xref: /openbmc/linux/kernel/sched/fair.c (revision b35565bb)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21  */
22 
23 #include <linux/sched/mm.h>
24 #include <linux/sched/topology.h>
25 
26 #include <linux/latencytop.h>
27 #include <linux/cpumask.h>
28 #include <linux/cpuidle.h>
29 #include <linux/slab.h>
30 #include <linux/profile.h>
31 #include <linux/interrupt.h>
32 #include <linux/mempolicy.h>
33 #include <linux/migrate.h>
34 #include <linux/task_work.h>
35 
36 #include <trace/events/sched.h>
37 
38 #include "sched.h"
39 
40 /*
41  * Targeted preemption latency for CPU-bound tasks:
42  *
43  * NOTE: this latency value is not the same as the concept of
44  * 'timeslice length' - timeslices in CFS are of variable length
45  * and have no persistent notion like in traditional, time-slice
46  * based scheduling concepts.
47  *
48  * (to see the precise effective timeslice length of your workload,
49  *  run vmstat and monitor the context-switches (cs) field)
50  *
51  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
52  */
53 unsigned int sysctl_sched_latency			= 6000000ULL;
54 unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
55 
56 /*
57  * The initial- and re-scaling of tunables is configurable
58  *
59  * Options are:
60  *
61  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
62  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
63  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
64  *
65  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
66  */
67 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
68 
69 /*
70  * Minimal preemption granularity for CPU-bound tasks:
71  *
72  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
73  */
74 unsigned int sysctl_sched_min_granularity		= 750000ULL;
75 unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
76 
77 /*
78  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
79  */
80 static unsigned int sched_nr_latency = 8;
81 
82 /*
83  * After fork, child runs first. If set to 0 (default) then
84  * parent will (try to) run first.
85  */
86 unsigned int sysctl_sched_child_runs_first __read_mostly;
87 
88 /*
89  * SCHED_OTHER wake-up granularity.
90  *
91  * This option delays the preemption effects of decoupled workloads
92  * and reduces their over-scheduling. Synchronous workloads will still
93  * have immediate wakeup/sleep latencies.
94  *
95  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
96  */
97 unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
98 unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
99 
100 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
101 
102 #ifdef CONFIG_SMP
103 /*
104  * For asym packing, by default the lower numbered cpu has higher priority.
105  */
106 int __weak arch_asym_cpu_priority(int cpu)
107 {
108 	return -cpu;
109 }
110 #endif
111 
112 #ifdef CONFIG_CFS_BANDWIDTH
113 /*
114  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
115  * each time a cfs_rq requests quota.
116  *
117  * Note: in the case that the slice exceeds the runtime remaining (either due
118  * to consumption or the quota being specified to be smaller than the slice)
119  * we will always only issue the remaining available time.
120  *
121  * (default: 5 msec, units: microseconds)
122  */
123 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
124 #endif
125 
126 /*
127  * The margin used when comparing utilization with CPU capacity:
128  * util * margin < capacity * 1024
129  *
130  * (default: ~20%)
131  */
132 unsigned int capacity_margin				= 1280;
133 
134 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135 {
136 	lw->weight += inc;
137 	lw->inv_weight = 0;
138 }
139 
140 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141 {
142 	lw->weight -= dec;
143 	lw->inv_weight = 0;
144 }
145 
146 static inline void update_load_set(struct load_weight *lw, unsigned long w)
147 {
148 	lw->weight = w;
149 	lw->inv_weight = 0;
150 }
151 
152 /*
153  * Increase the granularity value when there are more CPUs,
154  * because with more CPUs the 'effective latency' as visible
155  * to users decreases. But the relationship is not linear,
156  * so pick a second-best guess by going with the log2 of the
157  * number of CPUs.
158  *
159  * This idea comes from the SD scheduler of Con Kolivas:
160  */
161 static unsigned int get_update_sysctl_factor(void)
162 {
163 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
164 	unsigned int factor;
165 
166 	switch (sysctl_sched_tunable_scaling) {
167 	case SCHED_TUNABLESCALING_NONE:
168 		factor = 1;
169 		break;
170 	case SCHED_TUNABLESCALING_LINEAR:
171 		factor = cpus;
172 		break;
173 	case SCHED_TUNABLESCALING_LOG:
174 	default:
175 		factor = 1 + ilog2(cpus);
176 		break;
177 	}
178 
179 	return factor;
180 }
181 
182 static void update_sysctl(void)
183 {
184 	unsigned int factor = get_update_sysctl_factor();
185 
186 #define SET_SYSCTL(name) \
187 	(sysctl_##name = (factor) * normalized_sysctl_##name)
188 	SET_SYSCTL(sched_min_granularity);
189 	SET_SYSCTL(sched_latency);
190 	SET_SYSCTL(sched_wakeup_granularity);
191 #undef SET_SYSCTL
192 }
193 
194 void sched_init_granularity(void)
195 {
196 	update_sysctl();
197 }
198 
199 #define WMULT_CONST	(~0U)
200 #define WMULT_SHIFT	32
201 
202 static void __update_inv_weight(struct load_weight *lw)
203 {
204 	unsigned long w;
205 
206 	if (likely(lw->inv_weight))
207 		return;
208 
209 	w = scale_load_down(lw->weight);
210 
211 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 		lw->inv_weight = 1;
213 	else if (unlikely(!w))
214 		lw->inv_weight = WMULT_CONST;
215 	else
216 		lw->inv_weight = WMULT_CONST / w;
217 }
218 
219 /*
220  * delta_exec * weight / lw.weight
221  *   OR
222  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223  *
224  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
225  * we're guaranteed shift stays positive because inv_weight is guaranteed to
226  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227  *
228  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229  * weight/lw.weight <= 1, and therefore our shift will also be positive.
230  */
231 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
232 {
233 	u64 fact = scale_load_down(weight);
234 	int shift = WMULT_SHIFT;
235 
236 	__update_inv_weight(lw);
237 
238 	if (unlikely(fact >> 32)) {
239 		while (fact >> 32) {
240 			fact >>= 1;
241 			shift--;
242 		}
243 	}
244 
245 	/* hint to use a 32x32->64 mul */
246 	fact = (u64)(u32)fact * lw->inv_weight;
247 
248 	while (fact >> 32) {
249 		fact >>= 1;
250 		shift--;
251 	}
252 
253 	return mul_u64_u32_shr(delta_exec, fact, shift);
254 }
255 
256 
257 const struct sched_class fair_sched_class;
258 
259 /**************************************************************
260  * CFS operations on generic schedulable entities:
261  */
262 
263 #ifdef CONFIG_FAIR_GROUP_SCHED
264 
265 /* cpu runqueue to which this cfs_rq is attached */
266 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
267 {
268 	return cfs_rq->rq;
269 }
270 
271 /* An entity is a task if it doesn't "own" a runqueue */
272 #define entity_is_task(se)	(!se->my_q)
273 
274 static inline struct task_struct *task_of(struct sched_entity *se)
275 {
276 	SCHED_WARN_ON(!entity_is_task(se));
277 	return container_of(se, struct task_struct, se);
278 }
279 
280 /* Walk up scheduling entities hierarchy */
281 #define for_each_sched_entity(se) \
282 		for (; se; se = se->parent)
283 
284 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
285 {
286 	return p->se.cfs_rq;
287 }
288 
289 /* runqueue on which this entity is (to be) queued */
290 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
291 {
292 	return se->cfs_rq;
293 }
294 
295 /* runqueue "owned" by this group */
296 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
297 {
298 	return grp->my_q;
299 }
300 
301 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302 {
303 	if (!cfs_rq->on_list) {
304 		struct rq *rq = rq_of(cfs_rq);
305 		int cpu = cpu_of(rq);
306 		/*
307 		 * Ensure we either appear before our parent (if already
308 		 * enqueued) or force our parent to appear after us when it is
309 		 * enqueued. The fact that we always enqueue bottom-up
310 		 * reduces this to two cases and a special case for the root
311 		 * cfs_rq. Furthermore, it also means that we will always reset
312 		 * tmp_alone_branch either when the branch is connected
313 		 * to a tree or when we reach the beg of the tree
314 		 */
315 		if (cfs_rq->tg->parent &&
316 		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
317 			/*
318 			 * If parent is already on the list, we add the child
319 			 * just before. Thanks to circular linked property of
320 			 * the list, this means to put the child at the tail
321 			 * of the list that starts by parent.
322 			 */
323 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
325 			/*
326 			 * The branch is now connected to its tree so we can
327 			 * reset tmp_alone_branch to the beginning of the
328 			 * list.
329 			 */
330 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
331 		} else if (!cfs_rq->tg->parent) {
332 			/*
333 			 * cfs rq without parent should be put
334 			 * at the tail of the list.
335 			 */
336 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 				&rq->leaf_cfs_rq_list);
338 			/*
339 			 * We have reach the beg of a tree so we can reset
340 			 * tmp_alone_branch to the beginning of the list.
341 			 */
342 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
343 		} else {
344 			/*
345 			 * The parent has not already been added so we want to
346 			 * make sure that it will be put after us.
347 			 * tmp_alone_branch points to the beg of the branch
348 			 * where we will add parent.
349 			 */
350 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
351 				rq->tmp_alone_branch);
352 			/*
353 			 * update tmp_alone_branch to points to the new beg
354 			 * of the branch
355 			 */
356 			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
357 		}
358 
359 		cfs_rq->on_list = 1;
360 	}
361 }
362 
363 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
364 {
365 	if (cfs_rq->on_list) {
366 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
367 		cfs_rq->on_list = 0;
368 	}
369 }
370 
371 /* Iterate thr' all leaf cfs_rq's on a runqueue */
372 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
373 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
374 				 leaf_cfs_rq_list)
375 
376 /* Do the two (enqueued) entities belong to the same group ? */
377 static inline struct cfs_rq *
378 is_same_group(struct sched_entity *se, struct sched_entity *pse)
379 {
380 	if (se->cfs_rq == pse->cfs_rq)
381 		return se->cfs_rq;
382 
383 	return NULL;
384 }
385 
386 static inline struct sched_entity *parent_entity(struct sched_entity *se)
387 {
388 	return se->parent;
389 }
390 
391 static void
392 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
393 {
394 	int se_depth, pse_depth;
395 
396 	/*
397 	 * preemption test can be made between sibling entities who are in the
398 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
399 	 * both tasks until we find their ancestors who are siblings of common
400 	 * parent.
401 	 */
402 
403 	/* First walk up until both entities are at same depth */
404 	se_depth = (*se)->depth;
405 	pse_depth = (*pse)->depth;
406 
407 	while (se_depth > pse_depth) {
408 		se_depth--;
409 		*se = parent_entity(*se);
410 	}
411 
412 	while (pse_depth > se_depth) {
413 		pse_depth--;
414 		*pse = parent_entity(*pse);
415 	}
416 
417 	while (!is_same_group(*se, *pse)) {
418 		*se = parent_entity(*se);
419 		*pse = parent_entity(*pse);
420 	}
421 }
422 
423 #else	/* !CONFIG_FAIR_GROUP_SCHED */
424 
425 static inline struct task_struct *task_of(struct sched_entity *se)
426 {
427 	return container_of(se, struct task_struct, se);
428 }
429 
430 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
431 {
432 	return container_of(cfs_rq, struct rq, cfs);
433 }
434 
435 #define entity_is_task(se)	1
436 
437 #define for_each_sched_entity(se) \
438 		for (; se; se = NULL)
439 
440 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
441 {
442 	return &task_rq(p)->cfs;
443 }
444 
445 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
446 {
447 	struct task_struct *p = task_of(se);
448 	struct rq *rq = task_rq(p);
449 
450 	return &rq->cfs;
451 }
452 
453 /* runqueue "owned" by this group */
454 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
455 {
456 	return NULL;
457 }
458 
459 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
460 {
461 }
462 
463 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
464 {
465 }
466 
467 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
468 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
469 
470 static inline struct sched_entity *parent_entity(struct sched_entity *se)
471 {
472 	return NULL;
473 }
474 
475 static inline void
476 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
477 {
478 }
479 
480 #endif	/* CONFIG_FAIR_GROUP_SCHED */
481 
482 static __always_inline
483 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
484 
485 /**************************************************************
486  * Scheduling class tree data structure manipulation methods:
487  */
488 
489 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
490 {
491 	s64 delta = (s64)(vruntime - max_vruntime);
492 	if (delta > 0)
493 		max_vruntime = vruntime;
494 
495 	return max_vruntime;
496 }
497 
498 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
499 {
500 	s64 delta = (s64)(vruntime - min_vruntime);
501 	if (delta < 0)
502 		min_vruntime = vruntime;
503 
504 	return min_vruntime;
505 }
506 
507 static inline int entity_before(struct sched_entity *a,
508 				struct sched_entity *b)
509 {
510 	return (s64)(a->vruntime - b->vruntime) < 0;
511 }
512 
513 static void update_min_vruntime(struct cfs_rq *cfs_rq)
514 {
515 	struct sched_entity *curr = cfs_rq->curr;
516 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
517 
518 	u64 vruntime = cfs_rq->min_vruntime;
519 
520 	if (curr) {
521 		if (curr->on_rq)
522 			vruntime = curr->vruntime;
523 		else
524 			curr = NULL;
525 	}
526 
527 	if (leftmost) { /* non-empty tree */
528 		struct sched_entity *se;
529 		se = rb_entry(leftmost, struct sched_entity, run_node);
530 
531 		if (!curr)
532 			vruntime = se->vruntime;
533 		else
534 			vruntime = min_vruntime(vruntime, se->vruntime);
535 	}
536 
537 	/* ensure we never gain time by being placed backwards. */
538 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
539 #ifndef CONFIG_64BIT
540 	smp_wmb();
541 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
542 #endif
543 }
544 
545 /*
546  * Enqueue an entity into the rb-tree:
547  */
548 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
549 {
550 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
551 	struct rb_node *parent = NULL;
552 	struct sched_entity *entry;
553 	bool leftmost = true;
554 
555 	/*
556 	 * Find the right place in the rbtree:
557 	 */
558 	while (*link) {
559 		parent = *link;
560 		entry = rb_entry(parent, struct sched_entity, run_node);
561 		/*
562 		 * We dont care about collisions. Nodes with
563 		 * the same key stay together.
564 		 */
565 		if (entity_before(se, entry)) {
566 			link = &parent->rb_left;
567 		} else {
568 			link = &parent->rb_right;
569 			leftmost = false;
570 		}
571 	}
572 
573 	rb_link_node(&se->run_node, parent, link);
574 	rb_insert_color_cached(&se->run_node,
575 			       &cfs_rq->tasks_timeline, leftmost);
576 }
577 
578 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
579 {
580 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
581 }
582 
583 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
584 {
585 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
586 
587 	if (!left)
588 		return NULL;
589 
590 	return rb_entry(left, struct sched_entity, run_node);
591 }
592 
593 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
594 {
595 	struct rb_node *next = rb_next(&se->run_node);
596 
597 	if (!next)
598 		return NULL;
599 
600 	return rb_entry(next, struct sched_entity, run_node);
601 }
602 
603 #ifdef CONFIG_SCHED_DEBUG
604 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
605 {
606 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
607 
608 	if (!last)
609 		return NULL;
610 
611 	return rb_entry(last, struct sched_entity, run_node);
612 }
613 
614 /**************************************************************
615  * Scheduling class statistics methods:
616  */
617 
618 int sched_proc_update_handler(struct ctl_table *table, int write,
619 		void __user *buffer, size_t *lenp,
620 		loff_t *ppos)
621 {
622 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
623 	unsigned int factor = get_update_sysctl_factor();
624 
625 	if (ret || !write)
626 		return ret;
627 
628 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
629 					sysctl_sched_min_granularity);
630 
631 #define WRT_SYSCTL(name) \
632 	(normalized_sysctl_##name = sysctl_##name / (factor))
633 	WRT_SYSCTL(sched_min_granularity);
634 	WRT_SYSCTL(sched_latency);
635 	WRT_SYSCTL(sched_wakeup_granularity);
636 #undef WRT_SYSCTL
637 
638 	return 0;
639 }
640 #endif
641 
642 /*
643  * delta /= w
644  */
645 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
646 {
647 	if (unlikely(se->load.weight != NICE_0_LOAD))
648 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
649 
650 	return delta;
651 }
652 
653 /*
654  * The idea is to set a period in which each task runs once.
655  *
656  * When there are too many tasks (sched_nr_latency) we have to stretch
657  * this period because otherwise the slices get too small.
658  *
659  * p = (nr <= nl) ? l : l*nr/nl
660  */
661 static u64 __sched_period(unsigned long nr_running)
662 {
663 	if (unlikely(nr_running > sched_nr_latency))
664 		return nr_running * sysctl_sched_min_granularity;
665 	else
666 		return sysctl_sched_latency;
667 }
668 
669 /*
670  * We calculate the wall-time slice from the period by taking a part
671  * proportional to the weight.
672  *
673  * s = p*P[w/rw]
674  */
675 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
676 {
677 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
678 
679 	for_each_sched_entity(se) {
680 		struct load_weight *load;
681 		struct load_weight lw;
682 
683 		cfs_rq = cfs_rq_of(se);
684 		load = &cfs_rq->load;
685 
686 		if (unlikely(!se->on_rq)) {
687 			lw = cfs_rq->load;
688 
689 			update_load_add(&lw, se->load.weight);
690 			load = &lw;
691 		}
692 		slice = __calc_delta(slice, se->load.weight, load);
693 	}
694 	return slice;
695 }
696 
697 /*
698  * We calculate the vruntime slice of a to-be-inserted task.
699  *
700  * vs = s/w
701  */
702 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
703 {
704 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
705 }
706 
707 #ifdef CONFIG_SMP
708 
709 #include "sched-pelt.h"
710 
711 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
712 static unsigned long task_h_load(struct task_struct *p);
713 
714 /* Give new sched_entity start runnable values to heavy its load in infant time */
715 void init_entity_runnable_average(struct sched_entity *se)
716 {
717 	struct sched_avg *sa = &se->avg;
718 
719 	sa->last_update_time = 0;
720 	/*
721 	 * sched_avg's period_contrib should be strictly less then 1024, so
722 	 * we give it 1023 to make sure it is almost a period (1024us), and
723 	 * will definitely be update (after enqueue).
724 	 */
725 	sa->period_contrib = 1023;
726 	/*
727 	 * Tasks are intialized with full load to be seen as heavy tasks until
728 	 * they get a chance to stabilize to their real load level.
729 	 * Group entities are intialized with zero load to reflect the fact that
730 	 * nothing has been attached to the task group yet.
731 	 */
732 	if (entity_is_task(se))
733 		sa->load_avg = scale_load_down(se->load.weight);
734 	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
735 	/*
736 	 * At this point, util_avg won't be used in select_task_rq_fair anyway
737 	 */
738 	sa->util_avg = 0;
739 	sa->util_sum = 0;
740 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
741 }
742 
743 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
744 static void attach_entity_cfs_rq(struct sched_entity *se);
745 
746 /*
747  * With new tasks being created, their initial util_avgs are extrapolated
748  * based on the cfs_rq's current util_avg:
749  *
750  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
751  *
752  * However, in many cases, the above util_avg does not give a desired
753  * value. Moreover, the sum of the util_avgs may be divergent, such
754  * as when the series is a harmonic series.
755  *
756  * To solve this problem, we also cap the util_avg of successive tasks to
757  * only 1/2 of the left utilization budget:
758  *
759  *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
760  *
761  * where n denotes the nth task.
762  *
763  * For example, a simplest series from the beginning would be like:
764  *
765  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
766  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
767  *
768  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
769  * if util_avg > util_avg_cap.
770  */
771 void post_init_entity_util_avg(struct sched_entity *se)
772 {
773 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
774 	struct sched_avg *sa = &se->avg;
775 	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
776 
777 	if (cap > 0) {
778 		if (cfs_rq->avg.util_avg != 0) {
779 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
780 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
781 
782 			if (sa->util_avg > cap)
783 				sa->util_avg = cap;
784 		} else {
785 			sa->util_avg = cap;
786 		}
787 		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
788 	}
789 
790 	if (entity_is_task(se)) {
791 		struct task_struct *p = task_of(se);
792 		if (p->sched_class != &fair_sched_class) {
793 			/*
794 			 * For !fair tasks do:
795 			 *
796 			update_cfs_rq_load_avg(now, cfs_rq);
797 			attach_entity_load_avg(cfs_rq, se);
798 			switched_from_fair(rq, p);
799 			 *
800 			 * such that the next switched_to_fair() has the
801 			 * expected state.
802 			 */
803 			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
804 			return;
805 		}
806 	}
807 
808 	attach_entity_cfs_rq(se);
809 }
810 
811 #else /* !CONFIG_SMP */
812 void init_entity_runnable_average(struct sched_entity *se)
813 {
814 }
815 void post_init_entity_util_avg(struct sched_entity *se)
816 {
817 }
818 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
819 {
820 }
821 #endif /* CONFIG_SMP */
822 
823 /*
824  * Update the current task's runtime statistics.
825  */
826 static void update_curr(struct cfs_rq *cfs_rq)
827 {
828 	struct sched_entity *curr = cfs_rq->curr;
829 	u64 now = rq_clock_task(rq_of(cfs_rq));
830 	u64 delta_exec;
831 
832 	if (unlikely(!curr))
833 		return;
834 
835 	delta_exec = now - curr->exec_start;
836 	if (unlikely((s64)delta_exec <= 0))
837 		return;
838 
839 	curr->exec_start = now;
840 
841 	schedstat_set(curr->statistics.exec_max,
842 		      max(delta_exec, curr->statistics.exec_max));
843 
844 	curr->sum_exec_runtime += delta_exec;
845 	schedstat_add(cfs_rq->exec_clock, delta_exec);
846 
847 	curr->vruntime += calc_delta_fair(delta_exec, curr);
848 	update_min_vruntime(cfs_rq);
849 
850 	if (entity_is_task(curr)) {
851 		struct task_struct *curtask = task_of(curr);
852 
853 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
854 		cpuacct_charge(curtask, delta_exec);
855 		account_group_exec_runtime(curtask, delta_exec);
856 	}
857 
858 	account_cfs_rq_runtime(cfs_rq, delta_exec);
859 }
860 
861 static void update_curr_fair(struct rq *rq)
862 {
863 	update_curr(cfs_rq_of(&rq->curr->se));
864 }
865 
866 static inline void
867 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
868 {
869 	u64 wait_start, prev_wait_start;
870 
871 	if (!schedstat_enabled())
872 		return;
873 
874 	wait_start = rq_clock(rq_of(cfs_rq));
875 	prev_wait_start = schedstat_val(se->statistics.wait_start);
876 
877 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
878 	    likely(wait_start > prev_wait_start))
879 		wait_start -= prev_wait_start;
880 
881 	schedstat_set(se->statistics.wait_start, wait_start);
882 }
883 
884 static inline void
885 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
886 {
887 	struct task_struct *p;
888 	u64 delta;
889 
890 	if (!schedstat_enabled())
891 		return;
892 
893 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
894 
895 	if (entity_is_task(se)) {
896 		p = task_of(se);
897 		if (task_on_rq_migrating(p)) {
898 			/*
899 			 * Preserve migrating task's wait time so wait_start
900 			 * time stamp can be adjusted to accumulate wait time
901 			 * prior to migration.
902 			 */
903 			schedstat_set(se->statistics.wait_start, delta);
904 			return;
905 		}
906 		trace_sched_stat_wait(p, delta);
907 	}
908 
909 	schedstat_set(se->statistics.wait_max,
910 		      max(schedstat_val(se->statistics.wait_max), delta));
911 	schedstat_inc(se->statistics.wait_count);
912 	schedstat_add(se->statistics.wait_sum, delta);
913 	schedstat_set(se->statistics.wait_start, 0);
914 }
915 
916 static inline void
917 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
918 {
919 	struct task_struct *tsk = NULL;
920 	u64 sleep_start, block_start;
921 
922 	if (!schedstat_enabled())
923 		return;
924 
925 	sleep_start = schedstat_val(se->statistics.sleep_start);
926 	block_start = schedstat_val(se->statistics.block_start);
927 
928 	if (entity_is_task(se))
929 		tsk = task_of(se);
930 
931 	if (sleep_start) {
932 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
933 
934 		if ((s64)delta < 0)
935 			delta = 0;
936 
937 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
938 			schedstat_set(se->statistics.sleep_max, delta);
939 
940 		schedstat_set(se->statistics.sleep_start, 0);
941 		schedstat_add(se->statistics.sum_sleep_runtime, delta);
942 
943 		if (tsk) {
944 			account_scheduler_latency(tsk, delta >> 10, 1);
945 			trace_sched_stat_sleep(tsk, delta);
946 		}
947 	}
948 	if (block_start) {
949 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
950 
951 		if ((s64)delta < 0)
952 			delta = 0;
953 
954 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
955 			schedstat_set(se->statistics.block_max, delta);
956 
957 		schedstat_set(se->statistics.block_start, 0);
958 		schedstat_add(se->statistics.sum_sleep_runtime, delta);
959 
960 		if (tsk) {
961 			if (tsk->in_iowait) {
962 				schedstat_add(se->statistics.iowait_sum, delta);
963 				schedstat_inc(se->statistics.iowait_count);
964 				trace_sched_stat_iowait(tsk, delta);
965 			}
966 
967 			trace_sched_stat_blocked(tsk, delta);
968 
969 			/*
970 			 * Blocking time is in units of nanosecs, so shift by
971 			 * 20 to get a milliseconds-range estimation of the
972 			 * amount of time that the task spent sleeping:
973 			 */
974 			if (unlikely(prof_on == SLEEP_PROFILING)) {
975 				profile_hits(SLEEP_PROFILING,
976 						(void *)get_wchan(tsk),
977 						delta >> 20);
978 			}
979 			account_scheduler_latency(tsk, delta >> 10, 0);
980 		}
981 	}
982 }
983 
984 /*
985  * Task is being enqueued - update stats:
986  */
987 static inline void
988 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
989 {
990 	if (!schedstat_enabled())
991 		return;
992 
993 	/*
994 	 * Are we enqueueing a waiting task? (for current tasks
995 	 * a dequeue/enqueue event is a NOP)
996 	 */
997 	if (se != cfs_rq->curr)
998 		update_stats_wait_start(cfs_rq, se);
999 
1000 	if (flags & ENQUEUE_WAKEUP)
1001 		update_stats_enqueue_sleeper(cfs_rq, se);
1002 }
1003 
1004 static inline void
1005 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1006 {
1007 
1008 	if (!schedstat_enabled())
1009 		return;
1010 
1011 	/*
1012 	 * Mark the end of the wait period if dequeueing a
1013 	 * waiting task:
1014 	 */
1015 	if (se != cfs_rq->curr)
1016 		update_stats_wait_end(cfs_rq, se);
1017 
1018 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1019 		struct task_struct *tsk = task_of(se);
1020 
1021 		if (tsk->state & TASK_INTERRUPTIBLE)
1022 			schedstat_set(se->statistics.sleep_start,
1023 				      rq_clock(rq_of(cfs_rq)));
1024 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1025 			schedstat_set(se->statistics.block_start,
1026 				      rq_clock(rq_of(cfs_rq)));
1027 	}
1028 }
1029 
1030 /*
1031  * We are picking a new current task - update its stats:
1032  */
1033 static inline void
1034 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1035 {
1036 	/*
1037 	 * We are starting a new run period:
1038 	 */
1039 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1040 }
1041 
1042 /**************************************************
1043  * Scheduling class queueing methods:
1044  */
1045 
1046 #ifdef CONFIG_NUMA_BALANCING
1047 /*
1048  * Approximate time to scan a full NUMA task in ms. The task scan period is
1049  * calculated based on the tasks virtual memory size and
1050  * numa_balancing_scan_size.
1051  */
1052 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1053 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1054 
1055 /* Portion of address space to scan in MB */
1056 unsigned int sysctl_numa_balancing_scan_size = 256;
1057 
1058 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1059 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1060 
1061 struct numa_group {
1062 	atomic_t refcount;
1063 
1064 	spinlock_t lock; /* nr_tasks, tasks */
1065 	int nr_tasks;
1066 	pid_t gid;
1067 	int active_nodes;
1068 
1069 	struct rcu_head rcu;
1070 	unsigned long total_faults;
1071 	unsigned long max_faults_cpu;
1072 	/*
1073 	 * Faults_cpu is used to decide whether memory should move
1074 	 * towards the CPU. As a consequence, these stats are weighted
1075 	 * more by CPU use than by memory faults.
1076 	 */
1077 	unsigned long *faults_cpu;
1078 	unsigned long faults[0];
1079 };
1080 
1081 static inline unsigned long group_faults_priv(struct numa_group *ng);
1082 static inline unsigned long group_faults_shared(struct numa_group *ng);
1083 
1084 static unsigned int task_nr_scan_windows(struct task_struct *p)
1085 {
1086 	unsigned long rss = 0;
1087 	unsigned long nr_scan_pages;
1088 
1089 	/*
1090 	 * Calculations based on RSS as non-present and empty pages are skipped
1091 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1092 	 * on resident pages
1093 	 */
1094 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1095 	rss = get_mm_rss(p->mm);
1096 	if (!rss)
1097 		rss = nr_scan_pages;
1098 
1099 	rss = round_up(rss, nr_scan_pages);
1100 	return rss / nr_scan_pages;
1101 }
1102 
1103 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1104 #define MAX_SCAN_WINDOW 2560
1105 
1106 static unsigned int task_scan_min(struct task_struct *p)
1107 {
1108 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1109 	unsigned int scan, floor;
1110 	unsigned int windows = 1;
1111 
1112 	if (scan_size < MAX_SCAN_WINDOW)
1113 		windows = MAX_SCAN_WINDOW / scan_size;
1114 	floor = 1000 / windows;
1115 
1116 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1117 	return max_t(unsigned int, floor, scan);
1118 }
1119 
1120 static unsigned int task_scan_start(struct task_struct *p)
1121 {
1122 	unsigned long smin = task_scan_min(p);
1123 	unsigned long period = smin;
1124 
1125 	/* Scale the maximum scan period with the amount of shared memory. */
1126 	if (p->numa_group) {
1127 		struct numa_group *ng = p->numa_group;
1128 		unsigned long shared = group_faults_shared(ng);
1129 		unsigned long private = group_faults_priv(ng);
1130 
1131 		period *= atomic_read(&ng->refcount);
1132 		period *= shared + 1;
1133 		period /= private + shared + 1;
1134 	}
1135 
1136 	return max(smin, period);
1137 }
1138 
1139 static unsigned int task_scan_max(struct task_struct *p)
1140 {
1141 	unsigned long smin = task_scan_min(p);
1142 	unsigned long smax;
1143 
1144 	/* Watch for min being lower than max due to floor calculations */
1145 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1146 
1147 	/* Scale the maximum scan period with the amount of shared memory. */
1148 	if (p->numa_group) {
1149 		struct numa_group *ng = p->numa_group;
1150 		unsigned long shared = group_faults_shared(ng);
1151 		unsigned long private = group_faults_priv(ng);
1152 		unsigned long period = smax;
1153 
1154 		period *= atomic_read(&ng->refcount);
1155 		period *= shared + 1;
1156 		period /= private + shared + 1;
1157 
1158 		smax = max(smax, period);
1159 	}
1160 
1161 	return max(smin, smax);
1162 }
1163 
1164 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1165 {
1166 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
1167 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1168 }
1169 
1170 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1171 {
1172 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1173 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1174 }
1175 
1176 /* Shared or private faults. */
1177 #define NR_NUMA_HINT_FAULT_TYPES 2
1178 
1179 /* Memory and CPU locality */
1180 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1181 
1182 /* Averaged statistics, and temporary buffers. */
1183 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1184 
1185 pid_t task_numa_group_id(struct task_struct *p)
1186 {
1187 	return p->numa_group ? p->numa_group->gid : 0;
1188 }
1189 
1190 /*
1191  * The averaged statistics, shared & private, memory & cpu,
1192  * occupy the first half of the array. The second half of the
1193  * array is for current counters, which are averaged into the
1194  * first set by task_numa_placement.
1195  */
1196 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1197 {
1198 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1199 }
1200 
1201 static inline unsigned long task_faults(struct task_struct *p, int nid)
1202 {
1203 	if (!p->numa_faults)
1204 		return 0;
1205 
1206 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1207 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1208 }
1209 
1210 static inline unsigned long group_faults(struct task_struct *p, int nid)
1211 {
1212 	if (!p->numa_group)
1213 		return 0;
1214 
1215 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1216 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1217 }
1218 
1219 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1220 {
1221 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1222 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1223 }
1224 
1225 static inline unsigned long group_faults_priv(struct numa_group *ng)
1226 {
1227 	unsigned long faults = 0;
1228 	int node;
1229 
1230 	for_each_online_node(node) {
1231 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1232 	}
1233 
1234 	return faults;
1235 }
1236 
1237 static inline unsigned long group_faults_shared(struct numa_group *ng)
1238 {
1239 	unsigned long faults = 0;
1240 	int node;
1241 
1242 	for_each_online_node(node) {
1243 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1244 	}
1245 
1246 	return faults;
1247 }
1248 
1249 /*
1250  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1251  * considered part of a numa group's pseudo-interleaving set. Migrations
1252  * between these nodes are slowed down, to allow things to settle down.
1253  */
1254 #define ACTIVE_NODE_FRACTION 3
1255 
1256 static bool numa_is_active_node(int nid, struct numa_group *ng)
1257 {
1258 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1259 }
1260 
1261 /* Handle placement on systems where not all nodes are directly connected. */
1262 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1263 					int maxdist, bool task)
1264 {
1265 	unsigned long score = 0;
1266 	int node;
1267 
1268 	/*
1269 	 * All nodes are directly connected, and the same distance
1270 	 * from each other. No need for fancy placement algorithms.
1271 	 */
1272 	if (sched_numa_topology_type == NUMA_DIRECT)
1273 		return 0;
1274 
1275 	/*
1276 	 * This code is called for each node, introducing N^2 complexity,
1277 	 * which should be ok given the number of nodes rarely exceeds 8.
1278 	 */
1279 	for_each_online_node(node) {
1280 		unsigned long faults;
1281 		int dist = node_distance(nid, node);
1282 
1283 		/*
1284 		 * The furthest away nodes in the system are not interesting
1285 		 * for placement; nid was already counted.
1286 		 */
1287 		if (dist == sched_max_numa_distance || node == nid)
1288 			continue;
1289 
1290 		/*
1291 		 * On systems with a backplane NUMA topology, compare groups
1292 		 * of nodes, and move tasks towards the group with the most
1293 		 * memory accesses. When comparing two nodes at distance
1294 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1295 		 * of each group. Skip other nodes.
1296 		 */
1297 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1298 					dist > maxdist)
1299 			continue;
1300 
1301 		/* Add up the faults from nearby nodes. */
1302 		if (task)
1303 			faults = task_faults(p, node);
1304 		else
1305 			faults = group_faults(p, node);
1306 
1307 		/*
1308 		 * On systems with a glueless mesh NUMA topology, there are
1309 		 * no fixed "groups of nodes". Instead, nodes that are not
1310 		 * directly connected bounce traffic through intermediate
1311 		 * nodes; a numa_group can occupy any set of nodes.
1312 		 * The further away a node is, the less the faults count.
1313 		 * This seems to result in good task placement.
1314 		 */
1315 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1316 			faults *= (sched_max_numa_distance - dist);
1317 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1318 		}
1319 
1320 		score += faults;
1321 	}
1322 
1323 	return score;
1324 }
1325 
1326 /*
1327  * These return the fraction of accesses done by a particular task, or
1328  * task group, on a particular numa node.  The group weight is given a
1329  * larger multiplier, in order to group tasks together that are almost
1330  * evenly spread out between numa nodes.
1331  */
1332 static inline unsigned long task_weight(struct task_struct *p, int nid,
1333 					int dist)
1334 {
1335 	unsigned long faults, total_faults;
1336 
1337 	if (!p->numa_faults)
1338 		return 0;
1339 
1340 	total_faults = p->total_numa_faults;
1341 
1342 	if (!total_faults)
1343 		return 0;
1344 
1345 	faults = task_faults(p, nid);
1346 	faults += score_nearby_nodes(p, nid, dist, true);
1347 
1348 	return 1000 * faults / total_faults;
1349 }
1350 
1351 static inline unsigned long group_weight(struct task_struct *p, int nid,
1352 					 int dist)
1353 {
1354 	unsigned long faults, total_faults;
1355 
1356 	if (!p->numa_group)
1357 		return 0;
1358 
1359 	total_faults = p->numa_group->total_faults;
1360 
1361 	if (!total_faults)
1362 		return 0;
1363 
1364 	faults = group_faults(p, nid);
1365 	faults += score_nearby_nodes(p, nid, dist, false);
1366 
1367 	return 1000 * faults / total_faults;
1368 }
1369 
1370 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1371 				int src_nid, int dst_cpu)
1372 {
1373 	struct numa_group *ng = p->numa_group;
1374 	int dst_nid = cpu_to_node(dst_cpu);
1375 	int last_cpupid, this_cpupid;
1376 
1377 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1378 
1379 	/*
1380 	 * Multi-stage node selection is used in conjunction with a periodic
1381 	 * migration fault to build a temporal task<->page relation. By using
1382 	 * a two-stage filter we remove short/unlikely relations.
