xref: /openbmc/linux/kernel/sched/fair.c (revision b593bce5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 #include <trace/events/sched.h>
26 
27 /*
28  * Targeted preemption latency for CPU-bound tasks:
29  *
30  * NOTE: this latency value is not the same as the concept of
31  * 'timeslice length' - timeslices in CFS are of variable length
32  * and have no persistent notion like in traditional, time-slice
33  * based scheduling concepts.
34  *
35  * (to see the precise effective timeslice length of your workload,
36  *  run vmstat and monitor the context-switches (cs) field)
37  *
38  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39  */
40 unsigned int sysctl_sched_latency			= 6000000ULL;
41 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
42 
43 /*
44  * The initial- and re-scaling of tunables is configurable
45  *
46  * Options are:
47  *
48  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
49  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51  *
52  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53  */
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55 
56 /*
57  * Minimal preemption granularity for CPU-bound tasks:
58  *
59  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60  */
61 unsigned int sysctl_sched_min_granularity			= 750000ULL;
62 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 
64 /*
65  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66  */
67 static unsigned int sched_nr_latency = 8;
68 
69 /*
70  * After fork, child runs first. If set to 0 (default) then
71  * parent will (try to) run first.
72  */
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
74 
75 /*
76  * SCHED_OTHER wake-up granularity.
77  *
78  * This option delays the preemption effects of decoupled workloads
79  * and reduces their over-scheduling. Synchronous workloads will still
80  * have immediate wakeup/sleep latencies.
81  *
82  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83  */
84 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
85 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 #ifdef CONFIG_SMP
90 /*
91  * For asym packing, by default the lower numbered CPU has higher priority.
92  */
93 int __weak arch_asym_cpu_priority(int cpu)
94 {
95 	return -cpu;
96 }
97 
98 /*
99  * The margin used when comparing utilization with CPU capacity:
100  * util * margin < capacity * 1024
101  *
102  * (default: ~20%)
103  */
104 static unsigned int capacity_margin			= 1280;
105 #endif
106 
107 #ifdef CONFIG_CFS_BANDWIDTH
108 /*
109  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110  * each time a cfs_rq requests quota.
111  *
112  * Note: in the case that the slice exceeds the runtime remaining (either due
113  * to consumption or the quota being specified to be smaller than the slice)
114  * we will always only issue the remaining available time.
115  *
116  * (default: 5 msec, units: microseconds)
117  */
118 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
119 #endif
120 
121 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 {
123 	lw->weight += inc;
124 	lw->inv_weight = 0;
125 }
126 
127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 {
129 	lw->weight -= dec;
130 	lw->inv_weight = 0;
131 }
132 
133 static inline void update_load_set(struct load_weight *lw, unsigned long w)
134 {
135 	lw->weight = w;
136 	lw->inv_weight = 0;
137 }
138 
139 /*
140  * Increase the granularity value when there are more CPUs,
141  * because with more CPUs the 'effective latency' as visible
142  * to users decreases. But the relationship is not linear,
143  * so pick a second-best guess by going with the log2 of the
144  * number of CPUs.
145  *
146  * This idea comes from the SD scheduler of Con Kolivas:
147  */
148 static unsigned int get_update_sysctl_factor(void)
149 {
150 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 	unsigned int factor;
152 
153 	switch (sysctl_sched_tunable_scaling) {
154 	case SCHED_TUNABLESCALING_NONE:
155 		factor = 1;
156 		break;
157 	case SCHED_TUNABLESCALING_LINEAR:
158 		factor = cpus;
159 		break;
160 	case SCHED_TUNABLESCALING_LOG:
161 	default:
162 		factor = 1 + ilog2(cpus);
163 		break;
164 	}
165 
166 	return factor;
167 }
168 
169 static void update_sysctl(void)
170 {
171 	unsigned int factor = get_update_sysctl_factor();
172 
173 #define SET_SYSCTL(name) \
174 	(sysctl_##name = (factor) * normalized_sysctl_##name)
175 	SET_SYSCTL(sched_min_granularity);
176 	SET_SYSCTL(sched_latency);
177 	SET_SYSCTL(sched_wakeup_granularity);
178 #undef SET_SYSCTL
179 }
180 
181 void sched_init_granularity(void)
182 {
183 	update_sysctl();
184 }
185 
186 #define WMULT_CONST	(~0U)
187 #define WMULT_SHIFT	32
188 
189 static void __update_inv_weight(struct load_weight *lw)
190 {
191 	unsigned long w;
192 
193 	if (likely(lw->inv_weight))
194 		return;
195 
196 	w = scale_load_down(lw->weight);
197 
198 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 		lw->inv_weight = 1;
200 	else if (unlikely(!w))
201 		lw->inv_weight = WMULT_CONST;
202 	else
203 		lw->inv_weight = WMULT_CONST / w;
204 }
205 
206 /*
207  * delta_exec * weight / lw.weight
208  *   OR
209  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210  *
211  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212  * we're guaranteed shift stays positive because inv_weight is guaranteed to
213  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214  *
215  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216  * weight/lw.weight <= 1, and therefore our shift will also be positive.
217  */
218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219 {
220 	u64 fact = scale_load_down(weight);
221 	int shift = WMULT_SHIFT;
222 
223 	__update_inv_weight(lw);
224 
225 	if (unlikely(fact >> 32)) {
226 		while (fact >> 32) {
227 			fact >>= 1;
228 			shift--;
229 		}
230 	}
231 
232 	/* hint to use a 32x32->64 mul */
233 	fact = (u64)(u32)fact * lw->inv_weight;
234 
235 	while (fact >> 32) {
236 		fact >>= 1;
237 		shift--;
238 	}
239 
240 	return mul_u64_u32_shr(delta_exec, fact, shift);
241 }
242 
243 
244 const struct sched_class fair_sched_class;
245 
246 /**************************************************************
247  * CFS operations on generic schedulable entities:
248  */
249 
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 static inline struct task_struct *task_of(struct sched_entity *se)
252 {
253 	SCHED_WARN_ON(!entity_is_task(se));
254 	return container_of(se, struct task_struct, se);
255 }
256 
257 /* Walk up scheduling entities hierarchy */
258 #define for_each_sched_entity(se) \
259 		for (; se; se = se->parent)
260 
261 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
262 {
263 	return p->se.cfs_rq;
264 }
265 
266 /* runqueue on which this entity is (to be) queued */
267 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268 {
269 	return se->cfs_rq;
270 }
271 
272 /* runqueue "owned" by this group */
273 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
274 {
275 	return grp->my_q;
276 }
277 
278 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
279 {
280 	if (!path)
281 		return;
282 
283 	if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
284 		autogroup_path(cfs_rq->tg, path, len);
285 	else if (cfs_rq && cfs_rq->tg->css.cgroup)
286 		cgroup_path(cfs_rq->tg->css.cgroup, path, len);
287 	else
288 		strlcpy(path, "(null)", len);
289 }
290 
291 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
292 {
293 	struct rq *rq = rq_of(cfs_rq);
294 	int cpu = cpu_of(rq);
295 
296 	if (cfs_rq->on_list)
297 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
298 
299 	cfs_rq->on_list = 1;
300 
301 	/*
302 	 * Ensure we either appear before our parent (if already
303 	 * enqueued) or force our parent to appear after us when it is
304 	 * enqueued. The fact that we always enqueue bottom-up
305 	 * reduces this to two cases and a special case for the root
306 	 * cfs_rq. Furthermore, it also means that we will always reset
307 	 * tmp_alone_branch either when the branch is connected
308 	 * to a tree or when we reach the top of the tree
309 	 */
310 	if (cfs_rq->tg->parent &&
311 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
312 		/*
313 		 * If parent is already on the list, we add the child
314 		 * just before. Thanks to circular linked property of
315 		 * the list, this means to put the child at the tail
316 		 * of the list that starts by parent.
317 		 */
318 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
319 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
320 		/*
321 		 * The branch is now connected to its tree so we can
322 		 * reset tmp_alone_branch to the beginning of the
323 		 * list.
324 		 */
325 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
326 		return true;
327 	}
328 
329 	if (!cfs_rq->tg->parent) {
330 		/*
331 		 * cfs rq without parent should be put
332 		 * at the tail of the list.
333 		 */
334 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
335 			&rq->leaf_cfs_rq_list);
336 		/*
337 		 * We have reach the top of a tree so we can reset
338 		 * tmp_alone_branch to the beginning of the list.
339 		 */
340 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
341 		return true;
342 	}
343 
344 	/*
345 	 * The parent has not already been added so we want to
346 	 * make sure that it will be put after us.
347 	 * tmp_alone_branch points to the begin of the branch
348 	 * where we will add parent.
349 	 */
350 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
351 	/*
352 	 * update tmp_alone_branch to points to the new begin
353 	 * of the branch
354 	 */
355 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
356 	return false;
357 }
358 
359 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
360 {
361 	if (cfs_rq->on_list) {
362 		struct rq *rq = rq_of(cfs_rq);
363 
364 		/*
365 		 * With cfs_rq being unthrottled/throttled during an enqueue,
366 		 * it can happen the tmp_alone_branch points the a leaf that
367 		 * we finally want to del. In this case, tmp_alone_branch moves
368 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
369 		 * at the end of the enqueue.
370 		 */
371 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
372 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
373 
374 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
375 		cfs_rq->on_list = 0;
376 	}
377 }
378 
379 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
380 {
381 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
382 }
383 
384 /* Iterate thr' all leaf cfs_rq's on a runqueue */
385 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
386 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
387 				 leaf_cfs_rq_list)
388 
389 /* Do the two (enqueued) entities belong to the same group ? */
390 static inline struct cfs_rq *
391 is_same_group(struct sched_entity *se, struct sched_entity *pse)
392 {
393 	if (se->cfs_rq == pse->cfs_rq)
394 		return se->cfs_rq;
395 
396 	return NULL;
397 }
398 
399 static inline struct sched_entity *parent_entity(struct sched_entity *se)
400 {
401 	return se->parent;
402 }
403 
404 static void
405 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
406 {
407 	int se_depth, pse_depth;
408 
409 	/*
410 	 * preemption test can be made between sibling entities who are in the
411 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
412 	 * both tasks until we find their ancestors who are siblings of common
413 	 * parent.
414 	 */
415 
416 	/* First walk up until both entities are at same depth */
417 	se_depth = (*se)->depth;
418 	pse_depth = (*pse)->depth;
419 
420 	while (se_depth > pse_depth) {
421 		se_depth--;
422 		*se = parent_entity(*se);
423 	}
424 
425 	while (pse_depth > se_depth) {
426 		pse_depth--;
427 		*pse = parent_entity(*pse);
428 	}
429 
430 	while (!is_same_group(*se, *pse)) {
431 		*se = parent_entity(*se);
432 		*pse = parent_entity(*pse);
433 	}
434 }
435 
436 #else	/* !CONFIG_FAIR_GROUP_SCHED */
437 
438 static inline struct task_struct *task_of(struct sched_entity *se)
439 {
440 	return container_of(se, struct task_struct, se);
441 }
442 
443 #define for_each_sched_entity(se) \
444 		for (; se; se = NULL)
445 
446 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
447 {
448 	return &task_rq(p)->cfs;
449 }
450 
451 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
452 {
453 	struct task_struct *p = task_of(se);
454 	struct rq *rq = task_rq(p);
455 
456 	return &rq->cfs;
457 }
458 
459 /* runqueue "owned" by this group */
460 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
461 {
462 	return NULL;
463 }
464 
465 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
466 {
467 	if (path)
468 		strlcpy(path, "(null)", len);
469 }
470 
471 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
472 {
473 	return true;
474 }
475 
476 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
477 {
478 }
479 
480 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
481 {
482 }
483 
484 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
485 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
486 
487 static inline struct sched_entity *parent_entity(struct sched_entity *se)
488 {
489 	return NULL;
490 }
491 
492 static inline void
493 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
494 {
495 }
496 
497 #endif	/* CONFIG_FAIR_GROUP_SCHED */
498 
499 static __always_inline
500 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
501 
502 /**************************************************************
503  * Scheduling class tree data structure manipulation methods:
504  */
505 
506 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
507 {
508 	s64 delta = (s64)(vruntime - max_vruntime);
509 	if (delta > 0)
510 		max_vruntime = vruntime;
511 
512 	return max_vruntime;
513 }
514 
515 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
516 {
517 	s64 delta = (s64)(vruntime - min_vruntime);
518 	if (delta < 0)
519 		min_vruntime = vruntime;
520 
521 	return min_vruntime;
522 }
523 
524 static inline int entity_before(struct sched_entity *a,
525 				struct sched_entity *b)
526 {
527 	return (s64)(a->vruntime - b->vruntime) < 0;
528 }
529 
530 static void update_min_vruntime(struct cfs_rq *cfs_rq)
531 {
532 	struct sched_entity *curr = cfs_rq->curr;
533 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
534 
535 	u64 vruntime = cfs_rq->min_vruntime;
536 
537 	if (curr) {
538 		if (curr->on_rq)
539 			vruntime = curr->vruntime;
540 		else
541 			curr = NULL;
542 	}
543 
544 	if (leftmost) { /* non-empty tree */
545 		struct sched_entity *se;
546 		se = rb_entry(leftmost, struct sched_entity, run_node);
547 
548 		if (!curr)
549 			vruntime = se->vruntime;
550 		else
551 			vruntime = min_vruntime(vruntime, se->vruntime);
552 	}
553 
554 	/* ensure we never gain time by being placed backwards. */
555 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
556 #ifndef CONFIG_64BIT
557 	smp_wmb();
558 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
559 #endif
560 }
561 
562 /*
563  * Enqueue an entity into the rb-tree:
564  */
565 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
566 {
567 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
568 	struct rb_node *parent = NULL;
569 	struct sched_entity *entry;
570 	bool leftmost = true;
571 
572 	/*
573 	 * Find the right place in the rbtree:
574 	 */
575 	while (*link) {
576 		parent = *link;
577 		entry = rb_entry(parent, struct sched_entity, run_node);
578 		/*
579 		 * We dont care about collisions. Nodes with
580 		 * the same key stay together.
581 		 */
582 		if (entity_before(se, entry)) {
583 			link = &parent->rb_left;
584 		} else {
585 			link = &parent->rb_right;
586 			leftmost = false;
587 		}
588 	}
589 
590 	rb_link_node(&se->run_node, parent, link);
591 	rb_insert_color_cached(&se->run_node,
592 			       &cfs_rq->tasks_timeline, leftmost);
593 }
594 
595 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
596 {
597 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
598 }
599 
600 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
601 {
602 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
603 
604 	if (!left)
605 		return NULL;
606 
607 	return rb_entry(left, struct sched_entity, run_node);
608 }
609 
610 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
611 {
612 	struct rb_node *next = rb_next(&se->run_node);
613 
614 	if (!next)
615 		return NULL;
616 
617 	return rb_entry(next, struct sched_entity, run_node);
618 }
619 
620 #ifdef CONFIG_SCHED_DEBUG
621 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
622 {
623 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
624 
625 	if (!last)
626 		return NULL;
627 
628 	return rb_entry(last, struct sched_entity, run_node);
629 }
630 
631 /**************************************************************
632  * Scheduling class statistics methods:
633  */
634 
635 int sched_proc_update_handler(struct ctl_table *table, int write,
636 		void __user *buffer, size_t *lenp,
637 		loff_t *ppos)
638 {
639 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
640 	unsigned int factor = get_update_sysctl_factor();
641 
642 	if (ret || !write)
643 		return ret;
644 
645 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
646 					sysctl_sched_min_granularity);
647 
648 #define WRT_SYSCTL(name) \
649 	(normalized_sysctl_##name = sysctl_##name / (factor))
650 	WRT_SYSCTL(sched_min_granularity);
651 	WRT_SYSCTL(sched_latency);
652 	WRT_SYSCTL(sched_wakeup_granularity);
653 #undef WRT_SYSCTL
654 
655 	return 0;
656 }
657 #endif
658 
659 /*
660  * delta /= w
661  */
662 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
663 {
664 	if (unlikely(se->load.weight != NICE_0_LOAD))
665 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
666 
667 	return delta;
668 }
669 
670 /*
671  * The idea is to set a period in which each task runs once.
672  *
673  * When there are too many tasks (sched_nr_latency) we have to stretch
674  * this period because otherwise the slices get too small.
675  *
676  * p = (nr <= nl) ? l : l*nr/nl
677  */
678 static u64 __sched_period(unsigned long nr_running)
679 {
680 	if (unlikely(nr_running > sched_nr_latency))
681 		return nr_running * sysctl_sched_min_granularity;
682 	else
683 		return sysctl_sched_latency;
684 }
685 
686 /*
687  * We calculate the wall-time slice from the period by taking a part
688  * proportional to the weight.
689  *
690  * s = p*P[w/rw]
691  */
692 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
693 {
694 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
695 
696 	for_each_sched_entity(se) {
697 		struct load_weight *load;
698 		struct load_weight lw;
699 
700 		cfs_rq = cfs_rq_of(se);
701 		load = &cfs_rq->load;
702 
703 		if (unlikely(!se->on_rq)) {
704 			lw = cfs_rq->load;
705 
706 			update_load_add(&lw, se->load.weight);
707 			load = &lw;
708 		}
709 		slice = __calc_delta(slice, se->load.weight, load);
710 	}
711 	return slice;
712 }
713 
714 /*
715  * We calculate the vruntime slice of a to-be-inserted task.
716  *
717  * vs = s/w
718  */
719 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
720 {
721 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
722 }
723 
724 #include "pelt.h"
725 #ifdef CONFIG_SMP
726 
727 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
728 static unsigned long task_h_load(struct task_struct *p);
729 static unsigned long capacity_of(int cpu);
730 
731 /* Give new sched_entity start runnable values to heavy its load in infant time */
732 void init_entity_runnable_average(struct sched_entity *se)
733 {
734 	struct sched_avg *sa = &se->avg;
735 
736 	memset(sa, 0, sizeof(*sa));
737 
738 	/*
739 	 * Tasks are initialized with full load to be seen as heavy tasks until
740 	 * they get a chance to stabilize to their real load level.
741 	 * Group entities are initialized with zero load to reflect the fact that
742 	 * nothing has been attached to the task group yet.
743 	 */
744 	if (entity_is_task(se))
745 		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
746 
747 	se->runnable_weight = se->load.weight;
748 
749 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
750 }
751 
752 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
753 static void attach_entity_cfs_rq(struct sched_entity *se);
754 
755 /*
756  * With new tasks being created, their initial util_avgs are extrapolated
757  * based on the cfs_rq's current util_avg:
758  *
759  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
760  *
761  * However, in many cases, the above util_avg does not give a desired
762  * value. Moreover, the sum of the util_avgs may be divergent, such
763  * as when the series is a harmonic series.
764  *
765  * To solve this problem, we also cap the util_avg of successive tasks to
766  * only 1/2 of the left utilization budget:
767  *
768  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
769  *
770  * where n denotes the nth task and cpu_scale the CPU capacity.
771  *
772  * For example, for a CPU with 1024 of capacity, a simplest series from
773  * the beginning would be like:
774  *
775  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
776  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
777  *
778  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
779  * if util_avg > util_avg_cap.
780  */
781 void post_init_entity_util_avg(struct task_struct *p)
782 {
783 	struct sched_entity *se = &p->se;
784 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
785 	struct sched_avg *sa = &se->avg;
786 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
787 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
788 
789 	if (cap > 0) {
790 		if (cfs_rq->avg.util_avg != 0) {
791 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
792 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
793 
794 			if (sa->util_avg > cap)
795 				sa->util_avg = cap;
796 		} else {
797 			sa->util_avg = cap;
798 		}
799 	}
800 
801 	if (p->sched_class != &fair_sched_class) {
802 		/*
803 		 * For !fair tasks do:
804 		 *
805 		update_cfs_rq_load_avg(now, cfs_rq);
806 		attach_entity_load_avg(cfs_rq, se, 0);
807 		switched_from_fair(rq, p);
808 		 *
809 		 * such that the next switched_to_fair() has the
810 		 * expected state.
811 		 */
812 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
813 		return;
814 	}
815 
816 	attach_entity_cfs_rq(se);
817 }
818 
819 #else /* !CONFIG_SMP */
820 void init_entity_runnable_average(struct sched_entity *se)
821 {
822 }
823 void post_init_entity_util_avg(struct task_struct *p)
824 {
825 }
826 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
827 {
828 }
829 #endif /* CONFIG_SMP */
830 
831 /*
832  * Update the current task's runtime statistics.
833  */
834 static void update_curr(struct cfs_rq *cfs_rq)
835 {
836 	struct sched_entity *curr = cfs_rq->curr;
837 	u64 now = rq_clock_task(rq_of(cfs_rq));
838 	u64 delta_exec;
839 
840 	if (unlikely(!curr))
841 		return;
842 
843 	delta_exec = now - curr->exec_start;
844 	if (unlikely((s64)delta_exec <= 0))
845 		return;
846 
847 	curr->exec_start = now;
848 
849 	schedstat_set(curr->statistics.exec_max,
850 		      max(delta_exec, curr->statistics.exec_max));
851 
852 	curr->sum_exec_runtime += delta_exec;
853 	schedstat_add(cfs_rq->exec_clock, delta_exec);
854 
855 	curr->vruntime += calc_delta_fair(delta_exec, curr);
856 	update_min_vruntime(cfs_rq);
857 
858 	if (entity_is_task(curr)) {
859 		struct task_struct *curtask = task_of(curr);
860 
861 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
862 		cgroup_account_cputime(curtask, delta_exec);
863 		account_group_exec_runtime(curtask, delta_exec);
864 	}
865 
866 	account_cfs_rq_runtime(cfs_rq, delta_exec);
867 }
868 
869 static void update_curr_fair(struct rq *rq)
870 {
871 	update_curr(cfs_rq_of(&rq->curr->se));
872 }
873 
874 static inline void
875 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
876 {
877 	u64 wait_start, prev_wait_start;
878 
879 	if (!schedstat_enabled())
880 		return;
881 
882 	wait_start = rq_clock(rq_of(cfs_rq));
883 	prev_wait_start = schedstat_val(se->statistics.wait_start);
884 
885 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
886 	    likely(wait_start > prev_wait_start))
887 		wait_start -= prev_wait_start;
888 
889 	__schedstat_set(se->statistics.wait_start, wait_start);
890 }
891 
892 static inline void
893 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
894 {
895 	struct task_struct *p;
896 	u64 delta;
897 
898 	if (!schedstat_enabled())
899 		return;
900 
901 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
902 
903 	if (entity_is_task(se)) {
904 		p = task_of(se);
905 		if (task_on_rq_migrating(p)) {
906 			/*
907 			 * Preserve migrating task's wait time so wait_start
908 			 * time stamp can be adjusted to accumulate wait time
909 			 * prior to migration.
910 			 */
911 			__schedstat_set(se->statistics.wait_start, delta);
912 			return;
913 		}
914 		trace_sched_stat_wait(p, delta);
915 	}
916 
917 	__schedstat_set(se->statistics.wait_max,
918 		      max(schedstat_val(se->statistics.wait_max), delta));
919 	__schedstat_inc(se->statistics.wait_count);
920 	__schedstat_add(se->statistics.wait_sum, delta);
921 	__schedstat_set(se->statistics.wait_start, 0);
922 }
923 
924 static inline void
925 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
926 {
927 	struct task_struct *tsk = NULL;
928 	u64 sleep_start, block_start;
929 
930 	if (!schedstat_enabled())
931 		return;
932 
933 	sleep_start = schedstat_val(se->statistics.sleep_start);
934 	block_start = schedstat_val(se->statistics.block_start);
935 
936 	if (entity_is_task(se))
937 		tsk = task_of(se);
938 
939 	if (sleep_start) {
940 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
941 
942 		if ((s64)delta < 0)
943 			delta = 0;
944 
945 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
946 			__schedstat_set(se->statistics.sleep_max, delta);
947 
948 		__schedstat_set(se->statistics.sleep_start, 0);
949 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
950 
951 		if (tsk) {
952 			account_scheduler_latency(tsk, delta >> 10, 1);
953 			trace_sched_stat_sleep(tsk, delta);
954 		}
955 	}
956 	if (block_start) {
957 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
958 
959 		if ((s64)delta < 0)
960 			delta = 0;
961 
962 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
963 			__schedstat_set(se->statistics.block_max, delta);
964 
965 		__schedstat_set(se->statistics.block_start, 0);
966 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
967 
968 		if (tsk) {
969 			if (tsk->in_iowait) {
970 				__schedstat_add(se->statistics.iowait_sum, delta);
971 				__schedstat_inc(se->statistics.iowait_count);
972 				trace_sched_stat_iowait(tsk, delta);
973 			}
974 
975 			trace_sched_stat_blocked(tsk, delta);
976 
977 			/*
978 			 * Blocking time is in units of nanosecs, so shift by
979 			 * 20 to get a milliseconds-range estimation of the
980 			 * amount of time that the task spent sleeping:
981 			 */
982 			if (unlikely(prof_on == SLEEP_PROFILING)) {
983 				profile_hits(SLEEP_PROFILING,
984 						(void *)get_wchan(tsk),
985 						delta >> 20);
986 			}
987 			account_scheduler_latency(tsk, delta >> 10, 0);
988 		}
989 	}
990 }
991 
992 /*
993  * Task is being enqueued - update stats:
994  */
995 static inline void
996 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
997 {
998 	if (!schedstat_enabled())
999 		return;
1000 
1001 	/*
1002 	 * Are we enqueueing a waiting task? (for current tasks
1003 	 * a dequeue/enqueue event is a NOP)
1004 	 */
1005 	if (se != cfs_rq->curr)
1006 		update_stats_wait_start(cfs_rq, se);
1007 
1008 	if (flags & ENQUEUE_WAKEUP)
1009 		update_stats_enqueue_sleeper(cfs_rq, se);
1010 }
1011 
1012 static inline void
1013 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1014 {
1015 
1016 	if (!schedstat_enabled())
1017 		return;
1018 
1019 	/*
1020 	 * Mark the end of the wait period if dequeueing a
1021 	 * waiting task:
1022 	 */
1023 	if (se != cfs_rq->curr)
1024 		update_stats_wait_end(cfs_rq, se);
1025 
1026 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1027 		struct task_struct *tsk = task_of(se);
1028 
1029 		if (tsk->state & TASK_INTERRUPTIBLE)
1030 			__schedstat_set(se->statistics.sleep_start,
1031 				      rq_clock(rq_of(cfs_rq)));
1032 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1033 			__schedstat_set(se->statistics.block_start,
1034 				      rq_clock(rq_of(cfs_rq)));
1035 	}
1036 }
1037 
1038 /*
1039  * We are picking a new current task - update its stats:
1040  */
1041 static inline void
1042 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1043 {
1044 	/*
1045 	 * We are starting a new run period:
1046 	 */
1047 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1048 }
1049 
1050 /**************************************************
1051  * Scheduling class queueing methods:
1052  */
1053 
1054 #ifdef CONFIG_NUMA_BALANCING
1055 /*
1056  * Approximate time to scan a full NUMA task in ms. The task scan period is
1057  * calculated based on the tasks virtual memory size and
1058  * numa_balancing_scan_size.
1059  */
1060 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1061 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1062 
1063 /* Portion of address space to scan in MB */
1064 unsigned int sysctl_numa_balancing_scan_size = 256;
1065 
1066 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1067 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1068 
1069 struct numa_group {
1070 	refcount_t refcount;
1071 
1072 	spinlock_t lock; /* nr_tasks, tasks */
1073 	int nr_tasks;
1074 	pid_t gid;
1075 	int active_nodes;
1076 
1077 	struct rcu_head rcu;
1078 	unsigned long total_faults;
1079 	unsigned long max_faults_cpu;
1080 	/*
1081 	 * Faults_cpu is used to decide whether memory should move
1082 	 * towards the CPU. As a consequence, these stats are weighted
1083 	 * more by CPU use than by memory faults.
1084 	 */
1085 	unsigned long *faults_cpu;
1086 	unsigned long faults[0];
1087 };
1088 
1089 /*
1090  * For functions that can be called in multiple contexts that permit reading
1091  * ->numa_group (see struct task_struct for locking rules).
1092  */
1093 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1094 {
1095 	return rcu_dereference_check(p->numa_group, p == current ||
1096 		(lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1097 }
1098 
1099 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1100 {
1101 	return rcu_dereference_protected(p->numa_group, p == current);
1102 }
1103 
1104 static inline unsigned long group_faults_priv(struct numa_group *ng);
1105 static inline unsigned long group_faults_shared(struct numa_group *ng);
1106 
1107 static unsigned int task_nr_scan_windows(struct task_struct *p)
1108 {
1109 	unsigned long rss = 0;
1110 	unsigned long nr_scan_pages;
1111 
1112 	/*
1113 	 * Calculations based on RSS as non-present and empty pages are skipped
1114 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1115 	 * on resident pages
1116 	 */
1117 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1118 	rss = get_mm_rss(p->mm);
1119 	if (!rss)
1120 		rss = nr_scan_pages;
1121 
1122 	rss = round_up(rss, nr_scan_pages);
1123 	return rss / nr_scan_pages;
1124 }
1125 
1126 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1127 #define MAX_SCAN_WINDOW 2560
1128 
1129 static unsigned int task_scan_min(struct task_struct *p)
1130 {
1131 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1132 	unsigned int scan, floor;
1133 	unsigned int windows = 1;
1134 
1135 	if (scan_size < MAX_SCAN_WINDOW)
1136 		windows = MAX_SCAN_WINDOW / scan_size;
1137 	floor = 1000 / windows;
1138 
1139 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1140 	return max_t(unsigned int, floor, scan);
1141 }
1142 
1143 static unsigned int task_scan_start(struct task_struct *p)
1144 {
1145 	unsigned long smin = task_scan_min(p);
1146 	unsigned long period = smin;
1147 	struct numa_group *ng;
1148 
1149 	/* Scale the maximum scan period with the amount of shared memory. */
1150 	rcu_read_lock();
1151 	ng = rcu_dereference(p->numa_group);
1152 	if (ng) {
1153 		unsigned long shared = group_faults_shared(ng);
1154 		unsigned long private = group_faults_priv(ng);
1155 
1156 		period *= refcount_read(&ng->refcount);
1157 		period *= shared + 1;
1158 		period /= private + shared + 1;
1159 	}
1160 	rcu_read_unlock();
1161 
1162 	return max(smin, period);
1163 }
1164 
1165 static unsigned int task_scan_max(struct task_struct *p)
1166 {
1167 	unsigned long smin = task_scan_min(p);
1168 	unsigned long smax;
1169 	struct numa_group *ng;
1170 
1171 	/* Watch for min being lower than max due to floor calculations */
1172 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1173 
1174 	/* Scale the maximum scan period with the amount of shared memory. */
1175 	ng = deref_curr_numa_group(p);
1176 	if (ng) {
1177 		unsigned long shared = group_faults_shared(ng);
1178 		unsigned long private = group_faults_priv(ng);
1179 		unsigned long period = smax;
1180 
1181 		period *= refcount_read(&ng->refcount);
1182 		period *= shared + 1;
1183 		period /= private + shared + 1;
1184 
1185 		smax = max(smax, period);
1186 	}
1187 
1188 	return max(smin, smax);
1189 }
1190 
1191 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1192 {
1193 	int mm_users = 0;
1194 	struct mm_struct *mm = p->mm;
1195 
1196 	if (mm) {
1197 		mm_users = atomic_read(&mm->mm_users);
1198 		if (mm_users == 1) {
1199 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1200 			mm->numa_scan_seq = 0;
1201 		}
1202 	}
1203 	p->node_stamp			= 0;
1204 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
1205 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
1206 	p->numa_work.next		= &p->numa_work;
1207 	p->numa_faults			= NULL;
1208 	RCU_INIT_POINTER(p->numa_group, NULL);
1209 	p->last_task_numa_placement	= 0;
1210 	p->last_sum_exec_runtime	= 0;
1211 
1212 	/* New address space, reset the preferred nid */
1213 	if (!(clone_flags & CLONE_VM)) {
1214 		p->numa_preferred_nid = NUMA_NO_NODE;
1215 		return;
1216 	}
1217 
1218 	/*
1219 	 * New thread, keep existing numa_preferred_nid which should be copied
1220 	 * already by arch_dup_task_struct but stagger when scans start.
1221 	 */
1222 	if (mm) {
1223 		unsigned int delay;
1224 
1225 		delay = min_t(unsigned int, task_scan_max(current),
1226 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1227 		delay += 2 * TICK_NSEC;
1228 		p->node_stamp = delay;
1229 	}
1230 }
1231 
1232 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1233 {
1234 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1235 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1236 }
1237 
1238 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1239 {
1240 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1241 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1242 }
1243 
1244 /* Shared or private faults. */
1245 #define NR_NUMA_HINT_FAULT_TYPES 2
1246 
1247 /* Memory and CPU locality */
1248 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1249 
1250 /* Averaged statistics, and temporary buffers. */
1251 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1252 
1253 pid_t task_numa_group_id(struct task_struct *p)
1254 {
1255 	struct numa_group *ng;
1256 	pid_t gid = 0;
1257 
1258 	rcu_read_lock();
1259 	ng = rcu_dereference(p->numa_group);
1260 	if (ng)
1261 		gid = ng->gid;
1262 	rcu_read_unlock();
1263 
1264 	return gid;
1265 }
1266 
1267 /*
1268  * The averaged statistics, shared & private, memory & CPU,
1269  * occupy the first half of the array. The second half of the
1270  * array is for current counters, which are averaged into the
1271  * first set by task_numa_placement.
1272  */
1273 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1274 {
1275 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1276 }
1277 
1278 static inline unsigned long task_faults(struct task_struct *p, int nid)
1279 {
1280 	if (!p->numa_faults)
1281 		return 0;
1282 
1283 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1284 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1285 }
1286 
1287 static inline unsigned long group_faults(struct task_struct *p, int nid)
1288 {
1289 	struct numa_group *ng = deref_task_numa_group(p);
1290 
1291 	if (!ng)
1292 		return 0;
1293 
1294 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1295 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1296 }
1297 
1298 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1299 {
1300 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1301 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1302 }
1303 
1304 static inline unsigned long group_faults_priv(struct numa_group *ng)
1305 {
1306 	unsigned long faults = 0;
1307 	int node;
1308 
1309 	for_each_online_node(node) {
1310 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1311 	}
1312 
1313 	return faults;
1314 }
1315 
1316 static inline unsigned long group_faults_shared(struct numa_group *ng)
1317 {
1318 	unsigned long faults = 0;
1319 	int node;
1320 
1321 	for_each_online_node(node) {
1322 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1323 	}
1324 
1325 	return faults;
1326 }
1327 
1328 /*
1329  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1330  * considered part of a numa group's pseudo-interleaving set. Migrations
1331  * between these nodes are slowed down, to allow things to settle down.
1332  */
1333 #define ACTIVE_NODE_FRACTION 3
1334 
1335 static bool numa_is_active_node(int nid, struct numa_group *ng)
1336 {
1337 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1338 }
1339 
1340 /* Handle placement on systems where not all nodes are directly connected. */
1341 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1342 					int maxdist, bool task)
1343 {
1344 	unsigned long score = 0;
1345 	int node;
1346 
1347 	/*
1348 	 * All nodes are directly connected, and the same distance
1349 	 * from each other. No need for fancy placement algorithms.
1350 	 */
1351 	if (sched_numa_topology_type == NUMA_DIRECT)
1352 		return 0;
1353 
1354 	/*
1355 	 * This code is called for each node, introducing N^2 complexity,
1356 	 * which should be ok given the number of nodes rarely exceeds 8.
1357 	 */
1358 	for_each_online_node(node) {
1359 		unsigned long faults;
1360 		int dist = node_distance(nid, node);
1361 
1362 		/*
1363 		 * The furthest away nodes in the system are not interesting
1364 		 * for placement; nid was already counted.
1365 		 */
1366 		if (dist == sched_max_numa_distance || node == nid)
1367 			continue;
1368 
1369 		/*
1370 		 * On systems with a backplane NUMA topology, compare groups
1371 		 * of nodes, and move tasks towards the group with the most
1372 		 * memory accesses. When comparing two nodes at distance
1373 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1374 		 * of each group. Skip other nodes.
1375 		 */
1376 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1377 					dist >= maxdist)
1378 			continue;
1379 
1380 		/* Add up the faults from nearby nodes. */
1381 		if (task)
1382 			faults = task_faults(p, node);
1383 		else
1384 			faults = group_faults(p, node);
1385 
1386 		/*
1387 		 * On systems with a glueless mesh NUMA topology, there are
1388 		 * no fixed "groups of nodes". Instead, nodes that are not
1389 		 * directly connected bounce traffic through intermediate
1390 		 * nodes; a numa_group can occupy any set of nodes.
1391 		 * The further away a node is, the less the faults count.
1392 		 * This seems to result in good task placement.
1393 		 */
1394 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1395 			faults *= (sched_max_numa_distance - dist);
1396 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1397 		}
1398 
1399 		score += faults;
1400 	}
1401 
1402 	return score;
1403 }
1404 
1405 /*
1406  * These return the fraction of accesses done by a particular task, or
1407  * task group, on a particular numa node.  The group weight is given a
1408  * larger multiplier, in order to group tasks together that are almost
1409  * evenly spread out between numa nodes.
1410  */
1411 static inline unsigned long task_weight(struct task_struct *p, int nid,
1412 					int dist)
1413 {
1414 	unsigned long faults, total_faults;
1415 
1416 	if (!p->numa_faults)
1417 		return 0;
1418 
1419 	total_faults = p->total_numa_faults;
1420 
1421 	if (!total_faults)
1422 		return 0;
1423 
1424 	faults = task_faults(p, nid);
1425 	faults += score_nearby_nodes(p, nid, dist, true);
1426 
1427 	return 1000 * faults / total_faults;
1428 }
1429 
1430 static inline unsigned long group_weight(struct task_struct *p, int nid,
1431 					 int dist)
1432 {
1433 	struct numa_group *ng = deref_task_numa_group(p);
1434 	unsigned long faults, total_faults;
1435 
1436 	if (!ng)
1437 		return 0;
1438 
1439 	total_faults = ng->total_faults;
1440 
1441 	if (!total_faults)
1442 		return 0;
1443 
1444 	faults = group_faults(p, nid);
1445 	faults += score_nearby_nodes(p, nid, dist, false);
1446 
1447 	return 1000 * faults / total_faults;
1448 }
1449 
1450 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1451 				int src_nid, int dst_cpu)
1452 {
1453 	struct numa_group *ng = deref_curr_numa_group(p);
1454 	int dst_nid = cpu_to_node(dst_cpu);
1455 	int last_cpupid, this_cpupid;
1456 
1457 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1458 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1459 
1460 	/*
1461 	 * Allow first faults or private faults to migrate immediately early in
1462 	 * the lifetime of a task. The magic number 4 is based on waiting for
1463 	 * two full passes of the "multi-stage node selection" test that is
1464 	 * executed below.
1465 	 */
1466 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1467 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1468 		return true;
1469 
1470 	/*
1471 	 * Multi-stage node selection is used in conjunction with a periodic
1472 	 * migration fault to build a temporal task<->page relation. By using
1473 	 * a two-stage filter we remove short/unlikely relations.
1474 	 *
1475 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1476 	 * a task's usage of a particular page (n_p) per total usage of this
1477 	 * page (n_t) (in a given time-span) to a probability.
1478 	 *
1479 	 * Our periodic faults will sample this probability and getting the
1480 	 * same result twice in a row, given these samples are fully
1481 	 * independent, is then given by P(n)^2, provided our sample period
1482 	 * is sufficiently short compared to the usage pattern.
1483 	 *
1484 	 * This quadric squishes small probabilities, making it less likely we
1485 	 * act on an unlikely task<->page relation.
1486 	 */
1487 	if (!cpupid_pid_unset(last_cpupid) &&
1488 				cpupid_to_nid(last_cpupid) != dst_nid)
1489 		return false;
1490 
1491 	/* Always allow migrate on private faults */
1492 	if (cpupid_match_pid(p, last_cpupid))
1493 		return true;
1494 
1495 	/* A shared fault, but p->numa_group has not been set up yet. */
1496 	if (!ng)
1497 		return true;
1498 
1499 	/*
1500 	 * Destination node is much more heavily used than the source
1501 	 * node? Allow migration.
