched_wakeup_granularity; 7054 7055 /* 7056 * Since its curr running now, convert the gran from real-time 7057 * to virtual-time in his units. 7058 * 7059 * By using 'se' instead of 'curr' we penalize light tasks, so 7060 * they get preempted easier. That is, if 'se' < 'curr' then 7061 * the resulting gran will be larger, therefore penalizing the 7062 * lighter, if otoh 'se' > 'curr' then the resulting gran will 7063 * be smaller, again penalizing the lighter task. 7064 * 7065 * This is especially important for buddies when the leftmost 7066 * task is higher priority than the buddy. 7067 */ 7068 return calc_delta_fair(gran, se); 7069 } 7070 7071 /* 7072 * Should 'se' preempt 'curr'. 7073 * 7074 * |s1 7075 * |s2 7076 * |s3 7077 * g 7078 * |<--->|c 7079 * 7080 * w(c, s1) = -1 7081 * w(c, s2) = 0 7082 * w(c, s3) = 1 7083 * 7084 */ 7085 static int 7086 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 7087 { 7088 s64 gran, vdiff = curr->vruntime - se->vruntime; 7089 7090 if (vdiff <= 0) 7091 return -1; 7092 7093 gran = wakeup_gran(se); 7094 if (vdiff > gran) 7095 return 1; 7096 7097 return 0; 7098 } 7099 7100 static void set_last_buddy(struct sched_entity *se) 7101 { 7102 for_each_sched_entity(se) { 7103 if (SCHED_WARN_ON(!se->on_rq)) 7104 return; 7105 if (se_is_idle(se)) 7106 return; 7107 cfs_rq_of(se)->last = se; 7108 } 7109 } 7110 7111 static void set_next_buddy(struct sched_entity *se) 7112 { 7113 for_each_sched_entity(se) { 7114 if (SCHED_WARN_ON(!se->on_rq)) 7115 return; 7116 if (se_is_idle(se)) 7117 return; 7118 cfs_rq_of(se)->next = se; 7119 } 7120 } 7121 7122 static void set_skip_buddy(struct sched_entity *se) 7123 { 7124 for_each_sched_entity(se) 7125 cfs_rq_of(se)->skip = se; 7126 } 7127 7128 /* 7129 * Preempt the current task with a newly woken task if needed: 7130 */ 7131 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 7132 { 7133 struct task_struct *curr = rq->curr; 7134 struct sched_entity *se = &curr->se, *pse = &p->se; 7135 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7136 int scale = cfs_rq->nr_running >= sched_nr_latency; 7137 int next_buddy_marked = 0; 7138 int cse_is_idle, pse_is_idle; 7139 7140 if (unlikely(se == pse)) 7141 return; 7142 7143 /* 7144 * This is possible from callers such as attach_tasks(), in which we 7145 * unconditionally check_preempt_curr() after an enqueue (which may have 7146 * lead to a throttle). This both saves work and prevents false 7147 * next-buddy nomination below. 7148 */ 7149 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 7150 return; 7151 7152 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 7153 set_next_buddy(pse); 7154 next_buddy_marked = 1; 7155 } 7156 7157 /* 7158 * We can come here with TIF_NEED_RESCHED already set from new task 7159 * wake up path. 7160 * 7161 * Note: this also catches the edge-case of curr being in a throttled 7162 * group (e.g. via set_curr_task), since update_curr() (in the 7163 * enqueue of curr) will have resulted in resched being set. This 7164 * prevents us from potentially nominating it as a false LAST_BUDDY 7165 * below. 7166 */ 7167 if (test_tsk_need_resched(curr)) 7168 return; 7169 7170 /* Idle tasks are by definition preempted by non-idle tasks. */ 7171 if (unlikely(task_has_idle_policy(curr)) && 7172 likely(!task_has_idle_policy(p))) 7173 goto preempt; 7174 7175 /* 7176 * Batch and idle tasks do not preempt non-idle tasks (their preemption 7177 * is driven by the tick): 7178 */ 7179 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 7180 return; 7181 7182 find_matching_se(&se, &pse); 7183 BUG_ON(!pse); 7184 7185 cse_is_idle = se_is_idle(se); 7186 pse_is_idle = se_is_idle(pse); 7187 7188 /* 7189 * Preempt an idle group in favor of a non-idle group (and don't preempt 7190 * in the inverse case). 7191 */ 7192 if (cse_is_idle && !pse_is_idle) 7193 goto preempt; 7194 if (cse_is_idle != pse_is_idle) 7195 return; 7196 7197 update_curr(cfs_rq_of(se)); 7198 if (wakeup_preempt_entity(se, pse) == 1) { 7199 /* 7200 * Bias pick_next to pick the sched entity that is 7201 * triggering this preemption. 7202 */ 7203 if (!next_buddy_marked) 7204 set_next_buddy(pse); 7205 goto preempt; 7206 } 7207 7208 return; 7209 7210 preempt: 7211 resched_curr(rq); 7212 /* 7213 * Only set the backward buddy when the current task is still 7214 * on the rq. This can happen when a wakeup gets interleaved 7215 * with schedule on the ->pre_schedule() or idle_balance() 7216 * point, either of which can * drop the rq lock. 7217 * 7218 * Also, during early boot the idle thread is in the fair class, 7219 * for obvious reasons its a bad idea to schedule back to it. 7220 */ 7221 if (unlikely(!se->on_rq || curr == rq->idle)) 7222 return; 7223 7224 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 7225 set_last_buddy(se); 7226 } 7227 7228 #ifdef CONFIG_SMP 7229 static struct task_struct *pick_task_fair(struct rq *rq) 7230 { 7231 struct sched_entity *se; 7232 struct cfs_rq *cfs_rq; 7233 7234 again: 7235 cfs_rq = &rq->cfs; 7236 if (!cfs_rq->nr_running) 7237 return NULL; 7238 7239 do { 7240 struct sched_entity *curr = cfs_rq->curr; 7241 7242 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 7243 if (curr) { 7244 if (curr->on_rq) 7245 update_curr(cfs_rq); 7246 else 7247 curr = NULL; 7248 7249 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 7250 goto again; 7251 } 7252 7253 se = pick_next_entity(cfs_rq, curr); 7254 cfs_rq = group_cfs_rq(se); 7255 } while (cfs_rq); 7256 7257 return task_of(se); 7258 } 7259 #endif 7260 7261 struct task_struct * 7262 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7263 { 7264 struct cfs_rq *cfs_rq = &rq->cfs; 7265 struct sched_entity *se; 7266 struct task_struct *p; 7267 int new_tasks; 7268 7269 again: 7270 if (!sched_fair_runnable(rq)) 7271 goto idle; 7272 7273 #ifdef CONFIG_FAIR_GROUP_SCHED 7274 if (!prev || prev->sched_class != &fair_sched_class) 7275 goto simple; 7276 7277 /* 7278 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 7279 * likely that a next task is from the same cgroup as the current. 7280 * 7281 * Therefore attempt to avoid putting and setting the entire cgroup 7282 * hierarchy, only change the part that actually changes. 7283 */ 7284 7285 do { 7286 struct sched_entity *curr = cfs_rq->curr; 7287 7288 /* 7289 * Since we got here without doing put_prev_entity() we also 7290 * have to consider cfs_rq->curr. If it is still a runnable 7291 * entity, update_curr() will update its vruntime, otherwise 7292 * forget we've ever seen it. 7293 */ 7294 if (curr) { 7295 if (curr->on_rq) 7296 update_curr(cfs_rq); 7297 else 7298 curr = NULL; 7299 7300 /* 7301 * This call to check_cfs_rq_runtime() will do the 7302 * throttle and dequeue its entity in the parent(s). 7303 * Therefore the nr_running test will indeed 7304 * be correct. 7305 */ 7306 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 7307 cfs_rq = &rq->cfs; 7308 7309 if (!cfs_rq->nr_running) 7310 goto idle; 7311 7312 goto simple; 7313 } 7314 } 7315 7316 se = pick_next_entity(cfs_rq, curr); 7317 cfs_rq = group_cfs_rq(se); 7318 } while (cfs_rq); 7319 7320 p = task_of(se); 7321 7322 /* 7323 * Since we haven't yet done put_prev_entity and if the selected task 7324 * is a different task than we started out with, try and touch the 7325 * least amount of cfs_rqs. 7326 */ 7327 if (prev != p) { 7328 struct sched_entity *pse = &prev->se; 7329 7330 while (!(cfs_rq = is_same_group(se, pse))) { 7331 int se_depth = se->depth; 7332 int pse_depth = pse->depth; 7333 7334 if (se_depth <= pse_depth) { 7335 put_prev_entity(cfs_rq_of(pse), pse); 7336 pse = parent_entity(pse); 7337 } 7338 if (se_depth >= pse_depth) { 7339 set_next_entity(cfs_rq_of(se), se); 7340 se = parent_entity(se); 7341 } 7342 } 7343 7344 put_prev_entity(cfs_rq, pse); 7345 set_next_entity(cfs_rq, se); 7346 } 7347 7348 goto done; 7349 simple: 7350 #endif 7351 if (prev) 7352 put_prev_task(rq, prev); 7353 7354 do { 7355 se = pick_next_entity(cfs_rq, NULL); 7356 set_next_entity(cfs_rq, se); 7357 cfs_rq = group_cfs_rq(se); 7358 } while (cfs_rq); 7359 7360 p = task_of(se); 7361 7362 done: __maybe_unused; 7363 #ifdef CONFIG_SMP 7364 /* 7365 * Move the next running task to the front of 7366 * the list, so our cfs_tasks list becomes MRU 7367 * one. 7368 */ 7369 list_move(&p->se.group_node, &rq->cfs_tasks); 7370 #endif 7371 7372 if (hrtick_enabled_fair(rq)) 7373 hrtick_start_fair(rq, p); 7374 7375 update_misfit_status(p, rq); 7376 7377 return p; 7378 7379 idle: 7380 if (!rf) 7381 return NULL; 7382 7383 new_tasks = newidle_balance(rq, rf); 7384 7385 /* 7386 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 7387 * possible for any higher priority task to appear. In that case we 7388 * must re-start the pick_next_entity() loop. 7389 */ 7390 if (new_tasks < 0) 7391 return RETRY_TASK; 7392 7393 if (new_tasks > 0) 7394 goto again; 7395 7396 /* 7397 * rq is about to be idle, check if we need to update the 7398 * lost_idle_time of clock_pelt 7399 */ 7400 update_idle_rq_clock_pelt(rq); 7401 7402 return NULL; 7403 } 7404 7405 static struct task_struct *__pick_next_task_fair(struct rq *rq) 7406 { 7407 return pick_next_task_fair(rq, NULL, NULL); 7408 } 7409 7410 /* 7411 * Account for a descheduled task: 7412 */ 7413 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7414 { 7415 struct sched_entity *se = &prev->se; 7416 struct cfs_rq *cfs_rq; 7417 7418 for_each_sched_entity(se) { 7419 cfs_rq = cfs_rq_of(se); 7420 put_prev_entity(cfs_rq, se); 7421 } 7422 } 7423 7424 /* 7425 * sched_yield() is very simple 7426 * 7427 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7428 */ 7429 static void yield_task_fair(struct rq *rq) 7430 { 7431 struct task_struct *curr = rq->curr; 7432 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7433 struct sched_entity *se = &curr->se; 7434 7435 /* 7436 * Are we the only task in the tree? 7437 */ 7438 if (unlikely(rq->nr_running == 1)) 7439 return; 7440 7441 clear_buddies(cfs_rq, se); 7442 7443 if (curr->policy != SCHED_BATCH) { 7444 update_rq_clock(rq); 7445 /* 7446 * Update run-time statistics of the 'current'. 7447 */ 7448 update_curr(cfs_rq); 7449 /* 7450 * Tell update_rq_clock() that we've just updated, 7451 * so we don't do microscopic update in schedule() 7452 * and double the fastpath cost. 7453 */ 7454 rq_clock_skip_update(rq); 7455 } 7456 7457 set_skip_buddy(se); 7458 } 7459 7460 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 7461 { 7462 struct sched_entity *se = &p->se; 7463 7464 /* throttled hierarchies are not runnable */ 7465 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7466 return false; 7467 7468 /* Tell the scheduler that we'd really like pse to run next. */ 7469 set_next_buddy(se); 7470 7471 yield_task_fair(rq); 7472 7473 return true; 7474 } 7475 7476 #ifdef CONFIG_SMP 7477 /************************************************** 7478 * Fair scheduling class load-balancing methods. 7479 * 7480 * BASICS 7481 * 7482 * The purpose of load-balancing is to achieve the same basic fairness the 7483 * per-CPU scheduler provides, namely provide a proportional amount of compute 7484 * time to each task. This is expressed in the following equation: 7485 * 7486 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7487 * 7488 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7489 * W_i,0 is defined as: 7490 * 7491 * W_i,0 = \Sum_j w_i,j (2) 7492 * 7493 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7494 * is derived from the nice value as per sched_prio_to_weight[]. 7495 * 7496 * The weight average is an exponential decay average of the instantaneous 7497 * weight: 7498 * 7499 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7500 * 7501 * C_i is the compute capacity of CPU i, typically it is the 7502 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7503 * can also include other factors [XXX]. 7504 * 7505 * To achieve this balance we define a measure of imbalance which follows 7506 * directly from (1): 7507 * 7508 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7509 * 7510 * We them move tasks around to minimize the imbalance. In the continuous 7511 * function space it is obvious this converges, in the discrete case we get 7512 * a few fun cases generally called infeasible weight scenarios. 7513 * 7514 * [XXX expand on: 7515 * - infeasible weights; 7516 * - local vs global optima in the discrete case. ] 7517 * 7518 * 7519 * SCHED DOMAINS 7520 * 7521 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7522 * for all i,j solution, we create a tree of CPUs that follows the hardware 7523 * topology where each level pairs two lower groups (or better). This results 7524 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7525 * tree to only the first of the previous level and we decrease the frequency 7526 * of load-balance at each level inv. proportional to the number of CPUs in 7527 * the groups. 7528 * 7529 * This yields: 7530 * 7531 * log_2 n 1 n 7532 * \Sum { --- * --- * 2^i } = O(n) (5) 7533 * i = 0 2^i 2^i 7534 * `- size of each group 7535 * | | `- number of CPUs doing load-balance 7536 * | `- freq 7537 * `- sum over all levels 7538 * 7539 * Coupled with a limit on how many tasks we can migrate every balance pass, 7540 * this makes (5) the runtime complexity of the balancer. 7541 * 7542 * An important property here is that each CPU is still (indirectly) connected 7543 * to every other CPU in at most O(log n) steps: 7544 * 7545 * The adjacency matrix of the resulting graph is given by: 7546 * 7547 * log_2 n 7548 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7549 * k = 0 7550 * 7551 * And you'll find that: 7552 * 7553 * A^(log_2 n)_i,j != 0 for all i,j (7) 7554 * 7555 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7556 * The task movement gives a factor of O(m), giving a convergence complexity 7557 * of: 7558 * 7559 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7560 * 7561 * 7562 * WORK CONSERVING 7563 * 7564 * In order to avoid CPUs going idle while there's still work to do, new idle 7565 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7566 * tree itself instead of relying on other CPUs to bring it work. 7567 * 7568 * This adds some complexity to both (5) and (8) but it reduces the total idle 7569 * time. 7570 * 7571 * [XXX more?] 7572 * 7573 * 7574 * CGROUPS 7575 * 7576 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7577 * 7578 * s_k,i 7579 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7580 * S_k 7581 * 7582 * Where 7583 * 7584 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7585 * 7586 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7587 * 7588 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7589 * property. 7590 * 7591 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7592 * rewrite all of this once again.] 7593 */ 7594 7595 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7596 7597 enum fbq_type { regular, remote, all }; 7598 7599 /* 7600 * 'group_type' describes the group of CPUs at the moment of load balancing. 7601 * 7602 * The enum is ordered by pulling priority, with the group with lowest priority 7603 * first so the group_type can simply be compared when selecting the busiest 7604 * group. See update_sd_pick_busiest(). 7605 */ 7606 enum group_type { 7607 /* The group has spare capacity that can be used to run more tasks. */ 7608 group_has_spare = 0, 7609 /* 7610 * The group is fully used and the tasks don't compete for more CPU 7611 * cycles. Nevertheless, some tasks might wait before running. 7612 */ 7613 group_fully_busy, 7614 /* 7615 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity 7616 * and must be migrated to a more powerful CPU. 7617 */ 7618 group_misfit_task, 7619 /* 7620 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 7621 * and the task should be migrated to it instead of running on the 7622 * current CPU. 7623 */ 7624 group_asym_packing, 7625 /* 7626 * The tasks' affinity constraints previously prevented the scheduler 7627 * from balancing the load across the system. 7628 */ 7629 group_imbalanced, 7630 /* 7631 * The CPU is overloaded and can't provide expected CPU cycles to all 7632 * tasks. 7633 */ 7634 group_overloaded 7635 }; 7636 7637 enum migration_type { 7638 migrate_load = 0, 7639 migrate_util, 7640 migrate_task, 7641 migrate_misfit 7642 }; 7643 7644 #define LBF_ALL_PINNED 0x01 7645 #define LBF_NEED_BREAK 0x02 7646 #define LBF_DST_PINNED 0x04 7647 #define LBF_SOME_PINNED 0x08 7648 #define LBF_ACTIVE_LB 0x10 7649 7650 struct lb_env { 7651 struct sched_domain *sd; 7652 7653 struct rq *src_rq; 7654 int src_cpu; 7655 7656 int dst_cpu; 7657 struct rq *dst_rq; 7658 7659 struct cpumask *dst_grpmask; 7660 int new_dst_cpu; 7661 enum cpu_idle_type idle; 7662 long imbalance; 7663 /* The set of CPUs under consideration for load-balancing */ 7664 struct cpumask *cpus; 7665 7666 unsigned int flags; 7667 7668 unsigned int loop; 7669 unsigned int loop_break; 7670 unsigned int loop_max; 7671 7672 enum fbq_type fbq_type; 7673 enum migration_type migration_type; 7674 struct list_head tasks; 7675 }; 7676 7677 /* 7678 * Is this task likely cache-hot: 7679 */ 7680 static int task_hot(struct task_struct *p, struct lb_env *env) 7681 { 7682 s64 delta; 7683 7684 lockdep_assert_rq_held(env->src_rq); 7685 7686 if (p->sched_class != &fair_sched_class) 7687 return 0; 7688 7689 if (unlikely(task_has_idle_policy(p))) 7690 return 0; 7691 7692 /* SMT siblings share cache */ 7693 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 7694 return 0; 7695 7696 /* 7697 * Buddy candidates are cache hot: 7698 */ 7699 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7700 (&p->se == cfs_rq_of(&p->se)->next || 7701 &p->se == cfs_rq_of(&p->se)->last)) 7702 return 1; 7703 7704 if (sysctl_sched_migration_cost == -1) 7705 return 1; 7706 7707 /* 7708 * Don't migrate task if the task's cookie does not match 7709 * with the destination CPU's core cookie. 