1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 #include <trace/events/sched.h> 26 27 /* 28 * Targeted preemption latency for CPU-bound tasks: 29 * 30 * NOTE: this latency value is not the same as the concept of 31 * 'timeslice length' - timeslices in CFS are of variable length 32 * and have no persistent notion like in traditional, time-slice 33 * based scheduling concepts. 34 * 35 * (to see the precise effective timeslice length of your workload, 36 * run vmstat and monitor the context-switches (cs) field) 37 * 38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 39 */ 40 unsigned int sysctl_sched_latency = 6000000ULL; 41 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 42 43 /* 44 * The initial- and re-scaling of tunables is configurable 45 * 46 * Options are: 47 * 48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 51 * 52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 53 */ 54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 55 56 /* 57 * Minimal preemption granularity for CPU-bound tasks: 58 * 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 60 */ 61 unsigned int sysctl_sched_min_granularity = 750000ULL; 62 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 63 64 /* 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 66 */ 67 static unsigned int sched_nr_latency = 8; 68 69 /* 70 * After fork, child runs first. If set to 0 (default) then 71 * parent will (try to) run first. 72 */ 73 unsigned int sysctl_sched_child_runs_first __read_mostly; 74 75 /* 76 * SCHED_OTHER wake-up granularity. 77 * 78 * This option delays the preemption effects of decoupled workloads 79 * and reduces their over-scheduling. Synchronous workloads will still 80 * have immediate wakeup/sleep latencies. 81 * 82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 83 */ 84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 85 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 #ifdef CONFIG_SMP 90 /* 91 * For asym packing, by default the lower numbered CPU has higher priority. 92 */ 93 int __weak arch_asym_cpu_priority(int cpu) 94 { 95 return -cpu; 96 } 97 98 /* 99 * The margin used when comparing utilization with CPU capacity: 100 * util * margin < capacity * 1024 101 * 102 * (default: ~20%) 103 */ 104 static unsigned int capacity_margin = 1280; 105 #endif 106 107 #ifdef CONFIG_CFS_BANDWIDTH 108 /* 109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 110 * each time a cfs_rq requests quota. 111 * 112 * Note: in the case that the slice exceeds the runtime remaining (either due 113 * to consumption or the quota being specified to be smaller than the slice) 114 * we will always only issue the remaining available time. 115 * 116 * (default: 5 msec, units: microseconds) 117 */ 118 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 119 #endif 120 121 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 122 { 123 lw->weight += inc; 124 lw->inv_weight = 0; 125 } 126 127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 128 { 129 lw->weight -= dec; 130 lw->inv_weight = 0; 131 } 132 133 static inline void update_load_set(struct load_weight *lw, unsigned long w) 134 { 135 lw->weight = w; 136 lw->inv_weight = 0; 137 } 138 139 /* 140 * Increase the granularity value when there are more CPUs, 141 * because with more CPUs the 'effective latency' as visible 142 * to users decreases. But the relationship is not linear, 143 * so pick a second-best guess by going with the log2 of the 144 * number of CPUs. 145 * 146 * This idea comes from the SD scheduler of Con Kolivas: 147 */ 148 static unsigned int get_update_sysctl_factor(void) 149 { 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 151 unsigned int factor; 152 153 switch (sysctl_sched_tunable_scaling) { 154 case SCHED_TUNABLESCALING_NONE: 155 factor = 1; 156 break; 157 case SCHED_TUNABLESCALING_LINEAR: 158 factor = cpus; 159 break; 160 case SCHED_TUNABLESCALING_LOG: 161 default: 162 factor = 1 + ilog2(cpus); 163 break; 164 } 165 166 return factor; 167 } 168 169 static void update_sysctl(void) 170 { 171 unsigned int factor = get_update_sysctl_factor(); 172 173 #define SET_SYSCTL(name) \ 174 (sysctl_##name = (factor) * normalized_sysctl_##name) 175 SET_SYSCTL(sched_min_granularity); 176 SET_SYSCTL(sched_latency); 177 SET_SYSCTL(sched_wakeup_granularity); 178 #undef SET_SYSCTL 179 } 180 181 void sched_init_granularity(void) 182 { 183 update_sysctl(); 184 } 185 186 #define WMULT_CONST (~0U) 187 #define WMULT_SHIFT 32 188 189 static void __update_inv_weight(struct load_weight *lw) 190 { 191 unsigned long w; 192 193 if (likely(lw->inv_weight)) 194 return; 195 196 w = scale_load_down(lw->weight); 197 198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 199 lw->inv_weight = 1; 200 else if (unlikely(!w)) 201 lw->inv_weight = WMULT_CONST; 202 else 203 lw->inv_weight = WMULT_CONST / w; 204 } 205 206 /* 207 * delta_exec * weight / lw.weight 208 * OR 209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 210 * 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 212 * we're guaranteed shift stays positive because inv_weight is guaranteed to 213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 214 * 215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 216 * weight/lw.weight <= 1, and therefore our shift will also be positive. 217 */ 218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 219 { 220 u64 fact = scale_load_down(weight); 221 int shift = WMULT_SHIFT; 222 223 __update_inv_weight(lw); 224 225 if (unlikely(fact >> 32)) { 226 while (fact >> 32) { 227 fact >>= 1; 228 shift--; 229 } 230 } 231 232 /* hint to use a 32x32->64 mul */ 233 fact = (u64)(u32)fact * lw->inv_weight; 234 235 while (fact >> 32) { 236 fact >>= 1; 237 shift--; 238 } 239 240 return mul_u64_u32_shr(delta_exec, fact, shift); 241 } 242 243 244 const struct sched_class fair_sched_class; 245 246 /************************************************************** 247 * CFS operations on generic schedulable entities: 248 */ 249 250 #ifdef CONFIG_FAIR_GROUP_SCHED 251 static inline struct task_struct *task_of(struct sched_entity *se) 252 { 253 SCHED_WARN_ON(!entity_is_task(se)); 254 return container_of(se, struct task_struct, se); 255 } 256 257 /* Walk up scheduling entities hierarchy */ 258 #define for_each_sched_entity(se) \ 259 for (; se; se = se->parent) 260 261 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 262 { 263 return p->se.cfs_rq; 264 } 265 266 /* runqueue on which this entity is (to be) queued */ 267 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 268 { 269 return se->cfs_rq; 270 } 271 272 /* runqueue "owned" by this group */ 273 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 274 { 275 return grp->my_q; 276 } 277 278 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 279 { 280 if (!path) 281 return; 282 283 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg)) 284 autogroup_path(cfs_rq->tg, path, len); 285 else if (cfs_rq && cfs_rq->tg->css.cgroup) 286 cgroup_path(cfs_rq->tg->css.cgroup, path, len); 287 else 288 strlcpy(path, "(null)", len); 289 } 290 291 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 292 { 293 struct rq *rq = rq_of(cfs_rq); 294 int cpu = cpu_of(rq); 295 296 if (cfs_rq->on_list) 297 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 298 299 cfs_rq->on_list = 1; 300 301 /* 302 * Ensure we either appear before our parent (if already 303 * enqueued) or force our parent to appear after us when it is 304 * enqueued. The fact that we always enqueue bottom-up 305 * reduces this to two cases and a special case for the root 306 * cfs_rq. Furthermore, it also means that we will always reset 307 * tmp_alone_branch either when the branch is connected 308 * to a tree or when we reach the top of the tree 309 */ 310 if (cfs_rq->tg->parent && 311 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 312 /* 313 * If parent is already on the list, we add the child 314 * just before. Thanks to circular linked property of 315 * the list, this means to put the child at the tail 316 * of the list that starts by parent. 317 */ 318 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 319 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 320 /* 321 * The branch is now connected to its tree so we can 322 * reset tmp_alone_branch to the beginning of the 323 * list. 324 */ 325 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 326 return true; 327 } 328 329 if (!cfs_rq->tg->parent) { 330 /* 331 * cfs rq without parent should be put 332 * at the tail of the list. 333 */ 334 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 335 &rq->leaf_cfs_rq_list); 336 /* 337 * We have reach the top of a tree so we can reset 338 * tmp_alone_branch to the beginning of the list. 339 */ 340 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 341 return true; 342 } 343 344 /* 345 * The parent has not already been added so we want to 346 * make sure that it will be put after us. 347 * tmp_alone_branch points to the begin of the branch 348 * where we will add parent. 349 */ 350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 351 /* 352 * update tmp_alone_branch to points to the new begin 353 * of the branch 354 */ 355 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 356 return false; 357 } 358 359 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 360 { 361 if (cfs_rq->on_list) { 362 struct rq *rq = rq_of(cfs_rq); 363 364 /* 365 * With cfs_rq being unthrottled/throttled during an enqueue, 366 * it can happen the tmp_alone_branch points the a leaf that 367 * we finally want to del. In this case, tmp_alone_branch moves 368 * to the prev element but it will point to rq->leaf_cfs_rq_list 369 * at the end of the enqueue. 370 */ 371 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 372 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 373 374 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 375 cfs_rq->on_list = 0; 376 } 377 } 378 379 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 380 { 381 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 382 } 383 384 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 385 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 386 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 387 leaf_cfs_rq_list) 388 389 /* Do the two (enqueued) entities belong to the same group ? */ 390 static inline struct cfs_rq * 391 is_same_group(struct sched_entity *se, struct sched_entity *pse) 392 { 393 if (se->cfs_rq == pse->cfs_rq) 394 return se->cfs_rq; 395 396 return NULL; 397 } 398 399 static inline struct sched_entity *parent_entity(struct sched_entity *se) 400 { 401 return se->parent; 402 } 403 404 static void 405 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 406 { 407 int se_depth, pse_depth; 408 409 /* 410 * preemption test can be made between sibling entities who are in the 411 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 412 * both tasks until we find their ancestors who are siblings of common 413 * parent. 414 */ 415 416 /* First walk up until both entities are at same depth */ 417 se_depth = (*se)->depth; 418 pse_depth = (*pse)->depth; 419 420 while (se_depth > pse_depth) { 421 se_depth--; 422 *se = parent_entity(*se); 423 } 424 425 while (pse_depth > se_depth) { 426 pse_depth--; 427 *pse = parent_entity(*pse); 428 } 429 430 while (!is_same_group(*se, *pse)) { 431 *se = parent_entity(*se); 432 *pse = parent_entity(*pse); 433 } 434 } 435 436 #else /* !CONFIG_FAIR_GROUP_SCHED */ 437 438 static inline struct task_struct *task_of(struct sched_entity *se) 439 { 440 return container_of(se, struct task_struct, se); 441 } 442 443 #define for_each_sched_entity(se) \ 444 for (; se; se = NULL) 445 446 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 447 { 448 return &task_rq(p)->cfs; 449 } 450 451 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 452 { 453 struct task_struct *p = task_of(se); 454 struct rq *rq = task_rq(p); 455 456 return &rq->cfs; 457 } 458 459 /* runqueue "owned" by this group */ 460 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 461 { 462 return NULL; 463 } 464 465 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 466 { 467 if (path) 468 strlcpy(path, "(null)", len); 469 } 470 471 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 472 { 473 return true; 474 } 475 476 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 477 { 478 } 479 480 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 481 { 482 } 483 484 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 485 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 486 487 static inline struct sched_entity *parent_entity(struct sched_entity *se) 488 { 489 return NULL; 490 } 491 492 static inline void 493 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 494 { 495 } 496 497 #endif /* CONFIG_FAIR_GROUP_SCHED */ 498 499 static __always_inline 500 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 501 502 /************************************************************** 503 * Scheduling class tree data structure manipulation methods: 504 */ 505 506 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 507 { 508 s64 delta = (s64)(vruntime - max_vruntime); 509 if (delta > 0) 510 max_vruntime = vruntime; 511 512 return max_vruntime; 513 } 514 515 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 516 { 517 s64 delta = (s64)(vruntime - min_vruntime); 518 if (delta < 0) 519 min_vruntime = vruntime; 520 521 return min_vruntime; 522 } 523 524 static inline int entity_before(struct sched_entity *a, 525 struct sched_entity *b) 526 { 527 return (s64)(a->vruntime - b->vruntime) < 0; 528 } 529 530 static void update_min_vruntime(struct cfs_rq *cfs_rq) 531 { 532 struct sched_entity *curr = cfs_rq->curr; 533 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 534 535 u64 vruntime = cfs_rq->min_vruntime; 536 537 if (curr) { 538 if (curr->on_rq) 539 vruntime = curr->vruntime; 540 else 541 curr = NULL; 542 } 543 544 if (leftmost) { /* non-empty tree */ 545 struct sched_entity *se; 546 se = rb_entry(leftmost, struct sched_entity, run_node); 547 548 if (!curr) 549 vruntime = se->vruntime; 550 else 551 vruntime = min_vruntime(vruntime, se->vruntime); 552 } 553 554 /* ensure we never gain time by being placed backwards. */ 555 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 556 #ifndef CONFIG_64BIT 557 smp_wmb(); 558 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 559 #endif 560 } 561 562 /* 563 * Enqueue an entity into the rb-tree: 564 */ 565 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 566 { 567 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 568 struct rb_node *parent = NULL; 569 struct sched_entity *entry; 570 bool leftmost = true; 571 572 /* 573 * Find the right place in the rbtree: 574 */ 575 while (*link) { 576 parent = *link; 577 entry = rb_entry(parent, struct sched_entity, run_node); 578 /* 579 * We dont care about collisions. Nodes with 580 * the same key stay together. 581 */ 582 if (entity_before(se, entry)) { 583 link = &parent->rb_left; 584 } else { 585 link = &parent->rb_right; 586 leftmost = false; 587 } 588 } 589 590 rb_link_node(&se->run_node, parent, link); 591 rb_insert_color_cached(&se->run_node, 592 &cfs_rq->tasks_timeline, leftmost); 593 } 594 595 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 596 { 597 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 598 } 599 600 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 601 { 602 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 603 604 if (!left) 605 return NULL; 606 607 return rb_entry(left, struct sched_entity, run_node); 608 } 609 610 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 611 { 612 struct rb_node *next = rb_next(&se->run_node); 613 614 if (!next) 615 return NULL; 616 617 return rb_entry(next, struct sched_entity, run_node); 618 } 619 620 #ifdef CONFIG_SCHED_DEBUG 621 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 622 { 623 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 624 625 if (!last) 626 return NULL; 627 628 return rb_entry(last, struct sched_entity, run_node); 629 } 630 631 /************************************************************** 632 * Scheduling class statistics methods: 633 */ 634 635 int sched_proc_update_handler(struct ctl_table *table, int write, 636 void __user *buffer, size_t *lenp, 637 loff_t *ppos) 638 { 639 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 640 unsigned int factor = get_update_sysctl_factor(); 641 642 if (ret || !write) 643 return ret; 644 645 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 646 sysctl_sched_min_granularity); 647 648 #define WRT_SYSCTL(name) \ 649 (normalized_sysctl_##name = sysctl_##name / (factor)) 650 WRT_SYSCTL(sched_min_granularity); 651 WRT_SYSCTL(sched_latency); 652 WRT_SYSCTL(sched_wakeup_granularity); 653 #undef WRT_SYSCTL 654 655 return 0; 656 } 657 #endif 658 659 /* 660 * delta /= w 661 */ 662 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 663 { 664 if (unlikely(se->load.weight != NICE_0_LOAD)) 665 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 666 667 return delta; 668 } 669 670 /* 671 * The idea is to set a period in which each task runs once. 672 * 673 * When there are too many tasks (sched_nr_latency) we have to stretch 674 * this period because otherwise the slices get too small. 675 * 676 * p = (nr <= nl) ? l : l*nr/nl 677 */ 678 static u64 __sched_period(unsigned long nr_running) 679 { 680 if (unlikely(nr_running > sched_nr_latency)) 681 return nr_running * sysctl_sched_min_granularity; 682 else 683 return sysctl_sched_latency; 684 } 685 686 /* 687 * We calculate the wall-time slice from the period by taking a part 688 * proportional to the weight. 689 * 690 * s = p*P[w/rw] 691 */ 692 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 693 { 694 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 695 696 for_each_sched_entity(se) { 697 struct load_weight *load; 698 struct load_weight lw; 699 700 cfs_rq = cfs_rq_of(se); 701 load = &cfs_rq->load; 702 703 if (unlikely(!se->on_rq)) { 704 lw = cfs_rq->load; 705 706 update_load_add(&lw, se->load.weight); 707 load = &lw; 708 } 709 slice = __calc_delta(slice, se->load.weight, load); 710 } 711 return slice; 712 } 713 714 /* 715 * We calculate the vruntime slice of a to-be-inserted task. 716 * 717 * vs = s/w 718 */ 719 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 720 { 721 return calc_delta_fair(sched_slice(cfs_rq, se), se); 722 } 723 724 #include "pelt.h" 725 #ifdef CONFIG_SMP 726 727 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 728 static unsigned long task_h_load(struct task_struct *p); 729 static unsigned long capacity_of(int cpu); 730 731 /* Give new sched_entity start runnable values to heavy its load in infant time */ 732 void init_entity_runnable_average(struct sched_entity *se) 733 { 734 struct sched_avg *sa = &se->avg; 735 736 memset(sa, 0, sizeof(*sa)); 737 738 /* 739 * Tasks are initialized with full load to be seen as heavy tasks until 740 * they get a chance to stabilize to their real load level. 741 * Group entities are initialized with zero load to reflect the fact that 742 * nothing has been attached to the task group yet. 743 */ 744 if (entity_is_task(se)) 745 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight); 746 747 se->runnable_weight = se->load.weight; 748 749 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 750 } 751 752 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 753 static void attach_entity_cfs_rq(struct sched_entity *se); 754 755 /* 756 * With new tasks being created, their initial util_avgs are extrapolated 757 * based on the cfs_rq's current util_avg: 758 * 759 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 760 * 761 * However, in many cases, the above util_avg does not give a desired 762 * value. Moreover, the sum of the util_avgs may be divergent, such 763 * as when the series is a harmonic series. 764 * 765 * To solve this problem, we also cap the util_avg of successive tasks to 766 * only 1/2 of the left utilization budget: 767 * 768 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 769 * 770 * where n denotes the nth task and cpu_scale the CPU capacity. 771 * 772 * For example, for a CPU with 1024 of capacity, a simplest series from 773 * the beginning would be like: 774 * 775 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 776 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 777 * 778 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 779 * if util_avg > util_avg_cap. 780 */ 781 void post_init_entity_util_avg(struct task_struct *p) 782 { 783 struct sched_entity *se = &p->se; 784 struct cfs_rq *cfs_rq = cfs_rq_of(se); 785 struct sched_avg *sa = &se->avg; 786 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 787 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 788 789 if (cap > 0) { 790 if (cfs_rq->avg.util_avg != 0) { 791 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 792 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 793 794 if (sa->util_avg > cap) 795 sa->util_avg = cap; 796 } else { 797 sa->util_avg = cap; 798 } 799 } 800 801 if (p->sched_class != &fair_sched_class) { 802 /* 803 * For !fair tasks do: 804 * 805 update_cfs_rq_load_avg(now, cfs_rq); 806 attach_entity_load_avg(cfs_rq, se, 0); 807 switched_from_fair(rq, p); 808 * 809 * such that the next switched_to_fair() has the 810 * expected state. 811 */ 812 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 813 return; 814 } 815 816 attach_entity_cfs_rq(se); 817 } 818 819 #else /* !CONFIG_SMP */ 820 void init_entity_runnable_average(struct sched_entity *se) 821 { 822 } 823 void post_init_entity_util_avg(struct task_struct *p) 824 { 825 } 826 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 827 { 828 } 829 #endif /* CONFIG_SMP */ 830 831 /* 832 * Update the current task's runtime statistics. 833 */ 834 static void update_curr(struct cfs_rq *cfs_rq) 835 { 836 struct sched_entity *curr = cfs_rq->curr; 837 u64 now = rq_clock_task(rq_of(cfs_rq)); 838 u64 delta_exec; 839 840 if (unlikely(!curr)) 841 return; 842 843 delta_exec = now - curr->exec_start; 844 if (unlikely((s64)delta_exec <= 0)) 845 return; 846 847 curr->exec_start = now; 848 849 schedstat_set(curr->statistics.exec_max, 850 max(delta_exec, curr->statistics.exec_max)); 851 852 curr->sum_exec_runtime += delta_exec; 853 schedstat_add(cfs_rq->exec_clock, delta_exec); 854 855 curr->vruntime += calc_delta_fair(delta_exec, curr); 856 update_min_vruntime(cfs_rq); 857 858 if (entity_is_task(curr)) { 859 struct task_struct *curtask = task_of(curr); 860 861 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 862 cgroup_account_cputime(curtask, delta_exec); 863 account_group_exec_runtime(curtask, delta_exec); 864 } 865 866 account_cfs_rq_runtime(cfs_rq, delta_exec); 867 } 868 869 static void update_curr_fair(struct rq *rq) 870 { 871 update_curr(cfs_rq_of(&rq->curr->se)); 872 } 873 874 static inline void 875 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 876 { 877 u64 wait_start, prev_wait_start; 878 879 if (!schedstat_enabled()) 880 return; 881 882 wait_start = rq_clock(rq_of(cfs_rq)); 883 prev_wait_start = schedstat_val(se->statistics.wait_start); 884 885 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 886 likely(wait_start > prev_wait_start)) 887 wait_start -= prev_wait_start; 888 889 __schedstat_set(se->statistics.wait_start, wait_start); 890 } 891 892 static inline void 893 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 894 { 895 struct task_struct *p; 896 u64 delta; 897 898 if (!schedstat_enabled()) 899 return; 900 901 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 902 903 if (entity_is_task(se)) { 904 p = task_of(se); 905 if (task_on_rq_migrating(p)) { 906 /* 907 * Preserve migrating task's wait time so wait_start 908 * time stamp can be adjusted to accumulate wait time 909 * prior to migration. 910 */ 911 __schedstat_set(se->statistics.wait_start, delta); 912 return; 913 } 914 trace_sched_stat_wait(p, delta); 915 } 916 917 __schedstat_set(se->statistics.wait_max, 918 max(schedstat_val(se->statistics.wait_max), delta)); 919 __schedstat_inc(se->statistics.wait_count); 920 __schedstat_add(se->statistics.wait_sum, delta); 921 __schedstat_set(se->statistics.wait_start, 0); 922 } 923 924 static inline void 925 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 926 { 927 struct task_struct *tsk = NULL; 928 u64 sleep_start, block_start; 929 930 if (!schedstat_enabled()) 931 return; 932 933 sleep_start = schedstat_val(se->statistics.sleep_start); 934 block_start = schedstat_val(se->statistics.block_start); 935 936 if (entity_is_task(se)) 937 tsk = task_of(se); 938 939 if (sleep_start) { 940 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 941 942 if ((s64)delta < 0) 943 delta = 0; 944 945 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 946 __schedstat_set(se->statistics.sleep_max, delta); 947 948 __schedstat_set(se->statistics.sleep_start, 0); 949 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 950 951 if (tsk) { 952 account_scheduler_latency(tsk, delta >> 10, 1); 953 trace_sched_stat_sleep(tsk, delta); 954 } 955 } 956 if (block_start) { 957 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 958 959 if ((s64)delta < 0) 960 delta = 0; 961 962 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 963 __schedstat_set(se->statistics.block_max, delta); 964 965 __schedstat_set(se->statistics.block_start, 0); 966 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 967 968 if (tsk) { 969 if (tsk->in_iowait) { 970 __schedstat_add(se->statistics.iowait_sum, delta); 971 __schedstat_inc(se->statistics.iowait_count); 972 trace_sched_stat_iowait(tsk, delta); 973 } 974 975 trace_sched_stat_blocked(tsk, delta); 976 977 /* 978 * Blocking time is in units of nanosecs, so shift by 979 * 20 to get a milliseconds-range estimation of the 980 * amount of time that the task spent sleeping: 981 */ 982 if (unlikely(prof_on == SLEEP_PROFILING)) { 983 profile_hits(SLEEP_PROFILING, 984 (void *)get_wchan(tsk), 985 delta >> 20); 986 } 987 account_scheduler_latency(tsk, delta >> 10, 0); 988 } 989 } 990 } 991 992 /* 993 * Task is being enqueued - update stats: 994 */ 995 static inline void 996 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 997 { 998 if (!schedstat_enabled()) 999 return; 1000 1001 /* 1002 * Are we enqueueing a waiting task? (for current tasks 1003 * a dequeue/enqueue event is a NOP) 1004 */ 1005 if (se != cfs_rq->curr) 1006 update_stats_wait_start(cfs_rq, se); 1007 1008 if (flags & ENQUEUE_WAKEUP) 1009 update_stats_enqueue_sleeper(cfs_rq, se); 1010 } 1011 1012 static inline void 1013 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1014 { 1015 1016 if (!schedstat_enabled()) 1017 return; 1018 1019 /* 1020 * Mark the end of the wait period if dequeueing a 1021 * waiting task: 1022 */ 1023 if (se != cfs_rq->curr) 1024 update_stats_wait_end(cfs_rq, se); 1025 1026 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1027 struct task_struct *tsk = task_of(se); 1028 1029 if (tsk->state & TASK_INTERRUPTIBLE) 1030 __schedstat_set(se->statistics.sleep_start, 1031 rq_clock(rq_of(cfs_rq))); 1032 if (tsk->state & TASK_UNINTERRUPTIBLE) 1033 __schedstat_set(se->statistics.block_start, 1034 rq_clock(rq_of(cfs_rq))); 1035 } 1036 } 1037 1038 /* 1039 * We are picking a new current task - update its stats: 1040 */ 1041 static inline void 1042 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1043 { 1044 /* 1045 * We are starting a new run period: 1046 */ 1047 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1048 } 1049 1050 /************************************************** 1051 * Scheduling class queueing methods: 1052 */ 1053 1054 #ifdef CONFIG_NUMA_BALANCING 1055 /* 1056 * Approximate time to scan a full NUMA task in ms. The task scan period is 1057 * calculated based on the tasks virtual memory size and 1058 * numa_balancing_scan_size. 1059 */ 1060 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1061 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1062 1063 /* Portion of address space to scan in MB */ 1064 unsigned int sysctl_numa_balancing_scan_size = 256; 1065 1066 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1067 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1068 1069 struct numa_group { 1070 refcount_t refcount; 1071 1072 spinlock_t lock; /* nr_tasks, tasks */ 1073 int nr_tasks; 1074 pid_t gid; 1075 int active_nodes; 1076 1077 struct rcu_head rcu; 1078 unsigned long total_faults; 1079 unsigned long max_faults_cpu; 1080 /* 1081 * Faults_cpu is used to decide whether memory should move 1082 * towards the CPU. As a consequence, these stats are weighted 1083 * more by CPU use than by memory faults. 1084 */ 1085 unsigned long *faults_cpu; 1086 unsigned long faults[0]; 1087 }; 1088 1089 static inline unsigned long group_faults_priv(struct numa_group *ng); 1090 static inline unsigned long group_faults_shared(struct numa_group *ng); 1091 1092 static unsigned int task_nr_scan_windows(struct task_struct *p) 1093 { 1094 unsigned long rss = 0; 1095 unsigned long nr_scan_pages; 1096 1097 /* 1098 * Calculations based on RSS as non-present and empty pages are skipped 1099 * by the PTE scanner and NUMA hinting faults should be trapped based 1100 * on resident pages 1101 */ 1102 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1103 rss = get_mm_rss(p->mm); 1104 if (!rss) 1105 rss = nr_scan_pages; 1106 1107 rss = round_up(rss, nr_scan_pages); 1108 return rss / nr_scan_pages; 1109 } 1110 1111 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1112 #define MAX_SCAN_WINDOW 2560 1113 1114 static unsigned int task_scan_min(struct task_struct *p) 1115 { 1116 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1117 unsigned int scan, floor; 1118 unsigned int windows = 1; 1119 1120 if (scan_size < MAX_SCAN_WINDOW) 1121 windows = MAX_SCAN_WINDOW / scan_size; 1122 floor = 1000 / windows; 1123 1124 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1125 return max_t(unsigned int, floor, scan); 1126 } 1127 1128 static unsigned int task_scan_start(struct task_struct *p) 1129 { 1130 unsigned long smin = task_scan_min(p); 1131 unsigned long period = smin; 1132 1133 /* Scale the maximum scan period with the amount of shared memory. */ 1134 if (p->numa_group) { 1135 struct numa_group *ng = p->numa_group; 1136 unsigned long shared = group_faults_shared(ng); 1137 unsigned long private = group_faults_priv(ng); 1138 1139 period *= refcount_read(&ng->refcount); 1140 period *= shared + 1; 1141 period /= private + shared + 1; 1142 } 1143 1144 return max(smin, period); 1145 } 1146 1147 static unsigned int task_scan_max(struct task_struct *p) 1148 { 1149 unsigned long smin = task_scan_min(p); 1150 unsigned long smax; 1151 1152 /* Watch for min being lower than max due to floor calculations */ 1153 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1154 1155 /* Scale the maximum scan period with the amount of shared memory. */ 1156 if (p->numa_group) { 1157 struct numa_group *ng = p->numa_group; 1158 unsigned long shared = group_faults_shared(ng); 1159 unsigned long private = group_faults_priv(ng); 1160 unsigned long period = smax; 1161 1162 period *= refcount_read(&ng->refcount); 1163 period *= shared + 1; 1164 period /= private + shared + 1; 1165 1166 smax = max(smax, period); 1167 } 1168 1169 return max(smin, smax); 1170 } 1171 1172 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1173 { 1174 int mm_users = 0; 1175 struct mm_struct *mm = p->mm; 1176 1177 if (mm) { 1178 mm_users = atomic_read(&mm->mm_users); 1179 if (mm_users == 1) { 1180 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1181 mm->numa_scan_seq = 0; 1182 } 1183 } 1184 p->node_stamp = 0; 1185 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 1186 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1187 p->numa_work.next = &p->numa_work; 1188 p->numa_faults = NULL; 1189 p->numa_group = NULL; 1190 p->last_task_numa_placement = 0; 1191 p->last_sum_exec_runtime = 0; 1192 1193 /* New address space, reset the preferred nid */ 1194 if (!(clone_flags & CLONE_VM)) { 1195 p->numa_preferred_nid = NUMA_NO_NODE; 1196 return; 1197 } 1198 1199 /* 1200 * New thread, keep existing numa_preferred_nid which should be copied 1201 * already by arch_dup_task_struct but stagger when scans start. 1202 */ 1203 if (mm) { 1204 unsigned int delay; 1205 1206 delay = min_t(unsigned int, task_scan_max(current), 1207 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 1208 delay += 2 * TICK_NSEC; 1209 p->node_stamp = delay; 1210 } 1211 } 1212 1213 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1214 { 1215 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1216 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1217 } 1218 1219 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1220 { 1221 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1222 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1223 } 1224 1225 /* Shared or private faults. */ 1226 #define NR_NUMA_HINT_FAULT_TYPES 2 1227 1228 /* Memory and CPU locality */ 1229 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1230 1231 /* Averaged statistics, and temporary buffers. */ 1232 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1233 1234 pid_t task_numa_group_id(struct task_struct *p) 1235 { 1236 return p->numa_group ? p->numa_group->gid : 0; 1237 } 1238 1239 /* 1240 * The averaged statistics, shared & private, memory & CPU, 1241 * occupy the first half of the array. The second half of the 1242 * array is for current counters, which are averaged into the 1243 * first set by task_numa_placement. 1244 */ 1245 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1246 { 1247 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1248 } 1249 1250 static inline unsigned long task_faults(struct task_struct *p, int nid) 1251 { 1252 if (!p->numa_faults) 1253 return 0; 1254 1255 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1256 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1257 } 1258 1259 static inline unsigned long group_faults(struct task_struct *p, int nid) 1260 { 1261 if (!p->numa_group) 1262 return 0; 1263 1264 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1265 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1266 } 1267 1268 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1269 { 1270 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1271 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1272 } 1273 1274 static inline unsigned long group_faults_priv(struct numa_group *ng) 1275 { 1276 unsigned long faults = 0; 1277 int node; 1278 1279 for_each_online_node(node) { 1280 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1281 } 1282 1283 return faults; 1284 } 1285 1286 static inline unsigned long group_faults_shared(struct numa_group *ng) 1287 { 1288 unsigned long faults = 0; 1289 int node; 1290 1291 for_each_online_node(node) { 1292 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1293 } 1294 1295 return faults; 1296 } 1297 1298 /* 1299 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1300 * considered part of a numa group's pseudo-interleaving set. Migrations 1301 * between these nodes are slowed down, to allow things to settle down. 1302 */ 1303 #define ACTIVE_NODE_FRACTION 3 1304 1305 static bool numa_is_active_node(int nid, struct numa_group *ng) 1306 { 1307 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1308 } 1309 1310 /* Handle placement on systems where not all nodes are directly connected. */ 1311 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1312 int maxdist, bool task) 1313 { 1314 unsigned long score = 0; 1315 int node; 1316 1317 /* 1318 * All nodes are directly connected, and the same distance 1319 * from each other. No need for fancy placement algorithms. 1320 */ 1321 if (sched_numa_topology_type == NUMA_DIRECT) 1322 return 0; 1323 1324 /* 1325 * This code is called for each node, introducing N^2 complexity, 1326 * which should be ok given the number of nodes rarely exceeds 8. 1327 */ 1328 for_each_online_node(node) { 1329 unsigned long faults; 1330 int dist = node_distance(nid, node); 1331 1332 /* 1333 * The furthest away nodes in the system are not interesting 1334 * for placement; nid was already counted. 1335 */ 1336 if (dist == sched_max_numa_distance || node == nid) 1337 continue; 1338 1339 /* 1340 * On systems with a backplane NUMA topology, compare groups 1341 * of nodes, and move tasks towards the group with the most 1342 * memory accesses. When comparing two nodes at distance 1343 * "hoplimit", only nodes closer by than "hoplimit" are part 1344 * of each group. Skip other nodes. 1345 */ 1346 if (sched_numa_topology_type == NUMA_BACKPLANE && 1347 dist >= maxdist) 1348 continue; 1349 1350 /* Add up the faults from nearby nodes. */ 1351 if (task) 1352 faults = task_faults(p, node); 1353 else 1354 faults = group_faults(p, node); 1355 1356 /* 1357 * On systems with a glueless mesh NUMA topology, there are 1358 * no fixed "groups of nodes". Instead, nodes that are not 1359 * directly connected bounce traffic through intermediate 1360 * nodes; a numa_group can occupy any set of nodes. 1361 * The further away a node is, the less the faults count. 1362 * This seems to result in good task placement. 1363 */ 1364 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1365 faults *= (sched_max_numa_distance - dist); 1366 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1367 } 1368 1369 score += faults; 1370 } 1371 1372 return score; 1373 } 1374 1375 /* 1376 * These return the fraction of accesses done by a particular task, or 1377 * task group, on a particular numa node. The group weight is given a 1378 * larger multiplier, in order to group tasks together that are almost 1379 * evenly spread out between numa nodes. 1380 */ 1381 static inline unsigned long task_weight(struct task_struct *p, int nid, 1382 int dist) 1383 { 1384 unsigned long faults, total_faults; 1385 1386 if (!p->numa_faults) 1387 return 0; 1388 1389 total_faults = p->total_numa_faults; 1390 1391 if (!total_faults) 1392 return 0; 1393 1394 faults = task_faults(p, nid); 1395 faults += score_nearby_nodes(p, nid, dist, true); 1396 1397 return 1000 * faults / total_faults; 1398 } 1399 1400 static inline unsigned long group_weight(struct task_struct *p, int nid, 1401 int dist) 1402 { 1403 unsigned long faults, total_faults; 1404 1405 if (!p->numa_group) 1406 return 0; 1407 1408 total_faults = p->numa_group->total_faults; 1409 1410 if (!total_faults) 1411 return 0; 1412 1413 faults = group_faults(p, nid); 1414 faults += score_nearby_nodes(p, nid, dist, false); 1415 1416 return 1000 * faults / total_faults; 1417 } 1418 1419 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1420 int src_nid, int dst_cpu) 1421 { 1422 struct numa_group *ng = p->numa_group; 1423 int dst_nid = cpu_to_node(dst_cpu); 1424 int last_cpupid, this_cpupid; 1425 1426 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1427 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1428 1429 /* 1430 * Allow first faults or private faults to migrate immediately early in 1431 * the lifetime of a task. The magic number 4 is based on waiting for 1432 * two full passes of the "multi-stage node selection" test that is 1433 * executed below. 