xref: /openbmc/linux/kernel/sched/fair.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 
24 #include <linux/sched/mm.h>
25 #include <linux/sched/topology.h>
26 
27 #include <linux/latencytop.h>
28 #include <linux/cpumask.h>
29 #include <linux/cpuidle.h>
30 #include <linux/slab.h>
31 #include <linux/profile.h>
32 #include <linux/interrupt.h>
33 #include <linux/mempolicy.h>
34 #include <linux/migrate.h>
35 #include <linux/task_work.h>
36 
37 #include <trace/events/sched.h>
38 
39 #include "sched.h"
40 
41 /*
42  * Targeted preemption latency for CPU-bound tasks:
43  *
44  * NOTE: this latency value is not the same as the concept of
45  * 'timeslice length' - timeslices in CFS are of variable length
46  * and have no persistent notion like in traditional, time-slice
47  * based scheduling concepts.
48  *
49  * (to see the precise effective timeslice length of your workload,
50  *  run vmstat and monitor the context-switches (cs) field)
51  *
52  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
53  */
54 unsigned int sysctl_sched_latency			= 6000000ULL;
55 unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
56 
57 /*
58  * The initial- and re-scaling of tunables is configurable
59  *
60  * Options are:
61  *
62  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
63  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
64  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
65  *
66  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
67  */
68 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
69 
70 /*
71  * Minimal preemption granularity for CPU-bound tasks:
72  *
73  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
74  */
75 unsigned int sysctl_sched_min_granularity		= 750000ULL;
76 unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
77 
78 /*
79  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
80  */
81 static unsigned int sched_nr_latency = 8;
82 
83 /*
84  * After fork, child runs first. If set to 0 (default) then
85  * parent will (try to) run first.
86  */
87 unsigned int sysctl_sched_child_runs_first __read_mostly;
88 
89 /*
90  * SCHED_OTHER wake-up granularity.
91  *
92  * This option delays the preemption effects of decoupled workloads
93  * and reduces their over-scheduling. Synchronous workloads will still
94  * have immediate wakeup/sleep latencies.
95  *
96  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
97  */
98 unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
99 unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
100 
101 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
102 
103 #ifdef CONFIG_SMP
104 /*
105  * For asym packing, by default the lower numbered cpu has higher priority.
106  */
107 int __weak arch_asym_cpu_priority(int cpu)
108 {
109 	return -cpu;
110 }
111 #endif
112 
113 #ifdef CONFIG_CFS_BANDWIDTH
114 /*
115  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
116  * each time a cfs_rq requests quota.
117  *
118  * Note: in the case that the slice exceeds the runtime remaining (either due
119  * to consumption or the quota being specified to be smaller than the slice)
120  * we will always only issue the remaining available time.
121  *
122  * (default: 5 msec, units: microseconds)
123  */
124 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
125 #endif
126 
127 /*
128  * The margin used when comparing utilization with CPU capacity:
129  * util * margin < capacity * 1024
130  *
131  * (default: ~20%)
132  */
133 unsigned int capacity_margin				= 1280;
134 
135 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
136 {
137 	lw->weight += inc;
138 	lw->inv_weight = 0;
139 }
140 
141 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
142 {
143 	lw->weight -= dec;
144 	lw->inv_weight = 0;
145 }
146 
147 static inline void update_load_set(struct load_weight *lw, unsigned long w)
148 {
149 	lw->weight = w;
150 	lw->inv_weight = 0;
151 }
152 
153 /*
154  * Increase the granularity value when there are more CPUs,
155  * because with more CPUs the 'effective latency' as visible
156  * to users decreases. But the relationship is not linear,
157  * so pick a second-best guess by going with the log2 of the
158  * number of CPUs.
