1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 21 */ 22 23 #include <linux/latencytop.h> 24 #include <linux/sched.h> 25 #include <linux/cpumask.h> 26 #include <linux/slab.h> 27 #include <linux/profile.h> 28 #include <linux/interrupt.h> 29 #include <linux/mempolicy.h> 30 #include <linux/migrate.h> 31 #include <linux/task_work.h> 32 33 #include <trace/events/sched.h> 34 35 #include "sched.h" 36 37 /* 38 * Targeted preemption latency for CPU-bound tasks: 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 40 * 41 * NOTE: this latency value is not the same as the concept of 42 * 'timeslice length' - timeslices in CFS are of variable length 43 * and have no persistent notion like in traditional, time-slice 44 * based scheduling concepts. 45 * 46 * (to see the precise effective timeslice length of your workload, 47 * run vmstat and monitor the context-switches (cs) field) 48 */ 49 unsigned int sysctl_sched_latency = 6000000ULL; 50 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 51 52 /* 53 * The initial- and re-scaling of tunables is configurable 54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 55 * 56 * Options are: 57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 60 */ 61 enum sched_tunable_scaling sysctl_sched_tunable_scaling 62 = SCHED_TUNABLESCALING_LOG; 63 64 /* 65 * Minimal preemption granularity for CPU-bound tasks: 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 67 */ 68 unsigned int sysctl_sched_min_granularity = 750000ULL; 69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 70 71 /* 72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 73 */ 74 static unsigned int sched_nr_latency = 8; 75 76 /* 77 * After fork, child runs first. If set to 0 (default) then 78 * parent will (try to) run first. 79 */ 80 unsigned int sysctl_sched_child_runs_first __read_mostly; 81 82 /* 83 * SCHED_OTHER wake-up granularity. 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 85 * 86 * This option delays the preemption effects of decoupled workloads 87 * and reduces their over-scheduling. Synchronous workloads will still 88 * have immediate wakeup/sleep latencies. 89 */ 90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 92 93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 94 95 /* 96 * The exponential sliding window over which load is averaged for shares 97 * distribution. 98 * (default: 10msec) 99 */ 100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; 101 102 #ifdef CONFIG_CFS_BANDWIDTH 103 /* 104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 105 * each time a cfs_rq requests quota. 106 * 107 * Note: in the case that the slice exceeds the runtime remaining (either due 108 * to consumption or the quota being specified to be smaller than the slice) 109 * we will always only issue the remaining available time. 110 * 111 * default: 5 msec, units: microseconds 112 */ 113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 114 #endif 115 116 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 117 { 118 lw->weight += inc; 119 lw->inv_weight = 0; 120 } 121 122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 123 { 124 lw->weight -= dec; 125 lw->inv_weight = 0; 126 } 127 128 static inline void update_load_set(struct load_weight *lw, unsigned long w) 129 { 130 lw->weight = w; 131 lw->inv_weight = 0; 132 } 133 134 /* 135 * Increase the granularity value when there are more CPUs, 136 * because with more CPUs the 'effective latency' as visible 137 * to users decreases. But the relationship is not linear, 138 * so pick a second-best guess by going with the log2 of the 139 * number of CPUs. 140 * 141 * This idea comes from the SD scheduler of Con Kolivas: 142 */ 143 static int get_update_sysctl_factor(void) 144 { 145 unsigned int cpus = min_t(int, num_online_cpus(), 8); 146 unsigned int factor; 147 148 switch (sysctl_sched_tunable_scaling) { 149 case SCHED_TUNABLESCALING_NONE: 150 factor = 1; 151 break; 152 case SCHED_TUNABLESCALING_LINEAR: 153 factor = cpus; 154 break; 155 case SCHED_TUNABLESCALING_LOG: 156 default: 157 factor = 1 + ilog2(cpus); 158 break; 159 } 160 161 return factor; 162 } 163 164 static void update_sysctl(void) 165 { 166 unsigned int factor = get_update_sysctl_factor(); 167 168 #define SET_SYSCTL(name) \ 169 (sysctl_##name = (factor) * normalized_sysctl_##name) 170 SET_SYSCTL(sched_min_granularity); 171 SET_SYSCTL(sched_latency); 172 SET_SYSCTL(sched_wakeup_granularity); 173 #undef SET_SYSCTL 174 } 175 176 void sched_init_granularity(void) 177 { 178 update_sysctl(); 179 } 180 181 #if BITS_PER_LONG == 32 182 # define WMULT_CONST (~0UL) 183 #else 184 # define WMULT_CONST (1UL << 32) 185 #endif 186 187 #define WMULT_SHIFT 32 188 189 /* 190 * Shift right and round: 191 */ 192 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) 193 194 /* 195 * delta *= weight / lw 196 */ 197 static unsigned long 198 calc_delta_mine(unsigned long delta_exec, unsigned long weight, 199 struct load_weight *lw) 200 { 201 u64 tmp; 202 203 /* 204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched 205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than 206 * 2^SCHED_LOAD_RESOLUTION. 207 */ 208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION))) 209 tmp = (u64)delta_exec * scale_load_down(weight); 210 else 211 tmp = (u64)delta_exec; 212 213 if (!lw->inv_weight) { 214 unsigned long w = scale_load_down(lw->weight); 215 216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 217 lw->inv_weight = 1; 218 else if (unlikely(!w)) 219 lw->inv_weight = WMULT_CONST; 220 else 221 lw->inv_weight = WMULT_CONST / w; 222 } 223 224 /* 225 * Check whether we'd overflow the 64-bit multiplication: 226 */ 227 if (unlikely(tmp > WMULT_CONST)) 228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, 229 WMULT_SHIFT/2); 230 else 231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); 232 233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); 234 } 235 236 237 const struct sched_class fair_sched_class; 238 239 /************************************************************** 240 * CFS operations on generic schedulable entities: 241 */ 242 243 #ifdef CONFIG_FAIR_GROUP_SCHED 244 245 /* cpu runqueue to which this cfs_rq is attached */ 246 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 247 { 248 return cfs_rq->rq; 249 } 250 251 /* An entity is a task if it doesn't "own" a runqueue */ 252 #define entity_is_task(se) (!se->my_q) 253 254 static inline struct task_struct *task_of(struct sched_entity *se) 255 { 256 #ifdef CONFIG_SCHED_DEBUG 257 WARN_ON_ONCE(!entity_is_task(se)); 258 #endif 259 return container_of(se, struct task_struct, se); 260 } 261 262 /* Walk up scheduling entities hierarchy */ 263 #define for_each_sched_entity(se) \ 264 for (; se; se = se->parent) 265 266 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 267 { 268 return p->se.cfs_rq; 269 } 270 271 /* runqueue on which this entity is (to be) queued */ 272 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 273 { 274 return se->cfs_rq; 275 } 276 277 /* runqueue "owned" by this group */ 278 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 279 { 280 return grp->my_q; 281 } 282 283 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 284 int force_update); 285 286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 287 { 288 if (!cfs_rq->on_list) { 289 /* 290 * Ensure we either appear before our parent (if already 291 * enqueued) or force our parent to appear after us when it is 292 * enqueued. The fact that we always enqueue bottom-up 293 * reduces this to two cases. 294 */ 295 if (cfs_rq->tg->parent && 296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { 297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 298 &rq_of(cfs_rq)->leaf_cfs_rq_list); 299 } else { 300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 301 &rq_of(cfs_rq)->leaf_cfs_rq_list); 302 } 303 304 cfs_rq->on_list = 1; 305 /* We should have no load, but we need to update last_decay. */ 306 update_cfs_rq_blocked_load(cfs_rq, 0); 307 } 308 } 309 310 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 311 { 312 if (cfs_rq->on_list) { 313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 314 cfs_rq->on_list = 0; 315 } 316 } 317 318 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 319 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 321 322 /* Do the two (enqueued) entities belong to the same group ? */ 323 static inline int 324 is_same_group(struct sched_entity *se, struct sched_entity *pse) 325 { 326 if (se->cfs_rq == pse->cfs_rq) 327 return 1; 328 329 return 0; 330 } 331 332 static inline struct sched_entity *parent_entity(struct sched_entity *se) 333 { 334 return se->parent; 335 } 336 337 /* return depth at which a sched entity is present in the hierarchy */ 338 static inline int depth_se(struct sched_entity *se) 339 { 340 int depth = 0; 341 342 for_each_sched_entity(se) 343 depth++; 344 345 return depth; 346 } 347 348 static void 349 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 350 { 351 int se_depth, pse_depth; 352 353 /* 354 * preemption test can be made between sibling entities who are in the 355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 356 * both tasks until we find their ancestors who are siblings of common 357 * parent. 358 */ 359 360 /* First walk up until both entities are at same depth */ 361 se_depth = depth_se(*se); 362 pse_depth = depth_se(*pse); 363 364 while (se_depth > pse_depth) { 365 se_depth--; 366 *se = parent_entity(*se); 367 } 368 369 while (pse_depth > se_depth) { 370 pse_depth--; 371 *pse = parent_entity(*pse); 372 } 373 374 while (!is_same_group(*se, *pse)) { 375 *se = parent_entity(*se); 376 *pse = parent_entity(*pse); 377 } 378 } 379 380 #else /* !CONFIG_FAIR_GROUP_SCHED */ 381 382 static inline struct task_struct *task_of(struct sched_entity *se) 383 { 384 return container_of(se, struct task_struct, se); 385 } 386 387 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 388 { 389 return container_of(cfs_rq, struct rq, cfs); 390 } 391 392 #define entity_is_task(se) 1 393 394 #define for_each_sched_entity(se) \ 395 for (; se; se = NULL) 396 397 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 398 { 399 return &task_rq(p)->cfs; 400 } 401 402 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 403 { 404 struct task_struct *p = task_of(se); 405 struct rq *rq = task_rq(p); 406 407 return &rq->cfs; 408 } 409 410 /* runqueue "owned" by this group */ 411 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 412 { 413 return NULL; 414 } 415 416 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 417 { 418 } 419 420 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 421 { 422 } 423 424 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 426 427 static inline int 428 is_same_group(struct sched_entity *se, struct sched_entity *pse) 429 { 430 return 1; 431 } 432 433 static inline struct sched_entity *parent_entity(struct sched_entity *se) 434 { 435 return NULL; 436 } 437 438 static inline void 439 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 440 { 441 } 442 443 #endif /* CONFIG_FAIR_GROUP_SCHED */ 444 445 static __always_inline 446 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec); 447 448 /************************************************************** 449 * Scheduling class tree data structure manipulation methods: 450 */ 451 452 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 453 { 454 s64 delta = (s64)(vruntime - max_vruntime); 455 if (delta > 0) 456 max_vruntime = vruntime; 457 458 return max_vruntime; 459 } 460 461 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 462 { 463 s64 delta = (s64)(vruntime - min_vruntime); 464 if (delta < 0) 465 min_vruntime = vruntime; 466 467 return min_vruntime; 468 } 469 470 static inline int entity_before(struct sched_entity *a, 471 struct sched_entity *b) 472 { 473 return (s64)(a->vruntime - b->vruntime) < 0; 474 } 475 476 static void update_min_vruntime(struct cfs_rq *cfs_rq) 477 { 478 u64 vruntime = cfs_rq->min_vruntime; 479 480 if (cfs_rq->curr) 481 vruntime = cfs_rq->curr->vruntime; 482 483 if (cfs_rq->rb_leftmost) { 484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 485 struct sched_entity, 486 run_node); 487 488 if (!cfs_rq->curr) 489 vruntime = se->vruntime; 490 else 491 vruntime = min_vruntime(vruntime, se->vruntime); 492 } 493 494 /* ensure we never gain time by being placed backwards. */ 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 496 #ifndef CONFIG_64BIT 497 smp_wmb(); 498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 499 #endif 500 } 501 502 /* 503 * Enqueue an entity into the rb-tree: 504 */ 505 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 506 { 507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 508 struct rb_node *parent = NULL; 509 struct sched_entity *entry; 510 int leftmost = 1; 511 512 /* 513 * Find the right place in the rbtree: 514 */ 515 while (*link) { 516 parent = *link; 517 entry = rb_entry(parent, struct sched_entity, run_node); 518 /* 519 * We dont care about collisions. Nodes with 520 * the same key stay together. 521 */ 522 if (entity_before(se, entry)) { 523 link = &parent->rb_left; 524 } else { 525 link = &parent->rb_right; 526 leftmost = 0; 527 } 528 } 529 530 /* 531 * Maintain a cache of leftmost tree entries (it is frequently 532 * used): 533 */ 534 if (leftmost) 535 cfs_rq->rb_leftmost = &se->run_node; 536 537 rb_link_node(&se->run_node, parent, link); 538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 539 } 540 541 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 542 { 543 if (cfs_rq->rb_leftmost == &se->run_node) { 544 struct rb_node *next_node; 545 546 next_node = rb_next(&se->run_node); 547 cfs_rq->rb_leftmost = next_node; 548 } 549 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 551 } 552 553 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 554 { 555 struct rb_node *left = cfs_rq->rb_leftmost; 556 557 if (!left) 558 return NULL; 559 560 return rb_entry(left, struct sched_entity, run_node); 561 } 562 563 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 564 { 565 struct rb_node *next = rb_next(&se->run_node); 566 567 if (!next) 568 return NULL; 569 570 return rb_entry(next, struct sched_entity, run_node); 571 } 572 573 #ifdef CONFIG_SCHED_DEBUG 574 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 575 { 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 577 578 if (!last) 579 return NULL; 580 581 return rb_entry(last, struct sched_entity, run_node); 582 } 583 584 /************************************************************** 585 * Scheduling class statistics methods: 586 */ 587 588 int sched_proc_update_handler(struct ctl_table *table, int write, 589 void __user *buffer, size_t *lenp, 590 loff_t *ppos) 591 { 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 593 int factor = get_update_sysctl_factor(); 594 595 if (ret || !write) 596 return ret; 597 598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 599 sysctl_sched_min_granularity); 600 601 #define WRT_SYSCTL(name) \ 602 (normalized_sysctl_##name = sysctl_##name / (factor)) 603 WRT_SYSCTL(sched_min_granularity); 604 WRT_SYSCTL(sched_latency); 605 WRT_SYSCTL(sched_wakeup_granularity); 606 #undef WRT_SYSCTL 607 608 return 0; 609 } 610 #endif 611 612 /* 613 * delta /= w 614 */ 615 static inline unsigned long 616 calc_delta_fair(unsigned long delta, struct sched_entity *se) 617 { 618 if (unlikely(se->load.weight != NICE_0_LOAD)) 619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load); 620 621 return delta; 622 } 623 624 /* 625 * The idea is to set a period in which each task runs once. 626 * 627 * When there are too many tasks (sched_nr_latency) we have to stretch 628 * this period because otherwise the slices get too small. 629 * 630 * p = (nr <= nl) ? l : l*nr/nl 631 */ 632 static u64 __sched_period(unsigned long nr_running) 633 { 634 u64 period = sysctl_sched_latency; 635 unsigned long nr_latency = sched_nr_latency; 636 637 if (unlikely(nr_running > nr_latency)) { 638 period = sysctl_sched_min_granularity; 639 period *= nr_running; 640 } 641 642 return period; 643 } 644 645 /* 646 * We calculate the wall-time slice from the period by taking a part 647 * proportional to the weight. 648 * 649 * s = p*P[w/rw] 650 */ 651 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 652 { 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 654 655 for_each_sched_entity(se) { 656 struct load_weight *load; 657 struct load_weight lw; 658 659 cfs_rq = cfs_rq_of(se); 660 load = &cfs_rq->load; 661 662 if (unlikely(!se->on_rq)) { 663 lw = cfs_rq->load; 664 665 update_load_add(&lw, se->load.weight); 666 load = &lw; 667 } 668 slice = calc_delta_mine(slice, se->load.weight, load); 669 } 670 return slice; 671 } 672 673 /* 674 * We calculate the vruntime slice of a to-be-inserted task. 675 * 676 * vs = s/w 677 */ 678 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 679 { 680 return calc_delta_fair(sched_slice(cfs_rq, se), se); 681 } 682 683 #ifdef CONFIG_SMP 684 static unsigned long task_h_load(struct task_struct *p); 685 686 static inline void __update_task_entity_contrib(struct sched_entity *se); 687 688 /* Give new task start runnable values to heavy its load in infant time */ 689 void init_task_runnable_average(struct task_struct *p) 690 { 691 u32 slice; 692 693 p->se.avg.decay_count = 0; 694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10; 695 p->se.avg.runnable_avg_sum = slice; 696 p->se.avg.runnable_avg_period = slice; 697 __update_task_entity_contrib(&p->se); 698 } 699 #else 700 void init_task_runnable_average(struct task_struct *p) 701 { 702 } 703 #endif 704 705 /* 706 * Update the current task's runtime statistics. Skip current tasks that 707 * are not in our scheduling class. 708 */ 709 static inline void 710 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, 711 unsigned long delta_exec) 712 { 713 unsigned long delta_exec_weighted; 714 715 schedstat_set(curr->statistics.exec_max, 716 max((u64)delta_exec, curr->statistics.exec_max)); 717 718 curr->sum_exec_runtime += delta_exec; 719 schedstat_add(cfs_rq, exec_clock, delta_exec); 720 delta_exec_weighted = calc_delta_fair(delta_exec, curr); 721 722 curr->vruntime += delta_exec_weighted; 723 update_min_vruntime(cfs_rq); 724 } 725 726 static void update_curr(struct cfs_rq *cfs_rq) 727 { 728 struct sched_entity *curr = cfs_rq->curr; 729 u64 now = rq_clock_task(rq_of(cfs_rq)); 730 unsigned long delta_exec; 731 732 if (unlikely(!curr)) 733 return; 734 735 /* 736 * Get the amount of time the current task was running 737 * since the last time we changed load (this cannot 738 * overflow on 32 bits): 739 */ 740 delta_exec = (unsigned long)(now - curr->exec_start); 741 if (!delta_exec) 742 return; 743 744 __update_curr(cfs_rq, curr, delta_exec); 745 curr->exec_start = now; 746 747 if (entity_is_task(curr)) { 748 struct task_struct *curtask = task_of(curr); 749 750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 751 cpuacct_charge(curtask, delta_exec); 752 account_group_exec_runtime(curtask, delta_exec); 753 } 754 755 account_cfs_rq_runtime(cfs_rq, delta_exec); 756 } 757 758 static inline void 759 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 760 { 761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq))); 762 } 763 764 /* 765 * Task is being enqueued - update stats: 766 */ 767 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 768 { 769 /* 770 * Are we enqueueing a waiting task? (for current tasks 771 * a dequeue/enqueue event is a NOP) 772 */ 773 if (se != cfs_rq->curr) 774 update_stats_wait_start(cfs_rq, se); 775 } 776 777 static void 778 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 779 { 780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, 781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start)); 782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); 783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + 784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 785 #ifdef CONFIG_SCHEDSTATS 786 if (entity_is_task(se)) { 787 trace_sched_stat_wait(task_of(se), 788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 789 } 790 #endif 791 schedstat_set(se->statistics.wait_start, 0); 792 } 793 794 static inline void 795 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 796 { 797 /* 798 * Mark the end of the wait period if dequeueing a 799 * waiting task: 800 */ 801 if (se != cfs_rq->curr) 802 update_stats_wait_end(cfs_rq, se); 803 } 804 805 /* 806 * We are picking a new current task - update its stats: 807 */ 808 static inline void 809 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 810 { 811 /* 812 * We are starting a new run period: 813 */ 814 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 815 } 816 817 /************************************************** 818 * Scheduling class queueing methods: 819 */ 820 821 #ifdef CONFIG_NUMA_BALANCING 822 /* 823 * Approximate time to scan a full NUMA task in ms. The task scan period is 824 * calculated based on the tasks virtual memory size and 825 * numa_balancing_scan_size. 826 */ 827 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 828 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 829 830 /* Portion of address space to scan in MB */ 831 unsigned int sysctl_numa_balancing_scan_size = 256; 832 833 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 834 unsigned int sysctl_numa_balancing_scan_delay = 1000; 835 836 /* 837 * After skipping a page migration on a shared page, skip N more numa page 838 * migrations unconditionally. This reduces the number of NUMA migrations 839 * in shared memory workloads, and has the effect of pulling tasks towards 840 * where their memory lives, over pulling the memory towards the task. 841 */ 842 unsigned int sysctl_numa_balancing_migrate_deferred = 16; 843 844 static unsigned int task_nr_scan_windows(struct task_struct *p) 845 { 846 unsigned long rss = 0; 847 unsigned long nr_scan_pages; 848 849 /* 850 * Calculations based on RSS as non-present and empty pages are skipped 851 * by the PTE scanner and NUMA hinting faults should be trapped based 852 * on resident pages 853 */ 854 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 855 rss = get_mm_rss(p->mm); 856 if (!rss) 857 rss = nr_scan_pages; 858 859 rss = round_up(rss, nr_scan_pages); 860 return rss / nr_scan_pages; 861 } 862 863 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 864 #define MAX_SCAN_WINDOW 2560 865 866 static unsigned int task_scan_min(struct task_struct *p) 867 { 868 unsigned int scan, floor; 869 unsigned int windows = 1; 870 871 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW) 872 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size; 873 floor = 1000 / windows; 874 875 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 876 return max_t(unsigned int, floor, scan); 877 } 878 879 static unsigned int task_scan_max(struct task_struct *p) 880 { 881 unsigned int smin = task_scan_min(p); 882 unsigned int smax; 883 884 /* Watch for min being lower than max due to floor calculations */ 885 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 886 return max(smin, smax); 887 } 888 889 /* 890 * Once a preferred node is selected the scheduler balancer will prefer moving 891 * a task to that node for sysctl_numa_balancing_settle_count number of PTE 892 * scans. This will give the process the chance to accumulate more faults on 893 * the preferred node but still allow the scheduler to move the task again if 894 * the nodes CPUs are overloaded. 895 */ 896 unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4; 897 898 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 899 { 900 rq->nr_numa_running += (p->numa_preferred_nid != -1); 901 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 902 } 903 904 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 905 { 906 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 907 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 908 } 909 910 struct numa_group { 911 atomic_t refcount; 912 913 spinlock_t lock; /* nr_tasks, tasks */ 914 int nr_tasks; 915 pid_t gid; 916 struct list_head task_list; 917 918 struct rcu_head rcu; 919 unsigned long total_faults; 920 unsigned long faults[0]; 921 }; 922 923 pid_t task_numa_group_id(struct task_struct *p) 924 { 925 return p->numa_group ? p->numa_group->gid : 0; 926 } 927 928 static inline int task_faults_idx(int nid, int priv) 929 { 930 return 2 * nid + priv; 931 } 932 933 static inline unsigned long task_faults(struct task_struct *p, int nid) 934 { 935 if (!p->numa_faults) 936 return 0; 937 938 return p->numa_faults[task_faults_idx(nid, 0)] + 939 p->numa_faults[task_faults_idx(nid, 1)]; 940 } 941 942 static inline unsigned long group_faults(struct task_struct *p, int nid) 943 { 944 if (!p->numa_group) 945 return 0; 946 947 return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1]; 948 } 949 950 /* 951 * These return the fraction of accesses done by a particular task, or 952 * task group, on a particular numa node. The group weight is given a 953 * larger multiplier, in order to group tasks together that are almost 954 * evenly spread out between numa nodes. 955 */ 956 static inline unsigned long task_weight(struct task_struct *p, int nid) 957 { 958 unsigned long total_faults; 959 960 if (!p->numa_faults) 961 return 0; 962 963 total_faults = p->total_numa_faults; 964 965 if (!total_faults) 966 return 0; 967 968 return 1000 * task_faults(p, nid) / total_faults; 969 } 970 971 static inline unsigned long group_weight(struct task_struct *p, int nid) 972 { 973 if (!p->numa_group || !p->numa_group->total_faults) 974 return 0; 975 976 return 1000 * group_faults(p, nid) / p->numa_group->total_faults; 977 } 978 979 static unsigned long weighted_cpuload(const int cpu); 980 static unsigned long source_load(int cpu, int type); 981 static unsigned long target_load(int cpu, int type); 982 static unsigned long power_of(int cpu); 983 static long effective_load(struct task_group *tg, int cpu, long wl, long wg); 984 985 /* Cached statistics for all CPUs within a node */ 986 struct numa_stats { 987 unsigned long nr_running; 988 unsigned long load; 989 990 /* Total compute capacity of CPUs on a node */ 991 unsigned long power; 992 993 /* Approximate capacity in terms of runnable tasks on a node */ 994 unsigned long capacity; 995 int has_capacity; 996 }; 997 998 /* 999 * XXX borrowed from update_sg_lb_stats 1000 */ 1001 static void update_numa_stats(struct numa_stats *ns, int nid) 1002 { 1003 int cpu, cpus = 0; 1004 1005 memset(ns, 0, sizeof(*ns)); 1006 for_each_cpu(cpu, cpumask_of_node(nid)) { 1007 struct rq *rq = cpu_rq(cpu); 1008 1009 ns->nr_running += rq->nr_running; 1010 ns->load += weighted_cpuload(cpu); 1011 ns->power += power_of(cpu); 1012 1013 cpus++; 1014 } 1015 1016 /* 1017 * If we raced with hotplug and there are no CPUs left in our mask 1018 * the @ns structure is NULL'ed and task_numa_compare() will 1019 * not find this node attractive. 