7710 */ 7711 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 7712 return 1; 7713 7714 if (sysctl_sched_migration_cost == 0) 7715 return 0; 7716 7717 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7718 7719 return delta < (s64)sysctl_sched_migration_cost; 7720 } 7721 7722 #ifdef CONFIG_NUMA_BALANCING 7723 /* 7724 * Returns 1, if task migration degrades locality 7725 * Returns 0, if task migration improves locality i.e migration preferred. 7726 * Returns -1, if task migration is not affected by locality. 7727 */ 7728 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7729 { 7730 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7731 unsigned long src_weight, dst_weight; 7732 int src_nid, dst_nid, dist; 7733 7734 if (!static_branch_likely(&sched_numa_balancing)) 7735 return -1; 7736 7737 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7738 return -1; 7739 7740 src_nid = cpu_to_node(env->src_cpu); 7741 dst_nid = cpu_to_node(env->dst_cpu); 7742 7743 if (src_nid == dst_nid) 7744 return -1; 7745 7746 /* Migrating away from the preferred node is always bad. */ 7747 if (src_nid == p->numa_preferred_nid) { 7748 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7749 return 1; 7750 else 7751 return -1; 7752 } 7753 7754 /* Encourage migration to the preferred node. */ 7755 if (dst_nid == p->numa_preferred_nid) 7756 return 0; 7757 7758 /* Leaving a core idle is often worse than degrading locality. */ 7759 if (env->idle == CPU_IDLE) 7760 return -1; 7761 7762 dist = node_distance(src_nid, dst_nid); 7763 if (numa_group) { 7764 src_weight = group_weight(p, src_nid, dist); 7765 dst_weight = group_weight(p, dst_nid, dist); 7766 } else { 7767 src_weight = task_weight(p, src_nid, dist); 7768 dst_weight = task_weight(p, dst_nid, dist); 7769 } 7770 7771 return dst_weight < src_weight; 7772 } 7773 7774 #else 7775 static inline int migrate_degrades_locality(struct task_struct *p, 7776 struct lb_env *env) 7777 { 7778 return -1; 7779 } 7780 #endif 7781 7782 /* 7783 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7784 */ 7785 static 7786 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7787 { 7788 int tsk_cache_hot; 7789 7790 lockdep_assert_rq_held(env->src_rq); 7791 7792 /* 7793 * We do not migrate tasks that are: 7794 * 1) throttled_lb_pair, or 7795 * 2) cannot be migrated to this CPU due to cpus_ptr, or 7796 * 3) running (obviously), or 7797 * 4) are cache-hot on their current CPU. 7798 */ 7799 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7800 return 0; 7801 7802 /* Disregard pcpu kthreads; they are where they need to be. */ 7803 if (kthread_is_per_cpu(p)) 7804 return 0; 7805 7806 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 7807 int cpu; 7808 7809 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7810 7811 env->flags |= LBF_SOME_PINNED; 7812 7813 /* 7814 * Remember if this task can be migrated to any other CPU in 7815 * our sched_group. We may want to revisit it if we couldn't 7816 * meet load balance goals by pulling other tasks on src_cpu. 7817 * 7818 * Avoid computing new_dst_cpu 7819 * - for NEWLY_IDLE 7820 * - if we have already computed one in current iteration 7821 * - if it's an active balance 7822 */ 7823 if (env->idle == CPU_NEWLY_IDLE || 7824 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 7825 return 0; 7826 7827 /* Prevent to re-select dst_cpu via env's CPUs: */ 7828 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7829 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 7830 env->flags |= LBF_DST_PINNED; 7831 env->new_dst_cpu = cpu; 7832 break; 7833 } 7834 } 7835 7836 return 0; 7837 } 7838 7839 /* Record that we found at least one task that could run on dst_cpu */ 7840 env->flags &= ~LBF_ALL_PINNED; 7841 7842 if (task_running(env->src_rq, p)) { 7843 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7844 return 0; 7845 } 7846 7847 /* 7848 * Aggressive migration if: 7849 * 1) active balance 7850 * 2) destination numa is preferred 7851 * 3) task is cache cold, or 7852 * 4) too many balance attempts have failed. 7853 */ 7854 if (env->flags & LBF_ACTIVE_LB) 7855 return 1; 7856 7857 tsk_cache_hot = migrate_degrades_locality(p, env); 7858 if (tsk_cache_hot == -1) 7859 tsk_cache_hot = task_hot(p, env); 7860 7861 if (tsk_cache_hot <= 0 || 7862 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7863 if (tsk_cache_hot == 1) { 7864 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7865 schedstat_inc(p->se.statistics.nr_forced_migrations); 7866 } 7867 return 1; 7868 } 7869 7870 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7871 return 0; 7872 } 7873 7874 /* 7875 * detach_task() -- detach the task for the migration specified in env 7876 */ 7877 static void detach_task(struct task_struct *p, struct lb_env *env) 7878 { 7879 lockdep_assert_rq_held(env->src_rq); 7880 7881 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7882 set_task_cpu(p, env->dst_cpu); 7883 } 7884 7885 /* 7886 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7887 * part of active balancing operations within "domain". 7888 * 7889 * Returns a task if successful and NULL otherwise. 7890 */ 7891 static struct task_struct *detach_one_task(struct lb_env *env) 7892 { 7893 struct task_struct *p; 7894 7895 lockdep_assert_rq_held(env->src_rq); 7896 7897 list_for_each_entry_reverse(p, 7898 &env->src_rq->cfs_tasks, se.group_node) { 7899 if (!can_migrate_task(p, env)) 7900 continue; 7901 7902 detach_task(p, env); 7903 7904 /* 7905 * Right now, this is only the second place where 7906 * lb_gained[env->idle] is updated (other is detach_tasks) 7907 * so we can safely collect stats here rather than 7908 * inside detach_tasks(). 7909 */ 7910 schedstat_inc(env->sd->lb_gained[env->idle]); 7911 return p; 7912 } 7913 return NULL; 7914 } 7915 7916 static const unsigned int sched_nr_migrate_break = 32; 7917 7918 /* 7919 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 7920 * busiest_rq, as part of a balancing operation within domain "sd". 7921 * 7922 * Returns number of detached tasks if successful and 0 otherwise. 7923 */ 7924 static int detach_tasks(struct lb_env *env) 7925 { 7926 struct list_head *tasks = &env->src_rq->cfs_tasks; 7927 unsigned long util, load; 7928 struct task_struct *p; 7929 int detached = 0; 7930 7931 lockdep_assert_rq_held(env->src_rq); 7932 7933 /* 7934 * Source run queue has been emptied by another CPU, clear 7935 * LBF_ALL_PINNED flag as we will not test any task. 7936 */ 7937 if (env->src_rq->nr_running <= 1) { 7938 env->flags &= ~LBF_ALL_PINNED; 7939 return 0; 7940 } 7941 7942 if (env->imbalance <= 0) 7943 return 0; 7944 7945 while (!list_empty(tasks)) { 7946 /* 7947 * We don't want to steal all, otherwise we may be treated likewise, 7948 * which could at worst lead to a livelock crash. 7949 */ 7950 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7951 break; 7952 7953 p = list_last_entry(tasks, struct task_struct, se.group_node); 7954 7955 env->loop++; 7956 /* We've more or less seen every task there is, call it quits */ 7957 if (env->loop > env->loop_max) 7958 break; 7959 7960 /* take a breather every nr_migrate tasks */ 7961 if (env->loop > env->loop_break) { 7962 env->loop_break += sched_nr_migrate_break; 7963 env->flags |= LBF_NEED_BREAK; 7964 break; 7965 } 7966 7967 if (!can_migrate_task(p, env)) 7968 goto next; 7969 7970 switch (env->migration_type) { 7971 case migrate_load: 7972 /* 7973 * Depending of the number of CPUs and tasks and the 7974 * cgroup hierarchy, task_h_load() can return a null 7975 * value. Make sure that env->imbalance decreases 7976 * otherwise detach_tasks() will stop only after 7977 * detaching up to loop_max tasks. 7978 */ 7979 load = max_t(unsigned long, task_h_load(p), 1); 7980 7981 if (sched_feat(LB_MIN) && 7982 load < 16 && !env->sd->nr_balance_failed) 7983 goto next; 7984 7985 /* 7986 * Make sure that we don't migrate too much load. 7987 * Nevertheless, let relax the constraint if 7988 * scheduler fails to find a good waiting task to 7989 * migrate. 7990 */ 7991 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 7992 goto next; 7993 7994 env->imbalance -= load; 7995 break; 7996 7997 case migrate_util: 7998 util = task_util_est(p); 7999 8000 if (util > env->imbalance) 8001 goto next; 8002 8003 env->imbalance -= util; 8004 break; 8005 8006 case migrate_task: 8007 env->imbalance--; 8008 break; 8009 8010 case migrate_misfit: 8011 /* This is not a misfit task */ 8012 if (task_fits_capacity(p, capacity_of(env->src_cpu))) 8013 goto next; 8014 8015 env->imbalance = 0; 8016 break; 8017 } 8018 8019 detach_task(p, env); 8020 list_add(&p->se.group_node, &env->tasks); 8021 8022 detached++; 8023 8024 #ifdef CONFIG_PREEMPTION 8025 /* 8026 * NEWIDLE balancing is a source of latency, so preemptible 8027 * kernels will stop after the first task is detached to minimize 8028 * the critical section. 8029 */ 8030 if (env->idle == CPU_NEWLY_IDLE) 8031 break; 8032 #endif 8033 8034 /* 8035 * We only want to steal up to the prescribed amount of 8036 * load/util/tasks. 8037 */ 8038 if (env->imbalance <= 0) 8039 break; 8040 8041 continue; 8042 next: 8043 list_move(&p->se.group_node, tasks); 8044 } 8045 8046 /* 8047 * Right now, this is one of only two places we collect this stat 8048 * so we can safely collect detach_one_task() stats here rather 8049 * than inside detach_one_task(). 8050 */ 8051 schedstat_add(env->sd->lb_gained[env->idle], detached); 8052 8053 return detached; 8054 } 8055 8056 /* 8057 * attach_task() -- attach the task detached by detach_task() to its new rq. 8058 */ 8059 static void attach_task(struct rq *rq, struct task_struct *p) 8060 { 8061 lockdep_assert_rq_held(rq); 8062 8063 BUG_ON(task_rq(p) != rq); 8064 activate_task(rq, p, ENQUEUE_NOCLOCK); 8065 check_preempt_curr(rq, p, 0); 8066 } 8067 8068 /* 8069 * attach_one_task() -- attaches the task returned from detach_one_task() to 8070 * its new rq. 8071 */ 8072 static void attach_one_task(struct rq *rq, struct task_struct *p) 8073 { 8074 struct rq_flags rf; 8075 8076 rq_lock(rq, &rf); 8077 update_rq_clock(rq); 8078 attach_task(rq, p); 8079 rq_unlock(rq, &rf); 8080 } 8081 8082 /* 8083 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 8084 * new rq. 8085 */ 8086 static void attach_tasks(struct lb_env *env) 8087 { 8088 struct list_head *tasks = &env->tasks; 8089 struct task_struct *p; 8090 struct rq_flags rf; 8091 8092 rq_lock(env->dst_rq, &rf); 8093 update_rq_clock(env->dst_rq); 8094 8095 while (!list_empty(tasks)) { 8096 p = list_first_entry(tasks, struct task_struct, se.group_node); 8097 list_del_init(&p->se.group_node); 8098 8099 attach_task(env->dst_rq, p); 8100 } 8101 8102 rq_unlock(env->dst_rq, &rf); 8103 } 8104 8105 #ifdef CONFIG_NO_HZ_COMMON 8106 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 8107 { 8108 if (cfs_rq->avg.load_avg) 8109 return true; 8110 8111 if (cfs_rq->avg.util_avg) 8112 return true; 8113 8114 return false; 8115 } 8116 8117 static inline bool others_have_blocked(struct rq *rq) 8118 { 8119 if (READ_ONCE(rq->avg_rt.util_avg)) 8120 return true; 8121 8122 if (READ_ONCE(rq->avg_dl.util_avg)) 8123 return true; 8124 8125 if (thermal_load_avg(rq)) 8126 return true; 8127 8128 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 8129 if (READ_ONCE(rq->avg_irq.util_avg)) 8130 return true; 8131 #endif 8132 8133 return false; 8134 } 8135 8136 static inline void update_blocked_load_tick(struct rq *rq) 8137 { 8138 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 8139 } 8140 8141 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 8142 { 8143 if (!has_blocked) 8144 rq->has_blocked_load = 0; 8145 } 8146 #else 8147 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 8148 static inline bool others_have_blocked(struct rq *rq) { return false; } 8149 static inline void update_blocked_load_tick(struct rq *rq) {} 8150 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 8151 #endif 8152 8153 static bool __update_blocked_others(struct rq *rq, bool *done) 8154 { 8155 const struct sched_class *curr_class; 8156 u64 now = rq_clock_pelt(rq); 8157 unsigned long thermal_pressure; 8158 bool decayed; 8159 8160 /* 8161 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 8162 * DL and IRQ signals have been updated before updating CFS. 8163 */ 8164 curr_class = rq->curr->sched_class; 8165 8166 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 8167 8168 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 8169 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 8170 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 8171 update_irq_load_avg(rq, 0); 8172 8173 if (others_have_blocked(rq)) 8174 *done = false; 8175 8176 return decayed; 8177 } 8178 8179 #ifdef CONFIG_FAIR_GROUP_SCHED 8180 8181 static bool __update_blocked_fair(struct rq *rq, bool *done) 8182 { 8183 struct cfs_rq *cfs_rq, *pos; 8184 bool decayed = false; 8185 int cpu = cpu_of(rq); 8186 8187 /* 8188 * Iterates the task_group tree in a bottom up fashion, see 8189 * list_add_leaf_cfs_rq() for details. 8190 */ 8191 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 8192 struct sched_entity *se; 8193 8194 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 8195 update_tg_load_avg(cfs_rq); 8196 8197 if (cfs_rq == &rq->cfs) 8198 decayed = true; 8199 } 8200 8201 /* Propagate pending load changes to the parent, if any: */ 8202 se = cfs_rq->tg->se[cpu]; 8203 if (se && !skip_blocked_update(se)) 8204 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 8205 8206 /* 8207 * There can be a lot of idle CPU cgroups. Don't let fully 8208 * decayed cfs_rqs linger on the list. 8209 */ 8210 if (cfs_rq_is_decayed(cfs_rq)) 8211 list_del_leaf_cfs_rq(cfs_rq); 8212 8213 /* Don't need periodic decay once load/util_avg are null */ 8214 if (cfs_rq_has_blocked(cfs_rq)) 8215 *done = false; 8216 } 8217 8218 return decayed; 8219 } 8220 8221 /* 8222 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 8223 * This needs to be done in a top-down fashion because the load of a child 8224 * group is a fraction of its parents load. 8225 */ 8226 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 8227 { 8228 struct rq *rq = rq_of(cfs_rq); 8229 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 8230 unsigned long now = jiffies; 8231 unsigned long load; 8232 8233 if (cfs_rq->last_h_load_update == now) 8234 return; 8235 8236 WRITE_ONCE(cfs_rq->h_load_next, NULL); 8237 for_each_sched_entity(se) { 8238 cfs_rq = cfs_rq_of(se); 8239 WRITE_ONCE(cfs_rq->h_load_next, se); 8240 if (cfs_rq->last_h_load_update == now) 8241 break; 8242 } 8243 8244 if (!se) { 8245 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 8246 cfs_rq->last_h_load_update = now; 8247 } 8248 8249 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 8250 load = cfs_rq->h_load; 8251 load = div64_ul(load * se->avg.load_avg, 8252 cfs_rq_load_avg(cfs_rq) + 1); 8253 cfs_rq = group_cfs_rq(se); 8254 cfs_rq->h_load = load; 8255 cfs_rq->last_h_load_update = now; 8256 } 8257 } 8258 8259 static unsigned long task_h_load(struct task_struct *p) 8260 { 8261 struct cfs_rq *cfs_rq = task_cfs_rq(p); 8262 8263 update_cfs_rq_h_load(cfs_rq); 8264 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 8265 cfs_rq_load_avg(cfs_rq) + 1); 8266 } 8267 #else 8268 static bool __update_blocked_fair(struct rq *rq, bool *done) 8269 { 8270 struct cfs_rq *cfs_rq = &rq->cfs; 8271 bool decayed; 8272 8273 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 8274 if (cfs_rq_has_blocked(cfs_rq)) 8275 *done = false; 8276 8277 return decayed; 8278 } 8279 8280 static unsigned long task_h_load(struct task_struct *p) 8281 { 8282 return p->se.avg.load_avg; 8283 } 8284 #endif 8285 8286 static void update_blocked_averages(int cpu) 8287 { 8288 bool decayed = false, done = true; 8289 struct rq *rq = cpu_rq(cpu); 8290 struct rq_flags rf; 8291 8292 rq_lock_irqsave(rq, &rf); 8293 update_blocked_load_tick(rq); 8294 update_rq_clock(rq); 8295 8296 decayed |= __update_blocked_others(rq, &done); 8297 decayed |= __update_blocked_fair(rq, &done); 8298 8299 update_blocked_load_status(rq, !done); 8300 if (decayed) 8301 cpufreq_update_util(rq, 0); 8302 rq_unlock_irqrestore(rq, &rf); 8303 } 8304 8305 /********** Helpers for find_busiest_group ************************/ 8306 8307 /* 8308 * sg_lb_stats - stats of a sched_group required for load_balancing 8309 */ 8310 struct sg_lb_stats { 8311 unsigned long avg_load; /*Avg load across the CPUs of the group */ 8312 unsigned long group_load; /* Total load over the CPUs of the group */ 8313 unsigned long group_capacity; 8314 unsigned long group_util; /* Total utilization over the CPUs of the group */ 8315 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 8316 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 8317 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 8318 unsigned int idle_cpus; 8319 unsigned int group_weight; 8320 enum group_type group_type; 8321 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 8322 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 8323 #ifdef CONFIG_NUMA_BALANCING 8324 unsigned int nr_numa_running; 8325 unsigned int nr_preferred_running; 8326 #endif 8327 }; 8328 8329 /* 8330 * sd_lb_stats - Structure to store the statistics of a sched_domain 8331 * during load balancing. 