159  *
160  * This idea comes from the SD scheduler of Con Kolivas:
161  */
162 static unsigned int get_update_sysctl_factor(void)
163 {
164 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
165 	unsigned int factor;
166 
167 	switch (sysctl_sched_tunable_scaling) {
168 	case SCHED_TUNABLESCALING_NONE:
169 		factor = 1;
170 		break;
171 	case SCHED_TUNABLESCALING_LINEAR:
172 		factor = cpus;
173 		break;
174 	case SCHED_TUNABLESCALING_LOG:
175 	default:
176 		factor = 1 + ilog2(cpus);
177 		break;
178 	}
179 
180 	return factor;
181 }
182 
183 static void update_sysctl(void)
184 {
185 	unsigned int factor = get_update_sysctl_factor();
186 
187 #define SET_SYSCTL(name) \
188 	(sysctl_##name = (factor) * normalized_sysctl_##name)
189 	SET_SYSCTL(sched_min_granularity);
190 	SET_SYSCTL(sched_latency);
191 	SET_SYSCTL(sched_wakeup_granularity);
192 #undef SET_SYSCTL
193 }
194 
195 void sched_init_granularity(void)
196 {
197 	update_sysctl();
198 }
199 
200 #define WMULT_CONST	(~0U)
201 #define WMULT_SHIFT	32
202 
203 static void __update_inv_weight(struct load_weight *lw)
204 {
205 	unsigned long w;
206 
207 	if (likely(lw->inv_weight))
208 		return;
209 
210 	w = scale_load_down(lw->weight);
211 
212 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
213 		lw->inv_weight = 1;
214 	else if (unlikely(!w))
215 		lw->inv_weight = WMULT_CONST;
216 	else
217 		lw->inv_weight = WMULT_CONST / w;
218 }
219 
220 /*
221  * delta_exec * weight / lw.weight
222  *   OR
223  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
224  *
225  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
226  * we're guaranteed shift stays positive because inv_weight is guaranteed to
227  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
228  *
229  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
230  * weight/lw.weight <= 1, and therefore our shift will also be positive.
231  */
232 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
233 {
234 	u64 fact = scale_load_down(weight);
235 	int shift = WMULT_SHIFT;
236 
237 	__update_inv_weight(lw);
238 
239 	if (unlikely(fact >> 32)) {
240 		while (fact >> 32) {
241 			fact >>= 1;
242 			shift--;
243 		}
244 	}
245 
246 	/* hint to use a 32x32->64 mul */
247 	fact = (u64)(u32)fact * lw->inv_weight;
248 
249 	while (fact >> 32) {
250 		fact >>= 1;
251 		shift--;
252 	}
253 
254 	return mul_u64_u32_shr(delta_exec, fact, shift);
255 }
256 
257 
258 const struct sched_class fair_sched_class;
259 
260 /**************************************************************
261  * CFS operations on generic schedulable entities:
262  */
263 
264 #ifdef CONFIG_FAIR_GROUP_SCHED
265 
266 /* cpu runqueue to which this cfs_rq is attached */
267 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
268 {
269 	return cfs_rq->rq;
270 }
271 
272 /* An entity is a task if it doesn't "own" a runqueue */
273 #define entity_is_task(se)	(!se->my_q)
274 
275 static inline struct task_struct *task_of(struct sched_entity *se)
276 {
277 	SCHED_WARN_ON(!entity_is_task(se));
278 	return container_of(se, struct task_struct, se);
279 }
280 
281 /* Walk up scheduling entities hierarchy */
282 #define for_each_sched_entity(se) \
283 		for (; se; se = se->parent)
284 
285 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
286 {
287 	return p->se.cfs_rq;
288 }
289 
290 /* runqueue on which this entity is (to be) queued */
291 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
292 {
293 	return se->cfs_rq;
294 }
295 
296 /* runqueue "owned" by this group */
297 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
298 {
299 	return grp->my_q;
300 }
301 
302 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
303 {
304 	if (!cfs_rq->on_list) {
305 		struct rq *rq = rq_of(cfs_rq);
306 		int cpu = cpu_of(rq);
307 		/*
308 		 * Ensure we either appear before our parent (if already
309 		 * enqueued) or force our parent to appear after us when it is
310 		 * enqueued. The fact that we always enqueue bottom-up
311 		 * reduces this to two cases and a special case for the root
312 		 * cfs_rq. Furthermore, it also means that we will always reset
313 		 * tmp_alone_branch either when the branch is connected
314 		 * to a tree or when we reach the beg of the tree
315 		 */
316 		if (cfs_rq->tg->parent &&
317 		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
318 			/*
319 			 * If parent is already on the list, we add the child
320 			 * just before. Thanks to circular linked property of
321 			 * the list, this means to put the child at the tail
322 			 * of the list that starts by parent.
