xref: /openbmc/linux/kernel/sched/fair.c (revision babbdf5b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 /*
26  * Targeted preemption latency for CPU-bound tasks:
27  *
28  * NOTE: this latency value is not the same as the concept of
29  * 'timeslice length' - timeslices in CFS are of variable length
30  * and have no persistent notion like in traditional, time-slice
31  * based scheduling concepts.
32  *
33  * (to see the precise effective timeslice length of your workload,
34  *  run vmstat and monitor the context-switches (cs) field)
35  *
36  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37  */
38 unsigned int sysctl_sched_latency			= 6000000ULL;
39 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
40 
41 /*
42  * The initial- and re-scaling of tunables is configurable
43  *
44  * Options are:
45  *
46  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
47  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49  *
50  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
51  */
52 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
53 
54 /*
55  * Minimal preemption granularity for CPU-bound tasks:
56  *
57  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58  */
59 unsigned int sysctl_sched_min_granularity			= 750000ULL;
60 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
61 
62 /*
63  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
64  */
65 static unsigned int sched_nr_latency = 8;
66 
67 /*
68  * After fork, child runs first. If set to 0 (default) then
69  * parent will (try to) run first.
70  */
71 unsigned int sysctl_sched_child_runs_first __read_mostly;
72 
73 /*
74  * SCHED_OTHER wake-up granularity.
75  *
76  * This option delays the preemption effects of decoupled workloads
77  * and reduces their over-scheduling. Synchronous workloads will still
78  * have immediate wakeup/sleep latencies.
79  *
80  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
81  */
82 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
83 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
84 
85 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
86 
87 int sched_thermal_decay_shift;
88 static int __init setup_sched_thermal_decay_shift(char *str)
89 {
90 	int _shift = 0;
91 
92 	if (kstrtoint(str, 0, &_shift))
93 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
94 
95 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
96 	return 1;
97 }
98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
99 
100 #ifdef CONFIG_SMP
101 /*
102  * For asym packing, by default the lower numbered CPU has higher priority.
103  */
104 int __weak arch_asym_cpu_priority(int cpu)
105 {
106 	return -cpu;
107 }
108 
109 /*
110  * The margin used when comparing utilization with CPU capacity.
111  *
112  * (default: ~20%)
113  */
114 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
115 
116 /*
117  * The margin used when comparing CPU capacities.
118  * is 'cap1' noticeably greater than 'cap2'
119  *
120  * (default: ~5%)
121  */
122 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
123 #endif
124 
125 #ifdef CONFIG_CFS_BANDWIDTH
126 /*
127  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
128  * each time a cfs_rq requests quota.
129  *
130  * Note: in the case that the slice exceeds the runtime remaining (either due
131  * to consumption or the quota being specified to be smaller than the slice)
132  * we will always only issue the remaining available time.
133  *
134  * (default: 5 msec, units: microseconds)
135  */
136 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
137 #endif
138 
139 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
140 {
141 	lw->weight += inc;
142 	lw->inv_weight = 0;
143 }
144 
145 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
146 {
147 	lw->weight -= dec;
148 	lw->inv_weight = 0;
149 }
150 
151 static inline void update_load_set(struct load_weight *lw, unsigned long w)
152 {
153 	lw->weight = w;
154 	lw->inv_weight = 0;
155 }
156 
157 /*
158  * Increase the granularity value when there are more CPUs,
159  * because with more CPUs the 'effective latency' as visible
160  * to users decreases. But the relationship is not linear,
161  * so pick a second-best guess by going with the log2 of the
162  * number of CPUs.
163  *
164  * This idea comes from the SD scheduler of Con Kolivas:
165  */
166 static unsigned int get_update_sysctl_factor(void)
167 {
168 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
169 	unsigned int factor;
170 
171 	switch (sysctl_sched_tunable_scaling) {
172 	case SCHED_TUNABLESCALING_NONE:
173 		factor = 1;
174 		break;
175 	case SCHED_TUNABLESCALING_LINEAR:
176 		factor = cpus;
177 		break;
178 	case SCHED_TUNABLESCALING_LOG:
179 	default:
180 		factor = 1 + ilog2(cpus);
181 		break;
182 	}
183 
184 	return factor;
185 }
186 
187 static void update_sysctl(void)
188 {
189 	unsigned int factor = get_update_sysctl_factor();
190 
191 #define SET_SYSCTL(name) \
192 	(sysctl_##name = (factor) * normalized_sysctl_##name)
193 	SET_SYSCTL(sched_min_granularity);
194 	SET_SYSCTL(sched_latency);
195 	SET_SYSCTL(sched_wakeup_granularity);
196 #undef SET_SYSCTL
197 }
198 
199 void __init sched_init_granularity(void)
200 {
201 	update_sysctl();
202 }
203 
204 #define WMULT_CONST	(~0U)
205 #define WMULT_SHIFT	32
206 
207 static void __update_inv_weight(struct load_weight *lw)
208 {
209 	unsigned long w;
210 
211 	if (likely(lw->inv_weight))
212 		return;
213 
214 	w = scale_load_down(lw->weight);
215 
216 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 		lw->inv_weight = 1;
218 	else if (unlikely(!w))
219 		lw->inv_weight = WMULT_CONST;
220 	else
221 		lw->inv_weight = WMULT_CONST / w;
222 }
223 
224 /*
225  * delta_exec * weight / lw.weight
226  *   OR
227  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
228  *
229  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
230  * we're guaranteed shift stays positive because inv_weight is guaranteed to
231  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
232  *
233  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
234  * weight/lw.weight <= 1, and therefore our shift will also be positive.
235  */
236 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
237 {
238 	u64 fact = scale_load_down(weight);
239 	u32 fact_hi = (u32)(fact >> 32);
240 	int shift = WMULT_SHIFT;
241 	int fs;
242 
243 	__update_inv_weight(lw);
244 
245 	if (unlikely(fact_hi)) {
246 		fs = fls(fact_hi);
247 		shift -= fs;
248 		fact >>= fs;
249 	}
250 
251 	fact = mul_u32_u32(fact, lw->inv_weight);
252 
253 	fact_hi = (u32)(fact >> 32);
254 	if (fact_hi) {
255 		fs = fls(fact_hi);
256 		shift -= fs;
257 		fact >>= fs;
258 	}
259 
260 	return mul_u64_u32_shr(delta_exec, fact, shift);
261 }
262 
263 
264 const struct sched_class fair_sched_class;
265 
266 /**************************************************************
267  * CFS operations on generic schedulable entities:
268  */
269 
270 #ifdef CONFIG_FAIR_GROUP_SCHED
271 static inline struct task_struct *task_of(struct sched_entity *se)
272 {
273 	SCHED_WARN_ON(!entity_is_task(se));
274 	return container_of(se, struct task_struct, se);
275 }
276 
277 /* Walk up scheduling entities hierarchy */
278 #define for_each_sched_entity(se) \
279 		for (; se; se = se->parent)
280 
281 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
282 {
283 	return p->se.cfs_rq;
284 }
285 
286 /* runqueue on which this entity is (to be) queued */
287 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
288 {
289 	return se->cfs_rq;
290 }
291 
292 /* runqueue "owned" by this group */
293 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
294 {
295 	return grp->my_q;
296 }
297 
298 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
299 {
300 	if (!path)
301 		return;
302 
303 	if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
304 		autogroup_path(cfs_rq->tg, path, len);
305 	else if (cfs_rq && cfs_rq->tg->css.cgroup)
306 		cgroup_path(cfs_rq->tg->css.cgroup, path, len);
307 	else
308 		strlcpy(path, "(null)", len);
309 }
310 
311 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
312 {
313 	struct rq *rq = rq_of(cfs_rq);
314 	int cpu = cpu_of(rq);
315 
316 	if (cfs_rq->on_list)
317 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
318 
319 	cfs_rq->on_list = 1;
320 
321 	/*
322 	 * Ensure we either appear before our parent (if already
323 	 * enqueued) or force our parent to appear after us when it is
324 	 * enqueued. The fact that we always enqueue bottom-up
325 	 * reduces this to two cases and a special case for the root
326 	 * cfs_rq. Furthermore, it also means that we will always reset
327 	 * tmp_alone_branch either when the branch is connected
328 	 * to a tree or when we reach the top of the tree
329 	 */
330 	if (cfs_rq->tg->parent &&
331 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
332 		/*
333 		 * If parent is already on the list, we add the child
334 		 * just before. Thanks to circular linked property of
335 		 * the list, this means to put the child at the tail
336 		 * of the list that starts by parent.
337 		 */
338 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
339 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
340 		/*
341 		 * The branch is now connected to its tree so we can
342 		 * reset tmp_alone_branch to the beginning of the
343 		 * list.
344 		 */
345 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
346 		return true;
347 	}
348 
349 	if (!cfs_rq->tg->parent) {
350 		/*
351 		 * cfs rq without parent should be put
352 		 * at the tail of the list.
353 		 */
354 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
355 			&rq->leaf_cfs_rq_list);
356 		/*
357 		 * We have reach the top of a tree so we can reset
358 		 * tmp_alone_branch to the beginning of the list.
359 		 */
360 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
361 		return true;
362 	}
363 
364 	/*
365 	 * The parent has not already been added so we want to
366 	 * make sure that it will be put after us.
367 	 * tmp_alone_branch points to the begin of the branch
368 	 * where we will add parent.
369 	 */
370 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
371 	/*
372 	 * update tmp_alone_branch to points to the new begin
373 	 * of the branch
374 	 */
375 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
376 	return false;
377 }
378 
379 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
380 {
381 	if (cfs_rq->on_list) {
382 		struct rq *rq = rq_of(cfs_rq);
383 
384 		/*
385 		 * With cfs_rq being unthrottled/throttled during an enqueue,
386 		 * it can happen the tmp_alone_branch points the a leaf that
387 		 * we finally want to del. In this case, tmp_alone_branch moves
388 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
389 		 * at the end of the enqueue.
390 		 */
391 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
392 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
393 
394 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
395 		cfs_rq->on_list = 0;
396 	}
397 }
398 
399 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
400 {
401 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
402 }
403 
404 /* Iterate thr' all leaf cfs_rq's on a runqueue */
405 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
406 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
407 				 leaf_cfs_rq_list)
408 
409 /* Do the two (enqueued) entities belong to the same group ? */
410 static inline struct cfs_rq *
411 is_same_group(struct sched_entity *se, struct sched_entity *pse)
412 {
413 	if (se->cfs_rq == pse->cfs_rq)
414 		return se->cfs_rq;
415 
416 	return NULL;
417 }
418 
419 static inline struct sched_entity *parent_entity(struct sched_entity *se)
420 {
421 	return se->parent;
422 }
423 
424 static void
425 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426 {
427 	int se_depth, pse_depth;
428 
429 	/*
430 	 * preemption test can be made between sibling entities who are in the
431 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
432 	 * both tasks until we find their ancestors who are siblings of common
433 	 * parent.
434 	 */
435 
436 	/* First walk up until both entities are at same depth */
437 	se_depth = (*se)->depth;
438 	pse_depth = (*pse)->depth;
439 
440 	while (se_depth > pse_depth) {
441 		se_depth--;
442 		*se = parent_entity(*se);
443 	}
444 
445 	while (pse_depth > se_depth) {
446 		pse_depth--;
447 		*pse = parent_entity(*pse);
448 	}
449 
450 	while (!is_same_group(*se, *pse)) {
451 		*se = parent_entity(*se);
452 		*pse = parent_entity(*pse);
453 	}
454 }
455 
456 #else	/* !CONFIG_FAIR_GROUP_SCHED */
457 
458 static inline struct task_struct *task_of(struct sched_entity *se)
459 {
460 	return container_of(se, struct task_struct, se);
461 }
462 
463 #define for_each_sched_entity(se) \
464 		for (; se; se = NULL)
465 
466 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
467 {
468 	return &task_rq(p)->cfs;
469 }
470 
471 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
472 {
473 	struct task_struct *p = task_of(se);
474 	struct rq *rq = task_rq(p);
475 
476 	return &rq->cfs;
477 }
478 
479 /* runqueue "owned" by this group */
480 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
481 {
482 	return NULL;
483 }
484 
485 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
486 {
487 	if (path)
488 		strlcpy(path, "(null)", len);
489 }
490 
491 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
492 {
493 	return true;
494 }
495 
496 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
497 {
498 }
499 
500 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
501 {
502 }
503 
504 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
505 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
506 
507 static inline struct sched_entity *parent_entity(struct sched_entity *se)
508 {
509 	return NULL;
510 }
511 
512 static inline void
513 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
514 {
515 }
516 
517 #endif	/* CONFIG_FAIR_GROUP_SCHED */
518 
519 static __always_inline
520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
521 
522 /**************************************************************
523  * Scheduling class tree data structure manipulation methods:
524  */
525 
526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
527 {
528 	s64 delta = (s64)(vruntime - max_vruntime);
529 	if (delta > 0)
530 		max_vruntime = vruntime;
531 
532 	return max_vruntime;
533 }
534 
535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
536 {
537 	s64 delta = (s64)(vruntime - min_vruntime);
538 	if (delta < 0)
539 		min_vruntime = vruntime;
540 
541 	return min_vruntime;
542 }
543 
544 static inline bool entity_before(struct sched_entity *a,
545 				struct sched_entity *b)
546 {
547 	return (s64)(a->vruntime - b->vruntime) < 0;
548 }
549 
550 #define __node_2_se(node) \
551 	rb_entry((node), struct sched_entity, run_node)
552 
553 static void update_min_vruntime(struct cfs_rq *cfs_rq)
554 {
555 	struct sched_entity *curr = cfs_rq->curr;
556 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
557 
558 	u64 vruntime = cfs_rq->min_vruntime;
559 
560 	if (curr) {
561 		if (curr->on_rq)
562 			vruntime = curr->vruntime;
563 		else
564 			curr = NULL;
565 	}
566 
567 	if (leftmost) { /* non-empty tree */
568 		struct sched_entity *se = __node_2_se(leftmost);
569 
570 		if (!curr)
571 			vruntime = se->vruntime;
572 		else
573 			vruntime = min_vruntime(vruntime, se->vruntime);
574 	}
575 
576 	/* ensure we never gain time by being placed backwards. */
577 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
578 #ifndef CONFIG_64BIT
579 	smp_wmb();
580 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
581 #endif
582 }
583 
584 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
585 {
586 	return entity_before(__node_2_se(a), __node_2_se(b));
587 }
588 
589 /*
590  * Enqueue an entity into the rb-tree:
591  */
592 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
593 {
594 	rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
595 }
596 
597 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
598 {
599 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
600 }
601 
602 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
603 {
604 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
605 
606 	if (!left)
607 		return NULL;
608 
609 	return __node_2_se(left);
610 }
611 
612 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
613 {
614 	struct rb_node *next = rb_next(&se->run_node);
615 
616 	if (!next)
617 		return NULL;
618 
619 	return __node_2_se(next);
620 }
621 
622 #ifdef CONFIG_SCHED_DEBUG
623 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
624 {
625 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
626 
627 	if (!last)
628 		return NULL;
629 
630 	return __node_2_se(last);
631 }
632 
633 /**************************************************************
634  * Scheduling class statistics methods:
635  */
636 
637 int sched_update_scaling(void)
638 {
639 	unsigned int factor = get_update_sysctl_factor();
640 
641 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
642 					sysctl_sched_min_granularity);
643 
644 #define WRT_SYSCTL(name) \
645 	(normalized_sysctl_##name = sysctl_##name / (factor))
646 	WRT_SYSCTL(sched_min_granularity);
647 	WRT_SYSCTL(sched_latency);
648 	WRT_SYSCTL(sched_wakeup_granularity);
649 #undef WRT_SYSCTL
650 
651 	return 0;
652 }
653 #endif
654 
655 /*
656  * delta /= w
657  */
658 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
659 {
660 	if (unlikely(se->load.weight != NICE_0_LOAD))
661 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
662 
663 	return delta;
664 }
665 
666 /*
667  * The idea is to set a period in which each task runs once.
668  *
669  * When there are too many tasks (sched_nr_latency) we have to stretch
670  * this period because otherwise the slices get too small.
671  *
672  * p = (nr <= nl) ? l : l*nr/nl
673  */
674 static u64 __sched_period(unsigned long nr_running)
675 {
676 	if (unlikely(nr_running > sched_nr_latency))
677 		return nr_running * sysctl_sched_min_granularity;
678 	else
679 		return sysctl_sched_latency;
680 }
681 
682 /*
683  * We calculate the wall-time slice from the period by taking a part
684  * proportional to the weight.
685  *
686  * s = p*P[w/rw]
687  */
688 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
689 {
690 	unsigned int nr_running = cfs_rq->nr_running;
691 	u64 slice;
692 
693 	if (sched_feat(ALT_PERIOD))
694 		nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
695 
696 	slice = __sched_period(nr_running + !se->on_rq);
697 
698 	for_each_sched_entity(se) {
699 		struct load_weight *load;
700 		struct load_weight lw;
701 
702 		cfs_rq = cfs_rq_of(se);
703 		load = &cfs_rq->load;
704 
705 		if (unlikely(!se->on_rq)) {
706 			lw = cfs_rq->load;
707 
708 			update_load_add(&lw, se->load.weight);
709 			load = &lw;
710 		}
711 		slice = __calc_delta(slice, se->load.weight, load);
712 	}
713 
714 	if (sched_feat(BASE_SLICE))
715 		slice = max(slice, (u64)sysctl_sched_min_granularity);
716 
717 	return slice;
718 }
719 
720 /*
721  * We calculate the vruntime slice of a to-be-inserted task.
722  *
723  * vs = s/w
724  */
725 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
726 {
727 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
728 }
729 
730 #include "pelt.h"
731 #ifdef CONFIG_SMP
732 
733 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
734 static unsigned long task_h_load(struct task_struct *p);
735 static unsigned long capacity_of(int cpu);
736 
737 /* Give new sched_entity start runnable values to heavy its load in infant time */
738 void init_entity_runnable_average(struct sched_entity *se)
739 {
740 	struct sched_avg *sa = &se->avg;
741 
742 	memset(sa, 0, sizeof(*sa));
743 
744 	/*
745 	 * Tasks are initialized with full load to be seen as heavy tasks until
746 	 * they get a chance to stabilize to their real load level.
747 	 * Group entities are initialized with zero load to reflect the fact that
748 	 * nothing has been attached to the task group yet.
749 	 */
750 	if (entity_is_task(se))
751 		sa->load_avg = scale_load_down(se->load.weight);
752 
753 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
754 }
755 
756 static void attach_entity_cfs_rq(struct sched_entity *se);
757 
758 /*
759  * With new tasks being created, their initial util_avgs are extrapolated
760  * based on the cfs_rq's current util_avg:
761  *
762  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
763  *
764  * However, in many cases, the above util_avg does not give a desired
765  * value. Moreover, the sum of the util_avgs may be divergent, such
766  * as when the series is a harmonic series.
767  *
768  * To solve this problem, we also cap the util_avg of successive tasks to
769  * only 1/2 of the left utilization budget:
770  *
771  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
772  *
773  * where n denotes the nth task and cpu_scale the CPU capacity.
774  *
775  * For example, for a CPU with 1024 of capacity, a simplest series from
776  * the beginning would be like:
777  *
778  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
779  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
780  *
781  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
782  * if util_avg > util_avg_cap.
783  */
784 void post_init_entity_util_avg(struct task_struct *p)
785 {
786 	struct sched_entity *se = &p->se;
787 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
788 	struct sched_avg *sa = &se->avg;
789 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
790 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
791 
792 	if (cap > 0) {
793 		if (cfs_rq->avg.util_avg != 0) {
794 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
795 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
796 
797 			if (sa->util_avg > cap)
798 				sa->util_avg = cap;
799 		} else {
800 			sa->util_avg = cap;
801 		}
802 	}
803 
804 	sa->runnable_avg = sa->util_avg;
805 
806 	if (p->sched_class != &fair_sched_class) {
807 		/*
808 		 * For !fair tasks do:
809 		 *
810 		update_cfs_rq_load_avg(now, cfs_rq);
811 		attach_entity_load_avg(cfs_rq, se);
812 		switched_from_fair(rq, p);
813 		 *
814 		 * such that the next switched_to_fair() has the
815 		 * expected state.
816 		 */
817 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
818 		return;
819 	}
820 
821 	attach_entity_cfs_rq(se);
822 }
823 
824 #else /* !CONFIG_SMP */
825 void init_entity_runnable_average(struct sched_entity *se)
826 {
827 }
828 void post_init_entity_util_avg(struct task_struct *p)
829 {
830 }
831 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
832 {
833 }
834 #endif /* CONFIG_SMP */
835 
836 /*
837  * Update the current task's runtime statistics.
838  */
839 static void update_curr(struct cfs_rq *cfs_rq)
840 {
841 	struct sched_entity *curr = cfs_rq->curr;
842 	u64 now = rq_clock_task(rq_of(cfs_rq));
843 	u64 delta_exec;
844 
845 	if (unlikely(!curr))
846 		return;
847 
848 	delta_exec = now - curr->exec_start;
849 	if (unlikely((s64)delta_exec <= 0))
850 		return;
851 
852 	curr->exec_start = now;
853 
854 	schedstat_set(curr->statistics.exec_max,
855 		      max(delta_exec, curr->statistics.exec_max));
856 
857 	curr->sum_exec_runtime += delta_exec;
858 	schedstat_add(cfs_rq->exec_clock, delta_exec);
859 
860 	curr->vruntime += calc_delta_fair(delta_exec, curr);
861 	update_min_vruntime(cfs_rq);
862 
863 	if (entity_is_task(curr)) {
864 		struct task_struct *curtask = task_of(curr);
865 
866 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
867 		cgroup_account_cputime(curtask, delta_exec);
868 		account_group_exec_runtime(curtask, delta_exec);
869 	}
870 
871 	account_cfs_rq_runtime(cfs_rq, delta_exec);
872 }
873 
874 static void update_curr_fair(struct rq *rq)
875 {
876 	update_curr(cfs_rq_of(&rq->curr->se));
877 }
878 
879 static inline void
880 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
881 {
882 	u64 wait_start, prev_wait_start;
883 
884 	if (!schedstat_enabled())
885 		return;
886 
887 	wait_start = rq_clock(rq_of(cfs_rq));
888 	prev_wait_start = schedstat_val(se->statistics.wait_start);
889 
890 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
891 	    likely(wait_start > prev_wait_start))
892 		wait_start -= prev_wait_start;
893 
894 	__schedstat_set(se->statistics.wait_start, wait_start);
895 }
896 
897 static inline void
898 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
899 {
900 	struct task_struct *p;
901 	u64 delta;
902 
903 	if (!schedstat_enabled())
904 		return;
905 
906 	/*
907 	 * When the sched_schedstat changes from 0 to 1, some sched se
908 	 * maybe already in the runqueue, the se->statistics.wait_start
909 	 * will be 0.So it will let the delta wrong. We need to avoid this
910 	 * scenario.
911 	 */
912 	if (unlikely(!schedstat_val(se->statistics.wait_start)))
913 		return;
914 
915 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
916 
917 	if (entity_is_task(se)) {
918 		p = task_of(se);
919 		if (task_on_rq_migrating(p)) {
920 			/*
921 			 * Preserve migrating task's wait time so wait_start
922 			 * time stamp can be adjusted to accumulate wait time
923 			 * prior to migration.
924 			 */
925 			__schedstat_set(se->statistics.wait_start, delta);
926 			return;
927 		}
928 		trace_sched_stat_wait(p, delta);
929 	}
930 
931 	__schedstat_set(se->statistics.wait_max,
932 		      max(schedstat_val(se->statistics.wait_max), delta));
933 	__schedstat_inc(se->statistics.wait_count);
934 	__schedstat_add(se->statistics.wait_sum, delta);
935 	__schedstat_set(se->statistics.wait_start, 0);
936 }
937 
938 static inline void
939 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
940 {
941 	struct task_struct *tsk = NULL;
942 	u64 sleep_start, block_start;
943 
944 	if (!schedstat_enabled())
945 		return;
946 
947 	sleep_start = schedstat_val(se->statistics.sleep_start);
948 	block_start = schedstat_val(se->statistics.block_start);
949 
950 	if (entity_is_task(se))
951 		tsk = task_of(se);
952 
953 	if (sleep_start) {
954 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
955 
956 		if ((s64)delta < 0)
957 			delta = 0;
958 
959 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
960 			__schedstat_set(se->statistics.sleep_max, delta);
961 
962 		__schedstat_set(se->statistics.sleep_start, 0);
963 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
964 
965 		if (tsk) {
966 			account_scheduler_latency(tsk, delta >> 10, 1);
967 			trace_sched_stat_sleep(tsk, delta);
968 		}
969 	}
970 	if (block_start) {
971 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
972 
973 		if ((s64)delta < 0)
974 			delta = 0;
975 
976 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
977 			__schedstat_set(se->statistics.block_max, delta);
978 
979 		__schedstat_set(se->statistics.block_start, 0);
980 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
981 
982 		if (tsk) {
983 			if (tsk->in_iowait) {
984 				__schedstat_add(se->statistics.iowait_sum, delta);
985 				__schedstat_inc(se->statistics.iowait_count);
986 				trace_sched_stat_iowait(tsk, delta);
987 			}
988 
989 			trace_sched_stat_blocked(tsk, delta);
990 
991 			/*
992 			 * Blocking time is in units of nanosecs, so shift by
993 			 * 20 to get a milliseconds-range estimation of the
994 			 * amount of time that the task spent sleeping:
995 			 */
996 			if (unlikely(prof_on == SLEEP_PROFILING)) {
997 				profile_hits(SLEEP_PROFILING,
998 						(void *)get_wchan(tsk),
999 						delta >> 20);
1000 			}
1001 			account_scheduler_latency(tsk, delta >> 10, 0);
1002 		}
1003 	}
1004 }
1005 
1006 /*
1007  * Task is being enqueued - update stats:
1008  */
1009 static inline void
1010 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1011 {
1012 	if (!schedstat_enabled())
1013 		return;
1014 
1015 	/*
1016 	 * Are we enqueueing a waiting task? (for current tasks
1017 	 * a dequeue/enqueue event is a NOP)
1018 	 */
1019 	if (se != cfs_rq->curr)
1020 		update_stats_wait_start(cfs_rq, se);
1021 
1022 	if (flags & ENQUEUE_WAKEUP)
1023 		update_stats_enqueue_sleeper(cfs_rq, se);
1024 }
1025 
1026 static inline void
1027 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1028 {
1029 
1030 	if (!schedstat_enabled())
1031 		return;
1032 
1033 	/*
1034 	 * Mark the end of the wait period if dequeueing a
1035 	 * waiting task:
1036 	 */
1037 	if (se != cfs_rq->curr)
1038 		update_stats_wait_end(cfs_rq, se);
1039 
1040 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1041 		struct task_struct *tsk = task_of(se);
1042 
1043 		if (tsk->state & TASK_INTERRUPTIBLE)
1044 			__schedstat_set(se->statistics.sleep_start,
1045 				      rq_clock(rq_of(cfs_rq)));
1046 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1047 			__schedstat_set(se->statistics.block_start,
1048 				      rq_clock(rq_of(cfs_rq)));
1049 	}
1050 }
1051 
1052 /*
1053  * We are picking a new current task - update its stats:
1054  */
1055 static inline void
1056 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1057 {
1058 	/*
1059 	 * We are starting a new run period:
1060 	 */
1061 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1062 }
1063 
1064 /**************************************************
1065  * Scheduling class queueing methods:
1066  */
1067 
1068 #ifdef CONFIG_NUMA_BALANCING
1069 /*
1070  * Approximate time to scan a full NUMA task in ms. The task scan period is
1071  * calculated based on the tasks virtual memory size and
1072  * numa_balancing_scan_size.
1073  */
1074 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1075 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1076 
1077 /* Portion of address space to scan in MB */
1078 unsigned int sysctl_numa_balancing_scan_size = 256;
1079 
1080 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1081 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1082 
1083 struct numa_group {
1084 	refcount_t refcount;
1085 
1086 	spinlock_t lock; /* nr_tasks, tasks */
1087 	int nr_tasks;
1088 	pid_t gid;
1089 	int active_nodes;
1090 
1091 	struct rcu_head rcu;
1092 	unsigned long total_faults;
1093 	unsigned long max_faults_cpu;
1094 	/*
1095 	 * Faults_cpu is used to decide whether memory should move
1096 	 * towards the CPU. As a consequence, these stats are weighted
1097 	 * more by CPU use than by memory faults.
1098 	 */
1099 	unsigned long *faults_cpu;
1100 	unsigned long faults[];
1101 };
1102 
1103 /*
1104  * For functions that can be called in multiple contexts that permit reading
1105  * ->numa_group (see struct task_struct for locking rules).
1106  */
1107 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1108 {
1109 	return rcu_dereference_check(p->numa_group, p == current ||
1110 		(lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1111 }
1112 
1113 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1114 {
1115 	return rcu_dereference_protected(p->numa_group, p == current);
1116 }
1117 
1118 static inline unsigned long group_faults_priv(struct numa_group *ng);
1119 static inline unsigned long group_faults_shared(struct numa_group *ng);
1120 
1121 static unsigned int task_nr_scan_windows(struct task_struct *p)
1122 {
1123 	unsigned long rss = 0;
1124 	unsigned long nr_scan_pages;
1125 
1126 	/*
1127 	 * Calculations based on RSS as non-present and empty pages are skipped
1128 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1129 	 * on resident pages
1130 	 */
1131 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1132 	rss = get_mm_rss(p->mm);
1133 	if (!rss)
1134 		rss = nr_scan_pages;
1135 
1136 	rss = round_up(rss, nr_scan_pages);
1137 	return rss / nr_scan_pages;
1138 }
1139 
1140 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1141 #define MAX_SCAN_WINDOW 2560
1142 
1143 static unsigned int task_scan_min(struct task_struct *p)
1144 {
1145 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1146 	unsigned int scan, floor;
1147 	unsigned int windows = 1;
1148 
1149 	if (scan_size < MAX_SCAN_WINDOW)
1150 		windows = MAX_SCAN_WINDOW / scan_size;
1151 	floor = 1000 / windows;
1152 
1153 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1154 	return max_t(unsigned int, floor, scan);
1155 }
1156 
1157 static unsigned int task_scan_start(struct task_struct *p)
1158 {
1159 	unsigned long smin = task_scan_min(p);
1160 	unsigned long period = smin;
1161 	struct numa_group *ng;
1162 
1163 	/* Scale the maximum scan period with the amount of shared memory. */
1164 	rcu_read_lock();
1165 	ng = rcu_dereference(p->numa_group);
1166 	if (ng) {
1167 		unsigned long shared = group_faults_shared(ng);
1168 		unsigned long private = group_faults_priv(ng);
1169 
1170 		period *= refcount_read(&ng->refcount);
1171 		period *= shared + 1;
1172 		period /= private + shared + 1;
1173 	}
1174 	rcu_read_unlock();
1175 
1176 	return max(smin, period);
1177 }
1178 
1179 static unsigned int task_scan_max(struct task_struct *p)
1180 {
1181 	unsigned long smin = task_scan_min(p);
1182 	unsigned long smax;
1183 	struct numa_group *ng;
1184 
1185 	/* Watch for min being lower than max due to floor calculations */
1186 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1187 
1188 	/* Scale the maximum scan period with the amount of shared memory. */
1189 	ng = deref_curr_numa_group(p);
1190 	if (ng) {
1191 		unsigned long shared = group_faults_shared(ng);
1192 		unsigned long private = group_faults_priv(ng);
1193 		unsigned long period = smax;
1194 
1195 		period *= refcount_read(&ng->refcount);
1196 		period *= shared + 1;
1197 		period /= private + shared + 1;
1198 
1199 		smax = max(smax, period);
1200 	}
1201 
1202 	return max(smin, smax);
1203 }
1204 
1205 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1206 {
1207 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1208 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1209 }
1210 
1211 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1212 {
1213 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1214 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1215 }
1216 
1217 /* Shared or private faults. */
1218 #define NR_NUMA_HINT_FAULT_TYPES 2
1219 
1220 /* Memory and CPU locality */
1221 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1222 
1223 /* Averaged statistics, and temporary buffers. */
1224 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1225 
1226 pid_t task_numa_group_id(struct task_struct *p)
1227 {
1228 	struct numa_group *ng;
1229 	pid_t gid = 0;
1230 
1231 	rcu_read_lock();
1232 	ng = rcu_dereference(p->numa_group);
1233 	if (ng)
1234 		gid = ng->gid;
1235 	rcu_read_unlock();
1236 
1237 	return gid;
1238 }
1239 
1240 /*
1241  * The averaged statistics, shared & private, memory & CPU,
1242  * occupy the first half of the array. The second half of the
1243  * array is for current counters, which are averaged into the
1244  * first set by task_numa_placement.
1245  */
1246 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1247 {
1248 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1249 }
1250 
1251 static inline unsigned long task_faults(struct task_struct *p, int nid)
1252 {
1253 	if (!p->numa_faults)
1254 		return 0;
1255 
1256 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1257 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1258 }
1259 
1260 static inline unsigned long group_faults(struct task_struct *p, int nid)
1261 {
1262 	struct numa_group *ng = deref_task_numa_group(p);
1263 
1264 	if (!ng)
1265 		return 0;
1266 
1267 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1268 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1269 }
1270 
1271 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1272 {
1273 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1274 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1275 }
1276 
1277 static inline unsigned long group_faults_priv(struct numa_group *ng)
1278 {
1279 	unsigned long faults = 0;
1280 	int node;
1281 
1282 	for_each_online_node(node) {
1283 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1284 	}
1285 
1286 	return faults;
1287 }
1288 
1289 static inline unsigned long group_faults_shared(struct numa_group *ng)
1290 {
1291 	unsigned long faults = 0;
1292 	int node;
1293 
1294 	for_each_online_node(node) {
1295 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1296 	}
1297 
1298 	return faults;
1299 }
1300 
1301 /*
1302  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1303  * considered part of a numa group's pseudo-interleaving set. Migrations
1304  * between these nodes are slowed down, to allow things to settle down.
1305  */
1306 #define ACTIVE_NODE_FRACTION 3
1307 
1308 static bool numa_is_active_node(int nid, struct numa_group *ng)
1309 {
1310 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1311 }
1312 
1313 /* Handle placement on systems where not all nodes are directly connected. */
1314 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1315 					int maxdist, bool task)
1316 {
1317 	unsigned long score = 0;
1318 	int node;
1319 
1320 	/*
1321 	 * All nodes are directly connected, and the same distance
1322 	 * from each other. No need for fancy placement algorithms.
1323 	 */
1324 	if (sched_numa_topology_type == NUMA_DIRECT)
1325 		return 0;
1326 
1327 	/*
1328 	 * This code is called for each node, introducing N^2 complexity,
1329 	 * which should be ok given the number of nodes rarely exceeds 8.
1330 	 */
1331 	for_each_online_node(node) {
1332 		unsigned long faults;
1333 		int dist = node_distance(nid, node);
1334 
1335 		/*
1336 		 * The furthest away nodes in the system are not interesting
1337 		 * for placement; nid was already counted.
1338 		 */
1339 		if (dist == sched_max_numa_distance || node == nid)
1340 			continue;
1341 
1342 		/*
1343 		 * On systems with a backplane NUMA topology, compare groups
1344 		 * of nodes, and move tasks towards the group with the most
1345 		 * memory accesses. When comparing two nodes at distance
1346 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1347 		 * of each group. Skip other nodes.
1348 		 */
1349 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1350 					dist >= maxdist)
1351 			continue;
1352 
1353 		/* Add up the faults from nearby nodes. */
1354 		if (task)
1355 			faults = task_faults(p, node);
1356 		else
1357 			faults = group_faults(p, node);
1358 
1359 		/*
1360 		 * On systems with a glueless mesh NUMA topology, there are
1361 		 * no fixed "groups of nodes". Instead, nodes that are not
1362 		 * directly connected bounce traffic through intermediate
1363 		 * nodes; a numa_group can occupy any set of nodes.
1364 		 * The further away a node is, the less the faults count.
1365 		 * This seems to result in good task placement.
1366 		 */
1367 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1368 			faults *= (sched_max_numa_distance - dist);
1369 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1370 		}
1371 
1372 		score += faults;
1373 	}
1374 
1375 	return score;
1376 }
1377 
1378 /*
1379  * These return the fraction of accesses done by a particular task, or
1380  * task group, on a particular numa node.  The group weight is given a
1381  * larger multiplier, in order to group tasks together that are almost
1382  * evenly spread out between numa nodes.
1383  */
1384 static inline unsigned long task_weight(struct task_struct *p, int nid,
1385 					int dist)
1386 {
1387 	unsigned long faults, total_faults;
1388 
1389 	if (!p->numa_faults)
1390 		return 0;
1391 
1392 	total_faults = p->total_numa_faults;
1393 
1394 	if (!total_faults)
1395 		return 0;
1396 
1397 	faults = task_faults(p, nid);
1398 	faults += score_nearby_nodes(p, nid, dist, true);
1399 
1400 	return 1000 * faults / total_faults;
1401 }
1402 
1403 static inline unsigned long group_weight(struct task_struct *p, int nid,
1404 					 int dist)
1405 {
1406 	struct numa_group *ng = deref_task_numa_group(p);
1407 	unsigned long faults, total_faults;
1408 
1409 	if (!ng)
1410 		return 0;
1411 
1412 	total_faults = ng->total_faults;
1413 
1414 	if (!total_faults)
1415 		return 0;
1416 
1417 	faults = group_faults(p, nid);
1418 	faults += score_nearby_nodes(p, nid, dist, false);
1419 
1420 	return 1000 * faults / total_faults;
1421 }
1422 
1423 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1424 				int src_nid, int dst_cpu)
1425 {
1426 	struct numa_group *ng = deref_curr_numa_group(p);
1427 	int dst_nid = cpu_to_node(dst_cpu);
1428 	int last_cpupid, this_cpupid;
1429 
1430 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1431 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1432 
1433 	/*
1434 	 * Allow first faults or private faults to migrate immediately early in
1435 	 * the lifetime of a task. The magic number 4 is based on waiting for
1436 	 * two full passes of the "multi-stage node selection" test that is
1437 	 * executed below.
1438 	 */
1439 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1440 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1441 		return true;
1442 
1443 	/*
1444 	 * Multi-stage node selection is used in conjunction with a periodic
1445 	 * migration fault to build a temporal task<->page relation. By using
1446 	 * a two-stage filter we remove short/unlikely relations.
1447 	 *
1448 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1449 	 * a task's usage of a particular page (n_p) per total usage of this
1450 	 * page (n_t) (in a given time-span) to a probability.
1451 	 *
1452 	 * Our periodic faults will sample this probability and getting the
1453 	 * same result twice in a row, given these samples are fully
1454 	 * independent, is then given by P(n)^2, provided our sample period
1455 	 * is sufficiently short compared to the usage pattern.
1456 	 *
1457 	 * This quadric squishes small probabilities, making it less likely we
1458 	 * act on an unlikely task<->page relation.
1459 	 */
1460 	if (!cpupid_pid_unset(last_cpupid) &&
1461 				cpupid_to_nid(last_cpupid) != dst_nid)
1462 		return false;
1463 
1464 	/* Always allow migrate on private faults */
1465 	if (cpupid_match_pid(p, last_cpupid))
1466 		return true;
1467 
1468 	/* A shared fault, but p->numa_group has not been set up yet. */
1469 	if (!ng)
1470 		return true;
1471 
1472 	/*
1473 	 * Destination node is much more heavily used than the source
1474 	 * node? Allow migration.
1475 	 */
1476 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1477 					ACTIVE_NODE_FRACTION)
1478 		return true;
1479 
1480 	/*
1481 	 * Distribute memory according to CPU & memory use on each node,
1482 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1483 	 *
1484 	 * faults_cpu(dst)   3   faults_cpu(src)
1485 	 * --------------- * - > ---------------
1486 	 * faults_mem(dst)   4   faults_mem(src)
1487 	 */
1488 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1489 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1490 }
1491 
1492 /*
1493  * 'numa_type' describes the node at the moment of load balancing.
1494  */
1495 enum numa_type {
1496 	/* The node has spare capacity that can be used to run more tasks.  */
1497 	node_has_spare = 0,
1498 	/*
1499 	 * The node is fully used and the tasks don't compete for more CPU
1500 	 * cycles. Nevertheless, some tasks might wait before running.
1501 	 */
1502 	node_fully_busy,
1503 	/*
1504 	 * The node is overloaded and can't provide expected CPU cycles to all
1505 	 * tasks.
1506 	 */
1507 	node_overloaded
1508 };
1509 
1510 /* Cached statistics for all CPUs within a node */
1511 struct numa_stats {
1512 	unsigned long load;
1513 	unsigned long runnable;
1514 	unsigned long util;
1515 	/* Total compute capacity of CPUs on a node */
1516 	unsigned long compute_capacity;
1517 	unsigned int nr_running;
1518 	unsigned int weight;
1519 	enum numa_type node_type;
1520 	int idle_cpu;
1521 };
1522 
1523 static inline bool is_core_idle(int cpu)
1524 {
1525 #ifdef CONFIG_SCHED_SMT
1526 	int sibling;
1527 
1528 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1529 		if (cpu == sibling)
1530 			continue;
1531 
1532 		if (!idle_cpu(cpu))
1533 			return false;
1534 	}
1535 #endif
1536 
1537 	return true;
1538 }
1539 
1540 struct task_numa_env {
1541 	struct task_struct *p;
1542 
1543 	int src_cpu, src_nid;
1544 	int dst_cpu, dst_nid;
1545 
1546 	struct numa_stats src_stats, dst_stats;
1547 
1548 	int imbalance_pct;
1549 	int dist;
1550 
1551 	struct task_struct *best_task;
1552 	long best_imp;
1553 	int best_cpu;
1554 };
1555 
1556 static unsigned long cpu_load(struct rq *rq);
1557 static unsigned long cpu_runnable(struct rq *rq);
1558 static unsigned long cpu_util(int cpu);
1559 static inline long adjust_numa_imbalance(int imbalance,
1560 					int dst_running, int dst_weight);
1561 
1562 static inline enum
1563 numa_type numa_classify(unsigned int imbalance_pct,
1564 			 struct numa_stats *ns)
1565 {
1566 	if ((ns->nr_running > ns->weight) &&
1567 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1568 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1569 		return node_overloaded;
1570 
1571 	if ((ns->nr_running < ns->weight) ||
1572 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1573 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1574 		return node_has_spare;
1575 
1576 	return node_fully_busy;
1577 }
1578 
1579 #ifdef CONFIG_SCHED_SMT
1580 /* Forward declarations of select_idle_sibling helpers */
1581 static inline bool test_idle_cores(int cpu, bool def);
1582 static inline int numa_idle_core(int idle_core, int cpu)
1583 {
1584 	if (!static_branch_likely(&sched_smt_present) ||
1585 	    idle_core >= 0 || !test_idle_cores(cpu, false))
1586 		return idle_core;
1587 
1588 	/*
1589 	 * Prefer cores instead of packing HT siblings
1590 	 * and triggering future load balancing.
1591 	 */
1592 	if (is_core_idle(cpu))
1593 		idle_core = cpu;
1594 
1595 	return idle_core;
1596 }
1597 #else
1598 static inline int numa_idle_core(int idle_core, int cpu)
1599 {
1600 	return idle_core;
1601 }
1602 #endif
1603 
1604 /*
1605  * Gather all necessary information to make NUMA balancing placement
1606  * decisions that are compatible with standard load balancer. This
1607  * borrows code and logic from update_sg_lb_stats but sharing a
1608  * common implementation is impractical.
