xref: /openbmc/linux/kernel/sched/fair.c (revision b4bc93bd76d4da32600795cd323c971f00a2e788)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 
40 #include <linux/cpuidle.h>
41 #include <linux/interrupt.h>
42 #include <linux/mempolicy.h>
43 #include <linux/mutex_api.h>
44 #include <linux/profile.h>
45 #include <linux/psi.h>
46 #include <linux/ratelimit.h>
47 
48 #include <asm/switch_to.h>
49 
50 #include <linux/sched/cond_resched.h>
51 
52 #include "sched.h"
53 #include "stats.h"
54 #include "autogroup.h"
55 
56 /*
57  * Targeted preemption latency for CPU-bound tasks:
58  *
59  * NOTE: this latency value is not the same as the concept of
60  * 'timeslice length' - timeslices in CFS are of variable length
61  * and have no persistent notion like in traditional, time-slice
62  * based scheduling concepts.
63  *
64  * (to see the precise effective timeslice length of your workload,
65  *  run vmstat and monitor the context-switches (cs) field)
66  *
67  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
68  */
69 unsigned int sysctl_sched_latency			= 6000000ULL;
70 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
71 
72 /*
73  * The initial- and re-scaling of tunables is configurable
74  *
75  * Options are:
76  *
77  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
78  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
79  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
80  *
81  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
82  */
83 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
84 
85 /*
86  * Minimal preemption granularity for CPU-bound tasks:
87  *
88  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
89  */
90 unsigned int sysctl_sched_min_granularity			= 750000ULL;
91 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
92 
93 /*
94  * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
95  * Applies only when SCHED_IDLE tasks compete with normal tasks.
96  *
97  * (default: 0.75 msec)
98  */
99 unsigned int sysctl_sched_idle_min_granularity			= 750000ULL;
100 
101 /*
102  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
103  */
104 static unsigned int sched_nr_latency = 8;
105 
106 /*
107  * After fork, child runs first. If set to 0 (default) then
108  * parent will (try to) run first.
109  */
110 unsigned int sysctl_sched_child_runs_first __read_mostly;
111 
112 /*
113  * SCHED_OTHER wake-up granularity.
114  *
115  * This option delays the preemption effects of decoupled workloads
116  * and reduces their over-scheduling. Synchronous workloads will still
117  * have immediate wakeup/sleep latencies.
118  *
119  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
120  */
121 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
122 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
123 
124 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
125 
126 int sched_thermal_decay_shift;
127 static int __init setup_sched_thermal_decay_shift(char *str)
128 {
129 	int _shift = 0;
130 
131 	if (kstrtoint(str, 0, &_shift))
132 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
133 
134 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
135 	return 1;
136 }
137 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
138 
139 #ifdef CONFIG_SMP
140 /*
141  * For asym packing, by default the lower numbered CPU has higher priority.
142  */
143 int __weak arch_asym_cpu_priority(int cpu)
144 {
145 	return -cpu;
146 }
147 
148 /*
149  * The margin used when comparing utilization with CPU capacity.
150  *
151  * (default: ~20%)
152  */
153 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
154 
155 /*
156  * The margin used when comparing CPU capacities.
157  * is 'cap1' noticeably greater than 'cap2'
158  *
159  * (default: ~5%)
160  */
161 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
162 #endif
163 
164 #ifdef CONFIG_CFS_BANDWIDTH
165 /*
166  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
167  * each time a cfs_rq requests quota.
168  *
169  * Note: in the case that the slice exceeds the runtime remaining (either due
170  * to consumption or the quota being specified to be smaller than the slice)
171  * we will always only issue the remaining available time.
172  *
173  * (default: 5 msec, units: microseconds)
174  */
175 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
176 #endif
177 
178 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
179 {
180 	lw->weight += inc;
181 	lw->inv_weight = 0;
182 }
183 
184 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
185 {
186 	lw->weight -= dec;
187 	lw->inv_weight = 0;
188 }
189 
190 static inline void update_load_set(struct load_weight *lw, unsigned long w)
191 {
192 	lw->weight = w;
193 	lw->inv_weight = 0;
194 }
195 
196 /*
197  * Increase the granularity value when there are more CPUs,
198  * because with more CPUs the 'effective latency' as visible
199  * to users decreases. But the relationship is not linear,
200  * so pick a second-best guess by going with the log2 of the
201  * number of CPUs.
202  *
203  * This idea comes from the SD scheduler of Con Kolivas:
204  */
205 static unsigned int get_update_sysctl_factor(void)
206 {
207 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
208 	unsigned int factor;
209 
210 	switch (sysctl_sched_tunable_scaling) {
211 	case SCHED_TUNABLESCALING_NONE:
212 		factor = 1;
213 		break;
214 	case SCHED_TUNABLESCALING_LINEAR:
215 		factor = cpus;
216 		break;
217 	case SCHED_TUNABLESCALING_LOG:
218 	default:
219 		factor = 1 + ilog2(cpus);
220 		break;
221 	}
222 
223 	return factor;
224 }
225 
226 static void update_sysctl(void)
227 {
228 	unsigned int factor = get_update_sysctl_factor();
229 
230 #define SET_SYSCTL(name) \
231 	(sysctl_##name = (factor) * normalized_sysctl_##name)
232 	SET_SYSCTL(sched_min_granularity);
233 	SET_SYSCTL(sched_latency);
234 	SET_SYSCTL(sched_wakeup_granularity);
235 #undef SET_SYSCTL
236 }
237 
238 void __init sched_init_granularity(void)
239 {
240 	update_sysctl();
241 }
242 
243 #define WMULT_CONST	(~0U)
244 #define WMULT_SHIFT	32
245 
246 static void __update_inv_weight(struct load_weight *lw)
247 {
248 	unsigned long w;
249 
250 	if (likely(lw->inv_weight))
251 		return;
252 
253 	w = scale_load_down(lw->weight);
254 
255 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
256 		lw->inv_weight = 1;
257 	else if (unlikely(!w))
258 		lw->inv_weight = WMULT_CONST;
259 	else
260 		lw->inv_weight = WMULT_CONST / w;
261 }
262 
263 /*
264  * delta_exec * weight / lw.weight
265  *   OR
266  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
267  *
268  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
269  * we're guaranteed shift stays positive because inv_weight is guaranteed to
270  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
271  *
272  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
273  * weight/lw.weight <= 1, and therefore our shift will also be positive.
274  */
275 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
276 {
277 	u64 fact = scale_load_down(weight);
278 	u32 fact_hi = (u32)(fact >> 32);
279 	int shift = WMULT_SHIFT;
280 	int fs;
281 
282 	__update_inv_weight(lw);
283 
284 	if (unlikely(fact_hi)) {
285 		fs = fls(fact_hi);
286 		shift -= fs;
287 		fact >>= fs;
288 	}
289 
290 	fact = mul_u32_u32(fact, lw->inv_weight);
291 
292 	fact_hi = (u32)(fact >> 32);
293 	if (fact_hi) {
294 		fs = fls(fact_hi);
295 		shift -= fs;
296 		fact >>= fs;
297 	}
298 
299 	return mul_u64_u32_shr(delta_exec, fact, shift);
300 }
301 
302 
303 const struct sched_class fair_sched_class;
304 
305 /**************************************************************
306  * CFS operations on generic schedulable entities:
307  */
308 
309 #ifdef CONFIG_FAIR_GROUP_SCHED
310 
311 /* Walk up scheduling entities hierarchy */
312 #define for_each_sched_entity(se) \
313 		for (; se; se = se->parent)
314 
315 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
316 {
317 	if (!path)
318 		return;
319 
320 	if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
321 		autogroup_path(cfs_rq->tg, path, len);
322 	else if (cfs_rq && cfs_rq->tg->css.cgroup)
323 		cgroup_path(cfs_rq->tg->css.cgroup, path, len);
324 	else
325 		strlcpy(path, "(null)", len);
326 }
327 
328 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
329 {
330 	struct rq *rq = rq_of(cfs_rq);
331 	int cpu = cpu_of(rq);
332 
333 	if (cfs_rq->on_list)
334 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
335 
336 	cfs_rq->on_list = 1;
337 
338 	/*
339 	 * Ensure we either appear before our parent (if already
340 	 * enqueued) or force our parent to appear after us when it is
341 	 * enqueued. The fact that we always enqueue bottom-up
342 	 * reduces this to two cases and a special case for the root
343 	 * cfs_rq. Furthermore, it also means that we will always reset
344 	 * tmp_alone_branch either when the branch is connected
345 	 * to a tree or when we reach the top of the tree
346 	 */
347 	if (cfs_rq->tg->parent &&
348 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
349 		/*
350 		 * If parent is already on the list, we add the child
351 		 * just before. Thanks to circular linked property of
352 		 * the list, this means to put the child at the tail
353 		 * of the list that starts by parent.
354 		 */
355 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
356 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
357 		/*
358 		 * The branch is now connected to its tree so we can
359 		 * reset tmp_alone_branch to the beginning of the
360 		 * list.
361 		 */
362 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
363 		return true;
364 	}
365 
366 	if (!cfs_rq->tg->parent) {
367 		/*
368 		 * cfs rq without parent should be put
369 		 * at the tail of the list.
370 		 */
371 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
372 			&rq->leaf_cfs_rq_list);
373 		/*
374 		 * We have reach the top of a tree so we can reset
375 		 * tmp_alone_branch to the beginning of the list.
376 		 */
377 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
378 		return true;
379 	}
380 
381 	/*
382 	 * The parent has not already been added so we want to
383 	 * make sure that it will be put after us.
384 	 * tmp_alone_branch points to the begin of the branch
385 	 * where we will add parent.
386 	 */
387 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
388 	/*
389 	 * update tmp_alone_branch to points to the new begin
390 	 * of the branch
391 	 */
392 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
393 	return false;
394 }
395 
396 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
397 {
398 	if (cfs_rq->on_list) {
399 		struct rq *rq = rq_of(cfs_rq);
400 
401 		/*
402 		 * With cfs_rq being unthrottled/throttled during an enqueue,
403 		 * it can happen the tmp_alone_branch points the a leaf that
404 		 * we finally want to del. In this case, tmp_alone_branch moves
405 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
406 		 * at the end of the enqueue.
407 		 */
408 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
409 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
410 
411 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
412 		cfs_rq->on_list = 0;
413 	}
414 }
415 
416 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
417 {
418 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
419 }
420 
421 /* Iterate thr' all leaf cfs_rq's on a runqueue */
422 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
423 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
424 				 leaf_cfs_rq_list)
425 
426 /* Do the two (enqueued) entities belong to the same group ? */
427 static inline struct cfs_rq *
428 is_same_group(struct sched_entity *se, struct sched_entity *pse)
429 {
430 	if (se->cfs_rq == pse->cfs_rq)
431 		return se->cfs_rq;
432 
433 	return NULL;
434 }
435 
436 static inline struct sched_entity *parent_entity(struct sched_entity *se)
437 {
438 	return se->parent;
439 }
440 
441 static void
442 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
443 {
444 	int se_depth, pse_depth;
445 
446 	/*
447 	 * preemption test can be made between sibling entities who are in the
448 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
449 	 * both tasks until we find their ancestors who are siblings of common
450 	 * parent.
451 	 */
452 
453 	/* First walk up until both entities are at same depth */
454 	se_depth = (*se)->depth;
455 	pse_depth = (*pse)->depth;
456 
457 	while (se_depth > pse_depth) {
458 		se_depth--;
459 		*se = parent_entity(*se);
460 	}
461 
462 	while (pse_depth > se_depth) {
463 		pse_depth--;
464 		*pse = parent_entity(*pse);
465 	}
466 
467 	while (!is_same_group(*se, *pse)) {
468 		*se = parent_entity(*se);
469 		*pse = parent_entity(*pse);
470 	}
471 }
472 
473 static int tg_is_idle(struct task_group *tg)
474 {
475 	return tg->idle > 0;
476 }
477 
478 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
479 {
480 	return cfs_rq->idle > 0;
481 }
482 
483 static int se_is_idle(struct sched_entity *se)
484 {
485 	if (entity_is_task(se))
486 		return task_has_idle_policy(task_of(se));
487 	return cfs_rq_is_idle(group_cfs_rq(se));
488 }
489 
490 #else	/* !CONFIG_FAIR_GROUP_SCHED */
491 
492 #define for_each_sched_entity(se) \
493 		for (; se; se = NULL)
494 
495 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
496 {
497 	if (path)
498 		strlcpy(path, "(null)", len);
499 }
500 
501 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
502 {
503 	return true;
504 }
505 
506 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
507 {
508 }
509 
510 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
511 {
512 }
513 
514 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
515 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
516 
517 static inline struct sched_entity *parent_entity(struct sched_entity *se)
518 {
519 	return NULL;
520 }
521 
522 static inline void
523 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
524 {
525 }
526 
527 static inline int tg_is_idle(struct task_group *tg)
528 {
529 	return 0;
530 }
531 
532 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
533 {
534 	return 0;
535 }
536 
537 static int se_is_idle(struct sched_entity *se)
538 {
539 	return 0;
540 }
541 
542 #endif	/* CONFIG_FAIR_GROUP_SCHED */
543 
544 static __always_inline
545 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
546 
547 /**************************************************************
548  * Scheduling class tree data structure manipulation methods:
549  */
550 
551 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
552 {
553 	s64 delta = (s64)(vruntime - max_vruntime);
554 	if (delta > 0)
555 		max_vruntime = vruntime;
556 
557 	return max_vruntime;
558 }
559 
560 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
561 {
562 	s64 delta = (s64)(vruntime - min_vruntime);
563 	if (delta < 0)
564 		min_vruntime = vruntime;
565 
566 	return min_vruntime;
567 }
568 
569 static inline bool entity_before(struct sched_entity *a,
570 				struct sched_entity *b)
571 {
572 	return (s64)(a->vruntime - b->vruntime) < 0;
573 }
574 
575 #define __node_2_se(node) \
576 	rb_entry((node), struct sched_entity, run_node)
577 
578 static void update_min_vruntime(struct cfs_rq *cfs_rq)
579 {
580 	struct sched_entity *curr = cfs_rq->curr;
581 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
582 
583 	u64 vruntime = cfs_rq->min_vruntime;
584 
585 	if (curr) {
586 		if (curr->on_rq)
587 			vruntime = curr->vruntime;
588 		else
589 			curr = NULL;
590 	}
591 
592 	if (leftmost) { /* non-empty tree */
593 		struct sched_entity *se = __node_2_se(leftmost);
594 
595 		if (!curr)
596 			vruntime = se->vruntime;
597 		else
598 			vruntime = min_vruntime(vruntime, se->vruntime);
599 	}
600 
601 	/* ensure we never gain time by being placed backwards. */
602 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
603 #ifndef CONFIG_64BIT
604 	smp_wmb();
605 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
606 #endif
607 }
608 
609 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
610 {
611 	return entity_before(__node_2_se(a), __node_2_se(b));
612 }
613 
614 /*
615  * Enqueue an entity into the rb-tree:
616  */
617 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
618 {
619 	rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
620 }
621 
622 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
623 {
624 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
625 }
626 
627 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
628 {
629 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
630 
631 	if (!left)
632 		return NULL;
633 
634 	return __node_2_se(left);
635 }
636 
637 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
638 {
639 	struct rb_node *next = rb_next(&se->run_node);
640 
641 	if (!next)
642 		return NULL;
643 
644 	return __node_2_se(next);
645 }
646 
647 #ifdef CONFIG_SCHED_DEBUG
648 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
649 {
650 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
651 
652 	if (!last)
653 		return NULL;
654 
655 	return __node_2_se(last);
656 }
657 
658 /**************************************************************
659  * Scheduling class statistics methods:
660  */
661 
662 int sched_update_scaling(void)
663 {
664 	unsigned int factor = get_update_sysctl_factor();
665 
666 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
667 					sysctl_sched_min_granularity);
668 
669 #define WRT_SYSCTL(name) \
670 	(normalized_sysctl_##name = sysctl_##name / (factor))
671 	WRT_SYSCTL(sched_min_granularity);
672 	WRT_SYSCTL(sched_latency);
673 	WRT_SYSCTL(sched_wakeup_granularity);
674 #undef WRT_SYSCTL
675 
676 	return 0;
677 }
678 #endif
679 
680 /*
681  * delta /= w
682  */
683 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
684 {
685 	if (unlikely(se->load.weight != NICE_0_LOAD))
686 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
687 
688 	return delta;
689 }
690 
691 /*
692  * The idea is to set a period in which each task runs once.
693  *
694  * When there are too many tasks (sched_nr_latency) we have to stretch
695  * this period because otherwise the slices get too small.
696  *
697  * p = (nr <= nl) ? l : l*nr/nl
698  */
699 static u64 __sched_period(unsigned long nr_running)
700 {
701 	if (unlikely(nr_running > sched_nr_latency))
702 		return nr_running * sysctl_sched_min_granularity;
703 	else
704 		return sysctl_sched_latency;
705 }
706 
707 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
708 
709 /*
710  * We calculate the wall-time slice from the period by taking a part
711  * proportional to the weight.
712  *
713  * s = p*P[w/rw]
714  */
715 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
716 {
717 	unsigned int nr_running = cfs_rq->nr_running;
718 	struct sched_entity *init_se = se;
719 	unsigned int min_gran;
720 	u64 slice;
721 
722 	if (sched_feat(ALT_PERIOD))
723 		nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
724 
725 	slice = __sched_period(nr_running + !se->on_rq);
726 
727 	for_each_sched_entity(se) {
728 		struct load_weight *load;
729 		struct load_weight lw;
730 		struct cfs_rq *qcfs_rq;
731 
732 		qcfs_rq = cfs_rq_of(se);
733 		load = &qcfs_rq->load;
734 
735 		if (unlikely(!se->on_rq)) {
736 			lw = qcfs_rq->load;
737 
738 			update_load_add(&lw, se->load.weight);
739 			load = &lw;
740 		}
741 		slice = __calc_delta(slice, se->load.weight, load);
742 	}
743 
744 	if (sched_feat(BASE_SLICE)) {
745 		if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
746 			min_gran = sysctl_sched_idle_min_granularity;
747 		else
748 			min_gran = sysctl_sched_min_granularity;
749 
750 		slice = max_t(u64, slice, min_gran);
751 	}
752 
753 	return slice;
754 }
755 
756 /*
757  * We calculate the vruntime slice of a to-be-inserted task.
758  *
759  * vs = s/w
760  */
761 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
762 {
763 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
764 }
765 
766 #include "pelt.h"
767 #ifdef CONFIG_SMP
768 
769 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
770 static unsigned long task_h_load(struct task_struct *p);
771 static unsigned long capacity_of(int cpu);
772 
773 /* Give new sched_entity start runnable values to heavy its load in infant time */
774 void init_entity_runnable_average(struct sched_entity *se)
775 {
776 	struct sched_avg *sa = &se->avg;
777 
778 	memset(sa, 0, sizeof(*sa));
779 
780 	/*
781 	 * Tasks are initialized with full load to be seen as heavy tasks until
782 	 * they get a chance to stabilize to their real load level.
783 	 * Group entities are initialized with zero load to reflect the fact that
784 	 * nothing has been attached to the task group yet.
785 	 */
786 	if (entity_is_task(se))
787 		sa->load_avg = scale_load_down(se->load.weight);
788 
789 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
790 }
791 
792 static void attach_entity_cfs_rq(struct sched_entity *se);
793 
794 /*
795  * With new tasks being created, their initial util_avgs are extrapolated
796  * based on the cfs_rq's current util_avg:
797  *
798  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
799  *
800  * However, in many cases, the above util_avg does not give a desired
801  * value. Moreover, the sum of the util_avgs may be divergent, such
802  * as when the series is a harmonic series.
803  *
804  * To solve this problem, we also cap the util_avg of successive tasks to
805  * only 1/2 of the left utilization budget:
806  *
807  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
808  *
809  * where n denotes the nth task and cpu_scale the CPU capacity.
810  *
811  * For example, for a CPU with 1024 of capacity, a simplest series from
812  * the beginning would be like:
813  *
814  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
815  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
816  *
817  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
818  * if util_avg > util_avg_cap.
819  */
820 void post_init_entity_util_avg(struct task_struct *p)
821 {
822 	struct sched_entity *se = &p->se;
823 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
824 	struct sched_avg *sa = &se->avg;
825 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
826 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
827 
828 	if (cap > 0) {
829 		if (cfs_rq->avg.util_avg != 0) {
830 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
831 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
832 
833 			if (sa->util_avg > cap)
834 				sa->util_avg = cap;
835 		} else {
836 			sa->util_avg = cap;
837 		}
838 	}
839 
840 	sa->runnable_avg = sa->util_avg;
841 
842 	if (p->sched_class != &fair_sched_class) {
843 		/*
844 		 * For !fair tasks do:
845 		 *
846 		update_cfs_rq_load_avg(now, cfs_rq);
847 		attach_entity_load_avg(cfs_rq, se);
848 		switched_from_fair(rq, p);
849 		 *
850 		 * such that the next switched_to_fair() has the
851 		 * expected state.
852 		 */
853 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
854 		return;
855 	}
856 
857 	attach_entity_cfs_rq(se);
858 }
859 
860 #else /* !CONFIG_SMP */
861 void init_entity_runnable_average(struct sched_entity *se)
862 {
863 }
864 void post_init_entity_util_avg(struct task_struct *p)
865 {
866 }
867 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
868 {
869 }
870 #endif /* CONFIG_SMP */
871 
872 /*
873  * Update the current task's runtime statistics.
874  */
875 static void update_curr(struct cfs_rq *cfs_rq)
876 {
877 	struct sched_entity *curr = cfs_rq->curr;
878 	u64 now = rq_clock_task(rq_of(cfs_rq));
879 	u64 delta_exec;
880 
881 	if (unlikely(!curr))
882 		return;
883 
884 	delta_exec = now - curr->exec_start;
885 	if (unlikely((s64)delta_exec <= 0))
886 		return;
887 
888 	curr->exec_start = now;
889 
890 	if (schedstat_enabled()) {
891 		struct sched_statistics *stats;
892 
893 		stats = __schedstats_from_se(curr);
894 		__schedstat_set(stats->exec_max,
895 				max(delta_exec, stats->exec_max));
896 	}
897 
898 	curr->sum_exec_runtime += delta_exec;
899 	schedstat_add(cfs_rq->exec_clock, delta_exec);
900 
901 	curr->vruntime += calc_delta_fair(delta_exec, curr);
902 	update_min_vruntime(cfs_rq);
903 
904 	if (entity_is_task(curr)) {
905 		struct task_struct *curtask = task_of(curr);
906 
907 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
908 		cgroup_account_cputime(curtask, delta_exec);
909 		account_group_exec_runtime(curtask, delta_exec);
910 	}
911 
912 	account_cfs_rq_runtime(cfs_rq, delta_exec);
913 }
914 
915 static void update_curr_fair(struct rq *rq)
916 {
917 	update_curr(cfs_rq_of(&rq->curr->se));
918 }
919 
920 static inline void
921 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
922 {
923 	struct sched_statistics *stats;
924 	struct task_struct *p = NULL;
925 
926 	if (!schedstat_enabled())
927 		return;
928 
929 	stats = __schedstats_from_se(se);
930 
931 	if (entity_is_task(se))
932 		p = task_of(se);
933 
934 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
935 }
936 
937 static inline void
938 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
939 {
940 	struct sched_statistics *stats;
941 	struct task_struct *p = NULL;
942 
943 	if (!schedstat_enabled())
944 		return;
945 
946 	stats = __schedstats_from_se(se);
947 
948 	/*
949 	 * When the sched_schedstat changes from 0 to 1, some sched se
950 	 * maybe already in the runqueue, the se->statistics.wait_start
951 	 * will be 0.So it will let the delta wrong. We need to avoid this
952 	 * scenario.
953 	 */
954 	if (unlikely(!schedstat_val(stats->wait_start)))
955 		return;
956 
957 	if (entity_is_task(se))
958 		p = task_of(se);
959 
960 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
961 }
962 
963 static inline void
964 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
965 {
966 	struct sched_statistics *stats;
967 	struct task_struct *tsk = NULL;
968 
969 	if (!schedstat_enabled())
970 		return;
971 
972 	stats = __schedstats_from_se(se);
973 
974 	if (entity_is_task(se))
975 		tsk = task_of(se);
976 
977 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
978 }
979 
980 /*
981  * Task is being enqueued - update stats:
982  */
983 static inline void
984 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
985 {
986 	if (!schedstat_enabled())
987 		return;
988 
989 	/*
990 	 * Are we enqueueing a waiting task? (for current tasks
991 	 * a dequeue/enqueue event is a NOP)
992 	 */
993 	if (se != cfs_rq->curr)
994 		update_stats_wait_start_fair(cfs_rq, se);
995 
996 	if (flags & ENQUEUE_WAKEUP)
997 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
998 }
999 
1000 static inline void
1001 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1002 {
1003 
1004 	if (!schedstat_enabled())
1005 		return;
1006 
1007 	/*
1008 	 * Mark the end of the wait period if dequeueing a
1009 	 * waiting task:
1010 	 */
1011 	if (se != cfs_rq->curr)
1012 		update_stats_wait_end_fair(cfs_rq, se);
1013 
1014 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1015 		struct task_struct *tsk = task_of(se);
1016 		unsigned int state;
1017 
1018 		/* XXX racy against TTWU */
1019 		state = READ_ONCE(tsk->__state);
1020 		if (state & TASK_INTERRUPTIBLE)
1021 			__schedstat_set(tsk->stats.sleep_start,
1022 				      rq_clock(rq_of(cfs_rq)));
1023 		if (state & TASK_UNINTERRUPTIBLE)
1024 			__schedstat_set(tsk->stats.block_start,
1025 				      rq_clock(rq_of(cfs_rq)));
1026 	}
1027 }
1028 
1029 /*
1030  * We are picking a new current task - update its stats:
1031  */
1032 static inline void
1033 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1034 {
1035 	/*
1036 	 * We are starting a new run period:
1037 	 */
1038 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1039 }
1040 
1041 /**************************************************
1042  * Scheduling class queueing methods:
1043  */
1044 
1045 #ifdef CONFIG_NUMA_BALANCING
1046 /*
1047  * Approximate time to scan a full NUMA task in ms. The task scan period is
1048  * calculated based on the tasks virtual memory size and
1049  * numa_balancing_scan_size.
1050  */
1051 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1052 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1053 
1054 /* Portion of address space to scan in MB */
1055 unsigned int sysctl_numa_balancing_scan_size = 256;
1056 
1057 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1058 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1059 
1060 struct numa_group {
1061 	refcount_t refcount;
1062 
1063 	spinlock_t lock; /* nr_tasks, tasks */
1064 	int nr_tasks;
1065 	pid_t gid;
1066 	int active_nodes;
1067 
1068 	struct rcu_head rcu;
1069 	unsigned long total_faults;
1070 	unsigned long max_faults_cpu;
1071 	/*
1072 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1073 	 *
1074 	 * Faults_cpu is used to decide whether memory should move
1075 	 * towards the CPU. As a consequence, these stats are weighted
1076 	 * more by CPU use than by memory faults.
1077 	 */
1078 	unsigned long faults[];
1079 };
1080 
1081 /*
1082  * For functions that can be called in multiple contexts that permit reading
1083  * ->numa_group (see struct task_struct for locking rules).
1084  */
1085 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1086 {
1087 	return rcu_dereference_check(p->numa_group, p == current ||
1088 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1089 }
1090 
1091 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1092 {
1093 	return rcu_dereference_protected(p->numa_group, p == current);
1094 }
1095 
1096 static inline unsigned long group_faults_priv(struct numa_group *ng);
1097 static inline unsigned long group_faults_shared(struct numa_group *ng);
1098 
1099 static unsigned int task_nr_scan_windows(struct task_struct *p)
1100 {
1101 	unsigned long rss = 0;
1102 	unsigned long nr_scan_pages;
1103 
1104 	/*
1105 	 * Calculations based on RSS as non-present and empty pages are skipped
1106 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1107 	 * on resident pages
1108 	 */
1109 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1110 	rss = get_mm_rss(p->mm);
1111 	if (!rss)
1112 		rss = nr_scan_pages;
1113 
1114 	rss = round_up(rss, nr_scan_pages);
1115 	return rss / nr_scan_pages;
1116 }
1117 
1118 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1119 #define MAX_SCAN_WINDOW 2560
1120 
1121 static unsigned int task_scan_min(struct task_struct *p)
1122 {
1123 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1124 	unsigned int scan, floor;
1125 	unsigned int windows = 1;
1126 
1127 	if (scan_size < MAX_SCAN_WINDOW)
1128 		windows = MAX_SCAN_WINDOW / scan_size;
1129 	floor = 1000 / windows;
1130 
1131 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1132 	return max_t(unsigned int, floor, scan);
1133 }
1134 
1135 static unsigned int task_scan_start(struct task_struct *p)
1136 {
1137 	unsigned long smin = task_scan_min(p);
1138 	unsigned long period = smin;
1139 	struct numa_group *ng;
1140 
1141 	/* Scale the maximum scan period with the amount of shared memory. */
1142 	rcu_read_lock();
1143 	ng = rcu_dereference(p->numa_group);
1144 	if (ng) {
1145 		unsigned long shared = group_faults_shared(ng);
1146 		unsigned long private = group_faults_priv(ng);
1147 
1148 		period *= refcount_read(&ng->refcount);
1149 		period *= shared + 1;
1150 		period /= private + shared + 1;
1151 	}
1152 	rcu_read_unlock();
1153 
1154 	return max(smin, period);
1155 }
1156 
1157 static unsigned int task_scan_max(struct task_struct *p)
1158 {
1159 	unsigned long smin = task_scan_min(p);
1160 	unsigned long smax;
1161 	struct numa_group *ng;
1162 
1163 	/* Watch for min being lower than max due to floor calculations */
1164 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1165 
1166 	/* Scale the maximum scan period with the amount of shared memory. */
1167 	ng = deref_curr_numa_group(p);
1168 	if (ng) {
1169 		unsigned long shared = group_faults_shared(ng);
1170 		unsigned long private = group_faults_priv(ng);
1171 		unsigned long period = smax;
1172 
1173 		period *= refcount_read(&ng->refcount);
1174 		period *= shared + 1;
1175 		period /= private + shared + 1;
1176 
1177 		smax = max(smax, period);
1178 	}
1179 
1180 	return max(smin, smax);
1181 }
1182 
1183 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1184 {
1185 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1186 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1187 }
1188 
1189 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1190 {
1191 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1192 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1193 }
1194 
1195 /* Shared or private faults. */
1196 #define NR_NUMA_HINT_FAULT_TYPES 2
1197 
1198 /* Memory and CPU locality */
1199 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1200 
1201 /* Averaged statistics, and temporary buffers. */
1202 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1203 
1204 pid_t task_numa_group_id(struct task_struct *p)
1205 {
1206 	struct numa_group *ng;
1207 	pid_t gid = 0;
1208 
1209 	rcu_read_lock();
1210 	ng = rcu_dereference(p->numa_group);
1211 	if (ng)
1212 		gid = ng->gid;
1213 	rcu_read_unlock();
1214 
1215 	return gid;
1216 }
1217 
1218 /*
1219  * The averaged statistics, shared & private, memory & CPU,
1220  * occupy the first half of the array. The second half of the
1221  * array is for current counters, which are averaged into the
1222  * first set by task_numa_placement.
1223  */
1224 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1225 {
1226 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1227 }
1228 
1229 static inline unsigned long task_faults(struct task_struct *p, int nid)
1230 {
1231 	if (!p->numa_faults)
1232 		return 0;
1233 
1234 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1235 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1236 }
1237 
1238 static inline unsigned long group_faults(struct task_struct *p, int nid)
1239 {
1240 	struct numa_group *ng = deref_task_numa_group(p);
1241 
1242 	if (!ng)
1243 		return 0;
1244 
1245 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1246 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1247 }
1248 
1249 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1250 {
1251 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1252 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1253 }
1254 
1255 static inline unsigned long group_faults_priv(struct numa_group *ng)
1256 {
1257 	unsigned long faults = 0;
1258 	int node;
1259 
1260 	for_each_online_node(node) {
1261 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1262 	}
1263 
1264 	return faults;
1265 }
1266 
1267 static inline unsigned long group_faults_shared(struct numa_group *ng)
1268 {
1269 	unsigned long faults = 0;
1270 	int node;
1271 
1272 	for_each_online_node(node) {
1273 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1274 	}
1275 
1276 	return faults;
1277 }
1278 
1279 /*
1280  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1281  * considered part of a numa group's pseudo-interleaving set. Migrations
1282  * between these nodes are slowed down, to allow things to settle down.
1283  */
1284 #define ACTIVE_NODE_FRACTION 3
1285 
1286 static bool numa_is_active_node(int nid, struct numa_group *ng)
1287 {
1288 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1289 }
1290 
1291 /* Handle placement on systems where not all nodes are directly connected. */
1292 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1293 					int lim_dist, bool task)
1294 {
1295 	unsigned long score = 0;
1296 	int node, max_dist;
1297 
1298 	/*
1299 	 * All nodes are directly connected, and the same distance
1300 	 * from each other. No need for fancy placement algorithms.
1301 	 */
1302 	if (sched_numa_topology_type == NUMA_DIRECT)
1303 		return 0;
1304 
1305 	/* sched_max_numa_distance may be changed in parallel. */
1306 	max_dist = READ_ONCE(sched_max_numa_distance);
1307 	/*
1308 	 * This code is called for each node, introducing N^2 complexity,
1309 	 * which should be ok given the number of nodes rarely exceeds 8.
1310 	 */
1311 	for_each_online_node(node) {
1312 		unsigned long faults;
1313 		int dist = node_distance(nid, node);
1314 
1315 		/*
1316 		 * The furthest away nodes in the system are not interesting
1317 		 * for placement; nid was already counted.
1318 		 */
1319 		if (dist >= max_dist || node == nid)
1320 			continue;
1321 
1322 		/*
1323 		 * On systems with a backplane NUMA topology, compare groups
1324 		 * of nodes, and move tasks towards the group with the most
1325 		 * memory accesses. When comparing two nodes at distance
1326 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1327 		 * of each group. Skip other nodes.
1328 		 */
1329 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1330 			continue;
1331 
1332 		/* Add up the faults from nearby nodes. */
1333 		if (task)
1334 			faults = task_faults(p, node);
1335 		else
1336 			faults = group_faults(p, node);
1337 
1338 		/*
1339 		 * On systems with a glueless mesh NUMA topology, there are
1340 		 * no fixed "groups of nodes". Instead, nodes that are not
1341 		 * directly connected bounce traffic through intermediate
1342 		 * nodes; a numa_group can occupy any set of nodes.
1343 		 * The further away a node is, the less the faults count.
1344 		 * This seems to result in good task placement.
1345 		 */
1346 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1347 			faults *= (max_dist - dist);
1348 			faults /= (max_dist - LOCAL_DISTANCE);
1349 		}
1350 
1351 		score += faults;
1352 	}
1353 
1354 	return score;
1355 }
1356 
1357 /*
1358  * These return the fraction of accesses done by a particular task, or
1359  * task group, on a particular numa node.  The group weight is given a
1360  * larger multiplier, in order to group tasks together that are almost
1361  * evenly spread out between numa nodes.
1362  */
1363 static inline unsigned long task_weight(struct task_struct *p, int nid,
1364 					int dist)
1365 {
1366 	unsigned long faults, total_faults;
1367 
1368 	if (!p->numa_faults)
1369 		return 0;
1370 
1371 	total_faults = p->total_numa_faults;
1372 
1373 	if (!total_faults)
1374 		return 0;
1375 
1376 	faults = task_faults(p, nid);
1377 	faults += score_nearby_nodes(p, nid, dist, true);
1378 
1379 	return 1000 * faults / total_faults;
1380 }
1381 
1382 static inline unsigned long group_weight(struct task_struct *p, int nid,
1383 					 int dist)
1384 {
1385 	struct numa_group *ng = deref_task_numa_group(p);
1386 	unsigned long faults, total_faults;
1387 
1388 	if (!ng)
1389 		return 0;
1390 
1391 	total_faults = ng->total_faults;
1392 
1393 	if (!total_faults)
1394 		return 0;
1395 
1396 	faults = group_faults(p, nid);
1397 	faults += score_nearby_nodes(p, nid, dist, false);
1398 
1399 	return 1000 * faults / total_faults;
1400 }
1401 
1402 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1403 				int src_nid, int dst_cpu)
1404 {
1405 	struct numa_group *ng = deref_curr_numa_group(p);
1406 	int dst_nid = cpu_to_node(dst_cpu);
1407 	int last_cpupid, this_cpupid;
1408 
1409 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1410 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1411 
1412 	/*
1413 	 * Allow first faults or private faults to migrate immediately early in
1414 	 * the lifetime of a task. The magic number 4 is based on waiting for
1415 	 * two full passes of the "multi-stage node selection" test that is
1416 	 * executed below.
1417 	 */
1418 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1419 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1420 		return true;
1421 
1422 	/*
1423 	 * Multi-stage node selection is used in conjunction with a periodic
1424 	 * migration fault to build a temporal task<->page relation. By using
1425 	 * a two-stage filter we remove short/unlikely relations.
1426 	 *
1427 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1428 	 * a task's usage of a particular page (n_p) per total usage of this
1429 	 * page (n_t) (in a given time-span) to a probability.
1430 	 *
1431 	 * Our periodic faults will sample this probability and getting the
1432 	 * same result twice in a row, given these samples are fully
1433 	 * independent, is then given by P(n)^2, provided our sample period
1434 	 * is sufficiently short compared to the usage pattern.
1435 	 *
1436 	 * This quadric squishes small probabilities, making it less likely we
1437 	 * act on an unlikely task<->page relation.
1438 	 */
1439 	if (!cpupid_pid_unset(last_cpupid) &&
1440 				cpupid_to_nid(last_cpupid) != dst_nid)
1441 		return false;
1442 
1443 	/* Always allow migrate on private faults */
1444 	if (cpupid_match_pid(p, last_cpupid))
1445 		return true;
1446 
1447 	/* A shared fault, but p->numa_group has not been set up yet. */
1448 	if (!ng)
1449 		return true;
1450 
1451 	/*
1452 	 * Destination node is much more heavily used than the source
1453 	 * node? Allow migration.
1454 	 */
1455 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1456 					ACTIVE_NODE_FRACTION)
1457 		return true;
1458 
1459 	/*
1460 	 * Distribute memory according to CPU & memory use on each node,
1461 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1462 	 *
1463 	 * faults_cpu(dst)   3   faults_cpu(src)
1464 	 * --------------- * - > ---------------
1465 	 * faults_mem(dst)   4   faults_mem(src)
1466 	 */
1467 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1468 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1469 }
1470 
1471 /*
1472  * 'numa_type' describes the node at the moment of load balancing.
1473  */
1474 enum numa_type {
1475 	/* The node has spare capacity that can be used to run more tasks.  */
1476 	node_has_spare = 0,
1477 	/*
1478 	 * The node is fully used and the tasks don't compete for more CPU
1479 	 * cycles. Nevertheless, some tasks might wait before running.
1480 	 */
1481 	node_fully_busy,
1482 	/*
1483 	 * The node is overloaded and can't provide expected CPU cycles to all
1484 	 * tasks.
1485 	 */
1486 	node_overloaded
1487 };
1488 
1489 /* Cached statistics for all CPUs within a node */
1490 struct numa_stats {
1491 	unsigned long load;
1492 	unsigned long runnable;
1493 	unsigned long util;
1494 	/* Total compute capacity of CPUs on a node */
1495 	unsigned long compute_capacity;
1496 	unsigned int nr_running;
1497 	unsigned int weight;
1498 	enum numa_type node_type;
1499 	int idle_cpu;
1500 };
1501 
1502 static inline bool is_core_idle(int cpu)
1503 {
1504 #ifdef CONFIG_SCHED_SMT
1505 	int sibling;
1506 
1507 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1508 		if (cpu == sibling)
1509 			continue;
1510 
1511 		if (!idle_cpu(sibling))
1512 			return false;
1513 	}
1514 #endif
1515 
1516 	return true;
1517 }
1518 
1519 struct task_numa_env {
1520 	struct task_struct *p;
1521 
1522 	int src_cpu, src_nid;
1523 	int dst_cpu, dst_nid;
1524 	int imb_numa_nr;
1525 
1526 	struct numa_stats src_stats, dst_stats;
1527 
1528 	int imbalance_pct;
1529 	int dist;
1530 
1531 	struct task_struct *best_task;
1532 	long best_imp;
1533 	int best_cpu;
1534 };
1535 
1536 static unsigned long cpu_load(struct rq *rq);
1537 static unsigned long cpu_runnable(struct rq *rq);
1538 static inline long adjust_numa_imbalance(int imbalance,
1539 					int dst_running, int imb_numa_nr);
1540 
1541 static inline enum
1542 numa_type numa_classify(unsigned int imbalance_pct,
1543 			 struct numa_stats *ns)
1544 {
1545 	if ((ns->nr_running > ns->weight) &&
1546 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1547 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1548 		return node_overloaded;
1549 
1550 	if ((ns->nr_running < ns->weight) ||
1551 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1552 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1553 		return node_has_spare;
1554 
1555 	return node_fully_busy;
1556 }
1557 
1558 #ifdef CONFIG_SCHED_SMT
1559 /* Forward declarations of select_idle_sibling helpers */
1560 static inline bool test_idle_cores(int cpu, bool def);
1561 static inline int numa_idle_core(int idle_core, int cpu)
1562 {
1563 	if (!static_branch_likely(&sched_smt_present) ||
1564 	    idle_core >= 0 || !test_idle_cores(cpu, false))
1565 		return idle_core;
1566 
1567 	/*
1568 	 * Prefer cores instead of packing HT siblings
1569 	 * and triggering future load balancing.
1570 	 */
1571 	if (is_core_idle(cpu))
1572 		idle_core = cpu;
1573 
1574 	return idle_core;
1575 }
1576 #else
1577 static inline int numa_idle_core(int idle_core, int cpu)
1578 {
1579 	return idle_core;
1580 }
1581 #endif
1582 
1583 /*
1584  * Gather all necessary information to make NUMA balancing placement
1585  * decisions that are compatible with standard load balancer. This
1586  * borrows code and logic from update_sg_lb_stats but sharing a
1587  * common implementation is impractical.
1588  */
1589 static void update_numa_stats(struct task_numa_env *env,
1590 			      struct numa_stats *ns, int nid,
1591 			      bool find_idle)
1592 {
1593 	int cpu, idle_core = -1;
1594 
1595 	memset(ns, 0, sizeof(*ns));
1596 	ns->idle_cpu = -1;
1597 
1598 	rcu_read_lock();
1599 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1600 		struct rq *rq = cpu_rq(cpu);
1601 
1602 		ns->load += cpu_load(rq);
1603 		ns->runnable += cpu_runnable(rq);
1604 		ns->util += cpu_util_cfs(cpu);
1605 		ns->nr_running += rq->cfs.h_nr_running;
1606 		ns->compute_capacity += capacity_of(cpu);
1607 
1608 		if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1609 			if (READ_ONCE(rq->numa_migrate_on) ||
1610 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1611 				continue;
1612 
1613 			if (ns->idle_cpu == -1)
1614 				ns->idle_cpu = cpu;
1615 
1616 			idle_core = numa_idle_core(idle_core, cpu);
1617 		}
1618 	}
1619 	rcu_read_unlock();
1620 
1621 	ns->weight = cpumask_weight(cpumask_of_node(nid));
1622 
1623 	ns->node_type = numa_classify(env->imbalance_pct, ns);
1624 
1625 	if (idle_core >= 0)
1626 		ns->idle_cpu = idle_core;
1627 }
1628 
1629 static void task_numa_assign(struct task_numa_env *env,
1630 			     struct task_struct *p, long imp)
1631 {
1632 	struct rq *rq = cpu_rq(env->dst_cpu);
1633 
1634 	/* Check if run-queue part of active NUMA balance. */
1635 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1636 		int cpu;
1637 		int start = env->dst_cpu;
1638 
1639 		/* Find alternative idle CPU. */
1640 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1641 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1642 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1643 				continue;
1644 			}
1645 
1646 			env->dst_cpu = cpu;
1647 			rq = cpu_rq(env->dst_cpu);
1648 			if (!xchg(&rq->numa_migrate_on, 1))
1649 				goto assign;
1650 		}
1651 
1652 		/* Failed to find an alternative idle CPU */
1653 		return;
1654 	}
1655 
1656 assign:
1657 	/*
1658 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1659 	 * found a better CPU to move/swap.
1660 	 */
1661 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1662 		rq = cpu_rq(env->best_cpu);
1663 		WRITE_ONCE(rq->numa_migrate_on, 0);
1664 	}
1665 
1666 	if (env->best_task)
1667 		put_task_struct(env->best_task);
1668 	if (p)
1669 		get_task_struct(p);
1670 
1671 	env->best_task = p;
1672 	env->best_imp = imp;
1673 	env->best_cpu = env->dst_cpu;
1674 }
1675 
1676 static bool load_too_imbalanced(long src_load, long dst_load,
1677 				struct task_numa_env *env)
1678 {
1679 	long imb, old_imb;
1680 	long orig_src_load, orig_dst_load;
1681 	long src_capacity, dst_capacity;
1682 
1683 	/*
1684 	 * The load is corrected for the CPU capacity available on each node.