1020 * 1021 * We'll either bail at !has_capacity, or we'll detect a huge imbalance 1022 * and bail there. 1023 */ 1024 if (!cpus) 1025 return; 1026 1027 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power; 1028 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE); 1029 ns->has_capacity = (ns->nr_running < ns->capacity); 1030 } 1031 1032 struct task_numa_env { 1033 struct task_struct *p; 1034 1035 int src_cpu, src_nid; 1036 int dst_cpu, dst_nid; 1037 1038 struct numa_stats src_stats, dst_stats; 1039 1040 int imbalance_pct, idx; 1041 1042 struct task_struct *best_task; 1043 long best_imp; 1044 int best_cpu; 1045 }; 1046 1047 static void task_numa_assign(struct task_numa_env *env, 1048 struct task_struct *p, long imp) 1049 { 1050 if (env->best_task) 1051 put_task_struct(env->best_task); 1052 if (p) 1053 get_task_struct(p); 1054 1055 env->best_task = p; 1056 env->best_imp = imp; 1057 env->best_cpu = env->dst_cpu; 1058 } 1059 1060 /* 1061 * This checks if the overall compute and NUMA accesses of the system would 1062 * be improved if the source tasks was migrated to the target dst_cpu taking 1063 * into account that it might be best if task running on the dst_cpu should 1064 * be exchanged with the source task 1065 */ 1066 static void task_numa_compare(struct task_numa_env *env, 1067 long taskimp, long groupimp) 1068 { 1069 struct rq *src_rq = cpu_rq(env->src_cpu); 1070 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1071 struct task_struct *cur; 1072 long dst_load, src_load; 1073 long load; 1074 long imp = (groupimp > 0) ? groupimp : taskimp; 1075 1076 rcu_read_lock(); 1077 cur = ACCESS_ONCE(dst_rq->curr); 1078 if (cur->pid == 0) /* idle */ 1079 cur = NULL; 1080 1081 /* 1082 * "imp" is the fault differential for the source task between the 1083 * source and destination node. Calculate the total differential for 1084 * the source task and potential destination task. The more negative 1085 * the value is, the more rmeote accesses that would be expected to 1086 * be incurred if the tasks were swapped. 1087 */ 1088 if (cur) { 1089 /* Skip this swap candidate if cannot move to the source cpu */ 1090 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur))) 1091 goto unlock; 1092 1093 /* 1094 * If dst and source tasks are in the same NUMA group, or not 1095 * in any group then look only at task weights. 1096 */ 1097 if (cur->numa_group == env->p->numa_group) { 1098 imp = taskimp + task_weight(cur, env->src_nid) - 1099 task_weight(cur, env->dst_nid); 1100 /* 1101 * Add some hysteresis to prevent swapping the 1102 * tasks within a group over tiny differences. 1103 */ 1104 if (cur->numa_group) 1105 imp -= imp/16; 1106 } else { 1107 /* 1108 * Compare the group weights. If a task is all by 1109 * itself (not part of a group), use the task weight 1110 * instead. 1111 */ 1112 if (env->p->numa_group) 1113 imp = groupimp; 1114 else 1115 imp = taskimp; 1116 1117 if (cur->numa_group) 1118 imp += group_weight(cur, env->src_nid) - 1119 group_weight(cur, env->dst_nid); 1120 else 1121 imp += task_weight(cur, env->src_nid) - 1122 task_weight(cur, env->dst_nid); 1123 } 1124 } 1125 1126 if (imp < env->best_imp) 1127 goto unlock; 1128 1129 if (!cur) { 1130 /* Is there capacity at our destination? */ 1131 if (env->src_stats.has_capacity && 1132 !env->dst_stats.has_capacity) 1133 goto unlock; 1134 1135 goto balance; 1136 } 1137 1138 /* Balance doesn't matter much if we're running a task per cpu */ 1139 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1) 1140 goto assign; 1141 1142 /* 1143 * In the overloaded case, try and keep the load balanced. 1144 */ 1145 balance: 1146 dst_load = env->dst_stats.load; 1147 src_load = env->src_stats.load; 1148 1149 /* XXX missing power terms */ 1150 load = task_h_load(env->p); 1151 dst_load += load; 1152 src_load -= load; 1153 1154 if (cur) { 1155 load = task_h_load(cur); 1156 dst_load -= load; 1157 src_load += load; 1158 } 1159 1160 /* make src_load the smaller */ 1161 if (dst_load < src_load) 1162 swap(dst_load, src_load); 1163 1164 if (src_load * env->imbalance_pct < dst_load * 100) 1165 goto unlock; 1166 1167 assign: 1168 task_numa_assign(env, cur, imp); 1169 unlock: 1170 rcu_read_unlock(); 1171 } 1172 1173 static void task_numa_find_cpu(struct task_numa_env *env, 1174 long taskimp, long groupimp) 1175 { 1176 int cpu; 1177 1178 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1179 /* Skip this CPU if the source task cannot migrate */ 1180 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p))) 1181 continue; 1182 1183 env->dst_cpu = cpu; 1184 task_numa_compare(env, taskimp, groupimp); 1185 } 1186 } 1187 1188 static int task_numa_migrate(struct task_struct *p) 1189 { 1190 struct task_numa_env env = { 1191 .p = p, 1192 1193 .src_cpu = task_cpu(p), 1194 .src_nid = task_node(p), 1195 1196 .imbalance_pct = 112, 1197 1198 .best_task = NULL, 1199 .best_imp = 0, 1200 .best_cpu = -1 1201 }; 1202 struct sched_domain *sd; 1203 unsigned long taskweight, groupweight; 1204 int nid, ret; 1205 long taskimp, groupimp; 1206 1207 /* 1208 * Pick the lowest SD_NUMA domain, as that would have the smallest 1209 * imbalance and would be the first to start moving tasks about. 1210 * 1211 * And we want to avoid any moving of tasks about, as that would create 1212 * random movement of tasks -- counter the numa conditions we're trying 1213 * to satisfy here. 1214 */ 1215 rcu_read_lock(); 1216 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1217 if (sd) 1218 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1219 rcu_read_unlock(); 1220 1221 /* 1222 * Cpusets can break the scheduler domain tree into smaller 1223 * balance domains, some of which do not cross NUMA boundaries. 1224 * Tasks that are "trapped" in such domains cannot be migrated 1225 * elsewhere, so there is no point in (re)trying. 1226 */ 1227 if (unlikely(!sd)) { 1228 p->numa_preferred_nid = cpu_to_node(task_cpu(p)); 1229 return -EINVAL; 1230 } 1231 1232 taskweight = task_weight(p, env.src_nid); 1233 groupweight = group_weight(p, env.src_nid); 1234 update_numa_stats(&env.src_stats, env.src_nid); 1235 env.dst_nid = p->numa_preferred_nid; 1236 taskimp = task_weight(p, env.dst_nid) - taskweight; 1237 groupimp = group_weight(p, env.dst_nid) - groupweight; 1238 update_numa_stats(&env.dst_stats, env.dst_nid); 1239 1240 /* If the preferred nid has capacity, try to use it. */ 1241 if (env.dst_stats.has_capacity) 1242 task_numa_find_cpu(&env, taskimp, groupimp); 1243 1244 /* No space available on the preferred nid. Look elsewhere. */ 1245 if (env.best_cpu == -1) { 1246 for_each_online_node(nid) { 1247 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1248 continue; 1249 1250 /* Only consider nodes where both task and groups benefit */ 1251 taskimp = task_weight(p, nid) - taskweight; 1252 groupimp = group_weight(p, nid) - groupweight; 1253 if (taskimp < 0 && groupimp < 0) 1254 continue; 1255 1256 env.dst_nid = nid; 1257 update_numa_stats(&env.dst_stats, env.dst_nid); 1258 task_numa_find_cpu(&env, taskimp, groupimp); 1259 } 1260 } 1261 1262 /* No better CPU than the current one was found. */ 1263 if (env.best_cpu == -1) 1264 return -EAGAIN; 1265 1266 sched_setnuma(p, env.dst_nid); 1267 1268 /* 1269 * Reset the scan period if the task is being rescheduled on an 1270 * alternative node to recheck if the tasks is now properly placed. 1271 */ 1272 p->numa_scan_period = task_scan_min(p); 1273 1274 if (env.best_task == NULL) { 1275 int ret = migrate_task_to(p, env.best_cpu); 1276 return ret; 1277 } 1278 1279 ret = migrate_swap(p, env.best_task); 1280 put_task_struct(env.best_task); 1281 return ret; 1282 } 1283 1284 /* Attempt to migrate a task to a CPU on the preferred node. */ 1285 static void numa_migrate_preferred(struct task_struct *p) 1286 { 1287 /* This task has no NUMA fault statistics yet */ 1288 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1289 return; 1290 1291 /* Periodically retry migrating the task to the preferred node */ 1292 p->numa_migrate_retry = jiffies + HZ; 1293 1294 /* Success if task is already running on preferred CPU */ 1295 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) 1296 return; 1297 1298 /* Otherwise, try migrate to a CPU on the preferred node */ 1299 task_numa_migrate(p); 1300 } 1301 1302 /* 1303 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1304 * increments. The more local the fault statistics are, the higher the scan 1305 * period will be for the next scan window. If local/remote ratio is below 1306 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the 1307 * scan period will decrease 1308 */ 1309 #define NUMA_PERIOD_SLOTS 10 1310 #define NUMA_PERIOD_THRESHOLD 3 1311 1312 /* 1313 * Increase the scan period (slow down scanning) if the majority of 1314 * our memory is already on our local node, or if the majority of 1315 * the page accesses are shared with other processes. 1316 * Otherwise, decrease the scan period. 1317 */ 1318 static void update_task_scan_period(struct task_struct *p, 1319 unsigned long shared, unsigned long private) 1320 { 1321 unsigned int period_slot; 1322 int ratio; 1323 int diff; 1324 1325 unsigned long remote = p->numa_faults_locality[0]; 1326 unsigned long local = p->numa_faults_locality[1]; 1327 1328 /* 1329 * If there were no record hinting faults then either the task is 1330 * completely idle or all activity is areas that are not of interest 1331 * to automatic numa balancing. Scan slower 1332 */ 1333 if (local + shared == 0) { 1334 p->numa_scan_period = min(p->numa_scan_period_max, 1335 p->numa_scan_period << 1); 1336 1337 p->mm->numa_next_scan = jiffies + 1338 msecs_to_jiffies(p->numa_scan_period); 1339 1340 return; 1341 } 1342 1343 /* 1344 * Prepare to scale scan period relative to the current period. 1345 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1346 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1347 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1348 */ 1349 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1350 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1351 if (ratio >= NUMA_PERIOD_THRESHOLD) { 1352 int slot = ratio - NUMA_PERIOD_THRESHOLD; 1353 if (!slot) 1354 slot = 1; 1355 diff = slot * period_slot; 1356 } else { 1357 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1358 1359 /* 1360 * Scale scan rate increases based on sharing. There is an 1361 * inverse relationship between the degree of sharing and 1362 * the adjustment made to the scanning period. Broadly 1363 * speaking the intent is that there is little point 1364 * scanning faster if shared accesses dominate as it may 1365 * simply bounce migrations uselessly 1366 */ 1367 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS); 1368 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared)); 1369 diff = (diff * ratio) / NUMA_PERIOD_SLOTS; 1370 } 1371 1372 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1373 task_scan_min(p), task_scan_max(p)); 1374 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1375 } 1376 1377 static void task_numa_placement(struct task_struct *p) 1378 { 1379 int seq, nid, max_nid = -1, max_group_nid = -1; 1380 unsigned long max_faults = 0, max_group_faults = 0; 1381 unsigned long fault_types[2] = { 0, 0 }; 1382 spinlock_t *group_lock = NULL; 1383 1384 seq = ACCESS_ONCE(p->mm->numa_scan_seq); 1385 if (p->numa_scan_seq == seq) 1386 return; 1387 p->numa_scan_seq = seq; 1388 p->numa_scan_period_max = task_scan_max(p); 1389 1390 /* If the task is part of a group prevent parallel updates to group stats */ 1391 if (p->numa_group) { 1392 group_lock = &p->numa_group->lock; 1393 spin_lock(group_lock); 1394 } 1395 1396 /* Find the node with the highest number of faults */ 1397 for_each_online_node(nid) { 1398 unsigned long faults = 0, group_faults = 0; 1399 int priv, i; 1400 1401 for (priv = 0; priv < 2; priv++) { 1402 long diff; 1403 1404 i = task_faults_idx(nid, priv); 1405 diff = -p->numa_faults[i]; 1406 1407 /* Decay existing window, copy faults since last scan */ 1408 p->numa_faults[i] >>= 1; 1409 p->numa_faults[i] += p->numa_faults_buffer[i]; 1410 fault_types[priv] += p->numa_faults_buffer[i]; 1411 p->numa_faults_buffer[i] = 0; 1412 1413 faults += p->numa_faults[i]; 1414 diff += p->numa_faults[i]; 1415 p->total_numa_faults += diff; 1416 if (p->numa_group) { 1417 /* safe because we can only change our own group */ 1418 p->numa_group->faults[i] += diff; 1419 p->numa_group->total_faults += diff; 1420 group_faults += p->numa_group->faults[i]; 1421 } 1422 } 1423 1424 if (faults > max_faults) { 1425 max_faults = faults; 1426 max_nid = nid; 1427 } 1428 1429 if (group_faults > max_group_faults) { 1430 max_group_faults = group_faults; 1431 max_group_nid = nid; 1432 } 1433 } 1434 1435 update_task_scan_period(p, fault_types[0], fault_types[1]); 1436 1437 if (p->numa_group) { 1438 /* 1439 * If the preferred task and group nids are different, 1440 * iterate over the nodes again to find the best place. 1441 */ 1442 if (max_nid != max_group_nid) { 1443 unsigned long weight, max_weight = 0; 1444 1445 for_each_online_node(nid) { 1446 weight = task_weight(p, nid) + group_weight(p, nid); 1447 if (weight > max_weight) { 1448 max_weight = weight; 1449 max_nid = nid; 1450 } 1451 } 1452 } 1453 1454 spin_unlock(group_lock); 1455 } 1456 1457 /* Preferred node as the node with the most faults */ 1458 if (max_faults && max_nid != p->numa_preferred_nid) { 1459 /* Update the preferred nid and migrate task if possible */ 1460 sched_setnuma(p, max_nid); 1461 numa_migrate_preferred(p); 1462 } 1463 } 1464 1465 static inline int get_numa_group(struct numa_group *grp) 1466 { 1467 return atomic_inc_not_zero(&grp->refcount); 1468 } 1469 1470 static inline void put_numa_group(struct numa_group *grp) 1471 { 1472 if (atomic_dec_and_test(&grp->refcount)) 1473 kfree_rcu(grp, rcu); 1474 } 1475 1476 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 1477 int *priv) 1478 { 1479 struct numa_group *grp, *my_grp; 1480 struct task_struct *tsk; 1481 bool join = false; 1482 int cpu = cpupid_to_cpu(cpupid); 1483 int i; 1484 1485 if (unlikely(!p->numa_group)) { 1486 unsigned int size = sizeof(struct numa_group) + 1487 2*nr_node_ids*sizeof(unsigned long); 1488 1489 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 1490 if (!grp) 1491 return; 1492 1493 atomic_set(&grp->refcount, 1); 1494 spin_lock_init(&grp->lock); 1495 INIT_LIST_HEAD(&grp->task_list); 1496 grp->gid = p->pid; 1497 1498 for (i = 0; i < 2*nr_node_ids; i++) 1499 grp->faults[i] = p->numa_faults[i]; 1500 1501 grp->total_faults = p->total_numa_faults; 1502 1503 list_add(&p->numa_entry, &grp->task_list); 1504 grp->nr_tasks++; 1505 rcu_assign_pointer(p->numa_group, grp); 1506 } 1507 1508 rcu_read_lock(); 1509 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr); 1510 1511 if (!cpupid_match_pid(tsk, cpupid)) 1512 goto no_join; 1513 1514 grp = rcu_dereference(tsk->numa_group); 1515 if (!grp) 1516 goto no_join; 1517 1518 my_grp = p->numa_group; 1519 if (grp == my_grp) 1520 goto no_join; 1521 1522 /* 1523 * Only join the other group if its bigger; if we're the bigger group, 1524 * the other task will join us. 1525 */ 1526 if (my_grp->nr_tasks > grp->nr_tasks) 1527 goto no_join; 1528 1529 /* 1530 * Tie-break on the grp address. 1531 */ 1532 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 1533 goto no_join; 1534 1535 /* Always join threads in the same process. */ 1536 if (tsk->mm == current->mm) 1537 join = true; 1538 1539 /* Simple filter to avoid false positives due to PID collisions */ 1540 if (flags & TNF_SHARED) 1541 join = true; 1542 1543 /* Update priv based on whether false sharing was detected */ 1544 *priv = !join; 1545 1546 if (join && !get_numa_group(grp)) 1547 goto no_join; 1548 1549 rcu_read_unlock(); 1550 1551 if (!join) 1552 return; 1553 1554 double_lock(&my_grp->lock, &grp->lock); 1555 1556 for (i = 0; i < 2*nr_node_ids; i++) { 1557 my_grp->faults[i] -= p->numa_faults[i]; 1558 grp->faults[i] += p->numa_faults[i]; 1559 } 1560 my_grp->total_faults -= p->total_numa_faults; 1561 grp->total_faults += p->total_numa_faults; 1562 1563 list_move(&p->numa_entry, &grp->task_list); 1564 my_grp->nr_tasks--; 1565 grp->nr_tasks++; 1566 1567 spin_unlock(&my_grp->lock); 1568 spin_unlock(&grp->lock); 1569 1570 rcu_assign_pointer(p->numa_group, grp); 1571 1572 put_numa_group(my_grp); 1573 return; 1574 1575 no_join: 1576 rcu_read_unlock(); 1577 return; 1578 } 1579 1580 void task_numa_free(struct task_struct *p) 1581 { 1582 struct numa_group *grp = p->numa_group; 1583 int i; 1584 void *numa_faults = p->numa_faults; 1585 1586 if (grp) { 1587 spin_lock(&grp->lock); 1588 for (i = 0; i < 2*nr_node_ids; i++) 1589 grp->faults[i] -= p->numa_faults[i]; 1590 grp->total_faults -= p->total_numa_faults; 1591 1592 list_del(&p->numa_entry); 1593 grp->nr_tasks--; 1594 spin_unlock(&grp->lock); 1595 rcu_assign_pointer(p->numa_group, NULL); 1596 put_numa_group(grp); 1597 } 1598 1599 p->numa_faults = NULL; 1600 p->numa_faults_buffer = NULL; 1601 kfree(numa_faults); 1602 } 1603 1604 /* 1605 * Got a PROT_NONE fault for a page on @node. 1606 */ 1607 void task_numa_fault(int last_cpupid, int node, int pages, int flags) 1608 { 1609 struct task_struct *p = current; 1610 bool migrated = flags & TNF_MIGRATED; 1611 int priv; 1612 1613 if (!numabalancing_enabled) 1614 return; 1615 1616 /* for example, ksmd faulting in a user's mm */ 1617 if (!p->mm) 1618 return; 1619 1620 /* Do not worry about placement if exiting */ 1621 if (p->state == TASK_DEAD) 1622 return; 1623 1624 /* Allocate buffer to track faults on a per-node basis */ 1625 if (unlikely(!p->numa_faults)) { 1626 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids; 1627 1628 /* numa_faults and numa_faults_buffer share the allocation */ 1629 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN); 1630 if (!p->numa_faults) 1631 return; 1632 1633 BUG_ON(p->numa_faults_buffer); 1634 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids); 1635 p->total_numa_faults = 0; 1636 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1637 } 1638 1639 /* 1640 * First accesses are treated as private, otherwise consider accesses 1641 * to be private if the accessing pid has not changed 1642 */ 1643 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 1644 priv = 1; 1645 } else { 1646 priv = cpupid_match_pid(p, last_cpupid); 1647 if (!priv && !(flags & TNF_NO_GROUP)) 1648 task_numa_group(p, last_cpupid, flags, &priv); 1649 } 1650 1651 task_numa_placement(p); 1652 1653 /* 1654 * Retry task to preferred node migration periodically, in case it 1655 * case it previously failed, or the scheduler moved us. 1656 */ 1657 if (time_after(jiffies, p->numa_migrate_retry)) 1658 numa_migrate_preferred(p); 1659 1660 if (migrated) 1661 p->numa_pages_migrated += pages; 1662 1663 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages; 1664 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages; 1665 } 1666 1667 static void reset_ptenuma_scan(struct task_struct *p) 1668 { 1669 ACCESS_ONCE(p->mm->numa_scan_seq)++; 1670 p->mm->numa_scan_offset = 0; 1671 } 1672 1673 /* 1674 * The expensive part of numa migration is done from task_work context. 1675 * Triggered from task_tick_numa(). 1676 */ 1677 void task_numa_work(struct callback_head *work) 1678 { 1679 unsigned long migrate, next_scan, now = jiffies; 1680 struct task_struct *p = current; 1681 struct mm_struct *mm = p->mm; 1682 struct vm_area_struct *vma; 1683 unsigned long start, end; 1684 unsigned long nr_pte_updates = 0; 1685 long pages; 1686 1687 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 1688 1689 work->next = work; /* protect against double add */ 1690 /* 1691 * Who cares about NUMA placement when they're dying. 1692 * 1693 * NOTE: make sure not to dereference p->mm before this check, 1694 * exit_task_work() happens _after_ exit_mm() so we could be called 1695 * without p->mm even though we still had it when we enqueued this 1696 * work. 1697 */ 1698 if (p->flags & PF_EXITING) 1699 return; 1700 1701 if (!mm->numa_next_scan) { 1702 mm->numa_next_scan = now + 1703 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1704 } 1705 1706 /* 1707 * Enforce maximal scan/migration frequency.. 1708 */ 1709 migrate = mm->numa_next_scan; 1710 if (time_before(now, migrate)) 1711 return; 1712 1713 if (p->numa_scan_period == 0) { 1714 p->numa_scan_period_max = task_scan_max(p); 1715 p->numa_scan_period = task_scan_min(p); 1716 } 1717 1718 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 1719 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 1720 return; 1721 1722 /* 1723 * Delay this task enough that another task of this mm will likely win 1724 * the next time around. 1725 */ 1726 p->node_stamp += 2 * TICK_NSEC; 1727 1728 start = mm->numa_scan_offset; 1729 pages = sysctl_numa_balancing_scan_size; 1730 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 1731 if (!pages) 1732 return; 1733 1734 down_read(&mm->mmap_sem); 1735 vma = find_vma(mm, start); 1736 if (!vma) { 1737 reset_ptenuma_scan(p); 1738 start = 0; 1739 vma = mm->mmap; 1740 } 1741 for (; vma; vma = vma->vm_next) { 1742 if (!vma_migratable(vma) || !vma_policy_mof(p, vma)) 1743 continue; 1744 1745 /* 1746 * Shared library pages mapped by multiple processes are not 1747 * migrated as it is expected they are cache replicated. Avoid 1748 * hinting faults in read-only file-backed mappings or the vdso 1749 * as migrating the pages will be of marginal benefit. 1750 */ 1751 if (!vma->vm_mm || 1752 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 1753 continue; 1754 1755 do { 1756 start = max(start, vma->vm_start); 1757 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 1758 end = min(end, vma->vm_end); 1759 nr_pte_updates += change_prot_numa(vma, start, end); 1760 1761 /* 1762 * Scan sysctl_numa_balancing_scan_size but ensure that 1763 * at least one PTE is updated so that unused virtual 1764 * address space is quickly skipped. 1765 */ 1766 if (nr_pte_updates) 1767 pages -= (end - start) >> PAGE_SHIFT; 1768 1769 start = end; 1770 if (pages <= 0) 1771 goto out; 1772 } while (end != vma->vm_end); 1773 } 1774 1775 out: 1776 /* 1777 * It is possible to reach the end of the VMA list but the last few 1778 * VMAs are not guaranteed to the vma_migratable. If they are not, we 1779 * would find the !migratable VMA on the next scan but not reset the 1780 * scanner to the start so check it now. 1781 */ 1782 if (vma) 1783 mm->numa_scan_offset = start; 1784 else 1785 reset_ptenuma_scan(p); 1786 up_read(&mm->mmap_sem); 1787 } 1788 1789 /* 1790 * Drive the periodic memory faults.. 1791 */ 1792 void task_tick_numa(struct rq *rq, struct task_struct *curr) 1793 { 1794 struct callback_head *work = &curr->numa_work; 1795 u64 period, now; 1796 1797 /* 1798 * We don't care about NUMA placement if we don't have memory. 1799 */ 1800 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 1801 return; 1802 1803 /* 1804 * Using runtime rather than walltime has the dual advantage that 1805 * we (mostly) drive the selection from busy threads and that the 1806 * task needs to have done some actual work before we bother with 1807 * NUMA placement. 1808 */ 1809 now = curr->se.sum_exec_runtime; 1810 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 1811 1812 if (now - curr->node_stamp > period) { 1813 if (!curr->node_stamp) 1814 curr->numa_scan_period = task_scan_min(curr); 1815 curr->node_stamp += period; 1816 1817 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 1818 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 1819 task_work_add(curr, work, true); 1820 } 1821 } 1822 } 1823 #else 1824 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 1825 { 1826 } 1827 1828 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1829 { 1830 } 1831 1832 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1833 { 1834 } 1835 #endif /* CONFIG_NUMA_BALANCING */ 1836 1837 static void 1838 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 1839 { 1840 update_load_add(&cfs_rq->load, se->load.weight); 1841 if (!parent_entity(se)) 1842 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 1843 #ifdef CONFIG_SMP 1844 if (entity_is_task(se)) { 1845 struct rq *rq = rq_of(cfs_rq); 1846 1847 account_numa_enqueue(rq, task_of(se)); 1848 list_add(&se->group_node, &rq->cfs_tasks); 1849 } 1850 #endif 1851 cfs_rq->nr_running++; 1852 } 1853 1854 static void 1855 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 1856 { 1857 update_load_sub(&cfs_rq->load, se->load.weight); 1858 if (!parent_entity(se)) 1859 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 1860 if (entity_is_task(se)) { 1861 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 1862 list_del_init(&se->group_node); 1863 } 1864 cfs_rq->nr_running--; 1865 } 1866 1867 #ifdef CONFIG_FAIR_GROUP_SCHED 1868 # ifdef CONFIG_SMP 1869 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) 1870 { 1871 long tg_weight; 1872 1873 /* 1874 * Use this CPU's actual weight instead of the last load_contribution 1875 * to gain a more accurate current total weight. See 1876 * update_cfs_rq_load_contribution(). 1877 */ 1878 tg_weight = atomic_long_read(&tg->load_avg); 1879 tg_weight -= cfs_rq->tg_load_contrib; 1880 tg_weight += cfs_rq->load.weight; 1881 1882 return tg_weight; 1883 } 1884 1885 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 1886 { 1887 long tg_weight, load, shares; 1888 1889 tg_weight = calc_tg_weight(tg, cfs_rq); 1890 load = cfs_rq->load.weight; 1891 1892 shares = (tg->shares * load); 1893 if (tg_weight) 1894 shares /= tg_weight; 1895 1896 if (shares < MIN_SHARES) 1897 shares = MIN_SHARES; 1898 if (shares > tg->shares) 1899 shares = tg->shares; 1900 1901 return shares; 1902 } 1903 # else /* CONFIG_SMP */ 1904 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 1905 { 1906 return tg->shares; 1907 } 1908 # endif /* CONFIG_SMP */ 1909 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 1910 unsigned long weight) 1911 { 1912 if (se->on_rq) { 1913 /* commit outstanding execution time */ 1914 if (cfs_rq->curr == se) 1915 update_curr(cfs_rq); 1916 account_entity_dequeue(cfs_rq, se); 1917 } 1918 1919 update_load_set(&se->load, weight); 1920 1921 if (se->on_rq) 1922 account_entity_enqueue(cfs_rq, se); 1923 } 1924 1925 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 1926 1927 static void update_cfs_shares(struct cfs_rq *cfs_rq) 1928 { 1929 struct task_group *tg; 1930 struct sched_entity *se; 1931 long shares; 1932 1933 tg = cfs_rq->tg; 1934 se = tg->se[cpu_of(rq_of(cfs_rq))]; 1935 if (!se || throttled_hierarchy(cfs_rq)) 1936 return; 1937 #ifndef CONFIG_SMP 1938 if (likely(se->load.weight == tg->shares)) 1939 return; 1940 #endif 1941 shares = calc_cfs_shares(cfs_rq, tg); 1942 1943 reweight_entity(cfs_rq_of(se), se, shares); 1944 } 1945 #else /* CONFIG_FAIR_GROUP_SCHED */ 1946 static inline void update_cfs_shares(struct cfs_rq *cfs_rq) 1947 { 1948 } 1949 #endif /* CONFIG_FAIR_GROUP_SCHED */ 1950 1951 #ifdef CONFIG_SMP 1952 /* 1953 * We choose a half-life close to 1 scheduling period. 