xref: /openbmc/linux/kernel/sched/fair.c (revision ba61bb17)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 #include <trace/events/sched.h>
26 
27 /*
28  * Targeted preemption latency for CPU-bound tasks:
29  *
30  * NOTE: this latency value is not the same as the concept of
31  * 'timeslice length' - timeslices in CFS are of variable length
32  * and have no persistent notion like in traditional, time-slice
33  * based scheduling concepts.
34  *
35  * (to see the precise effective timeslice length of your workload,
36  *  run vmstat and monitor the context-switches (cs) field)
37  *
38  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39  */
40 unsigned int sysctl_sched_latency			= 6000000ULL;
41 unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
42 
43 /*
44  * The initial- and re-scaling of tunables is configurable
45  *
46  * Options are:
47  *
48  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
49  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51  *
52  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53  */
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55 
56 /*
57  * Minimal preemption granularity for CPU-bound tasks:
58  *
59  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60  */
61 unsigned int sysctl_sched_min_granularity		= 750000ULL;
62 unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 
64 /*
65  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66  */
67 static unsigned int sched_nr_latency = 8;
68 
69 /*
70  * After fork, child runs first. If set to 0 (default) then
71  * parent will (try to) run first.
72  */
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
74 
75 /*
76  * SCHED_OTHER wake-up granularity.
77  *
78  * This option delays the preemption effects of decoupled workloads
79  * and reduces their over-scheduling. Synchronous workloads will still
80  * have immediate wakeup/sleep latencies.
81  *
82  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83  */
84 unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
85 unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 #ifdef CONFIG_SMP
90 /*
91  * For asym packing, by default the lower numbered CPU has higher priority.
92  */
93 int __weak arch_asym_cpu_priority(int cpu)
94 {
95 	return -cpu;
96 }
97 #endif
98 
99 #ifdef CONFIG_CFS_BANDWIDTH
100 /*
101  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102  * each time a cfs_rq requests quota.
103  *
104  * Note: in the case that the slice exceeds the runtime remaining (either due
105  * to consumption or the quota being specified to be smaller than the slice)
106  * we will always only issue the remaining available time.
107  *
108  * (default: 5 msec, units: microseconds)
109  */
110 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
111 #endif
112 
113 /*
114  * The margin used when comparing utilization with CPU capacity:
115  * util * margin < capacity * 1024
116  *
117  * (default: ~20%)
118  */
119 unsigned int capacity_margin				= 1280;
120 
121 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 {
123 	lw->weight += inc;
124 	lw->inv_weight = 0;
125 }
126 
127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 {
129 	lw->weight -= dec;
130 	lw->inv_weight = 0;
131 }
132 
133 static inline void update_load_set(struct load_weight *lw, unsigned long w)
134 {
135 	lw->weight = w;
136 	lw->inv_weight = 0;
137 }
138 
139 /*
140  * Increase the granularity value when there are more CPUs,
141  * because with more CPUs the 'effective latency' as visible
142  * to users decreases. But the relationship is not linear,
143  * so pick a second-best guess by going with the log2 of the
144  * number of CPUs.
145  *
146  * This idea comes from the SD scheduler of Con Kolivas:
147  */
148 static unsigned int get_update_sysctl_factor(void)
149 {
150 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 	unsigned int factor;
152 
153 	switch (sysctl_sched_tunable_scaling) {
154 	case SCHED_TUNABLESCALING_NONE:
155 		factor = 1;
156 		break;
157 	case SCHED_TUNABLESCALING_LINEAR:
158 		factor = cpus;
159 		break;
160 	case SCHED_TUNABLESCALING_LOG:
161 	default:
162 		factor = 1 + ilog2(cpus);
163 		break;
164 	}
165 
166 	return factor;
167 }
168 
169 static void update_sysctl(void)
170 {
171 	unsigned int factor = get_update_sysctl_factor();
172 
173 #define SET_SYSCTL(name) \
174 	(sysctl_##name = (factor) * normalized_sysctl_##name)
175 	SET_SYSCTL(sched_min_granularity);
176 	SET_SYSCTL(sched_latency);
177 	SET_SYSCTL(sched_wakeup_granularity);
178 #undef SET_SYSCTL
179 }
180 
181 void sched_init_granularity(void)
182 {
183 	update_sysctl();
184 }
185 
186 #define WMULT_CONST	(~0U)
187 #define WMULT_SHIFT	32
188 
189 static void __update_inv_weight(struct load_weight *lw)
190 {
191 	unsigned long w;
192 
193 	if (likely(lw->inv_weight))
194 		return;
195 
196 	w = scale_load_down(lw->weight);
197 
198 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 		lw->inv_weight = 1;
200 	else if (unlikely(!w))
201 		lw->inv_weight = WMULT_CONST;
202 	else
203 		lw->inv_weight = WMULT_CONST / w;
204 }
205 
206 /*
207  * delta_exec * weight / lw.weight
208  *   OR
209  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210  *
211  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212  * we're guaranteed shift stays positive because inv_weight is guaranteed to
213  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214  *
215  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216  * weight/lw.weight <= 1, and therefore our shift will also be positive.
217  */
218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219 {
220 	u64 fact = scale_load_down(weight);
221 	int shift = WMULT_SHIFT;
222 
223 	__update_inv_weight(lw);
224 
225 	if (unlikely(fact >> 32)) {
226 		while (fact >> 32) {
227 			fact >>= 1;
228 			shift--;
229 		}
230 	}
231 
232 	/* hint to use a 32x32->64 mul */
233 	fact = (u64)(u32)fact * lw->inv_weight;
234 
235 	while (fact >> 32) {
236 		fact >>= 1;
237 		shift--;
238 	}
239 
240 	return mul_u64_u32_shr(delta_exec, fact, shift);
241 }
242 
243 
244 const struct sched_class fair_sched_class;
245 
246 /**************************************************************
247  * CFS operations on generic schedulable entities:
248  */
249 
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 
252 /* cpu runqueue to which this cfs_rq is attached */
253 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
254 {
255 	return cfs_rq->rq;
256 }
257 
258 /* An entity is a task if it doesn't "own" a runqueue */
259 #define entity_is_task(se)	(!se->my_q)
260 
261 static inline struct task_struct *task_of(struct sched_entity *se)
262 {
263 	SCHED_WARN_ON(!entity_is_task(se));
264 	return container_of(se, struct task_struct, se);
265 }
266 
267 /* Walk up scheduling entities hierarchy */
268 #define for_each_sched_entity(se) \
269 		for (; se; se = se->parent)
270 
271 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
272 {
273 	return p->se.cfs_rq;
274 }
275 
276 /* runqueue on which this entity is (to be) queued */
277 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
278 {
279 	return se->cfs_rq;
280 }
281 
282 /* runqueue "owned" by this group */
283 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
284 {
285 	return grp->my_q;
286 }
287 
288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289 {
290 	if (!cfs_rq->on_list) {
291 		struct rq *rq = rq_of(cfs_rq);
292 		int cpu = cpu_of(rq);
293 		/*
294 		 * Ensure we either appear before our parent (if already
295 		 * enqueued) or force our parent to appear after us when it is
296 		 * enqueued. The fact that we always enqueue bottom-up
297 		 * reduces this to two cases and a special case for the root
298 		 * cfs_rq. Furthermore, it also means that we will always reset
299 		 * tmp_alone_branch either when the branch is connected
300 		 * to a tree or when we reach the beg of the tree
301 		 */
302 		if (cfs_rq->tg->parent &&
303 		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
304 			/*
305 			 * If parent is already on the list, we add the child
306 			 * just before. Thanks to circular linked property of
307 			 * the list, this means to put the child at the tail
308 			 * of the list that starts by parent.
309 			 */
310 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
311 				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
312 			/*
313 			 * The branch is now connected to its tree so we can
314 			 * reset tmp_alone_branch to the beginning of the
315 			 * list.
316 			 */
317 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
318 		} else if (!cfs_rq->tg->parent) {
319 			/*
320 			 * cfs rq without parent should be put
321 			 * at the tail of the list.
322 			 */
323 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 				&rq->leaf_cfs_rq_list);
325 			/*
326 			 * We have reach the beg of a tree so we can reset
327 			 * tmp_alone_branch to the beginning of the list.
328 			 */
329 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
330 		} else {
331 			/*
332 			 * The parent has not already been added so we want to
333 			 * make sure that it will be put after us.
334 			 * tmp_alone_branch points to the beg of the branch
335 			 * where we will add parent.
336 			 */
337 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
338 				rq->tmp_alone_branch);
339 			/*
340 			 * update tmp_alone_branch to points to the new beg
341 			 * of the branch
342 			 */
343 			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
344 		}
345 
346 		cfs_rq->on_list = 1;
347 	}
348 }
349 
350 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
351 {
352 	if (cfs_rq->on_list) {
353 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
354 		cfs_rq->on_list = 0;
355 	}
356 }
357 
358 /* Iterate thr' all leaf cfs_rq's on a runqueue */
359 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
360 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
361 				 leaf_cfs_rq_list)
362 
363 /* Do the two (enqueued) entities belong to the same group ? */
364 static inline struct cfs_rq *
365 is_same_group(struct sched_entity *se, struct sched_entity *pse)
366 {
367 	if (se->cfs_rq == pse->cfs_rq)
368 		return se->cfs_rq;
369 
370 	return NULL;
371 }
372 
373 static inline struct sched_entity *parent_entity(struct sched_entity *se)
374 {
375 	return se->parent;
376 }
377 
378 static void
379 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
380 {
381 	int se_depth, pse_depth;
382 
383 	/*
384 	 * preemption test can be made between sibling entities who are in the
385 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
386 	 * both tasks until we find their ancestors who are siblings of common
387 	 * parent.
388 	 */
389 
390 	/* First walk up until both entities are at same depth */
391 	se_depth = (*se)->depth;
392 	pse_depth = (*pse)->depth;
393 
394 	while (se_depth > pse_depth) {
395 		se_depth--;
396 		*se = parent_entity(*se);
397 	}
398 
399 	while (pse_depth > se_depth) {
400 		pse_depth--;
401 		*pse = parent_entity(*pse);
402 	}
403 
404 	while (!is_same_group(*se, *pse)) {
405 		*se = parent_entity(*se);
406 		*pse = parent_entity(*pse);
407 	}
408 }
409 
410 #else	/* !CONFIG_FAIR_GROUP_SCHED */
411 
412 static inline struct task_struct *task_of(struct sched_entity *se)
413 {
414 	return container_of(se, struct task_struct, se);
415 }
416 
417 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
418 {
419 	return container_of(cfs_rq, struct rq, cfs);
420 }
421 
422 #define entity_is_task(se)	1
423 
424 #define for_each_sched_entity(se) \
425 		for (; se; se = NULL)
426 
427 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
428 {
429 	return &task_rq(p)->cfs;
430 }
431 
432 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
433 {
434 	struct task_struct *p = task_of(se);
435 	struct rq *rq = task_rq(p);
436 
437 	return &rq->cfs;
438 }
439 
440 /* runqueue "owned" by this group */
441 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
442 {
443 	return NULL;
444 }
445 
446 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
447 {
448 }
449 
450 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
451 {
452 }
453 
454 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
455 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
456 
457 static inline struct sched_entity *parent_entity(struct sched_entity *se)
458 {
459 	return NULL;
460 }
461 
462 static inline void
463 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
464 {
465 }
466 
467 #endif	/* CONFIG_FAIR_GROUP_SCHED */
468 
469 static __always_inline
470 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
471 
472 /**************************************************************
473  * Scheduling class tree data structure manipulation methods:
474  */
475 
476 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
477 {
478 	s64 delta = (s64)(vruntime - max_vruntime);
479 	if (delta > 0)
480 		max_vruntime = vruntime;
481 
482 	return max_vruntime;
483 }
484 
485 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
486 {
487 	s64 delta = (s64)(vruntime - min_vruntime);
488 	if (delta < 0)
489 		min_vruntime = vruntime;
490 
491 	return min_vruntime;
492 }
493 
494 static inline int entity_before(struct sched_entity *a,
495 				struct sched_entity *b)
496 {
497 	return (s64)(a->vruntime - b->vruntime) < 0;
498 }
499 
500 static void update_min_vruntime(struct cfs_rq *cfs_rq)
501 {
502 	struct sched_entity *curr = cfs_rq->curr;
503 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
504 
505 	u64 vruntime = cfs_rq->min_vruntime;
506 
507 	if (curr) {
508 		if (curr->on_rq)
509 			vruntime = curr->vruntime;
510 		else
511 			curr = NULL;
512 	}
513 
514 	if (leftmost) { /* non-empty tree */
515 		struct sched_entity *se;
516 		se = rb_entry(leftmost, struct sched_entity, run_node);
517 
518 		if (!curr)
519 			vruntime = se->vruntime;
520 		else
521 			vruntime = min_vruntime(vruntime, se->vruntime);
522 	}
523 
524 	/* ensure we never gain time by being placed backwards. */
525 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
526 #ifndef CONFIG_64BIT
527 	smp_wmb();
528 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
529 #endif
530 }
531 
532 /*
533  * Enqueue an entity into the rb-tree:
534  */
535 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
536 {
537 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
538 	struct rb_node *parent = NULL;
539 	struct sched_entity *entry;
540 	bool leftmost = true;
541 
542 	/*
543 	 * Find the right place in the rbtree:
544 	 */
545 	while (*link) {
546 		parent = *link;
547 		entry = rb_entry(parent, struct sched_entity, run_node);
548 		/*
549 		 * We dont care about collisions. Nodes with
550 		 * the same key stay together.
551 		 */
552 		if (entity_before(se, entry)) {
553 			link = &parent->rb_left;
554 		} else {
555 			link = &parent->rb_right;
556 			leftmost = false;
557 		}
558 	}
559 
560 	rb_link_node(&se->run_node, parent, link);
561 	rb_insert_color_cached(&se->run_node,
562 			       &cfs_rq->tasks_timeline, leftmost);
563 }
564 
565 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
566 {
567 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
568 }
569 
570 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
571 {
572 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
573 
574 	if (!left)
575 		return NULL;
576 
577 	return rb_entry(left, struct sched_entity, run_node);
578 }
579 
580 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
581 {
582 	struct rb_node *next = rb_next(&se->run_node);
583 
584 	if (!next)
585 		return NULL;
586 
587 	return rb_entry(next, struct sched_entity, run_node);
588 }
589 
590 #ifdef CONFIG_SCHED_DEBUG
591 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
592 {
593 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
594 
595 	if (!last)
596 		return NULL;
597 
598 	return rb_entry(last, struct sched_entity, run_node);
599 }
600 
601 /**************************************************************
602  * Scheduling class statistics methods:
603  */
604 
605 int sched_proc_update_handler(struct ctl_table *table, int write,
606 		void __user *buffer, size_t *lenp,
607 		loff_t *ppos)
608 {
609 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
610 	unsigned int factor = get_update_sysctl_factor();
611 
612 	if (ret || !write)
613 		return ret;
614 
615 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
616 					sysctl_sched_min_granularity);
617 
618 #define WRT_SYSCTL(name) \
619 	(normalized_sysctl_##name = sysctl_##name / (factor))
620 	WRT_SYSCTL(sched_min_granularity);
621 	WRT_SYSCTL(sched_latency);
622 	WRT_SYSCTL(sched_wakeup_granularity);
623 #undef WRT_SYSCTL
624 
625 	return 0;
626 }
627 #endif
628 
629 /*
630  * delta /= w
631  */
632 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
633 {
634 	if (unlikely(se->load.weight != NICE_0_LOAD))
635 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
636 
637 	return delta;
638 }
639 
640 /*
641  * The idea is to set a period in which each task runs once.
642  *
643  * When there are too many tasks (sched_nr_latency) we have to stretch
644  * this period because otherwise the slices get too small.
645  *
646  * p = (nr <= nl) ? l : l*nr/nl
647  */
648 static u64 __sched_period(unsigned long nr_running)
649 {
650 	if (unlikely(nr_running > sched_nr_latency))
651 		return nr_running * sysctl_sched_min_granularity;
652 	else
653 		return sysctl_sched_latency;
654 }
655 
656 /*
657  * We calculate the wall-time slice from the period by taking a part
658  * proportional to the weight.
659  *
660  * s = p*P[w/rw]
661  */
662 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
663 {
664 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
665 
666 	for_each_sched_entity(se) {
667 		struct load_weight *load;
668 		struct load_weight lw;
669 
670 		cfs_rq = cfs_rq_of(se);
671 		load = &cfs_rq->load;
672 
673 		if (unlikely(!se->on_rq)) {
674 			lw = cfs_rq->load;
675 
676 			update_load_add(&lw, se->load.weight);
677 			load = &lw;
678 		}
679 		slice = __calc_delta(slice, se->load.weight, load);
680 	}
681 	return slice;
682 }
683 
684 /*
685  * We calculate the vruntime slice of a to-be-inserted task.
686  *
687  * vs = s/w
688  */
689 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
690 {
691 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
692 }
693 
694 #ifdef CONFIG_SMP
695 
696 #include "sched-pelt.h"
697 
698 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
699 static unsigned long task_h_load(struct task_struct *p);
700 
701 /* Give new sched_entity start runnable values to heavy its load in infant time */
702 void init_entity_runnable_average(struct sched_entity *se)
703 {
704 	struct sched_avg *sa = &se->avg;
705 
706 	memset(sa, 0, sizeof(*sa));
707 
708 	/*
709 	 * Tasks are intialized with full load to be seen as heavy tasks until
710 	 * they get a chance to stabilize to their real load level.
711 	 * Group entities are intialized with zero load to reflect the fact that
712 	 * nothing has been attached to the task group yet.
713 	 */
714 	if (entity_is_task(se))
715 		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
716 
717 	se->runnable_weight = se->load.weight;
718 
719 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
720 }
721 
722 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
723 static void attach_entity_cfs_rq(struct sched_entity *se);
724 
725 /*
726  * With new tasks being created, their initial util_avgs are extrapolated
727  * based on the cfs_rq's current util_avg:
728  *
729  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
730  *
731  * However, in many cases, the above util_avg does not give a desired
732  * value. Moreover, the sum of the util_avgs may be divergent, such
733  * as when the series is a harmonic series.
734  *
735  * To solve this problem, we also cap the util_avg of successive tasks to
736  * only 1/2 of the left utilization budget:
737  *
738  *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
739  *
740  * where n denotes the nth task.
741  *
742  * For example, a simplest series from the beginning would be like:
743  *
744  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
745  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
746  *
747  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
748  * if util_avg > util_avg_cap.
749  */
750 void post_init_entity_util_avg(struct sched_entity *se)
751 {
752 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
753 	struct sched_avg *sa = &se->avg;
754 	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
755 
756 	if (cap > 0) {
757 		if (cfs_rq->avg.util_avg != 0) {
758 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
759 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
760 
761 			if (sa->util_avg > cap)
762 				sa->util_avg = cap;
763 		} else {
764 			sa->util_avg = cap;
765 		}
766 	}
767 
768 	if (entity_is_task(se)) {
769 		struct task_struct *p = task_of(se);
770 		if (p->sched_class != &fair_sched_class) {
771 			/*
772 			 * For !fair tasks do:
773 			 *
774 			update_cfs_rq_load_avg(now, cfs_rq);
775 			attach_entity_load_avg(cfs_rq, se, 0);
776 			switched_from_fair(rq, p);
777 			 *
778 			 * such that the next switched_to_fair() has the
779 			 * expected state.
780 			 */
781 			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
782 			return;
783 		}
784 	}
785 
786 	attach_entity_cfs_rq(se);
787 }
788 
789 #else /* !CONFIG_SMP */
790 void init_entity_runnable_average(struct sched_entity *se)
791 {
792 }
793 void post_init_entity_util_avg(struct sched_entity *se)
794 {
795 }
796 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
797 {
798 }
799 #endif /* CONFIG_SMP */
800 
801 /*
802  * Update the current task's runtime statistics.
803  */
804 static void update_curr(struct cfs_rq *cfs_rq)
805 {
806 	struct sched_entity *curr = cfs_rq->curr;
807 	u64 now = rq_clock_task(rq_of(cfs_rq));
808 	u64 delta_exec;
809 
810 	if (unlikely(!curr))
811 		return;
812 
813 	delta_exec = now - curr->exec_start;
814 	if (unlikely((s64)delta_exec <= 0))
815 		return;
816 
817 	curr->exec_start = now;
818 
819 	schedstat_set(curr->statistics.exec_max,
820 		      max(delta_exec, curr->statistics.exec_max));
821 
822 	curr->sum_exec_runtime += delta_exec;
823 	schedstat_add(cfs_rq->exec_clock, delta_exec);
824 
825 	curr->vruntime += calc_delta_fair(delta_exec, curr);
826 	update_min_vruntime(cfs_rq);
827 
828 	if (entity_is_task(curr)) {
829 		struct task_struct *curtask = task_of(curr);
830 
831 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
832 		cgroup_account_cputime(curtask, delta_exec);
833 		account_group_exec_runtime(curtask, delta_exec);
834 	}
835 
836 	account_cfs_rq_runtime(cfs_rq, delta_exec);
837 }
838 
839 static void update_curr_fair(struct rq *rq)
840 {
841 	update_curr(cfs_rq_of(&rq->curr->se));
842 }
843 
844 static inline void
845 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
846 {
847 	u64 wait_start, prev_wait_start;
848 
849 	if (!schedstat_enabled())
850 		return;
851 
852 	wait_start = rq_clock(rq_of(cfs_rq));
853 	prev_wait_start = schedstat_val(se->statistics.wait_start);
854 
855 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
856 	    likely(wait_start > prev_wait_start))
857 		wait_start -= prev_wait_start;
858 
859 	__schedstat_set(se->statistics.wait_start, wait_start);
860 }
861 
862 static inline void
863 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
864 {
865 	struct task_struct *p;
866 	u64 delta;
867 
868 	if (!schedstat_enabled())
869 		return;
870 
871 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
872 
873 	if (entity_is_task(se)) {
874 		p = task_of(se);
875 		if (task_on_rq_migrating(p)) {
876 			/*
877 			 * Preserve migrating task's wait time so wait_start
878 			 * time stamp can be adjusted to accumulate wait time
879 			 * prior to migration.
880 			 */
881 			__schedstat_set(se->statistics.wait_start, delta);
882 			return;
883 		}
884 		trace_sched_stat_wait(p, delta);
885 	}
886 
887 	__schedstat_set(se->statistics.wait_max,
888 		      max(schedstat_val(se->statistics.wait_max), delta));
889 	__schedstat_inc(se->statistics.wait_count);
890 	__schedstat_add(se->statistics.wait_sum, delta);
891 	__schedstat_set(se->statistics.wait_start, 0);
892 }
893 
894 static inline void
895 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
896 {
897 	struct task_struct *tsk = NULL;
898 	u64 sleep_start, block_start;
899 
900 	if (!schedstat_enabled())
901 		return;
902 
903 	sleep_start = schedstat_val(se->statistics.sleep_start);
904 	block_start = schedstat_val(se->statistics.block_start);
905 
906 	if (entity_is_task(se))
907 		tsk = task_of(se);
908 
909 	if (sleep_start) {
910 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
911 
912 		if ((s64)delta < 0)
913 			delta = 0;
914 
915 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
916 			__schedstat_set(se->statistics.sleep_max, delta);
917 
918 		__schedstat_set(se->statistics.sleep_start, 0);
919 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
920 
921 		if (tsk) {
922 			account_scheduler_latency(tsk, delta >> 10, 1);
923 			trace_sched_stat_sleep(tsk, delta);
924 		}
925 	}
926 	if (block_start) {
927 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
928 
929 		if ((s64)delta < 0)
930 			delta = 0;
931 
932 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
933 			__schedstat_set(se->statistics.block_max, delta);
934 
935 		__schedstat_set(se->statistics.block_start, 0);
936 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
937 
938 		if (tsk) {
939 			if (tsk->in_iowait) {
940 				__schedstat_add(se->statistics.iowait_sum, delta);
941 				__schedstat_inc(se->statistics.iowait_count);
942 				trace_sched_stat_iowait(tsk, delta);
943 			}
944 
945 			trace_sched_stat_blocked(tsk, delta);
946 
947 			/*
948 			 * Blocking time is in units of nanosecs, so shift by
949 			 * 20 to get a milliseconds-range estimation of the
950 			 * amount of time that the task spent sleeping:
951 			 */
952 			if (unlikely(prof_on == SLEEP_PROFILING)) {
953 				profile_hits(SLEEP_PROFILING,
954 						(void *)get_wchan(tsk),
955 						delta >> 20);
956 			}
957 			account_scheduler_latency(tsk, delta >> 10, 0);
958 		}
959 	}
960 }
961 
962 /*
963  * Task is being enqueued - update stats:
964  */
965 static inline void
966 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
967 {
968 	if (!schedstat_enabled())
969 		return;
970 
971 	/*
972 	 * Are we enqueueing a waiting task? (for current tasks
973 	 * a dequeue/enqueue event is a NOP)
974 	 */
975 	if (se != cfs_rq->curr)
976 		update_stats_wait_start(cfs_rq, se);
977 
978 	if (flags & ENQUEUE_WAKEUP)
979 		update_stats_enqueue_sleeper(cfs_rq, se);
980 }
981 
982 static inline void
983 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
984 {
985 
986 	if (!schedstat_enabled())
987 		return;
988 
989 	/*
990 	 * Mark the end of the wait period if dequeueing a
991 	 * waiting task:
992 	 */
993 	if (se != cfs_rq->curr)
994 		update_stats_wait_end(cfs_rq, se);
995 
996 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
997 		struct task_struct *tsk = task_of(se);
998 
999 		if (tsk->state & TASK_INTERRUPTIBLE)
1000 			__schedstat_set(se->statistics.sleep_start,
1001 				      rq_clock(rq_of(cfs_rq)));
1002 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1003 			__schedstat_set(se->statistics.block_start,
1004 				      rq_clock(rq_of(cfs_rq)));
1005 	}
1006 }
1007 
1008 /*
1009  * We are picking a new current task - update its stats:
1010  */
1011 static inline void
1012 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1013 {
1014 	/*
1015 	 * We are starting a new run period:
1016 	 */
1017 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1018 }
1019 
1020 /**************************************************
1021  * Scheduling class queueing methods:
1022  */
1023 
1024 #ifdef CONFIG_NUMA_BALANCING
1025 /*
1026  * Approximate time to scan a full NUMA task in ms. The task scan period is
1027  * calculated based on the tasks virtual memory size and
1028  * numa_balancing_scan_size.
1029  */
1030 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1031 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1032 
1033 /* Portion of address space to scan in MB */
1034 unsigned int sysctl_numa_balancing_scan_size = 256;
1035 
1036 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1037 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1038 
1039 struct numa_group {
1040 	atomic_t refcount;
1041 
1042 	spinlock_t lock; /* nr_tasks, tasks */
1043 	int nr_tasks;
1044 	pid_t gid;
1045 	int active_nodes;
1046 
1047 	struct rcu_head rcu;
1048 	unsigned long total_faults;
1049 	unsigned long max_faults_cpu;
1050 	/*
1051 	 * Faults_cpu is used to decide whether memory should move
1052 	 * towards the CPU. As a consequence, these stats are weighted
1053 	 * more by CPU use than by memory faults.
1054 	 */
1055 	unsigned long *faults_cpu;
1056 	unsigned long faults[0];
1057 };
1058 
1059 static inline unsigned long group_faults_priv(struct numa_group *ng);
1060 static inline unsigned long group_faults_shared(struct numa_group *ng);
1061 
1062 static unsigned int task_nr_scan_windows(struct task_struct *p)
1063 {
1064 	unsigned long rss = 0;
1065 	unsigned long nr_scan_pages;
1066 
1067 	/*
1068 	 * Calculations based on RSS as non-present and empty pages are skipped
1069 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1070 	 * on resident pages
1071 	 */
1072 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1073 	rss = get_mm_rss(p->mm);
1074 	if (!rss)
1075 		rss = nr_scan_pages;
1076 
1077 	rss = round_up(rss, nr_scan_pages);
1078 	return rss / nr_scan_pages;
1079 }
1080 
1081 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1082 #define MAX_SCAN_WINDOW 2560
1083 
1084 static unsigned int task_scan_min(struct task_struct *p)
1085 {
1086 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1087 	unsigned int scan, floor;
1088 	unsigned int windows = 1;
1089 
1090 	if (scan_size < MAX_SCAN_WINDOW)
1091 		windows = MAX_SCAN_WINDOW / scan_size;
1092 	floor = 1000 / windows;
1093 
1094 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1095 	return max_t(unsigned int, floor, scan);
1096 }
1097 
1098 static unsigned int task_scan_start(struct task_struct *p)
1099 {
1100 	unsigned long smin = task_scan_min(p);
1101 	unsigned long period = smin;
1102 
1103 	/* Scale the maximum scan period with the amount of shared memory. */
1104 	if (p->numa_group) {
1105 		struct numa_group *ng = p->numa_group;
1106 		unsigned long shared = group_faults_shared(ng);
1107 		unsigned long private = group_faults_priv(ng);
1108 
1109 		period *= atomic_read(&ng->refcount);
1110 		period *= shared + 1;
1111 		period /= private + shared + 1;
1112 	}
1113 
1114 	return max(smin, period);
1115 }
1116 
1117 static unsigned int task_scan_max(struct task_struct *p)
1118 {
1119 	unsigned long smin = task_scan_min(p);
1120 	unsigned long smax;
1121 
1122 	/* Watch for min being lower than max due to floor calculations */
1123 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1124 
1125 	/* Scale the maximum scan period with the amount of shared memory. */
1126 	if (p->numa_group) {
1127 		struct numa_group *ng = p->numa_group;
1128 		unsigned long shared = group_faults_shared(ng);
1129 		unsigned long private = group_faults_priv(ng);
1130 		unsigned long period = smax;
1131 
1132 		period *= atomic_read(&ng->refcount);
1133 		period *= shared + 1;
1134 		period /= private + shared + 1;
1135 
1136 		smax = max(smax, period);
1137 	}
1138 
1139 	return max(smin, smax);
1140 }
1141 
1142 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1143 {
1144 	int mm_users = 0;
1145 	struct mm_struct *mm = p->mm;
1146 
1147 	if (mm) {
1148 		mm_users = atomic_read(&mm->mm_users);
1149 		if (mm_users == 1) {
1150 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1151 			mm->numa_scan_seq = 0;
1152 		}
1153 	}
1154 	p->node_stamp			= 0;
1155 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
1156 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
1157 	p->numa_work.next		= &p->numa_work;
1158 	p->numa_faults			= NULL;
1159 	p->numa_group			= NULL;
1160 	p->last_task_numa_placement	= 0;
1161 	p->last_sum_exec_runtime	= 0;
1162 
1163 	/* New address space, reset the preferred nid */
1164 	if (!(clone_flags & CLONE_VM)) {
1165 		p->numa_preferred_nid = -1;
1166 		return;
1167 	}
1168 
1169 	/*
1170 	 * New thread, keep existing numa_preferred_nid which should be copied
1171 	 * already by arch_dup_task_struct but stagger when scans start.
1172 	 */
1173 	if (mm) {
1174 		unsigned int delay;
1175 
1176 		delay = min_t(unsigned int, task_scan_max(current),
1177 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1178 		delay += 2 * TICK_NSEC;
1179 		p->node_stamp = delay;
1180 	}
1181 }
1182 
1183 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1184 {
1185 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
1186 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1187 }
1188 
1189 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1190 {
1191 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1192 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1193 }
1194 
1195 /* Shared or private faults. */
1196 #define NR_NUMA_HINT_FAULT_TYPES 2
1197 
1198 /* Memory and CPU locality */
1199 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1200 
1201 /* Averaged statistics, and temporary buffers. */
1202 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1203 
1204 pid_t task_numa_group_id(struct task_struct *p)
1205 {
1206 	return p->numa_group ? p->numa_group->gid : 0;
1207 }
1208 
1209 /*
1210  * The averaged statistics, shared & private, memory & CPU,
1211  * occupy the first half of the array. The second half of the
1212  * array is for current counters, which are averaged into the
1213  * first set by task_numa_placement.
1214  */
1215 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1216 {
1217 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1218 }
1219 
1220 static inline unsigned long task_faults(struct task_struct *p, int nid)
1221 {
1222 	if (!p->numa_faults)
1223 		return 0;
1224 
1225 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1226 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1227 }
1228 
1229 static inline unsigned long group_faults(struct task_struct *p, int nid)
1230 {
1231 	if (!p->numa_group)
1232 		return 0;
1233 
1234 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1235 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1236 }
1237 
1238 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1239 {
1240 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1241 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1242 }
1243 
1244 static inline unsigned long group_faults_priv(struct numa_group *ng)
1245 {
1246 	unsigned long faults = 0;
1247 	int node;
1248 
1249 	for_each_online_node(node) {
1250 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1251 	}
1252 
1253 	return faults;
1254 }
1255 
1256 static inline unsigned long group_faults_shared(struct numa_group *ng)
1257 {
1258 	unsigned long faults = 0;
1259 	int node;
1260 
1261 	for_each_online_node(node) {
1262 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1263 	}
1264 
1265 	return faults;
1266 }
1267 
1268 /*
1269  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1270  * considered part of a numa group's pseudo-interleaving set. Migrations
1271  * between these nodes are slowed down, to allow things to settle down.
1272  */
1273 #define ACTIVE_NODE_FRACTION 3
1274 
1275 static bool numa_is_active_node(int nid, struct numa_group *ng)
1276 {
1277 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1278 }
1279 
1280 /* Handle placement on systems where not all nodes are directly connected. */
1281 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1282 					int maxdist, bool task)
1283 {
1284 	unsigned long score = 0;
1285 	int node;
1286 
1287 	/*
1288 	 * All nodes are directly connected, and the same distance
1289 	 * from each other. No need for fancy placement algorithms.
1290 	 */
1291 	if (sched_numa_topology_type == NUMA_DIRECT)
1292 		return 0;
1293 
1294 	/*
1295 	 * This code is called for each node, introducing N^2 complexity,
1296 	 * which should be ok given the number of nodes rarely exceeds 8.
1297 	 */
1298 	for_each_online_node(node) {
1299 		unsigned long faults;
1300 		int dist = node_distance(nid, node);
1301 
1302 		/*
1303 		 * The furthest away nodes in the system are not interesting
1304 		 * for placement; nid was already counted.
1305 		 */
1306 		if (dist == sched_max_numa_distance || node == nid)
1307 			continue;
1308 
1309 		/*
1310 		 * On systems with a backplane NUMA topology, compare groups
1311 		 * of nodes, and move tasks towards the group with the most
1312 		 * memory accesses. When comparing two nodes at distance
1313 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1314 		 * of each group. Skip other nodes.
1315 		 */
1316 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1317 					dist > maxdist)
1318 			continue;
1319 
1320 		/* Add up the faults from nearby nodes. */
1321 		if (task)
1322 			faults = task_faults(p, node);
1323 		else
1324 			faults = group_faults(p, node);
1325 
1326 		/*
1327 		 * On systems with a glueless mesh NUMA topology, there are
1328 		 * no fixed "groups of nodes". Instead, nodes that are not
1329 		 * directly connected bounce traffic through intermediate
1330 		 * nodes; a numa_group can occupy any set of nodes.
1331 		 * The further away a node is, the less the faults count.
1332 		 * This seems to result in good task placement.
1333 		 */
1334 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1335 			faults *= (sched_max_numa_distance - dist);
1336 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1337 		}
1338 
1339 		score += faults;
1340 	}
1341 
1342 	return score;
1343 }
1344 
1345 /*
1346  * These return the fraction of accesses done by a particular task, or
1347  * task group, on a particular numa node.  The group weight is given a
1348  * larger multiplier, in order to group tasks together that are almost
1349  * evenly spread out between numa nodes.
1350  */
1351 static inline unsigned long task_weight(struct task_struct *p, int nid,
1352 					int dist)
1353 {
1354 	unsigned long faults, total_faults;
1355 
1356 	if (!p->numa_faults)
1357 		return 0;
1358 
1359 	total_faults = p->total_numa_faults;
1360 
1361 	if (!total_faults)
1362 		return 0;
1363 
1364 	faults = task_faults(p, nid);
1365 	faults += score_nearby_nodes(p, nid, dist, true);
1366 
1367 	return 1000 * faults / total_faults;
1368 }
1369 
1370 static inline unsigned long group_weight(struct task_struct *p, int nid,
1371 					 int dist)
1372 {
1373 	unsigned long faults, total_faults;
1374 
1375 	if (!p->numa_group)
1376 		return 0;
1377 
1378 	total_faults = p->numa_group->total_faults;
1379 
1380 	if (!total_faults)
1381 		return 0;
1382 
1383 	faults = group_faults(p, nid);
1384 	faults += score_nearby_nodes(p, nid, dist, false);
1385 
1386 	return 1000 * faults / total_faults;
1387 }
1388 
1389 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1390 				int src_nid, int dst_cpu)
1391 {
1392 	struct numa_group *ng = p->numa_group;
1393 	int dst_nid = cpu_to_node(dst_cpu);
1394 	int last_cpupid, this_cpupid;
1395 
1396 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1397 
1398 	/*
1399 	 * Multi-stage node selection is used in conjunction with a periodic
1400 	 * migration fault to build a temporal task<->page relation. By using
1401 	 * a two-stage filter we remove short/unlikely relations.
1402 	 *
1403 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1404 	 * a task's usage of a particular page (n_p) per total usage of this
1405 	 * page (n_t) (in a given time-span) to a probability.
1406 	 *
1407 	 * Our periodic faults will sample this probability and getting the
1408 	 * same result twice in a row, given these samples are fully
1409 	 * independent, is then given by P(n)^2, provided our sample period
1410 	 * is sufficiently short compared to the usage pattern.
1411 	 *
1412 	 * This quadric squishes small probabilities, making it less likely we
1413 	 * act on an unlikely task<->page relation.
1414 	 */
1415 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1416 	if (!cpupid_pid_unset(last_cpupid) &&
1417 				cpupid_to_nid(last_cpupid) != dst_nid)
1418 		return false;
1419 
1420 	/* Always allow migrate on private faults */
1421 	if (cpupid_match_pid(p, last_cpupid))
1422 		return true;
1423 
1424 	/* A shared fault, but p->numa_group has not been set up yet. */
1425 	if (!ng)
1426 		return true;
1427 
1428 	/*
1429 	 * Destination node is much more heavily used than the source
1430 	 * node? Allow migration.
1431 	 */
1432 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1433 					ACTIVE_NODE_FRACTION)
1434 		return true;
1435 
1436 	/*
1437 	 * Distribute memory according to CPU & memory use on each node,
1438 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1439 	 *
1440 	 * faults_cpu(dst)   3   faults_cpu(src)
1441 	 * --------------- * - > ---------------
1442 	 * faults_mem(dst)   4   faults_mem(src)
1443 	 */
1444 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1445 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1446 }
1447 
1448 static unsigned long weighted_cpuload(struct rq *rq);
1449 static unsigned long source_load(int cpu, int type);
1450 static unsigned long target_load(int cpu, int type);
1451 static unsigned long capacity_of(int cpu);
1452 
1453 /* Cached statistics for all CPUs within a node */
1454 struct numa_stats {
1455 	unsigned long nr_running;
1456 	unsigned long load;
1457 
1458 	/* Total compute capacity of CPUs on a node */
1459 	unsigned long compute_capacity;
1460 
1461 	/* Approximate capacity in terms of runnable tasks on a node */
1462 	unsigned long task_capacity;
1463 	int has_free_capacity;
1464 };
1465 
1466 /*
1467  * XXX borrowed from update_sg_lb_stats
1468  */
1469 static void update_numa_stats(struct numa_stats *ns, int nid)
1470 {
1471 	int smt, cpu, cpus = 0;
1472 	unsigned long capacity;
1473 
1474 	memset(ns, 0, sizeof(*ns));
1475 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1476 		struct rq *rq = cpu_rq(cpu);
1477 
1478 		ns->nr_running += rq->nr_running;
1479 		ns->load += weighted_cpuload(rq);
1480 		ns->compute_capacity += capacity_of(cpu);
1481 
1482 		cpus++;
1483 	}
1484 
1485 	/*
1486 	 * If we raced with hotplug and there are no CPUs left in our mask
1487 	 * the @ns structure is NULL'ed and task_numa_compare() will
1488 	 * not find this node attractive.