1383 	 *
1384 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1385 	 * a task's usage of a particular page (n_p) per total usage of this
1386 	 * page (n_t) (in a given time-span) to a probability.
1387 	 *
1388 	 * Our periodic faults will sample this probability and getting the
1389 	 * same result twice in a row, given these samples are fully
1390 	 * independent, is then given by P(n)^2, provided our sample period
1391 	 * is sufficiently short compared to the usage pattern.
1392 	 *
1393 	 * This quadric squishes small probabilities, making it less likely we
1394 	 * act on an unlikely task<->page relation.
1395 	 */
1396 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1397 	if (!cpupid_pid_unset(last_cpupid) &&
1398 				cpupid_to_nid(last_cpupid) != dst_nid)
1399 		return false;
1400 
1401 	/* Always allow migrate on private faults */
1402 	if (cpupid_match_pid(p, last_cpupid))
1403 		return true;
1404 
1405 	/* A shared fault, but p->numa_group has not been set up yet. */
1406 	if (!ng)
1407 		return true;
1408 
1409 	/*
1410 	 * Destination node is much more heavily used than the source
1411 	 * node? Allow migration.
1412 	 */
1413 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1414 					ACTIVE_NODE_FRACTION)
1415 		return true;
1416 
1417 	/*
1418 	 * Distribute memory according to CPU & memory use on each node,
1419 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1420 	 *
1421 	 * faults_cpu(dst)   3   faults_cpu(src)
1422 	 * --------------- * - > ---------------
1423 	 * faults_mem(dst)   4   faults_mem(src)
1424 	 */
1425 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1426 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1427 }
1428 
1429 static unsigned long weighted_cpuload(struct rq *rq);
1430 static unsigned long source_load(int cpu, int type);
1431 static unsigned long target_load(int cpu, int type);
1432 static unsigned long capacity_of(int cpu);
1433 
1434 /* Cached statistics for all CPUs within a node */
1435 struct numa_stats {
1436 	unsigned long nr_running;
1437 	unsigned long load;
1438 
1439 	/* Total compute capacity of CPUs on a node */
1440 	unsigned long compute_capacity;
1441 
1442 	/* Approximate capacity in terms of runnable tasks on a node */
1443 	unsigned long task_capacity;
1444 	int has_free_capacity;
1445 };
1446 
1447 /*
1448  * XXX borrowed from update_sg_lb_stats
1449  */
1450 static void update_numa_stats(struct numa_stats *ns, int nid)
1451 {
1452 	int smt, cpu, cpus = 0;
1453 	unsigned long capacity;
1454 
1455 	memset(ns, 0, sizeof(*ns));
1456 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1457 		struct rq *rq = cpu_rq(cpu);
1458 
1459 		ns->nr_running += rq->nr_running;
1460 		ns->load += weighted_cpuload(rq);
1461 		ns->compute_capacity += capacity_of(cpu);
1462 
1463 		cpus++;
1464 	}
1465 
1466 	/*
1467 	 * If we raced with hotplug and there are no CPUs left in our mask
1468 	 * the @ns structure is NULL'ed and task_numa_compare() will
1469 	 * not find this node attractive.
1470 	 *
1471 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1472 	 * imbalance and bail there.
1473 	 */
1474 	if (!cpus)
1475 		return;
1476 
1477 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1478 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1479 	capacity = cpus / smt; /* cores */
1480 
1481 	ns->task_capacity = min_t(unsigned, capacity,
1482 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1483 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1484 }
1485 
1486 struct task_numa_env {
1487 	struct task_struct *p;
1488 
1489 	int src_cpu, src_nid;
1490 	int dst_cpu, dst_nid;
1491 
1492 	struct numa_stats src_stats, dst_stats;
1493 
1494 	int imbalance_pct;
1495 	int dist;
1496 
1497 	struct task_struct *best_task;
1498 	long best_imp;
1499 	int best_cpu;
1500 };
1501 
1502 static void task_numa_assign(struct task_numa_env *env,
1503 			     struct task_struct *p, long imp)
1504 {
1505 	if (env->best_task)
1506 		put_task_struct(env->best_task);
1507 	if (p)
1508 		get_task_struct(p);
1509 
1510 	env->best_task = p;
1511 	env->best_imp = imp;
1512 	env->best_cpu = env->dst_cpu;
1513 }
1514 
1515 static bool load_too_imbalanced(long src_load, long dst_load,
1516 				struct task_numa_env *env)
1517 {
1518 	long imb, old_imb;
1519 	long orig_src_load, orig_dst_load;
1520 	long src_capacity, dst_capacity;
1521 
1522 	/*
1523 	 * The load is corrected for the CPU capacity available on each node.
1524 	 *
1525 	 * src_load        dst_load
1526 	 * ------------ vs ---------
1527 	 * src_capacity    dst_capacity
1528 	 */
1529 	src_capacity = env->src_stats.compute_capacity;
1530 	dst_capacity = env->dst_stats.compute_capacity;
1531 
1532 	/* We care about the slope of the imbalance, not the direction. */
1533 	if (dst_load < src_load)
1534 		swap(dst_load, src_load);
1535 
1536 	/* Is the difference below the threshold? */
1537 	imb = dst_load * src_capacity * 100 -
1538 	      src_load * dst_capacity * env->imbalance_pct;
1539 	if (imb <= 0)
1540 		return false;
1541 
1542 	/*
1543 	 * The imbalance is above the allowed threshold.
1544 	 * Compare it with the old imbalance.
1545 	 */
1546 	orig_src_load = env->src_stats.load;
1547 	orig_dst_load = env->dst_stats.load;
1548 
1549 	if (orig_dst_load < orig_src_load)
1550 		swap(orig_dst_load, orig_src_load);
1551 
1552 	old_imb = orig_dst_load * src_capacity * 100 -
1553 		  orig_src_load * dst_capacity * env->imbalance_pct;
1554 
1555 	/* Would this change make things worse? */
1556 	return (imb > old_imb);
1557 }
1558 
1559 /*
1560  * This checks if the overall compute and NUMA accesses of the system would
1561  * be improved if the source tasks was migrated to the target dst_cpu taking
1562  * into account that it might be best if task running on the dst_cpu should
1563  * be exchanged with the source task
1564  */
1565 static void task_numa_compare(struct task_numa_env *env,
1566 			      long taskimp, long groupimp)
1567 {
1568 	struct rq *src_rq = cpu_rq(env->src_cpu);
1569 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1570 	struct task_struct *cur;
1571 	long src_load, dst_load;
1572 	long load;
1573 	long imp = env->p->numa_group ? groupimp : taskimp;
1574 	long moveimp = imp;
1575 	int dist = env->dist;
1576 
1577 	rcu_read_lock();
1578 	cur = task_rcu_dereference(&dst_rq->curr);
1579 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1580 		cur = NULL;
1581 
1582 	/*
1583 	 * Because we have preemption enabled we can get migrated around and
1584 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1585 	 */
1586 	if (cur == env->p)
1587 		goto unlock;
1588 
1589 	/*
1590 	 * "imp" is the fault differential for the source task between the
1591 	 * source and destination node. Calculate the total differential for
1592 	 * the source task and potential destination task. The more negative
1593 	 * the value is, the more rmeote accesses that would be expected to
1594 	 * be incurred if the tasks were swapped.
1595 	 */
1596 	if (cur) {
1597 		/* Skip this swap candidate if cannot move to the source cpu */
1598 		if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1599 			goto unlock;
1600 
1601 		/*
1602 		 * If dst and source tasks are in the same NUMA group, or not
1603 		 * in any group then look only at task weights.
1604 		 */
1605 		if (cur->numa_group == env->p->numa_group) {
1606 			imp = taskimp + task_weight(cur, env->src_nid, dist) -
1607 			      task_weight(cur, env->dst_nid, dist);
1608 			/*
1609 			 * Add some hysteresis to prevent swapping the
1610 			 * tasks within a group over tiny differences.
1611 			 */
1612 			if (cur->numa_group)
1613 				imp -= imp/16;
1614 		} else {
1615 			/*
1616 			 * Compare the group weights. If a task is all by
1617 			 * itself (not part of a group), use the task weight
1618 			 * instead.
1619 			 */
1620 			if (cur->numa_group)
1621 				imp += group_weight(cur, env->src_nid, dist) -
1622 				       group_weight(cur, env->dst_nid, dist);
1623 			else
1624 				imp += task_weight(cur, env->src_nid, dist) -
1625 				       task_weight(cur, env->dst_nid, dist);
1626 		}
1627 	}
1628 
1629 	if (imp <= env->best_imp && moveimp <= env->best_imp)
1630 		goto unlock;
1631 
1632 	if (!cur) {
1633 		/* Is there capacity at our destination? */
1634 		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1635 		    !env->dst_stats.has_free_capacity)
1636 			goto unlock;
1637 
1638 		goto balance;
1639 	}
1640 
1641 	/* Balance doesn't matter much if we're running a task per cpu */
1642 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1643 			dst_rq->nr_running == 1)
1644 		goto assign;
1645 
1646 	/*
1647 	 * In the overloaded case, try and keep the load balanced.
1648 	 */
1649 balance:
1650 	load = task_h_load(env->p);
1651 	dst_load = env->dst_stats.load + load;
1652 	src_load = env->src_stats.load - load;
1653 
1654 	if (moveimp > imp && moveimp > env->best_imp) {
1655 		/*
1656 		 * If the improvement from just moving env->p direction is
1657 		 * better than swapping tasks around, check if a move is
1658 		 * possible. Store a slightly smaller score than moveimp,
1659 		 * so an actually idle CPU will win.
1660 		 */
1661 		if (!load_too_imbalanced(src_load, dst_load, env)) {
1662 			imp = moveimp - 1;
1663 			cur = NULL;
1664 			goto assign;
1665 		}
1666 	}
1667 
1668 	if (imp <= env->best_imp)
1669 		goto unlock;
1670 
1671 	if (cur) {
1672 		load = task_h_load(cur);
1673 		dst_load -= load;
1674 		src_load += load;
1675 	}
1676 
1677 	if (load_too_imbalanced(src_load, dst_load, env))
1678 		goto unlock;
1679 
1680 	/*
1681 	 * One idle CPU per node is evaluated for a task numa move.
1682 	 * Call select_idle_sibling to maybe find a better one.
1683 	 */
1684 	if (!cur) {
1685 		/*
1686 		 * select_idle_siblings() uses an per-cpu cpumask that
1687 		 * can be used from IRQ context.
1688 		 */
1689 		local_irq_disable();
1690 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1691 						   env->dst_cpu);
1692 		local_irq_enable();
1693 	}
1694 
1695 assign:
1696 	task_numa_assign(env, cur, imp);
1697 unlock:
1698 	rcu_read_unlock();
1699 }
1700 
1701 static void task_numa_find_cpu(struct task_numa_env *env,
1702 				long taskimp, long groupimp)
1703 {
1704 	int cpu;
1705 
1706 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1707 		/* Skip this CPU if the source task cannot migrate */
1708 		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1709 			continue;
1710 
1711 		env->dst_cpu = cpu;
1712 		task_numa_compare(env, taskimp, groupimp);
1713 	}
1714 }
1715 
1716 /* Only move tasks to a NUMA node less busy than the current node. */
1717 static bool numa_has_capacity(struct task_numa_env *env)
1718 {
1719 	struct numa_stats *src = &env->src_stats;
1720 	struct numa_stats *dst = &env->dst_stats;
1721 
1722 	if (src->has_free_capacity && !dst->has_free_capacity)
1723 		return false;
1724 
1725 	/*
1726 	 * Only consider a task move if the source has a higher load
1727 	 * than the destination, corrected for CPU capacity on each node.
1728 	 *
1729 	 *      src->load                dst->load
1730 	 * --------------------- vs ---------------------
1731 	 * src->compute_capacity    dst->compute_capacity
1732 	 */
1733 	if (src->load * dst->compute_capacity * env->imbalance_pct >
1734 
1735 	    dst->load * src->compute_capacity * 100)
1736 		return true;
1737 
1738 	return false;
1739 }
1740 
1741 static int task_numa_migrate(struct task_struct *p)
1742 {
1743 	struct task_numa_env env = {
1744 		.p = p,
1745 
1746 		.src_cpu = task_cpu(p),
1747 		.src_nid = task_node(p),
1748 
1749 		.imbalance_pct = 112,
1750 
1751 		.best_task = NULL,
1752 		.best_imp = 0,
1753 		.best_cpu = -1,
1754 	};
1755 	struct sched_domain *sd;
1756 	unsigned long taskweight, groupweight;
1757 	int nid, ret, dist;
1758 	long taskimp, groupimp;
1759 
1760 	/*
1761 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1762 	 * imbalance and would be the first to start moving tasks about.
1763 	 *
1764 	 * And we want to avoid any moving of tasks about, as that would create
1765 	 * random movement of tasks -- counter the numa conditions we're trying
1766 	 * to satisfy here.
1767 	 */
1768 	rcu_read_lock();
1769 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1770 	if (sd)
1771 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1772 	rcu_read_unlock();
1773 
1774 	/*
1775 	 * Cpusets can break the scheduler domain tree into smaller
1776 	 * balance domains, some of which do not cross NUMA boundaries.
1777 	 * Tasks that are "trapped" in such domains cannot be migrated
1778 	 * elsewhere, so there is no point in (re)trying.
1779 	 */
1780 	if (unlikely(!sd)) {
1781 		p->numa_preferred_nid = task_node(p);
1782 		return -EINVAL;
1783 	}
1784 
1785 	env.dst_nid = p->numa_preferred_nid;
1786 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1787 	taskweight = task_weight(p, env.src_nid, dist);
1788 	groupweight = group_weight(p, env.src_nid, dist);
1789 	update_numa_stats(&env.src_stats, env.src_nid);
1790 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1791 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1792 	update_numa_stats(&env.dst_stats, env.dst_nid);
1793 
1794 	/* Try to find a spot on the preferred nid. */
1795 	if (numa_has_capacity(&env))
1796 		task_numa_find_cpu(&env, taskimp, groupimp);
1797 
1798 	/*
1799 	 * Look at other nodes in these cases:
1800 	 * - there is no space available on the preferred_nid
1801 	 * - the task is part of a numa_group that is interleaved across
1802 	 *   multiple NUMA nodes; in order to better consolidate the group,
1803 	 *   we need to check other locations.
1804 	 */
1805 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1806 		for_each_online_node(nid) {
1807 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1808 				continue;
1809 
1810 			dist = node_distance(env.src_nid, env.dst_nid);
1811 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1812 						dist != env.dist) {
1813 				taskweight = task_weight(p, env.src_nid, dist);
1814 				groupweight = group_weight(p, env.src_nid, dist);
1815 			}
1816 
1817 			/* Only consider nodes where both task and groups benefit */
1818 			taskimp = task_weight(p, nid, dist) - taskweight;
1819 			groupimp = group_weight(p, nid, dist) - groupweight;
1820 			if (taskimp < 0 && groupimp < 0)
1821 				continue;
1822 
1823 			env.dist = dist;
1824 			env.dst_nid = nid;
1825 			update_numa_stats(&env.dst_stats, env.dst_nid);
1826 			if (numa_has_capacity(&env))
1827 				task_numa_find_cpu(&env, taskimp, groupimp);
1828 		}
1829 	}
1830 
1831 	/*
1832 	 * If the task is part of a workload that spans multiple NUMA nodes,
1833 	 * and is migrating into one of the workload's active nodes, remember
1834 	 * this node as the task's preferred numa node, so the workload can
1835 	 * settle down.
1836 	 * A task that migrated to a second choice node will be better off
1837 	 * trying for a better one later. Do not set the preferred node here.
1838 	 */
1839 	if (p->numa_group) {
1840 		struct numa_group *ng = p->numa_group;
1841 
1842 		if (env.best_cpu == -1)
1843 			nid = env.src_nid;
1844 		else
1845 			nid = env.dst_nid;
1846 
1847 		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1848 			sched_setnuma(p, env.dst_nid);
1849 	}
1850 
1851 	/* No better CPU than the current one was found. */
1852 	if (env.best_cpu == -1)
1853 		return -EAGAIN;
1854 
1855 	/*
1856 	 * Reset the scan period if the task is being rescheduled on an
1857 	 * alternative node to recheck if the tasks is now properly placed.
1858 	 */
1859 	p->numa_scan_period = task_scan_start(p);
1860 
1861 	if (env.best_task == NULL) {
1862 		ret = migrate_task_to(p, env.best_cpu);
1863 		if (ret != 0)
1864 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1865 		return ret;
1866 	}
1867 
1868 	ret = migrate_swap(p, env.best_task);
1869 	if (ret != 0)
1870 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1871 	put_task_struct(env.best_task);
1872 	return ret;
1873 }
1874 
1875 /* Attempt to migrate a task to a CPU on the preferred node. */
1876 static void numa_migrate_preferred(struct task_struct *p)
1877 {
1878 	unsigned long interval = HZ;
1879 
1880 	/* This task has no NUMA fault statistics yet */
1881 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1882 		return;
1883 
1884 	/* Periodically retry migrating the task to the preferred node */
1885 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1886 	p->numa_migrate_retry = jiffies + interval;
1887 
1888 	/* Success if task is already running on preferred CPU */
1889 	if (task_node(p) == p->numa_preferred_nid)
1890 		return;
1891 
1892 	/* Otherwise, try migrate to a CPU on the preferred node */
1893 	task_numa_migrate(p);
1894 }
1895 
1896 /*
1897  * Find out how many nodes on the workload is actively running on. Do this by
1898  * tracking the nodes from which NUMA hinting faults are triggered. This can
1899  * be different from the set of nodes where the workload's memory is currently
1900  * located.
1901  */
1902 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1903 {
1904 	unsigned long faults, max_faults = 0;
1905 	int nid, active_nodes = 0;
1906 
1907 	for_each_online_node(nid) {
1908 		faults = group_faults_cpu(numa_group, nid);
1909 		if (faults > max_faults)
1910 			max_faults = faults;
1911 	}
1912 
1913 	for_each_online_node(nid) {
1914 		faults = group_faults_cpu(numa_group, nid);
1915 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1916 			active_nodes++;
1917 	}
1918 
1919 	numa_group->max_faults_cpu = max_faults;
1920 	numa_group->active_nodes = active_nodes;
1921 }
1922 
1923 /*
1924  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1925  * increments. The more local the fault statistics are, the higher the scan
1926  * period will be for the next scan window. If local/(local+remote) ratio is
1927  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1928  * the scan period will decrease. Aim for 70% local accesses.
1929  */
1930 #define NUMA_PERIOD_SLOTS 10
1931 #define NUMA_PERIOD_THRESHOLD 7
1932 
1933 /*
1934  * Increase the scan period (slow down scanning) if the majority of
1935  * our memory is already on our local node, or if the majority of
1936  * the page accesses are shared with other processes.
1937  * Otherwise, decrease the scan period.
1938  */
1939 static void update_task_scan_period(struct task_struct *p,
1940 			unsigned long shared, unsigned long private)
1941 {
1942 	unsigned int period_slot;
1943 	int lr_ratio, ps_ratio;
1944 	int diff;
1945 
1946 	unsigned long remote = p->numa_faults_locality[0];
1947 	unsigned long local = p->numa_faults_locality[1];
1948 
1949 	/*
1950 	 * If there were no record hinting faults then either the task is
1951 	 * completely idle or all activity is areas that are not of interest
1952 	 * to automatic numa balancing. Related to that, if there were failed
1953 	 * migration then it implies we are migrating too quickly or the local
1954 	 * node is overloaded. In either case, scan slower
1955 	 */
1956 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1957 		p->numa_scan_period = min(p->numa_scan_period_max,
1958 			p->numa_scan_period << 1);
1959 
1960 		p->mm->numa_next_scan = jiffies +
1961 			msecs_to_jiffies(p->numa_scan_period);
1962 
1963 		return;
1964 	}
1965 
1966 	/*
1967 	 * Prepare to scale scan period relative to the current period.
1968 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1969 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1970 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1971 	 */
1972 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1973 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1974 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1975 
1976 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1977 		/*
1978 		 * Most memory accesses are local. There is no need to
1979 		 * do fast NUMA scanning, since memory is already local.
1980 		 */
1981 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1982 		if (!slot)
1983 			slot = 1;
1984 		diff = slot * period_slot;
1985 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1986 		/*
1987 		 * Most memory accesses are shared with other tasks.
1988 		 * There is no point in continuing fast NUMA scanning,
1989 		 * since other tasks may just move the memory elsewhere.
1990 		 */
1991 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1992 		if (!slot)
1993 			slot = 1;
1994 		diff = slot * period_slot;
1995 	} else {
1996 		/*
1997 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1998 		 * yet they are not on the local NUMA node. Speed up
1999 		 * NUMA scanning to get the memory moved over.
2000 		 */
2001 		int ratio = max(lr_ratio, ps_ratio);
2002 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2003 	}
2004 
2005 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2006 			task_scan_min(p), task_scan_max(p));
2007 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2008 }
2009 
2010 /*
2011  * Get the fraction of time the task has been running since the last
2012  * NUMA placement cycle. The scheduler keeps similar statistics, but
2013  * decays those on a 32ms period, which is orders of magnitude off
2014  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2015  * stats only if the task is so new there are no NUMA statistics yet.
2016  */
2017 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2018 {
2019 	u64 runtime, delta, now;
2020 	/* Use the start of this time slice to avoid calculations. */
2021 	now = p->se.exec_start;
2022 	runtime = p->se.sum_exec_runtime;
2023 
2024 	if (p->last_task_numa_placement) {
2025 		delta = runtime - p->last_sum_exec_runtime;
2026 		*period = now - p->last_task_numa_placement;
2027 	} else {
2028 		delta = p->se.avg.load_sum / p->se.load.weight;
2029 		*period = LOAD_AVG_MAX;
2030 	}
2031 
2032 	p->last_sum_exec_runtime = runtime;
2033 	p->last_task_numa_placement = now;
2034 
2035 	return delta;
2036 }
2037 
2038 /*
2039  * Determine the preferred nid for a task in a numa_group. This needs to
2040  * be done in a way that produces consistent results with group_weight,
2041  * otherwise workloads might not converge.
2042  */
2043 static int preferred_group_nid(struct task_struct *p, int nid)
2044 {
2045 	nodemask_t nodes;
2046 	int dist;
2047 
2048 	/* Direct connections between all NUMA nodes. */
2049 	if (sched_numa_topology_type == NUMA_DIRECT)
2050 		return nid;
2051 
2052 	/*
2053 	 * On a system with glueless mesh NUMA topology, group_weight
2054 	 * scores nodes according to the number of NUMA hinting faults on
2055 	 * both the node itself, and on nearby nodes.
2056 	 */
2057 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2058 		unsigned long score, max_score = 0;
2059 		int node, max_node = nid;
2060 
2061 		dist = sched_max_numa_distance;
2062 
2063 		for_each_online_node(node) {
2064 			score = group_weight(p, node, dist);
2065 			if (score > max_score) {
2066 				max_score = score;
2067 				max_node = node;
2068 			}
2069 		}
2070 		return max_node;
2071 	}
2072 
2073 	/*
2074 	 * Finding the preferred nid in a system with NUMA backplane
2075 	 * interconnect topology is more involved. The goal is to locate
2076 	 * tasks from numa_groups near each other in the system, and
2077 	 * untangle workloads from different sides of the system. This requires
2078 	 * searching down the hierarchy of node groups, recursively searching
2079 	 * inside the highest scoring group of nodes. The nodemask tricks
2080 	 * keep the complexity of the search down.
2081 	 */
2082 	nodes = node_online_map;
2083 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2084 		unsigned long max_faults = 0;
2085 		nodemask_t max_group = NODE_MASK_NONE;
2086 		int a, b;
2087 
2088 		/* Are there nodes at this distance from each other? */
2089 		if (!find_numa_distance(dist))
2090 			continue;
2091 
2092 		for_each_node_mask(a, nodes) {
2093 			unsigned long faults = 0;
2094 			nodemask_t this_group;
2095 			nodes_clear(this_group);
2096 
2097 			/* Sum group's NUMA faults; includes a==b case. */
2098 			for_each_node_mask(b, nodes) {
2099 				if (node_distance(a, b) < dist) {
2100 					faults += group_faults(p, b);
2101 					node_set(b, this_group);
2102 					node_clear(b, nodes);
2103 				}
2104 			}
2105 
2106 			/* Remember the top group. */
2107 			if (faults > max_faults) {
2108 				max_faults = faults;
2109 				max_group = this_group;
2110 				/*
2111 				 * subtle: at the smallest distance there is
2112 				 * just one node left in each "group", the
2113 				 * winner is the preferred nid.
2114 				 */
2115 				nid = a;
2116 			}
2117 		}
2118 		/* Next round, evaluate the nodes within max_group. */
2119 		if (!max_faults)
2120 			break;
2121 		nodes = max_group;
2122 	}
2123 	return nid;
2124 }
2125 
2126 static void task_numa_placement(struct task_struct *p)
2127 {
2128 	int seq, nid, max_nid = -1, max_group_nid = -1;
2129 	unsigned long max_faults = 0, max_group_faults = 0;
2130 	unsigned long fault_types[2] = { 0, 0 };
2131 	unsigned long total_faults;
2132 	u64 runtime, period;
2133 	spinlock_t *group_lock = NULL;
2134 
2135 	/*
2136 	 * The p->mm->numa_scan_seq field gets updated without
2137 	 * exclusive access. Use READ_ONCE() here to ensure
2138 	 * that the field is read in a single access:
2139 	 */
2140 	seq = READ_ONCE(p->mm->numa_scan_seq);
2141 	if (p->numa_scan_seq == seq)
2142 		return;
2143 	p->numa_scan_seq = seq;
2144 	p->numa_scan_period_max = task_scan_max(p);
2145 
2146 	total_faults = p->numa_faults_locality[0] +
2147 		       p->numa_faults_locality[1];
2148 	runtime = numa_get_avg_runtime(p, &period);
2149 
2150 	/* If the task is part of a group prevent parallel updates to group stats */
2151 	if (p->numa_group) {
2152 		group_lock = &p->numa_group->lock;
2153 		spin_lock_irq(group_lock);
2154 	}
2155 
2156 	/* Find the node with the highest number of faults */
2157 	for_each_online_node(nid) {
2158 		/* Keep track of the offsets in numa_faults array */
2159 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2160 		unsigned long faults = 0, group_faults = 0;
2161 		int priv;
2162 
2163 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2164 			long diff, f_diff, f_weight;
2165 
2166 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2167 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2168 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2169 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2170 
2171 			/* Decay existing window, copy faults since last scan */
2172 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2173 			fault_types[priv] += p->numa_faults[membuf_idx];
2174 			p->numa_faults[membuf_idx] = 0;
2175 
2176 			/*
2177 			 * Normalize the faults_from, so all tasks in a group
2178 			 * count according to CPU use, instead of by the raw
2179 			 * number of faults. Tasks with little runtime have
2180 			 * little over-all impact on throughput, and thus their
2181 			 * faults are less important.
2182 			 */
2183 			f_weight = div64_u64(runtime << 16, period + 1);
2184 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2185 				   (total_faults + 1);
2186 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2187 			p->numa_faults[cpubuf_idx] = 0;
2188 
2189 			p->numa_faults[mem_idx] += diff;
2190 			p->numa_faults[cpu_idx] += f_diff;
2191 			faults += p->numa_faults[mem_idx];
2192 			p->total_numa_faults += diff;
2193 			if (p->numa_group) {
2194 				/*
2195 				 * safe because we can only change our own group
2196 				 *
2197 				 * mem_idx represents the offset for a given
2198 				 * nid and priv in a specific region because it
2199 				 * is at the beginning of the numa_faults array.
2200 				 */
2201 				p->numa_group->faults[mem_idx] += diff;
2202 				p->numa_group->faults_cpu[mem_idx] += f_diff;
2203 				p->numa_group->total_faults += diff;
2204 				group_faults += p->numa_group->faults[mem_idx];
2205 			}
2206 		}
2207 
2208 		if (faults > max_faults) {
2209 			max_faults = faults;
2210 			max_nid = nid;
2211 		}
2212 
2213 		if (group_faults > max_group_faults) {
2214 			max_group_faults = group_faults;
2215 			max_group_nid = nid;
2216 		}
2217 	}
2218 
2219 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2220 
2221 	if (p->numa_group) {
2222 		numa_group_count_active_nodes(p->numa_group);
2223 		spin_unlock_irq(group_lock);
2224 		max_nid = preferred_group_nid(p, max_group_nid);
2225 	}
2226 
2227 	if (max_faults) {
2228 		/* Set the new preferred node */
2229 		if (max_nid != p->numa_preferred_nid)
2230 			sched_setnuma(p, max_nid);
2231 
2232 		if (task_node(p) != p->numa_preferred_nid)
2233 			numa_migrate_preferred(p);
2234 	}
2235 }
2236 
2237 static inline int get_numa_group(struct numa_group *grp)
2238 {
2239 	return atomic_inc_not_zero(&grp->refcount);
2240 }
2241 
2242 static inline void put_numa_group(struct numa_group *grp)
2243 {
2244 	if (atomic_dec_and_test(&grp->refcount))
2245 		kfree_rcu(grp, rcu);
2246 }
2247 
2248 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2249 			int *priv)
2250 {
2251 	struct numa_group *grp, *my_grp;
2252 	struct task_struct *tsk;
2253 	bool join = false;
2254 	int cpu = cpupid_to_cpu(cpupid);
2255 	int i;
2256 
2257 	if (unlikely(!p->numa_group)) {
2258 		unsigned int size = sizeof(struct numa_group) +
2259 				    4*nr_node_ids*sizeof(unsigned long);
2260 
2261 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2262 		if (!grp)
2263 			return;
2264 
2265 		atomic_set(&grp->refcount, 1);
2266 		grp->active_nodes = 1;
2267 		grp->max_faults_cpu = 0;
2268 		spin_lock_init(&grp->lock);
2269 		grp->gid = p->pid;
2270 		/* Second half of the array tracks nids where faults happen */
2271 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2272 						nr_node_ids;
2273 
2274 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2275 			grp->faults[i] = p->numa_faults[i];
2276 
2277 		grp->total_faults = p->total_numa_faults;
2278 
2279 		grp->nr_tasks++;
2280 		rcu_assign_pointer(p->numa_group, grp);
2281 	}
2282 
2283 	rcu_read_lock();
2284 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2285 
2286 	if (!cpupid_match_pid(tsk, cpupid))
2287 		goto no_join;
2288 
2289 	grp = rcu_dereference(tsk->numa_group);
2290 	if (!grp)
2291 		goto no_join;
2292 
2293 	my_grp = p->numa_group;
2294 	if (grp == my_grp)
2295 		goto no_join;
2296 
2297 	/*
2298 	 * Only join the other group if its bigger; if we're the bigger group,
2299 	 * the other task will join us.
2300 	 */
2301 	if (my_grp->nr_tasks > grp->nr_tasks)
2302 		goto no_join;
2303 
2304 	/*
2305 	 * Tie-break on the grp address.
2306 	 */
2307 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2308 		goto no_join;
2309 
2310 	/* Always join threads in the same process. */
2311 	if (tsk->mm == current->mm)
2312 		join = true;
2313 
2314 	/* Simple filter to avoid false positives due to PID collisions */
2315 	if (flags & TNF_SHARED)
2316 		join = true;
2317 
2318 	/* Update priv based on whether false sharing was detected */
2319 	*priv = !join;
2320 
2321 	if (join && !get_numa_group(grp))
2322 		goto no_join;
2323 
2324 	rcu_read_unlock();
2325 
2326 	if (!join)
2327 		return;
2328 
2329 	BUG_ON(irqs_disabled());
2330 	double_lock_irq(&my_grp->lock, &grp->lock);
2331 
2332 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2333 		my_grp->faults[i] -= p->numa_faults[i];
2334 		grp->faults[i] += p->numa_faults[i];
2335 	}
2336 	my_grp->total_faults -= p->total_numa_faults;
2337 	grp->total_faults += p->total_numa_faults;
2338 
2339 	my_grp->nr_tasks--;
2340 	grp->nr_tasks++;
2341 
2342 	spin_unlock(&my_grp->lock);
2343 	spin_unlock_irq(&grp->lock);
2344 
2345 	rcu_assign_pointer(p->numa_group, grp);
2346 
2347 	put_numa_group(my_grp);
2348 	return;
2349 
2350 no_join:
2351 	rcu_read_unlock();
2352 	return;
2353 }
2354 
2355 void task_numa_free(struct task_struct *p)
2356 {
2357 	struct numa_group *grp = p->numa_group;
2358 	void *numa_faults = p->numa_faults;
2359 	unsigned long flags;
2360 	int i;
2361 
2362 	if (grp) {
2363 		spin_lock_irqsave(&grp->lock, flags);
2364 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2365 			grp->faults[i] -= p->numa_faults[i];
2366 		grp->total_faults -= p->total_numa_faults;
2367 
2368 		grp->nr_tasks--;
2369 		spin_unlock_irqrestore(&grp->lock, flags);
2370 		RCU_INIT_POINTER(p->numa_group, NULL);
2371 		put_numa_group(grp);
2372 	}
2373 
2374 	p->numa_faults = NULL;
2375 	kfree(numa_faults);
2376 }
2377 
2378 /*
2379  * Got a PROT_NONE fault for a page on @node.
2380  */
2381 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2382 {
2383 	struct task_struct *p = current;
2384 	bool migrated = flags & TNF_MIGRATED;
2385 	int cpu_node = task_node(current);
2386 	int local = !!(flags & TNF_FAULT_LOCAL);
2387 	struct numa_group *ng;
2388 	int priv;
2389 
2390 	if (!static_branch_likely(&sched_numa_balancing))
2391 		return;
2392 
2393 	/* for example, ksmd faulting in a user's mm */
2394 	if (!p->mm)
2395 		return;
2396 
2397 	/* Allocate buffer to track faults on a per-node basis */
2398 	if (unlikely(!p->numa_faults)) {
2399 		int size = sizeof(*p->numa_faults) *
2400 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2401 
2402 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2403 		if (!p->numa_faults)
2404 			return;
2405 
2406 		p->total_numa_faults = 0;
2407 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2408 	}
2409 
2410 	/*
2411 	 * First accesses are treated as private, otherwise consider accesses
2412 	 * to be private if the accessing pid has not changed
2413 	 */
2414 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2415 		priv = 1;
2416 	} else {
2417 		priv = cpupid_match_pid(p, last_cpupid);
2418 		if (!priv && !(flags & TNF_NO_GROUP))
2419 			task_numa_group(p, last_cpupid, flags, &priv);
2420 	}
2421 
2422 	/*
2423 	 * If a workload spans multiple NUMA nodes, a shared fault that
2424 	 * occurs wholly within the set of nodes that the workload is
2425 	 * actively using should be counted as local. This allows the
2426 	 * scan rate to slow down when a workload has settled down.
2427 	 */
2428 	ng = p->numa_group;
2429 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2430 				numa_is_active_node(cpu_node, ng) &&
2431 				numa_is_active_node(mem_node, ng))
2432 		local = 1;
2433 
2434 	task_numa_placement(p);
2435 
2436 	/*
2437 	 * Retry task to preferred node migration periodically, in case it
2438 	 * case it previously failed, or the scheduler moved us.
2439 	 */
2440 	if (time_after(jiffies, p->numa_migrate_retry))
2441 		numa_migrate_preferred(p);
2442 
2443 	if (migrated)
2444 		p->numa_pages_migrated += pages;
2445 	if (flags & TNF_MIGRATE_FAIL)
2446 		p->numa_faults_locality[2] += pages;
2447 
2448 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2449 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2450 	p->numa_faults_locality[local] += pages;
2451 }
2452 
2453 static void reset_ptenuma_scan(struct task_struct *p)
2454 {
2455 	/*
2456 	 * We only did a read acquisition of the mmap sem, so
2457 	 * p->mm->numa_scan_seq is written to without exclusive access
2458 	 * and the update is not guaranteed to be atomic. That's not
2459 	 * much of an issue though, since this is just used for
2460 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2461 	 * expensive, to avoid any form of compiler optimizations:
2462 	 */
2463 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2464 	p->mm->numa_scan_offset = 0;
2465 }
2466 
2467 /*
2468  * The expensive part of numa migration is done from task_work context.
2469  * Triggered from task_tick_numa().
2470  */
2471 void task_numa_work(struct callback_head *work)
2472 {
2473 	unsigned long migrate, next_scan, now = jiffies;
2474 	struct task_struct *p = current;
2475 	struct mm_struct *mm = p->mm;
2476 	u64 runtime = p->se.sum_exec_runtime;
2477 	struct vm_area_struct *vma;
2478 	unsigned long start, end;
2479 	unsigned long nr_pte_updates = 0;
2480 	long pages, virtpages;
2481 
2482 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2483 
2484 	work->next = work; /* protect against double add */
2485 	/*
2486 	 * Who cares about NUMA placement when they're dying.
2487 	 *
2488 	 * NOTE: make sure not to dereference p->mm before this check,
2489 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2490 	 * without p->mm even though we still had it when we enqueued this
2491 	 * work.