1954 * Note: The tables below are dependent on this value. 1955 */ 1956 #define LOAD_AVG_PERIOD 32 1957 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ 1958 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */ 1959 1960 /* Precomputed fixed inverse multiplies for multiplication by y^n */ 1961 static const u32 runnable_avg_yN_inv[] = { 1962 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, 1963 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, 1964 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, 1965 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, 1966 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, 1967 0x85aac367, 0x82cd8698, 1968 }; 1969 1970 /* 1971 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent 1972 * over-estimates when re-combining. 1973 */ 1974 static const u32 runnable_avg_yN_sum[] = { 1975 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, 1976 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, 1977 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, 1978 }; 1979 1980 /* 1981 * Approximate: 1982 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 1983 */ 1984 static __always_inline u64 decay_load(u64 val, u64 n) 1985 { 1986 unsigned int local_n; 1987 1988 if (!n) 1989 return val; 1990 else if (unlikely(n > LOAD_AVG_PERIOD * 63)) 1991 return 0; 1992 1993 /* after bounds checking we can collapse to 32-bit */ 1994 local_n = n; 1995 1996 /* 1997 * As y^PERIOD = 1/2, we can combine 1998 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD) 1999 * With a look-up table which covers k^n (n<PERIOD) 2000 * 2001 * To achieve constant time decay_load. 2002 */ 2003 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 2004 val >>= local_n / LOAD_AVG_PERIOD; 2005 local_n %= LOAD_AVG_PERIOD; 2006 } 2007 2008 val *= runnable_avg_yN_inv[local_n]; 2009 /* We don't use SRR here since we always want to round down. */ 2010 return val >> 32; 2011 } 2012 2013 /* 2014 * For updates fully spanning n periods, the contribution to runnable 2015 * average will be: \Sum 1024*y^n 2016 * 2017 * We can compute this reasonably efficiently by combining: 2018 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD} 2019 */ 2020 static u32 __compute_runnable_contrib(u64 n) 2021 { 2022 u32 contrib = 0; 2023 2024 if (likely(n <= LOAD_AVG_PERIOD)) 2025 return runnable_avg_yN_sum[n]; 2026 else if (unlikely(n >= LOAD_AVG_MAX_N)) 2027 return LOAD_AVG_MAX; 2028 2029 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */ 2030 do { 2031 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */ 2032 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD]; 2033 2034 n -= LOAD_AVG_PERIOD; 2035 } while (n > LOAD_AVG_PERIOD); 2036 2037 contrib = decay_load(contrib, n); 2038 return contrib + runnable_avg_yN_sum[n]; 2039 } 2040 2041 /* 2042 * We can represent the historical contribution to runnable average as the 2043 * coefficients of a geometric series. To do this we sub-divide our runnable 2044 * history into segments of approximately 1ms (1024us); label the segment that 2045 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 2046 * 2047 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 2048 * p0 p1 p2 2049 * (now) (~1ms ago) (~2ms ago) 2050 * 2051 * Let u_i denote the fraction of p_i that the entity was runnable. 2052 * 2053 * We then designate the fractions u_i as our co-efficients, yielding the 2054 * following representation of historical load: 2055 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 2056 * 2057 * We choose y based on the with of a reasonably scheduling period, fixing: 2058 * y^32 = 0.5 2059 * 2060 * This means that the contribution to load ~32ms ago (u_32) will be weighted 2061 * approximately half as much as the contribution to load within the last ms 2062 * (u_0). 2063 * 2064 * When a period "rolls over" and we have new u_0`, multiplying the previous 2065 * sum again by y is sufficient to update: 2066 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 2067 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 2068 */ 2069 static __always_inline int __update_entity_runnable_avg(u64 now, 2070 struct sched_avg *sa, 2071 int runnable) 2072 { 2073 u64 delta, periods; 2074 u32 runnable_contrib; 2075 int delta_w, decayed = 0; 2076 2077 delta = now - sa->last_runnable_update; 2078 /* 2079 * This should only happen when time goes backwards, which it 2080 * unfortunately does during sched clock init when we swap over to TSC. 2081 */ 2082 if ((s64)delta < 0) { 2083 sa->last_runnable_update = now; 2084 return 0; 2085 } 2086 2087 /* 2088 * Use 1024ns as the unit of measurement since it's a reasonable 2089 * approximation of 1us and fast to compute. 2090 */ 2091 delta >>= 10; 2092 if (!delta) 2093 return 0; 2094 sa->last_runnable_update = now; 2095 2096 /* delta_w is the amount already accumulated against our next period */ 2097 delta_w = sa->runnable_avg_period % 1024; 2098 if (delta + delta_w >= 1024) { 2099 /* period roll-over */ 2100 decayed = 1; 2101 2102 /* 2103 * Now that we know we're crossing a period boundary, figure 2104 * out how much from delta we need to complete the current 2105 * period and accrue it. 2106 */ 2107 delta_w = 1024 - delta_w; 2108 if (runnable) 2109 sa->runnable_avg_sum += delta_w; 2110 sa->runnable_avg_period += delta_w; 2111 2112 delta -= delta_w; 2113 2114 /* Figure out how many additional periods this update spans */ 2115 periods = delta / 1024; 2116 delta %= 1024; 2117 2118 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum, 2119 periods + 1); 2120 sa->runnable_avg_period = decay_load(sa->runnable_avg_period, 2121 periods + 1); 2122 2123 /* Efficiently calculate \sum (1..n_period) 1024*y^i */ 2124 runnable_contrib = __compute_runnable_contrib(periods); 2125 if (runnable) 2126 sa->runnable_avg_sum += runnable_contrib; 2127 sa->runnable_avg_period += runnable_contrib; 2128 } 2129 2130 /* Remainder of delta accrued against u_0` */ 2131 if (runnable) 2132 sa->runnable_avg_sum += delta; 2133 sa->runnable_avg_period += delta; 2134 2135 return decayed; 2136 } 2137 2138 /* Synchronize an entity's decay with its parenting cfs_rq.*/ 2139 static inline u64 __synchronize_entity_decay(struct sched_entity *se) 2140 { 2141 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2142 u64 decays = atomic64_read(&cfs_rq->decay_counter); 2143 2144 decays -= se->avg.decay_count; 2145 if (!decays) 2146 return 0; 2147 2148 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays); 2149 se->avg.decay_count = 0; 2150 2151 return decays; 2152 } 2153 2154 #ifdef CONFIG_FAIR_GROUP_SCHED 2155 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 2156 int force_update) 2157 { 2158 struct task_group *tg = cfs_rq->tg; 2159 long tg_contrib; 2160 2161 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg; 2162 tg_contrib -= cfs_rq->tg_load_contrib; 2163 2164 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) { 2165 atomic_long_add(tg_contrib, &tg->load_avg); 2166 cfs_rq->tg_load_contrib += tg_contrib; 2167 } 2168 } 2169 2170 /* 2171 * Aggregate cfs_rq runnable averages into an equivalent task_group 2172 * representation for computing load contributions. 2173 */ 2174 static inline void __update_tg_runnable_avg(struct sched_avg *sa, 2175 struct cfs_rq *cfs_rq) 2176 { 2177 struct task_group *tg = cfs_rq->tg; 2178 long contrib; 2179 2180 /* The fraction of a cpu used by this cfs_rq */ 2181 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT, 2182 sa->runnable_avg_period + 1); 2183 contrib -= cfs_rq->tg_runnable_contrib; 2184 2185 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) { 2186 atomic_add(contrib, &tg->runnable_avg); 2187 cfs_rq->tg_runnable_contrib += contrib; 2188 } 2189 } 2190 2191 static inline void __update_group_entity_contrib(struct sched_entity *se) 2192 { 2193 struct cfs_rq *cfs_rq = group_cfs_rq(se); 2194 struct task_group *tg = cfs_rq->tg; 2195 int runnable_avg; 2196 2197 u64 contrib; 2198 2199 contrib = cfs_rq->tg_load_contrib * tg->shares; 2200 se->avg.load_avg_contrib = div_u64(contrib, 2201 atomic_long_read(&tg->load_avg) + 1); 2202 2203 /* 2204 * For group entities we need to compute a correction term in the case 2205 * that they are consuming <1 cpu so that we would contribute the same 2206 * load as a task of equal weight. 2207 * 2208 * Explicitly co-ordinating this measurement would be expensive, but 2209 * fortunately the sum of each cpus contribution forms a usable 2210 * lower-bound on the true value. 2211 * 2212 * Consider the aggregate of 2 contributions. Either they are disjoint 2213 * (and the sum represents true value) or they are disjoint and we are 2214 * understating by the aggregate of their overlap. 2215 * 2216 * Extending this to N cpus, for a given overlap, the maximum amount we 2217 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of 2218 * cpus that overlap for this interval and w_i is the interval width. 2219 * 2220 * On a small machine; the first term is well-bounded which bounds the 2221 * total error since w_i is a subset of the period. Whereas on a 2222 * larger machine, while this first term can be larger, if w_i is the 2223 * of consequential size guaranteed to see n_i*w_i quickly converge to 2224 * our upper bound of 1-cpu. 2225 */ 2226 runnable_avg = atomic_read(&tg->runnable_avg); 2227 if (runnable_avg < NICE_0_LOAD) { 2228 se->avg.load_avg_contrib *= runnable_avg; 2229 se->avg.load_avg_contrib >>= NICE_0_SHIFT; 2230 } 2231 } 2232 #else 2233 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 2234 int force_update) {} 2235 static inline void __update_tg_runnable_avg(struct sched_avg *sa, 2236 struct cfs_rq *cfs_rq) {} 2237 static inline void __update_group_entity_contrib(struct sched_entity *se) {} 2238 #endif 2239 2240 static inline void __update_task_entity_contrib(struct sched_entity *se) 2241 { 2242 u32 contrib; 2243 2244 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */ 2245 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight); 2246 contrib /= (se->avg.runnable_avg_period + 1); 2247 se->avg.load_avg_contrib = scale_load(contrib); 2248 } 2249 2250 /* Compute the current contribution to load_avg by se, return any delta */ 2251 static long __update_entity_load_avg_contrib(struct sched_entity *se) 2252 { 2253 long old_contrib = se->avg.load_avg_contrib; 2254 2255 if (entity_is_task(se)) { 2256 __update_task_entity_contrib(se); 2257 } else { 2258 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se)); 2259 __update_group_entity_contrib(se); 2260 } 2261 2262 return se->avg.load_avg_contrib - old_contrib; 2263 } 2264 2265 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq, 2266 long load_contrib) 2267 { 2268 if (likely(load_contrib < cfs_rq->blocked_load_avg)) 2269 cfs_rq->blocked_load_avg -= load_contrib; 2270 else 2271 cfs_rq->blocked_load_avg = 0; 2272 } 2273 2274 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 2275 2276 /* Update a sched_entity's runnable average */ 2277 static inline void update_entity_load_avg(struct sched_entity *se, 2278 int update_cfs_rq) 2279 { 2280 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2281 long contrib_delta; 2282 u64 now; 2283 2284 /* 2285 * For a group entity we need to use their owned cfs_rq_clock_task() in 2286 * case they are the parent of a throttled hierarchy. 2287 */ 2288 if (entity_is_task(se)) 2289 now = cfs_rq_clock_task(cfs_rq); 2290 else 2291 now = cfs_rq_clock_task(group_cfs_rq(se)); 2292 2293 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq)) 2294 return; 2295 2296 contrib_delta = __update_entity_load_avg_contrib(se); 2297 2298 if (!update_cfs_rq) 2299 return; 2300 2301 if (se->on_rq) 2302 cfs_rq->runnable_load_avg += contrib_delta; 2303 else 2304 subtract_blocked_load_contrib(cfs_rq, -contrib_delta); 2305 } 2306 2307 /* 2308 * Decay the load contributed by all blocked children and account this so that 2309 * their contribution may appropriately discounted when they wake up. 2310 */ 2311 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update) 2312 { 2313 u64 now = cfs_rq_clock_task(cfs_rq) >> 20; 2314 u64 decays; 2315 2316 decays = now - cfs_rq->last_decay; 2317 if (!decays && !force_update) 2318 return; 2319 2320 if (atomic_long_read(&cfs_rq->removed_load)) { 2321 unsigned long removed_load; 2322 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0); 2323 subtract_blocked_load_contrib(cfs_rq, removed_load); 2324 } 2325 2326 if (decays) { 2327 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg, 2328 decays); 2329 atomic64_add(decays, &cfs_rq->decay_counter); 2330 cfs_rq->last_decay = now; 2331 } 2332 2333 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update); 2334 } 2335 2336 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) 2337 { 2338 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable); 2339 __update_tg_runnable_avg(&rq->avg, &rq->cfs); 2340 } 2341 2342 /* Add the load generated by se into cfs_rq's child load-average */ 2343 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 2344 struct sched_entity *se, 2345 int wakeup) 2346 { 2347 /* 2348 * We track migrations using entity decay_count <= 0, on a wake-up 2349 * migration we use a negative decay count to track the remote decays 2350 * accumulated while sleeping. 2351 * 2352 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they 2353 * are seen by enqueue_entity_load_avg() as a migration with an already 2354 * constructed load_avg_contrib. 2355 */ 2356 if (unlikely(se->avg.decay_count <= 0)) { 2357 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq)); 2358 if (se->avg.decay_count) { 2359 /* 2360 * In a wake-up migration we have to approximate the 2361 * time sleeping. This is because we can't synchronize 2362 * clock_task between the two cpus, and it is not 2363 * guaranteed to be read-safe. Instead, we can 2364 * approximate this using our carried decays, which are 2365 * explicitly atomically readable. 2366 */ 2367 se->avg.last_runnable_update -= (-se->avg.decay_count) 2368 << 20; 2369 update_entity_load_avg(se, 0); 2370 /* Indicate that we're now synchronized and on-rq */ 2371 se->avg.decay_count = 0; 2372 } 2373 wakeup = 0; 2374 } else { 2375 /* 2376 * Task re-woke on same cpu (or else migrate_task_rq_fair() 2377 * would have made count negative); we must be careful to avoid 2378 * double-accounting blocked time after synchronizing decays. 2379 */ 2380 se->avg.last_runnable_update += __synchronize_entity_decay(se) 2381 << 20; 2382 } 2383 2384 /* migrated tasks did not contribute to our blocked load */ 2385 if (wakeup) { 2386 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); 2387 update_entity_load_avg(se, 0); 2388 } 2389 2390 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib; 2391 /* we force update consideration on load-balancer moves */ 2392 update_cfs_rq_blocked_load(cfs_rq, !wakeup); 2393 } 2394 2395 /* 2396 * Remove se's load from this cfs_rq child load-average, if the entity is 2397 * transitioning to a blocked state we track its projected decay using 2398 * blocked_load_avg. 2399 */ 2400 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 2401 struct sched_entity *se, 2402 int sleep) 2403 { 2404 update_entity_load_avg(se, 1); 2405 /* we force update consideration on load-balancer moves */ 2406 update_cfs_rq_blocked_load(cfs_rq, !sleep); 2407 2408 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib; 2409 if (sleep) { 2410 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; 2411 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 2412 } /* migrations, e.g. sleep=0 leave decay_count == 0 */ 2413 } 2414 2415 /* 2416 * Update the rq's load with the elapsed running time before entering 2417 * idle. if the last scheduled task is not a CFS task, idle_enter will 2418 * be the only way to update the runnable statistic. 2419 */ 2420 void idle_enter_fair(struct rq *this_rq) 2421 { 2422 update_rq_runnable_avg(this_rq, 1); 2423 } 2424 2425 /* 2426 * Update the rq's load with the elapsed idle time before a task is 2427 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will 2428 * be the only way to update the runnable statistic. 2429 */ 2430 void idle_exit_fair(struct rq *this_rq) 2431 { 2432 update_rq_runnable_avg(this_rq, 0); 2433 } 2434 2435 #else 2436 static inline void update_entity_load_avg(struct sched_entity *se, 2437 int update_cfs_rq) {} 2438 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} 2439 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 2440 struct sched_entity *se, 2441 int wakeup) {} 2442 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 2443 struct sched_entity *se, 2444 int sleep) {} 2445 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 2446 int force_update) {} 2447 #endif 2448 2449 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 2450 { 2451 #ifdef CONFIG_SCHEDSTATS 2452 struct task_struct *tsk = NULL; 2453 2454 if (entity_is_task(se)) 2455 tsk = task_of(se); 2456 2457 if (se->statistics.sleep_start) { 2458 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start; 2459 2460 if ((s64)delta < 0) 2461 delta = 0; 2462 2463 if (unlikely(delta > se->statistics.sleep_max)) 2464 se->statistics.sleep_max = delta; 2465 2466 se->statistics.sleep_start = 0; 2467 se->statistics.sum_sleep_runtime += delta; 2468 2469 if (tsk) { 2470 account_scheduler_latency(tsk, delta >> 10, 1); 2471 trace_sched_stat_sleep(tsk, delta); 2472 } 2473 } 2474 if (se->statistics.block_start) { 2475 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start; 2476 2477 if ((s64)delta < 0) 2478 delta = 0; 2479 2480 if (unlikely(delta > se->statistics.block_max)) 2481 se->statistics.block_max = delta; 2482 2483 se->statistics.block_start = 0; 2484 se->statistics.sum_sleep_runtime += delta; 2485 2486 if (tsk) { 2487 if (tsk->in_iowait) { 2488 se->statistics.iowait_sum += delta; 2489 se->statistics.iowait_count++; 2490 trace_sched_stat_iowait(tsk, delta); 2491 } 2492 2493 trace_sched_stat_blocked(tsk, delta); 2494 2495 /* 2496 * Blocking time is in units of nanosecs, so shift by 2497 * 20 to get a milliseconds-range estimation of the 2498 * amount of time that the task spent sleeping: 2499 */ 2500 if (unlikely(prof_on == SLEEP_PROFILING)) { 2501 profile_hits(SLEEP_PROFILING, 2502 (void *)get_wchan(tsk), 2503 delta >> 20); 2504 } 2505 account_scheduler_latency(tsk, delta >> 10, 0); 2506 } 2507 } 2508 #endif 2509 } 2510 2511 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 2512 { 2513 #ifdef CONFIG_SCHED_DEBUG 2514 s64 d = se->vruntime - cfs_rq->min_vruntime; 2515 2516 if (d < 0) 2517 d = -d; 2518 2519 if (d > 3*sysctl_sched_latency) 2520 schedstat_inc(cfs_rq, nr_spread_over); 2521 #endif 2522 } 2523 2524 static void 2525 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 2526 { 2527 u64 vruntime = cfs_rq->min_vruntime; 2528 2529 /* 2530 * The 'current' period is already promised to the current tasks, 2531 * however the extra weight of the new task will slow them down a 2532 * little, place the new task so that it fits in the slot that 2533 * stays open at the end. 2534 */ 2535 if (initial && sched_feat(START_DEBIT)) 2536 vruntime += sched_vslice(cfs_rq, se); 2537 2538 /* sleeps up to a single latency don't count. */ 2539 if (!initial) { 2540 unsigned long thresh = sysctl_sched_latency; 2541 2542 /* 2543 * Halve their sleep time's effect, to allow 2544 * for a gentler effect of sleepers: 2545 */ 2546 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 2547 thresh >>= 1; 2548 2549 vruntime -= thresh; 2550 } 2551 2552 /* ensure we never gain time by being placed backwards. */ 2553 se->vruntime = max_vruntime(se->vruntime, vruntime); 2554 } 2555 2556 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 2557 2558 static void 2559 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 2560 { 2561 /* 2562 * Update the normalized vruntime before updating min_vruntime 2563 * through calling update_curr(). 2564 */ 2565 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) 2566 se->vruntime += cfs_rq->min_vruntime; 2567 2568 /* 2569 * Update run-time statistics of the 'current'. 2570 */ 2571 update_curr(cfs_rq); 2572 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP); 2573 account_entity_enqueue(cfs_rq, se); 2574 update_cfs_shares(cfs_rq); 2575 2576 if (flags & ENQUEUE_WAKEUP) { 2577 place_entity(cfs_rq, se, 0); 2578 enqueue_sleeper(cfs_rq, se); 2579 } 2580 2581 update_stats_enqueue(cfs_rq, se); 2582 check_spread(cfs_rq, se); 2583 if (se != cfs_rq->curr) 2584 __enqueue_entity(cfs_rq, se); 2585 se->on_rq = 1; 2586 2587 if (cfs_rq->nr_running == 1) { 2588 list_add_leaf_cfs_rq(cfs_rq); 2589 check_enqueue_throttle(cfs_rq); 2590 } 2591 } 2592 2593 static void __clear_buddies_last(struct sched_entity *se) 2594 { 2595 for_each_sched_entity(se) { 2596 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2597 if (cfs_rq->last == se) 2598 cfs_rq->last = NULL; 2599 else 2600 break; 2601 } 2602 } 2603 2604 static void __clear_buddies_next(struct sched_entity *se) 2605 { 2606 for_each_sched_entity(se) { 2607 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2608 if (cfs_rq->next == se) 2609 cfs_rq->next = NULL; 2610 else 2611 break; 2612 } 2613 } 2614 2615 static void __clear_buddies_skip(struct sched_entity *se) 2616 { 2617 for_each_sched_entity(se) { 2618 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2619 if (cfs_rq->skip == se) 2620 cfs_rq->skip = NULL; 2621 else 2622 break; 2623 } 2624 } 2625 2626 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 2627 { 2628 if (cfs_rq->last == se) 2629 __clear_buddies_last(se); 2630 2631 if (cfs_rq->next == se) 2632 __clear_buddies_next(se); 2633 2634 if (cfs_rq->skip == se) 2635 __clear_buddies_skip(se); 2636 } 2637 2638 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 2639 2640 static void 2641 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 2642 { 2643 /* 2644 * Update run-time statistics of the 'current'. 2645 */ 2646 update_curr(cfs_rq); 2647 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP); 2648 2649 update_stats_dequeue(cfs_rq, se); 2650 if (flags & DEQUEUE_SLEEP) { 2651 #ifdef CONFIG_SCHEDSTATS 2652 if (entity_is_task(se)) { 2653 struct task_struct *tsk = task_of(se); 2654 2655 if (tsk->state & TASK_INTERRUPTIBLE) 2656 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq)); 2657 if (tsk->state & TASK_UNINTERRUPTIBLE) 2658 se->statistics.block_start = rq_clock(rq_of(cfs_rq)); 2659 } 2660 #endif 2661 } 2662 2663 clear_buddies(cfs_rq, se); 2664 2665 if (se != cfs_rq->curr) 2666 __dequeue_entity(cfs_rq, se); 2667 se->on_rq = 0; 2668 account_entity_dequeue(cfs_rq, se); 2669 2670 /* 2671 * Normalize the entity after updating the min_vruntime because the 2672 * update can refer to the ->curr item and we need to reflect this 2673 * movement in our normalized position. 2674 */ 2675 if (!(flags & DEQUEUE_SLEEP)) 2676 se->vruntime -= cfs_rq->min_vruntime; 2677 2678 /* return excess runtime on last dequeue */ 2679 return_cfs_rq_runtime(cfs_rq); 2680 2681 update_min_vruntime(cfs_rq); 2682 update_cfs_shares(cfs_rq); 2683 } 2684 2685 /* 2686 * Preempt the current task with a newly woken task if needed: 2687 */ 2688 static void 2689 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 2690 { 2691 unsigned long ideal_runtime, delta_exec; 2692 struct sched_entity *se; 2693 s64 delta; 2694 2695 ideal_runtime = sched_slice(cfs_rq, curr); 2696 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 2697 if (delta_exec > ideal_runtime) { 2698 resched_task(rq_of(cfs_rq)->curr); 2699 /* 2700 * The current task ran long enough, ensure it doesn't get 2701 * re-elected due to buddy favours. 2702 */ 2703 clear_buddies(cfs_rq, curr); 2704 return; 2705 } 2706 2707 /* 2708 * Ensure that a task that missed wakeup preemption by a 2709 * narrow margin doesn't have to wait for a full slice. 2710 * This also mitigates buddy induced latencies under load. 2711 */ 2712 if (delta_exec < sysctl_sched_min_granularity) 2713 return; 2714 2715 se = __pick_first_entity(cfs_rq); 2716 delta = curr->vruntime - se->vruntime; 2717 2718 if (delta < 0) 2719 return; 2720 2721 if (delta > ideal_runtime) 2722 resched_task(rq_of(cfs_rq)->curr); 2723 } 2724 2725 static void 2726 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 2727 { 2728 /* 'current' is not kept within the tree. */ 2729 if (se->on_rq) { 2730 /* 2731 * Any task has to be enqueued before it get to execute on 2732 * a CPU. So account for the time it spent waiting on the 2733 * runqueue. 2734 */ 2735 update_stats_wait_end(cfs_rq, se); 2736 __dequeue_entity(cfs_rq, se); 2737 } 2738 2739 update_stats_curr_start(cfs_rq, se); 2740 cfs_rq->curr = se; 2741 #ifdef CONFIG_SCHEDSTATS 2742 /* 2743 * Track our maximum slice length, if the CPU's load is at 2744 * least twice that of our own weight (i.e. dont track it 2745 * when there are only lesser-weight tasks around): 2746 */ 2747 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 2748 se->statistics.slice_max = max(se->statistics.slice_max, 2749 se->sum_exec_runtime - se->prev_sum_exec_runtime); 2750 } 2751 #endif 2752 se->prev_sum_exec_runtime = se->sum_exec_runtime; 2753 } 2754 2755 static int 2756 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 2757 2758 /* 2759 * Pick the next process, keeping these things in mind, in this order: 2760 * 1) keep things fair between processes/task groups 2761 * 2) pick the "next" process, since someone really wants that to run 2762 * 3) pick the "last" process, for cache locality 2763 * 4) do not run the "skip" process, if something else is available 2764 */ 2765 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) 2766 { 2767 struct sched_entity *se = __pick_first_entity(cfs_rq); 2768 struct sched_entity *left = se; 2769 2770 /* 2771 * Avoid running the skip buddy, if running something else can 2772 * be done without getting too unfair. 