1489 	 *
1490 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1491 	 * imbalance and bail there.
1492 	 */
1493 	if (!cpus)
1494 		return;
1495 
1496 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1497 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1498 	capacity = cpus / smt; /* cores */
1499 
1500 	ns->task_capacity = min_t(unsigned, capacity,
1501 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1502 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1503 }
1504 
1505 struct task_numa_env {
1506 	struct task_struct *p;
1507 
1508 	int src_cpu, src_nid;
1509 	int dst_cpu, dst_nid;
1510 
1511 	struct numa_stats src_stats, dst_stats;
1512 
1513 	int imbalance_pct;
1514 	int dist;
1515 
1516 	struct task_struct *best_task;
1517 	long best_imp;
1518 	int best_cpu;
1519 };
1520 
1521 static void task_numa_assign(struct task_numa_env *env,
1522 			     struct task_struct *p, long imp)
1523 {
1524 	if (env->best_task)
1525 		put_task_struct(env->best_task);
1526 	if (p)
1527 		get_task_struct(p);
1528 
1529 	env->best_task = p;
1530 	env->best_imp = imp;
1531 	env->best_cpu = env->dst_cpu;
1532 }
1533 
1534 static bool load_too_imbalanced(long src_load, long dst_load,
1535 				struct task_numa_env *env)
1536 {
1537 	long imb, old_imb;
1538 	long orig_src_load, orig_dst_load;
1539 	long src_capacity, dst_capacity;
1540 
1541 	/*
1542 	 * The load is corrected for the CPU capacity available on each node.
1543 	 *
1544 	 * src_load        dst_load
1545 	 * ------------ vs ---------
1546 	 * src_capacity    dst_capacity
1547 	 */
1548 	src_capacity = env->src_stats.compute_capacity;
1549 	dst_capacity = env->dst_stats.compute_capacity;
1550 
1551 	/* We care about the slope of the imbalance, not the direction. */
1552 	if (dst_load < src_load)
1553 		swap(dst_load, src_load);
1554 
1555 	/* Is the difference below the threshold? */
1556 	imb = dst_load * src_capacity * 100 -
1557 	      src_load * dst_capacity * env->imbalance_pct;
1558 	if (imb <= 0)
1559 		return false;
1560 
1561 	/*
1562 	 * The imbalance is above the allowed threshold.
1563 	 * Compare it with the old imbalance.
1564 	 */
1565 	orig_src_load = env->src_stats.load;
1566 	orig_dst_load = env->dst_stats.load;
1567 
1568 	if (orig_dst_load < orig_src_load)
1569 		swap(orig_dst_load, orig_src_load);
1570 
1571 	old_imb = orig_dst_load * src_capacity * 100 -
1572 		  orig_src_load * dst_capacity * env->imbalance_pct;
1573 
1574 	/* Would this change make things worse? */
1575 	return (imb > old_imb);
1576 }
1577 
1578 /*
1579  * This checks if the overall compute and NUMA accesses of the system would
1580  * be improved if the source tasks was migrated to the target dst_cpu taking
1581  * into account that it might be best if task running on the dst_cpu should
1582  * be exchanged with the source task
1583  */
1584 static void task_numa_compare(struct task_numa_env *env,
1585 			      long taskimp, long groupimp)
1586 {
1587 	struct rq *src_rq = cpu_rq(env->src_cpu);
1588 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1589 	struct task_struct *cur;
1590 	long src_load, dst_load;
1591 	long load;
1592 	long imp = env->p->numa_group ? groupimp : taskimp;
1593 	long moveimp = imp;
1594 	int dist = env->dist;
1595 
1596 	rcu_read_lock();
1597 	cur = task_rcu_dereference(&dst_rq->curr);
1598 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1599 		cur = NULL;
1600 
1601 	/*
1602 	 * Because we have preemption enabled we can get migrated around and
1603 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1604 	 */
1605 	if (cur == env->p)
1606 		goto unlock;
1607 
1608 	/*
1609 	 * "imp" is the fault differential for the source task between the
1610 	 * source and destination node. Calculate the total differential for
1611 	 * the source task and potential destination task. The more negative
1612 	 * the value is, the more rmeote accesses that would be expected to
1613 	 * be incurred if the tasks were swapped.
1614 	 */
1615 	if (cur) {
1616 		/* Skip this swap candidate if cannot move to the source CPU: */
1617 		if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1618 			goto unlock;
1619 
1620 		/*
1621 		 * If dst and source tasks are in the same NUMA group, or not
1622 		 * in any group then look only at task weights.
1623 		 */
1624 		if (cur->numa_group == env->p->numa_group) {
1625 			imp = taskimp + task_weight(cur, env->src_nid, dist) -
1626 			      task_weight(cur, env->dst_nid, dist);
1627 			/*
1628 			 * Add some hysteresis to prevent swapping the
1629 			 * tasks within a group over tiny differences.
1630 			 */
1631 			if (cur->numa_group)
1632 				imp -= imp/16;
1633 		} else {
1634 			/*
1635 			 * Compare the group weights. If a task is all by
1636 			 * itself (not part of a group), use the task weight
1637 			 * instead.
1638 			 */
1639 			if (cur->numa_group)
1640 				imp += group_weight(cur, env->src_nid, dist) -
1641 				       group_weight(cur, env->dst_nid, dist);
1642 			else
1643 				imp += task_weight(cur, env->src_nid, dist) -
1644 				       task_weight(cur, env->dst_nid, dist);
1645 		}
1646 	}
1647 
1648 	if (imp <= env->best_imp && moveimp <= env->best_imp)
1649 		goto unlock;
1650 
1651 	if (!cur) {
1652 		/* Is there capacity at our destination? */
1653 		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1654 		    !env->dst_stats.has_free_capacity)
1655 			goto unlock;
1656 
1657 		goto balance;
1658 	}
1659 
1660 	/* Balance doesn't matter much if we're running a task per CPU: */
1661 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1662 			dst_rq->nr_running == 1)
1663 		goto assign;
1664 
1665 	/*
1666 	 * In the overloaded case, try and keep the load balanced.
1667 	 */
1668 balance:
1669 	load = task_h_load(env->p);
1670 	dst_load = env->dst_stats.load + load;
1671 	src_load = env->src_stats.load - load;
1672 
1673 	if (moveimp > imp && moveimp > env->best_imp) {
1674 		/*
1675 		 * If the improvement from just moving env->p direction is
1676 		 * better than swapping tasks around, check if a move is
1677 		 * possible. Store a slightly smaller score than moveimp,
1678 		 * so an actually idle CPU will win.
1679 		 */
1680 		if (!load_too_imbalanced(src_load, dst_load, env)) {
1681 			imp = moveimp - 1;
1682 			cur = NULL;
1683 			goto assign;
1684 		}
1685 	}
1686 
1687 	if (imp <= env->best_imp)
1688 		goto unlock;
1689 
1690 	if (cur) {
1691 		load = task_h_load(cur);
1692 		dst_load -= load;
1693 		src_load += load;
1694 	}
1695 
1696 	if (load_too_imbalanced(src_load, dst_load, env))
1697 		goto unlock;
1698 
1699 	/*
1700 	 * One idle CPU per node is evaluated for a task numa move.
1701 	 * Call select_idle_sibling to maybe find a better one.
1702 	 */
1703 	if (!cur) {
1704 		/*
1705 		 * select_idle_siblings() uses an per-CPU cpumask that
1706 		 * can be used from IRQ context.
1707 		 */
1708 		local_irq_disable();
1709 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1710 						   env->dst_cpu);
1711 		local_irq_enable();
1712 	}
1713 
1714 assign:
1715 	task_numa_assign(env, cur, imp);
1716 unlock:
1717 	rcu_read_unlock();
1718 }
1719 
1720 static void task_numa_find_cpu(struct task_numa_env *env,
1721 				long taskimp, long groupimp)
1722 {
1723 	int cpu;
1724 
1725 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1726 		/* Skip this CPU if the source task cannot migrate */
1727 		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1728 			continue;
1729 
1730 		env->dst_cpu = cpu;
1731 		task_numa_compare(env, taskimp, groupimp);
1732 	}
1733 }
1734 
1735 /* Only move tasks to a NUMA node less busy than the current node. */
1736 static bool numa_has_capacity(struct task_numa_env *env)
1737 {
1738 	struct numa_stats *src = &env->src_stats;
1739 	struct numa_stats *dst = &env->dst_stats;
1740 
1741 	if (src->has_free_capacity && !dst->has_free_capacity)
1742 		return false;
1743 
1744 	/*
1745 	 * Only consider a task move if the source has a higher load
1746 	 * than the destination, corrected for CPU capacity on each node.
1747 	 *
1748 	 *      src->load                dst->load
1749 	 * --------------------- vs ---------------------
1750 	 * src->compute_capacity    dst->compute_capacity
1751 	 */
1752 	if (src->load * dst->compute_capacity * env->imbalance_pct >
1753 
1754 	    dst->load * src->compute_capacity * 100)
1755 		return true;
1756 
1757 	return false;
1758 }
1759 
1760 static int task_numa_migrate(struct task_struct *p)
1761 {
1762 	struct task_numa_env env = {
1763 		.p = p,
1764 
1765 		.src_cpu = task_cpu(p),
1766 		.src_nid = task_node(p),
1767 
1768 		.imbalance_pct = 112,
1769 
1770 		.best_task = NULL,
1771 		.best_imp = 0,
1772 		.best_cpu = -1,
1773 	};
1774 	struct sched_domain *sd;
1775 	unsigned long taskweight, groupweight;
1776 	int nid, ret, dist;
1777 	long taskimp, groupimp;
1778 
1779 	/*
1780 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1781 	 * imbalance and would be the first to start moving tasks about.
1782 	 *
1783 	 * And we want to avoid any moving of tasks about, as that would create
1784 	 * random movement of tasks -- counter the numa conditions we're trying
1785 	 * to satisfy here.
1786 	 */
1787 	rcu_read_lock();
1788 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1789 	if (sd)
1790 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1791 	rcu_read_unlock();
1792 
1793 	/*
1794 	 * Cpusets can break the scheduler domain tree into smaller
1795 	 * balance domains, some of which do not cross NUMA boundaries.
1796 	 * Tasks that are "trapped" in such domains cannot be migrated
1797 	 * elsewhere, so there is no point in (re)trying.
1798 	 */
1799 	if (unlikely(!sd)) {
1800 		p->numa_preferred_nid = task_node(p);
1801 		return -EINVAL;
1802 	}
1803 
1804 	env.dst_nid = p->numa_preferred_nid;
1805 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1806 	taskweight = task_weight(p, env.src_nid, dist);
1807 	groupweight = group_weight(p, env.src_nid, dist);
1808 	update_numa_stats(&env.src_stats, env.src_nid);
1809 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1810 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1811 	update_numa_stats(&env.dst_stats, env.dst_nid);
1812 
1813 	/* Try to find a spot on the preferred nid. */
1814 	if (numa_has_capacity(&env))
1815 		task_numa_find_cpu(&env, taskimp, groupimp);
1816 
1817 	/*
1818 	 * Look at other nodes in these cases:
1819 	 * - there is no space available on the preferred_nid
1820 	 * - the task is part of a numa_group that is interleaved across
1821 	 *   multiple NUMA nodes; in order to better consolidate the group,
1822 	 *   we need to check other locations.
1823 	 */
1824 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1825 		for_each_online_node(nid) {
1826 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1827 				continue;
1828 
1829 			dist = node_distance(env.src_nid, env.dst_nid);
1830 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1831 						dist != env.dist) {
1832 				taskweight = task_weight(p, env.src_nid, dist);
1833 				groupweight = group_weight(p, env.src_nid, dist);
1834 			}
1835 
1836 			/* Only consider nodes where both task and groups benefit */
1837 			taskimp = task_weight(p, nid, dist) - taskweight;
1838 			groupimp = group_weight(p, nid, dist) - groupweight;
1839 			if (taskimp < 0 && groupimp < 0)
1840 				continue;
1841 
1842 			env.dist = dist;
1843 			env.dst_nid = nid;
1844 			update_numa_stats(&env.dst_stats, env.dst_nid);
1845 			if (numa_has_capacity(&env))
1846 				task_numa_find_cpu(&env, taskimp, groupimp);
1847 		}
1848 	}
1849 
1850 	/*
1851 	 * If the task is part of a workload that spans multiple NUMA nodes,
1852 	 * and is migrating into one of the workload's active nodes, remember
1853 	 * this node as the task's preferred numa node, so the workload can
1854 	 * settle down.
1855 	 * A task that migrated to a second choice node will be better off
1856 	 * trying for a better one later. Do not set the preferred node here.
1857 	 */
1858 	if (p->numa_group) {
1859 		struct numa_group *ng = p->numa_group;
1860 
1861 		if (env.best_cpu == -1)
1862 			nid = env.src_nid;
1863 		else
1864 			nid = env.dst_nid;
1865 
1866 		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1867 			sched_setnuma(p, env.dst_nid);
1868 	}
1869 
1870 	/* No better CPU than the current one was found. */
1871 	if (env.best_cpu == -1)
1872 		return -EAGAIN;
1873 
1874 	/*
1875 	 * Reset the scan period if the task is being rescheduled on an
1876 	 * alternative node to recheck if the tasks is now properly placed.
1877 	 */
1878 	p->numa_scan_period = task_scan_start(p);
1879 
1880 	if (env.best_task == NULL) {
1881 		ret = migrate_task_to(p, env.best_cpu);
1882 		if (ret != 0)
1883 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1884 		return ret;
1885 	}
1886 
1887 	ret = migrate_swap(p, env.best_task);
1888 	if (ret != 0)
1889 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1890 	put_task_struct(env.best_task);
1891 	return ret;
1892 }
1893 
1894 /* Attempt to migrate a task to a CPU on the preferred node. */
1895 static void numa_migrate_preferred(struct task_struct *p)
1896 {
1897 	unsigned long interval = HZ;
1898 
1899 	/* This task has no NUMA fault statistics yet */
1900 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1901 		return;
1902 
1903 	/* Periodically retry migrating the task to the preferred node */
1904 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1905 	p->numa_migrate_retry = jiffies + interval;
1906 
1907 	/* Success if task is already running on preferred CPU */
1908 	if (task_node(p) == p->numa_preferred_nid)
1909 		return;
1910 
1911 	/* Otherwise, try migrate to a CPU on the preferred node */
1912 	task_numa_migrate(p);
1913 }
1914 
1915 /*
1916  * Find out how many nodes on the workload is actively running on. Do this by
1917  * tracking the nodes from which NUMA hinting faults are triggered. This can
1918  * be different from the set of nodes where the workload's memory is currently
1919  * located.
1920  */
1921 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1922 {
1923 	unsigned long faults, max_faults = 0;
1924 	int nid, active_nodes = 0;
1925 
1926 	for_each_online_node(nid) {
1927 		faults = group_faults_cpu(numa_group, nid);
1928 		if (faults > max_faults)
1929 			max_faults = faults;
1930 	}
1931 
1932 	for_each_online_node(nid) {
1933 		faults = group_faults_cpu(numa_group, nid);
1934 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1935 			active_nodes++;
1936 	}
1937 
1938 	numa_group->max_faults_cpu = max_faults;
1939 	numa_group->active_nodes = active_nodes;
1940 }
1941 
1942 /*
1943  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1944  * increments. The more local the fault statistics are, the higher the scan
1945  * period will be for the next scan window. If local/(local+remote) ratio is
1946  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1947  * the scan period will decrease. Aim for 70% local accesses.
1948  */
1949 #define NUMA_PERIOD_SLOTS 10
1950 #define NUMA_PERIOD_THRESHOLD 7
1951 
1952 /*
1953  * Increase the scan period (slow down scanning) if the majority of
1954  * our memory is already on our local node, or if the majority of
1955  * the page accesses are shared with other processes.
1956  * Otherwise, decrease the scan period.
1957  */
1958 static void update_task_scan_period(struct task_struct *p,
1959 			unsigned long shared, unsigned long private)
1960 {
1961 	unsigned int period_slot;
1962 	int lr_ratio, ps_ratio;
1963 	int diff;
1964 
1965 	unsigned long remote = p->numa_faults_locality[0];
1966 	unsigned long local = p->numa_faults_locality[1];
1967 
1968 	/*
1969 	 * If there were no record hinting faults then either the task is
1970 	 * completely idle or all activity is areas that are not of interest
1971 	 * to automatic numa balancing. Related to that, if there were failed
1972 	 * migration then it implies we are migrating too quickly or the local
1973 	 * node is overloaded. In either case, scan slower
1974 	 */
1975 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1976 		p->numa_scan_period = min(p->numa_scan_period_max,
1977 			p->numa_scan_period << 1);
1978 
1979 		p->mm->numa_next_scan = jiffies +
1980 			msecs_to_jiffies(p->numa_scan_period);
1981 
1982 		return;
1983 	}
1984 
1985 	/*
1986 	 * Prepare to scale scan period relative to the current period.
1987 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1988 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1989 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1990 	 */
1991 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1992 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1993 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1994 
1995 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1996 		/*
1997 		 * Most memory accesses are local. There is no need to
1998 		 * do fast NUMA scanning, since memory is already local.
1999 		 */
2000 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2001 		if (!slot)
2002 			slot = 1;
2003 		diff = slot * period_slot;
2004 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2005 		/*
2006 		 * Most memory accesses are shared with other tasks.
2007 		 * There is no point in continuing fast NUMA scanning,
2008 		 * since other tasks may just move the memory elsewhere.
2009 		 */
2010 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2011 		if (!slot)
2012 			slot = 1;
2013 		diff = slot * period_slot;
2014 	} else {
2015 		/*
2016 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2017 		 * yet they are not on the local NUMA node. Speed up
2018 		 * NUMA scanning to get the memory moved over.
2019 		 */
2020 		int ratio = max(lr_ratio, ps_ratio);
2021 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2022 	}
2023 
2024 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2025 			task_scan_min(p), task_scan_max(p));
2026 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2027 }
2028 
2029 /*
2030  * Get the fraction of time the task has been running since the last
2031  * NUMA placement cycle. The scheduler keeps similar statistics, but
2032  * decays those on a 32ms period, which is orders of magnitude off
2033  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2034  * stats only if the task is so new there are no NUMA statistics yet.
2035  */
2036 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2037 {
2038 	u64 runtime, delta, now;
2039 	/* Use the start of this time slice to avoid calculations. */
2040 	now = p->se.exec_start;
2041 	runtime = p->se.sum_exec_runtime;
2042 
2043 	if (p->last_task_numa_placement) {
2044 		delta = runtime - p->last_sum_exec_runtime;
2045 		*period = now - p->last_task_numa_placement;
2046 	} else {
2047 		delta = p->se.avg.load_sum;
2048 		*period = LOAD_AVG_MAX;
2049 	}
2050 
2051 	p->last_sum_exec_runtime = runtime;
2052 	p->last_task_numa_placement = now;
2053 
2054 	return delta;
2055 }
2056 
2057 /*
2058  * Determine the preferred nid for a task in a numa_group. This needs to
2059  * be done in a way that produces consistent results with group_weight,
2060  * otherwise workloads might not converge.
2061  */
2062 static int preferred_group_nid(struct task_struct *p, int nid)
2063 {
2064 	nodemask_t nodes;
2065 	int dist;
2066 
2067 	/* Direct connections between all NUMA nodes. */
2068 	if (sched_numa_topology_type == NUMA_DIRECT)
2069 		return nid;
2070 
2071 	/*
2072 	 * On a system with glueless mesh NUMA topology, group_weight
2073 	 * scores nodes according to the number of NUMA hinting faults on
2074 	 * both the node itself, and on nearby nodes.
2075 	 */
2076 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2077 		unsigned long score, max_score = 0;
2078 		int node, max_node = nid;
2079 
2080 		dist = sched_max_numa_distance;
2081 
2082 		for_each_online_node(node) {
2083 			score = group_weight(p, node, dist);
2084 			if (score > max_score) {
2085 				max_score = score;
2086 				max_node = node;
2087 			}
2088 		}
2089 		return max_node;
2090 	}
2091 
2092 	/*
2093 	 * Finding the preferred nid in a system with NUMA backplane
2094 	 * interconnect topology is more involved. The goal is to locate
2095 	 * tasks from numa_groups near each other in the system, and
2096 	 * untangle workloads from different sides of the system. This requires
2097 	 * searching down the hierarchy of node groups, recursively searching
2098 	 * inside the highest scoring group of nodes. The nodemask tricks
2099 	 * keep the complexity of the search down.
2100 	 */
2101 	nodes = node_online_map;
2102 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2103 		unsigned long max_faults = 0;
2104 		nodemask_t max_group = NODE_MASK_NONE;
2105 		int a, b;
2106 
2107 		/* Are there nodes at this distance from each other? */
2108 		if (!find_numa_distance(dist))
2109 			continue;
2110 
2111 		for_each_node_mask(a, nodes) {
2112 			unsigned long faults = 0;
2113 			nodemask_t this_group;
2114 			nodes_clear(this_group);
2115 
2116 			/* Sum group's NUMA faults; includes a==b case. */
2117 			for_each_node_mask(b, nodes) {
2118 				if (node_distance(a, b) < dist) {
2119 					faults += group_faults(p, b);
2120 					node_set(b, this_group);
2121 					node_clear(b, nodes);
2122 				}
2123 			}
2124 
2125 			/* Remember the top group. */
2126 			if (faults > max_faults) {
2127 				max_faults = faults;
2128 				max_group = this_group;
2129 				/*
2130 				 * subtle: at the smallest distance there is
2131 				 * just one node left in each "group", the
2132 				 * winner is the preferred nid.
2133 				 */
2134 				nid = a;
2135 			}
2136 		}
2137 		/* Next round, evaluate the nodes within max_group. */
2138 		if (!max_faults)
2139 			break;
2140 		nodes = max_group;
2141 	}
2142 	return nid;
2143 }
2144 
2145 static void task_numa_placement(struct task_struct *p)
2146 {
2147 	int seq, nid, max_nid = -1, max_group_nid = -1;
2148 	unsigned long max_faults = 0, max_group_faults = 0;
2149 	unsigned long fault_types[2] = { 0, 0 };
2150 	unsigned long total_faults;
2151 	u64 runtime, period;
2152 	spinlock_t *group_lock = NULL;
2153 
2154 	/*
2155 	 * The p->mm->numa_scan_seq field gets updated without
2156 	 * exclusive access. Use READ_ONCE() here to ensure
2157 	 * that the field is read in a single access:
2158 	 */
2159 	seq = READ_ONCE(p->mm->numa_scan_seq);
2160 	if (p->numa_scan_seq == seq)
2161 		return;
2162 	p->numa_scan_seq = seq;
2163 	p->numa_scan_period_max = task_scan_max(p);
2164 
2165 	total_faults = p->numa_faults_locality[0] +
2166 		       p->numa_faults_locality[1];
2167 	runtime = numa_get_avg_runtime(p, &period);
2168 
2169 	/* If the task is part of a group prevent parallel updates to group stats */
2170 	if (p->numa_group) {
2171 		group_lock = &p->numa_group->lock;
2172 		spin_lock_irq(group_lock);
2173 	}
2174 
2175 	/* Find the node with the highest number of faults */
2176 	for_each_online_node(nid) {
2177 		/* Keep track of the offsets in numa_faults array */
2178 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2179 		unsigned long faults = 0, group_faults = 0;
2180 		int priv;
2181 
2182 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2183 			long diff, f_diff, f_weight;
2184 
2185 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2186 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2187 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2188 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2189 
2190 			/* Decay existing window, copy faults since last scan */
2191 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2192 			fault_types[priv] += p->numa_faults[membuf_idx];
2193 			p->numa_faults[membuf_idx] = 0;
2194 
2195 			/*
2196 			 * Normalize the faults_from, so all tasks in a group
2197 			 * count according to CPU use, instead of by the raw
2198 			 * number of faults. Tasks with little runtime have
2199 			 * little over-all impact on throughput, and thus their
2200 			 * faults are less important.
2201 			 */
2202 			f_weight = div64_u64(runtime << 16, period + 1);
2203 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2204 				   (total_faults + 1);
2205 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2206 			p->numa_faults[cpubuf_idx] = 0;
2207 
2208 			p->numa_faults[mem_idx] += diff;
2209 			p->numa_faults[cpu_idx] += f_diff;
2210 			faults += p->numa_faults[mem_idx];
2211 			p->total_numa_faults += diff;
2212 			if (p->numa_group) {
2213 				/*
2214 				 * safe because we can only change our own group
2215 				 *
2216 				 * mem_idx represents the offset for a given
2217 				 * nid and priv in a specific region because it
2218 				 * is at the beginning of the numa_faults array.
2219 				 */
2220 				p->numa_group->faults[mem_idx] += diff;
2221 				p->numa_group->faults_cpu[mem_idx] += f_diff;
2222 				p->numa_group->total_faults += diff;
2223 				group_faults += p->numa_group->faults[mem_idx];
2224 			}
2225 		}
2226 
2227 		if (faults > max_faults) {
2228 			max_faults = faults;
2229 			max_nid = nid;
2230 		}
2231 
2232 		if (group_faults > max_group_faults) {
2233 			max_group_faults = group_faults;
2234 			max_group_nid = nid;
2235 		}
2236 	}
2237 
2238 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2239 
2240 	if (p->numa_group) {
2241 		numa_group_count_active_nodes(p->numa_group);
2242 		spin_unlock_irq(group_lock);
2243 		max_nid = preferred_group_nid(p, max_group_nid);
2244 	}
2245 
2246 	if (max_faults) {
2247 		/* Set the new preferred node */
2248 		if (max_nid != p->numa_preferred_nid)
2249 			sched_setnuma(p, max_nid);
2250 
2251 		if (task_node(p) != p->numa_preferred_nid)
2252 			numa_migrate_preferred(p);
2253 	}
2254 }
2255 
2256 static inline int get_numa_group(struct numa_group *grp)
2257 {
2258 	return atomic_inc_not_zero(&grp->refcount);
2259 }
2260 
2261 static inline void put_numa_group(struct numa_group *grp)
2262 {
2263 	if (atomic_dec_and_test(&grp->refcount))
2264 		kfree_rcu(grp, rcu);
2265 }
2266 
2267 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2268 			int *priv)
2269 {
2270 	struct numa_group *grp, *my_grp;
2271 	struct task_struct *tsk;
2272 	bool join = false;
2273 	int cpu = cpupid_to_cpu(cpupid);
2274 	int i;
2275 
2276 	if (unlikely(!p->numa_group)) {
2277 		unsigned int size = sizeof(struct numa_group) +
2278 				    4*nr_node_ids*sizeof(unsigned long);
2279 
2280 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2281 		if (!grp)
2282 			return;
2283 
2284 		atomic_set(&grp->refcount, 1);
2285 		grp->active_nodes = 1;
2286 		grp->max_faults_cpu = 0;
2287 		spin_lock_init(&grp->lock);
2288 		grp->gid = p->pid;
2289 		/* Second half of the array tracks nids where faults happen */
2290 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2291 						nr_node_ids;
2292 
2293 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2294 			grp->faults[i] = p->numa_faults[i];
2295 
2296 		grp->total_faults = p->total_numa_faults;
2297 
2298 		grp->nr_tasks++;
2299 		rcu_assign_pointer(p->numa_group, grp);
2300 	}
2301 
2302 	rcu_read_lock();
2303 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2304 
2305 	if (!cpupid_match_pid(tsk, cpupid))
2306 		goto no_join;
2307 
2308 	grp = rcu_dereference(tsk->numa_group);
2309 	if (!grp)
2310 		goto no_join;
2311 
2312 	my_grp = p->numa_group;
2313 	if (grp == my_grp)
2314 		goto no_join;
2315 
2316 	/*
2317 	 * Only join the other group if its bigger; if we're the bigger group,
2318 	 * the other task will join us.
2319 	 */
2320 	if (my_grp->nr_tasks > grp->nr_tasks)
2321 		goto no_join;
2322 
2323 	/*
2324 	 * Tie-break on the grp address.
2325 	 */
2326 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2327 		goto no_join;
2328 
2329 	/* Always join threads in the same process. */
2330 	if (tsk->mm == current->mm)
2331 		join = true;
2332 
2333 	/* Simple filter to avoid false positives due to PID collisions */
2334 	if (flags & TNF_SHARED)
2335 		join = true;
2336 
2337 	/* Update priv based on whether false sharing was detected */
2338 	*priv = !join;
2339 
2340 	if (join && !get_numa_group(grp))
2341 		goto no_join;
2342 
2343 	rcu_read_unlock();
2344 
2345 	if (!join)
2346 		return;
2347 
2348 	BUG_ON(irqs_disabled());
2349 	double_lock_irq(&my_grp->lock, &grp->lock);
2350 
2351 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2352 		my_grp->faults[i] -= p->numa_faults[i];
2353 		grp->faults[i] += p->numa_faults[i];
2354 	}
2355 	my_grp->total_faults -= p->total_numa_faults;
2356 	grp->total_faults += p->total_numa_faults;
2357 
2358 	my_grp->nr_tasks--;
2359 	grp->nr_tasks++;
2360 
2361 	spin_unlock(&my_grp->lock);
2362 	spin_unlock_irq(&grp->lock);
2363 
2364 	rcu_assign_pointer(p->numa_group, grp);
2365 
2366 	put_numa_group(my_grp);
2367 	return;
2368 
2369 no_join:
2370 	rcu_read_unlock();
2371 	return;
2372 }
2373 
2374 void task_numa_free(struct task_struct *p)
2375 {
2376 	struct numa_group *grp = p->numa_group;
2377 	void *numa_faults = p->numa_faults;
2378 	unsigned long flags;
2379 	int i;
2380 
2381 	if (grp) {
2382 		spin_lock_irqsave(&grp->lock, flags);
2383 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2384 			grp->faults[i] -= p->numa_faults[i];
2385 		grp->total_faults -= p->total_numa_faults;
2386 
2387 		grp->nr_tasks--;
2388 		spin_unlock_irqrestore(&grp->lock, flags);
2389 		RCU_INIT_POINTER(p->numa_group, NULL);
2390 		put_numa_group(grp);
2391 	}
2392 
2393 	p->numa_faults = NULL;
2394 	kfree(numa_faults);
2395 }
2396 
2397 /*
2398  * Got a PROT_NONE fault for a page on @node.
2399  */
2400 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2401 {
2402 	struct task_struct *p = current;
2403 	bool migrated = flags & TNF_MIGRATED;
2404 	int cpu_node = task_node(current);
2405 	int local = !!(flags & TNF_FAULT_LOCAL);
2406 	struct numa_group *ng;
2407 	int priv;
2408 
2409 	if (!static_branch_likely(&sched_numa_balancing))
2410 		return;
2411 
2412 	/* for example, ksmd faulting in a user's mm */
2413 	if (!p->mm)
2414 		return;
2415 
2416 	/* Allocate buffer to track faults on a per-node basis */
2417 	if (unlikely(!p->numa_faults)) {
2418 		int size = sizeof(*p->numa_faults) *
2419 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2420 
2421 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2422 		if (!p->numa_faults)
2423 			return;
2424 
2425 		p->total_numa_faults = 0;
2426 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2427 	}
2428 
2429 	/*
2430 	 * First accesses are treated as private, otherwise consider accesses
2431 	 * to be private if the accessing pid has not changed
2432 	 */
2433 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2434 		priv = 1;
2435 	} else {
2436 		priv = cpupid_match_pid(p, last_cpupid);
2437 		if (!priv && !(flags & TNF_NO_GROUP))
2438 			task_numa_group(p, last_cpupid, flags, &priv);
2439 	}
2440 
2441 	/*
2442 	 * If a workload spans multiple NUMA nodes, a shared fault that
2443 	 * occurs wholly within the set of nodes that the workload is
2444 	 * actively using should be counted as local. This allows the
2445 	 * scan rate to slow down when a workload has settled down.
2446 	 */
2447 	ng = p->numa_group;
2448 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2449 				numa_is_active_node(cpu_node, ng) &&
2450 				numa_is_active_node(mem_node, ng))
2451 		local = 1;
2452 
2453 	task_numa_placement(p);
2454 
2455 	/*
2456 	 * Retry task to preferred node migration periodically, in case it
2457 	 * case it previously failed, or the scheduler moved us.
2458 	 */
2459 	if (time_after(jiffies, p->numa_migrate_retry))
2460 		numa_migrate_preferred(p);
2461 
2462 	if (migrated)
2463 		p->numa_pages_migrated += pages;
2464 	if (flags & TNF_MIGRATE_FAIL)
2465 		p->numa_faults_locality[2] += pages;
2466 
2467 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2468 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2469 	p->numa_faults_locality[local] += pages;
2470 }
2471 
2472 static void reset_ptenuma_scan(struct task_struct *p)
2473 {
2474 	/*
2475 	 * We only did a read acquisition of the mmap sem, so
2476 	 * p->mm->numa_scan_seq is written to without exclusive access
2477 	 * and the update is not guaranteed to be atomic. That's not
2478 	 * much of an issue though, since this is just used for
2479 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2480 	 * expensive, to avoid any form of compiler optimizations:
2481 	 */
2482 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2483 	p->mm->numa_scan_offset = 0;
2484 }
2485 
2486 /*
2487  * The expensive part of numa migration is done from task_work context.
2488  * Triggered from task_tick_numa().
2489  */
2490 void task_numa_work(struct callback_head *work)
2491 {
2492 	unsigned long migrate, next_scan, now = jiffies;
2493 	struct task_struct *p = current;
2494 	struct mm_struct *mm = p->mm;
2495 	u64 runtime = p->se.sum_exec_runtime;
2496 	struct vm_area_struct *vma;
2497 	unsigned long start, end;
2498 	unsigned long nr_pte_updates = 0;
2499 	long pages, virtpages;
2500 
2501 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2502 
2503 	work->next = work; /* protect against double add */
2504 	/*
2505 	 * Who cares about NUMA placement when they're dying.
2506 	 *
2507 	 * NOTE: make sure not to dereference p->mm before this check,
2508 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2509 	 * without p->mm even though we still had it when we enqueued this
2510 	 * work.
2511 	 */
2512 	if (p->flags & PF_EXITING)
2513 		return;
2514 
2515 	if (!mm->numa_next_scan) {
2516 		mm->numa_next_scan = now +
2517 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2518 	}
2519 
2520 	/*
2521 	 * Enforce maximal scan/migration frequency..
2522 	 */
2523 	migrate = mm->numa_next_scan;
2524 	if (time_before(now, migrate))
2525 		return;
2526 
2527 	if (p->numa_scan_period == 0) {
2528 		p->numa_scan_period_max = task_scan_max(p);
2529 		p->numa_scan_period = task_scan_start(p);
2530 	}
2531 
2532 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2533 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2534 		return;
2535 
2536 	/*
2537 	 * Delay this task enough that another task of this mm will likely win
2538 	 * the next time around.
2539 	 */
2540 	p->node_stamp += 2 * TICK_NSEC;
2541 
2542 	start = mm->numa_scan_offset;
2543 	pages = sysctl_numa_balancing_scan_size;
2544 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2545 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2546 	if (!pages)
2547 		return;
2548 
2549 
2550 	if (!down_read_trylock(&mm->mmap_sem))
2551 		return;
2552 	vma = find_vma(mm, start);
2553 	if (!vma) {
2554 		reset_ptenuma_scan(p);
2555 		start = 0;
2556 		vma = mm->mmap;
2557 	}
2558 	for (; vma; vma = vma->vm_next) {
2559 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2560 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2561 			continue;
2562 		}
2563 
2564 		/*
2565 		 * Shared library pages mapped by multiple processes are not
2566 		 * migrated as it is expected they are cache replicated. Avoid
2567 		 * hinting faults in read-only file-backed mappings or the vdso
2568 		 * as migrating the pages will be of marginal benefit.
2569 		 */
2570 		if (!vma->vm_mm ||
2571 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2572 			continue;
2573 
2574 		/*
2575 		 * Skip inaccessible VMAs to avoid any confusion between
2576 		 * PROT_NONE and NUMA hinting ptes
2577 		 */
2578 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2579 			continue;
2580 
2581 		do {
2582 			start = max(start, vma->vm_start);
2583 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2584 			end = min(end, vma->vm_end);
2585 			nr_pte_updates = change_prot_numa(vma, start, end);
2586 
2587 			/*
2588 			 * Try to scan sysctl_numa_balancing_size worth of
2589 			 * hpages that have at least one present PTE that
2590 			 * is not already pte-numa. If the VMA contains
2591 			 * areas that are unused or already full of prot_numa
2592 			 * PTEs, scan up to virtpages, to skip through those
2593 			 * areas faster.
2594 			 */
2595 			if (nr_pte_updates)
2596 				pages -= (end - start) >> PAGE_SHIFT;
2597 			virtpages -= (end - start) >> PAGE_SHIFT;
2598 
2599 			start = end;
2600 			if (pages <= 0 || virtpages <= 0)
2601 				goto out;
2602 
2603 			cond_resched();
2604 		} while (end != vma->vm_end);
2605 	}
2606 
2607 out:
2608 	/*
2609 	 * It is possible to reach the end of the VMA list but the last few
2610 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2611 	 * would find the !migratable VMA on the next scan but not reset the
2612 	 * scanner to the start so check it now.
2613 	 */
2614 	if (vma)
2615 		mm->numa_scan_offset = start;
2616 	else
2617 		reset_ptenuma_scan(p);
2618 	up_read(&mm->mmap_sem);
2619 
2620 	/*
2621 	 * Make sure tasks use at least 32x as much time to run other code
2622 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2623 	 * Usually update_task_scan_period slows down scanning enough; on an
2624 	 * overloaded system we need to limit overhead on a per task basis.
2625 	 */
2626 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2627 		u64 diff = p->se.sum_exec_runtime - runtime;
2628 		p->node_stamp += 32 * diff;
2629 	}
2630 }
2631 
2632 /*
2633  * Drive the periodic memory faults..
2634  */
2635 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2636 {
2637 	struct callback_head *work = &curr->numa_work;
2638 	u64 period, now;
2639 
2640 	/*
2641 	 * We don't care about NUMA placement if we don't have memory.
2642 	 */
2643 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2644 		return;
2645 
2646 	/*
2647 	 * Using runtime rather than walltime has the dual advantage that
2648 	 * we (mostly) drive the selection from busy threads and that the
2649 	 * task needs to have done some actual work before we bother with
2650 	 * NUMA placement.
2651 	 */
2652 	now = curr->se.sum_exec_runtime;
2653 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2654 
2655 	if (now > curr->node_stamp + period) {
2656 		if (!curr->node_stamp)
2657 			curr->numa_scan_period = task_scan_start(curr);
2658 		curr->node_stamp += period;
2659 
2660 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2661 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2662 			task_work_add(curr, work, true);
2663 		}
2664 	}
2665 }
2666 
2667 #else
2668 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2669 {
2670 }
2671 
2672 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2673 {
2674 }
2675 
2676 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2677 {
2678 }
2679 
2680 #endif /* CONFIG_NUMA_BALANCING */
2681 
2682 static void
2683 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2684 {
2685 	update_load_add(&cfs_rq->load, se->load.weight);
2686 	if (!parent_entity(se))
2687 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2688 #ifdef CONFIG_SMP
2689 	if (entity_is_task(se)) {
2690 		struct rq *rq = rq_of(cfs_rq);
2691 
2692 		account_numa_enqueue(rq, task_of(se));
2693 		list_add(&se->group_node, &rq->cfs_tasks);
2694 	}
2695 #endif
2696 	cfs_rq->nr_running++;
2697 }
2698 
2699 static void
2700 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2701 {
2702 	update_load_sub(&cfs_rq->load, se->load.weight);
2703 	if (!parent_entity(se))
2704 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2705 #ifdef CONFIG_SMP
2706 	if (entity_is_task(se)) {
2707 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2708 		list_del_init(&se->group_node);
2709 	}
2710 #endif
2711 	cfs_rq->nr_running--;
2712 }
2713 
2714 /*
2715  * Signed add and clamp on underflow.