1434 */ 1435 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1436 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1437 return true; 1438 1439 /* 1440 * Multi-stage node selection is used in conjunction with a periodic 1441 * migration fault to build a temporal task<->page relation. By using 1442 * a two-stage filter we remove short/unlikely relations. 1443 * 1444 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1445 * a task's usage of a particular page (n_p) per total usage of this 1446 * page (n_t) (in a given time-span) to a probability. 1447 * 1448 * Our periodic faults will sample this probability and getting the 1449 * same result twice in a row, given these samples are fully 1450 * independent, is then given by P(n)^2, provided our sample period 1451 * is sufficiently short compared to the usage pattern. 1452 * 1453 * This quadric squishes small probabilities, making it less likely we 1454 * act on an unlikely task<->page relation. 1455 */ 1456 if (!cpupid_pid_unset(last_cpupid) && 1457 cpupid_to_nid(last_cpupid) != dst_nid) 1458 return false; 1459 1460 /* Always allow migrate on private faults */ 1461 if (cpupid_match_pid(p, last_cpupid)) 1462 return true; 1463 1464 /* A shared fault, but p->numa_group has not been set up yet. */ 1465 if (!ng) 1466 return true; 1467 1468 /* 1469 * Destination node is much more heavily used than the source 1470 * node? Allow migration. 1471 */ 1472 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1473 ACTIVE_NODE_FRACTION) 1474 return true; 1475 1476 /* 1477 * Distribute memory according to CPU & memory use on each node, 1478 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1479 * 1480 * faults_cpu(dst) 3 faults_cpu(src) 1481 * --------------- * - > --------------- 1482 * faults_mem(dst) 4 faults_mem(src) 1483 */ 1484 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1485 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1486 } 1487 1488 static unsigned long cpu_runnable_load(struct rq *rq); 1489 1490 /* Cached statistics for all CPUs within a node */ 1491 struct numa_stats { 1492 unsigned long load; 1493 1494 /* Total compute capacity of CPUs on a node */ 1495 unsigned long compute_capacity; 1496 }; 1497 1498 /* 1499 * XXX borrowed from update_sg_lb_stats 1500 */ 1501 static void update_numa_stats(struct numa_stats *ns, int nid) 1502 { 1503 int cpu; 1504 1505 memset(ns, 0, sizeof(*ns)); 1506 for_each_cpu(cpu, cpumask_of_node(nid)) { 1507 struct rq *rq = cpu_rq(cpu); 1508 1509 ns->load += cpu_runnable_load(rq); 1510 ns->compute_capacity += capacity_of(cpu); 1511 } 1512 1513 } 1514 1515 struct task_numa_env { 1516 struct task_struct *p; 1517 1518 int src_cpu, src_nid; 1519 int dst_cpu, dst_nid; 1520 1521 struct numa_stats src_stats, dst_stats; 1522 1523 int imbalance_pct; 1524 int dist; 1525 1526 struct task_struct *best_task; 1527 long best_imp; 1528 int best_cpu; 1529 }; 1530 1531 static void task_numa_assign(struct task_numa_env *env, 1532 struct task_struct *p, long imp) 1533 { 1534 struct rq *rq = cpu_rq(env->dst_cpu); 1535 1536 /* Bail out if run-queue part of active NUMA balance. */ 1537 if (xchg(&rq->numa_migrate_on, 1)) 1538 return; 1539 1540 /* 1541 * Clear previous best_cpu/rq numa-migrate flag, since task now 1542 * found a better CPU to move/swap. 1543 */ 1544 if (env->best_cpu != -1) { 1545 rq = cpu_rq(env->best_cpu); 1546 WRITE_ONCE(rq->numa_migrate_on, 0); 1547 } 1548 1549 if (env->best_task) 1550 put_task_struct(env->best_task); 1551 if (p) 1552 get_task_struct(p); 1553 1554 env->best_task = p; 1555 env->best_imp = imp; 1556 env->best_cpu = env->dst_cpu; 1557 } 1558 1559 static bool load_too_imbalanced(long src_load, long dst_load, 1560 struct task_numa_env *env) 1561 { 1562 long imb, old_imb; 1563 long orig_src_load, orig_dst_load; 1564 long src_capacity, dst_capacity; 1565 1566 /* 1567 * The load is corrected for the CPU capacity available on each node. 1568 * 1569 * src_load dst_load 1570 * ------------ vs --------- 1571 * src_capacity dst_capacity 1572 */ 1573 src_capacity = env->src_stats.compute_capacity; 1574 dst_capacity = env->dst_stats.compute_capacity; 1575 1576 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1577 1578 orig_src_load = env->src_stats.load; 1579 orig_dst_load = env->dst_stats.load; 1580 1581 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1582 1583 /* Would this change make things worse? */ 1584 return (imb > old_imb); 1585 } 1586 1587 /* 1588 * Maximum NUMA importance can be 1998 (2*999); 1589 * SMALLIMP @ 30 would be close to 1998/64. 1590 * Used to deter task migration. 1591 */ 1592 #define SMALLIMP 30 1593 1594 /* 1595 * This checks if the overall compute and NUMA accesses of the system would 1596 * be improved if the source tasks was migrated to the target dst_cpu taking 1597 * into account that it might be best if task running on the dst_cpu should 1598 * be exchanged with the source task 1599 */ 1600 static void task_numa_compare(struct task_numa_env *env, 1601 long taskimp, long groupimp, bool maymove) 1602 { 1603 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1604 struct task_struct *cur; 1605 long src_load, dst_load; 1606 long load; 1607 long imp = env->p->numa_group ? groupimp : taskimp; 1608 long moveimp = imp; 1609 int dist = env->dist; 1610 1611 if (READ_ONCE(dst_rq->numa_migrate_on)) 1612 return; 1613 1614 rcu_read_lock(); 1615 cur = task_rcu_dereference(&dst_rq->curr); 1616 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1617 cur = NULL; 1618 1619 /* 1620 * Because we have preemption enabled we can get migrated around and 1621 * end try selecting ourselves (current == env->p) as a swap candidate. 1622 */ 1623 if (cur == env->p) 1624 goto unlock; 1625 1626 if (!cur) { 1627 if (maymove && moveimp >= env->best_imp) 1628 goto assign; 1629 else 1630 goto unlock; 1631 } 1632 1633 /* 1634 * "imp" is the fault differential for the source task between the 1635 * source and destination node. Calculate the total differential for 1636 * the source task and potential destination task. The more negative 1637 * the value is, the more remote accesses that would be expected to 1638 * be incurred if the tasks were swapped. 1639 */ 1640 /* Skip this swap candidate if cannot move to the source cpu */ 1641 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1642 goto unlock; 1643 1644 /* 1645 * If dst and source tasks are in the same NUMA group, or not 1646 * in any group then look only at task weights. 1647 */ 1648 if (cur->numa_group == env->p->numa_group) { 1649 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1650 task_weight(cur, env->dst_nid, dist); 1651 /* 1652 * Add some hysteresis to prevent swapping the 1653 * tasks within a group over tiny differences. 1654 */ 1655 if (cur->numa_group) 1656 imp -= imp / 16; 1657 } else { 1658 /* 1659 * Compare the group weights. If a task is all by itself 1660 * (not part of a group), use the task weight instead. 1661 */ 1662 if (cur->numa_group && env->p->numa_group) 1663 imp += group_weight(cur, env->src_nid, dist) - 1664 group_weight(cur, env->dst_nid, dist); 1665 else 1666 imp += task_weight(cur, env->src_nid, dist) - 1667 task_weight(cur, env->dst_nid, dist); 1668 } 1669 1670 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1671 imp = moveimp; 1672 cur = NULL; 1673 goto assign; 1674 } 1675 1676 /* 1677 * If the NUMA importance is less than SMALLIMP, 1678 * task migration might only result in ping pong 1679 * of tasks and also hurt performance due to cache 1680 * misses. 1681 */ 1682 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1683 goto unlock; 1684 1685 /* 1686 * In the overloaded case, try and keep the load balanced. 1687 */ 1688 load = task_h_load(env->p) - task_h_load(cur); 1689 if (!load) 1690 goto assign; 1691 1692 dst_load = env->dst_stats.load + load; 1693 src_load = env->src_stats.load - load; 1694 1695 if (load_too_imbalanced(src_load, dst_load, env)) 1696 goto unlock; 1697 1698 assign: 1699 /* 1700 * One idle CPU per node is evaluated for a task numa move. 1701 * Call select_idle_sibling to maybe find a better one. 1702 */ 1703 if (!cur) { 1704 /* 1705 * select_idle_siblings() uses an per-CPU cpumask that 1706 * can be used from IRQ context. 1707 */ 1708 local_irq_disable(); 1709 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1710 env->dst_cpu); 1711 local_irq_enable(); 1712 } 1713 1714 task_numa_assign(env, cur, imp); 1715 unlock: 1716 rcu_read_unlock(); 1717 } 1718 1719 static void task_numa_find_cpu(struct task_numa_env *env, 1720 long taskimp, long groupimp) 1721 { 1722 long src_load, dst_load, load; 1723 bool maymove = false; 1724 int cpu; 1725 1726 load = task_h_load(env->p); 1727 dst_load = env->dst_stats.load + load; 1728 src_load = env->src_stats.load - load; 1729 1730 /* 1731 * If the improvement from just moving env->p direction is better 1732 * than swapping tasks around, check if a move is possible. 1733 */ 1734 maymove = !load_too_imbalanced(src_load, dst_load, env); 1735 1736 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1737 /* Skip this CPU if the source task cannot migrate */ 1738 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1739 continue; 1740 1741 env->dst_cpu = cpu; 1742 task_numa_compare(env, taskimp, groupimp, maymove); 1743 } 1744 } 1745 1746 static int task_numa_migrate(struct task_struct *p) 1747 { 1748 struct task_numa_env env = { 1749 .p = p, 1750 1751 .src_cpu = task_cpu(p), 1752 .src_nid = task_node(p), 1753 1754 .imbalance_pct = 112, 1755 1756 .best_task = NULL, 1757 .best_imp = 0, 1758 .best_cpu = -1, 1759 }; 1760 struct sched_domain *sd; 1761 struct rq *best_rq; 1762 unsigned long taskweight, groupweight; 1763 int nid, ret, dist; 1764 long taskimp, groupimp; 1765 1766 /* 1767 * Pick the lowest SD_NUMA domain, as that would have the smallest 1768 * imbalance and would be the first to start moving tasks about. 1769 * 1770 * And we want to avoid any moving of tasks about, as that would create 1771 * random movement of tasks -- counter the numa conditions we're trying 1772 * to satisfy here. 1773 */ 1774 rcu_read_lock(); 1775 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1776 if (sd) 1777 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1778 rcu_read_unlock(); 1779 1780 /* 1781 * Cpusets can break the scheduler domain tree into smaller 1782 * balance domains, some of which do not cross NUMA boundaries. 1783 * Tasks that are "trapped" in such domains cannot be migrated 1784 * elsewhere, so there is no point in (re)trying. 1785 */ 1786 if (unlikely(!sd)) { 1787 sched_setnuma(p, task_node(p)); 1788 return -EINVAL; 1789 } 1790 1791 env.dst_nid = p->numa_preferred_nid; 1792 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1793 taskweight = task_weight(p, env.src_nid, dist); 1794 groupweight = group_weight(p, env.src_nid, dist); 1795 update_numa_stats(&env.src_stats, env.src_nid); 1796 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1797 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1798 update_numa_stats(&env.dst_stats, env.dst_nid); 1799 1800 /* Try to find a spot on the preferred nid. */ 1801 task_numa_find_cpu(&env, taskimp, groupimp); 1802 1803 /* 1804 * Look at other nodes in these cases: 1805 * - there is no space available on the preferred_nid 1806 * - the task is part of a numa_group that is interleaved across 1807 * multiple NUMA nodes; in order to better consolidate the group, 1808 * we need to check other locations. 1809 */ 1810 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { 1811 for_each_online_node(nid) { 1812 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1813 continue; 1814 1815 dist = node_distance(env.src_nid, env.dst_nid); 1816 if (sched_numa_topology_type == NUMA_BACKPLANE && 1817 dist != env.dist) { 1818 taskweight = task_weight(p, env.src_nid, dist); 1819 groupweight = group_weight(p, env.src_nid, dist); 1820 } 1821 1822 /* Only consider nodes where both task and groups benefit */ 1823 taskimp = task_weight(p, nid, dist) - taskweight; 1824 groupimp = group_weight(p, nid, dist) - groupweight; 1825 if (taskimp < 0 && groupimp < 0) 1826 continue; 1827 1828 env.dist = dist; 1829 env.dst_nid = nid; 1830 update_numa_stats(&env.dst_stats, env.dst_nid); 1831 task_numa_find_cpu(&env, taskimp, groupimp); 1832 } 1833 } 1834 1835 /* 1836 * If the task is part of a workload that spans multiple NUMA nodes, 1837 * and is migrating into one of the workload's active nodes, remember 1838 * this node as the task's preferred numa node, so the workload can 1839 * settle down. 1840 * A task that migrated to a second choice node will be better off 1841 * trying for a better one later. Do not set the preferred node here. 1842 */ 1843 if (p->numa_group) { 1844 if (env.best_cpu == -1) 1845 nid = env.src_nid; 1846 else 1847 nid = cpu_to_node(env.best_cpu); 1848 1849 if (nid != p->numa_preferred_nid) 1850 sched_setnuma(p, nid); 1851 } 1852 1853 /* No better CPU than the current one was found. */ 1854 if (env.best_cpu == -1) 1855 return -EAGAIN; 1856 1857 best_rq = cpu_rq(env.best_cpu); 1858 if (env.best_task == NULL) { 1859 ret = migrate_task_to(p, env.best_cpu); 1860 WRITE_ONCE(best_rq->numa_migrate_on, 0); 1861 if (ret != 0) 1862 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1863 return ret; 1864 } 1865 1866 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 1867 WRITE_ONCE(best_rq->numa_migrate_on, 0); 1868 1869 if (ret != 0) 1870 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1871 put_task_struct(env.best_task); 1872 return ret; 1873 } 1874 1875 /* Attempt to migrate a task to a CPU on the preferred node. */ 1876 static void numa_migrate_preferred(struct task_struct *p) 1877 { 1878 unsigned long interval = HZ; 1879 1880 /* This task has no NUMA fault statistics yet */ 1881 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 1882 return; 1883 1884 /* Periodically retry migrating the task to the preferred node */ 1885 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1886 p->numa_migrate_retry = jiffies + interval; 1887 1888 /* Success if task is already running on preferred CPU */ 1889 if (task_node(p) == p->numa_preferred_nid) 1890 return; 1891 1892 /* Otherwise, try migrate to a CPU on the preferred node */ 1893 task_numa_migrate(p); 1894 } 1895 1896 /* 1897 * Find out how many nodes on the workload is actively running on. Do this by 1898 * tracking the nodes from which NUMA hinting faults are triggered. This can 1899 * be different from the set of nodes where the workload's memory is currently 1900 * located. 1901 */ 1902 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1903 { 1904 unsigned long faults, max_faults = 0; 1905 int nid, active_nodes = 0; 1906 1907 for_each_online_node(nid) { 1908 faults = group_faults_cpu(numa_group, nid); 1909 if (faults > max_faults) 1910 max_faults = faults; 1911 } 1912 1913 for_each_online_node(nid) { 1914 faults = group_faults_cpu(numa_group, nid); 1915 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1916 active_nodes++; 1917 } 1918 1919 numa_group->max_faults_cpu = max_faults; 1920 numa_group->active_nodes = active_nodes; 1921 } 1922 1923 /* 1924 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1925 * increments. The more local the fault statistics are, the higher the scan 1926 * period will be for the next scan window. If local/(local+remote) ratio is 1927 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1928 * the scan period will decrease. Aim for 70% local accesses. 1929 */ 1930 #define NUMA_PERIOD_SLOTS 10 1931 #define NUMA_PERIOD_THRESHOLD 7 1932 1933 /* 1934 * Increase the scan period (slow down scanning) if the majority of 1935 * our memory is already on our local node, or if the majority of 1936 * the page accesses are shared with other processes. 1937 * Otherwise, decrease the scan period. 1938 */ 1939 static void update_task_scan_period(struct task_struct *p, 1940 unsigned long shared, unsigned long private) 1941 { 1942 unsigned int period_slot; 1943 int lr_ratio, ps_ratio; 1944 int diff; 1945 1946 unsigned long remote = p->numa_faults_locality[0]; 1947 unsigned long local = p->numa_faults_locality[1]; 1948 1949 /* 1950 * If there were no record hinting faults then either the task is 1951 * completely idle or all activity is areas that are not of interest 1952 * to automatic numa balancing. Related to that, if there were failed 1953 * migration then it implies we are migrating too quickly or the local 1954 * node is overloaded. In either case, scan slower 1955 */ 1956 if (local + shared == 0 || p->numa_faults_locality[2]) { 1957 p->numa_scan_period = min(p->numa_scan_period_max, 1958 p->numa_scan_period << 1); 1959 1960 p->mm->numa_next_scan = jiffies + 1961 msecs_to_jiffies(p->numa_scan_period); 1962 1963 return; 1964 } 1965 1966 /* 1967 * Prepare to scale scan period relative to the current period. 1968 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1969 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1970 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1971 */ 1972 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1973 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1974 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 1975 1976 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 1977 /* 1978 * Most memory accesses are local. There is no need to 1979 * do fast NUMA scanning, since memory is already local. 1980 */ 1981 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 1982 if (!slot) 1983 slot = 1; 1984 diff = slot * period_slot; 1985 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 1986 /* 1987 * Most memory accesses are shared with other tasks. 1988 * There is no point in continuing fast NUMA scanning, 1989 * since other tasks may just move the memory elsewhere. 1990 */ 1991 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 1992 if (!slot) 1993 slot = 1; 1994 diff = slot * period_slot; 1995 } else { 1996 /* 1997 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 1998 * yet they are not on the local NUMA node. Speed up 1999 * NUMA scanning to get the memory moved over. 2000 */ 2001 int ratio = max(lr_ratio, ps_ratio); 2002 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2003 } 2004 2005 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2006 task_scan_min(p), task_scan_max(p)); 2007 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2008 } 2009 2010 /* 2011 * Get the fraction of time the task has been running since the last 2012 * NUMA placement cycle. The scheduler keeps similar statistics, but 2013 * decays those on a 32ms period, which is orders of magnitude off 2014 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2015 * stats only if the task is so new there are no NUMA statistics yet. 2016 */ 2017 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2018 { 2019 u64 runtime, delta, now; 2020 /* Use the start of this time slice to avoid calculations. */ 2021 now = p->se.exec_start; 2022 runtime = p->se.sum_exec_runtime; 2023 2024 if (p->last_task_numa_placement) { 2025 delta = runtime - p->last_sum_exec_runtime; 2026 *period = now - p->last_task_numa_placement; 2027 2028 /* Avoid time going backwards, prevent potential divide error: */ 2029 if (unlikely((s64)*period < 0)) 2030 *period = 0; 2031 } else { 2032 delta = p->se.avg.load_sum; 2033 *period = LOAD_AVG_MAX; 2034 } 2035 2036 p->last_sum_exec_runtime = runtime; 2037 p->last_task_numa_placement = now; 2038 2039 return delta; 2040 } 2041 2042 /* 2043 * Determine the preferred nid for a task in a numa_group. This needs to 2044 * be done in a way that produces consistent results with group_weight, 2045 * otherwise workloads might not converge. 2046 */ 2047 static int preferred_group_nid(struct task_struct *p, int nid) 2048 { 2049 nodemask_t nodes; 2050 int dist; 2051 2052 /* Direct connections between all NUMA nodes. */ 2053 if (sched_numa_topology_type == NUMA_DIRECT) 2054 return nid; 2055 2056 /* 2057 * On a system with glueless mesh NUMA topology, group_weight 2058 * scores nodes according to the number of NUMA hinting faults on 2059 * both the node itself, and on nearby nodes. 2060 */ 2061 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2062 unsigned long score, max_score = 0; 2063 int node, max_node = nid; 2064 2065 dist = sched_max_numa_distance; 2066 2067 for_each_online_node(node) { 2068 score = group_weight(p, node, dist); 2069 if (score > max_score) { 2070 max_score = score; 2071 max_node = node; 2072 } 2073 } 2074 return max_node; 2075 } 2076 2077 /* 2078 * Finding the preferred nid in a system with NUMA backplane 2079 * interconnect topology is more involved. The goal is to locate 2080 * tasks from numa_groups near each other in the system, and 2081 * untangle workloads from different sides of the system. This requires 2082 * searching down the hierarchy of node groups, recursively searching 2083 * inside the highest scoring group of nodes. The nodemask tricks 2084 * keep the complexity of the search down. 2085 */ 2086 nodes = node_online_map; 2087 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2088 unsigned long max_faults = 0; 2089 nodemask_t max_group = NODE_MASK_NONE; 2090 int a, b; 2091 2092 /* Are there nodes at this distance from each other? */ 2093 if (!find_numa_distance(dist)) 2094 continue; 2095 2096 for_each_node_mask(a, nodes) { 2097 unsigned long faults = 0; 2098 nodemask_t this_group; 2099 nodes_clear(this_group); 2100 2101 /* Sum group's NUMA faults; includes a==b case. */ 2102 for_each_node_mask(b, nodes) { 2103 if (node_distance(a, b) < dist) { 2104 faults += group_faults(p, b); 2105 node_set(b, this_group); 2106 node_clear(b, nodes); 2107 } 2108 } 2109 2110 /* Remember the top group. */ 2111 if (faults > max_faults) { 2112 max_faults = faults; 2113 max_group = this_group; 2114 /* 2115 * subtle: at the smallest distance there is 2116 * just one node left in each "group", the 2117 * winner is the preferred nid. 2118 */ 2119 nid = a; 2120 } 2121 } 2122 /* Next round, evaluate the nodes within max_group. */ 2123 if (!max_faults) 2124 break; 2125 nodes = max_group; 2126 } 2127 return nid; 2128 } 2129 2130 static void task_numa_placement(struct task_struct *p) 2131 { 2132 int seq, nid, max_nid = NUMA_NO_NODE; 2133 unsigned long max_faults = 0; 2134 unsigned long fault_types[2] = { 0, 0 }; 2135 unsigned long total_faults; 2136 u64 runtime, period; 2137 spinlock_t *group_lock = NULL; 2138 2139 /* 2140 * The p->mm->numa_scan_seq field gets updated without 2141 * exclusive access. Use READ_ONCE() here to ensure 2142 * that the field is read in a single access: 2143 */ 2144 seq = READ_ONCE(p->mm->numa_scan_seq); 2145 if (p->numa_scan_seq == seq) 2146 return; 2147 p->numa_scan_seq = seq; 2148 p->numa_scan_period_max = task_scan_max(p); 2149 2150 total_faults = p->numa_faults_locality[0] + 2151 p->numa_faults_locality[1]; 2152 runtime = numa_get_avg_runtime(p, &period); 2153 2154 /* If the task is part of a group prevent parallel updates to group stats */ 2155 if (p->numa_group) { 2156 group_lock = &p->numa_group->lock; 2157 spin_lock_irq(group_lock); 2158 } 2159 2160 /* Find the node with the highest number of faults */ 2161 for_each_online_node(nid) { 2162 /* Keep track of the offsets in numa_faults array */ 2163 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2164 unsigned long faults = 0, group_faults = 0; 2165 int priv; 2166 2167 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2168 long diff, f_diff, f_weight; 2169 2170 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2171 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2172 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2173 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2174 2175 /* Decay existing window, copy faults since last scan */ 2176 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2177 fault_types[priv] += p->numa_faults[membuf_idx]; 2178 p->numa_faults[membuf_idx] = 0; 2179 2180 /* 2181 * Normalize the faults_from, so all tasks in a group 2182 * count according to CPU use, instead of by the raw 2183 * number of faults. Tasks with little runtime have 2184 * little over-all impact on throughput, and thus their 2185 * faults are less important. 2186 */ 2187 f_weight = div64_u64(runtime << 16, period + 1); 2188 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2189 (total_faults + 1); 2190 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2191 p->numa_faults[cpubuf_idx] = 0; 2192 2193 p->numa_faults[mem_idx] += diff; 2194 p->numa_faults[cpu_idx] += f_diff; 2195 faults += p->numa_faults[mem_idx]; 2196 p->total_numa_faults += diff; 2197 if (p->numa_group) { 2198 /* 2199 * safe because we can only change our own group 2200 * 2201 * mem_idx represents the offset for a given 2202 * nid and priv in a specific region because it 2203 * is at the beginning of the numa_faults array. 2204 */ 2205 p->numa_group->faults[mem_idx] += diff; 2206 p->numa_group->faults_cpu[mem_idx] += f_diff; 2207 p->numa_group->total_faults += diff; 2208 group_faults += p->numa_group->faults[mem_idx]; 2209 } 2210 } 2211 2212 if (!p->numa_group) { 2213 if (faults > max_faults) { 2214 max_faults = faults; 2215 max_nid = nid; 2216 } 2217 } else if (group_faults > max_faults) { 2218 max_faults = group_faults; 2219 max_nid = nid; 2220 } 2221 } 2222 2223 if (p->numa_group) { 2224 numa_group_count_active_nodes(p->numa_group); 2225 spin_unlock_irq(group_lock); 2226 max_nid = preferred_group_nid(p, max_nid); 2227 } 2228 2229 if (max_faults) { 2230 /* Set the new preferred node */ 2231 if (max_nid != p->numa_preferred_nid) 2232 sched_setnuma(p, max_nid); 2233 } 2234 2235 update_task_scan_period(p, fault_types[0], fault_types[1]); 2236 } 2237 2238 static inline int get_numa_group(struct numa_group *grp) 2239 { 2240 return refcount_inc_not_zero(&grp->refcount); 2241 } 2242 2243 static inline void put_numa_group(struct numa_group *grp) 2244 { 2245 if (refcount_dec_and_test(&grp->refcount)) 2246 kfree_rcu(grp, rcu); 2247 } 2248 2249 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2250 int *priv) 2251 { 2252 struct numa_group *grp, *my_grp; 2253 struct task_struct *tsk; 2254 bool join = false; 2255 int cpu = cpupid_to_cpu(cpupid); 2256 int i; 2257 2258 if (unlikely(!p->numa_group)) { 2259 unsigned int size = sizeof(struct numa_group) + 2260 4*nr_node_ids*sizeof(unsigned long); 2261 2262 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2263 if (!grp) 2264 return; 2265 2266 refcount_set(&grp->refcount, 1); 2267 grp->active_nodes = 1; 2268 grp->max_faults_cpu = 0; 2269 spin_lock_init(&grp->lock); 2270 grp->gid = p->pid; 2271 /* Second half of the array tracks nids where faults happen */ 2272 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2273 nr_node_ids; 2274 2275 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2276 grp->faults[i] = p->numa_faults[i]; 2277 2278 grp->total_faults = p->total_numa_faults; 2279 2280 grp->nr_tasks++; 2281 rcu_assign_pointer(p->numa_group, grp); 2282 } 2283 2284 rcu_read_lock(); 2285 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2286 2287 if (!cpupid_match_pid(tsk, cpupid)) 2288 goto no_join; 2289 2290 grp = rcu_dereference(tsk->numa_group); 2291 if (!grp) 2292 goto no_join; 2293 2294 my_grp = p->numa_group; 2295 if (grp == my_grp) 2296 goto no_join; 2297 2298 /* 2299 * Only join the other group if its bigger; if we're the bigger group, 2300 * the other task will join us. 2301 */ 2302 if (my_grp->nr_tasks > grp->nr_tasks) 2303 goto no_join; 2304 2305 /* 2306 * Tie-break on the grp address. 2307 */ 2308 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2309 goto no_join; 2310 2311 /* Always join threads in the same process. */ 2312 if (tsk->mm == current->mm) 2313 join = true; 2314 2315 /* Simple filter to avoid false positives due to PID collisions */ 2316 if (flags & TNF_SHARED) 2317 join = true; 2318 2319 /* Update priv based on whether false sharing was detected */ 2320 *priv = !join; 2321 2322 if (join && !get_numa_group(grp)) 2323 goto no_join; 2324 2325 rcu_read_unlock(); 2326 2327 if (!join) 2328 return; 2329 2330 BUG_ON(irqs_disabled()); 2331 double_lock_irq(&my_grp->lock, &grp->lock); 2332 2333 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2334 my_grp->faults[i] -= p->numa_faults[i]; 2335 grp->faults[i] += p->numa_faults[i]; 2336 } 2337 my_grp->total_faults -= p->total_numa_faults; 2338 grp->total_faults += p->total_numa_faults; 2339 2340 my_grp->nr_tasks--; 2341 grp->nr_tasks++; 2342 2343 spin_unlock(&my_grp->lock); 2344 spin_unlock_irq(&grp->lock); 2345 2346 rcu_assign_pointer(p->numa_group, grp); 2347 2348 put_numa_group(my_grp); 2349 return; 2350 2351 no_join: 2352 rcu_read_unlock(); 2353 return; 2354 } 2355 2356 void task_numa_free(struct task_struct *p) 2357 { 2358 struct numa_group *grp = p->numa_group; 2359 void *numa_faults = p->numa_faults; 2360 unsigned long flags; 2361 int i; 2362 2363 if (grp) { 2364 spin_lock_irqsave(&grp->lock, flags); 2365 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2366 grp->faults[i] -= p->numa_faults[i]; 2367 grp->total_faults -= p->total_numa_faults; 2368 2369 grp->nr_tasks--; 2370 spin_unlock_irqrestore(&grp->lock, flags); 2371 RCU_INIT_POINTER(p->numa_group, NULL); 2372 put_numa_group(grp); 2373 } 2374 2375 p->numa_faults = NULL; 2376 kfree(numa_faults); 2377 } 2378 2379 /* 2380 * Got a PROT_NONE fault for a page on @node. 2381 */ 2382 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2383 { 2384 struct task_struct *p = current; 2385 bool migrated = flags & TNF_MIGRATED; 2386 int cpu_node = task_node(current); 2387 int local = !!(flags & TNF_FAULT_LOCAL); 2388 struct numa_group *ng; 2389 int priv; 2390 2391 if (!static_branch_likely(&sched_numa_balancing)) 2392 return; 2393 2394 /* for example, ksmd faulting in a user's mm */ 2395 if (!p->mm) 2396 return; 2397 2398 /* Allocate buffer to track faults on a per-node basis */ 2399 if (unlikely(!p->numa_faults)) { 2400 int size = sizeof(*p->numa_faults) * 2401 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2402 2403 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2404 if (!p->numa_faults) 2405 return; 2406 2407 p->total_numa_faults = 0; 2408 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2409 } 2410 2411 /* 2412 * First accesses are treated as private, otherwise consider accesses 2413 * to be private if the accessing pid has not changed 2414 */ 2415 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2416 priv = 1; 2417 } else { 2418 priv = cpupid_match_pid(p, last_cpupid); 2419 if (!priv && !(flags & TNF_NO_GROUP)) 2420 task_numa_group(p, last_cpupid, flags, &priv); 2421 } 2422 2423 /* 2424 * If a workload spans multiple NUMA nodes, a shared fault that 2425 * occurs wholly within the set of nodes that the workload is 2426 * actively using should be counted as local. This allows the 2427 * scan rate to slow down when a workload has settled down. 2428 */ 2429 ng = p->numa_group; 2430 if (!priv && !local && ng && ng->active_nodes > 1 && 2431 numa_is_active_node(cpu_node, ng) && 2432 numa_is_active_node(mem_node, ng)) 2433 local = 1; 2434 2435 /* 2436 * Retry to migrate task to preferred node periodically, in case it 2437 * previously failed, or the scheduler moved us. 2438 */ 2439 if (time_after(jiffies, p->numa_migrate_retry)) { 2440 task_numa_placement(p); 2441 numa_migrate_preferred(p); 2442 } 2443 2444 if (migrated) 2445 p->numa_pages_migrated += pages; 2446 if (flags & TNF_MIGRATE_FAIL) 2447 p->numa_faults_locality[2] += pages; 2448 2449 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2450 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2451 p->numa_faults_locality[local] += pages; 2452 } 2453 2454 static void reset_ptenuma_scan(struct task_struct *p) 2455 { 2456 /* 2457 * We only did a read acquisition of the mmap sem, so 2458 * p->mm->numa_scan_seq is written to without exclusive access 2459 * and the update is not guaranteed to be atomic. That's not 2460 * much of an issue though, since this is just used for 2461 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2462 * expensive, to avoid any form of compiler optimizations: 2463 */ 2464 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2465 p->mm->numa_scan_offset = 0; 2466 } 2467 2468 /* 2469 * The expensive part of numa migration is done from task_work context. 2470 * Triggered from task_tick_numa(). 2471 */ 2472 void task_numa_work(struct callback_head *work) 2473 { 2474 unsigned long migrate, next_scan, now = jiffies; 2475 struct task_struct *p = current; 2476 struct mm_struct *mm = p->mm; 2477 u64 runtime = p->se.sum_exec_runtime; 2478 struct vm_area_struct *vma; 2479 unsigned long start, end; 2480 unsigned long nr_pte_updates = 0; 2481 long pages, virtpages; 2482 2483 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2484 2485 work->next = work; /* protect against double add */ 2486 /* 2487 * Who cares about NUMA placement when they're dying. 2488 * 2489 * NOTE: make sure not to dereference p->mm before this check, 2490 * exit_task_work() happens _after_ exit_mm() so we could be called 2491 * without p->mm even though we still had it when we enqueued this 2492 * work. 2493 */ 2494 if (p->flags & PF_EXITING) 2495 return; 2496 2497 if (!mm->numa_next_scan) { 2498 mm->numa_next_scan = now + 2499 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2500 } 2501 2502 /* 2503 * Enforce maximal scan/migration frequency.. 2504 */ 2505 migrate = mm->numa_next_scan; 2506 if (time_before(now, migrate)) 2507 return; 2508 2509 if (p->numa_scan_period == 0) { 2510 p->numa_scan_period_max = task_scan_max(p); 2511 p->numa_scan_period = task_scan_start(p); 2512 } 2513 2514 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2515 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2516 return; 2517 2518 /* 2519 * Delay this task enough that another task of this mm will likely win 2520 * the next time around. 2521 */ 2522 p->node_stamp += 2 * TICK_NSEC; 2523 2524 start = mm->numa_scan_offset; 2525 pages = sysctl_numa_balancing_scan_size; 2526 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2527 virtpages = pages * 8; /* Scan up to this much virtual space */ 2528 if (!pages) 2529 return; 2530 2531 2532 if (!down_read_trylock(&mm->mmap_sem)) 2533 return; 2534 vma = find_vma(mm, start); 2535 if (!vma) { 2536 reset_ptenuma_scan(p); 2537 start = 0; 2538 vma = mm->mmap; 2539 } 2540 for (; vma; vma = vma->vm_next) { 2541 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2542 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2543 continue; 2544 } 2545 2546 /* 2547 * Shared library pages mapped by multiple processes are not 2548 * migrated as it is expected they are cache replicated. Avoid 2549 * hinting faults in read-only file-backed mappings or the vdso 2550 * as migrating the pages will be of marginal benefit. 2551 */ 2552 if (!vma->vm_mm || 2553 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2554 continue; 2555 2556 /* 2557 * Skip inaccessible VMAs to avoid any confusion between 2558 * PROT_NONE and NUMA hinting ptes 2559 */ 2560 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2561 continue; 2562 2563 do { 2564 start = max(start, vma->vm_start); 2565 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2566 end = min(end, vma->vm_end); 2567 nr_pte_updates = change_prot_numa(vma, start, end); 2568 2569 /* 2570 * Try to scan sysctl_numa_balancing_size worth of 2571 * hpages that have at least one present PTE that 2572 * is not already pte-numa. If the VMA contains 2573 * areas that are unused or already full of prot_numa 2574 * PTEs, scan up to virtpages, to skip through those 2575 * areas faster. 2576 */ 2577 if (nr_pte_updates) 2578 pages -= (end - start) >> PAGE_SHIFT; 2579 virtpages -= (end - start) >> PAGE_SHIFT; 2580 2581 start = end; 2582 if (pages <= 0 || virtpages <= 0) 2583 goto out; 2584 2585 cond_resched(); 2586 } while (end != vma->vm_end); 2587 } 2588 2589 out: 2590 /* 2591 * It is possible to reach the end of the VMA list but the last few 2592 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2593 * would find the !migratable VMA on the next scan but not reset the 2594 * scanner to the start so check it now. 2595 */ 2596 if (vma) 2597 mm->numa_scan_offset = start; 2598 else 2599 reset_ptenuma_scan(p); 2600 up_read(&mm->mmap_sem); 2601 2602 /* 2603 * Make sure tasks use at least 32x as much time to run other code 2604 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2605 * Usually update_task_scan_period slows down scanning enough; on an 2606 * overloaded system we need to limit overhead on a per task basis. 2607 */ 2608 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2609 u64 diff = p->se.sum_exec_runtime - runtime; 2610 p->node_stamp += 32 * diff; 2611 } 2612 } 2613 2614 /* 2615 * Drive the periodic memory faults.. 2616 */ 2617 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2618 { 2619 struct callback_head *work = &curr->numa_work; 2620 u64 period, now; 2621 2622 /* 2623 * We don't care about NUMA placement if we don't have memory. 2624 */ 2625 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2626 return; 2627 2628 /* 2629 * Using runtime rather than walltime has the dual advantage that 2630 * we (mostly) drive the selection from busy threads and that the 2631 * task needs to have done some actual work before we bother with 2632 * NUMA placement. 2633 */ 2634 now = curr->se.sum_exec_runtime; 2635 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2636 2637 if (now > curr->node_stamp + period) { 2638 if (!curr->node_stamp) 2639 curr->numa_scan_period = task_scan_start(curr); 2640 curr->node_stamp += period; 2641 2642 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2643 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2644 task_work_add(curr, work, true); 2645 } 2646 } 2647 } 2648 2649 static void update_scan_period(struct task_struct *p, int new_cpu) 2650 { 2651 int src_nid = cpu_to_node(task_cpu(p)); 2652 int dst_nid = cpu_to_node(new_cpu); 2653 2654 if (!static_branch_likely(&sched_numa_balancing)) 2655 return; 2656 2657 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2658 return; 2659 2660 if (src_nid == dst_nid) 2661 return; 2662 2663 /* 2664 * Allow resets if faults have been trapped before one scan 2665 * has completed. This is most likely due to a new task that 2666 * is pulled cross-node due to wakeups or load balancing. 