2492 	 */
2493 	if (p->flags & PF_EXITING)
2494 		return;
2495 
2496 	if (!mm->numa_next_scan) {
2497 		mm->numa_next_scan = now +
2498 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2499 	}
2500 
2501 	/*
2502 	 * Enforce maximal scan/migration frequency..
2503 	 */
2504 	migrate = mm->numa_next_scan;
2505 	if (time_before(now, migrate))
2506 		return;
2507 
2508 	if (p->numa_scan_period == 0) {
2509 		p->numa_scan_period_max = task_scan_max(p);
2510 		p->numa_scan_period = task_scan_start(p);
2511 	}
2512 
2513 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2514 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2515 		return;
2516 
2517 	/*
2518 	 * Delay this task enough that another task of this mm will likely win
2519 	 * the next time around.
2520 	 */
2521 	p->node_stamp += 2 * TICK_NSEC;
2522 
2523 	start = mm->numa_scan_offset;
2524 	pages = sysctl_numa_balancing_scan_size;
2525 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2526 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2527 	if (!pages)
2528 		return;
2529 
2530 
2531 	if (!down_read_trylock(&mm->mmap_sem))
2532 		return;
2533 	vma = find_vma(mm, start);
2534 	if (!vma) {
2535 		reset_ptenuma_scan(p);
2536 		start = 0;
2537 		vma = mm->mmap;
2538 	}
2539 	for (; vma; vma = vma->vm_next) {
2540 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2541 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2542 			continue;
2543 		}
2544 
2545 		/*
2546 		 * Shared library pages mapped by multiple processes are not
2547 		 * migrated as it is expected they are cache replicated. Avoid
2548 		 * hinting faults in read-only file-backed mappings or the vdso
2549 		 * as migrating the pages will be of marginal benefit.
2550 		 */
2551 		if (!vma->vm_mm ||
2552 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2553 			continue;
2554 
2555 		/*
2556 		 * Skip inaccessible VMAs to avoid any confusion between
2557 		 * PROT_NONE and NUMA hinting ptes
2558 		 */
2559 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2560 			continue;
2561 
2562 		do {
2563 			start = max(start, vma->vm_start);
2564 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2565 			end = min(end, vma->vm_end);
2566 			nr_pte_updates = change_prot_numa(vma, start, end);
2567 
2568 			/*
2569 			 * Try to scan sysctl_numa_balancing_size worth of
2570 			 * hpages that have at least one present PTE that
2571 			 * is not already pte-numa. If the VMA contains
2572 			 * areas that are unused or already full of prot_numa
2573 			 * PTEs, scan up to virtpages, to skip through those
2574 			 * areas faster.
2575 			 */
2576 			if (nr_pte_updates)
2577 				pages -= (end - start) >> PAGE_SHIFT;
2578 			virtpages -= (end - start) >> PAGE_SHIFT;
2579 
2580 			start = end;
2581 			if (pages <= 0 || virtpages <= 0)
2582 				goto out;
2583 
2584 			cond_resched();
2585 		} while (end != vma->vm_end);
2586 	}
2587 
2588 out:
2589 	/*
2590 	 * It is possible to reach the end of the VMA list but the last few
2591 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2592 	 * would find the !migratable VMA on the next scan but not reset the
2593 	 * scanner to the start so check it now.
2594 	 */
2595 	if (vma)
2596 		mm->numa_scan_offset = start;
2597 	else
2598 		reset_ptenuma_scan(p);
2599 	up_read(&mm->mmap_sem);
2600 
2601 	/*
2602 	 * Make sure tasks use at least 32x as much time to run other code
2603 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2604 	 * Usually update_task_scan_period slows down scanning enough; on an
2605 	 * overloaded system we need to limit overhead on a per task basis.
2606 	 */
2607 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2608 		u64 diff = p->se.sum_exec_runtime - runtime;
2609 		p->node_stamp += 32 * diff;
2610 	}
2611 }
2612 
2613 /*
2614  * Drive the periodic memory faults..
2615  */
2616 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2617 {
2618 	struct callback_head *work = &curr->numa_work;
2619 	u64 period, now;
2620 
2621 	/*
2622 	 * We don't care about NUMA placement if we don't have memory.
2623 	 */
2624 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2625 		return;
2626 
2627 	/*
2628 	 * Using runtime rather than walltime has the dual advantage that
2629 	 * we (mostly) drive the selection from busy threads and that the
2630 	 * task needs to have done some actual work before we bother with
2631 	 * NUMA placement.
2632 	 */
2633 	now = curr->se.sum_exec_runtime;
2634 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2635 
2636 	if (now > curr->node_stamp + period) {
2637 		if (!curr->node_stamp)
2638 			curr->numa_scan_period = task_scan_start(curr);
2639 		curr->node_stamp += period;
2640 
2641 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2642 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2643 			task_work_add(curr, work, true);
2644 		}
2645 	}
2646 }
2647 
2648 #else
2649 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2650 {
2651 }
2652 
2653 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2654 {
2655 }
2656 
2657 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2658 {
2659 }
2660 
2661 #endif /* CONFIG_NUMA_BALANCING */
2662 
2663 static void
2664 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2665 {
2666 	update_load_add(&cfs_rq->load, se->load.weight);
2667 	if (!parent_entity(se))
2668 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2669 #ifdef CONFIG_SMP
2670 	if (entity_is_task(se)) {
2671 		struct rq *rq = rq_of(cfs_rq);
2672 
2673 		account_numa_enqueue(rq, task_of(se));
2674 		list_add(&se->group_node, &rq->cfs_tasks);
2675 	}
2676 #endif
2677 	cfs_rq->nr_running++;
2678 }
2679 
2680 static void
2681 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2682 {
2683 	update_load_sub(&cfs_rq->load, se->load.weight);
2684 	if (!parent_entity(se))
2685 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2686 #ifdef CONFIG_SMP
2687 	if (entity_is_task(se)) {
2688 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2689 		list_del_init(&se->group_node);
2690 	}
2691 #endif
2692 	cfs_rq->nr_running--;
2693 }
2694 
2695 #ifdef CONFIG_FAIR_GROUP_SCHED
2696 # ifdef CONFIG_SMP
2697 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2698 {
2699 	long tg_weight, load, shares;
2700 
2701 	/*
2702 	 * This really should be: cfs_rq->avg.load_avg, but instead we use
2703 	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2704 	 * the shares for small weight interactive tasks.
2705 	 */
2706 	load = scale_load_down(cfs_rq->load.weight);
2707 
2708 	tg_weight = atomic_long_read(&tg->load_avg);
2709 
2710 	/* Ensure tg_weight >= load */
2711 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2712 	tg_weight += load;
2713 
2714 	shares = (tg->shares * load);
2715 	if (tg_weight)
2716 		shares /= tg_weight;
2717 
2718 	/*
2719 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2720 	 * of a group with small tg->shares value. It is a floor value which is
2721 	 * assigned as a minimum load.weight to the sched_entity representing
2722 	 * the group on a CPU.
2723 	 *
2724 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2725 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2726 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2727 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2728 	 * instead of 0.
2729 	 */
2730 	if (shares < MIN_SHARES)
2731 		shares = MIN_SHARES;
2732 	if (shares > tg->shares)
2733 		shares = tg->shares;
2734 
2735 	return shares;
2736 }
2737 # else /* CONFIG_SMP */
2738 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2739 {
2740 	return tg->shares;
2741 }
2742 # endif /* CONFIG_SMP */
2743 
2744 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2745 			    unsigned long weight)
2746 {
2747 	if (se->on_rq) {
2748 		/* commit outstanding execution time */
2749 		if (cfs_rq->curr == se)
2750 			update_curr(cfs_rq);
2751 		account_entity_dequeue(cfs_rq, se);
2752 	}
2753 
2754 	update_load_set(&se->load, weight);
2755 
2756 	if (se->on_rq)
2757 		account_entity_enqueue(cfs_rq, se);
2758 }
2759 
2760 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2761 
2762 static void update_cfs_shares(struct sched_entity *se)
2763 {
2764 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
2765 	struct task_group *tg;
2766 	long shares;
2767 
2768 	if (!cfs_rq)
2769 		return;
2770 
2771 	if (throttled_hierarchy(cfs_rq))
2772 		return;
2773 
2774 	tg = cfs_rq->tg;
2775 
2776 #ifndef CONFIG_SMP
2777 	if (likely(se->load.weight == tg->shares))
2778 		return;
2779 #endif
2780 	shares = calc_cfs_shares(cfs_rq, tg);
2781 
2782 	reweight_entity(cfs_rq_of(se), se, shares);
2783 }
2784 
2785 #else /* CONFIG_FAIR_GROUP_SCHED */
2786 static inline void update_cfs_shares(struct sched_entity *se)
2787 {
2788 }
2789 #endif /* CONFIG_FAIR_GROUP_SCHED */
2790 
2791 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2792 {
2793 	struct rq *rq = rq_of(cfs_rq);
2794 
2795 	if (&rq->cfs == cfs_rq) {
2796 		/*
2797 		 * There are a few boundary cases this might miss but it should
2798 		 * get called often enough that that should (hopefully) not be
2799 		 * a real problem -- added to that it only calls on the local
2800 		 * CPU, so if we enqueue remotely we'll miss an update, but
2801 		 * the next tick/schedule should update.
2802 		 *
2803 		 * It will not get called when we go idle, because the idle
2804 		 * thread is a different class (!fair), nor will the utilization
2805 		 * number include things like RT tasks.
2806 		 *
2807 		 * As is, the util number is not freq-invariant (we'd have to
2808 		 * implement arch_scale_freq_capacity() for that).
2809 		 *
2810 		 * See cpu_util().
2811 		 */
2812 		cpufreq_update_util(rq, 0);
2813 	}
2814 }
2815 
2816 #ifdef CONFIG_SMP
2817 /*
2818  * Approximate:
2819  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2820  */
2821 static u64 decay_load(u64 val, u64 n)
2822 {
2823 	unsigned int local_n;
2824 
2825 	if (unlikely(n > LOAD_AVG_PERIOD * 63))
2826 		return 0;
2827 
2828 	/* after bounds checking we can collapse to 32-bit */
2829 	local_n = n;
2830 
2831 	/*
2832 	 * As y^PERIOD = 1/2, we can combine
2833 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2834 	 * With a look-up table which covers y^n (n<PERIOD)
2835 	 *
2836 	 * To achieve constant time decay_load.
2837 	 */
2838 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2839 		val >>= local_n / LOAD_AVG_PERIOD;
2840 		local_n %= LOAD_AVG_PERIOD;
2841 	}
2842 
2843 	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2844 	return val;
2845 }
2846 
2847 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
2848 {
2849 	u32 c1, c2, c3 = d3; /* y^0 == 1 */
2850 
2851 	/*
2852 	 * c1 = d1 y^p
2853 	 */
2854 	c1 = decay_load((u64)d1, periods);
2855 
2856 	/*
2857 	 *            p-1
2858 	 * c2 = 1024 \Sum y^n
2859 	 *            n=1
2860 	 *
2861 	 *              inf        inf
2862 	 *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
2863 	 *              n=0        n=p
2864 	 */
2865 	c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
2866 
2867 	return c1 + c2 + c3;
2868 }
2869 
2870 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2871 
2872 /*
2873  * Accumulate the three separate parts of the sum; d1 the remainder
2874  * of the last (incomplete) period, d2 the span of full periods and d3
2875  * the remainder of the (incomplete) current period.
2876  *
2877  *           d1          d2           d3
2878  *           ^           ^            ^
2879  *           |           |            |
2880  *         |<->|<----------------->|<--->|
2881  * ... |---x---|------| ... |------|-----x (now)
2882  *
2883  *                           p-1
2884  * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
2885  *                           n=1
2886  *
2887  *    = u y^p +					(Step 1)
2888  *
2889  *                     p-1
2890  *      d1 y^p + 1024 \Sum y^n + d3 y^0		(Step 2)
2891  *                     n=1
2892  */
2893 static __always_inline u32
2894 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
2895 	       unsigned long weight, int running, struct cfs_rq *cfs_rq)
2896 {
2897 	unsigned long scale_freq, scale_cpu;
2898 	u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
2899 	u64 periods;
2900 
2901 	scale_freq = arch_scale_freq_capacity(NULL, cpu);
2902 	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2903 
2904 	delta += sa->period_contrib;
2905 	periods = delta / 1024; /* A period is 1024us (~1ms) */
2906 
2907 	/*
2908 	 * Step 1: decay old *_sum if we crossed period boundaries.
2909 	 */
2910 	if (periods) {
2911 		sa->load_sum = decay_load(sa->load_sum, periods);
2912 		if (cfs_rq) {
2913 			cfs_rq->runnable_load_sum =
2914 				decay_load(cfs_rq->runnable_load_sum, periods);
2915 		}
2916 		sa->util_sum = decay_load((u64)(sa->util_sum), periods);
2917 
2918 		/*
2919 		 * Step 2
2920 		 */
2921 		delta %= 1024;
2922 		contrib = __accumulate_pelt_segments(periods,
2923 				1024 - sa->period_contrib, delta);
2924 	}
2925 	sa->period_contrib = delta;
2926 
2927 	contrib = cap_scale(contrib, scale_freq);
2928 	if (weight) {
2929 		sa->load_sum += weight * contrib;
2930 		if (cfs_rq)
2931 			cfs_rq->runnable_load_sum += weight * contrib;
2932 	}
2933 	if (running)
2934 		sa->util_sum += contrib * scale_cpu;
2935 
2936 	return periods;
2937 }
2938 
2939 /*
2940  * We can represent the historical contribution to runnable average as the
2941  * coefficients of a geometric series.  To do this we sub-divide our runnable
2942  * history into segments of approximately 1ms (1024us); label the segment that
2943  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2944  *
2945  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2946  *      p0            p1           p2
2947  *     (now)       (~1ms ago)  (~2ms ago)
2948  *
2949  * Let u_i denote the fraction of p_i that the entity was runnable.
2950  *
2951  * We then designate the fractions u_i as our co-efficients, yielding the
2952  * following representation of historical load:
2953  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2954  *
2955  * We choose y based on the with of a reasonably scheduling period, fixing:
2956  *   y^32 = 0.5
2957  *
2958  * This means that the contribution to load ~32ms ago (u_32) will be weighted
2959  * approximately half as much as the contribution to load within the last ms
2960  * (u_0).
2961  *
2962  * When a period "rolls over" and we have new u_0`, multiplying the previous
2963  * sum again by y is sufficient to update:
2964  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2965  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2966  */
2967 static __always_inline int
2968 ___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2969 		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2970 {
2971 	u64 delta;
2972 
2973 	delta = now - sa->last_update_time;
2974 	/*
2975 	 * This should only happen when time goes backwards, which it
2976 	 * unfortunately does during sched clock init when we swap over to TSC.
2977 	 */
2978 	if ((s64)delta < 0) {
2979 		sa->last_update_time = now;
2980 		return 0;
2981 	}
2982 
2983 	/*
2984 	 * Use 1024ns as the unit of measurement since it's a reasonable
2985 	 * approximation of 1us and fast to compute.
2986 	 */
2987 	delta >>= 10;
2988 	if (!delta)
2989 		return 0;
2990 
2991 	sa->last_update_time += delta << 10;
2992 
2993 	/*
2994 	 * running is a subset of runnable (weight) so running can't be set if
2995 	 * runnable is clear. But there are some corner cases where the current
2996 	 * se has been already dequeued but cfs_rq->curr still points to it.
2997 	 * This means that weight will be 0 but not running for a sched_entity
2998 	 * but also for a cfs_rq if the latter becomes idle. As an example,
2999 	 * this happens during idle_balance() which calls
3000 	 * update_blocked_averages()
3001 	 */
3002 	if (!weight)
3003 		running = 0;
3004 
3005 	/*
3006 	 * Now we know we crossed measurement unit boundaries. The *_avg
3007 	 * accrues by two steps:
3008 	 *
3009 	 * Step 1: accumulate *_sum since last_update_time. If we haven't
3010 	 * crossed period boundaries, finish.
3011 	 */
3012 	if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
3013 		return 0;
3014 
3015 	/*
3016 	 * Step 2: update *_avg.
3017 	 */
3018 	sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
3019 	if (cfs_rq) {
3020 		cfs_rq->runnable_load_avg =
3021 			div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
3022 	}
3023 	sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib);
3024 
3025 	return 1;
3026 }
3027 
3028 static int
3029 __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
3030 {
3031 	return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
3032 }
3033 
3034 static int
3035 __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
3036 {
3037 	return ___update_load_avg(now, cpu, &se->avg,
3038 				  se->on_rq * scale_load_down(se->load.weight),
3039 				  cfs_rq->curr == se, NULL);
3040 }
3041 
3042 static int
3043 __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
3044 {
3045 	return ___update_load_avg(now, cpu, &cfs_rq->avg,
3046 			scale_load_down(cfs_rq->load.weight),
3047 			cfs_rq->curr != NULL, cfs_rq);
3048 }
3049 
3050 /*
3051  * Signed add and clamp on underflow.
3052  *
3053  * Explicitly do a load-store to ensure the intermediate value never hits
3054  * memory. This allows lockless observations without ever seeing the negative
3055  * values.
3056  */
3057 #define add_positive(_ptr, _val) do {                           \
3058 	typeof(_ptr) ptr = (_ptr);                              \
3059 	typeof(_val) val = (_val);                              \
3060 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3061 								\
3062 	res = var + val;                                        \
3063 								\
3064 	if (val < 0 && res > var)                               \
3065 		res = 0;                                        \
3066 								\
3067 	WRITE_ONCE(*ptr, res);                                  \
3068 } while (0)
3069 
3070 #ifdef CONFIG_FAIR_GROUP_SCHED
3071 /**
3072  * update_tg_load_avg - update the tg's load avg
3073  * @cfs_rq: the cfs_rq whose avg changed
3074  * @force: update regardless of how small the difference
3075  *
3076  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3077  * However, because tg->load_avg is a global value there are performance
3078  * considerations.
3079  *
3080  * In order to avoid having to look at the other cfs_rq's, we use a
3081  * differential update where we store the last value we propagated. This in
3082  * turn allows skipping updates if the differential is 'small'.
3083  *
3084  * Updating tg's load_avg is necessary before update_cfs_share().
3085  */
3086 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3087 {
3088 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3089 
3090 	/*
3091 	 * No need to update load_avg for root_task_group as it is not used.
3092 	 */
3093 	if (cfs_rq->tg == &root_task_group)
3094 		return;
3095 
3096 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3097 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3098 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3099 	}
3100 }
3101 
3102 /*
3103  * Called within set_task_rq() right before setting a task's cpu. The
3104  * caller only guarantees p->pi_lock is held; no other assumptions,
3105  * including the state of rq->lock, should be made.
3106  */
3107 void set_task_rq_fair(struct sched_entity *se,
3108 		      struct cfs_rq *prev, struct cfs_rq *next)
3109 {
3110 	u64 p_last_update_time;
3111 	u64 n_last_update_time;
3112 
3113 	if (!sched_feat(ATTACH_AGE_LOAD))
3114 		return;
3115 
3116 	/*
3117 	 * We are supposed to update the task to "current" time, then its up to
3118 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3119 	 * getting what current time is, so simply throw away the out-of-date
3120 	 * time. This will result in the wakee task is less decayed, but giving
3121 	 * the wakee more load sounds not bad.
3122 	 */
3123 	if (!(se->avg.last_update_time && prev))
3124 		return;
3125 
3126 #ifndef CONFIG_64BIT
3127 	{
3128 		u64 p_last_update_time_copy;
3129 		u64 n_last_update_time_copy;
3130 
3131 		do {
3132 			p_last_update_time_copy = prev->load_last_update_time_copy;
3133 			n_last_update_time_copy = next->load_last_update_time_copy;
3134 
3135 			smp_rmb();
3136 
3137 			p_last_update_time = prev->avg.last_update_time;
3138 			n_last_update_time = next->avg.last_update_time;
3139 
3140 		} while (p_last_update_time != p_last_update_time_copy ||
3141 			 n_last_update_time != n_last_update_time_copy);
3142 	}
3143 #else
3144 	p_last_update_time = prev->avg.last_update_time;
3145 	n_last_update_time = next->avg.last_update_time;
3146 #endif
3147 	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3148 	se->avg.last_update_time = n_last_update_time;
3149 }
3150 
3151 /* Take into account change of utilization of a child task group */
3152 static inline void
3153 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3154 {
3155 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3156 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3157 
3158 	/* Nothing to update */
3159 	if (!delta)
3160 		return;
3161 
3162 	/* Set new sched_entity's utilization */
3163 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3164 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3165 
3166 	/* Update parent cfs_rq utilization */
3167 	add_positive(&cfs_rq->avg.util_avg, delta);
3168 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3169 }
3170 
3171 /* Take into account change of load of a child task group */
3172 static inline void
3173 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3174 {
3175 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3176 	long delta, load = gcfs_rq->avg.load_avg;
3177 
3178 	/*
3179 	 * If the load of group cfs_rq is null, the load of the
3180 	 * sched_entity will also be null so we can skip the formula
3181 	 */
3182 	if (load) {
3183 		long tg_load;
3184 
3185 		/* Get tg's load and ensure tg_load > 0 */
3186 		tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3187 
3188 		/* Ensure tg_load >= load and updated with current load*/
3189 		tg_load -= gcfs_rq->tg_load_avg_contrib;
3190 		tg_load += load;
3191 
3192 		/*
3193 		 * We need to compute a correction term in the case that the
3194 		 * task group is consuming more CPU than a task of equal
3195 		 * weight. A task with a weight equals to tg->shares will have
3196 		 * a load less or equal to scale_load_down(tg->shares).
3197 		 * Similarly, the sched_entities that represent the task group
3198 		 * at parent level, can't have a load higher than
3199 		 * scale_load_down(tg->shares). And the Sum of sched_entities'
3200 		 * load must be <= scale_load_down(tg->shares).
3201 		 */
3202 		if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3203 			/* scale gcfs_rq's load into tg's shares*/
3204 			load *= scale_load_down(gcfs_rq->tg->shares);
3205 			load /= tg_load;
3206 		}
3207 	}
3208 
3209 	delta = load - se->avg.load_avg;
3210 
3211 	/* Nothing to update */
3212 	if (!delta)
3213 		return;
3214 
3215 	/* Set new sched_entity's load */
3216 	se->avg.load_avg = load;
3217 	se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
3218 
3219 	/* Update parent cfs_rq load */
3220 	add_positive(&cfs_rq->avg.load_avg, delta);
3221 	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3222 
3223 	/*
3224 	 * If the sched_entity is already enqueued, we also have to update the
3225 	 * runnable load avg.
3226 	 */
3227 	if (se->on_rq) {
3228 		/* Update parent cfs_rq runnable_load_avg */
3229 		add_positive(&cfs_rq->runnable_load_avg, delta);
3230 		cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3231 	}
3232 }
3233 
3234 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3235 {
3236 	cfs_rq->propagate_avg = 1;
3237 }
3238 
3239 static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3240 {
3241 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
3242 
3243 	if (!cfs_rq->propagate_avg)
3244 		return 0;
3245 
3246 	cfs_rq->propagate_avg = 0;
3247 	return 1;
3248 }
3249 
3250 /* Update task and its cfs_rq load average */
3251 static inline int propagate_entity_load_avg(struct sched_entity *se)
3252 {
3253 	struct cfs_rq *cfs_rq;
3254 
3255 	if (entity_is_task(se))
3256 		return 0;
3257 
3258 	if (!test_and_clear_tg_cfs_propagate(se))
3259 		return 0;
3260 
3261 	cfs_rq = cfs_rq_of(se);
3262 
3263 	set_tg_cfs_propagate(cfs_rq);
3264 
3265 	update_tg_cfs_util(cfs_rq, se);
3266 	update_tg_cfs_load(cfs_rq, se);
3267 
3268 	return 1;
3269 }
3270 
3271 /*
3272  * Check if we need to update the load and the utilization of a blocked
3273  * group_entity:
3274  */
3275 static inline bool skip_blocked_update(struct sched_entity *se)
3276 {
3277 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3278 
3279 	/*
3280 	 * If sched_entity still have not zero load or utilization, we have to
3281 	 * decay it:
3282 	 */
3283 	if (se->avg.load_avg || se->avg.util_avg)
3284 		return false;
3285 
3286 	/*
3287 	 * If there is a pending propagation, we have to update the load and
3288 	 * the utilization of the sched_entity:
3289 	 */
3290 	if (gcfs_rq->propagate_avg)
3291 		return false;
3292 
3293 	/*
3294 	 * Otherwise, the load and the utilization of the sched_entity is
3295 	 * already zero and there is no pending propagation, so it will be a
3296 	 * waste of time to try to decay it:
3297 	 */
3298 	return true;
3299 }
3300 
3301 #else /* CONFIG_FAIR_GROUP_SCHED */
3302 
3303 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3304 
3305 static inline int propagate_entity_load_avg(struct sched_entity *se)
3306 {
3307 	return 0;
3308 }
3309 
3310 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3311 
3312 #endif /* CONFIG_FAIR_GROUP_SCHED */
3313 
3314 /*
3315  * Unsigned subtract and clamp on underflow.
3316  *
3317  * Explicitly do a load-store to ensure the intermediate value never hits
3318  * memory. This allows lockless observations without ever seeing the negative
3319  * values.
3320  */
3321 #define sub_positive(_ptr, _val) do {				\
3322 	typeof(_ptr) ptr = (_ptr);				\
3323 	typeof(*ptr) val = (_val);				\
3324 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3325 	res = var - val;					\
3326 	if (res > var)						\
3327 		res = 0;					\
3328 	WRITE_ONCE(*ptr, res);					\
3329 } while (0)
3330 
3331 /**
3332  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3333  * @now: current time, as per cfs_rq_clock_task()
3334  * @cfs_rq: cfs_rq to update
3335  *
3336  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3337  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3338  * post_init_entity_util_avg().
3339  *
3340  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3341  *
3342  * Returns true if the load decayed or we removed load.
3343  *
3344  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3345  * call update_tg_load_avg() when this function returns true.
3346  */
3347 static inline int
3348 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3349 {
3350 	struct sched_avg *sa = &cfs_rq->avg;
3351 	int decayed, removed_load = 0, removed_util = 0;
3352 
3353 	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3354 		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3355 		sub_positive(&sa->load_avg, r);
3356 		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3357 		removed_load = 1;
3358 		set_tg_cfs_propagate(cfs_rq);
3359 	}
3360 
3361 	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3362 		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3363 		sub_positive(&sa->util_avg, r);
3364 		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3365 		removed_util = 1;
3366 		set_tg_cfs_propagate(cfs_rq);
3367 	}
3368 
3369 	decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3370 
3371 #ifndef CONFIG_64BIT
3372 	smp_wmb();
3373 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3374 #endif
3375 
3376 	if (decayed || removed_util)
3377 		cfs_rq_util_change(cfs_rq);
3378 
3379 	return decayed || removed_load;
3380 }
3381 
3382 /*
3383  * Optional action to be done while updating the load average
3384  */
3385 #define UPDATE_TG	0x1
3386 #define SKIP_AGE_LOAD	0x2
3387 
3388 /* Update task and its cfs_rq load average */
3389 static inline void update_load_avg(struct sched_entity *se, int flags)
3390 {
3391 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3392 	u64 now = cfs_rq_clock_task(cfs_rq);
3393 	struct rq *rq = rq_of(cfs_rq);
3394 	int cpu = cpu_of(rq);
3395 	int decayed;
3396 
3397 	/*
3398 	 * Track task load average for carrying it to new CPU after migrated, and
3399 	 * track group sched_entity load average for task_h_load calc in migration
3400 	 */
3401 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3402 		__update_load_avg_se(now, cpu, cfs_rq, se);
3403 
3404 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3405 	decayed |= propagate_entity_load_avg(se);
3406 
3407 	if (decayed && (flags & UPDATE_TG))
3408 		update_tg_load_avg(cfs_rq, 0);
3409 }
3410 
3411 /**
3412  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3413  * @cfs_rq: cfs_rq to attach to
3414  * @se: sched_entity to attach
3415  *
3416  * Must call update_cfs_rq_load_avg() before this, since we rely on
3417  * cfs_rq->avg.last_update_time being current.
3418  */
3419 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3420 {
3421 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3422 	cfs_rq->avg.load_avg += se->avg.load_avg;
3423 	cfs_rq->avg.load_sum += se->avg.load_sum;
3424 	cfs_rq->avg.util_avg += se->avg.util_avg;
3425 	cfs_rq->avg.util_sum += se->avg.util_sum;
3426 	set_tg_cfs_propagate(cfs_rq);
3427 
3428 	cfs_rq_util_change(cfs_rq);
3429 }
3430 
3431 /**
3432  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3433  * @cfs_rq: cfs_rq to detach from
3434  * @se: sched_entity to detach
3435  *
3436  * Must call update_cfs_rq_load_avg() before this, since we rely on
3437  * cfs_rq->avg.last_update_time being current.
3438  */
3439 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3440 {
3441 
3442 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3443 	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3444 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3445 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3446 	set_tg_cfs_propagate(cfs_rq);
3447 
3448 	cfs_rq_util_change(cfs_rq);
3449 }
3450 
3451 /* Add the load generated by se into cfs_rq's load average */
3452 static inline void
3453 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3454 {
3455 	struct sched_avg *sa = &se->avg;
3456 
3457 	cfs_rq->runnable_load_avg += sa->load_avg;
3458 	cfs_rq->runnable_load_sum += sa->load_sum;
3459 
3460 	if (!sa->last_update_time) {
3461 		attach_entity_load_avg(cfs_rq, se);
3462 		update_tg_load_avg(cfs_rq, 0);
3463 	}
3464 }
3465 
3466 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
3467 static inline void
3468 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3469 {
3470 	cfs_rq->runnable_load_avg =
3471 		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3472 	cfs_rq->runnable_load_sum =
3473 		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3474 }
3475 
3476 #ifndef CONFIG_64BIT
3477 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3478 {
3479 	u64 last_update_time_copy;
3480 	u64 last_update_time;
3481 
3482 	do {
3483 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3484 		smp_rmb();
3485 		last_update_time = cfs_rq->avg.last_update_time;
3486 	} while (last_update_time != last_update_time_copy);
3487 
3488 	return last_update_time;
3489 }
3490 #else
3491 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3492 {
3493 	return cfs_rq->avg.last_update_time;
3494 }
3495 #endif
3496 
3497 /*
3498  * Synchronize entity load avg of dequeued entity without locking
3499  * the previous rq.
3500  */
3501 void sync_entity_load_avg(struct sched_entity *se)
3502 {
3503 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3504 	u64 last_update_time;
3505 
3506 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3507 	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3508 }
3509 
3510 /*
3511  * Task first catches up with cfs_rq, and then subtract
3512  * itself from the cfs_rq (task must be off the queue now).
3513  */
3514 void remove_entity_load_avg(struct sched_entity *se)
3515 {
3516 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3517 
3518 	/*
3519 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3520 	 * post_init_entity_util_avg() which will have added things to the
3521 	 * cfs_rq, so we can remove unconditionally.
3522 	 *
3523 	 * Similarly for groups, they will have passed through
3524 	 * post_init_entity_util_avg() before unregister_sched_fair_group()
3525 	 * calls this.
3526 	 */
3527 
3528 	sync_entity_load_avg(se);
3529 	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3530 	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3531 }
3532 
3533 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3534 {
3535 	return cfs_rq->runnable_load_avg;
3536 }
3537 
3538 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3539 {
3540 	return cfs_rq->avg.load_avg;
3541 }
3542 
3543 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3544 
3545 #else /* CONFIG_SMP */
3546 
3547 static inline int
3548 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3549 {
3550 	return 0;
3551 }
3552 
3553 #define UPDATE_TG	0x0
3554 #define SKIP_AGE_LOAD	0x0
3555 
3556 static inline void update_load_avg(struct sched_entity *se, int not_used1)
3557 {
3558 	cfs_rq_util_change(cfs_rq_of(se));
3559 }
3560 
3561 static inline void
3562 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3563 static inline void
3564 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3565 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3566 
3567 static inline void
3568 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3569 static inline void
3570 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3571 
3572 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3573 {
3574 	return 0;
3575 }
3576 
3577 #endif /* CONFIG_SMP */
3578 
3579 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3580 {
3581 #ifdef CONFIG_SCHED_DEBUG
3582 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3583 
3584 	if (d < 0)
3585 		d = -d;
3586 
3587 	if (d > 3*sysctl_sched_latency)
3588 		schedstat_inc(cfs_rq->nr_spread_over);
3589 #endif
3590 }
3591 
3592 static void
3593 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3594 {
3595 	u64 vruntime = cfs_rq->min_vruntime;
3596 
3597 	/*
3598 	 * The 'current' period is already promised to the current tasks,
3599 	 * however the extra weight of the new task will slow them down a
3600 	 * little, place the new task so that it fits in the slot that
3601 	 * stays open at the end.
3602 	 */
3603 	if (initial && sched_feat(START_DEBIT))
3604 		vruntime += sched_vslice(cfs_rq, se);
3605 
3606 	/* sleeps up to a single latency don't count. */
3607 	if (!initial) {
3608 		unsigned long thresh = sysctl_sched_latency;
3609 
3610 		/*
3611 		 * Halve their sleep time's effect, to allow
3612 		 * for a gentler effect of sleepers:
3613 		 */
3614 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3615 			thresh >>= 1;
3616 
3617 		vruntime -= thresh;
3618 	}
3619 
3620 	/* ensure we never gain time by being placed backwards. */
3621 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3622 }
3623 
3624 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3625 
3626 static inline void check_schedstat_required(void)
3627 {
3628 #ifdef CONFIG_SCHEDSTATS
3629 	if (schedstat_enabled())
3630 		return;
3631 
3632 	/* Force schedstat enabled if a dependent tracepoint is active */
3633 	if (trace_sched_stat_wait_enabled()    ||
3634 			trace_sched_stat_sleep_enabled()   ||
3635 			trace_sched_stat_iowait_enabled()  ||
3636 			trace_sched_stat_blocked_enabled() ||
3637 			trace_sched_stat_runtime_enabled())  {
3638 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3639 			     "stat_blocked and stat_runtime require the "
3640 			     "kernel parameter schedstats=enable or "
3641 			     "kernel.sched_schedstats=1\n");
3642 	}
3643 #endif
3644 }
3645 
3646 
3647 /*
3648  * MIGRATION
3649  *
3650  *	dequeue
3651  *	  update_curr()
3652  *	    update_min_vruntime()
3653  *	  vruntime -= min_vruntime
3654  *
3655  *	enqueue
3656  *	  update_curr()
3657  *	    update_min_vruntime()
3658  *	  vruntime += min_vruntime
3659  *
3660  * this way the vruntime transition between RQs is done when both
3661  * min_vruntime are up-to-date.
3662  *
3663  * WAKEUP (remote)
3664  *
3665  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3666  *	  vruntime -= min_vruntime
3667  *
3668  *	enqueue
3669  *	  update_curr()
3670  *	    update_min_vruntime()
3671  *	  vruntime += min_vruntime
3672  *
3673  * this way we don't have the most up-to-date min_vruntime on the originating
3674  * CPU and an up-to-date min_vruntime on the destination CPU.
3675  */
3676 
3677 static void
3678 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3679 {
3680 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3681 	bool curr = cfs_rq->curr == se;
3682 
3683 	/*
3684 	 * If we're the current task, we must renormalise before calling
3685 	 * update_curr().
3686 	 */
3687 	if (renorm && curr)
3688 		se->vruntime += cfs_rq->min_vruntime;
3689 
3690 	update_curr(cfs_rq);
3691 
3692 	/*
3693 	 * Otherwise, renormalise after, such that we're placed at the current
3694 	 * moment in time, instead of some random moment in the past. Being
3695 	 * placed in the past could significantly boost this task to the
3696 	 * fairness detriment of existing tasks.
3697 	 */
3698 	if (renorm && !curr)
3699 		se->vruntime += cfs_rq->min_vruntime;
3700 
3701 	/*
3702 	 * When enqueuing a sched_entity, we must:
3703 	 *   - Update loads to have both entity and cfs_rq synced with now.