2773 */ 2774 if (cfs_rq->skip == se) { 2775 struct sched_entity *second = __pick_next_entity(se); 2776 if (second && wakeup_preempt_entity(second, left) < 1) 2777 se = second; 2778 } 2779 2780 /* 2781 * Prefer last buddy, try to return the CPU to a preempted task. 2782 */ 2783 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 2784 se = cfs_rq->last; 2785 2786 /* 2787 * Someone really wants this to run. If it's not unfair, run it. 2788 */ 2789 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 2790 se = cfs_rq->next; 2791 2792 clear_buddies(cfs_rq, se); 2793 2794 return se; 2795 } 2796 2797 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 2798 2799 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 2800 { 2801 /* 2802 * If still on the runqueue then deactivate_task() 2803 * was not called and update_curr() has to be done: 2804 */ 2805 if (prev->on_rq) 2806 update_curr(cfs_rq); 2807 2808 /* throttle cfs_rqs exceeding runtime */ 2809 check_cfs_rq_runtime(cfs_rq); 2810 2811 check_spread(cfs_rq, prev); 2812 if (prev->on_rq) { 2813 update_stats_wait_start(cfs_rq, prev); 2814 /* Put 'current' back into the tree. */ 2815 __enqueue_entity(cfs_rq, prev); 2816 /* in !on_rq case, update occurred at dequeue */ 2817 update_entity_load_avg(prev, 1); 2818 } 2819 cfs_rq->curr = NULL; 2820 } 2821 2822 static void 2823 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 2824 { 2825 /* 2826 * Update run-time statistics of the 'current'. 2827 */ 2828 update_curr(cfs_rq); 2829 2830 /* 2831 * Ensure that runnable average is periodically updated. 2832 */ 2833 update_entity_load_avg(curr, 1); 2834 update_cfs_rq_blocked_load(cfs_rq, 1); 2835 update_cfs_shares(cfs_rq); 2836 2837 #ifdef CONFIG_SCHED_HRTICK 2838 /* 2839 * queued ticks are scheduled to match the slice, so don't bother 2840 * validating it and just reschedule. 2841 */ 2842 if (queued) { 2843 resched_task(rq_of(cfs_rq)->curr); 2844 return; 2845 } 2846 /* 2847 * don't let the period tick interfere with the hrtick preemption 2848 */ 2849 if (!sched_feat(DOUBLE_TICK) && 2850 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 2851 return; 2852 #endif 2853 2854 if (cfs_rq->nr_running > 1) 2855 check_preempt_tick(cfs_rq, curr); 2856 } 2857 2858 2859 /************************************************** 2860 * CFS bandwidth control machinery 2861 */ 2862 2863 #ifdef CONFIG_CFS_BANDWIDTH 2864 2865 #ifdef HAVE_JUMP_LABEL 2866 static struct static_key __cfs_bandwidth_used; 2867 2868 static inline bool cfs_bandwidth_used(void) 2869 { 2870 return static_key_false(&__cfs_bandwidth_used); 2871 } 2872 2873 void cfs_bandwidth_usage_inc(void) 2874 { 2875 static_key_slow_inc(&__cfs_bandwidth_used); 2876 } 2877 2878 void cfs_bandwidth_usage_dec(void) 2879 { 2880 static_key_slow_dec(&__cfs_bandwidth_used); 2881 } 2882 #else /* HAVE_JUMP_LABEL */ 2883 static bool cfs_bandwidth_used(void) 2884 { 2885 return true; 2886 } 2887 2888 void cfs_bandwidth_usage_inc(void) {} 2889 void cfs_bandwidth_usage_dec(void) {} 2890 #endif /* HAVE_JUMP_LABEL */ 2891 2892 /* 2893 * default period for cfs group bandwidth. 2894 * default: 0.1s, units: nanoseconds 2895 */ 2896 static inline u64 default_cfs_period(void) 2897 { 2898 return 100000000ULL; 2899 } 2900 2901 static inline u64 sched_cfs_bandwidth_slice(void) 2902 { 2903 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 2904 } 2905 2906 /* 2907 * Replenish runtime according to assigned quota and update expiration time. 2908 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 2909 * additional synchronization around rq->lock. 2910 * 2911 * requires cfs_b->lock 2912 */ 2913 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 2914 { 2915 u64 now; 2916 2917 if (cfs_b->quota == RUNTIME_INF) 2918 return; 2919 2920 now = sched_clock_cpu(smp_processor_id()); 2921 cfs_b->runtime = cfs_b->quota; 2922 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 2923 } 2924 2925 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 2926 { 2927 return &tg->cfs_bandwidth; 2928 } 2929 2930 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 2931 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 2932 { 2933 if (unlikely(cfs_rq->throttle_count)) 2934 return cfs_rq->throttled_clock_task; 2935 2936 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 2937 } 2938 2939 /* returns 0 on failure to allocate runtime */ 2940 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2941 { 2942 struct task_group *tg = cfs_rq->tg; 2943 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 2944 u64 amount = 0, min_amount, expires; 2945 2946 /* note: this is a positive sum as runtime_remaining <= 0 */ 2947 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 2948 2949 raw_spin_lock(&cfs_b->lock); 2950 if (cfs_b->quota == RUNTIME_INF) 2951 amount = min_amount; 2952 else { 2953 /* 2954 * If the bandwidth pool has become inactive, then at least one 2955 * period must have elapsed since the last consumption. 2956 * Refresh the global state and ensure bandwidth timer becomes 2957 * active. 2958 */ 2959 if (!cfs_b->timer_active) { 2960 __refill_cfs_bandwidth_runtime(cfs_b); 2961 __start_cfs_bandwidth(cfs_b); 2962 } 2963 2964 if (cfs_b->runtime > 0) { 2965 amount = min(cfs_b->runtime, min_amount); 2966 cfs_b->runtime -= amount; 2967 cfs_b->idle = 0; 2968 } 2969 } 2970 expires = cfs_b->runtime_expires; 2971 raw_spin_unlock(&cfs_b->lock); 2972 2973 cfs_rq->runtime_remaining += amount; 2974 /* 2975 * we may have advanced our local expiration to account for allowed 2976 * spread between our sched_clock and the one on which runtime was 2977 * issued. 2978 */ 2979 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 2980 cfs_rq->runtime_expires = expires; 2981 2982 return cfs_rq->runtime_remaining > 0; 2983 } 2984 2985 /* 2986 * Note: This depends on the synchronization provided by sched_clock and the 2987 * fact that rq->clock snapshots this value. 2988 */ 2989 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2990 { 2991 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2992 2993 /* if the deadline is ahead of our clock, nothing to do */ 2994 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 2995 return; 2996 2997 if (cfs_rq->runtime_remaining < 0) 2998 return; 2999 3000 /* 3001 * If the local deadline has passed we have to consider the 3002 * possibility that our sched_clock is 'fast' and the global deadline 3003 * has not truly expired. 3004 * 3005 * Fortunately we can check determine whether this the case by checking 3006 * whether the global deadline has advanced. 3007 */ 3008 3009 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) { 3010 /* extend local deadline, drift is bounded above by 2 ticks */ 3011 cfs_rq->runtime_expires += TICK_NSEC; 3012 } else { 3013 /* global deadline is ahead, expiration has passed */ 3014 cfs_rq->runtime_remaining = 0; 3015 } 3016 } 3017 3018 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, 3019 unsigned long delta_exec) 3020 { 3021 /* dock delta_exec before expiring quota (as it could span periods) */ 3022 cfs_rq->runtime_remaining -= delta_exec; 3023 expire_cfs_rq_runtime(cfs_rq); 3024 3025 if (likely(cfs_rq->runtime_remaining > 0)) 3026 return; 3027 3028 /* 3029 * if we're unable to extend our runtime we resched so that the active 3030 * hierarchy can be throttled 3031 */ 3032 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 3033 resched_task(rq_of(cfs_rq)->curr); 3034 } 3035 3036 static __always_inline 3037 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) 3038 { 3039 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 3040 return; 3041 3042 __account_cfs_rq_runtime(cfs_rq, delta_exec); 3043 } 3044 3045 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3046 { 3047 return cfs_bandwidth_used() && cfs_rq->throttled; 3048 } 3049 3050 /* check whether cfs_rq, or any parent, is throttled */ 3051 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3052 { 3053 return cfs_bandwidth_used() && cfs_rq->throttle_count; 3054 } 3055 3056 /* 3057 * Ensure that neither of the group entities corresponding to src_cpu or 3058 * dest_cpu are members of a throttled hierarchy when performing group 3059 * load-balance operations. 3060 */ 3061 static inline int throttled_lb_pair(struct task_group *tg, 3062 int src_cpu, int dest_cpu) 3063 { 3064 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 3065 3066 src_cfs_rq = tg->cfs_rq[src_cpu]; 3067 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 3068 3069 return throttled_hierarchy(src_cfs_rq) || 3070 throttled_hierarchy(dest_cfs_rq); 3071 } 3072 3073 /* updated child weight may affect parent so we have to do this bottom up */ 3074 static int tg_unthrottle_up(struct task_group *tg, void *data) 3075 { 3076 struct rq *rq = data; 3077 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3078 3079 cfs_rq->throttle_count--; 3080 #ifdef CONFIG_SMP 3081 if (!cfs_rq->throttle_count) { 3082 /* adjust cfs_rq_clock_task() */ 3083 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 3084 cfs_rq->throttled_clock_task; 3085 } 3086 #endif 3087 3088 return 0; 3089 } 3090 3091 static int tg_throttle_down(struct task_group *tg, void *data) 3092 { 3093 struct rq *rq = data; 3094 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3095 3096 /* group is entering throttled state, stop time */ 3097 if (!cfs_rq->throttle_count) 3098 cfs_rq->throttled_clock_task = rq_clock_task(rq); 3099 cfs_rq->throttle_count++; 3100 3101 return 0; 3102 } 3103 3104 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 3105 { 3106 struct rq *rq = rq_of(cfs_rq); 3107 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3108 struct sched_entity *se; 3109 long task_delta, dequeue = 1; 3110 3111 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 3112 3113 /* freeze hierarchy runnable averages while throttled */ 3114 rcu_read_lock(); 3115 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 3116 rcu_read_unlock(); 3117 3118 task_delta = cfs_rq->h_nr_running; 3119 for_each_sched_entity(se) { 3120 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 3121 /* throttled entity or throttle-on-deactivate */ 3122 if (!se->on_rq) 3123 break; 3124 3125 if (dequeue) 3126 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 3127 qcfs_rq->h_nr_running -= task_delta; 3128 3129 if (qcfs_rq->load.weight) 3130 dequeue = 0; 3131 } 3132 3133 if (!se) 3134 rq->nr_running -= task_delta; 3135 3136 cfs_rq->throttled = 1; 3137 cfs_rq->throttled_clock = rq_clock(rq); 3138 raw_spin_lock(&cfs_b->lock); 3139 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 3140 if (!cfs_b->timer_active) 3141 __start_cfs_bandwidth(cfs_b); 3142 raw_spin_unlock(&cfs_b->lock); 3143 } 3144 3145 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 3146 { 3147 struct rq *rq = rq_of(cfs_rq); 3148 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3149 struct sched_entity *se; 3150 int enqueue = 1; 3151 long task_delta; 3152 3153 se = cfs_rq->tg->se[cpu_of(rq)]; 3154 3155 cfs_rq->throttled = 0; 3156 3157 update_rq_clock(rq); 3158 3159 raw_spin_lock(&cfs_b->lock); 3160 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 3161 list_del_rcu(&cfs_rq->throttled_list); 3162 raw_spin_unlock(&cfs_b->lock); 3163 3164 /* update hierarchical throttle state */ 3165 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 3166 3167 if (!cfs_rq->load.weight) 3168 return; 3169 3170 task_delta = cfs_rq->h_nr_running; 3171 for_each_sched_entity(se) { 3172 if (se->on_rq) 3173 enqueue = 0; 3174 3175 cfs_rq = cfs_rq_of(se); 3176 if (enqueue) 3177 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 3178 cfs_rq->h_nr_running += task_delta; 3179 3180 if (cfs_rq_throttled(cfs_rq)) 3181 break; 3182 } 3183 3184 if (!se) 3185 rq->nr_running += task_delta; 3186 3187 /* determine whether we need to wake up potentially idle cpu */ 3188 if (rq->curr == rq->idle && rq->cfs.nr_running) 3189 resched_task(rq->curr); 3190 } 3191 3192 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 3193 u64 remaining, u64 expires) 3194 { 3195 struct cfs_rq *cfs_rq; 3196 u64 runtime = remaining; 3197 3198 rcu_read_lock(); 3199 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 3200 throttled_list) { 3201 struct rq *rq = rq_of(cfs_rq); 3202 3203 raw_spin_lock(&rq->lock); 3204 if (!cfs_rq_throttled(cfs_rq)) 3205 goto next; 3206 3207 runtime = -cfs_rq->runtime_remaining + 1; 3208 if (runtime > remaining) 3209 runtime = remaining; 3210 remaining -= runtime; 3211 3212 cfs_rq->runtime_remaining += runtime; 3213 cfs_rq->runtime_expires = expires; 3214 3215 /* we check whether we're throttled above */ 3216 if (cfs_rq->runtime_remaining > 0) 3217 unthrottle_cfs_rq(cfs_rq); 3218 3219 next: 3220 raw_spin_unlock(&rq->lock); 3221 3222 if (!remaining) 3223 break; 3224 } 3225 rcu_read_unlock(); 3226 3227 return remaining; 3228 } 3229 3230 /* 3231 * Responsible for refilling a task_group's bandwidth and unthrottling its 3232 * cfs_rqs as appropriate. If there has been no activity within the last 3233 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 3234 * used to track this state. 3235 */ 3236 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 3237 { 3238 u64 runtime, runtime_expires; 3239 int idle = 1, throttled; 3240 3241 raw_spin_lock(&cfs_b->lock); 3242 /* no need to continue the timer with no bandwidth constraint */ 3243 if (cfs_b->quota == RUNTIME_INF) 3244 goto out_unlock; 3245 3246 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 3247 /* idle depends on !throttled (for the case of a large deficit) */ 3248 idle = cfs_b->idle && !throttled; 3249 cfs_b->nr_periods += overrun; 3250 3251 /* if we're going inactive then everything else can be deferred */ 3252 if (idle) 3253 goto out_unlock; 3254 3255 /* 3256 * if we have relooped after returning idle once, we need to update our 3257 * status as actually running, so that other cpus doing 3258 * __start_cfs_bandwidth will stop trying to cancel us. 3259 */ 3260 cfs_b->timer_active = 1; 3261 3262 __refill_cfs_bandwidth_runtime(cfs_b); 3263 3264 if (!throttled) { 3265 /* mark as potentially idle for the upcoming period */ 3266 cfs_b->idle = 1; 3267 goto out_unlock; 3268 } 3269 3270 /* account preceding periods in which throttling occurred */ 3271 cfs_b->nr_throttled += overrun; 3272 3273 /* 3274 * There are throttled entities so we must first use the new bandwidth 3275 * to unthrottle them before making it generally available. This 3276 * ensures that all existing debts will be paid before a new cfs_rq is 3277 * allowed to run. 3278 */ 3279 runtime = cfs_b->runtime; 3280 runtime_expires = cfs_b->runtime_expires; 3281 cfs_b->runtime = 0; 3282 3283 /* 3284 * This check is repeated as we are holding onto the new bandwidth 3285 * while we unthrottle. This can potentially race with an unthrottled 3286 * group trying to acquire new bandwidth from the global pool. 3287 */ 3288 while (throttled && runtime > 0) { 3289 raw_spin_unlock(&cfs_b->lock); 3290 /* we can't nest cfs_b->lock while distributing bandwidth */ 3291 runtime = distribute_cfs_runtime(cfs_b, runtime, 3292 runtime_expires); 3293 raw_spin_lock(&cfs_b->lock); 3294 3295 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 3296 } 3297 3298 /* return (any) remaining runtime */ 3299 cfs_b->runtime = runtime; 3300 /* 3301 * While we are ensured activity in the period following an 3302 * unthrottle, this also covers the case in which the new bandwidth is 3303 * insufficient to cover the existing bandwidth deficit. (Forcing the 3304 * timer to remain active while there are any throttled entities.) 3305 */ 3306 cfs_b->idle = 0; 3307 out_unlock: 3308 if (idle) 3309 cfs_b->timer_active = 0; 3310 raw_spin_unlock(&cfs_b->lock); 3311 3312 return idle; 3313 } 3314 3315 /* a cfs_rq won't donate quota below this amount */ 3316 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 3317 /* minimum remaining period time to redistribute slack quota */ 3318 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 3319 /* how long we wait to gather additional slack before distributing */ 3320 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 3321 3322 /* 3323 * Are we near the end of the current quota period? 3324 * 3325 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 3326 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of 3327 * migrate_hrtimers, base is never cleared, so we are fine. 3328 */ 3329 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 3330 { 3331 struct hrtimer *refresh_timer = &cfs_b->period_timer; 3332 u64 remaining; 3333 3334 /* if the call-back is running a quota refresh is already occurring */ 3335 if (hrtimer_callback_running(refresh_timer)) 3336 return 1; 3337 3338 /* is a quota refresh about to occur? */ 3339 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 3340 if (remaining < min_expire) 3341 return 1; 3342 3343 return 0; 3344 } 3345 3346 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 3347 { 3348 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 3349 3350 /* if there's a quota refresh soon don't bother with slack */ 3351 if (runtime_refresh_within(cfs_b, min_left)) 3352 return; 3353 3354 start_bandwidth_timer(&cfs_b->slack_timer, 3355 ns_to_ktime(cfs_bandwidth_slack_period)); 3356 } 3357 3358 /* we know any runtime found here is valid as update_curr() precedes return */ 3359 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3360 { 3361 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3362 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 3363 3364 if (slack_runtime <= 0) 3365 return; 3366 3367 raw_spin_lock(&cfs_b->lock); 3368 if (cfs_b->quota != RUNTIME_INF && 3369 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 3370 cfs_b->runtime += slack_runtime; 3371 3372 /* we are under rq->lock, defer unthrottling using a timer */ 3373 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 3374 !list_empty(&cfs_b->throttled_cfs_rq)) 3375 start_cfs_slack_bandwidth(cfs_b); 3376 } 3377 raw_spin_unlock(&cfs_b->lock); 3378 3379 /* even if it's not valid for return we don't want to try again */ 3380 cfs_rq->runtime_remaining -= slack_runtime; 3381 } 3382 3383 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3384 { 3385 if (!cfs_bandwidth_used()) 3386 return; 3387 3388 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 3389 return; 3390 3391 __return_cfs_rq_runtime(cfs_rq); 3392 } 3393 3394 /* 3395 * This is done with a timer (instead of inline with bandwidth return) since 3396 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 3397 */ 3398 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 3399 { 3400 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 3401 u64 expires; 3402 3403 /* confirm we're still not at a refresh boundary */ 3404 raw_spin_lock(&cfs_b->lock); 3405 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 3406 raw_spin_unlock(&cfs_b->lock); 3407 return; 3408 } 3409 3410 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) { 3411 runtime = cfs_b->runtime; 3412 cfs_b->runtime = 0; 3413 } 3414 expires = cfs_b->runtime_expires; 3415 raw_spin_unlock(&cfs_b->lock); 3416 3417 if (!runtime) 3418 return; 3419 3420 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 3421 3422 raw_spin_lock(&cfs_b->lock); 3423 if (expires == cfs_b->runtime_expires) 3424 cfs_b->runtime = runtime; 3425 raw_spin_unlock(&cfs_b->lock); 3426 } 3427 3428 /* 3429 * When a group wakes up we want to make sure that its quota is not already 3430 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 3431 * runtime as update_curr() throttling can not not trigger until it's on-rq. 3432 */ 3433 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 3434 { 3435 if (!cfs_bandwidth_used()) 3436 return; 3437 3438 /* an active group must be handled by the update_curr()->put() path */ 3439 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 3440 return; 3441 3442 /* ensure the group is not already throttled */ 3443 if (cfs_rq_throttled(cfs_rq)) 3444 return; 3445 3446 /* update runtime allocation */ 3447 account_cfs_rq_runtime(cfs_rq, 0); 3448 if (cfs_rq->runtime_remaining <= 0) 3449 throttle_cfs_rq(cfs_rq); 3450 } 3451 3452 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 3453 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3454 { 3455 if (!cfs_bandwidth_used()) 3456 return; 3457 3458 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 3459 return; 3460 3461 /* 3462 * it's possible for a throttled entity to be forced into a running 3463 * state (e.g. set_curr_task), in this case we're finished. 3464 */ 3465 if (cfs_rq_throttled(cfs_rq)) 3466 return; 3467 3468 throttle_cfs_rq(cfs_rq); 3469 } 3470 3471 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 3472 { 3473 struct cfs_bandwidth *cfs_b = 3474 container_of(timer, struct cfs_bandwidth, slack_timer); 3475 do_sched_cfs_slack_timer(cfs_b); 3476 3477 return HRTIMER_NORESTART; 3478 } 3479 3480 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 3481 { 3482 struct cfs_bandwidth *cfs_b = 3483 container_of(timer, struct cfs_bandwidth, period_timer); 3484 ktime_t now; 3485 int overrun; 3486 int idle = 0; 3487 3488 for (;;) { 3489 now = hrtimer_cb_get_time(timer); 3490 overrun = hrtimer_forward(timer, now, cfs_b->period); 3491 3492 if (!overrun) 3493 break; 3494 3495 idle = do_sched_cfs_period_timer(cfs_b, overrun); 3496 } 3497 3498 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 3499 } 3500 3501 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3502 { 3503 raw_spin_lock_init(&cfs_b->lock); 3504 cfs_b->runtime = 0; 3505 cfs_b->quota = RUNTIME_INF; 3506 cfs_b->period = ns_to_ktime(default_cfs_period()); 3507 3508 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 3509 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3510 cfs_b->period_timer.function = sched_cfs_period_timer; 3511 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3512 cfs_b->slack_timer.function = sched_cfs_slack_timer; 3513 } 3514 3515 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3516 { 3517 cfs_rq->runtime_enabled = 0; 3518 INIT_LIST_HEAD(&cfs_rq->throttled_list); 3519 } 3520 3521 /* requires cfs_b->lock, may release to reprogram timer */ 3522 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3523 { 3524 /* 3525 * The timer may be active because we're trying to set a new bandwidth 3526 * period or because we're racing with the tear-down path 3527 * (timer_active==0 becomes visible before the hrtimer call-back 3528 * terminates). In either case we ensure that it's re-programmed 3529 */ 3530 while (unlikely(hrtimer_active(&cfs_b->period_timer)) && 3531 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) { 3532 /* bounce the lock to allow do_sched_cfs_period_timer to run */ 3533 raw_spin_unlock(&cfs_b->lock); 3534 cpu_relax(); 3535 raw_spin_lock(&cfs_b->lock); 3536 /* if someone else restarted the timer then we're done */ 3537 if (cfs_b->timer_active) 3538 return; 3539 } 3540 3541 cfs_b->timer_active = 1; 3542 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); 3543 } 3544 3545 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3546 { 3547 hrtimer_cancel(&cfs_b->period_timer); 3548 hrtimer_cancel(&cfs_b->slack_timer); 3549 } 3550 3551 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 3552 { 3553 struct cfs_rq *cfs_rq; 3554 3555 for_each_leaf_cfs_rq(rq, cfs_rq) { 3556 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3557 3558 if (!cfs_rq->runtime_enabled) 3559 continue; 3560 3561 /* 3562 * clock_task is not advancing so we just need to make sure 3563 * there's some valid quota amount 3564 */ 3565 cfs_rq->runtime_remaining = cfs_b->quota; 3566 if (cfs_rq_throttled(cfs_rq)) 3567 unthrottle_cfs_rq(cfs_rq); 3568 } 3569 } 3570 3571 #else /* CONFIG_CFS_BANDWIDTH */ 3572 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 3573 { 3574 return rq_clock_task(rq_of(cfs_rq)); 3575 } 3576 3577 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, 3578 unsigned long delta_exec) {} 3579 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 3580 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 3581 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 3582 3583 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3584 { 3585 return 0; 3586 } 3587 3588 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3589 { 3590 return 0; 3591 } 3592 3593 static inline int throttled_lb_pair(struct task_group *tg, 3594 int src_cpu, int dest_cpu) 3595 { 3596 return 0; 3597 } 3598 3599 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 3600 3601 #ifdef CONFIG_FAIR_GROUP_SCHED 3602 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 3603 #endif 3604 3605 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 3606 { 3607 return NULL; 3608 } 3609 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 3610 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 3611 3612 #endif /* CONFIG_CFS_BANDWIDTH */ 3613 3614 /************************************************** 3615 * CFS operations on tasks: 3616 */ 3617 3618 #ifdef CONFIG_SCHED_HRTICK 3619 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 3620 { 3621 struct sched_entity *se = &p->se; 3622 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3623 3624 WARN_ON(task_rq(p) != rq); 3625 3626 if (cfs_rq->nr_running > 1) { 3627 u64 slice = sched_slice(cfs_rq, se); 3628 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 3629 s64 delta = slice - ran; 3630 3631 if (delta < 0) { 3632 if (rq->curr == p) 3633 resched_task(p); 3634 return; 3635 } 3636 3637 /* 3638 * Don't schedule slices shorter than 10000ns, that just 3639 * doesn't make sense. Rely on vruntime for fairness. 3640 */ 3641 if (rq->curr != p) 3642 delta = max_t(s64, 10000LL, delta); 3643 3644 hrtick_start(rq, delta); 3645 } 3646 } 3647 3648 /* 3649 * called from enqueue/dequeue and updates the hrtick when the 3650 * current task is from our class and nr_running is low enough 3651 * to matter. 3652 */ 3653 static void hrtick_update(struct rq *rq) 3654 { 3655 struct task_struct *curr = rq->curr; 3656 3657 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 3658 return; 3659 3660 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 3661 hrtick_start_fair(rq, curr); 3662 } 3663 #else /* !CONFIG_SCHED_HRTICK */ 3664 static inline void 3665 hrtick_start_fair(struct rq *rq, struct task_struct *p) 3666 { 3667 } 3668 3669 static inline void hrtick_update(struct rq *rq) 3670 { 3671 } 3672 #endif 3673 3674 /* 3675 * The enqueue_task method is called before nr_running is 3676 * increased. Here we update the fair scheduling stats and 3677 * then put the task into the rbtree: 3678 */ 3679 static void 3680 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 3681 { 3682 struct cfs_rq *cfs_rq; 3683 struct sched_entity *se = &p->se; 3684 3685 for_each_sched_entity(se) { 3686 if (se->on_rq) 3687 break; 3688 cfs_rq = cfs_rq_of(se); 3689 enqueue_entity(cfs_rq, se, flags); 3690 3691 /* 3692 * end evaluation on encountering a throttled cfs_rq 3693 * 3694 * note: in the case of encountering a throttled cfs_rq we will 3695 * post the final h_nr_running increment below. 