1502 	 */
1503 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1504 					ACTIVE_NODE_FRACTION)
1505 		return true;
1506 
1507 	/*
1508 	 * Distribute memory according to CPU & memory use on each node,
1509 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1510 	 *
1511 	 * faults_cpu(dst)   3   faults_cpu(src)
1512 	 * --------------- * - > ---------------
1513 	 * faults_mem(dst)   4   faults_mem(src)
1514 	 */
1515 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1516 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1517 }
1518 
1519 static unsigned long cpu_runnable_load(struct rq *rq);
1520 
1521 /* Cached statistics for all CPUs within a node */
1522 struct numa_stats {
1523 	unsigned long load;
1524 
1525 	/* Total compute capacity of CPUs on a node */
1526 	unsigned long compute_capacity;
1527 };
1528 
1529 /*
1530  * XXX borrowed from update_sg_lb_stats
1531  */
1532 static void update_numa_stats(struct numa_stats *ns, int nid)
1533 {
1534 	int cpu;
1535 
1536 	memset(ns, 0, sizeof(*ns));
1537 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1538 		struct rq *rq = cpu_rq(cpu);
1539 
1540 		ns->load += cpu_runnable_load(rq);
1541 		ns->compute_capacity += capacity_of(cpu);
1542 	}
1543 
1544 }
1545 
1546 struct task_numa_env {
1547 	struct task_struct *p;
1548 
1549 	int src_cpu, src_nid;
1550 	int dst_cpu, dst_nid;
1551 
1552 	struct numa_stats src_stats, dst_stats;
1553 
1554 	int imbalance_pct;
1555 	int dist;
1556 
1557 	struct task_struct *best_task;
1558 	long best_imp;
1559 	int best_cpu;
1560 };
1561 
1562 static void task_numa_assign(struct task_numa_env *env,
1563 			     struct task_struct *p, long imp)
1564 {
1565 	struct rq *rq = cpu_rq(env->dst_cpu);
1566 
1567 	/* Bail out if run-queue part of active NUMA balance. */
1568 	if (xchg(&rq->numa_migrate_on, 1))
1569 		return;
1570 
1571 	/*
1572 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1573 	 * found a better CPU to move/swap.
1574 	 */
1575 	if (env->best_cpu != -1) {
1576 		rq = cpu_rq(env->best_cpu);
1577 		WRITE_ONCE(rq->numa_migrate_on, 0);
1578 	}
1579 
1580 	if (env->best_task)
1581 		put_task_struct(env->best_task);
1582 	if (p)
1583 		get_task_struct(p);
1584 
1585 	env->best_task = p;
1586 	env->best_imp = imp;
1587 	env->best_cpu = env->dst_cpu;
1588 }
1589 
1590 static bool load_too_imbalanced(long src_load, long dst_load,
1591 				struct task_numa_env *env)
1592 {
1593 	long imb, old_imb;
1594 	long orig_src_load, orig_dst_load;
1595 	long src_capacity, dst_capacity;
1596 
1597 	/*
1598 	 * The load is corrected for the CPU capacity available on each node.
1599 	 *
1600 	 * src_load        dst_load
1601 	 * ------------ vs ---------
1602 	 * src_capacity    dst_capacity
1603 	 */
1604 	src_capacity = env->src_stats.compute_capacity;
1605 	dst_capacity = env->dst_stats.compute_capacity;
1606 
1607 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1608 
1609 	orig_src_load = env->src_stats.load;
1610 	orig_dst_load = env->dst_stats.load;
1611 
1612 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1613 
1614 	/* Would this change make things worse? */
1615 	return (imb > old_imb);
1616 }
1617 
1618 /*
1619  * Maximum NUMA importance can be 1998 (2*999);
1620  * SMALLIMP @ 30 would be close to 1998/64.
1621  * Used to deter task migration.
1622  */
1623 #define SMALLIMP	30
1624 
1625 /*
1626  * This checks if the overall compute and NUMA accesses of the system would
1627  * be improved if the source tasks was migrated to the target dst_cpu taking
1628  * into account that it might be best if task running on the dst_cpu should
1629  * be exchanged with the source task
1630  */
1631 static void task_numa_compare(struct task_numa_env *env,
1632 			      long taskimp, long groupimp, bool maymove)
1633 {
1634 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1635 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1636 	long imp = p_ng ? groupimp : taskimp;
1637 	struct task_struct *cur;
1638 	long src_load, dst_load;
1639 	int dist = env->dist;
1640 	long moveimp = imp;
1641 	long load;
1642 
1643 	if (READ_ONCE(dst_rq->numa_migrate_on))
1644 		return;
1645 
1646 	rcu_read_lock();
1647 	cur = task_rcu_dereference(&dst_rq->curr);
1648 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1649 		cur = NULL;
1650 
1651 	/*
1652 	 * Because we have preemption enabled we can get migrated around and
1653 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1654 	 */
1655 	if (cur == env->p)
1656 		goto unlock;
1657 
1658 	if (!cur) {
1659 		if (maymove && moveimp >= env->best_imp)
1660 			goto assign;
1661 		else
1662 			goto unlock;
1663 	}
1664 
1665 	/*
1666 	 * "imp" is the fault differential for the source task between the
1667 	 * source and destination node. Calculate the total differential for
1668 	 * the source task and potential destination task. The more negative
1669 	 * the value is, the more remote accesses that would be expected to
1670 	 * be incurred if the tasks were swapped.
1671 	 */
1672 	/* Skip this swap candidate if cannot move to the source cpu */
1673 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1674 		goto unlock;
1675 
1676 	/*
1677 	 * If dst and source tasks are in the same NUMA group, or not
1678 	 * in any group then look only at task weights.
1679 	 */
1680 	cur_ng = rcu_dereference(cur->numa_group);
1681 	if (cur_ng == p_ng) {
1682 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1683 		      task_weight(cur, env->dst_nid, dist);
1684 		/*
1685 		 * Add some hysteresis to prevent swapping the
1686 		 * tasks within a group over tiny differences.
1687 		 */
1688 		if (cur_ng)
1689 			imp -= imp / 16;
1690 	} else {
1691 		/*
1692 		 * Compare the group weights. If a task is all by itself
1693 		 * (not part of a group), use the task weight instead.
1694 		 */
1695 		if (cur_ng && p_ng)
1696 			imp += group_weight(cur, env->src_nid, dist) -
1697 			       group_weight(cur, env->dst_nid, dist);
1698 		else
1699 			imp += task_weight(cur, env->src_nid, dist) -
1700 			       task_weight(cur, env->dst_nid, dist);
1701 	}
1702 
1703 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1704 		imp = moveimp;
1705 		cur = NULL;
1706 		goto assign;
1707 	}
1708 
1709 	/*
1710 	 * If the NUMA importance is less than SMALLIMP,
1711 	 * task migration might only result in ping pong
1712 	 * of tasks and also hurt performance due to cache
1713 	 * misses.
1714 	 */
1715 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1716 		goto unlock;
1717 
1718 	/*
1719 	 * In the overloaded case, try and keep the load balanced.
1720 	 */
1721 	load = task_h_load(env->p) - task_h_load(cur);
1722 	if (!load)
1723 		goto assign;
1724 
1725 	dst_load = env->dst_stats.load + load;
1726 	src_load = env->src_stats.load - load;
1727 
1728 	if (load_too_imbalanced(src_load, dst_load, env))
1729 		goto unlock;
1730 
1731 assign:
1732 	/*
1733 	 * One idle CPU per node is evaluated for a task numa move.
1734 	 * Call select_idle_sibling to maybe find a better one.
1735 	 */
1736 	if (!cur) {
1737 		/*
1738 		 * select_idle_siblings() uses an per-CPU cpumask that
1739 		 * can be used from IRQ context.
1740 		 */
1741 		local_irq_disable();
1742 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1743 						   env->dst_cpu);
1744 		local_irq_enable();
1745 	}
1746 
1747 	task_numa_assign(env, cur, imp);
1748 unlock:
1749 	rcu_read_unlock();
1750 }
1751 
1752 static void task_numa_find_cpu(struct task_numa_env *env,
1753 				long taskimp, long groupimp)
1754 {
1755 	long src_load, dst_load, load;
1756 	bool maymove = false;
1757 	int cpu;
1758 
1759 	load = task_h_load(env->p);
1760 	dst_load = env->dst_stats.load + load;
1761 	src_load = env->src_stats.load - load;
1762 
1763 	/*
1764 	 * If the improvement from just moving env->p direction is better
1765 	 * than swapping tasks around, check if a move is possible.
1766 	 */
1767 	maymove = !load_too_imbalanced(src_load, dst_load, env);
1768 
1769 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1770 		/* Skip this CPU if the source task cannot migrate */
1771 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1772 			continue;
1773 
1774 		env->dst_cpu = cpu;
1775 		task_numa_compare(env, taskimp, groupimp, maymove);
1776 	}
1777 }
1778 
1779 static int task_numa_migrate(struct task_struct *p)
1780 {
1781 	struct task_numa_env env = {
1782 		.p = p,
1783 
1784 		.src_cpu = task_cpu(p),
1785 		.src_nid = task_node(p),
1786 
1787 		.imbalance_pct = 112,
1788 
1789 		.best_task = NULL,
1790 		.best_imp = 0,
1791 		.best_cpu = -1,
1792 	};
1793 	unsigned long taskweight, groupweight;
1794 	struct sched_domain *sd;
1795 	long taskimp, groupimp;
1796 	struct numa_group *ng;
1797 	struct rq *best_rq;
1798 	int nid, ret, dist;
1799 
1800 	/*
1801 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1802 	 * imbalance and would be the first to start moving tasks about.
1803 	 *
1804 	 * And we want to avoid any moving of tasks about, as that would create
1805 	 * random movement of tasks -- counter the numa conditions we're trying
1806 	 * to satisfy here.
1807 	 */
1808 	rcu_read_lock();
1809 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1810 	if (sd)
1811 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1812 	rcu_read_unlock();
1813 
1814 	/*
1815 	 * Cpusets can break the scheduler domain tree into smaller
1816 	 * balance domains, some of which do not cross NUMA boundaries.
1817 	 * Tasks that are "trapped" in such domains cannot be migrated
1818 	 * elsewhere, so there is no point in (re)trying.
1819 	 */
1820 	if (unlikely(!sd)) {
1821 		sched_setnuma(p, task_node(p));
1822 		return -EINVAL;
1823 	}
1824 
1825 	env.dst_nid = p->numa_preferred_nid;
1826 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1827 	taskweight = task_weight(p, env.src_nid, dist);
1828 	groupweight = group_weight(p, env.src_nid, dist);
1829 	update_numa_stats(&env.src_stats, env.src_nid);
1830 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1831 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1832 	update_numa_stats(&env.dst_stats, env.dst_nid);
1833 
1834 	/* Try to find a spot on the preferred nid. */
1835 	task_numa_find_cpu(&env, taskimp, groupimp);
1836 
1837 	/*
1838 	 * Look at other nodes in these cases:
1839 	 * - there is no space available on the preferred_nid
1840 	 * - the task is part of a numa_group that is interleaved across
1841 	 *   multiple NUMA nodes; in order to better consolidate the group,
1842 	 *   we need to check other locations.
1843 	 */
1844 	ng = deref_curr_numa_group(p);
1845 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
1846 		for_each_online_node(nid) {
1847 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1848 				continue;
1849 
1850 			dist = node_distance(env.src_nid, env.dst_nid);
1851 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1852 						dist != env.dist) {
1853 				taskweight = task_weight(p, env.src_nid, dist);
1854 				groupweight = group_weight(p, env.src_nid, dist);
1855 			}
1856 
1857 			/* Only consider nodes where both task and groups benefit */
1858 			taskimp = task_weight(p, nid, dist) - taskweight;
1859 			groupimp = group_weight(p, nid, dist) - groupweight;
1860 			if (taskimp < 0 && groupimp < 0)
1861 				continue;
1862 
1863 			env.dist = dist;
1864 			env.dst_nid = nid;
1865 			update_numa_stats(&env.dst_stats, env.dst_nid);
1866 			task_numa_find_cpu(&env, taskimp, groupimp);
1867 		}
1868 	}
1869 
1870 	/*
1871 	 * If the task is part of a workload that spans multiple NUMA nodes,
1872 	 * and is migrating into one of the workload's active nodes, remember
1873 	 * this node as the task's preferred numa node, so the workload can
1874 	 * settle down.
1875 	 * A task that migrated to a second choice node will be better off
1876 	 * trying for a better one later. Do not set the preferred node here.
1877 	 */
1878 	if (ng) {
1879 		if (env.best_cpu == -1)
1880 			nid = env.src_nid;
1881 		else
1882 			nid = cpu_to_node(env.best_cpu);
1883 
1884 		if (nid != p->numa_preferred_nid)
1885 			sched_setnuma(p, nid);
1886 	}
1887 
1888 	/* No better CPU than the current one was found. */
1889 	if (env.best_cpu == -1)
1890 		return -EAGAIN;
1891 
1892 	best_rq = cpu_rq(env.best_cpu);
1893 	if (env.best_task == NULL) {
1894 		ret = migrate_task_to(p, env.best_cpu);
1895 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
1896 		if (ret != 0)
1897 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1898 		return ret;
1899 	}
1900 
1901 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1902 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
1903 
1904 	if (ret != 0)
1905 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1906 	put_task_struct(env.best_task);
1907 	return ret;
1908 }
1909 
1910 /* Attempt to migrate a task to a CPU on the preferred node. */
1911 static void numa_migrate_preferred(struct task_struct *p)
1912 {
1913 	unsigned long interval = HZ;
1914 
1915 	/* This task has no NUMA fault statistics yet */
1916 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
1917 		return;
1918 
1919 	/* Periodically retry migrating the task to the preferred node */
1920 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1921 	p->numa_migrate_retry = jiffies + interval;
1922 
1923 	/* Success if task is already running on preferred CPU */
1924 	if (task_node(p) == p->numa_preferred_nid)
1925 		return;
1926 
1927 	/* Otherwise, try migrate to a CPU on the preferred node */
1928 	task_numa_migrate(p);
1929 }
1930 
1931 /*
1932  * Find out how many nodes on the workload is actively running on. Do this by
1933  * tracking the nodes from which NUMA hinting faults are triggered. This can
1934  * be different from the set of nodes where the workload's memory is currently
1935  * located.
1936  */
1937 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1938 {
1939 	unsigned long faults, max_faults = 0;
1940 	int nid, active_nodes = 0;
1941 
1942 	for_each_online_node(nid) {
1943 		faults = group_faults_cpu(numa_group, nid);
1944 		if (faults > max_faults)
1945 			max_faults = faults;
1946 	}
1947 
1948 	for_each_online_node(nid) {
1949 		faults = group_faults_cpu(numa_group, nid);
1950 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1951 			active_nodes++;
1952 	}
1953 
1954 	numa_group->max_faults_cpu = max_faults;
1955 	numa_group->active_nodes = active_nodes;
1956 }
1957 
1958 /*
1959  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1960  * increments. The more local the fault statistics are, the higher the scan
1961  * period will be for the next scan window. If local/(local+remote) ratio is
1962  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1963  * the scan period will decrease. Aim for 70% local accesses.
1964  */
1965 #define NUMA_PERIOD_SLOTS 10
1966 #define NUMA_PERIOD_THRESHOLD 7
1967 
1968 /*
1969  * Increase the scan period (slow down scanning) if the majority of
1970  * our memory is already on our local node, or if the majority of
1971  * the page accesses are shared with other processes.
1972  * Otherwise, decrease the scan period.
1973  */
1974 static void update_task_scan_period(struct task_struct *p,
1975 			unsigned long shared, unsigned long private)
1976 {
1977 	unsigned int period_slot;
1978 	int lr_ratio, ps_ratio;
1979 	int diff;
1980 
1981 	unsigned long remote = p->numa_faults_locality[0];
1982 	unsigned long local = p->numa_faults_locality[1];
1983 
1984 	/*
1985 	 * If there were no record hinting faults then either the task is
1986 	 * completely idle or all activity is areas that are not of interest
1987 	 * to automatic numa balancing. Related to that, if there were failed
1988 	 * migration then it implies we are migrating too quickly or the local
1989 	 * node is overloaded. In either case, scan slower
1990 	 */
1991 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1992 		p->numa_scan_period = min(p->numa_scan_period_max,
1993 			p->numa_scan_period << 1);
1994 
1995 		p->mm->numa_next_scan = jiffies +
1996 			msecs_to_jiffies(p->numa_scan_period);
1997 
1998 		return;
1999 	}
2000 
2001 	/*
2002 	 * Prepare to scale scan period relative to the current period.
2003 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2004 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2005 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2006 	 */
2007 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2008 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2009 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2010 
2011 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2012 		/*
2013 		 * Most memory accesses are local. There is no need to
2014 		 * do fast NUMA scanning, since memory is already local.
2015 		 */
2016 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2017 		if (!slot)
2018 			slot = 1;
2019 		diff = slot * period_slot;
2020 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2021 		/*
2022 		 * Most memory accesses are shared with other tasks.
2023 		 * There is no point in continuing fast NUMA scanning,
2024 		 * since other tasks may just move the memory elsewhere.
2025 		 */
2026 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2027 		if (!slot)
2028 			slot = 1;
2029 		diff = slot * period_slot;
2030 	} else {
2031 		/*
2032 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2033 		 * yet they are not on the local NUMA node. Speed up
2034 		 * NUMA scanning to get the memory moved over.
2035 		 */
2036 		int ratio = max(lr_ratio, ps_ratio);
2037 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2038 	}
2039 
2040 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2041 			task_scan_min(p), task_scan_max(p));
2042 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2043 }
2044 
2045 /*
2046  * Get the fraction of time the task has been running since the last
2047  * NUMA placement cycle. The scheduler keeps similar statistics, but
2048  * decays those on a 32ms period, which is orders of magnitude off
2049  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2050  * stats only if the task is so new there are no NUMA statistics yet.
2051  */
2052 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2053 {
2054 	u64 runtime, delta, now;
2055 	/* Use the start of this time slice to avoid calculations. */
2056 	now = p->se.exec_start;
2057 	runtime = p->se.sum_exec_runtime;
2058 
2059 	if (p->last_task_numa_placement) {
2060 		delta = runtime - p->last_sum_exec_runtime;
2061 		*period = now - p->last_task_numa_placement;
2062 
2063 		/* Avoid time going backwards, prevent potential divide error: */
2064 		if (unlikely((s64)*period < 0))
2065 			*period = 0;
2066 	} else {
2067 		delta = p->se.avg.load_sum;
2068 		*period = LOAD_AVG_MAX;
2069 	}
2070 
2071 	p->last_sum_exec_runtime = runtime;
2072 	p->last_task_numa_placement = now;
2073 
2074 	return delta;
2075 }
2076 
2077 /*
2078  * Determine the preferred nid for a task in a numa_group. This needs to
2079  * be done in a way that produces consistent results with group_weight,
2080  * otherwise workloads might not converge.
2081  */
2082 static int preferred_group_nid(struct task_struct *p, int nid)
2083 {
2084 	nodemask_t nodes;
2085 	int dist;
2086 
2087 	/* Direct connections between all NUMA nodes. */
2088 	if (sched_numa_topology_type == NUMA_DIRECT)
2089 		return nid;
2090 
2091 	/*
2092 	 * On a system with glueless mesh NUMA topology, group_weight
2093 	 * scores nodes according to the number of NUMA hinting faults on
2094 	 * both the node itself, and on nearby nodes.
2095 	 */
2096 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2097 		unsigned long score, max_score = 0;
2098 		int node, max_node = nid;
2099 
2100 		dist = sched_max_numa_distance;
2101 
2102 		for_each_online_node(node) {
2103 			score = group_weight(p, node, dist);
2104 			if (score > max_score) {
2105 				max_score = score;
2106 				max_node = node;
2107 			}
2108 		}
2109 		return max_node;
2110 	}
2111 
2112 	/*
2113 	 * Finding the preferred nid in a system with NUMA backplane
2114 	 * interconnect topology is more involved. The goal is to locate
2115 	 * tasks from numa_groups near each other in the system, and
2116 	 * untangle workloads from different sides of the system. This requires
2117 	 * searching down the hierarchy of node groups, recursively searching
2118 	 * inside the highest scoring group of nodes. The nodemask tricks
2119 	 * keep the complexity of the search down.
2120 	 */
2121 	nodes = node_online_map;
2122 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2123 		unsigned long max_faults = 0;
2124 		nodemask_t max_group = NODE_MASK_NONE;
2125 		int a, b;
2126 
2127 		/* Are there nodes at this distance from each other? */
2128 		if (!find_numa_distance(dist))
2129 			continue;
2130 
2131 		for_each_node_mask(a, nodes) {
2132 			unsigned long faults = 0;
2133 			nodemask_t this_group;
2134 			nodes_clear(this_group);
2135 
2136 			/* Sum group's NUMA faults; includes a==b case. */
2137 			for_each_node_mask(b, nodes) {
2138 				if (node_distance(a, b) < dist) {
2139 					faults += group_faults(p, b);
2140 					node_set(b, this_group);
2141 					node_clear(b, nodes);
2142 				}
2143 			}
2144 
2145 			/* Remember the top group. */
2146 			if (faults > max_faults) {
2147 				max_faults = faults;
2148 				max_group = this_group;
2149 				/*
2150 				 * subtle: at the smallest distance there is
2151 				 * just one node left in each "group", the
2152 				 * winner is the preferred nid.
2153 				 */
2154 				nid = a;
2155 			}
2156 		}
2157 		/* Next round, evaluate the nodes within max_group. */
2158 		if (!max_faults)
2159 			break;
2160 		nodes = max_group;
2161 	}
2162 	return nid;
2163 }
2164 
2165 static void task_numa_placement(struct task_struct *p)
2166 {
2167 	int seq, nid, max_nid = NUMA_NO_NODE;
2168 	unsigned long max_faults = 0;
2169 	unsigned long fault_types[2] = { 0, 0 };
2170 	unsigned long total_faults;
2171 	u64 runtime, period;
2172 	spinlock_t *group_lock = NULL;
2173 	struct numa_group *ng;
2174 
2175 	/*
2176 	 * The p->mm->numa_scan_seq field gets updated without
2177 	 * exclusive access. Use READ_ONCE() here to ensure
2178 	 * that the field is read in a single access:
2179 	 */
2180 	seq = READ_ONCE(p->mm->numa_scan_seq);
2181 	if (p->numa_scan_seq == seq)
2182 		return;
2183 	p->numa_scan_seq = seq;
2184 	p->numa_scan_period_max = task_scan_max(p);
2185 
2186 	total_faults = p->numa_faults_locality[0] +
2187 		       p->numa_faults_locality[1];
2188 	runtime = numa_get_avg_runtime(p, &period);
2189 
2190 	/* If the task is part of a group prevent parallel updates to group stats */
2191 	ng = deref_curr_numa_group(p);
2192 	if (ng) {
2193 		group_lock = &ng->lock;
2194 		spin_lock_irq(group_lock);
2195 	}
2196 
2197 	/* Find the node with the highest number of faults */
2198 	for_each_online_node(nid) {
2199 		/* Keep track of the offsets in numa_faults array */
2200 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2201 		unsigned long faults = 0, group_faults = 0;
2202 		int priv;
2203 
2204 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2205 			long diff, f_diff, f_weight;
2206 
2207 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2208 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2209 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2210 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2211 
2212 			/* Decay existing window, copy faults since last scan */
2213 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2214 			fault_types[priv] += p->numa_faults[membuf_idx];
2215 			p->numa_faults[membuf_idx] = 0;
2216 
2217 			/*
2218 			 * Normalize the faults_from, so all tasks in a group
2219 			 * count according to CPU use, instead of by the raw
2220 			 * number of faults. Tasks with little runtime have
2221 			 * little over-all impact on throughput, and thus their
2222 			 * faults are less important.
2223 			 */
2224 			f_weight = div64_u64(runtime << 16, period + 1);
2225 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2226 				   (total_faults + 1);
2227 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2228 			p->numa_faults[cpubuf_idx] = 0;
2229 
2230 			p->numa_faults[mem_idx] += diff;
2231 			p->numa_faults[cpu_idx] += f_diff;
2232 			faults += p->numa_faults[mem_idx];
2233 			p->total_numa_faults += diff;
2234 			if (ng) {
2235 				/*
2236 				 * safe because we can only change our own group
2237 				 *
2238 				 * mem_idx represents the offset for a given
2239 				 * nid and priv in a specific region because it
2240 				 * is at the beginning of the numa_faults array.
2241 				 */
2242 				ng->faults[mem_idx] += diff;
2243 				ng->faults_cpu[mem_idx] += f_diff;
2244 				ng->total_faults += diff;
2245 				group_faults += ng->faults[mem_idx];
2246 			}
2247 		}
2248 
2249 		if (!ng) {
2250 			if (faults > max_faults) {
2251 				max_faults = faults;
2252 				max_nid = nid;
2253 			}
2254 		} else if (group_faults > max_faults) {
2255 			max_faults = group_faults;
2256 			max_nid = nid;
2257 		}
2258 	}
2259 
2260 	if (ng) {
2261 		numa_group_count_active_nodes(ng);
2262 		spin_unlock_irq(group_lock);
2263 		max_nid = preferred_group_nid(p, max_nid);
2264 	}
2265 
2266 	if (max_faults) {
2267 		/* Set the new preferred node */
2268 		if (max_nid != p->numa_preferred_nid)
2269 			sched_setnuma(p, max_nid);
2270 	}
2271 
2272 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2273 }
2274 
2275 static inline int get_numa_group(struct numa_group *grp)
2276 {
2277 	return refcount_inc_not_zero(&grp->refcount);
2278 }
2279 
2280 static inline void put_numa_group(struct numa_group *grp)
2281 {
2282 	if (refcount_dec_and_test(&grp->refcount))
2283 		kfree_rcu(grp, rcu);
2284 }
2285 
2286 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2287 			int *priv)
2288 {
2289 	struct numa_group *grp, *my_grp;
2290 	struct task_struct *tsk;
2291 	bool join = false;
2292 	int cpu = cpupid_to_cpu(cpupid);
2293 	int i;
2294 
2295 	if (unlikely(!deref_curr_numa_group(p))) {
2296 		unsigned int size = sizeof(struct numa_group) +
2297 				    4*nr_node_ids*sizeof(unsigned long);
2298 
2299 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2300 		if (!grp)
2301 			return;
2302 
2303 		refcount_set(&grp->refcount, 1);
2304 		grp->active_nodes = 1;
2305 		grp->max_faults_cpu = 0;
2306 		spin_lock_init(&grp->lock);
2307 		grp->gid = p->pid;
2308 		/* Second half of the array tracks nids where faults happen */
2309 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2310 						nr_node_ids;
2311 
2312 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2313 			grp->faults[i] = p->numa_faults[i];
2314 
2315 		grp->total_faults = p->total_numa_faults;
2316 
2317 		grp->nr_tasks++;
2318 		rcu_assign_pointer(p->numa_group, grp);
2319 	}
2320 
2321 	rcu_read_lock();
2322 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2323 
2324 	if (!cpupid_match_pid(tsk, cpupid))
2325 		goto no_join;
2326 
2327 	grp = rcu_dereference(tsk->numa_group);
2328 	if (!grp)
2329 		goto no_join;
2330 
2331 	my_grp = deref_curr_numa_group(p);
2332 	if (grp == my_grp)
2333 		goto no_join;
2334 
2335 	/*
2336 	 * Only join the other group if its bigger; if we're the bigger group,
2337 	 * the other task will join us.
2338 	 */
2339 	if (my_grp->nr_tasks > grp->nr_tasks)
2340 		goto no_join;
2341 
2342 	/*
2343 	 * Tie-break on the grp address.
2344 	 */
2345 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2346 		goto no_join;
2347 
2348 	/* Always join threads in the same process. */
2349 	if (tsk->mm == current->mm)
2350 		join = true;
2351 
2352 	/* Simple filter to avoid false positives due to PID collisions */
2353 	if (flags & TNF_SHARED)
2354 		join = true;
2355 
2356 	/* Update priv based on whether false sharing was detected */
2357 	*priv = !join;
2358 
2359 	if (join && !get_numa_group(grp))
2360 		goto no_join;
2361 
2362 	rcu_read_unlock();
2363 
2364 	if (!join)
2365 		return;
2366 
2367 	BUG_ON(irqs_disabled());
2368 	double_lock_irq(&my_grp->lock, &grp->lock);
2369 
2370 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2371 		my_grp->faults[i] -= p->numa_faults[i];
2372 		grp->faults[i] += p->numa_faults[i];
2373 	}
2374 	my_grp->total_faults -= p->total_numa_faults;
2375 	grp->total_faults += p->total_numa_faults;
2376 
2377 	my_grp->nr_tasks--;
2378 	grp->nr_tasks++;
2379 
2380 	spin_unlock(&my_grp->lock);
2381 	spin_unlock_irq(&grp->lock);
2382 
2383 	rcu_assign_pointer(p->numa_group, grp);
2384 
2385 	put_numa_group(my_grp);
2386 	return;
2387 
2388 no_join:
2389 	rcu_read_unlock();
2390 	return;
2391 }
2392 
2393 /*
2394  * Get rid of NUMA staticstics associated with a task (either current or dead).
2395  * If @final is set, the task is dead and has reached refcount zero, so we can
2396  * safely free all relevant data structures. Otherwise, there might be
2397  * concurrent reads from places like load balancing and procfs, and we should
2398  * reset the data back to default state without freeing ->numa_faults.
2399  */
2400 void task_numa_free(struct task_struct *p, bool final)
2401 {
2402 	/* safe: p either is current or is being freed by current */
2403 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2404 	unsigned long *numa_faults = p->numa_faults;
2405 	unsigned long flags;
2406 	int i;
2407 
2408 	if (!numa_faults)
2409 		return;
2410 
2411 	if (grp) {
2412 		spin_lock_irqsave(&grp->lock, flags);
2413 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2414 			grp->faults[i] -= p->numa_faults[i];
2415 		grp->total_faults -= p->total_numa_faults;
2416 
2417 		grp->nr_tasks--;
2418 		spin_unlock_irqrestore(&grp->lock, flags);
2419 		RCU_INIT_POINTER(p->numa_group, NULL);
2420 		put_numa_group(grp);
2421 	}
2422 
2423 	if (final) {
2424 		p->numa_faults = NULL;
2425 		kfree(numa_faults);
2426 	} else {
2427 		p->total_numa_faults = 0;
2428 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2429 			numa_faults[i] = 0;
2430 	}
2431 }
2432 
2433 /*
2434  * Got a PROT_NONE fault for a page on @node.
2435  */
2436 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2437 {
2438 	struct task_struct *p = current;
2439 	bool migrated = flags & TNF_MIGRATED;
2440 	int cpu_node = task_node(current);
2441 	int local = !!(flags & TNF_FAULT_LOCAL);
2442 	struct numa_group *ng;
2443 	int priv;
2444 
2445 	if (!static_branch_likely(&sched_numa_balancing))
2446 		return;
2447 
2448 	/* for example, ksmd faulting in a user's mm */
2449 	if (!p->mm)
2450 		return;
2451 
2452 	/* Allocate buffer to track faults on a per-node basis */
2453 	if (unlikely(!p->numa_faults)) {
2454 		int size = sizeof(*p->numa_faults) *
2455 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2456 
2457 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2458 		if (!p->numa_faults)
2459 			return;
2460 
2461 		p->total_numa_faults = 0;
2462 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2463 	}
2464 
2465 	/*
2466 	 * First accesses are treated as private, otherwise consider accesses
2467 	 * to be private if the accessing pid has not changed
2468 	 */
2469 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2470 		priv = 1;
2471 	} else {
2472 		priv = cpupid_match_pid(p, last_cpupid);
2473 		if (!priv && !(flags & TNF_NO_GROUP))
2474 			task_numa_group(p, last_cpupid, flags, &priv);
2475 	}
2476 
2477 	/*
2478 	 * If a workload spans multiple NUMA nodes, a shared fault that
2479 	 * occurs wholly within the set of nodes that the workload is
2480 	 * actively using should be counted as local. This allows the
2481 	 * scan rate to slow down when a workload has settled down.
2482 	 */
2483 	ng = deref_curr_numa_group(p);
2484 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2485 				numa_is_active_node(cpu_node, ng) &&
2486 				numa_is_active_node(mem_node, ng))
2487 		local = 1;
2488 
2489 	/*
2490 	 * Retry to migrate task to preferred node periodically, in case it
2491 	 * previously failed, or the scheduler moved us.
2492 	 */
2493 	if (time_after(jiffies, p->numa_migrate_retry)) {
2494 		task_numa_placement(p);
2495 		numa_migrate_preferred(p);
2496 	}
2497 
2498 	if (migrated)
2499 		p->numa_pages_migrated += pages;
2500 	if (flags & TNF_MIGRATE_FAIL)
2501 		p->numa_faults_locality[2] += pages;
2502 
2503 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2504 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2505 	p->numa_faults_locality[local] += pages;
2506 }
2507 
2508 static void reset_ptenuma_scan(struct task_struct *p)
2509 {
2510 	/*
2511 	 * We only did a read acquisition of the mmap sem, so
2512 	 * p->mm->numa_scan_seq is written to without exclusive access
2513 	 * and the update is not guaranteed to be atomic. That's not
2514 	 * much of an issue though, since this is just used for
2515 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2516 	 * expensive, to avoid any form of compiler optimizations:
2517 	 */
2518 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2519 	p->mm->numa_scan_offset = 0;
2520 }
2521 
2522 /*
2523  * The expensive part of numa migration is done from task_work context.
2524  * Triggered from task_tick_numa().
2525  */
2526 void task_numa_work(struct callback_head *work)
2527 {
2528 	unsigned long migrate, next_scan, now = jiffies;
2529 	struct task_struct *p = current;
2530 	struct mm_struct *mm = p->mm;
2531 	u64 runtime = p->se.sum_exec_runtime;
2532 	struct vm_area_struct *vma;
2533 	unsigned long start, end;
2534 	unsigned long nr_pte_updates = 0;
2535 	long pages, virtpages;
2536 
2537 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2538 
2539 	work->next = work; /* protect against double add */
2540 	/*
2541 	 * Who cares about NUMA placement when they're dying.
2542 	 *
2543 	 * NOTE: make sure not to dereference p->mm before this check,
2544 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2545 	 * without p->mm even though we still had it when we enqueued this
2546 	 * work.
2547 	 */
2548 	if (p->flags & PF_EXITING)
2549 		return;
2550 
2551 	if (!mm->numa_next_scan) {
2552 		mm->numa_next_scan = now +
2553 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2554 	}
2555 
2556 	/*
2557 	 * Enforce maximal scan/migration frequency..
2558 	 */
2559 	migrate = mm->numa_next_scan;
2560 	if (time_before(now, migrate))
2561 		return;
2562 
2563 	if (p->numa_scan_period == 0) {
2564 		p->numa_scan_period_max = task_scan_max(p);
2565 		p->numa_scan_period = task_scan_start(p);
2566 	}
2567 
2568 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2569 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2570 		return;
2571 
2572 	/*
2573 	 * Delay this task enough that another task of this mm will likely win
2574 	 * the next time around.
2575 	 */
2576 	p->node_stamp += 2 * TICK_NSEC;
2577 
2578 	start = mm->numa_scan_offset;
2579 	pages = sysctl_numa_balancing_scan_size;
2580 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2581 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2582 	if (!pages)
2583 		return;
2584 
2585 
2586 	if (!down_read_trylock(&mm->mmap_sem))
2587 		return;
2588 	vma = find_vma(mm, start);
2589 	if (!vma) {
2590 		reset_ptenuma_scan(p);
2591 		start = 0;
2592 		vma = mm->mmap;
2593 	}
2594 	for (; vma; vma = vma->vm_next) {
2595 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2596 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2597 			continue;
2598 		}
2599 
2600 		/*
2601 		 * Shared library pages mapped by multiple processes are not
2602 		 * migrated as it is expected they are cache replicated. Avoid
2603 		 * hinting faults in read-only file-backed mappings or the vdso
2604 		 * as migrating the pages will be of marginal benefit.
2605 		 */
2606 		if (!vma->vm_mm ||
2607 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2608 			continue;
2609 
2610 		/*
2611 		 * Skip inaccessible VMAs to avoid any confusion between
2612 		 * PROT_NONE and NUMA hinting ptes
2613 		 */
2614 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2615 			continue;
2616 
2617 		do {
2618 			start = max(start, vma->vm_start);
2619 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2620 			end = min(end, vma->vm_end);
2621 			nr_pte_updates = change_prot_numa(vma, start, end);
2622 
2623 			/*
2624 			 * Try to scan sysctl_numa_balancing_size worth of
2625 			 * hpages that have at least one present PTE that
2626 			 * is not already pte-numa. If the VMA contains
2627 			 * areas that are unused or already full of prot_numa
2628 			 * PTEs, scan up to virtpages, to skip through those
2629 			 * areas faster.
2630 			 */
2631 			if (nr_pte_updates)
2632 				pages -= (end - start) >> PAGE_SHIFT;
2633 			virtpages -= (end - start) >> PAGE_SHIFT;
2634 
2635 			start = end;
2636 			if (pages <= 0 || virtpages <= 0)
2637 				goto out;
2638 
2639 			cond_resched();
2640 		} while (end != vma->vm_end);
2641 	}
2642 
2643 out:
2644 	/*
2645 	 * It is possible to reach the end of the VMA list but the last few
2646 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2647 	 * would find the !migratable VMA on the next scan but not reset the
2648 	 * scanner to the start so check it now.
2649 	 */
2650 	if (vma)
2651 		mm->numa_scan_offset = start;
2652 	else
2653 		reset_ptenuma_scan(p);
2654 	up_read(&mm->mmap_sem);
2655 
2656 	/*
2657 	 * Make sure tasks use at least 32x as much time to run other code
2658 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2659 	 * Usually update_task_scan_period slows down scanning enough; on an
2660 	 * overloaded system we need to limit overhead on a per task basis.
2661 	 */
2662 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2663 		u64 diff = p->se.sum_exec_runtime - runtime;
2664 		p->node_stamp += 32 * diff;
2665 	}
2666 }
2667 
2668 /*
2669  * Drive the periodic memory faults..
2670  */
2671 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2672 {
2673 	struct callback_head *work = &curr->numa_work;
2674 	u64 period, now;
2675 
2676 	/*
2677 	 * We don't care about NUMA placement if we don't have memory.
2678 	 */
2679 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2680 		return;
2681 
2682 	/*
2683 	 * Using runtime rather than walltime has the dual advantage that
2684 	 * we (mostly) drive the selection from busy threads and that the
2685 	 * task needs to have done some actual work before we bother with
2686 	 * NUMA placement.
2687 	 */
2688 	now = curr->se.sum_exec_runtime;
2689 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2690 
2691 	if (now > curr->node_stamp + period) {
2692 		if (!curr->node_stamp)
2693 			curr->numa_scan_period = task_scan_start(curr);
2694 		curr->node_stamp += period;
2695 
2696 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2697 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2698 			task_work_add(curr, work, true);
2699 		}
2700 	}
2701 }
2702 
2703 static void update_scan_period(struct task_struct *p, int new_cpu)
2704 {
2705 	int src_nid = cpu_to_node(task_cpu(p));
2706 	int dst_nid = cpu_to_node(new_cpu);
2707 
2708 	if (!static_branch_likely(&sched_numa_balancing))
2709 		return;
2710 
2711 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2712 		return;
2713 
2714 	if (src_nid == dst_nid)
2715 		return;
2716 
2717 	/*
2718 	 * Allow resets if faults have been trapped before one scan
2719 	 * has completed. This is most likely due to a new task that
2720 	 * is pulled cross-node due to wakeups or load balancing.
2721 	 */
2722 	if (p->numa_scan_seq) {
2723 		/*
2724 		 * Avoid scan adjustments if moving to the preferred
2725 		 * node or if the task was not previously running on
2726 		 * the preferred node.
2727 		 */
2728 		if (dst_nid == p->numa_preferred_nid ||
2729 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2730 			src_nid != p->numa_preferred_nid))
2731 			return;
2732 	}
2733 
2734 	p->numa_scan_period = task_scan_start(p);
2735 }
2736 
2737 #else
2738 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2739 {
2740 }
2741 
2742 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2743 {
2744 }
2745 
2746 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2747 {
2748 }
2749 
2750 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2751 {
2752 }
2753 
2754 #endif /* CONFIG_NUMA_BALANCING */
2755 
2756 static void
2757 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2758 {
2759 	update_load_add(&cfs_rq->load, se->load.weight);
2760 #ifdef CONFIG_SMP
2761 	if (entity_is_task(se)) {
2762 		struct rq *rq = rq_of(cfs_rq);
2763 
2764 		account_numa_enqueue(rq, task_of(se));
2765 		list_add(&se->group_node, &rq->cfs_tasks);
2766 	}
2767 #endif
2768 	cfs_rq->nr_running++;
2769 }
2770 
2771 static void
2772 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2773 {
2774 	update_load_sub(&cfs_rq->load, se->load.weight);
2775 #ifdef CONFIG_SMP
2776 	if (entity_is_task(se)) {
2777 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2778 		list_del_init(&se->group_node);
2779 	}
2780 #endif
2781 	cfs_rq->nr_running--;
2782 }
2783 
2784 /*
2785  * Signed add and clamp on underflow.