3704 	 *   - Add its load to cfs_rq->runnable_avg
3705 	 *   - For group_entity, update its weight to reflect the new share of
3706 	 *     its group cfs_rq
3707 	 *   - Add its new weight to cfs_rq->load.weight
3708 	 */
3709 	update_load_avg(se, UPDATE_TG);
3710 	enqueue_entity_load_avg(cfs_rq, se);
3711 	update_cfs_shares(se);
3712 	account_entity_enqueue(cfs_rq, se);
3713 
3714 	if (flags & ENQUEUE_WAKEUP)
3715 		place_entity(cfs_rq, se, 0);
3716 
3717 	check_schedstat_required();
3718 	update_stats_enqueue(cfs_rq, se, flags);
3719 	check_spread(cfs_rq, se);
3720 	if (!curr)
3721 		__enqueue_entity(cfs_rq, se);
3722 	se->on_rq = 1;
3723 
3724 	if (cfs_rq->nr_running == 1) {
3725 		list_add_leaf_cfs_rq(cfs_rq);
3726 		check_enqueue_throttle(cfs_rq);
3727 	}
3728 }
3729 
3730 static void __clear_buddies_last(struct sched_entity *se)
3731 {
3732 	for_each_sched_entity(se) {
3733 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3734 		if (cfs_rq->last != se)
3735 			break;
3736 
3737 		cfs_rq->last = NULL;
3738 	}
3739 }
3740 
3741 static void __clear_buddies_next(struct sched_entity *se)
3742 {
3743 	for_each_sched_entity(se) {
3744 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3745 		if (cfs_rq->next != se)
3746 			break;
3747 
3748 		cfs_rq->next = NULL;
3749 	}
3750 }
3751 
3752 static void __clear_buddies_skip(struct sched_entity *se)
3753 {
3754 	for_each_sched_entity(se) {
3755 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3756 		if (cfs_rq->skip != se)
3757 			break;
3758 
3759 		cfs_rq->skip = NULL;
3760 	}
3761 }
3762 
3763 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3764 {
3765 	if (cfs_rq->last == se)
3766 		__clear_buddies_last(se);
3767 
3768 	if (cfs_rq->next == se)
3769 		__clear_buddies_next(se);
3770 
3771 	if (cfs_rq->skip == se)
3772 		__clear_buddies_skip(se);
3773 }
3774 
3775 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3776 
3777 static void
3778 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3779 {
3780 	/*
3781 	 * Update run-time statistics of the 'current'.
3782 	 */
3783 	update_curr(cfs_rq);
3784 
3785 	/*
3786 	 * When dequeuing a sched_entity, we must:
3787 	 *   - Update loads to have both entity and cfs_rq synced with now.
3788 	 *   - Substract its load from the cfs_rq->runnable_avg.
3789 	 *   - Substract its previous weight from cfs_rq->load.weight.
3790 	 *   - For group entity, update its weight to reflect the new share
3791 	 *     of its group cfs_rq.
3792 	 */
3793 	update_load_avg(se, UPDATE_TG);
3794 	dequeue_entity_load_avg(cfs_rq, se);
3795 
3796 	update_stats_dequeue(cfs_rq, se, flags);
3797 
3798 	clear_buddies(cfs_rq, se);
3799 
3800 	if (se != cfs_rq->curr)
3801 		__dequeue_entity(cfs_rq, se);
3802 	se->on_rq = 0;
3803 	account_entity_dequeue(cfs_rq, se);
3804 
3805 	/*
3806 	 * Normalize after update_curr(); which will also have moved
3807 	 * min_vruntime if @se is the one holding it back. But before doing
3808 	 * update_min_vruntime() again, which will discount @se's position and
3809 	 * can move min_vruntime forward still more.
3810 	 */
3811 	if (!(flags & DEQUEUE_SLEEP))
3812 		se->vruntime -= cfs_rq->min_vruntime;
3813 
3814 	/* return excess runtime on last dequeue */
3815 	return_cfs_rq_runtime(cfs_rq);
3816 
3817 	update_cfs_shares(se);
3818 
3819 	/*
3820 	 * Now advance min_vruntime if @se was the entity holding it back,
3821 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3822 	 * put back on, and if we advance min_vruntime, we'll be placed back
3823 	 * further than we started -- ie. we'll be penalized.
3824 	 */
3825 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3826 		update_min_vruntime(cfs_rq);
3827 }
3828 
3829 /*
3830  * Preempt the current task with a newly woken task if needed:
3831  */
3832 static void
3833 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3834 {
3835 	unsigned long ideal_runtime, delta_exec;
3836 	struct sched_entity *se;
3837 	s64 delta;
3838 
3839 	ideal_runtime = sched_slice(cfs_rq, curr);
3840 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3841 	if (delta_exec > ideal_runtime) {
3842 		resched_curr(rq_of(cfs_rq));
3843 		/*
3844 		 * The current task ran long enough, ensure it doesn't get
3845 		 * re-elected due to buddy favours.
3846 		 */
3847 		clear_buddies(cfs_rq, curr);
3848 		return;
3849 	}
3850 
3851 	/*
3852 	 * Ensure that a task that missed wakeup preemption by a
3853 	 * narrow margin doesn't have to wait for a full slice.
3854 	 * This also mitigates buddy induced latencies under load.
3855 	 */
3856 	if (delta_exec < sysctl_sched_min_granularity)
3857 		return;
3858 
3859 	se = __pick_first_entity(cfs_rq);
3860 	delta = curr->vruntime - se->vruntime;
3861 
3862 	if (delta < 0)
3863 		return;
3864 
3865 	if (delta > ideal_runtime)
3866 		resched_curr(rq_of(cfs_rq));
3867 }
3868 
3869 static void
3870 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3871 {
3872 	/* 'current' is not kept within the tree. */
3873 	if (se->on_rq) {
3874 		/*
3875 		 * Any task has to be enqueued before it get to execute on
3876 		 * a CPU. So account for the time it spent waiting on the
3877 		 * runqueue.
3878 		 */
3879 		update_stats_wait_end(cfs_rq, se);
3880 		__dequeue_entity(cfs_rq, se);
3881 		update_load_avg(se, UPDATE_TG);
3882 	}
3883 
3884 	update_stats_curr_start(cfs_rq, se);
3885 	cfs_rq->curr = se;
3886 
3887 	/*
3888 	 * Track our maximum slice length, if the CPU's load is at
3889 	 * least twice that of our own weight (i.e. dont track it
3890 	 * when there are only lesser-weight tasks around):
3891 	 */
3892 	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3893 		schedstat_set(se->statistics.slice_max,
3894 			max((u64)schedstat_val(se->statistics.slice_max),
3895 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
3896 	}
3897 
3898 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3899 }
3900 
3901 static int
3902 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3903 
3904 /*
3905  * Pick the next process, keeping these things in mind, in this order:
3906  * 1) keep things fair between processes/task groups
3907  * 2) pick the "next" process, since someone really wants that to run
3908  * 3) pick the "last" process, for cache locality
3909  * 4) do not run the "skip" process, if something else is available
3910  */
3911 static struct sched_entity *
3912 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3913 {
3914 	struct sched_entity *left = __pick_first_entity(cfs_rq);
3915 	struct sched_entity *se;
3916 
3917 	/*
3918 	 * If curr is set we have to see if its left of the leftmost entity
3919 	 * still in the tree, provided there was anything in the tree at all.
3920 	 */
3921 	if (!left || (curr && entity_before(curr, left)))
3922 		left = curr;
3923 
3924 	se = left; /* ideally we run the leftmost entity */
3925 
3926 	/*
3927 	 * Avoid running the skip buddy, if running something else can
3928 	 * be done without getting too unfair.
3929 	 */
3930 	if (cfs_rq->skip == se) {
3931 		struct sched_entity *second;
3932 
3933 		if (se == curr) {
3934 			second = __pick_first_entity(cfs_rq);
3935 		} else {
3936 			second = __pick_next_entity(se);
3937 			if (!second || (curr && entity_before(curr, second)))
3938 				second = curr;
3939 		}
3940 
3941 		if (second && wakeup_preempt_entity(second, left) < 1)
3942 			se = second;
3943 	}
3944 
3945 	/*
3946 	 * Prefer last buddy, try to return the CPU to a preempted task.
3947 	 */
3948 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3949 		se = cfs_rq->last;
3950 
3951 	/*
3952 	 * Someone really wants this to run. If it's not unfair, run it.
3953 	 */
3954 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3955 		se = cfs_rq->next;
3956 
3957 	clear_buddies(cfs_rq, se);
3958 
3959 	return se;
3960 }
3961 
3962 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3963 
3964 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3965 {
3966 	/*
3967 	 * If still on the runqueue then deactivate_task()
3968 	 * was not called and update_curr() has to be done:
3969 	 */
3970 	if (prev->on_rq)
3971 		update_curr(cfs_rq);
3972 
3973 	/* throttle cfs_rqs exceeding runtime */
3974 	check_cfs_rq_runtime(cfs_rq);
3975 
3976 	check_spread(cfs_rq, prev);
3977 
3978 	if (prev->on_rq) {
3979 		update_stats_wait_start(cfs_rq, prev);
3980 		/* Put 'current' back into the tree. */
3981 		__enqueue_entity(cfs_rq, prev);
3982 		/* in !on_rq case, update occurred at dequeue */
3983 		update_load_avg(prev, 0);
3984 	}
3985 	cfs_rq->curr = NULL;
3986 }
3987 
3988 static void
3989 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3990 {
3991 	/*
3992 	 * Update run-time statistics of the 'current'.
3993 	 */
3994 	update_curr(cfs_rq);
3995 
3996 	/*
3997 	 * Ensure that runnable average is periodically updated.
3998 	 */
3999 	update_load_avg(curr, UPDATE_TG);
4000 	update_cfs_shares(curr);
4001 
4002 #ifdef CONFIG_SCHED_HRTICK
4003 	/*
4004 	 * queued ticks are scheduled to match the slice, so don't bother
4005 	 * validating it and just reschedule.
4006 	 */
4007 	if (queued) {
4008 		resched_curr(rq_of(cfs_rq));
4009 		return;
4010 	}
4011 	/*
4012 	 * don't let the period tick interfere with the hrtick preemption
4013 	 */
4014 	if (!sched_feat(DOUBLE_TICK) &&
4015 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4016 		return;
4017 #endif
4018 
4019 	if (cfs_rq->nr_running > 1)
4020 		check_preempt_tick(cfs_rq, curr);
4021 }
4022 
4023 
4024 /**************************************************
4025  * CFS bandwidth control machinery
4026  */
4027 
4028 #ifdef CONFIG_CFS_BANDWIDTH
4029 
4030 #ifdef HAVE_JUMP_LABEL
4031 static struct static_key __cfs_bandwidth_used;
4032 
4033 static inline bool cfs_bandwidth_used(void)
4034 {
4035 	return static_key_false(&__cfs_bandwidth_used);
4036 }
4037 
4038 void cfs_bandwidth_usage_inc(void)
4039 {
4040 	static_key_slow_inc(&__cfs_bandwidth_used);
4041 }
4042 
4043 void cfs_bandwidth_usage_dec(void)
4044 {
4045 	static_key_slow_dec(&__cfs_bandwidth_used);
4046 }
4047 #else /* HAVE_JUMP_LABEL */
4048 static bool cfs_bandwidth_used(void)
4049 {
4050 	return true;
4051 }
4052 
4053 void cfs_bandwidth_usage_inc(void) {}
4054 void cfs_bandwidth_usage_dec(void) {}
4055 #endif /* HAVE_JUMP_LABEL */
4056 
4057 /*
4058  * default period for cfs group bandwidth.
4059  * default: 0.1s, units: nanoseconds
4060  */
4061 static inline u64 default_cfs_period(void)
4062 {
4063 	return 100000000ULL;
4064 }
4065 
4066 static inline u64 sched_cfs_bandwidth_slice(void)
4067 {
4068 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4069 }
4070 
4071 /*
4072  * Replenish runtime according to assigned quota and update expiration time.
4073  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4074  * additional synchronization around rq->lock.
4075  *
4076  * requires cfs_b->lock
4077  */
4078 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4079 {
4080 	u64 now;
4081 
4082 	if (cfs_b->quota == RUNTIME_INF)
4083 		return;
4084 
4085 	now = sched_clock_cpu(smp_processor_id());
4086 	cfs_b->runtime = cfs_b->quota;
4087 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4088 }
4089 
4090 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4091 {
4092 	return &tg->cfs_bandwidth;
4093 }
4094 
4095 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4096 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4097 {
4098 	if (unlikely(cfs_rq->throttle_count))
4099 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4100 
4101 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4102 }
4103 
4104 /* returns 0 on failure to allocate runtime */
4105 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4106 {
4107 	struct task_group *tg = cfs_rq->tg;
4108 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4109 	u64 amount = 0, min_amount, expires;
4110 
4111 	/* note: this is a positive sum as runtime_remaining <= 0 */
4112 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4113 
4114 	raw_spin_lock(&cfs_b->lock);
4115 	if (cfs_b->quota == RUNTIME_INF)
4116 		amount = min_amount;
4117 	else {
4118 		start_cfs_bandwidth(cfs_b);
4119 
4120 		if (cfs_b->runtime > 0) {
4121 			amount = min(cfs_b->runtime, min_amount);
4122 			cfs_b->runtime -= amount;
4123 			cfs_b->idle = 0;
4124 		}
4125 	}
4126 	expires = cfs_b->runtime_expires;
4127 	raw_spin_unlock(&cfs_b->lock);
4128 
4129 	cfs_rq->runtime_remaining += amount;
4130 	/*
4131 	 * we may have advanced our local expiration to account for allowed
4132 	 * spread between our sched_clock and the one on which runtime was
4133 	 * issued.
4134 	 */
4135 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4136 		cfs_rq->runtime_expires = expires;
4137 
4138 	return cfs_rq->runtime_remaining > 0;
4139 }
4140 
4141 /*
4142  * Note: This depends on the synchronization provided by sched_clock and the
4143  * fact that rq->clock snapshots this value.
4144  */
4145 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4146 {
4147 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4148 
4149 	/* if the deadline is ahead of our clock, nothing to do */
4150 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4151 		return;
4152 
4153 	if (cfs_rq->runtime_remaining < 0)
4154 		return;
4155 
4156 	/*
4157 	 * If the local deadline has passed we have to consider the
4158 	 * possibility that our sched_clock is 'fast' and the global deadline
4159 	 * has not truly expired.
4160 	 *
4161 	 * Fortunately we can check determine whether this the case by checking
4162 	 * whether the global deadline has advanced. It is valid to compare
4163 	 * cfs_b->runtime_expires without any locks since we only care about
4164 	 * exact equality, so a partial write will still work.
4165 	 */
4166 
4167 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
4168 		/* extend local deadline, drift is bounded above by 2 ticks */
4169 		cfs_rq->runtime_expires += TICK_NSEC;
4170 	} else {
4171 		/* global deadline is ahead, expiration has passed */
4172 		cfs_rq->runtime_remaining = 0;
4173 	}
4174 }
4175 
4176 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4177 {
4178 	/* dock delta_exec before expiring quota (as it could span periods) */
4179 	cfs_rq->runtime_remaining -= delta_exec;
4180 	expire_cfs_rq_runtime(cfs_rq);
4181 
4182 	if (likely(cfs_rq->runtime_remaining > 0))
4183 		return;
4184 
4185 	/*
4186 	 * if we're unable to extend our runtime we resched so that the active
4187 	 * hierarchy can be throttled
4188 	 */
4189 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4190 		resched_curr(rq_of(cfs_rq));
4191 }
4192 
4193 static __always_inline
4194 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4195 {
4196 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4197 		return;
4198 
4199 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4200 }
4201 
4202 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4203 {
4204 	return cfs_bandwidth_used() && cfs_rq->throttled;
4205 }
4206 
4207 /* check whether cfs_rq, or any parent, is throttled */
4208 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4209 {
4210 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4211 }
4212 
4213 /*
4214  * Ensure that neither of the group entities corresponding to src_cpu or
4215  * dest_cpu are members of a throttled hierarchy when performing group
4216  * load-balance operations.
4217  */
4218 static inline int throttled_lb_pair(struct task_group *tg,
4219 				    int src_cpu, int dest_cpu)
4220 {
4221 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4222 
4223 	src_cfs_rq = tg->cfs_rq[src_cpu];
4224 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4225 
4226 	return throttled_hierarchy(src_cfs_rq) ||
4227 	       throttled_hierarchy(dest_cfs_rq);
4228 }
4229 
4230 /* updated child weight may affect parent so we have to do this bottom up */
4231 static int tg_unthrottle_up(struct task_group *tg, void *data)
4232 {
4233 	struct rq *rq = data;
4234 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4235 
4236 	cfs_rq->throttle_count--;
4237 	if (!cfs_rq->throttle_count) {
4238 		/* adjust cfs_rq_clock_task() */
4239 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4240 					     cfs_rq->throttled_clock_task;
4241 	}
4242 
4243 	return 0;
4244 }
4245 
4246 static int tg_throttle_down(struct task_group *tg, void *data)
4247 {
4248 	struct rq *rq = data;
4249 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4250 
4251 	/* group is entering throttled state, stop time */
4252 	if (!cfs_rq->throttle_count)
4253 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4254 	cfs_rq->throttle_count++;
4255 
4256 	return 0;
4257 }
4258 
4259 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4260 {
4261 	struct rq *rq = rq_of(cfs_rq);
4262 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4263 	struct sched_entity *se;
4264 	long task_delta, dequeue = 1;
4265 	bool empty;
4266 
4267 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4268 
4269 	/* freeze hierarchy runnable averages while throttled */
4270 	rcu_read_lock();
4271 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4272 	rcu_read_unlock();
4273 
4274 	task_delta = cfs_rq->h_nr_running;
4275 	for_each_sched_entity(se) {
4276 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4277 		/* throttled entity or throttle-on-deactivate */
4278 		if (!se->on_rq)
4279 			break;
4280 
4281 		if (dequeue)
4282 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4283 		qcfs_rq->h_nr_running -= task_delta;
4284 
4285 		if (qcfs_rq->load.weight)
4286 			dequeue = 0;
4287 	}
4288 
4289 	if (!se)
4290 		sub_nr_running(rq, task_delta);
4291 
4292 	cfs_rq->throttled = 1;
4293 	cfs_rq->throttled_clock = rq_clock(rq);
4294 	raw_spin_lock(&cfs_b->lock);
4295 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4296 
4297 	/*
4298 	 * Add to the _head_ of the list, so that an already-started
4299 	 * distribute_cfs_runtime will not see us
4300 	 */
4301 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4302 
4303 	/*
4304 	 * If we're the first throttled task, make sure the bandwidth
4305 	 * timer is running.
4306 	 */
4307 	if (empty)
4308 		start_cfs_bandwidth(cfs_b);
4309 
4310 	raw_spin_unlock(&cfs_b->lock);
4311 }
4312 
4313 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4314 {
4315 	struct rq *rq = rq_of(cfs_rq);
4316 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4317 	struct sched_entity *se;
4318 	int enqueue = 1;
4319 	long task_delta;
4320 
4321 	se = cfs_rq->tg->se[cpu_of(rq)];
4322 
4323 	cfs_rq->throttled = 0;
4324 
4325 	update_rq_clock(rq);
4326 
4327 	raw_spin_lock(&cfs_b->lock);
4328 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4329 	list_del_rcu(&cfs_rq->throttled_list);
4330 	raw_spin_unlock(&cfs_b->lock);
4331 
4332 	/* update hierarchical throttle state */
4333 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4334 
4335 	if (!cfs_rq->load.weight)
4336 		return;
4337 
4338 	task_delta = cfs_rq->h_nr_running;
4339 	for_each_sched_entity(se) {
4340 		if (se->on_rq)
4341 			enqueue = 0;
4342 
4343 		cfs_rq = cfs_rq_of(se);
4344 		if (enqueue)
4345 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4346 		cfs_rq->h_nr_running += task_delta;
4347 
4348 		if (cfs_rq_throttled(cfs_rq))
4349 			break;
4350 	}
4351 
4352 	if (!se)
4353 		add_nr_running(rq, task_delta);
4354 
4355 	/* determine whether we need to wake up potentially idle cpu */
4356 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4357 		resched_curr(rq);
4358 }
4359 
4360 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4361 		u64 remaining, u64 expires)
4362 {
4363 	struct cfs_rq *cfs_rq;
4364 	u64 runtime;
4365 	u64 starting_runtime = remaining;
4366 
4367 	rcu_read_lock();
4368 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4369 				throttled_list) {
4370 		struct rq *rq = rq_of(cfs_rq);
4371 		struct rq_flags rf;
4372 
4373 		rq_lock(rq, &rf);
4374 		if (!cfs_rq_throttled(cfs_rq))
4375 			goto next;
4376 
4377 		runtime = -cfs_rq->runtime_remaining + 1;
4378 		if (runtime > remaining)
4379 			runtime = remaining;
4380 		remaining -= runtime;
4381 
4382 		cfs_rq->runtime_remaining += runtime;
4383 		cfs_rq->runtime_expires = expires;
4384 
4385 		/* we check whether we're throttled above */
4386 		if (cfs_rq->runtime_remaining > 0)
4387 			unthrottle_cfs_rq(cfs_rq);
4388 
4389 next:
4390 		rq_unlock(rq, &rf);
4391 
4392 		if (!remaining)
4393 			break;
4394 	}
4395 	rcu_read_unlock();
4396 
4397 	return starting_runtime - remaining;
4398 }
4399 
4400 /*
4401  * Responsible for refilling a task_group's bandwidth and unthrottling its
4402  * cfs_rqs as appropriate. If there has been no activity within the last
4403  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4404  * used to track this state.
4405  */
4406 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4407 {
4408 	u64 runtime, runtime_expires;
4409 	int throttled;
4410 
4411 	/* no need to continue the timer with no bandwidth constraint */
4412 	if (cfs_b->quota == RUNTIME_INF)
4413 		goto out_deactivate;
4414 
4415 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4416 	cfs_b->nr_periods += overrun;
4417 
4418 	/*
4419 	 * idle depends on !throttled (for the case of a large deficit), and if
4420 	 * we're going inactive then everything else can be deferred
4421 	 */
4422 	if (cfs_b->idle && !throttled)
4423 		goto out_deactivate;
4424 
4425 	__refill_cfs_bandwidth_runtime(cfs_b);
4426 
4427 	if (!throttled) {
4428 		/* mark as potentially idle for the upcoming period */
4429 		cfs_b->idle = 1;
4430 		return 0;
4431 	}
4432 
4433 	/* account preceding periods in which throttling occurred */
4434 	cfs_b->nr_throttled += overrun;
4435 
4436 	runtime_expires = cfs_b->runtime_expires;
4437 
4438 	/*
4439 	 * This check is repeated as we are holding onto the new bandwidth while
4440 	 * we unthrottle. This can potentially race with an unthrottled group
4441 	 * trying to acquire new bandwidth from the global pool. This can result
4442 	 * in us over-using our runtime if it is all used during this loop, but
4443 	 * only by limited amounts in that extreme case.
4444 	 */
4445 	while (throttled && cfs_b->runtime > 0) {
4446 		runtime = cfs_b->runtime;
4447 		raw_spin_unlock(&cfs_b->lock);
4448 		/* we can't nest cfs_b->lock while distributing bandwidth */
4449 		runtime = distribute_cfs_runtime(cfs_b, runtime,
4450 						 runtime_expires);
4451 		raw_spin_lock(&cfs_b->lock);
4452 
4453 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4454 
4455 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4456 	}
4457 
4458 	/*
4459 	 * While we are ensured activity in the period following an
4460 	 * unthrottle, this also covers the case in which the new bandwidth is
4461 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4462 	 * timer to remain active while there are any throttled entities.)
4463 	 */
4464 	cfs_b->idle = 0;
4465 
4466 	return 0;
4467 
4468 out_deactivate:
4469 	return 1;
4470 }
4471 
4472 /* a cfs_rq won't donate quota below this amount */
4473 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4474 /* minimum remaining period time to redistribute slack quota */
4475 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4476 /* how long we wait to gather additional slack before distributing */
4477 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4478 
4479 /*
4480  * Are we near the end of the current quota period?
4481  *
4482  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4483  * hrtimer base being cleared by hrtimer_start. In the case of
4484  * migrate_hrtimers, base is never cleared, so we are fine.
4485  */
4486 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4487 {
4488 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4489 	u64 remaining;
4490 
4491 	/* if the call-back is running a quota refresh is already occurring */
4492 	if (hrtimer_callback_running(refresh_timer))
4493 		return 1;
4494 
4495 	/* is a quota refresh about to occur? */
4496 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4497 	if (remaining < min_expire)
4498 		return 1;
4499 
4500 	return 0;
4501 }
4502 
4503 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4504 {
4505 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4506 
4507 	/* if there's a quota refresh soon don't bother with slack */
4508 	if (runtime_refresh_within(cfs_b, min_left))
4509 		return;
4510 
4511 	hrtimer_start(&cfs_b->slack_timer,
4512 			ns_to_ktime(cfs_bandwidth_slack_period),
4513 			HRTIMER_MODE_REL);
4514 }
4515 
4516 /* we know any runtime found here is valid as update_curr() precedes return */
4517 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4518 {
4519 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4520 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4521 
4522 	if (slack_runtime <= 0)
4523 		return;
4524 
4525 	raw_spin_lock(&cfs_b->lock);
4526 	if (cfs_b->quota != RUNTIME_INF &&
4527 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4528 		cfs_b->runtime += slack_runtime;
4529 
4530 		/* we are under rq->lock, defer unthrottling using a timer */
4531 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4532 		    !list_empty(&cfs_b->throttled_cfs_rq))
4533 			start_cfs_slack_bandwidth(cfs_b);
4534 	}
4535 	raw_spin_unlock(&cfs_b->lock);
4536 
4537 	/* even if it's not valid for return we don't want to try again */
4538 	cfs_rq->runtime_remaining -= slack_runtime;
4539 }
4540 
4541 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4542 {
4543 	if (!cfs_bandwidth_used())
4544 		return;
4545 
4546 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4547 		return;
4548 
4549 	__return_cfs_rq_runtime(cfs_rq);
4550 }
4551 
4552 /*
4553  * This is done with a timer (instead of inline with bandwidth return) since
4554  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4555  */
4556 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4557 {
4558 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4559 	u64 expires;
4560 
4561 	/* confirm we're still not at a refresh boundary */
4562 	raw_spin_lock(&cfs_b->lock);
4563 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4564 		raw_spin_unlock(&cfs_b->lock);
4565 		return;
4566 	}
4567 
4568 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4569 		runtime = cfs_b->runtime;
4570 
4571 	expires = cfs_b->runtime_expires;
4572 	raw_spin_unlock(&cfs_b->lock);
4573 
4574 	if (!runtime)
4575 		return;
4576 
4577 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4578 
4579 	raw_spin_lock(&cfs_b->lock);
4580 	if (expires == cfs_b->runtime_expires)
4581 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4582 	raw_spin_unlock(&cfs_b->lock);
4583 }
4584 
4585 /*
4586  * When a group wakes up we want to make sure that its quota is not already
4587  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4588  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4589  */
4590 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4591 {
4592 	if (!cfs_bandwidth_used())
4593 		return;
4594 
4595 	/* an active group must be handled by the update_curr()->put() path */
4596 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4597 		return;
4598 
4599 	/* ensure the group is not already throttled */
4600 	if (cfs_rq_throttled(cfs_rq))
4601 		return;
4602 
4603 	/* update runtime allocation */
4604 	account_cfs_rq_runtime(cfs_rq, 0);
4605 	if (cfs_rq->runtime_remaining <= 0)
4606 		throttle_cfs_rq(cfs_rq);
4607 }
4608 
4609 static void sync_throttle(struct task_group *tg, int cpu)
4610 {
4611 	struct cfs_rq *pcfs_rq, *cfs_rq;
4612 
4613 	if (!cfs_bandwidth_used())
4614 		return;
4615 
4616 	if (!tg->parent)
4617 		return;
4618 
4619 	cfs_rq = tg->cfs_rq[cpu];
4620 	pcfs_rq = tg->parent->cfs_rq[cpu];
4621 
4622 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4623 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4624 }
4625 
4626 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4627 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4628 {
4629 	if (!cfs_bandwidth_used())
4630 		return false;
4631 
4632 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4633 		return false;
4634 
4635 	/*
4636 	 * it's possible for a throttled entity to be forced into a running
4637 	 * state (e.g. set_curr_task), in this case we're finished.
4638 	 */
4639 	if (cfs_rq_throttled(cfs_rq))
4640 		return true;
4641 
4642 	throttle_cfs_rq(cfs_rq);
4643 	return true;
4644 }
4645 
4646 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4647 {
4648 	struct cfs_bandwidth *cfs_b =
4649 		container_of(timer, struct cfs_bandwidth, slack_timer);
4650 
4651 	do_sched_cfs_slack_timer(cfs_b);
4652 
4653 	return HRTIMER_NORESTART;
4654 }
4655 
4656 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4657 {
4658 	struct cfs_bandwidth *cfs_b =
4659 		container_of(timer, struct cfs_bandwidth, period_timer);
4660 	int overrun;
4661 	int idle = 0;
4662 
4663 	raw_spin_lock(&cfs_b->lock);
4664 	for (;;) {
4665 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4666 		if (!overrun)
4667 			break;
4668 
4669 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
4670 	}
4671 	if (idle)
4672 		cfs_b->period_active = 0;
4673 	raw_spin_unlock(&cfs_b->lock);
4674 
4675 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4676 }
4677 
4678 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4679 {
4680 	raw_spin_lock_init(&cfs_b->lock);
4681 	cfs_b->runtime = 0;
4682 	cfs_b->quota = RUNTIME_INF;
4683 	cfs_b->period = ns_to_ktime(default_cfs_period());
4684 
4685 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4686 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4687 	cfs_b->period_timer.function = sched_cfs_period_timer;
4688 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4689 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4690 }
4691 
4692 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4693 {
4694 	cfs_rq->runtime_enabled = 0;
4695 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4696 }
4697 
4698 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4699 {
4700 	lockdep_assert_held(&cfs_b->lock);
4701 
4702 	if (!cfs_b->period_active) {
4703 		cfs_b->period_active = 1;
4704 		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4705 		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4706 	}
4707 }
4708 
4709 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4710 {
4711 	/* init_cfs_bandwidth() was not called */
4712 	if (!cfs_b->throttled_cfs_rq.next)
4713 		return;
4714 
4715 	hrtimer_cancel(&cfs_b->period_timer);
4716 	hrtimer_cancel(&cfs_b->slack_timer);
4717 }
4718 
4719 /*
4720  * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
4721  *
4722  * The race is harmless, since modifying bandwidth settings of unhooked group
4723  * bits doesn't do much.
4724  */
4725 
4726 /* cpu online calback */
4727 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4728 {
4729 	struct task_group *tg;
4730 
4731 	lockdep_assert_held(&rq->lock);
4732 
4733 	rcu_read_lock();
4734 	list_for_each_entry_rcu(tg, &task_groups, list) {
4735 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4736 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4737 
4738 		raw_spin_lock(&cfs_b->lock);
4739 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4740 		raw_spin_unlock(&cfs_b->lock);
4741 	}
4742 	rcu_read_unlock();
4743 }
4744 
4745 /* cpu offline callback */
4746 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4747 {
4748 	struct task_group *tg;
4749 
4750 	lockdep_assert_held(&rq->lock);
4751 
4752 	rcu_read_lock();
4753 	list_for_each_entry_rcu(tg, &task_groups, list) {
4754 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4755 
4756 		if (!cfs_rq->runtime_enabled)
4757 			continue;
4758 
4759 		/*
4760 		 * clock_task is not advancing so we just need to make sure
4761 		 * there's some valid quota amount
4762 		 */
4763 		cfs_rq->runtime_remaining = 1;
4764 		/*
4765 		 * Offline rq is schedulable till cpu is completely disabled
4766 		 * in take_cpu_down(), so we prevent new cfs throttling here.
4767 		 */
4768 		cfs_rq->runtime_enabled = 0;
4769 
4770 		if (cfs_rq_throttled(cfs_rq))
4771 			unthrottle_cfs_rq(cfs_rq);
4772 	}
4773 	rcu_read_unlock();
4774 }
4775 
4776 #else /* CONFIG_CFS_BANDWIDTH */
4777 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4778 {
4779 	return rq_clock_task(rq_of(cfs_rq));
4780 }
4781 
4782 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4783 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4784 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4785 static inline void sync_throttle(struct task_group *tg, int cpu) {}
4786 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4787 
4788 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4789 {
4790 	return 0;
4791 }
4792 
4793 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4794 {
4795 	return 0;
4796 }
4797 
4798 static inline int throttled_lb_pair(struct task_group *tg,
4799 				    int src_cpu, int dest_cpu)
4800 {
4801 	return 0;
4802 }
4803 
4804 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4805 
4806 #ifdef CONFIG_FAIR_GROUP_SCHED
4807 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4808 #endif
4809 
4810 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4811 {
4812 	return NULL;
4813 }
4814 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4815 static inline void update_runtime_enabled(struct rq *rq) {}
4816 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4817 
4818 #endif /* CONFIG_CFS_BANDWIDTH */
4819 
4820 /**************************************************
4821  * CFS operations on tasks:
4822  */
4823 
4824 #ifdef CONFIG_SCHED_HRTICK
4825 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4826 {
4827 	struct sched_entity *se = &p->se;
4828 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4829 
4830 	SCHED_WARN_ON(task_rq(p) != rq);
4831 
4832 	if (rq->cfs.h_nr_running > 1) {
4833 		u64 slice = sched_slice(cfs_rq, se);
4834 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4835 		s64 delta = slice - ran;
4836 
4837 		if (delta < 0) {
4838 			if (rq->curr == p)
4839 				resched_curr(rq);
4840 			return;
4841 		}
4842 		hrtick_start(rq, delta);
4843 	}
4844 }
4845 
4846 /*
4847  * called from enqueue/dequeue and updates the hrtick when the
4848  * current task is from our class and nr_running is low enough
4849  * to matter.
4850  */
4851 static void hrtick_update(struct rq *rq)
4852 {
4853 	struct task_struct *curr = rq->curr;
4854 
4855 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4856 		return;
4857 
4858 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4859 		hrtick_start_fair(rq, curr);
4860 }
4861 #else /* !CONFIG_SCHED_HRTICK */
4862 static inline void
4863 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4864 {
4865 }
4866 
4867 static inline void hrtick_update(struct rq *rq)
4868 {
4869 }
4870 #endif
4871 
4872 /*
4873  * The enqueue_task method is called before nr_running is
4874  * increased. Here we update the fair scheduling stats and
4875  * then put the task into the rbtree:
4876  */
4877 static void
4878 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4879 {
4880 	struct cfs_rq *cfs_rq;
4881 	struct sched_entity *se = &p->se;
4882 
4883 	/*
4884 	 * If in_iowait is set, the code below may not trigger any cpufreq
4885 	 * utilization updates, so do it here explicitly with the IOWAIT flag
4886 	 * passed.
4887 	 */
4888 	if (p->in_iowait)
4889 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
4890 
4891 	for_each_sched_entity(se) {
4892 		if (se->on_rq)
4893 			break;
4894 		cfs_rq = cfs_rq_of(se);
4895 		enqueue_entity(cfs_rq, se, flags);
4896 
4897 		/*
4898 		 * end evaluation on encountering a throttled cfs_rq
4899 		 *
4900 		 * note: in the case of encountering a throttled cfs_rq we will
4901 		 * post the final h_nr_running increment below.
4902 		 */
4903 		if (cfs_rq_throttled(cfs_rq))
4904 			break;
4905 		cfs_rq->h_nr_running++;
4906 
4907 		flags = ENQUEUE_WAKEUP;
4908 	}
4909 
4910 	for_each_sched_entity(se) {
4911 		cfs_rq = cfs_rq_of(se);
4912 		cfs_rq->h_nr_running++;
4913 
4914 		if (cfs_rq_throttled(cfs_rq))
4915 			break;
4916 
4917 		update_load_avg(se, UPDATE_TG);
4918 		update_cfs_shares(se);
4919 	}
4920 
4921 	if (!se)
4922 		add_nr_running(rq, 1);
4923 
4924 	hrtick_update(rq);
4925 }
4926 
4927 static void set_next_buddy(struct sched_entity *se);
4928 
4929 /*
4930  * The dequeue_task method is called before nr_running is
4931  * decreased. We remove the task from the rbtree and
4932  * update the fair scheduling stats:
4933  */
4934 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4935 {
4936 	struct cfs_rq *cfs_rq;
4937 	struct sched_entity *se = &p->se;
4938 	int task_sleep = flags & DEQUEUE_SLEEP;
4939 
4940 	for_each_sched_entity(se) {
4941 		cfs_rq = cfs_rq_of(se);
4942 		dequeue_entity(cfs_rq, se, flags);
4943 
4944 		/*
4945 		 * end evaluation on encountering a throttled cfs_rq
4946 		 *
4947 		 * note: in the case of encountering a throttled cfs_rq we will
4948 		 * post the final h_nr_running decrement below.
4949 		*/
4950 		if (cfs_rq_throttled(cfs_rq))
4951 			break;
4952 		cfs_rq->h_nr_running--;
4953 
4954 		/* Don't dequeue parent if it has other entities besides us */
4955 		if (cfs_rq->load.weight) {
4956 			/* Avoid re-evaluating load for this entity: */
4957 			se = parent_entity(se);
4958 			/*
4959 			 * Bias pick_next to pick a task from this cfs_rq, as
4960 			 * p is sleeping when it is within its sched_slice.
4961 			 */
4962 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4963 				set_next_buddy(se);
4964 			break;
4965 		}
4966 		flags |= DEQUEUE_SLEEP;
4967 	}
4968 
4969 	for_each_sched_entity(se) {
4970 		cfs_rq = cfs_rq_of(se);
4971 		cfs_rq->h_nr_running--;
4972 
4973 		if (cfs_rq_throttled(cfs_rq))
4974 			break;
4975 
4976 		update_load_avg(se, UPDATE_TG);
4977 		update_cfs_shares(se);
4978 	}
4979 
4980 	if (!se)
4981 		sub_nr_running(rq, 1);
4982 
4983 	hrtick_update(rq);
4984 }
4985 
4986 #ifdef CONFIG_SMP
4987 
4988 /* Working cpumask for: load_balance, load_balance_newidle. */
4989 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4990 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4991 
4992 #ifdef CONFIG_NO_HZ_COMMON
4993 /*
4994  * per rq 'load' arrray crap; XXX kill this.
