1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 /* 26 * Targeted preemption latency for CPU-bound tasks: 27 * 28 * NOTE: this latency value is not the same as the concept of 29 * 'timeslice length' - timeslices in CFS are of variable length 30 * and have no persistent notion like in traditional, time-slice 31 * based scheduling concepts. 32 * 33 * (to see the precise effective timeslice length of your workload, 34 * run vmstat and monitor the context-switches (cs) field) 35 * 36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 37 */ 38 unsigned int sysctl_sched_latency = 6000000ULL; 39 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 40 41 /* 42 * The initial- and re-scaling of tunables is configurable 43 * 44 * Options are: 45 * 46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 49 * 50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 51 */ 52 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 53 54 /* 55 * Minimal preemption granularity for CPU-bound tasks: 56 * 57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 58 */ 59 unsigned int sysctl_sched_min_granularity = 750000ULL; 60 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 61 62 /* 63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 64 */ 65 static unsigned int sched_nr_latency = 8; 66 67 /* 68 * After fork, child runs first. If set to 0 (default) then 69 * parent will (try to) run first. 70 */ 71 unsigned int sysctl_sched_child_runs_first __read_mostly; 72 73 /* 74 * SCHED_OTHER wake-up granularity. 75 * 76 * This option delays the preemption effects of decoupled workloads 77 * and reduces their over-scheduling. Synchronous workloads will still 78 * have immediate wakeup/sleep latencies. 79 * 80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 81 */ 82 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 83 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 84 85 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 86 87 int sched_thermal_decay_shift; 88 static int __init setup_sched_thermal_decay_shift(char *str) 89 { 90 int _shift = 0; 91 92 if (kstrtoint(str, 0, &_shift)) 93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 94 95 sched_thermal_decay_shift = clamp(_shift, 0, 10); 96 return 1; 97 } 98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 99 100 #ifdef CONFIG_SMP 101 /* 102 * For asym packing, by default the lower numbered CPU has higher priority. 103 */ 104 int __weak arch_asym_cpu_priority(int cpu) 105 { 106 return -cpu; 107 } 108 109 /* 110 * The margin used when comparing utilization with CPU capacity. 111 * 112 * (default: ~20%) 113 */ 114 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 115 116 /* 117 * The margin used when comparing CPU capacities. 118 * is 'cap1' noticeably greater than 'cap2' 119 * 120 * (default: ~5%) 121 */ 122 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 123 #endif 124 125 #ifdef CONFIG_CFS_BANDWIDTH 126 /* 127 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 128 * each time a cfs_rq requests quota. 129 * 130 * Note: in the case that the slice exceeds the runtime remaining (either due 131 * to consumption or the quota being specified to be smaller than the slice) 132 * we will always only issue the remaining available time. 133 * 134 * (default: 5 msec, units: microseconds) 135 */ 136 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 137 #endif 138 139 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 140 { 141 lw->weight += inc; 142 lw->inv_weight = 0; 143 } 144 145 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 146 { 147 lw->weight -= dec; 148 lw->inv_weight = 0; 149 } 150 151 static inline void update_load_set(struct load_weight *lw, unsigned long w) 152 { 153 lw->weight = w; 154 lw->inv_weight = 0; 155 } 156 157 /* 158 * Increase the granularity value when there are more CPUs, 159 * because with more CPUs the 'effective latency' as visible 160 * to users decreases. But the relationship is not linear, 161 * so pick a second-best guess by going with the log2 of the 162 * number of CPUs. 163 * 164 * This idea comes from the SD scheduler of Con Kolivas: 165 */ 166 static unsigned int get_update_sysctl_factor(void) 167 { 168 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 169 unsigned int factor; 170 171 switch (sysctl_sched_tunable_scaling) { 172 case SCHED_TUNABLESCALING_NONE: 173 factor = 1; 174 break; 175 case SCHED_TUNABLESCALING_LINEAR: 176 factor = cpus; 177 break; 178 case SCHED_TUNABLESCALING_LOG: 179 default: 180 factor = 1 + ilog2(cpus); 181 break; 182 } 183 184 return factor; 185 } 186 187 static void update_sysctl(void) 188 { 189 unsigned int factor = get_update_sysctl_factor(); 190 191 #define SET_SYSCTL(name) \ 192 (sysctl_##name = (factor) * normalized_sysctl_##name) 193 SET_SYSCTL(sched_min_granularity); 194 SET_SYSCTL(sched_latency); 195 SET_SYSCTL(sched_wakeup_granularity); 196 #undef SET_SYSCTL 197 } 198 199 void __init sched_init_granularity(void) 200 { 201 update_sysctl(); 202 } 203 204 #define WMULT_CONST (~0U) 205 #define WMULT_SHIFT 32 206 207 static void __update_inv_weight(struct load_weight *lw) 208 { 209 unsigned long w; 210 211 if (likely(lw->inv_weight)) 212 return; 213 214 w = scale_load_down(lw->weight); 215 216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 217 lw->inv_weight = 1; 218 else if (unlikely(!w)) 219 lw->inv_weight = WMULT_CONST; 220 else 221 lw->inv_weight = WMULT_CONST / w; 222 } 223 224 /* 225 * delta_exec * weight / lw.weight 226 * OR 227 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 228 * 229 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 230 * we're guaranteed shift stays positive because inv_weight is guaranteed to 231 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 232 * 233 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 234 * weight/lw.weight <= 1, and therefore our shift will also be positive. 235 */ 236 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 237 { 238 u64 fact = scale_load_down(weight); 239 u32 fact_hi = (u32)(fact >> 32); 240 int shift = WMULT_SHIFT; 241 int fs; 242 243 __update_inv_weight(lw); 244 245 if (unlikely(fact_hi)) { 246 fs = fls(fact_hi); 247 shift -= fs; 248 fact >>= fs; 249 } 250 251 fact = mul_u32_u32(fact, lw->inv_weight); 252 253 fact_hi = (u32)(fact >> 32); 254 if (fact_hi) { 255 fs = fls(fact_hi); 256 shift -= fs; 257 fact >>= fs; 258 } 259 260 return mul_u64_u32_shr(delta_exec, fact, shift); 261 } 262 263 264 const struct sched_class fair_sched_class; 265 266 /************************************************************** 267 * CFS operations on generic schedulable entities: 268 */ 269 270 #ifdef CONFIG_FAIR_GROUP_SCHED 271 static inline struct task_struct *task_of(struct sched_entity *se) 272 { 273 SCHED_WARN_ON(!entity_is_task(se)); 274 return container_of(se, struct task_struct, se); 275 } 276 277 /* Walk up scheduling entities hierarchy */ 278 #define for_each_sched_entity(se) \ 279 for (; se; se = se->parent) 280 281 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 282 { 283 return p->se.cfs_rq; 284 } 285 286 /* runqueue on which this entity is (to be) queued */ 287 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 288 { 289 return se->cfs_rq; 290 } 291 292 /* runqueue "owned" by this group */ 293 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 294 { 295 return grp->my_q; 296 } 297 298 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 299 { 300 if (!path) 301 return; 302 303 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg)) 304 autogroup_path(cfs_rq->tg, path, len); 305 else if (cfs_rq && cfs_rq->tg->css.cgroup) 306 cgroup_path(cfs_rq->tg->css.cgroup, path, len); 307 else 308 strlcpy(path, "(null)", len); 309 } 310 311 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 312 { 313 struct rq *rq = rq_of(cfs_rq); 314 int cpu = cpu_of(rq); 315 316 if (cfs_rq->on_list) 317 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 318 319 cfs_rq->on_list = 1; 320 321 /* 322 * Ensure we either appear before our parent (if already 323 * enqueued) or force our parent to appear after us when it is 324 * enqueued. The fact that we always enqueue bottom-up 325 * reduces this to two cases and a special case for the root 326 * cfs_rq. Furthermore, it also means that we will always reset 327 * tmp_alone_branch either when the branch is connected 328 * to a tree or when we reach the top of the tree 329 */ 330 if (cfs_rq->tg->parent && 331 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 332 /* 333 * If parent is already on the list, we add the child 334 * just before. Thanks to circular linked property of 335 * the list, this means to put the child at the tail 336 * of the list that starts by parent. 337 */ 338 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 339 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 340 /* 341 * The branch is now connected to its tree so we can 342 * reset tmp_alone_branch to the beginning of the 343 * list. 344 */ 345 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 346 return true; 347 } 348 349 if (!cfs_rq->tg->parent) { 350 /* 351 * cfs rq without parent should be put 352 * at the tail of the list. 353 */ 354 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 355 &rq->leaf_cfs_rq_list); 356 /* 357 * We have reach the top of a tree so we can reset 358 * tmp_alone_branch to the beginning of the list. 359 */ 360 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 361 return true; 362 } 363 364 /* 365 * The parent has not already been added so we want to 366 * make sure that it will be put after us. 367 * tmp_alone_branch points to the begin of the branch 368 * where we will add parent. 369 */ 370 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 371 /* 372 * update tmp_alone_branch to points to the new begin 373 * of the branch 374 */ 375 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 376 return false; 377 } 378 379 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 380 { 381 if (cfs_rq->on_list) { 382 struct rq *rq = rq_of(cfs_rq); 383 384 /* 385 * With cfs_rq being unthrottled/throttled during an enqueue, 386 * it can happen the tmp_alone_branch points the a leaf that 387 * we finally want to del. In this case, tmp_alone_branch moves 388 * to the prev element but it will point to rq->leaf_cfs_rq_list 389 * at the end of the enqueue. 390 */ 391 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 392 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 393 394 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 395 cfs_rq->on_list = 0; 396 } 397 } 398 399 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 400 { 401 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 402 } 403 404 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 405 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 406 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 407 leaf_cfs_rq_list) 408 409 /* Do the two (enqueued) entities belong to the same group ? */ 410 static inline struct cfs_rq * 411 is_same_group(struct sched_entity *se, struct sched_entity *pse) 412 { 413 if (se->cfs_rq == pse->cfs_rq) 414 return se->cfs_rq; 415 416 return NULL; 417 } 418 419 static inline struct sched_entity *parent_entity(struct sched_entity *se) 420 { 421 return se->parent; 422 } 423 424 static void 425 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 426 { 427 int se_depth, pse_depth; 428 429 /* 430 * preemption test can be made between sibling entities who are in the 431 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 432 * both tasks until we find their ancestors who are siblings of common 433 * parent. 434 */ 435 436 /* First walk up until both entities are at same depth */ 437 se_depth = (*se)->depth; 438 pse_depth = (*pse)->depth; 439 440 while (se_depth > pse_depth) { 441 se_depth--; 442 *se = parent_entity(*se); 443 } 444 445 while (pse_depth > se_depth) { 446 pse_depth--; 447 *pse = parent_entity(*pse); 448 } 449 450 while (!is_same_group(*se, *pse)) { 451 *se = parent_entity(*se); 452 *pse = parent_entity(*pse); 453 } 454 } 455 456 #else /* !CONFIG_FAIR_GROUP_SCHED */ 457 458 static inline struct task_struct *task_of(struct sched_entity *se) 459 { 460 return container_of(se, struct task_struct, se); 461 } 462 463 #define for_each_sched_entity(se) \ 464 for (; se; se = NULL) 465 466 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 467 { 468 return &task_rq(p)->cfs; 469 } 470 471 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 472 { 473 struct task_struct *p = task_of(se); 474 struct rq *rq = task_rq(p); 475 476 return &rq->cfs; 477 } 478 479 /* runqueue "owned" by this group */ 480 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 481 { 482 return NULL; 483 } 484 485 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 486 { 487 if (path) 488 strlcpy(path, "(null)", len); 489 } 490 491 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 492 { 493 return true; 494 } 495 496 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 497 { 498 } 499 500 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 501 { 502 } 503 504 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 505 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 506 507 static inline struct sched_entity *parent_entity(struct sched_entity *se) 508 { 509 return NULL; 510 } 511 512 static inline void 513 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 514 { 515 } 516 517 #endif /* CONFIG_FAIR_GROUP_SCHED */ 518 519 static __always_inline 520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 521 522 /************************************************************** 523 * Scheduling class tree data structure manipulation methods: 524 */ 525 526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 527 { 528 s64 delta = (s64)(vruntime - max_vruntime); 529 if (delta > 0) 530 max_vruntime = vruntime; 531 532 return max_vruntime; 533 } 534 535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 536 { 537 s64 delta = (s64)(vruntime - min_vruntime); 538 if (delta < 0) 539 min_vruntime = vruntime; 540 541 return min_vruntime; 542 } 543 544 static inline bool entity_before(struct sched_entity *a, 545 struct sched_entity *b) 546 { 547 return (s64)(a->vruntime - b->vruntime) < 0; 548 } 549 550 #define __node_2_se(node) \ 551 rb_entry((node), struct sched_entity, run_node) 552 553 static void update_min_vruntime(struct cfs_rq *cfs_rq) 554 { 555 struct sched_entity *curr = cfs_rq->curr; 556 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 557 558 u64 vruntime = cfs_rq->min_vruntime; 559 560 if (curr) { 561 if (curr->on_rq) 562 vruntime = curr->vruntime; 563 else 564 curr = NULL; 565 } 566 567 if (leftmost) { /* non-empty tree */ 568 struct sched_entity *se = __node_2_se(leftmost); 569 570 if (!curr) 571 vruntime = se->vruntime; 572 else 573 vruntime = min_vruntime(vruntime, se->vruntime); 574 } 575 576 /* ensure we never gain time by being placed backwards. */ 577 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 578 #ifndef CONFIG_64BIT 579 smp_wmb(); 580 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 581 #endif 582 } 583 584 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 585 { 586 return entity_before(__node_2_se(a), __node_2_se(b)); 587 } 588 589 /* 590 * Enqueue an entity into the rb-tree: 591 */ 592 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 593 { 594 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less); 595 } 596 597 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 598 { 599 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 600 } 601 602 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 603 { 604 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 605 606 if (!left) 607 return NULL; 608 609 return __node_2_se(left); 610 } 611 612 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 613 { 614 struct rb_node *next = rb_next(&se->run_node); 615 616 if (!next) 617 return NULL; 618 619 return __node_2_se(next); 620 } 621 622 #ifdef CONFIG_SCHED_DEBUG 623 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 624 { 625 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 626 627 if (!last) 628 return NULL; 629 630 return __node_2_se(last); 631 } 632 633 /************************************************************** 634 * Scheduling class statistics methods: 635 */ 636 637 int sched_update_scaling(void) 638 { 639 unsigned int factor = get_update_sysctl_factor(); 640 641 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 642 sysctl_sched_min_granularity); 643 644 #define WRT_SYSCTL(name) \ 645 (normalized_sysctl_##name = sysctl_##name / (factor)) 646 WRT_SYSCTL(sched_min_granularity); 647 WRT_SYSCTL(sched_latency); 648 WRT_SYSCTL(sched_wakeup_granularity); 649 #undef WRT_SYSCTL 650 651 return 0; 652 } 653 #endif 654 655 /* 656 * delta /= w 657 */ 658 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 659 { 660 if (unlikely(se->load.weight != NICE_0_LOAD)) 661 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 662 663 return delta; 664 } 665 666 /* 667 * The idea is to set a period in which each task runs once. 668 * 669 * When there are too many tasks (sched_nr_latency) we have to stretch 670 * this period because otherwise the slices get too small. 671 * 672 * p = (nr <= nl) ? l : l*nr/nl 673 */ 674 static u64 __sched_period(unsigned long nr_running) 675 { 676 if (unlikely(nr_running > sched_nr_latency)) 677 return nr_running * sysctl_sched_min_granularity; 678 else 679 return sysctl_sched_latency; 680 } 681 682 /* 683 * We calculate the wall-time slice from the period by taking a part 684 * proportional to the weight. 685 * 686 * s = p*P[w/rw] 687 */ 688 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 689 { 690 unsigned int nr_running = cfs_rq->nr_running; 691 u64 slice; 692 693 if (sched_feat(ALT_PERIOD)) 694 nr_running = rq_of(cfs_rq)->cfs.h_nr_running; 695 696 slice = __sched_period(nr_running + !se->on_rq); 697 698 for_each_sched_entity(se) { 699 struct load_weight *load; 700 struct load_weight lw; 701 702 cfs_rq = cfs_rq_of(se); 703 load = &cfs_rq->load; 704 705 if (unlikely(!se->on_rq)) { 706 lw = cfs_rq->load; 707 708 update_load_add(&lw, se->load.weight); 709 load = &lw; 710 } 711 slice = __calc_delta(slice, se->load.weight, load); 712 } 713 714 if (sched_feat(BASE_SLICE)) 715 slice = max(slice, (u64)sysctl_sched_min_granularity); 716 717 return slice; 718 } 719 720 /* 721 * We calculate the vruntime slice of a to-be-inserted task. 722 * 723 * vs = s/w 724 */ 725 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 726 { 727 return calc_delta_fair(sched_slice(cfs_rq, se), se); 728 } 729 730 #include "pelt.h" 731 #ifdef CONFIG_SMP 732 733 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 734 static unsigned long task_h_load(struct task_struct *p); 735 static unsigned long capacity_of(int cpu); 736 737 /* Give new sched_entity start runnable values to heavy its load in infant time */ 738 void init_entity_runnable_average(struct sched_entity *se) 739 { 740 struct sched_avg *sa = &se->avg; 741 742 memset(sa, 0, sizeof(*sa)); 743 744 /* 745 * Tasks are initialized with full load to be seen as heavy tasks until 746 * they get a chance to stabilize to their real load level. 747 * Group entities are initialized with zero load to reflect the fact that 748 * nothing has been attached to the task group yet. 749 */ 750 if (entity_is_task(se)) 751 sa->load_avg = scale_load_down(se->load.weight); 752 753 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 754 } 755 756 static void attach_entity_cfs_rq(struct sched_entity *se); 757 758 /* 759 * With new tasks being created, their initial util_avgs are extrapolated 760 * based on the cfs_rq's current util_avg: 761 * 762 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 763 * 764 * However, in many cases, the above util_avg does not give a desired 765 * value. Moreover, the sum of the util_avgs may be divergent, such 766 * as when the series is a harmonic series. 767 * 768 * To solve this problem, we also cap the util_avg of successive tasks to 769 * only 1/2 of the left utilization budget: 770 * 771 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 772 * 773 * where n denotes the nth task and cpu_scale the CPU capacity. 774 * 775 * For example, for a CPU with 1024 of capacity, a simplest series from 776 * the beginning would be like: 777 * 778 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 779 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 780 * 781 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 782 * if util_avg > util_avg_cap. 783 */ 784 void post_init_entity_util_avg(struct task_struct *p) 785 { 786 struct sched_entity *se = &p->se; 787 struct cfs_rq *cfs_rq = cfs_rq_of(se); 788 struct sched_avg *sa = &se->avg; 789 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 790 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 791 792 if (cap > 0) { 793 if (cfs_rq->avg.util_avg != 0) { 794 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 795 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 796 797 if (sa->util_avg > cap) 798 sa->util_avg = cap; 799 } else { 800 sa->util_avg = cap; 801 } 802 } 803 804 sa->runnable_avg = sa->util_avg; 805 806 if (p->sched_class != &fair_sched_class) { 807 /* 808 * For !fair tasks do: 809 * 810 update_cfs_rq_load_avg(now, cfs_rq); 811 attach_entity_load_avg(cfs_rq, se); 812 switched_from_fair(rq, p); 813 * 814 * such that the next switched_to_fair() has the 815 * expected state. 816 */ 817 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 818 return; 819 } 820 821 attach_entity_cfs_rq(se); 822 } 823 824 #else /* !CONFIG_SMP */ 825 void init_entity_runnable_average(struct sched_entity *se) 826 { 827 } 828 void post_init_entity_util_avg(struct task_struct *p) 829 { 830 } 831 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 832 { 833 } 834 #endif /* CONFIG_SMP */ 835 836 /* 837 * Update the current task's runtime statistics. 838 */ 839 static void update_curr(struct cfs_rq *cfs_rq) 840 { 841 struct sched_entity *curr = cfs_rq->curr; 842 u64 now = rq_clock_task(rq_of(cfs_rq)); 843 u64 delta_exec; 844 845 if (unlikely(!curr)) 846 return; 847 848 delta_exec = now - curr->exec_start; 849 if (unlikely((s64)delta_exec <= 0)) 850 return; 851 852 curr->exec_start = now; 853 854 schedstat_set(curr->statistics.exec_max, 855 max(delta_exec, curr->statistics.exec_max)); 856 857 curr->sum_exec_runtime += delta_exec; 858 schedstat_add(cfs_rq->exec_clock, delta_exec); 859 860 curr->vruntime += calc_delta_fair(delta_exec, curr); 861 update_min_vruntime(cfs_rq); 862 863 if (entity_is_task(curr)) { 864 struct task_struct *curtask = task_of(curr); 865 866 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 867 cgroup_account_cputime(curtask, delta_exec); 868 account_group_exec_runtime(curtask, delta_exec); 869 } 870 871 account_cfs_rq_runtime(cfs_rq, delta_exec); 872 } 873 874 static void update_curr_fair(struct rq *rq) 875 { 876 update_curr(cfs_rq_of(&rq->curr->se)); 877 } 878 879 static inline void 880 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 881 { 882 u64 wait_start, prev_wait_start; 883 884 if (!schedstat_enabled()) 885 return; 886 887 wait_start = rq_clock(rq_of(cfs_rq)); 888 prev_wait_start = schedstat_val(se->statistics.wait_start); 889 890 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 891 likely(wait_start > prev_wait_start)) 892 wait_start -= prev_wait_start; 893 894 __schedstat_set(se->statistics.wait_start, wait_start); 895 } 896 897 static inline void 898 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 899 { 900 struct task_struct *p; 901 u64 delta; 902 903 if (!schedstat_enabled()) 904 return; 905 906 /* 907 * When the sched_schedstat changes from 0 to 1, some sched se 908 * maybe already in the runqueue, the se->statistics.wait_start 909 * will be 0.So it will let the delta wrong. We need to avoid this 910 * scenario. 911 */ 912 if (unlikely(!schedstat_val(se->statistics.wait_start))) 913 return; 914 915 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 916 917 if (entity_is_task(se)) { 918 p = task_of(se); 919 if (task_on_rq_migrating(p)) { 920 /* 921 * Preserve migrating task's wait time so wait_start 922 * time stamp can be adjusted to accumulate wait time 923 * prior to migration. 924 */ 925 __schedstat_set(se->statistics.wait_start, delta); 926 return; 927 } 928 trace_sched_stat_wait(p, delta); 929 } 930 931 __schedstat_set(se->statistics.wait_max, 932 max(schedstat_val(se->statistics.wait_max), delta)); 933 __schedstat_inc(se->statistics.wait_count); 934 __schedstat_add(se->statistics.wait_sum, delta); 935 __schedstat_set(se->statistics.wait_start, 0); 936 } 937 938 static inline void 939 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 940 { 941 struct task_struct *tsk = NULL; 942 u64 sleep_start, block_start; 943 944 if (!schedstat_enabled()) 945 return; 946 947 sleep_start = schedstat_val(se->statistics.sleep_start); 948 block_start = schedstat_val(se->statistics.block_start); 949 950 if (entity_is_task(se)) 951 tsk = task_of(se); 952 953 if (sleep_start) { 954 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 955 956 if ((s64)delta < 0) 957 delta = 0; 958 959 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 960 __schedstat_set(se->statistics.sleep_max, delta); 961 962 __schedstat_set(se->statistics.sleep_start, 0); 963 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 964 965 if (tsk) { 966 account_scheduler_latency(tsk, delta >> 10, 1); 967 trace_sched_stat_sleep(tsk, delta); 968 } 969 } 970 if (block_start) { 971 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 972 973 if ((s64)delta < 0) 974 delta = 0; 975 976 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 977 __schedstat_set(se->statistics.block_max, delta); 978 979 __schedstat_set(se->statistics.block_start, 0); 980 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 981 982 if (tsk) { 983 if (tsk->in_iowait) { 984 __schedstat_add(se->statistics.iowait_sum, delta); 985 __schedstat_inc(se->statistics.iowait_count); 986 trace_sched_stat_iowait(tsk, delta); 987 } 988 989 trace_sched_stat_blocked(tsk, delta); 990 991 /* 992 * Blocking time is in units of nanosecs, so shift by 993 * 20 to get a milliseconds-range estimation of the 994 * amount of time that the task spent sleeping: 995 */ 996 if (unlikely(prof_on == SLEEP_PROFILING)) { 997 profile_hits(SLEEP_PROFILING, 998 (void *)get_wchan(tsk), 999 delta >> 20); 1000 } 1001 account_scheduler_latency(tsk, delta >> 10, 0); 1002 } 1003 } 1004 } 1005 1006 /* 1007 * Task is being enqueued - update stats: 1008 */ 1009 static inline void 1010 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1011 { 1012 if (!schedstat_enabled()) 1013 return; 1014 1015 /* 1016 * Are we enqueueing a waiting task? (for current tasks 1017 * a dequeue/enqueue event is a NOP) 1018 */ 1019 if (se != cfs_rq->curr) 1020 update_stats_wait_start(cfs_rq, se); 1021 1022 if (flags & ENQUEUE_WAKEUP) 1023 update_stats_enqueue_sleeper(cfs_rq, se); 1024 } 1025 1026 static inline void 1027 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1028 { 1029 1030 if (!schedstat_enabled()) 1031 return; 1032 1033 /* 1034 * Mark the end of the wait period if dequeueing a 1035 * waiting task: 1036 */ 1037 if (se != cfs_rq->curr) 1038 update_stats_wait_end(cfs_rq, se); 1039 1040 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1041 struct task_struct *tsk = task_of(se); 1042 1043 if (tsk->state & TASK_INTERRUPTIBLE) 1044 __schedstat_set(se->statistics.sleep_start, 1045 rq_clock(rq_of(cfs_rq))); 1046 if (tsk->state & TASK_UNINTERRUPTIBLE) 1047 __schedstat_set(se->statistics.block_start, 1048 rq_clock(rq_of(cfs_rq))); 1049 } 1050 } 1051 1052 /* 1053 * We are picking a new current task - update its stats: 1054 */ 1055 static inline void 1056 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1057 { 1058 /* 1059 * We are starting a new run period: 1060 */ 1061 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1062 } 1063 1064 /************************************************** 1065 * Scheduling class queueing methods: 1066 */ 1067 1068 #ifdef CONFIG_NUMA_BALANCING 1069 /* 1070 * Approximate time to scan a full NUMA task in ms. The task scan period is 1071 * calculated based on the tasks virtual memory size and 1072 * numa_balancing_scan_size. 1073 */ 1074 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1075 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1076 1077 /* Portion of address space to scan in MB */ 1078 unsigned int sysctl_numa_balancing_scan_size = 256; 1079 1080 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1081 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1082 1083 struct numa_group { 1084 refcount_t refcount; 1085 1086 spinlock_t lock; /* nr_tasks, tasks */ 1087 int nr_tasks; 1088 pid_t gid; 1089 int active_nodes; 1090 1091 struct rcu_head rcu; 1092 unsigned long total_faults; 1093 unsigned long max_faults_cpu; 1094 /* 1095 * Faults_cpu is used to decide whether memory should move 1096 * towards the CPU. As a consequence, these stats are weighted 1097 * more by CPU use than by memory faults. 1098 */ 1099 unsigned long *faults_cpu; 1100 unsigned long faults[]; 1101 }; 1102 1103 /* 1104 * For functions that can be called in multiple contexts that permit reading 1105 * ->numa_group (see struct task_struct for locking rules). 1106 */ 1107 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1108 { 1109 return rcu_dereference_check(p->numa_group, p == current || 1110 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu))); 1111 } 1112 1113 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1114 { 1115 return rcu_dereference_protected(p->numa_group, p == current); 1116 } 1117 1118 static inline unsigned long group_faults_priv(struct numa_group *ng); 1119 static inline unsigned long group_faults_shared(struct numa_group *ng); 1120 1121 static unsigned int task_nr_scan_windows(struct task_struct *p) 1122 { 1123 unsigned long rss = 0; 1124 unsigned long nr_scan_pages; 1125 1126 /* 1127 * Calculations based on RSS as non-present and empty pages are skipped 1128 * by the PTE scanner and NUMA hinting faults should be trapped based 1129 * on resident pages 1130 */ 1131 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1132 rss = get_mm_rss(p->mm); 1133 if (!rss) 1134 rss = nr_scan_pages; 1135 1136 rss = round_up(rss, nr_scan_pages); 1137 return rss / nr_scan_pages; 1138 } 1139 1140 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1141 #define MAX_SCAN_WINDOW 2560 1142 1143 static unsigned int task_scan_min(struct task_struct *p) 1144 { 1145 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1146 unsigned int scan, floor; 1147 unsigned int windows = 1; 1148 1149 if (scan_size < MAX_SCAN_WINDOW) 1150 windows = MAX_SCAN_WINDOW / scan_size; 1151 floor = 1000 / windows; 1152 1153 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1154 return max_t(unsigned int, floor, scan); 1155 } 1156 1157 static unsigned int task_scan_start(struct task_struct *p) 1158 { 1159 unsigned long smin = task_scan_min(p); 1160 unsigned long period = smin; 1161 struct numa_group *ng; 1162 1163 /* Scale the maximum scan period with the amount of shared memory. */ 1164 rcu_read_lock(); 1165 ng = rcu_dereference(p->numa_group); 1166 if (ng) { 1167 unsigned long shared = group_faults_shared(ng); 1168 unsigned long private = group_faults_priv(ng); 1169 1170 period *= refcount_read(&ng->refcount); 1171 period *= shared + 1; 1172 period /= private + shared + 1; 1173 } 1174 rcu_read_unlock(); 1175 1176 return max(smin, period); 1177 } 1178 1179 static unsigned int task_scan_max(struct task_struct *p) 1180 { 1181 unsigned long smin = task_scan_min(p); 1182 unsigned long smax; 1183 struct numa_group *ng; 1184 1185 /* Watch for min being lower than max due to floor calculations */ 1186 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1187 1188 /* Scale the maximum scan period with the amount of shared memory. */ 1189 ng = deref_curr_numa_group(p); 1190 if (ng) { 1191 unsigned long shared = group_faults_shared(ng); 1192 unsigned long private = group_faults_priv(ng); 1193 unsigned long period = smax; 1194 1195 period *= refcount_read(&ng->refcount); 1196 period *= shared + 1; 1197 period /= private + shared + 1; 1198 1199 smax = max(smax, period); 1200 } 1201 1202 return max(smin, smax); 1203 } 1204 1205 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1206 { 1207 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1208 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1209 } 1210 1211 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1212 { 1213 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1214 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1215 } 1216 1217 /* Shared or private faults. */ 1218 #define NR_NUMA_HINT_FAULT_TYPES 2 1219 1220 /* Memory and CPU locality */ 1221 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1222 1223 /* Averaged statistics, and temporary buffers. */ 1224 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1225 1226 pid_t task_numa_group_id(struct task_struct *p) 1227 { 1228 struct numa_group *ng; 1229 pid_t gid = 0; 1230 1231 rcu_read_lock(); 1232 ng = rcu_dereference(p->numa_group); 1233 if (ng) 1234 gid = ng->gid; 1235 rcu_read_unlock(); 1236 1237 return gid; 1238 } 1239 1240 /* 1241 * The averaged statistics, shared & private, memory & CPU, 1242 * occupy the first half of the array. The second half of the 1243 * array is for current counters, which are averaged into the 1244 * first set by task_numa_placement. 1245 */ 1246 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1247 { 1248 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1249 } 1250 1251 static inline unsigned long task_faults(struct task_struct *p, int nid) 1252 { 1253 if (!p->numa_faults) 1254 return 0; 1255 1256 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1257 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1258 } 1259 1260 static inline unsigned long group_faults(struct task_struct *p, int nid) 1261 { 1262 struct numa_group *ng = deref_task_numa_group(p); 1263 1264 if (!ng) 1265 return 0; 1266 1267 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1268 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1269 } 1270 1271 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1272 { 1273 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1274 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1275 } 1276 1277 static inline unsigned long group_faults_priv(struct numa_group *ng) 1278 { 1279 unsigned long faults = 0; 1280 int node; 1281 1282 for_each_online_node(node) { 1283 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1284 } 1285 1286 return faults; 1287 } 1288 1289 static inline unsigned long group_faults_shared(struct numa_group *ng) 1290 { 1291 unsigned long faults = 0; 1292 int node; 1293 1294 for_each_online_node(node) { 1295 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1296 } 1297 1298 return faults; 1299 } 1300 1301 /* 1302 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1303 * considered part of a numa group's pseudo-interleaving set. Migrations 1304 * between these nodes are slowed down, to allow things to settle down. 1305 */ 1306 #define ACTIVE_NODE_FRACTION 3 1307 1308 static bool numa_is_active_node(int nid, struct numa_group *ng) 1309 { 1310 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1311 } 1312 1313 /* Handle placement on systems where not all nodes are directly connected. */ 1314 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1315 int maxdist, bool task) 1316 { 1317 unsigned long score = 0; 1318 int node; 1319 1320 /* 1321 * All nodes are directly connected, and the same distance 1322 * from each other. No need for fancy placement algorithms. 1323 */ 1324 if (sched_numa_topology_type == NUMA_DIRECT) 1325 return 0; 1326 1327 /* 1328 * This code is called for each node, introducing N^2 complexity, 1329 * which should be ok given the number of nodes rarely exceeds 8. 1330 */ 1331 for_each_online_node(node) { 1332 unsigned long faults; 1333 int dist = node_distance(nid, node); 1334 1335 /* 1336 * The furthest away nodes in the system are not interesting 1337 * for placement; nid was already counted. 1338 */ 1339 if (dist == sched_max_numa_distance || node == nid) 1340 continue; 1341 1342 /* 1343 * On systems with a backplane NUMA topology, compare groups 1344 * of nodes, and move tasks towards the group with the most 1345 * memory accesses. When comparing two nodes at distance 1346 * "hoplimit", only nodes closer by than "hoplimit" are part 1347 * of each group. Skip other nodes. 1348 */ 1349 if (sched_numa_topology_type == NUMA_BACKPLANE && 1350 dist >= maxdist) 1351 continue; 1352 1353 /* Add up the faults from nearby nodes. */ 1354 if (task) 1355 faults = task_faults(p, node); 1356 else 1357 faults = group_faults(p, node); 1358 1359 /* 1360 * On systems with a glueless mesh NUMA topology, there are 1361 * no fixed "groups of nodes". Instead, nodes that are not 1362 * directly connected bounce traffic through intermediate 1363 * nodes; a numa_group can occupy any set of nodes. 1364 * The further away a node is, the less the faults count. 1365 * This seems to result in good task placement. 1366 */ 1367 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1368 faults *= (sched_max_numa_distance - dist); 1369 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1370 } 1371 1372 score += faults; 1373 } 1374 1375 return score; 1376 } 1377 1378 /* 1379 * These return the fraction of accesses done by a particular task, or 1380 * task group, on a particular numa node. The group weight is given a 1381 * larger multiplier, in order to group tasks together that are almost 1382 * evenly spread out between numa nodes. 1383 */ 1384 static inline unsigned long task_weight(struct task_struct *p, int nid, 1385 int dist) 1386 { 1387 unsigned long faults, total_faults; 1388 1389 if (!p->numa_faults) 1390 return 0; 1391 1392 total_faults = p->total_numa_faults; 1393 1394 if (!total_faults) 1395 return 0; 1396 1397 faults = task_faults(p, nid); 1398 faults += score_nearby_nodes(p, nid, dist, true); 1399 1400 return 1000 * faults / total_faults; 1401 } 1402 1403 static inline unsigned long group_weight(struct task_struct *p, int nid, 1404 int dist) 1405 { 1406 struct numa_group *ng = deref_task_numa_group(p); 1407 unsigned long faults, total_faults; 1408 1409 if (!ng) 1410 return 0; 1411 1412 total_faults = ng->total_faults; 1413 1414 if (!total_faults) 1415 return 0; 1416 1417 faults = group_faults(p, nid); 1418 faults += score_nearby_nodes(p, nid, dist, false); 1419 1420 return 1000 * faults / total_faults; 1421 } 1422 1423 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1424 int src_nid, int dst_cpu) 1425 { 1426 struct numa_group *ng = deref_curr_numa_group(p); 1427 int dst_nid = cpu_to_node(dst_cpu); 1428 int last_cpupid, this_cpupid; 1429 1430 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1431 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1432 1433 /* 1434 * Allow first faults or private faults to migrate immediately early in 1435 * the lifetime of a task. The magic number 4 is based on waiting for 1436 * two full passes of the "multi-stage node selection" test that is 1437 * executed below. 1438 */ 1439 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1440 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1441 return true; 1442 1443 /* 1444 * Multi-stage node selection is used in conjunction with a periodic 1445 * migration fault to build a temporal task<->page relation. By using 1446 * a two-stage filter we remove short/unlikely relations. 1447 * 1448 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1449 * a task's usage of a particular page (n_p) per total usage of this 1450 * page (n_t) (in a given time-span) to a probability. 1451 * 1452 * Our periodic faults will sample this probability and getting the 1453 * same result twice in a row, given these samples are fully 1454 * independent, is then given by P(n)^2, provided our sample period 1455 * is sufficiently short compared to the usage pattern. 1456 * 1457 * This quadric squishes small probabilities, making it less likely we 1458 * act on an unlikely task<->page relation. 1459 */ 1460 if (!cpupid_pid_unset(last_cpupid) && 1461 cpupid_to_nid(last_cpupid) != dst_nid) 1462 return false; 1463 1464 /* Always allow migrate on private faults */ 1465 if (cpupid_match_pid(p, last_cpupid)) 1466 return true; 1467 1468 /* A shared fault, but p->numa_group has not been set up yet. */ 1469 if (!ng) 1470 return true; 1471 1472 /* 1473 * Destination node is much more heavily used than the source 1474 * node? Allow migration. 1475 */ 1476 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1477 ACTIVE_NODE_FRACTION) 1478 return true; 1479 1480 /* 1481 * Distribute memory according to CPU & memory use on each node, 1482 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1483 * 1484 * faults_cpu(dst) 3 faults_cpu(src) 1485 * --------------- * - > --------------- 1486 * faults_mem(dst) 4 faults_mem(src) 1487 */ 1488 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1489 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1490 } 1491 1492 /* 1493 * 'numa_type' describes the node at the moment of load balancing. 1494 */ 1495 enum numa_type { 1496 /* The node has spare capacity that can be used to run more tasks. */ 1497 node_has_spare = 0, 1498 /* 1499 * The node is fully used and the tasks don't compete for more CPU 1500 * cycles. Nevertheless, some tasks might wait before running. 1501 */ 1502 node_fully_busy, 1503 /* 1504 * The node is overloaded and can't provide expected CPU cycles to all 1505 * tasks. 