2667 */ 2668 if (p->numa_scan_seq) { 2669 /* 2670 * Avoid scan adjustments if moving to the preferred 2671 * node or if the task was not previously running on 2672 * the preferred node. 2673 */ 2674 if (dst_nid == p->numa_preferred_nid || 2675 (p->numa_preferred_nid != NUMA_NO_NODE && 2676 src_nid != p->numa_preferred_nid)) 2677 return; 2678 } 2679 2680 p->numa_scan_period = task_scan_start(p); 2681 } 2682 2683 #else 2684 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2685 { 2686 } 2687 2688 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2689 { 2690 } 2691 2692 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2693 { 2694 } 2695 2696 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2697 { 2698 } 2699 2700 #endif /* CONFIG_NUMA_BALANCING */ 2701 2702 static void 2703 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2704 { 2705 update_load_add(&cfs_rq->load, se->load.weight); 2706 #ifdef CONFIG_SMP 2707 if (entity_is_task(se)) { 2708 struct rq *rq = rq_of(cfs_rq); 2709 2710 account_numa_enqueue(rq, task_of(se)); 2711 list_add(&se->group_node, &rq->cfs_tasks); 2712 } 2713 #endif 2714 cfs_rq->nr_running++; 2715 } 2716 2717 static void 2718 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2719 { 2720 update_load_sub(&cfs_rq->load, se->load.weight); 2721 #ifdef CONFIG_SMP 2722 if (entity_is_task(se)) { 2723 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2724 list_del_init(&se->group_node); 2725 } 2726 #endif 2727 cfs_rq->nr_running--; 2728 } 2729 2730 /* 2731 * Signed add and clamp on underflow. 2732 * 2733 * Explicitly do a load-store to ensure the intermediate value never hits 2734 * memory. This allows lockless observations without ever seeing the negative 2735 * values. 2736 */ 2737 #define add_positive(_ptr, _val) do { \ 2738 typeof(_ptr) ptr = (_ptr); \ 2739 typeof(_val) val = (_val); \ 2740 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2741 \ 2742 res = var + val; \ 2743 \ 2744 if (val < 0 && res > var) \ 2745 res = 0; \ 2746 \ 2747 WRITE_ONCE(*ptr, res); \ 2748 } while (0) 2749 2750 /* 2751 * Unsigned subtract and clamp on underflow. 2752 * 2753 * Explicitly do a load-store to ensure the intermediate value never hits 2754 * memory. This allows lockless observations without ever seeing the negative 2755 * values. 2756 */ 2757 #define sub_positive(_ptr, _val) do { \ 2758 typeof(_ptr) ptr = (_ptr); \ 2759 typeof(*ptr) val = (_val); \ 2760 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2761 res = var - val; \ 2762 if (res > var) \ 2763 res = 0; \ 2764 WRITE_ONCE(*ptr, res); \ 2765 } while (0) 2766 2767 /* 2768 * Remove and clamp on negative, from a local variable. 2769 * 2770 * A variant of sub_positive(), which does not use explicit load-store 2771 * and is thus optimized for local variable updates. 2772 */ 2773 #define lsub_positive(_ptr, _val) do { \ 2774 typeof(_ptr) ptr = (_ptr); \ 2775 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 2776 } while (0) 2777 2778 #ifdef CONFIG_SMP 2779 static inline void 2780 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2781 { 2782 cfs_rq->runnable_weight += se->runnable_weight; 2783 2784 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg; 2785 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum; 2786 } 2787 2788 static inline void 2789 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2790 { 2791 cfs_rq->runnable_weight -= se->runnable_weight; 2792 2793 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg); 2794 sub_positive(&cfs_rq->avg.runnable_load_sum, 2795 se_runnable(se) * se->avg.runnable_load_sum); 2796 } 2797 2798 static inline void 2799 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2800 { 2801 cfs_rq->avg.load_avg += se->avg.load_avg; 2802 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 2803 } 2804 2805 static inline void 2806 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2807 { 2808 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 2809 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 2810 } 2811 #else 2812 static inline void 2813 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2814 static inline void 2815 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2816 static inline void 2817 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2818 static inline void 2819 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2820 #endif 2821 2822 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2823 unsigned long weight, unsigned long runnable) 2824 { 2825 if (se->on_rq) { 2826 /* commit outstanding execution time */ 2827 if (cfs_rq->curr == se) 2828 update_curr(cfs_rq); 2829 account_entity_dequeue(cfs_rq, se); 2830 dequeue_runnable_load_avg(cfs_rq, se); 2831 } 2832 dequeue_load_avg(cfs_rq, se); 2833 2834 se->runnable_weight = runnable; 2835 update_load_set(&se->load, weight); 2836 2837 #ifdef CONFIG_SMP 2838 do { 2839 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib; 2840 2841 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 2842 se->avg.runnable_load_avg = 2843 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider); 2844 } while (0); 2845 #endif 2846 2847 enqueue_load_avg(cfs_rq, se); 2848 if (se->on_rq) { 2849 account_entity_enqueue(cfs_rq, se); 2850 enqueue_runnable_load_avg(cfs_rq, se); 2851 } 2852 } 2853 2854 void reweight_task(struct task_struct *p, int prio) 2855 { 2856 struct sched_entity *se = &p->se; 2857 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2858 struct load_weight *load = &se->load; 2859 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 2860 2861 reweight_entity(cfs_rq, se, weight, weight); 2862 load->inv_weight = sched_prio_to_wmult[prio]; 2863 } 2864 2865 #ifdef CONFIG_FAIR_GROUP_SCHED 2866 #ifdef CONFIG_SMP 2867 /* 2868 * All this does is approximate the hierarchical proportion which includes that 2869 * global sum we all love to hate. 2870 * 2871 * That is, the weight of a group entity, is the proportional share of the 2872 * group weight based on the group runqueue weights. That is: 2873 * 2874 * tg->weight * grq->load.weight 2875 * ge->load.weight = ----------------------------- (1) 2876 * \Sum grq->load.weight 2877 * 2878 * Now, because computing that sum is prohibitively expensive to compute (been 2879 * there, done that) we approximate it with this average stuff. The average 2880 * moves slower and therefore the approximation is cheaper and more stable. 2881 * 2882 * So instead of the above, we substitute: 2883 * 2884 * grq->load.weight -> grq->avg.load_avg (2) 2885 * 2886 * which yields the following: 2887 * 2888 * tg->weight * grq->avg.load_avg 2889 * ge->load.weight = ------------------------------ (3) 2890 * tg->load_avg 2891 * 2892 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 2893 * 2894 * That is shares_avg, and it is right (given the approximation (2)). 2895 * 2896 * The problem with it is that because the average is slow -- it was designed 2897 * to be exactly that of course -- this leads to transients in boundary 2898 * conditions. In specific, the case where the group was idle and we start the 2899 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 2900 * yielding bad latency etc.. 2901 * 2902 * Now, in that special case (1) reduces to: 2903 * 2904 * tg->weight * grq->load.weight 2905 * ge->load.weight = ----------------------------- = tg->weight (4) 2906 * grp->load.weight 2907 * 2908 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 2909 * 2910 * So what we do is modify our approximation (3) to approach (4) in the (near) 2911 * UP case, like: 2912 * 2913 * ge->load.weight = 2914 * 2915 * tg->weight * grq->load.weight 2916 * --------------------------------------------------- (5) 2917 * tg->load_avg - grq->avg.load_avg + grq->load.weight 2918 * 2919 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 2920 * we need to use grq->avg.load_avg as its lower bound, which then gives: 2921 * 2922 * 2923 * tg->weight * grq->load.weight 2924 * ge->load.weight = ----------------------------- (6) 2925 * tg_load_avg' 2926 * 2927 * Where: 2928 * 2929 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 2930 * max(grq->load.weight, grq->avg.load_avg) 2931 * 2932 * And that is shares_weight and is icky. In the (near) UP case it approaches 2933 * (4) while in the normal case it approaches (3). It consistently 2934 * overestimates the ge->load.weight and therefore: 2935 * 2936 * \Sum ge->load.weight >= tg->weight 2937 * 2938 * hence icky! 2939 */ 2940 static long calc_group_shares(struct cfs_rq *cfs_rq) 2941 { 2942 long tg_weight, tg_shares, load, shares; 2943 struct task_group *tg = cfs_rq->tg; 2944 2945 tg_shares = READ_ONCE(tg->shares); 2946 2947 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 2948 2949 tg_weight = atomic_long_read(&tg->load_avg); 2950 2951 /* Ensure tg_weight >= load */ 2952 tg_weight -= cfs_rq->tg_load_avg_contrib; 2953 tg_weight += load; 2954 2955 shares = (tg_shares * load); 2956 if (tg_weight) 2957 shares /= tg_weight; 2958 2959 /* 2960 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 2961 * of a group with small tg->shares value. It is a floor value which is 2962 * assigned as a minimum load.weight to the sched_entity representing 2963 * the group on a CPU. 2964 * 2965 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 2966 * on an 8-core system with 8 tasks each runnable on one CPU shares has 2967 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 2968 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 2969 * instead of 0. 2970 */ 2971 return clamp_t(long, shares, MIN_SHARES, tg_shares); 2972 } 2973 2974 /* 2975 * This calculates the effective runnable weight for a group entity based on 2976 * the group entity weight calculated above. 2977 * 2978 * Because of the above approximation (2), our group entity weight is 2979 * an load_avg based ratio (3). This means that it includes blocked load and 2980 * does not represent the runnable weight. 2981 * 2982 * Approximate the group entity's runnable weight per ratio from the group 2983 * runqueue: 2984 * 2985 * grq->avg.runnable_load_avg 2986 * ge->runnable_weight = ge->load.weight * -------------------------- (7) 2987 * grq->avg.load_avg 2988 * 2989 * However, analogous to above, since the avg numbers are slow, this leads to 2990 * transients in the from-idle case. Instead we use: 2991 * 2992 * ge->runnable_weight = ge->load.weight * 2993 * 2994 * max(grq->avg.runnable_load_avg, grq->runnable_weight) 2995 * ----------------------------------------------------- (8) 2996 * max(grq->avg.load_avg, grq->load.weight) 2997 * 2998 * Where these max() serve both to use the 'instant' values to fix the slow 2999 * from-idle and avoid the /0 on to-idle, similar to (6). 3000 */ 3001 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares) 3002 { 3003 long runnable, load_avg; 3004 3005 load_avg = max(cfs_rq->avg.load_avg, 3006 scale_load_down(cfs_rq->load.weight)); 3007 3008 runnable = max(cfs_rq->avg.runnable_load_avg, 3009 scale_load_down(cfs_rq->runnable_weight)); 3010 3011 runnable *= shares; 3012 if (load_avg) 3013 runnable /= load_avg; 3014 3015 return clamp_t(long, runnable, MIN_SHARES, shares); 3016 } 3017 #endif /* CONFIG_SMP */ 3018 3019 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3020 3021 /* 3022 * Recomputes the group entity based on the current state of its group 3023 * runqueue. 3024 */ 3025 static void update_cfs_group(struct sched_entity *se) 3026 { 3027 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3028 long shares, runnable; 3029 3030 if (!gcfs_rq) 3031 return; 3032 3033 if (throttled_hierarchy(gcfs_rq)) 3034 return; 3035 3036 #ifndef CONFIG_SMP 3037 runnable = shares = READ_ONCE(gcfs_rq->tg->shares); 3038 3039 if (likely(se->load.weight == shares)) 3040 return; 3041 #else 3042 shares = calc_group_shares(gcfs_rq); 3043 runnable = calc_group_runnable(gcfs_rq, shares); 3044 #endif 3045 3046 reweight_entity(cfs_rq_of(se), se, shares, runnable); 3047 } 3048 3049 #else /* CONFIG_FAIR_GROUP_SCHED */ 3050 static inline void update_cfs_group(struct sched_entity *se) 3051 { 3052 } 3053 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3054 3055 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3056 { 3057 struct rq *rq = rq_of(cfs_rq); 3058 3059 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) { 3060 /* 3061 * There are a few boundary cases this might miss but it should 3062 * get called often enough that that should (hopefully) not be 3063 * a real problem. 3064 * 3065 * It will not get called when we go idle, because the idle 3066 * thread is a different class (!fair), nor will the utilization 3067 * number include things like RT tasks. 3068 * 3069 * As is, the util number is not freq-invariant (we'd have to 3070 * implement arch_scale_freq_capacity() for that). 3071 * 3072 * See cpu_util(). 3073 */ 3074 cpufreq_update_util(rq, flags); 3075 } 3076 } 3077 3078 #ifdef CONFIG_SMP 3079 #ifdef CONFIG_FAIR_GROUP_SCHED 3080 /** 3081 * update_tg_load_avg - update the tg's load avg 3082 * @cfs_rq: the cfs_rq whose avg changed 3083 * @force: update regardless of how small the difference 3084 * 3085 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3086 * However, because tg->load_avg is a global value there are performance 3087 * considerations. 3088 * 3089 * In order to avoid having to look at the other cfs_rq's, we use a 3090 * differential update where we store the last value we propagated. This in 3091 * turn allows skipping updates if the differential is 'small'. 3092 * 3093 * Updating tg's load_avg is necessary before update_cfs_share(). 3094 */ 3095 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3096 { 3097 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3098 3099 /* 3100 * No need to update load_avg for root_task_group as it is not used. 3101 */ 3102 if (cfs_rq->tg == &root_task_group) 3103 return; 3104 3105 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3106 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3107 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3108 } 3109 } 3110 3111 /* 3112 * Called within set_task_rq() right before setting a task's CPU. The 3113 * caller only guarantees p->pi_lock is held; no other assumptions, 3114 * including the state of rq->lock, should be made. 3115 */ 3116 void set_task_rq_fair(struct sched_entity *se, 3117 struct cfs_rq *prev, struct cfs_rq *next) 3118 { 3119 u64 p_last_update_time; 3120 u64 n_last_update_time; 3121 3122 if (!sched_feat(ATTACH_AGE_LOAD)) 3123 return; 3124 3125 /* 3126 * We are supposed to update the task to "current" time, then its up to 3127 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3128 * getting what current time is, so simply throw away the out-of-date 3129 * time. This will result in the wakee task is less decayed, but giving 3130 * the wakee more load sounds not bad. 3131 */ 3132 if (!(se->avg.last_update_time && prev)) 3133 return; 3134 3135 #ifndef CONFIG_64BIT 3136 { 3137 u64 p_last_update_time_copy; 3138 u64 n_last_update_time_copy; 3139 3140 do { 3141 p_last_update_time_copy = prev->load_last_update_time_copy; 3142 n_last_update_time_copy = next->load_last_update_time_copy; 3143 3144 smp_rmb(); 3145 3146 p_last_update_time = prev->avg.last_update_time; 3147 n_last_update_time = next->avg.last_update_time; 3148 3149 } while (p_last_update_time != p_last_update_time_copy || 3150 n_last_update_time != n_last_update_time_copy); 3151 } 3152 #else 3153 p_last_update_time = prev->avg.last_update_time; 3154 n_last_update_time = next->avg.last_update_time; 3155 #endif 3156 __update_load_avg_blocked_se(p_last_update_time, se); 3157 se->avg.last_update_time = n_last_update_time; 3158 } 3159 3160 3161 /* 3162 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3163 * propagate its contribution. The key to this propagation is the invariant 3164 * that for each group: 3165 * 3166 * ge->avg == grq->avg (1) 3167 * 3168 * _IFF_ we look at the pure running and runnable sums. Because they 3169 * represent the very same entity, just at different points in the hierarchy. 3170 * 3171 * Per the above update_tg_cfs_util() is trivial and simply copies the running 3172 * sum over (but still wrong, because the group entity and group rq do not have 3173 * their PELT windows aligned). 3174 * 3175 * However, update_tg_cfs_runnable() is more complex. So we have: 3176 * 3177 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3178 * 3179 * And since, like util, the runnable part should be directly transferable, 3180 * the following would _appear_ to be the straight forward approach: 3181 * 3182 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3183 * 3184 * And per (1) we have: 3185 * 3186 * ge->avg.runnable_avg == grq->avg.runnable_avg 3187 * 3188 * Which gives: 3189 * 3190 * ge->load.weight * grq->avg.load_avg 3191 * ge->avg.load_avg = ----------------------------------- (4) 3192 * grq->load.weight 3193 * 3194 * Except that is wrong! 3195 * 3196 * Because while for entities historical weight is not important and we 3197 * really only care about our future and therefore can consider a pure 3198 * runnable sum, runqueues can NOT do this. 3199 * 3200 * We specifically want runqueues to have a load_avg that includes 3201 * historical weights. Those represent the blocked load, the load we expect 3202 * to (shortly) return to us. This only works by keeping the weights as 3203 * integral part of the sum. We therefore cannot decompose as per (3). 3204 * 3205 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3206 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3207 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3208 * runnable section of these tasks overlap (or not). If they were to perfectly 3209 * align the rq as a whole would be runnable 2/3 of the time. If however we 3210 * always have at least 1 runnable task, the rq as a whole is always runnable. 3211 * 3212 * So we'll have to approximate.. :/ 3213 * 3214 * Given the constraint: 3215 * 3216 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3217 * 3218 * We can construct a rule that adds runnable to a rq by assuming minimal 3219 * overlap. 3220 * 3221 * On removal, we'll assume each task is equally runnable; which yields: 3222 * 3223 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3224 * 3225 * XXX: only do this for the part of runnable > running ? 3226 * 3227 */ 3228 3229 static inline void 3230 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3231 { 3232 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3233 3234 /* Nothing to update */ 3235 if (!delta) 3236 return; 3237 3238 /* 3239 * The relation between sum and avg is: 3240 * 3241 * LOAD_AVG_MAX - 1024 + sa->period_contrib 3242 * 3243 * however, the PELT windows are not aligned between grq and gse. 3244 */ 3245 3246 /* Set new sched_entity's utilization */ 3247 se->avg.util_avg = gcfs_rq->avg.util_avg; 3248 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3249 3250 /* Update parent cfs_rq utilization */ 3251 add_positive(&cfs_rq->avg.util_avg, delta); 3252 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3253 } 3254 3255 static inline void 3256 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3257 { 3258 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3259 unsigned long runnable_load_avg, load_avg; 3260 u64 runnable_load_sum, load_sum = 0; 3261 s64 delta_sum; 3262 3263 if (!runnable_sum) 3264 return; 3265 3266 gcfs_rq->prop_runnable_sum = 0; 3267 3268 if (runnable_sum >= 0) { 3269 /* 3270 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3271 * the CPU is saturated running == runnable. 3272 */ 3273 runnable_sum += se->avg.load_sum; 3274 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX); 3275 } else { 3276 /* 3277 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3278 * assuming all tasks are equally runnable. 3279 */ 3280 if (scale_load_down(gcfs_rq->load.weight)) { 3281 load_sum = div_s64(gcfs_rq->avg.load_sum, 3282 scale_load_down(gcfs_rq->load.weight)); 3283 } 3284 3285 /* But make sure to not inflate se's runnable */ 3286 runnable_sum = min(se->avg.load_sum, load_sum); 3287 } 3288 3289 /* 3290 * runnable_sum can't be lower than running_sum 3291 * Rescale running sum to be in the same range as runnable sum 3292 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3293 * runnable_sum is in [0 : LOAD_AVG_MAX] 3294 */ 3295 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3296 runnable_sum = max(runnable_sum, running_sum); 3297 3298 load_sum = (s64)se_weight(se) * runnable_sum; 3299 load_avg = div_s64(load_sum, LOAD_AVG_MAX); 3300 3301 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3302 delta_avg = load_avg - se->avg.load_avg; 3303 3304 se->avg.load_sum = runnable_sum; 3305 se->avg.load_avg = load_avg; 3306 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3307 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3308 3309 runnable_load_sum = (s64)se_runnable(se) * runnable_sum; 3310 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX); 3311 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum; 3312 delta_avg = runnable_load_avg - se->avg.runnable_load_avg; 3313 3314 se->avg.runnable_load_sum = runnable_sum; 3315 se->avg.runnable_load_avg = runnable_load_avg; 3316 3317 if (se->on_rq) { 3318 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg); 3319 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum); 3320 } 3321 } 3322 3323 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3324 { 3325 cfs_rq->propagate = 1; 3326 cfs_rq->prop_runnable_sum += runnable_sum; 3327 } 3328 3329 /* Update task and its cfs_rq load average */ 3330 static inline int propagate_entity_load_avg(struct sched_entity *se) 3331 { 3332 struct cfs_rq *cfs_rq, *gcfs_rq; 3333 3334 if (entity_is_task(se)) 3335 return 0; 3336 3337 gcfs_rq = group_cfs_rq(se); 3338 if (!gcfs_rq->propagate) 3339 return 0; 3340 3341 gcfs_rq->propagate = 0; 3342 3343 cfs_rq = cfs_rq_of(se); 3344 3345 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3346 3347 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3348 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3349 3350 trace_pelt_cfs_tp(cfs_rq); 3351 trace_pelt_se_tp(se); 3352 3353 return 1; 3354 } 3355 3356 /* 3357 * Check if we need to update the load and the utilization of a blocked 3358 * group_entity: 3359 */ 3360 static inline bool skip_blocked_update(struct sched_entity *se) 3361 { 3362 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3363 3364 /* 3365 * If sched_entity still have not zero load or utilization, we have to 3366 * decay it: 3367 */ 3368 if (se->avg.load_avg || se->avg.util_avg) 3369 return false; 3370 3371 /* 3372 * If there is a pending propagation, we have to update the load and 3373 * the utilization of the sched_entity: 3374 */ 3375 if (gcfs_rq->propagate) 3376 return false; 3377 3378 /* 3379 * Otherwise, the load and the utilization of the sched_entity is 3380 * already zero and there is no pending propagation, so it will be a 3381 * waste of time to try to decay it: 3382 */ 3383 return true; 3384 } 3385 3386 #else /* CONFIG_FAIR_GROUP_SCHED */ 3387 3388 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3389 3390 static inline int propagate_entity_load_avg(struct sched_entity *se) 3391 { 3392 return 0; 3393 } 3394 3395 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3396 3397 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3398 3399 /** 3400 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3401 * @now: current time, as per cfs_rq_clock_pelt() 3402 * @cfs_rq: cfs_rq to update 3403 * 3404 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3405 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3406 * post_init_entity_util_avg(). 3407 * 3408 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3409 * 3410 * Returns true if the load decayed or we removed load. 3411 * 3412 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3413 * call update_tg_load_avg() when this function returns true. 3414 */ 3415 static inline int 3416 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3417 { 3418 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0; 3419 struct sched_avg *sa = &cfs_rq->avg; 3420 int decayed = 0; 3421 3422 if (cfs_rq->removed.nr) { 3423 unsigned long r; 3424 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3425 3426 raw_spin_lock(&cfs_rq->removed.lock); 3427 swap(cfs_rq->removed.util_avg, removed_util); 3428 swap(cfs_rq->removed.load_avg, removed_load); 3429 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum); 3430 cfs_rq->removed.nr = 0; 3431 raw_spin_unlock(&cfs_rq->removed.lock); 3432 3433 r = removed_load; 3434 sub_positive(&sa->load_avg, r); 3435 sub_positive(&sa->load_sum, r * divider); 3436 3437 r = removed_util; 3438 sub_positive(&sa->util_avg, r); 3439 sub_positive(&sa->util_sum, r * divider); 3440 3441 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum); 3442 3443 decayed = 1; 3444 } 3445 3446 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3447 3448 #ifndef CONFIG_64BIT 3449 smp_wmb(); 3450 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3451 #endif 3452 3453 if (decayed) 3454 cfs_rq_util_change(cfs_rq, 0); 3455 3456 return decayed; 3457 } 3458 3459 /** 3460 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3461 * @cfs_rq: cfs_rq to attach to 3462 * @se: sched_entity to attach 3463 * @flags: migration hints 3464 * 3465 * Must call update_cfs_rq_load_avg() before this, since we rely on 3466 * cfs_rq->avg.last_update_time being current. 3467 */ 3468 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3469 { 3470 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3471 3472 /* 3473 * When we attach the @se to the @cfs_rq, we must align the decay 3474 * window because without that, really weird and wonderful things can 3475 * happen. 3476 * 3477 * XXX illustrate 3478 */ 3479 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3480 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3481 3482 /* 3483 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3484 * period_contrib. This isn't strictly correct, but since we're 3485 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3486 * _sum a little. 3487 */ 3488 se->avg.util_sum = se->avg.util_avg * divider; 3489 3490 se->avg.load_sum = divider; 3491 if (se_weight(se)) { 3492 se->avg.load_sum = 3493 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3494 } 3495 3496 se->avg.runnable_load_sum = se->avg.load_sum; 3497 3498 enqueue_load_avg(cfs_rq, se); 3499 cfs_rq->avg.util_avg += se->avg.util_avg; 3500 cfs_rq->avg.util_sum += se->avg.util_sum; 3501 3502 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3503 3504 cfs_rq_util_change(cfs_rq, flags); 3505 3506 trace_pelt_cfs_tp(cfs_rq); 3507 } 3508 3509 /** 3510 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3511 * @cfs_rq: cfs_rq to detach from 3512 * @se: sched_entity to detach 3513 * 3514 * Must call update_cfs_rq_load_avg() before this, since we rely on 3515 * cfs_rq->avg.last_update_time being current. 3516 */ 3517 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3518 { 3519 dequeue_load_avg(cfs_rq, se); 3520 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3521 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3522 3523 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3524 3525 cfs_rq_util_change(cfs_rq, 0); 3526 3527 trace_pelt_cfs_tp(cfs_rq); 3528 } 3529 3530 /* 3531 * Optional action to be done while updating the load average 3532 */ 3533 #define UPDATE_TG 0x1 3534 #define SKIP_AGE_LOAD 0x2 3535 #define DO_ATTACH 0x4 3536 3537 /* Update task and its cfs_rq load average */ 3538 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3539 { 3540 u64 now = cfs_rq_clock_pelt(cfs_rq); 3541 int decayed; 3542 3543 /* 3544 * Track task load average for carrying it to new CPU after migrated, and 3545 * track group sched_entity load average for task_h_load calc in migration 3546 */ 3547 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3548 __update_load_avg_se(now, cfs_rq, se); 3549 3550 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3551 decayed |= propagate_entity_load_avg(se); 3552 3553 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3554 3555 /* 3556 * DO_ATTACH means we're here from enqueue_entity(). 3557 * !last_update_time means we've passed through 3558 * migrate_task_rq_fair() indicating we migrated. 3559 * 3560 * IOW we're enqueueing a task on a new CPU. 3561 */ 3562 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION); 3563 update_tg_load_avg(cfs_rq, 0); 3564 3565 } else if (decayed && (flags & UPDATE_TG)) 3566 update_tg_load_avg(cfs_rq, 0); 3567 } 3568 3569 #ifndef CONFIG_64BIT 3570 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3571 { 3572 u64 last_update_time_copy; 3573 u64 last_update_time; 3574 3575 do { 3576 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3577 smp_rmb(); 3578 last_update_time = cfs_rq->avg.last_update_time; 3579 } while (last_update_time != last_update_time_copy); 3580 3581 return last_update_time; 3582 } 3583 #else 3584 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3585 { 3586 return cfs_rq->avg.last_update_time; 3587 } 3588 #endif 3589 3590 /* 3591 * Synchronize entity load avg of dequeued entity without locking 3592 * the previous rq. 3593 */ 3594 static void sync_entity_load_avg(struct sched_entity *se) 3595 { 3596 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3597 u64 last_update_time; 3598 3599 last_update_time = cfs_rq_last_update_time(cfs_rq); 3600 __update_load_avg_blocked_se(last_update_time, se); 3601 } 3602 3603 /* 3604 * Task first catches up with cfs_rq, and then subtract 3605 * itself from the cfs_rq (task must be off the queue now). 3606 */ 3607 static void remove_entity_load_avg(struct sched_entity *se) 3608 { 3609 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3610 unsigned long flags; 3611 3612 /* 3613 * tasks cannot exit without having gone through wake_up_new_task() -> 3614 * post_init_entity_util_avg() which will have added things to the 3615 * cfs_rq, so we can remove unconditionally. 3616 */ 3617 3618 sync_entity_load_avg(se); 3619 3620 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3621 ++cfs_rq->removed.nr; 3622 cfs_rq->removed.util_avg += se->avg.util_avg; 3623 cfs_rq->removed.load_avg += se->avg.load_avg; 3624 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */ 3625 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3626 } 3627 3628 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3629 { 3630 return cfs_rq->avg.runnable_load_avg; 3631 } 3632 3633 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3634 { 3635 return cfs_rq->avg.load_avg; 3636 } 3637 3638 static int idle_balance(struct rq *this_rq, struct rq_flags *rf); 3639 3640 static inline unsigned long task_util(struct task_struct *p) 3641 { 3642 return READ_ONCE(p->se.avg.util_avg); 3643 } 3644 3645 static inline unsigned long _task_util_est(struct task_struct *p) 3646 { 3647 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3648 3649 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED); 3650 } 3651 3652 static inline unsigned long task_util_est(struct task_struct *p) 3653 { 3654 return max(task_util(p), _task_util_est(p)); 3655 } 3656 3657 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3658 struct task_struct *p) 3659 { 3660 unsigned int enqueued; 3661 3662 if (!sched_feat(UTIL_EST)) 3663 return; 3664 3665 /* Update root cfs_rq's estimated utilization */ 3666 enqueued = cfs_rq->avg.util_est.enqueued; 3667 enqueued += _task_util_est(p); 3668 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3669 } 3670 3671 /* 3672 * Check if a (signed) value is within a specified (unsigned) margin, 3673 * based on the observation that: 3674 * 3675 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3676 * 3677 * NOTE: this only works when value + maring < INT_MAX. 3678 */ 3679 static inline bool within_margin(int value, int margin) 3680 { 3681 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3682 } 3683 3684 static void 3685 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) 3686 { 3687 long last_ewma_diff; 3688 struct util_est ue; 3689 int cpu; 3690 3691 if (!sched_feat(UTIL_EST)) 3692 return; 3693 3694 /* Update root cfs_rq's estimated utilization */ 3695 ue.enqueued = cfs_rq->avg.util_est.enqueued; 3696 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p)); 3697 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); 3698 3699 /* 3700 * Skip update of task's estimated utilization when the task has not 3701 * yet completed an activation, e.g. being migrated. 3702 */ 3703 if (!task_sleep) 3704 return; 3705 3706 /* 3707 * If the PELT values haven't changed since enqueue time, 3708 * skip the util_est update. 3709 */ 3710 ue = p->se.avg.util_est; 3711 if (ue.enqueued & UTIL_AVG_UNCHANGED) 3712 return; 3713 3714 /* 3715 * Skip update of task's estimated utilization when its EWMA is 3716 * already ~1% close to its last activation value. 3717 */ 3718 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); 3719 last_ewma_diff = ue.enqueued - ue.ewma; 3720 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) 3721 return; 3722 3723 /* 3724 * To avoid overestimation of actual task utilization, skip updates if 3725 * we cannot grant there is idle time in this CPU. 3726 */ 3727 cpu = cpu_of(rq_of(cfs_rq)); 3728 if (task_util(p) > capacity_orig_of(cpu)) 3729 return; 3730 3731 /* 3732 * Update Task's estimated utilization 3733 * 3734 * When *p completes an activation we can consolidate another sample 3735 * of the task size. This is done by storing the current PELT value 3736 * as ue.enqueued and by using this value to update the Exponential 3737 * Weighted Moving Average (EWMA): 3738 * 3739 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 3740 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 3741 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 3742 * = w * ( last_ewma_diff ) + ewma(t-1) 3743 * = w * (last_ewma_diff + ewma(t-1) / w) 3744 * 3745 * Where 'w' is the weight of new samples, which is configured to be 3746 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 3747 */ 3748 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 3749 ue.ewma += last_ewma_diff; 3750 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 3751 WRITE_ONCE(p->se.avg.util_est, ue); 3752 } 3753 3754 static inline int task_fits_capacity(struct task_struct *p, long capacity) 3755 { 3756 return capacity * 1024 > task_util_est(p) * capacity_margin; 3757 } 3758 3759 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 3760 { 3761 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 3762 return; 3763 3764 if (!p) { 3765 rq->misfit_task_load = 0; 3766 return; 3767 } 3768 3769 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 3770 rq->misfit_task_load = 0; 3771 return; 3772 } 3773 3774 rq->misfit_task_load = task_h_load(p); 3775 } 3776 3777 #else /* CONFIG_SMP */ 3778 3779 #define UPDATE_TG 0x0 3780 #define SKIP_AGE_LOAD 0x0 3781 #define DO_ATTACH 0x0 3782 3783 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 3784 { 3785 cfs_rq_util_change(cfs_rq, 0); 3786 } 3787 3788 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3789 3790 static inline void 3791 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {} 3792 static inline void 3793 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3794 3795 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 3796 { 3797 return 0; 3798 } 3799 3800 static inline void 3801 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 3802 3803 static inline void 3804 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, 3805 bool task_sleep) {} 3806 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 3807 3808 #endif /* CONFIG_SMP */ 3809 3810 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3811 { 3812 #ifdef CONFIG_SCHED_DEBUG 3813 s64 d = se->vruntime - cfs_rq->min_vruntime; 3814 3815 if (d < 0) 3816 d = -d; 3817 3818 if (d > 3*sysctl_sched_latency) 3819 schedstat_inc(cfs_rq->nr_spread_over); 3820 #endif 3821 } 3822 3823 static void 3824 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3825 { 3826 u64 vruntime = cfs_rq->min_vruntime; 3827 3828 /* 3829 * The 'current' period is already promised to the current tasks, 3830 * however the extra weight of the new task will slow them down a 3831 * little, place the new task so that it fits in the slot that 3832 * stays open at the end. 3833 */ 3834 if (initial && sched_feat(START_DEBIT)) 3835 vruntime += sched_vslice(cfs_rq, se); 3836 3837 /* sleeps up to a single latency don't count. */ 3838 if (!initial) { 3839 unsigned long thresh = sysctl_sched_latency; 3840 3841 /* 3842 * Halve their sleep time's effect, to allow 3843 * for a gentler effect of sleepers: 3844 */ 3845 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3846 thresh >>= 1; 3847 3848 vruntime -= thresh; 3849 } 3850 3851 /* ensure we never gain time by being placed backwards. */ 3852 se->vruntime = max_vruntime(se->vruntime, vruntime); 3853 } 3854 3855 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3856 3857 static inline void check_schedstat_required(void) 3858 { 3859 #ifdef CONFIG_SCHEDSTATS 3860 if (schedstat_enabled()) 3861 return; 3862 3863 /* Force schedstat enabled if a dependent tracepoint is active */ 3864 if (trace_sched_stat_wait_enabled() || 3865 trace_sched_stat_sleep_enabled() || 3866 trace_sched_stat_iowait_enabled() || 3867 trace_sched_stat_blocked_enabled() || 3868 trace_sched_stat_runtime_enabled()) { 3869 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3870 "stat_blocked and stat_runtime require the " 3871 "kernel parameter schedstats=enable or " 3872 "kernel.sched_schedstats=1\n"); 3873 } 3874 #endif 3875 } 3876 3877 3878 /* 3879 * MIGRATION 3880 * 3881 * dequeue 3882 * update_curr() 3883 * update_min_vruntime() 3884 * vruntime -= min_vruntime 3885 * 3886 * enqueue 3887 * update_curr() 3888 * update_min_vruntime() 3889 * vruntime += min_vruntime 3890 * 3891 * this way the vruntime transition between RQs is done when both 3892 * min_vruntime are up-to-date. 3893 * 3894 * WAKEUP (remote) 3895 * 3896 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3897 * vruntime -= min_vruntime 3898 * 3899 * enqueue 3900 * update_curr() 3901 * update_min_vruntime() 3902 * vruntime += min_vruntime 3903 * 3904 * this way we don't have the most up-to-date min_vruntime on the originating 3905 * CPU and an up-to-date min_vruntime on the destination CPU. 3906 */ 3907 3908 static void 3909 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3910 { 3911 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 3912 bool curr = cfs_rq->curr == se; 3913 3914 /* 3915 * If we're the current task, we must renormalise before calling 3916 * update_curr(). 3917 */ 3918 if (renorm && curr) 3919 se->vruntime += cfs_rq->min_vruntime; 3920 3921 update_curr(cfs_rq); 3922 3923 /* 3924 * Otherwise, renormalise after, such that we're placed at the current 3925 * moment in time, instead of some random moment in the past. Being 3926 * placed in the past could significantly boost this task to the 3927 * fairness detriment of existing tasks. 