4995  */
4996 
4997 /*
4998  * The exact cpuload calculated at every tick would be:
4999  *
5000  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5001  *
5002  * If a cpu misses updates for n ticks (as it was idle) and update gets
5003  * called on the n+1-th tick when cpu may be busy, then we have:
5004  *
5005  *   load_n   = (1 - 1/2^i)^n * load_0
5006  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5007  *
5008  * decay_load_missed() below does efficient calculation of
5009  *
5010  *   load' = (1 - 1/2^i)^n * load
5011  *
5012  * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5013  * This allows us to precompute the above in said factors, thereby allowing the
5014  * reduction of an arbitrary n in O(log_2 n) steps. (See also
5015  * fixed_power_int())
5016  *
5017  * The calculation is approximated on a 128 point scale.
5018  */
5019 #define DEGRADE_SHIFT		7
5020 
5021 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5022 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5023 	{   0,   0,  0,  0,  0,  0, 0, 0 },
5024 	{  64,  32,  8,  0,  0,  0, 0, 0 },
5025 	{  96,  72, 40, 12,  1,  0, 0, 0 },
5026 	{ 112,  98, 75, 43, 15,  1, 0, 0 },
5027 	{ 120, 112, 98, 76, 45, 16, 2, 0 }
5028 };
5029 
5030 /*
5031  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5032  * would be when CPU is idle and so we just decay the old load without
5033  * adding any new load.
5034  */
5035 static unsigned long
5036 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5037 {
5038 	int j = 0;
5039 
5040 	if (!missed_updates)
5041 		return load;
5042 
5043 	if (missed_updates >= degrade_zero_ticks[idx])
5044 		return 0;
5045 
5046 	if (idx == 1)
5047 		return load >> missed_updates;
5048 
5049 	while (missed_updates) {
5050 		if (missed_updates % 2)
5051 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5052 
5053 		missed_updates >>= 1;
5054 		j++;
5055 	}
5056 	return load;
5057 }
5058 #endif /* CONFIG_NO_HZ_COMMON */
5059 
5060 /**
5061  * __cpu_load_update - update the rq->cpu_load[] statistics
5062  * @this_rq: The rq to update statistics for
5063  * @this_load: The current load
5064  * @pending_updates: The number of missed updates
5065  *
5066  * Update rq->cpu_load[] statistics. This function is usually called every
5067  * scheduler tick (TICK_NSEC).
5068  *
5069  * This function computes a decaying average:
5070  *
5071  *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5072  *
5073  * Because of NOHZ it might not get called on every tick which gives need for
5074  * the @pending_updates argument.
5075  *
5076  *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5077  *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5078  *             = A * (A * load[i]_n-2 + B) + B
5079  *             = A * (A * (A * load[i]_n-3 + B) + B) + B
5080  *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5081  *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5082  *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5083  *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5084  *
5085  * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5086  * any change in load would have resulted in the tick being turned back on.
5087  *
5088  * For regular NOHZ, this reduces to:
5089  *
5090  *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
5091  *
5092  * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5093  * term.
5094  */
5095 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5096 			    unsigned long pending_updates)
5097 {
5098 	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5099 	int i, scale;
5100 
5101 	this_rq->nr_load_updates++;
5102 
5103 	/* Update our load: */
5104 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5105 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5106 		unsigned long old_load, new_load;
5107 
5108 		/* scale is effectively 1 << i now, and >> i divides by scale */
5109 
5110 		old_load = this_rq->cpu_load[i];
5111 #ifdef CONFIG_NO_HZ_COMMON
5112 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5113 		if (tickless_load) {
5114 			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5115 			/*
5116 			 * old_load can never be a negative value because a
5117 			 * decayed tickless_load cannot be greater than the
5118 			 * original tickless_load.
5119 			 */
5120 			old_load += tickless_load;
5121 		}
5122 #endif
5123 		new_load = this_load;
5124 		/*
5125 		 * Round up the averaging division if load is increasing. This
5126 		 * prevents us from getting stuck on 9 if the load is 10, for
5127 		 * example.
5128 		 */
5129 		if (new_load > old_load)
5130 			new_load += scale - 1;
5131 
5132 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5133 	}
5134 
5135 	sched_avg_update(this_rq);
5136 }
5137 
5138 /* Used instead of source_load when we know the type == 0 */
5139 static unsigned long weighted_cpuload(struct rq *rq)
5140 {
5141 	return cfs_rq_runnable_load_avg(&rq->cfs);
5142 }
5143 
5144 #ifdef CONFIG_NO_HZ_COMMON
5145 /*
5146  * There is no sane way to deal with nohz on smp when using jiffies because the
5147  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5148  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5149  *
5150  * Therefore we need to avoid the delta approach from the regular tick when
5151  * possible since that would seriously skew the load calculation. This is why we
5152  * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5153  * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5154  * loop exit, nohz_idle_balance, nohz full exit...)
5155  *
5156  * This means we might still be one tick off for nohz periods.
5157  */
5158 
5159 static void cpu_load_update_nohz(struct rq *this_rq,
5160 				 unsigned long curr_jiffies,
5161 				 unsigned long load)
5162 {
5163 	unsigned long pending_updates;
5164 
5165 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5166 	if (pending_updates) {
5167 		this_rq->last_load_update_tick = curr_jiffies;
5168 		/*
5169 		 * In the regular NOHZ case, we were idle, this means load 0.
5170 		 * In the NOHZ_FULL case, we were non-idle, we should consider
5171 		 * its weighted load.
5172 		 */
5173 		cpu_load_update(this_rq, load, pending_updates);
5174 	}
5175 }
5176 
5177 /*
5178  * Called from nohz_idle_balance() to update the load ratings before doing the
5179  * idle balance.
5180  */
5181 static void cpu_load_update_idle(struct rq *this_rq)
5182 {
5183 	/*
5184 	 * bail if there's load or we're actually up-to-date.
5185 	 */
5186 	if (weighted_cpuload(this_rq))
5187 		return;
5188 
5189 	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5190 }
5191 
5192 /*
5193  * Record CPU load on nohz entry so we know the tickless load to account
5194  * on nohz exit. cpu_load[0] happens then to be updated more frequently
5195  * than other cpu_load[idx] but it should be fine as cpu_load readers
5196  * shouldn't rely into synchronized cpu_load[*] updates.
5197  */
5198 void cpu_load_update_nohz_start(void)
5199 {
5200 	struct rq *this_rq = this_rq();
5201 
5202 	/*
5203 	 * This is all lockless but should be fine. If weighted_cpuload changes
5204 	 * concurrently we'll exit nohz. And cpu_load write can race with
5205 	 * cpu_load_update_idle() but both updater would be writing the same.
5206 	 */
5207 	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5208 }
5209 
5210 /*
5211  * Account the tickless load in the end of a nohz frame.
5212  */
5213 void cpu_load_update_nohz_stop(void)
5214 {
5215 	unsigned long curr_jiffies = READ_ONCE(jiffies);
5216 	struct rq *this_rq = this_rq();
5217 	unsigned long load;
5218 	struct rq_flags rf;
5219 
5220 	if (curr_jiffies == this_rq->last_load_update_tick)
5221 		return;
5222 
5223 	load = weighted_cpuload(this_rq);
5224 	rq_lock(this_rq, &rf);
5225 	update_rq_clock(this_rq);
5226 	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5227 	rq_unlock(this_rq, &rf);
5228 }
5229 #else /* !CONFIG_NO_HZ_COMMON */
5230 static inline void cpu_load_update_nohz(struct rq *this_rq,
5231 					unsigned long curr_jiffies,
5232 					unsigned long load) { }
5233 #endif /* CONFIG_NO_HZ_COMMON */
5234 
5235 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5236 {
5237 #ifdef CONFIG_NO_HZ_COMMON
5238 	/* See the mess around cpu_load_update_nohz(). */
5239 	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5240 #endif
5241 	cpu_load_update(this_rq, load, 1);
5242 }
5243 
5244 /*
5245  * Called from scheduler_tick()
5246  */
5247 void cpu_load_update_active(struct rq *this_rq)
5248 {
5249 	unsigned long load = weighted_cpuload(this_rq);
5250 
5251 	if (tick_nohz_tick_stopped())
5252 		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5253 	else
5254 		cpu_load_update_periodic(this_rq, load);
5255 }
5256 
5257 /*
5258  * Return a low guess at the load of a migration-source cpu weighted
5259  * according to the scheduling class and "nice" value.
5260  *
5261  * We want to under-estimate the load of migration sources, to
5262  * balance conservatively.
5263  */
5264 static unsigned long source_load(int cpu, int type)
5265 {
5266 	struct rq *rq = cpu_rq(cpu);
5267 	unsigned long total = weighted_cpuload(rq);
5268 
5269 	if (type == 0 || !sched_feat(LB_BIAS))
5270 		return total;
5271 
5272 	return min(rq->cpu_load[type-1], total);
5273 }
5274 
5275 /*
5276  * Return a high guess at the load of a migration-target cpu weighted
5277  * according to the scheduling class and "nice" value.
5278  */
5279 static unsigned long target_load(int cpu, int type)
5280 {
5281 	struct rq *rq = cpu_rq(cpu);
5282 	unsigned long total = weighted_cpuload(rq);
5283 
5284 	if (type == 0 || !sched_feat(LB_BIAS))
5285 		return total;
5286 
5287 	return max(rq->cpu_load[type-1], total);
5288 }
5289 
5290 static unsigned long capacity_of(int cpu)
5291 {
5292 	return cpu_rq(cpu)->cpu_capacity;
5293 }
5294 
5295 static unsigned long capacity_orig_of(int cpu)
5296 {
5297 	return cpu_rq(cpu)->cpu_capacity_orig;
5298 }
5299 
5300 static unsigned long cpu_avg_load_per_task(int cpu)
5301 {
5302 	struct rq *rq = cpu_rq(cpu);
5303 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5304 	unsigned long load_avg = weighted_cpuload(rq);
5305 
5306 	if (nr_running)
5307 		return load_avg / nr_running;
5308 
5309 	return 0;
5310 }
5311 
5312 static void record_wakee(struct task_struct *p)
5313 {
5314 	/*
5315 	 * Only decay a single time; tasks that have less then 1 wakeup per
5316 	 * jiffy will not have built up many flips.
5317 	 */
5318 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5319 		current->wakee_flips >>= 1;
5320 		current->wakee_flip_decay_ts = jiffies;
5321 	}
5322 
5323 	if (current->last_wakee != p) {
5324 		current->last_wakee = p;
5325 		current->wakee_flips++;
5326 	}
5327 }
5328 
5329 /*
5330  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5331  *
5332  * A waker of many should wake a different task than the one last awakened
5333  * at a frequency roughly N times higher than one of its wakees.
5334  *
5335  * In order to determine whether we should let the load spread vs consolidating
5336  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5337  * partner, and a factor of lls_size higher frequency in the other.
5338  *
5339  * With both conditions met, we can be relatively sure that the relationship is
5340  * non-monogamous, with partner count exceeding socket size.
5341  *
5342  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5343  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5344  * socket size.
5345  */
5346 static int wake_wide(struct task_struct *p)
5347 {
5348 	unsigned int master = current->wakee_flips;
5349 	unsigned int slave = p->wakee_flips;
5350 	int factor = this_cpu_read(sd_llc_size);
5351 
5352 	if (master < slave)
5353 		swap(master, slave);
5354 	if (slave < factor || master < slave * factor)
5355 		return 0;
5356 	return 1;
5357 }
5358 
5359 struct llc_stats {
5360 	unsigned long	nr_running;
5361 	unsigned long	load;
5362 	unsigned long	capacity;
5363 	int		has_capacity;
5364 };
5365 
5366 static bool get_llc_stats(struct llc_stats *stats, int cpu)
5367 {
5368 	struct sched_domain_shared *sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5369 
5370 	if (!sds)
5371 		return false;
5372 
5373 	stats->nr_running	= READ_ONCE(sds->nr_running);
5374 	stats->load		= READ_ONCE(sds->load);
5375 	stats->capacity		= READ_ONCE(sds->capacity);
5376 	stats->has_capacity	= stats->nr_running < per_cpu(sd_llc_size, cpu);
5377 
5378 	return true;
5379 }
5380 
5381 /*
5382  * Can a task be moved from prev_cpu to this_cpu without causing a load
5383  * imbalance that would trigger the load balancer?
5384  *
5385  * Since we're running on 'stale' values, we might in fact create an imbalance
5386  * but recomputing these values is expensive, as that'd mean iteration 2 cache
5387  * domains worth of CPUs.
5388  */
5389 static bool
5390 wake_affine_llc(struct sched_domain *sd, struct task_struct *p,
5391 		int this_cpu, int prev_cpu, int sync)
5392 {
5393 	struct llc_stats prev_stats, this_stats;
5394 	s64 this_eff_load, prev_eff_load;
5395 	unsigned long task_load;
5396 
5397 	if (!get_llc_stats(&prev_stats, prev_cpu) ||
5398 	    !get_llc_stats(&this_stats, this_cpu))
5399 		return false;
5400 
5401 	/*
5402 	 * If sync wakeup then subtract the (maximum possible)
5403 	 * effect of the currently running task from the load
5404 	 * of the current LLC.
5405 	 */
5406 	if (sync) {
5407 		unsigned long current_load = task_h_load(current);
5408 
5409 		/* in this case load hits 0 and this LLC is considered 'idle' */
5410 		if (current_load > this_stats.load)
5411 			return true;
5412 
5413 		this_stats.load -= current_load;
5414 	}
5415 
5416 	/*
5417 	 * The has_capacity stuff is not SMT aware, but by trying to balance
5418 	 * the nr_running on both ends we try and fill the domain at equal
5419 	 * rates, thereby first consuming cores before siblings.
5420 	 */
5421 
5422 	/* if the old cache has capacity, stay there */
5423 	if (prev_stats.has_capacity && prev_stats.nr_running < this_stats.nr_running+1)
5424 		return false;
5425 
5426 	/* if this cache has capacity, come here */
5427 	if (this_stats.has_capacity && this_stats.nr_running+1 < prev_stats.nr_running)
5428 		return true;
5429 
5430 	/*
5431 	 * Check to see if we can move the load without causing too much
5432 	 * imbalance.
5433 	 */
5434 	task_load = task_h_load(p);
5435 
5436 	this_eff_load = 100;
5437 	this_eff_load *= prev_stats.capacity;
5438 
5439 	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5440 	prev_eff_load *= this_stats.capacity;
5441 
5442 	this_eff_load *= this_stats.load + task_load;
5443 	prev_eff_load *= prev_stats.load - task_load;
5444 
5445 	return this_eff_load <= prev_eff_load;
5446 }
5447 
5448 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5449 		       int prev_cpu, int sync)
5450 {
5451 	int this_cpu = smp_processor_id();
5452 	bool affine;
5453 
5454 	/*
5455 	 * Default to no affine wakeups; wake_affine() should not effect a task
5456 	 * placement the load-balancer feels inclined to undo. The conservative
5457 	 * option is therefore to not move tasks when they wake up.
5458 	 */
5459 	affine = false;
5460 
5461 	/*
5462 	 * If the wakeup is across cache domains, try to evaluate if movement
5463 	 * makes sense, otherwise rely on select_idle_siblings() to do
5464 	 * placement inside the cache domain.
5465 	 */
5466 	if (!cpus_share_cache(prev_cpu, this_cpu))
5467 		affine = wake_affine_llc(sd, p, this_cpu, prev_cpu, sync);
5468 
5469 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5470 	if (affine) {
5471 		schedstat_inc(sd->ttwu_move_affine);
5472 		schedstat_inc(p->se.statistics.nr_wakeups_affine);
5473 	}
5474 
5475 	return affine;
5476 }
5477 
5478 static inline int task_util(struct task_struct *p);
5479 static int cpu_util_wake(int cpu, struct task_struct *p);
5480 
5481 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5482 {
5483 	return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5484 }
5485 
5486 /*
5487  * find_idlest_group finds and returns the least busy CPU group within the
5488  * domain.
5489  */
5490 static struct sched_group *
5491 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5492 		  int this_cpu, int sd_flag)
5493 {
5494 	struct sched_group *idlest = NULL, *group = sd->groups;
5495 	struct sched_group *most_spare_sg = NULL;
5496 	unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5497 	unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
5498 	unsigned long most_spare = 0, this_spare = 0;
5499 	int load_idx = sd->forkexec_idx;
5500 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5501 	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5502 				(sd->imbalance_pct-100) / 100;
5503 
5504 	if (sd_flag & SD_BALANCE_WAKE)
5505 		load_idx = sd->wake_idx;
5506 
5507 	do {
5508 		unsigned long load, avg_load, runnable_load;
5509 		unsigned long spare_cap, max_spare_cap;
5510 		int local_group;
5511 		int i;
5512 
5513 		/* Skip over this group if it has no CPUs allowed */
5514 		if (!cpumask_intersects(sched_group_span(group),
5515 					&p->cpus_allowed))
5516 			continue;
5517 
5518 		local_group = cpumask_test_cpu(this_cpu,
5519 					       sched_group_span(group));
5520 
5521 		/*
5522 		 * Tally up the load of all CPUs in the group and find
5523 		 * the group containing the CPU with most spare capacity.
5524 		 */
5525 		avg_load = 0;
5526 		runnable_load = 0;
5527 		max_spare_cap = 0;
5528 
5529 		for_each_cpu(i, sched_group_span(group)) {
5530 			/* Bias balancing toward cpus of our domain */
5531 			if (local_group)
5532 				load = source_load(i, load_idx);
5533 			else
5534 				load = target_load(i, load_idx);
5535 
5536 			runnable_load += load;
5537 
5538 			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5539 
5540 			spare_cap = capacity_spare_wake(i, p);
5541 
5542 			if (spare_cap > max_spare_cap)
5543 				max_spare_cap = spare_cap;
5544 		}
5545 
5546 		/* Adjust by relative CPU capacity of the group */
5547 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5548 					group->sgc->capacity;
5549 		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5550 					group->sgc->capacity;
5551 
5552 		if (local_group) {
5553 			this_runnable_load = runnable_load;
5554 			this_avg_load = avg_load;
5555 			this_spare = max_spare_cap;
5556 		} else {
5557 			if (min_runnable_load > (runnable_load + imbalance)) {
5558 				/*
5559 				 * The runnable load is significantly smaller
5560 				 * so we can pick this new cpu
5561 				 */
5562 				min_runnable_load = runnable_load;
5563 				min_avg_load = avg_load;
5564 				idlest = group;
5565 			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
5566 				   (100*min_avg_load > imbalance_scale*avg_load)) {
5567 				/*
5568 				 * The runnable loads are close so take the
5569 				 * blocked load into account through avg_load.
5570 				 */
5571 				min_avg_load = avg_load;
5572 				idlest = group;
5573 			}
5574 
5575 			if (most_spare < max_spare_cap) {
5576 				most_spare = max_spare_cap;
5577 				most_spare_sg = group;
5578 			}
5579 		}
5580 	} while (group = group->next, group != sd->groups);
5581 
5582 	/*
5583 	 * The cross-over point between using spare capacity or least load
5584 	 * is too conservative for high utilization tasks on partially
5585 	 * utilized systems if we require spare_capacity > task_util(p),
5586 	 * so we allow for some task stuffing by using
5587 	 * spare_capacity > task_util(p)/2.
5588 	 *
5589 	 * Spare capacity can't be used for fork because the utilization has
5590 	 * not been set yet, we must first select a rq to compute the initial
5591 	 * utilization.
5592 	 */
5593 	if (sd_flag & SD_BALANCE_FORK)
5594 		goto skip_spare;
5595 
5596 	if (this_spare > task_util(p) / 2 &&
5597 	    imbalance_scale*this_spare > 100*most_spare)
5598 		return NULL;
5599 
5600 	if (most_spare > task_util(p) / 2)
5601 		return most_spare_sg;
5602 
5603 skip_spare:
5604 	if (!idlest)
5605 		return NULL;
5606 
5607 	if (min_runnable_load > (this_runnable_load + imbalance))
5608 		return NULL;
5609 
5610 	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5611 	     (100*this_avg_load < imbalance_scale*min_avg_load))
5612 		return NULL;
5613 
5614 	return idlest;
5615 }
5616 
5617 /*
5618  * find_idlest_cpu - find the idlest cpu among the cpus in group.
5619  */
5620 static int
5621 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5622 {
5623 	unsigned long load, min_load = ULONG_MAX;
5624 	unsigned int min_exit_latency = UINT_MAX;
5625 	u64 latest_idle_timestamp = 0;
5626 	int least_loaded_cpu = this_cpu;
5627 	int shallowest_idle_cpu = -1;
5628 	int i;
5629 
5630 	/* Check if we have any choice: */
5631 	if (group->group_weight == 1)
5632 		return cpumask_first(sched_group_span(group));
5633 
5634 	/* Traverse only the allowed CPUs */
5635 	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5636 		if (idle_cpu(i)) {
5637 			struct rq *rq = cpu_rq(i);
5638 			struct cpuidle_state *idle = idle_get_state(rq);
5639 			if (idle && idle->exit_latency < min_exit_latency) {
5640 				/*
5641 				 * We give priority to a CPU whose idle state
5642 				 * has the smallest exit latency irrespective
5643 				 * of any idle timestamp.
5644 				 */
5645 				min_exit_latency = idle->exit_latency;
5646 				latest_idle_timestamp = rq->idle_stamp;
5647 				shallowest_idle_cpu = i;
5648 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5649 				   rq->idle_stamp > latest_idle_timestamp) {
5650 				/*
5651 				 * If equal or no active idle state, then
5652 				 * the most recently idled CPU might have
5653 				 * a warmer cache.
5654 				 */
5655 				latest_idle_timestamp = rq->idle_stamp;
5656 				shallowest_idle_cpu = i;
5657 			}
5658 		} else if (shallowest_idle_cpu == -1) {
5659 			load = weighted_cpuload(cpu_rq(i));
5660 			if (load < min_load || (load == min_load && i == this_cpu)) {
5661 				min_load = load;
5662 				least_loaded_cpu = i;
5663 			}
5664 		}
5665 	}
5666 
5667 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5668 }
5669 
5670 #ifdef CONFIG_SCHED_SMT
5671 
5672 static inline void set_idle_cores(int cpu, int val)
5673 {
5674 	struct sched_domain_shared *sds;
5675 
5676 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5677 	if (sds)
5678 		WRITE_ONCE(sds->has_idle_cores, val);
5679 }
5680 
5681 static inline bool test_idle_cores(int cpu, bool def)
5682 {
5683 	struct sched_domain_shared *sds;
5684 
5685 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5686 	if (sds)
5687 		return READ_ONCE(sds->has_idle_cores);
5688 
5689 	return def;
5690 }
5691 
5692 /*
5693  * Scans the local SMT mask to see if the entire core is idle, and records this
5694  * information in sd_llc_shared->has_idle_cores.
5695  *
5696  * Since SMT siblings share all cache levels, inspecting this limited remote
5697  * state should be fairly cheap.
5698  */
5699 void __update_idle_core(struct rq *rq)
5700 {
5701 	int core = cpu_of(rq);
5702 	int cpu;
5703 
5704 	rcu_read_lock();
5705 	if (test_idle_cores(core, true))
5706 		goto unlock;
5707 
5708 	for_each_cpu(cpu, cpu_smt_mask(core)) {
5709 		if (cpu == core)
5710 			continue;
5711 
5712 		if (!idle_cpu(cpu))
5713 			goto unlock;
5714 	}
5715 
5716 	set_idle_cores(core, 1);
5717 unlock:
5718 	rcu_read_unlock();
5719 }
5720 
5721 /*
5722  * Scan the entire LLC domain for idle cores; this dynamically switches off if
5723  * there are no idle cores left in the system; tracked through
5724  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5725  */
5726 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5727 {
5728 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5729 	int core, cpu;
5730 
5731 	if (!static_branch_likely(&sched_smt_present))
5732 		return -1;
5733 
5734 	if (!test_idle_cores(target, false))
5735 		return -1;
5736 
5737 	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5738 
5739 	for_each_cpu_wrap(core, cpus, target) {
5740 		bool idle = true;
5741 
5742 		for_each_cpu(cpu, cpu_smt_mask(core)) {
5743 			cpumask_clear_cpu(cpu, cpus);
5744 			if (!idle_cpu(cpu))
5745 				idle = false;
5746 		}
5747 
5748 		if (idle)
5749 			return core;
5750 	}
5751 
5752 	/*
5753 	 * Failed to find an idle core; stop looking for one.
5754 	 */
5755 	set_idle_cores(target, 0);
5756 
5757 	return -1;
5758 }
5759 
5760 /*
5761  * Scan the local SMT mask for idle CPUs.
5762  */
5763 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5764 {
5765 	int cpu;
5766 
5767 	if (!static_branch_likely(&sched_smt_present))
5768 		return -1;
5769 
5770 	for_each_cpu(cpu, cpu_smt_mask(target)) {
5771 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5772 			continue;
5773 		if (idle_cpu(cpu))
5774 			return cpu;
5775 	}
5776 
5777 	return -1;
5778 }
5779 
5780 #else /* CONFIG_SCHED_SMT */
5781 
5782 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5783 {
5784 	return -1;
5785 }
5786 
5787 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5788 {
5789 	return -1;
5790 }
5791 
5792 #endif /* CONFIG_SCHED_SMT */
5793 
5794 /*
5795  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5796  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5797  * average idle time for this rq (as found in rq->avg_idle).
5798  */
5799 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5800 {
5801 	struct sched_domain *this_sd;
5802 	u64 avg_cost, avg_idle;
5803 	u64 time, cost;
5804 	s64 delta;
5805 	int cpu, nr = INT_MAX;
5806 
5807 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5808 	if (!this_sd)
5809 		return -1;
5810 
5811 	/*
5812 	 * Due to large variance we need a large fuzz factor; hackbench in
5813 	 * particularly is sensitive here.
5814 	 */
5815 	avg_idle = this_rq()->avg_idle / 512;
5816 	avg_cost = this_sd->avg_scan_cost + 1;
5817 
5818 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
5819 		return -1;
5820 
5821 	if (sched_feat(SIS_PROP)) {
5822 		u64 span_avg = sd->span_weight * avg_idle;
5823 		if (span_avg > 4*avg_cost)
5824 			nr = div_u64(span_avg, avg_cost);
5825 		else
5826 			nr = 4;
5827 	}
5828 
5829 	time = local_clock();
5830 
5831 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
5832 		if (!--nr)
5833 			return -1;
5834 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5835 			continue;
5836 		if (idle_cpu(cpu))
5837 			break;
5838 	}
5839 
5840 	time = local_clock() - time;
5841 	cost = this_sd->avg_scan_cost;
5842 	delta = (s64)(time - cost) / 8;
5843 	this_sd->avg_scan_cost += delta;
5844 
5845 	return cpu;
5846 }
5847 
5848 /*
5849  * Try and locate an idle core/thread in the LLC cache domain.
5850  */
5851 static int select_idle_sibling(struct task_struct *p, int prev, int target)
5852 {
5853 	struct sched_domain *sd;
5854 	int i;
5855 
5856 	if (idle_cpu(target))
5857 		return target;
5858 
5859 	/*
5860 	 * If the previous cpu is cache affine and idle, don't be stupid.
5861 	 */
5862 	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5863 		return prev;
5864 
5865 	sd = rcu_dereference(per_cpu(sd_llc, target));
5866 	if (!sd)
5867 		return target;
5868 
5869 	i = select_idle_core(p, sd, target);
5870 	if ((unsigned)i < nr_cpumask_bits)
5871 		return i;
5872 
5873 	i = select_idle_cpu(p, sd, target);
5874 	if ((unsigned)i < nr_cpumask_bits)
5875 		return i;
5876 
5877 	i = select_idle_smt(p, sd, target);
5878 	if ((unsigned)i < nr_cpumask_bits)
5879 		return i;
5880 
5881 	return target;
5882 }
5883 
5884 /*
5885  * cpu_util returns the amount of capacity of a CPU that is used by CFS
5886  * tasks. The unit of the return value must be the one of capacity so we can
5887  * compare the utilization with the capacity of the CPU that is available for
5888  * CFS task (ie cpu_capacity).
5889  *
5890  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5891  * recent utilization of currently non-runnable tasks on a CPU. It represents
5892  * the amount of utilization of a CPU in the range [0..capacity_orig] where
5893  * capacity_orig is the cpu_capacity available at the highest frequency
5894  * (arch_scale_freq_capacity()).
5895  * The utilization of a CPU converges towards a sum equal to or less than the
5896  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5897  * the running time on this CPU scaled by capacity_curr.
5898  *
5899  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5900  * higher than capacity_orig because of unfortunate rounding in
5901  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5902  * the average stabilizes with the new running time. We need to check that the
5903  * utilization stays within the range of [0..capacity_orig] and cap it if
5904  * necessary. Without utilization capping, a group could be seen as overloaded
5905  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5906  * available capacity. We allow utilization to overshoot capacity_curr (but not
5907  * capacity_orig) as it useful for predicting the capacity required after task
5908  * migrations (scheduler-driven DVFS).
5909  */
5910 static int cpu_util(int cpu)
5911 {
5912 	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5913 	unsigned long capacity = capacity_orig_of(cpu);
5914 
5915 	return (util >= capacity) ? capacity : util;
5916 }
5917 
5918 static inline int task_util(struct task_struct *p)
5919 {
5920 	return p->se.avg.util_avg;
5921 }
5922 
5923 /*
5924  * cpu_util_wake: Compute cpu utilization with any contributions from
5925  * the waking task p removed.
5926  */
5927 static int cpu_util_wake(int cpu, struct task_struct *p)
5928 {
5929 	unsigned long util, capacity;
5930 
5931 	/* Task has no contribution or is new */
5932 	if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
5933 		return cpu_util(cpu);
5934 
5935 	capacity = capacity_orig_of(cpu);
5936 	util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
5937 
5938 	return (util >= capacity) ? capacity : util;
5939 }
5940 
5941 /*
5942  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5943  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5944  *
5945  * In that case WAKE_AFFINE doesn't make sense and we'll let
5946  * BALANCE_WAKE sort things out.
5947  */
5948 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5949 {
5950 	long min_cap, max_cap;
5951 
5952 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5953 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5954 
5955 	/* Minimum capacity is close to max, no need to abort wake_affine */
5956 	if (max_cap - min_cap < max_cap >> 3)
5957 		return 0;
5958 
5959 	/* Bring task utilization in sync with prev_cpu */
5960 	sync_entity_load_avg(&p->se);
5961 
5962 	return min_cap * 1024 < task_util(p) * capacity_margin;
5963 }
5964 
5965 /*
5966  * select_task_rq_fair: Select target runqueue for the waking task in domains
5967  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5968  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5969  *
5970  * Balances load by selecting the idlest cpu in the idlest group, or under
5971  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5972  *
5973  * Returns the target cpu number.
5974  *
5975  * preempt must be disabled.
5976  */
5977 static int
5978 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5979 {
5980 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5981 	int cpu = smp_processor_id();
5982 	int new_cpu = prev_cpu;
5983 	int want_affine = 0;
5984 	int sync = wake_flags & WF_SYNC;
5985 
5986 	if (sd_flag & SD_BALANCE_WAKE) {
5987 		record_wakee(p);
5988 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
5989 			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
5990 	}
5991 
5992 	rcu_read_lock();
5993 	for_each_domain(cpu, tmp) {
5994 		if (!(tmp->flags & SD_LOAD_BALANCE))
5995 			break;
5996 
5997 		/*
5998 		 * If both cpu and prev_cpu are part of this domain,
5999 		 * cpu is a valid SD_WAKE_AFFINE target.
6000 		 */
6001 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6002 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6003 			affine_sd = tmp;
6004 			break;
6005 		}
6006 
6007 		if (tmp->flags & sd_flag)
6008 			sd = tmp;
6009 		else if (!want_affine)
6010 			break;
6011 	}
6012 
6013 	if (affine_sd) {
6014 		sd = NULL; /* Prefer wake_affine over balance flags */
6015 		if (cpu == prev_cpu)
6016 			goto pick_cpu;
6017 
6018 		if (wake_affine(affine_sd, p, prev_cpu, sync))
6019 			new_cpu = cpu;
6020 	}
6021 
6022 	if (!sd) {
6023  pick_cpu:
6024 		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
6025 			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6026 
6027 	} else while (sd) {
6028 		struct sched_group *group;
6029 		int weight;
6030 
6031 		if (!(sd->flags & sd_flag)) {
6032 			sd = sd->child;
6033 			continue;
6034 		}
6035 
6036 		group = find_idlest_group(sd, p, cpu, sd_flag);
6037 		if (!group) {
6038 			sd = sd->child;
6039 			continue;
6040 		}
6041 
6042 		new_cpu = find_idlest_cpu(group, p, cpu);
6043 		if (new_cpu == -1 || new_cpu == cpu) {
6044 			/* Now try balancing at a lower domain level of cpu */
6045 			sd = sd->child;
6046 			continue;
6047 		}
6048 
6049 		/* Now try balancing at a lower domain level of new_cpu */
6050 		cpu = new_cpu;
6051 		weight = sd->span_weight;
6052 		sd = NULL;
6053 		for_each_domain(cpu, tmp) {
6054 			if (weight <= tmp->span_weight)
6055 				break;
6056 			if (tmp->flags & sd_flag)
6057 				sd = tmp;
6058 		}
6059 		/* while loop will break here if sd == NULL */
6060 	}
6061 	rcu_read_unlock();
6062 
6063 	return new_cpu;
6064 }
6065 
6066 /*
6067  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6068  * cfs_rq_of(p) references at time of call are still valid and identify the
6069  * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6070  */
6071 static void migrate_task_rq_fair(struct task_struct *p)
6072 {
6073 	/*
6074 	 * As blocked tasks retain absolute vruntime the migration needs to
6075 	 * deal with this by subtracting the old and adding the new
6076 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6077 	 * the task on the new runqueue.
6078 	 */
6079 	if (p->state == TASK_WAKING) {
6080 		struct sched_entity *se = &p->se;
6081 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6082 		u64 min_vruntime;
6083 
6084 #ifndef CONFIG_64BIT
6085 		u64 min_vruntime_copy;
6086 
6087 		do {
6088 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6089 			smp_rmb();
6090 			min_vruntime = cfs_rq->min_vruntime;
6091 		} while (min_vruntime != min_vruntime_copy);
6092 #else
6093 		min_vruntime = cfs_rq->min_vruntime;
6094 #endif
6095 
6096 		se->vruntime -= min_vruntime;
6097 	}
6098 
6099 	/*
6100 	 * We are supposed to update the task to "current" time, then its up to date
6101 	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
6102 	 * what current time is, so simply throw away the out-of-date time. This
6103 	 * will result in the wakee task is less decayed, but giving the wakee more
6104 	 * load sounds not bad.
6105 	 */
6106 	remove_entity_load_avg(&p->se);
6107 
6108 	/* Tell new CPU we are migrated */
6109 	p->se.avg.last_update_time = 0;
6110 
6111 	/* We have migrated, no longer consider this task hot */
6112 	p->se.exec_start = 0;
6113 }
6114 
6115 static void task_dead_fair(struct task_struct *p)
6116 {
6117 	remove_entity_load_avg(&p->se);
6118 }
6119 #endif /* CONFIG_SMP */
6120 
6121 static unsigned long
6122 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
6123 {
6124 	unsigned long gran = sysctl_sched_wakeup_granularity;
6125 
6126 	/*
6127 	 * Since its curr running now, convert the gran from real-time
6128 	 * to virtual-time in his units.
6129 	 *
6130 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6131 	 * they get preempted easier. That is, if 'se' < 'curr' then
6132 	 * the resulting gran will be larger, therefore penalizing the
6133 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6134 	 * be smaller, again penalizing the lighter task.
6135 	 *
6136 	 * This is especially important for buddies when the leftmost
6137 	 * task is higher priority than the buddy.
6138 	 */
6139 	return calc_delta_fair(gran, se);
6140 }
6141 
6142 /*
6143  * Should 'se' preempt 'curr'.
