xref: /openbmc/linux/kernel/sched/fair.c (revision b830f94f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 #include <trace/events/sched.h>
26 
27 /*
28  * Targeted preemption latency for CPU-bound tasks:
29  *
30  * NOTE: this latency value is not the same as the concept of
31  * 'timeslice length' - timeslices in CFS are of variable length
32  * and have no persistent notion like in traditional, time-slice
33  * based scheduling concepts.
34  *
35  * (to see the precise effective timeslice length of your workload,
36  *  run vmstat and monitor the context-switches (cs) field)
37  *
38  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39  */
40 unsigned int sysctl_sched_latency			= 6000000ULL;
41 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
42 
43 /*
44  * The initial- and re-scaling of tunables is configurable
45  *
46  * Options are:
47  *
48  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
49  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51  *
52  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53  */
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55 
56 /*
57  * Minimal preemption granularity for CPU-bound tasks:
58  *
59  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60  */
61 unsigned int sysctl_sched_min_granularity			= 750000ULL;
62 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 
64 /*
65  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66  */
67 static unsigned int sched_nr_latency = 8;
68 
69 /*
70  * After fork, child runs first. If set to 0 (default) then
71  * parent will (try to) run first.
72  */
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
74 
75 /*
76  * SCHED_OTHER wake-up granularity.
77  *
78  * This option delays the preemption effects of decoupled workloads
79  * and reduces their over-scheduling. Synchronous workloads will still
80  * have immediate wakeup/sleep latencies.
81  *
82  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83  */
84 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
85 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 #ifdef CONFIG_SMP
90 /*
91  * For asym packing, by default the lower numbered CPU has higher priority.
92  */
93 int __weak arch_asym_cpu_priority(int cpu)
94 {
95 	return -cpu;
96 }
97 
98 /*
99  * The margin used when comparing utilization with CPU capacity:
100  * util * margin < capacity * 1024
101  *
102  * (default: ~20%)
103  */
104 static unsigned int capacity_margin			= 1280;
105 #endif
106 
107 #ifdef CONFIG_CFS_BANDWIDTH
108 /*
109  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110  * each time a cfs_rq requests quota.
111  *
112  * Note: in the case that the slice exceeds the runtime remaining (either due
113  * to consumption or the quota being specified to be smaller than the slice)
114  * we will always only issue the remaining available time.
115  *
116  * (default: 5 msec, units: microseconds)
117  */
118 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
119 #endif
120 
121 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 {
123 	lw->weight += inc;
124 	lw->inv_weight = 0;
125 }
126 
127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 {
129 	lw->weight -= dec;
130 	lw->inv_weight = 0;
131 }
132 
133 static inline void update_load_set(struct load_weight *lw, unsigned long w)
134 {
135 	lw->weight = w;
136 	lw->inv_weight = 0;
137 }
138 
139 /*
140  * Increase the granularity value when there are more CPUs,
141  * because with more CPUs the 'effective latency' as visible
142  * to users decreases. But the relationship is not linear,
143  * so pick a second-best guess by going with the log2 of the
144  * number of CPUs.
145  *
146  * This idea comes from the SD scheduler of Con Kolivas:
147  */
148 static unsigned int get_update_sysctl_factor(void)
149 {
150 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 	unsigned int factor;
152 
153 	switch (sysctl_sched_tunable_scaling) {
154 	case SCHED_TUNABLESCALING_NONE:
155 		factor = 1;
156 		break;
157 	case SCHED_TUNABLESCALING_LINEAR:
158 		factor = cpus;
159 		break;
160 	case SCHED_TUNABLESCALING_LOG:
161 	default:
162 		factor = 1 + ilog2(cpus);
163 		break;
164 	}
165 
166 	return factor;
167 }
168 
169 static void update_sysctl(void)
170 {
171 	unsigned int factor = get_update_sysctl_factor();
172 
173 #define SET_SYSCTL(name) \
174 	(sysctl_##name = (factor) * normalized_sysctl_##name)
175 	SET_SYSCTL(sched_min_granularity);
176 	SET_SYSCTL(sched_latency);
177 	SET_SYSCTL(sched_wakeup_granularity);
178 #undef SET_SYSCTL
179 }
180 
181 void sched_init_granularity(void)
182 {
183 	update_sysctl();
184 }
185 
186 #define WMULT_CONST	(~0U)
187 #define WMULT_SHIFT	32
188 
189 static void __update_inv_weight(struct load_weight *lw)
190 {
191 	unsigned long w;
192 
193 	if (likely(lw->inv_weight))
194 		return;
195 
196 	w = scale_load_down(lw->weight);
197 
198 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 		lw->inv_weight = 1;
200 	else if (unlikely(!w))
201 		lw->inv_weight = WMULT_CONST;
202 	else
203 		lw->inv_weight = WMULT_CONST / w;
204 }
205 
206 /*
207  * delta_exec * weight / lw.weight
208  *   OR
209  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210  *
211  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212  * we're guaranteed shift stays positive because inv_weight is guaranteed to
213  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214  *
215  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216  * weight/lw.weight <= 1, and therefore our shift will also be positive.
217  */
218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219 {
220 	u64 fact = scale_load_down(weight);
221 	int shift = WMULT_SHIFT;
222 
223 	__update_inv_weight(lw);
224 
225 	if (unlikely(fact >> 32)) {
226 		while (fact >> 32) {
227 			fact >>= 1;
228 			shift--;
229 		}
230 	}
231 
232 	/* hint to use a 32x32->64 mul */
233 	fact = (u64)(u32)fact * lw->inv_weight;
234 
235 	while (fact >> 32) {
236 		fact >>= 1;
237 		shift--;
238 	}
239 
240 	return mul_u64_u32_shr(delta_exec, fact, shift);
241 }
242 
243 
244 const struct sched_class fair_sched_class;
245 
246 /**************************************************************
247  * CFS operations on generic schedulable entities:
248  */
249 
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 static inline struct task_struct *task_of(struct sched_entity *se)
252 {
253 	SCHED_WARN_ON(!entity_is_task(se));
254 	return container_of(se, struct task_struct, se);
255 }
256 
257 /* Walk up scheduling entities hierarchy */
258 #define for_each_sched_entity(se) \
259 		for (; se; se = se->parent)
260 
261 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
262 {
263 	return p->se.cfs_rq;
264 }
265 
266 /* runqueue on which this entity is (to be) queued */
267 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268 {
269 	return se->cfs_rq;
270 }
271 
272 /* runqueue "owned" by this group */
273 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
274 {
275 	return grp->my_q;
276 }
277 
278 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
279 {
280 	if (!path)
281 		return;
282 
283 	if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
284 		autogroup_path(cfs_rq->tg, path, len);
285 	else if (cfs_rq && cfs_rq->tg->css.cgroup)
286 		cgroup_path(cfs_rq->tg->css.cgroup, path, len);
287 	else
288 		strlcpy(path, "(null)", len);
289 }
290 
291 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
292 {
293 	struct rq *rq = rq_of(cfs_rq);
294 	int cpu = cpu_of(rq);
295 
296 	if (cfs_rq->on_list)
297 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
298 
299 	cfs_rq->on_list = 1;
300 
301 	/*
302 	 * Ensure we either appear before our parent (if already
303 	 * enqueued) or force our parent to appear after us when it is
304 	 * enqueued. The fact that we always enqueue bottom-up
305 	 * reduces this to two cases and a special case for the root
306 	 * cfs_rq. Furthermore, it also means that we will always reset
307 	 * tmp_alone_branch either when the branch is connected
308 	 * to a tree or when we reach the top of the tree
309 	 */
310 	if (cfs_rq->tg->parent &&
311 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
312 		/*
313 		 * If parent is already on the list, we add the child
314 		 * just before. Thanks to circular linked property of
315 		 * the list, this means to put the child at the tail
316 		 * of the list that starts by parent.
317 		 */
318 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
319 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
320 		/*
321 		 * The branch is now connected to its tree so we can
322 		 * reset tmp_alone_branch to the beginning of the
323 		 * list.
324 		 */
325 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
326 		return true;
327 	}
328 
329 	if (!cfs_rq->tg->parent) {
330 		/*
331 		 * cfs rq without parent should be put
332 		 * at the tail of the list.
333 		 */
334 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
335 			&rq->leaf_cfs_rq_list);
336 		/*
337 		 * We have reach the top of a tree so we can reset
338 		 * tmp_alone_branch to the beginning of the list.
339 		 */
340 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
341 		return true;
342 	}
343 
344 	/*
345 	 * The parent has not already been added so we want to
346 	 * make sure that it will be put after us.
347 	 * tmp_alone_branch points to the begin of the branch
348 	 * where we will add parent.
349 	 */
350 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
351 	/*
352 	 * update tmp_alone_branch to points to the new begin
353 	 * of the branch
354 	 */
355 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
356 	return false;
357 }
358 
359 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
360 {
361 	if (cfs_rq->on_list) {
362 		struct rq *rq = rq_of(cfs_rq);
363 
364 		/*
365 		 * With cfs_rq being unthrottled/throttled during an enqueue,
366 		 * it can happen the tmp_alone_branch points the a leaf that
367 		 * we finally want to del. In this case, tmp_alone_branch moves
368 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
369 		 * at the end of the enqueue.
370 		 */
371 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
372 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
373 
374 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
375 		cfs_rq->on_list = 0;
376 	}
377 }
378 
379 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
380 {
381 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
382 }
383 
384 /* Iterate thr' all leaf cfs_rq's on a runqueue */
385 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
386 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
387 				 leaf_cfs_rq_list)
388 
389 /* Do the two (enqueued) entities belong to the same group ? */
390 static inline struct cfs_rq *
391 is_same_group(struct sched_entity *se, struct sched_entity *pse)
392 {
393 	if (se->cfs_rq == pse->cfs_rq)
394 		return se->cfs_rq;
395 
396 	return NULL;
397 }
398 
399 static inline struct sched_entity *parent_entity(struct sched_entity *se)
400 {
401 	return se->parent;
402 }
403 
404 static void
405 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
406 {
407 	int se_depth, pse_depth;
408 
409 	/*
410 	 * preemption test can be made between sibling entities who are in the
411 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
412 	 * both tasks until we find their ancestors who are siblings of common
413 	 * parent.
414 	 */
415 
416 	/* First walk up until both entities are at same depth */
417 	se_depth = (*se)->depth;
418 	pse_depth = (*pse)->depth;
419 
420 	while (se_depth > pse_depth) {
421 		se_depth--;
422 		*se = parent_entity(*se);
423 	}
424 
425 	while (pse_depth > se_depth) {
426 		pse_depth--;
427 		*pse = parent_entity(*pse);
428 	}
429 
430 	while (!is_same_group(*se, *pse)) {
431 		*se = parent_entity(*se);
432 		*pse = parent_entity(*pse);
433 	}
434 }
435 
436 #else	/* !CONFIG_FAIR_GROUP_SCHED */
437 
438 static inline struct task_struct *task_of(struct sched_entity *se)
439 {
440 	return container_of(se, struct task_struct, se);
441 }
442 
443 #define for_each_sched_entity(se) \
444 		for (; se; se = NULL)
445 
446 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
447 {
448 	return &task_rq(p)->cfs;
449 }
450 
451 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
452 {
453 	struct task_struct *p = task_of(se);
454 	struct rq *rq = task_rq(p);
455 
456 	return &rq->cfs;
457 }
458 
459 /* runqueue "owned" by this group */
460 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
461 {
462 	return NULL;
463 }
464 
465 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
466 {
467 	if (path)
468 		strlcpy(path, "(null)", len);
469 }
470 
471 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
472 {
473 	return true;
474 }
475 
476 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
477 {
478 }
479 
480 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
481 {
482 }
483 
484 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
485 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
486 
487 static inline struct sched_entity *parent_entity(struct sched_entity *se)
488 {
489 	return NULL;
490 }
491 
492 static inline void
493 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
494 {
495 }
496 
497 #endif	/* CONFIG_FAIR_GROUP_SCHED */
498 
499 static __always_inline
500 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
501 
502 /**************************************************************
503  * Scheduling class tree data structure manipulation methods:
504  */
505 
506 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
507 {
508 	s64 delta = (s64)(vruntime - max_vruntime);
509 	if (delta > 0)
510 		max_vruntime = vruntime;
511 
512 	return max_vruntime;
513 }
514 
515 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
516 {
517 	s64 delta = (s64)(vruntime - min_vruntime);
518 	if (delta < 0)
519 		min_vruntime = vruntime;
520 
521 	return min_vruntime;
522 }
523 
524 static inline int entity_before(struct sched_entity *a,
525 				struct sched_entity *b)
526 {
527 	return (s64)(a->vruntime - b->vruntime) < 0;
528 }
529 
530 static void update_min_vruntime(struct cfs_rq *cfs_rq)
531 {
532 	struct sched_entity *curr = cfs_rq->curr;
533 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
534 
535 	u64 vruntime = cfs_rq->min_vruntime;
536 
537 	if (curr) {
538 		if (curr->on_rq)
539 			vruntime = curr->vruntime;
540 		else
541 			curr = NULL;
542 	}
543 
544 	if (leftmost) { /* non-empty tree */
545 		struct sched_entity *se;
546 		se = rb_entry(leftmost, struct sched_entity, run_node);
547 
548 		if (!curr)
549 			vruntime = se->vruntime;
550 		else
551 			vruntime = min_vruntime(vruntime, se->vruntime);
552 	}
553 
554 	/* ensure we never gain time by being placed backwards. */
555 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
556 #ifndef CONFIG_64BIT
557 	smp_wmb();
558 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
559 #endif
560 }
561 
562 /*
563  * Enqueue an entity into the rb-tree:
564  */
565 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
566 {
567 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
568 	struct rb_node *parent = NULL;
569 	struct sched_entity *entry;
570 	bool leftmost = true;
571 
572 	/*
573 	 * Find the right place in the rbtree:
574 	 */
575 	while (*link) {
576 		parent = *link;
577 		entry = rb_entry(parent, struct sched_entity, run_node);
578 		/*
579 		 * We dont care about collisions. Nodes with
580 		 * the same key stay together.
581 		 */
582 		if (entity_before(se, entry)) {
583 			link = &parent->rb_left;
584 		} else {
585 			link = &parent->rb_right;
586 			leftmost = false;
587 		}
588 	}
589 
590 	rb_link_node(&se->run_node, parent, link);
591 	rb_insert_color_cached(&se->run_node,
592 			       &cfs_rq->tasks_timeline, leftmost);
593 }
594 
595 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
596 {
597 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
598 }
599 
600 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
601 {
602 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
603 
604 	if (!left)
605 		return NULL;
606 
607 	return rb_entry(left, struct sched_entity, run_node);
608 }
609 
610 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
611 {
612 	struct rb_node *next = rb_next(&se->run_node);
613 
614 	if (!next)
615 		return NULL;
616 
617 	return rb_entry(next, struct sched_entity, run_node);
618 }
619 
620 #ifdef CONFIG_SCHED_DEBUG
621 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
622 {
623 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
624 
625 	if (!last)
626 		return NULL;
627 
628 	return rb_entry(last, struct sched_entity, run_node);
629 }
630 
631 /**************************************************************
632  * Scheduling class statistics methods:
633  */
634 
635 int sched_proc_update_handler(struct ctl_table *table, int write,
636 		void __user *buffer, size_t *lenp,
637 		loff_t *ppos)
638 {
639 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
640 	unsigned int factor = get_update_sysctl_factor();
641 
642 	if (ret || !write)
643 		return ret;
644 
645 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
646 					sysctl_sched_min_granularity);
647 
648 #define WRT_SYSCTL(name) \
649 	(normalized_sysctl_##name = sysctl_##name / (factor))
650 	WRT_SYSCTL(sched_min_granularity);
651 	WRT_SYSCTL(sched_latency);
652 	WRT_SYSCTL(sched_wakeup_granularity);
653 #undef WRT_SYSCTL
654 
655 	return 0;
656 }
657 #endif
658 
659 /*
660  * delta /= w
661  */
662 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
663 {
664 	if (unlikely(se->load.weight != NICE_0_LOAD))
665 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
666 
667 	return delta;
668 }
669 
670 /*
671  * The idea is to set a period in which each task runs once.
672  *
673  * When there are too many tasks (sched_nr_latency) we have to stretch
674  * this period because otherwise the slices get too small.
675  *
676  * p = (nr <= nl) ? l : l*nr/nl
677  */
678 static u64 __sched_period(unsigned long nr_running)
679 {
680 	if (unlikely(nr_running > sched_nr_latency))
681 		return nr_running * sysctl_sched_min_granularity;
682 	else
683 		return sysctl_sched_latency;
684 }
685 
686 /*
687  * We calculate the wall-time slice from the period by taking a part
688  * proportional to the weight.
689  *
690  * s = p*P[w/rw]
691  */
692 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
693 {
694 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
695 
696 	for_each_sched_entity(se) {
697 		struct load_weight *load;
698 		struct load_weight lw;
699 
700 		cfs_rq = cfs_rq_of(se);
701 		load = &cfs_rq->load;
702 
703 		if (unlikely(!se->on_rq)) {
704 			lw = cfs_rq->load;
705 
706 			update_load_add(&lw, se->load.weight);
707 			load = &lw;
708 		}
709 		slice = __calc_delta(slice, se->load.weight, load);
710 	}
711 	return slice;
712 }
713 
714 /*
715  * We calculate the vruntime slice of a to-be-inserted task.
716  *
717  * vs = s/w
718  */
719 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
720 {
721 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
722 }
723 
724 #include "pelt.h"
725 #ifdef CONFIG_SMP
726 
727 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
728 static unsigned long task_h_load(struct task_struct *p);
729 static unsigned long capacity_of(int cpu);
730 
731 /* Give new sched_entity start runnable values to heavy its load in infant time */
732 void init_entity_runnable_average(struct sched_entity *se)
733 {
734 	struct sched_avg *sa = &se->avg;
735 
736 	memset(sa, 0, sizeof(*sa));
737 
738 	/*
739 	 * Tasks are initialized with full load to be seen as heavy tasks until
740 	 * they get a chance to stabilize to their real load level.
741 	 * Group entities are initialized with zero load to reflect the fact that
742 	 * nothing has been attached to the task group yet.
743 	 */
744 	if (entity_is_task(se))
745 		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
746 
747 	se->runnable_weight = se->load.weight;
748 
749 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
750 }
751 
752 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
753 static void attach_entity_cfs_rq(struct sched_entity *se);
754 
755 /*
756  * With new tasks being created, their initial util_avgs are extrapolated
757  * based on the cfs_rq's current util_avg:
758  *
759  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
760  *
761  * However, in many cases, the above util_avg does not give a desired
762  * value. Moreover, the sum of the util_avgs may be divergent, such
763  * as when the series is a harmonic series.
764  *
765  * To solve this problem, we also cap the util_avg of successive tasks to
766  * only 1/2 of the left utilization budget:
767  *
768  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
769  *
770  * where n denotes the nth task and cpu_scale the CPU capacity.
771  *
772  * For example, for a CPU with 1024 of capacity, a simplest series from
773  * the beginning would be like:
774  *
775  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
776  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
777  *
778  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
779  * if util_avg > util_avg_cap.
780  */
781 void post_init_entity_util_avg(struct task_struct *p)
782 {
783 	struct sched_entity *se = &p->se;
784 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
785 	struct sched_avg *sa = &se->avg;
786 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
787 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
788 
789 	if (cap > 0) {
790 		if (cfs_rq->avg.util_avg != 0) {
791 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
792 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
793 
794 			if (sa->util_avg > cap)
795 				sa->util_avg = cap;
796 		} else {
797 			sa->util_avg = cap;
798 		}
799 	}
800 
801 	if (p->sched_class != &fair_sched_class) {
802 		/*
803 		 * For !fair tasks do:
804 		 *
805 		update_cfs_rq_load_avg(now, cfs_rq);
806 		attach_entity_load_avg(cfs_rq, se, 0);
807 		switched_from_fair(rq, p);
808 		 *
809 		 * such that the next switched_to_fair() has the
810 		 * expected state.
811 		 */
812 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
813 		return;
814 	}
815 
816 	attach_entity_cfs_rq(se);
817 }
818 
819 #else /* !CONFIG_SMP */
820 void init_entity_runnable_average(struct sched_entity *se)
821 {
822 }
823 void post_init_entity_util_avg(struct task_struct *p)
824 {
825 }
826 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
827 {
828 }
829 #endif /* CONFIG_SMP */
830 
831 /*
832  * Update the current task's runtime statistics.
833  */
834 static void update_curr(struct cfs_rq *cfs_rq)
835 {
836 	struct sched_entity *curr = cfs_rq->curr;
837 	u64 now = rq_clock_task(rq_of(cfs_rq));
838 	u64 delta_exec;
839 
840 	if (unlikely(!curr))
841 		return;
842 
843 	delta_exec = now - curr->exec_start;
844 	if (unlikely((s64)delta_exec <= 0))
845 		return;
846 
847 	curr->exec_start = now;
848 
849 	schedstat_set(curr->statistics.exec_max,
850 		      max(delta_exec, curr->statistics.exec_max));
851 
852 	curr->sum_exec_runtime += delta_exec;
853 	schedstat_add(cfs_rq->exec_clock, delta_exec);
854 
855 	curr->vruntime += calc_delta_fair(delta_exec, curr);
856 	update_min_vruntime(cfs_rq);
857 
858 	if (entity_is_task(curr)) {
859 		struct task_struct *curtask = task_of(curr);
860 
861 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
862 		cgroup_account_cputime(curtask, delta_exec);
863 		account_group_exec_runtime(curtask, delta_exec);
864 	}
865 
866 	account_cfs_rq_runtime(cfs_rq, delta_exec);
867 }
868 
869 static void update_curr_fair(struct rq *rq)
870 {
871 	update_curr(cfs_rq_of(&rq->curr->se));
872 }
873 
874 static inline void
875 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
876 {
877 	u64 wait_start, prev_wait_start;
878 
879 	if (!schedstat_enabled())
880 		return;
881 
882 	wait_start = rq_clock(rq_of(cfs_rq));
883 	prev_wait_start = schedstat_val(se->statistics.wait_start);
884 
885 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
886 	    likely(wait_start > prev_wait_start))
887 		wait_start -= prev_wait_start;
888 
889 	__schedstat_set(se->statistics.wait_start, wait_start);
890 }
891 
892 static inline void
893 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
894 {
895 	struct task_struct *p;
896 	u64 delta;
897 
898 	if (!schedstat_enabled())
899 		return;
900 
901 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
902 
903 	if (entity_is_task(se)) {
904 		p = task_of(se);
905 		if (task_on_rq_migrating(p)) {
906 			/*
907 			 * Preserve migrating task's wait time so wait_start
908 			 * time stamp can be adjusted to accumulate wait time
909 			 * prior to migration.
910 			 */
911 			__schedstat_set(se->statistics.wait_start, delta);
912 			return;
913 		}
914 		trace_sched_stat_wait(p, delta);
915 	}
916 
917 	__schedstat_set(se->statistics.wait_max,
918 		      max(schedstat_val(se->statistics.wait_max), delta));
919 	__schedstat_inc(se->statistics.wait_count);
920 	__schedstat_add(se->statistics.wait_sum, delta);
921 	__schedstat_set(se->statistics.wait_start, 0);
922 }
923 
924 static inline void
925 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
926 {
927 	struct task_struct *tsk = NULL;
928 	u64 sleep_start, block_start;
929 
930 	if (!schedstat_enabled())
931 		return;
932 
933 	sleep_start = schedstat_val(se->statistics.sleep_start);
934 	block_start = schedstat_val(se->statistics.block_start);
935 
936 	if (entity_is_task(se))
937 		tsk = task_of(se);
938 
939 	if (sleep_start) {
940 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
941 
942 		if ((s64)delta < 0)
943 			delta = 0;
944 
945 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
946 			__schedstat_set(se->statistics.sleep_max, delta);
947 
948 		__schedstat_set(se->statistics.sleep_start, 0);
949 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
950 
951 		if (tsk) {
952 			account_scheduler_latency(tsk, delta >> 10, 1);
953 			trace_sched_stat_sleep(tsk, delta);
954 		}
955 	}
956 	if (block_start) {
957 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
958 
959 		if ((s64)delta < 0)
960 			delta = 0;
961 
962 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
963 			__schedstat_set(se->statistics.block_max, delta);
964 
965 		__schedstat_set(se->statistics.block_start, 0);
966 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
967 
968 		if (tsk) {
969 			if (tsk->in_iowait) {
970 				__schedstat_add(se->statistics.iowait_sum, delta);
971 				__schedstat_inc(se->statistics.iowait_count);
972 				trace_sched_stat_iowait(tsk, delta);
973 			}
974 
975 			trace_sched_stat_blocked(tsk, delta);
976 
977 			/*
978 			 * Blocking time is in units of nanosecs, so shift by
979 			 * 20 to get a milliseconds-range estimation of the
980 			 * amount of time that the task spent sleeping:
981 			 */
982 			if (unlikely(prof_on == SLEEP_PROFILING)) {
983 				profile_hits(SLEEP_PROFILING,
984 						(void *)get_wchan(tsk),
985 						delta >> 20);
986 			}
987 			account_scheduler_latency(tsk, delta >> 10, 0);
988 		}
989 	}
990 }
991 
992 /*
993  * Task is being enqueued - update stats:
994  */
995 static inline void
996 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
997 {
998 	if (!schedstat_enabled())
999 		return;
1000 
1001 	/*
1002 	 * Are we enqueueing a waiting task? (for current tasks
1003 	 * a dequeue/enqueue event is a NOP)
1004 	 */
1005 	if (se != cfs_rq->curr)
1006 		update_stats_wait_start(cfs_rq, se);
1007 
1008 	if (flags & ENQUEUE_WAKEUP)
1009 		update_stats_enqueue_sleeper(cfs_rq, se);
1010 }
1011 
1012 static inline void
1013 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1014 {
1015 
1016 	if (!schedstat_enabled())
1017 		return;
1018 
1019 	/*
1020 	 * Mark the end of the wait period if dequeueing a
1021 	 * waiting task:
1022 	 */
1023 	if (se != cfs_rq->curr)
1024 		update_stats_wait_end(cfs_rq, se);
1025 
1026 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1027 		struct task_struct *tsk = task_of(se);
1028 
1029 		if (tsk->state & TASK_INTERRUPTIBLE)
1030 			__schedstat_set(se->statistics.sleep_start,
1031 				      rq_clock(rq_of(cfs_rq)));
1032 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1033 			__schedstat_set(se->statistics.block_start,
1034 				      rq_clock(rq_of(cfs_rq)));
1035 	}
1036 }
1037 
1038 /*
1039  * We are picking a new current task - update its stats:
1040  */
1041 static inline void
1042 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1043 {
1044 	/*
1045 	 * We are starting a new run period:
1046 	 */
1047 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1048 }
1049 
1050 /**************************************************
1051  * Scheduling class queueing methods:
1052  */
1053 
1054 #ifdef CONFIG_NUMA_BALANCING
1055 /*
1056  * Approximate time to scan a full NUMA task in ms. The task scan period is
1057  * calculated based on the tasks virtual memory size and
1058  * numa_balancing_scan_size.
1059  */
1060 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1061 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1062 
1063 /* Portion of address space to scan in MB */
1064 unsigned int sysctl_numa_balancing_scan_size = 256;
1065 
1066 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1067 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1068 
1069 struct numa_group {
1070 	refcount_t refcount;
1071 
1072 	spinlock_t lock; /* nr_tasks, tasks */
1073 	int nr_tasks;
1074 	pid_t gid;
1075 	int active_nodes;
1076 
1077 	struct rcu_head rcu;
1078 	unsigned long total_faults;
1079 	unsigned long max_faults_cpu;
1080 	/*
1081 	 * Faults_cpu is used to decide whether memory should move
1082 	 * towards the CPU. As a consequence, these stats are weighted
1083 	 * more by CPU use than by memory faults.
1084 	 */
1085 	unsigned long *faults_cpu;
1086 	unsigned long faults[0];
1087 };
1088 
1089 static inline unsigned long group_faults_priv(struct numa_group *ng);
1090 static inline unsigned long group_faults_shared(struct numa_group *ng);
1091 
1092 static unsigned int task_nr_scan_windows(struct task_struct *p)
1093 {
1094 	unsigned long rss = 0;
1095 	unsigned long nr_scan_pages;
1096 
1097 	/*
1098 	 * Calculations based on RSS as non-present and empty pages are skipped
1099 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1100 	 * on resident pages
1101 	 */
1102 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1103 	rss = get_mm_rss(p->mm);
1104 	if (!rss)
1105 		rss = nr_scan_pages;
1106 
1107 	rss = round_up(rss, nr_scan_pages);
1108 	return rss / nr_scan_pages;
1109 }
1110 
1111 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1112 #define MAX_SCAN_WINDOW 2560
1113 
1114 static unsigned int task_scan_min(struct task_struct *p)
1115 {
1116 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1117 	unsigned int scan, floor;
1118 	unsigned int windows = 1;
1119 
1120 	if (scan_size < MAX_SCAN_WINDOW)
1121 		windows = MAX_SCAN_WINDOW / scan_size;
1122 	floor = 1000 / windows;
1123 
1124 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1125 	return max_t(unsigned int, floor, scan);
1126 }
1127 
1128 static unsigned int task_scan_start(struct task_struct *p)
1129 {
1130 	unsigned long smin = task_scan_min(p);
1131 	unsigned long period = smin;
1132 
1133 	/* Scale the maximum scan period with the amount of shared memory. */
1134 	if (p->numa_group) {
1135 		struct numa_group *ng = p->numa_group;
1136 		unsigned long shared = group_faults_shared(ng);
1137 		unsigned long private = group_faults_priv(ng);
1138 
1139 		period *= refcount_read(&ng->refcount);
1140 		period *= shared + 1;
1141 		period /= private + shared + 1;
1142 	}
1143 
1144 	return max(smin, period);
1145 }
1146 
1147 static unsigned int task_scan_max(struct task_struct *p)
1148 {
1149 	unsigned long smin = task_scan_min(p);
1150 	unsigned long smax;
1151 
1152 	/* Watch for min being lower than max due to floor calculations */
1153 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1154 
1155 	/* Scale the maximum scan period with the amount of shared memory. */
1156 	if (p->numa_group) {
1157 		struct numa_group *ng = p->numa_group;
1158 		unsigned long shared = group_faults_shared(ng);
1159 		unsigned long private = group_faults_priv(ng);
1160 		unsigned long period = smax;
1161 
1162 		period *= refcount_read(&ng->refcount);
1163 		period *= shared + 1;
1164 		period /= private + shared + 1;
1165 
1166 		smax = max(smax, period);
1167 	}
1168 
1169 	return max(smin, smax);
1170 }
1171 
1172 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1173 {
1174 	int mm_users = 0;
1175 	struct mm_struct *mm = p->mm;
1176 
1177 	if (mm) {
1178 		mm_users = atomic_read(&mm->mm_users);
1179 		if (mm_users == 1) {
1180 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1181 			mm->numa_scan_seq = 0;
1182 		}
1183 	}
1184 	p->node_stamp			= 0;
1185 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
1186 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
1187 	p->numa_work.next		= &p->numa_work;
1188 	p->numa_faults			= NULL;
1189 	p->numa_group			= NULL;
1190 	p->last_task_numa_placement	= 0;
1191 	p->last_sum_exec_runtime	= 0;
1192 
1193 	/* New address space, reset the preferred nid */
1194 	if (!(clone_flags & CLONE_VM)) {
1195 		p->numa_preferred_nid = NUMA_NO_NODE;
1196 		return;
1197 	}
1198 
1199 	/*
1200 	 * New thread, keep existing numa_preferred_nid which should be copied
1201 	 * already by arch_dup_task_struct but stagger when scans start.
1202 	 */
1203 	if (mm) {
1204 		unsigned int delay;
1205 
1206 		delay = min_t(unsigned int, task_scan_max(current),
1207 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1208 		delay += 2 * TICK_NSEC;
1209 		p->node_stamp = delay;
1210 	}
1211 }
1212 
1213 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1214 {
1215 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1216 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1217 }
1218 
1219 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1220 {
1221 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1222 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1223 }
1224 
1225 /* Shared or private faults. */
1226 #define NR_NUMA_HINT_FAULT_TYPES 2
1227 
1228 /* Memory and CPU locality */
1229 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1230 
1231 /* Averaged statistics, and temporary buffers. */
1232 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1233 
1234 pid_t task_numa_group_id(struct task_struct *p)
1235 {
1236 	return p->numa_group ? p->numa_group->gid : 0;
1237 }
1238 
1239 /*
1240  * The averaged statistics, shared & private, memory & CPU,
1241  * occupy the first half of the array. The second half of the
1242  * array is for current counters, which are averaged into the
1243  * first set by task_numa_placement.
1244  */
1245 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1246 {
1247 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1248 }
1249 
1250 static inline unsigned long task_faults(struct task_struct *p, int nid)
1251 {
1252 	if (!p->numa_faults)
1253 		return 0;
1254 
1255 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1256 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1257 }
1258 
1259 static inline unsigned long group_faults(struct task_struct *p, int nid)
1260 {
1261 	if (!p->numa_group)
1262 		return 0;
1263 
1264 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1265 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1266 }
1267 
1268 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1269 {
1270 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1271 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1272 }
1273 
1274 static inline unsigned long group_faults_priv(struct numa_group *ng)
1275 {
1276 	unsigned long faults = 0;
1277 	int node;
1278 
1279 	for_each_online_node(node) {
1280 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1281 	}
1282 
1283 	return faults;
1284 }
1285 
1286 static inline unsigned long group_faults_shared(struct numa_group *ng)
1287 {
1288 	unsigned long faults = 0;
1289 	int node;
1290 
1291 	for_each_online_node(node) {
1292 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1293 	}
1294 
1295 	return faults;
1296 }
1297 
1298 /*
1299  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1300  * considered part of a numa group's pseudo-interleaving set. Migrations
1301  * between these nodes are slowed down, to allow things to settle down.
1302  */
1303 #define ACTIVE_NODE_FRACTION 3
1304 
1305 static bool numa_is_active_node(int nid, struct numa_group *ng)
1306 {
1307 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1308 }
1309 
1310 /* Handle placement on systems where not all nodes are directly connected. */
1311 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1312 					int maxdist, bool task)
1313 {
1314 	unsigned long score = 0;
1315 	int node;
1316 
1317 	/*
1318 	 * All nodes are directly connected, and the same distance
1319 	 * from each other. No need for fancy placement algorithms.
1320 	 */
1321 	if (sched_numa_topology_type == NUMA_DIRECT)
1322 		return 0;
1323 
1324 	/*
1325 	 * This code is called for each node, introducing N^2 complexity,
1326 	 * which should be ok given the number of nodes rarely exceeds 8.
1327 	 */
1328 	for_each_online_node(node) {
1329 		unsigned long faults;
1330 		int dist = node_distance(nid, node);
1331 
1332 		/*
1333 		 * The furthest away nodes in the system are not interesting
1334 		 * for placement; nid was already counted.
1335 		 */
1336 		if (dist == sched_max_numa_distance || node == nid)
1337 			continue;
1338 
1339 		/*
1340 		 * On systems with a backplane NUMA topology, compare groups
1341 		 * of nodes, and move tasks towards the group with the most
1342 		 * memory accesses. When comparing two nodes at distance
1343 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1344 		 * of each group. Skip other nodes.
1345 		 */
1346 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1347 					dist >= maxdist)
1348 			continue;
1349 
1350 		/* Add up the faults from nearby nodes. */
1351 		if (task)
1352 			faults = task_faults(p, node);
1353 		else
1354 			faults = group_faults(p, node);
1355 
1356 		/*
1357 		 * On systems with a glueless mesh NUMA topology, there are
1358 		 * no fixed "groups of nodes". Instead, nodes that are not
1359 		 * directly connected bounce traffic through intermediate
1360 		 * nodes; a numa_group can occupy any set of nodes.
1361 		 * The further away a node is, the less the faults count.
1362 		 * This seems to result in good task placement.
1363 		 */
1364 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1365 			faults *= (sched_max_numa_distance - dist);
1366 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1367 		}
1368 
1369 		score += faults;
1370 	}
1371 
1372 	return score;
1373 }
1374 
1375 /*
1376  * These return the fraction of accesses done by a particular task, or
1377  * task group, on a particular numa node.  The group weight is given a
1378  * larger multiplier, in order to group tasks together that are almost
1379  * evenly spread out between numa nodes.
1380  */
1381 static inline unsigned long task_weight(struct task_struct *p, int nid,
1382 					int dist)
1383 {
1384 	unsigned long faults, total_faults;
1385 
1386 	if (!p->numa_faults)
1387 		return 0;
1388 
1389 	total_faults = p->total_numa_faults;
1390 
1391 	if (!total_faults)
1392 		return 0;
1393 
1394 	faults = task_faults(p, nid);
1395 	faults += score_nearby_nodes(p, nid, dist, true);
1396 
1397 	return 1000 * faults / total_faults;
1398 }
1399 
1400 static inline unsigned long group_weight(struct task_struct *p, int nid,
1401 					 int dist)
1402 {
1403 	unsigned long faults, total_faults;
1404 
1405 	if (!p->numa_group)
1406 		return 0;
1407 
1408 	total_faults = p->numa_group->total_faults;
1409 
1410 	if (!total_faults)
1411 		return 0;
1412 
1413 	faults = group_faults(p, nid);
1414 	faults += score_nearby_nodes(p, nid, dist, false);
1415 
1416 	return 1000 * faults / total_faults;
1417 }
1418 
1419 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1420 				int src_nid, int dst_cpu)
1421 {
1422 	struct numa_group *ng = p->numa_group;
1423 	int dst_nid = cpu_to_node(dst_cpu);
1424 	int last_cpupid, this_cpupid;
1425 
1426 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1427 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1428 
1429 	/*
1430 	 * Allow first faults or private faults to migrate immediately early in
1431 	 * the lifetime of a task. The magic number 4 is based on waiting for
1432 	 * two full passes of the "multi-stage node selection" test that is
1433 	 * executed below.
1434 	 */
1435 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1436 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1437 		return true;
1438 
1439 	/*
1440 	 * Multi-stage node selection is used in conjunction with a periodic
1441 	 * migration fault to build a temporal task<->page relation. By using
1442 	 * a two-stage filter we remove short/unlikely relations.
1443 	 *
1444 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1445 	 * a task's usage of a particular page (n_p) per total usage of this
1446 	 * page (n_t) (in a given time-span) to a probability.
1447 	 *
1448 	 * Our periodic faults will sample this probability and getting the
1449 	 * same result twice in a row, given these samples are fully
1450 	 * independent, is then given by P(n)^2, provided our sample period
1451 	 * is sufficiently short compared to the usage pattern.
1452 	 *
1453 	 * This quadric squishes small probabilities, making it less likely we
1454 	 * act on an unlikely task<->page relation.
1455 	 */
1456 	if (!cpupid_pid_unset(last_cpupid) &&
1457 				cpupid_to_nid(last_cpupid) != dst_nid)
1458 		return false;
1459 
1460 	/* Always allow migrate on private faults */
1461 	if (cpupid_match_pid(p, last_cpupid))
1462 		return true;
1463 
1464 	/* A shared fault, but p->numa_group has not been set up yet. */
1465 	if (!ng)
1466 		return true;
1467 
1468 	/*
1469 	 * Destination node is much more heavily used than the source
1470 	 * node? Allow migration.