8332 */ 8333 struct sd_lb_stats { 8334 struct sched_group *busiest; /* Busiest group in this sd */ 8335 struct sched_group *local; /* Local group in this sd */ 8336 unsigned long total_load; /* Total load of all groups in sd */ 8337 unsigned long total_capacity; /* Total capacity of all groups in sd */ 8338 unsigned long avg_load; /* Average load across all groups in sd */ 8339 unsigned int prefer_sibling; /* tasks should go to sibling first */ 8340 8341 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 8342 struct sg_lb_stats local_stat; /* Statistics of the local group */ 8343 }; 8344 8345 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 8346 { 8347 /* 8348 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 8349 * local_stat because update_sg_lb_stats() does a full clear/assignment. 8350 * We must however set busiest_stat::group_type and 8351 * busiest_stat::idle_cpus to the worst busiest group because 8352 * update_sd_pick_busiest() reads these before assignment. 8353 */ 8354 *sds = (struct sd_lb_stats){ 8355 .busiest = NULL, 8356 .local = NULL, 8357 .total_load = 0UL, 8358 .total_capacity = 0UL, 8359 .busiest_stat = { 8360 .idle_cpus = UINT_MAX, 8361 .group_type = group_has_spare, 8362 }, 8363 }; 8364 } 8365 8366 static unsigned long scale_rt_capacity(int cpu) 8367 { 8368 struct rq *rq = cpu_rq(cpu); 8369 unsigned long max = arch_scale_cpu_capacity(cpu); 8370 unsigned long used, free; 8371 unsigned long irq; 8372 8373 irq = cpu_util_irq(rq); 8374 8375 if (unlikely(irq >= max)) 8376 return 1; 8377 8378 /* 8379 * avg_rt.util_avg and avg_dl.util_avg track binary signals 8380 * (running and not running) with weights 0 and 1024 respectively. 8381 * avg_thermal.load_avg tracks thermal pressure and the weighted 8382 * average uses the actual delta max capacity(load). 8383 */ 8384 used = READ_ONCE(rq->avg_rt.util_avg); 8385 used += READ_ONCE(rq->avg_dl.util_avg); 8386 used += thermal_load_avg(rq); 8387 8388 if (unlikely(used >= max)) 8389 return 1; 8390 8391 free = max - used; 8392 8393 return scale_irq_capacity(free, irq, max); 8394 } 8395 8396 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 8397 { 8398 unsigned long capacity = scale_rt_capacity(cpu); 8399 struct sched_group *sdg = sd->groups; 8400 8401 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 8402 8403 if (!capacity) 8404 capacity = 1; 8405 8406 cpu_rq(cpu)->cpu_capacity = capacity; 8407 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 8408 8409 sdg->sgc->capacity = capacity; 8410 sdg->sgc->min_capacity = capacity; 8411 sdg->sgc->max_capacity = capacity; 8412 } 8413 8414 void update_group_capacity(struct sched_domain *sd, int cpu) 8415 { 8416 struct sched_domain *child = sd->child; 8417 struct sched_group *group, *sdg = sd->groups; 8418 unsigned long capacity, min_capacity, max_capacity; 8419 unsigned long interval; 8420 8421 interval = msecs_to_jiffies(sd->balance_interval); 8422 interval = clamp(interval, 1UL, max_load_balance_interval); 8423 sdg->sgc->next_update = jiffies + interval; 8424 8425 if (!child) { 8426 update_cpu_capacity(sd, cpu); 8427 return; 8428 } 8429 8430 capacity = 0; 8431 min_capacity = ULONG_MAX; 8432 max_capacity = 0; 8433 8434 if (child->flags & SD_OVERLAP) { 8435 /* 8436 * SD_OVERLAP domains cannot assume that child groups 8437 * span the current group. 8438 */ 8439 8440 for_each_cpu(cpu, sched_group_span(sdg)) { 8441 unsigned long cpu_cap = capacity_of(cpu); 8442 8443 capacity += cpu_cap; 8444 min_capacity = min(cpu_cap, min_capacity); 8445 max_capacity = max(cpu_cap, max_capacity); 8446 } 8447 } else { 8448 /* 8449 * !SD_OVERLAP domains can assume that child groups 8450 * span the current group. 8451 */ 8452 8453 group = child->groups; 8454 do { 8455 struct sched_group_capacity *sgc = group->sgc; 8456 8457 capacity += sgc->capacity; 8458 min_capacity = min(sgc->min_capacity, min_capacity); 8459 max_capacity = max(sgc->max_capacity, max_capacity); 8460 group = group->next; 8461 } while (group != child->groups); 8462 } 8463 8464 sdg->sgc->capacity = capacity; 8465 sdg->sgc->min_capacity = min_capacity; 8466 sdg->sgc->max_capacity = max_capacity; 8467 } 8468 8469 /* 8470 * Check whether the capacity of the rq has been noticeably reduced by side 8471 * activity. The imbalance_pct is used for the threshold. 8472 * Return true is the capacity is reduced 8473 */ 8474 static inline int 8475 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 8476 { 8477 return ((rq->cpu_capacity * sd->imbalance_pct) < 8478 (rq->cpu_capacity_orig * 100)); 8479 } 8480 8481 /* 8482 * Check whether a rq has a misfit task and if it looks like we can actually 8483 * help that task: we can migrate the task to a CPU of higher capacity, or 8484 * the task's current CPU is heavily pressured. 8485 */ 8486 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 8487 { 8488 return rq->misfit_task_load && 8489 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 8490 check_cpu_capacity(rq, sd)); 8491 } 8492 8493 /* 8494 * Group imbalance indicates (and tries to solve) the problem where balancing 8495 * groups is inadequate due to ->cpus_ptr constraints. 8496 * 8497 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 8498 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 8499 * Something like: 8500 * 8501 * { 0 1 2 3 } { 4 5 6 7 } 8502 * * * * * 8503 * 8504 * If we were to balance group-wise we'd place two tasks in the first group and 8505 * two tasks in the second group. Clearly this is undesired as it will overload 8506 * cpu 3 and leave one of the CPUs in the second group unused. 8507 * 8508 * The current solution to this issue is detecting the skew in the first group 8509 * by noticing the lower domain failed to reach balance and had difficulty 8510 * moving tasks due to affinity constraints. 8511 * 8512 * When this is so detected; this group becomes a candidate for busiest; see 8513 * update_sd_pick_busiest(). And calculate_imbalance() and 8514 * find_busiest_group() avoid some of the usual balance conditions to allow it 8515 * to create an effective group imbalance. 8516 * 8517 * This is a somewhat tricky proposition since the next run might not find the 8518 * group imbalance and decide the groups need to be balanced again. A most 8519 * subtle and fragile situation. 8520 */ 8521 8522 static inline int sg_imbalanced(struct sched_group *group) 8523 { 8524 return group->sgc->imbalance; 8525 } 8526 8527 /* 8528 * group_has_capacity returns true if the group has spare capacity that could 8529 * be used by some tasks. 8530 * We consider that a group has spare capacity if the * number of task is 8531 * smaller than the number of CPUs or if the utilization is lower than the 8532 * available capacity for CFS tasks. 8533 * For the latter, we use a threshold to stabilize the state, to take into 8534 * account the variance of the tasks' load and to return true if the available 8535 * capacity in meaningful for the load balancer. 8536 * As an example, an available capacity of 1% can appear but it doesn't make 8537 * any benefit for the load balance. 8538 */ 8539 static inline bool 8540 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8541 { 8542 if (sgs->sum_nr_running < sgs->group_weight) 8543 return true; 8544 8545 if ((sgs->group_capacity * imbalance_pct) < 8546 (sgs->group_runnable * 100)) 8547 return false; 8548 8549 if ((sgs->group_capacity * 100) > 8550 (sgs->group_util * imbalance_pct)) 8551 return true; 8552 8553 return false; 8554 } 8555 8556 /* 8557 * group_is_overloaded returns true if the group has more tasks than it can 8558 * handle. 8559 * group_is_overloaded is not equals to !group_has_capacity because a group 8560 * with the exact right number of tasks, has no more spare capacity but is not 8561 * overloaded so both group_has_capacity and group_is_overloaded return 8562 * false. 8563 */ 8564 static inline bool 8565 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8566 { 8567 if (sgs->sum_nr_running <= sgs->group_weight) 8568 return false; 8569 8570 if ((sgs->group_capacity * 100) < 8571 (sgs->group_util * imbalance_pct)) 8572 return true; 8573 8574 if ((sgs->group_capacity * imbalance_pct) < 8575 (sgs->group_runnable * 100)) 8576 return true; 8577 8578 return false; 8579 } 8580 8581 static inline enum 8582 group_type group_classify(unsigned int imbalance_pct, 8583 struct sched_group *group, 8584 struct sg_lb_stats *sgs) 8585 { 8586 if (group_is_overloaded(imbalance_pct, sgs)) 8587 return group_overloaded; 8588 8589 if (sg_imbalanced(group)) 8590 return group_imbalanced; 8591 8592 if (sgs->group_asym_packing) 8593 return group_asym_packing; 8594 8595 if (sgs->group_misfit_task_load) 8596 return group_misfit_task; 8597 8598 if (!group_has_capacity(imbalance_pct, sgs)) 8599 return group_fully_busy; 8600 8601 return group_has_spare; 8602 } 8603 8604 /** 8605 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8606 * @env: The load balancing environment. 8607 * @group: sched_group whose statistics are to be updated. 8608 * @sgs: variable to hold the statistics for this group. 8609 * @sg_status: Holds flag indicating the status of the sched_group 8610 */ 8611 static inline void update_sg_lb_stats(struct lb_env *env, 8612 struct sched_group *group, 8613 struct sg_lb_stats *sgs, 8614 int *sg_status) 8615 { 8616 int i, nr_running, local_group; 8617 8618 memset(sgs, 0, sizeof(*sgs)); 8619 8620 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group)); 8621 8622 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8623 struct rq *rq = cpu_rq(i); 8624 8625 sgs->group_load += cpu_load(rq); 8626 sgs->group_util += cpu_util(i); 8627 sgs->group_runnable += cpu_runnable(rq); 8628 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 8629 8630 nr_running = rq->nr_running; 8631 sgs->sum_nr_running += nr_running; 8632 8633 if (nr_running > 1) 8634 *sg_status |= SG_OVERLOAD; 8635 8636 if (cpu_overutilized(i)) 8637 *sg_status |= SG_OVERUTILIZED; 8638 8639 #ifdef CONFIG_NUMA_BALANCING 8640 sgs->nr_numa_running += rq->nr_numa_running; 8641 sgs->nr_preferred_running += rq->nr_preferred_running; 8642 #endif 8643 /* 8644 * No need to call idle_cpu() if nr_running is not 0 8645 */ 8646 if (!nr_running && idle_cpu(i)) { 8647 sgs->idle_cpus++; 8648 /* Idle cpu can't have misfit task */ 8649 continue; 8650 } 8651 8652 if (local_group) 8653 continue; 8654 8655 /* Check for a misfit task on the cpu */ 8656 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8657 sgs->group_misfit_task_load < rq->misfit_task_load) { 8658 sgs->group_misfit_task_load = rq->misfit_task_load; 8659 *sg_status |= SG_OVERLOAD; 8660 } 8661 } 8662 8663 /* Check if dst CPU is idle and preferred to this group */ 8664 if (env->sd->flags & SD_ASYM_PACKING && 8665 env->idle != CPU_NOT_IDLE && 8666 sgs->sum_h_nr_running && 8667 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) { 8668 sgs->group_asym_packing = 1; 8669 } 8670 8671 sgs->group_capacity = group->sgc->capacity; 8672 8673 sgs->group_weight = group->group_weight; 8674 8675 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 8676 8677 /* Computing avg_load makes sense only when group is overloaded */ 8678 if (sgs->group_type == group_overloaded) 8679 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8680 sgs->group_capacity; 8681 } 8682 8683 /** 8684 * update_sd_pick_busiest - return 1 on busiest group 8685 * @env: The load balancing environment. 8686 * @sds: sched_domain statistics 8687 * @sg: sched_group candidate to be checked for being the busiest 8688 * @sgs: sched_group statistics 8689 * 8690 * Determine if @sg is a busier group than the previously selected 8691 * busiest group. 8692 * 8693 * Return: %true if @sg is a busier group than the previously selected 8694 * busiest group. %false otherwise. 8695 */ 8696 static bool update_sd_pick_busiest(struct lb_env *env, 8697 struct sd_lb_stats *sds, 8698 struct sched_group *sg, 8699 struct sg_lb_stats *sgs) 8700 { 8701 struct sg_lb_stats *busiest = &sds->busiest_stat; 8702 8703 /* Make sure that there is at least one task to pull */ 8704 if (!sgs->sum_h_nr_running) 8705 return false; 8706 8707 /* 8708 * Don't try to pull misfit tasks we can't help. 8709 * We can use max_capacity here as reduction in capacity on some 8710 * CPUs in the group should either be possible to resolve 8711 * internally or be covered by avg_load imbalance (eventually). 8712 */ 8713 if (sgs->group_type == group_misfit_task && 8714 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 8715 sds->local_stat.group_type != group_has_spare)) 8716 return false; 8717 8718 if (sgs->group_type > busiest->group_type) 8719 return true; 8720 8721 if (sgs->group_type < busiest->group_type) 8722 return false; 8723 8724 /* 8725 * The candidate and the current busiest group are the same type of 8726 * group. Let check which one is the busiest according to the type. 8727 */ 8728 8729 switch (sgs->group_type) { 8730 case group_overloaded: 8731 /* Select the overloaded group with highest avg_load. */ 8732 if (sgs->avg_load <= busiest->avg_load) 8733 return false; 8734 break; 8735 8736 case group_imbalanced: 8737 /* 8738 * Select the 1st imbalanced group as we don't have any way to 8739 * choose one more than another. 8740 */ 8741 return false; 8742 8743 case group_asym_packing: 8744 /* Prefer to move from lowest priority CPU's work */ 8745 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 8746 return false; 8747 break; 8748 8749 case group_misfit_task: 8750 /* 8751 * If we have more than one misfit sg go with the biggest 8752 * misfit. 8753 */ 8754 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8755 return false; 8756 break; 8757 8758 case group_fully_busy: 8759 /* 8760 * Select the fully busy group with highest avg_load. In 8761 * theory, there is no need to pull task from such kind of 8762 * group because tasks have all compute capacity that they need 8763 * but we can still improve the overall throughput by reducing 8764 * contention when accessing shared HW resources. 8765 * 8766 * XXX for now avg_load is not computed and always 0 so we 8767 * select the 1st one. 8768 */ 8769 if (sgs->avg_load <= busiest->avg_load) 8770 return false; 8771 break; 8772 8773 case group_has_spare: 8774 /* 8775 * Select not overloaded group with lowest number of idle cpus 8776 * and highest number of running tasks. We could also compare 8777 * the spare capacity which is more stable but it can end up 8778 * that the group has less spare capacity but finally more idle 8779 * CPUs which means less opportunity to pull tasks. 8780 */ 8781 if (sgs->idle_cpus > busiest->idle_cpus) 8782 return false; 8783 else if ((sgs->idle_cpus == busiest->idle_cpus) && 8784 (sgs->sum_nr_running <= busiest->sum_nr_running)) 8785 return false; 8786 8787 break; 8788 } 8789 8790 /* 8791 * Candidate sg has no more than one task per CPU and has higher 8792 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 8793 * throughput. Maximize throughput, power/energy consequences are not 8794 * considered. 8795 */ 8796 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 8797 (sgs->group_type <= group_fully_busy) && 8798 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 8799 return false; 8800 8801 return true; 8802 } 8803 8804 #ifdef CONFIG_NUMA_BALANCING 8805 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8806 { 8807 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 8808 return regular; 8809 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 8810 return remote; 8811 return all; 8812 } 8813 8814 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8815 { 8816 if (rq->nr_running > rq->nr_numa_running) 8817 return regular; 8818 if (rq->nr_running > rq->nr_preferred_running) 8819 return remote; 8820 return all; 8821 } 8822 #else 8823 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8824 { 8825 return all; 8826 } 8827 8828 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8829 { 8830 return regular; 8831 } 8832 #endif /* CONFIG_NUMA_BALANCING */ 8833 8834 8835 struct sg_lb_stats; 8836 8837 /* 8838 * task_running_on_cpu - return 1 if @p is running on @cpu. 8839 */ 8840 8841 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 8842 { 8843 /* Task has no contribution or is new */ 8844 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8845 return 0; 8846 8847 if (task_on_rq_queued(p)) 8848 return 1; 8849 8850 return 0; 8851 } 8852 8853 /** 8854 * idle_cpu_without - would a given CPU be idle without p ? 8855 * @cpu: the processor on which idleness is tested. 8856 * @p: task which should be ignored. 8857 * 8858 * Return: 1 if the CPU would be idle. 0 otherwise. 