1506 */ 1507 node_overloaded 1508 }; 1509 1510 /* Cached statistics for all CPUs within a node */ 1511 struct numa_stats { 1512 unsigned long load; 1513 unsigned long runnable; 1514 unsigned long util; 1515 /* Total compute capacity of CPUs on a node */ 1516 unsigned long compute_capacity; 1517 unsigned int nr_running; 1518 unsigned int weight; 1519 enum numa_type node_type; 1520 int idle_cpu; 1521 }; 1522 1523 static inline bool is_core_idle(int cpu) 1524 { 1525 #ifdef CONFIG_SCHED_SMT 1526 int sibling; 1527 1528 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1529 if (cpu == sibling) 1530 continue; 1531 1532 if (!idle_cpu(cpu)) 1533 return false; 1534 } 1535 #endif 1536 1537 return true; 1538 } 1539 1540 struct task_numa_env { 1541 struct task_struct *p; 1542 1543 int src_cpu, src_nid; 1544 int dst_cpu, dst_nid; 1545 1546 struct numa_stats src_stats, dst_stats; 1547 1548 int imbalance_pct; 1549 int dist; 1550 1551 struct task_struct *best_task; 1552 long best_imp; 1553 int best_cpu; 1554 }; 1555 1556 static unsigned long cpu_load(struct rq *rq); 1557 static unsigned long cpu_runnable(struct rq *rq); 1558 static unsigned long cpu_util(int cpu); 1559 static inline long adjust_numa_imbalance(int imbalance, 1560 int dst_running, int dst_weight); 1561 1562 static inline enum 1563 numa_type numa_classify(unsigned int imbalance_pct, 1564 struct numa_stats *ns) 1565 { 1566 if ((ns->nr_running > ns->weight) && 1567 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1568 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1569 return node_overloaded; 1570 1571 if ((ns->nr_running < ns->weight) || 1572 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1573 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1574 return node_has_spare; 1575 1576 return node_fully_busy; 1577 } 1578 1579 #ifdef CONFIG_SCHED_SMT 1580 /* Forward declarations of select_idle_sibling helpers */ 1581 static inline bool test_idle_cores(int cpu, bool def); 1582 static inline int numa_idle_core(int idle_core, int cpu) 1583 { 1584 if (!static_branch_likely(&sched_smt_present) || 1585 idle_core >= 0 || !test_idle_cores(cpu, false)) 1586 return idle_core; 1587 1588 /* 1589 * Prefer cores instead of packing HT siblings 1590 * and triggering future load balancing. 1591 */ 1592 if (is_core_idle(cpu)) 1593 idle_core = cpu; 1594 1595 return idle_core; 1596 } 1597 #else 1598 static inline int numa_idle_core(int idle_core, int cpu) 1599 { 1600 return idle_core; 1601 } 1602 #endif 1603 1604 /* 1605 * Gather all necessary information to make NUMA balancing placement 1606 * decisions that are compatible with standard load balancer. This 1607 * borrows code and logic from update_sg_lb_stats but sharing a 1608 * common implementation is impractical. 1609 */ 1610 static void update_numa_stats(struct task_numa_env *env, 1611 struct numa_stats *ns, int nid, 1612 bool find_idle) 1613 { 1614 int cpu, idle_core = -1; 1615 1616 memset(ns, 0, sizeof(*ns)); 1617 ns->idle_cpu = -1; 1618 1619 rcu_read_lock(); 1620 for_each_cpu(cpu, cpumask_of_node(nid)) { 1621 struct rq *rq = cpu_rq(cpu); 1622 1623 ns->load += cpu_load(rq); 1624 ns->runnable += cpu_runnable(rq); 1625 ns->util += cpu_util(cpu); 1626 ns->nr_running += rq->cfs.h_nr_running; 1627 ns->compute_capacity += capacity_of(cpu); 1628 1629 if (find_idle && !rq->nr_running && idle_cpu(cpu)) { 1630 if (READ_ONCE(rq->numa_migrate_on) || 1631 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1632 continue; 1633 1634 if (ns->idle_cpu == -1) 1635 ns->idle_cpu = cpu; 1636 1637 idle_core = numa_idle_core(idle_core, cpu); 1638 } 1639 } 1640 rcu_read_unlock(); 1641 1642 ns->weight = cpumask_weight(cpumask_of_node(nid)); 1643 1644 ns->node_type = numa_classify(env->imbalance_pct, ns); 1645 1646 if (idle_core >= 0) 1647 ns->idle_cpu = idle_core; 1648 } 1649 1650 static void task_numa_assign(struct task_numa_env *env, 1651 struct task_struct *p, long imp) 1652 { 1653 struct rq *rq = cpu_rq(env->dst_cpu); 1654 1655 /* Check if run-queue part of active NUMA balance. */ 1656 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 1657 int cpu; 1658 int start = env->dst_cpu; 1659 1660 /* Find alternative idle CPU. */ 1661 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) { 1662 if (cpu == env->best_cpu || !idle_cpu(cpu) || 1663 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 1664 continue; 1665 } 1666 1667 env->dst_cpu = cpu; 1668 rq = cpu_rq(env->dst_cpu); 1669 if (!xchg(&rq->numa_migrate_on, 1)) 1670 goto assign; 1671 } 1672 1673 /* Failed to find an alternative idle CPU */ 1674 return; 1675 } 1676 1677 assign: 1678 /* 1679 * Clear previous best_cpu/rq numa-migrate flag, since task now 1680 * found a better CPU to move/swap. 1681 */ 1682 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 1683 rq = cpu_rq(env->best_cpu); 1684 WRITE_ONCE(rq->numa_migrate_on, 0); 1685 } 1686 1687 if (env->best_task) 1688 put_task_struct(env->best_task); 1689 if (p) 1690 get_task_struct(p); 1691 1692 env->best_task = p; 1693 env->best_imp = imp; 1694 env->best_cpu = env->dst_cpu; 1695 } 1696 1697 static bool load_too_imbalanced(long src_load, long dst_load, 1698 struct task_numa_env *env) 1699 { 1700 long imb, old_imb; 1701 long orig_src_load, orig_dst_load; 1702 long src_capacity, dst_capacity; 1703 1704 /* 1705 * The load is corrected for the CPU capacity available on each node. 1706 * 1707 * src_load dst_load 1708 * ------------ vs --------- 1709 * src_capacity dst_capacity 1710 */ 1711 src_capacity = env->src_stats.compute_capacity; 1712 dst_capacity = env->dst_stats.compute_capacity; 1713 1714 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1715 1716 orig_src_load = env->src_stats.load; 1717 orig_dst_load = env->dst_stats.load; 1718 1719 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1720 1721 /* Would this change make things worse? */ 1722 return (imb > old_imb); 1723 } 1724 1725 /* 1726 * Maximum NUMA importance can be 1998 (2*999); 1727 * SMALLIMP @ 30 would be close to 1998/64. 1728 * Used to deter task migration. 1729 */ 1730 #define SMALLIMP 30 1731 1732 /* 1733 * This checks if the overall compute and NUMA accesses of the system would 1734 * be improved if the source tasks was migrated to the target dst_cpu taking 1735 * into account that it might be best if task running on the dst_cpu should 1736 * be exchanged with the source task 1737 */ 1738 static bool task_numa_compare(struct task_numa_env *env, 1739 long taskimp, long groupimp, bool maymove) 1740 { 1741 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1742 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1743 long imp = p_ng ? groupimp : taskimp; 1744 struct task_struct *cur; 1745 long src_load, dst_load; 1746 int dist = env->dist; 1747 long moveimp = imp; 1748 long load; 1749 bool stopsearch = false; 1750 1751 if (READ_ONCE(dst_rq->numa_migrate_on)) 1752 return false; 1753 1754 rcu_read_lock(); 1755 cur = rcu_dereference(dst_rq->curr); 1756 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1757 cur = NULL; 1758 1759 /* 1760 * Because we have preemption enabled we can get migrated around and 1761 * end try selecting ourselves (current == env->p) as a swap candidate. 1762 */ 1763 if (cur == env->p) { 1764 stopsearch = true; 1765 goto unlock; 1766 } 1767 1768 if (!cur) { 1769 if (maymove && moveimp >= env->best_imp) 1770 goto assign; 1771 else 1772 goto unlock; 1773 } 1774 1775 /* Skip this swap candidate if cannot move to the source cpu. */ 1776 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1777 goto unlock; 1778 1779 /* 1780 * Skip this swap candidate if it is not moving to its preferred 1781 * node and the best task is. 1782 */ 1783 if (env->best_task && 1784 env->best_task->numa_preferred_nid == env->src_nid && 1785 cur->numa_preferred_nid != env->src_nid) { 1786 goto unlock; 1787 } 1788 1789 /* 1790 * "imp" is the fault differential for the source task between the 1791 * source and destination node. Calculate the total differential for 1792 * the source task and potential destination task. The more negative 1793 * the value is, the more remote accesses that would be expected to 1794 * be incurred if the tasks were swapped. 1795 * 1796 * If dst and source tasks are in the same NUMA group, or not 1797 * in any group then look only at task weights. 1798 */ 1799 cur_ng = rcu_dereference(cur->numa_group); 1800 if (cur_ng == p_ng) { 1801 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1802 task_weight(cur, env->dst_nid, dist); 1803 /* 1804 * Add some hysteresis to prevent swapping the 1805 * tasks within a group over tiny differences. 1806 */ 1807 if (cur_ng) 1808 imp -= imp / 16; 1809 } else { 1810 /* 1811 * Compare the group weights. If a task is all by itself 1812 * (not part of a group), use the task weight instead. 1813 */ 1814 if (cur_ng && p_ng) 1815 imp += group_weight(cur, env->src_nid, dist) - 1816 group_weight(cur, env->dst_nid, dist); 1817 else 1818 imp += task_weight(cur, env->src_nid, dist) - 1819 task_weight(cur, env->dst_nid, dist); 1820 } 1821 1822 /* Discourage picking a task already on its preferred node */ 1823 if (cur->numa_preferred_nid == env->dst_nid) 1824 imp -= imp / 16; 1825 1826 /* 1827 * Encourage picking a task that moves to its preferred node. 1828 * This potentially makes imp larger than it's maximum of 1829 * 1998 (see SMALLIMP and task_weight for why) but in this 1830 * case, it does not matter. 1831 */ 1832 if (cur->numa_preferred_nid == env->src_nid) 1833 imp += imp / 8; 1834 1835 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1836 imp = moveimp; 1837 cur = NULL; 1838 goto assign; 1839 } 1840 1841 /* 1842 * Prefer swapping with a task moving to its preferred node over a 1843 * task that is not. 1844 */ 1845 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 1846 env->best_task->numa_preferred_nid != env->src_nid) { 1847 goto assign; 1848 } 1849 1850 /* 1851 * If the NUMA importance is less than SMALLIMP, 1852 * task migration might only result in ping pong 1853 * of tasks and also hurt performance due to cache 1854 * misses. 1855 */ 1856 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1857 goto unlock; 1858 1859 /* 1860 * In the overloaded case, try and keep the load balanced. 1861 */ 1862 load = task_h_load(env->p) - task_h_load(cur); 1863 if (!load) 1864 goto assign; 1865 1866 dst_load = env->dst_stats.load + load; 1867 src_load = env->src_stats.load - load; 1868 1869 if (load_too_imbalanced(src_load, dst_load, env)) 1870 goto unlock; 1871 1872 assign: 1873 /* Evaluate an idle CPU for a task numa move. */ 1874 if (!cur) { 1875 int cpu = env->dst_stats.idle_cpu; 1876 1877 /* Nothing cached so current CPU went idle since the search. */ 1878 if (cpu < 0) 1879 cpu = env->dst_cpu; 1880 1881 /* 1882 * If the CPU is no longer truly idle and the previous best CPU 1883 * is, keep using it. 1884 */ 1885 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 1886 idle_cpu(env->best_cpu)) { 1887 cpu = env->best_cpu; 1888 } 1889 1890 env->dst_cpu = cpu; 1891 } 1892 1893 task_numa_assign(env, cur, imp); 1894 1895 /* 1896 * If a move to idle is allowed because there is capacity or load 1897 * balance improves then stop the search. While a better swap 1898 * candidate may exist, a search is not free. 1899 */ 1900 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 1901 stopsearch = true; 1902 1903 /* 1904 * If a swap candidate must be identified and the current best task 1905 * moves its preferred node then stop the search. 1906 */ 1907 if (!maymove && env->best_task && 1908 env->best_task->numa_preferred_nid == env->src_nid) { 1909 stopsearch = true; 1910 } 1911 unlock: 1912 rcu_read_unlock(); 1913 1914 return stopsearch; 1915 } 1916 1917 static void task_numa_find_cpu(struct task_numa_env *env, 1918 long taskimp, long groupimp) 1919 { 1920 bool maymove = false; 1921 int cpu; 1922 1923 /* 1924 * If dst node has spare capacity, then check if there is an 1925 * imbalance that would be overruled by the load balancer. 1926 */ 1927 if (env->dst_stats.node_type == node_has_spare) { 1928 unsigned int imbalance; 1929 int src_running, dst_running; 1930 1931 /* 1932 * Would movement cause an imbalance? Note that if src has 1933 * more running tasks that the imbalance is ignored as the 1934 * move improves the imbalance from the perspective of the 1935 * CPU load balancer. 1936 * */ 1937 src_running = env->src_stats.nr_running - 1; 1938 dst_running = env->dst_stats.nr_running + 1; 1939 imbalance = max(0, dst_running - src_running); 1940 imbalance = adjust_numa_imbalance(imbalance, dst_running, 1941 env->dst_stats.weight); 1942 1943 /* Use idle CPU if there is no imbalance */ 1944 if (!imbalance) { 1945 maymove = true; 1946 if (env->dst_stats.idle_cpu >= 0) { 1947 env->dst_cpu = env->dst_stats.idle_cpu; 1948 task_numa_assign(env, NULL, 0); 1949 return; 1950 } 1951 } 1952 } else { 1953 long src_load, dst_load, load; 1954 /* 1955 * If the improvement from just moving env->p direction is better 1956 * than swapping tasks around, check if a move is possible. 1957 */ 1958 load = task_h_load(env->p); 1959 dst_load = env->dst_stats.load + load; 1960 src_load = env->src_stats.load - load; 1961 maymove = !load_too_imbalanced(src_load, dst_load, env); 1962 } 1963 1964 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1965 /* Skip this CPU if the source task cannot migrate */ 1966 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1967 continue; 1968 1969 env->dst_cpu = cpu; 1970 if (task_numa_compare(env, taskimp, groupimp, maymove)) 1971 break; 1972 } 1973 } 1974 1975 static int task_numa_migrate(struct task_struct *p) 1976 { 1977 struct task_numa_env env = { 1978 .p = p, 1979 1980 .src_cpu = task_cpu(p), 1981 .src_nid = task_node(p), 1982 1983 .imbalance_pct = 112, 1984 1985 .best_task = NULL, 1986 .best_imp = 0, 1987 .best_cpu = -1, 1988 }; 1989 unsigned long taskweight, groupweight; 1990 struct sched_domain *sd; 1991 long taskimp, groupimp; 1992 struct numa_group *ng; 1993 struct rq *best_rq; 1994 int nid, ret, dist; 1995 1996 /* 1997 * Pick the lowest SD_NUMA domain, as that would have the smallest 1998 * imbalance and would be the first to start moving tasks about. 1999 * 2000 * And we want to avoid any moving of tasks about, as that would create 2001 * random movement of tasks -- counter the numa conditions we're trying 2002 * to satisfy here. 2003 */ 2004 rcu_read_lock(); 2005 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2006 if (sd) 2007 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2008 rcu_read_unlock(); 2009 2010 /* 2011 * Cpusets can break the scheduler domain tree into smaller 2012 * balance domains, some of which do not cross NUMA boundaries. 2013 * Tasks that are "trapped" in such domains cannot be migrated 2014 * elsewhere, so there is no point in (re)trying. 2015 */ 2016 if (unlikely(!sd)) { 2017 sched_setnuma(p, task_node(p)); 2018 return -EINVAL; 2019 } 2020 2021 env.dst_nid = p->numa_preferred_nid; 2022 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2023 taskweight = task_weight(p, env.src_nid, dist); 2024 groupweight = group_weight(p, env.src_nid, dist); 2025 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2026 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2027 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2028 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2029 2030 /* Try to find a spot on the preferred nid. */ 2031 task_numa_find_cpu(&env, taskimp, groupimp); 2032 2033 /* 2034 * Look at other nodes in these cases: 2035 * - there is no space available on the preferred_nid 2036 * - the task is part of a numa_group that is interleaved across 2037 * multiple NUMA nodes; in order to better consolidate the group, 2038 * we need to check other locations. 2039 */ 2040 ng = deref_curr_numa_group(p); 2041 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2042 for_each_online_node(nid) { 2043 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2044 continue; 2045 2046 dist = node_distance(env.src_nid, env.dst_nid); 2047 if (sched_numa_topology_type == NUMA_BACKPLANE && 2048 dist != env.dist) { 2049 taskweight = task_weight(p, env.src_nid, dist); 2050 groupweight = group_weight(p, env.src_nid, dist); 2051 } 2052 2053 /* Only consider nodes where both task and groups benefit */ 2054 taskimp = task_weight(p, nid, dist) - taskweight; 2055 groupimp = group_weight(p, nid, dist) - groupweight; 2056 if (taskimp < 0 && groupimp < 0) 2057 continue; 2058 2059 env.dist = dist; 2060 env.dst_nid = nid; 2061 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2062 task_numa_find_cpu(&env, taskimp, groupimp); 2063 } 2064 } 2065 2066 /* 2067 * If the task is part of a workload that spans multiple NUMA nodes, 2068 * and is migrating into one of the workload's active nodes, remember 2069 * this node as the task's preferred numa node, so the workload can 2070 * settle down. 2071 * A task that migrated to a second choice node will be better off 2072 * trying for a better one later. Do not set the preferred node here. 2073 */ 2074 if (ng) { 2075 if (env.best_cpu == -1) 2076 nid = env.src_nid; 2077 else 2078 nid = cpu_to_node(env.best_cpu); 2079 2080 if (nid != p->numa_preferred_nid) 2081 sched_setnuma(p, nid); 2082 } 2083 2084 /* No better CPU than the current one was found. */ 2085 if (env.best_cpu == -1) { 2086 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2087 return -EAGAIN; 2088 } 2089 2090 best_rq = cpu_rq(env.best_cpu); 2091 if (env.best_task == NULL) { 2092 ret = migrate_task_to(p, env.best_cpu); 2093 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2094 if (ret != 0) 2095 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2096 return ret; 2097 } 2098 2099 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2100 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2101 2102 if (ret != 0) 2103 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2104 put_task_struct(env.best_task); 2105 return ret; 2106 } 2107 2108 /* Attempt to migrate a task to a CPU on the preferred node. */ 2109 static void numa_migrate_preferred(struct task_struct *p) 2110 { 2111 unsigned long interval = HZ; 2112 2113 /* This task has no NUMA fault statistics yet */ 2114 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2115 return; 2116 2117 /* Periodically retry migrating the task to the preferred node */ 2118 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2119 p->numa_migrate_retry = jiffies + interval; 2120 2121 /* Success if task is already running on preferred CPU */ 2122 if (task_node(p) == p->numa_preferred_nid) 2123 return; 2124 2125 /* Otherwise, try migrate to a CPU on the preferred node */ 2126 task_numa_migrate(p); 2127 } 2128 2129 /* 2130 * Find out how many nodes on the workload is actively running on. Do this by 2131 * tracking the nodes from which NUMA hinting faults are triggered. This can 2132 * be different from the set of nodes where the workload's memory is currently 2133 * located. 2134 */ 2135 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2136 { 2137 unsigned long faults, max_faults = 0; 2138 int nid, active_nodes = 0; 2139 2140 for_each_online_node(nid) { 2141 faults = group_faults_cpu(numa_group, nid); 2142 if (faults > max_faults) 2143 max_faults = faults; 2144 } 2145 2146 for_each_online_node(nid) { 2147 faults = group_faults_cpu(numa_group, nid); 2148 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2149 active_nodes++; 2150 } 2151 2152 numa_group->max_faults_cpu = max_faults; 2153 numa_group->active_nodes = active_nodes; 2154 } 2155 2156 /* 2157 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2158 * increments. The more local the fault statistics are, the higher the scan 2159 * period will be for the next scan window. If local/(local+remote) ratio is 2160 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2161 * the scan period will decrease. Aim for 70% local accesses. 2162 */ 2163 #define NUMA_PERIOD_SLOTS 10 2164 #define NUMA_PERIOD_THRESHOLD 7 2165 2166 /* 2167 * Increase the scan period (slow down scanning) if the majority of 2168 * our memory is already on our local node, or if the majority of 2169 * the page accesses are shared with other processes. 2170 * Otherwise, decrease the scan period. 2171 */ 2172 static void update_task_scan_period(struct task_struct *p, 2173 unsigned long shared, unsigned long private) 2174 { 2175 unsigned int period_slot; 2176 int lr_ratio, ps_ratio; 2177 int diff; 2178 2179 unsigned long remote = p->numa_faults_locality[0]; 2180 unsigned long local = p->numa_faults_locality[1]; 2181 2182 /* 2183 * If there were no record hinting faults then either the task is 2184 * completely idle or all activity is areas that are not of interest 2185 * to automatic numa balancing. Related to that, if there were failed 2186 * migration then it implies we are migrating too quickly or the local 2187 * node is overloaded. In either case, scan slower 2188 */ 2189 if (local + shared == 0 || p->numa_faults_locality[2]) { 2190 p->numa_scan_period = min(p->numa_scan_period_max, 2191 p->numa_scan_period << 1); 2192 2193 p->mm->numa_next_scan = jiffies + 2194 msecs_to_jiffies(p->numa_scan_period); 2195 2196 return; 2197 } 2198 2199 /* 2200 * Prepare to scale scan period relative to the current period. 2201 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2202 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2203 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2204 */ 2205 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2206 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2207 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2208 2209 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2210 /* 2211 * Most memory accesses are local. There is no need to 2212 * do fast NUMA scanning, since memory is already local. 2213 */ 2214 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2215 if (!slot) 2216 slot = 1; 2217 diff = slot * period_slot; 2218 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2219 /* 2220 * Most memory accesses are shared with other tasks. 2221 * There is no point in continuing fast NUMA scanning, 2222 * since other tasks may just move the memory elsewhere. 2223 */ 2224 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2225 if (!slot) 2226 slot = 1; 2227 diff = slot * period_slot; 2228 } else { 2229 /* 2230 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2231 * yet they are not on the local NUMA node. Speed up 2232 * NUMA scanning to get the memory moved over. 2233 */ 2234 int ratio = max(lr_ratio, ps_ratio); 2235 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2236 } 2237 2238 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2239 task_scan_min(p), task_scan_max(p)); 2240 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2241 } 2242 2243 /* 2244 * Get the fraction of time the task has been running since the last 2245 * NUMA placement cycle. The scheduler keeps similar statistics, but 2246 * decays those on a 32ms period, which is orders of magnitude off 2247 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2248 * stats only if the task is so new there are no NUMA statistics yet. 2249 */ 2250 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2251 { 2252 u64 runtime, delta, now; 2253 /* Use the start of this time slice to avoid calculations. */ 2254 now = p->se.exec_start; 2255 runtime = p->se.sum_exec_runtime; 2256 2257 if (p->last_task_numa_placement) { 2258 delta = runtime - p->last_sum_exec_runtime; 2259 *period = now - p->last_task_numa_placement; 2260 2261 /* Avoid time going backwards, prevent potential divide error: */ 2262 if (unlikely((s64)*period < 0)) 2263 *period = 0; 2264 } else { 2265 delta = p->se.avg.load_sum; 2266 *period = LOAD_AVG_MAX; 2267 } 2268 2269 p->last_sum_exec_runtime = runtime; 2270 p->last_task_numa_placement = now; 2271 2272 return delta; 2273 } 2274 2275 /* 2276 * Determine the preferred nid for a task in a numa_group. This needs to 2277 * be done in a way that produces consistent results with group_weight, 2278 * otherwise workloads might not converge. 2279 */ 2280 static int preferred_group_nid(struct task_struct *p, int nid) 2281 { 2282 nodemask_t nodes; 2283 int dist; 2284 2285 /* Direct connections between all NUMA nodes. */ 2286 if (sched_numa_topology_type == NUMA_DIRECT) 2287 return nid; 2288 2289 /* 2290 * On a system with glueless mesh NUMA topology, group_weight 2291 * scores nodes according to the number of NUMA hinting faults on 2292 * both the node itself, and on nearby nodes. 2293 */ 2294 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2295 unsigned long score, max_score = 0; 2296 int node, max_node = nid; 2297 2298 dist = sched_max_numa_distance; 2299 2300 for_each_online_node(node) { 2301 score = group_weight(p, node, dist); 2302 if (score > max_score) { 2303 max_score = score; 2304 max_node = node; 2305 } 2306 } 2307 return max_node; 2308 } 2309 2310 /* 2311 * Finding the preferred nid in a system with NUMA backplane 2312 * interconnect topology is more involved. The goal is to locate 2313 * tasks from numa_groups near each other in the system, and 2314 * untangle workloads from different sides of the system. This requires 2315 * searching down the hierarchy of node groups, recursively searching 2316 * inside the highest scoring group of nodes. The nodemask tricks 2317 * keep the complexity of the search down. 2318 */ 2319 nodes = node_online_map; 2320 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2321 unsigned long max_faults = 0; 2322 nodemask_t max_group = NODE_MASK_NONE; 2323 int a, b; 2324 2325 /* Are there nodes at this distance from each other? */ 2326 if (!find_numa_distance(dist)) 2327 continue; 2328 2329 for_each_node_mask(a, nodes) { 2330 unsigned long faults = 0; 2331 nodemask_t this_group; 2332 nodes_clear(this_group); 2333 2334 /* Sum group's NUMA faults; includes a==b case. */ 2335 for_each_node_mask(b, nodes) { 2336 if (node_distance(a, b) < dist) { 2337 faults += group_faults(p, b); 2338 node_set(b, this_group); 2339 node_clear(b, nodes); 2340 } 2341 } 2342 2343 /* Remember the top group. */ 2344 if (faults > max_faults) { 2345 max_faults = faults; 2346 max_group = this_group; 2347 /* 2348 * subtle: at the smallest distance there is 2349 * just one node left in each "group", the 2350 * winner is the preferred nid. 2351 */ 2352 nid = a; 2353 } 2354 } 2355 /* Next round, evaluate the nodes within max_group. */ 2356 if (!max_faults) 2357 break; 2358 nodes = max_group; 2359 } 2360 return nid; 2361 } 2362 2363 static void task_numa_placement(struct task_struct *p) 2364 { 2365 int seq, nid, max_nid = NUMA_NO_NODE; 2366 unsigned long max_faults = 0; 2367 unsigned long fault_types[2] = { 0, 0 }; 2368 unsigned long total_faults; 2369 u64 runtime, period; 2370 spinlock_t *group_lock = NULL; 2371 struct numa_group *ng; 2372 2373 /* 2374 * The p->mm->numa_scan_seq field gets updated without 2375 * exclusive access. Use READ_ONCE() here to ensure 2376 * that the field is read in a single access: 2377 */ 2378 seq = READ_ONCE(p->mm->numa_scan_seq); 2379 if (p->numa_scan_seq == seq) 2380 return; 2381 p->numa_scan_seq = seq; 2382 p->numa_scan_period_max = task_scan_max(p); 2383 2384 total_faults = p->numa_faults_locality[0] + 2385 p->numa_faults_locality[1]; 2386 runtime = numa_get_avg_runtime(p, &period); 2387 2388 /* If the task is part of a group prevent parallel updates to group stats */ 2389 ng = deref_curr_numa_group(p); 2390 if (ng) { 2391 group_lock = &ng->lock; 2392 spin_lock_irq(group_lock); 2393 } 2394 2395 /* Find the node with the highest number of faults */ 2396 for_each_online_node(nid) { 2397 /* Keep track of the offsets in numa_faults array */ 2398 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2399 unsigned long faults = 0, group_faults = 0; 2400 int priv; 2401 2402 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2403 long diff, f_diff, f_weight; 2404 2405 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2406 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2407 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2408 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2409 2410 /* Decay existing window, copy faults since last scan */ 2411 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2412 fault_types[priv] += p->numa_faults[membuf_idx]; 2413 p->numa_faults[membuf_idx] = 0; 2414 2415 /* 2416 * Normalize the faults_from, so all tasks in a group 2417 * count according to CPU use, instead of by the raw 2418 * number of faults. Tasks with little runtime have 2419 * little over-all impact on throughput, and thus their 2420 * faults are less important. 2421 */ 2422 f_weight = div64_u64(runtime << 16, period + 1); 2423 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2424 (total_faults + 1); 2425 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2426 p->numa_faults[cpubuf_idx] = 0; 2427 2428 p->numa_faults[mem_idx] += diff; 2429 p->numa_faults[cpu_idx] += f_diff; 2430 faults += p->numa_faults[mem_idx]; 2431 p->total_numa_faults += diff; 2432 if (ng) { 2433 /* 2434 * safe because we can only change our own group 2435 * 2436 * mem_idx represents the offset for a given 2437 * nid and priv in a specific region because it 2438 * is at the beginning of the numa_faults array. 2439 */ 2440 ng->faults[mem_idx] += diff; 2441 ng->faults_cpu[mem_idx] += f_diff; 2442 ng->total_faults += diff; 2443 group_faults += ng->faults[mem_idx]; 2444 } 2445 } 2446 2447 if (!ng) { 2448 if (faults > max_faults) { 2449 max_faults = faults; 2450 max_nid = nid; 2451 } 2452 } else if (group_faults > max_faults) { 2453 max_faults = group_faults; 2454 max_nid = nid; 2455 } 2456 } 2457 2458 if (ng) { 2459 numa_group_count_active_nodes(ng); 2460 spin_unlock_irq(group_lock); 2461 max_nid = preferred_group_nid(p, max_nid); 2462 } 2463 2464 if (max_faults) { 2465 /* Set the new preferred node */ 2466 if (max_nid != p->numa_preferred_nid) 2467 sched_setnuma(p, max_nid); 2468 } 2469 2470 update_task_scan_period(p, fault_types[0], fault_types[1]); 2471 } 2472 2473 static inline int get_numa_group(struct numa_group *grp) 2474 { 2475 return refcount_inc_not_zero(&grp->refcount); 2476 } 2477 2478 static inline void put_numa_group(struct numa_group *grp) 2479 { 2480 if (refcount_dec_and_test(&grp->refcount)) 2481 kfree_rcu(grp, rcu); 2482 } 2483 2484 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2485 int *priv) 2486 { 2487 struct numa_group *grp, *my_grp; 2488 struct task_struct *tsk; 2489 bool join = false; 2490 int cpu = cpupid_to_cpu(cpupid); 2491 int i; 2492 2493 if (unlikely(!deref_curr_numa_group(p))) { 2494 unsigned int size = sizeof(struct numa_group) + 2495 4*nr_node_ids*sizeof(unsigned long); 2496 2497 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2498 if (!grp) 2499 return; 2500 2501 refcount_set(&grp->refcount, 1); 2502 grp->active_nodes = 1; 2503 grp->max_faults_cpu = 0; 2504 spin_lock_init(&grp->lock); 2505 grp->gid = p->pid; 2506 /* Second half of the array tracks nids where faults happen */ 2507 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2508 nr_node_ids; 2509 2510 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2511 grp->faults[i] = p->numa_faults[i]; 2512 2513 grp->total_faults = p->total_numa_faults; 2514 2515 grp->nr_tasks++; 2516 rcu_assign_pointer(p->numa_group, grp); 2517 } 2518 2519 rcu_read_lock(); 2520 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2521 2522 if (!cpupid_match_pid(tsk, cpupid)) 2523 goto no_join; 2524 2525 grp = rcu_dereference(tsk->numa_group); 2526 if (!grp) 2527 goto no_join; 2528 2529 my_grp = deref_curr_numa_group(p); 2530 if (grp == my_grp) 2531 goto no_join; 2532 2533 /* 2534 * Only join the other group if its bigger; if we're the bigger group, 2535 * the other task will join us. 2536 */ 2537 if (my_grp->nr_tasks > grp->nr_tasks) 2538 goto no_join; 2539 2540 /* 2541 * Tie-break on the grp address. 2542 */ 2543 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2544 goto no_join; 2545 2546 /* Always join threads in the same process. */ 2547 if (tsk->mm == current->mm) 2548 join = true; 2549 2550 /* Simple filter to avoid false positives due to PID collisions */ 2551 if (flags & TNF_SHARED) 2552 join = true; 2553 2554 /* Update priv based on whether false sharing was detected */ 2555 *priv = !join; 2556 2557 if (join && !get_numa_group(grp)) 2558 goto no_join; 2559 2560 rcu_read_unlock(); 2561 2562 if (!join) 2563 return; 2564 2565 BUG_ON(irqs_disabled()); 2566 double_lock_irq(&my_grp->lock, &grp->lock); 2567 2568 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2569 my_grp->faults[i] -= p->numa_faults[i]; 2570 grp->faults[i] += p->numa_faults[i]; 2571 } 2572 my_grp->total_faults -= p->total_numa_faults; 2573 grp->total_faults += p->total_numa_faults; 2574 2575 my_grp->nr_tasks--; 2576 grp->nr_tasks++; 2577 2578 spin_unlock(&my_grp->lock); 2579 spin_unlock_irq(&grp->lock); 2580 2581 rcu_assign_pointer(p->numa_group, grp); 2582 2583 put_numa_group(my_grp); 2584 return; 2585 2586 no_join: 2587 rcu_read_unlock(); 2588 return; 2589 } 2590 2591 /* 2592 * Get rid of NUMA statistics associated with a task (either current or dead). 2593 * If @final is set, the task is dead and has reached refcount zero, so we can 2594 * safely free all relevant data structures. Otherwise, there might be 2595 * concurrent reads from places like load balancing and procfs, and we should 2596 * reset the data back to default state without freeing ->numa_faults. 2597 */ 2598 void task_numa_free(struct task_struct *p, bool final) 2599 { 2600 /* safe: p either is current or is being freed by current */ 2601 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2602 unsigned long *numa_faults = p->numa_faults; 2603 unsigned long flags; 2604 int i; 2605 2606 if (!numa_faults) 2607 return; 2608 2609 if (grp) { 2610 spin_lock_irqsave(&grp->lock, flags); 2611 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2612 grp->faults[i] -= p->numa_faults[i]; 2613 grp->total_faults -= p->total_numa_faults; 2614 2615 grp->nr_tasks--; 2616 spin_unlock_irqrestore(&grp->lock, flags); 2617 RCU_INIT_POINTER(p->numa_group, NULL); 2618 put_numa_group(grp); 2619 } 2620 2621 if (final) { 2622 p->numa_faults = NULL; 2623 kfree(numa_faults); 2624 } else { 2625 p->total_numa_faults = 0; 2626 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2627 numa_faults[i] = 0; 2628 } 2629 } 2630 2631 /* 2632 * Got a PROT_NONE fault for a page on @node. 2633 */ 2634 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2635 { 2636 struct task_struct *p = current; 2637 bool migrated = flags & TNF_MIGRATED; 2638 int cpu_node = task_node(current); 2639 int local = !!(flags & TNF_FAULT_LOCAL); 2640 struct numa_group *ng; 2641 int priv; 2642 2643 if (!static_branch_likely(&sched_numa_balancing)) 2644 return; 2645 2646 /* for example, ksmd faulting in a user's mm */ 2647 if (!p->mm) 2648 return; 2649 2650 /* Allocate buffer to track faults on a per-node basis */ 2651 if (unlikely(!p->numa_faults)) { 2652 int size = sizeof(*p->numa_faults) * 2653 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2654 2655 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2656 if (!p->numa_faults) 2657 return; 2658 2659 p->total_numa_faults = 0; 2660 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2661 } 2662 2663 /* 2664 * First accesses are treated as private, otherwise consider accesses 2665 * to be private if the accessing pid has not changed 2666 */ 2667 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2668 priv = 1; 2669 } else { 2670 priv = cpupid_match_pid(p, last_cpupid); 2671 if (!priv && !(flags & TNF_NO_GROUP)) 2672 task_numa_group(p, last_cpupid, flags, &priv); 2673 } 2674 2675 /* 2676 * If a workload spans multiple NUMA nodes, a shared fault that 2677 * occurs wholly within the set of nodes that the workload is 2678 * actively using should be counted as local. This allows the 2679 * scan rate to slow down when a workload has settled down. 2680 */ 2681 ng = deref_curr_numa_group(p); 2682 if (!priv && !local && ng && ng->active_nodes > 1 && 2683 numa_is_active_node(cpu_node, ng) && 2684 numa_is_active_node(mem_node, ng)) 2685 local = 1; 2686 2687 /* 2688 * Retry to migrate task to preferred node periodically, in case it 2689 * previously failed, or the scheduler moved us. 2690 */ 2691 if (time_after(jiffies, p->numa_migrate_retry)) { 2692 task_numa_placement(p); 2693 numa_migrate_preferred(p); 2694 } 2695 2696 if (migrated) 2697 p->numa_pages_migrated += pages; 2698 if (flags & TNF_MIGRATE_FAIL) 2699 p->numa_faults_locality[2] += pages; 2700 2701 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2702 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2703 p->numa_faults_locality[local] += pages; 2704 } 2705 2706 static void reset_ptenuma_scan(struct task_struct *p) 2707 { 2708 /* 2709 * We only did a read acquisition of the mmap sem, so 2710 * p->mm->numa_scan_seq is written to without exclusive access 2711 * and the update is not guaranteed to be atomic. That's not 2712 * much of an issue though, since this is just used for 2713 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2714 * expensive, to avoid any form of compiler optimizations: 2715 */ 2716 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2717 p->mm->numa_scan_offset = 0; 2718 } 2719 2720 /* 2721 * The expensive part of numa migration is done from task_work context. 2722 * Triggered from task_tick_numa(). 2723 */ 2724 static void task_numa_work(struct callback_head *work) 2725 { 2726 unsigned long migrate, next_scan, now = jiffies; 2727 struct task_struct *p = current; 2728 struct mm_struct *mm = p->mm; 2729 u64 runtime = p->se.sum_exec_runtime; 2730 struct vm_area_struct *vma; 2731 unsigned long start, end; 2732 unsigned long nr_pte_updates = 0; 2733 long pages, virtpages; 2734 2735 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2736 2737 work->next = work; 2738 /* 2739 * Who cares about NUMA placement when they're dying. 2740 * 2741 * NOTE: make sure not to dereference p->mm before this check, 2742 * exit_task_work() happens _after_ exit_mm() so we could be called 2743 * without p->mm even though we still had it when we enqueued this 2744 * work. 2745 */ 2746 if (p->flags & PF_EXITING) 2747 return; 2748 2749 if (!mm->numa_next_scan) { 2750 mm->numa_next_scan = now + 2751 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2752 } 2753 2754 /* 2755 * Enforce maximal scan/migration frequency.. 2756 */ 2757 migrate = mm->numa_next_scan; 2758 if (time_before(now, migrate)) 2759 return; 2760 2761 if (p->numa_scan_period == 0) { 2762 p->numa_scan_period_max = task_scan_max(p); 2763 p->numa_scan_period = task_scan_start(p); 2764 } 2765 2766 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2767 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2768 return; 2769 2770 /* 2771 * Delay this task enough that another task of this mm will likely win 2772 * the next time around. 2773 */ 2774 p->node_stamp += 2 * TICK_NSEC; 2775 2776 start = mm->numa_scan_offset; 2777 pages = sysctl_numa_balancing_scan_size; 2778 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2779 virtpages = pages * 8; /* Scan up to this much virtual space */ 2780 if (!pages) 2781 return; 2782 2783 2784 if (!mmap_read_trylock(mm)) 2785 return; 2786 vma = find_vma(mm, start); 2787 if (!vma) { 2788 reset_ptenuma_scan(p); 2789 start = 0; 2790 vma = mm->mmap; 2791 } 2792 for (; vma; vma = vma->vm_next) { 2793 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2794 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2795 continue; 2796 } 2797 2798 /* 2799 * Shared library pages mapped by multiple processes are not 2800 * migrated as it is expected they are cache replicated. Avoid 2801 * hinting faults in read-only file-backed mappings or the vdso 2802 * as migrating the pages will be of marginal benefit. 2803 */ 2804 if (!vma->vm_mm || 2805 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2806 continue; 2807 2808 /* 2809 * Skip inaccessible VMAs to avoid any confusion between 2810 * PROT_NONE and NUMA hinting ptes 2811 */ 2812 if (!vma_is_accessible(vma)) 2813 continue; 2814 2815 do { 2816 start = max(start, vma->vm_start); 2817 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2818 end = min(end, vma->vm_end); 2819 nr_pte_updates = change_prot_numa(vma, start, end); 2820 2821 /* 2822 * Try to scan sysctl_numa_balancing_size worth of 2823 * hpages that have at least one present PTE that 2824 * is not already pte-numa. If the VMA contains 2825 * areas that are unused or already full of prot_numa 2826 * PTEs, scan up to virtpages, to skip through those 2827 * areas faster. 2828 */ 2829 if (nr_pte_updates) 2830 pages -= (end - start) >> PAGE_SHIFT; 2831 virtpages -= (end - start) >> PAGE_SHIFT; 2832 2833 start = end; 2834 if (pages <= 0 || virtpages <= 0) 2835 goto out; 2836 2837 cond_resched(); 2838 } while (end != vma->vm_end); 2839 } 2840 2841 out: 2842 /* 2843 * It is possible to reach the end of the VMA list but the last few 2844 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2845 * would find the !migratable VMA on the next scan but not reset the 2846 * scanner to the start so check it now. 2847 */ 2848 if (vma) 2849 mm->numa_scan_offset = start; 2850 else 2851 reset_ptenuma_scan(p); 2852 mmap_read_unlock(mm); 2853 2854 /* 2855 * Make sure tasks use at least 32x as much time to run other code 2856 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2857 * Usually update_task_scan_period slows down scanning enough; on an 2858 * overloaded system we need to limit overhead on a per task basis. 2859 */ 2860 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2861 u64 diff = p->se.sum_exec_runtime - runtime; 2862 p->node_stamp += 32 * diff; 2863 } 2864 } 2865 2866 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 2867 { 2868 int mm_users = 0; 2869 struct mm_struct *mm = p->mm; 2870 2871 if (mm) { 2872 mm_users = atomic_read(&mm->mm_users); 2873 if (mm_users == 1) { 2874 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2875 mm->numa_scan_seq = 0; 2876 } 2877 } 2878 p->node_stamp = 0; 2879 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 2880 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2881 /* Protect against double add, see task_tick_numa and task_numa_work */ 2882 p->numa_work.next = &p->numa_work; 2883 p->numa_faults = NULL; 2884 RCU_INIT_POINTER(p->numa_group, NULL); 2885 p->last_task_numa_placement = 0; 2886 p->last_sum_exec_runtime = 0; 2887 2888 init_task_work(&p->numa_work, task_numa_work); 2889 2890 /* New address space, reset the preferred nid */ 2891 if (!