1609  */
1610 static void update_numa_stats(struct task_numa_env *env,
1611 			      struct numa_stats *ns, int nid,
1612 			      bool find_idle)
1613 {
1614 	int cpu, idle_core = -1;
1615 
1616 	memset(ns, 0, sizeof(*ns));
1617 	ns->idle_cpu = -1;
1618 
1619 	rcu_read_lock();
1620 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1621 		struct rq *rq = cpu_rq(cpu);
1622 
1623 		ns->load += cpu_load(rq);
1624 		ns->runnable += cpu_runnable(rq);
1625 		ns->util += cpu_util(cpu);
1626 		ns->nr_running += rq->cfs.h_nr_running;
1627 		ns->compute_capacity += capacity_of(cpu);
1628 
1629 		if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1630 			if (READ_ONCE(rq->numa_migrate_on) ||
1631 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1632 				continue;
1633 
1634 			if (ns->idle_cpu == -1)
1635 				ns->idle_cpu = cpu;
1636 
1637 			idle_core = numa_idle_core(idle_core, cpu);
1638 		}
1639 	}
1640 	rcu_read_unlock();
1641 
1642 	ns->weight = cpumask_weight(cpumask_of_node(nid));
1643 
1644 	ns->node_type = numa_classify(env->imbalance_pct, ns);
1645 
1646 	if (idle_core >= 0)
1647 		ns->idle_cpu = idle_core;
1648 }
1649 
1650 static void task_numa_assign(struct task_numa_env *env,
1651 			     struct task_struct *p, long imp)
1652 {
1653 	struct rq *rq = cpu_rq(env->dst_cpu);
1654 
1655 	/* Check if run-queue part of active NUMA balance. */
1656 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1657 		int cpu;
1658 		int start = env->dst_cpu;
1659 
1660 		/* Find alternative idle CPU. */
1661 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1662 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1663 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1664 				continue;
1665 			}
1666 
1667 			env->dst_cpu = cpu;
1668 			rq = cpu_rq(env->dst_cpu);
1669 			if (!xchg(&rq->numa_migrate_on, 1))
1670 				goto assign;
1671 		}
1672 
1673 		/* Failed to find an alternative idle CPU */
1674 		return;
1675 	}
1676 
1677 assign:
1678 	/*
1679 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1680 	 * found a better CPU to move/swap.
1681 	 */
1682 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1683 		rq = cpu_rq(env->best_cpu);
1684 		WRITE_ONCE(rq->numa_migrate_on, 0);
1685 	}
1686 
1687 	if (env->best_task)
1688 		put_task_struct(env->best_task);
1689 	if (p)
1690 		get_task_struct(p);
1691 
1692 	env->best_task = p;
1693 	env->best_imp = imp;
1694 	env->best_cpu = env->dst_cpu;
1695 }
1696 
1697 static bool load_too_imbalanced(long src_load, long dst_load,
1698 				struct task_numa_env *env)
1699 {
1700 	long imb, old_imb;
1701 	long orig_src_load, orig_dst_load;
1702 	long src_capacity, dst_capacity;
1703 
1704 	/*
1705 	 * The load is corrected for the CPU capacity available on each node.
1706 	 *
1707 	 * src_load        dst_load
1708 	 * ------------ vs ---------
1709 	 * src_capacity    dst_capacity
1710 	 */
1711 	src_capacity = env->src_stats.compute_capacity;
1712 	dst_capacity = env->dst_stats.compute_capacity;
1713 
1714 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1715 
1716 	orig_src_load = env->src_stats.load;
1717 	orig_dst_load = env->dst_stats.load;
1718 
1719 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1720 
1721 	/* Would this change make things worse? */
1722 	return (imb > old_imb);
1723 }
1724 
1725 /*
1726  * Maximum NUMA importance can be 1998 (2*999);
1727  * SMALLIMP @ 30 would be close to 1998/64.
1728  * Used to deter task migration.
1729  */
1730 #define SMALLIMP	30
1731 
1732 /*
1733  * This checks if the overall compute and NUMA accesses of the system would
1734  * be improved if the source tasks was migrated to the target dst_cpu taking
1735  * into account that it might be best if task running on the dst_cpu should
1736  * be exchanged with the source task
1737  */
1738 static bool task_numa_compare(struct task_numa_env *env,
1739 			      long taskimp, long groupimp, bool maymove)
1740 {
1741 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1742 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1743 	long imp = p_ng ? groupimp : taskimp;
1744 	struct task_struct *cur;
1745 	long src_load, dst_load;
1746 	int dist = env->dist;
1747 	long moveimp = imp;
1748 	long load;
1749 	bool stopsearch = false;
1750 
1751 	if (READ_ONCE(dst_rq->numa_migrate_on))
1752 		return false;
1753 
1754 	rcu_read_lock();
1755 	cur = rcu_dereference(dst_rq->curr);
1756 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1757 		cur = NULL;
1758 
1759 	/*
1760 	 * Because we have preemption enabled we can get migrated around and
1761 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1762 	 */
1763 	if (cur == env->p) {
1764 		stopsearch = true;
1765 		goto unlock;
1766 	}
1767 
1768 	if (!cur) {
1769 		if (maymove && moveimp >= env->best_imp)
1770 			goto assign;
1771 		else
1772 			goto unlock;
1773 	}
1774 
1775 	/* Skip this swap candidate if cannot move to the source cpu. */
1776 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1777 		goto unlock;
1778 
1779 	/*
1780 	 * Skip this swap candidate if it is not moving to its preferred
1781 	 * node and the best task is.
1782 	 */
1783 	if (env->best_task &&
1784 	    env->best_task->numa_preferred_nid == env->src_nid &&
1785 	    cur->numa_preferred_nid != env->src_nid) {
1786 		goto unlock;
1787 	}
1788 
1789 	/*
1790 	 * "imp" is the fault differential for the source task between the
1791 	 * source and destination node. Calculate the total differential for
1792 	 * the source task and potential destination task. The more negative
1793 	 * the value is, the more remote accesses that would be expected to
1794 	 * be incurred if the tasks were swapped.
1795 	 *
1796 	 * If dst and source tasks are in the same NUMA group, or not
1797 	 * in any group then look only at task weights.
1798 	 */
1799 	cur_ng = rcu_dereference(cur->numa_group);
1800 	if (cur_ng == p_ng) {
1801 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1802 		      task_weight(cur, env->dst_nid, dist);
1803 		/*
1804 		 * Add some hysteresis to prevent swapping the
1805 		 * tasks within a group over tiny differences.
1806 		 */
1807 		if (cur_ng)
1808 			imp -= imp / 16;
1809 	} else {
1810 		/*
1811 		 * Compare the group weights. If a task is all by itself
1812 		 * (not part of a group), use the task weight instead.
1813 		 */
1814 		if (cur_ng && p_ng)
1815 			imp += group_weight(cur, env->src_nid, dist) -
1816 			       group_weight(cur, env->dst_nid, dist);
1817 		else
1818 			imp += task_weight(cur, env->src_nid, dist) -
1819 			       task_weight(cur, env->dst_nid, dist);
1820 	}
1821 
1822 	/* Discourage picking a task already on its preferred node */
1823 	if (cur->numa_preferred_nid == env->dst_nid)
1824 		imp -= imp / 16;
1825 
1826 	/*
1827 	 * Encourage picking a task that moves to its preferred node.
1828 	 * This potentially makes imp larger than it's maximum of
1829 	 * 1998 (see SMALLIMP and task_weight for why) but in this
1830 	 * case, it does not matter.
1831 	 */
1832 	if (cur->numa_preferred_nid == env->src_nid)
1833 		imp += imp / 8;
1834 
1835 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1836 		imp = moveimp;
1837 		cur = NULL;
1838 		goto assign;
1839 	}
1840 
1841 	/*
1842 	 * Prefer swapping with a task moving to its preferred node over a
1843 	 * task that is not.
1844 	 */
1845 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1846 	    env->best_task->numa_preferred_nid != env->src_nid) {
1847 		goto assign;
1848 	}
1849 
1850 	/*
1851 	 * If the NUMA importance is less than SMALLIMP,
1852 	 * task migration might only result in ping pong
1853 	 * of tasks and also hurt performance due to cache
1854 	 * misses.
1855 	 */
1856 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1857 		goto unlock;
1858 
1859 	/*
1860 	 * In the overloaded case, try and keep the load balanced.
1861 	 */
1862 	load = task_h_load(env->p) - task_h_load(cur);
1863 	if (!load)
1864 		goto assign;
1865 
1866 	dst_load = env->dst_stats.load + load;
1867 	src_load = env->src_stats.load - load;
1868 
1869 	if (load_too_imbalanced(src_load, dst_load, env))
1870 		goto unlock;
1871 
1872 assign:
1873 	/* Evaluate an idle CPU for a task numa move. */
1874 	if (!cur) {
1875 		int cpu = env->dst_stats.idle_cpu;
1876 
1877 		/* Nothing cached so current CPU went idle since the search. */
1878 		if (cpu < 0)
1879 			cpu = env->dst_cpu;
1880 
1881 		/*
1882 		 * If the CPU is no longer truly idle and the previous best CPU
1883 		 * is, keep using it.
1884 		 */
1885 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1886 		    idle_cpu(env->best_cpu)) {
1887 			cpu = env->best_cpu;
1888 		}
1889 
1890 		env->dst_cpu = cpu;
1891 	}
1892 
1893 	task_numa_assign(env, cur, imp);
1894 
1895 	/*
1896 	 * If a move to idle is allowed because there is capacity or load
1897 	 * balance improves then stop the search. While a better swap
1898 	 * candidate may exist, a search is not free.
1899 	 */
1900 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1901 		stopsearch = true;
1902 
1903 	/*
1904 	 * If a swap candidate must be identified and the current best task
1905 	 * moves its preferred node then stop the search.
1906 	 */
1907 	if (!maymove && env->best_task &&
1908 	    env->best_task->numa_preferred_nid == env->src_nid) {
1909 		stopsearch = true;
1910 	}
1911 unlock:
1912 	rcu_read_unlock();
1913 
1914 	return stopsearch;
1915 }
1916 
1917 static void task_numa_find_cpu(struct task_numa_env *env,
1918 				long taskimp, long groupimp)
1919 {
1920 	bool maymove = false;
1921 	int cpu;
1922 
1923 	/*
1924 	 * If dst node has spare capacity, then check if there is an
1925 	 * imbalance that would be overruled by the load balancer.
1926 	 */
1927 	if (env->dst_stats.node_type == node_has_spare) {
1928 		unsigned int imbalance;
1929 		int src_running, dst_running;
1930 
1931 		/*
1932 		 * Would movement cause an imbalance? Note that if src has
1933 		 * more running tasks that the imbalance is ignored as the
1934 		 * move improves the imbalance from the perspective of the
1935 		 * CPU load balancer.
1936 		 * */
1937 		src_running = env->src_stats.nr_running - 1;
1938 		dst_running = env->dst_stats.nr_running + 1;
1939 		imbalance = max(0, dst_running - src_running);
1940 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
1941 							env->dst_stats.weight);
1942 
1943 		/* Use idle CPU if there is no imbalance */
1944 		if (!imbalance) {
1945 			maymove = true;
1946 			if (env->dst_stats.idle_cpu >= 0) {
1947 				env->dst_cpu = env->dst_stats.idle_cpu;
1948 				task_numa_assign(env, NULL, 0);
1949 				return;
1950 			}
1951 		}
1952 	} else {
1953 		long src_load, dst_load, load;
1954 		/*
1955 		 * If the improvement from just moving env->p direction is better
1956 		 * than swapping tasks around, check if a move is possible.
1957 		 */
1958 		load = task_h_load(env->p);
1959 		dst_load = env->dst_stats.load + load;
1960 		src_load = env->src_stats.load - load;
1961 		maymove = !load_too_imbalanced(src_load, dst_load, env);
1962 	}
1963 
1964 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1965 		/* Skip this CPU if the source task cannot migrate */
1966 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1967 			continue;
1968 
1969 		env->dst_cpu = cpu;
1970 		if (task_numa_compare(env, taskimp, groupimp, maymove))
1971 			break;
1972 	}
1973 }
1974 
1975 static int task_numa_migrate(struct task_struct *p)
1976 {
1977 	struct task_numa_env env = {
1978 		.p = p,
1979 
1980 		.src_cpu = task_cpu(p),
1981 		.src_nid = task_node(p),
1982 
1983 		.imbalance_pct = 112,
1984 
1985 		.best_task = NULL,
1986 		.best_imp = 0,
1987 		.best_cpu = -1,
1988 	};
1989 	unsigned long taskweight, groupweight;
1990 	struct sched_domain *sd;
1991 	long taskimp, groupimp;
1992 	struct numa_group *ng;
1993 	struct rq *best_rq;
1994 	int nid, ret, dist;
1995 
1996 	/*
1997 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1998 	 * imbalance and would be the first to start moving tasks about.
1999 	 *
2000 	 * And we want to avoid any moving of tasks about, as that would create
2001 	 * random movement of tasks -- counter the numa conditions we're trying
2002 	 * to satisfy here.
2003 	 */
2004 	rcu_read_lock();
2005 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2006 	if (sd)
2007 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2008 	rcu_read_unlock();
2009 
2010 	/*
2011 	 * Cpusets can break the scheduler domain tree into smaller
2012 	 * balance domains, some of which do not cross NUMA boundaries.
2013 	 * Tasks that are "trapped" in such domains cannot be migrated
2014 	 * elsewhere, so there is no point in (re)trying.
2015 	 */
2016 	if (unlikely(!sd)) {
2017 		sched_setnuma(p, task_node(p));
2018 		return -EINVAL;
2019 	}
2020 
2021 	env.dst_nid = p->numa_preferred_nid;
2022 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2023 	taskweight = task_weight(p, env.src_nid, dist);
2024 	groupweight = group_weight(p, env.src_nid, dist);
2025 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2026 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2027 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2028 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2029 
2030 	/* Try to find a spot on the preferred nid. */
2031 	task_numa_find_cpu(&env, taskimp, groupimp);
2032 
2033 	/*
2034 	 * Look at other nodes in these cases:
2035 	 * - there is no space available on the preferred_nid
2036 	 * - the task is part of a numa_group that is interleaved across
2037 	 *   multiple NUMA nodes; in order to better consolidate the group,
2038 	 *   we need to check other locations.
2039 	 */
2040 	ng = deref_curr_numa_group(p);
2041 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2042 		for_each_online_node(nid) {
2043 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2044 				continue;
2045 
2046 			dist = node_distance(env.src_nid, env.dst_nid);
2047 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2048 						dist != env.dist) {
2049 				taskweight = task_weight(p, env.src_nid, dist);
2050 				groupweight = group_weight(p, env.src_nid, dist);
2051 			}
2052 
2053 			/* Only consider nodes where both task and groups benefit */
2054 			taskimp = task_weight(p, nid, dist) - taskweight;
2055 			groupimp = group_weight(p, nid, dist) - groupweight;
2056 			if (taskimp < 0 && groupimp < 0)
2057 				continue;
2058 
2059 			env.dist = dist;
2060 			env.dst_nid = nid;
2061 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2062 			task_numa_find_cpu(&env, taskimp, groupimp);
2063 		}
2064 	}
2065 
2066 	/*
2067 	 * If the task is part of a workload that spans multiple NUMA nodes,
2068 	 * and is migrating into one of the workload's active nodes, remember
2069 	 * this node as the task's preferred numa node, so the workload can
2070 	 * settle down.
2071 	 * A task that migrated to a second choice node will be better off
2072 	 * trying for a better one later. Do not set the preferred node here.
2073 	 */
2074 	if (ng) {
2075 		if (env.best_cpu == -1)
2076 			nid = env.src_nid;
2077 		else
2078 			nid = cpu_to_node(env.best_cpu);
2079 
2080 		if (nid != p->numa_preferred_nid)
2081 			sched_setnuma(p, nid);
2082 	}
2083 
2084 	/* No better CPU than the current one was found. */
2085 	if (env.best_cpu == -1) {
2086 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2087 		return -EAGAIN;
2088 	}
2089 
2090 	best_rq = cpu_rq(env.best_cpu);
2091 	if (env.best_task == NULL) {
2092 		ret = migrate_task_to(p, env.best_cpu);
2093 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2094 		if (ret != 0)
2095 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2096 		return ret;
2097 	}
2098 
2099 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2100 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2101 
2102 	if (ret != 0)
2103 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2104 	put_task_struct(env.best_task);
2105 	return ret;
2106 }
2107 
2108 /* Attempt to migrate a task to a CPU on the preferred node. */
2109 static void numa_migrate_preferred(struct task_struct *p)
2110 {
2111 	unsigned long interval = HZ;
2112 
2113 	/* This task has no NUMA fault statistics yet */
2114 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2115 		return;
2116 
2117 	/* Periodically retry migrating the task to the preferred node */
2118 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2119 	p->numa_migrate_retry = jiffies + interval;
2120 
2121 	/* Success if task is already running on preferred CPU */
2122 	if (task_node(p) == p->numa_preferred_nid)
2123 		return;
2124 
2125 	/* Otherwise, try migrate to a CPU on the preferred node */
2126 	task_numa_migrate(p);
2127 }
2128 
2129 /*
2130  * Find out how many nodes on the workload is actively running on. Do this by
2131  * tracking the nodes from which NUMA hinting faults are triggered. This can
2132  * be different from the set of nodes where the workload's memory is currently
2133  * located.
2134  */
2135 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2136 {
2137 	unsigned long faults, max_faults = 0;
2138 	int nid, active_nodes = 0;
2139 
2140 	for_each_online_node(nid) {
2141 		faults = group_faults_cpu(numa_group, nid);
2142 		if (faults > max_faults)
2143 			max_faults = faults;
2144 	}
2145 
2146 	for_each_online_node(nid) {
2147 		faults = group_faults_cpu(numa_group, nid);
2148 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2149 			active_nodes++;
2150 	}
2151 
2152 	numa_group->max_faults_cpu = max_faults;
2153 	numa_group->active_nodes = active_nodes;
2154 }
2155 
2156 /*
2157  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2158  * increments. The more local the fault statistics are, the higher the scan
2159  * period will be for the next scan window. If local/(local+remote) ratio is
2160  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2161  * the scan period will decrease. Aim for 70% local accesses.
2162  */
2163 #define NUMA_PERIOD_SLOTS 10
2164 #define NUMA_PERIOD_THRESHOLD 7
2165 
2166 /*
2167  * Increase the scan period (slow down scanning) if the majority of
2168  * our memory is already on our local node, or if the majority of
2169  * the page accesses are shared with other processes.
2170  * Otherwise, decrease the scan period.
2171  */
2172 static void update_task_scan_period(struct task_struct *p,
2173 			unsigned long shared, unsigned long private)
2174 {
2175 	unsigned int period_slot;
2176 	int lr_ratio, ps_ratio;
2177 	int diff;
2178 
2179 	unsigned long remote = p->numa_faults_locality[0];
2180 	unsigned long local = p->numa_faults_locality[1];
2181 
2182 	/*
2183 	 * If there were no record hinting faults then either the task is
2184 	 * completely idle or all activity is areas that are not of interest
2185 	 * to automatic numa balancing. Related to that, if there were failed
2186 	 * migration then it implies we are migrating too quickly or the local
2187 	 * node is overloaded. In either case, scan slower
2188 	 */
2189 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2190 		p->numa_scan_period = min(p->numa_scan_period_max,
2191 			p->numa_scan_period << 1);
2192 
2193 		p->mm->numa_next_scan = jiffies +
2194 			msecs_to_jiffies(p->numa_scan_period);
2195 
2196 		return;
2197 	}
2198 
2199 	/*
2200 	 * Prepare to scale scan period relative to the current period.
2201 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2202 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2203 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2204 	 */
2205 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2206 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2207 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2208 
2209 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2210 		/*
2211 		 * Most memory accesses are local. There is no need to
2212 		 * do fast NUMA scanning, since memory is already local.
2213 		 */
2214 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2215 		if (!slot)
2216 			slot = 1;
2217 		diff = slot * period_slot;
2218 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2219 		/*
2220 		 * Most memory accesses are shared with other tasks.
2221 		 * There is no point in continuing fast NUMA scanning,
2222 		 * since other tasks may just move the memory elsewhere.
2223 		 */
2224 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2225 		if (!slot)
2226 			slot = 1;
2227 		diff = slot * period_slot;
2228 	} else {
2229 		/*
2230 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2231 		 * yet they are not on the local NUMA node. Speed up
2232 		 * NUMA scanning to get the memory moved over.
2233 		 */
2234 		int ratio = max(lr_ratio, ps_ratio);
2235 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2236 	}
2237 
2238 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2239 			task_scan_min(p), task_scan_max(p));
2240 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2241 }
2242 
2243 /*
2244  * Get the fraction of time the task has been running since the last
2245  * NUMA placement cycle. The scheduler keeps similar statistics, but
2246  * decays those on a 32ms period, which is orders of magnitude off
2247  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2248  * stats only if the task is so new there are no NUMA statistics yet.
2249  */
2250 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2251 {
2252 	u64 runtime, delta, now;
2253 	/* Use the start of this time slice to avoid calculations. */
2254 	now = p->se.exec_start;
2255 	runtime = p->se.sum_exec_runtime;
2256 
2257 	if (p->last_task_numa_placement) {
2258 		delta = runtime - p->last_sum_exec_runtime;
2259 		*period = now - p->last_task_numa_placement;
2260 
2261 		/* Avoid time going backwards, prevent potential divide error: */
2262 		if (unlikely((s64)*period < 0))
2263 			*period = 0;
2264 	} else {
2265 		delta = p->se.avg.load_sum;
2266 		*period = LOAD_AVG_MAX;
2267 	}
2268 
2269 	p->last_sum_exec_runtime = runtime;
2270 	p->last_task_numa_placement = now;
2271 
2272 	return delta;
2273 }
2274 
2275 /*
2276  * Determine the preferred nid for a task in a numa_group. This needs to
2277  * be done in a way that produces consistent results with group_weight,
2278  * otherwise workloads might not converge.
2279  */
2280 static int preferred_group_nid(struct task_struct *p, int nid)
2281 {
2282 	nodemask_t nodes;
2283 	int dist;
2284 
2285 	/* Direct connections between all NUMA nodes. */
2286 	if (sched_numa_topology_type == NUMA_DIRECT)
2287 		return nid;
2288 
2289 	/*
2290 	 * On a system with glueless mesh NUMA topology, group_weight
2291 	 * scores nodes according to the number of NUMA hinting faults on
2292 	 * both the node itself, and on nearby nodes.
2293 	 */
2294 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2295 		unsigned long score, max_score = 0;
2296 		int node, max_node = nid;
2297 
2298 		dist = sched_max_numa_distance;
2299 
2300 		for_each_online_node(node) {
2301 			score = group_weight(p, node, dist);
2302 			if (score > max_score) {
2303 				max_score = score;
2304 				max_node = node;
2305 			}
2306 		}
2307 		return max_node;
2308 	}
2309 
2310 	/*
2311 	 * Finding the preferred nid in a system with NUMA backplane
2312 	 * interconnect topology is more involved. The goal is to locate
2313 	 * tasks from numa_groups near each other in the system, and
2314 	 * untangle workloads from different sides of the system. This requires
2315 	 * searching down the hierarchy of node groups, recursively searching
2316 	 * inside the highest scoring group of nodes. The nodemask tricks
2317 	 * keep the complexity of the search down.
2318 	 */
2319 	nodes = node_online_map;
2320 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2321 		unsigned long max_faults = 0;
2322 		nodemask_t max_group = NODE_MASK_NONE;
2323 		int a, b;
2324 
2325 		/* Are there nodes at this distance from each other? */
2326 		if (!find_numa_distance(dist))
2327 			continue;
2328 
2329 		for_each_node_mask(a, nodes) {
2330 			unsigned long faults = 0;
2331 			nodemask_t this_group;
2332 			nodes_clear(this_group);
2333 
2334 			/* Sum group's NUMA faults; includes a==b case. */
2335 			for_each_node_mask(b, nodes) {
2336 				if (node_distance(a, b) < dist) {
2337 					faults += group_faults(p, b);
2338 					node_set(b, this_group);
2339 					node_clear(b, nodes);
2340 				}
2341 			}
2342 
2343 			/* Remember the top group. */
2344 			if (faults > max_faults) {
2345 				max_faults = faults;
2346 				max_group = this_group;
2347 				/*
2348 				 * subtle: at the smallest distance there is
2349 				 * just one node left in each "group", the
2350 				 * winner is the preferred nid.
2351 				 */
2352 				nid = a;
2353 			}
2354 		}
2355 		/* Next round, evaluate the nodes within max_group. */
2356 		if (!max_faults)
2357 			break;
2358 		nodes = max_group;
2359 	}
2360 	return nid;
2361 }
2362 
2363 static void task_numa_placement(struct task_struct *p)
2364 {
2365 	int seq, nid, max_nid = NUMA_NO_NODE;
2366 	unsigned long max_faults = 0;
2367 	unsigned long fault_types[2] = { 0, 0 };
2368 	unsigned long total_faults;
2369 	u64 runtime, period;
2370 	spinlock_t *group_lock = NULL;
2371 	struct numa_group *ng;
2372 
2373 	/*
2374 	 * The p->mm->numa_scan_seq field gets updated without
2375 	 * exclusive access. Use READ_ONCE() here to ensure
2376 	 * that the field is read in a single access:
2377 	 */
2378 	seq = READ_ONCE(p->mm->numa_scan_seq);
2379 	if (p->numa_scan_seq == seq)
2380 		return;
2381 	p->numa_scan_seq = seq;
2382 	p->numa_scan_period_max = task_scan_max(p);
2383 
2384 	total_faults = p->numa_faults_locality[0] +
2385 		       p->numa_faults_locality[1];
2386 	runtime = numa_get_avg_runtime(p, &period);
2387 
2388 	/* If the task is part of a group prevent parallel updates to group stats */
2389 	ng = deref_curr_numa_group(p);
2390 	if (ng) {
2391 		group_lock = &ng->lock;
2392 		spin_lock_irq(group_lock);
2393 	}
2394 
2395 	/* Find the node with the highest number of faults */
2396 	for_each_online_node(nid) {
2397 		/* Keep track of the offsets in numa_faults array */
2398 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2399 		unsigned long faults = 0, group_faults = 0;
2400 		int priv;
2401 
2402 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2403 			long diff, f_diff, f_weight;
2404 
2405 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2406 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2407 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2408 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2409 
2410 			/* Decay existing window, copy faults since last scan */
2411 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2412 			fault_types[priv] += p->numa_faults[membuf_idx];
2413 			p->numa_faults[membuf_idx] = 0;
2414 
2415 			/*
2416 			 * Normalize the faults_from, so all tasks in a group
2417 			 * count according to CPU use, instead of by the raw
2418 			 * number of faults. Tasks with little runtime have
2419 			 * little over-all impact on throughput, and thus their
2420 			 * faults are less important.
2421 			 */
2422 			f_weight = div64_u64(runtime << 16, period + 1);
2423 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2424 				   (total_faults + 1);
2425 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2426 			p->numa_faults[cpubuf_idx] = 0;
2427 
2428 			p->numa_faults[mem_idx] += diff;
2429 			p->numa_faults[cpu_idx] += f_diff;
2430 			faults += p->numa_faults[mem_idx];
2431 			p->total_numa_faults += diff;
2432 			if (ng) {
2433 				/*
2434 				 * safe because we can only change our own group
2435 				 *
2436 				 * mem_idx represents the offset for a given
2437 				 * nid and priv in a specific region because it
2438 				 * is at the beginning of the numa_faults array.
2439 				 */
2440 				ng->faults[mem_idx] += diff;
2441 				ng->faults_cpu[mem_idx] += f_diff;
2442 				ng->total_faults += diff;
2443 				group_faults += ng->faults[mem_idx];
2444 			}
2445 		}
2446 
2447 		if (!ng) {
2448 			if (faults > max_faults) {
2449 				max_faults = faults;
2450 				max_nid = nid;
2451 			}
2452 		} else if (group_faults > max_faults) {
2453 			max_faults = group_faults;
2454 			max_nid = nid;
2455 		}
2456 	}
2457 
2458 	if (ng) {
2459 		numa_group_count_active_nodes(ng);
2460 		spin_unlock_irq(group_lock);
2461 		max_nid = preferred_group_nid(p, max_nid);
2462 	}
2463 
2464 	if (max_faults) {
2465 		/* Set the new preferred node */
2466 		if (max_nid != p->numa_preferred_nid)
2467 			sched_setnuma(p, max_nid);
2468 	}
2469 
2470 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2471 }
2472 
2473 static inline int get_numa_group(struct numa_group *grp)
2474 {
2475 	return refcount_inc_not_zero(&grp->refcount);
2476 }
2477 
2478 static inline void put_numa_group(struct numa_group *grp)
2479 {
2480 	if (refcount_dec_and_test(&grp->refcount))
2481 		kfree_rcu(grp, rcu);
2482 }
2483 
2484 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2485 			int *priv)
2486 {
2487 	struct numa_group *grp, *my_grp;
2488 	struct task_struct *tsk;
2489 	bool join = false;
2490 	int cpu = cpupid_to_cpu(cpupid);
2491 	int i;
2492 
2493 	if (unlikely(!deref_curr_numa_group(p))) {
2494 		unsigned int size = sizeof(struct numa_group) +
2495 				    4*nr_node_ids*sizeof(unsigned long);
2496 
2497 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2498 		if (!grp)
2499 			return;
2500 
2501 		refcount_set(&grp->refcount, 1);
2502 		grp->active_nodes = 1;
2503 		grp->max_faults_cpu = 0;
2504 		spin_lock_init(&grp->lock);
2505 		grp->gid = p->pid;
2506 		/* Second half of the array tracks nids where faults happen */
2507 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2508 						nr_node_ids;
2509 
2510 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2511 			grp->faults[i] = p->numa_faults[i];
2512 
2513 		grp->total_faults = p->total_numa_faults;
2514 
2515 		grp->nr_tasks++;
2516 		rcu_assign_pointer(p->numa_group, grp);
2517 	}
2518 
2519 	rcu_read_lock();
2520 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2521 
2522 	if (!cpupid_match_pid(tsk, cpupid))
2523 		goto no_join;
2524 
2525 	grp = rcu_dereference(tsk->numa_group);
2526 	if (!grp)
2527 		goto no_join;
2528 
2529 	my_grp = deref_curr_numa_group(p);
2530 	if (grp == my_grp)
2531 		goto no_join;
2532 
2533 	/*
2534 	 * Only join the other group if its bigger; if we're the bigger group,
2535 	 * the other task will join us.
2536 	 */
2537 	if (my_grp->nr_tasks > grp->nr_tasks)
2538 		goto no_join;
2539 
2540 	/*
2541 	 * Tie-break on the grp address.
2542 	 */
2543 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2544 		goto no_join;
2545 
2546 	/* Always join threads in the same process. */
2547 	if (tsk->mm == current->mm)
2548 		join = true;
2549 
2550 	/* Simple filter to avoid false positives due to PID collisions */
2551 	if (flags & TNF_SHARED)
2552 		join = true;
2553 
2554 	/* Update priv based on whether false sharing was detected */
2555 	*priv = !join;
2556 
2557 	if (join && !get_numa_group(grp))
2558 		goto no_join;
2559 
2560 	rcu_read_unlock();
2561 
2562 	if (!join)
2563 		return;
2564 
2565 	BUG_ON(irqs_disabled());
2566 	double_lock_irq(&my_grp->lock, &grp->lock);
2567 
2568 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2569 		my_grp->faults[i] -= p->numa_faults[i];
2570 		grp->faults[i] += p->numa_faults[i];
2571 	}
2572 	my_grp->total_faults -= p->total_numa_faults;
2573 	grp->total_faults += p->total_numa_faults;
2574 
2575 	my_grp->nr_tasks--;
2576 	grp->nr_tasks++;
2577 
2578 	spin_unlock(&my_grp->lock);
2579 	spin_unlock_irq(&grp->lock);
2580 
2581 	rcu_assign_pointer(p->numa_group, grp);
2582 
2583 	put_numa_group(my_grp);
2584 	return;
2585 
2586 no_join:
2587 	rcu_read_unlock();
2588 	return;
2589 }
2590 
2591 /*
2592  * Get rid of NUMA statistics associated with a task (either current or dead).
2593  * If @final is set, the task is dead and has reached refcount zero, so we can
2594  * safely free all relevant data structures. Otherwise, there might be
2595  * concurrent reads from places like load balancing and procfs, and we should
2596  * reset the data back to default state without freeing ->numa_faults.
2597  */
2598 void task_numa_free(struct task_struct *p, bool final)
2599 {
2600 	/* safe: p either is current or is being freed by current */
2601 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2602 	unsigned long *numa_faults = p->numa_faults;
2603 	unsigned long flags;
2604 	int i;
2605 
2606 	if (!numa_faults)
2607 		return;
2608 
2609 	if (grp) {
2610 		spin_lock_irqsave(&grp->lock, flags);
2611 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2612 			grp->faults[i] -= p->numa_faults[i];
2613 		grp->total_faults -= p->total_numa_faults;
2614 
2615 		grp->nr_tasks--;
2616 		spin_unlock_irqrestore(&grp->lock, flags);
2617 		RCU_INIT_POINTER(p->numa_group, NULL);
2618 		put_numa_group(grp);
2619 	}
2620 
2621 	if (final) {
2622 		p->numa_faults = NULL;
2623 		kfree(numa_faults);
2624 	} else {
2625 		p->total_numa_faults = 0;
2626 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2627 			numa_faults[i] = 0;
2628 	}
2629 }
2630 
2631 /*
2632  * Got a PROT_NONE fault for a page on @node.
2633  */
2634 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2635 {
2636 	struct task_struct *p = current;
2637 	bool migrated = flags & TNF_MIGRATED;
2638 	int cpu_node = task_node(current);
2639 	int local = !!(flags & TNF_FAULT_LOCAL);
2640 	struct numa_group *ng;
2641 	int priv;
2642 
2643 	if (!static_branch_likely(&sched_numa_balancing))
2644 		return;
2645 
2646 	/* for example, ksmd faulting in a user's mm */
2647 	if (!p->mm)
2648 		return;
2649 
2650 	/* Allocate buffer to track faults on a per-node basis */
2651 	if (unlikely(!p->numa_faults)) {
2652 		int size = sizeof(*p->numa_faults) *
2653 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2654 
2655 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2656 		if (!p->numa_faults)
2657 			return;
2658 
2659 		p->total_numa_faults = 0;
2660 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2661 	}
2662 
2663 	/*
2664 	 * First accesses are treated as private, otherwise consider accesses
2665 	 * to be private if the accessing pid has not changed
2666 	 */
2667 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2668 		priv = 1;
2669 	} else {
2670 		priv = cpupid_match_pid(p, last_cpupid);
2671 		if (!priv && !(flags & TNF_NO_GROUP))
2672 			task_numa_group(p, last_cpupid, flags, &priv);
2673 	}
2674 
2675 	/*
2676 	 * If a workload spans multiple NUMA nodes, a shared fault that
2677 	 * occurs wholly within the set of nodes that the workload is
2678 	 * actively using should be counted as local. This allows the
2679 	 * scan rate to slow down when a workload has settled down.
2680 	 */
2681 	ng = deref_curr_numa_group(p);
2682 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2683 				numa_is_active_node(cpu_node, ng) &&
2684 				numa_is_active_node(mem_node, ng))
2685 		local = 1;
2686 
2687 	/*
2688 	 * Retry to migrate task to preferred node periodically, in case it
2689 	 * previously failed, or the scheduler moved us.
2690 	 */
2691 	if (time_after(jiffies, p->numa_migrate_retry)) {
2692 		task_numa_placement(p);
2693 		numa_migrate_preferred(p);
2694 	}
2695 
2696 	if (migrated)
2697 		p->numa_pages_migrated += pages;
2698 	if (flags & TNF_MIGRATE_FAIL)
2699 		p->numa_faults_locality[2] += pages;
2700 
2701 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2702 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2703 	p->numa_faults_locality[local] += pages;
2704 }
2705 
2706 static void reset_ptenuma_scan(struct task_struct *p)
2707 {
2708 	/*
2709 	 * We only did a read acquisition of the mmap sem, so
2710 	 * p->mm->numa_scan_seq is written to without exclusive access
2711 	 * and the update is not guaranteed to be atomic. That's not
2712 	 * much of an issue though, since this is just used for
2713 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2714 	 * expensive, to avoid any form of compiler optimizations:
2715 	 */
2716 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2717 	p->mm->numa_scan_offset = 0;
2718 }
2719 
2720 /*
2721  * The expensive part of numa migration is done from task_work context.
2722  * Triggered from task_tick_numa().
2723  */
2724 static void task_numa_work(struct callback_head *work)
2725 {
2726 	unsigned long migrate, next_scan, now = jiffies;
2727 	struct task_struct *p = current;
2728 	struct mm_struct *mm = p->mm;
2729 	u64 runtime = p->se.sum_exec_runtime;
2730 	struct vm_area_struct *vma;
2731 	unsigned long start, end;
2732 	unsigned long nr_pte_updates = 0;
2733 	long pages, virtpages;
2734 
2735 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2736 
2737 	work->next = work;
2738 	/*
2739 	 * Who cares about NUMA placement when they're dying.
2740 	 *
2741 	 * NOTE: make sure not to dereference p->mm before this check,
2742 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2743 	 * without p->mm even though we still had it when we enqueued this
2744 	 * work.
2745 	 */
2746 	if (p->flags & PF_EXITING)
2747 		return;
2748 
2749 	if (!mm->numa_next_scan) {
2750 		mm->numa_next_scan = now +
2751 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2752 	}
2753 
2754 	/*
2755 	 * Enforce maximal scan/migration frequency..
2756 	 */
2757 	migrate = mm->numa_next_scan;
2758 	if (time_before(now, migrate))
2759 		return;
2760 
2761 	if (p->numa_scan_period == 0) {
2762 		p->numa_scan_period_max = task_scan_max(p);
2763 		p->numa_scan_period = task_scan_start(p);
2764 	}
2765 
2766 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2767 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2768 		return;
2769 
2770 	/*
2771 	 * Delay this task enough that another task of this mm will likely win
2772 	 * the next time around.
2773 	 */
2774 	p->node_stamp += 2 * TICK_NSEC;
2775 
2776 	start = mm->numa_scan_offset;
2777 	pages = sysctl_numa_balancing_scan_size;
2778 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2779 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2780 	if (!pages)
2781 		return;
2782 
2783 
2784 	if (!mmap_read_trylock(mm))
2785 		return;
2786 	vma = find_vma(mm, start);
2787 	if (!vma) {
2788 		reset_ptenuma_scan(p);
2789 		start = 0;
2790 		vma = mm->mmap;
2791 	}
2792 	for (; vma; vma = vma->vm_next) {
2793 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2794 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2795 			continue;
2796 		}
2797 
2798 		/*
2799 		 * Shared library pages mapped by multiple processes are not
2800 		 * migrated as it is expected they are cache replicated. Avoid
2801 		 * hinting faults in read-only file-backed mappings or the vdso
2802 		 * as migrating the pages will be of marginal benefit.
2803 		 */
2804 		if (!vma->vm_mm ||
2805 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2806 			continue;
2807 
2808 		/*
2809 		 * Skip inaccessible VMAs to avoid any confusion between
2810 		 * PROT_NONE and NUMA hinting ptes
2811 		 */
2812 		if (!vma_is_accessible(vma))
2813 			continue;
2814 
2815 		do {
2816 			start = max(start, vma->vm_start);
2817 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2818 			end = min(end, vma->vm_end);
2819 			nr_pte_updates = change_prot_numa(vma, start, end);
2820 
2821 			/*
2822 			 * Try to scan sysctl_numa_balancing_size worth of
2823 			 * hpages that have at least one present PTE that
2824 			 * is not already pte-numa. If the VMA contains
2825 			 * areas that are unused or already full of prot_numa
2826 			 * PTEs, scan up to virtpages, to skip through those
2827 			 * areas faster.
2828 			 */
2829 			if (nr_pte_updates)
2830 				pages -= (end - start) >> PAGE_SHIFT;
2831 			virtpages -= (end - start) >> PAGE_SHIFT;
2832 
2833 			start = end;
2834 			if (pages <= 0 || virtpages <= 0)
2835 				goto out;
2836 
2837 			cond_resched();
2838 		} while (end != vma->vm_end);
2839 	}
2840 
2841 out:
2842 	/*
2843 	 * It is possible to reach the end of the VMA list but the last few
2844 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2845 	 * would find the !migratable VMA on the next scan but not reset the
2846 	 * scanner to the start so check it now.
2847 	 */
2848 	if (vma)
2849 		mm->numa_scan_offset = start;
2850 	else
2851 		reset_ptenuma_scan(p);
2852 	mmap_read_unlock(mm);
2853 
2854 	/*
2855 	 * Make sure tasks use at least 32x as much time to run other code
2856 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2857 	 * Usually update_task_scan_period slows down scanning enough; on an
2858 	 * overloaded system we need to limit overhead on a per task basis.
2859 	 */
2860 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2861 		u64 diff = p->se.sum_exec_runtime - runtime;
2862 		p->node_stamp += 32 * diff;
2863 	}
2864 }
2865 
2866 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2867 {
2868 	int mm_users = 0;
2869 	struct mm_struct *mm = p->mm;
2870 
2871 	if (mm) {
2872 		mm_users = atomic_read(&mm->mm_users);
2873 		if (mm_users == 1) {
2874 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2875 			mm->numa_scan_seq = 0;
2876 		}
2877 	}
2878 	p->node_stamp			= 0;
2879 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
2880 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
2881 	/* Protect against double add, see task_tick_numa and task_numa_work */
2882 	p->numa_work.next		= &p->numa_work;
2883 	p->numa_faults			= NULL;
2884 	RCU_INIT_POINTER(p->numa_group, NULL);
2885 	p->last_task_numa_placement	= 0;
2886 	p->last_sum_exec_runtime	= 0;
2887 
2888 	init_task_work(&p->numa_work, task_numa_work);
2889 
2890 	/* New address space, reset the preferred nid */
2891 	if (!(clone_flags & CLONE_VM)) {
2892 		p->numa_preferred_nid = NUMA_NO_NODE;
2893 		return;
2894 	}
2895 
2896 	/*
2897 	 * New thread, keep existing numa_preferred_nid which should be copied
2898 	 * already by arch_dup_task_struct but stagger when scans start.
2899 	 */
2900 	if (mm) {
2901 		unsigned int delay;
2902 
2903 		delay = min_t(unsigned int, task_scan_max(current),
2904 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2905 		delay += 2 * TICK_NSEC;
2906 		p->node_stamp = delay;
2907 	}
2908 }
2909 
2910 /*
2911  * Drive the periodic memory faults..
2912  */
2913 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2914 {
2915 	struct callback_head *work = &curr->numa_work;
2916 	u64 period, now;
2917 
2918 	/*
2919 	 * We don't care about NUMA placement if we don't have memory.
2920 	 */
2921 	if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2922 		return;
2923 
2924 	/*
2925 	 * Using runtime rather than walltime has the dual advantage that
2926 	 * we (mostly) drive the selection from busy threads and that the
2927 	 * task needs to have done some actual work before we bother with
2928 	 * NUMA placement.