2786  *
2787  * Explicitly do a load-store to ensure the intermediate value never hits
2788  * memory. This allows lockless observations without ever seeing the negative
2789  * values.
2790  */
2791 #define add_positive(_ptr, _val) do {                           \
2792 	typeof(_ptr) ptr = (_ptr);                              \
2793 	typeof(_val) val = (_val);                              \
2794 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2795 								\
2796 	res = var + val;                                        \
2797 								\
2798 	if (val < 0 && res > var)                               \
2799 		res = 0;                                        \
2800 								\
2801 	WRITE_ONCE(*ptr, res);                                  \
2802 } while (0)
2803 
2804 /*
2805  * Unsigned subtract and clamp on underflow.
2806  *
2807  * Explicitly do a load-store to ensure the intermediate value never hits
2808  * memory. This allows lockless observations without ever seeing the negative
2809  * values.
2810  */
2811 #define sub_positive(_ptr, _val) do {				\
2812 	typeof(_ptr) ptr = (_ptr);				\
2813 	typeof(*ptr) val = (_val);				\
2814 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
2815 	res = var - val;					\
2816 	if (res > var)						\
2817 		res = 0;					\
2818 	WRITE_ONCE(*ptr, res);					\
2819 } while (0)
2820 
2821 /*
2822  * Remove and clamp on negative, from a local variable.
2823  *
2824  * A variant of sub_positive(), which does not use explicit load-store
2825  * and is thus optimized for local variable updates.
2826  */
2827 #define lsub_positive(_ptr, _val) do {				\
2828 	typeof(_ptr) ptr = (_ptr);				\
2829 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
2830 } while (0)
2831 
2832 #ifdef CONFIG_SMP
2833 static inline void
2834 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2835 {
2836 	cfs_rq->runnable_weight += se->runnable_weight;
2837 
2838 	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2839 	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2840 }
2841 
2842 static inline void
2843 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2844 {
2845 	cfs_rq->runnable_weight -= se->runnable_weight;
2846 
2847 	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2848 	sub_positive(&cfs_rq->avg.runnable_load_sum,
2849 		     se_runnable(se) * se->avg.runnable_load_sum);
2850 }
2851 
2852 static inline void
2853 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2854 {
2855 	cfs_rq->avg.load_avg += se->avg.load_avg;
2856 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2857 }
2858 
2859 static inline void
2860 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2861 {
2862 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2863 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2864 }
2865 #else
2866 static inline void
2867 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2868 static inline void
2869 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2870 static inline void
2871 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2872 static inline void
2873 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2874 #endif
2875 
2876 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2877 			    unsigned long weight, unsigned long runnable)
2878 {
2879 	if (se->on_rq) {
2880 		/* commit outstanding execution time */
2881 		if (cfs_rq->curr == se)
2882 			update_curr(cfs_rq);
2883 		account_entity_dequeue(cfs_rq, se);
2884 		dequeue_runnable_load_avg(cfs_rq, se);
2885 	}
2886 	dequeue_load_avg(cfs_rq, se);
2887 
2888 	se->runnable_weight = runnable;
2889 	update_load_set(&se->load, weight);
2890 
2891 #ifdef CONFIG_SMP
2892 	do {
2893 		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2894 
2895 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2896 		se->avg.runnable_load_avg =
2897 			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2898 	} while (0);
2899 #endif
2900 
2901 	enqueue_load_avg(cfs_rq, se);
2902 	if (se->on_rq) {
2903 		account_entity_enqueue(cfs_rq, se);
2904 		enqueue_runnable_load_avg(cfs_rq, se);
2905 	}
2906 }
2907 
2908 void reweight_task(struct task_struct *p, int prio)
2909 {
2910 	struct sched_entity *se = &p->se;
2911 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2912 	struct load_weight *load = &se->load;
2913 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2914 
2915 	reweight_entity(cfs_rq, se, weight, weight);
2916 	load->inv_weight = sched_prio_to_wmult[prio];
2917 }
2918 
2919 #ifdef CONFIG_FAIR_GROUP_SCHED
2920 #ifdef CONFIG_SMP
2921 /*
2922  * All this does is approximate the hierarchical proportion which includes that
2923  * global sum we all love to hate.
2924  *
2925  * That is, the weight of a group entity, is the proportional share of the
2926  * group weight based on the group runqueue weights. That is:
2927  *
2928  *                     tg->weight * grq->load.weight
2929  *   ge->load.weight = -----------------------------               (1)
2930  *			  \Sum grq->load.weight
2931  *
2932  * Now, because computing that sum is prohibitively expensive to compute (been
2933  * there, done that) we approximate it with this average stuff. The average
2934  * moves slower and therefore the approximation is cheaper and more stable.
2935  *
2936  * So instead of the above, we substitute:
2937  *
2938  *   grq->load.weight -> grq->avg.load_avg                         (2)
2939  *
2940  * which yields the following:
2941  *
2942  *                     tg->weight * grq->avg.load_avg
2943  *   ge->load.weight = ------------------------------              (3)
2944  *				tg->load_avg
2945  *
2946  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2947  *
2948  * That is shares_avg, and it is right (given the approximation (2)).
2949  *
2950  * The problem with it is that because the average is slow -- it was designed
2951  * to be exactly that of course -- this leads to transients in boundary
2952  * conditions. In specific, the case where the group was idle and we start the
2953  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2954  * yielding bad latency etc..
2955  *
2956  * Now, in that special case (1) reduces to:
2957  *
2958  *                     tg->weight * grq->load.weight
2959  *   ge->load.weight = ----------------------------- = tg->weight   (4)
2960  *			    grp->load.weight
2961  *
2962  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2963  *
2964  * So what we do is modify our approximation (3) to approach (4) in the (near)
2965  * UP case, like:
2966  *
2967  *   ge->load.weight =
2968  *
2969  *              tg->weight * grq->load.weight
2970  *     ---------------------------------------------------         (5)
2971  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
2972  *
2973  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2974  * we need to use grq->avg.load_avg as its lower bound, which then gives:
2975  *
2976  *
2977  *                     tg->weight * grq->load.weight
2978  *   ge->load.weight = -----------------------------		   (6)
2979  *				tg_load_avg'
2980  *
2981  * Where:
2982  *
2983  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2984  *                  max(grq->load.weight, grq->avg.load_avg)
2985  *
2986  * And that is shares_weight and is icky. In the (near) UP case it approaches
2987  * (4) while in the normal case it approaches (3). It consistently
2988  * overestimates the ge->load.weight and therefore:
2989  *
2990  *   \Sum ge->load.weight >= tg->weight
2991  *
2992  * hence icky!
2993  */
2994 static long calc_group_shares(struct cfs_rq *cfs_rq)
2995 {
2996 	long tg_weight, tg_shares, load, shares;
2997 	struct task_group *tg = cfs_rq->tg;
2998 
2999 	tg_shares = READ_ONCE(tg->shares);
3000 
3001 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3002 
3003 	tg_weight = atomic_long_read(&tg->load_avg);
3004 
3005 	/* Ensure tg_weight >= load */
3006 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3007 	tg_weight += load;
3008 
3009 	shares = (tg_shares * load);
3010 	if (tg_weight)
3011 		shares /= tg_weight;
3012 
3013 	/*
3014 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3015 	 * of a group with small tg->shares value. It is a floor value which is
3016 	 * assigned as a minimum load.weight to the sched_entity representing
3017 	 * the group on a CPU.
3018 	 *
3019 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3020 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3021 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3022 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3023 	 * instead of 0.
3024 	 */
3025 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3026 }
3027 
3028 /*
3029  * This calculates the effective runnable weight for a group entity based on
3030  * the group entity weight calculated above.
3031  *
3032  * Because of the above approximation (2), our group entity weight is
3033  * an load_avg based ratio (3). This means that it includes blocked load and
3034  * does not represent the runnable weight.
3035  *
3036  * Approximate the group entity's runnable weight per ratio from the group
3037  * runqueue:
3038  *
3039  *					     grq->avg.runnable_load_avg
3040  *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
3041  *						 grq->avg.load_avg
3042  *
3043  * However, analogous to above, since the avg numbers are slow, this leads to
3044  * transients in the from-idle case. Instead we use:
3045  *
3046  *   ge->runnable_weight = ge->load.weight *
3047  *
3048  *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
3049  *		-----------------------------------------------------	(8)
3050  *		      max(grq->avg.load_avg, grq->load.weight)
3051  *
3052  * Where these max() serve both to use the 'instant' values to fix the slow
3053  * from-idle and avoid the /0 on to-idle, similar to (6).
3054  */
3055 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
3056 {
3057 	long runnable, load_avg;
3058 
3059 	load_avg = max(cfs_rq->avg.load_avg,
3060 		       scale_load_down(cfs_rq->load.weight));
3061 
3062 	runnable = max(cfs_rq->avg.runnable_load_avg,
3063 		       scale_load_down(cfs_rq->runnable_weight));
3064 
3065 	runnable *= shares;
3066 	if (load_avg)
3067 		runnable /= load_avg;
3068 
3069 	return clamp_t(long, runnable, MIN_SHARES, shares);
3070 }
3071 #endif /* CONFIG_SMP */
3072 
3073 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3074 
3075 /*
3076  * Recomputes the group entity based on the current state of its group
3077  * runqueue.
3078  */
3079 static void update_cfs_group(struct sched_entity *se)
3080 {
3081 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3082 	long shares, runnable;
3083 
3084 	if (!gcfs_rq)
3085 		return;
3086 
3087 	if (throttled_hierarchy(gcfs_rq))
3088 		return;
3089 
3090 #ifndef CONFIG_SMP
3091 	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3092 
3093 	if (likely(se->load.weight == shares))
3094 		return;
3095 #else
3096 	shares   = calc_group_shares(gcfs_rq);
3097 	runnable = calc_group_runnable(gcfs_rq, shares);
3098 #endif
3099 
3100 	reweight_entity(cfs_rq_of(se), se, shares, runnable);
3101 }
3102 
3103 #else /* CONFIG_FAIR_GROUP_SCHED */
3104 static inline void update_cfs_group(struct sched_entity *se)
3105 {
3106 }
3107 #endif /* CONFIG_FAIR_GROUP_SCHED */
3108 
3109 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3110 {
3111 	struct rq *rq = rq_of(cfs_rq);
3112 
3113 	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3114 		/*
3115 		 * There are a few boundary cases this might miss but it should
3116 		 * get called often enough that that should (hopefully) not be
3117 		 * a real problem.
3118 		 *
3119 		 * It will not get called when we go idle, because the idle
3120 		 * thread is a different class (!fair), nor will the utilization
3121 		 * number include things like RT tasks.
3122 		 *
3123 		 * As is, the util number is not freq-invariant (we'd have to
3124 		 * implement arch_scale_freq_capacity() for that).
3125 		 *
3126 		 * See cpu_util().
3127 		 */
3128 		cpufreq_update_util(rq, flags);
3129 	}
3130 }
3131 
3132 #ifdef CONFIG_SMP
3133 #ifdef CONFIG_FAIR_GROUP_SCHED
3134 /**
3135  * update_tg_load_avg - update the tg's load avg
3136  * @cfs_rq: the cfs_rq whose avg changed
3137  * @force: update regardless of how small the difference
3138  *
3139  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3140  * However, because tg->load_avg is a global value there are performance
3141  * considerations.
3142  *
3143  * In order to avoid having to look at the other cfs_rq's, we use a
3144  * differential update where we store the last value we propagated. This in
3145  * turn allows skipping updates if the differential is 'small'.
3146  *
3147  * Updating tg's load_avg is necessary before update_cfs_share().
3148  */
3149 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3150 {
3151 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3152 
3153 	/*
3154 	 * No need to update load_avg for root_task_group as it is not used.
3155 	 */
3156 	if (cfs_rq->tg == &root_task_group)
3157 		return;
3158 
3159 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3160 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3161 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3162 	}
3163 }
3164 
3165 /*
3166  * Called within set_task_rq() right before setting a task's CPU. The
3167  * caller only guarantees p->pi_lock is held; no other assumptions,
3168  * including the state of rq->lock, should be made.
3169  */
3170 void set_task_rq_fair(struct sched_entity *se,
3171 		      struct cfs_rq *prev, struct cfs_rq *next)
3172 {
3173 	u64 p_last_update_time;
3174 	u64 n_last_update_time;
3175 
3176 	if (!sched_feat(ATTACH_AGE_LOAD))
3177 		return;
3178 
3179 	/*
3180 	 * We are supposed to update the task to "current" time, then its up to
3181 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3182 	 * getting what current time is, so simply throw away the out-of-date
3183 	 * time. This will result in the wakee task is less decayed, but giving
3184 	 * the wakee more load sounds not bad.
3185 	 */
3186 	if (!(se->avg.last_update_time && prev))
3187 		return;
3188 
3189 #ifndef CONFIG_64BIT
3190 	{
3191 		u64 p_last_update_time_copy;
3192 		u64 n_last_update_time_copy;
3193 
3194 		do {
3195 			p_last_update_time_copy = prev->load_last_update_time_copy;
3196 			n_last_update_time_copy = next->load_last_update_time_copy;
3197 
3198 			smp_rmb();
3199 
3200 			p_last_update_time = prev->avg.last_update_time;
3201 			n_last_update_time = next->avg.last_update_time;
3202 
3203 		} while (p_last_update_time != p_last_update_time_copy ||
3204 			 n_last_update_time != n_last_update_time_copy);
3205 	}
3206 #else
3207 	p_last_update_time = prev->avg.last_update_time;
3208 	n_last_update_time = next->avg.last_update_time;
3209 #endif
3210 	__update_load_avg_blocked_se(p_last_update_time, se);
3211 	se->avg.last_update_time = n_last_update_time;
3212 }
3213 
3214 
3215 /*
3216  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3217  * propagate its contribution. The key to this propagation is the invariant
3218  * that for each group:
3219  *
3220  *   ge->avg == grq->avg						(1)
3221  *
3222  * _IFF_ we look at the pure running and runnable sums. Because they
3223  * represent the very same entity, just at different points in the hierarchy.
3224  *
3225  * Per the above update_tg_cfs_util() is trivial and simply copies the running
3226  * sum over (but still wrong, because the group entity and group rq do not have
3227  * their PELT windows aligned).
3228  *
3229  * However, update_tg_cfs_runnable() is more complex. So we have:
3230  *
3231  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3232  *
3233  * And since, like util, the runnable part should be directly transferable,
3234  * the following would _appear_ to be the straight forward approach:
3235  *
3236  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3237  *
3238  * And per (1) we have:
3239  *
3240  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3241  *
3242  * Which gives:
3243  *
3244  *                      ge->load.weight * grq->avg.load_avg
3245  *   ge->avg.load_avg = -----------------------------------		(4)
3246  *                               grq->load.weight
3247  *
3248  * Except that is wrong!
3249  *
3250  * Because while for entities historical weight is not important and we
3251  * really only care about our future and therefore can consider a pure
3252  * runnable sum, runqueues can NOT do this.
3253  *
3254  * We specifically want runqueues to have a load_avg that includes
3255  * historical weights. Those represent the blocked load, the load we expect
3256  * to (shortly) return to us. This only works by keeping the weights as
3257  * integral part of the sum. We therefore cannot decompose as per (3).
3258  *
3259  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3260  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3261  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3262  * runnable section of these tasks overlap (or not). If they were to perfectly
3263  * align the rq as a whole would be runnable 2/3 of the time. If however we
3264  * always have at least 1 runnable task, the rq as a whole is always runnable.
3265  *
3266  * So we'll have to approximate.. :/
3267  *
3268  * Given the constraint:
3269  *
3270  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3271  *
3272  * We can construct a rule that adds runnable to a rq by assuming minimal
3273  * overlap.
3274  *
3275  * On removal, we'll assume each task is equally runnable; which yields:
3276  *
3277  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3278  *
3279  * XXX: only do this for the part of runnable > running ?
3280  *
3281  */
3282 
3283 static inline void
3284 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3285 {
3286 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3287 
3288 	/* Nothing to update */
3289 	if (!delta)
3290 		return;
3291 
3292 	/*
3293 	 * The relation between sum and avg is:
3294 	 *
3295 	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
3296 	 *
3297 	 * however, the PELT windows are not aligned between grq and gse.
3298 	 */
3299 
3300 	/* Set new sched_entity's utilization */
3301 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3302 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3303 
3304 	/* Update parent cfs_rq utilization */
3305 	add_positive(&cfs_rq->avg.util_avg, delta);
3306 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3307 }
3308 
3309 static inline void
3310 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3311 {
3312 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3313 	unsigned long runnable_load_avg, load_avg;
3314 	u64 runnable_load_sum, load_sum = 0;
3315 	s64 delta_sum;
3316 
3317 	if (!runnable_sum)
3318 		return;
3319 
3320 	gcfs_rq->prop_runnable_sum = 0;
3321 
3322 	if (runnable_sum >= 0) {
3323 		/*
3324 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3325 		 * the CPU is saturated running == runnable.
3326 		 */
3327 		runnable_sum += se->avg.load_sum;
3328 		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3329 	} else {
3330 		/*
3331 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3332 		 * assuming all tasks are equally runnable.
3333 		 */
3334 		if (scale_load_down(gcfs_rq->load.weight)) {
3335 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3336 				scale_load_down(gcfs_rq->load.weight));
3337 		}
3338 
3339 		/* But make sure to not inflate se's runnable */
3340 		runnable_sum = min(se->avg.load_sum, load_sum);
3341 	}
3342 
3343 	/*
3344 	 * runnable_sum can't be lower than running_sum
3345 	 * Rescale running sum to be in the same range as runnable sum
3346 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3347 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3348 	 */
3349 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3350 	runnable_sum = max(runnable_sum, running_sum);
3351 
3352 	load_sum = (s64)se_weight(se) * runnable_sum;
3353 	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3354 
3355 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3356 	delta_avg = load_avg - se->avg.load_avg;
3357 
3358 	se->avg.load_sum = runnable_sum;
3359 	se->avg.load_avg = load_avg;
3360 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3361 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3362 
3363 	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3364 	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3365 	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3366 	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3367 
3368 	se->avg.runnable_load_sum = runnable_sum;
3369 	se->avg.runnable_load_avg = runnable_load_avg;
3370 
3371 	if (se->on_rq) {
3372 		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3373 		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3374 	}
3375 }
3376 
3377 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3378 {
3379 	cfs_rq->propagate = 1;
3380 	cfs_rq->prop_runnable_sum += runnable_sum;
3381 }
3382 
3383 /* Update task and its cfs_rq load average */
3384 static inline int propagate_entity_load_avg(struct sched_entity *se)
3385 {
3386 	struct cfs_rq *cfs_rq, *gcfs_rq;
3387 
3388 	if (entity_is_task(se))
3389 		return 0;
3390 
3391 	gcfs_rq = group_cfs_rq(se);
3392 	if (!gcfs_rq->propagate)
3393 		return 0;
3394 
3395 	gcfs_rq->propagate = 0;
3396 
3397 	cfs_rq = cfs_rq_of(se);
3398 
3399 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3400 
3401 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3402 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3403 
3404 	trace_pelt_cfs_tp(cfs_rq);
3405 	trace_pelt_se_tp(se);
3406 
3407 	return 1;
3408 }
3409 
3410 /*
3411  * Check if we need to update the load and the utilization of a blocked
3412  * group_entity:
3413  */
3414 static inline bool skip_blocked_update(struct sched_entity *se)
3415 {
3416 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3417 
3418 	/*
3419 	 * If sched_entity still have not zero load or utilization, we have to
3420 	 * decay it:
3421 	 */
3422 	if (se->avg.load_avg || se->avg.util_avg)
3423 		return false;
3424 
3425 	/*
3426 	 * If there is a pending propagation, we have to update the load and
3427 	 * the utilization of the sched_entity:
3428 	 */
3429 	if (gcfs_rq->propagate)
3430 		return false;
3431 
3432 	/*
3433 	 * Otherwise, the load and the utilization of the sched_entity is
3434 	 * already zero and there is no pending propagation, so it will be a
3435 	 * waste of time to try to decay it:
3436 	 */
3437 	return true;
3438 }
3439 
3440 #else /* CONFIG_FAIR_GROUP_SCHED */
3441 
3442 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3443 
3444 static inline int propagate_entity_load_avg(struct sched_entity *se)
3445 {
3446 	return 0;
3447 }
3448 
3449 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3450 
3451 #endif /* CONFIG_FAIR_GROUP_SCHED */
3452 
3453 /**
3454  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3455  * @now: current time, as per cfs_rq_clock_pelt()
3456  * @cfs_rq: cfs_rq to update
3457  *
3458  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3459  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3460  * post_init_entity_util_avg().
3461  *
3462  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3463  *
3464  * Returns true if the load decayed or we removed load.
3465  *
3466  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3467  * call update_tg_load_avg() when this function returns true.
3468  */
3469 static inline int
3470 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3471 {
3472 	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3473 	struct sched_avg *sa = &cfs_rq->avg;
3474 	int decayed = 0;
3475 
3476 	if (cfs_rq->removed.nr) {
3477 		unsigned long r;
3478 		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3479 
3480 		raw_spin_lock(&cfs_rq->removed.lock);
3481 		swap(cfs_rq->removed.util_avg, removed_util);
3482 		swap(cfs_rq->removed.load_avg, removed_load);
3483 		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3484 		cfs_rq->removed.nr = 0;
3485 		raw_spin_unlock(&cfs_rq->removed.lock);
3486 
3487 		r = removed_load;
3488 		sub_positive(&sa->load_avg, r);
3489 		sub_positive(&sa->load_sum, r * divider);
3490 
3491 		r = removed_util;
3492 		sub_positive(&sa->util_avg, r);
3493 		sub_positive(&sa->util_sum, r * divider);
3494 
3495 		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3496 
3497 		decayed = 1;
3498 	}
3499 
3500 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3501 
3502 #ifndef CONFIG_64BIT
3503 	smp_wmb();
3504 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3505 #endif
3506 
3507 	if (decayed)
3508 		cfs_rq_util_change(cfs_rq, 0);
3509 
3510 	return decayed;
3511 }
3512 
3513 /**
3514  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3515  * @cfs_rq: cfs_rq to attach to
3516  * @se: sched_entity to attach
3517  * @flags: migration hints
3518  *
3519  * Must call update_cfs_rq_load_avg() before this, since we rely on
3520  * cfs_rq->avg.last_update_time being current.
3521  */
3522 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3523 {
3524 	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3525 
3526 	/*
3527 	 * When we attach the @se to the @cfs_rq, we must align the decay
3528 	 * window because without that, really weird and wonderful things can
3529 	 * happen.
3530 	 *
3531 	 * XXX illustrate
3532 	 */
3533 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3534 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3535 
3536 	/*
3537 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3538 	 * period_contrib. This isn't strictly correct, but since we're
3539 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3540 	 * _sum a little.
3541 	 */
3542 	se->avg.util_sum = se->avg.util_avg * divider;
3543 
3544 	se->avg.load_sum = divider;
3545 	if (se_weight(se)) {
3546 		se->avg.load_sum =
3547 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3548 	}
3549 
3550 	se->avg.runnable_load_sum = se->avg.load_sum;
3551 
3552 	enqueue_load_avg(cfs_rq, se);
3553 	cfs_rq->avg.util_avg += se->avg.util_avg;
3554 	cfs_rq->avg.util_sum += se->avg.util_sum;
3555 
3556 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3557 
3558 	cfs_rq_util_change(cfs_rq, flags);
3559 
3560 	trace_pelt_cfs_tp(cfs_rq);
3561 }
3562 
3563 /**
3564  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3565  * @cfs_rq: cfs_rq to detach from
3566  * @se: sched_entity to detach
3567  *
3568  * Must call update_cfs_rq_load_avg() before this, since we rely on
3569  * cfs_rq->avg.last_update_time being current.
3570  */
3571 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3572 {
3573 	dequeue_load_avg(cfs_rq, se);
3574 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3575 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3576 
3577 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3578 
3579 	cfs_rq_util_change(cfs_rq, 0);
3580 
3581 	trace_pelt_cfs_tp(cfs_rq);
3582 }
3583 
3584 /*
3585  * Optional action to be done while updating the load average
3586  */
3587 #define UPDATE_TG	0x1
3588 #define SKIP_AGE_LOAD	0x2
3589 #define DO_ATTACH	0x4
3590 
3591 /* Update task and its cfs_rq load average */
3592 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3593 {
3594 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3595 	int decayed;
3596 
3597 	/*
3598 	 * Track task load average for carrying it to new CPU after migrated, and
3599 	 * track group sched_entity load average for task_h_load calc in migration
3600 	 */
3601 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3602 		__update_load_avg_se(now, cfs_rq, se);
3603 
3604 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3605 	decayed |= propagate_entity_load_avg(se);
3606 
3607 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3608 
3609 		/*
3610 		 * DO_ATTACH means we're here from enqueue_entity().
3611 		 * !last_update_time means we've passed through
3612 		 * migrate_task_rq_fair() indicating we migrated.
3613 		 *
3614 		 * IOW we're enqueueing a task on a new CPU.
3615 		 */
3616 		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3617 		update_tg_load_avg(cfs_rq, 0);
3618 
3619 	} else if (decayed && (flags & UPDATE_TG))
3620 		update_tg_load_avg(cfs_rq, 0);
3621 }
3622 
3623 #ifndef CONFIG_64BIT
3624 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3625 {
3626 	u64 last_update_time_copy;
3627 	u64 last_update_time;
3628 
3629 	do {
3630 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3631 		smp_rmb();
3632 		last_update_time = cfs_rq->avg.last_update_time;
3633 	} while (last_update_time != last_update_time_copy);
3634 
3635 	return last_update_time;
3636 }
3637 #else
3638 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3639 {
3640 	return cfs_rq->avg.last_update_time;
3641 }
3642 #endif
3643 
3644 /*
3645  * Synchronize entity load avg of dequeued entity without locking
3646  * the previous rq.
3647  */
3648 static void sync_entity_load_avg(struct sched_entity *se)
3649 {
3650 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3651 	u64 last_update_time;
3652 
3653 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3654 	__update_load_avg_blocked_se(last_update_time, se);
3655 }
3656 
3657 /*
3658  * Task first catches up with cfs_rq, and then subtract
3659  * itself from the cfs_rq (task must be off the queue now).
3660  */
3661 static void remove_entity_load_avg(struct sched_entity *se)
3662 {
3663 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3664 	unsigned long flags;
3665 
3666 	/*
3667 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3668 	 * post_init_entity_util_avg() which will have added things to the
3669 	 * cfs_rq, so we can remove unconditionally.
3670 	 */
3671 
3672 	sync_entity_load_avg(se);
3673 
3674 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3675 	++cfs_rq->removed.nr;
3676 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3677 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3678 	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3679 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3680 }
3681 
3682 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3683 {
3684 	return cfs_rq->avg.runnable_load_avg;
3685 }
3686 
3687 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3688 {
3689 	return cfs_rq->avg.load_avg;
3690 }
3691 
3692 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3693 
3694 static inline unsigned long task_util(struct task_struct *p)
3695 {
3696 	return READ_ONCE(p->se.avg.util_avg);
3697 }
3698 
3699 static inline unsigned long _task_util_est(struct task_struct *p)
3700 {
3701 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3702 
3703 	return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3704 }
3705 
3706 static inline unsigned long task_util_est(struct task_struct *p)
3707 {
3708 	return max(task_util(p), _task_util_est(p));
3709 }
3710 
3711 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3712 				    struct task_struct *p)
3713 {
3714 	unsigned int enqueued;
3715 
3716 	if (!sched_feat(UTIL_EST))
3717 		return;
3718 
3719 	/* Update root cfs_rq's estimated utilization */
3720 	enqueued  = cfs_rq->avg.util_est.enqueued;
3721 	enqueued += _task_util_est(p);
3722 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3723 }
3724 
3725 /*
3726  * Check if a (signed) value is within a specified (unsigned) margin,
3727  * based on the observation that:
3728  *
3729  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3730  *
3731  * NOTE: this only works when value + maring < INT_MAX.
3732  */
3733 static inline bool within_margin(int value, int margin)
3734 {
3735 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3736 }
3737 
3738 static void
3739 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3740 {
3741 	long last_ewma_diff;
3742 	struct util_est ue;
3743 	int cpu;
3744 
3745 	if (!sched_feat(UTIL_EST))
3746 		return;
3747 
3748 	/* Update root cfs_rq's estimated utilization */
3749 	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3750 	ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3751 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3752 
3753 	/*
3754 	 * Skip update of task's estimated utilization when the task has not
3755 	 * yet completed an activation, e.g. being migrated.
3756 	 */
3757 	if (!task_sleep)
3758 		return;
3759 
3760 	/*
3761 	 * If the PELT values haven't changed since enqueue time,
3762 	 * skip the util_est update.
3763 	 */
3764 	ue = p->se.avg.util_est;
3765 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
3766 		return;
3767 
3768 	/*
3769 	 * Skip update of task's estimated utilization when its EWMA is
3770 	 * already ~1% close to its last activation value.
3771 	 */
3772 	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3773 	last_ewma_diff = ue.enqueued - ue.ewma;
3774 	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3775 		return;
3776 
3777 	/*
3778 	 * To avoid overestimation of actual task utilization, skip updates if
3779 	 * we cannot grant there is idle time in this CPU.
3780 	 */
3781 	cpu = cpu_of(rq_of(cfs_rq));
3782 	if (task_util(p) > capacity_orig_of(cpu))
3783 		return;
3784 
3785 	/*
3786 	 * Update Task's estimated utilization
3787 	 *
3788 	 * When *p completes an activation we can consolidate another sample
3789 	 * of the task size. This is done by storing the current PELT value
3790 	 * as ue.enqueued and by using this value to update the Exponential
3791 	 * Weighted Moving Average (EWMA):
3792 	 *
3793 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
3794 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
3795 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
3796 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
3797 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
3798 	 *
3799 	 * Where 'w' is the weight of new samples, which is configured to be
3800 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3801 	 */
3802 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3803 	ue.ewma  += last_ewma_diff;
3804 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3805 	WRITE_ONCE(p->se.avg.util_est, ue);
3806 }
3807 
3808 static inline int task_fits_capacity(struct task_struct *p, long capacity)
3809 {
3810 	return capacity * 1024 > task_util_est(p) * capacity_margin;
3811 }
3812 
3813 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3814 {
3815 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
3816 		return;
3817 
3818 	if (!p) {
3819 		rq->misfit_task_load = 0;
3820 		return;
3821 	}
3822 
3823 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3824 		rq->misfit_task_load = 0;
3825 		return;
3826 	}
3827 
3828 	rq->misfit_task_load = task_h_load(p);
3829 }
3830 
3831 #else /* CONFIG_SMP */
3832 
3833 #define UPDATE_TG	0x0
3834 #define SKIP_AGE_LOAD	0x0
3835 #define DO_ATTACH	0x0
3836 
3837 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3838 {
3839 	cfs_rq_util_change(cfs_rq, 0);
3840 }
3841 
3842 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3843 
3844 static inline void
3845 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3846 static inline void
3847 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3848 
3849 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3850 {
3851 	return 0;
3852 }
3853 
3854 static inline void
3855 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3856 
3857 static inline void
3858 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3859 		 bool task_sleep) {}
3860 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
3861 
3862 #endif /* CONFIG_SMP */
3863 
3864 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3865 {
3866 #ifdef CONFIG_SCHED_DEBUG
3867 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3868 
3869 	if (d < 0)
3870 		d = -d;
3871 
3872 	if (d > 3*sysctl_sched_latency)
3873 		schedstat_inc(cfs_rq->nr_spread_over);
3874 #endif
3875 }
3876 
3877 static void
3878 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3879 {
3880 	u64 vruntime = cfs_rq->min_vruntime;
3881 
3882 	/*
3883 	 * The 'current' period is already promised to the current tasks,
3884 	 * however the extra weight of the new task will slow them down a
3885 	 * little, place the new task so that it fits in the slot that
3886 	 * stays open at the end.
3887 	 */
3888 	if (initial && sched_feat(START_DEBIT))
3889 		vruntime += sched_vslice(cfs_rq, se);
3890 
3891 	/* sleeps up to a single latency don't count. */
3892 	if (!initial) {
3893 		unsigned long thresh = sysctl_sched_latency;
3894 
3895 		/*
3896 		 * Halve their sleep time's effect, to allow
3897 		 * for a gentler effect of sleepers:
3898 		 */
3899 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3900 			thresh >>= 1;
3901 
3902 		vruntime -= thresh;
3903 	}
3904 
3905 	/* ensure we never gain time by being placed backwards. */
3906 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3907 }
3908 
3909 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3910 
3911 static inline void check_schedstat_required(void)
3912 {
3913 #ifdef CONFIG_SCHEDSTATS
3914 	if (schedstat_enabled())
3915 		return;
3916 
3917 	/* Force schedstat enabled if a dependent tracepoint is active */
3918 	if (trace_sched_stat_wait_enabled()    ||
3919 			trace_sched_stat_sleep_enabled()   ||
3920 			trace_sched_stat_iowait_enabled()  ||
3921 			trace_sched_stat_blocked_enabled() ||
3922 			trace_sched_stat_runtime_enabled())  {
3923 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3924 			     "stat_blocked and stat_runtime require the "
3925 			     "kernel parameter schedstats=enable or "
3926 			     "kernel.sched_schedstats=1\n");
3927 	}
3928 #endif
3929 }
3930 
3931 
3932 /*
3933  * MIGRATION
3934  *
3935  *	dequeue
3936  *	  update_curr()
3937  *	    update_min_vruntime()
3938  *	  vruntime -= min_vruntime
3939  *
3940  *	enqueue
3941  *	  update_curr()
3942  *	    update_min_vruntime()
3943  *	  vruntime += min_vruntime
3944  *
3945  * this way the vruntime transition between RQs is done when both
3946  * min_vruntime are up-to-date.
3947  *
3948  * WAKEUP (remote)
3949  *
3950  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3951  *	  vruntime -= min_vruntime
3952  *
3953  *	enqueue
3954  *	  update_curr()
3955  *	    update_min_vruntime()
3956  *	  vruntime += min_vruntime
3957  *
3958  * this way we don't have the most up-to-date min_vruntime on the originating
3959  * CPU and an up-to-date min_vruntime on the destination CPU.
3960  */
3961 
3962 static void
3963 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3964 {
3965 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3966 	bool curr = cfs_rq->curr == se;
3967 
3968 	/*
3969 	 * If we're the current task, we must renormalise before calling
3970 	 * update_curr().
3971 	 */
3972 	if (renorm && curr)
3973 		se->vruntime += cfs_rq->min_vruntime;
3974 
3975 	update_curr(cfs_rq);
3976 
3977 	/*
3978 	 * Otherwise, renormalise after, such that we're placed at the current
3979 	 * moment in time, instead of some random moment in the past. Being
3980 	 * placed in the past could significantly boost this task to the
3981 	 * fairness detriment of existing tasks.
3982 	 */
3983 	if (renorm && !curr)
3984 		se->vruntime += cfs_rq->min_vruntime;
3985 
3986 	/*
3987 	 * When enqueuing a sched_entity, we must:
3988 	 *   - Update loads to have both entity and cfs_rq synced with now.
3989 	 *   - Add its load to cfs_rq->runnable_avg
3990 	 *   - For group_entity, update its weight to reflect the new share of
3991 	 *     its group cfs_rq
3992 	 *   - Add its new weight to cfs_rq->load.weight
3993 	 */
3994 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3995 	update_cfs_group(se);
3996 	enqueue_runnable_load_avg(cfs_rq, se);
3997 	account_entity_enqueue(cfs_rq, se);
3998 
3999 	if (flags & ENQUEUE_WAKEUP)
4000 		place_entity(cfs_rq, se, 0);
4001 
4002 	check_schedstat_required();
4003 	update_stats_enqueue(cfs_rq, se, flags);
4004 	check_spread(cfs_rq, se);
4005 	if (!curr)
4006 		__enqueue_entity(cfs_rq, se);
4007 	se->on_rq = 1;
4008 
4009 	if (cfs_rq->nr_running == 1) {
4010 		list_add_leaf_cfs_rq(cfs_rq);
4011 		check_enqueue_throttle(cfs_rq);
4012 	}
4013 }
4014 
4015 static void __clear_buddies_last(struct sched_entity *se)
4016 {
4017 	for_each_sched_entity(se) {
4018 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4019 		if (cfs_rq->last != se)
4020 			break;
4021 
4022 		cfs_rq->last = NULL;
4023 	}
4024 }
4025 
4026 static void __clear_buddies_next(struct sched_entity *se)
4027 {
4028 	for_each_sched_entity(se) {
4029 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4030 		if (cfs_rq->next != se)
4031 			break;
4032 
4033 		cfs_rq->next = NULL;
4034 	}
4035 }
4036 
4037 static void __clear_buddies_skip(struct sched_entity *se)
4038 {
4039 	for_each_sched_entity(se) {
4040 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4041 		if (cfs_rq->skip != se)
4042 			break;
4043 
4044 		cfs_rq->skip = NULL;
4045 	}
4046 }
4047 
4048 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4049 {
4050 	if (cfs_rq->last == se)
4051 		__clear_buddies_last(se);
4052 
4053 	if (cfs_rq->next == se)
4054 		__clear_buddies_next(se);
4055 
4056 	if (cfs_rq->skip == se)
4057 		__clear_buddies_skip(se);
4058 }
4059 
4060 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4061 
4062 static void
4063 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4064 {
4065 	/*
4066 	 * Update run-time statistics of the 'current'.
4067 	 */
4068 	update_curr(cfs_rq);
4069 
4070 	/*
4071 	 * When dequeuing a sched_entity, we must:
4072 	 *   - Update loads to have both entity and cfs_rq synced with now.
4073 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4074 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4075 	 *   - For group entity, update its weight to reflect the new share
4076 	 *     of its group cfs_rq.
4077 	 */
4078 	update_load_avg(cfs_rq, se, UPDATE_TG);
4079 	dequeue_runnable_load_avg(cfs_rq, se);
4080 
4081 	update_stats_dequeue(cfs_rq, se, flags);
4082 
4083 	clear_buddies(cfs_rq, se);
4084 
4085 	if (se != cfs_rq->curr)
4086 		__dequeue_entity(cfs_rq, se);
4087 	se->on_rq = 0;
4088 	account_entity_dequeue(cfs_rq, se);
4089 
4090 	/*
4091 	 * Normalize after update_curr(); which will also have moved
4092 	 * min_vruntime if @se is the one holding it back. But before doing
4093 	 * update_min_vruntime() again, which will discount @se's position and
4094 	 * can move min_vruntime forward still more.
4095 	 */
4096 	if (!(flags & DEQUEUE_SLEEP))
4097 		se->vruntime -= cfs_rq->min_vruntime;
4098 
4099 	/* return excess runtime on last dequeue */
4100 	return_cfs_rq_runtime(cfs_rq);
4101 
4102 	update_cfs_group(se);
4103 
4104 	/*
4105 	 * Now advance min_vruntime if @se was the entity holding it back,
4106 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4107 	 * put back on, and if we advance min_vruntime, we'll be placed back
4108 	 * further than we started -- ie. we'll be penalized.
4109 	 */
4110 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4111 		update_min_vruntime(cfs_rq);
4112 }
4113 
4114 /*
4115  * Preempt the current task with a newly woken task if needed:
4116  */
4117 static void
4118 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4119 {
4120 	unsigned long ideal_runtime, delta_exec;
4121 	struct sched_entity *se;
4122 	s64 delta;
4123 
4124 	ideal_runtime = sched_slice(cfs_rq, curr);
4125 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4126 	if (delta_exec > ideal_runtime) {
4127 		resched_curr(rq_of(cfs_rq));
4128 		/*
4129 		 * The current task ran long enough, ensure it doesn't get
4130 		 * re-elected due to buddy favours.