(clone_flags & CLONE_VM)) { 2892 p->numa_preferred_nid = NUMA_NO_NODE; 2893 return; 2894 } 2895 2896 /* 2897 * New thread, keep existing numa_preferred_nid which should be copied 2898 * already by arch_dup_task_struct but stagger when scans start. 2899 */ 2900 if (mm) { 2901 unsigned int delay; 2902 2903 delay = min_t(unsigned int, task_scan_max(current), 2904 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 2905 delay += 2 * TICK_NSEC; 2906 p->node_stamp = delay; 2907 } 2908 } 2909 2910 /* 2911 * Drive the periodic memory faults.. 2912 */ 2913 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2914 { 2915 struct callback_head *work = &curr->numa_work; 2916 u64 period, now; 2917 2918 /* 2919 * We don't care about NUMA placement if we don't have memory. 2920 */ 2921 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 2922 return; 2923 2924 /* 2925 * Using runtime rather than walltime has the dual advantage that 2926 * we (mostly) drive the selection from busy threads and that the 2927 * task needs to have done some actual work before we bother with 2928 * NUMA placement. 2929 */ 2930 now = curr->se.sum_exec_runtime; 2931 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2932 2933 if (now > curr->node_stamp + period) { 2934 if (!curr->node_stamp) 2935 curr->numa_scan_period = task_scan_start(curr); 2936 curr->node_stamp += period; 2937 2938 if (!time_before(jiffies, curr->mm->numa_next_scan)) 2939 task_work_add(curr, work, TWA_RESUME); 2940 } 2941 } 2942 2943 static void update_scan_period(struct task_struct *p, int new_cpu) 2944 { 2945 int src_nid = cpu_to_node(task_cpu(p)); 2946 int dst_nid = cpu_to_node(new_cpu); 2947 2948 if (!static_branch_likely(&sched_numa_balancing)) 2949 return; 2950 2951 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2952 return; 2953 2954 if (src_nid == dst_nid) 2955 return; 2956 2957 /* 2958 * Allow resets if faults have been trapped before one scan 2959 * has completed. This is most likely due to a new task that 2960 * is pulled cross-node due to wakeups or load balancing. 2961 */ 2962 if (p->numa_scan_seq) { 2963 /* 2964 * Avoid scan adjustments if moving to the preferred 2965 * node or if the task was not previously running on 2966 * the preferred node. 2967 */ 2968 if (dst_nid == p->numa_preferred_nid || 2969 (p->numa_preferred_nid != NUMA_NO_NODE && 2970 src_nid != p->numa_preferred_nid)) 2971 return; 2972 } 2973 2974 p->numa_scan_period = task_scan_start(p); 2975 } 2976 2977 #else 2978 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2979 { 2980 } 2981 2982 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2983 { 2984 } 2985 2986 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2987 { 2988 } 2989 2990 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2991 { 2992 } 2993 2994 #endif /* CONFIG_NUMA_BALANCING */ 2995 2996 static void 2997 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2998 { 2999 update_load_add(&cfs_rq->load, se->load.weight); 3000 #ifdef CONFIG_SMP 3001 if (entity_is_task(se)) { 3002 struct rq *rq = rq_of(cfs_rq); 3003 3004 account_numa_enqueue(rq, task_of(se)); 3005 list_add(&se->group_node, &rq->cfs_tasks); 3006 } 3007 #endif 3008 cfs_rq->nr_running++; 3009 } 3010 3011 static void 3012 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3013 { 3014 update_load_sub(&cfs_rq->load, se->load.weight); 3015 #ifdef CONFIG_SMP 3016 if (entity_is_task(se)) { 3017 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3018 list_del_init(&se->group_node); 3019 } 3020 #endif 3021 cfs_rq->nr_running--; 3022 } 3023 3024 /* 3025 * Signed add and clamp on underflow. 3026 * 3027 * Explicitly do a load-store to ensure the intermediate value never hits 3028 * memory. This allows lockless observations without ever seeing the negative 3029 * values. 3030 */ 3031 #define add_positive(_ptr, _val) do { \ 3032 typeof(_ptr) ptr = (_ptr); \ 3033 typeof(_val) val = (_val); \ 3034 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3035 \ 3036 res = var + val; \ 3037 \ 3038 if (val < 0 && res > var) \ 3039 res = 0; \ 3040 \ 3041 WRITE_ONCE(*ptr, res); \ 3042 } while (0) 3043 3044 /* 3045 * Unsigned subtract and clamp on underflow. 3046 * 3047 * Explicitly do a load-store to ensure the intermediate value never hits 3048 * memory. This allows lockless observations without ever seeing the negative 3049 * values. 3050 */ 3051 #define sub_positive(_ptr, _val) do { \ 3052 typeof(_ptr) ptr = (_ptr); \ 3053 typeof(*ptr) val = (_val); \ 3054 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3055 res = var - val; \ 3056 if (res > var) \ 3057 res = 0; \ 3058 WRITE_ONCE(*ptr, res); \ 3059 } while (0) 3060 3061 /* 3062 * Remove and clamp on negative, from a local variable. 3063 * 3064 * A variant of sub_positive(), which does not use explicit load-store 3065 * and is thus optimized for local variable updates. 3066 */ 3067 #define lsub_positive(_ptr, _val) do { \ 3068 typeof(_ptr) ptr = (_ptr); \ 3069 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3070 } while (0) 3071 3072 #ifdef CONFIG_SMP 3073 static inline void 3074 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3075 { 3076 cfs_rq->avg.load_avg += se->avg.load_avg; 3077 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3078 } 3079 3080 static inline void 3081 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3082 { 3083 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3084 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3085 } 3086 #else 3087 static inline void 3088 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3089 static inline void 3090 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3091 #endif 3092 3093 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3094 unsigned long weight) 3095 { 3096 if (se->on_rq) { 3097 /* commit outstanding execution time */ 3098 if (cfs_rq->curr == se) 3099 update_curr(cfs_rq); 3100 update_load_sub(&cfs_rq->load, se->load.weight); 3101 } 3102 dequeue_load_avg(cfs_rq, se); 3103 3104 update_load_set(&se->load, weight); 3105 3106 #ifdef CONFIG_SMP 3107 do { 3108 u32 divider = get_pelt_divider(&se->avg); 3109 3110 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3111 } while (0); 3112 #endif 3113 3114 enqueue_load_avg(cfs_rq, se); 3115 if (se->on_rq) 3116 update_load_add(&cfs_rq->load, se->load.weight); 3117 3118 } 3119 3120 void reweight_task(struct task_struct *p, int prio) 3121 { 3122 struct sched_entity *se = &p->se; 3123 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3124 struct load_weight *load = &se->load; 3125 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3126 3127 reweight_entity(cfs_rq, se, weight); 3128 load->inv_weight = sched_prio_to_wmult[prio]; 3129 } 3130 3131 #ifdef CONFIG_FAIR_GROUP_SCHED 3132 #ifdef CONFIG_SMP 3133 /* 3134 * All this does is approximate the hierarchical proportion which includes that 3135 * global sum we all love to hate. 3136 * 3137 * That is, the weight of a group entity, is the proportional share of the 3138 * group weight based on the group runqueue weights. That is: 3139 * 3140 * tg->weight * grq->load.weight 3141 * ge->load.weight = ----------------------------- (1) 3142 * \Sum grq->load.weight 3143 * 3144 * Now, because computing that sum is prohibitively expensive to compute (been 3145 * there, done that) we approximate it with this average stuff. The average 3146 * moves slower and therefore the approximation is cheaper and more stable. 3147 * 3148 * So instead of the above, we substitute: 3149 * 3150 * grq->load.weight -> grq->avg.load_avg (2) 3151 * 3152 * which yields the following: 3153 * 3154 * tg->weight * grq->avg.load_avg 3155 * ge->load.weight = ------------------------------ (3) 3156 * tg->load_avg 3157 * 3158 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3159 * 3160 * That is shares_avg, and it is right (given the approximation (2)). 3161 * 3162 * The problem with it is that because the average is slow -- it was designed 3163 * to be exactly that of course -- this leads to transients in boundary 3164 * conditions. In specific, the case where the group was idle and we start the 3165 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3166 * yielding bad latency etc.. 3167 * 3168 * Now, in that special case (1) reduces to: 3169 * 3170 * tg->weight * grq->load.weight 3171 * ge->load.weight = ----------------------------- = tg->weight (4) 3172 * grp->load.weight 3173 * 3174 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3175 * 3176 * So what we do is modify our approximation (3) to approach (4) in the (near) 3177 * UP case, like: 3178 * 3179 * ge->load.weight = 3180 * 3181 * tg->weight * grq->load.weight 3182 * --------------------------------------------------- (5) 3183 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3184 * 3185 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3186 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3187 * 3188 * 3189 * tg->weight * grq->load.weight 3190 * ge->load.weight = ----------------------------- (6) 3191 * tg_load_avg' 3192 * 3193 * Where: 3194 * 3195 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3196 * max(grq->load.weight, grq->avg.load_avg) 3197 * 3198 * And that is shares_weight and is icky. In the (near) UP case it approaches 3199 * (4) while in the normal case it approaches (3). It consistently 3200 * overestimates the ge->load.weight and therefore: 3201 * 3202 * \Sum ge->load.weight >= tg->weight 3203 * 3204 * hence icky! 3205 */ 3206 static long calc_group_shares(struct cfs_rq *cfs_rq) 3207 { 3208 long tg_weight, tg_shares, load, shares; 3209 struct task_group *tg = cfs_rq->tg; 3210 3211 tg_shares = READ_ONCE(tg->shares); 3212 3213 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3214 3215 tg_weight = atomic_long_read(&tg->load_avg); 3216 3217 /* Ensure tg_weight >= load */ 3218 tg_weight -= cfs_rq->tg_load_avg_contrib; 3219 tg_weight += load; 3220 3221 shares = (tg_shares * load); 3222 if (tg_weight) 3223 shares /= tg_weight; 3224 3225 /* 3226 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3227 * of a group with small tg->shares value. It is a floor value which is 3228 * assigned as a minimum load.weight to the sched_entity representing 3229 * the group on a CPU. 3230 * 3231 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3232 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3233 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3234 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3235 * instead of 0. 3236 */ 3237 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3238 } 3239 #endif /* CONFIG_SMP */ 3240 3241 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3242 3243 /* 3244 * Recomputes the group entity based on the current state of its group 3245 * runqueue. 3246 */ 3247 static void update_cfs_group(struct sched_entity *se) 3248 { 3249 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3250 long shares; 3251 3252 if (!gcfs_rq) 3253 return; 3254 3255 if (throttled_hierarchy(gcfs_rq)) 3256 return; 3257 3258 #ifndef CONFIG_SMP 3259 shares = READ_ONCE(gcfs_rq->tg->shares); 3260 3261 if (likely(se->load.weight == shares)) 3262 return; 3263 #else 3264 shares = calc_group_shares(gcfs_rq); 3265 #endif 3266 3267 reweight_entity(cfs_rq_of(se), se, shares); 3268 } 3269 3270 #else /* CONFIG_FAIR_GROUP_SCHED */ 3271 static inline void update_cfs_group(struct sched_entity *se) 3272 { 3273 } 3274 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3275 3276 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3277 { 3278 struct rq *rq = rq_of(cfs_rq); 3279 3280 if (&rq->cfs == cfs_rq) { 3281 /* 3282 * There are a few boundary cases this might miss but it should 3283 * get called often enough that that should (hopefully) not be 3284 * a real problem. 3285 * 3286 * It will not get called when we go idle, because the idle 3287 * thread is a different class (!fair), nor will the utilization 3288 * number include things like RT tasks. 3289 * 3290 * As is, the util number is not freq-invariant (we'd have to 3291 * implement arch_scale_freq_capacity() for that). 3292 * 3293 * See cpu_util(). 3294 */ 3295 cpufreq_update_util(rq, flags); 3296 } 3297 } 3298 3299 #ifdef CONFIG_SMP 3300 #ifdef CONFIG_FAIR_GROUP_SCHED 3301 3302 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 3303 { 3304 if (cfs_rq->load.weight) 3305 return false; 3306 3307 if (cfs_rq->avg.load_sum) 3308 return false; 3309 3310 if (cfs_rq->avg.util_sum) 3311 return false; 3312 3313 if (cfs_rq->avg.runnable_sum) 3314 return false; 3315 3316 return true; 3317 } 3318 3319 /** 3320 * update_tg_load_avg - update the tg's load avg 3321 * @cfs_rq: the cfs_rq whose avg changed 3322 * 3323 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3324 * However, because tg->load_avg is a global value there are performance 3325 * considerations. 3326 * 3327 * In order to avoid having to look at the other cfs_rq's, we use a 3328 * differential update where we store the last value we propagated. This in 3329 * turn allows skipping updates if the differential is 'small'. 3330 * 3331 * Updating tg's load_avg is necessary before update_cfs_share(). 3332 */ 3333 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 3334 { 3335 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3336 3337 /* 3338 * No need to update load_avg for root_task_group as it is not used. 3339 */ 3340 if (cfs_rq->tg == &root_task_group) 3341 return; 3342 3343 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3344 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3345 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3346 } 3347 } 3348 3349 /* 3350 * Called within set_task_rq() right before setting a task's CPU. The 3351 * caller only guarantees p->pi_lock is held; no other assumptions, 3352 * including the state of rq->lock, should be made. 3353 */ 3354 void set_task_rq_fair(struct sched_entity *se, 3355 struct cfs_rq *prev, struct cfs_rq *next) 3356 { 3357 u64 p_last_update_time; 3358 u64 n_last_update_time; 3359 3360 if (!sched_feat(ATTACH_AGE_LOAD)) 3361 return; 3362 3363 /* 3364 * We are supposed to update the task to "current" time, then its up to 3365 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3366 * getting what current time is, so simply throw away the out-of-date 3367 * time. This will result in the wakee task is less decayed, but giving 3368 * the wakee more load sounds not bad. 3369 */ 3370 if (!(se->avg.last_update_time && prev)) 3371 return; 3372 3373 #ifndef CONFIG_64BIT 3374 { 3375 u64 p_last_update_time_copy; 3376 u64 n_last_update_time_copy; 3377 3378 do { 3379 p_last_update_time_copy = prev->load_last_update_time_copy; 3380 n_last_update_time_copy = next->load_last_update_time_copy; 3381 3382 smp_rmb(); 3383 3384 p_last_update_time = prev->avg.last_update_time; 3385 n_last_update_time = next->avg.last_update_time; 3386 3387 } while (p_last_update_time != p_last_update_time_copy || 3388 n_last_update_time != n_last_update_time_copy); 3389 } 3390 #else 3391 p_last_update_time = prev->avg.last_update_time; 3392 n_last_update_time = next->avg.last_update_time; 3393 #endif 3394 __update_load_avg_blocked_se(p_last_update_time, se); 3395 se->avg.last_update_time = n_last_update_time; 3396 } 3397 3398 3399 /* 3400 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3401 * propagate its contribution. The key to this propagation is the invariant 3402 * that for each group: 3403 * 3404 * ge->avg == grq->avg (1) 3405 * 3406 * _IFF_ we look at the pure running and runnable sums. Because they 3407 * represent the very same entity, just at different points in the hierarchy. 3408 * 3409 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3410 * and simply copies the running/runnable sum over (but still wrong, because 3411 * the group entity and group rq do not have their PELT windows aligned). 3412 * 3413 * However, update_tg_cfs_load() is more complex. So we have: 3414 * 3415 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3416 * 3417 * And since, like util, the runnable part should be directly transferable, 3418 * the following would _appear_ to be the straight forward approach: 3419 * 3420 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3421 * 3422 * And per (1) we have: 3423 * 3424 * ge->avg.runnable_avg == grq->avg.runnable_avg 3425 * 3426 * Which gives: 3427 * 3428 * ge->load.weight * grq->avg.load_avg 3429 * ge->avg.load_avg = ----------------------------------- (4) 3430 * grq->load.weight 3431 * 3432 * Except that is wrong! 3433 * 3434 * Because while for entities historical weight is not important and we 3435 * really only care about our future and therefore can consider a pure 3436 * runnable sum, runqueues can NOT do this. 3437 * 3438 * We specifically want runqueues to have a load_avg that includes 3439 * historical weights. Those represent the blocked load, the load we expect 3440 * to (shortly) return to us. This only works by keeping the weights as 3441 * integral part of the sum. We therefore cannot decompose as per (3). 3442 * 3443 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3444 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3445 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3446 * runnable section of these tasks overlap (or not). If they were to perfectly 3447 * align the rq as a whole would be runnable 2/3 of the time. If however we 3448 * always have at least 1 runnable task, the rq as a whole is always runnable. 3449 * 3450 * So we'll have to approximate.. :/ 3451 * 3452 * Given the constraint: 3453 * 3454 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3455 * 3456 * We can construct a rule that adds runnable to a rq by assuming minimal 3457 * overlap. 3458 * 3459 * On removal, we'll assume each task is equally runnable; which yields: 3460 * 3461 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3462 * 3463 * XXX: only do this for the part of runnable > running ? 3464 * 3465 */ 3466 3467 static inline void 3468 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3469 { 3470 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3471 u32 divider; 3472 3473 /* Nothing to update */ 3474 if (!delta) 3475 return; 3476 3477 /* 3478 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3479 * See ___update_load_avg() for details. 3480 */ 3481 divider = get_pelt_divider(&cfs_rq->avg); 3482 3483 /* Set new sched_entity's utilization */ 3484 se->avg.util_avg = gcfs_rq->avg.util_avg; 3485 se->avg.util_sum = se->avg.util_avg * divider; 3486 3487 /* Update parent cfs_rq utilization */ 3488 add_positive(&cfs_rq->avg.util_avg, delta); 3489 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider; 3490 } 3491 3492 static inline void 3493 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3494 { 3495 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 3496 u32 divider; 3497 3498 /* Nothing to update */ 3499 if (!delta) 3500 return; 3501 3502 /* 3503 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3504 * See ___update_load_avg() for details. 3505 */ 3506 divider = get_pelt_divider(&cfs_rq->avg); 3507 3508 /* Set new sched_entity's runnable */ 3509 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 3510 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3511 3512 /* Update parent cfs_rq runnable */ 3513 add_positive(&cfs_rq->avg.runnable_avg, delta); 3514 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider; 3515 } 3516 3517 static inline void 3518 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3519 { 3520 long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3521 unsigned long load_avg; 3522 u64 load_sum = 0; 3523 u32 divider; 3524 3525 if (!runnable_sum) 3526 return; 3527 3528 gcfs_rq->prop_runnable_sum = 0; 3529 3530 /* 3531 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3532 * See ___update_load_avg() for details. 3533 */ 3534 divider = get_pelt_divider(&cfs_rq->avg); 3535 3536 if (runnable_sum >= 0) { 3537 /* 3538 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3539 * the CPU is saturated running == runnable. 3540 */ 3541 runnable_sum += se->avg.load_sum; 3542 runnable_sum = min_t(long, runnable_sum, divider); 3543 } else { 3544 /* 3545 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3546 * assuming all tasks are equally runnable. 3547 */ 3548 if (scale_load_down(gcfs_rq->load.weight)) { 3549 load_sum = div_s64(gcfs_rq->avg.load_sum, 3550 scale_load_down(gcfs_rq->load.weight)); 3551 } 3552 3553 /* But make sure to not inflate se's runnable */ 3554 runnable_sum = min(se->avg.load_sum, load_sum); 3555 } 3556 3557 /* 3558 * runnable_sum can't be lower than running_sum 3559 * Rescale running sum to be in the same range as runnable sum 3560 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3561 * runnable_sum is in [0 : LOAD_AVG_MAX] 3562 */ 3563 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3564 runnable_sum = max(runnable_sum, running_sum); 3565 3566 load_sum = (s64)se_weight(se) * runnable_sum; 3567 load_avg = div_s64(load_sum, divider); 3568 3569 delta = load_avg - se->avg.load_avg; 3570 3571 se->avg.load_sum = runnable_sum; 3572 se->avg.load_avg = load_avg; 3573 3574 add_positive(&cfs_rq->avg.load_avg, delta); 3575 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider; 3576 } 3577 3578 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3579 { 3580 cfs_rq->propagate = 1; 3581 cfs_rq->prop_runnable_sum += runnable_sum; 3582 } 3583 3584 /* Update task and its cfs_rq load average */ 3585 static inline int propagate_entity_load_avg(struct sched_entity *se) 3586 { 3587 struct cfs_rq *cfs_rq, *gcfs_rq; 3588 3589 if (entity_is_task(se)) 3590 return 0; 3591 3592 gcfs_rq = group_cfs_rq(se); 3593 if (!gcfs_rq->propagate) 3594 return 0; 3595 3596 gcfs_rq->propagate = 0; 3597 3598 cfs_rq = cfs_rq_of(se); 3599 3600 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3601 3602 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3603 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3604 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 3605 3606 trace_pelt_cfs_tp(cfs_rq); 3607 trace_pelt_se_tp(se); 3608 3609 return 1; 3610 } 3611 3612 /* 3613 * Check if we need to update the load and the utilization of a blocked 3614 * group_entity: 3615 */ 3616 static inline bool skip_blocked_update(struct sched_entity *se) 3617 { 3618 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3619 3620 /* 3621 * If sched_entity still have not zero load or utilization, we have to 3622 * decay it: 3623 */ 3624 if (se->avg.load_avg || se->avg.util_avg) 3625 return false; 3626 3627 /* 3628 * If there is a pending propagation, we have to update the load and 3629 * the utilization of the sched_entity: 3630 */ 3631 if (gcfs_rq->propagate) 3632 return false; 3633 3634 /* 3635 * Otherwise, the load and the utilization of the sched_entity is 3636 * already zero and there is no pending propagation, so it will be a 3637 * waste of time to try to decay it: 3638 */ 3639 return true; 3640 } 3641 3642 #else /* CONFIG_FAIR_GROUP_SCHED */ 3643 3644 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 3645 3646 static inline int propagate_entity_load_avg(struct sched_entity *se) 3647 { 3648 return 0; 3649 } 3650 3651 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3652 3653 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3654 3655 /** 3656 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3657 * @now: current time, as per cfs_rq_clock_pelt() 3658 * @cfs_rq: cfs_rq to update 3659 * 3660 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3661 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3662 * post_init_entity_util_avg(). 3663 * 3664 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3665 * 3666 * Returns true if the load decayed or we removed load. 3667 * 3668 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3669 * call update_tg_load_avg() when this function returns true. 3670 */ 3671 static inline int 3672 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3673 { 3674 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 3675 struct sched_avg *sa = &cfs_rq->avg; 3676 int decayed = 0; 3677 3678 if (cfs_rq->removed.nr) { 3679 unsigned long r; 3680 u32 divider = get_pelt_divider(&cfs_rq->avg); 3681 3682 raw_spin_lock(&cfs_rq->removed.lock); 3683 swap(cfs_rq->removed.util_avg, removed_util); 3684 swap(cfs_rq->removed.load_avg, removed_load); 3685 swap(cfs_rq->removed.runnable_avg, removed_runnable); 3686 cfs_rq->removed.nr = 0; 3687 raw_spin_unlock(&cfs_rq->removed.lock); 3688 3689 r = removed_load; 3690 sub_positive(&sa->load_avg, r); 3691 sub_positive(&sa->load_sum, r * divider); 3692 3693 r = removed_util; 3694 sub_positive(&sa->util_avg, r); 3695 sub_positive(&sa->util_sum, r * divider); 3696 3697 r = removed_runnable; 3698 sub_positive(&sa->runnable_avg, r); 3699 sub_positive(&sa->runnable_sum, r * divider); 3700 3701 /* 3702 * removed_runnable is the unweighted version of removed_load so we 3703 * can use it to estimate removed_load_sum. 3704 */ 3705 add_tg_cfs_propagate(cfs_rq, 3706 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 3707 3708 decayed = 1; 3709 } 3710 3711 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3712 3713 #ifndef CONFIG_64BIT 3714 smp_wmb(); 3715 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3716 #endif 3717 3718 return decayed; 3719 } 3720 3721 /** 3722 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3723 * @cfs_rq: cfs_rq to attach to 3724 * @se: sched_entity to attach 3725 * 3726 * Must call update_cfs_rq_load_avg() before this, since we rely on 3727 * cfs_rq->avg.last_update_time being current. 3728 */ 3729 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3730 { 3731 /* 3732 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3733 * See ___update_load_avg() for details. 3734 */ 3735 u32 divider = get_pelt_divider(&cfs_rq->avg); 3736 3737 /* 3738 * When we attach the @se to the @cfs_rq, we must align the decay 3739 * window because without that, really weird and wonderful things can 3740 * happen. 3741 * 3742 * XXX illustrate 3743 */ 3744 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3745 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3746 3747 /* 3748 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3749 * period_contrib. This isn't strictly correct, but since we're 3750 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3751 * _sum a little. 3752 */ 3753 se->avg.util_sum = se->avg.util_avg * divider; 3754 3755 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3756 3757 se->avg.load_sum = divider; 3758 if (se_weight(se)) { 3759 se->avg.load_sum = 3760 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3761 } 3762 3763 enqueue_load_avg(cfs_rq, se); 3764 cfs_rq->avg.util_avg += se->avg.util_avg; 3765 cfs_rq->avg.util_sum += se->avg.util_sum; 3766 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 3767 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 3768 3769 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3770 3771 cfs_rq_util_change(cfs_rq, 0); 3772 3773 trace_pelt_cfs_tp(cfs_rq); 3774 } 3775 3776 /** 3777 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3778 * @cfs_rq: cfs_rq to detach from 3779 * @se: sched_entity to detach 3780 * 3781 * Must call update_cfs_rq_load_avg() before this, since we rely on 3782 * cfs_rq->avg.last_update_time being current. 3783 */ 3784 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3785 { 3786 /* 3787 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3788 * See ___update_load_avg() for details. 3789 */ 3790 u32 divider = get_pelt_divider(&cfs_rq->avg); 3791 3792 dequeue_load_avg(cfs_rq, se); 3793 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3794 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider; 3795 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 3796 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider; 3797 3798 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3799 3800 cfs_rq_util_change(cfs_rq, 0); 3801 3802 trace_pelt_cfs_tp(cfs_rq); 3803 } 3804 3805 /* 3806 * Optional action to be done while updating the load average 3807 */ 3808 #define UPDATE_TG 0x1 3809 #define SKIP_AGE_LOAD 0x2 3810 #define DO_ATTACH 0x4 3811 3812 /* Update task and its cfs_rq load average */ 3813 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3814 { 3815 u64 now = cfs_rq_clock_pelt(cfs_rq); 3816 int decayed; 3817 3818 /* 3819 * Track task load average for carrying it to new CPU after migrated, and 3820 * track group sched_entity load average for task_h_load calc in migration 3821 */ 3822 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3823 __update_load_avg_se(now, cfs_rq, se); 3824 3825 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3826 decayed |= propagate_entity_load_avg(se); 3827 3828 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3829 3830 /* 3831 * DO_ATTACH means we're here from enqueue_entity(). 3832 * !last_update_time means we've passed through 3833 * migrate_task_rq_fair() indicating we migrated. 3834 * 3835 * IOW we're enqueueing a task on a new CPU. 3836 */ 3837 attach_entity_load_avg(cfs_rq, se); 3838 update_tg_load_avg(cfs_rq); 3839 3840 } else if (decayed) { 3841 cfs_rq_util_change(cfs_rq, 0); 3842 3843 if (flags & UPDATE_TG) 3844 update_tg_load_avg(cfs_rq); 3845 } 3846 } 3847 3848 #ifndef CONFIG_64BIT 3849 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3850 { 3851 u64 last_update_time_copy; 3852 u64 last_update_time; 3853 3854 do { 3855 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3856 smp_rmb(); 3857 last_update_time = cfs_rq->avg.last_update_time; 3858 } while (last_update_time != last_update_time_copy); 3859 3860 return last_update_time; 3861 } 3862 #else 3863 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3864 { 3865 return cfs_rq->avg.last_update_time; 3866 } 3867 #endif 3868 3869 /* 3870 * Synchronize entity load avg of dequeued entity without locking 3871 * the previous rq. 3872 */ 3873 static void sync_entity_load_avg(struct sched_entity *se) 3874 { 3875 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3876 u64 last_update_time; 3877 3878 last_update_time = cfs_rq_last_update_time(cfs_rq); 3879 __update_load_avg_blocked_se(last_update_time, se); 3880 } 3881 3882 /* 3883 * Task first catches up with cfs_rq, and then subtract 3884 * itself from the cfs_rq (task must be off the queue now). 3885 */ 3886 static void remove_entity_load_avg(struct sched_entity *se) 3887 { 3888 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3889 unsigned long flags; 3890 3891 /* 3892 * tasks cannot exit without having gone through wake_up_new_task() -> 3893 * post_init_entity_util_avg() which will have added things to the 3894 * cfs_rq, so we can remove unconditionally. 3895 */ 3896 3897 sync_entity_load_avg(se); 3898 3899 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3900 ++cfs_rq->removed.nr; 3901 cfs_rq->removed.util_avg += se->avg.util_avg; 3902 cfs_rq->removed.load_avg += se->avg.load_avg; 3903 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 3904 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3905 } 3906 3907 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 3908 { 3909 return cfs_rq->avg.runnable_avg; 3910 } 3911 3912 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3913 { 3914 return cfs_rq->avg.load_avg; 3915 } 3916 3917 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 3918 3919 static inline unsigned long task_util(struct task_struct *p) 3920 { 3921 return READ_ONCE(p->se.avg.util_avg); 3922 } 3923 3924 static inline unsigned long _task_util_est(struct task_struct *p) 3925 { 3926 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3927 3928 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 3929 } 3930 3931 static inline unsigned long task_util_est(struct task_struct *p) 3932 { 3933 return max(task_util(p), _task_util_est(p)); 3934 } 3935 3936 #ifdef CONFIG_UCLAMP_TASK 3937 static inline unsigned long uclamp_task_util(struct task_struct *p) 3938 { 3939 return clamp(task_util_est(p), 3940 uclamp_eff_value(p, UCLAMP_MIN), 3941 uclamp_eff_value(p, UCLAMP_MAX)); 3942 } 3943 #else 3944 static inline unsigned long uclamp_task_util(struct task_struct *p) 3945 { 3946 return task_util_est(p); 3947 } 3948 #endif 3949 3950 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3951 struct task_struct *p) 3952 { 3953 unsigned int enqueued; 3954 3955 if (!sched_feat(UTIL_EST)) 3956 return; 3957 3958 /* Update root cfs_rq's estimated utilization */ 3959 enqueued = cfs_rq->avg.util_est.enqueued; 3960 enqueued += _task_util_est(p); 3961 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3962 3963 trace_sched_util_est_cfs_tp(cfs_rq); 3964 } 3965 3966 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 3967 struct task_struct *p) 3968 { 3969 unsigned int enqueued; 3970 3971 if (!sched_feat(UTIL_EST)) 3972 return; 3973 3974 /* Update root cfs_rq's estimated utilization */ 3975 enqueued = cfs_rq->avg.util_est.enqueued; 3976 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 3977 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3978 3979 trace_sched_util_est_cfs_tp(cfs_rq); 3980 } 3981 3982 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 3983 3984 /* 3985 * Check if a (signed) value is within a specified (unsigned) margin, 3986 * based on the observation that: 3987 * 3988 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3989 * 3990 * NOTE: this only works when value + margin < INT_MAX. 3991 */ 3992 static inline bool within_margin(int value, int margin) 3993 { 3994 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3995 } 3996 3997 static inline void util_est_update(struct cfs_rq *cfs_rq, 3998 struct task_struct *p, 3999 bool task_sleep) 4000 { 4001 long last_ewma_diff, last_enqueued_diff; 4002 struct util_est ue; 4003 4004 if (!sched_feat(UTIL_EST)) 4005 return; 4006 4007 /* 4008 * Skip update of task's estimated utilization when the task has not 4009 * yet completed an activation, e.g. being migrated. 4010 */ 4011 if (!task_sleep) 4012 return; 4013 4014 /* 4015 * If the PELT values haven't changed since enqueue time, 4016 * skip the util_est update. 4017 */ 4018 ue = p->se.avg.util_est; 4019 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4020 return; 4021 4022 last_enqueued_diff = ue.enqueued; 4023 4024 /* 4025 * Reset EWMA on utilization increases, the moving average is used only 4026 * to smooth utilization decreases. 4027 */ 4028 ue.enqueued = task_util(p); 4029 if (sched_feat(UTIL_EST_FASTUP)) { 4030 if (ue.ewma < ue.enqueued) { 4031 ue.ewma = ue.enqueued; 4032 goto done; 4033 } 4034 } 4035 4036 /* 4037 * Skip update of task's estimated utilization when its members are 4038 * already ~1% close to its last activation value. 4039 */ 4040 last_ewma_diff = ue.enqueued - ue.ewma; 4041 last_enqueued_diff -= ue.enqueued; 4042 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4043 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4044 goto done; 4045 4046 return; 4047 } 4048 4049 /* 4050 * To avoid overestimation of actual task utilization, skip updates if 4051 * we cannot grant there is idle time in this CPU. 4052 */ 4053 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4054 return; 4055 4056 /* 4057 * Update Task's estimated utilization 4058 * 4059 * When *p completes an activation we can consolidate another sample 4060 * of the task size. This is done by storing the current PELT value 4061 * as ue.enqueued and by using this value to update the Exponential 4062 * Weighted Moving Average (EWMA): 4063 * 4064 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4065 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4066 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4067 * = w * ( last_ewma_diff ) + ewma(t-1) 4068 * = w * (last_ewma_diff + ewma(t-1) / w) 4069 * 4070 * Where 'w' is the weight of new samples, which is configured to be 4071 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4072 */ 4073 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4074 ue.ewma += last_ewma_diff; 4075 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4076 done: 4077 ue.enqueued |= UTIL_AVG_UNCHANGED; 4078 WRITE_ONCE(p->se.avg.util_est, ue); 4079 4080 trace_sched_util_est_se_tp(&p->se); 4081 } 4082 4083 static inline int task_fits_capacity(struct task_struct *p, long capacity) 4084 { 4085 return fits_capacity(uclamp_task_util(p), capacity); 4086 } 4087 4088 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4089 { 4090 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 4091 return; 4092 4093 if (!p || p->nr_cpus_allowed == 1) { 4094 rq->misfit_task_load = 0; 4095 return; 4096 } 4097 4098 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 4099 rq->misfit_task_load = 0; 4100 return; 4101 } 4102 4103 /* 4104 * Make sure that misfit_task_load will not be null even if 4105 * task_h_load() returns 0. 4106 */ 4107 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4108 } 4109 4110 #else /* CONFIG_SMP */ 4111 4112 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4113 { 4114 return true; 4115 } 4116 4117 #define UPDATE_TG 0x0 4118 #define SKIP_AGE_LOAD 0x0 4119 #define DO_ATTACH 0x0 4120 4121 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4122 { 4123 cfs_rq_util_change(cfs_rq, 0); 4124 } 4125 4126 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4127 4128 static inline void 4129 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4130 static inline void 4131 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4132 4133 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4134 { 4135 return 0; 4136 } 4137 4138 static inline void 4139 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4140 4141 static inline void 4142 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4143 4144 static inline void 4145 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 4146 bool task_sleep) {} 4147 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4148 4149 #endif /* CONFIG_SMP */ 4150 4151 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4152 { 4153 #ifdef CONFIG_SCHED_DEBUG 4154 s64 d = se->vruntime - cfs_rq->min_vruntime; 4155 4156 if (d < 0) 4157 d = -d; 4158 4159 if (d > 3*sysctl_sched_latency) 4160 schedstat_inc(cfs_rq->nr_spread_over); 4161 #endif 4162 } 4163 4164 static void 4165 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4166 { 4167 u64 vruntime = cfs_rq->min_vruntime; 4168 4169 /* 4170 * The 'current' period is already promised to the current tasks, 4171 * however the extra weight of the new task will slow them down a 4172 * little, place the new task so that it fits in the slot that 4173 * stays open at the end. 4174 */ 4175 if (initial && sched_feat(START_DEBIT)) 4176 vruntime += sched_vslice(cfs_rq, se); 4177 4178 /* sleeps up to a single latency don't count. */ 4179 if (!initial) { 4180 unsigned long thresh = sysctl_sched_latency; 4181 4182 /* 4183 * Halve their sleep time's effect, to allow 4184 * for a gentler effect of sleepers: 4185 */ 4186 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4187 thresh >>= 1; 4188 4189 vruntime -= thresh; 4190 } 4191 4192 /* ensure we never gain time by being placed backwards. */ 4193 se->vruntime = max_vruntime(se->vruntime, vruntime); 4194 } 4195 4196 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4197 4198 static inline void check_schedstat_required(void) 4199 { 4200 #ifdef CONFIG_SCHEDSTATS 4201 if (schedstat_enabled()) 4202 return; 4203 4204 /* Force schedstat enabled if a dependent tracepoint is active */ 4205 if (trace_sched_stat_wait_enabled() || 4206 trace_sched_stat_sleep_enabled() || 4207 trace_sched_stat_iowait_enabled() || 4208 trace_sched_stat_blocked_enabled() || 4209 trace_sched_stat_runtime_enabled()) { 4210 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 4211 "stat_blocked and stat_runtime require the " 4212 "kernel parameter schedstats=enable or " 4213 "kernel.sched_schedstats=1\n"); 4214 } 4215 #endif 4216 } 4217 4218 static inline bool cfs_bandwidth_used(void); 4219 4220 /* 4221 * MIGRATION 4222 * 4223 * dequeue 4224 * update_curr() 4225 * update_min_vruntime() 4226 * vruntime -= min_vruntime 4227 * 4228 * enqueue 4229 * update_curr() 4230 * update_min_vruntime() 4231 * vruntime += min_vruntime 4232 * 4233 * this way the vruntime transition between RQs is done when both 4234 * min_vruntime are up-to-date. 4235 * 4236 * WAKEUP (remote) 4237 * 4238 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4239 * vruntime -= min_vruntime 4240 * 4241 * enqueue 4242 * update_curr() 4243 * update_min_vruntime() 4244 * vruntime += min_vruntime 4245 * 4246 * this way we don't have the most up-to-date min_vruntime on the originating 4247 * CPU and an up-to-date min_vruntime on the destination CPU. 4248 */ 4249 4250 static void 4251 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4252 { 4253 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4254 bool curr = cfs_rq->curr == se; 4255 4256 /* 4257 * If we're the current task, we must renormalise before calling 4258 * update_curr(). 4259 */ 4260 if (renorm && curr) 4261 se->vruntime += cfs_rq->min_vruntime; 4262 4263 update_curr(cfs_rq); 4264 4265 /* 4266 * Otherwise, renormalise after, such that we're placed at the current 4267 * moment in time, instead of some random moment in the past. Being 4268 * placed in the past could significantly boost this task to the 4269 * fairness detriment of existing tasks. 4270 */ 4271 if (renorm && !curr) 4272 se->vruntime += cfs_rq->min_vruntime; 4273 4274 /* 4275 * When enqueuing a sched_entity, we must: 4276 * - Update loads to have both entity and cfs_rq synced with now. 4277 * - Add its load to cfs_rq->runnable_avg 4278 * - For group_entity, update its weight to reflect the new share of 4279 * its group cfs_rq 4280 * - Add its new weight to cfs_rq->load.weight 4281 */ 4282 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4283 se_update_runnable(se); 4284 update_cfs_group(se); 4285 account_entity_enqueue(cfs_rq, se); 4286 4287 if (flags & ENQUEUE_WAKEUP) 4288 place_entity(cfs_rq, se, 0); 4289 4290 check_schedstat_required(); 4291 update_stats_enqueue(cfs_rq, se, flags); 4292 check_spread(cfs_rq, se); 4293 if (!curr) 4294 __enqueue_entity(cfs_rq, se); 4295 se->on_rq = 1; 4296 4297 /* 4298 * When bandwidth control is enabled, cfs might have been removed 4299 * because of a parent been throttled but cfs->nr_running > 1. Try to 4300 * add it unconditionally. 