1471 	 */
1472 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1473 					ACTIVE_NODE_FRACTION)
1474 		return true;
1475 
1476 	/*
1477 	 * Distribute memory according to CPU & memory use on each node,
1478 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1479 	 *
1480 	 * faults_cpu(dst)   3   faults_cpu(src)
1481 	 * --------------- * - > ---------------
1482 	 * faults_mem(dst)   4   faults_mem(src)
1483 	 */
1484 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1485 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1486 }
1487 
1488 static unsigned long cpu_runnable_load(struct rq *rq);
1489 
1490 /* Cached statistics for all CPUs within a node */
1491 struct numa_stats {
1492 	unsigned long load;
1493 
1494 	/* Total compute capacity of CPUs on a node */
1495 	unsigned long compute_capacity;
1496 };
1497 
1498 /*
1499  * XXX borrowed from update_sg_lb_stats
1500  */
1501 static void update_numa_stats(struct numa_stats *ns, int nid)
1502 {
1503 	int cpu;
1504 
1505 	memset(ns, 0, sizeof(*ns));
1506 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1507 		struct rq *rq = cpu_rq(cpu);
1508 
1509 		ns->load += cpu_runnable_load(rq);
1510 		ns->compute_capacity += capacity_of(cpu);
1511 	}
1512 
1513 }
1514 
1515 struct task_numa_env {
1516 	struct task_struct *p;
1517 
1518 	int src_cpu, src_nid;
1519 	int dst_cpu, dst_nid;
1520 
1521 	struct numa_stats src_stats, dst_stats;
1522 
1523 	int imbalance_pct;
1524 	int dist;
1525 
1526 	struct task_struct *best_task;
1527 	long best_imp;
1528 	int best_cpu;
1529 };
1530 
1531 static void task_numa_assign(struct task_numa_env *env,
1532 			     struct task_struct *p, long imp)
1533 {
1534 	struct rq *rq = cpu_rq(env->dst_cpu);
1535 
1536 	/* Bail out if run-queue part of active NUMA balance. */
1537 	if (xchg(&rq->numa_migrate_on, 1))
1538 		return;
1539 
1540 	/*
1541 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1542 	 * found a better CPU to move/swap.
1543 	 */
1544 	if (env->best_cpu != -1) {
1545 		rq = cpu_rq(env->best_cpu);
1546 		WRITE_ONCE(rq->numa_migrate_on, 0);
1547 	}
1548 
1549 	if (env->best_task)
1550 		put_task_struct(env->best_task);
1551 	if (p)
1552 		get_task_struct(p);
1553 
1554 	env->best_task = p;
1555 	env->best_imp = imp;
1556 	env->best_cpu = env->dst_cpu;
1557 }
1558 
1559 static bool load_too_imbalanced(long src_load, long dst_load,
1560 				struct task_numa_env *env)
1561 {
1562 	long imb, old_imb;
1563 	long orig_src_load, orig_dst_load;
1564 	long src_capacity, dst_capacity;
1565 
1566 	/*
1567 	 * The load is corrected for the CPU capacity available on each node.
1568 	 *
1569 	 * src_load        dst_load
1570 	 * ------------ vs ---------
1571 	 * src_capacity    dst_capacity
1572 	 */
1573 	src_capacity = env->src_stats.compute_capacity;
1574 	dst_capacity = env->dst_stats.compute_capacity;
1575 
1576 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1577 
1578 	orig_src_load = env->src_stats.load;
1579 	orig_dst_load = env->dst_stats.load;
1580 
1581 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1582 
1583 	/* Would this change make things worse? */
1584 	return (imb > old_imb);
1585 }
1586 
1587 /*
1588  * Maximum NUMA importance can be 1998 (2*999);
1589  * SMALLIMP @ 30 would be close to 1998/64.
1590  * Used to deter task migration.
1591  */
1592 #define SMALLIMP	30
1593 
1594 /*
1595  * This checks if the overall compute and NUMA accesses of the system would
1596  * be improved if the source tasks was migrated to the target dst_cpu taking
1597  * into account that it might be best if task running on the dst_cpu should
1598  * be exchanged with the source task
1599  */
1600 static void task_numa_compare(struct task_numa_env *env,
1601 			      long taskimp, long groupimp, bool maymove)
1602 {
1603 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1604 	struct task_struct *cur;
1605 	long src_load, dst_load;
1606 	long load;
1607 	long imp = env->p->numa_group ? groupimp : taskimp;
1608 	long moveimp = imp;
1609 	int dist = env->dist;
1610 
1611 	if (READ_ONCE(dst_rq->numa_migrate_on))
1612 		return;
1613 
1614 	rcu_read_lock();
1615 	cur = task_rcu_dereference(&dst_rq->curr);
1616 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1617 		cur = NULL;
1618 
1619 	/*
1620 	 * Because we have preemption enabled we can get migrated around and
1621 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1622 	 */
1623 	if (cur == env->p)
1624 		goto unlock;
1625 
1626 	if (!cur) {
1627 		if (maymove && moveimp >= env->best_imp)
1628 			goto assign;
1629 		else
1630 			goto unlock;
1631 	}
1632 
1633 	/*
1634 	 * "imp" is the fault differential for the source task between the
1635 	 * source and destination node. Calculate the total differential for
1636 	 * the source task and potential destination task. The more negative
1637 	 * the value is, the more remote accesses that would be expected to
1638 	 * be incurred if the tasks were swapped.
1639 	 */
1640 	/* Skip this swap candidate if cannot move to the source cpu */
1641 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1642 		goto unlock;
1643 
1644 	/*
1645 	 * If dst and source tasks are in the same NUMA group, or not
1646 	 * in any group then look only at task weights.
1647 	 */
1648 	if (cur->numa_group == env->p->numa_group) {
1649 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1650 		      task_weight(cur, env->dst_nid, dist);
1651 		/*
1652 		 * Add some hysteresis to prevent swapping the
1653 		 * tasks within a group over tiny differences.
1654 		 */
1655 		if (cur->numa_group)
1656 			imp -= imp / 16;
1657 	} else {
1658 		/*
1659 		 * Compare the group weights. If a task is all by itself
1660 		 * (not part of a group), use the task weight instead.
1661 		 */
1662 		if (cur->numa_group && env->p->numa_group)
1663 			imp += group_weight(cur, env->src_nid, dist) -
1664 			       group_weight(cur, env->dst_nid, dist);
1665 		else
1666 			imp += task_weight(cur, env->src_nid, dist) -
1667 			       task_weight(cur, env->dst_nid, dist);
1668 	}
1669 
1670 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1671 		imp = moveimp;
1672 		cur = NULL;
1673 		goto assign;
1674 	}
1675 
1676 	/*
1677 	 * If the NUMA importance is less than SMALLIMP,
1678 	 * task migration might only result in ping pong
1679 	 * of tasks and also hurt performance due to cache
1680 	 * misses.
1681 	 */
1682 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1683 		goto unlock;
1684 
1685 	/*
1686 	 * In the overloaded case, try and keep the load balanced.
1687 	 */
1688 	load = task_h_load(env->p) - task_h_load(cur);
1689 	if (!load)
1690 		goto assign;
1691 
1692 	dst_load = env->dst_stats.load + load;
1693 	src_load = env->src_stats.load - load;
1694 
1695 	if (load_too_imbalanced(src_load, dst_load, env))
1696 		goto unlock;
1697 
1698 assign:
1699 	/*
1700 	 * One idle CPU per node is evaluated for a task numa move.
1701 	 * Call select_idle_sibling to maybe find a better one.
1702 	 */
1703 	if (!cur) {
1704 		/*
1705 		 * select_idle_siblings() uses an per-CPU cpumask that
1706 		 * can be used from IRQ context.
1707 		 */
1708 		local_irq_disable();
1709 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1710 						   env->dst_cpu);
1711 		local_irq_enable();
1712 	}
1713 
1714 	task_numa_assign(env, cur, imp);
1715 unlock:
1716 	rcu_read_unlock();
1717 }
1718 
1719 static void task_numa_find_cpu(struct task_numa_env *env,
1720 				long taskimp, long groupimp)
1721 {
1722 	long src_load, dst_load, load;
1723 	bool maymove = false;
1724 	int cpu;
1725 
1726 	load = task_h_load(env->p);
1727 	dst_load = env->dst_stats.load + load;
1728 	src_load = env->src_stats.load - load;
1729 
1730 	/*
1731 	 * If the improvement from just moving env->p direction is better
1732 	 * than swapping tasks around, check if a move is possible.
1733 	 */
1734 	maymove = !load_too_imbalanced(src_load, dst_load, env);
1735 
1736 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1737 		/* Skip this CPU if the source task cannot migrate */
1738 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1739 			continue;
1740 
1741 		env->dst_cpu = cpu;
1742 		task_numa_compare(env, taskimp, groupimp, maymove);
1743 	}
1744 }
1745 
1746 static int task_numa_migrate(struct task_struct *p)
1747 {
1748 	struct task_numa_env env = {
1749 		.p = p,
1750 
1751 		.src_cpu = task_cpu(p),
1752 		.src_nid = task_node(p),
1753 
1754 		.imbalance_pct = 112,
1755 
1756 		.best_task = NULL,
1757 		.best_imp = 0,
1758 		.best_cpu = -1,
1759 	};
1760 	struct sched_domain *sd;
1761 	struct rq *best_rq;
1762 	unsigned long taskweight, groupweight;
1763 	int nid, ret, dist;
1764 	long taskimp, groupimp;
1765 
1766 	/*
1767 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1768 	 * imbalance and would be the first to start moving tasks about.
1769 	 *
1770 	 * And we want to avoid any moving of tasks about, as that would create
1771 	 * random movement of tasks -- counter the numa conditions we're trying
1772 	 * to satisfy here.
1773 	 */
1774 	rcu_read_lock();
1775 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1776 	if (sd)
1777 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1778 	rcu_read_unlock();
1779 
1780 	/*
1781 	 * Cpusets can break the scheduler domain tree into smaller
1782 	 * balance domains, some of which do not cross NUMA boundaries.
1783 	 * Tasks that are "trapped" in such domains cannot be migrated
1784 	 * elsewhere, so there is no point in (re)trying.
1785 	 */
1786 	if (unlikely(!sd)) {
1787 		sched_setnuma(p, task_node(p));
1788 		return -EINVAL;
1789 	}
1790 
1791 	env.dst_nid = p->numa_preferred_nid;
1792 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1793 	taskweight = task_weight(p, env.src_nid, dist);
1794 	groupweight = group_weight(p, env.src_nid, dist);
1795 	update_numa_stats(&env.src_stats, env.src_nid);
1796 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1797 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1798 	update_numa_stats(&env.dst_stats, env.dst_nid);
1799 
1800 	/* Try to find a spot on the preferred nid. */
1801 	task_numa_find_cpu(&env, taskimp, groupimp);
1802 
1803 	/*
1804 	 * Look at other nodes in these cases:
1805 	 * - there is no space available on the preferred_nid
1806 	 * - the task is part of a numa_group that is interleaved across
1807 	 *   multiple NUMA nodes; in order to better consolidate the group,
1808 	 *   we need to check other locations.
1809 	 */
1810 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1811 		for_each_online_node(nid) {
1812 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1813 				continue;
1814 
1815 			dist = node_distance(env.src_nid, env.dst_nid);
1816 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1817 						dist != env.dist) {
1818 				taskweight = task_weight(p, env.src_nid, dist);
1819 				groupweight = group_weight(p, env.src_nid, dist);
1820 			}
1821 
1822 			/* Only consider nodes where both task and groups benefit */
1823 			taskimp = task_weight(p, nid, dist) - taskweight;
1824 			groupimp = group_weight(p, nid, dist) - groupweight;
1825 			if (taskimp < 0 && groupimp < 0)
1826 				continue;
1827 
1828 			env.dist = dist;
1829 			env.dst_nid = nid;
1830 			update_numa_stats(&env.dst_stats, env.dst_nid);
1831 			task_numa_find_cpu(&env, taskimp, groupimp);
1832 		}
1833 	}
1834 
1835 	/*
1836 	 * If the task is part of a workload that spans multiple NUMA nodes,
1837 	 * and is migrating into one of the workload's active nodes, remember
1838 	 * this node as the task's preferred numa node, so the workload can
1839 	 * settle down.
1840 	 * A task that migrated to a second choice node will be better off
1841 	 * trying for a better one later. Do not set the preferred node here.
1842 	 */
1843 	if (p->numa_group) {
1844 		if (env.best_cpu == -1)
1845 			nid = env.src_nid;
1846 		else
1847 			nid = cpu_to_node(env.best_cpu);
1848 
1849 		if (nid != p->numa_preferred_nid)
1850 			sched_setnuma(p, nid);
1851 	}
1852 
1853 	/* No better CPU than the current one was found. */
1854 	if (env.best_cpu == -1)
1855 		return -EAGAIN;
1856 
1857 	best_rq = cpu_rq(env.best_cpu);
1858 	if (env.best_task == NULL) {
1859 		ret = migrate_task_to(p, env.best_cpu);
1860 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
1861 		if (ret != 0)
1862 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1863 		return ret;
1864 	}
1865 
1866 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1867 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
1868 
1869 	if (ret != 0)
1870 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1871 	put_task_struct(env.best_task);
1872 	return ret;
1873 }
1874 
1875 /* Attempt to migrate a task to a CPU on the preferred node. */
1876 static void numa_migrate_preferred(struct task_struct *p)
1877 {
1878 	unsigned long interval = HZ;
1879 
1880 	/* This task has no NUMA fault statistics yet */
1881 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
1882 		return;
1883 
1884 	/* Periodically retry migrating the task to the preferred node */
1885 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1886 	p->numa_migrate_retry = jiffies + interval;
1887 
1888 	/* Success if task is already running on preferred CPU */
1889 	if (task_node(p) == p->numa_preferred_nid)
1890 		return;
1891 
1892 	/* Otherwise, try migrate to a CPU on the preferred node */
1893 	task_numa_migrate(p);
1894 }
1895 
1896 /*
1897  * Find out how many nodes on the workload is actively running on. Do this by
1898  * tracking the nodes from which NUMA hinting faults are triggered. This can
1899  * be different from the set of nodes where the workload's memory is currently
1900  * located.
1901  */
1902 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1903 {
1904 	unsigned long faults, max_faults = 0;
1905 	int nid, active_nodes = 0;
1906 
1907 	for_each_online_node(nid) {
1908 		faults = group_faults_cpu(numa_group, nid);
1909 		if (faults > max_faults)
1910 			max_faults = faults;
1911 	}
1912 
1913 	for_each_online_node(nid) {
1914 		faults = group_faults_cpu(numa_group, nid);
1915 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1916 			active_nodes++;
1917 	}
1918 
1919 	numa_group->max_faults_cpu = max_faults;
1920 	numa_group->active_nodes = active_nodes;
1921 }
1922 
1923 /*
1924  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1925  * increments. The more local the fault statistics are, the higher the scan
1926  * period will be for the next scan window. If local/(local+remote) ratio is
1927  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1928  * the scan period will decrease. Aim for 70% local accesses.
1929  */
1930 #define NUMA_PERIOD_SLOTS 10
1931 #define NUMA_PERIOD_THRESHOLD 7
1932 
1933 /*
1934  * Increase the scan period (slow down scanning) if the majority of
1935  * our memory is already on our local node, or if the majority of
1936  * the page accesses are shared with other processes.
1937  * Otherwise, decrease the scan period.
1938  */
1939 static void update_task_scan_period(struct task_struct *p,
1940 			unsigned long shared, unsigned long private)
1941 {
1942 	unsigned int period_slot;
1943 	int lr_ratio, ps_ratio;
1944 	int diff;
1945 
1946 	unsigned long remote = p->numa_faults_locality[0];
1947 	unsigned long local = p->numa_faults_locality[1];
1948 
1949 	/*
1950 	 * If there were no record hinting faults then either the task is
1951 	 * completely idle or all activity is areas that are not of interest
1952 	 * to automatic numa balancing. Related to that, if there were failed
1953 	 * migration then it implies we are migrating too quickly or the local
1954 	 * node is overloaded. In either case, scan slower
1955 	 */
1956 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1957 		p->numa_scan_period = min(p->numa_scan_period_max,
1958 			p->numa_scan_period << 1);
1959 
1960 		p->mm->numa_next_scan = jiffies +
1961 			msecs_to_jiffies(p->numa_scan_period);
1962 
1963 		return;
1964 	}
1965 
1966 	/*
1967 	 * Prepare to scale scan period relative to the current period.
1968 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1969 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1970 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1971 	 */
1972 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1973 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1974 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1975 
1976 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1977 		/*
1978 		 * Most memory accesses are local. There is no need to
1979 		 * do fast NUMA scanning, since memory is already local.
1980 		 */
1981 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1982 		if (!slot)
1983 			slot = 1;
1984 		diff = slot * period_slot;
1985 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1986 		/*
1987 		 * Most memory accesses are shared with other tasks.
1988 		 * There is no point in continuing fast NUMA scanning,
1989 		 * since other tasks may just move the memory elsewhere.
1990 		 */
1991 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1992 		if (!slot)
1993 			slot = 1;
1994 		diff = slot * period_slot;
1995 	} else {
1996 		/*
1997 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1998 		 * yet they are not on the local NUMA node. Speed up
1999 		 * NUMA scanning to get the memory moved over.
2000 		 */
2001 		int ratio = max(lr_ratio, ps_ratio);
2002 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2003 	}
2004 
2005 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2006 			task_scan_min(p), task_scan_max(p));
2007 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2008 }
2009 
2010 /*
2011  * Get the fraction of time the task has been running since the last
2012  * NUMA placement cycle. The scheduler keeps similar statistics, but
2013  * decays those on a 32ms period, which is orders of magnitude off
2014  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2015  * stats only if the task is so new there are no NUMA statistics yet.
2016  */
2017 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2018 {
2019 	u64 runtime, delta, now;
2020 	/* Use the start of this time slice to avoid calculations. */
2021 	now = p->se.exec_start;
2022 	runtime = p->se.sum_exec_runtime;
2023 
2024 	if (p->last_task_numa_placement) {
2025 		delta = runtime - p->last_sum_exec_runtime;
2026 		*period = now - p->last_task_numa_placement;
2027 
2028 		/* Avoid time going backwards, prevent potential divide error: */
2029 		if (unlikely((s64)*period < 0))
2030 			*period = 0;
2031 	} else {
2032 		delta = p->se.avg.load_sum;
2033 		*period = LOAD_AVG_MAX;
2034 	}
2035 
2036 	p->last_sum_exec_runtime = runtime;
2037 	p->last_task_numa_placement = now;
2038 
2039 	return delta;
2040 }
2041 
2042 /*
2043  * Determine the preferred nid for a task in a numa_group. This needs to
2044  * be done in a way that produces consistent results with group_weight,
2045  * otherwise workloads might not converge.
2046  */
2047 static int preferred_group_nid(struct task_struct *p, int nid)
2048 {
2049 	nodemask_t nodes;
2050 	int dist;
2051 
2052 	/* Direct connections between all NUMA nodes. */
2053 	if (sched_numa_topology_type == NUMA_DIRECT)
2054 		return nid;
2055 
2056 	/*
2057 	 * On a system with glueless mesh NUMA topology, group_weight
2058 	 * scores nodes according to the number of NUMA hinting faults on
2059 	 * both the node itself, and on nearby nodes.
2060 	 */
2061 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2062 		unsigned long score, max_score = 0;
2063 		int node, max_node = nid;
2064 
2065 		dist = sched_max_numa_distance;
2066 
2067 		for_each_online_node(node) {
2068 			score = group_weight(p, node, dist);
2069 			if (score > max_score) {
2070 				max_score = score;
2071 				max_node = node;
2072 			}
2073 		}
2074 		return max_node;
2075 	}
2076 
2077 	/*
2078 	 * Finding the preferred nid in a system with NUMA backplane
2079 	 * interconnect topology is more involved. The goal is to locate
2080 	 * tasks from numa_groups near each other in the system, and
2081 	 * untangle workloads from different sides of the system. This requires
2082 	 * searching down the hierarchy of node groups, recursively searching
2083 	 * inside the highest scoring group of nodes. The nodemask tricks
2084 	 * keep the complexity of the search down.
2085 	 */
2086 	nodes = node_online_map;
2087 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2088 		unsigned long max_faults = 0;
2089 		nodemask_t max_group = NODE_MASK_NONE;
2090 		int a, b;
2091 
2092 		/* Are there nodes at this distance from each other? */
2093 		if (!find_numa_distance(dist))
2094 			continue;
2095 
2096 		for_each_node_mask(a, nodes) {
2097 			unsigned long faults = 0;
2098 			nodemask_t this_group;
2099 			nodes_clear(this_group);
2100 
2101 			/* Sum group's NUMA faults; includes a==b case. */
2102 			for_each_node_mask(b, nodes) {
2103 				if (node_distance(a, b) < dist) {
2104 					faults += group_faults(p, b);
2105 					node_set(b, this_group);
2106 					node_clear(b, nodes);
2107 				}
2108 			}
2109 
2110 			/* Remember the top group. */
2111 			if (faults > max_faults) {
2112 				max_faults = faults;
2113 				max_group = this_group;
2114 				/*
2115 				 * subtle: at the smallest distance there is
2116 				 * just one node left in each "group", the
2117 				 * winner is the preferred nid.
2118 				 */
2119 				nid = a;
2120 			}
2121 		}
2122 		/* Next round, evaluate the nodes within max_group. */
2123 		if (!max_faults)
2124 			break;
2125 		nodes = max_group;
2126 	}
2127 	return nid;
2128 }
2129 
2130 static void task_numa_placement(struct task_struct *p)
2131 {
2132 	int seq, nid, max_nid = NUMA_NO_NODE;
2133 	unsigned long max_faults = 0;
2134 	unsigned long fault_types[2] = { 0, 0 };
2135 	unsigned long total_faults;
2136 	u64 runtime, period;
2137 	spinlock_t *group_lock = NULL;
2138 
2139 	/*
2140 	 * The p->mm->numa_scan_seq field gets updated without
2141 	 * exclusive access. Use READ_ONCE() here to ensure
2142 	 * that the field is read in a single access:
2143 	 */
2144 	seq = READ_ONCE(p->mm->numa_scan_seq);
2145 	if (p->numa_scan_seq == seq)
2146 		return;
2147 	p->numa_scan_seq = seq;
2148 	p->numa_scan_period_max = task_scan_max(p);
2149 
2150 	total_faults = p->numa_faults_locality[0] +
2151 		       p->numa_faults_locality[1];
2152 	runtime = numa_get_avg_runtime(p, &period);
2153 
2154 	/* If the task is part of a group prevent parallel updates to group stats */
2155 	if (p->numa_group) {
2156 		group_lock = &p->numa_group->lock;
2157 		spin_lock_irq(group_lock);
2158 	}
2159 
2160 	/* Find the node with the highest number of faults */
2161 	for_each_online_node(nid) {
2162 		/* Keep track of the offsets in numa_faults array */
2163 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2164 		unsigned long faults = 0, group_faults = 0;
2165 		int priv;
2166 
2167 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2168 			long diff, f_diff, f_weight;
2169 
2170 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2171 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2172 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2173 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2174 
2175 			/* Decay existing window, copy faults since last scan */
2176 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2177 			fault_types[priv] += p->numa_faults[membuf_idx];
2178 			p->numa_faults[membuf_idx] = 0;
2179 
2180 			/*
2181 			 * Normalize the faults_from, so all tasks in a group
2182 			 * count according to CPU use, instead of by the raw
2183 			 * number of faults. Tasks with little runtime have
2184 			 * little over-all impact on throughput, and thus their
2185 			 * faults are less important.
2186 			 */
2187 			f_weight = div64_u64(runtime << 16, period + 1);
2188 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2189 				   (total_faults + 1);
2190 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2191 			p->numa_faults[cpubuf_idx] = 0;
2192 
2193 			p->numa_faults[mem_idx] += diff;
2194 			p->numa_faults[cpu_idx] += f_diff;
2195 			faults += p->numa_faults[mem_idx];
2196 			p->total_numa_faults += diff;
2197 			if (p->numa_group) {
2198 				/*
2199 				 * safe because we can only change our own group
2200 				 *
2201 				 * mem_idx represents the offset for a given
2202 				 * nid and priv in a specific region because it
2203 				 * is at the beginning of the numa_faults array.
2204 				 */
2205 				p->numa_group->faults[mem_idx] += diff;
2206 				p->numa_group->faults_cpu[mem_idx] += f_diff;
2207 				p->numa_group->total_faults += diff;
2208 				group_faults += p->numa_group->faults[mem_idx];
2209 			}
2210 		}
2211 
2212 		if (!p->numa_group) {
2213 			if (faults > max_faults) {
2214 				max_faults = faults;
2215 				max_nid = nid;
2216 			}
2217 		} else if (group_faults > max_faults) {
2218 			max_faults = group_faults;
2219 			max_nid = nid;
2220 		}
2221 	}
2222 
2223 	if (p->numa_group) {
2224 		numa_group_count_active_nodes(p->numa_group);
2225 		spin_unlock_irq(group_lock);
2226 		max_nid = preferred_group_nid(p, max_nid);
2227 	}
2228 
2229 	if (max_faults) {
2230 		/* Set the new preferred node */
2231 		if (max_nid != p->numa_preferred_nid)
2232 			sched_setnuma(p, max_nid);
2233 	}
2234 
2235 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2236 }
2237 
2238 static inline int get_numa_group(struct numa_group *grp)
2239 {
2240 	return refcount_inc_not_zero(&grp->refcount);
2241 }
2242 
2243 static inline void put_numa_group(struct numa_group *grp)
2244 {
2245 	if (refcount_dec_and_test(&grp->refcount))
2246 		kfree_rcu(grp, rcu);
2247 }
2248 
2249 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2250 			int *priv)
2251 {
2252 	struct numa_group *grp, *my_grp;
2253 	struct task_struct *tsk;
2254 	bool join = false;
2255 	int cpu = cpupid_to_cpu(cpupid);
2256 	int i;
2257 
2258 	if (unlikely(!p->numa_group)) {
2259 		unsigned int size = sizeof(struct numa_group) +
2260 				    4*nr_node_ids*sizeof(unsigned long);
2261 
2262 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2263 		if (!grp)
2264 			return;
2265 
2266 		refcount_set(&grp->refcount, 1);
2267 		grp->active_nodes = 1;
2268 		grp->max_faults_cpu = 0;
2269 		spin_lock_init(&grp->lock);
2270 		grp->gid = p->pid;
2271 		/* Second half of the array tracks nids where faults happen */
2272 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2273 						nr_node_ids;
2274 
2275 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2276 			grp->faults[i] = p->numa_faults[i];
2277 
2278 		grp->total_faults = p->total_numa_faults;
2279 
2280 		grp->nr_tasks++;
2281 		rcu_assign_pointer(p->numa_group, grp);
2282 	}
2283 
2284 	rcu_read_lock();
2285 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2286 
2287 	if (!cpupid_match_pid(tsk, cpupid))
2288 		goto no_join;
2289 
2290 	grp = rcu_dereference(tsk->numa_group);
2291 	if (!grp)
2292 		goto no_join;
2293 
2294 	my_grp = p->numa_group;
2295 	if (grp == my_grp)
2296 		goto no_join;
2297 
2298 	/*
2299 	 * Only join the other group if its bigger; if we're the bigger group,
2300 	 * the other task will join us.
2301 	 */
2302 	if (my_grp->nr_tasks > grp->nr_tasks)
2303 		goto no_join;
2304 
2305 	/*
2306 	 * Tie-break on the grp address.
2307 	 */
2308 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2309 		goto no_join;
2310 
2311 	/* Always join threads in the same process. */
2312 	if (tsk->mm == current->mm)
2313 		join = true;
2314 
2315 	/* Simple filter to avoid false positives due to PID collisions */
2316 	if (flags & TNF_SHARED)
2317 		join = true;
2318 
2319 	/* Update priv based on whether false sharing was detected */
2320 	*priv = !join;
2321 
2322 	if (join && !get_numa_group(grp))
2323 		goto no_join;
2324 
2325 	rcu_read_unlock();
2326 
2327 	if (!join)
2328 		return;
2329 
2330 	BUG_ON(irqs_disabled());
2331 	double_lock_irq(&my_grp->lock, &grp->lock);
2332 
2333 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2334 		my_grp->faults[i] -= p->numa_faults[i];
2335 		grp->faults[i] += p->numa_faults[i];
2336 	}
2337 	my_grp->total_faults -= p->total_numa_faults;
2338 	grp->total_faults += p->total_numa_faults;
2339 
2340 	my_grp->nr_tasks--;
2341 	grp->nr_tasks++;
2342 
2343 	spin_unlock(&my_grp->lock);
2344 	spin_unlock_irq(&grp->lock);
2345 
2346 	rcu_assign_pointer(p->numa_group, grp);
2347 
2348 	put_numa_group(my_grp);
2349 	return;
2350 
2351 no_join:
2352 	rcu_read_unlock();
2353 	return;
2354 }
2355 
2356 void task_numa_free(struct task_struct *p)
2357 {
2358 	struct numa_group *grp = p->numa_group;
2359 	void *numa_faults = p->numa_faults;
2360 	unsigned long flags;
2361 	int i;
2362 
2363 	if (grp) {
2364 		spin_lock_irqsave(&grp->lock, flags);
2365 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2366 			grp->faults[i] -= p->numa_faults[i];
2367 		grp->total_faults -= p->total_numa_faults;
2368 
2369 		grp->nr_tasks--;
2370 		spin_unlock_irqrestore(&grp->lock, flags);
2371 		RCU_INIT_POINTER(p->numa_group, NULL);
2372 		put_numa_group(grp);
2373 	}
2374 
2375 	p->numa_faults = NULL;
2376 	kfree(numa_faults);
2377 }
2378 
2379 /*
2380  * Got a PROT_NONE fault for a page on @node.
2381  */
2382 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2383 {
2384 	struct task_struct *p = current;
2385 	bool migrated = flags & TNF_MIGRATED;
2386 	int cpu_node = task_node(current);
2387 	int local = !!(flags & TNF_FAULT_LOCAL);
2388 	struct numa_group *ng;
2389 	int priv;
2390 
2391 	if (!static_branch_likely(&sched_numa_balancing))
2392 		return;
2393 
2394 	/* for example, ksmd faulting in a user's mm */
2395 	if (!p->mm)
2396 		return;
2397 
2398 	/* Allocate buffer to track faults on a per-node basis */
2399 	if (unlikely(!p->numa_faults)) {
2400 		int size = sizeof(*p->numa_faults) *
2401 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2402 
2403 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2404 		if (!p->numa_faults)
2405 			return;
2406 
2407 		p->total_numa_faults = 0;
2408 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2409 	}
2410 
2411 	/*
2412 	 * First accesses are treated as private, otherwise consider accesses
2413 	 * to be private if the accessing pid has not changed
2414 	 */
2415 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2416 		priv = 1;
2417 	} else {
2418 		priv = cpupid_match_pid(p, last_cpupid);
2419 		if (!priv && !(flags & TNF_NO_GROUP))
2420 			task_numa_group(p, last_cpupid, flags, &priv);
2421 	}
2422 
2423 	/*
2424 	 * If a workload spans multiple NUMA nodes, a shared fault that
2425 	 * occurs wholly within the set of nodes that the workload is
2426 	 * actively using should be counted as local. This allows the
2427 	 * scan rate to slow down when a workload has settled down.
2428 	 */
2429 	ng = p->numa_group;
2430 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2431 				numa_is_active_node(cpu_node, ng) &&
2432 				numa_is_active_node(mem_node, ng))
2433 		local = 1;
2434 
2435 	/*
2436 	 * Retry to migrate task to preferred node periodically, in case it
2437 	 * previously failed, or the scheduler moved us.
2438 	 */
2439 	if (time_after(jiffies, p->numa_migrate_retry)) {
2440 		task_numa_placement(p);
2441 		numa_migrate_preferred(p);
2442 	}
2443 
2444 	if (migrated)
2445 		p->numa_pages_migrated += pages;
2446 	if (flags & TNF_MIGRATE_FAIL)
2447 		p->numa_faults_locality[2] += pages;
2448 
2449 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2450 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2451 	p->numa_faults_locality[local] += pages;
2452 }
2453 
2454 static void reset_ptenuma_scan(struct task_struct *p)
2455 {
2456 	/*
2457 	 * We only did a read acquisition of the mmap sem, so
2458 	 * p->mm->numa_scan_seq is written to without exclusive access
2459 	 * and the update is not guaranteed to be atomic. That's not
2460 	 * much of an issue though, since this is just used for
2461 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2462 	 * expensive, to avoid any form of compiler optimizations:
2463 	 */
2464 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2465 	p->mm->numa_scan_offset = 0;
2466 }
2467 
2468 /*
2469  * The expensive part of numa migration is done from task_work context.
2470  * Triggered from task_tick_numa().
2471  */
2472 void task_numa_work(struct callback_head *work)
2473 {
2474 	unsigned long migrate, next_scan, now = jiffies;
2475 	struct task_struct *p = current;
2476 	struct mm_struct *mm = p->mm;
2477 	u64 runtime = p->se.sum_exec_runtime;
2478 	struct vm_area_struct *vma;
2479 	unsigned long start, end;
2480 	unsigned long nr_pte_updates = 0;
2481 	long pages, virtpages;
2482 
2483 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2484 
2485 	work->next = work; /* protect against double add */
2486 	/*
2487 	 * Who cares about NUMA placement when they're dying.
2488 	 *
2489 	 * NOTE: make sure not to dereference p->mm before this check,
2490 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2491 	 * without p->mm even though we still had it when we enqueued this
2492 	 * work.
2493 	 */
2494 	if (p->flags & PF_EXITING)
2495 		return;
2496 
2497 	if (!mm->numa_next_scan) {
2498 		mm->numa_next_scan = now +
2499 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2500 	}
2501 
2502 	/*
2503 	 * Enforce maximal scan/migration frequency..
2504 	 */
2505 	migrate = mm->numa_next_scan;
2506 	if (time_before(now, migrate))
2507 		return;
2508 
2509 	if (p->numa_scan_period == 0) {
2510 		p->numa_scan_period_max = task_scan_max(p);
2511 		p->numa_scan_period = task_scan_start(p);
2512 	}
2513 
2514 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2515 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2516 		return;
2517 
2518 	/*
2519 	 * Delay this task enough that another task of this mm will likely win
2520 	 * the next time around.
2521 	 */
2522 	p->node_stamp += 2 * TICK_NSEC;
2523 
2524 	start = mm->numa_scan_offset;
2525 	pages = sysctl_numa_balancing_scan_size;
2526 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2527 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2528 	if (!pages)
2529 		return;
2530 
2531 
2532 	if (!down_read_trylock(&mm->mmap_sem))
2533 		return;
2534 	vma = find_vma(mm, start);
2535 	if (!vma) {
2536 		reset_ptenuma_scan(p);
2537 		start = 0;
2538 		vma = mm->mmap;
2539 	}
2540 	for (; vma; vma = vma->vm_next) {
2541 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2542 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2543 			continue;
2544 		}
2545 
2546 		/*
2547 		 * Shared library pages mapped by multiple processes are not
2548 		 * migrated as it is expected they are cache replicated. Avoid
2549 		 * hinting faults in read-only file-backed mappings or the vdso
2550 		 * as migrating the pages will be of marginal benefit.
2551 		 */
2552 		if (!vma->vm_mm ||
2553 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2554 			continue;
2555 
2556 		/*
2557 		 * Skip inaccessible VMAs to avoid any confusion between
2558 		 * PROT_NONE and NUMA hinting ptes
2559 		 */
2560 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2561 			continue;
2562 
2563 		do {
2564 			start = max(start, vma->vm_start);
2565 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2566 			end = min(end, vma->vm_end);
2567 			nr_pte_updates = change_prot_numa(vma, start, end);
2568 
2569 			/*
2570 			 * Try to scan sysctl_numa_balancing_size worth of
2571 			 * hpages that have at least one present PTE that
2572 			 * is not already pte-numa. If the VMA contains
2573 			 * areas that are unused or already full of prot_numa
2574 			 * PTEs, scan up to virtpages, to skip through those
2575 			 * areas faster.
2576 			 */
2577 			if (nr_pte_updates)
2578 				pages -= (end - start) >> PAGE_SHIFT;
2579 			virtpages -= (end - start) >> PAGE_SHIFT;
2580 
2581 			start = end;
2582 			if (pages <= 0 || virtpages <= 0)
2583 				goto out;
2584 
2585 			cond_resched();
2586 		} while (end != vma->vm_end);
2587 	}
2588 
2589 out:
2590 	/*
2591 	 * It is possible to reach the end of the VMA list but the last few
2592 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2593 	 * would find the !migratable VMA on the next scan but not reset the
2594 	 * scanner to the start so check it now.
2595 	 */
2596 	if (vma)
2597 		mm->numa_scan_offset = start;
2598 	else
2599 		reset_ptenuma_scan(p);
2600 	up_read(&mm->mmap_sem);
2601 
2602 	/*
2603 	 * Make sure tasks use at least 32x as much time to run other code
2604 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2605 	 * Usually update_task_scan_period slows down scanning enough; on an
2606 	 * overloaded system we need to limit overhead on a per task basis.
2607 	 */
2608 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2609 		u64 diff = p->se.sum_exec_runtime - runtime;
2610 		p->node_stamp += 32 * diff;
2611 	}
2612 }
2613 
2614 /*
2615  * Drive the periodic memory faults..
2616  */
2617 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2618 {
2619 	struct callback_head *work = &curr->numa_work;
2620 	u64 period, now;
2621 
2622 	/*
2623 	 * We don't care about NUMA placement if we don't have memory.
2624 	 */
2625 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2626 		return;
2627 
2628 	/*
2629 	 * Using runtime rather than walltime has the dual advantage that
2630 	 * we (mostly) drive the selection from busy threads and that the
2631 	 * task needs to have done some actual work before we bother with
2632 	 * NUMA placement.
2633 	 */
2634 	now = curr->se.sum_exec_runtime;
2635 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2636 
2637 	if (now > curr->node_stamp + period) {
2638 		if (!curr->node_stamp)
2639 			curr->numa_scan_period = task_scan_start(curr);
2640 		curr->node_stamp += period;
2641 
2642 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2643 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2644 			task_work_add(curr, work, true);
2645 		}
2646 	}
2647 }
2648 
2649 static void update_scan_period(struct task_struct *p, int new_cpu)
2650 {
2651 	int src_nid = cpu_to_node(task_cpu(p));
2652 	int dst_nid = cpu_to_node(new_cpu);
2653 
2654 	if (!static_branch_likely(&sched_numa_balancing))
2655 		return;
2656 
2657 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2658 		return;
2659 
2660 	if (src_nid == dst_nid)
2661 		return;
2662 
2663 	/*
2664 	 * Allow resets if faults have been trapped before one scan
2665 	 * has completed. This is most likely due to a new task that
2666 	 * is pulled cross-node due to wakeups or load balancing.
2667 	 */
2668 	if (p->numa_scan_seq) {
2669 		/*
2670 		 * Avoid scan adjustments if moving to the preferred
2671 		 * node or if the task was not previously running on
2672 		 * the preferred node.
2673 		 */
2674 		if (dst_nid == p->numa_preferred_nid ||
2675 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2676 			src_nid != p->numa_preferred_nid))
2677 			return;
2678 	}
2679 
2680 	p->numa_scan_period = task_scan_start(p);
2681 }
2682 
2683 #else
2684 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2685 {
2686 }
2687 
2688 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2689 {
2690 }
2691 
2692 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2693 {
2694 }
2695 
2696 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2697 {
2698 }
2699 
2700 #endif /* CONFIG_NUMA_BALANCING */
2701 
2702 static void
2703 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2704 {
2705 	update_load_add(&cfs_rq->load, se->load.weight);
2706 #ifdef CONFIG_SMP
2707 	if (entity_is_task(se)) {
2708 		struct rq *rq = rq_of(cfs_rq);
2709 
2710 		account_numa_enqueue(rq, task_of(se));
2711 		list_add(&se->group_node, &rq->cfs_tasks);
2712 	}
2713 #endif
2714 	cfs_rq->nr_running++;
2715 }
2716 
2717 static void
2718 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2719 {
2720 	update_load_sub(&cfs_rq->load, se->load.weight);
2721 #ifdef CONFIG_SMP
2722 	if (entity_is_task(se)) {
2723 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2724 		list_del_init(&se->group_node);
2725 	}
2726 #endif
2727 	cfs_rq->nr_running--;
2728 }
2729 
2730 /*
2731  * Signed add and clamp on underflow.
2732  *
2733  * Explicitly do a load-store to ensure the intermediate value never hits
2734  * memory. This allows lockless observations without ever seeing the negative
2735  * values.
2736  */
2737 #define add_positive(_ptr, _val) do {                           \
2738 	typeof(_ptr) ptr = (_ptr);                              \
2739 	typeof(_val) val = (_val);                              \
2740 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2741 								\
2742 	res = var + val;                                        \
2743 								\
2744 	if (val < 0 && res > var)                               \
2745 		res = 0;                                        \
2746 								\
2747 	WRITE_ONCE(*ptr, res);                                  \
2748 } while (0)
2749 
2750 /*
2751  * Unsigned subtract and clamp on underflow.