2929 	 */
2930 	now = curr->se.sum_exec_runtime;
2931 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2932 
2933 	if (now > curr->node_stamp + period) {
2934 		if (!curr->node_stamp)
2935 			curr->numa_scan_period = task_scan_start(curr);
2936 		curr->node_stamp += period;
2937 
2938 		if (!time_before(jiffies, curr->mm->numa_next_scan))
2939 			task_work_add(curr, work, TWA_RESUME);
2940 	}
2941 }
2942 
2943 static void update_scan_period(struct task_struct *p, int new_cpu)
2944 {
2945 	int src_nid = cpu_to_node(task_cpu(p));
2946 	int dst_nid = cpu_to_node(new_cpu);
2947 
2948 	if (!static_branch_likely(&sched_numa_balancing))
2949 		return;
2950 
2951 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2952 		return;
2953 
2954 	if (src_nid == dst_nid)
2955 		return;
2956 
2957 	/*
2958 	 * Allow resets if faults have been trapped before one scan
2959 	 * has completed. This is most likely due to a new task that
2960 	 * is pulled cross-node due to wakeups or load balancing.
2961 	 */
2962 	if (p->numa_scan_seq) {
2963 		/*
2964 		 * Avoid scan adjustments if moving to the preferred
2965 		 * node or if the task was not previously running on
2966 		 * the preferred node.
2967 		 */
2968 		if (dst_nid == p->numa_preferred_nid ||
2969 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2970 			src_nid != p->numa_preferred_nid))
2971 			return;
2972 	}
2973 
2974 	p->numa_scan_period = task_scan_start(p);
2975 }
2976 
2977 #else
2978 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2979 {
2980 }
2981 
2982 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2983 {
2984 }
2985 
2986 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2987 {
2988 }
2989 
2990 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2991 {
2992 }
2993 
2994 #endif /* CONFIG_NUMA_BALANCING */
2995 
2996 static void
2997 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2998 {
2999 	update_load_add(&cfs_rq->load, se->load.weight);
3000 #ifdef CONFIG_SMP
3001 	if (entity_is_task(se)) {
3002 		struct rq *rq = rq_of(cfs_rq);
3003 
3004 		account_numa_enqueue(rq, task_of(se));
3005 		list_add(&se->group_node, &rq->cfs_tasks);
3006 	}
3007 #endif
3008 	cfs_rq->nr_running++;
3009 }
3010 
3011 static void
3012 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3013 {
3014 	update_load_sub(&cfs_rq->load, se->load.weight);
3015 #ifdef CONFIG_SMP
3016 	if (entity_is_task(se)) {
3017 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3018 		list_del_init(&se->group_node);
3019 	}
3020 #endif
3021 	cfs_rq->nr_running--;
3022 }
3023 
3024 /*
3025  * Signed add and clamp on underflow.
3026  *
3027  * Explicitly do a load-store to ensure the intermediate value never hits
3028  * memory. This allows lockless observations without ever seeing the negative
3029  * values.
3030  */
3031 #define add_positive(_ptr, _val) do {                           \
3032 	typeof(_ptr) ptr = (_ptr);                              \
3033 	typeof(_val) val = (_val);                              \
3034 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3035 								\
3036 	res = var + val;                                        \
3037 								\
3038 	if (val < 0 && res > var)                               \
3039 		res = 0;                                        \
3040 								\
3041 	WRITE_ONCE(*ptr, res);                                  \
3042 } while (0)
3043 
3044 /*
3045  * Unsigned subtract and clamp on underflow.
3046  *
3047  * Explicitly do a load-store to ensure the intermediate value never hits
3048  * memory. This allows lockless observations without ever seeing the negative
3049  * values.
3050  */
3051 #define sub_positive(_ptr, _val) do {				\
3052 	typeof(_ptr) ptr = (_ptr);				\
3053 	typeof(*ptr) val = (_val);				\
3054 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3055 	res = var - val;					\
3056 	if (res > var)						\
3057 		res = 0;					\
3058 	WRITE_ONCE(*ptr, res);					\
3059 } while (0)
3060 
3061 /*
3062  * Remove and clamp on negative, from a local variable.
3063  *
3064  * A variant of sub_positive(), which does not use explicit load-store
3065  * and is thus optimized for local variable updates.
3066  */
3067 #define lsub_positive(_ptr, _val) do {				\
3068 	typeof(_ptr) ptr = (_ptr);				\
3069 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3070 } while (0)
3071 
3072 #ifdef CONFIG_SMP
3073 static inline void
3074 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3075 {
3076 	cfs_rq->avg.load_avg += se->avg.load_avg;
3077 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3078 }
3079 
3080 static inline void
3081 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3082 {
3083 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3084 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3085 }
3086 #else
3087 static inline void
3088 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3089 static inline void
3090 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3091 #endif
3092 
3093 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3094 			    unsigned long weight)
3095 {
3096 	if (se->on_rq) {
3097 		/* commit outstanding execution time */
3098 		if (cfs_rq->curr == se)
3099 			update_curr(cfs_rq);
3100 		update_load_sub(&cfs_rq->load, se->load.weight);
3101 	}
3102 	dequeue_load_avg(cfs_rq, se);
3103 
3104 	update_load_set(&se->load, weight);
3105 
3106 #ifdef CONFIG_SMP
3107 	do {
3108 		u32 divider = get_pelt_divider(&se->avg);
3109 
3110 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3111 	} while (0);
3112 #endif
3113 
3114 	enqueue_load_avg(cfs_rq, se);
3115 	if (se->on_rq)
3116 		update_load_add(&cfs_rq->load, se->load.weight);
3117 
3118 }
3119 
3120 void reweight_task(struct task_struct *p, int prio)
3121 {
3122 	struct sched_entity *se = &p->se;
3123 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3124 	struct load_weight *load = &se->load;
3125 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3126 
3127 	reweight_entity(cfs_rq, se, weight);
3128 	load->inv_weight = sched_prio_to_wmult[prio];
3129 }
3130 
3131 #ifdef CONFIG_FAIR_GROUP_SCHED
3132 #ifdef CONFIG_SMP
3133 /*
3134  * All this does is approximate the hierarchical proportion which includes that
3135  * global sum we all love to hate.
3136  *
3137  * That is, the weight of a group entity, is the proportional share of the
3138  * group weight based on the group runqueue weights. That is:
3139  *
3140  *                     tg->weight * grq->load.weight
3141  *   ge->load.weight = -----------------------------               (1)
3142  *			  \Sum grq->load.weight
3143  *
3144  * Now, because computing that sum is prohibitively expensive to compute (been
3145  * there, done that) we approximate it with this average stuff. The average
3146  * moves slower and therefore the approximation is cheaper and more stable.
3147  *
3148  * So instead of the above, we substitute:
3149  *
3150  *   grq->load.weight -> grq->avg.load_avg                         (2)
3151  *
3152  * which yields the following:
3153  *
3154  *                     tg->weight * grq->avg.load_avg
3155  *   ge->load.weight = ------------------------------              (3)
3156  *				tg->load_avg
3157  *
3158  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3159  *
3160  * That is shares_avg, and it is right (given the approximation (2)).
3161  *
3162  * The problem with it is that because the average is slow -- it was designed
3163  * to be exactly that of course -- this leads to transients in boundary
3164  * conditions. In specific, the case where the group was idle and we start the
3165  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3166  * yielding bad latency etc..
3167  *
3168  * Now, in that special case (1) reduces to:
3169  *
3170  *                     tg->weight * grq->load.weight
3171  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3172  *			    grp->load.weight
3173  *
3174  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3175  *
3176  * So what we do is modify our approximation (3) to approach (4) in the (near)
3177  * UP case, like:
3178  *
3179  *   ge->load.weight =
3180  *
3181  *              tg->weight * grq->load.weight
3182  *     ---------------------------------------------------         (5)
3183  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3184  *
3185  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3186  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3187  *
3188  *
3189  *                     tg->weight * grq->load.weight
3190  *   ge->load.weight = -----------------------------		   (6)
3191  *				tg_load_avg'
3192  *
3193  * Where:
3194  *
3195  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3196  *                  max(grq->load.weight, grq->avg.load_avg)
3197  *
3198  * And that is shares_weight and is icky. In the (near) UP case it approaches
3199  * (4) while in the normal case it approaches (3). It consistently
3200  * overestimates the ge->load.weight and therefore:
3201  *
3202  *   \Sum ge->load.weight >= tg->weight
3203  *
3204  * hence icky!
3205  */
3206 static long calc_group_shares(struct cfs_rq *cfs_rq)
3207 {
3208 	long tg_weight, tg_shares, load, shares;
3209 	struct task_group *tg = cfs_rq->tg;
3210 
3211 	tg_shares = READ_ONCE(tg->shares);
3212 
3213 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3214 
3215 	tg_weight = atomic_long_read(&tg->load_avg);
3216 
3217 	/* Ensure tg_weight >= load */
3218 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3219 	tg_weight += load;
3220 
3221 	shares = (tg_shares * load);
3222 	if (tg_weight)
3223 		shares /= tg_weight;
3224 
3225 	/*
3226 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3227 	 * of a group with small tg->shares value. It is a floor value which is
3228 	 * assigned as a minimum load.weight to the sched_entity representing
3229 	 * the group on a CPU.
3230 	 *
3231 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3232 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3233 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3234 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3235 	 * instead of 0.
3236 	 */
3237 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3238 }
3239 #endif /* CONFIG_SMP */
3240 
3241 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3242 
3243 /*
3244  * Recomputes the group entity based on the current state of its group
3245  * runqueue.
3246  */
3247 static void update_cfs_group(struct sched_entity *se)
3248 {
3249 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3250 	long shares;
3251 
3252 	if (!gcfs_rq)
3253 		return;
3254 
3255 	if (throttled_hierarchy(gcfs_rq))
3256 		return;
3257 
3258 #ifndef CONFIG_SMP
3259 	shares = READ_ONCE(gcfs_rq->tg->shares);
3260 
3261 	if (likely(se->load.weight == shares))
3262 		return;
3263 #else
3264 	shares   = calc_group_shares(gcfs_rq);
3265 #endif
3266 
3267 	reweight_entity(cfs_rq_of(se), se, shares);
3268 }
3269 
3270 #else /* CONFIG_FAIR_GROUP_SCHED */
3271 static inline void update_cfs_group(struct sched_entity *se)
3272 {
3273 }
3274 #endif /* CONFIG_FAIR_GROUP_SCHED */
3275 
3276 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3277 {
3278 	struct rq *rq = rq_of(cfs_rq);
3279 
3280 	if (&rq->cfs == cfs_rq) {
3281 		/*
3282 		 * There are a few boundary cases this might miss but it should
3283 		 * get called often enough that that should (hopefully) not be
3284 		 * a real problem.
3285 		 *
3286 		 * It will not get called when we go idle, because the idle
3287 		 * thread is a different class (!fair), nor will the utilization
3288 		 * number include things like RT tasks.
3289 		 *
3290 		 * As is, the util number is not freq-invariant (we'd have to
3291 		 * implement arch_scale_freq_capacity() for that).
3292 		 *
3293 		 * See cpu_util().
3294 		 */
3295 		cpufreq_update_util(rq, flags);
3296 	}
3297 }
3298 
3299 #ifdef CONFIG_SMP
3300 #ifdef CONFIG_FAIR_GROUP_SCHED
3301 
3302 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3303 {
3304 	if (cfs_rq->load.weight)
3305 		return false;
3306 
3307 	if (cfs_rq->avg.load_sum)
3308 		return false;
3309 
3310 	if (cfs_rq->avg.util_sum)
3311 		return false;
3312 
3313 	if (cfs_rq->avg.runnable_sum)
3314 		return false;
3315 
3316 	return true;
3317 }
3318 
3319 /**
3320  * update_tg_load_avg - update the tg's load avg
3321  * @cfs_rq: the cfs_rq whose avg changed
3322  *
3323  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3324  * However, because tg->load_avg is a global value there are performance
3325  * considerations.
3326  *
3327  * In order to avoid having to look at the other cfs_rq's, we use a
3328  * differential update where we store the last value we propagated. This in
3329  * turn allows skipping updates if the differential is 'small'.
3330  *
3331  * Updating tg's load_avg is necessary before update_cfs_share().
3332  */
3333 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3334 {
3335 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3336 
3337 	/*
3338 	 * No need to update load_avg for root_task_group as it is not used.
3339 	 */
3340 	if (cfs_rq->tg == &root_task_group)
3341 		return;
3342 
3343 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3344 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3345 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3346 	}
3347 }
3348 
3349 /*
3350  * Called within set_task_rq() right before setting a task's CPU. The
3351  * caller only guarantees p->pi_lock is held; no other assumptions,
3352  * including the state of rq->lock, should be made.
3353  */
3354 void set_task_rq_fair(struct sched_entity *se,
3355 		      struct cfs_rq *prev, struct cfs_rq *next)
3356 {
3357 	u64 p_last_update_time;
3358 	u64 n_last_update_time;
3359 
3360 	if (!sched_feat(ATTACH_AGE_LOAD))
3361 		return;
3362 
3363 	/*
3364 	 * We are supposed to update the task to "current" time, then its up to
3365 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3366 	 * getting what current time is, so simply throw away the out-of-date
3367 	 * time. This will result in the wakee task is less decayed, but giving
3368 	 * the wakee more load sounds not bad.
3369 	 */
3370 	if (!(se->avg.last_update_time && prev))
3371 		return;
3372 
3373 #ifndef CONFIG_64BIT
3374 	{
3375 		u64 p_last_update_time_copy;
3376 		u64 n_last_update_time_copy;
3377 
3378 		do {
3379 			p_last_update_time_copy = prev->load_last_update_time_copy;
3380 			n_last_update_time_copy = next->load_last_update_time_copy;
3381 
3382 			smp_rmb();
3383 
3384 			p_last_update_time = prev->avg.last_update_time;
3385 			n_last_update_time = next->avg.last_update_time;
3386 
3387 		} while (p_last_update_time != p_last_update_time_copy ||
3388 			 n_last_update_time != n_last_update_time_copy);
3389 	}
3390 #else
3391 	p_last_update_time = prev->avg.last_update_time;
3392 	n_last_update_time = next->avg.last_update_time;
3393 #endif
3394 	__update_load_avg_blocked_se(p_last_update_time, se);
3395 	se->avg.last_update_time = n_last_update_time;
3396 }
3397 
3398 
3399 /*
3400  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3401  * propagate its contribution. The key to this propagation is the invariant
3402  * that for each group:
3403  *
3404  *   ge->avg == grq->avg						(1)
3405  *
3406  * _IFF_ we look at the pure running and runnable sums. Because they
3407  * represent the very same entity, just at different points in the hierarchy.
3408  *
3409  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3410  * and simply copies the running/runnable sum over (but still wrong, because
3411  * the group entity and group rq do not have their PELT windows aligned).
3412  *
3413  * However, update_tg_cfs_load() is more complex. So we have:
3414  *
3415  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3416  *
3417  * And since, like util, the runnable part should be directly transferable,
3418  * the following would _appear_ to be the straight forward approach:
3419  *
3420  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3421  *
3422  * And per (1) we have:
3423  *
3424  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3425  *
3426  * Which gives:
3427  *
3428  *                      ge->load.weight * grq->avg.load_avg
3429  *   ge->avg.load_avg = -----------------------------------		(4)
3430  *                               grq->load.weight
3431  *
3432  * Except that is wrong!
3433  *
3434  * Because while for entities historical weight is not important and we
3435  * really only care about our future and therefore can consider a pure
3436  * runnable sum, runqueues can NOT do this.
3437  *
3438  * We specifically want runqueues to have a load_avg that includes
3439  * historical weights. Those represent the blocked load, the load we expect
3440  * to (shortly) return to us. This only works by keeping the weights as
3441  * integral part of the sum. We therefore cannot decompose as per (3).
3442  *
3443  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3444  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3445  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3446  * runnable section of these tasks overlap (or not). If they were to perfectly
3447  * align the rq as a whole would be runnable 2/3 of the time. If however we
3448  * always have at least 1 runnable task, the rq as a whole is always runnable.
3449  *
3450  * So we'll have to approximate.. :/
3451  *
3452  * Given the constraint:
3453  *
3454  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3455  *
3456  * We can construct a rule that adds runnable to a rq by assuming minimal
3457  * overlap.
3458  *
3459  * On removal, we'll assume each task is equally runnable; which yields:
3460  *
3461  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3462  *
3463  * XXX: only do this for the part of runnable > running ?
3464  *
3465  */
3466 
3467 static inline void
3468 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3469 {
3470 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3471 	u32 divider;
3472 
3473 	/* Nothing to update */
3474 	if (!delta)
3475 		return;
3476 
3477 	/*
3478 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3479 	 * See ___update_load_avg() for details.
3480 	 */
3481 	divider = get_pelt_divider(&cfs_rq->avg);
3482 
3483 	/* Set new sched_entity's utilization */
3484 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3485 	se->avg.util_sum = se->avg.util_avg * divider;
3486 
3487 	/* Update parent cfs_rq utilization */
3488 	add_positive(&cfs_rq->avg.util_avg, delta);
3489 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3490 }
3491 
3492 static inline void
3493 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3494 {
3495 	long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3496 	u32 divider;
3497 
3498 	/* Nothing to update */
3499 	if (!delta)
3500 		return;
3501 
3502 	/*
3503 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3504 	 * See ___update_load_avg() for details.
3505 	 */
3506 	divider = get_pelt_divider(&cfs_rq->avg);
3507 
3508 	/* Set new sched_entity's runnable */
3509 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3510 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3511 
3512 	/* Update parent cfs_rq runnable */
3513 	add_positive(&cfs_rq->avg.runnable_avg, delta);
3514 	cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3515 }
3516 
3517 static inline void
3518 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3519 {
3520 	long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3521 	unsigned long load_avg;
3522 	u64 load_sum = 0;
3523 	u32 divider;
3524 
3525 	if (!runnable_sum)
3526 		return;
3527 
3528 	gcfs_rq->prop_runnable_sum = 0;
3529 
3530 	/*
3531 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3532 	 * See ___update_load_avg() for details.
3533 	 */
3534 	divider = get_pelt_divider(&cfs_rq->avg);
3535 
3536 	if (runnable_sum >= 0) {
3537 		/*
3538 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3539 		 * the CPU is saturated running == runnable.
3540 		 */
3541 		runnable_sum += se->avg.load_sum;
3542 		runnable_sum = min_t(long, runnable_sum, divider);
3543 	} else {
3544 		/*
3545 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3546 		 * assuming all tasks are equally runnable.
3547 		 */
3548 		if (scale_load_down(gcfs_rq->load.weight)) {
3549 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3550 				scale_load_down(gcfs_rq->load.weight));
3551 		}
3552 
3553 		/* But make sure to not inflate se's runnable */
3554 		runnable_sum = min(se->avg.load_sum, load_sum);
3555 	}
3556 
3557 	/*
3558 	 * runnable_sum can't be lower than running_sum
3559 	 * Rescale running sum to be in the same range as runnable sum
3560 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3561 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3562 	 */
3563 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3564 	runnable_sum = max(runnable_sum, running_sum);
3565 
3566 	load_sum = (s64)se_weight(se) * runnable_sum;
3567 	load_avg = div_s64(load_sum, divider);
3568 
3569 	delta = load_avg - se->avg.load_avg;
3570 
3571 	se->avg.load_sum = runnable_sum;
3572 	se->avg.load_avg = load_avg;
3573 
3574 	add_positive(&cfs_rq->avg.load_avg, delta);
3575 	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3576 }
3577 
3578 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3579 {
3580 	cfs_rq->propagate = 1;
3581 	cfs_rq->prop_runnable_sum += runnable_sum;
3582 }
3583 
3584 /* Update task and its cfs_rq load average */
3585 static inline int propagate_entity_load_avg(struct sched_entity *se)
3586 {
3587 	struct cfs_rq *cfs_rq, *gcfs_rq;
3588 
3589 	if (entity_is_task(se))
3590 		return 0;
3591 
3592 	gcfs_rq = group_cfs_rq(se);
3593 	if (!gcfs_rq->propagate)
3594 		return 0;
3595 
3596 	gcfs_rq->propagate = 0;
3597 
3598 	cfs_rq = cfs_rq_of(se);
3599 
3600 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3601 
3602 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3603 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3604 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3605 
3606 	trace_pelt_cfs_tp(cfs_rq);
3607 	trace_pelt_se_tp(se);
3608 
3609 	return 1;
3610 }
3611 
3612 /*
3613  * Check if we need to update the load and the utilization of a blocked
3614  * group_entity:
3615  */
3616 static inline bool skip_blocked_update(struct sched_entity *se)
3617 {
3618 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3619 
3620 	/*
3621 	 * If sched_entity still have not zero load or utilization, we have to
3622 	 * decay it:
3623 	 */
3624 	if (se->avg.load_avg || se->avg.util_avg)
3625 		return false;
3626 
3627 	/*
3628 	 * If there is a pending propagation, we have to update the load and
3629 	 * the utilization of the sched_entity:
3630 	 */
3631 	if (gcfs_rq->propagate)
3632 		return false;
3633 
3634 	/*
3635 	 * Otherwise, the load and the utilization of the sched_entity is
3636 	 * already zero and there is no pending propagation, so it will be a
3637 	 * waste of time to try to decay it:
3638 	 */
3639 	return true;
3640 }
3641 
3642 #else /* CONFIG_FAIR_GROUP_SCHED */
3643 
3644 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3645 
3646 static inline int propagate_entity_load_avg(struct sched_entity *se)
3647 {
3648 	return 0;
3649 }
3650 
3651 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3652 
3653 #endif /* CONFIG_FAIR_GROUP_SCHED */
3654 
3655 /**
3656  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3657  * @now: current time, as per cfs_rq_clock_pelt()
3658  * @cfs_rq: cfs_rq to update
3659  *
3660  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3661  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3662  * post_init_entity_util_avg().
3663  *
3664  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3665  *
3666  * Returns true if the load decayed or we removed load.
3667  *
3668  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3669  * call update_tg_load_avg() when this function returns true.
3670  */
3671 static inline int
3672 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3673 {
3674 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3675 	struct sched_avg *sa = &cfs_rq->avg;
3676 	int decayed = 0;
3677 
3678 	if (cfs_rq->removed.nr) {
3679 		unsigned long r;
3680 		u32 divider = get_pelt_divider(&cfs_rq->avg);
3681 
3682 		raw_spin_lock(&cfs_rq->removed.lock);
3683 		swap(cfs_rq->removed.util_avg, removed_util);
3684 		swap(cfs_rq->removed.load_avg, removed_load);
3685 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
3686 		cfs_rq->removed.nr = 0;
3687 		raw_spin_unlock(&cfs_rq->removed.lock);
3688 
3689 		r = removed_load;
3690 		sub_positive(&sa->load_avg, r);
3691 		sub_positive(&sa->load_sum, r * divider);
3692 
3693 		r = removed_util;
3694 		sub_positive(&sa->util_avg, r);
3695 		sub_positive(&sa->util_sum, r * divider);
3696 
3697 		r = removed_runnable;
3698 		sub_positive(&sa->runnable_avg, r);
3699 		sub_positive(&sa->runnable_sum, r * divider);
3700 
3701 		/*
3702 		 * removed_runnable is the unweighted version of removed_load so we
3703 		 * can use it to estimate removed_load_sum.
3704 		 */
3705 		add_tg_cfs_propagate(cfs_rq,
3706 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3707 
3708 		decayed = 1;
3709 	}
3710 
3711 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3712 
3713 #ifndef CONFIG_64BIT
3714 	smp_wmb();
3715 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3716 #endif
3717 
3718 	return decayed;
3719 }
3720 
3721 /**
3722  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3723  * @cfs_rq: cfs_rq to attach to
3724  * @se: sched_entity to attach
3725  *
3726  * Must call update_cfs_rq_load_avg() before this, since we rely on
3727  * cfs_rq->avg.last_update_time being current.
3728  */
3729 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3730 {
3731 	/*
3732 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3733 	 * See ___update_load_avg() for details.
3734 	 */
3735 	u32 divider = get_pelt_divider(&cfs_rq->avg);
3736 
3737 	/*
3738 	 * When we attach the @se to the @cfs_rq, we must align the decay
3739 	 * window because without that, really weird and wonderful things can
3740 	 * happen.
3741 	 *
3742 	 * XXX illustrate
3743 	 */
3744 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3745 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3746 
3747 	/*
3748 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3749 	 * period_contrib. This isn't strictly correct, but since we're
3750 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3751 	 * _sum a little.
3752 	 */
3753 	se->avg.util_sum = se->avg.util_avg * divider;
3754 
3755 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3756 
3757 	se->avg.load_sum = divider;
3758 	if (se_weight(se)) {
3759 		se->avg.load_sum =
3760 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3761 	}
3762 
3763 	enqueue_load_avg(cfs_rq, se);
3764 	cfs_rq->avg.util_avg += se->avg.util_avg;
3765 	cfs_rq->avg.util_sum += se->avg.util_sum;
3766 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3767 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3768 
3769 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3770 
3771 	cfs_rq_util_change(cfs_rq, 0);
3772 
3773 	trace_pelt_cfs_tp(cfs_rq);
3774 }
3775 
3776 /**
3777  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3778  * @cfs_rq: cfs_rq to detach from
3779  * @se: sched_entity to detach
3780  *
3781  * Must call update_cfs_rq_load_avg() before this, since we rely on
3782  * cfs_rq->avg.last_update_time being current.
3783  */
3784 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3785 {
3786 	/*
3787 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3788 	 * See ___update_load_avg() for details.
3789 	 */
3790 	u32 divider = get_pelt_divider(&cfs_rq->avg);
3791 
3792 	dequeue_load_avg(cfs_rq, se);
3793 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3794 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3795 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3796 	cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3797 
3798 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3799 
3800 	cfs_rq_util_change(cfs_rq, 0);
3801 
3802 	trace_pelt_cfs_tp(cfs_rq);
3803 }
3804 
3805 /*
3806  * Optional action to be done while updating the load average
3807  */
3808 #define UPDATE_TG	0x1
3809 #define SKIP_AGE_LOAD	0x2
3810 #define DO_ATTACH	0x4
3811 
3812 /* Update task and its cfs_rq load average */
3813 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3814 {
3815 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3816 	int decayed;
3817 
3818 	/*
3819 	 * Track task load average for carrying it to new CPU after migrated, and
3820 	 * track group sched_entity load average for task_h_load calc in migration
3821 	 */
3822 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3823 		__update_load_avg_se(now, cfs_rq, se);
3824 
3825 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3826 	decayed |= propagate_entity_load_avg(se);
3827 
3828 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3829 
3830 		/*
3831 		 * DO_ATTACH means we're here from enqueue_entity().
3832 		 * !last_update_time means we've passed through
3833 		 * migrate_task_rq_fair() indicating we migrated.
3834 		 *
3835 		 * IOW we're enqueueing a task on a new CPU.
3836 		 */
3837 		attach_entity_load_avg(cfs_rq, se);
3838 		update_tg_load_avg(cfs_rq);
3839 
3840 	} else if (decayed) {
3841 		cfs_rq_util_change(cfs_rq, 0);
3842 
3843 		if (flags & UPDATE_TG)
3844 			update_tg_load_avg(cfs_rq);
3845 	}
3846 }
3847 
3848 #ifndef CONFIG_64BIT
3849 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3850 {
3851 	u64 last_update_time_copy;
3852 	u64 last_update_time;
3853 
3854 	do {
3855 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3856 		smp_rmb();
3857 		last_update_time = cfs_rq->avg.last_update_time;
3858 	} while (last_update_time != last_update_time_copy);
3859 
3860 	return last_update_time;
3861 }
3862 #else
3863 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3864 {
3865 	return cfs_rq->avg.last_update_time;
3866 }
3867 #endif
3868 
3869 /*
3870  * Synchronize entity load avg of dequeued entity without locking
3871  * the previous rq.
3872  */
3873 static void sync_entity_load_avg(struct sched_entity *se)
3874 {
3875 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3876 	u64 last_update_time;
3877 
3878 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3879 	__update_load_avg_blocked_se(last_update_time, se);
3880 }
3881 
3882 /*
3883  * Task first catches up with cfs_rq, and then subtract
3884  * itself from the cfs_rq (task must be off the queue now).
3885  */
3886 static void remove_entity_load_avg(struct sched_entity *se)
3887 {
3888 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3889 	unsigned long flags;
3890 
3891 	/*
3892 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3893 	 * post_init_entity_util_avg() which will have added things to the
3894 	 * cfs_rq, so we can remove unconditionally.
3895 	 */
3896 
3897 	sync_entity_load_avg(se);
3898 
3899 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3900 	++cfs_rq->removed.nr;
3901 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3902 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3903 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
3904 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3905 }
3906 
3907 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3908 {
3909 	return cfs_rq->avg.runnable_avg;
3910 }
3911 
3912 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3913 {
3914 	return cfs_rq->avg.load_avg;
3915 }
3916 
3917 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3918 
3919 static inline unsigned long task_util(struct task_struct *p)
3920 {
3921 	return READ_ONCE(p->se.avg.util_avg);
3922 }
3923 
3924 static inline unsigned long _task_util_est(struct task_struct *p)
3925 {
3926 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3927 
3928 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
3929 }
3930 
3931 static inline unsigned long task_util_est(struct task_struct *p)
3932 {
3933 	return max(task_util(p), _task_util_est(p));
3934 }
3935 
3936 #ifdef CONFIG_UCLAMP_TASK
3937 static inline unsigned long uclamp_task_util(struct task_struct *p)
3938 {
3939 	return clamp(task_util_est(p),
3940 		     uclamp_eff_value(p, UCLAMP_MIN),
3941 		     uclamp_eff_value(p, UCLAMP_MAX));
3942 }
3943 #else
3944 static inline unsigned long uclamp_task_util(struct task_struct *p)
3945 {
3946 	return task_util_est(p);
3947 }
3948 #endif
3949 
3950 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3951 				    struct task_struct *p)
3952 {
3953 	unsigned int enqueued;
3954 
3955 	if (!sched_feat(UTIL_EST))
3956 		return;
3957 
3958 	/* Update root cfs_rq's estimated utilization */
3959 	enqueued  = cfs_rq->avg.util_est.enqueued;
3960 	enqueued += _task_util_est(p);
3961 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3962 
3963 	trace_sched_util_est_cfs_tp(cfs_rq);
3964 }
3965 
3966 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
3967 				    struct task_struct *p)
3968 {
3969 	unsigned int enqueued;
3970 
3971 	if (!sched_feat(UTIL_EST))
3972 		return;
3973 
3974 	/* Update root cfs_rq's estimated utilization */
3975 	enqueued  = cfs_rq->avg.util_est.enqueued;
3976 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
3977 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3978 
3979 	trace_sched_util_est_cfs_tp(cfs_rq);
3980 }
3981 
3982 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
3983 
3984 /*
3985  * Check if a (signed) value is within a specified (unsigned) margin,
3986  * based on the observation that:
3987  *
3988  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3989  *
3990  * NOTE: this only works when value + margin < INT_MAX.
3991  */
3992 static inline bool within_margin(int value, int margin)
3993 {
3994 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3995 }
3996 
3997 static inline void util_est_update(struct cfs_rq *cfs_rq,
3998 				   struct task_struct *p,
3999 				   bool task_sleep)
4000 {
4001 	long last_ewma_diff, last_enqueued_diff;
4002 	struct util_est ue;
4003 
4004 	if (!sched_feat(UTIL_EST))
4005 		return;
4006 
4007 	/*
4008 	 * Skip update of task's estimated utilization when the task has not
4009 	 * yet completed an activation, e.g. being migrated.
4010 	 */
4011 	if (!task_sleep)
4012 		return;
4013 
4014 	/*
4015 	 * If the PELT values haven't changed since enqueue time,
4016 	 * skip the util_est update.
4017 	 */
4018 	ue = p->se.avg.util_est;
4019 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4020 		return;
4021 
4022 	last_enqueued_diff = ue.enqueued;
4023 
4024 	/*
4025 	 * Reset EWMA on utilization increases, the moving average is used only
4026 	 * to smooth utilization decreases.
4027 	 */
4028 	ue.enqueued = task_util(p);
4029 	if (sched_feat(UTIL_EST_FASTUP)) {
4030 		if (ue.ewma < ue.enqueued) {
4031 			ue.ewma = ue.enqueued;
4032 			goto done;
4033 		}
4034 	}
4035 
4036 	/*
4037 	 * Skip update of task's estimated utilization when its members are
4038 	 * already ~1% close to its last activation value.
4039 	 */
4040 	last_ewma_diff = ue.enqueued - ue.ewma;
4041 	last_enqueued_diff -= ue.enqueued;
4042 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4043 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4044 			goto done;
4045 
4046 		return;
4047 	}
4048 
4049 	/*
4050 	 * To avoid overestimation of actual task utilization, skip updates if
4051 	 * we cannot grant there is idle time in this CPU.
4052 	 */
4053 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4054 		return;
4055 
4056 	/*
4057 	 * Update Task's estimated utilization
4058 	 *
4059 	 * When *p completes an activation we can consolidate another sample
4060 	 * of the task size. This is done by storing the current PELT value
4061 	 * as ue.enqueued and by using this value to update the Exponential
4062 	 * Weighted Moving Average (EWMA):
4063 	 *
4064 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4065 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4066 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4067 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4068 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4069 	 *
4070 	 * Where 'w' is the weight of new samples, which is configured to be
4071 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4072 	 */
4073 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4074 	ue.ewma  += last_ewma_diff;
4075 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4076 done:
4077 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4078 	WRITE_ONCE(p->se.avg.util_est, ue);
4079 
4080 	trace_sched_util_est_se_tp(&p->se);
4081 }
4082 
4083 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4084 {
4085 	return fits_capacity(uclamp_task_util(p), capacity);
4086 }
4087 
4088 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4089 {
4090 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
4091 		return;
4092 
4093 	if (!p || p->nr_cpus_allowed == 1) {
4094 		rq->misfit_task_load = 0;
4095 		return;
4096 	}
4097 
4098 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4099 		rq->misfit_task_load = 0;
4100 		return;
4101 	}
4102 
4103 	/*
4104 	 * Make sure that misfit_task_load will not be null even if
4105 	 * task_h_load() returns 0.
4106 	 */
4107 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4108 }
4109 
4110 #else /* CONFIG_SMP */
4111 
4112 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4113 {
4114 	return true;
4115 }
4116 
4117 #define UPDATE_TG	0x0
4118 #define SKIP_AGE_LOAD	0x0
4119 #define DO_ATTACH	0x0
4120 
4121 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4122 {
4123 	cfs_rq_util_change(cfs_rq, 0);
4124 }
4125 
4126 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4127 
4128 static inline void
4129 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4130 static inline void
4131 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4132 
4133 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4134 {
4135 	return 0;
4136 }
4137 
4138 static inline void
4139 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4140 
4141 static inline void
4142 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4143 
4144 static inline void
4145 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4146 		bool task_sleep) {}
4147 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4148 
4149 #endif /* CONFIG_SMP */
4150 
4151 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4152 {
4153 #ifdef CONFIG_SCHED_DEBUG
4154 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4155 
4156 	if (d < 0)
4157 		d = -d;
4158 
4159 	if (d > 3*sysctl_sched_latency)
4160 		schedstat_inc(cfs_rq->nr_spread_over);
4161 #endif
4162 }
4163 
4164 static void
4165 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4166 {
4167 	u64 vruntime = cfs_rq->min_vruntime;
4168 
4169 	/*
4170 	 * The 'current' period is already promised to the current tasks,
4171 	 * however the extra weight of the new task will slow them down a
4172 	 * little, place the new task so that it fits in the slot that
4173 	 * stays open at the end.
4174 	 */
4175 	if (initial && sched_feat(START_DEBIT))
4176 		vruntime += sched_vslice(cfs_rq, se);
4177 
4178 	/* sleeps up to a single latency don't count. */
4179 	if (!initial) {
4180 		unsigned long thresh = sysctl_sched_latency;
4181 
4182 		/*
4183 		 * Halve their sleep time's effect, to allow
4184 		 * for a gentler effect of sleepers:
4185 		 */
4186 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4187 			thresh >>= 1;
4188 
4189 		vruntime -= thresh;
4190 	}
4191 
4192 	/* ensure we never gain time by being placed backwards. */
4193 	se->vruntime = max_vruntime(se->vruntime, vruntime);
4194 }
4195 
4196 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4197 
4198 static inline void check_schedstat_required(void)
4199 {
4200 #ifdef CONFIG_SCHEDSTATS
4201 	if (schedstat_enabled())
4202 		return;
4203 
4204 	/* Force schedstat enabled if a dependent tracepoint is active */
4205 	if (trace_sched_stat_wait_enabled()    ||
4206 			trace_sched_stat_sleep_enabled()   ||
4207 			trace_sched_stat_iowait_enabled()  ||
4208 			trace_sched_stat_blocked_enabled() ||
4209 			trace_sched_stat_runtime_enabled())  {
4210 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4211 			     "stat_blocked and stat_runtime require the "
4212 			     "kernel parameter schedstats=enable or "
4213 			     "kernel.sched_schedstats=1\n");
4214 	}
4215 #endif
4216 }
4217 
4218 static inline bool cfs_bandwidth_used(void);
4219 
4220 /*
4221  * MIGRATION
4222  *
4223  *	dequeue
4224  *	  update_curr()
4225  *	    update_min_vruntime()
4226  *	  vruntime -= min_vruntime
4227  *
4228  *	enqueue
4229  *	  update_curr()
4230  *	    update_min_vruntime()
4231  *	  vruntime += min_vruntime
4232  *
4233  * this way the vruntime transition between RQs is done when both
4234  * min_vruntime are up-to-date.
4235  *
4236  * WAKEUP (remote)
4237  *
4238  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4239  *	  vruntime -= min_vruntime
4240  *
4241  *	enqueue
4242  *	  update_curr()
4243  *	    update_min_vruntime()
4244  *	  vruntime += min_vruntime
4245  *
4246  * this way we don't have the most up-to-date min_vruntime on the originating
4247  * CPU and an up-to-date min_vruntime on the destination CPU.
4248  */
4249 
4250 static void
4251 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4252 {
4253 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4254 	bool curr = cfs_rq->curr == se;
4255 
4256 	/*
4257 	 * If we're the current task, we must renormalise before calling
4258 	 * update_curr().
4259 	 */
4260 	if (renorm && curr)
4261 		se->vruntime += cfs_rq->min_vruntime;
4262 
4263 	update_curr(cfs_rq);
4264 
4265 	/*
4266 	 * Otherwise, renormalise after, such that we're placed at the current
4267 	 * moment in time, instead of some random moment in the past. Being
4268 	 * placed in the past could significantly boost this task to the
4269 	 * fairness detriment of existing tasks.
4270 	 */
4271 	if (renorm && !curr)
4272 		se->vruntime += cfs_rq->min_vruntime;
4273 
4274 	/*
4275 	 * When enqueuing a sched_entity, we must:
4276 	 *   - Update loads to have both entity and cfs_rq synced with now.
4277 	 *   - Add its load to cfs_rq->runnable_avg
4278 	 *   - For group_entity, update its weight to reflect the new share of
4279 	 *     its group cfs_rq
4280 	 *   - Add its new weight to cfs_rq->load.weight
4281 	 */
4282 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4283 	se_update_runnable(se);
4284 	update_cfs_group(se);
4285 	account_entity_enqueue(cfs_rq, se);
4286 
4287 	if (flags & ENQUEUE_WAKEUP)
4288 		place_entity(cfs_rq, se, 0);
4289 
4290 	check_schedstat_required();
4291 	update_stats_enqueue(cfs_rq, se, flags);
4292 	check_spread(cfs_rq, se);
4293 	if (!curr)
4294 		__enqueue_entity(cfs_rq, se);
4295 	se->on_rq = 1;
4296 
4297 	/*
4298 	 * When bandwidth control is enabled, cfs might have been removed
4299 	 * because of a parent been throttled but cfs->nr_running > 1. Try to
4300 	 * add it unconditionally.
4301 	 */
4302 	if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4303 		list_add_leaf_cfs_rq(cfs_rq);
4304 
4305 	if (cfs_rq->nr_running == 1)
4306 		check_enqueue_throttle(cfs_rq);
4307 }
4308 
4309 static void __clear_buddies_last(struct sched_entity *se)
4310 {
4311 	for_each_sched_entity(se) {
4312 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4313 		if (cfs_rq->last != se)
4314 			break;
4315 
4316 		cfs_rq->last = NULL;
4317 	}
4318 }
4319 
4320 static void __clear_buddies_next(struct sched_entity *se)
4321 {
4322 	for_each_sched_entity(se) {
4323 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4324 		if (cfs_rq->next != se)
4325 			break;
4326 
4327 		cfs_rq->next = NULL;
4328 	}
4329 }
4330 
4331 static void __clear_buddies_skip(struct sched_entity *se)
4332 {
4333 	for_each_sched_entity(se) {
4334 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4335 		if (cfs_rq->skip != se)
4336 			break;
4337 
4338 		cfs_rq->skip = NULL;
4339 	}
4340 }
4341 
4342 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4343 {
4344 	if (cfs_rq->last == se)
4345 		__clear_buddies_last(se);
4346 
4347 	if (cfs_rq->next == se)
4348 		__clear_buddies_next(se);
4349 
4350 	if (cfs_rq->skip == se)
4351 		__clear_buddies_skip(se);
4352 }
4353 
4354 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4355 
4356 static void
4357 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4358 {
4359 	/*
4360 	 * Update run-time statistics of the 'current'.
4361 	 */
4362 	update_curr(cfs_rq);
4363 
4364 	/*
4365 	 * When dequeuing a sched_entity, we must:
4366 	 *   - Update loads to have both entity and cfs_rq synced with now.
4367 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4368 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4369 	 *   - For group entity, update its weight to reflect the new share
4370 	 *     of its group cfs_rq.
4371 	 */
4372 	update_load_avg(cfs_rq, se, UPDATE_TG);
4373 	se_update_runnable(se);
4374 
4375 	update_stats_dequeue(cfs_rq, se, flags);
4376 
4377 	clear_buddies(cfs_rq, se);
4378 
4379 	if (se != cfs_rq->curr)
4380 		__dequeue_entity(cfs_rq, se);
4381 	se->on_rq = 0;
4382 	account_entity_dequeue(cfs_rq, se);
4383 
4384 	/*
4385 	 * Normalize after update_curr(); which will also have moved
4386 	 * min_vruntime if @se is the one holding it back. But before doing
4387 	 * update_min_vruntime() again, which will discount @se's position and
4388 	 * can move min_vruntime forward still more.
4389 	 */
4390 	if (!(flags & DEQUEUE_SLEEP))
4391 		se->vruntime -= cfs_rq->min_vruntime;
4392 
4393 	/* return excess runtime on last dequeue */
4394 	return_cfs_rq_runtime(cfs_rq);
4395 
4396 	update_cfs_group(se);
4397 
4398 	/*
4399 	 * Now advance min_vruntime if @se was the entity holding it back,
4400 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4401 	 * put back on, and if we advance min_vruntime, we'll be placed back
4402 	 * further than we started -- ie. we'll be penalized.