8859 */ 8860 static int idle_cpu_without(int cpu, struct task_struct *p) 8861 { 8862 struct rq *rq = cpu_rq(cpu); 8863 8864 if (rq->curr != rq->idle && rq->curr != p) 8865 return 0; 8866 8867 /* 8868 * rq->nr_running can't be used but an updated version without the 8869 * impact of p on cpu must be used instead. The updated nr_running 8870 * be computed and tested before calling idle_cpu_without(). 8871 */ 8872 8873 #ifdef CONFIG_SMP 8874 if (rq->ttwu_pending) 8875 return 0; 8876 #endif 8877 8878 return 1; 8879 } 8880 8881 /* 8882 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 8883 * @sd: The sched_domain level to look for idlest group. 8884 * @group: sched_group whose statistics are to be updated. 8885 * @sgs: variable to hold the statistics for this group. 8886 * @p: The task for which we look for the idlest group/CPU. 8887 */ 8888 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 8889 struct sched_group *group, 8890 struct sg_lb_stats *sgs, 8891 struct task_struct *p) 8892 { 8893 int i, nr_running; 8894 8895 memset(sgs, 0, sizeof(*sgs)); 8896 8897 for_each_cpu(i, sched_group_span(group)) { 8898 struct rq *rq = cpu_rq(i); 8899 unsigned int local; 8900 8901 sgs->group_load += cpu_load_without(rq, p); 8902 sgs->group_util += cpu_util_without(i, p); 8903 sgs->group_runnable += cpu_runnable_without(rq, p); 8904 local = task_running_on_cpu(i, p); 8905 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 8906 8907 nr_running = rq->nr_running - local; 8908 sgs->sum_nr_running += nr_running; 8909 8910 /* 8911 * No need to call idle_cpu_without() if nr_running is not 0 8912 */ 8913 if (!nr_running && idle_cpu_without(i, p)) 8914 sgs->idle_cpus++; 8915 8916 } 8917 8918 /* Check if task fits in the group */ 8919 if (sd->flags & SD_ASYM_CPUCAPACITY && 8920 !task_fits_capacity(p, group->sgc->max_capacity)) { 8921 sgs->group_misfit_task_load = 1; 8922 } 8923 8924 sgs->group_capacity = group->sgc->capacity; 8925 8926 sgs->group_weight = group->group_weight; 8927 8928 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 8929 8930 /* 8931 * Computing avg_load makes sense only when group is fully busy or 8932 * overloaded 8933 */ 8934 if (sgs->group_type == group_fully_busy || 8935 sgs->group_type == group_overloaded) 8936 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8937 sgs->group_capacity; 8938 } 8939 8940 static bool update_pick_idlest(struct sched_group *idlest, 8941 struct sg_lb_stats *idlest_sgs, 8942 struct sched_group *group, 8943 struct sg_lb_stats *sgs) 8944 { 8945 if (sgs->group_type < idlest_sgs->group_type) 8946 return true; 8947 8948 if (sgs->group_type > idlest_sgs->group_type) 8949 return false; 8950 8951 /* 8952 * The candidate and the current idlest group are the same type of 8953 * group. Let check which one is the idlest according to the type. 8954 */ 8955 8956 switch (sgs->group_type) { 8957 case group_overloaded: 8958 case group_fully_busy: 8959 /* Select the group with lowest avg_load. */ 8960 if (idlest_sgs->avg_load <= sgs->avg_load) 8961 return false; 8962 break; 8963 8964 case group_imbalanced: 8965 case group_asym_packing: 8966 /* Those types are not used in the slow wakeup path */ 8967 return false; 8968 8969 case group_misfit_task: 8970 /* Select group with the highest max capacity */ 8971 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 8972 return false; 8973 break; 8974 8975 case group_has_spare: 8976 /* Select group with most idle CPUs */ 8977 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 8978 return false; 8979 8980 /* Select group with lowest group_util */ 8981 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 8982 idlest_sgs->group_util <= sgs->group_util) 8983 return false; 8984 8985 break; 8986 } 8987 8988 return true; 8989 } 8990 8991 /* 8992 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain. 8993 * This is an approximation as the number of running tasks may not be 8994 * related to the number of busy CPUs due to sched_setaffinity. 8995 */ 8996 static inline bool allow_numa_imbalance(int dst_running, int dst_weight) 8997 { 8998 return (dst_running < (dst_weight >> 2)); 8999 } 9000 9001 /* 9002 * find_idlest_group() finds and returns the least busy CPU group within the 9003 * domain. 9004 * 9005 * Assumes p is allowed on at least one CPU in sd. 9006 */ 9007 static struct sched_group * 9008 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 9009 { 9010 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 9011 struct sg_lb_stats local_sgs, tmp_sgs; 9012 struct sg_lb_stats *sgs; 9013 unsigned long imbalance; 9014 struct sg_lb_stats idlest_sgs = { 9015 .avg_load = UINT_MAX, 9016 .group_type = group_overloaded, 9017 }; 9018 9019 do { 9020 int local_group; 9021 9022 /* Skip over this group if it has no CPUs allowed */ 9023 if (!cpumask_intersects(sched_group_span(group), 9024 p->cpus_ptr)) 9025 continue; 9026 9027 /* Skip over this group if no cookie matched */ 9028 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 9029 continue; 9030 9031 local_group = cpumask_test_cpu(this_cpu, 9032 sched_group_span(group)); 9033 9034 if (local_group) { 9035 sgs = &local_sgs; 9036 local = group; 9037 } else { 9038 sgs = &tmp_sgs; 9039 } 9040 9041 update_sg_wakeup_stats(sd, group, sgs, p); 9042 9043 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 9044 idlest = group; 9045 idlest_sgs = *sgs; 9046 } 9047 9048 } while (group = group->next, group != sd->groups); 9049 9050 9051 /* There is no idlest group to push tasks to */ 9052 if (!idlest) 9053 return NULL; 9054 9055 /* The local group has been skipped because of CPU affinity */ 9056 if (!local) 9057 return idlest; 9058 9059 /* 9060 * If the local group is idler than the selected idlest group 9061 * don't try and push the task. 9062 */ 9063 if (local_sgs.group_type < idlest_sgs.group_type) 9064 return NULL; 9065 9066 /* 9067 * If the local group is busier than the selected idlest group 9068 * try and push the task. 9069 */ 9070 if (local_sgs.group_type > idlest_sgs.group_type) 9071 return idlest; 9072 9073 switch (local_sgs.group_type) { 9074 case group_overloaded: 9075 case group_fully_busy: 9076 9077 /* Calculate allowed imbalance based on load */ 9078 imbalance = scale_load_down(NICE_0_LOAD) * 9079 (sd->imbalance_pct-100) / 100; 9080 9081 /* 9082 * When comparing groups across NUMA domains, it's possible for 9083 * the local domain to be very lightly loaded relative to the 9084 * remote domains but "imbalance" skews the comparison making 9085 * remote CPUs look much more favourable. When considering 9086 * cross-domain, add imbalance to the load on the remote node 9087 * and consider staying local. 9088 */ 9089 9090 if ((sd->flags & SD_NUMA) && 9091 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 9092 return NULL; 9093 9094 /* 9095 * If the local group is less loaded than the selected 9096 * idlest group don't try and push any tasks. 9097 */ 9098 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 9099 return NULL; 9100 9101 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 9102 return NULL; 9103 break; 9104 9105 case group_imbalanced: 9106 case group_asym_packing: 9107 /* Those type are not used in the slow wakeup path */ 9108 return NULL; 9109 9110 case group_misfit_task: 9111 /* Select group with the highest max capacity */ 9112 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 9113 return NULL; 9114 break; 9115 9116 case group_has_spare: 9117 if (sd->flags & SD_NUMA) { 9118 #ifdef CONFIG_NUMA_BALANCING 9119 int idlest_cpu; 9120 /* 9121 * If there is spare capacity at NUMA, try to select 9122 * the preferred node 9123 */ 9124 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 9125 return NULL; 9126 9127 idlest_cpu = cpumask_first(sched_group_span(idlest)); 9128 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 9129 return idlest; 9130 #endif 9131 /* 9132 * Otherwise, keep the task on this node to stay close 9133 * its wakeup source and improve locality. If there is 9134 * a real need of migration, periodic load balance will 9135 * take care of it. 9136 */ 9137 if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight)) 9138 return NULL; 9139 } 9140 9141 /* 9142 * Select group with highest number of idle CPUs. We could also 9143 * compare the utilization which is more stable but it can end 9144 * up that the group has less spare capacity but finally more 9145 * idle CPUs which means more opportunity to run task. 9146 */ 9147 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 9148 return NULL; 9149 break; 9150 } 9151 9152 return idlest; 9153 } 9154 9155 /** 9156 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 9157 * @env: The load balancing environment. 9158 * @sds: variable to hold the statistics for this sched_domain. 9159 */ 9160 9161 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 9162 { 9163 struct sched_domain *child = env->sd->child; 9164 struct sched_group *sg = env->sd->groups; 9165 struct sg_lb_stats *local = &sds->local_stat; 9166 struct sg_lb_stats tmp_sgs; 9167 int sg_status = 0; 9168 9169 do { 9170 struct sg_lb_stats *sgs = &tmp_sgs; 9171 int local_group; 9172 9173 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 9174 if (local_group) { 9175 sds->local = sg; 9176 sgs = local; 9177 9178 if (env->idle != CPU_NEWLY_IDLE || 9179 time_after_eq(jiffies, sg->sgc->next_update)) 9180 update_group_capacity(env->sd, env->dst_cpu); 9181 } 9182 9183 update_sg_lb_stats(env, sg, sgs, &sg_status); 9184 9185 if (local_group) 9186 goto next_group; 9187 9188 9189 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 9190 sds->busiest = sg; 9191 sds->busiest_stat = *sgs; 9192 } 9193 9194 next_group: 9195 /* Now, start updating sd_lb_stats */ 9196 sds->total_load += sgs->group_load; 9197 sds->total_capacity += sgs->group_capacity; 9198 9199 sg = sg->next; 9200 } while (sg != env->sd->groups); 9201 9202 /* Tag domain that child domain prefers tasks go to siblings first */ 9203 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 9204 9205 9206 if (env->sd->flags & SD_NUMA) 9207 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 9208 9209 if (!env->sd->parent) { 9210 struct root_domain *rd = env->dst_rq->rd; 9211 9212 /* update overload indicator if we are at root domain */ 9213 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 9214 9215 /* Update over-utilization (tipping point, U >= 0) indicator */ 9216 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 9217 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 9218 } else if (sg_status & SG_OVERUTILIZED) { 9219 struct root_domain *rd = env->dst_rq->rd; 9220 9221 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 9222 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 9223 } 9224 } 9225 9226 #define NUMA_IMBALANCE_MIN 2 9227 9228 static inline long adjust_numa_imbalance(int imbalance, 9229 int dst_running, int dst_weight) 9230 { 9231 if (!allow_numa_imbalance(dst_running, dst_weight)) 9232 return imbalance; 9233 9234 /* 9235 * Allow a small imbalance based on a simple pair of communicating 9236 * tasks that remain local when the destination is lightly loaded. 9237 */ 9238 if (imbalance <= NUMA_IMBALANCE_MIN) 9239 return 0; 9240 9241 return imbalance; 9242 } 9243 9244 /** 9245 * calculate_imbalance - Calculate the amount of imbalance present within the 9246 * groups of a given sched_domain during load balance. 9247 * @env: load balance environment 9248 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 9249 */ 9250 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 9251 { 9252 struct sg_lb_stats *local, *busiest; 9253 9254 local = &sds->local_stat; 9255 busiest = &sds->busiest_stat; 9256 9257 if (busiest->group_type == group_misfit_task) { 9258 /* Set imbalance to allow misfit tasks to be balanced. */ 9259 env->migration_type = migrate_misfit; 9260 env->imbalance = 1; 9261 return; 9262 } 9263 9264 if (busiest->group_type == group_asym_packing) { 9265 /* 9266 * In case of asym capacity, we will try to migrate all load to 9267 * the preferred CPU. 9268 */ 9269 env->migration_type = migrate_task; 9270 env->imbalance = busiest->sum_h_nr_running; 9271 return; 9272 } 9273 9274 if (busiest->group_type == group_imbalanced) { 9275 /* 9276 * In the group_imb case we cannot rely on group-wide averages 9277 * to ensure CPU-load equilibrium, try to move any task to fix 9278 * the imbalance. The next load balance will take care of 9279 * balancing back the system. 9280 */ 9281 env->migration_type = migrate_task; 9282 env->imbalance = 1; 9283 return; 9284 } 9285 9286 /* 9287 * Try to use spare capacity of local group without overloading it or 9288 * emptying busiest. 9289 */ 9290 if (local->group_type == group_has_spare) { 9291 if ((busiest->group_type > group_fully_busy) && 9292 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 9293 /* 9294 * If busiest is overloaded, try to fill spare 9295 * capacity. This might end up creating spare capacity 9296 * in busiest or busiest still being overloaded but 9297 * there is no simple way to directly compute the 9298 * amount of load to migrate in order to balance the 9299 * system. 9300 */ 9301 env->migration_type = migrate_util; 9302 env->imbalance = max(local->group_capacity, local->group_util) - 9303 local->group_util; 9304 9305 /* 9306 * In some cases, the group's utilization is max or even 9307 * higher than capacity because of migrations but the 9308 * local CPU is (newly) idle. There is at least one 9309 * waiting task in this overloaded busiest group. Let's 9310 * try to pull it. 9311 */ 9312 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 9313 env->migration_type = migrate_task; 9314 env->imbalance = 1; 9315 } 9316 9317 return; 9318 } 9319 9320 if (busiest->group_weight == 1 || sds->prefer_sibling) { 9321 unsigned int nr_diff = busiest->sum_nr_running; 9322 /* 9323 * When prefer sibling, evenly spread running tasks on 9324 * groups. 9325 */ 9326 env->migration_type = migrate_task; 9327 lsub_positive(&nr_diff, local->sum_nr_running); 9328 env->imbalance = nr_diff >> 1; 9329 } else { 9330 9331 /* 9332 * If there is no overload, we just want to even the number of 9333 * idle cpus. 9334 */ 9335 env->migration_type = migrate_task; 9336 env->imbalance = max_t(long, 0, (local->idle_cpus - 9337 busiest->idle_cpus) >> 1); 9338 } 9339 9340 /* Consider allowing a small imbalance between NUMA groups */ 9341 if (env->sd->flags & SD_NUMA) { 9342 env->imbalance = adjust_numa_imbalance(env->imbalance, 9343 busiest->sum_nr_running, busiest->group_weight); 9344 } 9345 9346 return; 9347 } 9348 9349 /* 9350 * Local is fully busy but has to take more load to relieve the 9351 * busiest group 9352 */ 9353 if (local->group_type < group_overloaded) { 9354 /* 9355 * Local will become overloaded so the avg_load metrics are 9356 * finally needed. 9357 */ 9358 9359 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 9360 local->group_capacity; 9361 9362 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 9363 sds->total_capacity; 9364 /* 9365 * If the local group is more loaded than the selected 9366 * busiest group don't try to pull any tasks. 9367 */ 9368 if (local->avg_load >= busiest->avg_load) { 9369 env->imbalance = 0; 9370 return; 9371 } 9372 } 9373 9374 /* 9375 * Both group are or will become overloaded and we're trying to get all 9376 * the CPUs to the average_load, so we don't want to push ourselves 9377 * above the average load, nor do we wish to reduce the max loaded CPU 9378 * below the average load. At the same time, we also don't want to 9379 * reduce the group load below the group capacity. Thus we look for 9380 * the minimum possible imbalance. 9381 */ 9382 env->migration_type = migrate_load; 9383 env->imbalance = min( 9384 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 9385 (sds->avg_load - local->avg_load) * local->group_capacity 9386 ) / SCHED_CAPACITY_SCALE; 9387 } 9388 9389 /******* find_busiest_group() helpers end here *********************/ 9390 9391 /* 9392 * Decision matrix according to the local and busiest group type: 9393 * 9394 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 9395 * has_spare nr_idle balanced N/A N/A balanced balanced 9396 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 9397 * misfit_task force N/A N/A N/A force force 9398 * asym_packing force force N/A N/A force force 9399 * imbalanced force force N/A N/A force force 9400 * overloaded force force N/A N/A force avg_load 9401 * 9402 * N/A : Not Applicable because already filtered while updating 9403 * statistics. 9404 * balanced : The system is balanced for these 2 groups. 9405 * force : Calculate the imbalance as load migration is probably needed. 9406 * avg_load : Only if imbalance is significant enough. 9407 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 9408 * different in groups. 9409 */ 9410 9411 /** 9412 * find_busiest_group - Returns the busiest group within the sched_domain 9413 * if there is an imbalance. 9414 * 9415 * Also calculates the amount of runnable load which should be moved 9416 * to restore balance. 9417 * 9418 * @env: The load balancing environment. 9419 * 9420 * Return: - The busiest group if imbalance exists. 