2716  *
2717  * Explicitly do a load-store to ensure the intermediate value never hits
2718  * memory. This allows lockless observations without ever seeing the negative
2719  * values.
2720  */
2721 #define add_positive(_ptr, _val) do {                           \
2722 	typeof(_ptr) ptr = (_ptr);                              \
2723 	typeof(_val) val = (_val);                              \
2724 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2725 								\
2726 	res = var + val;                                        \
2727 								\
2728 	if (val < 0 && res > var)                               \
2729 		res = 0;                                        \
2730 								\
2731 	WRITE_ONCE(*ptr, res);                                  \
2732 } while (0)
2733 
2734 /*
2735  * Unsigned subtract and clamp on underflow.
2736  *
2737  * Explicitly do a load-store to ensure the intermediate value never hits
2738  * memory. This allows lockless observations without ever seeing the negative
2739  * values.
2740  */
2741 #define sub_positive(_ptr, _val) do {				\
2742 	typeof(_ptr) ptr = (_ptr);				\
2743 	typeof(*ptr) val = (_val);				\
2744 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
2745 	res = var - val;					\
2746 	if (res > var)						\
2747 		res = 0;					\
2748 	WRITE_ONCE(*ptr, res);					\
2749 } while (0)
2750 
2751 #ifdef CONFIG_SMP
2752 /*
2753  * XXX we want to get rid of these helpers and use the full load resolution.
2754  */
2755 static inline long se_weight(struct sched_entity *se)
2756 {
2757 	return scale_load_down(se->load.weight);
2758 }
2759 
2760 static inline long se_runnable(struct sched_entity *se)
2761 {
2762 	return scale_load_down(se->runnable_weight);
2763 }
2764 
2765 static inline void
2766 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2767 {
2768 	cfs_rq->runnable_weight += se->runnable_weight;
2769 
2770 	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2771 	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2772 }
2773 
2774 static inline void
2775 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2776 {
2777 	cfs_rq->runnable_weight -= se->runnable_weight;
2778 
2779 	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2780 	sub_positive(&cfs_rq->avg.runnable_load_sum,
2781 		     se_runnable(se) * se->avg.runnable_load_sum);
2782 }
2783 
2784 static inline void
2785 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2786 {
2787 	cfs_rq->avg.load_avg += se->avg.load_avg;
2788 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2789 }
2790 
2791 static inline void
2792 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2793 {
2794 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2795 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2796 }
2797 #else
2798 static inline void
2799 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2800 static inline void
2801 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2802 static inline void
2803 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2804 static inline void
2805 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2806 #endif
2807 
2808 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2809 			    unsigned long weight, unsigned long runnable)
2810 {
2811 	if (se->on_rq) {
2812 		/* commit outstanding execution time */
2813 		if (cfs_rq->curr == se)
2814 			update_curr(cfs_rq);
2815 		account_entity_dequeue(cfs_rq, se);
2816 		dequeue_runnable_load_avg(cfs_rq, se);
2817 	}
2818 	dequeue_load_avg(cfs_rq, se);
2819 
2820 	se->runnable_weight = runnable;
2821 	update_load_set(&se->load, weight);
2822 
2823 #ifdef CONFIG_SMP
2824 	do {
2825 		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2826 
2827 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2828 		se->avg.runnable_load_avg =
2829 			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2830 	} while (0);
2831 #endif
2832 
2833 	enqueue_load_avg(cfs_rq, se);
2834 	if (se->on_rq) {
2835 		account_entity_enqueue(cfs_rq, se);
2836 		enqueue_runnable_load_avg(cfs_rq, se);
2837 	}
2838 }
2839 
2840 void reweight_task(struct task_struct *p, int prio)
2841 {
2842 	struct sched_entity *se = &p->se;
2843 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2844 	struct load_weight *load = &se->load;
2845 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2846 
2847 	reweight_entity(cfs_rq, se, weight, weight);
2848 	load->inv_weight = sched_prio_to_wmult[prio];
2849 }
2850 
2851 #ifdef CONFIG_FAIR_GROUP_SCHED
2852 #ifdef CONFIG_SMP
2853 /*
2854  * All this does is approximate the hierarchical proportion which includes that
2855  * global sum we all love to hate.
2856  *
2857  * That is, the weight of a group entity, is the proportional share of the
2858  * group weight based on the group runqueue weights. That is:
2859  *
2860  *                     tg->weight * grq->load.weight
2861  *   ge->load.weight = -----------------------------               (1)
2862  *			  \Sum grq->load.weight
2863  *
2864  * Now, because computing that sum is prohibitively expensive to compute (been
2865  * there, done that) we approximate it with this average stuff. The average
2866  * moves slower and therefore the approximation is cheaper and more stable.
2867  *
2868  * So instead of the above, we substitute:
2869  *
2870  *   grq->load.weight -> grq->avg.load_avg                         (2)
2871  *
2872  * which yields the following:
2873  *
2874  *                     tg->weight * grq->avg.load_avg
2875  *   ge->load.weight = ------------------------------              (3)
2876  *				tg->load_avg
2877  *
2878  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2879  *
2880  * That is shares_avg, and it is right (given the approximation (2)).
2881  *
2882  * The problem with it is that because the average is slow -- it was designed
2883  * to be exactly that of course -- this leads to transients in boundary
2884  * conditions. In specific, the case where the group was idle and we start the
2885  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2886  * yielding bad latency etc..
2887  *
2888  * Now, in that special case (1) reduces to:
2889  *
2890  *                     tg->weight * grq->load.weight
2891  *   ge->load.weight = ----------------------------- = tg->weight   (4)
2892  *			    grp->load.weight
2893  *
2894  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2895  *
2896  * So what we do is modify our approximation (3) to approach (4) in the (near)
2897  * UP case, like:
2898  *
2899  *   ge->load.weight =
2900  *
2901  *              tg->weight * grq->load.weight
2902  *     ---------------------------------------------------         (5)
2903  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
2904  *
2905  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2906  * we need to use grq->avg.load_avg as its lower bound, which then gives:
2907  *
2908  *
2909  *                     tg->weight * grq->load.weight
2910  *   ge->load.weight = -----------------------------		   (6)
2911  *				tg_load_avg'
2912  *
2913  * Where:
2914  *
2915  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2916  *                  max(grq->load.weight, grq->avg.load_avg)
2917  *
2918  * And that is shares_weight and is icky. In the (near) UP case it approaches
2919  * (4) while in the normal case it approaches (3). It consistently
2920  * overestimates the ge->load.weight and therefore:
2921  *
2922  *   \Sum ge->load.weight >= tg->weight
2923  *
2924  * hence icky!
2925  */
2926 static long calc_group_shares(struct cfs_rq *cfs_rq)
2927 {
2928 	long tg_weight, tg_shares, load, shares;
2929 	struct task_group *tg = cfs_rq->tg;
2930 
2931 	tg_shares = READ_ONCE(tg->shares);
2932 
2933 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2934 
2935 	tg_weight = atomic_long_read(&tg->load_avg);
2936 
2937 	/* Ensure tg_weight >= load */
2938 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2939 	tg_weight += load;
2940 
2941 	shares = (tg_shares * load);
2942 	if (tg_weight)
2943 		shares /= tg_weight;
2944 
2945 	/*
2946 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2947 	 * of a group with small tg->shares value. It is a floor value which is
2948 	 * assigned as a minimum load.weight to the sched_entity representing
2949 	 * the group on a CPU.
2950 	 *
2951 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2952 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2953 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2954 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2955 	 * instead of 0.
2956 	 */
2957 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
2958 }
2959 
2960 /*
2961  * This calculates the effective runnable weight for a group entity based on
2962  * the group entity weight calculated above.
2963  *
2964  * Because of the above approximation (2), our group entity weight is
2965  * an load_avg based ratio (3). This means that it includes blocked load and
2966  * does not represent the runnable weight.
2967  *
2968  * Approximate the group entity's runnable weight per ratio from the group
2969  * runqueue:
2970  *
2971  *					     grq->avg.runnable_load_avg
2972  *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
2973  *						 grq->avg.load_avg
2974  *
2975  * However, analogous to above, since the avg numbers are slow, this leads to
2976  * transients in the from-idle case. Instead we use:
2977  *
2978  *   ge->runnable_weight = ge->load.weight *
2979  *
2980  *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
2981  *		-----------------------------------------------------	(8)
2982  *		      max(grq->avg.load_avg, grq->load.weight)
2983  *
2984  * Where these max() serve both to use the 'instant' values to fix the slow
2985  * from-idle and avoid the /0 on to-idle, similar to (6).
2986  */
2987 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2988 {
2989 	long runnable, load_avg;
2990 
2991 	load_avg = max(cfs_rq->avg.load_avg,
2992 		       scale_load_down(cfs_rq->load.weight));
2993 
2994 	runnable = max(cfs_rq->avg.runnable_load_avg,
2995 		       scale_load_down(cfs_rq->runnable_weight));
2996 
2997 	runnable *= shares;
2998 	if (load_avg)
2999 		runnable /= load_avg;
3000 
3001 	return clamp_t(long, runnable, MIN_SHARES, shares);
3002 }
3003 #endif /* CONFIG_SMP */
3004 
3005 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3006 
3007 /*
3008  * Recomputes the group entity based on the current state of its group
3009  * runqueue.
3010  */
3011 static void update_cfs_group(struct sched_entity *se)
3012 {
3013 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3014 	long shares, runnable;
3015 
3016 	if (!gcfs_rq)
3017 		return;
3018 
3019 	if (throttled_hierarchy(gcfs_rq))
3020 		return;
3021 
3022 #ifndef CONFIG_SMP
3023 	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3024 
3025 	if (likely(se->load.weight == shares))
3026 		return;
3027 #else
3028 	shares   = calc_group_shares(gcfs_rq);
3029 	runnable = calc_group_runnable(gcfs_rq, shares);
3030 #endif
3031 
3032 	reweight_entity(cfs_rq_of(se), se, shares, runnable);
3033 }
3034 
3035 #else /* CONFIG_FAIR_GROUP_SCHED */
3036 static inline void update_cfs_group(struct sched_entity *se)
3037 {
3038 }
3039 #endif /* CONFIG_FAIR_GROUP_SCHED */
3040 
3041 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3042 {
3043 	struct rq *rq = rq_of(cfs_rq);
3044 
3045 	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3046 		/*
3047 		 * There are a few boundary cases this might miss but it should
3048 		 * get called often enough that that should (hopefully) not be
3049 		 * a real problem.
3050 		 *
3051 		 * It will not get called when we go idle, because the idle
3052 		 * thread is a different class (!fair), nor will the utilization
3053 		 * number include things like RT tasks.
3054 		 *
3055 		 * As is, the util number is not freq-invariant (we'd have to
3056 		 * implement arch_scale_freq_capacity() for that).
3057 		 *
3058 		 * See cpu_util().
3059 		 */
3060 		cpufreq_update_util(rq, flags);
3061 	}
3062 }
3063 
3064 #ifdef CONFIG_SMP
3065 /*
3066  * Approximate:
3067  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
3068  */
3069 static u64 decay_load(u64 val, u64 n)
3070 {
3071 	unsigned int local_n;
3072 
3073 	if (unlikely(n > LOAD_AVG_PERIOD * 63))
3074 		return 0;
3075 
3076 	/* after bounds checking we can collapse to 32-bit */
3077 	local_n = n;
3078 
3079 	/*
3080 	 * As y^PERIOD = 1/2, we can combine
3081 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
3082 	 * With a look-up table which covers y^n (n<PERIOD)
3083 	 *
3084 	 * To achieve constant time decay_load.
3085 	 */
3086 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
3087 		val >>= local_n / LOAD_AVG_PERIOD;
3088 		local_n %= LOAD_AVG_PERIOD;
3089 	}
3090 
3091 	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
3092 	return val;
3093 }
3094 
3095 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
3096 {
3097 	u32 c1, c2, c3 = d3; /* y^0 == 1 */
3098 
3099 	/*
3100 	 * c1 = d1 y^p
3101 	 */
3102 	c1 = decay_load((u64)d1, periods);
3103 
3104 	/*
3105 	 *            p-1
3106 	 * c2 = 1024 \Sum y^n
3107 	 *            n=1
3108 	 *
3109 	 *              inf        inf
3110 	 *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
3111 	 *              n=0        n=p
3112 	 */
3113 	c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
3114 
3115 	return c1 + c2 + c3;
3116 }
3117 
3118 /*
3119  * Accumulate the three separate parts of the sum; d1 the remainder
3120  * of the last (incomplete) period, d2 the span of full periods and d3
3121  * the remainder of the (incomplete) current period.
3122  *
3123  *           d1          d2           d3
3124  *           ^           ^            ^
3125  *           |           |            |
3126  *         |<->|<----------------->|<--->|
3127  * ... |---x---|------| ... |------|-----x (now)
3128  *
3129  *                           p-1
3130  * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
3131  *                           n=1
3132  *
3133  *    = u y^p +					(Step 1)
3134  *
3135  *                     p-1
3136  *      d1 y^p + 1024 \Sum y^n + d3 y^0		(Step 2)
3137  *                     n=1
3138  */
3139 static __always_inline u32
3140 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
3141 	       unsigned long load, unsigned long runnable, int running)
3142 {
3143 	unsigned long scale_freq, scale_cpu;
3144 	u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
3145 	u64 periods;
3146 
3147 	scale_freq = arch_scale_freq_capacity(cpu);
3148 	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
3149 
3150 	delta += sa->period_contrib;
3151 	periods = delta / 1024; /* A period is 1024us (~1ms) */
3152 
3153 	/*
3154 	 * Step 1: decay old *_sum if we crossed period boundaries.
3155 	 */
3156 	if (periods) {
3157 		sa->load_sum = decay_load(sa->load_sum, periods);
3158 		sa->runnable_load_sum =
3159 			decay_load(sa->runnable_load_sum, periods);
3160 		sa->util_sum = decay_load((u64)(sa->util_sum), periods);
3161 
3162 		/*
3163 		 * Step 2
3164 		 */
3165 		delta %= 1024;
3166 		contrib = __accumulate_pelt_segments(periods,
3167 				1024 - sa->period_contrib, delta);
3168 	}
3169 	sa->period_contrib = delta;
3170 
3171 	contrib = cap_scale(contrib, scale_freq);
3172 	if (load)
3173 		sa->load_sum += load * contrib;
3174 	if (runnable)
3175 		sa->runnable_load_sum += runnable * contrib;
3176 	if (running)
3177 		sa->util_sum += contrib * scale_cpu;
3178 
3179 	return periods;
3180 }
3181 
3182 /*
3183  * We can represent the historical contribution to runnable average as the
3184  * coefficients of a geometric series.  To do this we sub-divide our runnable
3185  * history into segments of approximately 1ms (1024us); label the segment that
3186  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
3187  *
3188  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
3189  *      p0            p1           p2
3190  *     (now)       (~1ms ago)  (~2ms ago)
3191  *
3192  * Let u_i denote the fraction of p_i that the entity was runnable.
3193  *
3194  * We then designate the fractions u_i as our co-efficients, yielding the
3195  * following representation of historical load:
3196  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
3197  *
3198  * We choose y based on the with of a reasonably scheduling period, fixing:
3199  *   y^32 = 0.5
3200  *
3201  * This means that the contribution to load ~32ms ago (u_32) will be weighted
3202  * approximately half as much as the contribution to load within the last ms
3203  * (u_0).
3204  *
3205  * When a period "rolls over" and we have new u_0`, multiplying the previous
3206  * sum again by y is sufficient to update:
3207  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
3208  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
3209  */
3210 static __always_inline int
3211 ___update_load_sum(u64 now, int cpu, struct sched_avg *sa,
3212 		  unsigned long load, unsigned long runnable, int running)
3213 {
3214 	u64 delta;
3215 
3216 	delta = now - sa->last_update_time;
3217 	/*
3218 	 * This should only happen when time goes backwards, which it
3219 	 * unfortunately does during sched clock init when we swap over to TSC.
3220 	 */
3221 	if ((s64)delta < 0) {
3222 		sa->last_update_time = now;
3223 		return 0;
3224 	}
3225 
3226 	/*
3227 	 * Use 1024ns as the unit of measurement since it's a reasonable
3228 	 * approximation of 1us and fast to compute.
3229 	 */
3230 	delta >>= 10;
3231 	if (!delta)
3232 		return 0;
3233 
3234 	sa->last_update_time += delta << 10;
3235 
3236 	/*
3237 	 * running is a subset of runnable (weight) so running can't be set if
3238 	 * runnable is clear. But there are some corner cases where the current
3239 	 * se has been already dequeued but cfs_rq->curr still points to it.
3240 	 * This means that weight will be 0 but not running for a sched_entity
3241 	 * but also for a cfs_rq if the latter becomes idle. As an example,
3242 	 * this happens during idle_balance() which calls
3243 	 * update_blocked_averages()
3244 	 */
3245 	if (!load)
3246 		runnable = running = 0;
3247 
3248 	/*
3249 	 * Now we know we crossed measurement unit boundaries. The *_avg
3250 	 * accrues by two steps:
3251 	 *
3252 	 * Step 1: accumulate *_sum since last_update_time. If we haven't
3253 	 * crossed period boundaries, finish.
3254 	 */
3255 	if (!accumulate_sum(delta, cpu, sa, load, runnable, running))
3256 		return 0;
3257 
3258 	return 1;
3259 }
3260 
3261 static __always_inline void
3262 ___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable)
3263 {
3264 	u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3265 
3266 	/*
3267 	 * Step 2: update *_avg.
3268 	 */
3269 	sa->load_avg = div_u64(load * sa->load_sum, divider);
3270 	sa->runnable_load_avg =	div_u64(runnable * sa->runnable_load_sum, divider);
3271 	sa->util_avg = sa->util_sum / divider;
3272 }
3273 
3274 /*
3275  * When a task is dequeued, its estimated utilization should not be update if
3276  * its util_avg has not been updated at least once.
3277  * This flag is used to synchronize util_avg updates with util_est updates.
3278  * We map this information into the LSB bit of the utilization saved at
3279  * dequeue time (i.e. util_est.dequeued).
3280  */
3281 #define UTIL_AVG_UNCHANGED 0x1
3282 
3283 static inline void cfs_se_util_change(struct sched_avg *avg)
3284 {
3285 	unsigned int enqueued;
3286 
3287 	if (!sched_feat(UTIL_EST))
3288 		return;
3289 
3290 	/* Avoid store if the flag has been already set */
3291 	enqueued = avg->util_est.enqueued;
3292 	if (!(enqueued & UTIL_AVG_UNCHANGED))
3293 		return;
3294 
3295 	/* Reset flag to report util_avg has been updated */
3296 	enqueued &= ~UTIL_AVG_UNCHANGED;
3297 	WRITE_ONCE(avg->util_est.enqueued, enqueued);
3298 }
3299 
3300 /*
3301  * sched_entity:
3302  *
3303  *   task:
3304  *     se_runnable() == se_weight()
3305  *
3306  *   group: [ see update_cfs_group() ]
3307  *     se_weight()   = tg->weight * grq->load_avg / tg->load_avg
3308  *     se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg
3309  *
3310  *   load_sum := runnable_sum
3311  *   load_avg = se_weight(se) * runnable_avg
3312  *
3313  *   runnable_load_sum := runnable_sum
3314  *   runnable_load_avg = se_runnable(se) * runnable_avg
3315  *
3316  * XXX collapse load_sum and runnable_load_sum
3317  *
3318  * cfq_rs:
3319  *
3320  *   load_sum = \Sum se_weight(se) * se->avg.load_sum
3321  *   load_avg = \Sum se->avg.load_avg
3322  *
3323  *   runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum
3324  *   runnable_load_avg = \Sum se->avg.runable_load_avg
3325  */
3326 
3327 static int
3328 __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
3329 {
3330 	if (entity_is_task(se))
3331 		se->runnable_weight = se->load.weight;
3332 
3333 	if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) {
3334 		___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
3335 		return 1;
3336 	}
3337 
3338 	return 0;
3339 }
3340 
3341 static int
3342 __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
3343 {
3344 	if (entity_is_task(se))
3345 		se->runnable_weight = se->load.weight;
3346 
3347 	if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq,
3348 				cfs_rq->curr == se)) {
3349 
3350 		___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
3351 		cfs_se_util_change(&se->avg);
3352 		return 1;
3353 	}
3354 
3355 	return 0;
3356 }
3357 
3358 static int
3359 __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
3360 {
3361 	if (___update_load_sum(now, cpu, &cfs_rq->avg,
3362 				scale_load_down(cfs_rq->load.weight),
3363 				scale_load_down(cfs_rq->runnable_weight),
3364 				cfs_rq->curr != NULL)) {
3365 
3366 		___update_load_avg(&cfs_rq->avg, 1, 1);
3367 		return 1;
3368 	}
3369 
3370 	return 0;
3371 }
3372 
3373 #ifdef CONFIG_FAIR_GROUP_SCHED
3374 /**
3375  * update_tg_load_avg - update the tg's load avg
3376  * @cfs_rq: the cfs_rq whose avg changed
3377  * @force: update regardless of how small the difference
3378  *
3379  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3380  * However, because tg->load_avg is a global value there are performance
3381  * considerations.
3382  *
3383  * In order to avoid having to look at the other cfs_rq's, we use a
3384  * differential update where we store the last value we propagated. This in
3385  * turn allows skipping updates if the differential is 'small'.
3386  *
3387  * Updating tg's load_avg is necessary before update_cfs_share().
3388  */
3389 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3390 {
3391 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3392 
3393 	/*
3394 	 * No need to update load_avg for root_task_group as it is not used.
3395 	 */
3396 	if (cfs_rq->tg == &root_task_group)
3397 		return;
3398 
3399 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3400 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3401 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3402 	}
3403 }
3404 
3405 /*
3406  * Called within set_task_rq() right before setting a task's CPU. The
3407  * caller only guarantees p->pi_lock is held; no other assumptions,
3408  * including the state of rq->lock, should be made.
3409  */
3410 void set_task_rq_fair(struct sched_entity *se,
3411 		      struct cfs_rq *prev, struct cfs_rq *next)
3412 {
3413 	u64 p_last_update_time;
3414 	u64 n_last_update_time;
3415 
3416 	if (!sched_feat(ATTACH_AGE_LOAD))
3417 		return;
3418 
3419 	/*
3420 	 * We are supposed to update the task to "current" time, then its up to
3421 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3422 	 * getting what current time is, so simply throw away the out-of-date
3423 	 * time. This will result in the wakee task is less decayed, but giving
3424 	 * the wakee more load sounds not bad.
3425 	 */
3426 	if (!(se->avg.last_update_time && prev))
3427 		return;
3428 
3429 #ifndef CONFIG_64BIT
3430 	{
3431 		u64 p_last_update_time_copy;
3432 		u64 n_last_update_time_copy;
3433 
3434 		do {
3435 			p_last_update_time_copy = prev->load_last_update_time_copy;
3436 			n_last_update_time_copy = next->load_last_update_time_copy;
3437 
3438 			smp_rmb();
3439 
3440 			p_last_update_time = prev->avg.last_update_time;
3441 			n_last_update_time = next->avg.last_update_time;
3442 
3443 		} while (p_last_update_time != p_last_update_time_copy ||
3444 			 n_last_update_time != n_last_update_time_copy);
3445 	}
3446 #else
3447 	p_last_update_time = prev->avg.last_update_time;
3448 	n_last_update_time = next->avg.last_update_time;
3449 #endif
3450 	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3451 	se->avg.last_update_time = n_last_update_time;
3452 }
3453 
3454 
3455 /*
3456  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3457  * propagate its contribution. The key to this propagation is the invariant
3458  * that for each group:
3459  *
3460  *   ge->avg == grq->avg						(1)
3461  *
3462  * _IFF_ we look at the pure running and runnable sums. Because they
3463  * represent the very same entity, just at different points in the hierarchy.
3464  *
3465  * Per the above update_tg_cfs_util() is trivial and simply copies the running
3466  * sum over (but still wrong, because the group entity and group rq do not have
3467  * their PELT windows aligned).
3468  *
3469  * However, update_tg_cfs_runnable() is more complex. So we have:
3470  *
3471  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3472  *
3473  * And since, like util, the runnable part should be directly transferable,
3474  * the following would _appear_ to be the straight forward approach:
3475  *
3476  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3477  *
3478  * And per (1) we have:
3479  *
3480  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3481  *
3482  * Which gives:
3483  *
3484  *                      ge->load.weight * grq->avg.load_avg
3485  *   ge->avg.load_avg = -----------------------------------		(4)
3486  *                               grq->load.weight
3487  *
3488  * Except that is wrong!
3489  *
3490  * Because while for entities historical weight is not important and we
3491  * really only care about our future and therefore can consider a pure
3492  * runnable sum, runqueues can NOT do this.
3493  *
3494  * We specifically want runqueues to have a load_avg that includes
3495  * historical weights. Those represent the blocked load, the load we expect
3496  * to (shortly) return to us. This only works by keeping the weights as
3497  * integral part of the sum. We therefore cannot decompose as per (3).
3498  *
3499  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3500  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3501  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3502  * runnable section of these tasks overlap (or not). If they were to perfectly
3503  * align the rq as a whole would be runnable 2/3 of the time. If however we
3504  * always have at least 1 runnable task, the rq as a whole is always runnable.
3505  *
3506  * So we'll have to approximate.. :/
3507  *
3508  * Given the constraint:
3509  *
3510  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3511  *
3512  * We can construct a rule that adds runnable to a rq by assuming minimal
3513  * overlap.
3514  *
3515  * On removal, we'll assume each task is equally runnable; which yields:
3516  *
3517  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3518  *
3519  * XXX: only do this for the part of runnable > running ?
3520  *
3521  */
3522 
3523 static inline void
3524 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3525 {
3526 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3527 
3528 	/* Nothing to update */
3529 	if (!delta)
3530 		return;
3531 
3532 	/*
3533 	 * The relation between sum and avg is:
3534 	 *
3535 	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
3536 	 *
3537 	 * however, the PELT windows are not aligned between grq and gse.
3538 	 */
3539 
3540 	/* Set new sched_entity's utilization */
3541 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3542 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3543 
3544 	/* Update parent cfs_rq utilization */
3545 	add_positive(&cfs_rq->avg.util_avg, delta);
3546 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3547 }
3548 
3549 static inline void
3550 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3551 {
3552 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3553 	unsigned long runnable_load_avg, load_avg;
3554 	u64 runnable_load_sum, load_sum = 0;
3555 	s64 delta_sum;
3556 
3557 	if (!runnable_sum)
3558 		return;
3559 
3560 	gcfs_rq->prop_runnable_sum = 0;
3561 
3562 	if (runnable_sum >= 0) {
3563 		/*
3564 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3565 		 * the CPU is saturated running == runnable.
3566 		 */
3567 		runnable_sum += se->avg.load_sum;
3568 		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3569 	} else {
3570 		/*
3571 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3572 		 * assuming all tasks are equally runnable.
3573 		 */
3574 		if (scale_load_down(gcfs_rq->load.weight)) {
3575 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3576 				scale_load_down(gcfs_rq->load.weight));
3577 		}
3578 
3579 		/* But make sure to not inflate se's runnable */
3580 		runnable_sum = min(se->avg.load_sum, load_sum);
3581 	}
3582 
3583 	/*
3584 	 * runnable_sum can't be lower than running_sum
3585 	 * As running sum is scale with CPU capacity wehreas the runnable sum
3586 	 * is not we rescale running_sum 1st
3587 	 */
3588 	running_sum = se->avg.util_sum /
3589 		arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
3590 	runnable_sum = max(runnable_sum, running_sum);
3591 
3592 	load_sum = (s64)se_weight(se) * runnable_sum;
3593 	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3594 
3595 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3596 	delta_avg = load_avg - se->avg.load_avg;
3597 
3598 	se->avg.load_sum = runnable_sum;
3599 	se->avg.load_avg = load_avg;
3600 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3601 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3602 
3603 	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3604 	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3605 	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3606 	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3607 
3608 	se->avg.runnable_load_sum = runnable_sum;
3609 	se->avg.runnable_load_avg = runnable_load_avg;
3610 
3611 	if (se->on_rq) {
3612 		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3613 		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3614 	}
3615 }
3616 
3617 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3618 {
3619 	cfs_rq->propagate = 1;
3620 	cfs_rq->prop_runnable_sum += runnable_sum;
3621 }
3622 
3623 /* Update task and its cfs_rq load average */
3624 static inline int propagate_entity_load_avg(struct sched_entity *se)
3625 {
3626 	struct cfs_rq *cfs_rq, *gcfs_rq;
3627 
3628 	if (entity_is_task(se))
3629 		return 0;
3630 
3631 	gcfs_rq = group_cfs_rq(se);
3632 	if (!gcfs_rq->propagate)
3633 		return 0;
3634 
3635 	gcfs_rq->propagate = 0;
3636 
3637 	cfs_rq = cfs_rq_of(se);
3638 
3639 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3640 
3641 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3642 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3643 
3644 	return 1;
3645 }
3646 
3647 /*
3648  * Check if we need to update the load and the utilization of a blocked
3649  * group_entity:
3650  */
3651 static inline bool skip_blocked_update(struct sched_entity *se)
3652 {
3653 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3654 
3655 	/*
3656 	 * If sched_entity still have not zero load or utilization, we have to
3657 	 * decay it:
3658 	 */
3659 	if (se->avg.load_avg || se->avg.util_avg)
3660 		return false;
3661 
3662 	/*
3663 	 * If there is a pending propagation, we have to update the load and
3664 	 * the utilization of the sched_entity:
3665 	 */
3666 	if (gcfs_rq->propagate)
3667 		return false;
3668 
3669 	/*
3670 	 * Otherwise, the load and the utilization of the sched_entity is
3671 	 * already zero and there is no pending propagation, so it will be a
3672 	 * waste of time to try to decay it:
3673 	 */
3674 	return true;
3675 }
3676 
3677 #else /* CONFIG_FAIR_GROUP_SCHED */
3678 
3679 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3680 
3681 static inline int propagate_entity_load_avg(struct sched_entity *se)
3682 {
3683 	return 0;
3684 }
3685 
3686 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3687 
3688 #endif /* CONFIG_FAIR_GROUP_SCHED */
3689 
3690 /**
3691  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3692  * @now: current time, as per cfs_rq_clock_task()
3693  * @cfs_rq: cfs_rq to update
3694  *
3695  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3696  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3697  * post_init_entity_util_avg().
3698  *
3699  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3700  *
3701  * Returns true if the load decayed or we removed load.
3702  *
3703  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3704  * call update_tg_load_avg() when this function returns true.
3705  */
3706 static inline int
3707 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3708 {
3709 	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3710 	struct sched_avg *sa = &cfs_rq->avg;
3711 	int decayed = 0;
3712 
3713 	if (cfs_rq->removed.nr) {
3714 		unsigned long r;
3715 		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3716 
3717 		raw_spin_lock(&cfs_rq->removed.lock);
3718 		swap(cfs_rq->removed.util_avg, removed_util);
3719 		swap(cfs_rq->removed.load_avg, removed_load);
3720 		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3721 		cfs_rq->removed.nr = 0;
3722 		raw_spin_unlock(&cfs_rq->removed.lock);
3723 
3724 		r = removed_load;
3725 		sub_positive(&sa->load_avg, r);
3726 		sub_positive(&sa->load_sum, r * divider);
3727 
3728 		r = removed_util;
3729 		sub_positive(&sa->util_avg, r);
3730 		sub_positive(&sa->util_sum, r * divider);
3731 
3732 		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3733 
3734 		decayed = 1;
3735 	}
3736 
3737 	decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3738 
3739 #ifndef CONFIG_64BIT
3740 	smp_wmb();
3741 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3742 #endif
3743 
3744 	if (decayed)
3745 		cfs_rq_util_change(cfs_rq, 0);
3746 
3747 	return decayed;
3748 }
3749 
3750 /**
3751  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3752  * @cfs_rq: cfs_rq to attach to
3753  * @se: sched_entity to attach
3754  *
3755  * Must call update_cfs_rq_load_avg() before this, since we rely on
3756  * cfs_rq->avg.last_update_time being current.
3757  */
3758 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3759 {
3760 	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3761 
3762 	/*
3763 	 * When we attach the @se to the @cfs_rq, we must align the decay
3764 	 * window because without that, really weird and wonderful things can
3765 	 * happen.
3766 	 *
3767 	 * XXX illustrate
3768 	 */
3769 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3770 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3771 
3772 	/*
3773 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3774 	 * period_contrib. This isn't strictly correct, but since we're
3775 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3776 	 * _sum a little.
3777 	 */
3778 	se->avg.util_sum = se->avg.util_avg * divider;
3779 
3780 	se->avg.load_sum = divider;
3781 	if (se_weight(se)) {
3782 		se->avg.load_sum =
3783 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3784 	}
3785 
3786 	se->avg.runnable_load_sum = se->avg.load_sum;
3787 
3788 	enqueue_load_avg(cfs_rq, se);
3789 	cfs_rq->avg.util_avg += se->avg.util_avg;
3790 	cfs_rq->avg.util_sum += se->avg.util_sum;
3791 
3792 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3793 
3794 	cfs_rq_util_change(cfs_rq, flags);
3795 }
3796 
3797 /**
3798  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3799  * @cfs_rq: cfs_rq to detach from
3800  * @se: sched_entity to detach
3801  *
3802  * Must call update_cfs_rq_load_avg() before this, since we rely on
3803  * cfs_rq->avg.last_update_time being current.
3804  */
3805 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3806 {
3807 	dequeue_load_avg(cfs_rq, se);
3808 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3809 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3810 
3811 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3812 
3813 	cfs_rq_util_change(cfs_rq, 0);
3814 }
3815 
3816 /*
3817  * Optional action to be done while updating the load average
3818  */
3819 #define UPDATE_TG	0x1
3820 #define SKIP_AGE_LOAD	0x2
3821 #define DO_ATTACH	0x4
3822 
3823 /* Update task and its cfs_rq load average */
3824 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3825 {
3826 	u64 now = cfs_rq_clock_task(cfs_rq);
3827 	struct rq *rq = rq_of(cfs_rq);
3828 	int cpu = cpu_of(rq);
3829 	int decayed;
3830 
3831 	/*
3832 	 * Track task load average for carrying it to new CPU after migrated, and
3833 	 * track group sched_entity load average for task_h_load calc in migration
3834 	 */
3835 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3836 		__update_load_avg_se(now, cpu, cfs_rq, se);
3837 
3838 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3839 	decayed |= propagate_entity_load_avg(se);
3840 
3841 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3842 
3843 		/*
3844 		 * DO_ATTACH means we're here from enqueue_entity().
3845 		 * !last_update_time means we've passed through
3846 		 * migrate_task_rq_fair() indicating we migrated.
3847 		 *
3848 		 * IOW we're enqueueing a task on a new CPU.
3849 		 */
3850 		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3851 		update_tg_load_avg(cfs_rq, 0);
3852 
3853 	} else if (decayed && (flags & UPDATE_TG))
3854 		update_tg_load_avg(cfs_rq, 0);
3855 }
3856 
3857 #ifndef CONFIG_64BIT
3858 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3859 {
3860 	u64 last_update_time_copy;
3861 	u64 last_update_time;
3862 
3863 	do {
3864 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3865 		smp_rmb();
3866 		last_update_time = cfs_rq->avg.last_update_time;
3867 	} while (last_update_time != last_update_time_copy);
3868 
3869 	return last_update_time;
3870 }
3871 #else
3872 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3873 {
3874 	return cfs_rq->avg.last_update_time;
3875 }
3876 #endif
3877 
3878 /*
3879  * Synchronize entity load avg of dequeued entity without locking
3880  * the previous rq.
3881  */
3882 void sync_entity_load_avg(struct sched_entity *se)
3883 {
3884 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3885 	u64 last_update_time;
3886 
3887 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3888 	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3889 }
3890 
3891 /*
3892  * Task first catches up with cfs_rq, and then subtract
3893  * itself from the cfs_rq (task must be off the queue now).
3894  */
3895 void remove_entity_load_avg(struct sched_entity *se)
3896 {
3897 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3898 	unsigned long flags;
3899 
3900 	/*
3901 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3902 	 * post_init_entity_util_avg() which will have added things to the
3903 	 * cfs_rq, so we can remove unconditionally.
3904 	 *
3905 	 * Similarly for groups, they will have passed through
3906 	 * post_init_entity_util_avg() before unregister_sched_fair_group()
3907 	 * calls this.
3908 	 */
3909 
3910 	sync_entity_load_avg(se);
3911 
3912 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3913 	++cfs_rq->removed.nr;
3914 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3915 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3916 	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3917 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3918 }
3919 
3920 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3921 {
3922 	return cfs_rq->avg.runnable_load_avg;
3923 }
3924 
3925 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3926 {
3927 	return cfs_rq->avg.load_avg;
3928 }
3929 
3930 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3931 
3932 static inline unsigned long task_util(struct task_struct *p)
3933 {
3934 	return READ_ONCE(p->se.avg.util_avg);
3935 }
3936 
3937 static inline unsigned long _task_util_est(struct task_struct *p)
3938 {
3939 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3940 
3941 	return max(ue.ewma, ue.enqueued);
3942 }
3943 
3944 static inline unsigned long task_util_est(struct task_struct *p)
3945 {
3946 	return max(task_util(p), _task_util_est(p));
3947 }
3948 
3949 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3950 				    struct task_struct *p)
3951 {
3952 	unsigned int enqueued;
3953 
3954 	if (!sched_feat(UTIL_EST))
3955 		return;
3956 
3957 	/* Update root cfs_rq's estimated utilization */
3958 	enqueued  = cfs_rq->avg.util_est.enqueued;
3959 	enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED);
3960 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3961 }
3962 
3963 /*
3964  * Check if a (signed) value is within a specified (unsigned) margin,
3965  * based on the observation that:
3966  *
3967  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3968  *
3969  * NOTE: this only works when value + maring < INT_MAX.
3970  */
3971 static inline bool within_margin(int value, int margin)
3972 {
3973 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3974 }
3975 
3976 static void
3977 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3978 {
3979 	long last_ewma_diff;
3980 	struct util_est ue;
3981 
3982 	if (!sched_feat(UTIL_EST))
3983 		return;
3984 
3985 	/*
3986 	 * Update root cfs_rq's estimated utilization
3987 	 *
3988 	 * If *p is the last task then the root cfs_rq's estimated utilization
3989 	 * of a CPU is 0 by definition.
3990 	 */
3991 	ue.enqueued = 0;
3992 	if (cfs_rq->nr_running) {
3993 		ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3994 		ue.enqueued -= min_t(unsigned int, ue.enqueued,
3995 				     (_task_util_est(p) | UTIL_AVG_UNCHANGED));
3996 	}
3997 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3998 
3999 	/*
4000 	 * Skip update of task's estimated utilization when the task has not
4001 	 * yet completed an activation, e.g. being migrated.
4002 	 */
4003 	if (!task_sleep)
4004 		return;
4005 
4006 	/*
4007 	 * If the PELT values haven't changed since enqueue time,
4008 	 * skip the util_est update.
4009 	 */
4010 	ue = p->se.avg.util_est;
4011 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4012 		return;
4013 
4014 	/*
4015 	 * Skip update of task's estimated utilization when its EWMA is
4016 	 * already ~1% close to its last activation value.