3928 */ 3929 if (renorm && !curr) 3930 se->vruntime += cfs_rq->min_vruntime; 3931 3932 /* 3933 * When enqueuing a sched_entity, we must: 3934 * - Update loads to have both entity and cfs_rq synced with now. 3935 * - Add its load to cfs_rq->runnable_avg 3936 * - For group_entity, update its weight to reflect the new share of 3937 * its group cfs_rq 3938 * - Add its new weight to cfs_rq->load.weight 3939 */ 3940 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 3941 update_cfs_group(se); 3942 enqueue_runnable_load_avg(cfs_rq, se); 3943 account_entity_enqueue(cfs_rq, se); 3944 3945 if (flags & ENQUEUE_WAKEUP) 3946 place_entity(cfs_rq, se, 0); 3947 3948 check_schedstat_required(); 3949 update_stats_enqueue(cfs_rq, se, flags); 3950 check_spread(cfs_rq, se); 3951 if (!curr) 3952 __enqueue_entity(cfs_rq, se); 3953 se->on_rq = 1; 3954 3955 if (cfs_rq->nr_running == 1) { 3956 list_add_leaf_cfs_rq(cfs_rq); 3957 check_enqueue_throttle(cfs_rq); 3958 } 3959 } 3960 3961 static void __clear_buddies_last(struct sched_entity *se) 3962 { 3963 for_each_sched_entity(se) { 3964 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3965 if (cfs_rq->last != se) 3966 break; 3967 3968 cfs_rq->last = NULL; 3969 } 3970 } 3971 3972 static void __clear_buddies_next(struct sched_entity *se) 3973 { 3974 for_each_sched_entity(se) { 3975 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3976 if (cfs_rq->next != se) 3977 break; 3978 3979 cfs_rq->next = NULL; 3980 } 3981 } 3982 3983 static void __clear_buddies_skip(struct sched_entity *se) 3984 { 3985 for_each_sched_entity(se) { 3986 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3987 if (cfs_rq->skip != se) 3988 break; 3989 3990 cfs_rq->skip = NULL; 3991 } 3992 } 3993 3994 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 3995 { 3996 if (cfs_rq->last == se) 3997 __clear_buddies_last(se); 3998 3999 if (cfs_rq->next == se) 4000 __clear_buddies_next(se); 4001 4002 if (cfs_rq->skip == se) 4003 __clear_buddies_skip(se); 4004 } 4005 4006 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4007 4008 static void 4009 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4010 { 4011 /* 4012 * Update run-time statistics of the 'current'. 4013 */ 4014 update_curr(cfs_rq); 4015 4016 /* 4017 * When dequeuing a sched_entity, we must: 4018 * - Update loads to have both entity and cfs_rq synced with now. 4019 * - Subtract its load from the cfs_rq->runnable_avg. 4020 * - Subtract its previous weight from cfs_rq->load.weight. 4021 * - For group entity, update its weight to reflect the new share 4022 * of its group cfs_rq. 4023 */ 4024 update_load_avg(cfs_rq, se, UPDATE_TG); 4025 dequeue_runnable_load_avg(cfs_rq, se); 4026 4027 update_stats_dequeue(cfs_rq, se, flags); 4028 4029 clear_buddies(cfs_rq, se); 4030 4031 if (se != cfs_rq->curr) 4032 __dequeue_entity(cfs_rq, se); 4033 se->on_rq = 0; 4034 account_entity_dequeue(cfs_rq, se); 4035 4036 /* 4037 * Normalize after update_curr(); which will also have moved 4038 * min_vruntime if @se is the one holding it back. But before doing 4039 * update_min_vruntime() again, which will discount @se's position and 4040 * can move min_vruntime forward still more. 4041 */ 4042 if (!(flags & DEQUEUE_SLEEP)) 4043 se->vruntime -= cfs_rq->min_vruntime; 4044 4045 /* return excess runtime on last dequeue */ 4046 return_cfs_rq_runtime(cfs_rq); 4047 4048 update_cfs_group(se); 4049 4050 /* 4051 * Now advance min_vruntime if @se was the entity holding it back, 4052 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4053 * put back on, and if we advance min_vruntime, we'll be placed back 4054 * further than we started -- ie. we'll be penalized. 4055 */ 4056 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4057 update_min_vruntime(cfs_rq); 4058 } 4059 4060 /* 4061 * Preempt the current task with a newly woken task if needed: 4062 */ 4063 static void 4064 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4065 { 4066 unsigned long ideal_runtime, delta_exec; 4067 struct sched_entity *se; 4068 s64 delta; 4069 4070 ideal_runtime = sched_slice(cfs_rq, curr); 4071 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4072 if (delta_exec > ideal_runtime) { 4073 resched_curr(rq_of(cfs_rq)); 4074 /* 4075 * The current task ran long enough, ensure it doesn't get 4076 * re-elected due to buddy favours. 4077 */ 4078 clear_buddies(cfs_rq, curr); 4079 return; 4080 } 4081 4082 /* 4083 * Ensure that a task that missed wakeup preemption by a 4084 * narrow margin doesn't have to wait for a full slice. 4085 * This also mitigates buddy induced latencies under load. 4086 */ 4087 if (delta_exec < sysctl_sched_min_granularity) 4088 return; 4089 4090 se = __pick_first_entity(cfs_rq); 4091 delta = curr->vruntime - se->vruntime; 4092 4093 if (delta < 0) 4094 return; 4095 4096 if (delta > ideal_runtime) 4097 resched_curr(rq_of(cfs_rq)); 4098 } 4099 4100 static void 4101 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4102 { 4103 /* 'current' is not kept within the tree. */ 4104 if (se->on_rq) { 4105 /* 4106 * Any task has to be enqueued before it get to execute on 4107 * a CPU. So account for the time it spent waiting on the 4108 * runqueue. 4109 */ 4110 update_stats_wait_end(cfs_rq, se); 4111 __dequeue_entity(cfs_rq, se); 4112 update_load_avg(cfs_rq, se, UPDATE_TG); 4113 } 4114 4115 update_stats_curr_start(cfs_rq, se); 4116 cfs_rq->curr = se; 4117 4118 /* 4119 * Track our maximum slice length, if the CPU's load is at 4120 * least twice that of our own weight (i.e. dont track it 4121 * when there are only lesser-weight tasks around): 4122 */ 4123 if (schedstat_enabled() && 4124 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4125 schedstat_set(se->statistics.slice_max, 4126 max((u64)schedstat_val(se->statistics.slice_max), 4127 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4128 } 4129 4130 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4131 } 4132 4133 static int 4134 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4135 4136 /* 4137 * Pick the next process, keeping these things in mind, in this order: 4138 * 1) keep things fair between processes/task groups 4139 * 2) pick the "next" process, since someone really wants that to run 4140 * 3) pick the "last" process, for cache locality 4141 * 4) do not run the "skip" process, if something else is available 4142 */ 4143 static struct sched_entity * 4144 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4145 { 4146 struct sched_entity *left = __pick_first_entity(cfs_rq); 4147 struct sched_entity *se; 4148 4149 /* 4150 * If curr is set we have to see if its left of the leftmost entity 4151 * still in the tree, provided there was anything in the tree at all. 4152 */ 4153 if (!left || (curr && entity_before(curr, left))) 4154 left = curr; 4155 4156 se = left; /* ideally we run the leftmost entity */ 4157 4158 /* 4159 * Avoid running the skip buddy, if running something else can 4160 * be done without getting too unfair. 4161 */ 4162 if (cfs_rq->skip == se) { 4163 struct sched_entity *second; 4164 4165 if (se == curr) { 4166 second = __pick_first_entity(cfs_rq); 4167 } else { 4168 second = __pick_next_entity(se); 4169 if (!second || (curr && entity_before(curr, second))) 4170 second = curr; 4171 } 4172 4173 if (second && wakeup_preempt_entity(second, left) < 1) 4174 se = second; 4175 } 4176 4177 /* 4178 * Prefer last buddy, try to return the CPU to a preempted task. 4179 */ 4180 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 4181 se = cfs_rq->last; 4182 4183 /* 4184 * Someone really wants this to run. If it's not unfair, run it. 4185 */ 4186 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 4187 se = cfs_rq->next; 4188 4189 clear_buddies(cfs_rq, se); 4190 4191 return se; 4192 } 4193 4194 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4195 4196 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4197 { 4198 /* 4199 * If still on the runqueue then deactivate_task() 4200 * was not called and update_curr() has to be done: 4201 */ 4202 if (prev->on_rq) 4203 update_curr(cfs_rq); 4204 4205 /* throttle cfs_rqs exceeding runtime */ 4206 check_cfs_rq_runtime(cfs_rq); 4207 4208 check_spread(cfs_rq, prev); 4209 4210 if (prev->on_rq) { 4211 update_stats_wait_start(cfs_rq, prev); 4212 /* Put 'current' back into the tree. */ 4213 __enqueue_entity(cfs_rq, prev); 4214 /* in !on_rq case, update occurred at dequeue */ 4215 update_load_avg(cfs_rq, prev, 0); 4216 } 4217 cfs_rq->curr = NULL; 4218 } 4219 4220 static void 4221 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4222 { 4223 /* 4224 * Update run-time statistics of the 'current'. 4225 */ 4226 update_curr(cfs_rq); 4227 4228 /* 4229 * Ensure that runnable average is periodically updated. 4230 */ 4231 update_load_avg(cfs_rq, curr, UPDATE_TG); 4232 update_cfs_group(curr); 4233 4234 #ifdef CONFIG_SCHED_HRTICK 4235 /* 4236 * queued ticks are scheduled to match the slice, so don't bother 4237 * validating it and just reschedule. 4238 */ 4239 if (queued) { 4240 resched_curr(rq_of(cfs_rq)); 4241 return; 4242 } 4243 /* 4244 * don't let the period tick interfere with the hrtick preemption 4245 */ 4246 if (!sched_feat(DOUBLE_TICK) && 4247 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4248 return; 4249 #endif 4250 4251 if (cfs_rq->nr_running > 1) 4252 check_preempt_tick(cfs_rq, curr); 4253 } 4254 4255 4256 /************************************************** 4257 * CFS bandwidth control machinery 4258 */ 4259 4260 #ifdef CONFIG_CFS_BANDWIDTH 4261 4262 #ifdef CONFIG_JUMP_LABEL 4263 static struct static_key __cfs_bandwidth_used; 4264 4265 static inline bool cfs_bandwidth_used(void) 4266 { 4267 return static_key_false(&__cfs_bandwidth_used); 4268 } 4269 4270 void cfs_bandwidth_usage_inc(void) 4271 { 4272 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4273 } 4274 4275 void cfs_bandwidth_usage_dec(void) 4276 { 4277 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4278 } 4279 #else /* CONFIG_JUMP_LABEL */ 4280 static bool cfs_bandwidth_used(void) 4281 { 4282 return true; 4283 } 4284 4285 void cfs_bandwidth_usage_inc(void) {} 4286 void cfs_bandwidth_usage_dec(void) {} 4287 #endif /* CONFIG_JUMP_LABEL */ 4288 4289 /* 4290 * default period for cfs group bandwidth. 4291 * default: 0.1s, units: nanoseconds 4292 */ 4293 static inline u64 default_cfs_period(void) 4294 { 4295 return 100000000ULL; 4296 } 4297 4298 static inline u64 sched_cfs_bandwidth_slice(void) 4299 { 4300 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4301 } 4302 4303 /* 4304 * Replenish runtime according to assigned quota and update expiration time. 4305 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 4306 * additional synchronization around rq->lock. 4307 * 4308 * requires cfs_b->lock 4309 */ 4310 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4311 { 4312 u64 now; 4313 4314 if (cfs_b->quota == RUNTIME_INF) 4315 return; 4316 4317 now = sched_clock_cpu(smp_processor_id()); 4318 cfs_b->runtime = cfs_b->quota; 4319 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 4320 cfs_b->expires_seq++; 4321 } 4322 4323 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4324 { 4325 return &tg->cfs_bandwidth; 4326 } 4327 4328 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 4329 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4330 { 4331 if (unlikely(cfs_rq->throttle_count)) 4332 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; 4333 4334 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 4335 } 4336 4337 /* returns 0 on failure to allocate runtime */ 4338 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4339 { 4340 struct task_group *tg = cfs_rq->tg; 4341 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4342 u64 amount = 0, min_amount, expires; 4343 int expires_seq; 4344 4345 /* note: this is a positive sum as runtime_remaining <= 0 */ 4346 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4347 4348 raw_spin_lock(&cfs_b->lock); 4349 if (cfs_b->quota == RUNTIME_INF) 4350 amount = min_amount; 4351 else { 4352 start_cfs_bandwidth(cfs_b); 4353 4354 if (cfs_b->runtime > 0) { 4355 amount = min(cfs_b->runtime, min_amount); 4356 cfs_b->runtime -= amount; 4357 cfs_b->idle = 0; 4358 } 4359 } 4360 expires_seq = cfs_b->expires_seq; 4361 expires = cfs_b->runtime_expires; 4362 raw_spin_unlock(&cfs_b->lock); 4363 4364 cfs_rq->runtime_remaining += amount; 4365 /* 4366 * we may have advanced our local expiration to account for allowed 4367 * spread between our sched_clock and the one on which runtime was 4368 * issued. 4369 */ 4370 if (cfs_rq->expires_seq != expires_seq) { 4371 cfs_rq->expires_seq = expires_seq; 4372 cfs_rq->runtime_expires = expires; 4373 } 4374 4375 return cfs_rq->runtime_remaining > 0; 4376 } 4377 4378 /* 4379 * Note: This depends on the synchronization provided by sched_clock and the 4380 * fact that rq->clock snapshots this value. 4381 */ 4382 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4383 { 4384 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4385 4386 /* if the deadline is ahead of our clock, nothing to do */ 4387 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 4388 return; 4389 4390 if (cfs_rq->runtime_remaining < 0) 4391 return; 4392 4393 /* 4394 * If the local deadline has passed we have to consider the 4395 * possibility that our sched_clock is 'fast' and the global deadline 4396 * has not truly expired. 4397 * 4398 * Fortunately we can check determine whether this the case by checking 4399 * whether the global deadline(cfs_b->expires_seq) has advanced. 4400 */ 4401 if (cfs_rq->expires_seq == cfs_b->expires_seq) { 4402 /* extend local deadline, drift is bounded above by 2 ticks */ 4403 cfs_rq->runtime_expires += TICK_NSEC; 4404 } else { 4405 /* global deadline is ahead, expiration has passed */ 4406 cfs_rq->runtime_remaining = 0; 4407 } 4408 } 4409 4410 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4411 { 4412 /* dock delta_exec before expiring quota (as it could span periods) */ 4413 cfs_rq->runtime_remaining -= delta_exec; 4414 expire_cfs_rq_runtime(cfs_rq); 4415 4416 if (likely(cfs_rq->runtime_remaining > 0)) 4417 return; 4418 4419 /* 4420 * if we're unable to extend our runtime we resched so that the active 4421 * hierarchy can be throttled 4422 */ 4423 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4424 resched_curr(rq_of(cfs_rq)); 4425 } 4426 4427 static __always_inline 4428 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4429 { 4430 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4431 return; 4432 4433 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4434 } 4435 4436 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4437 { 4438 return cfs_bandwidth_used() && cfs_rq->throttled; 4439 } 4440 4441 /* check whether cfs_rq, or any parent, is throttled */ 4442 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4443 { 4444 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4445 } 4446 4447 /* 4448 * Ensure that neither of the group entities corresponding to src_cpu or 4449 * dest_cpu are members of a throttled hierarchy when performing group 4450 * load-balance operations. 4451 */ 4452 static inline int throttled_lb_pair(struct task_group *tg, 4453 int src_cpu, int dest_cpu) 4454 { 4455 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4456 4457 src_cfs_rq = tg->cfs_rq[src_cpu]; 4458 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4459 4460 return throttled_hierarchy(src_cfs_rq) || 4461 throttled_hierarchy(dest_cfs_rq); 4462 } 4463 4464 static int tg_unthrottle_up(struct task_group *tg, void *data) 4465 { 4466 struct rq *rq = data; 4467 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4468 4469 cfs_rq->throttle_count--; 4470 if (!cfs_rq->throttle_count) { 4471 /* adjust cfs_rq_clock_task() */ 4472 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4473 cfs_rq->throttled_clock_task; 4474 4475 /* Add cfs_rq with already running entity in the list */ 4476 if (cfs_rq->nr_running >= 1) 4477 list_add_leaf_cfs_rq(cfs_rq); 4478 } 4479 4480 return 0; 4481 } 4482 4483 static int tg_throttle_down(struct task_group *tg, void *data) 4484 { 4485 struct rq *rq = data; 4486 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4487 4488 /* group is entering throttled state, stop time */ 4489 if (!cfs_rq->throttle_count) { 4490 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4491 list_del_leaf_cfs_rq(cfs_rq); 4492 } 4493 cfs_rq->throttle_count++; 4494 4495 return 0; 4496 } 4497 4498 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4499 { 4500 struct rq *rq = rq_of(cfs_rq); 4501 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4502 struct sched_entity *se; 4503 long task_delta, dequeue = 1; 4504 bool empty; 4505 4506 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4507 4508 /* freeze hierarchy runnable averages while throttled */ 4509 rcu_read_lock(); 4510 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4511 rcu_read_unlock(); 4512 4513 task_delta = cfs_rq->h_nr_running; 4514 for_each_sched_entity(se) { 4515 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4516 /* throttled entity or throttle-on-deactivate */ 4517 if (!se->on_rq) 4518 break; 4519 4520 if (dequeue) 4521 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4522 qcfs_rq->h_nr_running -= task_delta; 4523 4524 if (qcfs_rq->load.weight) 4525 dequeue = 0; 4526 } 4527 4528 if (!se) 4529 sub_nr_running(rq, task_delta); 4530 4531 cfs_rq->throttled = 1; 4532 cfs_rq->throttled_clock = rq_clock(rq); 4533 raw_spin_lock(&cfs_b->lock); 4534 empty = list_empty(&cfs_b->throttled_cfs_rq); 4535 4536 /* 4537 * Add to the _head_ of the list, so that an already-started 4538 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is 4539 * not running add to the tail so that later runqueues don't get starved. 4540 */ 4541 if (cfs_b->distribute_running) 4542 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4543 else 4544 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4545 4546 /* 4547 * If we're the first throttled task, make sure the bandwidth 4548 * timer is running. 4549 */ 4550 if (empty) 4551 start_cfs_bandwidth(cfs_b); 4552 4553 raw_spin_unlock(&cfs_b->lock); 4554 } 4555 4556 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4557 { 4558 struct rq *rq = rq_of(cfs_rq); 4559 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4560 struct sched_entity *se; 4561 int enqueue = 1; 4562 long task_delta; 4563 4564 se = cfs_rq->tg->se[cpu_of(rq)]; 4565 4566 cfs_rq->throttled = 0; 4567 4568 update_rq_clock(rq); 4569 4570 raw_spin_lock(&cfs_b->lock); 4571 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4572 list_del_rcu(&cfs_rq->throttled_list); 4573 raw_spin_unlock(&cfs_b->lock); 4574 4575 /* update hierarchical throttle state */ 4576 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4577 4578 if (!cfs_rq->load.weight) 4579 return; 4580 4581 task_delta = cfs_rq->h_nr_running; 4582 for_each_sched_entity(se) { 4583 if (se->on_rq) 4584 enqueue = 0; 4585 4586 cfs_rq = cfs_rq_of(se); 4587 if (enqueue) 4588 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4589 cfs_rq->h_nr_running += task_delta; 4590 4591 if (cfs_rq_throttled(cfs_rq)) 4592 break; 4593 } 4594 4595 assert_list_leaf_cfs_rq(rq); 4596 4597 if (!se) 4598 add_nr_running(rq, task_delta); 4599 4600 /* Determine whether we need to wake up potentially idle CPU: */ 4601 if (rq->curr == rq->idle && rq->cfs.nr_running) 4602 resched_curr(rq); 4603 } 4604 4605 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 4606 u64 remaining, u64 expires) 4607 { 4608 struct cfs_rq *cfs_rq; 4609 u64 runtime; 4610 u64 starting_runtime = remaining; 4611 4612 rcu_read_lock(); 4613 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4614 throttled_list) { 4615 struct rq *rq = rq_of(cfs_rq); 4616 struct rq_flags rf; 4617 4618 rq_lock_irqsave(rq, &rf); 4619 if (!cfs_rq_throttled(cfs_rq)) 4620 goto next; 4621 4622 runtime = -cfs_rq->runtime_remaining + 1; 4623 if (runtime > remaining) 4624 runtime = remaining; 4625 remaining -= runtime; 4626 4627 cfs_rq->runtime_remaining += runtime; 4628 cfs_rq->runtime_expires = expires; 4629 4630 /* we check whether we're throttled above */ 4631 if (cfs_rq->runtime_remaining > 0) 4632 unthrottle_cfs_rq(cfs_rq); 4633 4634 next: 4635 rq_unlock_irqrestore(rq, &rf); 4636 4637 if (!remaining) 4638 break; 4639 } 4640 rcu_read_unlock(); 4641 4642 return starting_runtime - remaining; 4643 } 4644 4645 /* 4646 * Responsible for refilling a task_group's bandwidth and unthrottling its 4647 * cfs_rqs as appropriate. If there has been no activity within the last 4648 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4649 * used to track this state. 4650 */ 4651 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 4652 { 4653 u64 runtime, runtime_expires; 4654 int throttled; 4655 4656 /* no need to continue the timer with no bandwidth constraint */ 4657 if (cfs_b->quota == RUNTIME_INF) 4658 goto out_deactivate; 4659 4660 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4661 cfs_b->nr_periods += overrun; 4662 4663 /* 4664 * idle depends on !throttled (for the case of a large deficit), and if 4665 * we're going inactive then everything else can be deferred 4666 */ 4667 if (cfs_b->idle && !throttled) 4668 goto out_deactivate; 4669 4670 __refill_cfs_bandwidth_runtime(cfs_b); 4671 4672 if (!throttled) { 4673 /* mark as potentially idle for the upcoming period */ 4674 cfs_b->idle = 1; 4675 return 0; 4676 } 4677 4678 /* account preceding periods in which throttling occurred */ 4679 cfs_b->nr_throttled += overrun; 4680 4681 runtime_expires = cfs_b->runtime_expires; 4682 4683 /* 4684 * This check is repeated as we are holding onto the new bandwidth while 4685 * we unthrottle. This can potentially race with an unthrottled group 4686 * trying to acquire new bandwidth from the global pool. This can result 4687 * in us over-using our runtime if it is all used during this loop, but 4688 * only by limited amounts in that extreme case. 4689 */ 4690 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) { 4691 runtime = cfs_b->runtime; 4692 cfs_b->distribute_running = 1; 4693 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4694 /* we can't nest cfs_b->lock while distributing bandwidth */ 4695 runtime = distribute_cfs_runtime(cfs_b, runtime, 4696 runtime_expires); 4697 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4698 4699 cfs_b->distribute_running = 0; 4700 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4701 4702 lsub_positive(&cfs_b->runtime, runtime); 4703 } 4704 4705 /* 4706 * While we are ensured activity in the period following an 4707 * unthrottle, this also covers the case in which the new bandwidth is 4708 * insufficient to cover the existing bandwidth deficit. (Forcing the 4709 * timer to remain active while there are any throttled entities.) 4710 */ 4711 cfs_b->idle = 0; 4712 4713 return 0; 4714 4715 out_deactivate: 4716 return 1; 4717 } 4718 4719 /* a cfs_rq won't donate quota below this amount */ 4720 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4721 /* minimum remaining period time to redistribute slack quota */ 4722 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4723 /* how long we wait to gather additional slack before distributing */ 4724 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4725 4726 /* 4727 * Are we near the end of the current quota period? 4728 * 4729 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4730 * hrtimer base being cleared by hrtimer_start. In the case of 4731 * migrate_hrtimers, base is never cleared, so we are fine. 4732 */ 4733 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4734 { 4735 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4736 u64 remaining; 4737 4738 /* if the call-back is running a quota refresh is already occurring */ 4739 if (hrtimer_callback_running(refresh_timer)) 4740 return 1; 4741 4742 /* is a quota refresh about to occur? */ 4743 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4744 if (remaining < min_expire) 4745 return 1; 4746 4747 return 0; 4748 } 4749 4750 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4751 { 4752 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4753 4754 /* if there's a quota refresh soon don't bother with slack */ 4755 if (runtime_refresh_within(cfs_b, min_left)) 4756 return; 4757 4758 /* don't push forwards an existing deferred unthrottle */ 4759 if (cfs_b->slack_started) 4760 return; 4761 cfs_b->slack_started = true; 4762 4763 hrtimer_start(&cfs_b->slack_timer, 4764 ns_to_ktime(cfs_bandwidth_slack_period), 4765 HRTIMER_MODE_REL); 4766 } 4767 4768 /* we know any runtime found here is valid as update_curr() precedes return */ 4769 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4770 { 4771 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4772 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4773 4774 if (slack_runtime <= 0) 4775 return; 4776 4777 raw_spin_lock(&cfs_b->lock); 4778 if (cfs_b->quota != RUNTIME_INF && 4779 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 4780 cfs_b->runtime += slack_runtime; 4781 4782 /* we are under rq->lock, defer unthrottling using a timer */ 4783 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4784 !list_empty(&cfs_b->throttled_cfs_rq)) 4785 start_cfs_slack_bandwidth(cfs_b); 4786 } 4787 raw_spin_unlock(&cfs_b->lock); 4788 4789 /* even if it's not valid for return we don't want to try again */ 4790 cfs_rq->runtime_remaining -= slack_runtime; 4791 } 4792 4793 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4794 { 4795 if (!cfs_bandwidth_used()) 4796 return; 4797 4798 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4799 return; 4800 4801 __return_cfs_rq_runtime(cfs_rq); 4802 } 4803 4804 /* 4805 * This is done with a timer (instead of inline with bandwidth return) since 4806 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4807 */ 4808 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4809 { 4810 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4811 unsigned long flags; 4812 u64 expires; 4813 4814 /* confirm we're still not at a refresh boundary */ 4815 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4816 cfs_b->slack_started = false; 4817 if (cfs_b->distribute_running) { 4818 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4819 return; 4820 } 4821 4822 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4823 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4824 return; 4825 } 4826 4827 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4828 runtime = cfs_b->runtime; 4829 4830 expires = cfs_b->runtime_expires; 4831 if (runtime) 4832 cfs_b->distribute_running = 1; 4833 4834 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4835 4836 if (!runtime) 4837 return; 4838 4839 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 4840 4841 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4842 if (expires == cfs_b->runtime_expires) 4843 lsub_positive(&cfs_b->runtime, runtime); 4844 cfs_b->distribute_running = 0; 4845 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4846 } 4847 4848 /* 4849 * When a group wakes up we want to make sure that its quota is not already 4850 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4851 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4852 */ 4853 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4854 { 4855 if (!cfs_bandwidth_used()) 4856 return; 4857 4858 /* an active group must be handled by the update_curr()->put() path */ 4859 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4860 return; 4861 4862 /* ensure the group is not already throttled */ 4863 if (cfs_rq_throttled(cfs_rq)) 4864 return; 4865 4866 /* update runtime allocation */ 4867 account_cfs_rq_runtime(cfs_rq, 0); 4868 if (cfs_rq->runtime_remaining <= 0) 4869 throttle_cfs_rq(cfs_rq); 4870 } 4871 4872 static void sync_throttle(struct task_group *tg, int cpu) 4873 { 4874 struct cfs_rq *pcfs_rq, *cfs_rq; 4875 4876 if (!cfs_bandwidth_used()) 4877 return; 4878 4879 if (!tg->parent) 4880 return; 4881 4882 cfs_rq = tg->cfs_rq[cpu]; 4883 pcfs_rq = tg->parent->cfs_rq[cpu]; 4884 4885 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4886 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 4887 } 4888 4889 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4890 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4891 { 4892 if (!cfs_bandwidth_used()) 4893 return false; 4894 4895 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4896 return false; 4897 4898 /* 4899 * it's possible for a throttled entity to be forced into a running 4900 * state (e.g. set_curr_task), in this case we're finished. 4901 */ 4902 if (cfs_rq_throttled(cfs_rq)) 4903 return true; 4904 4905 throttle_cfs_rq(cfs_rq); 4906 return true; 4907 } 4908 4909 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4910 { 4911 struct cfs_bandwidth *cfs_b = 4912 container_of(timer, struct cfs_bandwidth, slack_timer); 4913 4914 do_sched_cfs_slack_timer(cfs_b); 4915 4916 return HRTIMER_NORESTART; 4917 } 4918 4919 extern const u64 max_cfs_quota_period; 4920 4921 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4922 { 4923 struct cfs_bandwidth *cfs_b = 4924 container_of(timer, struct cfs_bandwidth, period_timer); 4925 unsigned long flags; 4926 int overrun; 4927 int idle = 0; 4928 int count = 0; 4929 4930 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4931 for (;;) { 4932 overrun = hrtimer_forward_now(timer, cfs_b->period); 4933 if (!overrun) 4934 break; 4935 4936 if (++count > 3) { 4937 u64 new, old = ktime_to_ns(cfs_b->period); 4938 4939 new = (old * 147) / 128; /* ~115% */ 4940 new = min(new, max_cfs_quota_period); 4941 4942 cfs_b->period = ns_to_ktime(new); 4943 4944 /* since max is 1s, this is limited to 1e9^2, which fits in u64 */ 4945 cfs_b->quota *= new; 4946 cfs_b->quota = div64_u64(cfs_b->quota, old); 4947 4948 pr_warn_ratelimited( 4949 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us %lld, cfs_quota_us = %lld)\n", 4950 smp_processor_id(), 4951 div_u64(new, NSEC_PER_USEC), 4952 div_u64(cfs_b->quota, NSEC_PER_USEC)); 4953 4954 /* reset count so we don't come right back in here */ 4955 count = 0; 4956 } 4957 4958 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 4959 } 4960 if (idle) 4961 cfs_b->period_active = 0; 4962 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4963 4964 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 4965 } 4966 4967 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4968 { 4969 raw_spin_lock_init(&cfs_b->lock); 4970 cfs_b->runtime = 0; 4971 cfs_b->quota = RUNTIME_INF; 4972 cfs_b->period = ns_to_ktime(default_cfs_period()); 4973 4974 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 4975 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 4976 cfs_b->period_timer.function = sched_cfs_period_timer; 4977 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 4978 cfs_b->slack_timer.function = sched_cfs_slack_timer; 4979 cfs_b->distribute_running = 0; 4980 cfs_b->slack_started = false; 4981 } 4982 4983 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4984 { 4985 cfs_rq->runtime_enabled = 0; 4986 INIT_LIST_HEAD(&cfs_rq->throttled_list); 4987 } 4988 4989 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4990 { 4991 u64 overrun; 4992 4993 lockdep_assert_held(&cfs_b->lock); 4994 4995 if (cfs_b->period_active) 4996 return; 4997 4998 cfs_b->period_active = 1; 4999 overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5000 cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period); 5001 cfs_b->expires_seq++; 5002 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5003 } 5004 5005 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5006 { 5007 /* init_cfs_bandwidth() was not called */ 5008 if (!cfs_b->throttled_cfs_rq.next) 5009 return; 5010 5011 hrtimer_cancel(&cfs_b->period_timer); 5012 hrtimer_cancel(&cfs_b->slack_timer); 5013 } 5014 5015 /* 5016 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5017 * 5018 * The race is harmless, since modifying bandwidth settings of unhooked group 5019 * bits doesn't do much. 5020 */ 5021 5022 /* cpu online calback */ 5023 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5024 { 5025 struct task_group *tg; 5026 5027 lockdep_assert_held(&rq->lock); 5028 5029 rcu_read_lock(); 5030 list_for_each_entry_rcu(tg, &task_groups, list) { 5031 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5032 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5033 5034 raw_spin_lock(&cfs_b->lock); 5035 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5036 raw_spin_unlock(&cfs_b->lock); 5037 } 5038 rcu_read_unlock(); 5039 } 5040 5041 /* cpu offline callback */ 5042 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5043 { 5044 struct task_group *tg; 5045 5046 lockdep_assert_held(&rq->lock); 5047 5048 rcu_read_lock(); 5049 list_for_each_entry_rcu(tg, &task_groups, list) { 5050 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5051 5052 if (!cfs_rq->runtime_enabled) 5053 continue; 5054 5055 /* 5056 * clock_task is not advancing so we just need to make sure 5057 * there's some valid quota amount 5058 */ 5059 cfs_rq->runtime_remaining = 1; 5060 /* 5061 * Offline rq is schedulable till CPU is completely disabled 5062 * in take_cpu_down(), so we prevent new cfs throttling here. 5063 */ 5064 cfs_rq->runtime_enabled = 0; 5065 5066 if (cfs_rq_throttled(cfs_rq)) 5067 unthrottle_cfs_rq(cfs_rq); 5068 } 5069 rcu_read_unlock(); 5070 } 5071 5072 #else /* CONFIG_CFS_BANDWIDTH */ 5073 5074 static inline bool cfs_bandwidth_used(void) 5075 { 5076 return false; 5077 } 5078 5079 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 5080 { 5081 return rq_clock_task(rq_of(cfs_rq)); 5082 } 5083 5084 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5085 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5086 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5087 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5088 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5089 5090 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5091 { 5092 return 0; 5093 } 5094 5095 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5096 { 5097 return 0; 5098 } 5099 5100 static inline int throttled_lb_pair(struct task_group *tg, 5101 int src_cpu, int dest_cpu) 5102 { 5103 return 0; 5104 } 5105 5106 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5107 5108 #ifdef CONFIG_FAIR_GROUP_SCHED 5109 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5110 #endif 5111 5112 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5113 { 5114 return NULL; 5115 } 5116 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5117 static inline void update_runtime_enabled(struct rq *rq) {} 5118 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5119 5120 #endif /* CONFIG_CFS_BANDWIDTH */ 5121 5122 /************************************************** 5123 * CFS operations on tasks: 5124 */ 5125 5126 #ifdef CONFIG_SCHED_HRTICK 5127 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5128 { 5129 struct sched_entity *se = &p->se; 5130 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5131 5132 SCHED_WARN_ON(task_rq(p) != rq); 5133 5134 if (rq->cfs.h_nr_running > 1) { 5135 u64 slice = sched_slice(cfs_rq, se); 5136 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5137 s64 delta = slice - ran; 5138 5139 if (delta < 0) { 5140 if (rq->curr == p) 5141 resched_curr(rq); 5142 return; 5143 } 5144 hrtick_start(rq, delta); 5145 } 5146 } 5147 5148 /* 5149 * called from enqueue/dequeue and updates the hrtick when the 5150 * current task is from our class and nr_running is low enough 5151 * to matter. 5152 */ 5153 static void hrtick_update(struct rq *rq) 5154 { 5155 struct task_struct *curr = rq->curr; 5156 5157 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 5158 return; 5159 5160 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5161 hrtick_start_fair(rq, curr); 5162 } 5163 #else /* !CONFIG_SCHED_HRTICK */ 5164 static inline void 5165 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5166 { 5167 } 5168 5169 static inline void hrtick_update(struct rq *rq) 5170 { 5171 } 5172 #endif 5173 5174 #ifdef CONFIG_SMP 5175 static inline unsigned long cpu_util(int cpu); 5176 5177 static inline bool cpu_overutilized(int cpu) 5178 { 5179 return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin); 5180 } 5181 5182 static inline void update_overutilized_status(struct rq *rq) 5183 { 5184 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5185 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5186 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5187 } 5188 } 5189 #else 5190 static inline void update_overutilized_status(struct rq *rq) { } 5191 #endif 5192 5193 /* 5194 * The enqueue_task method is called before nr_running is 5195 * increased. Here we update the fair scheduling stats and 5196 * then put the task into the rbtree: 5197 */ 5198 static void 5199 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5200 { 5201 struct cfs_rq *cfs_rq; 5202 struct sched_entity *se = &p->se; 5203 5204 /* 5205 * The code below (indirectly) updates schedutil which looks at 5206 * the cfs_rq utilization to select a frequency. 5207 * Let's add the task's estimated utilization to the cfs_rq's 5208 * estimated utilization, before we update schedutil. 5209 */ 5210 util_est_enqueue(&rq->cfs, p); 5211 5212 /* 5213 * If in_iowait is set, the code below may not trigger any cpufreq 5214 * utilization updates, so do it here explicitly with the IOWAIT flag 5215 * passed. 5216 */ 5217 if (p->in_iowait) 5218 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5219 5220 for_each_sched_entity(se) { 5221 if (se->on_rq) 5222 break; 5223 cfs_rq = cfs_rq_of(se); 5224 enqueue_entity(cfs_rq, se, flags); 5225 5226 /* 5227 * end evaluation on encountering a throttled cfs_rq 5228 * 5229 * note: in the case of encountering a throttled cfs_rq we will 5230 * post the final h_nr_running increment below. 5231 */ 5232 if (cfs_rq_throttled(cfs_rq)) 5233 break; 5234 cfs_rq->h_nr_running++; 5235 5236 flags = ENQUEUE_WAKEUP; 5237 } 5238 5239 for_each_sched_entity(se) { 5240 cfs_rq = cfs_rq_of(se); 5241 cfs_rq->h_nr_running++; 5242 5243 if (cfs_rq_throttled(cfs_rq)) 5244 break; 5245 5246 update_load_avg(cfs_rq, se, UPDATE_TG); 5247 update_cfs_group(se); 5248 } 5249 5250 if (!se) { 5251 add_nr_running(rq, 1); 5252 /* 5253 * Since new tasks are assigned an initial util_avg equal to 5254 * half of the spare capacity of their CPU, tiny tasks have the 5255 * ability to cross the overutilized threshold, which will 5256 * result in the load balancer ruining all the task placement 5257 * done by EAS. As a way to mitigate that effect, do not account 5258 * for the first enqueue operation of new tasks during the 5259 * overutilized flag detection. 5260 * 5261 * A better way of solving this problem would be to wait for 5262 * the PELT signals of tasks to converge before taking them 5263 * into account, but that is not straightforward to implement, 5264 * and the following generally works well enough in practice. 5265 */ 5266 if (flags & ENQUEUE_WAKEUP) 5267 update_overutilized_status(rq); 5268 5269 } 5270 5271 if (cfs_bandwidth_used()) { 5272 /* 5273 * When bandwidth control is enabled; the cfs_rq_throttled() 5274 * breaks in the above iteration can result in incomplete 5275 * leaf list maintenance, resulting in triggering the assertion 5276 * below. 