9421 */ 9422 static struct sched_group *find_busiest_group(struct lb_env *env) 9423 { 9424 struct sg_lb_stats *local, *busiest; 9425 struct sd_lb_stats sds; 9426 9427 init_sd_lb_stats(&sds); 9428 9429 /* 9430 * Compute the various statistics relevant for load balancing at 9431 * this level. 9432 */ 9433 update_sd_lb_stats(env, &sds); 9434 9435 if (sched_energy_enabled()) { 9436 struct root_domain *rd = env->dst_rq->rd; 9437 9438 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 9439 goto out_balanced; 9440 } 9441 9442 local = &sds.local_stat; 9443 busiest = &sds.busiest_stat; 9444 9445 /* There is no busy sibling group to pull tasks from */ 9446 if (!sds.busiest) 9447 goto out_balanced; 9448 9449 /* Misfit tasks should be dealt with regardless of the avg load */ 9450 if (busiest->group_type == group_misfit_task) 9451 goto force_balance; 9452 9453 /* ASYM feature bypasses nice load balance check */ 9454 if (busiest->group_type == group_asym_packing) 9455 goto force_balance; 9456 9457 /* 9458 * If the busiest group is imbalanced the below checks don't 9459 * work because they assume all things are equal, which typically 9460 * isn't true due to cpus_ptr constraints and the like. 9461 */ 9462 if (busiest->group_type == group_imbalanced) 9463 goto force_balance; 9464 9465 /* 9466 * If the local group is busier than the selected busiest group 9467 * don't try and pull any tasks. 9468 */ 9469 if (local->group_type > busiest->group_type) 9470 goto out_balanced; 9471 9472 /* 9473 * When groups are overloaded, use the avg_load to ensure fairness 9474 * between tasks. 9475 */ 9476 if (local->group_type == group_overloaded) { 9477 /* 9478 * If the local group is more loaded than the selected 9479 * busiest group don't try to pull any tasks. 9480 */ 9481 if (local->avg_load >= busiest->avg_load) 9482 goto out_balanced; 9483 9484 /* XXX broken for overlapping NUMA groups */ 9485 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 9486 sds.total_capacity; 9487 9488 /* 9489 * Don't pull any tasks if this group is already above the 9490 * domain average load. 9491 */ 9492 if (local->avg_load >= sds.avg_load) 9493 goto out_balanced; 9494 9495 /* 9496 * If the busiest group is more loaded, use imbalance_pct to be 9497 * conservative. 9498 */ 9499 if (100 * busiest->avg_load <= 9500 env->sd->imbalance_pct * local->avg_load) 9501 goto out_balanced; 9502 } 9503 9504 /* Try to move all excess tasks to child's sibling domain */ 9505 if (sds.prefer_sibling && local->group_type == group_has_spare && 9506 busiest->sum_nr_running > local->sum_nr_running + 1) 9507 goto force_balance; 9508 9509 if (busiest->group_type != group_overloaded) { 9510 if (env->idle == CPU_NOT_IDLE) 9511 /* 9512 * If the busiest group is not overloaded (and as a 9513 * result the local one too) but this CPU is already 9514 * busy, let another idle CPU try to pull task. 9515 */ 9516 goto out_balanced; 9517 9518 if (busiest->group_weight > 1 && 9519 local->idle_cpus <= (busiest->idle_cpus + 1)) 9520 /* 9521 * If the busiest group is not overloaded 9522 * and there is no imbalance between this and busiest 9523 * group wrt idle CPUs, it is balanced. The imbalance 9524 * becomes significant if the diff is greater than 1 9525 * otherwise we might end up to just move the imbalance 9526 * on another group. Of course this applies only if 9527 * there is more than 1 CPU per group. 9528 */ 9529 goto out_balanced; 9530 9531 if (busiest->sum_h_nr_running == 1) 9532 /* 9533 * busiest doesn't have any tasks waiting to run 9534 */ 9535 goto out_balanced; 9536 } 9537 9538 force_balance: 9539 /* Looks like there is an imbalance. Compute it */ 9540 calculate_imbalance(env, &sds); 9541 return env->imbalance ? sds.busiest : NULL; 9542 9543 out_balanced: 9544 env->imbalance = 0; 9545 return NULL; 9546 } 9547 9548 /* 9549 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 9550 */ 9551 static struct rq *find_busiest_queue(struct lb_env *env, 9552 struct sched_group *group) 9553 { 9554 struct rq *busiest = NULL, *rq; 9555 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 9556 unsigned int busiest_nr = 0; 9557 int i; 9558 9559 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9560 unsigned long capacity, load, util; 9561 unsigned int nr_running; 9562 enum fbq_type rt; 9563 9564 rq = cpu_rq(i); 9565 rt = fbq_classify_rq(rq); 9566 9567 /* 9568 * We classify groups/runqueues into three groups: 9569 * - regular: there are !numa tasks 9570 * - remote: there are numa tasks that run on the 'wrong' node 9571 * - all: there is no distinction 9572 * 9573 * In order to avoid migrating ideally placed numa tasks, 9574 * ignore those when there's better options. 9575 * 9576 * If we ignore the actual busiest queue to migrate another 9577 * task, the next balance pass can still reduce the busiest 9578 * queue by moving tasks around inside the node. 9579 * 9580 * If we cannot move enough load due to this classification 9581 * the next pass will adjust the group classification and 9582 * allow migration of more tasks. 9583 * 9584 * Both cases only affect the total convergence complexity. 9585 */ 9586 if (rt > env->fbq_type) 9587 continue; 9588 9589 nr_running = rq->cfs.h_nr_running; 9590 if (!nr_running) 9591 continue; 9592 9593 capacity = capacity_of(i); 9594 9595 /* 9596 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 9597 * eventually lead to active_balancing high->low capacity. 9598 * Higher per-CPU capacity is considered better than balancing 9599 * average load. 9600 */ 9601 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 9602 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 9603 nr_running == 1) 9604 continue; 9605 9606 switch (env->migration_type) { 9607 case migrate_load: 9608 /* 9609 * When comparing with load imbalance, use cpu_load() 9610 * which is not scaled with the CPU capacity. 9611 */ 9612 load = cpu_load(rq); 9613 9614 if (nr_running == 1 && load > env->imbalance && 9615 !check_cpu_capacity(rq, env->sd)) 9616 break; 9617 9618 /* 9619 * For the load comparisons with the other CPUs, 9620 * consider the cpu_load() scaled with the CPU 9621 * capacity, so that the load can be moved away 9622 * from the CPU that is potentially running at a 9623 * lower capacity. 9624 * 9625 * Thus we're looking for max(load_i / capacity_i), 9626 * crosswise multiplication to rid ourselves of the 9627 * division works out to: 9628 * load_i * capacity_j > load_j * capacity_i; 9629 * where j is our previous maximum. 9630 */ 9631 if (load * busiest_capacity > busiest_load * capacity) { 9632 busiest_load = load; 9633 busiest_capacity = capacity; 9634 busiest = rq; 9635 } 9636 break; 9637 9638 case migrate_util: 9639 util = cpu_util(cpu_of(rq)); 9640 9641 /* 9642 * Don't try to pull utilization from a CPU with one 9643 * running task. Whatever its utilization, we will fail 9644 * detach the task. 9645 */ 9646 if (nr_running <= 1) 9647 continue; 9648 9649 if (busiest_util < util) { 9650 busiest_util = util; 9651 busiest = rq; 9652 } 9653 break; 9654 9655 case migrate_task: 9656 if (busiest_nr < nr_running) { 9657 busiest_nr = nr_running; 9658 busiest = rq; 9659 } 9660 break; 9661 9662 case migrate_misfit: 9663 /* 9664 * For ASYM_CPUCAPACITY domains with misfit tasks we 9665 * simply seek the "biggest" misfit task. 9666 */ 9667 if (rq->misfit_task_load > busiest_load) { 9668 busiest_load = rq->misfit_task_load; 9669 busiest = rq; 9670 } 9671 9672 break; 9673 9674 } 9675 } 9676 9677 return busiest; 9678 } 9679 9680 /* 9681 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 9682 * so long as it is large enough. 9683 */ 9684 #define MAX_PINNED_INTERVAL 512 9685 9686 static inline bool 9687 asym_active_balance(struct lb_env *env) 9688 { 9689 /* 9690 * ASYM_PACKING needs to force migrate tasks from busy but 9691 * lower priority CPUs in order to pack all tasks in the 9692 * highest priority CPUs. 9693 */ 9694 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 9695 sched_asym_prefer(env->dst_cpu, env->src_cpu); 9696 } 9697 9698 static inline bool 9699 imbalanced_active_balance(struct lb_env *env) 9700 { 9701 struct sched_domain *sd = env->sd; 9702 9703 /* 9704 * The imbalanced case includes the case of pinned tasks preventing a fair 9705 * distribution of the load on the system but also the even distribution of the 9706 * threads on a system with spare capacity 9707 */ 9708 if ((env->migration_type == migrate_task) && 9709 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 9710 return 1; 9711 9712 return 0; 9713 } 9714 9715 static int need_active_balance(struct lb_env *env) 9716 { 9717 struct sched_domain *sd = env->sd; 9718 9719 if (asym_active_balance(env)) 9720 return 1; 9721 9722 if (imbalanced_active_balance(env)) 9723 return 1; 9724 9725 /* 9726 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 9727 * It's worth migrating the task if the src_cpu's capacity is reduced 9728 * because of other sched_class or IRQs if more capacity stays 9729 * available on dst_cpu. 9730 */ 9731 if ((env->idle != CPU_NOT_IDLE) && 9732 (env->src_rq->cfs.h_nr_running == 1)) { 9733 if ((check_cpu_capacity(env->src_rq, sd)) && 9734 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 9735 return 1; 9736 } 9737 9738 if (env->migration_type == migrate_misfit) 9739 return 1; 9740 9741 return 0; 9742 } 9743 9744 static int active_load_balance_cpu_stop(void *data); 9745 9746 static int should_we_balance(struct lb_env *env) 9747 { 9748 struct sched_group *sg = env->sd->groups; 9749 int cpu; 9750 9751 /* 9752 * Ensure the balancing environment is consistent; can happen 9753 * when the softirq triggers 'during' hotplug. 9754 */ 9755 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 9756 return 0; 9757 9758 /* 9759 * In the newly idle case, we will allow all the CPUs 9760 * to do the newly idle load balance. 9761 */ 9762 if (env->idle == CPU_NEWLY_IDLE) 9763 return 1; 9764 9765 /* Try to find first idle CPU */ 9766 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 9767 if (!idle_cpu(cpu)) 9768 continue; 9769 9770 /* Are we the first idle CPU? */ 9771 return cpu == env->dst_cpu; 9772 } 9773 9774 /* Are we the first CPU of this group ? */ 9775 return group_balance_cpu(sg) == env->dst_cpu; 9776 } 9777 9778 /* 9779 * Check this_cpu to ensure it is balanced within domain. Attempt to move 9780 * tasks if there is an imbalance. 9781 */ 9782 static int load_balance(int this_cpu, struct rq *this_rq, 9783 struct sched_domain *sd, enum cpu_idle_type idle, 9784 int *continue_balancing) 9785 { 9786 int ld_moved, cur_ld_moved, active_balance = 0; 9787 struct sched_domain *sd_parent = sd->parent; 9788 struct sched_group *group; 9789 struct rq *busiest; 9790 struct rq_flags rf; 9791 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 9792 9793 struct lb_env env = { 9794 .sd = sd, 9795 .dst_cpu = this_cpu, 9796 .dst_rq = this_rq, 9797 .dst_grpmask = sched_group_span(sd->groups), 9798 .idle = idle, 9799 .loop_break = sched_nr_migrate_break, 9800 .cpus = cpus, 9801 .fbq_type = all, 9802 .tasks = LIST_HEAD_INIT(env.tasks), 9803 }; 9804 9805 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 9806 9807 schedstat_inc(sd->lb_count[idle]); 9808 9809 redo: 9810 if (!should_we_balance(&env)) { 9811 *continue_balancing = 0; 9812 goto out_balanced; 9813 } 9814 9815 group = find_busiest_group(&env); 9816 if (!group) { 9817 schedstat_inc(sd->lb_nobusyg[idle]); 9818 goto out_balanced; 9819 } 9820 9821 busiest = find_busiest_queue(&env, group); 9822 if (!busiest) { 9823 schedstat_inc(sd->lb_nobusyq[idle]); 9824 goto out_balanced; 9825 } 9826 9827 BUG_ON(busiest == env.dst_rq); 9828 9829 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 9830 9831 env.src_cpu = busiest->cpu; 9832 env.src_rq = busiest; 9833 9834 ld_moved = 0; 9835 /* Clear this flag as soon as we find a pullable task */ 9836 env.flags |= LBF_ALL_PINNED; 9837 if (busiest->nr_running > 1) { 9838 /* 9839 * Attempt to move tasks. If find_busiest_group has found 9840 * an imbalance but busiest->nr_running <= 1, the group is 9841 * still unbalanced. ld_moved simply stays zero, so it is 9842 * correctly treated as an imbalance. 9843 */ 9844 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 9845 9846 more_balance: 9847 rq_lock_irqsave(busiest, &rf); 9848 update_rq_clock(busiest); 9849 9850 /* 9851 * cur_ld_moved - load moved in current iteration 9852 * ld_moved - cumulative load moved across iterations 9853 */ 9854 cur_ld_moved = detach_tasks(&env); 9855 9856 /* 9857 * We've detached some tasks from busiest_rq. Every 9858 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 9859 * unlock busiest->lock, and we are able to be sure 9860 * that nobody can manipulate the tasks in parallel. 9861 * See task_rq_lock() family for the details. 9862 */ 9863 9864 rq_unlock(busiest, &rf); 9865 9866 if (cur_ld_moved) { 9867 attach_tasks(&env); 9868 ld_moved += cur_ld_moved; 9869 } 9870 9871 local_irq_restore(rf.flags); 9872 9873 if (env.flags & LBF_NEED_BREAK) { 9874 env.flags &= ~LBF_NEED_BREAK; 9875 goto more_balance; 9876 } 9877 9878 /* 9879 * Revisit (affine) tasks on src_cpu that couldn't be moved to 9880 * us and move them to an alternate dst_cpu in our sched_group 9881 * where they can run. The upper limit on how many times we 9882 * iterate on same src_cpu is dependent on number of CPUs in our 9883 * sched_group. 9884 * 9885 * This changes load balance semantics a bit on who can move 9886 * load to a given_cpu. In addition to the given_cpu itself 9887 * (or a ilb_cpu acting on its behalf where given_cpu is 9888 * nohz-idle), we now have balance_cpu in a position to move 9889 * load to given_cpu. In rare situations, this may cause 9890 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 9891 * _independently_ and at _same_ time to move some load to 9892 * given_cpu) causing excess load to be moved to given_cpu. 9893 * This however should not happen so much in practice and 9894 * moreover subsequent load balance cycles should correct the 9895 * excess load moved. 9896 */ 9897 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 9898 9899 /* Prevent to re-select dst_cpu via env's CPUs */ 9900 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 9901 9902 env.dst_rq = cpu_rq(env.new_dst_cpu); 9903 env.dst_cpu = env.new_dst_cpu; 9904 env.flags &= ~LBF_DST_PINNED; 9905 env.loop = 0; 9906 env.loop_break = sched_nr_migrate_break; 9907 9908 /* 9909 * Go back to "more_balance" rather than "redo" since we 9910 * need to continue with same src_cpu. 9911 */ 9912 goto more_balance; 9913 } 9914 9915 /* 9916 * We failed to reach balance because of affinity. 9917 */ 9918 if (sd_parent) { 9919 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9920 9921 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 9922 *group_imbalance = 1; 9923 } 9924 9925 /* All tasks on this runqueue were pinned by CPU affinity */ 9926 if (unlikely(env.flags & LBF_ALL_PINNED)) { 9927 __cpumask_clear_cpu(cpu_of(busiest), cpus); 9928 /* 9929 * Attempting to continue load balancing at the current 9930 * sched_domain level only makes sense if there are 9931 * active CPUs remaining as possible busiest CPUs to 9932 * pull load from which are not contained within the 9933 * destination group that is receiving any migrated 9934 * load. 9935 */ 9936 if (!cpumask_subset(cpus, env.dst_grpmask)) { 9937 env.loop = 0; 9938 env.loop_break = sched_nr_migrate_break; 9939 goto redo; 9940 } 9941 goto out_all_pinned; 9942 } 9943 } 9944 9945 if (!ld_moved) { 9946 schedstat_inc(sd->lb_failed[idle]); 9947 /* 9948 * Increment the failure counter only on periodic balance. 9949 * We do not want newidle balance, which can be very 9950 * frequent, pollute the failure counter causing 9951 * excessive cache_hot migrations and active balances. 9952 */ 9953 if (idle != CPU_NEWLY_IDLE) 9954 sd->nr_balance_failed++; 9955 9956 if (need_active_balance(&env)) { 9957 unsigned long flags; 9958 9959 raw_spin_rq_lock_irqsave(busiest, flags); 9960 9961 /* 9962 * Don't kick the active_load_balance_cpu_stop, 9963 * if the curr task on busiest CPU can't be 9964 * moved to this_cpu: 9965 */ 9966 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 9967 raw_spin_rq_unlock_irqrestore(busiest, flags); 9968 goto out_one_pinned; 9969 } 9970 9971 /* Record that we found at least one task that could run on this_cpu */ 9972 env.flags &= ~LBF_ALL_PINNED; 9973 9974 /* 9975 * ->active_balance synchronizes accesses to 9976 * ->active_balance_work. Once set, it's cleared 9977 * only after active load balance is finished. 9978 */ 9979 if (!busiest->active_balance) { 9980 busiest->active_balance = 1; 9981 busiest->push_cpu = this_cpu; 9982 active_balance = 1; 9983 } 9984 raw_spin_rq_unlock_irqrestore(busiest, flags); 9985 9986 if (active_balance) { 9987 stop_one_cpu_nowait(cpu_of(busiest), 9988 active_load_balance_cpu_stop, busiest, 9989 &busiest->active_balance_work); 9990 } 9991 } 9992 } else { 9993 sd->nr_balance_failed = 0; 9994 } 9995 9996 if (likely(!active_balance) || need_active_balance(&env)) { 9997 /* We were unbalanced, so reset the balancing interval */ 9998 sd->balance_interval = sd->min_interval; 9999 } 10000 10001 goto out; 10002 10003 out_balanced: 10004 /* 10005 * We reach balance although we may have faced some affinity 10006 * constraints. Clear the imbalance flag only if other tasks got 10007 * a chance to move and fix the imbalance. 