4301 */ 4302 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used()) 4303 list_add_leaf_cfs_rq(cfs_rq); 4304 4305 if (cfs_rq->nr_running == 1) 4306 check_enqueue_throttle(cfs_rq); 4307 } 4308 4309 static void __clear_buddies_last(struct sched_entity *se) 4310 { 4311 for_each_sched_entity(se) { 4312 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4313 if (cfs_rq->last != se) 4314 break; 4315 4316 cfs_rq->last = NULL; 4317 } 4318 } 4319 4320 static void __clear_buddies_next(struct sched_entity *se) 4321 { 4322 for_each_sched_entity(se) { 4323 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4324 if (cfs_rq->next != se) 4325 break; 4326 4327 cfs_rq->next = NULL; 4328 } 4329 } 4330 4331 static void __clear_buddies_skip(struct sched_entity *se) 4332 { 4333 for_each_sched_entity(se) { 4334 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4335 if (cfs_rq->skip != se) 4336 break; 4337 4338 cfs_rq->skip = NULL; 4339 } 4340 } 4341 4342 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4343 { 4344 if (cfs_rq->last == se) 4345 __clear_buddies_last(se); 4346 4347 if (cfs_rq->next == se) 4348 __clear_buddies_next(se); 4349 4350 if (cfs_rq->skip == se) 4351 __clear_buddies_skip(se); 4352 } 4353 4354 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4355 4356 static void 4357 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4358 { 4359 /* 4360 * Update run-time statistics of the 'current'. 4361 */ 4362 update_curr(cfs_rq); 4363 4364 /* 4365 * When dequeuing a sched_entity, we must: 4366 * - Update loads to have both entity and cfs_rq synced with now. 4367 * - Subtract its load from the cfs_rq->runnable_avg. 4368 * - Subtract its previous weight from cfs_rq->load.weight. 4369 * - For group entity, update its weight to reflect the new share 4370 * of its group cfs_rq. 4371 */ 4372 update_load_avg(cfs_rq, se, UPDATE_TG); 4373 se_update_runnable(se); 4374 4375 update_stats_dequeue(cfs_rq, se, flags); 4376 4377 clear_buddies(cfs_rq, se); 4378 4379 if (se != cfs_rq->curr) 4380 __dequeue_entity(cfs_rq, se); 4381 se->on_rq = 0; 4382 account_entity_dequeue(cfs_rq, se); 4383 4384 /* 4385 * Normalize after update_curr(); which will also have moved 4386 * min_vruntime if @se is the one holding it back. But before doing 4387 * update_min_vruntime() again, which will discount @se's position and 4388 * can move min_vruntime forward still more. 4389 */ 4390 if (!(flags & DEQUEUE_SLEEP)) 4391 se->vruntime -= cfs_rq->min_vruntime; 4392 4393 /* return excess runtime on last dequeue */ 4394 return_cfs_rq_runtime(cfs_rq); 4395 4396 update_cfs_group(se); 4397 4398 /* 4399 * Now advance min_vruntime if @se was the entity holding it back, 4400 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4401 * put back on, and if we advance min_vruntime, we'll be placed back 4402 * further than we started -- ie. we'll be penalized. 4403 */ 4404 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4405 update_min_vruntime(cfs_rq); 4406 } 4407 4408 /* 4409 * Preempt the current task with a newly woken task if needed: 4410 */ 4411 static void 4412 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4413 { 4414 unsigned long ideal_runtime, delta_exec; 4415 struct sched_entity *se; 4416 s64 delta; 4417 4418 ideal_runtime = sched_slice(cfs_rq, curr); 4419 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4420 if (delta_exec > ideal_runtime) { 4421 resched_curr(rq_of(cfs_rq)); 4422 /* 4423 * The current task ran long enough, ensure it doesn't get 4424 * re-elected due to buddy favours. 4425 */ 4426 clear_buddies(cfs_rq, curr); 4427 return; 4428 } 4429 4430 /* 4431 * Ensure that a task that missed wakeup preemption by a 4432 * narrow margin doesn't have to wait for a full slice. 4433 * This also mitigates buddy induced latencies under load. 4434 */ 4435 if (delta_exec < sysctl_sched_min_granularity) 4436 return; 4437 4438 se = __pick_first_entity(cfs_rq); 4439 delta = curr->vruntime - se->vruntime; 4440 4441 if (delta < 0) 4442 return; 4443 4444 if (delta > ideal_runtime) 4445 resched_curr(rq_of(cfs_rq)); 4446 } 4447 4448 static void 4449 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4450 { 4451 /* 'current' is not kept within the tree. */ 4452 if (se->on_rq) { 4453 /* 4454 * Any task has to be enqueued before it get to execute on 4455 * a CPU. So account for the time it spent waiting on the 4456 * runqueue. 4457 */ 4458 update_stats_wait_end(cfs_rq, se); 4459 __dequeue_entity(cfs_rq, se); 4460 update_load_avg(cfs_rq, se, UPDATE_TG); 4461 } 4462 4463 update_stats_curr_start(cfs_rq, se); 4464 cfs_rq->curr = se; 4465 4466 /* 4467 * Track our maximum slice length, if the CPU's load is at 4468 * least twice that of our own weight (i.e. dont track it 4469 * when there are only lesser-weight tasks around): 4470 */ 4471 if (schedstat_enabled() && 4472 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4473 schedstat_set(se->statistics.slice_max, 4474 max((u64)schedstat_val(se->statistics.slice_max), 4475 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4476 } 4477 4478 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4479 } 4480 4481 static int 4482 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4483 4484 /* 4485 * Pick the next process, keeping these things in mind, in this order: 4486 * 1) keep things fair between processes/task groups 4487 * 2) pick the "next" process, since someone really wants that to run 4488 * 3) pick the "last" process, for cache locality 4489 * 4) do not run the "skip" process, if something else is available 4490 */ 4491 static struct sched_entity * 4492 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4493 { 4494 struct sched_entity *left = __pick_first_entity(cfs_rq); 4495 struct sched_entity *se; 4496 4497 /* 4498 * If curr is set we have to see if its left of the leftmost entity 4499 * still in the tree, provided there was anything in the tree at all. 4500 */ 4501 if (!left || (curr && entity_before(curr, left))) 4502 left = curr; 4503 4504 se = left; /* ideally we run the leftmost entity */ 4505 4506 /* 4507 * Avoid running the skip buddy, if running something else can 4508 * be done without getting too unfair. 4509 */ 4510 if (cfs_rq->skip == se) { 4511 struct sched_entity *second; 4512 4513 if (se == curr) { 4514 second = __pick_first_entity(cfs_rq); 4515 } else { 4516 second = __pick_next_entity(se); 4517 if (!second || (curr && entity_before(curr, second))) 4518 second = curr; 4519 } 4520 4521 if (second && wakeup_preempt_entity(second, left) < 1) 4522 se = second; 4523 } 4524 4525 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) { 4526 /* 4527 * Someone really wants this to run. If it's not unfair, run it. 4528 */ 4529 se = cfs_rq->next; 4530 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) { 4531 /* 4532 * Prefer last buddy, try to return the CPU to a preempted task. 4533 */ 4534 se = cfs_rq->last; 4535 } 4536 4537 clear_buddies(cfs_rq, se); 4538 4539 return se; 4540 } 4541 4542 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4543 4544 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4545 { 4546 /* 4547 * If still on the runqueue then deactivate_task() 4548 * was not called and update_curr() has to be done: 4549 */ 4550 if (prev->on_rq) 4551 update_curr(cfs_rq); 4552 4553 /* throttle cfs_rqs exceeding runtime */ 4554 check_cfs_rq_runtime(cfs_rq); 4555 4556 check_spread(cfs_rq, prev); 4557 4558 if (prev->on_rq) { 4559 update_stats_wait_start(cfs_rq, prev); 4560 /* Put 'current' back into the tree. */ 4561 __enqueue_entity(cfs_rq, prev); 4562 /* in !on_rq case, update occurred at dequeue */ 4563 update_load_avg(cfs_rq, prev, 0); 4564 } 4565 cfs_rq->curr = NULL; 4566 } 4567 4568 static void 4569 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4570 { 4571 /* 4572 * Update run-time statistics of the 'current'. 4573 */ 4574 update_curr(cfs_rq); 4575 4576 /* 4577 * Ensure that runnable average is periodically updated. 4578 */ 4579 update_load_avg(cfs_rq, curr, UPDATE_TG); 4580 update_cfs_group(curr); 4581 4582 #ifdef CONFIG_SCHED_HRTICK 4583 /* 4584 * queued ticks are scheduled to match the slice, so don't bother 4585 * validating it and just reschedule. 4586 */ 4587 if (queued) { 4588 resched_curr(rq_of(cfs_rq)); 4589 return; 4590 } 4591 /* 4592 * don't let the period tick interfere with the hrtick preemption 4593 */ 4594 if (!sched_feat(DOUBLE_TICK) && 4595 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4596 return; 4597 #endif 4598 4599 if (cfs_rq->nr_running > 1) 4600 check_preempt_tick(cfs_rq, curr); 4601 } 4602 4603 4604 /************************************************** 4605 * CFS bandwidth control machinery 4606 */ 4607 4608 #ifdef CONFIG_CFS_BANDWIDTH 4609 4610 #ifdef CONFIG_JUMP_LABEL 4611 static struct static_key __cfs_bandwidth_used; 4612 4613 static inline bool cfs_bandwidth_used(void) 4614 { 4615 return static_key_false(&__cfs_bandwidth_used); 4616 } 4617 4618 void cfs_bandwidth_usage_inc(void) 4619 { 4620 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4621 } 4622 4623 void cfs_bandwidth_usage_dec(void) 4624 { 4625 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4626 } 4627 #else /* CONFIG_JUMP_LABEL */ 4628 static bool cfs_bandwidth_used(void) 4629 { 4630 return true; 4631 } 4632 4633 void cfs_bandwidth_usage_inc(void) {} 4634 void cfs_bandwidth_usage_dec(void) {} 4635 #endif /* CONFIG_JUMP_LABEL */ 4636 4637 /* 4638 * default period for cfs group bandwidth. 4639 * default: 0.1s, units: nanoseconds 4640 */ 4641 static inline u64 default_cfs_period(void) 4642 { 4643 return 100000000ULL; 4644 } 4645 4646 static inline u64 sched_cfs_bandwidth_slice(void) 4647 { 4648 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4649 } 4650 4651 /* 4652 * Replenish runtime according to assigned quota. We use sched_clock_cpu 4653 * directly instead of rq->clock to avoid adding additional synchronization 4654 * around rq->lock. 4655 * 4656 * requires cfs_b->lock 4657 */ 4658 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4659 { 4660 if (cfs_b->quota != RUNTIME_INF) 4661 cfs_b->runtime = cfs_b->quota; 4662 } 4663 4664 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4665 { 4666 return &tg->cfs_bandwidth; 4667 } 4668 4669 /* returns 0 on failure to allocate runtime */ 4670 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 4671 struct cfs_rq *cfs_rq, u64 target_runtime) 4672 { 4673 u64 min_amount, amount = 0; 4674 4675 lockdep_assert_held(&cfs_b->lock); 4676 4677 /* note: this is a positive sum as runtime_remaining <= 0 */ 4678 min_amount = target_runtime - cfs_rq->runtime_remaining; 4679 4680 if (cfs_b->quota == RUNTIME_INF) 4681 amount = min_amount; 4682 else { 4683 start_cfs_bandwidth(cfs_b); 4684 4685 if (cfs_b->runtime > 0) { 4686 amount = min(cfs_b->runtime, min_amount); 4687 cfs_b->runtime -= amount; 4688 cfs_b->idle = 0; 4689 } 4690 } 4691 4692 cfs_rq->runtime_remaining += amount; 4693 4694 return cfs_rq->runtime_remaining > 0; 4695 } 4696 4697 /* returns 0 on failure to allocate runtime */ 4698 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4699 { 4700 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4701 int ret; 4702 4703 raw_spin_lock(&cfs_b->lock); 4704 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 4705 raw_spin_unlock(&cfs_b->lock); 4706 4707 return ret; 4708 } 4709 4710 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4711 { 4712 /* dock delta_exec before expiring quota (as it could span periods) */ 4713 cfs_rq->runtime_remaining -= delta_exec; 4714 4715 if (likely(cfs_rq->runtime_remaining > 0)) 4716 return; 4717 4718 if (cfs_rq->throttled) 4719 return; 4720 /* 4721 * if we're unable to extend our runtime we resched so that the active 4722 * hierarchy can be throttled 4723 */ 4724 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4725 resched_curr(rq_of(cfs_rq)); 4726 } 4727 4728 static __always_inline 4729 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4730 { 4731 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4732 return; 4733 4734 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4735 } 4736 4737 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4738 { 4739 return cfs_bandwidth_used() && cfs_rq->throttled; 4740 } 4741 4742 /* check whether cfs_rq, or any parent, is throttled */ 4743 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4744 { 4745 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4746 } 4747 4748 /* 4749 * Ensure that neither of the group entities corresponding to src_cpu or 4750 * dest_cpu are members of a throttled hierarchy when performing group 4751 * load-balance operations. 4752 */ 4753 static inline int throttled_lb_pair(struct task_group *tg, 4754 int src_cpu, int dest_cpu) 4755 { 4756 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4757 4758 src_cfs_rq = tg->cfs_rq[src_cpu]; 4759 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4760 4761 return throttled_hierarchy(src_cfs_rq) || 4762 throttled_hierarchy(dest_cfs_rq); 4763 } 4764 4765 static int tg_unthrottle_up(struct task_group *tg, void *data) 4766 { 4767 struct rq *rq = data; 4768 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4769 4770 cfs_rq->throttle_count--; 4771 if (!cfs_rq->throttle_count) { 4772 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4773 cfs_rq->throttled_clock_task; 4774 4775 /* Add cfs_rq with load or one or more already running entities to the list */ 4776 if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running) 4777 list_add_leaf_cfs_rq(cfs_rq); 4778 } 4779 4780 return 0; 4781 } 4782 4783 static int tg_throttle_down(struct task_group *tg, void *data) 4784 { 4785 struct rq *rq = data; 4786 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4787 4788 /* group is entering throttled state, stop time */ 4789 if (!cfs_rq->throttle_count) { 4790 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4791 list_del_leaf_cfs_rq(cfs_rq); 4792 } 4793 cfs_rq->throttle_count++; 4794 4795 return 0; 4796 } 4797 4798 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 4799 { 4800 struct rq *rq = rq_of(cfs_rq); 4801 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4802 struct sched_entity *se; 4803 long task_delta, idle_task_delta, dequeue = 1; 4804 4805 raw_spin_lock(&cfs_b->lock); 4806 /* This will start the period timer if necessary */ 4807 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 4808 /* 4809 * We have raced with bandwidth becoming available, and if we 4810 * actually throttled the timer might not unthrottle us for an 4811 * entire period. We additionally needed to make sure that any 4812 * subsequent check_cfs_rq_runtime calls agree not to throttle 4813 * us, as we may commit to do cfs put_prev+pick_next, so we ask 4814 * for 1ns of runtime rather than just check cfs_b. 4815 */ 4816 dequeue = 0; 4817 } else { 4818 list_add_tail_rcu(&cfs_rq->throttled_list, 4819 &cfs_b->throttled_cfs_rq); 4820 } 4821 raw_spin_unlock(&cfs_b->lock); 4822 4823 if (!dequeue) 4824 return false; /* Throttle no longer required. */ 4825 4826 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4827 4828 /* freeze hierarchy runnable averages while throttled */ 4829 rcu_read_lock(); 4830 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4831 rcu_read_unlock(); 4832 4833 task_delta = cfs_rq->h_nr_running; 4834 idle_task_delta = cfs_rq->idle_h_nr_running; 4835 for_each_sched_entity(se) { 4836 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4837 /* throttled entity or throttle-on-deactivate */ 4838 if (!se->on_rq) 4839 goto done; 4840 4841 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4842 4843 qcfs_rq->h_nr_running -= task_delta; 4844 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4845 4846 if (qcfs_rq->load.weight) { 4847 /* Avoid re-evaluating load for this entity: */ 4848 se = parent_entity(se); 4849 break; 4850 } 4851 } 4852 4853 for_each_sched_entity(se) { 4854 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4855 /* throttled entity or throttle-on-deactivate */ 4856 if (!se->on_rq) 4857 goto done; 4858 4859 update_load_avg(qcfs_rq, se, 0); 4860 se_update_runnable(se); 4861 4862 qcfs_rq->h_nr_running -= task_delta; 4863 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4864 } 4865 4866 /* At this point se is NULL and we are at root level*/ 4867 sub_nr_running(rq, task_delta); 4868 4869 done: 4870 /* 4871 * Note: distribution will already see us throttled via the 4872 * throttled-list. rq->lock protects completion. 4873 */ 4874 cfs_rq->throttled = 1; 4875 cfs_rq->throttled_clock = rq_clock(rq); 4876 return true; 4877 } 4878 4879 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4880 { 4881 struct rq *rq = rq_of(cfs_rq); 4882 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4883 struct sched_entity *se; 4884 long task_delta, idle_task_delta; 4885 4886 se = cfs_rq->tg->se[cpu_of(rq)]; 4887 4888 cfs_rq->throttled = 0; 4889 4890 update_rq_clock(rq); 4891 4892 raw_spin_lock(&cfs_b->lock); 4893 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4894 list_del_rcu(&cfs_rq->throttled_list); 4895 raw_spin_unlock(&cfs_b->lock); 4896 4897 /* update hierarchical throttle state */ 4898 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4899 4900 if (!cfs_rq->load.weight) 4901 return; 4902 4903 task_delta = cfs_rq->h_nr_running; 4904 idle_task_delta = cfs_rq->idle_h_nr_running; 4905 for_each_sched_entity(se) { 4906 if (se->on_rq) 4907 break; 4908 cfs_rq = cfs_rq_of(se); 4909 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4910 4911 cfs_rq->h_nr_running += task_delta; 4912 cfs_rq->idle_h_nr_running += idle_task_delta; 4913 4914 /* end evaluation on encountering a throttled cfs_rq */ 4915 if (cfs_rq_throttled(cfs_rq)) 4916 goto unthrottle_throttle; 4917 } 4918 4919 for_each_sched_entity(se) { 4920 cfs_rq = cfs_rq_of(se); 4921 4922 update_load_avg(cfs_rq, se, UPDATE_TG); 4923 se_update_runnable(se); 4924 4925 cfs_rq->h_nr_running += task_delta; 4926 cfs_rq->idle_h_nr_running += idle_task_delta; 4927 4928 4929 /* end evaluation on encountering a throttled cfs_rq */ 4930 if (cfs_rq_throttled(cfs_rq)) 4931 goto unthrottle_throttle; 4932 4933 /* 4934 * One parent has been throttled and cfs_rq removed from the 4935 * list. Add it back to not break the leaf list. 4936 */ 4937 if (throttled_hierarchy(cfs_rq)) 4938 list_add_leaf_cfs_rq(cfs_rq); 4939 } 4940 4941 /* At this point se is NULL and we are at root level*/ 4942 add_nr_running(rq, task_delta); 4943 4944 unthrottle_throttle: 4945 /* 4946 * The cfs_rq_throttled() breaks in the above iteration can result in 4947 * incomplete leaf list maintenance, resulting in triggering the 4948 * assertion below. 4949 */ 4950 for_each_sched_entity(se) { 4951 cfs_rq = cfs_rq_of(se); 4952 4953 if (list_add_leaf_cfs_rq(cfs_rq)) 4954 break; 4955 } 4956 4957 assert_list_leaf_cfs_rq(rq); 4958 4959 /* Determine whether we need to wake up potentially idle CPU: */ 4960 if (rq->curr == rq->idle && rq->cfs.nr_running) 4961 resched_curr(rq); 4962 } 4963 4964 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 4965 { 4966 struct cfs_rq *cfs_rq; 4967 u64 runtime, remaining = 1; 4968 4969 rcu_read_lock(); 4970 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4971 throttled_list) { 4972 struct rq *rq = rq_of(cfs_rq); 4973 struct rq_flags rf; 4974 4975 rq_lock_irqsave(rq, &rf); 4976 if (!cfs_rq_throttled(cfs_rq)) 4977 goto next; 4978 4979 /* By the above check, this should never be true */ 4980 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 4981 4982 raw_spin_lock(&cfs_b->lock); 4983 runtime = -cfs_rq->runtime_remaining + 1; 4984 if (runtime > cfs_b->runtime) 4985 runtime = cfs_b->runtime; 4986 cfs_b->runtime -= runtime; 4987 remaining = cfs_b->runtime; 4988 raw_spin_unlock(&cfs_b->lock); 4989 4990 cfs_rq->runtime_remaining += runtime; 4991 4992 /* we check whether we're throttled above */ 4993 if (cfs_rq->runtime_remaining > 0) 4994 unthrottle_cfs_rq(cfs_rq); 4995 4996 next: 4997 rq_unlock_irqrestore(rq, &rf); 4998 4999 if (!remaining) 5000 break; 5001 } 5002 rcu_read_unlock(); 5003 } 5004 5005 /* 5006 * Responsible for refilling a task_group's bandwidth and unthrottling its 5007 * cfs_rqs as appropriate. If there has been no activity within the last 5008 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 5009 * used to track this state. 5010 */ 5011 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 5012 { 5013 int throttled; 5014 5015 /* no need to continue the timer with no bandwidth constraint */ 5016 if (cfs_b->quota == RUNTIME_INF) 5017 goto out_deactivate; 5018 5019 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5020 cfs_b->nr_periods += overrun; 5021 5022 /* 5023 * idle depends on !throttled (for the case of a large deficit), and if 5024 * we're going inactive then everything else can be deferred 5025 */ 5026 if (cfs_b->idle && !throttled) 5027 goto out_deactivate; 5028 5029 __refill_cfs_bandwidth_runtime(cfs_b); 5030 5031 if (!throttled) { 5032 /* mark as potentially idle for the upcoming period */ 5033 cfs_b->idle = 1; 5034 return 0; 5035 } 5036 5037 /* account preceding periods in which throttling occurred */ 5038 cfs_b->nr_throttled += overrun; 5039 5040 /* 5041 * This check is repeated as we release cfs_b->lock while we unthrottle. 5042 */ 5043 while (throttled && cfs_b->runtime > 0) { 5044 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5045 /* we can't nest cfs_b->lock while distributing bandwidth */ 5046 distribute_cfs_runtime(cfs_b); 5047 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5048 5049 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5050 } 5051 5052 /* 5053 * While we are ensured activity in the period following an 5054 * unthrottle, this also covers the case in which the new bandwidth is 5055 * insufficient to cover the existing bandwidth deficit. (Forcing the 5056 * timer to remain active while there are any throttled entities.) 5057 */ 5058 cfs_b->idle = 0; 5059 5060 return 0; 5061 5062 out_deactivate: 5063 return 1; 5064 } 5065 5066 /* a cfs_rq won't donate quota below this amount */ 5067 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 5068 /* minimum remaining period time to redistribute slack quota */ 5069 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 5070 /* how long we wait to gather additional slack before distributing */ 5071 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 5072 5073 /* 5074 * Are we near the end of the current quota period? 5075 * 5076 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 5077 * hrtimer base being cleared by hrtimer_start. In the case of 5078 * migrate_hrtimers, base is never cleared, so we are fine. 5079 */ 5080 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5081 { 5082 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5083 u64 remaining; 5084 5085 /* if the call-back is running a quota refresh is already occurring */ 5086 if (hrtimer_callback_running(refresh_timer)) 5087 return 1; 5088 5089 /* is a quota refresh about to occur? */ 5090 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5091 if (remaining < min_expire) 5092 return 1; 5093 5094 return 0; 5095 } 5096 5097 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5098 { 5099 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5100 5101 /* if there's a quota refresh soon don't bother with slack */ 5102 if (runtime_refresh_within(cfs_b, min_left)) 5103 return; 5104 5105 /* don't push forwards an existing deferred unthrottle */ 5106 if (cfs_b->slack_started) 5107 return; 5108 cfs_b->slack_started = true; 5109 5110 hrtimer_start(&cfs_b->slack_timer, 5111 ns_to_ktime(cfs_bandwidth_slack_period), 5112 HRTIMER_MODE_REL); 5113 } 5114 5115 /* we know any runtime found here is valid as update_curr() precedes return */ 5116 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5117 { 5118 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5119 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5120 5121 if (slack_runtime <= 0) 5122 return; 5123 5124 raw_spin_lock(&cfs_b->lock); 5125 if (cfs_b->quota != RUNTIME_INF) { 5126 cfs_b->runtime += slack_runtime; 5127 5128 /* we are under rq->lock, defer unthrottling using a timer */ 5129 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5130 !list_empty(&cfs_b->throttled_cfs_rq)) 5131 start_cfs_slack_bandwidth(cfs_b); 5132 } 5133 raw_spin_unlock(&cfs_b->lock); 5134 5135 /* even if it's not valid for return we don't want to try again */ 5136 cfs_rq->runtime_remaining -= slack_runtime; 5137 } 5138 5139 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5140 { 5141 if (!cfs_bandwidth_used()) 5142 return; 5143 5144 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5145 return; 5146 5147 __return_cfs_rq_runtime(cfs_rq); 5148 } 5149 5150 /* 5151 * This is done with a timer (instead of inline with bandwidth return) since 5152 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5153 */ 5154 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5155 { 5156 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5157 unsigned long flags; 5158 5159 /* confirm we're still not at a refresh boundary */ 5160 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5161 cfs_b->slack_started = false; 5162 5163 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5164 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5165 return; 5166 } 5167 5168 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5169 runtime = cfs_b->runtime; 5170 5171 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5172 5173 if (!runtime) 5174 return; 5175 5176 distribute_cfs_runtime(cfs_b); 5177 } 5178 5179 /* 5180 * When a group wakes up we want to make sure that its quota is not already 5181 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5182 * runtime as update_curr() throttling can not trigger until it's on-rq. 5183 */ 5184 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5185 { 5186 if (!cfs_bandwidth_used()) 5187 return; 5188 5189 /* an active group must be handled by the update_curr()->put() path */ 5190 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5191 return; 5192 5193 /* ensure the group is not already throttled */ 5194 if (cfs_rq_throttled(cfs_rq)) 5195 return; 5196 5197 /* update runtime allocation */ 5198 account_cfs_rq_runtime(cfs_rq, 0); 5199 if (cfs_rq->runtime_remaining <= 0) 5200 throttle_cfs_rq(cfs_rq); 5201 } 5202 5203 static void sync_throttle(struct task_group *tg, int cpu) 5204 { 5205 struct cfs_rq *pcfs_rq, *cfs_rq; 5206 5207 if (!cfs_bandwidth_used()) 5208 return; 5209 5210 if (!tg->parent) 5211 return; 5212 5213 cfs_rq = tg->cfs_rq[cpu]; 5214 pcfs_rq = tg->parent->cfs_rq[cpu]; 5215 5216 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5217 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 5218 } 5219 5220 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5221 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5222 { 5223 if (!cfs_bandwidth_used()) 5224 return false; 5225 5226 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5227 return false; 5228 5229 /* 5230 * it's possible for a throttled entity to be forced into a running 5231 * state (e.g. set_curr_task), in this case we're finished. 5232 */ 5233 if (cfs_rq_throttled(cfs_rq)) 5234 return true; 5235 5236 return throttle_cfs_rq(cfs_rq); 5237 } 5238 5239 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5240 { 5241 struct cfs_bandwidth *cfs_b = 5242 container_of(timer, struct cfs_bandwidth, slack_timer); 5243 5244 do_sched_cfs_slack_timer(cfs_b); 5245 5246 return HRTIMER_NORESTART; 5247 } 5248 5249 extern const u64 max_cfs_quota_period; 5250 5251 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5252 { 5253 struct cfs_bandwidth *cfs_b = 5254 container_of(timer, struct cfs_bandwidth, period_timer); 5255 unsigned long flags; 5256 int overrun; 5257 int idle = 0; 5258 int count = 0; 5259 5260 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5261 for (;;) { 5262 overrun = hrtimer_forward_now(timer, cfs_b->period); 5263 if (!overrun) 5264 break; 5265 5266 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5267 5268 if (++count > 3) { 5269 u64 new, old = ktime_to_ns(cfs_b->period); 5270 5271 /* 5272 * Grow period by a factor of 2 to avoid losing precision. 5273 * Precision loss in the quota/period ratio can cause __cfs_schedulable 5274 * to fail. 5275 */ 5276 new = old * 2; 5277 if (new < max_cfs_quota_period) { 5278 cfs_b->period = ns_to_ktime(new); 5279 cfs_b->quota *= 2; 5280 5281 pr_warn_ratelimited( 5282 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5283 smp_processor_id(), 5284 div_u64(new, NSEC_PER_USEC), 5285 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5286 } else { 5287 pr_warn_ratelimited( 5288 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5289 smp_processor_id(), 5290 div_u64(old, NSEC_PER_USEC), 5291 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5292 } 5293 5294 /* reset count so we don't come right back in here */ 5295 count = 0; 5296 } 5297 } 5298 if (idle) 5299 cfs_b->period_active = 0; 5300 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5301 5302 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5303 } 5304 5305 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5306 { 5307 raw_spin_lock_init(&cfs_b->lock); 5308 cfs_b->runtime = 0; 5309 cfs_b->quota = RUNTIME_INF; 5310 cfs_b->period = ns_to_ktime(default_cfs_period()); 5311 5312 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5313 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5314 cfs_b->period_timer.function = sched_cfs_period_timer; 5315 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5316 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5317 cfs_b->slack_started = false; 5318 } 5319 5320 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5321 { 5322 cfs_rq->runtime_enabled = 0; 5323 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5324 } 5325 5326 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5327 { 5328 lockdep_assert_held(&cfs_b->lock); 5329 5330 if (cfs_b->period_active) 5331 return; 5332 5333 cfs_b->period_active = 1; 5334 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5335 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5336 } 5337 5338 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5339 { 5340 /* init_cfs_bandwidth() was not called */ 5341 if (!cfs_b->throttled_cfs_rq.next) 5342 return; 5343 5344 hrtimer_cancel(&cfs_b->period_timer); 5345 hrtimer_cancel(&cfs_b->slack_timer); 5346 } 5347 5348 /* 5349 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5350 * 5351 * The race is harmless, since modifying bandwidth settings of unhooked group 5352 * bits doesn't do much. 5353 */ 5354 5355 /* cpu online callback */ 5356 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5357 { 5358 struct task_group *tg; 5359 5360 lockdep_assert_held(&rq->lock); 5361 5362 rcu_read_lock(); 5363 list_for_each_entry_rcu(tg, &task_groups, list) { 5364 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5365 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5366 5367 raw_spin_lock(&cfs_b->lock); 5368 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5369 raw_spin_unlock(&cfs_b->lock); 5370 } 5371 rcu_read_unlock(); 5372 } 5373 5374 /* cpu offline callback */ 5375 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5376 { 5377 struct task_group *tg; 5378 5379 lockdep_assert_held(&rq->lock); 5380 5381 rcu_read_lock(); 5382 list_for_each_entry_rcu(tg, &task_groups, list) { 5383 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5384 5385 if (!cfs_rq->runtime_enabled) 5386 continue; 5387 5388 /* 5389 * clock_task is not advancing so we just need to make sure 5390 * there's some valid quota amount 5391 */ 5392 cfs_rq->runtime_remaining = 1; 5393 /* 5394 * Offline rq is schedulable till CPU is completely disabled 5395 * in take_cpu_down(), so we prevent new cfs throttling here. 5396 */ 5397 cfs_rq->runtime_enabled = 0; 5398 5399 if (cfs_rq_throttled(cfs_rq)) 5400 unthrottle_cfs_rq(cfs_rq); 5401 } 5402 rcu_read_unlock(); 5403 } 5404 5405 #else /* CONFIG_CFS_BANDWIDTH */ 5406 5407 static inline bool cfs_bandwidth_used(void) 5408 { 5409 return false; 5410 } 5411 5412 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5413 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5414 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5415 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5416 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5417 5418 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5419 { 5420 return 0; 5421 } 5422 5423 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5424 { 5425 return 0; 5426 } 5427 5428 static inline int throttled_lb_pair(struct task_group *tg, 5429 int src_cpu, int dest_cpu) 5430 { 5431 return 0; 5432 } 5433 5434 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5435 5436 #ifdef CONFIG_FAIR_GROUP_SCHED 5437 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5438 #endif 5439 5440 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5441 { 5442 return NULL; 5443 } 5444 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5445 static inline void update_runtime_enabled(struct rq *rq) {} 5446 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5447 5448 #endif /* CONFIG_CFS_BANDWIDTH */ 5449 5450 /************************************************** 5451 * CFS operations on tasks: 5452 */ 5453 5454 #ifdef CONFIG_SCHED_HRTICK 5455 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5456 { 5457 struct sched_entity *se = &p->se; 5458 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5459 5460 SCHED_WARN_ON(task_rq(p) != rq); 5461 5462 if (rq->cfs.h_nr_running > 1) { 5463 u64 slice = sched_slice(cfs_rq, se); 5464 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5465 s64 delta = slice - ran; 5466 5467 if (delta < 0) { 5468 if (task_current(rq, p)) 5469 resched_curr(rq); 5470 return; 5471 } 5472 hrtick_start(rq, delta); 5473 } 5474 } 5475 5476 /* 5477 * called from enqueue/dequeue and updates the hrtick when the 5478 * current task is from our class and nr_running is low enough 5479 * to matter. 5480 */ 5481 static void hrtick_update(struct rq *rq) 5482 { 5483 struct task_struct *curr = rq->curr; 5484 5485 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 5486 return; 5487 5488 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5489 hrtick_start_fair(rq, curr); 5490 } 5491 #else /* !CONFIG_SCHED_HRTICK */ 5492 static inline void 5493 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5494 { 5495 } 5496 5497 static inline void hrtick_update(struct rq *rq) 5498 { 5499 } 5500 #endif 5501 5502 #ifdef CONFIG_SMP 5503 static inline unsigned long cpu_util(int cpu); 5504 5505 static inline bool cpu_overutilized(int cpu) 5506 { 5507 return !fits_capacity(cpu_util(cpu), capacity_of(cpu)); 5508 } 5509 5510 static inline void update_overutilized_status(struct rq *rq) 5511 { 5512 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5513 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5514 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5515 } 5516 } 5517 #else 5518 static inline void update_overutilized_status(struct rq *rq) { } 5519 #endif 5520 5521 /* Runqueue only has SCHED_IDLE tasks enqueued */ 5522 static int sched_idle_rq(struct rq *rq) 5523 { 5524 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 5525 rq->nr_running); 5526 } 5527 5528 #ifdef CONFIG_SMP 5529 static int sched_idle_cpu(int cpu) 5530 { 5531 return sched_idle_rq(cpu_rq(cpu)); 5532 } 5533 #endif 5534 5535 /* 5536 * The enqueue_task method is called before nr_running is 5537 * increased. Here we update the fair scheduling stats and 5538 * then put the task into the rbtree: 5539 */ 5540 static void 5541 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5542 { 5543 struct cfs_rq *cfs_rq; 5544 struct sched_entity *se = &p->se; 5545 int idle_h_nr_running = task_has_idle_policy(p); 5546 int task_new = !(flags & ENQUEUE_WAKEUP); 5547 5548 /* 5549 * The code below (indirectly) updates schedutil which looks at 5550 * the cfs_rq utilization to select a frequency. 5551 * Let's add the task's estimated utilization to the cfs_rq's 5552 * estimated utilization, before we update schedutil. 5553 */ 5554 util_est_enqueue(&rq->cfs, p); 5555 5556 /* 5557 * If in_iowait is set, the code below may not trigger any cpufreq 5558 * utilization updates, so do it here explicitly with the IOWAIT flag 5559 * passed. 5560 */ 5561 if (p->in_iowait) 5562 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5563 5564 for_each_sched_entity(se) { 5565 if (se->on_rq) 5566 break; 5567 cfs_rq = cfs_rq_of(se); 5568 enqueue_entity(cfs_rq, se, flags); 5569 5570 cfs_rq->h_nr_running++; 5571 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5572 5573 /* end evaluation on encountering a throttled cfs_rq */ 5574 if (cfs_rq_throttled(cfs_rq)) 5575 goto enqueue_throttle; 5576 5577 flags = ENQUEUE_WAKEUP; 5578 } 5579 5580 for_each_sched_entity(se) { 5581 cfs_rq = cfs_rq_of(se); 5582 5583 update_load_avg(cfs_rq, se, UPDATE_TG); 5584 se_update_runnable(se); 5585 update_cfs_group(se); 5586 5587 cfs_rq->h_nr_running++; 5588 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5589 5590 /* end evaluation on encountering a throttled cfs_rq */ 5591 if (cfs_rq_throttled(cfs_rq)) 5592 goto enqueue_throttle; 5593 5594 /* 5595 * One parent has been throttled and cfs_rq removed from the 5596 * list. Add it back to not break the leaf list. 5597 */ 5598 if (throttled_hierarchy(cfs_rq)) 5599 list_add_leaf_cfs_rq(cfs_rq); 5600 } 5601 5602 /* At this point se is NULL and we are at root level*/ 5603 add_nr_running(rq, 1); 5604 5605 /* 5606 * Since new tasks are assigned an initial util_avg equal to 5607 * half of the spare capacity of their CPU, tiny tasks have the 5608 * ability to cross the overutilized threshold, which will 5609 * result in the load balancer ruining all the task placement 5610 * done by EAS. As a way to mitigate that effect, do not account 5611 * for the first enqueue operation of new tasks during the 5612 * overutilized flag detection. 5613 * 5614 * A better way of solving this problem would be to wait for 5615 * the PELT signals of tasks to converge before taking them 5616 * into account, but that is not straightforward to implement, 5617 * and the following generally works well enough in practice. 5618 */ 5619 if (!task_new) 5620 update_overutilized_status(rq); 5621 5622 enqueue_throttle: 5623 if (cfs_bandwidth_used()) { 5624 /* 5625 * When bandwidth control is enabled; the cfs_rq_throttled() 5626 * breaks in the above iteration can result in incomplete 5627 * leaf list maintenance, resulting in triggering the assertion 5628 * below. 5629 */ 5630 for_each_sched_entity(se) { 5631 cfs_rq = cfs_rq_of(se); 5632 5633 if (list_add_leaf_cfs_rq(cfs_rq)) 5634 break; 5635 } 5636 } 5637 5638 assert_list_leaf_cfs_rq(rq); 5639 5640 hrtick_update(rq); 5641 } 5642 5643 static void set_next_buddy(struct sched_entity *se); 5644 5645 /* 5646 * The dequeue_task method is called before nr_running is 5647 * decreased. We remove the task from the rbtree and 5648 * update the fair scheduling stats: 5649 */ 5650 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5651 { 5652 struct cfs_rq *cfs_rq; 5653 struct sched_entity *se = &p->se; 5654 int task_sleep = flags & DEQUEUE_SLEEP; 5655 int idle_h_nr_running = task_has_idle_policy(p); 5656 bool was_sched_idle = sched_idle_rq(rq); 5657 5658 util_est_dequeue(&rq->cfs, p); 5659 5660 for_each_sched_entity(se) { 5661 cfs_rq = cfs_rq_of(se); 5662 dequeue_entity(cfs_rq, se, flags); 5663 5664 cfs_rq->h_nr_running--; 5665 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5666 5667 /* end evaluation on encountering a throttled cfs_rq */ 5668 if (cfs_rq_throttled(cfs_rq)) 5669 goto dequeue_throttle; 5670 5671 /* Don't dequeue parent if it has other entities besides us */ 5672 if (cfs_rq->load.weight) { 5673 /* Avoid re-evaluating load for this entity: */ 5674 se = parent_entity(se); 5675 /* 5676 * Bias pick_next to pick a task from this cfs_rq, as 5677 * p is sleeping when it is within its sched_slice. 5678 */ 5679 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5680 set_next_buddy(se); 5681 break; 5682 } 5683 flags |= DEQUEUE_SLEEP; 5684 } 5685 5686 for_each_sched_entity(se) { 5687 cfs_rq = cfs_rq_of(se); 5688 5689 update_load_avg(cfs_rq, se, UPDATE_TG); 5690 se_update_runnable(se); 5691 update_cfs_group(se); 5692 5693 cfs_rq->h_nr_running--; 5694 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5695 5696 /* end evaluation on encountering a throttled cfs_rq */ 5697 if (cfs_rq_throttled(cfs_rq)) 5698 goto dequeue_throttle; 5699 5700 } 5701 5702 /* At this point se is NULL and we are at root level*/ 5703 sub_nr_running(rq, 1); 5704 5705 /* balance early to pull high priority tasks */ 5706 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 5707 rq->next_balance = jiffies; 5708 5709 dequeue_throttle: 5710 util_est_update(&rq->cfs, p, task_sleep); 5711 hrtick_update(rq); 5712 } 5713 5714 #ifdef CONFIG_SMP 5715 5716 /* Working cpumask for: load_balance, load_balance_newidle. */ 5717 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5718 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5719 5720 #ifdef CONFIG_NO_HZ_COMMON 5721 5722 static struct { 5723 cpumask_var_t idle_cpus_mask; 5724 atomic_t nr_cpus; 5725 int has_blocked; /* Idle CPUS has blocked load */ 5726 unsigned long next_balance; /* in jiffy units */ 5727 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5728 } nohz ____cacheline_aligned; 5729 5730 #endif /* CONFIG_NO_HZ_COMMON */ 5731 5732 static unsigned long cpu_load(struct rq *rq) 5733 { 5734 return cfs_rq_load_avg(&rq->cfs); 5735 } 5736 5737 /* 5738 * cpu_load_without - compute CPU load without any contributions from *p 5739 * @cpu: the CPU which load is requested 5740 * @p: the task which load should be discounted 5741 * 5742 * The load of a CPU is defined by the load of tasks currently enqueued on that 5743 * CPU as well as tasks which are currently sleeping after an execution on that 5744 * CPU. 5745 * 5746 * This method returns the load of the specified CPU by discounting the load of 5747 * the specified task, whenever the task is currently contributing to the CPU 5748 * load. 5749 */ 5750 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 5751 { 5752 struct cfs_rq *cfs_rq; 5753 unsigned int load; 5754 5755 /* Task has no contribution or is new */ 5756 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5757 return cpu_load(rq); 5758 5759 cfs_rq = &rq->cfs; 5760 load = READ_ONCE(cfs_rq->avg.load_avg); 5761 5762 /* Discount task's util from CPU's util */ 5763 lsub_positive(&load, task_h_load(p)); 5764 5765 return load; 5766 } 5767 5768 static unsigned long cpu_runnable(struct rq *rq) 5769 { 5770 return cfs_rq_runnable_avg(&rq->cfs); 5771 } 5772 5773 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 5774 { 5775 struct cfs_rq *cfs_rq; 5776 unsigned int runnable; 5777 5778 /* Task has no contribution or is new */ 5779 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5780 return cpu_runnable(rq); 5781 5782 cfs_rq = &rq->cfs; 5783 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 5784 5785 /* Discount task's runnable from CPU's runnable */ 5786 lsub_positive(&runnable, p->se.avg.runnable_avg); 5787 5788 return runnable; 5789 } 5790 5791 static unsigned long capacity_of(int cpu) 5792 { 5793 return cpu_rq(cpu)->cpu_capacity; 5794 } 5795 5796 static void record_wakee(struct task_struct *p) 5797 { 5798 /* 5799 * Only decay a single time; tasks that have less then 1 wakeup per 5800 * jiffy will not have built up many flips. 