3696 */ 3697 if (cfs_rq_throttled(cfs_rq)) 3698 break; 3699 cfs_rq->h_nr_running++; 3700 3701 flags = ENQUEUE_WAKEUP; 3702 } 3703 3704 for_each_sched_entity(se) { 3705 cfs_rq = cfs_rq_of(se); 3706 cfs_rq->h_nr_running++; 3707 3708 if (cfs_rq_throttled(cfs_rq)) 3709 break; 3710 3711 update_cfs_shares(cfs_rq); 3712 update_entity_load_avg(se, 1); 3713 } 3714 3715 if (!se) { 3716 update_rq_runnable_avg(rq, rq->nr_running); 3717 inc_nr_running(rq); 3718 } 3719 hrtick_update(rq); 3720 } 3721 3722 static void set_next_buddy(struct sched_entity *se); 3723 3724 /* 3725 * The dequeue_task method is called before nr_running is 3726 * decreased. We remove the task from the rbtree and 3727 * update the fair scheduling stats: 3728 */ 3729 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 3730 { 3731 struct cfs_rq *cfs_rq; 3732 struct sched_entity *se = &p->se; 3733 int task_sleep = flags & DEQUEUE_SLEEP; 3734 3735 for_each_sched_entity(se) { 3736 cfs_rq = cfs_rq_of(se); 3737 dequeue_entity(cfs_rq, se, flags); 3738 3739 /* 3740 * end evaluation on encountering a throttled cfs_rq 3741 * 3742 * note: in the case of encountering a throttled cfs_rq we will 3743 * post the final h_nr_running decrement below. 3744 */ 3745 if (cfs_rq_throttled(cfs_rq)) 3746 break; 3747 cfs_rq->h_nr_running--; 3748 3749 /* Don't dequeue parent if it has other entities besides us */ 3750 if (cfs_rq->load.weight) { 3751 /* 3752 * Bias pick_next to pick a task from this cfs_rq, as 3753 * p is sleeping when it is within its sched_slice. 3754 */ 3755 if (task_sleep && parent_entity(se)) 3756 set_next_buddy(parent_entity(se)); 3757 3758 /* avoid re-evaluating load for this entity */ 3759 se = parent_entity(se); 3760 break; 3761 } 3762 flags |= DEQUEUE_SLEEP; 3763 } 3764 3765 for_each_sched_entity(se) { 3766 cfs_rq = cfs_rq_of(se); 3767 cfs_rq->h_nr_running--; 3768 3769 if (cfs_rq_throttled(cfs_rq)) 3770 break; 3771 3772 update_cfs_shares(cfs_rq); 3773 update_entity_load_avg(se, 1); 3774 } 3775 3776 if (!se) { 3777 dec_nr_running(rq); 3778 update_rq_runnable_avg(rq, 1); 3779 } 3780 hrtick_update(rq); 3781 } 3782 3783 #ifdef CONFIG_SMP 3784 /* Used instead of source_load when we know the type == 0 */ 3785 static unsigned long weighted_cpuload(const int cpu) 3786 { 3787 return cpu_rq(cpu)->cfs.runnable_load_avg; 3788 } 3789 3790 /* 3791 * Return a low guess at the load of a migration-source cpu weighted 3792 * according to the scheduling class and "nice" value. 3793 * 3794 * We want to under-estimate the load of migration sources, to 3795 * balance conservatively. 3796 */ 3797 static unsigned long source_load(int cpu, int type) 3798 { 3799 struct rq *rq = cpu_rq(cpu); 3800 unsigned long total = weighted_cpuload(cpu); 3801 3802 if (type == 0 || !sched_feat(LB_BIAS)) 3803 return total; 3804 3805 return min(rq->cpu_load[type-1], total); 3806 } 3807 3808 /* 3809 * Return a high guess at the load of a migration-target cpu weighted 3810 * according to the scheduling class and "nice" value. 3811 */ 3812 static unsigned long target_load(int cpu, int type) 3813 { 3814 struct rq *rq = cpu_rq(cpu); 3815 unsigned long total = weighted_cpuload(cpu); 3816 3817 if (type == 0 || !sched_feat(LB_BIAS)) 3818 return total; 3819 3820 return max(rq->cpu_load[type-1], total); 3821 } 3822 3823 static unsigned long power_of(int cpu) 3824 { 3825 return cpu_rq(cpu)->cpu_power; 3826 } 3827 3828 static unsigned long cpu_avg_load_per_task(int cpu) 3829 { 3830 struct rq *rq = cpu_rq(cpu); 3831 unsigned long nr_running = ACCESS_ONCE(rq->nr_running); 3832 unsigned long load_avg = rq->cfs.runnable_load_avg; 3833 3834 if (nr_running) 3835 return load_avg / nr_running; 3836 3837 return 0; 3838 } 3839 3840 static void record_wakee(struct task_struct *p) 3841 { 3842 /* 3843 * Rough decay (wiping) for cost saving, don't worry 3844 * about the boundary, really active task won't care 3845 * about the loss. 3846 */ 3847 if (jiffies > current->wakee_flip_decay_ts + HZ) { 3848 current->wakee_flips = 0; 3849 current->wakee_flip_decay_ts = jiffies; 3850 } 3851 3852 if (current->last_wakee != p) { 3853 current->last_wakee = p; 3854 current->wakee_flips++; 3855 } 3856 } 3857 3858 static void task_waking_fair(struct task_struct *p) 3859 { 3860 struct sched_entity *se = &p->se; 3861 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3862 u64 min_vruntime; 3863 3864 #ifndef CONFIG_64BIT 3865 u64 min_vruntime_copy; 3866 3867 do { 3868 min_vruntime_copy = cfs_rq->min_vruntime_copy; 3869 smp_rmb(); 3870 min_vruntime = cfs_rq->min_vruntime; 3871 } while (min_vruntime != min_vruntime_copy); 3872 #else 3873 min_vruntime = cfs_rq->min_vruntime; 3874 #endif 3875 3876 se->vruntime -= min_vruntime; 3877 record_wakee(p); 3878 } 3879 3880 #ifdef CONFIG_FAIR_GROUP_SCHED 3881 /* 3882 * effective_load() calculates the load change as seen from the root_task_group 3883 * 3884 * Adding load to a group doesn't make a group heavier, but can cause movement 3885 * of group shares between cpus. Assuming the shares were perfectly aligned one 3886 * can calculate the shift in shares. 3887 * 3888 * Calculate the effective load difference if @wl is added (subtracted) to @tg 3889 * on this @cpu and results in a total addition (subtraction) of @wg to the 3890 * total group weight. 3891 * 3892 * Given a runqueue weight distribution (rw_i) we can compute a shares 3893 * distribution (s_i) using: 3894 * 3895 * s_i = rw_i / \Sum rw_j (1) 3896 * 3897 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 3898 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 3899 * shares distribution (s_i): 3900 * 3901 * rw_i = { 2, 4, 1, 0 } 3902 * s_i = { 2/7, 4/7, 1/7, 0 } 3903 * 3904 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 3905 * task used to run on and the CPU the waker is running on), we need to 3906 * compute the effect of waking a task on either CPU and, in case of a sync 3907 * wakeup, compute the effect of the current task going to sleep. 3908 * 3909 * So for a change of @wl to the local @cpu with an overall group weight change 3910 * of @wl we can compute the new shares distribution (s'_i) using: 3911 * 3912 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 3913 * 3914 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 3915 * differences in waking a task to CPU 0. The additional task changes the 3916 * weight and shares distributions like: 3917 * 3918 * rw'_i = { 3, 4, 1, 0 } 3919 * s'_i = { 3/8, 4/8, 1/8, 0 } 3920 * 3921 * We can then compute the difference in effective weight by using: 3922 * 3923 * dw_i = S * (s'_i - s_i) (3) 3924 * 3925 * Where 'S' is the group weight as seen by its parent. 3926 * 3927 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 3928 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 3929 * 4/7) times the weight of the group. 3930 */ 3931 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 3932 { 3933 struct sched_entity *se = tg->se[cpu]; 3934 3935 if (!tg->parent || !wl) /* the trivial, non-cgroup case */ 3936 return wl; 3937 3938 for_each_sched_entity(se) { 3939 long w, W; 3940 3941 tg = se->my_q->tg; 3942 3943 /* 3944 * W = @wg + \Sum rw_j 3945 */ 3946 W = wg + calc_tg_weight(tg, se->my_q); 3947 3948 /* 3949 * w = rw_i + @wl 3950 */ 3951 w = se->my_q->load.weight + wl; 3952 3953 /* 3954 * wl = S * s'_i; see (2) 3955 */ 3956 if (W > 0 && w < W) 3957 wl = (w * tg->shares) / W; 3958 else 3959 wl = tg->shares; 3960 3961 /* 3962 * Per the above, wl is the new se->load.weight value; since 3963 * those are clipped to [MIN_SHARES, ...) do so now. See 3964 * calc_cfs_shares(). 3965 */ 3966 if (wl < MIN_SHARES) 3967 wl = MIN_SHARES; 3968 3969 /* 3970 * wl = dw_i = S * (s'_i - s_i); see (3) 3971 */ 3972 wl -= se->load.weight; 3973 3974 /* 3975 * Recursively apply this logic to all parent groups to compute 3976 * the final effective load change on the root group. Since 3977 * only the @tg group gets extra weight, all parent groups can 3978 * only redistribute existing shares. @wl is the shift in shares 3979 * resulting from this level per the above. 3980 */ 3981 wg = 0; 3982 } 3983 3984 return wl; 3985 } 3986 #else 3987 3988 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 3989 { 3990 return wl; 3991 } 3992 3993 #endif 3994 3995 static int wake_wide(struct task_struct *p) 3996 { 3997 int factor = this_cpu_read(sd_llc_size); 3998 3999 /* 4000 * Yeah, it's the switching-frequency, could means many wakee or 4001 * rapidly switch, use factor here will just help to automatically 4002 * adjust the loose-degree, so bigger node will lead to more pull. 4003 */ 4004 if (p->wakee_flips > factor) { 4005 /* 4006 * wakee is somewhat hot, it needs certain amount of cpu 4007 * resource, so if waker is far more hot, prefer to leave 4008 * it alone. 4009 */ 4010 if (current->wakee_flips > (factor * p->wakee_flips)) 4011 return 1; 4012 } 4013 4014 return 0; 4015 } 4016 4017 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 4018 { 4019 s64 this_load, load; 4020 int idx, this_cpu, prev_cpu; 4021 unsigned long tl_per_task; 4022 struct task_group *tg; 4023 unsigned long weight; 4024 int balanced; 4025 4026 /* 4027 * If we wake multiple tasks be careful to not bounce 4028 * ourselves around too much. 4029 */ 4030 if (wake_wide(p)) 4031 return 0; 4032 4033 idx = sd->wake_idx; 4034 this_cpu = smp_processor_id(); 4035 prev_cpu = task_cpu(p); 4036 load = source_load(prev_cpu, idx); 4037 this_load = target_load(this_cpu, idx); 4038 4039 /* 4040 * If sync wakeup then subtract the (maximum possible) 4041 * effect of the currently running task from the load 4042 * of the current CPU: 4043 */ 4044 if (sync) { 4045 tg = task_group(current); 4046 weight = current->se.load.weight; 4047 4048 this_load += effective_load(tg, this_cpu, -weight, -weight); 4049 load += effective_load(tg, prev_cpu, 0, -weight); 4050 } 4051 4052 tg = task_group(p); 4053 weight = p->se.load.weight; 4054 4055 /* 4056 * In low-load situations, where prev_cpu is idle and this_cpu is idle 4057 * due to the sync cause above having dropped this_load to 0, we'll 4058 * always have an imbalance, but there's really nothing you can do 4059 * about that, so that's good too. 4060 * 4061 * Otherwise check if either cpus are near enough in load to allow this 4062 * task to be woken on this_cpu. 4063 */ 4064 if (this_load > 0) { 4065 s64 this_eff_load, prev_eff_load; 4066 4067 this_eff_load = 100; 4068 this_eff_load *= power_of(prev_cpu); 4069 this_eff_load *= this_load + 4070 effective_load(tg, this_cpu, weight, weight); 4071 4072 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 4073 prev_eff_load *= power_of(this_cpu); 4074 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 4075 4076 balanced = this_eff_load <= prev_eff_load; 4077 } else 4078 balanced = true; 4079 4080 /* 4081 * If the currently running task will sleep within 4082 * a reasonable amount of time then attract this newly 4083 * woken task: 4084 */ 4085 if (sync && balanced) 4086 return 1; 4087 4088 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); 4089 tl_per_task = cpu_avg_load_per_task(this_cpu); 4090 4091 if (balanced || 4092 (this_load <= load && 4093 this_load + target_load(prev_cpu, idx) <= tl_per_task)) { 4094 /* 4095 * This domain has SD_WAKE_AFFINE and 4096 * p is cache cold in this domain, and 4097 * there is no bad imbalance. 4098 */ 4099 schedstat_inc(sd, ttwu_move_affine); 4100 schedstat_inc(p, se.statistics.nr_wakeups_affine); 4101 4102 return 1; 4103 } 4104 return 0; 4105 } 4106 4107 /* 4108 * find_idlest_group finds and returns the least busy CPU group within the 4109 * domain. 4110 */ 4111 static struct sched_group * 4112 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 4113 int this_cpu, int load_idx) 4114 { 4115 struct sched_group *idlest = NULL, *group = sd->groups; 4116 unsigned long min_load = ULONG_MAX, this_load = 0; 4117 int imbalance = 100 + (sd->imbalance_pct-100)/2; 4118 4119 do { 4120 unsigned long load, avg_load; 4121 int local_group; 4122 int i; 4123 4124 /* Skip over this group if it has no CPUs allowed */ 4125 if (!cpumask_intersects(sched_group_cpus(group), 4126 tsk_cpus_allowed(p))) 4127 continue; 4128 4129 local_group = cpumask_test_cpu(this_cpu, 4130 sched_group_cpus(group)); 4131 4132 /* Tally up the load of all CPUs in the group */ 4133 avg_load = 0; 4134 4135 for_each_cpu(i, sched_group_cpus(group)) { 4136 /* Bias balancing toward cpus of our domain */ 4137 if (local_group) 4138 load = source_load(i, load_idx); 4139 else 4140 load = target_load(i, load_idx); 4141 4142 avg_load += load; 4143 } 4144 4145 /* Adjust by relative CPU power of the group */ 4146 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power; 4147 4148 if (local_group) { 4149 this_load = avg_load; 4150 } else if (avg_load < min_load) { 4151 min_load = avg_load; 4152 idlest = group; 4153 } 4154 } while (group = group->next, group != sd->groups); 4155 4156 if (!idlest || 100*this_load < imbalance*min_load) 4157 return NULL; 4158 return idlest; 4159 } 4160 4161 /* 4162 * find_idlest_cpu - find the idlest cpu among the cpus in group. 4163 */ 4164 static int 4165 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 4166 { 4167 unsigned long load, min_load = ULONG_MAX; 4168 int idlest = -1; 4169 int i; 4170 4171 /* Traverse only the allowed CPUs */ 4172 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 4173 load = weighted_cpuload(i); 4174 4175 if (load < min_load || (load == min_load && i == this_cpu)) { 4176 min_load = load; 4177 idlest = i; 4178 } 4179 } 4180 4181 return idlest; 4182 } 4183 4184 /* 4185 * Try and locate an idle CPU in the sched_domain. 4186 */ 4187 static int select_idle_sibling(struct task_struct *p, int target) 4188 { 4189 struct sched_domain *sd; 4190 struct sched_group *sg; 4191 int i = task_cpu(p); 4192 4193 if (idle_cpu(target)) 4194 return target; 4195 4196 /* 4197 * If the prevous cpu is cache affine and idle, don't be stupid. 4198 */ 4199 if (i != target && cpus_share_cache(i, target) && idle_cpu(i)) 4200 return i; 4201 4202 /* 4203 * Otherwise, iterate the domains and find an elegible idle cpu. 4204 */ 4205 sd = rcu_dereference(per_cpu(sd_llc, target)); 4206 for_each_lower_domain(sd) { 4207 sg = sd->groups; 4208 do { 4209 if (!cpumask_intersects(sched_group_cpus(sg), 4210 tsk_cpus_allowed(p))) 4211 goto next; 4212 4213 for_each_cpu(i, sched_group_cpus(sg)) { 4214 if (i == target || !idle_cpu(i)) 4215 goto next; 4216 } 4217 4218 target = cpumask_first_and(sched_group_cpus(sg), 4219 tsk_cpus_allowed(p)); 4220 goto done; 4221 next: 4222 sg = sg->next; 4223 } while (sg != sd->groups); 4224 } 4225 done: 4226 return target; 4227 } 4228 4229 /* 4230 * sched_balance_self: balance the current task (running on cpu) in domains 4231 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and 4232 * SD_BALANCE_EXEC. 4233 * 4234 * Balance, ie. select the least loaded group. 4235 * 4236 * Returns the target CPU number, or the same CPU if no balancing is needed. 4237 * 4238 * preempt must be disabled. 4239 */ 4240 static int 4241 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 4242 { 4243 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 4244 int cpu = smp_processor_id(); 4245 int new_cpu = cpu; 4246 int want_affine = 0; 4247 int sync = wake_flags & WF_SYNC; 4248 4249 if (p->nr_cpus_allowed == 1) 4250 return prev_cpu; 4251 4252 if (sd_flag & SD_BALANCE_WAKE) { 4253 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 4254 want_affine = 1; 4255 new_cpu = prev_cpu; 4256 } 4257 4258 rcu_read_lock(); 4259 for_each_domain(cpu, tmp) { 4260 if (!(tmp->flags & SD_LOAD_BALANCE)) 4261 continue; 4262 4263 /* 4264 * If both cpu and prev_cpu are part of this domain, 4265 * cpu is a valid SD_WAKE_AFFINE target. 4266 */ 4267 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 4268 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 4269 affine_sd = tmp; 4270 break; 4271 } 4272 4273 if (tmp->flags & sd_flag) 4274 sd = tmp; 4275 } 4276 4277 if (affine_sd) { 4278 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync)) 4279 prev_cpu = cpu; 4280 4281 new_cpu = select_idle_sibling(p, prev_cpu); 4282 goto unlock; 4283 } 4284 4285 while (sd) { 4286 int load_idx = sd->forkexec_idx; 4287 struct sched_group *group; 4288 int weight; 4289 4290 if (!(sd->flags & sd_flag)) { 4291 sd = sd->child; 4292 continue; 4293 } 4294 4295 if (sd_flag & SD_BALANCE_WAKE) 4296 load_idx = sd->wake_idx; 4297 4298 group = find_idlest_group(sd, p, cpu, load_idx); 4299 if (!group) { 4300 sd = sd->child; 4301 continue; 4302 } 4303 4304 new_cpu = find_idlest_cpu(group, p, cpu); 4305 if (new_cpu == -1 || new_cpu == cpu) { 4306 /* Now try balancing at a lower domain level of cpu */ 4307 sd = sd->child; 4308 continue; 4309 } 4310 4311 /* Now try balancing at a lower domain level of new_cpu */ 4312 cpu = new_cpu; 4313 weight = sd->span_weight; 4314 sd = NULL; 4315 for_each_domain(cpu, tmp) { 4316 if (weight <= tmp->span_weight) 4317 break; 4318 if (tmp->flags & sd_flag) 4319 sd = tmp; 4320 } 4321 /* while loop will break here if sd == NULL */ 4322 } 4323 unlock: 4324 rcu_read_unlock(); 4325 4326 return new_cpu; 4327 } 4328 4329 /* 4330 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 4331 * cfs_rq_of(p) references at time of call are still valid and identify the 4332 * previous cpu. However, the caller only guarantees p->pi_lock is held; no 4333 * other assumptions, including the state of rq->lock, should be made. 4334 */ 4335 static void 4336 migrate_task_rq_fair(struct task_struct *p, int next_cpu) 4337 { 4338 struct sched_entity *se = &p->se; 4339 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4340 4341 /* 4342 * Load tracking: accumulate removed load so that it can be processed 4343 * when we next update owning cfs_rq under rq->lock. Tasks contribute 4344 * to blocked load iff they have a positive decay-count. It can never 4345 * be negative here since on-rq tasks have decay-count == 0. 4346 */ 4347 if (se->avg.decay_count) { 4348 se->avg.decay_count = -__synchronize_entity_decay(se); 4349 atomic_long_add(se->avg.load_avg_contrib, 4350 &cfs_rq->removed_load); 4351 } 4352 } 4353 #endif /* CONFIG_SMP */ 4354 4355 static unsigned long 4356 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 4357 { 4358 unsigned long gran = sysctl_sched_wakeup_granularity; 4359 4360 /* 4361 * Since its curr running now, convert the gran from real-time 4362 * to virtual-time in his units. 4363 * 4364 * By using 'se' instead of 'curr' we penalize light tasks, so 4365 * they get preempted easier. That is, if 'se' < 'curr' then 4366 * the resulting gran will be larger, therefore penalizing the 4367 * lighter, if otoh 'se' > 'curr' then the resulting gran will 4368 * be smaller, again penalizing the lighter task. 4369 * 4370 * This is especially important for buddies when the leftmost 4371 * task is higher priority than the buddy. 4372 */ 4373 return calc_delta_fair(gran, se); 4374 } 4375 4376 /* 4377 * Should 'se' preempt 'curr'. 4378 * 4379 * |s1 4380 * |s2 4381 * |s3 4382 * g 4383 * |<--->|c 4384 * 4385 * w(c, s1) = -1 4386 * w(c, s2) = 0 4387 * w(c, s3) = 1 4388 * 4389 */ 4390 static int 4391 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 4392 { 4393 s64 gran, vdiff = curr->vruntime - se->vruntime; 4394 4395 if (vdiff <= 0) 4396 return -1; 4397 4398 gran = wakeup_gran(curr, se); 4399 if (vdiff > gran) 4400 return 1; 4401 4402 return 0; 4403 } 4404 4405 static void set_last_buddy(struct sched_entity *se) 4406 { 4407 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 4408 return; 4409 4410 for_each_sched_entity(se) 4411 cfs_rq_of(se)->last = se; 4412 } 4413 4414 static void set_next_buddy(struct sched_entity *se) 4415 { 4416 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 4417 return; 4418 4419 for_each_sched_entity(se) 4420 cfs_rq_of(se)->next = se; 4421 } 4422 4423 static void set_skip_buddy(struct sched_entity *se) 4424 { 4425 for_each_sched_entity(se) 4426 cfs_rq_of(se)->skip = se; 4427 } 4428 4429 /* 4430 * Preempt the current task with a newly woken task if needed: 4431 */ 4432 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 4433 { 4434 struct task_struct *curr = rq->curr; 4435 struct sched_entity *se = &curr->se, *pse = &p->se; 4436 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 4437 int scale = cfs_rq->nr_running >= sched_nr_latency; 4438 int next_buddy_marked = 0; 4439 4440 if (unlikely(se == pse)) 4441 return; 4442 4443 /* 4444 * This is possible from callers such as move_task(), in which we 4445 * unconditionally check_prempt_curr() after an enqueue (which may have 4446 * lead to a throttle). This both saves work and prevents false 4447 * next-buddy nomination below. 4448 */ 4449 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 4450 return; 4451 4452 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 4453 set_next_buddy(pse); 4454 next_buddy_marked = 1; 4455 } 4456 4457 /* 4458 * We can come here with TIF_NEED_RESCHED already set from new task 4459 * wake up path. 4460 * 4461 * Note: this also catches the edge-case of curr being in a throttled 4462 * group (e.g. via set_curr_task), since update_curr() (in the 4463 * enqueue of curr) will have resulted in resched being set. This 4464 * prevents us from potentially nominating it as a false LAST_BUDDY 4465 * below. 4466 */ 4467 if (test_tsk_need_resched(curr)) 4468 return; 4469 4470 /* Idle tasks are by definition preempted by non-idle tasks. */ 4471 if (unlikely(curr->policy == SCHED_IDLE) && 4472 likely(p->policy != SCHED_IDLE)) 4473 goto preempt; 4474 4475 /* 4476 * Batch and idle tasks do not preempt non-idle tasks (their preemption 4477 * is driven by the tick): 4478 */ 4479 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 4480 return; 4481 4482 find_matching_se(&se, &pse); 4483 update_curr(cfs_rq_of(se)); 4484 BUG_ON(!pse); 4485 if (wakeup_preempt_entity(se, pse) == 1) { 4486 /* 4487 * Bias pick_next to pick the sched entity that is 4488 * triggering this preemption. 4489 */ 4490 if (!next_buddy_marked) 4491 set_next_buddy(pse); 4492 goto preempt; 4493 } 4494 4495 return; 4496 4497 preempt: 4498 resched_task(curr); 4499 /* 4500 * Only set the backward buddy when the current task is still 4501 * on the rq. This can happen when a wakeup gets interleaved 4502 * with schedule on the ->pre_schedule() or idle_balance() 4503 * point, either of which can * drop the rq lock. 4504 * 4505 * Also, during early boot the idle thread is in the fair class, 4506 * for obvious reasons its a bad idea to schedule back to it. 4507 */ 4508 if (unlikely(!se->on_rq || curr == rq->idle)) 4509 return; 4510 4511 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 4512 set_last_buddy(se); 4513 } 4514 4515 static struct task_struct *pick_next_task_fair(struct rq *rq) 4516 { 4517 struct task_struct *p; 4518 struct cfs_rq *cfs_rq = &rq->cfs; 4519 struct sched_entity *se; 4520 4521 if (!cfs_rq->nr_running) 4522 return NULL; 4523 4524 do { 4525 se = pick_next_entity(cfs_rq); 4526 set_next_entity(cfs_rq, se); 4527 cfs_rq = group_cfs_rq(se); 4528 } while (cfs_rq); 4529 4530 p = task_of(se); 4531 if (hrtick_enabled(rq)) 4532 hrtick_start_fair(rq, p); 4533 4534 return p; 4535 } 4536 4537 /* 4538 * Account for a descheduled task: 4539 */ 4540 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 4541 { 4542 struct sched_entity *se = &prev->se; 4543 struct cfs_rq *cfs_rq; 4544 4545 for_each_sched_entity(se) { 4546 cfs_rq = cfs_rq_of(se); 4547 put_prev_entity(cfs_rq, se); 4548 } 4549 } 4550 4551 /* 4552 * sched_yield() is very simple 4553 * 4554 * The magic of dealing with the ->skip buddy is in pick_next_entity. 4555 */ 4556 static void yield_task_fair(struct rq *rq) 4557 { 4558 struct task_struct *curr = rq->curr; 4559 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 4560 struct sched_entity *se = &curr->se; 4561 4562 /* 4563 * Are we the only task in the tree? 4564 */ 4565 if (unlikely(rq->nr_running == 1)) 4566 return; 4567 4568 clear_buddies(cfs_rq, se); 4569 4570 if (curr->policy != SCHED_BATCH) { 4571 update_rq_clock(rq); 4572 /* 4573 * Update run-time statistics of the 'current'. 4574 */ 4575 update_curr(cfs_rq); 4576 /* 4577 * Tell update_rq_clock() that we've just updated, 4578 * so we don't do microscopic update in schedule() 4579 * and double the fastpath cost. 4580 */ 4581 rq->skip_clock_update = 1; 4582 } 4583 4584 set_skip_buddy(se); 4585 } 4586 4587 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 4588 { 4589 struct sched_entity *se = &p->se; 4590 4591 /* throttled hierarchies are not runnable */ 4592 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 4593 return false; 4594 4595 /* Tell the scheduler that we'd really like pse to run next. */ 4596 set_next_buddy(se); 4597 4598 yield_task_fair(rq); 4599 4600 return true; 4601 } 4602 4603 #ifdef CONFIG_SMP 4604 /************************************************** 4605 * Fair scheduling class load-balancing methods. 4606 * 4607 * BASICS 4608 * 4609 * The purpose of load-balancing is to achieve the same basic fairness the 4610 * per-cpu scheduler provides, namely provide a proportional amount of compute 4611 * time to each task. This is expressed in the following equation: 4612 * 4613 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 4614 * 4615 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 4616 * W_i,0 is defined as: 4617 * 4618 * W_i,0 = \Sum_j w_i,j (2) 4619 * 4620 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 4621 * is derived from the nice value as per prio_to_weight[]. 4622 * 4623 * The weight average is an exponential decay average of the instantaneous 4624 * weight: 4625 * 4626 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 4627 * 4628 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the 4629 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 4630 * can also include other factors [XXX]. 4631 * 4632 * To achieve this balance we define a measure of imbalance which follows 4633 * directly from (1): 4634 * 4635 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4) 4636 * 4637 * We them move tasks around to minimize the imbalance. In the continuous 4638 * function space it is obvious this converges, in the discrete case we get 4639 * a few fun cases generally called infeasible weight scenarios. 4640 * 4641 * [XXX expand on: 4642 * - infeasible weights; 4643 * - local vs global optima in the discrete case. ] 4644 * 4645 * 4646 * SCHED DOMAINS 4647 * 4648 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 4649 * for all i,j solution, we create a tree of cpus that follows the hardware 4650 * topology where each level pairs two lower groups (or better). This results 4651 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 4652 * tree to only the first of the previous level and we decrease the frequency 4653 * of load-balance at each level inv. proportional to the number of cpus in 4654 * the groups. 