6144  *
6145  *             |s1
6146  *        |s2
6147  *   |s3
6148  *         g
6149  *      |<--->|c
6150  *
6151  *  w(c, s1) = -1
6152  *  w(c, s2) =  0
6153  *  w(c, s3) =  1
6154  *
6155  */
6156 static int
6157 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6158 {
6159 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6160 
6161 	if (vdiff <= 0)
6162 		return -1;
6163 
6164 	gran = wakeup_gran(curr, se);
6165 	if (vdiff > gran)
6166 		return 1;
6167 
6168 	return 0;
6169 }
6170 
6171 static void set_last_buddy(struct sched_entity *se)
6172 {
6173 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6174 		return;
6175 
6176 	for_each_sched_entity(se) {
6177 		if (SCHED_WARN_ON(!se->on_rq))
6178 			return;
6179 		cfs_rq_of(se)->last = se;
6180 	}
6181 }
6182 
6183 static void set_next_buddy(struct sched_entity *se)
6184 {
6185 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6186 		return;
6187 
6188 	for_each_sched_entity(se) {
6189 		if (SCHED_WARN_ON(!se->on_rq))
6190 			return;
6191 		cfs_rq_of(se)->next = se;
6192 	}
6193 }
6194 
6195 static void set_skip_buddy(struct sched_entity *se)
6196 {
6197 	for_each_sched_entity(se)
6198 		cfs_rq_of(se)->skip = se;
6199 }
6200 
6201 /*
6202  * Preempt the current task with a newly woken task if needed:
6203  */
6204 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6205 {
6206 	struct task_struct *curr = rq->curr;
6207 	struct sched_entity *se = &curr->se, *pse = &p->se;
6208 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6209 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6210 	int next_buddy_marked = 0;
6211 
6212 	if (unlikely(se == pse))
6213 		return;
6214 
6215 	/*
6216 	 * This is possible from callers such as attach_tasks(), in which we
6217 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6218 	 * lead to a throttle).  This both saves work and prevents false
6219 	 * next-buddy nomination below.
6220 	 */
6221 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6222 		return;
6223 
6224 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6225 		set_next_buddy(pse);
6226 		next_buddy_marked = 1;
6227 	}
6228 
6229 	/*
6230 	 * We can come here with TIF_NEED_RESCHED already set from new task
6231 	 * wake up path.
6232 	 *
6233 	 * Note: this also catches the edge-case of curr being in a throttled
6234 	 * group (e.g. via set_curr_task), since update_curr() (in the
6235 	 * enqueue of curr) will have resulted in resched being set.  This
6236 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6237 	 * below.
6238 	 */
6239 	if (test_tsk_need_resched(curr))
6240 		return;
6241 
6242 	/* Idle tasks are by definition preempted by non-idle tasks. */
6243 	if (unlikely(curr->policy == SCHED_IDLE) &&
6244 	    likely(p->policy != SCHED_IDLE))
6245 		goto preempt;
6246 
6247 	/*
6248 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6249 	 * is driven by the tick):
6250 	 */
6251 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6252 		return;
6253 
6254 	find_matching_se(&se, &pse);
6255 	update_curr(cfs_rq_of(se));
6256 	BUG_ON(!pse);
6257 	if (wakeup_preempt_entity(se, pse) == 1) {
6258 		/*
6259 		 * Bias pick_next to pick the sched entity that is
6260 		 * triggering this preemption.
6261 		 */
6262 		if (!next_buddy_marked)
6263 			set_next_buddy(pse);
6264 		goto preempt;
6265 	}
6266 
6267 	return;
6268 
6269 preempt:
6270 	resched_curr(rq);
6271 	/*
6272 	 * Only set the backward buddy when the current task is still
6273 	 * on the rq. This can happen when a wakeup gets interleaved
6274 	 * with schedule on the ->pre_schedule() or idle_balance()
6275 	 * point, either of which can * drop the rq lock.
6276 	 *
6277 	 * Also, during early boot the idle thread is in the fair class,
6278 	 * for obvious reasons its a bad idea to schedule back to it.
6279 	 */
6280 	if (unlikely(!se->on_rq || curr == rq->idle))
6281 		return;
6282 
6283 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6284 		set_last_buddy(se);
6285 }
6286 
6287 static struct task_struct *
6288 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6289 {
6290 	struct cfs_rq *cfs_rq = &rq->cfs;
6291 	struct sched_entity *se;
6292 	struct task_struct *p;
6293 	int new_tasks;
6294 
6295 again:
6296 	if (!cfs_rq->nr_running)
6297 		goto idle;
6298 
6299 #ifdef CONFIG_FAIR_GROUP_SCHED
6300 	if (prev->sched_class != &fair_sched_class)
6301 		goto simple;
6302 
6303 	/*
6304 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6305 	 * likely that a next task is from the same cgroup as the current.
6306 	 *
6307 	 * Therefore attempt to avoid putting and setting the entire cgroup
6308 	 * hierarchy, only change the part that actually changes.
6309 	 */
6310 
6311 	do {
6312 		struct sched_entity *curr = cfs_rq->curr;
6313 
6314 		/*
6315 		 * Since we got here without doing put_prev_entity() we also
6316 		 * have to consider cfs_rq->curr. If it is still a runnable
6317 		 * entity, update_curr() will update its vruntime, otherwise
6318 		 * forget we've ever seen it.
6319 		 */
6320 		if (curr) {
6321 			if (curr->on_rq)
6322 				update_curr(cfs_rq);
6323 			else
6324 				curr = NULL;
6325 
6326 			/*
6327 			 * This call to check_cfs_rq_runtime() will do the
6328 			 * throttle and dequeue its entity in the parent(s).
6329 			 * Therefore the nr_running test will indeed
6330 			 * be correct.
6331 			 */
6332 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6333 				cfs_rq = &rq->cfs;
6334 
6335 				if (!cfs_rq->nr_running)
6336 					goto idle;
6337 
6338 				goto simple;
6339 			}
6340 		}
6341 
6342 		se = pick_next_entity(cfs_rq, curr);
6343 		cfs_rq = group_cfs_rq(se);
6344 	} while (cfs_rq);
6345 
6346 	p = task_of(se);
6347 
6348 	/*
6349 	 * Since we haven't yet done put_prev_entity and if the selected task
6350 	 * is a different task than we started out with, try and touch the
6351 	 * least amount of cfs_rqs.
6352 	 */
6353 	if (prev != p) {
6354 		struct sched_entity *pse = &prev->se;
6355 
6356 		while (!(cfs_rq = is_same_group(se, pse))) {
6357 			int se_depth = se->depth;
6358 			int pse_depth = pse->depth;
6359 
6360 			if (se_depth <= pse_depth) {
6361 				put_prev_entity(cfs_rq_of(pse), pse);
6362 				pse = parent_entity(pse);
6363 			}
6364 			if (se_depth >= pse_depth) {
6365 				set_next_entity(cfs_rq_of(se), se);
6366 				se = parent_entity(se);
6367 			}
6368 		}
6369 
6370 		put_prev_entity(cfs_rq, pse);
6371 		set_next_entity(cfs_rq, se);
6372 	}
6373 
6374 	if (hrtick_enabled(rq))
6375 		hrtick_start_fair(rq, p);
6376 
6377 	return p;
6378 simple:
6379 #endif
6380 
6381 	put_prev_task(rq, prev);
6382 
6383 	do {
6384 		se = pick_next_entity(cfs_rq, NULL);
6385 		set_next_entity(cfs_rq, se);
6386 		cfs_rq = group_cfs_rq(se);
6387 	} while (cfs_rq);
6388 
6389 	p = task_of(se);
6390 
6391 	if (hrtick_enabled(rq))
6392 		hrtick_start_fair(rq, p);
6393 
6394 	return p;
6395 
6396 idle:
6397 	new_tasks = idle_balance(rq, rf);
6398 
6399 	/*
6400 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6401 	 * possible for any higher priority task to appear. In that case we
6402 	 * must re-start the pick_next_entity() loop.
6403 	 */
6404 	if (new_tasks < 0)
6405 		return RETRY_TASK;
6406 
6407 	if (new_tasks > 0)
6408 		goto again;
6409 
6410 	return NULL;
6411 }
6412 
6413 /*
6414  * Account for a descheduled task:
6415  */
6416 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6417 {
6418 	struct sched_entity *se = &prev->se;
6419 	struct cfs_rq *cfs_rq;
6420 
6421 	for_each_sched_entity(se) {
6422 		cfs_rq = cfs_rq_of(se);
6423 		put_prev_entity(cfs_rq, se);
6424 	}
6425 }
6426 
6427 /*
6428  * sched_yield() is very simple
6429  *
6430  * The magic of dealing with the ->skip buddy is in pick_next_entity.
6431  */
6432 static void yield_task_fair(struct rq *rq)
6433 {
6434 	struct task_struct *curr = rq->curr;
6435 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6436 	struct sched_entity *se = &curr->se;
6437 
6438 	/*
6439 	 * Are we the only task in the tree?
6440 	 */
6441 	if (unlikely(rq->nr_running == 1))
6442 		return;
6443 
6444 	clear_buddies(cfs_rq, se);
6445 
6446 	if (curr->policy != SCHED_BATCH) {
6447 		update_rq_clock(rq);
6448 		/*
6449 		 * Update run-time statistics of the 'current'.
6450 		 */
6451 		update_curr(cfs_rq);
6452 		/*
6453 		 * Tell update_rq_clock() that we've just updated,
6454 		 * so we don't do microscopic update in schedule()
6455 		 * and double the fastpath cost.
6456 		 */
6457 		rq_clock_skip_update(rq, true);
6458 	}
6459 
6460 	set_skip_buddy(se);
6461 }
6462 
6463 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6464 {
6465 	struct sched_entity *se = &p->se;
6466 
6467 	/* throttled hierarchies are not runnable */
6468 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6469 		return false;
6470 
6471 	/* Tell the scheduler that we'd really like pse to run next. */
6472 	set_next_buddy(se);
6473 
6474 	yield_task_fair(rq);
6475 
6476 	return true;
6477 }
6478 
6479 #ifdef CONFIG_SMP
6480 /**************************************************
6481  * Fair scheduling class load-balancing methods.
6482  *
6483  * BASICS
6484  *
6485  * The purpose of load-balancing is to achieve the same basic fairness the
6486  * per-cpu scheduler provides, namely provide a proportional amount of compute
6487  * time to each task. This is expressed in the following equation:
6488  *
6489  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
6490  *
6491  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6492  * W_i,0 is defined as:
6493  *
6494  *   W_i,0 = \Sum_j w_i,j                                             (2)
6495  *
6496  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6497  * is derived from the nice value as per sched_prio_to_weight[].
6498  *
6499  * The weight average is an exponential decay average of the instantaneous
6500  * weight:
6501  *
6502  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
6503  *
6504  * C_i is the compute capacity of cpu i, typically it is the
6505  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6506  * can also include other factors [XXX].
6507  *
6508  * To achieve this balance we define a measure of imbalance which follows
6509  * directly from (1):
6510  *
6511  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
6512  *
6513  * We them move tasks around to minimize the imbalance. In the continuous
6514  * function space it is obvious this converges, in the discrete case we get
6515  * a few fun cases generally called infeasible weight scenarios.
6516  *
6517  * [XXX expand on:
6518  *     - infeasible weights;
6519  *     - local vs global optima in the discrete case. ]
6520  *
6521  *
6522  * SCHED DOMAINS
6523  *
6524  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6525  * for all i,j solution, we create a tree of cpus that follows the hardware
6526  * topology where each level pairs two lower groups (or better). This results
6527  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6528  * tree to only the first of the previous level and we decrease the frequency
6529  * of load-balance at each level inv. proportional to the number of cpus in
6530  * the groups.
6531  *
6532  * This yields:
6533  *
6534  *     log_2 n     1     n
6535  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
6536  *     i = 0      2^i   2^i
6537  *                               `- size of each group
6538  *         |         |     `- number of cpus doing load-balance
6539  *         |         `- freq
6540  *         `- sum over all levels
6541  *
6542  * Coupled with a limit on how many tasks we can migrate every balance pass,
6543  * this makes (5) the runtime complexity of the balancer.
6544  *
6545  * An important property here is that each CPU is still (indirectly) connected
6546  * to every other cpu in at most O(log n) steps:
6547  *
6548  * The adjacency matrix of the resulting graph is given by:
6549  *
6550  *             log_2 n
6551  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
6552  *             k = 0
6553  *
6554  * And you'll find that:
6555  *
6556  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
6557  *
6558  * Showing there's indeed a path between every cpu in at most O(log n) steps.
6559  * The task movement gives a factor of O(m), giving a convergence complexity
6560  * of:
6561  *
6562  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
6563  *
6564  *
6565  * WORK CONSERVING
6566  *
6567  * In order to avoid CPUs going idle while there's still work to do, new idle
6568  * balancing is more aggressive and has the newly idle cpu iterate up the domain
6569  * tree itself instead of relying on other CPUs to bring it work.
6570  *
6571  * This adds some complexity to both (5) and (8) but it reduces the total idle
6572  * time.
6573  *
6574  * [XXX more?]
6575  *
6576  *
6577  * CGROUPS
6578  *
6579  * Cgroups make a horror show out of (2), instead of a simple sum we get:
6580  *
6581  *                                s_k,i
6582  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
6583  *                                 S_k
6584  *
6585  * Where
6586  *
6587  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
6588  *
6589  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6590  *
6591  * The big problem is S_k, its a global sum needed to compute a local (W_i)
6592  * property.
6593  *
6594  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6595  *      rewrite all of this once again.]
6596  */
6597 
6598 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6599 
6600 enum fbq_type { regular, remote, all };
6601 
6602 #define LBF_ALL_PINNED	0x01
6603 #define LBF_NEED_BREAK	0x02
6604 #define LBF_DST_PINNED  0x04
6605 #define LBF_SOME_PINNED	0x08
6606 
6607 struct lb_env {
6608 	struct sched_domain	*sd;
6609 
6610 	struct rq		*src_rq;
6611 	int			src_cpu;
6612 
6613 	int			dst_cpu;
6614 	struct rq		*dst_rq;
6615 
6616 	struct cpumask		*dst_grpmask;
6617 	int			new_dst_cpu;
6618 	enum cpu_idle_type	idle;
6619 	long			imbalance;
6620 	/* The set of CPUs under consideration for load-balancing */
6621 	struct cpumask		*cpus;
6622 
6623 	unsigned int		flags;
6624 
6625 	unsigned int		loop;
6626 	unsigned int		loop_break;
6627 	unsigned int		loop_max;
6628 
6629 	enum fbq_type		fbq_type;
6630 	struct list_head	tasks;
6631 };
6632 
6633 /*
6634  * Is this task likely cache-hot:
6635  */
6636 static int task_hot(struct task_struct *p, struct lb_env *env)
6637 {
6638 	s64 delta;
6639 
6640 	lockdep_assert_held(&env->src_rq->lock);
6641 
6642 	if (p->sched_class != &fair_sched_class)
6643 		return 0;
6644 
6645 	if (unlikely(p->policy == SCHED_IDLE))
6646 		return 0;
6647 
6648 	/*
6649 	 * Buddy candidates are cache hot:
6650 	 */
6651 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6652 			(&p->se == cfs_rq_of(&p->se)->next ||
6653 			 &p->se == cfs_rq_of(&p->se)->last))
6654 		return 1;
6655 
6656 	if (sysctl_sched_migration_cost == -1)
6657 		return 1;
6658 	if (sysctl_sched_migration_cost == 0)
6659 		return 0;
6660 
6661 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6662 
6663 	return delta < (s64)sysctl_sched_migration_cost;
6664 }
6665 
6666 #ifdef CONFIG_NUMA_BALANCING
6667 /*
6668  * Returns 1, if task migration degrades locality
6669  * Returns 0, if task migration improves locality i.e migration preferred.
6670  * Returns -1, if task migration is not affected by locality.
6671  */
6672 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6673 {
6674 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6675 	unsigned long src_faults, dst_faults;
6676 	int src_nid, dst_nid;
6677 
6678 	if (!static_branch_likely(&sched_numa_balancing))
6679 		return -1;
6680 
6681 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6682 		return -1;
6683 
6684 	src_nid = cpu_to_node(env->src_cpu);
6685 	dst_nid = cpu_to_node(env->dst_cpu);
6686 
6687 	if (src_nid == dst_nid)
6688 		return -1;
6689 
6690 	/* Migrating away from the preferred node is always bad. */
6691 	if (src_nid == p->numa_preferred_nid) {
6692 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6693 			return 1;
6694 		else
6695 			return -1;
6696 	}
6697 
6698 	/* Encourage migration to the preferred node. */
6699 	if (dst_nid == p->numa_preferred_nid)
6700 		return 0;
6701 
6702 	/* Leaving a core idle is often worse than degrading locality. */
6703 	if (env->idle != CPU_NOT_IDLE)
6704 		return -1;
6705 
6706 	if (numa_group) {
6707 		src_faults = group_faults(p, src_nid);
6708 		dst_faults = group_faults(p, dst_nid);
6709 	} else {
6710 		src_faults = task_faults(p, src_nid);
6711 		dst_faults = task_faults(p, dst_nid);
6712 	}
6713 
6714 	return dst_faults < src_faults;
6715 }
6716 
6717 #else
6718 static inline int migrate_degrades_locality(struct task_struct *p,
6719 					     struct lb_env *env)
6720 {
6721 	return -1;
6722 }
6723 #endif
6724 
6725 /*
6726  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6727  */
6728 static
6729 int can_migrate_task(struct task_struct *p, struct lb_env *env)
6730 {
6731 	int tsk_cache_hot;
6732 
6733 	lockdep_assert_held(&env->src_rq->lock);
6734 
6735 	/*
6736 	 * We do not migrate tasks that are:
6737 	 * 1) throttled_lb_pair, or
6738 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6739 	 * 3) running (obviously), or
6740 	 * 4) are cache-hot on their current CPU.
6741 	 */
6742 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6743 		return 0;
6744 
6745 	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
6746 		int cpu;
6747 
6748 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6749 
6750 		env->flags |= LBF_SOME_PINNED;
6751 
6752 		/*
6753 		 * Remember if this task can be migrated to any other cpu in
6754 		 * our sched_group. We may want to revisit it if we couldn't
6755 		 * meet load balance goals by pulling other tasks on src_cpu.
6756 		 *
6757 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
6758 		 * already computed one in current iteration.
6759 		 */
6760 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
6761 			return 0;
6762 
6763 		/* Prevent to re-select dst_cpu via env's cpus */
6764 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6765 			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6766 				env->flags |= LBF_DST_PINNED;
6767 				env->new_dst_cpu = cpu;
6768 				break;
6769 			}
6770 		}
6771 
6772 		return 0;
6773 	}
6774 
6775 	/* Record that we found atleast one task that could run on dst_cpu */
6776 	env->flags &= ~LBF_ALL_PINNED;
6777 
6778 	if (task_running(env->src_rq, p)) {
6779 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6780 		return 0;
6781 	}
6782 
6783 	/*
6784 	 * Aggressive migration if:
6785 	 * 1) destination numa is preferred
6786 	 * 2) task is cache cold, or
6787 	 * 3) too many balance attempts have failed.
6788 	 */
6789 	tsk_cache_hot = migrate_degrades_locality(p, env);
6790 	if (tsk_cache_hot == -1)
6791 		tsk_cache_hot = task_hot(p, env);
6792 
6793 	if (tsk_cache_hot <= 0 ||
6794 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6795 		if (tsk_cache_hot == 1) {
6796 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6797 			schedstat_inc(p->se.statistics.nr_forced_migrations);
6798 		}
6799 		return 1;
6800 	}
6801 
6802 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
6803 	return 0;
6804 }
6805 
6806 /*
6807  * detach_task() -- detach the task for the migration specified in env
6808  */
6809 static void detach_task(struct task_struct *p, struct lb_env *env)
6810 {
6811 	lockdep_assert_held(&env->src_rq->lock);
6812 
6813 	p->on_rq = TASK_ON_RQ_MIGRATING;
6814 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
6815 	set_task_cpu(p, env->dst_cpu);
6816 }
6817 
6818 /*
6819  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6820  * part of active balancing operations within "domain".
6821  *
6822  * Returns a task if successful and NULL otherwise.
6823  */
6824 static struct task_struct *detach_one_task(struct lb_env *env)
6825 {
6826 	struct task_struct *p, *n;
6827 
6828 	lockdep_assert_held(&env->src_rq->lock);
6829 
6830 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
6831 		if (!can_migrate_task(p, env))
6832 			continue;
6833 
6834 		detach_task(p, env);
6835 
6836 		/*
6837 		 * Right now, this is only the second place where
6838 		 * lb_gained[env->idle] is updated (other is detach_tasks)
6839 		 * so we can safely collect stats here rather than
6840 		 * inside detach_tasks().
6841 		 */
6842 		schedstat_inc(env->sd->lb_gained[env->idle]);
6843 		return p;
6844 	}
6845 	return NULL;
6846 }
6847 
6848 static const unsigned int sched_nr_migrate_break = 32;
6849 
6850 /*
6851  * detach_tasks() -- tries to detach up to imbalance weighted load from
6852  * busiest_rq, as part of a balancing operation within domain "sd".
6853  *
6854  * Returns number of detached tasks if successful and 0 otherwise.
6855  */
6856 static int detach_tasks(struct lb_env *env)
6857 {
6858 	struct list_head *tasks = &env->src_rq->cfs_tasks;
6859 	struct task_struct *p;
6860 	unsigned long load;
6861 	int detached = 0;
6862 
6863 	lockdep_assert_held(&env->src_rq->lock);
6864 
6865 	if (env->imbalance <= 0)
6866 		return 0;
6867 
6868 	while (!list_empty(tasks)) {
6869 		/*
6870 		 * We don't want to steal all, otherwise we may be treated likewise,
6871 		 * which could at worst lead to a livelock crash.
6872 		 */
6873 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6874 			break;
6875 
6876 		p = list_first_entry(tasks, struct task_struct, se.group_node);
6877 
6878 		env->loop++;
6879 		/* We've more or less seen every task there is, call it quits */
6880 		if (env->loop > env->loop_max)
6881 			break;
6882 
6883 		/* take a breather every nr_migrate tasks */
6884 		if (env->loop > env->loop_break) {
6885 			env->loop_break += sched_nr_migrate_break;
6886 			env->flags |= LBF_NEED_BREAK;
6887 			break;
6888 		}
6889 
6890 		if (!can_migrate_task(p, env))
6891 			goto next;
6892 
6893 		load = task_h_load(p);
6894 
6895 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6896 			goto next;
6897 
6898 		if ((load / 2) > env->imbalance)
6899 			goto next;
6900 
6901 		detach_task(p, env);
6902 		list_add(&p->se.group_node, &env->tasks);
6903 
6904 		detached++;
6905 		env->imbalance -= load;
6906 
6907 #ifdef CONFIG_PREEMPT
6908 		/*
6909 		 * NEWIDLE balancing is a source of latency, so preemptible
6910 		 * kernels will stop after the first task is detached to minimize
6911 		 * the critical section.
6912 		 */
6913 		if (env->idle == CPU_NEWLY_IDLE)
6914 			break;
6915 #endif
6916 
6917 		/*
6918 		 * We only want to steal up to the prescribed amount of
6919 		 * weighted load.
6920 		 */
6921 		if (env->imbalance <= 0)
6922 			break;
6923 
6924 		continue;
6925 next:
6926 		list_move_tail(&p->se.group_node, tasks);
6927 	}
6928 
6929 	/*
6930 	 * Right now, this is one of only two places we collect this stat
6931 	 * so we can safely collect detach_one_task() stats here rather
6932 	 * than inside detach_one_task().
6933 	 */
6934 	schedstat_add(env->sd->lb_gained[env->idle], detached);
6935 
6936 	return detached;
6937 }
6938 
6939 /*
6940  * attach_task() -- attach the task detached by detach_task() to its new rq.
6941  */
6942 static void attach_task(struct rq *rq, struct task_struct *p)
6943 {
6944 	lockdep_assert_held(&rq->lock);
6945 
6946 	BUG_ON(task_rq(p) != rq);
6947 	activate_task(rq, p, ENQUEUE_NOCLOCK);
6948 	p->on_rq = TASK_ON_RQ_QUEUED;
6949 	check_preempt_curr(rq, p, 0);
6950 }
6951 
6952 /*
6953  * attach_one_task() -- attaches the task returned from detach_one_task() to
6954  * its new rq.
6955  */
6956 static void attach_one_task(struct rq *rq, struct task_struct *p)
6957 {
6958 	struct rq_flags rf;
6959 
6960 	rq_lock(rq, &rf);
6961 	update_rq_clock(rq);
6962 	attach_task(rq, p);
6963 	rq_unlock(rq, &rf);
6964 }
6965 
6966 /*
6967  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6968  * new rq.
6969  */
6970 static void attach_tasks(struct lb_env *env)
6971 {
6972 	struct list_head *tasks = &env->tasks;
6973 	struct task_struct *p;
6974 	struct rq_flags rf;
6975 
6976 	rq_lock(env->dst_rq, &rf);
6977 	update_rq_clock(env->dst_rq);
6978 
6979 	while (!list_empty(tasks)) {
6980 		p = list_first_entry(tasks, struct task_struct, se.group_node);
6981 		list_del_init(&p->se.group_node);
6982 
6983 		attach_task(env->dst_rq, p);
6984 	}
6985 
6986 	rq_unlock(env->dst_rq, &rf);
6987 }
6988 
6989 #ifdef CONFIG_FAIR_GROUP_SCHED
6990 
6991 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
6992 {
6993 	if (cfs_rq->load.weight)
6994 		return false;
6995 
6996 	if (cfs_rq->avg.load_sum)
6997 		return false;
6998 
6999 	if (cfs_rq->avg.util_sum)
7000 		return false;
7001 
7002 	if (cfs_rq->runnable_load_sum)
7003 		return false;
7004 
7005 	return true;
7006 }
7007 
7008 static void update_blocked_averages(int cpu)
7009 {
7010 	struct rq *rq = cpu_rq(cpu);
7011 	struct cfs_rq *cfs_rq, *pos;
7012 	struct rq_flags rf;
7013 
7014 	rq_lock_irqsave(rq, &rf);
7015 	update_rq_clock(rq);
7016 
7017 	/*
7018 	 * Iterates the task_group tree in a bottom up fashion, see
7019 	 * list_add_leaf_cfs_rq() for details.
7020 	 */
7021 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7022 		struct sched_entity *se;
7023 
7024 		/* throttled entities do not contribute to load */
7025 		if (throttled_hierarchy(cfs_rq))
7026 			continue;
7027 
7028 		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7029 			update_tg_load_avg(cfs_rq, 0);
7030 
7031 		/* Propagate pending load changes to the parent, if any: */
7032 		se = cfs_rq->tg->se[cpu];
7033 		if (se && !skip_blocked_update(se))
7034 			update_load_avg(se, 0);
7035 
7036 		/*
7037 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7038 		 * decayed cfs_rqs linger on the list.
7039 		 */
7040 		if (cfs_rq_is_decayed(cfs_rq))
7041 			list_del_leaf_cfs_rq(cfs_rq);
7042 	}
7043 	rq_unlock_irqrestore(rq, &rf);
7044 }
7045 
7046 /*
7047  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7048  * This needs to be done in a top-down fashion because the load of a child
7049  * group is a fraction of its parents load.
7050  */
7051 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7052 {
7053 	struct rq *rq = rq_of(cfs_rq);
7054 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7055 	unsigned long now = jiffies;
7056 	unsigned long load;
7057 
7058 	if (cfs_rq->last_h_load_update == now)
7059 		return;
7060 
7061 	cfs_rq->h_load_next = NULL;
7062 	for_each_sched_entity(se) {
7063 		cfs_rq = cfs_rq_of(se);
7064 		cfs_rq->h_load_next = se;
7065 		if (cfs_rq->last_h_load_update == now)
7066 			break;
7067 	}
7068 
7069 	if (!se) {
7070 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7071 		cfs_rq->last_h_load_update = now;
7072 	}
7073 
7074 	while ((se = cfs_rq->h_load_next) != NULL) {
7075 		load = cfs_rq->h_load;
7076 		load = div64_ul(load * se->avg.load_avg,
7077 			cfs_rq_load_avg(cfs_rq) + 1);
7078 		cfs_rq = group_cfs_rq(se);
7079 		cfs_rq->h_load = load;
7080 		cfs_rq->last_h_load_update = now;
7081 	}
7082 }
7083 
7084 static unsigned long task_h_load(struct task_struct *p)
7085 {
7086 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7087 
7088 	update_cfs_rq_h_load(cfs_rq);
7089 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7090 			cfs_rq_load_avg(cfs_rq) + 1);
7091 }
7092 #else
7093 static inline void update_blocked_averages(int cpu)
7094 {
7095 	struct rq *rq = cpu_rq(cpu);
7096 	struct cfs_rq *cfs_rq = &rq->cfs;
7097 	struct rq_flags rf;
7098 
7099 	rq_lock_irqsave(rq, &rf);
7100 	update_rq_clock(rq);
7101 	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7102 	rq_unlock_irqrestore(rq, &rf);
7103 }
7104 
7105 static unsigned long task_h_load(struct task_struct *p)
7106 {
7107 	return p->se.avg.load_avg;
7108 }
7109 #endif
7110 
7111 /********** Helpers for find_busiest_group ************************/
7112 
7113 enum group_type {
7114 	group_other = 0,
7115 	group_imbalanced,
7116 	group_overloaded,
7117 };
7118 
7119 /*
7120  * sg_lb_stats - stats of a sched_group required for load_balancing
7121  */
7122 struct sg_lb_stats {
7123 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7124 	unsigned long group_load; /* Total load over the CPUs of the group */
7125 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7126 	unsigned long load_per_task;
7127 	unsigned long group_capacity;
7128 	unsigned long group_util; /* Total utilization of the group */
7129 	unsigned int sum_nr_running; /* Nr tasks running in the group */
7130 	unsigned int idle_cpus;
7131 	unsigned int group_weight;
7132 	enum group_type group_type;
7133 	int group_no_capacity;
7134 #ifdef CONFIG_NUMA_BALANCING
7135 	unsigned int nr_numa_running;
7136 	unsigned int nr_preferred_running;
7137 #endif
7138 };
7139 
7140 /*
7141  * sd_lb_stats - Structure to store the statistics of a sched_domain
7142  *		 during load balancing.
7143  */
7144 struct sd_lb_stats {
7145 	struct sched_group *busiest;	/* Busiest group in this sd */
7146 	struct sched_group *local;	/* Local group in this sd */
7147 	unsigned long total_running;
7148 	unsigned long total_load;	/* Total load of all groups in sd */
7149 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7150 	unsigned long avg_load;	/* Average load across all groups in sd */
7151 
7152 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7153 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7154 };
7155 
7156 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7157 {
7158 	/*
7159 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7160 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7161 	 * We must however clear busiest_stat::avg_load because
7162 	 * update_sd_pick_busiest() reads this before assignment.
7163 	 */
7164 	*sds = (struct sd_lb_stats){
7165 		.busiest = NULL,
7166 		.local = NULL,
7167 		.total_running = 0UL,
7168 		.total_load = 0UL,
7169 		.total_capacity = 0UL,
7170 		.busiest_stat = {
7171 			.avg_load = 0UL,
7172 			.sum_nr_running = 0,
7173 			.group_type = group_other,
7174 		},
7175 	};
7176 }
7177 
7178 /**
7179  * get_sd_load_idx - Obtain the load index for a given sched domain.
7180  * @sd: The sched_domain whose load_idx is to be obtained.
7181  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7182  *
7183  * Return: The load index.
7184  */
7185 static inline int get_sd_load_idx(struct sched_domain *sd,
7186 					enum cpu_idle_type idle)
7187 {
7188 	int load_idx;
7189 
7190 	switch (idle) {
7191 	case CPU_NOT_IDLE:
7192 		load_idx = sd->busy_idx;
7193 		break;
7194 
7195 	case CPU_NEWLY_IDLE:
7196 		load_idx = sd->newidle_idx;
7197 		break;
7198 	default:
7199 		load_idx = sd->idle_idx;
7200 		break;
7201 	}
7202 
7203 	return load_idx;
7204 }
7205 
7206 static unsigned long scale_rt_capacity(int cpu)
7207 {
7208 	struct rq *rq = cpu_rq(cpu);
7209 	u64 total, used, age_stamp, avg;
7210 	s64 delta;
7211 
7212 	/*
7213 	 * Since we're reading these variables without serialization make sure
7214 	 * we read them once before doing sanity checks on them.
7215 	 */
7216 	age_stamp = READ_ONCE(rq->age_stamp);
7217 	avg = READ_ONCE(rq->rt_avg);
7218 	delta = __rq_clock_broken(rq) - age_stamp;
7219 
7220 	if (unlikely(delta < 0))
7221 		delta = 0;
7222 
7223 	total = sched_avg_period() + delta;
7224 
7225 	used = div_u64(avg, total);
7226 
7227 	if (likely(used < SCHED_CAPACITY_SCALE))
7228 		return SCHED_CAPACITY_SCALE - used;
7229 
7230 	return 1;
7231 }
7232 
7233 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7234 {
7235 	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7236 	struct sched_group *sdg = sd->groups;
7237 
7238 	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7239 
7240 	capacity *= scale_rt_capacity(cpu);
7241 	capacity >>= SCHED_CAPACITY_SHIFT;
7242 
7243 	if (!capacity)
7244 		capacity = 1;
7245 
7246 	cpu_rq(cpu)->cpu_capacity = capacity;
7247 	sdg->sgc->capacity = capacity;
7248 	sdg->sgc->min_capacity = capacity;
7249 }
7250 
7251 void update_group_capacity(struct sched_domain *sd, int cpu)
7252 {
7253 	struct sched_domain *child = sd->child;
7254 	struct sched_group *group, *sdg = sd->groups;
7255 	unsigned long capacity, min_capacity;
7256 	unsigned long interval;
7257 
7258 	interval = msecs_to_jiffies(sd->balance_interval);
7259 	interval = clamp(interval, 1UL, max_load_balance_interval);
7260 	sdg->sgc->next_update = jiffies + interval;
7261 
7262 	if (!child) {
7263 		update_cpu_capacity(sd, cpu);
7264 		return;
7265 	}
7266 
7267 	capacity = 0;
7268 	min_capacity = ULONG_MAX;
7269 
7270 	if (child->flags & SD_OVERLAP) {
7271 		/*
7272 		 * SD_OVERLAP domains cannot assume that child groups
7273 		 * span the current group.
7274 		 */
7275 
7276 		for_each_cpu(cpu, sched_group_span(sdg)) {
7277 			struct sched_group_capacity *sgc;
7278 			struct rq *rq = cpu_rq(cpu);
7279 
7280 			/*
7281 			 * build_sched_domains() -> init_sched_groups_capacity()
7282 			 * gets here before we've attached the domains to the
7283 			 * runqueues.
7284 			 *
7285 			 * Use capacity_of(), which is set irrespective of domains
7286 			 * in update_cpu_capacity().
7287 			 *
7288 			 * This avoids capacity from being 0 and
7289 			 * causing divide-by-zero issues on boot.
7290 			 */
7291 			if (unlikely(!rq->sd)) {
7292 				capacity += capacity_of(cpu);
7293 			} else {
7294 				sgc = rq->sd->groups->sgc;
7295 				capacity += sgc->capacity;
7296 			}
7297 
7298 			min_capacity = min(capacity, min_capacity);
7299 		}
7300 	} else  {
7301 		/*
7302 		 * !SD_OVERLAP domains can assume that child groups
7303 		 * span the current group.
7304 		 */
7305 
7306 		group = child->groups;
7307 		do {
7308 			struct sched_group_capacity *sgc = group->sgc;
7309 
7310 			capacity += sgc->capacity;
7311 			min_capacity = min(sgc->min_capacity, min_capacity);
7312 			group = group->next;
7313 		} while (group != child->groups);
7314 	}
7315 
7316 	sdg->sgc->capacity = capacity;
7317 	sdg->sgc->min_capacity = min_capacity;
7318 }
7319 
7320 /*
7321  * Check whether the capacity of the rq has been noticeably reduced by side
7322  * activity. The imbalance_pct is used for the threshold.
7323  * Return true is the capacity is reduced
7324  */
7325 static inline int
7326 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7327 {
7328 	return ((rq->cpu_capacity * sd->imbalance_pct) <
7329 				(rq->cpu_capacity_orig * 100));
7330 }
7331 
7332 /*
7333  * Group imbalance indicates (and tries to solve) the problem where balancing
7334  * groups is inadequate due to ->cpus_allowed constraints.
7335  *
7336  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7337  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7338  * Something like:
7339  *
7340  *	{ 0 1 2 3 } { 4 5 6 7 }
7341  *	        *     * * *
7342  *
7343  * If we were to balance group-wise we'd place two tasks in the first group and
7344  * two tasks in the second group. Clearly this is undesired as it will overload
7345  * cpu 3 and leave one of the cpus in the second group unused.
7346  *
7347  * The current solution to this issue is detecting the skew in the first group
7348  * by noticing the lower domain failed to reach balance and had difficulty
7349  * moving tasks due to affinity constraints.
7350  *
7351  * When this is so detected; this group becomes a candidate for busiest; see
7352  * update_sd_pick_busiest(). And calculate_imbalance() and
7353  * find_busiest_group() avoid some of the usual balance conditions to allow it
7354  * to create an effective group imbalance.
7355  *
7356  * This is a somewhat tricky proposition since the next run might not find the
7357  * group imbalance and decide the groups need to be balanced again. A most
7358  * subtle and fragile situation.
7359  */
7360 
7361 static inline int sg_imbalanced(struct sched_group *group)
7362 {
7363 	return group->sgc->imbalance;
7364 }
7365 
7366 /*
7367  * group_has_capacity returns true if the group has spare capacity that could
7368  * be used by some tasks.
7369  * We consider that a group has spare capacity if the  * number of task is
7370  * smaller than the number of CPUs or if the utilization is lower than the
7371  * available capacity for CFS tasks.
7372  * For the latter, we use a threshold to stabilize the state, to take into
7373  * account the variance of the tasks' load and to return true if the available
7374  * capacity in meaningful for the load balancer.