5801 */ 5802 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5803 current->wakee_flips >>= 1; 5804 current->wakee_flip_decay_ts = jiffies; 5805 } 5806 5807 if (current->last_wakee != p) { 5808 current->last_wakee = p; 5809 current->wakee_flips++; 5810 } 5811 } 5812 5813 /* 5814 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5815 * 5816 * A waker of many should wake a different task than the one last awakened 5817 * at a frequency roughly N times higher than one of its wakees. 5818 * 5819 * In order to determine whether we should let the load spread vs consolidating 5820 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5821 * partner, and a factor of lls_size higher frequency in the other. 5822 * 5823 * With both conditions met, we can be relatively sure that the relationship is 5824 * non-monogamous, with partner count exceeding socket size. 5825 * 5826 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5827 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5828 * socket size. 5829 */ 5830 static int wake_wide(struct task_struct *p) 5831 { 5832 unsigned int master = current->wakee_flips; 5833 unsigned int slave = p->wakee_flips; 5834 int factor = __this_cpu_read(sd_llc_size); 5835 5836 if (master < slave) 5837 swap(master, slave); 5838 if (slave < factor || master < slave * factor) 5839 return 0; 5840 return 1; 5841 } 5842 5843 /* 5844 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5845 * soonest. For the purpose of speed we only consider the waking and previous 5846 * CPU. 5847 * 5848 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5849 * cache-affine and is (or will be) idle. 5850 * 5851 * wake_affine_weight() - considers the weight to reflect the average 5852 * scheduling latency of the CPUs. This seems to work 5853 * for the overloaded case. 5854 */ 5855 static int 5856 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5857 { 5858 /* 5859 * If this_cpu is idle, it implies the wakeup is from interrupt 5860 * context. Only allow the move if cache is shared. Otherwise an 5861 * interrupt intensive workload could force all tasks onto one 5862 * node depending on the IO topology or IRQ affinity settings. 5863 * 5864 * If the prev_cpu is idle and cache affine then avoid a migration. 5865 * There is no guarantee that the cache hot data from an interrupt 5866 * is more important than cache hot data on the prev_cpu and from 5867 * a cpufreq perspective, it's better to have higher utilisation 5868 * on one CPU. 5869 */ 5870 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5871 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5872 5873 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5874 return this_cpu; 5875 5876 if (available_idle_cpu(prev_cpu)) 5877 return prev_cpu; 5878 5879 return nr_cpumask_bits; 5880 } 5881 5882 static int 5883 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5884 int this_cpu, int prev_cpu, int sync) 5885 { 5886 s64 this_eff_load, prev_eff_load; 5887 unsigned long task_load; 5888 5889 this_eff_load = cpu_load(cpu_rq(this_cpu)); 5890 5891 if (sync) { 5892 unsigned long current_load = task_h_load(current); 5893 5894 if (current_load > this_eff_load) 5895 return this_cpu; 5896 5897 this_eff_load -= current_load; 5898 } 5899 5900 task_load = task_h_load(p); 5901 5902 this_eff_load += task_load; 5903 if (sched_feat(WA_BIAS)) 5904 this_eff_load *= 100; 5905 this_eff_load *= capacity_of(prev_cpu); 5906 5907 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 5908 prev_eff_load -= task_load; 5909 if (sched_feat(WA_BIAS)) 5910 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5911 prev_eff_load *= capacity_of(this_cpu); 5912 5913 /* 5914 * If sync, adjust the weight of prev_eff_load such that if 5915 * prev_eff == this_eff that select_idle_sibling() will consider 5916 * stacking the wakee on top of the waker if no other CPU is 5917 * idle. 5918 */ 5919 if (sync) 5920 prev_eff_load += 1; 5921 5922 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5923 } 5924 5925 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5926 int this_cpu, int prev_cpu, int sync) 5927 { 5928 int target = nr_cpumask_bits; 5929 5930 if (sched_feat(WA_IDLE)) 5931 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5932 5933 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5934 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5935 5936 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5937 if (target == nr_cpumask_bits) 5938 return prev_cpu; 5939 5940 schedstat_inc(sd->ttwu_move_affine); 5941 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5942 return target; 5943 } 5944 5945 static struct sched_group * 5946 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 5947 5948 /* 5949 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 5950 */ 5951 static int 5952 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5953 { 5954 unsigned long load, min_load = ULONG_MAX; 5955 unsigned int min_exit_latency = UINT_MAX; 5956 u64 latest_idle_timestamp = 0; 5957 int least_loaded_cpu = this_cpu; 5958 int shallowest_idle_cpu = -1; 5959 int i; 5960 5961 /* Check if we have any choice: */ 5962 if (group->group_weight == 1) 5963 return cpumask_first(sched_group_span(group)); 5964 5965 /* Traverse only the allowed CPUs */ 5966 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 5967 if (sched_idle_cpu(i)) 5968 return i; 5969 5970 if (available_idle_cpu(i)) { 5971 struct rq *rq = cpu_rq(i); 5972 struct cpuidle_state *idle = idle_get_state(rq); 5973 if (idle && idle->exit_latency < min_exit_latency) { 5974 /* 5975 * We give priority to a CPU whose idle state 5976 * has the smallest exit latency irrespective 5977 * of any idle timestamp. 5978 */ 5979 min_exit_latency = idle->exit_latency; 5980 latest_idle_timestamp = rq->idle_stamp; 5981 shallowest_idle_cpu = i; 5982 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5983 rq->idle_stamp > latest_idle_timestamp) { 5984 /* 5985 * If equal or no active idle state, then 5986 * the most recently idled CPU might have 5987 * a warmer cache. 5988 */ 5989 latest_idle_timestamp = rq->idle_stamp; 5990 shallowest_idle_cpu = i; 5991 } 5992 } else if (shallowest_idle_cpu == -1) { 5993 load = cpu_load(cpu_rq(i)); 5994 if (load < min_load) { 5995 min_load = load; 5996 least_loaded_cpu = i; 5997 } 5998 } 5999 } 6000 6001 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 6002 } 6003 6004 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 6005 int cpu, int prev_cpu, int sd_flag) 6006 { 6007 int new_cpu = cpu; 6008 6009 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 6010 return prev_cpu; 6011 6012 /* 6013 * We need task's util for cpu_util_without, sync it up to 6014 * prev_cpu's last_update_time. 6015 */ 6016 if (!(sd_flag & SD_BALANCE_FORK)) 6017 sync_entity_load_avg(&p->se); 6018 6019 while (sd) { 6020 struct sched_group *group; 6021 struct sched_domain *tmp; 6022 int weight; 6023 6024 if (!(sd->flags & sd_flag)) { 6025 sd = sd->child; 6026 continue; 6027 } 6028 6029 group = find_idlest_group(sd, p, cpu); 6030 if (!group) { 6031 sd = sd->child; 6032 continue; 6033 } 6034 6035 new_cpu = find_idlest_group_cpu(group, p, cpu); 6036 if (new_cpu == cpu) { 6037 /* Now try balancing at a lower domain level of 'cpu': */ 6038 sd = sd->child; 6039 continue; 6040 } 6041 6042 /* Now try balancing at a lower domain level of 'new_cpu': */ 6043 cpu = new_cpu; 6044 weight = sd->span_weight; 6045 sd = NULL; 6046 for_each_domain(cpu, tmp) { 6047 if (weight <= tmp->span_weight) 6048 break; 6049 if (tmp->flags & sd_flag) 6050 sd = tmp; 6051 } 6052 } 6053 6054 return new_cpu; 6055 } 6056 6057 static inline int __select_idle_cpu(int cpu) 6058 { 6059 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6060 return cpu; 6061 6062 return -1; 6063 } 6064 6065 #ifdef CONFIG_SCHED_SMT 6066 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6067 EXPORT_SYMBOL_GPL(sched_smt_present); 6068 6069 static inline void set_idle_cores(int cpu, int val) 6070 { 6071 struct sched_domain_shared *sds; 6072 6073 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6074 if (sds) 6075 WRITE_ONCE(sds->has_idle_cores, val); 6076 } 6077 6078 static inline bool test_idle_cores(int cpu, bool def) 6079 { 6080 struct sched_domain_shared *sds; 6081 6082 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6083 if (sds) 6084 return READ_ONCE(sds->has_idle_cores); 6085 6086 return def; 6087 } 6088 6089 /* 6090 * Scans the local SMT mask to see if the entire core is idle, and records this 6091 * information in sd_llc_shared->has_idle_cores. 6092 * 6093 * Since SMT siblings share all cache levels, inspecting this limited remote 6094 * state should be fairly cheap. 6095 */ 6096 void __update_idle_core(struct rq *rq) 6097 { 6098 int core = cpu_of(rq); 6099 int cpu; 6100 6101 rcu_read_lock(); 6102 if (test_idle_cores(core, true)) 6103 goto unlock; 6104 6105 for_each_cpu(cpu, cpu_smt_mask(core)) { 6106 if (cpu == core) 6107 continue; 6108 6109 if (!available_idle_cpu(cpu)) 6110 goto unlock; 6111 } 6112 6113 set_idle_cores(core, 1); 6114 unlock: 6115 rcu_read_unlock(); 6116 } 6117 6118 /* 6119 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6120 * there are no idle cores left in the system; tracked through 6121 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6122 */ 6123 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6124 { 6125 bool idle = true; 6126 int cpu; 6127 6128 if (!static_branch_likely(&sched_smt_present)) 6129 return __select_idle_cpu(core); 6130 6131 for_each_cpu(cpu, cpu_smt_mask(core)) { 6132 if (!available_idle_cpu(cpu)) { 6133 idle = false; 6134 if (*idle_cpu == -1) { 6135 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 6136 *idle_cpu = cpu; 6137 break; 6138 } 6139 continue; 6140 } 6141 break; 6142 } 6143 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 6144 *idle_cpu = cpu; 6145 } 6146 6147 if (idle) 6148 return core; 6149 6150 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 6151 return -1; 6152 } 6153 6154 /* 6155 * Scan the local SMT mask for idle CPUs. 6156 */ 6157 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6158 { 6159 int cpu; 6160 6161 for_each_cpu(cpu, cpu_smt_mask(target)) { 6162 if (!cpumask_test_cpu(cpu, p->cpus_ptr) || 6163 !cpumask_test_cpu(cpu, sched_domain_span(sd))) 6164 continue; 6165 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6166 return cpu; 6167 } 6168 6169 return -1; 6170 } 6171 6172 #else /* CONFIG_SCHED_SMT */ 6173 6174 static inline void set_idle_cores(int cpu, int val) 6175 { 6176 } 6177 6178 static inline bool test_idle_cores(int cpu, bool def) 6179 { 6180 return def; 6181 } 6182 6183 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6184 { 6185 return __select_idle_cpu(core); 6186 } 6187 6188 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6189 { 6190 return -1; 6191 } 6192 6193 #endif /* CONFIG_SCHED_SMT */ 6194 6195 /* 6196 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6197 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6198 * average idle time for this rq (as found in rq->avg_idle). 6199 */ 6200 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 6201 { 6202 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6203 int i, cpu, idle_cpu = -1, nr = INT_MAX; 6204 int this = smp_processor_id(); 6205 struct sched_domain *this_sd; 6206 u64 time; 6207 6208 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6209 if (!this_sd) 6210 return -1; 6211 6212 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6213 6214 if (sched_feat(SIS_PROP) && !has_idle_core) { 6215 u64 avg_cost, avg_idle, span_avg; 6216 6217 /* 6218 * Due to large variance we need a large fuzz factor; 6219 * hackbench in particularly is sensitive here. 6220 */ 6221 avg_idle = this_rq()->avg_idle / 512; 6222 avg_cost = this_sd->avg_scan_cost + 1; 6223 6224 span_avg = sd->span_weight * avg_idle; 6225 if (span_avg > 4*avg_cost) 6226 nr = div_u64(span_avg, avg_cost); 6227 else 6228 nr = 4; 6229 6230 time = cpu_clock(this); 6231 } 6232 6233 for_each_cpu_wrap(cpu, cpus, target) { 6234 if (has_idle_core) { 6235 i = select_idle_core(p, cpu, cpus, &idle_cpu); 6236 if ((unsigned int)i < nr_cpumask_bits) 6237 return i; 6238 6239 } else { 6240 if (!--nr) 6241 return -1; 6242 idle_cpu = __select_idle_cpu(cpu); 6243 if ((unsigned int)idle_cpu < nr_cpumask_bits) 6244 break; 6245 } 6246 } 6247 6248 if (has_idle_core) 6249 set_idle_cores(target, false); 6250 6251 if (sched_feat(SIS_PROP) && !has_idle_core) { 6252 time = cpu_clock(this) - time; 6253 update_avg(&this_sd->avg_scan_cost, time); 6254 } 6255 6256 return idle_cpu; 6257 } 6258 6259 /* 6260 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 6261 * the task fits. If no CPU is big enough, but there are idle ones, try to 6262 * maximize capacity. 6263 */ 6264 static int 6265 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 6266 { 6267 unsigned long task_util, best_cap = 0; 6268 int cpu, best_cpu = -1; 6269 struct cpumask *cpus; 6270 6271 cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6272 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6273 6274 task_util = uclamp_task_util(p); 6275 6276 for_each_cpu_wrap(cpu, cpus, target) { 6277 unsigned long cpu_cap = capacity_of(cpu); 6278 6279 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 6280 continue; 6281 if (fits_capacity(task_util, cpu_cap)) 6282 return cpu; 6283 6284 if (cpu_cap > best_cap) { 6285 best_cap = cpu_cap; 6286 best_cpu = cpu; 6287 } 6288 } 6289 6290 return best_cpu; 6291 } 6292 6293 static inline bool asym_fits_capacity(int task_util, int cpu) 6294 { 6295 if (static_branch_unlikely(&sched_asym_cpucapacity)) 6296 return fits_capacity(task_util, capacity_of(cpu)); 6297 6298 return true; 6299 } 6300 6301 /* 6302 * Try and locate an idle core/thread in the LLC cache domain. 6303 */ 6304 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6305 { 6306 bool has_idle_core = false; 6307 struct sched_domain *sd; 6308 unsigned long task_util; 6309 int i, recent_used_cpu; 6310 6311 /* 6312 * On asymmetric system, update task utilization because we will check 6313 * that the task fits with cpu's capacity. 6314 */ 6315 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6316 sync_entity_load_avg(&p->se); 6317 task_util = uclamp_task_util(p); 6318 } 6319 6320 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 6321 asym_fits_capacity(task_util, target)) 6322 return target; 6323 6324 /* 6325 * If the previous CPU is cache affine and idle, don't be stupid: 6326 */ 6327 if (prev != target && cpus_share_cache(prev, target) && 6328 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 6329 asym_fits_capacity(task_util, prev)) 6330 return prev; 6331 6332 /* 6333 * Allow a per-cpu kthread to stack with the wakee if the 6334 * kworker thread and the tasks previous CPUs are the same. 6335 * The assumption is that the wakee queued work for the 6336 * per-cpu kthread that is now complete and the wakeup is 6337 * essentially a sync wakeup. An obvious example of this 6338 * pattern is IO completions. 6339 */ 6340 if (is_per_cpu_kthread(current) && 6341 prev == smp_processor_id() && 6342 this_rq()->nr_running <= 1) { 6343 return prev; 6344 } 6345 6346 /* Check a recently used CPU as a potential idle candidate: */ 6347 recent_used_cpu = p->recent_used_cpu; 6348 if (recent_used_cpu != prev && 6349 recent_used_cpu != target && 6350 cpus_share_cache(recent_used_cpu, target) && 6351 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 6352 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) && 6353 asym_fits_capacity(task_util, recent_used_cpu)) { 6354 /* 6355 * Replace recent_used_cpu with prev as it is a potential 6356 * candidate for the next wake: 6357 */ 6358 p->recent_used_cpu = prev; 6359 return recent_used_cpu; 6360 } 6361 6362 /* 6363 * For asymmetric CPU capacity systems, our domain of interest is 6364 * sd_asym_cpucapacity rather than sd_llc. 6365 */ 6366 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6367 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 6368 /* 6369 * On an asymmetric CPU capacity system where an exclusive 6370 * cpuset defines a symmetric island (i.e. one unique 6371 * capacity_orig value through the cpuset), the key will be set 6372 * but the CPUs within that cpuset will not have a domain with 6373 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 6374 * capacity path. 6375 */ 6376 if (sd) { 6377 i = select_idle_capacity(p, sd, target); 6378 return ((unsigned)i < nr_cpumask_bits) ? i : target; 6379 } 6380 } 6381 6382 sd = rcu_dereference(per_cpu(sd_llc, target)); 6383 if (!sd) 6384 return target; 6385 6386 if (sched_smt_active()) { 6387 has_idle_core = test_idle_cores(target, false); 6388 6389 if (!has_idle_core && cpus_share_cache(prev, target)) { 6390 i = select_idle_smt(p, sd, prev); 6391 if ((unsigned int)i < nr_cpumask_bits) 6392 return i; 6393 } 6394 } 6395 6396 i = select_idle_cpu(p, sd, has_idle_core, target); 6397 if ((unsigned)i < nr_cpumask_bits) 6398 return i; 6399 6400 return target; 6401 } 6402 6403 /** 6404 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks. 6405 * @cpu: the CPU to get the utilization of 6406 * 6407 * The unit of the return value must be the one of capacity so we can compare 6408 * the utilization with the capacity of the CPU that is available for CFS task 6409 * (ie cpu_capacity). 6410 * 6411 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6412 * recent utilization of currently non-runnable tasks on a CPU. It represents 6413 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6414 * capacity_orig is the cpu_capacity available at the highest frequency 6415 * (arch_scale_freq_capacity()). 6416 * The utilization of a CPU converges towards a sum equal to or less than the 6417 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6418 * the running time on this CPU scaled by capacity_curr. 6419 * 6420 * The estimated utilization of a CPU is defined to be the maximum between its 6421 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6422 * currently RUNNABLE on that CPU. 6423 * This allows to properly represent the expected utilization of a CPU which 6424 * has just got a big task running since a long sleep period. At the same time 6425 * however it preserves the benefits of the "blocked utilization" in 6426 * describing the potential for other tasks waking up on the same CPU. 6427 * 6428 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6429 * higher than capacity_orig because of unfortunate rounding in 6430 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6431 * the average stabilizes with the new running time. We need to check that the 6432 * utilization stays within the range of [0..capacity_orig] and cap it if 6433 * necessary. Without utilization capping, a group could be seen as overloaded 6434 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6435 * available capacity. We allow utilization to overshoot capacity_curr (but not 6436 * capacity_orig) as it useful for predicting the capacity required after task 6437 * migrations (scheduler-driven DVFS). 6438 * 6439 * Return: the (estimated) utilization for the specified CPU 6440 */ 6441 static inline unsigned long cpu_util(int cpu) 6442 { 6443 struct cfs_rq *cfs_rq; 6444 unsigned int util; 6445 6446 cfs_rq = &cpu_rq(cpu)->cfs; 6447 util = READ_ONCE(cfs_rq->avg.util_avg); 6448 6449 if (sched_feat(UTIL_EST)) 6450 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6451 6452 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6453 } 6454 6455 /* 6456 * cpu_util_without: compute cpu utilization without any contributions from *p 6457 * @cpu: the CPU which utilization is requested 6458 * @p: the task which utilization should be discounted 6459 * 6460 * The utilization of a CPU is defined by the utilization of tasks currently 6461 * enqueued on that CPU as well as tasks which are currently sleeping after an 6462 * execution on that CPU. 6463 * 6464 * This method returns the utilization of the specified CPU by discounting the 6465 * utilization of the specified task, whenever the task is currently 6466 * contributing to the CPU utilization. 6467 */ 6468 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6469 { 6470 struct cfs_rq *cfs_rq; 6471 unsigned int util; 6472 6473 /* Task has no contribution or is new */ 6474 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6475 return cpu_util(cpu); 6476 6477 cfs_rq = &cpu_rq(cpu)->cfs; 6478 util = READ_ONCE(cfs_rq->avg.util_avg); 6479 6480 /* Discount task's util from CPU's util */ 6481 lsub_positive(&util, task_util(p)); 6482 6483 /* 6484 * Covered cases: 6485 * 6486 * a) if *p is the only task sleeping on this CPU, then: 6487 * cpu_util (== task_util) > util_est (== 0) 6488 * and thus we return: 6489 * cpu_util_without = (cpu_util - task_util) = 0 6490 * 6491 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6492 * IDLE, then: 6493 * cpu_util >= task_util 6494 * cpu_util > util_est (== 0) 6495 * and thus we discount *p's blocked utilization to return: 6496 * cpu_util_without = (cpu_util - task_util) >= 0 6497 * 6498 * c) if other tasks are RUNNABLE on that CPU and 6499 * util_est > cpu_util 6500 * then we use util_est since it returns a more restrictive 6501 * estimation of the spare capacity on that CPU, by just 6502 * considering the expected utilization of tasks already 6503 * runnable on that CPU. 6504 * 6505 * Cases a) and b) are covered by the above code, while case c) is 6506 * covered by the following code when estimated utilization is 6507 * enabled. 6508 */ 6509 if (sched_feat(UTIL_EST)) { 6510 unsigned int estimated = 6511 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6512 6513 /* 6514 * Despite the following checks we still have a small window 6515 * for a possible race, when an execl's select_task_rq_fair() 6516 * races with LB's detach_task(): 6517 * 6518 * detach_task() 6519 * p->on_rq = TASK_ON_RQ_MIGRATING; 6520 * ---------------------------------- A 6521 * deactivate_task() \ 6522 * dequeue_task() + RaceTime 6523 * util_est_dequeue() / 6524 * ---------------------------------- B 6525 * 6526 * The additional check on "current == p" it's required to 6527 * properly fix the execl regression and it helps in further 6528 * reducing the chances for the above race. 6529 */ 6530 if (unlikely(task_on_rq_queued(p) || current == p)) 6531 lsub_positive(&estimated, _task_util_est(p)); 6532 6533 util = max(util, estimated); 6534 } 6535 6536 /* 6537 * Utilization (estimated) can exceed the CPU capacity, thus let's 6538 * clamp to the maximum CPU capacity to ensure consistency with 6539 * the cpu_util call. 6540 */ 6541 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6542 } 6543 6544 /* 6545 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) 6546 * to @dst_cpu. 6547 */ 6548 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6549 { 6550 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6551 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); 6552 6553 /* 6554 * If @p migrates from @cpu to another, remove its contribution. Or, 6555 * if @p migrates from another CPU to @cpu, add its contribution. In 6556 * the other cases, @cpu is not impacted by the migration, so the 6557 * util_avg should already be correct. 6558 */ 6559 if (task_cpu(p) == cpu && dst_cpu != cpu) 6560 lsub_positive(&util, task_util(p)); 6561 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6562 util += task_util(p); 6563 6564 if (sched_feat(UTIL_EST)) { 6565 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6566 6567 /* 6568 * During wake-up, the task isn't enqueued yet and doesn't 6569 * appear in the cfs_rq->avg.util_est.enqueued of any rq, 6570 * so just add it (if needed) to "simulate" what will be 6571 * cpu_util() after the task has been enqueued. 6572 */ 6573 if (dst_cpu == cpu) 6574 util_est += _task_util_est(p); 6575 6576 util = max(util, util_est); 6577 } 6578 6579 return min(util, capacity_orig_of(cpu)); 6580 } 6581 6582 /* 6583 * compute_energy(): Estimates the energy that @pd would consume if @p was 6584 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6585 * landscape of @pd's CPUs after the task migration, and uses the Energy Model 6586 * to compute what would be the energy if we decided to actually migrate that 6587 * task. 6588 */ 6589 static long 6590 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6591 { 6592 struct cpumask *pd_mask = perf_domain_span(pd); 6593 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask)); 6594 unsigned long max_util = 0, sum_util = 0; 6595 int cpu; 6596 6597 /* 6598 * The capacity state of CPUs of the current rd can be driven by CPUs 6599 * of another rd if they belong to the same pd. So, account for the 6600 * utilization of these CPUs too by masking pd with cpu_online_mask 6601 * instead of the rd span. 6602 * 6603 * If an entire pd is outside of the current rd, it will not appear in 6604 * its pd list and will not be accounted by compute_energy(). 6605 */ 6606 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) { 6607 unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu); 6608 unsigned long cpu_util, util_running = util_freq; 6609 struct task_struct *tsk = NULL; 6610 6611 /* 6612 * When @p is placed on @cpu: 6613 * 6614 * util_running = max(cpu_util, cpu_util_est) + 6615 * max(task_util, _task_util_est) 6616 * 6617 * while cpu_util_next is: max(cpu_util + task_util, 6618 * cpu_util_est + _task_util_est) 6619 */ 6620 if (cpu == dst_cpu) { 6621 tsk = p; 6622 util_running = 6623 cpu_util_next(cpu, p, -1) + task_util_est(p); 6624 } 6625 6626 /* 6627 * Busy time computation: utilization clamping is not 6628 * required since the ratio (sum_util / cpu_capacity) 6629 * is already enough to scale the EM reported power 6630 * consumption at the (eventually clamped) cpu_capacity. 6631 */ 6632 sum_util += effective_cpu_util(cpu, util_running, cpu_cap, 6633 ENERGY_UTIL, NULL); 6634 6635 /* 6636 * Performance domain frequency: utilization clamping 6637 * must be considered since it affects the selection 6638 * of the performance domain frequency. 6639 * NOTE: in case RT tasks are running, by default the 6640 * FREQUENCY_UTIL's utilization can be max OPP. 6641 */ 6642 cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap, 6643 FREQUENCY_UTIL, tsk); 6644 max_util = max(max_util, cpu_util); 6645 } 6646 6647 return em_cpu_energy(pd->em_pd, max_util, sum_util); 6648 } 6649 6650 /* 6651 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6652 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6653 * spare capacity in each performance domain and uses it as a potential 6654 * candidate to execute the task. Then, it uses the Energy Model to figure 6655 * out which of the CPU candidates is the most energy-efficient. 6656 * 6657 * The rationale for this heuristic is as follows. In a performance domain, 6658 * all the most energy efficient CPU candidates (according to the Energy 6659 * Model) are those for which we'll request a low frequency. When there are 6660 * several CPUs for which the frequency request will be the same, we don't 6661 * have enough data to break the tie between them, because the Energy Model 6662 * only includes active power costs. With this model, if we assume that 6663 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6664 * the maximum spare capacity in a performance domain is guaranteed to be among 6665 * the best candidates of the performance domain. 6666 * 6667 * In practice, it could be preferable from an energy standpoint to pack 6668 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6669 * but that could also hurt our chances to go cluster idle, and we have no 6670 * ways to tell with the current Energy Model if this is actually a good 6671 * idea or not. So, find_energy_efficient_cpu() basically favors 6672 * cluster-packing, and spreading inside a cluster. That should at least be 6673 * a good thing for latency, and this is consistent with the idea that most 6674 * of the energy savings of EAS come from the asymmetry of the system, and 6675 * not so much from breaking the tie between identical CPUs. That's also the 6676 * reason why EAS is enabled in the topology code only for systems where 6677 * SD_ASYM_CPUCAPACITY is set. 6678 * 6679 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6680 * they don't have any useful utilization data yet and it's not possible to 6681 * forecast their impact on energy consumption. Consequently, they will be 6682 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6683 * to be energy-inefficient in some use-cases. The alternative would be to 6684 * bias new tasks towards specific types of CPUs first, or to try to infer 6685 * their util_avg from the parent task, but those heuristics could hurt 6686 * other use-cases too. So, until someone finds a better way to solve this, 6687 * let's keep things simple by re-using the existing slow path. 6688 */ 6689 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6690 { 6691 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 6692 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6693 unsigned long cpu_cap, util, base_energy = 0; 6694 int cpu, best_energy_cpu = prev_cpu; 6695 struct sched_domain *sd; 6696 struct perf_domain *pd; 6697 6698 rcu_read_lock(); 6699 pd = rcu_dereference(rd->pd); 6700 if (!pd || READ_ONCE(rd->overutilized)) 6701 goto fail; 6702 6703 /* 6704 * Energy-aware wake-up happens on the lowest sched_domain starting 6705 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6706 */ 6707 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6708 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6709 sd = sd->parent; 6710 if (!sd) 6711 goto fail; 6712 6713 sync_entity_load_avg(&p->se); 6714 if (!task_util_est(p)) 6715 goto unlock; 6716 6717 for (; pd; pd = pd->next) { 6718 unsigned long cur_delta, spare_cap, max_spare_cap = 0; 6719 unsigned long base_energy_pd; 6720 int max_spare_cap_cpu = -1; 6721 6722 /* Compute the 'base' energy of the pd, without @p */ 6723 base_energy_pd = compute_energy(p, -1, pd); 6724 base_energy += base_energy_pd; 6725 6726 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6727 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6728 continue; 6729 6730 util = cpu_util_next(cpu, p, cpu); 6731 cpu_cap = capacity_of(cpu); 6732 spare_cap = cpu_cap; 6733 lsub_positive(&spare_cap, util); 6734 6735 /* 6736 * Skip CPUs that cannot satisfy the capacity request. 6737 * IOW, placing the task there would make the CPU 6738 * overutilized. Take uclamp into account to see how 6739 * much capacity we can get out of the CPU; this is 6740 * aligned with sched_cpu_util(). 6741 */ 6742 util = uclamp_rq_util_with(cpu_rq(cpu), util, p); 6743 if (!fits_capacity(util, cpu_cap)) 6744 continue; 6745 6746 /* Always use prev_cpu as a candidate. */ 6747 if (cpu == prev_cpu) { 6748 prev_delta = compute_energy(p, prev_cpu, pd); 6749 prev_delta -= base_energy_pd; 6750 best_delta = min(best_delta, prev_delta); 6751 } 6752 6753 /* 6754 * Find the CPU with the maximum spare capacity in 6755 * the performance domain 6756 */ 6757 if (spare_cap > max_spare_cap) { 6758 max_spare_cap = spare_cap; 6759 max_spare_cap_cpu = cpu; 6760 } 6761 } 6762 6763 /* Evaluate the energy impact of using this CPU. */ 6764 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) { 6765 cur_delta = compute_energy(p, max_spare_cap_cpu, pd); 6766 cur_delta -= base_energy_pd; 6767 if (cur_delta < best_delta) { 6768 best_delta = cur_delta; 6769 best_energy_cpu = max_spare_cap_cpu; 6770 } 6771 } 6772 } 6773 unlock: 6774 rcu_read_unlock(); 6775 6776 /* 6777 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6778 * least 6% of the energy used by prev_cpu. 6779 */ 6780 if (prev_delta == ULONG_MAX) 6781 return best_energy_cpu; 6782 6783 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4)) 6784 return best_energy_cpu; 6785 6786 return prev_cpu; 6787 6788 fail: 6789 rcu_read_unlock(); 6790 6791 return -1; 6792 } 6793 6794 /* 6795 * select_task_rq_fair: Select target runqueue for the waking task in domains 6796 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 6797 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6798 * 6799 * Balances load by selecting the idlest CPU in the idlest group, or under 6800 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6801 * 6802 * Returns the target CPU number. 6803 * 6804 * preempt must be disabled. 6805 */ 6806 static int 6807 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 6808 { 6809 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6810 struct sched_domain *tmp, *sd = NULL; 6811 int cpu = smp_processor_id(); 6812 int new_cpu = prev_cpu; 6813 int want_affine = 0; 6814 /* SD_flags and WF_flags share the first nibble */ 6815 int sd_flag = wake_flags & 0xF; 6816 6817 if (wake_flags & WF_TTWU) { 6818 record_wakee(p); 6819 6820 if (sched_energy_enabled()) { 6821 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6822 if (new_cpu >= 0) 6823 return new_cpu; 6824 new_cpu = prev_cpu; 6825 } 6826 6827 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 6828 } 6829 6830 rcu_read_lock(); 6831 for_each_domain(cpu, tmp) { 6832 /* 6833 * If both 'cpu' and 'prev_cpu' are part of this domain, 6834 * cpu is a valid SD_WAKE_AFFINE target. 6835 */ 6836 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6837 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6838 if (cpu != prev_cpu) 6839 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6840 6841 sd = NULL; /* Prefer wake_affine over balance flags */ 6842 break; 6843 } 6844 6845 if (tmp->flags & sd_flag) 6846 sd = tmp; 6847 else if (!want_affine) 6848 break; 6849 } 6850 6851 if (unlikely(sd)) { 6852 /* Slow path */ 6853 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6854 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 6855 /* Fast path */ 6856 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6857 6858 if (want_affine) 6859 current->recent_used_cpu = cpu; 6860 } 6861 rcu_read_unlock(); 6862 6863 return new_cpu; 6864 } 6865 6866 static void detach_entity_cfs_rq(struct sched_entity *se); 6867 6868 /* 6869 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6870 * cfs_rq_of(p) references at time of call are still valid and identify the 6871 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6872 */ 6873 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6874 { 6875 /* 6876 * As blocked tasks retain absolute vruntime the migration needs to 6877 * deal with this by subtracting the old and adding the new 6878 * min_vruntime -- the latter is done by enqueue_entity() when placing 6879 * the task on the new runqueue. 6880 */ 6881 if (p->state == TASK_WAKING) { 6882 struct sched_entity *se = &p->se; 6883 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6884 u64 min_vruntime; 6885 6886 #ifndef CONFIG_64BIT 6887 u64 min_vruntime_copy; 6888 6889 do { 6890 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6891 smp_rmb(); 6892 min_vruntime = cfs_rq->min_vruntime; 6893 } while (min_vruntime != min_vruntime_copy); 6894 #else 6895 min_vruntime = cfs_rq->min_vruntime; 6896 #endif 6897 6898 se->vruntime -= min_vruntime; 6899 } 6900 6901 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6902 /* 6903 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6904 * rq->lock and can modify state directly. 6905 */ 6906 lockdep_assert_held(&task_rq(p)->lock); 6907 detach_entity_cfs_rq(&p->se); 6908 6909 } else { 6910 /* 6911 * We are supposed to update the task to "current" time, then 6912 * its up to date and ready to go to new CPU/cfs_rq. But we 6913 * have difficulty in getting what current time is, so simply 6914 * throw away the out-of-date time. This will result in the 6915 * wakee task is less decayed, but giving the wakee more load 6916 * sounds not bad. 6917 */ 6918 remove_entity_load_avg(&p->se); 6919 } 6920 6921 /* Tell new CPU we are migrated */ 6922 p->se.avg.last_update_time = 0; 6923 6924 /* We have migrated, no longer consider this task hot */ 6925 p->se.exec_start = 0; 6926 6927 update_scan_period(p, new_cpu); 6928 } 6929 6930 static void task_dead_fair(struct task_struct *p) 6931 { 6932 remove_entity_load_avg(&p->se); 6933 } 6934 6935 static int 6936 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6937 { 6938 if (rq->nr_running) 6939 return 1; 6940 6941 return newidle_balance(rq, rf) != 0; 6942 } 6943 #endif /* CONFIG_SMP */ 6944 6945 static unsigned long wakeup_gran(struct sched_entity *se) 6946 { 6947 unsigned long gran = sysctl_sched_wakeup_granularity; 6948 6949 /* 6950 * Since its curr running now, convert the gran from real-time 6951 * to virtual-time in his units. 6952 * 6953 * By using 'se' instead of 'curr' we penalize light tasks, so 6954 * they get preempted easier. That is, if 'se' < 'curr' then 6955 * the resulting gran will be larger, therefore penalizing the 6956 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6957 * be smaller, again penalizing the lighter task. 6958 * 6959 * This is especially important for buddies when the leftmost 6960 * task is higher priority than the buddy. 6961 */ 6962 return calc_delta_fair(gran, se); 6963 } 6964 6965 /* 6966 * Should 'se' preempt 'curr'. 6967 * 6968 * |s1 6969 * |s2 6970 * |s3 6971 * g 6972 * |<--->|c 6973 * 6974 * w(c, s1) = -1 6975 * w(c, s2) = 0 6976 * w(c, s3) = 1 6977 * 6978 */ 6979 static int 6980 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6981 { 6982 s64 gran, vdiff = curr->vruntime - se->vruntime; 6983 6984 if (vdiff <= 0) 6985 return -1; 6986 6987 gran = wakeup_gran(se); 6988 if (vdiff > gran) 6989 return 1; 6990 6991 return 0; 6992 } 6993 6994 static void set_last_buddy(struct sched_entity *se) 6995 { 6996 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6997 return; 6998 6999 for_each_sched_entity(se) { 7000 if (SCHED_WARN_ON(!se->on_rq)) 7001 return; 7002 cfs_rq_of(se)->last = se; 7003 } 7004 } 7005 7006 static void set_next_buddy(struct sched_entity *se) 7007 { 7008 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 7009 return; 7010 7011 for_each_sched_entity(se) { 7012 if (SCHED_WARN_ON(!se->on_rq)) 7013 return; 7014 cfs_rq_of(se)->next = se; 7015 } 7016 } 7017 7018 static void set_skip_buddy(struct sched_entity *se) 7019 { 7020 for_each_sched_entity(se) 7021 cfs_rq_of(se)->skip = se; 7022 } 7023 7024 /* 7025 * Preempt the current task with a newly woken task if needed: 7026 */ 7027 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 7028 { 7029 struct task_struct *curr = rq->curr; 7030 struct sched_entity *se = &curr->se, *pse = &p->se; 7031 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7032 int scale = cfs_rq->nr_running >= sched_nr_latency; 7033 int next_buddy_marked = 0; 7034 7035 if (unlikely(se == pse)) 7036 return; 7037 7038 /* 7039 * This is possible from callers such as attach_tasks(), in which we 7040 * unconditionally check_preempt_curr() after an enqueue (which may have 7041 * lead to a throttle). This both saves work and prevents false 7042 * next-buddy nomination below. 7043 */ 7044 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 7045 return; 7046 7047 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 7048 set_next_buddy(pse); 7049 next_buddy_marked = 1; 7050 } 7051 7052 /* 7053 * We can come here with TIF_NEED_RESCHED already set from new task 7054 * wake up path. 7055 * 7056 * Note: this also catches the edge-case of curr being in a throttled 7057 * group (e.g. via set_curr_task), since update_curr() (in the 7058 * enqueue of curr) will have resulted in resched being set. This 7059 * prevents us from potentially nominating it as a false LAST_BUDDY 7060 * below. 7061 */ 7062 if (test_tsk_need_resched(curr)) 7063 return; 7064 7065 /* Idle tasks are by definition preempted by non-idle tasks. */ 7066 if (unlikely(task_has_idle_policy(curr)) && 7067 likely(!task_has_idle_policy(p))) 7068 goto preempt; 7069 7070 /* 7071 * Batch and idle tasks do not preempt non-idle tasks (their preemption 7072 * is driven by the tick): 7073 */ 7074 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 7075 return; 7076 7077 find_matching_se(&se, &pse); 7078 update_curr(cfs_rq_of(se)); 7079 BUG_ON(!pse); 7080 if (wakeup_preempt_entity(se, pse) == 1) { 7081 /* 7082 * Bias pick_next to pick the sched entity that is 7083 * triggering this preemption. 