1685 	 *
1686 	 * src_load        dst_load
1687 	 * ------------ vs ---------
1688 	 * src_capacity    dst_capacity
1689 	 */
1690 	src_capacity = env->src_stats.compute_capacity;
1691 	dst_capacity = env->dst_stats.compute_capacity;
1692 
1693 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1694 
1695 	orig_src_load = env->src_stats.load;
1696 	orig_dst_load = env->dst_stats.load;
1697 
1698 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1699 
1700 	/* Would this change make things worse? */
1701 	return (imb > old_imb);
1702 }
1703 
1704 /*
1705  * Maximum NUMA importance can be 1998 (2*999);
1706  * SMALLIMP @ 30 would be close to 1998/64.
1707  * Used to deter task migration.
1708  */
1709 #define SMALLIMP	30
1710 
1711 /*
1712  * This checks if the overall compute and NUMA accesses of the system would
1713  * be improved if the source tasks was migrated to the target dst_cpu taking
1714  * into account that it might be best if task running on the dst_cpu should
1715  * be exchanged with the source task
1716  */
1717 static bool task_numa_compare(struct task_numa_env *env,
1718 			      long taskimp, long groupimp, bool maymove)
1719 {
1720 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1721 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1722 	long imp = p_ng ? groupimp : taskimp;
1723 	struct task_struct *cur;
1724 	long src_load, dst_load;
1725 	int dist = env->dist;
1726 	long moveimp = imp;
1727 	long load;
1728 	bool stopsearch = false;
1729 
1730 	if (READ_ONCE(dst_rq->numa_migrate_on))
1731 		return false;
1732 
1733 	rcu_read_lock();
1734 	cur = rcu_dereference(dst_rq->curr);
1735 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1736 		cur = NULL;
1737 
1738 	/*
1739 	 * Because we have preemption enabled we can get migrated around and
1740 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1741 	 */
1742 	if (cur == env->p) {
1743 		stopsearch = true;
1744 		goto unlock;
1745 	}
1746 
1747 	if (!cur) {
1748 		if (maymove && moveimp >= env->best_imp)
1749 			goto assign;
1750 		else
1751 			goto unlock;
1752 	}
1753 
1754 	/* Skip this swap candidate if cannot move to the source cpu. */
1755 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1756 		goto unlock;
1757 
1758 	/*
1759 	 * Skip this swap candidate if it is not moving to its preferred
1760 	 * node and the best task is.
1761 	 */
1762 	if (env->best_task &&
1763 	    env->best_task->numa_preferred_nid == env->src_nid &&
1764 	    cur->numa_preferred_nid != env->src_nid) {
1765 		goto unlock;
1766 	}
1767 
1768 	/*
1769 	 * "imp" is the fault differential for the source task between the
1770 	 * source and destination node. Calculate the total differential for
1771 	 * the source task and potential destination task. The more negative
1772 	 * the value is, the more remote accesses that would be expected to
1773 	 * be incurred if the tasks were swapped.
1774 	 *
1775 	 * If dst and source tasks are in the same NUMA group, or not
1776 	 * in any group then look only at task weights.
1777 	 */
1778 	cur_ng = rcu_dereference(cur->numa_group);
1779 	if (cur_ng == p_ng) {
1780 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1781 		      task_weight(cur, env->dst_nid, dist);
1782 		/*
1783 		 * Add some hysteresis to prevent swapping the
1784 		 * tasks within a group over tiny differences.
1785 		 */
1786 		if (cur_ng)
1787 			imp -= imp / 16;
1788 	} else {
1789 		/*
1790 		 * Compare the group weights. If a task is all by itself
1791 		 * (not part of a group), use the task weight instead.
1792 		 */
1793 		if (cur_ng && p_ng)
1794 			imp += group_weight(cur, env->src_nid, dist) -
1795 			       group_weight(cur, env->dst_nid, dist);
1796 		else
1797 			imp += task_weight(cur, env->src_nid, dist) -
1798 			       task_weight(cur, env->dst_nid, dist);
1799 	}
1800 
1801 	/* Discourage picking a task already on its preferred node */
1802 	if (cur->numa_preferred_nid == env->dst_nid)
1803 		imp -= imp / 16;
1804 
1805 	/*
1806 	 * Encourage picking a task that moves to its preferred node.
1807 	 * This potentially makes imp larger than it's maximum of
1808 	 * 1998 (see SMALLIMP and task_weight for why) but in this
1809 	 * case, it does not matter.
1810 	 */
1811 	if (cur->numa_preferred_nid == env->src_nid)
1812 		imp += imp / 8;
1813 
1814 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1815 		imp = moveimp;
1816 		cur = NULL;
1817 		goto assign;
1818 	}
1819 
1820 	/*
1821 	 * Prefer swapping with a task moving to its preferred node over a
1822 	 * task that is not.
1823 	 */
1824 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1825 	    env->best_task->numa_preferred_nid != env->src_nid) {
1826 		goto assign;
1827 	}
1828 
1829 	/*
1830 	 * If the NUMA importance is less than SMALLIMP,
1831 	 * task migration might only result in ping pong
1832 	 * of tasks and also hurt performance due to cache
1833 	 * misses.
1834 	 */
1835 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1836 		goto unlock;
1837 
1838 	/*
1839 	 * In the overloaded case, try and keep the load balanced.
1840 	 */
1841 	load = task_h_load(env->p) - task_h_load(cur);
1842 	if (!load)
1843 		goto assign;
1844 
1845 	dst_load = env->dst_stats.load + load;
1846 	src_load = env->src_stats.load - load;
1847 
1848 	if (load_too_imbalanced(src_load, dst_load, env))
1849 		goto unlock;
1850 
1851 assign:
1852 	/* Evaluate an idle CPU for a task numa move. */
1853 	if (!cur) {
1854 		int cpu = env->dst_stats.idle_cpu;
1855 
1856 		/* Nothing cached so current CPU went idle since the search. */
1857 		if (cpu < 0)
1858 			cpu = env->dst_cpu;
1859 
1860 		/*
1861 		 * If the CPU is no longer truly idle and the previous best CPU
1862 		 * is, keep using it.
1863 		 */
1864 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1865 		    idle_cpu(env->best_cpu)) {
1866 			cpu = env->best_cpu;
1867 		}
1868 
1869 		env->dst_cpu = cpu;
1870 	}
1871 
1872 	task_numa_assign(env, cur, imp);
1873 
1874 	/*
1875 	 * If a move to idle is allowed because there is capacity or load
1876 	 * balance improves then stop the search. While a better swap
1877 	 * candidate may exist, a search is not free.
1878 	 */
1879 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1880 		stopsearch = true;
1881 
1882 	/*
1883 	 * If a swap candidate must be identified and the current best task
1884 	 * moves its preferred node then stop the search.
1885 	 */
1886 	if (!maymove && env->best_task &&
1887 	    env->best_task->numa_preferred_nid == env->src_nid) {
1888 		stopsearch = true;
1889 	}
1890 unlock:
1891 	rcu_read_unlock();
1892 
1893 	return stopsearch;
1894 }
1895 
1896 static void task_numa_find_cpu(struct task_numa_env *env,
1897 				long taskimp, long groupimp)
1898 {
1899 	bool maymove = false;
1900 	int cpu;
1901 
1902 	/*
1903 	 * If dst node has spare capacity, then check if there is an
1904 	 * imbalance that would be overruled by the load balancer.
1905 	 */
1906 	if (env->dst_stats.node_type == node_has_spare) {
1907 		unsigned int imbalance;
1908 		int src_running, dst_running;
1909 
1910 		/*
1911 		 * Would movement cause an imbalance? Note that if src has
1912 		 * more running tasks that the imbalance is ignored as the
1913 		 * move improves the imbalance from the perspective of the
1914 		 * CPU load balancer.
1915 		 * */
1916 		src_running = env->src_stats.nr_running - 1;
1917 		dst_running = env->dst_stats.nr_running + 1;
1918 		imbalance = max(0, dst_running - src_running);
1919 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
1920 						  env->imb_numa_nr);
1921 
1922 		/* Use idle CPU if there is no imbalance */
1923 		if (!imbalance) {
1924 			maymove = true;
1925 			if (env->dst_stats.idle_cpu >= 0) {
1926 				env->dst_cpu = env->dst_stats.idle_cpu;
1927 				task_numa_assign(env, NULL, 0);
1928 				return;
1929 			}
1930 		}
1931 	} else {
1932 		long src_load, dst_load, load;
1933 		/*
1934 		 * If the improvement from just moving env->p direction is better
1935 		 * than swapping tasks around, check if a move is possible.
1936 		 */
1937 		load = task_h_load(env->p);
1938 		dst_load = env->dst_stats.load + load;
1939 		src_load = env->src_stats.load - load;
1940 		maymove = !load_too_imbalanced(src_load, dst_load, env);
1941 	}
1942 
1943 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1944 		/* Skip this CPU if the source task cannot migrate */
1945 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1946 			continue;
1947 
1948 		env->dst_cpu = cpu;
1949 		if (task_numa_compare(env, taskimp, groupimp, maymove))
1950 			break;
1951 	}
1952 }
1953 
1954 static int task_numa_migrate(struct task_struct *p)
1955 {
1956 	struct task_numa_env env = {
1957 		.p = p,
1958 
1959 		.src_cpu = task_cpu(p),
1960 		.src_nid = task_node(p),
1961 
1962 		.imbalance_pct = 112,
1963 
1964 		.best_task = NULL,
1965 		.best_imp = 0,
1966 		.best_cpu = -1,
1967 	};
1968 	unsigned long taskweight, groupweight;
1969 	struct sched_domain *sd;
1970 	long taskimp, groupimp;
1971 	struct numa_group *ng;
1972 	struct rq *best_rq;
1973 	int nid, ret, dist;
1974 
1975 	/*
1976 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1977 	 * imbalance and would be the first to start moving tasks about.
1978 	 *
1979 	 * And we want to avoid any moving of tasks about, as that would create
1980 	 * random movement of tasks -- counter the numa conditions we're trying
1981 	 * to satisfy here.
1982 	 */
1983 	rcu_read_lock();
1984 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1985 	if (sd) {
1986 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1987 		env.imb_numa_nr = sd->imb_numa_nr;
1988 	}
1989 	rcu_read_unlock();
1990 
1991 	/*
1992 	 * Cpusets can break the scheduler domain tree into smaller
1993 	 * balance domains, some of which do not cross NUMA boundaries.
1994 	 * Tasks that are "trapped" in such domains cannot be migrated
1995 	 * elsewhere, so there is no point in (re)trying.
1996 	 */
1997 	if (unlikely(!sd)) {
1998 		sched_setnuma(p, task_node(p));
1999 		return -EINVAL;
2000 	}
2001 
2002 	env.dst_nid = p->numa_preferred_nid;
2003 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2004 	taskweight = task_weight(p, env.src_nid, dist);
2005 	groupweight = group_weight(p, env.src_nid, dist);
2006 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2007 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2008 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2009 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2010 
2011 	/* Try to find a spot on the preferred nid. */
2012 	task_numa_find_cpu(&env, taskimp, groupimp);
2013 
2014 	/*
2015 	 * Look at other nodes in these cases:
2016 	 * - there is no space available on the preferred_nid
2017 	 * - the task is part of a numa_group that is interleaved across
2018 	 *   multiple NUMA nodes; in order to better consolidate the group,
2019 	 *   we need to check other locations.
2020 	 */
2021 	ng = deref_curr_numa_group(p);
2022 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2023 		for_each_node_state(nid, N_CPU) {
2024 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2025 				continue;
2026 
2027 			dist = node_distance(env.src_nid, env.dst_nid);
2028 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2029 						dist != env.dist) {
2030 				taskweight = task_weight(p, env.src_nid, dist);
2031 				groupweight = group_weight(p, env.src_nid, dist);
2032 			}
2033 
2034 			/* Only consider nodes where both task and groups benefit */
2035 			taskimp = task_weight(p, nid, dist) - taskweight;
2036 			groupimp = group_weight(p, nid, dist) - groupweight;
2037 			if (taskimp < 0 && groupimp < 0)
2038 				continue;
2039 
2040 			env.dist = dist;
2041 			env.dst_nid = nid;
2042 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2043 			task_numa_find_cpu(&env, taskimp, groupimp);
2044 		}
2045 	}
2046 
2047 	/*
2048 	 * If the task is part of a workload that spans multiple NUMA nodes,
2049 	 * and is migrating into one of the workload's active nodes, remember
2050 	 * this node as the task's preferred numa node, so the workload can
2051 	 * settle down.
2052 	 * A task that migrated to a second choice node will be better off
2053 	 * trying for a better one later. Do not set the preferred node here.
2054 	 */
2055 	if (ng) {
2056 		if (env.best_cpu == -1)
2057 			nid = env.src_nid;
2058 		else
2059 			nid = cpu_to_node(env.best_cpu);
2060 
2061 		if (nid != p->numa_preferred_nid)
2062 			sched_setnuma(p, nid);
2063 	}
2064 
2065 	/* No better CPU than the current one was found. */
2066 	if (env.best_cpu == -1) {
2067 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2068 		return -EAGAIN;
2069 	}
2070 
2071 	best_rq = cpu_rq(env.best_cpu);
2072 	if (env.best_task == NULL) {
2073 		ret = migrate_task_to(p, env.best_cpu);
2074 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2075 		if (ret != 0)
2076 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2077 		return ret;
2078 	}
2079 
2080 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2081 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2082 
2083 	if (ret != 0)
2084 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2085 	put_task_struct(env.best_task);
2086 	return ret;
2087 }
2088 
2089 /* Attempt to migrate a task to a CPU on the preferred node. */
2090 static void numa_migrate_preferred(struct task_struct *p)
2091 {
2092 	unsigned long interval = HZ;
2093 
2094 	/* This task has no NUMA fault statistics yet */
2095 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2096 		return;
2097 
2098 	/* Periodically retry migrating the task to the preferred node */
2099 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2100 	p->numa_migrate_retry = jiffies + interval;
2101 
2102 	/* Success if task is already running on preferred CPU */
2103 	if (task_node(p) == p->numa_preferred_nid)
2104 		return;
2105 
2106 	/* Otherwise, try migrate to a CPU on the preferred node */
2107 	task_numa_migrate(p);
2108 }
2109 
2110 /*
2111  * Find out how many nodes the workload is actively running on. Do this by
2112  * tracking the nodes from which NUMA hinting faults are triggered. This can
2113  * be different from the set of nodes where the workload's memory is currently
2114  * located.
2115  */
2116 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2117 {
2118 	unsigned long faults, max_faults = 0;
2119 	int nid, active_nodes = 0;
2120 
2121 	for_each_node_state(nid, N_CPU) {
2122 		faults = group_faults_cpu(numa_group, nid);
2123 		if (faults > max_faults)
2124 			max_faults = faults;
2125 	}
2126 
2127 	for_each_node_state(nid, N_CPU) {
2128 		faults = group_faults_cpu(numa_group, nid);
2129 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2130 			active_nodes++;
2131 	}
2132 
2133 	numa_group->max_faults_cpu = max_faults;
2134 	numa_group->active_nodes = active_nodes;
2135 }
2136 
2137 /*
2138  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2139  * increments. The more local the fault statistics are, the higher the scan
2140  * period will be for the next scan window. If local/(local+remote) ratio is
2141  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2142  * the scan period will decrease. Aim for 70% local accesses.
2143  */
2144 #define NUMA_PERIOD_SLOTS 10
2145 #define NUMA_PERIOD_THRESHOLD 7
2146 
2147 /*
2148  * Increase the scan period (slow down scanning) if the majority of
2149  * our memory is already on our local node, or if the majority of
2150  * the page accesses are shared with other processes.
2151  * Otherwise, decrease the scan period.
2152  */
2153 static void update_task_scan_period(struct task_struct *p,
2154 			unsigned long shared, unsigned long private)
2155 {
2156 	unsigned int period_slot;
2157 	int lr_ratio, ps_ratio;
2158 	int diff;
2159 
2160 	unsigned long remote = p->numa_faults_locality[0];
2161 	unsigned long local = p->numa_faults_locality[1];
2162 
2163 	/*
2164 	 * If there were no record hinting faults then either the task is
2165 	 * completely idle or all activity is in areas that are not of interest
2166 	 * to automatic numa balancing. Related to that, if there were failed
2167 	 * migration then it implies we are migrating too quickly or the local
2168 	 * node is overloaded. In either case, scan slower
2169 	 */
2170 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2171 		p->numa_scan_period = min(p->numa_scan_period_max,
2172 			p->numa_scan_period << 1);
2173 
2174 		p->mm->numa_next_scan = jiffies +
2175 			msecs_to_jiffies(p->numa_scan_period);
2176 
2177 		return;
2178 	}
2179 
2180 	/*
2181 	 * Prepare to scale scan period relative to the current period.
2182 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2183 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2184 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2185 	 */
2186 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2187 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2188 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2189 
2190 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2191 		/*
2192 		 * Most memory accesses are local. There is no need to
2193 		 * do fast NUMA scanning, since memory is already local.
2194 		 */
2195 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2196 		if (!slot)
2197 			slot = 1;
2198 		diff = slot * period_slot;
2199 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2200 		/*
2201 		 * Most memory accesses are shared with other tasks.
2202 		 * There is no point in continuing fast NUMA scanning,
2203 		 * since other tasks may just move the memory elsewhere.
2204 		 */
2205 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2206 		if (!slot)
2207 			slot = 1;
2208 		diff = slot * period_slot;
2209 	} else {
2210 		/*
2211 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2212 		 * yet they are not on the local NUMA node. Speed up
2213 		 * NUMA scanning to get the memory moved over.
2214 		 */
2215 		int ratio = max(lr_ratio, ps_ratio);
2216 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2217 	}
2218 
2219 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2220 			task_scan_min(p), task_scan_max(p));
2221 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2222 }
2223 
2224 /*
2225  * Get the fraction of time the task has been running since the last
2226  * NUMA placement cycle. The scheduler keeps similar statistics, but
2227  * decays those on a 32ms period, which is orders of magnitude off
2228  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2229  * stats only if the task is so new there are no NUMA statistics yet.
2230  */
2231 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2232 {
2233 	u64 runtime, delta, now;
2234 	/* Use the start of this time slice to avoid calculations. */
2235 	now = p->se.exec_start;
2236 	runtime = p->se.sum_exec_runtime;
2237 
2238 	if (p->last_task_numa_placement) {
2239 		delta = runtime - p->last_sum_exec_runtime;
2240 		*period = now - p->last_task_numa_placement;
2241 
2242 		/* Avoid time going backwards, prevent potential divide error: */
2243 		if (unlikely((s64)*period < 0))
2244 			*period = 0;
2245 	} else {
2246 		delta = p->se.avg.load_sum;
2247 		*period = LOAD_AVG_MAX;
2248 	}
2249 
2250 	p->last_sum_exec_runtime = runtime;
2251 	p->last_task_numa_placement = now;
2252 
2253 	return delta;
2254 }
2255 
2256 /*
2257  * Determine the preferred nid for a task in a numa_group. This needs to
2258  * be done in a way that produces consistent results with group_weight,
2259  * otherwise workloads might not converge.
2260  */
2261 static int preferred_group_nid(struct task_struct *p, int nid)
2262 {
2263 	nodemask_t nodes;
2264 	int dist;
2265 
2266 	/* Direct connections between all NUMA nodes. */
2267 	if (sched_numa_topology_type == NUMA_DIRECT)
2268 		return nid;
2269 
2270 	/*
2271 	 * On a system with glueless mesh NUMA topology, group_weight
2272 	 * scores nodes according to the number of NUMA hinting faults on
2273 	 * both the node itself, and on nearby nodes.
2274 	 */
2275 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2276 		unsigned long score, max_score = 0;
2277 		int node, max_node = nid;
2278 
2279 		dist = sched_max_numa_distance;
2280 
2281 		for_each_node_state(node, N_CPU) {
2282 			score = group_weight(p, node, dist);
2283 			if (score > max_score) {
2284 				max_score = score;
2285 				max_node = node;
2286 			}
2287 		}
2288 		return max_node;
2289 	}
2290 
2291 	/*
2292 	 * Finding the preferred nid in a system with NUMA backplane
2293 	 * interconnect topology is more involved. The goal is to locate
2294 	 * tasks from numa_groups near each other in the system, and
2295 	 * untangle workloads from different sides of the system. This requires
2296 	 * searching down the hierarchy of node groups, recursively searching
2297 	 * inside the highest scoring group of nodes. The nodemask tricks
2298 	 * keep the complexity of the search down.
2299 	 */
2300 	nodes = node_states[N_CPU];
2301 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2302 		unsigned long max_faults = 0;
2303 		nodemask_t max_group = NODE_MASK_NONE;
2304 		int a, b;
2305 
2306 		/* Are there nodes at this distance from each other? */
2307 		if (!find_numa_distance(dist))
2308 			continue;
2309 
2310 		for_each_node_mask(a, nodes) {
2311 			unsigned long faults = 0;
2312 			nodemask_t this_group;
2313 			nodes_clear(this_group);
2314 
2315 			/* Sum group's NUMA faults; includes a==b case. */
2316 			for_each_node_mask(b, nodes) {
2317 				if (node_distance(a, b) < dist) {
2318 					faults += group_faults(p, b);
2319 					node_set(b, this_group);
2320 					node_clear(b, nodes);
2321 				}
2322 			}
2323 
2324 			/* Remember the top group. */
2325 			if (faults > max_faults) {
2326 				max_faults = faults;
2327 				max_group = this_group;
2328 				/*
2329 				 * subtle: at the smallest distance there is
2330 				 * just one node left in each "group", the
2331 				 * winner is the preferred nid.
2332 				 */
2333 				nid = a;
2334 			}
2335 		}
2336 		/* Next round, evaluate the nodes within max_group. */
2337 		if (!max_faults)
2338 			break;
2339 		nodes = max_group;
2340 	}
2341 	return nid;
2342 }
2343 
2344 static void task_numa_placement(struct task_struct *p)
2345 {
2346 	int seq, nid, max_nid = NUMA_NO_NODE;
2347 	unsigned long max_faults = 0;
2348 	unsigned long fault_types[2] = { 0, 0 };
2349 	unsigned long total_faults;
2350 	u64 runtime, period;
2351 	spinlock_t *group_lock = NULL;
2352 	struct numa_group *ng;
2353 
2354 	/*
2355 	 * The p->mm->numa_scan_seq field gets updated without
2356 	 * exclusive access. Use READ_ONCE() here to ensure
2357 	 * that the field is read in a single access:
2358 	 */
2359 	seq = READ_ONCE(p->mm->numa_scan_seq);
2360 	if (p->numa_scan_seq == seq)
2361 		return;
2362 	p->numa_scan_seq = seq;
2363 	p->numa_scan_period_max = task_scan_max(p);
2364 
2365 	total_faults = p->numa_faults_locality[0] +
2366 		       p->numa_faults_locality[1];
2367 	runtime = numa_get_avg_runtime(p, &period);
2368 
2369 	/* If the task is part of a group prevent parallel updates to group stats */
2370 	ng = deref_curr_numa_group(p);
2371 	if (ng) {
2372 		group_lock = &ng->lock;
2373 		spin_lock_irq(group_lock);
2374 	}
2375 
2376 	/* Find the node with the highest number of faults */
2377 	for_each_online_node(nid) {
2378 		/* Keep track of the offsets in numa_faults array */
2379 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2380 		unsigned long faults = 0, group_faults = 0;
2381 		int priv;
2382 
2383 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2384 			long diff, f_diff, f_weight;
2385 
2386 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2387 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2388 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2389 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2390 
2391 			/* Decay existing window, copy faults since last scan */
2392 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2393 			fault_types[priv] += p->numa_faults[membuf_idx];
2394 			p->numa_faults[membuf_idx] = 0;
2395 
2396 			/*
2397 			 * Normalize the faults_from, so all tasks in a group
2398 			 * count according to CPU use, instead of by the raw
2399 			 * number of faults. Tasks with little runtime have
2400 			 * little over-all impact on throughput, and thus their
2401 			 * faults are less important.
2402 			 */
2403 			f_weight = div64_u64(runtime << 16, period + 1);
2404 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2405 				   (total_faults + 1);
2406 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2407 			p->numa_faults[cpubuf_idx] = 0;
2408 
2409 			p->numa_faults[mem_idx] += diff;
2410 			p->numa_faults[cpu_idx] += f_diff;
2411 			faults += p->numa_faults[mem_idx];
2412 			p->total_numa_faults += diff;
2413 			if (ng) {
2414 				/*
2415 				 * safe because we can only change our own group
2416 				 *
2417 				 * mem_idx represents the offset for a given
2418 				 * nid and priv in a specific region because it
2419 				 * is at the beginning of the numa_faults array.
2420 				 */
2421 				ng->faults[mem_idx] += diff;
2422 				ng->faults[cpu_idx] += f_diff;
2423 				ng->total_faults += diff;
2424 				group_faults += ng->faults[mem_idx];
2425 			}
2426 		}
2427 
2428 		if (!ng) {
2429 			if (faults > max_faults) {
2430 				max_faults = faults;
2431 				max_nid = nid;
2432 			}
2433 		} else if (group_faults > max_faults) {
2434 			max_faults = group_faults;
2435 			max_nid = nid;
2436 		}
2437 	}
2438 
2439 	/* Cannot migrate task to CPU-less node */
2440 	if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
2441 		int near_nid = max_nid;
2442 		int distance, near_distance = INT_MAX;
2443 
2444 		for_each_node_state(nid, N_CPU) {
2445 			distance = node_distance(max_nid, nid);
2446 			if (distance < near_distance) {
2447 				near_nid = nid;
2448 				near_distance = distance;
2449 			}
2450 		}
2451 		max_nid = near_nid;
2452 	}
2453 
2454 	if (ng) {
2455 		numa_group_count_active_nodes(ng);
2456 		spin_unlock_irq(group_lock);
2457 		max_nid = preferred_group_nid(p, max_nid);
2458 	}
2459 
2460 	if (max_faults) {
2461 		/* Set the new preferred node */
2462 		if (max_nid != p->numa_preferred_nid)
2463 			sched_setnuma(p, max_nid);
2464 	}
2465 
2466 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2467 }
2468 
2469 static inline int get_numa_group(struct numa_group *grp)
2470 {
2471 	return refcount_inc_not_zero(&grp->refcount);
2472 }
2473 
2474 static inline void put_numa_group(struct numa_group *grp)
2475 {
2476 	if (refcount_dec_and_test(&grp->refcount))
2477 		kfree_rcu(grp, rcu);
2478 }
2479 
2480 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2481 			int *priv)
2482 {
2483 	struct numa_group *grp, *my_grp;
2484 	struct task_struct *tsk;
2485 	bool join = false;
2486 	int cpu = cpupid_to_cpu(cpupid);
2487 	int i;
2488 
2489 	if (unlikely(!deref_curr_numa_group(p))) {
2490 		unsigned int size = sizeof(struct numa_group) +
2491 				    NR_NUMA_HINT_FAULT_STATS *
2492 				    nr_node_ids * sizeof(unsigned long);
2493 
2494 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2495 		if (!grp)
2496 			return;
2497 
2498 		refcount_set(&grp->refcount, 1);
2499 		grp->active_nodes = 1;
2500 		grp->max_faults_cpu = 0;
2501 		spin_lock_init(&grp->lock);
2502 		grp->gid = p->pid;
2503 
2504 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2505 			grp->faults[i] = p->numa_faults[i];
2506 
2507 		grp->total_faults = p->total_numa_faults;
2508 
2509 		grp->nr_tasks++;
2510 		rcu_assign_pointer(p->numa_group, grp);
2511 	}
2512 
2513 	rcu_read_lock();
2514 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2515 
2516 	if (!cpupid_match_pid(tsk, cpupid))
2517 		goto no_join;
2518 
2519 	grp = rcu_dereference(tsk->numa_group);
2520 	if (!grp)
2521 		goto no_join;
2522 
2523 	my_grp = deref_curr_numa_group(p);
2524 	if (grp == my_grp)
2525 		goto no_join;
2526 
2527 	/*
2528 	 * Only join the other group if its bigger; if we're the bigger group,
2529 	 * the other task will join us.
2530 	 */
2531 	if (my_grp->nr_tasks > grp->nr_tasks)
2532 		goto no_join;
2533 
2534 	/*
2535 	 * Tie-break on the grp address.
2536 	 */
2537 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2538 		goto no_join;
2539 
2540 	/* Always join threads in the same process. */
2541 	if (tsk->mm == current->mm)
2542 		join = true;
2543 
2544 	/* Simple filter to avoid false positives due to PID collisions */
2545 	if (flags & TNF_SHARED)
2546 		join = true;
2547 
2548 	/* Update priv based on whether false sharing was detected */
2549 	*priv = !join;
2550 
2551 	if (join && !get_numa_group(grp))
2552 		goto no_join;
2553 
2554 	rcu_read_unlock();
2555 
2556 	if (!join)
2557 		return;
2558 
2559 	BUG_ON(irqs_disabled());
2560 	double_lock_irq(&my_grp->lock, &grp->lock);
2561 
2562 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2563 		my_grp->faults[i] -= p->numa_faults[i];
2564 		grp->faults[i] += p->numa_faults[i];
2565 	}
2566 	my_grp->total_faults -= p->total_numa_faults;
2567 	grp->total_faults += p->total_numa_faults;
2568 
2569 	my_grp->nr_tasks--;
2570 	grp->nr_tasks++;
2571 
2572 	spin_unlock(&my_grp->lock);
2573 	spin_unlock_irq(&grp->lock);
2574 
2575 	rcu_assign_pointer(p->numa_group, grp);
2576 
2577 	put_numa_group(my_grp);
2578 	return;
2579 
2580 no_join:
2581 	rcu_read_unlock();
2582 	return;
2583 }
2584 
2585 /*
2586  * Get rid of NUMA statistics associated with a task (either current or dead).
2587  * If @final is set, the task is dead and has reached refcount zero, so we can
2588  * safely free all relevant data structures. Otherwise, there might be
2589  * concurrent reads from places like load balancing and procfs, and we should
2590  * reset the data back to default state without freeing ->numa_faults.
2591  */
2592 void task_numa_free(struct task_struct *p, bool final)
2593 {
2594 	/* safe: p either is current or is being freed by current */
2595 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2596 	unsigned long *numa_faults = p->numa_faults;
2597 	unsigned long flags;
2598 	int i;
2599 
2600 	if (!numa_faults)
2601 		return;
2602 
2603 	if (grp) {
2604 		spin_lock_irqsave(&grp->lock, flags);
2605 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2606 			grp->faults[i] -= p->numa_faults[i];
2607 		grp->total_faults -= p->total_numa_faults;
2608 
2609 		grp->nr_tasks--;
2610 		spin_unlock_irqrestore(&grp->lock, flags);
2611 		RCU_INIT_POINTER(p->numa_group, NULL);
2612 		put_numa_group(grp);
2613 	}
2614 
2615 	if (final) {
2616 		p->numa_faults = NULL;
2617 		kfree(numa_faults);
2618 	} else {
2619 		p->total_numa_faults = 0;
2620 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2621 			numa_faults[i] = 0;
2622 	}
2623 }
2624 
2625 /*
2626  * Got a PROT_NONE fault for a page on @node.
2627  */
2628 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2629 {
2630 	struct task_struct *p = current;
2631 	bool migrated = flags & TNF_MIGRATED;
2632 	int cpu_node = task_node(current);
2633 	int local = !!(flags & TNF_FAULT_LOCAL);
2634 	struct numa_group *ng;
2635 	int priv;
2636 
2637 	if (!static_branch_likely(&sched_numa_balancing))
2638 		return;
2639 
2640 	/* for example, ksmd faulting in a user's mm */
2641 	if (!p->mm)
2642 		return;
2643 
2644 	/* Allocate buffer to track faults on a per-node basis */
2645 	if (unlikely(!p->numa_faults)) {
2646 		int size = sizeof(*p->numa_faults) *
2647 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2648 
2649 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2650 		if (!p->numa_faults)
2651 			return;
2652 
2653 		p->total_numa_faults = 0;
2654 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2655 	}
2656 
2657 	/*
2658 	 * First accesses are treated as private, otherwise consider accesses
2659 	 * to be private if the accessing pid has not changed
2660 	 */
2661 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2662 		priv = 1;
2663 	} else {
2664 		priv = cpupid_match_pid(p, last_cpupid);
2665 		if (!priv && !(flags & TNF_NO_GROUP))
2666 			task_numa_group(p, last_cpupid, flags, &priv);
2667 	}
2668 
2669 	/*
2670 	 * If a workload spans multiple NUMA nodes, a shared fault that
2671 	 * occurs wholly within the set of nodes that the workload is
2672 	 * actively using should be counted as local. This allows the
2673 	 * scan rate to slow down when a workload has settled down.
2674 	 */
2675 	ng = deref_curr_numa_group(p);
2676 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2677 				numa_is_active_node(cpu_node, ng) &&
2678 				numa_is_active_node(mem_node, ng))
2679 		local = 1;
2680 
2681 	/*
2682 	 * Retry to migrate task to preferred node periodically, in case it
2683 	 * previously failed, or the scheduler moved us.
2684 	 */
2685 	if (time_after(jiffies, p->numa_migrate_retry)) {
2686 		task_numa_placement(p);
2687 		numa_migrate_preferred(p);
2688 	}
2689 
2690 	if (migrated)
2691 		p->numa_pages_migrated += pages;
2692 	if (flags & TNF_MIGRATE_FAIL)
2693 		p->numa_faults_locality[2] += pages;
2694 
2695 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2696 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2697 	p->numa_faults_locality[local] += pages;
2698 }
2699 
2700 static void reset_ptenuma_scan(struct task_struct *p)
2701 {
2702 	/*
2703 	 * We only did a read acquisition of the mmap sem, so
2704 	 * p->mm->numa_scan_seq is written to without exclusive access
2705 	 * and the update is not guaranteed to be atomic. That's not
2706 	 * much of an issue though, since this is just used for
2707 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2708 	 * expensive, to avoid any form of compiler optimizations:
2709 	 */
2710 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2711 	p->mm->numa_scan_offset = 0;
2712 }
2713 
2714 /*
2715  * The expensive part of numa migration is done from task_work context.
2716  * Triggered from task_tick_numa().
2717  */
2718 static void task_numa_work(struct callback_head *work)
2719 {
2720 	unsigned long migrate, next_scan, now = jiffies;
2721 	struct task_struct *p = current;
2722 	struct mm_struct *mm = p->mm;
2723 	u64 runtime = p->se.sum_exec_runtime;
2724 	struct vm_area_struct *vma;
2725 	unsigned long start, end;
2726 	unsigned long nr_pte_updates = 0;
2727 	long pages, virtpages;
2728 
2729 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2730 
2731 	work->next = work;
2732 	/*
2733 	 * Who cares about NUMA placement when they're dying.
2734 	 *
2735 	 * NOTE: make sure not to dereference p->mm before this check,
2736 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2737 	 * without p->mm even though we still had it when we enqueued this
2738 	 * work.
2739 	 */
2740 	if (p->flags & PF_EXITING)
2741 		return;
2742 
2743 	if (!mm->numa_next_scan) {
2744 		mm->numa_next_scan = now +
2745 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2746 	}
2747 
2748 	/*
2749 	 * Enforce maximal scan/migration frequency..
2750 	 */
2751 	migrate = mm->numa_next_scan;
2752 	if (time_before(now, migrate))
2753 		return;
2754 
2755 	if (p->numa_scan_period == 0) {
2756 		p->numa_scan_period_max = task_scan_max(p);
2757 		p->numa_scan_period = task_scan_start(p);
2758 	}
2759 
2760 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2761 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2762 		return;
2763 
2764 	/*
2765 	 * Delay this task enough that another task of this mm will likely win
2766 	 * the next time around.
2767 	 */
2768 	p->node_stamp += 2 * TICK_NSEC;
2769 
2770 	start = mm->numa_scan_offset;
2771 	pages = sysctl_numa_balancing_scan_size;
2772 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2773 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2774 	if (!pages)
2775 		return;
2776 
2777 
2778 	if (!mmap_read_trylock(mm))
2779 		return;
2780 	vma = find_vma(mm, start);
2781 	if (!vma) {
2782 		reset_ptenuma_scan(p);
2783 		start = 0;
2784 		vma = mm->mmap;
2785 	}
2786 	for (; vma; vma = vma->vm_next) {
2787 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2788 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2789 			continue;
2790 		}
2791 
2792 		/*
2793 		 * Shared library pages mapped by multiple processes are not
2794 		 * migrated as it is expected they are cache replicated. Avoid
2795 		 * hinting faults in read-only file-backed mappings or the vdso
2796 		 * as migrating the pages will be of marginal benefit.
2797 		 */
2798 		if (!vma->vm_mm ||
2799 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2800 			continue;
2801 
2802 		/*
2803 		 * Skip inaccessible VMAs to avoid any confusion between
2804 		 * PROT_NONE and NUMA hinting ptes
2805 		 */
2806 		if (!vma_is_accessible(vma))
2807 			continue;
2808 
2809 		do {
2810 			start = max(start, vma->vm_start);
2811 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2812 			end = min(end, vma->vm_end);
2813 			nr_pte_updates = change_prot_numa(vma, start, end);
2814 
2815 			/*
2816 			 * Try to scan sysctl_numa_balancing_size worth of
2817 			 * hpages that have at least one present PTE that
2818 			 * is not already pte-numa. If the VMA contains
2819 			 * areas that are unused or already full of prot_numa
2820 			 * PTEs, scan up to virtpages, to skip through those
2821 			 * areas faster.
2822 			 */
2823 			if (nr_pte_updates)
2824 				pages -= (end - start) >> PAGE_SHIFT;
2825 			virtpages -= (end - start) >> PAGE_SHIFT;
2826 
2827 			start = end;
2828 			if (pages <= 0 || virtpages <= 0)
2829 				goto out;
2830 
2831 			cond_resched();
2832 		} while (end != vma->vm_end);
2833 	}
2834 
2835 out:
2836 	/*
2837 	 * It is possible to reach the end of the VMA list but the last few
2838 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2839 	 * would find the !migratable VMA on the next scan but not reset the
2840 	 * scanner to the start so check it now.
2841 	 */
2842 	if (vma)
2843 		mm->numa_scan_offset = start;
2844 	else
2845 		reset_ptenuma_scan(p);
2846 	mmap_read_unlock(mm);
2847 
2848 	/*
2849 	 * Make sure tasks use at least 32x as much time to run other code
2850 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2851 	 * Usually update_task_scan_period slows down scanning enough; on an
2852 	 * overloaded system we need to limit overhead on a per task basis.
2853 	 */
2854 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2855 		u64 diff = p->se.sum_exec_runtime - runtime;
2856 		p->node_stamp += 32 * diff;
2857 	}
2858 }
2859 
2860 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2861 {
2862 	int mm_users = 0;
2863 	struct mm_struct *mm = p->mm;
2864 
2865 	if (mm) {
2866 		mm_users = atomic_read(&mm->mm_users);
2867 		if (mm_users == 1) {
2868 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2869 			mm->numa_scan_seq = 0;
2870 		}
2871 	}
2872 	p->node_stamp			= 0;
2873 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
2874 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
2875 	/* Protect against double add, see task_tick_numa and task_numa_work */
2876 	p->numa_work.next		= &p->numa_work;
2877 	p->numa_faults			= NULL;
2878 	p->numa_pages_migrated		= 0;
2879 	p->total_numa_faults		= 0;
2880 	RCU_INIT_POINTER(p->numa_group, NULL);
2881 	p->last_task_numa_placement	= 0;
2882 	p->last_sum_exec_runtime	= 0;
2883 
2884 	init_task_work(&p->numa_work, task_numa_work);
2885 
2886 	/* New address space, reset the preferred nid */
2887 	if (!(clone_flags & CLONE_VM)) {
2888 		p->numa_preferred_nid = NUMA_NO_NODE;
2889 		return;
2890 	}
2891 
2892 	/*
2893 	 * New thread, keep existing numa_preferred_nid which should be copied
2894 	 * already by arch_dup_task_struct but stagger when scans start.
2895 	 */
2896 	if (mm) {
2897 		unsigned int delay;
2898 
2899 		delay = min_t(unsigned int, task_scan_max(current),
2900 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2901 		delay += 2 * TICK_NSEC;
2902 		p->node_stamp = delay;
2903 	}
2904 }
2905 
2906 /*
2907  * Drive the periodic memory faults..
2908  */
2909 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2910 {
2911 	struct callback_head *work = &curr->numa_work;
2912 	u64 period, now;
2913 
2914 	/*
2915 	 * We don't care about NUMA placement if we don't have memory.
2916 	 */
2917 	if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2918 		return;
2919 
2920 	/*
2921 	 * Using runtime rather than walltime has the dual advantage that
2922 	 * we (mostly) drive the selection from busy threads and that the
2923 	 * task needs to have done some actual work before we bother with
2924 	 * NUMA placement.
2925 	 */
2926 	now = curr->se.sum_exec_runtime;
2927 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2928 
2929 	if (now > curr->node_stamp + period) {
2930 		if (!curr->node_stamp)
2931 			curr->numa_scan_period = task_scan_start(curr);
2932 		curr->node_stamp += period;
2933 
2934 		if (!time_before(jiffies, curr->mm->numa_next_scan))
2935 			task_work_add(curr, work, TWA_RESUME);
2936 	}
2937 }
2938 
2939 static void update_scan_period(struct task_struct *p, int new_cpu)
2940 {
2941 	int src_nid = cpu_to_node(task_cpu(p));
2942 	int dst_nid = cpu_to_node(new_cpu);
2943 
2944 	if (!static_branch_likely(&sched_numa_balancing))
2945 		return;
2946 
2947 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2948 		return;
2949 
2950 	if (src_nid == dst_nid)
2951 		return;
2952 
2953 	/*
2954 	 * Allow resets if faults have been trapped before one scan
2955 	 * has completed. This is most likely due to a new task that
2956 	 * is pulled cross-node due to wakeups or load balancing.
2957 	 */
2958 	if (p->numa_scan_seq) {
2959 		/*
2960 		 * Avoid scan adjustments if moving to the preferred
2961 		 * node or if the task was not previously running on
2962 		 * the preferred node.
2963 		 */
2964 		if (dst_nid == p->numa_preferred_nid ||
2965 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2966 			src_nid != p->numa_preferred_nid))
2967 			return;
2968 	}
2969 
2970 	p->numa_scan_period = task_scan_start(p);
2971 }
2972 
2973 #else
2974 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2975 {
2976 }
2977 
2978 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2979 {
2980 }
2981 
2982 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2983 {
2984 }
2985 
2986 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2987 {
2988 }
2989 
2990 #endif /* CONFIG_NUMA_BALANCING */
2991 
2992 static void
2993 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2994 {
2995 	update_load_add(&cfs_rq->load, se->load.weight);
2996 #ifdef CONFIG_SMP
2997 	if (entity_is_task(se)) {
2998 		struct rq *rq = rq_of(cfs_rq);
2999 
3000 		account_numa_enqueue(rq, task_of(se));
3001 		list_add(&se->group_node, &rq->cfs_tasks);
3002 	}
3003 #endif
3004 	cfs_rq->nr_running++;
3005 	if (se_is_idle(se))
3006 		cfs_rq->idle_nr_running++;
3007 }
3008 
3009 static void
3010 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3011 {
3012 	update_load_sub(&cfs_rq->load, se->load.weight);
3013 #ifdef CONFIG_SMP
3014 	if (entity_is_task(se)) {
3015 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3016 		list_del_init(&se->group_node);
3017 	}
3018 #endif
3019 	cfs_rq->nr_running--;
3020 	if (se_is_idle(se))
3021 		cfs_rq->idle_nr_running--;
3022 }
3023 
3024 /*
3025  * Signed add and clamp on underflow.
3026  *
3027  * Explicitly do a load-store to ensure the intermediate value never hits
3028  * memory. This allows lockless observations without ever seeing the negative
3029  * values.
3030  */
3031 #define add_positive(_ptr, _val) do {                           \
3032 	typeof(_ptr) ptr = (_ptr);                              \
3033 	typeof(_val) val = (_val);                              \
3034 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3035 								\
3036 	res = var + val;                                        \
3037 								\
3038 	if (val < 0 && res > var)                               \
3039 		res = 0;                                        \
3040 								\
3041 	WRITE_ONCE(*ptr, res);                                  \
3042 } while (0)
3043 
3044 /*
3045  * Unsigned subtract and clamp on underflow.
3046  *
3047  * Explicitly do a load-store to ensure the intermediate value never hits
3048  * memory. This allows lockless observations without ever seeing the negative
3049  * values.
3050  */
3051 #define sub_positive(_ptr, _val) do {				\
3052 	typeof(_ptr) ptr = (_ptr);				\
3053 	typeof(*ptr) val = (_val);				\
3054 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3055 	res = var - val;					\
3056 	if (res > var)						\
3057 		res = 0;					\
3058 	WRITE_ONCE(*ptr, res);					\
3059 } while (0)
3060 
3061 /*
3062  * Remove and clamp on negative, from a local variable.
3063  *
3064  * A variant of sub_positive(), which does not use explicit load-store
3065  * and is thus optimized for local variable updates.