5277 */ 5278 for_each_sched_entity(se) { 5279 cfs_rq = cfs_rq_of(se); 5280 5281 if (list_add_leaf_cfs_rq(cfs_rq)) 5282 break; 5283 } 5284 } 5285 5286 assert_list_leaf_cfs_rq(rq); 5287 5288 hrtick_update(rq); 5289 } 5290 5291 static void set_next_buddy(struct sched_entity *se); 5292 5293 /* 5294 * The dequeue_task method is called before nr_running is 5295 * decreased. We remove the task from the rbtree and 5296 * update the fair scheduling stats: 5297 */ 5298 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5299 { 5300 struct cfs_rq *cfs_rq; 5301 struct sched_entity *se = &p->se; 5302 int task_sleep = flags & DEQUEUE_SLEEP; 5303 5304 for_each_sched_entity(se) { 5305 cfs_rq = cfs_rq_of(se); 5306 dequeue_entity(cfs_rq, se, flags); 5307 5308 /* 5309 * end evaluation on encountering a throttled cfs_rq 5310 * 5311 * note: in the case of encountering a throttled cfs_rq we will 5312 * post the final h_nr_running decrement below. 5313 */ 5314 if (cfs_rq_throttled(cfs_rq)) 5315 break; 5316 cfs_rq->h_nr_running--; 5317 5318 /* Don't dequeue parent if it has other entities besides us */ 5319 if (cfs_rq->load.weight) { 5320 /* Avoid re-evaluating load for this entity: */ 5321 se = parent_entity(se); 5322 /* 5323 * Bias pick_next to pick a task from this cfs_rq, as 5324 * p is sleeping when it is within its sched_slice. 5325 */ 5326 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5327 set_next_buddy(se); 5328 break; 5329 } 5330 flags |= DEQUEUE_SLEEP; 5331 } 5332 5333 for_each_sched_entity(se) { 5334 cfs_rq = cfs_rq_of(se); 5335 cfs_rq->h_nr_running--; 5336 5337 if (cfs_rq_throttled(cfs_rq)) 5338 break; 5339 5340 update_load_avg(cfs_rq, se, UPDATE_TG); 5341 update_cfs_group(se); 5342 } 5343 5344 if (!se) 5345 sub_nr_running(rq, 1); 5346 5347 util_est_dequeue(&rq->cfs, p, task_sleep); 5348 hrtick_update(rq); 5349 } 5350 5351 #ifdef CONFIG_SMP 5352 5353 /* Working cpumask for: load_balance, load_balance_newidle. */ 5354 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5355 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5356 5357 #ifdef CONFIG_NO_HZ_COMMON 5358 5359 static struct { 5360 cpumask_var_t idle_cpus_mask; 5361 atomic_t nr_cpus; 5362 int has_blocked; /* Idle CPUS has blocked load */ 5363 unsigned long next_balance; /* in jiffy units */ 5364 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5365 } nohz ____cacheline_aligned; 5366 5367 #endif /* CONFIG_NO_HZ_COMMON */ 5368 5369 static unsigned long cpu_runnable_load(struct rq *rq) 5370 { 5371 return cfs_rq_runnable_load_avg(&rq->cfs); 5372 } 5373 5374 static unsigned long capacity_of(int cpu) 5375 { 5376 return cpu_rq(cpu)->cpu_capacity; 5377 } 5378 5379 static unsigned long cpu_avg_load_per_task(int cpu) 5380 { 5381 struct rq *rq = cpu_rq(cpu); 5382 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 5383 unsigned long load_avg = cpu_runnable_load(rq); 5384 5385 if (nr_running) 5386 return load_avg / nr_running; 5387 5388 return 0; 5389 } 5390 5391 static void record_wakee(struct task_struct *p) 5392 { 5393 /* 5394 * Only decay a single time; tasks that have less then 1 wakeup per 5395 * jiffy will not have built up many flips. 5396 */ 5397 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5398 current->wakee_flips >>= 1; 5399 current->wakee_flip_decay_ts = jiffies; 5400 } 5401 5402 if (current->last_wakee != p) { 5403 current->last_wakee = p; 5404 current->wakee_flips++; 5405 } 5406 } 5407 5408 /* 5409 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5410 * 5411 * A waker of many should wake a different task than the one last awakened 5412 * at a frequency roughly N times higher than one of its wakees. 5413 * 5414 * In order to determine whether we should let the load spread vs consolidating 5415 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5416 * partner, and a factor of lls_size higher frequency in the other. 5417 * 5418 * With both conditions met, we can be relatively sure that the relationship is 5419 * non-monogamous, with partner count exceeding socket size. 5420 * 5421 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5422 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5423 * socket size. 5424 */ 5425 static int wake_wide(struct task_struct *p) 5426 { 5427 unsigned int master = current->wakee_flips; 5428 unsigned int slave = p->wakee_flips; 5429 int factor = this_cpu_read(sd_llc_size); 5430 5431 if (master < slave) 5432 swap(master, slave); 5433 if (slave < factor || master < slave * factor) 5434 return 0; 5435 return 1; 5436 } 5437 5438 /* 5439 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5440 * soonest. For the purpose of speed we only consider the waking and previous 5441 * CPU. 5442 * 5443 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5444 * cache-affine and is (or will be) idle. 5445 * 5446 * wake_affine_weight() - considers the weight to reflect the average 5447 * scheduling latency of the CPUs. This seems to work 5448 * for the overloaded case. 5449 */ 5450 static int 5451 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5452 { 5453 /* 5454 * If this_cpu is idle, it implies the wakeup is from interrupt 5455 * context. Only allow the move if cache is shared. Otherwise an 5456 * interrupt intensive workload could force all tasks onto one 5457 * node depending on the IO topology or IRQ affinity settings. 5458 * 5459 * If the prev_cpu is idle and cache affine then avoid a migration. 5460 * There is no guarantee that the cache hot data from an interrupt 5461 * is more important than cache hot data on the prev_cpu and from 5462 * a cpufreq perspective, it's better to have higher utilisation 5463 * on one CPU. 5464 */ 5465 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5466 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5467 5468 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5469 return this_cpu; 5470 5471 return nr_cpumask_bits; 5472 } 5473 5474 static int 5475 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5476 int this_cpu, int prev_cpu, int sync) 5477 { 5478 s64 this_eff_load, prev_eff_load; 5479 unsigned long task_load; 5480 5481 this_eff_load = cpu_runnable_load(cpu_rq(this_cpu)); 5482 5483 if (sync) { 5484 unsigned long current_load = task_h_load(current); 5485 5486 if (current_load > this_eff_load) 5487 return this_cpu; 5488 5489 this_eff_load -= current_load; 5490 } 5491 5492 task_load = task_h_load(p); 5493 5494 this_eff_load += task_load; 5495 if (sched_feat(WA_BIAS)) 5496 this_eff_load *= 100; 5497 this_eff_load *= capacity_of(prev_cpu); 5498 5499 prev_eff_load = cpu_runnable_load(cpu_rq(prev_cpu)); 5500 prev_eff_load -= task_load; 5501 if (sched_feat(WA_BIAS)) 5502 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5503 prev_eff_load *= capacity_of(this_cpu); 5504 5505 /* 5506 * If sync, adjust the weight of prev_eff_load such that if 5507 * prev_eff == this_eff that select_idle_sibling() will consider 5508 * stacking the wakee on top of the waker if no other CPU is 5509 * idle. 5510 */ 5511 if (sync) 5512 prev_eff_load += 1; 5513 5514 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5515 } 5516 5517 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5518 int this_cpu, int prev_cpu, int sync) 5519 { 5520 int target = nr_cpumask_bits; 5521 5522 if (sched_feat(WA_IDLE)) 5523 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5524 5525 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5526 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5527 5528 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5529 if (target == nr_cpumask_bits) 5530 return prev_cpu; 5531 5532 schedstat_inc(sd->ttwu_move_affine); 5533 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5534 return target; 5535 } 5536 5537 static unsigned long cpu_util_without(int cpu, struct task_struct *p); 5538 5539 static unsigned long capacity_spare_without(int cpu, struct task_struct *p) 5540 { 5541 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0); 5542 } 5543 5544 /* 5545 * find_idlest_group finds and returns the least busy CPU group within the 5546 * domain. 5547 * 5548 * Assumes p is allowed on at least one CPU in sd. 5549 */ 5550 static struct sched_group * 5551 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5552 int this_cpu, int sd_flag) 5553 { 5554 struct sched_group *idlest = NULL, *group = sd->groups; 5555 struct sched_group *most_spare_sg = NULL; 5556 unsigned long min_runnable_load = ULONG_MAX; 5557 unsigned long this_runnable_load = ULONG_MAX; 5558 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX; 5559 unsigned long most_spare = 0, this_spare = 0; 5560 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2; 5561 unsigned long imbalance = scale_load_down(NICE_0_LOAD) * 5562 (sd->imbalance_pct-100) / 100; 5563 5564 do { 5565 unsigned long load, avg_load, runnable_load; 5566 unsigned long spare_cap, max_spare_cap; 5567 int local_group; 5568 int i; 5569 5570 /* Skip over this group if it has no CPUs allowed */ 5571 if (!cpumask_intersects(sched_group_span(group), 5572 p->cpus_ptr)) 5573 continue; 5574 5575 local_group = cpumask_test_cpu(this_cpu, 5576 sched_group_span(group)); 5577 5578 /* 5579 * Tally up the load of all CPUs in the group and find 5580 * the group containing the CPU with most spare capacity. 5581 */ 5582 avg_load = 0; 5583 runnable_load = 0; 5584 max_spare_cap = 0; 5585 5586 for_each_cpu(i, sched_group_span(group)) { 5587 load = cpu_runnable_load(cpu_rq(i)); 5588 runnable_load += load; 5589 5590 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs); 5591 5592 spare_cap = capacity_spare_without(i, p); 5593 5594 if (spare_cap > max_spare_cap) 5595 max_spare_cap = spare_cap; 5596 } 5597 5598 /* Adjust by relative CPU capacity of the group */ 5599 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / 5600 group->sgc->capacity; 5601 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) / 5602 group->sgc->capacity; 5603 5604 if (local_group) { 5605 this_runnable_load = runnable_load; 5606 this_avg_load = avg_load; 5607 this_spare = max_spare_cap; 5608 } else { 5609 if (min_runnable_load > (runnable_load + imbalance)) { 5610 /* 5611 * The runnable load is significantly smaller 5612 * so we can pick this new CPU: 5613 */ 5614 min_runnable_load = runnable_load; 5615 min_avg_load = avg_load; 5616 idlest = group; 5617 } else if ((runnable_load < (min_runnable_load + imbalance)) && 5618 (100*min_avg_load > imbalance_scale*avg_load)) { 5619 /* 5620 * The runnable loads are close so take the 5621 * blocked load into account through avg_load: 5622 */ 5623 min_avg_load = avg_load; 5624 idlest = group; 5625 } 5626 5627 if (most_spare < max_spare_cap) { 5628 most_spare = max_spare_cap; 5629 most_spare_sg = group; 5630 } 5631 } 5632 } while (group = group->next, group != sd->groups); 5633 5634 /* 5635 * The cross-over point between using spare capacity or least load 5636 * is too conservative for high utilization tasks on partially 5637 * utilized systems if we require spare_capacity > task_util(p), 5638 * so we allow for some task stuffing by using 5639 * spare_capacity > task_util(p)/2. 5640 * 5641 * Spare capacity can't be used for fork because the utilization has 5642 * not been set yet, we must first select a rq to compute the initial 5643 * utilization. 5644 */ 5645 if (sd_flag & SD_BALANCE_FORK) 5646 goto skip_spare; 5647 5648 if (this_spare > task_util(p) / 2 && 5649 imbalance_scale*this_spare > 100*most_spare) 5650 return NULL; 5651 5652 if (most_spare > task_util(p) / 2) 5653 return most_spare_sg; 5654 5655 skip_spare: 5656 if (!idlest) 5657 return NULL; 5658 5659 /* 5660 * When comparing groups across NUMA domains, it's possible for the 5661 * local domain to be very lightly loaded relative to the remote 5662 * domains but "imbalance" skews the comparison making remote CPUs 5663 * look much more favourable. When considering cross-domain, add 5664 * imbalance to the runnable load on the remote node and consider 5665 * staying local. 5666 */ 5667 if ((sd->flags & SD_NUMA) && 5668 min_runnable_load + imbalance >= this_runnable_load) 5669 return NULL; 5670 5671 if (min_runnable_load > (this_runnable_load + imbalance)) 5672 return NULL; 5673 5674 if ((this_runnable_load < (min_runnable_load + imbalance)) && 5675 (100*this_avg_load < imbalance_scale*min_avg_load)) 5676 return NULL; 5677 5678 return idlest; 5679 } 5680 5681 /* 5682 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 5683 */ 5684 static int 5685 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5686 { 5687 unsigned long load, min_load = ULONG_MAX; 5688 unsigned int min_exit_latency = UINT_MAX; 5689 u64 latest_idle_timestamp = 0; 5690 int least_loaded_cpu = this_cpu; 5691 int shallowest_idle_cpu = -1; 5692 int i; 5693 5694 /* Check if we have any choice: */ 5695 if (group->group_weight == 1) 5696 return cpumask_first(sched_group_span(group)); 5697 5698 /* Traverse only the allowed CPUs */ 5699 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 5700 if (available_idle_cpu(i)) { 5701 struct rq *rq = cpu_rq(i); 5702 struct cpuidle_state *idle = idle_get_state(rq); 5703 if (idle && idle->exit_latency < min_exit_latency) { 5704 /* 5705 * We give priority to a CPU whose idle state 5706 * has the smallest exit latency irrespective 5707 * of any idle timestamp. 5708 */ 5709 min_exit_latency = idle->exit_latency; 5710 latest_idle_timestamp = rq->idle_stamp; 5711 shallowest_idle_cpu = i; 5712 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5713 rq->idle_stamp > latest_idle_timestamp) { 5714 /* 5715 * If equal or no active idle state, then 5716 * the most recently idled CPU might have 5717 * a warmer cache. 5718 */ 5719 latest_idle_timestamp = rq->idle_stamp; 5720 shallowest_idle_cpu = i; 5721 } 5722 } else if (shallowest_idle_cpu == -1) { 5723 load = cpu_runnable_load(cpu_rq(i)); 5724 if (load < min_load) { 5725 min_load = load; 5726 least_loaded_cpu = i; 5727 } 5728 } 5729 } 5730 5731 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5732 } 5733 5734 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 5735 int cpu, int prev_cpu, int sd_flag) 5736 { 5737 int new_cpu = cpu; 5738 5739 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 5740 return prev_cpu; 5741 5742 /* 5743 * We need task's util for capacity_spare_without, sync it up to 5744 * prev_cpu's last_update_time. 5745 */ 5746 if (!(sd_flag & SD_BALANCE_FORK)) 5747 sync_entity_load_avg(&p->se); 5748 5749 while (sd) { 5750 struct sched_group *group; 5751 struct sched_domain *tmp; 5752 int weight; 5753 5754 if (!(sd->flags & sd_flag)) { 5755 sd = sd->child; 5756 continue; 5757 } 5758 5759 group = find_idlest_group(sd, p, cpu, sd_flag); 5760 if (!group) { 5761 sd = sd->child; 5762 continue; 5763 } 5764 5765 new_cpu = find_idlest_group_cpu(group, p, cpu); 5766 if (new_cpu == cpu) { 5767 /* Now try balancing at a lower domain level of 'cpu': */ 5768 sd = sd->child; 5769 continue; 5770 } 5771 5772 /* Now try balancing at a lower domain level of 'new_cpu': */ 5773 cpu = new_cpu; 5774 weight = sd->span_weight; 5775 sd = NULL; 5776 for_each_domain(cpu, tmp) { 5777 if (weight <= tmp->span_weight) 5778 break; 5779 if (tmp->flags & sd_flag) 5780 sd = tmp; 5781 } 5782 } 5783 5784 return new_cpu; 5785 } 5786 5787 #ifdef CONFIG_SCHED_SMT 5788 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5789 EXPORT_SYMBOL_GPL(sched_smt_present); 5790 5791 static inline void set_idle_cores(int cpu, int val) 5792 { 5793 struct sched_domain_shared *sds; 5794 5795 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5796 if (sds) 5797 WRITE_ONCE(sds->has_idle_cores, val); 5798 } 5799 5800 static inline bool test_idle_cores(int cpu, bool def) 5801 { 5802 struct sched_domain_shared *sds; 5803 5804 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5805 if (sds) 5806 return READ_ONCE(sds->has_idle_cores); 5807 5808 return def; 5809 } 5810 5811 /* 5812 * Scans the local SMT mask to see if the entire core is idle, and records this 5813 * information in sd_llc_shared->has_idle_cores. 5814 * 5815 * Since SMT siblings share all cache levels, inspecting this limited remote 5816 * state should be fairly cheap. 5817 */ 5818 void __update_idle_core(struct rq *rq) 5819 { 5820 int core = cpu_of(rq); 5821 int cpu; 5822 5823 rcu_read_lock(); 5824 if (test_idle_cores(core, true)) 5825 goto unlock; 5826 5827 for_each_cpu(cpu, cpu_smt_mask(core)) { 5828 if (cpu == core) 5829 continue; 5830 5831 if (!available_idle_cpu(cpu)) 5832 goto unlock; 5833 } 5834 5835 set_idle_cores(core, 1); 5836 unlock: 5837 rcu_read_unlock(); 5838 } 5839 5840 /* 5841 * Scan the entire LLC domain for idle cores; this dynamically switches off if 5842 * there are no idle cores left in the system; tracked through 5843 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 5844 */ 5845 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5846 { 5847 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 5848 int core, cpu; 5849 5850 if (!static_branch_likely(&sched_smt_present)) 5851 return -1; 5852 5853 if (!test_idle_cores(target, false)) 5854 return -1; 5855 5856 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 5857 5858 for_each_cpu_wrap(core, cpus, target) { 5859 bool idle = true; 5860 5861 for_each_cpu(cpu, cpu_smt_mask(core)) { 5862 __cpumask_clear_cpu(cpu, cpus); 5863 if (!available_idle_cpu(cpu)) 5864 idle = false; 5865 } 5866 5867 if (idle) 5868 return core; 5869 } 5870 5871 /* 5872 * Failed to find an idle core; stop looking for one. 5873 */ 5874 set_idle_cores(target, 0); 5875 5876 return -1; 5877 } 5878 5879 /* 5880 * Scan the local SMT mask for idle CPUs. 5881 */ 5882 static int select_idle_smt(struct task_struct *p, int target) 5883 { 5884 int cpu; 5885 5886 if (!static_branch_likely(&sched_smt_present)) 5887 return -1; 5888 5889 for_each_cpu(cpu, cpu_smt_mask(target)) { 5890 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 5891 continue; 5892 if (available_idle_cpu(cpu)) 5893 return cpu; 5894 } 5895 5896 return -1; 5897 } 5898 5899 #else /* CONFIG_SCHED_SMT */ 5900 5901 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5902 { 5903 return -1; 5904 } 5905 5906 static inline int select_idle_smt(struct task_struct *p, int target) 5907 { 5908 return -1; 5909 } 5910 5911 #endif /* CONFIG_SCHED_SMT */ 5912 5913 /* 5914 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 5915 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 5916 * average idle time for this rq (as found in rq->avg_idle). 5917 */ 5918 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 5919 { 5920 struct sched_domain *this_sd; 5921 u64 avg_cost, avg_idle; 5922 u64 time, cost; 5923 s64 delta; 5924 int cpu, nr = INT_MAX; 5925 int this = smp_processor_id(); 5926 5927 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 5928 if (!this_sd) 5929 return -1; 5930 5931 /* 5932 * Due to large variance we need a large fuzz factor; hackbench in 5933 * particularly is sensitive here. 5934 */ 5935 avg_idle = this_rq()->avg_idle / 512; 5936 avg_cost = this_sd->avg_scan_cost + 1; 5937 5938 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 5939 return -1; 5940 5941 if (sched_feat(SIS_PROP)) { 5942 u64 span_avg = sd->span_weight * avg_idle; 5943 if (span_avg > 4*avg_cost) 5944 nr = div_u64(span_avg, avg_cost); 5945 else 5946 nr = 4; 5947 } 5948 5949 time = cpu_clock(this); 5950 5951 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) { 5952 if (!--nr) 5953 return -1; 5954 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 5955 continue; 5956 if (available_idle_cpu(cpu)) 5957 break; 5958 } 5959 5960 time = cpu_clock(this) - time; 5961 cost = this_sd->avg_scan_cost; 5962 delta = (s64)(time - cost) / 8; 5963 this_sd->avg_scan_cost += delta; 5964 5965 return cpu; 5966 } 5967 5968 /* 5969 * Try and locate an idle core/thread in the LLC cache domain. 5970 */ 5971 static int select_idle_sibling(struct task_struct *p, int prev, int target) 5972 { 5973 struct sched_domain *sd; 5974 int i, recent_used_cpu; 5975 5976 if (available_idle_cpu(target)) 5977 return target; 5978 5979 /* 5980 * If the previous CPU is cache affine and idle, don't be stupid: 5981 */ 5982 if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev)) 5983 return prev; 5984 5985 /* Check a recently used CPU as a potential idle candidate: */ 5986 recent_used_cpu = p->recent_used_cpu; 5987 if (recent_used_cpu != prev && 5988 recent_used_cpu != target && 5989 cpus_share_cache(recent_used_cpu, target) && 5990 available_idle_cpu(recent_used_cpu) && 5991 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) { 5992 /* 5993 * Replace recent_used_cpu with prev as it is a potential 5994 * candidate for the next wake: 5995 */ 5996 p->recent_used_cpu = prev; 5997 return recent_used_cpu; 5998 } 5999 6000 sd = rcu_dereference(per_cpu(sd_llc, target)); 6001 if (!sd) 6002 return target; 6003 6004 i = select_idle_core(p, sd, target); 6005 if ((unsigned)i < nr_cpumask_bits) 6006 return i; 6007 6008 i = select_idle_cpu(p, sd, target); 6009 if ((unsigned)i < nr_cpumask_bits) 6010 return i; 6011 6012 i = select_idle_smt(p, target); 6013 if ((unsigned)i < nr_cpumask_bits) 6014 return i; 6015 6016 return target; 6017 } 6018 6019 /** 6020 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks 6021 * @cpu: the CPU to get the utilization of 6022 * 6023 * The unit of the return value must be the one of capacity so we can compare 6024 * the utilization with the capacity of the CPU that is available for CFS task 6025 * (ie cpu_capacity). 6026 * 6027 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6028 * recent utilization of currently non-runnable tasks on a CPU. It represents 6029 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6030 * capacity_orig is the cpu_capacity available at the highest frequency 6031 * (arch_scale_freq_capacity()). 6032 * The utilization of a CPU converges towards a sum equal to or less than the 6033 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6034 * the running time on this CPU scaled by capacity_curr. 6035 * 6036 * The estimated utilization of a CPU is defined to be the maximum between its 6037 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6038 * currently RUNNABLE on that CPU. 6039 * This allows to properly represent the expected utilization of a CPU which 6040 * has just got a big task running since a long sleep period. At the same time 6041 * however it preserves the benefits of the "blocked utilization" in 6042 * describing the potential for other tasks waking up on the same CPU. 6043 * 6044 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6045 * higher than capacity_orig because of unfortunate rounding in 6046 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6047 * the average stabilizes with the new running time. We need to check that the 6048 * utilization stays within the range of [0..capacity_orig] and cap it if 6049 * necessary. Without utilization capping, a group could be seen as overloaded 6050 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6051 * available capacity. We allow utilization to overshoot capacity_curr (but not 6052 * capacity_orig) as it useful for predicting the capacity required after task 6053 * migrations (scheduler-driven DVFS). 6054 * 6055 * Return: the (estimated) utilization for the specified CPU 6056 */ 6057 static inline unsigned long cpu_util(int cpu) 6058 { 6059 struct cfs_rq *cfs_rq; 6060 unsigned int util; 6061 6062 cfs_rq = &cpu_rq(cpu)->cfs; 6063 util = READ_ONCE(cfs_rq->avg.util_avg); 6064 6065 if (sched_feat(UTIL_EST)) 6066 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6067 6068 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6069 } 6070 6071 /* 6072 * cpu_util_without: compute cpu utilization without any contributions from *p 6073 * @cpu: the CPU which utilization is requested 6074 * @p: the task which utilization should be discounted 6075 * 6076 * The utilization of a CPU is defined by the utilization of tasks currently 6077 * enqueued on that CPU as well as tasks which are currently sleeping after an 6078 * execution on that CPU. 6079 * 6080 * This method returns the utilization of the specified CPU by discounting the 6081 * utilization of the specified task, whenever the task is currently 6082 * contributing to the CPU utilization. 6083 */ 6084 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6085 { 6086 struct cfs_rq *cfs_rq; 6087 unsigned int util; 6088 6089 /* Task has no contribution or is new */ 6090 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6091 return cpu_util(cpu); 6092 6093 cfs_rq = &cpu_rq(cpu)->cfs; 6094 util = READ_ONCE(cfs_rq->avg.util_avg); 6095 6096 /* Discount task's util from CPU's util */ 6097 lsub_positive(&util, task_util(p)); 6098 6099 /* 6100 * Covered cases: 6101 * 6102 * a) if *p is the only task sleeping on this CPU, then: 6103 * cpu_util (== task_util) > util_est (== 0) 6104 * and thus we return: 6105 * cpu_util_without = (cpu_util - task_util) = 0 6106 * 6107 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6108 * IDLE, then: 6109 * cpu_util >= task_util 6110 * cpu_util > util_est (== 0) 6111 * and thus we discount *p's blocked utilization to return: 6112 * cpu_util_without = (cpu_util - task_util) >= 0 6113 * 6114 * c) if other tasks are RUNNABLE on that CPU and 6115 * util_est > cpu_util 6116 * then we use util_est since it returns a more restrictive 6117 * estimation of the spare capacity on that CPU, by just 6118 * considering the expected utilization of tasks already 6119 * runnable on that CPU. 6120 * 6121 * Cases a) and b) are covered by the above code, while case c) is 6122 * covered by the following code when estimated utilization is 6123 * enabled. 6124 */ 6125 if (sched_feat(UTIL_EST)) { 6126 unsigned int estimated = 6127 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6128 6129 /* 6130 * Despite the following checks we still have a small window 6131 * for a possible race, when an execl's select_task_rq_fair() 6132 * races with LB's detach_task(): 6133 * 6134 * detach_task() 6135 * p->on_rq = TASK_ON_RQ_MIGRATING; 6136 * ---------------------------------- A 6137 * deactivate_task() \ 6138 * dequeue_task() + RaceTime 6139 * util_est_dequeue() / 6140 * ---------------------------------- B 6141 * 6142 * The additional check on "current == p" it's required to 6143 * properly fix the execl regression and it helps in further 6144 * reducing the chances for the above race. 6145 */ 6146 if (unlikely(task_on_rq_queued(p) || current == p)) 6147 lsub_positive(&estimated, _task_util_est(p)); 6148 6149 util = max(util, estimated); 6150 } 6151 6152 /* 6153 * Utilization (estimated) can exceed the CPU capacity, thus let's 6154 * clamp to the maximum CPU capacity to ensure consistency with 6155 * the cpu_util call. 6156 */ 6157 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6158 } 6159 6160 /* 6161 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 6162 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 6163 * 6164 * In that case WAKE_AFFINE doesn't make sense and we'll let 6165 * BALANCE_WAKE sort things out. 6166 */ 6167 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 6168 { 6169 long min_cap, max_cap; 6170 6171 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 6172 return 0; 6173 6174 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 6175 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 6176 6177 /* Minimum capacity is close to max, no need to abort wake_affine */ 6178 if (max_cap - min_cap < max_cap >> 3) 6179 return 0; 6180 6181 /* Bring task utilization in sync with prev_cpu */ 6182 sync_entity_load_avg(&p->se); 6183 6184 return !task_fits_capacity(p, min_cap); 6185 } 6186 6187 /* 6188 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) 6189 * to @dst_cpu. 6190 */ 6191 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6192 { 6193 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6194 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); 6195 6196 /* 6197 * If @p migrates from @cpu to another, remove its contribution. Or, 6198 * if @p migrates from another CPU to @cpu, add its contribution. In 6199 * the other cases, @cpu is not impacted by the migration, so the 6200 * util_avg should already be correct. 6201 */ 6202 if (task_cpu(p) == cpu && dst_cpu != cpu) 6203 sub_positive(&util, task_util(p)); 6204 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6205 util += task_util(p); 6206 6207 if (sched_feat(UTIL_EST)) { 6208 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6209 6210 /* 6211 * During wake-up, the task isn't enqueued yet and doesn't 6212 * appear in the cfs_rq->avg.util_est.enqueued of any rq, 6213 * so just add it (if needed) to "simulate" what will be 6214 * cpu_util() after the task has been enqueued. 6215 */ 6216 if (dst_cpu == cpu) 6217 util_est += _task_util_est(p); 6218 6219 util = max(util, util_est); 6220 } 6221 6222 return min(util, capacity_orig_of(cpu)); 6223 } 6224 6225 /* 6226 * compute_energy(): Estimates the energy that would be consumed if @p was 6227 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6228 * landscape of the * CPUs after the task migration, and uses the Energy Model 6229 * to compute what would be the energy if we decided to actually migrate that 6230 * task. 6231 */ 6232 static long 6233 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6234 { 6235 unsigned int max_util, util_cfs, cpu_util, cpu_cap; 6236 unsigned long sum_util, energy = 0; 6237 struct task_struct *tsk; 6238 int cpu; 6239 6240 for (; pd; pd = pd->next) { 6241 struct cpumask *pd_mask = perf_domain_span(pd); 6242 6243 /* 6244 * The energy model mandates all the CPUs of a performance 6245 * domain have the same capacity. 6246 */ 6247 cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask)); 6248 max_util = sum_util = 0; 6249 6250 /* 6251 * The capacity state of CPUs of the current rd can be driven by 6252 * CPUs of another rd if they belong to the same performance 6253 * domain. So, account for the utilization of these CPUs too 6254 * by masking pd with cpu_online_mask instead of the rd span. 6255 * 6256 * If an entire performance domain is outside of the current rd, 6257 * it will not appear in its pd list and will not be accounted 6258 * by compute_energy(). 6259 */ 6260 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) { 6261 util_cfs = cpu_util_next(cpu, p, dst_cpu); 6262 6263 /* 6264 * Busy time computation: utilization clamping is not 6265 * required since the ratio (sum_util / cpu_capacity) 6266 * is already enough to scale the EM reported power 6267 * consumption at the (eventually clamped) cpu_capacity. 6268 */ 6269 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap, 6270 ENERGY_UTIL, NULL); 6271 6272 /* 6273 * Performance domain frequency: utilization clamping 6274 * must be considered since it affects the selection 6275 * of the performance domain frequency. 6276 * NOTE: in case RT tasks are running, by default the 6277 * FREQUENCY_UTIL's utilization can be max OPP. 6278 */ 6279 tsk = cpu == dst_cpu ? p : NULL; 6280 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap, 6281 FREQUENCY_UTIL, tsk); 6282 max_util = max(max_util, cpu_util); 6283 } 6284 6285 energy += em_pd_energy(pd->em_pd, max_util, sum_util); 6286 } 6287 6288 return energy; 6289 } 6290 6291 /* 6292 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6293 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6294 * spare capacity in each performance domain and uses it as a potential 6295 * candidate to execute the task. Then, it uses the Energy Model to figure 6296 * out which of the CPU candidates is the most energy-efficient. 6297 * 6298 * The rationale for this heuristic is as follows. In a performance domain, 6299 * all the most energy efficient CPU candidates (according to the Energy 6300 * Model) are those for which we'll request a low frequency. When there are 6301 * several CPUs for which the frequency request will be the same, we don't 6302 * have enough data to break the tie between them, because the Energy Model 6303 * only includes active power costs. With this model, if we assume that 6304 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6305 * the maximum spare capacity in a performance domain is guaranteed to be among 6306 * the best candidates of the performance domain. 6307 * 6308 * In practice, it could be preferable from an energy standpoint to pack 6309 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6310 * but that could also hurt our chances to go cluster idle, and we have no 6311 * ways to tell with the current Energy Model if this is actually a good 6312 * idea or not. So, find_energy_efficient_cpu() basically favors 6313 * cluster-packing, and spreading inside a cluster. That should at least be 6314 * a good thing for latency, and this is consistent with the idea that most 6315 * of the energy savings of EAS come from the asymmetry of the system, and 6316 * not so much from breaking the tie between identical CPUs. That's also the 6317 * reason why EAS is enabled in the topology code only for systems where 6318 * SD_ASYM_CPUCAPACITY is set. 6319 * 6320 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6321 * they don't have any useful utilization data yet and it's not possible to 6322 * forecast their impact on energy consumption. Consequently, they will be 6323 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6324 * to be energy-inefficient in some use-cases. The alternative would be to 6325 * bias new tasks towards specific types of CPUs first, or to try to infer 6326 * their util_avg from the parent task, but those heuristics could hurt 6327 * other use-cases too. So, until someone finds a better way to solve this, 6328 * let's keep things simple by re-using the existing slow path. 6329 */ 6330 6331 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6332 { 6333 unsigned long prev_energy = ULONG_MAX, best_energy = ULONG_MAX; 6334 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6335 int cpu, best_energy_cpu = prev_cpu; 6336 struct perf_domain *head, *pd; 6337 unsigned long cpu_cap, util; 6338 struct sched_domain *sd; 6339 6340 rcu_read_lock(); 6341 pd = rcu_dereference(rd->pd); 6342 if (!pd || READ_ONCE(rd->overutilized)) 6343 goto fail; 6344 head = pd; 6345 6346 /* 6347 * Energy-aware wake-up happens on the lowest sched_domain starting 6348 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6349 */ 6350 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6351 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6352 sd = sd->parent; 6353 if (!sd) 6354 goto fail; 6355 6356 sync_entity_load_avg(&p->se); 6357 if (!task_util_est(p)) 6358 goto unlock; 6359 6360 for (; pd; pd = pd->next) { 6361 unsigned long cur_energy, spare_cap, max_spare_cap = 0; 6362 int max_spare_cap_cpu = -1; 6363 6364 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6365 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6366 continue; 6367 6368 /* Skip CPUs that will be overutilized. */ 6369 util = cpu_util_next(cpu, p, cpu); 6370 cpu_cap = capacity_of(cpu); 6371 if (cpu_cap * 1024 < util * capacity_margin) 6372 continue; 6373 6374 /* Always use prev_cpu as a candidate. */ 6375 if (cpu == prev_cpu) { 6376 prev_energy = compute_energy(p, prev_cpu, head); 6377 best_energy = min(best_energy, prev_energy); 6378 continue; 6379 } 6380 6381 /* 6382 * Find the CPU with the maximum spare capacity in 6383 * the performance domain 6384 */ 6385 spare_cap = cpu_cap - util; 6386 if (spare_cap > max_spare_cap) { 6387 max_spare_cap = spare_cap; 6388 max_spare_cap_cpu = cpu; 6389 } 6390 } 6391 6392 /* Evaluate the energy impact of using this CPU. */ 6393 if (max_spare_cap_cpu >= 0) { 6394 cur_energy = compute_energy(p, max_spare_cap_cpu, head); 6395 if (cur_energy < best_energy) { 6396 best_energy = cur_energy; 6397 best_energy_cpu = max_spare_cap_cpu; 6398 } 6399 } 6400 } 6401 unlock: 6402 rcu_read_unlock(); 6403 6404 /* 6405 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6406 * least 6% of the energy used by prev_cpu. 6407 */ 6408 if (prev_energy == ULONG_MAX) 6409 return best_energy_cpu; 6410 6411 if ((prev_energy - best_energy) > (prev_energy >> 4)) 6412 return best_energy_cpu; 6413 6414 return prev_cpu; 6415 6416 fail: 6417 rcu_read_unlock(); 6418 6419 return -1; 6420 } 6421 6422 /* 6423 * select_task_rq_fair: Select target runqueue for the waking task in domains 6424 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 6425 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6426 * 6427 * Balances load by selecting the idlest CPU in the idlest group, or under 6428 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6429 * 6430 * Returns the target CPU number. 6431 * 6432 * preempt must be disabled. 6433 */ 6434 static int 6435 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 6436 { 6437 struct sched_domain *tmp, *sd = NULL; 6438 int cpu = smp_processor_id(); 6439 int new_cpu = prev_cpu; 6440 int want_affine = 0; 6441 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6442 6443 if (sd_flag & SD_BALANCE_WAKE) { 6444 record_wakee(p); 6445 6446 if (sched_energy_enabled()) { 6447 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6448 if (new_cpu >= 0) 6449 return new_cpu; 6450 new_cpu = prev_cpu; 6451 } 6452 6453 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) && 6454 cpumask_test_cpu(cpu, p->cpus_ptr); 6455 } 6456 6457 rcu_read_lock(); 6458 for_each_domain(cpu, tmp) { 6459 if (!(tmp->flags & SD_LOAD_BALANCE)) 6460 break; 6461 6462 /* 6463 * If both 'cpu' and 'prev_cpu' are part of this domain, 6464 * cpu is a valid SD_WAKE_AFFINE target. 6465 */ 6466 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6467 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6468 if (cpu != prev_cpu) 6469 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6470 6471 sd = NULL; /* Prefer wake_affine over balance flags */ 6472 break; 6473 } 6474 6475 if (tmp->flags & sd_flag) 6476 sd = tmp; 6477 else if (!want_affine) 6478 break; 6479 } 6480 6481 if (unlikely(sd)) { 6482 /* Slow path */ 6483 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6484 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ 6485 /* Fast path */ 6486 6487 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6488 6489 if (want_affine) 6490 current->recent_used_cpu = cpu; 6491 } 6492 rcu_read_unlock(); 6493 6494 return new_cpu; 6495 } 6496 6497 static void detach_entity_cfs_rq(struct sched_entity *se); 6498 6499 /* 6500 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6501 * cfs_rq_of(p) references at time of call are still valid and identify the 6502 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6503 */ 6504 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6505 { 6506 /* 6507 * As blocked tasks retain absolute vruntime the migration needs to 6508 * deal with this by subtracting the old and adding the new 6509 * min_vruntime -- the latter is done by enqueue_entity() when placing 6510 * the task on the new runqueue. 6511 */ 6512 if (p->state == TASK_WAKING) { 6513 struct sched_entity *se = &p->se; 6514 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6515 u64 min_vruntime; 6516 6517 #ifndef CONFIG_64BIT 6518 u64 min_vruntime_copy; 6519 6520 do { 6521 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6522 smp_rmb(); 6523 min_vruntime = cfs_rq->min_vruntime; 6524 } while (min_vruntime != min_vruntime_copy); 6525 #else 6526 min_vruntime = cfs_rq->min_vruntime; 6527 #endif 6528 6529 se->vruntime -= min_vruntime; 6530 } 6531 6532 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6533 /* 6534 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6535 * rq->lock and can modify state directly. 