4017 	 */
4018 	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
4019 	last_ewma_diff = ue.enqueued - ue.ewma;
4020 	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
4021 		return;
4022 
4023 	/*
4024 	 * Update Task's estimated utilization
4025 	 *
4026 	 * When *p completes an activation we can consolidate another sample
4027 	 * of the task size. This is done by storing the current PELT value
4028 	 * as ue.enqueued and by using this value to update the Exponential
4029 	 * Weighted Moving Average (EWMA):
4030 	 *
4031 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4032 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4033 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4034 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4035 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4036 	 *
4037 	 * Where 'w' is the weight of new samples, which is configured to be
4038 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4039 	 */
4040 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4041 	ue.ewma  += last_ewma_diff;
4042 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4043 	WRITE_ONCE(p->se.avg.util_est, ue);
4044 }
4045 
4046 #else /* CONFIG_SMP */
4047 
4048 static inline int
4049 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4050 {
4051 	return 0;
4052 }
4053 
4054 #define UPDATE_TG	0x0
4055 #define SKIP_AGE_LOAD	0x0
4056 #define DO_ATTACH	0x0
4057 
4058 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4059 {
4060 	cfs_rq_util_change(cfs_rq, 0);
4061 }
4062 
4063 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4064 
4065 static inline void
4066 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
4067 static inline void
4068 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4069 
4070 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
4071 {
4072 	return 0;
4073 }
4074 
4075 static inline void
4076 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4077 
4078 static inline void
4079 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
4080 		 bool task_sleep) {}
4081 
4082 #endif /* CONFIG_SMP */
4083 
4084 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4085 {
4086 #ifdef CONFIG_SCHED_DEBUG
4087 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4088 
4089 	if (d < 0)
4090 		d = -d;
4091 
4092 	if (d > 3*sysctl_sched_latency)
4093 		schedstat_inc(cfs_rq->nr_spread_over);
4094 #endif
4095 }
4096 
4097 static void
4098 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4099 {
4100 	u64 vruntime = cfs_rq->min_vruntime;
4101 
4102 	/*
4103 	 * The 'current' period is already promised to the current tasks,
4104 	 * however the extra weight of the new task will slow them down a
4105 	 * little, place the new task so that it fits in the slot that
4106 	 * stays open at the end.
4107 	 */
4108 	if (initial && sched_feat(START_DEBIT))
4109 		vruntime += sched_vslice(cfs_rq, se);
4110 
4111 	/* sleeps up to a single latency don't count. */
4112 	if (!initial) {
4113 		unsigned long thresh = sysctl_sched_latency;
4114 
4115 		/*
4116 		 * Halve their sleep time's effect, to allow
4117 		 * for a gentler effect of sleepers:
4118 		 */
4119 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4120 			thresh >>= 1;
4121 
4122 		vruntime -= thresh;
4123 	}
4124 
4125 	/* ensure we never gain time by being placed backwards. */
4126 	se->vruntime = max_vruntime(se->vruntime, vruntime);
4127 }
4128 
4129 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4130 
4131 static inline void check_schedstat_required(void)
4132 {
4133 #ifdef CONFIG_SCHEDSTATS
4134 	if (schedstat_enabled())
4135 		return;
4136 
4137 	/* Force schedstat enabled if a dependent tracepoint is active */
4138 	if (trace_sched_stat_wait_enabled()    ||
4139 			trace_sched_stat_sleep_enabled()   ||
4140 			trace_sched_stat_iowait_enabled()  ||
4141 			trace_sched_stat_blocked_enabled() ||
4142 			trace_sched_stat_runtime_enabled())  {
4143 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4144 			     "stat_blocked and stat_runtime require the "
4145 			     "kernel parameter schedstats=enable or "
4146 			     "kernel.sched_schedstats=1\n");
4147 	}
4148 #endif
4149 }
4150 
4151 
4152 /*
4153  * MIGRATION
4154  *
4155  *	dequeue
4156  *	  update_curr()
4157  *	    update_min_vruntime()
4158  *	  vruntime -= min_vruntime
4159  *
4160  *	enqueue
4161  *	  update_curr()
4162  *	    update_min_vruntime()
4163  *	  vruntime += min_vruntime
4164  *
4165  * this way the vruntime transition between RQs is done when both
4166  * min_vruntime are up-to-date.
4167  *
4168  * WAKEUP (remote)
4169  *
4170  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4171  *	  vruntime -= min_vruntime
4172  *
4173  *	enqueue
4174  *	  update_curr()
4175  *	    update_min_vruntime()
4176  *	  vruntime += min_vruntime
4177  *
4178  * this way we don't have the most up-to-date min_vruntime on the originating
4179  * CPU and an up-to-date min_vruntime on the destination CPU.
4180  */
4181 
4182 static void
4183 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4184 {
4185 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4186 	bool curr = cfs_rq->curr == se;
4187 
4188 	/*
4189 	 * If we're the current task, we must renormalise before calling
4190 	 * update_curr().
4191 	 */
4192 	if (renorm && curr)
4193 		se->vruntime += cfs_rq->min_vruntime;
4194 
4195 	update_curr(cfs_rq);
4196 
4197 	/*
4198 	 * Otherwise, renormalise after, such that we're placed at the current
4199 	 * moment in time, instead of some random moment in the past. Being
4200 	 * placed in the past could significantly boost this task to the
4201 	 * fairness detriment of existing tasks.
4202 	 */
4203 	if (renorm && !curr)
4204 		se->vruntime += cfs_rq->min_vruntime;
4205 
4206 	/*
4207 	 * When enqueuing a sched_entity, we must:
4208 	 *   - Update loads to have both entity and cfs_rq synced with now.
4209 	 *   - Add its load to cfs_rq->runnable_avg
4210 	 *   - For group_entity, update its weight to reflect the new share of
4211 	 *     its group cfs_rq
4212 	 *   - Add its new weight to cfs_rq->load.weight
4213 	 */
4214 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4215 	update_cfs_group(se);
4216 	enqueue_runnable_load_avg(cfs_rq, se);
4217 	account_entity_enqueue(cfs_rq, se);
4218 
4219 	if (flags & ENQUEUE_WAKEUP)
4220 		place_entity(cfs_rq, se, 0);
4221 
4222 	check_schedstat_required();
4223 	update_stats_enqueue(cfs_rq, se, flags);
4224 	check_spread(cfs_rq, se);
4225 	if (!curr)
4226 		__enqueue_entity(cfs_rq, se);
4227 	se->on_rq = 1;
4228 
4229 	if (cfs_rq->nr_running == 1) {
4230 		list_add_leaf_cfs_rq(cfs_rq);
4231 		check_enqueue_throttle(cfs_rq);
4232 	}
4233 }
4234 
4235 static void __clear_buddies_last(struct sched_entity *se)
4236 {
4237 	for_each_sched_entity(se) {
4238 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4239 		if (cfs_rq->last != se)
4240 			break;
4241 
4242 		cfs_rq->last = NULL;
4243 	}
4244 }
4245 
4246 static void __clear_buddies_next(struct sched_entity *se)
4247 {
4248 	for_each_sched_entity(se) {
4249 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4250 		if (cfs_rq->next != se)
4251 			break;
4252 
4253 		cfs_rq->next = NULL;
4254 	}
4255 }
4256 
4257 static void __clear_buddies_skip(struct sched_entity *se)
4258 {
4259 	for_each_sched_entity(se) {
4260 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4261 		if (cfs_rq->skip != se)
4262 			break;
4263 
4264 		cfs_rq->skip = NULL;
4265 	}
4266 }
4267 
4268 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4269 {
4270 	if (cfs_rq->last == se)
4271 		__clear_buddies_last(se);
4272 
4273 	if (cfs_rq->next == se)
4274 		__clear_buddies_next(se);
4275 
4276 	if (cfs_rq->skip == se)
4277 		__clear_buddies_skip(se);
4278 }
4279 
4280 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4281 
4282 static void
4283 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4284 {
4285 	/*
4286 	 * Update run-time statistics of the 'current'.
4287 	 */
4288 	update_curr(cfs_rq);
4289 
4290 	/*
4291 	 * When dequeuing a sched_entity, we must:
4292 	 *   - Update loads to have both entity and cfs_rq synced with now.
4293 	 *   - Substract its load from the cfs_rq->runnable_avg.
4294 	 *   - Substract its previous weight from cfs_rq->load.weight.
4295 	 *   - For group entity, update its weight to reflect the new share
4296 	 *     of its group cfs_rq.
4297 	 */
4298 	update_load_avg(cfs_rq, se, UPDATE_TG);
4299 	dequeue_runnable_load_avg(cfs_rq, se);
4300 
4301 	update_stats_dequeue(cfs_rq, se, flags);
4302 
4303 	clear_buddies(cfs_rq, se);
4304 
4305 	if (se != cfs_rq->curr)
4306 		__dequeue_entity(cfs_rq, se);
4307 	se->on_rq = 0;
4308 	account_entity_dequeue(cfs_rq, se);
4309 
4310 	/*
4311 	 * Normalize after update_curr(); which will also have moved
4312 	 * min_vruntime if @se is the one holding it back. But before doing
4313 	 * update_min_vruntime() again, which will discount @se's position and
4314 	 * can move min_vruntime forward still more.
4315 	 */
4316 	if (!(flags & DEQUEUE_SLEEP))
4317 		se->vruntime -= cfs_rq->min_vruntime;
4318 
4319 	/* return excess runtime on last dequeue */
4320 	return_cfs_rq_runtime(cfs_rq);
4321 
4322 	update_cfs_group(se);
4323 
4324 	/*
4325 	 * Now advance min_vruntime if @se was the entity holding it back,
4326 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4327 	 * put back on, and if we advance min_vruntime, we'll be placed back
4328 	 * further than we started -- ie. we'll be penalized.
4329 	 */
4330 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
4331 		update_min_vruntime(cfs_rq);
4332 }
4333 
4334 /*
4335  * Preempt the current task with a newly woken task if needed:
4336  */
4337 static void
4338 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4339 {
4340 	unsigned long ideal_runtime, delta_exec;
4341 	struct sched_entity *se;
4342 	s64 delta;
4343 
4344 	ideal_runtime = sched_slice(cfs_rq, curr);
4345 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4346 	if (delta_exec > ideal_runtime) {
4347 		resched_curr(rq_of(cfs_rq));
4348 		/*
4349 		 * The current task ran long enough, ensure it doesn't get
4350 		 * re-elected due to buddy favours.
4351 		 */
4352 		clear_buddies(cfs_rq, curr);
4353 		return;
4354 	}
4355 
4356 	/*
4357 	 * Ensure that a task that missed wakeup preemption by a
4358 	 * narrow margin doesn't have to wait for a full slice.
4359 	 * This also mitigates buddy induced latencies under load.
4360 	 */
4361 	if (delta_exec < sysctl_sched_min_granularity)
4362 		return;
4363 
4364 	se = __pick_first_entity(cfs_rq);
4365 	delta = curr->vruntime - se->vruntime;
4366 
4367 	if (delta < 0)
4368 		return;
4369 
4370 	if (delta > ideal_runtime)
4371 		resched_curr(rq_of(cfs_rq));
4372 }
4373 
4374 static void
4375 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4376 {
4377 	/* 'current' is not kept within the tree. */
4378 	if (se->on_rq) {
4379 		/*
4380 		 * Any task has to be enqueued before it get to execute on
4381 		 * a CPU. So account for the time it spent waiting on the
4382 		 * runqueue.
4383 		 */
4384 		update_stats_wait_end(cfs_rq, se);
4385 		__dequeue_entity(cfs_rq, se);
4386 		update_load_avg(cfs_rq, se, UPDATE_TG);
4387 	}
4388 
4389 	update_stats_curr_start(cfs_rq, se);
4390 	cfs_rq->curr = se;
4391 
4392 	/*
4393 	 * Track our maximum slice length, if the CPU's load is at
4394 	 * least twice that of our own weight (i.e. dont track it
4395 	 * when there are only lesser-weight tasks around):
4396 	 */
4397 	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4398 		schedstat_set(se->statistics.slice_max,
4399 			max((u64)schedstat_val(se->statistics.slice_max),
4400 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4401 	}
4402 
4403 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4404 }
4405 
4406 static int
4407 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4408 
4409 /*
4410  * Pick the next process, keeping these things in mind, in this order:
4411  * 1) keep things fair between processes/task groups
4412  * 2) pick the "next" process, since someone really wants that to run
4413  * 3) pick the "last" process, for cache locality
4414  * 4) do not run the "skip" process, if something else is available
4415  */
4416 static struct sched_entity *
4417 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4418 {
4419 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4420 	struct sched_entity *se;
4421 
4422 	/*
4423 	 * If curr is set we have to see if its left of the leftmost entity
4424 	 * still in the tree, provided there was anything in the tree at all.
4425 	 */
4426 	if (!left || (curr && entity_before(curr, left)))
4427 		left = curr;
4428 
4429 	se = left; /* ideally we run the leftmost entity */
4430 
4431 	/*
4432 	 * Avoid running the skip buddy, if running something else can
4433 	 * be done without getting too unfair.
4434 	 */
4435 	if (cfs_rq->skip == se) {
4436 		struct sched_entity *second;
4437 
4438 		if (se == curr) {
4439 			second = __pick_first_entity(cfs_rq);
4440 		} else {
4441 			second = __pick_next_entity(se);
4442 			if (!second || (curr && entity_before(curr, second)))
4443 				second = curr;
4444 		}
4445 
4446 		if (second && wakeup_preempt_entity(second, left) < 1)
4447 			se = second;
4448 	}
4449 
4450 	/*
4451 	 * Prefer last buddy, try to return the CPU to a preempted task.
4452 	 */
4453 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4454 		se = cfs_rq->last;
4455 
4456 	/*
4457 	 * Someone really wants this to run. If it's not unfair, run it.
4458 	 */
4459 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4460 		se = cfs_rq->next;
4461 
4462 	clear_buddies(cfs_rq, se);
4463 
4464 	return se;
4465 }
4466 
4467 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4468 
4469 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4470 {
4471 	/*
4472 	 * If still on the runqueue then deactivate_task()
4473 	 * was not called and update_curr() has to be done:
4474 	 */
4475 	if (prev->on_rq)
4476 		update_curr(cfs_rq);
4477 
4478 	/* throttle cfs_rqs exceeding runtime */
4479 	check_cfs_rq_runtime(cfs_rq);
4480 
4481 	check_spread(cfs_rq, prev);
4482 
4483 	if (prev->on_rq) {
4484 		update_stats_wait_start(cfs_rq, prev);
4485 		/* Put 'current' back into the tree. */
4486 		__enqueue_entity(cfs_rq, prev);
4487 		/* in !on_rq case, update occurred at dequeue */
4488 		update_load_avg(cfs_rq, prev, 0);
4489 	}
4490 	cfs_rq->curr = NULL;
4491 }
4492 
4493 static void
4494 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4495 {
4496 	/*
4497 	 * Update run-time statistics of the 'current'.
4498 	 */
4499 	update_curr(cfs_rq);
4500 
4501 	/*
4502 	 * Ensure that runnable average is periodically updated.
4503 	 */
4504 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4505 	update_cfs_group(curr);
4506 
4507 #ifdef CONFIG_SCHED_HRTICK
4508 	/*
4509 	 * queued ticks are scheduled to match the slice, so don't bother
4510 	 * validating it and just reschedule.
4511 	 */
4512 	if (queued) {
4513 		resched_curr(rq_of(cfs_rq));
4514 		return;
4515 	}
4516 	/*
4517 	 * don't let the period tick interfere with the hrtick preemption
4518 	 */
4519 	if (!sched_feat(DOUBLE_TICK) &&
4520 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4521 		return;
4522 #endif
4523 
4524 	if (cfs_rq->nr_running > 1)
4525 		check_preempt_tick(cfs_rq, curr);
4526 }
4527 
4528 
4529 /**************************************************
4530  * CFS bandwidth control machinery
4531  */
4532 
4533 #ifdef CONFIG_CFS_BANDWIDTH
4534 
4535 #ifdef HAVE_JUMP_LABEL
4536 static struct static_key __cfs_bandwidth_used;
4537 
4538 static inline bool cfs_bandwidth_used(void)
4539 {
4540 	return static_key_false(&__cfs_bandwidth_used);
4541 }
4542 
4543 void cfs_bandwidth_usage_inc(void)
4544 {
4545 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4546 }
4547 
4548 void cfs_bandwidth_usage_dec(void)
4549 {
4550 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4551 }
4552 #else /* HAVE_JUMP_LABEL */
4553 static bool cfs_bandwidth_used(void)
4554 {
4555 	return true;
4556 }
4557 
4558 void cfs_bandwidth_usage_inc(void) {}
4559 void cfs_bandwidth_usage_dec(void) {}
4560 #endif /* HAVE_JUMP_LABEL */
4561 
4562 /*
4563  * default period for cfs group bandwidth.
4564  * default: 0.1s, units: nanoseconds
4565  */
4566 static inline u64 default_cfs_period(void)
4567 {
4568 	return 100000000ULL;
4569 }
4570 
4571 static inline u64 sched_cfs_bandwidth_slice(void)
4572 {
4573 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4574 }
4575 
4576 /*
4577  * Replenish runtime according to assigned quota and update expiration time.
4578  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4579  * additional synchronization around rq->lock.
4580  *
4581  * requires cfs_b->lock
4582  */
4583 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4584 {
4585 	u64 now;
4586 
4587 	if (cfs_b->quota == RUNTIME_INF)
4588 		return;
4589 
4590 	now = sched_clock_cpu(smp_processor_id());
4591 	cfs_b->runtime = cfs_b->quota;
4592 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4593 }
4594 
4595 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4596 {
4597 	return &tg->cfs_bandwidth;
4598 }
4599 
4600 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4601 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4602 {
4603 	if (unlikely(cfs_rq->throttle_count))
4604 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4605 
4606 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4607 }
4608 
4609 /* returns 0 on failure to allocate runtime */
4610 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4611 {
4612 	struct task_group *tg = cfs_rq->tg;
4613 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4614 	u64 amount = 0, min_amount, expires;
4615 
4616 	/* note: this is a positive sum as runtime_remaining <= 0 */
4617 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4618 
4619 	raw_spin_lock(&cfs_b->lock);
4620 	if (cfs_b->quota == RUNTIME_INF)
4621 		amount = min_amount;
4622 	else {
4623 		start_cfs_bandwidth(cfs_b);
4624 
4625 		if (cfs_b->runtime > 0) {
4626 			amount = min(cfs_b->runtime, min_amount);
4627 			cfs_b->runtime -= amount;
4628 			cfs_b->idle = 0;
4629 		}
4630 	}
4631 	expires = cfs_b->runtime_expires;
4632 	raw_spin_unlock(&cfs_b->lock);
4633 
4634 	cfs_rq->runtime_remaining += amount;
4635 	/*
4636 	 * we may have advanced our local expiration to account for allowed
4637 	 * spread between our sched_clock and the one on which runtime was
4638 	 * issued.
4639 	 */
4640 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4641 		cfs_rq->runtime_expires = expires;
4642 
4643 	return cfs_rq->runtime_remaining > 0;
4644 }
4645 
4646 /*
4647  * Note: This depends on the synchronization provided by sched_clock and the
4648  * fact that rq->clock snapshots this value.
4649  */
4650 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4651 {
4652 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4653 
4654 	/* if the deadline is ahead of our clock, nothing to do */
4655 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4656 		return;
4657 
4658 	if (cfs_rq->runtime_remaining < 0)
4659 		return;
4660 
4661 	/*
4662 	 * If the local deadline has passed we have to consider the
4663 	 * possibility that our sched_clock is 'fast' and the global deadline
4664 	 * has not truly expired.
4665 	 *
4666 	 * Fortunately we can check determine whether this the case by checking
4667 	 * whether the global deadline has advanced. It is valid to compare
4668 	 * cfs_b->runtime_expires without any locks since we only care about
4669 	 * exact equality, so a partial write will still work.
4670 	 */
4671 
4672 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
4673 		/* extend local deadline, drift is bounded above by 2 ticks */
4674 		cfs_rq->runtime_expires += TICK_NSEC;
4675 	} else {
4676 		/* global deadline is ahead, expiration has passed */
4677 		cfs_rq->runtime_remaining = 0;
4678 	}
4679 }
4680 
4681 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4682 {
4683 	/* dock delta_exec before expiring quota (as it could span periods) */
4684 	cfs_rq->runtime_remaining -= delta_exec;
4685 	expire_cfs_rq_runtime(cfs_rq);
4686 
4687 	if (likely(cfs_rq->runtime_remaining > 0))
4688 		return;
4689 
4690 	/*
4691 	 * if we're unable to extend our runtime we resched so that the active
4692 	 * hierarchy can be throttled
4693 	 */
4694 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4695 		resched_curr(rq_of(cfs_rq));
4696 }
4697 
4698 static __always_inline
4699 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4700 {
4701 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4702 		return;
4703 
4704 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4705 }
4706 
4707 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4708 {
4709 	return cfs_bandwidth_used() && cfs_rq->throttled;
4710 }
4711 
4712 /* check whether cfs_rq, or any parent, is throttled */
4713 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4714 {
4715 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4716 }
4717 
4718 /*
4719  * Ensure that neither of the group entities corresponding to src_cpu or
4720  * dest_cpu are members of a throttled hierarchy when performing group
4721  * load-balance operations.
4722  */
4723 static inline int throttled_lb_pair(struct task_group *tg,
4724 				    int src_cpu, int dest_cpu)
4725 {
4726 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4727 
4728 	src_cfs_rq = tg->cfs_rq[src_cpu];
4729 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4730 
4731 	return throttled_hierarchy(src_cfs_rq) ||
4732 	       throttled_hierarchy(dest_cfs_rq);
4733 }
4734 
4735 /* updated child weight may affect parent so we have to do this bottom up */
4736 static int tg_unthrottle_up(struct task_group *tg, void *data)
4737 {
4738 	struct rq *rq = data;
4739 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4740 
4741 	cfs_rq->throttle_count--;
4742 	if (!cfs_rq->throttle_count) {
4743 		/* adjust cfs_rq_clock_task() */
4744 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4745 					     cfs_rq->throttled_clock_task;
4746 	}
4747 
4748 	return 0;
4749 }
4750 
4751 static int tg_throttle_down(struct task_group *tg, void *data)
4752 {
4753 	struct rq *rq = data;
4754 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4755 
4756 	/* group is entering throttled state, stop time */
4757 	if (!cfs_rq->throttle_count)
4758 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4759 	cfs_rq->throttle_count++;
4760 
4761 	return 0;
4762 }
4763 
4764 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4765 {
4766 	struct rq *rq = rq_of(cfs_rq);
4767 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4768 	struct sched_entity *se;
4769 	long task_delta, dequeue = 1;
4770 	bool empty;
4771 
4772 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4773 
4774 	/* freeze hierarchy runnable averages while throttled */
4775 	rcu_read_lock();
4776 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4777 	rcu_read_unlock();
4778 
4779 	task_delta = cfs_rq->h_nr_running;
4780 	for_each_sched_entity(se) {
4781 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4782 		/* throttled entity or throttle-on-deactivate */
4783 		if (!se->on_rq)
4784 			break;
4785 
4786 		if (dequeue)
4787 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4788 		qcfs_rq->h_nr_running -= task_delta;
4789 
4790 		if (qcfs_rq->load.weight)
4791 			dequeue = 0;
4792 	}
4793 
4794 	if (!se)
4795 		sub_nr_running(rq, task_delta);
4796 
4797 	cfs_rq->throttled = 1;
4798 	cfs_rq->throttled_clock = rq_clock(rq);
4799 	raw_spin_lock(&cfs_b->lock);
4800 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4801 
4802 	/*
4803 	 * Add to the _head_ of the list, so that an already-started
4804 	 * distribute_cfs_runtime will not see us
4805 	 */
4806 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4807 
4808 	/*
4809 	 * If we're the first throttled task, make sure the bandwidth
4810 	 * timer is running.
4811 	 */
4812 	if (empty)
4813 		start_cfs_bandwidth(cfs_b);
4814 
4815 	raw_spin_unlock(&cfs_b->lock);
4816 }
4817 
4818 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4819 {
4820 	struct rq *rq = rq_of(cfs_rq);
4821 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4822 	struct sched_entity *se;
4823 	int enqueue = 1;
4824 	long task_delta;
4825 
4826 	se = cfs_rq->tg->se[cpu_of(rq)];
4827 
4828 	cfs_rq->throttled = 0;
4829 
4830 	update_rq_clock(rq);
4831 
4832 	raw_spin_lock(&cfs_b->lock);
4833 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4834 	list_del_rcu(&cfs_rq->throttled_list);
4835 	raw_spin_unlock(&cfs_b->lock);
4836 
4837 	/* update hierarchical throttle state */
4838 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4839 
4840 	if (!cfs_rq->load.weight)
4841 		return;
4842 
4843 	task_delta = cfs_rq->h_nr_running;
4844 	for_each_sched_entity(se) {
4845 		if (se->on_rq)
4846 			enqueue = 0;
4847 
4848 		cfs_rq = cfs_rq_of(se);
4849 		if (enqueue)
4850 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4851 		cfs_rq->h_nr_running += task_delta;
4852 
4853 		if (cfs_rq_throttled(cfs_rq))
4854 			break;
4855 	}
4856 
4857 	if (!se)
4858 		add_nr_running(rq, task_delta);
4859 
4860 	/* Determine whether we need to wake up potentially idle CPU: */
4861 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4862 		resched_curr(rq);
4863 }
4864 
4865 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4866 		u64 remaining, u64 expires)
4867 {
4868 	struct cfs_rq *cfs_rq;
4869 	u64 runtime;
4870 	u64 starting_runtime = remaining;
4871 
4872 	rcu_read_lock();
4873 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4874 				throttled_list) {
4875 		struct rq *rq = rq_of(cfs_rq);
4876 		struct rq_flags rf;
4877 
4878 		rq_lock(rq, &rf);
4879 		if (!cfs_rq_throttled(cfs_rq))
4880 			goto next;
4881 
4882 		runtime = -cfs_rq->runtime_remaining + 1;
4883 		if (runtime > remaining)
4884 			runtime = remaining;
4885 		remaining -= runtime;
4886 
4887 		cfs_rq->runtime_remaining += runtime;
4888 		cfs_rq->runtime_expires = expires;
4889 
4890 		/* we check whether we're throttled above */
4891 		if (cfs_rq->runtime_remaining > 0)
4892 			unthrottle_cfs_rq(cfs_rq);
4893 
4894 next:
4895 		rq_unlock(rq, &rf);
4896 
4897 		if (!remaining)
4898 			break;
4899 	}
4900 	rcu_read_unlock();
4901 
4902 	return starting_runtime - remaining;
4903 }
4904 
4905 /*
4906  * Responsible for refilling a task_group's bandwidth and unthrottling its
4907  * cfs_rqs as appropriate. If there has been no activity within the last
4908  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4909  * used to track this state.
4910  */
4911 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4912 {
4913 	u64 runtime, runtime_expires;
4914 	int throttled;
4915 
4916 	/* no need to continue the timer with no bandwidth constraint */
4917 	if (cfs_b->quota == RUNTIME_INF)
4918 		goto out_deactivate;
4919 
4920 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4921 	cfs_b->nr_periods += overrun;
4922 
4923 	/*
4924 	 * idle depends on !throttled (for the case of a large deficit), and if
4925 	 * we're going inactive then everything else can be deferred
4926 	 */
4927 	if (cfs_b->idle && !throttled)
4928 		goto out_deactivate;
4929 
4930 	__refill_cfs_bandwidth_runtime(cfs_b);
4931 
4932 	if (!throttled) {
4933 		/* mark as potentially idle for the upcoming period */
4934 		cfs_b->idle = 1;
4935 		return 0;
4936 	}
4937 
4938 	/* account preceding periods in which throttling occurred */
4939 	cfs_b->nr_throttled += overrun;
4940 
4941 	runtime_expires = cfs_b->runtime_expires;
4942 
4943 	/*
4944 	 * This check is repeated as we are holding onto the new bandwidth while
4945 	 * we unthrottle. This can potentially race with an unthrottled group
4946 	 * trying to acquire new bandwidth from the global pool. This can result
4947 	 * in us over-using our runtime if it is all used during this loop, but
4948 	 * only by limited amounts in that extreme case.
4949 	 */
4950 	while (throttled && cfs_b->runtime > 0) {
4951 		runtime = cfs_b->runtime;
4952 		raw_spin_unlock(&cfs_b->lock);
4953 		/* we can't nest cfs_b->lock while distributing bandwidth */
4954 		runtime = distribute_cfs_runtime(cfs_b, runtime,
4955 						 runtime_expires);
4956 		raw_spin_lock(&cfs_b->lock);
4957 
4958 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4959 
4960 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4961 	}
4962 
4963 	/*
4964 	 * While we are ensured activity in the period following an
4965 	 * unthrottle, this also covers the case in which the new bandwidth is
4966 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4967 	 * timer to remain active while there are any throttled entities.)
4968 	 */
4969 	cfs_b->idle = 0;
4970 
4971 	return 0;
4972 
4973 out_deactivate:
4974 	return 1;
4975 }
4976 
4977 /* a cfs_rq won't donate quota below this amount */
4978 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4979 /* minimum remaining period time to redistribute slack quota */
4980 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4981 /* how long we wait to gather additional slack before distributing */
4982 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4983 
4984 /*
4985  * Are we near the end of the current quota period?
4986  *
4987  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4988  * hrtimer base being cleared by hrtimer_start. In the case of
4989  * migrate_hrtimers, base is never cleared, so we are fine.
4990  */
4991 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4992 {
4993 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4994 	u64 remaining;
4995 
4996 	/* if the call-back is running a quota refresh is already occurring */
4997 	if (hrtimer_callback_running(refresh_timer))
4998 		return 1;
4999 
5000 	/* is a quota refresh about to occur? */
5001 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5002 	if (remaining < min_expire)
5003 		return 1;
5004 
5005 	return 0;
5006 }
5007 
5008 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5009 {
5010 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5011 
5012 	/* if there's a quota refresh soon don't bother with slack */
5013 	if (runtime_refresh_within(cfs_b, min_left))
5014 		return;
5015 
5016 	hrtimer_start(&cfs_b->slack_timer,
5017 			ns_to_ktime(cfs_bandwidth_slack_period),
5018 			HRTIMER_MODE_REL);
5019 }
5020 
5021 /* we know any runtime found here is valid as update_curr() precedes return */
5022 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5023 {
5024 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5025 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5026 
5027 	if (slack_runtime <= 0)
5028 		return;
5029 
5030 	raw_spin_lock(&cfs_b->lock);
5031 	if (cfs_b->quota != RUNTIME_INF &&
5032 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
5033 		cfs_b->runtime += slack_runtime;
5034 
5035 		/* we are under rq->lock, defer unthrottling using a timer */
5036 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5037 		    !list_empty(&cfs_b->throttled_cfs_rq))
5038 			start_cfs_slack_bandwidth(cfs_b);
5039 	}
5040 	raw_spin_unlock(&cfs_b->lock);
5041 
5042 	/* even if it's not valid for return we don't want to try again */
5043 	cfs_rq->runtime_remaining -= slack_runtime;
5044 }
5045 
5046 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5047 {
5048 	if (!cfs_bandwidth_used())
5049 		return;
5050 
5051 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5052 		return;
5053 
5054 	__return_cfs_rq_runtime(cfs_rq);
5055 }
5056 
5057 /*
5058  * This is done with a timer (instead of inline with bandwidth return) since
5059  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5060  */
5061 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5062 {
5063 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5064 	u64 expires;
5065 
5066 	/* confirm we're still not at a refresh boundary */
5067 	raw_spin_lock(&cfs_b->lock);
5068 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5069 		raw_spin_unlock(&cfs_b->lock);
5070 		return;
5071 	}
5072 
5073 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5074 		runtime = cfs_b->runtime;
5075 
5076 	expires = cfs_b->runtime_expires;
5077 	raw_spin_unlock(&cfs_b->lock);
5078 
5079 	if (!runtime)
5080 		return;
5081 
5082 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
5083 
5084 	raw_spin_lock(&cfs_b->lock);
5085 	if (expires == cfs_b->runtime_expires)
5086 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
5087 	raw_spin_unlock(&cfs_b->lock);
5088 }
5089 
5090 /*
5091  * When a group wakes up we want to make sure that its quota is not already
5092  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5093  * runtime as update_curr() throttling can not not trigger until it's on-rq.
5094  */
5095 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5096 {
5097 	if (!cfs_bandwidth_used())
5098 		return;
5099 
5100 	/* an active group must be handled by the update_curr()->put() path */
5101 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5102 		return;
5103 
5104 	/* ensure the group is not already throttled */
5105 	if (cfs_rq_throttled(cfs_rq))
5106 		return;
5107 
5108 	/* update runtime allocation */
5109 	account_cfs_rq_runtime(cfs_rq, 0);
5110 	if (cfs_rq->runtime_remaining <= 0)
5111 		throttle_cfs_rq(cfs_rq);
5112 }
5113 
5114 static void sync_throttle(struct task_group *tg, int cpu)
5115 {
5116 	struct cfs_rq *pcfs_rq, *cfs_rq;
5117 
5118 	if (!cfs_bandwidth_used())
5119 		return;
5120 
5121 	if (!tg->parent)
5122 		return;
5123 
5124 	cfs_rq = tg->cfs_rq[cpu];
5125 	pcfs_rq = tg->parent->cfs_rq[cpu];
5126 
5127 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5128 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5129 }
5130 
5131 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5132 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5133 {
5134 	if (!cfs_bandwidth_used())
5135 		return false;
5136 
5137 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5138 		return false;
5139 
5140 	/*
5141 	 * it's possible for a throttled entity to be forced into a running
5142 	 * state (e.g. set_curr_task), in this case we're finished.
5143 	 */
5144 	if (cfs_rq_throttled(cfs_rq))
5145 		return true;
5146 
5147 	throttle_cfs_rq(cfs_rq);
5148 	return true;
5149 }
5150 
5151 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5152 {
5153 	struct cfs_bandwidth *cfs_b =
5154 		container_of(timer, struct cfs_bandwidth, slack_timer);
5155 
5156 	do_sched_cfs_slack_timer(cfs_b);
5157 
5158 	return HRTIMER_NORESTART;
5159 }
5160 
5161 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5162 {
5163 	struct cfs_bandwidth *cfs_b =
5164 		container_of(timer, struct cfs_bandwidth, period_timer);
5165 	int overrun;
5166 	int idle = 0;
5167 
5168 	raw_spin_lock(&cfs_b->lock);
5169 	for (;;) {
5170 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5171 		if (!overrun)
5172 			break;
5173 
5174 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
5175 	}
5176 	if (idle)
5177 		cfs_b->period_active = 0;
5178 	raw_spin_unlock(&cfs_b->lock);
5179 
5180 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5181 }
5182 
5183 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5184 {
5185 	raw_spin_lock_init(&cfs_b->lock);
5186 	cfs_b->runtime = 0;
5187 	cfs_b->quota = RUNTIME_INF;
5188 	cfs_b->period = ns_to_ktime(default_cfs_period());
5189 
5190 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5191 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5192 	cfs_b->period_timer.function = sched_cfs_period_timer;
5193 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5194 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5195 }
5196 
5197 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5198 {
5199 	cfs_rq->runtime_enabled = 0;
5200 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5201 }
5202 
5203 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5204 {
5205 	lockdep_assert_held(&cfs_b->lock);
5206 
5207 	if (!cfs_b->period_active) {
5208 		cfs_b->period_active = 1;
5209 		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5210 		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5211 	}
5212 }
5213 
5214 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5215 {
5216 	/* init_cfs_bandwidth() was not called */
5217 	if (!cfs_b->throttled_cfs_rq.next)
5218 		return;
5219 
5220 	hrtimer_cancel(&cfs_b->period_timer);
5221 	hrtimer_cancel(&cfs_b->slack_timer);
5222 }
5223 
5224 /*
5225  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5226  *
5227  * The race is harmless, since modifying bandwidth settings of unhooked group
5228  * bits doesn't do much.
5229  */
5230 
5231 /* cpu online calback */
5232 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5233 {
5234 	struct task_group *tg;
5235 
5236 	lockdep_assert_held(&rq->lock);
5237 
5238 	rcu_read_lock();
5239 	list_for_each_entry_rcu(tg, &task_groups, list) {
5240 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5241 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5242 
5243 		raw_spin_lock(&cfs_b->lock);
5244 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5245 		raw_spin_unlock(&cfs_b->lock);
5246 	}
5247 	rcu_read_unlock();
5248 }
5249 
5250 /* cpu offline callback */
5251 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5252 {
5253 	struct task_group *tg;
5254 
5255 	lockdep_assert_held(&rq->lock);
5256 
5257 	rcu_read_lock();
5258 	list_for_each_entry_rcu(tg, &task_groups, list) {
5259 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5260 
5261 		if (!cfs_rq->runtime_enabled)
5262 			continue;
5263 
5264 		/*
5265 		 * clock_task is not advancing so we just need to make sure
5266 		 * there's some valid quota amount
5267 		 */
5268 		cfs_rq->runtime_remaining = 1;
5269 		/*
5270 		 * Offline rq is schedulable till CPU is completely disabled
5271 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5272 		 */
5273 		cfs_rq->runtime_enabled = 0;
5274 
5275 		if (cfs_rq_throttled(cfs_rq))
5276 			unthrottle_cfs_rq(cfs_rq);
5277 	}
5278 	rcu_read_unlock();
5279 }
5280 
5281 #else /* CONFIG_CFS_BANDWIDTH */
5282 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
5283 {
5284 	return rq_clock_task(rq_of(cfs_rq));
5285 }
5286 
5287 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5288 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5289 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5290 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5291 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5292 
5293 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5294 {
5295 	return 0;
5296 }
5297 
5298 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5299 {
5300 	return 0;
5301 }
5302 
5303 static inline int throttled_lb_pair(struct task_group *tg,
5304 				    int src_cpu, int dest_cpu)
5305 {
5306 	return 0;
5307 }
5308 
5309 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5310 
5311 #ifdef CONFIG_FAIR_GROUP_SCHED
5312 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5313 #endif
5314 
5315 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5316 {
5317 	return NULL;
5318 }
5319 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5320 static inline void update_runtime_enabled(struct rq *rq) {}
5321 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5322 
5323 #endif /* CONFIG_CFS_BANDWIDTH */
5324 
5325 /**************************************************
5326  * CFS operations on tasks:
5327  */
5328 
5329 #ifdef CONFIG_SCHED_HRTICK
5330 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5331 {
5332 	struct sched_entity *se = &p->se;
5333 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5334 
5335 	SCHED_WARN_ON(task_rq(p) != rq);
5336 
5337 	if (rq->cfs.h_nr_running > 1) {
5338 		u64 slice = sched_slice(cfs_rq, se);
5339 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5340 		s64 delta = slice - ran;
5341 
5342 		if (delta < 0) {
5343 			if (rq->curr == p)
5344 				resched_curr(rq);
5345 			return;
5346 		}
5347 		hrtick_start(rq, delta);
5348 	}
5349 }
5350 
5351 /*
5352  * called from enqueue/dequeue and updates the hrtick when the
5353  * current task is from our class and nr_running is low enough
5354  * to matter.
5355  */
5356 static void hrtick_update(struct rq *rq)
5357 {
5358 	struct task_struct *curr = rq->curr;
5359 
5360 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5361 		return;
5362 
5363 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5364 		hrtick_start_fair(rq, curr);
5365 }
5366 #else /* !CONFIG_SCHED_HRTICK */
5367 static inline void
5368 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5369 {
5370 }
5371 
5372 static inline void hrtick_update(struct rq *rq)
5373 {
5374 }
5375 #endif
5376 
5377 /*
5378  * The enqueue_task method is called before nr_running is
5379  * increased. Here we update the fair scheduling stats and
5380  * then put the task into the rbtree:
5381  */
5382 static void
5383 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5384 {
5385 	struct cfs_rq *cfs_rq;
5386 	struct sched_entity *se = &p->se;
5387 
5388 	/*
5389 	 * The code below (indirectly) updates schedutil which looks at
5390 	 * the cfs_rq utilization to select a frequency.
5391 	 * Let's add the task's estimated utilization to the cfs_rq's
5392 	 * estimated utilization, before we update schedutil.
5393 	 */
5394 	util_est_enqueue(&rq->cfs, p);
5395 
5396 	/*
5397 	 * If in_iowait is set, the code below may not trigger any cpufreq
5398 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5399 	 * passed.
5400 	 */
5401 	if (p->in_iowait)
5402 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5403 
5404 	for_each_sched_entity(se) {
5405 		if (se->on_rq)
5406 			break;
5407 		cfs_rq = cfs_rq_of(se);
5408 		enqueue_entity(cfs_rq, se, flags);
5409 
5410 		/*
5411 		 * end evaluation on encountering a throttled cfs_rq
5412 		 *
5413 		 * note: in the case of encountering a throttled cfs_rq we will
5414 		 * post the final h_nr_running increment below.