10008 */ 10009 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 10010 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 10011 10012 if (*group_imbalance) 10013 *group_imbalance = 0; 10014 } 10015 10016 out_all_pinned: 10017 /* 10018 * We reach balance because all tasks are pinned at this level so 10019 * we can't migrate them. Let the imbalance flag set so parent level 10020 * can try to migrate them. 10021 */ 10022 schedstat_inc(sd->lb_balanced[idle]); 10023 10024 sd->nr_balance_failed = 0; 10025 10026 out_one_pinned: 10027 ld_moved = 0; 10028 10029 /* 10030 * newidle_balance() disregards balance intervals, so we could 10031 * repeatedly reach this code, which would lead to balance_interval 10032 * skyrocketing in a short amount of time. Skip the balance_interval 10033 * increase logic to avoid that. 10034 */ 10035 if (env.idle == CPU_NEWLY_IDLE) 10036 goto out; 10037 10038 /* tune up the balancing interval */ 10039 if ((env.flags & LBF_ALL_PINNED && 10040 sd->balance_interval < MAX_PINNED_INTERVAL) || 10041 sd->balance_interval < sd->max_interval) 10042 sd->balance_interval *= 2; 10043 out: 10044 return ld_moved; 10045 } 10046 10047 static inline unsigned long 10048 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 10049 { 10050 unsigned long interval = sd->balance_interval; 10051 10052 if (cpu_busy) 10053 interval *= sd->busy_factor; 10054 10055 /* scale ms to jiffies */ 10056 interval = msecs_to_jiffies(interval); 10057 10058 /* 10059 * Reduce likelihood of busy balancing at higher domains racing with 10060 * balancing at lower domains by preventing their balancing periods 10061 * from being multiples of each other. 10062 */ 10063 if (cpu_busy) 10064 interval -= 1; 10065 10066 interval = clamp(interval, 1UL, max_load_balance_interval); 10067 10068 return interval; 10069 } 10070 10071 static inline void 10072 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 10073 { 10074 unsigned long interval, next; 10075 10076 /* used by idle balance, so cpu_busy = 0 */ 10077 interval = get_sd_balance_interval(sd, 0); 10078 next = sd->last_balance + interval; 10079 10080 if (time_after(*next_balance, next)) 10081 *next_balance = next; 10082 } 10083 10084 /* 10085 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 10086 * running tasks off the busiest CPU onto idle CPUs. It requires at 10087 * least 1 task to be running on each physical CPU where possible, and 10088 * avoids physical / logical imbalances. 10089 */ 10090 static int active_load_balance_cpu_stop(void *data) 10091 { 10092 struct rq *busiest_rq = data; 10093 int busiest_cpu = cpu_of(busiest_rq); 10094 int target_cpu = busiest_rq->push_cpu; 10095 struct rq *target_rq = cpu_rq(target_cpu); 10096 struct sched_domain *sd; 10097 struct task_struct *p = NULL; 10098 struct rq_flags rf; 10099 10100 rq_lock_irq(busiest_rq, &rf); 10101 /* 10102 * Between queueing the stop-work and running it is a hole in which 10103 * CPUs can become inactive. We should not move tasks from or to 10104 * inactive CPUs. 10105 */ 10106 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 10107 goto out_unlock; 10108 10109 /* Make sure the requested CPU hasn't gone down in the meantime: */ 10110 if (unlikely(busiest_cpu != smp_processor_id() || 10111 !busiest_rq->active_balance)) 10112 goto out_unlock; 10113 10114 /* Is there any task to move? */ 10115 if (busiest_rq->nr_running <= 1) 10116 goto out_unlock; 10117 10118 /* 10119 * This condition is "impossible", if it occurs 10120 * we need to fix it. Originally reported by 10121 * Bjorn Helgaas on a 128-CPU setup. 10122 */ 10123 BUG_ON(busiest_rq == target_rq); 10124 10125 /* Search for an sd spanning us and the target CPU. */ 10126 rcu_read_lock(); 10127 for_each_domain(target_cpu, sd) { 10128 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 10129 break; 10130 } 10131 10132 if (likely(sd)) { 10133 struct lb_env env = { 10134 .sd = sd, 10135 .dst_cpu = target_cpu, 10136 .dst_rq = target_rq, 10137 .src_cpu = busiest_rq->cpu, 10138 .src_rq = busiest_rq, 10139 .idle = CPU_IDLE, 10140 .flags = LBF_ACTIVE_LB, 10141 }; 10142 10143 schedstat_inc(sd->alb_count); 10144 update_rq_clock(busiest_rq); 10145 10146 p = detach_one_task(&env); 10147 if (p) { 10148 schedstat_inc(sd->alb_pushed); 10149 /* Active balancing done, reset the failure counter. */ 10150 sd->nr_balance_failed = 0; 10151 } else { 10152 schedstat_inc(sd->alb_failed); 10153 } 10154 } 10155 rcu_read_unlock(); 10156 out_unlock: 10157 busiest_rq->active_balance = 0; 10158 rq_unlock(busiest_rq, &rf); 10159 10160 if (p) 10161 attach_one_task(target_rq, p); 10162 10163 local_irq_enable(); 10164 10165 return 0; 10166 } 10167 10168 static DEFINE_SPINLOCK(balancing); 10169 10170 /* 10171 * Scale the max load_balance interval with the number of CPUs in the system. 10172 * This trades load-balance latency on larger machines for less cross talk. 10173 */ 10174 void update_max_interval(void) 10175 { 10176 max_load_balance_interval = HZ*num_online_cpus()/10; 10177 } 10178 10179 /* 10180 * It checks each scheduling domain to see if it is due to be balanced, 10181 * and initiates a balancing operation if so. 10182 * 10183 * Balancing parameters are set up in init_sched_domains. 10184 */ 10185 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 10186 { 10187 int continue_balancing = 1; 10188 int cpu = rq->cpu; 10189 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10190 unsigned long interval; 10191 struct sched_domain *sd; 10192 /* Earliest time when we have to do rebalance again */ 10193 unsigned long next_balance = jiffies + 60*HZ; 10194 int update_next_balance = 0; 10195 int need_serialize, need_decay = 0; 10196 u64 max_cost = 0; 10197 10198 rcu_read_lock(); 10199 for_each_domain(cpu, sd) { 10200 /* 10201 * Decay the newidle max times here because this is a regular 10202 * visit to all the domains. Decay ~1% per second. 10203 */ 10204 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 10205 sd->max_newidle_lb_cost = 10206 (sd->max_newidle_lb_cost * 253) / 256; 10207 sd->next_decay_max_lb_cost = jiffies + HZ; 10208 need_decay = 1; 10209 } 10210 max_cost += sd->max_newidle_lb_cost; 10211 10212 /* 10213 * Stop the load balance at this level. There is another 10214 * CPU in our sched group which is doing load balancing more 10215 * actively. 10216 */ 10217 if (!continue_balancing) { 10218 if (need_decay) 10219 continue; 10220 break; 10221 } 10222 10223 interval = get_sd_balance_interval(sd, busy); 10224 10225 need_serialize = sd->flags & SD_SERIALIZE; 10226 if (need_serialize) { 10227 if (!spin_trylock(&balancing)) 10228 goto out; 10229 } 10230 10231 if (time_after_eq(jiffies, sd->last_balance + interval)) { 10232 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 10233 /* 10234 * The LBF_DST_PINNED logic could have changed 10235 * env->dst_cpu, so we can't know our idle 10236 * state even if we migrated tasks. Update it. 10237 */ 10238 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 10239 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10240 } 10241 sd->last_balance = jiffies; 10242 interval = get_sd_balance_interval(sd, busy); 10243 } 10244 if (need_serialize) 10245 spin_unlock(&balancing); 10246 out: 10247 if (time_after(next_balance, sd->last_balance + interval)) { 10248 next_balance = sd->last_balance + interval; 10249 update_next_balance = 1; 10250 } 10251 } 10252 if (need_decay) { 10253 /* 10254 * Ensure the rq-wide value also decays but keep it at a 10255 * reasonable floor to avoid funnies with rq->avg_idle. 10256 */ 10257 rq->max_idle_balance_cost = 10258 max((u64)sysctl_sched_migration_cost, max_cost); 10259 } 10260 rcu_read_unlock(); 10261 10262 /* 10263 * next_balance will be updated only when there is a need. 10264 * When the cpu is attached to null domain for ex, it will not be 10265 * updated. 10266 */ 10267 if (likely(update_next_balance)) 10268 rq->next_balance = next_balance; 10269 10270 } 10271 10272 static inline int on_null_domain(struct rq *rq) 10273 { 10274 return unlikely(!rcu_dereference_sched(rq->sd)); 10275 } 10276 10277 #ifdef CONFIG_NO_HZ_COMMON 10278 /* 10279 * idle load balancing details 10280 * - When one of the busy CPUs notice that there may be an idle rebalancing 10281 * needed, they will kick the idle load balancer, which then does idle 10282 * load balancing for all the idle CPUs. 10283 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set 10284 * anywhere yet. 10285 */ 10286 10287 static inline int find_new_ilb(void) 10288 { 10289 int ilb; 10290 const struct cpumask *hk_mask; 10291 10292 hk_mask = housekeeping_cpumask(HK_FLAG_MISC); 10293 10294 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) { 10295 10296 if (ilb == smp_processor_id()) 10297 continue; 10298 10299 if (idle_cpu(ilb)) 10300 return ilb; 10301 } 10302 10303 return nr_cpu_ids; 10304 } 10305 10306 /* 10307 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 10308 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one). 10309 */ 10310 static void kick_ilb(unsigned int flags) 10311 { 10312 int ilb_cpu; 10313 10314 /* 10315 * Increase nohz.next_balance only when if full ilb is triggered but 10316 * not if we only update stats. 10317 */ 10318 if (flags & NOHZ_BALANCE_KICK) 10319 nohz.next_balance = jiffies+1; 10320 10321 ilb_cpu = find_new_ilb(); 10322 10323 if (ilb_cpu >= nr_cpu_ids) 10324 return; 10325 10326 /* 10327 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 10328 * the first flag owns it; cleared by nohz_csd_func(). 10329 */ 10330 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 10331 if (flags & NOHZ_KICK_MASK) 10332 return; 10333 10334 /* 10335 * This way we generate an IPI on the target CPU which 10336 * is idle. And the softirq performing nohz idle load balance 10337 * will be run before returning from the IPI. 10338 */ 10339 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 10340 } 10341 10342 /* 10343 * Current decision point for kicking the idle load balancer in the presence 10344 * of idle CPUs in the system. 10345 */ 10346 static void nohz_balancer_kick(struct rq *rq) 10347 { 10348 unsigned long now = jiffies; 10349 struct sched_domain_shared *sds; 10350 struct sched_domain *sd; 10351 int nr_busy, i, cpu = rq->cpu; 10352 unsigned int flags = 0; 10353 10354 if (unlikely(rq->idle_balance)) 10355 return; 10356 10357 /* 10358 * We may be recently in ticked or tickless idle mode. At the first 10359 * busy tick after returning from idle, we will update the busy stats. 10360 */ 10361 nohz_balance_exit_idle(rq); 10362 10363 /* 10364 * None are in tickless mode and hence no need for NOHZ idle load 10365 * balancing. 10366 */ 10367 if (likely(!atomic_read(&nohz.nr_cpus))) 10368 return; 10369 10370 if (READ_ONCE(nohz.has_blocked) && 10371 time_after(now, READ_ONCE(nohz.next_blocked))) 10372 flags = NOHZ_STATS_KICK; 10373 10374 if (time_before(now, nohz.next_balance)) 10375 goto out; 10376 10377 if (rq->nr_running >= 2) { 10378 flags = NOHZ_KICK_MASK; 10379 goto out; 10380 } 10381 10382 rcu_read_lock(); 10383 10384 sd = rcu_dereference(rq->sd); 10385 if (sd) { 10386 /* 10387 * If there's a CFS task and the current CPU has reduced 10388 * capacity; kick the ILB to see if there's a better CPU to run 10389 * on. 10390 */ 10391 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 10392 flags = NOHZ_KICK_MASK; 10393 goto unlock; 10394 } 10395 } 10396 10397 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 10398 if (sd) { 10399 /* 10400 * When ASYM_PACKING; see if there's a more preferred CPU 10401 * currently idle; in which case, kick the ILB to move tasks 10402 * around. 10403 */ 10404 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 10405 if (sched_asym_prefer(i, cpu)) { 10406 flags = NOHZ_KICK_MASK; 10407 goto unlock; 10408 } 10409 } 10410 } 10411 10412 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 10413 if (sd) { 10414 /* 10415 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 10416 * to run the misfit task on. 10417 */ 10418 if (check_misfit_status(rq, sd)) { 10419 flags = NOHZ_KICK_MASK; 10420 goto unlock; 10421 } 10422 10423 /* 10424 * For asymmetric systems, we do not want to nicely balance 10425 * cache use, instead we want to embrace asymmetry and only 10426 * ensure tasks have enough CPU capacity. 10427 * 10428 * Skip the LLC logic because it's not relevant in that case. 10429 */ 10430 goto unlock; 10431 } 10432 10433 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 10434 if (sds) { 10435 /* 10436 * If there is an imbalance between LLC domains (IOW we could 10437 * increase the overall cache use), we need some less-loaded LLC 10438 * domain to pull some load. Likewise, we may need to spread 10439 * load within the current LLC domain (e.g. packed SMT cores but 10440 * other CPUs are idle). We can't really know from here how busy 10441 * the others are - so just get a nohz balance going if it looks 10442 * like this LLC domain has tasks we could move. 10443 */ 10444 nr_busy = atomic_read(&sds->nr_busy_cpus); 10445 if (nr_busy > 1) { 10446 flags = NOHZ_KICK_MASK; 10447 goto unlock; 10448 } 10449 } 10450 unlock: 10451 rcu_read_unlock(); 10452 out: 10453 if (flags) 10454 kick_ilb(flags); 10455 } 10456 10457 static void set_cpu_sd_state_busy(int cpu) 10458 { 10459 struct sched_domain *sd; 10460 10461 rcu_read_lock(); 10462 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10463 10464 if (!sd || !sd->nohz_idle) 10465 goto unlock; 10466 sd->nohz_idle = 0; 10467 10468 atomic_inc(&sd->shared->nr_busy_cpus); 10469 unlock: 10470 rcu_read_unlock(); 10471 } 10472 10473 void nohz_balance_exit_idle(struct rq *rq) 10474 { 10475 SCHED_WARN_ON(rq != this_rq()); 10476 10477 if (likely(!rq->nohz_tick_stopped)) 10478 return; 10479 10480 rq->nohz_tick_stopped = 0; 10481 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 10482 atomic_dec(&nohz.nr_cpus); 10483 10484 set_cpu_sd_state_busy(rq->cpu); 10485 } 10486 10487 static void set_cpu_sd_state_idle(int cpu) 10488 { 10489 struct sched_domain *sd; 10490 10491 rcu_read_lock(); 10492 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10493 10494 if (!sd || sd->nohz_idle) 10495 goto unlock; 10496 sd->nohz_idle = 1; 10497 10498 atomic_dec(&sd->shared->nr_busy_cpus); 10499 unlock: 10500 rcu_read_unlock(); 10501 } 10502 10503 /* 10504 * This routine will record that the CPU is going idle with tick stopped. 10505 * This info will be used in performing idle load balancing in the future. 10506 */ 10507 void nohz_balance_enter_idle(int cpu) 10508 { 10509 struct rq *rq = cpu_rq(cpu); 10510 10511 SCHED_WARN_ON(cpu != smp_processor_id()); 10512 10513 /* If this CPU is going down, then nothing needs to be done: */ 10514 if (!cpu_active(cpu)) 10515 return; 10516 10517 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 10518 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 10519 return; 10520 10521 /* 10522 * Can be set safely without rq->lock held 10523 * If a clear happens, it will have evaluated last additions because 10524 * rq->lock is held during the check and the clear 10525 */ 10526 rq->has_blocked_load = 1; 10527 10528 /* 10529 * The tick is still stopped but load could have been added in the 10530 * meantime. We set the nohz.has_blocked flag to trig a check of the 10531 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 10532 * of nohz.has_blocked can only happen after checking the new load 10533 */ 10534 if (rq->nohz_tick_stopped) 10535 goto out; 10536 10537 /* If we're a completely isolated CPU, we don't play: */ 10538 if (on_null_domain(rq)) 10539 return; 10540 10541 rq->nohz_tick_stopped = 1; 10542 10543 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 10544 atomic_inc(&nohz.nr_cpus); 10545 10546 /* 10547 * Ensures that if nohz_idle_balance() fails to observe our 10548 * @idle_cpus_mask store, it must observe the @has_blocked 10549 * store. 10550 */ 10551 smp_mb__after_atomic(); 10552 10553 set_cpu_sd_state_idle(cpu); 10554 10555 out: 10556 /* 10557 * Each time a cpu enter idle, we assume that it has blocked load and 10558 * enable the periodic update of the load of idle cpus 10559 */ 10560 WRITE_ONCE(nohz.has_blocked, 1); 10561 } 10562 10563 static bool update_nohz_stats(struct rq *rq) 10564 { 10565 unsigned int cpu = rq->cpu; 10566 10567 if (!rq->has_blocked_load) 10568 return false; 10569 10570 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 10571 return false; 10572 10573 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 10574 return true; 10575 10576 update_blocked_averages(cpu); 10577 10578 return rq->has_blocked_load; 10579 } 10580 10581 /* 10582 * Internal function that runs load balance for all idle cpus. The load balance 10583 * can be a simple update of blocked load or a complete load balance with 10584 * tasks movement depending of flags. 