4131 		 */
4132 		clear_buddies(cfs_rq, curr);
4133 		return;
4134 	}
4135 
4136 	/*
4137 	 * Ensure that a task that missed wakeup preemption by a
4138 	 * narrow margin doesn't have to wait for a full slice.
4139 	 * This also mitigates buddy induced latencies under load.
4140 	 */
4141 	if (delta_exec < sysctl_sched_min_granularity)
4142 		return;
4143 
4144 	se = __pick_first_entity(cfs_rq);
4145 	delta = curr->vruntime - se->vruntime;
4146 
4147 	if (delta < 0)
4148 		return;
4149 
4150 	if (delta > ideal_runtime)
4151 		resched_curr(rq_of(cfs_rq));
4152 }
4153 
4154 static void
4155 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4156 {
4157 	/* 'current' is not kept within the tree. */
4158 	if (se->on_rq) {
4159 		/*
4160 		 * Any task has to be enqueued before it get to execute on
4161 		 * a CPU. So account for the time it spent waiting on the
4162 		 * runqueue.
4163 		 */
4164 		update_stats_wait_end(cfs_rq, se);
4165 		__dequeue_entity(cfs_rq, se);
4166 		update_load_avg(cfs_rq, se, UPDATE_TG);
4167 	}
4168 
4169 	update_stats_curr_start(cfs_rq, se);
4170 	cfs_rq->curr = se;
4171 
4172 	/*
4173 	 * Track our maximum slice length, if the CPU's load is at
4174 	 * least twice that of our own weight (i.e. dont track it
4175 	 * when there are only lesser-weight tasks around):
4176 	 */
4177 	if (schedstat_enabled() &&
4178 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4179 		schedstat_set(se->statistics.slice_max,
4180 			max((u64)schedstat_val(se->statistics.slice_max),
4181 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4182 	}
4183 
4184 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4185 }
4186 
4187 static int
4188 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4189 
4190 /*
4191  * Pick the next process, keeping these things in mind, in this order:
4192  * 1) keep things fair between processes/task groups
4193  * 2) pick the "next" process, since someone really wants that to run
4194  * 3) pick the "last" process, for cache locality
4195  * 4) do not run the "skip" process, if something else is available
4196  */
4197 static struct sched_entity *
4198 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4199 {
4200 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4201 	struct sched_entity *se;
4202 
4203 	/*
4204 	 * If curr is set we have to see if its left of the leftmost entity
4205 	 * still in the tree, provided there was anything in the tree at all.
4206 	 */
4207 	if (!left || (curr && entity_before(curr, left)))
4208 		left = curr;
4209 
4210 	se = left; /* ideally we run the leftmost entity */
4211 
4212 	/*
4213 	 * Avoid running the skip buddy, if running something else can
4214 	 * be done without getting too unfair.
4215 	 */
4216 	if (cfs_rq->skip == se) {
4217 		struct sched_entity *second;
4218 
4219 		if (se == curr) {
4220 			second = __pick_first_entity(cfs_rq);
4221 		} else {
4222 			second = __pick_next_entity(se);
4223 			if (!second || (curr && entity_before(curr, second)))
4224 				second = curr;
4225 		}
4226 
4227 		if (second && wakeup_preempt_entity(second, left) < 1)
4228 			se = second;
4229 	}
4230 
4231 	/*
4232 	 * Prefer last buddy, try to return the CPU to a preempted task.
4233 	 */
4234 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4235 		se = cfs_rq->last;
4236 
4237 	/*
4238 	 * Someone really wants this to run. If it's not unfair, run it.
4239 	 */
4240 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4241 		se = cfs_rq->next;
4242 
4243 	clear_buddies(cfs_rq, se);
4244 
4245 	return se;
4246 }
4247 
4248 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4249 
4250 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4251 {
4252 	/*
4253 	 * If still on the runqueue then deactivate_task()
4254 	 * was not called and update_curr() has to be done:
4255 	 */
4256 	if (prev->on_rq)
4257 		update_curr(cfs_rq);
4258 
4259 	/* throttle cfs_rqs exceeding runtime */
4260 	check_cfs_rq_runtime(cfs_rq);
4261 
4262 	check_spread(cfs_rq, prev);
4263 
4264 	if (prev->on_rq) {
4265 		update_stats_wait_start(cfs_rq, prev);
4266 		/* Put 'current' back into the tree. */
4267 		__enqueue_entity(cfs_rq, prev);
4268 		/* in !on_rq case, update occurred at dequeue */
4269 		update_load_avg(cfs_rq, prev, 0);
4270 	}
4271 	cfs_rq->curr = NULL;
4272 }
4273 
4274 static void
4275 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4276 {
4277 	/*
4278 	 * Update run-time statistics of the 'current'.
4279 	 */
4280 	update_curr(cfs_rq);
4281 
4282 	/*
4283 	 * Ensure that runnable average is periodically updated.
4284 	 */
4285 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4286 	update_cfs_group(curr);
4287 
4288 #ifdef CONFIG_SCHED_HRTICK
4289 	/*
4290 	 * queued ticks are scheduled to match the slice, so don't bother
4291 	 * validating it and just reschedule.
4292 	 */
4293 	if (queued) {
4294 		resched_curr(rq_of(cfs_rq));
4295 		return;
4296 	}
4297 	/*
4298 	 * don't let the period tick interfere with the hrtick preemption
4299 	 */
4300 	if (!sched_feat(DOUBLE_TICK) &&
4301 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4302 		return;
4303 #endif
4304 
4305 	if (cfs_rq->nr_running > 1)
4306 		check_preempt_tick(cfs_rq, curr);
4307 }
4308 
4309 
4310 /**************************************************
4311  * CFS bandwidth control machinery
4312  */
4313 
4314 #ifdef CONFIG_CFS_BANDWIDTH
4315 
4316 #ifdef CONFIG_JUMP_LABEL
4317 static struct static_key __cfs_bandwidth_used;
4318 
4319 static inline bool cfs_bandwidth_used(void)
4320 {
4321 	return static_key_false(&__cfs_bandwidth_used);
4322 }
4323 
4324 void cfs_bandwidth_usage_inc(void)
4325 {
4326 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4327 }
4328 
4329 void cfs_bandwidth_usage_dec(void)
4330 {
4331 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4332 }
4333 #else /* CONFIG_JUMP_LABEL */
4334 static bool cfs_bandwidth_used(void)
4335 {
4336 	return true;
4337 }
4338 
4339 void cfs_bandwidth_usage_inc(void) {}
4340 void cfs_bandwidth_usage_dec(void) {}
4341 #endif /* CONFIG_JUMP_LABEL */
4342 
4343 /*
4344  * default period for cfs group bandwidth.
4345  * default: 0.1s, units: nanoseconds
4346  */
4347 static inline u64 default_cfs_period(void)
4348 {
4349 	return 100000000ULL;
4350 }
4351 
4352 static inline u64 sched_cfs_bandwidth_slice(void)
4353 {
4354 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4355 }
4356 
4357 /*
4358  * Replenish runtime according to assigned quota and update expiration time.
4359  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4360  * additional synchronization around rq->lock.
4361  *
4362  * requires cfs_b->lock
4363  */
4364 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4365 {
4366 	u64 now;
4367 
4368 	if (cfs_b->quota == RUNTIME_INF)
4369 		return;
4370 
4371 	now = sched_clock_cpu(smp_processor_id());
4372 	cfs_b->runtime = cfs_b->quota;
4373 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4374 	cfs_b->expires_seq++;
4375 }
4376 
4377 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4378 {
4379 	return &tg->cfs_bandwidth;
4380 }
4381 
4382 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4383 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4384 {
4385 	if (unlikely(cfs_rq->throttle_count))
4386 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4387 
4388 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4389 }
4390 
4391 /* returns 0 on failure to allocate runtime */
4392 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4393 {
4394 	struct task_group *tg = cfs_rq->tg;
4395 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4396 	u64 amount = 0, min_amount, expires;
4397 	int expires_seq;
4398 
4399 	/* note: this is a positive sum as runtime_remaining <= 0 */
4400 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4401 
4402 	raw_spin_lock(&cfs_b->lock);
4403 	if (cfs_b->quota == RUNTIME_INF)
4404 		amount = min_amount;
4405 	else {
4406 		start_cfs_bandwidth(cfs_b);
4407 
4408 		if (cfs_b->runtime > 0) {
4409 			amount = min(cfs_b->runtime, min_amount);
4410 			cfs_b->runtime -= amount;
4411 			cfs_b->idle = 0;
4412 		}
4413 	}
4414 	expires_seq = cfs_b->expires_seq;
4415 	expires = cfs_b->runtime_expires;
4416 	raw_spin_unlock(&cfs_b->lock);
4417 
4418 	cfs_rq->runtime_remaining += amount;
4419 	/*
4420 	 * we may have advanced our local expiration to account for allowed
4421 	 * spread between our sched_clock and the one on which runtime was
4422 	 * issued.
4423 	 */
4424 	if (cfs_rq->expires_seq != expires_seq) {
4425 		cfs_rq->expires_seq = expires_seq;
4426 		cfs_rq->runtime_expires = expires;
4427 	}
4428 
4429 	return cfs_rq->runtime_remaining > 0;
4430 }
4431 
4432 /*
4433  * Note: This depends on the synchronization provided by sched_clock and the
4434  * fact that rq->clock snapshots this value.
4435  */
4436 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4437 {
4438 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4439 
4440 	/* if the deadline is ahead of our clock, nothing to do */
4441 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4442 		return;
4443 
4444 	if (cfs_rq->runtime_remaining < 0)
4445 		return;
4446 
4447 	/*
4448 	 * If the local deadline has passed we have to consider the
4449 	 * possibility that our sched_clock is 'fast' and the global deadline
4450 	 * has not truly expired.
4451 	 *
4452 	 * Fortunately we can check determine whether this the case by checking
4453 	 * whether the global deadline(cfs_b->expires_seq) has advanced.
4454 	 */
4455 	if (cfs_rq->expires_seq == cfs_b->expires_seq) {
4456 		/* extend local deadline, drift is bounded above by 2 ticks */
4457 		cfs_rq->runtime_expires += TICK_NSEC;
4458 	} else {
4459 		/* global deadline is ahead, expiration has passed */
4460 		cfs_rq->runtime_remaining = 0;
4461 	}
4462 }
4463 
4464 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4465 {
4466 	/* dock delta_exec before expiring quota (as it could span periods) */
4467 	cfs_rq->runtime_remaining -= delta_exec;
4468 	expire_cfs_rq_runtime(cfs_rq);
4469 
4470 	if (likely(cfs_rq->runtime_remaining > 0))
4471 		return;
4472 
4473 	/*
4474 	 * if we're unable to extend our runtime we resched so that the active
4475 	 * hierarchy can be throttled
4476 	 */
4477 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4478 		resched_curr(rq_of(cfs_rq));
4479 }
4480 
4481 static __always_inline
4482 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4483 {
4484 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4485 		return;
4486 
4487 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4488 }
4489 
4490 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4491 {
4492 	return cfs_bandwidth_used() && cfs_rq->throttled;
4493 }
4494 
4495 /* check whether cfs_rq, or any parent, is throttled */
4496 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4497 {
4498 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4499 }
4500 
4501 /*
4502  * Ensure that neither of the group entities corresponding to src_cpu or
4503  * dest_cpu are members of a throttled hierarchy when performing group
4504  * load-balance operations.
4505  */
4506 static inline int throttled_lb_pair(struct task_group *tg,
4507 				    int src_cpu, int dest_cpu)
4508 {
4509 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4510 
4511 	src_cfs_rq = tg->cfs_rq[src_cpu];
4512 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4513 
4514 	return throttled_hierarchy(src_cfs_rq) ||
4515 	       throttled_hierarchy(dest_cfs_rq);
4516 }
4517 
4518 static int tg_unthrottle_up(struct task_group *tg, void *data)
4519 {
4520 	struct rq *rq = data;
4521 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4522 
4523 	cfs_rq->throttle_count--;
4524 	if (!cfs_rq->throttle_count) {
4525 		/* adjust cfs_rq_clock_task() */
4526 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4527 					     cfs_rq->throttled_clock_task;
4528 
4529 		/* Add cfs_rq with already running entity in the list */
4530 		if (cfs_rq->nr_running >= 1)
4531 			list_add_leaf_cfs_rq(cfs_rq);
4532 	}
4533 
4534 	return 0;
4535 }
4536 
4537 static int tg_throttle_down(struct task_group *tg, void *data)
4538 {
4539 	struct rq *rq = data;
4540 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4541 
4542 	/* group is entering throttled state, stop time */
4543 	if (!cfs_rq->throttle_count) {
4544 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4545 		list_del_leaf_cfs_rq(cfs_rq);
4546 	}
4547 	cfs_rq->throttle_count++;
4548 
4549 	return 0;
4550 }
4551 
4552 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4553 {
4554 	struct rq *rq = rq_of(cfs_rq);
4555 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4556 	struct sched_entity *se;
4557 	long task_delta, dequeue = 1;
4558 	bool empty;
4559 
4560 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4561 
4562 	/* freeze hierarchy runnable averages while throttled */
4563 	rcu_read_lock();
4564 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4565 	rcu_read_unlock();
4566 
4567 	task_delta = cfs_rq->h_nr_running;
4568 	for_each_sched_entity(se) {
4569 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4570 		/* throttled entity or throttle-on-deactivate */
4571 		if (!se->on_rq)
4572 			break;
4573 
4574 		if (dequeue)
4575 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4576 		qcfs_rq->h_nr_running -= task_delta;
4577 
4578 		if (qcfs_rq->load.weight)
4579 			dequeue = 0;
4580 	}
4581 
4582 	if (!se)
4583 		sub_nr_running(rq, task_delta);
4584 
4585 	cfs_rq->throttled = 1;
4586 	cfs_rq->throttled_clock = rq_clock(rq);
4587 	raw_spin_lock(&cfs_b->lock);
4588 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4589 
4590 	/*
4591 	 * Add to the _head_ of the list, so that an already-started
4592 	 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4593 	 * not running add to the tail so that later runqueues don't get starved.
4594 	 */
4595 	if (cfs_b->distribute_running)
4596 		list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4597 	else
4598 		list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4599 
4600 	/*
4601 	 * If we're the first throttled task, make sure the bandwidth
4602 	 * timer is running.
4603 	 */
4604 	if (empty)
4605 		start_cfs_bandwidth(cfs_b);
4606 
4607 	raw_spin_unlock(&cfs_b->lock);
4608 }
4609 
4610 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4611 {
4612 	struct rq *rq = rq_of(cfs_rq);
4613 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4614 	struct sched_entity *se;
4615 	int enqueue = 1;
4616 	long task_delta;
4617 
4618 	se = cfs_rq->tg->se[cpu_of(rq)];
4619 
4620 	cfs_rq->throttled = 0;
4621 
4622 	update_rq_clock(rq);
4623 
4624 	raw_spin_lock(&cfs_b->lock);
4625 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4626 	list_del_rcu(&cfs_rq->throttled_list);
4627 	raw_spin_unlock(&cfs_b->lock);
4628 
4629 	/* update hierarchical throttle state */
4630 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4631 
4632 	if (!cfs_rq->load.weight)
4633 		return;
4634 
4635 	task_delta = cfs_rq->h_nr_running;
4636 	for_each_sched_entity(se) {
4637 		if (se->on_rq)
4638 			enqueue = 0;
4639 
4640 		cfs_rq = cfs_rq_of(se);
4641 		if (enqueue)
4642 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4643 		cfs_rq->h_nr_running += task_delta;
4644 
4645 		if (cfs_rq_throttled(cfs_rq))
4646 			break;
4647 	}
4648 
4649 	assert_list_leaf_cfs_rq(rq);
4650 
4651 	if (!se)
4652 		add_nr_running(rq, task_delta);
4653 
4654 	/* Determine whether we need to wake up potentially idle CPU: */
4655 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4656 		resched_curr(rq);
4657 }
4658 
4659 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4660 		u64 remaining, u64 expires)
4661 {
4662 	struct cfs_rq *cfs_rq;
4663 	u64 runtime;
4664 	u64 starting_runtime = remaining;
4665 
4666 	rcu_read_lock();
4667 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4668 				throttled_list) {
4669 		struct rq *rq = rq_of(cfs_rq);
4670 		struct rq_flags rf;
4671 
4672 		rq_lock_irqsave(rq, &rf);
4673 		if (!cfs_rq_throttled(cfs_rq))
4674 			goto next;
4675 
4676 		runtime = -cfs_rq->runtime_remaining + 1;
4677 		if (runtime > remaining)
4678 			runtime = remaining;
4679 		remaining -= runtime;
4680 
4681 		cfs_rq->runtime_remaining += runtime;
4682 		cfs_rq->runtime_expires = expires;
4683 
4684 		/* we check whether we're throttled above */
4685 		if (cfs_rq->runtime_remaining > 0)
4686 			unthrottle_cfs_rq(cfs_rq);
4687 
4688 next:
4689 		rq_unlock_irqrestore(rq, &rf);
4690 
4691 		if (!remaining)
4692 			break;
4693 	}
4694 	rcu_read_unlock();
4695 
4696 	return starting_runtime - remaining;
4697 }
4698 
4699 /*
4700  * Responsible for refilling a task_group's bandwidth and unthrottling its
4701  * cfs_rqs as appropriate. If there has been no activity within the last
4702  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4703  * used to track this state.
4704  */
4705 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4706 {
4707 	u64 runtime, runtime_expires;
4708 	int throttled;
4709 
4710 	/* no need to continue the timer with no bandwidth constraint */
4711 	if (cfs_b->quota == RUNTIME_INF)
4712 		goto out_deactivate;
4713 
4714 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4715 	cfs_b->nr_periods += overrun;
4716 
4717 	/*
4718 	 * idle depends on !throttled (for the case of a large deficit), and if
4719 	 * we're going inactive then everything else can be deferred
4720 	 */
4721 	if (cfs_b->idle && !throttled)
4722 		goto out_deactivate;
4723 
4724 	__refill_cfs_bandwidth_runtime(cfs_b);
4725 
4726 	if (!throttled) {
4727 		/* mark as potentially idle for the upcoming period */
4728 		cfs_b->idle = 1;
4729 		return 0;
4730 	}
4731 
4732 	/* account preceding periods in which throttling occurred */
4733 	cfs_b->nr_throttled += overrun;
4734 
4735 	runtime_expires = cfs_b->runtime_expires;
4736 
4737 	/*
4738 	 * This check is repeated as we are holding onto the new bandwidth while
4739 	 * we unthrottle. This can potentially race with an unthrottled group
4740 	 * trying to acquire new bandwidth from the global pool. This can result
4741 	 * in us over-using our runtime if it is all used during this loop, but
4742 	 * only by limited amounts in that extreme case.
4743 	 */
4744 	while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4745 		runtime = cfs_b->runtime;
4746 		cfs_b->distribute_running = 1;
4747 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4748 		/* we can't nest cfs_b->lock while distributing bandwidth */
4749 		runtime = distribute_cfs_runtime(cfs_b, runtime,
4750 						 runtime_expires);
4751 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
4752 
4753 		cfs_b->distribute_running = 0;
4754 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4755 
4756 		lsub_positive(&cfs_b->runtime, runtime);
4757 	}
4758 
4759 	/*
4760 	 * While we are ensured activity in the period following an
4761 	 * unthrottle, this also covers the case in which the new bandwidth is
4762 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4763 	 * timer to remain active while there are any throttled entities.)
4764 	 */
4765 	cfs_b->idle = 0;
4766 
4767 	return 0;
4768 
4769 out_deactivate:
4770 	return 1;
4771 }
4772 
4773 /* a cfs_rq won't donate quota below this amount */
4774 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4775 /* minimum remaining period time to redistribute slack quota */
4776 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4777 /* how long we wait to gather additional slack before distributing */
4778 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4779 
4780 /*
4781  * Are we near the end of the current quota period?
4782  *
4783  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4784  * hrtimer base being cleared by hrtimer_start. In the case of
4785  * migrate_hrtimers, base is never cleared, so we are fine.
4786  */
4787 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4788 {
4789 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4790 	u64 remaining;
4791 
4792 	/* if the call-back is running a quota refresh is already occurring */
4793 	if (hrtimer_callback_running(refresh_timer))
4794 		return 1;
4795 
4796 	/* is a quota refresh about to occur? */
4797 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4798 	if (remaining < min_expire)
4799 		return 1;
4800 
4801 	return 0;
4802 }
4803 
4804 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4805 {
4806 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4807 
4808 	/* if there's a quota refresh soon don't bother with slack */
4809 	if (runtime_refresh_within(cfs_b, min_left))
4810 		return;
4811 
4812 	/* don't push forwards an existing deferred unthrottle */
4813 	if (cfs_b->slack_started)
4814 		return;
4815 	cfs_b->slack_started = true;
4816 
4817 	hrtimer_start(&cfs_b->slack_timer,
4818 			ns_to_ktime(cfs_bandwidth_slack_period),
4819 			HRTIMER_MODE_REL);
4820 }
4821 
4822 /* we know any runtime found here is valid as update_curr() precedes return */
4823 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4824 {
4825 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4826 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4827 
4828 	if (slack_runtime <= 0)
4829 		return;
4830 
4831 	raw_spin_lock(&cfs_b->lock);
4832 	if (cfs_b->quota != RUNTIME_INF &&
4833 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4834 		cfs_b->runtime += slack_runtime;
4835 
4836 		/* we are under rq->lock, defer unthrottling using a timer */
4837 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4838 		    !list_empty(&cfs_b->throttled_cfs_rq))
4839 			start_cfs_slack_bandwidth(cfs_b);
4840 	}
4841 	raw_spin_unlock(&cfs_b->lock);
4842 
4843 	/* even if it's not valid for return we don't want to try again */
4844 	cfs_rq->runtime_remaining -= slack_runtime;
4845 }
4846 
4847 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4848 {
4849 	if (!cfs_bandwidth_used())
4850 		return;
4851 
4852 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4853 		return;
4854 
4855 	__return_cfs_rq_runtime(cfs_rq);
4856 }
4857 
4858 /*
4859  * This is done with a timer (instead of inline with bandwidth return) since
4860  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4861  */
4862 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4863 {
4864 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4865 	unsigned long flags;
4866 	u64 expires;
4867 
4868 	/* confirm we're still not at a refresh boundary */
4869 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
4870 	cfs_b->slack_started = false;
4871 	if (cfs_b->distribute_running) {
4872 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4873 		return;
4874 	}
4875 
4876 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4877 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4878 		return;
4879 	}
4880 
4881 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4882 		runtime = cfs_b->runtime;
4883 
4884 	expires = cfs_b->runtime_expires;
4885 	if (runtime)
4886 		cfs_b->distribute_running = 1;
4887 
4888 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4889 
4890 	if (!runtime)
4891 		return;
4892 
4893 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4894 
4895 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
4896 	if (expires == cfs_b->runtime_expires)
4897 		lsub_positive(&cfs_b->runtime, runtime);
4898 	cfs_b->distribute_running = 0;
4899 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4900 }
4901 
4902 /*
4903  * When a group wakes up we want to make sure that its quota is not already
4904  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4905  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4906  */
4907 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4908 {
4909 	if (!cfs_bandwidth_used())
4910 		return;
4911 
4912 	/* an active group must be handled by the update_curr()->put() path */
4913 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4914 		return;
4915 
4916 	/* ensure the group is not already throttled */
4917 	if (cfs_rq_throttled(cfs_rq))
4918 		return;
4919 
4920 	/* update runtime allocation */
4921 	account_cfs_rq_runtime(cfs_rq, 0);
4922 	if (cfs_rq->runtime_remaining <= 0)
4923 		throttle_cfs_rq(cfs_rq);
4924 }
4925 
4926 static void sync_throttle(struct task_group *tg, int cpu)
4927 {
4928 	struct cfs_rq *pcfs_rq, *cfs_rq;
4929 
4930 	if (!cfs_bandwidth_used())
4931 		return;
4932 
4933 	if (!tg->parent)
4934 		return;
4935 
4936 	cfs_rq = tg->cfs_rq[cpu];
4937 	pcfs_rq = tg->parent->cfs_rq[cpu];
4938 
4939 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4940 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4941 }
4942 
4943 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4944 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4945 {
4946 	if (!cfs_bandwidth_used())
4947 		return false;
4948 
4949 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4950 		return false;
4951 
4952 	/*
4953 	 * it's possible for a throttled entity to be forced into a running
4954 	 * state (e.g. set_curr_task), in this case we're finished.
4955 	 */
4956 	if (cfs_rq_throttled(cfs_rq))
4957 		return true;
4958 
4959 	throttle_cfs_rq(cfs_rq);
4960 	return true;
4961 }
4962 
4963 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4964 {
4965 	struct cfs_bandwidth *cfs_b =
4966 		container_of(timer, struct cfs_bandwidth, slack_timer);
4967 
4968 	do_sched_cfs_slack_timer(cfs_b);
4969 
4970 	return HRTIMER_NORESTART;
4971 }
4972 
4973 extern const u64 max_cfs_quota_period;
4974 
4975 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4976 {
4977 	struct cfs_bandwidth *cfs_b =
4978 		container_of(timer, struct cfs_bandwidth, period_timer);
4979 	unsigned long flags;
4980 	int overrun;
4981 	int idle = 0;
4982 	int count = 0;
4983 
4984 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
4985 	for (;;) {
4986 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4987 		if (!overrun)
4988 			break;
4989 
4990 		if (++count > 3) {
4991 			u64 new, old = ktime_to_ns(cfs_b->period);
4992 
4993 			new = (old * 147) / 128; /* ~115% */
4994 			new = min(new, max_cfs_quota_period);
4995 
4996 			cfs_b->period = ns_to_ktime(new);
4997 
4998 			/* since max is 1s, this is limited to 1e9^2, which fits in u64 */
4999 			cfs_b->quota *= new;
5000 			cfs_b->quota = div64_u64(cfs_b->quota, old);
5001 
5002 			pr_warn_ratelimited(
5003 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us %lld, cfs_quota_us = %lld)\n",
5004 				smp_processor_id(),
5005 				div_u64(new, NSEC_PER_USEC),
5006 				div_u64(cfs_b->quota, NSEC_PER_USEC));
5007 
5008 			/* reset count so we don't come right back in here */
5009 			count = 0;
5010 		}
5011 
5012 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5013 	}
5014 	if (idle)
5015 		cfs_b->period_active = 0;
5016 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5017 
5018 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5019 }
5020 
5021 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5022 {
5023 	raw_spin_lock_init(&cfs_b->lock);
5024 	cfs_b->runtime = 0;
5025 	cfs_b->quota = RUNTIME_INF;
5026 	cfs_b->period = ns_to_ktime(default_cfs_period());
5027 
5028 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5029 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5030 	cfs_b->period_timer.function = sched_cfs_period_timer;
5031 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5032 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5033 	cfs_b->distribute_running = 0;
5034 	cfs_b->slack_started = false;
5035 }
5036 
5037 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5038 {
5039 	cfs_rq->runtime_enabled = 0;
5040 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5041 }
5042 
5043 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5044 {
5045 	u64 overrun;
5046 
5047 	lockdep_assert_held(&cfs_b->lock);
5048 
5049 	if (cfs_b->period_active)
5050 		return;
5051 
5052 	cfs_b->period_active = 1;
5053 	overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5054 	cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
5055 	cfs_b->expires_seq++;
5056 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5057 }
5058 
5059 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5060 {
5061 	/* init_cfs_bandwidth() was not called */
5062 	if (!cfs_b->throttled_cfs_rq.next)
5063 		return;
5064 
5065 	hrtimer_cancel(&cfs_b->period_timer);
5066 	hrtimer_cancel(&cfs_b->slack_timer);
5067 }
5068 
5069 /*
5070  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5071  *
5072  * The race is harmless, since modifying bandwidth settings of unhooked group
5073  * bits doesn't do much.
5074  */
5075 
5076 /* cpu online calback */
5077 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5078 {
5079 	struct task_group *tg;
5080 
5081 	lockdep_assert_held(&rq->lock);
5082 
5083 	rcu_read_lock();
5084 	list_for_each_entry_rcu(tg, &task_groups, list) {
5085 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5086 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5087 
5088 		raw_spin_lock(&cfs_b->lock);
5089 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5090 		raw_spin_unlock(&cfs_b->lock);
5091 	}
5092 	rcu_read_unlock();
5093 }
5094 
5095 /* cpu offline callback */
5096 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5097 {
5098 	struct task_group *tg;
5099 
5100 	lockdep_assert_held(&rq->lock);
5101 
5102 	rcu_read_lock();
5103 	list_for_each_entry_rcu(tg, &task_groups, list) {
5104 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5105 
5106 		if (!cfs_rq->runtime_enabled)
5107 			continue;
5108 
5109 		/*
5110 		 * clock_task is not advancing so we just need to make sure
5111 		 * there's some valid quota amount
5112 		 */
5113 		cfs_rq->runtime_remaining = 1;
5114 		/*
5115 		 * Offline rq is schedulable till CPU is completely disabled
5116 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5117 		 */
5118 		cfs_rq->runtime_enabled = 0;
5119 
5120 		if (cfs_rq_throttled(cfs_rq))
5121 			unthrottle_cfs_rq(cfs_rq);
5122 	}
5123 	rcu_read_unlock();
5124 }
5125 
5126 #else /* CONFIG_CFS_BANDWIDTH */
5127 
5128 static inline bool cfs_bandwidth_used(void)
5129 {
5130 	return false;
5131 }
5132 
5133 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
5134 {
5135 	return rq_clock_task(rq_of(cfs_rq));
5136 }
5137 
5138 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5139 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5140 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5141 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5142 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5143 
5144 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5145 {
5146 	return 0;
5147 }
5148 
5149 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5150 {
5151 	return 0;
5152 }
5153 
5154 static inline int throttled_lb_pair(struct task_group *tg,
5155 				    int src_cpu, int dest_cpu)
5156 {
5157 	return 0;
5158 }
5159 
5160 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5161 
5162 #ifdef CONFIG_FAIR_GROUP_SCHED
5163 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5164 #endif
5165 
5166 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5167 {
5168 	return NULL;
5169 }
5170 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5171 static inline void update_runtime_enabled(struct rq *rq) {}
5172 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5173 
5174 #endif /* CONFIG_CFS_BANDWIDTH */
5175 
5176 /**************************************************
5177  * CFS operations on tasks:
5178  */
5179 
5180 #ifdef CONFIG_SCHED_HRTICK
5181 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5182 {
5183 	struct sched_entity *se = &p->se;
5184 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5185 
5186 	SCHED_WARN_ON(task_rq(p) != rq);
5187 
5188 	if (rq->cfs.h_nr_running > 1) {
5189 		u64 slice = sched_slice(cfs_rq, se);
5190 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5191 		s64 delta = slice - ran;
5192 
5193 		if (delta < 0) {
5194 			if (rq->curr == p)
5195 				resched_curr(rq);
5196 			return;
5197 		}
5198 		hrtick_start(rq, delta);
5199 	}
5200 }
5201 
5202 /*
5203  * called from enqueue/dequeue and updates the hrtick when the
5204  * current task is from our class and nr_running is low enough
5205  * to matter.
5206  */
5207 static void hrtick_update(struct rq *rq)
5208 {
5209 	struct task_struct *curr = rq->curr;
5210 
5211 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5212 		return;
5213 
5214 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5215 		hrtick_start_fair(rq, curr);
5216 }
5217 #else /* !CONFIG_SCHED_HRTICK */
5218 static inline void
5219 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5220 {
5221 }
5222 
5223 static inline void hrtick_update(struct rq *rq)
5224 {
5225 }
5226 #endif
5227 
5228 #ifdef CONFIG_SMP
5229 static inline unsigned long cpu_util(int cpu);
5230 
5231 static inline bool cpu_overutilized(int cpu)
5232 {
5233 	return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin);
5234 }
5235 
5236 static inline void update_overutilized_status(struct rq *rq)
5237 {
5238 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5239 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5240 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5241 	}
5242 }
5243 #else
5244 static inline void update_overutilized_status(struct rq *rq) { }
5245 #endif
5246 
5247 /*
5248  * The enqueue_task method is called before nr_running is
5249  * increased. Here we update the fair scheduling stats and
5250  * then put the task into the rbtree:
5251  */
5252 static void
5253 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5254 {
5255 	struct cfs_rq *cfs_rq;
5256 	struct sched_entity *se = &p->se;
5257 
5258 	/*
5259 	 * The code below (indirectly) updates schedutil which looks at
5260 	 * the cfs_rq utilization to select a frequency.
5261 	 * Let's add the task's estimated utilization to the cfs_rq's
5262 	 * estimated utilization, before we update schedutil.
5263 	 */
5264 	util_est_enqueue(&rq->cfs, p);
5265 
5266 	/*
5267 	 * If in_iowait is set, the code below may not trigger any cpufreq
5268 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5269 	 * passed.
5270 	 */
5271 	if (p->in_iowait)
5272 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5273 
5274 	for_each_sched_entity(se) {
5275 		if (se->on_rq)
5276 			break;
5277 		cfs_rq = cfs_rq_of(se);
5278 		enqueue_entity(cfs_rq, se, flags);
5279 
5280 		/*
5281 		 * end evaluation on encountering a throttled cfs_rq
5282 		 *
5283 		 * note: in the case of encountering a throttled cfs_rq we will
5284 		 * post the final h_nr_running increment below.
5285 		 */
5286 		if (cfs_rq_throttled(cfs_rq))
5287 			break;
5288 		cfs_rq->h_nr_running++;
5289 
5290 		flags = ENQUEUE_WAKEUP;
5291 	}
5292 
5293 	for_each_sched_entity(se) {
5294 		cfs_rq = cfs_rq_of(se);
5295 		cfs_rq->h_nr_running++;
5296 
5297 		if (cfs_rq_throttled(cfs_rq))
5298 			break;
5299 
5300 		update_load_avg(cfs_rq, se, UPDATE_TG);
5301 		update_cfs_group(se);
5302 	}
5303 
5304 	if (!se) {
5305 		add_nr_running(rq, 1);
5306 		/*
5307 		 * Since new tasks are assigned an initial util_avg equal to
5308 		 * half of the spare capacity of their CPU, tiny tasks have the
5309 		 * ability to cross the overutilized threshold, which will
5310 		 * result in the load balancer ruining all the task placement
5311 		 * done by EAS. As a way to mitigate that effect, do not account
5312 		 * for the first enqueue operation of new tasks during the
5313 		 * overutilized flag detection.
5314 		 *
5315 		 * A better way of solving this problem would be to wait for
5316 		 * the PELT signals of tasks to converge before taking them
5317 		 * into account, but that is not straightforward to implement,
5318 		 * and the following generally works well enough in practice.
5319 		 */
5320 		if (flags & ENQUEUE_WAKEUP)
5321 			update_overutilized_status(rq);
5322 
5323 	}
5324 
5325 	if (cfs_bandwidth_used()) {
5326 		/*
5327 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5328 		 * breaks in the above iteration can result in incomplete
5329 		 * leaf list maintenance, resulting in triggering the assertion
5330 		 * below.
5331 		 */
5332 		for_each_sched_entity(se) {
5333 			cfs_rq = cfs_rq_of(se);
5334 
5335 			if (list_add_leaf_cfs_rq(cfs_rq))
5336 				break;
5337 		}
5338 	}
5339 
5340 	assert_list_leaf_cfs_rq(rq);
5341 
5342 	hrtick_update(rq);
5343 }
5344 
5345 static void set_next_buddy(struct sched_entity *se);
5346 
5347 /*
5348  * The dequeue_task method is called before nr_running is
5349  * decreased. We remove the task from the rbtree and
5350  * update the fair scheduling stats:
5351  */
5352 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5353 {
5354 	struct cfs_rq *cfs_rq;
5355 	struct sched_entity *se = &p->se;
5356 	int task_sleep = flags & DEQUEUE_SLEEP;
5357 
5358 	for_each_sched_entity(se) {
5359 		cfs_rq = cfs_rq_of(se);
5360 		dequeue_entity(cfs_rq, se, flags);
5361 
5362 		/*
5363 		 * end evaluation on encountering a throttled cfs_rq
5364 		 *
5365 		 * note: in the case of encountering a throttled cfs_rq we will
5366 		 * post the final h_nr_running decrement below.
5367 		*/
5368 		if (cfs_rq_throttled(cfs_rq))
5369 			break;
5370 		cfs_rq->h_nr_running--;
5371 
5372 		/* Don't dequeue parent if it has other entities besides us */
5373 		if (cfs_rq->load.weight) {
5374 			/* Avoid re-evaluating load for this entity: */
5375 			se = parent_entity(se);
5376 			/*
5377 			 * Bias pick_next to pick a task from this cfs_rq, as
5378 			 * p is sleeping when it is within its sched_slice.
5379 			 */
5380 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5381 				set_next_buddy(se);
5382 			break;
5383 		}
5384 		flags |= DEQUEUE_SLEEP;
5385 	}
5386 
5387 	for_each_sched_entity(se) {
5388 		cfs_rq = cfs_rq_of(se);
5389 		cfs_rq->h_nr_running--;
5390 
5391 		if (cfs_rq_throttled(cfs_rq))
5392 			break;
5393 
5394 		update_load_avg(cfs_rq, se, UPDATE_TG);
5395 		update_cfs_group(se);
5396 	}
5397 
5398 	if (!se)
5399 		sub_nr_running(rq, 1);
5400 
5401 	util_est_dequeue(&rq->cfs, p, task_sleep);
5402 	hrtick_update(rq);
5403 }
5404 
5405 #ifdef CONFIG_SMP
5406 
5407 /* Working cpumask for: load_balance, load_balance_newidle. */
5408 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5409 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5410 
5411 #ifdef CONFIG_NO_HZ_COMMON
5412 
5413 static struct {
5414 	cpumask_var_t idle_cpus_mask;
5415 	atomic_t nr_cpus;
5416 	int has_blocked;		/* Idle CPUS has blocked load */
5417 	unsigned long next_balance;     /* in jiffy units */
5418 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5419 } nohz ____cacheline_aligned;
5420 
5421 #endif /* CONFIG_NO_HZ_COMMON */
5422 
5423 static unsigned long cpu_runnable_load(struct rq *rq)
5424 {
5425 	return cfs_rq_runnable_load_avg(&rq->cfs);
5426 }
5427 
5428 static unsigned long capacity_of(int cpu)
5429 {
5430 	return cpu_rq(cpu)->cpu_capacity;
5431 }
5432 
5433 static unsigned long cpu_avg_load_per_task(int cpu)
5434 {
5435 	struct rq *rq = cpu_rq(cpu);
5436 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5437 	unsigned long load_avg = cpu_runnable_load(rq);
5438 
5439 	if (nr_running)
5440 		return load_avg / nr_running;
5441 
5442 	return 0;
5443 }
5444 
5445 static void record_wakee(struct task_struct *p)
5446 {
5447 	/*
5448 	 * Only decay a single time; tasks that have less then 1 wakeup per
5449 	 * jiffy will not have built up many flips.
5450 	 */
5451 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5452 		current->wakee_flips >>= 1;
5453 		current->wakee_flip_decay_ts = jiffies;
5454 	}
5455 
5456 	if (current->last_wakee != p) {
5457 		current->last_wakee = p;
5458 		current->wakee_flips++;
5459 	}
5460 }
5461 
5462 /*
5463  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5464  *
5465  * A waker of many should wake a different task than the one last awakened
5466  * at a frequency roughly N times higher than one of its wakees.
5467  *
5468  * In order to determine whether we should let the load spread vs consolidating
5469  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5470  * partner, and a factor of lls_size higher frequency in the other.
5471  *
5472  * With both conditions met, we can be relatively sure that the relationship is
5473  * non-monogamous, with partner count exceeding socket size.
5474  *
5475  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5476  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5477  * socket size.
5478  */
5479 static int wake_wide(struct task_struct *p)
5480 {
5481 	unsigned int master = current->wakee_flips;
5482 	unsigned int slave = p->wakee_flips;
5483 	int factor = this_cpu_read(sd_llc_size);
5484 
5485 	if (master < slave)
5486 		swap(master, slave);
5487 	if (slave < factor || master < slave * factor)
5488 		return 0;
5489 	return 1;
5490 }
5491 
5492 /*
5493  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5494  * soonest. For the purpose of speed we only consider the waking and previous
5495  * CPU.
5496  *
5497  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5498  *			cache-affine and is (or	will be) idle.
5499  *
5500  * wake_affine_weight() - considers the weight to reflect the average
5501  *			  scheduling latency of the CPUs. This seems to work
5502  *			  for the overloaded case.