5415 		 */
5416 		if (cfs_rq_throttled(cfs_rq))
5417 			break;
5418 		cfs_rq->h_nr_running++;
5419 
5420 		flags = ENQUEUE_WAKEUP;
5421 	}
5422 
5423 	for_each_sched_entity(se) {
5424 		cfs_rq = cfs_rq_of(se);
5425 		cfs_rq->h_nr_running++;
5426 
5427 		if (cfs_rq_throttled(cfs_rq))
5428 			break;
5429 
5430 		update_load_avg(cfs_rq, se, UPDATE_TG);
5431 		update_cfs_group(se);
5432 	}
5433 
5434 	if (!se)
5435 		add_nr_running(rq, 1);
5436 
5437 	hrtick_update(rq);
5438 }
5439 
5440 static void set_next_buddy(struct sched_entity *se);
5441 
5442 /*
5443  * The dequeue_task method is called before nr_running is
5444  * decreased. We remove the task from the rbtree and
5445  * update the fair scheduling stats:
5446  */
5447 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5448 {
5449 	struct cfs_rq *cfs_rq;
5450 	struct sched_entity *se = &p->se;
5451 	int task_sleep = flags & DEQUEUE_SLEEP;
5452 
5453 	for_each_sched_entity(se) {
5454 		cfs_rq = cfs_rq_of(se);
5455 		dequeue_entity(cfs_rq, se, flags);
5456 
5457 		/*
5458 		 * end evaluation on encountering a throttled cfs_rq
5459 		 *
5460 		 * note: in the case of encountering a throttled cfs_rq we will
5461 		 * post the final h_nr_running decrement below.
5462 		*/
5463 		if (cfs_rq_throttled(cfs_rq))
5464 			break;
5465 		cfs_rq->h_nr_running--;
5466 
5467 		/* Don't dequeue parent if it has other entities besides us */
5468 		if (cfs_rq->load.weight) {
5469 			/* Avoid re-evaluating load for this entity: */
5470 			se = parent_entity(se);
5471 			/*
5472 			 * Bias pick_next to pick a task from this cfs_rq, as
5473 			 * p is sleeping when it is within its sched_slice.
5474 			 */
5475 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5476 				set_next_buddy(se);
5477 			break;
5478 		}
5479 		flags |= DEQUEUE_SLEEP;
5480 	}
5481 
5482 	for_each_sched_entity(se) {
5483 		cfs_rq = cfs_rq_of(se);
5484 		cfs_rq->h_nr_running--;
5485 
5486 		if (cfs_rq_throttled(cfs_rq))
5487 			break;
5488 
5489 		update_load_avg(cfs_rq, se, UPDATE_TG);
5490 		update_cfs_group(se);
5491 	}
5492 
5493 	if (!se)
5494 		sub_nr_running(rq, 1);
5495 
5496 	util_est_dequeue(&rq->cfs, p, task_sleep);
5497 	hrtick_update(rq);
5498 }
5499 
5500 #ifdef CONFIG_SMP
5501 
5502 /* Working cpumask for: load_balance, load_balance_newidle. */
5503 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5504 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5505 
5506 #ifdef CONFIG_NO_HZ_COMMON
5507 /*
5508  * per rq 'load' arrray crap; XXX kill this.
5509  */
5510 
5511 /*
5512  * The exact cpuload calculated at every tick would be:
5513  *
5514  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5515  *
5516  * If a CPU misses updates for n ticks (as it was idle) and update gets
5517  * called on the n+1-th tick when CPU may be busy, then we have:
5518  *
5519  *   load_n   = (1 - 1/2^i)^n * load_0
5520  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5521  *
5522  * decay_load_missed() below does efficient calculation of
5523  *
5524  *   load' = (1 - 1/2^i)^n * load
5525  *
5526  * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5527  * This allows us to precompute the above in said factors, thereby allowing the
5528  * reduction of an arbitrary n in O(log_2 n) steps. (See also
5529  * fixed_power_int())
5530  *
5531  * The calculation is approximated on a 128 point scale.
5532  */
5533 #define DEGRADE_SHIFT		7
5534 
5535 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5536 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5537 	{   0,   0,  0,  0,  0,  0, 0, 0 },
5538 	{  64,  32,  8,  0,  0,  0, 0, 0 },
5539 	{  96,  72, 40, 12,  1,  0, 0, 0 },
5540 	{ 112,  98, 75, 43, 15,  1, 0, 0 },
5541 	{ 120, 112, 98, 76, 45, 16, 2, 0 }
5542 };
5543 
5544 /*
5545  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5546  * would be when CPU is idle and so we just decay the old load without
5547  * adding any new load.
5548  */
5549 static unsigned long
5550 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5551 {
5552 	int j = 0;
5553 
5554 	if (!missed_updates)
5555 		return load;
5556 
5557 	if (missed_updates >= degrade_zero_ticks[idx])
5558 		return 0;
5559 
5560 	if (idx == 1)
5561 		return load >> missed_updates;
5562 
5563 	while (missed_updates) {
5564 		if (missed_updates % 2)
5565 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5566 
5567 		missed_updates >>= 1;
5568 		j++;
5569 	}
5570 	return load;
5571 }
5572 
5573 static struct {
5574 	cpumask_var_t idle_cpus_mask;
5575 	atomic_t nr_cpus;
5576 	int has_blocked;		/* Idle CPUS has blocked load */
5577 	unsigned long next_balance;     /* in jiffy units */
5578 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5579 } nohz ____cacheline_aligned;
5580 
5581 #endif /* CONFIG_NO_HZ_COMMON */
5582 
5583 /**
5584  * __cpu_load_update - update the rq->cpu_load[] statistics
5585  * @this_rq: The rq to update statistics for
5586  * @this_load: The current load
5587  * @pending_updates: The number of missed updates
5588  *
5589  * Update rq->cpu_load[] statistics. This function is usually called every
5590  * scheduler tick (TICK_NSEC).
5591  *
5592  * This function computes a decaying average:
5593  *
5594  *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5595  *
5596  * Because of NOHZ it might not get called on every tick which gives need for
5597  * the @pending_updates argument.
5598  *
5599  *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5600  *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5601  *             = A * (A * load[i]_n-2 + B) + B
5602  *             = A * (A * (A * load[i]_n-3 + B) + B) + B
5603  *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5604  *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5605  *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5606  *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5607  *
5608  * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5609  * any change in load would have resulted in the tick being turned back on.
5610  *
5611  * For regular NOHZ, this reduces to:
5612  *
5613  *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
5614  *
5615  * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5616  * term.
5617  */
5618 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5619 			    unsigned long pending_updates)
5620 {
5621 	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5622 	int i, scale;
5623 
5624 	this_rq->nr_load_updates++;
5625 
5626 	/* Update our load: */
5627 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5628 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5629 		unsigned long old_load, new_load;
5630 
5631 		/* scale is effectively 1 << i now, and >> i divides by scale */
5632 
5633 		old_load = this_rq->cpu_load[i];
5634 #ifdef CONFIG_NO_HZ_COMMON
5635 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5636 		if (tickless_load) {
5637 			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5638 			/*
5639 			 * old_load can never be a negative value because a
5640 			 * decayed tickless_load cannot be greater than the
5641 			 * original tickless_load.
5642 			 */
5643 			old_load += tickless_load;
5644 		}
5645 #endif
5646 		new_load = this_load;
5647 		/*
5648 		 * Round up the averaging division if load is increasing. This
5649 		 * prevents us from getting stuck on 9 if the load is 10, for
5650 		 * example.
5651 		 */
5652 		if (new_load > old_load)
5653 			new_load += scale - 1;
5654 
5655 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5656 	}
5657 
5658 	sched_avg_update(this_rq);
5659 }
5660 
5661 /* Used instead of source_load when we know the type == 0 */
5662 static unsigned long weighted_cpuload(struct rq *rq)
5663 {
5664 	return cfs_rq_runnable_load_avg(&rq->cfs);
5665 }
5666 
5667 #ifdef CONFIG_NO_HZ_COMMON
5668 /*
5669  * There is no sane way to deal with nohz on smp when using jiffies because the
5670  * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5671  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5672  *
5673  * Therefore we need to avoid the delta approach from the regular tick when
5674  * possible since that would seriously skew the load calculation. This is why we
5675  * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5676  * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5677  * loop exit, nohz_idle_balance, nohz full exit...)
5678  *
5679  * This means we might still be one tick off for nohz periods.
5680  */
5681 
5682 static void cpu_load_update_nohz(struct rq *this_rq,
5683 				 unsigned long curr_jiffies,
5684 				 unsigned long load)
5685 {
5686 	unsigned long pending_updates;
5687 
5688 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5689 	if (pending_updates) {
5690 		this_rq->last_load_update_tick = curr_jiffies;
5691 		/*
5692 		 * In the regular NOHZ case, we were idle, this means load 0.
5693 		 * In the NOHZ_FULL case, we were non-idle, we should consider
5694 		 * its weighted load.
5695 		 */
5696 		cpu_load_update(this_rq, load, pending_updates);
5697 	}
5698 }
5699 
5700 /*
5701  * Called from nohz_idle_balance() to update the load ratings before doing the
5702  * idle balance.
5703  */
5704 static void cpu_load_update_idle(struct rq *this_rq)
5705 {
5706 	/*
5707 	 * bail if there's load or we're actually up-to-date.
5708 	 */
5709 	if (weighted_cpuload(this_rq))
5710 		return;
5711 
5712 	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5713 }
5714 
5715 /*
5716  * Record CPU load on nohz entry so we know the tickless load to account
5717  * on nohz exit. cpu_load[0] happens then to be updated more frequently
5718  * than other cpu_load[idx] but it should be fine as cpu_load readers
5719  * shouldn't rely into synchronized cpu_load[*] updates.
5720  */
5721 void cpu_load_update_nohz_start(void)
5722 {
5723 	struct rq *this_rq = this_rq();
5724 
5725 	/*
5726 	 * This is all lockless but should be fine. If weighted_cpuload changes
5727 	 * concurrently we'll exit nohz. And cpu_load write can race with
5728 	 * cpu_load_update_idle() but both updater would be writing the same.
5729 	 */
5730 	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5731 }
5732 
5733 /*
5734  * Account the tickless load in the end of a nohz frame.
5735  */
5736 void cpu_load_update_nohz_stop(void)
5737 {
5738 	unsigned long curr_jiffies = READ_ONCE(jiffies);
5739 	struct rq *this_rq = this_rq();
5740 	unsigned long load;
5741 	struct rq_flags rf;
5742 
5743 	if (curr_jiffies == this_rq->last_load_update_tick)
5744 		return;
5745 
5746 	load = weighted_cpuload(this_rq);
5747 	rq_lock(this_rq, &rf);
5748 	update_rq_clock(this_rq);
5749 	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5750 	rq_unlock(this_rq, &rf);
5751 }
5752 #else /* !CONFIG_NO_HZ_COMMON */
5753 static inline void cpu_load_update_nohz(struct rq *this_rq,
5754 					unsigned long curr_jiffies,
5755 					unsigned long load) { }
5756 #endif /* CONFIG_NO_HZ_COMMON */
5757 
5758 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5759 {
5760 #ifdef CONFIG_NO_HZ_COMMON
5761 	/* See the mess around cpu_load_update_nohz(). */
5762 	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5763 #endif
5764 	cpu_load_update(this_rq, load, 1);
5765 }
5766 
5767 /*
5768  * Called from scheduler_tick()
5769  */
5770 void cpu_load_update_active(struct rq *this_rq)
5771 {
5772 	unsigned long load = weighted_cpuload(this_rq);
5773 
5774 	if (tick_nohz_tick_stopped())
5775 		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5776 	else
5777 		cpu_load_update_periodic(this_rq, load);
5778 }
5779 
5780 /*
5781  * Return a low guess at the load of a migration-source CPU weighted
5782  * according to the scheduling class and "nice" value.
5783  *
5784  * We want to under-estimate the load of migration sources, to
5785  * balance conservatively.
5786  */
5787 static unsigned long source_load(int cpu, int type)
5788 {
5789 	struct rq *rq = cpu_rq(cpu);
5790 	unsigned long total = weighted_cpuload(rq);
5791 
5792 	if (type == 0 || !sched_feat(LB_BIAS))
5793 		return total;
5794 
5795 	return min(rq->cpu_load[type-1], total);
5796 }
5797 
5798 /*
5799  * Return a high guess at the load of a migration-target CPU weighted
5800  * according to the scheduling class and "nice" value.
5801  */
5802 static unsigned long target_load(int cpu, int type)
5803 {
5804 	struct rq *rq = cpu_rq(cpu);
5805 	unsigned long total = weighted_cpuload(rq);
5806 
5807 	if (type == 0 || !sched_feat(LB_BIAS))
5808 		return total;
5809 
5810 	return max(rq->cpu_load[type-1], total);
5811 }
5812 
5813 static unsigned long capacity_of(int cpu)
5814 {
5815 	return cpu_rq(cpu)->cpu_capacity;
5816 }
5817 
5818 static unsigned long capacity_orig_of(int cpu)
5819 {
5820 	return cpu_rq(cpu)->cpu_capacity_orig;
5821 }
5822 
5823 static unsigned long cpu_avg_load_per_task(int cpu)
5824 {
5825 	struct rq *rq = cpu_rq(cpu);
5826 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5827 	unsigned long load_avg = weighted_cpuload(rq);
5828 
5829 	if (nr_running)
5830 		return load_avg / nr_running;
5831 
5832 	return 0;
5833 }
5834 
5835 static void record_wakee(struct task_struct *p)
5836 {
5837 	/*
5838 	 * Only decay a single time; tasks that have less then 1 wakeup per
5839 	 * jiffy will not have built up many flips.
5840 	 */
5841 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5842 		current->wakee_flips >>= 1;
5843 		current->wakee_flip_decay_ts = jiffies;
5844 	}
5845 
5846 	if (current->last_wakee != p) {
5847 		current->last_wakee = p;
5848 		current->wakee_flips++;
5849 	}
5850 }
5851 
5852 /*
5853  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5854  *
5855  * A waker of many should wake a different task than the one last awakened
5856  * at a frequency roughly N times higher than one of its wakees.
5857  *
5858  * In order to determine whether we should let the load spread vs consolidating
5859  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5860  * partner, and a factor of lls_size higher frequency in the other.
5861  *
5862  * With both conditions met, we can be relatively sure that the relationship is
5863  * non-monogamous, with partner count exceeding socket size.
5864  *
5865  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5866  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5867  * socket size.
5868  */
5869 static int wake_wide(struct task_struct *p)
5870 {
5871 	unsigned int master = current->wakee_flips;
5872 	unsigned int slave = p->wakee_flips;
5873 	int factor = this_cpu_read(sd_llc_size);
5874 
5875 	if (master < slave)
5876 		swap(master, slave);
5877 	if (slave < factor || master < slave * factor)
5878 		return 0;
5879 	return 1;
5880 }
5881 
5882 /*
5883  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5884  * soonest. For the purpose of speed we only consider the waking and previous
5885  * CPU.
5886  *
5887  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5888  *			cache-affine and is (or	will be) idle.
5889  *
5890  * wake_affine_weight() - considers the weight to reflect the average
5891  *			  scheduling latency of the CPUs. This seems to work
5892  *			  for the overloaded case.
5893  */
5894 static int
5895 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5896 {
5897 	/*
5898 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5899 	 * context. Only allow the move if cache is shared. Otherwise an
5900 	 * interrupt intensive workload could force all tasks onto one
5901 	 * node depending on the IO topology or IRQ affinity settings.
5902 	 *
5903 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5904 	 * There is no guarantee that the cache hot data from an interrupt
5905 	 * is more important than cache hot data on the prev_cpu and from
5906 	 * a cpufreq perspective, it's better to have higher utilisation
5907 	 * on one CPU.
5908 	 */
5909 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5910 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5911 
5912 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5913 		return this_cpu;
5914 
5915 	return nr_cpumask_bits;
5916 }
5917 
5918 static int
5919 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5920 		   int this_cpu, int prev_cpu, int sync)
5921 {
5922 	s64 this_eff_load, prev_eff_load;
5923 	unsigned long task_load;
5924 
5925 	this_eff_load = target_load(this_cpu, sd->wake_idx);
5926 
5927 	if (sync) {
5928 		unsigned long current_load = task_h_load(current);
5929 
5930 		if (current_load > this_eff_load)
5931 			return this_cpu;
5932 
5933 		this_eff_load -= current_load;
5934 	}
5935 
5936 	task_load = task_h_load(p);
5937 
5938 	this_eff_load += task_load;
5939 	if (sched_feat(WA_BIAS))
5940 		this_eff_load *= 100;
5941 	this_eff_load *= capacity_of(prev_cpu);
5942 
5943 	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5944 	prev_eff_load -= task_load;
5945 	if (sched_feat(WA_BIAS))
5946 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5947 	prev_eff_load *= capacity_of(this_cpu);
5948 
5949 	/*
5950 	 * If sync, adjust the weight of prev_eff_load such that if
5951 	 * prev_eff == this_eff that select_idle_sibling() will consider
5952 	 * stacking the wakee on top of the waker if no other CPU is
5953 	 * idle.
5954 	 */
5955 	if (sync)
5956 		prev_eff_load += 1;
5957 
5958 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5959 }
5960 
5961 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5962 		       int this_cpu, int prev_cpu, int sync)
5963 {
5964 	int target = nr_cpumask_bits;
5965 
5966 	if (sched_feat(WA_IDLE))
5967 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5968 
5969 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5970 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5971 
5972 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5973 	if (target == nr_cpumask_bits)
5974 		return prev_cpu;
5975 
5976 	schedstat_inc(sd->ttwu_move_affine);
5977 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5978 	return target;
5979 }
5980 
5981 static unsigned long cpu_util_wake(int cpu, struct task_struct *p);
5982 
5983 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5984 {
5985 	return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0);
5986 }
5987 
5988 /*
5989  * find_idlest_group finds and returns the least busy CPU group within the
5990  * domain.
5991  *
5992  * Assumes p is allowed on at least one CPU in sd.
5993  */
5994 static struct sched_group *
5995 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5996 		  int this_cpu, int sd_flag)
5997 {
5998 	struct sched_group *idlest = NULL, *group = sd->groups;
5999 	struct sched_group *most_spare_sg = NULL;
6000 	unsigned long min_runnable_load = ULONG_MAX;
6001 	unsigned long this_runnable_load = ULONG_MAX;
6002 	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
6003 	unsigned long most_spare = 0, this_spare = 0;
6004 	int load_idx = sd->forkexec_idx;
6005 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
6006 	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
6007 				(sd->imbalance_pct-100) / 100;
6008 
6009 	if (sd_flag & SD_BALANCE_WAKE)
6010 		load_idx = sd->wake_idx;
6011 
6012 	do {
6013 		unsigned long load, avg_load, runnable_load;
6014 		unsigned long spare_cap, max_spare_cap;
6015 		int local_group;
6016 		int i;
6017 
6018 		/* Skip over this group if it has no CPUs allowed */
6019 		if (!cpumask_intersects(sched_group_span(group),
6020 					&p->cpus_allowed))
6021 			continue;
6022 
6023 		local_group = cpumask_test_cpu(this_cpu,
6024 					       sched_group_span(group));
6025 
6026 		/*
6027 		 * Tally up the load of all CPUs in the group and find
6028 		 * the group containing the CPU with most spare capacity.
6029 		 */
6030 		avg_load = 0;
6031 		runnable_load = 0;
6032 		max_spare_cap = 0;
6033 
6034 		for_each_cpu(i, sched_group_span(group)) {
6035 			/* Bias balancing toward CPUs of our domain */
6036 			if (local_group)
6037 				load = source_load(i, load_idx);
6038 			else
6039 				load = target_load(i, load_idx);
6040 
6041 			runnable_load += load;
6042 
6043 			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6044 
6045 			spare_cap = capacity_spare_wake(i, p);
6046 
6047 			if (spare_cap > max_spare_cap)
6048 				max_spare_cap = spare_cap;
6049 		}
6050 
6051 		/* Adjust by relative CPU capacity of the group */
6052 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
6053 					group->sgc->capacity;
6054 		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
6055 					group->sgc->capacity;
6056 
6057 		if (local_group) {
6058 			this_runnable_load = runnable_load;
6059 			this_avg_load = avg_load;
6060 			this_spare = max_spare_cap;
6061 		} else {
6062 			if (min_runnable_load > (runnable_load + imbalance)) {
6063 				/*
6064 				 * The runnable load is significantly smaller
6065 				 * so we can pick this new CPU:
6066 				 */
6067 				min_runnable_load = runnable_load;
6068 				min_avg_load = avg_load;
6069 				idlest = group;
6070 			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
6071 				   (100*min_avg_load > imbalance_scale*avg_load)) {
6072 				/*
6073 				 * The runnable loads are close so take the
6074 				 * blocked load into account through avg_load:
6075 				 */
6076 				min_avg_load = avg_load;
6077 				idlest = group;
6078 			}
6079 
6080 			if (most_spare < max_spare_cap) {
6081 				most_spare = max_spare_cap;
6082 				most_spare_sg = group;
6083 			}
6084 		}
6085 	} while (group = group->next, group != sd->groups);
6086 
6087 	/*
6088 	 * The cross-over point between using spare capacity or least load
6089 	 * is too conservative for high utilization tasks on partially
6090 	 * utilized systems if we require spare_capacity > task_util(p),
6091 	 * so we allow for some task stuffing by using
6092 	 * spare_capacity > task_util(p)/2.
6093 	 *
6094 	 * Spare capacity can't be used for fork because the utilization has
6095 	 * not been set yet, we must first select a rq to compute the initial
6096 	 * utilization.
6097 	 */
6098 	if (sd_flag & SD_BALANCE_FORK)
6099 		goto skip_spare;
6100 
6101 	if (this_spare > task_util(p) / 2 &&
6102 	    imbalance_scale*this_spare > 100*most_spare)
6103 		return NULL;
6104 
6105 	if (most_spare > task_util(p) / 2)
6106 		return most_spare_sg;
6107 
6108 skip_spare:
6109 	if (!idlest)
6110 		return NULL;
6111 
6112 	/*
6113 	 * When comparing groups across NUMA domains, it's possible for the
6114 	 * local domain to be very lightly loaded relative to the remote
6115 	 * domains but "imbalance" skews the comparison making remote CPUs
6116 	 * look much more favourable. When considering cross-domain, add
6117 	 * imbalance to the runnable load on the remote node and consider
6118 	 * staying local.
6119 	 */
6120 	if ((sd->flags & SD_NUMA) &&
6121 	    min_runnable_load + imbalance >= this_runnable_load)
6122 		return NULL;
6123 
6124 	if (min_runnable_load > (this_runnable_load + imbalance))
6125 		return NULL;
6126 
6127 	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
6128 	     (100*this_avg_load < imbalance_scale*min_avg_load))
6129 		return NULL;
6130 
6131 	return idlest;
6132 }
6133 
6134 /*
6135  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6136  */
6137 static int
6138 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6139 {
6140 	unsigned long load, min_load = ULONG_MAX;
6141 	unsigned int min_exit_latency = UINT_MAX;
6142 	u64 latest_idle_timestamp = 0;
6143 	int least_loaded_cpu = this_cpu;
6144 	int shallowest_idle_cpu = -1;
6145 	int i;
6146 
6147 	/* Check if we have any choice: */
6148 	if (group->group_weight == 1)
6149 		return cpumask_first(sched_group_span(group));
6150 
6151 	/* Traverse only the allowed CPUs */
6152 	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
6153 		if (available_idle_cpu(i)) {
6154 			struct rq *rq = cpu_rq(i);
6155 			struct cpuidle_state *idle = idle_get_state(rq);
6156 			if (idle && idle->exit_latency < min_exit_latency) {
6157 				/*
6158 				 * We give priority to a CPU whose idle state
6159 				 * has the smallest exit latency irrespective
6160 				 * of any idle timestamp.
6161 				 */
6162 				min_exit_latency = idle->exit_latency;
6163 				latest_idle_timestamp = rq->idle_stamp;
6164 				shallowest_idle_cpu = i;
6165 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
6166 				   rq->idle_stamp > latest_idle_timestamp) {
6167 				/*
6168 				 * If equal or no active idle state, then
6169 				 * the most recently idled CPU might have
6170 				 * a warmer cache.
6171 				 */
6172 				latest_idle_timestamp = rq->idle_stamp;
6173 				shallowest_idle_cpu = i;
6174 			}
6175 		} else if (shallowest_idle_cpu == -1) {
6176 			load = weighted_cpuload(cpu_rq(i));
6177 			if (load < min_load) {
6178 				min_load = load;
6179 				least_loaded_cpu = i;
6180 			}
6181 		}
6182 	}
6183 
6184 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6185 }
6186 
6187 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6188 				  int cpu, int prev_cpu, int sd_flag)
6189 {
6190 	int new_cpu = cpu;
6191 
6192 	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
6193 		return prev_cpu;
6194 
6195 	/*
6196 	 * We need task's util for capacity_spare_wake, sync it up to prev_cpu's
6197 	 * last_update_time.
6198 	 */
6199 	if (!(sd_flag & SD_BALANCE_FORK))
6200 		sync_entity_load_avg(&p->se);
6201 
6202 	while (sd) {
6203 		struct sched_group *group;
6204 		struct sched_domain *tmp;
6205 		int weight;
6206 
6207 		if (!(sd->flags & sd_flag)) {
6208 			sd = sd->child;
6209 			continue;
6210 		}
6211 
6212 		group = find_idlest_group(sd, p, cpu, sd_flag);
6213 		if (!group) {
6214 			sd = sd->child;
6215 			continue;
6216 		}
6217 
6218 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6219 		if (new_cpu == cpu) {
6220 			/* Now try balancing at a lower domain level of 'cpu': */
6221 			sd = sd->child;
6222 			continue;
6223 		}
6224 
6225 		/* Now try balancing at a lower domain level of 'new_cpu': */
6226 		cpu = new_cpu;
6227 		weight = sd->span_weight;
6228 		sd = NULL;
6229 		for_each_domain(cpu, tmp) {
6230 			if (weight <= tmp->span_weight)
6231 				break;
6232 			if (tmp->flags & sd_flag)
6233 				sd = tmp;
6234 		}
6235 	}
6236 
6237 	return new_cpu;
6238 }
6239 
6240 #ifdef CONFIG_SCHED_SMT
6241 
6242 static inline void set_idle_cores(int cpu, int val)
6243 {
6244 	struct sched_domain_shared *sds;
6245 
6246 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6247 	if (sds)
6248 		WRITE_ONCE(sds->has_idle_cores, val);
6249 }
6250 
6251 static inline bool test_idle_cores(int cpu, bool def)
6252 {
6253 	struct sched_domain_shared *sds;
6254 
6255 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6256 	if (sds)
6257 		return READ_ONCE(sds->has_idle_cores);
6258 
6259 	return def;
6260 }
6261 
6262 /*
6263  * Scans the local SMT mask to see if the entire core is idle, and records this
6264  * information in sd_llc_shared->has_idle_cores.
6265  *
6266  * Since SMT siblings share all cache levels, inspecting this limited remote
6267  * state should be fairly cheap.
6268  */
6269 void __update_idle_core(struct rq *rq)
6270 {
6271 	int core = cpu_of(rq);
6272 	int cpu;
6273 
6274 	rcu_read_lock();
6275 	if (test_idle_cores(core, true))
6276 		goto unlock;
6277 
6278 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6279 		if (cpu == core)
6280 			continue;
6281 
6282 		if (!available_idle_cpu(cpu))
6283 			goto unlock;
6284 	}
6285 
6286 	set_idle_cores(core, 1);
6287 unlock:
6288 	rcu_read_unlock();
6289 }
6290 
6291 /*
6292  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6293  * there are no idle cores left in the system; tracked through
6294  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6295  */
6296 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6297 {
6298 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6299 	int core, cpu;
6300 
6301 	if (!static_branch_likely(&sched_smt_present))
6302 		return -1;
6303 
6304 	if (!test_idle_cores(target, false))
6305 		return -1;
6306 
6307 	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
6308 
6309 	for_each_cpu_wrap(core, cpus, target) {
6310 		bool idle = true;
6311 
6312 		for_each_cpu(cpu, cpu_smt_mask(core)) {
6313 			cpumask_clear_cpu(cpu, cpus);
6314 			if (!available_idle_cpu(cpu))
6315 				idle = false;
6316 		}
6317 
6318 		if (idle)
6319 			return core;
6320 	}
6321 
6322 	/*
6323 	 * Failed to find an idle core; stop looking for one.
6324 	 */
6325 	set_idle_cores(target, 0);
6326 
6327 	return -1;
6328 }
6329 
6330 /*
6331  * Scan the local SMT mask for idle CPUs.
6332  */
6333 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6334 {
6335 	int cpu;
6336 
6337 	if (!static_branch_likely(&sched_smt_present))
6338 		return -1;
6339 
6340 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6341 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6342 			continue;
6343 		if (available_idle_cpu(cpu))
6344 			return cpu;
6345 	}
6346 
6347 	return -1;
6348 }
6349 
6350 #else /* CONFIG_SCHED_SMT */
6351 
6352 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6353 {
6354 	return -1;
6355 }
6356 
6357 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6358 {
6359 	return -1;
6360 }
6361 
6362 #endif /* CONFIG_SCHED_SMT */
6363 
6364 /*
6365  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6366  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6367  * average idle time for this rq (as found in rq->avg_idle).
6368  */
6369 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6370 {
6371 	struct sched_domain *this_sd;
6372 	u64 avg_cost, avg_idle;
6373 	u64 time, cost;
6374 	s64 delta;
6375 	int cpu, nr = INT_MAX;
6376 
6377 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6378 	if (!this_sd)
6379 		return -1;
6380 
6381 	/*
6382 	 * Due to large variance we need a large fuzz factor; hackbench in
6383 	 * particularly is sensitive here.
6384 	 */
6385 	avg_idle = this_rq()->avg_idle / 512;
6386 	avg_cost = this_sd->avg_scan_cost + 1;
6387 
6388 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6389 		return -1;
6390 
6391 	if (sched_feat(SIS_PROP)) {
6392 		u64 span_avg = sd->span_weight * avg_idle;
6393 		if (span_avg > 4*avg_cost)
6394 			nr = div_u64(span_avg, avg_cost);
6395 		else
6396 			nr = 4;
6397 	}
6398 
6399 	time = local_clock();
6400 
6401 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6402 		if (!--nr)
6403 			return -1;
6404 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6405 			continue;
6406 		if (available_idle_cpu(cpu))
6407 			break;
6408 	}
6409 
6410 	time = local_clock() - time;
6411 	cost = this_sd->avg_scan_cost;
6412 	delta = (s64)(time - cost) / 8;
6413 	this_sd->avg_scan_cost += delta;
6414 
6415 	return cpu;
6416 }
6417 
6418 /*
6419  * Try and locate an idle core/thread in the LLC cache domain.
6420  */
6421 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6422 {
6423 	struct sched_domain *sd;
6424 	int i, recent_used_cpu;
6425 
6426 	if (available_idle_cpu(target))
6427 		return target;
6428 
6429 	/*
6430 	 * If the previous CPU is cache affine and idle, don't be stupid:
6431 	 */
6432 	if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
6433 		return prev;
6434 
6435 	/* Check a recently used CPU as a potential idle candidate: */
6436 	recent_used_cpu = p->recent_used_cpu;
6437 	if (recent_used_cpu != prev &&
6438 	    recent_used_cpu != target &&
6439 	    cpus_share_cache(recent_used_cpu, target) &&
6440 	    available_idle_cpu(recent_used_cpu) &&
6441 	    cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6442 		/*
6443 		 * Replace recent_used_cpu with prev as it is a potential
6444 		 * candidate for the next wake:
6445 		 */
6446 		p->recent_used_cpu = prev;
6447 		return recent_used_cpu;
6448 	}
6449 
6450 	sd = rcu_dereference(per_cpu(sd_llc, target));
6451 	if (!sd)
6452 		return target;
6453 
6454 	i = select_idle_core(p, sd, target);
6455 	if ((unsigned)i < nr_cpumask_bits)
6456 		return i;
6457 
6458 	i = select_idle_cpu(p, sd, target);
6459 	if ((unsigned)i < nr_cpumask_bits)
6460 		return i;
6461 
6462 	i = select_idle_smt(p, sd, target);
6463 	if ((unsigned)i < nr_cpumask_bits)
6464 		return i;
6465 
6466 	return target;
6467 }
6468 
6469 /**
6470  * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6471  * @cpu: the CPU to get the utilization of
6472  *
6473  * The unit of the return value must be the one of capacity so we can compare
6474  * the utilization with the capacity of the CPU that is available for CFS task
6475  * (ie cpu_capacity).
6476  *
6477  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6478  * recent utilization of currently non-runnable tasks on a CPU. It represents
6479  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6480  * capacity_orig is the cpu_capacity available at the highest frequency
6481  * (arch_scale_freq_capacity()).
6482  * The utilization of a CPU converges towards a sum equal to or less than the
6483  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6484  * the running time on this CPU scaled by capacity_curr.
6485  *
6486  * The estimated utilization of a CPU is defined to be the maximum between its
6487  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6488  * currently RUNNABLE on that CPU.
6489  * This allows to properly represent the expected utilization of a CPU which
6490  * has just got a big task running since a long sleep period. At the same time
6491  * however it preserves the benefits of the "blocked utilization" in
6492  * describing the potential for other tasks waking up on the same CPU.
6493  *
6494  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6495  * higher than capacity_orig because of unfortunate rounding in
6496  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6497  * the average stabilizes with the new running time. We need to check that the
6498  * utilization stays within the range of [0..capacity_orig] and cap it if
6499  * necessary. Without utilization capping, a group could be seen as overloaded
6500  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6501  * available capacity. We allow utilization to overshoot capacity_curr (but not
6502  * capacity_orig) as it useful for predicting the capacity required after task
6503  * migrations (scheduler-driven DVFS).
6504  *
6505  * Return: the (estimated) utilization for the specified CPU
6506  */
6507 static inline unsigned long cpu_util(int cpu)
6508 {
6509 	struct cfs_rq *cfs_rq;
6510 	unsigned int util;
6511 
6512 	cfs_rq = &cpu_rq(cpu)->cfs;
6513 	util = READ_ONCE(cfs_rq->avg.util_avg);
6514 
6515 	if (sched_feat(UTIL_EST))
6516 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6517 
6518 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6519 }
6520 
6521 /*
6522  * cpu_util_wake: Compute CPU utilization with any contributions from
6523  * the waking task p removed.
6524  */
6525 static unsigned long cpu_util_wake(int cpu, struct task_struct *p)
6526 {
6527 	struct cfs_rq *cfs_rq;
6528 	unsigned int util;
6529 
6530 	/* Task has no contribution or is new */
6531 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6532 		return cpu_util(cpu);
6533 
6534 	cfs_rq = &cpu_rq(cpu)->cfs;
6535 	util = READ_ONCE(cfs_rq->avg.util_avg);
6536 
6537 	/* Discount task's blocked util from CPU's util */
6538 	util -= min_t(unsigned int, util, task_util(p));
6539 
6540 	/*
6541 	 * Covered cases:
6542 	 *
6543 	 * a) if *p is the only task sleeping on this CPU, then:
6544 	 *      cpu_util (== task_util) > util_est (== 0)
6545 	 *    and thus we return:
6546 	 *      cpu_util_wake = (cpu_util - task_util) = 0
6547 	 *
6548 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6549 	 *    IDLE, then:
6550 	 *      cpu_util >= task_util
6551 	 *      cpu_util > util_est (== 0)
6552 	 *    and thus we discount *p's blocked utilization to return:
6553 	 *      cpu_util_wake = (cpu_util - task_util) >= 0
6554 	 *
6555 	 * c) if other tasks are RUNNABLE on that CPU and
6556 	 *      util_est > cpu_util
6557 	 *    then we use util_est since it returns a more restrictive
6558 	 *    estimation of the spare capacity on that CPU, by just
6559 	 *    considering the expected utilization of tasks already
6560 	 *    runnable on that CPU.
6561 	 *
6562 	 * Cases a) and b) are covered by the above code, while case c) is
6563 	 * covered by the following code when estimated utilization is
6564 	 * enabled.
6565 	 */
6566 	if (sched_feat(UTIL_EST))
6567 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6568 
6569 	/*
6570 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6571 	 * clamp to the maximum CPU capacity to ensure consistency with
6572 	 * the cpu_util call.
6573 	 */
6574 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6575 }
6576 
6577 /*
6578  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6579  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6580  *
6581  * In that case WAKE_AFFINE doesn't make sense and we'll let
6582  * BALANCE_WAKE sort things out.
6583  */
6584 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6585 {
6586 	long min_cap, max_cap;
6587 
6588 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6589 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6590 
6591 	/* Minimum capacity is close to max, no need to abort wake_affine */
6592 	if (max_cap - min_cap < max_cap >> 3)
6593 		return 0;
6594 
6595 	/* Bring task utilization in sync with prev_cpu */
6596 	sync_entity_load_avg(&p->se);
6597 
6598 	return min_cap * 1024 < task_util(p) * capacity_margin;
6599 }
6600 
6601 /*
6602  * select_task_rq_fair: Select target runqueue for the waking task in domains
6603  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6604  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6605  *
6606  * Balances load by selecting the idlest CPU in the idlest group, or under
6607  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6608  *
6609  * Returns the target CPU number.
6610  *
6611  * preempt must be disabled.
6612  */
6613 static int
6614 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6615 {
6616 	struct sched_domain *tmp, *sd = NULL;
6617 	int cpu = smp_processor_id();
6618 	int new_cpu = prev_cpu;
6619 	int want_affine = 0;
6620 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6621 
6622 	if (sd_flag & SD_BALANCE_WAKE) {
6623 		record_wakee(p);
6624 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6625 			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
6626 	}
6627 
6628 	rcu_read_lock();
6629 	for_each_domain(cpu, tmp) {
6630 		if (!(tmp->flags & SD_LOAD_BALANCE))
6631 			break;
6632 
6633 		/*
6634 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6635 		 * cpu is a valid SD_WAKE_AFFINE target.
6636 		 */
6637 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6638 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6639 			if (cpu != prev_cpu)
6640 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6641 
6642 			sd = NULL; /* Prefer wake_affine over balance flags */
6643 			break;
6644 		}
6645 
6646 		if (tmp->flags & sd_flag)
6647 			sd = tmp;
6648 		else if (!want_affine)
6649 			break;
6650 	}
6651 
6652 	if (unlikely(sd)) {
6653 		/* Slow path */
6654 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6655 	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6656 		/* Fast path */
6657 
6658 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6659 
6660 		if (want_affine)
6661 			current->recent_used_cpu = cpu;
6662 	}
6663 	rcu_read_unlock();
6664 
6665 	return new_cpu;
6666 }
6667 
6668 static void detach_entity_cfs_rq(struct sched_entity *se);
6669 
6670 /*
6671  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6672  * cfs_rq_of(p) references at time of call are still valid and identify the
6673  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6674  */
6675 static void migrate_task_rq_fair(struct task_struct *p)
6676 {
6677 	/*
6678 	 * As blocked tasks retain absolute vruntime the migration needs to
6679 	 * deal with this by subtracting the old and adding the new
6680 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6681 	 * the task on the new runqueue.
6682 	 */
6683 	if (p->state == TASK_WAKING) {
6684 		struct sched_entity *se = &p->se;
6685 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6686 		u64 min_vruntime;
6687 
6688 #ifndef CONFIG_64BIT
6689 		u64 min_vruntime_copy;
6690 
6691 		do {
6692 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6693 			smp_rmb();
6694 			min_vruntime = cfs_rq->min_vruntime;
6695 		} while (min_vruntime != min_vruntime_copy);
6696 #else
6697 		min_vruntime = cfs_rq->min_vruntime;
6698 #endif
6699 
6700 		se->vruntime -= min_vruntime;
6701 	}
6702 
6703 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6704 		/*
6705 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6706 		 * rq->lock and can modify state directly.