4403 	 */
4404 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4405 		update_min_vruntime(cfs_rq);
4406 }
4407 
4408 /*
4409  * Preempt the current task with a newly woken task if needed:
4410  */
4411 static void
4412 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4413 {
4414 	unsigned long ideal_runtime, delta_exec;
4415 	struct sched_entity *se;
4416 	s64 delta;
4417 
4418 	ideal_runtime = sched_slice(cfs_rq, curr);
4419 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4420 	if (delta_exec > ideal_runtime) {
4421 		resched_curr(rq_of(cfs_rq));
4422 		/*
4423 		 * The current task ran long enough, ensure it doesn't get
4424 		 * re-elected due to buddy favours.
4425 		 */
4426 		clear_buddies(cfs_rq, curr);
4427 		return;
4428 	}
4429 
4430 	/*
4431 	 * Ensure that a task that missed wakeup preemption by a
4432 	 * narrow margin doesn't have to wait for a full slice.
4433 	 * This also mitigates buddy induced latencies under load.
4434 	 */
4435 	if (delta_exec < sysctl_sched_min_granularity)
4436 		return;
4437 
4438 	se = __pick_first_entity(cfs_rq);
4439 	delta = curr->vruntime - se->vruntime;
4440 
4441 	if (delta < 0)
4442 		return;
4443 
4444 	if (delta > ideal_runtime)
4445 		resched_curr(rq_of(cfs_rq));
4446 }
4447 
4448 static void
4449 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4450 {
4451 	/* 'current' is not kept within the tree. */
4452 	if (se->on_rq) {
4453 		/*
4454 		 * Any task has to be enqueued before it get to execute on
4455 		 * a CPU. So account for the time it spent waiting on the
4456 		 * runqueue.
4457 		 */
4458 		update_stats_wait_end(cfs_rq, se);
4459 		__dequeue_entity(cfs_rq, se);
4460 		update_load_avg(cfs_rq, se, UPDATE_TG);
4461 	}
4462 
4463 	update_stats_curr_start(cfs_rq, se);
4464 	cfs_rq->curr = se;
4465 
4466 	/*
4467 	 * Track our maximum slice length, if the CPU's load is at
4468 	 * least twice that of our own weight (i.e. dont track it
4469 	 * when there are only lesser-weight tasks around):
4470 	 */
4471 	if (schedstat_enabled() &&
4472 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4473 		schedstat_set(se->statistics.slice_max,
4474 			max((u64)schedstat_val(se->statistics.slice_max),
4475 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4476 	}
4477 
4478 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4479 }
4480 
4481 static int
4482 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4483 
4484 /*
4485  * Pick the next process, keeping these things in mind, in this order:
4486  * 1) keep things fair between processes/task groups
4487  * 2) pick the "next" process, since someone really wants that to run
4488  * 3) pick the "last" process, for cache locality
4489  * 4) do not run the "skip" process, if something else is available
4490  */
4491 static struct sched_entity *
4492 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4493 {
4494 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4495 	struct sched_entity *se;
4496 
4497 	/*
4498 	 * If curr is set we have to see if its left of the leftmost entity
4499 	 * still in the tree, provided there was anything in the tree at all.
4500 	 */
4501 	if (!left || (curr && entity_before(curr, left)))
4502 		left = curr;
4503 
4504 	se = left; /* ideally we run the leftmost entity */
4505 
4506 	/*
4507 	 * Avoid running the skip buddy, if running something else can
4508 	 * be done without getting too unfair.
4509 	 */
4510 	if (cfs_rq->skip == se) {
4511 		struct sched_entity *second;
4512 
4513 		if (se == curr) {
4514 			second = __pick_first_entity(cfs_rq);
4515 		} else {
4516 			second = __pick_next_entity(se);
4517 			if (!second || (curr && entity_before(curr, second)))
4518 				second = curr;
4519 		}
4520 
4521 		if (second && wakeup_preempt_entity(second, left) < 1)
4522 			se = second;
4523 	}
4524 
4525 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4526 		/*
4527 		 * Someone really wants this to run. If it's not unfair, run it.
4528 		 */
4529 		se = cfs_rq->next;
4530 	} else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4531 		/*
4532 		 * Prefer last buddy, try to return the CPU to a preempted task.
4533 		 */
4534 		se = cfs_rq->last;
4535 	}
4536 
4537 	clear_buddies(cfs_rq, se);
4538 
4539 	return se;
4540 }
4541 
4542 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4543 
4544 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4545 {
4546 	/*
4547 	 * If still on the runqueue then deactivate_task()
4548 	 * was not called and update_curr() has to be done:
4549 	 */
4550 	if (prev->on_rq)
4551 		update_curr(cfs_rq);
4552 
4553 	/* throttle cfs_rqs exceeding runtime */
4554 	check_cfs_rq_runtime(cfs_rq);
4555 
4556 	check_spread(cfs_rq, prev);
4557 
4558 	if (prev->on_rq) {
4559 		update_stats_wait_start(cfs_rq, prev);
4560 		/* Put 'current' back into the tree. */
4561 		__enqueue_entity(cfs_rq, prev);
4562 		/* in !on_rq case, update occurred at dequeue */
4563 		update_load_avg(cfs_rq, prev, 0);
4564 	}
4565 	cfs_rq->curr = NULL;
4566 }
4567 
4568 static void
4569 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4570 {
4571 	/*
4572 	 * Update run-time statistics of the 'current'.
4573 	 */
4574 	update_curr(cfs_rq);
4575 
4576 	/*
4577 	 * Ensure that runnable average is periodically updated.
4578 	 */
4579 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4580 	update_cfs_group(curr);
4581 
4582 #ifdef CONFIG_SCHED_HRTICK
4583 	/*
4584 	 * queued ticks are scheduled to match the slice, so don't bother
4585 	 * validating it and just reschedule.
4586 	 */
4587 	if (queued) {
4588 		resched_curr(rq_of(cfs_rq));
4589 		return;
4590 	}
4591 	/*
4592 	 * don't let the period tick interfere with the hrtick preemption
4593 	 */
4594 	if (!sched_feat(DOUBLE_TICK) &&
4595 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4596 		return;
4597 #endif
4598 
4599 	if (cfs_rq->nr_running > 1)
4600 		check_preempt_tick(cfs_rq, curr);
4601 }
4602 
4603 
4604 /**************************************************
4605  * CFS bandwidth control machinery
4606  */
4607 
4608 #ifdef CONFIG_CFS_BANDWIDTH
4609 
4610 #ifdef CONFIG_JUMP_LABEL
4611 static struct static_key __cfs_bandwidth_used;
4612 
4613 static inline bool cfs_bandwidth_used(void)
4614 {
4615 	return static_key_false(&__cfs_bandwidth_used);
4616 }
4617 
4618 void cfs_bandwidth_usage_inc(void)
4619 {
4620 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4621 }
4622 
4623 void cfs_bandwidth_usage_dec(void)
4624 {
4625 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4626 }
4627 #else /* CONFIG_JUMP_LABEL */
4628 static bool cfs_bandwidth_used(void)
4629 {
4630 	return true;
4631 }
4632 
4633 void cfs_bandwidth_usage_inc(void) {}
4634 void cfs_bandwidth_usage_dec(void) {}
4635 #endif /* CONFIG_JUMP_LABEL */
4636 
4637 /*
4638  * default period for cfs group bandwidth.
4639  * default: 0.1s, units: nanoseconds
4640  */
4641 static inline u64 default_cfs_period(void)
4642 {
4643 	return 100000000ULL;
4644 }
4645 
4646 static inline u64 sched_cfs_bandwidth_slice(void)
4647 {
4648 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4649 }
4650 
4651 /*
4652  * Replenish runtime according to assigned quota. We use sched_clock_cpu
4653  * directly instead of rq->clock to avoid adding additional synchronization
4654  * around rq->lock.
4655  *
4656  * requires cfs_b->lock
4657  */
4658 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4659 {
4660 	if (cfs_b->quota != RUNTIME_INF)
4661 		cfs_b->runtime = cfs_b->quota;
4662 }
4663 
4664 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4665 {
4666 	return &tg->cfs_bandwidth;
4667 }
4668 
4669 /* returns 0 on failure to allocate runtime */
4670 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4671 				   struct cfs_rq *cfs_rq, u64 target_runtime)
4672 {
4673 	u64 min_amount, amount = 0;
4674 
4675 	lockdep_assert_held(&cfs_b->lock);
4676 
4677 	/* note: this is a positive sum as runtime_remaining <= 0 */
4678 	min_amount = target_runtime - cfs_rq->runtime_remaining;
4679 
4680 	if (cfs_b->quota == RUNTIME_INF)
4681 		amount = min_amount;
4682 	else {
4683 		start_cfs_bandwidth(cfs_b);
4684 
4685 		if (cfs_b->runtime > 0) {
4686 			amount = min(cfs_b->runtime, min_amount);
4687 			cfs_b->runtime -= amount;
4688 			cfs_b->idle = 0;
4689 		}
4690 	}
4691 
4692 	cfs_rq->runtime_remaining += amount;
4693 
4694 	return cfs_rq->runtime_remaining > 0;
4695 }
4696 
4697 /* returns 0 on failure to allocate runtime */
4698 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4699 {
4700 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4701 	int ret;
4702 
4703 	raw_spin_lock(&cfs_b->lock);
4704 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4705 	raw_spin_unlock(&cfs_b->lock);
4706 
4707 	return ret;
4708 }
4709 
4710 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4711 {
4712 	/* dock delta_exec before expiring quota (as it could span periods) */
4713 	cfs_rq->runtime_remaining -= delta_exec;
4714 
4715 	if (likely(cfs_rq->runtime_remaining > 0))
4716 		return;
4717 
4718 	if (cfs_rq->throttled)
4719 		return;
4720 	/*
4721 	 * if we're unable to extend our runtime we resched so that the active
4722 	 * hierarchy can be throttled
4723 	 */
4724 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4725 		resched_curr(rq_of(cfs_rq));
4726 }
4727 
4728 static __always_inline
4729 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4730 {
4731 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4732 		return;
4733 
4734 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4735 }
4736 
4737 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4738 {
4739 	return cfs_bandwidth_used() && cfs_rq->throttled;
4740 }
4741 
4742 /* check whether cfs_rq, or any parent, is throttled */
4743 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4744 {
4745 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4746 }
4747 
4748 /*
4749  * Ensure that neither of the group entities corresponding to src_cpu or
4750  * dest_cpu are members of a throttled hierarchy when performing group
4751  * load-balance operations.
4752  */
4753 static inline int throttled_lb_pair(struct task_group *tg,
4754 				    int src_cpu, int dest_cpu)
4755 {
4756 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4757 
4758 	src_cfs_rq = tg->cfs_rq[src_cpu];
4759 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4760 
4761 	return throttled_hierarchy(src_cfs_rq) ||
4762 	       throttled_hierarchy(dest_cfs_rq);
4763 }
4764 
4765 static int tg_unthrottle_up(struct task_group *tg, void *data)
4766 {
4767 	struct rq *rq = data;
4768 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4769 
4770 	cfs_rq->throttle_count--;
4771 	if (!cfs_rq->throttle_count) {
4772 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4773 					     cfs_rq->throttled_clock_task;
4774 
4775 		/* Add cfs_rq with load or one or more already running entities to the list */
4776 		if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
4777 			list_add_leaf_cfs_rq(cfs_rq);
4778 	}
4779 
4780 	return 0;
4781 }
4782 
4783 static int tg_throttle_down(struct task_group *tg, void *data)
4784 {
4785 	struct rq *rq = data;
4786 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4787 
4788 	/* group is entering throttled state, stop time */
4789 	if (!cfs_rq->throttle_count) {
4790 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4791 		list_del_leaf_cfs_rq(cfs_rq);
4792 	}
4793 	cfs_rq->throttle_count++;
4794 
4795 	return 0;
4796 }
4797 
4798 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4799 {
4800 	struct rq *rq = rq_of(cfs_rq);
4801 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4802 	struct sched_entity *se;
4803 	long task_delta, idle_task_delta, dequeue = 1;
4804 
4805 	raw_spin_lock(&cfs_b->lock);
4806 	/* This will start the period timer if necessary */
4807 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4808 		/*
4809 		 * We have raced with bandwidth becoming available, and if we
4810 		 * actually throttled the timer might not unthrottle us for an
4811 		 * entire period. We additionally needed to make sure that any
4812 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
4813 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4814 		 * for 1ns of runtime rather than just check cfs_b.
4815 		 */
4816 		dequeue = 0;
4817 	} else {
4818 		list_add_tail_rcu(&cfs_rq->throttled_list,
4819 				  &cfs_b->throttled_cfs_rq);
4820 	}
4821 	raw_spin_unlock(&cfs_b->lock);
4822 
4823 	if (!dequeue)
4824 		return false;  /* Throttle no longer required. */
4825 
4826 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4827 
4828 	/* freeze hierarchy runnable averages while throttled */
4829 	rcu_read_lock();
4830 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4831 	rcu_read_unlock();
4832 
4833 	task_delta = cfs_rq->h_nr_running;
4834 	idle_task_delta = cfs_rq->idle_h_nr_running;
4835 	for_each_sched_entity(se) {
4836 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4837 		/* throttled entity or throttle-on-deactivate */
4838 		if (!se->on_rq)
4839 			goto done;
4840 
4841 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4842 
4843 		qcfs_rq->h_nr_running -= task_delta;
4844 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4845 
4846 		if (qcfs_rq->load.weight) {
4847 			/* Avoid re-evaluating load for this entity: */
4848 			se = parent_entity(se);
4849 			break;
4850 		}
4851 	}
4852 
4853 	for_each_sched_entity(se) {
4854 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4855 		/* throttled entity or throttle-on-deactivate */
4856 		if (!se->on_rq)
4857 			goto done;
4858 
4859 		update_load_avg(qcfs_rq, se, 0);
4860 		se_update_runnable(se);
4861 
4862 		qcfs_rq->h_nr_running -= task_delta;
4863 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4864 	}
4865 
4866 	/* At this point se is NULL and we are at root level*/
4867 	sub_nr_running(rq, task_delta);
4868 
4869 done:
4870 	/*
4871 	 * Note: distribution will already see us throttled via the
4872 	 * throttled-list.  rq->lock protects completion.
4873 	 */
4874 	cfs_rq->throttled = 1;
4875 	cfs_rq->throttled_clock = rq_clock(rq);
4876 	return true;
4877 }
4878 
4879 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4880 {
4881 	struct rq *rq = rq_of(cfs_rq);
4882 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4883 	struct sched_entity *se;
4884 	long task_delta, idle_task_delta;
4885 
4886 	se = cfs_rq->tg->se[cpu_of(rq)];
4887 
4888 	cfs_rq->throttled = 0;
4889 
4890 	update_rq_clock(rq);
4891 
4892 	raw_spin_lock(&cfs_b->lock);
4893 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4894 	list_del_rcu(&cfs_rq->throttled_list);
4895 	raw_spin_unlock(&cfs_b->lock);
4896 
4897 	/* update hierarchical throttle state */
4898 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4899 
4900 	if (!cfs_rq->load.weight)
4901 		return;
4902 
4903 	task_delta = cfs_rq->h_nr_running;
4904 	idle_task_delta = cfs_rq->idle_h_nr_running;
4905 	for_each_sched_entity(se) {
4906 		if (se->on_rq)
4907 			break;
4908 		cfs_rq = cfs_rq_of(se);
4909 		enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4910 
4911 		cfs_rq->h_nr_running += task_delta;
4912 		cfs_rq->idle_h_nr_running += idle_task_delta;
4913 
4914 		/* end evaluation on encountering a throttled cfs_rq */
4915 		if (cfs_rq_throttled(cfs_rq))
4916 			goto unthrottle_throttle;
4917 	}
4918 
4919 	for_each_sched_entity(se) {
4920 		cfs_rq = cfs_rq_of(se);
4921 
4922 		update_load_avg(cfs_rq, se, UPDATE_TG);
4923 		se_update_runnable(se);
4924 
4925 		cfs_rq->h_nr_running += task_delta;
4926 		cfs_rq->idle_h_nr_running += idle_task_delta;
4927 
4928 
4929 		/* end evaluation on encountering a throttled cfs_rq */
4930 		if (cfs_rq_throttled(cfs_rq))
4931 			goto unthrottle_throttle;
4932 
4933 		/*
4934 		 * One parent has been throttled and cfs_rq removed from the
4935 		 * list. Add it back to not break the leaf list.
4936 		 */
4937 		if (throttled_hierarchy(cfs_rq))
4938 			list_add_leaf_cfs_rq(cfs_rq);
4939 	}
4940 
4941 	/* At this point se is NULL and we are at root level*/
4942 	add_nr_running(rq, task_delta);
4943 
4944 unthrottle_throttle:
4945 	/*
4946 	 * The cfs_rq_throttled() breaks in the above iteration can result in
4947 	 * incomplete leaf list maintenance, resulting in triggering the
4948 	 * assertion below.
4949 	 */
4950 	for_each_sched_entity(se) {
4951 		cfs_rq = cfs_rq_of(se);
4952 
4953 		if (list_add_leaf_cfs_rq(cfs_rq))
4954 			break;
4955 	}
4956 
4957 	assert_list_leaf_cfs_rq(rq);
4958 
4959 	/* Determine whether we need to wake up potentially idle CPU: */
4960 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4961 		resched_curr(rq);
4962 }
4963 
4964 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
4965 {
4966 	struct cfs_rq *cfs_rq;
4967 	u64 runtime, remaining = 1;
4968 
4969 	rcu_read_lock();
4970 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4971 				throttled_list) {
4972 		struct rq *rq = rq_of(cfs_rq);
4973 		struct rq_flags rf;
4974 
4975 		rq_lock_irqsave(rq, &rf);
4976 		if (!cfs_rq_throttled(cfs_rq))
4977 			goto next;
4978 
4979 		/* By the above check, this should never be true */
4980 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4981 
4982 		raw_spin_lock(&cfs_b->lock);
4983 		runtime = -cfs_rq->runtime_remaining + 1;
4984 		if (runtime > cfs_b->runtime)
4985 			runtime = cfs_b->runtime;
4986 		cfs_b->runtime -= runtime;
4987 		remaining = cfs_b->runtime;
4988 		raw_spin_unlock(&cfs_b->lock);
4989 
4990 		cfs_rq->runtime_remaining += runtime;
4991 
4992 		/* we check whether we're throttled above */
4993 		if (cfs_rq->runtime_remaining > 0)
4994 			unthrottle_cfs_rq(cfs_rq);
4995 
4996 next:
4997 		rq_unlock_irqrestore(rq, &rf);
4998 
4999 		if (!remaining)
5000 			break;
5001 	}
5002 	rcu_read_unlock();
5003 }
5004 
5005 /*
5006  * Responsible for refilling a task_group's bandwidth and unthrottling its
5007  * cfs_rqs as appropriate. If there has been no activity within the last
5008  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5009  * used to track this state.
5010  */
5011 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5012 {
5013 	int throttled;
5014 
5015 	/* no need to continue the timer with no bandwidth constraint */
5016 	if (cfs_b->quota == RUNTIME_INF)
5017 		goto out_deactivate;
5018 
5019 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5020 	cfs_b->nr_periods += overrun;
5021 
5022 	/*
5023 	 * idle depends on !throttled (for the case of a large deficit), and if
5024 	 * we're going inactive then everything else can be deferred
5025 	 */
5026 	if (cfs_b->idle && !throttled)
5027 		goto out_deactivate;
5028 
5029 	__refill_cfs_bandwidth_runtime(cfs_b);
5030 
5031 	if (!throttled) {
5032 		/* mark as potentially idle for the upcoming period */
5033 		cfs_b->idle = 1;
5034 		return 0;
5035 	}
5036 
5037 	/* account preceding periods in which throttling occurred */
5038 	cfs_b->nr_throttled += overrun;
5039 
5040 	/*
5041 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
5042 	 */
5043 	while (throttled && cfs_b->runtime > 0) {
5044 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5045 		/* we can't nest cfs_b->lock while distributing bandwidth */
5046 		distribute_cfs_runtime(cfs_b);
5047 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
5048 
5049 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5050 	}
5051 
5052 	/*
5053 	 * While we are ensured activity in the period following an
5054 	 * unthrottle, this also covers the case in which the new bandwidth is
5055 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
5056 	 * timer to remain active while there are any throttled entities.)
5057 	 */
5058 	cfs_b->idle = 0;
5059 
5060 	return 0;
5061 
5062 out_deactivate:
5063 	return 1;
5064 }
5065 
5066 /* a cfs_rq won't donate quota below this amount */
5067 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5068 /* minimum remaining period time to redistribute slack quota */
5069 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5070 /* how long we wait to gather additional slack before distributing */
5071 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5072 
5073 /*
5074  * Are we near the end of the current quota period?
5075  *
5076  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5077  * hrtimer base being cleared by hrtimer_start. In the case of
5078  * migrate_hrtimers, base is never cleared, so we are fine.
5079  */
5080 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5081 {
5082 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
5083 	u64 remaining;
5084 
5085 	/* if the call-back is running a quota refresh is already occurring */
5086 	if (hrtimer_callback_running(refresh_timer))
5087 		return 1;
5088 
5089 	/* is a quota refresh about to occur? */
5090 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5091 	if (remaining < min_expire)
5092 		return 1;
5093 
5094 	return 0;
5095 }
5096 
5097 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5098 {
5099 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5100 
5101 	/* if there's a quota refresh soon don't bother with slack */
5102 	if (runtime_refresh_within(cfs_b, min_left))
5103 		return;
5104 
5105 	/* don't push forwards an existing deferred unthrottle */
5106 	if (cfs_b->slack_started)
5107 		return;
5108 	cfs_b->slack_started = true;
5109 
5110 	hrtimer_start(&cfs_b->slack_timer,
5111 			ns_to_ktime(cfs_bandwidth_slack_period),
5112 			HRTIMER_MODE_REL);
5113 }
5114 
5115 /* we know any runtime found here is valid as update_curr() precedes return */
5116 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5117 {
5118 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5119 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5120 
5121 	if (slack_runtime <= 0)
5122 		return;
5123 
5124 	raw_spin_lock(&cfs_b->lock);
5125 	if (cfs_b->quota != RUNTIME_INF) {
5126 		cfs_b->runtime += slack_runtime;
5127 
5128 		/* we are under rq->lock, defer unthrottling using a timer */
5129 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5130 		    !list_empty(&cfs_b->throttled_cfs_rq))
5131 			start_cfs_slack_bandwidth(cfs_b);
5132 	}
5133 	raw_spin_unlock(&cfs_b->lock);
5134 
5135 	/* even if it's not valid for return we don't want to try again */
5136 	cfs_rq->runtime_remaining -= slack_runtime;
5137 }
5138 
5139 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5140 {
5141 	if (!cfs_bandwidth_used())
5142 		return;
5143 
5144 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5145 		return;
5146 
5147 	__return_cfs_rq_runtime(cfs_rq);
5148 }
5149 
5150 /*
5151  * This is done with a timer (instead of inline with bandwidth return) since
5152  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5153  */
5154 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5155 {
5156 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5157 	unsigned long flags;
5158 
5159 	/* confirm we're still not at a refresh boundary */
5160 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5161 	cfs_b->slack_started = false;
5162 
5163 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5164 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5165 		return;
5166 	}
5167 
5168 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5169 		runtime = cfs_b->runtime;
5170 
5171 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5172 
5173 	if (!runtime)
5174 		return;
5175 
5176 	distribute_cfs_runtime(cfs_b);
5177 }
5178 
5179 /*
5180  * When a group wakes up we want to make sure that its quota is not already
5181  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5182  * runtime as update_curr() throttling can not trigger until it's on-rq.
5183  */
5184 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5185 {
5186 	if (!cfs_bandwidth_used())
5187 		return;
5188 
5189 	/* an active group must be handled by the update_curr()->put() path */
5190 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5191 		return;
5192 
5193 	/* ensure the group is not already throttled */
5194 	if (cfs_rq_throttled(cfs_rq))
5195 		return;
5196 
5197 	/* update runtime allocation */
5198 	account_cfs_rq_runtime(cfs_rq, 0);
5199 	if (cfs_rq->runtime_remaining <= 0)
5200 		throttle_cfs_rq(cfs_rq);
5201 }
5202 
5203 static void sync_throttle(struct task_group *tg, int cpu)
5204 {
5205 	struct cfs_rq *pcfs_rq, *cfs_rq;
5206 
5207 	if (!cfs_bandwidth_used())
5208 		return;
5209 
5210 	if (!tg->parent)
5211 		return;
5212 
5213 	cfs_rq = tg->cfs_rq[cpu];
5214 	pcfs_rq = tg->parent->cfs_rq[cpu];
5215 
5216 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5217 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5218 }
5219 
5220 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5221 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5222 {
5223 	if (!cfs_bandwidth_used())
5224 		return false;
5225 
5226 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5227 		return false;
5228 
5229 	/*
5230 	 * it's possible for a throttled entity to be forced into a running
5231 	 * state (e.g. set_curr_task), in this case we're finished.
5232 	 */
5233 	if (cfs_rq_throttled(cfs_rq))
5234 		return true;
5235 
5236 	return throttle_cfs_rq(cfs_rq);
5237 }
5238 
5239 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5240 {
5241 	struct cfs_bandwidth *cfs_b =
5242 		container_of(timer, struct cfs_bandwidth, slack_timer);
5243 
5244 	do_sched_cfs_slack_timer(cfs_b);
5245 
5246 	return HRTIMER_NORESTART;
5247 }
5248 
5249 extern const u64 max_cfs_quota_period;
5250 
5251 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5252 {
5253 	struct cfs_bandwidth *cfs_b =
5254 		container_of(timer, struct cfs_bandwidth, period_timer);
5255 	unsigned long flags;
5256 	int overrun;
5257 	int idle = 0;
5258 	int count = 0;
5259 
5260 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5261 	for (;;) {
5262 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5263 		if (!overrun)
5264 			break;
5265 
5266 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5267 
5268 		if (++count > 3) {
5269 			u64 new, old = ktime_to_ns(cfs_b->period);
5270 
5271 			/*
5272 			 * Grow period by a factor of 2 to avoid losing precision.
5273 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5274 			 * to fail.
5275 			 */
5276 			new = old * 2;
5277 			if (new < max_cfs_quota_period) {
5278 				cfs_b->period = ns_to_ktime(new);
5279 				cfs_b->quota *= 2;
5280 
5281 				pr_warn_ratelimited(
5282 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5283 					smp_processor_id(),
5284 					div_u64(new, NSEC_PER_USEC),
5285 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5286 			} else {
5287 				pr_warn_ratelimited(
5288 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5289 					smp_processor_id(),
5290 					div_u64(old, NSEC_PER_USEC),
5291 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5292 			}
5293 
5294 			/* reset count so we don't come right back in here */
5295 			count = 0;
5296 		}
5297 	}
5298 	if (idle)
5299 		cfs_b->period_active = 0;
5300 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5301 
5302 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5303 }
5304 
5305 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5306 {
5307 	raw_spin_lock_init(&cfs_b->lock);
5308 	cfs_b->runtime = 0;
5309 	cfs_b->quota = RUNTIME_INF;
5310 	cfs_b->period = ns_to_ktime(default_cfs_period());
5311 
5312 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5313 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5314 	cfs_b->period_timer.function = sched_cfs_period_timer;
5315 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5316 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5317 	cfs_b->slack_started = false;
5318 }
5319 
5320 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5321 {
5322 	cfs_rq->runtime_enabled = 0;
5323 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5324 }
5325 
5326 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5327 {
5328 	lockdep_assert_held(&cfs_b->lock);
5329 
5330 	if (cfs_b->period_active)
5331 		return;
5332 
5333 	cfs_b->period_active = 1;
5334 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5335 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5336 }
5337 
5338 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5339 {
5340 	/* init_cfs_bandwidth() was not called */
5341 	if (!cfs_b->throttled_cfs_rq.next)
5342 		return;
5343 
5344 	hrtimer_cancel(&cfs_b->period_timer);
5345 	hrtimer_cancel(&cfs_b->slack_timer);
5346 }
5347 
5348 /*
5349  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5350  *
5351  * The race is harmless, since modifying bandwidth settings of unhooked group
5352  * bits doesn't do much.
5353  */
5354 
5355 /* cpu online callback */
5356 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5357 {
5358 	struct task_group *tg;
5359 
5360 	lockdep_assert_held(&rq->lock);
5361 
5362 	rcu_read_lock();
5363 	list_for_each_entry_rcu(tg, &task_groups, list) {
5364 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5365 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5366 
5367 		raw_spin_lock(&cfs_b->lock);
5368 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5369 		raw_spin_unlock(&cfs_b->lock);
5370 	}
5371 	rcu_read_unlock();
5372 }
5373 
5374 /* cpu offline callback */
5375 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5376 {
5377 	struct task_group *tg;
5378 
5379 	lockdep_assert_held(&rq->lock);
5380 
5381 	rcu_read_lock();
5382 	list_for_each_entry_rcu(tg, &task_groups, list) {
5383 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5384 
5385 		if (!cfs_rq->runtime_enabled)
5386 			continue;
5387 
5388 		/*
5389 		 * clock_task is not advancing so we just need to make sure
5390 		 * there's some valid quota amount
5391 		 */
5392 		cfs_rq->runtime_remaining = 1;
5393 		/*
5394 		 * Offline rq is schedulable till CPU is completely disabled
5395 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5396 		 */
5397 		cfs_rq->runtime_enabled = 0;
5398 
5399 		if (cfs_rq_throttled(cfs_rq))
5400 			unthrottle_cfs_rq(cfs_rq);
5401 	}
5402 	rcu_read_unlock();
5403 }
5404 
5405 #else /* CONFIG_CFS_BANDWIDTH */
5406 
5407 static inline bool cfs_bandwidth_used(void)
5408 {
5409 	return false;
5410 }
5411 
5412 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5413 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5414 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5415 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5416 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5417 
5418 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5419 {
5420 	return 0;
5421 }
5422 
5423 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5424 {
5425 	return 0;
5426 }
5427 
5428 static inline int throttled_lb_pair(struct task_group *tg,
5429 				    int src_cpu, int dest_cpu)
5430 {
5431 	return 0;
5432 }
5433 
5434 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5435 
5436 #ifdef CONFIG_FAIR_GROUP_SCHED
5437 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5438 #endif
5439 
5440 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5441 {
5442 	return NULL;
5443 }
5444 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5445 static inline void update_runtime_enabled(struct rq *rq) {}
5446 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5447 
5448 #endif /* CONFIG_CFS_BANDWIDTH */
5449 
5450 /**************************************************
5451  * CFS operations on tasks:
5452  */
5453 
5454 #ifdef CONFIG_SCHED_HRTICK
5455 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5456 {
5457 	struct sched_entity *se = &p->se;
5458 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5459 
5460 	SCHED_WARN_ON(task_rq(p) != rq);
5461 
5462 	if (rq->cfs.h_nr_running > 1) {
5463 		u64 slice = sched_slice(cfs_rq, se);
5464 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5465 		s64 delta = slice - ran;
5466 
5467 		if (delta < 0) {
5468 			if (task_current(rq, p))
5469 				resched_curr(rq);
5470 			return;
5471 		}
5472 		hrtick_start(rq, delta);
5473 	}
5474 }
5475 
5476 /*
5477  * called from enqueue/dequeue and updates the hrtick when the
5478  * current task is from our class and nr_running is low enough
5479  * to matter.
5480  */
5481 static void hrtick_update(struct rq *rq)
5482 {
5483 	struct task_struct *curr = rq->curr;
5484 
5485 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5486 		return;
5487 
5488 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5489 		hrtick_start_fair(rq, curr);
5490 }
5491 #else /* !CONFIG_SCHED_HRTICK */
5492 static inline void
5493 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5494 {
5495 }
5496 
5497 static inline void hrtick_update(struct rq *rq)
5498 {
5499 }
5500 #endif
5501 
5502 #ifdef CONFIG_SMP
5503 static inline unsigned long cpu_util(int cpu);
5504 
5505 static inline bool cpu_overutilized(int cpu)
5506 {
5507 	return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5508 }
5509 
5510 static inline void update_overutilized_status(struct rq *rq)
5511 {
5512 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5513 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5514 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5515 	}
5516 }
5517 #else
5518 static inline void update_overutilized_status(struct rq *rq) { }
5519 #endif
5520 
5521 /* Runqueue only has SCHED_IDLE tasks enqueued */
5522 static int sched_idle_rq(struct rq *rq)
5523 {
5524 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5525 			rq->nr_running);
5526 }
5527 
5528 #ifdef CONFIG_SMP
5529 static int sched_idle_cpu(int cpu)
5530 {
5531 	return sched_idle_rq(cpu_rq(cpu));
5532 }
5533 #endif
5534 
5535 /*
5536  * The enqueue_task method is called before nr_running is
5537  * increased. Here we update the fair scheduling stats and
5538  * then put the task into the rbtree:
5539  */
5540 static void
5541 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5542 {
5543 	struct cfs_rq *cfs_rq;
5544 	struct sched_entity *se = &p->se;
5545 	int idle_h_nr_running = task_has_idle_policy(p);
5546 	int task_new = !(flags & ENQUEUE_WAKEUP);
5547 
5548 	/*
5549 	 * The code below (indirectly) updates schedutil which looks at
5550 	 * the cfs_rq utilization to select a frequency.
5551 	 * Let's add the task's estimated utilization to the cfs_rq's
5552 	 * estimated utilization, before we update schedutil.
5553 	 */
5554 	util_est_enqueue(&rq->cfs, p);
5555 
5556 	/*
5557 	 * If in_iowait is set, the code below may not trigger any cpufreq
5558 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5559 	 * passed.
5560 	 */
5561 	if (p->in_iowait)
5562 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5563 
5564 	for_each_sched_entity(se) {
5565 		if (se->on_rq)
5566 			break;
5567 		cfs_rq = cfs_rq_of(se);
5568 		enqueue_entity(cfs_rq, se, flags);
5569 
5570 		cfs_rq->h_nr_running++;
5571 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5572 
5573 		/* end evaluation on encountering a throttled cfs_rq */
5574 		if (cfs_rq_throttled(cfs_rq))
5575 			goto enqueue_throttle;
5576 
5577 		flags = ENQUEUE_WAKEUP;
5578 	}
5579 
5580 	for_each_sched_entity(se) {
5581 		cfs_rq = cfs_rq_of(se);
5582 
5583 		update_load_avg(cfs_rq, se, UPDATE_TG);
5584 		se_update_runnable(se);
5585 		update_cfs_group(se);
5586 
5587 		cfs_rq->h_nr_running++;
5588 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5589 
5590 		/* end evaluation on encountering a throttled cfs_rq */
5591 		if (cfs_rq_throttled(cfs_rq))
5592 			goto enqueue_throttle;
5593 
5594                /*
5595                 * One parent has been throttled and cfs_rq removed from the
5596                 * list. Add it back to not break the leaf list.
5597                 */
5598                if (throttled_hierarchy(cfs_rq))
5599                        list_add_leaf_cfs_rq(cfs_rq);
5600 	}
5601 
5602 	/* At this point se is NULL and we are at root level*/
5603 	add_nr_running(rq, 1);
5604 
5605 	/*
5606 	 * Since new tasks are assigned an initial util_avg equal to
5607 	 * half of the spare capacity of their CPU, tiny tasks have the
5608 	 * ability to cross the overutilized threshold, which will
5609 	 * result in the load balancer ruining all the task placement
5610 	 * done by EAS. As a way to mitigate that effect, do not account
5611 	 * for the first enqueue operation of new tasks during the
5612 	 * overutilized flag detection.
5613 	 *
5614 	 * A better way of solving this problem would be to wait for
5615 	 * the PELT signals of tasks to converge before taking them
5616 	 * into account, but that is not straightforward to implement,
5617 	 * and the following generally works well enough in practice.
5618 	 */
5619 	if (!task_new)
5620 		update_overutilized_status(rq);
5621 
5622 enqueue_throttle:
5623 	if (cfs_bandwidth_used()) {
5624 		/*
5625 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5626 		 * breaks in the above iteration can result in incomplete
5627 		 * leaf list maintenance, resulting in triggering the assertion
5628 		 * below.
5629 		 */
5630 		for_each_sched_entity(se) {
5631 			cfs_rq = cfs_rq_of(se);
5632 
5633 			if (list_add_leaf_cfs_rq(cfs_rq))
5634 				break;
5635 		}
5636 	}
5637 
5638 	assert_list_leaf_cfs_rq(rq);
5639 
5640 	hrtick_update(rq);
5641 }
5642 
5643 static void set_next_buddy(struct sched_entity *se);
5644 
5645 /*
5646  * The dequeue_task method is called before nr_running is
5647  * decreased. We remove the task from the rbtree and
5648  * update the fair scheduling stats:
5649  */
5650 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5651 {
5652 	struct cfs_rq *cfs_rq;
5653 	struct sched_entity *se = &p->se;
5654 	int task_sleep = flags & DEQUEUE_SLEEP;
5655 	int idle_h_nr_running = task_has_idle_policy(p);
5656 	bool was_sched_idle = sched_idle_rq(rq);
5657 
5658 	util_est_dequeue(&rq->cfs, p);
5659 
5660 	for_each_sched_entity(se) {
5661 		cfs_rq = cfs_rq_of(se);
5662 		dequeue_entity(cfs_rq, se, flags);
5663 
5664 		cfs_rq->h_nr_running--;
5665 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5666 
5667 		/* end evaluation on encountering a throttled cfs_rq */
5668 		if (cfs_rq_throttled(cfs_rq))
5669 			goto dequeue_throttle;
5670 
5671 		/* Don't dequeue parent if it has other entities besides us */
5672 		if (cfs_rq->load.weight) {
5673 			/* Avoid re-evaluating load for this entity: */
5674 			se = parent_entity(se);
5675 			/*
5676 			 * Bias pick_next to pick a task from this cfs_rq, as
5677 			 * p is sleeping when it is within its sched_slice.
5678 			 */
5679 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5680 				set_next_buddy(se);
5681 			break;
5682 		}
5683 		flags |= DEQUEUE_SLEEP;
5684 	}
5685 
5686 	for_each_sched_entity(se) {
5687 		cfs_rq = cfs_rq_of(se);
5688 
5689 		update_load_avg(cfs_rq, se, UPDATE_TG);
5690 		se_update_runnable(se);
5691 		update_cfs_group(se);
5692 
5693 		cfs_rq->h_nr_running--;
5694 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5695 
5696 		/* end evaluation on encountering a throttled cfs_rq */
5697 		if (cfs_rq_throttled(cfs_rq))
5698 			goto dequeue_throttle;
5699 
5700 	}
5701 
5702 	/* At this point se is NULL and we are at root level*/
5703 	sub_nr_running(rq, 1);
5704 
5705 	/* balance early to pull high priority tasks */
5706 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5707 		rq->next_balance = jiffies;
5708 
5709 dequeue_throttle:
5710 	util_est_update(&rq->cfs, p, task_sleep);
5711 	hrtick_update(rq);
5712 }
5713 
5714 #ifdef CONFIG_SMP
5715 
5716 /* Working cpumask for: load_balance, load_balance_newidle. */
5717 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5718 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5719 
5720 #ifdef CONFIG_NO_HZ_COMMON
5721 
5722 static struct {
5723 	cpumask_var_t idle_cpus_mask;
5724 	atomic_t nr_cpus;
5725 	int has_blocked;		/* Idle CPUS has blocked load */
5726 	unsigned long next_balance;     /* in jiffy units */
5727 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5728 } nohz ____cacheline_aligned;
5729 
5730 #endif /* CONFIG_NO_HZ_COMMON */
5731 
5732 static unsigned long cpu_load(struct rq *rq)
5733 {
5734 	return cfs_rq_load_avg(&rq->cfs);
5735 }
5736 
5737 /*
5738  * cpu_load_without - compute CPU load without any contributions from *p
5739  * @cpu: the CPU which load is requested
5740  * @p: the task which load should be discounted
5741  *
5742  * The load of a CPU is defined by the load of tasks currently enqueued on that
5743  * CPU as well as tasks which are currently sleeping after an execution on that
5744  * CPU.
5745  *
5746  * This method returns the load of the specified CPU by discounting the load of
5747  * the specified task, whenever the task is currently contributing to the CPU
5748  * load.
5749  */
5750 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5751 {
5752 	struct cfs_rq *cfs_rq;
5753 	unsigned int load;
5754 
5755 	/* Task has no contribution or is new */
5756 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5757 		return cpu_load(rq);
5758 
5759 	cfs_rq = &rq->cfs;
5760 	load = READ_ONCE(cfs_rq->avg.load_avg);
5761 
5762 	/* Discount task's util from CPU's util */
5763 	lsub_positive(&load, task_h_load(p));
5764 
5765 	return load;
5766 }
5767 
5768 static unsigned long cpu_runnable(struct rq *rq)
5769 {
5770 	return cfs_rq_runnable_avg(&rq->cfs);
5771 }
5772 
5773 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5774 {
5775 	struct cfs_rq *cfs_rq;
5776 	unsigned int runnable;
5777 
5778 	/* Task has no contribution or is new */
5779 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5780 		return cpu_runnable(rq);
5781 
5782 	cfs_rq = &rq->cfs;
5783 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5784 
5785 	/* Discount task's runnable from CPU's runnable */
5786 	lsub_positive(&runnable, p->se.avg.runnable_avg);
5787 
5788 	return runnable;
5789 }
5790 
5791 static unsigned long capacity_of(int cpu)
5792 {
5793 	return cpu_rq(cpu)->cpu_capacity;
5794 }
5795 
5796 static void record_wakee(struct task_struct *p)
5797 {
5798 	/*
5799 	 * Only decay a single time; tasks that have less then 1 wakeup per
5800 	 * jiffy will not have built up many flips.
5801 	 */
5802 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5803 		current->wakee_flips >>= 1;
5804 		current->wakee_flip_decay_ts = jiffies;
5805 	}
5806 
5807 	if (current->last_wakee != p) {
5808 		current->last_wakee = p;
5809 		current->wakee_flips++;
5810 	}
5811 }
5812 
5813 /*
5814  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5815  *
5816  * A waker of many should wake a different task than the one last awakened
5817  * at a frequency roughly N times higher than one of its wakees.
5818  *
5819  * In order to determine whether we should let the load spread vs consolidating
5820  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5821  * partner, and a factor of lls_size higher frequency in the other.
5822  *
5823  * With both conditions met, we can be relatively sure that the relationship is
5824  * non-monogamous, with partner count exceeding socket size.
5825  *
5826  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5827  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5828  * socket size.
5829  */
5830 static int wake_wide(struct task_struct *p)
5831 {
5832 	unsigned int master = current->wakee_flips;
5833 	unsigned int slave = p->wakee_flips;
5834 	int factor = __this_cpu_read(sd_llc_size);
5835 
5836 	if (master < slave)
5837 		swap(master, slave);
5838 	if (slave < factor || master < slave * factor)
5839 		return 0;
5840 	return 1;
5841 }
5842 
5843 /*
5844  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5845  * soonest. For the purpose of speed we only consider the waking and previous
5846  * CPU.
5847  *
5848  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5849  *			cache-affine and is (or	will be) idle.
5850  *
5851  * wake_affine_weight() - considers the weight to reflect the average
5852  *			  scheduling latency of the CPUs. This seems to work
5853  *			  for the overloaded case.
5854  */
5855 static int
5856 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5857 {
5858 	/*
5859 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5860 	 * context. Only allow the move if cache is shared. Otherwise an
5861 	 * interrupt intensive workload could force all tasks onto one
5862 	 * node depending on the IO topology or IRQ affinity settings.