6536 */ 6537 lockdep_assert_held(&task_rq(p)->lock); 6538 detach_entity_cfs_rq(&p->se); 6539 6540 } else { 6541 /* 6542 * We are supposed to update the task to "current" time, then 6543 * its up to date and ready to go to new CPU/cfs_rq. But we 6544 * have difficulty in getting what current time is, so simply 6545 * throw away the out-of-date time. This will result in the 6546 * wakee task is less decayed, but giving the wakee more load 6547 * sounds not bad. 6548 */ 6549 remove_entity_load_avg(&p->se); 6550 } 6551 6552 /* Tell new CPU we are migrated */ 6553 p->se.avg.last_update_time = 0; 6554 6555 /* We have migrated, no longer consider this task hot */ 6556 p->se.exec_start = 0; 6557 6558 update_scan_period(p, new_cpu); 6559 } 6560 6561 static void task_dead_fair(struct task_struct *p) 6562 { 6563 remove_entity_load_avg(&p->se); 6564 } 6565 #endif /* CONFIG_SMP */ 6566 6567 static unsigned long wakeup_gran(struct sched_entity *se) 6568 { 6569 unsigned long gran = sysctl_sched_wakeup_granularity; 6570 6571 /* 6572 * Since its curr running now, convert the gran from real-time 6573 * to virtual-time in his units. 6574 * 6575 * By using 'se' instead of 'curr' we penalize light tasks, so 6576 * they get preempted easier. That is, if 'se' < 'curr' then 6577 * the resulting gran will be larger, therefore penalizing the 6578 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6579 * be smaller, again penalizing the lighter task. 6580 * 6581 * This is especially important for buddies when the leftmost 6582 * task is higher priority than the buddy. 6583 */ 6584 return calc_delta_fair(gran, se); 6585 } 6586 6587 /* 6588 * Should 'se' preempt 'curr'. 6589 * 6590 * |s1 6591 * |s2 6592 * |s3 6593 * g 6594 * |<--->|c 6595 * 6596 * w(c, s1) = -1 6597 * w(c, s2) = 0 6598 * w(c, s3) = 1 6599 * 6600 */ 6601 static int 6602 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6603 { 6604 s64 gran, vdiff = curr->vruntime - se->vruntime; 6605 6606 if (vdiff <= 0) 6607 return -1; 6608 6609 gran = wakeup_gran(se); 6610 if (vdiff > gran) 6611 return 1; 6612 6613 return 0; 6614 } 6615 6616 static void set_last_buddy(struct sched_entity *se) 6617 { 6618 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6619 return; 6620 6621 for_each_sched_entity(se) { 6622 if (SCHED_WARN_ON(!se->on_rq)) 6623 return; 6624 cfs_rq_of(se)->last = se; 6625 } 6626 } 6627 6628 static void set_next_buddy(struct sched_entity *se) 6629 { 6630 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6631 return; 6632 6633 for_each_sched_entity(se) { 6634 if (SCHED_WARN_ON(!se->on_rq)) 6635 return; 6636 cfs_rq_of(se)->next = se; 6637 } 6638 } 6639 6640 static void set_skip_buddy(struct sched_entity *se) 6641 { 6642 for_each_sched_entity(se) 6643 cfs_rq_of(se)->skip = se; 6644 } 6645 6646 /* 6647 * Preempt the current task with a newly woken task if needed: 6648 */ 6649 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6650 { 6651 struct task_struct *curr = rq->curr; 6652 struct sched_entity *se = &curr->se, *pse = &p->se; 6653 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6654 int scale = cfs_rq->nr_running >= sched_nr_latency; 6655 int next_buddy_marked = 0; 6656 6657 if (unlikely(se == pse)) 6658 return; 6659 6660 /* 6661 * This is possible from callers such as attach_tasks(), in which we 6662 * unconditionally check_prempt_curr() after an enqueue (which may have 6663 * lead to a throttle). This both saves work and prevents false 6664 * next-buddy nomination below. 6665 */ 6666 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6667 return; 6668 6669 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6670 set_next_buddy(pse); 6671 next_buddy_marked = 1; 6672 } 6673 6674 /* 6675 * We can come here with TIF_NEED_RESCHED already set from new task 6676 * wake up path. 6677 * 6678 * Note: this also catches the edge-case of curr being in a throttled 6679 * group (e.g. via set_curr_task), since update_curr() (in the 6680 * enqueue of curr) will have resulted in resched being set. This 6681 * prevents us from potentially nominating it as a false LAST_BUDDY 6682 * below. 6683 */ 6684 if (test_tsk_need_resched(curr)) 6685 return; 6686 6687 /* Idle tasks are by definition preempted by non-idle tasks. */ 6688 if (unlikely(task_has_idle_policy(curr)) && 6689 likely(!task_has_idle_policy(p))) 6690 goto preempt; 6691 6692 /* 6693 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6694 * is driven by the tick): 6695 */ 6696 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6697 return; 6698 6699 find_matching_se(&se, &pse); 6700 update_curr(cfs_rq_of(se)); 6701 BUG_ON(!pse); 6702 if (wakeup_preempt_entity(se, pse) == 1) { 6703 /* 6704 * Bias pick_next to pick the sched entity that is 6705 * triggering this preemption. 6706 */ 6707 if (!next_buddy_marked) 6708 set_next_buddy(pse); 6709 goto preempt; 6710 } 6711 6712 return; 6713 6714 preempt: 6715 resched_curr(rq); 6716 /* 6717 * Only set the backward buddy when the current task is still 6718 * on the rq. This can happen when a wakeup gets interleaved 6719 * with schedule on the ->pre_schedule() or idle_balance() 6720 * point, either of which can * drop the rq lock. 6721 * 6722 * Also, during early boot the idle thread is in the fair class, 6723 * for obvious reasons its a bad idea to schedule back to it. 6724 */ 6725 if (unlikely(!se->on_rq || curr == rq->idle)) 6726 return; 6727 6728 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6729 set_last_buddy(se); 6730 } 6731 6732 static struct task_struct * 6733 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6734 { 6735 struct cfs_rq *cfs_rq = &rq->cfs; 6736 struct sched_entity *se; 6737 struct task_struct *p; 6738 int new_tasks; 6739 6740 again: 6741 if (!cfs_rq->nr_running) 6742 goto idle; 6743 6744 #ifdef CONFIG_FAIR_GROUP_SCHED 6745 if (prev->sched_class != &fair_sched_class) 6746 goto simple; 6747 6748 /* 6749 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6750 * likely that a next task is from the same cgroup as the current. 6751 * 6752 * Therefore attempt to avoid putting and setting the entire cgroup 6753 * hierarchy, only change the part that actually changes. 6754 */ 6755 6756 do { 6757 struct sched_entity *curr = cfs_rq->curr; 6758 6759 /* 6760 * Since we got here without doing put_prev_entity() we also 6761 * have to consider cfs_rq->curr. If it is still a runnable 6762 * entity, update_curr() will update its vruntime, otherwise 6763 * forget we've ever seen it. 6764 */ 6765 if (curr) { 6766 if (curr->on_rq) 6767 update_curr(cfs_rq); 6768 else 6769 curr = NULL; 6770 6771 /* 6772 * This call to check_cfs_rq_runtime() will do the 6773 * throttle and dequeue its entity in the parent(s). 6774 * Therefore the nr_running test will indeed 6775 * be correct. 6776 */ 6777 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 6778 cfs_rq = &rq->cfs; 6779 6780 if (!cfs_rq->nr_running) 6781 goto idle; 6782 6783 goto simple; 6784 } 6785 } 6786 6787 se = pick_next_entity(cfs_rq, curr); 6788 cfs_rq = group_cfs_rq(se); 6789 } while (cfs_rq); 6790 6791 p = task_of(se); 6792 6793 /* 6794 * Since we haven't yet done put_prev_entity and if the selected task 6795 * is a different task than we started out with, try and touch the 6796 * least amount of cfs_rqs. 6797 */ 6798 if (prev != p) { 6799 struct sched_entity *pse = &prev->se; 6800 6801 while (!(cfs_rq = is_same_group(se, pse))) { 6802 int se_depth = se->depth; 6803 int pse_depth = pse->depth; 6804 6805 if (se_depth <= pse_depth) { 6806 put_prev_entity(cfs_rq_of(pse), pse); 6807 pse = parent_entity(pse); 6808 } 6809 if (se_depth >= pse_depth) { 6810 set_next_entity(cfs_rq_of(se), se); 6811 se = parent_entity(se); 6812 } 6813 } 6814 6815 put_prev_entity(cfs_rq, pse); 6816 set_next_entity(cfs_rq, se); 6817 } 6818 6819 goto done; 6820 simple: 6821 #endif 6822 6823 put_prev_task(rq, prev); 6824 6825 do { 6826 se = pick_next_entity(cfs_rq, NULL); 6827 set_next_entity(cfs_rq, se); 6828 cfs_rq = group_cfs_rq(se); 6829 } while (cfs_rq); 6830 6831 p = task_of(se); 6832 6833 done: __maybe_unused; 6834 #ifdef CONFIG_SMP 6835 /* 6836 * Move the next running task to the front of 6837 * the list, so our cfs_tasks list becomes MRU 6838 * one. 6839 */ 6840 list_move(&p->se.group_node, &rq->cfs_tasks); 6841 #endif 6842 6843 if (hrtick_enabled(rq)) 6844 hrtick_start_fair(rq, p); 6845 6846 update_misfit_status(p, rq); 6847 6848 return p; 6849 6850 idle: 6851 update_misfit_status(NULL, rq); 6852 new_tasks = idle_balance(rq, rf); 6853 6854 /* 6855 * Because idle_balance() releases (and re-acquires) rq->lock, it is 6856 * possible for any higher priority task to appear. In that case we 6857 * must re-start the pick_next_entity() loop. 6858 */ 6859 if (new_tasks < 0) 6860 return RETRY_TASK; 6861 6862 if (new_tasks > 0) 6863 goto again; 6864 6865 /* 6866 * rq is about to be idle, check if we need to update the 6867 * lost_idle_time of clock_pelt 6868 */ 6869 update_idle_rq_clock_pelt(rq); 6870 6871 return NULL; 6872 } 6873 6874 /* 6875 * Account for a descheduled task: 6876 */ 6877 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 6878 { 6879 struct sched_entity *se = &prev->se; 6880 struct cfs_rq *cfs_rq; 6881 6882 for_each_sched_entity(se) { 6883 cfs_rq = cfs_rq_of(se); 6884 put_prev_entity(cfs_rq, se); 6885 } 6886 } 6887 6888 /* 6889 * sched_yield() is very simple 6890 * 6891 * The magic of dealing with the ->skip buddy is in pick_next_entity. 6892 */ 6893 static void yield_task_fair(struct rq *rq) 6894 { 6895 struct task_struct *curr = rq->curr; 6896 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6897 struct sched_entity *se = &curr->se; 6898 6899 /* 6900 * Are we the only task in the tree? 6901 */ 6902 if (unlikely(rq->nr_running == 1)) 6903 return; 6904 6905 clear_buddies(cfs_rq, se); 6906 6907 if (curr->policy != SCHED_BATCH) { 6908 update_rq_clock(rq); 6909 /* 6910 * Update run-time statistics of the 'current'. 6911 */ 6912 update_curr(cfs_rq); 6913 /* 6914 * Tell update_rq_clock() that we've just updated, 6915 * so we don't do microscopic update in schedule() 6916 * and double the fastpath cost. 6917 */ 6918 rq_clock_skip_update(rq); 6919 } 6920 6921 set_skip_buddy(se); 6922 } 6923 6924 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 6925 { 6926 struct sched_entity *se = &p->se; 6927 6928 /* throttled hierarchies are not runnable */ 6929 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 6930 return false; 6931 6932 /* Tell the scheduler that we'd really like pse to run next. */ 6933 set_next_buddy(se); 6934 6935 yield_task_fair(rq); 6936 6937 return true; 6938 } 6939 6940 #ifdef CONFIG_SMP 6941 /************************************************** 6942 * Fair scheduling class load-balancing methods. 6943 * 6944 * BASICS 6945 * 6946 * The purpose of load-balancing is to achieve the same basic fairness the 6947 * per-CPU scheduler provides, namely provide a proportional amount of compute 6948 * time to each task. This is expressed in the following equation: 6949 * 6950 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 6951 * 6952 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 6953 * W_i,0 is defined as: 6954 * 6955 * W_i,0 = \Sum_j w_i,j (2) 6956 * 6957 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 6958 * is derived from the nice value as per sched_prio_to_weight[]. 6959 * 6960 * The weight average is an exponential decay average of the instantaneous 6961 * weight: 6962 * 6963 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 6964 * 6965 * C_i is the compute capacity of CPU i, typically it is the 6966 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 6967 * can also include other factors [XXX]. 6968 * 6969 * To achieve this balance we define a measure of imbalance which follows 6970 * directly from (1): 6971 * 6972 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 6973 * 6974 * We them move tasks around to minimize the imbalance. In the continuous 6975 * function space it is obvious this converges, in the discrete case we get 6976 * a few fun cases generally called infeasible weight scenarios. 6977 * 6978 * [XXX expand on: 6979 * - infeasible weights; 6980 * - local vs global optima in the discrete case. ] 6981 * 6982 * 6983 * SCHED DOMAINS 6984 * 6985 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 6986 * for all i,j solution, we create a tree of CPUs that follows the hardware 6987 * topology where each level pairs two lower groups (or better). This results 6988 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 6989 * tree to only the first of the previous level and we decrease the frequency 6990 * of load-balance at each level inv. proportional to the number of CPUs in 6991 * the groups. 6992 * 6993 * This yields: 6994 * 6995 * log_2 n 1 n 6996 * \Sum { --- * --- * 2^i } = O(n) (5) 6997 * i = 0 2^i 2^i 6998 * `- size of each group 6999 * | | `- number of CPUs doing load-balance 7000 * | `- freq 7001 * `- sum over all levels 7002 * 7003 * Coupled with a limit on how many tasks we can migrate every balance pass, 7004 * this makes (5) the runtime complexity of the balancer. 7005 * 7006 * An important property here is that each CPU is still (indirectly) connected 7007 * to every other CPU in at most O(log n) steps: 7008 * 7009 * The adjacency matrix of the resulting graph is given by: 7010 * 7011 * log_2 n 7012 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7013 * k = 0 7014 * 7015 * And you'll find that: 7016 * 7017 * A^(log_2 n)_i,j != 0 for all i,j (7) 7018 * 7019 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7020 * The task movement gives a factor of O(m), giving a convergence complexity 7021 * of: 7022 * 7023 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7024 * 7025 * 7026 * WORK CONSERVING 7027 * 7028 * In order to avoid CPUs going idle while there's still work to do, new idle 7029 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7030 * tree itself instead of relying on other CPUs to bring it work. 7031 * 7032 * This adds some complexity to both (5) and (8) but it reduces the total idle 7033 * time. 7034 * 7035 * [XXX more?] 7036 * 7037 * 7038 * CGROUPS 7039 * 7040 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7041 * 7042 * s_k,i 7043 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7044 * S_k 7045 * 7046 * Where 7047 * 7048 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7049 * 7050 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7051 * 7052 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7053 * property. 7054 * 7055 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7056 * rewrite all of this once again.] 7057 */ 7058 7059 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7060 7061 enum fbq_type { regular, remote, all }; 7062 7063 enum group_type { 7064 group_other = 0, 7065 group_misfit_task, 7066 group_imbalanced, 7067 group_overloaded, 7068 }; 7069 7070 #define LBF_ALL_PINNED 0x01 7071 #define LBF_NEED_BREAK 0x02 7072 #define LBF_DST_PINNED 0x04 7073 #define LBF_SOME_PINNED 0x08 7074 #define LBF_NOHZ_STATS 0x10 7075 #define LBF_NOHZ_AGAIN 0x20 7076 7077 struct lb_env { 7078 struct sched_domain *sd; 7079 7080 struct rq *src_rq; 7081 int src_cpu; 7082 7083 int dst_cpu; 7084 struct rq *dst_rq; 7085 7086 struct cpumask *dst_grpmask; 7087 int new_dst_cpu; 7088 enum cpu_idle_type idle; 7089 long imbalance; 7090 /* The set of CPUs under consideration for load-balancing */ 7091 struct cpumask *cpus; 7092 7093 unsigned int flags; 7094 7095 unsigned int loop; 7096 unsigned int loop_break; 7097 unsigned int loop_max; 7098 7099 enum fbq_type fbq_type; 7100 enum group_type src_grp_type; 7101 struct list_head tasks; 7102 }; 7103 7104 /* 7105 * Is this task likely cache-hot: 7106 */ 7107 static int task_hot(struct task_struct *p, struct lb_env *env) 7108 { 7109 s64 delta; 7110 7111 lockdep_assert_held(&env->src_rq->lock); 7112 7113 if (p->sched_class != &fair_sched_class) 7114 return 0; 7115 7116 if (unlikely(task_has_idle_policy(p))) 7117 return 0; 7118 7119 /* 7120 * Buddy candidates are cache hot: 7121 */ 7122 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7123 (&p->se == cfs_rq_of(&p->se)->next || 7124 &p->se == cfs_rq_of(&p->se)->last)) 7125 return 1; 7126 7127 if (sysctl_sched_migration_cost == -1) 7128 return 1; 7129 if (sysctl_sched_migration_cost == 0) 7130 return 0; 7131 7132 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7133 7134 return delta < (s64)sysctl_sched_migration_cost; 7135 } 7136 7137 #ifdef CONFIG_NUMA_BALANCING 7138 /* 7139 * Returns 1, if task migration degrades locality 7140 * Returns 0, if task migration improves locality i.e migration preferred. 7141 * Returns -1, if task migration is not affected by locality. 7142 */ 7143 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7144 { 7145 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7146 unsigned long src_weight, dst_weight; 7147 int src_nid, dst_nid, dist; 7148 7149 if (!static_branch_likely(&sched_numa_balancing)) 7150 return -1; 7151 7152 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7153 return -1; 7154 7155 src_nid = cpu_to_node(env->src_cpu); 7156 dst_nid = cpu_to_node(env->dst_cpu); 7157 7158 if (src_nid == dst_nid) 7159 return -1; 7160 7161 /* Migrating away from the preferred node is always bad. */ 7162 if (src_nid == p->numa_preferred_nid) { 7163 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7164 return 1; 7165 else 7166 return -1; 7167 } 7168 7169 /* Encourage migration to the preferred node. */ 7170 if (dst_nid == p->numa_preferred_nid) 7171 return 0; 7172 7173 /* Leaving a core idle is often worse than degrading locality. */ 7174 if (env->idle == CPU_IDLE) 7175 return -1; 7176 7177 dist = node_distance(src_nid, dst_nid); 7178 if (numa_group) { 7179 src_weight = group_weight(p, src_nid, dist); 7180 dst_weight = group_weight(p, dst_nid, dist); 7181 } else { 7182 src_weight = task_weight(p, src_nid, dist); 7183 dst_weight = task_weight(p, dst_nid, dist); 7184 } 7185 7186 return dst_weight < src_weight; 7187 } 7188 7189 #else 7190 static inline int migrate_degrades_locality(struct task_struct *p, 7191 struct lb_env *env) 7192 { 7193 return -1; 7194 } 7195 #endif 7196 7197 /* 7198 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7199 */ 7200 static 7201 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7202 { 7203 int tsk_cache_hot; 7204 7205 lockdep_assert_held(&env->src_rq->lock); 7206 7207 /* 7208 * We do not migrate tasks that are: 7209 * 1) throttled_lb_pair, or 7210 * 2) cannot be migrated to this CPU due to cpus_ptr, or 7211 * 3) running (obviously), or 7212 * 4) are cache-hot on their current CPU. 7213 */ 7214 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7215 return 0; 7216 7217 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 7218 int cpu; 7219 7220 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7221 7222 env->flags |= LBF_SOME_PINNED; 7223 7224 /* 7225 * Remember if this task can be migrated to any other CPU in 7226 * our sched_group. We may want to revisit it if we couldn't 7227 * meet load balance goals by pulling other tasks on src_cpu. 7228 * 7229 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 7230 * already computed one in current iteration. 7231 */ 7232 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 7233 return 0; 7234 7235 /* Prevent to re-select dst_cpu via env's CPUs: */ 7236 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7237 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 7238 env->flags |= LBF_DST_PINNED; 7239 env->new_dst_cpu = cpu; 7240 break; 7241 } 7242 } 7243 7244 return 0; 7245 } 7246 7247 /* Record that we found atleast one task that could run on dst_cpu */ 7248 env->flags &= ~LBF_ALL_PINNED; 7249 7250 if (task_running(env->src_rq, p)) { 7251 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7252 return 0; 7253 } 7254 7255 /* 7256 * Aggressive migration if: 7257 * 1) destination numa is preferred 7258 * 2) task is cache cold, or 7259 * 3) too many balance attempts have failed. 7260 */ 7261 tsk_cache_hot = migrate_degrades_locality(p, env); 7262 if (tsk_cache_hot == -1) 7263 tsk_cache_hot = task_hot(p, env); 7264 7265 if (tsk_cache_hot <= 0 || 7266 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7267 if (tsk_cache_hot == 1) { 7268 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7269 schedstat_inc(p->se.statistics.nr_forced_migrations); 7270 } 7271 return 1; 7272 } 7273 7274 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7275 return 0; 7276 } 7277 7278 /* 7279 * detach_task() -- detach the task for the migration specified in env 7280 */ 7281 static void detach_task(struct task_struct *p, struct lb_env *env) 7282 { 7283 lockdep_assert_held(&env->src_rq->lock); 7284 7285 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7286 set_task_cpu(p, env->dst_cpu); 7287 } 7288 7289 /* 7290 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7291 * part of active balancing operations within "domain". 7292 * 7293 * Returns a task if successful and NULL otherwise. 7294 */ 7295 static struct task_struct *detach_one_task(struct lb_env *env) 7296 { 7297 struct task_struct *p; 7298 7299 lockdep_assert_held(&env->src_rq->lock); 7300 7301 list_for_each_entry_reverse(p, 7302 &env->src_rq->cfs_tasks, se.group_node) { 7303 if (!can_migrate_task(p, env)) 7304 continue; 7305 7306 detach_task(p, env); 7307 7308 /* 7309 * Right now, this is only the second place where 7310 * lb_gained[env->idle] is updated (other is detach_tasks) 7311 * so we can safely collect stats here rather than 7312 * inside detach_tasks(). 7313 */ 7314 schedstat_inc(env->sd->lb_gained[env->idle]); 7315 return p; 7316 } 7317 return NULL; 7318 } 7319 7320 static const unsigned int sched_nr_migrate_break = 32; 7321 7322 /* 7323 * detach_tasks() -- tries to detach up to imbalance runnable load from 7324 * busiest_rq, as part of a balancing operation within domain "sd". 7325 * 7326 * Returns number of detached tasks if successful and 0 otherwise. 7327 */ 7328 static int detach_tasks(struct lb_env *env) 7329 { 7330 struct list_head *tasks = &env->src_rq->cfs_tasks; 7331 struct task_struct *p; 7332 unsigned long load; 7333 int detached = 0; 7334 7335 lockdep_assert_held(&env->src_rq->lock); 7336 7337 if (env->imbalance <= 0) 7338 return 0; 7339 7340 while (!list_empty(tasks)) { 7341 /* 7342 * We don't want to steal all, otherwise we may be treated likewise, 7343 * which could at worst lead to a livelock crash. 7344 */ 7345 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7346 break; 7347 7348 p = list_last_entry(tasks, struct task_struct, se.group_node); 7349 7350 env->loop++; 7351 /* We've more or less seen every task there is, call it quits */ 7352 if (env->loop > env->loop_max) 7353 break; 7354 7355 /* take a breather every nr_migrate tasks */ 7356 if (env->loop > env->loop_break) { 7357 env->loop_break += sched_nr_migrate_break; 7358 env->flags |= LBF_NEED_BREAK; 7359 break; 7360 } 7361 7362 if (!can_migrate_task(p, env)) 7363 goto next; 7364 7365 load = task_h_load(p); 7366 7367 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 7368 goto next; 7369 7370 if ((load / 2) > env->imbalance) 7371 goto next; 7372 7373 detach_task(p, env); 7374 list_add(&p->se.group_node, &env->tasks); 7375 7376 detached++; 7377 env->imbalance -= load; 7378 7379 #ifdef CONFIG_PREEMPT 7380 /* 7381 * NEWIDLE balancing is a source of latency, so preemptible 7382 * kernels will stop after the first task is detached to minimize 7383 * the critical section. 7384 */ 7385 if (env->idle == CPU_NEWLY_IDLE) 7386 break; 7387 #endif 7388 7389 /* 7390 * We only want to steal up to the prescribed amount of 7391 * runnable load. 7392 */ 7393 if (env->imbalance <= 0) 7394 break; 7395 7396 continue; 7397 next: 7398 list_move(&p->se.group_node, tasks); 7399 } 7400 7401 /* 7402 * Right now, this is one of only two places we collect this stat 7403 * so we can safely collect detach_one_task() stats here rather 7404 * than inside detach_one_task(). 7405 */ 7406 schedstat_add(env->sd->lb_gained[env->idle], detached); 7407 7408 return detached; 7409 } 7410 7411 /* 7412 * attach_task() -- attach the task detached by detach_task() to its new rq. 7413 */ 7414 static void attach_task(struct rq *rq, struct task_struct *p) 7415 { 7416 lockdep_assert_held(&rq->lock); 7417 7418 BUG_ON(task_rq(p) != rq); 7419 activate_task(rq, p, ENQUEUE_NOCLOCK); 7420 check_preempt_curr(rq, p, 0); 7421 } 7422 7423 /* 7424 * attach_one_task() -- attaches the task returned from detach_one_task() to 7425 * its new rq. 7426 */ 7427 static void attach_one_task(struct rq *rq, struct task_struct *p) 7428 { 7429 struct rq_flags rf; 7430 7431 rq_lock(rq, &rf); 7432 update_rq_clock(rq); 7433 attach_task(rq, p); 7434 rq_unlock(rq, &rf); 7435 } 7436 7437 /* 7438 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7439 * new rq. 7440 */ 7441 static void attach_tasks(struct lb_env *env) 7442 { 7443 struct list_head *tasks = &env->tasks; 7444 struct task_struct *p; 7445 struct rq_flags rf; 7446 7447 rq_lock(env->dst_rq, &rf); 7448 update_rq_clock(env->dst_rq); 7449 7450 while (!list_empty(tasks)) { 7451 p = list_first_entry(tasks, struct task_struct, se.group_node); 7452 list_del_init(&p->se.group_node); 7453 7454 attach_task(env->dst_rq, p); 7455 } 7456 7457 rq_unlock(env->dst_rq, &rf); 7458 } 7459 7460 #ifdef CONFIG_NO_HZ_COMMON 7461 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7462 { 7463 if (cfs_rq->avg.load_avg) 7464 return true; 7465 7466 if (cfs_rq->avg.util_avg) 7467 return true; 7468 7469 return false; 7470 } 7471 7472 static inline bool others_have_blocked(struct rq *rq) 7473 { 7474 if (READ_ONCE(rq->avg_rt.util_avg)) 7475 return true; 7476 7477 if (READ_ONCE(rq->avg_dl.util_avg)) 7478 return true; 7479 7480 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 7481 if (READ_ONCE(rq->avg_irq.util_avg)) 7482 return true; 7483 #endif 7484 7485 return false; 7486 } 7487 7488 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 7489 { 7490 rq->last_blocked_load_update_tick = jiffies; 7491 7492 if (!has_blocked) 7493 rq->has_blocked_load = 0; 7494 } 7495 #else 7496 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 7497 static inline bool others_have_blocked(struct rq *rq) { return false; } 7498 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 7499 #endif 7500 7501 #ifdef CONFIG_FAIR_GROUP_SCHED 7502 7503 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7504 { 7505 if (cfs_rq->load.weight) 7506 return false; 7507 7508 if (cfs_rq->avg.load_sum) 7509 return false; 7510 7511 if (cfs_rq->avg.util_sum) 7512 return false; 7513 7514 if (cfs_rq->avg.runnable_load_sum) 7515 return false; 7516 7517 return true; 7518 } 7519 7520 static void update_blocked_averages(int cpu) 7521 { 7522 struct rq *rq = cpu_rq(cpu); 7523 struct cfs_rq *cfs_rq, *pos; 7524 const struct sched_class *curr_class; 7525 struct rq_flags rf; 7526 bool done = true; 7527 7528 rq_lock_irqsave(rq, &rf); 7529 update_rq_clock(rq); 7530 7531 /* 7532 * Iterates the task_group tree in a bottom up fashion, see 7533 * list_add_leaf_cfs_rq() for details. 7534 */ 7535 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7536 struct sched_entity *se; 7537 7538 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) 7539 update_tg_load_avg(cfs_rq, 0); 7540 7541 /* Propagate pending load changes to the parent, if any: */ 7542 se = cfs_rq->tg->se[cpu]; 7543 if (se && !skip_blocked_update(se)) 7544 update_load_avg(cfs_rq_of(se), se, 0); 7545 7546 /* 7547 * There can be a lot of idle CPU cgroups. Don't let fully 7548 * decayed cfs_rqs linger on the list. 7549 */ 7550 if (cfs_rq_is_decayed(cfs_rq)) 7551 list_del_leaf_cfs_rq(cfs_rq); 7552 7553 /* Don't need periodic decay once load/util_avg are null */ 7554 if (cfs_rq_has_blocked(cfs_rq)) 7555 done = false; 7556 } 7557 7558 curr_class = rq->curr->sched_class; 7559 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class); 7560 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class); 7561 update_irq_load_avg(rq, 0); 7562 /* Don't need periodic decay once load/util_avg are null */ 7563 if (others_have_blocked(rq)) 7564 done = false; 7565 7566 update_blocked_load_status(rq, !done); 7567 rq_unlock_irqrestore(rq, &rf); 7568 } 7569 7570 /* 7571 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7572 * This needs to be done in a top-down fashion because the load of a child 7573 * group is a fraction of its parents load. 7574 */ 7575 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7576 { 7577 struct rq *rq = rq_of(cfs_rq); 7578 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7579 unsigned long now = jiffies; 7580 unsigned long load; 7581 7582 if (cfs_rq->last_h_load_update == now) 7583 return; 7584 7585 WRITE_ONCE(cfs_rq->h_load_next, NULL); 7586 for_each_sched_entity(se) { 7587 cfs_rq = cfs_rq_of(se); 7588 WRITE_ONCE(cfs_rq->h_load_next, se); 7589 if (cfs_rq->last_h_load_update == now) 7590 break; 7591 } 7592 7593 if (!se) { 7594 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7595 cfs_rq->last_h_load_update = now; 7596 } 7597 7598 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 7599 load = cfs_rq->h_load; 7600 load = div64_ul(load * se->avg.load_avg, 7601 cfs_rq_load_avg(cfs_rq) + 1); 7602 cfs_rq = group_cfs_rq(se); 7603 cfs_rq->h_load = load; 7604 cfs_rq->last_h_load_update = now; 7605 } 7606 } 7607 7608 static unsigned long task_h_load(struct task_struct *p) 7609 { 7610 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7611 7612 update_cfs_rq_h_load(cfs_rq); 7613 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7614 cfs_rq_load_avg(cfs_rq) + 1); 7615 } 7616 #else 7617 static inline void update_blocked_averages(int cpu) 7618 { 7619 struct rq *rq = cpu_rq(cpu); 7620 struct cfs_rq *cfs_rq = &rq->cfs; 7621 const struct sched_class *curr_class; 7622 struct rq_flags rf; 7623 7624 rq_lock_irqsave(rq, &rf); 7625 update_rq_clock(rq); 7626 update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 7627 7628 curr_class = rq->curr->sched_class; 7629 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class); 7630 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class); 7631 update_irq_load_avg(rq, 0); 7632 update_blocked_load_status(rq, cfs_rq_has_blocked(cfs_rq) || others_have_blocked(rq)); 7633 rq_unlock_irqrestore(rq, &rf); 7634 } 7635 7636 static unsigned long task_h_load(struct task_struct *p) 7637 { 7638 return p->se.avg.load_avg; 7639 } 7640 #endif 7641 7642 /********** Helpers for find_busiest_group ************************/ 7643 7644 /* 7645 * sg_lb_stats - stats of a sched_group required for load_balancing 7646 */ 7647 struct sg_lb_stats { 7648 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7649 unsigned long group_load; /* Total load over the CPUs of the group */ 7650 unsigned long load_per_task; 7651 unsigned long group_capacity; 7652 unsigned long group_util; /* Total utilization of the group */ 7653 unsigned int sum_nr_running; /* Nr tasks running in the group */ 7654 unsigned int idle_cpus; 7655 unsigned int group_weight; 7656 enum group_type group_type; 7657 int group_no_capacity; 7658 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 7659 #ifdef CONFIG_NUMA_BALANCING 7660 unsigned int nr_numa_running; 7661 unsigned int nr_preferred_running; 7662 #endif 7663 }; 7664 7665 /* 7666 * sd_lb_stats - Structure to store the statistics of a sched_domain 7667 * during load balancing. 7668 */ 7669 struct sd_lb_stats { 7670 struct sched_group *busiest; /* Busiest group in this sd */ 7671 struct sched_group *local; /* Local group in this sd */ 7672 unsigned long total_running; 7673 unsigned long total_load; /* Total load of all groups in sd */ 7674 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7675 unsigned long avg_load; /* Average load across all groups in sd */ 7676 7677 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7678 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7679 }; 7680 7681 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7682 { 7683 /* 7684 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7685 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7686 * We must however clear busiest_stat::avg_load because 7687 * update_sd_pick_busiest() reads this before assignment. 7688 */ 7689 *sds = (struct sd_lb_stats){ 7690 .busiest = NULL, 7691 .local = NULL, 7692 .total_running = 0UL, 7693 .total_load = 0UL, 7694 .total_capacity = 0UL, 7695 .busiest_stat = { 7696 .avg_load = 0UL, 7697 .sum_nr_running = 0, 7698 .group_type = group_other, 7699 }, 7700 }; 7701 } 7702 7703 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu) 7704 { 7705 struct rq *rq = cpu_rq(cpu); 7706 unsigned long max = arch_scale_cpu_capacity(cpu); 7707 unsigned long used, free; 7708 unsigned long irq; 7709 7710 irq = cpu_util_irq(rq); 7711 7712 if (unlikely(irq >= max)) 7713 return 1; 7714 7715 used = READ_ONCE(rq->avg_rt.util_avg); 7716 used += READ_ONCE(rq->avg_dl.util_avg); 7717 7718 if (unlikely(used >= max)) 7719 return 1; 7720 7721 free = max - used; 7722 7723 return scale_irq_capacity(free, irq, max); 7724 } 7725 7726 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 7727 { 7728 unsigned long capacity = scale_rt_capacity(sd, cpu); 7729 struct sched_group *sdg = sd->groups; 7730 7731 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 7732 7733 if (!capacity) 7734 capacity = 1; 7735 7736 cpu_rq(cpu)->cpu_capacity = capacity; 7737 sdg->sgc->capacity = capacity; 7738 sdg->sgc->min_capacity = capacity; 7739 sdg->sgc->max_capacity = capacity; 7740 } 7741 7742 void update_group_capacity(struct sched_domain *sd, int cpu) 7743 { 7744 struct sched_domain *child = sd->child; 7745 struct sched_group *group, *sdg = sd->groups; 7746 unsigned long capacity, min_capacity, max_capacity; 7747 unsigned long interval; 7748 7749 interval = msecs_to_jiffies(sd->balance_interval); 7750 interval = clamp(interval, 1UL, max_load_balance_interval); 7751 sdg->sgc->next_update = jiffies + interval; 7752 7753 if (!child) { 7754 update_cpu_capacity(sd, cpu); 7755 return; 7756 } 7757 7758 capacity = 0; 7759 min_capacity = ULONG_MAX; 7760 max_capacity = 0; 7761 7762 if (child->flags & SD_OVERLAP) { 7763 /* 7764 * SD_OVERLAP domains cannot assume that child groups 7765 * span the current group. 7766 */ 7767 7768 for_each_cpu(cpu, sched_group_span(sdg)) { 7769 struct sched_group_capacity *sgc; 7770 struct rq *rq = cpu_rq(cpu); 7771 7772 /* 7773 * build_sched_domains() -> init_sched_groups_capacity() 7774 * gets here before we've attached the domains to the 7775 * runqueues. 7776 * 7777 * Use capacity_of(), which is set irrespective of domains 7778 * in update_cpu_capacity(). 7779 * 7780 * This avoids capacity from being 0 and 7781 * causing divide-by-zero issues on boot. 7782 */ 7783 if (unlikely(!rq->sd)) { 7784 capacity += capacity_of(cpu); 7785 } else { 7786 sgc = rq->sd->groups->sgc; 7787 capacity += sgc->capacity; 7788 } 7789 7790 min_capacity = min(capacity, min_capacity); 7791 max_capacity = max(capacity, max_capacity); 7792 } 7793 } else { 7794 /* 7795 * !SD_OVERLAP domains can assume that child groups 7796 * span the current group. 7797 */ 7798 7799 group = child->groups; 7800 do { 7801 struct sched_group_capacity *sgc = group->sgc; 7802 7803 capacity += sgc->capacity; 7804 min_capacity = min(sgc->min_capacity, min_capacity); 7805 max_capacity = max(sgc->max_capacity, max_capacity); 7806 group = group->next; 7807 } while (group != child->groups); 7808 } 7809 7810 sdg->sgc->capacity = capacity; 7811 sdg->sgc->min_capacity = min_capacity; 7812 sdg->sgc->max_capacity = max_capacity; 7813 } 7814 7815 /* 7816 * Check whether the capacity of the rq has been noticeably reduced by side 7817 * activity. The imbalance_pct is used for the threshold. 7818 * Return true is the capacity is reduced 7819 */ 7820 static inline int 7821 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 7822 { 7823 return ((rq->cpu_capacity * sd->imbalance_pct) < 7824 (rq->cpu_capacity_orig * 100)); 7825 } 7826 7827 /* 7828 * Check whether a rq has a misfit task and if it looks like we can actually 7829 * help that task: we can migrate the task to a CPU of higher capacity, or 7830 * the task's current CPU is heavily pressured. 7831 */ 7832 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 7833 { 7834 return rq->misfit_task_load && 7835 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 7836 check_cpu_capacity(rq, sd)); 7837 } 7838 7839 /* 7840 * Group imbalance indicates (and tries to solve) the problem where balancing 7841 * groups is inadequate due to ->cpus_ptr constraints. 7842 * 7843 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 7844 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 7845 * Something like: 7846 * 7847 * { 0 1 2 3 } { 4 5 6 7 } 7848 * * * * * 7849 * 7850 * If we were to balance group-wise we'd place two tasks in the first group and 7851 * two tasks in the second group. Clearly this is undesired as it will overload 7852 * cpu 3 and leave one of the CPUs in the second group unused. 7853 * 7854 * The current solution to this issue is detecting the skew in the first group 7855 * by noticing the lower domain failed to reach balance and had difficulty 7856 * moving tasks due to affinity constraints. 7857 * 7858 * When this is so detected; this group becomes a candidate for busiest; see 7859 * update_sd_pick_busiest(). And calculate_imbalance() and 7860 * find_busiest_group() avoid some of the usual balance conditions to allow it 7861 * to create an effective group imbalance. 7862 * 7863 * This is a somewhat tricky proposition since the next run might not find the 7864 * group imbalance and decide the groups need to be balanced again. A most 7865 * subtle and fragile situation. 7866 */ 7867 7868 static inline int sg_imbalanced(struct sched_group *group) 7869 { 7870 return group->sgc->imbalance; 7871 } 7872 7873 /* 7874 * group_has_capacity returns true if the group has spare capacity that could 7875 * be used by some tasks. 7876 * We consider that a group has spare capacity if the * number of task is 7877 * smaller than the number of CPUs or if the utilization is lower than the 7878 * available capacity for CFS tasks. 7879 * For the latter, we use a threshold to stabilize the state, to take into 7880 * account the variance of the tasks' load and to return true if the available 7881 * capacity in meaningful for the load balancer. 7882 * As an example, an available capacity of 1% can appear but it doesn't make 7883 * any benefit for the load balance. 7884 */ 7885 static inline bool 7886 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 7887 { 7888 if (sgs->sum_nr_running < sgs->group_weight) 7889 return true; 7890 7891 if ((sgs->group_capacity * 100) > 7892 (sgs->group_util * env->sd->imbalance_pct)) 7893 return true; 7894 7895 return false; 7896 } 7897 7898 /* 7899 * group_is_overloaded returns true if the group has more tasks than it can 7900 * handle. 