2752  *
2753  * Explicitly do a load-store to ensure the intermediate value never hits
2754  * memory. This allows lockless observations without ever seeing the negative
2755  * values.
2756  */
2757 #define sub_positive(_ptr, _val) do {				\
2758 	typeof(_ptr) ptr = (_ptr);				\
2759 	typeof(*ptr) val = (_val);				\
2760 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
2761 	res = var - val;					\
2762 	if (res > var)						\
2763 		res = 0;					\
2764 	WRITE_ONCE(*ptr, res);					\
2765 } while (0)
2766 
2767 /*
2768  * Remove and clamp on negative, from a local variable.
2769  *
2770  * A variant of sub_positive(), which does not use explicit load-store
2771  * and is thus optimized for local variable updates.
2772  */
2773 #define lsub_positive(_ptr, _val) do {				\
2774 	typeof(_ptr) ptr = (_ptr);				\
2775 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
2776 } while (0)
2777 
2778 #ifdef CONFIG_SMP
2779 static inline void
2780 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2781 {
2782 	cfs_rq->runnable_weight += se->runnable_weight;
2783 
2784 	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2785 	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2786 }
2787 
2788 static inline void
2789 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2790 {
2791 	cfs_rq->runnable_weight -= se->runnable_weight;
2792 
2793 	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2794 	sub_positive(&cfs_rq->avg.runnable_load_sum,
2795 		     se_runnable(se) * se->avg.runnable_load_sum);
2796 }
2797 
2798 static inline void
2799 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2800 {
2801 	cfs_rq->avg.load_avg += se->avg.load_avg;
2802 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2803 }
2804 
2805 static inline void
2806 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2807 {
2808 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2809 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2810 }
2811 #else
2812 static inline void
2813 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2814 static inline void
2815 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2816 static inline void
2817 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2818 static inline void
2819 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2820 #endif
2821 
2822 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2823 			    unsigned long weight, unsigned long runnable)
2824 {
2825 	if (se->on_rq) {
2826 		/* commit outstanding execution time */
2827 		if (cfs_rq->curr == se)
2828 			update_curr(cfs_rq);
2829 		account_entity_dequeue(cfs_rq, se);
2830 		dequeue_runnable_load_avg(cfs_rq, se);
2831 	}
2832 	dequeue_load_avg(cfs_rq, se);
2833 
2834 	se->runnable_weight = runnable;
2835 	update_load_set(&se->load, weight);
2836 
2837 #ifdef CONFIG_SMP
2838 	do {
2839 		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2840 
2841 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2842 		se->avg.runnable_load_avg =
2843 			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2844 	} while (0);
2845 #endif
2846 
2847 	enqueue_load_avg(cfs_rq, se);
2848 	if (se->on_rq) {
2849 		account_entity_enqueue(cfs_rq, se);
2850 		enqueue_runnable_load_avg(cfs_rq, se);
2851 	}
2852 }
2853 
2854 void reweight_task(struct task_struct *p, int prio)
2855 {
2856 	struct sched_entity *se = &p->se;
2857 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2858 	struct load_weight *load = &se->load;
2859 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2860 
2861 	reweight_entity(cfs_rq, se, weight, weight);
2862 	load->inv_weight = sched_prio_to_wmult[prio];
2863 }
2864 
2865 #ifdef CONFIG_FAIR_GROUP_SCHED
2866 #ifdef CONFIG_SMP
2867 /*
2868  * All this does is approximate the hierarchical proportion which includes that
2869  * global sum we all love to hate.
2870  *
2871  * That is, the weight of a group entity, is the proportional share of the
2872  * group weight based on the group runqueue weights. That is:
2873  *
2874  *                     tg->weight * grq->load.weight
2875  *   ge->load.weight = -----------------------------               (1)
2876  *			  \Sum grq->load.weight
2877  *
2878  * Now, because computing that sum is prohibitively expensive to compute (been
2879  * there, done that) we approximate it with this average stuff. The average
2880  * moves slower and therefore the approximation is cheaper and more stable.
2881  *
2882  * So instead of the above, we substitute:
2883  *
2884  *   grq->load.weight -> grq->avg.load_avg                         (2)
2885  *
2886  * which yields the following:
2887  *
2888  *                     tg->weight * grq->avg.load_avg
2889  *   ge->load.weight = ------------------------------              (3)
2890  *				tg->load_avg
2891  *
2892  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2893  *
2894  * That is shares_avg, and it is right (given the approximation (2)).
2895  *
2896  * The problem with it is that because the average is slow -- it was designed
2897  * to be exactly that of course -- this leads to transients in boundary
2898  * conditions. In specific, the case where the group was idle and we start the
2899  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2900  * yielding bad latency etc..
2901  *
2902  * Now, in that special case (1) reduces to:
2903  *
2904  *                     tg->weight * grq->load.weight
2905  *   ge->load.weight = ----------------------------- = tg->weight   (4)
2906  *			    grp->load.weight
2907  *
2908  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2909  *
2910  * So what we do is modify our approximation (3) to approach (4) in the (near)
2911  * UP case, like:
2912  *
2913  *   ge->load.weight =
2914  *
2915  *              tg->weight * grq->load.weight
2916  *     ---------------------------------------------------         (5)
2917  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
2918  *
2919  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2920  * we need to use grq->avg.load_avg as its lower bound, which then gives:
2921  *
2922  *
2923  *                     tg->weight * grq->load.weight
2924  *   ge->load.weight = -----------------------------		   (6)
2925  *				tg_load_avg'
2926  *
2927  * Where:
2928  *
2929  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2930  *                  max(grq->load.weight, grq->avg.load_avg)
2931  *
2932  * And that is shares_weight and is icky. In the (near) UP case it approaches
2933  * (4) while in the normal case it approaches (3). It consistently
2934  * overestimates the ge->load.weight and therefore:
2935  *
2936  *   \Sum ge->load.weight >= tg->weight
2937  *
2938  * hence icky!
2939  */
2940 static long calc_group_shares(struct cfs_rq *cfs_rq)
2941 {
2942 	long tg_weight, tg_shares, load, shares;
2943 	struct task_group *tg = cfs_rq->tg;
2944 
2945 	tg_shares = READ_ONCE(tg->shares);
2946 
2947 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2948 
2949 	tg_weight = atomic_long_read(&tg->load_avg);
2950 
2951 	/* Ensure tg_weight >= load */
2952 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2953 	tg_weight += load;
2954 
2955 	shares = (tg_shares * load);
2956 	if (tg_weight)
2957 		shares /= tg_weight;
2958 
2959 	/*
2960 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2961 	 * of a group with small tg->shares value. It is a floor value which is
2962 	 * assigned as a minimum load.weight to the sched_entity representing
2963 	 * the group on a CPU.
2964 	 *
2965 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2966 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2967 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2968 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2969 	 * instead of 0.
2970 	 */
2971 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
2972 }
2973 
2974 /*
2975  * This calculates the effective runnable weight for a group entity based on
2976  * the group entity weight calculated above.
2977  *
2978  * Because of the above approximation (2), our group entity weight is
2979  * an load_avg based ratio (3). This means that it includes blocked load and
2980  * does not represent the runnable weight.
2981  *
2982  * Approximate the group entity's runnable weight per ratio from the group
2983  * runqueue:
2984  *
2985  *					     grq->avg.runnable_load_avg
2986  *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
2987  *						 grq->avg.load_avg
2988  *
2989  * However, analogous to above, since the avg numbers are slow, this leads to
2990  * transients in the from-idle case. Instead we use:
2991  *
2992  *   ge->runnable_weight = ge->load.weight *
2993  *
2994  *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
2995  *		-----------------------------------------------------	(8)
2996  *		      max(grq->avg.load_avg, grq->load.weight)
2997  *
2998  * Where these max() serve both to use the 'instant' values to fix the slow
2999  * from-idle and avoid the /0 on to-idle, similar to (6).
3000  */
3001 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
3002 {
3003 	long runnable, load_avg;
3004 
3005 	load_avg = max(cfs_rq->avg.load_avg,
3006 		       scale_load_down(cfs_rq->load.weight));
3007 
3008 	runnable = max(cfs_rq->avg.runnable_load_avg,
3009 		       scale_load_down(cfs_rq->runnable_weight));
3010 
3011 	runnable *= shares;
3012 	if (load_avg)
3013 		runnable /= load_avg;
3014 
3015 	return clamp_t(long, runnable, MIN_SHARES, shares);
3016 }
3017 #endif /* CONFIG_SMP */
3018 
3019 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3020 
3021 /*
3022  * Recomputes the group entity based on the current state of its group
3023  * runqueue.
3024  */
3025 static void update_cfs_group(struct sched_entity *se)
3026 {
3027 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3028 	long shares, runnable;
3029 
3030 	if (!gcfs_rq)
3031 		return;
3032 
3033 	if (throttled_hierarchy(gcfs_rq))
3034 		return;
3035 
3036 #ifndef CONFIG_SMP
3037 	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3038 
3039 	if (likely(se->load.weight == shares))
3040 		return;
3041 #else
3042 	shares   = calc_group_shares(gcfs_rq);
3043 	runnable = calc_group_runnable(gcfs_rq, shares);
3044 #endif
3045 
3046 	reweight_entity(cfs_rq_of(se), se, shares, runnable);
3047 }
3048 
3049 #else /* CONFIG_FAIR_GROUP_SCHED */
3050 static inline void update_cfs_group(struct sched_entity *se)
3051 {
3052 }
3053 #endif /* CONFIG_FAIR_GROUP_SCHED */
3054 
3055 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3056 {
3057 	struct rq *rq = rq_of(cfs_rq);
3058 
3059 	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3060 		/*
3061 		 * There are a few boundary cases this might miss but it should
3062 		 * get called often enough that that should (hopefully) not be
3063 		 * a real problem.
3064 		 *
3065 		 * It will not get called when we go idle, because the idle
3066 		 * thread is a different class (!fair), nor will the utilization
3067 		 * number include things like RT tasks.
3068 		 *
3069 		 * As is, the util number is not freq-invariant (we'd have to
3070 		 * implement arch_scale_freq_capacity() for that).
3071 		 *
3072 		 * See cpu_util().
3073 		 */
3074 		cpufreq_update_util(rq, flags);
3075 	}
3076 }
3077 
3078 #ifdef CONFIG_SMP
3079 #ifdef CONFIG_FAIR_GROUP_SCHED
3080 /**
3081  * update_tg_load_avg - update the tg's load avg
3082  * @cfs_rq: the cfs_rq whose avg changed
3083  * @force: update regardless of how small the difference
3084  *
3085  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3086  * However, because tg->load_avg is a global value there are performance
3087  * considerations.
3088  *
3089  * In order to avoid having to look at the other cfs_rq's, we use a
3090  * differential update where we store the last value we propagated. This in
3091  * turn allows skipping updates if the differential is 'small'.
3092  *
3093  * Updating tg's load_avg is necessary before update_cfs_share().
3094  */
3095 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3096 {
3097 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3098 
3099 	/*
3100 	 * No need to update load_avg for root_task_group as it is not used.
3101 	 */
3102 	if (cfs_rq->tg == &root_task_group)
3103 		return;
3104 
3105 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3106 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3107 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3108 	}
3109 }
3110 
3111 /*
3112  * Called within set_task_rq() right before setting a task's CPU. The
3113  * caller only guarantees p->pi_lock is held; no other assumptions,
3114  * including the state of rq->lock, should be made.
3115  */
3116 void set_task_rq_fair(struct sched_entity *se,
3117 		      struct cfs_rq *prev, struct cfs_rq *next)
3118 {
3119 	u64 p_last_update_time;
3120 	u64 n_last_update_time;
3121 
3122 	if (!sched_feat(ATTACH_AGE_LOAD))
3123 		return;
3124 
3125 	/*
3126 	 * We are supposed to update the task to "current" time, then its up to
3127 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3128 	 * getting what current time is, so simply throw away the out-of-date
3129 	 * time. This will result in the wakee task is less decayed, but giving
3130 	 * the wakee more load sounds not bad.
3131 	 */
3132 	if (!(se->avg.last_update_time && prev))
3133 		return;
3134 
3135 #ifndef CONFIG_64BIT
3136 	{
3137 		u64 p_last_update_time_copy;
3138 		u64 n_last_update_time_copy;
3139 
3140 		do {
3141 			p_last_update_time_copy = prev->load_last_update_time_copy;
3142 			n_last_update_time_copy = next->load_last_update_time_copy;
3143 
3144 			smp_rmb();
3145 
3146 			p_last_update_time = prev->avg.last_update_time;
3147 			n_last_update_time = next->avg.last_update_time;
3148 
3149 		} while (p_last_update_time != p_last_update_time_copy ||
3150 			 n_last_update_time != n_last_update_time_copy);
3151 	}
3152 #else
3153 	p_last_update_time = prev->avg.last_update_time;
3154 	n_last_update_time = next->avg.last_update_time;
3155 #endif
3156 	__update_load_avg_blocked_se(p_last_update_time, se);
3157 	se->avg.last_update_time = n_last_update_time;
3158 }
3159 
3160 
3161 /*
3162  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3163  * propagate its contribution. The key to this propagation is the invariant
3164  * that for each group:
3165  *
3166  *   ge->avg == grq->avg						(1)
3167  *
3168  * _IFF_ we look at the pure running and runnable sums. Because they
3169  * represent the very same entity, just at different points in the hierarchy.
3170  *
3171  * Per the above update_tg_cfs_util() is trivial and simply copies the running
3172  * sum over (but still wrong, because the group entity and group rq do not have
3173  * their PELT windows aligned).
3174  *
3175  * However, update_tg_cfs_runnable() is more complex. So we have:
3176  *
3177  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3178  *
3179  * And since, like util, the runnable part should be directly transferable,
3180  * the following would _appear_ to be the straight forward approach:
3181  *
3182  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3183  *
3184  * And per (1) we have:
3185  *
3186  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3187  *
3188  * Which gives:
3189  *
3190  *                      ge->load.weight * grq->avg.load_avg
3191  *   ge->avg.load_avg = -----------------------------------		(4)
3192  *                               grq->load.weight
3193  *
3194  * Except that is wrong!
3195  *
3196  * Because while for entities historical weight is not important and we
3197  * really only care about our future and therefore can consider a pure
3198  * runnable sum, runqueues can NOT do this.
3199  *
3200  * We specifically want runqueues to have a load_avg that includes
3201  * historical weights. Those represent the blocked load, the load we expect
3202  * to (shortly) return to us. This only works by keeping the weights as
3203  * integral part of the sum. We therefore cannot decompose as per (3).
3204  *
3205  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3206  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3207  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3208  * runnable section of these tasks overlap (or not). If they were to perfectly
3209  * align the rq as a whole would be runnable 2/3 of the time. If however we
3210  * always have at least 1 runnable task, the rq as a whole is always runnable.
3211  *
3212  * So we'll have to approximate.. :/
3213  *
3214  * Given the constraint:
3215  *
3216  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3217  *
3218  * We can construct a rule that adds runnable to a rq by assuming minimal
3219  * overlap.
3220  *
3221  * On removal, we'll assume each task is equally runnable; which yields:
3222  *
3223  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3224  *
3225  * XXX: only do this for the part of runnable > running ?
3226  *
3227  */
3228 
3229 static inline void
3230 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3231 {
3232 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3233 
3234 	/* Nothing to update */
3235 	if (!delta)
3236 		return;
3237 
3238 	/*
3239 	 * The relation between sum and avg is:
3240 	 *
3241 	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
3242 	 *
3243 	 * however, the PELT windows are not aligned between grq and gse.
3244 	 */
3245 
3246 	/* Set new sched_entity's utilization */
3247 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3248 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3249 
3250 	/* Update parent cfs_rq utilization */
3251 	add_positive(&cfs_rq->avg.util_avg, delta);
3252 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3253 }
3254 
3255 static inline void
3256 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3257 {
3258 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3259 	unsigned long runnable_load_avg, load_avg;
3260 	u64 runnable_load_sum, load_sum = 0;
3261 	s64 delta_sum;
3262 
3263 	if (!runnable_sum)
3264 		return;
3265 
3266 	gcfs_rq->prop_runnable_sum = 0;
3267 
3268 	if (runnable_sum >= 0) {
3269 		/*
3270 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3271 		 * the CPU is saturated running == runnable.
3272 		 */
3273 		runnable_sum += se->avg.load_sum;
3274 		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3275 	} else {
3276 		/*
3277 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3278 		 * assuming all tasks are equally runnable.
3279 		 */
3280 		if (scale_load_down(gcfs_rq->load.weight)) {
3281 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3282 				scale_load_down(gcfs_rq->load.weight));
3283 		}
3284 
3285 		/* But make sure to not inflate se's runnable */
3286 		runnable_sum = min(se->avg.load_sum, load_sum);
3287 	}
3288 
3289 	/*
3290 	 * runnable_sum can't be lower than running_sum
3291 	 * Rescale running sum to be in the same range as runnable sum
3292 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3293 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3294 	 */
3295 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3296 	runnable_sum = max(runnable_sum, running_sum);
3297 
3298 	load_sum = (s64)se_weight(se) * runnable_sum;
3299 	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3300 
3301 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3302 	delta_avg = load_avg - se->avg.load_avg;
3303 
3304 	se->avg.load_sum = runnable_sum;
3305 	se->avg.load_avg = load_avg;
3306 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3307 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3308 
3309 	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3310 	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3311 	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3312 	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3313 
3314 	se->avg.runnable_load_sum = runnable_sum;
3315 	se->avg.runnable_load_avg = runnable_load_avg;
3316 
3317 	if (se->on_rq) {
3318 		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3319 		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3320 	}
3321 }
3322 
3323 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3324 {
3325 	cfs_rq->propagate = 1;
3326 	cfs_rq->prop_runnable_sum += runnable_sum;
3327 }
3328 
3329 /* Update task and its cfs_rq load average */
3330 static inline int propagate_entity_load_avg(struct sched_entity *se)
3331 {
3332 	struct cfs_rq *cfs_rq, *gcfs_rq;
3333 
3334 	if (entity_is_task(se))
3335 		return 0;
3336 
3337 	gcfs_rq = group_cfs_rq(se);
3338 	if (!gcfs_rq->propagate)
3339 		return 0;
3340 
3341 	gcfs_rq->propagate = 0;
3342 
3343 	cfs_rq = cfs_rq_of(se);
3344 
3345 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3346 
3347 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3348 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3349 
3350 	trace_pelt_cfs_tp(cfs_rq);
3351 	trace_pelt_se_tp(se);
3352 
3353 	return 1;
3354 }
3355 
3356 /*
3357  * Check if we need to update the load and the utilization of a blocked
3358  * group_entity:
3359  */
3360 static inline bool skip_blocked_update(struct sched_entity *se)
3361 {
3362 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3363 
3364 	/*
3365 	 * If sched_entity still have not zero load or utilization, we have to
3366 	 * decay it:
3367 	 */
3368 	if (se->avg.load_avg || se->avg.util_avg)
3369 		return false;
3370 
3371 	/*
3372 	 * If there is a pending propagation, we have to update the load and
3373 	 * the utilization of the sched_entity:
3374 	 */
3375 	if (gcfs_rq->propagate)
3376 		return false;
3377 
3378 	/*
3379 	 * Otherwise, the load and the utilization of the sched_entity is
3380 	 * already zero and there is no pending propagation, so it will be a
3381 	 * waste of time to try to decay it:
3382 	 */
3383 	return true;
3384 }
3385 
3386 #else /* CONFIG_FAIR_GROUP_SCHED */
3387 
3388 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3389 
3390 static inline int propagate_entity_load_avg(struct sched_entity *se)
3391 {
3392 	return 0;
3393 }
3394 
3395 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3396 
3397 #endif /* CONFIG_FAIR_GROUP_SCHED */
3398 
3399 /**
3400  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3401  * @now: current time, as per cfs_rq_clock_pelt()
3402  * @cfs_rq: cfs_rq to update
3403  *
3404  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3405  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3406  * post_init_entity_util_avg().
3407  *
3408  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3409  *
3410  * Returns true if the load decayed or we removed load.
3411  *
3412  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3413  * call update_tg_load_avg() when this function returns true.
3414  */
3415 static inline int
3416 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3417 {
3418 	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3419 	struct sched_avg *sa = &cfs_rq->avg;
3420 	int decayed = 0;
3421 
3422 	if (cfs_rq->removed.nr) {
3423 		unsigned long r;
3424 		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3425 
3426 		raw_spin_lock(&cfs_rq->removed.lock);
3427 		swap(cfs_rq->removed.util_avg, removed_util);
3428 		swap(cfs_rq->removed.load_avg, removed_load);
3429 		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3430 		cfs_rq->removed.nr = 0;
3431 		raw_spin_unlock(&cfs_rq->removed.lock);
3432 
3433 		r = removed_load;
3434 		sub_positive(&sa->load_avg, r);
3435 		sub_positive(&sa->load_sum, r * divider);
3436 
3437 		r = removed_util;
3438 		sub_positive(&sa->util_avg, r);
3439 		sub_positive(&sa->util_sum, r * divider);
3440 
3441 		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3442 
3443 		decayed = 1;
3444 	}
3445 
3446 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3447 
3448 #ifndef CONFIG_64BIT
3449 	smp_wmb();
3450 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3451 #endif
3452 
3453 	if (decayed)
3454 		cfs_rq_util_change(cfs_rq, 0);
3455 
3456 	return decayed;
3457 }
3458 
3459 /**
3460  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3461  * @cfs_rq: cfs_rq to attach to
3462  * @se: sched_entity to attach
3463  * @flags: migration hints
3464  *
3465  * Must call update_cfs_rq_load_avg() before this, since we rely on
3466  * cfs_rq->avg.last_update_time being current.
3467  */
3468 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3469 {
3470 	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3471 
3472 	/*
3473 	 * When we attach the @se to the @cfs_rq, we must align the decay
3474 	 * window because without that, really weird and wonderful things can
3475 	 * happen.
3476 	 *
3477 	 * XXX illustrate
3478 	 */
3479 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3480 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3481 
3482 	/*
3483 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3484 	 * period_contrib. This isn't strictly correct, but since we're
3485 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3486 	 * _sum a little.
3487 	 */
3488 	se->avg.util_sum = se->avg.util_avg * divider;
3489 
3490 	se->avg.load_sum = divider;
3491 	if (se_weight(se)) {
3492 		se->avg.load_sum =
3493 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3494 	}
3495 
3496 	se->avg.runnable_load_sum = se->avg.load_sum;
3497 
3498 	enqueue_load_avg(cfs_rq, se);
3499 	cfs_rq->avg.util_avg += se->avg.util_avg;
3500 	cfs_rq->avg.util_sum += se->avg.util_sum;
3501 
3502 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3503 
3504 	cfs_rq_util_change(cfs_rq, flags);
3505 
3506 	trace_pelt_cfs_tp(cfs_rq);
3507 }
3508 
3509 /**
3510  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3511  * @cfs_rq: cfs_rq to detach from
3512  * @se: sched_entity to detach
3513  *
3514  * Must call update_cfs_rq_load_avg() before this, since we rely on
3515  * cfs_rq->avg.last_update_time being current.
3516  */
3517 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3518 {
3519 	dequeue_load_avg(cfs_rq, se);
3520 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3521 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3522 
3523 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3524 
3525 	cfs_rq_util_change(cfs_rq, 0);
3526 
3527 	trace_pelt_cfs_tp(cfs_rq);
3528 }
3529 
3530 /*
3531  * Optional action to be done while updating the load average
3532  */
3533 #define UPDATE_TG	0x1
3534 #define SKIP_AGE_LOAD	0x2
3535 #define DO_ATTACH	0x4
3536 
3537 /* Update task and its cfs_rq load average */
3538 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3539 {
3540 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3541 	int decayed;
3542 
3543 	/*
3544 	 * Track task load average for carrying it to new CPU after migrated, and
3545 	 * track group sched_entity load average for task_h_load calc in migration
3546 	 */
3547 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3548 		__update_load_avg_se(now, cfs_rq, se);
3549 
3550 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3551 	decayed |= propagate_entity_load_avg(se);
3552 
3553 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3554 
3555 		/*
3556 		 * DO_ATTACH means we're here from enqueue_entity().
3557 		 * !last_update_time means we've passed through
3558 		 * migrate_task_rq_fair() indicating we migrated.
3559 		 *
3560 		 * IOW we're enqueueing a task on a new CPU.
3561 		 */
3562 		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3563 		update_tg_load_avg(cfs_rq, 0);
3564 
3565 	} else if (decayed && (flags & UPDATE_TG))
3566 		update_tg_load_avg(cfs_rq, 0);
3567 }
3568 
3569 #ifndef CONFIG_64BIT
3570 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3571 {
3572 	u64 last_update_time_copy;
3573 	u64 last_update_time;
3574 
3575 	do {
3576 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3577 		smp_rmb();
3578 		last_update_time = cfs_rq->avg.last_update_time;
3579 	} while (last_update_time != last_update_time_copy);
3580 
3581 	return last_update_time;
3582 }
3583 #else
3584 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3585 {
3586 	return cfs_rq->avg.last_update_time;
3587 }
3588 #endif
3589 
3590 /*
3591  * Synchronize entity load avg of dequeued entity without locking
3592  * the previous rq.
3593  */
3594 static void sync_entity_load_avg(struct sched_entity *se)
3595 {
3596 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3597 	u64 last_update_time;
3598 
3599 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3600 	__update_load_avg_blocked_se(last_update_time, se);
3601 }
3602 
3603 /*
3604  * Task first catches up with cfs_rq, and then subtract
3605  * itself from the cfs_rq (task must be off the queue now).
3606  */
3607 static void remove_entity_load_avg(struct sched_entity *se)
3608 {
3609 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3610 	unsigned long flags;
3611 
3612 	/*
3613 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3614 	 * post_init_entity_util_avg() which will have added things to the
3615 	 * cfs_rq, so we can remove unconditionally.
3616 	 */
3617 
3618 	sync_entity_load_avg(se);
3619 
3620 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3621 	++cfs_rq->removed.nr;
3622 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3623 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3624 	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3625 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3626 }
3627 
3628 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3629 {
3630 	return cfs_rq->avg.runnable_load_avg;
3631 }
3632 
3633 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3634 {
3635 	return cfs_rq->avg.load_avg;
3636 }
3637 
3638 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3639 
3640 static inline unsigned long task_util(struct task_struct *p)
3641 {
3642 	return READ_ONCE(p->se.avg.util_avg);
3643 }
3644 
3645 static inline unsigned long _task_util_est(struct task_struct *p)
3646 {
3647 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3648 
3649 	return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3650 }
3651 
3652 static inline unsigned long task_util_est(struct task_struct *p)
3653 {
3654 	return max(task_util(p), _task_util_est(p));
3655 }
3656 
3657 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3658 				    struct task_struct *p)
3659 {
3660 	unsigned int enqueued;
3661 
3662 	if (!sched_feat(UTIL_EST))
3663 		return;
3664 
3665 	/* Update root cfs_rq's estimated utilization */
3666 	enqueued  = cfs_rq->avg.util_est.enqueued;
3667 	enqueued += _task_util_est(p);
3668 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3669 }
3670 
3671 /*
3672  * Check if a (signed) value is within a specified (unsigned) margin,
3673  * based on the observation that:
3674  *
3675  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3676  *
3677  * NOTE: this only works when value + maring < INT_MAX.
3678  */
3679 static inline bool within_margin(int value, int margin)
3680 {
3681 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3682 }
3683 
3684 static void
3685 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3686 {
3687 	long last_ewma_diff;
3688 	struct util_est ue;
3689 	int cpu;
3690 
3691 	if (!sched_feat(UTIL_EST))
3692 		return;
3693 
3694 	/* Update root cfs_rq's estimated utilization */
3695 	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3696 	ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3697 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3698 
3699 	/*
3700 	 * Skip update of task's estimated utilization when the task has not
3701 	 * yet completed an activation, e.g. being migrated.
3702 	 */
3703 	if (!task_sleep)
3704 		return;
3705 
3706 	/*
3707 	 * If the PELT values haven't changed since enqueue time,
3708 	 * skip the util_est update.
3709 	 */
3710 	ue = p->se.avg.util_est;
3711 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
3712 		return;
3713 
3714 	/*
3715 	 * Skip update of task's estimated utilization when its EWMA is
3716 	 * already ~1% close to its last activation value.
3717 	 */
3718 	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3719 	last_ewma_diff = ue.enqueued - ue.ewma;
3720 	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3721 		return;
3722 
3723 	/*
3724 	 * To avoid overestimation of actual task utilization, skip updates if
3725 	 * we cannot grant there is idle time in this CPU.
3726 	 */
3727 	cpu = cpu_of(rq_of(cfs_rq));
3728 	if (task_util(p) > capacity_orig_of(cpu))
3729 		return;
3730 
3731 	/*
3732 	 * Update Task's estimated utilization
3733 	 *
3734 	 * When *p completes an activation we can consolidate another sample
3735 	 * of the task size. This is done by storing the current PELT value
3736 	 * as ue.enqueued and by using this value to update the Exponential
3737 	 * Weighted Moving Average (EWMA):
3738 	 *
3739 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
3740 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
3741 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
3742 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
3743 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
3744 	 *
3745 	 * Where 'w' is the weight of new samples, which is configured to be
3746 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3747 	 */
3748 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3749 	ue.ewma  += last_ewma_diff;
3750 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3751 	WRITE_ONCE(p->se.avg.util_est, ue);
3752 }
3753 
3754 static inline int task_fits_capacity(struct task_struct *p, long capacity)
3755 {
3756 	return capacity * 1024 > task_util_est(p) * capacity_margin;
3757 }
3758 
3759 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3760 {
3761 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
3762 		return;
3763 
3764 	if (!p) {
3765 		rq->misfit_task_load = 0;
3766 		return;
3767 	}
3768 
3769 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3770 		rq->misfit_task_load = 0;
3771 		return;
3772 	}
3773 
3774 	rq->misfit_task_load = task_h_load(p);
3775 }
3776 
3777 #else /* CONFIG_SMP */
3778 
3779 #define UPDATE_TG	0x0
3780 #define SKIP_AGE_LOAD	0x0
3781 #define DO_ATTACH	0x0
3782 
3783 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3784 {
3785 	cfs_rq_util_change(cfs_rq, 0);
3786 }
3787 
3788 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3789 
3790 static inline void
3791 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3792 static inline void
3793 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3794 
3795 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3796 {
3797 	return 0;
3798 }
3799 
3800 static inline void
3801 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3802 
3803 static inline void
3804 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3805 		 bool task_sleep) {}
3806 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
3807 
3808 #endif /* CONFIG_SMP */
3809 
3810 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3811 {
3812 #ifdef CONFIG_SCHED_DEBUG
3813 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3814 
3815 	if (d < 0)
3816 		d = -d;
3817 
3818 	if (d > 3*sysctl_sched_latency)
3819 		schedstat_inc(cfs_rq->nr_spread_over);
3820 #endif
3821 }
3822 
3823 static void
3824 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3825 {
3826 	u64 vruntime = cfs_rq->min_vruntime;
3827 
3828 	/*
3829 	 * The 'current' period is already promised to the current tasks,
3830 	 * however the extra weight of the new task will slow them down a
3831 	 * little, place the new task so that it fits in the slot that
3832 	 * stays open at the end.
3833 	 */
3834 	if (initial && sched_feat(START_DEBIT))
3835 		vruntime += sched_vslice(cfs_rq, se);
3836 
3837 	/* sleeps up to a single latency don't count. */
3838 	if (!initial) {
3839 		unsigned long thresh = sysctl_sched_latency;
3840 
3841 		/*
3842 		 * Halve their sleep time's effect, to allow
3843 		 * for a gentler effect of sleepers:
3844 		 */
3845 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3846 			thresh >>= 1;
3847 
3848 		vruntime -= thresh;
3849 	}
3850 
3851 	/* ensure we never gain time by being placed backwards. */
3852 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3853 }
3854 
3855 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3856 
3857 static inline void check_schedstat_required(void)
3858 {
3859 #ifdef CONFIG_SCHEDSTATS
3860 	if (schedstat_enabled())
3861 		return;
3862 
3863 	/* Force schedstat enabled if a dependent tracepoint is active */
3864 	if (trace_sched_stat_wait_enabled()    ||
3865 			trace_sched_stat_sleep_enabled()   ||
3866 			trace_sched_stat_iowait_enabled()  ||
3867 			trace_sched_stat_blocked_enabled() ||
3868 			trace_sched_stat_runtime_enabled())  {
3869 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3870 			     "stat_blocked and stat_runtime require the "
3871 			     "kernel parameter schedstats=enable or "
3872 			     "kernel.sched_schedstats=1\n");
3873 	}
3874 #endif
3875 }
3876 
3877 
3878 /*
3879  * MIGRATION
3880  *
3881  *	dequeue
3882  *	  update_curr()
3883  *	    update_min_vruntime()
3884  *	  vruntime -= min_vruntime
3885  *
3886  *	enqueue
3887  *	  update_curr()
3888  *	    update_min_vruntime()
3889  *	  vruntime += min_vruntime
3890  *
3891  * this way the vruntime transition between RQs is done when both
3892  * min_vruntime are up-to-date.
3893  *
3894  * WAKEUP (remote)
3895  *
3896  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3897  *	  vruntime -= min_vruntime
3898  *
3899  *	enqueue
3900  *	  update_curr()
3901  *	    update_min_vruntime()
3902  *	  vruntime += min_vruntime
3903  *
3904  * this way we don't have the most up-to-date min_vruntime on the originating
3905  * CPU and an up-to-date min_vruntime on the destination CPU.
3906  */
3907 
3908 static void
3909 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3910 {
3911 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3912 	bool curr = cfs_rq->curr == se;
3913 
3914 	/*
3915 	 * If we're the current task, we must renormalise before calling
3916 	 * update_curr().
3917 	 */
3918 	if (renorm && curr)
3919 		se->vruntime += cfs_rq->min_vruntime;
3920 
3921 	update_curr(cfs_rq);
3922 
3923 	/*
3924 	 * Otherwise, renormalise after, such that we're placed at the current
3925 	 * moment in time, instead of some random moment in the past. Being
3926 	 * placed in the past could significantly boost this task to the
3927 	 * fairness detriment of existing tasks.
3928 	 */
3929 	if (renorm && !curr)
3930 		se->vruntime += cfs_rq->min_vruntime;
3931 
3932 	/*
3933 	 * When enqueuing a sched_entity, we must:
3934 	 *   - Update loads to have both entity and cfs_rq synced with now.
3935 	 *   - Add its load to cfs_rq->runnable_avg
3936 	 *   - For group_entity, update its weight to reflect the new share of
3937 	 *     its group cfs_rq
3938 	 *   - Add its new weight to cfs_rq->load.weight
3939 	 */
3940 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3941 	update_cfs_group(se);
3942 	enqueue_runnable_load_avg(cfs_rq, se);
3943 	account_entity_enqueue(cfs_rq, se);
3944 
3945 	if (flags & ENQUEUE_WAKEUP)
3946 		place_entity(cfs_rq, se, 0);
3947 
3948 	check_schedstat_required();
3949 	update_stats_enqueue(cfs_rq, se, flags);
3950 	check_spread(cfs_rq, se);
3951 	if (!curr)
3952 		__enqueue_entity(cfs_rq, se);
3953 	se->on_rq = 1;
3954 
3955 	if (cfs_rq->nr_running == 1) {
3956 		list_add_leaf_cfs_rq(cfs_rq);
3957 		check_enqueue_throttle(cfs_rq);
3958 	}
3959 }
3960 
3961 static void __clear_buddies_last(struct sched_entity *se)
3962 {
3963 	for_each_sched_entity(se) {
3964 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3965 		if (cfs_rq->last != se)
3966 			break;
3967 
3968 		cfs_rq->last = NULL;
3969 	}
3970 }
3971 
3972 static void __clear_buddies_next(struct sched_entity *se)
3973 {
3974 	for_each_sched_entity(se) {
3975 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3976 		if (cfs_rq->next != se)
3977 			break;
3978 
3979 		cfs_rq->next = NULL;
3980 	}
3981 }
3982 
3983 static void __clear_buddies_skip(struct sched_entity *se)
3984 {
3985 	for_each_sched_entity(se) {
3986 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3987 		if (cfs_rq->skip != se)
3988 			break;
3989 
3990 		cfs_rq->skip = NULL;
3991 	}
3992 }
3993 
3994 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3995 {
3996 	if (cfs_rq->last == se)
3997 		__clear_buddies_last(se);
3998 
3999 	if (cfs_rq->next == se)
4000 		__clear_buddies_next(se);
4001 
4002 	if (cfs_rq->skip == se)
4003 		__clear_buddies_skip(se);
4004 }
4005 
4006 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4007 
4008 static void
4009 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4010 {
4011 	/*
4012 	 * Update run-time statistics of the 'current'.
4013 	 */
4014 	update_curr(cfs_rq);
4015 
4016 	/*
4017 	 * When dequeuing a sched_entity, we must:
4018 	 *   - Update loads to have both entity and cfs_rq synced with now.
4019 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4020 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4021 	 *   - For group entity, update its weight to reflect the new share
4022 	 *     of its group cfs_rq.
4023 	 */
4024 	update_load_avg(cfs_rq, se, UPDATE_TG);
4025 	dequeue_runnable_load_avg(cfs_rq, se);
4026 
4027 	update_stats_dequeue(cfs_rq, se, flags);
4028 
4029 	clear_buddies(cfs_rq, se);
4030 
4031 	if (se != cfs_rq->curr)
4032 		__dequeue_entity(cfs_rq, se);
4033 	se->on_rq = 0;
4034 	account_entity_dequeue(cfs_rq, se);
4035 
4036 	/*
4037 	 * Normalize after update_curr(); which will also have moved
4038 	 * min_vruntime if @se is the one holding it back. But before doing
4039 	 * update_min_vruntime() again, which will discount @se's position and
4040 	 * can move min_vruntime forward still more.
4041 	 */
4042 	if (!(flags & DEQUEUE_SLEEP))
4043 		se->vruntime -= cfs_rq->min_vruntime;
4044 
4045 	/* return excess runtime on last dequeue */
4046 	return_cfs_rq_runtime(cfs_rq);
4047 
4048 	update_cfs_group(se);
4049 
4050 	/*
4051 	 * Now advance min_vruntime if @se was the entity holding it back,
4052 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4053 	 * put back on, and if we advance min_vruntime, we'll be placed back
4054 	 * further than we started -- ie. we'll be penalized.
4055 	 */
4056 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4057 		update_min_vruntime(cfs_rq);
4058 }
4059 
4060 /*
4061  * Preempt the current task with a newly woken task if needed:
4062  */
4063 static void
4064 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4065 {
4066 	unsigned long ideal_runtime, delta_exec;
4067 	struct sched_entity *se;
4068 	s64 delta;
4069 
4070 	ideal_runtime = sched_slice(cfs_rq, curr);
4071 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4072 	if (delta_exec > ideal_runtime) {
4073 		resched_curr(rq_of(cfs_rq));
4074 		/*
4075 		 * The current task ran long enough, ensure it doesn't get
4076 		 * re-elected due to buddy favours.
4077 		 */
4078 		clear_buddies(cfs_rq, curr);
4079 		return;
4080 	}
4081 
4082 	/*
4083 	 * Ensure that a task that missed wakeup preemption by a
4084 	 * narrow margin doesn't have to wait for a full slice.
4085 	 * This also mitigates buddy induced latencies under load.
4086 	 */
4087 	if (delta_exec < sysctl_sched_min_granularity)
4088 		return;
4089 
4090 	se = __pick_first_entity(cfs_rq);
4091 	delta = curr->vruntime - se->vruntime;
4092 
4093 	if (delta < 0)
4094 		return;
4095 
4096 	if (delta > ideal_runtime)
4097 		resched_curr(rq_of(cfs_rq));
4098 }
4099 
4100 static void
4101 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4102 {
4103 	/* 'current' is not kept within the tree. */
4104 	if (se->on_rq) {
4105 		/*
4106 		 * Any task has to be enqueued before it get to execute on
4107 		 * a CPU. So account for the time it spent waiting on the
4108 		 * runqueue.