3066  */
3067 #define lsub_positive(_ptr, _val) do {				\
3068 	typeof(_ptr) ptr = (_ptr);				\
3069 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3070 } while (0)
3071 
3072 #ifdef CONFIG_SMP
3073 static inline void
3074 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3075 {
3076 	cfs_rq->avg.load_avg += se->avg.load_avg;
3077 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3078 }
3079 
3080 static inline void
3081 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3082 {
3083 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3084 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3085 	/* See update_cfs_rq_load_avg() */
3086 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3087 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3088 }
3089 #else
3090 static inline void
3091 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3092 static inline void
3093 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3094 #endif
3095 
3096 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3097 			    unsigned long weight)
3098 {
3099 	if (se->on_rq) {
3100 		/* commit outstanding execution time */
3101 		if (cfs_rq->curr == se)
3102 			update_curr(cfs_rq);
3103 		update_load_sub(&cfs_rq->load, se->load.weight);
3104 	}
3105 	dequeue_load_avg(cfs_rq, se);
3106 
3107 	update_load_set(&se->load, weight);
3108 
3109 #ifdef CONFIG_SMP
3110 	do {
3111 		u32 divider = get_pelt_divider(&se->avg);
3112 
3113 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3114 	} while (0);
3115 #endif
3116 
3117 	enqueue_load_avg(cfs_rq, se);
3118 	if (se->on_rq)
3119 		update_load_add(&cfs_rq->load, se->load.weight);
3120 
3121 }
3122 
3123 void reweight_task(struct task_struct *p, int prio)
3124 {
3125 	struct sched_entity *se = &p->se;
3126 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3127 	struct load_weight *load = &se->load;
3128 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3129 
3130 	reweight_entity(cfs_rq, se, weight);
3131 	load->inv_weight = sched_prio_to_wmult[prio];
3132 }
3133 
3134 #ifdef CONFIG_FAIR_GROUP_SCHED
3135 #ifdef CONFIG_SMP
3136 /*
3137  * All this does is approximate the hierarchical proportion which includes that
3138  * global sum we all love to hate.
3139  *
3140  * That is, the weight of a group entity, is the proportional share of the
3141  * group weight based on the group runqueue weights. That is:
3142  *
3143  *                     tg->weight * grq->load.weight
3144  *   ge->load.weight = -----------------------------               (1)
3145  *                       \Sum grq->load.weight
3146  *
3147  * Now, because computing that sum is prohibitively expensive to compute (been
3148  * there, done that) we approximate it with this average stuff. The average
3149  * moves slower and therefore the approximation is cheaper and more stable.
3150  *
3151  * So instead of the above, we substitute:
3152  *
3153  *   grq->load.weight -> grq->avg.load_avg                         (2)
3154  *
3155  * which yields the following:
3156  *
3157  *                     tg->weight * grq->avg.load_avg
3158  *   ge->load.weight = ------------------------------              (3)
3159  *                             tg->load_avg
3160  *
3161  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3162  *
3163  * That is shares_avg, and it is right (given the approximation (2)).
3164  *
3165  * The problem with it is that because the average is slow -- it was designed
3166  * to be exactly that of course -- this leads to transients in boundary
3167  * conditions. In specific, the case where the group was idle and we start the
3168  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3169  * yielding bad latency etc..
3170  *
3171  * Now, in that special case (1) reduces to:
3172  *
3173  *                     tg->weight * grq->load.weight
3174  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3175  *                         grp->load.weight
3176  *
3177  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3178  *
3179  * So what we do is modify our approximation (3) to approach (4) in the (near)
3180  * UP case, like:
3181  *
3182  *   ge->load.weight =
3183  *
3184  *              tg->weight * grq->load.weight
3185  *     ---------------------------------------------------         (5)
3186  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3187  *
3188  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3189  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3190  *
3191  *
3192  *                     tg->weight * grq->load.weight
3193  *   ge->load.weight = -----------------------------		   (6)
3194  *                             tg_load_avg'
3195  *
3196  * Where:
3197  *
3198  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3199  *                  max(grq->load.weight, grq->avg.load_avg)
3200  *
3201  * And that is shares_weight and is icky. In the (near) UP case it approaches
3202  * (4) while in the normal case it approaches (3). It consistently
3203  * overestimates the ge->load.weight and therefore:
3204  *
3205  *   \Sum ge->load.weight >= tg->weight
3206  *
3207  * hence icky!
3208  */
3209 static long calc_group_shares(struct cfs_rq *cfs_rq)
3210 {
3211 	long tg_weight, tg_shares, load, shares;
3212 	struct task_group *tg = cfs_rq->tg;
3213 
3214 	tg_shares = READ_ONCE(tg->shares);
3215 
3216 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3217 
3218 	tg_weight = atomic_long_read(&tg->load_avg);
3219 
3220 	/* Ensure tg_weight >= load */
3221 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3222 	tg_weight += load;
3223 
3224 	shares = (tg_shares * load);
3225 	if (tg_weight)
3226 		shares /= tg_weight;
3227 
3228 	/*
3229 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3230 	 * of a group with small tg->shares value. It is a floor value which is
3231 	 * assigned as a minimum load.weight to the sched_entity representing
3232 	 * the group on a CPU.
3233 	 *
3234 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3235 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3236 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3237 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3238 	 * instead of 0.
3239 	 */
3240 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3241 }
3242 #endif /* CONFIG_SMP */
3243 
3244 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3245 
3246 /*
3247  * Recomputes the group entity based on the current state of its group
3248  * runqueue.
3249  */
3250 static void update_cfs_group(struct sched_entity *se)
3251 {
3252 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3253 	long shares;
3254 
3255 	if (!gcfs_rq)
3256 		return;
3257 
3258 	if (throttled_hierarchy(gcfs_rq))
3259 		return;
3260 
3261 #ifndef CONFIG_SMP
3262 	shares = READ_ONCE(gcfs_rq->tg->shares);
3263 
3264 	if (likely(se->load.weight == shares))
3265 		return;
3266 #else
3267 	shares   = calc_group_shares(gcfs_rq);
3268 #endif
3269 
3270 	reweight_entity(cfs_rq_of(se), se, shares);
3271 }
3272 
3273 #else /* CONFIG_FAIR_GROUP_SCHED */
3274 static inline void update_cfs_group(struct sched_entity *se)
3275 {
3276 }
3277 #endif /* CONFIG_FAIR_GROUP_SCHED */
3278 
3279 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3280 {
3281 	struct rq *rq = rq_of(cfs_rq);
3282 
3283 	if (&rq->cfs == cfs_rq) {
3284 		/*
3285 		 * There are a few boundary cases this might miss but it should
3286 		 * get called often enough that that should (hopefully) not be
3287 		 * a real problem.
3288 		 *
3289 		 * It will not get called when we go idle, because the idle
3290 		 * thread is a different class (!fair), nor will the utilization
3291 		 * number include things like RT tasks.
3292 		 *
3293 		 * As is, the util number is not freq-invariant (we'd have to
3294 		 * implement arch_scale_freq_capacity() for that).
3295 		 *
3296 		 * See cpu_util_cfs().
3297 		 */
3298 		cpufreq_update_util(rq, flags);
3299 	}
3300 }
3301 
3302 #ifdef CONFIG_SMP
3303 #ifdef CONFIG_FAIR_GROUP_SCHED
3304 /*
3305  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3306  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3307  * bottom-up, we only have to test whether the cfs_rq before us on the list
3308  * is our child.
3309  * If cfs_rq is not on the list, test whether a child needs its to be added to
3310  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
3311  */
3312 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3313 {
3314 	struct cfs_rq *prev_cfs_rq;
3315 	struct list_head *prev;
3316 
3317 	if (cfs_rq->on_list) {
3318 		prev = cfs_rq->leaf_cfs_rq_list.prev;
3319 	} else {
3320 		struct rq *rq = rq_of(cfs_rq);
3321 
3322 		prev = rq->tmp_alone_branch;
3323 	}
3324 
3325 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3326 
3327 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3328 }
3329 
3330 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3331 {
3332 	if (cfs_rq->load.weight)
3333 		return false;
3334 
3335 	if (cfs_rq->avg.load_sum)
3336 		return false;
3337 
3338 	if (cfs_rq->avg.util_sum)
3339 		return false;
3340 
3341 	if (cfs_rq->avg.runnable_sum)
3342 		return false;
3343 
3344 	if (child_cfs_rq_on_list(cfs_rq))
3345 		return false;
3346 
3347 	/*
3348 	 * _avg must be null when _sum are null because _avg = _sum / divider
3349 	 * Make sure that rounding and/or propagation of PELT values never
3350 	 * break this.
3351 	 */
3352 	SCHED_WARN_ON(cfs_rq->avg.load_avg ||
3353 		      cfs_rq->avg.util_avg ||
3354 		      cfs_rq->avg.runnable_avg);
3355 
3356 	return true;
3357 }
3358 
3359 /**
3360  * update_tg_load_avg - update the tg's load avg
3361  * @cfs_rq: the cfs_rq whose avg changed
3362  *
3363  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3364  * However, because tg->load_avg is a global value there are performance
3365  * considerations.
3366  *
3367  * In order to avoid having to look at the other cfs_rq's, we use a
3368  * differential update where we store the last value we propagated. This in
3369  * turn allows skipping updates if the differential is 'small'.
3370  *
3371  * Updating tg's load_avg is necessary before update_cfs_share().
3372  */
3373 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3374 {
3375 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3376 
3377 	/*
3378 	 * No need to update load_avg for root_task_group as it is not used.
3379 	 */
3380 	if (cfs_rq->tg == &root_task_group)
3381 		return;
3382 
3383 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3384 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3385 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3386 	}
3387 }
3388 
3389 /*
3390  * Called within set_task_rq() right before setting a task's CPU. The
3391  * caller only guarantees p->pi_lock is held; no other assumptions,
3392  * including the state of rq->lock, should be made.
3393  */
3394 void set_task_rq_fair(struct sched_entity *se,
3395 		      struct cfs_rq *prev, struct cfs_rq *next)
3396 {
3397 	u64 p_last_update_time;
3398 	u64 n_last_update_time;
3399 
3400 	if (!sched_feat(ATTACH_AGE_LOAD))
3401 		return;
3402 
3403 	/*
3404 	 * We are supposed to update the task to "current" time, then its up to
3405 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3406 	 * getting what current time is, so simply throw away the out-of-date
3407 	 * time. This will result in the wakee task is less decayed, but giving
3408 	 * the wakee more load sounds not bad.
3409 	 */
3410 	if (!(se->avg.last_update_time && prev))
3411 		return;
3412 
3413 #ifndef CONFIG_64BIT
3414 	{
3415 		u64 p_last_update_time_copy;
3416 		u64 n_last_update_time_copy;
3417 
3418 		do {
3419 			p_last_update_time_copy = prev->load_last_update_time_copy;
3420 			n_last_update_time_copy = next->load_last_update_time_copy;
3421 
3422 			smp_rmb();
3423 
3424 			p_last_update_time = prev->avg.last_update_time;
3425 			n_last_update_time = next->avg.last_update_time;
3426 
3427 		} while (p_last_update_time != p_last_update_time_copy ||
3428 			 n_last_update_time != n_last_update_time_copy);
3429 	}
3430 #else
3431 	p_last_update_time = prev->avg.last_update_time;
3432 	n_last_update_time = next->avg.last_update_time;
3433 #endif
3434 	__update_load_avg_blocked_se(p_last_update_time, se);
3435 	se->avg.last_update_time = n_last_update_time;
3436 }
3437 
3438 /*
3439  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3440  * propagate its contribution. The key to this propagation is the invariant
3441  * that for each group:
3442  *
3443  *   ge->avg == grq->avg						(1)
3444  *
3445  * _IFF_ we look at the pure running and runnable sums. Because they
3446  * represent the very same entity, just at different points in the hierarchy.
3447  *
3448  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3449  * and simply copies the running/runnable sum over (but still wrong, because
3450  * the group entity and group rq do not have their PELT windows aligned).
3451  *
3452  * However, update_tg_cfs_load() is more complex. So we have:
3453  *
3454  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3455  *
3456  * And since, like util, the runnable part should be directly transferable,
3457  * the following would _appear_ to be the straight forward approach:
3458  *
3459  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3460  *
3461  * And per (1) we have:
3462  *
3463  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3464  *
3465  * Which gives:
3466  *
3467  *                      ge->load.weight * grq->avg.load_avg
3468  *   ge->avg.load_avg = -----------------------------------		(4)
3469  *                               grq->load.weight
3470  *
3471  * Except that is wrong!
3472  *
3473  * Because while for entities historical weight is not important and we
3474  * really only care about our future and therefore can consider a pure
3475  * runnable sum, runqueues can NOT do this.
3476  *
3477  * We specifically want runqueues to have a load_avg that includes
3478  * historical weights. Those represent the blocked load, the load we expect
3479  * to (shortly) return to us. This only works by keeping the weights as
3480  * integral part of the sum. We therefore cannot decompose as per (3).
3481  *
3482  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3483  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3484  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3485  * runnable section of these tasks overlap (or not). If they were to perfectly
3486  * align the rq as a whole would be runnable 2/3 of the time. If however we
3487  * always have at least 1 runnable task, the rq as a whole is always runnable.
3488  *
3489  * So we'll have to approximate.. :/
3490  *
3491  * Given the constraint:
3492  *
3493  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3494  *
3495  * We can construct a rule that adds runnable to a rq by assuming minimal
3496  * overlap.
3497  *
3498  * On removal, we'll assume each task is equally runnable; which yields:
3499  *
3500  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3501  *
3502  * XXX: only do this for the part of runnable > running ?
3503  *
3504  */
3505 static inline void
3506 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3507 {
3508 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
3509 	u32 new_sum, divider;
3510 
3511 	/* Nothing to update */
3512 	if (!delta_avg)
3513 		return;
3514 
3515 	/*
3516 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3517 	 * See ___update_load_avg() for details.
3518 	 */
3519 	divider = get_pelt_divider(&cfs_rq->avg);
3520 
3521 
3522 	/* Set new sched_entity's utilization */
3523 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3524 	new_sum = se->avg.util_avg * divider;
3525 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
3526 	se->avg.util_sum = new_sum;
3527 
3528 	/* Update parent cfs_rq utilization */
3529 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
3530 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
3531 
3532 	/* See update_cfs_rq_load_avg() */
3533 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
3534 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
3535 }
3536 
3537 static inline void
3538 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3539 {
3540 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3541 	u32 new_sum, divider;
3542 
3543 	/* Nothing to update */
3544 	if (!delta_avg)
3545 		return;
3546 
3547 	/*
3548 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3549 	 * See ___update_load_avg() for details.
3550 	 */
3551 	divider = get_pelt_divider(&cfs_rq->avg);
3552 
3553 	/* Set new sched_entity's runnable */
3554 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3555 	new_sum = se->avg.runnable_avg * divider;
3556 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
3557 	se->avg.runnable_sum = new_sum;
3558 
3559 	/* Update parent cfs_rq runnable */
3560 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
3561 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
3562 	/* See update_cfs_rq_load_avg() */
3563 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
3564 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
3565 }
3566 
3567 static inline void
3568 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3569 {
3570 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3571 	unsigned long load_avg;
3572 	u64 load_sum = 0;
3573 	s64 delta_sum;
3574 	u32 divider;
3575 
3576 	if (!runnable_sum)
3577 		return;
3578 
3579 	gcfs_rq->prop_runnable_sum = 0;
3580 
3581 	/*
3582 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3583 	 * See ___update_load_avg() for details.
3584 	 */
3585 	divider = get_pelt_divider(&cfs_rq->avg);
3586 
3587 	if (runnable_sum >= 0) {
3588 		/*
3589 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3590 		 * the CPU is saturated running == runnable.
3591 		 */
3592 		runnable_sum += se->avg.load_sum;
3593 		runnable_sum = min_t(long, runnable_sum, divider);
3594 	} else {
3595 		/*
3596 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3597 		 * assuming all tasks are equally runnable.
3598 		 */
3599 		if (scale_load_down(gcfs_rq->load.weight)) {
3600 			load_sum = div_u64(gcfs_rq->avg.load_sum,
3601 				scale_load_down(gcfs_rq->load.weight));
3602 		}
3603 
3604 		/* But make sure to not inflate se's runnable */
3605 		runnable_sum = min(se->avg.load_sum, load_sum);
3606 	}
3607 
3608 	/*
3609 	 * runnable_sum can't be lower than running_sum
3610 	 * Rescale running sum to be in the same range as runnable sum
3611 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3612 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3613 	 */
3614 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3615 	runnable_sum = max(runnable_sum, running_sum);
3616 
3617 	load_sum = se_weight(se) * runnable_sum;
3618 	load_avg = div_u64(load_sum, divider);
3619 
3620 	delta_avg = load_avg - se->avg.load_avg;
3621 	if (!delta_avg)
3622 		return;
3623 
3624 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3625 
3626 	se->avg.load_sum = runnable_sum;
3627 	se->avg.load_avg = load_avg;
3628 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3629 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3630 	/* See update_cfs_rq_load_avg() */
3631 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3632 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3633 }
3634 
3635 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3636 {
3637 	cfs_rq->propagate = 1;
3638 	cfs_rq->prop_runnable_sum += runnable_sum;
3639 }
3640 
3641 /* Update task and its cfs_rq load average */
3642 static inline int propagate_entity_load_avg(struct sched_entity *se)
3643 {
3644 	struct cfs_rq *cfs_rq, *gcfs_rq;
3645 
3646 	if (entity_is_task(se))
3647 		return 0;
3648 
3649 	gcfs_rq = group_cfs_rq(se);
3650 	if (!gcfs_rq->propagate)
3651 		return 0;
3652 
3653 	gcfs_rq->propagate = 0;
3654 
3655 	cfs_rq = cfs_rq_of(se);
3656 
3657 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3658 
3659 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3660 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3661 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3662 
3663 	trace_pelt_cfs_tp(cfs_rq);
3664 	trace_pelt_se_tp(se);
3665 
3666 	return 1;
3667 }
3668 
3669 /*
3670  * Check if we need to update the load and the utilization of a blocked
3671  * group_entity:
3672  */
3673 static inline bool skip_blocked_update(struct sched_entity *se)
3674 {
3675 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3676 
3677 	/*
3678 	 * If sched_entity still have not zero load or utilization, we have to
3679 	 * decay it:
3680 	 */
3681 	if (se->avg.load_avg || se->avg.util_avg)
3682 		return false;
3683 
3684 	/*
3685 	 * If there is a pending propagation, we have to update the load and
3686 	 * the utilization of the sched_entity:
3687 	 */
3688 	if (gcfs_rq->propagate)
3689 		return false;
3690 
3691 	/*
3692 	 * Otherwise, the load and the utilization of the sched_entity is
3693 	 * already zero and there is no pending propagation, so it will be a
3694 	 * waste of time to try to decay it:
3695 	 */
3696 	return true;
3697 }
3698 
3699 #else /* CONFIG_FAIR_GROUP_SCHED */
3700 
3701 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3702 
3703 static inline int propagate_entity_load_avg(struct sched_entity *se)
3704 {
3705 	return 0;
3706 }
3707 
3708 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3709 
3710 #endif /* CONFIG_FAIR_GROUP_SCHED */
3711 
3712 /**
3713  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3714  * @now: current time, as per cfs_rq_clock_pelt()
3715  * @cfs_rq: cfs_rq to update
3716  *
3717  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3718  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3719  * post_init_entity_util_avg().
3720  *
3721  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3722  *
3723  * Return: true if the load decayed or we removed load.
3724  *
3725  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3726  * call update_tg_load_avg() when this function returns true.
3727  */
3728 static inline int
3729 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3730 {
3731 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3732 	struct sched_avg *sa = &cfs_rq->avg;
3733 	int decayed = 0;
3734 
3735 	if (cfs_rq->removed.nr) {
3736 		unsigned long r;
3737 		u32 divider = get_pelt_divider(&cfs_rq->avg);
3738 
3739 		raw_spin_lock(&cfs_rq->removed.lock);
3740 		swap(cfs_rq->removed.util_avg, removed_util);
3741 		swap(cfs_rq->removed.load_avg, removed_load);
3742 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
3743 		cfs_rq->removed.nr = 0;
3744 		raw_spin_unlock(&cfs_rq->removed.lock);
3745 
3746 		r = removed_load;
3747 		sub_positive(&sa->load_avg, r);
3748 		sub_positive(&sa->load_sum, r * divider);
3749 		/* See sa->util_sum below */
3750 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
3751 
3752 		r = removed_util;
3753 		sub_positive(&sa->util_avg, r);
3754 		sub_positive(&sa->util_sum, r * divider);
3755 		/*
3756 		 * Because of rounding, se->util_sum might ends up being +1 more than
3757 		 * cfs->util_sum. Although this is not a problem by itself, detaching
3758 		 * a lot of tasks with the rounding problem between 2 updates of
3759 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
3760 		 * cfs_util_avg is not.
3761 		 * Check that util_sum is still above its lower bound for the new
3762 		 * util_avg. Given that period_contrib might have moved since the last
3763 		 * sync, we are only sure that util_sum must be above or equal to
3764 		 *    util_avg * minimum possible divider
3765 		 */
3766 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
3767 
3768 		r = removed_runnable;
3769 		sub_positive(&sa->runnable_avg, r);
3770 		sub_positive(&sa->runnable_sum, r * divider);
3771 		/* See sa->util_sum above */
3772 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
3773 					      sa->runnable_avg * PELT_MIN_DIVIDER);
3774 
3775 		/*
3776 		 * removed_runnable is the unweighted version of removed_load so we
3777 		 * can use it to estimate removed_load_sum.
3778 		 */
3779 		add_tg_cfs_propagate(cfs_rq,
3780 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3781 
3782 		decayed = 1;
3783 	}
3784 
3785 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3786 
3787 #ifndef CONFIG_64BIT
3788 	smp_wmb();
3789 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3790 #endif
3791 
3792 	return decayed;
3793 }
3794 
3795 /**
3796  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3797  * @cfs_rq: cfs_rq to attach to
3798  * @se: sched_entity to attach
3799  *
3800  * Must call update_cfs_rq_load_avg() before this, since we rely on
3801  * cfs_rq->avg.last_update_time being current.
3802  */
3803 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3804 {
3805 	/*
3806 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3807 	 * See ___update_load_avg() for details.
3808 	 */
3809 	u32 divider = get_pelt_divider(&cfs_rq->avg);
3810 
3811 	/*
3812 	 * When we attach the @se to the @cfs_rq, we must align the decay
3813 	 * window because without that, really weird and wonderful things can
3814 	 * happen.
3815 	 *
3816 	 * XXX illustrate
3817 	 */
3818 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3819 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3820 
3821 	/*
3822 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3823 	 * period_contrib. This isn't strictly correct, but since we're
3824 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3825 	 * _sum a little.
3826 	 */
3827 	se->avg.util_sum = se->avg.util_avg * divider;
3828 
3829 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3830 
3831 	se->avg.load_sum = divider;
3832 	if (se_weight(se)) {
3833 		se->avg.load_sum =
3834 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3835 	}
3836 
3837 	enqueue_load_avg(cfs_rq, se);
3838 	cfs_rq->avg.util_avg += se->avg.util_avg;
3839 	cfs_rq->avg.util_sum += se->avg.util_sum;
3840 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3841 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3842 
3843 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3844 
3845 	cfs_rq_util_change(cfs_rq, 0);
3846 
3847 	trace_pelt_cfs_tp(cfs_rq);
3848 }
3849 
3850 /**
3851  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3852  * @cfs_rq: cfs_rq to detach from
3853  * @se: sched_entity to detach
3854  *
3855  * Must call update_cfs_rq_load_avg() before this, since we rely on
3856  * cfs_rq->avg.last_update_time being current.
3857  */
3858 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3859 {
3860 	dequeue_load_avg(cfs_rq, se);
3861 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3862 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3863 	/* See update_cfs_rq_load_avg() */
3864 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
3865 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
3866 
3867 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3868 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
3869 	/* See update_cfs_rq_load_avg() */
3870 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
3871 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
3872 
3873 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3874 
3875 	cfs_rq_util_change(cfs_rq, 0);
3876 
3877 	trace_pelt_cfs_tp(cfs_rq);
3878 }
3879 
3880 /*
3881  * Optional action to be done while updating the load average
3882  */
3883 #define UPDATE_TG	0x1
3884 #define SKIP_AGE_LOAD	0x2
3885 #define DO_ATTACH	0x4
3886 
3887 /* Update task and its cfs_rq load average */
3888 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3889 {
3890 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3891 	int decayed;
3892 
3893 	/*
3894 	 * Track task load average for carrying it to new CPU after migrated, and
3895 	 * track group sched_entity load average for task_h_load calc in migration
3896 	 */
3897 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3898 		__update_load_avg_se(now, cfs_rq, se);
3899 
3900 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3901 	decayed |= propagate_entity_load_avg(se);
3902 
3903 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3904 
3905 		/*
3906 		 * DO_ATTACH means we're here from enqueue_entity().
3907 		 * !last_update_time means we've passed through
3908 		 * migrate_task_rq_fair() indicating we migrated.
3909 		 *
3910 		 * IOW we're enqueueing a task on a new CPU.
3911 		 */
3912 		attach_entity_load_avg(cfs_rq, se);
3913 		update_tg_load_avg(cfs_rq);
3914 
3915 	} else if (decayed) {
3916 		cfs_rq_util_change(cfs_rq, 0);
3917 
3918 		if (flags & UPDATE_TG)
3919 			update_tg_load_avg(cfs_rq);
3920 	}
3921 }
3922 
3923 #ifndef CONFIG_64BIT
3924 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3925 {
3926 	u64 last_update_time_copy;
3927 	u64 last_update_time;
3928 
3929 	do {
3930 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3931 		smp_rmb();
3932 		last_update_time = cfs_rq->avg.last_update_time;
3933 	} while (last_update_time != last_update_time_copy);
3934 
3935 	return last_update_time;
3936 }
3937 #else
3938 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3939 {
3940 	return cfs_rq->avg.last_update_time;
3941 }
3942 #endif
3943 
3944 /*
3945  * Synchronize entity load avg of dequeued entity without locking
3946  * the previous rq.
3947  */
3948 static void sync_entity_load_avg(struct sched_entity *se)
3949 {
3950 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3951 	u64 last_update_time;
3952 
3953 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3954 	__update_load_avg_blocked_se(last_update_time, se);
3955 }
3956 
3957 /*
3958  * Task first catches up with cfs_rq, and then subtract
3959  * itself from the cfs_rq (task must be off the queue now).
3960  */
3961 static void remove_entity_load_avg(struct sched_entity *se)
3962 {
3963 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3964 	unsigned long flags;
3965 
3966 	/*
3967 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3968 	 * post_init_entity_util_avg() which will have added things to the
3969 	 * cfs_rq, so we can remove unconditionally.
3970 	 */
3971 
3972 	sync_entity_load_avg(se);
3973 
3974 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3975 	++cfs_rq->removed.nr;
3976 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3977 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3978 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
3979 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3980 }
3981 
3982 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3983 {
3984 	return cfs_rq->avg.runnable_avg;
3985 }
3986 
3987 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3988 {
3989 	return cfs_rq->avg.load_avg;
3990 }
3991 
3992 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3993 
3994 static inline unsigned long task_util(struct task_struct *p)
3995 {
3996 	return READ_ONCE(p->se.avg.util_avg);
3997 }
3998 
3999 static inline unsigned long _task_util_est(struct task_struct *p)
4000 {
4001 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
4002 
4003 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4004 }
4005 
4006 static inline unsigned long task_util_est(struct task_struct *p)
4007 {
4008 	return max(task_util(p), _task_util_est(p));
4009 }
4010 
4011 #ifdef CONFIG_UCLAMP_TASK
4012 static inline unsigned long uclamp_task_util(struct task_struct *p)
4013 {
4014 	return clamp(task_util_est(p),
4015 		     uclamp_eff_value(p, UCLAMP_MIN),
4016 		     uclamp_eff_value(p, UCLAMP_MAX));
4017 }
4018 #else
4019 static inline unsigned long uclamp_task_util(struct task_struct *p)
4020 {
4021 	return task_util_est(p);
4022 }
4023 #endif
4024 
4025 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4026 				    struct task_struct *p)
4027 {
4028 	unsigned int enqueued;
4029 
4030 	if (!sched_feat(UTIL_EST))
4031 		return;
4032 
4033 	/* Update root cfs_rq's estimated utilization */
4034 	enqueued  = cfs_rq->avg.util_est.enqueued;
4035 	enqueued += _task_util_est(p);
4036 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4037 
4038 	trace_sched_util_est_cfs_tp(cfs_rq);
4039 }
4040 
4041 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4042 				    struct task_struct *p)
4043 {
4044 	unsigned int enqueued;
4045 
4046 	if (!sched_feat(UTIL_EST))
4047 		return;
4048 
4049 	/* Update root cfs_rq's estimated utilization */
4050 	enqueued  = cfs_rq->avg.util_est.enqueued;
4051 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4052 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4053 
4054 	trace_sched_util_est_cfs_tp(cfs_rq);
4055 }
4056 
4057 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4058 
4059 /*
4060  * Check if a (signed) value is within a specified (unsigned) margin,
4061  * based on the observation that:
4062  *
4063  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4064  *
4065  * NOTE: this only works when value + margin < INT_MAX.
4066  */
4067 static inline bool within_margin(int value, int margin)
4068 {
4069 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4070 }
4071 
4072 static inline void util_est_update(struct cfs_rq *cfs_rq,
4073 				   struct task_struct *p,
4074 				   bool task_sleep)
4075 {
4076 	long last_ewma_diff, last_enqueued_diff;
4077 	struct util_est ue;
4078 
4079 	if (!sched_feat(UTIL_EST))
4080 		return;
4081 
4082 	/*
4083 	 * Skip update of task's estimated utilization when the task has not
4084 	 * yet completed an activation, e.g. being migrated.
4085 	 */
4086 	if (!task_sleep)
4087 		return;
4088 
4089 	/*
4090 	 * If the PELT values haven't changed since enqueue time,
4091 	 * skip the util_est update.
4092 	 */
4093 	ue = p->se.avg.util_est;
4094 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4095 		return;
4096 
4097 	last_enqueued_diff = ue.enqueued;
4098 
4099 	/*
4100 	 * Reset EWMA on utilization increases, the moving average is used only
4101 	 * to smooth utilization decreases.
4102 	 */
4103 	ue.enqueued = task_util(p);
4104 	if (sched_feat(UTIL_EST_FASTUP)) {
4105 		if (ue.ewma < ue.enqueued) {
4106 			ue.ewma = ue.enqueued;
4107 			goto done;
4108 		}
4109 	}
4110 
4111 	/*
4112 	 * Skip update of task's estimated utilization when its members are
4113 	 * already ~1% close to its last activation value.
4114 	 */
4115 	last_ewma_diff = ue.enqueued - ue.ewma;
4116 	last_enqueued_diff -= ue.enqueued;
4117 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4118 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4119 			goto done;
4120 
4121 		return;
4122 	}
4123 
4124 	/*
4125 	 * To avoid overestimation of actual task utilization, skip updates if
4126 	 * we cannot grant there is idle time in this CPU.
4127 	 */
4128 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4129 		return;
4130 
4131 	/*
4132 	 * Update Task's estimated utilization
4133 	 *
4134 	 * When *p completes an activation we can consolidate another sample
4135 	 * of the task size. This is done by storing the current PELT value
4136 	 * as ue.enqueued and by using this value to update the Exponential
4137 	 * Weighted Moving Average (EWMA):
4138 	 *
4139 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4140 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4141 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4142 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4143 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4144 	 *
4145 	 * Where 'w' is the weight of new samples, which is configured to be
4146 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4147 	 */
4148 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4149 	ue.ewma  += last_ewma_diff;
4150 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4151 done:
4152 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4153 	WRITE_ONCE(p->se.avg.util_est, ue);
4154 
4155 	trace_sched_util_est_se_tp(&p->se);
4156 }
4157 
4158 static inline int task_fits_capacity(struct task_struct *p,
4159 				     unsigned long capacity)
4160 {
4161 	return fits_capacity(uclamp_task_util(p), capacity);
4162 }
4163 
4164 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4165 {
4166 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
4167 		return;
4168 
4169 	if (!p || p->nr_cpus_allowed == 1) {
4170 		rq->misfit_task_load = 0;
4171 		return;
4172 	}
4173 
4174 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4175 		rq->misfit_task_load = 0;
4176 		return;
4177 	}
4178 
4179 	/*
4180 	 * Make sure that misfit_task_load will not be null even if
4181 	 * task_h_load() returns 0.
4182 	 */
4183 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4184 }
4185 
4186 #else /* CONFIG_SMP */
4187 
4188 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4189 {
4190 	return true;
4191 }
4192 
4193 #define UPDATE_TG	0x0
4194 #define SKIP_AGE_LOAD	0x0
4195 #define DO_ATTACH	0x0
4196 
4197 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4198 {
4199 	cfs_rq_util_change(cfs_rq, 0);
4200 }
4201 
4202 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4203 
4204 static inline void
4205 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4206 static inline void
4207 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4208 
4209 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4210 {
4211 	return 0;
4212 }
4213 
4214 static inline void
4215 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4216 
4217 static inline void
4218 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4219 
4220 static inline void
4221 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4222 		bool task_sleep) {}
4223 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4224 
4225 #endif /* CONFIG_SMP */
4226 
4227 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4228 {
4229 #ifdef CONFIG_SCHED_DEBUG
4230 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4231 
4232 	if (d < 0)
4233 		d = -d;
4234 
4235 	if (d > 3*sysctl_sched_latency)
4236 		schedstat_inc(cfs_rq->nr_spread_over);
4237 #endif
4238 }
4239 
4240 static void
4241 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4242 {
4243 	u64 vruntime = cfs_rq->min_vruntime;
4244 
4245 	/*
4246 	 * The 'current' period is already promised to the current tasks,
4247 	 * however the extra weight of the new task will slow them down a
4248 	 * little, place the new task so that it fits in the slot that
4249 	 * stays open at the end.
4250 	 */
4251 	if (initial && sched_feat(START_DEBIT))
4252 		vruntime += sched_vslice(cfs_rq, se);
4253 
4254 	/* sleeps up to a single latency don't count. */
4255 	if (!initial) {
4256 		unsigned long thresh;
4257 
4258 		if (se_is_idle(se))
4259 			thresh = sysctl_sched_min_granularity;
4260 		else
4261 			thresh = sysctl_sched_latency;
4262 
4263 		/*
4264 		 * Halve their sleep time's effect, to allow
4265 		 * for a gentler effect of sleepers:
4266 		 */
4267 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4268 			thresh >>= 1;
4269 
4270 		vruntime -= thresh;
4271 	}
4272 
4273 	/* ensure we never gain time by being placed backwards. */
4274 	se->vruntime = max_vruntime(se->vruntime, vruntime);
4275 }
4276 
4277 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4278 
4279 static inline bool cfs_bandwidth_used(void);
4280 
4281 /*
4282  * MIGRATION
4283  *
4284  *	dequeue
4285  *	  update_curr()
4286  *	    update_min_vruntime()
4287  *	  vruntime -= min_vruntime
4288  *
4289  *	enqueue
4290  *	  update_curr()
4291  *	    update_min_vruntime()
4292  *	  vruntime += min_vruntime
4293  *
4294  * this way the vruntime transition between RQs is done when both
4295  * min_vruntime are up-to-date.
4296  *
4297  * WAKEUP (remote)
4298  *
4299  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4300  *	  vruntime -= min_vruntime
4301  *
4302  *	enqueue
4303  *	  update_curr()
4304  *	    update_min_vruntime()
4305  *	  vruntime += min_vruntime
4306  *
4307  * this way we don't have the most up-to-date min_vruntime on the originating
4308  * CPU and an up-to-date min_vruntime on the destination CPU.
4309  */
4310 
4311 static void
4312 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4313 {
4314 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4315 	bool curr = cfs_rq->curr == se;
4316 
4317 	/*
4318 	 * If we're the current task, we must renormalise before calling
4319 	 * update_curr().
4320 	 */
4321 	if (renorm && curr)
4322 		se->vruntime += cfs_rq->min_vruntime;
4323 
4324 	update_curr(cfs_rq);
4325 
4326 	/*
4327 	 * Otherwise, renormalise after, such that we're placed at the current
4328 	 * moment in time, instead of some random moment in the past. Being
4329 	 * placed in the past could significantly boost this task to the
4330 	 * fairness detriment of existing tasks.
4331 	 */
4332 	if (renorm && !curr)
4333 		se->vruntime += cfs_rq->min_vruntime;
4334 
4335 	/*
4336 	 * When enqueuing a sched_entity, we must:
4337 	 *   - Update loads to have both entity and cfs_rq synced with now.
4338 	 *   - Add its load to cfs_rq->runnable_avg
4339 	 *   - For group_entity, update its weight to reflect the new share of
4340 	 *     its group cfs_rq
4341 	 *   - Add its new weight to cfs_rq->load.weight
4342 	 */
4343 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4344 	se_update_runnable(se);
4345 	update_cfs_group(se);
4346 	account_entity_enqueue(cfs_rq, se);
4347 
4348 	if (flags & ENQUEUE_WAKEUP)
4349 		place_entity(cfs_rq, se, 0);
4350 
4351 	check_schedstat_required();
4352 	update_stats_enqueue_fair(cfs_rq, se, flags);
4353 	check_spread(cfs_rq, se);
4354 	if (!curr)
4355 		__enqueue_entity(cfs_rq, se);
4356 	se->on_rq = 1;
4357 
4358 	/*
4359 	 * When bandwidth control is enabled, cfs might have been removed
4360 	 * because of a parent been throttled but cfs->nr_running > 1. Try to
4361 	 * add it unconditionally.
4362 	 */
4363 	if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4364 		list_add_leaf_cfs_rq(cfs_rq);
4365 
4366 	if (cfs_rq->nr_running == 1)
4367 		check_enqueue_throttle(cfs_rq);
4368 }
4369 
4370 static void __clear_buddies_last(struct sched_entity *se)
4371 {
4372 	for_each_sched_entity(se) {
4373 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4374 		if (cfs_rq->last != se)
4375 			break;
4376 
4377 		cfs_rq->last = NULL;
4378 	}
4379 }
4380 
4381 static void __clear_buddies_next(struct sched_entity *se)
4382 {
4383 	for_each_sched_entity(se) {
4384 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4385 		if (cfs_rq->next != se)
4386 			break;
4387 
4388 		cfs_rq->next = NULL;
4389 	}
4390 }
4391 
4392 static void __clear_buddies_skip(struct sched_entity *se)
4393 {
4394 	for_each_sched_entity(se) {
4395 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4396 		if (cfs_rq->skip != se)
4397 			break;
4398 
4399 		cfs_rq->skip = NULL;
4400 	}
4401 }
4402 
4403 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4404 {
4405 	if (cfs_rq->last == se)
4406 		__clear_buddies_last(se);
4407 
4408 	if (cfs_rq->next == se)
4409 		__clear_buddies_next(se);
4410 
4411 	if (cfs_rq->skip == se)
4412 		__clear_buddies_skip(se);
4413 }
4414 
4415 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4416 
4417 static void
4418 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4419 {
4420 	/*
4421 	 * Update run-time statistics of the 'current'.
4422 	 */
4423 	update_curr(cfs_rq);
4424 
4425 	/*
4426 	 * When dequeuing a sched_entity, we must:
4427 	 *   - Update loads to have both entity and cfs_rq synced with now.
4428 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4429 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4430 	 *   - For group entity, update its weight to reflect the new share
4431 	 *     of its group cfs_rq.
4432 	 */
4433 	update_load_avg(cfs_rq, se, UPDATE_TG);
4434 	se_update_runnable(se);
4435 
4436 	update_stats_dequeue_fair(cfs_rq, se, flags);
4437 
4438 	clear_buddies(cfs_rq, se);
4439 
4440 	if (se != cfs_rq->curr)
4441 		__dequeue_entity(cfs_rq, se);
4442 	se->on_rq = 0;
4443 	account_entity_dequeue(cfs_rq, se);
4444 
4445 	/*
4446 	 * Normalize after update_curr(); which will also have moved
4447 	 * min_vruntime if @se is the one holding it back. But before doing
4448 	 * update_min_vruntime() again, which will discount @se's position and
4449 	 * can move min_vruntime forward still more.
4450 	 */
4451 	if (!(flags & DEQUEUE_SLEEP))
4452 		se->vruntime -= cfs_rq->min_vruntime;
4453 
4454 	/* return excess runtime on last dequeue */
4455 	return_cfs_rq_runtime(cfs_rq);
4456 
4457 	update_cfs_group(se);
4458 
4459 	/*
4460 	 * Now advance min_vruntime if @se was the entity holding it back,
4461 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4462 	 * put back on, and if we advance min_vruntime, we'll be placed back
4463 	 * further than we started -- ie. we'll be penalized.
4464 	 */
4465 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4466 		update_min_vruntime(cfs_rq);
4467 }
4468 
4469 /*
4470  * Preempt the current task with a newly woken task if needed:
4471  */
4472 static void
4473 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4474 {
4475 	unsigned long ideal_runtime, delta_exec;
4476 	struct sched_entity *se;
4477 	s64 delta;
4478 
4479 	ideal_runtime = sched_slice(cfs_rq, curr);
4480 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4481 	if (delta_exec > ideal_runtime) {
4482 		resched_curr(rq_of(cfs_rq));
4483 		/*
4484 		 * The current task ran long enough, ensure it doesn't get
4485 		 * re-elected due to buddy favours.
4486 		 */
4487 		clear_buddies(cfs_rq, curr);
4488 		return;
4489 	}
4490 
4491 	/*
4492 	 * Ensure that a task that missed wakeup preemption by a
4493 	 * narrow margin doesn't have to wait for a full slice.
4494 	 * This also mitigates buddy induced latencies under load.
4495 	 */
4496 	if (delta_exec < sysctl_sched_min_granularity)
4497 		return;
4498 
4499 	se = __pick_first_entity(cfs_rq);
4500 	delta = curr->vruntime - se->vruntime;
4501 
4502 	if (delta < 0)
4503 		return;
4504 
4505 	if (delta > ideal_runtime)
4506 		resched_curr(rq_of(cfs_rq));
4507 }
4508 
4509 static void
4510 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4511 {
4512 	clear_buddies(cfs_rq, se);
4513 
4514 	/* 'current' is not kept within the tree. */
4515 	if (se->on_rq) {
4516 		/*
4517 		 * Any task has to be enqueued before it get to execute on
4518 		 * a CPU. So account for the time it spent waiting on the
4519 		 * runqueue.
4520 		 */
4521 		update_stats_wait_end_fair(cfs_rq, se);
4522 		__dequeue_entity(cfs_rq, se);
4523 		update_load_avg(cfs_rq, se, UPDATE_TG);
4524 	}
4525 
4526 	update_stats_curr_start(cfs_rq, se);
4527 	cfs_rq->curr = se;
4528 
4529 	/*
4530 	 * Track our maximum slice length, if the CPU's load is at
4531 	 * least twice that of our own weight (i.e. dont track it
4532 	 * when there are only lesser-weight tasks around):
4533 	 */
4534 	if (schedstat_enabled() &&
4535 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4536 		struct sched_statistics *stats;
4537 
4538 		stats = __schedstats_from_se(se);
4539 		__schedstat_set(stats->slice_max,
4540 				max((u64)stats->slice_max,
4541 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4542 	}
4543 
4544 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4545 }
4546 
4547 static int
4548 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4549 
4550 /*
4551  * Pick the next process, keeping these things in mind, in this order:
4552  * 1) keep things fair between processes/task groups
4553  * 2) pick the "next" process, since someone really wants that to run
4554  * 3) pick the "last" process, for cache locality
4555  * 4) do not run the "skip" process, if something else is available
4556  */
4557 static struct sched_entity *
4558 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4559 {
4560 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4561 	struct sched_entity *se;
4562 
4563 	/*
4564 	 * If curr is set we have to see if its left of the leftmost entity
4565 	 * still in the tree, provided there was anything in the tree at all.
4566 	 */
4567 	if (!left || (curr && entity_before(curr, left)))
4568 		left = curr;
4569 
4570 	se = left; /* ideally we run the leftmost entity */
4571 
4572 	/*
4573 	 * Avoid running the skip buddy, if running something else can
4574 	 * be done without getting too unfair.
4575 	 */
4576 	if (cfs_rq->skip && cfs_rq->skip == se) {
4577 		struct sched_entity *second;
4578 
4579 		if (se == curr) {
4580 			second = __pick_first_entity(cfs_rq);
4581 		} else {
4582 			second = __pick_next_entity(se);
4583 			if (!second || (curr && entity_before(curr, second)))
4584 				second = curr;
4585 		}
4586 
4587 		if (second && wakeup_preempt_entity(second, left) < 1)
4588 			se = second;
4589 	}
4590 
4591 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4592 		/*
4593 		 * Someone really wants this to run. If it's not unfair, run it.
4594 		 */
4595 		se = cfs_rq->next;
4596 	} else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4597 		/*
4598 		 * Prefer last buddy, try to return the CPU to a preempted task.
4599 		 */
4600 		se = cfs_rq->last;
4601 	}
4602 
4603 	return se;
4604 }
4605 
4606 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4607 
4608 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4609 {
4610 	/*
4611 	 * If still on the runqueue then deactivate_task()
4612 	 * was not called and update_curr() has to be done:
4613 	 */
4614 	if (prev->on_rq)
4615 		update_curr(cfs_rq);
4616 
4617 	/* throttle cfs_rqs exceeding runtime */
4618 	check_cfs_rq_runtime(cfs_rq);
4619 
4620 	check_spread(cfs_rq, prev);
4621 
4622 	if (prev->on_rq) {
4623 		update_stats_wait_start_fair(cfs_rq, prev);
4624 		/* Put 'current' back into the tree. */
4625 		__enqueue_entity(cfs_rq, prev);
4626 		/* in !on_rq case, update occurred at dequeue */
4627 		update_load_avg(cfs_rq, prev, 0);
4628 	}
4629 	cfs_rq->curr = NULL;
4630 }
4631 
4632 static void
4633 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4634 {
4635 	/*
4636 	 * Update run-time statistics of the 'current'.