5503  */
5504 static int
5505 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5506 {
5507 	/*
5508 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5509 	 * context. Only allow the move if cache is shared. Otherwise an
5510 	 * interrupt intensive workload could force all tasks onto one
5511 	 * node depending on the IO topology or IRQ affinity settings.
5512 	 *
5513 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5514 	 * There is no guarantee that the cache hot data from an interrupt
5515 	 * is more important than cache hot data on the prev_cpu and from
5516 	 * a cpufreq perspective, it's better to have higher utilisation
5517 	 * on one CPU.
5518 	 */
5519 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5520 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5521 
5522 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5523 		return this_cpu;
5524 
5525 	return nr_cpumask_bits;
5526 }
5527 
5528 static int
5529 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5530 		   int this_cpu, int prev_cpu, int sync)
5531 {
5532 	s64 this_eff_load, prev_eff_load;
5533 	unsigned long task_load;
5534 
5535 	this_eff_load = cpu_runnable_load(cpu_rq(this_cpu));
5536 
5537 	if (sync) {
5538 		unsigned long current_load = task_h_load(current);
5539 
5540 		if (current_load > this_eff_load)
5541 			return this_cpu;
5542 
5543 		this_eff_load -= current_load;
5544 	}
5545 
5546 	task_load = task_h_load(p);
5547 
5548 	this_eff_load += task_load;
5549 	if (sched_feat(WA_BIAS))
5550 		this_eff_load *= 100;
5551 	this_eff_load *= capacity_of(prev_cpu);
5552 
5553 	prev_eff_load = cpu_runnable_load(cpu_rq(prev_cpu));
5554 	prev_eff_load -= task_load;
5555 	if (sched_feat(WA_BIAS))
5556 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5557 	prev_eff_load *= capacity_of(this_cpu);
5558 
5559 	/*
5560 	 * If sync, adjust the weight of prev_eff_load such that if
5561 	 * prev_eff == this_eff that select_idle_sibling() will consider
5562 	 * stacking the wakee on top of the waker if no other CPU is
5563 	 * idle.
5564 	 */
5565 	if (sync)
5566 		prev_eff_load += 1;
5567 
5568 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5569 }
5570 
5571 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5572 		       int this_cpu, int prev_cpu, int sync)
5573 {
5574 	int target = nr_cpumask_bits;
5575 
5576 	if (sched_feat(WA_IDLE))
5577 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5578 
5579 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5580 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5581 
5582 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5583 	if (target == nr_cpumask_bits)
5584 		return prev_cpu;
5585 
5586 	schedstat_inc(sd->ttwu_move_affine);
5587 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5588 	return target;
5589 }
5590 
5591 static unsigned long cpu_util_without(int cpu, struct task_struct *p);
5592 
5593 static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
5594 {
5595 	return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
5596 }
5597 
5598 /*
5599  * find_idlest_group finds and returns the least busy CPU group within the
5600  * domain.
5601  *
5602  * Assumes p is allowed on at least one CPU in sd.
5603  */
5604 static struct sched_group *
5605 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5606 		  int this_cpu, int sd_flag)
5607 {
5608 	struct sched_group *idlest = NULL, *group = sd->groups;
5609 	struct sched_group *most_spare_sg = NULL;
5610 	unsigned long min_runnable_load = ULONG_MAX;
5611 	unsigned long this_runnable_load = ULONG_MAX;
5612 	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5613 	unsigned long most_spare = 0, this_spare = 0;
5614 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5615 	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5616 				(sd->imbalance_pct-100) / 100;
5617 
5618 	do {
5619 		unsigned long load, avg_load, runnable_load;
5620 		unsigned long spare_cap, max_spare_cap;
5621 		int local_group;
5622 		int i;
5623 
5624 		/* Skip over this group if it has no CPUs allowed */
5625 		if (!cpumask_intersects(sched_group_span(group),
5626 					p->cpus_ptr))
5627 			continue;
5628 
5629 		local_group = cpumask_test_cpu(this_cpu,
5630 					       sched_group_span(group));
5631 
5632 		/*
5633 		 * Tally up the load of all CPUs in the group and find
5634 		 * the group containing the CPU with most spare capacity.
5635 		 */
5636 		avg_load = 0;
5637 		runnable_load = 0;
5638 		max_spare_cap = 0;
5639 
5640 		for_each_cpu(i, sched_group_span(group)) {
5641 			load = cpu_runnable_load(cpu_rq(i));
5642 			runnable_load += load;
5643 
5644 			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5645 
5646 			spare_cap = capacity_spare_without(i, p);
5647 
5648 			if (spare_cap > max_spare_cap)
5649 				max_spare_cap = spare_cap;
5650 		}
5651 
5652 		/* Adjust by relative CPU capacity of the group */
5653 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5654 					group->sgc->capacity;
5655 		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5656 					group->sgc->capacity;
5657 
5658 		if (local_group) {
5659 			this_runnable_load = runnable_load;
5660 			this_avg_load = avg_load;
5661 			this_spare = max_spare_cap;
5662 		} else {
5663 			if (min_runnable_load > (runnable_load + imbalance)) {
5664 				/*
5665 				 * The runnable load is significantly smaller
5666 				 * so we can pick this new CPU:
5667 				 */
5668 				min_runnable_load = runnable_load;
5669 				min_avg_load = avg_load;
5670 				idlest = group;
5671 			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
5672 				   (100*min_avg_load > imbalance_scale*avg_load)) {
5673 				/*
5674 				 * The runnable loads are close so take the
5675 				 * blocked load into account through avg_load:
5676 				 */
5677 				min_avg_load = avg_load;
5678 				idlest = group;
5679 			}
5680 
5681 			if (most_spare < max_spare_cap) {
5682 				most_spare = max_spare_cap;
5683 				most_spare_sg = group;
5684 			}
5685 		}
5686 	} while (group = group->next, group != sd->groups);
5687 
5688 	/*
5689 	 * The cross-over point between using spare capacity or least load
5690 	 * is too conservative for high utilization tasks on partially
5691 	 * utilized systems if we require spare_capacity > task_util(p),
5692 	 * so we allow for some task stuffing by using
5693 	 * spare_capacity > task_util(p)/2.
5694 	 *
5695 	 * Spare capacity can't be used for fork because the utilization has
5696 	 * not been set yet, we must first select a rq to compute the initial
5697 	 * utilization.
5698 	 */
5699 	if (sd_flag & SD_BALANCE_FORK)
5700 		goto skip_spare;
5701 
5702 	if (this_spare > task_util(p) / 2 &&
5703 	    imbalance_scale*this_spare > 100*most_spare)
5704 		return NULL;
5705 
5706 	if (most_spare > task_util(p) / 2)
5707 		return most_spare_sg;
5708 
5709 skip_spare:
5710 	if (!idlest)
5711 		return NULL;
5712 
5713 	/*
5714 	 * When comparing groups across NUMA domains, it's possible for the
5715 	 * local domain to be very lightly loaded relative to the remote
5716 	 * domains but "imbalance" skews the comparison making remote CPUs
5717 	 * look much more favourable. When considering cross-domain, add
5718 	 * imbalance to the runnable load on the remote node and consider
5719 	 * staying local.
5720 	 */
5721 	if ((sd->flags & SD_NUMA) &&
5722 	    min_runnable_load + imbalance >= this_runnable_load)
5723 		return NULL;
5724 
5725 	if (min_runnable_load > (this_runnable_load + imbalance))
5726 		return NULL;
5727 
5728 	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5729 	     (100*this_avg_load < imbalance_scale*min_avg_load))
5730 		return NULL;
5731 
5732 	return idlest;
5733 }
5734 
5735 /*
5736  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5737  */
5738 static int
5739 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5740 {
5741 	unsigned long load, min_load = ULONG_MAX;
5742 	unsigned int min_exit_latency = UINT_MAX;
5743 	u64 latest_idle_timestamp = 0;
5744 	int least_loaded_cpu = this_cpu;
5745 	int shallowest_idle_cpu = -1;
5746 	int i;
5747 
5748 	/* Check if we have any choice: */
5749 	if (group->group_weight == 1)
5750 		return cpumask_first(sched_group_span(group));
5751 
5752 	/* Traverse only the allowed CPUs */
5753 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5754 		if (available_idle_cpu(i)) {
5755 			struct rq *rq = cpu_rq(i);
5756 			struct cpuidle_state *idle = idle_get_state(rq);
5757 			if (idle && idle->exit_latency < min_exit_latency) {
5758 				/*
5759 				 * We give priority to a CPU whose idle state
5760 				 * has the smallest exit latency irrespective
5761 				 * of any idle timestamp.
5762 				 */
5763 				min_exit_latency = idle->exit_latency;
5764 				latest_idle_timestamp = rq->idle_stamp;
5765 				shallowest_idle_cpu = i;
5766 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5767 				   rq->idle_stamp > latest_idle_timestamp) {
5768 				/*
5769 				 * If equal or no active idle state, then
5770 				 * the most recently idled CPU might have
5771 				 * a warmer cache.
5772 				 */
5773 				latest_idle_timestamp = rq->idle_stamp;
5774 				shallowest_idle_cpu = i;
5775 			}
5776 		} else if (shallowest_idle_cpu == -1) {
5777 			load = cpu_runnable_load(cpu_rq(i));
5778 			if (load < min_load) {
5779 				min_load = load;
5780 				least_loaded_cpu = i;
5781 			}
5782 		}
5783 	}
5784 
5785 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5786 }
5787 
5788 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5789 				  int cpu, int prev_cpu, int sd_flag)
5790 {
5791 	int new_cpu = cpu;
5792 
5793 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
5794 		return prev_cpu;
5795 
5796 	/*
5797 	 * We need task's util for capacity_spare_without, sync it up to
5798 	 * prev_cpu's last_update_time.
5799 	 */
5800 	if (!(sd_flag & SD_BALANCE_FORK))
5801 		sync_entity_load_avg(&p->se);
5802 
5803 	while (sd) {
5804 		struct sched_group *group;
5805 		struct sched_domain *tmp;
5806 		int weight;
5807 
5808 		if (!(sd->flags & sd_flag)) {
5809 			sd = sd->child;
5810 			continue;
5811 		}
5812 
5813 		group = find_idlest_group(sd, p, cpu, sd_flag);
5814 		if (!group) {
5815 			sd = sd->child;
5816 			continue;
5817 		}
5818 
5819 		new_cpu = find_idlest_group_cpu(group, p, cpu);
5820 		if (new_cpu == cpu) {
5821 			/* Now try balancing at a lower domain level of 'cpu': */
5822 			sd = sd->child;
5823 			continue;
5824 		}
5825 
5826 		/* Now try balancing at a lower domain level of 'new_cpu': */
5827 		cpu = new_cpu;
5828 		weight = sd->span_weight;
5829 		sd = NULL;
5830 		for_each_domain(cpu, tmp) {
5831 			if (weight <= tmp->span_weight)
5832 				break;
5833 			if (tmp->flags & sd_flag)
5834 				sd = tmp;
5835 		}
5836 	}
5837 
5838 	return new_cpu;
5839 }
5840 
5841 #ifdef CONFIG_SCHED_SMT
5842 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5843 EXPORT_SYMBOL_GPL(sched_smt_present);
5844 
5845 static inline void set_idle_cores(int cpu, int val)
5846 {
5847 	struct sched_domain_shared *sds;
5848 
5849 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5850 	if (sds)
5851 		WRITE_ONCE(sds->has_idle_cores, val);
5852 }
5853 
5854 static inline bool test_idle_cores(int cpu, bool def)
5855 {
5856 	struct sched_domain_shared *sds;
5857 
5858 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5859 	if (sds)
5860 		return READ_ONCE(sds->has_idle_cores);
5861 
5862 	return def;
5863 }
5864 
5865 /*
5866  * Scans the local SMT mask to see if the entire core is idle, and records this
5867  * information in sd_llc_shared->has_idle_cores.
5868  *
5869  * Since SMT siblings share all cache levels, inspecting this limited remote
5870  * state should be fairly cheap.
5871  */
5872 void __update_idle_core(struct rq *rq)
5873 {
5874 	int core = cpu_of(rq);
5875 	int cpu;
5876 
5877 	rcu_read_lock();
5878 	if (test_idle_cores(core, true))
5879 		goto unlock;
5880 
5881 	for_each_cpu(cpu, cpu_smt_mask(core)) {
5882 		if (cpu == core)
5883 			continue;
5884 
5885 		if (!available_idle_cpu(cpu))
5886 			goto unlock;
5887 	}
5888 
5889 	set_idle_cores(core, 1);
5890 unlock:
5891 	rcu_read_unlock();
5892 }
5893 
5894 /*
5895  * Scan the entire LLC domain for idle cores; this dynamically switches off if
5896  * there are no idle cores left in the system; tracked through
5897  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5898  */
5899 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5900 {
5901 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5902 	int core, cpu;
5903 
5904 	if (!static_branch_likely(&sched_smt_present))
5905 		return -1;
5906 
5907 	if (!test_idle_cores(target, false))
5908 		return -1;
5909 
5910 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
5911 
5912 	for_each_cpu_wrap(core, cpus, target) {
5913 		bool idle = true;
5914 
5915 		for_each_cpu(cpu, cpu_smt_mask(core)) {
5916 			__cpumask_clear_cpu(cpu, cpus);
5917 			if (!available_idle_cpu(cpu))
5918 				idle = false;
5919 		}
5920 
5921 		if (idle)
5922 			return core;
5923 	}
5924 
5925 	/*
5926 	 * Failed to find an idle core; stop looking for one.
5927 	 */
5928 	set_idle_cores(target, 0);
5929 
5930 	return -1;
5931 }
5932 
5933 /*
5934  * Scan the local SMT mask for idle CPUs.
5935  */
5936 static int select_idle_smt(struct task_struct *p, int target)
5937 {
5938 	int cpu;
5939 
5940 	if (!static_branch_likely(&sched_smt_present))
5941 		return -1;
5942 
5943 	for_each_cpu(cpu, cpu_smt_mask(target)) {
5944 		if (!cpumask_test_cpu(cpu, p->cpus_ptr))
5945 			continue;
5946 		if (available_idle_cpu(cpu))
5947 			return cpu;
5948 	}
5949 
5950 	return -1;
5951 }
5952 
5953 #else /* CONFIG_SCHED_SMT */
5954 
5955 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5956 {
5957 	return -1;
5958 }
5959 
5960 static inline int select_idle_smt(struct task_struct *p, int target)
5961 {
5962 	return -1;
5963 }
5964 
5965 #endif /* CONFIG_SCHED_SMT */
5966 
5967 /*
5968  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5969  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5970  * average idle time for this rq (as found in rq->avg_idle).
5971  */
5972 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5973 {
5974 	struct sched_domain *this_sd;
5975 	u64 avg_cost, avg_idle;
5976 	u64 time, cost;
5977 	s64 delta;
5978 	int cpu, nr = INT_MAX;
5979 	int this = smp_processor_id();
5980 
5981 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5982 	if (!this_sd)
5983 		return -1;
5984 
5985 	/*
5986 	 * Due to large variance we need a large fuzz factor; hackbench in
5987 	 * particularly is sensitive here.
5988 	 */
5989 	avg_idle = this_rq()->avg_idle / 512;
5990 	avg_cost = this_sd->avg_scan_cost + 1;
5991 
5992 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
5993 		return -1;
5994 
5995 	if (sched_feat(SIS_PROP)) {
5996 		u64 span_avg = sd->span_weight * avg_idle;
5997 		if (span_avg > 4*avg_cost)
5998 			nr = div_u64(span_avg, avg_cost);
5999 		else
6000 			nr = 4;
6001 	}
6002 
6003 	time = cpu_clock(this);
6004 
6005 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6006 		if (!--nr)
6007 			return -1;
6008 		if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6009 			continue;
6010 		if (available_idle_cpu(cpu))
6011 			break;
6012 	}
6013 
6014 	time = cpu_clock(this) - time;
6015 	cost = this_sd->avg_scan_cost;
6016 	delta = (s64)(time - cost) / 8;
6017 	this_sd->avg_scan_cost += delta;
6018 
6019 	return cpu;
6020 }
6021 
6022 /*
6023  * Try and locate an idle core/thread in the LLC cache domain.
6024  */
6025 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6026 {
6027 	struct sched_domain *sd;
6028 	int i, recent_used_cpu;
6029 
6030 	if (available_idle_cpu(target))
6031 		return target;
6032 
6033 	/*
6034 	 * If the previous CPU is cache affine and idle, don't be stupid:
6035 	 */
6036 	if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
6037 		return prev;
6038 
6039 	/* Check a recently used CPU as a potential idle candidate: */
6040 	recent_used_cpu = p->recent_used_cpu;
6041 	if (recent_used_cpu != prev &&
6042 	    recent_used_cpu != target &&
6043 	    cpus_share_cache(recent_used_cpu, target) &&
6044 	    available_idle_cpu(recent_used_cpu) &&
6045 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
6046 		/*
6047 		 * Replace recent_used_cpu with prev as it is a potential
6048 		 * candidate for the next wake:
6049 		 */
6050 		p->recent_used_cpu = prev;
6051 		return recent_used_cpu;
6052 	}
6053 
6054 	sd = rcu_dereference(per_cpu(sd_llc, target));
6055 	if (!sd)
6056 		return target;
6057 
6058 	i = select_idle_core(p, sd, target);
6059 	if ((unsigned)i < nr_cpumask_bits)
6060 		return i;
6061 
6062 	i = select_idle_cpu(p, sd, target);
6063 	if ((unsigned)i < nr_cpumask_bits)
6064 		return i;
6065 
6066 	i = select_idle_smt(p, target);
6067 	if ((unsigned)i < nr_cpumask_bits)
6068 		return i;
6069 
6070 	return target;
6071 }
6072 
6073 /**
6074  * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6075  * @cpu: the CPU to get the utilization of
6076  *
6077  * The unit of the return value must be the one of capacity so we can compare
6078  * the utilization with the capacity of the CPU that is available for CFS task
6079  * (ie cpu_capacity).
6080  *
6081  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6082  * recent utilization of currently non-runnable tasks on a CPU. It represents
6083  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6084  * capacity_orig is the cpu_capacity available at the highest frequency
6085  * (arch_scale_freq_capacity()).
6086  * The utilization of a CPU converges towards a sum equal to or less than the
6087  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6088  * the running time on this CPU scaled by capacity_curr.
6089  *
6090  * The estimated utilization of a CPU is defined to be the maximum between its
6091  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6092  * currently RUNNABLE on that CPU.
6093  * This allows to properly represent the expected utilization of a CPU which
6094  * has just got a big task running since a long sleep period. At the same time
6095  * however it preserves the benefits of the "blocked utilization" in
6096  * describing the potential for other tasks waking up on the same CPU.
6097  *
6098  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6099  * higher than capacity_orig because of unfortunate rounding in
6100  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6101  * the average stabilizes with the new running time. We need to check that the
6102  * utilization stays within the range of [0..capacity_orig] and cap it if
6103  * necessary. Without utilization capping, a group could be seen as overloaded
6104  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6105  * available capacity. We allow utilization to overshoot capacity_curr (but not
6106  * capacity_orig) as it useful for predicting the capacity required after task
6107  * migrations (scheduler-driven DVFS).
6108  *
6109  * Return: the (estimated) utilization for the specified CPU
6110  */
6111 static inline unsigned long cpu_util(int cpu)
6112 {
6113 	struct cfs_rq *cfs_rq;
6114 	unsigned int util;
6115 
6116 	cfs_rq = &cpu_rq(cpu)->cfs;
6117 	util = READ_ONCE(cfs_rq->avg.util_avg);
6118 
6119 	if (sched_feat(UTIL_EST))
6120 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6121 
6122 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6123 }
6124 
6125 /*
6126  * cpu_util_without: compute cpu utilization without any contributions from *p
6127  * @cpu: the CPU which utilization is requested
6128  * @p: the task which utilization should be discounted
6129  *
6130  * The utilization of a CPU is defined by the utilization of tasks currently
6131  * enqueued on that CPU as well as tasks which are currently sleeping after an
6132  * execution on that CPU.
6133  *
6134  * This method returns the utilization of the specified CPU by discounting the
6135  * utilization of the specified task, whenever the task is currently
6136  * contributing to the CPU utilization.
6137  */
6138 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6139 {
6140 	struct cfs_rq *cfs_rq;
6141 	unsigned int util;
6142 
6143 	/* Task has no contribution or is new */
6144 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6145 		return cpu_util(cpu);
6146 
6147 	cfs_rq = &cpu_rq(cpu)->cfs;
6148 	util = READ_ONCE(cfs_rq->avg.util_avg);
6149 
6150 	/* Discount task's util from CPU's util */
6151 	lsub_positive(&util, task_util(p));
6152 
6153 	/*
6154 	 * Covered cases:
6155 	 *
6156 	 * a) if *p is the only task sleeping on this CPU, then:
6157 	 *      cpu_util (== task_util) > util_est (== 0)
6158 	 *    and thus we return:
6159 	 *      cpu_util_without = (cpu_util - task_util) = 0
6160 	 *
6161 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6162 	 *    IDLE, then:
6163 	 *      cpu_util >= task_util
6164 	 *      cpu_util > util_est (== 0)
6165 	 *    and thus we discount *p's blocked utilization to return:
6166 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6167 	 *
6168 	 * c) if other tasks are RUNNABLE on that CPU and
6169 	 *      util_est > cpu_util
6170 	 *    then we use util_est since it returns a more restrictive
6171 	 *    estimation of the spare capacity on that CPU, by just
6172 	 *    considering the expected utilization of tasks already
6173 	 *    runnable on that CPU.
6174 	 *
6175 	 * Cases a) and b) are covered by the above code, while case c) is
6176 	 * covered by the following code when estimated utilization is
6177 	 * enabled.
6178 	 */
6179 	if (sched_feat(UTIL_EST)) {
6180 		unsigned int estimated =
6181 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6182 
6183 		/*
6184 		 * Despite the following checks we still have a small window
6185 		 * for a possible race, when an execl's select_task_rq_fair()
6186 		 * races with LB's detach_task():
6187 		 *
6188 		 *   detach_task()
6189 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6190 		 *     ---------------------------------- A
6191 		 *     deactivate_task()                   \
6192 		 *       dequeue_task()                     + RaceTime
6193 		 *         util_est_dequeue()              /
6194 		 *     ---------------------------------- B
6195 		 *
6196 		 * The additional check on "current == p" it's required to
6197 		 * properly fix the execl regression and it helps in further
6198 		 * reducing the chances for the above race.
6199 		 */
6200 		if (unlikely(task_on_rq_queued(p) || current == p))
6201 			lsub_positive(&estimated, _task_util_est(p));
6202 
6203 		util = max(util, estimated);
6204 	}
6205 
6206 	/*
6207 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6208 	 * clamp to the maximum CPU capacity to ensure consistency with
6209 	 * the cpu_util call.
6210 	 */
6211 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6212 }
6213 
6214 /*
6215  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6216  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6217  *
6218  * In that case WAKE_AFFINE doesn't make sense and we'll let
6219  * BALANCE_WAKE sort things out.
6220  */
6221 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6222 {
6223 	long min_cap, max_cap;
6224 
6225 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
6226 		return 0;
6227 
6228 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6229 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6230 
6231 	/* Minimum capacity is close to max, no need to abort wake_affine */
6232 	if (max_cap - min_cap < max_cap >> 3)
6233 		return 0;
6234 
6235 	/* Bring task utilization in sync with prev_cpu */
6236 	sync_entity_load_avg(&p->se);
6237 
6238 	return !task_fits_capacity(p, min_cap);
6239 }
6240 
6241 /*
6242  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6243  * to @dst_cpu.
6244  */
6245 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6246 {
6247 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6248 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6249 
6250 	/*
6251 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6252 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6253 	 * the other cases, @cpu is not impacted by the migration, so the
6254 	 * util_avg should already be correct.
6255 	 */
6256 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6257 		sub_positive(&util, task_util(p));
6258 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6259 		util += task_util(p);
6260 
6261 	if (sched_feat(UTIL_EST)) {
6262 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6263 
6264 		/*
6265 		 * During wake-up, the task isn't enqueued yet and doesn't
6266 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6267 		 * so just add it (if needed) to "simulate" what will be
6268 		 * cpu_util() after the task has been enqueued.
6269 		 */
6270 		if (dst_cpu == cpu)
6271 			util_est += _task_util_est(p);
6272 
6273 		util = max(util, util_est);
6274 	}
6275 
6276 	return min(util, capacity_orig_of(cpu));
6277 }
6278 
6279 /*
6280  * compute_energy(): Estimates the energy that would be consumed if @p was
6281  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6282  * landscape of the * CPUs after the task migration, and uses the Energy Model
6283  * to compute what would be the energy if we decided to actually migrate that
6284  * task.
6285  */
6286 static long
6287 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6288 {
6289 	unsigned int max_util, util_cfs, cpu_util, cpu_cap;
6290 	unsigned long sum_util, energy = 0;
6291 	struct task_struct *tsk;
6292 	int cpu;
6293 
6294 	for (; pd; pd = pd->next) {
6295 		struct cpumask *pd_mask = perf_domain_span(pd);
6296 
6297 		/*
6298 		 * The energy model mandates all the CPUs of a performance
6299 		 * domain have the same capacity.
6300 		 */
6301 		cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6302 		max_util = sum_util = 0;
6303 
6304 		/*
6305 		 * The capacity state of CPUs of the current rd can be driven by
6306 		 * CPUs of another rd if they belong to the same performance
6307 		 * domain. So, account for the utilization of these CPUs too
6308 		 * by masking pd with cpu_online_mask instead of the rd span.
6309 		 *
6310 		 * If an entire performance domain is outside of the current rd,
6311 		 * it will not appear in its pd list and will not be accounted
6312 		 * by compute_energy().
6313 		 */
6314 		for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6315 			util_cfs = cpu_util_next(cpu, p, dst_cpu);
6316 
6317 			/*
6318 			 * Busy time computation: utilization clamping is not
6319 			 * required since the ratio (sum_util / cpu_capacity)
6320 			 * is already enough to scale the EM reported power
6321 			 * consumption at the (eventually clamped) cpu_capacity.
6322 			 */
6323 			sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6324 						       ENERGY_UTIL, NULL);
6325 
6326 			/*
6327 			 * Performance domain frequency: utilization clamping
6328 			 * must be considered since it affects the selection
6329 			 * of the performance domain frequency.
6330 			 * NOTE: in case RT tasks are running, by default the
6331 			 * FREQUENCY_UTIL's utilization can be max OPP.
6332 			 */
6333 			tsk = cpu == dst_cpu ? p : NULL;
6334 			cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6335 						      FREQUENCY_UTIL, tsk);
6336 			max_util = max(max_util, cpu_util);
6337 		}
6338 
6339 		energy += em_pd_energy(pd->em_pd, max_util, sum_util);
6340 	}
6341 
6342 	return energy;
6343 }
6344 
6345 /*
6346  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6347  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6348  * spare capacity in each performance domain and uses it as a potential
6349  * candidate to execute the task. Then, it uses the Energy Model to figure
6350  * out which of the CPU candidates is the most energy-efficient.
6351  *
6352  * The rationale for this heuristic is as follows. In a performance domain,
6353  * all the most energy efficient CPU candidates (according to the Energy
6354  * Model) are those for which we'll request a low frequency. When there are
6355  * several CPUs for which the frequency request will be the same, we don't
6356  * have enough data to break the tie between them, because the Energy Model
6357  * only includes active power costs. With this model, if we assume that
6358  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6359  * the maximum spare capacity in a performance domain is guaranteed to be among
6360  * the best candidates of the performance domain.
6361  *
6362  * In practice, it could be preferable from an energy standpoint to pack
6363  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6364  * but that could also hurt our chances to go cluster idle, and we have no
6365  * ways to tell with the current Energy Model if this is actually a good
6366  * idea or not. So, find_energy_efficient_cpu() basically favors
6367  * cluster-packing, and spreading inside a cluster. That should at least be
6368  * a good thing for latency, and this is consistent with the idea that most
6369  * of the energy savings of EAS come from the asymmetry of the system, and
6370  * not so much from breaking the tie between identical CPUs. That's also the
6371  * reason why EAS is enabled in the topology code only for systems where
6372  * SD_ASYM_CPUCAPACITY is set.
6373  *
6374  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6375  * they don't have any useful utilization data yet and it's not possible to
6376  * forecast their impact on energy consumption. Consequently, they will be
6377  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6378  * to be energy-inefficient in some use-cases. The alternative would be to
6379  * bias new tasks towards specific types of CPUs first, or to try to infer
6380  * their util_avg from the parent task, but those heuristics could hurt
6381  * other use-cases too. So, until someone finds a better way to solve this,
6382  * let's keep things simple by re-using the existing slow path.
6383  */
6384 
6385 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6386 {
6387 	unsigned long prev_energy = ULONG_MAX, best_energy = ULONG_MAX;
6388 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6389 	int cpu, best_energy_cpu = prev_cpu;
6390 	struct perf_domain *head, *pd;
6391 	unsigned long cpu_cap, util;
6392 	struct sched_domain *sd;
6393 
6394 	rcu_read_lock();
6395 	pd = rcu_dereference(rd->pd);
6396 	if (!pd || READ_ONCE(rd->overutilized))
6397 		goto fail;
6398 	head = pd;
6399 
6400 	/*
6401 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6402 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6403 	 */
6404 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6405 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6406 		sd = sd->parent;
6407 	if (!sd)
6408 		goto fail;
6409 
6410 	sync_entity_load_avg(&p->se);
6411 	if (!task_util_est(p))
6412 		goto unlock;
6413 
6414 	for (; pd; pd = pd->next) {
6415 		unsigned long cur_energy, spare_cap, max_spare_cap = 0;
6416 		int max_spare_cap_cpu = -1;
6417 
6418 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6419 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6420 				continue;
6421 
6422 			/* Skip CPUs that will be overutilized. */
6423 			util = cpu_util_next(cpu, p, cpu);
6424 			cpu_cap = capacity_of(cpu);
6425 			if (cpu_cap * 1024 < util * capacity_margin)
6426 				continue;
6427 
6428 			/* Always use prev_cpu as a candidate. */
6429 			if (cpu == prev_cpu) {
6430 				prev_energy = compute_energy(p, prev_cpu, head);
6431 				best_energy = min(best_energy, prev_energy);
6432 				continue;
6433 			}
6434 
6435 			/*
6436 			 * Find the CPU with the maximum spare capacity in
6437 			 * the performance domain
6438 			 */
6439 			spare_cap = cpu_cap - util;
6440 			if (spare_cap > max_spare_cap) {
6441 				max_spare_cap = spare_cap;
6442 				max_spare_cap_cpu = cpu;
6443 			}
6444 		}
6445 
6446 		/* Evaluate the energy impact of using this CPU. */
6447 		if (max_spare_cap_cpu >= 0) {
6448 			cur_energy = compute_energy(p, max_spare_cap_cpu, head);
6449 			if (cur_energy < best_energy) {
6450 				best_energy = cur_energy;
6451 				best_energy_cpu = max_spare_cap_cpu;
6452 			}
6453 		}
6454 	}
6455 unlock:
6456 	rcu_read_unlock();
6457 
6458 	/*
6459 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6460 	 * least 6% of the energy used by prev_cpu.
6461 	 */
6462 	if (prev_energy == ULONG_MAX)
6463 		return best_energy_cpu;
6464 
6465 	if ((prev_energy - best_energy) > (prev_energy >> 4))
6466 		return best_energy_cpu;
6467 
6468 	return prev_cpu;
6469 
6470 fail:
6471 	rcu_read_unlock();
6472 
6473 	return -1;
6474 }
6475 
6476 /*
6477  * select_task_rq_fair: Select target runqueue for the waking task in domains
6478  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6479  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6480  *
6481  * Balances load by selecting the idlest CPU in the idlest group, or under
6482  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6483  *
6484  * Returns the target CPU number.
6485  *
6486  * preempt must be disabled.
6487  */
6488 static int
6489 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6490 {
6491 	struct sched_domain *tmp, *sd = NULL;
6492 	int cpu = smp_processor_id();
6493 	int new_cpu = prev_cpu;
6494 	int want_affine = 0;
6495 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6496 
6497 	if (sd_flag & SD_BALANCE_WAKE) {
6498 		record_wakee(p);
6499 
6500 		if (sched_energy_enabled()) {
6501 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6502 			if (new_cpu >= 0)
6503 				return new_cpu;
6504 			new_cpu = prev_cpu;
6505 		}
6506 
6507 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
6508 			      cpumask_test_cpu(cpu, p->cpus_ptr);
6509 	}
6510 
6511 	rcu_read_lock();
6512 	for_each_domain(cpu, tmp) {
6513 		if (!(tmp->flags & SD_LOAD_BALANCE))
6514 			break;
6515 
6516 		/*
6517 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6518 		 * cpu is a valid SD_WAKE_AFFINE target.
6519 		 */
6520 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6521 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6522 			if (cpu != prev_cpu)
6523 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6524 
6525 			sd = NULL; /* Prefer wake_affine over balance flags */
6526 			break;
6527 		}
6528 
6529 		if (tmp->flags & sd_flag)
6530 			sd = tmp;
6531 		else if (!want_affine)
6532 			break;
6533 	}
6534 
6535 	if (unlikely(sd)) {
6536 		/* Slow path */
6537 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6538 	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6539 		/* Fast path */
6540 
6541 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6542 
6543 		if (want_affine)
6544 			current->recent_used_cpu = cpu;
6545 	}
6546 	rcu_read_unlock();
6547 
6548 	return new_cpu;
6549 }
6550 
6551 static void detach_entity_cfs_rq(struct sched_entity *se);
6552 
6553 /*
6554  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6555  * cfs_rq_of(p) references at time of call are still valid and identify the
6556  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6557  */
6558 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6559 {
6560 	/*
6561 	 * As blocked tasks retain absolute vruntime the migration needs to
6562 	 * deal with this by subtracting the old and adding the new
6563 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6564 	 * the task on the new runqueue.
6565 	 */
6566 	if (p->state == TASK_WAKING) {
6567 		struct sched_entity *se = &p->se;
6568 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6569 		u64 min_vruntime;
6570 
6571 #ifndef CONFIG_64BIT
6572 		u64 min_vruntime_copy;
6573 
6574 		do {
6575 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6576 			smp_rmb();
6577 			min_vruntime = cfs_rq->min_vruntime;
6578 		} while (min_vruntime != min_vruntime_copy);
6579 #else
6580 		min_vruntime = cfs_rq->min_vruntime;
6581 #endif
6582 
6583 		se->vruntime -= min_vruntime;
6584 	}
6585 
6586 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6587 		/*
6588 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6589 		 * rq->lock and can modify state directly.
6590 		 */
6591 		lockdep_assert_held(&task_rq(p)->lock);
6592 		detach_entity_cfs_rq(&p->se);
6593 
6594 	} else {
6595 		/*
6596 		 * We are supposed to update the task to "current" time, then
6597 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6598 		 * have difficulty in getting what current time is, so simply
6599 		 * throw away the out-of-date time. This will result in the
6600 		 * wakee task is less decayed, but giving the wakee more load
6601 		 * sounds not bad.
6602 		 */
6603 		remove_entity_load_avg(&p->se);
6604 	}
6605 
6606 	/* Tell new CPU we are migrated */
6607 	p->se.avg.last_update_time = 0;
6608 
6609 	/* We have migrated, no longer consider this task hot */
6610 	p->se.exec_start = 0;
6611 
6612 	update_scan_period(p, new_cpu);
6613 }
6614 
6615 static void task_dead_fair(struct task_struct *p)
6616 {
6617 	remove_entity_load_avg(&p->se);
6618 }
6619 #endif /* CONFIG_SMP */
6620 
6621 static unsigned long wakeup_gran(struct sched_entity *se)
6622 {
6623 	unsigned long gran = sysctl_sched_wakeup_granularity;
6624 
6625 	/*
6626 	 * Since its curr running now, convert the gran from real-time
6627 	 * to virtual-time in his units.
6628 	 *
6629 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6630 	 * they get preempted easier. That is, if 'se' < 'curr' then
6631 	 * the resulting gran will be larger, therefore penalizing the
6632 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6633 	 * be smaller, again penalizing the lighter task.
6634 	 *
6635 	 * This is especially important for buddies when the leftmost
6636 	 * task is higher priority than the buddy.
6637 	 */
6638 	return calc_delta_fair(gran, se);
6639 }
6640 
6641 /*
6642  * Should 'se' preempt 'curr'.
6643  *
6644  *             |s1
6645  *        |s2
6646  *   |s3
6647  *         g
6648  *      |<--->|c
6649  *
6650  *  w(c, s1) = -1
6651  *  w(c, s2) =  0
6652  *  w(c, s3) =  1
6653  *
6654  */
6655 static int
6656 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6657 {
6658 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6659 
6660 	if (vdiff <= 0)
6661 		return -1;
6662 
6663 	gran = wakeup_gran(se);
6664 	if (vdiff > gran)
6665 		return 1;
6666 
6667 	return 0;
6668 }
6669 
6670 static void set_last_buddy(struct sched_entity *se)
6671 {
6672 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6673 		return;
6674 
6675 	for_each_sched_entity(se) {
6676 		if (SCHED_WARN_ON(!se->on_rq))
6677 			return;
6678 		cfs_rq_of(se)->last = se;
6679 	}
6680 }
6681 
6682 static void set_next_buddy(struct sched_entity *se)
6683 {
6684 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6685 		return;
6686 
6687 	for_each_sched_entity(se) {
6688 		if (SCHED_WARN_ON(!se->on_rq))
6689 			return;
6690 		cfs_rq_of(se)->next = se;
6691 	}
6692 }
6693 
6694 static void set_skip_buddy(struct sched_entity *se)
6695 {
6696 	for_each_sched_entity(se)
6697 		cfs_rq_of(se)->skip = se;
6698 }
6699 
6700 /*
6701  * Preempt the current task with a newly woken task if needed:
6702  */
6703 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6704 {
6705 	struct task_struct *curr = rq->curr;
6706 	struct sched_entity *se = &curr->se, *pse = &p->se;
6707 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6708 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6709 	int next_buddy_marked = 0;
6710 
6711 	if (unlikely(se == pse))
6712 		return;
6713 
6714 	/*
6715 	 * This is possible from callers such as attach_tasks(), in which we
6716 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6717 	 * lead to a throttle).  This both saves work and prevents false
6718 	 * next-buddy nomination below.
6719 	 */
6720 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6721 		return;
6722 
6723 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6724 		set_next_buddy(pse);
6725 		next_buddy_marked = 1;
6726 	}
6727 
6728 	/*
6729 	 * We can come here with TIF_NEED_RESCHED already set from new task
6730 	 * wake up path.
6731 	 *
6732 	 * Note: this also catches the edge-case of curr being in a throttled
6733 	 * group (e.g. via set_curr_task), since update_curr() (in the
6734 	 * enqueue of curr) will have resulted in resched being set.  This
6735 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6736 	 * below.
6737 	 */
6738 	if (test_tsk_need_resched(curr))
6739 		return;
6740 
6741 	/* Idle tasks are by definition preempted by non-idle tasks. */
6742 	if (unlikely(task_has_idle_policy(curr)) &&
6743 	    likely(!task_has_idle_policy(p)))
6744 		goto preempt;
6745 
6746 	/*
6747 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6748 	 * is driven by the tick):
6749 	 */
6750 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6751 		return;
6752 
6753 	find_matching_se(&se, &pse);
6754 	update_curr(cfs_rq_of(se));
6755 	BUG_ON(!pse);
6756 	if (wakeup_preempt_entity(se, pse) == 1) {
6757 		/*
6758 		 * Bias pick_next to pick the sched entity that is
6759 		 * triggering this preemption.
6760 		 */
6761 		if (!next_buddy_marked)
6762 			set_next_buddy(pse);
6763 		goto preempt;
6764 	}
6765 
6766 	return;
6767 
6768 preempt:
6769 	resched_curr(rq);
6770 	/*
6771 	 * Only set the backward buddy when the current task is still
6772 	 * on the rq. This can happen when a wakeup gets interleaved
6773 	 * with schedule on the ->pre_schedule() or idle_balance()
6774 	 * point, either of which can * drop the rq lock.
6775 	 *
6776 	 * Also, during early boot the idle thread is in the fair class,
6777 	 * for obvious reasons its a bad idea to schedule back to it.