7375  * As an example, an available capacity of 1% can appear but it doesn't make
7376  * any benefit for the load balance.
7377  */
7378 static inline bool
7379 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7380 {
7381 	if (sgs->sum_nr_running < sgs->group_weight)
7382 		return true;
7383 
7384 	if ((sgs->group_capacity * 100) >
7385 			(sgs->group_util * env->sd->imbalance_pct))
7386 		return true;
7387 
7388 	return false;
7389 }
7390 
7391 /*
7392  *  group_is_overloaded returns true if the group has more tasks than it can
7393  *  handle.
7394  *  group_is_overloaded is not equals to !group_has_capacity because a group
7395  *  with the exact right number of tasks, has no more spare capacity but is not
7396  *  overloaded so both group_has_capacity and group_is_overloaded return
7397  *  false.
7398  */
7399 static inline bool
7400 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7401 {
7402 	if (sgs->sum_nr_running <= sgs->group_weight)
7403 		return false;
7404 
7405 	if ((sgs->group_capacity * 100) <
7406 			(sgs->group_util * env->sd->imbalance_pct))
7407 		return true;
7408 
7409 	return false;
7410 }
7411 
7412 /*
7413  * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7414  * per-CPU capacity than sched_group ref.
7415  */
7416 static inline bool
7417 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7418 {
7419 	return sg->sgc->min_capacity * capacity_margin <
7420 						ref->sgc->min_capacity * 1024;
7421 }
7422 
7423 static inline enum
7424 group_type group_classify(struct sched_group *group,
7425 			  struct sg_lb_stats *sgs)
7426 {
7427 	if (sgs->group_no_capacity)
7428 		return group_overloaded;
7429 
7430 	if (sg_imbalanced(group))
7431 		return group_imbalanced;
7432 
7433 	return group_other;
7434 }
7435 
7436 /**
7437  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7438  * @env: The load balancing environment.
7439  * @group: sched_group whose statistics are to be updated.
7440  * @load_idx: Load index of sched_domain of this_cpu for load calc.
7441  * @local_group: Does group contain this_cpu.
7442  * @sgs: variable to hold the statistics for this group.
7443  * @overload: Indicate more than one runnable task for any CPU.
7444  */
7445 static inline void update_sg_lb_stats(struct lb_env *env,
7446 			struct sched_group *group, int load_idx,
7447 			int local_group, struct sg_lb_stats *sgs,
7448 			bool *overload)
7449 {
7450 	unsigned long load;
7451 	int i, nr_running;
7452 
7453 	memset(sgs, 0, sizeof(*sgs));
7454 
7455 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7456 		struct rq *rq = cpu_rq(i);
7457 
7458 		/* Bias balancing toward cpus of our domain */
7459 		if (local_group)
7460 			load = target_load(i, load_idx);
7461 		else
7462 			load = source_load(i, load_idx);
7463 
7464 		sgs->group_load += load;
7465 		sgs->group_util += cpu_util(i);
7466 		sgs->sum_nr_running += rq->cfs.h_nr_running;
7467 
7468 		nr_running = rq->nr_running;
7469 		if (nr_running > 1)
7470 			*overload = true;
7471 
7472 #ifdef CONFIG_NUMA_BALANCING
7473 		sgs->nr_numa_running += rq->nr_numa_running;
7474 		sgs->nr_preferred_running += rq->nr_preferred_running;
7475 #endif
7476 		sgs->sum_weighted_load += weighted_cpuload(rq);
7477 		/*
7478 		 * No need to call idle_cpu() if nr_running is not 0
7479 		 */
7480 		if (!nr_running && idle_cpu(i))
7481 			sgs->idle_cpus++;
7482 	}
7483 
7484 	/* Adjust by relative CPU capacity of the group */
7485 	sgs->group_capacity = group->sgc->capacity;
7486 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7487 
7488 	if (sgs->sum_nr_running)
7489 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7490 
7491 	sgs->group_weight = group->group_weight;
7492 
7493 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7494 	sgs->group_type = group_classify(group, sgs);
7495 }
7496 
7497 /**
7498  * update_sd_pick_busiest - return 1 on busiest group
7499  * @env: The load balancing environment.
7500  * @sds: sched_domain statistics
7501  * @sg: sched_group candidate to be checked for being the busiest
7502  * @sgs: sched_group statistics
7503  *
7504  * Determine if @sg is a busier group than the previously selected
7505  * busiest group.
7506  *
7507  * Return: %true if @sg is a busier group than the previously selected
7508  * busiest group. %false otherwise.
7509  */
7510 static bool update_sd_pick_busiest(struct lb_env *env,
7511 				   struct sd_lb_stats *sds,
7512 				   struct sched_group *sg,
7513 				   struct sg_lb_stats *sgs)
7514 {
7515 	struct sg_lb_stats *busiest = &sds->busiest_stat;
7516 
7517 	if (sgs->group_type > busiest->group_type)
7518 		return true;
7519 
7520 	if (sgs->group_type < busiest->group_type)
7521 		return false;
7522 
7523 	if (sgs->avg_load <= busiest->avg_load)
7524 		return false;
7525 
7526 	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7527 		goto asym_packing;
7528 
7529 	/*
7530 	 * Candidate sg has no more than one task per CPU and
7531 	 * has higher per-CPU capacity. Migrating tasks to less
7532 	 * capable CPUs may harm throughput. Maximize throughput,
7533 	 * power/energy consequences are not considered.
7534 	 */
7535 	if (sgs->sum_nr_running <= sgs->group_weight &&
7536 	    group_smaller_cpu_capacity(sds->local, sg))
7537 		return false;
7538 
7539 asym_packing:
7540 	/* This is the busiest node in its class. */
7541 	if (!(env->sd->flags & SD_ASYM_PACKING))
7542 		return true;
7543 
7544 	/* No ASYM_PACKING if target cpu is already busy */
7545 	if (env->idle == CPU_NOT_IDLE)
7546 		return true;
7547 	/*
7548 	 * ASYM_PACKING needs to move all the work to the highest
7549 	 * prority CPUs in the group, therefore mark all groups
7550 	 * of lower priority than ourself as busy.
7551 	 */
7552 	if (sgs->sum_nr_running &&
7553 	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7554 		if (!sds->busiest)
7555 			return true;
7556 
7557 		/* Prefer to move from lowest priority cpu's work */
7558 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7559 				      sg->asym_prefer_cpu))
7560 			return true;
7561 	}
7562 
7563 	return false;
7564 }
7565 
7566 #ifdef CONFIG_NUMA_BALANCING
7567 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7568 {
7569 	if (sgs->sum_nr_running > sgs->nr_numa_running)
7570 		return regular;
7571 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
7572 		return remote;
7573 	return all;
7574 }
7575 
7576 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7577 {
7578 	if (rq->nr_running > rq->nr_numa_running)
7579 		return regular;
7580 	if (rq->nr_running > rq->nr_preferred_running)
7581 		return remote;
7582 	return all;
7583 }
7584 #else
7585 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7586 {
7587 	return all;
7588 }
7589 
7590 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7591 {
7592 	return regular;
7593 }
7594 #endif /* CONFIG_NUMA_BALANCING */
7595 
7596 /**
7597  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7598  * @env: The load balancing environment.
7599  * @sds: variable to hold the statistics for this sched_domain.
7600  */
7601 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7602 {
7603 	struct sched_domain_shared *shared = env->sd->shared;
7604 	struct sched_domain *child = env->sd->child;
7605 	struct sched_group *sg = env->sd->groups;
7606 	struct sg_lb_stats *local = &sds->local_stat;
7607 	struct sg_lb_stats tmp_sgs;
7608 	int load_idx, prefer_sibling = 0;
7609 	bool overload = false;
7610 
7611 	if (child && child->flags & SD_PREFER_SIBLING)
7612 		prefer_sibling = 1;
7613 
7614 	load_idx = get_sd_load_idx(env->sd, env->idle);
7615 
7616 	do {
7617 		struct sg_lb_stats *sgs = &tmp_sgs;
7618 		int local_group;
7619 
7620 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
7621 		if (local_group) {
7622 			sds->local = sg;
7623 			sgs = local;
7624 
7625 			if (env->idle != CPU_NEWLY_IDLE ||
7626 			    time_after_eq(jiffies, sg->sgc->next_update))
7627 				update_group_capacity(env->sd, env->dst_cpu);
7628 		}
7629 
7630 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7631 						&overload);
7632 
7633 		if (local_group)
7634 			goto next_group;
7635 
7636 		/*
7637 		 * In case the child domain prefers tasks go to siblings
7638 		 * first, lower the sg capacity so that we'll try
7639 		 * and move all the excess tasks away. We lower the capacity
7640 		 * of a group only if the local group has the capacity to fit
7641 		 * these excess tasks. The extra check prevents the case where
7642 		 * you always pull from the heaviest group when it is already
7643 		 * under-utilized (possible with a large weight task outweighs
7644 		 * the tasks on the system).
7645 		 */
7646 		if (prefer_sibling && sds->local &&
7647 		    group_has_capacity(env, local) &&
7648 		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
7649 			sgs->group_no_capacity = 1;
7650 			sgs->group_type = group_classify(sg, sgs);
7651 		}
7652 
7653 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7654 			sds->busiest = sg;
7655 			sds->busiest_stat = *sgs;
7656 		}
7657 
7658 next_group:
7659 		/* Now, start updating sd_lb_stats */
7660 		sds->total_running += sgs->sum_nr_running;
7661 		sds->total_load += sgs->group_load;
7662 		sds->total_capacity += sgs->group_capacity;
7663 
7664 		sg = sg->next;
7665 	} while (sg != env->sd->groups);
7666 
7667 	if (env->sd->flags & SD_NUMA)
7668 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7669 
7670 	if (!env->sd->parent) {
7671 		/* update overload indicator if we are at root domain */
7672 		if (env->dst_rq->rd->overload != overload)
7673 			env->dst_rq->rd->overload = overload;
7674 	}
7675 
7676 	if (!shared)
7677 		return;
7678 
7679 	/*
7680 	 * Since these are sums over groups they can contain some CPUs
7681 	 * multiple times for the NUMA domains.
7682 	 *
7683 	 * Currently only wake_affine_llc() and find_busiest_group()
7684 	 * uses these numbers, only the last is affected by this problem.
7685 	 *
7686 	 * XXX fix that.
7687 	 */
7688 	WRITE_ONCE(shared->nr_running,	sds->total_running);
7689 	WRITE_ONCE(shared->load,	sds->total_load);
7690 	WRITE_ONCE(shared->capacity,	sds->total_capacity);
7691 }
7692 
7693 /**
7694  * check_asym_packing - Check to see if the group is packed into the
7695  *			sched domain.
7696  *
7697  * This is primarily intended to used at the sibling level.  Some
7698  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
7699  * case of POWER7, it can move to lower SMT modes only when higher
7700  * threads are idle.  When in lower SMT modes, the threads will
7701  * perform better since they share less core resources.  Hence when we
7702  * have idle threads, we want them to be the higher ones.
7703  *
7704  * This packing function is run on idle threads.  It checks to see if
7705  * the busiest CPU in this domain (core in the P7 case) has a higher
7706  * CPU number than the packing function is being run on.  Here we are
7707  * assuming lower CPU number will be equivalent to lower a SMT thread
7708  * number.
7709  *
7710  * Return: 1 when packing is required and a task should be moved to
7711  * this CPU.  The amount of the imbalance is returned in env->imbalance.
7712  *
7713  * @env: The load balancing environment.
7714  * @sds: Statistics of the sched_domain which is to be packed
7715  */
7716 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7717 {
7718 	int busiest_cpu;
7719 
7720 	if (!(env->sd->flags & SD_ASYM_PACKING))
7721 		return 0;
7722 
7723 	if (env->idle == CPU_NOT_IDLE)
7724 		return 0;
7725 
7726 	if (!sds->busiest)
7727 		return 0;
7728 
7729 	busiest_cpu = sds->busiest->asym_prefer_cpu;
7730 	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
7731 		return 0;
7732 
7733 	env->imbalance = DIV_ROUND_CLOSEST(
7734 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7735 		SCHED_CAPACITY_SCALE);
7736 
7737 	return 1;
7738 }
7739 
7740 /**
7741  * fix_small_imbalance - Calculate the minor imbalance that exists
7742  *			amongst the groups of a sched_domain, during
7743  *			load balancing.
7744  * @env: The load balancing environment.
7745  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
7746  */
7747 static inline
7748 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7749 {
7750 	unsigned long tmp, capa_now = 0, capa_move = 0;
7751 	unsigned int imbn = 2;
7752 	unsigned long scaled_busy_load_per_task;
7753 	struct sg_lb_stats *local, *busiest;
7754 
7755 	local = &sds->local_stat;
7756 	busiest = &sds->busiest_stat;
7757 
7758 	if (!local->sum_nr_running)
7759 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7760 	else if (busiest->load_per_task > local->load_per_task)
7761 		imbn = 1;
7762 
7763 	scaled_busy_load_per_task =
7764 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7765 		busiest->group_capacity;
7766 
7767 	if (busiest->avg_load + scaled_busy_load_per_task >=
7768 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
7769 		env->imbalance = busiest->load_per_task;
7770 		return;
7771 	}
7772 
7773 	/*
7774 	 * OK, we don't have enough imbalance to justify moving tasks,
7775 	 * however we may be able to increase total CPU capacity used by
7776 	 * moving them.
7777 	 */
7778 
7779 	capa_now += busiest->group_capacity *
7780 			min(busiest->load_per_task, busiest->avg_load);
7781 	capa_now += local->group_capacity *
7782 			min(local->load_per_task, local->avg_load);
7783 	capa_now /= SCHED_CAPACITY_SCALE;
7784 
7785 	/* Amount of load we'd subtract */
7786 	if (busiest->avg_load > scaled_busy_load_per_task) {
7787 		capa_move += busiest->group_capacity *
7788 			    min(busiest->load_per_task,
7789 				busiest->avg_load - scaled_busy_load_per_task);
7790 	}
7791 
7792 	/* Amount of load we'd add */
7793 	if (busiest->avg_load * busiest->group_capacity <
7794 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7795 		tmp = (busiest->avg_load * busiest->group_capacity) /
7796 		      local->group_capacity;
7797 	} else {
7798 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7799 		      local->group_capacity;
7800 	}
7801 	capa_move += local->group_capacity *
7802 		    min(local->load_per_task, local->avg_load + tmp);
7803 	capa_move /= SCHED_CAPACITY_SCALE;
7804 
7805 	/* Move if we gain throughput */
7806 	if (capa_move > capa_now)
7807 		env->imbalance = busiest->load_per_task;
7808 }
7809 
7810 /**
7811  * calculate_imbalance - Calculate the amount of imbalance present within the
7812  *			 groups of a given sched_domain during load balance.
7813  * @env: load balance environment
7814  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
7815  */
7816 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7817 {
7818 	unsigned long max_pull, load_above_capacity = ~0UL;
7819 	struct sg_lb_stats *local, *busiest;
7820 
7821 	local = &sds->local_stat;
7822 	busiest = &sds->busiest_stat;
7823 
7824 	if (busiest->group_type == group_imbalanced) {
7825 		/*
7826 		 * In the group_imb case we cannot rely on group-wide averages
7827 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
7828 		 */
7829 		busiest->load_per_task =
7830 			min(busiest->load_per_task, sds->avg_load);
7831 	}
7832 
7833 	/*
7834 	 * Avg load of busiest sg can be less and avg load of local sg can
7835 	 * be greater than avg load across all sgs of sd because avg load
7836 	 * factors in sg capacity and sgs with smaller group_type are
7837 	 * skipped when updating the busiest sg:
7838 	 */
7839 	if (busiest->avg_load <= sds->avg_load ||
7840 	    local->avg_load >= sds->avg_load) {
7841 		env->imbalance = 0;
7842 		return fix_small_imbalance(env, sds);
7843 	}
7844 
7845 	/*
7846 	 * If there aren't any idle cpus, avoid creating some.
7847 	 */
7848 	if (busiest->group_type == group_overloaded &&
7849 	    local->group_type   == group_overloaded) {
7850 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7851 		if (load_above_capacity > busiest->group_capacity) {
7852 			load_above_capacity -= busiest->group_capacity;
7853 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
7854 			load_above_capacity /= busiest->group_capacity;
7855 		} else
7856 			load_above_capacity = ~0UL;
7857 	}
7858 
7859 	/*
7860 	 * We're trying to get all the cpus to the average_load, so we don't
7861 	 * want to push ourselves above the average load, nor do we wish to
7862 	 * reduce the max loaded cpu below the average load. At the same time,
7863 	 * we also don't want to reduce the group load below the group
7864 	 * capacity. Thus we look for the minimum possible imbalance.
7865 	 */
7866 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7867 
7868 	/* How much load to actually move to equalise the imbalance */
7869 	env->imbalance = min(
7870 		max_pull * busiest->group_capacity,
7871 		(sds->avg_load - local->avg_load) * local->group_capacity
7872 	) / SCHED_CAPACITY_SCALE;
7873 
7874 	/*
7875 	 * if *imbalance is less than the average load per runnable task
7876 	 * there is no guarantee that any tasks will be moved so we'll have
7877 	 * a think about bumping its value to force at least one task to be
7878 	 * moved
7879 	 */
7880 	if (env->imbalance < busiest->load_per_task)
7881 		return fix_small_imbalance(env, sds);
7882 }
7883 
7884 /******* find_busiest_group() helpers end here *********************/
7885 
7886 /**
7887  * find_busiest_group - Returns the busiest group within the sched_domain
7888  * if there is an imbalance.
7889  *
7890  * Also calculates the amount of weighted load which should be moved
7891  * to restore balance.
7892  *
7893  * @env: The load balancing environment.
7894  *
7895  * Return:	- The busiest group if imbalance exists.
7896  */
7897 static struct sched_group *find_busiest_group(struct lb_env *env)
7898 {
7899 	struct sg_lb_stats *local, *busiest;
7900 	struct sd_lb_stats sds;
7901 
7902 	init_sd_lb_stats(&sds);
7903 
7904 	/*
7905 	 * Compute the various statistics relavent for load balancing at
7906 	 * this level.
7907 	 */
7908 	update_sd_lb_stats(env, &sds);
7909 	local = &sds.local_stat;
7910 	busiest = &sds.busiest_stat;
7911 
7912 	/* ASYM feature bypasses nice load balance check */
7913 	if (check_asym_packing(env, &sds))
7914 		return sds.busiest;
7915 
7916 	/* There is no busy sibling group to pull tasks from */
7917 	if (!sds.busiest || busiest->sum_nr_running == 0)
7918 		goto out_balanced;
7919 
7920 	/* XXX broken for overlapping NUMA groups */
7921 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7922 						/ sds.total_capacity;
7923 
7924 	/*
7925 	 * If the busiest group is imbalanced the below checks don't
7926 	 * work because they assume all things are equal, which typically
7927 	 * isn't true due to cpus_allowed constraints and the like.
7928 	 */
7929 	if (busiest->group_type == group_imbalanced)
7930 		goto force_balance;
7931 
7932 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7933 	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7934 	    busiest->group_no_capacity)
7935 		goto force_balance;
7936 
7937 	/*
7938 	 * If the local group is busier than the selected busiest group
7939 	 * don't try and pull any tasks.
7940 	 */
7941 	if (local->avg_load >= busiest->avg_load)
7942 		goto out_balanced;
7943 
7944 	/*
7945 	 * Don't pull any tasks if this group is already above the domain
7946 	 * average load.
7947 	 */
7948 	if (local->avg_load >= sds.avg_load)
7949 		goto out_balanced;
7950 
7951 	if (env->idle == CPU_IDLE) {
7952 		/*
7953 		 * This cpu is idle. If the busiest group is not overloaded
7954 		 * and there is no imbalance between this and busiest group
7955 		 * wrt idle cpus, it is balanced. The imbalance becomes
7956 		 * significant if the diff is greater than 1 otherwise we
7957 		 * might end up to just move the imbalance on another group
7958 		 */
7959 		if ((busiest->group_type != group_overloaded) &&
7960 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7961 			goto out_balanced;
7962 	} else {
7963 		/*
7964 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7965 		 * imbalance_pct to be conservative.
7966 		 */
7967 		if (100 * busiest->avg_load <=
7968 				env->sd->imbalance_pct * local->avg_load)
7969 			goto out_balanced;
7970 	}
7971 
7972 force_balance:
7973 	/* Looks like there is an imbalance. Compute it */
7974 	calculate_imbalance(env, &sds);
7975 	return sds.busiest;
7976 
7977 out_balanced:
7978 	env->imbalance = 0;
7979 	return NULL;
7980 }
7981 
7982 /*
7983  * find_busiest_queue - find the busiest runqueue among the cpus in group.
7984  */
7985 static struct rq *find_busiest_queue(struct lb_env *env,
7986 				     struct sched_group *group)
7987 {
7988 	struct rq *busiest = NULL, *rq;
7989 	unsigned long busiest_load = 0, busiest_capacity = 1;
7990 	int i;
7991 
7992 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7993 		unsigned long capacity, wl;
7994 		enum fbq_type rt;
7995 
7996 		rq = cpu_rq(i);
7997 		rt = fbq_classify_rq(rq);
7998 
7999 		/*
8000 		 * We classify groups/runqueues into three groups:
8001 		 *  - regular: there are !numa tasks
8002 		 *  - remote:  there are numa tasks that run on the 'wrong' node
8003 		 *  - all:     there is no distinction
8004 		 *
8005 		 * In order to avoid migrating ideally placed numa tasks,
8006 		 * ignore those when there's better options.
8007 		 *
8008 		 * If we ignore the actual busiest queue to migrate another
8009 		 * task, the next balance pass can still reduce the busiest
8010 		 * queue by moving tasks around inside the node.
8011 		 *
8012 		 * If we cannot move enough load due to this classification
8013 		 * the next pass will adjust the group classification and
8014 		 * allow migration of more tasks.
8015 		 *
8016 		 * Both cases only affect the total convergence complexity.
8017 		 */
8018 		if (rt > env->fbq_type)
8019 			continue;
8020 
8021 		capacity = capacity_of(i);
8022 
8023 		wl = weighted_cpuload(rq);
8024 
8025 		/*
8026 		 * When comparing with imbalance, use weighted_cpuload()
8027 		 * which is not scaled with the cpu capacity.
8028 		 */
8029 
8030 		if (rq->nr_running == 1 && wl > env->imbalance &&
8031 		    !check_cpu_capacity(rq, env->sd))
8032 			continue;
8033 
8034 		/*
8035 		 * For the load comparisons with the other cpu's, consider
8036 		 * the weighted_cpuload() scaled with the cpu capacity, so
8037 		 * that the load can be moved away from the cpu that is
8038 		 * potentially running at a lower capacity.
8039 		 *
8040 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8041 		 * multiplication to rid ourselves of the division works out
8042 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
8043 		 * our previous maximum.
8044 		 */
8045 		if (wl * busiest_capacity > busiest_load * capacity) {
8046 			busiest_load = wl;
8047 			busiest_capacity = capacity;
8048 			busiest = rq;
8049 		}
8050 	}
8051 
8052 	return busiest;
8053 }
8054 
8055 /*
8056  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8057  * so long as it is large enough.
8058  */
8059 #define MAX_PINNED_INTERVAL	512
8060 
8061 static int need_active_balance(struct lb_env *env)
8062 {
8063 	struct sched_domain *sd = env->sd;
8064 
8065 	if (env->idle == CPU_NEWLY_IDLE) {
8066 
8067 		/*
8068 		 * ASYM_PACKING needs to force migrate tasks from busy but
8069 		 * lower priority CPUs in order to pack all tasks in the
8070 		 * highest priority CPUs.
8071 		 */
8072 		if ((sd->flags & SD_ASYM_PACKING) &&
8073 		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8074 			return 1;
8075 	}
8076 
8077 	/*
8078 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8079 	 * It's worth migrating the task if the src_cpu's capacity is reduced
8080 	 * because of other sched_class or IRQs if more capacity stays
8081 	 * available on dst_cpu.
8082 	 */
8083 	if ((env->idle != CPU_NOT_IDLE) &&
8084 	    (env->src_rq->cfs.h_nr_running == 1)) {
8085 		if ((check_cpu_capacity(env->src_rq, sd)) &&
8086 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8087 			return 1;
8088 	}
8089 
8090 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8091 }
8092 
8093 static int active_load_balance_cpu_stop(void *data);
8094 
8095 static int should_we_balance(struct lb_env *env)
8096 {
8097 	struct sched_group *sg = env->sd->groups;
8098 	int cpu, balance_cpu = -1;
8099 
8100 	/*
8101 	 * In the newly idle case, we will allow all the cpu's
8102 	 * to do the newly idle load balance.
8103 	 */
8104 	if (env->idle == CPU_NEWLY_IDLE)
8105 		return 1;
8106 
8107 	/* Try to find first idle cpu */
8108 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8109 		if (!idle_cpu(cpu))
8110 			continue;
8111 
8112 		balance_cpu = cpu;
8113 		break;
8114 	}
8115 
8116 	if (balance_cpu == -1)
8117 		balance_cpu = group_balance_cpu(sg);
8118 
8119 	/*
8120 	 * First idle cpu or the first cpu(busiest) in this sched group
8121 	 * is eligible for doing load balancing at this and above domains.
8122 	 */
8123 	return balance_cpu == env->dst_cpu;
8124 }
8125 
8126 /*
8127  * Check this_cpu to ensure it is balanced within domain. Attempt to move
8128  * tasks if there is an imbalance.
8129  */
8130 static int load_balance(int this_cpu, struct rq *this_rq,
8131 			struct sched_domain *sd, enum cpu_idle_type idle,
8132 			int *continue_balancing)
8133 {
8134 	int ld_moved, cur_ld_moved, active_balance = 0;
8135 	struct sched_domain *sd_parent = sd->parent;
8136 	struct sched_group *group;
8137 	struct rq *busiest;
8138 	struct rq_flags rf;
8139 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8140 
8141 	struct lb_env env = {
8142 		.sd		= sd,
8143 		.dst_cpu	= this_cpu,
8144 		.dst_rq		= this_rq,
8145 		.dst_grpmask    = sched_group_span(sd->groups),
8146 		.idle		= idle,
8147 		.loop_break	= sched_nr_migrate_break,
8148 		.cpus		= cpus,
8149 		.fbq_type	= all,
8150 		.tasks		= LIST_HEAD_INIT(env.tasks),
8151 	};
8152 
8153 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8154 
8155 	schedstat_inc(sd->lb_count[idle]);
8156 
8157 redo:
8158 	if (!should_we_balance(&env)) {
8159 		*continue_balancing = 0;
8160 		goto out_balanced;
8161 	}
8162 
8163 	group = find_busiest_group(&env);
8164 	if (!group) {
8165 		schedstat_inc(sd->lb_nobusyg[idle]);
8166 		goto out_balanced;
8167 	}
8168 
8169 	busiest = find_busiest_queue(&env, group);
8170 	if (!busiest) {
8171 		schedstat_inc(sd->lb_nobusyq[idle]);
8172 		goto out_balanced;
8173 	}
8174 
8175 	BUG_ON(busiest == env.dst_rq);
8176 
8177 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8178 
8179 	env.src_cpu = busiest->cpu;
8180 	env.src_rq = busiest;
8181 
8182 	ld_moved = 0;
8183 	if (busiest->nr_running > 1) {
8184 		/*
8185 		 * Attempt to move tasks. If find_busiest_group has found
8186 		 * an imbalance but busiest->nr_running <= 1, the group is
8187 		 * still unbalanced. ld_moved simply stays zero, so it is
8188 		 * correctly treated as an imbalance.
8189 		 */
8190 		env.flags |= LBF_ALL_PINNED;
8191 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8192 
8193 more_balance:
8194 		rq_lock_irqsave(busiest, &rf);
8195 		update_rq_clock(busiest);
8196 
8197 		/*
8198 		 * cur_ld_moved - load moved in current iteration
8199 		 * ld_moved     - cumulative load moved across iterations
8200 		 */
8201 		cur_ld_moved = detach_tasks(&env);
8202 
8203 		/*
8204 		 * We've detached some tasks from busiest_rq. Every
8205 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8206 		 * unlock busiest->lock, and we are able to be sure
8207 		 * that nobody can manipulate the tasks in parallel.
8208 		 * See task_rq_lock() family for the details.
8209 		 */
8210 
8211 		rq_unlock(busiest, &rf);
8212 
8213 		if (cur_ld_moved) {
8214 			attach_tasks(&env);
8215 			ld_moved += cur_ld_moved;
8216 		}
8217 
8218 		local_irq_restore(rf.flags);
8219 
8220 		if (env.flags & LBF_NEED_BREAK) {
8221 			env.flags &= ~LBF_NEED_BREAK;
8222 			goto more_balance;
8223 		}
8224 
8225 		/*
8226 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8227 		 * us and move them to an alternate dst_cpu in our sched_group
8228 		 * where they can run. The upper limit on how many times we
8229 		 * iterate on same src_cpu is dependent on number of cpus in our
8230 		 * sched_group.
8231 		 *
8232 		 * This changes load balance semantics a bit on who can move
8233 		 * load to a given_cpu. In addition to the given_cpu itself
8234 		 * (or a ilb_cpu acting on its behalf where given_cpu is
8235 		 * nohz-idle), we now have balance_cpu in a position to move
8236 		 * load to given_cpu. In rare situations, this may cause
8237 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8238 		 * _independently_ and at _same_ time to move some load to
8239 		 * given_cpu) causing exceess load to be moved to given_cpu.
8240 		 * This however should not happen so much in practice and
8241 		 * moreover subsequent load balance cycles should correct the
8242 		 * excess load moved.
8243 		 */
8244 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8245 
8246 			/* Prevent to re-select dst_cpu via env's cpus */
8247 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
8248 
8249 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8250 			env.dst_cpu	 = env.new_dst_cpu;
8251 			env.flags	&= ~LBF_DST_PINNED;
8252 			env.loop	 = 0;
8253 			env.loop_break	 = sched_nr_migrate_break;
8254 
8255 			/*
8256 			 * Go back to "more_balance" rather than "redo" since we
8257 			 * need to continue with same src_cpu.
8258 			 */
8259 			goto more_balance;
8260 		}
8261 
8262 		/*
8263 		 * We failed to reach balance because of affinity.
8264 		 */
8265 		if (sd_parent) {
8266 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8267 
8268 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8269 				*group_imbalance = 1;
8270 		}
8271 
8272 		/* All tasks on this runqueue were pinned by CPU affinity */
8273 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8274 			cpumask_clear_cpu(cpu_of(busiest), cpus);
8275 			/*
8276 			 * Attempting to continue load balancing at the current
8277 			 * sched_domain level only makes sense if there are
8278 			 * active CPUs remaining as possible busiest CPUs to
8279 			 * pull load from which are not contained within the
8280 			 * destination group that is receiving any migrated
8281 			 * load.
8282 			 */
8283 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8284 				env.loop = 0;
8285 				env.loop_break = sched_nr_migrate_break;
8286 				goto redo;
8287 			}
8288 			goto out_all_pinned;
8289 		}
8290 	}
8291 
8292 	if (!ld_moved) {
8293 		schedstat_inc(sd->lb_failed[idle]);
8294 		/*
8295 		 * Increment the failure counter only on periodic balance.
8296 		 * We do not want newidle balance, which can be very
8297 		 * frequent, pollute the failure counter causing
8298 		 * excessive cache_hot migrations and active balances.
8299 		 */
8300 		if (idle != CPU_NEWLY_IDLE)
8301 			sd->nr_balance_failed++;
8302 
8303 		if (need_active_balance(&env)) {
8304 			unsigned long flags;
8305 
8306 			raw_spin_lock_irqsave(&busiest->lock, flags);
8307 
8308 			/* don't kick the active_load_balance_cpu_stop,
8309 			 * if the curr task on busiest cpu can't be
8310 			 * moved to this_cpu
8311 			 */
8312 			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8313 				raw_spin_unlock_irqrestore(&busiest->lock,
8314 							    flags);
8315 				env.flags |= LBF_ALL_PINNED;
8316 				goto out_one_pinned;
8317 			}
8318 
8319 			/*
8320 			 * ->active_balance synchronizes accesses to
8321 			 * ->active_balance_work.  Once set, it's cleared
8322 			 * only after active load balance is finished.
8323 			 */
8324 			if (!busiest->active_balance) {
8325 				busiest->active_balance = 1;
8326 				busiest->push_cpu = this_cpu;
8327 				active_balance = 1;
8328 			}
8329 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8330 
8331 			if (active_balance) {
8332 				stop_one_cpu_nowait(cpu_of(busiest),
8333 					active_load_balance_cpu_stop, busiest,
8334 					&busiest->active_balance_work);
8335 			}
8336 
8337 			/* We've kicked active balancing, force task migration. */
8338 			sd->nr_balance_failed = sd->cache_nice_tries+1;
8339 		}
8340 	} else
8341 		sd->nr_balance_failed = 0;
8342 
8343 	if (likely(!active_balance)) {
8344 		/* We were unbalanced, so reset the balancing interval */
8345 		sd->balance_interval = sd->min_interval;
8346 	} else {
8347 		/*
8348 		 * If we've begun active balancing, start to back off. This
8349 		 * case may not be covered by the all_pinned logic if there
8350 		 * is only 1 task on the busy runqueue (because we don't call
8351 		 * detach_tasks).
8352 		 */
8353 		if (sd->balance_interval < sd->max_interval)
8354 			sd->balance_interval *= 2;
8355 	}
8356 
8357 	goto out;
8358 
8359 out_balanced:
8360 	/*
8361 	 * We reach balance although we may have faced some affinity
8362 	 * constraints. Clear the imbalance flag if it was set.
8363 	 */
8364 	if (sd_parent) {
8365 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8366 
8367 		if (*group_imbalance)
8368 			*group_imbalance = 0;
8369 	}
8370 
8371 out_all_pinned:
8372 	/*
8373 	 * We reach balance because all tasks are pinned at this level so
8374 	 * we can't migrate them. Let the imbalance flag set so parent level
8375 	 * can try to migrate them.
8376 	 */
8377 	schedstat_inc(sd->lb_balanced[idle]);
8378 
8379 	sd->nr_balance_failed = 0;
8380 
8381 out_one_pinned:
8382 	/* tune up the balancing interval */
8383 	if (((env.flags & LBF_ALL_PINNED) &&
8384 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8385 			(sd->balance_interval < sd->max_interval))
8386 		sd->balance_interval *= 2;
8387 
8388 	ld_moved = 0;
8389 out:
8390 	return ld_moved;
8391 }
8392 
8393 static inline unsigned long
8394 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8395 {
8396 	unsigned long interval = sd->balance_interval;
8397 
8398 	if (cpu_busy)
8399 		interval *= sd->busy_factor;
8400 
8401 	/* scale ms to jiffies */
8402 	interval = msecs_to_jiffies(interval);
8403 	interval = clamp(interval, 1UL, max_load_balance_interval);
8404 
8405 	return interval;
8406 }
8407 
8408 static inline void
8409 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8410 {
8411 	unsigned long interval, next;
8412 
8413 	/* used by idle balance, so cpu_busy = 0 */
8414 	interval = get_sd_balance_interval(sd, 0);
8415 	next = sd->last_balance + interval;
8416 
8417 	if (time_after(*next_balance, next))
8418 		*next_balance = next;
8419 }
8420 
8421 /*
8422  * idle_balance is called by schedule() if this_cpu is about to become
8423  * idle. Attempts to pull tasks from other CPUs.
8424  */
8425 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8426 {
8427 	unsigned long next_balance = jiffies + HZ;
8428 	int this_cpu = this_rq->cpu;
8429 	struct sched_domain *sd;
8430 	int pulled_task = 0;
8431 	u64 curr_cost = 0;
8432 
8433 	/*
8434 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
8435 	 * measure the duration of idle_balance() as idle time.
8436 	 */
8437 	this_rq->idle_stamp = rq_clock(this_rq);
8438 
8439 	/*
8440 	 * Do not pull tasks towards !active CPUs...
8441 	 */
8442 	if (!cpu_active(this_cpu))
8443 		return 0;
8444 
8445 	/*
8446 	 * This is OK, because current is on_cpu, which avoids it being picked
8447 	 * for load-balance and preemption/IRQs are still disabled avoiding
8448 	 * further scheduler activity on it and we're being very careful to
8449 	 * re-start the picking loop.
8450 	 */
8451 	rq_unpin_lock(this_rq, rf);
8452 
8453 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8454 	    !this_rq->rd->overload) {
8455 		rcu_read_lock();
8456 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
8457 		if (sd)
8458 			update_next_balance(sd, &next_balance);
8459 		rcu_read_unlock();
8460 
8461 		goto out;
8462 	}
8463 
8464 	raw_spin_unlock(&this_rq->lock);
8465 
8466 	update_blocked_averages(this_cpu);
8467 	rcu_read_lock();
8468 	for_each_domain(this_cpu, sd) {
8469 		int continue_balancing = 1;
8470 		u64 t0, domain_cost;
8471 
8472 		if (!(sd->flags & SD_LOAD_BALANCE))
8473 			continue;
8474 
8475 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8476 			update_next_balance(sd, &next_balance);
8477 			break;
8478 		}
8479 
8480 		if (sd->flags & SD_BALANCE_NEWIDLE) {
8481 			t0 = sched_clock_cpu(this_cpu);
8482 
8483 			pulled_task = load_balance(this_cpu, this_rq,
8484 						   sd, CPU_NEWLY_IDLE,
8485 						   &continue_balancing);
8486 
8487 			domain_cost = sched_clock_cpu(this_cpu) - t0;
8488 			if (domain_cost > sd->max_newidle_lb_cost)
8489 				sd->max_newidle_lb_cost = domain_cost;
8490 
8491 			curr_cost += domain_cost;
8492 		}
8493 
8494 		update_next_balance(sd, &next_balance);
8495 
8496 		/*
8497 		 * Stop searching for tasks to pull if there are
8498 		 * now runnable tasks on this rq.