5863 	 *
5864 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5865 	 * There is no guarantee that the cache hot data from an interrupt
5866 	 * is more important than cache hot data on the prev_cpu and from
5867 	 * a cpufreq perspective, it's better to have higher utilisation
5868 	 * on one CPU.
5869 	 */
5870 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5871 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5872 
5873 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5874 		return this_cpu;
5875 
5876 	if (available_idle_cpu(prev_cpu))
5877 		return prev_cpu;
5878 
5879 	return nr_cpumask_bits;
5880 }
5881 
5882 static int
5883 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5884 		   int this_cpu, int prev_cpu, int sync)
5885 {
5886 	s64 this_eff_load, prev_eff_load;
5887 	unsigned long task_load;
5888 
5889 	this_eff_load = cpu_load(cpu_rq(this_cpu));
5890 
5891 	if (sync) {
5892 		unsigned long current_load = task_h_load(current);
5893 
5894 		if (current_load > this_eff_load)
5895 			return this_cpu;
5896 
5897 		this_eff_load -= current_load;
5898 	}
5899 
5900 	task_load = task_h_load(p);
5901 
5902 	this_eff_load += task_load;
5903 	if (sched_feat(WA_BIAS))
5904 		this_eff_load *= 100;
5905 	this_eff_load *= capacity_of(prev_cpu);
5906 
5907 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5908 	prev_eff_load -= task_load;
5909 	if (sched_feat(WA_BIAS))
5910 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5911 	prev_eff_load *= capacity_of(this_cpu);
5912 
5913 	/*
5914 	 * If sync, adjust the weight of prev_eff_load such that if
5915 	 * prev_eff == this_eff that select_idle_sibling() will consider
5916 	 * stacking the wakee on top of the waker if no other CPU is
5917 	 * idle.
5918 	 */
5919 	if (sync)
5920 		prev_eff_load += 1;
5921 
5922 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5923 }
5924 
5925 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5926 		       int this_cpu, int prev_cpu, int sync)
5927 {
5928 	int target = nr_cpumask_bits;
5929 
5930 	if (sched_feat(WA_IDLE))
5931 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5932 
5933 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5934 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5935 
5936 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5937 	if (target == nr_cpumask_bits)
5938 		return prev_cpu;
5939 
5940 	schedstat_inc(sd->ttwu_move_affine);
5941 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5942 	return target;
5943 }
5944 
5945 static struct sched_group *
5946 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
5947 
5948 /*
5949  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5950  */
5951 static int
5952 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5953 {
5954 	unsigned long load, min_load = ULONG_MAX;
5955 	unsigned int min_exit_latency = UINT_MAX;
5956 	u64 latest_idle_timestamp = 0;
5957 	int least_loaded_cpu = this_cpu;
5958 	int shallowest_idle_cpu = -1;
5959 	int i;
5960 
5961 	/* Check if we have any choice: */
5962 	if (group->group_weight == 1)
5963 		return cpumask_first(sched_group_span(group));
5964 
5965 	/* Traverse only the allowed CPUs */
5966 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5967 		if (sched_idle_cpu(i))
5968 			return i;
5969 
5970 		if (available_idle_cpu(i)) {
5971 			struct rq *rq = cpu_rq(i);
5972 			struct cpuidle_state *idle = idle_get_state(rq);
5973 			if (idle && idle->exit_latency < min_exit_latency) {
5974 				/*
5975 				 * We give priority to a CPU whose idle state
5976 				 * has the smallest exit latency irrespective
5977 				 * of any idle timestamp.
5978 				 */
5979 				min_exit_latency = idle->exit_latency;
5980 				latest_idle_timestamp = rq->idle_stamp;
5981 				shallowest_idle_cpu = i;
5982 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5983 				   rq->idle_stamp > latest_idle_timestamp) {
5984 				/*
5985 				 * If equal or no active idle state, then
5986 				 * the most recently idled CPU might have
5987 				 * a warmer cache.
5988 				 */
5989 				latest_idle_timestamp = rq->idle_stamp;
5990 				shallowest_idle_cpu = i;
5991 			}
5992 		} else if (shallowest_idle_cpu == -1) {
5993 			load = cpu_load(cpu_rq(i));
5994 			if (load < min_load) {
5995 				min_load = load;
5996 				least_loaded_cpu = i;
5997 			}
5998 		}
5999 	}
6000 
6001 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6002 }
6003 
6004 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6005 				  int cpu, int prev_cpu, int sd_flag)
6006 {
6007 	int new_cpu = cpu;
6008 
6009 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6010 		return prev_cpu;
6011 
6012 	/*
6013 	 * We need task's util for cpu_util_without, sync it up to
6014 	 * prev_cpu's last_update_time.
6015 	 */
6016 	if (!(sd_flag & SD_BALANCE_FORK))
6017 		sync_entity_load_avg(&p->se);
6018 
6019 	while (sd) {
6020 		struct sched_group *group;
6021 		struct sched_domain *tmp;
6022 		int weight;
6023 
6024 		if (!(sd->flags & sd_flag)) {
6025 			sd = sd->child;
6026 			continue;
6027 		}
6028 
6029 		group = find_idlest_group(sd, p, cpu);
6030 		if (!group) {
6031 			sd = sd->child;
6032 			continue;
6033 		}
6034 
6035 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6036 		if (new_cpu == cpu) {
6037 			/* Now try balancing at a lower domain level of 'cpu': */
6038 			sd = sd->child;
6039 			continue;
6040 		}
6041 
6042 		/* Now try balancing at a lower domain level of 'new_cpu': */
6043 		cpu = new_cpu;
6044 		weight = sd->span_weight;
6045 		sd = NULL;
6046 		for_each_domain(cpu, tmp) {
6047 			if (weight <= tmp->span_weight)
6048 				break;
6049 			if (tmp->flags & sd_flag)
6050 				sd = tmp;
6051 		}
6052 	}
6053 
6054 	return new_cpu;
6055 }
6056 
6057 static inline int __select_idle_cpu(int cpu)
6058 {
6059 	if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6060 		return cpu;
6061 
6062 	return -1;
6063 }
6064 
6065 #ifdef CONFIG_SCHED_SMT
6066 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6067 EXPORT_SYMBOL_GPL(sched_smt_present);
6068 
6069 static inline void set_idle_cores(int cpu, int val)
6070 {
6071 	struct sched_domain_shared *sds;
6072 
6073 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6074 	if (sds)
6075 		WRITE_ONCE(sds->has_idle_cores, val);
6076 }
6077 
6078 static inline bool test_idle_cores(int cpu, bool def)
6079 {
6080 	struct sched_domain_shared *sds;
6081 
6082 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6083 	if (sds)
6084 		return READ_ONCE(sds->has_idle_cores);
6085 
6086 	return def;
6087 }
6088 
6089 /*
6090  * Scans the local SMT mask to see if the entire core is idle, and records this
6091  * information in sd_llc_shared->has_idle_cores.
6092  *
6093  * Since SMT siblings share all cache levels, inspecting this limited remote
6094  * state should be fairly cheap.
6095  */
6096 void __update_idle_core(struct rq *rq)
6097 {
6098 	int core = cpu_of(rq);
6099 	int cpu;
6100 
6101 	rcu_read_lock();
6102 	if (test_idle_cores(core, true))
6103 		goto unlock;
6104 
6105 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6106 		if (cpu == core)
6107 			continue;
6108 
6109 		if (!available_idle_cpu(cpu))
6110 			goto unlock;
6111 	}
6112 
6113 	set_idle_cores(core, 1);
6114 unlock:
6115 	rcu_read_unlock();
6116 }
6117 
6118 /*
6119  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6120  * there are no idle cores left in the system; tracked through
6121  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6122  */
6123 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6124 {
6125 	bool idle = true;
6126 	int cpu;
6127 
6128 	if (!static_branch_likely(&sched_smt_present))
6129 		return __select_idle_cpu(core);
6130 
6131 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6132 		if (!available_idle_cpu(cpu)) {
6133 			idle = false;
6134 			if (*idle_cpu == -1) {
6135 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6136 					*idle_cpu = cpu;
6137 					break;
6138 				}
6139 				continue;
6140 			}
6141 			break;
6142 		}
6143 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6144 			*idle_cpu = cpu;
6145 	}
6146 
6147 	if (idle)
6148 		return core;
6149 
6150 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6151 	return -1;
6152 }
6153 
6154 /*
6155  * Scan the local SMT mask for idle CPUs.
6156  */
6157 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6158 {
6159 	int cpu;
6160 
6161 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6162 		if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6163 		    !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6164 			continue;
6165 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6166 			return cpu;
6167 	}
6168 
6169 	return -1;
6170 }
6171 
6172 #else /* CONFIG_SCHED_SMT */
6173 
6174 static inline void set_idle_cores(int cpu, int val)
6175 {
6176 }
6177 
6178 static inline bool test_idle_cores(int cpu, bool def)
6179 {
6180 	return def;
6181 }
6182 
6183 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6184 {
6185 	return __select_idle_cpu(core);
6186 }
6187 
6188 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6189 {
6190 	return -1;
6191 }
6192 
6193 #endif /* CONFIG_SCHED_SMT */
6194 
6195 /*
6196  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6197  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6198  * average idle time for this rq (as found in rq->avg_idle).
6199  */
6200 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6201 {
6202 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6203 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
6204 	int this = smp_processor_id();
6205 	struct sched_domain *this_sd;
6206 	u64 time;
6207 
6208 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6209 	if (!this_sd)
6210 		return -1;
6211 
6212 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6213 
6214 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6215 		u64 avg_cost, avg_idle, span_avg;
6216 
6217 		/*
6218 		 * Due to large variance we need a large fuzz factor;
6219 		 * hackbench in particularly is sensitive here.
6220 		 */
6221 		avg_idle = this_rq()->avg_idle / 512;
6222 		avg_cost = this_sd->avg_scan_cost + 1;
6223 
6224 		span_avg = sd->span_weight * avg_idle;
6225 		if (span_avg > 4*avg_cost)
6226 			nr = div_u64(span_avg, avg_cost);
6227 		else
6228 			nr = 4;
6229 
6230 		time = cpu_clock(this);
6231 	}
6232 
6233 	for_each_cpu_wrap(cpu, cpus, target) {
6234 		if (has_idle_core) {
6235 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
6236 			if ((unsigned int)i < nr_cpumask_bits)
6237 				return i;
6238 
6239 		} else {
6240 			if (!--nr)
6241 				return -1;
6242 			idle_cpu = __select_idle_cpu(cpu);
6243 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
6244 				break;
6245 		}
6246 	}
6247 
6248 	if (has_idle_core)
6249 		set_idle_cores(target, false);
6250 
6251 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6252 		time = cpu_clock(this) - time;
6253 		update_avg(&this_sd->avg_scan_cost, time);
6254 	}
6255 
6256 	return idle_cpu;
6257 }
6258 
6259 /*
6260  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6261  * the task fits. If no CPU is big enough, but there are idle ones, try to
6262  * maximize capacity.
6263  */
6264 static int
6265 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6266 {
6267 	unsigned long task_util, best_cap = 0;
6268 	int cpu, best_cpu = -1;
6269 	struct cpumask *cpus;
6270 
6271 	cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6272 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6273 
6274 	task_util = uclamp_task_util(p);
6275 
6276 	for_each_cpu_wrap(cpu, cpus, target) {
6277 		unsigned long cpu_cap = capacity_of(cpu);
6278 
6279 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6280 			continue;
6281 		if (fits_capacity(task_util, cpu_cap))
6282 			return cpu;
6283 
6284 		if (cpu_cap > best_cap) {
6285 			best_cap = cpu_cap;
6286 			best_cpu = cpu;
6287 		}
6288 	}
6289 
6290 	return best_cpu;
6291 }
6292 
6293 static inline bool asym_fits_capacity(int task_util, int cpu)
6294 {
6295 	if (static_branch_unlikely(&sched_asym_cpucapacity))
6296 		return fits_capacity(task_util, capacity_of(cpu));
6297 
6298 	return true;
6299 }
6300 
6301 /*
6302  * Try and locate an idle core/thread in the LLC cache domain.
6303  */
6304 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6305 {
6306 	bool has_idle_core = false;
6307 	struct sched_domain *sd;
6308 	unsigned long task_util;
6309 	int i, recent_used_cpu;
6310 
6311 	/*
6312 	 * On asymmetric system, update task utilization because we will check
6313 	 * that the task fits with cpu's capacity.
6314 	 */
6315 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6316 		sync_entity_load_avg(&p->se);
6317 		task_util = uclamp_task_util(p);
6318 	}
6319 
6320 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6321 	    asym_fits_capacity(task_util, target))
6322 		return target;
6323 
6324 	/*
6325 	 * If the previous CPU is cache affine and idle, don't be stupid:
6326 	 */
6327 	if (prev != target && cpus_share_cache(prev, target) &&
6328 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6329 	    asym_fits_capacity(task_util, prev))
6330 		return prev;
6331 
6332 	/*
6333 	 * Allow a per-cpu kthread to stack with the wakee if the
6334 	 * kworker thread and the tasks previous CPUs are the same.
6335 	 * The assumption is that the wakee queued work for the
6336 	 * per-cpu kthread that is now complete and the wakeup is
6337 	 * essentially a sync wakeup. An obvious example of this
6338 	 * pattern is IO completions.
6339 	 */
6340 	if (is_per_cpu_kthread(current) &&
6341 	    prev == smp_processor_id() &&
6342 	    this_rq()->nr_running <= 1) {
6343 		return prev;
6344 	}
6345 
6346 	/* Check a recently used CPU as a potential idle candidate: */
6347 	recent_used_cpu = p->recent_used_cpu;
6348 	if (recent_used_cpu != prev &&
6349 	    recent_used_cpu != target &&
6350 	    cpus_share_cache(recent_used_cpu, target) &&
6351 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6352 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6353 	    asym_fits_capacity(task_util, recent_used_cpu)) {
6354 		/*
6355 		 * Replace recent_used_cpu with prev as it is a potential
6356 		 * candidate for the next wake:
6357 		 */
6358 		p->recent_used_cpu = prev;
6359 		return recent_used_cpu;
6360 	}
6361 
6362 	/*
6363 	 * For asymmetric CPU capacity systems, our domain of interest is
6364 	 * sd_asym_cpucapacity rather than sd_llc.
6365 	 */
6366 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6367 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6368 		/*
6369 		 * On an asymmetric CPU capacity system where an exclusive
6370 		 * cpuset defines a symmetric island (i.e. one unique
6371 		 * capacity_orig value through the cpuset), the key will be set
6372 		 * but the CPUs within that cpuset will not have a domain with
6373 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6374 		 * capacity path.
6375 		 */
6376 		if (sd) {
6377 			i = select_idle_capacity(p, sd, target);
6378 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
6379 		}
6380 	}
6381 
6382 	sd = rcu_dereference(per_cpu(sd_llc, target));
6383 	if (!sd)
6384 		return target;
6385 
6386 	if (sched_smt_active()) {
6387 		has_idle_core = test_idle_cores(target, false);
6388 
6389 		if (!has_idle_core && cpus_share_cache(prev, target)) {
6390 			i = select_idle_smt(p, sd, prev);
6391 			if ((unsigned int)i < nr_cpumask_bits)
6392 				return i;
6393 		}
6394 	}
6395 
6396 	i = select_idle_cpu(p, sd, has_idle_core, target);
6397 	if ((unsigned)i < nr_cpumask_bits)
6398 		return i;
6399 
6400 	return target;
6401 }
6402 
6403 /**
6404  * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
6405  * @cpu: the CPU to get the utilization of
6406  *
6407  * The unit of the return value must be the one of capacity so we can compare
6408  * the utilization with the capacity of the CPU that is available for CFS task
6409  * (ie cpu_capacity).
6410  *
6411  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6412  * recent utilization of currently non-runnable tasks on a CPU. It represents
6413  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6414  * capacity_orig is the cpu_capacity available at the highest frequency
6415  * (arch_scale_freq_capacity()).
6416  * The utilization of a CPU converges towards a sum equal to or less than the
6417  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6418  * the running time on this CPU scaled by capacity_curr.
6419  *
6420  * The estimated utilization of a CPU is defined to be the maximum between its
6421  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6422  * currently RUNNABLE on that CPU.
6423  * This allows to properly represent the expected utilization of a CPU which
6424  * has just got a big task running since a long sleep period. At the same time
6425  * however it preserves the benefits of the "blocked utilization" in
6426  * describing the potential for other tasks waking up on the same CPU.
6427  *
6428  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6429  * higher than capacity_orig because of unfortunate rounding in
6430  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6431  * the average stabilizes with the new running time. We need to check that the
6432  * utilization stays within the range of [0..capacity_orig] and cap it if
6433  * necessary. Without utilization capping, a group could be seen as overloaded
6434  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6435  * available capacity. We allow utilization to overshoot capacity_curr (but not
6436  * capacity_orig) as it useful for predicting the capacity required after task
6437  * migrations (scheduler-driven DVFS).
6438  *
6439  * Return: the (estimated) utilization for the specified CPU
6440  */
6441 static inline unsigned long cpu_util(int cpu)
6442 {
6443 	struct cfs_rq *cfs_rq;
6444 	unsigned int util;
6445 
6446 	cfs_rq = &cpu_rq(cpu)->cfs;
6447 	util = READ_ONCE(cfs_rq->avg.util_avg);
6448 
6449 	if (sched_feat(UTIL_EST))
6450 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6451 
6452 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6453 }
6454 
6455 /*
6456  * cpu_util_without: compute cpu utilization without any contributions from *p
6457  * @cpu: the CPU which utilization is requested
6458  * @p: the task which utilization should be discounted
6459  *
6460  * The utilization of a CPU is defined by the utilization of tasks currently
6461  * enqueued on that CPU as well as tasks which are currently sleeping after an
6462  * execution on that CPU.
6463  *
6464  * This method returns the utilization of the specified CPU by discounting the
6465  * utilization of the specified task, whenever the task is currently
6466  * contributing to the CPU utilization.
6467  */
6468 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6469 {
6470 	struct cfs_rq *cfs_rq;
6471 	unsigned int util;
6472 
6473 	/* Task has no contribution or is new */
6474 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6475 		return cpu_util(cpu);
6476 
6477 	cfs_rq = &cpu_rq(cpu)->cfs;
6478 	util = READ_ONCE(cfs_rq->avg.util_avg);
6479 
6480 	/* Discount task's util from CPU's util */
6481 	lsub_positive(&util, task_util(p));
6482 
6483 	/*
6484 	 * Covered cases:
6485 	 *
6486 	 * a) if *p is the only task sleeping on this CPU, then:
6487 	 *      cpu_util (== task_util) > util_est (== 0)
6488 	 *    and thus we return:
6489 	 *      cpu_util_without = (cpu_util - task_util) = 0
6490 	 *
6491 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6492 	 *    IDLE, then:
6493 	 *      cpu_util >= task_util
6494 	 *      cpu_util > util_est (== 0)
6495 	 *    and thus we discount *p's blocked utilization to return:
6496 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6497 	 *
6498 	 * c) if other tasks are RUNNABLE on that CPU and
6499 	 *      util_est > cpu_util
6500 	 *    then we use util_est since it returns a more restrictive
6501 	 *    estimation of the spare capacity on that CPU, by just
6502 	 *    considering the expected utilization of tasks already
6503 	 *    runnable on that CPU.
6504 	 *
6505 	 * Cases a) and b) are covered by the above code, while case c) is
6506 	 * covered by the following code when estimated utilization is
6507 	 * enabled.
6508 	 */
6509 	if (sched_feat(UTIL_EST)) {
6510 		unsigned int estimated =
6511 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6512 
6513 		/*
6514 		 * Despite the following checks we still have a small window
6515 		 * for a possible race, when an execl's select_task_rq_fair()
6516 		 * races with LB's detach_task():
6517 		 *
6518 		 *   detach_task()
6519 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6520 		 *     ---------------------------------- A
6521 		 *     deactivate_task()                   \
6522 		 *       dequeue_task()                     + RaceTime
6523 		 *         util_est_dequeue()              /
6524 		 *     ---------------------------------- B
6525 		 *
6526 		 * The additional check on "current == p" it's required to
6527 		 * properly fix the execl regression and it helps in further
6528 		 * reducing the chances for the above race.
6529 		 */
6530 		if (unlikely(task_on_rq_queued(p) || current == p))
6531 			lsub_positive(&estimated, _task_util_est(p));
6532 
6533 		util = max(util, estimated);
6534 	}
6535 
6536 	/*
6537 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6538 	 * clamp to the maximum CPU capacity to ensure consistency with
6539 	 * the cpu_util call.
6540 	 */
6541 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6542 }
6543 
6544 /*
6545  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6546  * to @dst_cpu.
6547  */
6548 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6549 {
6550 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6551 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6552 
6553 	/*
6554 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6555 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6556 	 * the other cases, @cpu is not impacted by the migration, so the
6557 	 * util_avg should already be correct.
6558 	 */
6559 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6560 		lsub_positive(&util, task_util(p));
6561 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6562 		util += task_util(p);
6563 
6564 	if (sched_feat(UTIL_EST)) {
6565 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6566 
6567 		/*
6568 		 * During wake-up, the task isn't enqueued yet and doesn't
6569 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6570 		 * so just add it (if needed) to "simulate" what will be
6571 		 * cpu_util() after the task has been enqueued.
6572 		 */
6573 		if (dst_cpu == cpu)
6574 			util_est += _task_util_est(p);
6575 
6576 		util = max(util, util_est);
6577 	}
6578 
6579 	return min(util, capacity_orig_of(cpu));
6580 }
6581 
6582 /*
6583  * compute_energy(): Estimates the energy that @pd would consume if @p was
6584  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6585  * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6586  * to compute what would be the energy if we decided to actually migrate that
6587  * task.
6588  */
6589 static long
6590 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6591 {
6592 	struct cpumask *pd_mask = perf_domain_span(pd);
6593 	unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6594 	unsigned long max_util = 0, sum_util = 0;
6595 	int cpu;
6596 
6597 	/*
6598 	 * The capacity state of CPUs of the current rd can be driven by CPUs
6599 	 * of another rd if they belong to the same pd. So, account for the
6600 	 * utilization of these CPUs too by masking pd with cpu_online_mask
6601 	 * instead of the rd span.
6602 	 *
6603 	 * If an entire pd is outside of the current rd, it will not appear in
6604 	 * its pd list and will not be accounted by compute_energy().
6605 	 */
6606 	for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6607 		unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6608 		unsigned long cpu_util, util_running = util_freq;
6609 		struct task_struct *tsk = NULL;
6610 
6611 		/*
6612 		 * When @p is placed on @cpu:
6613 		 *
6614 		 * util_running = max(cpu_util, cpu_util_est) +
6615 		 *		  max(task_util, _task_util_est)
6616 		 *
6617 		 * while cpu_util_next is: max(cpu_util + task_util,
6618 		 *			       cpu_util_est + _task_util_est)
6619 		 */
6620 		if (cpu == dst_cpu) {
6621 			tsk = p;
6622 			util_running =
6623 				cpu_util_next(cpu, p, -1) + task_util_est(p);
6624 		}
6625 
6626 		/*
6627 		 * Busy time computation: utilization clamping is not
6628 		 * required since the ratio (sum_util / cpu_capacity)
6629 		 * is already enough to scale the EM reported power
6630 		 * consumption at the (eventually clamped) cpu_capacity.
6631 		 */
6632 		sum_util += effective_cpu_util(cpu, util_running, cpu_cap,
6633 					       ENERGY_UTIL, NULL);
6634 
6635 		/*
6636 		 * Performance domain frequency: utilization clamping
6637 		 * must be considered since it affects the selection
6638 		 * of the performance domain frequency.
6639 		 * NOTE: in case RT tasks are running, by default the
6640 		 * FREQUENCY_UTIL's utilization can be max OPP.
6641 		 */
6642 		cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
6643 					      FREQUENCY_UTIL, tsk);
6644 		max_util = max(max_util, cpu_util);
6645 	}
6646 
6647 	return em_cpu_energy(pd->em_pd, max_util, sum_util);
6648 }
6649 
6650 /*
6651  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6652  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6653  * spare capacity in each performance domain and uses it as a potential
6654  * candidate to execute the task. Then, it uses the Energy Model to figure
6655  * out which of the CPU candidates is the most energy-efficient.
6656  *
6657  * The rationale for this heuristic is as follows. In a performance domain,
6658  * all the most energy efficient CPU candidates (according to the Energy
6659  * Model) are those for which we'll request a low frequency. When there are
6660  * several CPUs for which the frequency request will be the same, we don't
6661  * have enough data to break the tie between them, because the Energy Model
6662  * only includes active power costs. With this model, if we assume that
6663  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6664  * the maximum spare capacity in a performance domain is guaranteed to be among
6665  * the best candidates of the performance domain.
6666  *
6667  * In practice, it could be preferable from an energy standpoint to pack
6668  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6669  * but that could also hurt our chances to go cluster idle, and we have no
6670  * ways to tell with the current Energy Model if this is actually a good
6671  * idea or not. So, find_energy_efficient_cpu() basically favors
6672  * cluster-packing, and spreading inside a cluster. That should at least be
6673  * a good thing for latency, and this is consistent with the idea that most
6674  * of the energy savings of EAS come from the asymmetry of the system, and
6675  * not so much from breaking the tie between identical CPUs. That's also the
6676  * reason why EAS is enabled in the topology code only for systems where
6677  * SD_ASYM_CPUCAPACITY is set.
6678  *
6679  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6680  * they don't have any useful utilization data yet and it's not possible to
6681  * forecast their impact on energy consumption. Consequently, they will be
6682  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6683  * to be energy-inefficient in some use-cases. The alternative would be to
6684  * bias new tasks towards specific types of CPUs first, or to try to infer
6685  * their util_avg from the parent task, but those heuristics could hurt
6686  * other use-cases too. So, until someone finds a better way to solve this,
6687  * let's keep things simple by re-using the existing slow path.
6688  */
6689 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6690 {
6691 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6692 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6693 	unsigned long cpu_cap, util, base_energy = 0;
6694 	int cpu, best_energy_cpu = prev_cpu;
6695 	struct sched_domain *sd;
6696 	struct perf_domain *pd;
6697 
6698 	rcu_read_lock();
6699 	pd = rcu_dereference(rd->pd);
6700 	if (!pd || READ_ONCE(rd->overutilized))
6701 		goto fail;
6702 
6703 	/*
6704 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6705 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6706 	 */
6707 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6708 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6709 		sd = sd->parent;
6710 	if (!sd)
6711 		goto fail;
6712 
6713 	sync_entity_load_avg(&p->se);
6714 	if (!task_util_est(p))
6715 		goto unlock;
6716 
6717 	for (; pd; pd = pd->next) {
6718 		unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6719 		unsigned long base_energy_pd;
6720 		int max_spare_cap_cpu = -1;
6721 
6722 		/* Compute the 'base' energy of the pd, without @p */
6723 		base_energy_pd = compute_energy(p, -1, pd);
6724 		base_energy += base_energy_pd;
6725 
6726 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6727 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6728 				continue;
6729 
6730 			util = cpu_util_next(cpu, p, cpu);
6731 			cpu_cap = capacity_of(cpu);
6732 			spare_cap = cpu_cap;
6733 			lsub_positive(&spare_cap, util);
6734 
6735 			/*
6736 			 * Skip CPUs that cannot satisfy the capacity request.
6737 			 * IOW, placing the task there would make the CPU
6738 			 * overutilized. Take uclamp into account to see how
6739 			 * much capacity we can get out of the CPU; this is
6740 			 * aligned with sched_cpu_util().
6741 			 */
6742 			util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6743 			if (!fits_capacity(util, cpu_cap))
6744 				continue;
6745 
6746 			/* Always use prev_cpu as a candidate. */
6747 			if (cpu == prev_cpu) {
6748 				prev_delta = compute_energy(p, prev_cpu, pd);
6749 				prev_delta -= base_energy_pd;
6750 				best_delta = min(best_delta, prev_delta);
6751 			}
6752 
6753 			/*
6754 			 * Find the CPU with the maximum spare capacity in
6755 			 * the performance domain
6756 			 */
6757 			if (spare_cap > max_spare_cap) {
6758 				max_spare_cap = spare_cap;
6759 				max_spare_cap_cpu = cpu;
6760 			}
6761 		}
6762 
6763 		/* Evaluate the energy impact of using this CPU. */
6764 		if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
6765 			cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6766 			cur_delta -= base_energy_pd;
6767 			if (cur_delta < best_delta) {
6768 				best_delta = cur_delta;
6769 				best_energy_cpu = max_spare_cap_cpu;
6770 			}
6771 		}
6772 	}
6773 unlock:
6774 	rcu_read_unlock();
6775 
6776 	/*
6777 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6778 	 * least 6% of the energy used by prev_cpu.
6779 	 */
6780 	if (prev_delta == ULONG_MAX)
6781 		return best_energy_cpu;
6782 
6783 	if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6784 		return best_energy_cpu;
6785 
6786 	return prev_cpu;
6787 
6788 fail:
6789 	rcu_read_unlock();
6790 
6791 	return -1;
6792 }
6793 
6794 /*
6795  * select_task_rq_fair: Select target runqueue for the waking task in domains
6796  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
6797  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6798  *
6799  * Balances load by selecting the idlest CPU in the idlest group, or under
6800  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6801  *
6802  * Returns the target CPU number.
6803  *
6804  * preempt must be disabled.
6805  */
6806 static int
6807 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
6808 {
6809 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6810 	struct sched_domain *tmp, *sd = NULL;
6811 	int cpu = smp_processor_id();
6812 	int new_cpu = prev_cpu;
6813 	int want_affine = 0;
6814 	/* SD_flags and WF_flags share the first nibble */
6815 	int sd_flag = wake_flags & 0xF;
6816 
6817 	if (wake_flags & WF_TTWU) {
6818 		record_wakee(p);
6819 
6820 		if (sched_energy_enabled()) {
6821 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6822 			if (new_cpu >= 0)
6823 				return new_cpu;
6824 			new_cpu = prev_cpu;
6825 		}
6826 
6827 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6828 	}
6829 
6830 	rcu_read_lock();
6831 	for_each_domain(cpu, tmp) {
6832 		/*
6833 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6834 		 * cpu is a valid SD_WAKE_AFFINE target.
6835 		 */
6836 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6837 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6838 			if (cpu != prev_cpu)
6839 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6840 
6841 			sd = NULL; /* Prefer wake_affine over balance flags */
6842 			break;
6843 		}
6844 
6845 		if (tmp->flags & sd_flag)
6846 			sd = tmp;
6847 		else if (!want_affine)
6848 			break;
6849 	}
6850 
6851 	if (unlikely(sd)) {
6852 		/* Slow path */
6853 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6854 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
6855 		/* Fast path */
6856 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6857 
6858 		if (want_affine)
6859 			current->recent_used_cpu = cpu;
6860 	}
6861 	rcu_read_unlock();
6862 
6863 	return new_cpu;
6864 }
6865 
6866 static void detach_entity_cfs_rq(struct sched_entity *se);
6867 
6868 /*
6869  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6870  * cfs_rq_of(p) references at time of call are still valid and identify the
6871  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6872  */
6873 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6874 {
6875 	/*
6876 	 * As blocked tasks retain absolute vruntime the migration needs to
6877 	 * deal with this by subtracting the old and adding the new
6878 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6879 	 * the task on the new runqueue.
6880 	 */
6881 	if (p->state == TASK_WAKING) {
6882 		struct sched_entity *se = &p->se;
6883 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6884 		u64 min_vruntime;
6885 
6886 #ifndef CONFIG_64BIT
6887 		u64 min_vruntime_copy;
6888 
6889 		do {
6890 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6891 			smp_rmb();
6892 			min_vruntime = cfs_rq->min_vruntime;
6893 		} while (min_vruntime != min_vruntime_copy);
6894 #else
6895 		min_vruntime = cfs_rq->min_vruntime;
6896 #endif
6897 
6898 		se->vruntime -= min_vruntime;
6899 	}
6900 
6901 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6902 		/*
6903 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6904 		 * rq->lock and can modify state directly.
6905 		 */
6906 		lockdep_assert_held(&task_rq(p)->lock);
6907 		detach_entity_cfs_rq(&p->se);
6908 
6909 	} else {
6910 		/*
6911 		 * We are supposed to update the task to "current" time, then
6912 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6913 		 * have difficulty in getting what current time is, so simply
6914 		 * throw away the out-of-date time. This will result in the
6915 		 * wakee task is less decayed, but giving the wakee more load
6916 		 * sounds not bad.
6917 		 */
6918 		remove_entity_load_avg(&p->se);
6919 	}
6920 
6921 	/* Tell new CPU we are migrated */
6922 	p->se.avg.last_update_time = 0;
6923 
6924 	/* We have migrated, no longer consider this task hot */
6925 	p->se.exec_start = 0;
6926 
6927 	update_scan_period(p, new_cpu);
6928 }
6929 
6930 static void task_dead_fair(struct task_struct *p)
6931 {
6932 	remove_entity_load_avg(&p->se);
6933 }
6934 
6935 static int
6936 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6937 {
6938 	if (rq->nr_running)
6939 		return 1;
6940 
6941 	return newidle_balance(rq, rf) != 0;
6942 }
6943 #endif /* CONFIG_SMP */
6944 
6945 static unsigned long wakeup_gran(struct sched_entity *se)
6946 {
6947 	unsigned long gran = sysctl_sched_wakeup_granularity;
6948 
6949 	/*
6950 	 * Since its curr running now, convert the gran from real-time
6951 	 * to virtual-time in his units.
6952 	 *
6953 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6954 	 * they get preempted easier. That is, if 'se' < 'curr' then
6955 	 * the resulting gran will be larger, therefore penalizing the
6956 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6957 	 * be smaller, again penalizing the lighter task.
6958 	 *
6959 	 * This is especially important for buddies when the leftmost
6960 	 * task is higher priority than the buddy.
6961 	 */
6962 	return calc_delta_fair(gran, se);
6963 }
6964 
6965 /*
6966  * Should 'se' preempt 'curr'.
6967  *
6968  *             |s1
6969  *        |s2
6970  *   |s3
6971  *         g
6972  *      |<--->|c
6973  *
6974  *  w(c, s1) = -1
6975  *  w(c, s2) =  0
6976  *  w(c, s3) =  1
6977  *
6978  */
6979 static int
6980 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6981 {
6982 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6983 
6984 	if (vdiff <= 0)
6985 		return -1;
6986 
6987 	gran = wakeup_gran(se);
6988 	if (vdiff > gran)
6989 		return 1;
6990 
6991 	return 0;
6992 }
6993 
6994 static void set_last_buddy(struct sched_entity *se)
6995 {
6996 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6997 		return;
6998 
6999 	for_each_sched_entity(se) {
7000 		if (SCHED_WARN_ON(!se->on_rq))
7001 			return;
7002 		cfs_rq_of(se)->last = se;
7003 	}
7004 }
7005 
7006 static void set_next_buddy(struct sched_entity *se)
7007 {
7008 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
7009 		return;
7010 
7011 	for_each_sched_entity(se) {
7012 		if (SCHED_WARN_ON(!se->on_rq))
7013 			return;
7014 		cfs_rq_of(se)->next = se;
7015 	}
7016 }
7017 
7018 static void set_skip_buddy(struct sched_entity *se)
7019 {
7020 	for_each_sched_entity(se)
7021 		cfs_rq_of(se)->skip = se;
7022 }
7023 
7024 /*
7025  * Preempt the current task with a newly woken task if needed:
7026  */
7027 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7028 {
7029 	struct task_struct *curr = rq->curr;
7030 	struct sched_entity *se = &curr->se, *pse = &p->se;
7031 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7032 	int scale = cfs_rq->nr_running >= sched_nr_latency;
7033 	int next_buddy_marked = 0;
7034 
7035 	if (unlikely(se == pse))
7036 		return;
7037 
7038 	/*
7039 	 * This is possible from callers such as attach_tasks(), in which we
7040 	 * unconditionally check_preempt_curr() after an enqueue (which may have
7041 	 * lead to a throttle).  This both saves work and prevents false
7042 	 * next-buddy nomination below.
7043 	 */
7044 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7045 		return;
7046 
7047 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7048 		set_next_buddy(pse);
7049 		next_buddy_marked = 1;
7050 	}
7051 
7052 	/*
7053 	 * We can come here with TIF_NEED_RESCHED already set from new task
7054 	 * wake up path.
7055 	 *
7056 	 * Note: this also catches the edge-case of curr being in a throttled
7057 	 * group (e.g. via set_curr_task), since update_curr() (in the
7058 	 * enqueue of curr) will have resulted in resched being set.  This
7059 	 * prevents us from potentially nominating it as a false LAST_BUDDY
7060 	 * below.
7061 	 */
7062 	if (test_tsk_need_resched(curr))
7063 		return;
7064 
7065 	/* Idle tasks are by definition preempted by non-idle tasks. */
7066 	if (unlikely(task_has_idle_policy(curr)) &&
7067 	    likely(!task_has_idle_policy(p)))
7068 		goto preempt;
7069 
7070 	/*
7071 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7072 	 * is driven by the tick):
7073 	 */
7074 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7075 		return;
7076 
7077 	find_matching_se(&se, &pse);
7078 	update_curr(cfs_rq_of(se));
7079 	BUG_ON(!pse);
7080 	if (wakeup_preempt_entity(se, pse) == 1) {
7081 		/*
7082 		 * Bias pick_next to pick the sched entity that is
7083 		 * triggering this preemption.
7084 		 */
7085 		if (!next_buddy_marked)
7086 			set_next_buddy(pse);
7087 		goto preempt;
7088 	}
7089 
7090 	return;
7091 
7092 preempt:
7093 	resched_curr(rq);
7094 	/*
7095 	 * Only set the backward buddy when the current task is still
7096 	 * on the rq. This can happen when a wakeup gets interleaved
7097 	 * with schedule on the ->pre_schedule() or idle_balance()
7098 	 * point, either of which can * drop the rq lock.
7099 	 *
7100 	 * Also, during early boot the idle thread is in the fair class,
7101 	 * for obvious reasons its a bad idea to schedule back to it.
7102 	 */
7103 	if (unlikely(!se->on_rq || curr == rq->idle))
7104 		return;
7105 
7106 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7107 		set_last_buddy(se);
7108 }
7109 
7110 struct task_struct *
7111 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7112 {
7113 	struct cfs_rq *cfs_rq = &rq->cfs;
7114 	struct sched_entity *se;
7115 	struct task_struct *p;
7116 	int new_tasks;
7117 
7118 again:
7119 	if (!sched_fair_runnable(rq))
7120 		goto idle;
7121 
7122 #ifdef CONFIG_FAIR_GROUP_SCHED
7123 	if (!prev || prev->sched_class != &fair_sched_class)
7124 		goto simple;
7125 
7126 	/*
7127 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7128 	 * likely that a next task is from the same cgroup as the current.
7129 	 *
7130 	 * Therefore attempt to avoid putting and setting the entire cgroup
7131 	 * hierarchy, only change the part that actually changes.
7132 	 */
7133 
7134 	do {
7135 		struct sched_entity *curr = cfs_rq->curr;
7136 
7137 		/*
7138 		 * Since we got here without doing put_prev_entity() we also
7139 		 * have to consider cfs_rq->curr. If it is still a runnable
7140 		 * entity, update_curr() will update its vruntime, otherwise
7141 		 * forget we've ever seen it.
7142 		 */
7143 		if (curr) {
7144 			if (curr->on_rq)
7145 				update_curr(cfs_rq);
7146 			else
7147 				curr = NULL;
7148 
7149 			/*
7150 			 * This call to check_cfs_rq_runtime() will do the
7151 			 * throttle and dequeue its entity in the parent(s).
7152 			 * Therefore the nr_running test will indeed
7153 			 * be correct.
7154 			 */
7155 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7156 				cfs_rq = &rq->cfs;
7157 
7158 				if (!cfs_rq->nr_running)
7159 					goto idle;
7160 
7161 				goto simple;
7162 			}
7163 		}
7164 
7165 		se = pick_next_entity(cfs_rq, curr);
7166 		cfs_rq = group_cfs_rq(se);
7167 	} while (cfs_rq);
7168 
7169 	p = task_of(se);
7170 
7171 	/*
7172 	 * Since we haven't yet done put_prev_entity and if the selected task
7173 	 * is a different task than we started out with, try and touch the
7174 	 * least amount of cfs_rqs.
7175 	 */
7176 	if (prev != p) {
7177 		struct sched_entity *pse = &prev->se;
7178 
7179 		while (!(cfs_rq = is_same_group(se, pse))) {
7180 			int se_depth = se->depth;
7181 			int pse_depth = pse->depth;
7182 
7183 			if (se_depth <= pse_depth) {
7184 				put_prev_entity(cfs_rq_of(pse), pse);
7185 				pse = parent_entity(pse);
7186 			}
7187 			if (se_depth >= pse_depth) {
7188 				set_next_entity(cfs_rq_of(se), se);
7189 				se = parent_entity(se);
7190 			}
7191 		}
7192 
7193 		put_prev_entity(cfs_rq, pse);
7194 		set_next_entity(cfs_rq, se);
7195 	}
7196 
7197 	goto done;
7198 simple:
7199 #endif
7200 	if (prev)
7201 		put_prev_task(rq, prev);
7202 
7203 	do {
7204 		se = pick_next_entity(cfs_rq, NULL);
7205 		set_next_entity(cfs_rq, se);
7206 		cfs_rq = group_cfs_rq(se);
7207 	} while (cfs_rq);
7208 
7209 	p = task_of(se);
7210 
7211 done: __maybe_unused;
7212 #ifdef CONFIG_SMP
7213 	/*
7214 	 * Move the next running task to the front of
7215 	 * the list, so our cfs_tasks list becomes MRU
7216 	 * one.
7217 	 */
7218 	list_move(&p->se.group_node, &rq->cfs_tasks);
7219 #endif
7220 
7221 	if (hrtick_enabled_fair(rq))
7222 		hrtick_start_fair(rq, p);
7223 
7224 	update_misfit_status(p, rq);
7225 
7226 	return p;
7227 
7228 idle:
7229 	if (!rf)
7230 		return NULL;
7231 
7232 	new_tasks = newidle_balance(rq, rf);
7233 
7234 	/*
7235 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7236 	 * possible for any higher priority task to appear. In that case we
7237 	 * must re-start the pick_next_entity() loop.
7238 	 */
7239 	if (new_tasks < 0)
7240 		return RETRY_TASK;
7241 
7242 	if (new_tasks > 0)
7243 		goto again;
7244 
7245 	/*
7246 	 * rq is about to be idle, check if we need to update the
7247 	 * lost_idle_time of clock_pelt
7248 	 */
7249 	update_idle_rq_clock_pelt(rq);
7250 
7251 	return NULL;
7252 }
7253 
7254 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7255 {
7256 	return pick_next_task_fair(rq, NULL, NULL);
7257 }
7258 
7259 /*
7260  * Account for a descheduled task:
7261  */
7262 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7263 {
7264 	struct sched_entity *se = &prev->se;
7265 	struct cfs_rq *cfs_rq;
7266 
7267 	for_each_sched_entity(se) {
7268 		cfs_rq = cfs_rq_of(se);
7269 		put_prev_entity(cfs_rq, se);
7270 	}
7271 }
7272 
7273 /*
7274  * sched_yield() is very simple
7275  *
7276  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7277  */
7278 static void yield_task_fair(struct rq *rq)
7279 {
7280 	struct task_struct *curr = rq->curr;
7281 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7282 	struct sched_entity *se = &curr->se;
7283 
7284 	/*
7285 	 * Are we the only task in the tree?