4109 		 */
4110 		update_stats_wait_end(cfs_rq, se);
4111 		__dequeue_entity(cfs_rq, se);
4112 		update_load_avg(cfs_rq, se, UPDATE_TG);
4113 	}
4114 
4115 	update_stats_curr_start(cfs_rq, se);
4116 	cfs_rq->curr = se;
4117 
4118 	/*
4119 	 * Track our maximum slice length, if the CPU's load is at
4120 	 * least twice that of our own weight (i.e. dont track it
4121 	 * when there are only lesser-weight tasks around):
4122 	 */
4123 	if (schedstat_enabled() &&
4124 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4125 		schedstat_set(se->statistics.slice_max,
4126 			max((u64)schedstat_val(se->statistics.slice_max),
4127 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4128 	}
4129 
4130 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4131 }
4132 
4133 static int
4134 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4135 
4136 /*
4137  * Pick the next process, keeping these things in mind, in this order:
4138  * 1) keep things fair between processes/task groups
4139  * 2) pick the "next" process, since someone really wants that to run
4140  * 3) pick the "last" process, for cache locality
4141  * 4) do not run the "skip" process, if something else is available
4142  */
4143 static struct sched_entity *
4144 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4145 {
4146 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4147 	struct sched_entity *se;
4148 
4149 	/*
4150 	 * If curr is set we have to see if its left of the leftmost entity
4151 	 * still in the tree, provided there was anything in the tree at all.
4152 	 */
4153 	if (!left || (curr && entity_before(curr, left)))
4154 		left = curr;
4155 
4156 	se = left; /* ideally we run the leftmost entity */
4157 
4158 	/*
4159 	 * Avoid running the skip buddy, if running something else can
4160 	 * be done without getting too unfair.
4161 	 */
4162 	if (cfs_rq->skip == se) {
4163 		struct sched_entity *second;
4164 
4165 		if (se == curr) {
4166 			second = __pick_first_entity(cfs_rq);
4167 		} else {
4168 			second = __pick_next_entity(se);
4169 			if (!second || (curr && entity_before(curr, second)))
4170 				second = curr;
4171 		}
4172 
4173 		if (second && wakeup_preempt_entity(second, left) < 1)
4174 			se = second;
4175 	}
4176 
4177 	/*
4178 	 * Prefer last buddy, try to return the CPU to a preempted task.
4179 	 */
4180 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4181 		se = cfs_rq->last;
4182 
4183 	/*
4184 	 * Someone really wants this to run. If it's not unfair, run it.
4185 	 */
4186 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4187 		se = cfs_rq->next;
4188 
4189 	clear_buddies(cfs_rq, se);
4190 
4191 	return se;
4192 }
4193 
4194 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4195 
4196 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4197 {
4198 	/*
4199 	 * If still on the runqueue then deactivate_task()
4200 	 * was not called and update_curr() has to be done:
4201 	 */
4202 	if (prev->on_rq)
4203 		update_curr(cfs_rq);
4204 
4205 	/* throttle cfs_rqs exceeding runtime */
4206 	check_cfs_rq_runtime(cfs_rq);
4207 
4208 	check_spread(cfs_rq, prev);
4209 
4210 	if (prev->on_rq) {
4211 		update_stats_wait_start(cfs_rq, prev);
4212 		/* Put 'current' back into the tree. */
4213 		__enqueue_entity(cfs_rq, prev);
4214 		/* in !on_rq case, update occurred at dequeue */
4215 		update_load_avg(cfs_rq, prev, 0);
4216 	}
4217 	cfs_rq->curr = NULL;
4218 }
4219 
4220 static void
4221 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4222 {
4223 	/*
4224 	 * Update run-time statistics of the 'current'.
4225 	 */
4226 	update_curr(cfs_rq);
4227 
4228 	/*
4229 	 * Ensure that runnable average is periodically updated.
4230 	 */
4231 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4232 	update_cfs_group(curr);
4233 
4234 #ifdef CONFIG_SCHED_HRTICK
4235 	/*
4236 	 * queued ticks are scheduled to match the slice, so don't bother
4237 	 * validating it and just reschedule.
4238 	 */
4239 	if (queued) {
4240 		resched_curr(rq_of(cfs_rq));
4241 		return;
4242 	}
4243 	/*
4244 	 * don't let the period tick interfere with the hrtick preemption
4245 	 */
4246 	if (!sched_feat(DOUBLE_TICK) &&
4247 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4248 		return;
4249 #endif
4250 
4251 	if (cfs_rq->nr_running > 1)
4252 		check_preempt_tick(cfs_rq, curr);
4253 }
4254 
4255 
4256 /**************************************************
4257  * CFS bandwidth control machinery
4258  */
4259 
4260 #ifdef CONFIG_CFS_BANDWIDTH
4261 
4262 #ifdef CONFIG_JUMP_LABEL
4263 static struct static_key __cfs_bandwidth_used;
4264 
4265 static inline bool cfs_bandwidth_used(void)
4266 {
4267 	return static_key_false(&__cfs_bandwidth_used);
4268 }
4269 
4270 void cfs_bandwidth_usage_inc(void)
4271 {
4272 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4273 }
4274 
4275 void cfs_bandwidth_usage_dec(void)
4276 {
4277 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4278 }
4279 #else /* CONFIG_JUMP_LABEL */
4280 static bool cfs_bandwidth_used(void)
4281 {
4282 	return true;
4283 }
4284 
4285 void cfs_bandwidth_usage_inc(void) {}
4286 void cfs_bandwidth_usage_dec(void) {}
4287 #endif /* CONFIG_JUMP_LABEL */
4288 
4289 /*
4290  * default period for cfs group bandwidth.
4291  * default: 0.1s, units: nanoseconds
4292  */
4293 static inline u64 default_cfs_period(void)
4294 {
4295 	return 100000000ULL;
4296 }
4297 
4298 static inline u64 sched_cfs_bandwidth_slice(void)
4299 {
4300 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4301 }
4302 
4303 /*
4304  * Replenish runtime according to assigned quota and update expiration time.
4305  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4306  * additional synchronization around rq->lock.
4307  *
4308  * requires cfs_b->lock
4309  */
4310 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4311 {
4312 	u64 now;
4313 
4314 	if (cfs_b->quota == RUNTIME_INF)
4315 		return;
4316 
4317 	now = sched_clock_cpu(smp_processor_id());
4318 	cfs_b->runtime = cfs_b->quota;
4319 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4320 	cfs_b->expires_seq++;
4321 }
4322 
4323 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4324 {
4325 	return &tg->cfs_bandwidth;
4326 }
4327 
4328 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4329 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4330 {
4331 	if (unlikely(cfs_rq->throttle_count))
4332 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4333 
4334 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4335 }
4336 
4337 /* returns 0 on failure to allocate runtime */
4338 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4339 {
4340 	struct task_group *tg = cfs_rq->tg;
4341 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4342 	u64 amount = 0, min_amount, expires;
4343 	int expires_seq;
4344 
4345 	/* note: this is a positive sum as runtime_remaining <= 0 */
4346 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4347 
4348 	raw_spin_lock(&cfs_b->lock);
4349 	if (cfs_b->quota == RUNTIME_INF)
4350 		amount = min_amount;
4351 	else {
4352 		start_cfs_bandwidth(cfs_b);
4353 
4354 		if (cfs_b->runtime > 0) {
4355 			amount = min(cfs_b->runtime, min_amount);
4356 			cfs_b->runtime -= amount;
4357 			cfs_b->idle = 0;
4358 		}
4359 	}
4360 	expires_seq = cfs_b->expires_seq;
4361 	expires = cfs_b->runtime_expires;
4362 	raw_spin_unlock(&cfs_b->lock);
4363 
4364 	cfs_rq->runtime_remaining += amount;
4365 	/*
4366 	 * we may have advanced our local expiration to account for allowed
4367 	 * spread between our sched_clock and the one on which runtime was
4368 	 * issued.
4369 	 */
4370 	if (cfs_rq->expires_seq != expires_seq) {
4371 		cfs_rq->expires_seq = expires_seq;
4372 		cfs_rq->runtime_expires = expires;
4373 	}
4374 
4375 	return cfs_rq->runtime_remaining > 0;
4376 }
4377 
4378 /*
4379  * Note: This depends on the synchronization provided by sched_clock and the
4380  * fact that rq->clock snapshots this value.
4381  */
4382 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4383 {
4384 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4385 
4386 	/* if the deadline is ahead of our clock, nothing to do */
4387 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4388 		return;
4389 
4390 	if (cfs_rq->runtime_remaining < 0)
4391 		return;
4392 
4393 	/*
4394 	 * If the local deadline has passed we have to consider the
4395 	 * possibility that our sched_clock is 'fast' and the global deadline
4396 	 * has not truly expired.
4397 	 *
4398 	 * Fortunately we can check determine whether this the case by checking
4399 	 * whether the global deadline(cfs_b->expires_seq) has advanced.
4400 	 */
4401 	if (cfs_rq->expires_seq == cfs_b->expires_seq) {
4402 		/* extend local deadline, drift is bounded above by 2 ticks */
4403 		cfs_rq->runtime_expires += TICK_NSEC;
4404 	} else {
4405 		/* global deadline is ahead, expiration has passed */
4406 		cfs_rq->runtime_remaining = 0;
4407 	}
4408 }
4409 
4410 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4411 {
4412 	/* dock delta_exec before expiring quota (as it could span periods) */
4413 	cfs_rq->runtime_remaining -= delta_exec;
4414 	expire_cfs_rq_runtime(cfs_rq);
4415 
4416 	if (likely(cfs_rq->runtime_remaining > 0))
4417 		return;
4418 
4419 	/*
4420 	 * if we're unable to extend our runtime we resched so that the active
4421 	 * hierarchy can be throttled
4422 	 */
4423 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4424 		resched_curr(rq_of(cfs_rq));
4425 }
4426 
4427 static __always_inline
4428 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4429 {
4430 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4431 		return;
4432 
4433 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4434 }
4435 
4436 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4437 {
4438 	return cfs_bandwidth_used() && cfs_rq->throttled;
4439 }
4440 
4441 /* check whether cfs_rq, or any parent, is throttled */
4442 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4443 {
4444 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4445 }
4446 
4447 /*
4448  * Ensure that neither of the group entities corresponding to src_cpu or
4449  * dest_cpu are members of a throttled hierarchy when performing group
4450  * load-balance operations.
4451  */
4452 static inline int throttled_lb_pair(struct task_group *tg,
4453 				    int src_cpu, int dest_cpu)
4454 {
4455 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4456 
4457 	src_cfs_rq = tg->cfs_rq[src_cpu];
4458 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4459 
4460 	return throttled_hierarchy(src_cfs_rq) ||
4461 	       throttled_hierarchy(dest_cfs_rq);
4462 }
4463 
4464 static int tg_unthrottle_up(struct task_group *tg, void *data)
4465 {
4466 	struct rq *rq = data;
4467 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4468 
4469 	cfs_rq->throttle_count--;
4470 	if (!cfs_rq->throttle_count) {
4471 		/* adjust cfs_rq_clock_task() */
4472 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4473 					     cfs_rq->throttled_clock_task;
4474 
4475 		/* Add cfs_rq with already running entity in the list */
4476 		if (cfs_rq->nr_running >= 1)
4477 			list_add_leaf_cfs_rq(cfs_rq);
4478 	}
4479 
4480 	return 0;
4481 }
4482 
4483 static int tg_throttle_down(struct task_group *tg, void *data)
4484 {
4485 	struct rq *rq = data;
4486 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4487 
4488 	/* group is entering throttled state, stop time */
4489 	if (!cfs_rq->throttle_count) {
4490 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4491 		list_del_leaf_cfs_rq(cfs_rq);
4492 	}
4493 	cfs_rq->throttle_count++;
4494 
4495 	return 0;
4496 }
4497 
4498 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4499 {
4500 	struct rq *rq = rq_of(cfs_rq);
4501 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4502 	struct sched_entity *se;
4503 	long task_delta, dequeue = 1;
4504 	bool empty;
4505 
4506 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4507 
4508 	/* freeze hierarchy runnable averages while throttled */
4509 	rcu_read_lock();
4510 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4511 	rcu_read_unlock();
4512 
4513 	task_delta = cfs_rq->h_nr_running;
4514 	for_each_sched_entity(se) {
4515 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4516 		/* throttled entity or throttle-on-deactivate */
4517 		if (!se->on_rq)
4518 			break;
4519 
4520 		if (dequeue)
4521 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4522 		qcfs_rq->h_nr_running -= task_delta;
4523 
4524 		if (qcfs_rq->load.weight)
4525 			dequeue = 0;
4526 	}
4527 
4528 	if (!se)
4529 		sub_nr_running(rq, task_delta);
4530 
4531 	cfs_rq->throttled = 1;
4532 	cfs_rq->throttled_clock = rq_clock(rq);
4533 	raw_spin_lock(&cfs_b->lock);
4534 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4535 
4536 	/*
4537 	 * Add to the _head_ of the list, so that an already-started
4538 	 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4539 	 * not running add to the tail so that later runqueues don't get starved.
4540 	 */
4541 	if (cfs_b->distribute_running)
4542 		list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4543 	else
4544 		list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4545 
4546 	/*
4547 	 * If we're the first throttled task, make sure the bandwidth
4548 	 * timer is running.
4549 	 */
4550 	if (empty)
4551 		start_cfs_bandwidth(cfs_b);
4552 
4553 	raw_spin_unlock(&cfs_b->lock);
4554 }
4555 
4556 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4557 {
4558 	struct rq *rq = rq_of(cfs_rq);
4559 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4560 	struct sched_entity *se;
4561 	int enqueue = 1;
4562 	long task_delta;
4563 
4564 	se = cfs_rq->tg->se[cpu_of(rq)];
4565 
4566 	cfs_rq->throttled = 0;
4567 
4568 	update_rq_clock(rq);
4569 
4570 	raw_spin_lock(&cfs_b->lock);
4571 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4572 	list_del_rcu(&cfs_rq->throttled_list);
4573 	raw_spin_unlock(&cfs_b->lock);
4574 
4575 	/* update hierarchical throttle state */
4576 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4577 
4578 	if (!cfs_rq->load.weight)
4579 		return;
4580 
4581 	task_delta = cfs_rq->h_nr_running;
4582 	for_each_sched_entity(se) {
4583 		if (se->on_rq)
4584 			enqueue = 0;
4585 
4586 		cfs_rq = cfs_rq_of(se);
4587 		if (enqueue)
4588 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4589 		cfs_rq->h_nr_running += task_delta;
4590 
4591 		if (cfs_rq_throttled(cfs_rq))
4592 			break;
4593 	}
4594 
4595 	assert_list_leaf_cfs_rq(rq);
4596 
4597 	if (!se)
4598 		add_nr_running(rq, task_delta);
4599 
4600 	/* Determine whether we need to wake up potentially idle CPU: */
4601 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4602 		resched_curr(rq);
4603 }
4604 
4605 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4606 		u64 remaining, u64 expires)
4607 {
4608 	struct cfs_rq *cfs_rq;
4609 	u64 runtime;
4610 	u64 starting_runtime = remaining;
4611 
4612 	rcu_read_lock();
4613 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4614 				throttled_list) {
4615 		struct rq *rq = rq_of(cfs_rq);
4616 		struct rq_flags rf;
4617 
4618 		rq_lock_irqsave(rq, &rf);
4619 		if (!cfs_rq_throttled(cfs_rq))
4620 			goto next;
4621 
4622 		runtime = -cfs_rq->runtime_remaining + 1;
4623 		if (runtime > remaining)
4624 			runtime = remaining;
4625 		remaining -= runtime;
4626 
4627 		cfs_rq->runtime_remaining += runtime;
4628 		cfs_rq->runtime_expires = expires;
4629 
4630 		/* we check whether we're throttled above */
4631 		if (cfs_rq->runtime_remaining > 0)
4632 			unthrottle_cfs_rq(cfs_rq);
4633 
4634 next:
4635 		rq_unlock_irqrestore(rq, &rf);
4636 
4637 		if (!remaining)
4638 			break;
4639 	}
4640 	rcu_read_unlock();
4641 
4642 	return starting_runtime - remaining;
4643 }
4644 
4645 /*
4646  * Responsible for refilling a task_group's bandwidth and unthrottling its
4647  * cfs_rqs as appropriate. If there has been no activity within the last
4648  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4649  * used to track this state.
4650  */
4651 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4652 {
4653 	u64 runtime, runtime_expires;
4654 	int throttled;
4655 
4656 	/* no need to continue the timer with no bandwidth constraint */
4657 	if (cfs_b->quota == RUNTIME_INF)
4658 		goto out_deactivate;
4659 
4660 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4661 	cfs_b->nr_periods += overrun;
4662 
4663 	/*
4664 	 * idle depends on !throttled (for the case of a large deficit), and if
4665 	 * we're going inactive then everything else can be deferred
4666 	 */
4667 	if (cfs_b->idle && !throttled)
4668 		goto out_deactivate;
4669 
4670 	__refill_cfs_bandwidth_runtime(cfs_b);
4671 
4672 	if (!throttled) {
4673 		/* mark as potentially idle for the upcoming period */
4674 		cfs_b->idle = 1;
4675 		return 0;
4676 	}
4677 
4678 	/* account preceding periods in which throttling occurred */
4679 	cfs_b->nr_throttled += overrun;
4680 
4681 	runtime_expires = cfs_b->runtime_expires;
4682 
4683 	/*
4684 	 * This check is repeated as we are holding onto the new bandwidth while
4685 	 * we unthrottle. This can potentially race with an unthrottled group
4686 	 * trying to acquire new bandwidth from the global pool. This can result
4687 	 * in us over-using our runtime if it is all used during this loop, but
4688 	 * only by limited amounts in that extreme case.
4689 	 */
4690 	while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4691 		runtime = cfs_b->runtime;
4692 		cfs_b->distribute_running = 1;
4693 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4694 		/* we can't nest cfs_b->lock while distributing bandwidth */
4695 		runtime = distribute_cfs_runtime(cfs_b, runtime,
4696 						 runtime_expires);
4697 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
4698 
4699 		cfs_b->distribute_running = 0;
4700 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4701 
4702 		lsub_positive(&cfs_b->runtime, runtime);
4703 	}
4704 
4705 	/*
4706 	 * While we are ensured activity in the period following an
4707 	 * unthrottle, this also covers the case in which the new bandwidth is
4708 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4709 	 * timer to remain active while there are any throttled entities.)
4710 	 */
4711 	cfs_b->idle = 0;
4712 
4713 	return 0;
4714 
4715 out_deactivate:
4716 	return 1;
4717 }
4718 
4719 /* a cfs_rq won't donate quota below this amount */
4720 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4721 /* minimum remaining period time to redistribute slack quota */
4722 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4723 /* how long we wait to gather additional slack before distributing */
4724 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4725 
4726 /*
4727  * Are we near the end of the current quota period?
4728  *
4729  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4730  * hrtimer base being cleared by hrtimer_start. In the case of
4731  * migrate_hrtimers, base is never cleared, so we are fine.
4732  */
4733 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4734 {
4735 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4736 	u64 remaining;
4737 
4738 	/* if the call-back is running a quota refresh is already occurring */
4739 	if (hrtimer_callback_running(refresh_timer))
4740 		return 1;
4741 
4742 	/* is a quota refresh about to occur? */
4743 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4744 	if (remaining < min_expire)
4745 		return 1;
4746 
4747 	return 0;
4748 }
4749 
4750 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4751 {
4752 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4753 
4754 	/* if there's a quota refresh soon don't bother with slack */
4755 	if (runtime_refresh_within(cfs_b, min_left))
4756 		return;
4757 
4758 	/* don't push forwards an existing deferred unthrottle */
4759 	if (cfs_b->slack_started)
4760 		return;
4761 	cfs_b->slack_started = true;
4762 
4763 	hrtimer_start(&cfs_b->slack_timer,
4764 			ns_to_ktime(cfs_bandwidth_slack_period),
4765 			HRTIMER_MODE_REL);
4766 }
4767 
4768 /* we know any runtime found here is valid as update_curr() precedes return */
4769 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4770 {
4771 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4772 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4773 
4774 	if (slack_runtime <= 0)
4775 		return;
4776 
4777 	raw_spin_lock(&cfs_b->lock);
4778 	if (cfs_b->quota != RUNTIME_INF &&
4779 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4780 		cfs_b->runtime += slack_runtime;
4781 
4782 		/* we are under rq->lock, defer unthrottling using a timer */
4783 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4784 		    !list_empty(&cfs_b->throttled_cfs_rq))
4785 			start_cfs_slack_bandwidth(cfs_b);
4786 	}
4787 	raw_spin_unlock(&cfs_b->lock);
4788 
4789 	/* even if it's not valid for return we don't want to try again */
4790 	cfs_rq->runtime_remaining -= slack_runtime;
4791 }
4792 
4793 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4794 {
4795 	if (!cfs_bandwidth_used())
4796 		return;
4797 
4798 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4799 		return;
4800 
4801 	__return_cfs_rq_runtime(cfs_rq);
4802 }
4803 
4804 /*
4805  * This is done with a timer (instead of inline with bandwidth return) since
4806  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4807  */
4808 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4809 {
4810 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4811 	unsigned long flags;
4812 	u64 expires;
4813 
4814 	/* confirm we're still not at a refresh boundary */
4815 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
4816 	cfs_b->slack_started = false;
4817 	if (cfs_b->distribute_running) {
4818 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4819 		return;
4820 	}
4821 
4822 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4823 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4824 		return;
4825 	}
4826 
4827 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4828 		runtime = cfs_b->runtime;
4829 
4830 	expires = cfs_b->runtime_expires;
4831 	if (runtime)
4832 		cfs_b->distribute_running = 1;
4833 
4834 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4835 
4836 	if (!runtime)
4837 		return;
4838 
4839 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4840 
4841 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
4842 	if (expires == cfs_b->runtime_expires)
4843 		lsub_positive(&cfs_b->runtime, runtime);
4844 	cfs_b->distribute_running = 0;
4845 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4846 }
4847 
4848 /*
4849  * When a group wakes up we want to make sure that its quota is not already
4850  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4851  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4852  */
4853 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4854 {
4855 	if (!cfs_bandwidth_used())
4856 		return;
4857 
4858 	/* an active group must be handled by the update_curr()->put() path */
4859 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4860 		return;
4861 
4862 	/* ensure the group is not already throttled */
4863 	if (cfs_rq_throttled(cfs_rq))
4864 		return;
4865 
4866 	/* update runtime allocation */
4867 	account_cfs_rq_runtime(cfs_rq, 0);
4868 	if (cfs_rq->runtime_remaining <= 0)
4869 		throttle_cfs_rq(cfs_rq);
4870 }
4871 
4872 static void sync_throttle(struct task_group *tg, int cpu)
4873 {
4874 	struct cfs_rq *pcfs_rq, *cfs_rq;
4875 
4876 	if (!cfs_bandwidth_used())
4877 		return;
4878 
4879 	if (!tg->parent)
4880 		return;
4881 
4882 	cfs_rq = tg->cfs_rq[cpu];
4883 	pcfs_rq = tg->parent->cfs_rq[cpu];
4884 
4885 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4886 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4887 }
4888 
4889 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4890 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4891 {
4892 	if (!cfs_bandwidth_used())
4893 		return false;
4894 
4895 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4896 		return false;
4897 
4898 	/*
4899 	 * it's possible for a throttled entity to be forced into a running
4900 	 * state (e.g. set_curr_task), in this case we're finished.
4901 	 */
4902 	if (cfs_rq_throttled(cfs_rq))
4903 		return true;
4904 
4905 	throttle_cfs_rq(cfs_rq);
4906 	return true;
4907 }
4908 
4909 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4910 {
4911 	struct cfs_bandwidth *cfs_b =
4912 		container_of(timer, struct cfs_bandwidth, slack_timer);
4913 
4914 	do_sched_cfs_slack_timer(cfs_b);
4915 
4916 	return HRTIMER_NORESTART;
4917 }
4918 
4919 extern const u64 max_cfs_quota_period;
4920 
4921 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4922 {
4923 	struct cfs_bandwidth *cfs_b =
4924 		container_of(timer, struct cfs_bandwidth, period_timer);
4925 	unsigned long flags;
4926 	int overrun;
4927 	int idle = 0;
4928 	int count = 0;
4929 
4930 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
4931 	for (;;) {
4932 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4933 		if (!overrun)
4934 			break;
4935 
4936 		if (++count > 3) {
4937 			u64 new, old = ktime_to_ns(cfs_b->period);
4938 
4939 			new = (old * 147) / 128; /* ~115% */
4940 			new = min(new, max_cfs_quota_period);
4941 
4942 			cfs_b->period = ns_to_ktime(new);
4943 
4944 			/* since max is 1s, this is limited to 1e9^2, which fits in u64 */
4945 			cfs_b->quota *= new;
4946 			cfs_b->quota = div64_u64(cfs_b->quota, old);
4947 
4948 			pr_warn_ratelimited(
4949 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us %lld, cfs_quota_us = %lld)\n",
4950 				smp_processor_id(),
4951 				div_u64(new, NSEC_PER_USEC),
4952 				div_u64(cfs_b->quota, NSEC_PER_USEC));
4953 
4954 			/* reset count so we don't come right back in here */
4955 			count = 0;
4956 		}
4957 
4958 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
4959 	}
4960 	if (idle)
4961 		cfs_b->period_active = 0;
4962 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4963 
4964 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4965 }
4966 
4967 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4968 {
4969 	raw_spin_lock_init(&cfs_b->lock);
4970 	cfs_b->runtime = 0;
4971 	cfs_b->quota = RUNTIME_INF;
4972 	cfs_b->period = ns_to_ktime(default_cfs_period());
4973 
4974 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4975 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4976 	cfs_b->period_timer.function = sched_cfs_period_timer;
4977 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4978 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4979 	cfs_b->distribute_running = 0;
4980 	cfs_b->slack_started = false;
4981 }
4982 
4983 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4984 {
4985 	cfs_rq->runtime_enabled = 0;
4986 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4987 }
4988 
4989 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4990 {
4991 	u64 overrun;
4992 
4993 	lockdep_assert_held(&cfs_b->lock);
4994 
4995 	if (cfs_b->period_active)
4996 		return;
4997 
4998 	cfs_b->period_active = 1;
4999 	overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5000 	cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
5001 	cfs_b->expires_seq++;
5002 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5003 }
5004 
5005 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5006 {
5007 	/* init_cfs_bandwidth() was not called */
5008 	if (!cfs_b->throttled_cfs_rq.next)
5009 		return;
5010 
5011 	hrtimer_cancel(&cfs_b->period_timer);
5012 	hrtimer_cancel(&cfs_b->slack_timer);
5013 }
5014 
5015 /*
5016  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5017  *
5018  * The race is harmless, since modifying bandwidth settings of unhooked group
5019  * bits doesn't do much.
5020  */
5021 
5022 /* cpu online calback */
5023 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5024 {
5025 	struct task_group *tg;
5026 
5027 	lockdep_assert_held(&rq->lock);
5028 
5029 	rcu_read_lock();
5030 	list_for_each_entry_rcu(tg, &task_groups, list) {
5031 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5032 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5033 
5034 		raw_spin_lock(&cfs_b->lock);
5035 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5036 		raw_spin_unlock(&cfs_b->lock);
5037 	}
5038 	rcu_read_unlock();
5039 }
5040 
5041 /* cpu offline callback */
5042 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5043 {
5044 	struct task_group *tg;
5045 
5046 	lockdep_assert_held(&rq->lock);
5047 
5048 	rcu_read_lock();
5049 	list_for_each_entry_rcu(tg, &task_groups, list) {
5050 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5051 
5052 		if (!cfs_rq->runtime_enabled)
5053 			continue;
5054 
5055 		/*
5056 		 * clock_task is not advancing so we just need to make sure
5057 		 * there's some valid quota amount
5058 		 */
5059 		cfs_rq->runtime_remaining = 1;
5060 		/*
5061 		 * Offline rq is schedulable till CPU is completely disabled
5062 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5063 		 */
5064 		cfs_rq->runtime_enabled = 0;
5065 
5066 		if (cfs_rq_throttled(cfs_rq))
5067 			unthrottle_cfs_rq(cfs_rq);
5068 	}
5069 	rcu_read_unlock();
5070 }
5071 
5072 #else /* CONFIG_CFS_BANDWIDTH */
5073 
5074 static inline bool cfs_bandwidth_used(void)
5075 {
5076 	return false;
5077 }
5078 
5079 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
5080 {
5081 	return rq_clock_task(rq_of(cfs_rq));
5082 }
5083 
5084 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5085 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5086 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5087 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5088 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5089 
5090 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5091 {
5092 	return 0;
5093 }
5094 
5095 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5096 {
5097 	return 0;
5098 }
5099 
5100 static inline int throttled_lb_pair(struct task_group *tg,
5101 				    int src_cpu, int dest_cpu)
5102 {
5103 	return 0;
5104 }
5105 
5106 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5107 
5108 #ifdef CONFIG_FAIR_GROUP_SCHED
5109 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5110 #endif
5111 
5112 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5113 {
5114 	return NULL;
5115 }
5116 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5117 static inline void update_runtime_enabled(struct rq *rq) {}
5118 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5119 
5120 #endif /* CONFIG_CFS_BANDWIDTH */
5121 
5122 /**************************************************
5123  * CFS operations on tasks:
5124  */
5125 
5126 #ifdef CONFIG_SCHED_HRTICK
5127 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5128 {
5129 	struct sched_entity *se = &p->se;
5130 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5131 
5132 	SCHED_WARN_ON(task_rq(p) != rq);
5133 
5134 	if (rq->cfs.h_nr_running > 1) {
5135 		u64 slice = sched_slice(cfs_rq, se);
5136 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5137 		s64 delta = slice - ran;
5138 
5139 		if (delta < 0) {
5140 			if (rq->curr == p)
5141 				resched_curr(rq);
5142 			return;
5143 		}
5144 		hrtick_start(rq, delta);
5145 	}
5146 }
5147 
5148 /*
5149  * called from enqueue/dequeue and updates the hrtick when the
5150  * current task is from our class and nr_running is low enough
5151  * to matter.
5152  */
5153 static void hrtick_update(struct rq *rq)
5154 {
5155 	struct task_struct *curr = rq->curr;
5156 
5157 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5158 		return;
5159 
5160 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5161 		hrtick_start_fair(rq, curr);
5162 }
5163 #else /* !CONFIG_SCHED_HRTICK */
5164 static inline void
5165 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5166 {
5167 }
5168 
5169 static inline void hrtick_update(struct rq *rq)
5170 {
5171 }
5172 #endif
5173 
5174 #ifdef CONFIG_SMP
5175 static inline unsigned long cpu_util(int cpu);
5176 
5177 static inline bool cpu_overutilized(int cpu)
5178 {
5179 	return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin);
5180 }
5181 
5182 static inline void update_overutilized_status(struct rq *rq)
5183 {
5184 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5185 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5186 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5187 	}
5188 }
5189 #else
5190 static inline void update_overutilized_status(struct rq *rq) { }
5191 #endif
5192 
5193 /*
5194  * The enqueue_task method is called before nr_running is
5195  * increased. Here we update the fair scheduling stats and
5196  * then put the task into the rbtree:
5197  */
5198 static void
5199 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5200 {
5201 	struct cfs_rq *cfs_rq;
5202 	struct sched_entity *se = &p->se;
5203 
5204 	/*
5205 	 * The code below (indirectly) updates schedutil which looks at
5206 	 * the cfs_rq utilization to select a frequency.
5207 	 * Let's add the task's estimated utilization to the cfs_rq's
5208 	 * estimated utilization, before we update schedutil.
5209 	 */
5210 	util_est_enqueue(&rq->cfs, p);
5211 
5212 	/*
5213 	 * If in_iowait is set, the code below may not trigger any cpufreq
5214 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5215 	 * passed.
5216 	 */
5217 	if (p->in_iowait)
5218 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5219 
5220 	for_each_sched_entity(se) {
5221 		if (se->on_rq)
5222 			break;
5223 		cfs_rq = cfs_rq_of(se);
5224 		enqueue_entity(cfs_rq, se, flags);
5225 
5226 		/*
5227 		 * end evaluation on encountering a throttled cfs_rq
5228 		 *
5229 		 * note: in the case of encountering a throttled cfs_rq we will
5230 		 * post the final h_nr_running increment below.
5231 		 */
5232 		if (cfs_rq_throttled(cfs_rq))
5233 			break;
5234 		cfs_rq->h_nr_running++;
5235 
5236 		flags = ENQUEUE_WAKEUP;
5237 	}
5238 
5239 	for_each_sched_entity(se) {
5240 		cfs_rq = cfs_rq_of(se);
5241 		cfs_rq->h_nr_running++;
5242 
5243 		if (cfs_rq_throttled(cfs_rq))
5244 			break;
5245 
5246 		update_load_avg(cfs_rq, se, UPDATE_TG);
5247 		update_cfs_group(se);
5248 	}
5249 
5250 	if (!se) {
5251 		add_nr_running(rq, 1);
5252 		/*
5253 		 * Since new tasks are assigned an initial util_avg equal to
5254 		 * half of the spare capacity of their CPU, tiny tasks have the
5255 		 * ability to cross the overutilized threshold, which will
5256 		 * result in the load balancer ruining all the task placement
5257 		 * done by EAS. As a way to mitigate that effect, do not account
5258 		 * for the first enqueue operation of new tasks during the
5259 		 * overutilized flag detection.
5260 		 *
5261 		 * A better way of solving this problem would be to wait for
5262 		 * the PELT signals of tasks to converge before taking them
5263 		 * into account, but that is not straightforward to implement,
5264 		 * and the following generally works well enough in practice.
5265 		 */
5266 		if (flags & ENQUEUE_WAKEUP)
5267 			update_overutilized_status(rq);
5268 
5269 	}
5270 
5271 	if (cfs_bandwidth_used()) {
5272 		/*
5273 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5274 		 * breaks in the above iteration can result in incomplete
5275 		 * leaf list maintenance, resulting in triggering the assertion
5276 		 * below.
5277 		 */
5278 		for_each_sched_entity(se) {
5279 			cfs_rq = cfs_rq_of(se);
5280 
5281 			if (list_add_leaf_cfs_rq(cfs_rq))
5282 				break;
5283 		}
5284 	}
5285 
5286 	assert_list_leaf_cfs_rq(rq);
5287 
5288 	hrtick_update(rq);
5289 }
5290 
5291 static void set_next_buddy(struct sched_entity *se);
5292 
5293 /*
5294  * The dequeue_task method is called before nr_running is
5295  * decreased. We remove the task from the rbtree and
5296  * update the fair scheduling stats:
5297  */
5298 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5299 {
5300 	struct cfs_rq *cfs_rq;
5301 	struct sched_entity *se = &p->se;
5302 	int task_sleep = flags & DEQUEUE_SLEEP;
5303 
5304 	for_each_sched_entity(se) {
5305 		cfs_rq = cfs_rq_of(se);
5306 		dequeue_entity(cfs_rq, se, flags);
5307 
5308 		/*
5309 		 * end evaluation on encountering a throttled cfs_rq
5310 		 *
5311 		 * note: in the case of encountering a throttled cfs_rq we will
5312 		 * post the final h_nr_running decrement below.
5313 		*/
5314 		if (cfs_rq_throttled(cfs_rq))
5315 			break;
5316 		cfs_rq->h_nr_running--;
5317 
5318 		/* Don't dequeue parent if it has other entities besides us */
5319 		if (cfs_rq->load.weight) {
5320 			/* Avoid re-evaluating load for this entity: */
5321 			se = parent_entity(se);
5322 			/*
5323 			 * Bias pick_next to pick a task from this cfs_rq, as
5324 			 * p is sleeping when it is within its sched_slice.
5325 			 */
5326 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5327 				set_next_buddy(se);
5328 			break;
5329 		}
5330 		flags |= DEQUEUE_SLEEP;
5331 	}
5332 
5333 	for_each_sched_entity(se) {
5334 		cfs_rq = cfs_rq_of(se);
5335 		cfs_rq->h_nr_running--;
5336 
5337 		if (cfs_rq_throttled(cfs_rq))
5338 			break;
5339 
5340 		update_load_avg(cfs_rq, se, UPDATE_TG);
5341 		update_cfs_group(se);
5342 	}
5343 
5344 	if (!se)
5345 		sub_nr_running(rq, 1);
5346 
5347 	util_est_dequeue(&rq->cfs, p, task_sleep);
5348 	hrtick_update(rq);
5349 }
5350 
5351 #ifdef CONFIG_SMP
5352 
5353 /* Working cpumask for: load_balance, load_balance_newidle. */
5354 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5355 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5356 
5357 #ifdef CONFIG_NO_HZ_COMMON
5358 
5359 static struct {
5360 	cpumask_var_t idle_cpus_mask;
5361 	atomic_t nr_cpus;
5362 	int has_blocked;		/* Idle CPUS has blocked load */
5363 	unsigned long next_balance;     /* in jiffy units */
5364 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5365 } nohz ____cacheline_aligned;
5366 
5367 #endif /* CONFIG_NO_HZ_COMMON */
5368 
5369 static unsigned long cpu_runnable_load(struct rq *rq)
5370 {
5371 	return cfs_rq_runnable_load_avg(&rq->cfs);
5372 }
5373 
5374 static unsigned long capacity_of(int cpu)
5375 {
5376 	return cpu_rq(cpu)->cpu_capacity;
5377 }
5378 
5379 static unsigned long cpu_avg_load_per_task(int cpu)
5380 {
5381 	struct rq *rq = cpu_rq(cpu);
5382 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5383 	unsigned long load_avg = cpu_runnable_load(rq);
5384 
5385 	if (nr_running)
5386 		return load_avg / nr_running;
5387 
5388 	return 0;
5389 }
5390 
5391 static void record_wakee(struct task_struct *p)
5392 {
5393 	/*
5394 	 * Only decay a single time; tasks that have less then 1 wakeup per
5395 	 * jiffy will not have built up many flips.
5396 	 */
5397 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5398 		current->wakee_flips >>= 1;
5399 		current->wakee_flip_decay_ts = jiffies;
5400 	}
5401 
5402 	if (current->last_wakee != p) {
5403 		current->last_wakee = p;
5404 		current->wakee_flips++;
5405 	}
5406 }
5407 
5408 /*
5409  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5410  *
5411  * A waker of many should wake a different task than the one last awakened
5412  * at a frequency roughly N times higher than one of its wakees.
5413  *
5414  * In order to determine whether we should let the load spread vs consolidating
5415  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5416  * partner, and a factor of lls_size higher frequency in the other.
5417  *
5418  * With both conditions met, we can be relatively sure that the relationship is
5419  * non-monogamous, with partner count exceeding socket size.
5420  *
5421  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5422  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5423  * socket size.
5424  */
5425 static int wake_wide(struct task_struct *p)
5426 {
5427 	unsigned int master = current->wakee_flips;
5428 	unsigned int slave = p->wakee_flips;
5429 	int factor = this_cpu_read(sd_llc_size);
5430 
5431 	if (master < slave)
5432 		swap(master, slave);
5433 	if (slave < factor || master < slave * factor)
5434 		return 0;
5435 	return 1;
5436 }
5437 
5438 /*
5439  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5440  * soonest. For the purpose of speed we only consider the waking and previous
5441  * CPU.
5442  *
5443  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5444  *			cache-affine and is (or	will be) idle.
5445  *
5446  * wake_affine_weight() - considers the weight to reflect the average
5447  *			  scheduling latency of the CPUs. This seems to work
5448  *			  for the overloaded case.
5449  */
5450 static int
5451 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5452 {
5453 	/*
5454 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5455 	 * context. Only allow the move if cache is shared. Otherwise an
5456 	 * interrupt intensive workload could force all tasks onto one
5457 	 * node depending on the IO topology or IRQ affinity settings.
5458 	 *
5459 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5460 	 * There is no guarantee that the cache hot data from an interrupt
5461 	 * is more important than cache hot data on the prev_cpu and from
5462 	 * a cpufreq perspective, it's better to have higher utilisation
5463 	 * on one CPU.