4637 	 */
4638 	update_curr(cfs_rq);
4639 
4640 	/*
4641 	 * Ensure that runnable average is periodically updated.
4642 	 */
4643 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4644 	update_cfs_group(curr);
4645 
4646 #ifdef CONFIG_SCHED_HRTICK
4647 	/*
4648 	 * queued ticks are scheduled to match the slice, so don't bother
4649 	 * validating it and just reschedule.
4650 	 */
4651 	if (queued) {
4652 		resched_curr(rq_of(cfs_rq));
4653 		return;
4654 	}
4655 	/*
4656 	 * don't let the period tick interfere with the hrtick preemption
4657 	 */
4658 	if (!sched_feat(DOUBLE_TICK) &&
4659 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4660 		return;
4661 #endif
4662 
4663 	if (cfs_rq->nr_running > 1)
4664 		check_preempt_tick(cfs_rq, curr);
4665 }
4666 
4667 
4668 /**************************************************
4669  * CFS bandwidth control machinery
4670  */
4671 
4672 #ifdef CONFIG_CFS_BANDWIDTH
4673 
4674 #ifdef CONFIG_JUMP_LABEL
4675 static struct static_key __cfs_bandwidth_used;
4676 
4677 static inline bool cfs_bandwidth_used(void)
4678 {
4679 	return static_key_false(&__cfs_bandwidth_used);
4680 }
4681 
4682 void cfs_bandwidth_usage_inc(void)
4683 {
4684 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4685 }
4686 
4687 void cfs_bandwidth_usage_dec(void)
4688 {
4689 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4690 }
4691 #else /* CONFIG_JUMP_LABEL */
4692 static bool cfs_bandwidth_used(void)
4693 {
4694 	return true;
4695 }
4696 
4697 void cfs_bandwidth_usage_inc(void) {}
4698 void cfs_bandwidth_usage_dec(void) {}
4699 #endif /* CONFIG_JUMP_LABEL */
4700 
4701 /*
4702  * default period for cfs group bandwidth.
4703  * default: 0.1s, units: nanoseconds
4704  */
4705 static inline u64 default_cfs_period(void)
4706 {
4707 	return 100000000ULL;
4708 }
4709 
4710 static inline u64 sched_cfs_bandwidth_slice(void)
4711 {
4712 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4713 }
4714 
4715 /*
4716  * Replenish runtime according to assigned quota. We use sched_clock_cpu
4717  * directly instead of rq->clock to avoid adding additional synchronization
4718  * around rq->lock.
4719  *
4720  * requires cfs_b->lock
4721  */
4722 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4723 {
4724 	s64 runtime;
4725 
4726 	if (unlikely(cfs_b->quota == RUNTIME_INF))
4727 		return;
4728 
4729 	cfs_b->runtime += cfs_b->quota;
4730 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
4731 	if (runtime > 0) {
4732 		cfs_b->burst_time += runtime;
4733 		cfs_b->nr_burst++;
4734 	}
4735 
4736 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
4737 	cfs_b->runtime_snap = cfs_b->runtime;
4738 }
4739 
4740 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4741 {
4742 	return &tg->cfs_bandwidth;
4743 }
4744 
4745 /* returns 0 on failure to allocate runtime */
4746 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4747 				   struct cfs_rq *cfs_rq, u64 target_runtime)
4748 {
4749 	u64 min_amount, amount = 0;
4750 
4751 	lockdep_assert_held(&cfs_b->lock);
4752 
4753 	/* note: this is a positive sum as runtime_remaining <= 0 */
4754 	min_amount = target_runtime - cfs_rq->runtime_remaining;
4755 
4756 	if (cfs_b->quota == RUNTIME_INF)
4757 		amount = min_amount;
4758 	else {
4759 		start_cfs_bandwidth(cfs_b);
4760 
4761 		if (cfs_b->runtime > 0) {
4762 			amount = min(cfs_b->runtime, min_amount);
4763 			cfs_b->runtime -= amount;
4764 			cfs_b->idle = 0;
4765 		}
4766 	}
4767 
4768 	cfs_rq->runtime_remaining += amount;
4769 
4770 	return cfs_rq->runtime_remaining > 0;
4771 }
4772 
4773 /* returns 0 on failure to allocate runtime */
4774 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4775 {
4776 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4777 	int ret;
4778 
4779 	raw_spin_lock(&cfs_b->lock);
4780 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4781 	raw_spin_unlock(&cfs_b->lock);
4782 
4783 	return ret;
4784 }
4785 
4786 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4787 {
4788 	/* dock delta_exec before expiring quota (as it could span periods) */
4789 	cfs_rq->runtime_remaining -= delta_exec;
4790 
4791 	if (likely(cfs_rq->runtime_remaining > 0))
4792 		return;
4793 
4794 	if (cfs_rq->throttled)
4795 		return;
4796 	/*
4797 	 * if we're unable to extend our runtime we resched so that the active
4798 	 * hierarchy can be throttled
4799 	 */
4800 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4801 		resched_curr(rq_of(cfs_rq));
4802 }
4803 
4804 static __always_inline
4805 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4806 {
4807 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4808 		return;
4809 
4810 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4811 }
4812 
4813 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4814 {
4815 	return cfs_bandwidth_used() && cfs_rq->throttled;
4816 }
4817 
4818 /* check whether cfs_rq, or any parent, is throttled */
4819 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4820 {
4821 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4822 }
4823 
4824 /*
4825  * Ensure that neither of the group entities corresponding to src_cpu or
4826  * dest_cpu are members of a throttled hierarchy when performing group
4827  * load-balance operations.
4828  */
4829 static inline int throttled_lb_pair(struct task_group *tg,
4830 				    int src_cpu, int dest_cpu)
4831 {
4832 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4833 
4834 	src_cfs_rq = tg->cfs_rq[src_cpu];
4835 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4836 
4837 	return throttled_hierarchy(src_cfs_rq) ||
4838 	       throttled_hierarchy(dest_cfs_rq);
4839 }
4840 
4841 static int tg_unthrottle_up(struct task_group *tg, void *data)
4842 {
4843 	struct rq *rq = data;
4844 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4845 
4846 	cfs_rq->throttle_count--;
4847 	if (!cfs_rq->throttle_count) {
4848 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4849 					     cfs_rq->throttled_clock_task;
4850 
4851 		/* Add cfs_rq with load or one or more already running entities to the list */
4852 		if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
4853 			list_add_leaf_cfs_rq(cfs_rq);
4854 	}
4855 
4856 	return 0;
4857 }
4858 
4859 static int tg_throttle_down(struct task_group *tg, void *data)
4860 {
4861 	struct rq *rq = data;
4862 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4863 
4864 	/* group is entering throttled state, stop time */
4865 	if (!cfs_rq->throttle_count) {
4866 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4867 		list_del_leaf_cfs_rq(cfs_rq);
4868 	}
4869 	cfs_rq->throttle_count++;
4870 
4871 	return 0;
4872 }
4873 
4874 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4875 {
4876 	struct rq *rq = rq_of(cfs_rq);
4877 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4878 	struct sched_entity *se;
4879 	long task_delta, idle_task_delta, dequeue = 1;
4880 
4881 	raw_spin_lock(&cfs_b->lock);
4882 	/* This will start the period timer if necessary */
4883 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4884 		/*
4885 		 * We have raced with bandwidth becoming available, and if we
4886 		 * actually throttled the timer might not unthrottle us for an
4887 		 * entire period. We additionally needed to make sure that any
4888 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
4889 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4890 		 * for 1ns of runtime rather than just check cfs_b.
4891 		 */
4892 		dequeue = 0;
4893 	} else {
4894 		list_add_tail_rcu(&cfs_rq->throttled_list,
4895 				  &cfs_b->throttled_cfs_rq);
4896 	}
4897 	raw_spin_unlock(&cfs_b->lock);
4898 
4899 	if (!dequeue)
4900 		return false;  /* Throttle no longer required. */
4901 
4902 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4903 
4904 	/* freeze hierarchy runnable averages while throttled */
4905 	rcu_read_lock();
4906 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4907 	rcu_read_unlock();
4908 
4909 	task_delta = cfs_rq->h_nr_running;
4910 	idle_task_delta = cfs_rq->idle_h_nr_running;
4911 	for_each_sched_entity(se) {
4912 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4913 		/* throttled entity or throttle-on-deactivate */
4914 		if (!se->on_rq)
4915 			goto done;
4916 
4917 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4918 
4919 		if (cfs_rq_is_idle(group_cfs_rq(se)))
4920 			idle_task_delta = cfs_rq->h_nr_running;
4921 
4922 		qcfs_rq->h_nr_running -= task_delta;
4923 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4924 
4925 		if (qcfs_rq->load.weight) {
4926 			/* Avoid re-evaluating load for this entity: */
4927 			se = parent_entity(se);
4928 			break;
4929 		}
4930 	}
4931 
4932 	for_each_sched_entity(se) {
4933 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4934 		/* throttled entity or throttle-on-deactivate */
4935 		if (!se->on_rq)
4936 			goto done;
4937 
4938 		update_load_avg(qcfs_rq, se, 0);
4939 		se_update_runnable(se);
4940 
4941 		if (cfs_rq_is_idle(group_cfs_rq(se)))
4942 			idle_task_delta = cfs_rq->h_nr_running;
4943 
4944 		qcfs_rq->h_nr_running -= task_delta;
4945 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4946 	}
4947 
4948 	/* At this point se is NULL and we are at root level*/
4949 	sub_nr_running(rq, task_delta);
4950 
4951 done:
4952 	/*
4953 	 * Note: distribution will already see us throttled via the
4954 	 * throttled-list.  rq->lock protects completion.
4955 	 */
4956 	cfs_rq->throttled = 1;
4957 	cfs_rq->throttled_clock = rq_clock(rq);
4958 	return true;
4959 }
4960 
4961 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4962 {
4963 	struct rq *rq = rq_of(cfs_rq);
4964 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4965 	struct sched_entity *se;
4966 	long task_delta, idle_task_delta;
4967 
4968 	se = cfs_rq->tg->se[cpu_of(rq)];
4969 
4970 	cfs_rq->throttled = 0;
4971 
4972 	update_rq_clock(rq);
4973 
4974 	raw_spin_lock(&cfs_b->lock);
4975 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4976 	list_del_rcu(&cfs_rq->throttled_list);
4977 	raw_spin_unlock(&cfs_b->lock);
4978 
4979 	/* update hierarchical throttle state */
4980 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4981 
4982 	/* Nothing to run but something to decay (on_list)? Complete the branch */
4983 	if (!cfs_rq->load.weight) {
4984 		if (cfs_rq->on_list)
4985 			goto unthrottle_throttle;
4986 		return;
4987 	}
4988 
4989 	task_delta = cfs_rq->h_nr_running;
4990 	idle_task_delta = cfs_rq->idle_h_nr_running;
4991 	for_each_sched_entity(se) {
4992 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4993 
4994 		if (se->on_rq)
4995 			break;
4996 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
4997 
4998 		if (cfs_rq_is_idle(group_cfs_rq(se)))
4999 			idle_task_delta = cfs_rq->h_nr_running;
5000 
5001 		qcfs_rq->h_nr_running += task_delta;
5002 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5003 
5004 		/* end evaluation on encountering a throttled cfs_rq */
5005 		if (cfs_rq_throttled(qcfs_rq))
5006 			goto unthrottle_throttle;
5007 	}
5008 
5009 	for_each_sched_entity(se) {
5010 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5011 
5012 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5013 		se_update_runnable(se);
5014 
5015 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5016 			idle_task_delta = cfs_rq->h_nr_running;
5017 
5018 		qcfs_rq->h_nr_running += task_delta;
5019 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5020 
5021 		/* end evaluation on encountering a throttled cfs_rq */
5022 		if (cfs_rq_throttled(qcfs_rq))
5023 			goto unthrottle_throttle;
5024 
5025 		/*
5026 		 * One parent has been throttled and cfs_rq removed from the
5027 		 * list. Add it back to not break the leaf list.
5028 		 */
5029 		if (throttled_hierarchy(qcfs_rq))
5030 			list_add_leaf_cfs_rq(qcfs_rq);
5031 	}
5032 
5033 	/* At this point se is NULL and we are at root level*/
5034 	add_nr_running(rq, task_delta);
5035 
5036 unthrottle_throttle:
5037 	/*
5038 	 * The cfs_rq_throttled() breaks in the above iteration can result in
5039 	 * incomplete leaf list maintenance, resulting in triggering the
5040 	 * assertion below.
5041 	 */
5042 	for_each_sched_entity(se) {
5043 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5044 
5045 		if (list_add_leaf_cfs_rq(qcfs_rq))
5046 			break;
5047 	}
5048 
5049 	assert_list_leaf_cfs_rq(rq);
5050 
5051 	/* Determine whether we need to wake up potentially idle CPU: */
5052 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5053 		resched_curr(rq);
5054 }
5055 
5056 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5057 {
5058 	struct cfs_rq *cfs_rq;
5059 	u64 runtime, remaining = 1;
5060 
5061 	rcu_read_lock();
5062 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5063 				throttled_list) {
5064 		struct rq *rq = rq_of(cfs_rq);
5065 		struct rq_flags rf;
5066 
5067 		rq_lock_irqsave(rq, &rf);
5068 		if (!cfs_rq_throttled(cfs_rq))
5069 			goto next;
5070 
5071 		/* By the above check, this should never be true */
5072 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5073 
5074 		raw_spin_lock(&cfs_b->lock);
5075 		runtime = -cfs_rq->runtime_remaining + 1;
5076 		if (runtime > cfs_b->runtime)
5077 			runtime = cfs_b->runtime;
5078 		cfs_b->runtime -= runtime;
5079 		remaining = cfs_b->runtime;
5080 		raw_spin_unlock(&cfs_b->lock);
5081 
5082 		cfs_rq->runtime_remaining += runtime;
5083 
5084 		/* we check whether we're throttled above */
5085 		if (cfs_rq->runtime_remaining > 0)
5086 			unthrottle_cfs_rq(cfs_rq);
5087 
5088 next:
5089 		rq_unlock_irqrestore(rq, &rf);
5090 
5091 		if (!remaining)
5092 			break;
5093 	}
5094 	rcu_read_unlock();
5095 }
5096 
5097 /*
5098  * Responsible for refilling a task_group's bandwidth and unthrottling its
5099  * cfs_rqs as appropriate. If there has been no activity within the last
5100  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5101  * used to track this state.
5102  */
5103 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5104 {
5105 	int throttled;
5106 
5107 	/* no need to continue the timer with no bandwidth constraint */
5108 	if (cfs_b->quota == RUNTIME_INF)
5109 		goto out_deactivate;
5110 
5111 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5112 	cfs_b->nr_periods += overrun;
5113 
5114 	/* Refill extra burst quota even if cfs_b->idle */
5115 	__refill_cfs_bandwidth_runtime(cfs_b);
5116 
5117 	/*
5118 	 * idle depends on !throttled (for the case of a large deficit), and if
5119 	 * we're going inactive then everything else can be deferred
5120 	 */
5121 	if (cfs_b->idle && !throttled)
5122 		goto out_deactivate;
5123 
5124 	if (!throttled) {
5125 		/* mark as potentially idle for the upcoming period */
5126 		cfs_b->idle = 1;
5127 		return 0;
5128 	}
5129 
5130 	/* account preceding periods in which throttling occurred */
5131 	cfs_b->nr_throttled += overrun;
5132 
5133 	/*
5134 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
5135 	 */
5136 	while (throttled && cfs_b->runtime > 0) {
5137 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5138 		/* we can't nest cfs_b->lock while distributing bandwidth */
5139 		distribute_cfs_runtime(cfs_b);
5140 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
5141 
5142 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5143 	}
5144 
5145 	/*
5146 	 * While we are ensured activity in the period following an
5147 	 * unthrottle, this also covers the case in which the new bandwidth is
5148 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
5149 	 * timer to remain active while there are any throttled entities.)
5150 	 */
5151 	cfs_b->idle = 0;
5152 
5153 	return 0;
5154 
5155 out_deactivate:
5156 	return 1;
5157 }
5158 
5159 /* a cfs_rq won't donate quota below this amount */
5160 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5161 /* minimum remaining period time to redistribute slack quota */
5162 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5163 /* how long we wait to gather additional slack before distributing */
5164 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5165 
5166 /*
5167  * Are we near the end of the current quota period?
5168  *
5169  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5170  * hrtimer base being cleared by hrtimer_start. In the case of
5171  * migrate_hrtimers, base is never cleared, so we are fine.
5172  */
5173 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5174 {
5175 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
5176 	s64 remaining;
5177 
5178 	/* if the call-back is running a quota refresh is already occurring */
5179 	if (hrtimer_callback_running(refresh_timer))
5180 		return 1;
5181 
5182 	/* is a quota refresh about to occur? */
5183 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5184 	if (remaining < (s64)min_expire)
5185 		return 1;
5186 
5187 	return 0;
5188 }
5189 
5190 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5191 {
5192 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5193 
5194 	/* if there's a quota refresh soon don't bother with slack */
5195 	if (runtime_refresh_within(cfs_b, min_left))
5196 		return;
5197 
5198 	/* don't push forwards an existing deferred unthrottle */
5199 	if (cfs_b->slack_started)
5200 		return;
5201 	cfs_b->slack_started = true;
5202 
5203 	hrtimer_start(&cfs_b->slack_timer,
5204 			ns_to_ktime(cfs_bandwidth_slack_period),
5205 			HRTIMER_MODE_REL);
5206 }
5207 
5208 /* we know any runtime found here is valid as update_curr() precedes return */
5209 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5210 {
5211 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5212 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5213 
5214 	if (slack_runtime <= 0)
5215 		return;
5216 
5217 	raw_spin_lock(&cfs_b->lock);
5218 	if (cfs_b->quota != RUNTIME_INF) {
5219 		cfs_b->runtime += slack_runtime;
5220 
5221 		/* we are under rq->lock, defer unthrottling using a timer */
5222 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5223 		    !list_empty(&cfs_b->throttled_cfs_rq))
5224 			start_cfs_slack_bandwidth(cfs_b);
5225 	}
5226 	raw_spin_unlock(&cfs_b->lock);
5227 
5228 	/* even if it's not valid for return we don't want to try again */
5229 	cfs_rq->runtime_remaining -= slack_runtime;
5230 }
5231 
5232 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5233 {
5234 	if (!cfs_bandwidth_used())
5235 		return;
5236 
5237 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5238 		return;
5239 
5240 	__return_cfs_rq_runtime(cfs_rq);
5241 }
5242 
5243 /*
5244  * This is done with a timer (instead of inline with bandwidth return) since
5245  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5246  */
5247 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5248 {
5249 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5250 	unsigned long flags;
5251 
5252 	/* confirm we're still not at a refresh boundary */
5253 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5254 	cfs_b->slack_started = false;
5255 
5256 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5257 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5258 		return;
5259 	}
5260 
5261 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5262 		runtime = cfs_b->runtime;
5263 
5264 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5265 
5266 	if (!runtime)
5267 		return;
5268 
5269 	distribute_cfs_runtime(cfs_b);
5270 }
5271 
5272 /*
5273  * When a group wakes up we want to make sure that its quota is not already
5274  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5275  * runtime as update_curr() throttling can not trigger until it's on-rq.
5276  */
5277 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5278 {
5279 	if (!cfs_bandwidth_used())
5280 		return;
5281 
5282 	/* an active group must be handled by the update_curr()->put() path */
5283 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5284 		return;
5285 
5286 	/* ensure the group is not already throttled */
5287 	if (cfs_rq_throttled(cfs_rq))
5288 		return;
5289 
5290 	/* update runtime allocation */
5291 	account_cfs_rq_runtime(cfs_rq, 0);
5292 	if (cfs_rq->runtime_remaining <= 0)
5293 		throttle_cfs_rq(cfs_rq);
5294 }
5295 
5296 static void sync_throttle(struct task_group *tg, int cpu)
5297 {
5298 	struct cfs_rq *pcfs_rq, *cfs_rq;
5299 
5300 	if (!cfs_bandwidth_used())
5301 		return;
5302 
5303 	if (!tg->parent)
5304 		return;
5305 
5306 	cfs_rq = tg->cfs_rq[cpu];
5307 	pcfs_rq = tg->parent->cfs_rq[cpu];
5308 
5309 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5310 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5311 }
5312 
5313 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5314 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5315 {
5316 	if (!cfs_bandwidth_used())
5317 		return false;
5318 
5319 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5320 		return false;
5321 
5322 	/*
5323 	 * it's possible for a throttled entity to be forced into a running
5324 	 * state (e.g. set_curr_task), in this case we're finished.
5325 	 */
5326 	if (cfs_rq_throttled(cfs_rq))
5327 		return true;
5328 
5329 	return throttle_cfs_rq(cfs_rq);
5330 }
5331 
5332 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5333 {
5334 	struct cfs_bandwidth *cfs_b =
5335 		container_of(timer, struct cfs_bandwidth, slack_timer);
5336 
5337 	do_sched_cfs_slack_timer(cfs_b);
5338 
5339 	return HRTIMER_NORESTART;
5340 }
5341 
5342 extern const u64 max_cfs_quota_period;
5343 
5344 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5345 {
5346 	struct cfs_bandwidth *cfs_b =
5347 		container_of(timer, struct cfs_bandwidth, period_timer);
5348 	unsigned long flags;
5349 	int overrun;
5350 	int idle = 0;
5351 	int count = 0;
5352 
5353 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5354 	for (;;) {
5355 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5356 		if (!overrun)
5357 			break;
5358 
5359 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5360 
5361 		if (++count > 3) {
5362 			u64 new, old = ktime_to_ns(cfs_b->period);
5363 
5364 			/*
5365 			 * Grow period by a factor of 2 to avoid losing precision.
5366 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5367 			 * to fail.
5368 			 */
5369 			new = old * 2;
5370 			if (new < max_cfs_quota_period) {
5371 				cfs_b->period = ns_to_ktime(new);
5372 				cfs_b->quota *= 2;
5373 				cfs_b->burst *= 2;
5374 
5375 				pr_warn_ratelimited(
5376 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5377 					smp_processor_id(),
5378 					div_u64(new, NSEC_PER_USEC),
5379 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5380 			} else {
5381 				pr_warn_ratelimited(
5382 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5383 					smp_processor_id(),
5384 					div_u64(old, NSEC_PER_USEC),
5385 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5386 			}
5387 
5388 			/* reset count so we don't come right back in here */
5389 			count = 0;
5390 		}
5391 	}
5392 	if (idle)
5393 		cfs_b->period_active = 0;
5394 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5395 
5396 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5397 }
5398 
5399 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5400 {
5401 	raw_spin_lock_init(&cfs_b->lock);
5402 	cfs_b->runtime = 0;
5403 	cfs_b->quota = RUNTIME_INF;
5404 	cfs_b->period = ns_to_ktime(default_cfs_period());
5405 	cfs_b->burst = 0;
5406 
5407 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5408 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5409 	cfs_b->period_timer.function = sched_cfs_period_timer;
5410 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5411 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5412 	cfs_b->slack_started = false;
5413 }
5414 
5415 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5416 {
5417 	cfs_rq->runtime_enabled = 0;
5418 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5419 }
5420 
5421 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5422 {
5423 	lockdep_assert_held(&cfs_b->lock);
5424 
5425 	if (cfs_b->period_active)
5426 		return;
5427 
5428 	cfs_b->period_active = 1;
5429 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5430 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5431 }
5432 
5433 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5434 {
5435 	/* init_cfs_bandwidth() was not called */
5436 	if (!cfs_b->throttled_cfs_rq.next)
5437 		return;
5438 
5439 	hrtimer_cancel(&cfs_b->period_timer);
5440 	hrtimer_cancel(&cfs_b->slack_timer);
5441 }
5442 
5443 /*
5444  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5445  *
5446  * The race is harmless, since modifying bandwidth settings of unhooked group
5447  * bits doesn't do much.
5448  */
5449 
5450 /* cpu online callback */
5451 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5452 {
5453 	struct task_group *tg;
5454 
5455 	lockdep_assert_rq_held(rq);
5456 
5457 	rcu_read_lock();
5458 	list_for_each_entry_rcu(tg, &task_groups, list) {
5459 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5460 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5461 
5462 		raw_spin_lock(&cfs_b->lock);
5463 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5464 		raw_spin_unlock(&cfs_b->lock);
5465 	}
5466 	rcu_read_unlock();
5467 }
5468 
5469 /* cpu offline callback */
5470 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5471 {
5472 	struct task_group *tg;
5473 
5474 	lockdep_assert_rq_held(rq);
5475 
5476 	rcu_read_lock();
5477 	list_for_each_entry_rcu(tg, &task_groups, list) {
5478 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5479 
5480 		if (!cfs_rq->runtime_enabled)
5481 			continue;
5482 
5483 		/*
5484 		 * clock_task is not advancing so we just need to make sure
5485 		 * there's some valid quota amount
5486 		 */
5487 		cfs_rq->runtime_remaining = 1;
5488 		/*
5489 		 * Offline rq is schedulable till CPU is completely disabled
5490 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5491 		 */
5492 		cfs_rq->runtime_enabled = 0;
5493 
5494 		if (cfs_rq_throttled(cfs_rq))
5495 			unthrottle_cfs_rq(cfs_rq);
5496 	}
5497 	rcu_read_unlock();
5498 }
5499 
5500 #else /* CONFIG_CFS_BANDWIDTH */
5501 
5502 static inline bool cfs_bandwidth_used(void)
5503 {
5504 	return false;
5505 }
5506 
5507 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5508 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5509 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5510 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5511 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5512 
5513 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5514 {
5515 	return 0;
5516 }
5517 
5518 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5519 {
5520 	return 0;
5521 }
5522 
5523 static inline int throttled_lb_pair(struct task_group *tg,
5524 				    int src_cpu, int dest_cpu)
5525 {
5526 	return 0;
5527 }
5528 
5529 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5530 
5531 #ifdef CONFIG_FAIR_GROUP_SCHED
5532 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5533 #endif
5534 
5535 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5536 {
5537 	return NULL;
5538 }
5539 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5540 static inline void update_runtime_enabled(struct rq *rq) {}
5541 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5542 
5543 #endif /* CONFIG_CFS_BANDWIDTH */
5544 
5545 /**************************************************
5546  * CFS operations on tasks:
5547  */
5548 
5549 #ifdef CONFIG_SCHED_HRTICK
5550 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5551 {
5552 	struct sched_entity *se = &p->se;
5553 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5554 
5555 	SCHED_WARN_ON(task_rq(p) != rq);
5556 
5557 	if (rq->cfs.h_nr_running > 1) {
5558 		u64 slice = sched_slice(cfs_rq, se);
5559 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5560 		s64 delta = slice - ran;
5561 
5562 		if (delta < 0) {
5563 			if (task_current(rq, p))
5564 				resched_curr(rq);
5565 			return;
5566 		}
5567 		hrtick_start(rq, delta);
5568 	}
5569 }
5570 
5571 /*
5572  * called from enqueue/dequeue and updates the hrtick when the
5573  * current task is from our class and nr_running is low enough
5574  * to matter.
5575  */
5576 static void hrtick_update(struct rq *rq)
5577 {
5578 	struct task_struct *curr = rq->curr;
5579 
5580 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5581 		return;
5582 
5583 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5584 		hrtick_start_fair(rq, curr);
5585 }
5586 #else /* !CONFIG_SCHED_HRTICK */
5587 static inline void
5588 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5589 {
5590 }
5591 
5592 static inline void hrtick_update(struct rq *rq)
5593 {
5594 }
5595 #endif
5596 
5597 #ifdef CONFIG_SMP
5598 static inline bool cpu_overutilized(int cpu)
5599 {
5600 	return !fits_capacity(cpu_util_cfs(cpu), capacity_of(cpu));
5601 }
5602 
5603 static inline void update_overutilized_status(struct rq *rq)
5604 {
5605 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5606 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5607 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5608 	}
5609 }
5610 #else
5611 static inline void update_overutilized_status(struct rq *rq) { }
5612 #endif
5613 
5614 /* Runqueue only has SCHED_IDLE tasks enqueued */
5615 static int sched_idle_rq(struct rq *rq)
5616 {
5617 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5618 			rq->nr_running);
5619 }
5620 
5621 /*
5622  * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
5623  * of idle_nr_running, which does not consider idle descendants of normal
5624  * entities.
5625  */
5626 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
5627 {
5628 	return cfs_rq->nr_running &&
5629 		cfs_rq->nr_running == cfs_rq->idle_nr_running;
5630 }
5631 
5632 #ifdef CONFIG_SMP
5633 static int sched_idle_cpu(int cpu)
5634 {
5635 	return sched_idle_rq(cpu_rq(cpu));
5636 }
5637 #endif
5638 
5639 /*
5640  * The enqueue_task method is called before nr_running is
5641  * increased. Here we update the fair scheduling stats and
5642  * then put the task into the rbtree:
5643  */
5644 static void
5645 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5646 {
5647 	struct cfs_rq *cfs_rq;
5648 	struct sched_entity *se = &p->se;
5649 	int idle_h_nr_running = task_has_idle_policy(p);
5650 	int task_new = !(flags & ENQUEUE_WAKEUP);
5651 
5652 	/*
5653 	 * The code below (indirectly) updates schedutil which looks at
5654 	 * the cfs_rq utilization to select a frequency.
5655 	 * Let's add the task's estimated utilization to the cfs_rq's
5656 	 * estimated utilization, before we update schedutil.
5657 	 */
5658 	util_est_enqueue(&rq->cfs, p);
5659 
5660 	/*
5661 	 * If in_iowait is set, the code below may not trigger any cpufreq
5662 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5663 	 * passed.
5664 	 */
5665 	if (p->in_iowait)
5666 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5667 
5668 	for_each_sched_entity(se) {
5669 		if (se->on_rq)
5670 			break;
5671 		cfs_rq = cfs_rq_of(se);
5672 		enqueue_entity(cfs_rq, se, flags);
5673 
5674 		cfs_rq->h_nr_running++;
5675 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5676 
5677 		if (cfs_rq_is_idle(cfs_rq))
5678 			idle_h_nr_running = 1;
5679 
5680 		/* end evaluation on encountering a throttled cfs_rq */
5681 		if (cfs_rq_throttled(cfs_rq))
5682 			goto enqueue_throttle;
5683 
5684 		flags = ENQUEUE_WAKEUP;
5685 	}
5686 
5687 	for_each_sched_entity(se) {
5688 		cfs_rq = cfs_rq_of(se);
5689 
5690 		update_load_avg(cfs_rq, se, UPDATE_TG);
5691 		se_update_runnable(se);
5692 		update_cfs_group(se);
5693 
5694 		cfs_rq->h_nr_running++;
5695 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5696 
5697 		if (cfs_rq_is_idle(cfs_rq))
5698 			idle_h_nr_running = 1;
5699 
5700 		/* end evaluation on encountering a throttled cfs_rq */
5701 		if (cfs_rq_throttled(cfs_rq))
5702 			goto enqueue_throttle;
5703 
5704                /*
5705                 * One parent has been throttled and cfs_rq removed from the
5706                 * list. Add it back to not break the leaf list.
5707                 */
5708                if (throttled_hierarchy(cfs_rq))
5709                        list_add_leaf_cfs_rq(cfs_rq);
5710 	}
5711 
5712 	/* At this point se is NULL and we are at root level*/
5713 	add_nr_running(rq, 1);
5714 
5715 	/*
5716 	 * Since new tasks are assigned an initial util_avg equal to
5717 	 * half of the spare capacity of their CPU, tiny tasks have the
5718 	 * ability to cross the overutilized threshold, which will
5719 	 * result in the load balancer ruining all the task placement
5720 	 * done by EAS. As a way to mitigate that effect, do not account
5721 	 * for the first enqueue operation of new tasks during the
5722 	 * overutilized flag detection.
5723 	 *
5724 	 * A better way of solving this problem would be to wait for
5725 	 * the PELT signals of tasks to converge before taking them
5726 	 * into account, but that is not straightforward to implement,
5727 	 * and the following generally works well enough in practice.
5728 	 */
5729 	if (!task_new)
5730 		update_overutilized_status(rq);
5731 
5732 enqueue_throttle:
5733 	if (cfs_bandwidth_used()) {
5734 		/*
5735 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5736 		 * breaks in the above iteration can result in incomplete
5737 		 * leaf list maintenance, resulting in triggering the assertion
5738 		 * below.
5739 		 */
5740 		for_each_sched_entity(se) {
5741 			cfs_rq = cfs_rq_of(se);
5742 
5743 			if (list_add_leaf_cfs_rq(cfs_rq))
5744 				break;
5745 		}
5746 	}
5747 
5748 	assert_list_leaf_cfs_rq(rq);
5749 
5750 	hrtick_update(rq);
5751 }
5752 
5753 static void set_next_buddy(struct sched_entity *se);
5754 
5755 /*
5756  * The dequeue_task method is called before nr_running is
5757  * decreased. We remove the task from the rbtree and
5758  * update the fair scheduling stats:
5759  */
5760 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5761 {
5762 	struct cfs_rq *cfs_rq;
5763 	struct sched_entity *se = &p->se;
5764 	int task_sleep = flags & DEQUEUE_SLEEP;
5765 	int idle_h_nr_running = task_has_idle_policy(p);
5766 	bool was_sched_idle = sched_idle_rq(rq);
5767 
5768 	util_est_dequeue(&rq->cfs, p);
5769 
5770 	for_each_sched_entity(se) {
5771 		cfs_rq = cfs_rq_of(se);
5772 		dequeue_entity(cfs_rq, se, flags);
5773 
5774 		cfs_rq->h_nr_running--;
5775 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5776 
5777 		if (cfs_rq_is_idle(cfs_rq))
5778 			idle_h_nr_running = 1;
5779 
5780 		/* end evaluation on encountering a throttled cfs_rq */
5781 		if (cfs_rq_throttled(cfs_rq))
5782 			goto dequeue_throttle;
5783 
5784 		/* Don't dequeue parent if it has other entities besides us */
5785 		if (cfs_rq->load.weight) {
5786 			/* Avoid re-evaluating load for this entity: */
5787 			se = parent_entity(se);
5788 			/*
5789 			 * Bias pick_next to pick a task from this cfs_rq, as
5790 			 * p is sleeping when it is within its sched_slice.
5791 			 */
5792 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5793 				set_next_buddy(se);
5794 			break;
5795 		}
5796 		flags |= DEQUEUE_SLEEP;
5797 	}
5798 
5799 	for_each_sched_entity(se) {
5800 		cfs_rq = cfs_rq_of(se);
5801 
5802 		update_load_avg(cfs_rq, se, UPDATE_TG);
5803 		se_update_runnable(se);
5804 		update_cfs_group(se);
5805 
5806 		cfs_rq->h_nr_running--;
5807 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5808 
5809 		if (cfs_rq_is_idle(cfs_rq))
5810 			idle_h_nr_running = 1;
5811 
5812 		/* end evaluation on encountering a throttled cfs_rq */
5813 		if (cfs_rq_throttled(cfs_rq))
5814 			goto dequeue_throttle;
5815 
5816 	}
5817 
5818 	/* At this point se is NULL and we are at root level*/
5819 	sub_nr_running(rq, 1);
5820 
5821 	/* balance early to pull high priority tasks */
5822 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5823 		rq->next_balance = jiffies;
5824 
5825 dequeue_throttle:
5826 	util_est_update(&rq->cfs, p, task_sleep);
5827 	hrtick_update(rq);
5828 }
5829 
5830 #ifdef CONFIG_SMP
5831 
5832 /* Working cpumask for: load_balance, load_balance_newidle. */
5833 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5834 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5835 
5836 #ifdef CONFIG_NO_HZ_COMMON
5837 
5838 static struct {
5839 	cpumask_var_t idle_cpus_mask;
5840 	atomic_t nr_cpus;
5841 	int has_blocked;		/* Idle CPUS has blocked load */
5842 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
5843 	unsigned long next_balance;     /* in jiffy units */
5844 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5845 } nohz ____cacheline_aligned;
5846 
5847 #endif /* CONFIG_NO_HZ_COMMON */
5848 
5849 static unsigned long cpu_load(struct rq *rq)
5850 {
5851 	return cfs_rq_load_avg(&rq->cfs);
5852 }
5853 
5854 /*
5855  * cpu_load_without - compute CPU load without any contributions from *p
5856  * @cpu: the CPU which load is requested
5857  * @p: the task which load should be discounted
5858  *
5859  * The load of a CPU is defined by the load of tasks currently enqueued on that
5860  * CPU as well as tasks which are currently sleeping after an execution on that
5861  * CPU.
5862  *
5863  * This method returns the load of the specified CPU by discounting the load of
5864  * the specified task, whenever the task is currently contributing to the CPU
5865  * load.
5866  */
5867 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5868 {
5869 	struct cfs_rq *cfs_rq;
5870 	unsigned int load;
5871 
5872 	/* Task has no contribution or is new */
5873 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5874 		return cpu_load(rq);
5875 
5876 	cfs_rq = &rq->cfs;
5877 	load = READ_ONCE(cfs_rq->avg.load_avg);
5878 
5879 	/* Discount task's util from CPU's util */
5880 	lsub_positive(&load, task_h_load(p));
5881 
5882 	return load;
5883 }
5884 
5885 static unsigned long cpu_runnable(struct rq *rq)
5886 {
5887 	return cfs_rq_runnable_avg(&rq->cfs);
5888 }
5889 
5890 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5891 {
5892 	struct cfs_rq *cfs_rq;
5893 	unsigned int runnable;
5894 
5895 	/* Task has no contribution or is new */
5896 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5897 		return cpu_runnable(rq);
5898 
5899 	cfs_rq = &rq->cfs;
5900 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5901 
5902 	/* Discount task's runnable from CPU's runnable */
5903 	lsub_positive(&runnable, p->se.avg.runnable_avg);
5904 
5905 	return runnable;
5906 }
5907 
5908 static unsigned long capacity_of(int cpu)
5909 {
5910 	return cpu_rq(cpu)->cpu_capacity;
5911 }
5912 
5913 static void record_wakee(struct task_struct *p)
5914 {
5915 	/*
5916 	 * Only decay a single time; tasks that have less then 1 wakeup per
5917 	 * jiffy will not have built up many flips.
5918 	 */
5919 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5920 		current->wakee_flips >>= 1;
5921 		current->wakee_flip_decay_ts = jiffies;
5922 	}
5923 
5924 	if (current->last_wakee != p) {
5925 		current->last_wakee = p;
5926 		current->wakee_flips++;
5927 	}
5928 }
5929 
5930 /*
5931  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5932  *
5933  * A waker of many should wake a different task than the one last awakened
5934  * at a frequency roughly N times higher than one of its wakees.
5935  *
5936  * In order to determine whether we should let the load spread vs consolidating
5937  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5938  * partner, and a factor of lls_size higher frequency in the other.
5939  *
5940  * With both conditions met, we can be relatively sure that the relationship is
5941  * non-monogamous, with partner count exceeding socket size.
5942  *
5943  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5944  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5945  * socket size.
5946  */
5947 static int wake_wide(struct task_struct *p)
5948 {
5949 	unsigned int master = current->wakee_flips;
5950 	unsigned int slave = p->wakee_flips;
5951 	int factor = __this_cpu_read(sd_llc_size);
5952 
5953 	if (master < slave)
5954 		swap(master, slave);
5955 	if (slave < factor || master < slave * factor)
5956 		return 0;
5957 	return 1;
5958 }
5959 
5960 /*
5961  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5962  * soonest. For the purpose of speed we only consider the waking and previous
5963  * CPU.
5964  *
5965  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5966  *			cache-affine and is (or	will be) idle.
5967  *
5968  * wake_affine_weight() - considers the weight to reflect the average
5969  *			  scheduling latency of the CPUs. This seems to work
5970  *			  for the overloaded case.
5971  */
5972 static int
5973 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5974 {
5975 	/*
5976 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5977 	 * context. Only allow the move if cache is shared. Otherwise an
5978 	 * interrupt intensive workload could force all tasks onto one
5979 	 * node depending on the IO topology or IRQ affinity settings.
5980 	 *
5981 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5982 	 * There is no guarantee that the cache hot data from an interrupt
5983 	 * is more important than cache hot data on the prev_cpu and from
5984 	 * a cpufreq perspective, it's better to have higher utilisation
5985 	 * on one CPU.
5986 	 */
5987 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5988 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5989 
5990 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5991 		return this_cpu;
5992 
5993 	if (available_idle_cpu(prev_cpu))
5994 		return prev_cpu;
5995 
5996 	return nr_cpumask_bits;
5997 }
5998 
5999 static int
6000 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
6001 		   int this_cpu, int prev_cpu, int sync)
6002 {
6003 	s64 this_eff_load, prev_eff_load;
6004 	unsigned long task_load;
6005 
6006 	this_eff_load = cpu_load(cpu_rq(this_cpu));
6007 
6008 	if (sync) {
6009 		unsigned long current_load = task_h_load(current);
6010 
6011 		if (current_load > this_eff_load)
6012 			return this_cpu;
6013 
6014 		this_eff_load -= current_load;
6015 	}
6016 
6017 	task_load = task_h_load(p);
6018 
6019 	this_eff_load += task_load;
6020 	if (sched_feat(WA_BIAS))
6021 		this_eff_load *= 100;
6022 	this_eff_load *= capacity_of(prev_cpu);
6023 
6024 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
6025 	prev_eff_load -= task_load;
6026 	if (sched_feat(WA_BIAS))
6027 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
6028 	prev_eff_load *= capacity_of(this_cpu);
6029 
6030 	/*
6031 	 * If sync, adjust the weight of prev_eff_load such that if
6032 	 * prev_eff == this_eff that select_idle_sibling() will consider
6033 	 * stacking the wakee on top of the waker if no other CPU is
6034 	 * idle.
6035 	 */
6036 	if (sync)
6037 		prev_eff_load += 1;
6038 
6039 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
6040 }
6041 
6042 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
6043 		       int this_cpu, int prev_cpu, int sync)
6044 {
6045 	int target = nr_cpumask_bits;
6046 
6047 	if (sched_feat(WA_IDLE))
6048 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
6049 
6050 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
6051 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6052 
6053 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
6054 	if (target == nr_cpumask_bits)
6055 		return prev_cpu;
6056 
6057 	schedstat_inc(sd->ttwu_move_affine);
6058 	schedstat_inc(p->stats.nr_wakeups_affine);
6059 	return target;
6060 }
6061 
6062 static struct sched_group *
6063 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6064 
6065 /*
6066  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6067  */
6068 static int
6069 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6070 {
6071 	unsigned long load, min_load = ULONG_MAX;
6072 	unsigned int min_exit_latency = UINT_MAX;
6073 	u64 latest_idle_timestamp = 0;
6074 	int least_loaded_cpu = this_cpu;
6075 	int shallowest_idle_cpu = -1;
6076 	int i;
6077 
6078 	/* Check if we have any choice: */
6079 	if (group->group_weight == 1)
6080 		return cpumask_first(sched_group_span(group));
6081 
6082 	/* Traverse only the allowed CPUs */
6083 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6084 		struct rq *rq = cpu_rq(i);
6085 
6086 		if (!sched_core_cookie_match(rq, p))
6087 			continue;
6088 
6089 		if (sched_idle_cpu(i))
6090 			return i;
6091 
6092 		if (available_idle_cpu(i)) {
6093 			struct cpuidle_state *idle = idle_get_state(rq);
6094 			if (idle && idle->exit_latency < min_exit_latency) {
6095 				/*
6096 				 * We give priority to a CPU whose idle state
6097 				 * has the smallest exit latency irrespective
6098 				 * of any idle timestamp.
6099 				 */
6100 				min_exit_latency = idle->exit_latency;
6101 				latest_idle_timestamp = rq->idle_stamp;
6102 				shallowest_idle_cpu = i;
6103 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
6104 				   rq->idle_stamp > latest_idle_timestamp) {
6105 				/*
6106 				 * If equal or no active idle state, then
6107 				 * the most recently idled CPU might have
6108 				 * a warmer cache.
6109 				 */
6110 				latest_idle_timestamp = rq->idle_stamp;
6111 				shallowest_idle_cpu = i;
6112 			}
6113 		} else if (shallowest_idle_cpu == -1) {
6114 			load = cpu_load(cpu_rq(i));
6115 			if (load < min_load) {
6116 				min_load = load;
6117 				least_loaded_cpu = i;
6118 			}
6119 		}
6120 	}
6121 
6122 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6123 }
6124 
6125 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6126 				  int cpu, int prev_cpu, int sd_flag)
6127 {
6128 	int new_cpu = cpu;
6129 
6130 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6131 		return prev_cpu;
6132 
6133 	/*
6134 	 * We need task's util for cpu_util_without, sync it up to
6135 	 * prev_cpu's last_update_time.