7286 	 */
7287 	if (unlikely(rq->nr_running == 1))
7288 		return;
7289 
7290 	clear_buddies(cfs_rq, se);
7291 
7292 	if (curr->policy != SCHED_BATCH) {
7293 		update_rq_clock(rq);
7294 		/*
7295 		 * Update run-time statistics of the 'current'.
7296 		 */
7297 		update_curr(cfs_rq);
7298 		/*
7299 		 * Tell update_rq_clock() that we've just updated,
7300 		 * so we don't do microscopic update in schedule()
7301 		 * and double the fastpath cost.
7302 		 */
7303 		rq_clock_skip_update(rq);
7304 	}
7305 
7306 	set_skip_buddy(se);
7307 }
7308 
7309 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7310 {
7311 	struct sched_entity *se = &p->se;
7312 
7313 	/* throttled hierarchies are not runnable */
7314 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7315 		return false;
7316 
7317 	/* Tell the scheduler that we'd really like pse to run next. */
7318 	set_next_buddy(se);
7319 
7320 	yield_task_fair(rq);
7321 
7322 	return true;
7323 }
7324 
7325 #ifdef CONFIG_SMP
7326 /**************************************************
7327  * Fair scheduling class load-balancing methods.
7328  *
7329  * BASICS
7330  *
7331  * The purpose of load-balancing is to achieve the same basic fairness the
7332  * per-CPU scheduler provides, namely provide a proportional amount of compute
7333  * time to each task. This is expressed in the following equation:
7334  *
7335  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7336  *
7337  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7338  * W_i,0 is defined as:
7339  *
7340  *   W_i,0 = \Sum_j w_i,j                                             (2)
7341  *
7342  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7343  * is derived from the nice value as per sched_prio_to_weight[].
7344  *
7345  * The weight average is an exponential decay average of the instantaneous
7346  * weight:
7347  *
7348  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7349  *
7350  * C_i is the compute capacity of CPU i, typically it is the
7351  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7352  * can also include other factors [XXX].
7353  *
7354  * To achieve this balance we define a measure of imbalance which follows
7355  * directly from (1):
7356  *
7357  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7358  *
7359  * We them move tasks around to minimize the imbalance. In the continuous
7360  * function space it is obvious this converges, in the discrete case we get
7361  * a few fun cases generally called infeasible weight scenarios.
7362  *
7363  * [XXX expand on:
7364  *     - infeasible weights;
7365  *     - local vs global optima in the discrete case. ]
7366  *
7367  *
7368  * SCHED DOMAINS
7369  *
7370  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7371  * for all i,j solution, we create a tree of CPUs that follows the hardware
7372  * topology where each level pairs two lower groups (or better). This results
7373  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7374  * tree to only the first of the previous level and we decrease the frequency
7375  * of load-balance at each level inv. proportional to the number of CPUs in
7376  * the groups.
7377  *
7378  * This yields:
7379  *
7380  *     log_2 n     1     n
7381  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7382  *     i = 0      2^i   2^i
7383  *                               `- size of each group
7384  *         |         |     `- number of CPUs doing load-balance
7385  *         |         `- freq
7386  *         `- sum over all levels
7387  *
7388  * Coupled with a limit on how many tasks we can migrate every balance pass,
7389  * this makes (5) the runtime complexity of the balancer.
7390  *
7391  * An important property here is that each CPU is still (indirectly) connected
7392  * to every other CPU in at most O(log n) steps:
7393  *
7394  * The adjacency matrix of the resulting graph is given by:
7395  *
7396  *             log_2 n
7397  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7398  *             k = 0
7399  *
7400  * And you'll find that:
7401  *
7402  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7403  *
7404  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7405  * The task movement gives a factor of O(m), giving a convergence complexity
7406  * of:
7407  *
7408  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7409  *
7410  *
7411  * WORK CONSERVING
7412  *
7413  * In order to avoid CPUs going idle while there's still work to do, new idle
7414  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7415  * tree itself instead of relying on other CPUs to bring it work.
7416  *
7417  * This adds some complexity to both (5) and (8) but it reduces the total idle
7418  * time.
7419  *
7420  * [XXX more?]
7421  *
7422  *
7423  * CGROUPS
7424  *
7425  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7426  *
7427  *                                s_k,i
7428  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7429  *                                 S_k
7430  *
7431  * Where
7432  *
7433  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7434  *
7435  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7436  *
7437  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7438  * property.
7439  *
7440  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7441  *      rewrite all of this once again.]
7442  */
7443 
7444 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7445 
7446 enum fbq_type { regular, remote, all };
7447 
7448 /*
7449  * 'group_type' describes the group of CPUs at the moment of load balancing.
7450  *
7451  * The enum is ordered by pulling priority, with the group with lowest priority
7452  * first so the group_type can simply be compared when selecting the busiest
7453  * group. See update_sd_pick_busiest().
7454  */
7455 enum group_type {
7456 	/* The group has spare capacity that can be used to run more tasks.  */
7457 	group_has_spare = 0,
7458 	/*
7459 	 * The group is fully used and the tasks don't compete for more CPU
7460 	 * cycles. Nevertheless, some tasks might wait before running.
7461 	 */
7462 	group_fully_busy,
7463 	/*
7464 	 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7465 	 * and must be migrated to a more powerful CPU.
7466 	 */
7467 	group_misfit_task,
7468 	/*
7469 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7470 	 * and the task should be migrated to it instead of running on the
7471 	 * current CPU.
7472 	 */
7473 	group_asym_packing,
7474 	/*
7475 	 * The tasks' affinity constraints previously prevented the scheduler
7476 	 * from balancing the load across the system.
7477 	 */
7478 	group_imbalanced,
7479 	/*
7480 	 * The CPU is overloaded and can't provide expected CPU cycles to all
7481 	 * tasks.
7482 	 */
7483 	group_overloaded
7484 };
7485 
7486 enum migration_type {
7487 	migrate_load = 0,
7488 	migrate_util,
7489 	migrate_task,
7490 	migrate_misfit
7491 };
7492 
7493 #define LBF_ALL_PINNED	0x01
7494 #define LBF_NEED_BREAK	0x02
7495 #define LBF_DST_PINNED  0x04
7496 #define LBF_SOME_PINNED	0x08
7497 #define LBF_ACTIVE_LB	0x10
7498 
7499 struct lb_env {
7500 	struct sched_domain	*sd;
7501 
7502 	struct rq		*src_rq;
7503 	int			src_cpu;
7504 
7505 	int			dst_cpu;
7506 	struct rq		*dst_rq;
7507 
7508 	struct cpumask		*dst_grpmask;
7509 	int			new_dst_cpu;
7510 	enum cpu_idle_type	idle;
7511 	long			imbalance;
7512 	/* The set of CPUs under consideration for load-balancing */
7513 	struct cpumask		*cpus;
7514 
7515 	unsigned int		flags;
7516 
7517 	unsigned int		loop;
7518 	unsigned int		loop_break;
7519 	unsigned int		loop_max;
7520 
7521 	enum fbq_type		fbq_type;
7522 	enum migration_type	migration_type;
7523 	struct list_head	tasks;
7524 };
7525 
7526 /*
7527  * Is this task likely cache-hot:
7528  */
7529 static int task_hot(struct task_struct *p, struct lb_env *env)
7530 {
7531 	s64 delta;
7532 
7533 	lockdep_assert_held(&env->src_rq->lock);
7534 
7535 	if (p->sched_class != &fair_sched_class)
7536 		return 0;
7537 
7538 	if (unlikely(task_has_idle_policy(p)))
7539 		return 0;
7540 
7541 	/* SMT siblings share cache */
7542 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7543 		return 0;
7544 
7545 	/*
7546 	 * Buddy candidates are cache hot:
7547 	 */
7548 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7549 			(&p->se == cfs_rq_of(&p->se)->next ||
7550 			 &p->se == cfs_rq_of(&p->se)->last))
7551 		return 1;
7552 
7553 	if (sysctl_sched_migration_cost == -1)
7554 		return 1;
7555 	if (sysctl_sched_migration_cost == 0)
7556 		return 0;
7557 
7558 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7559 
7560 	return delta < (s64)sysctl_sched_migration_cost;
7561 }
7562 
7563 #ifdef CONFIG_NUMA_BALANCING
7564 /*
7565  * Returns 1, if task migration degrades locality
7566  * Returns 0, if task migration improves locality i.e migration preferred.
7567  * Returns -1, if task migration is not affected by locality.
7568  */
7569 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7570 {
7571 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7572 	unsigned long src_weight, dst_weight;
7573 	int src_nid, dst_nid, dist;
7574 
7575 	if (!static_branch_likely(&sched_numa_balancing))
7576 		return -1;
7577 
7578 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7579 		return -1;
7580 
7581 	src_nid = cpu_to_node(env->src_cpu);
7582 	dst_nid = cpu_to_node(env->dst_cpu);
7583 
7584 	if (src_nid == dst_nid)
7585 		return -1;
7586 
7587 	/* Migrating away from the preferred node is always bad. */
7588 	if (src_nid == p->numa_preferred_nid) {
7589 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7590 			return 1;
7591 		else
7592 			return -1;
7593 	}
7594 
7595 	/* Encourage migration to the preferred node. */
7596 	if (dst_nid == p->numa_preferred_nid)
7597 		return 0;
7598 
7599 	/* Leaving a core idle is often worse than degrading locality. */
7600 	if (env->idle == CPU_IDLE)
7601 		return -1;
7602 
7603 	dist = node_distance(src_nid, dst_nid);
7604 	if (numa_group) {
7605 		src_weight = group_weight(p, src_nid, dist);
7606 		dst_weight = group_weight(p, dst_nid, dist);
7607 	} else {
7608 		src_weight = task_weight(p, src_nid, dist);
7609 		dst_weight = task_weight(p, dst_nid, dist);
7610 	}
7611 
7612 	return dst_weight < src_weight;
7613 }
7614 
7615 #else
7616 static inline int migrate_degrades_locality(struct task_struct *p,
7617 					     struct lb_env *env)
7618 {
7619 	return -1;
7620 }
7621 #endif
7622 
7623 /*
7624  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7625  */
7626 static
7627 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7628 {
7629 	int tsk_cache_hot;
7630 
7631 	lockdep_assert_held(&env->src_rq->lock);
7632 
7633 	/*
7634 	 * We do not migrate tasks that are:
7635 	 * 1) throttled_lb_pair, or
7636 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7637 	 * 3) running (obviously), or
7638 	 * 4) are cache-hot on their current CPU.
7639 	 */
7640 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7641 		return 0;
7642 
7643 	/* Disregard pcpu kthreads; they are where they need to be. */
7644 	if (kthread_is_per_cpu(p))
7645 		return 0;
7646 
7647 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7648 		int cpu;
7649 
7650 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7651 
7652 		env->flags |= LBF_SOME_PINNED;
7653 
7654 		/*
7655 		 * Remember if this task can be migrated to any other CPU in
7656 		 * our sched_group. We may want to revisit it if we couldn't
7657 		 * meet load balance goals by pulling other tasks on src_cpu.
7658 		 *
7659 		 * Avoid computing new_dst_cpu
7660 		 * - for NEWLY_IDLE
7661 		 * - if we have already computed one in current iteration
7662 		 * - if it's an active balance
7663 		 */
7664 		if (env->idle == CPU_NEWLY_IDLE ||
7665 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
7666 			return 0;
7667 
7668 		/* Prevent to re-select dst_cpu via env's CPUs: */
7669 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7670 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7671 				env->flags |= LBF_DST_PINNED;
7672 				env->new_dst_cpu = cpu;
7673 				break;
7674 			}
7675 		}
7676 
7677 		return 0;
7678 	}
7679 
7680 	/* Record that we found at least one task that could run on dst_cpu */
7681 	env->flags &= ~LBF_ALL_PINNED;
7682 
7683 	if (task_running(env->src_rq, p)) {
7684 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7685 		return 0;
7686 	}
7687 
7688 	/*
7689 	 * Aggressive migration if:
7690 	 * 1) active balance
7691 	 * 2) destination numa is preferred
7692 	 * 3) task is cache cold, or
7693 	 * 4) too many balance attempts have failed.
7694 	 */
7695 	if (env->flags & LBF_ACTIVE_LB)
7696 		return 1;
7697 
7698 	tsk_cache_hot = migrate_degrades_locality(p, env);
7699 	if (tsk_cache_hot == -1)
7700 		tsk_cache_hot = task_hot(p, env);
7701 
7702 	if (tsk_cache_hot <= 0 ||
7703 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7704 		if (tsk_cache_hot == 1) {
7705 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7706 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7707 		}
7708 		return 1;
7709 	}
7710 
7711 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7712 	return 0;
7713 }
7714 
7715 /*
7716  * detach_task() -- detach the task for the migration specified in env
7717  */
7718 static void detach_task(struct task_struct *p, struct lb_env *env)
7719 {
7720 	lockdep_assert_held(&env->src_rq->lock);
7721 
7722 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7723 	set_task_cpu(p, env->dst_cpu);
7724 }
7725 
7726 /*
7727  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7728  * part of active balancing operations within "domain".
7729  *
7730  * Returns a task if successful and NULL otherwise.
7731  */
7732 static struct task_struct *detach_one_task(struct lb_env *env)
7733 {
7734 	struct task_struct *p;
7735 
7736 	lockdep_assert_held(&env->src_rq->lock);
7737 
7738 	list_for_each_entry_reverse(p,
7739 			&env->src_rq->cfs_tasks, se.group_node) {
7740 		if (!can_migrate_task(p, env))
7741 			continue;
7742 
7743 		detach_task(p, env);
7744 
7745 		/*
7746 		 * Right now, this is only the second place where
7747 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7748 		 * so we can safely collect stats here rather than
7749 		 * inside detach_tasks().
7750 		 */
7751 		schedstat_inc(env->sd->lb_gained[env->idle]);
7752 		return p;
7753 	}
7754 	return NULL;
7755 }
7756 
7757 static const unsigned int sched_nr_migrate_break = 32;
7758 
7759 /*
7760  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7761  * busiest_rq, as part of a balancing operation within domain "sd".
7762  *
7763  * Returns number of detached tasks if successful and 0 otherwise.
7764  */
7765 static int detach_tasks(struct lb_env *env)
7766 {
7767 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7768 	unsigned long util, load;
7769 	struct task_struct *p;
7770 	int detached = 0;
7771 
7772 	lockdep_assert_held(&env->src_rq->lock);
7773 
7774 	/*
7775 	 * Source run queue has been emptied by another CPU, clear
7776 	 * LBF_ALL_PINNED flag as we will not test any task.
7777 	 */
7778 	if (env->src_rq->nr_running <= 1) {
7779 		env->flags &= ~LBF_ALL_PINNED;
7780 		return 0;
7781 	}
7782 
7783 	if (env->imbalance <= 0)
7784 		return 0;
7785 
7786 	while (!list_empty(tasks)) {
7787 		/*
7788 		 * We don't want to steal all, otherwise we may be treated likewise,
7789 		 * which could at worst lead to a livelock crash.
7790 		 */
7791 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7792 			break;
7793 
7794 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7795 
7796 		env->loop++;
7797 		/* We've more or less seen every task there is, call it quits */
7798 		if (env->loop > env->loop_max)
7799 			break;
7800 
7801 		/* take a breather every nr_migrate tasks */
7802 		if (env->loop > env->loop_break) {
7803 			env->loop_break += sched_nr_migrate_break;
7804 			env->flags |= LBF_NEED_BREAK;
7805 			break;
7806 		}
7807 
7808 		if (!can_migrate_task(p, env))
7809 			goto next;
7810 
7811 		switch (env->migration_type) {
7812 		case migrate_load:
7813 			/*
7814 			 * Depending of the number of CPUs and tasks and the
7815 			 * cgroup hierarchy, task_h_load() can return a null
7816 			 * value. Make sure that env->imbalance decreases
7817 			 * otherwise detach_tasks() will stop only after
7818 			 * detaching up to loop_max tasks.
7819 			 */
7820 			load = max_t(unsigned long, task_h_load(p), 1);
7821 
7822 			if (sched_feat(LB_MIN) &&
7823 			    load < 16 && !env->sd->nr_balance_failed)
7824 				goto next;
7825 
7826 			/*
7827 			 * Make sure that we don't migrate too much load.
7828 			 * Nevertheless, let relax the constraint if
7829 			 * scheduler fails to find a good waiting task to
7830 			 * migrate.
7831 			 */
7832 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
7833 				goto next;
7834 
7835 			env->imbalance -= load;
7836 			break;
7837 
7838 		case migrate_util:
7839 			util = task_util_est(p);
7840 
7841 			if (util > env->imbalance)
7842 				goto next;
7843 
7844 			env->imbalance -= util;
7845 			break;
7846 
7847 		case migrate_task:
7848 			env->imbalance--;
7849 			break;
7850 
7851 		case migrate_misfit:
7852 			/* This is not a misfit task */
7853 			if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7854 				goto next;
7855 
7856 			env->imbalance = 0;
7857 			break;
7858 		}
7859 
7860 		detach_task(p, env);
7861 		list_add(&p->se.group_node, &env->tasks);
7862 
7863 		detached++;
7864 
7865 #ifdef CONFIG_PREEMPTION
7866 		/*
7867 		 * NEWIDLE balancing is a source of latency, so preemptible
7868 		 * kernels will stop after the first task is detached to minimize
7869 		 * the critical section.
7870 		 */
7871 		if (env->idle == CPU_NEWLY_IDLE)
7872 			break;
7873 #endif
7874 
7875 		/*
7876 		 * We only want to steal up to the prescribed amount of
7877 		 * load/util/tasks.
7878 		 */
7879 		if (env->imbalance <= 0)
7880 			break;
7881 
7882 		continue;
7883 next:
7884 		list_move(&p->se.group_node, tasks);
7885 	}
7886 
7887 	/*
7888 	 * Right now, this is one of only two places we collect this stat
7889 	 * so we can safely collect detach_one_task() stats here rather
7890 	 * than inside detach_one_task().
7891 	 */
7892 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7893 
7894 	return detached;
7895 }
7896 
7897 /*
7898  * attach_task() -- attach the task detached by detach_task() to its new rq.
7899  */
7900 static void attach_task(struct rq *rq, struct task_struct *p)
7901 {
7902 	lockdep_assert_held(&rq->lock);
7903 
7904 	BUG_ON(task_rq(p) != rq);
7905 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7906 	check_preempt_curr(rq, p, 0);
7907 }
7908 
7909 /*
7910  * attach_one_task() -- attaches the task returned from detach_one_task() to
7911  * its new rq.
7912  */
7913 static void attach_one_task(struct rq *rq, struct task_struct *p)
7914 {
7915 	struct rq_flags rf;
7916 
7917 	rq_lock(rq, &rf);
7918 	update_rq_clock(rq);
7919 	attach_task(rq, p);
7920 	rq_unlock(rq, &rf);
7921 }
7922 
7923 /*
7924  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7925  * new rq.
7926  */
7927 static void attach_tasks(struct lb_env *env)
7928 {
7929 	struct list_head *tasks = &env->tasks;
7930 	struct task_struct *p;
7931 	struct rq_flags rf;
7932 
7933 	rq_lock(env->dst_rq, &rf);
7934 	update_rq_clock(env->dst_rq);
7935 
7936 	while (!list_empty(tasks)) {
7937 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7938 		list_del_init(&p->se.group_node);
7939 
7940 		attach_task(env->dst_rq, p);
7941 	}
7942 
7943 	rq_unlock(env->dst_rq, &rf);
7944 }
7945 
7946 #ifdef CONFIG_NO_HZ_COMMON
7947 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7948 {
7949 	if (cfs_rq->avg.load_avg)
7950 		return true;
7951 
7952 	if (cfs_rq->avg.util_avg)
7953 		return true;
7954 
7955 	return false;
7956 }
7957 
7958 static inline bool others_have_blocked(struct rq *rq)
7959 {
7960 	if (READ_ONCE(rq->avg_rt.util_avg))
7961 		return true;
7962 
7963 	if (READ_ONCE(rq->avg_dl.util_avg))
7964 		return true;
7965 
7966 	if (thermal_load_avg(rq))
7967 		return true;
7968 
7969 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7970 	if (READ_ONCE(rq->avg_irq.util_avg))
7971 		return true;
7972 #endif
7973 
7974 	return false;
7975 }
7976 
7977 static inline void update_blocked_load_tick(struct rq *rq)
7978 {
7979 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
7980 }
7981 
7982 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7983 {
7984 	if (!has_blocked)
7985 		rq->has_blocked_load = 0;
7986 }
7987 #else
7988 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7989 static inline bool others_have_blocked(struct rq *rq) { return false; }
7990 static inline void update_blocked_load_tick(struct rq *rq) {}
7991 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7992 #endif
7993 
7994 static bool __update_blocked_others(struct rq *rq, bool *done)
7995 {
7996 	const struct sched_class *curr_class;
7997 	u64 now = rq_clock_pelt(rq);
7998 	unsigned long thermal_pressure;
7999 	bool decayed;
8000 
8001 	/*
8002 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8003 	 * DL and IRQ signals have been updated before updating CFS.
8004 	 */
8005 	curr_class = rq->curr->sched_class;
8006 
8007 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8008 
8009 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8010 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8011 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8012 		  update_irq_load_avg(rq, 0);
8013 
8014 	if (others_have_blocked(rq))
8015 		*done = false;
8016 
8017 	return decayed;
8018 }
8019 
8020 #ifdef CONFIG_FAIR_GROUP_SCHED
8021 
8022 static bool __update_blocked_fair(struct rq *rq, bool *done)
8023 {
8024 	struct cfs_rq *cfs_rq, *pos;
8025 	bool decayed = false;
8026 	int cpu = cpu_of(rq);
8027 
8028 	/*
8029 	 * Iterates the task_group tree in a bottom up fashion, see
8030 	 * list_add_leaf_cfs_rq() for details.
8031 	 */
8032 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8033 		struct sched_entity *se;
8034 
8035 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8036 			update_tg_load_avg(cfs_rq);
8037 
8038 			if (cfs_rq == &rq->cfs)
8039 				decayed = true;
8040 		}
8041 
8042 		/* Propagate pending load changes to the parent, if any: */
8043 		se = cfs_rq->tg->se[cpu];
8044 		if (se && !skip_blocked_update(se))
8045 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8046 
8047 		/*
8048 		 * There can be a lot of idle CPU cgroups.  Don't let fully
8049 		 * decayed cfs_rqs linger on the list.
8050 		 */
8051 		if (cfs_rq_is_decayed(cfs_rq))
8052 			list_del_leaf_cfs_rq(cfs_rq);
8053 
8054 		/* Don't need periodic decay once load/util_avg are null */
8055 		if (cfs_rq_has_blocked(cfs_rq))
8056 			*done = false;
8057 	}
8058 
8059 	return decayed;
8060 }
8061 
8062 /*
8063  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8064  * This needs to be done in a top-down fashion because the load of a child
8065  * group is a fraction of its parents load.
8066  */
8067 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8068 {
8069 	struct rq *rq = rq_of(cfs_rq);
8070 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8071 	unsigned long now = jiffies;
8072 	unsigned long load;
8073 
8074 	if (cfs_rq->last_h_load_update == now)
8075 		return;
8076 
8077 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
8078 	for_each_sched_entity(se) {
8079 		cfs_rq = cfs_rq_of(se);
8080 		WRITE_ONCE(cfs_rq->h_load_next, se);
8081 		if (cfs_rq->last_h_load_update == now)
8082 			break;
8083 	}
8084 
8085 	if (!se) {
8086 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8087 		cfs_rq->last_h_load_update = now;
8088 	}
8089 
8090 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8091 		load = cfs_rq->h_load;
8092 		load = div64_ul(load * se->avg.load_avg,
8093 			cfs_rq_load_avg(cfs_rq) + 1);
8094 		cfs_rq = group_cfs_rq(se);
8095 		cfs_rq->h_load = load;
8096 		cfs_rq->last_h_load_update = now;
8097 	}
8098 }
8099 
8100 static unsigned long task_h_load(struct task_struct *p)
8101 {
8102 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
8103 
8104 	update_cfs_rq_h_load(cfs_rq);
8105 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8106 			cfs_rq_load_avg(cfs_rq) + 1);
8107 }
8108 #else
8109 static bool __update_blocked_fair(struct rq *rq, bool *done)
8110 {
8111 	struct cfs_rq *cfs_rq = &rq->cfs;
8112 	bool decayed;
8113 
8114 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8115 	if (cfs_rq_has_blocked(cfs_rq))
8116 		*done = false;
8117 
8118 	return decayed;
8119 }
8120 
8121 static unsigned long task_h_load(struct task_struct *p)
8122 {
8123 	return p->se.avg.load_avg;
8124 }
8125 #endif
8126 
8127 static void update_blocked_averages(int cpu)
8128 {
8129 	bool decayed = false, done = true;
8130 	struct rq *rq = cpu_rq(cpu);
8131 	struct rq_flags rf;
8132 
8133 	rq_lock_irqsave(rq, &rf);
8134 	update_blocked_load_tick(rq);
8135 	update_rq_clock(rq);
8136 
8137 	decayed |= __update_blocked_others(rq, &done);
8138 	decayed |= __update_blocked_fair(rq, &done);
8139 
8140 	update_blocked_load_status(rq, !done);
8141 	if (decayed)
8142 		cpufreq_update_util(rq, 0);
8143 	rq_unlock_irqrestore(rq, &rf);
8144 }
8145 
8146 /********** Helpers for find_busiest_group ************************/
8147 
8148 /*
8149  * sg_lb_stats - stats of a sched_group required for load_balancing
8150  */
8151 struct sg_lb_stats {
8152 	unsigned long avg_load; /*Avg load across the CPUs of the group */
8153 	unsigned long group_load; /* Total load over the CPUs of the group */
8154 	unsigned long group_capacity;
8155 	unsigned long group_util; /* Total utilization over the CPUs of the group */
8156 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8157 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
8158 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8159 	unsigned int idle_cpus;
8160 	unsigned int group_weight;
8161 	enum group_type group_type;
8162 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8163 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8164 #ifdef CONFIG_NUMA_BALANCING
8165 	unsigned int nr_numa_running;
8166 	unsigned int nr_preferred_running;
8167 #endif
8168 };
8169 
8170 /*
8171  * sd_lb_stats - Structure to store the statistics of a sched_domain
8172  *		 during load balancing.
8173  */
8174 struct sd_lb_stats {
8175 	struct sched_group *busiest;	/* Busiest group in this sd */
8176 	struct sched_group *local;	/* Local group in this sd */
8177 	unsigned long total_load;	/* Total load of all groups in sd */
8178 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
8179 	unsigned long avg_load;	/* Average load across all groups in sd */
8180 	unsigned int prefer_sibling; /* tasks should go to sibling first */
8181 
8182 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8183 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
8184 };
8185 
8186 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8187 {
8188 	/*
8189 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8190 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8191 	 * We must however set busiest_stat::group_type and
8192 	 * busiest_stat::idle_cpus to the worst busiest group because
8193 	 * update_sd_pick_busiest() reads these before assignment.
8194 	 */
8195 	*sds = (struct sd_lb_stats){
8196 		.busiest = NULL,
8197 		.local = NULL,
8198 		.total_load = 0UL,
8199 		.total_capacity = 0UL,
8200 		.busiest_stat = {
8201 			.idle_cpus = UINT_MAX,
8202 			.group_type = group_has_spare,
8203 		},
8204 	};
8205 }
8206 
8207 static unsigned long scale_rt_capacity(int cpu)
8208 {
8209 	struct rq *rq = cpu_rq(cpu);
8210 	unsigned long max = arch_scale_cpu_capacity(cpu);
8211 	unsigned long used, free;
8212 	unsigned long irq;
8213 
8214 	irq = cpu_util_irq(rq);
8215 
8216 	if (unlikely(irq >= max))
8217 		return 1;
8218 
8219 	/*
8220 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8221 	 * (running and not running) with weights 0 and 1024 respectively.
8222 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
8223 	 * average uses the actual delta max capacity(load).
8224 	 */
8225 	used = READ_ONCE(rq->avg_rt.util_avg);
8226 	used += READ_ONCE(rq->avg_dl.util_avg);
8227 	used += thermal_load_avg(rq);
8228 
8229 	if (unlikely(used >= max))
8230 		return 1;
8231 
8232 	free = max - used;
8233 
8234 	return scale_irq_capacity(free, irq, max);
8235 }
8236 
8237 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8238 {
8239 	unsigned long capacity = scale_rt_capacity(cpu);
8240 	struct sched_group *sdg = sd->groups;
8241 
8242 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8243 
8244 	if (!capacity)
8245 		capacity = 1;
8246 
8247 	cpu_rq(cpu)->cpu_capacity = capacity;
8248 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8249 
8250 	sdg->sgc->capacity = capacity;
8251 	sdg->sgc->min_capacity = capacity;
8252 	sdg->sgc->max_capacity = capacity;
8253 }
8254 
8255 void update_group_capacity(struct sched_domain *sd, int cpu)
8256 {
8257 	struct sched_domain *child = sd->child;
8258 	struct sched_group *group, *sdg = sd->groups;
8259 	unsigned long capacity, min_capacity, max_capacity;
8260 	unsigned long interval;
8261 
8262 	interval = msecs_to_jiffies(sd->balance_interval);
8263 	interval = clamp(interval, 1UL, max_load_balance_interval);
8264 	sdg->sgc->next_update = jiffies + interval;
8265 
8266 	if (!child) {
8267 		update_cpu_capacity(sd, cpu);
8268 		return;
8269 	}
8270 
8271 	capacity = 0;
8272 	min_capacity = ULONG_MAX;
8273 	max_capacity = 0;
8274 
8275 	if (child->flags & SD_OVERLAP) {
8276 		/*
8277 		 * SD_OVERLAP domains cannot assume that child groups
8278 		 * span the current group.
8279 		 */
8280 
8281 		for_each_cpu(cpu, sched_group_span(sdg)) {
8282 			unsigned long cpu_cap = capacity_of(cpu);
8283 
8284 			capacity += cpu_cap;
8285 			min_capacity = min(cpu_cap, min_capacity);
8286 			max_capacity = max(cpu_cap, max_capacity);
8287 		}
8288 	} else  {
8289 		/*
8290 		 * !SD_OVERLAP domains can assume that child groups
8291 		 * span the current group.
8292 		 */
8293 
8294 		group = child->groups;
8295 		do {
8296 			struct sched_group_capacity *sgc = group->sgc;
8297 
8298 			capacity += sgc->capacity;
8299 			min_capacity = min(sgc->min_capacity, min_capacity);
8300 			max_capacity = max(sgc->max_capacity, max_capacity);
8301 			group = group->next;
8302 		} while (group != child->groups);
8303 	}
8304 
8305 	sdg->sgc->capacity = capacity;
8306 	sdg->sgc->min_capacity = min_capacity;
8307 	sdg->sgc->max_capacity = max_capacity;
8308 }
8309 
8310 /*
8311  * Check whether the capacity of the rq has been noticeably reduced by side
8312  * activity. The imbalance_pct is used for the threshold.
8313  * Return true is the capacity is reduced
8314  */
8315 static inline int
8316 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8317 {
8318 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8319 				(rq->cpu_capacity_orig * 100));
8320 }
8321 
8322 /*
8323  * Check whether a rq has a misfit task and if it looks like we can actually
8324  * help that task: we can migrate the task to a CPU of higher capacity, or
8325  * the task's current CPU is heavily pressured.
8326  */
8327 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8328 {
8329 	return rq->misfit_task_load &&
8330 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8331 		 check_cpu_capacity(rq, sd));
8332 }
8333 
8334 /*
8335  * Group imbalance indicates (and tries to solve) the problem where balancing
8336  * groups is inadequate due to ->cpus_ptr constraints.
8337  *
8338  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8339  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8340  * Something like:
8341  *
8342  *	{ 0 1 2 3 } { 4 5 6 7 }
8343  *	        *     * * *
8344  *
8345  * If we were to balance group-wise we'd place two tasks in the first group and
8346  * two tasks in the second group. Clearly this is undesired as it will overload
8347  * cpu 3 and leave one of the CPUs in the second group unused.
8348  *
8349  * The current solution to this issue is detecting the skew in the first group
8350  * by noticing the lower domain failed to reach balance and had difficulty
8351  * moving tasks due to affinity constraints.
8352  *
8353  * When this is so detected; this group becomes a candidate for busiest; see
8354  * update_sd_pick_busiest(). And calculate_imbalance() and
8355  * find_busiest_group() avoid some of the usual balance conditions to allow it
8356  * to create an effective group imbalance.
8357  *
8358  * This is a somewhat tricky proposition since the next run might not find the
8359  * group imbalance and decide the groups need to be balanced again. A most
8360  * subtle and fragile situation.
8361  */
8362 
8363 static inline int sg_imbalanced(struct sched_group *group)
8364 {
8365 	return group->sgc->imbalance;
8366 }
8367 
8368 /*
8369  * group_has_capacity returns true if the group has spare capacity that could
8370  * be used by some tasks.
8371  * We consider that a group has spare capacity if the  * number of task is
8372  * smaller than the number of CPUs or if the utilization is lower than the
8373  * available capacity for CFS tasks.
8374  * For the latter, we use a threshold to stabilize the state, to take into
8375  * account the variance of the tasks' load and to return true if the available
8376  * capacity in meaningful for the load balancer.
8377  * As an example, an available capacity of 1% can appear but it doesn't make
8378  * any benefit for the load balance.
8379  */
8380 static inline bool
8381 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8382 {
8383 	if (sgs->sum_nr_running < sgs->group_weight)
8384 		return true;
8385 
8386 	if ((sgs->group_capacity * imbalance_pct) <
8387 			(sgs->group_runnable * 100))
8388 		return false;
8389 
8390 	if ((sgs->group_capacity * 100) >
8391 			(sgs->group_util * imbalance_pct))
8392 		return true;
8393 
8394 	return false;
8395 }
8396 
8397 /*
8398  *  group_is_overloaded returns true if the group has more tasks than it can
8399  *  handle.
8400  *  group_is_overloaded is not equals to !group_has_capacity because a group
8401  *  with the exact right number of tasks, has no more spare capacity but is not
8402  *  overloaded so both group_has_capacity and group_is_overloaded return
8403  *  false.
8404  */
8405 static inline bool
8406 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8407 {
8408 	if (sgs->sum_nr_running <= sgs->group_weight)
8409 		return false;
8410 
8411 	if ((sgs->group_capacity * 100) <
8412 			(sgs->group_util * imbalance_pct))
8413 		return true;
8414 
8415 	if ((sgs->group_capacity * imbalance_pct) <
8416 			(sgs->group_runnable * 100))
8417 		return true;
8418 
8419 	return false;
8420 }
8421 
8422 static inline enum
8423 group_type group_classify(unsigned int imbalance_pct,
8424 			  struct sched_group *group,
8425 			  struct sg_lb_stats *sgs)
8426 {
8427 	if (group_is_overloaded(imbalance_pct, sgs))
8428 		return group_overloaded;
8429 
8430 	if (sg_imbalanced(group))
8431 		return group_imbalanced;
8432 
8433 	if (sgs->group_asym_packing)
8434 		return group_asym_packing;
8435 
8436 	if (sgs->group_misfit_task_load)
8437 		return group_misfit_task;
8438 
8439 	if (!group_has_capacity(imbalance_pct, sgs))
8440 		return group_fully_busy;
8441 
8442 	return group_has_spare;
8443 }
8444 
8445 /**
8446  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8447  * @env: The load balancing environment.
8448  * @group: sched_group whose statistics are to be updated.
8449  * @sgs: variable to hold the statistics for this group.
8450  * @sg_status: Holds flag indicating the status of the sched_group
8451  */
8452 static inline void update_sg_lb_stats(struct lb_env *env,
8453 				      struct sched_group *group,
8454 				      struct sg_lb_stats *sgs,
8455 				      int *sg_status)
8456 {
8457 	int i, nr_running, local_group;
8458 
8459 	memset(sgs, 0, sizeof(*sgs));
8460 
8461 	local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8462 
8463 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8464 		struct rq *rq = cpu_rq(i);
8465 
8466 		sgs->group_load += cpu_load(rq);
8467 		sgs->group_util += cpu_util(i);
8468 		sgs->group_runnable += cpu_runnable(rq);
8469 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8470 
8471 		nr_running = rq->nr_running;
8472 		sgs->sum_nr_running += nr_running;
8473 
8474 		if (nr_running > 1)
8475 			*sg_status |= SG_OVERLOAD;
8476 
8477 		if (cpu_overutilized(i))
8478 			*sg_status |= SG_OVERUTILIZED;
8479 
8480 #ifdef CONFIG_NUMA_BALANCING
8481 		sgs->nr_numa_running += rq->nr_numa_running;
8482 		sgs->nr_preferred_running += rq->nr_preferred_running;
8483 #endif
8484 		/*
8485 		 * No need to call idle_cpu() if nr_running is not 0
8486 		 */
8487 		if (!nr_running && idle_cpu(i)) {
8488 			sgs->idle_cpus++;
8489 			/* Idle cpu can't have misfit task */
8490 			continue;
8491 		}
8492 
8493 		if (local_group)
8494 			continue;
8495 
8496 		/* Check for a misfit task on the cpu */
8497 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8498 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8499 			sgs->group_misfit_task_load = rq->misfit_task_load;
8500 			*sg_status |= SG_OVERLOAD;
8501 		}
8502 	}
8503 
8504 	/* Check if dst CPU is idle and preferred to this group */
8505 	if (env->sd->flags & SD_ASYM_PACKING &&
8506 	    env->idle != CPU_NOT_IDLE &&
8507 	    sgs->sum_h_nr_running &&
8508 	    sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8509 		sgs->group_asym_packing = 1;
8510 	}
8511 
8512 	sgs->group_capacity = group->sgc->capacity;
8513 
8514 	sgs->group_weight = group->group_weight;
8515 
8516 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8517 
8518 	/* Computing avg_load makes sense only when group is overloaded */
8519 	if (sgs->group_type == group_overloaded)
8520 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8521 				sgs->group_capacity;
8522 }
8523 
8524 /**
8525  * update_sd_pick_busiest - return 1 on busiest group
8526  * @env: The load balancing environment.
8527  * @sds: sched_domain statistics
8528  * @sg: sched_group candidate to be checked for being the busiest
8529  * @sgs: sched_group statistics
8530  *
8531  * Determine if @sg is a busier group than the previously selected
8532  * busiest group.
8533  *
8534  * Return: %true if @sg is a busier group than the previously selected
8535  * busiest group. %false otherwise.
8536  */
8537 static bool update_sd_pick_busiest(struct lb_env *env,
8538 				   struct sd_lb_stats *sds,
8539 				   struct sched_group *sg,
8540 				   struct sg_lb_stats *sgs)
8541 {
8542 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8543 
8544 	/* Make sure that there is at least one task to pull */
8545 	if (!sgs->sum_h_nr_running)
8546 		return false;
8547 
8548 	/*
8549 	 * Don't try to pull misfit tasks we can't help.
8550 	 * We can use max_capacity here as reduction in capacity on some
8551 	 * CPUs in the group should either be possible to resolve
8552 	 * internally or be covered by avg_load imbalance (eventually).
8553 	 */
8554 	if (sgs->group_type == group_misfit_task &&
8555 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
8556 	     sds->local_stat.group_type != group_has_spare))
8557 		return false;
8558 
8559 	if (sgs->group_type > busiest->group_type)
8560 		return true;
8561 
8562 	if (sgs->group_type < busiest->group_type)
8563 		return false;
8564 
8565 	/*
8566 	 * The candidate and the current busiest group are the same type of
8567 	 * group. Let check which one is the busiest according to the type.
8568 	 */
8569 
8570 	switch (sgs->group_type) {
8571 	case group_overloaded:
8572 		/* Select the overloaded group with highest avg_load. */
8573 		if (sgs->avg_load <= busiest->avg_load)
8574 			return false;
8575 		break;
8576 
8577 	case group_imbalanced:
8578 		/*
8579 		 * Select the 1st imbalanced group as we don't have any way to
8580 		 * choose one more than another.
8581 		 */
8582 		return false;
8583 
8584 	case group_asym_packing:
8585 		/* Prefer to move from lowest priority CPU's work */
8586 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8587 			return false;
8588 		break;
8589 
8590 	case group_misfit_task:
8591 		/*
8592 		 * If we have more than one misfit sg go with the biggest
8593 		 * misfit.
8594 		 */
8595 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8596 			return false;
8597 		break;
8598 
8599 	case group_fully_busy:
8600 		/*
8601 		 * Select the fully busy group with highest avg_load. In
8602 		 * theory, there is no need to pull task from such kind of
8603 		 * group because tasks have all compute capacity that they need
8604 		 * but we can still improve the overall throughput by reducing
8605 		 * contention when accessing shared HW resources.
8606 		 *
8607 		 * XXX for now avg_load is not computed and always 0 so we
8608 		 * select the 1st one.
8609 		 */
8610 		if (sgs->avg_load <= busiest->avg_load)
8611 			return false;
8612 		break;
8613 
8614 	case group_has_spare:
8615 		/*
8616 		 * Select not overloaded group with lowest number of idle cpus
8617 		 * and highest number of running tasks. We could also compare
8618 		 * the spare capacity which is more stable but it can end up
8619 		 * that the group has less spare capacity but finally more idle
8620 		 * CPUs which means less opportunity to pull tasks.
8621 		 */
8622 		if (sgs->idle_cpus > busiest->idle_cpus)
8623 			return false;
8624 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8625 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
8626 			return false;
8627 
8628 		break;
8629 	}
8630 
8631 	/*
8632 	 * Candidate sg has no more than one task per CPU and has higher
8633 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8634 	 * throughput. Maximize throughput, power/energy consequences are not
8635 	 * considered.
8636 	 */
8637 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8638 	    (sgs->group_type <= group_fully_busy) &&
8639 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
8640 		return false;
8641 
8642 	return true;
8643 }
8644 
8645 #ifdef CONFIG_NUMA_BALANCING
8646 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8647 {
8648 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8649 		return regular;
8650 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8651 		return remote;
8652 	return all;
8653 }
8654 
8655 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8656 {
8657 	if (rq->nr_running > rq->nr_numa_running)
8658 		return regular;
8659 	if (rq->nr_running > rq->nr_preferred_running)
8660 		return remote;
8661 	return all;
8662 }
8663 #else
8664 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8665 {
8666 	return all;
8667 }
8668 
8669 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8670 {
8671 	return regular;
8672 }
8673 #endif /* CONFIG_NUMA_BALANCING */
8674 
8675 
8676 struct sg_lb_stats;
8677 
8678 /*
8679  * task_running_on_cpu - return 1 if @p is running on @cpu.
8680  */
8681 
8682 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8683 {
8684 	/* Task has no contribution or is new */
8685 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8686 		return 0;
8687 
8688 	if (task_on_rq_queued(p))
8689 		return 1;
8690 
8691 	return 0;
8692 }
8693 
8694 /**
8695  * idle_cpu_without - would a given CPU be idle without p ?
8696  * @cpu: the processor on which idleness is tested.
8697  * @p: task which should be ignored.
8698  *
8699  * Return: 1 if the CPU would be idle. 0 otherwise.