5464 	 */
5465 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5466 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5467 
5468 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5469 		return this_cpu;
5470 
5471 	return nr_cpumask_bits;
5472 }
5473 
5474 static int
5475 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5476 		   int this_cpu, int prev_cpu, int sync)
5477 {
5478 	s64 this_eff_load, prev_eff_load;
5479 	unsigned long task_load;
5480 
5481 	this_eff_load = cpu_runnable_load(cpu_rq(this_cpu));
5482 
5483 	if (sync) {
5484 		unsigned long current_load = task_h_load(current);
5485 
5486 		if (current_load > this_eff_load)
5487 			return this_cpu;
5488 
5489 		this_eff_load -= current_load;
5490 	}
5491 
5492 	task_load = task_h_load(p);
5493 
5494 	this_eff_load += task_load;
5495 	if (sched_feat(WA_BIAS))
5496 		this_eff_load *= 100;
5497 	this_eff_load *= capacity_of(prev_cpu);
5498 
5499 	prev_eff_load = cpu_runnable_load(cpu_rq(prev_cpu));
5500 	prev_eff_load -= task_load;
5501 	if (sched_feat(WA_BIAS))
5502 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5503 	prev_eff_load *= capacity_of(this_cpu);
5504 
5505 	/*
5506 	 * If sync, adjust the weight of prev_eff_load such that if
5507 	 * prev_eff == this_eff that select_idle_sibling() will consider
5508 	 * stacking the wakee on top of the waker if no other CPU is
5509 	 * idle.
5510 	 */
5511 	if (sync)
5512 		prev_eff_load += 1;
5513 
5514 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5515 }
5516 
5517 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5518 		       int this_cpu, int prev_cpu, int sync)
5519 {
5520 	int target = nr_cpumask_bits;
5521 
5522 	if (sched_feat(WA_IDLE))
5523 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5524 
5525 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5526 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5527 
5528 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5529 	if (target == nr_cpumask_bits)
5530 		return prev_cpu;
5531 
5532 	schedstat_inc(sd->ttwu_move_affine);
5533 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5534 	return target;
5535 }
5536 
5537 static unsigned long cpu_util_without(int cpu, struct task_struct *p);
5538 
5539 static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
5540 {
5541 	return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
5542 }
5543 
5544 /*
5545  * find_idlest_group finds and returns the least busy CPU group within the
5546  * domain.
5547  *
5548  * Assumes p is allowed on at least one CPU in sd.
5549  */
5550 static struct sched_group *
5551 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5552 		  int this_cpu, int sd_flag)
5553 {
5554 	struct sched_group *idlest = NULL, *group = sd->groups;
5555 	struct sched_group *most_spare_sg = NULL;
5556 	unsigned long min_runnable_load = ULONG_MAX;
5557 	unsigned long this_runnable_load = ULONG_MAX;
5558 	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5559 	unsigned long most_spare = 0, this_spare = 0;
5560 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5561 	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5562 				(sd->imbalance_pct-100) / 100;
5563 
5564 	do {
5565 		unsigned long load, avg_load, runnable_load;
5566 		unsigned long spare_cap, max_spare_cap;
5567 		int local_group;
5568 		int i;
5569 
5570 		/* Skip over this group if it has no CPUs allowed */
5571 		if (!cpumask_intersects(sched_group_span(group),
5572 					p->cpus_ptr))
5573 			continue;
5574 
5575 		local_group = cpumask_test_cpu(this_cpu,
5576 					       sched_group_span(group));
5577 
5578 		/*
5579 		 * Tally up the load of all CPUs in the group and find
5580 		 * the group containing the CPU with most spare capacity.
5581 		 */
5582 		avg_load = 0;
5583 		runnable_load = 0;
5584 		max_spare_cap = 0;
5585 
5586 		for_each_cpu(i, sched_group_span(group)) {
5587 			load = cpu_runnable_load(cpu_rq(i));
5588 			runnable_load += load;
5589 
5590 			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5591 
5592 			spare_cap = capacity_spare_without(i, p);
5593 
5594 			if (spare_cap > max_spare_cap)
5595 				max_spare_cap = spare_cap;
5596 		}
5597 
5598 		/* Adjust by relative CPU capacity of the group */
5599 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5600 					group->sgc->capacity;
5601 		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5602 					group->sgc->capacity;
5603 
5604 		if (local_group) {
5605 			this_runnable_load = runnable_load;
5606 			this_avg_load = avg_load;
5607 			this_spare = max_spare_cap;
5608 		} else {
5609 			if (min_runnable_load > (runnable_load + imbalance)) {
5610 				/*
5611 				 * The runnable load is significantly smaller
5612 				 * so we can pick this new CPU:
5613 				 */
5614 				min_runnable_load = runnable_load;
5615 				min_avg_load = avg_load;
5616 				idlest = group;
5617 			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
5618 				   (100*min_avg_load > imbalance_scale*avg_load)) {
5619 				/*
5620 				 * The runnable loads are close so take the
5621 				 * blocked load into account through avg_load:
5622 				 */
5623 				min_avg_load = avg_load;
5624 				idlest = group;
5625 			}
5626 
5627 			if (most_spare < max_spare_cap) {
5628 				most_spare = max_spare_cap;
5629 				most_spare_sg = group;
5630 			}
5631 		}
5632 	} while (group = group->next, group != sd->groups);
5633 
5634 	/*
5635 	 * The cross-over point between using spare capacity or least load
5636 	 * is too conservative for high utilization tasks on partially
5637 	 * utilized systems if we require spare_capacity > task_util(p),
5638 	 * so we allow for some task stuffing by using
5639 	 * spare_capacity > task_util(p)/2.
5640 	 *
5641 	 * Spare capacity can't be used for fork because the utilization has
5642 	 * not been set yet, we must first select a rq to compute the initial
5643 	 * utilization.
5644 	 */
5645 	if (sd_flag & SD_BALANCE_FORK)
5646 		goto skip_spare;
5647 
5648 	if (this_spare > task_util(p) / 2 &&
5649 	    imbalance_scale*this_spare > 100*most_spare)
5650 		return NULL;
5651 
5652 	if (most_spare > task_util(p) / 2)
5653 		return most_spare_sg;
5654 
5655 skip_spare:
5656 	if (!idlest)
5657 		return NULL;
5658 
5659 	/*
5660 	 * When comparing groups across NUMA domains, it's possible for the
5661 	 * local domain to be very lightly loaded relative to the remote
5662 	 * domains but "imbalance" skews the comparison making remote CPUs
5663 	 * look much more favourable. When considering cross-domain, add
5664 	 * imbalance to the runnable load on the remote node and consider
5665 	 * staying local.
5666 	 */
5667 	if ((sd->flags & SD_NUMA) &&
5668 	    min_runnable_load + imbalance >= this_runnable_load)
5669 		return NULL;
5670 
5671 	if (min_runnable_load > (this_runnable_load + imbalance))
5672 		return NULL;
5673 
5674 	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5675 	     (100*this_avg_load < imbalance_scale*min_avg_load))
5676 		return NULL;
5677 
5678 	return idlest;
5679 }
5680 
5681 /*
5682  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5683  */
5684 static int
5685 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5686 {
5687 	unsigned long load, min_load = ULONG_MAX;
5688 	unsigned int min_exit_latency = UINT_MAX;
5689 	u64 latest_idle_timestamp = 0;
5690 	int least_loaded_cpu = this_cpu;
5691 	int shallowest_idle_cpu = -1;
5692 	int i;
5693 
5694 	/* Check if we have any choice: */
5695 	if (group->group_weight == 1)
5696 		return cpumask_first(sched_group_span(group));
5697 
5698 	/* Traverse only the allowed CPUs */
5699 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5700 		if (available_idle_cpu(i)) {
5701 			struct rq *rq = cpu_rq(i);
5702 			struct cpuidle_state *idle = idle_get_state(rq);
5703 			if (idle && idle->exit_latency < min_exit_latency) {
5704 				/*
5705 				 * We give priority to a CPU whose idle state
5706 				 * has the smallest exit latency irrespective
5707 				 * of any idle timestamp.
5708 				 */
5709 				min_exit_latency = idle->exit_latency;
5710 				latest_idle_timestamp = rq->idle_stamp;
5711 				shallowest_idle_cpu = i;
5712 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5713 				   rq->idle_stamp > latest_idle_timestamp) {
5714 				/*
5715 				 * If equal or no active idle state, then
5716 				 * the most recently idled CPU might have
5717 				 * a warmer cache.
5718 				 */
5719 				latest_idle_timestamp = rq->idle_stamp;
5720 				shallowest_idle_cpu = i;
5721 			}
5722 		} else if (shallowest_idle_cpu == -1) {
5723 			load = cpu_runnable_load(cpu_rq(i));
5724 			if (load < min_load) {
5725 				min_load = load;
5726 				least_loaded_cpu = i;
5727 			}
5728 		}
5729 	}
5730 
5731 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5732 }
5733 
5734 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5735 				  int cpu, int prev_cpu, int sd_flag)
5736 {
5737 	int new_cpu = cpu;
5738 
5739 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
5740 		return prev_cpu;
5741 
5742 	/*
5743 	 * We need task's util for capacity_spare_without, sync it up to
5744 	 * prev_cpu's last_update_time.
5745 	 */
5746 	if (!(sd_flag & SD_BALANCE_FORK))
5747 		sync_entity_load_avg(&p->se);
5748 
5749 	while (sd) {
5750 		struct sched_group *group;
5751 		struct sched_domain *tmp;
5752 		int weight;
5753 
5754 		if (!(sd->flags & sd_flag)) {
5755 			sd = sd->child;
5756 			continue;
5757 		}
5758 
5759 		group = find_idlest_group(sd, p, cpu, sd_flag);
5760 		if (!group) {
5761 			sd = sd->child;
5762 			continue;
5763 		}
5764 
5765 		new_cpu = find_idlest_group_cpu(group, p, cpu);
5766 		if (new_cpu == cpu) {
5767 			/* Now try balancing at a lower domain level of 'cpu': */
5768 			sd = sd->child;
5769 			continue;
5770 		}
5771 
5772 		/* Now try balancing at a lower domain level of 'new_cpu': */
5773 		cpu = new_cpu;
5774 		weight = sd->span_weight;
5775 		sd = NULL;
5776 		for_each_domain(cpu, tmp) {
5777 			if (weight <= tmp->span_weight)
5778 				break;
5779 			if (tmp->flags & sd_flag)
5780 				sd = tmp;
5781 		}
5782 	}
5783 
5784 	return new_cpu;
5785 }
5786 
5787 #ifdef CONFIG_SCHED_SMT
5788 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5789 EXPORT_SYMBOL_GPL(sched_smt_present);
5790 
5791 static inline void set_idle_cores(int cpu, int val)
5792 {
5793 	struct sched_domain_shared *sds;
5794 
5795 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5796 	if (sds)
5797 		WRITE_ONCE(sds->has_idle_cores, val);
5798 }
5799 
5800 static inline bool test_idle_cores(int cpu, bool def)
5801 {
5802 	struct sched_domain_shared *sds;
5803 
5804 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5805 	if (sds)
5806 		return READ_ONCE(sds->has_idle_cores);
5807 
5808 	return def;
5809 }
5810 
5811 /*
5812  * Scans the local SMT mask to see if the entire core is idle, and records this
5813  * information in sd_llc_shared->has_idle_cores.
5814  *
5815  * Since SMT siblings share all cache levels, inspecting this limited remote
5816  * state should be fairly cheap.
5817  */
5818 void __update_idle_core(struct rq *rq)
5819 {
5820 	int core = cpu_of(rq);
5821 	int cpu;
5822 
5823 	rcu_read_lock();
5824 	if (test_idle_cores(core, true))
5825 		goto unlock;
5826 
5827 	for_each_cpu(cpu, cpu_smt_mask(core)) {
5828 		if (cpu == core)
5829 			continue;
5830 
5831 		if (!available_idle_cpu(cpu))
5832 			goto unlock;
5833 	}
5834 
5835 	set_idle_cores(core, 1);
5836 unlock:
5837 	rcu_read_unlock();
5838 }
5839 
5840 /*
5841  * Scan the entire LLC domain for idle cores; this dynamically switches off if
5842  * there are no idle cores left in the system; tracked through
5843  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5844  */
5845 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5846 {
5847 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5848 	int core, cpu;
5849 
5850 	if (!static_branch_likely(&sched_smt_present))
5851 		return -1;
5852 
5853 	if (!test_idle_cores(target, false))
5854 		return -1;
5855 
5856 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
5857 
5858 	for_each_cpu_wrap(core, cpus, target) {
5859 		bool idle = true;
5860 
5861 		for_each_cpu(cpu, cpu_smt_mask(core)) {
5862 			__cpumask_clear_cpu(cpu, cpus);
5863 			if (!available_idle_cpu(cpu))
5864 				idle = false;
5865 		}
5866 
5867 		if (idle)
5868 			return core;
5869 	}
5870 
5871 	/*
5872 	 * Failed to find an idle core; stop looking for one.
5873 	 */
5874 	set_idle_cores(target, 0);
5875 
5876 	return -1;
5877 }
5878 
5879 /*
5880  * Scan the local SMT mask for idle CPUs.
5881  */
5882 static int select_idle_smt(struct task_struct *p, int target)
5883 {
5884 	int cpu;
5885 
5886 	if (!static_branch_likely(&sched_smt_present))
5887 		return -1;
5888 
5889 	for_each_cpu(cpu, cpu_smt_mask(target)) {
5890 		if (!cpumask_test_cpu(cpu, p->cpus_ptr))
5891 			continue;
5892 		if (available_idle_cpu(cpu))
5893 			return cpu;
5894 	}
5895 
5896 	return -1;
5897 }
5898 
5899 #else /* CONFIG_SCHED_SMT */
5900 
5901 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5902 {
5903 	return -1;
5904 }
5905 
5906 static inline int select_idle_smt(struct task_struct *p, int target)
5907 {
5908 	return -1;
5909 }
5910 
5911 #endif /* CONFIG_SCHED_SMT */
5912 
5913 /*
5914  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5915  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5916  * average idle time for this rq (as found in rq->avg_idle).
5917  */
5918 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5919 {
5920 	struct sched_domain *this_sd;
5921 	u64 avg_cost, avg_idle;
5922 	u64 time, cost;
5923 	s64 delta;
5924 	int cpu, nr = INT_MAX;
5925 	int this = smp_processor_id();
5926 
5927 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5928 	if (!this_sd)
5929 		return -1;
5930 
5931 	/*
5932 	 * Due to large variance we need a large fuzz factor; hackbench in
5933 	 * particularly is sensitive here.
5934 	 */
5935 	avg_idle = this_rq()->avg_idle / 512;
5936 	avg_cost = this_sd->avg_scan_cost + 1;
5937 
5938 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
5939 		return -1;
5940 
5941 	if (sched_feat(SIS_PROP)) {
5942 		u64 span_avg = sd->span_weight * avg_idle;
5943 		if (span_avg > 4*avg_cost)
5944 			nr = div_u64(span_avg, avg_cost);
5945 		else
5946 			nr = 4;
5947 	}
5948 
5949 	time = cpu_clock(this);
5950 
5951 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
5952 		if (!--nr)
5953 			return -1;
5954 		if (!cpumask_test_cpu(cpu, p->cpus_ptr))
5955 			continue;
5956 		if (available_idle_cpu(cpu))
5957 			break;
5958 	}
5959 
5960 	time = cpu_clock(this) - time;
5961 	cost = this_sd->avg_scan_cost;
5962 	delta = (s64)(time - cost) / 8;
5963 	this_sd->avg_scan_cost += delta;
5964 
5965 	return cpu;
5966 }
5967 
5968 /*
5969  * Try and locate an idle core/thread in the LLC cache domain.
5970  */
5971 static int select_idle_sibling(struct task_struct *p, int prev, int target)
5972 {
5973 	struct sched_domain *sd;
5974 	int i, recent_used_cpu;
5975 
5976 	if (available_idle_cpu(target))
5977 		return target;
5978 
5979 	/*
5980 	 * If the previous CPU is cache affine and idle, don't be stupid:
5981 	 */
5982 	if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
5983 		return prev;
5984 
5985 	/* Check a recently used CPU as a potential idle candidate: */
5986 	recent_used_cpu = p->recent_used_cpu;
5987 	if (recent_used_cpu != prev &&
5988 	    recent_used_cpu != target &&
5989 	    cpus_share_cache(recent_used_cpu, target) &&
5990 	    available_idle_cpu(recent_used_cpu) &&
5991 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
5992 		/*
5993 		 * Replace recent_used_cpu with prev as it is a potential
5994 		 * candidate for the next wake:
5995 		 */
5996 		p->recent_used_cpu = prev;
5997 		return recent_used_cpu;
5998 	}
5999 
6000 	sd = rcu_dereference(per_cpu(sd_llc, target));
6001 	if (!sd)
6002 		return target;
6003 
6004 	i = select_idle_core(p, sd, target);
6005 	if ((unsigned)i < nr_cpumask_bits)
6006 		return i;
6007 
6008 	i = select_idle_cpu(p, sd, target);
6009 	if ((unsigned)i < nr_cpumask_bits)
6010 		return i;
6011 
6012 	i = select_idle_smt(p, target);
6013 	if ((unsigned)i < nr_cpumask_bits)
6014 		return i;
6015 
6016 	return target;
6017 }
6018 
6019 /**
6020  * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6021  * @cpu: the CPU to get the utilization of
6022  *
6023  * The unit of the return value must be the one of capacity so we can compare
6024  * the utilization with the capacity of the CPU that is available for CFS task
6025  * (ie cpu_capacity).
6026  *
6027  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6028  * recent utilization of currently non-runnable tasks on a CPU. It represents
6029  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6030  * capacity_orig is the cpu_capacity available at the highest frequency
6031  * (arch_scale_freq_capacity()).
6032  * The utilization of a CPU converges towards a sum equal to or less than the
6033  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6034  * the running time on this CPU scaled by capacity_curr.
6035  *
6036  * The estimated utilization of a CPU is defined to be the maximum between its
6037  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6038  * currently RUNNABLE on that CPU.
6039  * This allows to properly represent the expected utilization of a CPU which
6040  * has just got a big task running since a long sleep period. At the same time
6041  * however it preserves the benefits of the "blocked utilization" in
6042  * describing the potential for other tasks waking up on the same CPU.
6043  *
6044  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6045  * higher than capacity_orig because of unfortunate rounding in
6046  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6047  * the average stabilizes with the new running time. We need to check that the
6048  * utilization stays within the range of [0..capacity_orig] and cap it if
6049  * necessary. Without utilization capping, a group could be seen as overloaded
6050  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6051  * available capacity. We allow utilization to overshoot capacity_curr (but not
6052  * capacity_orig) as it useful for predicting the capacity required after task
6053  * migrations (scheduler-driven DVFS).
6054  *
6055  * Return: the (estimated) utilization for the specified CPU
6056  */
6057 static inline unsigned long cpu_util(int cpu)
6058 {
6059 	struct cfs_rq *cfs_rq;
6060 	unsigned int util;
6061 
6062 	cfs_rq = &cpu_rq(cpu)->cfs;
6063 	util = READ_ONCE(cfs_rq->avg.util_avg);
6064 
6065 	if (sched_feat(UTIL_EST))
6066 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6067 
6068 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6069 }
6070 
6071 /*
6072  * cpu_util_without: compute cpu utilization without any contributions from *p
6073  * @cpu: the CPU which utilization is requested
6074  * @p: the task which utilization should be discounted
6075  *
6076  * The utilization of a CPU is defined by the utilization of tasks currently
6077  * enqueued on that CPU as well as tasks which are currently sleeping after an
6078  * execution on that CPU.
6079  *
6080  * This method returns the utilization of the specified CPU by discounting the
6081  * utilization of the specified task, whenever the task is currently
6082  * contributing to the CPU utilization.
6083  */
6084 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6085 {
6086 	struct cfs_rq *cfs_rq;
6087 	unsigned int util;
6088 
6089 	/* Task has no contribution or is new */
6090 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6091 		return cpu_util(cpu);
6092 
6093 	cfs_rq = &cpu_rq(cpu)->cfs;
6094 	util = READ_ONCE(cfs_rq->avg.util_avg);
6095 
6096 	/* Discount task's util from CPU's util */
6097 	lsub_positive(&util, task_util(p));
6098 
6099 	/*
6100 	 * Covered cases:
6101 	 *
6102 	 * a) if *p is the only task sleeping on this CPU, then:
6103 	 *      cpu_util (== task_util) > util_est (== 0)
6104 	 *    and thus we return:
6105 	 *      cpu_util_without = (cpu_util - task_util) = 0
6106 	 *
6107 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6108 	 *    IDLE, then:
6109 	 *      cpu_util >= task_util
6110 	 *      cpu_util > util_est (== 0)
6111 	 *    and thus we discount *p's blocked utilization to return:
6112 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6113 	 *
6114 	 * c) if other tasks are RUNNABLE on that CPU and
6115 	 *      util_est > cpu_util
6116 	 *    then we use util_est since it returns a more restrictive
6117 	 *    estimation of the spare capacity on that CPU, by just
6118 	 *    considering the expected utilization of tasks already
6119 	 *    runnable on that CPU.
6120 	 *
6121 	 * Cases a) and b) are covered by the above code, while case c) is
6122 	 * covered by the following code when estimated utilization is
6123 	 * enabled.
6124 	 */
6125 	if (sched_feat(UTIL_EST)) {
6126 		unsigned int estimated =
6127 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6128 
6129 		/*
6130 		 * Despite the following checks we still have a small window
6131 		 * for a possible race, when an execl's select_task_rq_fair()
6132 		 * races with LB's detach_task():
6133 		 *
6134 		 *   detach_task()
6135 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6136 		 *     ---------------------------------- A
6137 		 *     deactivate_task()                   \
6138 		 *       dequeue_task()                     + RaceTime
6139 		 *         util_est_dequeue()              /
6140 		 *     ---------------------------------- B
6141 		 *
6142 		 * The additional check on "current == p" it's required to
6143 		 * properly fix the execl regression and it helps in further
6144 		 * reducing the chances for the above race.
6145 		 */
6146 		if (unlikely(task_on_rq_queued(p) || current == p))
6147 			lsub_positive(&estimated, _task_util_est(p));
6148 
6149 		util = max(util, estimated);
6150 	}
6151 
6152 	/*
6153 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6154 	 * clamp to the maximum CPU capacity to ensure consistency with
6155 	 * the cpu_util call.
6156 	 */
6157 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6158 }
6159 
6160 /*
6161  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6162  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6163  *
6164  * In that case WAKE_AFFINE doesn't make sense and we'll let
6165  * BALANCE_WAKE sort things out.
6166  */
6167 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6168 {
6169 	long min_cap, max_cap;
6170 
6171 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
6172 		return 0;
6173 
6174 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6175 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6176 
6177 	/* Minimum capacity is close to max, no need to abort wake_affine */
6178 	if (max_cap - min_cap < max_cap >> 3)
6179 		return 0;
6180 
6181 	/* Bring task utilization in sync with prev_cpu */
6182 	sync_entity_load_avg(&p->se);
6183 
6184 	return !task_fits_capacity(p, min_cap);
6185 }
6186 
6187 /*
6188  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6189  * to @dst_cpu.
6190  */
6191 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6192 {
6193 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6194 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6195 
6196 	/*
6197 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6198 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6199 	 * the other cases, @cpu is not impacted by the migration, so the
6200 	 * util_avg should already be correct.
6201 	 */
6202 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6203 		sub_positive(&util, task_util(p));
6204 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6205 		util += task_util(p);
6206 
6207 	if (sched_feat(UTIL_EST)) {
6208 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6209 
6210 		/*
6211 		 * During wake-up, the task isn't enqueued yet and doesn't
6212 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6213 		 * so just add it (if needed) to "simulate" what will be
6214 		 * cpu_util() after the task has been enqueued.
6215 		 */
6216 		if (dst_cpu == cpu)
6217 			util_est += _task_util_est(p);
6218 
6219 		util = max(util, util_est);
6220 	}
6221 
6222 	return min(util, capacity_orig_of(cpu));
6223 }
6224 
6225 /*
6226  * compute_energy(): Estimates the energy that would be consumed if @p was
6227  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6228  * landscape of the * CPUs after the task migration, and uses the Energy Model
6229  * to compute what would be the energy if we decided to actually migrate that
6230  * task.
6231  */
6232 static long
6233 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6234 {
6235 	unsigned int max_util, util_cfs, cpu_util, cpu_cap;
6236 	unsigned long sum_util, energy = 0;
6237 	struct task_struct *tsk;
6238 	int cpu;
6239 
6240 	for (; pd; pd = pd->next) {
6241 		struct cpumask *pd_mask = perf_domain_span(pd);
6242 
6243 		/*
6244 		 * The energy model mandates all the CPUs of a performance
6245 		 * domain have the same capacity.
6246 		 */
6247 		cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6248 		max_util = sum_util = 0;
6249 
6250 		/*
6251 		 * The capacity state of CPUs of the current rd can be driven by
6252 		 * CPUs of another rd if they belong to the same performance
6253 		 * domain. So, account for the utilization of these CPUs too
6254 		 * by masking pd with cpu_online_mask instead of the rd span.
6255 		 *
6256 		 * If an entire performance domain is outside of the current rd,
6257 		 * it will not appear in its pd list and will not be accounted
6258 		 * by compute_energy().
6259 		 */
6260 		for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6261 			util_cfs = cpu_util_next(cpu, p, dst_cpu);
6262 
6263 			/*
6264 			 * Busy time computation: utilization clamping is not
6265 			 * required since the ratio (sum_util / cpu_capacity)
6266 			 * is already enough to scale the EM reported power
6267 			 * consumption at the (eventually clamped) cpu_capacity.
6268 			 */
6269 			sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6270 						       ENERGY_UTIL, NULL);
6271 
6272 			/*
6273 			 * Performance domain frequency: utilization clamping
6274 			 * must be considered since it affects the selection
6275 			 * of the performance domain frequency.
6276 			 * NOTE: in case RT tasks are running, by default the
6277 			 * FREQUENCY_UTIL's utilization can be max OPP.
6278 			 */
6279 			tsk = cpu == dst_cpu ? p : NULL;
6280 			cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6281 						      FREQUENCY_UTIL, tsk);
6282 			max_util = max(max_util, cpu_util);
6283 		}
6284 
6285 		energy += em_pd_energy(pd->em_pd, max_util, sum_util);
6286 	}
6287 
6288 	return energy;
6289 }
6290 
6291 /*
6292  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6293  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6294  * spare capacity in each performance domain and uses it as a potential
6295  * candidate to execute the task. Then, it uses the Energy Model to figure
6296  * out which of the CPU candidates is the most energy-efficient.
6297  *
6298  * The rationale for this heuristic is as follows. In a performance domain,
6299  * all the most energy efficient CPU candidates (according to the Energy
6300  * Model) are those for which we'll request a low frequency. When there are
6301  * several CPUs for which the frequency request will be the same, we don't
6302  * have enough data to break the tie between them, because the Energy Model
6303  * only includes active power costs. With this model, if we assume that
6304  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6305  * the maximum spare capacity in a performance domain is guaranteed to be among
6306  * the best candidates of the performance domain.
6307  *
6308  * In practice, it could be preferable from an energy standpoint to pack
6309  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6310  * but that could also hurt our chances to go cluster idle, and we have no
6311  * ways to tell with the current Energy Model if this is actually a good
6312  * idea or not. So, find_energy_efficient_cpu() basically favors
6313  * cluster-packing, and spreading inside a cluster. That should at least be
6314  * a good thing for latency, and this is consistent with the idea that most
6315  * of the energy savings of EAS come from the asymmetry of the system, and
6316  * not so much from breaking the tie between identical CPUs. That's also the
6317  * reason why EAS is enabled in the topology code only for systems where
6318  * SD_ASYM_CPUCAPACITY is set.
6319  *
6320  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6321  * they don't have any useful utilization data yet and it's not possible to
6322  * forecast their impact on energy consumption. Consequently, they will be
6323  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6324  * to be energy-inefficient in some use-cases. The alternative would be to
6325  * bias new tasks towards specific types of CPUs first, or to try to infer
6326  * their util_avg from the parent task, but those heuristics could hurt
6327  * other use-cases too. So, until someone finds a better way to solve this,
6328  * let's keep things simple by re-using the existing slow path.
6329  */
6330 
6331 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6332 {
6333 	unsigned long prev_energy = ULONG_MAX, best_energy = ULONG_MAX;
6334 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6335 	int cpu, best_energy_cpu = prev_cpu;
6336 	struct perf_domain *head, *pd;
6337 	unsigned long cpu_cap, util;
6338 	struct sched_domain *sd;
6339 
6340 	rcu_read_lock();
6341 	pd = rcu_dereference(rd->pd);
6342 	if (!pd || READ_ONCE(rd->overutilized))
6343 		goto fail;
6344 	head = pd;
6345 
6346 	/*
6347 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6348 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6349 	 */
6350 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6351 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6352 		sd = sd->parent;
6353 	if (!sd)
6354 		goto fail;
6355 
6356 	sync_entity_load_avg(&p->se);
6357 	if (!task_util_est(p))
6358 		goto unlock;
6359 
6360 	for (; pd; pd = pd->next) {
6361 		unsigned long cur_energy, spare_cap, max_spare_cap = 0;
6362 		int max_spare_cap_cpu = -1;
6363 
6364 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6365 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6366 				continue;
6367 
6368 			/* Skip CPUs that will be overutilized. */
6369 			util = cpu_util_next(cpu, p, cpu);
6370 			cpu_cap = capacity_of(cpu);
6371 			if (cpu_cap * 1024 < util * capacity_margin)
6372 				continue;
6373 
6374 			/* Always use prev_cpu as a candidate. */
6375 			if (cpu == prev_cpu) {
6376 				prev_energy = compute_energy(p, prev_cpu, head);
6377 				best_energy = min(best_energy, prev_energy);
6378 				continue;
6379 			}
6380 
6381 			/*
6382 			 * Find the CPU with the maximum spare capacity in
6383 			 * the performance domain
6384 			 */
6385 			spare_cap = cpu_cap - util;
6386 			if (spare_cap > max_spare_cap) {
6387 				max_spare_cap = spare_cap;
6388 				max_spare_cap_cpu = cpu;
6389 			}
6390 		}
6391 
6392 		/* Evaluate the energy impact of using this CPU. */
6393 		if (max_spare_cap_cpu >= 0) {
6394 			cur_energy = compute_energy(p, max_spare_cap_cpu, head);
6395 			if (cur_energy < best_energy) {
6396 				best_energy = cur_energy;
6397 				best_energy_cpu = max_spare_cap_cpu;
6398 			}
6399 		}
6400 	}
6401 unlock:
6402 	rcu_read_unlock();
6403 
6404 	/*
6405 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6406 	 * least 6% of the energy used by prev_cpu.
6407 	 */
6408 	if (prev_energy == ULONG_MAX)
6409 		return best_energy_cpu;
6410 
6411 	if ((prev_energy - best_energy) > (prev_energy >> 4))
6412 		return best_energy_cpu;
6413 
6414 	return prev_cpu;
6415 
6416 fail:
6417 	rcu_read_unlock();
6418 
6419 	return -1;
6420 }
6421 
6422 /*
6423  * select_task_rq_fair: Select target runqueue for the waking task in domains
6424  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6425  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6426  *
6427  * Balances load by selecting the idlest CPU in the idlest group, or under
6428  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6429  *
6430  * Returns the target CPU number.
6431  *
6432  * preempt must be disabled.
6433  */
6434 static int
6435 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6436 {
6437 	struct sched_domain *tmp, *sd = NULL;
6438 	int cpu = smp_processor_id();
6439 	int new_cpu = prev_cpu;
6440 	int want_affine = 0;
6441 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6442 
6443 	if (sd_flag & SD_BALANCE_WAKE) {
6444 		record_wakee(p);
6445 
6446 		if (sched_energy_enabled()) {
6447 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6448 			if (new_cpu >= 0)
6449 				return new_cpu;
6450 			new_cpu = prev_cpu;
6451 		}
6452 
6453 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
6454 			      cpumask_test_cpu(cpu, p->cpus_ptr);
6455 	}
6456 
6457 	rcu_read_lock();
6458 	for_each_domain(cpu, tmp) {
6459 		if (!(tmp->flags & SD_LOAD_BALANCE))
6460 			break;
6461 
6462 		/*
6463 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6464 		 * cpu is a valid SD_WAKE_AFFINE target.
6465 		 */
6466 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6467 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6468 			if (cpu != prev_cpu)
6469 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6470 
6471 			sd = NULL; /* Prefer wake_affine over balance flags */
6472 			break;
6473 		}
6474 
6475 		if (tmp->flags & sd_flag)
6476 			sd = tmp;
6477 		else if (!want_affine)
6478 			break;
6479 	}
6480 
6481 	if (unlikely(sd)) {
6482 		/* Slow path */
6483 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6484 	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6485 		/* Fast path */
6486 
6487 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6488 
6489 		if (want_affine)
6490 			current->recent_used_cpu = cpu;
6491 	}
6492 	rcu_read_unlock();
6493 
6494 	return new_cpu;
6495 }
6496 
6497 static void detach_entity_cfs_rq(struct sched_entity *se);
6498 
6499 /*
6500  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6501  * cfs_rq_of(p) references at time of call are still valid and identify the
6502  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6503  */
6504 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6505 {
6506 	/*
6507 	 * As blocked tasks retain absolute vruntime the migration needs to
6508 	 * deal with this by subtracting the old and adding the new
6509 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6510 	 * the task on the new runqueue.
6511 	 */
6512 	if (p->state == TASK_WAKING) {
6513 		struct sched_entity *se = &p->se;
6514 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6515 		u64 min_vruntime;
6516 
6517 #ifndef CONFIG_64BIT
6518 		u64 min_vruntime_copy;
6519 
6520 		do {
6521 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6522 			smp_rmb();
6523 			min_vruntime = cfs_rq->min_vruntime;
6524 		} while (min_vruntime != min_vruntime_copy);
6525 #else
6526 		min_vruntime = cfs_rq->min_vruntime;
6527 #endif
6528 
6529 		se->vruntime -= min_vruntime;
6530 	}
6531 
6532 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6533 		/*
6534 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6535 		 * rq->lock and can modify state directly.
6536 		 */
6537 		lockdep_assert_held(&task_rq(p)->lock);
6538 		detach_entity_cfs_rq(&p->se);
6539 
6540 	} else {
6541 		/*
6542 		 * We are supposed to update the task to "current" time, then
6543 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6544 		 * have difficulty in getting what current time is, so simply
6545 		 * throw away the out-of-date time. This will result in the
6546 		 * wakee task is less decayed, but giving the wakee more load
6547 		 * sounds not bad.
6548 		 */
6549 		remove_entity_load_avg(&p->se);
6550 	}
6551 
6552 	/* Tell new CPU we are migrated */
6553 	p->se.avg.last_update_time = 0;
6554 
6555 	/* We have migrated, no longer consider this task hot */
6556 	p->se.exec_start = 0;
6557 
6558 	update_scan_period(p, new_cpu);
6559 }
6560 
6561 static void task_dead_fair(struct task_struct *p)
6562 {
6563 	remove_entity_load_avg(&p->se);
6564 }
6565 #endif /* CONFIG_SMP */
6566 
6567 static unsigned long wakeup_gran(struct sched_entity *se)
6568 {
6569 	unsigned long gran = sysctl_sched_wakeup_granularity;
6570 
6571 	/*
6572 	 * Since its curr running now, convert the gran from real-time
6573 	 * to virtual-time in his units.
6574 	 *
6575 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6576 	 * they get preempted easier. That is, if 'se' < 'curr' then
6577 	 * the resulting gran will be larger, therefore penalizing the
6578 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6579 	 * be smaller, again penalizing the lighter task.
6580 	 *
6581 	 * This is especially important for buddies when the leftmost
6582 	 * task is higher priority than the buddy.
6583 	 */
6584 	return calc_delta_fair(gran, se);
6585 }
6586 
6587 /*
6588  * Should 'se' preempt 'curr'.
6589  *
6590  *             |s1
6591  *        |s2
6592  *   |s3
6593  *         g
6594  *      |<--->|c
6595  *
6596  *  w(c, s1) = -1
6597  *  w(c, s2) =  0
6598  *  w(c, s3) =  1
6599  *
6600  */
6601 static int
6602 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6603 {
6604 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6605 
6606 	if (vdiff <= 0)
6607 		return -1;
6608 
6609 	gran = wakeup_gran(se);
6610 	if (vdiff > gran)
6611 		return 1;
6612 
6613 	return 0;
6614 }
6615 
6616 static void set_last_buddy(struct sched_entity *se)
6617 {
6618 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6619 		return;
6620 
6621 	for_each_sched_entity(se) {
6622 		if (SCHED_WARN_ON(!se->on_rq))
6623 			return;
6624 		cfs_rq_of(se)->last = se;
6625 	}
6626 }
6627 
6628 static void set_next_buddy(struct sched_entity *se)
6629 {
6630 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6631 		return;
6632 
6633 	for_each_sched_entity(se) {
6634 		if (SCHED_WARN_ON(!se->on_rq))
6635 			return;
6636 		cfs_rq_of(se)->next = se;
6637 	}
6638 }
6639 
6640 static void set_skip_buddy(struct sched_entity *se)
6641 {
6642 	for_each_sched_entity(se)
6643 		cfs_rq_of(se)->skip = se;
6644 }
6645 
6646 /*
6647  * Preempt the current task with a newly woken task if needed:
6648  */
6649 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6650 {
6651 	struct task_struct *curr = rq->curr;
6652 	struct sched_entity *se = &curr->se, *pse = &p->se;
6653 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6654 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6655 	int next_buddy_marked = 0;
6656 
6657 	if (unlikely(se == pse))
6658 		return;
6659 
6660 	/*
6661 	 * This is possible from callers such as attach_tasks(), in which we
6662 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6663 	 * lead to a throttle).  This both saves work and prevents false
6664 	 * next-buddy nomination below.
6665 	 */
6666 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6667 		return;
6668 
6669 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6670 		set_next_buddy(pse);
6671 		next_buddy_marked = 1;
6672 	}
6673 
6674 	/*
6675 	 * We can come here with TIF_NEED_RESCHED already set from new task
6676 	 * wake up path.
6677 	 *
6678 	 * Note: this also catches the edge-case of curr being in a throttled
6679 	 * group (e.g. via set_curr_task), since update_curr() (in the
6680 	 * enqueue of curr) will have resulted in resched being set.  This
6681 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6682 	 * below.
6683 	 */
6684 	if (test_tsk_need_resched(curr))
6685 		return;
6686 
6687 	/* Idle tasks are by definition preempted by non-idle tasks. */
6688 	if (unlikely(task_has_idle_policy(curr)) &&
6689 	    likely(!task_has_idle_policy(p)))
6690 		goto preempt;
6691 
6692 	/*
6693 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6694 	 * is driven by the tick):
6695 	 */
6696 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6697 		return;
6698 
6699 	find_matching_se(&se, &pse);
6700 	update_curr(cfs_rq_of(se));
6701 	BUG_ON(!pse);
6702 	if (wakeup_preempt_entity(se, pse) == 1) {
6703 		/*
6704 		 * Bias pick_next to pick the sched entity that is
6705 		 * triggering this preemption.
6706 		 */
6707 		if (!next_buddy_marked)
6708 			set_next_buddy(pse);
6709 		goto preempt;
6710 	}
6711 
6712 	return;
6713 
6714 preempt:
6715 	resched_curr(rq);
6716 	/*
6717 	 * Only set the backward buddy when the current task is still
6718 	 * on the rq. This can happen when a wakeup gets interleaved
6719 	 * with schedule on the ->pre_schedule() or idle_balance()
6720 	 * point, either of which can * drop the rq lock.
6721 	 *
6722 	 * Also, during early boot the idle thread is in the fair class,
6723 	 * for obvious reasons its a bad idea to schedule back to it.
6724 	 */
6725 	if (unlikely(!se->on_rq || curr == rq->idle))
6726 		return;
6727 
6728 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6729 		set_last_buddy(se);
6730 }
6731 
6732 static struct task_struct *
6733 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6734 {
6735 	struct cfs_rq *cfs_rq = &rq->cfs;
6736 	struct sched_entity *se;
6737 	struct task_struct *p;
6738 	int new_tasks;
6739 
6740 again:
6741 	if (!cfs_rq->nr_running)
6742 		goto idle;
6743 
6744 #ifdef CONFIG_FAIR_GROUP_SCHED
6745 	if (prev->sched_class != &fair_sched_class)
6746 		goto simple;
6747 
6748 	/*
6749 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6750 	 * likely that a next task is from the same cgroup as the current.