4655 * 4656 * This yields: 4657 * 4658 * log_2 n 1 n 4659 * \Sum { --- * --- * 2^i } = O(n) (5) 4660 * i = 0 2^i 2^i 4661 * `- size of each group 4662 * | | `- number of cpus doing load-balance 4663 * | `- freq 4664 * `- sum over all levels 4665 * 4666 * Coupled with a limit on how many tasks we can migrate every balance pass, 4667 * this makes (5) the runtime complexity of the balancer. 4668 * 4669 * An important property here is that each CPU is still (indirectly) connected 4670 * to every other cpu in at most O(log n) steps: 4671 * 4672 * The adjacency matrix of the resulting graph is given by: 4673 * 4674 * log_2 n 4675 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 4676 * k = 0 4677 * 4678 * And you'll find that: 4679 * 4680 * A^(log_2 n)_i,j != 0 for all i,j (7) 4681 * 4682 * Showing there's indeed a path between every cpu in at most O(log n) steps. 4683 * The task movement gives a factor of O(m), giving a convergence complexity 4684 * of: 4685 * 4686 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 4687 * 4688 * 4689 * WORK CONSERVING 4690 * 4691 * In order to avoid CPUs going idle while there's still work to do, new idle 4692 * balancing is more aggressive and has the newly idle cpu iterate up the domain 4693 * tree itself instead of relying on other CPUs to bring it work. 4694 * 4695 * This adds some complexity to both (5) and (8) but it reduces the total idle 4696 * time. 4697 * 4698 * [XXX more?] 4699 * 4700 * 4701 * CGROUPS 4702 * 4703 * Cgroups make a horror show out of (2), instead of a simple sum we get: 4704 * 4705 * s_k,i 4706 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 4707 * S_k 4708 * 4709 * Where 4710 * 4711 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 4712 * 4713 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 4714 * 4715 * The big problem is S_k, its a global sum needed to compute a local (W_i) 4716 * property. 4717 * 4718 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 4719 * rewrite all of this once again.] 4720 */ 4721 4722 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 4723 4724 enum fbq_type { regular, remote, all }; 4725 4726 #define LBF_ALL_PINNED 0x01 4727 #define LBF_NEED_BREAK 0x02 4728 #define LBF_DST_PINNED 0x04 4729 #define LBF_SOME_PINNED 0x08 4730 4731 struct lb_env { 4732 struct sched_domain *sd; 4733 4734 struct rq *src_rq; 4735 int src_cpu; 4736 4737 int dst_cpu; 4738 struct rq *dst_rq; 4739 4740 struct cpumask *dst_grpmask; 4741 int new_dst_cpu; 4742 enum cpu_idle_type idle; 4743 long imbalance; 4744 /* The set of CPUs under consideration for load-balancing */ 4745 struct cpumask *cpus; 4746 4747 unsigned int flags; 4748 4749 unsigned int loop; 4750 unsigned int loop_break; 4751 unsigned int loop_max; 4752 4753 enum fbq_type fbq_type; 4754 }; 4755 4756 /* 4757 * move_task - move a task from one runqueue to another runqueue. 4758 * Both runqueues must be locked. 4759 */ 4760 static void move_task(struct task_struct *p, struct lb_env *env) 4761 { 4762 deactivate_task(env->src_rq, p, 0); 4763 set_task_cpu(p, env->dst_cpu); 4764 activate_task(env->dst_rq, p, 0); 4765 check_preempt_curr(env->dst_rq, p, 0); 4766 } 4767 4768 /* 4769 * Is this task likely cache-hot: 4770 */ 4771 static int 4772 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) 4773 { 4774 s64 delta; 4775 4776 if (p->sched_class != &fair_sched_class) 4777 return 0; 4778 4779 if (unlikely(p->policy == SCHED_IDLE)) 4780 return 0; 4781 4782 /* 4783 * Buddy candidates are cache hot: 4784 */ 4785 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && 4786 (&p->se == cfs_rq_of(&p->se)->next || 4787 &p->se == cfs_rq_of(&p->se)->last)) 4788 return 1; 4789 4790 if (sysctl_sched_migration_cost == -1) 4791 return 1; 4792 if (sysctl_sched_migration_cost == 0) 4793 return 0; 4794 4795 delta = now - p->se.exec_start; 4796 4797 return delta < (s64)sysctl_sched_migration_cost; 4798 } 4799 4800 #ifdef CONFIG_NUMA_BALANCING 4801 /* Returns true if the destination node has incurred more faults */ 4802 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env) 4803 { 4804 int src_nid, dst_nid; 4805 4806 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults || 4807 !(env->sd->flags & SD_NUMA)) { 4808 return false; 4809 } 4810 4811 src_nid = cpu_to_node(env->src_cpu); 4812 dst_nid = cpu_to_node(env->dst_cpu); 4813 4814 if (src_nid == dst_nid) 4815 return false; 4816 4817 /* Always encourage migration to the preferred node. */ 4818 if (dst_nid == p->numa_preferred_nid) 4819 return true; 4820 4821 /* If both task and group weight improve, this move is a winner. */ 4822 if (task_weight(p, dst_nid) > task_weight(p, src_nid) && 4823 group_weight(p, dst_nid) > group_weight(p, src_nid)) 4824 return true; 4825 4826 return false; 4827 } 4828 4829 4830 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 4831 { 4832 int src_nid, dst_nid; 4833 4834 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER)) 4835 return false; 4836 4837 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 4838 return false; 4839 4840 src_nid = cpu_to_node(env->src_cpu); 4841 dst_nid = cpu_to_node(env->dst_cpu); 4842 4843 if (src_nid == dst_nid) 4844 return false; 4845 4846 /* Migrating away from the preferred node is always bad. */ 4847 if (src_nid == p->numa_preferred_nid) 4848 return true; 4849 4850 /* If either task or group weight get worse, don't do it. */ 4851 if (task_weight(p, dst_nid) < task_weight(p, src_nid) || 4852 group_weight(p, dst_nid) < group_weight(p, src_nid)) 4853 return true; 4854 4855 return false; 4856 } 4857 4858 #else 4859 static inline bool migrate_improves_locality(struct task_struct *p, 4860 struct lb_env *env) 4861 { 4862 return false; 4863 } 4864 4865 static inline bool migrate_degrades_locality(struct task_struct *p, 4866 struct lb_env *env) 4867 { 4868 return false; 4869 } 4870 #endif 4871 4872 /* 4873 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 4874 */ 4875 static 4876 int can_migrate_task(struct task_struct *p, struct lb_env *env) 4877 { 4878 int tsk_cache_hot = 0; 4879 /* 4880 * We do not migrate tasks that are: 4881 * 1) throttled_lb_pair, or 4882 * 2) cannot be migrated to this CPU due to cpus_allowed, or 4883 * 3) running (obviously), or 4884 * 4) are cache-hot on their current CPU. 4885 */ 4886 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 4887 return 0; 4888 4889 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { 4890 int cpu; 4891 4892 schedstat_inc(p, se.statistics.nr_failed_migrations_affine); 4893 4894 env->flags |= LBF_SOME_PINNED; 4895 4896 /* 4897 * Remember if this task can be migrated to any other cpu in 4898 * our sched_group. We may want to revisit it if we couldn't 4899 * meet load balance goals by pulling other tasks on src_cpu. 4900 * 4901 * Also avoid computing new_dst_cpu if we have already computed 4902 * one in current iteration. 4903 */ 4904 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) 4905 return 0; 4906 4907 /* Prevent to re-select dst_cpu via env's cpus */ 4908 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 4909 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { 4910 env->flags |= LBF_DST_PINNED; 4911 env->new_dst_cpu = cpu; 4912 break; 4913 } 4914 } 4915 4916 return 0; 4917 } 4918 4919 /* Record that we found atleast one task that could run on dst_cpu */ 4920 env->flags &= ~LBF_ALL_PINNED; 4921 4922 if (task_running(env->src_rq, p)) { 4923 schedstat_inc(p, se.statistics.nr_failed_migrations_running); 4924 return 0; 4925 } 4926 4927 /* 4928 * Aggressive migration if: 4929 * 1) destination numa is preferred 4930 * 2) task is cache cold, or 4931 * 3) too many balance attempts have failed. 4932 */ 4933 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd); 4934 if (!tsk_cache_hot) 4935 tsk_cache_hot = migrate_degrades_locality(p, env); 4936 4937 if (migrate_improves_locality(p, env)) { 4938 #ifdef CONFIG_SCHEDSTATS 4939 if (tsk_cache_hot) { 4940 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 4941 schedstat_inc(p, se.statistics.nr_forced_migrations); 4942 } 4943 #endif 4944 return 1; 4945 } 4946 4947 if (!tsk_cache_hot || 4948 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 4949 4950 if (tsk_cache_hot) { 4951 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 4952 schedstat_inc(p, se.statistics.nr_forced_migrations); 4953 } 4954 4955 return 1; 4956 } 4957 4958 schedstat_inc(p, se.statistics.nr_failed_migrations_hot); 4959 return 0; 4960 } 4961 4962 /* 4963 * move_one_task tries to move exactly one task from busiest to this_rq, as 4964 * part of active balancing operations within "domain". 4965 * Returns 1 if successful and 0 otherwise. 4966 * 4967 * Called with both runqueues locked. 4968 */ 4969 static int move_one_task(struct lb_env *env) 4970 { 4971 struct task_struct *p, *n; 4972 4973 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 4974 if (!can_migrate_task(p, env)) 4975 continue; 4976 4977 move_task(p, env); 4978 /* 4979 * Right now, this is only the second place move_task() 4980 * is called, so we can safely collect move_task() 4981 * stats here rather than inside move_task(). 4982 */ 4983 schedstat_inc(env->sd, lb_gained[env->idle]); 4984 return 1; 4985 } 4986 return 0; 4987 } 4988 4989 static const unsigned int sched_nr_migrate_break = 32; 4990 4991 /* 4992 * move_tasks tries to move up to imbalance weighted load from busiest to 4993 * this_rq, as part of a balancing operation within domain "sd". 4994 * Returns 1 if successful and 0 otherwise. 4995 * 4996 * Called with both runqueues locked. 4997 */ 4998 static int move_tasks(struct lb_env *env) 4999 { 5000 struct list_head *tasks = &env->src_rq->cfs_tasks; 5001 struct task_struct *p; 5002 unsigned long load; 5003 int pulled = 0; 5004 5005 if (env->imbalance <= 0) 5006 return 0; 5007 5008 while (!list_empty(tasks)) { 5009 p = list_first_entry(tasks, struct task_struct, se.group_node); 5010 5011 env->loop++; 5012 /* We've more or less seen every task there is, call it quits */ 5013 if (env->loop > env->loop_max) 5014 break; 5015 5016 /* take a breather every nr_migrate tasks */ 5017 if (env->loop > env->loop_break) { 5018 env->loop_break += sched_nr_migrate_break; 5019 env->flags |= LBF_NEED_BREAK; 5020 break; 5021 } 5022 5023 if (!can_migrate_task(p, env)) 5024 goto next; 5025 5026 load = task_h_load(p); 5027 5028 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 5029 goto next; 5030 5031 if ((load / 2) > env->imbalance) 5032 goto next; 5033 5034 move_task(p, env); 5035 pulled++; 5036 env->imbalance -= load; 5037 5038 #ifdef CONFIG_PREEMPT 5039 /* 5040 * NEWIDLE balancing is a source of latency, so preemptible 5041 * kernels will stop after the first task is pulled to minimize 5042 * the critical section. 5043 */ 5044 if (env->idle == CPU_NEWLY_IDLE) 5045 break; 5046 #endif 5047 5048 /* 5049 * We only want to steal up to the prescribed amount of 5050 * weighted load. 5051 */ 5052 if (env->imbalance <= 0) 5053 break; 5054 5055 continue; 5056 next: 5057 list_move_tail(&p->se.group_node, tasks); 5058 } 5059 5060 /* 5061 * Right now, this is one of only two places move_task() is called, 5062 * so we can safely collect move_task() stats here rather than 5063 * inside move_task(). 5064 */ 5065 schedstat_add(env->sd, lb_gained[env->idle], pulled); 5066 5067 return pulled; 5068 } 5069 5070 #ifdef CONFIG_FAIR_GROUP_SCHED 5071 /* 5072 * update tg->load_weight by folding this cpu's load_avg 5073 */ 5074 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu) 5075 { 5076 struct sched_entity *se = tg->se[cpu]; 5077 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 5078 5079 /* throttled entities do not contribute to load */ 5080 if (throttled_hierarchy(cfs_rq)) 5081 return; 5082 5083 update_cfs_rq_blocked_load(cfs_rq, 1); 5084 5085 if (se) { 5086 update_entity_load_avg(se, 1); 5087 /* 5088 * We pivot on our runnable average having decayed to zero for 5089 * list removal. This generally implies that all our children 5090 * have also been removed (modulo rounding error or bandwidth 5091 * control); however, such cases are rare and we can fix these 5092 * at enqueue. 5093 * 5094 * TODO: fix up out-of-order children on enqueue. 5095 */ 5096 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running) 5097 list_del_leaf_cfs_rq(cfs_rq); 5098 } else { 5099 struct rq *rq = rq_of(cfs_rq); 5100 update_rq_runnable_avg(rq, rq->nr_running); 5101 } 5102 } 5103 5104 static void update_blocked_averages(int cpu) 5105 { 5106 struct rq *rq = cpu_rq(cpu); 5107 struct cfs_rq *cfs_rq; 5108 unsigned long flags; 5109 5110 raw_spin_lock_irqsave(&rq->lock, flags); 5111 update_rq_clock(rq); 5112 /* 5113 * Iterates the task_group tree in a bottom up fashion, see 5114 * list_add_leaf_cfs_rq() for details. 5115 */ 5116 for_each_leaf_cfs_rq(rq, cfs_rq) { 5117 /* 5118 * Note: We may want to consider periodically releasing 5119 * rq->lock about these updates so that creating many task 5120 * groups does not result in continually extending hold time. 5121 */ 5122 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu); 5123 } 5124 5125 raw_spin_unlock_irqrestore(&rq->lock, flags); 5126 } 5127 5128 /* 5129 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 5130 * This needs to be done in a top-down fashion because the load of a child 5131 * group is a fraction of its parents load. 5132 */ 5133 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 5134 { 5135 struct rq *rq = rq_of(cfs_rq); 5136 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 5137 unsigned long now = jiffies; 5138 unsigned long load; 5139 5140 if (cfs_rq->last_h_load_update == now) 5141 return; 5142 5143 cfs_rq->h_load_next = NULL; 5144 for_each_sched_entity(se) { 5145 cfs_rq = cfs_rq_of(se); 5146 cfs_rq->h_load_next = se; 5147 if (cfs_rq->last_h_load_update == now) 5148 break; 5149 } 5150 5151 if (!se) { 5152 cfs_rq->h_load = cfs_rq->runnable_load_avg; 5153 cfs_rq->last_h_load_update = now; 5154 } 5155 5156 while ((se = cfs_rq->h_load_next) != NULL) { 5157 load = cfs_rq->h_load; 5158 load = div64_ul(load * se->avg.load_avg_contrib, 5159 cfs_rq->runnable_load_avg + 1); 5160 cfs_rq = group_cfs_rq(se); 5161 cfs_rq->h_load = load; 5162 cfs_rq->last_h_load_update = now; 5163 } 5164 } 5165 5166 static unsigned long task_h_load(struct task_struct *p) 5167 { 5168 struct cfs_rq *cfs_rq = task_cfs_rq(p); 5169 5170 update_cfs_rq_h_load(cfs_rq); 5171 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load, 5172 cfs_rq->runnable_load_avg + 1); 5173 } 5174 #else 5175 static inline void update_blocked_averages(int cpu) 5176 { 5177 } 5178 5179 static unsigned long task_h_load(struct task_struct *p) 5180 { 5181 return p->se.avg.load_avg_contrib; 5182 } 5183 #endif 5184 5185 /********** Helpers for find_busiest_group ************************/ 5186 /* 5187 * sg_lb_stats - stats of a sched_group required for load_balancing 5188 */ 5189 struct sg_lb_stats { 5190 unsigned long avg_load; /*Avg load across the CPUs of the group */ 5191 unsigned long group_load; /* Total load over the CPUs of the group */ 5192 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 5193 unsigned long load_per_task; 5194 unsigned long group_power; 5195 unsigned int sum_nr_running; /* Nr tasks running in the group */ 5196 unsigned int group_capacity; 5197 unsigned int idle_cpus; 5198 unsigned int group_weight; 5199 int group_imb; /* Is there an imbalance in the group ? */ 5200 int group_has_capacity; /* Is there extra capacity in the group? */ 5201 #ifdef CONFIG_NUMA_BALANCING 5202 unsigned int nr_numa_running; 5203 unsigned int nr_preferred_running; 5204 #endif 5205 }; 5206 5207 /* 5208 * sd_lb_stats - Structure to store the statistics of a sched_domain 5209 * during load balancing. 5210 */ 5211 struct sd_lb_stats { 5212 struct sched_group *busiest; /* Busiest group in this sd */ 5213 struct sched_group *local; /* Local group in this sd */ 5214 unsigned long total_load; /* Total load of all groups in sd */ 5215 unsigned long total_pwr; /* Total power of all groups in sd */ 5216 unsigned long avg_load; /* Average load across all groups in sd */ 5217 5218 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 5219 struct sg_lb_stats local_stat; /* Statistics of the local group */ 5220 }; 5221 5222 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 5223 { 5224 /* 5225 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 5226 * local_stat because update_sg_lb_stats() does a full clear/assignment. 5227 * We must however clear busiest_stat::avg_load because 5228 * update_sd_pick_busiest() reads this before assignment. 5229 */ 5230 *sds = (struct sd_lb_stats){ 5231 .busiest = NULL, 5232 .local = NULL, 5233 .total_load = 0UL, 5234 .total_pwr = 0UL, 5235 .busiest_stat = { 5236 .avg_load = 0UL, 5237 }, 5238 }; 5239 } 5240 5241 /** 5242 * get_sd_load_idx - Obtain the load index for a given sched domain. 5243 * @sd: The sched_domain whose load_idx is to be obtained. 5244 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 5245 * 5246 * Return: The load index. 5247 */ 5248 static inline int get_sd_load_idx(struct sched_domain *sd, 5249 enum cpu_idle_type idle) 5250 { 5251 int load_idx; 5252 5253 switch (idle) { 5254 case CPU_NOT_IDLE: 5255 load_idx = sd->busy_idx; 5256 break; 5257 5258 case CPU_NEWLY_IDLE: 5259 load_idx = sd->newidle_idx; 5260 break; 5261 default: 5262 load_idx = sd->idle_idx; 5263 break; 5264 } 5265 5266 return load_idx; 5267 } 5268 5269 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) 5270 { 5271 return SCHED_POWER_SCALE; 5272 } 5273 5274 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) 5275 { 5276 return default_scale_freq_power(sd, cpu); 5277 } 5278 5279 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) 5280 { 5281 unsigned long weight = sd->span_weight; 5282 unsigned long smt_gain = sd->smt_gain; 5283 5284 smt_gain /= weight; 5285 5286 return smt_gain; 5287 } 5288 5289 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) 5290 { 5291 return default_scale_smt_power(sd, cpu); 5292 } 5293 5294 static unsigned long scale_rt_power(int cpu) 5295 { 5296 struct rq *rq = cpu_rq(cpu); 5297 u64 total, available, age_stamp, avg; 5298 5299 /* 5300 * Since we're reading these variables without serialization make sure 5301 * we read them once before doing sanity checks on them. 5302 */ 5303 age_stamp = ACCESS_ONCE(rq->age_stamp); 5304 avg = ACCESS_ONCE(rq->rt_avg); 5305 5306 total = sched_avg_period() + (rq_clock(rq) - age_stamp); 5307 5308 if (unlikely(total < avg)) { 5309 /* Ensures that power won't end up being negative */ 5310 available = 0; 5311 } else { 5312 available = total - avg; 5313 } 5314 5315 if (unlikely((s64)total < SCHED_POWER_SCALE)) 5316 total = SCHED_POWER_SCALE; 5317 5318 total >>= SCHED_POWER_SHIFT; 5319 5320 return div_u64(available, total); 5321 } 5322 5323 static void update_cpu_power(struct sched_domain *sd, int cpu) 5324 { 5325 unsigned long weight = sd->span_weight; 5326 unsigned long power = SCHED_POWER_SCALE; 5327 struct sched_group *sdg = sd->groups; 5328 5329 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { 5330 if (sched_feat(ARCH_POWER)) 5331 power *= arch_scale_smt_power(sd, cpu); 5332 else 5333 power *= default_scale_smt_power(sd, cpu); 5334 5335 power >>= SCHED_POWER_SHIFT; 5336 } 5337 5338 sdg->sgp->power_orig = power; 5339 5340 if (sched_feat(ARCH_POWER)) 5341 power *= arch_scale_freq_power(sd, cpu); 5342 else 5343 power *= default_scale_freq_power(sd, cpu); 5344 5345 power >>= SCHED_POWER_SHIFT; 5346 5347 power *= scale_rt_power(cpu); 5348 power >>= SCHED_POWER_SHIFT; 5349 5350 if (!power) 5351 power = 1; 5352 5353 cpu_rq(cpu)->cpu_power = power; 5354 sdg->sgp->power = power; 5355 } 5356 5357 void update_group_power(struct sched_domain *sd, int cpu) 5358 { 5359 struct sched_domain *child = sd->child; 5360 struct sched_group *group, *sdg = sd->groups; 5361 unsigned long power, power_orig; 5362 unsigned long interval; 5363 5364 interval = msecs_to_jiffies(sd->balance_interval); 5365 interval = clamp(interval, 1UL, max_load_balance_interval); 5366 sdg->sgp->next_update = jiffies + interval; 5367 5368 if (!child) { 5369 update_cpu_power(sd, cpu); 5370 return; 5371 } 5372 5373 power_orig = power = 0; 5374 5375 if (child->flags & SD_OVERLAP) { 5376 /* 5377 * SD_OVERLAP domains cannot assume that child groups 5378 * span the current group. 5379 */ 5380 5381 for_each_cpu(cpu, sched_group_cpus(sdg)) { 5382 struct sched_group_power *sgp; 5383 struct rq *rq = cpu_rq(cpu); 5384 5385 /* 5386 * build_sched_domains() -> init_sched_groups_power() 5387 * gets here before we've attached the domains to the 5388 * runqueues. 5389 * 5390 * Use power_of(), which is set irrespective of domains 5391 * in update_cpu_power(). 5392 * 5393 * This avoids power/power_orig from being 0 and 5394 * causing divide-by-zero issues on boot. 5395 * 5396 * Runtime updates will correct power_orig. 5397 */ 5398 if (unlikely(!rq->sd)) { 5399 power_orig += power_of(cpu); 5400 power += power_of(cpu); 5401 continue; 5402 } 5403 5404 sgp = rq->sd->groups->sgp; 5405 power_orig += sgp->power_orig; 5406 power += sgp->power; 5407 } 5408 } else { 5409 /* 5410 * !SD_OVERLAP domains can assume that child groups 5411 * span the current group. 5412 */ 5413 5414 group = child->groups; 5415 do { 5416 power_orig += group->sgp->power_orig; 5417 power += group->sgp->power; 5418 group = group->next; 5419 } while (group != child->groups); 5420 } 5421 5422 sdg->sgp->power_orig = power_orig; 5423 sdg->sgp->power = power; 5424 } 5425 5426 /* 5427 * Try and fix up capacity for tiny siblings, this is needed when 5428 * things like SD_ASYM_PACKING need f_b_g to select another sibling 5429 * which on its own isn't powerful enough. 5430 * 5431 * See update_sd_pick_busiest() and check_asym_packing(). 5432 */ 5433 static inline int 5434 fix_small_capacity(struct sched_domain *sd, struct sched_group *group) 5435 { 5436 /* 5437 * Only siblings can have significantly less than SCHED_POWER_SCALE 5438 */ 5439 if (!(sd->flags & SD_SHARE_CPUPOWER)) 5440 return 0; 5441 5442 /* 5443 * If ~90% of the cpu_power is still there, we're good. 5444 */ 5445 if (group->sgp->power * 32 > group->sgp->power_orig * 29) 5446 return 1; 5447 5448 return 0; 5449 } 5450 5451 /* 5452 * Group imbalance indicates (and tries to solve) the problem where balancing 5453 * groups is inadequate due to tsk_cpus_allowed() constraints. 5454 * 5455 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 5456 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 5457 * Something like: 5458 * 5459 * { 0 1 2 3 } { 4 5 6 7 } 5460 * * * * * 5461 * 5462 * If we were to balance group-wise we'd place two tasks in the first group and 5463 * two tasks in the second group. Clearly this is undesired as it will overload 5464 * cpu 3 and leave one of the cpus in the second group unused. 5465 * 5466 * The current solution to this issue is detecting the skew in the first group 5467 * by noticing the lower domain failed to reach balance and had difficulty 5468 * moving tasks due to affinity constraints. 5469 * 5470 * When this is so detected; this group becomes a candidate for busiest; see 5471 * update_sd_pick_busiest(). And calculate_imbalance() and 5472 * find_busiest_group() avoid some of the usual balance conditions to allow it 5473 * to create an effective group imbalance. 5474 * 5475 * This is a somewhat tricky proposition since the next run might not find the 5476 * group imbalance and decide the groups need to be balanced again. A most 5477 * subtle and fragile situation. 5478 */ 5479 5480 static inline int sg_imbalanced(struct sched_group *group) 5481 { 5482 return group->sgp->imbalance; 5483 } 5484 5485 /* 5486 * Compute the group capacity. 5487 * 5488 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by 5489 * first dividing out the smt factor and computing the actual number of cores 5490 * and limit power unit capacity with that. 5491 */ 5492 static inline int sg_capacity(struct lb_env *env, struct sched_group *group) 5493 { 5494 unsigned int capacity, smt, cpus; 5495 unsigned int power, power_orig; 5496 5497 power = group->sgp->power; 5498 power_orig = group->sgp->power_orig; 5499 cpus = group->group_weight; 5500 5501 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */ 5502 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig); 5503 capacity = cpus / smt; /* cores */ 5504 5505 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE)); 5506 if (!capacity) 5507 capacity = fix_small_capacity(env->sd, group); 5508 5509 return capacity; 5510 } 5511 5512 /** 5513 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 5514 * @env: The load balancing environment. 5515 * @group: sched_group whose statistics are to be updated. 5516 * @load_idx: Load index of sched_domain of this_cpu for load calc. 5517 * @local_group: Does group contain this_cpu. 5518 * @sgs: variable to hold the statistics for this group. 5519 */ 5520 static inline void update_sg_lb_stats(struct lb_env *env, 5521 struct sched_group *group, int load_idx, 5522 int local_group, struct sg_lb_stats *sgs) 5523 { 5524 unsigned long nr_running; 5525 unsigned long load; 5526 int i; 5527 5528 memset(sgs, 0, sizeof(*sgs)); 5529 5530 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 5531 struct rq *rq = cpu_rq(i); 5532 5533 nr_running = rq->nr_running; 5534 5535 /* Bias balancing toward cpus of our domain */ 5536 if (local_group) 5537 load = target_load(i, load_idx); 5538 else 5539 load = source_load(i, load_idx); 5540 5541 sgs->group_load += load; 5542 sgs->sum_nr_running += nr_running; 5543 #ifdef CONFIG_NUMA_BALANCING 5544 sgs->nr_numa_running += rq->nr_numa_running; 5545 sgs->nr_preferred_running += rq->nr_preferred_running; 5546 #endif 5547 sgs->sum_weighted_load += weighted_cpuload(i); 5548 if (idle_cpu(i)) 5549 sgs->idle_cpus++; 5550 } 5551 5552 /* Adjust by relative CPU power of the group */ 5553 sgs->group_power = group->sgp->power; 5554 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power; 5555 5556 if (sgs->sum_nr_running) 5557 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 5558 5559 sgs->group_weight = group->group_weight; 5560 5561 sgs->group_imb = sg_imbalanced(group); 5562 sgs->group_capacity = sg_capacity(env, group); 5563 5564 if (sgs->group_capacity > sgs->sum_nr_running) 5565 sgs->group_has_capacity = 1; 5566 } 5567 5568 /** 5569 * update_sd_pick_busiest - return 1 on busiest group 5570 * @env: The load balancing environment. 5571 * @sds: sched_domain statistics 5572 * @sg: sched_group candidate to be checked for being the busiest 5573 * @sgs: sched_group statistics 5574 * 5575 * Determine if @sg is a busier group than the previously selected 5576 * busiest group. 