6778 	 */
6779 	if (unlikely(!se->on_rq || curr == rq->idle))
6780 		return;
6781 
6782 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6783 		set_last_buddy(se);
6784 }
6785 
6786 static struct task_struct *
6787 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6788 {
6789 	struct cfs_rq *cfs_rq = &rq->cfs;
6790 	struct sched_entity *se;
6791 	struct task_struct *p;
6792 	int new_tasks;
6793 
6794 again:
6795 	if (!cfs_rq->nr_running)
6796 		goto idle;
6797 
6798 #ifdef CONFIG_FAIR_GROUP_SCHED
6799 	if (prev->sched_class != &fair_sched_class)
6800 		goto simple;
6801 
6802 	/*
6803 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6804 	 * likely that a next task is from the same cgroup as the current.
6805 	 *
6806 	 * Therefore attempt to avoid putting and setting the entire cgroup
6807 	 * hierarchy, only change the part that actually changes.
6808 	 */
6809 
6810 	do {
6811 		struct sched_entity *curr = cfs_rq->curr;
6812 
6813 		/*
6814 		 * Since we got here without doing put_prev_entity() we also
6815 		 * have to consider cfs_rq->curr. If it is still a runnable
6816 		 * entity, update_curr() will update its vruntime, otherwise
6817 		 * forget we've ever seen it.
6818 		 */
6819 		if (curr) {
6820 			if (curr->on_rq)
6821 				update_curr(cfs_rq);
6822 			else
6823 				curr = NULL;
6824 
6825 			/*
6826 			 * This call to check_cfs_rq_runtime() will do the
6827 			 * throttle and dequeue its entity in the parent(s).
6828 			 * Therefore the nr_running test will indeed
6829 			 * be correct.
6830 			 */
6831 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6832 				cfs_rq = &rq->cfs;
6833 
6834 				if (!cfs_rq->nr_running)
6835 					goto idle;
6836 
6837 				goto simple;
6838 			}
6839 		}
6840 
6841 		se = pick_next_entity(cfs_rq, curr);
6842 		cfs_rq = group_cfs_rq(se);
6843 	} while (cfs_rq);
6844 
6845 	p = task_of(se);
6846 
6847 	/*
6848 	 * Since we haven't yet done put_prev_entity and if the selected task
6849 	 * is a different task than we started out with, try and touch the
6850 	 * least amount of cfs_rqs.
6851 	 */
6852 	if (prev != p) {
6853 		struct sched_entity *pse = &prev->se;
6854 
6855 		while (!(cfs_rq = is_same_group(se, pse))) {
6856 			int se_depth = se->depth;
6857 			int pse_depth = pse->depth;
6858 
6859 			if (se_depth <= pse_depth) {
6860 				put_prev_entity(cfs_rq_of(pse), pse);
6861 				pse = parent_entity(pse);
6862 			}
6863 			if (se_depth >= pse_depth) {
6864 				set_next_entity(cfs_rq_of(se), se);
6865 				se = parent_entity(se);
6866 			}
6867 		}
6868 
6869 		put_prev_entity(cfs_rq, pse);
6870 		set_next_entity(cfs_rq, se);
6871 	}
6872 
6873 	goto done;
6874 simple:
6875 #endif
6876 
6877 	put_prev_task(rq, prev);
6878 
6879 	do {
6880 		se = pick_next_entity(cfs_rq, NULL);
6881 		set_next_entity(cfs_rq, se);
6882 		cfs_rq = group_cfs_rq(se);
6883 	} while (cfs_rq);
6884 
6885 	p = task_of(se);
6886 
6887 done: __maybe_unused;
6888 #ifdef CONFIG_SMP
6889 	/*
6890 	 * Move the next running task to the front of
6891 	 * the list, so our cfs_tasks list becomes MRU
6892 	 * one.
6893 	 */
6894 	list_move(&p->se.group_node, &rq->cfs_tasks);
6895 #endif
6896 
6897 	if (hrtick_enabled(rq))
6898 		hrtick_start_fair(rq, p);
6899 
6900 	update_misfit_status(p, rq);
6901 
6902 	return p;
6903 
6904 idle:
6905 	update_misfit_status(NULL, rq);
6906 	new_tasks = idle_balance(rq, rf);
6907 
6908 	/*
6909 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6910 	 * possible for any higher priority task to appear. In that case we
6911 	 * must re-start the pick_next_entity() loop.
6912 	 */
6913 	if (new_tasks < 0)
6914 		return RETRY_TASK;
6915 
6916 	if (new_tasks > 0)
6917 		goto again;
6918 
6919 	/*
6920 	 * rq is about to be idle, check if we need to update the
6921 	 * lost_idle_time of clock_pelt
6922 	 */
6923 	update_idle_rq_clock_pelt(rq);
6924 
6925 	return NULL;
6926 }
6927 
6928 /*
6929  * Account for a descheduled task:
6930  */
6931 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6932 {
6933 	struct sched_entity *se = &prev->se;
6934 	struct cfs_rq *cfs_rq;
6935 
6936 	for_each_sched_entity(se) {
6937 		cfs_rq = cfs_rq_of(se);
6938 		put_prev_entity(cfs_rq, se);
6939 	}
6940 }
6941 
6942 /*
6943  * sched_yield() is very simple
6944  *
6945  * The magic of dealing with the ->skip buddy is in pick_next_entity.
6946  */
6947 static void yield_task_fair(struct rq *rq)
6948 {
6949 	struct task_struct *curr = rq->curr;
6950 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6951 	struct sched_entity *se = &curr->se;
6952 
6953 	/*
6954 	 * Are we the only task in the tree?
6955 	 */
6956 	if (unlikely(rq->nr_running == 1))
6957 		return;
6958 
6959 	clear_buddies(cfs_rq, se);
6960 
6961 	if (curr->policy != SCHED_BATCH) {
6962 		update_rq_clock(rq);
6963 		/*
6964 		 * Update run-time statistics of the 'current'.
6965 		 */
6966 		update_curr(cfs_rq);
6967 		/*
6968 		 * Tell update_rq_clock() that we've just updated,
6969 		 * so we don't do microscopic update in schedule()
6970 		 * and double the fastpath cost.
6971 		 */
6972 		rq_clock_skip_update(rq);
6973 	}
6974 
6975 	set_skip_buddy(se);
6976 }
6977 
6978 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6979 {
6980 	struct sched_entity *se = &p->se;
6981 
6982 	/* throttled hierarchies are not runnable */
6983 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6984 		return false;
6985 
6986 	/* Tell the scheduler that we'd really like pse to run next. */
6987 	set_next_buddy(se);
6988 
6989 	yield_task_fair(rq);
6990 
6991 	return true;
6992 }
6993 
6994 #ifdef CONFIG_SMP
6995 /**************************************************
6996  * Fair scheduling class load-balancing methods.
6997  *
6998  * BASICS
6999  *
7000  * The purpose of load-balancing is to achieve the same basic fairness the
7001  * per-CPU scheduler provides, namely provide a proportional amount of compute
7002  * time to each task. This is expressed in the following equation:
7003  *
7004  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7005  *
7006  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7007  * W_i,0 is defined as:
7008  *
7009  *   W_i,0 = \Sum_j w_i,j                                             (2)
7010  *
7011  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7012  * is derived from the nice value as per sched_prio_to_weight[].
7013  *
7014  * The weight average is an exponential decay average of the instantaneous
7015  * weight:
7016  *
7017  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7018  *
7019  * C_i is the compute capacity of CPU i, typically it is the
7020  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7021  * can also include other factors [XXX].
7022  *
7023  * To achieve this balance we define a measure of imbalance which follows
7024  * directly from (1):
7025  *
7026  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7027  *
7028  * We them move tasks around to minimize the imbalance. In the continuous
7029  * function space it is obvious this converges, in the discrete case we get
7030  * a few fun cases generally called infeasible weight scenarios.
7031  *
7032  * [XXX expand on:
7033  *     - infeasible weights;
7034  *     - local vs global optima in the discrete case. ]
7035  *
7036  *
7037  * SCHED DOMAINS
7038  *
7039  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7040  * for all i,j solution, we create a tree of CPUs that follows the hardware
7041  * topology where each level pairs two lower groups (or better). This results
7042  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7043  * tree to only the first of the previous level and we decrease the frequency
7044  * of load-balance at each level inv. proportional to the number of CPUs in
7045  * the groups.
7046  *
7047  * This yields:
7048  *
7049  *     log_2 n     1     n
7050  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7051  *     i = 0      2^i   2^i
7052  *                               `- size of each group
7053  *         |         |     `- number of CPUs doing load-balance
7054  *         |         `- freq
7055  *         `- sum over all levels
7056  *
7057  * Coupled with a limit on how many tasks we can migrate every balance pass,
7058  * this makes (5) the runtime complexity of the balancer.
7059  *
7060  * An important property here is that each CPU is still (indirectly) connected
7061  * to every other CPU in at most O(log n) steps:
7062  *
7063  * The adjacency matrix of the resulting graph is given by:
7064  *
7065  *             log_2 n
7066  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7067  *             k = 0
7068  *
7069  * And you'll find that:
7070  *
7071  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7072  *
7073  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7074  * The task movement gives a factor of O(m), giving a convergence complexity
7075  * of:
7076  *
7077  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7078  *
7079  *
7080  * WORK CONSERVING
7081  *
7082  * In order to avoid CPUs going idle while there's still work to do, new idle
7083  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7084  * tree itself instead of relying on other CPUs to bring it work.
7085  *
7086  * This adds some complexity to both (5) and (8) but it reduces the total idle
7087  * time.
7088  *
7089  * [XXX more?]
7090  *
7091  *
7092  * CGROUPS
7093  *
7094  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7095  *
7096  *                                s_k,i
7097  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7098  *                                 S_k
7099  *
7100  * Where
7101  *
7102  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7103  *
7104  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7105  *
7106  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7107  * property.
7108  *
7109  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7110  *      rewrite all of this once again.]
7111  */
7112 
7113 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7114 
7115 enum fbq_type { regular, remote, all };
7116 
7117 enum group_type {
7118 	group_other = 0,
7119 	group_misfit_task,
7120 	group_imbalanced,
7121 	group_overloaded,
7122 };
7123 
7124 #define LBF_ALL_PINNED	0x01
7125 #define LBF_NEED_BREAK	0x02
7126 #define LBF_DST_PINNED  0x04
7127 #define LBF_SOME_PINNED	0x08
7128 #define LBF_NOHZ_STATS	0x10
7129 #define LBF_NOHZ_AGAIN	0x20
7130 
7131 struct lb_env {
7132 	struct sched_domain	*sd;
7133 
7134 	struct rq		*src_rq;
7135 	int			src_cpu;
7136 
7137 	int			dst_cpu;
7138 	struct rq		*dst_rq;
7139 
7140 	struct cpumask		*dst_grpmask;
7141 	int			new_dst_cpu;
7142 	enum cpu_idle_type	idle;
7143 	long			imbalance;
7144 	/* The set of CPUs under consideration for load-balancing */
7145 	struct cpumask		*cpus;
7146 
7147 	unsigned int		flags;
7148 
7149 	unsigned int		loop;
7150 	unsigned int		loop_break;
7151 	unsigned int		loop_max;
7152 
7153 	enum fbq_type		fbq_type;
7154 	enum group_type		src_grp_type;
7155 	struct list_head	tasks;
7156 };
7157 
7158 /*
7159  * Is this task likely cache-hot:
7160  */
7161 static int task_hot(struct task_struct *p, struct lb_env *env)
7162 {
7163 	s64 delta;
7164 
7165 	lockdep_assert_held(&env->src_rq->lock);
7166 
7167 	if (p->sched_class != &fair_sched_class)
7168 		return 0;
7169 
7170 	if (unlikely(task_has_idle_policy(p)))
7171 		return 0;
7172 
7173 	/*
7174 	 * Buddy candidates are cache hot:
7175 	 */
7176 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7177 			(&p->se == cfs_rq_of(&p->se)->next ||
7178 			 &p->se == cfs_rq_of(&p->se)->last))
7179 		return 1;
7180 
7181 	if (sysctl_sched_migration_cost == -1)
7182 		return 1;
7183 	if (sysctl_sched_migration_cost == 0)
7184 		return 0;
7185 
7186 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7187 
7188 	return delta < (s64)sysctl_sched_migration_cost;
7189 }
7190 
7191 #ifdef CONFIG_NUMA_BALANCING
7192 /*
7193  * Returns 1, if task migration degrades locality
7194  * Returns 0, if task migration improves locality i.e migration preferred.
7195  * Returns -1, if task migration is not affected by locality.
7196  */
7197 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7198 {
7199 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7200 	unsigned long src_weight, dst_weight;
7201 	int src_nid, dst_nid, dist;
7202 
7203 	if (!static_branch_likely(&sched_numa_balancing))
7204 		return -1;
7205 
7206 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7207 		return -1;
7208 
7209 	src_nid = cpu_to_node(env->src_cpu);
7210 	dst_nid = cpu_to_node(env->dst_cpu);
7211 
7212 	if (src_nid == dst_nid)
7213 		return -1;
7214 
7215 	/* Migrating away from the preferred node is always bad. */
7216 	if (src_nid == p->numa_preferred_nid) {
7217 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7218 			return 1;
7219 		else
7220 			return -1;
7221 	}
7222 
7223 	/* Encourage migration to the preferred node. */
7224 	if (dst_nid == p->numa_preferred_nid)
7225 		return 0;
7226 
7227 	/* Leaving a core idle is often worse than degrading locality. */
7228 	if (env->idle == CPU_IDLE)
7229 		return -1;
7230 
7231 	dist = node_distance(src_nid, dst_nid);
7232 	if (numa_group) {
7233 		src_weight = group_weight(p, src_nid, dist);
7234 		dst_weight = group_weight(p, dst_nid, dist);
7235 	} else {
7236 		src_weight = task_weight(p, src_nid, dist);
7237 		dst_weight = task_weight(p, dst_nid, dist);
7238 	}
7239 
7240 	return dst_weight < src_weight;
7241 }
7242 
7243 #else
7244 static inline int migrate_degrades_locality(struct task_struct *p,
7245 					     struct lb_env *env)
7246 {
7247 	return -1;
7248 }
7249 #endif
7250 
7251 /*
7252  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7253  */
7254 static
7255 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7256 {
7257 	int tsk_cache_hot;
7258 
7259 	lockdep_assert_held(&env->src_rq->lock);
7260 
7261 	/*
7262 	 * We do not migrate tasks that are:
7263 	 * 1) throttled_lb_pair, or
7264 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7265 	 * 3) running (obviously), or
7266 	 * 4) are cache-hot on their current CPU.
7267 	 */
7268 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7269 		return 0;
7270 
7271 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7272 		int cpu;
7273 
7274 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7275 
7276 		env->flags |= LBF_SOME_PINNED;
7277 
7278 		/*
7279 		 * Remember if this task can be migrated to any other CPU in
7280 		 * our sched_group. We may want to revisit it if we couldn't
7281 		 * meet load balance goals by pulling other tasks on src_cpu.
7282 		 *
7283 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7284 		 * already computed one in current iteration.
7285 		 */
7286 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7287 			return 0;
7288 
7289 		/* Prevent to re-select dst_cpu via env's CPUs: */
7290 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7291 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7292 				env->flags |= LBF_DST_PINNED;
7293 				env->new_dst_cpu = cpu;
7294 				break;
7295 			}
7296 		}
7297 
7298 		return 0;
7299 	}
7300 
7301 	/* Record that we found atleast one task that could run on dst_cpu */
7302 	env->flags &= ~LBF_ALL_PINNED;
7303 
7304 	if (task_running(env->src_rq, p)) {
7305 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7306 		return 0;
7307 	}
7308 
7309 	/*
7310 	 * Aggressive migration if:
7311 	 * 1) destination numa is preferred
7312 	 * 2) task is cache cold, or
7313 	 * 3) too many balance attempts have failed.
7314 	 */
7315 	tsk_cache_hot = migrate_degrades_locality(p, env);
7316 	if (tsk_cache_hot == -1)
7317 		tsk_cache_hot = task_hot(p, env);
7318 
7319 	if (tsk_cache_hot <= 0 ||
7320 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7321 		if (tsk_cache_hot == 1) {
7322 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7323 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7324 		}
7325 		return 1;
7326 	}
7327 
7328 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7329 	return 0;
7330 }
7331 
7332 /*
7333  * detach_task() -- detach the task for the migration specified in env
7334  */
7335 static void detach_task(struct task_struct *p, struct lb_env *env)
7336 {
7337 	lockdep_assert_held(&env->src_rq->lock);
7338 
7339 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7340 	set_task_cpu(p, env->dst_cpu);
7341 }
7342 
7343 /*
7344  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7345  * part of active balancing operations within "domain".
7346  *
7347  * Returns a task if successful and NULL otherwise.
7348  */
7349 static struct task_struct *detach_one_task(struct lb_env *env)
7350 {
7351 	struct task_struct *p;
7352 
7353 	lockdep_assert_held(&env->src_rq->lock);
7354 
7355 	list_for_each_entry_reverse(p,
7356 			&env->src_rq->cfs_tasks, se.group_node) {
7357 		if (!can_migrate_task(p, env))
7358 			continue;
7359 
7360 		detach_task(p, env);
7361 
7362 		/*
7363 		 * Right now, this is only the second place where
7364 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7365 		 * so we can safely collect stats here rather than
7366 		 * inside detach_tasks().
7367 		 */
7368 		schedstat_inc(env->sd->lb_gained[env->idle]);
7369 		return p;
7370 	}
7371 	return NULL;
7372 }
7373 
7374 static const unsigned int sched_nr_migrate_break = 32;
7375 
7376 /*
7377  * detach_tasks() -- tries to detach up to imbalance runnable load from
7378  * busiest_rq, as part of a balancing operation within domain "sd".
7379  *
7380  * Returns number of detached tasks if successful and 0 otherwise.
7381  */
7382 static int detach_tasks(struct lb_env *env)
7383 {
7384 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7385 	struct task_struct *p;
7386 	unsigned long load;
7387 	int detached = 0;
7388 
7389 	lockdep_assert_held(&env->src_rq->lock);
7390 
7391 	if (env->imbalance <= 0)
7392 		return 0;
7393 
7394 	while (!list_empty(tasks)) {
7395 		/*
7396 		 * We don't want to steal all, otherwise we may be treated likewise,
7397 		 * which could at worst lead to a livelock crash.
7398 		 */
7399 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7400 			break;
7401 
7402 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7403 
7404 		env->loop++;
7405 		/* We've more or less seen every task there is, call it quits */
7406 		if (env->loop > env->loop_max)
7407 			break;
7408 
7409 		/* take a breather every nr_migrate tasks */
7410 		if (env->loop > env->loop_break) {
7411 			env->loop_break += sched_nr_migrate_break;
7412 			env->flags |= LBF_NEED_BREAK;
7413 			break;
7414 		}
7415 
7416 		if (!can_migrate_task(p, env))
7417 			goto next;
7418 
7419 		load = task_h_load(p);
7420 
7421 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7422 			goto next;
7423 
7424 		if ((load / 2) > env->imbalance)
7425 			goto next;
7426 
7427 		detach_task(p, env);
7428 		list_add(&p->se.group_node, &env->tasks);
7429 
7430 		detached++;
7431 		env->imbalance -= load;
7432 
7433 #ifdef CONFIG_PREEMPT
7434 		/*
7435 		 * NEWIDLE balancing is a source of latency, so preemptible
7436 		 * kernels will stop after the first task is detached to minimize
7437 		 * the critical section.
7438 		 */
7439 		if (env->idle == CPU_NEWLY_IDLE)
7440 			break;
7441 #endif
7442 
7443 		/*
7444 		 * We only want to steal up to the prescribed amount of
7445 		 * runnable load.
7446 		 */
7447 		if (env->imbalance <= 0)
7448 			break;
7449 
7450 		continue;
7451 next:
7452 		list_move(&p->se.group_node, tasks);
7453 	}
7454 
7455 	/*
7456 	 * Right now, this is one of only two places we collect this stat
7457 	 * so we can safely collect detach_one_task() stats here rather
7458 	 * than inside detach_one_task().
7459 	 */
7460 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7461 
7462 	return detached;
7463 }
7464 
7465 /*
7466  * attach_task() -- attach the task detached by detach_task() to its new rq.
7467  */
7468 static void attach_task(struct rq *rq, struct task_struct *p)
7469 {
7470 	lockdep_assert_held(&rq->lock);
7471 
7472 	BUG_ON(task_rq(p) != rq);
7473 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7474 	check_preempt_curr(rq, p, 0);
7475 }
7476 
7477 /*
7478  * attach_one_task() -- attaches the task returned from detach_one_task() to
7479  * its new rq.
7480  */
7481 static void attach_one_task(struct rq *rq, struct task_struct *p)
7482 {
7483 	struct rq_flags rf;
7484 
7485 	rq_lock(rq, &rf);
7486 	update_rq_clock(rq);
7487 	attach_task(rq, p);
7488 	rq_unlock(rq, &rf);
7489 }
7490 
7491 /*
7492  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7493  * new rq.
7494  */
7495 static void attach_tasks(struct lb_env *env)
7496 {
7497 	struct list_head *tasks = &env->tasks;
7498 	struct task_struct *p;
7499 	struct rq_flags rf;
7500 
7501 	rq_lock(env->dst_rq, &rf);
7502 	update_rq_clock(env->dst_rq);
7503 
7504 	while (!list_empty(tasks)) {
7505 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7506 		list_del_init(&p->se.group_node);
7507 
7508 		attach_task(env->dst_rq, p);
7509 	}
7510 
7511 	rq_unlock(env->dst_rq, &rf);
7512 }
7513 
7514 #ifdef CONFIG_NO_HZ_COMMON
7515 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7516 {
7517 	if (cfs_rq->avg.load_avg)
7518 		return true;
7519 
7520 	if (cfs_rq->avg.util_avg)
7521 		return true;
7522 
7523 	return false;
7524 }
7525 
7526 static inline bool others_have_blocked(struct rq *rq)
7527 {
7528 	if (READ_ONCE(rq->avg_rt.util_avg))
7529 		return true;
7530 
7531 	if (READ_ONCE(rq->avg_dl.util_avg))
7532 		return true;
7533 
7534 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7535 	if (READ_ONCE(rq->avg_irq.util_avg))
7536 		return true;
7537 #endif
7538 
7539 	return false;
7540 }
7541 
7542 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7543 {
7544 	rq->last_blocked_load_update_tick = jiffies;
7545 
7546 	if (!has_blocked)
7547 		rq->has_blocked_load = 0;
7548 }
7549 #else
7550 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7551 static inline bool others_have_blocked(struct rq *rq) { return false; }
7552 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7553 #endif
7554 
7555 #ifdef CONFIG_FAIR_GROUP_SCHED
7556 
7557 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7558 {
7559 	if (cfs_rq->load.weight)
7560 		return false;
7561 
7562 	if (cfs_rq->avg.load_sum)
7563 		return false;
7564 
7565 	if (cfs_rq->avg.util_sum)
7566 		return false;
7567 
7568 	if (cfs_rq->avg.runnable_load_sum)
7569 		return false;
7570 
7571 	return true;
7572 }
7573 
7574 static void update_blocked_averages(int cpu)
7575 {
7576 	struct rq *rq = cpu_rq(cpu);
7577 	struct cfs_rq *cfs_rq, *pos;
7578 	const struct sched_class *curr_class;
7579 	struct rq_flags rf;
7580 	bool done = true;
7581 
7582 	rq_lock_irqsave(rq, &rf);
7583 	update_rq_clock(rq);
7584 
7585 	/*
7586 	 * Iterates the task_group tree in a bottom up fashion, see
7587 	 * list_add_leaf_cfs_rq() for details.
7588 	 */
7589 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7590 		struct sched_entity *se;
7591 
7592 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq))
7593 			update_tg_load_avg(cfs_rq, 0);
7594 
7595 		/* Propagate pending load changes to the parent, if any: */
7596 		se = cfs_rq->tg->se[cpu];
7597 		if (se && !skip_blocked_update(se))
7598 			update_load_avg(cfs_rq_of(se), se, 0);
7599 
7600 		/*
7601 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7602 		 * decayed cfs_rqs linger on the list.
7603 		 */
7604 		if (cfs_rq_is_decayed(cfs_rq))
7605 			list_del_leaf_cfs_rq(cfs_rq);
7606 
7607 		/* Don't need periodic decay once load/util_avg are null */
7608 		if (cfs_rq_has_blocked(cfs_rq))
7609 			done = false;
7610 	}
7611 
7612 	curr_class = rq->curr->sched_class;
7613 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7614 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
7615 	update_irq_load_avg(rq, 0);
7616 	/* Don't need periodic decay once load/util_avg are null */
7617 	if (others_have_blocked(rq))
7618 		done = false;
7619 
7620 	update_blocked_load_status(rq, !done);
7621 	rq_unlock_irqrestore(rq, &rf);
7622 }
7623 
7624 /*
7625  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7626  * This needs to be done in a top-down fashion because the load of a child
7627  * group is a fraction of its parents load.
7628  */
7629 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7630 {
7631 	struct rq *rq = rq_of(cfs_rq);
7632 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7633 	unsigned long now = jiffies;
7634 	unsigned long load;
7635 
7636 	if (cfs_rq->last_h_load_update == now)
7637 		return;
7638 
7639 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
7640 	for_each_sched_entity(se) {
7641 		cfs_rq = cfs_rq_of(se);
7642 		WRITE_ONCE(cfs_rq->h_load_next, se);
7643 		if (cfs_rq->last_h_load_update == now)
7644 			break;
7645 	}
7646 
7647 	if (!se) {
7648 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7649 		cfs_rq->last_h_load_update = now;
7650 	}
7651 
7652 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7653 		load = cfs_rq->h_load;
7654 		load = div64_ul(load * se->avg.load_avg,
7655 			cfs_rq_load_avg(cfs_rq) + 1);
7656 		cfs_rq = group_cfs_rq(se);
7657 		cfs_rq->h_load = load;
7658 		cfs_rq->last_h_load_update = now;
7659 	}
7660 }
7661 
7662 static unsigned long task_h_load(struct task_struct *p)
7663 {
7664 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7665 
7666 	update_cfs_rq_h_load(cfs_rq);
7667 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7668 			cfs_rq_load_avg(cfs_rq) + 1);
7669 }
7670 #else
7671 static inline void update_blocked_averages(int cpu)
7672 {
7673 	struct rq *rq = cpu_rq(cpu);
7674 	struct cfs_rq *cfs_rq = &rq->cfs;
7675 	const struct sched_class *curr_class;
7676 	struct rq_flags rf;
7677 
7678 	rq_lock_irqsave(rq, &rf);
7679 	update_rq_clock(rq);
7680 	update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7681 
7682 	curr_class = rq->curr->sched_class;
7683 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7684 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
7685 	update_irq_load_avg(rq, 0);
7686 	update_blocked_load_status(rq, cfs_rq_has_blocked(cfs_rq) || others_have_blocked(rq));
7687 	rq_unlock_irqrestore(rq, &rf);
7688 }
7689 
7690 static unsigned long task_h_load(struct task_struct *p)
7691 {
7692 	return p->se.avg.load_avg;
7693 }
7694 #endif
7695 
7696 /********** Helpers for find_busiest_group ************************/
7697 
7698 /*
7699  * sg_lb_stats - stats of a sched_group required for load_balancing
7700  */
7701 struct sg_lb_stats {
7702 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7703 	unsigned long group_load; /* Total load over the CPUs of the group */
7704 	unsigned long load_per_task;
7705 	unsigned long group_capacity;
7706 	unsigned long group_util; /* Total utilization of the group */
7707 	unsigned int sum_nr_running; /* Nr tasks running in the group */
7708 	unsigned int idle_cpus;
7709 	unsigned int group_weight;
7710 	enum group_type group_type;
7711 	int group_no_capacity;
7712 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
7713 #ifdef CONFIG_NUMA_BALANCING
7714 	unsigned int nr_numa_running;
7715 	unsigned int nr_preferred_running;
7716 #endif
7717 };
7718 
7719 /*
7720  * sd_lb_stats - Structure to store the statistics of a sched_domain
7721  *		 during load balancing.
7722  */
7723 struct sd_lb_stats {
7724 	struct sched_group *busiest;	/* Busiest group in this sd */
7725 	struct sched_group *local;	/* Local group in this sd */
7726 	unsigned long total_running;
7727 	unsigned long total_load;	/* Total load of all groups in sd */
7728 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7729 	unsigned long avg_load;	/* Average load across all groups in sd */
7730 
7731 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7732 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7733 };
7734 
7735 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7736 {
7737 	/*
7738 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7739 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7740 	 * We must however clear busiest_stat::avg_load because
7741 	 * update_sd_pick_busiest() reads this before assignment.
7742 	 */
7743 	*sds = (struct sd_lb_stats){
7744 		.busiest = NULL,
7745 		.local = NULL,
7746 		.total_running = 0UL,
7747 		.total_load = 0UL,
7748 		.total_capacity = 0UL,
7749 		.busiest_stat = {
7750 			.avg_load = 0UL,
7751 			.sum_nr_running = 0,
7752 			.group_type = group_other,
7753 		},
7754 	};
7755 }
7756 
7757 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7758 {
7759 	struct rq *rq = cpu_rq(cpu);
7760 	unsigned long max = arch_scale_cpu_capacity(cpu);
7761 	unsigned long used, free;
7762 	unsigned long irq;
7763 
7764 	irq = cpu_util_irq(rq);
7765 
7766 	if (unlikely(irq >= max))
7767 		return 1;
7768 
7769 	used = READ_ONCE(rq->avg_rt.util_avg);
7770 	used += READ_ONCE(rq->avg_dl.util_avg);
7771 
7772 	if (unlikely(used >= max))
7773 		return 1;
7774 
7775 	free = max - used;
7776 
7777 	return scale_irq_capacity(free, irq, max);
7778 }
7779 
7780 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7781 {
7782 	unsigned long capacity = scale_rt_capacity(sd, cpu);
7783 	struct sched_group *sdg = sd->groups;
7784 
7785 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
7786 
7787 	if (!capacity)
7788 		capacity = 1;
7789 
7790 	cpu_rq(cpu)->cpu_capacity = capacity;
7791 	sdg->sgc->capacity = capacity;
7792 	sdg->sgc->min_capacity = capacity;
7793 	sdg->sgc->max_capacity = capacity;
7794 }
7795 
7796 void update_group_capacity(struct sched_domain *sd, int cpu)
7797 {
7798 	struct sched_domain *child = sd->child;
7799 	struct sched_group *group, *sdg = sd->groups;
7800 	unsigned long capacity, min_capacity, max_capacity;
7801 	unsigned long interval;
7802 
7803 	interval = msecs_to_jiffies(sd->balance_interval);
7804 	interval = clamp(interval, 1UL, max_load_balance_interval);
7805 	sdg->sgc->next_update = jiffies + interval;
7806 
7807 	if (!child) {
7808 		update_cpu_capacity(sd, cpu);
7809 		return;
7810 	}
7811 
7812 	capacity = 0;
7813 	min_capacity = ULONG_MAX;
7814 	max_capacity = 0;
7815 
7816 	if (child->flags & SD_OVERLAP) {
7817 		/*
7818 		 * SD_OVERLAP domains cannot assume that child groups
7819 		 * span the current group.
7820 		 */
7821 
7822 		for_each_cpu(cpu, sched_group_span(sdg)) {
7823 			struct sched_group_capacity *sgc;
7824 			struct rq *rq = cpu_rq(cpu);
7825 
7826 			/*
7827 			 * build_sched_domains() -> init_sched_groups_capacity()
7828 			 * gets here before we've attached the domains to the
7829 			 * runqueues.
7830 			 *
7831 			 * Use capacity_of(), which is set irrespective of domains
7832 			 * in update_cpu_capacity().
7833 			 *
7834 			 * This avoids capacity from being 0 and
7835 			 * causing divide-by-zero issues on boot.
7836 			 */
7837 			if (unlikely(!rq->sd)) {
7838 				capacity += capacity_of(cpu);
7839 			} else {
7840 				sgc = rq->sd->groups->sgc;
7841 				capacity += sgc->capacity;
7842 			}
7843 
7844 			min_capacity = min(capacity, min_capacity);
7845 			max_capacity = max(capacity, max_capacity);
7846 		}
7847 	} else  {
7848 		/*
7849 		 * !SD_OVERLAP domains can assume that child groups
7850 		 * span the current group.
7851 		 */
7852 
7853 		group = child->groups;
7854 		do {
7855 			struct sched_group_capacity *sgc = group->sgc;
7856 
7857 			capacity += sgc->capacity;
7858 			min_capacity = min(sgc->min_capacity, min_capacity);
7859 			max_capacity = max(sgc->max_capacity, max_capacity);
7860 			group = group->next;
7861 		} while (group != child->groups);
7862 	}
7863 
7864 	sdg->sgc->capacity = capacity;
7865 	sdg->sgc->min_capacity = min_capacity;
7866 	sdg->sgc->max_capacity = max_capacity;
7867 }
7868 
7869 /*
7870  * Check whether the capacity of the rq has been noticeably reduced by side
7871  * activity. The imbalance_pct is used for the threshold.
7872  * Return true is the capacity is reduced
7873  */
7874 static inline int
7875 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7876 {
7877 	return ((rq->cpu_capacity * sd->imbalance_pct) <
7878 				(rq->cpu_capacity_orig * 100));
7879 }
7880 
7881 /*
7882  * Check whether a rq has a misfit task and if it looks like we can actually
7883  * help that task: we can migrate the task to a CPU of higher capacity, or
7884  * the task's current CPU is heavily pressured.
7885  */
7886 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
7887 {
7888 	return rq->misfit_task_load &&
7889 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
7890 		 check_cpu_capacity(rq, sd));
7891 }
7892 
7893 /*
7894  * Group imbalance indicates (and tries to solve) the problem where balancing
7895  * groups is inadequate due to ->cpus_ptr constraints.
7896  *
7897  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7898  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7899  * Something like:
7900  *
7901  *	{ 0 1 2 3 } { 4 5 6 7 }
7902  *	        *     * * *
7903  *
7904  * If we were to balance group-wise we'd place two tasks in the first group and
7905  * two tasks in the second group. Clearly this is undesired as it will overload
7906  * cpu 3 and leave one of the CPUs in the second group unused.
7907  *
7908  * The current solution to this issue is detecting the skew in the first group
7909  * by noticing the lower domain failed to reach balance and had difficulty
7910  * moving tasks due to affinity constraints.
7911  *
7912  * When this is so detected; this group becomes a candidate for busiest; see
7913  * update_sd_pick_busiest(). And calculate_imbalance() and
7914  * find_busiest_group() avoid some of the usual balance conditions to allow it
7915  * to create an effective group imbalance.
7916  *
7917  * This is a somewhat tricky proposition since the next run might not find the
7918  * group imbalance and decide the groups need to be balanced again. A most
7919  * subtle and fragile situation.
7920  */
7921 
7922 static inline int sg_imbalanced(struct sched_group *group)
7923 {
7924 	return group->sgc->imbalance;
7925 }
7926 
7927 /*
7928  * group_has_capacity returns true if the group has spare capacity that could
7929  * be used by some tasks.
7930  * We consider that a group has spare capacity if the  * number of task is
7931  * smaller than the number of CPUs or if the utilization is lower than the
7932  * available capacity for CFS tasks.
7933  * For the latter, we use a threshold to stabilize the state, to take into
7934  * account the variance of the tasks' load and to return true if the available
7935  * capacity in meaningful for the load balancer.
7936  * As an example, an available capacity of 1% can appear but it doesn't make
7937  * any benefit for the load balance.
7938  */
7939 static inline bool
7940 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7941 {
7942 	if (sgs->sum_nr_running < sgs->group_weight)
7943 		return true;
7944 
7945 	if ((sgs->group_capacity * 100) >
7946 			(sgs->group_util * env->sd->imbalance_pct))
7947 		return true;
7948 
7949 	return false;
7950 }
7951 
7952 /*
7953  *  group_is_overloaded returns true if the group has more tasks than it can
7954  *  handle.
7955  *  group_is_overloaded is not equals to !group_has_capacity because a group
7956  *  with the exact right number of tasks, has no more spare capacity but is not
7957  *  overloaded so both group_has_capacity and group_is_overloaded return
7958  *  false.
7959  */
7960 static inline bool
7961 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7962 {
7963 	if (sgs->sum_nr_running <= sgs->group_weight)
7964 		return false;
7965 
7966 	if ((sgs->group_capacity * 100) <
7967 			(sgs->group_util * env->sd->imbalance_pct))
7968 		return true;
7969 
7970 	return false;
7971 }
7972 
7973 /*
7974  * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
7975  * per-CPU capacity than sched_group ref.
7976  */
7977 static inline bool
7978 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7979 {
7980 	return sg->sgc->min_capacity * capacity_margin <
7981 						ref->sgc->min_capacity * 1024;
7982 }
7983 
7984 /*
7985  * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
7986  * per-CPU capacity_orig than sched_group ref.
7987  */
7988 static inline bool
7989 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7990 {
7991 	return sg->sgc->max_capacity * capacity_margin <
7992 						ref->sgc->max_capacity * 1024;
7993 }
7994 
7995 static inline enum
7996 group_type group_classify(struct sched_group *group,
7997 			  struct sg_lb_stats *sgs)
7998 {
7999 	if (sgs->group_no_capacity)
8000 		return group_overloaded;
8001 
8002 	if (sg_imbalanced(group))
8003 		return group_imbalanced;
8004 
8005 	if (sgs->group_misfit_task_load)
8006 		return group_misfit_task;
8007 
8008 	return group_other;
8009 }
8010 
8011 static bool update_nohz_stats(struct rq *rq, bool force)
8012 {
8013 #ifdef CONFIG_NO_HZ_COMMON
8014 	unsigned int cpu = rq->cpu;
8015 
8016 	if (!rq->has_blocked_load)
8017 		return false;
8018 
8019 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8020 		return false;
8021 
8022 	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8023 		return true;
8024 
8025 	update_blocked_averages(cpu);
8026 
8027 	return rq->has_blocked_load;
8028 #else
8029 	return false;
8030 #endif
8031 }
8032 
8033 /**
8034  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8035  * @env: The load balancing environment.
8036  * @group: sched_group whose statistics are to be updated.
8037  * @sgs: variable to hold the statistics for this group.
8038  * @sg_status: Holds flag indicating the status of the sched_group
8039  */
8040 static inline void update_sg_lb_stats(struct lb_env *env,
8041 				      struct sched_group *group,
8042 				      struct sg_lb_stats *sgs,
8043 				      int *sg_status)
8044 {
8045 	int i, nr_running;
8046 
8047 	memset(sgs, 0, sizeof(*sgs));
8048 
8049 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8050 		struct rq *rq = cpu_rq(i);
8051 
8052 		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8053 			env->flags |= LBF_NOHZ_AGAIN;
8054 
8055 		sgs->group_load += cpu_runnable_load(rq);
8056 		sgs->group_util += cpu_util(i);
8057 		sgs->sum_nr_running += rq->cfs.h_nr_running;
8058 
8059 		nr_running = rq->nr_running;
8060 		if (nr_running > 1)
8061 			*sg_status |= SG_OVERLOAD;
8062 
8063 		if (cpu_overutilized(i))
8064 			*sg_status |= SG_OVERUTILIZED;
8065 
8066 #ifdef CONFIG_NUMA_BALANCING
8067 		sgs->nr_numa_running += rq->nr_numa_running;
8068 		sgs->nr_preferred_running += rq->nr_preferred_running;
8069 #endif
8070 		/*
8071 		 * No need to call idle_cpu() if nr_running is not 0
8072 		 */
8073 		if (!nr_running && idle_cpu(i))
8074 			sgs->idle_cpus++;
8075 
8076 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8077 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8078 			sgs->group_misfit_task_load = rq->misfit_task_load;
8079 			*sg_status |= SG_OVERLOAD;
8080 		}
8081 	}
8082 
8083 	/* Adjust by relative CPU capacity of the group */
8084 	sgs->group_capacity = group->sgc->capacity;
8085 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
8086 
8087 	if (sgs->sum_nr_running)
8088 		sgs->load_per_task = sgs->group_load / sgs->sum_nr_running;
8089 
8090 	sgs->group_weight = group->group_weight;
8091 
8092 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
8093 	sgs->group_type = group_classify(group, sgs);
8094 }
8095 
8096 /**
8097  * update_sd_pick_busiest - return 1 on busiest group
8098  * @env: The load balancing environment.
8099  * @sds: sched_domain statistics
8100  * @sg: sched_group candidate to be checked for being the busiest
8101  * @sgs: sched_group statistics
8102  *
8103  * Determine if @sg is a busier group than the previously selected
8104  * busiest group.