8700  */
8701 static int idle_cpu_without(int cpu, struct task_struct *p)
8702 {
8703 	struct rq *rq = cpu_rq(cpu);
8704 
8705 	if (rq->curr != rq->idle && rq->curr != p)
8706 		return 0;
8707 
8708 	/*
8709 	 * rq->nr_running can't be used but an updated version without the
8710 	 * impact of p on cpu must be used instead. The updated nr_running
8711 	 * be computed and tested before calling idle_cpu_without().
8712 	 */
8713 
8714 #ifdef CONFIG_SMP
8715 	if (rq->ttwu_pending)
8716 		return 0;
8717 #endif
8718 
8719 	return 1;
8720 }
8721 
8722 /*
8723  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8724  * @sd: The sched_domain level to look for idlest group.
8725  * @group: sched_group whose statistics are to be updated.
8726  * @sgs: variable to hold the statistics for this group.
8727  * @p: The task for which we look for the idlest group/CPU.
8728  */
8729 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8730 					  struct sched_group *group,
8731 					  struct sg_lb_stats *sgs,
8732 					  struct task_struct *p)
8733 {
8734 	int i, nr_running;
8735 
8736 	memset(sgs, 0, sizeof(*sgs));
8737 
8738 	for_each_cpu(i, sched_group_span(group)) {
8739 		struct rq *rq = cpu_rq(i);
8740 		unsigned int local;
8741 
8742 		sgs->group_load += cpu_load_without(rq, p);
8743 		sgs->group_util += cpu_util_without(i, p);
8744 		sgs->group_runnable += cpu_runnable_without(rq, p);
8745 		local = task_running_on_cpu(i, p);
8746 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8747 
8748 		nr_running = rq->nr_running - local;
8749 		sgs->sum_nr_running += nr_running;
8750 
8751 		/*
8752 		 * No need to call idle_cpu_without() if nr_running is not 0
8753 		 */
8754 		if (!nr_running && idle_cpu_without(i, p))
8755 			sgs->idle_cpus++;
8756 
8757 	}
8758 
8759 	/* Check if task fits in the group */
8760 	if (sd->flags & SD_ASYM_CPUCAPACITY &&
8761 	    !task_fits_capacity(p, group->sgc->max_capacity)) {
8762 		sgs->group_misfit_task_load = 1;
8763 	}
8764 
8765 	sgs->group_capacity = group->sgc->capacity;
8766 
8767 	sgs->group_weight = group->group_weight;
8768 
8769 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8770 
8771 	/*
8772 	 * Computing avg_load makes sense only when group is fully busy or
8773 	 * overloaded
8774 	 */
8775 	if (sgs->group_type == group_fully_busy ||
8776 		sgs->group_type == group_overloaded)
8777 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8778 				sgs->group_capacity;
8779 }
8780 
8781 static bool update_pick_idlest(struct sched_group *idlest,
8782 			       struct sg_lb_stats *idlest_sgs,
8783 			       struct sched_group *group,
8784 			       struct sg_lb_stats *sgs)
8785 {
8786 	if (sgs->group_type < idlest_sgs->group_type)
8787 		return true;
8788 
8789 	if (sgs->group_type > idlest_sgs->group_type)
8790 		return false;
8791 
8792 	/*
8793 	 * The candidate and the current idlest group are the same type of
8794 	 * group. Let check which one is the idlest according to the type.
8795 	 */
8796 
8797 	switch (sgs->group_type) {
8798 	case group_overloaded:
8799 	case group_fully_busy:
8800 		/* Select the group with lowest avg_load. */
8801 		if (idlest_sgs->avg_load <= sgs->avg_load)
8802 			return false;
8803 		break;
8804 
8805 	case group_imbalanced:
8806 	case group_asym_packing:
8807 		/* Those types are not used in the slow wakeup path */
8808 		return false;
8809 
8810 	case group_misfit_task:
8811 		/* Select group with the highest max capacity */
8812 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8813 			return false;
8814 		break;
8815 
8816 	case group_has_spare:
8817 		/* Select group with most idle CPUs */
8818 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
8819 			return false;
8820 
8821 		/* Select group with lowest group_util */
8822 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8823 			idlest_sgs->group_util <= sgs->group_util)
8824 			return false;
8825 
8826 		break;
8827 	}
8828 
8829 	return true;
8830 }
8831 
8832 /*
8833  * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
8834  * This is an approximation as the number of running tasks may not be
8835  * related to the number of busy CPUs due to sched_setaffinity.
8836  */
8837 static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
8838 {
8839 	return (dst_running < (dst_weight >> 2));
8840 }
8841 
8842 /*
8843  * find_idlest_group() finds and returns the least busy CPU group within the
8844  * domain.
8845  *
8846  * Assumes p is allowed on at least one CPU in sd.
8847  */
8848 static struct sched_group *
8849 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
8850 {
8851 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8852 	struct sg_lb_stats local_sgs, tmp_sgs;
8853 	struct sg_lb_stats *sgs;
8854 	unsigned long imbalance;
8855 	struct sg_lb_stats idlest_sgs = {
8856 			.avg_load = UINT_MAX,
8857 			.group_type = group_overloaded,
8858 	};
8859 
8860 	do {
8861 		int local_group;
8862 
8863 		/* Skip over this group if it has no CPUs allowed */
8864 		if (!cpumask_intersects(sched_group_span(group),
8865 					p->cpus_ptr))
8866 			continue;
8867 
8868 		local_group = cpumask_test_cpu(this_cpu,
8869 					       sched_group_span(group));
8870 
8871 		if (local_group) {
8872 			sgs = &local_sgs;
8873 			local = group;
8874 		} else {
8875 			sgs = &tmp_sgs;
8876 		}
8877 
8878 		update_sg_wakeup_stats(sd, group, sgs, p);
8879 
8880 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8881 			idlest = group;
8882 			idlest_sgs = *sgs;
8883 		}
8884 
8885 	} while (group = group->next, group != sd->groups);
8886 
8887 
8888 	/* There is no idlest group to push tasks to */
8889 	if (!idlest)
8890 		return NULL;
8891 
8892 	/* The local group has been skipped because of CPU affinity */
8893 	if (!local)
8894 		return idlest;
8895 
8896 	/*
8897 	 * If the local group is idler than the selected idlest group
8898 	 * don't try and push the task.
8899 	 */
8900 	if (local_sgs.group_type < idlest_sgs.group_type)
8901 		return NULL;
8902 
8903 	/*
8904 	 * If the local group is busier than the selected idlest group
8905 	 * try and push the task.
8906 	 */
8907 	if (local_sgs.group_type > idlest_sgs.group_type)
8908 		return idlest;
8909 
8910 	switch (local_sgs.group_type) {
8911 	case group_overloaded:
8912 	case group_fully_busy:
8913 
8914 		/* Calculate allowed imbalance based on load */
8915 		imbalance = scale_load_down(NICE_0_LOAD) *
8916 				(sd->imbalance_pct-100) / 100;
8917 
8918 		/*
8919 		 * When comparing groups across NUMA domains, it's possible for
8920 		 * the local domain to be very lightly loaded relative to the
8921 		 * remote domains but "imbalance" skews the comparison making
8922 		 * remote CPUs look much more favourable. When considering
8923 		 * cross-domain, add imbalance to the load on the remote node
8924 		 * and consider staying local.
8925 		 */
8926 
8927 		if ((sd->flags & SD_NUMA) &&
8928 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8929 			return NULL;
8930 
8931 		/*
8932 		 * If the local group is less loaded than the selected
8933 		 * idlest group don't try and push any tasks.
8934 		 */
8935 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8936 			return NULL;
8937 
8938 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8939 			return NULL;
8940 		break;
8941 
8942 	case group_imbalanced:
8943 	case group_asym_packing:
8944 		/* Those type are not used in the slow wakeup path */
8945 		return NULL;
8946 
8947 	case group_misfit_task:
8948 		/* Select group with the highest max capacity */
8949 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8950 			return NULL;
8951 		break;
8952 
8953 	case group_has_spare:
8954 		if (sd->flags & SD_NUMA) {
8955 #ifdef CONFIG_NUMA_BALANCING
8956 			int idlest_cpu;
8957 			/*
8958 			 * If there is spare capacity at NUMA, try to select
8959 			 * the preferred node
8960 			 */
8961 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8962 				return NULL;
8963 
8964 			idlest_cpu = cpumask_first(sched_group_span(idlest));
8965 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8966 				return idlest;
8967 #endif
8968 			/*
8969 			 * Otherwise, keep the task on this node to stay close
8970 			 * its wakeup source and improve locality. If there is
8971 			 * a real need of migration, periodic load balance will
8972 			 * take care of it.
8973 			 */
8974 			if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
8975 				return NULL;
8976 		}
8977 
8978 		/*
8979 		 * Select group with highest number of idle CPUs. We could also
8980 		 * compare the utilization which is more stable but it can end
8981 		 * up that the group has less spare capacity but finally more
8982 		 * idle CPUs which means more opportunity to run task.
8983 		 */
8984 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8985 			return NULL;
8986 		break;
8987 	}
8988 
8989 	return idlest;
8990 }
8991 
8992 /**
8993  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8994  * @env: The load balancing environment.
8995  * @sds: variable to hold the statistics for this sched_domain.
8996  */
8997 
8998 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8999 {
9000 	struct sched_domain *child = env->sd->child;
9001 	struct sched_group *sg = env->sd->groups;
9002 	struct sg_lb_stats *local = &sds->local_stat;
9003 	struct sg_lb_stats tmp_sgs;
9004 	int sg_status = 0;
9005 
9006 	do {
9007 		struct sg_lb_stats *sgs = &tmp_sgs;
9008 		int local_group;
9009 
9010 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9011 		if (local_group) {
9012 			sds->local = sg;
9013 			sgs = local;
9014 
9015 			if (env->idle != CPU_NEWLY_IDLE ||
9016 			    time_after_eq(jiffies, sg->sgc->next_update))
9017 				update_group_capacity(env->sd, env->dst_cpu);
9018 		}
9019 
9020 		update_sg_lb_stats(env, sg, sgs, &sg_status);
9021 
9022 		if (local_group)
9023 			goto next_group;
9024 
9025 
9026 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9027 			sds->busiest = sg;
9028 			sds->busiest_stat = *sgs;
9029 		}
9030 
9031 next_group:
9032 		/* Now, start updating sd_lb_stats */
9033 		sds->total_load += sgs->group_load;
9034 		sds->total_capacity += sgs->group_capacity;
9035 
9036 		sg = sg->next;
9037 	} while (sg != env->sd->groups);
9038 
9039 	/* Tag domain that child domain prefers tasks go to siblings first */
9040 	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9041 
9042 
9043 	if (env->sd->flags & SD_NUMA)
9044 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9045 
9046 	if (!env->sd->parent) {
9047 		struct root_domain *rd = env->dst_rq->rd;
9048 
9049 		/* update overload indicator if we are at root domain */
9050 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9051 
9052 		/* Update over-utilization (tipping point, U >= 0) indicator */
9053 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9054 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9055 	} else if (sg_status & SG_OVERUTILIZED) {
9056 		struct root_domain *rd = env->dst_rq->rd;
9057 
9058 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9059 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9060 	}
9061 }
9062 
9063 #define NUMA_IMBALANCE_MIN 2
9064 
9065 static inline long adjust_numa_imbalance(int imbalance,
9066 				int dst_running, int dst_weight)
9067 {
9068 	if (!allow_numa_imbalance(dst_running, dst_weight))
9069 		return imbalance;
9070 
9071 	/*
9072 	 * Allow a small imbalance based on a simple pair of communicating
9073 	 * tasks that remain local when the destination is lightly loaded.
9074 	 */
9075 	if (imbalance <= NUMA_IMBALANCE_MIN)
9076 		return 0;
9077 
9078 	return imbalance;
9079 }
9080 
9081 /**
9082  * calculate_imbalance - Calculate the amount of imbalance present within the
9083  *			 groups of a given sched_domain during load balance.
9084  * @env: load balance environment
9085  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9086  */
9087 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9088 {
9089 	struct sg_lb_stats *local, *busiest;
9090 
9091 	local = &sds->local_stat;
9092 	busiest = &sds->busiest_stat;
9093 
9094 	if (busiest->group_type == group_misfit_task) {
9095 		/* Set imbalance to allow misfit tasks to be balanced. */
9096 		env->migration_type = migrate_misfit;
9097 		env->imbalance = 1;
9098 		return;
9099 	}
9100 
9101 	if (busiest->group_type == group_asym_packing) {
9102 		/*
9103 		 * In case of asym capacity, we will try to migrate all load to
9104 		 * the preferred CPU.
9105 		 */
9106 		env->migration_type = migrate_task;
9107 		env->imbalance = busiest->sum_h_nr_running;
9108 		return;
9109 	}
9110 
9111 	if (busiest->group_type == group_imbalanced) {
9112 		/*
9113 		 * In the group_imb case we cannot rely on group-wide averages
9114 		 * to ensure CPU-load equilibrium, try to move any task to fix
9115 		 * the imbalance. The next load balance will take care of
9116 		 * balancing back the system.
9117 		 */
9118 		env->migration_type = migrate_task;
9119 		env->imbalance = 1;
9120 		return;
9121 	}
9122 
9123 	/*
9124 	 * Try to use spare capacity of local group without overloading it or
9125 	 * emptying busiest.
9126 	 */
9127 	if (local->group_type == group_has_spare) {
9128 		if ((busiest->group_type > group_fully_busy) &&
9129 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9130 			/*
9131 			 * If busiest is overloaded, try to fill spare
9132 			 * capacity. This might end up creating spare capacity
9133 			 * in busiest or busiest still being overloaded but
9134 			 * there is no simple way to directly compute the
9135 			 * amount of load to migrate in order to balance the
9136 			 * system.
9137 			 */
9138 			env->migration_type = migrate_util;
9139 			env->imbalance = max(local->group_capacity, local->group_util) -
9140 					 local->group_util;
9141 
9142 			/*
9143 			 * In some cases, the group's utilization is max or even
9144 			 * higher than capacity because of migrations but the
9145 			 * local CPU is (newly) idle. There is at least one
9146 			 * waiting task in this overloaded busiest group. Let's
9147 			 * try to pull it.
9148 			 */
9149 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9150 				env->migration_type = migrate_task;
9151 				env->imbalance = 1;
9152 			}
9153 
9154 			return;
9155 		}
9156 
9157 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
9158 			unsigned int nr_diff = busiest->sum_nr_running;
9159 			/*
9160 			 * When prefer sibling, evenly spread running tasks on
9161 			 * groups.
9162 			 */
9163 			env->migration_type = migrate_task;
9164 			lsub_positive(&nr_diff, local->sum_nr_running);
9165 			env->imbalance = nr_diff >> 1;
9166 		} else {
9167 
9168 			/*
9169 			 * If there is no overload, we just want to even the number of
9170 			 * idle cpus.
9171 			 */
9172 			env->migration_type = migrate_task;
9173 			env->imbalance = max_t(long, 0, (local->idle_cpus -
9174 						 busiest->idle_cpus) >> 1);
9175 		}
9176 
9177 		/* Consider allowing a small imbalance between NUMA groups */
9178 		if (env->sd->flags & SD_NUMA) {
9179 			env->imbalance = adjust_numa_imbalance(env->imbalance,
9180 				busiest->sum_nr_running, busiest->group_weight);
9181 		}
9182 
9183 		return;
9184 	}
9185 
9186 	/*
9187 	 * Local is fully busy but has to take more load to relieve the
9188 	 * busiest group
9189 	 */
9190 	if (local->group_type < group_overloaded) {
9191 		/*
9192 		 * Local will become overloaded so the avg_load metrics are
9193 		 * finally needed.
9194 		 */
9195 
9196 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9197 				  local->group_capacity;
9198 
9199 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9200 				sds->total_capacity;
9201 		/*
9202 		 * If the local group is more loaded than the selected
9203 		 * busiest group don't try to pull any tasks.
9204 		 */
9205 		if (local->avg_load >= busiest->avg_load) {
9206 			env->imbalance = 0;
9207 			return;
9208 		}
9209 	}
9210 
9211 	/*
9212 	 * Both group are or will become overloaded and we're trying to get all
9213 	 * the CPUs to the average_load, so we don't want to push ourselves
9214 	 * above the average load, nor do we wish to reduce the max loaded CPU
9215 	 * below the average load. At the same time, we also don't want to
9216 	 * reduce the group load below the group capacity. Thus we look for
9217 	 * the minimum possible imbalance.
9218 	 */
9219 	env->migration_type = migrate_load;
9220 	env->imbalance = min(
9221 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9222 		(sds->avg_load - local->avg_load) * local->group_capacity
9223 	) / SCHED_CAPACITY_SCALE;
9224 }
9225 
9226 /******* find_busiest_group() helpers end here *********************/
9227 
9228 /*
9229  * Decision matrix according to the local and busiest group type:
9230  *
9231  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9232  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
9233  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
9234  * misfit_task      force     N/A        N/A    N/A  force      force
9235  * asym_packing     force     force      N/A    N/A  force      force
9236  * imbalanced       force     force      N/A    N/A  force      force
9237  * overloaded       force     force      N/A    N/A  force      avg_load
9238  *
9239  * N/A :      Not Applicable because already filtered while updating
9240  *            statistics.
9241  * balanced : The system is balanced for these 2 groups.
9242  * force :    Calculate the imbalance as load migration is probably needed.
9243  * avg_load : Only if imbalance is significant enough.
9244  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
9245  *            different in groups.
9246  */
9247 
9248 /**
9249  * find_busiest_group - Returns the busiest group within the sched_domain
9250  * if there is an imbalance.
9251  *
9252  * Also calculates the amount of runnable load which should be moved
9253  * to restore balance.
9254  *
9255  * @env: The load balancing environment.
9256  *
9257  * Return:	- The busiest group if imbalance exists.
9258  */
9259 static struct sched_group *find_busiest_group(struct lb_env *env)
9260 {
9261 	struct sg_lb_stats *local, *busiest;
9262 	struct sd_lb_stats sds;
9263 
9264 	init_sd_lb_stats(&sds);
9265 
9266 	/*
9267 	 * Compute the various statistics relevant for load balancing at
9268 	 * this level.
9269 	 */
9270 	update_sd_lb_stats(env, &sds);
9271 
9272 	if (sched_energy_enabled()) {
9273 		struct root_domain *rd = env->dst_rq->rd;
9274 
9275 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9276 			goto out_balanced;
9277 	}
9278 
9279 	local = &sds.local_stat;
9280 	busiest = &sds.busiest_stat;
9281 
9282 	/* There is no busy sibling group to pull tasks from */
9283 	if (!sds.busiest)
9284 		goto out_balanced;
9285 
9286 	/* Misfit tasks should be dealt with regardless of the avg load */
9287 	if (busiest->group_type == group_misfit_task)
9288 		goto force_balance;
9289 
9290 	/* ASYM feature bypasses nice load balance check */
9291 	if (busiest->group_type == group_asym_packing)
9292 		goto force_balance;
9293 
9294 	/*
9295 	 * If the busiest group is imbalanced the below checks don't
9296 	 * work because they assume all things are equal, which typically
9297 	 * isn't true due to cpus_ptr constraints and the like.
9298 	 */
9299 	if (busiest->group_type == group_imbalanced)
9300 		goto force_balance;
9301 
9302 	/*
9303 	 * If the local group is busier than the selected busiest group
9304 	 * don't try and pull any tasks.
9305 	 */
9306 	if (local->group_type > busiest->group_type)
9307 		goto out_balanced;
9308 
9309 	/*
9310 	 * When groups are overloaded, use the avg_load to ensure fairness
9311 	 * between tasks.
9312 	 */
9313 	if (local->group_type == group_overloaded) {
9314 		/*
9315 		 * If the local group is more loaded than the selected
9316 		 * busiest group don't try to pull any tasks.
9317 		 */
9318 		if (local->avg_load >= busiest->avg_load)
9319 			goto out_balanced;
9320 
9321 		/* XXX broken for overlapping NUMA groups */
9322 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9323 				sds.total_capacity;
9324 
9325 		/*
9326 		 * Don't pull any tasks if this group is already above the
9327 		 * domain average load.
9328 		 */
9329 		if (local->avg_load >= sds.avg_load)
9330 			goto out_balanced;
9331 
9332 		/*
9333 		 * If the busiest group is more loaded, use imbalance_pct to be
9334 		 * conservative.
9335 		 */
9336 		if (100 * busiest->avg_load <=
9337 				env->sd->imbalance_pct * local->avg_load)
9338 			goto out_balanced;
9339 	}
9340 
9341 	/* Try to move all excess tasks to child's sibling domain */
9342 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
9343 	    busiest->sum_nr_running > local->sum_nr_running + 1)
9344 		goto force_balance;
9345 
9346 	if (busiest->group_type != group_overloaded) {
9347 		if (env->idle == CPU_NOT_IDLE)
9348 			/*
9349 			 * If the busiest group is not overloaded (and as a
9350 			 * result the local one too) but this CPU is already
9351 			 * busy, let another idle CPU try to pull task.
9352 			 */
9353 			goto out_balanced;
9354 
9355 		if (busiest->group_weight > 1 &&
9356 		    local->idle_cpus <= (busiest->idle_cpus + 1))
9357 			/*
9358 			 * If the busiest group is not overloaded
9359 			 * and there is no imbalance between this and busiest
9360 			 * group wrt idle CPUs, it is balanced. The imbalance
9361 			 * becomes significant if the diff is greater than 1
9362 			 * otherwise we might end up to just move the imbalance
9363 			 * on another group. Of course this applies only if
9364 			 * there is more than 1 CPU per group.
9365 			 */
9366 			goto out_balanced;
9367 
9368 		if (busiest->sum_h_nr_running == 1)
9369 			/*
9370 			 * busiest doesn't have any tasks waiting to run
9371 			 */
9372 			goto out_balanced;
9373 	}
9374 
9375 force_balance:
9376 	/* Looks like there is an imbalance. Compute it */
9377 	calculate_imbalance(env, &sds);
9378 	return env->imbalance ? sds.busiest : NULL;
9379 
9380 out_balanced:
9381 	env->imbalance = 0;
9382 	return NULL;
9383 }
9384 
9385 /*
9386  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9387  */
9388 static struct rq *find_busiest_queue(struct lb_env *env,
9389 				     struct sched_group *group)
9390 {
9391 	struct rq *busiest = NULL, *rq;
9392 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9393 	unsigned int busiest_nr = 0;
9394 	int i;
9395 
9396 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9397 		unsigned long capacity, load, util;
9398 		unsigned int nr_running;
9399 		enum fbq_type rt;
9400 
9401 		rq = cpu_rq(i);
9402 		rt = fbq_classify_rq(rq);
9403 
9404 		/*
9405 		 * We classify groups/runqueues into three groups:
9406 		 *  - regular: there are !numa tasks
9407 		 *  - remote:  there are numa tasks that run on the 'wrong' node
9408 		 *  - all:     there is no distinction
9409 		 *
9410 		 * In order to avoid migrating ideally placed numa tasks,
9411 		 * ignore those when there's better options.
9412 		 *
9413 		 * If we ignore the actual busiest queue to migrate another
9414 		 * task, the next balance pass can still reduce the busiest
9415 		 * queue by moving tasks around inside the node.
9416 		 *
9417 		 * If we cannot move enough load due to this classification
9418 		 * the next pass will adjust the group classification and
9419 		 * allow migration of more tasks.
9420 		 *
9421 		 * Both cases only affect the total convergence complexity.
9422 		 */
9423 		if (rt > env->fbq_type)
9424 			continue;
9425 
9426 		nr_running = rq->cfs.h_nr_running;
9427 		if (!nr_running)
9428 			continue;
9429 
9430 		capacity = capacity_of(i);
9431 
9432 		/*
9433 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9434 		 * eventually lead to active_balancing high->low capacity.
9435 		 * Higher per-CPU capacity is considered better than balancing
9436 		 * average load.
9437 		 */
9438 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9439 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
9440 		    nr_running == 1)
9441 			continue;
9442 
9443 		switch (env->migration_type) {
9444 		case migrate_load:
9445 			/*
9446 			 * When comparing with load imbalance, use cpu_load()
9447 			 * which is not scaled with the CPU capacity.
9448 			 */
9449 			load = cpu_load(rq);
9450 
9451 			if (nr_running == 1 && load > env->imbalance &&
9452 			    !check_cpu_capacity(rq, env->sd))
9453 				break;
9454 
9455 			/*
9456 			 * For the load comparisons with the other CPUs,
9457 			 * consider the cpu_load() scaled with the CPU
9458 			 * capacity, so that the load can be moved away
9459 			 * from the CPU that is potentially running at a
9460 			 * lower capacity.
9461 			 *
9462 			 * Thus we're looking for max(load_i / capacity_i),
9463 			 * crosswise multiplication to rid ourselves of the
9464 			 * division works out to:
9465 			 * load_i * capacity_j > load_j * capacity_i;
9466 			 * where j is our previous maximum.
9467 			 */
9468 			if (load * busiest_capacity > busiest_load * capacity) {
9469 				busiest_load = load;
9470 				busiest_capacity = capacity;
9471 				busiest = rq;
9472 			}
9473 			break;
9474 
9475 		case migrate_util:
9476 			util = cpu_util(cpu_of(rq));
9477 
9478 			/*
9479 			 * Don't try to pull utilization from a CPU with one
9480 			 * running task. Whatever its utilization, we will fail
9481 			 * detach the task.
9482 			 */
9483 			if (nr_running <= 1)
9484 				continue;
9485 
9486 			if (busiest_util < util) {
9487 				busiest_util = util;
9488 				busiest = rq;
9489 			}
9490 			break;
9491 
9492 		case migrate_task:
9493 			if (busiest_nr < nr_running) {
9494 				busiest_nr = nr_running;
9495 				busiest = rq;
9496 			}
9497 			break;
9498 
9499 		case migrate_misfit:
9500 			/*
9501 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
9502 			 * simply seek the "biggest" misfit task.
9503 			 */
9504 			if (rq->misfit_task_load > busiest_load) {
9505 				busiest_load = rq->misfit_task_load;
9506 				busiest = rq;
9507 			}
9508 
9509 			break;
9510 
9511 		}
9512 	}
9513 
9514 	return busiest;
9515 }
9516 
9517 /*
9518  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9519  * so long as it is large enough.
9520  */
9521 #define MAX_PINNED_INTERVAL	512
9522 
9523 static inline bool
9524 asym_active_balance(struct lb_env *env)
9525 {
9526 	/*
9527 	 * ASYM_PACKING needs to force migrate tasks from busy but
9528 	 * lower priority CPUs in order to pack all tasks in the
9529 	 * highest priority CPUs.
9530 	 */
9531 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9532 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
9533 }
9534 
9535 static inline bool
9536 imbalanced_active_balance(struct lb_env *env)
9537 {
9538 	struct sched_domain *sd = env->sd;
9539 
9540 	/*
9541 	 * The imbalanced case includes the case of pinned tasks preventing a fair
9542 	 * distribution of the load on the system but also the even distribution of the
9543 	 * threads on a system with spare capacity
9544 	 */
9545 	if ((env->migration_type == migrate_task) &&
9546 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
9547 		return 1;
9548 
9549 	return 0;
9550 }
9551 
9552 static int need_active_balance(struct lb_env *env)
9553 {
9554 	struct sched_domain *sd = env->sd;
9555 
9556 	if (asym_active_balance(env))
9557 		return 1;
9558 
9559 	if (imbalanced_active_balance(env))
9560 		return 1;
9561 
9562 	/*
9563 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9564 	 * It's worth migrating the task if the src_cpu's capacity is reduced
9565 	 * because of other sched_class or IRQs if more capacity stays
9566 	 * available on dst_cpu.
9567 	 */
9568 	if ((env->idle != CPU_NOT_IDLE) &&
9569 	    (env->src_rq->cfs.h_nr_running == 1)) {
9570 		if ((check_cpu_capacity(env->src_rq, sd)) &&
9571 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9572 			return 1;
9573 	}
9574 
9575 	if (env->migration_type == migrate_misfit)
9576 		return 1;
9577 
9578 	return 0;
9579 }
9580 
9581 static int active_load_balance_cpu_stop(void *data);
9582 
9583 static int should_we_balance(struct lb_env *env)
9584 {
9585 	struct sched_group *sg = env->sd->groups;
9586 	int cpu;
9587 
9588 	/*
9589 	 * Ensure the balancing environment is consistent; can happen
9590 	 * when the softirq triggers 'during' hotplug.
9591 	 */
9592 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9593 		return 0;
9594 
9595 	/*
9596 	 * In the newly idle case, we will allow all the CPUs
9597 	 * to do the newly idle load balance.
9598 	 */
9599 	if (env->idle == CPU_NEWLY_IDLE)
9600 		return 1;
9601 
9602 	/* Try to find first idle CPU */
9603 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9604 		if (!idle_cpu(cpu))
9605 			continue;
9606 
9607 		/* Are we the first idle CPU? */
9608 		return cpu == env->dst_cpu;
9609 	}
9610 
9611 	/* Are we the first CPU of this group ? */
9612 	return group_balance_cpu(sg) == env->dst_cpu;
9613 }
9614 
9615 /*
9616  * Check this_cpu to ensure it is balanced within domain. Attempt to move
9617  * tasks if there is an imbalance.
9618  */
9619 static int load_balance(int this_cpu, struct rq *this_rq,
9620 			struct sched_domain *sd, enum cpu_idle_type idle,
9621 			int *continue_balancing)
9622 {
9623 	int ld_moved, cur_ld_moved, active_balance = 0;
9624 	struct sched_domain *sd_parent = sd->parent;
9625 	struct sched_group *group;
9626 	struct rq *busiest;
9627 	struct rq_flags rf;
9628 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9629 
9630 	struct lb_env env = {
9631 		.sd		= sd,
9632 		.dst_cpu	= this_cpu,
9633 		.dst_rq		= this_rq,
9634 		.dst_grpmask    = sched_group_span(sd->groups),
9635 		.idle		= idle,
9636 		.loop_break	= sched_nr_migrate_break,
9637 		.cpus		= cpus,
9638 		.fbq_type	= all,
9639 		.tasks		= LIST_HEAD_INIT(env.tasks),
9640 	};
9641 
9642 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9643 
9644 	schedstat_inc(sd->lb_count[idle]);
9645 
9646 redo:
9647 	if (!should_we_balance(&env)) {
9648 		*continue_balancing = 0;
9649 		goto out_balanced;
9650 	}
9651 
9652 	group = find_busiest_group(&env);
9653 	if (!group) {
9654 		schedstat_inc(sd->lb_nobusyg[idle]);
9655 		goto out_balanced;
9656 	}
9657 
9658 	busiest = find_busiest_queue(&env, group);
9659 	if (!busiest) {
9660 		schedstat_inc(sd->lb_nobusyq[idle]);
9661 		goto out_balanced;
9662 	}
9663 
9664 	BUG_ON(busiest == env.dst_rq);
9665 
9666 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9667 
9668 	env.src_cpu = busiest->cpu;
9669 	env.src_rq = busiest;
9670 
9671 	ld_moved = 0;
9672 	/* Clear this flag as soon as we find a pullable task */
9673 	env.flags |= LBF_ALL_PINNED;
9674 	if (busiest->nr_running > 1) {
9675 		/*
9676 		 * Attempt to move tasks. If find_busiest_group has found
9677 		 * an imbalance but busiest->nr_running <= 1, the group is
9678 		 * still unbalanced. ld_moved simply stays zero, so it is
9679 		 * correctly treated as an imbalance.
9680 		 */
9681 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
9682 
9683 more_balance:
9684 		rq_lock_irqsave(busiest, &rf);
9685 		update_rq_clock(busiest);
9686 
9687 		/*
9688 		 * cur_ld_moved - load moved in current iteration
9689 		 * ld_moved     - cumulative load moved across iterations
9690 		 */
9691 		cur_ld_moved = detach_tasks(&env);
9692 
9693 		/*
9694 		 * We've detached some tasks from busiest_rq. Every
9695 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9696 		 * unlock busiest->lock, and we are able to be sure
9697 		 * that nobody can manipulate the tasks in parallel.
9698 		 * See task_rq_lock() family for the details.
9699 		 */
9700 
9701 		rq_unlock(busiest, &rf);
9702 
9703 		if (cur_ld_moved) {
9704 			attach_tasks(&env);
9705 			ld_moved += cur_ld_moved;
9706 		}
9707 
9708 		local_irq_restore(rf.flags);
9709 
9710 		if (env.flags & LBF_NEED_BREAK) {
9711 			env.flags &= ~LBF_NEED_BREAK;
9712 			goto more_balance;
9713 		}
9714 
9715 		/*
9716 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9717 		 * us and move them to an alternate dst_cpu in our sched_group
9718 		 * where they can run. The upper limit on how many times we
9719 		 * iterate on same src_cpu is dependent on number of CPUs in our
9720 		 * sched_group.
9721 		 *
9722 		 * This changes load balance semantics a bit on who can move
9723 		 * load to a given_cpu. In addition to the given_cpu itself
9724 		 * (or a ilb_cpu acting on its behalf where given_cpu is
9725 		 * nohz-idle), we now have balance_cpu in a position to move
9726 		 * load to given_cpu. In rare situations, this may cause
9727 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9728 		 * _independently_ and at _same_ time to move some load to
9729 		 * given_cpu) causing excess load to be moved to given_cpu.
9730 		 * This however should not happen so much in practice and
9731 		 * moreover subsequent load balance cycles should correct the
9732 		 * excess load moved.
9733 		 */
9734 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9735 
9736 			/* Prevent to re-select dst_cpu via env's CPUs */
9737 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
9738 
9739 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
9740 			env.dst_cpu	 = env.new_dst_cpu;
9741 			env.flags	&= ~LBF_DST_PINNED;
9742 			env.loop	 = 0;
9743 			env.loop_break	 = sched_nr_migrate_break;
9744 
9745 			/*
9746 			 * Go back to "more_balance" rather than "redo" since we
9747 			 * need to continue with same src_cpu.
9748 			 */
9749 			goto more_balance;
9750 		}
9751 
9752 		/*
9753 		 * We failed to reach balance because of affinity.
9754 		 */
9755 		if (sd_parent) {
9756 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9757 
9758 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9759 				*group_imbalance = 1;
9760 		}
9761 
9762 		/* All tasks on this runqueue were pinned by CPU affinity */
9763 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
9764 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
9765 			/*
9766 			 * Attempting to continue load balancing at the current
9767 			 * sched_domain level only makes sense if there are
9768 			 * active CPUs remaining as possible busiest CPUs to
9769 			 * pull load from which are not contained within the
9770 			 * destination group that is receiving any migrated
9771 			 * load.
9772 			 */
9773 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
9774 				env.loop = 0;
9775 				env.loop_break = sched_nr_migrate_break;
9776 				goto redo;
9777 			}
9778 			goto out_all_pinned;
9779 		}
9780 	}
9781 
9782 	if (!ld_moved) {
9783 		schedstat_inc(sd->lb_failed[idle]);
9784 		/*
9785 		 * Increment the failure counter only on periodic balance.
9786 		 * We do not want newidle balance, which can be very
9787 		 * frequent, pollute the failure counter causing
9788 		 * excessive cache_hot migrations and active balances.
9789 		 */
9790 		if (idle != CPU_NEWLY_IDLE)
9791 			sd->nr_balance_failed++;
9792 
9793 		if (need_active_balance(&env)) {
9794 			unsigned long flags;
9795 
9796 			raw_spin_lock_irqsave(&busiest->lock, flags);
9797 
9798 			/*
9799 			 * Don't kick the active_load_balance_cpu_stop,
9800 			 * if the curr task on busiest CPU can't be
9801 			 * moved to this_cpu:
9802 			 */
9803 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9804 				raw_spin_unlock_irqrestore(&busiest->lock,
9805 							    flags);
9806 				goto out_one_pinned;
9807 			}
9808 
9809 			/* Record that we found at least one task that could run on this_cpu */
9810 			env.flags &= ~LBF_ALL_PINNED;
9811 
9812 			/*
9813 			 * ->active_balance synchronizes accesses to
9814 			 * ->active_balance_work.  Once set, it's cleared
9815 			 * only after active load balance is finished.
9816 			 */
9817 			if (!busiest->active_balance) {
9818 				busiest->active_balance = 1;
9819 				busiest->push_cpu = this_cpu;
9820 				active_balance = 1;
9821 			}
9822 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
9823 
9824 			if (active_balance) {
9825 				stop_one_cpu_nowait(cpu_of(busiest),
9826 					active_load_balance_cpu_stop, busiest,
9827 					&busiest->active_balance_work);
9828 			}
9829 		}
9830 	} else {
9831 		sd->nr_balance_failed = 0;
9832 	}
9833 
9834 	if (likely(!active_balance) || need_active_balance(&env)) {
9835 		/* We were unbalanced, so reset the balancing interval */
9836 		sd->balance_interval = sd->min_interval;
9837 	}
9838 
9839 	goto out;
9840 
9841 out_balanced:
9842 	/*
9843 	 * We reach balance although we may have faced some affinity
9844 	 * constraints. Clear the imbalance flag only if other tasks got
9845 	 * a chance to move and fix the imbalance.
9846 	 */
9847 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9848 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9849 
9850 		if (*group_imbalance)
9851 			*group_imbalance = 0;
9852 	}
9853 
9854 out_all_pinned:
9855 	/*
9856 	 * We reach balance because all tasks are pinned at this level so
9857 	 * we can't migrate them. Let the imbalance flag set so parent level
9858 	 * can try to migrate them.
9859 	 */
9860 	schedstat_inc(sd->lb_balanced[idle]);
9861 
9862 	sd->nr_balance_failed = 0;
9863 
9864 out_one_pinned:
9865 	ld_moved = 0;
9866 
9867 	/*
9868 	 * newidle_balance() disregards balance intervals, so we could
9869 	 * repeatedly reach this code, which would lead to balance_interval
9870 	 * skyrocketing in a short amount of time. Skip the balance_interval
9871 	 * increase logic to avoid that.
9872 	 */
9873 	if (env.idle == CPU_NEWLY_IDLE)
9874 		goto out;
9875 
9876 	/* tune up the balancing interval */
9877 	if ((env.flags & LBF_ALL_PINNED &&
9878 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
9879 	    sd->balance_interval < sd->max_interval)
9880 		sd->balance_interval *= 2;
9881 out:
9882 	return ld_moved;
9883 }
9884 
9885 static inline unsigned long
9886 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9887 {
9888 	unsigned long interval = sd->balance_interval;
9889 
9890 	if (cpu_busy)
9891 		interval *= sd->busy_factor;
9892 
9893 	/* scale ms to jiffies */
9894 	interval = msecs_to_jiffies(interval);
9895 
9896 	/*
9897 	 * Reduce likelihood of busy balancing at higher domains racing with
9898 	 * balancing at lower domains by preventing their balancing periods
9899 	 * from being multiples of each other.
9900 	 */
9901 	if (cpu_busy)
9902 		interval -= 1;
9903 
9904 	interval = clamp(interval, 1UL, max_load_balance_interval);
9905 
9906 	return interval;
9907 }
9908 
9909 static inline void
9910 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9911 {
9912 	unsigned long interval, next;
9913 
9914 	/* used by idle balance, so cpu_busy = 0 */
9915 	interval = get_sd_balance_interval(sd, 0);
9916 	next = sd->last_balance + interval;
9917 
9918 	if (time_after(*next_balance, next))
9919 		*next_balance = next;
9920 }
9921 
9922 /*
9923  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9924  * running tasks off the busiest CPU onto idle CPUs. It requires at
9925  * least 1 task to be running on each physical CPU where possible, and
9926  * avoids physical / logical imbalances.
9927  */
9928 static int active_load_balance_cpu_stop(void *data)
9929 {
9930 	struct rq *busiest_rq = data;
9931 	int busiest_cpu = cpu_of(busiest_rq);
9932 	int target_cpu = busiest_rq->push_cpu;
9933 	struct rq *target_rq = cpu_rq(target_cpu);
9934 	struct sched_domain *sd;
9935 	struct task_struct *p = NULL;
9936 	struct rq_flags rf;
9937 
9938 	rq_lock_irq(busiest_rq, &rf);
9939 	/*
9940 	 * Between queueing the stop-work and running it is a hole in which
9941 	 * CPUs can become inactive. We should not move tasks from or to
9942 	 * inactive CPUs.
9943 	 */
9944 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9945 		goto out_unlock;
9946 
9947 	/* Make sure the requested CPU hasn't gone down in the meantime: */
9948 	if (unlikely(busiest_cpu != smp_processor_id() ||
9949 		     !busiest_rq->active_balance))
9950 		goto out_unlock;
9951 
9952 	/* Is there any task to move? */
9953 	if (busiest_rq->nr_running <= 1)
9954 		goto out_unlock;
9955 
9956 	/*
9957 	 * This condition is "impossible", if it occurs
9958 	 * we need to fix it. Originally reported by
9959 	 * Bjorn Helgaas on a 128-CPU setup.
9960 	 */
9961 	BUG_ON(busiest_rq == target_rq);
9962 
9963 	/* Search for an sd spanning us and the target CPU. */
9964 	rcu_read_lock();
9965 	for_each_domain(target_cpu, sd) {
9966 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9967 			break;
9968 	}
9969 
9970 	if (likely(sd)) {
9971 		struct lb_env env = {
9972 			.sd		= sd,
9973 			.dst_cpu	= target_cpu,
9974 			.dst_rq		= target_rq,
9975 			.src_cpu	= busiest_rq->cpu,
9976 			.src_rq		= busiest_rq,
9977 			.idle		= CPU_IDLE,
9978 			.flags		= LBF_ACTIVE_LB,
9979 		};
9980 
9981 		schedstat_inc(sd->alb_count);
9982 		update_rq_clock(busiest_rq);
9983 
9984 		p = detach_one_task(&env);
9985 		if (p) {
9986 			schedstat_inc(sd->alb_pushed);
9987 			/* Active balancing done, reset the failure counter. */
9988 			sd->nr_balance_failed = 0;
9989 		} else {
9990 			schedstat_inc(sd->alb_failed);
9991 		}
9992 	}
9993 	rcu_read_unlock();
9994 out_unlock:
9995 	busiest_rq->active_balance = 0;
9996 	rq_unlock(busiest_rq, &rf);
9997 
9998 	if (p)
9999 		attach_one_task(target_rq, p);
10000 
10001 	local_irq_enable();
10002 
10003 	return 0;
10004 }
10005 
10006 static DEFINE_SPINLOCK(balancing);
10007 
10008 /*
10009  * Scale the max load_balance interval with the number of CPUs in the system.
10010  * This trades load-balance latency on larger machines for less cross talk.
10011  */
10012 void update_max_interval(void)
10013 {
10014 	max_load_balance_interval = HZ*num_online_cpus()/10;
10015 }
10016 
10017 /*
10018  * It checks each scheduling domain to see if it is due to be balanced,
10019  * and initiates a balancing operation if so.
10020  *
10021  * Balancing parameters are set up in init_sched_domains.
10022  */
10023 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10024 {
10025 	int continue_balancing = 1;
10026 	int cpu = rq->cpu;
10027 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10028 	unsigned long interval;
10029 	struct sched_domain *sd;
10030 	/* Earliest time when we have to do rebalance again */
10031 	unsigned long next_balance = jiffies + 60*HZ;
10032 	int update_next_balance = 0;
10033 	int need_serialize, need_decay = 0;
10034 	u64 max_cost = 0;
10035 
10036 	rcu_read_lock();
10037 	for_each_domain(cpu, sd) {
10038 		/*
10039 		 * Decay the newidle max times here because this is a regular
10040 		 * visit to all the domains. Decay ~1% per second.