6707 		 */
6708 		lockdep_assert_held(&task_rq(p)->lock);
6709 		detach_entity_cfs_rq(&p->se);
6710 
6711 	} else {
6712 		/*
6713 		 * We are supposed to update the task to "current" time, then
6714 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6715 		 * have difficulty in getting what current time is, so simply
6716 		 * throw away the out-of-date time. This will result in the
6717 		 * wakee task is less decayed, but giving the wakee more load
6718 		 * sounds not bad.
6719 		 */
6720 		remove_entity_load_avg(&p->se);
6721 	}
6722 
6723 	/* Tell new CPU we are migrated */
6724 	p->se.avg.last_update_time = 0;
6725 
6726 	/* We have migrated, no longer consider this task hot */
6727 	p->se.exec_start = 0;
6728 }
6729 
6730 static void task_dead_fair(struct task_struct *p)
6731 {
6732 	remove_entity_load_avg(&p->se);
6733 }
6734 #endif /* CONFIG_SMP */
6735 
6736 static unsigned long wakeup_gran(struct sched_entity *se)
6737 {
6738 	unsigned long gran = sysctl_sched_wakeup_granularity;
6739 
6740 	/*
6741 	 * Since its curr running now, convert the gran from real-time
6742 	 * to virtual-time in his units.
6743 	 *
6744 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6745 	 * they get preempted easier. That is, if 'se' < 'curr' then
6746 	 * the resulting gran will be larger, therefore penalizing the
6747 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6748 	 * be smaller, again penalizing the lighter task.
6749 	 *
6750 	 * This is especially important for buddies when the leftmost
6751 	 * task is higher priority than the buddy.
6752 	 */
6753 	return calc_delta_fair(gran, se);
6754 }
6755 
6756 /*
6757  * Should 'se' preempt 'curr'.
6758  *
6759  *             |s1
6760  *        |s2
6761  *   |s3
6762  *         g
6763  *      |<--->|c
6764  *
6765  *  w(c, s1) = -1
6766  *  w(c, s2) =  0
6767  *  w(c, s3) =  1
6768  *
6769  */
6770 static int
6771 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6772 {
6773 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6774 
6775 	if (vdiff <= 0)
6776 		return -1;
6777 
6778 	gran = wakeup_gran(se);
6779 	if (vdiff > gran)
6780 		return 1;
6781 
6782 	return 0;
6783 }
6784 
6785 static void set_last_buddy(struct sched_entity *se)
6786 {
6787 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6788 		return;
6789 
6790 	for_each_sched_entity(se) {
6791 		if (SCHED_WARN_ON(!se->on_rq))
6792 			return;
6793 		cfs_rq_of(se)->last = se;
6794 	}
6795 }
6796 
6797 static void set_next_buddy(struct sched_entity *se)
6798 {
6799 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6800 		return;
6801 
6802 	for_each_sched_entity(se) {
6803 		if (SCHED_WARN_ON(!se->on_rq))
6804 			return;
6805 		cfs_rq_of(se)->next = se;
6806 	}
6807 }
6808 
6809 static void set_skip_buddy(struct sched_entity *se)
6810 {
6811 	for_each_sched_entity(se)
6812 		cfs_rq_of(se)->skip = se;
6813 }
6814 
6815 /*
6816  * Preempt the current task with a newly woken task if needed:
6817  */
6818 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6819 {
6820 	struct task_struct *curr = rq->curr;
6821 	struct sched_entity *se = &curr->se, *pse = &p->se;
6822 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6823 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6824 	int next_buddy_marked = 0;
6825 
6826 	if (unlikely(se == pse))
6827 		return;
6828 
6829 	/*
6830 	 * This is possible from callers such as attach_tasks(), in which we
6831 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6832 	 * lead to a throttle).  This both saves work and prevents false
6833 	 * next-buddy nomination below.
6834 	 */
6835 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6836 		return;
6837 
6838 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6839 		set_next_buddy(pse);
6840 		next_buddy_marked = 1;
6841 	}
6842 
6843 	/*
6844 	 * We can come here with TIF_NEED_RESCHED already set from new task
6845 	 * wake up path.
6846 	 *
6847 	 * Note: this also catches the edge-case of curr being in a throttled
6848 	 * group (e.g. via set_curr_task), since update_curr() (in the
6849 	 * enqueue of curr) will have resulted in resched being set.  This
6850 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6851 	 * below.
6852 	 */
6853 	if (test_tsk_need_resched(curr))
6854 		return;
6855 
6856 	/* Idle tasks are by definition preempted by non-idle tasks. */
6857 	if (unlikely(curr->policy == SCHED_IDLE) &&
6858 	    likely(p->policy != SCHED_IDLE))
6859 		goto preempt;
6860 
6861 	/*
6862 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6863 	 * is driven by the tick):
6864 	 */
6865 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6866 		return;
6867 
6868 	find_matching_se(&se, &pse);
6869 	update_curr(cfs_rq_of(se));
6870 	BUG_ON(!pse);
6871 	if (wakeup_preempt_entity(se, pse) == 1) {
6872 		/*
6873 		 * Bias pick_next to pick the sched entity that is
6874 		 * triggering this preemption.
6875 		 */
6876 		if (!next_buddy_marked)
6877 			set_next_buddy(pse);
6878 		goto preempt;
6879 	}
6880 
6881 	return;
6882 
6883 preempt:
6884 	resched_curr(rq);
6885 	/*
6886 	 * Only set the backward buddy when the current task is still
6887 	 * on the rq. This can happen when a wakeup gets interleaved
6888 	 * with schedule on the ->pre_schedule() or idle_balance()
6889 	 * point, either of which can * drop the rq lock.
6890 	 *
6891 	 * Also, during early boot the idle thread is in the fair class,
6892 	 * for obvious reasons its a bad idea to schedule back to it.
6893 	 */
6894 	if (unlikely(!se->on_rq || curr == rq->idle))
6895 		return;
6896 
6897 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6898 		set_last_buddy(se);
6899 }
6900 
6901 static struct task_struct *
6902 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6903 {
6904 	struct cfs_rq *cfs_rq = &rq->cfs;
6905 	struct sched_entity *se;
6906 	struct task_struct *p;
6907 	int new_tasks;
6908 
6909 again:
6910 	if (!cfs_rq->nr_running)
6911 		goto idle;
6912 
6913 #ifdef CONFIG_FAIR_GROUP_SCHED
6914 	if (prev->sched_class != &fair_sched_class)
6915 		goto simple;
6916 
6917 	/*
6918 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6919 	 * likely that a next task is from the same cgroup as the current.
6920 	 *
6921 	 * Therefore attempt to avoid putting and setting the entire cgroup
6922 	 * hierarchy, only change the part that actually changes.
6923 	 */
6924 
6925 	do {
6926 		struct sched_entity *curr = cfs_rq->curr;
6927 
6928 		/*
6929 		 * Since we got here without doing put_prev_entity() we also
6930 		 * have to consider cfs_rq->curr. If it is still a runnable
6931 		 * entity, update_curr() will update its vruntime, otherwise
6932 		 * forget we've ever seen it.
6933 		 */
6934 		if (curr) {
6935 			if (curr->on_rq)
6936 				update_curr(cfs_rq);
6937 			else
6938 				curr = NULL;
6939 
6940 			/*
6941 			 * This call to check_cfs_rq_runtime() will do the
6942 			 * throttle and dequeue its entity in the parent(s).
6943 			 * Therefore the nr_running test will indeed
6944 			 * be correct.
6945 			 */
6946 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6947 				cfs_rq = &rq->cfs;
6948 
6949 				if (!cfs_rq->nr_running)
6950 					goto idle;
6951 
6952 				goto simple;
6953 			}
6954 		}
6955 
6956 		se = pick_next_entity(cfs_rq, curr);
6957 		cfs_rq = group_cfs_rq(se);
6958 	} while (cfs_rq);
6959 
6960 	p = task_of(se);
6961 
6962 	/*
6963 	 * Since we haven't yet done put_prev_entity and if the selected task
6964 	 * is a different task than we started out with, try and touch the
6965 	 * least amount of cfs_rqs.
6966 	 */
6967 	if (prev != p) {
6968 		struct sched_entity *pse = &prev->se;
6969 
6970 		while (!(cfs_rq = is_same_group(se, pse))) {
6971 			int se_depth = se->depth;
6972 			int pse_depth = pse->depth;
6973 
6974 			if (se_depth <= pse_depth) {
6975 				put_prev_entity(cfs_rq_of(pse), pse);
6976 				pse = parent_entity(pse);
6977 			}
6978 			if (se_depth >= pse_depth) {
6979 				set_next_entity(cfs_rq_of(se), se);
6980 				se = parent_entity(se);
6981 			}
6982 		}
6983 
6984 		put_prev_entity(cfs_rq, pse);
6985 		set_next_entity(cfs_rq, se);
6986 	}
6987 
6988 	goto done;
6989 simple:
6990 #endif
6991 
6992 	put_prev_task(rq, prev);
6993 
6994 	do {
6995 		se = pick_next_entity(cfs_rq, NULL);
6996 		set_next_entity(cfs_rq, se);
6997 		cfs_rq = group_cfs_rq(se);
6998 	} while (cfs_rq);
6999 
7000 	p = task_of(se);
7001 
7002 done: __maybe_unused;
7003 #ifdef CONFIG_SMP
7004 	/*
7005 	 * Move the next running task to the front of
7006 	 * the list, so our cfs_tasks list becomes MRU
7007 	 * one.
7008 	 */
7009 	list_move(&p->se.group_node, &rq->cfs_tasks);
7010 #endif
7011 
7012 	if (hrtick_enabled(rq))
7013 		hrtick_start_fair(rq, p);
7014 
7015 	return p;
7016 
7017 idle:
7018 	new_tasks = idle_balance(rq, rf);
7019 
7020 	/*
7021 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
7022 	 * possible for any higher priority task to appear. In that case we
7023 	 * must re-start the pick_next_entity() loop.
7024 	 */
7025 	if (new_tasks < 0)
7026 		return RETRY_TASK;
7027 
7028 	if (new_tasks > 0)
7029 		goto again;
7030 
7031 	return NULL;
7032 }
7033 
7034 /*
7035  * Account for a descheduled task:
7036  */
7037 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7038 {
7039 	struct sched_entity *se = &prev->se;
7040 	struct cfs_rq *cfs_rq;
7041 
7042 	for_each_sched_entity(se) {
7043 		cfs_rq = cfs_rq_of(se);
7044 		put_prev_entity(cfs_rq, se);
7045 	}
7046 }
7047 
7048 /*
7049  * sched_yield() is very simple
7050  *
7051  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7052  */
7053 static void yield_task_fair(struct rq *rq)
7054 {
7055 	struct task_struct *curr = rq->curr;
7056 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7057 	struct sched_entity *se = &curr->se;
7058 
7059 	/*
7060 	 * Are we the only task in the tree?
7061 	 */
7062 	if (unlikely(rq->nr_running == 1))
7063 		return;
7064 
7065 	clear_buddies(cfs_rq, se);
7066 
7067 	if (curr->policy != SCHED_BATCH) {
7068 		update_rq_clock(rq);
7069 		/*
7070 		 * Update run-time statistics of the 'current'.
7071 		 */
7072 		update_curr(cfs_rq);
7073 		/*
7074 		 * Tell update_rq_clock() that we've just updated,
7075 		 * so we don't do microscopic update in schedule()
7076 		 * and double the fastpath cost.
7077 		 */
7078 		rq_clock_skip_update(rq);
7079 	}
7080 
7081 	set_skip_buddy(se);
7082 }
7083 
7084 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
7085 {
7086 	struct sched_entity *se = &p->se;
7087 
7088 	/* throttled hierarchies are not runnable */
7089 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7090 		return false;
7091 
7092 	/* Tell the scheduler that we'd really like pse to run next. */
7093 	set_next_buddy(se);
7094 
7095 	yield_task_fair(rq);
7096 
7097 	return true;
7098 }
7099 
7100 #ifdef CONFIG_SMP
7101 /**************************************************
7102  * Fair scheduling class load-balancing methods.
7103  *
7104  * BASICS
7105  *
7106  * The purpose of load-balancing is to achieve the same basic fairness the
7107  * per-CPU scheduler provides, namely provide a proportional amount of compute
7108  * time to each task. This is expressed in the following equation:
7109  *
7110  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7111  *
7112  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7113  * W_i,0 is defined as:
7114  *
7115  *   W_i,0 = \Sum_j w_i,j                                             (2)
7116  *
7117  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7118  * is derived from the nice value as per sched_prio_to_weight[].
7119  *
7120  * The weight average is an exponential decay average of the instantaneous
7121  * weight:
7122  *
7123  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7124  *
7125  * C_i is the compute capacity of CPU i, typically it is the
7126  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7127  * can also include other factors [XXX].
7128  *
7129  * To achieve this balance we define a measure of imbalance which follows
7130  * directly from (1):
7131  *
7132  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7133  *
7134  * We them move tasks around to minimize the imbalance. In the continuous
7135  * function space it is obvious this converges, in the discrete case we get
7136  * a few fun cases generally called infeasible weight scenarios.
7137  *
7138  * [XXX expand on:
7139  *     - infeasible weights;
7140  *     - local vs global optima in the discrete case. ]
7141  *
7142  *
7143  * SCHED DOMAINS
7144  *
7145  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7146  * for all i,j solution, we create a tree of CPUs that follows the hardware
7147  * topology where each level pairs two lower groups (or better). This results
7148  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7149  * tree to only the first of the previous level and we decrease the frequency
7150  * of load-balance at each level inv. proportional to the number of CPUs in
7151  * the groups.
7152  *
7153  * This yields:
7154  *
7155  *     log_2 n     1     n
7156  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7157  *     i = 0      2^i   2^i
7158  *                               `- size of each group
7159  *         |         |     `- number of CPUs doing load-balance
7160  *         |         `- freq
7161  *         `- sum over all levels
7162  *
7163  * Coupled with a limit on how many tasks we can migrate every balance pass,
7164  * this makes (5) the runtime complexity of the balancer.
7165  *
7166  * An important property here is that each CPU is still (indirectly) connected
7167  * to every other CPU in at most O(log n) steps:
7168  *
7169  * The adjacency matrix of the resulting graph is given by:
7170  *
7171  *             log_2 n
7172  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7173  *             k = 0
7174  *
7175  * And you'll find that:
7176  *
7177  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7178  *
7179  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7180  * The task movement gives a factor of O(m), giving a convergence complexity
7181  * of:
7182  *
7183  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7184  *
7185  *
7186  * WORK CONSERVING
7187  *
7188  * In order to avoid CPUs going idle while there's still work to do, new idle
7189  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7190  * tree itself instead of relying on other CPUs to bring it work.
7191  *
7192  * This adds some complexity to both (5) and (8) but it reduces the total idle
7193  * time.
7194  *
7195  * [XXX more?]
7196  *
7197  *
7198  * CGROUPS
7199  *
7200  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7201  *
7202  *                                s_k,i
7203  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7204  *                                 S_k
7205  *
7206  * Where
7207  *
7208  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7209  *
7210  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7211  *
7212  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7213  * property.
7214  *
7215  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7216  *      rewrite all of this once again.]
7217  */
7218 
7219 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7220 
7221 enum fbq_type { regular, remote, all };
7222 
7223 #define LBF_ALL_PINNED	0x01
7224 #define LBF_NEED_BREAK	0x02
7225 #define LBF_DST_PINNED  0x04
7226 #define LBF_SOME_PINNED	0x08
7227 #define LBF_NOHZ_STATS	0x10
7228 #define LBF_NOHZ_AGAIN	0x20
7229 
7230 struct lb_env {
7231 	struct sched_domain	*sd;
7232 
7233 	struct rq		*src_rq;
7234 	int			src_cpu;
7235 
7236 	int			dst_cpu;
7237 	struct rq		*dst_rq;
7238 
7239 	struct cpumask		*dst_grpmask;
7240 	int			new_dst_cpu;
7241 	enum cpu_idle_type	idle;
7242 	long			imbalance;
7243 	/* The set of CPUs under consideration for load-balancing */
7244 	struct cpumask		*cpus;
7245 
7246 	unsigned int		flags;
7247 
7248 	unsigned int		loop;
7249 	unsigned int		loop_break;
7250 	unsigned int		loop_max;
7251 
7252 	enum fbq_type		fbq_type;
7253 	struct list_head	tasks;
7254 };
7255 
7256 /*
7257  * Is this task likely cache-hot:
7258  */
7259 static int task_hot(struct task_struct *p, struct lb_env *env)
7260 {
7261 	s64 delta;
7262 
7263 	lockdep_assert_held(&env->src_rq->lock);
7264 
7265 	if (p->sched_class != &fair_sched_class)
7266 		return 0;
7267 
7268 	if (unlikely(p->policy == SCHED_IDLE))
7269 		return 0;
7270 
7271 	/*
7272 	 * Buddy candidates are cache hot:
7273 	 */
7274 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7275 			(&p->se == cfs_rq_of(&p->se)->next ||
7276 			 &p->se == cfs_rq_of(&p->se)->last))
7277 		return 1;
7278 
7279 	if (sysctl_sched_migration_cost == -1)
7280 		return 1;
7281 	if (sysctl_sched_migration_cost == 0)
7282 		return 0;
7283 
7284 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7285 
7286 	return delta < (s64)sysctl_sched_migration_cost;
7287 }
7288 
7289 #ifdef CONFIG_NUMA_BALANCING
7290 /*
7291  * Returns 1, if task migration degrades locality
7292  * Returns 0, if task migration improves locality i.e migration preferred.
7293  * Returns -1, if task migration is not affected by locality.
7294  */
7295 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7296 {
7297 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7298 	unsigned long src_faults, dst_faults;
7299 	int src_nid, dst_nid;
7300 
7301 	if (!static_branch_likely(&sched_numa_balancing))
7302 		return -1;
7303 
7304 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7305 		return -1;
7306 
7307 	src_nid = cpu_to_node(env->src_cpu);
7308 	dst_nid = cpu_to_node(env->dst_cpu);
7309 
7310 	if (src_nid == dst_nid)
7311 		return -1;
7312 
7313 	/* Migrating away from the preferred node is always bad. */
7314 	if (src_nid == p->numa_preferred_nid) {
7315 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7316 			return 1;
7317 		else
7318 			return -1;
7319 	}
7320 
7321 	/* Encourage migration to the preferred node. */
7322 	if (dst_nid == p->numa_preferred_nid)
7323 		return 0;
7324 
7325 	/* Leaving a core idle is often worse than degrading locality. */
7326 	if (env->idle != CPU_NOT_IDLE)
7327 		return -1;
7328 
7329 	if (numa_group) {
7330 		src_faults = group_faults(p, src_nid);
7331 		dst_faults = group_faults(p, dst_nid);
7332 	} else {
7333 		src_faults = task_faults(p, src_nid);
7334 		dst_faults = task_faults(p, dst_nid);
7335 	}
7336 
7337 	return dst_faults < src_faults;
7338 }
7339 
7340 #else
7341 static inline int migrate_degrades_locality(struct task_struct *p,
7342 					     struct lb_env *env)
7343 {
7344 	return -1;
7345 }
7346 #endif
7347 
7348 /*
7349  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7350  */
7351 static
7352 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7353 {
7354 	int tsk_cache_hot;
7355 
7356 	lockdep_assert_held(&env->src_rq->lock);
7357 
7358 	/*
7359 	 * We do not migrate tasks that are:
7360 	 * 1) throttled_lb_pair, or
7361 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7362 	 * 3) running (obviously), or
7363 	 * 4) are cache-hot on their current CPU.
7364 	 */
7365 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7366 		return 0;
7367 
7368 	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7369 		int cpu;
7370 
7371 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7372 
7373 		env->flags |= LBF_SOME_PINNED;
7374 
7375 		/*
7376 		 * Remember if this task can be migrated to any other CPU in
7377 		 * our sched_group. We may want to revisit it if we couldn't
7378 		 * meet load balance goals by pulling other tasks on src_cpu.
7379 		 *
7380 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7381 		 * already computed one in current iteration.
7382 		 */
7383 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7384 			return 0;
7385 
7386 		/* Prevent to re-select dst_cpu via env's CPUs: */
7387 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7388 			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7389 				env->flags |= LBF_DST_PINNED;
7390 				env->new_dst_cpu = cpu;
7391 				break;
7392 			}
7393 		}
7394 
7395 		return 0;
7396 	}
7397 
7398 	/* Record that we found atleast one task that could run on dst_cpu */
7399 	env->flags &= ~LBF_ALL_PINNED;
7400 
7401 	if (task_running(env->src_rq, p)) {
7402 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7403 		return 0;
7404 	}
7405 
7406 	/*
7407 	 * Aggressive migration if:
7408 	 * 1) destination numa is preferred
7409 	 * 2) task is cache cold, or
7410 	 * 3) too many balance attempts have failed.
7411 	 */
7412 	tsk_cache_hot = migrate_degrades_locality(p, env);
7413 	if (tsk_cache_hot == -1)
7414 		tsk_cache_hot = task_hot(p, env);
7415 
7416 	if (tsk_cache_hot <= 0 ||
7417 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7418 		if (tsk_cache_hot == 1) {
7419 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7420 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7421 		}
7422 		return 1;
7423 	}
7424 
7425 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7426 	return 0;
7427 }
7428 
7429 /*
7430  * detach_task() -- detach the task for the migration specified in env
7431  */
7432 static void detach_task(struct task_struct *p, struct lb_env *env)
7433 {
7434 	lockdep_assert_held(&env->src_rq->lock);
7435 
7436 	p->on_rq = TASK_ON_RQ_MIGRATING;
7437 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7438 	set_task_cpu(p, env->dst_cpu);
7439 }
7440 
7441 /*
7442  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7443  * part of active balancing operations within "domain".
7444  *
7445  * Returns a task if successful and NULL otherwise.
7446  */
7447 static struct task_struct *detach_one_task(struct lb_env *env)
7448 {
7449 	struct task_struct *p;
7450 
7451 	lockdep_assert_held(&env->src_rq->lock);
7452 
7453 	list_for_each_entry_reverse(p,
7454 			&env->src_rq->cfs_tasks, se.group_node) {
7455 		if (!can_migrate_task(p, env))
7456 			continue;
7457 
7458 		detach_task(p, env);
7459 
7460 		/*
7461 		 * Right now, this is only the second place where
7462 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7463 		 * so we can safely collect stats here rather than
7464 		 * inside detach_tasks().
7465 		 */
7466 		schedstat_inc(env->sd->lb_gained[env->idle]);
7467 		return p;
7468 	}
7469 	return NULL;
7470 }
7471 
7472 static const unsigned int sched_nr_migrate_break = 32;
7473 
7474 /*
7475  * detach_tasks() -- tries to detach up to imbalance weighted load from
7476  * busiest_rq, as part of a balancing operation within domain "sd".
7477  *
7478  * Returns number of detached tasks if successful and 0 otherwise.
7479  */
7480 static int detach_tasks(struct lb_env *env)
7481 {
7482 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7483 	struct task_struct *p;
7484 	unsigned long load;
7485 	int detached = 0;
7486 
7487 	lockdep_assert_held(&env->src_rq->lock);
7488 
7489 	if (env->imbalance <= 0)
7490 		return 0;
7491 
7492 	while (!list_empty(tasks)) {
7493 		/*
7494 		 * We don't want to steal all, otherwise we may be treated likewise,
7495 		 * which could at worst lead to a livelock crash.
7496 		 */
7497 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7498 			break;
7499 
7500 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7501 
7502 		env->loop++;
7503 		/* We've more or less seen every task there is, call it quits */
7504 		if (env->loop > env->loop_max)
7505 			break;
7506 
7507 		/* take a breather every nr_migrate tasks */
7508 		if (env->loop > env->loop_break) {
7509 			env->loop_break += sched_nr_migrate_break;
7510 			env->flags |= LBF_NEED_BREAK;
7511 			break;
7512 		}
7513 
7514 		if (!can_migrate_task(p, env))
7515 			goto next;
7516 
7517 		load = task_h_load(p);
7518 
7519 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7520 			goto next;
7521 
7522 		if ((load / 2) > env->imbalance)
7523 			goto next;
7524 
7525 		detach_task(p, env);
7526 		list_add(&p->se.group_node, &env->tasks);
7527 
7528 		detached++;
7529 		env->imbalance -= load;
7530 
7531 #ifdef CONFIG_PREEMPT
7532 		/*
7533 		 * NEWIDLE balancing is a source of latency, so preemptible
7534 		 * kernels will stop after the first task is detached to minimize
7535 		 * the critical section.
7536 		 */
7537 		if (env->idle == CPU_NEWLY_IDLE)
7538 			break;
7539 #endif
7540 
7541 		/*
7542 		 * We only want to steal up to the prescribed amount of
7543 		 * weighted load.
7544 		 */
7545 		if (env->imbalance <= 0)
7546 			break;
7547 
7548 		continue;
7549 next:
7550 		list_move(&p->se.group_node, tasks);
7551 	}
7552 
7553 	/*
7554 	 * Right now, this is one of only two places we collect this stat
7555 	 * so we can safely collect detach_one_task() stats here rather
7556 	 * than inside detach_one_task().
7557 	 */
7558 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7559 
7560 	return detached;
7561 }
7562 
7563 /*
7564  * attach_task() -- attach the task detached by detach_task() to its new rq.
7565  */
7566 static void attach_task(struct rq *rq, struct task_struct *p)
7567 {
7568 	lockdep_assert_held(&rq->lock);
7569 
7570 	BUG_ON(task_rq(p) != rq);
7571 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7572 	p->on_rq = TASK_ON_RQ_QUEUED;
7573 	check_preempt_curr(rq, p, 0);
7574 }
7575 
7576 /*
7577  * attach_one_task() -- attaches the task returned from detach_one_task() to
7578  * its new rq.
7579  */
7580 static void attach_one_task(struct rq *rq, struct task_struct *p)
7581 {
7582 	struct rq_flags rf;
7583 
7584 	rq_lock(rq, &rf);
7585 	update_rq_clock(rq);
7586 	attach_task(rq, p);
7587 	rq_unlock(rq, &rf);
7588 }
7589 
7590 /*
7591  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7592  * new rq.
7593  */
7594 static void attach_tasks(struct lb_env *env)
7595 {
7596 	struct list_head *tasks = &env->tasks;
7597 	struct task_struct *p;
7598 	struct rq_flags rf;
7599 
7600 	rq_lock(env->dst_rq, &rf);
7601 	update_rq_clock(env->dst_rq);
7602 
7603 	while (!list_empty(tasks)) {
7604 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7605 		list_del_init(&p->se.group_node);
7606 
7607 		attach_task(env->dst_rq, p);
7608 	}
7609 
7610 	rq_unlock(env->dst_rq, &rf);
7611 }
7612 
7613 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7614 {
7615 	if (cfs_rq->avg.load_avg)
7616 		return true;
7617 
7618 	if (cfs_rq->avg.util_avg)
7619 		return true;
7620 
7621 	return false;
7622 }
7623 
7624 #ifdef CONFIG_FAIR_GROUP_SCHED
7625 
7626 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7627 {
7628 	if (cfs_rq->load.weight)
7629 		return false;
7630 
7631 	if (cfs_rq->avg.load_sum)
7632 		return false;
7633 
7634 	if (cfs_rq->avg.util_sum)
7635 		return false;
7636 
7637 	if (cfs_rq->avg.runnable_load_sum)
7638 		return false;
7639 
7640 	return true;
7641 }
7642 
7643 static void update_blocked_averages(int cpu)
7644 {
7645 	struct rq *rq = cpu_rq(cpu);
7646 	struct cfs_rq *cfs_rq, *pos;
7647 	struct rq_flags rf;
7648 	bool done = true;
7649 
7650 	rq_lock_irqsave(rq, &rf);
7651 	update_rq_clock(rq);
7652 
7653 	/*
7654 	 * Iterates the task_group tree in a bottom up fashion, see
7655 	 * list_add_leaf_cfs_rq() for details.
7656 	 */
7657 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7658 		struct sched_entity *se;
7659 
7660 		/* throttled entities do not contribute to load */
7661 		if (throttled_hierarchy(cfs_rq))
7662 			continue;
7663 
7664 		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7665 			update_tg_load_avg(cfs_rq, 0);
7666 
7667 		/* Propagate pending load changes to the parent, if any: */
7668 		se = cfs_rq->tg->se[cpu];
7669 		if (se && !skip_blocked_update(se))
7670 			update_load_avg(cfs_rq_of(se), se, 0);
7671 
7672 		/*
7673 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7674 		 * decayed cfs_rqs linger on the list.
7675 		 */
7676 		if (cfs_rq_is_decayed(cfs_rq))
7677 			list_del_leaf_cfs_rq(cfs_rq);
7678 
7679 		/* Don't need periodic decay once load/util_avg are null */
7680 		if (cfs_rq_has_blocked(cfs_rq))
7681 			done = false;
7682 	}
7683 
7684 #ifdef CONFIG_NO_HZ_COMMON
7685 	rq->last_blocked_load_update_tick = jiffies;
7686 	if (done)
7687 		rq->has_blocked_load = 0;
7688 #endif
7689 	rq_unlock_irqrestore(rq, &rf);
7690 }
7691 
7692 /*
7693  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7694  * This needs to be done in a top-down fashion because the load of a child
7695  * group is a fraction of its parents load.
7696  */
7697 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7698 {
7699 	struct rq *rq = rq_of(cfs_rq);
7700 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7701 	unsigned long now = jiffies;
7702 	unsigned long load;
7703 
7704 	if (cfs_rq->last_h_load_update == now)
7705 		return;
7706 
7707 	cfs_rq->h_load_next = NULL;
7708 	for_each_sched_entity(se) {
7709 		cfs_rq = cfs_rq_of(se);
7710 		cfs_rq->h_load_next = se;
7711 		if (cfs_rq->last_h_load_update == now)
7712 			break;
7713 	}
7714 
7715 	if (!se) {
7716 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7717 		cfs_rq->last_h_load_update = now;
7718 	}
7719 
7720 	while ((se = cfs_rq->h_load_next) != NULL) {
7721 		load = cfs_rq->h_load;
7722 		load = div64_ul(load * se->avg.load_avg,
7723 			cfs_rq_load_avg(cfs_rq) + 1);
7724 		cfs_rq = group_cfs_rq(se);
7725 		cfs_rq->h_load = load;
7726 		cfs_rq->last_h_load_update = now;
7727 	}
7728 }
7729 
7730 static unsigned long task_h_load(struct task_struct *p)
7731 {
7732 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7733 
7734 	update_cfs_rq_h_load(cfs_rq);
7735 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7736 			cfs_rq_load_avg(cfs_rq) + 1);
7737 }
7738 #else
7739 static inline void update_blocked_averages(int cpu)
7740 {
7741 	struct rq *rq = cpu_rq(cpu);
7742 	struct cfs_rq *cfs_rq = &rq->cfs;
7743 	struct rq_flags rf;
7744 
7745 	rq_lock_irqsave(rq, &rf);
7746 	update_rq_clock(rq);
7747 	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7748 #ifdef CONFIG_NO_HZ_COMMON
7749 	rq->last_blocked_load_update_tick = jiffies;
7750 	if (!cfs_rq_has_blocked(cfs_rq))
7751 		rq->has_blocked_load = 0;
7752 #endif
7753 	rq_unlock_irqrestore(rq, &rf);
7754 }
7755 
7756 static unsigned long task_h_load(struct task_struct *p)
7757 {
7758 	return p->se.avg.load_avg;
7759 }
7760 #endif
7761 
7762 /********** Helpers for find_busiest_group ************************/
7763 
7764 enum group_type {
7765 	group_other = 0,
7766 	group_imbalanced,
7767 	group_overloaded,
7768 };
7769 
7770 /*
7771  * sg_lb_stats - stats of a sched_group required for load_balancing
7772  */
7773 struct sg_lb_stats {
7774 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7775 	unsigned long group_load; /* Total load over the CPUs of the group */
7776 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7777 	unsigned long load_per_task;
7778 	unsigned long group_capacity;
7779 	unsigned long group_util; /* Total utilization of the group */
7780 	unsigned int sum_nr_running; /* Nr tasks running in the group */
7781 	unsigned int idle_cpus;
7782 	unsigned int group_weight;
7783 	enum group_type group_type;
7784 	int group_no_capacity;
7785 #ifdef CONFIG_NUMA_BALANCING
7786 	unsigned int nr_numa_running;
7787 	unsigned int nr_preferred_running;
7788 #endif
7789 };
7790 
7791 /*
7792  * sd_lb_stats - Structure to store the statistics of a sched_domain
7793  *		 during load balancing.
7794  */
7795 struct sd_lb_stats {
7796 	struct sched_group *busiest;	/* Busiest group in this sd */
7797 	struct sched_group *local;	/* Local group in this sd */
7798 	unsigned long total_running;
7799 	unsigned long total_load;	/* Total load of all groups in sd */
7800 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7801 	unsigned long avg_load;	/* Average load across all groups in sd */
7802 
7803 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7804 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7805 };
7806 
7807 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7808 {
7809 	/*
7810 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7811 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7812 	 * We must however clear busiest_stat::avg_load because
7813 	 * update_sd_pick_busiest() reads this before assignment.
7814 	 */
7815 	*sds = (struct sd_lb_stats){
7816 		.busiest = NULL,
7817 		.local = NULL,
7818 		.total_running = 0UL,
7819 		.total_load = 0UL,
7820 		.total_capacity = 0UL,
7821 		.busiest_stat = {
7822 			.avg_load = 0UL,
7823 			.sum_nr_running = 0,
7824 			.group_type = group_other,
7825 		},
7826 	};
7827 }
7828 
7829 /**
7830  * get_sd_load_idx - Obtain the load index for a given sched domain.
7831  * @sd: The sched_domain whose load_idx is to be obtained.
7832  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7833  *
7834  * Return: The load index.
7835  */
7836 static inline int get_sd_load_idx(struct sched_domain *sd,
7837 					enum cpu_idle_type idle)
7838 {
7839 	int load_idx;
7840 
7841 	switch (idle) {
7842 	case CPU_NOT_IDLE:
7843 		load_idx = sd->busy_idx;
7844 		break;
7845 
7846 	case CPU_NEWLY_IDLE:
7847 		load_idx = sd->newidle_idx;
7848 		break;
7849 	default:
7850 		load_idx = sd->idle_idx;
7851 		break;
7852 	}
7853 
7854 	return load_idx;
7855 }
7856 
7857 static unsigned long scale_rt_capacity(int cpu)
7858 {
7859 	struct rq *rq = cpu_rq(cpu);
7860 	u64 total, used, age_stamp, avg;
7861 	s64 delta;
7862 
7863 	/*
7864 	 * Since we're reading these variables without serialization make sure
7865 	 * we read them once before doing sanity checks on them.
7866 	 */
7867 	age_stamp = READ_ONCE(rq->age_stamp);
7868 	avg = READ_ONCE(rq->rt_avg);
7869 	delta = __rq_clock_broken(rq) - age_stamp;
7870 
7871 	if (unlikely(delta < 0))
7872 		delta = 0;
7873 
7874 	total = sched_avg_period() + delta;
7875 
7876 	used = div_u64(avg, total);
7877 
7878 	if (likely(used < SCHED_CAPACITY_SCALE))
7879 		return SCHED_CAPACITY_SCALE - used;
7880 
7881 	return 1;
7882 }
7883 
7884 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7885 {
7886 	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7887 	struct sched_group *sdg = sd->groups;
7888 
7889 	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7890 
7891 	capacity *= scale_rt_capacity(cpu);
7892 	capacity >>= SCHED_CAPACITY_SHIFT;
7893 
7894 	if (!capacity)
7895 		capacity = 1;
7896 
7897 	cpu_rq(cpu)->cpu_capacity = capacity;
7898 	sdg->sgc->capacity = capacity;
7899 	sdg->sgc->min_capacity = capacity;
7900 }
7901 
7902 void update_group_capacity(struct sched_domain *sd, int cpu)
7903 {
7904 	struct sched_domain *child = sd->child;
7905 	struct sched_group *group, *sdg = sd->groups;
7906 	unsigned long capacity, min_capacity;
7907 	unsigned long interval;
7908 
7909 	interval = msecs_to_jiffies(sd->balance_interval);
7910 	interval = clamp(interval, 1UL, max_load_balance_interval);
7911 	sdg->sgc->next_update = jiffies + interval;
7912 
7913 	if (!child) {
7914 		update_cpu_capacity(sd, cpu);
7915 		return;
7916 	}
7917 
7918 	capacity = 0;
7919 	min_capacity = ULONG_MAX;
7920 
7921 	if (child->flags & SD_OVERLAP) {
7922 		/*
7923 		 * SD_OVERLAP domains cannot assume that child groups
7924 		 * span the current group.
7925 		 */
7926 
7927 		for_each_cpu(cpu, sched_group_span(sdg)) {
7928 			struct sched_group_capacity *sgc;
7929 			struct rq *rq = cpu_rq(cpu);
7930 
7931 			/*
7932 			 * build_sched_domains() -> init_sched_groups_capacity()
7933 			 * gets here before we've attached the domains to the
7934 			 * runqueues.
7935 			 *
7936 			 * Use capacity_of(), which is set irrespective of domains
7937 			 * in update_cpu_capacity().
7938 			 *
7939 			 * This avoids capacity from being 0 and
7940 			 * causing divide-by-zero issues on boot.
7941 			 */
7942 			if (unlikely(!rq->sd)) {
7943 				capacity += capacity_of(cpu);
7944 			} else {
7945 				sgc = rq->sd->groups->sgc;
7946 				capacity += sgc->capacity;
7947 			}
7948 
7949 			min_capacity = min(capacity, min_capacity);
7950 		}
7951 	} else  {
7952 		/*
7953 		 * !SD_OVERLAP domains can assume that child groups
7954 		 * span the current group.
7955 		 */
7956 
7957 		group = child->groups;
7958 		do {
7959 			struct sched_group_capacity *sgc = group->sgc;
7960 
7961 			capacity += sgc->capacity;
7962 			min_capacity = min(sgc->min_capacity, min_capacity);
7963 			group = group->next;
7964 		} while (group != child->groups);
7965 	}
7966 
7967 	sdg->sgc->capacity = capacity;
7968 	sdg->sgc->min_capacity = min_capacity;
7969 }
7970 
7971 /*
7972  * Check whether the capacity of the rq has been noticeably reduced by side
7973  * activity. The imbalance_pct is used for the threshold.
7974  * Return true is the capacity is reduced
7975  */
7976 static inline int
7977 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7978 {
7979 	return ((rq->cpu_capacity * sd->imbalance_pct) <
7980 				(rq->cpu_capacity_orig * 100));
7981 }
7982 
7983 /*
7984  * Group imbalance indicates (and tries to solve) the problem where balancing
7985  * groups is inadequate due to ->cpus_allowed constraints.
7986  *
7987  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7988  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7989  * Something like:
7990  *
7991  *	{ 0 1 2 3 } { 4 5 6 7 }
7992  *	        *     * * *
7993  *
7994  * If we were to balance group-wise we'd place two tasks in the first group and
7995  * two tasks in the second group. Clearly this is undesired as it will overload
7996  * cpu 3 and leave one of the CPUs in the second group unused.
7997  *
7998  * The current solution to this issue is detecting the skew in the first group
7999  * by noticing the lower domain failed to reach balance and had difficulty
8000  * moving tasks due to affinity constraints.
8001  *
8002  * When this is so detected; this group becomes a candidate for busiest; see
8003  * update_sd_pick_busiest(). And calculate_imbalance() and
8004  * find_busiest_group() avoid some of the usual balance conditions to allow it
8005  * to create an effective group imbalance.
8006  *
8007  * This is a somewhat tricky proposition since the next run might not find the
8008  * group imbalance and decide the groups need to be balanced again. A most
8009  * subtle and fragile situation.
8010  */
8011 
8012 static inline int sg_imbalanced(struct sched_group *group)
8013 {
8014 	return group->sgc->imbalance;
8015 }
8016 
8017 /*
8018  * group_has_capacity returns true if the group has spare capacity that could
8019  * be used by some tasks.