6751 	 *
6752 	 * Therefore attempt to avoid putting and setting the entire cgroup
6753 	 * hierarchy, only change the part that actually changes.
6754 	 */
6755 
6756 	do {
6757 		struct sched_entity *curr = cfs_rq->curr;
6758 
6759 		/*
6760 		 * Since we got here without doing put_prev_entity() we also
6761 		 * have to consider cfs_rq->curr. If it is still a runnable
6762 		 * entity, update_curr() will update its vruntime, otherwise
6763 		 * forget we've ever seen it.
6764 		 */
6765 		if (curr) {
6766 			if (curr->on_rq)
6767 				update_curr(cfs_rq);
6768 			else
6769 				curr = NULL;
6770 
6771 			/*
6772 			 * This call to check_cfs_rq_runtime() will do the
6773 			 * throttle and dequeue its entity in the parent(s).
6774 			 * Therefore the nr_running test will indeed
6775 			 * be correct.
6776 			 */
6777 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6778 				cfs_rq = &rq->cfs;
6779 
6780 				if (!cfs_rq->nr_running)
6781 					goto idle;
6782 
6783 				goto simple;
6784 			}
6785 		}
6786 
6787 		se = pick_next_entity(cfs_rq, curr);
6788 		cfs_rq = group_cfs_rq(se);
6789 	} while (cfs_rq);
6790 
6791 	p = task_of(se);
6792 
6793 	/*
6794 	 * Since we haven't yet done put_prev_entity and if the selected task
6795 	 * is a different task than we started out with, try and touch the
6796 	 * least amount of cfs_rqs.
6797 	 */
6798 	if (prev != p) {
6799 		struct sched_entity *pse = &prev->se;
6800 
6801 		while (!(cfs_rq = is_same_group(se, pse))) {
6802 			int se_depth = se->depth;
6803 			int pse_depth = pse->depth;
6804 
6805 			if (se_depth <= pse_depth) {
6806 				put_prev_entity(cfs_rq_of(pse), pse);
6807 				pse = parent_entity(pse);
6808 			}
6809 			if (se_depth >= pse_depth) {
6810 				set_next_entity(cfs_rq_of(se), se);
6811 				se = parent_entity(se);
6812 			}
6813 		}
6814 
6815 		put_prev_entity(cfs_rq, pse);
6816 		set_next_entity(cfs_rq, se);
6817 	}
6818 
6819 	goto done;
6820 simple:
6821 #endif
6822 
6823 	put_prev_task(rq, prev);
6824 
6825 	do {
6826 		se = pick_next_entity(cfs_rq, NULL);
6827 		set_next_entity(cfs_rq, se);
6828 		cfs_rq = group_cfs_rq(se);
6829 	} while (cfs_rq);
6830 
6831 	p = task_of(se);
6832 
6833 done: __maybe_unused;
6834 #ifdef CONFIG_SMP
6835 	/*
6836 	 * Move the next running task to the front of
6837 	 * the list, so our cfs_tasks list becomes MRU
6838 	 * one.
6839 	 */
6840 	list_move(&p->se.group_node, &rq->cfs_tasks);
6841 #endif
6842 
6843 	if (hrtick_enabled(rq))
6844 		hrtick_start_fair(rq, p);
6845 
6846 	update_misfit_status(p, rq);
6847 
6848 	return p;
6849 
6850 idle:
6851 	update_misfit_status(NULL, rq);
6852 	new_tasks = idle_balance(rq, rf);
6853 
6854 	/*
6855 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6856 	 * possible for any higher priority task to appear. In that case we
6857 	 * must re-start the pick_next_entity() loop.
6858 	 */
6859 	if (new_tasks < 0)
6860 		return RETRY_TASK;
6861 
6862 	if (new_tasks > 0)
6863 		goto again;
6864 
6865 	/*
6866 	 * rq is about to be idle, check if we need to update the
6867 	 * lost_idle_time of clock_pelt
6868 	 */
6869 	update_idle_rq_clock_pelt(rq);
6870 
6871 	return NULL;
6872 }
6873 
6874 /*
6875  * Account for a descheduled task:
6876  */
6877 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6878 {
6879 	struct sched_entity *se = &prev->se;
6880 	struct cfs_rq *cfs_rq;
6881 
6882 	for_each_sched_entity(se) {
6883 		cfs_rq = cfs_rq_of(se);
6884 		put_prev_entity(cfs_rq, se);
6885 	}
6886 }
6887 
6888 /*
6889  * sched_yield() is very simple
6890  *
6891  * The magic of dealing with the ->skip buddy is in pick_next_entity.
6892  */
6893 static void yield_task_fair(struct rq *rq)
6894 {
6895 	struct task_struct *curr = rq->curr;
6896 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6897 	struct sched_entity *se = &curr->se;
6898 
6899 	/*
6900 	 * Are we the only task in the tree?
6901 	 */
6902 	if (unlikely(rq->nr_running == 1))
6903 		return;
6904 
6905 	clear_buddies(cfs_rq, se);
6906 
6907 	if (curr->policy != SCHED_BATCH) {
6908 		update_rq_clock(rq);
6909 		/*
6910 		 * Update run-time statistics of the 'current'.
6911 		 */
6912 		update_curr(cfs_rq);
6913 		/*
6914 		 * Tell update_rq_clock() that we've just updated,
6915 		 * so we don't do microscopic update in schedule()
6916 		 * and double the fastpath cost.
6917 		 */
6918 		rq_clock_skip_update(rq);
6919 	}
6920 
6921 	set_skip_buddy(se);
6922 }
6923 
6924 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6925 {
6926 	struct sched_entity *se = &p->se;
6927 
6928 	/* throttled hierarchies are not runnable */
6929 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6930 		return false;
6931 
6932 	/* Tell the scheduler that we'd really like pse to run next. */
6933 	set_next_buddy(se);
6934 
6935 	yield_task_fair(rq);
6936 
6937 	return true;
6938 }
6939 
6940 #ifdef CONFIG_SMP
6941 /**************************************************
6942  * Fair scheduling class load-balancing methods.
6943  *
6944  * BASICS
6945  *
6946  * The purpose of load-balancing is to achieve the same basic fairness the
6947  * per-CPU scheduler provides, namely provide a proportional amount of compute
6948  * time to each task. This is expressed in the following equation:
6949  *
6950  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
6951  *
6952  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
6953  * W_i,0 is defined as:
6954  *
6955  *   W_i,0 = \Sum_j w_i,j                                             (2)
6956  *
6957  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
6958  * is derived from the nice value as per sched_prio_to_weight[].
6959  *
6960  * The weight average is an exponential decay average of the instantaneous
6961  * weight:
6962  *
6963  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
6964  *
6965  * C_i is the compute capacity of CPU i, typically it is the
6966  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6967  * can also include other factors [XXX].
6968  *
6969  * To achieve this balance we define a measure of imbalance which follows
6970  * directly from (1):
6971  *
6972  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
6973  *
6974  * We them move tasks around to minimize the imbalance. In the continuous
6975  * function space it is obvious this converges, in the discrete case we get
6976  * a few fun cases generally called infeasible weight scenarios.
6977  *
6978  * [XXX expand on:
6979  *     - infeasible weights;
6980  *     - local vs global optima in the discrete case. ]
6981  *
6982  *
6983  * SCHED DOMAINS
6984  *
6985  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6986  * for all i,j solution, we create a tree of CPUs that follows the hardware
6987  * topology where each level pairs two lower groups (or better). This results
6988  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
6989  * tree to only the first of the previous level and we decrease the frequency
6990  * of load-balance at each level inv. proportional to the number of CPUs in
6991  * the groups.
6992  *
6993  * This yields:
6994  *
6995  *     log_2 n     1     n
6996  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
6997  *     i = 0      2^i   2^i
6998  *                               `- size of each group
6999  *         |         |     `- number of CPUs doing load-balance
7000  *         |         `- freq
7001  *         `- sum over all levels
7002  *
7003  * Coupled with a limit on how many tasks we can migrate every balance pass,
7004  * this makes (5) the runtime complexity of the balancer.
7005  *
7006  * An important property here is that each CPU is still (indirectly) connected
7007  * to every other CPU in at most O(log n) steps:
7008  *
7009  * The adjacency matrix of the resulting graph is given by:
7010  *
7011  *             log_2 n
7012  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7013  *             k = 0
7014  *
7015  * And you'll find that:
7016  *
7017  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7018  *
7019  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7020  * The task movement gives a factor of O(m), giving a convergence complexity
7021  * of:
7022  *
7023  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7024  *
7025  *
7026  * WORK CONSERVING
7027  *
7028  * In order to avoid CPUs going idle while there's still work to do, new idle
7029  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7030  * tree itself instead of relying on other CPUs to bring it work.
7031  *
7032  * This adds some complexity to both (5) and (8) but it reduces the total idle
7033  * time.
7034  *
7035  * [XXX more?]
7036  *
7037  *
7038  * CGROUPS
7039  *
7040  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7041  *
7042  *                                s_k,i
7043  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7044  *                                 S_k
7045  *
7046  * Where
7047  *
7048  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7049  *
7050  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7051  *
7052  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7053  * property.
7054  *
7055  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7056  *      rewrite all of this once again.]
7057  */
7058 
7059 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7060 
7061 enum fbq_type { regular, remote, all };
7062 
7063 enum group_type {
7064 	group_other = 0,
7065 	group_misfit_task,
7066 	group_imbalanced,
7067 	group_overloaded,
7068 };
7069 
7070 #define LBF_ALL_PINNED	0x01
7071 #define LBF_NEED_BREAK	0x02
7072 #define LBF_DST_PINNED  0x04
7073 #define LBF_SOME_PINNED	0x08
7074 #define LBF_NOHZ_STATS	0x10
7075 #define LBF_NOHZ_AGAIN	0x20
7076 
7077 struct lb_env {
7078 	struct sched_domain	*sd;
7079 
7080 	struct rq		*src_rq;
7081 	int			src_cpu;
7082 
7083 	int			dst_cpu;
7084 	struct rq		*dst_rq;
7085 
7086 	struct cpumask		*dst_grpmask;
7087 	int			new_dst_cpu;
7088 	enum cpu_idle_type	idle;
7089 	long			imbalance;
7090 	/* The set of CPUs under consideration for load-balancing */
7091 	struct cpumask		*cpus;
7092 
7093 	unsigned int		flags;
7094 
7095 	unsigned int		loop;
7096 	unsigned int		loop_break;
7097 	unsigned int		loop_max;
7098 
7099 	enum fbq_type		fbq_type;
7100 	enum group_type		src_grp_type;
7101 	struct list_head	tasks;
7102 };
7103 
7104 /*
7105  * Is this task likely cache-hot:
7106  */
7107 static int task_hot(struct task_struct *p, struct lb_env *env)
7108 {
7109 	s64 delta;
7110 
7111 	lockdep_assert_held(&env->src_rq->lock);
7112 
7113 	if (p->sched_class != &fair_sched_class)
7114 		return 0;
7115 
7116 	if (unlikely(task_has_idle_policy(p)))
7117 		return 0;
7118 
7119 	/*
7120 	 * Buddy candidates are cache hot:
7121 	 */
7122 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7123 			(&p->se == cfs_rq_of(&p->se)->next ||
7124 			 &p->se == cfs_rq_of(&p->se)->last))
7125 		return 1;
7126 
7127 	if (sysctl_sched_migration_cost == -1)
7128 		return 1;
7129 	if (sysctl_sched_migration_cost == 0)
7130 		return 0;
7131 
7132 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7133 
7134 	return delta < (s64)sysctl_sched_migration_cost;
7135 }
7136 
7137 #ifdef CONFIG_NUMA_BALANCING
7138 /*
7139  * Returns 1, if task migration degrades locality
7140  * Returns 0, if task migration improves locality i.e migration preferred.
7141  * Returns -1, if task migration is not affected by locality.
7142  */
7143 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7144 {
7145 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7146 	unsigned long src_weight, dst_weight;
7147 	int src_nid, dst_nid, dist;
7148 
7149 	if (!static_branch_likely(&sched_numa_balancing))
7150 		return -1;
7151 
7152 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7153 		return -1;
7154 
7155 	src_nid = cpu_to_node(env->src_cpu);
7156 	dst_nid = cpu_to_node(env->dst_cpu);
7157 
7158 	if (src_nid == dst_nid)
7159 		return -1;
7160 
7161 	/* Migrating away from the preferred node is always bad. */
7162 	if (src_nid == p->numa_preferred_nid) {
7163 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7164 			return 1;
7165 		else
7166 			return -1;
7167 	}
7168 
7169 	/* Encourage migration to the preferred node. */
7170 	if (dst_nid == p->numa_preferred_nid)
7171 		return 0;
7172 
7173 	/* Leaving a core idle is often worse than degrading locality. */
7174 	if (env->idle == CPU_IDLE)
7175 		return -1;
7176 
7177 	dist = node_distance(src_nid, dst_nid);
7178 	if (numa_group) {
7179 		src_weight = group_weight(p, src_nid, dist);
7180 		dst_weight = group_weight(p, dst_nid, dist);
7181 	} else {
7182 		src_weight = task_weight(p, src_nid, dist);
7183 		dst_weight = task_weight(p, dst_nid, dist);
7184 	}
7185 
7186 	return dst_weight < src_weight;
7187 }
7188 
7189 #else
7190 static inline int migrate_degrades_locality(struct task_struct *p,
7191 					     struct lb_env *env)
7192 {
7193 	return -1;
7194 }
7195 #endif
7196 
7197 /*
7198  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7199  */
7200 static
7201 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7202 {
7203 	int tsk_cache_hot;
7204 
7205 	lockdep_assert_held(&env->src_rq->lock);
7206 
7207 	/*
7208 	 * We do not migrate tasks that are:
7209 	 * 1) throttled_lb_pair, or
7210 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7211 	 * 3) running (obviously), or
7212 	 * 4) are cache-hot on their current CPU.
7213 	 */
7214 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7215 		return 0;
7216 
7217 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7218 		int cpu;
7219 
7220 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7221 
7222 		env->flags |= LBF_SOME_PINNED;
7223 
7224 		/*
7225 		 * Remember if this task can be migrated to any other CPU in
7226 		 * our sched_group. We may want to revisit it if we couldn't
7227 		 * meet load balance goals by pulling other tasks on src_cpu.
7228 		 *
7229 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7230 		 * already computed one in current iteration.
7231 		 */
7232 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7233 			return 0;
7234 
7235 		/* Prevent to re-select dst_cpu via env's CPUs: */
7236 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7237 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7238 				env->flags |= LBF_DST_PINNED;
7239 				env->new_dst_cpu = cpu;
7240 				break;
7241 			}
7242 		}
7243 
7244 		return 0;
7245 	}
7246 
7247 	/* Record that we found atleast one task that could run on dst_cpu */
7248 	env->flags &= ~LBF_ALL_PINNED;
7249 
7250 	if (task_running(env->src_rq, p)) {
7251 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7252 		return 0;
7253 	}
7254 
7255 	/*
7256 	 * Aggressive migration if:
7257 	 * 1) destination numa is preferred
7258 	 * 2) task is cache cold, or
7259 	 * 3) too many balance attempts have failed.
7260 	 */
7261 	tsk_cache_hot = migrate_degrades_locality(p, env);
7262 	if (tsk_cache_hot == -1)
7263 		tsk_cache_hot = task_hot(p, env);
7264 
7265 	if (tsk_cache_hot <= 0 ||
7266 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7267 		if (tsk_cache_hot == 1) {
7268 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7269 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7270 		}
7271 		return 1;
7272 	}
7273 
7274 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7275 	return 0;
7276 }
7277 
7278 /*
7279  * detach_task() -- detach the task for the migration specified in env
7280  */
7281 static void detach_task(struct task_struct *p, struct lb_env *env)
7282 {
7283 	lockdep_assert_held(&env->src_rq->lock);
7284 
7285 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7286 	set_task_cpu(p, env->dst_cpu);
7287 }
7288 
7289 /*
7290  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7291  * part of active balancing operations within "domain".
7292  *
7293  * Returns a task if successful and NULL otherwise.
7294  */
7295 static struct task_struct *detach_one_task(struct lb_env *env)
7296 {
7297 	struct task_struct *p;
7298 
7299 	lockdep_assert_held(&env->src_rq->lock);
7300 
7301 	list_for_each_entry_reverse(p,
7302 			&env->src_rq->cfs_tasks, se.group_node) {
7303 		if (!can_migrate_task(p, env))
7304 			continue;
7305 
7306 		detach_task(p, env);
7307 
7308 		/*
7309 		 * Right now, this is only the second place where
7310 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7311 		 * so we can safely collect stats here rather than
7312 		 * inside detach_tasks().
7313 		 */
7314 		schedstat_inc(env->sd->lb_gained[env->idle]);
7315 		return p;
7316 	}
7317 	return NULL;
7318 }
7319 
7320 static const unsigned int sched_nr_migrate_break = 32;
7321 
7322 /*
7323  * detach_tasks() -- tries to detach up to imbalance runnable load from
7324  * busiest_rq, as part of a balancing operation within domain "sd".
7325  *
7326  * Returns number of detached tasks if successful and 0 otherwise.
7327  */
7328 static int detach_tasks(struct lb_env *env)
7329 {
7330 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7331 	struct task_struct *p;
7332 	unsigned long load;
7333 	int detached = 0;
7334 
7335 	lockdep_assert_held(&env->src_rq->lock);
7336 
7337 	if (env->imbalance <= 0)
7338 		return 0;
7339 
7340 	while (!list_empty(tasks)) {
7341 		/*
7342 		 * We don't want to steal all, otherwise we may be treated likewise,
7343 		 * which could at worst lead to a livelock crash.
7344 		 */
7345 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7346 			break;
7347 
7348 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7349 
7350 		env->loop++;
7351 		/* We've more or less seen every task there is, call it quits */
7352 		if (env->loop > env->loop_max)
7353 			break;
7354 
7355 		/* take a breather every nr_migrate tasks */
7356 		if (env->loop > env->loop_break) {
7357 			env->loop_break += sched_nr_migrate_break;
7358 			env->flags |= LBF_NEED_BREAK;
7359 			break;
7360 		}
7361 
7362 		if (!can_migrate_task(p, env))
7363 			goto next;
7364 
7365 		load = task_h_load(p);
7366 
7367 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7368 			goto next;
7369 
7370 		if ((load / 2) > env->imbalance)
7371 			goto next;
7372 
7373 		detach_task(p, env);
7374 		list_add(&p->se.group_node, &env->tasks);
7375 
7376 		detached++;
7377 		env->imbalance -= load;
7378 
7379 #ifdef CONFIG_PREEMPT
7380 		/*
7381 		 * NEWIDLE balancing is a source of latency, so preemptible
7382 		 * kernels will stop after the first task is detached to minimize
7383 		 * the critical section.
7384 		 */
7385 		if (env->idle == CPU_NEWLY_IDLE)
7386 			break;
7387 #endif
7388 
7389 		/*
7390 		 * We only want to steal up to the prescribed amount of
7391 		 * runnable load.
7392 		 */
7393 		if (env->imbalance <= 0)
7394 			break;
7395 
7396 		continue;
7397 next:
7398 		list_move(&p->se.group_node, tasks);
7399 	}
7400 
7401 	/*
7402 	 * Right now, this is one of only two places we collect this stat
7403 	 * so we can safely collect detach_one_task() stats here rather
7404 	 * than inside detach_one_task().
7405 	 */
7406 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7407 
7408 	return detached;
7409 }
7410 
7411 /*
7412  * attach_task() -- attach the task detached by detach_task() to its new rq.
7413  */
7414 static void attach_task(struct rq *rq, struct task_struct *p)
7415 {
7416 	lockdep_assert_held(&rq->lock);
7417 
7418 	BUG_ON(task_rq(p) != rq);
7419 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7420 	check_preempt_curr(rq, p, 0);
7421 }
7422 
7423 /*
7424  * attach_one_task() -- attaches the task returned from detach_one_task() to
7425  * its new rq.
7426  */
7427 static void attach_one_task(struct rq *rq, struct task_struct *p)
7428 {
7429 	struct rq_flags rf;
7430 
7431 	rq_lock(rq, &rf);
7432 	update_rq_clock(rq);
7433 	attach_task(rq, p);
7434 	rq_unlock(rq, &rf);
7435 }
7436 
7437 /*
7438  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7439  * new rq.
7440  */
7441 static void attach_tasks(struct lb_env *env)
7442 {
7443 	struct list_head *tasks = &env->tasks;
7444 	struct task_struct *p;
7445 	struct rq_flags rf;
7446 
7447 	rq_lock(env->dst_rq, &rf);
7448 	update_rq_clock(env->dst_rq);
7449 
7450 	while (!list_empty(tasks)) {
7451 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7452 		list_del_init(&p->se.group_node);
7453 
7454 		attach_task(env->dst_rq, p);
7455 	}
7456 
7457 	rq_unlock(env->dst_rq, &rf);
7458 }
7459 
7460 #ifdef CONFIG_NO_HZ_COMMON
7461 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7462 {
7463 	if (cfs_rq->avg.load_avg)
7464 		return true;
7465 
7466 	if (cfs_rq->avg.util_avg)
7467 		return true;
7468 
7469 	return false;
7470 }
7471 
7472 static inline bool others_have_blocked(struct rq *rq)
7473 {
7474 	if (READ_ONCE(rq->avg_rt.util_avg))
7475 		return true;
7476 
7477 	if (READ_ONCE(rq->avg_dl.util_avg))
7478 		return true;
7479 
7480 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7481 	if (READ_ONCE(rq->avg_irq.util_avg))
7482 		return true;
7483 #endif
7484 
7485 	return false;
7486 }
7487 
7488 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7489 {
7490 	rq->last_blocked_load_update_tick = jiffies;
7491 
7492 	if (!has_blocked)
7493 		rq->has_blocked_load = 0;
7494 }
7495 #else
7496 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7497 static inline bool others_have_blocked(struct rq *rq) { return false; }
7498 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7499 #endif
7500 
7501 #ifdef CONFIG_FAIR_GROUP_SCHED
7502 
7503 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7504 {
7505 	if (cfs_rq->load.weight)
7506 		return false;
7507 
7508 	if (cfs_rq->avg.load_sum)
7509 		return false;
7510 
7511 	if (cfs_rq->avg.util_sum)
7512 		return false;
7513 
7514 	if (cfs_rq->avg.runnable_load_sum)
7515 		return false;
7516 
7517 	return true;
7518 }
7519 
7520 static void update_blocked_averages(int cpu)
7521 {
7522 	struct rq *rq = cpu_rq(cpu);
7523 	struct cfs_rq *cfs_rq, *pos;
7524 	const struct sched_class *curr_class;
7525 	struct rq_flags rf;
7526 	bool done = true;
7527 
7528 	rq_lock_irqsave(rq, &rf);
7529 	update_rq_clock(rq);
7530 
7531 	/*
7532 	 * Iterates the task_group tree in a bottom up fashion, see
7533 	 * list_add_leaf_cfs_rq() for details.
7534 	 */
7535 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7536 		struct sched_entity *se;
7537 
7538 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq))
7539 			update_tg_load_avg(cfs_rq, 0);
7540 
7541 		/* Propagate pending load changes to the parent, if any: */
7542 		se = cfs_rq->tg->se[cpu];
7543 		if (se && !skip_blocked_update(se))
7544 			update_load_avg(cfs_rq_of(se), se, 0);
7545 
7546 		/*
7547 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7548 		 * decayed cfs_rqs linger on the list.
7549 		 */
7550 		if (cfs_rq_is_decayed(cfs_rq))
7551 			list_del_leaf_cfs_rq(cfs_rq);
7552 
7553 		/* Don't need periodic decay once load/util_avg are null */
7554 		if (cfs_rq_has_blocked(cfs_rq))
7555 			done = false;
7556 	}
7557 
7558 	curr_class = rq->curr->sched_class;
7559 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7560 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
7561 	update_irq_load_avg(rq, 0);
7562 	/* Don't need periodic decay once load/util_avg are null */
7563 	if (others_have_blocked(rq))
7564 		done = false;
7565 
7566 	update_blocked_load_status(rq, !done);
7567 	rq_unlock_irqrestore(rq, &rf);
7568 }
7569 
7570 /*
7571  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7572  * This needs to be done in a top-down fashion because the load of a child
7573  * group is a fraction of its parents load.
7574  */
7575 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7576 {
7577 	struct rq *rq = rq_of(cfs_rq);
7578 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7579 	unsigned long now = jiffies;
7580 	unsigned long load;
7581 
7582 	if (cfs_rq->last_h_load_update == now)
7583 		return;
7584 
7585 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
7586 	for_each_sched_entity(se) {
7587 		cfs_rq = cfs_rq_of(se);
7588 		WRITE_ONCE(cfs_rq->h_load_next, se);
7589 		if (cfs_rq->last_h_load_update == now)
7590 			break;
7591 	}
7592 
7593 	if (!se) {
7594 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7595 		cfs_rq->last_h_load_update = now;
7596 	}
7597 
7598 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7599 		load = cfs_rq->h_load;
7600 		load = div64_ul(load * se->avg.load_avg,
7601 			cfs_rq_load_avg(cfs_rq) + 1);
7602 		cfs_rq = group_cfs_rq(se);
7603 		cfs_rq->h_load = load;
7604 		cfs_rq->last_h_load_update = now;
7605 	}
7606 }
7607 
7608 static unsigned long task_h_load(struct task_struct *p)
7609 {
7610 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7611 
7612 	update_cfs_rq_h_load(cfs_rq);
7613 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7614 			cfs_rq_load_avg(cfs_rq) + 1);
7615 }
7616 #else
7617 static inline void update_blocked_averages(int cpu)
7618 {
7619 	struct rq *rq = cpu_rq(cpu);
7620 	struct cfs_rq *cfs_rq = &rq->cfs;
7621 	const struct sched_class *curr_class;
7622 	struct rq_flags rf;
7623 
7624 	rq_lock_irqsave(rq, &rf);
7625 	update_rq_clock(rq);
7626 	update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7627 
7628 	curr_class = rq->curr->sched_class;
7629 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7630 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
7631 	update_irq_load_avg(rq, 0);
7632 	update_blocked_load_status(rq, cfs_rq_has_blocked(cfs_rq) || others_have_blocked(rq));
7633 	rq_unlock_irqrestore(rq, &rf);
7634 }
7635 
7636 static unsigned long task_h_load(struct task_struct *p)
7637 {
7638 	return p->se.avg.load_avg;
7639 }
7640 #endif
7641 
7642 /********** Helpers for find_busiest_group ************************/
7643 
7644 /*
7645  * sg_lb_stats - stats of a sched_group required for load_balancing
7646  */
7647 struct sg_lb_stats {
7648 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7649 	unsigned long group_load; /* Total load over the CPUs of the group */
7650 	unsigned long load_per_task;
7651 	unsigned long group_capacity;
7652 	unsigned long group_util; /* Total utilization of the group */
7653 	unsigned int sum_nr_running; /* Nr tasks running in the group */
7654 	unsigned int idle_cpus;
7655 	unsigned int group_weight;
7656 	enum group_type group_type;
7657 	int group_no_capacity;
7658 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
7659 #ifdef CONFIG_NUMA_BALANCING
7660 	unsigned int nr_numa_running;
7661 	unsigned int nr_preferred_running;
7662 #endif
7663 };
7664 
7665 /*
7666  * sd_lb_stats - Structure to store the statistics of a sched_domain
7667  *		 during load balancing.
7668  */
7669 struct sd_lb_stats {
7670 	struct sched_group *busiest;	/* Busiest group in this sd */
7671 	struct sched_group *local;	/* Local group in this sd */
7672 	unsigned long total_running;
7673 	unsigned long total_load;	/* Total load of all groups in sd */
7674 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7675 	unsigned long avg_load;	/* Average load across all groups in sd */
7676 
7677 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7678 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7679 };
7680 
7681 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7682 {
7683 	/*
7684 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7685 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7686 	 * We must however clear busiest_stat::avg_load because
7687 	 * update_sd_pick_busiest() reads this before assignment.
7688 	 */
7689 	*sds = (struct sd_lb_stats){
7690 		.busiest = NULL,
7691 		.local = NULL,
7692 		.total_running = 0UL,
7693 		.total_load = 0UL,
7694 		.total_capacity = 0UL,
7695 		.busiest_stat = {
7696 			.avg_load = 0UL,
7697 			.sum_nr_running = 0,
7698 			.group_type = group_other,
7699 		},
7700 	};
7701 }
7702 
7703 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7704 {
7705 	struct rq *rq = cpu_rq(cpu);
7706 	unsigned long max = arch_scale_cpu_capacity(cpu);
7707 	unsigned long used, free;
7708 	unsigned long irq;
7709 
7710 	irq = cpu_util_irq(rq);
7711 
7712 	if (unlikely(irq >= max))
7713 		return 1;
7714 
7715 	used = READ_ONCE(rq->avg_rt.util_avg);
7716 	used += READ_ONCE(rq->avg_dl.util_avg);
7717 
7718 	if (unlikely(used >= max))
7719 		return 1;
7720 
7721 	free = max - used;
7722 
7723 	return scale_irq_capacity(free, irq, max);
7724 }
7725 
7726 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7727 {
7728 	unsigned long capacity = scale_rt_capacity(sd, cpu);
7729 	struct sched_group *sdg = sd->groups;
7730 
7731 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
7732 
7733 	if (!capacity)
7734 		capacity = 1;
7735 
7736 	cpu_rq(cpu)->cpu_capacity = capacity;
7737 	sdg->sgc->capacity = capacity;
7738 	sdg->sgc->min_capacity = capacity;
7739 	sdg->sgc->max_capacity = capacity;
7740 }
7741 
7742 void update_group_capacity(struct sched_domain *sd, int cpu)
7743 {
7744 	struct sched_domain *child = sd->child;
7745 	struct sched_group *group, *sdg = sd->groups;
7746 	unsigned long capacity, min_capacity, max_capacity;
7747 	unsigned long interval;
7748 
7749 	interval = msecs_to_jiffies(sd->balance_interval);
7750 	interval = clamp(interval, 1UL, max_load_balance_interval);
7751 	sdg->sgc->next_update = jiffies + interval;
7752 
7753 	if (!child) {
7754 		update_cpu_capacity(sd, cpu);
7755 		return;
7756 	}
7757 
7758 	capacity = 0;
7759 	min_capacity = ULONG_MAX;
7760 	max_capacity = 0;
7761 
7762 	if (child->flags & SD_OVERLAP) {
7763 		/*
7764 		 * SD_OVERLAP domains cannot assume that child groups
7765 		 * span the current group.
7766 		 */
7767 
7768 		for_each_cpu(cpu, sched_group_span(sdg)) {
7769 			struct sched_group_capacity *sgc;
7770 			struct rq *rq = cpu_rq(cpu);
7771 
7772 			/*
7773 			 * build_sched_domains() -> init_sched_groups_capacity()
7774 			 * gets here before we've attached the domains to the
7775 			 * runqueues.
7776 			 *
7777 			 * Use capacity_of(), which is set irrespective of domains
7778 			 * in update_cpu_capacity().
7779 			 *
7780 			 * This avoids capacity from being 0 and
7781 			 * causing divide-by-zero issues on boot.
7782 			 */
7783 			if (unlikely(!rq->sd)) {
7784 				capacity += capacity_of(cpu);
7785 			} else {
7786 				sgc = rq->sd->groups->sgc;
7787 				capacity += sgc->capacity;
7788 			}
7789 
7790 			min_capacity = min(capacity, min_capacity);
7791 			max_capacity = max(capacity, max_capacity);
7792 		}
7793 	} else  {
7794 		/*
7795 		 * !SD_OVERLAP domains can assume that child groups
7796 		 * span the current group.
7797 		 */
7798 
7799 		group = child->groups;
7800 		do {
7801 			struct sched_group_capacity *sgc = group->sgc;
7802 
7803 			capacity += sgc->capacity;
7804 			min_capacity = min(sgc->min_capacity, min_capacity);
7805 			max_capacity = max(sgc->max_capacity, max_capacity);
7806 			group = group->next;
7807 		} while (group != child->groups);
7808 	}
7809 
7810 	sdg->sgc->capacity = capacity;
7811 	sdg->sgc->min_capacity = min_capacity;
7812 	sdg->sgc->max_capacity = max_capacity;
7813 }
7814 
7815 /*
7816  * Check whether the capacity of the rq has been noticeably reduced by side
7817  * activity. The imbalance_pct is used for the threshold.
7818  * Return true is the capacity is reduced
7819  */
7820 static inline int
7821 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7822 {
7823 	return ((rq->cpu_capacity * sd->imbalance_pct) <
7824 				(rq->cpu_capacity_orig * 100));
7825 }
7826 
7827 /*
7828  * Check whether a rq has a misfit task and if it looks like we can actually
7829  * help that task: we can migrate the task to a CPU of higher capacity, or
7830  * the task's current CPU is heavily pressured.
7831  */
7832 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
7833 {
7834 	return rq->misfit_task_load &&
7835 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
7836 		 check_cpu_capacity(rq, sd));
7837 }
7838 
7839 /*
7840  * Group imbalance indicates (and tries to solve) the problem where balancing
7841  * groups is inadequate due to ->cpus_ptr constraints.
7842  *
7843  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7844  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7845  * Something like:
7846  *
7847  *	{ 0 1 2 3 } { 4 5 6 7 }
7848  *	        *     * * *
7849  *
7850  * If we were to balance group-wise we'd place two tasks in the first group and
7851  * two tasks in the second group. Clearly this is undesired as it will overload
7852  * cpu 3 and leave one of the CPUs in the second group unused.
7853  *
7854  * The current solution to this issue is detecting the skew in the first group
7855  * by noticing the lower domain failed to reach balance and had difficulty
7856  * moving tasks due to affinity constraints.
7857  *
7858  * When this is so detected; this group becomes a candidate for busiest; see
7859  * update_sd_pick_busiest(). And calculate_imbalance() and
7860  * find_busiest_group() avoid some of the usual balance conditions to allow it
7861  * to create an effective group imbalance.
7862  *
7863  * This is a somewhat tricky proposition since the next run might not find the
7864  * group imbalance and decide the groups need to be balanced again. A most
7865  * subtle and fragile situation.
7866  */
7867 
7868 static inline int sg_imbalanced(struct sched_group *group)
7869 {
7870 	return group->sgc->imbalance;
7871 }
7872 
7873 /*
7874  * group_has_capacity returns true if the group has spare capacity that could
7875  * be used by some tasks.
7876  * We consider that a group has spare capacity if the  * number of task is
7877  * smaller than the number of CPUs or if the utilization is lower than the
7878  * available capacity for CFS tasks.
7879  * For the latter, we use a threshold to stabilize the state, to take into
7880  * account the variance of the tasks' load and to return true if the available
7881  * capacity in meaningful for the load balancer.
7882  * As an example, an available capacity of 1% can appear but it doesn't make
7883  * any benefit for the load balance.
7884  */
7885 static inline bool
7886 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7887 {
7888 	if (sgs->sum_nr_running < sgs->group_weight)
7889 		return true;
7890 
7891 	if ((sgs->group_capacity * 100) >
7892 			(sgs->group_util * env->sd->imbalance_pct))
7893 		return true;
7894 
7895 	return false;
7896 }
7897 
7898 /*
7899  *  group_is_overloaded returns true if the group has more tasks than it can
7900  *  handle.
7901  *  group_is_overloaded is not equals to !group_has_capacity because a group
7902  *  with the exact right number of tasks, has no more spare capacity but is not
7903  *  overloaded so both group_has_capacity and group_is_overloaded return
7904  *  false.
7905  */
7906 static inline bool
7907 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7908 {
7909 	if (sgs->sum_nr_running <= sgs->group_weight)
7910 		return false;
7911 
7912 	if ((sgs->group_capacity * 100) <
7913 			(sgs->group_util * env->sd->imbalance_pct))
7914 		return true;
7915 
7916 	return false;
7917 }
7918 
7919 /*
7920  * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
7921  * per-CPU capacity than sched_group ref.
7922  */
7923 static inline bool
7924 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7925 {
7926 	return sg->sgc->min_capacity * capacity_margin <
7927 						ref->sgc->min_capacity * 1024;
7928 }
7929 
7930 /*
7931  * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
7932  * per-CPU capacity_orig than sched_group ref.
7933  */
7934 static inline bool
7935 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7936 {
7937 	return sg->sgc->max_capacity * capacity_margin <
7938 						ref->sgc->max_capacity * 1024;
7939 }
7940 
7941 static inline enum
7942 group_type group_classify(struct sched_group *group,
7943 			  struct sg_lb_stats *sgs)
7944 {
7945 	if (sgs->group_no_capacity)
7946 		return group_overloaded;
7947 
7948 	if (sg_imbalanced(group))
7949 		return group_imbalanced;
7950 
7951 	if (sgs->group_misfit_task_load)
7952 		return group_misfit_task;
7953 
7954 	return group_other;
7955 }
7956 
7957 static bool update_nohz_stats(struct rq *rq, bool force)
7958 {
7959 #ifdef CONFIG_NO_HZ_COMMON
7960 	unsigned int cpu = rq->cpu;
7961 
7962 	if (!rq->has_blocked_load)
7963 		return false;
7964 
7965 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
7966 		return false;
7967 
7968 	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
7969 		return true;
7970 
7971 	update_blocked_averages(cpu);
7972 
7973 	return rq->has_blocked_load;
7974 #else
7975 	return false;
7976 #endif
7977 }
7978 
7979 /**
7980  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7981  * @env: The load balancing environment.
7982  * @group: sched_group whose statistics are to be updated.
7983  * @sgs: variable to hold the statistics for this group.
7984  * @sg_status: Holds flag indicating the status of the sched_group
7985  */
7986 static inline void update_sg_lb_stats(struct lb_env *env,
7987 				      struct sched_group *group,
7988 				      struct sg_lb_stats *sgs,
7989 				      int *sg_status)
7990 {
7991 	int i, nr_running;
7992 
7993 	memset(sgs, 0, sizeof(*sgs));
7994 
7995 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7996 		struct rq *rq = cpu_rq(i);
7997 
7998 		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
7999 			env->flags |= LBF_NOHZ_AGAIN;
8000 
8001 		sgs->group_load += cpu_runnable_load(rq);
8002 		sgs->group_util += cpu_util(i);
8003 		sgs->sum_nr_running += rq->cfs.h_nr_running;
8004 
8005 		nr_running = rq->nr_running;
8006 		if (nr_running > 1)
8007 			*sg_status |= SG_OVERLOAD;
8008 
8009 		if (cpu_overutilized(i))
8010 			*sg_status |= SG_OVERUTILIZED;
8011 
8012 #ifdef CONFIG_NUMA_BALANCING
8013 		sgs->nr_numa_running += rq->nr_numa_running;
8014 		sgs->nr_preferred_running += rq->nr_preferred_running;
8015 #endif
8016 		/*
8017 		 * No need to call idle_cpu() if nr_running is not 0
8018 		 */
8019 		if (!nr_running && idle_cpu(i))
8020 			sgs->idle_cpus++;
8021 
8022 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8023 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8024 			sgs->group_misfit_task_load = rq->misfit_task_load;
8025 			*sg_status |= SG_OVERLOAD;
8026 		}
8027 	}
8028 
8029 	/* Adjust by relative CPU capacity of the group */
8030 	sgs->group_capacity = group->sgc->capacity;
8031 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
8032 
8033 	if (sgs->sum_nr_running)
8034 		sgs->load_per_task = sgs->group_load / sgs->sum_nr_running;
8035 
8036 	sgs->group_weight = group->group_weight;
8037 
8038 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
8039 	sgs->group_type = group_classify(group, sgs);
8040 }
8041 
8042 /**
8043  * update_sd_pick_busiest - return 1 on busiest group
8044  * @env: The load balancing environment.
8045  * @sds: sched_domain statistics
8046  * @sg: sched_group candidate to be checked for being the busiest
8047  * @sgs: sched_group statistics
8048  *
8049  * Determine if @sg is a busier group than the previously selected
8050  * busiest group.
8051  *
8052  * Return: %true if @sg is a busier group than the previously selected
8053  * busiest group. %false otherwise.