7901 * group_is_overloaded is not equals to !group_has_capacity because a group 7902 * with the exact right number of tasks, has no more spare capacity but is not 7903 * overloaded so both group_has_capacity and group_is_overloaded return 7904 * false. 7905 */ 7906 static inline bool 7907 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 7908 { 7909 if (sgs->sum_nr_running <= sgs->group_weight) 7910 return false; 7911 7912 if ((sgs->group_capacity * 100) < 7913 (sgs->group_util * env->sd->imbalance_pct)) 7914 return true; 7915 7916 return false; 7917 } 7918 7919 /* 7920 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller 7921 * per-CPU capacity than sched_group ref. 7922 */ 7923 static inline bool 7924 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7925 { 7926 return sg->sgc->min_capacity * capacity_margin < 7927 ref->sgc->min_capacity * 1024; 7928 } 7929 7930 /* 7931 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller 7932 * per-CPU capacity_orig than sched_group ref. 7933 */ 7934 static inline bool 7935 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7936 { 7937 return sg->sgc->max_capacity * capacity_margin < 7938 ref->sgc->max_capacity * 1024; 7939 } 7940 7941 static inline enum 7942 group_type group_classify(struct sched_group *group, 7943 struct sg_lb_stats *sgs) 7944 { 7945 if (sgs->group_no_capacity) 7946 return group_overloaded; 7947 7948 if (sg_imbalanced(group)) 7949 return group_imbalanced; 7950 7951 if (sgs->group_misfit_task_load) 7952 return group_misfit_task; 7953 7954 return group_other; 7955 } 7956 7957 static bool update_nohz_stats(struct rq *rq, bool force) 7958 { 7959 #ifdef CONFIG_NO_HZ_COMMON 7960 unsigned int cpu = rq->cpu; 7961 7962 if (!rq->has_blocked_load) 7963 return false; 7964 7965 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 7966 return false; 7967 7968 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) 7969 return true; 7970 7971 update_blocked_averages(cpu); 7972 7973 return rq->has_blocked_load; 7974 #else 7975 return false; 7976 #endif 7977 } 7978 7979 /** 7980 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 7981 * @env: The load balancing environment. 7982 * @group: sched_group whose statistics are to be updated. 7983 * @sgs: variable to hold the statistics for this group. 7984 * @sg_status: Holds flag indicating the status of the sched_group 7985 */ 7986 static inline void update_sg_lb_stats(struct lb_env *env, 7987 struct sched_group *group, 7988 struct sg_lb_stats *sgs, 7989 int *sg_status) 7990 { 7991 int i, nr_running; 7992 7993 memset(sgs, 0, sizeof(*sgs)); 7994 7995 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 7996 struct rq *rq = cpu_rq(i); 7997 7998 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) 7999 env->flags |= LBF_NOHZ_AGAIN; 8000 8001 sgs->group_load += cpu_runnable_load(rq); 8002 sgs->group_util += cpu_util(i); 8003 sgs->sum_nr_running += rq->cfs.h_nr_running; 8004 8005 nr_running = rq->nr_running; 8006 if (nr_running > 1) 8007 *sg_status |= SG_OVERLOAD; 8008 8009 if (cpu_overutilized(i)) 8010 *sg_status |= SG_OVERUTILIZED; 8011 8012 #ifdef CONFIG_NUMA_BALANCING 8013 sgs->nr_numa_running += rq->nr_numa_running; 8014 sgs->nr_preferred_running += rq->nr_preferred_running; 8015 #endif 8016 /* 8017 * No need to call idle_cpu() if nr_running is not 0 8018 */ 8019 if (!nr_running && idle_cpu(i)) 8020 sgs->idle_cpus++; 8021 8022 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8023 sgs->group_misfit_task_load < rq->misfit_task_load) { 8024 sgs->group_misfit_task_load = rq->misfit_task_load; 8025 *sg_status |= SG_OVERLOAD; 8026 } 8027 } 8028 8029 /* Adjust by relative CPU capacity of the group */ 8030 sgs->group_capacity = group->sgc->capacity; 8031 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 8032 8033 if (sgs->sum_nr_running) 8034 sgs->load_per_task = sgs->group_load / sgs->sum_nr_running; 8035 8036 sgs->group_weight = group->group_weight; 8037 8038 sgs->group_no_capacity = group_is_overloaded(env, sgs); 8039 sgs->group_type = group_classify(group, sgs); 8040 } 8041 8042 /** 8043 * update_sd_pick_busiest - return 1 on busiest group 8044 * @env: The load balancing environment. 8045 * @sds: sched_domain statistics 8046 * @sg: sched_group candidate to be checked for being the busiest 8047 * @sgs: sched_group statistics 8048 * 8049 * Determine if @sg is a busier group than the previously selected 8050 * busiest group. 8051 * 8052 * Return: %true if @sg is a busier group than the previously selected 8053 * busiest group. %false otherwise. 8054 */ 8055 static bool update_sd_pick_busiest(struct lb_env *env, 8056 struct sd_lb_stats *sds, 8057 struct sched_group *sg, 8058 struct sg_lb_stats *sgs) 8059 { 8060 struct sg_lb_stats *busiest = &sds->busiest_stat; 8061 8062 /* 8063 * Don't try to pull misfit tasks we can't help. 8064 * We can use max_capacity here as reduction in capacity on some 8065 * CPUs in the group should either be possible to resolve 8066 * internally or be covered by avg_load imbalance (eventually). 8067 */ 8068 if (sgs->group_type == group_misfit_task && 8069 (!group_smaller_max_cpu_capacity(sg, sds->local) || 8070 !group_has_capacity(env, &sds->local_stat))) 8071 return false; 8072 8073 if (sgs->group_type > busiest->group_type) 8074 return true; 8075 8076 if (sgs->group_type < busiest->group_type) 8077 return false; 8078 8079 if (sgs->avg_load <= busiest->avg_load) 8080 return false; 8081 8082 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) 8083 goto asym_packing; 8084 8085 /* 8086 * Candidate sg has no more than one task per CPU and 8087 * has higher per-CPU capacity. Migrating tasks to less 8088 * capable CPUs may harm throughput. Maximize throughput, 8089 * power/energy consequences are not considered. 8090 */ 8091 if (sgs->sum_nr_running <= sgs->group_weight && 8092 group_smaller_min_cpu_capacity(sds->local, sg)) 8093 return false; 8094 8095 /* 8096 * If we have more than one misfit sg go with the biggest misfit. 8097 */ 8098 if (sgs->group_type == group_misfit_task && 8099 sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8100 return false; 8101 8102 asym_packing: 8103 /* This is the busiest node in its class. */ 8104 if (!(env->sd->flags & SD_ASYM_PACKING)) 8105 return true; 8106 8107 /* No ASYM_PACKING if target CPU is already busy */ 8108 if (env->idle == CPU_NOT_IDLE) 8109 return true; 8110 /* 8111 * ASYM_PACKING needs to move all the work to the highest 8112 * prority CPUs in the group, therefore mark all groups 8113 * of lower priority than ourself as busy. 8114 */ 8115 if (sgs->sum_nr_running && 8116 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) { 8117 if (!sds->busiest) 8118 return true; 8119 8120 /* Prefer to move from lowest priority CPU's work */ 8121 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu, 8122 sg->asym_prefer_cpu)) 8123 return true; 8124 } 8125 8126 return false; 8127 } 8128 8129 #ifdef CONFIG_NUMA_BALANCING 8130 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8131 { 8132 if (sgs->sum_nr_running > sgs->nr_numa_running) 8133 return regular; 8134 if (sgs->sum_nr_running > sgs->nr_preferred_running) 8135 return remote; 8136 return all; 8137 } 8138 8139 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8140 { 8141 if (rq->nr_running > rq->nr_numa_running) 8142 return regular; 8143 if (rq->nr_running > rq->nr_preferred_running) 8144 return remote; 8145 return all; 8146 } 8147 #else 8148 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8149 { 8150 return all; 8151 } 8152 8153 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8154 { 8155 return regular; 8156 } 8157 #endif /* CONFIG_NUMA_BALANCING */ 8158 8159 /** 8160 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 8161 * @env: The load balancing environment. 8162 * @sds: variable to hold the statistics for this sched_domain. 8163 */ 8164 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 8165 { 8166 struct sched_domain *child = env->sd->child; 8167 struct sched_group *sg = env->sd->groups; 8168 struct sg_lb_stats *local = &sds->local_stat; 8169 struct sg_lb_stats tmp_sgs; 8170 bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 8171 int sg_status = 0; 8172 8173 #ifdef CONFIG_NO_HZ_COMMON 8174 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) 8175 env->flags |= LBF_NOHZ_STATS; 8176 #endif 8177 8178 do { 8179 struct sg_lb_stats *sgs = &tmp_sgs; 8180 int local_group; 8181 8182 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 8183 if (local_group) { 8184 sds->local = sg; 8185 sgs = local; 8186 8187 if (env->idle != CPU_NEWLY_IDLE || 8188 time_after_eq(jiffies, sg->sgc->next_update)) 8189 update_group_capacity(env->sd, env->dst_cpu); 8190 } 8191 8192 update_sg_lb_stats(env, sg, sgs, &sg_status); 8193 8194 if (local_group) 8195 goto next_group; 8196 8197 /* 8198 * In case the child domain prefers tasks go to siblings 8199 * first, lower the sg capacity so that we'll try 8200 * and move all the excess tasks away. We lower the capacity 8201 * of a group only if the local group has the capacity to fit 8202 * these excess tasks. The extra check prevents the case where 8203 * you always pull from the heaviest group when it is already 8204 * under-utilized (possible with a large weight task outweighs 8205 * the tasks on the system). 8206 */ 8207 if (prefer_sibling && sds->local && 8208 group_has_capacity(env, local) && 8209 (sgs->sum_nr_running > local->sum_nr_running + 1)) { 8210 sgs->group_no_capacity = 1; 8211 sgs->group_type = group_classify(sg, sgs); 8212 } 8213 8214 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 8215 sds->busiest = sg; 8216 sds->busiest_stat = *sgs; 8217 } 8218 8219 next_group: 8220 /* Now, start updating sd_lb_stats */ 8221 sds->total_running += sgs->sum_nr_running; 8222 sds->total_load += sgs->group_load; 8223 sds->total_capacity += sgs->group_capacity; 8224 8225 sg = sg->next; 8226 } while (sg != env->sd->groups); 8227 8228 #ifdef CONFIG_NO_HZ_COMMON 8229 if ((env->flags & LBF_NOHZ_AGAIN) && 8230 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { 8231 8232 WRITE_ONCE(nohz.next_blocked, 8233 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); 8234 } 8235 #endif 8236 8237 if (env->sd->flags & SD_NUMA) 8238 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 8239 8240 if (!env->sd->parent) { 8241 struct root_domain *rd = env->dst_rq->rd; 8242 8243 /* update overload indicator if we are at root domain */ 8244 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 8245 8246 /* Update over-utilization (tipping point, U >= 0) indicator */ 8247 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 8248 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 8249 } else if (sg_status & SG_OVERUTILIZED) { 8250 struct root_domain *rd = env->dst_rq->rd; 8251 8252 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 8253 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 8254 } 8255 } 8256 8257 /** 8258 * check_asym_packing - Check to see if the group is packed into the 8259 * sched domain. 8260 * 8261 * This is primarily intended to used at the sibling level. Some 8262 * cores like POWER7 prefer to use lower numbered SMT threads. In the 8263 * case of POWER7, it can move to lower SMT modes only when higher 8264 * threads are idle. When in lower SMT modes, the threads will 8265 * perform better since they share less core resources. Hence when we 8266 * have idle threads, we want them to be the higher ones. 8267 * 8268 * This packing function is run on idle threads. It checks to see if 8269 * the busiest CPU in this domain (core in the P7 case) has a higher 8270 * CPU number than the packing function is being run on. Here we are 8271 * assuming lower CPU number will be equivalent to lower a SMT thread 8272 * number. 8273 * 8274 * Return: 1 when packing is required and a task should be moved to 8275 * this CPU. The amount of the imbalance is returned in env->imbalance. 8276 * 8277 * @env: The load balancing environment. 8278 * @sds: Statistics of the sched_domain which is to be packed 8279 */ 8280 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 8281 { 8282 int busiest_cpu; 8283 8284 if (!(env->sd->flags & SD_ASYM_PACKING)) 8285 return 0; 8286 8287 if (env->idle == CPU_NOT_IDLE) 8288 return 0; 8289 8290 if (!sds->busiest) 8291 return 0; 8292 8293 busiest_cpu = sds->busiest->asym_prefer_cpu; 8294 if (sched_asym_prefer(busiest_cpu, env->dst_cpu)) 8295 return 0; 8296 8297 env->imbalance = sds->busiest_stat.group_load; 8298 8299 return 1; 8300 } 8301 8302 /** 8303 * fix_small_imbalance - Calculate the minor imbalance that exists 8304 * amongst the groups of a sched_domain, during 8305 * load balancing. 8306 * @env: The load balancing environment. 8307 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 8308 */ 8309 static inline 8310 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8311 { 8312 unsigned long tmp, capa_now = 0, capa_move = 0; 8313 unsigned int imbn = 2; 8314 unsigned long scaled_busy_load_per_task; 8315 struct sg_lb_stats *local, *busiest; 8316 8317 local = &sds->local_stat; 8318 busiest = &sds->busiest_stat; 8319 8320 if (!local->sum_nr_running) 8321 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 8322 else if (busiest->load_per_task > local->load_per_task) 8323 imbn = 1; 8324 8325 scaled_busy_load_per_task = 8326 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8327 busiest->group_capacity; 8328 8329 if (busiest->avg_load + scaled_busy_load_per_task >= 8330 local->avg_load + (scaled_busy_load_per_task * imbn)) { 8331 env->imbalance = busiest->load_per_task; 8332 return; 8333 } 8334 8335 /* 8336 * OK, we don't have enough imbalance to justify moving tasks, 8337 * however we may be able to increase total CPU capacity used by 8338 * moving them. 8339 */ 8340 8341 capa_now += busiest->group_capacity * 8342 min(busiest->load_per_task, busiest->avg_load); 8343 capa_now += local->group_capacity * 8344 min(local->load_per_task, local->avg_load); 8345 capa_now /= SCHED_CAPACITY_SCALE; 8346 8347 /* Amount of load we'd subtract */ 8348 if (busiest->avg_load > scaled_busy_load_per_task) { 8349 capa_move += busiest->group_capacity * 8350 min(busiest->load_per_task, 8351 busiest->avg_load - scaled_busy_load_per_task); 8352 } 8353 8354 /* Amount of load we'd add */ 8355 if (busiest->avg_load * busiest->group_capacity < 8356 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 8357 tmp = (busiest->avg_load * busiest->group_capacity) / 8358 local->group_capacity; 8359 } else { 8360 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8361 local->group_capacity; 8362 } 8363 capa_move += local->group_capacity * 8364 min(local->load_per_task, local->avg_load + tmp); 8365 capa_move /= SCHED_CAPACITY_SCALE; 8366 8367 /* Move if we gain throughput */ 8368 if (capa_move > capa_now) 8369 env->imbalance = busiest->load_per_task; 8370 } 8371 8372 /** 8373 * calculate_imbalance - Calculate the amount of imbalance present within the 8374 * groups of a given sched_domain during load balance. 8375 * @env: load balance environment 8376 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 8377 */ 8378 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8379 { 8380 unsigned long max_pull, load_above_capacity = ~0UL; 8381 struct sg_lb_stats *local, *busiest; 8382 8383 local = &sds->local_stat; 8384 busiest = &sds->busiest_stat; 8385 8386 if (busiest->group_type == group_imbalanced) { 8387 /* 8388 * In the group_imb case we cannot rely on group-wide averages 8389 * to ensure CPU-load equilibrium, look at wider averages. XXX 8390 */ 8391 busiest->load_per_task = 8392 min(busiest->load_per_task, sds->avg_load); 8393 } 8394 8395 /* 8396 * Avg load of busiest sg can be less and avg load of local sg can 8397 * be greater than avg load across all sgs of sd because avg load 8398 * factors in sg capacity and sgs with smaller group_type are 8399 * skipped when updating the busiest sg: 8400 */ 8401 if (busiest->group_type != group_misfit_task && 8402 (busiest->avg_load <= sds->avg_load || 8403 local->avg_load >= sds->avg_load)) { 8404 env->imbalance = 0; 8405 return fix_small_imbalance(env, sds); 8406 } 8407 8408 /* 8409 * If there aren't any idle CPUs, avoid creating some. 8410 */ 8411 if (busiest->group_type == group_overloaded && 8412 local->group_type == group_overloaded) { 8413 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 8414 if (load_above_capacity > busiest->group_capacity) { 8415 load_above_capacity -= busiest->group_capacity; 8416 load_above_capacity *= scale_load_down(NICE_0_LOAD); 8417 load_above_capacity /= busiest->group_capacity; 8418 } else 8419 load_above_capacity = ~0UL; 8420 } 8421 8422 /* 8423 * We're trying to get all the CPUs to the average_load, so we don't 8424 * want to push ourselves above the average load, nor do we wish to 8425 * reduce the max loaded CPU below the average load. At the same time, 8426 * we also don't want to reduce the group load below the group 8427 * capacity. Thus we look for the minimum possible imbalance. 8428 */ 8429 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 8430 8431 /* How much load to actually move to equalise the imbalance */ 8432 env->imbalance = min( 8433 max_pull * busiest->group_capacity, 8434 (sds->avg_load - local->avg_load) * local->group_capacity 8435 ) / SCHED_CAPACITY_SCALE; 8436 8437 /* Boost imbalance to allow misfit task to be balanced. */ 8438 if (busiest->group_type == group_misfit_task) { 8439 env->imbalance = max_t(long, env->imbalance, 8440 busiest->group_misfit_task_load); 8441 } 8442 8443 /* 8444 * if *imbalance is less than the average load per runnable task 8445 * there is no guarantee that any tasks will be moved so we'll have 8446 * a think about bumping its value to force at least one task to be 8447 * moved 8448 */ 8449 if (env->imbalance < busiest->load_per_task) 8450 return fix_small_imbalance(env, sds); 8451 } 8452 8453 /******* find_busiest_group() helpers end here *********************/ 8454 8455 /** 8456 * find_busiest_group - Returns the busiest group within the sched_domain 8457 * if there is an imbalance. 8458 * 8459 * Also calculates the amount of runnable load which should be moved 8460 * to restore balance. 8461 * 8462 * @env: The load balancing environment. 8463 * 8464 * Return: - The busiest group if imbalance exists. 8465 */ 8466 static struct sched_group *find_busiest_group(struct lb_env *env) 8467 { 8468 struct sg_lb_stats *local, *busiest; 8469 struct sd_lb_stats sds; 8470 8471 init_sd_lb_stats(&sds); 8472 8473 /* 8474 * Compute the various statistics relavent for load balancing at 8475 * this level. 8476 */ 8477 update_sd_lb_stats(env, &sds); 8478 8479 if (sched_energy_enabled()) { 8480 struct root_domain *rd = env->dst_rq->rd; 8481 8482 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 8483 goto out_balanced; 8484 } 8485 8486 local = &sds.local_stat; 8487 busiest = &sds.busiest_stat; 8488 8489 /* ASYM feature bypasses nice load balance check */ 8490 if (check_asym_packing(env, &sds)) 8491 return sds.busiest; 8492 8493 /* There is no busy sibling group to pull tasks from */ 8494 if (!sds.busiest || busiest->sum_nr_running == 0) 8495 goto out_balanced; 8496 8497 /* XXX broken for overlapping NUMA groups */ 8498 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 8499 / sds.total_capacity; 8500 8501 /* 8502 * If the busiest group is imbalanced the below checks don't 8503 * work because they assume all things are equal, which typically 8504 * isn't true due to cpus_ptr constraints and the like. 8505 */ 8506 if (busiest->group_type == group_imbalanced) 8507 goto force_balance; 8508 8509 /* 8510 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group 8511 * capacities from resulting in underutilization due to avg_load. 8512 */ 8513 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) && 8514 busiest->group_no_capacity) 8515 goto force_balance; 8516 8517 /* Misfit tasks should be dealt with regardless of the avg load */ 8518 if (busiest->group_type == group_misfit_task) 8519 goto force_balance; 8520 8521 /* 8522 * If the local group is busier than the selected busiest group 8523 * don't try and pull any tasks. 8524 */ 8525 if (local->avg_load >= busiest->avg_load) 8526 goto out_balanced; 8527 8528 /* 8529 * Don't pull any tasks if this group is already above the domain 8530 * average load. 8531 */ 8532 if (local->avg_load >= sds.avg_load) 8533 goto out_balanced; 8534 8535 if (env->idle == CPU_IDLE) { 8536 /* 8537 * This CPU is idle. If the busiest group is not overloaded 8538 * and there is no imbalance between this and busiest group 8539 * wrt idle CPUs, it is balanced. The imbalance becomes 8540 * significant if the diff is greater than 1 otherwise we 8541 * might end up to just move the imbalance on another group 8542 */ 8543 if ((busiest->group_type != group_overloaded) && 8544 (local->idle_cpus <= (busiest->idle_cpus + 1))) 8545 goto out_balanced; 8546 } else { 8547 /* 8548 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 8549 * imbalance_pct to be conservative. 8550 */ 8551 if (100 * busiest->avg_load <= 8552 env->sd->imbalance_pct * local->avg_load) 8553 goto out_balanced; 8554 } 8555 8556 force_balance: 8557 /* Looks like there is an imbalance. Compute it */ 8558 env->src_grp_type = busiest->group_type; 8559 calculate_imbalance(env, &sds); 8560 return env->imbalance ? sds.busiest : NULL; 8561 8562 out_balanced: 8563 env->imbalance = 0; 8564 return NULL; 8565 } 8566 8567 /* 8568 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 8569 */ 8570 static struct rq *find_busiest_queue(struct lb_env *env, 8571 struct sched_group *group) 8572 { 8573 struct rq *busiest = NULL, *rq; 8574 unsigned long busiest_load = 0, busiest_capacity = 1; 8575 int i; 8576 8577 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8578 unsigned long capacity, load; 8579 enum fbq_type rt; 8580 8581 rq = cpu_rq(i); 8582 rt = fbq_classify_rq(rq); 8583 8584 /* 8585 * We classify groups/runqueues into three groups: 8586 * - regular: there are !numa tasks 8587 * - remote: there are numa tasks that run on the 'wrong' node 8588 * - all: there is no distinction 8589 * 8590 * In order to avoid migrating ideally placed numa tasks, 8591 * ignore those when there's better options. 8592 * 8593 * If we ignore the actual busiest queue to migrate another 8594 * task, the next balance pass can still reduce the busiest 8595 * queue by moving tasks around inside the node. 8596 * 8597 * If we cannot move enough load due to this classification 8598 * the next pass will adjust the group classification and 8599 * allow migration of more tasks. 8600 * 8601 * Both cases only affect the total convergence complexity. 8602 */ 8603 if (rt > env->fbq_type) 8604 continue; 8605 8606 /* 8607 * For ASYM_CPUCAPACITY domains with misfit tasks we simply 8608 * seek the "biggest" misfit task. 8609 */ 8610 if (env->src_grp_type == group_misfit_task) { 8611 if (rq->misfit_task_load > busiest_load) { 8612 busiest_load = rq->misfit_task_load; 8613 busiest = rq; 8614 } 8615 8616 continue; 8617 } 8618 8619 capacity = capacity_of(i); 8620 8621 /* 8622 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 8623 * eventually lead to active_balancing high->low capacity. 8624 * Higher per-CPU capacity is considered better than balancing 8625 * average load. 8626 */ 8627 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8628 capacity_of(env->dst_cpu) < capacity && 8629 rq->nr_running == 1) 8630 continue; 8631 8632 load = cpu_runnable_load(rq); 8633 8634 /* 8635 * When comparing with imbalance, use cpu_runnable_load() 8636 * which is not scaled with the CPU capacity. 8637 */ 8638 8639 if (rq->nr_running == 1 && load > env->imbalance && 8640 !check_cpu_capacity(rq, env->sd)) 8641 continue; 8642 8643 /* 8644 * For the load comparisons with the other CPU's, consider 8645 * the cpu_runnable_load() scaled with the CPU capacity, so 8646 * that the load can be moved away from the CPU that is 8647 * potentially running at a lower capacity. 8648 * 8649 * Thus we're looking for max(load_i / capacity_i), crosswise 8650 * multiplication to rid ourselves of the division works out 8651 * to: load_i * capacity_j > load_j * capacity_i; where j is 8652 * our previous maximum. 8653 */ 8654 if (load * busiest_capacity > busiest_load * capacity) { 8655 busiest_load = load; 8656 busiest_capacity = capacity; 8657 busiest = rq; 8658 } 8659 } 8660 8661 return busiest; 8662 } 8663 8664 /* 8665 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 8666 * so long as it is large enough. 8667 */ 8668 #define MAX_PINNED_INTERVAL 512 8669 8670 static inline bool 8671 asym_active_balance(struct lb_env *env) 8672 { 8673 /* 8674 * ASYM_PACKING needs to force migrate tasks from busy but 8675 * lower priority CPUs in order to pack all tasks in the 8676 * highest priority CPUs. 8677 */ 8678 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 8679 sched_asym_prefer(env->dst_cpu, env->src_cpu); 8680 } 8681 8682 static inline bool 8683 voluntary_active_balance(struct lb_env *env) 8684 { 8685 struct sched_domain *sd = env->sd; 8686 8687 if (asym_active_balance(env)) 8688 return 1; 8689 8690 /* 8691 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 8692 * It's worth migrating the task if the src_cpu's capacity is reduced 8693 * because of other sched_class or IRQs if more capacity stays 8694 * available on dst_cpu. 8695 */ 8696 if ((env->idle != CPU_NOT_IDLE) && 8697 (env->src_rq->cfs.h_nr_running == 1)) { 8698 if ((check_cpu_capacity(env->src_rq, sd)) && 8699 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 8700 return 1; 8701 } 8702 8703 if (env->src_grp_type == group_misfit_task) 8704 return 1; 8705 8706 return 0; 8707 } 8708 8709 static int need_active_balance(struct lb_env *env) 8710 { 8711 struct sched_domain *sd = env->sd; 8712 8713 if (voluntary_active_balance(env)) 8714 return 1; 8715 8716 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 8717 } 8718 8719 static int active_load_balance_cpu_stop(void *data); 8720 8721 static int should_we_balance(struct lb_env *env) 8722 { 8723 struct sched_group *sg = env->sd->groups; 8724 int cpu, balance_cpu = -1; 8725 8726 /* 8727 * Ensure the balancing environment is consistent; can happen 8728 * when the softirq triggers 'during' hotplug. 8729 */ 8730 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 8731 return 0; 8732 8733 /* 8734 * In the newly idle case, we will allow all the CPUs 8735 * to do the newly idle load balance. 8736 */ 8737 if (env->idle == CPU_NEWLY_IDLE) 8738 return 1; 8739 8740 /* Try to find first idle CPU */ 8741 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 8742 if (!idle_cpu(cpu)) 8743 continue; 8744 8745 balance_cpu = cpu; 8746 break; 8747 } 8748 8749 if (balance_cpu == -1) 8750 balance_cpu = group_balance_cpu(sg); 8751 8752 /* 8753 * First idle CPU or the first CPU(busiest) in this sched group 8754 * is eligible for doing load balancing at this and above domains. 8755 */ 8756 return balance_cpu == env->dst_cpu; 8757 } 8758 8759 /* 8760 * Check this_cpu to ensure it is balanced within domain. Attempt to move 8761 * tasks if there is an imbalance. 8762 */ 8763 static int load_balance(int this_cpu, struct rq *this_rq, 8764 struct sched_domain *sd, enum cpu_idle_type idle, 8765 int *continue_balancing) 8766 { 8767 int ld_moved, cur_ld_moved, active_balance = 0; 8768 struct sched_domain *sd_parent = sd->parent; 8769 struct sched_group *group; 8770 struct rq *busiest; 8771 struct rq_flags rf; 8772 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 8773 8774 struct lb_env env = { 8775 .sd = sd, 8776 .dst_cpu = this_cpu, 8777 .dst_rq = this_rq, 8778 .dst_grpmask = sched_group_span(sd->groups), 8779 .idle = idle, 8780 .loop_break = sched_nr_migrate_break, 8781 .cpus = cpus, 8782 .fbq_type = all, 8783 .tasks = LIST_HEAD_INIT(env.tasks), 8784 }; 8785 8786 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 8787 8788 schedstat_inc(sd->lb_count[idle]); 8789 8790 redo: 8791 if (!should_we_balance(&env)) { 8792 *continue_balancing = 0; 8793 goto out_balanced; 8794 } 8795 8796 group = find_busiest_group(&env); 8797 if (!group) { 8798 schedstat_inc(sd->lb_nobusyg[idle]); 8799 goto out_balanced; 8800 } 8801 8802 busiest = find_busiest_queue(&env, group); 8803 if (!busiest) { 8804 schedstat_inc(sd->lb_nobusyq[idle]); 8805 goto out_balanced; 8806 } 8807 8808 BUG_ON(busiest == env.dst_rq); 8809 8810 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 8811 8812 env.src_cpu = busiest->cpu; 8813 env.src_rq = busiest; 8814 8815 ld_moved = 0; 8816 if (busiest->nr_running > 1) { 8817 /* 8818 * Attempt to move tasks. If find_busiest_group has found 8819 * an imbalance but busiest->nr_running <= 1, the group is 8820 * still unbalanced. ld_moved simply stays zero, so it is 8821 * correctly treated as an imbalance. 8822 */ 8823 env.flags |= LBF_ALL_PINNED; 8824 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 8825 8826 more_balance: 8827 rq_lock_irqsave(busiest, &rf); 8828 update_rq_clock(busiest); 8829 8830 /* 8831 * cur_ld_moved - load moved in current iteration 8832 * ld_moved - cumulative load moved across iterations 8833 */ 8834 cur_ld_moved = detach_tasks(&env); 8835 8836 /* 8837 * We've detached some tasks from busiest_rq. Every 8838 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 8839 * unlock busiest->lock, and we are able to be sure 8840 * that nobody can manipulate the tasks in parallel. 8841 * See task_rq_lock() family for the details. 8842 */ 8843 8844 rq_unlock(busiest, &rf); 8845 8846 if (cur_ld_moved) { 8847 attach_tasks(&env); 8848 ld_moved += cur_ld_moved; 8849 } 8850 8851 local_irq_restore(rf.flags); 8852 8853 if (env.flags & LBF_NEED_BREAK) { 8854 env.flags &= ~LBF_NEED_BREAK; 8855 goto more_balance; 8856 } 8857 8858 /* 8859 * Revisit (affine) tasks on src_cpu that couldn't be moved to 8860 * us and move them to an alternate dst_cpu in our sched_group 8861 * where they can run. The upper limit on how many times we 8862 * iterate on same src_cpu is dependent on number of CPUs in our 8863 * sched_group. 8864 * 8865 * This changes load balance semantics a bit on who can move 8866 * load to a given_cpu. In addition to the given_cpu itself 8867 * (or a ilb_cpu acting on its behalf where given_cpu is 8868 * nohz-idle), we now have balance_cpu in a position to move 8869 * load to given_cpu. In rare situations, this may cause 8870 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 8871 * _independently_ and at _same_ time to move some load to 8872 * given_cpu) causing exceess load to be moved to given_cpu. 8873 * This however should not happen so much in practice and 8874 * moreover subsequent load balance cycles should correct the 8875 * excess load moved. 8876 */ 8877 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 8878 8879 /* Prevent to re-select dst_cpu via env's CPUs */ 8880 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 8881 8882 env.dst_rq = cpu_rq(env.new_dst_cpu); 8883 env.dst_cpu = env.new_dst_cpu; 8884 env.flags &= ~LBF_DST_PINNED; 8885 env.loop = 0; 8886 env.loop_break = sched_nr_migrate_break; 8887 8888 /* 8889 * Go back to "more_balance" rather than "redo" since we 8890 * need to continue with same src_cpu. 8891 */ 8892 goto more_balance; 8893 } 8894 8895 /* 8896 * We failed to reach balance because of affinity. 8897 */ 8898 if (sd_parent) { 8899 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8900 8901 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 8902 *group_imbalance = 1; 8903 } 8904 8905 /* All tasks on this runqueue were pinned by CPU affinity */ 8906 if (unlikely(env.flags & LBF_ALL_PINNED)) { 8907 __cpumask_clear_cpu(cpu_of(busiest), cpus); 8908 /* 8909 * Attempting to continue load balancing at the current 8910 * sched_domain level only makes sense if there are 8911 * active CPUs remaining as possible busiest CPUs to 8912 * pull load from which are not contained within the 8913 * destination group that is receiving any migrated 8914 * load. 8915 */ 8916 if (!cpumask_subset(cpus, env.dst_grpmask)) { 8917 env.loop = 0; 8918 env.loop_break = sched_nr_migrate_break; 8919 goto redo; 8920 } 8921 goto out_all_pinned; 8922 } 8923 } 8924 8925 if (!ld_moved) { 8926 schedstat_inc(sd->lb_failed[idle]); 8927 /* 8928 * Increment the failure counter only on periodic balance. 8929 * We do not want newidle balance, which can be very 8930 * frequent, pollute the failure counter causing 8931 * excessive cache_hot migrations and active balances. 8932 */ 8933 if (idle != CPU_NEWLY_IDLE) 8934 sd->nr_balance_failed++; 8935 8936 if (need_active_balance(&env)) { 8937 unsigned long flags; 8938 8939 raw_spin_lock_irqsave(&busiest->lock, flags); 8940 8941 /* 8942 * Don't kick the active_load_balance_cpu_stop, 8943 * if the curr task on busiest CPU can't be 8944 * moved to this_cpu: 8945 */ 8946 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 8947 raw_spin_unlock_irqrestore(&busiest->lock, 8948 flags); 8949 env.flags |= LBF_ALL_PINNED; 8950 goto out_one_pinned; 8951 } 8952 8953 /* 8954 * ->active_balance synchronizes accesses to 8955 * ->active_balance_work. Once set, it's cleared 8956 * only after active load balance is finished. 8957 */ 8958 if (!busiest->active_balance) { 8959 busiest->active_balance = 1; 8960 busiest->push_cpu = this_cpu; 8961 active_balance = 1; 8962 } 8963 raw_spin_unlock_irqrestore(&busiest->lock, flags); 8964 8965 if (active_balance) { 8966 stop_one_cpu_nowait(cpu_of(busiest), 8967 active_load_balance_cpu_stop, busiest, 8968 &busiest->active_balance_work); 8969 } 8970 8971 /* We've kicked active balancing, force task migration. */ 8972 sd->nr_balance_failed = sd->cache_nice_tries+1; 8973 } 8974 } else 8975 sd->nr_balance_failed = 0; 8976 8977 if (likely(!active_balance) || voluntary_active_balance(&env)) { 8978 /* We were unbalanced, so reset the balancing interval */ 8979 sd->balance_interval = sd->min_interval; 8980 } else { 8981 /* 8982 * If we've begun active balancing, start to back off. This 8983 * case may not be covered by the all_pinned logic if there 8984 * is only 1 task on the busy runqueue (because we don't call 8985 * detach_tasks). 8986 */ 8987 if (sd->balance_interval < sd->max_interval) 8988 sd->balance_interval *= 2; 8989 } 8990 8991 goto out; 8992 8993 out_balanced: 8994 /* 8995 * We reach balance although we may have faced some affinity 8996 * constraints. Clear the imbalance flag if it was set. 8997 */ 8998 if (sd_parent) { 8999 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9000 9001 if (*group_imbalance) 9002 *group_imbalance = 0; 9003 } 9004 9005 out_all_pinned: 9006 /* 9007 * We reach balance because all tasks are pinned at this level so 9008 * we can't migrate them. Let the imbalance flag set so parent level 9009 * can try to migrate them. 9010 */ 9011 schedstat_inc(sd->lb_balanced[idle]); 9012 9013 sd->nr_balance_failed = 0; 9014 9015 out_one_pinned: 9016 ld_moved = 0; 9017 9018 /* 9019 * idle_balance() disregards balance intervals, so we could repeatedly 9020 * reach this code, which would lead to balance_interval skyrocketting 9021 * in a short amount of time. Skip the balance_interval increase logic 9022 * to avoid that. 9023 */ 9024 if (env.idle == CPU_NEWLY_IDLE) 9025 goto out; 9026 9027 /* tune up the balancing interval */ 9028 if ((env.flags & LBF_ALL_PINNED && 9029 sd->balance_interval < MAX_PINNED_INTERVAL) || 9030 sd->balance_interval < sd->max_interval) 9031 sd->balance_interval *= 2; 9032 out: 9033 return ld_moved; 9034 } 9035 9036 static inline unsigned long 9037 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 9038 { 9039 unsigned long interval = sd->balance_interval; 9040 9041 if (cpu_busy) 9042 interval *= sd->busy_factor; 9043 9044 /* scale ms to jiffies */ 9045 interval = msecs_to_jiffies(interval); 9046 interval = clamp(interval, 1UL, max_load_balance_interval); 9047 9048 return interval; 9049 } 9050 9051 static inline void 9052 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 9053 { 9054 unsigned long interval, next; 9055 9056 /* used by idle balance, so cpu_busy = 0 */ 9057 interval = get_sd_balance_interval(sd, 0); 9058 next = sd->last_balance + interval; 9059 9060 if (time_after(*next_balance, next)) 9061 *next_balance = next; 9062 } 9063 9064 /* 9065 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 9066 * running tasks off the busiest CPU onto idle CPUs. It requires at 9067 * least 1 task to be running on each physical CPU where possible, and 9068 * avoids physical / logical imbalances. 9069 */ 9070 static int active_load_balance_cpu_stop(void *data) 9071 { 9072 struct rq *busiest_rq = data; 9073 int busiest_cpu = cpu_of(busiest_rq); 9074 int target_cpu = busiest_rq->push_cpu; 9075 struct rq *target_rq = cpu_rq(target_cpu); 9076 struct sched_domain *sd; 9077 struct task_struct *p = NULL; 9078 struct rq_flags rf; 9079 9080 rq_lock_irq(busiest_rq, &rf); 9081 /* 9082 * Between queueing the stop-work and running it is a hole in which 9083 * CPUs can become inactive. We should not move tasks from or to 9084 * inactive CPUs. 9085 */ 9086 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 9087 goto out_unlock; 9088 9089 /* Make sure the requested CPU hasn't gone down in the meantime: */ 9090 if (unlikely(busiest_cpu != smp_processor_id() || 9091 !busiest_rq->active_balance)) 9092 goto out_unlock; 9093 9094 /* Is there any task to move? */ 9095 if (busiest_rq->nr_running <= 1) 9096 goto out_unlock; 9097 9098 /* 9099 * This condition is "impossible", if it occurs 9100 * we need to fix it. Originally reported by 9101 * Bjorn Helgaas on a 128-CPU setup. 9102 */ 9103 BUG_ON(busiest_rq == target_rq); 9104 9105 /* Search for an sd spanning us and the target CPU. */ 9106 rcu_read_lock(); 9107 for_each_domain(target_cpu, sd) { 9108 if ((sd->flags & SD_LOAD_BALANCE) && 9109 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 9110 break; 9111 } 9112 9113 if (likely(sd)) { 9114 struct lb_env env = { 9115 .sd = sd, 9116 .dst_cpu = target_cpu, 9117 .dst_rq = target_rq, 9118 .src_cpu = busiest_rq->cpu, 9119 .src_rq = busiest_rq, 9120 .idle = CPU_IDLE, 9121 /* 9122 * can_migrate_task() doesn't need to compute new_dst_cpu 9123 * for active balancing. Since we have CPU_IDLE, but no 9124 * @dst_grpmask we need to make that test go away with lying 9125 * about DST_PINNED. 9126 */ 9127 .flags = LBF_DST_PINNED, 9128 }; 9129 9130 schedstat_inc(sd->alb_count); 9131 update_rq_clock(busiest_rq); 9132 9133 p = detach_one_task(&env); 9134 if (p) { 9135 schedstat_inc(sd->alb_pushed); 9136 /* Active balancing done, reset the failure counter. */ 9137 sd->nr_balance_failed = 0; 9138 } else { 9139 schedstat_inc(sd->alb_failed); 9140 } 9141 } 9142 rcu_read_unlock(); 9143 out_unlock: 9144 busiest_rq->active_balance = 0; 9145 rq_unlock(busiest_rq, &rf); 9146 9147 if (p) 9148 attach_one_task(target_rq, p); 9149 9150 local_irq_enable(); 9151 9152 return 0; 9153 } 9154 9155 static DEFINE_SPINLOCK(balancing); 9156 9157 /* 9158 * Scale the max load_balance interval with the number of CPUs in the system. 