7084 */ 7085 if (!next_buddy_marked) 7086 set_next_buddy(pse); 7087 goto preempt; 7088 } 7089 7090 return; 7091 7092 preempt: 7093 resched_curr(rq); 7094 /* 7095 * Only set the backward buddy when the current task is still 7096 * on the rq. This can happen when a wakeup gets interleaved 7097 * with schedule on the ->pre_schedule() or idle_balance() 7098 * point, either of which can * drop the rq lock. 7099 * 7100 * Also, during early boot the idle thread is in the fair class, 7101 * for obvious reasons its a bad idea to schedule back to it. 7102 */ 7103 if (unlikely(!se->on_rq || curr == rq->idle)) 7104 return; 7105 7106 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 7107 set_last_buddy(se); 7108 } 7109 7110 struct task_struct * 7111 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7112 { 7113 struct cfs_rq *cfs_rq = &rq->cfs; 7114 struct sched_entity *se; 7115 struct task_struct *p; 7116 int new_tasks; 7117 7118 again: 7119 if (!sched_fair_runnable(rq)) 7120 goto idle; 7121 7122 #ifdef CONFIG_FAIR_GROUP_SCHED 7123 if (!prev || prev->sched_class != &fair_sched_class) 7124 goto simple; 7125 7126 /* 7127 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 7128 * likely that a next task is from the same cgroup as the current. 7129 * 7130 * Therefore attempt to avoid putting and setting the entire cgroup 7131 * hierarchy, only change the part that actually changes. 7132 */ 7133 7134 do { 7135 struct sched_entity *curr = cfs_rq->curr; 7136 7137 /* 7138 * Since we got here without doing put_prev_entity() we also 7139 * have to consider cfs_rq->curr. If it is still a runnable 7140 * entity, update_curr() will update its vruntime, otherwise 7141 * forget we've ever seen it. 7142 */ 7143 if (curr) { 7144 if (curr->on_rq) 7145 update_curr(cfs_rq); 7146 else 7147 curr = NULL; 7148 7149 /* 7150 * This call to check_cfs_rq_runtime() will do the 7151 * throttle and dequeue its entity in the parent(s). 7152 * Therefore the nr_running test will indeed 7153 * be correct. 7154 */ 7155 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 7156 cfs_rq = &rq->cfs; 7157 7158 if (!cfs_rq->nr_running) 7159 goto idle; 7160 7161 goto simple; 7162 } 7163 } 7164 7165 se = pick_next_entity(cfs_rq, curr); 7166 cfs_rq = group_cfs_rq(se); 7167 } while (cfs_rq); 7168 7169 p = task_of(se); 7170 7171 /* 7172 * Since we haven't yet done put_prev_entity and if the selected task 7173 * is a different task than we started out with, try and touch the 7174 * least amount of cfs_rqs. 7175 */ 7176 if (prev != p) { 7177 struct sched_entity *pse = &prev->se; 7178 7179 while (!(cfs_rq = is_same_group(se, pse))) { 7180 int se_depth = se->depth; 7181 int pse_depth = pse->depth; 7182 7183 if (se_depth <= pse_depth) { 7184 put_prev_entity(cfs_rq_of(pse), pse); 7185 pse = parent_entity(pse); 7186 } 7187 if (se_depth >= pse_depth) { 7188 set_next_entity(cfs_rq_of(se), se); 7189 se = parent_entity(se); 7190 } 7191 } 7192 7193 put_prev_entity(cfs_rq, pse); 7194 set_next_entity(cfs_rq, se); 7195 } 7196 7197 goto done; 7198 simple: 7199 #endif 7200 if (prev) 7201 put_prev_task(rq, prev); 7202 7203 do { 7204 se = pick_next_entity(cfs_rq, NULL); 7205 set_next_entity(cfs_rq, se); 7206 cfs_rq = group_cfs_rq(se); 7207 } while (cfs_rq); 7208 7209 p = task_of(se); 7210 7211 done: __maybe_unused; 7212 #ifdef CONFIG_SMP 7213 /* 7214 * Move the next running task to the front of 7215 * the list, so our cfs_tasks list becomes MRU 7216 * one. 7217 */ 7218 list_move(&p->se.group_node, &rq->cfs_tasks); 7219 #endif 7220 7221 if (hrtick_enabled_fair(rq)) 7222 hrtick_start_fair(rq, p); 7223 7224 update_misfit_status(p, rq); 7225 7226 return p; 7227 7228 idle: 7229 if (!rf) 7230 return NULL; 7231 7232 new_tasks = newidle_balance(rq, rf); 7233 7234 /* 7235 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 7236 * possible for any higher priority task to appear. In that case we 7237 * must re-start the pick_next_entity() loop. 7238 */ 7239 if (new_tasks < 0) 7240 return RETRY_TASK; 7241 7242 if (new_tasks > 0) 7243 goto again; 7244 7245 /* 7246 * rq is about to be idle, check if we need to update the 7247 * lost_idle_time of clock_pelt 7248 */ 7249 update_idle_rq_clock_pelt(rq); 7250 7251 return NULL; 7252 } 7253 7254 static struct task_struct *__pick_next_task_fair(struct rq *rq) 7255 { 7256 return pick_next_task_fair(rq, NULL, NULL); 7257 } 7258 7259 /* 7260 * Account for a descheduled task: 7261 */ 7262 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7263 { 7264 struct sched_entity *se = &prev->se; 7265 struct cfs_rq *cfs_rq; 7266 7267 for_each_sched_entity(se) { 7268 cfs_rq = cfs_rq_of(se); 7269 put_prev_entity(cfs_rq, se); 7270 } 7271 } 7272 7273 /* 7274 * sched_yield() is very simple 7275 * 7276 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7277 */ 7278 static void yield_task_fair(struct rq *rq) 7279 { 7280 struct task_struct *curr = rq->curr; 7281 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7282 struct sched_entity *se = &curr->se; 7283 7284 /* 7285 * Are we the only task in the tree? 7286 */ 7287 if (unlikely(rq->nr_running == 1)) 7288 return; 7289 7290 clear_buddies(cfs_rq, se); 7291 7292 if (curr->policy != SCHED_BATCH) { 7293 update_rq_clock(rq); 7294 /* 7295 * Update run-time statistics of the 'current'. 7296 */ 7297 update_curr(cfs_rq); 7298 /* 7299 * Tell update_rq_clock() that we've just updated, 7300 * so we don't do microscopic update in schedule() 7301 * and double the fastpath cost. 7302 */ 7303 rq_clock_skip_update(rq); 7304 } 7305 7306 set_skip_buddy(se); 7307 } 7308 7309 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 7310 { 7311 struct sched_entity *se = &p->se; 7312 7313 /* throttled hierarchies are not runnable */ 7314 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7315 return false; 7316 7317 /* Tell the scheduler that we'd really like pse to run next. */ 7318 set_next_buddy(se); 7319 7320 yield_task_fair(rq); 7321 7322 return true; 7323 } 7324 7325 #ifdef CONFIG_SMP 7326 /************************************************** 7327 * Fair scheduling class load-balancing methods. 7328 * 7329 * BASICS 7330 * 7331 * The purpose of load-balancing is to achieve the same basic fairness the 7332 * per-CPU scheduler provides, namely provide a proportional amount of compute 7333 * time to each task. This is expressed in the following equation: 7334 * 7335 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7336 * 7337 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7338 * W_i,0 is defined as: 7339 * 7340 * W_i,0 = \Sum_j w_i,j (2) 7341 * 7342 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7343 * is derived from the nice value as per sched_prio_to_weight[]. 7344 * 7345 * The weight average is an exponential decay average of the instantaneous 7346 * weight: 7347 * 7348 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7349 * 7350 * C_i is the compute capacity of CPU i, typically it is the 7351 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7352 * can also include other factors [XXX]. 7353 * 7354 * To achieve this balance we define a measure of imbalance which follows 7355 * directly from (1): 7356 * 7357 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7358 * 7359 * We them move tasks around to minimize the imbalance. In the continuous 7360 * function space it is obvious this converges, in the discrete case we get 7361 * a few fun cases generally called infeasible weight scenarios. 7362 * 7363 * [XXX expand on: 7364 * - infeasible weights; 7365 * - local vs global optima in the discrete case. ] 7366 * 7367 * 7368 * SCHED DOMAINS 7369 * 7370 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7371 * for all i,j solution, we create a tree of CPUs that follows the hardware 7372 * topology where each level pairs two lower groups (or better). This results 7373 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7374 * tree to only the first of the previous level and we decrease the frequency 7375 * of load-balance at each level inv. proportional to the number of CPUs in 7376 * the groups. 7377 * 7378 * This yields: 7379 * 7380 * log_2 n 1 n 7381 * \Sum { --- * --- * 2^i } = O(n) (5) 7382 * i = 0 2^i 2^i 7383 * `- size of each group 7384 * | | `- number of CPUs doing load-balance 7385 * | `- freq 7386 * `- sum over all levels 7387 * 7388 * Coupled with a limit on how many tasks we can migrate every balance pass, 7389 * this makes (5) the runtime complexity of the balancer. 7390 * 7391 * An important property here is that each CPU is still (indirectly) connected 7392 * to every other CPU in at most O(log n) steps: 7393 * 7394 * The adjacency matrix of the resulting graph is given by: 7395 * 7396 * log_2 n 7397 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7398 * k = 0 7399 * 7400 * And you'll find that: 7401 * 7402 * A^(log_2 n)_i,j != 0 for all i,j (7) 7403 * 7404 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7405 * The task movement gives a factor of O(m), giving a convergence complexity 7406 * of: 7407 * 7408 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7409 * 7410 * 7411 * WORK CONSERVING 7412 * 7413 * In order to avoid CPUs going idle while there's still work to do, new idle 7414 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7415 * tree itself instead of relying on other CPUs to bring it work. 7416 * 7417 * This adds some complexity to both (5) and (8) but it reduces the total idle 7418 * time. 7419 * 7420 * [XXX more?] 7421 * 7422 * 7423 * CGROUPS 7424 * 7425 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7426 * 7427 * s_k,i 7428 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7429 * S_k 7430 * 7431 * Where 7432 * 7433 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7434 * 7435 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7436 * 7437 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7438 * property. 7439 * 7440 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7441 * rewrite all of this once again.] 7442 */ 7443 7444 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7445 7446 enum fbq_type { regular, remote, all }; 7447 7448 /* 7449 * 'group_type' describes the group of CPUs at the moment of load balancing. 7450 * 7451 * The enum is ordered by pulling priority, with the group with lowest priority 7452 * first so the group_type can simply be compared when selecting the busiest 7453 * group. See update_sd_pick_busiest(). 7454 */ 7455 enum group_type { 7456 /* The group has spare capacity that can be used to run more tasks. */ 7457 group_has_spare = 0, 7458 /* 7459 * The group is fully used and the tasks don't compete for more CPU 7460 * cycles. Nevertheless, some tasks might wait before running. 7461 */ 7462 group_fully_busy, 7463 /* 7464 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity 7465 * and must be migrated to a more powerful CPU. 7466 */ 7467 group_misfit_task, 7468 /* 7469 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 7470 * and the task should be migrated to it instead of running on the 7471 * current CPU. 7472 */ 7473 group_asym_packing, 7474 /* 7475 * The tasks' affinity constraints previously prevented the scheduler 7476 * from balancing the load across the system. 7477 */ 7478 group_imbalanced, 7479 /* 7480 * The CPU is overloaded and can't provide expected CPU cycles to all 7481 * tasks. 7482 */ 7483 group_overloaded 7484 }; 7485 7486 enum migration_type { 7487 migrate_load = 0, 7488 migrate_util, 7489 migrate_task, 7490 migrate_misfit 7491 }; 7492 7493 #define LBF_ALL_PINNED 0x01 7494 #define LBF_NEED_BREAK 0x02 7495 #define LBF_DST_PINNED 0x04 7496 #define LBF_SOME_PINNED 0x08 7497 #define LBF_ACTIVE_LB 0x10 7498 7499 struct lb_env { 7500 struct sched_domain *sd; 7501 7502 struct rq *src_rq; 7503 int src_cpu; 7504 7505 int dst_cpu; 7506 struct rq *dst_rq; 7507 7508 struct cpumask *dst_grpmask; 7509 int new_dst_cpu; 7510 enum cpu_idle_type idle; 7511 long imbalance; 7512 /* The set of CPUs under consideration for load-balancing */ 7513 struct cpumask *cpus; 7514 7515 unsigned int flags; 7516 7517 unsigned int loop; 7518 unsigned int loop_break; 7519 unsigned int loop_max; 7520 7521 enum fbq_type fbq_type; 7522 enum migration_type migration_type; 7523 struct list_head tasks; 7524 }; 7525 7526 /* 7527 * Is this task likely cache-hot: 7528 */ 7529 static int task_hot(struct task_struct *p, struct lb_env *env) 7530 { 7531 s64 delta; 7532 7533 lockdep_assert_held(&env->src_rq->lock); 7534 7535 if (p->sched_class != &fair_sched_class) 7536 return 0; 7537 7538 if (unlikely(task_has_idle_policy(p))) 7539 return 0; 7540 7541 /* SMT siblings share cache */ 7542 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 7543 return 0; 7544 7545 /* 7546 * Buddy candidates are cache hot: 7547 */ 7548 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7549 (&p->se == cfs_rq_of(&p->se)->next || 7550 &p->se == cfs_rq_of(&p->se)->last)) 7551 return 1; 7552 7553 if (sysctl_sched_migration_cost == -1) 7554 return 1; 7555 if (sysctl_sched_migration_cost == 0) 7556 return 0; 7557 7558 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7559 7560 return delta < (s64)sysctl_sched_migration_cost; 7561 } 7562 7563 #ifdef CONFIG_NUMA_BALANCING 7564 /* 7565 * Returns 1, if task migration degrades locality 7566 * Returns 0, if task migration improves locality i.e migration preferred. 7567 * Returns -1, if task migration is not affected by locality. 7568 */ 7569 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7570 { 7571 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7572 unsigned long src_weight, dst_weight; 7573 int src_nid, dst_nid, dist; 7574 7575 if (!static_branch_likely(&sched_numa_balancing)) 7576 return -1; 7577 7578 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7579 return -1; 7580 7581 src_nid = cpu_to_node(env->src_cpu); 7582 dst_nid = cpu_to_node(env->dst_cpu); 7583 7584 if (src_nid == dst_nid) 7585 return -1; 7586 7587 /* Migrating away from the preferred node is always bad. */ 7588 if (src_nid == p->numa_preferred_nid) { 7589 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7590 return 1; 7591 else 7592 return -1; 7593 } 7594 7595 /* Encourage migration to the preferred node. */ 7596 if (dst_nid == p->numa_preferred_nid) 7597 return 0; 7598 7599 /* Leaving a core idle is often worse than degrading locality. */ 7600 if (env->idle == CPU_IDLE) 7601 return -1; 7602 7603 dist = node_distance(src_nid, dst_nid); 7604 if (numa_group) { 7605 src_weight = group_weight(p, src_nid, dist); 7606 dst_weight = group_weight(p, dst_nid, dist); 7607 } else { 7608 src_weight = task_weight(p, src_nid, dist); 7609 dst_weight = task_weight(p, dst_nid, dist); 7610 } 7611 7612 return dst_weight < src_weight; 7613 } 7614 7615 #else 7616 static inline int migrate_degrades_locality(struct task_struct *p, 7617 struct lb_env *env) 7618 { 7619 return -1; 7620 } 7621 #endif 7622 7623 /* 7624 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7625 */ 7626 static 7627 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7628 { 7629 int tsk_cache_hot; 7630 7631 lockdep_assert_held(&env->src_rq->lock); 7632 7633 /* 7634 * We do not migrate tasks that are: 7635 * 1) throttled_lb_pair, or 7636 * 2) cannot be migrated to this CPU due to cpus_ptr, or 7637 * 3) running (obviously), or 7638 * 4) are cache-hot on their current CPU. 7639 */ 7640 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7641 return 0; 7642 7643 /* Disregard pcpu kthreads; they are where they need to be. */ 7644 if (kthread_is_per_cpu(p)) 7645 return 0; 7646 7647 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 7648 int cpu; 7649 7650 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7651 7652 env->flags |= LBF_SOME_PINNED; 7653 7654 /* 7655 * Remember if this task can be migrated to any other CPU in 7656 * our sched_group. We may want to revisit it if we couldn't 7657 * meet load balance goals by pulling other tasks on src_cpu. 7658 * 7659 * Avoid computing new_dst_cpu 7660 * - for NEWLY_IDLE 7661 * - if we have already computed one in current iteration 7662 * - if it's an active balance 7663 */ 7664 if (env->idle == CPU_NEWLY_IDLE || 7665 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 7666 return 0; 7667 7668 /* Prevent to re-select dst_cpu via env's CPUs: */ 7669 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7670 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 7671 env->flags |= LBF_DST_PINNED; 7672 env->new_dst_cpu = cpu; 7673 break; 7674 } 7675 } 7676 7677 return 0; 7678 } 7679 7680 /* Record that we found at least one task that could run on dst_cpu */ 7681 env->flags &= ~LBF_ALL_PINNED; 7682 7683 if (task_running(env->src_rq, p)) { 7684 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7685 return 0; 7686 } 7687 7688 /* 7689 * Aggressive migration if: 7690 * 1) active balance 7691 * 2) destination numa is preferred 7692 * 3) task is cache cold, or 7693 * 4) too many balance attempts have failed. 7694 */ 7695 if (env->flags & LBF_ACTIVE_LB) 7696 return 1; 7697 7698 tsk_cache_hot = migrate_degrades_locality(p, env); 7699 if (tsk_cache_hot == -1) 7700 tsk_cache_hot = task_hot(p, env); 7701 7702 if (tsk_cache_hot <= 0 || 7703 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7704 if (tsk_cache_hot == 1) { 7705 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7706 schedstat_inc(p->se.statistics.nr_forced_migrations); 7707 } 7708 return 1; 7709 } 7710 7711 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7712 return 0; 7713 } 7714 7715 /* 7716 * detach_task() -- detach the task for the migration specified in env 7717 */ 7718 static void detach_task(struct task_struct *p, struct lb_env *env) 7719 { 7720 lockdep_assert_held(&env->src_rq->lock); 7721 7722 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7723 set_task_cpu(p, env->dst_cpu); 7724 } 7725 7726 /* 7727 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7728 * part of active balancing operations within "domain". 7729 * 7730 * Returns a task if successful and NULL otherwise. 7731 */ 7732 static struct task_struct *detach_one_task(struct lb_env *env) 7733 { 7734 struct task_struct *p; 7735 7736 lockdep_assert_held(&env->src_rq->lock); 7737 7738 list_for_each_entry_reverse(p, 7739 &env->src_rq->cfs_tasks, se.group_node) { 7740 if (!can_migrate_task(p, env)) 7741 continue; 7742 7743 detach_task(p, env); 7744 7745 /* 7746 * Right now, this is only the second place where 7747 * lb_gained[env->idle] is updated (other is detach_tasks) 7748 * so we can safely collect stats here rather than 7749 * inside detach_tasks(). 7750 */ 7751 schedstat_inc(env->sd->lb_gained[env->idle]); 7752 return p; 7753 } 7754 return NULL; 7755 } 7756 7757 static const unsigned int sched_nr_migrate_break = 32; 7758 7759 /* 7760 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 7761 * busiest_rq, as part of a balancing operation within domain "sd". 7762 * 7763 * Returns number of detached tasks if successful and 0 otherwise. 7764 */ 7765 static int detach_tasks(struct lb_env *env) 7766 { 7767 struct list_head *tasks = &env->src_rq->cfs_tasks; 7768 unsigned long util, load; 7769 struct task_struct *p; 7770 int detached = 0; 7771 7772 lockdep_assert_held(&env->src_rq->lock); 7773 7774 /* 7775 * Source run queue has been emptied by another CPU, clear 7776 * LBF_ALL_PINNED flag as we will not test any task. 7777 */ 7778 if (env->src_rq->nr_running <= 1) { 7779 env->flags &= ~LBF_ALL_PINNED; 7780 return 0; 7781 } 7782 7783 if (env->imbalance <= 0) 7784 return 0; 7785 7786 while (!list_empty(tasks)) { 7787 /* 7788 * We don't want to steal all, otherwise we may be treated likewise, 7789 * which could at worst lead to a livelock crash. 7790 */ 7791 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7792 break; 7793 7794 p = list_last_entry(tasks, struct task_struct, se.group_node); 7795 7796 env->loop++; 7797 /* We've more or less seen every task there is, call it quits */ 7798 if (env->loop > env->loop_max) 7799 break; 7800 7801 /* take a breather every nr_migrate tasks */ 7802 if (env->loop > env->loop_break) { 7803 env->loop_break += sched_nr_migrate_break; 7804 env->flags |= LBF_NEED_BREAK; 7805 break; 7806 } 7807 7808 if (!can_migrate_task(p, env)) 7809 goto next; 7810 7811 switch (env->migration_type) { 7812 case migrate_load: 7813 /* 7814 * Depending of the number of CPUs and tasks and the 7815 * cgroup hierarchy, task_h_load() can return a null 7816 * value. Make sure that env->imbalance decreases 7817 * otherwise detach_tasks() will stop only after 7818 * detaching up to loop_max tasks. 7819 */ 7820 load = max_t(unsigned long, task_h_load(p), 1); 7821 7822 if (sched_feat(LB_MIN) && 7823 load < 16 && !env->sd->nr_balance_failed) 7824 goto next; 7825 7826 /* 7827 * Make sure that we don't migrate too much load. 7828 * Nevertheless, let relax the constraint if 7829 * scheduler fails to find a good waiting task to 7830 * migrate. 7831 */ 7832 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 7833 goto next; 7834 7835 env->imbalance -= load; 7836 break; 7837 7838 case migrate_util: 7839 util = task_util_est(p); 7840 7841 if (util > env->imbalance) 7842 goto next; 7843 7844 env->imbalance -= util; 7845 break; 7846 7847 case migrate_task: 7848 env->imbalance--; 7849 break; 7850 7851 case migrate_misfit: 7852 /* This is not a misfit task */ 7853 if (task_fits_capacity(p, capacity_of(env->src_cpu))) 7854 goto next; 7855 7856 env->imbalance = 0; 7857 break; 7858 } 7859 7860 detach_task(p, env); 7861 list_add(&p->se.group_node, &env->tasks); 7862 7863 detached++; 7864 7865 #ifdef CONFIG_PREEMPTION 7866 /* 7867 * NEWIDLE balancing is a source of latency, so preemptible 7868 * kernels will stop after the first task is detached to minimize 7869 * the critical section. 7870 */ 7871 if (env->idle == CPU_NEWLY_IDLE) 7872 break; 7873 #endif 7874 7875 /* 7876 * We only want to steal up to the prescribed amount of 7877 * load/util/tasks. 7878 */ 7879 if (env->imbalance <= 0) 7880 break; 7881 7882 continue; 7883 next: 7884 list_move(&p->se.group_node, tasks); 7885 } 7886 7887 /* 7888 * Right now, this is one of only two places we collect this stat 7889 * so we can safely collect detach_one_task() stats here rather 7890 * than inside detach_one_task(). 7891 */ 7892 schedstat_add(env->sd->lb_gained[env->idle], detached); 7893 7894 return detached; 7895 } 7896 7897 /* 7898 * attach_task() -- attach the task detached by detach_task() to its new rq. 7899 */ 7900 static void attach_task(struct rq *rq, struct task_struct *p) 7901 { 7902 lockdep_assert_held(&rq->lock); 7903 7904 BUG_ON(task_rq(p) != rq); 7905 activate_task(rq, p, ENQUEUE_NOCLOCK); 7906 check_preempt_curr(rq, p, 0); 7907 } 7908 7909 /* 7910 * attach_one_task() -- attaches the task returned from detach_one_task() to 7911 * its new rq. 7912 */ 7913 static void attach_one_task(struct rq *rq, struct task_struct *p) 7914 { 7915 struct rq_flags rf; 7916 7917 rq_lock(rq, &rf); 7918 update_rq_clock(rq); 7919 attach_task(rq, p); 7920 rq_unlock(rq, &rf); 7921 } 7922 7923 /* 7924 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7925 * new rq. 7926 */ 7927 static void attach_tasks(struct lb_env *env) 7928 { 7929 struct list_head *tasks = &env->tasks; 7930 struct task_struct *p; 7931 struct rq_flags rf; 7932 7933 rq_lock(env->dst_rq, &rf); 7934 update_rq_clock(env->dst_rq); 7935 7936 while (!list_empty(tasks)) { 7937 p = list_first_entry(tasks, struct task_struct, se.group_node); 7938 list_del_init(&p->se.group_node); 7939 7940 attach_task(env->dst_rq, p); 7941 } 7942 7943 rq_unlock(env->dst_rq, &rf); 7944 } 7945 7946 #ifdef CONFIG_NO_HZ_COMMON 7947 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7948 { 7949 if (cfs_rq->avg.load_avg) 7950 return true; 7951 7952 if (cfs_rq->avg.util_avg) 7953 return true; 7954 7955 return false; 7956 } 7957 7958 static inline bool others_have_blocked(struct rq *rq) 7959 { 7960 if (READ_ONCE(rq->avg_rt.util_avg)) 7961 return true; 7962 7963 if (READ_ONCE(rq->avg_dl.util_avg)) 7964 return true; 7965 7966 if (thermal_load_avg(rq)) 7967 return true; 7968 7969 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 7970 if (READ_ONCE(rq->avg_irq.util_avg)) 7971 return true; 7972 #endif 7973 7974 return false; 7975 } 7976 7977 static inline void update_blocked_load_tick(struct rq *rq) 7978 { 7979 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 7980 } 7981 7982 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 7983 { 7984 if (!has_blocked) 7985 rq->has_blocked_load = 0; 7986 } 7987 #else 7988 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 7989 static inline bool others_have_blocked(struct rq *rq) { return false; } 7990 static inline void update_blocked_load_tick(struct rq *rq) {} 7991 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 7992 #endif 7993 7994 static bool __update_blocked_others(struct rq *rq, bool *done) 7995 { 7996 const struct sched_class *curr_class; 7997 u64 now = rq_clock_pelt(rq); 7998 unsigned long thermal_pressure; 7999 bool decayed; 8000 8001 /* 8002 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 8003 * DL and IRQ signals have been updated before updating CFS. 8004 */ 8005 curr_class = rq->curr->sched_class; 8006 8007 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 8008 8009 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 8010 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 8011 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 8012 update_irq_load_avg(rq, 0); 8013 8014 if (others_have_blocked(rq)) 8015 *done = false; 8016 8017 return decayed; 8018 } 8019 8020 #ifdef CONFIG_FAIR_GROUP_SCHED 8021 8022 static bool __update_blocked_fair(struct rq *rq, bool *done) 8023 { 8024 struct cfs_rq *cfs_rq, *pos; 8025 bool decayed = false; 8026 int cpu = cpu_of(rq); 8027 8028 /* 8029 * Iterates the task_group tree in a bottom up fashion, see 8030 * list_add_leaf_cfs_rq() for details. 8031 */ 8032 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 8033 struct sched_entity *se; 8034 8035 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 8036 update_tg_load_avg(cfs_rq); 8037 8038 if (cfs_rq == &rq->cfs) 8039 decayed = true; 8040 } 8041 8042 /* Propagate pending load changes to the parent, if any: */ 8043 se = cfs_rq->tg->se[cpu]; 8044 if (se && !skip_blocked_update(se)) 8045 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 8046 8047 /* 8048 * There can be a lot of idle CPU cgroups. Don't let fully 8049 * decayed cfs_rqs linger on the list. 8050 */ 8051 if (cfs_rq_is_decayed(cfs_rq)) 8052 list_del_leaf_cfs_rq(cfs_rq); 8053 8054 /* Don't need periodic decay once load/util_avg are null */ 8055 if (cfs_rq_has_blocked(cfs_rq)) 8056 *done = false; 8057 } 8058 8059 return decayed; 8060 } 8061 8062 /* 8063 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 8064 * This needs to be done in a top-down fashion because the load of a child 8065 * group is a fraction of its parents load. 8066 */ 8067 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 8068 { 8069 struct rq *rq = rq_of(cfs_rq); 8070 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 8071 unsigned long now = jiffies; 8072 unsigned long load; 8073 8074 if (cfs_rq->last_h_load_update == now) 8075 return; 8076 8077 WRITE_ONCE(cfs_rq->h_load_next, NULL); 8078 for_each_sched_entity(se) { 8079 cfs_rq = cfs_rq_of(se); 8080 WRITE_ONCE(cfs_rq->h_load_next, se); 8081 if (cfs_rq->last_h_load_update == now) 8082 break; 8083 } 8084 8085 if (!se) { 8086 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 8087 cfs_rq->last_h_load_update = now; 8088 } 8089 8090 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 8091 load = cfs_rq->h_load; 8092 load = div64_ul(load * se->avg.load_avg, 8093 cfs_rq_load_avg(cfs_rq) + 1); 8094 cfs_rq = group_cfs_rq(se); 8095 cfs_rq->h_load = load; 8096 cfs_rq->last_h_load_update = now; 8097 } 8098 } 8099 8100 static unsigned long task_h_load(struct task_struct *p) 8101 { 8102 struct cfs_rq *cfs_rq = task_cfs_rq(p); 8103 8104 update_cfs_rq_h_load(cfs_rq); 8105 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 8106 cfs_rq_load_avg(cfs_rq) + 1); 8107 } 8108 #else 8109 static bool __update_blocked_fair(struct rq *rq, bool *done) 8110 { 8111 struct cfs_rq *cfs_rq = &rq->cfs; 8112 bool decayed; 8113 8114 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 8115 if (cfs_rq_has_blocked(cfs_rq)) 8116 *done = false; 8117 8118 return decayed; 8119 } 8120 8121 static unsigned long task_h_load(struct task_struct *p) 8122 { 8123 return p->se.avg.load_avg; 8124 } 8125 #endif 8126 8127 static void update_blocked_averages(int cpu) 8128 { 8129 bool decayed = false, done = true; 8130 struct rq *rq = cpu_rq(cpu); 8131 struct rq_flags rf; 8132 8133 rq_lock_irqsave(rq, &rf); 8134 update_blocked_load_tick(rq); 8135 update_rq_clock(rq); 8136 8137 decayed |= __update_blocked_others(rq, &done); 8138 decayed |= __update_blocked_fair(rq, &done); 8139 8140 update_blocked_load_status(rq, !done); 8141 if (decayed) 8142 cpufreq_update_util(rq, 0); 8143 rq_unlock_irqrestore(rq, &rf); 8144 } 8145 8146 /********** Helpers for find_busiest_group ************************/ 8147 8148 /* 8149 * sg_lb_stats - stats of a sched_group required for load_balancing 8150 */ 8151 struct sg_lb_stats { 8152 unsigned long avg_load; /*Avg load across the CPUs of the group */ 8153 unsigned long group_load; /* Total load over the CPUs of the group */ 8154 unsigned long group_capacity; 8155 unsigned long group_util; /* Total utilization over the CPUs of the group */ 8156 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 8157 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 8158 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 8159 unsigned int idle_cpus; 8160 unsigned int group_weight; 8161 enum group_type group_type; 8162 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 8163 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 8164 #ifdef CONFIG_NUMA_BALANCING 8165 unsigned int nr_numa_running; 8166 unsigned int nr_preferred_running; 8167 #endif 8168 }; 8169 8170 /* 8171 * sd_lb_stats - Structure to store the statistics of a sched_domain 8172 * during load balancing. 8173 */ 8174 struct sd_lb_stats { 8175 struct sched_group *busiest; /* Busiest group in this sd */ 8176 struct sched_group *local; /* Local group in this sd */ 8177 unsigned long total_load; /* Total load of all groups in sd */ 8178 unsigned long total_capacity; /* Total capacity of all groups in sd */ 8179 unsigned long avg_load; /* Average load across all groups in sd */ 8180 unsigned int prefer_sibling; /* tasks should go to sibling first */ 8181 8182 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 8183 struct sg_lb_stats local_stat; /* Statistics of the local group */ 8184 }; 8185 8186 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 8187 { 8188 /* 8189 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 8190 * local_stat because update_sg_lb_stats() does a full clear/assignment. 8191 * We must however set busiest_stat::group_type and 8192 * busiest_stat::idle_cpus to the worst busiest group because 8193 * update_sd_pick_busiest() reads these before assignment. 8194 */ 8195 *sds = (struct sd_lb_stats){ 8196 .busiest = NULL, 8197 .local = NULL, 8198 .total_load = 0UL, 8199 .total_capacity = 0UL, 8200 .busiest_stat = { 8201 .idle_cpus = UINT_MAX, 8202 .group_type = group_has_spare, 8203 }, 8204 }; 8205 } 8206 8207 static unsigned long scale_rt_capacity(int cpu) 8208 { 8209 struct rq *rq = cpu_rq(cpu); 8210 unsigned long max = arch_scale_cpu_capacity(cpu); 8211 unsigned long used, free; 8212 unsigned long irq; 8213 8214 irq = cpu_util_irq(rq); 8215 8216 if (unlikely(irq >= max)) 8217 return 1; 8218 8219 /* 8220 * avg_rt.util_avg and avg_dl.util_avg track binary signals 8221 * (running and not running) with weights 0 and 1024 respectively. 8222 * avg_thermal.load_avg tracks thermal pressure and the weighted 8223 * average uses the actual delta max capacity(load). 8224 */ 8225 used = READ_ONCE(rq->avg_rt.util_avg); 8226 used += READ_ONCE(rq->avg_dl.util_avg); 8227 used += thermal_load_avg(rq); 8228 8229 if (unlikely(used >= max)) 8230 return 1; 8231 8232 free = max - used; 8233 8234 return scale_irq_capacity(free, irq, max); 8235 } 8236 8237 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 8238 { 8239 unsigned long capacity = scale_rt_capacity(cpu); 8240 struct sched_group *sdg = sd->groups; 8241 8242 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 8243 8244 if (!capacity) 8245 capacity = 1; 8246 8247 cpu_rq(cpu)->cpu_capacity = capacity; 8248 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 8249 8250 sdg->sgc->capacity = capacity; 8251 sdg->sgc->min_capacity = capacity; 8252 sdg->sgc->max_capacity = capacity; 8253 } 8254 8255 void update_group_capacity(struct sched_domain *sd, int cpu) 8256 { 8257 struct sched_domain *child = sd->child; 8258 struct sched_group *group, *sdg = sd->groups; 8259 unsigned long capacity, min_capacity, max_capacity; 8260 unsigned long interval; 8261 8262 interval = msecs_to_jiffies(sd->balance_interval); 8263 interval = clamp(interval, 1UL, max_load_balance_interval); 8264 sdg->sgc->next_update = jiffies + interval; 8265 8266 if (!child) { 8267 update_cpu_capacity(sd, cpu); 8268 return; 8269 } 8270 8271 capacity = 0; 8272 min_capacity = ULONG_MAX; 8273 max_capacity = 0; 8274 8275 if (child->flags & SD_OVERLAP) { 8276 /* 8277 * SD_OVERLAP domains cannot assume that child groups 8278 * span the current group. 8279 */ 8280 8281 for_each_cpu(cpu, sched_group_span(sdg)) { 8282 unsigned long cpu_cap = capacity_of(cpu); 8283 8284 capacity += cpu_cap; 8285 min_capacity = min(cpu_cap, min_capacity); 8286 max_capacity = max(cpu_cap, max_capacity); 8287 } 8288 } else { 8289 /* 8290 * !SD_OVERLAP domains can assume that child groups 8291 * span the current group. 8292 */ 8293 8294 group = child->groups; 8295 do { 8296 struct sched_group_capacity *sgc = group->sgc; 8297 8298 capacity += sgc->capacity; 8299 min_capacity = min(sgc->min_capacity, min_capacity); 8300 max_capacity = max(sgc->max_capacity, max_capacity); 8301 group = group->next; 8302 } while (group != child->groups); 8303 } 8304 8305 sdg->sgc->capacity = capacity; 8306 sdg->sgc->min_capacity = min_capacity; 8307 sdg->sgc->max_capacity = max_capacity; 8308 } 8309 8310 /* 8311 * Check whether the capacity of the rq has been noticeably reduced by side 8312 * activity. The imbalance_pct is used for the threshold. 8313 * Return true is the capacity is reduced 8314 */ 8315 static inline int 8316 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 8317 { 8318 return ((rq->cpu_capacity * sd->imbalance_pct) < 8319 (rq->cpu_capacity_orig * 100)); 8320 } 8321 8322 /* 8323 * Check whether a rq has a misfit task and if it looks like we can actually 8324 * help that task: we can migrate the task to a CPU of higher capacity, or 8325 * the task's current CPU is heavily pressured. 8326 */ 8327 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 8328 { 8329 return rq->misfit_task_load && 8330 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 8331 check_cpu_capacity(rq, sd)); 8332 } 8333 8334 /* 8335 * Group imbalance indicates (and tries to solve) the problem where balancing 8336 * groups is inadequate due to ->cpus_ptr constraints. 8337 * 8338 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 8339 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 8340 * Something like: 8341 * 8342 * { 0 1 2 3 } { 4 5 6 7 } 8343 * * * * * 8344 * 8345 * If we were to balance group-wise we'd place two tasks in the first group and 8346 * two tasks in the second group. Clearly this is undesired as it will overload 8347 * cpu 3 and leave one of the CPUs in the second group unused. 8348 * 8349 * The current solution to this issue is detecting the skew in the first group 8350 * by noticing the lower domain failed to reach balance and had difficulty 8351 * moving tasks due to affinity constraints. 8352 * 8353 * When this is so detected; this group becomes a candidate for busiest; see 8354 * update_sd_pick_busiest(). And calculate_imbalance() and 8355 * find_busiest_group() avoid some of the usual balance conditions to allow it 8356 * to create an effective group imbalance. 8357 * 8358 * This is a somewhat tricky proposition since the next run might not find the 8359 * group imbalance and decide the groups need to be balanced again. A most 8360 * subtle and fragile situation. 8361 */ 8362 8363 static inline int sg_imbalanced(struct sched_group *group) 8364 { 8365 return group->sgc->imbalance; 8366 } 8367 8368 /* 8369 * group_has_capacity returns true if the group has spare capacity that could 8370 * be used by some tasks. 8371 * We consider that a group has spare capacity if the * number of task is 8372 * smaller than the number of CPUs or if the utilization is lower than the 8373 * available capacity for CFS tasks. 8374 * For the latter, we use a threshold to stabilize the state, to take into 8375 * account the variance of the tasks' load and to return true if the available 8376 * capacity in meaningful for the load balancer. 8377 * As an example, an available capacity of 1% can appear but it doesn't make 8378 * any benefit for the load balance. 8379 */ 8380 static inline bool 8381 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8382 { 8383 if (sgs->sum_nr_running < sgs->group_weight) 8384 return true; 8385 8386 if ((sgs->group_capacity * imbalance_pct) < 8387 (sgs->group_runnable * 100)) 8388 return false; 8389 8390 if ((sgs->group_capacity * 100) > 8391 (sgs->group_util * imbalance_pct)) 8392 return true; 8393 8394 return false; 8395 } 8396 8397 /* 8398 * group_is_overloaded returns true if the group has more tasks than it can 8399 * handle. 8400 * group_is_overloaded is not equals to !group_has_capacity because a group 8401 * with the exact right number of tasks, has no more spare capacity but is not 8402 * overloaded so both group_has_capacity and group_is_overloaded return 8403 * false. 8404 */ 8405 static inline bool 8406 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8407 { 8408 if (sgs->sum_nr_running <= sgs->group_weight) 8409 return false; 8410 8411 if ((sgs->group_capacity * 100) < 8412 (sgs->group_util * imbalance_pct)) 8413 return true; 8414 8415 if ((sgs->group_capacity * imbalance_pct) < 8416 (sgs->group_runnable * 100)) 8417 return true; 8418 8419 return false; 8420 } 8421 8422 static inline enum 8423 group_type group_classify(unsigned int imbalance_pct, 8424 struct sched_group *group, 8425 struct sg_lb_stats *sgs) 8426 { 8427 if (group_is_overloaded(imbalance_pct, sgs)) 8428 return group_overloaded; 8429 8430 if (sg_imbalanced(group)) 8431 return group_imbalanced; 8432 8433 if (sgs->group_asym_packing) 8434 return group_asym_packing; 8435 8436 if (sgs->group_misfit_task_load) 8437 return group_misfit_task; 8438 8439 if (!group_has_capacity(imbalance_pct, sgs)) 8440 return group_fully_busy; 8441 8442 return group_has_spare; 8443 } 8444 8445 /** 8446 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8447 * @env: The load balancing environment. 8448 * @group: sched_group whose statistics are to be updated. 8449 * @sgs: variable to hold the statistics for this group. 8450 * @sg_status: Holds flag indicating the status of the sched_group 8451 */ 8452 static inline void update_sg_lb_stats(struct lb_env *env, 8453 struct sched_group *group, 8454 struct sg_lb_stats *sgs, 8455 int *sg_status) 8456 { 8457 int i, nr_running, local_group; 8458 8459 memset(sgs, 0, sizeof(*sgs)); 8460 8461 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group)); 8462 8463 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8464 struct rq *rq = cpu_rq(i); 8465 8466 sgs->group_load += cpu_load(rq); 8467 sgs->group_util += cpu_util(i); 8468 sgs->group_runnable += cpu_runnable(rq); 8469 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 8470 8471 nr_running = rq->nr_running; 8472 sgs->sum_nr_running += nr_running; 8473 8474 if (nr_running > 1) 8475 *sg_status |= SG_OVERLOAD; 8476 8477 if (cpu_overutilized(i)) 8478 *sg_status |= SG_OVERUTILIZED; 8479 8480 #ifdef CONFIG_NUMA_BALANCING 8481 sgs->nr_numa_running += rq->nr_numa_running; 8482 sgs->nr_preferred_running += rq->nr_preferred_running; 8483 #endif 8484 /* 8485 * No need to call idle_cpu() if nr_running is not 0 8486 */ 8487 if (!nr_running && idle_cpu(i)) { 8488 sgs->idle_cpus++; 8489 /* Idle cpu can't have misfit task */ 8490 continue; 8491 } 8492 8493 if (local_group) 8494 continue; 8495 8496 /* Check for a misfit task on the cpu */ 8497 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8498 sgs->group_misfit_task_load < rq->misfit_task_load) { 8499 sgs->group_misfit_task_load = rq->misfit_task_load; 8500 *sg_status |= SG_OVERLOAD; 8501 } 8502 } 8503 8504 /* Check if dst CPU is idle and preferred to this group */ 8505 if (env->sd->flags & SD_ASYM_PACKING && 8506 env->idle != CPU_NOT_IDLE && 8507 sgs->sum_h_nr_running && 8508 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) { 8509 sgs->group_asym_packing = 1; 8510 } 8511 8512 sgs->group_capacity = group->sgc->capacity; 8513 8514 sgs->group_weight = group->group_weight; 8515 8516 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 8517 8518 /* Computing avg_load makes sense only when group is overloaded */ 8519 if (sgs->group_type == group_overloaded) 8520 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8521 sgs->group_capacity; 8522 } 8523 8524 /** 8525 * update_sd_pick_busiest - return 1 on busiest group 8526 * @env: The load balancing environment. 8527 * @sds: sched_domain statistics 8528 * @sg: sched_group candidate to be checked for being the busiest 8529 * @sgs: sched_group statistics 8530 * 8531 * Determine if @sg is a busier group than the previously selected 8532 * busiest group. 8533 * 8534 * Return: %true if @sg is a busier group than the previously selected 8535 * busiest group. %false otherwise. 8536 */ 8537 static bool update_sd_pick_busiest(struct lb_env *env, 8538 struct sd_lb_stats *sds, 8539 struct sched_group *sg, 8540 struct sg_lb_stats *sgs) 8541 { 8542 struct sg_lb_stats *busiest = &sds->busiest_stat; 8543 8544 /* Make sure that there is at least one task to pull */ 8545 if (!sgs->sum_h_nr_running) 8546 return false; 8547 8548 /* 8549 * Don't try to pull misfit tasks we can't help. 8550 * We can use max_capacity here as reduction in capacity on some 8551 * CPUs in the group should either be possible to resolve 8552 * internally or be covered by avg_load imbalance (eventually). 