5577 * 5578 * Return: %true if @sg is a busier group than the previously selected 5579 * busiest group. %false otherwise. 5580 */ 5581 static bool update_sd_pick_busiest(struct lb_env *env, 5582 struct sd_lb_stats *sds, 5583 struct sched_group *sg, 5584 struct sg_lb_stats *sgs) 5585 { 5586 if (sgs->avg_load <= sds->busiest_stat.avg_load) 5587 return false; 5588 5589 if (sgs->sum_nr_running > sgs->group_capacity) 5590 return true; 5591 5592 if (sgs->group_imb) 5593 return true; 5594 5595 /* 5596 * ASYM_PACKING needs to move all the work to the lowest 5597 * numbered CPUs in the group, therefore mark all groups 5598 * higher than ourself as busy. 5599 */ 5600 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running && 5601 env->dst_cpu < group_first_cpu(sg)) { 5602 if (!sds->busiest) 5603 return true; 5604 5605 if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) 5606 return true; 5607 } 5608 5609 return false; 5610 } 5611 5612 #ifdef CONFIG_NUMA_BALANCING 5613 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 5614 { 5615 if (sgs->sum_nr_running > sgs->nr_numa_running) 5616 return regular; 5617 if (sgs->sum_nr_running > sgs->nr_preferred_running) 5618 return remote; 5619 return all; 5620 } 5621 5622 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 5623 { 5624 if (rq->nr_running > rq->nr_numa_running) 5625 return regular; 5626 if (rq->nr_running > rq->nr_preferred_running) 5627 return remote; 5628 return all; 5629 } 5630 #else 5631 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 5632 { 5633 return all; 5634 } 5635 5636 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 5637 { 5638 return regular; 5639 } 5640 #endif /* CONFIG_NUMA_BALANCING */ 5641 5642 /** 5643 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 5644 * @env: The load balancing environment. 5645 * @sds: variable to hold the statistics for this sched_domain. 5646 */ 5647 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 5648 { 5649 struct sched_domain *child = env->sd->child; 5650 struct sched_group *sg = env->sd->groups; 5651 struct sg_lb_stats tmp_sgs; 5652 int load_idx, prefer_sibling = 0; 5653 5654 if (child && child->flags & SD_PREFER_SIBLING) 5655 prefer_sibling = 1; 5656 5657 load_idx = get_sd_load_idx(env->sd, env->idle); 5658 5659 do { 5660 struct sg_lb_stats *sgs = &tmp_sgs; 5661 int local_group; 5662 5663 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 5664 if (local_group) { 5665 sds->local = sg; 5666 sgs = &sds->local_stat; 5667 5668 if (env->idle != CPU_NEWLY_IDLE || 5669 time_after_eq(jiffies, sg->sgp->next_update)) 5670 update_group_power(env->sd, env->dst_cpu); 5671 } 5672 5673 update_sg_lb_stats(env, sg, load_idx, local_group, sgs); 5674 5675 if (local_group) 5676 goto next_group; 5677 5678 /* 5679 * In case the child domain prefers tasks go to siblings 5680 * first, lower the sg capacity to one so that we'll try 5681 * and move all the excess tasks away. We lower the capacity 5682 * of a group only if the local group has the capacity to fit 5683 * these excess tasks, i.e. nr_running < group_capacity. The 5684 * extra check prevents the case where you always pull from the 5685 * heaviest group when it is already under-utilized (possible 5686 * with a large weight task outweighs the tasks on the system). 5687 */ 5688 if (prefer_sibling && sds->local && 5689 sds->local_stat.group_has_capacity) 5690 sgs->group_capacity = min(sgs->group_capacity, 1U); 5691 5692 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 5693 sds->busiest = sg; 5694 sds->busiest_stat = *sgs; 5695 } 5696 5697 next_group: 5698 /* Now, start updating sd_lb_stats */ 5699 sds->total_load += sgs->group_load; 5700 sds->total_pwr += sgs->group_power; 5701 5702 sg = sg->next; 5703 } while (sg != env->sd->groups); 5704 5705 if (env->sd->flags & SD_NUMA) 5706 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 5707 } 5708 5709 /** 5710 * check_asym_packing - Check to see if the group is packed into the 5711 * sched doman. 5712 * 5713 * This is primarily intended to used at the sibling level. Some 5714 * cores like POWER7 prefer to use lower numbered SMT threads. In the 5715 * case of POWER7, it can move to lower SMT modes only when higher 5716 * threads are idle. When in lower SMT modes, the threads will 5717 * perform better since they share less core resources. Hence when we 5718 * have idle threads, we want them to be the higher ones. 5719 * 5720 * This packing function is run on idle threads. It checks to see if 5721 * the busiest CPU in this domain (core in the P7 case) has a higher 5722 * CPU number than the packing function is being run on. Here we are 5723 * assuming lower CPU number will be equivalent to lower a SMT thread 5724 * number. 5725 * 5726 * Return: 1 when packing is required and a task should be moved to 5727 * this CPU. The amount of the imbalance is returned in *imbalance. 5728 * 5729 * @env: The load balancing environment. 5730 * @sds: Statistics of the sched_domain which is to be packed 5731 */ 5732 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 5733 { 5734 int busiest_cpu; 5735 5736 if (!(env->sd->flags & SD_ASYM_PACKING)) 5737 return 0; 5738 5739 if (!sds->busiest) 5740 return 0; 5741 5742 busiest_cpu = group_first_cpu(sds->busiest); 5743 if (env->dst_cpu > busiest_cpu) 5744 return 0; 5745 5746 env->imbalance = DIV_ROUND_CLOSEST( 5747 sds->busiest_stat.avg_load * sds->busiest_stat.group_power, 5748 SCHED_POWER_SCALE); 5749 5750 return 1; 5751 } 5752 5753 /** 5754 * fix_small_imbalance - Calculate the minor imbalance that exists 5755 * amongst the groups of a sched_domain, during 5756 * load balancing. 5757 * @env: The load balancing environment. 5758 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 5759 */ 5760 static inline 5761 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 5762 { 5763 unsigned long tmp, pwr_now = 0, pwr_move = 0; 5764 unsigned int imbn = 2; 5765 unsigned long scaled_busy_load_per_task; 5766 struct sg_lb_stats *local, *busiest; 5767 5768 local = &sds->local_stat; 5769 busiest = &sds->busiest_stat; 5770 5771 if (!local->sum_nr_running) 5772 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 5773 else if (busiest->load_per_task > local->load_per_task) 5774 imbn = 1; 5775 5776 scaled_busy_load_per_task = 5777 (busiest->load_per_task * SCHED_POWER_SCALE) / 5778 busiest->group_power; 5779 5780 if (busiest->avg_load + scaled_busy_load_per_task >= 5781 local->avg_load + (scaled_busy_load_per_task * imbn)) { 5782 env->imbalance = busiest->load_per_task; 5783 return; 5784 } 5785 5786 /* 5787 * OK, we don't have enough imbalance to justify moving tasks, 5788 * however we may be able to increase total CPU power used by 5789 * moving them. 5790 */ 5791 5792 pwr_now += busiest->group_power * 5793 min(busiest->load_per_task, busiest->avg_load); 5794 pwr_now += local->group_power * 5795 min(local->load_per_task, local->avg_load); 5796 pwr_now /= SCHED_POWER_SCALE; 5797 5798 /* Amount of load we'd subtract */ 5799 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) / 5800 busiest->group_power; 5801 if (busiest->avg_load > tmp) { 5802 pwr_move += busiest->group_power * 5803 min(busiest->load_per_task, 5804 busiest->avg_load - tmp); 5805 } 5806 5807 /* Amount of load we'd add */ 5808 if (busiest->avg_load * busiest->group_power < 5809 busiest->load_per_task * SCHED_POWER_SCALE) { 5810 tmp = (busiest->avg_load * busiest->group_power) / 5811 local->group_power; 5812 } else { 5813 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) / 5814 local->group_power; 5815 } 5816 pwr_move += local->group_power * 5817 min(local->load_per_task, local->avg_load + tmp); 5818 pwr_move /= SCHED_POWER_SCALE; 5819 5820 /* Move if we gain throughput */ 5821 if (pwr_move > pwr_now) 5822 env->imbalance = busiest->load_per_task; 5823 } 5824 5825 /** 5826 * calculate_imbalance - Calculate the amount of imbalance present within the 5827 * groups of a given sched_domain during load balance. 5828 * @env: load balance environment 5829 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 5830 */ 5831 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 5832 { 5833 unsigned long max_pull, load_above_capacity = ~0UL; 5834 struct sg_lb_stats *local, *busiest; 5835 5836 local = &sds->local_stat; 5837 busiest = &sds->busiest_stat; 5838 5839 if (busiest->group_imb) { 5840 /* 5841 * In the group_imb case we cannot rely on group-wide averages 5842 * to ensure cpu-load equilibrium, look at wider averages. XXX 5843 */ 5844 busiest->load_per_task = 5845 min(busiest->load_per_task, sds->avg_load); 5846 } 5847 5848 /* 5849 * In the presence of smp nice balancing, certain scenarios can have 5850 * max load less than avg load(as we skip the groups at or below 5851 * its cpu_power, while calculating max_load..) 5852 */ 5853 if (busiest->avg_load <= sds->avg_load || 5854 local->avg_load >= sds->avg_load) { 5855 env->imbalance = 0; 5856 return fix_small_imbalance(env, sds); 5857 } 5858 5859 if (!busiest->group_imb) { 5860 /* 5861 * Don't want to pull so many tasks that a group would go idle. 5862 * Except of course for the group_imb case, since then we might 5863 * have to drop below capacity to reach cpu-load equilibrium. 5864 */ 5865 load_above_capacity = 5866 (busiest->sum_nr_running - busiest->group_capacity); 5867 5868 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE); 5869 load_above_capacity /= busiest->group_power; 5870 } 5871 5872 /* 5873 * We're trying to get all the cpus to the average_load, so we don't 5874 * want to push ourselves above the average load, nor do we wish to 5875 * reduce the max loaded cpu below the average load. At the same time, 5876 * we also don't want to reduce the group load below the group capacity 5877 * (so that we can implement power-savings policies etc). Thus we look 5878 * for the minimum possible imbalance. 5879 */ 5880 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 5881 5882 /* How much load to actually move to equalise the imbalance */ 5883 env->imbalance = min( 5884 max_pull * busiest->group_power, 5885 (sds->avg_load - local->avg_load) * local->group_power 5886 ) / SCHED_POWER_SCALE; 5887 5888 /* 5889 * if *imbalance is less than the average load per runnable task 5890 * there is no guarantee that any tasks will be moved so we'll have 5891 * a think about bumping its value to force at least one task to be 5892 * moved 5893 */ 5894 if (env->imbalance < busiest->load_per_task) 5895 return fix_small_imbalance(env, sds); 5896 } 5897 5898 /******* find_busiest_group() helpers end here *********************/ 5899 5900 /** 5901 * find_busiest_group - Returns the busiest group within the sched_domain 5902 * if there is an imbalance. If there isn't an imbalance, and 5903 * the user has opted for power-savings, it returns a group whose 5904 * CPUs can be put to idle by rebalancing those tasks elsewhere, if 5905 * such a group exists. 5906 * 5907 * Also calculates the amount of weighted load which should be moved 5908 * to restore balance. 5909 * 5910 * @env: The load balancing environment. 5911 * 5912 * Return: - The busiest group if imbalance exists. 5913 * - If no imbalance and user has opted for power-savings balance, 5914 * return the least loaded group whose CPUs can be 5915 * put to idle by rebalancing its tasks onto our group. 5916 */ 5917 static struct sched_group *find_busiest_group(struct lb_env *env) 5918 { 5919 struct sg_lb_stats *local, *busiest; 5920 struct sd_lb_stats sds; 5921 5922 init_sd_lb_stats(&sds); 5923 5924 /* 5925 * Compute the various statistics relavent for load balancing at 5926 * this level. 5927 */ 5928 update_sd_lb_stats(env, &sds); 5929 local = &sds.local_stat; 5930 busiest = &sds.busiest_stat; 5931 5932 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) && 5933 check_asym_packing(env, &sds)) 5934 return sds.busiest; 5935 5936 /* There is no busy sibling group to pull tasks from */ 5937 if (!sds.busiest || busiest->sum_nr_running == 0) 5938 goto out_balanced; 5939 5940 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr; 5941 5942 /* 5943 * If the busiest group is imbalanced the below checks don't 5944 * work because they assume all things are equal, which typically 5945 * isn't true due to cpus_allowed constraints and the like. 5946 */ 5947 if (busiest->group_imb) 5948 goto force_balance; 5949 5950 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 5951 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity && 5952 !busiest->group_has_capacity) 5953 goto force_balance; 5954 5955 /* 5956 * If the local group is more busy than the selected busiest group 5957 * don't try and pull any tasks. 5958 */ 5959 if (local->avg_load >= busiest->avg_load) 5960 goto out_balanced; 5961 5962 /* 5963 * Don't pull any tasks if this group is already above the domain 5964 * average load. 5965 */ 5966 if (local->avg_load >= sds.avg_load) 5967 goto out_balanced; 5968 5969 if (env->idle == CPU_IDLE) { 5970 /* 5971 * This cpu is idle. If the busiest group load doesn't 5972 * have more tasks than the number of available cpu's and 5973 * there is no imbalance between this and busiest group 5974 * wrt to idle cpu's, it is balanced. 5975 */ 5976 if ((local->idle_cpus < busiest->idle_cpus) && 5977 busiest->sum_nr_running <= busiest->group_weight) 5978 goto out_balanced; 5979 } else { 5980 /* 5981 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 5982 * imbalance_pct to be conservative. 5983 */ 5984 if (100 * busiest->avg_load <= 5985 env->sd->imbalance_pct * local->avg_load) 5986 goto out_balanced; 5987 } 5988 5989 force_balance: 5990 /* Looks like there is an imbalance. Compute it */ 5991 calculate_imbalance(env, &sds); 5992 return sds.busiest; 5993 5994 out_balanced: 5995 env->imbalance = 0; 5996 return NULL; 5997 } 5998 5999 /* 6000 * find_busiest_queue - find the busiest runqueue among the cpus in group. 6001 */ 6002 static struct rq *find_busiest_queue(struct lb_env *env, 6003 struct sched_group *group) 6004 { 6005 struct rq *busiest = NULL, *rq; 6006 unsigned long busiest_load = 0, busiest_power = 1; 6007 int i; 6008 6009 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 6010 unsigned long power, capacity, wl; 6011 enum fbq_type rt; 6012 6013 rq = cpu_rq(i); 6014 rt = fbq_classify_rq(rq); 6015 6016 /* 6017 * We classify groups/runqueues into three groups: 6018 * - regular: there are !numa tasks 6019 * - remote: there are numa tasks that run on the 'wrong' node 6020 * - all: there is no distinction 6021 * 6022 * In order to avoid migrating ideally placed numa tasks, 6023 * ignore those when there's better options. 6024 * 6025 * If we ignore the actual busiest queue to migrate another 6026 * task, the next balance pass can still reduce the busiest 6027 * queue by moving tasks around inside the node. 6028 * 6029 * If we cannot move enough load due to this classification 6030 * the next pass will adjust the group classification and 6031 * allow migration of more tasks. 6032 * 6033 * Both cases only affect the total convergence complexity. 6034 */ 6035 if (rt > env->fbq_type) 6036 continue; 6037 6038 power = power_of(i); 6039 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE); 6040 if (!capacity) 6041 capacity = fix_small_capacity(env->sd, group); 6042 6043 wl = weighted_cpuload(i); 6044 6045 /* 6046 * When comparing with imbalance, use weighted_cpuload() 6047 * which is not scaled with the cpu power. 6048 */ 6049 if (capacity && rq->nr_running == 1 && wl > env->imbalance) 6050 continue; 6051 6052 /* 6053 * For the load comparisons with the other cpu's, consider 6054 * the weighted_cpuload() scaled with the cpu power, so that 6055 * the load can be moved away from the cpu that is potentially 6056 * running at a lower capacity. 6057 * 6058 * Thus we're looking for max(wl_i / power_i), crosswise 6059 * multiplication to rid ourselves of the division works out 6060 * to: wl_i * power_j > wl_j * power_i; where j is our 6061 * previous maximum. 6062 */ 6063 if (wl * busiest_power > busiest_load * power) { 6064 busiest_load = wl; 6065 busiest_power = power; 6066 busiest = rq; 6067 } 6068 } 6069 6070 return busiest; 6071 } 6072 6073 /* 6074 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 6075 * so long as it is large enough. 6076 */ 6077 #define MAX_PINNED_INTERVAL 512 6078 6079 /* Working cpumask for load_balance and load_balance_newidle. */ 6080 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6081 6082 static int need_active_balance(struct lb_env *env) 6083 { 6084 struct sched_domain *sd = env->sd; 6085 6086 if (env->idle == CPU_NEWLY_IDLE) { 6087 6088 /* 6089 * ASYM_PACKING needs to force migrate tasks from busy but 6090 * higher numbered CPUs in order to pack all tasks in the 6091 * lowest numbered CPUs. 6092 */ 6093 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) 6094 return 1; 6095 } 6096 6097 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 6098 } 6099 6100 static int active_load_balance_cpu_stop(void *data); 6101 6102 static int should_we_balance(struct lb_env *env) 6103 { 6104 struct sched_group *sg = env->sd->groups; 6105 struct cpumask *sg_cpus, *sg_mask; 6106 int cpu, balance_cpu = -1; 6107 6108 /* 6109 * In the newly idle case, we will allow all the cpu's 6110 * to do the newly idle load balance. 6111 */ 6112 if (env->idle == CPU_NEWLY_IDLE) 6113 return 1; 6114 6115 sg_cpus = sched_group_cpus(sg); 6116 sg_mask = sched_group_mask(sg); 6117 /* Try to find first idle cpu */ 6118 for_each_cpu_and(cpu, sg_cpus, env->cpus) { 6119 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) 6120 continue; 6121 6122 balance_cpu = cpu; 6123 break; 6124 } 6125 6126 if (balance_cpu == -1) 6127 balance_cpu = group_balance_cpu(sg); 6128 6129 /* 6130 * First idle cpu or the first cpu(busiest) in this sched group 6131 * is eligible for doing load balancing at this and above domains. 6132 */ 6133 return balance_cpu == env->dst_cpu; 6134 } 6135 6136 /* 6137 * Check this_cpu to ensure it is balanced within domain. Attempt to move 6138 * tasks if there is an imbalance. 6139 */ 6140 static int load_balance(int this_cpu, struct rq *this_rq, 6141 struct sched_domain *sd, enum cpu_idle_type idle, 6142 int *continue_balancing) 6143 { 6144 int ld_moved, cur_ld_moved, active_balance = 0; 6145 struct sched_domain *sd_parent = sd->parent; 6146 struct sched_group *group; 6147 struct rq *busiest; 6148 unsigned long flags; 6149 struct cpumask *cpus = __get_cpu_var(load_balance_mask); 6150 6151 struct lb_env env = { 6152 .sd = sd, 6153 .dst_cpu = this_cpu, 6154 .dst_rq = this_rq, 6155 .dst_grpmask = sched_group_cpus(sd->groups), 6156 .idle = idle, 6157 .loop_break = sched_nr_migrate_break, 6158 .cpus = cpus, 6159 .fbq_type = all, 6160 }; 6161 6162 /* 6163 * For NEWLY_IDLE load_balancing, we don't need to consider 6164 * other cpus in our group 6165 */ 6166 if (idle == CPU_NEWLY_IDLE) 6167 env.dst_grpmask = NULL; 6168 6169 cpumask_copy(cpus, cpu_active_mask); 6170 6171 schedstat_inc(sd, lb_count[idle]); 6172 6173 redo: 6174 if (!should_we_balance(&env)) { 6175 *continue_balancing = 0; 6176 goto out_balanced; 6177 } 6178 6179 group = find_busiest_group(&env); 6180 if (!group) { 6181 schedstat_inc(sd, lb_nobusyg[idle]); 6182 goto out_balanced; 6183 } 6184 6185 busiest = find_busiest_queue(&env, group); 6186 if (!busiest) { 6187 schedstat_inc(sd, lb_nobusyq[idle]); 6188 goto out_balanced; 6189 } 6190 6191 BUG_ON(busiest == env.dst_rq); 6192 6193 schedstat_add(sd, lb_imbalance[idle], env.imbalance); 6194 6195 ld_moved = 0; 6196 if (busiest->nr_running > 1) { 6197 /* 6198 * Attempt to move tasks. If find_busiest_group has found 6199 * an imbalance but busiest->nr_running <= 1, the group is 6200 * still unbalanced. ld_moved simply stays zero, so it is 6201 * correctly treated as an imbalance. 6202 */ 6203 env.flags |= LBF_ALL_PINNED; 6204 env.src_cpu = busiest->cpu; 6205 env.src_rq = busiest; 6206 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 6207 6208 more_balance: 6209 local_irq_save(flags); 6210 double_rq_lock(env.dst_rq, busiest); 6211 6212 /* 6213 * cur_ld_moved - load moved in current iteration 6214 * ld_moved - cumulative load moved across iterations 6215 */ 6216 cur_ld_moved = move_tasks(&env); 6217 ld_moved += cur_ld_moved; 6218 double_rq_unlock(env.dst_rq, busiest); 6219 local_irq_restore(flags); 6220 6221 /* 6222 * some other cpu did the load balance for us. 6223 */ 6224 if (cur_ld_moved && env.dst_cpu != smp_processor_id()) 6225 resched_cpu(env.dst_cpu); 6226 6227 if (env.flags & LBF_NEED_BREAK) { 6228 env.flags &= ~LBF_NEED_BREAK; 6229 goto more_balance; 6230 } 6231 6232 /* 6233 * Revisit (affine) tasks on src_cpu that couldn't be moved to 6234 * us and move them to an alternate dst_cpu in our sched_group 6235 * where they can run. The upper limit on how many times we 6236 * iterate on same src_cpu is dependent on number of cpus in our 6237 * sched_group. 6238 * 6239 * This changes load balance semantics a bit on who can move 6240 * load to a given_cpu. In addition to the given_cpu itself 6241 * (or a ilb_cpu acting on its behalf where given_cpu is 6242 * nohz-idle), we now have balance_cpu in a position to move 6243 * load to given_cpu. In rare situations, this may cause 6244 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 6245 * _independently_ and at _same_ time to move some load to 6246 * given_cpu) causing exceess load to be moved to given_cpu. 6247 * This however should not happen so much in practice and 6248 * moreover subsequent load balance cycles should correct the 6249 * excess load moved. 6250 */ 6251 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 6252 6253 /* Prevent to re-select dst_cpu via env's cpus */ 6254 cpumask_clear_cpu(env.dst_cpu, env.cpus); 6255 6256 env.dst_rq = cpu_rq(env.new_dst_cpu); 6257 env.dst_cpu = env.new_dst_cpu; 6258 env.flags &= ~LBF_DST_PINNED; 6259 env.loop = 0; 6260 env.loop_break = sched_nr_migrate_break; 6261 6262 /* 6263 * Go back to "more_balance" rather than "redo" since we 6264 * need to continue with same src_cpu. 6265 */ 6266 goto more_balance; 6267 } 6268 6269 /* 6270 * We failed to reach balance because of affinity. 6271 */ 6272 if (sd_parent) { 6273 int *group_imbalance = &sd_parent->groups->sgp->imbalance; 6274 6275 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) { 6276 *group_imbalance = 1; 6277 } else if (*group_imbalance) 6278 *group_imbalance = 0; 6279 } 6280 6281 /* All tasks on this runqueue were pinned by CPU affinity */ 6282 if (unlikely(env.flags & LBF_ALL_PINNED)) { 6283 cpumask_clear_cpu(cpu_of(busiest), cpus); 6284 if (!cpumask_empty(cpus)) { 6285 env.loop = 0; 6286 env.loop_break = sched_nr_migrate_break; 6287 goto redo; 6288 } 6289 goto out_balanced; 6290 } 6291 } 6292 6293 if (!ld_moved) { 6294 schedstat_inc(sd, lb_failed[idle]); 6295 /* 6296 * Increment the failure counter only on periodic balance. 6297 * We do not want newidle balance, which can be very 6298 * frequent, pollute the failure counter causing 6299 * excessive cache_hot migrations and active balances. 6300 */ 6301 if (idle != CPU_NEWLY_IDLE) 6302 sd->nr_balance_failed++; 6303 6304 if (need_active_balance(&env)) { 6305 raw_spin_lock_irqsave(&busiest->lock, flags); 6306 6307 /* don't kick the active_load_balance_cpu_stop, 6308 * if the curr task on busiest cpu can't be 6309 * moved to this_cpu 6310 */ 6311 if (!cpumask_test_cpu(this_cpu, 6312 tsk_cpus_allowed(busiest->curr))) { 6313 raw_spin_unlock_irqrestore(&busiest->lock, 6314 flags); 6315 env.flags |= LBF_ALL_PINNED; 6316 goto out_one_pinned; 6317 } 6318 6319 /* 6320 * ->active_balance synchronizes accesses to 6321 * ->active_balance_work. Once set, it's cleared 6322 * only after active load balance is finished. 6323 */ 6324 if (!busiest->active_balance) { 6325 busiest->active_balance = 1; 6326 busiest->push_cpu = this_cpu; 6327 active_balance = 1; 6328 } 6329 raw_spin_unlock_irqrestore(&busiest->lock, flags); 6330 6331 if (active_balance) { 6332 stop_one_cpu_nowait(cpu_of(busiest), 6333 active_load_balance_cpu_stop, busiest, 6334 &busiest->active_balance_work); 6335 } 6336 6337 /* 6338 * We've kicked active balancing, reset the failure 6339 * counter. 6340 */ 6341 sd->nr_balance_failed = sd->cache_nice_tries+1; 6342 } 6343 } else 6344 sd->nr_balance_failed = 0; 6345 6346 if (likely(!active_balance)) { 6347 /* We were unbalanced, so reset the balancing interval */ 6348 sd->balance_interval = sd->min_interval; 6349 } else { 6350 /* 6351 * If we've begun active balancing, start to back off. This 6352 * case may not be covered by the all_pinned logic if there 6353 * is only 1 task on the busy runqueue (because we don't call 6354 * move_tasks). 6355 */ 6356 if (sd->balance_interval < sd->max_interval) 6357 sd->balance_interval *= 2; 6358 } 6359 6360 goto out; 6361 6362 out_balanced: 6363 schedstat_inc(sd, lb_balanced[idle]); 6364 6365 sd->nr_balance_failed = 0; 6366 6367 out_one_pinned: 6368 /* tune up the balancing interval */ 6369 if (((env.flags & LBF_ALL_PINNED) && 6370 sd->balance_interval < MAX_PINNED_INTERVAL) || 6371 (sd->balance_interval < sd->max_interval)) 6372 sd->balance_interval *= 2; 6373 6374 ld_moved = 0; 6375 out: 6376 return ld_moved; 6377 } 6378 6379 /* 6380 * idle_balance is called by schedule() if this_cpu is about to become 6381 * idle. Attempts to pull tasks from other CPUs. 6382 */ 6383 void idle_balance(int this_cpu, struct rq *this_rq) 6384 { 6385 struct sched_domain *sd; 6386 int pulled_task = 0; 6387 unsigned long next_balance = jiffies + HZ; 6388 u64 curr_cost = 0; 6389 6390 this_rq->idle_stamp = rq_clock(this_rq); 6391 6392 if (this_rq->avg_idle < sysctl_sched_migration_cost) 6393 return; 6394 6395 /* 6396 * Drop the rq->lock, but keep IRQ/preempt disabled. 6397 */ 6398 raw_spin_unlock(&this_rq->lock); 6399 6400 update_blocked_averages(this_cpu); 6401 rcu_read_lock(); 6402 for_each_domain(this_cpu, sd) { 6403 unsigned long interval; 6404 int continue_balancing = 1; 6405 u64 t0, domain_cost; 6406 6407 if (!(sd->flags & SD_LOAD_BALANCE)) 6408 continue; 6409 6410 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 6411 break; 6412 6413 if (sd->flags & SD_BALANCE_NEWIDLE) { 6414 t0 = sched_clock_cpu(this_cpu); 6415 6416 /* If we've pulled tasks over stop searching: */ 6417 pulled_task = load_balance(this_cpu, this_rq, 6418 sd, CPU_NEWLY_IDLE, 6419 &continue_balancing); 6420 6421 domain_cost = sched_clock_cpu(this_cpu) - t0; 6422 if (domain_cost > sd->max_newidle_lb_cost) 6423 sd->max_newidle_lb_cost = domain_cost; 6424 6425 curr_cost += domain_cost; 6426 } 6427 6428 interval = msecs_to_jiffies(sd->balance_interval); 6429 if (time_after(next_balance, sd->last_balance + interval)) 6430 next_balance = sd->last_balance + interval; 6431 if (pulled_task) { 6432 this_rq->idle_stamp = 0; 6433 break; 6434 } 6435 } 6436 rcu_read_unlock(); 6437 6438 raw_spin_lock(&this_rq->lock); 6439 6440 if (pulled_task || time_after(jiffies, this_rq->next_balance)) { 6441 /* 6442 * We are going idle. next_balance may be set based on 6443 * a busy processor. So reset next_balance. 