10041 		 */
10042 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10043 			sd->max_newidle_lb_cost =
10044 				(sd->max_newidle_lb_cost * 253) / 256;
10045 			sd->next_decay_max_lb_cost = jiffies + HZ;
10046 			need_decay = 1;
10047 		}
10048 		max_cost += sd->max_newidle_lb_cost;
10049 
10050 		/*
10051 		 * Stop the load balance at this level. There is another
10052 		 * CPU in our sched group which is doing load balancing more
10053 		 * actively.
10054 		 */
10055 		if (!continue_balancing) {
10056 			if (need_decay)
10057 				continue;
10058 			break;
10059 		}
10060 
10061 		interval = get_sd_balance_interval(sd, busy);
10062 
10063 		need_serialize = sd->flags & SD_SERIALIZE;
10064 		if (need_serialize) {
10065 			if (!spin_trylock(&balancing))
10066 				goto out;
10067 		}
10068 
10069 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
10070 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10071 				/*
10072 				 * The LBF_DST_PINNED logic could have changed
10073 				 * env->dst_cpu, so we can't know our idle
10074 				 * state even if we migrated tasks. Update it.
10075 				 */
10076 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10077 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10078 			}
10079 			sd->last_balance = jiffies;
10080 			interval = get_sd_balance_interval(sd, busy);
10081 		}
10082 		if (need_serialize)
10083 			spin_unlock(&balancing);
10084 out:
10085 		if (time_after(next_balance, sd->last_balance + interval)) {
10086 			next_balance = sd->last_balance + interval;
10087 			update_next_balance = 1;
10088 		}
10089 	}
10090 	if (need_decay) {
10091 		/*
10092 		 * Ensure the rq-wide value also decays but keep it at a
10093 		 * reasonable floor to avoid funnies with rq->avg_idle.
10094 		 */
10095 		rq->max_idle_balance_cost =
10096 			max((u64)sysctl_sched_migration_cost, max_cost);
10097 	}
10098 	rcu_read_unlock();
10099 
10100 	/*
10101 	 * next_balance will be updated only when there is a need.
10102 	 * When the cpu is attached to null domain for ex, it will not be
10103 	 * updated.
10104 	 */
10105 	if (likely(update_next_balance))
10106 		rq->next_balance = next_balance;
10107 
10108 }
10109 
10110 static inline int on_null_domain(struct rq *rq)
10111 {
10112 	return unlikely(!rcu_dereference_sched(rq->sd));
10113 }
10114 
10115 #ifdef CONFIG_NO_HZ_COMMON
10116 /*
10117  * idle load balancing details
10118  * - When one of the busy CPUs notice that there may be an idle rebalancing
10119  *   needed, they will kick the idle load balancer, which then does idle
10120  *   load balancing for all the idle CPUs.
10121  * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10122  *   anywhere yet.
10123  */
10124 
10125 static inline int find_new_ilb(void)
10126 {
10127 	int ilb;
10128 
10129 	for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10130 			      housekeeping_cpumask(HK_FLAG_MISC)) {
10131 
10132 		if (ilb == smp_processor_id())
10133 			continue;
10134 
10135 		if (idle_cpu(ilb))
10136 			return ilb;
10137 	}
10138 
10139 	return nr_cpu_ids;
10140 }
10141 
10142 /*
10143  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10144  * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10145  */
10146 static void kick_ilb(unsigned int flags)
10147 {
10148 	int ilb_cpu;
10149 
10150 	/*
10151 	 * Increase nohz.next_balance only when if full ilb is triggered but
10152 	 * not if we only update stats.
10153 	 */
10154 	if (flags & NOHZ_BALANCE_KICK)
10155 		nohz.next_balance = jiffies+1;
10156 
10157 	ilb_cpu = find_new_ilb();
10158 
10159 	if (ilb_cpu >= nr_cpu_ids)
10160 		return;
10161 
10162 	/*
10163 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10164 	 * the first flag owns it; cleared by nohz_csd_func().
10165 	 */
10166 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10167 	if (flags & NOHZ_KICK_MASK)
10168 		return;
10169 
10170 	/*
10171 	 * This way we generate an IPI on the target CPU which
10172 	 * is idle. And the softirq performing nohz idle load balance
10173 	 * will be run before returning from the IPI.
10174 	 */
10175 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10176 }
10177 
10178 /*
10179  * Current decision point for kicking the idle load balancer in the presence
10180  * of idle CPUs in the system.
10181  */
10182 static void nohz_balancer_kick(struct rq *rq)
10183 {
10184 	unsigned long now = jiffies;
10185 	struct sched_domain_shared *sds;
10186 	struct sched_domain *sd;
10187 	int nr_busy, i, cpu = rq->cpu;
10188 	unsigned int flags = 0;
10189 
10190 	if (unlikely(rq->idle_balance))
10191 		return;
10192 
10193 	/*
10194 	 * We may be recently in ticked or tickless idle mode. At the first
10195 	 * busy tick after returning from idle, we will update the busy stats.
10196 	 */
10197 	nohz_balance_exit_idle(rq);
10198 
10199 	/*
10200 	 * None are in tickless mode and hence no need for NOHZ idle load
10201 	 * balancing.
10202 	 */
10203 	if (likely(!atomic_read(&nohz.nr_cpus)))
10204 		return;
10205 
10206 	if (READ_ONCE(nohz.has_blocked) &&
10207 	    time_after(now, READ_ONCE(nohz.next_blocked)))
10208 		flags = NOHZ_STATS_KICK;
10209 
10210 	if (time_before(now, nohz.next_balance))
10211 		goto out;
10212 
10213 	if (rq->nr_running >= 2) {
10214 		flags = NOHZ_KICK_MASK;
10215 		goto out;
10216 	}
10217 
10218 	rcu_read_lock();
10219 
10220 	sd = rcu_dereference(rq->sd);
10221 	if (sd) {
10222 		/*
10223 		 * If there's a CFS task and the current CPU has reduced
10224 		 * capacity; kick the ILB to see if there's a better CPU to run
10225 		 * on.
10226 		 */
10227 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10228 			flags = NOHZ_KICK_MASK;
10229 			goto unlock;
10230 		}
10231 	}
10232 
10233 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10234 	if (sd) {
10235 		/*
10236 		 * When ASYM_PACKING; see if there's a more preferred CPU
10237 		 * currently idle; in which case, kick the ILB to move tasks
10238 		 * around.
10239 		 */
10240 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10241 			if (sched_asym_prefer(i, cpu)) {
10242 				flags = NOHZ_KICK_MASK;
10243 				goto unlock;
10244 			}
10245 		}
10246 	}
10247 
10248 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10249 	if (sd) {
10250 		/*
10251 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10252 		 * to run the misfit task on.
10253 		 */
10254 		if (check_misfit_status(rq, sd)) {
10255 			flags = NOHZ_KICK_MASK;
10256 			goto unlock;
10257 		}
10258 
10259 		/*
10260 		 * For asymmetric systems, we do not want to nicely balance
10261 		 * cache use, instead we want to embrace asymmetry and only
10262 		 * ensure tasks have enough CPU capacity.
10263 		 *
10264 		 * Skip the LLC logic because it's not relevant in that case.
10265 		 */
10266 		goto unlock;
10267 	}
10268 
10269 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10270 	if (sds) {
10271 		/*
10272 		 * If there is an imbalance between LLC domains (IOW we could
10273 		 * increase the overall cache use), we need some less-loaded LLC
10274 		 * domain to pull some load. Likewise, we may need to spread
10275 		 * load within the current LLC domain (e.g. packed SMT cores but
10276 		 * other CPUs are idle). We can't really know from here how busy
10277 		 * the others are - so just get a nohz balance going if it looks
10278 		 * like this LLC domain has tasks we could move.
10279 		 */
10280 		nr_busy = atomic_read(&sds->nr_busy_cpus);
10281 		if (nr_busy > 1) {
10282 			flags = NOHZ_KICK_MASK;
10283 			goto unlock;
10284 		}
10285 	}
10286 unlock:
10287 	rcu_read_unlock();
10288 out:
10289 	if (flags)
10290 		kick_ilb(flags);
10291 }
10292 
10293 static void set_cpu_sd_state_busy(int cpu)
10294 {
10295 	struct sched_domain *sd;
10296 
10297 	rcu_read_lock();
10298 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10299 
10300 	if (!sd || !sd->nohz_idle)
10301 		goto unlock;
10302 	sd->nohz_idle = 0;
10303 
10304 	atomic_inc(&sd->shared->nr_busy_cpus);
10305 unlock:
10306 	rcu_read_unlock();
10307 }
10308 
10309 void nohz_balance_exit_idle(struct rq *rq)
10310 {
10311 	SCHED_WARN_ON(rq != this_rq());
10312 
10313 	if (likely(!rq->nohz_tick_stopped))
10314 		return;
10315 
10316 	rq->nohz_tick_stopped = 0;
10317 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10318 	atomic_dec(&nohz.nr_cpus);
10319 
10320 	set_cpu_sd_state_busy(rq->cpu);
10321 }
10322 
10323 static void set_cpu_sd_state_idle(int cpu)
10324 {
10325 	struct sched_domain *sd;
10326 
10327 	rcu_read_lock();
10328 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10329 
10330 	if (!sd || sd->nohz_idle)
10331 		goto unlock;
10332 	sd->nohz_idle = 1;
10333 
10334 	atomic_dec(&sd->shared->nr_busy_cpus);
10335 unlock:
10336 	rcu_read_unlock();
10337 }
10338 
10339 /*
10340  * This routine will record that the CPU is going idle with tick stopped.
10341  * This info will be used in performing idle load balancing in the future.
10342  */
10343 void nohz_balance_enter_idle(int cpu)
10344 {
10345 	struct rq *rq = cpu_rq(cpu);
10346 
10347 	SCHED_WARN_ON(cpu != smp_processor_id());
10348 
10349 	/* If this CPU is going down, then nothing needs to be done: */
10350 	if (!cpu_active(cpu))
10351 		return;
10352 
10353 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
10354 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10355 		return;
10356 
10357 	/*
10358 	 * Can be set safely without rq->lock held
10359 	 * If a clear happens, it will have evaluated last additions because
10360 	 * rq->lock is held during the check and the clear
10361 	 */
10362 	rq->has_blocked_load = 1;
10363 
10364 	/*
10365 	 * The tick is still stopped but load could have been added in the
10366 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
10367 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10368 	 * of nohz.has_blocked can only happen after checking the new load
10369 	 */
10370 	if (rq->nohz_tick_stopped)
10371 		goto out;
10372 
10373 	/* If we're a completely isolated CPU, we don't play: */
10374 	if (on_null_domain(rq))
10375 		return;
10376 
10377 	rq->nohz_tick_stopped = 1;
10378 
10379 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10380 	atomic_inc(&nohz.nr_cpus);
10381 
10382 	/*
10383 	 * Ensures that if nohz_idle_balance() fails to observe our
10384 	 * @idle_cpus_mask store, it must observe the @has_blocked
10385 	 * store.
10386 	 */
10387 	smp_mb__after_atomic();
10388 
10389 	set_cpu_sd_state_idle(cpu);
10390 
10391 out:
10392 	/*
10393 	 * Each time a cpu enter idle, we assume that it has blocked load and
10394 	 * enable the periodic update of the load of idle cpus
10395 	 */
10396 	WRITE_ONCE(nohz.has_blocked, 1);
10397 }
10398 
10399 static bool update_nohz_stats(struct rq *rq)
10400 {
10401 	unsigned int cpu = rq->cpu;
10402 
10403 	if (!rq->has_blocked_load)
10404 		return false;
10405 
10406 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10407 		return false;
10408 
10409 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10410 		return true;
10411 
10412 	update_blocked_averages(cpu);
10413 
10414 	return rq->has_blocked_load;
10415 }
10416 
10417 /*
10418  * Internal function that runs load balance for all idle cpus. The load balance
10419  * can be a simple update of blocked load or a complete load balance with
10420  * tasks movement depending of flags.
10421  */
10422 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10423 			       enum cpu_idle_type idle)
10424 {
10425 	/* Earliest time when we have to do rebalance again */
10426 	unsigned long now = jiffies;
10427 	unsigned long next_balance = now + 60*HZ;
10428 	bool has_blocked_load = false;
10429 	int update_next_balance = 0;
10430 	int this_cpu = this_rq->cpu;
10431 	int balance_cpu;
10432 	struct rq *rq;
10433 
10434 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10435 
10436 	/*
10437 	 * We assume there will be no idle load after this update and clear
10438 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10439 	 * set the has_blocked flag and trig another update of idle load.
10440 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10441 	 * setting the flag, we are sure to not clear the state and not
10442 	 * check the load of an idle cpu.
10443 	 */
10444 	WRITE_ONCE(nohz.has_blocked, 0);
10445 
10446 	/*
10447 	 * Ensures that if we miss the CPU, we must see the has_blocked
10448 	 * store from nohz_balance_enter_idle().
10449 	 */
10450 	smp_mb();
10451 
10452 	/*
10453 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10454 	 * chance for other idle cpu to pull load.
10455 	 */
10456 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
10457 		if (!idle_cpu(balance_cpu))
10458 			continue;
10459 
10460 		/*
10461 		 * If this CPU gets work to do, stop the load balancing
10462 		 * work being done for other CPUs. Next load
10463 		 * balancing owner will pick it up.
10464 		 */
10465 		if (need_resched()) {
10466 			has_blocked_load = true;
10467 			goto abort;
10468 		}
10469 
10470 		rq = cpu_rq(balance_cpu);
10471 
10472 		has_blocked_load |= update_nohz_stats(rq);
10473 
10474 		/*
10475 		 * If time for next balance is due,
10476 		 * do the balance.
10477 		 */
10478 		if (time_after_eq(jiffies, rq->next_balance)) {
10479 			struct rq_flags rf;
10480 
10481 			rq_lock_irqsave(rq, &rf);
10482 			update_rq_clock(rq);
10483 			rq_unlock_irqrestore(rq, &rf);
10484 
10485 			if (flags & NOHZ_BALANCE_KICK)
10486 				rebalance_domains(rq, CPU_IDLE);
10487 		}
10488 
10489 		if (time_after(next_balance, rq->next_balance)) {
10490 			next_balance = rq->next_balance;
10491 			update_next_balance = 1;
10492 		}
10493 	}
10494 
10495 	/*
10496 	 * next_balance will be updated only when there is a need.
10497 	 * When the CPU is attached to null domain for ex, it will not be
10498 	 * updated.
10499 	 */
10500 	if (likely(update_next_balance))
10501 		nohz.next_balance = next_balance;
10502 
10503 	WRITE_ONCE(nohz.next_blocked,
10504 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10505 
10506 abort:
10507 	/* There is still blocked load, enable periodic update */
10508 	if (has_blocked_load)
10509 		WRITE_ONCE(nohz.has_blocked, 1);
10510 }
10511 
10512 /*
10513  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10514  * rebalancing for all the cpus for whom scheduler ticks are stopped.
10515  */
10516 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10517 {
10518 	unsigned int flags = this_rq->nohz_idle_balance;
10519 
10520 	if (!flags)
10521 		return false;
10522 
10523 	this_rq->nohz_idle_balance = 0;
10524 
10525 	if (idle != CPU_IDLE)
10526 		return false;
10527 
10528 	_nohz_idle_balance(this_rq, flags, idle);
10529 
10530 	return true;
10531 }
10532 
10533 /*
10534  * Check if we need to run the ILB for updating blocked load before entering
10535  * idle state.
10536  */
10537 void nohz_run_idle_balance(int cpu)
10538 {
10539 	unsigned int flags;
10540 
10541 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10542 
10543 	/*
10544 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10545 	 * (ie NOHZ_STATS_KICK set) and will do the same.
10546 	 */
10547 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10548 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10549 }
10550 
10551 static void nohz_newidle_balance(struct rq *this_rq)
10552 {
10553 	int this_cpu = this_rq->cpu;
10554 
10555 	/*
10556 	 * This CPU doesn't want to be disturbed by scheduler
10557 	 * housekeeping
10558 	 */
10559 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10560 		return;
10561 
10562 	/* Will wake up very soon. No time for doing anything else*/
10563 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
10564 		return;
10565 
10566 	/* Don't need to update blocked load of idle CPUs*/
10567 	if (!READ_ONCE(nohz.has_blocked) ||
10568 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10569 		return;
10570 
10571 	/*
10572 	 * Set the need to trigger ILB in order to update blocked load
10573 	 * before entering idle state.
10574 	 */
10575 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
10576 }
10577 
10578 #else /* !CONFIG_NO_HZ_COMMON */
10579 static inline void nohz_balancer_kick(struct rq *rq) { }
10580 
10581 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10582 {
10583 	return false;
10584 }
10585 
10586 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10587 #endif /* CONFIG_NO_HZ_COMMON */
10588 
10589 /*
10590  * newidle_balance is called by schedule() if this_cpu is about to become
10591  * idle. Attempts to pull tasks from other CPUs.
10592  *
10593  * Returns:
10594  *   < 0 - we released the lock and there are !fair tasks present
10595  *     0 - failed, no new tasks
10596  *   > 0 - success, new (fair) tasks present
10597  */
10598 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10599 {
10600 	unsigned long next_balance = jiffies + HZ;
10601 	int this_cpu = this_rq->cpu;
10602 	struct sched_domain *sd;
10603 	int pulled_task = 0;
10604 	u64 curr_cost = 0;
10605 
10606 	update_misfit_status(NULL, this_rq);
10607 	/*
10608 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
10609 	 * measure the duration of idle_balance() as idle time.
10610 	 */
10611 	this_rq->idle_stamp = rq_clock(this_rq);
10612 
10613 	/*
10614 	 * Do not pull tasks towards !active CPUs...
10615 	 */
10616 	if (!cpu_active(this_cpu))
10617 		return 0;
10618 
10619 	/*
10620 	 * This is OK, because current is on_cpu, which avoids it being picked
10621 	 * for load-balance and preemption/IRQs are still disabled avoiding
10622 	 * further scheduler activity on it and we're being very careful to
10623 	 * re-start the picking loop.
10624 	 */
10625 	rq_unpin_lock(this_rq, rf);
10626 
10627 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10628 	    !READ_ONCE(this_rq->rd->overload)) {
10629 
10630 		rcu_read_lock();
10631 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
10632 		if (sd)
10633 			update_next_balance(sd, &next_balance);
10634 		rcu_read_unlock();
10635 
10636 		goto out;
10637 	}
10638 
10639 	raw_spin_unlock(&this_rq->lock);
10640 
10641 	update_blocked_averages(this_cpu);
10642 	rcu_read_lock();
10643 	for_each_domain(this_cpu, sd) {
10644 		int continue_balancing = 1;
10645 		u64 t0, domain_cost;
10646 
10647 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10648 			update_next_balance(sd, &next_balance);
10649 			break;
10650 		}
10651 
10652 		if (sd->flags & SD_BALANCE_NEWIDLE) {
10653 			t0 = sched_clock_cpu(this_cpu);
10654 
10655 			pulled_task = load_balance(this_cpu, this_rq,
10656 						   sd, CPU_NEWLY_IDLE,
10657 						   &continue_balancing);
10658 
10659 			domain_cost = sched_clock_cpu(this_cpu) - t0;
10660 			if (domain_cost > sd->max_newidle_lb_cost)
10661 				sd->max_newidle_lb_cost = domain_cost;
10662 
10663 			curr_cost += domain_cost;
10664 		}
10665 
10666 		update_next_balance(sd, &next_balance);
10667 
10668 		/*
10669 		 * Stop searching for tasks to pull if there are
10670 		 * now runnable tasks on this rq.
10671 		 */
10672 		if (pulled_task || this_rq->nr_running > 0)
10673 			break;
10674 	}
10675 	rcu_read_unlock();
10676 
10677 	raw_spin_lock(&this_rq->lock);
10678 
10679 	if (curr_cost > this_rq->max_idle_balance_cost)
10680 		this_rq->max_idle_balance_cost = curr_cost;
10681 
10682 	/*
10683 	 * While browsing the domains, we released the rq lock, a task could
10684 	 * have been enqueued in the meantime. Since we're not going idle,
10685 	 * pretend we pulled a task.
10686 	 */
10687 	if (this_rq->cfs.h_nr_running && !pulled_task)
10688 		pulled_task = 1;
10689 
10690 	/* Is there a task of a high priority class? */
10691 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10692 		pulled_task = -1;
10693 
10694 out:
10695 	/* Move the next balance forward */
10696 	if (time_after(this_rq->next_balance, next_balance))
10697 		this_rq->next_balance = next_balance;
10698 
10699 	if (pulled_task)
10700 		this_rq->idle_stamp = 0;
10701 	else
10702 		nohz_newidle_balance(this_rq);
10703 
10704 	rq_repin_lock(this_rq, rf);
10705 
10706 	return pulled_task;
10707 }
10708 
10709 /*
10710  * run_rebalance_domains is triggered when needed from the scheduler tick.
10711  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10712  */
10713 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10714 {
10715 	struct rq *this_rq = this_rq();
10716 	enum cpu_idle_type idle = this_rq->idle_balance ?
10717 						CPU_IDLE : CPU_NOT_IDLE;
10718 
10719 	/*
10720 	 * If this CPU has a pending nohz_balance_kick, then do the
10721 	 * balancing on behalf of the other idle CPUs whose ticks are
10722 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10723 	 * give the idle CPUs a chance to load balance. Else we may
10724 	 * load balance only within the local sched_domain hierarchy
10725 	 * and abort nohz_idle_balance altogether if we pull some load.
10726 	 */
10727 	if (nohz_idle_balance(this_rq, idle))
10728 		return;
10729 
10730 	/* normal load balance */
10731 	update_blocked_averages(this_rq->cpu);
10732 	rebalance_domains(this_rq, idle);
10733 }
10734 
10735 /*
10736  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10737  */
10738 void trigger_load_balance(struct rq *rq)
10739 {
10740 	/*
10741 	 * Don't need to rebalance while attached to NULL domain or
10742 	 * runqueue CPU is not active
10743 	 */
10744 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
10745 		return;
10746 
10747 	if (time_after_eq(jiffies, rq->next_balance))
10748 		raise_softirq(SCHED_SOFTIRQ);
10749 
10750 	nohz_balancer_kick(rq);
10751 }
10752 
10753 static void rq_online_fair(struct rq *rq)
10754 {
10755 	update_sysctl();
10756 
10757 	update_runtime_enabled(rq);
10758 }
10759 
10760 static void rq_offline_fair(struct rq *rq)
10761 {
10762 	update_sysctl();
10763 
10764 	/* Ensure any throttled groups are reachable by pick_next_task */
10765 	unthrottle_offline_cfs_rqs(rq);
10766 }
10767 
10768 #endif /* CONFIG_SMP */
10769 
10770 /*
10771  * scheduler tick hitting a task of our scheduling class.
10772  *
10773  * NOTE: This function can be called remotely by the tick offload that
10774  * goes along full dynticks. Therefore no local assumption can be made
10775  * and everything must be accessed through the @rq and @curr passed in
10776  * parameters.
10777  */
10778 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10779 {
10780 	struct cfs_rq *cfs_rq;
10781 	struct sched_entity *se = &curr->se;
10782 
10783 	for_each_sched_entity(se) {
10784 		cfs_rq = cfs_rq_of(se);
10785 		entity_tick(cfs_rq, se, queued);
10786 	}
10787 
10788 	if (static_branch_unlikely(&sched_numa_balancing))
10789 		task_tick_numa(rq, curr);
10790 
10791 	update_misfit_status(curr, rq);
10792 	update_overutilized_status(task_rq(curr));
10793 }
10794 
10795 /*
10796  * called on fork with the child task as argument from the parent's context
10797  *  - child not yet on the tasklist
10798  *  - preemption disabled
10799  */
10800 static void task_fork_fair(struct task_struct *p)
10801 {
10802 	struct cfs_rq *cfs_rq;
10803 	struct sched_entity *se = &p->se, *curr;
10804 	struct rq *rq = this_rq();
10805 	struct rq_flags rf;
10806 
10807 	rq_lock(rq, &rf);
10808 	update_rq_clock(rq);
10809 
10810 	cfs_rq = task_cfs_rq(current);
10811 	curr = cfs_rq->curr;
10812 	if (curr) {
10813 		update_curr(cfs_rq);
10814 		se->vruntime = curr->vruntime;
10815 	}
10816 	place_entity(cfs_rq, se, 1);
10817 
10818 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10819 		/*
10820 		 * Upon rescheduling, sched_class::put_prev_task() will place
10821 		 * 'current' within the tree based on its new key value.
10822 		 */
10823 		swap(curr->vruntime, se->vruntime);
10824 		resched_curr(rq);
10825 	}
10826 
10827 	se->vruntime -= cfs_rq->min_vruntime;
10828 	rq_unlock(rq, &rf);
10829 }
10830 
10831 /*
10832  * Priority of the task has changed. Check to see if we preempt
10833  * the current task.
10834  */
10835 static void
10836 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10837 {
10838 	if (!task_on_rq_queued(p))
10839 		return;
10840 
10841 	if (rq->cfs.nr_running == 1)
10842 		return;
10843 
10844 	/*
10845 	 * Reschedule if we are currently running on this runqueue and
10846 	 * our priority decreased, or if we are not currently running on
10847 	 * this runqueue and our priority is higher than the current's
10848 	 */
10849 	if (task_current(rq, p)) {
10850 		if (p->prio > oldprio)
10851 			resched_curr(rq);
10852 	} else
10853 		check_preempt_curr(rq, p, 0);
10854 }
10855 
10856 static inline bool vruntime_normalized(struct task_struct *p)
10857 {
10858 	struct sched_entity *se = &p->se;
10859 
10860 	/*
10861 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10862 	 * the dequeue_entity(.flags=0) will already have normalized the
10863 	 * vruntime.
10864 	 */
10865 	if (p->on_rq)
10866 		return true;
10867 
10868 	/*
10869 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
10870 	 * But there are some cases where it has already been normalized:
10871 	 *
10872 	 * - A forked child which is waiting for being woken up by
10873 	 *   wake_up_new_task().
10874 	 * - A task which has been woken up by try_to_wake_up() and
10875 	 *   waiting for actually being woken up by sched_ttwu_pending().
10876 	 */
10877 	if (!se->sum_exec_runtime ||
10878 	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
10879 		return true;
10880 
10881 	return false;
10882 }
10883 
10884 #ifdef CONFIG_FAIR_GROUP_SCHED
10885 /*
10886  * Propagate the changes of the sched_entity across the tg tree to make it
10887  * visible to the root
10888  */
10889 static void propagate_entity_cfs_rq(struct sched_entity *se)
10890 {
10891 	struct cfs_rq *cfs_rq;
10892 
10893 	list_add_leaf_cfs_rq(cfs_rq_of(se));
10894 
10895 	/* Start to propagate at parent */
10896 	se = se->parent;
10897 
10898 	for_each_sched_entity(se) {
10899 		cfs_rq = cfs_rq_of(se);
10900 
10901 		if (!cfs_rq_throttled(cfs_rq)){
10902 			update_load_avg(cfs_rq, se, UPDATE_TG);
10903 			list_add_leaf_cfs_rq(cfs_rq);
10904 			continue;
10905 		}
10906 
10907 		if (list_add_leaf_cfs_rq(cfs_rq))
10908 			break;
10909 	}
10910 }
10911 #else
10912 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10913 #endif
10914 
10915 static void detach_entity_cfs_rq(struct sched_entity *se)
10916 {
10917 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10918 
10919 	/* Catch up with the cfs_rq and remove our load when we leave */
10920 	update_load_avg(cfs_rq, se, 0);
10921 	detach_entity_load_avg(cfs_rq, se);
10922 	update_tg_load_avg(cfs_rq);
10923 	propagate_entity_cfs_rq(se);
10924 }
10925 
10926 static void attach_entity_cfs_rq(struct sched_entity *se)
10927 {
10928 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10929 
10930 #ifdef CONFIG_FAIR_GROUP_SCHED
10931 	/*
10932 	 * Since the real-depth could have been changed (only FAIR
10933 	 * class maintain depth value), reset depth properly.
10934 	 */
10935 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10936 #endif
10937 
10938 	/* Synchronize entity with its cfs_rq */
10939 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10940 	attach_entity_load_avg(cfs_rq, se);
10941 	update_tg_load_avg(cfs_rq);
10942 	propagate_entity_cfs_rq(se);
10943 }
10944 
10945 static void detach_task_cfs_rq(struct task_struct *p)
10946 {
10947 	struct sched_entity *se = &p->se;
10948 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10949 
10950 	if (!vruntime_normalized(p)) {
10951 		/*
10952 		 * Fix up our vruntime so that the current sleep doesn't
10953 		 * cause 'unlimited' sleep bonus.
10954 		 */
10955 		place_entity(cfs_rq, se, 0);
10956 		se->vruntime -= cfs_rq->min_vruntime;
10957 	}
10958 
10959 	detach_entity_cfs_rq(se);
10960 }
10961 
10962 static void attach_task_cfs_rq(struct task_struct *p)
10963 {
10964 	struct sched_entity *se = &p->se;
10965 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10966 
10967 	attach_entity_cfs_rq(se);
10968 
10969 	if (!vruntime_normalized(p))
10970 		se->vruntime += cfs_rq->min_vruntime;
10971 }
10972 
10973 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10974 {
10975 	detach_task_cfs_rq(p);
10976 }
10977 
10978 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10979 {
10980 	attach_task_cfs_rq(p);
10981 
10982 	if (task_on_rq_queued(p)) {
10983 		/*
10984 		 * We were most likely switched from sched_rt, so
10985 		 * kick off the schedule if running, otherwise just see
10986 		 * if we can still preempt the current task.
10987 		 */
10988 		if (task_current(rq, p))
10989 			resched_curr(rq);
10990 		else
10991 			check_preempt_curr(rq, p, 0);
10992 	}
10993 }
10994 
10995 /* Account for a task changing its policy or group.
10996  *
10997  * This routine is mostly called to set cfs_rq->curr field when a task
10998  * migrates between groups/classes.
10999  */
11000 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11001 {
11002 	struct sched_entity *se = &p->se;
11003 
11004 #ifdef CONFIG_SMP
11005 	if (task_on_rq_queued(p)) {
11006 		/*
11007 		 * Move the next running task to the front of the list, so our
11008 		 * cfs_tasks list becomes MRU one.
11009 		 */
11010 		list_move(&se->group_node, &rq->cfs_tasks);
11011 	}
11012 #endif
11013 
11014 	for_each_sched_entity(se) {
11015 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11016 
11017 		set_next_entity(cfs_rq, se);
11018 		/* ensure bandwidth has been allocated on our new cfs_rq */
11019 		account_cfs_rq_runtime(cfs_rq, 0);
11020 	}
11021 }
11022 
11023 void init_cfs_rq(struct cfs_rq *cfs_rq)
11024 {
11025 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11026 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11027 #ifndef CONFIG_64BIT
11028 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11029 #endif
11030 #ifdef CONFIG_SMP
11031 	raw_spin_lock_init(&cfs_rq->removed.lock);
11032 #endif
11033 }
11034 
11035 #ifdef CONFIG_FAIR_GROUP_SCHED
11036 static void task_set_group_fair(struct task_struct *p)
11037 {
11038 	struct sched_entity *se = &p->se;
11039 
11040 	set_task_rq(p, task_cpu(p));
11041 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11042 }
11043 
11044 static void task_move_group_fair(struct task_struct *p)
11045 {
11046 	detach_task_cfs_rq(p);
11047 	set_task_rq(p, task_cpu(p));
11048 
11049 #ifdef CONFIG_SMP
11050 	/* Tell se's cfs_rq has been changed -- migrated */
11051 	p->se.avg.last_update_time = 0;
11052 #endif
11053 	attach_task_cfs_rq(p);
11054 }
11055 
11056 static void task_change_group_fair(struct task_struct *p, int type)
11057 {
11058 	switch (type) {
11059 	case TASK_SET_GROUP:
11060 		task_set_group_fair(p);
11061 		break;
11062 
11063 	case TASK_MOVE_GROUP:
11064 		task_move_group_fair(p);
11065 		break;
11066 	}
11067 }
11068 
11069 void free_fair_sched_group(struct task_group *tg)
11070 {
11071 	int i;
11072 
11073 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11074 
11075 	for_each_possible_cpu(i) {
11076 		if (tg->cfs_rq)
11077 			kfree(tg->cfs_rq[i]);
11078 		if (tg->se)
11079 			kfree(tg->se[i]);
11080 	}
11081 
11082 	kfree(tg->cfs_rq);
11083 	kfree(tg->se);
11084 }
11085 
11086 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11087 {
11088 	struct sched_entity *se;
11089 	struct cfs_rq *cfs_rq;
11090 	int i;
11091 
11092 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11093 	if (!tg->cfs_rq)
11094 		goto err;
11095 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11096 	if (!tg->se)
11097 		goto err;
11098 
11099 	tg->shares = NICE_0_LOAD;
11100 
11101 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11102 
11103 	for_each_possible_cpu(i) {
11104 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11105 				      GFP_KERNEL, cpu_to_node(i));
11106 		if (!cfs_rq)
11107 			goto err;
11108 
11109 		se = kzalloc_node(sizeof(struct sched_entity),
11110 				  GFP_KERNEL, cpu_to_node(i));
11111 		if (!se)
11112 			goto err_free_rq;
11113 
11114 		init_cfs_rq(cfs_rq);
11115 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11116 		init_entity_runnable_average(se);
11117 	}
11118 
11119 	return 1;
11120 
11121 err_free_rq:
11122 	kfree(cfs_rq);
11123 err:
11124 	return 0;
11125 }
11126 
11127 void online_fair_sched_group(struct task_group *tg)
11128 {
11129 	struct sched_entity *se;
11130 	struct rq_flags rf;
11131 	struct rq *rq;
11132 	int i;
11133 
11134 	for_each_possible_cpu(i) {
11135 		rq = cpu_rq(i);
11136 		se = tg->se[i];
11137 		rq_lock_irq(rq, &rf);
11138 		update_rq_clock(rq);
11139 		attach_entity_cfs_rq(se);
11140 		sync_throttle(tg, i);
11141 		rq_unlock_irq(rq, &rf);
11142 	}
11143 }
11144 
11145 void unregister_fair_sched_group(struct task_group *tg)
11146 {
11147 	unsigned long flags;
11148 	struct rq *rq;
11149 	int cpu;
11150 
11151 	for_each_possible_cpu(cpu) {
11152 		if (tg->se[cpu])
11153 			remove_entity_load_avg(tg->se[cpu]);
11154 
11155 		/*
11156 		 * Only empty task groups can be destroyed; so we can speculatively
11157 		 * check on_list without danger of it being re-added.
11158 		 */
11159 		if (!tg->cfs_rq[cpu]->on_list)
11160 			continue;
11161 
11162 		rq = cpu_rq(cpu);
11163 
11164 		raw_spin_lock_irqsave(&rq->lock, flags);
11165 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11166 		raw_spin_unlock_irqrestore(&rq->lock, flags);
11167 	}
11168 }
11169 
11170 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11171 			struct sched_entity *se, int cpu,
11172 			struct sched_entity *parent)
11173 {
11174 	struct rq *rq = cpu_rq(cpu);
11175 
11176 	cfs_rq->tg = tg;
11177 	cfs_rq->rq = rq;
11178 	init_cfs_rq_runtime(cfs_rq);
11179 
11180 	tg->cfs_rq[cpu] = cfs_rq;
11181 	tg->se[cpu] = se;
11182 
11183 	/* se could be NULL for root_task_group */
11184 	if (!se)
11185 		return;
11186 
11187 	if (!parent) {
11188 		se->cfs_rq = &rq->cfs;
11189 		se->depth = 0;
11190 	} else {
11191 		se->cfs_rq = parent->my_q;
11192 		se->depth = parent->depth + 1;
11193 	}
11194 
11195 	se->my_q = cfs_rq;
11196 	/* guarantee group entities always have weight */
11197 	update_load_set(&se->load, NICE_0_LOAD);
11198 	se->parent = parent;
11199 }
11200 
11201 static DEFINE_MUTEX(shares_mutex);
11202 
11203 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11204 {
11205 	int i;
11206 
11207 	/*
11208 	 * We can't change the weight of the root cgroup.
11209 	 */
11210 	if (!tg->se[0])
11211 		return -EINVAL;
11212 
11213 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11214 
11215 	mutex_lock(&shares_mutex);
11216 	if (tg->shares == shares)
11217 		goto done;
11218 
11219 	tg->shares = shares;
11220 	for_each_possible_cpu(i) {
11221 		struct rq *rq = cpu_rq(i);
11222 		struct sched_entity *se = tg->se[i];
11223 		struct rq_flags rf;
11224 
11225 		/* Propagate contribution to hierarchy */
11226 		rq_lock_irqsave(rq, &rf);
11227 		update_rq_clock(rq);
11228 		for_each_sched_entity(se) {
11229 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11230 			update_cfs_group(se);
11231 		}
11232 		rq_unlock_irqrestore(rq, &rf);
11233 	}
11234 
11235 done:
11236 	mutex_unlock(&shares_mutex);
11237 	return 0;
11238 }
11239 #else /* CONFIG_FAIR_GROUP_SCHED */
11240 
11241 void free_fair_sched_group(struct task_group *tg) { }
11242 
11243 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11244 {
11245 	return 1;
11246 }
11247 
11248 void online_fair_sched_group(struct task_group *tg) { }
11249 
11250 void unregister_fair_sched_group(struct task_group *tg) { }
11251 
11252 #endif /* CONFIG_FAIR_GROUP_SCHED */
11253 
11254 
11255 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11256 {
11257 	struct sched_entity *se = &task->se;
11258 	unsigned int rr_interval = 0;
11259 
11260 	/*
11261 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11262 	 * idle runqueue:
11263 	 */
11264 	if (rq->cfs.load.weight)
11265 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11266 
11267 	return rr_interval;
11268 }
11269 
11270 /*
11271  * All the scheduling class methods:
11272  */
11273 DEFINE_SCHED_CLASS(fair) = {
11274 
11275 	.enqueue_task		= enqueue_task_fair,
11276 	.dequeue_task		= dequeue_task_fair,
11277 	.yield_task		= yield_task_fair,
11278 	.yield_to_task		= yield_to_task_fair,
11279 
11280 	.check_preempt_curr	= check_preempt_wakeup,
11281 
11282 	.pick_next_task		= __pick_next_task_fair,
11283 	.put_prev_task		= put_prev_task_fair,
11284 	.set_next_task          = set_next_task_fair,
11285 
11286 #ifdef CONFIG_SMP
11287 	.balance		= balance_fair,
11288 	.select_task_rq		= select_task_rq_fair,
11289 	.migrate_task_rq	= migrate_task_rq_fair,
11290 
11291 	.rq_online		= rq_online_fair,
11292 	.rq_offline		= rq_offline_fair,
11293 
11294 	.task_dead		= task_dead_fair,
11295 	.set_cpus_allowed	= set_cpus_allowed_common,
11296 #endif
11297 
11298 	.task_tick		= task_tick_fair,
11299 	.task_fork		= task_fork_fair,
11300 
11301 	.prio_changed		= prio_changed_fair,
11302 	.switched_from		= switched_from_fair,
11303 	.switched_to		= switched_to_fair,
11304 
11305 	.get_rr_interval	= get_rr_interval_fair,
11306 
11307 	.update_curr		= update_curr_fair,
11308 
11309 #ifdef CONFIG_FAIR_GROUP_SCHED
11310 	.task_change_group	= task_change_group_fair,
11311 #endif
11312 
11313 #ifdef CONFIG_UCLAMP_TASK
11314 	.uclamp_enabled		= 1,
11315 #endif
11316 };
11317 
11318 #ifdef CONFIG_SCHED_DEBUG
11319 void print_cfs_stats(struct seq_file *m, int cpu)
11320 {
11321 	struct cfs_rq *cfs_rq, *pos;
11322 
11323 	rcu_read_lock();
11324 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11325 		print_cfs_rq(m, cpu, cfs_rq);
11326 	rcu_read_unlock();
11327 }
11328 
11329 #ifdef CONFIG_NUMA_BALANCING
11330 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11331 {
11332 	int node;
11333 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11334 	struct numa_group *ng;
11335 
11336 	rcu_read_lock();
11337 	ng = rcu_dereference(p->numa_group);
11338 	for_each_online_node(node) {
11339 		if (p->numa_faults) {
11340 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11341 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11342 		}
11343 		if (ng) {
11344 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11345 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11346 		}
11347 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11348 	}
11349 	rcu_read_unlock();
11350 }
11351 #endif /* CONFIG_NUMA_BALANCING */
11352 #endif /* CONFIG_SCHED_DEBUG */
11353 
11354 __init void init_sched_fair_class(void)
11355 {
11356 #ifdef CONFIG_SMP
11357 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11358 
11359 #ifdef CONFIG_NO_HZ_COMMON
11360 	nohz.next_balance = jiffies;
11361 	nohz.next_blocked = jiffies;
11362 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11363 #endif
11364 #endif /* SMP */
11365 
11366 }
11367 
11368 /*
11369  * Helper functions to facilitate extracting info from tracepoints.
11370  */
11371 
11372 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11373 {
11374 #ifdef CONFIG_SMP
11375 	return cfs_rq ? &cfs_rq->avg : NULL;
11376 #else
11377 	return NULL;
11378 #endif
11379 }
11380 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11381 
11382 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11383 {
11384 	if (!cfs_rq) {
11385 		if (str)
11386 			strlcpy(str, "(null)", len);
11387 		else
11388 			return NULL;
11389 	}
11390 
11391 	cfs_rq_tg_path(cfs_rq, str, len);
11392 	return str;
11393 }
11394 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11395 
11396 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11397 {
11398 	return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11399 }
11400 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11401 
11402 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11403 {
11404 #ifdef CONFIG_SMP
11405 	return rq ? &rq->avg_rt : NULL;
11406 #else
11407 	return NULL;
11408 #endif
11409 }
11410 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11411 
11412 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11413 {
11414 #ifdef CONFIG_SMP
11415 	return rq ? &rq->avg_dl : NULL;
11416 #else
11417 	return NULL;
11418 #endif
11419 }
11420 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11421 
11422 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11423 {
11424 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11425 	return rq ? &rq->avg_irq : NULL;
11426 #else
11427 	return NULL;
11428 #endif
11429 }
11430 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11431 
11432 int sched_trace_rq_cpu(struct rq *rq)
11433 {
11434 	return rq ? cpu_of(rq) : -1;
11435 }
11436 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11437 
11438 int sched_trace_rq_cpu_capacity(struct rq *rq)
11439 {
11440 	return rq ?
11441 #ifdef CONFIG_SMP
11442 		rq->cpu_capacity
11443 #else
11444 		SCHED_CAPACITY_SCALE
11445 #endif
11446 		: -1;
11447 }
11448 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11449 
11450 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11451 {
11452 #ifdef CONFIG_SMP
11453 	return rd ? rd->span : NULL;
11454 #else
11455 	return NULL;
11456 #endif
11457 }
11458 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11459 
11460 int sched_trace_rq_nr_running(struct rq *rq)
11461 {
11462         return rq ? rq->nr_running : -1;
11463 }
11464 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);
11465