8553 */ 8554 if (sgs->group_type == group_misfit_task && 8555 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 8556 sds->local_stat.group_type != group_has_spare)) 8557 return false; 8558 8559 if (sgs->group_type > busiest->group_type) 8560 return true; 8561 8562 if (sgs->group_type < busiest->group_type) 8563 return false; 8564 8565 /* 8566 * The candidate and the current busiest group are the same type of 8567 * group. Let check which one is the busiest according to the type. 8568 */ 8569 8570 switch (sgs->group_type) { 8571 case group_overloaded: 8572 /* Select the overloaded group with highest avg_load. */ 8573 if (sgs->avg_load <= busiest->avg_load) 8574 return false; 8575 break; 8576 8577 case group_imbalanced: 8578 /* 8579 * Select the 1st imbalanced group as we don't have any way to 8580 * choose one more than another. 8581 */ 8582 return false; 8583 8584 case group_asym_packing: 8585 /* Prefer to move from lowest priority CPU's work */ 8586 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 8587 return false; 8588 break; 8589 8590 case group_misfit_task: 8591 /* 8592 * If we have more than one misfit sg go with the biggest 8593 * misfit. 8594 */ 8595 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8596 return false; 8597 break; 8598 8599 case group_fully_busy: 8600 /* 8601 * Select the fully busy group with highest avg_load. In 8602 * theory, there is no need to pull task from such kind of 8603 * group because tasks have all compute capacity that they need 8604 * but we can still improve the overall throughput by reducing 8605 * contention when accessing shared HW resources. 8606 * 8607 * XXX for now avg_load is not computed and always 0 so we 8608 * select the 1st one. 8609 */ 8610 if (sgs->avg_load <= busiest->avg_load) 8611 return false; 8612 break; 8613 8614 case group_has_spare: 8615 /* 8616 * Select not overloaded group with lowest number of idle cpus 8617 * and highest number of running tasks. We could also compare 8618 * the spare capacity which is more stable but it can end up 8619 * that the group has less spare capacity but finally more idle 8620 * CPUs which means less opportunity to pull tasks. 8621 */ 8622 if (sgs->idle_cpus > busiest->idle_cpus) 8623 return false; 8624 else if ((sgs->idle_cpus == busiest->idle_cpus) && 8625 (sgs->sum_nr_running <= busiest->sum_nr_running)) 8626 return false; 8627 8628 break; 8629 } 8630 8631 /* 8632 * Candidate sg has no more than one task per CPU and has higher 8633 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 8634 * throughput. Maximize throughput, power/energy consequences are not 8635 * considered. 8636 */ 8637 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 8638 (sgs->group_type <= group_fully_busy) && 8639 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 8640 return false; 8641 8642 return true; 8643 } 8644 8645 #ifdef CONFIG_NUMA_BALANCING 8646 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8647 { 8648 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 8649 return regular; 8650 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 8651 return remote; 8652 return all; 8653 } 8654 8655 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8656 { 8657 if (rq->nr_running > rq->nr_numa_running) 8658 return regular; 8659 if (rq->nr_running > rq->nr_preferred_running) 8660 return remote; 8661 return all; 8662 } 8663 #else 8664 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8665 { 8666 return all; 8667 } 8668 8669 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8670 { 8671 return regular; 8672 } 8673 #endif /* CONFIG_NUMA_BALANCING */ 8674 8675 8676 struct sg_lb_stats; 8677 8678 /* 8679 * task_running_on_cpu - return 1 if @p is running on @cpu. 8680 */ 8681 8682 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 8683 { 8684 /* Task has no contribution or is new */ 8685 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8686 return 0; 8687 8688 if (task_on_rq_queued(p)) 8689 return 1; 8690 8691 return 0; 8692 } 8693 8694 /** 8695 * idle_cpu_without - would a given CPU be idle without p ? 8696 * @cpu: the processor on which idleness is tested. 8697 * @p: task which should be ignored. 8698 * 8699 * Return: 1 if the CPU would be idle. 0 otherwise. 8700 */ 8701 static int idle_cpu_without(int cpu, struct task_struct *p) 8702 { 8703 struct rq *rq = cpu_rq(cpu); 8704 8705 if (rq->curr != rq->idle && rq->curr != p) 8706 return 0; 8707 8708 /* 8709 * rq->nr_running can't be used but an updated version without the 8710 * impact of p on cpu must be used instead. The updated nr_running 8711 * be computed and tested before calling idle_cpu_without(). 8712 */ 8713 8714 #ifdef CONFIG_SMP 8715 if (rq->ttwu_pending) 8716 return 0; 8717 #endif 8718 8719 return 1; 8720 } 8721 8722 /* 8723 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 8724 * @sd: The sched_domain level to look for idlest group. 8725 * @group: sched_group whose statistics are to be updated. 8726 * @sgs: variable to hold the statistics for this group. 8727 * @p: The task for which we look for the idlest group/CPU. 8728 */ 8729 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 8730 struct sched_group *group, 8731 struct sg_lb_stats *sgs, 8732 struct task_struct *p) 8733 { 8734 int i, nr_running; 8735 8736 memset(sgs, 0, sizeof(*sgs)); 8737 8738 for_each_cpu(i, sched_group_span(group)) { 8739 struct rq *rq = cpu_rq(i); 8740 unsigned int local; 8741 8742 sgs->group_load += cpu_load_without(rq, p); 8743 sgs->group_util += cpu_util_without(i, p); 8744 sgs->group_runnable += cpu_runnable_without(rq, p); 8745 local = task_running_on_cpu(i, p); 8746 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 8747 8748 nr_running = rq->nr_running - local; 8749 sgs->sum_nr_running += nr_running; 8750 8751 /* 8752 * No need to call idle_cpu_without() if nr_running is not 0 8753 */ 8754 if (!nr_running && idle_cpu_without(i, p)) 8755 sgs->idle_cpus++; 8756 8757 } 8758 8759 /* Check if task fits in the group */ 8760 if (sd->flags & SD_ASYM_CPUCAPACITY && 8761 !task_fits_capacity(p, group->sgc->max_capacity)) { 8762 sgs->group_misfit_task_load = 1; 8763 } 8764 8765 sgs->group_capacity = group->sgc->capacity; 8766 8767 sgs->group_weight = group->group_weight; 8768 8769 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 8770 8771 /* 8772 * Computing avg_load makes sense only when group is fully busy or 8773 * overloaded 8774 */ 8775 if (sgs->group_type == group_fully_busy || 8776 sgs->group_type == group_overloaded) 8777 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8778 sgs->group_capacity; 8779 } 8780 8781 static bool update_pick_idlest(struct sched_group *idlest, 8782 struct sg_lb_stats *idlest_sgs, 8783 struct sched_group *group, 8784 struct sg_lb_stats *sgs) 8785 { 8786 if (sgs->group_type < idlest_sgs->group_type) 8787 return true; 8788 8789 if (sgs->group_type > idlest_sgs->group_type) 8790 return false; 8791 8792 /* 8793 * The candidate and the current idlest group are the same type of 8794 * group. Let check which one is the idlest according to the type. 8795 */ 8796 8797 switch (sgs->group_type) { 8798 case group_overloaded: 8799 case group_fully_busy: 8800 /* Select the group with lowest avg_load. */ 8801 if (idlest_sgs->avg_load <= sgs->avg_load) 8802 return false; 8803 break; 8804 8805 case group_imbalanced: 8806 case group_asym_packing: 8807 /* Those types are not used in the slow wakeup path */ 8808 return false; 8809 8810 case group_misfit_task: 8811 /* Select group with the highest max capacity */ 8812 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 8813 return false; 8814 break; 8815 8816 case group_has_spare: 8817 /* Select group with most idle CPUs */ 8818 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 8819 return false; 8820 8821 /* Select group with lowest group_util */ 8822 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 8823 idlest_sgs->group_util <= sgs->group_util) 8824 return false; 8825 8826 break; 8827 } 8828 8829 return true; 8830 } 8831 8832 /* 8833 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain. 8834 * This is an approximation as the number of running tasks may not be 8835 * related to the number of busy CPUs due to sched_setaffinity. 8836 */ 8837 static inline bool allow_numa_imbalance(int dst_running, int dst_weight) 8838 { 8839 return (dst_running < (dst_weight >> 2)); 8840 } 8841 8842 /* 8843 * find_idlest_group() finds and returns the least busy CPU group within the 8844 * domain. 8845 * 8846 * Assumes p is allowed on at least one CPU in sd. 8847 */ 8848 static struct sched_group * 8849 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 8850 { 8851 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 8852 struct sg_lb_stats local_sgs, tmp_sgs; 8853 struct sg_lb_stats *sgs; 8854 unsigned long imbalance; 8855 struct sg_lb_stats idlest_sgs = { 8856 .avg_load = UINT_MAX, 8857 .group_type = group_overloaded, 8858 }; 8859 8860 do { 8861 int local_group; 8862 8863 /* Skip over this group if it has no CPUs allowed */ 8864 if (!cpumask_intersects(sched_group_span(group), 8865 p->cpus_ptr)) 8866 continue; 8867 8868 local_group = cpumask_test_cpu(this_cpu, 8869 sched_group_span(group)); 8870 8871 if (local_group) { 8872 sgs = &local_sgs; 8873 local = group; 8874 } else { 8875 sgs = &tmp_sgs; 8876 } 8877 8878 update_sg_wakeup_stats(sd, group, sgs, p); 8879 8880 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 8881 idlest = group; 8882 idlest_sgs = *sgs; 8883 } 8884 8885 } while (group = group->next, group != sd->groups); 8886 8887 8888 /* There is no idlest group to push tasks to */ 8889 if (!idlest) 8890 return NULL; 8891 8892 /* The local group has been skipped because of CPU affinity */ 8893 if (!local) 8894 return idlest; 8895 8896 /* 8897 * If the local group is idler than the selected idlest group 8898 * don't try and push the task. 8899 */ 8900 if (local_sgs.group_type < idlest_sgs.group_type) 8901 return NULL; 8902 8903 /* 8904 * If the local group is busier than the selected idlest group 8905 * try and push the task. 8906 */ 8907 if (local_sgs.group_type > idlest_sgs.group_type) 8908 return idlest; 8909 8910 switch (local_sgs.group_type) { 8911 case group_overloaded: 8912 case group_fully_busy: 8913 8914 /* Calculate allowed imbalance based on load */ 8915 imbalance = scale_load_down(NICE_0_LOAD) * 8916 (sd->imbalance_pct-100) / 100; 8917 8918 /* 8919 * When comparing groups across NUMA domains, it's possible for 8920 * the local domain to be very lightly loaded relative to the 8921 * remote domains but "imbalance" skews the comparison making 8922 * remote CPUs look much more favourable. When considering 8923 * cross-domain, add imbalance to the load on the remote node 8924 * and consider staying local. 8925 */ 8926 8927 if ((sd->flags & SD_NUMA) && 8928 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 8929 return NULL; 8930 8931 /* 8932 * If the local group is less loaded than the selected 8933 * idlest group don't try and push any tasks. 8934 */ 8935 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 8936 return NULL; 8937 8938 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 8939 return NULL; 8940 break; 8941 8942 case group_imbalanced: 8943 case group_asym_packing: 8944 /* Those type are not used in the slow wakeup path */ 8945 return NULL; 8946 8947 case group_misfit_task: 8948 /* Select group with the highest max capacity */ 8949 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 8950 return NULL; 8951 break; 8952 8953 case group_has_spare: 8954 if (sd->flags & SD_NUMA) { 8955 #ifdef CONFIG_NUMA_BALANCING 8956 int idlest_cpu; 8957 /* 8958 * If there is spare capacity at NUMA, try to select 8959 * the preferred node 8960 */ 8961 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 8962 return NULL; 8963 8964 idlest_cpu = cpumask_first(sched_group_span(idlest)); 8965 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 8966 return idlest; 8967 #endif 8968 /* 8969 * Otherwise, keep the task on this node to stay close 8970 * its wakeup source and improve locality. If there is 8971 * a real need of migration, periodic load balance will 8972 * take care of it. 8973 */ 8974 if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight)) 8975 return NULL; 8976 } 8977 8978 /* 8979 * Select group with highest number of idle CPUs. We could also 8980 * compare the utilization which is more stable but it can end 8981 * up that the group has less spare capacity but finally more 8982 * idle CPUs which means more opportunity to run task. 8983 */ 8984 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 8985 return NULL; 8986 break; 8987 } 8988 8989 return idlest; 8990 } 8991 8992 /** 8993 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 8994 * @env: The load balancing environment. 8995 * @sds: variable to hold the statistics for this sched_domain. 8996 */ 8997 8998 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 8999 { 9000 struct sched_domain *child = env->sd->child; 9001 struct sched_group *sg = env->sd->groups; 9002 struct sg_lb_stats *local = &sds->local_stat; 9003 struct sg_lb_stats tmp_sgs; 9004 int sg_status = 0; 9005 9006 do { 9007 struct sg_lb_stats *sgs = &tmp_sgs; 9008 int local_group; 9009 9010 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 9011 if (local_group) { 9012 sds->local = sg; 9013 sgs = local; 9014 9015 if (env->idle != CPU_NEWLY_IDLE || 9016 time_after_eq(jiffies, sg->sgc->next_update)) 9017 update_group_capacity(env->sd, env->dst_cpu); 9018 } 9019 9020 update_sg_lb_stats(env, sg, sgs, &sg_status); 9021 9022 if (local_group) 9023 goto next_group; 9024 9025 9026 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 9027 sds->busiest = sg; 9028 sds->busiest_stat = *sgs; 9029 } 9030 9031 next_group: 9032 /* Now, start updating sd_lb_stats */ 9033 sds->total_load += sgs->group_load; 9034 sds->total_capacity += sgs->group_capacity; 9035 9036 sg = sg->next; 9037 } while (sg != env->sd->groups); 9038 9039 /* Tag domain that child domain prefers tasks go to siblings first */ 9040 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 9041 9042 9043 if (env->sd->flags & SD_NUMA) 9044 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 9045 9046 if (!env->sd->parent) { 9047 struct root_domain *rd = env->dst_rq->rd; 9048 9049 /* update overload indicator if we are at root domain */ 9050 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 9051 9052 /* Update over-utilization (tipping point, U >= 0) indicator */ 9053 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 9054 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 9055 } else if (sg_status & SG_OVERUTILIZED) { 9056 struct root_domain *rd = env->dst_rq->rd; 9057 9058 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 9059 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 9060 } 9061 } 9062 9063 #define NUMA_IMBALANCE_MIN 2 9064 9065 static inline long adjust_numa_imbalance(int imbalance, 9066 int dst_running, int dst_weight) 9067 { 9068 if (!allow_numa_imbalance(dst_running, dst_weight)) 9069 return imbalance; 9070 9071 /* 9072 * Allow a small imbalance based on a simple pair of communicating 9073 * tasks that remain local when the destination is lightly loaded. 9074 */ 9075 if (imbalance <= NUMA_IMBALANCE_MIN) 9076 return 0; 9077 9078 return imbalance; 9079 } 9080 9081 /** 9082 * calculate_imbalance - Calculate the amount of imbalance present within the 9083 * groups of a given sched_domain during load balance. 9084 * @env: load balance environment 9085 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 9086 */ 9087 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 9088 { 9089 struct sg_lb_stats *local, *busiest; 9090 9091 local = &sds->local_stat; 9092 busiest = &sds->busiest_stat; 9093 9094 if (busiest->group_type == group_misfit_task) { 9095 /* Set imbalance to allow misfit tasks to be balanced. */ 9096 env->migration_type = migrate_misfit; 9097 env->imbalance = 1; 9098 return; 9099 } 9100 9101 if (busiest->group_type == group_asym_packing) { 9102 /* 9103 * In case of asym capacity, we will try to migrate all load to 9104 * the preferred CPU. 9105 */ 9106 env->migration_type = migrate_task; 9107 env->imbalance = busiest->sum_h_nr_running; 9108 return; 9109 } 9110 9111 if (busiest->group_type == group_imbalanced) { 9112 /* 9113 * In the group_imb case we cannot rely on group-wide averages 9114 * to ensure CPU-load equilibrium, try to move any task to fix 9115 * the imbalance. The next load balance will take care of 9116 * balancing back the system. 9117 */ 9118 env->migration_type = migrate_task; 9119 env->imbalance = 1; 9120 return; 9121 } 9122 9123 /* 9124 * Try to use spare capacity of local group without overloading it or 9125 * emptying busiest. 9126 */ 9127 if (local->group_type == group_has_spare) { 9128 if ((busiest->group_type > group_fully_busy) && 9129 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 9130 /* 9131 * If busiest is overloaded, try to fill spare 9132 * capacity. This might end up creating spare capacity 9133 * in busiest or busiest still being overloaded but 9134 * there is no simple way to directly compute the 9135 * amount of load to migrate in order to balance the 9136 * system. 9137 */ 9138 env->migration_type = migrate_util; 9139 env->imbalance = max(local->group_capacity, local->group_util) - 9140 local->group_util; 9141 9142 /* 9143 * In some cases, the group's utilization is max or even 9144 * higher than capacity because of migrations but the 9145 * local CPU is (newly) idle. There is at least one 9146 * waiting task in this overloaded busiest group. Let's 9147 * try to pull it. 9148 */ 9149 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 9150 env->migration_type = migrate_task; 9151 env->imbalance = 1; 9152 } 9153 9154 return; 9155 } 9156 9157 if (busiest->group_weight == 1 || sds->prefer_sibling) { 9158 unsigned int nr_diff = busiest->sum_nr_running; 9159 /* 9160 * When prefer sibling, evenly spread running tasks on 9161 * groups. 9162 */ 9163 env->migration_type = migrate_task; 9164 lsub_positive(&nr_diff, local->sum_nr_running); 9165 env->imbalance = nr_diff >> 1; 9166 } else { 9167 9168 /* 9169 * If there is no overload, we just want to even the number of 9170 * idle cpus. 9171 */ 9172 env->migration_type = migrate_task; 9173 env->imbalance = max_t(long, 0, (local->idle_cpus - 9174 busiest->idle_cpus) >> 1); 9175 } 9176 9177 /* Consider allowing a small imbalance between NUMA groups */ 9178 if (env->sd->flags & SD_NUMA) { 9179 env->imbalance = adjust_numa_imbalance(env->imbalance, 9180 busiest->sum_nr_running, busiest->group_weight); 9181 } 9182 9183 return; 9184 } 9185 9186 /* 9187 * Local is fully busy but has to take more load to relieve the 9188 * busiest group 9189 */ 9190 if (local->group_type < group_overloaded) { 9191 /* 9192 * Local will become overloaded so the avg_load metrics are 9193 * finally needed. 9194 */ 9195 9196 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 9197 local->group_capacity; 9198 9199 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 9200 sds->total_capacity; 9201 /* 9202 * If the local group is more loaded than the selected 9203 * busiest group don't try to pull any tasks. 9204 */ 9205 if (local->avg_load >= busiest->avg_load) { 9206 env->imbalance = 0; 9207 return; 9208 } 9209 } 9210 9211 /* 9212 * Both group are or will become overloaded and we're trying to get all 9213 * the CPUs to the average_load, so we don't want to push ourselves 9214 * above the average load, nor do we wish to reduce the max loaded CPU 9215 * below the average load. At the same time, we also don't want to 9216 * reduce the group load below the group capacity. Thus we look for 9217 * the minimum possible imbalance. 9218 */ 9219 env->migration_type = migrate_load; 9220 env->imbalance = min( 9221 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 9222 (sds->avg_load - local->avg_load) * local->group_capacity 9223 ) / SCHED_CAPACITY_SCALE; 9224 } 9225 9226 /******* find_busiest_group() helpers end here *********************/ 9227 9228 /* 9229 * Decision matrix according to the local and busiest group type: 9230 * 9231 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 9232 * has_spare nr_idle balanced N/A N/A balanced balanced 9233 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 9234 * misfit_task force N/A N/A N/A force force 9235 * asym_packing force force N/A N/A force force 9236 * imbalanced force force N/A N/A force force 9237 * overloaded force force N/A N/A force avg_load 9238 * 9239 * N/A : Not Applicable because already filtered while updating 9240 * statistics. 9241 * balanced : The system is balanced for these 2 groups. 9242 * force : Calculate the imbalance as load migration is probably needed. 9243 * avg_load : Only if imbalance is significant enough. 9244 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 9245 * different in groups. 9246 */ 9247 9248 /** 9249 * find_busiest_group - Returns the busiest group within the sched_domain 9250 * if there is an imbalance. 9251 * 9252 * Also calculates the amount of runnable load which should be moved 9253 * to restore balance. 9254 * 9255 * @env: The load balancing environment. 9256 * 9257 * Return: - The busiest group if imbalance exists. 9258 */ 9259 static struct sched_group *find_busiest_group(struct lb_env *env) 9260 { 9261 struct sg_lb_stats *local, *busiest; 9262 struct sd_lb_stats sds; 9263 9264 init_sd_lb_stats(&sds); 9265 9266 /* 9267 * Compute the various statistics relevant for load balancing at 9268 * this level. 9269 */ 9270 update_sd_lb_stats(env, &sds); 9271 9272 if (sched_energy_enabled()) { 9273 struct root_domain *rd = env->dst_rq->rd; 9274 9275 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 9276 goto out_balanced; 9277 } 9278 9279 local = &sds.local_stat; 9280 busiest = &sds.busiest_stat; 9281 9282 /* There is no busy sibling group to pull tasks from */ 9283 if (!sds.busiest) 9284 goto out_balanced; 9285 9286 /* Misfit tasks should be dealt with regardless of the avg load */ 9287 if (busiest->group_type == group_misfit_task) 9288 goto force_balance; 9289 9290 /* ASYM feature bypasses nice load balance check */ 9291 if (busiest->group_type == group_asym_packing) 9292 goto force_balance; 9293 9294 /* 9295 * If the busiest group is imbalanced the below checks don't 9296 * work because they assume all things are equal, which typically 9297 * isn't true due to cpus_ptr constraints and the like. 9298 */ 9299 if (busiest->group_type == group_imbalanced) 9300 goto force_balance; 9301 9302 /* 9303 * If the local group is busier than the selected busiest group 9304 * don't try and pull any tasks. 9305 */ 9306 if (local->group_type > busiest->group_type) 9307 goto out_balanced; 9308 9309 /* 9310 * When groups are overloaded, use the avg_load to ensure fairness 9311 * between tasks. 9312 */ 9313 if (local->group_type == group_overloaded) { 9314 /* 9315 * If the local group is more loaded than the selected 9316 * busiest group don't try to pull any tasks. 9317 */ 9318 if (local->avg_load >= busiest->avg_load) 9319 goto out_balanced; 9320 9321 /* XXX broken for overlapping NUMA groups */ 9322 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 9323 sds.total_capacity; 9324 9325 /* 9326 * Don't pull any tasks if this group is already above the 9327 * domain average load. 9328 */ 9329 if (local->avg_load >= sds.avg_load) 9330 goto out_balanced; 9331 9332 /* 9333 * If the busiest group is more loaded, use imbalance_pct to be 9334 * conservative. 9335 */ 9336 if (100 * busiest->avg_load <= 9337 env->sd->imbalance_pct * local->avg_load) 9338 goto out_balanced; 9339 } 9340 9341 /* Try to move all excess tasks to child's sibling domain */ 9342 if (sds.prefer_sibling && local->group_type == group_has_spare && 9343 busiest->sum_nr_running > local->sum_nr_running + 1) 9344 goto force_balance; 9345 9346 if (busiest->group_type != group_overloaded) { 9347 if (env->idle == CPU_NOT_IDLE) 9348 /* 9349 * If the busiest group is not overloaded (and as a 9350 * result the local one too) but this CPU is already 9351 * busy, let another idle CPU try to pull task. 9352 */ 9353 goto out_balanced; 9354 9355 if (busiest->group_weight > 1 && 9356 local->idle_cpus <= (busiest->idle_cpus + 1)) 9357 /* 9358 * If the busiest group is not overloaded 9359 * and there is no imbalance between this and busiest 9360 * group wrt idle CPUs, it is balanced. The imbalance 9361 * becomes significant if the diff is greater than 1 9362 * otherwise we might end up to just move the imbalance 9363 * on another group. Of course this applies only if 9364 * there is more than 1 CPU per group. 9365 */ 9366 goto out_balanced; 9367 9368 if (busiest->sum_h_nr_running == 1) 9369 /* 9370 * busiest doesn't have any tasks waiting to run 9371 */ 9372 goto out_balanced; 9373 } 9374 9375 force_balance: 9376 /* Looks like there is an imbalance. Compute it */ 9377 calculate_imbalance(env, &sds); 9378 return env->imbalance ? sds.busiest : NULL; 9379 9380 out_balanced: 9381 env->imbalance = 0; 9382 return NULL; 9383 } 9384 9385 /* 9386 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 9387 */ 9388 static struct rq *find_busiest_queue(struct lb_env *env, 9389 struct sched_group *group) 9390 { 9391 struct rq *busiest = NULL, *rq; 9392 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 9393 unsigned int busiest_nr = 0; 9394 int i; 9395 9396 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9397 unsigned long capacity, load, util; 9398 unsigned int nr_running; 9399 enum fbq_type rt; 9400 9401 rq = cpu_rq(i); 9402 rt = fbq_classify_rq(rq); 9403 9404 /* 9405 * We classify groups/runqueues into three groups: 9406 * - regular: there are !numa tasks 9407 * - remote: there are numa tasks that run on the 'wrong' node 9408 * - all: there is no distinction 9409 * 9410 * In order to avoid migrating ideally placed numa tasks, 9411 * ignore those when there's better options. 9412 * 9413 * If we ignore the actual busiest queue to migrate another 9414 * task, the next balance pass can still reduce the busiest 9415 * queue by moving tasks around inside the node. 9416 * 9417 * If we cannot move enough load due to this classification 9418 * the next pass will adjust the group classification and 9419 * allow migration of more tasks. 9420 * 9421 * Both cases only affect the total convergence complexity. 9422 */ 9423 if (rt > env->fbq_type) 9424 continue; 9425 9426 nr_running = rq->cfs.h_nr_running; 9427 if (!nr_running) 9428 continue; 9429 9430 capacity = capacity_of(i); 9431 9432 /* 9433 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 9434 * eventually lead to active_balancing high->low capacity. 9435 * Higher per-CPU capacity is considered better than balancing 9436 * average load. 9437 */ 9438 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 9439 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 9440 nr_running == 1) 9441 continue; 9442 9443 switch (env->migration_type) { 9444 case migrate_load: 9445 /* 9446 * When comparing with load imbalance, use cpu_load() 9447 * which is not scaled with the CPU capacity. 9448 */ 9449 load = cpu_load(rq); 9450 9451 if (nr_running == 1 && load > env->imbalance && 9452 !check_cpu_capacity(rq, env->sd)) 9453 break; 9454 9455 /* 9456 * For the load comparisons with the other CPUs, 9457 * consider the cpu_load() scaled with the CPU 9458 * capacity, so that the load can be moved away 9459 * from the CPU that is potentially running at a 9460 * lower capacity. 9461 * 9462 * Thus we're looking for max(load_i / capacity_i), 9463 * crosswise multiplication to rid ourselves of the 9464 * division works out to: 9465 * load_i * capacity_j > load_j * capacity_i; 9466 * where j is our previous maximum. 9467 */ 9468 if (load * busiest_capacity > busiest_load * capacity) { 9469 busiest_load = load; 9470 busiest_capacity = capacity; 9471 busiest = rq; 9472 } 9473 break; 9474 9475 case migrate_util: 9476 util = cpu_util(cpu_of(rq)); 9477 9478 /* 9479 * Don't try to pull utilization from a CPU with one 9480 * running task. Whatever its utilization, we will fail 9481 * detach the task. 9482 */ 9483 if (nr_running <= 1) 9484 continue; 9485 9486 if (busiest_util < util) { 9487 busiest_util = util; 9488 busiest = rq; 9489 } 9490 break; 9491 9492 case migrate_task: 9493 if (busiest_nr < nr_running) { 9494 busiest_nr = nr_running; 9495 busiest = rq; 9496 } 9497 break; 9498 9499 case migrate_misfit: 9500 /* 9501 * For ASYM_CPUCAPACITY domains with misfit tasks we 9502 * simply seek the "biggest" misfit task. 9503 */ 9504 if (rq->misfit_task_load > busiest_load) { 9505 busiest_load = rq->misfit_task_load; 9506 busiest = rq; 9507 } 9508 9509 break; 9510 9511 } 9512 } 9513 9514 return busiest; 9515 } 9516 9517 /* 9518 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 9519 * so long as it is large enough. 9520 */ 9521 #define MAX_PINNED_INTERVAL 512 9522 9523 static inline bool 9524 asym_active_balance(struct lb_env *env) 9525 { 9526 /* 9527 * ASYM_PACKING needs to force migrate tasks from busy but 9528 * lower priority CPUs in order to pack all tasks in the 9529 * highest priority CPUs. 9530 */ 9531 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 9532 sched_asym_prefer(env->dst_cpu, env->src_cpu); 9533 } 9534 9535 static inline bool 9536 imbalanced_active_balance(struct lb_env *env) 9537 { 9538 struct sched_domain *sd = env->sd; 9539 9540 /* 9541 * The imbalanced case includes the case of pinned tasks preventing a fair 9542 * distribution of the load on the system but also the even distribution of the 9543 * threads on a system with spare capacity 9544 */ 9545 if ((env->migration_type == migrate_task) && 9546 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 9547 return 1; 9548 9549 return 0; 9550 } 9551 9552 static int need_active_balance(struct lb_env *env) 9553 { 9554 struct sched_domain *sd = env->sd; 9555 9556 if (asym_active_balance(env)) 9557 return 1; 9558 9559 if (imbalanced_active_balance(env)) 9560 return 1; 9561 9562 /* 9563 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 9564 * It's worth migrating the task if the src_cpu's capacity is reduced 9565 * because of other sched_class or IRQs if more capacity stays 9566 * available on dst_cpu. 9567 */ 9568 if ((env->idle != CPU_NOT_IDLE) && 9569 (env->src_rq->cfs.h_nr_running == 1)) { 9570 if ((check_cpu_capacity(env->src_rq, sd)) && 9571 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 9572 return 1; 9573 } 9574 9575 if (env->migration_type == migrate_misfit) 9576 return 1; 9577 9578 return 0; 9579 } 9580 9581 static int active_load_balance_cpu_stop(void *data); 9582 9583 static int should_we_balance(struct lb_env *env) 9584 { 9585 struct sched_group *sg = env->sd->groups; 9586 int cpu; 9587 9588 /* 9589 * Ensure the balancing environment is consistent; can happen 9590 * when the softirq triggers 'during' hotplug. 9591 */ 9592 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 9593 return 0; 9594 9595 /* 9596 * In the newly idle case, we will allow all the CPUs 9597 * to do the newly idle load balance. 9598 */ 9599 if (env->idle == CPU_NEWLY_IDLE) 9600 return 1; 9601 9602 /* Try to find first idle CPU */ 9603 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 9604 if (!idle_cpu(cpu)) 9605 continue; 9606 9607 /* Are we the first idle CPU? */ 9608 return cpu == env->dst_cpu; 9609 } 9610 9611 /* Are we the first CPU of this group ? */ 9612 return group_balance_cpu(sg) == env->dst_cpu; 9613 } 9614 9615 /* 9616 * Check this_cpu to ensure it is balanced within domain. Attempt to move 9617 * tasks if there is an imbalance. 9618 */ 9619 static int load_balance(int this_cpu, struct rq *this_rq, 9620 struct sched_domain *sd, enum cpu_idle_type idle, 9621 int *continue_balancing) 9622 { 9623 int ld_moved, cur_ld_moved, active_balance = 0; 9624 struct sched_domain *sd_parent = sd->parent; 9625 struct sched_group *group; 9626 struct rq *busiest; 9627 struct rq_flags rf; 9628 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 9629 9630 struct lb_env env = { 9631 .sd = sd, 9632 .dst_cpu = this_cpu, 9633 .dst_rq = this_rq, 9634 .dst_grpmask = sched_group_span(sd->groups), 9635 .idle = idle, 9636 .loop_break = sched_nr_migrate_break, 9637 .cpus = cpus, 9638 .fbq_type = all, 9639 .tasks = LIST_HEAD_INIT(env.tasks), 9640 }; 9641 9642 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 9643 9644 schedstat_inc(sd->lb_count[idle]); 9645 9646 redo: 9647 if (!should_we_balance(&env)) { 9648 *continue_balancing = 0; 9649 goto out_balanced; 9650 } 9651 9652 group = find_busiest_group(&env); 9653 if (!group) { 9654 schedstat_inc(sd->lb_nobusyg[idle]); 9655 goto out_balanced; 9656 } 9657 9658 busiest = find_busiest_queue(&env, group); 9659 if (!busiest) { 9660 schedstat_inc(sd->lb_nobusyq[idle]); 9661 goto out_balanced; 9662 } 9663 9664 BUG_ON(busiest == env.dst_rq); 9665 9666 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 9667 9668 env.src_cpu = busiest->cpu; 9669 env.src_rq = busiest; 9670 9671 ld_moved = 0; 9672 /* Clear this flag as soon as we find a pullable task */ 9673 env.flags |= LBF_ALL_PINNED; 9674 if (busiest->nr_running > 1) { 9675 /* 9676 * Attempt to move tasks. If find_busiest_group has found 9677 * an imbalance but busiest->nr_running <= 1, the group is 9678 * still unbalanced. ld_moved simply stays zero, so it is 9679 * correctly treated as an imbalance. 9680 */ 9681 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 9682 9683 more_balance: 9684 rq_lock_irqsave(busiest, &rf); 9685 update_rq_clock(busiest); 9686 9687 /* 9688 * cur_ld_moved - load moved in current iteration 9689 * ld_moved - cumulative load moved across iterations 9690 */ 9691 cur_ld_moved = detach_tasks(&env); 9692 9693 /* 9694 * We've detached some tasks from busiest_rq. Every 9695 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 9696 * unlock busiest->lock, and we are able to be sure 9697 * that nobody can manipulate the tasks in parallel. 9698 * See task_rq_lock() family for the details. 9699 */ 9700 9701 rq_unlock(busiest, &rf); 9702 9703 if (cur_ld_moved) { 9704 attach_tasks(&env); 9705 ld_moved += cur_ld_moved; 9706 } 9707 9708 local_irq_restore(rf.flags); 9709 9710 if (env.flags & LBF_NEED_BREAK) { 9711 env.flags &= ~LBF_NEED_BREAK; 9712 goto more_balance; 9713 } 9714 9715 /* 9716 * Revisit (affine) tasks on src_cpu that couldn't be moved to 9717 * us and move them to an alternate dst_cpu in our sched_group 9718 * where they can run. The upper limit on how many times we 9719 * iterate on same src_cpu is dependent on number of CPUs in our 9720 * sched_group. 9721 * 9722 * This changes load balance semantics a bit on who can move 9723 * load to a given_cpu. In addition to the given_cpu itself 9724 * (or a ilb_cpu acting on its behalf where given_cpu is 9725 * nohz-idle), we now have balance_cpu in a position to move 9726 * load to given_cpu. In rare situations, this may cause 9727 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 9728 * _independently_ and at _same_ time to move some load to 9729 * given_cpu) causing excess load to be moved to given_cpu. 9730 * This however should not happen so much in practice and 9731 * moreover subsequent load balance cycles should correct the 9732 * excess load moved. 9733 */ 9734 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 9735 9736 /* Prevent to re-select dst_cpu via env's CPUs */ 9737 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 9738 9739 env.dst_rq = cpu_rq(env.new_dst_cpu); 9740 env.dst_cpu = env.new_dst_cpu; 9741 env.flags &= ~LBF_DST_PINNED; 9742 env.loop = 0; 9743 env.loop_break = sched_nr_migrate_break; 9744 9745 /* 9746 * Go back to "more_balance" rather than "redo" since we 9747 * need to continue with same src_cpu. 9748 */ 9749 goto more_balance; 9750 } 9751 9752 /* 9753 * We failed to reach balance because of affinity. 9754 */ 9755 if (sd_parent) { 9756 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9757 9758 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 9759 *group_imbalance = 1; 9760 } 9761 9762 /* All tasks on this runqueue were pinned by CPU affinity */ 9763 if (unlikely(env.flags & LBF_ALL_PINNED)) { 9764 __cpumask_clear_cpu(cpu_of(busiest), cpus); 9765 /* 9766 * Attempting to continue load balancing at the current 9767 * sched_domain level only makes sense if there are 9768 * active CPUs remaining as possible busiest CPUs to 9769 * pull load from which are not contained within the 9770 * destination group that is receiving any migrated 9771 * load. 9772 */ 9773 if (!cpumask_subset(cpus, env.dst_grpmask)) { 9774 env.loop = 0; 9775 env.loop_break = sched_nr_migrate_break; 9776 goto redo; 9777 } 9778 goto out_all_pinned; 9779 } 9780 } 9781 9782 if (!ld_moved) { 9783 schedstat_inc(sd->lb_failed[idle]); 9784 /* 9785 * Increment the failure counter only on periodic balance. 9786 * We do not want newidle balance, which can be very 9787 * frequent, pollute the failure counter causing 9788 * excessive cache_hot migrations and active balances. 9789 */ 9790 if (idle != CPU_NEWLY_IDLE) 9791 sd->nr_balance_failed++; 9792 9793 if (need_active_balance(&env)) { 9794 unsigned long flags; 9795 9796 raw_spin_lock_irqsave(&busiest->lock, flags); 9797 9798 /* 9799 * Don't kick the active_load_balance_cpu_stop, 9800 * if the curr task on busiest CPU can't be 9801 * moved to this_cpu: 9802 */ 9803 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 9804 raw_spin_unlock_irqrestore(&busiest->lock, 9805 flags); 9806 goto out_one_pinned; 9807 } 9808 9809 /* Record that we found at least one task that could run on this_cpu */ 9810 env.flags &= ~LBF_ALL_PINNED; 9811 9812 /* 9813 * ->active_balance synchronizes accesses to 9814 * ->active_balance_work. Once set, it's cleared 9815 * only after active load balance is finished. 9816 */ 9817 if (!busiest->active_balance) { 9818 busiest->active_balance = 1; 9819 busiest->push_cpu = this_cpu; 9820 active_balance = 1; 9821 } 9822 raw_spin_unlock_irqrestore(&busiest->lock, flags); 9823 9824 if (active_balance) { 9825 stop_one_cpu_nowait(cpu_of(busiest), 9826 active_load_balance_cpu_stop, busiest, 9827 &busiest->active_balance_work); 9828 } 9829 } 9830 } else { 9831 sd->nr_balance_failed = 0; 9832 } 9833 9834 if (likely(!active_balance) || need_active_balance(&env)) { 9835 /* We were unbalanced, so reset the balancing interval */ 9836 sd->balance_interval = sd->min_interval; 9837 } 9838 9839 goto out; 9840 9841 out_balanced: 9842 /* 9843 * We reach balance although we may have faced some affinity 9844 * constraints. Clear the imbalance flag only if other tasks got 9845 * a chance to move and fix the imbalance. 9846 */ 9847 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 9848 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9849 9850 if (*group_imbalance) 9851 *group_imbalance = 0; 9852 } 9853 9854 out_all_pinned: 9855 /* 9856 * We reach balance because all tasks are pinned at this level so 9857 * we can't migrate them. Let the imbalance flag set so parent level 9858 * can try to migrate them. 9859 */ 9860 schedstat_inc(sd->lb_balanced[idle]); 9861 9862 sd->nr_balance_failed = 0; 9863 9864 out_one_pinned: 9865 ld_moved = 0; 9866 9867 /* 9868 * newidle_balance() disregards balance intervals, so we could 9869 * repeatedly reach this code, which would lead to balance_interval 9870 * skyrocketing in a short amount of time. Skip the balance_interval 9871 * increase logic to avoid that. 9872 */ 9873 if (env.idle == CPU_NEWLY_IDLE) 9874 goto out; 9875 9876 /* tune up the balancing interval */ 9877 if ((env.flags & LBF_ALL_PINNED && 9878 sd->balance_interval < MAX_PINNED_INTERVAL) || 9879 sd->balance_interval < sd->max_interval) 9880 sd->balance_interval *= 2; 9881 out: 9882 return ld_moved; 9883 } 9884 9885 static inline unsigned long 9886 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 9887 { 9888 unsigned long interval = sd->balance_interval; 9889 9890 if (cpu_busy) 9891 interval *= sd->busy_factor; 9892 9893 /* scale ms to jiffies */ 9894 interval = msecs_to_jiffies(interval); 9895 9896 /* 9897 * Reduce likelihood of busy balancing at higher domains racing with 9898 * balancing at lower domains by preventing their balancing periods 9899 * from being multiples of each other. 9900 */ 9901 if (cpu_busy) 9902 interval -= 1; 9903 9904 interval = clamp(interval, 1UL, max_load_balance_interval); 9905 9906 return interval; 9907 } 9908 9909 static inline void 9910 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 9911 { 9912 unsigned long interval, next; 9913 9914 /* used by idle balance, so cpu_busy = 0 */ 9915 interval = get_sd_balance_interval(sd, 0); 9916 next = sd->last_balance + interval; 9917 9918 if (time_after(*next_balance, next)) 9919 *next_balance = next; 9920 } 9921 9922 /* 9923 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 9924 * running tasks off the busiest CPU onto idle CPUs. It requires at 9925 * least 1 task to be running on each physical CPU where possible, and 9926 * avoids physical / logical imbalances. 9927 */ 9928 static int active_load_balance_cpu_stop(void *data) 9929 { 9930 struct rq *busiest_rq = data; 9931 int busiest_cpu = cpu_of(busiest_rq); 9932 int target_cpu = busiest_rq->push_cpu; 9933 struct rq *target_rq = cpu_rq(target_cpu); 9934 struct sched_domain *sd; 9935 struct task_struct *p = NULL; 9936 struct rq_flags rf; 9937 9938 rq_lock_irq(busiest_rq, &rf); 9939 /* 9940 * Between queueing the stop-work and running it is a hole in which 9941 * CPUs can become inactive. We should not move tasks from or to 9942 * inactive CPUs. 9943 */ 9944 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 9945 goto out_unlock; 9946 9947 /* Make sure the requested CPU hasn't gone down in the meantime: */ 9948 if (unlikely(busiest_cpu != smp_processor_id() || 9949 !busiest_rq->active_balance)) 9950 goto out_unlock; 9951 9952 /* Is there any task to move? */ 9953 if (busiest_rq->nr_running <= 1) 9954 goto out_unlock; 9955 9956 /* 9957 * This condition is "impossible", if it occurs 9958 * we need to fix it. Originally reported by 9959 * Bjorn Helgaas on a 128-CPU setup. 