10585 */ 10586 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 10587 enum cpu_idle_type idle) 10588 { 10589 /* Earliest time when we have to do rebalance again */ 10590 unsigned long now = jiffies; 10591 unsigned long next_balance = now + 60*HZ; 10592 bool has_blocked_load = false; 10593 int update_next_balance = 0; 10594 int this_cpu = this_rq->cpu; 10595 int balance_cpu; 10596 struct rq *rq; 10597 10598 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 10599 10600 /* 10601 * We assume there will be no idle load after this update and clear 10602 * the has_blocked flag. If a cpu enters idle in the mean time, it will 10603 * set the has_blocked flag and trig another update of idle load. 10604 * Because a cpu that becomes idle, is added to idle_cpus_mask before 10605 * setting the flag, we are sure to not clear the state and not 10606 * check the load of an idle cpu. 10607 */ 10608 WRITE_ONCE(nohz.has_blocked, 0); 10609 10610 /* 10611 * Ensures that if we miss the CPU, we must see the has_blocked 10612 * store from nohz_balance_enter_idle(). 10613 */ 10614 smp_mb(); 10615 10616 /* 10617 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 10618 * chance for other idle cpu to pull load. 10619 */ 10620 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 10621 if (!idle_cpu(balance_cpu)) 10622 continue; 10623 10624 /* 10625 * If this CPU gets work to do, stop the load balancing 10626 * work being done for other CPUs. Next load 10627 * balancing owner will pick it up. 10628 */ 10629 if (need_resched()) { 10630 has_blocked_load = true; 10631 goto abort; 10632 } 10633 10634 rq = cpu_rq(balance_cpu); 10635 10636 has_blocked_load |= update_nohz_stats(rq); 10637 10638 /* 10639 * If time for next balance is due, 10640 * do the balance. 10641 */ 10642 if (time_after_eq(jiffies, rq->next_balance)) { 10643 struct rq_flags rf; 10644 10645 rq_lock_irqsave(rq, &rf); 10646 update_rq_clock(rq); 10647 rq_unlock_irqrestore(rq, &rf); 10648 10649 if (flags & NOHZ_BALANCE_KICK) 10650 rebalance_domains(rq, CPU_IDLE); 10651 } 10652 10653 if (time_after(next_balance, rq->next_balance)) { 10654 next_balance = rq->next_balance; 10655 update_next_balance = 1; 10656 } 10657 } 10658 10659 /* 10660 * next_balance will be updated only when there is a need. 10661 * When the CPU is attached to null domain for ex, it will not be 10662 * updated. 10663 */ 10664 if (likely(update_next_balance)) 10665 nohz.next_balance = next_balance; 10666 10667 WRITE_ONCE(nohz.next_blocked, 10668 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 10669 10670 abort: 10671 /* There is still blocked load, enable periodic update */ 10672 if (has_blocked_load) 10673 WRITE_ONCE(nohz.has_blocked, 1); 10674 } 10675 10676 /* 10677 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 10678 * rebalancing for all the cpus for whom scheduler ticks are stopped. 10679 */ 10680 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10681 { 10682 unsigned int flags = this_rq->nohz_idle_balance; 10683 10684 if (!flags) 10685 return false; 10686 10687 this_rq->nohz_idle_balance = 0; 10688 10689 if (idle != CPU_IDLE) 10690 return false; 10691 10692 _nohz_idle_balance(this_rq, flags, idle); 10693 10694 return true; 10695 } 10696 10697 /* 10698 * Check if we need to run the ILB for updating blocked load before entering 10699 * idle state. 10700 */ 10701 void nohz_run_idle_balance(int cpu) 10702 { 10703 unsigned int flags; 10704 10705 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 10706 10707 /* 10708 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 10709 * (ie NOHZ_STATS_KICK set) and will do the same. 10710 */ 10711 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 10712 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE); 10713 } 10714 10715 static void nohz_newidle_balance(struct rq *this_rq) 10716 { 10717 int this_cpu = this_rq->cpu; 10718 10719 /* 10720 * This CPU doesn't want to be disturbed by scheduler 10721 * housekeeping 10722 */ 10723 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 10724 return; 10725 10726 /* Will wake up very soon. No time for doing anything else*/ 10727 if (this_rq->avg_idle < sysctl_sched_migration_cost) 10728 return; 10729 10730 /* Don't need to update blocked load of idle CPUs*/ 10731 if (!READ_ONCE(nohz.has_blocked) || 10732 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 10733 return; 10734 10735 /* 10736 * Set the need to trigger ILB in order to update blocked load 10737 * before entering idle state. 10738 */ 10739 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 10740 } 10741 10742 #else /* !CONFIG_NO_HZ_COMMON */ 10743 static inline void nohz_balancer_kick(struct rq *rq) { } 10744 10745 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10746 { 10747 return false; 10748 } 10749 10750 static inline void nohz_newidle_balance(struct rq *this_rq) { } 10751 #endif /* CONFIG_NO_HZ_COMMON */ 10752 10753 /* 10754 * newidle_balance is called by schedule() if this_cpu is about to become 10755 * idle. Attempts to pull tasks from other CPUs. 10756 * 10757 * Returns: 10758 * < 0 - we released the lock and there are !fair tasks present 10759 * 0 - failed, no new tasks 10760 * > 0 - success, new (fair) tasks present 10761 */ 10762 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 10763 { 10764 unsigned long next_balance = jiffies + HZ; 10765 int this_cpu = this_rq->cpu; 10766 struct sched_domain *sd; 10767 int pulled_task = 0; 10768 u64 curr_cost = 0; 10769 10770 update_misfit_status(NULL, this_rq); 10771 10772 /* 10773 * There is a task waiting to run. No need to search for one. 10774 * Return 0; the task will be enqueued when switching to idle. 10775 */ 10776 if (this_rq->ttwu_pending) 10777 return 0; 10778 10779 /* 10780 * We must set idle_stamp _before_ calling idle_balance(), such that we 10781 * measure the duration of idle_balance() as idle time. 10782 */ 10783 this_rq->idle_stamp = rq_clock(this_rq); 10784 10785 /* 10786 * Do not pull tasks towards !active CPUs... 10787 */ 10788 if (!cpu_active(this_cpu)) 10789 return 0; 10790 10791 /* 10792 * This is OK, because current is on_cpu, which avoids it being picked 10793 * for load-balance and preemption/IRQs are still disabled avoiding 10794 * further scheduler activity on it and we're being very careful to 10795 * re-start the picking loop. 10796 */ 10797 rq_unpin_lock(this_rq, rf); 10798 10799 if (this_rq->avg_idle < sysctl_sched_migration_cost || 10800 !READ_ONCE(this_rq->rd->overload)) { 10801 10802 rcu_read_lock(); 10803 sd = rcu_dereference_check_sched_domain(this_rq->sd); 10804 if (sd) 10805 update_next_balance(sd, &next_balance); 10806 rcu_read_unlock(); 10807 10808 goto out; 10809 } 10810 10811 raw_spin_rq_unlock(this_rq); 10812 10813 update_blocked_averages(this_cpu); 10814 rcu_read_lock(); 10815 for_each_domain(this_cpu, sd) { 10816 int continue_balancing = 1; 10817 u64 t0, domain_cost; 10818 10819 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 10820 update_next_balance(sd, &next_balance); 10821 break; 10822 } 10823 10824 if (sd->flags & SD_BALANCE_NEWIDLE) { 10825 t0 = sched_clock_cpu(this_cpu); 10826 10827 pulled_task = load_balance(this_cpu, this_rq, 10828 sd, CPU_NEWLY_IDLE, 10829 &continue_balancing); 10830 10831 domain_cost = sched_clock_cpu(this_cpu) - t0; 10832 if (domain_cost > sd->max_newidle_lb_cost) 10833 sd->max_newidle_lb_cost = domain_cost; 10834 10835 curr_cost += domain_cost; 10836 } 10837 10838 update_next_balance(sd, &next_balance); 10839 10840 /* 10841 * Stop searching for tasks to pull if there are 10842 * now runnable tasks on this rq. 10843 */ 10844 if (pulled_task || this_rq->nr_running > 0 || 10845 this_rq->ttwu_pending) 10846 break; 10847 } 10848 rcu_read_unlock(); 10849 10850 raw_spin_rq_lock(this_rq); 10851 10852 if (curr_cost > this_rq->max_idle_balance_cost) 10853 this_rq->max_idle_balance_cost = curr_cost; 10854 10855 /* 10856 * While browsing the domains, we released the rq lock, a task could 10857 * have been enqueued in the meantime. Since we're not going idle, 10858 * pretend we pulled a task. 10859 */ 10860 if (this_rq->cfs.h_nr_running && !pulled_task) 10861 pulled_task = 1; 10862 10863 /* Is there a task of a high priority class? */ 10864 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 10865 pulled_task = -1; 10866 10867 out: 10868 /* Move the next balance forward */ 10869 if (time_after(this_rq->next_balance, next_balance)) 10870 this_rq->next_balance = next_balance; 10871 10872 if (pulled_task) 10873 this_rq->idle_stamp = 0; 10874 else 10875 nohz_newidle_balance(this_rq); 10876 10877 rq_repin_lock(this_rq, rf); 10878 10879 return pulled_task; 10880 } 10881 10882 /* 10883 * run_rebalance_domains is triggered when needed from the scheduler tick. 10884 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 10885 */ 10886 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 10887 { 10888 struct rq *this_rq = this_rq(); 10889 enum cpu_idle_type idle = this_rq->idle_balance ? 10890 CPU_IDLE : CPU_NOT_IDLE; 10891 10892 /* 10893 * If this CPU has a pending nohz_balance_kick, then do the 10894 * balancing on behalf of the other idle CPUs whose ticks are 10895 * stopped. Do nohz_idle_balance *before* rebalance_domains to 10896 * give the idle CPUs a chance to load balance. Else we may 10897 * load balance only within the local sched_domain hierarchy 10898 * and abort nohz_idle_balance altogether if we pull some load. 10899 */ 10900 if (nohz_idle_balance(this_rq, idle)) 10901 return; 10902 10903 /* normal load balance */ 10904 update_blocked_averages(this_rq->cpu); 10905 rebalance_domains(this_rq, idle); 10906 } 10907 10908 /* 10909 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 10910 */ 10911 void trigger_load_balance(struct rq *rq) 10912 { 10913 /* 10914 * Don't need to rebalance while attached to NULL domain or 10915 * runqueue CPU is not active 10916 */ 10917 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 10918 return; 10919 10920 if (time_after_eq(jiffies, rq->next_balance)) 10921 raise_softirq(SCHED_SOFTIRQ); 10922 10923 nohz_balancer_kick(rq); 10924 } 10925 10926 static void rq_online_fair(struct rq *rq) 10927 { 10928 update_sysctl(); 10929 10930 update_runtime_enabled(rq); 10931 } 10932 10933 static void rq_offline_fair(struct rq *rq) 10934 { 10935 update_sysctl(); 10936 10937 /* Ensure any throttled groups are reachable by pick_next_task */ 10938 unthrottle_offline_cfs_rqs(rq); 10939 } 10940 10941 #endif /* CONFIG_SMP */ 10942 10943 #ifdef CONFIG_SCHED_CORE 10944 static inline bool 10945 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 10946 { 10947 u64 slice = sched_slice(cfs_rq_of(se), se); 10948 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 10949 10950 return (rtime * min_nr_tasks > slice); 10951 } 10952 10953 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 10954 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 10955 { 10956 if (!sched_core_enabled(rq)) 10957 return; 10958 10959 /* 10960 * If runqueue has only one task which used up its slice and 10961 * if the sibling is forced idle, then trigger schedule to 10962 * give forced idle task a chance. 10963 * 10964 * sched_slice() considers only this active rq and it gets the 10965 * whole slice. But during force idle, we have siblings acting 10966 * like a single runqueue and hence we need to consider runnable 10967 * tasks on this CPU and the forced idle CPU. Ideally, we should 10968 * go through the forced idle rq, but that would be a perf hit. 10969 * We can assume that the forced idle CPU has at least 10970 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 10971 * if we need to give up the CPU. 10972 */ 10973 if (rq->core->core_forceidle && rq->cfs.nr_running == 1 && 10974 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 10975 resched_curr(rq); 10976 } 10977 10978 /* 10979 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 10980 */ 10981 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle) 10982 { 10983 for_each_sched_entity(se) { 10984 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10985 10986 if (forceidle) { 10987 if (cfs_rq->forceidle_seq == fi_seq) 10988 break; 10989 cfs_rq->forceidle_seq = fi_seq; 10990 } 10991 10992 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 10993 } 10994 } 10995 10996 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 10997 { 10998 struct sched_entity *se = &p->se; 10999 11000 if (p->sched_class != &fair_sched_class) 11001 return; 11002 11003 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 11004 } 11005 11006 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 11007 { 11008 struct rq *rq = task_rq(a); 11009 struct sched_entity *sea = &a->se; 11010 struct sched_entity *seb = &b->se; 11011 struct cfs_rq *cfs_rqa; 11012 struct cfs_rq *cfs_rqb; 11013 s64 delta; 11014 11015 SCHED_WARN_ON(task_rq(b)->core != rq->core); 11016 11017 #ifdef CONFIG_FAIR_GROUP_SCHED 11018 /* 11019 * Find an se in the hierarchy for tasks a and b, such that the se's 11020 * are immediate siblings. 11021 */ 11022 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 11023 int sea_depth = sea->depth; 11024 int seb_depth = seb->depth; 11025 11026 if (sea_depth >= seb_depth) 11027 sea = parent_entity(sea); 11028 if (sea_depth <= seb_depth) 11029 seb = parent_entity(seb); 11030 } 11031 11032 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 11033 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 11034 11035 cfs_rqa = sea->cfs_rq; 11036 cfs_rqb = seb->cfs_rq; 11037 #else 11038 cfs_rqa = &task_rq(a)->cfs; 11039 cfs_rqb = &task_rq(b)->cfs; 11040 #endif 11041 11042 /* 11043 * Find delta after normalizing se's vruntime with its cfs_rq's 11044 * min_vruntime_fi, which would have been updated in prior calls 11045 * to se_fi_update(). 11046 */ 11047 delta = (s64)(sea->vruntime - seb->vruntime) + 11048 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 11049 11050 return delta > 0; 11051 } 11052 #else 11053 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 11054 #endif 11055 11056 /* 11057 * scheduler tick hitting a task of our scheduling class. 11058 * 11059 * NOTE: This function can be called remotely by the tick offload that 11060 * goes along full dynticks. Therefore no local assumption can be made 11061 * and everything must be accessed through the @rq and @curr passed in 11062 * parameters. 11063 */ 11064 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 11065 { 11066 struct cfs_rq *cfs_rq; 11067 struct sched_entity *se = &curr->se; 11068 11069 for_each_sched_entity(se) { 11070 cfs_rq = cfs_rq_of(se); 11071 entity_tick(cfs_rq, se, queued); 11072 } 11073 11074 if (static_branch_unlikely(&sched_numa_balancing)) 11075 task_tick_numa(rq, curr); 11076 11077 update_misfit_status(curr, rq); 11078 update_overutilized_status(task_rq(curr)); 11079 11080 task_tick_core(rq, curr); 11081 } 11082 11083 /* 11084 * called on fork with the child task as argument from the parent's context 11085 * - child not yet on the tasklist 11086 * - preemption disabled 11087 */ 11088 static void task_fork_fair(struct task_struct *p) 11089 { 11090 struct cfs_rq *cfs_rq; 11091 struct sched_entity *se = &p->se, *curr; 11092 struct rq *rq = this_rq(); 11093 struct rq_flags rf; 11094 11095 rq_lock(rq, &rf); 11096 update_rq_clock(rq); 11097 11098 cfs_rq = task_cfs_rq(current); 11099 curr = cfs_rq->curr; 11100 if (curr) { 11101 update_curr(cfs_rq); 11102 se->vruntime = curr->vruntime; 11103 } 11104 place_entity(cfs_rq, se, 1); 11105 11106 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 11107 /* 11108 * Upon rescheduling, sched_class::put_prev_task() will place 11109 * 'current' within the tree based on its new key value. 11110 */ 11111 swap(curr->vruntime, se->vruntime); 11112 resched_curr(rq); 11113 } 11114 11115 se->vruntime -= cfs_rq->min_vruntime; 11116 rq_unlock(rq, &rf); 11117 } 11118 11119 /* 11120 * Priority of the task has changed. Check to see if we preempt 11121 * the current task. 11122 */ 11123 static void 11124 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 11125 { 11126 if (!task_on_rq_queued(p)) 11127 return; 11128 11129 if (rq->cfs.nr_running == 1) 11130 return; 11131 11132 /* 11133 * Reschedule if we are currently running on this runqueue and 11134 * our priority decreased, or if we are not currently running on 11135 * this runqueue and our priority is higher than the current's 11136 */ 11137 if (task_current(rq, p)) { 11138 if (p->prio > oldprio) 11139 resched_curr(rq); 11140 } else 11141 check_preempt_curr(rq, p, 0); 11142 } 11143 11144 static inline bool vruntime_normalized(struct task_struct *p) 11145 { 11146 struct sched_entity *se = &p->se; 11147 11148 /* 11149 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 11150 * the dequeue_entity(.flags=0) will already have normalized the 11151 * vruntime. 11152 */ 11153 if (p->on_rq) 11154 return true; 11155 11156 /* 11157 * When !on_rq, vruntime of the task has usually NOT been normalized. 11158 * But there are some cases where it has already been normalized: 11159 * 11160 * - A forked child which is waiting for being woken up by 11161 * wake_up_new_task(). 11162 * - A task which has been woken up by try_to_wake_up() and 11163 * waiting for actually being woken up by sched_ttwu_pending(). 