8105  *
8106  * Return: %true if @sg is a busier group than the previously selected
8107  * busiest group. %false otherwise.
8108  */
8109 static bool update_sd_pick_busiest(struct lb_env *env,
8110 				   struct sd_lb_stats *sds,
8111 				   struct sched_group *sg,
8112 				   struct sg_lb_stats *sgs)
8113 {
8114 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8115 
8116 	/*
8117 	 * Don't try to pull misfit tasks we can't help.
8118 	 * We can use max_capacity here as reduction in capacity on some
8119 	 * CPUs in the group should either be possible to resolve
8120 	 * internally or be covered by avg_load imbalance (eventually).
8121 	 */
8122 	if (sgs->group_type == group_misfit_task &&
8123 	    (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8124 	     !group_has_capacity(env, &sds->local_stat)))
8125 		return false;
8126 
8127 	if (sgs->group_type > busiest->group_type)
8128 		return true;
8129 
8130 	if (sgs->group_type < busiest->group_type)
8131 		return false;
8132 
8133 	if (sgs->avg_load <= busiest->avg_load)
8134 		return false;
8135 
8136 	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8137 		goto asym_packing;
8138 
8139 	/*
8140 	 * Candidate sg has no more than one task per CPU and
8141 	 * has higher per-CPU capacity. Migrating tasks to less
8142 	 * capable CPUs may harm throughput. Maximize throughput,
8143 	 * power/energy consequences are not considered.
8144 	 */
8145 	if (sgs->sum_nr_running <= sgs->group_weight &&
8146 	    group_smaller_min_cpu_capacity(sds->local, sg))
8147 		return false;
8148 
8149 	/*
8150 	 * If we have more than one misfit sg go with the biggest misfit.
8151 	 */
8152 	if (sgs->group_type == group_misfit_task &&
8153 	    sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8154 		return false;
8155 
8156 asym_packing:
8157 	/* This is the busiest node in its class. */
8158 	if (!(env->sd->flags & SD_ASYM_PACKING))
8159 		return true;
8160 
8161 	/* No ASYM_PACKING if target CPU is already busy */
8162 	if (env->idle == CPU_NOT_IDLE)
8163 		return true;
8164 	/*
8165 	 * ASYM_PACKING needs to move all the work to the highest
8166 	 * prority CPUs in the group, therefore mark all groups
8167 	 * of lower priority than ourself as busy.
8168 	 */
8169 	if (sgs->sum_nr_running &&
8170 	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
8171 		if (!sds->busiest)
8172 			return true;
8173 
8174 		/* Prefer to move from lowest priority CPU's work */
8175 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8176 				      sg->asym_prefer_cpu))
8177 			return true;
8178 	}
8179 
8180 	return false;
8181 }
8182 
8183 #ifdef CONFIG_NUMA_BALANCING
8184 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8185 {
8186 	if (sgs->sum_nr_running > sgs->nr_numa_running)
8187 		return regular;
8188 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
8189 		return remote;
8190 	return all;
8191 }
8192 
8193 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8194 {
8195 	if (rq->nr_running > rq->nr_numa_running)
8196 		return regular;
8197 	if (rq->nr_running > rq->nr_preferred_running)
8198 		return remote;
8199 	return all;
8200 }
8201 #else
8202 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8203 {
8204 	return all;
8205 }
8206 
8207 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8208 {
8209 	return regular;
8210 }
8211 #endif /* CONFIG_NUMA_BALANCING */
8212 
8213 /**
8214  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8215  * @env: The load balancing environment.
8216  * @sds: variable to hold the statistics for this sched_domain.
8217  */
8218 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8219 {
8220 	struct sched_domain *child = env->sd->child;
8221 	struct sched_group *sg = env->sd->groups;
8222 	struct sg_lb_stats *local = &sds->local_stat;
8223 	struct sg_lb_stats tmp_sgs;
8224 	bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8225 	int sg_status = 0;
8226 
8227 #ifdef CONFIG_NO_HZ_COMMON
8228 	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8229 		env->flags |= LBF_NOHZ_STATS;
8230 #endif
8231 
8232 	do {
8233 		struct sg_lb_stats *sgs = &tmp_sgs;
8234 		int local_group;
8235 
8236 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8237 		if (local_group) {
8238 			sds->local = sg;
8239 			sgs = local;
8240 
8241 			if (env->idle != CPU_NEWLY_IDLE ||
8242 			    time_after_eq(jiffies, sg->sgc->next_update))
8243 				update_group_capacity(env->sd, env->dst_cpu);
8244 		}
8245 
8246 		update_sg_lb_stats(env, sg, sgs, &sg_status);
8247 
8248 		if (local_group)
8249 			goto next_group;
8250 
8251 		/*
8252 		 * In case the child domain prefers tasks go to siblings
8253 		 * first, lower the sg capacity so that we'll try
8254 		 * and move all the excess tasks away. We lower the capacity
8255 		 * of a group only if the local group has the capacity to fit
8256 		 * these excess tasks. The extra check prevents the case where
8257 		 * you always pull from the heaviest group when it is already
8258 		 * under-utilized (possible with a large weight task outweighs
8259 		 * the tasks on the system).
8260 		 */
8261 		if (prefer_sibling && sds->local &&
8262 		    group_has_capacity(env, local) &&
8263 		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8264 			sgs->group_no_capacity = 1;
8265 			sgs->group_type = group_classify(sg, sgs);
8266 		}
8267 
8268 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8269 			sds->busiest = sg;
8270 			sds->busiest_stat = *sgs;
8271 		}
8272 
8273 next_group:
8274 		/* Now, start updating sd_lb_stats */
8275 		sds->total_running += sgs->sum_nr_running;
8276 		sds->total_load += sgs->group_load;
8277 		sds->total_capacity += sgs->group_capacity;
8278 
8279 		sg = sg->next;
8280 	} while (sg != env->sd->groups);
8281 
8282 #ifdef CONFIG_NO_HZ_COMMON
8283 	if ((env->flags & LBF_NOHZ_AGAIN) &&
8284 	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8285 
8286 		WRITE_ONCE(nohz.next_blocked,
8287 			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8288 	}
8289 #endif
8290 
8291 	if (env->sd->flags & SD_NUMA)
8292 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8293 
8294 	if (!env->sd->parent) {
8295 		struct root_domain *rd = env->dst_rq->rd;
8296 
8297 		/* update overload indicator if we are at root domain */
8298 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8299 
8300 		/* Update over-utilization (tipping point, U >= 0) indicator */
8301 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8302 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
8303 	} else if (sg_status & SG_OVERUTILIZED) {
8304 		struct root_domain *rd = env->dst_rq->rd;
8305 
8306 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8307 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
8308 	}
8309 }
8310 
8311 /**
8312  * check_asym_packing - Check to see if the group is packed into the
8313  *			sched domain.
8314  *
8315  * This is primarily intended to used at the sibling level.  Some
8316  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
8317  * case of POWER7, it can move to lower SMT modes only when higher
8318  * threads are idle.  When in lower SMT modes, the threads will
8319  * perform better since they share less core resources.  Hence when we
8320  * have idle threads, we want them to be the higher ones.
8321  *
8322  * This packing function is run on idle threads.  It checks to see if
8323  * the busiest CPU in this domain (core in the P7 case) has a higher
8324  * CPU number than the packing function is being run on.  Here we are
8325  * assuming lower CPU number will be equivalent to lower a SMT thread
8326  * number.
8327  *
8328  * Return: 1 when packing is required and a task should be moved to
8329  * this CPU.  The amount of the imbalance is returned in env->imbalance.
8330  *
8331  * @env: The load balancing environment.
8332  * @sds: Statistics of the sched_domain which is to be packed
8333  */
8334 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8335 {
8336 	int busiest_cpu;
8337 
8338 	if (!(env->sd->flags & SD_ASYM_PACKING))
8339 		return 0;
8340 
8341 	if (env->idle == CPU_NOT_IDLE)
8342 		return 0;
8343 
8344 	if (!sds->busiest)
8345 		return 0;
8346 
8347 	busiest_cpu = sds->busiest->asym_prefer_cpu;
8348 	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8349 		return 0;
8350 
8351 	env->imbalance = sds->busiest_stat.group_load;
8352 
8353 	return 1;
8354 }
8355 
8356 /**
8357  * fix_small_imbalance - Calculate the minor imbalance that exists
8358  *			amongst the groups of a sched_domain, during
8359  *			load balancing.
8360  * @env: The load balancing environment.
8361  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8362  */
8363 static inline
8364 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8365 {
8366 	unsigned long tmp, capa_now = 0, capa_move = 0;
8367 	unsigned int imbn = 2;
8368 	unsigned long scaled_busy_load_per_task;
8369 	struct sg_lb_stats *local, *busiest;
8370 
8371 	local = &sds->local_stat;
8372 	busiest = &sds->busiest_stat;
8373 
8374 	if (!local->sum_nr_running)
8375 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8376 	else if (busiest->load_per_task > local->load_per_task)
8377 		imbn = 1;
8378 
8379 	scaled_busy_load_per_task =
8380 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8381 		busiest->group_capacity;
8382 
8383 	if (busiest->avg_load + scaled_busy_load_per_task >=
8384 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
8385 		env->imbalance = busiest->load_per_task;
8386 		return;
8387 	}
8388 
8389 	/*
8390 	 * OK, we don't have enough imbalance to justify moving tasks,
8391 	 * however we may be able to increase total CPU capacity used by
8392 	 * moving them.
8393 	 */
8394 
8395 	capa_now += busiest->group_capacity *
8396 			min(busiest->load_per_task, busiest->avg_load);
8397 	capa_now += local->group_capacity *
8398 			min(local->load_per_task, local->avg_load);
8399 	capa_now /= SCHED_CAPACITY_SCALE;
8400 
8401 	/* Amount of load we'd subtract */
8402 	if (busiest->avg_load > scaled_busy_load_per_task) {
8403 		capa_move += busiest->group_capacity *
8404 			    min(busiest->load_per_task,
8405 				busiest->avg_load - scaled_busy_load_per_task);
8406 	}
8407 
8408 	/* Amount of load we'd add */
8409 	if (busiest->avg_load * busiest->group_capacity <
8410 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8411 		tmp = (busiest->avg_load * busiest->group_capacity) /
8412 		      local->group_capacity;
8413 	} else {
8414 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8415 		      local->group_capacity;
8416 	}
8417 	capa_move += local->group_capacity *
8418 		    min(local->load_per_task, local->avg_load + tmp);
8419 	capa_move /= SCHED_CAPACITY_SCALE;
8420 
8421 	/* Move if we gain throughput */
8422 	if (capa_move > capa_now)
8423 		env->imbalance = busiest->load_per_task;
8424 }
8425 
8426 /**
8427  * calculate_imbalance - Calculate the amount of imbalance present within the
8428  *			 groups of a given sched_domain during load balance.
8429  * @env: load balance environment
8430  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8431  */
8432 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8433 {
8434 	unsigned long max_pull, load_above_capacity = ~0UL;
8435 	struct sg_lb_stats *local, *busiest;
8436 
8437 	local = &sds->local_stat;
8438 	busiest = &sds->busiest_stat;
8439 
8440 	if (busiest->group_type == group_imbalanced) {
8441 		/*
8442 		 * In the group_imb case we cannot rely on group-wide averages
8443 		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8444 		 */
8445 		busiest->load_per_task =
8446 			min(busiest->load_per_task, sds->avg_load);
8447 	}
8448 
8449 	/*
8450 	 * Avg load of busiest sg can be less and avg load of local sg can
8451 	 * be greater than avg load across all sgs of sd because avg load
8452 	 * factors in sg capacity and sgs with smaller group_type are
8453 	 * skipped when updating the busiest sg:
8454 	 */
8455 	if (busiest->group_type != group_misfit_task &&
8456 	    (busiest->avg_load <= sds->avg_load ||
8457 	     local->avg_load >= sds->avg_load)) {
8458 		env->imbalance = 0;
8459 		return fix_small_imbalance(env, sds);
8460 	}
8461 
8462 	/*
8463 	 * If there aren't any idle CPUs, avoid creating some.
8464 	 */
8465 	if (busiest->group_type == group_overloaded &&
8466 	    local->group_type   == group_overloaded) {
8467 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8468 		if (load_above_capacity > busiest->group_capacity) {
8469 			load_above_capacity -= busiest->group_capacity;
8470 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8471 			load_above_capacity /= busiest->group_capacity;
8472 		} else
8473 			load_above_capacity = ~0UL;
8474 	}
8475 
8476 	/*
8477 	 * We're trying to get all the CPUs to the average_load, so we don't
8478 	 * want to push ourselves above the average load, nor do we wish to
8479 	 * reduce the max loaded CPU below the average load. At the same time,
8480 	 * we also don't want to reduce the group load below the group
8481 	 * capacity. Thus we look for the minimum possible imbalance.
8482 	 */
8483 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8484 
8485 	/* How much load to actually move to equalise the imbalance */
8486 	env->imbalance = min(
8487 		max_pull * busiest->group_capacity,
8488 		(sds->avg_load - local->avg_load) * local->group_capacity
8489 	) / SCHED_CAPACITY_SCALE;
8490 
8491 	/* Boost imbalance to allow misfit task to be balanced. */
8492 	if (busiest->group_type == group_misfit_task) {
8493 		env->imbalance = max_t(long, env->imbalance,
8494 				       busiest->group_misfit_task_load);
8495 	}
8496 
8497 	/*
8498 	 * if *imbalance is less than the average load per runnable task
8499 	 * there is no guarantee that any tasks will be moved so we'll have
8500 	 * a think about bumping its value to force at least one task to be
8501 	 * moved
8502 	 */
8503 	if (env->imbalance < busiest->load_per_task)
8504 		return fix_small_imbalance(env, sds);
8505 }
8506 
8507 /******* find_busiest_group() helpers end here *********************/
8508 
8509 /**
8510  * find_busiest_group - Returns the busiest group within the sched_domain
8511  * if there is an imbalance.
8512  *
8513  * Also calculates the amount of runnable load which should be moved
8514  * to restore balance.
8515  *
8516  * @env: The load balancing environment.
8517  *
8518  * Return:	- The busiest group if imbalance exists.
8519  */
8520 static struct sched_group *find_busiest_group(struct lb_env *env)
8521 {
8522 	struct sg_lb_stats *local, *busiest;
8523 	struct sd_lb_stats sds;
8524 
8525 	init_sd_lb_stats(&sds);
8526 
8527 	/*
8528 	 * Compute the various statistics relavent for load balancing at
8529 	 * this level.
8530 	 */
8531 	update_sd_lb_stats(env, &sds);
8532 
8533 	if (sched_energy_enabled()) {
8534 		struct root_domain *rd = env->dst_rq->rd;
8535 
8536 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8537 			goto out_balanced;
8538 	}
8539 
8540 	local = &sds.local_stat;
8541 	busiest = &sds.busiest_stat;
8542 
8543 	/* ASYM feature bypasses nice load balance check */
8544 	if (check_asym_packing(env, &sds))
8545 		return sds.busiest;
8546 
8547 	/* There is no busy sibling group to pull tasks from */
8548 	if (!sds.busiest || busiest->sum_nr_running == 0)
8549 		goto out_balanced;
8550 
8551 	/* XXX broken for overlapping NUMA groups */
8552 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8553 						/ sds.total_capacity;
8554 
8555 	/*
8556 	 * If the busiest group is imbalanced the below checks don't
8557 	 * work because they assume all things are equal, which typically
8558 	 * isn't true due to cpus_ptr constraints and the like.
8559 	 */
8560 	if (busiest->group_type == group_imbalanced)
8561 		goto force_balance;
8562 
8563 	/*
8564 	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8565 	 * capacities from resulting in underutilization due to avg_load.
8566 	 */
8567 	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8568 	    busiest->group_no_capacity)
8569 		goto force_balance;
8570 
8571 	/* Misfit tasks should be dealt with regardless of the avg load */
8572 	if (busiest->group_type == group_misfit_task)
8573 		goto force_balance;
8574 
8575 	/*
8576 	 * If the local group is busier than the selected busiest group
8577 	 * don't try and pull any tasks.
8578 	 */
8579 	if (local->avg_load >= busiest->avg_load)
8580 		goto out_balanced;
8581 
8582 	/*
8583 	 * Don't pull any tasks if this group is already above the domain
8584 	 * average load.
8585 	 */
8586 	if (local->avg_load >= sds.avg_load)
8587 		goto out_balanced;
8588 
8589 	if (env->idle == CPU_IDLE) {
8590 		/*
8591 		 * This CPU is idle. If the busiest group is not overloaded
8592 		 * and there is no imbalance between this and busiest group
8593 		 * wrt idle CPUs, it is balanced. The imbalance becomes
8594 		 * significant if the diff is greater than 1 otherwise we
8595 		 * might end up to just move the imbalance on another group
8596 		 */
8597 		if ((busiest->group_type != group_overloaded) &&
8598 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8599 			goto out_balanced;
8600 	} else {
8601 		/*
8602 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8603 		 * imbalance_pct to be conservative.
8604 		 */
8605 		if (100 * busiest->avg_load <=
8606 				env->sd->imbalance_pct * local->avg_load)
8607 			goto out_balanced;
8608 	}
8609 
8610 force_balance:
8611 	/* Looks like there is an imbalance. Compute it */
8612 	env->src_grp_type = busiest->group_type;
8613 	calculate_imbalance(env, &sds);
8614 	return env->imbalance ? sds.busiest : NULL;
8615 
8616 out_balanced:
8617 	env->imbalance = 0;
8618 	return NULL;
8619 }
8620 
8621 /*
8622  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8623  */
8624 static struct rq *find_busiest_queue(struct lb_env *env,
8625 				     struct sched_group *group)
8626 {
8627 	struct rq *busiest = NULL, *rq;
8628 	unsigned long busiest_load = 0, busiest_capacity = 1;
8629 	int i;
8630 
8631 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8632 		unsigned long capacity, load;
8633 		enum fbq_type rt;
8634 
8635 		rq = cpu_rq(i);
8636 		rt = fbq_classify_rq(rq);
8637 
8638 		/*
8639 		 * We classify groups/runqueues into three groups:
8640 		 *  - regular: there are !numa tasks
8641 		 *  - remote:  there are numa tasks that run on the 'wrong' node
8642 		 *  - all:     there is no distinction
8643 		 *
8644 		 * In order to avoid migrating ideally placed numa tasks,
8645 		 * ignore those when there's better options.
8646 		 *
8647 		 * If we ignore the actual busiest queue to migrate another
8648 		 * task, the next balance pass can still reduce the busiest
8649 		 * queue by moving tasks around inside the node.
8650 		 *
8651 		 * If we cannot move enough load due to this classification
8652 		 * the next pass will adjust the group classification and
8653 		 * allow migration of more tasks.
8654 		 *
8655 		 * Both cases only affect the total convergence complexity.
8656 		 */
8657 		if (rt > env->fbq_type)
8658 			continue;
8659 
8660 		/*
8661 		 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8662 		 * seek the "biggest" misfit task.
8663 		 */
8664 		if (env->src_grp_type == group_misfit_task) {
8665 			if (rq->misfit_task_load > busiest_load) {
8666 				busiest_load = rq->misfit_task_load;
8667 				busiest = rq;
8668 			}
8669 
8670 			continue;
8671 		}
8672 
8673 		capacity = capacity_of(i);
8674 
8675 		/*
8676 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8677 		 * eventually lead to active_balancing high->low capacity.
8678 		 * Higher per-CPU capacity is considered better than balancing
8679 		 * average load.
8680 		 */
8681 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8682 		    capacity_of(env->dst_cpu) < capacity &&
8683 		    rq->nr_running == 1)
8684 			continue;
8685 
8686 		load = cpu_runnable_load(rq);
8687 
8688 		/*
8689 		 * When comparing with imbalance, use cpu_runnable_load()
8690 		 * which is not scaled with the CPU capacity.
8691 		 */
8692 
8693 		if (rq->nr_running == 1 && load > env->imbalance &&
8694 		    !check_cpu_capacity(rq, env->sd))
8695 			continue;
8696 
8697 		/*
8698 		 * For the load comparisons with the other CPU's, consider
8699 		 * the cpu_runnable_load() scaled with the CPU capacity, so
8700 		 * that the load can be moved away from the CPU that is
8701 		 * potentially running at a lower capacity.
8702 		 *
8703 		 * Thus we're looking for max(load_i / capacity_i), crosswise
8704 		 * multiplication to rid ourselves of the division works out
8705 		 * to: load_i * capacity_j > load_j * capacity_i;  where j is
8706 		 * our previous maximum.
8707 		 */
8708 		if (load * busiest_capacity > busiest_load * capacity) {
8709 			busiest_load = load;
8710 			busiest_capacity = capacity;
8711 			busiest = rq;
8712 		}
8713 	}
8714 
8715 	return busiest;
8716 }
8717 
8718 /*
8719  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8720  * so long as it is large enough.
8721  */
8722 #define MAX_PINNED_INTERVAL	512
8723 
8724 static inline bool
8725 asym_active_balance(struct lb_env *env)
8726 {
8727 	/*
8728 	 * ASYM_PACKING needs to force migrate tasks from busy but
8729 	 * lower priority CPUs in order to pack all tasks in the
8730 	 * highest priority CPUs.
8731 	 */
8732 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
8733 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
8734 }
8735 
8736 static inline bool
8737 voluntary_active_balance(struct lb_env *env)
8738 {
8739 	struct sched_domain *sd = env->sd;
8740 
8741 	if (asym_active_balance(env))
8742 		return 1;
8743 
8744 	/*
8745 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8746 	 * It's worth migrating the task if the src_cpu's capacity is reduced
8747 	 * because of other sched_class or IRQs if more capacity stays
8748 	 * available on dst_cpu.
8749 	 */
8750 	if ((env->idle != CPU_NOT_IDLE) &&
8751 	    (env->src_rq->cfs.h_nr_running == 1)) {
8752 		if ((check_cpu_capacity(env->src_rq, sd)) &&
8753 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8754 			return 1;
8755 	}
8756 
8757 	if (env->src_grp_type == group_misfit_task)
8758 		return 1;
8759 
8760 	return 0;
8761 }
8762 
8763 static int need_active_balance(struct lb_env *env)
8764 {
8765 	struct sched_domain *sd = env->sd;
8766 
8767 	if (voluntary_active_balance(env))
8768 		return 1;
8769 
8770 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8771 }
8772 
8773 static int active_load_balance_cpu_stop(void *data);
8774 
8775 static int should_we_balance(struct lb_env *env)
8776 {
8777 	struct sched_group *sg = env->sd->groups;
8778 	int cpu, balance_cpu = -1;
8779 
8780 	/*
8781 	 * Ensure the balancing environment is consistent; can happen
8782 	 * when the softirq triggers 'during' hotplug.
8783 	 */
8784 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8785 		return 0;
8786 
8787 	/*
8788 	 * In the newly idle case, we will allow all the CPUs
8789 	 * to do the newly idle load balance.
8790 	 */
8791 	if (env->idle == CPU_NEWLY_IDLE)
8792 		return 1;
8793 
8794 	/* Try to find first idle CPU */
8795 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8796 		if (!idle_cpu(cpu))
8797 			continue;
8798 
8799 		balance_cpu = cpu;
8800 		break;
8801 	}
8802 
8803 	if (balance_cpu == -1)
8804 		balance_cpu = group_balance_cpu(sg);
8805 
8806 	/*
8807 	 * First idle CPU or the first CPU(busiest) in this sched group
8808 	 * is eligible for doing load balancing at this and above domains.
8809 	 */
8810 	return balance_cpu == env->dst_cpu;
8811 }
8812 
8813 /*
8814  * Check this_cpu to ensure it is balanced within domain. Attempt to move
8815  * tasks if there is an imbalance.
8816  */
8817 static int load_balance(int this_cpu, struct rq *this_rq,
8818 			struct sched_domain *sd, enum cpu_idle_type idle,
8819 			int *continue_balancing)
8820 {
8821 	int ld_moved, cur_ld_moved, active_balance = 0;
8822 	struct sched_domain *sd_parent = sd->parent;
8823 	struct sched_group *group;
8824 	struct rq *busiest;
8825 	struct rq_flags rf;
8826 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8827 
8828 	struct lb_env env = {
8829 		.sd		= sd,
8830 		.dst_cpu	= this_cpu,
8831 		.dst_rq		= this_rq,
8832 		.dst_grpmask    = sched_group_span(sd->groups),
8833 		.idle		= idle,
8834 		.loop_break	= sched_nr_migrate_break,
8835 		.cpus		= cpus,
8836 		.fbq_type	= all,
8837 		.tasks		= LIST_HEAD_INIT(env.tasks),
8838 	};
8839 
8840 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8841 
8842 	schedstat_inc(sd->lb_count[idle]);
8843 
8844 redo:
8845 	if (!should_we_balance(&env)) {
8846 		*continue_balancing = 0;
8847 		goto out_balanced;
8848 	}
8849 
8850 	group = find_busiest_group(&env);
8851 	if (!group) {
8852 		schedstat_inc(sd->lb_nobusyg[idle]);
8853 		goto out_balanced;
8854 	}
8855 
8856 	busiest = find_busiest_queue(&env, group);
8857 	if (!busiest) {
8858 		schedstat_inc(sd->lb_nobusyq[idle]);
8859 		goto out_balanced;
8860 	}
8861 
8862 	BUG_ON(busiest == env.dst_rq);
8863 
8864 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8865 
8866 	env.src_cpu = busiest->cpu;
8867 	env.src_rq = busiest;
8868 
8869 	ld_moved = 0;
8870 	if (busiest->nr_running > 1) {
8871 		/*
8872 		 * Attempt to move tasks. If find_busiest_group has found
8873 		 * an imbalance but busiest->nr_running <= 1, the group is
8874 		 * still unbalanced. ld_moved simply stays zero, so it is
8875 		 * correctly treated as an imbalance.
8876 		 */
8877 		env.flags |= LBF_ALL_PINNED;
8878 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8879 
8880 more_balance:
8881 		rq_lock_irqsave(busiest, &rf);
8882 		update_rq_clock(busiest);
8883 
8884 		/*
8885 		 * cur_ld_moved - load moved in current iteration
8886 		 * ld_moved     - cumulative load moved across iterations
8887 		 */
8888 		cur_ld_moved = detach_tasks(&env);
8889 
8890 		/*
8891 		 * We've detached some tasks from busiest_rq. Every
8892 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8893 		 * unlock busiest->lock, and we are able to be sure
8894 		 * that nobody can manipulate the tasks in parallel.
8895 		 * See task_rq_lock() family for the details.
8896 		 */
8897 
8898 		rq_unlock(busiest, &rf);
8899 
8900 		if (cur_ld_moved) {
8901 			attach_tasks(&env);
8902 			ld_moved += cur_ld_moved;
8903 		}
8904 
8905 		local_irq_restore(rf.flags);
8906 
8907 		if (env.flags & LBF_NEED_BREAK) {
8908 			env.flags &= ~LBF_NEED_BREAK;
8909 			goto more_balance;
8910 		}
8911 
8912 		/*
8913 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8914 		 * us and move them to an alternate dst_cpu in our sched_group
8915 		 * where they can run. The upper limit on how many times we
8916 		 * iterate on same src_cpu is dependent on number of CPUs in our
8917 		 * sched_group.
8918 		 *
8919 		 * This changes load balance semantics a bit on who can move
8920 		 * load to a given_cpu. In addition to the given_cpu itself
8921 		 * (or a ilb_cpu acting on its behalf where given_cpu is
8922 		 * nohz-idle), we now have balance_cpu in a position to move
8923 		 * load to given_cpu. In rare situations, this may cause
8924 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8925 		 * _independently_ and at _same_ time to move some load to
8926 		 * given_cpu) causing exceess load to be moved to given_cpu.
8927 		 * This however should not happen so much in practice and
8928 		 * moreover subsequent load balance cycles should correct the
8929 		 * excess load moved.
8930 		 */
8931 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8932 
8933 			/* Prevent to re-select dst_cpu via env's CPUs */
8934 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
8935 
8936 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8937 			env.dst_cpu	 = env.new_dst_cpu;
8938 			env.flags	&= ~LBF_DST_PINNED;
8939 			env.loop	 = 0;
8940 			env.loop_break	 = sched_nr_migrate_break;
8941 
8942 			/*
8943 			 * Go back to "more_balance" rather than "redo" since we
8944 			 * need to continue with same src_cpu.
8945 			 */
8946 			goto more_balance;
8947 		}
8948 
8949 		/*
8950 		 * We failed to reach balance because of affinity.
8951 		 */
8952 		if (sd_parent) {
8953 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8954 
8955 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8956 				*group_imbalance = 1;
8957 		}
8958 
8959 		/* All tasks on this runqueue were pinned by CPU affinity */
8960 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8961 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
8962 			/*
8963 			 * Attempting to continue load balancing at the current
8964 			 * sched_domain level only makes sense if there are
8965 			 * active CPUs remaining as possible busiest CPUs to
8966 			 * pull load from which are not contained within the
8967 			 * destination group that is receiving any migrated
8968 			 * load.
8969 			 */
8970 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8971 				env.loop = 0;
8972 				env.loop_break = sched_nr_migrate_break;
8973 				goto redo;
8974 			}
8975 			goto out_all_pinned;
8976 		}
8977 	}
8978 
8979 	if (!ld_moved) {
8980 		schedstat_inc(sd->lb_failed[idle]);
8981 		/*
8982 		 * Increment the failure counter only on periodic balance.
8983 		 * We do not want newidle balance, which can be very
8984 		 * frequent, pollute the failure counter causing
8985 		 * excessive cache_hot migrations and active balances.
8986 		 */
8987 		if (idle != CPU_NEWLY_IDLE)
8988 			sd->nr_balance_failed++;
8989 
8990 		if (need_active_balance(&env)) {
8991 			unsigned long flags;
8992 
8993 			raw_spin_lock_irqsave(&busiest->lock, flags);
8994 
8995 			/*
8996 			 * Don't kick the active_load_balance_cpu_stop,
8997 			 * if the curr task on busiest CPU can't be
8998 			 * moved to this_cpu:
8999 			 */
9000 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9001 				raw_spin_unlock_irqrestore(&busiest->lock,
9002 							    flags);
9003 				env.flags |= LBF_ALL_PINNED;
9004 				goto out_one_pinned;
9005 			}
9006 
9007 			/*
9008 			 * ->active_balance synchronizes accesses to
9009 			 * ->active_balance_work.  Once set, it's cleared
9010 			 * only after active load balance is finished.
9011 			 */
9012 			if (!busiest->active_balance) {
9013 				busiest->active_balance = 1;
9014 				busiest->push_cpu = this_cpu;
9015 				active_balance = 1;
9016 			}
9017 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
9018 
9019 			if (active_balance) {
9020 				stop_one_cpu_nowait(cpu_of(busiest),
9021 					active_load_balance_cpu_stop, busiest,
9022 					&busiest->active_balance_work);
9023 			}
9024 
9025 			/* We've kicked active balancing, force task migration. */
9026 			sd->nr_balance_failed = sd->cache_nice_tries+1;
9027 		}
9028 	} else
9029 		sd->nr_balance_failed = 0;
9030 
9031 	if (likely(!active_balance) || voluntary_active_balance(&env)) {
9032 		/* We were unbalanced, so reset the balancing interval */
9033 		sd->balance_interval = sd->min_interval;
9034 	} else {
9035 		/*
9036 		 * If we've begun active balancing, start to back off. This
9037 		 * case may not be covered by the all_pinned logic if there
9038 		 * is only 1 task on the busy runqueue (because we don't call
9039 		 * detach_tasks).
9040 		 */
9041 		if (sd->balance_interval < sd->max_interval)
9042 			sd->balance_interval *= 2;
9043 	}
9044 
9045 	goto out;
9046 
9047 out_balanced:
9048 	/*
9049 	 * We reach balance although we may have faced some affinity
9050 	 * constraints. Clear the imbalance flag if it was set.
9051 	 */
9052 	if (sd_parent) {
9053 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9054 
9055 		if (*group_imbalance)
9056 			*group_imbalance = 0;
9057 	}
9058 
9059 out_all_pinned:
9060 	/*
9061 	 * We reach balance because all tasks are pinned at this level so
9062 	 * we can't migrate them. Let the imbalance flag set so parent level
9063 	 * can try to migrate them.
9064 	 */
9065 	schedstat_inc(sd->lb_balanced[idle]);
9066 
9067 	sd->nr_balance_failed = 0;
9068 
9069 out_one_pinned:
9070 	ld_moved = 0;
9071 
9072 	/*
9073 	 * idle_balance() disregards balance intervals, so we could repeatedly
9074 	 * reach this code, which would lead to balance_interval skyrocketting
9075 	 * in a short amount of time. Skip the balance_interval increase logic
9076 	 * to avoid that.
9077 	 */
9078 	if (env.idle == CPU_NEWLY_IDLE)
9079 		goto out;
9080 
9081 	/* tune up the balancing interval */
9082 	if ((env.flags & LBF_ALL_PINNED &&
9083 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
9084 	    sd->balance_interval < sd->max_interval)
9085 		sd->balance_interval *= 2;
9086 out:
9087 	return ld_moved;
9088 }
9089 
9090 static inline unsigned long
9091 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9092 {
9093 	unsigned long interval = sd->balance_interval;
9094 
9095 	if (cpu_busy)
9096 		interval *= sd->busy_factor;
9097 
9098 	/* scale ms to jiffies */
9099 	interval = msecs_to_jiffies(interval);
9100 	interval = clamp(interval, 1UL, max_load_balance_interval);
9101 
9102 	return interval;
9103 }
9104 
9105 static inline void
9106 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9107 {
9108 	unsigned long interval, next;
9109 
9110 	/* used by idle balance, so cpu_busy = 0 */
9111 	interval = get_sd_balance_interval(sd, 0);
9112 	next = sd->last_balance + interval;
9113 
9114 	if (time_after(*next_balance, next))
9115 		*next_balance = next;
9116 }
9117 
9118 /*
9119  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9120  * running tasks off the busiest CPU onto idle CPUs. It requires at
9121  * least 1 task to be running on each physical CPU where possible, and
9122  * avoids physical / logical imbalances.
9123  */
9124 static int active_load_balance_cpu_stop(void *data)
9125 {
9126 	struct rq *busiest_rq = data;
9127 	int busiest_cpu = cpu_of(busiest_rq);
9128 	int target_cpu = busiest_rq->push_cpu;
9129 	struct rq *target_rq = cpu_rq(target_cpu);
9130 	struct sched_domain *sd;
9131 	struct task_struct *p = NULL;
9132 	struct rq_flags rf;
9133 
9134 	rq_lock_irq(busiest_rq, &rf);
9135 	/*
9136 	 * Between queueing the stop-work and running it is a hole in which
9137 	 * CPUs can become inactive. We should not move tasks from or to
9138 	 * inactive CPUs.
9139 	 */
9140 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9141 		goto out_unlock;
9142 
9143 	/* Make sure the requested CPU hasn't gone down in the meantime: */
9144 	if (unlikely(busiest_cpu != smp_processor_id() ||
9145 		     !busiest_rq->active_balance))
9146 		goto out_unlock;
9147 
9148 	/* Is there any task to move? */
9149 	if (busiest_rq->nr_running <= 1)
9150 		goto out_unlock;
9151 
9152 	/*
9153 	 * This condition is "impossible", if it occurs
9154 	 * we need to fix it. Originally reported by
9155 	 * Bjorn Helgaas on a 128-CPU setup.
9156 	 */
9157 	BUG_ON(busiest_rq == target_rq);
9158 
9159 	/* Search for an sd spanning us and the target CPU. */
9160 	rcu_read_lock();
9161 	for_each_domain(target_cpu, sd) {
9162 		if ((sd->flags & SD_LOAD_BALANCE) &&
9163 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9164 				break;
9165 	}
9166 
9167 	if (likely(sd)) {
9168 		struct lb_env env = {
9169 			.sd		= sd,
9170 			.dst_cpu	= target_cpu,
9171 			.dst_rq		= target_rq,
9172 			.src_cpu	= busiest_rq->cpu,
9173 			.src_rq		= busiest_rq,
9174 			.idle		= CPU_IDLE,
9175 			/*
9176 			 * can_migrate_task() doesn't need to compute new_dst_cpu
9177 			 * for active balancing. Since we have CPU_IDLE, but no
9178 			 * @dst_grpmask we need to make that test go away with lying
9179 			 * about DST_PINNED.
9180 			 */
9181 			.flags		= LBF_DST_PINNED,
9182 		};
9183 
9184 		schedstat_inc(sd->alb_count);
9185 		update_rq_clock(busiest_rq);
9186 
9187 		p = detach_one_task(&env);
9188 		if (p) {
9189 			schedstat_inc(sd->alb_pushed);
9190 			/* Active balancing done, reset the failure counter. */
9191 			sd->nr_balance_failed = 0;
9192 		} else {
9193 			schedstat_inc(sd->alb_failed);
9194 		}
9195 	}
9196 	rcu_read_unlock();
9197 out_unlock:
9198 	busiest_rq->active_balance = 0;
9199 	rq_unlock(busiest_rq, &rf);
9200 
9201 	if (p)
9202 		attach_one_task(target_rq, p);
9203 
9204 	local_irq_enable();
9205 
9206 	return 0;
9207 }
9208 
9209 static DEFINE_SPINLOCK(balancing);
9210 
9211 /*
9212  * Scale the max load_balance interval with the number of CPUs in the system.
9213  * This trades load-balance latency on larger machines for less cross talk.
9214  */
9215 void update_max_interval(void)
9216 {
9217 	max_load_balance_interval = HZ*num_online_cpus()/10;
9218 }
9219 
9220 /*
9221  * It checks each scheduling domain to see if it is due to be balanced,
9222  * and initiates a balancing operation if so.
9223  *
9224  * Balancing parameters are set up in init_sched_domains.
9225  */
9226 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9227 {
9228 	int continue_balancing = 1;
9229 	int cpu = rq->cpu;
9230 	unsigned long interval;
9231 	struct sched_domain *sd;
9232 	/* Earliest time when we have to do rebalance again */
9233 	unsigned long next_balance = jiffies + 60*HZ;
9234 	int update_next_balance = 0;
9235 	int need_serialize, need_decay = 0;
9236 	u64 max_cost = 0;
9237 
9238 	rcu_read_lock();
9239 	for_each_domain(cpu, sd) {
9240 		/*
9241 		 * Decay the newidle max times here because this is a regular
9242 		 * visit to all the domains. Decay ~1% per second.
9243 		 */
9244 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9245 			sd->max_newidle_lb_cost =
9246 				(sd->max_newidle_lb_cost * 253) / 256;
9247 			sd->next_decay_max_lb_cost = jiffies + HZ;
9248 			need_decay = 1;
9249 		}
9250 		max_cost += sd->max_newidle_lb_cost;
9251 
9252 		if (!(sd->flags & SD_LOAD_BALANCE))
9253 			continue;
9254 
9255 		/*
9256 		 * Stop the load balance at this level. There is another
9257 		 * CPU in our sched group which is doing load balancing more
9258 		 * actively.
9259 		 */
9260 		if (!continue_balancing) {
9261 			if (need_decay)
9262 				continue;
9263 			break;
9264 		}
9265 
9266 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9267 
9268 		need_serialize = sd->flags & SD_SERIALIZE;
9269 		if (need_serialize) {
9270 			if (!spin_trylock(&balancing))
9271 				goto out;
9272 		}
9273 
9274 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
9275 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9276 				/*
9277 				 * The LBF_DST_PINNED logic could have changed
9278 				 * env->dst_cpu, so we can't know our idle
9279 				 * state even if we migrated tasks. Update it.
9280 				 */
9281 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9282 			}
9283 			sd->last_balance = jiffies;
9284 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9285 		}
9286 		if (need_serialize)
9287 			spin_unlock(&balancing);
9288 out:
9289 		if (time_after(next_balance, sd->last_balance + interval)) {
9290 			next_balance = sd->last_balance + interval;
9291 			update_next_balance = 1;
9292 		}
9293 	}
9294 	if (need_decay) {
9295 		/*
9296 		 * Ensure the rq-wide value also decays but keep it at a
9297 		 * reasonable floor to avoid funnies with rq->avg_idle.
9298 		 */
9299 		rq->max_idle_balance_cost =
9300 			max((u64)sysctl_sched_migration_cost, max_cost);
9301 	}
9302 	rcu_read_unlock();
9303 
9304 	/*
9305 	 * next_balance will be updated only when there is a need.