6136 	 */
6137 	if (!(sd_flag & SD_BALANCE_FORK))
6138 		sync_entity_load_avg(&p->se);
6139 
6140 	while (sd) {
6141 		struct sched_group *group;
6142 		struct sched_domain *tmp;
6143 		int weight;
6144 
6145 		if (!(sd->flags & sd_flag)) {
6146 			sd = sd->child;
6147 			continue;
6148 		}
6149 
6150 		group = find_idlest_group(sd, p, cpu);
6151 		if (!group) {
6152 			sd = sd->child;
6153 			continue;
6154 		}
6155 
6156 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6157 		if (new_cpu == cpu) {
6158 			/* Now try balancing at a lower domain level of 'cpu': */
6159 			sd = sd->child;
6160 			continue;
6161 		}
6162 
6163 		/* Now try balancing at a lower domain level of 'new_cpu': */
6164 		cpu = new_cpu;
6165 		weight = sd->span_weight;
6166 		sd = NULL;
6167 		for_each_domain(cpu, tmp) {
6168 			if (weight <= tmp->span_weight)
6169 				break;
6170 			if (tmp->flags & sd_flag)
6171 				sd = tmp;
6172 		}
6173 	}
6174 
6175 	return new_cpu;
6176 }
6177 
6178 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6179 {
6180 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6181 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
6182 		return cpu;
6183 
6184 	return -1;
6185 }
6186 
6187 #ifdef CONFIG_SCHED_SMT
6188 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6189 EXPORT_SYMBOL_GPL(sched_smt_present);
6190 
6191 static inline void set_idle_cores(int cpu, int val)
6192 {
6193 	struct sched_domain_shared *sds;
6194 
6195 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6196 	if (sds)
6197 		WRITE_ONCE(sds->has_idle_cores, val);
6198 }
6199 
6200 static inline bool test_idle_cores(int cpu, bool def)
6201 {
6202 	struct sched_domain_shared *sds;
6203 
6204 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6205 	if (sds)
6206 		return READ_ONCE(sds->has_idle_cores);
6207 
6208 	return def;
6209 }
6210 
6211 /*
6212  * Scans the local SMT mask to see if the entire core is idle, and records this
6213  * information in sd_llc_shared->has_idle_cores.
6214  *
6215  * Since SMT siblings share all cache levels, inspecting this limited remote
6216  * state should be fairly cheap.
6217  */
6218 void __update_idle_core(struct rq *rq)
6219 {
6220 	int core = cpu_of(rq);
6221 	int cpu;
6222 
6223 	rcu_read_lock();
6224 	if (test_idle_cores(core, true))
6225 		goto unlock;
6226 
6227 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6228 		if (cpu == core)
6229 			continue;
6230 
6231 		if (!available_idle_cpu(cpu))
6232 			goto unlock;
6233 	}
6234 
6235 	set_idle_cores(core, 1);
6236 unlock:
6237 	rcu_read_unlock();
6238 }
6239 
6240 /*
6241  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6242  * there are no idle cores left in the system; tracked through
6243  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6244  */
6245 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6246 {
6247 	bool idle = true;
6248 	int cpu;
6249 
6250 	if (!static_branch_likely(&sched_smt_present))
6251 		return __select_idle_cpu(core, p);
6252 
6253 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6254 		if (!available_idle_cpu(cpu)) {
6255 			idle = false;
6256 			if (*idle_cpu == -1) {
6257 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6258 					*idle_cpu = cpu;
6259 					break;
6260 				}
6261 				continue;
6262 			}
6263 			break;
6264 		}
6265 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6266 			*idle_cpu = cpu;
6267 	}
6268 
6269 	if (idle)
6270 		return core;
6271 
6272 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6273 	return -1;
6274 }
6275 
6276 /*
6277  * Scan the local SMT mask for idle CPUs.
6278  */
6279 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6280 {
6281 	int cpu;
6282 
6283 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6284 		if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6285 		    !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6286 			continue;
6287 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6288 			return cpu;
6289 	}
6290 
6291 	return -1;
6292 }
6293 
6294 #else /* CONFIG_SCHED_SMT */
6295 
6296 static inline void set_idle_cores(int cpu, int val)
6297 {
6298 }
6299 
6300 static inline bool test_idle_cores(int cpu, bool def)
6301 {
6302 	return def;
6303 }
6304 
6305 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6306 {
6307 	return __select_idle_cpu(core, p);
6308 }
6309 
6310 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6311 {
6312 	return -1;
6313 }
6314 
6315 #endif /* CONFIG_SCHED_SMT */
6316 
6317 /*
6318  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6319  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6320  * average idle time for this rq (as found in rq->avg_idle).
6321  */
6322 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6323 {
6324 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6325 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
6326 	struct rq *this_rq = this_rq();
6327 	int this = smp_processor_id();
6328 	struct sched_domain *this_sd;
6329 	u64 time = 0;
6330 
6331 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6332 	if (!this_sd)
6333 		return -1;
6334 
6335 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6336 
6337 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6338 		u64 avg_cost, avg_idle, span_avg;
6339 		unsigned long now = jiffies;
6340 
6341 		/*
6342 		 * If we're busy, the assumption that the last idle period
6343 		 * predicts the future is flawed; age away the remaining
6344 		 * predicted idle time.
6345 		 */
6346 		if (unlikely(this_rq->wake_stamp < now)) {
6347 			while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6348 				this_rq->wake_stamp++;
6349 				this_rq->wake_avg_idle >>= 1;
6350 			}
6351 		}
6352 
6353 		avg_idle = this_rq->wake_avg_idle;
6354 		avg_cost = this_sd->avg_scan_cost + 1;
6355 
6356 		span_avg = sd->span_weight * avg_idle;
6357 		if (span_avg > 4*avg_cost)
6358 			nr = div_u64(span_avg, avg_cost);
6359 		else
6360 			nr = 4;
6361 
6362 		time = cpu_clock(this);
6363 	}
6364 
6365 	for_each_cpu_wrap(cpu, cpus, target + 1) {
6366 		if (has_idle_core) {
6367 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
6368 			if ((unsigned int)i < nr_cpumask_bits)
6369 				return i;
6370 
6371 		} else {
6372 			if (!--nr)
6373 				return -1;
6374 			idle_cpu = __select_idle_cpu(cpu, p);
6375 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
6376 				break;
6377 		}
6378 	}
6379 
6380 	if (has_idle_core)
6381 		set_idle_cores(target, false);
6382 
6383 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6384 		time = cpu_clock(this) - time;
6385 
6386 		/*
6387 		 * Account for the scan cost of wakeups against the average
6388 		 * idle time.
6389 		 */
6390 		this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6391 
6392 		update_avg(&this_sd->avg_scan_cost, time);
6393 	}
6394 
6395 	return idle_cpu;
6396 }
6397 
6398 /*
6399  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6400  * the task fits. If no CPU is big enough, but there are idle ones, try to
6401  * maximize capacity.
6402  */
6403 static int
6404 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6405 {
6406 	unsigned long task_util, best_cap = 0;
6407 	int cpu, best_cpu = -1;
6408 	struct cpumask *cpus;
6409 
6410 	cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6411 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6412 
6413 	task_util = uclamp_task_util(p);
6414 
6415 	for_each_cpu_wrap(cpu, cpus, target) {
6416 		unsigned long cpu_cap = capacity_of(cpu);
6417 
6418 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6419 			continue;
6420 		if (fits_capacity(task_util, cpu_cap))
6421 			return cpu;
6422 
6423 		if (cpu_cap > best_cap) {
6424 			best_cap = cpu_cap;
6425 			best_cpu = cpu;
6426 		}
6427 	}
6428 
6429 	return best_cpu;
6430 }
6431 
6432 static inline bool asym_fits_capacity(unsigned long task_util, int cpu)
6433 {
6434 	if (static_branch_unlikely(&sched_asym_cpucapacity))
6435 		return fits_capacity(task_util, capacity_of(cpu));
6436 
6437 	return true;
6438 }
6439 
6440 /*
6441  * Try and locate an idle core/thread in the LLC cache domain.
6442  */
6443 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6444 {
6445 	bool has_idle_core = false;
6446 	struct sched_domain *sd;
6447 	unsigned long task_util;
6448 	int i, recent_used_cpu;
6449 
6450 	/*
6451 	 * On asymmetric system, update task utilization because we will check
6452 	 * that the task fits with cpu's capacity.
6453 	 */
6454 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6455 		sync_entity_load_avg(&p->se);
6456 		task_util = uclamp_task_util(p);
6457 	}
6458 
6459 	/*
6460 	 * per-cpu select_idle_mask usage
6461 	 */
6462 	lockdep_assert_irqs_disabled();
6463 
6464 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6465 	    asym_fits_capacity(task_util, target))
6466 		return target;
6467 
6468 	/*
6469 	 * If the previous CPU is cache affine and idle, don't be stupid:
6470 	 */
6471 	if (prev != target && cpus_share_cache(prev, target) &&
6472 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6473 	    asym_fits_capacity(task_util, prev))
6474 		return prev;
6475 
6476 	/*
6477 	 * Allow a per-cpu kthread to stack with the wakee if the
6478 	 * kworker thread and the tasks previous CPUs are the same.
6479 	 * The assumption is that the wakee queued work for the
6480 	 * per-cpu kthread that is now complete and the wakeup is
6481 	 * essentially a sync wakeup. An obvious example of this
6482 	 * pattern is IO completions.
6483 	 */
6484 	if (is_per_cpu_kthread(current) &&
6485 	    in_task() &&
6486 	    prev == smp_processor_id() &&
6487 	    this_rq()->nr_running <= 1 &&
6488 	    asym_fits_capacity(task_util, prev)) {
6489 		return prev;
6490 	}
6491 
6492 	/* Check a recently used CPU as a potential idle candidate: */
6493 	recent_used_cpu = p->recent_used_cpu;
6494 	p->recent_used_cpu = prev;
6495 	if (recent_used_cpu != prev &&
6496 	    recent_used_cpu != target &&
6497 	    cpus_share_cache(recent_used_cpu, target) &&
6498 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6499 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6500 	    asym_fits_capacity(task_util, recent_used_cpu)) {
6501 		return recent_used_cpu;
6502 	}
6503 
6504 	/*
6505 	 * For asymmetric CPU capacity systems, our domain of interest is
6506 	 * sd_asym_cpucapacity rather than sd_llc.
6507 	 */
6508 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6509 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6510 		/*
6511 		 * On an asymmetric CPU capacity system where an exclusive
6512 		 * cpuset defines a symmetric island (i.e. one unique
6513 		 * capacity_orig value through the cpuset), the key will be set
6514 		 * but the CPUs within that cpuset will not have a domain with
6515 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6516 		 * capacity path.
6517 		 */
6518 		if (sd) {
6519 			i = select_idle_capacity(p, sd, target);
6520 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
6521 		}
6522 	}
6523 
6524 	sd = rcu_dereference(per_cpu(sd_llc, target));
6525 	if (!sd)
6526 		return target;
6527 
6528 	if (sched_smt_active()) {
6529 		has_idle_core = test_idle_cores(target, false);
6530 
6531 		if (!has_idle_core && cpus_share_cache(prev, target)) {
6532 			i = select_idle_smt(p, sd, prev);
6533 			if ((unsigned int)i < nr_cpumask_bits)
6534 				return i;
6535 		}
6536 	}
6537 
6538 	i = select_idle_cpu(p, sd, has_idle_core, target);
6539 	if ((unsigned)i < nr_cpumask_bits)
6540 		return i;
6541 
6542 	return target;
6543 }
6544 
6545 /*
6546  * cpu_util_without: compute cpu utilization without any contributions from *p
6547  * @cpu: the CPU which utilization is requested
6548  * @p: the task which utilization should be discounted
6549  *
6550  * The utilization of a CPU is defined by the utilization of tasks currently
6551  * enqueued on that CPU as well as tasks which are currently sleeping after an
6552  * execution on that CPU.
6553  *
6554  * This method returns the utilization of the specified CPU by discounting the
6555  * utilization of the specified task, whenever the task is currently
6556  * contributing to the CPU utilization.
6557  */
6558 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6559 {
6560 	struct cfs_rq *cfs_rq;
6561 	unsigned int util;
6562 
6563 	/* Task has no contribution or is new */
6564 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6565 		return cpu_util_cfs(cpu);
6566 
6567 	cfs_rq = &cpu_rq(cpu)->cfs;
6568 	util = READ_ONCE(cfs_rq->avg.util_avg);
6569 
6570 	/* Discount task's util from CPU's util */
6571 	lsub_positive(&util, task_util(p));
6572 
6573 	/*
6574 	 * Covered cases:
6575 	 *
6576 	 * a) if *p is the only task sleeping on this CPU, then:
6577 	 *      cpu_util (== task_util) > util_est (== 0)
6578 	 *    and thus we return:
6579 	 *      cpu_util_without = (cpu_util - task_util) = 0
6580 	 *
6581 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6582 	 *    IDLE, then:
6583 	 *      cpu_util >= task_util
6584 	 *      cpu_util > util_est (== 0)
6585 	 *    and thus we discount *p's blocked utilization to return:
6586 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6587 	 *
6588 	 * c) if other tasks are RUNNABLE on that CPU and
6589 	 *      util_est > cpu_util
6590 	 *    then we use util_est since it returns a more restrictive
6591 	 *    estimation of the spare capacity on that CPU, by just
6592 	 *    considering the expected utilization of tasks already
6593 	 *    runnable on that CPU.
6594 	 *
6595 	 * Cases a) and b) are covered by the above code, while case c) is
6596 	 * covered by the following code when estimated utilization is
6597 	 * enabled.
6598 	 */
6599 	if (sched_feat(UTIL_EST)) {
6600 		unsigned int estimated =
6601 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6602 
6603 		/*
6604 		 * Despite the following checks we still have a small window
6605 		 * for a possible race, when an execl's select_task_rq_fair()
6606 		 * races with LB's detach_task():
6607 		 *
6608 		 *   detach_task()
6609 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6610 		 *     ---------------------------------- A
6611 		 *     deactivate_task()                   \
6612 		 *       dequeue_task()                     + RaceTime
6613 		 *         util_est_dequeue()              /
6614 		 *     ---------------------------------- B
6615 		 *
6616 		 * The additional check on "current == p" it's required to
6617 		 * properly fix the execl regression and it helps in further
6618 		 * reducing the chances for the above race.
6619 		 */
6620 		if (unlikely(task_on_rq_queued(p) || current == p))
6621 			lsub_positive(&estimated, _task_util_est(p));
6622 
6623 		util = max(util, estimated);
6624 	}
6625 
6626 	/*
6627 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6628 	 * clamp to the maximum CPU capacity to ensure consistency with
6629 	 * cpu_util.
6630 	 */
6631 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6632 }
6633 
6634 /*
6635  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6636  * to @dst_cpu.
6637  */
6638 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6639 {
6640 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6641 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6642 
6643 	/*
6644 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6645 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6646 	 * the other cases, @cpu is not impacted by the migration, so the
6647 	 * util_avg should already be correct.
6648 	 */
6649 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6650 		lsub_positive(&util, task_util(p));
6651 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6652 		util += task_util(p);
6653 
6654 	if (sched_feat(UTIL_EST)) {
6655 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6656 
6657 		/*
6658 		 * During wake-up, the task isn't enqueued yet and doesn't
6659 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6660 		 * so just add it (if needed) to "simulate" what will be
6661 		 * cpu_util after the task has been enqueued.
6662 		 */
6663 		if (dst_cpu == cpu)
6664 			util_est += _task_util_est(p);
6665 
6666 		util = max(util, util_est);
6667 	}
6668 
6669 	return min(util, capacity_orig_of(cpu));
6670 }
6671 
6672 /*
6673  * compute_energy(): Estimates the energy that @pd would consume if @p was
6674  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6675  * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6676  * to compute what would be the energy if we decided to actually migrate that
6677  * task.
6678  */
6679 static long
6680 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6681 {
6682 	struct cpumask *pd_mask = perf_domain_span(pd);
6683 	unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6684 	unsigned long max_util = 0, sum_util = 0;
6685 	unsigned long _cpu_cap = cpu_cap;
6686 	int cpu;
6687 
6688 	_cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask));
6689 
6690 	/*
6691 	 * The capacity state of CPUs of the current rd can be driven by CPUs
6692 	 * of another rd if they belong to the same pd. So, account for the
6693 	 * utilization of these CPUs too by masking pd with cpu_online_mask
6694 	 * instead of the rd span.
6695 	 *
6696 	 * If an entire pd is outside of the current rd, it will not appear in
6697 	 * its pd list and will not be accounted by compute_energy().
6698 	 */
6699 	for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6700 		unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6701 		unsigned long cpu_util, util_running = util_freq;
6702 		struct task_struct *tsk = NULL;
6703 
6704 		/*
6705 		 * When @p is placed on @cpu:
6706 		 *
6707 		 * util_running = max(cpu_util, cpu_util_est) +
6708 		 *		  max(task_util, _task_util_est)
6709 		 *
6710 		 * while cpu_util_next is: max(cpu_util + task_util,
6711 		 *			       cpu_util_est + _task_util_est)
6712 		 */
6713 		if (cpu == dst_cpu) {
6714 			tsk = p;
6715 			util_running =
6716 				cpu_util_next(cpu, p, -1) + task_util_est(p);
6717 		}
6718 
6719 		/*
6720 		 * Busy time computation: utilization clamping is not
6721 		 * required since the ratio (sum_util / cpu_capacity)
6722 		 * is already enough to scale the EM reported power
6723 		 * consumption at the (eventually clamped) cpu_capacity.
6724 		 */
6725 		cpu_util = effective_cpu_util(cpu, util_running, cpu_cap,
6726 					      ENERGY_UTIL, NULL);
6727 
6728 		sum_util += min(cpu_util, _cpu_cap);
6729 
6730 		/*
6731 		 * Performance domain frequency: utilization clamping
6732 		 * must be considered since it affects the selection
6733 		 * of the performance domain frequency.
6734 		 * NOTE: in case RT tasks are running, by default the
6735 		 * FREQUENCY_UTIL's utilization can be max OPP.
6736 		 */
6737 		cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
6738 					      FREQUENCY_UTIL, tsk);
6739 		max_util = max(max_util, min(cpu_util, _cpu_cap));
6740 	}
6741 
6742 	return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap);
6743 }
6744 
6745 /*
6746  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6747  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6748  * spare capacity in each performance domain and uses it as a potential
6749  * candidate to execute the task. Then, it uses the Energy Model to figure
6750  * out which of the CPU candidates is the most energy-efficient.
6751  *
6752  * The rationale for this heuristic is as follows. In a performance domain,
6753  * all the most energy efficient CPU candidates (according to the Energy
6754  * Model) are those for which we'll request a low frequency. When there are
6755  * several CPUs for which the frequency request will be the same, we don't
6756  * have enough data to break the tie between them, because the Energy Model
6757  * only includes active power costs. With this model, if we assume that
6758  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6759  * the maximum spare capacity in a performance domain is guaranteed to be among
6760  * the best candidates of the performance domain.
6761  *
6762  * In practice, it could be preferable from an energy standpoint to pack
6763  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6764  * but that could also hurt our chances to go cluster idle, and we have no
6765  * ways to tell with the current Energy Model if this is actually a good
6766  * idea or not. So, find_energy_efficient_cpu() basically favors
6767  * cluster-packing, and spreading inside a cluster. That should at least be
6768  * a good thing for latency, and this is consistent with the idea that most
6769  * of the energy savings of EAS come from the asymmetry of the system, and
6770  * not so much from breaking the tie between identical CPUs. That's also the
6771  * reason why EAS is enabled in the topology code only for systems where
6772  * SD_ASYM_CPUCAPACITY is set.
6773  *
6774  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6775  * they don't have any useful utilization data yet and it's not possible to
6776  * forecast their impact on energy consumption. Consequently, they will be
6777  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6778  * to be energy-inefficient in some use-cases. The alternative would be to
6779  * bias new tasks towards specific types of CPUs first, or to try to infer
6780  * their util_avg from the parent task, but those heuristics could hurt
6781  * other use-cases too. So, until someone finds a better way to solve this,
6782  * let's keep things simple by re-using the existing slow path.
6783  */
6784 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6785 {
6786 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6787 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6788 	int cpu, best_energy_cpu = prev_cpu, target = -1;
6789 	unsigned long cpu_cap, util, base_energy = 0;
6790 	struct sched_domain *sd;
6791 	struct perf_domain *pd;
6792 
6793 	rcu_read_lock();
6794 	pd = rcu_dereference(rd->pd);
6795 	if (!pd || READ_ONCE(rd->overutilized))
6796 		goto unlock;
6797 
6798 	/*
6799 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6800 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6801 	 */
6802 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6803 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6804 		sd = sd->parent;
6805 	if (!sd)
6806 		goto unlock;
6807 
6808 	target = prev_cpu;
6809 
6810 	sync_entity_load_avg(&p->se);
6811 	if (!task_util_est(p))
6812 		goto unlock;
6813 
6814 	for (; pd; pd = pd->next) {
6815 		unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6816 		bool compute_prev_delta = false;
6817 		unsigned long base_energy_pd;
6818 		int max_spare_cap_cpu = -1;
6819 
6820 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6821 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6822 				continue;
6823 
6824 			util = cpu_util_next(cpu, p, cpu);
6825 			cpu_cap = capacity_of(cpu);
6826 			spare_cap = cpu_cap;
6827 			lsub_positive(&spare_cap, util);
6828 
6829 			/*
6830 			 * Skip CPUs that cannot satisfy the capacity request.
6831 			 * IOW, placing the task there would make the CPU
6832 			 * overutilized. Take uclamp into account to see how
6833 			 * much capacity we can get out of the CPU; this is
6834 			 * aligned with sched_cpu_util().
6835 			 */
6836 			util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6837 			if (!fits_capacity(util, cpu_cap))
6838 				continue;
6839 
6840 			if (cpu == prev_cpu) {
6841 				/* Always use prev_cpu as a candidate. */
6842 				compute_prev_delta = true;
6843 			} else if (spare_cap > max_spare_cap) {
6844 				/*
6845 				 * Find the CPU with the maximum spare capacity
6846 				 * in the performance domain.
6847 				 */
6848 				max_spare_cap = spare_cap;
6849 				max_spare_cap_cpu = cpu;
6850 			}
6851 		}
6852 
6853 		if (max_spare_cap_cpu < 0 && !compute_prev_delta)
6854 			continue;
6855 
6856 		/* Compute the 'base' energy of the pd, without @p */
6857 		base_energy_pd = compute_energy(p, -1, pd);
6858 		base_energy += base_energy_pd;
6859 
6860 		/* Evaluate the energy impact of using prev_cpu. */
6861 		if (compute_prev_delta) {
6862 			prev_delta = compute_energy(p, prev_cpu, pd);
6863 			if (prev_delta < base_energy_pd)
6864 				goto unlock;
6865 			prev_delta -= base_energy_pd;
6866 			best_delta = min(best_delta, prev_delta);
6867 		}
6868 
6869 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
6870 		if (max_spare_cap_cpu >= 0) {
6871 			cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6872 			if (cur_delta < base_energy_pd)
6873 				goto unlock;
6874 			cur_delta -= base_energy_pd;
6875 			if (cur_delta < best_delta) {
6876 				best_delta = cur_delta;
6877 				best_energy_cpu = max_spare_cap_cpu;
6878 			}
6879 		}
6880 	}
6881 	rcu_read_unlock();
6882 
6883 	/*
6884 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6885 	 * least 6% of the energy used by prev_cpu.
6886 	 */
6887 	if ((prev_delta == ULONG_MAX) ||
6888 	    (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6889 		target = best_energy_cpu;
6890 
6891 	return target;
6892 
6893 unlock:
6894 	rcu_read_unlock();
6895 
6896 	return target;
6897 }
6898 
6899 /*
6900  * select_task_rq_fair: Select target runqueue for the waking task in domains
6901  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
6902  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6903  *
6904  * Balances load by selecting the idlest CPU in the idlest group, or under
6905  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6906  *
6907  * Returns the target CPU number.
6908  */
6909 static int
6910 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
6911 {
6912 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6913 	struct sched_domain *tmp, *sd = NULL;
6914 	int cpu = smp_processor_id();
6915 	int new_cpu = prev_cpu;
6916 	int want_affine = 0;
6917 	/* SD_flags and WF_flags share the first nibble */
6918 	int sd_flag = wake_flags & 0xF;
6919 
6920 	/*
6921 	 * required for stable ->cpus_allowed
6922 	 */
6923 	lockdep_assert_held(&p->pi_lock);
6924 	if (wake_flags & WF_TTWU) {
6925 		record_wakee(p);
6926 
6927 		if (sched_energy_enabled()) {
6928 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6929 			if (new_cpu >= 0)
6930 				return new_cpu;
6931 			new_cpu = prev_cpu;
6932 		}
6933 
6934 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6935 	}
6936 
6937 	rcu_read_lock();
6938 	for_each_domain(cpu, tmp) {
6939 		/*
6940 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6941 		 * cpu is a valid SD_WAKE_AFFINE target.
6942 		 */
6943 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6944 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6945 			if (cpu != prev_cpu)
6946 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6947 
6948 			sd = NULL; /* Prefer wake_affine over balance flags */
6949 			break;
6950 		}
6951 
6952 		/*
6953 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
6954 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
6955 		 * will usually go to the fast path.
6956 		 */
6957 		if (tmp->flags & sd_flag)
6958 			sd = tmp;
6959 		else if (!want_affine)
6960 			break;
6961 	}
6962 
6963 	if (unlikely(sd)) {
6964 		/* Slow path */
6965 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6966 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
6967 		/* Fast path */
6968 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6969 	}
6970 	rcu_read_unlock();
6971 
6972 	return new_cpu;
6973 }
6974 
6975 static void detach_entity_cfs_rq(struct sched_entity *se);
6976 
6977 /*
6978  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6979  * cfs_rq_of(p) references at time of call are still valid and identify the
6980  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6981  */
6982 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6983 {
6984 	/*
6985 	 * As blocked tasks retain absolute vruntime the migration needs to
6986 	 * deal with this by subtracting the old and adding the new
6987 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6988 	 * the task on the new runqueue.
6989 	 */
6990 	if (READ_ONCE(p->__state) == TASK_WAKING) {
6991 		struct sched_entity *se = &p->se;
6992 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6993 		u64 min_vruntime;
6994 
6995 #ifndef CONFIG_64BIT
6996 		u64 min_vruntime_copy;
6997 
6998 		do {
6999 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
7000 			smp_rmb();
7001 			min_vruntime = cfs_rq->min_vruntime;
7002 		} while (min_vruntime != min_vruntime_copy);
7003 #else
7004 		min_vruntime = cfs_rq->min_vruntime;
7005 #endif
7006 
7007 		se->vruntime -= min_vruntime;
7008 	}
7009 
7010 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
7011 		/*
7012 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
7013 		 * rq->lock and can modify state directly.
7014 		 */
7015 		lockdep_assert_rq_held(task_rq(p));
7016 		detach_entity_cfs_rq(&p->se);
7017 
7018 	} else {
7019 		/*
7020 		 * We are supposed to update the task to "current" time, then
7021 		 * its up to date and ready to go to new CPU/cfs_rq. But we
7022 		 * have difficulty in getting what current time is, so simply
7023 		 * throw away the out-of-date time. This will result in the
7024 		 * wakee task is less decayed, but giving the wakee more load
7025 		 * sounds not bad.
7026 		 */
7027 		remove_entity_load_avg(&p->se);
7028 	}
7029 
7030 	/* Tell new CPU we are migrated */
7031 	p->se.avg.last_update_time = 0;
7032 
7033 	/* We have migrated, no longer consider this task hot */
7034 	p->se.exec_start = 0;
7035 
7036 	update_scan_period(p, new_cpu);
7037 }
7038 
7039 static void task_dead_fair(struct task_struct *p)
7040 {
7041 	remove_entity_load_avg(&p->se);
7042 }
7043 
7044 static int
7045 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7046 {
7047 	if (rq->nr_running)
7048 		return 1;
7049 
7050 	return newidle_balance(rq, rf) != 0;
7051 }
7052 #endif /* CONFIG_SMP */
7053 
7054 static unsigned long wakeup_gran(struct sched_entity *se)
7055 {
7056 	unsigned long gran = sysctl_sched_wakeup_granularity;
7057 
7058 	/*
7059 	 * Since its curr running now, convert the gran from real-time
7060 	 * to virtual-time in his units.
7061 	 *
7062 	 * By using 'se' instead of 'curr' we penalize light tasks, so
7063 	 * they get preempted easier. That is, if 'se' < 'curr' then
7064 	 * the resulting gran will be larger, therefore penalizing the
7065 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7066 	 * be smaller, again penalizing the lighter task.
7067 	 *
7068 	 * This is especially important for buddies when the leftmost
7069 	 * task is higher priority than the buddy.
7070 	 */
7071 	return calc_delta_fair(gran, se);
7072 }
7073 
7074 /*
7075  * Should 'se' preempt 'curr'.
7076  *
7077  *             |s1
7078  *        |s2
7079  *   |s3
7080  *         g
7081  *      |<--->|c
7082  *
7083  *  w(c, s1) = -1
7084  *  w(c, s2) =  0
7085  *  w(c, s3) =  1
7086  *
7087  */
7088 static int
7089 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7090 {
7091 	s64 gran, vdiff = curr->vruntime - se->vruntime;
7092 
7093 	if (vdiff <= 0)
7094 		return -1;
7095 
7096 	gran = wakeup_gran(se);
7097 	if (vdiff > gran)
7098 		return 1;
7099 
7100 	return 0;
7101 }
7102 
7103 static void set_last_buddy(struct sched_entity *se)
7104 {
7105 	for_each_sched_entity(se) {
7106 		if (SCHED_WARN_ON(!se->on_rq))
7107 			return;
7108 		if (se_is_idle(se))
7109 			return;
7110 		cfs_rq_of(se)->last = se;
7111 	}
7112 }
7113 
7114 static void set_next_buddy(struct sched_entity *se)
7115 {
7116 	for_each_sched_entity(se) {
7117 		if (SCHED_WARN_ON(!se->on_rq))
7118 			return;
7119 		if (se_is_idle(se))
7120 			return;
7121 		cfs_rq_of(se)->next = se;
7122 	}
7123 }
7124 
7125 static void set_skip_buddy(struct sched_entity *se)
7126 {
7127 	for_each_sched_entity(se)
7128 		cfs_rq_of(se)->skip = se;
7129 }
7130 
7131 /*
7132  * Preempt the current task with a newly woken task if needed:
7133  */
7134 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7135 {
7136 	struct task_struct *curr = rq->curr;
7137 	struct sched_entity *se = &curr->se, *pse = &p->se;
7138 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7139 	int scale = cfs_rq->nr_running >= sched_nr_latency;
7140 	int next_buddy_marked = 0;
7141 	int cse_is_idle, pse_is_idle;
7142 
7143 	if (unlikely(se == pse))
7144 		return;
7145 
7146 	/*
7147 	 * This is possible from callers such as attach_tasks(), in which we
7148 	 * unconditionally check_preempt_curr() after an enqueue (which may have
7149 	 * lead to a throttle).  This both saves work and prevents false
7150 	 * next-buddy nomination below.
7151 	 */
7152 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7153 		return;
7154 
7155 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7156 		set_next_buddy(pse);
7157 		next_buddy_marked = 1;
7158 	}
7159 
7160 	/*
7161 	 * We can come here with TIF_NEED_RESCHED already set from new task
7162 	 * wake up path.
7163 	 *
7164 	 * Note: this also catches the edge-case of curr being in a throttled
7165 	 * group (e.g. via set_curr_task), since update_curr() (in the
7166 	 * enqueue of curr) will have resulted in resched being set.  This
7167 	 * prevents us from potentially nominating it as a false LAST_BUDDY
7168 	 * below.
7169 	 */
7170 	if (test_tsk_need_resched(curr))
7171 		return;
7172 
7173 	/* Idle tasks are by definition preempted by non-idle tasks. */
7174 	if (unlikely(task_has_idle_policy(curr)) &&
7175 	    likely(!task_has_idle_policy(p)))
7176 		goto preempt;
7177 
7178 	/*
7179 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7180 	 * is driven by the tick):
7181 	 */
7182 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7183 		return;
7184 
7185 	find_matching_se(&se, &pse);
7186 	BUG_ON(!pse);
7187 
7188 	cse_is_idle = se_is_idle(se);
7189 	pse_is_idle = se_is_idle(pse);
7190 
7191 	/*
7192 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
7193 	 * in the inverse case).
7194 	 */
7195 	if (cse_is_idle && !pse_is_idle)
7196 		goto preempt;
7197 	if (cse_is_idle != pse_is_idle)
7198 		return;
7199 
7200 	update_curr(cfs_rq_of(se));
7201 	if (wakeup_preempt_entity(se, pse) == 1) {
7202 		/*
7203 		 * Bias pick_next to pick the sched entity that is
7204 		 * triggering this preemption.
7205 		 */
7206 		if (!next_buddy_marked)
7207 			set_next_buddy(pse);
7208 		goto preempt;
7209 	}
7210 
7211 	return;
7212 
7213 preempt:
7214 	resched_curr(rq);
7215 	/*
7216 	 * Only set the backward buddy when the current task is still
7217 	 * on the rq. This can happen when a wakeup gets interleaved
7218 	 * with schedule on the ->pre_schedule() or idle_balance()
7219 	 * point, either of which can * drop the rq lock.
7220 	 *
7221 	 * Also, during early boot the idle thread is in the fair class,
7222 	 * for obvious reasons its a bad idea to schedule back to it.
7223 	 */
7224 	if (unlikely(!se->on_rq || curr == rq->idle))
7225 		return;
7226 
7227 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7228 		set_last_buddy(se);
7229 }
7230 
7231 #ifdef CONFIG_SMP
7232 static struct task_struct *pick_task_fair(struct rq *rq)
7233 {
7234 	struct sched_entity *se;
7235 	struct cfs_rq *cfs_rq;
7236 
7237 again:
7238 	cfs_rq = &rq->cfs;
7239 	if (!cfs_rq->nr_running)
7240 		return NULL;
7241 
7242 	do {
7243 		struct sched_entity *curr = cfs_rq->curr;
7244 
7245 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7246 		if (curr) {
7247 			if (curr->on_rq)
7248 				update_curr(cfs_rq);
7249 			else
7250 				curr = NULL;
7251 
7252 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7253 				goto again;
7254 		}
7255 
7256 		se = pick_next_entity(cfs_rq, curr);
7257 		cfs_rq = group_cfs_rq(se);
7258 	} while (cfs_rq);
7259 
7260 	return task_of(se);
7261 }
7262 #endif
7263 
7264 struct task_struct *
7265 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7266 {
7267 	struct cfs_rq *cfs_rq = &rq->cfs;
7268 	struct sched_entity *se;
7269 	struct task_struct *p;
7270 	int new_tasks;
7271 
7272 again:
7273 	if (!sched_fair_runnable(rq))
7274 		goto idle;
7275 
7276 #ifdef CONFIG_FAIR_GROUP_SCHED
7277 	if (!prev || prev->sched_class != &fair_sched_class)
7278 		goto simple;
7279 
7280 	/*
7281 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7282 	 * likely that a next task is from the same cgroup as the current.
7283 	 *
7284 	 * Therefore attempt to avoid putting and setting the entire cgroup
7285 	 * hierarchy, only change the part that actually changes.
7286 	 */
7287 
7288 	do {
7289 		struct sched_entity *curr = cfs_rq->curr;
7290 
7291 		/*
7292 		 * Since we got here without doing put_prev_entity() we also
7293 		 * have to consider cfs_rq->curr. If it is still a runnable
7294 		 * entity, update_curr() will update its vruntime, otherwise
7295 		 * forget we've ever seen it.
7296 		 */
7297 		if (curr) {
7298 			if (curr->on_rq)
7299 				update_curr(cfs_rq);
7300 			else
7301 				curr = NULL;
7302 
7303 			/*
7304 			 * This call to check_cfs_rq_runtime() will do the
7305 			 * throttle and dequeue its entity in the parent(s).
7306 			 * Therefore the nr_running test will indeed
7307 			 * be correct.
7308 			 */
7309 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7310 				cfs_rq = &rq->cfs;
7311 
7312 				if (!cfs_rq->nr_running)
7313 					goto idle;
7314 
7315 				goto simple;
7316 			}
7317 		}
7318 
7319 		se = pick_next_entity(cfs_rq, curr);
7320 		cfs_rq = group_cfs_rq(se);
7321 	} while (cfs_rq);
7322 
7323 	p = task_of(se);
7324 
7325 	/*
7326 	 * Since we haven't yet done put_prev_entity and if the selected task
7327 	 * is a different task than we started out with, try and touch the
7328 	 * least amount of cfs_rqs.
7329 	 */
7330 	if (prev != p) {
7331 		struct sched_entity *pse = &prev->se;
7332 
7333 		while (!(cfs_rq = is_same_group(se, pse))) {
7334 			int se_depth = se->depth;
7335 			int pse_depth = pse->depth;
7336 
7337 			if (se_depth <= pse_depth) {
7338 				put_prev_entity(cfs_rq_of(pse), pse);
7339 				pse = parent_entity(pse);
7340 			}
7341 			if (se_depth >= pse_depth) {
7342 				set_next_entity(cfs_rq_of(se), se);
7343 				se = parent_entity(se);
7344 			}
7345 		}
7346 
7347 		put_prev_entity(cfs_rq, pse);
7348 		set_next_entity(cfs_rq, se);
7349 	}
7350 
7351 	goto done;
7352 simple:
7353 #endif
7354 	if (prev)
7355 		put_prev_task(rq, prev);
7356 
7357 	do {
7358 		se = pick_next_entity(cfs_rq, NULL);
7359 		set_next_entity(cfs_rq, se);
7360 		cfs_rq = group_cfs_rq(se);
7361 	} while (cfs_rq);
7362 
7363 	p = task_of(se);
7364 
7365 done: __maybe_unused;
7366 #ifdef CONFIG_SMP
7367 	/*
7368 	 * Move the next running task to the front of
7369 	 * the list, so our cfs_tasks list becomes MRU
7370 	 * one.
7371 	 */
7372 	list_move(&p->se.group_node, &rq->cfs_tasks);
7373 #endif
7374 
7375 	if (hrtick_enabled_fair(rq))
7376 		hrtick_start_fair(rq, p);
7377 
7378 	update_misfit_status(p, rq);
7379 
7380 	return p;
7381 
7382 idle:
7383 	if (!rf)
7384 		return NULL;
7385 
7386 	new_tasks = newidle_balance(rq, rf);
7387 
7388 	/*
7389 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7390 	 * possible for any higher priority task to appear. In that case we
7391 	 * must re-start the pick_next_entity() loop.
7392 	 */
7393 	if (new_tasks < 0)
7394 		return RETRY_TASK;
7395 
7396 	if (new_tasks > 0)
7397 		goto again;
7398 
7399 	/*
7400 	 * rq is about to be idle, check if we need to update the
7401 	 * lost_idle_time of clock_pelt
7402 	 */
7403 	update_idle_rq_clock_pelt(rq);
7404 
7405 	return NULL;
7406 }
7407 
7408 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7409 {
7410 	return pick_next_task_fair(rq, NULL, NULL);
7411 }
7412 
7413 /*
7414  * Account for a descheduled task:
7415  */
7416 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7417 {
7418 	struct sched_entity *se = &prev->se;
7419 	struct cfs_rq *cfs_rq;
7420 
7421 	for_each_sched_entity(se) {
7422 		cfs_rq = cfs_rq_of(se);
7423 		put_prev_entity(cfs_rq, se);
7424 	}
7425 }
7426 
7427 /*
7428  * sched_yield() is very simple
7429  *
7430  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7431  */
7432 static void yield_task_fair(struct rq *rq)
7433 {
7434 	struct task_struct *curr = rq->curr;
7435 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7436 	struct sched_entity *se = &curr->se;
7437 
7438 	/*
7439 	 * Are we the only task in the tree?
7440 	 */
7441 	if (unlikely(rq->nr_running == 1))
7442 		return;
7443 
7444 	clear_buddies(cfs_rq, se);
7445 
7446 	if (curr->policy != SCHED_BATCH) {
7447 		update_rq_clock(rq);
7448 		/*
7449 		 * Update run-time statistics of the 'current'.
7450 		 */
7451 		update_curr(cfs_rq);
7452 		/*
7453 		 * Tell update_rq_clock() that we've just updated,
7454 		 * so we don't do microscopic update in schedule()
7455 		 * and double the fastpath cost.
7456 		 */
7457 		rq_clock_skip_update(rq);
7458 	}
7459 
7460 	set_skip_buddy(se);
7461 }
7462 
7463 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7464 {
7465 	struct sched_entity *se = &p->se;
7466 
7467 	/* throttled hierarchies are not runnable */
7468 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7469 		return false;
7470 
7471 	/* Tell the scheduler that we'd really like pse to run next. */
7472 	set_next_buddy(se);
7473 
7474 	yield_task_fair(rq);
7475 
7476 	return true;
7477 }
7478 
7479 #ifdef CONFIG_SMP
7480 /**************************************************
7481  * Fair scheduling class load-balancing methods.
7482  *
7483  * BASICS
7484  *
7485  * The purpose of load-balancing is to achieve the same basic fairness the
7486  * per-CPU scheduler provides, namely provide a proportional amount of compute
7487  * time to each task. This is expressed in the following equation:
7488  *
7489  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7490  *
7491  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7492  * W_i,0 is defined as:
7493  *
7494  *   W_i,0 = \Sum_j w_i,j                                             (2)
7495  *
7496  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7497  * is derived from the nice value as per sched_prio_to_weight[].
7498  *
7499  * The weight average is an exponential decay average of the instantaneous
7500  * weight:
7501  *
7502  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7503  *
7504  * C_i is the compute capacity of CPU i, typically it is the
7505  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7506  * can also include other factors [XXX].
7507  *
7508  * To achieve this balance we define a measure of imbalance which follows
7509  * directly from (1):
7510  *
7511  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7512  *
7513  * We them move tasks around to minimize the imbalance. In the continuous
7514  * function space it is obvious this converges, in the discrete case we get
7515  * a few fun cases generally called infeasible weight scenarios.
7516  *
7517  * [XXX expand on:
7518  *     - infeasible weights;
7519  *     - local vs global optima in the discrete case. ]
7520  *
7521  *
7522  * SCHED DOMAINS
7523  *
7524  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7525  * for all i,j solution, we create a tree of CPUs that follows the hardware
7526  * topology where each level pairs two lower groups (or better). This results
7527  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7528  * tree to only the first of the previous level and we decrease the frequency
7529  * of load-balance at each level inv. proportional to the number of CPUs in
7530  * the groups.
7531  *
7532  * This yields:
7533  *
7534  *     log_2 n     1     n
7535  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7536  *     i = 0      2^i   2^i
7537  *                               `- size of each group
7538  *         |         |     `- number of CPUs doing load-balance
7539  *         |         `- freq
7540  *         `- sum over all levels
7541  *
7542  * Coupled with a limit on how many tasks we can migrate every balance pass,
7543  * this makes (5) the runtime complexity of the balancer.
7544  *
7545  * An important property here is that each CPU is still (indirectly) connected
7546  * to every other CPU in at most O(log n) steps:
7547  *
7548  * The adjacency matrix of the resulting graph is given by:
7549  *
7550  *             log_2 n
7551  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7552  *             k = 0
7553  *
7554  * And you'll find that:
7555  *
7556  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7557  *
7558  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7559  * The task movement gives a factor of O(m), giving a convergence complexity
7560  * of:
7561  *
7562  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7563  *
7564  *
7565  * WORK CONSERVING
7566  *
7567  * In order to avoid CPUs going idle while there's still work to do, new idle
7568  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7569  * tree itself instead of relying on other CPUs to bring it work.
7570  *
7571  * This adds some complexity to both (5) and (8) but it reduces the total idle
7572  * time.
7573  *
7574  * [XXX more?]
7575  *
7576  *
7577  * CGROUPS
7578  *
7579  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7580  *
7581  *                                s_k,i
7582  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7583  *                                 S_k
7584  *
7585  * Where
7586  *
7587  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7588  *
7589  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7590  *
7591  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7592  * property.
7593  *
7594  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7595  *      rewrite all of this once again.]
7596  */
7597 
7598 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7599 
7600 enum fbq_type { regular, remote, all };
7601 
7602 /*
7603  * 'group_type' describes the group of CPUs at the moment of load balancing.
7604  *
7605  * The enum is ordered by pulling priority, with the group with lowest priority
7606  * first so the group_type can simply be compared when selecting the busiest
7607  * group. See update_sd_pick_busiest().
7608  */
7609 enum group_type {
7610 	/* The group has spare capacity that can be used to run more tasks.  */
7611 	group_has_spare = 0,
7612 	/*
7613 	 * The group is fully used and the tasks don't compete for more CPU
7614 	 * cycles. Nevertheless, some tasks might wait before running.
7615 	 */
7616 	group_fully_busy,
7617 	/*
7618 	 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7619 	 * and must be migrated to a more powerful CPU.
7620 	 */
7621 	group_misfit_task,
7622 	/*
7623 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7624 	 * and the task should be migrated to it instead of running on the
7625 	 * current CPU.
7626 	 */
7627 	group_asym_packing,
7628 	/*
7629 	 * The tasks' affinity constraints previously prevented the scheduler
7630 	 * from balancing the load across the system.
7631 	 */
7632 	group_imbalanced,
7633 	/*
7634 	 * The CPU is overloaded and can't provide expected CPU cycles to all
7635 	 * tasks.