8020  * We consider that a group has spare capacity if the  * number of task is
8021  * smaller than the number of CPUs or if the utilization is lower than the
8022  * available capacity for CFS tasks.
8023  * For the latter, we use a threshold to stabilize the state, to take into
8024  * account the variance of the tasks' load and to return true if the available
8025  * capacity in meaningful for the load balancer.
8026  * As an example, an available capacity of 1% can appear but it doesn't make
8027  * any benefit for the load balance.
8028  */
8029 static inline bool
8030 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
8031 {
8032 	if (sgs->sum_nr_running < sgs->group_weight)
8033 		return true;
8034 
8035 	if ((sgs->group_capacity * 100) >
8036 			(sgs->group_util * env->sd->imbalance_pct))
8037 		return true;
8038 
8039 	return false;
8040 }
8041 
8042 /*
8043  *  group_is_overloaded returns true if the group has more tasks than it can
8044  *  handle.
8045  *  group_is_overloaded is not equals to !group_has_capacity because a group
8046  *  with the exact right number of tasks, has no more spare capacity but is not
8047  *  overloaded so both group_has_capacity and group_is_overloaded return
8048  *  false.
8049  */
8050 static inline bool
8051 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
8052 {
8053 	if (sgs->sum_nr_running <= sgs->group_weight)
8054 		return false;
8055 
8056 	if ((sgs->group_capacity * 100) <
8057 			(sgs->group_util * env->sd->imbalance_pct))
8058 		return true;
8059 
8060 	return false;
8061 }
8062 
8063 /*
8064  * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
8065  * per-CPU capacity than sched_group ref.
8066  */
8067 static inline bool
8068 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8069 {
8070 	return sg->sgc->min_capacity * capacity_margin <
8071 						ref->sgc->min_capacity * 1024;
8072 }
8073 
8074 static inline enum
8075 group_type group_classify(struct sched_group *group,
8076 			  struct sg_lb_stats *sgs)
8077 {
8078 	if (sgs->group_no_capacity)
8079 		return group_overloaded;
8080 
8081 	if (sg_imbalanced(group))
8082 		return group_imbalanced;
8083 
8084 	return group_other;
8085 }
8086 
8087 static bool update_nohz_stats(struct rq *rq, bool force)
8088 {
8089 #ifdef CONFIG_NO_HZ_COMMON
8090 	unsigned int cpu = rq->cpu;
8091 
8092 	if (!rq->has_blocked_load)
8093 		return false;
8094 
8095 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8096 		return false;
8097 
8098 	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8099 		return true;
8100 
8101 	update_blocked_averages(cpu);
8102 
8103 	return rq->has_blocked_load;
8104 #else
8105 	return false;
8106 #endif
8107 }
8108 
8109 /**
8110  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8111  * @env: The load balancing environment.
8112  * @group: sched_group whose statistics are to be updated.
8113  * @load_idx: Load index of sched_domain of this_cpu for load calc.
8114  * @local_group: Does group contain this_cpu.
8115  * @sgs: variable to hold the statistics for this group.
8116  * @overload: Indicate more than one runnable task for any CPU.
8117  */
8118 static inline void update_sg_lb_stats(struct lb_env *env,
8119 			struct sched_group *group, int load_idx,
8120 			int local_group, struct sg_lb_stats *sgs,
8121 			bool *overload)
8122 {
8123 	unsigned long load;
8124 	int i, nr_running;
8125 
8126 	memset(sgs, 0, sizeof(*sgs));
8127 
8128 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8129 		struct rq *rq = cpu_rq(i);
8130 
8131 		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8132 			env->flags |= LBF_NOHZ_AGAIN;
8133 
8134 		/* Bias balancing toward CPUs of our domain: */
8135 		if (local_group)
8136 			load = target_load(i, load_idx);
8137 		else
8138 			load = source_load(i, load_idx);
8139 
8140 		sgs->group_load += load;
8141 		sgs->group_util += cpu_util(i);
8142 		sgs->sum_nr_running += rq->cfs.h_nr_running;
8143 
8144 		nr_running = rq->nr_running;
8145 		if (nr_running > 1)
8146 			*overload = true;
8147 
8148 #ifdef CONFIG_NUMA_BALANCING
8149 		sgs->nr_numa_running += rq->nr_numa_running;
8150 		sgs->nr_preferred_running += rq->nr_preferred_running;
8151 #endif
8152 		sgs->sum_weighted_load += weighted_cpuload(rq);
8153 		/*
8154 		 * No need to call idle_cpu() if nr_running is not 0
8155 		 */
8156 		if (!nr_running && idle_cpu(i))
8157 			sgs->idle_cpus++;
8158 	}
8159 
8160 	/* Adjust by relative CPU capacity of the group */
8161 	sgs->group_capacity = group->sgc->capacity;
8162 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
8163 
8164 	if (sgs->sum_nr_running)
8165 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
8166 
8167 	sgs->group_weight = group->group_weight;
8168 
8169 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
8170 	sgs->group_type = group_classify(group, sgs);
8171 }
8172 
8173 /**
8174  * update_sd_pick_busiest - return 1 on busiest group
8175  * @env: The load balancing environment.
8176  * @sds: sched_domain statistics
8177  * @sg: sched_group candidate to be checked for being the busiest
8178  * @sgs: sched_group statistics
8179  *
8180  * Determine if @sg is a busier group than the previously selected
8181  * busiest group.
8182  *
8183  * Return: %true if @sg is a busier group than the previously selected
8184  * busiest group. %false otherwise.
8185  */
8186 static bool update_sd_pick_busiest(struct lb_env *env,
8187 				   struct sd_lb_stats *sds,
8188 				   struct sched_group *sg,
8189 				   struct sg_lb_stats *sgs)
8190 {
8191 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8192 
8193 	if (sgs->group_type > busiest->group_type)
8194 		return true;
8195 
8196 	if (sgs->group_type < busiest->group_type)
8197 		return false;
8198 
8199 	if (sgs->avg_load <= busiest->avg_load)
8200 		return false;
8201 
8202 	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8203 		goto asym_packing;
8204 
8205 	/*
8206 	 * Candidate sg has no more than one task per CPU and
8207 	 * has higher per-CPU capacity. Migrating tasks to less
8208 	 * capable CPUs may harm throughput. Maximize throughput,
8209 	 * power/energy consequences are not considered.
8210 	 */
8211 	if (sgs->sum_nr_running <= sgs->group_weight &&
8212 	    group_smaller_cpu_capacity(sds->local, sg))
8213 		return false;
8214 
8215 asym_packing:
8216 	/* This is the busiest node in its class. */
8217 	if (!(env->sd->flags & SD_ASYM_PACKING))
8218 		return true;
8219 
8220 	/* No ASYM_PACKING if target CPU is already busy */
8221 	if (env->idle == CPU_NOT_IDLE)
8222 		return true;
8223 	/*
8224 	 * ASYM_PACKING needs to move all the work to the highest
8225 	 * prority CPUs in the group, therefore mark all groups
8226 	 * of lower priority than ourself as busy.
8227 	 */
8228 	if (sgs->sum_nr_running &&
8229 	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
8230 		if (!sds->busiest)
8231 			return true;
8232 
8233 		/* Prefer to move from lowest priority CPU's work */
8234 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8235 				      sg->asym_prefer_cpu))
8236 			return true;
8237 	}
8238 
8239 	return false;
8240 }
8241 
8242 #ifdef CONFIG_NUMA_BALANCING
8243 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8244 {
8245 	if (sgs->sum_nr_running > sgs->nr_numa_running)
8246 		return regular;
8247 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
8248 		return remote;
8249 	return all;
8250 }
8251 
8252 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8253 {
8254 	if (rq->nr_running > rq->nr_numa_running)
8255 		return regular;
8256 	if (rq->nr_running > rq->nr_preferred_running)
8257 		return remote;
8258 	return all;
8259 }
8260 #else
8261 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8262 {
8263 	return all;
8264 }
8265 
8266 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8267 {
8268 	return regular;
8269 }
8270 #endif /* CONFIG_NUMA_BALANCING */
8271 
8272 /**
8273  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8274  * @env: The load balancing environment.
8275  * @sds: variable to hold the statistics for this sched_domain.
8276  */
8277 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8278 {
8279 	struct sched_domain *child = env->sd->child;
8280 	struct sched_group *sg = env->sd->groups;
8281 	struct sg_lb_stats *local = &sds->local_stat;
8282 	struct sg_lb_stats tmp_sgs;
8283 	int load_idx, prefer_sibling = 0;
8284 	bool overload = false;
8285 
8286 	if (child && child->flags & SD_PREFER_SIBLING)
8287 		prefer_sibling = 1;
8288 
8289 #ifdef CONFIG_NO_HZ_COMMON
8290 	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8291 		env->flags |= LBF_NOHZ_STATS;
8292 #endif
8293 
8294 	load_idx = get_sd_load_idx(env->sd, env->idle);
8295 
8296 	do {
8297 		struct sg_lb_stats *sgs = &tmp_sgs;
8298 		int local_group;
8299 
8300 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8301 		if (local_group) {
8302 			sds->local = sg;
8303 			sgs = local;
8304 
8305 			if (env->idle != CPU_NEWLY_IDLE ||
8306 			    time_after_eq(jiffies, sg->sgc->next_update))
8307 				update_group_capacity(env->sd, env->dst_cpu);
8308 		}
8309 
8310 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
8311 						&overload);
8312 
8313 		if (local_group)
8314 			goto next_group;
8315 
8316 		/*
8317 		 * In case the child domain prefers tasks go to siblings
8318 		 * first, lower the sg capacity so that we'll try
8319 		 * and move all the excess tasks away. We lower the capacity
8320 		 * of a group only if the local group has the capacity to fit
8321 		 * these excess tasks. The extra check prevents the case where
8322 		 * you always pull from the heaviest group when it is already
8323 		 * under-utilized (possible with a large weight task outweighs
8324 		 * the tasks on the system).
8325 		 */
8326 		if (prefer_sibling && sds->local &&
8327 		    group_has_capacity(env, local) &&
8328 		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8329 			sgs->group_no_capacity = 1;
8330 			sgs->group_type = group_classify(sg, sgs);
8331 		}
8332 
8333 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8334 			sds->busiest = sg;
8335 			sds->busiest_stat = *sgs;
8336 		}
8337 
8338 next_group:
8339 		/* Now, start updating sd_lb_stats */
8340 		sds->total_running += sgs->sum_nr_running;
8341 		sds->total_load += sgs->group_load;
8342 		sds->total_capacity += sgs->group_capacity;
8343 
8344 		sg = sg->next;
8345 	} while (sg != env->sd->groups);
8346 
8347 #ifdef CONFIG_NO_HZ_COMMON
8348 	if ((env->flags & LBF_NOHZ_AGAIN) &&
8349 	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8350 
8351 		WRITE_ONCE(nohz.next_blocked,
8352 			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8353 	}
8354 #endif
8355 
8356 	if (env->sd->flags & SD_NUMA)
8357 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8358 
8359 	if (!env->sd->parent) {
8360 		/* update overload indicator if we are at root domain */
8361 		if (env->dst_rq->rd->overload != overload)
8362 			env->dst_rq->rd->overload = overload;
8363 	}
8364 }
8365 
8366 /**
8367  * check_asym_packing - Check to see if the group is packed into the
8368  *			sched domain.
8369  *
8370  * This is primarily intended to used at the sibling level.  Some
8371  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
8372  * case of POWER7, it can move to lower SMT modes only when higher
8373  * threads are idle.  When in lower SMT modes, the threads will
8374  * perform better since they share less core resources.  Hence when we
8375  * have idle threads, we want them to be the higher ones.
8376  *
8377  * This packing function is run on idle threads.  It checks to see if
8378  * the busiest CPU in this domain (core in the P7 case) has a higher
8379  * CPU number than the packing function is being run on.  Here we are
8380  * assuming lower CPU number will be equivalent to lower a SMT thread
8381  * number.
8382  *
8383  * Return: 1 when packing is required and a task should be moved to
8384  * this CPU.  The amount of the imbalance is returned in env->imbalance.
8385  *
8386  * @env: The load balancing environment.
8387  * @sds: Statistics of the sched_domain which is to be packed
8388  */
8389 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8390 {
8391 	int busiest_cpu;
8392 
8393 	if (!(env->sd->flags & SD_ASYM_PACKING))
8394 		return 0;
8395 
8396 	if (env->idle == CPU_NOT_IDLE)
8397 		return 0;
8398 
8399 	if (!sds->busiest)
8400 		return 0;
8401 
8402 	busiest_cpu = sds->busiest->asym_prefer_cpu;
8403 	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8404 		return 0;
8405 
8406 	env->imbalance = DIV_ROUND_CLOSEST(
8407 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8408 		SCHED_CAPACITY_SCALE);
8409 
8410 	return 1;
8411 }
8412 
8413 /**
8414  * fix_small_imbalance - Calculate the minor imbalance that exists
8415  *			amongst the groups of a sched_domain, during
8416  *			load balancing.
8417  * @env: The load balancing environment.
8418  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8419  */
8420 static inline
8421 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8422 {
8423 	unsigned long tmp, capa_now = 0, capa_move = 0;
8424 	unsigned int imbn = 2;
8425 	unsigned long scaled_busy_load_per_task;
8426 	struct sg_lb_stats *local, *busiest;
8427 
8428 	local = &sds->local_stat;
8429 	busiest = &sds->busiest_stat;
8430 
8431 	if (!local->sum_nr_running)
8432 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8433 	else if (busiest->load_per_task > local->load_per_task)
8434 		imbn = 1;
8435 
8436 	scaled_busy_load_per_task =
8437 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8438 		busiest->group_capacity;
8439 
8440 	if (busiest->avg_load + scaled_busy_load_per_task >=
8441 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
8442 		env->imbalance = busiest->load_per_task;
8443 		return;
8444 	}
8445 
8446 	/*
8447 	 * OK, we don't have enough imbalance to justify moving tasks,
8448 	 * however we may be able to increase total CPU capacity used by
8449 	 * moving them.
8450 	 */
8451 
8452 	capa_now += busiest->group_capacity *
8453 			min(busiest->load_per_task, busiest->avg_load);
8454 	capa_now += local->group_capacity *
8455 			min(local->load_per_task, local->avg_load);
8456 	capa_now /= SCHED_CAPACITY_SCALE;
8457 
8458 	/* Amount of load we'd subtract */
8459 	if (busiest->avg_load > scaled_busy_load_per_task) {
8460 		capa_move += busiest->group_capacity *
8461 			    min(busiest->load_per_task,
8462 				busiest->avg_load - scaled_busy_load_per_task);
8463 	}
8464 
8465 	/* Amount of load we'd add */
8466 	if (busiest->avg_load * busiest->group_capacity <
8467 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8468 		tmp = (busiest->avg_load * busiest->group_capacity) /
8469 		      local->group_capacity;
8470 	} else {
8471 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8472 		      local->group_capacity;
8473 	}
8474 	capa_move += local->group_capacity *
8475 		    min(local->load_per_task, local->avg_load + tmp);
8476 	capa_move /= SCHED_CAPACITY_SCALE;
8477 
8478 	/* Move if we gain throughput */
8479 	if (capa_move > capa_now)
8480 		env->imbalance = busiest->load_per_task;
8481 }
8482 
8483 /**
8484  * calculate_imbalance - Calculate the amount of imbalance present within the
8485  *			 groups of a given sched_domain during load balance.
8486  * @env: load balance environment
8487  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8488  */
8489 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8490 {
8491 	unsigned long max_pull, load_above_capacity = ~0UL;
8492 	struct sg_lb_stats *local, *busiest;
8493 
8494 	local = &sds->local_stat;
8495 	busiest = &sds->busiest_stat;
8496 
8497 	if (busiest->group_type == group_imbalanced) {
8498 		/*
8499 		 * In the group_imb case we cannot rely on group-wide averages
8500 		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8501 		 */
8502 		busiest->load_per_task =
8503 			min(busiest->load_per_task, sds->avg_load);
8504 	}
8505 
8506 	/*
8507 	 * Avg load of busiest sg can be less and avg load of local sg can
8508 	 * be greater than avg load across all sgs of sd because avg load
8509 	 * factors in sg capacity and sgs with smaller group_type are
8510 	 * skipped when updating the busiest sg:
8511 	 */
8512 	if (busiest->avg_load <= sds->avg_load ||
8513 	    local->avg_load >= sds->avg_load) {
8514 		env->imbalance = 0;
8515 		return fix_small_imbalance(env, sds);
8516 	}
8517 
8518 	/*
8519 	 * If there aren't any idle CPUs, avoid creating some.
8520 	 */
8521 	if (busiest->group_type == group_overloaded &&
8522 	    local->group_type   == group_overloaded) {
8523 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8524 		if (load_above_capacity > busiest->group_capacity) {
8525 			load_above_capacity -= busiest->group_capacity;
8526 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8527 			load_above_capacity /= busiest->group_capacity;
8528 		} else
8529 			load_above_capacity = ~0UL;
8530 	}
8531 
8532 	/*
8533 	 * We're trying to get all the CPUs to the average_load, so we don't
8534 	 * want to push ourselves above the average load, nor do we wish to
8535 	 * reduce the max loaded CPU below the average load. At the same time,
8536 	 * we also don't want to reduce the group load below the group
8537 	 * capacity. Thus we look for the minimum possible imbalance.
8538 	 */
8539 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8540 
8541 	/* How much load to actually move to equalise the imbalance */
8542 	env->imbalance = min(
8543 		max_pull * busiest->group_capacity,
8544 		(sds->avg_load - local->avg_load) * local->group_capacity
8545 	) / SCHED_CAPACITY_SCALE;
8546 
8547 	/*
8548 	 * if *imbalance is less than the average load per runnable task
8549 	 * there is no guarantee that any tasks will be moved so we'll have
8550 	 * a think about bumping its value to force at least one task to be
8551 	 * moved
8552 	 */
8553 	if (env->imbalance < busiest->load_per_task)
8554 		return fix_small_imbalance(env, sds);
8555 }
8556 
8557 /******* find_busiest_group() helpers end here *********************/
8558 
8559 /**
8560  * find_busiest_group - Returns the busiest group within the sched_domain
8561  * if there is an imbalance.
8562  *
8563  * Also calculates the amount of weighted load which should be moved
8564  * to restore balance.
8565  *
8566  * @env: The load balancing environment.
8567  *
8568  * Return:	- The busiest group if imbalance exists.
8569  */
8570 static struct sched_group *find_busiest_group(struct lb_env *env)
8571 {
8572 	struct sg_lb_stats *local, *busiest;
8573 	struct sd_lb_stats sds;
8574 
8575 	init_sd_lb_stats(&sds);
8576 
8577 	/*
8578 	 * Compute the various statistics relavent for load balancing at
8579 	 * this level.
8580 	 */
8581 	update_sd_lb_stats(env, &sds);
8582 	local = &sds.local_stat;
8583 	busiest = &sds.busiest_stat;
8584 
8585 	/* ASYM feature bypasses nice load balance check */
8586 	if (check_asym_packing(env, &sds))
8587 		return sds.busiest;
8588 
8589 	/* There is no busy sibling group to pull tasks from */
8590 	if (!sds.busiest || busiest->sum_nr_running == 0)
8591 		goto out_balanced;
8592 
8593 	/* XXX broken for overlapping NUMA groups */
8594 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8595 						/ sds.total_capacity;
8596 
8597 	/*
8598 	 * If the busiest group is imbalanced the below checks don't
8599 	 * work because they assume all things are equal, which typically
8600 	 * isn't true due to cpus_allowed constraints and the like.
8601 	 */
8602 	if (busiest->group_type == group_imbalanced)
8603 		goto force_balance;
8604 
8605 	/*
8606 	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8607 	 * capacities from resulting in underutilization due to avg_load.
8608 	 */
8609 	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8610 	    busiest->group_no_capacity)
8611 		goto force_balance;
8612 
8613 	/*
8614 	 * If the local group is busier than the selected busiest group
8615 	 * don't try and pull any tasks.
8616 	 */
8617 	if (local->avg_load >= busiest->avg_load)
8618 		goto out_balanced;
8619 
8620 	/*
8621 	 * Don't pull any tasks if this group is already above the domain
8622 	 * average load.
8623 	 */
8624 	if (local->avg_load >= sds.avg_load)
8625 		goto out_balanced;
8626 
8627 	if (env->idle == CPU_IDLE) {
8628 		/*
8629 		 * This CPU is idle. If the busiest group is not overloaded
8630 		 * and there is no imbalance between this and busiest group
8631 		 * wrt idle CPUs, it is balanced. The imbalance becomes
8632 		 * significant if the diff is greater than 1 otherwise we
8633 		 * might end up to just move the imbalance on another group
8634 		 */
8635 		if ((busiest->group_type != group_overloaded) &&
8636 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8637 			goto out_balanced;
8638 	} else {
8639 		/*
8640 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8641 		 * imbalance_pct to be conservative.
8642 		 */
8643 		if (100 * busiest->avg_load <=
8644 				env->sd->imbalance_pct * local->avg_load)
8645 			goto out_balanced;
8646 	}
8647 
8648 force_balance:
8649 	/* Looks like there is an imbalance. Compute it */
8650 	calculate_imbalance(env, &sds);
8651 	return sds.busiest;
8652 
8653 out_balanced:
8654 	env->imbalance = 0;
8655 	return NULL;
8656 }
8657 
8658 /*
8659  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8660  */
8661 static struct rq *find_busiest_queue(struct lb_env *env,
8662 				     struct sched_group *group)
8663 {
8664 	struct rq *busiest = NULL, *rq;
8665 	unsigned long busiest_load = 0, busiest_capacity = 1;
8666 	int i;
8667 
8668 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8669 		unsigned long capacity, wl;
8670 		enum fbq_type rt;
8671 
8672 		rq = cpu_rq(i);
8673 		rt = fbq_classify_rq(rq);
8674 
8675 		/*
8676 		 * We classify groups/runqueues into three groups:
8677 		 *  - regular: there are !numa tasks
8678 		 *  - remote:  there are numa tasks that run on the 'wrong' node
8679 		 *  - all:     there is no distinction
8680 		 *
8681 		 * In order to avoid migrating ideally placed numa tasks,
8682 		 * ignore those when there's better options.
8683 		 *
8684 		 * If we ignore the actual busiest queue to migrate another
8685 		 * task, the next balance pass can still reduce the busiest
8686 		 * queue by moving tasks around inside the node.
8687 		 *
8688 		 * If we cannot move enough load due to this classification
8689 		 * the next pass will adjust the group classification and
8690 		 * allow migration of more tasks.
8691 		 *
8692 		 * Both cases only affect the total convergence complexity.
8693 		 */
8694 		if (rt > env->fbq_type)
8695 			continue;
8696 
8697 		capacity = capacity_of(i);
8698 
8699 		wl = weighted_cpuload(rq);
8700 
8701 		/*
8702 		 * When comparing with imbalance, use weighted_cpuload()
8703 		 * which is not scaled with the CPU capacity.
8704 		 */
8705 
8706 		if (rq->nr_running == 1 && wl > env->imbalance &&
8707 		    !check_cpu_capacity(rq, env->sd))
8708 			continue;
8709 
8710 		/*
8711 		 * For the load comparisons with the other CPU's, consider
8712 		 * the weighted_cpuload() scaled with the CPU capacity, so
8713 		 * that the load can be moved away from the CPU that is
8714 		 * potentially running at a lower capacity.
8715 		 *
8716 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8717 		 * multiplication to rid ourselves of the division works out
8718 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
8719 		 * our previous maximum.
8720 		 */
8721 		if (wl * busiest_capacity > busiest_load * capacity) {
8722 			busiest_load = wl;
8723 			busiest_capacity = capacity;
8724 			busiest = rq;
8725 		}
8726 	}
8727 
8728 	return busiest;
8729 }
8730 
8731 /*
8732  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8733  * so long as it is large enough.
8734  */
8735 #define MAX_PINNED_INTERVAL	512
8736 
8737 static int need_active_balance(struct lb_env *env)
8738 {
8739 	struct sched_domain *sd = env->sd;
8740 
8741 	if (env->idle == CPU_NEWLY_IDLE) {
8742 
8743 		/*
8744 		 * ASYM_PACKING needs to force migrate tasks from busy but
8745 		 * lower priority CPUs in order to pack all tasks in the
8746 		 * highest priority CPUs.
8747 		 */
8748 		if ((sd->flags & SD_ASYM_PACKING) &&
8749 		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8750 			return 1;
8751 	}
8752 
8753 	/*
8754 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8755 	 * It's worth migrating the task if the src_cpu's capacity is reduced
8756 	 * because of other sched_class or IRQs if more capacity stays
8757 	 * available on dst_cpu.
8758 	 */
8759 	if ((env->idle != CPU_NOT_IDLE) &&
8760 	    (env->src_rq->cfs.h_nr_running == 1)) {
8761 		if ((check_cpu_capacity(env->src_rq, sd)) &&
8762 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8763 			return 1;
8764 	}
8765 
8766 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8767 }
8768 
8769 static int active_load_balance_cpu_stop(void *data);
8770 
8771 static int should_we_balance(struct lb_env *env)
8772 {
8773 	struct sched_group *sg = env->sd->groups;
8774 	int cpu, balance_cpu = -1;
8775 
8776 	/*
8777 	 * Ensure the balancing environment is consistent; can happen
8778 	 * when the softirq triggers 'during' hotplug.
8779 	 */
8780 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8781 		return 0;
8782 
8783 	/*
8784 	 * In the newly idle case, we will allow all the CPUs
8785 	 * to do the newly idle load balance.
8786 	 */
8787 	if (env->idle == CPU_NEWLY_IDLE)
8788 		return 1;
8789 
8790 	/* Try to find first idle CPU */
8791 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8792 		if (!idle_cpu(cpu))
8793 			continue;
8794 
8795 		balance_cpu = cpu;
8796 		break;
8797 	}
8798 
8799 	if (balance_cpu == -1)
8800 		balance_cpu = group_balance_cpu(sg);
8801 
8802 	/*
8803 	 * First idle CPU or the first CPU(busiest) in this sched group
8804 	 * is eligible for doing load balancing at this and above domains.
8805 	 */
8806 	return balance_cpu == env->dst_cpu;
8807 }
8808 
8809 /*
8810  * Check this_cpu to ensure it is balanced within domain. Attempt to move
8811  * tasks if there is an imbalance.
8812  */
8813 static int load_balance(int this_cpu, struct rq *this_rq,
8814 			struct sched_domain *sd, enum cpu_idle_type idle,
8815 			int *continue_balancing)
8816 {
8817 	int ld_moved, cur_ld_moved, active_balance = 0;
8818 	struct sched_domain *sd_parent = sd->parent;
8819 	struct sched_group *group;
8820 	struct rq *busiest;
8821 	struct rq_flags rf;
8822 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8823 
8824 	struct lb_env env = {
8825 		.sd		= sd,
8826 		.dst_cpu	= this_cpu,
8827 		.dst_rq		= this_rq,
8828 		.dst_grpmask    = sched_group_span(sd->groups),
8829 		.idle		= idle,
8830 		.loop_break	= sched_nr_migrate_break,
8831 		.cpus		= cpus,
8832 		.fbq_type	= all,
8833 		.tasks		= LIST_HEAD_INIT(env.tasks),
8834 	};
8835 
8836 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8837 
8838 	schedstat_inc(sd->lb_count[idle]);
8839 
8840 redo:
8841 	if (!should_we_balance(&env)) {
8842 		*continue_balancing = 0;
8843 		goto out_balanced;
8844 	}
8845 
8846 	group = find_busiest_group(&env);
8847 	if (!group) {
8848 		schedstat_inc(sd->lb_nobusyg[idle]);
8849 		goto out_balanced;
8850 	}
8851 
8852 	busiest = find_busiest_queue(&env, group);
8853 	if (!busiest) {
8854 		schedstat_inc(sd->lb_nobusyq[idle]);
8855 		goto out_balanced;
8856 	}
8857 
8858 	BUG_ON(busiest == env.dst_rq);
8859 
8860 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8861 
8862 	env.src_cpu = busiest->cpu;
8863 	env.src_rq = busiest;
8864 
8865 	ld_moved = 0;
8866 	if (busiest->nr_running > 1) {
8867 		/*
8868 		 * Attempt to move tasks. If find_busiest_group has found
8869 		 * an imbalance but busiest->nr_running <= 1, the group is
8870 		 * still unbalanced. ld_moved simply stays zero, so it is
8871 		 * correctly treated as an imbalance.
8872 		 */
8873 		env.flags |= LBF_ALL_PINNED;
8874 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8875 
8876 more_balance:
8877 		rq_lock_irqsave(busiest, &rf);
8878 		update_rq_clock(busiest);
8879 
8880 		/*
8881 		 * cur_ld_moved - load moved in current iteration
8882 		 * ld_moved     - cumulative load moved across iterations
8883 		 */
8884 		cur_ld_moved = detach_tasks(&env);
8885 
8886 		/*
8887 		 * We've detached some tasks from busiest_rq. Every
8888 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8889 		 * unlock busiest->lock, and we are able to be sure
8890 		 * that nobody can manipulate the tasks in parallel.
8891 		 * See task_rq_lock() family for the details.
8892 		 */
8893 
8894 		rq_unlock(busiest, &rf);
8895 
8896 		if (cur_ld_moved) {
8897 			attach_tasks(&env);
8898 			ld_moved += cur_ld_moved;
8899 		}
8900 
8901 		local_irq_restore(rf.flags);
8902 
8903 		if (env.flags & LBF_NEED_BREAK) {
8904 			env.flags &= ~LBF_NEED_BREAK;
8905 			goto more_balance;
8906 		}
8907 
8908 		/*
8909 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8910 		 * us and move them to an alternate dst_cpu in our sched_group
8911 		 * where they can run. The upper limit on how many times we
8912 		 * iterate on same src_cpu is dependent on number of CPUs in our
8913 		 * sched_group.
8914 		 *
8915 		 * This changes load balance semantics a bit on who can move
8916 		 * load to a given_cpu. In addition to the given_cpu itself
8917 		 * (or a ilb_cpu acting on its behalf where given_cpu is
8918 		 * nohz-idle), we now have balance_cpu in a position to move
8919 		 * load to given_cpu. In rare situations, this may cause
8920 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8921 		 * _independently_ and at _same_ time to move some load to
8922 		 * given_cpu) causing exceess load to be moved to given_cpu.
8923 		 * This however should not happen so much in practice and
8924 		 * moreover subsequent load balance cycles should correct the
8925 		 * excess load moved.
8926 		 */
8927 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8928 
8929 			/* Prevent to re-select dst_cpu via env's CPUs */
8930 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
8931 
8932 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8933 			env.dst_cpu	 = env.new_dst_cpu;
8934 			env.flags	&= ~LBF_DST_PINNED;
8935 			env.loop	 = 0;
8936 			env.loop_break	 = sched_nr_migrate_break;
8937 
8938 			/*
8939 			 * Go back to "more_balance" rather than "redo" since we
8940 			 * need to continue with same src_cpu.
8941 			 */
8942 			goto more_balance;
8943 		}
8944 
8945 		/*
8946 		 * We failed to reach balance because of affinity.
8947 		 */
8948 		if (sd_parent) {
8949 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8950 
8951 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8952 				*group_imbalance = 1;
8953 		}
8954 
8955 		/* All tasks on this runqueue were pinned by CPU affinity */
8956 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8957 			cpumask_clear_cpu(cpu_of(busiest), cpus);
8958 			/*
8959 			 * Attempting to continue load balancing at the current
8960 			 * sched_domain level only makes sense if there are
8961 			 * active CPUs remaining as possible busiest CPUs to
8962 			 * pull load from which are not contained within the
8963 			 * destination group that is receiving any migrated
8964 			 * load.
8965 			 */
8966 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8967 				env.loop = 0;
8968 				env.loop_break = sched_nr_migrate_break;
8969 				goto redo;
8970 			}
8971 			goto out_all_pinned;
8972 		}
8973 	}
8974 
8975 	if (!ld_moved) {
8976 		schedstat_inc(sd->lb_failed[idle]);
8977 		/*
8978 		 * Increment the failure counter only on periodic balance.
8979 		 * We do not want newidle balance, which can be very
8980 		 * frequent, pollute the failure counter causing
8981 		 * excessive cache_hot migrations and active balances.
8982 		 */
8983 		if (idle != CPU_NEWLY_IDLE)
8984 			sd->nr_balance_failed++;
8985 
8986 		if (need_active_balance(&env)) {
8987 			unsigned long flags;
8988 
8989 			raw_spin_lock_irqsave(&busiest->lock, flags);
8990 
8991 			/*
8992 			 * Don't kick the active_load_balance_cpu_stop,
8993 			 * if the curr task on busiest CPU can't be
8994 			 * moved to this_cpu:
8995 			 */
8996 			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8997 				raw_spin_unlock_irqrestore(&busiest->lock,
8998 							    flags);
8999 				env.flags |= LBF_ALL_PINNED;
9000 				goto out_one_pinned;
9001 			}
9002 
9003 			/*
9004 			 * ->active_balance synchronizes accesses to
9005 			 * ->active_balance_work.  Once set, it's cleared
9006 			 * only after active load balance is finished.
9007 			 */
9008 			if (!busiest->active_balance) {
9009 				busiest->active_balance = 1;
9010 				busiest->push_cpu = this_cpu;
9011 				active_balance = 1;
9012 			}
9013 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
9014 
9015 			if (active_balance) {
9016 				stop_one_cpu_nowait(cpu_of(busiest),
9017 					active_load_balance_cpu_stop, busiest,
9018 					&busiest->active_balance_work);
9019 			}
9020 
9021 			/* We've kicked active balancing, force task migration. */
9022 			sd->nr_balance_failed = sd->cache_nice_tries+1;
9023 		}
9024 	} else
9025 		sd->nr_balance_failed = 0;
9026 
9027 	if (likely(!active_balance)) {
9028 		/* We were unbalanced, so reset the balancing interval */
9029 		sd->balance_interval = sd->min_interval;
9030 	} else {
9031 		/*
9032 		 * If we've begun active balancing, start to back off. This
9033 		 * case may not be covered by the all_pinned logic if there
9034 		 * is only 1 task on the busy runqueue (because we don't call
9035 		 * detach_tasks).
9036 		 */
9037 		if (sd->balance_interval < sd->max_interval)
9038 			sd->balance_interval *= 2;
9039 	}
9040 
9041 	goto out;
9042 
9043 out_balanced:
9044 	/*
9045 	 * We reach balance although we may have faced some affinity
9046 	 * constraints. Clear the imbalance flag if it was set.
9047 	 */
9048 	if (sd_parent) {
9049 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9050 
9051 		if (*group_imbalance)
9052 			*group_imbalance = 0;
9053 	}
9054 
9055 out_all_pinned:
9056 	/*
9057 	 * We reach balance because all tasks are pinned at this level so
9058 	 * we can't migrate them. Let the imbalance flag set so parent level
9059 	 * can try to migrate them.
9060 	 */
9061 	schedstat_inc(sd->lb_balanced[idle]);
9062 
9063 	sd->nr_balance_failed = 0;
9064 
9065 out_one_pinned:
9066 	/* tune up the balancing interval */
9067 	if (((env.flags & LBF_ALL_PINNED) &&
9068 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
9069 			(sd->balance_interval < sd->max_interval))
9070 		sd->balance_interval *= 2;
9071 
9072 	ld_moved = 0;
9073 out:
9074 	return ld_moved;
9075 }
9076 
9077 static inline unsigned long
9078 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9079 {
9080 	unsigned long interval = sd->balance_interval;
9081 
9082 	if (cpu_busy)
9083 		interval *= sd->busy_factor;
9084 
9085 	/* scale ms to jiffies */
9086 	interval = msecs_to_jiffies(interval);
9087 	interval = clamp(interval, 1UL, max_load_balance_interval);
9088 
9089 	return interval;
9090 }
9091 
9092 static inline void
9093 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9094 {
9095 	unsigned long interval, next;
9096 
9097 	/* used by idle balance, so cpu_busy = 0 */
9098 	interval = get_sd_balance_interval(sd, 0);
9099 	next = sd->last_balance + interval;
9100 
9101 	if (time_after(*next_balance, next))
9102 		*next_balance = next;
9103 }
9104 
9105 /*
9106  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9107  * running tasks off the busiest CPU onto idle CPUs. It requires at
9108  * least 1 task to be running on each physical CPU where possible, and
9109  * avoids physical / logical imbalances.
9110  */
9111 static int active_load_balance_cpu_stop(void *data)
9112 {
9113 	struct rq *busiest_rq = data;
9114 	int busiest_cpu = cpu_of(busiest_rq);
9115 	int target_cpu = busiest_rq->push_cpu;
9116 	struct rq *target_rq = cpu_rq(target_cpu);
9117 	struct sched_domain *sd;
9118 	struct task_struct *p = NULL;
9119 	struct rq_flags rf;
9120 
9121 	rq_lock_irq(busiest_rq, &rf);
9122 	/*
9123 	 * Between queueing the stop-work and running it is a hole in which
9124 	 * CPUs can become inactive. We should not move tasks from or to
9125 	 * inactive CPUs.
9126 	 */
9127 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9128 		goto out_unlock;
9129 
9130 	/* Make sure the requested CPU hasn't gone down in the meantime: */
9131 	if (unlikely(busiest_cpu != smp_processor_id() ||
9132 		     !busiest_rq->active_balance))
9133 		goto out_unlock;
9134 
9135 	/* Is there any task to move? */
9136 	if (busiest_rq->nr_running <= 1)
9137 		goto out_unlock;
9138 
9139 	/*
9140 	 * This condition is "impossible", if it occurs
9141 	 * we need to fix it. Originally reported by
9142 	 * Bjorn Helgaas on a 128-CPU setup.
9143 	 */
9144 	BUG_ON(busiest_rq == target_rq);
9145 
9146 	/* Search for an sd spanning us and the target CPU. */
9147 	rcu_read_lock();
9148 	for_each_domain(target_cpu, sd) {
9149 		if ((sd->flags & SD_LOAD_BALANCE) &&
9150 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9151 				break;
9152 	}
9153 
9154 	if (likely(sd)) {
9155 		struct lb_env env = {
9156 			.sd		= sd,
9157 			.dst_cpu	= target_cpu,
9158 			.dst_rq		= target_rq,
9159 			.src_cpu	= busiest_rq->cpu,
9160 			.src_rq		= busiest_rq,
9161 			.idle		= CPU_IDLE,
9162 			/*
9163 			 * can_migrate_task() doesn't need to compute new_dst_cpu
9164 			 * for active balancing. Since we have CPU_IDLE, but no
9165 			 * @dst_grpmask we need to make that test go away with lying
9166 			 * about DST_PINNED.
9167 			 */
9168 			.flags		= LBF_DST_PINNED,
9169 		};
9170 
9171 		schedstat_inc(sd->alb_count);
9172 		update_rq_clock(busiest_rq);
9173 
9174 		p = detach_one_task(&env);
9175 		if (p) {
9176 			schedstat_inc(sd->alb_pushed);
9177 			/* Active balancing done, reset the failure counter. */
9178 			sd->nr_balance_failed = 0;
9179 		} else {
9180 			schedstat_inc(sd->alb_failed);
9181 		}
9182 	}
9183 	rcu_read_unlock();
9184 out_unlock:
9185 	busiest_rq->active_balance = 0;
9186 	rq_unlock(busiest_rq, &rf);
9187 
9188 	if (p)
9189 		attach_one_task(target_rq, p);
9190 
9191 	local_irq_enable();
9192 
9193 	return 0;
9194 }
9195 
9196 static DEFINE_SPINLOCK(balancing);
9197 
9198 /*
9199  * Scale the max load_balance interval with the number of CPUs in the system.
9200  * This trades load-balance latency on larger machines for less cross talk.
9201  */
9202 void update_max_interval(void)
9203 {
9204 	max_load_balance_interval = HZ*num_online_cpus()/10;
9205 }
9206 
9207 /*
9208  * It checks each scheduling domain to see if it is due to be balanced,
9209  * and initiates a balancing operation if so.