9306 	 * When the cpu is attached to null domain for ex, it will not be
9307 	 * updated.
9308 	 */
9309 	if (likely(update_next_balance)) {
9310 		rq->next_balance = next_balance;
9311 
9312 #ifdef CONFIG_NO_HZ_COMMON
9313 		/*
9314 		 * If this CPU has been elected to perform the nohz idle
9315 		 * balance. Other idle CPUs have already rebalanced with
9316 		 * nohz_idle_balance() and nohz.next_balance has been
9317 		 * updated accordingly. This CPU is now running the idle load
9318 		 * balance for itself and we need to update the
9319 		 * nohz.next_balance accordingly.
9320 		 */
9321 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9322 			nohz.next_balance = rq->next_balance;
9323 #endif
9324 	}
9325 }
9326 
9327 static inline int on_null_domain(struct rq *rq)
9328 {
9329 	return unlikely(!rcu_dereference_sched(rq->sd));
9330 }
9331 
9332 #ifdef CONFIG_NO_HZ_COMMON
9333 /*
9334  * idle load balancing details
9335  * - When one of the busy CPUs notice that there may be an idle rebalancing
9336  *   needed, they will kick the idle load balancer, which then does idle
9337  *   load balancing for all the idle CPUs.
9338  * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9339  *   anywhere yet.
9340  */
9341 
9342 static inline int find_new_ilb(void)
9343 {
9344 	int ilb;
9345 
9346 	for_each_cpu_and(ilb, nohz.idle_cpus_mask,
9347 			      housekeeping_cpumask(HK_FLAG_MISC)) {
9348 		if (idle_cpu(ilb))
9349 			return ilb;
9350 	}
9351 
9352 	return nr_cpu_ids;
9353 }
9354 
9355 /*
9356  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
9357  * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
9358  */
9359 static void kick_ilb(unsigned int flags)
9360 {
9361 	int ilb_cpu;
9362 
9363 	nohz.next_balance++;
9364 
9365 	ilb_cpu = find_new_ilb();
9366 
9367 	if (ilb_cpu >= nr_cpu_ids)
9368 		return;
9369 
9370 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
9371 	if (flags & NOHZ_KICK_MASK)
9372 		return;
9373 
9374 	/*
9375 	 * Use smp_send_reschedule() instead of resched_cpu().
9376 	 * This way we generate a sched IPI on the target CPU which
9377 	 * is idle. And the softirq performing nohz idle load balance
9378 	 * will be run before returning from the IPI.
9379 	 */
9380 	smp_send_reschedule(ilb_cpu);
9381 }
9382 
9383 /*
9384  * Current decision point for kicking the idle load balancer in the presence
9385  * of idle CPUs in the system.
9386  */
9387 static void nohz_balancer_kick(struct rq *rq)
9388 {
9389 	unsigned long now = jiffies;
9390 	struct sched_domain_shared *sds;
9391 	struct sched_domain *sd;
9392 	int nr_busy, i, cpu = rq->cpu;
9393 	unsigned int flags = 0;
9394 
9395 	if (unlikely(rq->idle_balance))
9396 		return;
9397 
9398 	/*
9399 	 * We may be recently in ticked or tickless idle mode. At the first
9400 	 * busy tick after returning from idle, we will update the busy stats.
9401 	 */
9402 	nohz_balance_exit_idle(rq);
9403 
9404 	/*
9405 	 * None are in tickless mode and hence no need for NOHZ idle load
9406 	 * balancing.
9407 	 */
9408 	if (likely(!atomic_read(&nohz.nr_cpus)))
9409 		return;
9410 
9411 	if (READ_ONCE(nohz.has_blocked) &&
9412 	    time_after(now, READ_ONCE(nohz.next_blocked)))
9413 		flags = NOHZ_STATS_KICK;
9414 
9415 	if (time_before(now, nohz.next_balance))
9416 		goto out;
9417 
9418 	if (rq->nr_running >= 2) {
9419 		flags = NOHZ_KICK_MASK;
9420 		goto out;
9421 	}
9422 
9423 	rcu_read_lock();
9424 
9425 	sd = rcu_dereference(rq->sd);
9426 	if (sd) {
9427 		/*
9428 		 * If there's a CFS task and the current CPU has reduced
9429 		 * capacity; kick the ILB to see if there's a better CPU to run
9430 		 * on.
9431 		 */
9432 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
9433 			flags = NOHZ_KICK_MASK;
9434 			goto unlock;
9435 		}
9436 	}
9437 
9438 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
9439 	if (sd) {
9440 		/*
9441 		 * When ASYM_PACKING; see if there's a more preferred CPU
9442 		 * currently idle; in which case, kick the ILB to move tasks
9443 		 * around.
9444 		 */
9445 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
9446 			if (sched_asym_prefer(i, cpu)) {
9447 				flags = NOHZ_KICK_MASK;
9448 				goto unlock;
9449 			}
9450 		}
9451 	}
9452 
9453 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
9454 	if (sd) {
9455 		/*
9456 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
9457 		 * to run the misfit task on.
9458 		 */
9459 		if (check_misfit_status(rq, sd)) {
9460 			flags = NOHZ_KICK_MASK;
9461 			goto unlock;
9462 		}
9463 
9464 		/*
9465 		 * For asymmetric systems, we do not want to nicely balance
9466 		 * cache use, instead we want to embrace asymmetry and only
9467 		 * ensure tasks have enough CPU capacity.
9468 		 *
9469 		 * Skip the LLC logic because it's not relevant in that case.
9470 		 */
9471 		goto unlock;
9472 	}
9473 
9474 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9475 	if (sds) {
9476 		/*
9477 		 * If there is an imbalance between LLC domains (IOW we could
9478 		 * increase the overall cache use), we need some less-loaded LLC
9479 		 * domain to pull some load. Likewise, we may need to spread
9480 		 * load within the current LLC domain (e.g. packed SMT cores but
9481 		 * other CPUs are idle). We can't really know from here how busy
9482 		 * the others are - so just get a nohz balance going if it looks
9483 		 * like this LLC domain has tasks we could move.
9484 		 */
9485 		nr_busy = atomic_read(&sds->nr_busy_cpus);
9486 		if (nr_busy > 1) {
9487 			flags = NOHZ_KICK_MASK;
9488 			goto unlock;
9489 		}
9490 	}
9491 unlock:
9492 	rcu_read_unlock();
9493 out:
9494 	if (flags)
9495 		kick_ilb(flags);
9496 }
9497 
9498 static void set_cpu_sd_state_busy(int cpu)
9499 {
9500 	struct sched_domain *sd;
9501 
9502 	rcu_read_lock();
9503 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9504 
9505 	if (!sd || !sd->nohz_idle)
9506 		goto unlock;
9507 	sd->nohz_idle = 0;
9508 
9509 	atomic_inc(&sd->shared->nr_busy_cpus);
9510 unlock:
9511 	rcu_read_unlock();
9512 }
9513 
9514 void nohz_balance_exit_idle(struct rq *rq)
9515 {
9516 	SCHED_WARN_ON(rq != this_rq());
9517 
9518 	if (likely(!rq->nohz_tick_stopped))
9519 		return;
9520 
9521 	rq->nohz_tick_stopped = 0;
9522 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9523 	atomic_dec(&nohz.nr_cpus);
9524 
9525 	set_cpu_sd_state_busy(rq->cpu);
9526 }
9527 
9528 static void set_cpu_sd_state_idle(int cpu)
9529 {
9530 	struct sched_domain *sd;
9531 
9532 	rcu_read_lock();
9533 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9534 
9535 	if (!sd || sd->nohz_idle)
9536 		goto unlock;
9537 	sd->nohz_idle = 1;
9538 
9539 	atomic_dec(&sd->shared->nr_busy_cpus);
9540 unlock:
9541 	rcu_read_unlock();
9542 }
9543 
9544 /*
9545  * This routine will record that the CPU is going idle with tick stopped.
9546  * This info will be used in performing idle load balancing in the future.
9547  */
9548 void nohz_balance_enter_idle(int cpu)
9549 {
9550 	struct rq *rq = cpu_rq(cpu);
9551 
9552 	SCHED_WARN_ON(cpu != smp_processor_id());
9553 
9554 	/* If this CPU is going down, then nothing needs to be done: */
9555 	if (!cpu_active(cpu))
9556 		return;
9557 
9558 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9559 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9560 		return;
9561 
9562 	/*
9563 	 * Can be set safely without rq->lock held
9564 	 * If a clear happens, it will have evaluated last additions because
9565 	 * rq->lock is held during the check and the clear
9566 	 */
9567 	rq->has_blocked_load = 1;
9568 
9569 	/*
9570 	 * The tick is still stopped but load could have been added in the
9571 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
9572 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9573 	 * of nohz.has_blocked can only happen after checking the new load
9574 	 */
9575 	if (rq->nohz_tick_stopped)
9576 		goto out;
9577 
9578 	/* If we're a completely isolated CPU, we don't play: */
9579 	if (on_null_domain(rq))
9580 		return;
9581 
9582 	rq->nohz_tick_stopped = 1;
9583 
9584 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9585 	atomic_inc(&nohz.nr_cpus);
9586 
9587 	/*
9588 	 * Ensures that if nohz_idle_balance() fails to observe our
9589 	 * @idle_cpus_mask store, it must observe the @has_blocked
9590 	 * store.
9591 	 */
9592 	smp_mb__after_atomic();
9593 
9594 	set_cpu_sd_state_idle(cpu);
9595 
9596 out:
9597 	/*
9598 	 * Each time a cpu enter idle, we assume that it has blocked load and
9599 	 * enable the periodic update of the load of idle cpus
9600 	 */
9601 	WRITE_ONCE(nohz.has_blocked, 1);
9602 }
9603 
9604 /*
9605  * Internal function that runs load balance for all idle cpus. The load balance
9606  * can be a simple update of blocked load or a complete load balance with
9607  * tasks movement depending of flags.
9608  * The function returns false if the loop has stopped before running
9609  * through all idle CPUs.
9610  */
9611 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9612 			       enum cpu_idle_type idle)
9613 {
9614 	/* Earliest time when we have to do rebalance again */
9615 	unsigned long now = jiffies;
9616 	unsigned long next_balance = now + 60*HZ;
9617 	bool has_blocked_load = false;
9618 	int update_next_balance = 0;
9619 	int this_cpu = this_rq->cpu;
9620 	int balance_cpu;
9621 	int ret = false;
9622 	struct rq *rq;
9623 
9624 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9625 
9626 	/*
9627 	 * We assume there will be no idle load after this update and clear
9628 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9629 	 * set the has_blocked flag and trig another update of idle load.
9630 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9631 	 * setting the flag, we are sure to not clear the state and not
9632 	 * check the load of an idle cpu.
9633 	 */
9634 	WRITE_ONCE(nohz.has_blocked, 0);
9635 
9636 	/*
9637 	 * Ensures that if we miss the CPU, we must see the has_blocked
9638 	 * store from nohz_balance_enter_idle().
9639 	 */
9640 	smp_mb();
9641 
9642 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9643 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9644 			continue;
9645 
9646 		/*
9647 		 * If this CPU gets work to do, stop the load balancing
9648 		 * work being done for other CPUs. Next load
9649 		 * balancing owner will pick it up.
9650 		 */
9651 		if (need_resched()) {
9652 			has_blocked_load = true;
9653 			goto abort;
9654 		}
9655 
9656 		rq = cpu_rq(balance_cpu);
9657 
9658 		has_blocked_load |= update_nohz_stats(rq, true);
9659 
9660 		/*
9661 		 * If time for next balance is due,
9662 		 * do the balance.
9663 		 */
9664 		if (time_after_eq(jiffies, rq->next_balance)) {
9665 			struct rq_flags rf;
9666 
9667 			rq_lock_irqsave(rq, &rf);
9668 			update_rq_clock(rq);
9669 			rq_unlock_irqrestore(rq, &rf);
9670 
9671 			if (flags & NOHZ_BALANCE_KICK)
9672 				rebalance_domains(rq, CPU_IDLE);
9673 		}
9674 
9675 		if (time_after(next_balance, rq->next_balance)) {
9676 			next_balance = rq->next_balance;
9677 			update_next_balance = 1;
9678 		}
9679 	}
9680 
9681 	/* Newly idle CPU doesn't need an update */
9682 	if (idle != CPU_NEWLY_IDLE) {
9683 		update_blocked_averages(this_cpu);
9684 		has_blocked_load |= this_rq->has_blocked_load;
9685 	}
9686 
9687 	if (flags & NOHZ_BALANCE_KICK)
9688 		rebalance_domains(this_rq, CPU_IDLE);
9689 
9690 	WRITE_ONCE(nohz.next_blocked,
9691 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9692 
9693 	/* The full idle balance loop has been done */
9694 	ret = true;
9695 
9696 abort:
9697 	/* There is still blocked load, enable periodic update */
9698 	if (has_blocked_load)
9699 		WRITE_ONCE(nohz.has_blocked, 1);
9700 
9701 	/*
9702 	 * next_balance will be updated only when there is a need.
9703 	 * When the CPU is attached to null domain for ex, it will not be
9704 	 * updated.
9705 	 */
9706 	if (likely(update_next_balance))
9707 		nohz.next_balance = next_balance;
9708 
9709 	return ret;
9710 }
9711 
9712 /*
9713  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9714  * rebalancing for all the cpus for whom scheduler ticks are stopped.
9715  */
9716 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9717 {
9718 	int this_cpu = this_rq->cpu;
9719 	unsigned int flags;
9720 
9721 	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9722 		return false;
9723 
9724 	if (idle != CPU_IDLE) {
9725 		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9726 		return false;
9727 	}
9728 
9729 	/* could be _relaxed() */
9730 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9731 	if (!(flags & NOHZ_KICK_MASK))
9732 		return false;
9733 
9734 	_nohz_idle_balance(this_rq, flags, idle);
9735 
9736 	return true;
9737 }
9738 
9739 static void nohz_newidle_balance(struct rq *this_rq)
9740 {
9741 	int this_cpu = this_rq->cpu;
9742 
9743 	/*
9744 	 * This CPU doesn't want to be disturbed by scheduler
9745 	 * housekeeping
9746 	 */
9747 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9748 		return;
9749 
9750 	/* Will wake up very soon. No time for doing anything else*/
9751 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
9752 		return;
9753 
9754 	/* Don't need to update blocked load of idle CPUs*/
9755 	if (!READ_ONCE(nohz.has_blocked) ||
9756 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9757 		return;
9758 
9759 	raw_spin_unlock(&this_rq->lock);
9760 	/*
9761 	 * This CPU is going to be idle and blocked load of idle CPUs
9762 	 * need to be updated. Run the ilb locally as it is a good
9763 	 * candidate for ilb instead of waking up another idle CPU.
9764 	 * Kick an normal ilb if we failed to do the update.
9765 	 */
9766 	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9767 		kick_ilb(NOHZ_STATS_KICK);
9768 	raw_spin_lock(&this_rq->lock);
9769 }
9770 
9771 #else /* !CONFIG_NO_HZ_COMMON */
9772 static inline void nohz_balancer_kick(struct rq *rq) { }
9773 
9774 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9775 {
9776 	return false;
9777 }
9778 
9779 static inline void nohz_newidle_balance(struct rq *this_rq) { }
9780 #endif /* CONFIG_NO_HZ_COMMON */
9781 
9782 /*
9783  * idle_balance is called by schedule() if this_cpu is about to become
9784  * idle. Attempts to pull tasks from other CPUs.
9785  */
9786 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9787 {
9788 	unsigned long next_balance = jiffies + HZ;
9789 	int this_cpu = this_rq->cpu;
9790 	struct sched_domain *sd;
9791 	int pulled_task = 0;
9792 	u64 curr_cost = 0;
9793 
9794 	/*
9795 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
9796 	 * measure the duration of idle_balance() as idle time.
9797 	 */
9798 	this_rq->idle_stamp = rq_clock(this_rq);
9799 
9800 	/*
9801 	 * Do not pull tasks towards !active CPUs...
9802 	 */
9803 	if (!cpu_active(this_cpu))
9804 		return 0;
9805 
9806 	/*
9807 	 * This is OK, because current is on_cpu, which avoids it being picked
9808 	 * for load-balance and preemption/IRQs are still disabled avoiding
9809 	 * further scheduler activity on it and we're being very careful to
9810 	 * re-start the picking loop.
9811 	 */
9812 	rq_unpin_lock(this_rq, rf);
9813 
9814 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
9815 	    !READ_ONCE(this_rq->rd->overload)) {
9816 
9817 		rcu_read_lock();
9818 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
9819 		if (sd)
9820 			update_next_balance(sd, &next_balance);
9821 		rcu_read_unlock();
9822 
9823 		nohz_newidle_balance(this_rq);
9824 
9825 		goto out;
9826 	}
9827 
9828 	raw_spin_unlock(&this_rq->lock);
9829 
9830 	update_blocked_averages(this_cpu);
9831 	rcu_read_lock();
9832 	for_each_domain(this_cpu, sd) {
9833 		int continue_balancing = 1;
9834 		u64 t0, domain_cost;
9835 
9836 		if (!(sd->flags & SD_LOAD_BALANCE))
9837 			continue;
9838 
9839 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9840 			update_next_balance(sd, &next_balance);
9841 			break;
9842 		}
9843 
9844 		if (sd->flags & SD_BALANCE_NEWIDLE) {
9845 			t0 = sched_clock_cpu(this_cpu);
9846 
9847 			pulled_task = load_balance(this_cpu, this_rq,
9848 						   sd, CPU_NEWLY_IDLE,
9849 						   &continue_balancing);
9850 
9851 			domain_cost = sched_clock_cpu(this_cpu) - t0;
9852 			if (domain_cost > sd->max_newidle_lb_cost)
9853 				sd->max_newidle_lb_cost = domain_cost;
9854 
9855 			curr_cost += domain_cost;
9856 		}
9857 
9858 		update_next_balance(sd, &next_balance);
9859 
9860 		/*
9861 		 * Stop searching for tasks to pull if there are
9862 		 * now runnable tasks on this rq.
9863 		 */
9864 		if (pulled_task || this_rq->nr_running > 0)
9865 			break;
9866 	}
9867 	rcu_read_unlock();
9868 
9869 	raw_spin_lock(&this_rq->lock);
9870 
9871 	if (curr_cost > this_rq->max_idle_balance_cost)
9872 		this_rq->max_idle_balance_cost = curr_cost;
9873 
9874 out:
9875 	/*
9876 	 * While browsing the domains, we released the rq lock, a task could
9877 	 * have been enqueued in the meantime. Since we're not going idle,
9878 	 * pretend we pulled a task.
9879 	 */
9880 	if (this_rq->cfs.h_nr_running && !pulled_task)
9881 		pulled_task = 1;
9882 
9883 	/* Move the next balance forward */
9884 	if (time_after(this_rq->next_balance, next_balance))
9885 		this_rq->next_balance = next_balance;
9886 
9887 	/* Is there a task of a high priority class? */
9888 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9889 		pulled_task = -1;
9890 
9891 	if (pulled_task)
9892 		this_rq->idle_stamp = 0;
9893 
9894 	rq_repin_lock(this_rq, rf);
9895 
9896 	return pulled_task;
9897 }
9898 
9899 /*
9900  * run_rebalance_domains is triggered when needed from the scheduler tick.
9901  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9902  */
9903 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9904 {
9905 	struct rq *this_rq = this_rq();
9906 	enum cpu_idle_type idle = this_rq->idle_balance ?
9907 						CPU_IDLE : CPU_NOT_IDLE;
9908 
9909 	/*
9910 	 * If this CPU has a pending nohz_balance_kick, then do the
9911 	 * balancing on behalf of the other idle CPUs whose ticks are
9912 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9913 	 * give the idle CPUs a chance to load balance. Else we may
9914 	 * load balance only within the local sched_domain hierarchy
9915 	 * and abort nohz_idle_balance altogether if we pull some load.
9916 	 */
9917 	if (nohz_idle_balance(this_rq, idle))
9918 		return;
9919 
9920 	/* normal load balance */
9921 	update_blocked_averages(this_rq->cpu);
9922 	rebalance_domains(this_rq, idle);
9923 }
9924 
9925 /*
9926  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9927  */
9928 void trigger_load_balance(struct rq *rq)
9929 {
9930 	/* Don't need to rebalance while attached to NULL domain */
9931 	if (unlikely(on_null_domain(rq)))
9932 		return;
9933 
9934 	if (time_after_eq(jiffies, rq->next_balance))
9935 		raise_softirq(SCHED_SOFTIRQ);
9936 
9937 	nohz_balancer_kick(rq);
9938 }
9939 
9940 static void rq_online_fair(struct rq *rq)
9941 {
9942 	update_sysctl();
9943 
9944 	update_runtime_enabled(rq);
9945 }
9946 
9947 static void rq_offline_fair(struct rq *rq)
9948 {
9949 	update_sysctl();
9950 
9951 	/* Ensure any throttled groups are reachable by pick_next_task */
9952 	unthrottle_offline_cfs_rqs(rq);
9953 }
9954 
9955 #endif /* CONFIG_SMP */
9956 
9957 /*
9958  * scheduler tick hitting a task of our scheduling class.
9959  *
9960  * NOTE: This function can be called remotely by the tick offload that
9961  * goes along full dynticks. Therefore no local assumption can be made
9962  * and everything must be accessed through the @rq and @curr passed in
9963  * parameters.
9964  */
9965 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9966 {
9967 	struct cfs_rq *cfs_rq;
9968 	struct sched_entity *se = &curr->se;
9969 
9970 	for_each_sched_entity(se) {
9971 		cfs_rq = cfs_rq_of(se);
9972 		entity_tick(cfs_rq, se, queued);
9973 	}
9974 
9975 	if (static_branch_unlikely(&sched_numa_balancing))
9976 		task_tick_numa(rq, curr);
9977 
9978 	update_misfit_status(curr, rq);
9979 	update_overutilized_status(task_rq(curr));
9980 }
9981 
9982 /*
9983  * called on fork with the child task as argument from the parent's context
9984  *  - child not yet on the tasklist
9985  *  - preemption disabled
9986  */
9987 static void task_fork_fair(struct task_struct *p)
9988 {
9989 	struct cfs_rq *cfs_rq;
9990 	struct sched_entity *se = &p->se, *curr;
9991 	struct rq *rq = this_rq();
9992 	struct rq_flags rf;
9993 
9994 	rq_lock(rq, &rf);
9995 	update_rq_clock(rq);
9996 
9997 	cfs_rq = task_cfs_rq(current);
9998 	curr = cfs_rq->curr;
9999 	if (curr) {
10000 		update_curr(cfs_rq);
10001 		se->vruntime = curr->vruntime;
10002 	}
10003 	place_entity(cfs_rq, se, 1);
10004 
10005 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10006 		/*
10007 		 * Upon rescheduling, sched_class::put_prev_task() will place
10008 		 * 'current' within the tree based on its new key value.
10009 		 */
10010 		swap(curr->vruntime, se->vruntime);
10011 		resched_curr(rq);
10012 	}
10013 
10014 	se->vruntime -= cfs_rq->min_vruntime;
10015 	rq_unlock(rq, &rf);
10016 }
10017 
10018 /*
10019  * Priority of the task has changed. Check to see if we preempt
10020  * the current task.
10021  */
10022 static void
10023 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10024 {
10025 	if (!task_on_rq_queued(p))
10026 		return;
10027 
10028 	/*
10029 	 * Reschedule if we are currently running on this runqueue and
10030 	 * our priority decreased, or if we are not currently running on
10031 	 * this runqueue and our priority is higher than the current's
10032 	 */
10033 	if (rq->curr == p) {
10034 		if (p->prio > oldprio)
10035 			resched_curr(rq);
10036 	} else
10037 		check_preempt_curr(rq, p, 0);
10038 }
10039 
10040 static inline bool vruntime_normalized(struct task_struct *p)
10041 {
10042 	struct sched_entity *se = &p->se;
10043 
10044 	/*
10045 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10046 	 * the dequeue_entity(.flags=0) will already have normalized the
10047 	 * vruntime.
10048 	 */
10049 	if (p->on_rq)
10050 		return true;
10051 
10052 	/*
10053 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
10054 	 * But there are some cases where it has already been normalized:
10055 	 *
10056 	 * - A forked child which is waiting for being woken up by
10057 	 *   wake_up_new_task().
10058 	 * - A task which has been woken up by try_to_wake_up() and
10059 	 *   waiting for actually being woken up by sched_ttwu_pending().
10060 	 */
10061 	if (!se->sum_exec_runtime ||
10062 	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
10063 		return true;
10064 
10065 	return false;
10066 }
10067 
10068 #ifdef CONFIG_FAIR_GROUP_SCHED
10069 /*
10070  * Propagate the changes of the sched_entity across the tg tree to make it
10071  * visible to the root
10072  */
10073 static void propagate_entity_cfs_rq(struct sched_entity *se)
10074 {
10075 	struct cfs_rq *cfs_rq;
10076 
10077 	/* Start to propagate at parent */
10078 	se = se->parent;
10079 
10080 	for_each_sched_entity(se) {
10081 		cfs_rq = cfs_rq_of(se);
10082 
10083 		if (cfs_rq_throttled(cfs_rq))
10084 			break;
10085 
10086 		update_load_avg(cfs_rq, se, UPDATE_TG);
10087 	}
10088 }
10089 #else
10090 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10091 #endif
10092 
10093 static void detach_entity_cfs_rq(struct sched_entity *se)
10094 {
10095 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10096 
10097 	/* Catch up with the cfs_rq and remove our load when we leave */
10098 	update_load_avg(cfs_rq, se, 0);
10099 	detach_entity_load_avg(cfs_rq, se);
10100 	update_tg_load_avg(cfs_rq, false);
10101 	propagate_entity_cfs_rq(se);
10102 }
10103 
10104 static void attach_entity_cfs_rq(struct sched_entity *se)
10105 {
10106 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10107 
10108 #ifdef CONFIG_FAIR_GROUP_SCHED
10109 	/*
10110 	 * Since the real-depth could have been changed (only FAIR
10111 	 * class maintain depth value), reset depth properly.
10112 	 */
10113 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10114 #endif
10115 
10116 	/* Synchronize entity with its cfs_rq */
10117 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10118 	attach_entity_load_avg(cfs_rq, se, 0);
10119 	update_tg_load_avg(cfs_rq, false);
10120 	propagate_entity_cfs_rq(se);
10121 }
10122 
10123 static void detach_task_cfs_rq(struct task_struct *p)
10124 {
10125 	struct sched_entity *se = &p->se;
10126 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10127 
10128 	if (!vruntime_normalized(p)) {
10129 		/*
10130 		 * Fix up our vruntime so that the current sleep doesn't
10131 		 * cause 'unlimited' sleep bonus.
10132 		 */
10133 		place_entity(cfs_rq, se, 0);
10134 		se->vruntime -= cfs_rq->min_vruntime;
10135 	}
10136 
10137 	detach_entity_cfs_rq(se);
10138 }
10139 
10140 static void attach_task_cfs_rq(struct task_struct *p)
10141 {
10142 	struct sched_entity *se = &p->se;
10143 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10144 
10145 	attach_entity_cfs_rq(se);
10146 
10147 	if (!vruntime_normalized(p))
10148 		se->vruntime += cfs_rq->min_vruntime;
10149 }
10150 
10151 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10152 {
10153 	detach_task_cfs_rq(p);
10154 }
10155 
10156 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10157 {
10158 	attach_task_cfs_rq(p);
10159 
10160 	if (task_on_rq_queued(p)) {
10161 		/*
10162 		 * We were most likely switched from sched_rt, so
10163 		 * kick off the schedule if running, otherwise just see
10164 		 * if we can still preempt the current task.
10165 		 */
10166 		if (rq->curr == p)
10167 			resched_curr(rq);
10168 		else
10169 			check_preempt_curr(rq, p, 0);
10170 	}
10171 }
10172 
10173 /* Account for a task changing its policy or group.
10174  *
10175  * This routine is mostly called to set cfs_rq->curr field when a task
10176  * migrates between groups/classes.
10177  */
10178 static void set_curr_task_fair(struct rq *rq)
10179 {
10180 	struct sched_entity *se = &rq->curr->se;
10181 
10182 	for_each_sched_entity(se) {
10183 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
10184 
10185 		set_next_entity(cfs_rq, se);
10186 		/* ensure bandwidth has been allocated on our new cfs_rq */
10187 		account_cfs_rq_runtime(cfs_rq, 0);
10188 	}
10189 }
10190 
10191 void init_cfs_rq(struct cfs_rq *cfs_rq)
10192 {
10193 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10194 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10195 #ifndef CONFIG_64BIT
10196 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10197 #endif
10198 #ifdef CONFIG_SMP
10199 	raw_spin_lock_init(&cfs_rq->removed.lock);
10200 #endif
10201 }
10202 
10203 #ifdef CONFIG_FAIR_GROUP_SCHED
10204 static void task_set_group_fair(struct task_struct *p)
10205 {
10206 	struct sched_entity *se = &p->se;
10207 
10208 	set_task_rq(p, task_cpu(p));
10209 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10210 }
10211 
10212 static void task_move_group_fair(struct task_struct *p)
10213 {
10214 	detach_task_cfs_rq(p);
10215 	set_task_rq(p, task_cpu(p));
10216 
10217 #ifdef CONFIG_SMP
10218 	/* Tell se's cfs_rq has been changed -- migrated */
10219 	p->se.avg.last_update_time = 0;
10220 #endif
10221 	attach_task_cfs_rq(p);
10222 }
10223 
10224 static void task_change_group_fair(struct task_struct *p, int type)
10225 {
10226 	switch (type) {
10227 	case TASK_SET_GROUP:
10228 		task_set_group_fair(p);
10229 		break;
10230 
10231 	case TASK_MOVE_GROUP:
10232 		task_move_group_fair(p);
10233 		break;
10234 	}
10235 }
10236 
10237 void free_fair_sched_group(struct task_group *tg)
10238 {
10239 	int i;
10240 
10241 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10242 
10243 	for_each_possible_cpu(i) {
10244 		if (tg->cfs_rq)
10245 			kfree(tg->cfs_rq[i]);
10246 		if (tg->se)
10247 			kfree(tg->se[i]);
10248 	}
10249 
10250 	kfree(tg->cfs_rq);
10251 	kfree(tg->se);
10252 }
10253 
10254 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10255 {
10256 	struct sched_entity *se;
10257 	struct cfs_rq *cfs_rq;
10258 	int i;
10259 
10260 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10261 	if (!tg->cfs_rq)
10262 		goto err;
10263 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10264 	if (!tg->se)
10265 		goto err;
10266 
10267 	tg->shares = NICE_0_LOAD;
10268 
10269 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10270 
10271 	for_each_possible_cpu(i) {
10272 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10273 				      GFP_KERNEL, cpu_to_node(i));
10274 		if (!cfs_rq)
10275 			goto err;
10276 
10277 		se = kzalloc_node(sizeof(struct sched_entity),
10278 				  GFP_KERNEL, cpu_to_node(i));
10279 		if (!se)
10280 			goto err_free_rq;
10281 
10282 		init_cfs_rq(cfs_rq);
10283 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10284 		init_entity_runnable_average(se);
10285 	}
10286 
10287 	return 1;
10288 
10289 err_free_rq:
10290 	kfree(cfs_rq);
10291 err:
10292 	return 0;
10293 }
10294 
10295 void online_fair_sched_group(struct task_group *tg)
10296 {
10297 	struct sched_entity *se;
10298 	struct rq *rq;
10299 	int i;
10300 
10301 	for_each_possible_cpu(i) {
10302 		rq = cpu_rq(i);
10303 		se = tg->se[i];
10304 
10305 		raw_spin_lock_irq(&rq->lock);
10306 		update_rq_clock(rq);
10307 		attach_entity_cfs_rq(se);
10308 		sync_throttle(tg, i);
10309 		raw_spin_unlock_irq(&rq->lock);
10310 	}
10311 }
10312 
10313 void unregister_fair_sched_group(struct task_group *tg)
10314 {
10315 	unsigned long flags;
10316 	struct rq *rq;
10317 	int cpu;
10318 
10319 	for_each_possible_cpu(cpu) {
10320 		if (tg->se[cpu])
10321 			remove_entity_load_avg(tg->se[cpu]);
10322 
10323 		/*
10324 		 * Only empty task groups can be destroyed; so we can speculatively
10325 		 * check on_list without danger of it being re-added.
10326 		 */
10327 		if (!tg->cfs_rq[cpu]->on_list)
10328 			continue;
10329 
10330 		rq = cpu_rq(cpu);
10331 
10332 		raw_spin_lock_irqsave(&rq->lock, flags);
10333 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10334 		raw_spin_unlock_irqrestore(&rq->lock, flags);
10335 	}
10336 }
10337 
10338 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10339 			struct sched_entity *se, int cpu,
10340 			struct sched_entity *parent)
10341 {
10342 	struct rq *rq = cpu_rq(cpu);
10343 
10344 	cfs_rq->tg = tg;
10345 	cfs_rq->rq = rq;
10346 	init_cfs_rq_runtime(cfs_rq);
10347 
10348 	tg->cfs_rq[cpu] = cfs_rq;
10349 	tg->se[cpu] = se;
10350 
10351 	/* se could be NULL for root_task_group */
10352 	if (!se)
10353 		return;
10354 
10355 	if (!parent) {
10356 		se->cfs_rq = &rq->cfs;
10357 		se->depth = 0;
10358 	} else {
10359 		se->cfs_rq = parent->my_q;
10360 		se->depth = parent->depth + 1;
10361 	}
10362 
10363 	se->my_q = cfs_rq;
10364 	/* guarantee group entities always have weight */
10365 	update_load_set(&se->load, NICE_0_LOAD);
10366 	se->parent = parent;
10367 }
10368 
10369 static DEFINE_MUTEX(shares_mutex);
10370 
10371 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10372 {
10373 	int i;
10374 
10375 	/*
10376 	 * We can't change the weight of the root cgroup.
10377 	 */
10378 	if (!tg->se[0])
10379 		return -EINVAL;
10380 
10381 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10382 
10383 	mutex_lock(&shares_mutex);
10384 	if (tg->shares == shares)
10385 		goto done;
10386 
10387 	tg->shares = shares;
10388 	for_each_possible_cpu(i) {
10389 		struct rq *rq = cpu_rq(i);
10390 		struct sched_entity *se = tg->se[i];
10391 		struct rq_flags rf;
10392 
10393 		/* Propagate contribution to hierarchy */
10394 		rq_lock_irqsave(rq, &rf);
10395 		update_rq_clock(rq);
10396 		for_each_sched_entity(se) {
10397 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10398 			update_cfs_group(se);
10399 		}
10400 		rq_unlock_irqrestore(rq, &rf);
10401 	}
10402 
10403 done:
10404 	mutex_unlock(&shares_mutex);
10405 	return 0;
10406 }
10407 #else /* CONFIG_FAIR_GROUP_SCHED */
10408 
10409 void free_fair_sched_group(struct task_group *tg) { }
10410 
10411 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10412 {
10413 	return 1;
10414 }
10415 
10416 void online_fair_sched_group(struct task_group *tg) { }
10417 
10418 void unregister_fair_sched_group(struct task_group *tg) { }
10419 
10420 #endif /* CONFIG_FAIR_GROUP_SCHED */
10421 
10422 
10423 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10424 {
10425 	struct sched_entity *se = &task->se;
10426 	unsigned int rr_interval = 0;
10427 
10428 	/*
10429 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10430 	 * idle runqueue:
10431 	 */
10432 	if (rq->cfs.load.weight)
10433 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10434 
10435 	return rr_interval;
10436 }
10437 
10438 /*
10439  * All the scheduling class methods:
10440  */
10441 const struct sched_class fair_sched_class = {
10442 	.next			= &idle_sched_class,
10443 	.enqueue_task		= enqueue_task_fair,
10444 	.dequeue_task		= dequeue_task_fair,
10445 	.yield_task		= yield_task_fair,
10446 	.yield_to_task		= yield_to_task_fair,
10447 
10448 	.check_preempt_curr	= check_preempt_wakeup,
10449 
10450 	.pick_next_task		= pick_next_task_fair,
10451 	.put_prev_task		= put_prev_task_fair,
10452 
10453 #ifdef CONFIG_SMP
10454 	.select_task_rq		= select_task_rq_fair,
10455 	.migrate_task_rq	= migrate_task_rq_fair,
10456 
10457 	.rq_online		= rq_online_fair,
10458 	.rq_offline		= rq_offline_fair,
10459 
10460 	.task_dead		= task_dead_fair,
10461 	.set_cpus_allowed	= set_cpus_allowed_common,
10462 #endif
10463 
10464 	.set_curr_task          = set_curr_task_fair,
10465 	.task_tick		= task_tick_fair,
10466 	.task_fork		= task_fork_fair,
10467 
10468 	.prio_changed		= prio_changed_fair,
10469 	.switched_from		= switched_from_fair,
10470 	.switched_to		= switched_to_fair,
10471 
10472 	.get_rr_interval	= get_rr_interval_fair,
10473 
10474 	.update_curr		= update_curr_fair,
10475 
10476 #ifdef CONFIG_FAIR_GROUP_SCHED
10477 	.task_change_group	= task_change_group_fair,
10478 #endif
10479 
10480 #ifdef CONFIG_UCLAMP_TASK
10481 	.uclamp_enabled		= 1,
10482 #endif
10483 };
10484 
10485 #ifdef CONFIG_SCHED_DEBUG
10486 void print_cfs_stats(struct seq_file *m, int cpu)
10487 {
10488 	struct cfs_rq *cfs_rq, *pos;
10489 
10490 	rcu_read_lock();
10491 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10492 		print_cfs_rq(m, cpu, cfs_rq);
10493 	rcu_read_unlock();
10494 }
10495 
10496 #ifdef CONFIG_NUMA_BALANCING
10497 void show_numa_stats(struct task_struct *p, struct seq_file *m)
10498 {
10499 	int node;
10500 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10501 	struct numa_group *ng;
10502 
10503 	rcu_read_lock();
10504 	ng = rcu_dereference(p->numa_group);
10505 	for_each_online_node(node) {
10506 		if (p->numa_faults) {
10507 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10508 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10509 		}
10510 		if (ng) {
10511 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
10512 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
10513 		}
10514 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10515 	}
10516 	rcu_read_unlock();
10517 }
10518 #endif /* CONFIG_NUMA_BALANCING */
10519 #endif /* CONFIG_SCHED_DEBUG */
10520 
10521 __init void init_sched_fair_class(void)
10522 {
10523 #ifdef CONFIG_SMP
10524 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10525 
10526 #ifdef CONFIG_NO_HZ_COMMON
10527 	nohz.next_balance = jiffies;
10528 	nohz.next_blocked = jiffies;
10529 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10530 #endif
10531 #endif /* SMP */
10532 
10533 }
10534 
10535 /*
10536  * Helper functions to facilitate extracting info from tracepoints.
10537  */
10538 
10539 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
10540 {
10541 #ifdef CONFIG_SMP
10542 	return cfs_rq ? &cfs_rq->avg : NULL;
10543 #else
10544 	return NULL;
10545 #endif
10546 }
10547 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
10548 
10549 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
10550 {
10551 	if (!cfs_rq) {
10552 		if (str)
10553 			strlcpy(str, "(null)", len);
10554 		else
10555 			return NULL;
10556 	}
10557 
10558 	cfs_rq_tg_path(cfs_rq, str, len);
10559 	return str;
10560 }
10561 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
10562 
10563 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
10564 {
10565 	return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
10566 }
10567 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
10568 
10569 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
10570 {
10571 #ifdef CONFIG_SMP
10572 	return rq ? &rq->avg_rt : NULL;
10573 #else
10574 	return NULL;
10575 #endif
10576 }
10577 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
10578 
10579 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
10580 {
10581 #ifdef CONFIG_SMP
10582 	return rq ? &rq->avg_dl : NULL;
10583 #else
10584 	return NULL;
10585 #endif
10586 }
10587 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
10588 
10589 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
10590 {
10591 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
10592 	return rq ? &rq->avg_irq : NULL;
10593 #else
10594 	return NULL;
10595 #endif
10596 }
10597 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
10598 
10599 int sched_trace_rq_cpu(struct rq *rq)
10600 {
10601 	return rq ? cpu_of(rq) : -1;
10602 }
10603 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
10604 
10605 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
10606 {
10607 #ifdef CONFIG_SMP
10608 	return rd ? rd->span : NULL;
10609 #else
10610 	return NULL;
10611 #endif
10612 }
10613 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
10614