8054  */
8055 static bool update_sd_pick_busiest(struct lb_env *env,
8056 				   struct sd_lb_stats *sds,
8057 				   struct sched_group *sg,
8058 				   struct sg_lb_stats *sgs)
8059 {
8060 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8061 
8062 	/*
8063 	 * Don't try to pull misfit tasks we can't help.
8064 	 * We can use max_capacity here as reduction in capacity on some
8065 	 * CPUs in the group should either be possible to resolve
8066 	 * internally or be covered by avg_load imbalance (eventually).
8067 	 */
8068 	if (sgs->group_type == group_misfit_task &&
8069 	    (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8070 	     !group_has_capacity(env, &sds->local_stat)))
8071 		return false;
8072 
8073 	if (sgs->group_type > busiest->group_type)
8074 		return true;
8075 
8076 	if (sgs->group_type < busiest->group_type)
8077 		return false;
8078 
8079 	if (sgs->avg_load <= busiest->avg_load)
8080 		return false;
8081 
8082 	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8083 		goto asym_packing;
8084 
8085 	/*
8086 	 * Candidate sg has no more than one task per CPU and
8087 	 * has higher per-CPU capacity. Migrating tasks to less
8088 	 * capable CPUs may harm throughput. Maximize throughput,
8089 	 * power/energy consequences are not considered.
8090 	 */
8091 	if (sgs->sum_nr_running <= sgs->group_weight &&
8092 	    group_smaller_min_cpu_capacity(sds->local, sg))
8093 		return false;
8094 
8095 	/*
8096 	 * If we have more than one misfit sg go with the biggest misfit.
8097 	 */
8098 	if (sgs->group_type == group_misfit_task &&
8099 	    sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8100 		return false;
8101 
8102 asym_packing:
8103 	/* This is the busiest node in its class. */
8104 	if (!(env->sd->flags & SD_ASYM_PACKING))
8105 		return true;
8106 
8107 	/* No ASYM_PACKING if target CPU is already busy */
8108 	if (env->idle == CPU_NOT_IDLE)
8109 		return true;
8110 	/*
8111 	 * ASYM_PACKING needs to move all the work to the highest
8112 	 * prority CPUs in the group, therefore mark all groups
8113 	 * of lower priority than ourself as busy.
8114 	 */
8115 	if (sgs->sum_nr_running &&
8116 	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
8117 		if (!sds->busiest)
8118 			return true;
8119 
8120 		/* Prefer to move from lowest priority CPU's work */
8121 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8122 				      sg->asym_prefer_cpu))
8123 			return true;
8124 	}
8125 
8126 	return false;
8127 }
8128 
8129 #ifdef CONFIG_NUMA_BALANCING
8130 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8131 {
8132 	if (sgs->sum_nr_running > sgs->nr_numa_running)
8133 		return regular;
8134 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
8135 		return remote;
8136 	return all;
8137 }
8138 
8139 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8140 {
8141 	if (rq->nr_running > rq->nr_numa_running)
8142 		return regular;
8143 	if (rq->nr_running > rq->nr_preferred_running)
8144 		return remote;
8145 	return all;
8146 }
8147 #else
8148 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8149 {
8150 	return all;
8151 }
8152 
8153 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8154 {
8155 	return regular;
8156 }
8157 #endif /* CONFIG_NUMA_BALANCING */
8158 
8159 /**
8160  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8161  * @env: The load balancing environment.
8162  * @sds: variable to hold the statistics for this sched_domain.
8163  */
8164 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8165 {
8166 	struct sched_domain *child = env->sd->child;
8167 	struct sched_group *sg = env->sd->groups;
8168 	struct sg_lb_stats *local = &sds->local_stat;
8169 	struct sg_lb_stats tmp_sgs;
8170 	bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8171 	int sg_status = 0;
8172 
8173 #ifdef CONFIG_NO_HZ_COMMON
8174 	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8175 		env->flags |= LBF_NOHZ_STATS;
8176 #endif
8177 
8178 	do {
8179 		struct sg_lb_stats *sgs = &tmp_sgs;
8180 		int local_group;
8181 
8182 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8183 		if (local_group) {
8184 			sds->local = sg;
8185 			sgs = local;
8186 
8187 			if (env->idle != CPU_NEWLY_IDLE ||
8188 			    time_after_eq(jiffies, sg->sgc->next_update))
8189 				update_group_capacity(env->sd, env->dst_cpu);
8190 		}
8191 
8192 		update_sg_lb_stats(env, sg, sgs, &sg_status);
8193 
8194 		if (local_group)
8195 			goto next_group;
8196 
8197 		/*
8198 		 * In case the child domain prefers tasks go to siblings
8199 		 * first, lower the sg capacity so that we'll try
8200 		 * and move all the excess tasks away. We lower the capacity
8201 		 * of a group only if the local group has the capacity to fit
8202 		 * these excess tasks. The extra check prevents the case where
8203 		 * you always pull from the heaviest group when it is already
8204 		 * under-utilized (possible with a large weight task outweighs
8205 		 * the tasks on the system).
8206 		 */
8207 		if (prefer_sibling && sds->local &&
8208 		    group_has_capacity(env, local) &&
8209 		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8210 			sgs->group_no_capacity = 1;
8211 			sgs->group_type = group_classify(sg, sgs);
8212 		}
8213 
8214 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8215 			sds->busiest = sg;
8216 			sds->busiest_stat = *sgs;
8217 		}
8218 
8219 next_group:
8220 		/* Now, start updating sd_lb_stats */
8221 		sds->total_running += sgs->sum_nr_running;
8222 		sds->total_load += sgs->group_load;
8223 		sds->total_capacity += sgs->group_capacity;
8224 
8225 		sg = sg->next;
8226 	} while (sg != env->sd->groups);
8227 
8228 #ifdef CONFIG_NO_HZ_COMMON
8229 	if ((env->flags & LBF_NOHZ_AGAIN) &&
8230 	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8231 
8232 		WRITE_ONCE(nohz.next_blocked,
8233 			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8234 	}
8235 #endif
8236 
8237 	if (env->sd->flags & SD_NUMA)
8238 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8239 
8240 	if (!env->sd->parent) {
8241 		struct root_domain *rd = env->dst_rq->rd;
8242 
8243 		/* update overload indicator if we are at root domain */
8244 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8245 
8246 		/* Update over-utilization (tipping point, U >= 0) indicator */
8247 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8248 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
8249 	} else if (sg_status & SG_OVERUTILIZED) {
8250 		struct root_domain *rd = env->dst_rq->rd;
8251 
8252 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8253 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
8254 	}
8255 }
8256 
8257 /**
8258  * check_asym_packing - Check to see if the group is packed into the
8259  *			sched domain.
8260  *
8261  * This is primarily intended to used at the sibling level.  Some
8262  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
8263  * case of POWER7, it can move to lower SMT modes only when higher
8264  * threads are idle.  When in lower SMT modes, the threads will
8265  * perform better since they share less core resources.  Hence when we
8266  * have idle threads, we want them to be the higher ones.
8267  *
8268  * This packing function is run on idle threads.  It checks to see if
8269  * the busiest CPU in this domain (core in the P7 case) has a higher
8270  * CPU number than the packing function is being run on.  Here we are
8271  * assuming lower CPU number will be equivalent to lower a SMT thread
8272  * number.
8273  *
8274  * Return: 1 when packing is required and a task should be moved to
8275  * this CPU.  The amount of the imbalance is returned in env->imbalance.
8276  *
8277  * @env: The load balancing environment.
8278  * @sds: Statistics of the sched_domain which is to be packed
8279  */
8280 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8281 {
8282 	int busiest_cpu;
8283 
8284 	if (!(env->sd->flags & SD_ASYM_PACKING))
8285 		return 0;
8286 
8287 	if (env->idle == CPU_NOT_IDLE)
8288 		return 0;
8289 
8290 	if (!sds->busiest)
8291 		return 0;
8292 
8293 	busiest_cpu = sds->busiest->asym_prefer_cpu;
8294 	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8295 		return 0;
8296 
8297 	env->imbalance = sds->busiest_stat.group_load;
8298 
8299 	return 1;
8300 }
8301 
8302 /**
8303  * fix_small_imbalance - Calculate the minor imbalance that exists
8304  *			amongst the groups of a sched_domain, during
8305  *			load balancing.
8306  * @env: The load balancing environment.
8307  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8308  */
8309 static inline
8310 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8311 {
8312 	unsigned long tmp, capa_now = 0, capa_move = 0;
8313 	unsigned int imbn = 2;
8314 	unsigned long scaled_busy_load_per_task;
8315 	struct sg_lb_stats *local, *busiest;
8316 
8317 	local = &sds->local_stat;
8318 	busiest = &sds->busiest_stat;
8319 
8320 	if (!local->sum_nr_running)
8321 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8322 	else if (busiest->load_per_task > local->load_per_task)
8323 		imbn = 1;
8324 
8325 	scaled_busy_load_per_task =
8326 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8327 		busiest->group_capacity;
8328 
8329 	if (busiest->avg_load + scaled_busy_load_per_task >=
8330 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
8331 		env->imbalance = busiest->load_per_task;
8332 		return;
8333 	}
8334 
8335 	/*
8336 	 * OK, we don't have enough imbalance to justify moving tasks,
8337 	 * however we may be able to increase total CPU capacity used by
8338 	 * moving them.
8339 	 */
8340 
8341 	capa_now += busiest->group_capacity *
8342 			min(busiest->load_per_task, busiest->avg_load);
8343 	capa_now += local->group_capacity *
8344 			min(local->load_per_task, local->avg_load);
8345 	capa_now /= SCHED_CAPACITY_SCALE;
8346 
8347 	/* Amount of load we'd subtract */
8348 	if (busiest->avg_load > scaled_busy_load_per_task) {
8349 		capa_move += busiest->group_capacity *
8350 			    min(busiest->load_per_task,
8351 				busiest->avg_load - scaled_busy_load_per_task);
8352 	}
8353 
8354 	/* Amount of load we'd add */
8355 	if (busiest->avg_load * busiest->group_capacity <
8356 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8357 		tmp = (busiest->avg_load * busiest->group_capacity) /
8358 		      local->group_capacity;
8359 	} else {
8360 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8361 		      local->group_capacity;
8362 	}
8363 	capa_move += local->group_capacity *
8364 		    min(local->load_per_task, local->avg_load + tmp);
8365 	capa_move /= SCHED_CAPACITY_SCALE;
8366 
8367 	/* Move if we gain throughput */
8368 	if (capa_move > capa_now)
8369 		env->imbalance = busiest->load_per_task;
8370 }
8371 
8372 /**
8373  * calculate_imbalance - Calculate the amount of imbalance present within the
8374  *			 groups of a given sched_domain during load balance.
8375  * @env: load balance environment
8376  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8377  */
8378 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8379 {
8380 	unsigned long max_pull, load_above_capacity = ~0UL;
8381 	struct sg_lb_stats *local, *busiest;
8382 
8383 	local = &sds->local_stat;
8384 	busiest = &sds->busiest_stat;
8385 
8386 	if (busiest->group_type == group_imbalanced) {
8387 		/*
8388 		 * In the group_imb case we cannot rely on group-wide averages
8389 		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8390 		 */
8391 		busiest->load_per_task =
8392 			min(busiest->load_per_task, sds->avg_load);
8393 	}
8394 
8395 	/*
8396 	 * Avg load of busiest sg can be less and avg load of local sg can
8397 	 * be greater than avg load across all sgs of sd because avg load
8398 	 * factors in sg capacity and sgs with smaller group_type are
8399 	 * skipped when updating the busiest sg:
8400 	 */
8401 	if (busiest->group_type != group_misfit_task &&
8402 	    (busiest->avg_load <= sds->avg_load ||
8403 	     local->avg_load >= sds->avg_load)) {
8404 		env->imbalance = 0;
8405 		return fix_small_imbalance(env, sds);
8406 	}
8407 
8408 	/*
8409 	 * If there aren't any idle CPUs, avoid creating some.
8410 	 */
8411 	if (busiest->group_type == group_overloaded &&
8412 	    local->group_type   == group_overloaded) {
8413 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8414 		if (load_above_capacity > busiest->group_capacity) {
8415 			load_above_capacity -= busiest->group_capacity;
8416 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8417 			load_above_capacity /= busiest->group_capacity;
8418 		} else
8419 			load_above_capacity = ~0UL;
8420 	}
8421 
8422 	/*
8423 	 * We're trying to get all the CPUs to the average_load, so we don't
8424 	 * want to push ourselves above the average load, nor do we wish to
8425 	 * reduce the max loaded CPU below the average load. At the same time,
8426 	 * we also don't want to reduce the group load below the group
8427 	 * capacity. Thus we look for the minimum possible imbalance.
8428 	 */
8429 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8430 
8431 	/* How much load to actually move to equalise the imbalance */
8432 	env->imbalance = min(
8433 		max_pull * busiest->group_capacity,
8434 		(sds->avg_load - local->avg_load) * local->group_capacity
8435 	) / SCHED_CAPACITY_SCALE;
8436 
8437 	/* Boost imbalance to allow misfit task to be balanced. */
8438 	if (busiest->group_type == group_misfit_task) {
8439 		env->imbalance = max_t(long, env->imbalance,
8440 				       busiest->group_misfit_task_load);
8441 	}
8442 
8443 	/*
8444 	 * if *imbalance is less than the average load per runnable task
8445 	 * there is no guarantee that any tasks will be moved so we'll have
8446 	 * a think about bumping its value to force at least one task to be
8447 	 * moved
8448 	 */
8449 	if (env->imbalance < busiest->load_per_task)
8450 		return fix_small_imbalance(env, sds);
8451 }
8452 
8453 /******* find_busiest_group() helpers end here *********************/
8454 
8455 /**
8456  * find_busiest_group - Returns the busiest group within the sched_domain
8457  * if there is an imbalance.
8458  *
8459  * Also calculates the amount of runnable load which should be moved
8460  * to restore balance.
8461  *
8462  * @env: The load balancing environment.
8463  *
8464  * Return:	- The busiest group if imbalance exists.
8465  */
8466 static struct sched_group *find_busiest_group(struct lb_env *env)
8467 {
8468 	struct sg_lb_stats *local, *busiest;
8469 	struct sd_lb_stats sds;
8470 
8471 	init_sd_lb_stats(&sds);
8472 
8473 	/*
8474 	 * Compute the various statistics relavent for load balancing at
8475 	 * this level.
8476 	 */
8477 	update_sd_lb_stats(env, &sds);
8478 
8479 	if (sched_energy_enabled()) {
8480 		struct root_domain *rd = env->dst_rq->rd;
8481 
8482 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8483 			goto out_balanced;
8484 	}
8485 
8486 	local = &sds.local_stat;
8487 	busiest = &sds.busiest_stat;
8488 
8489 	/* ASYM feature bypasses nice load balance check */
8490 	if (check_asym_packing(env, &sds))
8491 		return sds.busiest;
8492 
8493 	/* There is no busy sibling group to pull tasks from */
8494 	if (!sds.busiest || busiest->sum_nr_running == 0)
8495 		goto out_balanced;
8496 
8497 	/* XXX broken for overlapping NUMA groups */
8498 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8499 						/ sds.total_capacity;
8500 
8501 	/*
8502 	 * If the busiest group is imbalanced the below checks don't
8503 	 * work because they assume all things are equal, which typically
8504 	 * isn't true due to cpus_ptr constraints and the like.
8505 	 */
8506 	if (busiest->group_type == group_imbalanced)
8507 		goto force_balance;
8508 
8509 	/*
8510 	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8511 	 * capacities from resulting in underutilization due to avg_load.
8512 	 */
8513 	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8514 	    busiest->group_no_capacity)
8515 		goto force_balance;
8516 
8517 	/* Misfit tasks should be dealt with regardless of the avg load */
8518 	if (busiest->group_type == group_misfit_task)
8519 		goto force_balance;
8520 
8521 	/*
8522 	 * If the local group is busier than the selected busiest group
8523 	 * don't try and pull any tasks.
8524 	 */
8525 	if (local->avg_load >= busiest->avg_load)
8526 		goto out_balanced;
8527 
8528 	/*
8529 	 * Don't pull any tasks if this group is already above the domain
8530 	 * average load.
8531 	 */
8532 	if (local->avg_load >= sds.avg_load)
8533 		goto out_balanced;
8534 
8535 	if (env->idle == CPU_IDLE) {
8536 		/*
8537 		 * This CPU is idle. If the busiest group is not overloaded
8538 		 * and there is no imbalance between this and busiest group
8539 		 * wrt idle CPUs, it is balanced. The imbalance becomes
8540 		 * significant if the diff is greater than 1 otherwise we
8541 		 * might end up to just move the imbalance on another group
8542 		 */
8543 		if ((busiest->group_type != group_overloaded) &&
8544 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8545 			goto out_balanced;
8546 	} else {
8547 		/*
8548 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8549 		 * imbalance_pct to be conservative.
8550 		 */
8551 		if (100 * busiest->avg_load <=
8552 				env->sd->imbalance_pct * local->avg_load)
8553 			goto out_balanced;
8554 	}
8555 
8556 force_balance:
8557 	/* Looks like there is an imbalance. Compute it */
8558 	env->src_grp_type = busiest->group_type;
8559 	calculate_imbalance(env, &sds);
8560 	return env->imbalance ? sds.busiest : NULL;
8561 
8562 out_balanced:
8563 	env->imbalance = 0;
8564 	return NULL;
8565 }
8566 
8567 /*
8568  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8569  */
8570 static struct rq *find_busiest_queue(struct lb_env *env,
8571 				     struct sched_group *group)
8572 {
8573 	struct rq *busiest = NULL, *rq;
8574 	unsigned long busiest_load = 0, busiest_capacity = 1;
8575 	int i;
8576 
8577 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8578 		unsigned long capacity, load;
8579 		enum fbq_type rt;
8580 
8581 		rq = cpu_rq(i);
8582 		rt = fbq_classify_rq(rq);
8583 
8584 		/*
8585 		 * We classify groups/runqueues into three groups:
8586 		 *  - regular: there are !numa tasks
8587 		 *  - remote:  there are numa tasks that run on the 'wrong' node
8588 		 *  - all:     there is no distinction
8589 		 *
8590 		 * In order to avoid migrating ideally placed numa tasks,
8591 		 * ignore those when there's better options.
8592 		 *
8593 		 * If we ignore the actual busiest queue to migrate another
8594 		 * task, the next balance pass can still reduce the busiest
8595 		 * queue by moving tasks around inside the node.
8596 		 *
8597 		 * If we cannot move enough load due to this classification
8598 		 * the next pass will adjust the group classification and
8599 		 * allow migration of more tasks.
8600 		 *
8601 		 * Both cases only affect the total convergence complexity.
8602 		 */
8603 		if (rt > env->fbq_type)
8604 			continue;
8605 
8606 		/*
8607 		 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8608 		 * seek the "biggest" misfit task.
8609 		 */
8610 		if (env->src_grp_type == group_misfit_task) {
8611 			if (rq->misfit_task_load > busiest_load) {
8612 				busiest_load = rq->misfit_task_load;
8613 				busiest = rq;
8614 			}
8615 
8616 			continue;
8617 		}
8618 
8619 		capacity = capacity_of(i);
8620 
8621 		/*
8622 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8623 		 * eventually lead to active_balancing high->low capacity.
8624 		 * Higher per-CPU capacity is considered better than balancing
8625 		 * average load.
8626 		 */
8627 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8628 		    capacity_of(env->dst_cpu) < capacity &&
8629 		    rq->nr_running == 1)
8630 			continue;
8631 
8632 		load = cpu_runnable_load(rq);
8633 
8634 		/*
8635 		 * When comparing with imbalance, use cpu_runnable_load()
8636 		 * which is not scaled with the CPU capacity.
8637 		 */
8638 
8639 		if (rq->nr_running == 1 && load > env->imbalance &&
8640 		    !check_cpu_capacity(rq, env->sd))
8641 			continue;
8642 
8643 		/*
8644 		 * For the load comparisons with the other CPU's, consider
8645 		 * the cpu_runnable_load() scaled with the CPU capacity, so
8646 		 * that the load can be moved away from the CPU that is
8647 		 * potentially running at a lower capacity.
8648 		 *
8649 		 * Thus we're looking for max(load_i / capacity_i), crosswise
8650 		 * multiplication to rid ourselves of the division works out
8651 		 * to: load_i * capacity_j > load_j * capacity_i;  where j is
8652 		 * our previous maximum.
8653 		 */
8654 		if (load * busiest_capacity > busiest_load * capacity) {
8655 			busiest_load = load;
8656 			busiest_capacity = capacity;
8657 			busiest = rq;
8658 		}
8659 	}
8660 
8661 	return busiest;
8662 }
8663 
8664 /*
8665  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8666  * so long as it is large enough.
8667  */
8668 #define MAX_PINNED_INTERVAL	512
8669 
8670 static inline bool
8671 asym_active_balance(struct lb_env *env)
8672 {
8673 	/*
8674 	 * ASYM_PACKING needs to force migrate tasks from busy but
8675 	 * lower priority CPUs in order to pack all tasks in the
8676 	 * highest priority CPUs.
8677 	 */
8678 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
8679 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
8680 }
8681 
8682 static inline bool
8683 voluntary_active_balance(struct lb_env *env)
8684 {
8685 	struct sched_domain *sd = env->sd;
8686 
8687 	if (asym_active_balance(env))
8688 		return 1;
8689 
8690 	/*
8691 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8692 	 * It's worth migrating the task if the src_cpu's capacity is reduced
8693 	 * because of other sched_class or IRQs if more capacity stays
8694 	 * available on dst_cpu.
8695 	 */
8696 	if ((env->idle != CPU_NOT_IDLE) &&
8697 	    (env->src_rq->cfs.h_nr_running == 1)) {
8698 		if ((check_cpu_capacity(env->src_rq, sd)) &&
8699 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8700 			return 1;
8701 	}
8702 
8703 	if (env->src_grp_type == group_misfit_task)
8704 		return 1;
8705 
8706 	return 0;
8707 }
8708 
8709 static int need_active_balance(struct lb_env *env)
8710 {
8711 	struct sched_domain *sd = env->sd;
8712 
8713 	if (voluntary_active_balance(env))
8714 		return 1;
8715 
8716 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8717 }
8718 
8719 static int active_load_balance_cpu_stop(void *data);
8720 
8721 static int should_we_balance(struct lb_env *env)
8722 {
8723 	struct sched_group *sg = env->sd->groups;
8724 	int cpu, balance_cpu = -1;
8725 
8726 	/*
8727 	 * Ensure the balancing environment is consistent; can happen
8728 	 * when the softirq triggers 'during' hotplug.
8729 	 */
8730 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8731 		return 0;
8732 
8733 	/*
8734 	 * In the newly idle case, we will allow all the CPUs
8735 	 * to do the newly idle load balance.
8736 	 */
8737 	if (env->idle == CPU_NEWLY_IDLE)
8738 		return 1;
8739 
8740 	/* Try to find first idle CPU */
8741 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8742 		if (!idle_cpu(cpu))
8743 			continue;
8744 
8745 		balance_cpu = cpu;
8746 		break;
8747 	}
8748 
8749 	if (balance_cpu == -1)
8750 		balance_cpu = group_balance_cpu(sg);
8751 
8752 	/*
8753 	 * First idle CPU or the first CPU(busiest) in this sched group
8754 	 * is eligible for doing load balancing at this and above domains.
8755 	 */
8756 	return balance_cpu == env->dst_cpu;
8757 }
8758 
8759 /*
8760  * Check this_cpu to ensure it is balanced within domain. Attempt to move
8761  * tasks if there is an imbalance.
8762  */
8763 static int load_balance(int this_cpu, struct rq *this_rq,
8764 			struct sched_domain *sd, enum cpu_idle_type idle,
8765 			int *continue_balancing)
8766 {
8767 	int ld_moved, cur_ld_moved, active_balance = 0;
8768 	struct sched_domain *sd_parent = sd->parent;
8769 	struct sched_group *group;
8770 	struct rq *busiest;
8771 	struct rq_flags rf;
8772 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8773 
8774 	struct lb_env env = {
8775 		.sd		= sd,
8776 		.dst_cpu	= this_cpu,
8777 		.dst_rq		= this_rq,
8778 		.dst_grpmask    = sched_group_span(sd->groups),
8779 		.idle		= idle,
8780 		.loop_break	= sched_nr_migrate_break,
8781 		.cpus		= cpus,
8782 		.fbq_type	= all,
8783 		.tasks		= LIST_HEAD_INIT(env.tasks),
8784 	};
8785 
8786 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8787 
8788 	schedstat_inc(sd->lb_count[idle]);
8789 
8790 redo:
8791 	if (!should_we_balance(&env)) {
8792 		*continue_balancing = 0;
8793 		goto out_balanced;
8794 	}
8795 
8796 	group = find_busiest_group(&env);
8797 	if (!group) {
8798 		schedstat_inc(sd->lb_nobusyg[idle]);
8799 		goto out_balanced;
8800 	}
8801 
8802 	busiest = find_busiest_queue(&env, group);
8803 	if (!busiest) {
8804 		schedstat_inc(sd->lb_nobusyq[idle]);
8805 		goto out_balanced;
8806 	}
8807 
8808 	BUG_ON(busiest == env.dst_rq);
8809 
8810 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8811 
8812 	env.src_cpu = busiest->cpu;
8813 	env.src_rq = busiest;
8814 
8815 	ld_moved = 0;
8816 	if (busiest->nr_running > 1) {
8817 		/*
8818 		 * Attempt to move tasks. If find_busiest_group has found
8819 		 * an imbalance but busiest->nr_running <= 1, the group is
8820 		 * still unbalanced. ld_moved simply stays zero, so it is
8821 		 * correctly treated as an imbalance.
8822 		 */
8823 		env.flags |= LBF_ALL_PINNED;
8824 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8825 
8826 more_balance:
8827 		rq_lock_irqsave(busiest, &rf);
8828 		update_rq_clock(busiest);
8829 
8830 		/*
8831 		 * cur_ld_moved - load moved in current iteration
8832 		 * ld_moved     - cumulative load moved across iterations
8833 		 */
8834 		cur_ld_moved = detach_tasks(&env);
8835 
8836 		/*
8837 		 * We've detached some tasks from busiest_rq. Every
8838 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8839 		 * unlock busiest->lock, and we are able to be sure
8840 		 * that nobody can manipulate the tasks in parallel.
8841 		 * See task_rq_lock() family for the details.
8842 		 */
8843 
8844 		rq_unlock(busiest, &rf);
8845 
8846 		if (cur_ld_moved) {
8847 			attach_tasks(&env);
8848 			ld_moved += cur_ld_moved;
8849 		}
8850 
8851 		local_irq_restore(rf.flags);
8852 
8853 		if (env.flags & LBF_NEED_BREAK) {
8854 			env.flags &= ~LBF_NEED_BREAK;
8855 			goto more_balance;
8856 		}
8857 
8858 		/*
8859 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8860 		 * us and move them to an alternate dst_cpu in our sched_group
8861 		 * where they can run. The upper limit on how many times we
8862 		 * iterate on same src_cpu is dependent on number of CPUs in our
8863 		 * sched_group.
8864 		 *
8865 		 * This changes load balance semantics a bit on who can move
8866 		 * load to a given_cpu. In addition to the given_cpu itself
8867 		 * (or a ilb_cpu acting on its behalf where given_cpu is
8868 		 * nohz-idle), we now have balance_cpu in a position to move
8869 		 * load to given_cpu. In rare situations, this may cause
8870 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8871 		 * _independently_ and at _same_ time to move some load to
8872 		 * given_cpu) causing exceess load to be moved to given_cpu.
8873 		 * This however should not happen so much in practice and
8874 		 * moreover subsequent load balance cycles should correct the
8875 		 * excess load moved.
8876 		 */
8877 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8878 
8879 			/* Prevent to re-select dst_cpu via env's CPUs */
8880 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
8881 
8882 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8883 			env.dst_cpu	 = env.new_dst_cpu;
8884 			env.flags	&= ~LBF_DST_PINNED;
8885 			env.loop	 = 0;
8886 			env.loop_break	 = sched_nr_migrate_break;
8887 
8888 			/*
8889 			 * Go back to "more_balance" rather than "redo" since we
8890 			 * need to continue with same src_cpu.
8891 			 */
8892 			goto more_balance;
8893 		}
8894 
8895 		/*
8896 		 * We failed to reach balance because of affinity.
8897 		 */
8898 		if (sd_parent) {
8899 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8900 
8901 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8902 				*group_imbalance = 1;
8903 		}
8904 
8905 		/* All tasks on this runqueue were pinned by CPU affinity */
8906 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8907 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
8908 			/*
8909 			 * Attempting to continue load balancing at the current
8910 			 * sched_domain level only makes sense if there are
8911 			 * active CPUs remaining as possible busiest CPUs to
8912 			 * pull load from which are not contained within the
8913 			 * destination group that is receiving any migrated
8914 			 * load.
8915 			 */
8916 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8917 				env.loop = 0;
8918 				env.loop_break = sched_nr_migrate_break;
8919 				goto redo;
8920 			}
8921 			goto out_all_pinned;
8922 		}
8923 	}
8924 
8925 	if (!ld_moved) {
8926 		schedstat_inc(sd->lb_failed[idle]);
8927 		/*
8928 		 * Increment the failure counter only on periodic balance.
8929 		 * We do not want newidle balance, which can be very
8930 		 * frequent, pollute the failure counter causing
8931 		 * excessive cache_hot migrations and active balances.
8932 		 */
8933 		if (idle != CPU_NEWLY_IDLE)
8934 			sd->nr_balance_failed++;
8935 
8936 		if (need_active_balance(&env)) {
8937 			unsigned long flags;
8938 
8939 			raw_spin_lock_irqsave(&busiest->lock, flags);
8940 
8941 			/*
8942 			 * Don't kick the active_load_balance_cpu_stop,
8943 			 * if the curr task on busiest CPU can't be
8944 			 * moved to this_cpu:
8945 			 */
8946 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
8947 				raw_spin_unlock_irqrestore(&busiest->lock,
8948 							    flags);
8949 				env.flags |= LBF_ALL_PINNED;
8950 				goto out_one_pinned;
8951 			}
8952 
8953 			/*
8954 			 * ->active_balance synchronizes accesses to
8955 			 * ->active_balance_work.  Once set, it's cleared
8956 			 * only after active load balance is finished.
8957 			 */
8958 			if (!busiest->active_balance) {
8959 				busiest->active_balance = 1;
8960 				busiest->push_cpu = this_cpu;
8961 				active_balance = 1;
8962 			}
8963 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8964 
8965 			if (active_balance) {
8966 				stop_one_cpu_nowait(cpu_of(busiest),
8967 					active_load_balance_cpu_stop, busiest,
8968 					&busiest->active_balance_work);
8969 			}
8970 
8971 			/* We've kicked active balancing, force task migration. */
8972 			sd->nr_balance_failed = sd->cache_nice_tries+1;
8973 		}
8974 	} else
8975 		sd->nr_balance_failed = 0;
8976 
8977 	if (likely(!active_balance) || voluntary_active_balance(&env)) {
8978 		/* We were unbalanced, so reset the balancing interval */
8979 		sd->balance_interval = sd->min_interval;
8980 	} else {
8981 		/*
8982 		 * If we've begun active balancing, start to back off. This
8983 		 * case may not be covered by the all_pinned logic if there
8984 		 * is only 1 task on the busy runqueue (because we don't call
8985 		 * detach_tasks).
8986 		 */
8987 		if (sd->balance_interval < sd->max_interval)
8988 			sd->balance_interval *= 2;
8989 	}
8990 
8991 	goto out;
8992 
8993 out_balanced:
8994 	/*
8995 	 * We reach balance although we may have faced some affinity
8996 	 * constraints. Clear the imbalance flag if it was set.
8997 	 */
8998 	if (sd_parent) {
8999 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9000 
9001 		if (*group_imbalance)
9002 			*group_imbalance = 0;
9003 	}
9004 
9005 out_all_pinned:
9006 	/*
9007 	 * We reach balance because all tasks are pinned at this level so
9008 	 * we can't migrate them. Let the imbalance flag set so parent level
9009 	 * can try to migrate them.
9010 	 */
9011 	schedstat_inc(sd->lb_balanced[idle]);
9012 
9013 	sd->nr_balance_failed = 0;
9014 
9015 out_one_pinned:
9016 	ld_moved = 0;
9017 
9018 	/*
9019 	 * idle_balance() disregards balance intervals, so we could repeatedly
9020 	 * reach this code, which would lead to balance_interval skyrocketting
9021 	 * in a short amount of time. Skip the balance_interval increase logic
9022 	 * to avoid that.
9023 	 */
9024 	if (env.idle == CPU_NEWLY_IDLE)
9025 		goto out;
9026 
9027 	/* tune up the balancing interval */
9028 	if ((env.flags & LBF_ALL_PINNED &&
9029 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
9030 	    sd->balance_interval < sd->max_interval)
9031 		sd->balance_interval *= 2;
9032 out:
9033 	return ld_moved;
9034 }
9035 
9036 static inline unsigned long
9037 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9038 {
9039 	unsigned long interval = sd->balance_interval;
9040 
9041 	if (cpu_busy)
9042 		interval *= sd->busy_factor;
9043 
9044 	/* scale ms to jiffies */
9045 	interval = msecs_to_jiffies(interval);
9046 	interval = clamp(interval, 1UL, max_load_balance_interval);
9047 
9048 	return interval;
9049 }
9050 
9051 static inline void
9052 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9053 {
9054 	unsigned long interval, next;
9055 
9056 	/* used by idle balance, so cpu_busy = 0 */
9057 	interval = get_sd_balance_interval(sd, 0);
9058 	next = sd->last_balance + interval;
9059 
9060 	if (time_after(*next_balance, next))
9061 		*next_balance = next;
9062 }
9063 
9064 /*
9065  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9066  * running tasks off the busiest CPU onto idle CPUs. It requires at
9067  * least 1 task to be running on each physical CPU where possible, and
9068  * avoids physical / logical imbalances.
9069  */
9070 static int active_load_balance_cpu_stop(void *data)
9071 {
9072 	struct rq *busiest_rq = data;
9073 	int busiest_cpu = cpu_of(busiest_rq);
9074 	int target_cpu = busiest_rq->push_cpu;
9075 	struct rq *target_rq = cpu_rq(target_cpu);
9076 	struct sched_domain *sd;
9077 	struct task_struct *p = NULL;
9078 	struct rq_flags rf;
9079 
9080 	rq_lock_irq(busiest_rq, &rf);
9081 	/*
9082 	 * Between queueing the stop-work and running it is a hole in which
9083 	 * CPUs can become inactive. We should not move tasks from or to
9084 	 * inactive CPUs.
9085 	 */
9086 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9087 		goto out_unlock;
9088 
9089 	/* Make sure the requested CPU hasn't gone down in the meantime: */
9090 	if (unlikely(busiest_cpu != smp_processor_id() ||
9091 		     !busiest_rq->active_balance))
9092 		goto out_unlock;
9093 
9094 	/* Is there any task to move? */
9095 	if (busiest_rq->nr_running <= 1)
9096 		goto out_unlock;
9097 
9098 	/*
9099 	 * This condition is "impossible", if it occurs
9100 	 * we need to fix it. Originally reported by
9101 	 * Bjorn Helgaas on a 128-CPU setup.
9102 	 */
9103 	BUG_ON(busiest_rq == target_rq);
9104 
9105 	/* Search for an sd spanning us and the target CPU. */
9106 	rcu_read_lock();
9107 	for_each_domain(target_cpu, sd) {
9108 		if ((sd->flags & SD_LOAD_BALANCE) &&
9109 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9110 				break;
9111 	}
9112 
9113 	if (likely(sd)) {
9114 		struct lb_env env = {
9115 			.sd		= sd,
9116 			.dst_cpu	= target_cpu,
9117 			.dst_rq		= target_rq,
9118 			.src_cpu	= busiest_rq->cpu,
9119 			.src_rq		= busiest_rq,
9120 			.idle		= CPU_IDLE,
9121 			/*
9122 			 * can_migrate_task() doesn't need to compute new_dst_cpu
9123 			 * for active balancing. Since we have CPU_IDLE, but no
9124 			 * @dst_grpmask we need to make that test go away with lying
9125 			 * about DST_PINNED.
9126 			 */
9127 			.flags		= LBF_DST_PINNED,
9128 		};
9129 
9130 		schedstat_inc(sd->alb_count);
9131 		update_rq_clock(busiest_rq);
9132 
9133 		p = detach_one_task(&env);
9134 		if (p) {
9135 			schedstat_inc(sd->alb_pushed);
9136 			/* Active balancing done, reset the failure counter. */
9137 			sd->nr_balance_failed = 0;
9138 		} else {
9139 			schedstat_inc(sd->alb_failed);
9140 		}
9141 	}
9142 	rcu_read_unlock();
9143 out_unlock:
9144 	busiest_rq->active_balance = 0;
9145 	rq_unlock(busiest_rq, &rf);
9146 
9147 	if (p)
9148 		attach_one_task(target_rq, p);
9149 
9150 	local_irq_enable();
9151 
9152 	return 0;
9153 }
9154 
9155 static DEFINE_SPINLOCK(balancing);
9156 
9157 /*
9158  * Scale the max load_balance interval with the number of CPUs in the system.
9159  * This trades load-balance latency on larger machines for less cross talk.
9160  */
9161 void update_max_interval(void)
9162 {
9163 	max_load_balance_interval = HZ*num_online_cpus()/10;
9164 }
9165 
9166 /*
9167  * It checks each scheduling domain to see if it is due to be balanced,
9168  * and initiates a balancing operation if so.
9169  *
9170  * Balancing parameters are set up in init_sched_domains.
9171  */
9172 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9173 {
9174 	int continue_balancing = 1;
9175 	int cpu = rq->cpu;
9176 	unsigned long interval;
9177 	struct sched_domain *sd;
9178 	/* Earliest time when we have to do rebalance again */
9179 	unsigned long next_balance = jiffies + 60*HZ;
9180 	int update_next_balance = 0;
9181 	int need_serialize, need_decay = 0;
9182 	u64 max_cost = 0;
9183 
9184 	rcu_read_lock();
9185 	for_each_domain(cpu, sd) {
9186 		/*
9187 		 * Decay the newidle max times here because this is a regular
9188 		 * visit to all the domains. Decay ~1% per second.
9189 		 */
9190 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9191 			sd->max_newidle_lb_cost =
9192 				(sd->max_newidle_lb_cost * 253) / 256;
9193 			sd->next_decay_max_lb_cost = jiffies + HZ;
9194 			need_decay = 1;
9195 		}
9196 		max_cost += sd->max_newidle_lb_cost;
9197 
9198 		if (!(sd->flags & SD_LOAD_BALANCE))
9199 			continue;
9200 
9201 		/*
9202 		 * Stop the load balance at this level. There is another
9203 		 * CPU in our sched group which is doing load balancing more
9204 		 * actively.
9205 		 */
9206 		if (!continue_balancing) {
9207 			if (need_decay)
9208 				continue;
9209 			break;
9210 		}
9211 
9212 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9213 
9214 		need_serialize = sd->flags & SD_SERIALIZE;
9215 		if (need_serialize) {
9216 			if (!spin_trylock(&balancing))
9217 				goto out;
9218 		}
9219 
9220 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
9221 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9222 				/*
9223 				 * The LBF_DST_PINNED logic could have changed
9224 				 * env->dst_cpu, so we can't know our idle
9225 				 * state even if we migrated tasks. Update it.
9226 				 */
9227 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9228 			}
9229 			sd->last_balance = jiffies;
9230 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9231 		}
9232 		if (need_serialize)
9233 			spin_unlock(&balancing);
9234 out:
9235 		if (time_after(next_balance, sd->last_balance + interval)) {
9236 			next_balance = sd->last_balance + interval;
9237 			update_next_balance = 1;
9238 		}
9239 	}
9240 	if (need_decay) {
9241 		/*
9242 		 * Ensure the rq-wide value also decays but keep it at a
9243 		 * reasonable floor to avoid funnies with rq->avg_idle.
9244 		 */
9245 		rq->max_idle_balance_cost =
9246 			max((u64)sysctl_sched_migration_cost, max_cost);
9247 	}
9248 	rcu_read_unlock();
9249 
9250 	/*
9251 	 * next_balance will be updated only when there is a need.