9210  *
9211  * Balancing parameters are set up in init_sched_domains.
9212  */
9213 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9214 {
9215 	int continue_balancing = 1;
9216 	int cpu = rq->cpu;
9217 	unsigned long interval;
9218 	struct sched_domain *sd;
9219 	/* Earliest time when we have to do rebalance again */
9220 	unsigned long next_balance = jiffies + 60*HZ;
9221 	int update_next_balance = 0;
9222 	int need_serialize, need_decay = 0;
9223 	u64 max_cost = 0;
9224 
9225 	rcu_read_lock();
9226 	for_each_domain(cpu, sd) {
9227 		/*
9228 		 * Decay the newidle max times here because this is a regular
9229 		 * visit to all the domains. Decay ~1% per second.
9230 		 */
9231 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9232 			sd->max_newidle_lb_cost =
9233 				(sd->max_newidle_lb_cost * 253) / 256;
9234 			sd->next_decay_max_lb_cost = jiffies + HZ;
9235 			need_decay = 1;
9236 		}
9237 		max_cost += sd->max_newidle_lb_cost;
9238 
9239 		if (!(sd->flags & SD_LOAD_BALANCE))
9240 			continue;
9241 
9242 		/*
9243 		 * Stop the load balance at this level. There is another
9244 		 * CPU in our sched group which is doing load balancing more
9245 		 * actively.
9246 		 */
9247 		if (!continue_balancing) {
9248 			if (need_decay)
9249 				continue;
9250 			break;
9251 		}
9252 
9253 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9254 
9255 		need_serialize = sd->flags & SD_SERIALIZE;
9256 		if (need_serialize) {
9257 			if (!spin_trylock(&balancing))
9258 				goto out;
9259 		}
9260 
9261 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
9262 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9263 				/*
9264 				 * The LBF_DST_PINNED logic could have changed
9265 				 * env->dst_cpu, so we can't know our idle
9266 				 * state even if we migrated tasks. Update it.
9267 				 */
9268 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9269 			}
9270 			sd->last_balance = jiffies;
9271 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9272 		}
9273 		if (need_serialize)
9274 			spin_unlock(&balancing);
9275 out:
9276 		if (time_after(next_balance, sd->last_balance + interval)) {
9277 			next_balance = sd->last_balance + interval;
9278 			update_next_balance = 1;
9279 		}
9280 	}
9281 	if (need_decay) {
9282 		/*
9283 		 * Ensure the rq-wide value also decays but keep it at a
9284 		 * reasonable floor to avoid funnies with rq->avg_idle.
9285 		 */
9286 		rq->max_idle_balance_cost =
9287 			max((u64)sysctl_sched_migration_cost, max_cost);
9288 	}
9289 	rcu_read_unlock();
9290 
9291 	/*
9292 	 * next_balance will be updated only when there is a need.
9293 	 * When the cpu is attached to null domain for ex, it will not be
9294 	 * updated.
9295 	 */
9296 	if (likely(update_next_balance)) {
9297 		rq->next_balance = next_balance;
9298 
9299 #ifdef CONFIG_NO_HZ_COMMON
9300 		/*
9301 		 * If this CPU has been elected to perform the nohz idle
9302 		 * balance. Other idle CPUs have already rebalanced with
9303 		 * nohz_idle_balance() and nohz.next_balance has been
9304 		 * updated accordingly. This CPU is now running the idle load
9305 		 * balance for itself and we need to update the
9306 		 * nohz.next_balance accordingly.
9307 		 */
9308 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9309 			nohz.next_balance = rq->next_balance;
9310 #endif
9311 	}
9312 }
9313 
9314 static inline int on_null_domain(struct rq *rq)
9315 {
9316 	return unlikely(!rcu_dereference_sched(rq->sd));
9317 }
9318 
9319 #ifdef CONFIG_NO_HZ_COMMON
9320 /*
9321  * idle load balancing details
9322  * - When one of the busy CPUs notice that there may be an idle rebalancing
9323  *   needed, they will kick the idle load balancer, which then does idle
9324  *   load balancing for all the idle CPUs.
9325  */
9326 
9327 static inline int find_new_ilb(void)
9328 {
9329 	int ilb = cpumask_first(nohz.idle_cpus_mask);
9330 
9331 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
9332 		return ilb;
9333 
9334 	return nr_cpu_ids;
9335 }
9336 
9337 /*
9338  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
9339  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
9340  * CPU (if there is one).
9341  */
9342 static void kick_ilb(unsigned int flags)
9343 {
9344 	int ilb_cpu;
9345 
9346 	nohz.next_balance++;
9347 
9348 	ilb_cpu = find_new_ilb();
9349 
9350 	if (ilb_cpu >= nr_cpu_ids)
9351 		return;
9352 
9353 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
9354 	if (flags & NOHZ_KICK_MASK)
9355 		return;
9356 
9357 	/*
9358 	 * Use smp_send_reschedule() instead of resched_cpu().
9359 	 * This way we generate a sched IPI on the target CPU which
9360 	 * is idle. And the softirq performing nohz idle load balance
9361 	 * will be run before returning from the IPI.
9362 	 */
9363 	smp_send_reschedule(ilb_cpu);
9364 }
9365 
9366 /*
9367  * Current heuristic for kicking the idle load balancer in the presence
9368  * of an idle cpu in the system.
9369  *   - This rq has more than one task.
9370  *   - This rq has at least one CFS task and the capacity of the CPU is
9371  *     significantly reduced because of RT tasks or IRQs.
9372  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
9373  *     multiple busy cpu.
9374  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9375  *     domain span are idle.
9376  */
9377 static void nohz_balancer_kick(struct rq *rq)
9378 {
9379 	unsigned long now = jiffies;
9380 	struct sched_domain_shared *sds;
9381 	struct sched_domain *sd;
9382 	int nr_busy, i, cpu = rq->cpu;
9383 	unsigned int flags = 0;
9384 
9385 	if (unlikely(rq->idle_balance))
9386 		return;
9387 
9388 	/*
9389 	 * We may be recently in ticked or tickless idle mode. At the first
9390 	 * busy tick after returning from idle, we will update the busy stats.
9391 	 */
9392 	nohz_balance_exit_idle(rq);
9393 
9394 	/*
9395 	 * None are in tickless mode and hence no need for NOHZ idle load
9396 	 * balancing.
9397 	 */
9398 	if (likely(!atomic_read(&nohz.nr_cpus)))
9399 		return;
9400 
9401 	if (READ_ONCE(nohz.has_blocked) &&
9402 	    time_after(now, READ_ONCE(nohz.next_blocked)))
9403 		flags = NOHZ_STATS_KICK;
9404 
9405 	if (time_before(now, nohz.next_balance))
9406 		goto out;
9407 
9408 	if (rq->nr_running >= 2) {
9409 		flags = NOHZ_KICK_MASK;
9410 		goto out;
9411 	}
9412 
9413 	rcu_read_lock();
9414 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9415 	if (sds) {
9416 		/*
9417 		 * XXX: write a coherent comment on why we do this.
9418 		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9419 		 */
9420 		nr_busy = atomic_read(&sds->nr_busy_cpus);
9421 		if (nr_busy > 1) {
9422 			flags = NOHZ_KICK_MASK;
9423 			goto unlock;
9424 		}
9425 
9426 	}
9427 
9428 	sd = rcu_dereference(rq->sd);
9429 	if (sd) {
9430 		if ((rq->cfs.h_nr_running >= 1) &&
9431 				check_cpu_capacity(rq, sd)) {
9432 			flags = NOHZ_KICK_MASK;
9433 			goto unlock;
9434 		}
9435 	}
9436 
9437 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
9438 	if (sd) {
9439 		for_each_cpu(i, sched_domain_span(sd)) {
9440 			if (i == cpu ||
9441 			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9442 				continue;
9443 
9444 			if (sched_asym_prefer(i, cpu)) {
9445 				flags = NOHZ_KICK_MASK;
9446 				goto unlock;
9447 			}
9448 		}
9449 	}
9450 unlock:
9451 	rcu_read_unlock();
9452 out:
9453 	if (flags)
9454 		kick_ilb(flags);
9455 }
9456 
9457 static void set_cpu_sd_state_busy(int cpu)
9458 {
9459 	struct sched_domain *sd;
9460 
9461 	rcu_read_lock();
9462 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9463 
9464 	if (!sd || !sd->nohz_idle)
9465 		goto unlock;
9466 	sd->nohz_idle = 0;
9467 
9468 	atomic_inc(&sd->shared->nr_busy_cpus);
9469 unlock:
9470 	rcu_read_unlock();
9471 }
9472 
9473 void nohz_balance_exit_idle(struct rq *rq)
9474 {
9475 	SCHED_WARN_ON(rq != this_rq());
9476 
9477 	if (likely(!rq->nohz_tick_stopped))
9478 		return;
9479 
9480 	rq->nohz_tick_stopped = 0;
9481 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9482 	atomic_dec(&nohz.nr_cpus);
9483 
9484 	set_cpu_sd_state_busy(rq->cpu);
9485 }
9486 
9487 static void set_cpu_sd_state_idle(int cpu)
9488 {
9489 	struct sched_domain *sd;
9490 
9491 	rcu_read_lock();
9492 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9493 
9494 	if (!sd || sd->nohz_idle)
9495 		goto unlock;
9496 	sd->nohz_idle = 1;
9497 
9498 	atomic_dec(&sd->shared->nr_busy_cpus);
9499 unlock:
9500 	rcu_read_unlock();
9501 }
9502 
9503 /*
9504  * This routine will record that the CPU is going idle with tick stopped.
9505  * This info will be used in performing idle load balancing in the future.
9506  */
9507 void nohz_balance_enter_idle(int cpu)
9508 {
9509 	struct rq *rq = cpu_rq(cpu);
9510 
9511 	SCHED_WARN_ON(cpu != smp_processor_id());
9512 
9513 	/* If this CPU is going down, then nothing needs to be done: */
9514 	if (!cpu_active(cpu))
9515 		return;
9516 
9517 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9518 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9519 		return;
9520 
9521 	/*
9522 	 * Can be set safely without rq->lock held
9523 	 * If a clear happens, it will have evaluated last additions because
9524 	 * rq->lock is held during the check and the clear
9525 	 */
9526 	rq->has_blocked_load = 1;
9527 
9528 	/*
9529 	 * The tick is still stopped but load could have been added in the
9530 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
9531 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9532 	 * of nohz.has_blocked can only happen after checking the new load
9533 	 */
9534 	if (rq->nohz_tick_stopped)
9535 		goto out;
9536 
9537 	/* If we're a completely isolated CPU, we don't play: */
9538 	if (on_null_domain(rq))
9539 		return;
9540 
9541 	rq->nohz_tick_stopped = 1;
9542 
9543 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9544 	atomic_inc(&nohz.nr_cpus);
9545 
9546 	/*
9547 	 * Ensures that if nohz_idle_balance() fails to observe our
9548 	 * @idle_cpus_mask store, it must observe the @has_blocked
9549 	 * store.
9550 	 */
9551 	smp_mb__after_atomic();
9552 
9553 	set_cpu_sd_state_idle(cpu);
9554 
9555 out:
9556 	/*
9557 	 * Each time a cpu enter idle, we assume that it has blocked load and
9558 	 * enable the periodic update of the load of idle cpus
9559 	 */
9560 	WRITE_ONCE(nohz.has_blocked, 1);
9561 }
9562 
9563 /*
9564  * Internal function that runs load balance for all idle cpus. The load balance
9565  * can be a simple update of blocked load or a complete load balance with
9566  * tasks movement depending of flags.
9567  * The function returns false if the loop has stopped before running
9568  * through all idle CPUs.
9569  */
9570 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9571 			       enum cpu_idle_type idle)
9572 {
9573 	/* Earliest time when we have to do rebalance again */
9574 	unsigned long now = jiffies;
9575 	unsigned long next_balance = now + 60*HZ;
9576 	bool has_blocked_load = false;
9577 	int update_next_balance = 0;
9578 	int this_cpu = this_rq->cpu;
9579 	int balance_cpu;
9580 	int ret = false;
9581 	struct rq *rq;
9582 
9583 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9584 
9585 	/*
9586 	 * We assume there will be no idle load after this update and clear
9587 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9588 	 * set the has_blocked flag and trig another update of idle load.
9589 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9590 	 * setting the flag, we are sure to not clear the state and not
9591 	 * check the load of an idle cpu.
9592 	 */
9593 	WRITE_ONCE(nohz.has_blocked, 0);
9594 
9595 	/*
9596 	 * Ensures that if we miss the CPU, we must see the has_blocked
9597 	 * store from nohz_balance_enter_idle().
9598 	 */
9599 	smp_mb();
9600 
9601 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9602 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9603 			continue;
9604 
9605 		/*
9606 		 * If this CPU gets work to do, stop the load balancing
9607 		 * work being done for other CPUs. Next load
9608 		 * balancing owner will pick it up.
9609 		 */
9610 		if (need_resched()) {
9611 			has_blocked_load = true;
9612 			goto abort;
9613 		}
9614 
9615 		rq = cpu_rq(balance_cpu);
9616 
9617 		has_blocked_load |= update_nohz_stats(rq, true);
9618 
9619 		/*
9620 		 * If time for next balance is due,
9621 		 * do the balance.
9622 		 */
9623 		if (time_after_eq(jiffies, rq->next_balance)) {
9624 			struct rq_flags rf;
9625 
9626 			rq_lock_irqsave(rq, &rf);
9627 			update_rq_clock(rq);
9628 			cpu_load_update_idle(rq);
9629 			rq_unlock_irqrestore(rq, &rf);
9630 
9631 			if (flags & NOHZ_BALANCE_KICK)
9632 				rebalance_domains(rq, CPU_IDLE);
9633 		}
9634 
9635 		if (time_after(next_balance, rq->next_balance)) {
9636 			next_balance = rq->next_balance;
9637 			update_next_balance = 1;
9638 		}
9639 	}
9640 
9641 	/* Newly idle CPU doesn't need an update */
9642 	if (idle != CPU_NEWLY_IDLE) {
9643 		update_blocked_averages(this_cpu);
9644 		has_blocked_load |= this_rq->has_blocked_load;
9645 	}
9646 
9647 	if (flags & NOHZ_BALANCE_KICK)
9648 		rebalance_domains(this_rq, CPU_IDLE);
9649 
9650 	WRITE_ONCE(nohz.next_blocked,
9651 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9652 
9653 	/* The full idle balance loop has been done */
9654 	ret = true;
9655 
9656 abort:
9657 	/* There is still blocked load, enable periodic update */
9658 	if (has_blocked_load)
9659 		WRITE_ONCE(nohz.has_blocked, 1);
9660 
9661 	/*
9662 	 * next_balance will be updated only when there is a need.
9663 	 * When the CPU is attached to null domain for ex, it will not be
9664 	 * updated.
9665 	 */
9666 	if (likely(update_next_balance))
9667 		nohz.next_balance = next_balance;
9668 
9669 	return ret;
9670 }
9671 
9672 /*
9673  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9674  * rebalancing for all the cpus for whom scheduler ticks are stopped.
9675  */
9676 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9677 {
9678 	int this_cpu = this_rq->cpu;
9679 	unsigned int flags;
9680 
9681 	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9682 		return false;
9683 
9684 	if (idle != CPU_IDLE) {
9685 		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9686 		return false;
9687 	}
9688 
9689 	/*
9690 	 * barrier, pairs with nohz_balance_enter_idle(), ensures ...
9691 	 */
9692 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9693 	if (!(flags & NOHZ_KICK_MASK))
9694 		return false;
9695 
9696 	_nohz_idle_balance(this_rq, flags, idle);
9697 
9698 	return true;
9699 }
9700 
9701 static void nohz_newidle_balance(struct rq *this_rq)
9702 {
9703 	int this_cpu = this_rq->cpu;
9704 
9705 	/*
9706 	 * This CPU doesn't want to be disturbed by scheduler
9707 	 * housekeeping
9708 	 */
9709 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9710 		return;
9711 
9712 	/* Will wake up very soon. No time for doing anything else*/
9713 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
9714 		return;
9715 
9716 	/* Don't need to update blocked load of idle CPUs*/
9717 	if (!READ_ONCE(nohz.has_blocked) ||
9718 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9719 		return;
9720 
9721 	raw_spin_unlock(&this_rq->lock);
9722 	/*
9723 	 * This CPU is going to be idle and blocked load of idle CPUs
9724 	 * need to be updated. Run the ilb locally as it is a good
9725 	 * candidate for ilb instead of waking up another idle CPU.
9726 	 * Kick an normal ilb if we failed to do the update.
9727 	 */
9728 	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9729 		kick_ilb(NOHZ_STATS_KICK);
9730 	raw_spin_lock(&this_rq->lock);
9731 }
9732 
9733 #else /* !CONFIG_NO_HZ_COMMON */
9734 static inline void nohz_balancer_kick(struct rq *rq) { }
9735 
9736 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9737 {
9738 	return false;
9739 }
9740 
9741 static inline void nohz_newidle_balance(struct rq *this_rq) { }
9742 #endif /* CONFIG_NO_HZ_COMMON */
9743 
9744 /*
9745  * idle_balance is called by schedule() if this_cpu is about to become
9746  * idle. Attempts to pull tasks from other CPUs.
9747  */
9748 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9749 {
9750 	unsigned long next_balance = jiffies + HZ;
9751 	int this_cpu = this_rq->cpu;
9752 	struct sched_domain *sd;
9753 	int pulled_task = 0;
9754 	u64 curr_cost = 0;
9755 
9756 	/*
9757 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
9758 	 * measure the duration of idle_balance() as idle time.
9759 	 */
9760 	this_rq->idle_stamp = rq_clock(this_rq);
9761 
9762 	/*
9763 	 * Do not pull tasks towards !active CPUs...
9764 	 */
9765 	if (!cpu_active(this_cpu))
9766 		return 0;
9767 
9768 	/*
9769 	 * This is OK, because current is on_cpu, which avoids it being picked
9770 	 * for load-balance and preemption/IRQs are still disabled avoiding
9771 	 * further scheduler activity on it and we're being very careful to
9772 	 * re-start the picking loop.
9773 	 */
9774 	rq_unpin_lock(this_rq, rf);
9775 
9776 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
9777 	    !this_rq->rd->overload) {
9778 
9779 		rcu_read_lock();
9780 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
9781 		if (sd)
9782 			update_next_balance(sd, &next_balance);
9783 		rcu_read_unlock();
9784 
9785 		nohz_newidle_balance(this_rq);
9786 
9787 		goto out;
9788 	}
9789 
9790 	raw_spin_unlock(&this_rq->lock);
9791 
9792 	update_blocked_averages(this_cpu);
9793 	rcu_read_lock();
9794 	for_each_domain(this_cpu, sd) {
9795 		int continue_balancing = 1;
9796 		u64 t0, domain_cost;
9797 
9798 		if (!(sd->flags & SD_LOAD_BALANCE))
9799 			continue;
9800 
9801 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9802 			update_next_balance(sd, &next_balance);
9803 			break;
9804 		}
9805 
9806 		if (sd->flags & SD_BALANCE_NEWIDLE) {
9807 			t0 = sched_clock_cpu(this_cpu);
9808 
9809 			pulled_task = load_balance(this_cpu, this_rq,
9810 						   sd, CPU_NEWLY_IDLE,
9811 						   &continue_balancing);
9812 
9813 			domain_cost = sched_clock_cpu(this_cpu) - t0;
9814 			if (domain_cost > sd->max_newidle_lb_cost)
9815 				sd->max_newidle_lb_cost = domain_cost;
9816 
9817 			curr_cost += domain_cost;
9818 		}
9819 
9820 		update_next_balance(sd, &next_balance);
9821 
9822 		/*
9823 		 * Stop searching for tasks to pull if there are
9824 		 * now runnable tasks on this rq.
9825 		 */
9826 		if (pulled_task || this_rq->nr_running > 0)
9827 			break;
9828 	}
9829 	rcu_read_unlock();
9830 
9831 	raw_spin_lock(&this_rq->lock);
9832 
9833 	if (curr_cost > this_rq->max_idle_balance_cost)
9834 		this_rq->max_idle_balance_cost = curr_cost;
9835 
9836 out:
9837 	/*
9838 	 * While browsing the domains, we released the rq lock, a task could
9839 	 * have been enqueued in the meantime. Since we're not going idle,
9840 	 * pretend we pulled a task.
9841 	 */
9842 	if (this_rq->cfs.h_nr_running && !pulled_task)
9843 		pulled_task = 1;
9844 
9845 	/* Move the next balance forward */
9846 	if (time_after(this_rq->next_balance, next_balance))
9847 		this_rq->next_balance = next_balance;
9848 
9849 	/* Is there a task of a high priority class? */
9850 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9851 		pulled_task = -1;
9852 
9853 	if (pulled_task)
9854 		this_rq->idle_stamp = 0;
9855 
9856 	rq_repin_lock(this_rq, rf);
9857 
9858 	return pulled_task;
9859 }
9860 
9861 /*
9862  * run_rebalance_domains is triggered when needed from the scheduler tick.
9863  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9864  */
9865 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9866 {
9867 	struct rq *this_rq = this_rq();
9868 	enum cpu_idle_type idle = this_rq->idle_balance ?
9869 						CPU_IDLE : CPU_NOT_IDLE;
9870 
9871 	/*
9872 	 * If this CPU has a pending nohz_balance_kick, then do the
9873 	 * balancing on behalf of the other idle CPUs whose ticks are
9874 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9875 	 * give the idle CPUs a chance to load balance. Else we may
9876 	 * load balance only within the local sched_domain hierarchy
9877 	 * and abort nohz_idle_balance altogether if we pull some load.
9878 	 */
9879 	if (nohz_idle_balance(this_rq, idle))
9880 		return;
9881 
9882 	/* normal load balance */
9883 	update_blocked_averages(this_rq->cpu);
9884 	rebalance_domains(this_rq, idle);
9885 }
9886 
9887 /*
9888  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9889  */
9890 void trigger_load_balance(struct rq *rq)
9891 {
9892 	/* Don't need to rebalance while attached to NULL domain */
9893 	if (unlikely(on_null_domain(rq)))
9894 		return;
9895 
9896 	if (time_after_eq(jiffies, rq->next_balance))
9897 		raise_softirq(SCHED_SOFTIRQ);
9898 
9899 	nohz_balancer_kick(rq);
9900 }
9901 
9902 static void rq_online_fair(struct rq *rq)
9903 {
9904 	update_sysctl();
9905 
9906 	update_runtime_enabled(rq);
9907 }
9908 
9909 static void rq_offline_fair(struct rq *rq)
9910 {
9911 	update_sysctl();
9912 
9913 	/* Ensure any throttled groups are reachable by pick_next_task */
9914 	unthrottle_offline_cfs_rqs(rq);
9915 }
9916 
9917 #endif /* CONFIG_SMP */
9918 
9919 /*
9920  * scheduler tick hitting a task of our scheduling class.
9921  *
9922  * NOTE: This function can be called remotely by the tick offload that
9923  * goes along full dynticks. Therefore no local assumption can be made
9924  * and everything must be accessed through the @rq and @curr passed in
9925  * parameters.
9926  */
9927 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9928 {
9929 	struct cfs_rq *cfs_rq;
9930 	struct sched_entity *se = &curr->se;
9931 
9932 	for_each_sched_entity(se) {
9933 		cfs_rq = cfs_rq_of(se);
9934 		entity_tick(cfs_rq, se, queued);
9935 	}
9936 
9937 	if (static_branch_unlikely(&sched_numa_balancing))
9938 		task_tick_numa(rq, curr);
9939 }
9940 
9941 /*
9942  * called on fork with the child task as argument from the parent's context
9943  *  - child not yet on the tasklist
9944  *  - preemption disabled
9945  */
9946 static void task_fork_fair(struct task_struct *p)
9947 {
9948 	struct cfs_rq *cfs_rq;
9949 	struct sched_entity *se = &p->se, *curr;
9950 	struct rq *rq = this_rq();
9951 	struct rq_flags rf;
9952 
9953 	rq_lock(rq, &rf);
9954 	update_rq_clock(rq);
9955 
9956 	cfs_rq = task_cfs_rq(current);
9957 	curr = cfs_rq->curr;
9958 	if (curr) {
9959 		update_curr(cfs_rq);
9960 		se->vruntime = curr->vruntime;
9961 	}
9962 	place_entity(cfs_rq, se, 1);
9963 
9964 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9965 		/*
9966 		 * Upon rescheduling, sched_class::put_prev_task() will place
9967 		 * 'current' within the tree based on its new key value.
9968 		 */
9969 		swap(curr->vruntime, se->vruntime);
9970 		resched_curr(rq);
9971 	}
9972 
9973 	se->vruntime -= cfs_rq->min_vruntime;
9974 	rq_unlock(rq, &rf);
9975 }
9976 
9977 /*
9978  * Priority of the task has changed. Check to see if we preempt
9979  * the current task.
9980  */
9981 static void
9982 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9983 {
9984 	if (!task_on_rq_queued(p))
9985 		return;
9986 
9987 	/*
9988 	 * Reschedule if we are currently running on this runqueue and
9989 	 * our priority decreased, or if we are not currently running on
9990 	 * this runqueue and our priority is higher than the current's
9991 	 */
9992 	if (rq->curr == p) {
9993 		if (p->prio > oldprio)
9994 			resched_curr(rq);
9995 	} else
9996 		check_preempt_curr(rq, p, 0);
9997 }
9998 
9999 static inline bool vruntime_normalized(struct task_struct *p)
10000 {
10001 	struct sched_entity *se = &p->se;
10002 
10003 	/*
10004 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10005 	 * the dequeue_entity(.flags=0) will already have normalized the
10006 	 * vruntime.
10007 	 */
10008 	if (p->on_rq)
10009 		return true;
10010 
10011 	/*
10012 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
10013 	 * But there are some cases where it has already been normalized:
10014 	 *
10015 	 * - A forked child which is waiting for being woken up by
10016 	 *   wake_up_new_task().
10017 	 * - A task which has been woken up by try_to_wake_up() and
10018 	 *   waiting for actually being woken up by sched_ttwu_pending().
10019 	 */
10020 	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
10021 		return true;
10022 
10023 	return false;
10024 }
10025 
10026 #ifdef CONFIG_FAIR_GROUP_SCHED
10027 /*
10028  * Propagate the changes of the sched_entity across the tg tree to make it
10029  * visible to the root
10030  */
10031 static void propagate_entity_cfs_rq(struct sched_entity *se)
10032 {
10033 	struct cfs_rq *cfs_rq;
10034 
10035 	/* Start to propagate at parent */
10036 	se = se->parent;
10037 
10038 	for_each_sched_entity(se) {
10039 		cfs_rq = cfs_rq_of(se);
10040 
10041 		if (cfs_rq_throttled(cfs_rq))
10042 			break;
10043 
10044 		update_load_avg(cfs_rq, se, UPDATE_TG);
10045 	}
10046 }
10047 #else
10048 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10049 #endif
10050 
10051 static void detach_entity_cfs_rq(struct sched_entity *se)
10052 {
10053 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10054 
10055 	/* Catch up with the cfs_rq and remove our load when we leave */
10056 	update_load_avg(cfs_rq, se, 0);
10057 	detach_entity_load_avg(cfs_rq, se);
10058 	update_tg_load_avg(cfs_rq, false);
10059 	propagate_entity_cfs_rq(se);
10060 }
10061 
10062 static void attach_entity_cfs_rq(struct sched_entity *se)
10063 {
10064 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10065 
10066 #ifdef CONFIG_FAIR_GROUP_SCHED
10067 	/*
10068 	 * Since the real-depth could have been changed (only FAIR
10069 	 * class maintain depth value), reset depth properly.
10070 	 */
10071 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10072 #endif
10073 
10074 	/* Synchronize entity with its cfs_rq */
10075 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10076 	attach_entity_load_avg(cfs_rq, se, 0);
10077 	update_tg_load_avg(cfs_rq, false);
10078 	propagate_entity_cfs_rq(se);
10079 }
10080 
10081 static void detach_task_cfs_rq(struct task_struct *p)
10082 {
10083 	struct sched_entity *se = &p->se;
10084 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10085 
10086 	if (!vruntime_normalized(p)) {
10087 		/*
10088 		 * Fix up our vruntime so that the current sleep doesn't
10089 		 * cause 'unlimited' sleep bonus.
10090 		 */
10091 		place_entity(cfs_rq, se, 0);
10092 		se->vruntime -= cfs_rq->min_vruntime;
10093 	}
10094 
10095 	detach_entity_cfs_rq(se);
10096 }
10097 
10098 static void attach_task_cfs_rq(struct task_struct *p)
10099 {
10100 	struct sched_entity *se = &p->se;
10101 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10102 
10103 	attach_entity_cfs_rq(se);
10104 
10105 	if (!vruntime_normalized(p))
10106 		se->vruntime += cfs_rq->min_vruntime;
10107 }
10108 
10109 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10110 {
10111 	detach_task_cfs_rq(p);
10112 }
10113 
10114 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10115 {
10116 	attach_task_cfs_rq(p);
10117 
10118 	if (task_on_rq_queued(p)) {
10119 		/*
10120 		 * We were most likely switched from sched_rt, so
10121 		 * kick off the schedule if running, otherwise just see
10122 		 * if we can still preempt the current task.
10123 		 */
10124 		if (rq->curr == p)
10125 			resched_curr(rq);
10126 		else
10127 			check_preempt_curr(rq, p, 0);
10128 	}
10129 }
10130 
10131 /* Account for a task changing its policy or group.
10132  *
10133  * This routine is mostly called to set cfs_rq->curr field when a task
10134  * migrates between groups/classes.
10135  */
10136 static void set_curr_task_fair(struct rq *rq)
10137 {
10138 	struct sched_entity *se = &rq->curr->se;
10139 
10140 	for_each_sched_entity(se) {
10141 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
10142 
10143 		set_next_entity(cfs_rq, se);
10144 		/* ensure bandwidth has been allocated on our new cfs_rq */
10145 		account_cfs_rq_runtime(cfs_rq, 0);
10146 	}
10147 }
10148 
10149 void init_cfs_rq(struct cfs_rq *cfs_rq)
10150 {
10151 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10152 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10153 #ifndef CONFIG_64BIT
10154 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10155 #endif
10156 #ifdef CONFIG_SMP
10157 	raw_spin_lock_init(&cfs_rq->removed.lock);
10158 #endif
10159 }
10160 
10161 #ifdef CONFIG_FAIR_GROUP_SCHED
10162 static void task_set_group_fair(struct task_struct *p)
10163 {
10164 	struct sched_entity *se = &p->se;
10165 
10166 	set_task_rq(p, task_cpu(p));
10167 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10168 }
10169 
10170 static void task_move_group_fair(struct task_struct *p)
10171 {
10172 	detach_task_cfs_rq(p);
10173 	set_task_rq(p, task_cpu(p));
10174 
10175 #ifdef CONFIG_SMP
10176 	/* Tell se's cfs_rq has been changed -- migrated */
10177 	p->se.avg.last_update_time = 0;
10178 #endif
10179 	attach_task_cfs_rq(p);
10180 }
10181 
10182 static void task_change_group_fair(struct task_struct *p, int type)
10183 {
10184 	switch (type) {
10185 	case TASK_SET_GROUP:
10186 		task_set_group_fair(p);
10187 		break;
10188 
10189 	case TASK_MOVE_GROUP:
10190 		task_move_group_fair(p);
10191 		break;
10192 	}
10193 }
10194 
10195 void free_fair_sched_group(struct task_group *tg)
10196 {
10197 	int i;
10198 
10199 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10200 
10201 	for_each_possible_cpu(i) {
10202 		if (tg->cfs_rq)
10203 			kfree(tg->cfs_rq[i]);
10204 		if (tg->se)
10205 			kfree(tg->se[i]);
10206 	}
10207 
10208 	kfree(tg->cfs_rq);
10209 	kfree(tg->se);
10210 }
10211 
10212 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10213 {
10214 	struct sched_entity *se;
10215 	struct cfs_rq *cfs_rq;
10216 	int i;
10217 
10218 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10219 	if (!tg->cfs_rq)
10220 		goto err;
10221 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10222 	if (!tg->se)
10223 		goto err;
10224 
10225 	tg->shares = NICE_0_LOAD;
10226 
10227 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10228 
10229 	for_each_possible_cpu(i) {
10230 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10231 				      GFP_KERNEL, cpu_to_node(i));
10232 		if (!cfs_rq)
10233 			goto err;
10234 
10235 		se = kzalloc_node(sizeof(struct sched_entity),
10236 				  GFP_KERNEL, cpu_to_node(i));
10237 		if (!se)
10238 			goto err_free_rq;
10239 
10240 		init_cfs_rq(cfs_rq);
10241 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10242 		init_entity_runnable_average(se);
10243 	}
10244 
10245 	return 1;
10246 
10247 err_free_rq:
10248 	kfree(cfs_rq);
10249 err:
10250 	return 0;
10251 }
10252 
10253 void online_fair_sched_group(struct task_group *tg)
10254 {
10255 	struct sched_entity *se;
10256 	struct rq *rq;
10257 	int i;
10258 
10259 	for_each_possible_cpu(i) {
10260 		rq = cpu_rq(i);
10261 		se = tg->se[i];
10262 
10263 		raw_spin_lock_irq(&rq->lock);
10264 		update_rq_clock(rq);
10265 		attach_entity_cfs_rq(se);
10266 		sync_throttle(tg, i);
10267 		raw_spin_unlock_irq(&rq->lock);
10268 	}
10269 }
10270 
10271 void unregister_fair_sched_group(struct task_group *tg)
10272 {
10273 	unsigned long flags;
10274 	struct rq *rq;
10275 	int cpu;
10276 
10277 	for_each_possible_cpu(cpu) {
10278 		if (tg->se[cpu])
10279 			remove_entity_load_avg(tg->se[cpu]);
10280 
10281 		/*
10282 		 * Only empty task groups can be destroyed; so we can speculatively
10283 		 * check on_list without danger of it being re-added.
10284 		 */
10285 		if (!tg->cfs_rq[cpu]->on_list)
10286 			continue;
10287 
10288 		rq = cpu_rq(cpu);
10289 
10290 		raw_spin_lock_irqsave(&rq->lock, flags);
10291 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10292 		raw_spin_unlock_irqrestore(&rq->lock, flags);
10293 	}
10294 }
10295 
10296 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10297 			struct sched_entity *se, int cpu,
10298 			struct sched_entity *parent)
10299 {
10300 	struct rq *rq = cpu_rq(cpu);
10301 
10302 	cfs_rq->tg = tg;
10303 	cfs_rq->rq = rq;
10304 	init_cfs_rq_runtime(cfs_rq);
10305 
10306 	tg->cfs_rq[cpu] = cfs_rq;
10307 	tg->se[cpu] = se;
10308 
10309 	/* se could be NULL for root_task_group */
10310 	if (!se)
10311 		return;
10312 
10313 	if (!parent) {
10314 		se->cfs_rq = &rq->cfs;
10315 		se->depth = 0;
10316 	} else {
10317 		se->cfs_rq = parent->my_q;
10318 		se->depth = parent->depth + 1;
10319 	}
10320 
10321 	se->my_q = cfs_rq;
10322 	/* guarantee group entities always have weight */
10323 	update_load_set(&se->load, NICE_0_LOAD);
10324 	se->parent = parent;
10325 }
10326 
10327 static DEFINE_MUTEX(shares_mutex);
10328 
10329 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10330 {
10331 	int i;
10332 
10333 	/*
10334 	 * We can't change the weight of the root cgroup.
10335 	 */
10336 	if (!tg->se[0])
10337 		return -EINVAL;
10338 
10339 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10340 
10341 	mutex_lock(&shares_mutex);
10342 	if (tg->shares == shares)
10343 		goto done;
10344 
10345 	tg->shares = shares;
10346 	for_each_possible_cpu(i) {
10347 		struct rq *rq = cpu_rq(i);
10348 		struct sched_entity *se = tg->se[i];
10349 		struct rq_flags rf;
10350 
10351 		/* Propagate contribution to hierarchy */
10352 		rq_lock_irqsave(rq, &rf);
10353 		update_rq_clock(rq);
10354 		for_each_sched_entity(se) {
10355 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10356 			update_cfs_group(se);
10357 		}
10358 		rq_unlock_irqrestore(rq, &rf);
10359 	}
10360 
10361 done:
10362 	mutex_unlock(&shares_mutex);
10363 	return 0;
10364 }
10365 #else /* CONFIG_FAIR_GROUP_SCHED */
10366 
10367 void free_fair_sched_group(struct task_group *tg) { }
10368 
10369 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10370 {
10371 	return 1;
10372 }
10373 
10374 void online_fair_sched_group(struct task_group *tg) { }
10375 
10376 void unregister_fair_sched_group(struct task_group *tg) { }
10377 
10378 #endif /* CONFIG_FAIR_GROUP_SCHED */
10379 
10380 
10381 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10382 {
10383 	struct sched_entity *se = &task->se;
10384 	unsigned int rr_interval = 0;
10385 
10386 	/*
10387 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10388 	 * idle runqueue:
10389 	 */
10390 	if (rq->cfs.load.weight)
10391 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10392 
10393 	return rr_interval;
10394 }
10395 
10396 /*
10397  * All the scheduling class methods:
10398  */
10399 const struct sched_class fair_sched_class = {
10400 	.next			= &idle_sched_class,
10401 	.enqueue_task		= enqueue_task_fair,
10402 	.dequeue_task		= dequeue_task_fair,
10403 	.yield_task		= yield_task_fair,
10404 	.yield_to_task		= yield_to_task_fair,
10405 
10406 	.check_preempt_curr	= check_preempt_wakeup,
10407 
10408 	.pick_next_task		= pick_next_task_fair,
10409 	.put_prev_task		= put_prev_task_fair,
10410 
10411 #ifdef CONFIG_SMP
10412 	.select_task_rq		= select_task_rq_fair,
10413 	.migrate_task_rq	= migrate_task_rq_fair,
10414 
10415 	.rq_online		= rq_online_fair,
10416 	.rq_offline		= rq_offline_fair,
10417 
10418 	.task_dead		= task_dead_fair,
10419 	.set_cpus_allowed	= set_cpus_allowed_common,
10420 #endif
10421 
10422 	.set_curr_task          = set_curr_task_fair,
10423 	.task_tick		= task_tick_fair,
10424 	.task_fork		= task_fork_fair,
10425 
10426 	.prio_changed		= prio_changed_fair,
10427 	.switched_from		= switched_from_fair,
10428 	.switched_to		= switched_to_fair,
10429 
10430 	.get_rr_interval	= get_rr_interval_fair,
10431 
10432 	.update_curr		= update_curr_fair,
10433 
10434 #ifdef CONFIG_FAIR_GROUP_SCHED
10435 	.task_change_group	= task_change_group_fair,
10436 #endif
10437 };
10438 
10439 #ifdef CONFIG_SCHED_DEBUG
10440 void print_cfs_stats(struct seq_file *m, int cpu)
10441 {
10442 	struct cfs_rq *cfs_rq, *pos;
10443 
10444 	rcu_read_lock();
10445 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10446 		print_cfs_rq(m, cpu, cfs_rq);
10447 	rcu_read_unlock();
10448 }
10449 
10450 #ifdef CONFIG_NUMA_BALANCING
10451 void show_numa_stats(struct task_struct *p, struct seq_file *m)
10452 {
10453 	int node;
10454 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10455 
10456 	for_each_online_node(node) {
10457 		if (p->numa_faults) {
10458 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10459 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10460 		}
10461 		if (p->numa_group) {
10462 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10463 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10464 		}
10465 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10466 	}
10467 }
10468 #endif /* CONFIG_NUMA_BALANCING */
10469 #endif /* CONFIG_SCHED_DEBUG */
10470 
10471 __init void init_sched_fair_class(void)
10472 {
10473 #ifdef CONFIG_SMP
10474 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10475 
10476 #ifdef CONFIG_NO_HZ_COMMON
10477 	nohz.next_balance = jiffies;
10478 	nohz.next_blocked = jiffies;
10479 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10480 #endif
10481 #endif /* SMP */
10482 
10483 }
10484