7636 	 */
7637 	group_overloaded
7638 };
7639 
7640 enum migration_type {
7641 	migrate_load = 0,
7642 	migrate_util,
7643 	migrate_task,
7644 	migrate_misfit
7645 };
7646 
7647 #define LBF_ALL_PINNED	0x01
7648 #define LBF_NEED_BREAK	0x02
7649 #define LBF_DST_PINNED  0x04
7650 #define LBF_SOME_PINNED	0x08
7651 #define LBF_ACTIVE_LB	0x10
7652 
7653 struct lb_env {
7654 	struct sched_domain	*sd;
7655 
7656 	struct rq		*src_rq;
7657 	int			src_cpu;
7658 
7659 	int			dst_cpu;
7660 	struct rq		*dst_rq;
7661 
7662 	struct cpumask		*dst_grpmask;
7663 	int			new_dst_cpu;
7664 	enum cpu_idle_type	idle;
7665 	long			imbalance;
7666 	/* The set of CPUs under consideration for load-balancing */
7667 	struct cpumask		*cpus;
7668 
7669 	unsigned int		flags;
7670 
7671 	unsigned int		loop;
7672 	unsigned int		loop_break;
7673 	unsigned int		loop_max;
7674 
7675 	enum fbq_type		fbq_type;
7676 	enum migration_type	migration_type;
7677 	struct list_head	tasks;
7678 };
7679 
7680 /*
7681  * Is this task likely cache-hot:
7682  */
7683 static int task_hot(struct task_struct *p, struct lb_env *env)
7684 {
7685 	s64 delta;
7686 
7687 	lockdep_assert_rq_held(env->src_rq);
7688 
7689 	if (p->sched_class != &fair_sched_class)
7690 		return 0;
7691 
7692 	if (unlikely(task_has_idle_policy(p)))
7693 		return 0;
7694 
7695 	/* SMT siblings share cache */
7696 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7697 		return 0;
7698 
7699 	/*
7700 	 * Buddy candidates are cache hot:
7701 	 */
7702 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7703 			(&p->se == cfs_rq_of(&p->se)->next ||
7704 			 &p->se == cfs_rq_of(&p->se)->last))
7705 		return 1;
7706 
7707 	if (sysctl_sched_migration_cost == -1)
7708 		return 1;
7709 
7710 	/*
7711 	 * Don't migrate task if the task's cookie does not match
7712 	 * with the destination CPU's core cookie.
7713 	 */
7714 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
7715 		return 1;
7716 
7717 	if (sysctl_sched_migration_cost == 0)
7718 		return 0;
7719 
7720 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7721 
7722 	return delta < (s64)sysctl_sched_migration_cost;
7723 }
7724 
7725 #ifdef CONFIG_NUMA_BALANCING
7726 /*
7727  * Returns 1, if task migration degrades locality
7728  * Returns 0, if task migration improves locality i.e migration preferred.
7729  * Returns -1, if task migration is not affected by locality.
7730  */
7731 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7732 {
7733 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7734 	unsigned long src_weight, dst_weight;
7735 	int src_nid, dst_nid, dist;
7736 
7737 	if (!static_branch_likely(&sched_numa_balancing))
7738 		return -1;
7739 
7740 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7741 		return -1;
7742 
7743 	src_nid = cpu_to_node(env->src_cpu);
7744 	dst_nid = cpu_to_node(env->dst_cpu);
7745 
7746 	if (src_nid == dst_nid)
7747 		return -1;
7748 
7749 	/* Migrating away from the preferred node is always bad. */
7750 	if (src_nid == p->numa_preferred_nid) {
7751 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7752 			return 1;
7753 		else
7754 			return -1;
7755 	}
7756 
7757 	/* Encourage migration to the preferred node. */
7758 	if (dst_nid == p->numa_preferred_nid)
7759 		return 0;
7760 
7761 	/* Leaving a core idle is often worse than degrading locality. */
7762 	if (env->idle == CPU_IDLE)
7763 		return -1;
7764 
7765 	dist = node_distance(src_nid, dst_nid);
7766 	if (numa_group) {
7767 		src_weight = group_weight(p, src_nid, dist);
7768 		dst_weight = group_weight(p, dst_nid, dist);
7769 	} else {
7770 		src_weight = task_weight(p, src_nid, dist);
7771 		dst_weight = task_weight(p, dst_nid, dist);
7772 	}
7773 
7774 	return dst_weight < src_weight;
7775 }
7776 
7777 #else
7778 static inline int migrate_degrades_locality(struct task_struct *p,
7779 					     struct lb_env *env)
7780 {
7781 	return -1;
7782 }
7783 #endif
7784 
7785 /*
7786  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7787  */
7788 static
7789 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7790 {
7791 	int tsk_cache_hot;
7792 
7793 	lockdep_assert_rq_held(env->src_rq);
7794 
7795 	/*
7796 	 * We do not migrate tasks that are:
7797 	 * 1) throttled_lb_pair, or
7798 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7799 	 * 3) running (obviously), or
7800 	 * 4) are cache-hot on their current CPU.
7801 	 */
7802 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7803 		return 0;
7804 
7805 	/* Disregard pcpu kthreads; they are where they need to be. */
7806 	if (kthread_is_per_cpu(p))
7807 		return 0;
7808 
7809 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7810 		int cpu;
7811 
7812 		schedstat_inc(p->stats.nr_failed_migrations_affine);
7813 
7814 		env->flags |= LBF_SOME_PINNED;
7815 
7816 		/*
7817 		 * Remember if this task can be migrated to any other CPU in
7818 		 * our sched_group. We may want to revisit it if we couldn't
7819 		 * meet load balance goals by pulling other tasks on src_cpu.
7820 		 *
7821 		 * Avoid computing new_dst_cpu
7822 		 * - for NEWLY_IDLE
7823 		 * - if we have already computed one in current iteration
7824 		 * - if it's an active balance
7825 		 */
7826 		if (env->idle == CPU_NEWLY_IDLE ||
7827 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
7828 			return 0;
7829 
7830 		/* Prevent to re-select dst_cpu via env's CPUs: */
7831 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7832 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7833 				env->flags |= LBF_DST_PINNED;
7834 				env->new_dst_cpu = cpu;
7835 				break;
7836 			}
7837 		}
7838 
7839 		return 0;
7840 	}
7841 
7842 	/* Record that we found at least one task that could run on dst_cpu */
7843 	env->flags &= ~LBF_ALL_PINNED;
7844 
7845 	if (task_running(env->src_rq, p)) {
7846 		schedstat_inc(p->stats.nr_failed_migrations_running);
7847 		return 0;
7848 	}
7849 
7850 	/*
7851 	 * Aggressive migration if:
7852 	 * 1) active balance
7853 	 * 2) destination numa is preferred
7854 	 * 3) task is cache cold, or
7855 	 * 4) too many balance attempts have failed.
7856 	 */
7857 	if (env->flags & LBF_ACTIVE_LB)
7858 		return 1;
7859 
7860 	tsk_cache_hot = migrate_degrades_locality(p, env);
7861 	if (tsk_cache_hot == -1)
7862 		tsk_cache_hot = task_hot(p, env);
7863 
7864 	if (tsk_cache_hot <= 0 ||
7865 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7866 		if (tsk_cache_hot == 1) {
7867 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7868 			schedstat_inc(p->stats.nr_forced_migrations);
7869 		}
7870 		return 1;
7871 	}
7872 
7873 	schedstat_inc(p->stats.nr_failed_migrations_hot);
7874 	return 0;
7875 }
7876 
7877 /*
7878  * detach_task() -- detach the task for the migration specified in env
7879  */
7880 static void detach_task(struct task_struct *p, struct lb_env *env)
7881 {
7882 	lockdep_assert_rq_held(env->src_rq);
7883 
7884 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7885 	set_task_cpu(p, env->dst_cpu);
7886 }
7887 
7888 /*
7889  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7890  * part of active balancing operations within "domain".
7891  *
7892  * Returns a task if successful and NULL otherwise.
7893  */
7894 static struct task_struct *detach_one_task(struct lb_env *env)
7895 {
7896 	struct task_struct *p;
7897 
7898 	lockdep_assert_rq_held(env->src_rq);
7899 
7900 	list_for_each_entry_reverse(p,
7901 			&env->src_rq->cfs_tasks, se.group_node) {
7902 		if (!can_migrate_task(p, env))
7903 			continue;
7904 
7905 		detach_task(p, env);
7906 
7907 		/*
7908 		 * Right now, this is only the second place where
7909 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7910 		 * so we can safely collect stats here rather than
7911 		 * inside detach_tasks().
7912 		 */
7913 		schedstat_inc(env->sd->lb_gained[env->idle]);
7914 		return p;
7915 	}
7916 	return NULL;
7917 }
7918 
7919 static const unsigned int sched_nr_migrate_break = 32;
7920 
7921 /*
7922  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7923  * busiest_rq, as part of a balancing operation within domain "sd".
7924  *
7925  * Returns number of detached tasks if successful and 0 otherwise.
7926  */
7927 static int detach_tasks(struct lb_env *env)
7928 {
7929 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7930 	unsigned long util, load;
7931 	struct task_struct *p;
7932 	int detached = 0;
7933 
7934 	lockdep_assert_rq_held(env->src_rq);
7935 
7936 	/*
7937 	 * Source run queue has been emptied by another CPU, clear
7938 	 * LBF_ALL_PINNED flag as we will not test any task.
7939 	 */
7940 	if (env->src_rq->nr_running <= 1) {
7941 		env->flags &= ~LBF_ALL_PINNED;
7942 		return 0;
7943 	}
7944 
7945 	if (env->imbalance <= 0)
7946 		return 0;
7947 
7948 	while (!list_empty(tasks)) {
7949 		/*
7950 		 * We don't want to steal all, otherwise we may be treated likewise,
7951 		 * which could at worst lead to a livelock crash.
7952 		 */
7953 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7954 			break;
7955 
7956 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7957 
7958 		env->loop++;
7959 		/* We've more or less seen every task there is, call it quits */
7960 		if (env->loop > env->loop_max)
7961 			break;
7962 
7963 		/* take a breather every nr_migrate tasks */
7964 		if (env->loop > env->loop_break) {
7965 			env->loop_break += sched_nr_migrate_break;
7966 			env->flags |= LBF_NEED_BREAK;
7967 			break;
7968 		}
7969 
7970 		if (!can_migrate_task(p, env))
7971 			goto next;
7972 
7973 		switch (env->migration_type) {
7974 		case migrate_load:
7975 			/*
7976 			 * Depending of the number of CPUs and tasks and the
7977 			 * cgroup hierarchy, task_h_load() can return a null
7978 			 * value. Make sure that env->imbalance decreases
7979 			 * otherwise detach_tasks() will stop only after
7980 			 * detaching up to loop_max tasks.
7981 			 */
7982 			load = max_t(unsigned long, task_h_load(p), 1);
7983 
7984 			if (sched_feat(LB_MIN) &&
7985 			    load < 16 && !env->sd->nr_balance_failed)
7986 				goto next;
7987 
7988 			/*
7989 			 * Make sure that we don't migrate too much load.
7990 			 * Nevertheless, let relax the constraint if
7991 			 * scheduler fails to find a good waiting task to
7992 			 * migrate.
7993 			 */
7994 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
7995 				goto next;
7996 
7997 			env->imbalance -= load;
7998 			break;
7999 
8000 		case migrate_util:
8001 			util = task_util_est(p);
8002 
8003 			if (util > env->imbalance)
8004 				goto next;
8005 
8006 			env->imbalance -= util;
8007 			break;
8008 
8009 		case migrate_task:
8010 			env->imbalance--;
8011 			break;
8012 
8013 		case migrate_misfit:
8014 			/* This is not a misfit task */
8015 			if (task_fits_capacity(p, capacity_of(env->src_cpu)))
8016 				goto next;
8017 
8018 			env->imbalance = 0;
8019 			break;
8020 		}
8021 
8022 		detach_task(p, env);
8023 		list_add(&p->se.group_node, &env->tasks);
8024 
8025 		detached++;
8026 
8027 #ifdef CONFIG_PREEMPTION
8028 		/*
8029 		 * NEWIDLE balancing is a source of latency, so preemptible
8030 		 * kernels will stop after the first task is detached to minimize
8031 		 * the critical section.
8032 		 */
8033 		if (env->idle == CPU_NEWLY_IDLE)
8034 			break;
8035 #endif
8036 
8037 		/*
8038 		 * We only want to steal up to the prescribed amount of
8039 		 * load/util/tasks.
8040 		 */
8041 		if (env->imbalance <= 0)
8042 			break;
8043 
8044 		continue;
8045 next:
8046 		list_move(&p->se.group_node, tasks);
8047 	}
8048 
8049 	/*
8050 	 * Right now, this is one of only two places we collect this stat
8051 	 * so we can safely collect detach_one_task() stats here rather
8052 	 * than inside detach_one_task().
8053 	 */
8054 	schedstat_add(env->sd->lb_gained[env->idle], detached);
8055 
8056 	return detached;
8057 }
8058 
8059 /*
8060  * attach_task() -- attach the task detached by detach_task() to its new rq.
8061  */
8062 static void attach_task(struct rq *rq, struct task_struct *p)
8063 {
8064 	lockdep_assert_rq_held(rq);
8065 
8066 	BUG_ON(task_rq(p) != rq);
8067 	activate_task(rq, p, ENQUEUE_NOCLOCK);
8068 	check_preempt_curr(rq, p, 0);
8069 }
8070 
8071 /*
8072  * attach_one_task() -- attaches the task returned from detach_one_task() to
8073  * its new rq.
8074  */
8075 static void attach_one_task(struct rq *rq, struct task_struct *p)
8076 {
8077 	struct rq_flags rf;
8078 
8079 	rq_lock(rq, &rf);
8080 	update_rq_clock(rq);
8081 	attach_task(rq, p);
8082 	rq_unlock(rq, &rf);
8083 }
8084 
8085 /*
8086  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8087  * new rq.
8088  */
8089 static void attach_tasks(struct lb_env *env)
8090 {
8091 	struct list_head *tasks = &env->tasks;
8092 	struct task_struct *p;
8093 	struct rq_flags rf;
8094 
8095 	rq_lock(env->dst_rq, &rf);
8096 	update_rq_clock(env->dst_rq);
8097 
8098 	while (!list_empty(tasks)) {
8099 		p = list_first_entry(tasks, struct task_struct, se.group_node);
8100 		list_del_init(&p->se.group_node);
8101 
8102 		attach_task(env->dst_rq, p);
8103 	}
8104 
8105 	rq_unlock(env->dst_rq, &rf);
8106 }
8107 
8108 #ifdef CONFIG_NO_HZ_COMMON
8109 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8110 {
8111 	if (cfs_rq->avg.load_avg)
8112 		return true;
8113 
8114 	if (cfs_rq->avg.util_avg)
8115 		return true;
8116 
8117 	return false;
8118 }
8119 
8120 static inline bool others_have_blocked(struct rq *rq)
8121 {
8122 	if (READ_ONCE(rq->avg_rt.util_avg))
8123 		return true;
8124 
8125 	if (READ_ONCE(rq->avg_dl.util_avg))
8126 		return true;
8127 
8128 	if (thermal_load_avg(rq))
8129 		return true;
8130 
8131 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8132 	if (READ_ONCE(rq->avg_irq.util_avg))
8133 		return true;
8134 #endif
8135 
8136 	return false;
8137 }
8138 
8139 static inline void update_blocked_load_tick(struct rq *rq)
8140 {
8141 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8142 }
8143 
8144 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8145 {
8146 	if (!has_blocked)
8147 		rq->has_blocked_load = 0;
8148 }
8149 #else
8150 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8151 static inline bool others_have_blocked(struct rq *rq) { return false; }
8152 static inline void update_blocked_load_tick(struct rq *rq) {}
8153 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8154 #endif
8155 
8156 static bool __update_blocked_others(struct rq *rq, bool *done)
8157 {
8158 	const struct sched_class *curr_class;
8159 	u64 now = rq_clock_pelt(rq);
8160 	unsigned long thermal_pressure;
8161 	bool decayed;
8162 
8163 	/*
8164 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8165 	 * DL and IRQ signals have been updated before updating CFS.
8166 	 */
8167 	curr_class = rq->curr->sched_class;
8168 
8169 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8170 
8171 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8172 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8173 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8174 		  update_irq_load_avg(rq, 0);
8175 
8176 	if (others_have_blocked(rq))
8177 		*done = false;
8178 
8179 	return decayed;
8180 }
8181 
8182 #ifdef CONFIG_FAIR_GROUP_SCHED
8183 
8184 static bool __update_blocked_fair(struct rq *rq, bool *done)
8185 {
8186 	struct cfs_rq *cfs_rq, *pos;
8187 	bool decayed = false;
8188 	int cpu = cpu_of(rq);
8189 
8190 	/*
8191 	 * Iterates the task_group tree in a bottom up fashion, see
8192 	 * list_add_leaf_cfs_rq() for details.
8193 	 */
8194 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8195 		struct sched_entity *se;
8196 
8197 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8198 			update_tg_load_avg(cfs_rq);
8199 
8200 			if (cfs_rq == &rq->cfs)
8201 				decayed = true;
8202 		}
8203 
8204 		/* Propagate pending load changes to the parent, if any: */
8205 		se = cfs_rq->tg->se[cpu];
8206 		if (se && !skip_blocked_update(se))
8207 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8208 
8209 		/*
8210 		 * There can be a lot of idle CPU cgroups.  Don't let fully
8211 		 * decayed cfs_rqs linger on the list.
8212 		 */
8213 		if (cfs_rq_is_decayed(cfs_rq))
8214 			list_del_leaf_cfs_rq(cfs_rq);
8215 
8216 		/* Don't need periodic decay once load/util_avg are null */
8217 		if (cfs_rq_has_blocked(cfs_rq))
8218 			*done = false;
8219 	}
8220 
8221 	return decayed;
8222 }
8223 
8224 /*
8225  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8226  * This needs to be done in a top-down fashion because the load of a child
8227  * group is a fraction of its parents load.
8228  */
8229 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8230 {
8231 	struct rq *rq = rq_of(cfs_rq);
8232 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8233 	unsigned long now = jiffies;
8234 	unsigned long load;
8235 
8236 	if (cfs_rq->last_h_load_update == now)
8237 		return;
8238 
8239 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
8240 	for_each_sched_entity(se) {
8241 		cfs_rq = cfs_rq_of(se);
8242 		WRITE_ONCE(cfs_rq->h_load_next, se);
8243 		if (cfs_rq->last_h_load_update == now)
8244 			break;
8245 	}
8246 
8247 	if (!se) {
8248 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8249 		cfs_rq->last_h_load_update = now;
8250 	}
8251 
8252 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8253 		load = cfs_rq->h_load;
8254 		load = div64_ul(load * se->avg.load_avg,
8255 			cfs_rq_load_avg(cfs_rq) + 1);
8256 		cfs_rq = group_cfs_rq(se);
8257 		cfs_rq->h_load = load;
8258 		cfs_rq->last_h_load_update = now;
8259 	}
8260 }
8261 
8262 static unsigned long task_h_load(struct task_struct *p)
8263 {
8264 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
8265 
8266 	update_cfs_rq_h_load(cfs_rq);
8267 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8268 			cfs_rq_load_avg(cfs_rq) + 1);
8269 }
8270 #else
8271 static bool __update_blocked_fair(struct rq *rq, bool *done)
8272 {
8273 	struct cfs_rq *cfs_rq = &rq->cfs;
8274 	bool decayed;
8275 
8276 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8277 	if (cfs_rq_has_blocked(cfs_rq))
8278 		*done = false;
8279 
8280 	return decayed;
8281 }
8282 
8283 static unsigned long task_h_load(struct task_struct *p)
8284 {
8285 	return p->se.avg.load_avg;
8286 }
8287 #endif
8288 
8289 static void update_blocked_averages(int cpu)
8290 {
8291 	bool decayed = false, done = true;
8292 	struct rq *rq = cpu_rq(cpu);
8293 	struct rq_flags rf;
8294 
8295 	rq_lock_irqsave(rq, &rf);
8296 	update_blocked_load_tick(rq);
8297 	update_rq_clock(rq);
8298 
8299 	decayed |= __update_blocked_others(rq, &done);
8300 	decayed |= __update_blocked_fair(rq, &done);
8301 
8302 	update_blocked_load_status(rq, !done);
8303 	if (decayed)
8304 		cpufreq_update_util(rq, 0);
8305 	rq_unlock_irqrestore(rq, &rf);
8306 }
8307 
8308 /********** Helpers for find_busiest_group ************************/
8309 
8310 /*
8311  * sg_lb_stats - stats of a sched_group required for load_balancing
8312  */
8313 struct sg_lb_stats {
8314 	unsigned long avg_load; /*Avg load across the CPUs of the group */
8315 	unsigned long group_load; /* Total load over the CPUs of the group */
8316 	unsigned long group_capacity;
8317 	unsigned long group_util; /* Total utilization over the CPUs of the group */
8318 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8319 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
8320 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8321 	unsigned int idle_cpus;
8322 	unsigned int group_weight;
8323 	enum group_type group_type;
8324 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8325 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8326 #ifdef CONFIG_NUMA_BALANCING
8327 	unsigned int nr_numa_running;
8328 	unsigned int nr_preferred_running;
8329 #endif
8330 };
8331 
8332 /*
8333  * sd_lb_stats - Structure to store the statistics of a sched_domain
8334  *		 during load balancing.
8335  */
8336 struct sd_lb_stats {
8337 	struct sched_group *busiest;	/* Busiest group in this sd */
8338 	struct sched_group *local;	/* Local group in this sd */
8339 	unsigned long total_load;	/* Total load of all groups in sd */
8340 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
8341 	unsigned long avg_load;	/* Average load across all groups in sd */
8342 	unsigned int prefer_sibling; /* tasks should go to sibling first */
8343 
8344 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8345 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
8346 };
8347 
8348 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8349 {
8350 	/*
8351 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8352 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8353 	 * We must however set busiest_stat::group_type and
8354 	 * busiest_stat::idle_cpus to the worst busiest group because
8355 	 * update_sd_pick_busiest() reads these before assignment.
8356 	 */
8357 	*sds = (struct sd_lb_stats){
8358 		.busiest = NULL,
8359 		.local = NULL,
8360 		.total_load = 0UL,
8361 		.total_capacity = 0UL,
8362 		.busiest_stat = {
8363 			.idle_cpus = UINT_MAX,
8364 			.group_type = group_has_spare,
8365 		},
8366 	};
8367 }
8368 
8369 static unsigned long scale_rt_capacity(int cpu)
8370 {
8371 	struct rq *rq = cpu_rq(cpu);
8372 	unsigned long max = arch_scale_cpu_capacity(cpu);
8373 	unsigned long used, free;
8374 	unsigned long irq;
8375 
8376 	irq = cpu_util_irq(rq);
8377 
8378 	if (unlikely(irq >= max))
8379 		return 1;
8380 
8381 	/*
8382 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8383 	 * (running and not running) with weights 0 and 1024 respectively.
8384 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
8385 	 * average uses the actual delta max capacity(load).
8386 	 */
8387 	used = READ_ONCE(rq->avg_rt.util_avg);
8388 	used += READ_ONCE(rq->avg_dl.util_avg);
8389 	used += thermal_load_avg(rq);
8390 
8391 	if (unlikely(used >= max))
8392 		return 1;
8393 
8394 	free = max - used;
8395 
8396 	return scale_irq_capacity(free, irq, max);
8397 }
8398 
8399 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8400 {
8401 	unsigned long capacity = scale_rt_capacity(cpu);
8402 	struct sched_group *sdg = sd->groups;
8403 
8404 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8405 
8406 	if (!capacity)
8407 		capacity = 1;
8408 
8409 	cpu_rq(cpu)->cpu_capacity = capacity;
8410 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8411 
8412 	sdg->sgc->capacity = capacity;
8413 	sdg->sgc->min_capacity = capacity;
8414 	sdg->sgc->max_capacity = capacity;
8415 }
8416 
8417 void update_group_capacity(struct sched_domain *sd, int cpu)
8418 {
8419 	struct sched_domain *child = sd->child;
8420 	struct sched_group *group, *sdg = sd->groups;
8421 	unsigned long capacity, min_capacity, max_capacity;
8422 	unsigned long interval;
8423 
8424 	interval = msecs_to_jiffies(sd->balance_interval);
8425 	interval = clamp(interval, 1UL, max_load_balance_interval);
8426 	sdg->sgc->next_update = jiffies + interval;
8427 
8428 	if (!child) {
8429 		update_cpu_capacity(sd, cpu);
8430 		return;
8431 	}
8432 
8433 	capacity = 0;
8434 	min_capacity = ULONG_MAX;
8435 	max_capacity = 0;
8436 
8437 	if (child->flags & SD_OVERLAP) {
8438 		/*
8439 		 * SD_OVERLAP domains cannot assume that child groups
8440 		 * span the current group.
8441 		 */
8442 
8443 		for_each_cpu(cpu, sched_group_span(sdg)) {
8444 			unsigned long cpu_cap = capacity_of(cpu);
8445 
8446 			capacity += cpu_cap;
8447 			min_capacity = min(cpu_cap, min_capacity);
8448 			max_capacity = max(cpu_cap, max_capacity);
8449 		}
8450 	} else  {
8451 		/*
8452 		 * !SD_OVERLAP domains can assume that child groups
8453 		 * span the current group.
8454 		 */
8455 
8456 		group = child->groups;
8457 		do {
8458 			struct sched_group_capacity *sgc = group->sgc;
8459 
8460 			capacity += sgc->capacity;
8461 			min_capacity = min(sgc->min_capacity, min_capacity);
8462 			max_capacity = max(sgc->max_capacity, max_capacity);
8463 			group = group->next;
8464 		} while (group != child->groups);
8465 	}
8466 
8467 	sdg->sgc->capacity = capacity;
8468 	sdg->sgc->min_capacity = min_capacity;
8469 	sdg->sgc->max_capacity = max_capacity;
8470 }
8471 
8472 /*
8473  * Check whether the capacity of the rq has been noticeably reduced by side
8474  * activity. The imbalance_pct is used for the threshold.
8475  * Return true is the capacity is reduced
8476  */
8477 static inline int
8478 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8479 {
8480 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8481 				(rq->cpu_capacity_orig * 100));
8482 }
8483 
8484 /*
8485  * Check whether a rq has a misfit task and if it looks like we can actually
8486  * help that task: we can migrate the task to a CPU of higher capacity, or
8487  * the task's current CPU is heavily pressured.
8488  */
8489 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8490 {
8491 	return rq->misfit_task_load &&
8492 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8493 		 check_cpu_capacity(rq, sd));
8494 }
8495 
8496 /*
8497  * Group imbalance indicates (and tries to solve) the problem where balancing
8498  * groups is inadequate due to ->cpus_ptr constraints.
8499  *
8500  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8501  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8502  * Something like:
8503  *
8504  *	{ 0 1 2 3 } { 4 5 6 7 }
8505  *	        *     * * *
8506  *
8507  * If we were to balance group-wise we'd place two tasks in the first group and
8508  * two tasks in the second group. Clearly this is undesired as it will overload
8509  * cpu 3 and leave one of the CPUs in the second group unused.
8510  *
8511  * The current solution to this issue is detecting the skew in the first group
8512  * by noticing the lower domain failed to reach balance and had difficulty
8513  * moving tasks due to affinity constraints.
8514  *
8515  * When this is so detected; this group becomes a candidate for busiest; see
8516  * update_sd_pick_busiest(). And calculate_imbalance() and
8517  * find_busiest_group() avoid some of the usual balance conditions to allow it
8518  * to create an effective group imbalance.
8519  *
8520  * This is a somewhat tricky proposition since the next run might not find the
8521  * group imbalance and decide the groups need to be balanced again. A most
8522  * subtle and fragile situation.
8523  */
8524 
8525 static inline int sg_imbalanced(struct sched_group *group)
8526 {
8527 	return group->sgc->imbalance;
8528 }
8529 
8530 /*
8531  * group_has_capacity returns true if the group has spare capacity that could
8532  * be used by some tasks.
8533  * We consider that a group has spare capacity if the  * number of task is
8534  * smaller than the number of CPUs or if the utilization is lower than the
8535  * available capacity for CFS tasks.
8536  * For the latter, we use a threshold to stabilize the state, to take into
8537  * account the variance of the tasks' load and to return true if the available
8538  * capacity in meaningful for the load balancer.
8539  * As an example, an available capacity of 1% can appear but it doesn't make
8540  * any benefit for the load balance.
8541  */
8542 static inline bool
8543 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8544 {
8545 	if (sgs->sum_nr_running < sgs->group_weight)
8546 		return true;
8547 
8548 	if ((sgs->group_capacity * imbalance_pct) <
8549 			(sgs->group_runnable * 100))
8550 		return false;
8551 
8552 	if ((sgs->group_capacity * 100) >
8553 			(sgs->group_util * imbalance_pct))
8554 		return true;
8555 
8556 	return false;
8557 }
8558 
8559 /*
8560  *  group_is_overloaded returns true if the group has more tasks than it can
8561  *  handle.
8562  *  group_is_overloaded is not equals to !group_has_capacity because a group
8563  *  with the exact right number of tasks, has no more spare capacity but is not
8564  *  overloaded so both group_has_capacity and group_is_overloaded return
8565  *  false.
8566  */
8567 static inline bool
8568 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8569 {
8570 	if (sgs->sum_nr_running <= sgs->group_weight)
8571 		return false;
8572 
8573 	if ((sgs->group_capacity * 100) <
8574 			(sgs->group_util * imbalance_pct))
8575 		return true;
8576 
8577 	if ((sgs->group_capacity * imbalance_pct) <
8578 			(sgs->group_runnable * 100))
8579 		return true;
8580 
8581 	return false;
8582 }
8583 
8584 static inline enum
8585 group_type group_classify(unsigned int imbalance_pct,
8586 			  struct sched_group *group,
8587 			  struct sg_lb_stats *sgs)
8588 {
8589 	if (group_is_overloaded(imbalance_pct, sgs))
8590 		return group_overloaded;
8591 
8592 	if (sg_imbalanced(group))
8593 		return group_imbalanced;
8594 
8595 	if (sgs->group_asym_packing)
8596 		return group_asym_packing;
8597 
8598 	if (sgs->group_misfit_task_load)
8599 		return group_misfit_task;
8600 
8601 	if (!group_has_capacity(imbalance_pct, sgs))
8602 		return group_fully_busy;
8603 
8604 	return group_has_spare;
8605 }
8606 
8607 /**
8608  * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks
8609  * @dst_cpu:	Destination CPU of the load balancing
8610  * @sds:	Load-balancing data with statistics of the local group
8611  * @sgs:	Load-balancing statistics of the candidate busiest group
8612  * @sg:		The candidate busiest group
8613  *
8614  * Check the state of the SMT siblings of both @sds::local and @sg and decide
8615  * if @dst_cpu can pull tasks.
8616  *
8617  * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of
8618  * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks
8619  * only if @dst_cpu has higher priority.
8620  *
8621  * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more
8622  * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority.
8623  * Bigger imbalances in the number of busy CPUs will be dealt with in
8624  * update_sd_pick_busiest().
8625  *
8626  * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings
8627  * of @dst_cpu are idle and @sg has lower priority.
8628  *
8629  * Return: true if @dst_cpu can pull tasks, false otherwise.
8630  */
8631 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds,
8632 				    struct sg_lb_stats *sgs,
8633 				    struct sched_group *sg)
8634 {
8635 #ifdef CONFIG_SCHED_SMT
8636 	bool local_is_smt, sg_is_smt;
8637 	int sg_busy_cpus;
8638 
8639 	local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY;
8640 	sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY;
8641 
8642 	sg_busy_cpus = sgs->group_weight - sgs->idle_cpus;
8643 
8644 	if (!local_is_smt) {
8645 		/*
8646 		 * If we are here, @dst_cpu is idle and does not have SMT
8647 		 * siblings. Pull tasks if candidate group has two or more
8648 		 * busy CPUs.
8649 		 */
8650 		if (sg_busy_cpus >= 2) /* implies sg_is_smt */
8651 			return true;
8652 
8653 		/*
8654 		 * @dst_cpu does not have SMT siblings. @sg may have SMT
8655 		 * siblings and only one is busy. In such case, @dst_cpu
8656 		 * can help if it has higher priority and is idle (i.e.,
8657 		 * it has no running tasks).
8658 		 */
8659 		return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8660 	}
8661 
8662 	/* @dst_cpu has SMT siblings. */
8663 
8664 	if (sg_is_smt) {
8665 		int local_busy_cpus = sds->local->group_weight -
8666 				      sds->local_stat.idle_cpus;
8667 		int busy_cpus_delta = sg_busy_cpus - local_busy_cpus;
8668 
8669 		if (busy_cpus_delta == 1)
8670 			return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8671 
8672 		return false;
8673 	}
8674 
8675 	/*
8676 	 * @sg does not have SMT siblings. Ensure that @sds::local does not end
8677 	 * up with more than one busy SMT sibling and only pull tasks if there
8678 	 * are not busy CPUs (i.e., no CPU has running tasks).
8679 	 */
8680 	if (!sds->local_stat.sum_nr_running)
8681 		return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8682 
8683 	return false;
8684 #else
8685 	/* Always return false so that callers deal with non-SMT cases. */
8686 	return false;
8687 #endif
8688 }
8689 
8690 static inline bool
8691 sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
8692 	   struct sched_group *group)
8693 {
8694 	/* Only do SMT checks if either local or candidate have SMT siblings */
8695 	if ((sds->local->flags & SD_SHARE_CPUCAPACITY) ||
8696 	    (group->flags & SD_SHARE_CPUCAPACITY))
8697 		return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group);
8698 
8699 	return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
8700 }
8701 
8702 /**
8703  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8704  * @env: The load balancing environment.
8705  * @sds: Load-balancing data with statistics of the local group.
8706  * @group: sched_group whose statistics are to be updated.
8707  * @sgs: variable to hold the statistics for this group.
8708  * @sg_status: Holds flag indicating the status of the sched_group
8709  */
8710 static inline void update_sg_lb_stats(struct lb_env *env,
8711 				      struct sd_lb_stats *sds,
8712 				      struct sched_group *group,
8713 				      struct sg_lb_stats *sgs,
8714 				      int *sg_status)
8715 {
8716 	int i, nr_running, local_group;
8717 
8718 	memset(sgs, 0, sizeof(*sgs));
8719 
8720 	local_group = group == sds->local;
8721 
8722 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8723 		struct rq *rq = cpu_rq(i);
8724 
8725 		sgs->group_load += cpu_load(rq);
8726 		sgs->group_util += cpu_util_cfs(i);
8727 		sgs->group_runnable += cpu_runnable(rq);
8728 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8729 
8730 		nr_running = rq->nr_running;
8731 		sgs->sum_nr_running += nr_running;
8732 
8733 		if (nr_running > 1)
8734 			*sg_status |= SG_OVERLOAD;
8735 
8736 		if (cpu_overutilized(i))
8737 			*sg_status |= SG_OVERUTILIZED;
8738 
8739 #ifdef CONFIG_NUMA_BALANCING
8740 		sgs->nr_numa_running += rq->nr_numa_running;
8741 		sgs->nr_preferred_running += rq->nr_preferred_running;
8742 #endif
8743 		/*
8744 		 * No need to call idle_cpu() if nr_running is not 0
8745 		 */
8746 		if (!nr_running && idle_cpu(i)) {
8747 			sgs->idle_cpus++;
8748 			/* Idle cpu can't have misfit task */
8749 			continue;
8750 		}
8751 
8752 		if (local_group)
8753 			continue;
8754 
8755 		/* Check for a misfit task on the cpu */
8756 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8757 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8758 			sgs->group_misfit_task_load = rq->misfit_task_load;
8759 			*sg_status |= SG_OVERLOAD;
8760 		}
8761 	}
8762 
8763 	sgs->group_capacity = group->sgc->capacity;
8764 
8765 	sgs->group_weight = group->group_weight;
8766 
8767 	/* Check if dst CPU is idle and preferred to this group */
8768 	if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
8769 	    env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
8770 	    sched_asym(env, sds, sgs, group)) {
8771 		sgs->group_asym_packing = 1;
8772 	}
8773 
8774 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8775 
8776 	/* Computing avg_load makes sense only when group is overloaded */
8777 	if (sgs->group_type == group_overloaded)
8778 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8779 				sgs->group_capacity;
8780 }
8781 
8782 /**
8783  * update_sd_pick_busiest - return 1 on busiest group
8784  * @env: The load balancing environment.
8785  * @sds: sched_domain statistics
8786  * @sg: sched_group candidate to be checked for being the busiest
8787  * @sgs: sched_group statistics
8788  *
8789  * Determine if @sg is a busier group than the previously selected
8790  * busiest group.
8791  *
8792  * Return: %true if @sg is a busier group than the previously selected
8793  * busiest group. %false otherwise.
8794  */
8795 static bool update_sd_pick_busiest(struct lb_env *env,
8796 				   struct sd_lb_stats *sds,
8797 				   struct sched_group *sg,
8798 				   struct sg_lb_stats *sgs)
8799 {
8800 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8801 
8802 	/* Make sure that there is at least one task to pull */
8803 	if (!sgs->sum_h_nr_running)
8804 		return false;
8805 
8806 	/*
8807 	 * Don't try to pull misfit tasks we can't help.
8808 	 * We can use max_capacity here as reduction in capacity on some
8809 	 * CPUs in the group should either be possible to resolve
8810 	 * internally or be covered by avg_load imbalance (eventually).
8811 	 */
8812 	if (sgs->group_type == group_misfit_task &&
8813 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
8814 	     sds->local_stat.group_type != group_has_spare))
8815 		return false;
8816 
8817 	if (sgs->group_type > busiest->group_type)
8818 		return true;
8819 
8820 	if (sgs->group_type < busiest->group_type)
8821 		return false;
8822 
8823 	/*
8824 	 * The candidate and the current busiest group are the same type of
8825 	 * group. Let check which one is the busiest according to the type.
8826 	 */
8827 
8828 	switch (sgs->group_type) {
8829 	case group_overloaded:
8830 		/* Select the overloaded group with highest avg_load. */
8831 		if (sgs->avg_load <= busiest->avg_load)
8832 			return false;
8833 		break;
8834 
8835 	case group_imbalanced:
8836 		/*
8837 		 * Select the 1st imbalanced group as we don't have any way to
8838 		 * choose one more than another.
8839 		 */
8840 		return false;
8841 
8842 	case group_asym_packing:
8843 		/* Prefer to move from lowest priority CPU's work */
8844 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8845 			return false;
8846 		break;
8847 
8848 	case group_misfit_task:
8849 		/*
8850 		 * If we have more than one misfit sg go with the biggest
8851 		 * misfit.
8852 		 */
8853 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8854 			return false;
8855 		break;
8856 
8857 	case group_fully_busy:
8858 		/*
8859 		 * Select the fully busy group with highest avg_load. In
8860 		 * theory, there is no need to pull task from such kind of
8861 		 * group because tasks have all compute capacity that they need
8862 		 * but we can still improve the overall throughput by reducing
8863 		 * contention when accessing shared HW resources.
8864 		 *
8865 		 * XXX for now avg_load is not computed and always 0 so we
8866 		 * select the 1st one.
8867 		 */
8868 		if (sgs->avg_load <= busiest->avg_load)
8869 			return false;
8870 		break;
8871 
8872 	case group_has_spare:
8873 		/*
8874 		 * Select not overloaded group with lowest number of idle cpus
8875 		 * and highest number of running tasks. We could also compare
8876 		 * the spare capacity which is more stable but it can end up
8877 		 * that the group has less spare capacity but finally more idle
8878 		 * CPUs which means less opportunity to pull tasks.
8879 		 */
8880 		if (sgs->idle_cpus > busiest->idle_cpus)
8881 			return false;
8882 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8883 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
8884 			return false;
8885 
8886 		break;
8887 	}
8888 
8889 	/*
8890 	 * Candidate sg has no more than one task per CPU and has higher
8891 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8892 	 * throughput. Maximize throughput, power/energy consequences are not
8893 	 * considered.
8894 	 */
8895 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8896 	    (sgs->group_type <= group_fully_busy) &&
8897 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
8898 		return false;
8899 
8900 	return true;
8901 }
8902 
8903 #ifdef CONFIG_NUMA_BALANCING
8904 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8905 {
8906 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8907 		return regular;
8908 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8909 		return remote;
8910 	return all;
8911 }
8912 
8913 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8914 {
8915 	if (rq->nr_running > rq->nr_numa_running)
8916 		return regular;
8917 	if (rq->nr_running > rq->nr_preferred_running)
8918 		return remote;
8919 	return all;
8920 }
8921 #else
8922 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8923 {
8924 	return all;
8925 }
8926 
8927 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8928 {
8929 	return regular;
8930 }
8931 #endif /* CONFIG_NUMA_BALANCING */
8932 
8933 
8934 struct sg_lb_stats;
8935 
8936 /*
8937  * task_running_on_cpu - return 1 if @p is running on @cpu.
8938  */
8939 
8940 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8941 {
8942 	/* Task has no contribution or is new */
8943 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8944 		return 0;
8945 
8946 	if (task_on_rq_queued(p))
8947 		return 1;
8948 
8949 	return 0;
8950 }
8951 
8952 /**
8953  * idle_cpu_without - would a given CPU be idle without p ?
8954  * @cpu: the processor on which idleness is tested.
8955  * @p: task which should be ignored.
8956  *
8957  * Return: 1 if the CPU would be idle. 0 otherwise.
8958  */
8959 static int idle_cpu_without(int cpu, struct task_struct *p)
8960 {
8961 	struct rq *rq = cpu_rq(cpu);
8962 
8963 	if (rq->curr != rq->idle && rq->curr != p)
8964 		return 0;
8965 
8966 	/*
8967 	 * rq->nr_running can't be used but an updated version without the
8968 	 * impact of p on cpu must be used instead. The updated nr_running
8969 	 * be computed and tested before calling idle_cpu_without().
8970 	 */
8971 
8972 #ifdef CONFIG_SMP
8973 	if (rq->ttwu_pending)
8974 		return 0;
8975 #endif
8976 
8977 	return 1;
8978 }
8979 
8980 /*
8981  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8982  * @sd: The sched_domain level to look for idlest group.
8983  * @group: sched_group whose statistics are to be updated.
8984  * @sgs: variable to hold the statistics for this group.
8985  * @p: The task for which we look for the idlest group/CPU.
8986  */
8987 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8988 					  struct sched_group *group,
8989 					  struct sg_lb_stats *sgs,
8990 					  struct task_struct *p)
8991 {
8992 	int i, nr_running;
8993 
8994 	memset(sgs, 0, sizeof(*sgs));
8995 
8996 	for_each_cpu(i, sched_group_span(group)) {
8997 		struct rq *rq = cpu_rq(i);
8998 		unsigned int local;
8999 
9000 		sgs->group_load += cpu_load_without(rq, p);
9001 		sgs->group_util += cpu_util_without(i, p);
9002 		sgs->group_runnable += cpu_runnable_without(rq, p);
9003 		local = task_running_on_cpu(i, p);
9004 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
9005 
9006 		nr_running = rq->nr_running - local;
9007 		sgs->sum_nr_running += nr_running;
9008 
9009 		/*
9010 		 * No need to call idle_cpu_without() if nr_running is not 0
9011 		 */
9012 		if (!nr_running && idle_cpu_without(i, p))
9013 			sgs->idle_cpus++;
9014 
9015 	}
9016 
9017 	/* Check if task fits in the group */
9018 	if (sd->flags & SD_ASYM_CPUCAPACITY &&
9019 	    !task_fits_capacity(p, group->sgc->max_capacity)) {
9020 		sgs->group_misfit_task_load = 1;
9021 	}
9022 
9023 	sgs->group_capacity = group->sgc->capacity;
9024 
9025 	sgs->group_weight = group->group_weight;
9026 
9027 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
9028 
9029 	/*
9030 	 * Computing avg_load makes sense only when group is fully busy or
9031 	 * overloaded
9032 	 */
9033 	if (sgs->group_type == group_fully_busy ||
9034 		sgs->group_type == group_overloaded)
9035 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9036 				sgs->group_capacity;
9037 }
9038 
9039 static bool update_pick_idlest(struct sched_group *idlest,
9040 			       struct sg_lb_stats *idlest_sgs,
9041 			       struct sched_group *group,
9042 			       struct sg_lb_stats *sgs)
9043 {
9044 	if (sgs->group_type < idlest_sgs->group_type)
9045 		return true;
9046 
9047 	if (sgs->group_type > idlest_sgs->group_type)
9048 		return false;
9049 
9050 	/*
9051 	 * The candidate and the current idlest group are the same type of
9052 	 * group. Let check which one is the idlest according to the type.
9053 	 */
9054 
9055 	switch (sgs->group_type) {
9056 	case group_overloaded:
9057 	case group_fully_busy:
9058 		/* Select the group with lowest avg_load. */
9059 		if (idlest_sgs->avg_load <= sgs->avg_load)
9060 			return false;
9061 		break;
9062 
9063 	case group_imbalanced:
9064 	case group_asym_packing:
9065 		/* Those types are not used in the slow wakeup path */
9066 		return false;
9067 
9068 	case group_misfit_task:
9069 		/* Select group with the highest max capacity */
9070 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
9071 			return false;
9072 		break;
9073 
9074 	case group_has_spare:
9075 		/* Select group with most idle CPUs */
9076 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
9077 			return false;
9078 
9079 		/* Select group with lowest group_util */
9080 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
9081 			idlest_sgs->group_util <= sgs->group_util)
9082 			return false;
9083 
9084 		break;
9085 	}
9086 
9087 	return true;
9088 }
9089 
9090 /*
9091  * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
9092  * This is an approximation as the number of running tasks may not be
9093  * related to the number of busy CPUs due to sched_setaffinity.