11164 */ 11165 if (!se->sum_exec_runtime || 11166 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup)) 11167 return true; 11168 11169 return false; 11170 } 11171 11172 #ifdef CONFIG_FAIR_GROUP_SCHED 11173 /* 11174 * Propagate the changes of the sched_entity across the tg tree to make it 11175 * visible to the root 11176 */ 11177 static void propagate_entity_cfs_rq(struct sched_entity *se) 11178 { 11179 struct cfs_rq *cfs_rq; 11180 11181 list_add_leaf_cfs_rq(cfs_rq_of(se)); 11182 11183 /* Start to propagate at parent */ 11184 se = se->parent; 11185 11186 for_each_sched_entity(se) { 11187 cfs_rq = cfs_rq_of(se); 11188 11189 if (!cfs_rq_throttled(cfs_rq)){ 11190 update_load_avg(cfs_rq, se, UPDATE_TG); 11191 list_add_leaf_cfs_rq(cfs_rq); 11192 continue; 11193 } 11194 11195 if (list_add_leaf_cfs_rq(cfs_rq)) 11196 break; 11197 } 11198 } 11199 #else 11200 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 11201 #endif 11202 11203 static void detach_entity_cfs_rq(struct sched_entity *se) 11204 { 11205 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11206 11207 /* Catch up with the cfs_rq and remove our load when we leave */ 11208 update_load_avg(cfs_rq, se, 0); 11209 detach_entity_load_avg(cfs_rq, se); 11210 update_tg_load_avg(cfs_rq); 11211 propagate_entity_cfs_rq(se); 11212 } 11213 11214 static void attach_entity_cfs_rq(struct sched_entity *se) 11215 { 11216 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11217 11218 #ifdef CONFIG_FAIR_GROUP_SCHED 11219 /* 11220 * Since the real-depth could have been changed (only FAIR 11221 * class maintain depth value), reset depth properly. 11222 */ 11223 se->depth = se->parent ? se->parent->depth + 1 : 0; 11224 #endif 11225 11226 /* Synchronize entity with its cfs_rq */ 11227 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 11228 attach_entity_load_avg(cfs_rq, se); 11229 update_tg_load_avg(cfs_rq); 11230 propagate_entity_cfs_rq(se); 11231 } 11232 11233 static void detach_task_cfs_rq(struct task_struct *p) 11234 { 11235 struct sched_entity *se = &p->se; 11236 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11237 11238 if (!vruntime_normalized(p)) { 11239 /* 11240 * Fix up our vruntime so that the current sleep doesn't 11241 * cause 'unlimited' sleep bonus. 11242 */ 11243 place_entity(cfs_rq, se, 0); 11244 se->vruntime -= cfs_rq->min_vruntime; 11245 } 11246 11247 detach_entity_cfs_rq(se); 11248 } 11249 11250 static void attach_task_cfs_rq(struct task_struct *p) 11251 { 11252 struct sched_entity *se = &p->se; 11253 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11254 11255 attach_entity_cfs_rq(se); 11256 11257 if (!vruntime_normalized(p)) 11258 se->vruntime += cfs_rq->min_vruntime; 11259 } 11260 11261 static void switched_from_fair(struct rq *rq, struct task_struct *p) 11262 { 11263 detach_task_cfs_rq(p); 11264 } 11265 11266 static void switched_to_fair(struct rq *rq, struct task_struct *p) 11267 { 11268 attach_task_cfs_rq(p); 11269 11270 if (task_on_rq_queued(p)) { 11271 /* 11272 * We were most likely switched from sched_rt, so 11273 * kick off the schedule if running, otherwise just see 11274 * if we can still preempt the current task. 11275 */ 11276 if (task_current(rq, p)) 11277 resched_curr(rq); 11278 else 11279 check_preempt_curr(rq, p, 0); 11280 } 11281 } 11282 11283 /* Account for a task changing its policy or group. 11284 * 11285 * This routine is mostly called to set cfs_rq->curr field when a task 11286 * migrates between groups/classes. 11287 */ 11288 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 11289 { 11290 struct sched_entity *se = &p->se; 11291 11292 #ifdef CONFIG_SMP 11293 if (task_on_rq_queued(p)) { 11294 /* 11295 * Move the next running task to the front of the list, so our 11296 * cfs_tasks list becomes MRU one. 11297 */ 11298 list_move(&se->group_node, &rq->cfs_tasks); 11299 } 11300 #endif 11301 11302 for_each_sched_entity(se) { 11303 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11304 11305 set_next_entity(cfs_rq, se); 11306 /* ensure bandwidth has been allocated on our new cfs_rq */ 11307 account_cfs_rq_runtime(cfs_rq, 0); 11308 } 11309 } 11310 11311 void init_cfs_rq(struct cfs_rq *cfs_rq) 11312 { 11313 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 11314 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 11315 #ifndef CONFIG_64BIT 11316 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 11317 #endif 11318 #ifdef CONFIG_SMP 11319 raw_spin_lock_init(&cfs_rq->removed.lock); 11320 #endif 11321 } 11322 11323 #ifdef CONFIG_FAIR_GROUP_SCHED 11324 static void task_set_group_fair(struct task_struct *p) 11325 { 11326 struct sched_entity *se = &p->se; 11327 11328 set_task_rq(p, task_cpu(p)); 11329 se->depth = se->parent ? se->parent->depth + 1 : 0; 11330 } 11331 11332 static void task_move_group_fair(struct task_struct *p) 11333 { 11334 detach_task_cfs_rq(p); 11335 set_task_rq(p, task_cpu(p)); 11336 11337 #ifdef CONFIG_SMP 11338 /* Tell se's cfs_rq has been changed -- migrated */ 11339 p->se.avg.last_update_time = 0; 11340 #endif 11341 attach_task_cfs_rq(p); 11342 } 11343 11344 static void task_change_group_fair(struct task_struct *p, int type) 11345 { 11346 switch (type) { 11347 case TASK_SET_GROUP: 11348 task_set_group_fair(p); 11349 break; 11350 11351 case TASK_MOVE_GROUP: 11352 task_move_group_fair(p); 11353 break; 11354 } 11355 } 11356 11357 void free_fair_sched_group(struct task_group *tg) 11358 { 11359 int i; 11360 11361 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11362 11363 for_each_possible_cpu(i) { 11364 if (tg->cfs_rq) 11365 kfree(tg->cfs_rq[i]); 11366 if (tg->se) 11367 kfree(tg->se[i]); 11368 } 11369 11370 kfree(tg->cfs_rq); 11371 kfree(tg->se); 11372 } 11373 11374 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11375 { 11376 struct sched_entity *se; 11377 struct cfs_rq *cfs_rq; 11378 int i; 11379 11380 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 11381 if (!tg->cfs_rq) 11382 goto err; 11383 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 11384 if (!tg->se) 11385 goto err; 11386 11387 tg->shares = NICE_0_LOAD; 11388 11389 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11390 11391 for_each_possible_cpu(i) { 11392 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 11393 GFP_KERNEL, cpu_to_node(i)); 11394 if (!cfs_rq) 11395 goto err; 11396 11397 se = kzalloc_node(sizeof(struct sched_entity), 11398 GFP_KERNEL, cpu_to_node(i)); 11399 if (!se) 11400 goto err_free_rq; 11401 11402 init_cfs_rq(cfs_rq); 11403 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 11404 init_entity_runnable_average(se); 11405 } 11406 11407 return 1; 11408 11409 err_free_rq: 11410 kfree(cfs_rq); 11411 err: 11412 return 0; 11413 } 11414 11415 void online_fair_sched_group(struct task_group *tg) 11416 { 11417 struct sched_entity *se; 11418 struct rq_flags rf; 11419 struct rq *rq; 11420 int i; 11421 11422 for_each_possible_cpu(i) { 11423 rq = cpu_rq(i); 11424 se = tg->se[i]; 11425 rq_lock_irq(rq, &rf); 11426 update_rq_clock(rq); 11427 attach_entity_cfs_rq(se); 11428 sync_throttle(tg, i); 11429 rq_unlock_irq(rq, &rf); 11430 } 11431 } 11432 11433 void unregister_fair_sched_group(struct task_group *tg) 11434 { 11435 unsigned long flags; 11436 struct rq *rq; 11437 int cpu; 11438 11439 for_each_possible_cpu(cpu) { 11440 if (tg->se[cpu]) 11441 remove_entity_load_avg(tg->se[cpu]); 11442 11443 /* 11444 * Only empty task groups can be destroyed; so we can speculatively 11445 * check on_list without danger of it being re-added. 11446 */ 11447 if (!tg->cfs_rq[cpu]->on_list) 11448 continue; 11449 11450 rq = cpu_rq(cpu); 11451 11452 raw_spin_rq_lock_irqsave(rq, flags); 11453 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 11454 raw_spin_rq_unlock_irqrestore(rq, flags); 11455 } 11456 } 11457 11458 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 11459 struct sched_entity *se, int cpu, 11460 struct sched_entity *parent) 11461 { 11462 struct rq *rq = cpu_rq(cpu); 11463 11464 cfs_rq->tg = tg; 11465 cfs_rq->rq = rq; 11466 init_cfs_rq_runtime(cfs_rq); 11467 11468 tg->cfs_rq[cpu] = cfs_rq; 11469 tg->se[cpu] = se; 11470 11471 /* se could be NULL for root_task_group */ 11472 if (!se) 11473 return; 11474 11475 if (!parent) { 11476 se->cfs_rq = &rq->cfs; 11477 se->depth = 0; 11478 } else { 11479 se->cfs_rq = parent->my_q; 11480 se->depth = parent->depth + 1; 11481 } 11482 11483 se->my_q = cfs_rq; 11484 /* guarantee group entities always have weight */ 11485 update_load_set(&se->load, NICE_0_LOAD); 11486 se->parent = parent; 11487 } 11488 11489 static DEFINE_MUTEX(shares_mutex); 11490 11491 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 11492 { 11493 int i; 11494 11495 lockdep_assert_held(&shares_mutex); 11496 11497 /* 11498 * We can't change the weight of the root cgroup. 11499 */ 11500 if (!tg->se[0]) 11501 return -EINVAL; 11502 11503 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 11504 11505 if (tg->shares == shares) 11506 return 0; 11507 11508 tg->shares = shares; 11509 for_each_possible_cpu(i) { 11510 struct rq *rq = cpu_rq(i); 11511 struct sched_entity *se = tg->se[i]; 11512 struct rq_flags rf; 11513 11514 /* Propagate contribution to hierarchy */ 11515 rq_lock_irqsave(rq, &rf); 11516 update_rq_clock(rq); 11517 for_each_sched_entity(se) { 11518 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 11519 update_cfs_group(se); 11520 } 11521 rq_unlock_irqrestore(rq, &rf); 11522 } 11523 11524 return 0; 11525 } 11526 11527 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 11528 { 11529 int ret; 11530 11531 mutex_lock(&shares_mutex); 11532 if (tg_is_idle(tg)) 11533 ret = -EINVAL; 11534 else 11535 ret = __sched_group_set_shares(tg, shares); 11536 mutex_unlock(&shares_mutex); 11537 11538 return ret; 11539 } 11540 11541 int sched_group_set_idle(struct task_group *tg, long idle) 11542 { 11543 int i; 11544 11545 if (tg == &root_task_group) 11546 return -EINVAL; 11547 11548 if (idle < 0 || idle > 1) 11549 return -EINVAL; 11550 11551 mutex_lock(&shares_mutex); 11552 11553 if (tg->idle == idle) { 11554 mutex_unlock(&shares_mutex); 11555 return 0; 11556 } 11557 11558 tg->idle = idle; 11559 11560 for_each_possible_cpu(i) { 11561 struct rq *rq = cpu_rq(i); 11562 struct sched_entity *se = tg->se[i]; 11563 struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i]; 11564 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 11565 long idle_task_delta; 11566 struct rq_flags rf; 11567 11568 rq_lock_irqsave(rq, &rf); 11569 11570 grp_cfs_rq->idle = idle; 11571 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 11572 goto next_cpu; 11573 11574 idle_task_delta = grp_cfs_rq->h_nr_running - 11575 grp_cfs_rq->idle_h_nr_running; 11576 if (!cfs_rq_is_idle(grp_cfs_rq)) 11577 idle_task_delta *= -1; 11578 11579 for_each_sched_entity(se) { 11580 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11581 11582 if (!se->on_rq) 11583 break; 11584 11585 cfs_rq->idle_h_nr_running += idle_task_delta; 11586 11587 /* Already accounted at parent level and above. */ 11588 if (cfs_rq_is_idle(cfs_rq)) 11589 break; 11590 } 11591 11592 next_cpu: 11593 rq_unlock_irqrestore(rq, &rf); 11594 } 11595 11596 /* Idle groups have minimum weight. */ 11597 if (tg_is_idle(tg)) 11598 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 11599 else 11600 __sched_group_set_shares(tg, NICE_0_LOAD); 11601 11602 mutex_unlock(&shares_mutex); 11603 return 0; 11604 } 11605 11606 #else /* CONFIG_FAIR_GROUP_SCHED */ 11607 11608 void free_fair_sched_group(struct task_group *tg) { } 11609 11610 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11611 { 11612 return 1; 11613 } 11614 11615 void online_fair_sched_group(struct task_group *tg) { } 11616 11617 void unregister_fair_sched_group(struct task_group *tg) { } 11618 11619 #endif /* CONFIG_FAIR_GROUP_SCHED */ 11620 11621 11622 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 11623 { 11624 struct sched_entity *se = &task->se; 11625 unsigned int rr_interval = 0; 11626 11627 /* 11628 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 11629 * idle runqueue: 11630 */ 11631 if (rq->cfs.load.weight) 11632 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 11633 11634 return rr_interval; 11635 } 11636 11637 /* 11638 * All the scheduling class methods: 11639 */ 11640 DEFINE_SCHED_CLASS(fair) = { 11641 11642 .enqueue_task = enqueue_task_fair, 11643 .dequeue_task = dequeue_task_fair, 11644 .yield_task = yield_task_fair, 11645 .yield_to_task = yield_to_task_fair, 11646 11647 .check_preempt_curr = check_preempt_wakeup, 11648 11649 .pick_next_task = __pick_next_task_fair, 11650 .put_prev_task = put_prev_task_fair, 11651 .set_next_task = set_next_task_fair, 11652 11653 #ifdef CONFIG_SMP 11654 .balance = balance_fair, 11655 .pick_task = pick_task_fair, 11656 .select_task_rq = select_task_rq_fair, 11657 .migrate_task_rq = migrate_task_rq_fair, 11658 11659 .rq_online = rq_online_fair, 11660 .rq_offline = rq_offline_fair, 11661 11662 .task_dead = task_dead_fair, 11663 .set_cpus_allowed = set_cpus_allowed_common, 11664 #endif 11665 11666 .task_tick = task_tick_fair, 11667 .task_fork = task_fork_fair, 11668 11669 .prio_changed = prio_changed_fair, 11670 .switched_from = switched_from_fair, 11671 .switched_to = switched_to_fair, 11672 11673 .get_rr_interval = get_rr_interval_fair, 11674 11675 .update_curr = update_curr_fair, 11676 11677 #ifdef CONFIG_FAIR_GROUP_SCHED 11678 .task_change_group = task_change_group_fair, 11679 #endif 11680 11681 #ifdef CONFIG_UCLAMP_TASK 11682 .uclamp_enabled = 1, 11683 #endif 11684 }; 11685 11686 #ifdef CONFIG_SCHED_DEBUG 11687 void print_cfs_stats(struct seq_file *m, int cpu) 11688 { 11689 struct cfs_rq *cfs_rq, *pos; 11690 11691 rcu_read_lock(); 11692 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 11693 print_cfs_rq(m, cpu, cfs_rq); 11694 rcu_read_unlock(); 11695 } 11696 11697 #ifdef CONFIG_NUMA_BALANCING 11698 void show_numa_stats(struct task_struct *p, struct seq_file *m) 11699 { 11700 int node; 11701 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 11702 struct numa_group *ng; 11703 11704 rcu_read_lock(); 11705 ng = rcu_dereference(p->numa_group); 11706 for_each_online_node(node) { 11707 if (p->numa_faults) { 11708 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 11709 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 11710 } 11711 if (ng) { 11712 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 11713 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 11714 } 11715 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 11716 } 11717 rcu_read_unlock(); 11718 } 11719 #endif /* CONFIG_NUMA_BALANCING */ 11720 #endif /* CONFIG_SCHED_DEBUG */ 11721 11722 __init void init_sched_fair_class(void) 11723 { 11724 #ifdef CONFIG_SMP 11725 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 11726 11727 #ifdef CONFIG_NO_HZ_COMMON 11728 nohz.next_balance = jiffies; 11729 nohz.next_blocked = jiffies; 11730 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 11731 #endif 11732 #endif /* SMP */ 11733 11734 } 11735 11736 /* 11737 * Helper functions to facilitate extracting info from tracepoints. 11738 */ 11739 11740 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq) 11741 { 11742 #ifdef CONFIG_SMP 11743 return cfs_rq ? &cfs_rq->avg : NULL; 11744 #else 11745 return NULL; 11746 #endif 11747 } 11748 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg); 11749 11750 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len) 11751 { 11752 if (!cfs_rq) { 11753 if (str) 11754 strlcpy(str, "(null)", len); 11755 else 11756 return NULL; 11757 } 11758 11759 cfs_rq_tg_path(cfs_rq, str, len); 11760 return str; 11761 } 11762 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path); 11763 11764 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq) 11765 { 11766 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1; 11767 } 11768 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu); 11769 11770 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq) 11771 { 11772 #ifdef CONFIG_SMP 11773 return rq ? &rq->avg_rt : NULL; 11774 #else 11775 return NULL; 11776 #endif 11777 } 11778 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt); 11779 11780 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq) 11781 { 11782 #ifdef CONFIG_SMP 11783 return rq ? &rq->avg_dl : NULL; 11784 #else 11785 return NULL; 11786 #endif 11787 } 11788 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl); 11789 11790 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq) 11791 { 11792 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ) 11793 return rq ? &rq->avg_irq : NULL; 11794 #else 11795 return NULL; 11796 #endif 11797 } 11798 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq); 11799 11800 int sched_trace_rq_cpu(struct rq *rq) 11801 { 11802 return rq ? cpu_of(rq) : -1; 11803 } 11804 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu); 11805 11806 int sched_trace_rq_cpu_capacity(struct rq *rq) 11807 { 11808 return rq ? 11809 #ifdef CONFIG_SMP 11810 rq->cpu_capacity 11811 #else 11812 SCHED_CAPACITY_SCALE 11813 #endif 11814 : -1; 11815 } 11816 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity); 11817 11818 const struct cpumask *sched_trace_rd_span(struct root_domain *rd) 11819 { 11820 #ifdef CONFIG_SMP 11821 return rd ? rd->span : NULL; 11822 #else 11823 return NULL; 11824 #endif 11825 } 11826 EXPORT_SYMBOL_GPL(sched_trace_rd_span); 11827 11828 int sched_trace_rq_nr_running(struct rq *rq) 11829 { 11830 return rq ? rq->nr_running : -1; 11831 } 11832 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running); 11833