9960 */ 9961 BUG_ON(busiest_rq == target_rq); 9962 9963 /* Search for an sd spanning us and the target CPU. */ 9964 rcu_read_lock(); 9965 for_each_domain(target_cpu, sd) { 9966 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 9967 break; 9968 } 9969 9970 if (likely(sd)) { 9971 struct lb_env env = { 9972 .sd = sd, 9973 .dst_cpu = target_cpu, 9974 .dst_rq = target_rq, 9975 .src_cpu = busiest_rq->cpu, 9976 .src_rq = busiest_rq, 9977 .idle = CPU_IDLE, 9978 .flags = LBF_ACTIVE_LB, 9979 }; 9980 9981 schedstat_inc(sd->alb_count); 9982 update_rq_clock(busiest_rq); 9983 9984 p = detach_one_task(&env); 9985 if (p) { 9986 schedstat_inc(sd->alb_pushed); 9987 /* Active balancing done, reset the failure counter. */ 9988 sd->nr_balance_failed = 0; 9989 } else { 9990 schedstat_inc(sd->alb_failed); 9991 } 9992 } 9993 rcu_read_unlock(); 9994 out_unlock: 9995 busiest_rq->active_balance = 0; 9996 rq_unlock(busiest_rq, &rf); 9997 9998 if (p) 9999 attach_one_task(target_rq, p); 10000 10001 local_irq_enable(); 10002 10003 return 0; 10004 } 10005 10006 static DEFINE_SPINLOCK(balancing); 10007 10008 /* 10009 * Scale the max load_balance interval with the number of CPUs in the system. 10010 * This trades load-balance latency on larger machines for less cross talk. 10011 */ 10012 void update_max_interval(void) 10013 { 10014 max_load_balance_interval = HZ*num_online_cpus()/10; 10015 } 10016 10017 /* 10018 * It checks each scheduling domain to see if it is due to be balanced, 10019 * and initiates a balancing operation if so. 10020 * 10021 * Balancing parameters are set up in init_sched_domains. 10022 */ 10023 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 10024 { 10025 int continue_balancing = 1; 10026 int cpu = rq->cpu; 10027 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10028 unsigned long interval; 10029 struct sched_domain *sd; 10030 /* Earliest time when we have to do rebalance again */ 10031 unsigned long next_balance = jiffies + 60*HZ; 10032 int update_next_balance = 0; 10033 int need_serialize, need_decay = 0; 10034 u64 max_cost = 0; 10035 10036 rcu_read_lock(); 10037 for_each_domain(cpu, sd) { 10038 /* 10039 * Decay the newidle max times here because this is a regular 10040 * visit to all the domains. Decay ~1% per second. 10041 */ 10042 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 10043 sd->max_newidle_lb_cost = 10044 (sd->max_newidle_lb_cost * 253) / 256; 10045 sd->next_decay_max_lb_cost = jiffies + HZ; 10046 need_decay = 1; 10047 } 10048 max_cost += sd->max_newidle_lb_cost; 10049 10050 /* 10051 * Stop the load balance at this level. There is another 10052 * CPU in our sched group which is doing load balancing more 10053 * actively. 10054 */ 10055 if (!continue_balancing) { 10056 if (need_decay) 10057 continue; 10058 break; 10059 } 10060 10061 interval = get_sd_balance_interval(sd, busy); 10062 10063 need_serialize = sd->flags & SD_SERIALIZE; 10064 if (need_serialize) { 10065 if (!spin_trylock(&balancing)) 10066 goto out; 10067 } 10068 10069 if (time_after_eq(jiffies, sd->last_balance + interval)) { 10070 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 10071 /* 10072 * The LBF_DST_PINNED logic could have changed 10073 * env->dst_cpu, so we can't know our idle 10074 * state even if we migrated tasks. Update it. 10075 */ 10076 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 10077 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10078 } 10079 sd->last_balance = jiffies; 10080 interval = get_sd_balance_interval(sd, busy); 10081 } 10082 if (need_serialize) 10083 spin_unlock(&balancing); 10084 out: 10085 if (time_after(next_balance, sd->last_balance + interval)) { 10086 next_balance = sd->last_balance + interval; 10087 update_next_balance = 1; 10088 } 10089 } 10090 if (need_decay) { 10091 /* 10092 * Ensure the rq-wide value also decays but keep it at a 10093 * reasonable floor to avoid funnies with rq->avg_idle. 10094 */ 10095 rq->max_idle_balance_cost = 10096 max((u64)sysctl_sched_migration_cost, max_cost); 10097 } 10098 rcu_read_unlock(); 10099 10100 /* 10101 * next_balance will be updated only when there is a need. 10102 * When the cpu is attached to null domain for ex, it will not be 10103 * updated. 10104 */ 10105 if (likely(update_next_balance)) 10106 rq->next_balance = next_balance; 10107 10108 } 10109 10110 static inline int on_null_domain(struct rq *rq) 10111 { 10112 return unlikely(!rcu_dereference_sched(rq->sd)); 10113 } 10114 10115 #ifdef CONFIG_NO_HZ_COMMON 10116 /* 10117 * idle load balancing details 10118 * - When one of the busy CPUs notice that there may be an idle rebalancing 10119 * needed, they will kick the idle load balancer, which then does idle 10120 * load balancing for all the idle CPUs. 10121 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set 10122 * anywhere yet. 10123 */ 10124 10125 static inline int find_new_ilb(void) 10126 { 10127 int ilb; 10128 10129 for_each_cpu_and(ilb, nohz.idle_cpus_mask, 10130 housekeeping_cpumask(HK_FLAG_MISC)) { 10131 10132 if (ilb == smp_processor_id()) 10133 continue; 10134 10135 if (idle_cpu(ilb)) 10136 return ilb; 10137 } 10138 10139 return nr_cpu_ids; 10140 } 10141 10142 /* 10143 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 10144 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one). 10145 */ 10146 static void kick_ilb(unsigned int flags) 10147 { 10148 int ilb_cpu; 10149 10150 /* 10151 * Increase nohz.next_balance only when if full ilb is triggered but 10152 * not if we only update stats. 10153 */ 10154 if (flags & NOHZ_BALANCE_KICK) 10155 nohz.next_balance = jiffies+1; 10156 10157 ilb_cpu = find_new_ilb(); 10158 10159 if (ilb_cpu >= nr_cpu_ids) 10160 return; 10161 10162 /* 10163 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 10164 * the first flag owns it; cleared by nohz_csd_func(). 10165 */ 10166 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 10167 if (flags & NOHZ_KICK_MASK) 10168 return; 10169 10170 /* 10171 * This way we generate an IPI on the target CPU which 10172 * is idle. And the softirq performing nohz idle load balance 10173 * will be run before returning from the IPI. 10174 */ 10175 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 10176 } 10177 10178 /* 10179 * Current decision point for kicking the idle load balancer in the presence 10180 * of idle CPUs in the system. 10181 */ 10182 static void nohz_balancer_kick(struct rq *rq) 10183 { 10184 unsigned long now = jiffies; 10185 struct sched_domain_shared *sds; 10186 struct sched_domain *sd; 10187 int nr_busy, i, cpu = rq->cpu; 10188 unsigned int flags = 0; 10189 10190 if (unlikely(rq->idle_balance)) 10191 return; 10192 10193 /* 10194 * We may be recently in ticked or tickless idle mode. At the first 10195 * busy tick after returning from idle, we will update the busy stats. 10196 */ 10197 nohz_balance_exit_idle(rq); 10198 10199 /* 10200 * None are in tickless mode and hence no need for NOHZ idle load 10201 * balancing. 10202 */ 10203 if (likely(!atomic_read(&nohz.nr_cpus))) 10204 return; 10205 10206 if (READ_ONCE(nohz.has_blocked) && 10207 time_after(now, READ_ONCE(nohz.next_blocked))) 10208 flags = NOHZ_STATS_KICK; 10209 10210 if (time_before(now, nohz.next_balance)) 10211 goto out; 10212 10213 if (rq->nr_running >= 2) { 10214 flags = NOHZ_KICK_MASK; 10215 goto out; 10216 } 10217 10218 rcu_read_lock(); 10219 10220 sd = rcu_dereference(rq->sd); 10221 if (sd) { 10222 /* 10223 * If there's a CFS task and the current CPU has reduced 10224 * capacity; kick the ILB to see if there's a better CPU to run 10225 * on. 10226 */ 10227 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 10228 flags = NOHZ_KICK_MASK; 10229 goto unlock; 10230 } 10231 } 10232 10233 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 10234 if (sd) { 10235 /* 10236 * When ASYM_PACKING; see if there's a more preferred CPU 10237 * currently idle; in which case, kick the ILB to move tasks 10238 * around. 10239 */ 10240 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 10241 if (sched_asym_prefer(i, cpu)) { 10242 flags = NOHZ_KICK_MASK; 10243 goto unlock; 10244 } 10245 } 10246 } 10247 10248 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 10249 if (sd) { 10250 /* 10251 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 10252 * to run the misfit task on. 10253 */ 10254 if (check_misfit_status(rq, sd)) { 10255 flags = NOHZ_KICK_MASK; 10256 goto unlock; 10257 } 10258 10259 /* 10260 * For asymmetric systems, we do not want to nicely balance 10261 * cache use, instead we want to embrace asymmetry and only 10262 * ensure tasks have enough CPU capacity. 10263 * 10264 * Skip the LLC logic because it's not relevant in that case. 10265 */ 10266 goto unlock; 10267 } 10268 10269 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 10270 if (sds) { 10271 /* 10272 * If there is an imbalance between LLC domains (IOW we could 10273 * increase the overall cache use), we need some less-loaded LLC 10274 * domain to pull some load. Likewise, we may need to spread 10275 * load within the current LLC domain (e.g. packed SMT cores but 10276 * other CPUs are idle). We can't really know from here how busy 10277 * the others are - so just get a nohz balance going if it looks 10278 * like this LLC domain has tasks we could move. 10279 */ 10280 nr_busy = atomic_read(&sds->nr_busy_cpus); 10281 if (nr_busy > 1) { 10282 flags = NOHZ_KICK_MASK; 10283 goto unlock; 10284 } 10285 } 10286 unlock: 10287 rcu_read_unlock(); 10288 out: 10289 if (flags) 10290 kick_ilb(flags); 10291 } 10292 10293 static void set_cpu_sd_state_busy(int cpu) 10294 { 10295 struct sched_domain *sd; 10296 10297 rcu_read_lock(); 10298 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10299 10300 if (!sd || !sd->nohz_idle) 10301 goto unlock; 10302 sd->nohz_idle = 0; 10303 10304 atomic_inc(&sd->shared->nr_busy_cpus); 10305 unlock: 10306 rcu_read_unlock(); 10307 } 10308 10309 void nohz_balance_exit_idle(struct rq *rq) 10310 { 10311 SCHED_WARN_ON(rq != this_rq()); 10312 10313 if (likely(!rq->nohz_tick_stopped)) 10314 return; 10315 10316 rq->nohz_tick_stopped = 0; 10317 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 10318 atomic_dec(&nohz.nr_cpus); 10319 10320 set_cpu_sd_state_busy(rq->cpu); 10321 } 10322 10323 static void set_cpu_sd_state_idle(int cpu) 10324 { 10325 struct sched_domain *sd; 10326 10327 rcu_read_lock(); 10328 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10329 10330 if (!sd || sd->nohz_idle) 10331 goto unlock; 10332 sd->nohz_idle = 1; 10333 10334 atomic_dec(&sd->shared->nr_busy_cpus); 10335 unlock: 10336 rcu_read_unlock(); 10337 } 10338 10339 /* 10340 * This routine will record that the CPU is going idle with tick stopped. 10341 * This info will be used in performing idle load balancing in the future. 10342 */ 10343 void nohz_balance_enter_idle(int cpu) 10344 { 10345 struct rq *rq = cpu_rq(cpu); 10346 10347 SCHED_WARN_ON(cpu != smp_processor_id()); 10348 10349 /* If this CPU is going down, then nothing needs to be done: */ 10350 if (!cpu_active(cpu)) 10351 return; 10352 10353 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 10354 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 10355 return; 10356 10357 /* 10358 * Can be set safely without rq->lock held 10359 * If a clear happens, it will have evaluated last additions because 10360 * rq->lock is held during the check and the clear 10361 */ 10362 rq->has_blocked_load = 1; 10363 10364 /* 10365 * The tick is still stopped but load could have been added in the 10366 * meantime. We set the nohz.has_blocked flag to trig a check of the 10367 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 10368 * of nohz.has_blocked can only happen after checking the new load 10369 */ 10370 if (rq->nohz_tick_stopped) 10371 goto out; 10372 10373 /* If we're a completely isolated CPU, we don't play: */ 10374 if (on_null_domain(rq)) 10375 return; 10376 10377 rq->nohz_tick_stopped = 1; 10378 10379 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 10380 atomic_inc(&nohz.nr_cpus); 10381 10382 /* 10383 * Ensures that if nohz_idle_balance() fails to observe our 10384 * @idle_cpus_mask store, it must observe the @has_blocked 10385 * store. 10386 */ 10387 smp_mb__after_atomic(); 10388 10389 set_cpu_sd_state_idle(cpu); 10390 10391 out: 10392 /* 10393 * Each time a cpu enter idle, we assume that it has blocked load and 10394 * enable the periodic update of the load of idle cpus 10395 */ 10396 WRITE_ONCE(nohz.has_blocked, 1); 10397 } 10398 10399 static bool update_nohz_stats(struct rq *rq) 10400 { 10401 unsigned int cpu = rq->cpu; 10402 10403 if (!rq->has_blocked_load) 10404 return false; 10405 10406 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 10407 return false; 10408 10409 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 10410 return true; 10411 10412 update_blocked_averages(cpu); 10413 10414 return rq->has_blocked_load; 10415 } 10416 10417 /* 10418 * Internal function that runs load balance for all idle cpus. The load balance 10419 * can be a simple update of blocked load or a complete load balance with 10420 * tasks movement depending of flags. 10421 */ 10422 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 10423 enum cpu_idle_type idle) 10424 { 10425 /* Earliest time when we have to do rebalance again */ 10426 unsigned long now = jiffies; 10427 unsigned long next_balance = now + 60*HZ; 10428 bool has_blocked_load = false; 10429 int update_next_balance = 0; 10430 int this_cpu = this_rq->cpu; 10431 int balance_cpu; 10432 struct rq *rq; 10433 10434 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 10435 10436 /* 10437 * We assume there will be no idle load after this update and clear 10438 * the has_blocked flag. If a cpu enters idle in the mean time, it will 10439 * set the has_blocked flag and trig another update of idle load. 10440 * Because a cpu that becomes idle, is added to idle_cpus_mask before 10441 * setting the flag, we are sure to not clear the state and not 10442 * check the load of an idle cpu. 10443 */ 10444 WRITE_ONCE(nohz.has_blocked, 0); 10445 10446 /* 10447 * Ensures that if we miss the CPU, we must see the has_blocked 10448 * store from nohz_balance_enter_idle(). 10449 */ 10450 smp_mb(); 10451 10452 /* 10453 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 10454 * chance for other idle cpu to pull load. 10455 */ 10456 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 10457 if (!idle_cpu(balance_cpu)) 10458 continue; 10459 10460 /* 10461 * If this CPU gets work to do, stop the load balancing 10462 * work being done for other CPUs. Next load 10463 * balancing owner will pick it up. 10464 */ 10465 if (need_resched()) { 10466 has_blocked_load = true; 10467 goto abort; 10468 } 10469 10470 rq = cpu_rq(balance_cpu); 10471 10472 has_blocked_load |= update_nohz_stats(rq); 10473 10474 /* 10475 * If time for next balance is due, 10476 * do the balance. 10477 */ 10478 if (time_after_eq(jiffies, rq->next_balance)) { 10479 struct rq_flags rf; 10480 10481 rq_lock_irqsave(rq, &rf); 10482 update_rq_clock(rq); 10483 rq_unlock_irqrestore(rq, &rf); 10484 10485 if (flags & NOHZ_BALANCE_KICK) 10486 rebalance_domains(rq, CPU_IDLE); 10487 } 10488 10489 if (time_after(next_balance, rq->next_balance)) { 10490 next_balance = rq->next_balance; 10491 update_next_balance = 1; 10492 } 10493 } 10494 10495 /* 10496 * next_balance will be updated only when there is a need. 10497 * When the CPU is attached to null domain for ex, it will not be 10498 * updated. 10499 */ 10500 if (likely(update_next_balance)) 10501 nohz.next_balance = next_balance; 10502 10503 WRITE_ONCE(nohz.next_blocked, 10504 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 10505 10506 abort: 10507 /* There is still blocked load, enable periodic update */ 10508 if (has_blocked_load) 10509 WRITE_ONCE(nohz.has_blocked, 1); 10510 } 10511 10512 /* 10513 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 10514 * rebalancing for all the cpus for whom scheduler ticks are stopped. 10515 */ 10516 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10517 { 10518 unsigned int flags = this_rq->nohz_idle_balance; 10519 10520 if (!flags) 10521 return false; 10522 10523 this_rq->nohz_idle_balance = 0; 10524 10525 if (idle != CPU_IDLE) 10526 return false; 10527 10528 _nohz_idle_balance(this_rq, flags, idle); 10529 10530 return true; 10531 } 10532 10533 /* 10534 * Check if we need to run the ILB for updating blocked load before entering 10535 * idle state. 10536 */ 10537 void nohz_run_idle_balance(int cpu) 10538 { 10539 unsigned int flags; 10540 10541 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 10542 10543 /* 10544 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 10545 * (ie NOHZ_STATS_KICK set) and will do the same. 10546 */ 10547 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 10548 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE); 10549 } 10550 10551 static void nohz_newidle_balance(struct rq *this_rq) 10552 { 10553 int this_cpu = this_rq->cpu; 10554 10555 /* 10556 * This CPU doesn't want to be disturbed by scheduler 10557 * housekeeping 10558 */ 10559 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 10560 return; 10561 10562 /* Will wake up very soon. No time for doing anything else*/ 10563 if (this_rq->avg_idle < sysctl_sched_migration_cost) 10564 return; 10565 10566 /* Don't need to update blocked load of idle CPUs*/ 10567 if (!READ_ONCE(nohz.has_blocked) || 10568 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 10569 return; 10570 10571 /* 10572 * Set the need to trigger ILB in order to update blocked load 10573 * before entering idle state. 10574 */ 10575 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 10576 } 10577 10578 #else /* !CONFIG_NO_HZ_COMMON */ 10579 static inline void nohz_balancer_kick(struct rq *rq) { } 10580 10581 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10582 { 10583 return false; 10584 } 10585 10586 static inline void nohz_newidle_balance(struct rq *this_rq) { } 10587 #endif /* CONFIG_NO_HZ_COMMON */ 10588 10589 /* 10590 * newidle_balance is called by schedule() if this_cpu is about to become 10591 * idle. Attempts to pull tasks from other CPUs. 10592 * 10593 * Returns: 10594 * < 0 - we released the lock and there are !fair tasks present 10595 * 0 - failed, no new tasks 10596 * > 0 - success, new (fair) tasks present 10597 */ 10598 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 10599 { 10600 unsigned long next_balance = jiffies + HZ; 10601 int this_cpu = this_rq->cpu; 10602 struct sched_domain *sd; 10603 int pulled_task = 0; 10604 u64 curr_cost = 0; 10605 10606 update_misfit_status(NULL, this_rq); 10607 /* 10608 * We must set idle_stamp _before_ calling idle_balance(), such that we 10609 * measure the duration of idle_balance() as idle time. 10610 */ 10611 this_rq->idle_stamp = rq_clock(this_rq); 10612 10613 /* 10614 * Do not pull tasks towards !active CPUs... 10615 */ 10616 if (!cpu_active(this_cpu)) 10617 return 0; 10618 10619 /* 10620 * This is OK, because current is on_cpu, which avoids it being picked 10621 * for load-balance and preemption/IRQs are still disabled avoiding 10622 * further scheduler activity on it and we're being very careful to 10623 * re-start the picking loop. 10624 */ 10625 rq_unpin_lock(this_rq, rf); 10626 10627 if (this_rq->avg_idle < sysctl_sched_migration_cost || 10628 !READ_ONCE(this_rq->rd->overload)) { 10629 10630 rcu_read_lock(); 10631 sd = rcu_dereference_check_sched_domain(this_rq->sd); 10632 if (sd) 10633 update_next_balance(sd, &next_balance); 10634 rcu_read_unlock(); 10635 10636 goto out; 10637 } 10638 10639 raw_spin_unlock(&this_rq->lock); 10640 10641 update_blocked_averages(this_cpu); 10642 rcu_read_lock(); 10643 for_each_domain(this_cpu, sd) { 10644 int continue_balancing = 1; 10645 u64 t0, domain_cost; 10646 10647 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 10648 update_next_balance(sd, &next_balance); 10649 break; 10650 } 10651 10652 if (sd->flags & SD_BALANCE_NEWIDLE) { 10653 t0 = sched_clock_cpu(this_cpu); 10654 10655 pulled_task = load_balance(this_cpu, this_rq, 10656 sd, CPU_NEWLY_IDLE, 10657 &continue_balancing); 10658 10659 domain_cost = sched_clock_cpu(this_cpu) - t0; 10660 if (domain_cost > sd->max_newidle_lb_cost) 10661 sd->max_newidle_lb_cost = domain_cost; 10662 10663 curr_cost += domain_cost; 10664 } 10665 10666 update_next_balance(sd, &next_balance); 10667 10668 /* 10669 * Stop searching for tasks to pull if there are 10670 * now runnable tasks on this rq. 10671 */ 10672 if (pulled_task || this_rq->nr_running > 0) 10673 break; 10674 } 10675 rcu_read_unlock(); 10676 10677 raw_spin_lock(&this_rq->lock); 10678 10679 if (curr_cost > this_rq->max_idle_balance_cost) 10680 this_rq->max_idle_balance_cost = curr_cost; 10681 10682 /* 10683 * While browsing the domains, we released the rq lock, a task could 10684 * have been enqueued in the meantime. Since we're not going idle, 10685 * pretend we pulled a task. 10686 */ 10687 if (this_rq->cfs.h_nr_running && !pulled_task) 10688 pulled_task = 1; 10689 10690 /* Is there a task of a high priority class? */ 10691 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 10692 pulled_task = -1; 10693 10694 out: 10695 /* Move the next balance forward */ 10696 if (time_after(this_rq->next_balance, next_balance)) 10697 this_rq->next_balance = next_balance; 10698 10699 if (pulled_task) 10700 this_rq->idle_stamp = 0; 10701 else 10702 nohz_newidle_balance(this_rq); 10703 10704 rq_repin_lock(this_rq, rf); 10705 10706 return pulled_task; 10707 } 10708 10709 /* 10710 * run_rebalance_domains is triggered when needed from the scheduler tick. 10711 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 10712 */ 10713 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 10714 { 10715 struct rq *this_rq = this_rq(); 10716 enum cpu_idle_type idle = this_rq->idle_balance ? 10717 CPU_IDLE : CPU_NOT_IDLE; 10718 10719 /* 10720 * If this CPU has a pending nohz_balance_kick, then do the 10721 * balancing on behalf of the other idle CPUs whose ticks are 10722 * stopped. Do nohz_idle_balance *before* rebalance_domains to 10723 * give the idle CPUs a chance to load balance. Else we may 10724 * load balance only within the local sched_domain hierarchy 10725 * and abort nohz_idle_balance altogether if we pull some load. 10726 */ 10727 if (nohz_idle_balance(this_rq, idle)) 10728 return; 10729 10730 /* normal load balance */ 10731 update_blocked_averages(this_rq->cpu); 10732 rebalance_domains(this_rq, idle); 10733 } 10734 10735 /* 10736 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 10737 */ 10738 void trigger_load_balance(struct rq *rq) 10739 { 10740 /* 10741 * Don't need to rebalance while attached to NULL domain or 10742 * runqueue CPU is not active 10743 */ 10744 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 10745 return; 10746 10747 if (time_after_eq(jiffies, rq->next_balance)) 10748 raise_softirq(SCHED_SOFTIRQ); 10749 10750 nohz_balancer_kick(rq); 10751 } 10752 10753 static void rq_online_fair(struct rq *rq) 10754 { 10755 update_sysctl(); 10756 10757 update_runtime_enabled(rq); 10758 } 10759 10760 static void rq_offline_fair(struct rq *rq) 10761 { 10762 update_sysctl(); 10763 10764 /* Ensure any throttled groups are reachable by pick_next_task */ 10765 unthrottle_offline_cfs_rqs(rq); 10766 } 10767 10768 #endif /* CONFIG_SMP */ 10769 10770 /* 10771 * scheduler tick hitting a task of our scheduling class. 10772 * 10773 * NOTE: This function can be called remotely by the tick offload that 10774 * goes along full dynticks. Therefore no local assumption can be made 10775 * and everything must be accessed through the @rq and @curr passed in 10776 * parameters. 10777 */ 10778 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 10779 { 10780 struct cfs_rq *cfs_rq; 10781 struct sched_entity *se = &curr->se; 10782 10783 for_each_sched_entity(se) { 10784 cfs_rq = cfs_rq_of(se); 10785 entity_tick(cfs_rq, se, queued); 10786 } 10787 10788 if (static_branch_unlikely(&sched_numa_balancing)) 10789 task_tick_numa(rq, curr); 10790 10791 update_misfit_status(curr, rq); 10792 update_overutilized_status(task_rq(curr)); 10793 } 10794 10795 /* 10796 * called on fork with the child task as argument from the parent's context 10797 * - child not yet on the tasklist 10798 * - preemption disabled 10799 */ 10800 static void task_fork_fair(struct task_struct *p) 10801 { 10802 struct cfs_rq *cfs_rq; 10803 struct sched_entity *se = &p->se, *curr; 10804 struct rq *rq = this_rq(); 10805 struct rq_flags rf; 10806 10807 rq_lock(rq, &rf); 10808 update_rq_clock(rq); 10809 10810 cfs_rq = task_cfs_rq(current); 10811 curr = cfs_rq->curr; 10812 if (curr) { 10813 update_curr(cfs_rq); 10814 se->vruntime = curr->vruntime; 10815 } 10816 place_entity(cfs_rq, se, 1); 10817 10818 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 10819 /* 10820 * Upon rescheduling, sched_class::put_prev_task() will place 10821 * 'current' within the tree based on its new key value. 10822 */ 10823 swap(curr->vruntime, se->vruntime); 10824 resched_curr(rq); 10825 } 10826 10827 se->vruntime -= cfs_rq->min_vruntime; 10828 rq_unlock(rq, &rf); 10829 } 10830 10831 /* 10832 * Priority of the task has changed. Check to see if we preempt 10833 * the current task. 10834 */ 10835 static void 10836 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 10837 { 10838 if (!task_on_rq_queued(p)) 10839 return; 10840 10841 if (rq->cfs.nr_running == 1) 10842 return; 10843 10844 /* 10845 * Reschedule if we are currently running on this runqueue and 10846 * our priority decreased, or if we are not currently running on 10847 * this runqueue and our priority is higher than the current's 10848 */ 10849 if (task_current(rq, p)) { 10850 if (p->prio > oldprio) 10851 resched_curr(rq); 10852 } else 10853 check_preempt_curr(rq, p, 0); 10854 } 10855 10856 static inline bool vruntime_normalized(struct task_struct *p) 10857 { 10858 struct sched_entity *se = &p->se; 10859 10860 /* 10861 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 10862 * the dequeue_entity(.flags=0) will already have normalized the 10863 * vruntime. 10864 */ 10865 if (p->on_rq) 10866 return true; 10867 10868 /* 10869 * When !on_rq, vruntime of the task has usually NOT been normalized. 10870 * But there are some cases where it has already been normalized: 10871 * 10872 * - A forked child which is waiting for being woken up by 10873 * wake_up_new_task(). 10874 * - A task which has been woken up by try_to_wake_up() and 10875 * waiting for actually being woken up by sched_ttwu_pending(). 10876 */ 10877 if (!se->sum_exec_runtime || 10878 (p->state == TASK_WAKING && p->sched_remote_wakeup)) 10879 return true; 10880 10881 return false; 10882 } 10883 10884 #ifdef CONFIG_FAIR_GROUP_SCHED 10885 /* 10886 * Propagate the changes of the sched_entity across the tg tree to make it 10887 * visible to the root 10888 */ 10889 static void propagate_entity_cfs_rq(struct sched_entity *se) 10890 { 10891 struct cfs_rq *cfs_rq; 10892 10893 list_add_leaf_cfs_rq(cfs_rq_of(se)); 10894 10895 /* Start to propagate at parent */ 10896 se = se->parent; 10897 10898 for_each_sched_entity(se) { 10899 cfs_rq = cfs_rq_of(se); 10900 10901 if (!cfs_rq_throttled(cfs_rq)){ 10902 update_load_avg(cfs_rq, se, UPDATE_TG); 10903 list_add_leaf_cfs_rq(cfs_rq); 10904 continue; 10905 } 10906 10907 if (list_add_leaf_cfs_rq(cfs_rq)) 10908 break; 10909 } 10910 } 10911 #else 10912 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 10913 #endif 10914 10915 static void detach_entity_cfs_rq(struct sched_entity *se) 10916 { 10917 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10918 10919 /* Catch up with the cfs_rq and remove our load when we leave */ 10920 update_load_avg(cfs_rq, se, 0); 10921 detach_entity_load_avg(cfs_rq, se); 10922 update_tg_load_avg(cfs_rq); 10923 propagate_entity_cfs_rq(se); 10924 } 10925 10926 static void attach_entity_cfs_rq(struct sched_entity *se) 10927 { 10928 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10929 10930 #ifdef CONFIG_FAIR_GROUP_SCHED 10931 /* 10932 * Since the real-depth could have been changed (only FAIR 10933 * class maintain depth value), reset depth properly. 10934 */ 10935 se->depth = se->parent ? se->parent->depth + 1 : 0; 10936 #endif 10937 10938 /* Synchronize entity with its cfs_rq */ 10939 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 10940 attach_entity_load_avg(cfs_rq, se); 10941 update_tg_load_avg(cfs_rq); 10942 propagate_entity_cfs_rq(se); 10943 } 10944 10945 static void detach_task_cfs_rq(struct task_struct *p) 10946 { 10947 struct sched_entity *se = &p->se; 10948 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10949 10950 if (!vruntime_normalized(p)) { 10951 /* 10952 * Fix up our vruntime so that the current sleep doesn't 10953 * cause 'unlimited' sleep bonus. 10954 */ 10955 place_entity(cfs_rq, se, 0); 10956 se->vruntime -= cfs_rq->min_vruntime; 10957 } 10958 10959 detach_entity_cfs_rq(se); 10960 } 10961 10962 static void attach_task_cfs_rq(struct task_struct *p) 10963 { 10964 struct sched_entity *se = &p->se; 10965 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10966 10967 attach_entity_cfs_rq(se); 10968 10969 if (!vruntime_normalized(p)) 10970 se->vruntime += cfs_rq->min_vruntime; 10971 } 10972 10973 static void switched_from_fair(struct rq *rq, struct task_struct *p) 10974 { 10975 detach_task_cfs_rq(p); 10976 } 10977 10978 static void switched_to_fair(struct rq *rq, struct task_struct *p) 10979 { 10980 attach_task_cfs_rq(p); 10981 10982 if (task_on_rq_queued(p)) { 10983 /* 10984 * We were most likely switched from sched_rt, so 10985 * kick off the schedule if running, otherwise just see 10986 * if we can still preempt the current task. 10987 */ 10988 if (task_current(rq, p)) 10989 resched_curr(rq); 10990 else 10991 check_preempt_curr(rq, p, 0); 10992 } 10993 } 10994 10995 /* Account for a task changing its policy or group. 10996 * 10997 * This routine is mostly called to set cfs_rq->curr field when a task 10998 * migrates between groups/classes. 10999 */ 11000 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 11001 { 11002 struct sched_entity *se = &p->se; 11003 11004 #ifdef CONFIG_SMP 11005 if (task_on_rq_queued(p)) { 11006 /* 11007 * Move the next running task to the front of the list, so our 11008 * cfs_tasks list becomes MRU one. 11009 */ 11010 list_move(&se->group_node, &rq->cfs_tasks); 11011 } 11012 #endif 11013 11014 for_each_sched_entity(se) { 11015 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11016 11017 set_next_entity(cfs_rq, se); 11018 /* ensure bandwidth has been allocated on our new cfs_rq */ 11019 account_cfs_rq_runtime(cfs_rq, 0); 11020 } 11021 } 11022 11023 void init_cfs_rq(struct cfs_rq *cfs_rq) 11024 { 11025 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 11026 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 11027 #ifndef CONFIG_64BIT 11028 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 11029 #endif 11030 #ifdef CONFIG_SMP 11031 raw_spin_lock_init(&cfs_rq->removed.lock); 11032 #endif 11033 } 11034 11035 #ifdef CONFIG_FAIR_GROUP_SCHED 11036 static void task_set_group_fair(struct task_struct *p) 11037 { 11038 struct sched_entity *se = &p->se; 11039 11040 set_task_rq(p, task_cpu(p)); 11041 se->depth = se->parent ? se->parent->depth + 1 : 0; 11042 } 11043 11044 static void task_move_group_fair(struct task_struct *p) 11045 { 11046 detach_task_cfs_rq(p); 11047 set_task_rq(p, task_cpu(p)); 11048 11049 #ifdef CONFIG_SMP 11050 /* Tell se's cfs_rq has been changed -- migrated */ 11051 p->se.avg.last_update_time = 0; 11052 #endif 11053 attach_task_cfs_rq(p); 11054 } 11055 11056 static void task_change_group_fair(struct task_struct *p, int type) 11057 { 11058 switch (type) { 11059 case TASK_SET_GROUP: 11060 task_set_group_fair(p); 11061 break; 11062 11063 case TASK_MOVE_GROUP: 11064 task_move_group_fair(p); 11065 break; 11066 } 11067 } 11068 11069 void free_fair_sched_group(struct task_group *tg) 11070 { 11071 int i; 11072 11073 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11074 11075 for_each_possible_cpu(i) { 11076 if (tg->cfs_rq) 11077 kfree(tg->cfs_rq[i]); 11078 if (tg->se) 11079 kfree(tg->se[i]); 11080 } 11081 11082 kfree(tg->cfs_rq); 11083 kfree(tg->se); 11084 } 11085 11086 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11087 { 11088 struct sched_entity *se; 11089 struct cfs_rq *cfs_rq; 11090 int i; 11091 11092 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 11093 if (!tg->cfs_rq) 11094 goto err; 11095 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 11096 if (!tg->se) 11097 goto err; 11098 11099 tg->shares = NICE_0_LOAD; 11100 11101 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11102 11103 for_each_possible_cpu(i) { 11104 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 11105 GFP_KERNEL, cpu_to_node(i)); 11106 if (!cfs_rq) 11107 goto err; 11108 11109 se = kzalloc_node(sizeof(struct sched_entity), 11110 GFP_KERNEL, cpu_to_node(i)); 11111 if (!se) 11112 goto err_free_rq; 11113 11114 init_cfs_rq(cfs_rq); 11115 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 11116 init_entity_runnable_average(se); 11117 } 11118 11119 return 1; 11120 11121 err_free_rq: 11122 kfree(cfs_rq); 11123 err: 11124 return 0; 11125 } 11126 11127 void online_fair_sched_group(struct task_group *tg) 11128 { 11129 struct sched_entity *se; 11130 struct rq_flags rf; 11131 struct rq *rq; 11132 int i; 11133 11134 for_each_possible_cpu(i) { 11135 rq = cpu_rq(i); 11136 se = tg->se[i]; 11137 rq_lock_irq(rq, &rf); 11138 update_rq_clock(rq); 11139 attach_entity_cfs_rq(se); 11140 sync_throttle(tg, i); 11141 rq_unlock_irq(rq, &rf); 11142 } 11143 } 11144 11145 void unregister_fair_sched_group(struct task_group *tg) 11146 { 11147 unsigned long flags; 11148 struct rq *rq; 11149 int cpu; 11150 11151 for_each_possible_cpu(cpu) { 11152 if (tg->se[cpu]) 11153 remove_entity_load_avg(tg->se[cpu]); 11154 11155 /* 11156 * Only empty task groups can be destroyed; so we can speculatively 11157 * check on_list without danger of it being re-added. 11158 */ 11159 if (!tg->cfs_rq[cpu]->on_list) 11160 continue; 11161 11162 rq = cpu_rq(cpu); 11163 11164 raw_spin_lock_irqsave(&rq->lock, flags); 11165 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 11166 raw_spin_unlock_irqrestore(&rq->lock, flags); 11167 } 11168 } 11169 11170 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 11171 struct sched_entity *se, int cpu, 11172 struct sched_entity *parent) 11173 { 11174 struct rq *rq = cpu_rq(cpu); 11175 11176 cfs_rq->tg = tg; 11177 cfs_rq->rq = rq; 11178 init_cfs_rq_runtime(cfs_rq); 11179 11180 tg->cfs_rq[cpu] = cfs_rq; 11181 tg->se[cpu] = se; 11182 11183 /* se could be NULL for root_task_group */ 11184 if (!se) 11185 return; 11186 11187 if (!parent) { 11188 se->cfs_rq = &rq->cfs; 11189 se->depth = 0; 11190 } else { 11191 se->cfs_rq = parent->my_q; 11192 se->depth = parent->depth + 1; 11193 } 11194 11195 se->my_q = cfs_rq; 11196 /* guarantee group entities always have weight */ 11197 update_load_set(&se->load, NICE_0_LOAD); 11198 se->parent = parent; 11199 } 11200 11201 static DEFINE_MUTEX(shares_mutex); 11202 11203 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 11204 { 11205 int i; 11206 11207 /* 11208 * We can't change the weight of the root cgroup. 11209 */ 11210 if (!tg->se[0]) 11211 return -EINVAL; 11212 11213 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 11214 11215 mutex_lock(&shares_mutex); 11216 if (tg->shares == shares) 11217 goto done; 11218 11219 tg->shares = shares; 11220 for_each_possible_cpu(i) { 11221 struct rq *rq = cpu_rq(i); 11222 struct sched_entity *se = tg->se[i]; 11223 struct rq_flags rf; 11224 11225 /* Propagate contribution to hierarchy */ 11226 rq_lock_irqsave(rq, &rf); 11227 update_rq_clock(rq); 11228 for_each_sched_entity(se) { 11229 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 11230 update_cfs_group(se); 11231 } 11232 rq_unlock_irqrestore(rq, &rf); 11233 } 11234 11235 done: 11236 mutex_unlock(&shares_mutex); 11237 return 0; 11238 } 11239 #else /* CONFIG_FAIR_GROUP_SCHED */ 11240 11241 void free_fair_sched_group(struct task_group *tg) { } 11242 11243 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11244 { 11245 return 1; 11246 } 11247 11248 void online_fair_sched_group(struct task_group *tg) { } 11249 11250 void unregister_fair_sched_group(struct task_group *tg) { } 11251 11252 #endif /* CONFIG_FAIR_GROUP_SCHED */ 11253 11254 11255 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 11256 { 11257 struct sched_entity *se = &task->se; 11258 unsigned int rr_interval = 0; 11259 11260 /* 11261 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 11262 * idle runqueue: 11263 */ 11264 if (rq->cfs.load.weight) 11265 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 11266 11267 return rr_interval; 11268 } 11269 11270 /* 11271 * All the scheduling class methods: 11272 */ 11273 DEFINE_SCHED_CLASS(fair) = { 11274 11275 .enqueue_task = enqueue_task_fair, 11276 .dequeue_task = dequeue_task_fair, 11277 .yield_task = yield_task_fair, 11278 .yield_to_task = yield_to_task_fair, 11279 11280 .check_preempt_curr = check_preempt_wakeup, 11281 11282 .pick_next_task = __pick_next_task_fair, 11283 .put_prev_task = put_prev_task_fair, 11284 .set_next_task = set_next_task_fair, 11285 11286 #ifdef CONFIG_SMP 11287 .balance = balance_fair, 11288 .select_task_rq = select_task_rq_fair, 11289 .migrate_task_rq = migrate_task_rq_fair, 11290 11291 .rq_online = rq_online_fair, 11292 .rq_offline = rq_offline_fair, 11293 11294 .task_dead = task_dead_fair, 11295 .set_cpus_allowed = set_cpus_allowed_common, 11296 #endif 11297 11298 .task_tick = task_tick_fair, 11299 .task_fork = task_fork_fair, 11300 11301 .prio_changed = prio_changed_fair, 11302 .switched_from = switched_from_fair, 11303 .switched_to = switched_to_fair, 11304 11305 .get_rr_interval = get_rr_interval_fair, 11306 11307 .update_curr = update_curr_fair, 11308 11309 #ifdef CONFIG_FAIR_GROUP_SCHED 11310 .task_change_group = task_change_group_fair, 11311 #endif 11312 11313 #ifdef CONFIG_UCLAMP_TASK 11314 .uclamp_enabled = 1, 11315 #endif 11316 }; 11317 11318 #ifdef CONFIG_SCHED_DEBUG 11319 void print_cfs_stats(struct seq_file *m, int cpu) 11320 { 11321 struct cfs_rq *cfs_rq, *pos; 11322 11323 rcu_read_lock(); 11324 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 11325 print_cfs_rq(m, cpu, cfs_rq); 11326 rcu_read_unlock(); 11327 } 11328 11329 #ifdef CONFIG_NUMA_BALANCING 11330 void show_numa_stats(struct task_struct *p, struct seq_file *m) 11331 { 11332 int node; 11333 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 11334 struct numa_group *ng; 11335 11336 rcu_read_lock(); 11337 ng = rcu_dereference(p->numa_group); 11338 for_each_online_node(node) { 11339 if (p->numa_faults) { 11340 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 11341 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 11342 } 11343 if (ng) { 11344 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 11345 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 11346 } 11347 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 11348 } 11349 rcu_read_unlock(); 11350 } 11351 #endif /* CONFIG_NUMA_BALANCING */ 11352 #endif /* CONFIG_SCHED_DEBUG */ 11353 11354 __init void init_sched_fair_class(void) 11355 { 11356 #ifdef CONFIG_SMP 11357 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 11358 11359 #ifdef CONFIG_NO_HZ_COMMON 11360 nohz.next_balance = jiffies; 11361 nohz.next_blocked = jiffies; 11362 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 11363 #endif 11364 #endif /* SMP */ 11365 11366 } 11367 11368 /* 11369 * Helper functions to facilitate extracting info from tracepoints. 11370 */ 11371 11372 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq) 11373 { 11374 #ifdef CONFIG_SMP 11375 return cfs_rq ? &cfs_rq->avg : NULL; 11376 #else 11377 return NULL; 11378 #endif 11379 } 11380 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg); 11381 11382 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len) 11383 { 11384 if (!cfs_rq) { 11385 if (str) 11386 strlcpy(str, "(null)", len); 11387 else 11388 return NULL; 11389 } 11390 11391 cfs_rq_tg_path(cfs_rq, str, len); 11392 return str; 11393 } 11394 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path); 11395 11396 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq) 11397 { 11398 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1; 11399 } 11400 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu); 11401 11402 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq) 11403 { 11404 #ifdef CONFIG_SMP 11405 return rq ? &rq->avg_rt : NULL; 11406 #else 11407 return NULL; 11408 #endif 11409 } 11410 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt); 11411 11412 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq) 11413 { 11414 #ifdef CONFIG_SMP 11415 return rq ? &rq->avg_dl : NULL; 11416 #else 11417 return NULL; 11418 #endif 11419 } 11420 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl); 11421 11422 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq) 11423 { 11424 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ) 11425 return rq ? &rq->avg_irq : NULL; 11426 #else 11427 return NULL; 11428 #endif 11429 } 11430 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq); 11431 11432 int sched_trace_rq_cpu(struct rq *rq) 11433 { 11434 return rq ? cpu_of(rq) : -1; 11435 } 11436 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu); 11437 11438 int sched_trace_rq_cpu_capacity(struct rq *rq) 11439 { 11440 return rq ? 11441 #ifdef CONFIG_SMP 11442 rq->cpu_capacity 11443 #else 11444 SCHED_CAPACITY_SCALE 11445 #endif 11446 : -1; 11447 } 11448 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity); 11449 11450 const struct cpumask *sched_trace_rd_span(struct root_domain *rd) 11451 { 11452 #ifdef CONFIG_SMP 11453 return rd ? rd->span : NULL; 11454 #else 11455 return NULL; 11456 #endif 11457 } 11458 EXPORT_SYMBOL_GPL(sched_trace_rd_span); 11459 11460 int sched_trace_rq_nr_running(struct rq *rq) 11461 { 11462 return rq ? rq->nr_running : -1; 11463 } 11464 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running); 11465