9094  */
9095 static inline bool allow_numa_imbalance(int running, int imb_numa_nr)
9096 {
9097 	return running <= imb_numa_nr;
9098 }
9099 
9100 /*
9101  * find_idlest_group() finds and returns the least busy CPU group within the
9102  * domain.
9103  *
9104  * Assumes p is allowed on at least one CPU in sd.
9105  */
9106 static struct sched_group *
9107 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9108 {
9109 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9110 	struct sg_lb_stats local_sgs, tmp_sgs;
9111 	struct sg_lb_stats *sgs;
9112 	unsigned long imbalance;
9113 	struct sg_lb_stats idlest_sgs = {
9114 			.avg_load = UINT_MAX,
9115 			.group_type = group_overloaded,
9116 	};
9117 
9118 	do {
9119 		int local_group;
9120 
9121 		/* Skip over this group if it has no CPUs allowed */
9122 		if (!cpumask_intersects(sched_group_span(group),
9123 					p->cpus_ptr))
9124 			continue;
9125 
9126 		/* Skip over this group if no cookie matched */
9127 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9128 			continue;
9129 
9130 		local_group = cpumask_test_cpu(this_cpu,
9131 					       sched_group_span(group));
9132 
9133 		if (local_group) {
9134 			sgs = &local_sgs;
9135 			local = group;
9136 		} else {
9137 			sgs = &tmp_sgs;
9138 		}
9139 
9140 		update_sg_wakeup_stats(sd, group, sgs, p);
9141 
9142 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9143 			idlest = group;
9144 			idlest_sgs = *sgs;
9145 		}
9146 
9147 	} while (group = group->next, group != sd->groups);
9148 
9149 
9150 	/* There is no idlest group to push tasks to */
9151 	if (!idlest)
9152 		return NULL;
9153 
9154 	/* The local group has been skipped because of CPU affinity */
9155 	if (!local)
9156 		return idlest;
9157 
9158 	/*
9159 	 * If the local group is idler than the selected idlest group
9160 	 * don't try and push the task.
9161 	 */
9162 	if (local_sgs.group_type < idlest_sgs.group_type)
9163 		return NULL;
9164 
9165 	/*
9166 	 * If the local group is busier than the selected idlest group
9167 	 * try and push the task.
9168 	 */
9169 	if (local_sgs.group_type > idlest_sgs.group_type)
9170 		return idlest;
9171 
9172 	switch (local_sgs.group_type) {
9173 	case group_overloaded:
9174 	case group_fully_busy:
9175 
9176 		/* Calculate allowed imbalance based on load */
9177 		imbalance = scale_load_down(NICE_0_LOAD) *
9178 				(sd->imbalance_pct-100) / 100;
9179 
9180 		/*
9181 		 * When comparing groups across NUMA domains, it's possible for
9182 		 * the local domain to be very lightly loaded relative to the
9183 		 * remote domains but "imbalance" skews the comparison making
9184 		 * remote CPUs look much more favourable. When considering
9185 		 * cross-domain, add imbalance to the load on the remote node
9186 		 * and consider staying local.
9187 		 */
9188 
9189 		if ((sd->flags & SD_NUMA) &&
9190 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9191 			return NULL;
9192 
9193 		/*
9194 		 * If the local group is less loaded than the selected
9195 		 * idlest group don't try and push any tasks.
9196 		 */
9197 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9198 			return NULL;
9199 
9200 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9201 			return NULL;
9202 		break;
9203 
9204 	case group_imbalanced:
9205 	case group_asym_packing:
9206 		/* Those type are not used in the slow wakeup path */
9207 		return NULL;
9208 
9209 	case group_misfit_task:
9210 		/* Select group with the highest max capacity */
9211 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9212 			return NULL;
9213 		break;
9214 
9215 	case group_has_spare:
9216 		if (sd->flags & SD_NUMA) {
9217 #ifdef CONFIG_NUMA_BALANCING
9218 			int idlest_cpu;
9219 			/*
9220 			 * If there is spare capacity at NUMA, try to select
9221 			 * the preferred node
9222 			 */
9223 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9224 				return NULL;
9225 
9226 			idlest_cpu = cpumask_first(sched_group_span(idlest));
9227 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9228 				return idlest;
9229 #endif
9230 			/*
9231 			 * Otherwise, keep the task close to the wakeup source
9232 			 * and improve locality if the number of running tasks
9233 			 * would remain below threshold where an imbalance is
9234 			 * allowed. If there is a real need of migration,
9235 			 * periodic load balance will take care of it.
9236 			 */
9237 			if (allow_numa_imbalance(local_sgs.sum_nr_running + 1, sd->imb_numa_nr))
9238 				return NULL;
9239 		}
9240 
9241 		/*
9242 		 * Select group with highest number of idle CPUs. We could also
9243 		 * compare the utilization which is more stable but it can end
9244 		 * up that the group has less spare capacity but finally more
9245 		 * idle CPUs which means more opportunity to run task.
9246 		 */
9247 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9248 			return NULL;
9249 		break;
9250 	}
9251 
9252 	return idlest;
9253 }
9254 
9255 /**
9256  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9257  * @env: The load balancing environment.
9258  * @sds: variable to hold the statistics for this sched_domain.
9259  */
9260 
9261 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9262 {
9263 	struct sched_domain *child = env->sd->child;
9264 	struct sched_group *sg = env->sd->groups;
9265 	struct sg_lb_stats *local = &sds->local_stat;
9266 	struct sg_lb_stats tmp_sgs;
9267 	int sg_status = 0;
9268 
9269 	do {
9270 		struct sg_lb_stats *sgs = &tmp_sgs;
9271 		int local_group;
9272 
9273 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9274 		if (local_group) {
9275 			sds->local = sg;
9276 			sgs = local;
9277 
9278 			if (env->idle != CPU_NEWLY_IDLE ||
9279 			    time_after_eq(jiffies, sg->sgc->next_update))
9280 				update_group_capacity(env->sd, env->dst_cpu);
9281 		}
9282 
9283 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
9284 
9285 		if (local_group)
9286 			goto next_group;
9287 
9288 
9289 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9290 			sds->busiest = sg;
9291 			sds->busiest_stat = *sgs;
9292 		}
9293 
9294 next_group:
9295 		/* Now, start updating sd_lb_stats */
9296 		sds->total_load += sgs->group_load;
9297 		sds->total_capacity += sgs->group_capacity;
9298 
9299 		sg = sg->next;
9300 	} while (sg != env->sd->groups);
9301 
9302 	/* Tag domain that child domain prefers tasks go to siblings first */
9303 	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9304 
9305 
9306 	if (env->sd->flags & SD_NUMA)
9307 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9308 
9309 	if (!env->sd->parent) {
9310 		struct root_domain *rd = env->dst_rq->rd;
9311 
9312 		/* update overload indicator if we are at root domain */
9313 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9314 
9315 		/* Update over-utilization (tipping point, U >= 0) indicator */
9316 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9317 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9318 	} else if (sg_status & SG_OVERUTILIZED) {
9319 		struct root_domain *rd = env->dst_rq->rd;
9320 
9321 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9322 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9323 	}
9324 }
9325 
9326 #define NUMA_IMBALANCE_MIN 2
9327 
9328 static inline long adjust_numa_imbalance(int imbalance,
9329 				int dst_running, int imb_numa_nr)
9330 {
9331 	if (!allow_numa_imbalance(dst_running, imb_numa_nr))
9332 		return imbalance;
9333 
9334 	/*
9335 	 * Allow a small imbalance based on a simple pair of communicating
9336 	 * tasks that remain local when the destination is lightly loaded.
9337 	 */
9338 	if (imbalance <= NUMA_IMBALANCE_MIN)
9339 		return 0;
9340 
9341 	return imbalance;
9342 }
9343 
9344 /**
9345  * calculate_imbalance - Calculate the amount of imbalance present within the
9346  *			 groups of a given sched_domain during load balance.
9347  * @env: load balance environment
9348  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9349  */
9350 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9351 {
9352 	struct sg_lb_stats *local, *busiest;
9353 
9354 	local = &sds->local_stat;
9355 	busiest = &sds->busiest_stat;
9356 
9357 	if (busiest->group_type == group_misfit_task) {
9358 		/* Set imbalance to allow misfit tasks to be balanced. */
9359 		env->migration_type = migrate_misfit;
9360 		env->imbalance = 1;
9361 		return;
9362 	}
9363 
9364 	if (busiest->group_type == group_asym_packing) {
9365 		/*
9366 		 * In case of asym capacity, we will try to migrate all load to
9367 		 * the preferred CPU.
9368 		 */
9369 		env->migration_type = migrate_task;
9370 		env->imbalance = busiest->sum_h_nr_running;
9371 		return;
9372 	}
9373 
9374 	if (busiest->group_type == group_imbalanced) {
9375 		/*
9376 		 * In the group_imb case we cannot rely on group-wide averages
9377 		 * to ensure CPU-load equilibrium, try to move any task to fix
9378 		 * the imbalance. The next load balance will take care of
9379 		 * balancing back the system.
9380 		 */
9381 		env->migration_type = migrate_task;
9382 		env->imbalance = 1;
9383 		return;
9384 	}
9385 
9386 	/*
9387 	 * Try to use spare capacity of local group without overloading it or
9388 	 * emptying busiest.
9389 	 */
9390 	if (local->group_type == group_has_spare) {
9391 		if ((busiest->group_type > group_fully_busy) &&
9392 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9393 			/*
9394 			 * If busiest is overloaded, try to fill spare
9395 			 * capacity. This might end up creating spare capacity
9396 			 * in busiest or busiest still being overloaded but
9397 			 * there is no simple way to directly compute the
9398 			 * amount of load to migrate in order to balance the
9399 			 * system.
9400 			 */
9401 			env->migration_type = migrate_util;
9402 			env->imbalance = max(local->group_capacity, local->group_util) -
9403 					 local->group_util;
9404 
9405 			/*
9406 			 * In some cases, the group's utilization is max or even
9407 			 * higher than capacity because of migrations but the
9408 			 * local CPU is (newly) idle. There is at least one
9409 			 * waiting task in this overloaded busiest group. Let's
9410 			 * try to pull it.
9411 			 */
9412 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9413 				env->migration_type = migrate_task;
9414 				env->imbalance = 1;
9415 			}
9416 
9417 			return;
9418 		}
9419 
9420 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
9421 			unsigned int nr_diff = busiest->sum_nr_running;
9422 			/*
9423 			 * When prefer sibling, evenly spread running tasks on
9424 			 * groups.
9425 			 */
9426 			env->migration_type = migrate_task;
9427 			lsub_positive(&nr_diff, local->sum_nr_running);
9428 			env->imbalance = nr_diff >> 1;
9429 		} else {
9430 
9431 			/*
9432 			 * If there is no overload, we just want to even the number of
9433 			 * idle cpus.
9434 			 */
9435 			env->migration_type = migrate_task;
9436 			env->imbalance = max_t(long, 0, (local->idle_cpus -
9437 						 busiest->idle_cpus) >> 1);
9438 		}
9439 
9440 		/* Consider allowing a small imbalance between NUMA groups */
9441 		if (env->sd->flags & SD_NUMA) {
9442 			env->imbalance = adjust_numa_imbalance(env->imbalance,
9443 				local->sum_nr_running + 1, env->sd->imb_numa_nr);
9444 		}
9445 
9446 		return;
9447 	}
9448 
9449 	/*
9450 	 * Local is fully busy but has to take more load to relieve the
9451 	 * busiest group
9452 	 */
9453 	if (local->group_type < group_overloaded) {
9454 		/*
9455 		 * Local will become overloaded so the avg_load metrics are
9456 		 * finally needed.
9457 		 */
9458 
9459 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9460 				  local->group_capacity;
9461 
9462 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9463 				sds->total_capacity;
9464 		/*
9465 		 * If the local group is more loaded than the selected
9466 		 * busiest group don't try to pull any tasks.
9467 		 */
9468 		if (local->avg_load >= busiest->avg_load) {
9469 			env->imbalance = 0;
9470 			return;
9471 		}
9472 	}
9473 
9474 	/*
9475 	 * Both group are or will become overloaded and we're trying to get all
9476 	 * the CPUs to the average_load, so we don't want to push ourselves
9477 	 * above the average load, nor do we wish to reduce the max loaded CPU
9478 	 * below the average load. At the same time, we also don't want to
9479 	 * reduce the group load below the group capacity. Thus we look for
9480 	 * the minimum possible imbalance.
9481 	 */
9482 	env->migration_type = migrate_load;
9483 	env->imbalance = min(
9484 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9485 		(sds->avg_load - local->avg_load) * local->group_capacity
9486 	) / SCHED_CAPACITY_SCALE;
9487 }
9488 
9489 /******* find_busiest_group() helpers end here *********************/
9490 
9491 /*
9492  * Decision matrix according to the local and busiest group type:
9493  *
9494  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9495  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
9496  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
9497  * misfit_task      force     N/A        N/A    N/A  force      force
9498  * asym_packing     force     force      N/A    N/A  force      force
9499  * imbalanced       force     force      N/A    N/A  force      force
9500  * overloaded       force     force      N/A    N/A  force      avg_load
9501  *
9502  * N/A :      Not Applicable because already filtered while updating
9503  *            statistics.
9504  * balanced : The system is balanced for these 2 groups.
9505  * force :    Calculate the imbalance as load migration is probably needed.
9506  * avg_load : Only if imbalance is significant enough.
9507  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
9508  *            different in groups.
9509  */
9510 
9511 /**
9512  * find_busiest_group - Returns the busiest group within the sched_domain
9513  * if there is an imbalance.
9514  * @env: The load balancing environment.
9515  *
9516  * Also calculates the amount of runnable load which should be moved
9517  * to restore balance.
9518  *
9519  * Return:	- The busiest group if imbalance exists.
9520  */
9521 static struct sched_group *find_busiest_group(struct lb_env *env)
9522 {
9523 	struct sg_lb_stats *local, *busiest;
9524 	struct sd_lb_stats sds;
9525 
9526 	init_sd_lb_stats(&sds);
9527 
9528 	/*
9529 	 * Compute the various statistics relevant for load balancing at
9530 	 * this level.
9531 	 */
9532 	update_sd_lb_stats(env, &sds);
9533 
9534 	if (sched_energy_enabled()) {
9535 		struct root_domain *rd = env->dst_rq->rd;
9536 
9537 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9538 			goto out_balanced;
9539 	}
9540 
9541 	local = &sds.local_stat;
9542 	busiest = &sds.busiest_stat;
9543 
9544 	/* There is no busy sibling group to pull tasks from */
9545 	if (!sds.busiest)
9546 		goto out_balanced;
9547 
9548 	/* Misfit tasks should be dealt with regardless of the avg load */
9549 	if (busiest->group_type == group_misfit_task)
9550 		goto force_balance;
9551 
9552 	/* ASYM feature bypasses nice load balance check */
9553 	if (busiest->group_type == group_asym_packing)
9554 		goto force_balance;
9555 
9556 	/*
9557 	 * If the busiest group is imbalanced the below checks don't
9558 	 * work because they assume all things are equal, which typically
9559 	 * isn't true due to cpus_ptr constraints and the like.
9560 	 */
9561 	if (busiest->group_type == group_imbalanced)
9562 		goto force_balance;
9563 
9564 	/*
9565 	 * If the local group is busier than the selected busiest group
9566 	 * don't try and pull any tasks.
9567 	 */
9568 	if (local->group_type > busiest->group_type)
9569 		goto out_balanced;
9570 
9571 	/*
9572 	 * When groups are overloaded, use the avg_load to ensure fairness
9573 	 * between tasks.
9574 	 */
9575 	if (local->group_type == group_overloaded) {
9576 		/*
9577 		 * If the local group is more loaded than the selected
9578 		 * busiest group don't try to pull any tasks.
9579 		 */
9580 		if (local->avg_load >= busiest->avg_load)
9581 			goto out_balanced;
9582 
9583 		/* XXX broken for overlapping NUMA groups */
9584 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9585 				sds.total_capacity;
9586 
9587 		/*
9588 		 * Don't pull any tasks if this group is already above the
9589 		 * domain average load.
9590 		 */
9591 		if (local->avg_load >= sds.avg_load)
9592 			goto out_balanced;
9593 
9594 		/*
9595 		 * If the busiest group is more loaded, use imbalance_pct to be
9596 		 * conservative.
9597 		 */
9598 		if (100 * busiest->avg_load <=
9599 				env->sd->imbalance_pct * local->avg_load)
9600 			goto out_balanced;
9601 	}
9602 
9603 	/* Try to move all excess tasks to child's sibling domain */
9604 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
9605 	    busiest->sum_nr_running > local->sum_nr_running + 1)
9606 		goto force_balance;
9607 
9608 	if (busiest->group_type != group_overloaded) {
9609 		if (env->idle == CPU_NOT_IDLE)
9610 			/*
9611 			 * If the busiest group is not overloaded (and as a
9612 			 * result the local one too) but this CPU is already
9613 			 * busy, let another idle CPU try to pull task.
9614 			 */
9615 			goto out_balanced;
9616 
9617 		if (busiest->group_weight > 1 &&
9618 		    local->idle_cpus <= (busiest->idle_cpus + 1))
9619 			/*
9620 			 * If the busiest group is not overloaded
9621 			 * and there is no imbalance between this and busiest
9622 			 * group wrt idle CPUs, it is balanced. The imbalance
9623 			 * becomes significant if the diff is greater than 1
9624 			 * otherwise we might end up to just move the imbalance
9625 			 * on another group. Of course this applies only if
9626 			 * there is more than 1 CPU per group.
9627 			 */
9628 			goto out_balanced;
9629 
9630 		if (busiest->sum_h_nr_running == 1)
9631 			/*
9632 			 * busiest doesn't have any tasks waiting to run
9633 			 */
9634 			goto out_balanced;
9635 	}
9636 
9637 force_balance:
9638 	/* Looks like there is an imbalance. Compute it */
9639 	calculate_imbalance(env, &sds);
9640 	return env->imbalance ? sds.busiest : NULL;
9641 
9642 out_balanced:
9643 	env->imbalance = 0;
9644 	return NULL;
9645 }
9646 
9647 /*
9648  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9649  */
9650 static struct rq *find_busiest_queue(struct lb_env *env,
9651 				     struct sched_group *group)
9652 {
9653 	struct rq *busiest = NULL, *rq;
9654 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9655 	unsigned int busiest_nr = 0;
9656 	int i;
9657 
9658 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9659 		unsigned long capacity, load, util;
9660 		unsigned int nr_running;
9661 		enum fbq_type rt;
9662 
9663 		rq = cpu_rq(i);
9664 		rt = fbq_classify_rq(rq);
9665 
9666 		/*
9667 		 * We classify groups/runqueues into three groups:
9668 		 *  - regular: there are !numa tasks
9669 		 *  - remote:  there are numa tasks that run on the 'wrong' node
9670 		 *  - all:     there is no distinction
9671 		 *
9672 		 * In order to avoid migrating ideally placed numa tasks,
9673 		 * ignore those when there's better options.
9674 		 *
9675 		 * If we ignore the actual busiest queue to migrate another
9676 		 * task, the next balance pass can still reduce the busiest
9677 		 * queue by moving tasks around inside the node.
9678 		 *
9679 		 * If we cannot move enough load due to this classification
9680 		 * the next pass will adjust the group classification and
9681 		 * allow migration of more tasks.
9682 		 *
9683 		 * Both cases only affect the total convergence complexity.
9684 		 */
9685 		if (rt > env->fbq_type)
9686 			continue;
9687 
9688 		nr_running = rq->cfs.h_nr_running;
9689 		if (!nr_running)
9690 			continue;
9691 
9692 		capacity = capacity_of(i);
9693 
9694 		/*
9695 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9696 		 * eventually lead to active_balancing high->low capacity.
9697 		 * Higher per-CPU capacity is considered better than balancing
9698 		 * average load.
9699 		 */
9700 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9701 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
9702 		    nr_running == 1)
9703 			continue;
9704 
9705 		/* Make sure we only pull tasks from a CPU of lower priority */
9706 		if ((env->sd->flags & SD_ASYM_PACKING) &&
9707 		    sched_asym_prefer(i, env->dst_cpu) &&
9708 		    nr_running == 1)
9709 			continue;
9710 
9711 		switch (env->migration_type) {
9712 		case migrate_load:
9713 			/*
9714 			 * When comparing with load imbalance, use cpu_load()
9715 			 * which is not scaled with the CPU capacity.
9716 			 */
9717 			load = cpu_load(rq);
9718 
9719 			if (nr_running == 1 && load > env->imbalance &&
9720 			    !check_cpu_capacity(rq, env->sd))
9721 				break;
9722 
9723 			/*
9724 			 * For the load comparisons with the other CPUs,
9725 			 * consider the cpu_load() scaled with the CPU
9726 			 * capacity, so that the load can be moved away
9727 			 * from the CPU that is potentially running at a
9728 			 * lower capacity.
9729 			 *
9730 			 * Thus we're looking for max(load_i / capacity_i),
9731 			 * crosswise multiplication to rid ourselves of the
9732 			 * division works out to:
9733 			 * load_i * capacity_j > load_j * capacity_i;
9734 			 * where j is our previous maximum.
9735 			 */
9736 			if (load * busiest_capacity > busiest_load * capacity) {
9737 				busiest_load = load;
9738 				busiest_capacity = capacity;
9739 				busiest = rq;
9740 			}
9741 			break;
9742 
9743 		case migrate_util:
9744 			util = cpu_util_cfs(i);
9745 
9746 			/*
9747 			 * Don't try to pull utilization from a CPU with one
9748 			 * running task. Whatever its utilization, we will fail
9749 			 * detach the task.
9750 			 */
9751 			if (nr_running <= 1)
9752 				continue;
9753 
9754 			if (busiest_util < util) {
9755 				busiest_util = util;
9756 				busiest = rq;
9757 			}
9758 			break;
9759 
9760 		case migrate_task:
9761 			if (busiest_nr < nr_running) {
9762 				busiest_nr = nr_running;
9763 				busiest = rq;
9764 			}
9765 			break;
9766 
9767 		case migrate_misfit:
9768 			/*
9769 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
9770 			 * simply seek the "biggest" misfit task.
9771 			 */
9772 			if (rq->misfit_task_load > busiest_load) {
9773 				busiest_load = rq->misfit_task_load;
9774 				busiest = rq;
9775 			}
9776 
9777 			break;
9778 
9779 		}
9780 	}
9781 
9782 	return busiest;
9783 }
9784 
9785 /*
9786  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9787  * so long as it is large enough.
9788  */
9789 #define MAX_PINNED_INTERVAL	512
9790 
9791 static inline bool
9792 asym_active_balance(struct lb_env *env)
9793 {
9794 	/*
9795 	 * ASYM_PACKING needs to force migrate tasks from busy but
9796 	 * lower priority CPUs in order to pack all tasks in the
9797 	 * highest priority CPUs.
9798 	 */
9799 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9800 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
9801 }
9802 
9803 static inline bool
9804 imbalanced_active_balance(struct lb_env *env)
9805 {
9806 	struct sched_domain *sd = env->sd;
9807 
9808 	/*
9809 	 * The imbalanced case includes the case of pinned tasks preventing a fair
9810 	 * distribution of the load on the system but also the even distribution of the
9811 	 * threads on a system with spare capacity
9812 	 */
9813 	if ((env->migration_type == migrate_task) &&
9814 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
9815 		return 1;
9816 
9817 	return 0;
9818 }
9819 
9820 static int need_active_balance(struct lb_env *env)
9821 {
9822 	struct sched_domain *sd = env->sd;
9823 
9824 	if (asym_active_balance(env))
9825 		return 1;
9826 
9827 	if (imbalanced_active_balance(env))
9828 		return 1;
9829 
9830 	/*
9831 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9832 	 * It's worth migrating the task if the src_cpu's capacity is reduced
9833 	 * because of other sched_class or IRQs if more capacity stays
9834 	 * available on dst_cpu.
9835 	 */
9836 	if ((env->idle != CPU_NOT_IDLE) &&
9837 	    (env->src_rq->cfs.h_nr_running == 1)) {
9838 		if ((check_cpu_capacity(env->src_rq, sd)) &&
9839 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9840 			return 1;
9841 	}
9842 
9843 	if (env->migration_type == migrate_misfit)
9844 		return 1;
9845 
9846 	return 0;
9847 }
9848 
9849 static int active_load_balance_cpu_stop(void *data);
9850 
9851 static int should_we_balance(struct lb_env *env)
9852 {
9853 	struct sched_group *sg = env->sd->groups;
9854 	int cpu;
9855 
9856 	/*
9857 	 * Ensure the balancing environment is consistent; can happen
9858 	 * when the softirq triggers 'during' hotplug.
9859 	 */
9860 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9861 		return 0;
9862 
9863 	/*
9864 	 * In the newly idle case, we will allow all the CPUs
9865 	 * to do the newly idle load balance.
9866 	 */
9867 	if (env->idle == CPU_NEWLY_IDLE)
9868 		return 1;
9869 
9870 	/* Try to find first idle CPU */
9871 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9872 		if (!idle_cpu(cpu))
9873 			continue;
9874 
9875 		/* Are we the first idle CPU? */
9876 		return cpu == env->dst_cpu;
9877 	}
9878 
9879 	/* Are we the first CPU of this group ? */
9880 	return group_balance_cpu(sg) == env->dst_cpu;
9881 }
9882 
9883 /*
9884  * Check this_cpu to ensure it is balanced within domain. Attempt to move
9885  * tasks if there is an imbalance.
9886  */
9887 static int load_balance(int this_cpu, struct rq *this_rq,
9888 			struct sched_domain *sd, enum cpu_idle_type idle,
9889 			int *continue_balancing)
9890 {
9891 	int ld_moved, cur_ld_moved, active_balance = 0;
9892 	struct sched_domain *sd_parent = sd->parent;
9893 	struct sched_group *group;
9894 	struct rq *busiest;
9895 	struct rq_flags rf;
9896 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9897 
9898 	struct lb_env env = {
9899 		.sd		= sd,
9900 		.dst_cpu	= this_cpu,
9901 		.dst_rq		= this_rq,
9902 		.dst_grpmask    = sched_group_span(sd->groups),
9903 		.idle		= idle,
9904 		.loop_break	= sched_nr_migrate_break,
9905 		.cpus		= cpus,
9906 		.fbq_type	= all,
9907 		.tasks		= LIST_HEAD_INIT(env.tasks),
9908 	};
9909 
9910 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9911 
9912 	schedstat_inc(sd->lb_count[idle]);
9913 
9914 redo:
9915 	if (!should_we_balance(&env)) {
9916 		*continue_balancing = 0;
9917 		goto out_balanced;
9918 	}
9919 
9920 	group = find_busiest_group(&env);
9921 	if (!group) {
9922 		schedstat_inc(sd->lb_nobusyg[idle]);
9923 		goto out_balanced;
9924 	}
9925 
9926 	busiest = find_busiest_queue(&env, group);
9927 	if (!busiest) {
9928 		schedstat_inc(sd->lb_nobusyq[idle]);
9929 		goto out_balanced;
9930 	}
9931 
9932 	BUG_ON(busiest == env.dst_rq);
9933 
9934 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9935 
9936 	env.src_cpu = busiest->cpu;
9937 	env.src_rq = busiest;
9938 
9939 	ld_moved = 0;
9940 	/* Clear this flag as soon as we find a pullable task */
9941 	env.flags |= LBF_ALL_PINNED;
9942 	if (busiest->nr_running > 1) {
9943 		/*
9944 		 * Attempt to move tasks. If find_busiest_group has found
9945 		 * an imbalance but busiest->nr_running <= 1, the group is
9946 		 * still unbalanced. ld_moved simply stays zero, so it is
9947 		 * correctly treated as an imbalance.
9948 		 */
9949 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
9950 
9951 more_balance:
9952 		rq_lock_irqsave(busiest, &rf);
9953 		update_rq_clock(busiest);
9954 
9955 		/*
9956 		 * cur_ld_moved - load moved in current iteration
9957 		 * ld_moved     - cumulative load moved across iterations
9958 		 */
9959 		cur_ld_moved = detach_tasks(&env);
9960 
9961 		/*
9962 		 * We've detached some tasks from busiest_rq. Every
9963 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9964 		 * unlock busiest->lock, and we are able to be sure
9965 		 * that nobody can manipulate the tasks in parallel.
9966 		 * See task_rq_lock() family for the details.
9967 		 */
9968 
9969 		rq_unlock(busiest, &rf);
9970 
9971 		if (cur_ld_moved) {
9972 			attach_tasks(&env);
9973 			ld_moved += cur_ld_moved;
9974 		}
9975 
9976 		local_irq_restore(rf.flags);
9977 
9978 		if (env.flags & LBF_NEED_BREAK) {
9979 			env.flags &= ~LBF_NEED_BREAK;
9980 			goto more_balance;
9981 		}
9982 
9983 		/*
9984 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9985 		 * us and move them to an alternate dst_cpu in our sched_group
9986 		 * where they can run. The upper limit on how many times we
9987 		 * iterate on same src_cpu is dependent on number of CPUs in our
9988 		 * sched_group.
9989 		 *
9990 		 * This changes load balance semantics a bit on who can move
9991 		 * load to a given_cpu. In addition to the given_cpu itself
9992 		 * (or a ilb_cpu acting on its behalf where given_cpu is
9993 		 * nohz-idle), we now have balance_cpu in a position to move
9994 		 * load to given_cpu. In rare situations, this may cause
9995 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9996 		 * _independently_ and at _same_ time to move some load to
9997 		 * given_cpu) causing excess load to be moved to given_cpu.
9998 		 * This however should not happen so much in practice and
9999 		 * moreover subsequent load balance cycles should correct the
10000 		 * excess load moved.
10001 		 */
10002 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
10003 
10004 			/* Prevent to re-select dst_cpu via env's CPUs */
10005 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
10006 
10007 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
10008 			env.dst_cpu	 = env.new_dst_cpu;
10009 			env.flags	&= ~LBF_DST_PINNED;
10010 			env.loop	 = 0;
10011 			env.loop_break	 = sched_nr_migrate_break;
10012 
10013 			/*
10014 			 * Go back to "more_balance" rather than "redo" since we
10015 			 * need to continue with same src_cpu.
10016 			 */
10017 			goto more_balance;
10018 		}
10019 
10020 		/*
10021 		 * We failed to reach balance because of affinity.
10022 		 */
10023 		if (sd_parent) {
10024 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10025 
10026 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
10027 				*group_imbalance = 1;
10028 		}
10029 
10030 		/* All tasks on this runqueue were pinned by CPU affinity */
10031 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
10032 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
10033 			/*
10034 			 * Attempting to continue load balancing at the current
10035 			 * sched_domain level only makes sense if there are
10036 			 * active CPUs remaining as possible busiest CPUs to
10037 			 * pull load from which are not contained within the
10038 			 * destination group that is receiving any migrated
10039 			 * load.
10040 			 */
10041 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
10042 				env.loop = 0;
10043 				env.loop_break = sched_nr_migrate_break;
10044 				goto redo;
10045 			}
10046 			goto out_all_pinned;
10047 		}
10048 	}
10049 
10050 	if (!ld_moved) {
10051 		schedstat_inc(sd->lb_failed[idle]);
10052 		/*
10053 		 * Increment the failure counter only on periodic balance.
10054 		 * We do not want newidle balance, which can be very
10055 		 * frequent, pollute the failure counter causing
10056 		 * excessive cache_hot migrations and active balances.
10057 		 */
10058 		if (idle != CPU_NEWLY_IDLE)
10059 			sd->nr_balance_failed++;
10060 
10061 		if (need_active_balance(&env)) {
10062 			unsigned long flags;
10063 
10064 			raw_spin_rq_lock_irqsave(busiest, flags);
10065 
10066 			/*
10067 			 * Don't kick the active_load_balance_cpu_stop,
10068 			 * if the curr task on busiest CPU can't be
10069 			 * moved to this_cpu:
10070 			 */
10071 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
10072 				raw_spin_rq_unlock_irqrestore(busiest, flags);
10073 				goto out_one_pinned;
10074 			}
10075 
10076 			/* Record that we found at least one task that could run on this_cpu */
10077 			env.flags &= ~LBF_ALL_PINNED;
10078 
10079 			/*
10080 			 * ->active_balance synchronizes accesses to
10081 			 * ->active_balance_work.  Once set, it's cleared
10082 			 * only after active load balance is finished.
10083 			 */
10084 			if (!busiest->active_balance) {
10085 				busiest->active_balance = 1;
10086 				busiest->push_cpu = this_cpu;
10087 				active_balance = 1;
10088 			}
10089 			raw_spin_rq_unlock_irqrestore(busiest, flags);
10090 
10091 			if (active_balance) {
10092 				stop_one_cpu_nowait(cpu_of(busiest),
10093 					active_load_balance_cpu_stop, busiest,
10094 					&busiest->active_balance_work);
10095 			}
10096 		}
10097 	} else {
10098 		sd->nr_balance_failed = 0;
10099 	}
10100 
10101 	if (likely(!active_balance) || need_active_balance(&env)) {
10102 		/* We were unbalanced, so reset the balancing interval */
10103 		sd->balance_interval = sd->min_interval;
10104 	}
10105 
10106 	goto out;
10107 
10108 out_balanced:
10109 	/*
10110 	 * We reach balance although we may have faced some affinity
10111 	 * constraints. Clear the imbalance flag only if other tasks got
10112 	 * a chance to move and fix the imbalance.
10113 	 */
10114 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10115 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10116 
10117 		if (*group_imbalance)
10118 			*group_imbalance = 0;
10119 	}
10120 
10121 out_all_pinned:
10122 	/*
10123 	 * We reach balance because all tasks are pinned at this level so
10124 	 * we can't migrate them. Let the imbalance flag set so parent level
10125 	 * can try to migrate them.
10126 	 */
10127 	schedstat_inc(sd->lb_balanced[idle]);
10128 
10129 	sd->nr_balance_failed = 0;
10130 
10131 out_one_pinned:
10132 	ld_moved = 0;
10133 
10134 	/*
10135 	 * newidle_balance() disregards balance intervals, so we could
10136 	 * repeatedly reach this code, which would lead to balance_interval
10137 	 * skyrocketing in a short amount of time. Skip the balance_interval
10138 	 * increase logic to avoid that.
10139 	 */
10140 	if (env.idle == CPU_NEWLY_IDLE)
10141 		goto out;
10142 
10143 	/* tune up the balancing interval */
10144 	if ((env.flags & LBF_ALL_PINNED &&
10145 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
10146 	    sd->balance_interval < sd->max_interval)
10147 		sd->balance_interval *= 2;
10148 out:
10149 	return ld_moved;
10150 }
10151 
10152 static inline unsigned long
10153 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10154 {
10155 	unsigned long interval = sd->balance_interval;
10156 
10157 	if (cpu_busy)
10158 		interval *= sd->busy_factor;
10159 
10160 	/* scale ms to jiffies */
10161 	interval = msecs_to_jiffies(interval);
10162 
10163 	/*
10164 	 * Reduce likelihood of busy balancing at higher domains racing with
10165 	 * balancing at lower domains by preventing their balancing periods
10166 	 * from being multiples of each other.
10167 	 */
10168 	if (cpu_busy)
10169 		interval -= 1;
10170 
10171 	interval = clamp(interval, 1UL, max_load_balance_interval);
10172 
10173 	return interval;
10174 }
10175 
10176 static inline void
10177 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10178 {
10179 	unsigned long interval, next;
10180 
10181 	/* used by idle balance, so cpu_busy = 0 */
10182 	interval = get_sd_balance_interval(sd, 0);
10183 	next = sd->last_balance + interval;
10184 
10185 	if (time_after(*next_balance, next))
10186 		*next_balance = next;
10187 }
10188 
10189 /*
10190  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10191  * running tasks off the busiest CPU onto idle CPUs. It requires at
10192  * least 1 task to be running on each physical CPU where possible, and
10193  * avoids physical / logical imbalances.
10194  */
10195 static int active_load_balance_cpu_stop(void *data)
10196 {
10197 	struct rq *busiest_rq = data;
10198 	int busiest_cpu = cpu_of(busiest_rq);
10199 	int target_cpu = busiest_rq->push_cpu;
10200 	struct rq *target_rq = cpu_rq(target_cpu);
10201 	struct sched_domain *sd;
10202 	struct task_struct *p = NULL;
10203 	struct rq_flags rf;
10204 
10205 	rq_lock_irq(busiest_rq, &rf);
10206 	/*
10207 	 * Between queueing the stop-work and running it is a hole in which
10208 	 * CPUs can become inactive. We should not move tasks from or to
10209 	 * inactive CPUs.
10210 	 */
10211 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10212 		goto out_unlock;
10213 
10214 	/* Make sure the requested CPU hasn't gone down in the meantime: */
10215 	if (unlikely(busiest_cpu != smp_processor_id() ||
10216 		     !busiest_rq->active_balance))
10217 		goto out_unlock;
10218 
10219 	/* Is there any task to move? */
10220 	if (busiest_rq->nr_running <= 1)
10221 		goto out_unlock;
10222 
10223 	/*
10224 	 * This condition is "impossible", if it occurs
10225 	 * we need to fix it. Originally reported by
10226 	 * Bjorn Helgaas on a 128-CPU setup.
10227 	 */
10228 	BUG_ON(busiest_rq == target_rq);
10229 
10230 	/* Search for an sd spanning us and the target CPU. */
10231 	rcu_read_lock();
10232 	for_each_domain(target_cpu, sd) {
10233 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10234 			break;
10235 	}
10236 
10237 	if (likely(sd)) {
10238 		struct lb_env env = {
10239 			.sd		= sd,
10240 			.dst_cpu	= target_cpu,
10241 			.dst_rq		= target_rq,
10242 			.src_cpu	= busiest_rq->cpu,
10243 			.src_rq		= busiest_rq,
10244 			.idle		= CPU_IDLE,
10245 			.flags		= LBF_ACTIVE_LB,
10246 		};
10247 
10248 		schedstat_inc(sd->alb_count);
10249 		update_rq_clock(busiest_rq);
10250 
10251 		p = detach_one_task(&env);
10252 		if (p) {
10253 			schedstat_inc(sd->alb_pushed);
10254 			/* Active balancing done, reset the failure counter. */
10255 			sd->nr_balance_failed = 0;
10256 		} else {
10257 			schedstat_inc(sd->alb_failed);
10258 		}
10259 	}
10260 	rcu_read_unlock();
10261 out_unlock:
10262 	busiest_rq->active_balance = 0;
10263 	rq_unlock(busiest_rq, &rf);
10264 
10265 	if (p)
10266 		attach_one_task(target_rq, p);
10267 
10268 	local_irq_enable();
10269 
10270 	return 0;
10271 }
10272 
10273 static DEFINE_SPINLOCK(balancing);
10274 
10275 /*
10276  * Scale the max load_balance interval with the number of CPUs in the system.
10277  * This trades load-balance latency on larger machines for less cross talk.
10278  */
10279 void update_max_interval(void)
10280 {
10281 	max_load_balance_interval = HZ*num_online_cpus()/10;
10282 }
10283 
10284 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
10285 {
10286 	if (cost > sd->max_newidle_lb_cost) {
10287 		/*
10288 		 * Track max cost of a domain to make sure to not delay the
10289 		 * next wakeup on the CPU.
10290 		 */
10291 		sd->max_newidle_lb_cost = cost;
10292 		sd->last_decay_max_lb_cost = jiffies;
10293 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
10294 		/*
10295 		 * Decay the newidle max times by ~1% per second to ensure that
10296 		 * it is not outdated and the current max cost is actually
10297 		 * shorter.
10298 		 */
10299 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
10300 		sd->last_decay_max_lb_cost = jiffies;
10301 
10302 		return true;
10303 	}
10304 
10305 	return false;
10306 }
10307 
10308 /*
10309  * It checks each scheduling domain to see if it is due to be balanced,
10310  * and initiates a balancing operation if so.
10311  *
10312  * Balancing parameters are set up in init_sched_domains.
10313  */
10314 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10315 {
10316 	int continue_balancing = 1;
10317 	int cpu = rq->cpu;
10318 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10319 	unsigned long interval;
10320 	struct sched_domain *sd;
10321 	/* Earliest time when we have to do rebalance again */
10322 	unsigned long next_balance = jiffies + 60*HZ;
10323 	int update_next_balance = 0;
10324 	int need_serialize, need_decay = 0;
10325 	u64 max_cost = 0;
10326 
10327 	rcu_read_lock();
10328 	for_each_domain(cpu, sd) {
10329 		/*
10330 		 * Decay the newidle max times here because this is a regular
10331 		 * visit to all the domains.
10332 		 */
10333 		need_decay = update_newidle_cost(sd, 0);
10334 		max_cost += sd->max_newidle_lb_cost;
10335 
10336 		/*
10337 		 * Stop the load balance at this level. There is another
10338 		 * CPU in our sched group which is doing load balancing more
10339 		 * actively.
10340 		 */
10341 		if (!continue_balancing) {
10342 			if (need_decay)
10343 				continue;
10344 			break;
10345 		}
10346 
10347 		interval = get_sd_balance_interval(sd, busy);
10348 
10349 		need_serialize = sd->flags & SD_SERIALIZE;
10350 		if (need_serialize) {
10351 			if (!spin_trylock(&balancing))
10352 				goto out;
10353 		}
10354 
10355 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
10356 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10357 				/*
10358 				 * The LBF_DST_PINNED logic could have changed
10359 				 * env->dst_cpu, so we can't know our idle
10360 				 * state even if we migrated tasks. Update it.
10361 				 */
10362 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10363 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10364 			}
10365 			sd->last_balance = jiffies;
10366 			interval = get_sd_balance_interval(sd, busy);
10367 		}
10368 		if (need_serialize)
10369 			spin_unlock(&balancing);
10370 out:
10371 		if (time_after(next_balance, sd->last_balance + interval)) {
10372 			next_balance = sd->last_balance + interval;
10373 			update_next_balance = 1;
10374 		}
10375 	}
10376 	if (need_decay) {
10377 		/*
10378 		 * Ensure the rq-wide value also decays but keep it at a
10379 		 * reasonable floor to avoid funnies with rq->avg_idle.
10380 		 */
10381 		rq->max_idle_balance_cost =
10382 			max((u64)sysctl_sched_migration_cost, max_cost);
10383 	}
10384 	rcu_read_unlock();
10385 
10386 	/*
10387 	 * next_balance will be updated only when there is a need.
10388 	 * When the cpu is attached to null domain for ex, it will not be
10389 	 * updated.
10390 	 */
10391 	if (likely(update_next_balance))
10392 		rq->next_balance = next_balance;
10393 
10394 }
10395 
10396 static inline int on_null_domain(struct rq *rq)
10397 {
10398 	return unlikely(!rcu_dereference_sched(rq->sd));
10399 }
10400 
10401 #ifdef CONFIG_NO_HZ_COMMON
10402 /*
10403  * idle load balancing details
10404  * - When one of the busy CPUs notice that there may be an idle rebalancing
10405  *   needed, they will kick the idle load balancer, which then does idle
10406  *   load balancing for all the idle CPUs.
10407  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
10408  *   anywhere yet.
10409  */
10410 
10411 static inline int find_new_ilb(void)
10412 {
10413 	int ilb;
10414 	const struct cpumask *hk_mask;
10415 
10416 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
10417 
10418 	for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
10419 
10420 		if (ilb == smp_processor_id())
10421 			continue;
10422 
10423 		if (idle_cpu(ilb))
10424 			return ilb;
10425 	}
10426 
10427 	return nr_cpu_ids;
10428 }
10429 
10430 /*
10431  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10432  * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
10433  */
10434 static void kick_ilb(unsigned int flags)
10435 {
10436 	int ilb_cpu;
10437 
10438 	/*
10439 	 * Increase nohz.next_balance only when if full ilb is triggered but
10440 	 * not if we only update stats.
10441 	 */
10442 	if (flags & NOHZ_BALANCE_KICK)
10443 		nohz.next_balance = jiffies+1;
10444 
10445 	ilb_cpu = find_new_ilb();
10446 
10447 	if (ilb_cpu >= nr_cpu_ids)
10448 		return;
10449 
10450 	/*
10451 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10452 	 * the first flag owns it; cleared by nohz_csd_func().
10453 	 */
10454 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10455 	if (flags & NOHZ_KICK_MASK)
10456 		return;
10457 
10458 	/*
10459 	 * This way we generate an IPI on the target CPU which
10460 	 * is idle. And the softirq performing nohz idle load balance
10461 	 * will be run before returning from the IPI.
10462 	 */
10463 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10464 }
10465 
10466 /*
10467  * Current decision point for kicking the idle load balancer in the presence
10468  * of idle CPUs in the system.