6444 */ 6445 this_rq->next_balance = next_balance; 6446 } 6447 6448 if (curr_cost > this_rq->max_idle_balance_cost) 6449 this_rq->max_idle_balance_cost = curr_cost; 6450 } 6451 6452 /* 6453 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 6454 * running tasks off the busiest CPU onto idle CPUs. It requires at 6455 * least 1 task to be running on each physical CPU where possible, and 6456 * avoids physical / logical imbalances. 6457 */ 6458 static int active_load_balance_cpu_stop(void *data) 6459 { 6460 struct rq *busiest_rq = data; 6461 int busiest_cpu = cpu_of(busiest_rq); 6462 int target_cpu = busiest_rq->push_cpu; 6463 struct rq *target_rq = cpu_rq(target_cpu); 6464 struct sched_domain *sd; 6465 6466 raw_spin_lock_irq(&busiest_rq->lock); 6467 6468 /* make sure the requested cpu hasn't gone down in the meantime */ 6469 if (unlikely(busiest_cpu != smp_processor_id() || 6470 !busiest_rq->active_balance)) 6471 goto out_unlock; 6472 6473 /* Is there any task to move? */ 6474 if (busiest_rq->nr_running <= 1) 6475 goto out_unlock; 6476 6477 /* 6478 * This condition is "impossible", if it occurs 6479 * we need to fix it. Originally reported by 6480 * Bjorn Helgaas on a 128-cpu setup. 6481 */ 6482 BUG_ON(busiest_rq == target_rq); 6483 6484 /* move a task from busiest_rq to target_rq */ 6485 double_lock_balance(busiest_rq, target_rq); 6486 6487 /* Search for an sd spanning us and the target CPU. */ 6488 rcu_read_lock(); 6489 for_each_domain(target_cpu, sd) { 6490 if ((sd->flags & SD_LOAD_BALANCE) && 6491 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 6492 break; 6493 } 6494 6495 if (likely(sd)) { 6496 struct lb_env env = { 6497 .sd = sd, 6498 .dst_cpu = target_cpu, 6499 .dst_rq = target_rq, 6500 .src_cpu = busiest_rq->cpu, 6501 .src_rq = busiest_rq, 6502 .idle = CPU_IDLE, 6503 }; 6504 6505 schedstat_inc(sd, alb_count); 6506 6507 if (move_one_task(&env)) 6508 schedstat_inc(sd, alb_pushed); 6509 else 6510 schedstat_inc(sd, alb_failed); 6511 } 6512 rcu_read_unlock(); 6513 double_unlock_balance(busiest_rq, target_rq); 6514 out_unlock: 6515 busiest_rq->active_balance = 0; 6516 raw_spin_unlock_irq(&busiest_rq->lock); 6517 return 0; 6518 } 6519 6520 #ifdef CONFIG_NO_HZ_COMMON 6521 /* 6522 * idle load balancing details 6523 * - When one of the busy CPUs notice that there may be an idle rebalancing 6524 * needed, they will kick the idle load balancer, which then does idle 6525 * load balancing for all the idle CPUs. 6526 */ 6527 static struct { 6528 cpumask_var_t idle_cpus_mask; 6529 atomic_t nr_cpus; 6530 unsigned long next_balance; /* in jiffy units */ 6531 } nohz ____cacheline_aligned; 6532 6533 static inline int find_new_ilb(int call_cpu) 6534 { 6535 int ilb = cpumask_first(nohz.idle_cpus_mask); 6536 6537 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 6538 return ilb; 6539 6540 return nr_cpu_ids; 6541 } 6542 6543 /* 6544 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 6545 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 6546 * CPU (if there is one). 6547 */ 6548 static void nohz_balancer_kick(int cpu) 6549 { 6550 int ilb_cpu; 6551 6552 nohz.next_balance++; 6553 6554 ilb_cpu = find_new_ilb(cpu); 6555 6556 if (ilb_cpu >= nr_cpu_ids) 6557 return; 6558 6559 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 6560 return; 6561 /* 6562 * Use smp_send_reschedule() instead of resched_cpu(). 6563 * This way we generate a sched IPI on the target cpu which 6564 * is idle. And the softirq performing nohz idle load balance 6565 * will be run before returning from the IPI. 6566 */ 6567 smp_send_reschedule(ilb_cpu); 6568 return; 6569 } 6570 6571 static inline void nohz_balance_exit_idle(int cpu) 6572 { 6573 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 6574 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 6575 atomic_dec(&nohz.nr_cpus); 6576 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 6577 } 6578 } 6579 6580 static inline void set_cpu_sd_state_busy(void) 6581 { 6582 struct sched_domain *sd; 6583 int cpu = smp_processor_id(); 6584 6585 rcu_read_lock(); 6586 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 6587 6588 if (!sd || !sd->nohz_idle) 6589 goto unlock; 6590 sd->nohz_idle = 0; 6591 6592 atomic_inc(&sd->groups->sgp->nr_busy_cpus); 6593 unlock: 6594 rcu_read_unlock(); 6595 } 6596 6597 void set_cpu_sd_state_idle(void) 6598 { 6599 struct sched_domain *sd; 6600 int cpu = smp_processor_id(); 6601 6602 rcu_read_lock(); 6603 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 6604 6605 if (!sd || sd->nohz_idle) 6606 goto unlock; 6607 sd->nohz_idle = 1; 6608 6609 atomic_dec(&sd->groups->sgp->nr_busy_cpus); 6610 unlock: 6611 rcu_read_unlock(); 6612 } 6613 6614 /* 6615 * This routine will record that the cpu is going idle with tick stopped. 6616 * This info will be used in performing idle load balancing in the future. 6617 */ 6618 void nohz_balance_enter_idle(int cpu) 6619 { 6620 /* 6621 * If this cpu is going down, then nothing needs to be done. 6622 */ 6623 if (!cpu_active(cpu)) 6624 return; 6625 6626 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 6627 return; 6628 6629 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 6630 atomic_inc(&nohz.nr_cpus); 6631 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 6632 } 6633 6634 static int sched_ilb_notifier(struct notifier_block *nfb, 6635 unsigned long action, void *hcpu) 6636 { 6637 switch (action & ~CPU_TASKS_FROZEN) { 6638 case CPU_DYING: 6639 nohz_balance_exit_idle(smp_processor_id()); 6640 return NOTIFY_OK; 6641 default: 6642 return NOTIFY_DONE; 6643 } 6644 } 6645 #endif 6646 6647 static DEFINE_SPINLOCK(balancing); 6648 6649 /* 6650 * Scale the max load_balance interval with the number of CPUs in the system. 6651 * This trades load-balance latency on larger machines for less cross talk. 6652 */ 6653 void update_max_interval(void) 6654 { 6655 max_load_balance_interval = HZ*num_online_cpus()/10; 6656 } 6657 6658 /* 6659 * It checks each scheduling domain to see if it is due to be balanced, 6660 * and initiates a balancing operation if so. 6661 * 6662 * Balancing parameters are set up in init_sched_domains. 6663 */ 6664 static void rebalance_domains(int cpu, enum cpu_idle_type idle) 6665 { 6666 int continue_balancing = 1; 6667 struct rq *rq = cpu_rq(cpu); 6668 unsigned long interval; 6669 struct sched_domain *sd; 6670 /* Earliest time when we have to do rebalance again */ 6671 unsigned long next_balance = jiffies + 60*HZ; 6672 int update_next_balance = 0; 6673 int need_serialize, need_decay = 0; 6674 u64 max_cost = 0; 6675 6676 update_blocked_averages(cpu); 6677 6678 rcu_read_lock(); 6679 for_each_domain(cpu, sd) { 6680 /* 6681 * Decay the newidle max times here because this is a regular 6682 * visit to all the domains. Decay ~1% per second. 6683 */ 6684 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 6685 sd->max_newidle_lb_cost = 6686 (sd->max_newidle_lb_cost * 253) / 256; 6687 sd->next_decay_max_lb_cost = jiffies + HZ; 6688 need_decay = 1; 6689 } 6690 max_cost += sd->max_newidle_lb_cost; 6691 6692 if (!(sd->flags & SD_LOAD_BALANCE)) 6693 continue; 6694 6695 /* 6696 * Stop the load balance at this level. There is another 6697 * CPU in our sched group which is doing load balancing more 6698 * actively. 6699 */ 6700 if (!continue_balancing) { 6701 if (need_decay) 6702 continue; 6703 break; 6704 } 6705 6706 interval = sd->balance_interval; 6707 if (idle != CPU_IDLE) 6708 interval *= sd->busy_factor; 6709 6710 /* scale ms to jiffies */ 6711 interval = msecs_to_jiffies(interval); 6712 interval = clamp(interval, 1UL, max_load_balance_interval); 6713 6714 need_serialize = sd->flags & SD_SERIALIZE; 6715 6716 if (need_serialize) { 6717 if (!spin_trylock(&balancing)) 6718 goto out; 6719 } 6720 6721 if (time_after_eq(jiffies, sd->last_balance + interval)) { 6722 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 6723 /* 6724 * The LBF_DST_PINNED logic could have changed 6725 * env->dst_cpu, so we can't know our idle 6726 * state even if we migrated tasks. Update it. 6727 */ 6728 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 6729 } 6730 sd->last_balance = jiffies; 6731 } 6732 if (need_serialize) 6733 spin_unlock(&balancing); 6734 out: 6735 if (time_after(next_balance, sd->last_balance + interval)) { 6736 next_balance = sd->last_balance + interval; 6737 update_next_balance = 1; 6738 } 6739 } 6740 if (need_decay) { 6741 /* 6742 * Ensure the rq-wide value also decays but keep it at a 6743 * reasonable floor to avoid funnies with rq->avg_idle. 6744 */ 6745 rq->max_idle_balance_cost = 6746 max((u64)sysctl_sched_migration_cost, max_cost); 6747 } 6748 rcu_read_unlock(); 6749 6750 /* 6751 * next_balance will be updated only when there is a need. 6752 * When the cpu is attached to null domain for ex, it will not be 6753 * updated. 6754 */ 6755 if (likely(update_next_balance)) 6756 rq->next_balance = next_balance; 6757 } 6758 6759 #ifdef CONFIG_NO_HZ_COMMON 6760 /* 6761 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 6762 * rebalancing for all the cpus for whom scheduler ticks are stopped. 6763 */ 6764 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) 6765 { 6766 struct rq *this_rq = cpu_rq(this_cpu); 6767 struct rq *rq; 6768 int balance_cpu; 6769 6770 if (idle != CPU_IDLE || 6771 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 6772 goto end; 6773 6774 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 6775 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 6776 continue; 6777 6778 /* 6779 * If this cpu gets work to do, stop the load balancing 6780 * work being done for other cpus. Next load 6781 * balancing owner will pick it up. 6782 */ 6783 if (need_resched()) 6784 break; 6785 6786 rq = cpu_rq(balance_cpu); 6787 6788 raw_spin_lock_irq(&rq->lock); 6789 update_rq_clock(rq); 6790 update_idle_cpu_load(rq); 6791 raw_spin_unlock_irq(&rq->lock); 6792 6793 rebalance_domains(balance_cpu, CPU_IDLE); 6794 6795 if (time_after(this_rq->next_balance, rq->next_balance)) 6796 this_rq->next_balance = rq->next_balance; 6797 } 6798 nohz.next_balance = this_rq->next_balance; 6799 end: 6800 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 6801 } 6802 6803 /* 6804 * Current heuristic for kicking the idle load balancer in the presence 6805 * of an idle cpu is the system. 6806 * - This rq has more than one task. 6807 * - At any scheduler domain level, this cpu's scheduler group has multiple 6808 * busy cpu's exceeding the group's power. 6809 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 6810 * domain span are idle. 6811 */ 6812 static inline int nohz_kick_needed(struct rq *rq, int cpu) 6813 { 6814 unsigned long now = jiffies; 6815 struct sched_domain *sd; 6816 struct sched_group_power *sgp; 6817 int nr_busy; 6818 6819 if (unlikely(idle_cpu(cpu))) 6820 return 0; 6821 6822 /* 6823 * We may be recently in ticked or tickless idle mode. At the first 6824 * busy tick after returning from idle, we will update the busy stats. 6825 */ 6826 set_cpu_sd_state_busy(); 6827 nohz_balance_exit_idle(cpu); 6828 6829 /* 6830 * None are in tickless mode and hence no need for NOHZ idle load 6831 * balancing. 6832 */ 6833 if (likely(!atomic_read(&nohz.nr_cpus))) 6834 return 0; 6835 6836 if (time_before(now, nohz.next_balance)) 6837 return 0; 6838 6839 if (rq->nr_running >= 2) 6840 goto need_kick; 6841 6842 rcu_read_lock(); 6843 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 6844 6845 if (sd) { 6846 sgp = sd->groups->sgp; 6847 nr_busy = atomic_read(&sgp->nr_busy_cpus); 6848 6849 if (nr_busy > 1) 6850 goto need_kick_unlock; 6851 } 6852 6853 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 6854 6855 if (sd && (cpumask_first_and(nohz.idle_cpus_mask, 6856 sched_domain_span(sd)) < cpu)) 6857 goto need_kick_unlock; 6858 6859 rcu_read_unlock(); 6860 return 0; 6861 6862 need_kick_unlock: 6863 rcu_read_unlock(); 6864 need_kick: 6865 return 1; 6866 } 6867 #else 6868 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { } 6869 #endif 6870 6871 /* 6872 * run_rebalance_domains is triggered when needed from the scheduler tick. 6873 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 6874 */ 6875 static void run_rebalance_domains(struct softirq_action *h) 6876 { 6877 int this_cpu = smp_processor_id(); 6878 struct rq *this_rq = cpu_rq(this_cpu); 6879 enum cpu_idle_type idle = this_rq->idle_balance ? 6880 CPU_IDLE : CPU_NOT_IDLE; 6881 6882 rebalance_domains(this_cpu, idle); 6883 6884 /* 6885 * If this cpu has a pending nohz_balance_kick, then do the 6886 * balancing on behalf of the other idle cpus whose ticks are 6887 * stopped. 6888 */ 6889 nohz_idle_balance(this_cpu, idle); 6890 } 6891 6892 static inline int on_null_domain(int cpu) 6893 { 6894 return !rcu_dereference_sched(cpu_rq(cpu)->sd); 6895 } 6896 6897 /* 6898 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 6899 */ 6900 void trigger_load_balance(struct rq *rq, int cpu) 6901 { 6902 /* Don't need to rebalance while attached to NULL domain */ 6903 if (time_after_eq(jiffies, rq->next_balance) && 6904 likely(!on_null_domain(cpu))) 6905 raise_softirq(SCHED_SOFTIRQ); 6906 #ifdef CONFIG_NO_HZ_COMMON 6907 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu))) 6908 nohz_balancer_kick(cpu); 6909 #endif 6910 } 6911 6912 static void rq_online_fair(struct rq *rq) 6913 { 6914 update_sysctl(); 6915 } 6916 6917 static void rq_offline_fair(struct rq *rq) 6918 { 6919 update_sysctl(); 6920 6921 /* Ensure any throttled groups are reachable by pick_next_task */ 6922 unthrottle_offline_cfs_rqs(rq); 6923 } 6924 6925 #endif /* CONFIG_SMP */ 6926 6927 /* 6928 * scheduler tick hitting a task of our scheduling class: 6929 */ 6930 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 6931 { 6932 struct cfs_rq *cfs_rq; 6933 struct sched_entity *se = &curr->se; 6934 6935 for_each_sched_entity(se) { 6936 cfs_rq = cfs_rq_of(se); 6937 entity_tick(cfs_rq, se, queued); 6938 } 6939 6940 if (numabalancing_enabled) 6941 task_tick_numa(rq, curr); 6942 6943 update_rq_runnable_avg(rq, 1); 6944 } 6945 6946 /* 6947 * called on fork with the child task as argument from the parent's context 6948 * - child not yet on the tasklist 6949 * - preemption disabled 6950 */ 6951 static void task_fork_fair(struct task_struct *p) 6952 { 6953 struct cfs_rq *cfs_rq; 6954 struct sched_entity *se = &p->se, *curr; 6955 int this_cpu = smp_processor_id(); 6956 struct rq *rq = this_rq(); 6957 unsigned long flags; 6958 6959 raw_spin_lock_irqsave(&rq->lock, flags); 6960 6961 update_rq_clock(rq); 6962 6963 cfs_rq = task_cfs_rq(current); 6964 curr = cfs_rq->curr; 6965 6966 /* 6967 * Not only the cpu but also the task_group of the parent might have 6968 * been changed after parent->se.parent,cfs_rq were copied to 6969 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those 6970 * of child point to valid ones. 6971 */ 6972 rcu_read_lock(); 6973 __set_task_cpu(p, this_cpu); 6974 rcu_read_unlock(); 6975 6976 update_curr(cfs_rq); 6977 6978 if (curr) 6979 se->vruntime = curr->vruntime; 6980 place_entity(cfs_rq, se, 1); 6981 6982 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 6983 /* 6984 * Upon rescheduling, sched_class::put_prev_task() will place 6985 * 'current' within the tree based on its new key value. 6986 */ 6987 swap(curr->vruntime, se->vruntime); 6988 resched_task(rq->curr); 6989 } 6990 6991 se->vruntime -= cfs_rq->min_vruntime; 6992 6993 raw_spin_unlock_irqrestore(&rq->lock, flags); 6994 } 6995 6996 /* 6997 * Priority of the task has changed. Check to see if we preempt 6998 * the current task. 6999 */ 7000 static void 7001 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 7002 { 7003 if (!p->se.on_rq) 7004 return; 7005 7006 /* 7007 * Reschedule if we are currently running on this runqueue and 7008 * our priority decreased, or if we are not currently running on 7009 * this runqueue and our priority is higher than the current's 7010 */ 7011 if (rq->curr == p) { 7012 if (p->prio > oldprio) 7013 resched_task(rq->curr); 7014 } else 7015 check_preempt_curr(rq, p, 0); 7016 } 7017 7018 static void switched_from_fair(struct rq *rq, struct task_struct *p) 7019 { 7020 struct sched_entity *se = &p->se; 7021 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7022 7023 /* 7024 * Ensure the task's vruntime is normalized, so that when its 7025 * switched back to the fair class the enqueue_entity(.flags=0) will 7026 * do the right thing. 7027 * 7028 * If it was on_rq, then the dequeue_entity(.flags=0) will already 7029 * have normalized the vruntime, if it was !on_rq, then only when 7030 * the task is sleeping will it still have non-normalized vruntime. 7031 */ 7032 if (!se->on_rq && p->state != TASK_RUNNING) { 7033 /* 7034 * Fix up our vruntime so that the current sleep doesn't 7035 * cause 'unlimited' sleep bonus. 7036 */ 7037 place_entity(cfs_rq, se, 0); 7038 se->vruntime -= cfs_rq->min_vruntime; 7039 } 7040 7041 #ifdef CONFIG_SMP 7042 /* 7043 * Remove our load from contribution when we leave sched_fair 7044 * and ensure we don't carry in an old decay_count if we 7045 * switch back. 7046 */ 7047 if (se->avg.decay_count) { 7048 __synchronize_entity_decay(se); 7049 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); 7050 } 7051 #endif 7052 } 7053 7054 /* 7055 * We switched to the sched_fair class. 7056 */ 7057 static void switched_to_fair(struct rq *rq, struct task_struct *p) 7058 { 7059 if (!p->se.on_rq) 7060 return; 7061 7062 /* 7063 * We were most likely switched from sched_rt, so 7064 * kick off the schedule if running, otherwise just see 7065 * if we can still preempt the current task. 7066 */ 7067 if (rq->curr == p) 7068 resched_task(rq->curr); 7069 else 7070 check_preempt_curr(rq, p, 0); 7071 } 7072 7073 /* Account for a task changing its policy or group. 7074 * 7075 * This routine is mostly called to set cfs_rq->curr field when a task 7076 * migrates between groups/classes. 7077 */ 7078 static void set_curr_task_fair(struct rq *rq) 7079 { 7080 struct sched_entity *se = &rq->curr->se; 7081 7082 for_each_sched_entity(se) { 7083 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7084 7085 set_next_entity(cfs_rq, se); 7086 /* ensure bandwidth has been allocated on our new cfs_rq */ 7087 account_cfs_rq_runtime(cfs_rq, 0); 7088 } 7089 } 7090 7091 void init_cfs_rq(struct cfs_rq *cfs_rq) 7092 { 7093 cfs_rq->tasks_timeline = RB_ROOT; 7094 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 7095 #ifndef CONFIG_64BIT 7096 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 7097 #endif 7098 #ifdef CONFIG_SMP 7099 atomic64_set(&cfs_rq->decay_counter, 1); 7100 atomic_long_set(&cfs_rq->removed_load, 0); 7101 #endif 7102 } 7103 7104 #ifdef CONFIG_FAIR_GROUP_SCHED 7105 static void task_move_group_fair(struct task_struct *p, int on_rq) 7106 { 7107 struct cfs_rq *cfs_rq; 7108 /* 7109 * If the task was not on the rq at the time of this cgroup movement 7110 * it must have been asleep, sleeping tasks keep their ->vruntime 7111 * absolute on their old rq until wakeup (needed for the fair sleeper 7112 * bonus in place_entity()). 7113 * 7114 * If it was on the rq, we've just 'preempted' it, which does convert 7115 * ->vruntime to a relative base. 7116 * 7117 * Make sure both cases convert their relative position when migrating 7118 * to another cgroup's rq. This does somewhat interfere with the 7119 * fair sleeper stuff for the first placement, but who cares. 7120 */ 7121 /* 7122 * When !on_rq, vruntime of the task has usually NOT been normalized. 7123 * But there are some cases where it has already been normalized: 7124 * 7125 * - Moving a forked child which is waiting for being woken up by 7126 * wake_up_new_task(). 7127 * - Moving a task which has been woken up by try_to_wake_up() and 7128 * waiting for actually being woken up by sched_ttwu_pending(). 7129 * 7130 * To prevent boost or penalty in the new cfs_rq caused by delta 7131 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. 7132 */ 7133 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING)) 7134 on_rq = 1; 7135 7136 if (!on_rq) 7137 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime; 7138 set_task_rq(p, task_cpu(p)); 7139 if (!on_rq) { 7140 cfs_rq = cfs_rq_of(&p->se); 7141 p->se.vruntime += cfs_rq->min_vruntime; 7142 #ifdef CONFIG_SMP 7143 /* 7144 * migrate_task_rq_fair() will have removed our previous 7145 * contribution, but we must synchronize for ongoing future 7146 * decay. 7147 */ 7148 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 7149 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib; 7150 #endif 7151 } 7152 } 7153 7154 void free_fair_sched_group(struct task_group *tg) 7155 { 7156 int i; 7157 7158 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 7159 7160 for_each_possible_cpu(i) { 7161 if (tg->cfs_rq) 7162 kfree(tg->cfs_rq[i]); 7163 if (tg->se) 7164 kfree(tg->se[i]); 7165 } 7166 7167 kfree(tg->cfs_rq); 7168 kfree(tg->se); 7169 } 7170 7171 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 7172 { 7173 struct cfs_rq *cfs_rq; 7174 struct sched_entity *se; 7175 int i; 7176 7177 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 7178 if (!tg->cfs_rq) 7179 goto err; 7180 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 7181 if (!tg->se) 7182 goto err; 7183 7184 tg->shares = NICE_0_LOAD; 7185 7186 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 7187 7188 for_each_possible_cpu(i) { 7189 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 7190 GFP_KERNEL, cpu_to_node(i)); 7191 if (!cfs_rq) 7192 goto err; 7193 7194 se = kzalloc_node(sizeof(struct sched_entity), 7195 GFP_KERNEL, cpu_to_node(i)); 7196 if (!se) 7197 goto err_free_rq; 7198 7199 init_cfs_rq(cfs_rq); 7200 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 7201 } 7202 7203 return 1; 7204 7205 err_free_rq: 7206 kfree(cfs_rq); 7207 err: 7208 return 0; 7209 } 7210 7211 void unregister_fair_sched_group(struct task_group *tg, int cpu) 7212 { 7213 struct rq *rq = cpu_rq(cpu); 7214 unsigned long flags; 7215 7216 /* 7217 * Only empty task groups can be destroyed; so we can speculatively 7218 * check on_list without danger of it being re-added. 7219 */ 7220 if (!tg->cfs_rq[cpu]->on_list) 7221 return; 7222 7223 raw_spin_lock_irqsave(&rq->lock, flags); 7224 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 7225 raw_spin_unlock_irqrestore(&rq->lock, flags); 7226 } 7227 7228 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 7229 struct sched_entity *se, int cpu, 7230 struct sched_entity *parent) 7231 { 7232 struct rq *rq = cpu_rq(cpu); 7233 7234 cfs_rq->tg = tg; 7235 cfs_rq->rq = rq; 7236 init_cfs_rq_runtime(cfs_rq); 7237 7238 tg->cfs_rq[cpu] = cfs_rq; 7239 tg->se[cpu] = se; 7240 7241 /* se could be NULL for root_task_group */ 7242 if (!se) 7243 return; 7244 7245 if (!parent) 7246 se->cfs_rq = &rq->cfs; 7247 else 7248 se->cfs_rq = parent->my_q; 7249 7250 se->my_q = cfs_rq; 7251 /* guarantee group entities always have weight */ 7252 update_load_set(&se->load, NICE_0_LOAD); 7253 se->parent = parent; 7254 } 7255 7256 static DEFINE_MUTEX(shares_mutex); 7257 7258 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 7259 { 7260 int i; 7261 unsigned long flags; 7262 7263 /* 7264 * We can't change the weight of the root cgroup. 7265 */ 7266 if (!tg->se[0]) 7267 return -EINVAL; 7268 7269 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 7270 7271 mutex_lock(&shares_mutex); 7272 if (tg->shares == shares) 7273 goto done; 7274 7275 tg->shares = shares; 7276 for_each_possible_cpu(i) { 7277 struct rq *rq = cpu_rq(i); 7278 struct sched_entity *se; 7279 7280 se = tg->se[i]; 7281 /* Propagate contribution to hierarchy */ 7282 raw_spin_lock_irqsave(&rq->lock, flags); 7283 7284 /* Possible calls to update_curr() need rq clock */ 7285 update_rq_clock(rq); 7286 for_each_sched_entity(se) 7287 update_cfs_shares(group_cfs_rq(se)); 7288 raw_spin_unlock_irqrestore(&rq->lock, flags); 7289 } 7290 7291 done: 7292 mutex_unlock(&shares_mutex); 7293 return 0; 7294 } 7295 #else /* CONFIG_FAIR_GROUP_SCHED */ 7296 7297 void free_fair_sched_group(struct task_group *tg) { } 7298 7299 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 7300 { 7301 return 1; 7302 } 7303 7304 void unregister_fair_sched_group(struct task_group *tg, int cpu) { } 7305 7306 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7307 7308 7309 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 7310 { 7311 struct sched_entity *se = &task->se; 7312 unsigned int rr_interval = 0; 7313 7314 /* 7315 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 7316 * idle runqueue: 7317 */ 7318 if (rq->cfs.load.weight) 7319 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 7320 7321 return rr_interval; 7322 } 7323 7324 /* 7325 * All the scheduling class methods: 7326 */ 7327 const struct sched_class fair_sched_class = { 7328 .next = &idle_sched_class, 7329 .enqueue_task = enqueue_task_fair, 7330 .dequeue_task = dequeue_task_fair, 7331 .yield_task = yield_task_fair, 7332 .yield_to_task = yield_to_task_fair, 7333 7334 .check_preempt_curr = check_preempt_wakeup, 7335 7336 .pick_next_task = pick_next_task_fair, 7337 .put_prev_task = put_prev_task_fair, 7338 7339 #ifdef CONFIG_SMP 7340 .select_task_rq = select_task_rq_fair, 7341 .migrate_task_rq = migrate_task_rq_fair, 7342 7343 .rq_online = rq_online_fair, 7344 .rq_offline = rq_offline_fair, 7345 7346 .task_waking = task_waking_fair, 7347 #endif 7348 7349 .set_curr_task = set_curr_task_fair, 7350 .task_tick = task_tick_fair, 7351 .task_fork = task_fork_fair, 7352 7353 .prio_changed = prio_changed_fair, 7354 .switched_from = switched_from_fair, 7355 .switched_to = switched_to_fair, 7356 7357 .get_rr_interval = get_rr_interval_fair, 7358 7359 #ifdef CONFIG_FAIR_GROUP_SCHED 7360 .task_move_group = task_move_group_fair, 7361 #endif 7362 }; 7363 7364 #ifdef CONFIG_SCHED_DEBUG 7365 void print_cfs_stats(struct seq_file *m, int cpu) 7366 { 7367 struct cfs_rq *cfs_rq; 7368 7369 rcu_read_lock(); 7370 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 7371 print_cfs_rq(m, cpu, cfs_rq); 7372 rcu_read_unlock(); 7373 } 7374 #endif 7375 7376 __init void init_sched_fair_class(void) 7377 { 7378 #ifdef CONFIG_SMP 7379 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 7380 7381 #ifdef CONFIG_NO_HZ_COMMON 7382 nohz.next_balance = jiffies; 7383 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 7384 cpu_notifier(sched_ilb_notifier, 0); 7385 #endif 7386 #endif /* SMP */ 7387 7388 } 7389