8499 		 */
8500 		if (pulled_task || this_rq->nr_running > 0)
8501 			break;
8502 	}
8503 	rcu_read_unlock();
8504 
8505 	raw_spin_lock(&this_rq->lock);
8506 
8507 	if (curr_cost > this_rq->max_idle_balance_cost)
8508 		this_rq->max_idle_balance_cost = curr_cost;
8509 
8510 	/*
8511 	 * While browsing the domains, we released the rq lock, a task could
8512 	 * have been enqueued in the meantime. Since we're not going idle,
8513 	 * pretend we pulled a task.
8514 	 */
8515 	if (this_rq->cfs.h_nr_running && !pulled_task)
8516 		pulled_task = 1;
8517 
8518 out:
8519 	/* Move the next balance forward */
8520 	if (time_after(this_rq->next_balance, next_balance))
8521 		this_rq->next_balance = next_balance;
8522 
8523 	/* Is there a task of a high priority class? */
8524 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8525 		pulled_task = -1;
8526 
8527 	if (pulled_task)
8528 		this_rq->idle_stamp = 0;
8529 
8530 	rq_repin_lock(this_rq, rf);
8531 
8532 	return pulled_task;
8533 }
8534 
8535 /*
8536  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8537  * running tasks off the busiest CPU onto idle CPUs. It requires at
8538  * least 1 task to be running on each physical CPU where possible, and
8539  * avoids physical / logical imbalances.
8540  */
8541 static int active_load_balance_cpu_stop(void *data)
8542 {
8543 	struct rq *busiest_rq = data;
8544 	int busiest_cpu = cpu_of(busiest_rq);
8545 	int target_cpu = busiest_rq->push_cpu;
8546 	struct rq *target_rq = cpu_rq(target_cpu);
8547 	struct sched_domain *sd;
8548 	struct task_struct *p = NULL;
8549 	struct rq_flags rf;
8550 
8551 	rq_lock_irq(busiest_rq, &rf);
8552 	/*
8553 	 * Between queueing the stop-work and running it is a hole in which
8554 	 * CPUs can become inactive. We should not move tasks from or to
8555 	 * inactive CPUs.
8556 	 */
8557 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
8558 		goto out_unlock;
8559 
8560 	/* make sure the requested cpu hasn't gone down in the meantime */
8561 	if (unlikely(busiest_cpu != smp_processor_id() ||
8562 		     !busiest_rq->active_balance))
8563 		goto out_unlock;
8564 
8565 	/* Is there any task to move? */
8566 	if (busiest_rq->nr_running <= 1)
8567 		goto out_unlock;
8568 
8569 	/*
8570 	 * This condition is "impossible", if it occurs
8571 	 * we need to fix it. Originally reported by
8572 	 * Bjorn Helgaas on a 128-cpu setup.
8573 	 */
8574 	BUG_ON(busiest_rq == target_rq);
8575 
8576 	/* Search for an sd spanning us and the target CPU. */
8577 	rcu_read_lock();
8578 	for_each_domain(target_cpu, sd) {
8579 		if ((sd->flags & SD_LOAD_BALANCE) &&
8580 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8581 				break;
8582 	}
8583 
8584 	if (likely(sd)) {
8585 		struct lb_env env = {
8586 			.sd		= sd,
8587 			.dst_cpu	= target_cpu,
8588 			.dst_rq		= target_rq,
8589 			.src_cpu	= busiest_rq->cpu,
8590 			.src_rq		= busiest_rq,
8591 			.idle		= CPU_IDLE,
8592 			/*
8593 			 * can_migrate_task() doesn't need to compute new_dst_cpu
8594 			 * for active balancing. Since we have CPU_IDLE, but no
8595 			 * @dst_grpmask we need to make that test go away with lying
8596 			 * about DST_PINNED.
8597 			 */
8598 			.flags		= LBF_DST_PINNED,
8599 		};
8600 
8601 		schedstat_inc(sd->alb_count);
8602 		update_rq_clock(busiest_rq);
8603 
8604 		p = detach_one_task(&env);
8605 		if (p) {
8606 			schedstat_inc(sd->alb_pushed);
8607 			/* Active balancing done, reset the failure counter. */
8608 			sd->nr_balance_failed = 0;
8609 		} else {
8610 			schedstat_inc(sd->alb_failed);
8611 		}
8612 	}
8613 	rcu_read_unlock();
8614 out_unlock:
8615 	busiest_rq->active_balance = 0;
8616 	rq_unlock(busiest_rq, &rf);
8617 
8618 	if (p)
8619 		attach_one_task(target_rq, p);
8620 
8621 	local_irq_enable();
8622 
8623 	return 0;
8624 }
8625 
8626 static inline int on_null_domain(struct rq *rq)
8627 {
8628 	return unlikely(!rcu_dereference_sched(rq->sd));
8629 }
8630 
8631 #ifdef CONFIG_NO_HZ_COMMON
8632 /*
8633  * idle load balancing details
8634  * - When one of the busy CPUs notice that there may be an idle rebalancing
8635  *   needed, they will kick the idle load balancer, which then does idle
8636  *   load balancing for all the idle CPUs.
8637  */
8638 static struct {
8639 	cpumask_var_t idle_cpus_mask;
8640 	atomic_t nr_cpus;
8641 	unsigned long next_balance;     /* in jiffy units */
8642 } nohz ____cacheline_aligned;
8643 
8644 static inline int find_new_ilb(void)
8645 {
8646 	int ilb = cpumask_first(nohz.idle_cpus_mask);
8647 
8648 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
8649 		return ilb;
8650 
8651 	return nr_cpu_ids;
8652 }
8653 
8654 /*
8655  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8656  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8657  * CPU (if there is one).
8658  */
8659 static void nohz_balancer_kick(void)
8660 {
8661 	int ilb_cpu;
8662 
8663 	nohz.next_balance++;
8664 
8665 	ilb_cpu = find_new_ilb();
8666 
8667 	if (ilb_cpu >= nr_cpu_ids)
8668 		return;
8669 
8670 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8671 		return;
8672 	/*
8673 	 * Use smp_send_reschedule() instead of resched_cpu().
8674 	 * This way we generate a sched IPI on the target cpu which
8675 	 * is idle. And the softirq performing nohz idle load balance
8676 	 * will be run before returning from the IPI.
8677 	 */
8678 	smp_send_reschedule(ilb_cpu);
8679 	return;
8680 }
8681 
8682 void nohz_balance_exit_idle(unsigned int cpu)
8683 {
8684 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8685 		/*
8686 		 * Completely isolated CPUs don't ever set, so we must test.
8687 		 */
8688 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8689 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8690 			atomic_dec(&nohz.nr_cpus);
8691 		}
8692 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8693 	}
8694 }
8695 
8696 static inline void set_cpu_sd_state_busy(void)
8697 {
8698 	struct sched_domain *sd;
8699 	int cpu = smp_processor_id();
8700 
8701 	rcu_read_lock();
8702 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
8703 
8704 	if (!sd || !sd->nohz_idle)
8705 		goto unlock;
8706 	sd->nohz_idle = 0;
8707 
8708 	atomic_inc(&sd->shared->nr_busy_cpus);
8709 unlock:
8710 	rcu_read_unlock();
8711 }
8712 
8713 void set_cpu_sd_state_idle(void)
8714 {
8715 	struct sched_domain *sd;
8716 	int cpu = smp_processor_id();
8717 
8718 	rcu_read_lock();
8719 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
8720 
8721 	if (!sd || sd->nohz_idle)
8722 		goto unlock;
8723 	sd->nohz_idle = 1;
8724 
8725 	atomic_dec(&sd->shared->nr_busy_cpus);
8726 unlock:
8727 	rcu_read_unlock();
8728 }
8729 
8730 /*
8731  * This routine will record that the cpu is going idle with tick stopped.
8732  * This info will be used in performing idle load balancing in the future.
8733  */
8734 void nohz_balance_enter_idle(int cpu)
8735 {
8736 	/*
8737 	 * If this cpu is going down, then nothing needs to be done.
8738 	 */
8739 	if (!cpu_active(cpu))
8740 		return;
8741 
8742 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
8743 	if (!is_housekeeping_cpu(cpu))
8744 		return;
8745 
8746 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8747 		return;
8748 
8749 	/*
8750 	 * If we're a completely isolated CPU, we don't play.
8751 	 */
8752 	if (on_null_domain(cpu_rq(cpu)))
8753 		return;
8754 
8755 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8756 	atomic_inc(&nohz.nr_cpus);
8757 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8758 }
8759 #endif
8760 
8761 static DEFINE_SPINLOCK(balancing);
8762 
8763 /*
8764  * Scale the max load_balance interval with the number of CPUs in the system.
8765  * This trades load-balance latency on larger machines for less cross talk.
8766  */
8767 void update_max_interval(void)
8768 {
8769 	max_load_balance_interval = HZ*num_online_cpus()/10;
8770 }
8771 
8772 /*
8773  * It checks each scheduling domain to see if it is due to be balanced,
8774  * and initiates a balancing operation if so.
8775  *
8776  * Balancing parameters are set up in init_sched_domains.
8777  */
8778 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8779 {
8780 	int continue_balancing = 1;
8781 	int cpu = rq->cpu;
8782 	unsigned long interval;
8783 	struct sched_domain *sd;
8784 	/* Earliest time when we have to do rebalance again */
8785 	unsigned long next_balance = jiffies + 60*HZ;
8786 	int update_next_balance = 0;
8787 	int need_serialize, need_decay = 0;
8788 	u64 max_cost = 0;
8789 
8790 	update_blocked_averages(cpu);
8791 
8792 	rcu_read_lock();
8793 	for_each_domain(cpu, sd) {
8794 		/*
8795 		 * Decay the newidle max times here because this is a regular
8796 		 * visit to all the domains. Decay ~1% per second.
8797 		 */
8798 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8799 			sd->max_newidle_lb_cost =
8800 				(sd->max_newidle_lb_cost * 253) / 256;
8801 			sd->next_decay_max_lb_cost = jiffies + HZ;
8802 			need_decay = 1;
8803 		}
8804 		max_cost += sd->max_newidle_lb_cost;
8805 
8806 		if (!(sd->flags & SD_LOAD_BALANCE))
8807 			continue;
8808 
8809 		/*
8810 		 * Stop the load balance at this level. There is another
8811 		 * CPU in our sched group which is doing load balancing more
8812 		 * actively.
8813 		 */
8814 		if (!continue_balancing) {
8815 			if (need_decay)
8816 				continue;
8817 			break;
8818 		}
8819 
8820 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8821 
8822 		need_serialize = sd->flags & SD_SERIALIZE;
8823 		if (need_serialize) {
8824 			if (!spin_trylock(&balancing))
8825 				goto out;
8826 		}
8827 
8828 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8829 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8830 				/*
8831 				 * The LBF_DST_PINNED logic could have changed
8832 				 * env->dst_cpu, so we can't know our idle
8833 				 * state even if we migrated tasks. Update it.
8834 				 */
8835 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8836 			}
8837 			sd->last_balance = jiffies;
8838 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8839 		}
8840 		if (need_serialize)
8841 			spin_unlock(&balancing);
8842 out:
8843 		if (time_after(next_balance, sd->last_balance + interval)) {
8844 			next_balance = sd->last_balance + interval;
8845 			update_next_balance = 1;
8846 		}
8847 	}
8848 	if (need_decay) {
8849 		/*
8850 		 * Ensure the rq-wide value also decays but keep it at a
8851 		 * reasonable floor to avoid funnies with rq->avg_idle.
8852 		 */
8853 		rq->max_idle_balance_cost =
8854 			max((u64)sysctl_sched_migration_cost, max_cost);
8855 	}
8856 	rcu_read_unlock();
8857 
8858 	/*
8859 	 * next_balance will be updated only when there is a need.
8860 	 * When the cpu is attached to null domain for ex, it will not be
8861 	 * updated.
8862 	 */
8863 	if (likely(update_next_balance)) {
8864 		rq->next_balance = next_balance;
8865 
8866 #ifdef CONFIG_NO_HZ_COMMON
8867 		/*
8868 		 * If this CPU has been elected to perform the nohz idle
8869 		 * balance. Other idle CPUs have already rebalanced with
8870 		 * nohz_idle_balance() and nohz.next_balance has been
8871 		 * updated accordingly. This CPU is now running the idle load
8872 		 * balance for itself and we need to update the
8873 		 * nohz.next_balance accordingly.
8874 		 */
8875 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8876 			nohz.next_balance = rq->next_balance;
8877 #endif
8878 	}
8879 }
8880 
8881 #ifdef CONFIG_NO_HZ_COMMON
8882 /*
8883  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8884  * rebalancing for all the cpus for whom scheduler ticks are stopped.
8885  */
8886 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8887 {
8888 	int this_cpu = this_rq->cpu;
8889 	struct rq *rq;
8890 	int balance_cpu;
8891 	/* Earliest time when we have to do rebalance again */
8892 	unsigned long next_balance = jiffies + 60*HZ;
8893 	int update_next_balance = 0;
8894 
8895 	if (idle != CPU_IDLE ||
8896 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8897 		goto end;
8898 
8899 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8900 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8901 			continue;
8902 
8903 		/*
8904 		 * If this cpu gets work to do, stop the load balancing
8905 		 * work being done for other cpus. Next load
8906 		 * balancing owner will pick it up.
8907 		 */
8908 		if (need_resched())
8909 			break;
8910 
8911 		rq = cpu_rq(balance_cpu);
8912 
8913 		/*
8914 		 * If time for next balance is due,
8915 		 * do the balance.
8916 		 */
8917 		if (time_after_eq(jiffies, rq->next_balance)) {
8918 			struct rq_flags rf;
8919 
8920 			rq_lock_irq(rq, &rf);
8921 			update_rq_clock(rq);
8922 			cpu_load_update_idle(rq);
8923 			rq_unlock_irq(rq, &rf);
8924 
8925 			rebalance_domains(rq, CPU_IDLE);
8926 		}
8927 
8928 		if (time_after(next_balance, rq->next_balance)) {
8929 			next_balance = rq->next_balance;
8930 			update_next_balance = 1;
8931 		}
8932 	}
8933 
8934 	/*
8935 	 * next_balance will be updated only when there is a need.
8936 	 * When the CPU is attached to null domain for ex, it will not be
8937 	 * updated.
8938 	 */
8939 	if (likely(update_next_balance))
8940 		nohz.next_balance = next_balance;
8941 end:
8942 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8943 }
8944 
8945 /*
8946  * Current heuristic for kicking the idle load balancer in the presence
8947  * of an idle cpu in the system.
8948  *   - This rq has more than one task.
8949  *   - This rq has at least one CFS task and the capacity of the CPU is
8950  *     significantly reduced because of RT tasks or IRQs.
8951  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
8952  *     multiple busy cpu.
8953  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8954  *     domain span are idle.
8955  */
8956 static inline bool nohz_kick_needed(struct rq *rq)
8957 {
8958 	unsigned long now = jiffies;
8959 	struct sched_domain_shared *sds;
8960 	struct sched_domain *sd;
8961 	int nr_busy, i, cpu = rq->cpu;
8962 	bool kick = false;
8963 
8964 	if (unlikely(rq->idle_balance))
8965 		return false;
8966 
8967        /*
8968 	* We may be recently in ticked or tickless idle mode. At the first
8969 	* busy tick after returning from idle, we will update the busy stats.
8970 	*/
8971 	set_cpu_sd_state_busy();
8972 	nohz_balance_exit_idle(cpu);
8973 
8974 	/*
8975 	 * None are in tickless mode and hence no need for NOHZ idle load
8976 	 * balancing.
8977 	 */
8978 	if (likely(!atomic_read(&nohz.nr_cpus)))
8979 		return false;
8980 
8981 	if (time_before(now, nohz.next_balance))
8982 		return false;
8983 
8984 	if (rq->nr_running >= 2)
8985 		return true;
8986 
8987 	rcu_read_lock();
8988 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8989 	if (sds) {
8990 		/*
8991 		 * XXX: write a coherent comment on why we do this.
8992 		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8993 		 */
8994 		nr_busy = atomic_read(&sds->nr_busy_cpus);
8995 		if (nr_busy > 1) {
8996 			kick = true;
8997 			goto unlock;
8998 		}
8999 
9000 	}
9001 
9002 	sd = rcu_dereference(rq->sd);
9003 	if (sd) {
9004 		if ((rq->cfs.h_nr_running >= 1) &&
9005 				check_cpu_capacity(rq, sd)) {
9006 			kick = true;
9007 			goto unlock;
9008 		}
9009 	}
9010 
9011 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
9012 	if (sd) {
9013 		for_each_cpu(i, sched_domain_span(sd)) {
9014 			if (i == cpu ||
9015 			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9016 				continue;
9017 
9018 			if (sched_asym_prefer(i, cpu)) {
9019 				kick = true;
9020 				goto unlock;
9021 			}
9022 		}
9023 	}
9024 unlock:
9025 	rcu_read_unlock();
9026 	return kick;
9027 }
9028 #else
9029 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
9030 #endif
9031 
9032 /*
9033  * run_rebalance_domains is triggered when needed from the scheduler tick.
9034  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9035  */
9036 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9037 {
9038 	struct rq *this_rq = this_rq();
9039 	enum cpu_idle_type idle = this_rq->idle_balance ?
9040 						CPU_IDLE : CPU_NOT_IDLE;
9041 
9042 	/*
9043 	 * If this cpu has a pending nohz_balance_kick, then do the
9044 	 * balancing on behalf of the other idle cpus whose ticks are
9045 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9046 	 * give the idle cpus a chance to load balance. Else we may
9047 	 * load balance only within the local sched_domain hierarchy
9048 	 * and abort nohz_idle_balance altogether if we pull some load.
9049 	 */
9050 	nohz_idle_balance(this_rq, idle);
9051 	rebalance_domains(this_rq, idle);
9052 }
9053 
9054 /*
9055  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9056  */
9057 void trigger_load_balance(struct rq *rq)
9058 {
9059 	/* Don't need to rebalance while attached to NULL domain */
9060 	if (unlikely(on_null_domain(rq)))
9061 		return;
9062 
9063 	if (time_after_eq(jiffies, rq->next_balance))
9064 		raise_softirq(SCHED_SOFTIRQ);
9065 #ifdef CONFIG_NO_HZ_COMMON
9066 	if (nohz_kick_needed(rq))
9067 		nohz_balancer_kick();
9068 #endif
9069 }
9070 
9071 static void rq_online_fair(struct rq *rq)
9072 {
9073 	update_sysctl();
9074 
9075 	update_runtime_enabled(rq);
9076 }
9077 
9078 static void rq_offline_fair(struct rq *rq)
9079 {
9080 	update_sysctl();
9081 
9082 	/* Ensure any throttled groups are reachable by pick_next_task */
9083 	unthrottle_offline_cfs_rqs(rq);
9084 }
9085 
9086 #endif /* CONFIG_SMP */
9087 
9088 /*
9089  * scheduler tick hitting a task of our scheduling class:
9090  */
9091 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9092 {
9093 	struct cfs_rq *cfs_rq;
9094 	struct sched_entity *se = &curr->se;
9095 
9096 	for_each_sched_entity(se) {
9097 		cfs_rq = cfs_rq_of(se);
9098 		entity_tick(cfs_rq, se, queued);
9099 	}
9100 
9101 	if (static_branch_unlikely(&sched_numa_balancing))
9102 		task_tick_numa(rq, curr);
9103 }
9104 
9105 /*
9106  * called on fork with the child task as argument from the parent's context
9107  *  - child not yet on the tasklist
9108  *  - preemption disabled
9109  */
9110 static void task_fork_fair(struct task_struct *p)
9111 {
9112 	struct cfs_rq *cfs_rq;
9113 	struct sched_entity *se = &p->se, *curr;
9114 	struct rq *rq = this_rq();
9115 	struct rq_flags rf;
9116 
9117 	rq_lock(rq, &rf);
9118 	update_rq_clock(rq);
9119 
9120 	cfs_rq = task_cfs_rq(current);
9121 	curr = cfs_rq->curr;
9122 	if (curr) {
9123 		update_curr(cfs_rq);
9124 		se->vruntime = curr->vruntime;
9125 	}
9126 	place_entity(cfs_rq, se, 1);
9127 
9128 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9129 		/*
9130 		 * Upon rescheduling, sched_class::put_prev_task() will place
9131 		 * 'current' within the tree based on its new key value.
9132 		 */
9133 		swap(curr->vruntime, se->vruntime);
9134 		resched_curr(rq);
9135 	}
9136 
9137 	se->vruntime -= cfs_rq->min_vruntime;
9138 	rq_unlock(rq, &rf);
9139 }
9140 
9141 /*
9142  * Priority of the task has changed. Check to see if we preempt
9143  * the current task.
9144  */
9145 static void
9146 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9147 {
9148 	if (!task_on_rq_queued(p))
9149 		return;
9150 
9151 	/*
9152 	 * Reschedule if we are currently running on this runqueue and
9153 	 * our priority decreased, or if we are not currently running on
9154 	 * this runqueue and our priority is higher than the current's
9155 	 */
9156 	if (rq->curr == p) {
9157 		if (p->prio > oldprio)
9158 			resched_curr(rq);
9159 	} else
9160 		check_preempt_curr(rq, p, 0);
9161 }
9162 
9163 static inline bool vruntime_normalized(struct task_struct *p)
9164 {
9165 	struct sched_entity *se = &p->se;
9166 
9167 	/*
9168 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9169 	 * the dequeue_entity(.flags=0) will already have normalized the
9170 	 * vruntime.
9171 	 */
9172 	if (p->on_rq)
9173 		return true;
9174 
9175 	/*
9176 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
9177 	 * But there are some cases where it has already been normalized:
9178 	 *
9179 	 * - A forked child which is waiting for being woken up by
9180 	 *   wake_up_new_task().
9181 	 * - A task which has been woken up by try_to_wake_up() and
9182 	 *   waiting for actually being woken up by sched_ttwu_pending().
9183 	 */
9184 	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9185 		return true;
9186 
9187 	return false;
9188 }
9189 
9190 #ifdef CONFIG_FAIR_GROUP_SCHED
9191 /*
9192  * Propagate the changes of the sched_entity across the tg tree to make it
9193  * visible to the root
9194  */
9195 static void propagate_entity_cfs_rq(struct sched_entity *se)
9196 {
9197 	struct cfs_rq *cfs_rq;
9198 
9199 	/* Start to propagate at parent */
9200 	se = se->parent;
9201 
9202 	for_each_sched_entity(se) {
9203 		cfs_rq = cfs_rq_of(se);
9204 
9205 		if (cfs_rq_throttled(cfs_rq))
9206 			break;
9207 
9208 		update_load_avg(se, UPDATE_TG);
9209 	}
9210 }
9211 #else
9212 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9213 #endif
9214 
9215 static void detach_entity_cfs_rq(struct sched_entity *se)
9216 {
9217 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9218 
9219 	/* Catch up with the cfs_rq and remove our load when we leave */
9220 	update_load_avg(se, 0);
9221 	detach_entity_load_avg(cfs_rq, se);
9222 	update_tg_load_avg(cfs_rq, false);
9223 	propagate_entity_cfs_rq(se);
9224 }
9225 
9226 static void attach_entity_cfs_rq(struct sched_entity *se)
9227 {
9228 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9229 
9230 #ifdef CONFIG_FAIR_GROUP_SCHED
9231 	/*
9232 	 * Since the real-depth could have been changed (only FAIR
9233 	 * class maintain depth value), reset depth properly.
9234 	 */
9235 	se->depth = se->parent ? se->parent->depth + 1 : 0;
9236 #endif
9237 
9238 	/* Synchronize entity with its cfs_rq */
9239 	update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9240 	attach_entity_load_avg(cfs_rq, se);
9241 	update_tg_load_avg(cfs_rq, false);
9242 	propagate_entity_cfs_rq(se);
9243 }
9244 
9245 static void detach_task_cfs_rq(struct task_struct *p)
9246 {
9247 	struct sched_entity *se = &p->se;
9248 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9249 
9250 	if (!vruntime_normalized(p)) {
9251 		/*
9252 		 * Fix up our vruntime so that the current sleep doesn't
9253 		 * cause 'unlimited' sleep bonus.
9254 		 */
9255 		place_entity(cfs_rq, se, 0);
9256 		se->vruntime -= cfs_rq->min_vruntime;
9257 	}
9258 
9259 	detach_entity_cfs_rq(se);
9260 }
9261 
9262 static void attach_task_cfs_rq(struct task_struct *p)
9263 {
9264 	struct sched_entity *se = &p->se;
9265 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9266 
9267 	attach_entity_cfs_rq(se);
9268 
9269 	if (!vruntime_normalized(p))
9270 		se->vruntime += cfs_rq->min_vruntime;
9271 }
9272 
9273 static void switched_from_fair(struct rq *rq, struct task_struct *p)
9274 {
9275 	detach_task_cfs_rq(p);
9276 }
9277 
9278 static void switched_to_fair(struct rq *rq, struct task_struct *p)
9279 {
9280 	attach_task_cfs_rq(p);
9281 
9282 	if (task_on_rq_queued(p)) {
9283 		/*
9284 		 * We were most likely switched from sched_rt, so
9285 		 * kick off the schedule if running, otherwise just see
9286 		 * if we can still preempt the current task.
9287 		 */
9288 		if (rq->curr == p)
9289 			resched_curr(rq);
9290 		else
9291 			check_preempt_curr(rq, p, 0);
9292 	}
9293 }
9294 
9295 /* Account for a task changing its policy or group.
9296  *
9297  * This routine is mostly called to set cfs_rq->curr field when a task
9298  * migrates between groups/classes.
9299  */
9300 static void set_curr_task_fair(struct rq *rq)
9301 {
9302 	struct sched_entity *se = &rq->curr->se;
9303 
9304 	for_each_sched_entity(se) {
9305 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
9306 
9307 		set_next_entity(cfs_rq, se);
9308 		/* ensure bandwidth has been allocated on our new cfs_rq */
9309 		account_cfs_rq_runtime(cfs_rq, 0);
9310 	}
9311 }
9312 
9313 void init_cfs_rq(struct cfs_rq *cfs_rq)
9314 {
9315 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
9316 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9317 #ifndef CONFIG_64BIT
9318 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9319 #endif
9320 #ifdef CONFIG_SMP
9321 #ifdef CONFIG_FAIR_GROUP_SCHED
9322 	cfs_rq->propagate_avg = 0;
9323 #endif
9324 	atomic_long_set(&cfs_rq->removed_load_avg, 0);
9325 	atomic_long_set(&cfs_rq->removed_util_avg, 0);
9326 #endif
9327 }
9328 
9329 #ifdef CONFIG_FAIR_GROUP_SCHED
9330 static void task_set_group_fair(struct task_struct *p)
9331 {
9332 	struct sched_entity *se = &p->se;
9333 
9334 	set_task_rq(p, task_cpu(p));
9335 	se->depth = se->parent ? se->parent->depth + 1 : 0;
9336 }
9337 
9338 static void task_move_group_fair(struct task_struct *p)
9339 {
9340 	detach_task_cfs_rq(p);
9341 	set_task_rq(p, task_cpu(p));
9342 
9343 #ifdef CONFIG_SMP
9344 	/* Tell se's cfs_rq has been changed -- migrated */
9345 	p->se.avg.last_update_time = 0;
9346 #endif
9347 	attach_task_cfs_rq(p);
9348 }
9349 
9350 static void task_change_group_fair(struct task_struct *p, int type)
9351 {
9352 	switch (type) {
9353 	case TASK_SET_GROUP:
9354 		task_set_group_fair(p);
9355 		break;
9356 
9357 	case TASK_MOVE_GROUP:
9358 		task_move_group_fair(p);
9359 		break;
9360 	}
9361 }
9362 
9363 void free_fair_sched_group(struct task_group *tg)
9364 {
9365 	int i;
9366 
9367 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9368 
9369 	for_each_possible_cpu(i) {
9370 		if (tg->cfs_rq)
9371 			kfree(tg->cfs_rq[i]);
9372 		if (tg->se)
9373 			kfree(tg->se[i]);
9374 	}
9375 
9376 	kfree(tg->cfs_rq);
9377 	kfree(tg->se);
9378 }
9379 
9380 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9381 {
9382 	struct sched_entity *se;
9383 	struct cfs_rq *cfs_rq;
9384 	int i;
9385 
9386 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9387 	if (!tg->cfs_rq)
9388 		goto err;
9389 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9390 	if (!tg->se)
9391 		goto err;
9392 
9393 	tg->shares = NICE_0_LOAD;
9394 
9395 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9396 
9397 	for_each_possible_cpu(i) {
9398 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9399 				      GFP_KERNEL, cpu_to_node(i));
9400 		if (!cfs_rq)
9401 			goto err;
9402 
9403 		se = kzalloc_node(sizeof(struct sched_entity),
9404 				  GFP_KERNEL, cpu_to_node(i));
9405 		if (!se)
9406 			goto err_free_rq;
9407 
9408 		init_cfs_rq(cfs_rq);
9409 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9410 		init_entity_runnable_average(se);
9411 	}
9412 
9413 	return 1;
9414 
9415 err_free_rq:
9416 	kfree(cfs_rq);
9417 err:
9418 	return 0;
9419 }
9420 
9421 void online_fair_sched_group(struct task_group *tg)
9422 {
9423 	struct sched_entity *se;
9424 	struct rq *rq;
9425 	int i;
9426 
9427 	for_each_possible_cpu(i) {
9428 		rq = cpu_rq(i);
9429 		se = tg->se[i];
9430 
9431 		raw_spin_lock_irq(&rq->lock);
9432 		update_rq_clock(rq);
9433 		attach_entity_cfs_rq(se);
9434 		sync_throttle(tg, i);
9435 		raw_spin_unlock_irq(&rq->lock);
9436 	}
9437 }
9438 
9439 void unregister_fair_sched_group(struct task_group *tg)
9440 {
9441 	unsigned long flags;
9442 	struct rq *rq;
9443 	int cpu;
9444 
9445 	for_each_possible_cpu(cpu) {
9446 		if (tg->se[cpu])
9447 			remove_entity_load_avg(tg->se[cpu]);
9448 
9449 		/*
9450 		 * Only empty task groups can be destroyed; so we can speculatively
9451 		 * check on_list without danger of it being re-added.
9452 		 */
9453 		if (!tg->cfs_rq[cpu]->on_list)
9454 			continue;
9455 
9456 		rq = cpu_rq(cpu);
9457 
9458 		raw_spin_lock_irqsave(&rq->lock, flags);
9459 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9460 		raw_spin_unlock_irqrestore(&rq->lock, flags);
9461 	}
9462 }
9463 
9464 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9465 			struct sched_entity *se, int cpu,
9466 			struct sched_entity *parent)
9467 {
9468 	struct rq *rq = cpu_rq(cpu);
9469 
9470 	cfs_rq->tg = tg;
9471 	cfs_rq->rq = rq;
9472 	init_cfs_rq_runtime(cfs_rq);
9473 
9474 	tg->cfs_rq[cpu] = cfs_rq;
9475 	tg->se[cpu] = se;
9476 
9477 	/* se could be NULL for root_task_group */
9478 	if (!se)
9479 		return;
9480 
9481 	if (!parent) {
9482 		se->cfs_rq = &rq->cfs;
9483 		se->depth = 0;
9484 	} else {
9485 		se->cfs_rq = parent->my_q;
9486 		se->depth = parent->depth + 1;
9487 	}
9488 
9489 	se->my_q = cfs_rq;
9490 	/* guarantee group entities always have weight */
9491 	update_load_set(&se->load, NICE_0_LOAD);
9492 	se->parent = parent;
9493 }
9494 
9495 static DEFINE_MUTEX(shares_mutex);
9496 
9497 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9498 {
9499 	int i;
9500 
9501 	/*
9502 	 * We can't change the weight of the root cgroup.
9503 	 */
9504 	if (!tg->se[0])
9505 		return -EINVAL;
9506 
9507 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9508 
9509 	mutex_lock(&shares_mutex);
9510 	if (tg->shares == shares)
9511 		goto done;
9512 
9513 	tg->shares = shares;
9514 	for_each_possible_cpu(i) {
9515 		struct rq *rq = cpu_rq(i);
9516 		struct sched_entity *se = tg->se[i];
9517 		struct rq_flags rf;
9518 
9519 		/* Propagate contribution to hierarchy */
9520 		rq_lock_irqsave(rq, &rf);
9521 		update_rq_clock(rq);
9522 		for_each_sched_entity(se) {
9523 			update_load_avg(se, UPDATE_TG);
9524 			update_cfs_shares(se);
9525 		}
9526 		rq_unlock_irqrestore(rq, &rf);
9527 	}
9528 
9529 done:
9530 	mutex_unlock(&shares_mutex);
9531 	return 0;
9532 }
9533 #else /* CONFIG_FAIR_GROUP_SCHED */
9534 
9535 void free_fair_sched_group(struct task_group *tg) { }
9536 
9537 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9538 {
9539 	return 1;
9540 }
9541 
9542 void online_fair_sched_group(struct task_group *tg) { }
9543 
9544 void unregister_fair_sched_group(struct task_group *tg) { }
9545 
9546 #endif /* CONFIG_FAIR_GROUP_SCHED */
9547 
9548 
9549 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9550 {
9551 	struct sched_entity *se = &task->se;
9552 	unsigned int rr_interval = 0;
9553 
9554 	/*
9555 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9556 	 * idle runqueue:
9557 	 */
9558 	if (rq->cfs.load.weight)
9559 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9560 
9561 	return rr_interval;
9562 }
9563 
9564 /*
9565  * All the scheduling class methods:
9566  */
9567 const struct sched_class fair_sched_class = {
9568 	.next			= &idle_sched_class,
9569 	.enqueue_task		= enqueue_task_fair,
9570 	.dequeue_task		= dequeue_task_fair,
9571 	.yield_task		= yield_task_fair,
9572 	.yield_to_task		= yield_to_task_fair,
9573 
9574 	.check_preempt_curr	= check_preempt_wakeup,
9575 
9576 	.pick_next_task		= pick_next_task_fair,
9577 	.put_prev_task		= put_prev_task_fair,
9578 
9579 #ifdef CONFIG_SMP
9580 	.select_task_rq		= select_task_rq_fair,
9581 	.migrate_task_rq	= migrate_task_rq_fair,
9582 
9583 	.rq_online		= rq_online_fair,
9584 	.rq_offline		= rq_offline_fair,
9585 
9586 	.task_dead		= task_dead_fair,
9587 	.set_cpus_allowed	= set_cpus_allowed_common,
9588 #endif
9589 
9590 	.set_curr_task          = set_curr_task_fair,
9591 	.task_tick		= task_tick_fair,
9592 	.task_fork		= task_fork_fair,
9593 
9594 	.prio_changed		= prio_changed_fair,
9595 	.switched_from		= switched_from_fair,
9596 	.switched_to		= switched_to_fair,
9597 
9598 	.get_rr_interval	= get_rr_interval_fair,
9599 
9600 	.update_curr		= update_curr_fair,
9601 
9602 #ifdef CONFIG_FAIR_GROUP_SCHED
9603 	.task_change_group	= task_change_group_fair,
9604 #endif
9605 };
9606 
9607 #ifdef CONFIG_SCHED_DEBUG
9608 void print_cfs_stats(struct seq_file *m, int cpu)
9609 {
9610 	struct cfs_rq *cfs_rq, *pos;
9611 
9612 	rcu_read_lock();
9613 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
9614 		print_cfs_rq(m, cpu, cfs_rq);
9615 	rcu_read_unlock();
9616 }
9617 
9618 #ifdef CONFIG_NUMA_BALANCING
9619 void show_numa_stats(struct task_struct *p, struct seq_file *m)
9620 {
9621 	int node;
9622 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9623 
9624 	for_each_online_node(node) {
9625 		if (p->numa_faults) {
9626 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9627 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9628 		}
9629 		if (p->numa_group) {
9630 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9631 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9632 		}
9633 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9634 	}
9635 }
9636 #endif /* CONFIG_NUMA_BALANCING */
9637 #endif /* CONFIG_SCHED_DEBUG */
9638 
9639 __init void init_sched_fair_class(void)
9640 {
9641 #ifdef CONFIG_SMP
9642 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9643 
9644 #ifdef CONFIG_NO_HZ_COMMON
9645 	nohz.next_balance = jiffies;
9646 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
9647 #endif
9648 #endif /* SMP */
9649 
9650 }
9651