10469  */
10470 static void nohz_balancer_kick(struct rq *rq)
10471 {
10472 	unsigned long now = jiffies;
10473 	struct sched_domain_shared *sds;
10474 	struct sched_domain *sd;
10475 	int nr_busy, i, cpu = rq->cpu;
10476 	unsigned int flags = 0;
10477 
10478 	if (unlikely(rq->idle_balance))
10479 		return;
10480 
10481 	/*
10482 	 * We may be recently in ticked or tickless idle mode. At the first
10483 	 * busy tick after returning from idle, we will update the busy stats.
10484 	 */
10485 	nohz_balance_exit_idle(rq);
10486 
10487 	/*
10488 	 * None are in tickless mode and hence no need for NOHZ idle load
10489 	 * balancing.
10490 	 */
10491 	if (likely(!atomic_read(&nohz.nr_cpus)))
10492 		return;
10493 
10494 	if (READ_ONCE(nohz.has_blocked) &&
10495 	    time_after(now, READ_ONCE(nohz.next_blocked)))
10496 		flags = NOHZ_STATS_KICK;
10497 
10498 	if (time_before(now, nohz.next_balance))
10499 		goto out;
10500 
10501 	if (rq->nr_running >= 2) {
10502 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10503 		goto out;
10504 	}
10505 
10506 	rcu_read_lock();
10507 
10508 	sd = rcu_dereference(rq->sd);
10509 	if (sd) {
10510 		/*
10511 		 * If there's a CFS task and the current CPU has reduced
10512 		 * capacity; kick the ILB to see if there's a better CPU to run
10513 		 * on.
10514 		 */
10515 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10516 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10517 			goto unlock;
10518 		}
10519 	}
10520 
10521 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10522 	if (sd) {
10523 		/*
10524 		 * When ASYM_PACKING; see if there's a more preferred CPU
10525 		 * currently idle; in which case, kick the ILB to move tasks
10526 		 * around.
10527 		 */
10528 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10529 			if (sched_asym_prefer(i, cpu)) {
10530 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10531 				goto unlock;
10532 			}
10533 		}
10534 	}
10535 
10536 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10537 	if (sd) {
10538 		/*
10539 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10540 		 * to run the misfit task on.
10541 		 */
10542 		if (check_misfit_status(rq, sd)) {
10543 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10544 			goto unlock;
10545 		}
10546 
10547 		/*
10548 		 * For asymmetric systems, we do not want to nicely balance
10549 		 * cache use, instead we want to embrace asymmetry and only
10550 		 * ensure tasks have enough CPU capacity.
10551 		 *
10552 		 * Skip the LLC logic because it's not relevant in that case.
10553 		 */
10554 		goto unlock;
10555 	}
10556 
10557 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10558 	if (sds) {
10559 		/*
10560 		 * If there is an imbalance between LLC domains (IOW we could
10561 		 * increase the overall cache use), we need some less-loaded LLC
10562 		 * domain to pull some load. Likewise, we may need to spread
10563 		 * load within the current LLC domain (e.g. packed SMT cores but
10564 		 * other CPUs are idle). We can't really know from here how busy
10565 		 * the others are - so just get a nohz balance going if it looks
10566 		 * like this LLC domain has tasks we could move.
10567 		 */
10568 		nr_busy = atomic_read(&sds->nr_busy_cpus);
10569 		if (nr_busy > 1) {
10570 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10571 			goto unlock;
10572 		}
10573 	}
10574 unlock:
10575 	rcu_read_unlock();
10576 out:
10577 	if (READ_ONCE(nohz.needs_update))
10578 		flags |= NOHZ_NEXT_KICK;
10579 
10580 	if (flags)
10581 		kick_ilb(flags);
10582 }
10583 
10584 static void set_cpu_sd_state_busy(int cpu)
10585 {
10586 	struct sched_domain *sd;
10587 
10588 	rcu_read_lock();
10589 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10590 
10591 	if (!sd || !sd->nohz_idle)
10592 		goto unlock;
10593 	sd->nohz_idle = 0;
10594 
10595 	atomic_inc(&sd->shared->nr_busy_cpus);
10596 unlock:
10597 	rcu_read_unlock();
10598 }
10599 
10600 void nohz_balance_exit_idle(struct rq *rq)
10601 {
10602 	SCHED_WARN_ON(rq != this_rq());
10603 
10604 	if (likely(!rq->nohz_tick_stopped))
10605 		return;
10606 
10607 	rq->nohz_tick_stopped = 0;
10608 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10609 	atomic_dec(&nohz.nr_cpus);
10610 
10611 	set_cpu_sd_state_busy(rq->cpu);
10612 }
10613 
10614 static void set_cpu_sd_state_idle(int cpu)
10615 {
10616 	struct sched_domain *sd;
10617 
10618 	rcu_read_lock();
10619 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10620 
10621 	if (!sd || sd->nohz_idle)
10622 		goto unlock;
10623 	sd->nohz_idle = 1;
10624 
10625 	atomic_dec(&sd->shared->nr_busy_cpus);
10626 unlock:
10627 	rcu_read_unlock();
10628 }
10629 
10630 /*
10631  * This routine will record that the CPU is going idle with tick stopped.
10632  * This info will be used in performing idle load balancing in the future.
10633  */
10634 void nohz_balance_enter_idle(int cpu)
10635 {
10636 	struct rq *rq = cpu_rq(cpu);
10637 
10638 	SCHED_WARN_ON(cpu != smp_processor_id());
10639 
10640 	/* If this CPU is going down, then nothing needs to be done: */
10641 	if (!cpu_active(cpu))
10642 		return;
10643 
10644 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
10645 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
10646 		return;
10647 
10648 	/*
10649 	 * Can be set safely without rq->lock held
10650 	 * If a clear happens, it will have evaluated last additions because
10651 	 * rq->lock is held during the check and the clear
10652 	 */
10653 	rq->has_blocked_load = 1;
10654 
10655 	/*
10656 	 * The tick is still stopped but load could have been added in the
10657 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
10658 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10659 	 * of nohz.has_blocked can only happen after checking the new load
10660 	 */
10661 	if (rq->nohz_tick_stopped)
10662 		goto out;
10663 
10664 	/* If we're a completely isolated CPU, we don't play: */
10665 	if (on_null_domain(rq))
10666 		return;
10667 
10668 	rq->nohz_tick_stopped = 1;
10669 
10670 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10671 	atomic_inc(&nohz.nr_cpus);
10672 
10673 	/*
10674 	 * Ensures that if nohz_idle_balance() fails to observe our
10675 	 * @idle_cpus_mask store, it must observe the @has_blocked
10676 	 * and @needs_update stores.
10677 	 */
10678 	smp_mb__after_atomic();
10679 
10680 	set_cpu_sd_state_idle(cpu);
10681 
10682 	WRITE_ONCE(nohz.needs_update, 1);
10683 out:
10684 	/*
10685 	 * Each time a cpu enter idle, we assume that it has blocked load and
10686 	 * enable the periodic update of the load of idle cpus
10687 	 */
10688 	WRITE_ONCE(nohz.has_blocked, 1);
10689 }
10690 
10691 static bool update_nohz_stats(struct rq *rq)
10692 {
10693 	unsigned int cpu = rq->cpu;
10694 
10695 	if (!rq->has_blocked_load)
10696 		return false;
10697 
10698 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10699 		return false;
10700 
10701 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10702 		return true;
10703 
10704 	update_blocked_averages(cpu);
10705 
10706 	return rq->has_blocked_load;
10707 }
10708 
10709 /*
10710  * Internal function that runs load balance for all idle cpus. The load balance
10711  * can be a simple update of blocked load or a complete load balance with
10712  * tasks movement depending of flags.
10713  */
10714 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10715 			       enum cpu_idle_type idle)
10716 {
10717 	/* Earliest time when we have to do rebalance again */
10718 	unsigned long now = jiffies;
10719 	unsigned long next_balance = now + 60*HZ;
10720 	bool has_blocked_load = false;
10721 	int update_next_balance = 0;
10722 	int this_cpu = this_rq->cpu;
10723 	int balance_cpu;
10724 	struct rq *rq;
10725 
10726 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10727 
10728 	/*
10729 	 * We assume there will be no idle load after this update and clear
10730 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10731 	 * set the has_blocked flag and trigger another update of idle load.
10732 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10733 	 * setting the flag, we are sure to not clear the state and not
10734 	 * check the load of an idle cpu.
10735 	 *
10736 	 * Same applies to idle_cpus_mask vs needs_update.
10737 	 */
10738 	if (flags & NOHZ_STATS_KICK)
10739 		WRITE_ONCE(nohz.has_blocked, 0);
10740 	if (flags & NOHZ_NEXT_KICK)
10741 		WRITE_ONCE(nohz.needs_update, 0);
10742 
10743 	/*
10744 	 * Ensures that if we miss the CPU, we must see the has_blocked
10745 	 * store from nohz_balance_enter_idle().
10746 	 */
10747 	smp_mb();
10748 
10749 	/*
10750 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10751 	 * chance for other idle cpu to pull load.
10752 	 */
10753 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
10754 		if (!idle_cpu(balance_cpu))
10755 			continue;
10756 
10757 		/*
10758 		 * If this CPU gets work to do, stop the load balancing
10759 		 * work being done for other CPUs. Next load
10760 		 * balancing owner will pick it up.
10761 		 */
10762 		if (need_resched()) {
10763 			if (flags & NOHZ_STATS_KICK)
10764 				has_blocked_load = true;
10765 			if (flags & NOHZ_NEXT_KICK)
10766 				WRITE_ONCE(nohz.needs_update, 1);
10767 			goto abort;
10768 		}
10769 
10770 		rq = cpu_rq(balance_cpu);
10771 
10772 		if (flags & NOHZ_STATS_KICK)
10773 			has_blocked_load |= update_nohz_stats(rq);
10774 
10775 		/*
10776 		 * If time for next balance is due,
10777 		 * do the balance.
10778 		 */
10779 		if (time_after_eq(jiffies, rq->next_balance)) {
10780 			struct rq_flags rf;
10781 
10782 			rq_lock_irqsave(rq, &rf);
10783 			update_rq_clock(rq);
10784 			rq_unlock_irqrestore(rq, &rf);
10785 
10786 			if (flags & NOHZ_BALANCE_KICK)
10787 				rebalance_domains(rq, CPU_IDLE);
10788 		}
10789 
10790 		if (time_after(next_balance, rq->next_balance)) {
10791 			next_balance = rq->next_balance;
10792 			update_next_balance = 1;
10793 		}
10794 	}
10795 
10796 	/*
10797 	 * next_balance will be updated only when there is a need.
10798 	 * When the CPU is attached to null domain for ex, it will not be
10799 	 * updated.
10800 	 */
10801 	if (likely(update_next_balance))
10802 		nohz.next_balance = next_balance;
10803 
10804 	if (flags & NOHZ_STATS_KICK)
10805 		WRITE_ONCE(nohz.next_blocked,
10806 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10807 
10808 abort:
10809 	/* There is still blocked load, enable periodic update */
10810 	if (has_blocked_load)
10811 		WRITE_ONCE(nohz.has_blocked, 1);
10812 }
10813 
10814 /*
10815  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10816  * rebalancing for all the cpus for whom scheduler ticks are stopped.
10817  */
10818 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10819 {
10820 	unsigned int flags = this_rq->nohz_idle_balance;
10821 
10822 	if (!flags)
10823 		return false;
10824 
10825 	this_rq->nohz_idle_balance = 0;
10826 
10827 	if (idle != CPU_IDLE)
10828 		return false;
10829 
10830 	_nohz_idle_balance(this_rq, flags, idle);
10831 
10832 	return true;
10833 }
10834 
10835 /*
10836  * Check if we need to run the ILB for updating blocked load before entering
10837  * idle state.
10838  */
10839 void nohz_run_idle_balance(int cpu)
10840 {
10841 	unsigned int flags;
10842 
10843 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10844 
10845 	/*
10846 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10847 	 * (ie NOHZ_STATS_KICK set) and will do the same.
10848 	 */
10849 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10850 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10851 }
10852 
10853 static void nohz_newidle_balance(struct rq *this_rq)
10854 {
10855 	int this_cpu = this_rq->cpu;
10856 
10857 	/*
10858 	 * This CPU doesn't want to be disturbed by scheduler
10859 	 * housekeeping
10860 	 */
10861 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
10862 		return;
10863 
10864 	/* Will wake up very soon. No time for doing anything else*/
10865 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
10866 		return;
10867 
10868 	/* Don't need to update blocked load of idle CPUs*/
10869 	if (!READ_ONCE(nohz.has_blocked) ||
10870 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10871 		return;
10872 
10873 	/*
10874 	 * Set the need to trigger ILB in order to update blocked load
10875 	 * before entering idle state.
10876 	 */
10877 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
10878 }
10879 
10880 #else /* !CONFIG_NO_HZ_COMMON */
10881 static inline void nohz_balancer_kick(struct rq *rq) { }
10882 
10883 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10884 {
10885 	return false;
10886 }
10887 
10888 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10889 #endif /* CONFIG_NO_HZ_COMMON */
10890 
10891 /*
10892  * newidle_balance is called by schedule() if this_cpu is about to become
10893  * idle. Attempts to pull tasks from other CPUs.
10894  *
10895  * Returns:
10896  *   < 0 - we released the lock and there are !fair tasks present
10897  *     0 - failed, no new tasks
10898  *   > 0 - success, new (fair) tasks present
10899  */
10900 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10901 {
10902 	unsigned long next_balance = jiffies + HZ;
10903 	int this_cpu = this_rq->cpu;
10904 	u64 t0, t1, curr_cost = 0;
10905 	struct sched_domain *sd;
10906 	int pulled_task = 0;
10907 
10908 	update_misfit_status(NULL, this_rq);
10909 
10910 	/*
10911 	 * There is a task waiting to run. No need to search for one.
10912 	 * Return 0; the task will be enqueued when switching to idle.
10913 	 */
10914 	if (this_rq->ttwu_pending)
10915 		return 0;
10916 
10917 	/*
10918 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
10919 	 * measure the duration of idle_balance() as idle time.
10920 	 */
10921 	this_rq->idle_stamp = rq_clock(this_rq);
10922 
10923 	/*
10924 	 * Do not pull tasks towards !active CPUs...
10925 	 */
10926 	if (!cpu_active(this_cpu))
10927 		return 0;
10928 
10929 	/*
10930 	 * This is OK, because current is on_cpu, which avoids it being picked
10931 	 * for load-balance and preemption/IRQs are still disabled avoiding
10932 	 * further scheduler activity on it and we're being very careful to
10933 	 * re-start the picking loop.
10934 	 */
10935 	rq_unpin_lock(this_rq, rf);
10936 
10937 	rcu_read_lock();
10938 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
10939 
10940 	if (!READ_ONCE(this_rq->rd->overload) ||
10941 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
10942 
10943 		if (sd)
10944 			update_next_balance(sd, &next_balance);
10945 		rcu_read_unlock();
10946 
10947 		goto out;
10948 	}
10949 	rcu_read_unlock();
10950 
10951 	raw_spin_rq_unlock(this_rq);
10952 
10953 	t0 = sched_clock_cpu(this_cpu);
10954 	update_blocked_averages(this_cpu);
10955 
10956 	rcu_read_lock();
10957 	for_each_domain(this_cpu, sd) {
10958 		int continue_balancing = 1;
10959 		u64 domain_cost;
10960 
10961 		update_next_balance(sd, &next_balance);
10962 
10963 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
10964 			break;
10965 
10966 		if (sd->flags & SD_BALANCE_NEWIDLE) {
10967 
10968 			pulled_task = load_balance(this_cpu, this_rq,
10969 						   sd, CPU_NEWLY_IDLE,
10970 						   &continue_balancing);
10971 
10972 			t1 = sched_clock_cpu(this_cpu);
10973 			domain_cost = t1 - t0;
10974 			update_newidle_cost(sd, domain_cost);
10975 
10976 			curr_cost += domain_cost;
10977 			t0 = t1;
10978 		}
10979 
10980 		/*
10981 		 * Stop searching for tasks to pull if there are
10982 		 * now runnable tasks on this rq.
10983 		 */
10984 		if (pulled_task || this_rq->nr_running > 0 ||
10985 		    this_rq->ttwu_pending)
10986 			break;
10987 	}
10988 	rcu_read_unlock();
10989 
10990 	raw_spin_rq_lock(this_rq);
10991 
10992 	if (curr_cost > this_rq->max_idle_balance_cost)
10993 		this_rq->max_idle_balance_cost = curr_cost;
10994 
10995 	/*
10996 	 * While browsing the domains, we released the rq lock, a task could
10997 	 * have been enqueued in the meantime. Since we're not going idle,
10998 	 * pretend we pulled a task.
10999 	 */
11000 	if (this_rq->cfs.h_nr_running && !pulled_task)
11001 		pulled_task = 1;
11002 
11003 	/* Is there a task of a high priority class? */
11004 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
11005 		pulled_task = -1;
11006 
11007 out:
11008 	/* Move the next balance forward */
11009 	if (time_after(this_rq->next_balance, next_balance))
11010 		this_rq->next_balance = next_balance;
11011 
11012 	if (pulled_task)
11013 		this_rq->idle_stamp = 0;
11014 	else
11015 		nohz_newidle_balance(this_rq);
11016 
11017 	rq_repin_lock(this_rq, rf);
11018 
11019 	return pulled_task;
11020 }
11021 
11022 /*
11023  * run_rebalance_domains is triggered when needed from the scheduler tick.
11024  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
11025  */
11026 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
11027 {
11028 	struct rq *this_rq = this_rq();
11029 	enum cpu_idle_type idle = this_rq->idle_balance ?
11030 						CPU_IDLE : CPU_NOT_IDLE;
11031 
11032 	/*
11033 	 * If this CPU has a pending nohz_balance_kick, then do the
11034 	 * balancing on behalf of the other idle CPUs whose ticks are
11035 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
11036 	 * give the idle CPUs a chance to load balance. Else we may
11037 	 * load balance only within the local sched_domain hierarchy
11038 	 * and abort nohz_idle_balance altogether if we pull some load.
11039 	 */
11040 	if (nohz_idle_balance(this_rq, idle))
11041 		return;
11042 
11043 	/* normal load balance */
11044 	update_blocked_averages(this_rq->cpu);
11045 	rebalance_domains(this_rq, idle);
11046 }
11047 
11048 /*
11049  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
11050  */
11051 void trigger_load_balance(struct rq *rq)
11052 {
11053 	/*
11054 	 * Don't need to rebalance while attached to NULL domain or
11055 	 * runqueue CPU is not active
11056 	 */
11057 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
11058 		return;
11059 
11060 	if (time_after_eq(jiffies, rq->next_balance))
11061 		raise_softirq(SCHED_SOFTIRQ);
11062 
11063 	nohz_balancer_kick(rq);
11064 }
11065 
11066 static void rq_online_fair(struct rq *rq)
11067 {
11068 	update_sysctl();
11069 
11070 	update_runtime_enabled(rq);
11071 }
11072 
11073 static void rq_offline_fair(struct rq *rq)
11074 {
11075 	update_sysctl();
11076 
11077 	/* Ensure any throttled groups are reachable by pick_next_task */
11078 	unthrottle_offline_cfs_rqs(rq);
11079 }
11080 
11081 #endif /* CONFIG_SMP */
11082 
11083 #ifdef CONFIG_SCHED_CORE
11084 static inline bool
11085 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
11086 {
11087 	u64 slice = sched_slice(cfs_rq_of(se), se);
11088 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
11089 
11090 	return (rtime * min_nr_tasks > slice);
11091 }
11092 
11093 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
11094 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
11095 {
11096 	if (!sched_core_enabled(rq))
11097 		return;
11098 
11099 	/*
11100 	 * If runqueue has only one task which used up its slice and
11101 	 * if the sibling is forced idle, then trigger schedule to
11102 	 * give forced idle task a chance.
11103 	 *
11104 	 * sched_slice() considers only this active rq and it gets the
11105 	 * whole slice. But during force idle, we have siblings acting
11106 	 * like a single runqueue and hence we need to consider runnable
11107 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
11108 	 * go through the forced idle rq, but that would be a perf hit.
11109 	 * We can assume that the forced idle CPU has at least
11110 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
11111 	 * if we need to give up the CPU.
11112 	 */
11113 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
11114 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
11115 		resched_curr(rq);
11116 }
11117 
11118 /*
11119  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
11120  */
11121 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
11122 {
11123 	for_each_sched_entity(se) {
11124 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11125 
11126 		if (forceidle) {
11127 			if (cfs_rq->forceidle_seq == fi_seq)
11128 				break;
11129 			cfs_rq->forceidle_seq = fi_seq;
11130 		}
11131 
11132 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
11133 	}
11134 }
11135 
11136 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
11137 {
11138 	struct sched_entity *se = &p->se;
11139 
11140 	if (p->sched_class != &fair_sched_class)
11141 		return;
11142 
11143 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11144 }
11145 
11146 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
11147 {
11148 	struct rq *rq = task_rq(a);
11149 	struct sched_entity *sea = &a->se;
11150 	struct sched_entity *seb = &b->se;
11151 	struct cfs_rq *cfs_rqa;
11152 	struct cfs_rq *cfs_rqb;
11153 	s64 delta;
11154 
11155 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
11156 
11157 #ifdef CONFIG_FAIR_GROUP_SCHED
11158 	/*
11159 	 * Find an se in the hierarchy for tasks a and b, such that the se's
11160 	 * are immediate siblings.
11161 	 */
11162 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11163 		int sea_depth = sea->depth;
11164 		int seb_depth = seb->depth;
11165 
11166 		if (sea_depth >= seb_depth)
11167 			sea = parent_entity(sea);
11168 		if (sea_depth <= seb_depth)
11169 			seb = parent_entity(seb);
11170 	}
11171 
11172 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
11173 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
11174 
11175 	cfs_rqa = sea->cfs_rq;
11176 	cfs_rqb = seb->cfs_rq;
11177 #else
11178 	cfs_rqa = &task_rq(a)->cfs;
11179 	cfs_rqb = &task_rq(b)->cfs;
11180 #endif
11181 
11182 	/*
11183 	 * Find delta after normalizing se's vruntime with its cfs_rq's
11184 	 * min_vruntime_fi, which would have been updated in prior calls
11185 	 * to se_fi_update().
11186 	 */
11187 	delta = (s64)(sea->vruntime - seb->vruntime) +
11188 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
11189 
11190 	return delta > 0;
11191 }
11192 #else
11193 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
11194 #endif
11195 
11196 /*
11197  * scheduler tick hitting a task of our scheduling class.
11198  *
11199  * NOTE: This function can be called remotely by the tick offload that
11200  * goes along full dynticks. Therefore no local assumption can be made
11201  * and everything must be accessed through the @rq and @curr passed in
11202  * parameters.
11203  */
11204 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11205 {
11206 	struct cfs_rq *cfs_rq;
11207 	struct sched_entity *se = &curr->se;
11208 
11209 	for_each_sched_entity(se) {
11210 		cfs_rq = cfs_rq_of(se);
11211 		entity_tick(cfs_rq, se, queued);
11212 	}
11213 
11214 	if (static_branch_unlikely(&sched_numa_balancing))
11215 		task_tick_numa(rq, curr);
11216 
11217 	update_misfit_status(curr, rq);
11218 	update_overutilized_status(task_rq(curr));
11219 
11220 	task_tick_core(rq, curr);
11221 }
11222 
11223 /*
11224  * called on fork with the child task as argument from the parent's context
11225  *  - child not yet on the tasklist
11226  *  - preemption disabled
11227  */
11228 static void task_fork_fair(struct task_struct *p)
11229 {
11230 	struct cfs_rq *cfs_rq;
11231 	struct sched_entity *se = &p->se, *curr;
11232 	struct rq *rq = this_rq();
11233 	struct rq_flags rf;
11234 
11235 	rq_lock(rq, &rf);
11236 	update_rq_clock(rq);
11237 
11238 	cfs_rq = task_cfs_rq(current);
11239 	curr = cfs_rq->curr;
11240 	if (curr) {
11241 		update_curr(cfs_rq);
11242 		se->vruntime = curr->vruntime;
11243 	}
11244 	place_entity(cfs_rq, se, 1);
11245 
11246 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11247 		/*
11248 		 * Upon rescheduling, sched_class::put_prev_task() will place
11249 		 * 'current' within the tree based on its new key value.
11250 		 */
11251 		swap(curr->vruntime, se->vruntime);
11252 		resched_curr(rq);
11253 	}
11254 
11255 	se->vruntime -= cfs_rq->min_vruntime;
11256 	rq_unlock(rq, &rf);
11257 }
11258 
11259 /*
11260  * Priority of the task has changed. Check to see if we preempt
11261  * the current task.
11262  */
11263 static void
11264 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11265 {
11266 	if (!task_on_rq_queued(p))
11267 		return;
11268 
11269 	if (rq->cfs.nr_running == 1)
11270 		return;
11271 
11272 	/*
11273 	 * Reschedule if we are currently running on this runqueue and
11274 	 * our priority decreased, or if we are not currently running on
11275 	 * this runqueue and our priority is higher than the current's
11276 	 */
11277 	if (task_current(rq, p)) {
11278 		if (p->prio > oldprio)
11279 			resched_curr(rq);
11280 	} else
11281 		check_preempt_curr(rq, p, 0);
11282 }
11283 
11284 static inline bool vruntime_normalized(struct task_struct *p)
11285 {
11286 	struct sched_entity *se = &p->se;
11287 
11288 	/*
11289 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11290 	 * the dequeue_entity(.flags=0) will already have normalized the
11291 	 * vruntime.
11292 	 */
11293 	if (p->on_rq)
11294 		return true;
11295 
11296 	/*
11297 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
11298 	 * But there are some cases where it has already been normalized:
11299 	 *
11300 	 * - A forked child which is waiting for being woken up by
11301 	 *   wake_up_new_task().
11302 	 * - A task which has been woken up by try_to_wake_up() and
11303 	 *   waiting for actually being woken up by sched_ttwu_pending().
11304 	 */
11305 	if (!se->sum_exec_runtime ||
11306 	    (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
11307 		return true;
11308 
11309 	return false;
11310 }
11311 
11312 #ifdef CONFIG_FAIR_GROUP_SCHED
11313 /*
11314  * Propagate the changes of the sched_entity across the tg tree to make it
11315  * visible to the root
11316  */
11317 static void propagate_entity_cfs_rq(struct sched_entity *se)
11318 {
11319 	struct cfs_rq *cfs_rq;
11320 
11321 	list_add_leaf_cfs_rq(cfs_rq_of(se));
11322 
11323 	/* Start to propagate at parent */
11324 	se = se->parent;
11325 
11326 	for_each_sched_entity(se) {
11327 		cfs_rq = cfs_rq_of(se);
11328 
11329 		if (!cfs_rq_throttled(cfs_rq)){
11330 			update_load_avg(cfs_rq, se, UPDATE_TG);
11331 			list_add_leaf_cfs_rq(cfs_rq);
11332 			continue;
11333 		}
11334 
11335 		if (list_add_leaf_cfs_rq(cfs_rq))
11336 			break;
11337 	}
11338 }
11339 #else
11340 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11341 #endif
11342 
11343 static void detach_entity_cfs_rq(struct sched_entity *se)
11344 {
11345 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11346 
11347 	/* Catch up with the cfs_rq and remove our load when we leave */
11348 	update_load_avg(cfs_rq, se, 0);
11349 	detach_entity_load_avg(cfs_rq, se);
11350 	update_tg_load_avg(cfs_rq);
11351 	propagate_entity_cfs_rq(se);
11352 }
11353 
11354 static void attach_entity_cfs_rq(struct sched_entity *se)
11355 {
11356 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11357 
11358 #ifdef CONFIG_FAIR_GROUP_SCHED
11359 	/*
11360 	 * Since the real-depth could have been changed (only FAIR
11361 	 * class maintain depth value), reset depth properly.
11362 	 */
11363 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11364 #endif
11365 
11366 	/* Synchronize entity with its cfs_rq */
11367 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11368 	attach_entity_load_avg(cfs_rq, se);
11369 	update_tg_load_avg(cfs_rq);
11370 	propagate_entity_cfs_rq(se);
11371 }
11372 
11373 static void detach_task_cfs_rq(struct task_struct *p)
11374 {
11375 	struct sched_entity *se = &p->se;
11376 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11377 
11378 	if (!vruntime_normalized(p)) {
11379 		/*
11380 		 * Fix up our vruntime so that the current sleep doesn't
11381 		 * cause 'unlimited' sleep bonus.
11382 		 */
11383 		place_entity(cfs_rq, se, 0);
11384 		se->vruntime -= cfs_rq->min_vruntime;
11385 	}
11386 
11387 	detach_entity_cfs_rq(se);
11388 }
11389 
11390 static void attach_task_cfs_rq(struct task_struct *p)
11391 {
11392 	struct sched_entity *se = &p->se;
11393 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11394 
11395 	attach_entity_cfs_rq(se);
11396 
11397 	if (!vruntime_normalized(p))
11398 		se->vruntime += cfs_rq->min_vruntime;
11399 }
11400 
11401 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11402 {
11403 	detach_task_cfs_rq(p);
11404 }
11405 
11406 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11407 {
11408 	attach_task_cfs_rq(p);
11409 
11410 	if (task_on_rq_queued(p)) {
11411 		/*
11412 		 * We were most likely switched from sched_rt, so
11413 		 * kick off the schedule if running, otherwise just see
11414 		 * if we can still preempt the current task.
11415 		 */
11416 		if (task_current(rq, p))
11417 			resched_curr(rq);
11418 		else
11419 			check_preempt_curr(rq, p, 0);
11420 	}
11421 }
11422 
11423 /* Account for a task changing its policy or group.
11424  *
11425  * This routine is mostly called to set cfs_rq->curr field when a task
11426  * migrates between groups/classes.
11427  */
11428 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11429 {
11430 	struct sched_entity *se = &p->se;
11431 
11432 #ifdef CONFIG_SMP
11433 	if (task_on_rq_queued(p)) {
11434 		/*
11435 		 * Move the next running task to the front of the list, so our
11436 		 * cfs_tasks list becomes MRU one.
11437 		 */
11438 		list_move(&se->group_node, &rq->cfs_tasks);
11439 	}
11440 #endif
11441 
11442 	for_each_sched_entity(se) {
11443 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11444 
11445 		set_next_entity(cfs_rq, se);
11446 		/* ensure bandwidth has been allocated on our new cfs_rq */
11447 		account_cfs_rq_runtime(cfs_rq, 0);
11448 	}
11449 }
11450 
11451 void init_cfs_rq(struct cfs_rq *cfs_rq)
11452 {
11453 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11454 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11455 #ifndef CONFIG_64BIT
11456 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11457 #endif
11458 #ifdef CONFIG_SMP
11459 	raw_spin_lock_init(&cfs_rq->removed.lock);
11460 #endif
11461 }
11462 
11463 #ifdef CONFIG_FAIR_GROUP_SCHED
11464 static void task_set_group_fair(struct task_struct *p)
11465 {
11466 	struct sched_entity *se = &p->se;
11467 
11468 	set_task_rq(p, task_cpu(p));
11469 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11470 }
11471 
11472 static void task_move_group_fair(struct task_struct *p)
11473 {
11474 	detach_task_cfs_rq(p);
11475 	set_task_rq(p, task_cpu(p));
11476 
11477 #ifdef CONFIG_SMP
11478 	/* Tell se's cfs_rq has been changed -- migrated */
11479 	p->se.avg.last_update_time = 0;
11480 #endif
11481 	attach_task_cfs_rq(p);
11482 }
11483 
11484 static void task_change_group_fair(struct task_struct *p, int type)
11485 {
11486 	switch (type) {
11487 	case TASK_SET_GROUP:
11488 		task_set_group_fair(p);
11489 		break;
11490 
11491 	case TASK_MOVE_GROUP:
11492 		task_move_group_fair(p);
11493 		break;
11494 	}
11495 }
11496 
11497 void free_fair_sched_group(struct task_group *tg)
11498 {
11499 	int i;
11500 
11501 	for_each_possible_cpu(i) {
11502 		if (tg->cfs_rq)
11503 			kfree(tg->cfs_rq[i]);
11504 		if (tg->se)
11505 			kfree(tg->se[i]);
11506 	}
11507 
11508 	kfree(tg->cfs_rq);
11509 	kfree(tg->se);
11510 }
11511 
11512 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11513 {
11514 	struct sched_entity *se;
11515 	struct cfs_rq *cfs_rq;
11516 	int i;
11517 
11518 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11519 	if (!tg->cfs_rq)
11520 		goto err;
11521 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11522 	if (!tg->se)
11523 		goto err;
11524 
11525 	tg->shares = NICE_0_LOAD;
11526 
11527 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11528 
11529 	for_each_possible_cpu(i) {
11530 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11531 				      GFP_KERNEL, cpu_to_node(i));
11532 		if (!cfs_rq)
11533 			goto err;
11534 
11535 		se = kzalloc_node(sizeof(struct sched_entity_stats),
11536 				  GFP_KERNEL, cpu_to_node(i));
11537 		if (!se)
11538 			goto err_free_rq;
11539 
11540 		init_cfs_rq(cfs_rq);
11541 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11542 		init_entity_runnable_average(se);
11543 	}
11544 
11545 	return 1;
11546 
11547 err_free_rq:
11548 	kfree(cfs_rq);
11549 err:
11550 	return 0;
11551 }
11552 
11553 void online_fair_sched_group(struct task_group *tg)
11554 {
11555 	struct sched_entity *se;
11556 	struct rq_flags rf;
11557 	struct rq *rq;
11558 	int i;
11559 
11560 	for_each_possible_cpu(i) {
11561 		rq = cpu_rq(i);
11562 		se = tg->se[i];
11563 		rq_lock_irq(rq, &rf);
11564 		update_rq_clock(rq);
11565 		attach_entity_cfs_rq(se);
11566 		sync_throttle(tg, i);
11567 		rq_unlock_irq(rq, &rf);
11568 	}
11569 }
11570 
11571 void unregister_fair_sched_group(struct task_group *tg)
11572 {
11573 	unsigned long flags;
11574 	struct rq *rq;
11575 	int cpu;
11576 
11577 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11578 
11579 	for_each_possible_cpu(cpu) {
11580 		if (tg->se[cpu])
11581 			remove_entity_load_avg(tg->se[cpu]);
11582 
11583 		/*
11584 		 * Only empty task groups can be destroyed; so we can speculatively
11585 		 * check on_list without danger of it being re-added.
11586 		 */
11587 		if (!tg->cfs_rq[cpu]->on_list)
11588 			continue;
11589 
11590 		rq = cpu_rq(cpu);
11591 
11592 		raw_spin_rq_lock_irqsave(rq, flags);
11593 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11594 		raw_spin_rq_unlock_irqrestore(rq, flags);
11595 	}
11596 }
11597 
11598 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11599 			struct sched_entity *se, int cpu,
11600 			struct sched_entity *parent)
11601 {
11602 	struct rq *rq = cpu_rq(cpu);
11603 
11604 	cfs_rq->tg = tg;
11605 	cfs_rq->rq = rq;
11606 	init_cfs_rq_runtime(cfs_rq);
11607 
11608 	tg->cfs_rq[cpu] = cfs_rq;
11609 	tg->se[cpu] = se;
11610 
11611 	/* se could be NULL for root_task_group */
11612 	if (!se)
11613 		return;
11614 
11615 	if (!parent) {
11616 		se->cfs_rq = &rq->cfs;
11617 		se->depth = 0;
11618 	} else {
11619 		se->cfs_rq = parent->my_q;
11620 		se->depth = parent->depth + 1;
11621 	}
11622 
11623 	se->my_q = cfs_rq;
11624 	/* guarantee group entities always have weight */
11625 	update_load_set(&se->load, NICE_0_LOAD);
11626 	se->parent = parent;
11627 }
11628 
11629 static DEFINE_MUTEX(shares_mutex);
11630 
11631 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
11632 {
11633 	int i;
11634 
11635 	lockdep_assert_held(&shares_mutex);
11636 
11637 	/*
11638 	 * We can't change the weight of the root cgroup.
11639 	 */
11640 	if (!tg->se[0])
11641 		return -EINVAL;
11642 
11643 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11644 
11645 	if (tg->shares == shares)
11646 		return 0;
11647 
11648 	tg->shares = shares;
11649 	for_each_possible_cpu(i) {
11650 		struct rq *rq = cpu_rq(i);
11651 		struct sched_entity *se = tg->se[i];
11652 		struct rq_flags rf;
11653 
11654 		/* Propagate contribution to hierarchy */
11655 		rq_lock_irqsave(rq, &rf);
11656 		update_rq_clock(rq);
11657 		for_each_sched_entity(se) {
11658 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11659 			update_cfs_group(se);
11660 		}
11661 		rq_unlock_irqrestore(rq, &rf);
11662 	}
11663 
11664 	return 0;
11665 }
11666 
11667 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11668 {
11669 	int ret;
11670 
11671 	mutex_lock(&shares_mutex);
11672 	if (tg_is_idle(tg))
11673 		ret = -EINVAL;
11674 	else
11675 		ret = __sched_group_set_shares(tg, shares);
11676 	mutex_unlock(&shares_mutex);
11677 
11678 	return ret;
11679 }
11680 
11681 int sched_group_set_idle(struct task_group *tg, long idle)
11682 {
11683 	int i;
11684 
11685 	if (tg == &root_task_group)
11686 		return -EINVAL;
11687 
11688 	if (idle < 0 || idle > 1)
11689 		return -EINVAL;
11690 
11691 	mutex_lock(&shares_mutex);
11692 
11693 	if (tg->idle == idle) {
11694 		mutex_unlock(&shares_mutex);
11695 		return 0;
11696 	}
11697 
11698 	tg->idle = idle;
11699 
11700 	for_each_possible_cpu(i) {
11701 		struct rq *rq = cpu_rq(i);
11702 		struct sched_entity *se = tg->se[i];
11703 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
11704 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
11705 		long idle_task_delta;
11706 		struct rq_flags rf;
11707 
11708 		rq_lock_irqsave(rq, &rf);
11709 
11710 		grp_cfs_rq->idle = idle;
11711 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
11712 			goto next_cpu;
11713 
11714 		if (se->on_rq) {
11715 			parent_cfs_rq = cfs_rq_of(se);
11716 			if (cfs_rq_is_idle(grp_cfs_rq))
11717 				parent_cfs_rq->idle_nr_running++;
11718 			else
11719 				parent_cfs_rq->idle_nr_running--;
11720 		}
11721 
11722 		idle_task_delta = grp_cfs_rq->h_nr_running -
11723 				  grp_cfs_rq->idle_h_nr_running;
11724 		if (!cfs_rq_is_idle(grp_cfs_rq))
11725 			idle_task_delta *= -1;
11726 
11727 		for_each_sched_entity(se) {
11728 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
11729 
11730 			if (!se->on_rq)
11731 				break;
11732 
11733 			cfs_rq->idle_h_nr_running += idle_task_delta;
11734 
11735 			/* Already accounted at parent level and above. */
11736 			if (cfs_rq_is_idle(cfs_rq))
11737 				break;
11738 		}
11739 
11740 next_cpu:
11741 		rq_unlock_irqrestore(rq, &rf);
11742 	}
11743 
11744 	/* Idle groups have minimum weight. */
11745 	if (tg_is_idle(tg))
11746 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
11747 	else
11748 		__sched_group_set_shares(tg, NICE_0_LOAD);
11749 
11750 	mutex_unlock(&shares_mutex);
11751 	return 0;
11752 }
11753 
11754 #else /* CONFIG_FAIR_GROUP_SCHED */
11755 
11756 void free_fair_sched_group(struct task_group *tg) { }
11757 
11758 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11759 {
11760 	return 1;
11761 }
11762 
11763 void online_fair_sched_group(struct task_group *tg) { }
11764 
11765 void unregister_fair_sched_group(struct task_group *tg) { }
11766 
11767 #endif /* CONFIG_FAIR_GROUP_SCHED */
11768 
11769 
11770 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11771 {
11772 	struct sched_entity *se = &task->se;
11773 	unsigned int rr_interval = 0;
11774 
11775 	/*
11776 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11777 	 * idle runqueue:
11778 	 */
11779 	if (rq->cfs.load.weight)
11780 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11781 
11782 	return rr_interval;
11783 }
11784 
11785 /*
11786  * All the scheduling class methods:
11787  */
11788 DEFINE_SCHED_CLASS(fair) = {
11789 
11790 	.enqueue_task		= enqueue_task_fair,
11791 	.dequeue_task		= dequeue_task_fair,
11792 	.yield_task		= yield_task_fair,
11793 	.yield_to_task		= yield_to_task_fair,
11794 
11795 	.check_preempt_curr	= check_preempt_wakeup,
11796 
11797 	.pick_next_task		= __pick_next_task_fair,
11798 	.put_prev_task		= put_prev_task_fair,
11799 	.set_next_task          = set_next_task_fair,
11800 
11801 #ifdef CONFIG_SMP
11802 	.balance		= balance_fair,
11803 	.pick_task		= pick_task_fair,
11804 	.select_task_rq		= select_task_rq_fair,
11805 	.migrate_task_rq	= migrate_task_rq_fair,
11806 
11807 	.rq_online		= rq_online_fair,
11808 	.rq_offline		= rq_offline_fair,
11809 
11810 	.task_dead		= task_dead_fair,
11811 	.set_cpus_allowed	= set_cpus_allowed_common,
11812 #endif
11813 
11814 	.task_tick		= task_tick_fair,
11815 	.task_fork		= task_fork_fair,
11816 
11817 	.prio_changed		= prio_changed_fair,
11818 	.switched_from		= switched_from_fair,
11819 	.switched_to		= switched_to_fair,
11820 
11821 	.get_rr_interval	= get_rr_interval_fair,
11822 
11823 	.update_curr		= update_curr_fair,
11824 
11825 #ifdef CONFIG_FAIR_GROUP_SCHED
11826 	.task_change_group	= task_change_group_fair,
11827 #endif
11828 
11829 #ifdef CONFIG_UCLAMP_TASK
11830 	.uclamp_enabled		= 1,
11831 #endif
11832 };
11833 
11834 #ifdef CONFIG_SCHED_DEBUG
11835 void print_cfs_stats(struct seq_file *m, int cpu)
11836 {
11837 	struct cfs_rq *cfs_rq, *pos;
11838 
11839 	rcu_read_lock();
11840 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11841 		print_cfs_rq(m, cpu, cfs_rq);
11842 	rcu_read_unlock();
11843 }
11844 
11845 #ifdef CONFIG_NUMA_BALANCING
11846 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11847 {
11848 	int node;
11849 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11850 	struct numa_group *ng;
11851 
11852 	rcu_read_lock();
11853 	ng = rcu_dereference(p->numa_group);
11854 	for_each_online_node(node) {
11855 		if (p->numa_faults) {
11856 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11857 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11858 		}
11859 		if (ng) {
11860 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11861 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11862 		}
11863 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11864 	}
11865 	rcu_read_unlock();
11866 }
11867 #endif /* CONFIG_NUMA_BALANCING */
11868 #endif /* CONFIG_SCHED_DEBUG */
11869 
11870 __init void init_sched_fair_class(void)
11871 {
11872 #ifdef CONFIG_SMP
11873 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11874 
11875 #ifdef CONFIG_NO_HZ_COMMON
11876 	nohz.next_balance = jiffies;
11877 	nohz.next_blocked = jiffies;
11878 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11879 #endif
11880 #endif /* SMP */
11881 
11882 }
11883 
11884 /*
11885  * Helper functions to facilitate extracting info from tracepoints.
11886  */
11887 
11888 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11889 {
11890 #ifdef CONFIG_SMP
11891 	return cfs_rq ? &cfs_rq->avg : NULL;
11892 #else
11893 	return NULL;
11894 #endif
11895 }
11896 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11897 
11898 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11899 {
11900 	if (!cfs_rq) {
11901 		if (str)
11902 			strlcpy(str, "(null)", len);
11903 		else
11904 			return NULL;
11905 	}
11906 
11907 	cfs_rq_tg_path(cfs_rq, str, len);
11908 	return str;
11909 }
11910 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11911 
11912 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11913 {
11914 	return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11915 }
11916 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11917 
11918 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11919 {
11920 #ifdef CONFIG_SMP
11921 	return rq ? &rq->avg_rt : NULL;
11922 #else
11923 	return NULL;
11924 #endif
11925 }
11926 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11927 
11928 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11929 {
11930 #ifdef CONFIG_SMP
11931 	return rq ? &rq->avg_dl : NULL;
11932 #else
11933 	return NULL;
11934 #endif
11935 }
11936 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11937 
11938 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11939 {
11940 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11941 	return rq ? &rq->avg_irq : NULL;
11942 #else
11943 	return NULL;
11944 #endif
11945 }
11946 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11947 
11948 int sched_trace_rq_cpu(struct rq *rq)
11949 {
11950 	return rq ? cpu_of(rq) : -1;
11951 }
11952 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11953 
11954 int sched_trace_rq_cpu_capacity(struct rq *rq)
11955 {
11956 	return rq ?
11957 #ifdef CONFIG_SMP
11958 		rq->cpu_capacity
11959 #else
11960 		SCHED_CAPACITY_SCALE
11961 #endif
11962 		: -1;
11963 }
11964 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11965 
11966 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11967 {
11968 #ifdef CONFIG_SMP
11969 	return rd ? rd->span : NULL;
11970 #else
11971 	return NULL;
11972 #endif
11973 }
11974 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11975 
11976 int sched_trace_rq_nr_running(struct rq *rq)
11977 {
11978         return rq ? rq->nr_running : -1;
11979 }
11980 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);
11981