9159 * This trades load-balance latency on larger machines for less cross talk. 9160 */ 9161 void update_max_interval(void) 9162 { 9163 max_load_balance_interval = HZ*num_online_cpus()/10; 9164 } 9165 9166 /* 9167 * It checks each scheduling domain to see if it is due to be balanced, 9168 * and initiates a balancing operation if so. 9169 * 9170 * Balancing parameters are set up in init_sched_domains. 9171 */ 9172 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 9173 { 9174 int continue_balancing = 1; 9175 int cpu = rq->cpu; 9176 unsigned long interval; 9177 struct sched_domain *sd; 9178 /* Earliest time when we have to do rebalance again */ 9179 unsigned long next_balance = jiffies + 60*HZ; 9180 int update_next_balance = 0; 9181 int need_serialize, need_decay = 0; 9182 u64 max_cost = 0; 9183 9184 rcu_read_lock(); 9185 for_each_domain(cpu, sd) { 9186 /* 9187 * Decay the newidle max times here because this is a regular 9188 * visit to all the domains. Decay ~1% per second. 9189 */ 9190 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 9191 sd->max_newidle_lb_cost = 9192 (sd->max_newidle_lb_cost * 253) / 256; 9193 sd->next_decay_max_lb_cost = jiffies + HZ; 9194 need_decay = 1; 9195 } 9196 max_cost += sd->max_newidle_lb_cost; 9197 9198 if (!(sd->flags & SD_LOAD_BALANCE)) 9199 continue; 9200 9201 /* 9202 * Stop the load balance at this level. There is another 9203 * CPU in our sched group which is doing load balancing more 9204 * actively. 9205 */ 9206 if (!continue_balancing) { 9207 if (need_decay) 9208 continue; 9209 break; 9210 } 9211 9212 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9213 9214 need_serialize = sd->flags & SD_SERIALIZE; 9215 if (need_serialize) { 9216 if (!spin_trylock(&balancing)) 9217 goto out; 9218 } 9219 9220 if (time_after_eq(jiffies, sd->last_balance + interval)) { 9221 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 9222 /* 9223 * The LBF_DST_PINNED logic could have changed 9224 * env->dst_cpu, so we can't know our idle 9225 * state even if we migrated tasks. Update it. 9226 */ 9227 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 9228 } 9229 sd->last_balance = jiffies; 9230 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9231 } 9232 if (need_serialize) 9233 spin_unlock(&balancing); 9234 out: 9235 if (time_after(next_balance, sd->last_balance + interval)) { 9236 next_balance = sd->last_balance + interval; 9237 update_next_balance = 1; 9238 } 9239 } 9240 if (need_decay) { 9241 /* 9242 * Ensure the rq-wide value also decays but keep it at a 9243 * reasonable floor to avoid funnies with rq->avg_idle. 9244 */ 9245 rq->max_idle_balance_cost = 9246 max((u64)sysctl_sched_migration_cost, max_cost); 9247 } 9248 rcu_read_unlock(); 9249 9250 /* 9251 * next_balance will be updated only when there is a need. 9252 * When the cpu is attached to null domain for ex, it will not be 9253 * updated. 9254 */ 9255 if (likely(update_next_balance)) { 9256 rq->next_balance = next_balance; 9257 9258 #ifdef CONFIG_NO_HZ_COMMON 9259 /* 9260 * If this CPU has been elected to perform the nohz idle 9261 * balance. Other idle CPUs have already rebalanced with 9262 * nohz_idle_balance() and nohz.next_balance has been 9263 * updated accordingly. This CPU is now running the idle load 9264 * balance for itself and we need to update the 9265 * nohz.next_balance accordingly. 9266 */ 9267 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 9268 nohz.next_balance = rq->next_balance; 9269 #endif 9270 } 9271 } 9272 9273 static inline int on_null_domain(struct rq *rq) 9274 { 9275 return unlikely(!rcu_dereference_sched(rq->sd)); 9276 } 9277 9278 #ifdef CONFIG_NO_HZ_COMMON 9279 /* 9280 * idle load balancing details 9281 * - When one of the busy CPUs notice that there may be an idle rebalancing 9282 * needed, they will kick the idle load balancer, which then does idle 9283 * load balancing for all the idle CPUs. 9284 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set 9285 * anywhere yet. 9286 */ 9287 9288 static inline int find_new_ilb(void) 9289 { 9290 int ilb; 9291 9292 for_each_cpu_and(ilb, nohz.idle_cpus_mask, 9293 housekeeping_cpumask(HK_FLAG_MISC)) { 9294 if (idle_cpu(ilb)) 9295 return ilb; 9296 } 9297 9298 return nr_cpu_ids; 9299 } 9300 9301 /* 9302 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 9303 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one). 9304 */ 9305 static void kick_ilb(unsigned int flags) 9306 { 9307 int ilb_cpu; 9308 9309 nohz.next_balance++; 9310 9311 ilb_cpu = find_new_ilb(); 9312 9313 if (ilb_cpu >= nr_cpu_ids) 9314 return; 9315 9316 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 9317 if (flags & NOHZ_KICK_MASK) 9318 return; 9319 9320 /* 9321 * Use smp_send_reschedule() instead of resched_cpu(). 9322 * This way we generate a sched IPI on the target CPU which 9323 * is idle. And the softirq performing nohz idle load balance 9324 * will be run before returning from the IPI. 9325 */ 9326 smp_send_reschedule(ilb_cpu); 9327 } 9328 9329 /* 9330 * Current decision point for kicking the idle load balancer in the presence 9331 * of idle CPUs in the system. 9332 */ 9333 static void nohz_balancer_kick(struct rq *rq) 9334 { 9335 unsigned long now = jiffies; 9336 struct sched_domain_shared *sds; 9337 struct sched_domain *sd; 9338 int nr_busy, i, cpu = rq->cpu; 9339 unsigned int flags = 0; 9340 9341 if (unlikely(rq->idle_balance)) 9342 return; 9343 9344 /* 9345 * We may be recently in ticked or tickless idle mode. At the first 9346 * busy tick after returning from idle, we will update the busy stats. 9347 */ 9348 nohz_balance_exit_idle(rq); 9349 9350 /* 9351 * None are in tickless mode and hence no need for NOHZ idle load 9352 * balancing. 9353 */ 9354 if (likely(!atomic_read(&nohz.nr_cpus))) 9355 return; 9356 9357 if (READ_ONCE(nohz.has_blocked) && 9358 time_after(now, READ_ONCE(nohz.next_blocked))) 9359 flags = NOHZ_STATS_KICK; 9360 9361 if (time_before(now, nohz.next_balance)) 9362 goto out; 9363 9364 if (rq->nr_running >= 2) { 9365 flags = NOHZ_KICK_MASK; 9366 goto out; 9367 } 9368 9369 rcu_read_lock(); 9370 9371 sd = rcu_dereference(rq->sd); 9372 if (sd) { 9373 /* 9374 * If there's a CFS task and the current CPU has reduced 9375 * capacity; kick the ILB to see if there's a better CPU to run 9376 * on. 9377 */ 9378 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 9379 flags = NOHZ_KICK_MASK; 9380 goto unlock; 9381 } 9382 } 9383 9384 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 9385 if (sd) { 9386 /* 9387 * When ASYM_PACKING; see if there's a more preferred CPU 9388 * currently idle; in which case, kick the ILB to move tasks 9389 * around. 9390 */ 9391 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 9392 if (sched_asym_prefer(i, cpu)) { 9393 flags = NOHZ_KICK_MASK; 9394 goto unlock; 9395 } 9396 } 9397 } 9398 9399 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 9400 if (sd) { 9401 /* 9402 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 9403 * to run the misfit task on. 9404 */ 9405 if (check_misfit_status(rq, sd)) { 9406 flags = NOHZ_KICK_MASK; 9407 goto unlock; 9408 } 9409 9410 /* 9411 * For asymmetric systems, we do not want to nicely balance 9412 * cache use, instead we want to embrace asymmetry and only 9413 * ensure tasks have enough CPU capacity. 9414 * 9415 * Skip the LLC logic because it's not relevant in that case. 9416 */ 9417 goto unlock; 9418 } 9419 9420 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 9421 if (sds) { 9422 /* 9423 * If there is an imbalance between LLC domains (IOW we could 9424 * increase the overall cache use), we need some less-loaded LLC 9425 * domain to pull some load. Likewise, we may need to spread 9426 * load within the current LLC domain (e.g. packed SMT cores but 9427 * other CPUs are idle). We can't really know from here how busy 9428 * the others are - so just get a nohz balance going if it looks 9429 * like this LLC domain has tasks we could move. 9430 */ 9431 nr_busy = atomic_read(&sds->nr_busy_cpus); 9432 if (nr_busy > 1) { 9433 flags = NOHZ_KICK_MASK; 9434 goto unlock; 9435 } 9436 } 9437 unlock: 9438 rcu_read_unlock(); 9439 out: 9440 if (flags) 9441 kick_ilb(flags); 9442 } 9443 9444 static void set_cpu_sd_state_busy(int cpu) 9445 { 9446 struct sched_domain *sd; 9447 9448 rcu_read_lock(); 9449 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9450 9451 if (!sd || !sd->nohz_idle) 9452 goto unlock; 9453 sd->nohz_idle = 0; 9454 9455 atomic_inc(&sd->shared->nr_busy_cpus); 9456 unlock: 9457 rcu_read_unlock(); 9458 } 9459 9460 void nohz_balance_exit_idle(struct rq *rq) 9461 { 9462 SCHED_WARN_ON(rq != this_rq()); 9463 9464 if (likely(!rq->nohz_tick_stopped)) 9465 return; 9466 9467 rq->nohz_tick_stopped = 0; 9468 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 9469 atomic_dec(&nohz.nr_cpus); 9470 9471 set_cpu_sd_state_busy(rq->cpu); 9472 } 9473 9474 static void set_cpu_sd_state_idle(int cpu) 9475 { 9476 struct sched_domain *sd; 9477 9478 rcu_read_lock(); 9479 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9480 9481 if (!sd || sd->nohz_idle) 9482 goto unlock; 9483 sd->nohz_idle = 1; 9484 9485 atomic_dec(&sd->shared->nr_busy_cpus); 9486 unlock: 9487 rcu_read_unlock(); 9488 } 9489 9490 /* 9491 * This routine will record that the CPU is going idle with tick stopped. 9492 * This info will be used in performing idle load balancing in the future. 9493 */ 9494 void nohz_balance_enter_idle(int cpu) 9495 { 9496 struct rq *rq = cpu_rq(cpu); 9497 9498 SCHED_WARN_ON(cpu != smp_processor_id()); 9499 9500 /* If this CPU is going down, then nothing needs to be done: */ 9501 if (!cpu_active(cpu)) 9502 return; 9503 9504 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 9505 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 9506 return; 9507 9508 /* 9509 * Can be set safely without rq->lock held 9510 * If a clear happens, it will have evaluated last additions because 9511 * rq->lock is held during the check and the clear 9512 */ 9513 rq->has_blocked_load = 1; 9514 9515 /* 9516 * The tick is still stopped but load could have been added in the 9517 * meantime. We set the nohz.has_blocked flag to trig a check of the 9518 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 9519 * of nohz.has_blocked can only happen after checking the new load 9520 */ 9521 if (rq->nohz_tick_stopped) 9522 goto out; 9523 9524 /* If we're a completely isolated CPU, we don't play: */ 9525 if (on_null_domain(rq)) 9526 return; 9527 9528 rq->nohz_tick_stopped = 1; 9529 9530 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 9531 atomic_inc(&nohz.nr_cpus); 9532 9533 /* 9534 * Ensures that if nohz_idle_balance() fails to observe our 9535 * @idle_cpus_mask store, it must observe the @has_blocked 9536 * store. 9537 */ 9538 smp_mb__after_atomic(); 9539 9540 set_cpu_sd_state_idle(cpu); 9541 9542 out: 9543 /* 9544 * Each time a cpu enter idle, we assume that it has blocked load and 9545 * enable the periodic update of the load of idle cpus 9546 */ 9547 WRITE_ONCE(nohz.has_blocked, 1); 9548 } 9549 9550 /* 9551 * Internal function that runs load balance for all idle cpus. The load balance 9552 * can be a simple update of blocked load or a complete load balance with 9553 * tasks movement depending of flags. 9554 * The function returns false if the loop has stopped before running 9555 * through all idle CPUs. 9556 */ 9557 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 9558 enum cpu_idle_type idle) 9559 { 9560 /* Earliest time when we have to do rebalance again */ 9561 unsigned long now = jiffies; 9562 unsigned long next_balance = now + 60*HZ; 9563 bool has_blocked_load = false; 9564 int update_next_balance = 0; 9565 int this_cpu = this_rq->cpu; 9566 int balance_cpu; 9567 int ret = false; 9568 struct rq *rq; 9569 9570 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 9571 9572 /* 9573 * We assume there will be no idle load after this update and clear 9574 * the has_blocked flag. If a cpu enters idle in the mean time, it will 9575 * set the has_blocked flag and trig another update of idle load. 9576 * Because a cpu that becomes idle, is added to idle_cpus_mask before 9577 * setting the flag, we are sure to not clear the state and not 9578 * check the load of an idle cpu. 9579 */ 9580 WRITE_ONCE(nohz.has_blocked, 0); 9581 9582 /* 9583 * Ensures that if we miss the CPU, we must see the has_blocked 9584 * store from nohz_balance_enter_idle(). 9585 */ 9586 smp_mb(); 9587 9588 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 9589 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 9590 continue; 9591 9592 /* 9593 * If this CPU gets work to do, stop the load balancing 9594 * work being done for other CPUs. Next load 9595 * balancing owner will pick it up. 9596 */ 9597 if (need_resched()) { 9598 has_blocked_load = true; 9599 goto abort; 9600 } 9601 9602 rq = cpu_rq(balance_cpu); 9603 9604 has_blocked_load |= update_nohz_stats(rq, true); 9605 9606 /* 9607 * If time for next balance is due, 9608 * do the balance. 9609 */ 9610 if (time_after_eq(jiffies, rq->next_balance)) { 9611 struct rq_flags rf; 9612 9613 rq_lock_irqsave(rq, &rf); 9614 update_rq_clock(rq); 9615 rq_unlock_irqrestore(rq, &rf); 9616 9617 if (flags & NOHZ_BALANCE_KICK) 9618 rebalance_domains(rq, CPU_IDLE); 9619 } 9620 9621 if (time_after(next_balance, rq->next_balance)) { 9622 next_balance = rq->next_balance; 9623 update_next_balance = 1; 9624 } 9625 } 9626 9627 /* Newly idle CPU doesn't need an update */ 9628 if (idle != CPU_NEWLY_IDLE) { 9629 update_blocked_averages(this_cpu); 9630 has_blocked_load |= this_rq->has_blocked_load; 9631 } 9632 9633 if (flags & NOHZ_BALANCE_KICK) 9634 rebalance_domains(this_rq, CPU_IDLE); 9635 9636 WRITE_ONCE(nohz.next_blocked, 9637 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 9638 9639 /* The full idle balance loop has been done */ 9640 ret = true; 9641 9642 abort: 9643 /* There is still blocked load, enable periodic update */ 9644 if (has_blocked_load) 9645 WRITE_ONCE(nohz.has_blocked, 1); 9646 9647 /* 9648 * next_balance will be updated only when there is a need. 9649 * When the CPU is attached to null domain for ex, it will not be 9650 * updated. 9651 */ 9652 if (likely(update_next_balance)) 9653 nohz.next_balance = next_balance; 9654 9655 return ret; 9656 } 9657 9658 /* 9659 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 9660 * rebalancing for all the cpus for whom scheduler ticks are stopped. 9661 */ 9662 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9663 { 9664 int this_cpu = this_rq->cpu; 9665 unsigned int flags; 9666 9667 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK)) 9668 return false; 9669 9670 if (idle != CPU_IDLE) { 9671 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9672 return false; 9673 } 9674 9675 /* could be _relaxed() */ 9676 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9677 if (!(flags & NOHZ_KICK_MASK)) 9678 return false; 9679 9680 _nohz_idle_balance(this_rq, flags, idle); 9681 9682 return true; 9683 } 9684 9685 static void nohz_newidle_balance(struct rq *this_rq) 9686 { 9687 int this_cpu = this_rq->cpu; 9688 9689 /* 9690 * This CPU doesn't want to be disturbed by scheduler 9691 * housekeeping 9692 */ 9693 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 9694 return; 9695 9696 /* Will wake up very soon. No time for doing anything else*/ 9697 if (this_rq->avg_idle < sysctl_sched_migration_cost) 9698 return; 9699 9700 /* Don't need to update blocked load of idle CPUs*/ 9701 if (!READ_ONCE(nohz.has_blocked) || 9702 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 9703 return; 9704 9705 raw_spin_unlock(&this_rq->lock); 9706 /* 9707 * This CPU is going to be idle and blocked load of idle CPUs 9708 * need to be updated. Run the ilb locally as it is a good 9709 * candidate for ilb instead of waking up another idle CPU. 9710 * Kick an normal ilb if we failed to do the update. 9711 */ 9712 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) 9713 kick_ilb(NOHZ_STATS_KICK); 9714 raw_spin_lock(&this_rq->lock); 9715 } 9716 9717 #else /* !CONFIG_NO_HZ_COMMON */ 9718 static inline void nohz_balancer_kick(struct rq *rq) { } 9719 9720 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9721 { 9722 return false; 9723 } 9724 9725 static inline void nohz_newidle_balance(struct rq *this_rq) { } 9726 #endif /* CONFIG_NO_HZ_COMMON */ 9727 9728 /* 9729 * idle_balance is called by schedule() if this_cpu is about to become 9730 * idle. Attempts to pull tasks from other CPUs. 9731 */ 9732 static int idle_balance(struct rq *this_rq, struct rq_flags *rf) 9733 { 9734 unsigned long next_balance = jiffies + HZ; 9735 int this_cpu = this_rq->cpu; 9736 struct sched_domain *sd; 9737 int pulled_task = 0; 9738 u64 curr_cost = 0; 9739 9740 /* 9741 * We must set idle_stamp _before_ calling idle_balance(), such that we 9742 * measure the duration of idle_balance() as idle time. 9743 */ 9744 this_rq->idle_stamp = rq_clock(this_rq); 9745 9746 /* 9747 * Do not pull tasks towards !active CPUs... 9748 */ 9749 if (!cpu_active(this_cpu)) 9750 return 0; 9751 9752 /* 9753 * This is OK, because current is on_cpu, which avoids it being picked 9754 * for load-balance and preemption/IRQs are still disabled avoiding 9755 * further scheduler activity on it and we're being very careful to 9756 * re-start the picking loop. 9757 */ 9758 rq_unpin_lock(this_rq, rf); 9759 9760 if (this_rq->avg_idle < sysctl_sched_migration_cost || 9761 !READ_ONCE(this_rq->rd->overload)) { 9762 9763 rcu_read_lock(); 9764 sd = rcu_dereference_check_sched_domain(this_rq->sd); 9765 if (sd) 9766 update_next_balance(sd, &next_balance); 9767 rcu_read_unlock(); 9768 9769 nohz_newidle_balance(this_rq); 9770 9771 goto out; 9772 } 9773 9774 raw_spin_unlock(&this_rq->lock); 9775 9776 update_blocked_averages(this_cpu); 9777 rcu_read_lock(); 9778 for_each_domain(this_cpu, sd) { 9779 int continue_balancing = 1; 9780 u64 t0, domain_cost; 9781 9782 if (!(sd->flags & SD_LOAD_BALANCE)) 9783 continue; 9784 9785 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 9786 update_next_balance(sd, &next_balance); 9787 break; 9788 } 9789 9790 if (sd->flags & SD_BALANCE_NEWIDLE) { 9791 t0 = sched_clock_cpu(this_cpu); 9792 9793 pulled_task = load_balance(this_cpu, this_rq, 9794 sd, CPU_NEWLY_IDLE, 9795 &continue_balancing); 9796 9797 domain_cost = sched_clock_cpu(this_cpu) - t0; 9798 if (domain_cost > sd->max_newidle_lb_cost) 9799 sd->max_newidle_lb_cost = domain_cost; 9800 9801 curr_cost += domain_cost; 9802 } 9803 9804 update_next_balance(sd, &next_balance); 9805 9806 /* 9807 * Stop searching for tasks to pull if there are 9808 * now runnable tasks on this rq. 9809 */ 9810 if (pulled_task || this_rq->nr_running > 0) 9811 break; 9812 } 9813 rcu_read_unlock(); 9814 9815 raw_spin_lock(&this_rq->lock); 9816 9817 if (curr_cost > this_rq->max_idle_balance_cost) 9818 this_rq->max_idle_balance_cost = curr_cost; 9819 9820 out: 9821 /* 9822 * While browsing the domains, we released the rq lock, a task could 9823 * have been enqueued in the meantime. Since we're not going idle, 9824 * pretend we pulled a task. 9825 */ 9826 if (this_rq->cfs.h_nr_running && !pulled_task) 9827 pulled_task = 1; 9828 9829 /* Move the next balance forward */ 9830 if (time_after(this_rq->next_balance, next_balance)) 9831 this_rq->next_balance = next_balance; 9832 9833 /* Is there a task of a high priority class? */ 9834 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 9835 pulled_task = -1; 9836 9837 if (pulled_task) 9838 this_rq->idle_stamp = 0; 9839 9840 rq_repin_lock(this_rq, rf); 9841 9842 return pulled_task; 9843 } 9844 9845 /* 9846 * run_rebalance_domains is triggered when needed from the scheduler tick. 9847 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 9848 */ 9849 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 9850 { 9851 struct rq *this_rq = this_rq(); 9852 enum cpu_idle_type idle = this_rq->idle_balance ? 9853 CPU_IDLE : CPU_NOT_IDLE; 9854 9855 /* 9856 * If this CPU has a pending nohz_balance_kick, then do the 9857 * balancing on behalf of the other idle CPUs whose ticks are 9858 * stopped. Do nohz_idle_balance *before* rebalance_domains to 9859 * give the idle CPUs a chance to load balance. Else we may 9860 * load balance only within the local sched_domain hierarchy 9861 * and abort nohz_idle_balance altogether if we pull some load. 9862 */ 9863 if (nohz_idle_balance(this_rq, idle)) 9864 return; 9865 9866 /* normal load balance */ 9867 update_blocked_averages(this_rq->cpu); 9868 rebalance_domains(this_rq, idle); 9869 } 9870 9871 /* 9872 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 9873 */ 9874 void trigger_load_balance(struct rq *rq) 9875 { 9876 /* Don't need to rebalance while attached to NULL domain */ 9877 if (unlikely(on_null_domain(rq))) 9878 return; 9879 9880 if (time_after_eq(jiffies, rq->next_balance)) 9881 raise_softirq(SCHED_SOFTIRQ); 9882 9883 nohz_balancer_kick(rq); 9884 } 9885 9886 static void rq_online_fair(struct rq *rq) 9887 { 9888 update_sysctl(); 9889 9890 update_runtime_enabled(rq); 9891 } 9892 9893 static void rq_offline_fair(struct rq *rq) 9894 { 9895 update_sysctl(); 9896 9897 /* Ensure any throttled groups are reachable by pick_next_task */ 9898 unthrottle_offline_cfs_rqs(rq); 9899 } 9900 9901 #endif /* CONFIG_SMP */ 9902 9903 /* 9904 * scheduler tick hitting a task of our scheduling class. 9905 * 9906 * NOTE: This function can be called remotely by the tick offload that 9907 * goes along full dynticks. Therefore no local assumption can be made 9908 * and everything must be accessed through the @rq and @curr passed in 9909 * parameters. 9910 */ 9911 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 9912 { 9913 struct cfs_rq *cfs_rq; 9914 struct sched_entity *se = &curr->se; 9915 9916 for_each_sched_entity(se) { 9917 cfs_rq = cfs_rq_of(se); 9918 entity_tick(cfs_rq, se, queued); 9919 } 9920 9921 if (static_branch_unlikely(&sched_numa_balancing)) 9922 task_tick_numa(rq, curr); 9923 9924 update_misfit_status(curr, rq); 9925 update_overutilized_status(task_rq(curr)); 9926 } 9927 9928 /* 9929 * called on fork with the child task as argument from the parent's context 9930 * - child not yet on the tasklist 9931 * - preemption disabled 9932 */ 9933 static void task_fork_fair(struct task_struct *p) 9934 { 9935 struct cfs_rq *cfs_rq; 9936 struct sched_entity *se = &p->se, *curr; 9937 struct rq *rq = this_rq(); 9938 struct rq_flags rf; 9939 9940 rq_lock(rq, &rf); 9941 update_rq_clock(rq); 9942 9943 cfs_rq = task_cfs_rq(current); 9944 curr = cfs_rq->curr; 9945 if (curr) { 9946 update_curr(cfs_rq); 9947 se->vruntime = curr->vruntime; 9948 } 9949 place_entity(cfs_rq, se, 1); 9950 9951 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 9952 /* 9953 * Upon rescheduling, sched_class::put_prev_task() will place 9954 * 'current' within the tree based on its new key value. 9955 */ 9956 swap(curr->vruntime, se->vruntime); 9957 resched_curr(rq); 9958 } 9959 9960 se->vruntime -= cfs_rq->min_vruntime; 9961 rq_unlock(rq, &rf); 9962 } 9963 9964 /* 9965 * Priority of the task has changed. Check to see if we preempt 9966 * the current task. 9967 */ 9968 static void 9969 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 9970 { 9971 if (!task_on_rq_queued(p)) 9972 return; 9973 9974 /* 9975 * Reschedule if we are currently running on this runqueue and 9976 * our priority decreased, or if we are not currently running on 9977 * this runqueue and our priority is higher than the current's 9978 */ 9979 if (rq->curr == p) { 9980 if (p->prio > oldprio) 9981 resched_curr(rq); 9982 } else 9983 check_preempt_curr(rq, p, 0); 9984 } 9985 9986 static inline bool vruntime_normalized(struct task_struct *p) 9987 { 9988 struct sched_entity *se = &p->se; 9989 9990 /* 9991 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 9992 * the dequeue_entity(.flags=0) will already have normalized the 9993 * vruntime. 9994 */ 9995 if (p->on_rq) 9996 return true; 9997 9998 /* 9999 * When !on_rq, vruntime of the task has usually NOT been normalized. 10000 * But there are some cases where it has already been normalized: 10001 * 10002 * - A forked child which is waiting for being woken up by 10003 * wake_up_new_task(). 10004 * - A task which has been woken up by try_to_wake_up() and 10005 * waiting for actually being woken up by sched_ttwu_pending(). 10006 */ 10007 if (!se->sum_exec_runtime || 10008 (p->state == TASK_WAKING && p->sched_remote_wakeup)) 10009 return true; 10010 10011 return false; 10012 } 10013 10014 #ifdef CONFIG_FAIR_GROUP_SCHED 10015 /* 10016 * Propagate the changes of the sched_entity across the tg tree to make it 10017 * visible to the root 10018 */ 10019 static void propagate_entity_cfs_rq(struct sched_entity *se) 10020 { 10021 struct cfs_rq *cfs_rq; 10022 10023 /* Start to propagate at parent */ 10024 se = se->parent; 10025 10026 for_each_sched_entity(se) { 10027 cfs_rq = cfs_rq_of(se); 10028 10029 if (cfs_rq_throttled(cfs_rq)) 10030 break; 10031 10032 update_load_avg(cfs_rq, se, UPDATE_TG); 10033 } 10034 } 10035 #else 10036 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 10037 #endif 10038 10039 static void detach_entity_cfs_rq(struct sched_entity *se) 10040 { 10041 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10042 10043 /* Catch up with the cfs_rq and remove our load when we leave */ 10044 update_load_avg(cfs_rq, se, 0); 10045 detach_entity_load_avg(cfs_rq, se); 10046 update_tg_load_avg(cfs_rq, false); 10047 propagate_entity_cfs_rq(se); 10048 } 10049 10050 static void attach_entity_cfs_rq(struct sched_entity *se) 10051 { 10052 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10053 10054 #ifdef CONFIG_FAIR_GROUP_SCHED 10055 /* 10056 * Since the real-depth could have been changed (only FAIR 10057 * class maintain depth value), reset depth properly. 10058 */ 10059 se->depth = se->parent ? se->parent->depth + 1 : 0; 10060 #endif 10061 10062 /* Synchronize entity with its cfs_rq */ 10063 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 10064 attach_entity_load_avg(cfs_rq, se, 0); 10065 update_tg_load_avg(cfs_rq, false); 10066 propagate_entity_cfs_rq(se); 10067 } 10068 10069 static void detach_task_cfs_rq(struct task_struct *p) 10070 { 10071 struct sched_entity *se = &p->se; 10072 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10073 10074 if (!vruntime_normalized(p)) { 10075 /* 10076 * Fix up our vruntime so that the current sleep doesn't 10077 * cause 'unlimited' sleep bonus. 10078 */ 10079 place_entity(cfs_rq, se, 0); 10080 se->vruntime -= cfs_rq->min_vruntime; 10081 } 10082 10083 detach_entity_cfs_rq(se); 10084 } 10085 10086 static void attach_task_cfs_rq(struct task_struct *p) 10087 { 10088 struct sched_entity *se = &p->se; 10089 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10090 10091 attach_entity_cfs_rq(se); 10092 10093 if (!vruntime_normalized(p)) 10094 se->vruntime += cfs_rq->min_vruntime; 10095 } 10096 10097 static void switched_from_fair(struct rq *rq, struct task_struct *p) 10098 { 10099 detach_task_cfs_rq(p); 10100 } 10101 10102 static void switched_to_fair(struct rq *rq, struct task_struct *p) 10103 { 10104 attach_task_cfs_rq(p); 10105 10106 if (task_on_rq_queued(p)) { 10107 /* 10108 * We were most likely switched from sched_rt, so 10109 * kick off the schedule if running, otherwise just see 10110 * if we can still preempt the current task. 10111 */ 10112 if (rq->curr == p) 10113 resched_curr(rq); 10114 else 10115 check_preempt_curr(rq, p, 0); 10116 } 10117 } 10118 10119 /* Account for a task changing its policy or group. 10120 * 10121 * This routine is mostly called to set cfs_rq->curr field when a task 10122 * migrates between groups/classes. 10123 */ 10124 static void set_curr_task_fair(struct rq *rq) 10125 { 10126 struct sched_entity *se = &rq->curr->se; 10127 10128 for_each_sched_entity(se) { 10129 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10130 10131 set_next_entity(cfs_rq, se); 10132 /* ensure bandwidth has been allocated on our new cfs_rq */ 10133 account_cfs_rq_runtime(cfs_rq, 0); 10134 } 10135 } 10136 10137 void init_cfs_rq(struct cfs_rq *cfs_rq) 10138 { 10139 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 10140 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 10141 #ifndef CONFIG_64BIT 10142 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 10143 #endif 10144 #ifdef CONFIG_SMP 10145 raw_spin_lock_init(&cfs_rq->removed.lock); 10146 #endif 10147 } 10148 10149 #ifdef CONFIG_FAIR_GROUP_SCHED 10150 static void task_set_group_fair(struct task_struct *p) 10151 { 10152 struct sched_entity *se = &p->se; 10153 10154 set_task_rq(p, task_cpu(p)); 10155 se->depth = se->parent ? se->parent->depth + 1 : 0; 10156 } 10157 10158 static void task_move_group_fair(struct task_struct *p) 10159 { 10160 detach_task_cfs_rq(p); 10161 set_task_rq(p, task_cpu(p)); 10162 10163 #ifdef CONFIG_SMP 10164 /* Tell se's cfs_rq has been changed -- migrated */ 10165 p->se.avg.last_update_time = 0; 10166 #endif 10167 attach_task_cfs_rq(p); 10168 } 10169 10170 static void task_change_group_fair(struct task_struct *p, int type) 10171 { 10172 switch (type) { 10173 case TASK_SET_GROUP: 10174 task_set_group_fair(p); 10175 break; 10176 10177 case TASK_MOVE_GROUP: 10178 task_move_group_fair(p); 10179 break; 10180 } 10181 } 10182 10183 void free_fair_sched_group(struct task_group *tg) 10184 { 10185 int i; 10186 10187 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10188 10189 for_each_possible_cpu(i) { 10190 if (tg->cfs_rq) 10191 kfree(tg->cfs_rq[i]); 10192 if (tg->se) 10193 kfree(tg->se[i]); 10194 } 10195 10196 kfree(tg->cfs_rq); 10197 kfree(tg->se); 10198 } 10199 10200 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10201 { 10202 struct sched_entity *se; 10203 struct cfs_rq *cfs_rq; 10204 int i; 10205 10206 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 10207 if (!tg->cfs_rq) 10208 goto err; 10209 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 10210 if (!tg->se) 10211 goto err; 10212 10213 tg->shares = NICE_0_LOAD; 10214 10215 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10216 10217 for_each_possible_cpu(i) { 10218 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 10219 GFP_KERNEL, cpu_to_node(i)); 10220 if (!cfs_rq) 10221 goto err; 10222 10223 se = kzalloc_node(sizeof(struct sched_entity), 10224 GFP_KERNEL, cpu_to_node(i)); 10225 if (!se) 10226 goto err_free_rq; 10227 10228 init_cfs_rq(cfs_rq); 10229 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 10230 init_entity_runnable_average(se); 10231 } 10232 10233 return 1; 10234 10235 err_free_rq: 10236 kfree(cfs_rq); 10237 err: 10238 return 0; 10239 } 10240 10241 void online_fair_sched_group(struct task_group *tg) 10242 { 10243 struct sched_entity *se; 10244 struct rq *rq; 10245 int i; 10246 10247 for_each_possible_cpu(i) { 10248 rq = cpu_rq(i); 10249 se = tg->se[i]; 10250 10251 raw_spin_lock_irq(&rq->lock); 10252 update_rq_clock(rq); 10253 attach_entity_cfs_rq(se); 10254 sync_throttle(tg, i); 10255 raw_spin_unlock_irq(&rq->lock); 10256 } 10257 } 10258 10259 void unregister_fair_sched_group(struct task_group *tg) 10260 { 10261 unsigned long flags; 10262 struct rq *rq; 10263 int cpu; 10264 10265 for_each_possible_cpu(cpu) { 10266 if (tg->se[cpu]) 10267 remove_entity_load_avg(tg->se[cpu]); 10268 10269 /* 10270 * Only empty task groups can be destroyed; so we can speculatively 10271 * check on_list without danger of it being re-added. 10272 */ 10273 if (!tg->cfs_rq[cpu]->on_list) 10274 continue; 10275 10276 rq = cpu_rq(cpu); 10277 10278 raw_spin_lock_irqsave(&rq->lock, flags); 10279 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 10280 raw_spin_unlock_irqrestore(&rq->lock, flags); 10281 } 10282 } 10283 10284 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 10285 struct sched_entity *se, int cpu, 10286 struct sched_entity *parent) 10287 { 10288 struct rq *rq = cpu_rq(cpu); 10289 10290 cfs_rq->tg = tg; 10291 cfs_rq->rq = rq; 10292 init_cfs_rq_runtime(cfs_rq); 10293 10294 tg->cfs_rq[cpu] = cfs_rq; 10295 tg->se[cpu] = se; 10296 10297 /* se could be NULL for root_task_group */ 10298 if (!se) 10299 return; 10300 10301 if (!parent) { 10302 se->cfs_rq = &rq->cfs; 10303 se->depth = 0; 10304 } else { 10305 se->cfs_rq = parent->my_q; 10306 se->depth = parent->depth + 1; 10307 } 10308 10309 se->my_q = cfs_rq; 10310 /* guarantee group entities always have weight */ 10311 update_load_set(&se->load, NICE_0_LOAD); 10312 se->parent = parent; 10313 } 10314 10315 static DEFINE_MUTEX(shares_mutex); 10316 10317 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 10318 { 10319 int i; 10320 10321 /* 10322 * We can't change the weight of the root cgroup. 10323 */ 10324 if (!tg->se[0]) 10325 return -EINVAL; 10326 10327 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 10328 10329 mutex_lock(&shares_mutex); 10330 if (tg->shares == shares) 10331 goto done; 10332 10333 tg->shares = shares; 10334 for_each_possible_cpu(i) { 10335 struct rq *rq = cpu_rq(i); 10336 struct sched_entity *se = tg->se[i]; 10337 struct rq_flags rf; 10338 10339 /* Propagate contribution to hierarchy */ 10340 rq_lock_irqsave(rq, &rf); 10341 update_rq_clock(rq); 10342 for_each_sched_entity(se) { 10343 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 10344 update_cfs_group(se); 10345 } 10346 rq_unlock_irqrestore(rq, &rf); 10347 } 10348 10349 done: 10350 mutex_unlock(&shares_mutex); 10351 return 0; 10352 } 10353 #else /* CONFIG_FAIR_GROUP_SCHED */ 10354 10355 void free_fair_sched_group(struct task_group *tg) { } 10356 10357 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10358 { 10359 return 1; 10360 } 10361 10362 void online_fair_sched_group(struct task_group *tg) { } 10363 10364 void unregister_fair_sched_group(struct task_group *tg) { } 10365 10366 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10367 10368 10369 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 10370 { 10371 struct sched_entity *se = &task->se; 10372 unsigned int rr_interval = 0; 10373 10374 /* 10375 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 10376 * idle runqueue: 10377 */ 10378 if (rq->cfs.load.weight) 10379 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 10380 10381 return rr_interval; 10382 } 10383 10384 /* 10385 * All the scheduling class methods: 10386 */ 10387 const struct sched_class fair_sched_class = { 10388 .next = &idle_sched_class, 10389 .enqueue_task = enqueue_task_fair, 10390 .dequeue_task = dequeue_task_fair, 10391 .yield_task = yield_task_fair, 10392 .yield_to_task = yield_to_task_fair, 10393 10394 .check_preempt_curr = check_preempt_wakeup, 10395 10396 .pick_next_task = pick_next_task_fair, 10397 .put_prev_task = put_prev_task_fair, 10398 10399 #ifdef CONFIG_SMP 10400 .select_task_rq = select_task_rq_fair, 10401 .migrate_task_rq = migrate_task_rq_fair, 10402 10403 .rq_online = rq_online_fair, 10404 .rq_offline = rq_offline_fair, 10405 10406 .task_dead = task_dead_fair, 10407 .set_cpus_allowed = set_cpus_allowed_common, 10408 #endif 10409 10410 .set_curr_task = set_curr_task_fair, 10411 .task_tick = task_tick_fair, 10412 .task_fork = task_fork_fair, 10413 10414 .prio_changed = prio_changed_fair, 10415 .switched_from = switched_from_fair, 10416 .switched_to = switched_to_fair, 10417 10418 .get_rr_interval = get_rr_interval_fair, 10419 10420 .update_curr = update_curr_fair, 10421 10422 #ifdef CONFIG_FAIR_GROUP_SCHED 10423 .task_change_group = task_change_group_fair, 10424 #endif 10425 10426 #ifdef CONFIG_UCLAMP_TASK 10427 .uclamp_enabled = 1, 10428 #endif 10429 }; 10430 10431 #ifdef CONFIG_SCHED_DEBUG 10432 void print_cfs_stats(struct seq_file *m, int cpu) 10433 { 10434 struct cfs_rq *cfs_rq, *pos; 10435 10436 rcu_read_lock(); 10437 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 10438 print_cfs_rq(m, cpu, cfs_rq); 10439 rcu_read_unlock(); 10440 } 10441 10442 #ifdef CONFIG_NUMA_BALANCING 10443 void show_numa_stats(struct task_struct *p, struct seq_file *m) 10444 { 10445 int node; 10446 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 10447 10448 for_each_online_node(node) { 10449 if (p->numa_faults) { 10450 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 10451 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 10452 } 10453 if (p->numa_group) { 10454 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 10455 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 10456 } 10457 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 10458 } 10459 } 10460 #endif /* CONFIG_NUMA_BALANCING */ 10461 #endif /* CONFIG_SCHED_DEBUG */ 10462 10463 __init void init_sched_fair_class(void) 10464 { 10465 #ifdef CONFIG_SMP 10466 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 10467 10468 #ifdef CONFIG_NO_HZ_COMMON 10469 nohz.next_balance = jiffies; 10470 nohz.next_blocked = jiffies; 10471 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 10472 #endif 10473 #endif /* SMP */ 10474 10475 } 10476 10477 /* 10478 * Helper functions to facilitate extracting info from tracepoints. 10479 */ 10480 10481 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq) 10482 { 10483 #ifdef CONFIG_SMP 10484 return cfs_rq ? &cfs_rq->avg : NULL; 10485 #else 10486 return NULL; 10487 #endif 10488 } 10489 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg); 10490 10491 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len) 10492 { 10493 if (!cfs_rq) { 10494 if (str) 10495 strlcpy(str, "(null)", len); 10496 else 10497 return NULL; 10498 } 10499 10500 cfs_rq_tg_path(cfs_rq, str, len); 10501 return str; 10502 } 10503 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path); 10504 10505 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq) 10506 { 10507 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1; 10508 } 10509 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu); 10510 10511 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq) 10512 { 10513 #ifdef CONFIG_SMP 10514 return rq ? &rq->avg_rt : NULL; 10515 #else 10516 return NULL; 10517 #endif 10518 } 10519 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt); 10520 10521 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq) 10522 { 10523 #ifdef CONFIG_SMP 10524 return rq ? &rq->avg_dl : NULL; 10525 #else 10526 return NULL; 10527 #endif 10528 } 10529 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl); 10530 10531 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq) 10532 { 10533 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ) 10534 return rq ? &rq->avg_irq : NULL; 10535 #else 10536 return NULL; 10537 #endif 10538 } 10539 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq); 10540 10541 int sched_trace_rq_cpu(struct rq *rq) 10542 { 10543 return rq ? cpu_of(rq) : -1; 10544 } 10545 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu); 10546 10547 const struct cpumask *sched_trace_rd_span(struct root_domain *rd) 10548 { 10549 #ifdef CONFIG_SMP 10550 return rd ? rd->span : NULL; 10551 #else 10552 return NULL; 10553 #endif 10554 } 10555 EXPORT_SYMBOL_GPL(sched_trace_rd_span); 10556