9252 	 * When the cpu is attached to null domain for ex, it will not be
9253 	 * updated.
9254 	 */
9255 	if (likely(update_next_balance)) {
9256 		rq->next_balance = next_balance;
9257 
9258 #ifdef CONFIG_NO_HZ_COMMON
9259 		/*
9260 		 * If this CPU has been elected to perform the nohz idle
9261 		 * balance. Other idle CPUs have already rebalanced with
9262 		 * nohz_idle_balance() and nohz.next_balance has been
9263 		 * updated accordingly. This CPU is now running the idle load
9264 		 * balance for itself and we need to update the
9265 		 * nohz.next_balance accordingly.
9266 		 */
9267 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9268 			nohz.next_balance = rq->next_balance;
9269 #endif
9270 	}
9271 }
9272 
9273 static inline int on_null_domain(struct rq *rq)
9274 {
9275 	return unlikely(!rcu_dereference_sched(rq->sd));
9276 }
9277 
9278 #ifdef CONFIG_NO_HZ_COMMON
9279 /*
9280  * idle load balancing details
9281  * - When one of the busy CPUs notice that there may be an idle rebalancing
9282  *   needed, they will kick the idle load balancer, which then does idle
9283  *   load balancing for all the idle CPUs.
9284  * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9285  *   anywhere yet.
9286  */
9287 
9288 static inline int find_new_ilb(void)
9289 {
9290 	int ilb;
9291 
9292 	for_each_cpu_and(ilb, nohz.idle_cpus_mask,
9293 			      housekeeping_cpumask(HK_FLAG_MISC)) {
9294 		if (idle_cpu(ilb))
9295 			return ilb;
9296 	}
9297 
9298 	return nr_cpu_ids;
9299 }
9300 
9301 /*
9302  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
9303  * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
9304  */
9305 static void kick_ilb(unsigned int flags)
9306 {
9307 	int ilb_cpu;
9308 
9309 	nohz.next_balance++;
9310 
9311 	ilb_cpu = find_new_ilb();
9312 
9313 	if (ilb_cpu >= nr_cpu_ids)
9314 		return;
9315 
9316 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
9317 	if (flags & NOHZ_KICK_MASK)
9318 		return;
9319 
9320 	/*
9321 	 * Use smp_send_reschedule() instead of resched_cpu().
9322 	 * This way we generate a sched IPI on the target CPU which
9323 	 * is idle. And the softirq performing nohz idle load balance
9324 	 * will be run before returning from the IPI.
9325 	 */
9326 	smp_send_reschedule(ilb_cpu);
9327 }
9328 
9329 /*
9330  * Current decision point for kicking the idle load balancer in the presence
9331  * of idle CPUs in the system.
9332  */
9333 static void nohz_balancer_kick(struct rq *rq)
9334 {
9335 	unsigned long now = jiffies;
9336 	struct sched_domain_shared *sds;
9337 	struct sched_domain *sd;
9338 	int nr_busy, i, cpu = rq->cpu;
9339 	unsigned int flags = 0;
9340 
9341 	if (unlikely(rq->idle_balance))
9342 		return;
9343 
9344 	/*
9345 	 * We may be recently in ticked or tickless idle mode. At the first
9346 	 * busy tick after returning from idle, we will update the busy stats.
9347 	 */
9348 	nohz_balance_exit_idle(rq);
9349 
9350 	/*
9351 	 * None are in tickless mode and hence no need for NOHZ idle load
9352 	 * balancing.
9353 	 */
9354 	if (likely(!atomic_read(&nohz.nr_cpus)))
9355 		return;
9356 
9357 	if (READ_ONCE(nohz.has_blocked) &&
9358 	    time_after(now, READ_ONCE(nohz.next_blocked)))
9359 		flags = NOHZ_STATS_KICK;
9360 
9361 	if (time_before(now, nohz.next_balance))
9362 		goto out;
9363 
9364 	if (rq->nr_running >= 2) {
9365 		flags = NOHZ_KICK_MASK;
9366 		goto out;
9367 	}
9368 
9369 	rcu_read_lock();
9370 
9371 	sd = rcu_dereference(rq->sd);
9372 	if (sd) {
9373 		/*
9374 		 * If there's a CFS task and the current CPU has reduced
9375 		 * capacity; kick the ILB to see if there's a better CPU to run
9376 		 * on.
9377 		 */
9378 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
9379 			flags = NOHZ_KICK_MASK;
9380 			goto unlock;
9381 		}
9382 	}
9383 
9384 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
9385 	if (sd) {
9386 		/*
9387 		 * When ASYM_PACKING; see if there's a more preferred CPU
9388 		 * currently idle; in which case, kick the ILB to move tasks
9389 		 * around.
9390 		 */
9391 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
9392 			if (sched_asym_prefer(i, cpu)) {
9393 				flags = NOHZ_KICK_MASK;
9394 				goto unlock;
9395 			}
9396 		}
9397 	}
9398 
9399 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
9400 	if (sd) {
9401 		/*
9402 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
9403 		 * to run the misfit task on.
9404 		 */
9405 		if (check_misfit_status(rq, sd)) {
9406 			flags = NOHZ_KICK_MASK;
9407 			goto unlock;
9408 		}
9409 
9410 		/*
9411 		 * For asymmetric systems, we do not want to nicely balance
9412 		 * cache use, instead we want to embrace asymmetry and only
9413 		 * ensure tasks have enough CPU capacity.
9414 		 *
9415 		 * Skip the LLC logic because it's not relevant in that case.
9416 		 */
9417 		goto unlock;
9418 	}
9419 
9420 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9421 	if (sds) {
9422 		/*
9423 		 * If there is an imbalance between LLC domains (IOW we could
9424 		 * increase the overall cache use), we need some less-loaded LLC
9425 		 * domain to pull some load. Likewise, we may need to spread
9426 		 * load within the current LLC domain (e.g. packed SMT cores but
9427 		 * other CPUs are idle). We can't really know from here how busy
9428 		 * the others are - so just get a nohz balance going if it looks
9429 		 * like this LLC domain has tasks we could move.
9430 		 */
9431 		nr_busy = atomic_read(&sds->nr_busy_cpus);
9432 		if (nr_busy > 1) {
9433 			flags = NOHZ_KICK_MASK;
9434 			goto unlock;
9435 		}
9436 	}
9437 unlock:
9438 	rcu_read_unlock();
9439 out:
9440 	if (flags)
9441 		kick_ilb(flags);
9442 }
9443 
9444 static void set_cpu_sd_state_busy(int cpu)
9445 {
9446 	struct sched_domain *sd;
9447 
9448 	rcu_read_lock();
9449 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9450 
9451 	if (!sd || !sd->nohz_idle)
9452 		goto unlock;
9453 	sd->nohz_idle = 0;
9454 
9455 	atomic_inc(&sd->shared->nr_busy_cpus);
9456 unlock:
9457 	rcu_read_unlock();
9458 }
9459 
9460 void nohz_balance_exit_idle(struct rq *rq)
9461 {
9462 	SCHED_WARN_ON(rq != this_rq());
9463 
9464 	if (likely(!rq->nohz_tick_stopped))
9465 		return;
9466 
9467 	rq->nohz_tick_stopped = 0;
9468 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9469 	atomic_dec(&nohz.nr_cpus);
9470 
9471 	set_cpu_sd_state_busy(rq->cpu);
9472 }
9473 
9474 static void set_cpu_sd_state_idle(int cpu)
9475 {
9476 	struct sched_domain *sd;
9477 
9478 	rcu_read_lock();
9479 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9480 
9481 	if (!sd || sd->nohz_idle)
9482 		goto unlock;
9483 	sd->nohz_idle = 1;
9484 
9485 	atomic_dec(&sd->shared->nr_busy_cpus);
9486 unlock:
9487 	rcu_read_unlock();
9488 }
9489 
9490 /*
9491  * This routine will record that the CPU is going idle with tick stopped.
9492  * This info will be used in performing idle load balancing in the future.
9493  */
9494 void nohz_balance_enter_idle(int cpu)
9495 {
9496 	struct rq *rq = cpu_rq(cpu);
9497 
9498 	SCHED_WARN_ON(cpu != smp_processor_id());
9499 
9500 	/* If this CPU is going down, then nothing needs to be done: */
9501 	if (!cpu_active(cpu))
9502 		return;
9503 
9504 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9505 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9506 		return;
9507 
9508 	/*
9509 	 * Can be set safely without rq->lock held
9510 	 * If a clear happens, it will have evaluated last additions because
9511 	 * rq->lock is held during the check and the clear
9512 	 */
9513 	rq->has_blocked_load = 1;
9514 
9515 	/*
9516 	 * The tick is still stopped but load could have been added in the
9517 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
9518 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9519 	 * of nohz.has_blocked can only happen after checking the new load
9520 	 */
9521 	if (rq->nohz_tick_stopped)
9522 		goto out;
9523 
9524 	/* If we're a completely isolated CPU, we don't play: */
9525 	if (on_null_domain(rq))
9526 		return;
9527 
9528 	rq->nohz_tick_stopped = 1;
9529 
9530 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9531 	atomic_inc(&nohz.nr_cpus);
9532 
9533 	/*
9534 	 * Ensures that if nohz_idle_balance() fails to observe our
9535 	 * @idle_cpus_mask store, it must observe the @has_blocked
9536 	 * store.
9537 	 */
9538 	smp_mb__after_atomic();
9539 
9540 	set_cpu_sd_state_idle(cpu);
9541 
9542 out:
9543 	/*
9544 	 * Each time a cpu enter idle, we assume that it has blocked load and
9545 	 * enable the periodic update of the load of idle cpus
9546 	 */
9547 	WRITE_ONCE(nohz.has_blocked, 1);
9548 }
9549 
9550 /*
9551  * Internal function that runs load balance for all idle cpus. The load balance
9552  * can be a simple update of blocked load or a complete load balance with
9553  * tasks movement depending of flags.
9554  * The function returns false if the loop has stopped before running
9555  * through all idle CPUs.
9556  */
9557 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9558 			       enum cpu_idle_type idle)
9559 {
9560 	/* Earliest time when we have to do rebalance again */
9561 	unsigned long now = jiffies;
9562 	unsigned long next_balance = now + 60*HZ;
9563 	bool has_blocked_load = false;
9564 	int update_next_balance = 0;
9565 	int this_cpu = this_rq->cpu;
9566 	int balance_cpu;
9567 	int ret = false;
9568 	struct rq *rq;
9569 
9570 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9571 
9572 	/*
9573 	 * We assume there will be no idle load after this update and clear
9574 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9575 	 * set the has_blocked flag and trig another update of idle load.
9576 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9577 	 * setting the flag, we are sure to not clear the state and not
9578 	 * check the load of an idle cpu.
9579 	 */
9580 	WRITE_ONCE(nohz.has_blocked, 0);
9581 
9582 	/*
9583 	 * Ensures that if we miss the CPU, we must see the has_blocked
9584 	 * store from nohz_balance_enter_idle().
9585 	 */
9586 	smp_mb();
9587 
9588 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9589 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9590 			continue;
9591 
9592 		/*
9593 		 * If this CPU gets work to do, stop the load balancing
9594 		 * work being done for other CPUs. Next load
9595 		 * balancing owner will pick it up.
9596 		 */
9597 		if (need_resched()) {
9598 			has_blocked_load = true;
9599 			goto abort;
9600 		}
9601 
9602 		rq = cpu_rq(balance_cpu);
9603 
9604 		has_blocked_load |= update_nohz_stats(rq, true);
9605 
9606 		/*
9607 		 * If time for next balance is due,
9608 		 * do the balance.
9609 		 */
9610 		if (time_after_eq(jiffies, rq->next_balance)) {
9611 			struct rq_flags rf;
9612 
9613 			rq_lock_irqsave(rq, &rf);
9614 			update_rq_clock(rq);
9615 			rq_unlock_irqrestore(rq, &rf);
9616 
9617 			if (flags & NOHZ_BALANCE_KICK)
9618 				rebalance_domains(rq, CPU_IDLE);
9619 		}
9620 
9621 		if (time_after(next_balance, rq->next_balance)) {
9622 			next_balance = rq->next_balance;
9623 			update_next_balance = 1;
9624 		}
9625 	}
9626 
9627 	/* Newly idle CPU doesn't need an update */
9628 	if (idle != CPU_NEWLY_IDLE) {
9629 		update_blocked_averages(this_cpu);
9630 		has_blocked_load |= this_rq->has_blocked_load;
9631 	}
9632 
9633 	if (flags & NOHZ_BALANCE_KICK)
9634 		rebalance_domains(this_rq, CPU_IDLE);
9635 
9636 	WRITE_ONCE(nohz.next_blocked,
9637 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9638 
9639 	/* The full idle balance loop has been done */
9640 	ret = true;
9641 
9642 abort:
9643 	/* There is still blocked load, enable periodic update */
9644 	if (has_blocked_load)
9645 		WRITE_ONCE(nohz.has_blocked, 1);
9646 
9647 	/*
9648 	 * next_balance will be updated only when there is a need.
9649 	 * When the CPU is attached to null domain for ex, it will not be
9650 	 * updated.
9651 	 */
9652 	if (likely(update_next_balance))
9653 		nohz.next_balance = next_balance;
9654 
9655 	return ret;
9656 }
9657 
9658 /*
9659  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9660  * rebalancing for all the cpus for whom scheduler ticks are stopped.
9661  */
9662 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9663 {
9664 	int this_cpu = this_rq->cpu;
9665 	unsigned int flags;
9666 
9667 	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9668 		return false;
9669 
9670 	if (idle != CPU_IDLE) {
9671 		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9672 		return false;
9673 	}
9674 
9675 	/* could be _relaxed() */
9676 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9677 	if (!(flags & NOHZ_KICK_MASK))
9678 		return false;
9679 
9680 	_nohz_idle_balance(this_rq, flags, idle);
9681 
9682 	return true;
9683 }
9684 
9685 static void nohz_newidle_balance(struct rq *this_rq)
9686 {
9687 	int this_cpu = this_rq->cpu;
9688 
9689 	/*
9690 	 * This CPU doesn't want to be disturbed by scheduler
9691 	 * housekeeping
9692 	 */
9693 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9694 		return;
9695 
9696 	/* Will wake up very soon. No time for doing anything else*/
9697 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
9698 		return;
9699 
9700 	/* Don't need to update blocked load of idle CPUs*/
9701 	if (!READ_ONCE(nohz.has_blocked) ||
9702 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9703 		return;
9704 
9705 	raw_spin_unlock(&this_rq->lock);
9706 	/*
9707 	 * This CPU is going to be idle and blocked load of idle CPUs
9708 	 * need to be updated. Run the ilb locally as it is a good
9709 	 * candidate for ilb instead of waking up another idle CPU.
9710 	 * Kick an normal ilb if we failed to do the update.
9711 	 */
9712 	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9713 		kick_ilb(NOHZ_STATS_KICK);
9714 	raw_spin_lock(&this_rq->lock);
9715 }
9716 
9717 #else /* !CONFIG_NO_HZ_COMMON */
9718 static inline void nohz_balancer_kick(struct rq *rq) { }
9719 
9720 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9721 {
9722 	return false;
9723 }
9724 
9725 static inline void nohz_newidle_balance(struct rq *this_rq) { }
9726 #endif /* CONFIG_NO_HZ_COMMON */
9727 
9728 /*
9729  * idle_balance is called by schedule() if this_cpu is about to become
9730  * idle. Attempts to pull tasks from other CPUs.
9731  */
9732 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9733 {
9734 	unsigned long next_balance = jiffies + HZ;
9735 	int this_cpu = this_rq->cpu;
9736 	struct sched_domain *sd;
9737 	int pulled_task = 0;
9738 	u64 curr_cost = 0;
9739 
9740 	/*
9741 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
9742 	 * measure the duration of idle_balance() as idle time.
9743 	 */
9744 	this_rq->idle_stamp = rq_clock(this_rq);
9745 
9746 	/*
9747 	 * Do not pull tasks towards !active CPUs...
9748 	 */
9749 	if (!cpu_active(this_cpu))
9750 		return 0;
9751 
9752 	/*
9753 	 * This is OK, because current is on_cpu, which avoids it being picked
9754 	 * for load-balance and preemption/IRQs are still disabled avoiding
9755 	 * further scheduler activity on it and we're being very careful to
9756 	 * re-start the picking loop.
9757 	 */
9758 	rq_unpin_lock(this_rq, rf);
9759 
9760 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
9761 	    !READ_ONCE(this_rq->rd->overload)) {
9762 
9763 		rcu_read_lock();
9764 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
9765 		if (sd)
9766 			update_next_balance(sd, &next_balance);
9767 		rcu_read_unlock();
9768 
9769 		nohz_newidle_balance(this_rq);
9770 
9771 		goto out;
9772 	}
9773 
9774 	raw_spin_unlock(&this_rq->lock);
9775 
9776 	update_blocked_averages(this_cpu);
9777 	rcu_read_lock();
9778 	for_each_domain(this_cpu, sd) {
9779 		int continue_balancing = 1;
9780 		u64 t0, domain_cost;
9781 
9782 		if (!(sd->flags & SD_LOAD_BALANCE))
9783 			continue;
9784 
9785 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9786 			update_next_balance(sd, &next_balance);
9787 			break;
9788 		}
9789 
9790 		if (sd->flags & SD_BALANCE_NEWIDLE) {
9791 			t0 = sched_clock_cpu(this_cpu);
9792 
9793 			pulled_task = load_balance(this_cpu, this_rq,
9794 						   sd, CPU_NEWLY_IDLE,
9795 						   &continue_balancing);
9796 
9797 			domain_cost = sched_clock_cpu(this_cpu) - t0;
9798 			if (domain_cost > sd->max_newidle_lb_cost)
9799 				sd->max_newidle_lb_cost = domain_cost;
9800 
9801 			curr_cost += domain_cost;
9802 		}
9803 
9804 		update_next_balance(sd, &next_balance);
9805 
9806 		/*
9807 		 * Stop searching for tasks to pull if there are
9808 		 * now runnable tasks on this rq.
9809 		 */
9810 		if (pulled_task || this_rq->nr_running > 0)
9811 			break;
9812 	}
9813 	rcu_read_unlock();
9814 
9815 	raw_spin_lock(&this_rq->lock);
9816 
9817 	if (curr_cost > this_rq->max_idle_balance_cost)
9818 		this_rq->max_idle_balance_cost = curr_cost;
9819 
9820 out:
9821 	/*
9822 	 * While browsing the domains, we released the rq lock, a task could
9823 	 * have been enqueued in the meantime. Since we're not going idle,
9824 	 * pretend we pulled a task.
9825 	 */
9826 	if (this_rq->cfs.h_nr_running && !pulled_task)
9827 		pulled_task = 1;
9828 
9829 	/* Move the next balance forward */
9830 	if (time_after(this_rq->next_balance, next_balance))
9831 		this_rq->next_balance = next_balance;
9832 
9833 	/* Is there a task of a high priority class? */
9834 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9835 		pulled_task = -1;
9836 
9837 	if (pulled_task)
9838 		this_rq->idle_stamp = 0;
9839 
9840 	rq_repin_lock(this_rq, rf);
9841 
9842 	return pulled_task;
9843 }
9844 
9845 /*
9846  * run_rebalance_domains is triggered when needed from the scheduler tick.
9847  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9848  */
9849 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9850 {
9851 	struct rq *this_rq = this_rq();
9852 	enum cpu_idle_type idle = this_rq->idle_balance ?
9853 						CPU_IDLE : CPU_NOT_IDLE;
9854 
9855 	/*
9856 	 * If this CPU has a pending nohz_balance_kick, then do the
9857 	 * balancing on behalf of the other idle CPUs whose ticks are
9858 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9859 	 * give the idle CPUs a chance to load balance. Else we may
9860 	 * load balance only within the local sched_domain hierarchy
9861 	 * and abort nohz_idle_balance altogether if we pull some load.
9862 	 */
9863 	if (nohz_idle_balance(this_rq, idle))
9864 		return;
9865 
9866 	/* normal load balance */
9867 	update_blocked_averages(this_rq->cpu);
9868 	rebalance_domains(this_rq, idle);
9869 }
9870 
9871 /*
9872  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9873  */
9874 void trigger_load_balance(struct rq *rq)
9875 {
9876 	/* Don't need to rebalance while attached to NULL domain */
9877 	if (unlikely(on_null_domain(rq)))
9878 		return;
9879 
9880 	if (time_after_eq(jiffies, rq->next_balance))
9881 		raise_softirq(SCHED_SOFTIRQ);
9882 
9883 	nohz_balancer_kick(rq);
9884 }
9885 
9886 static void rq_online_fair(struct rq *rq)
9887 {
9888 	update_sysctl();
9889 
9890 	update_runtime_enabled(rq);
9891 }
9892 
9893 static void rq_offline_fair(struct rq *rq)
9894 {
9895 	update_sysctl();
9896 
9897 	/* Ensure any throttled groups are reachable by pick_next_task */
9898 	unthrottle_offline_cfs_rqs(rq);
9899 }
9900 
9901 #endif /* CONFIG_SMP */
9902 
9903 /*
9904  * scheduler tick hitting a task of our scheduling class.
9905  *
9906  * NOTE: This function can be called remotely by the tick offload that
9907  * goes along full dynticks. Therefore no local assumption can be made
9908  * and everything must be accessed through the @rq and @curr passed in
9909  * parameters.
9910  */
9911 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9912 {
9913 	struct cfs_rq *cfs_rq;
9914 	struct sched_entity *se = &curr->se;
9915 
9916 	for_each_sched_entity(se) {
9917 		cfs_rq = cfs_rq_of(se);
9918 		entity_tick(cfs_rq, se, queued);
9919 	}
9920 
9921 	if (static_branch_unlikely(&sched_numa_balancing))
9922 		task_tick_numa(rq, curr);
9923 
9924 	update_misfit_status(curr, rq);
9925 	update_overutilized_status(task_rq(curr));
9926 }
9927 
9928 /*
9929  * called on fork with the child task as argument from the parent's context
9930  *  - child not yet on the tasklist
9931  *  - preemption disabled
9932  */
9933 static void task_fork_fair(struct task_struct *p)
9934 {
9935 	struct cfs_rq *cfs_rq;
9936 	struct sched_entity *se = &p->se, *curr;
9937 	struct rq *rq = this_rq();
9938 	struct rq_flags rf;
9939 
9940 	rq_lock(rq, &rf);
9941 	update_rq_clock(rq);
9942 
9943 	cfs_rq = task_cfs_rq(current);
9944 	curr = cfs_rq->curr;
9945 	if (curr) {
9946 		update_curr(cfs_rq);
9947 		se->vruntime = curr->vruntime;
9948 	}
9949 	place_entity(cfs_rq, se, 1);
9950 
9951 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9952 		/*
9953 		 * Upon rescheduling, sched_class::put_prev_task() will place
9954 		 * 'current' within the tree based on its new key value.
9955 		 */
9956 		swap(curr->vruntime, se->vruntime);
9957 		resched_curr(rq);
9958 	}
9959 
9960 	se->vruntime -= cfs_rq->min_vruntime;
9961 	rq_unlock(rq, &rf);
9962 }
9963 
9964 /*
9965  * Priority of the task has changed. Check to see if we preempt
9966  * the current task.
9967  */
9968 static void
9969 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9970 {
9971 	if (!task_on_rq_queued(p))
9972 		return;
9973 
9974 	/*
9975 	 * Reschedule if we are currently running on this runqueue and
9976 	 * our priority decreased, or if we are not currently running on
9977 	 * this runqueue and our priority is higher than the current's
9978 	 */
9979 	if (rq->curr == p) {
9980 		if (p->prio > oldprio)
9981 			resched_curr(rq);
9982 	} else
9983 		check_preempt_curr(rq, p, 0);
9984 }
9985 
9986 static inline bool vruntime_normalized(struct task_struct *p)
9987 {
9988 	struct sched_entity *se = &p->se;
9989 
9990 	/*
9991 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9992 	 * the dequeue_entity(.flags=0) will already have normalized the
9993 	 * vruntime.
9994 	 */
9995 	if (p->on_rq)
9996 		return true;
9997 
9998 	/*
9999 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
10000 	 * But there are some cases where it has already been normalized:
10001 	 *
10002 	 * - A forked child which is waiting for being woken up by
10003 	 *   wake_up_new_task().
10004 	 * - A task which has been woken up by try_to_wake_up() and
10005 	 *   waiting for actually being woken up by sched_ttwu_pending().
10006 	 */
10007 	if (!se->sum_exec_runtime ||
10008 	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
10009 		return true;
10010 
10011 	return false;
10012 }
10013 
10014 #ifdef CONFIG_FAIR_GROUP_SCHED
10015 /*
10016  * Propagate the changes of the sched_entity across the tg tree to make it
10017  * visible to the root
10018  */
10019 static void propagate_entity_cfs_rq(struct sched_entity *se)
10020 {
10021 	struct cfs_rq *cfs_rq;
10022 
10023 	/* Start to propagate at parent */
10024 	se = se->parent;
10025 
10026 	for_each_sched_entity(se) {
10027 		cfs_rq = cfs_rq_of(se);
10028 
10029 		if (cfs_rq_throttled(cfs_rq))
10030 			break;
10031 
10032 		update_load_avg(cfs_rq, se, UPDATE_TG);
10033 	}
10034 }
10035 #else
10036 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10037 #endif
10038 
10039 static void detach_entity_cfs_rq(struct sched_entity *se)
10040 {
10041 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10042 
10043 	/* Catch up with the cfs_rq and remove our load when we leave */
10044 	update_load_avg(cfs_rq, se, 0);
10045 	detach_entity_load_avg(cfs_rq, se);
10046 	update_tg_load_avg(cfs_rq, false);
10047 	propagate_entity_cfs_rq(se);
10048 }
10049 
10050 static void attach_entity_cfs_rq(struct sched_entity *se)
10051 {
10052 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10053 
10054 #ifdef CONFIG_FAIR_GROUP_SCHED
10055 	/*
10056 	 * Since the real-depth could have been changed (only FAIR
10057 	 * class maintain depth value), reset depth properly.
10058 	 */
10059 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10060 #endif
10061 
10062 	/* Synchronize entity with its cfs_rq */
10063 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10064 	attach_entity_load_avg(cfs_rq, se, 0);
10065 	update_tg_load_avg(cfs_rq, false);
10066 	propagate_entity_cfs_rq(se);
10067 }
10068 
10069 static void detach_task_cfs_rq(struct task_struct *p)
10070 {
10071 	struct sched_entity *se = &p->se;
10072 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10073 
10074 	if (!vruntime_normalized(p)) {
10075 		/*
10076 		 * Fix up our vruntime so that the current sleep doesn't
10077 		 * cause 'unlimited' sleep bonus.
10078 		 */
10079 		place_entity(cfs_rq, se, 0);
10080 		se->vruntime -= cfs_rq->min_vruntime;
10081 	}
10082 
10083 	detach_entity_cfs_rq(se);
10084 }
10085 
10086 static void attach_task_cfs_rq(struct task_struct *p)
10087 {
10088 	struct sched_entity *se = &p->se;
10089 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10090 
10091 	attach_entity_cfs_rq(se);
10092 
10093 	if (!vruntime_normalized(p))
10094 		se->vruntime += cfs_rq->min_vruntime;
10095 }
10096 
10097 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10098 {
10099 	detach_task_cfs_rq(p);
10100 }
10101 
10102 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10103 {
10104 	attach_task_cfs_rq(p);
10105 
10106 	if (task_on_rq_queued(p)) {
10107 		/*
10108 		 * We were most likely switched from sched_rt, so
10109 		 * kick off the schedule if running, otherwise just see
10110 		 * if we can still preempt the current task.
10111 		 */
10112 		if (rq->curr == p)
10113 			resched_curr(rq);
10114 		else
10115 			check_preempt_curr(rq, p, 0);
10116 	}
10117 }
10118 
10119 /* Account for a task changing its policy or group.
10120  *
10121  * This routine is mostly called to set cfs_rq->curr field when a task
10122  * migrates between groups/classes.
10123  */
10124 static void set_curr_task_fair(struct rq *rq)
10125 {
10126 	struct sched_entity *se = &rq->curr->se;
10127 
10128 	for_each_sched_entity(se) {
10129 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
10130 
10131 		set_next_entity(cfs_rq, se);
10132 		/* ensure bandwidth has been allocated on our new cfs_rq */
10133 		account_cfs_rq_runtime(cfs_rq, 0);
10134 	}
10135 }
10136 
10137 void init_cfs_rq(struct cfs_rq *cfs_rq)
10138 {
10139 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10140 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10141 #ifndef CONFIG_64BIT
10142 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10143 #endif
10144 #ifdef CONFIG_SMP
10145 	raw_spin_lock_init(&cfs_rq->removed.lock);
10146 #endif
10147 }
10148 
10149 #ifdef CONFIG_FAIR_GROUP_SCHED
10150 static void task_set_group_fair(struct task_struct *p)
10151 {
10152 	struct sched_entity *se = &p->se;
10153 
10154 	set_task_rq(p, task_cpu(p));
10155 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10156 }
10157 
10158 static void task_move_group_fair(struct task_struct *p)
10159 {
10160 	detach_task_cfs_rq(p);
10161 	set_task_rq(p, task_cpu(p));
10162 
10163 #ifdef CONFIG_SMP
10164 	/* Tell se's cfs_rq has been changed -- migrated */
10165 	p->se.avg.last_update_time = 0;
10166 #endif
10167 	attach_task_cfs_rq(p);
10168 }
10169 
10170 static void task_change_group_fair(struct task_struct *p, int type)
10171 {
10172 	switch (type) {
10173 	case TASK_SET_GROUP:
10174 		task_set_group_fair(p);
10175 		break;
10176 
10177 	case TASK_MOVE_GROUP:
10178 		task_move_group_fair(p);
10179 		break;
10180 	}
10181 }
10182 
10183 void free_fair_sched_group(struct task_group *tg)
10184 {
10185 	int i;
10186 
10187 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10188 
10189 	for_each_possible_cpu(i) {
10190 		if (tg->cfs_rq)
10191 			kfree(tg->cfs_rq[i]);
10192 		if (tg->se)
10193 			kfree(tg->se[i]);
10194 	}
10195 
10196 	kfree(tg->cfs_rq);
10197 	kfree(tg->se);
10198 }
10199 
10200 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10201 {
10202 	struct sched_entity *se;
10203 	struct cfs_rq *cfs_rq;
10204 	int i;
10205 
10206 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10207 	if (!tg->cfs_rq)
10208 		goto err;
10209 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10210 	if (!tg->se)
10211 		goto err;
10212 
10213 	tg->shares = NICE_0_LOAD;
10214 
10215 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10216 
10217 	for_each_possible_cpu(i) {
10218 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10219 				      GFP_KERNEL, cpu_to_node(i));
10220 		if (!cfs_rq)
10221 			goto err;
10222 
10223 		se = kzalloc_node(sizeof(struct sched_entity),
10224 				  GFP_KERNEL, cpu_to_node(i));
10225 		if (!se)
10226 			goto err_free_rq;
10227 
10228 		init_cfs_rq(cfs_rq);
10229 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10230 		init_entity_runnable_average(se);
10231 	}
10232 
10233 	return 1;
10234 
10235 err_free_rq:
10236 	kfree(cfs_rq);
10237 err:
10238 	return 0;
10239 }
10240 
10241 void online_fair_sched_group(struct task_group *tg)
10242 {
10243 	struct sched_entity *se;
10244 	struct rq *rq;
10245 	int i;
10246 
10247 	for_each_possible_cpu(i) {
10248 		rq = cpu_rq(i);
10249 		se = tg->se[i];
10250 
10251 		raw_spin_lock_irq(&rq->lock);
10252 		update_rq_clock(rq);
10253 		attach_entity_cfs_rq(se);
10254 		sync_throttle(tg, i);
10255 		raw_spin_unlock_irq(&rq->lock);
10256 	}
10257 }
10258 
10259 void unregister_fair_sched_group(struct task_group *tg)
10260 {
10261 	unsigned long flags;
10262 	struct rq *rq;
10263 	int cpu;
10264 
10265 	for_each_possible_cpu(cpu) {
10266 		if (tg->se[cpu])
10267 			remove_entity_load_avg(tg->se[cpu]);
10268 
10269 		/*
10270 		 * Only empty task groups can be destroyed; so we can speculatively
10271 		 * check on_list without danger of it being re-added.
10272 		 */
10273 		if (!tg->cfs_rq[cpu]->on_list)
10274 			continue;
10275 
10276 		rq = cpu_rq(cpu);
10277 
10278 		raw_spin_lock_irqsave(&rq->lock, flags);
10279 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10280 		raw_spin_unlock_irqrestore(&rq->lock, flags);
10281 	}
10282 }
10283 
10284 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10285 			struct sched_entity *se, int cpu,
10286 			struct sched_entity *parent)
10287 {
10288 	struct rq *rq = cpu_rq(cpu);
10289 
10290 	cfs_rq->tg = tg;
10291 	cfs_rq->rq = rq;
10292 	init_cfs_rq_runtime(cfs_rq);
10293 
10294 	tg->cfs_rq[cpu] = cfs_rq;
10295 	tg->se[cpu] = se;
10296 
10297 	/* se could be NULL for root_task_group */
10298 	if (!se)
10299 		return;
10300 
10301 	if (!parent) {
10302 		se->cfs_rq = &rq->cfs;
10303 		se->depth = 0;
10304 	} else {
10305 		se->cfs_rq = parent->my_q;
10306 		se->depth = parent->depth + 1;
10307 	}
10308 
10309 	se->my_q = cfs_rq;
10310 	/* guarantee group entities always have weight */
10311 	update_load_set(&se->load, NICE_0_LOAD);
10312 	se->parent = parent;
10313 }
10314 
10315 static DEFINE_MUTEX(shares_mutex);
10316 
10317 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10318 {
10319 	int i;
10320 
10321 	/*
10322 	 * We can't change the weight of the root cgroup.
10323 	 */
10324 	if (!tg->se[0])
10325 		return -EINVAL;
10326 
10327 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10328 
10329 	mutex_lock(&shares_mutex);
10330 	if (tg->shares == shares)
10331 		goto done;
10332 
10333 	tg->shares = shares;
10334 	for_each_possible_cpu(i) {
10335 		struct rq *rq = cpu_rq(i);
10336 		struct sched_entity *se = tg->se[i];
10337 		struct rq_flags rf;
10338 
10339 		/* Propagate contribution to hierarchy */
10340 		rq_lock_irqsave(rq, &rf);
10341 		update_rq_clock(rq);
10342 		for_each_sched_entity(se) {
10343 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10344 			update_cfs_group(se);
10345 		}
10346 		rq_unlock_irqrestore(rq, &rf);
10347 	}
10348 
10349 done:
10350 	mutex_unlock(&shares_mutex);
10351 	return 0;
10352 }
10353 #else /* CONFIG_FAIR_GROUP_SCHED */
10354 
10355 void free_fair_sched_group(struct task_group *tg) { }
10356 
10357 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10358 {
10359 	return 1;
10360 }
10361 
10362 void online_fair_sched_group(struct task_group *tg) { }
10363 
10364 void unregister_fair_sched_group(struct task_group *tg) { }
10365 
10366 #endif /* CONFIG_FAIR_GROUP_SCHED */
10367 
10368 
10369 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10370 {
10371 	struct sched_entity *se = &task->se;
10372 	unsigned int rr_interval = 0;
10373 
10374 	/*
10375 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10376 	 * idle runqueue:
10377 	 */
10378 	if (rq->cfs.load.weight)
10379 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10380 
10381 	return rr_interval;
10382 }
10383 
10384 /*
10385  * All the scheduling class methods:
10386  */
10387 const struct sched_class fair_sched_class = {
10388 	.next			= &idle_sched_class,
10389 	.enqueue_task		= enqueue_task_fair,
10390 	.dequeue_task		= dequeue_task_fair,
10391 	.yield_task		= yield_task_fair,
10392 	.yield_to_task		= yield_to_task_fair,
10393 
10394 	.check_preempt_curr	= check_preempt_wakeup,
10395 
10396 	.pick_next_task		= pick_next_task_fair,
10397 	.put_prev_task		= put_prev_task_fair,
10398 
10399 #ifdef CONFIG_SMP
10400 	.select_task_rq		= select_task_rq_fair,
10401 	.migrate_task_rq	= migrate_task_rq_fair,
10402 
10403 	.rq_online		= rq_online_fair,
10404 	.rq_offline		= rq_offline_fair,
10405 
10406 	.task_dead		= task_dead_fair,
10407 	.set_cpus_allowed	= set_cpus_allowed_common,
10408 #endif
10409 
10410 	.set_curr_task          = set_curr_task_fair,
10411 	.task_tick		= task_tick_fair,
10412 	.task_fork		= task_fork_fair,
10413 
10414 	.prio_changed		= prio_changed_fair,
10415 	.switched_from		= switched_from_fair,
10416 	.switched_to		= switched_to_fair,
10417 
10418 	.get_rr_interval	= get_rr_interval_fair,
10419 
10420 	.update_curr		= update_curr_fair,
10421 
10422 #ifdef CONFIG_FAIR_GROUP_SCHED
10423 	.task_change_group	= task_change_group_fair,
10424 #endif
10425 
10426 #ifdef CONFIG_UCLAMP_TASK
10427 	.uclamp_enabled		= 1,
10428 #endif
10429 };
10430 
10431 #ifdef CONFIG_SCHED_DEBUG
10432 void print_cfs_stats(struct seq_file *m, int cpu)
10433 {
10434 	struct cfs_rq *cfs_rq, *pos;
10435 
10436 	rcu_read_lock();
10437 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10438 		print_cfs_rq(m, cpu, cfs_rq);
10439 	rcu_read_unlock();
10440 }
10441 
10442 #ifdef CONFIG_NUMA_BALANCING
10443 void show_numa_stats(struct task_struct *p, struct seq_file *m)
10444 {
10445 	int node;
10446 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10447 
10448 	for_each_online_node(node) {
10449 		if (p->numa_faults) {
10450 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10451 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10452 		}
10453 		if (p->numa_group) {
10454 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10455 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10456 		}
10457 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10458 	}
10459 }
10460 #endif /* CONFIG_NUMA_BALANCING */
10461 #endif /* CONFIG_SCHED_DEBUG */
10462 
10463 __init void init_sched_fair_class(void)
10464 {
10465 #ifdef CONFIG_SMP
10466 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10467 
10468 #ifdef CONFIG_NO_HZ_COMMON
10469 	nohz.next_balance = jiffies;
10470 	nohz.next_blocked = jiffies;
10471 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10472 #endif
10473 #endif /* SMP */
10474 
10475 }
10476 
10477 /*
10478  * Helper functions to facilitate extracting info from tracepoints.
10479  */
10480 
10481 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
10482 {
10483 #ifdef CONFIG_SMP
10484 	return cfs_rq ? &cfs_rq->avg : NULL;
10485 #else
10486 	return NULL;
10487 #endif
10488 }
10489 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
10490 
10491 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
10492 {
10493 	if (!cfs_rq) {
10494 		if (str)
10495 			strlcpy(str, "(null)", len);
10496 		else
10497 			return NULL;
10498 	}
10499 
10500 	cfs_rq_tg_path(cfs_rq, str, len);
10501 	return str;
10502 }
10503 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
10504 
10505 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
10506 {
10507 	return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
10508 }
10509 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
10510 
10511 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
10512 {
10513 #ifdef CONFIG_SMP
10514 	return rq ? &rq->avg_rt : NULL;
10515 #else
10516 	return NULL;
10517 #endif
10518 }
10519 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
10520 
10521 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
10522 {
10523 #ifdef CONFIG_SMP
10524 	return rq ? &rq->avg_dl : NULL;
10525 #else
10526 	return NULL;
10527 #endif
10528 }
10529 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
10530 
10531 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
10532 {
10533 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
10534 	return rq ? &rq->avg_irq : NULL;
10535 #else
10536 	return NULL;
10537 #endif
10538 }
10539 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
10540 
10541 int sched_trace_rq_cpu(struct rq *rq)
10542 {
10543 	return rq ? cpu_of(rq) : -1;
10544 }
10545 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
10546 
10547 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
10548 {
10549 #ifdef CONFIG_SMP
10550 	return rd ? rd->span : NULL;
10551 #else
10552 	return NULL;
10553 #endif
10554 }
10555 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
10556