323 			 */
324 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
325 				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
326 			/*
327 			 * The branch is now connected to its tree so we can
328 			 * reset tmp_alone_branch to the beginning of the
329 			 * list.
330 			 */
331 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
332 		} else if (!cfs_rq->tg->parent) {
333 			/*
334 			 * cfs rq without parent should be put
335 			 * at the tail of the list.
336 			 */
337 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
338 				&rq->leaf_cfs_rq_list);
339 			/*
340 			 * We have reach the beg of a tree so we can reset
341 			 * tmp_alone_branch to the beginning of the list.
342 			 */
343 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
344 		} else {
345 			/*
346 			 * The parent has not already been added so we want to
347 			 * make sure that it will be put after us.
348 			 * tmp_alone_branch points to the beg of the branch
349 			 * where we will add parent.
350 			 */
351 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
352 				rq->tmp_alone_branch);
353 			/*
354 			 * update tmp_alone_branch to points to the new beg
355 			 * of the branch
356 			 */
357 			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
358 		}
359 
360 		cfs_rq->on_list = 1;
361 	}
362 }
363 
364 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
365 {
366 	if (cfs_rq->on_list) {
367 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
368 		cfs_rq->on_list = 0;
369 	}
370 }
371 
372 /* Iterate thr' all leaf cfs_rq's on a runqueue */
373 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
374 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
375 				 leaf_cfs_rq_list)
376 
377 /* Do the two (enqueued) entities belong to the same group ? */
378 static inline struct cfs_rq *
379 is_same_group(struct sched_entity *se, struct sched_entity *pse)
380 {
381 	if (se->cfs_rq == pse->cfs_rq)
382 		return se->cfs_rq;
383 
384 	return NULL;
385 }
386 
387 static inline struct sched_entity *parent_entity(struct sched_entity *se)
388 {
389 	return se->parent;
390 }
391 
392 static void
393 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
394 {
395 	int se_depth, pse_depth;
396 
397 	/*
398 	 * preemption test can be made between sibling entities who are in the
399 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
400 	 * both tasks until we find their ancestors who are siblings of common
401 	 * parent.
402 	 */
403 
404 	/* First walk up until both entities are at same depth */
405 	se_depth = (*se)->depth;
406 	pse_depth = (*pse)->depth;
407 
408 	while (se_depth > pse_depth) {
409 		se_depth--;
410 		*se = parent_entity(*se);
411 	}
412 
413 	while (pse_depth > se_depth) {
414 		pse_depth--;
415 		*pse = parent_entity(*pse);
416 	}
417 
418 	while (!is_same_group(*se, *pse)) {
419 		*se = parent_entity(*se);
420 		*pse = parent_entity(*pse);
421 	}
422 }
423 
424 #else	/* !CONFIG_FAIR_GROUP_SCHED */
425 
426 static inline struct task_struct *task_of(struct sched_entity *se)
427 {
428 	return container_of(se, struct task_struct, se);
429 }
430 
431 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
432 {
433 	return container_of(cfs_rq, struct rq, cfs);
434 }
435 
436 #define entity_is_task(se)	1
437 
438 #define for_each_sched_entity(se) \
439 		for (; se; se = NULL)
440 
441 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
442 {
443 	return &task_rq(p)->cfs;
444 }
445 
446 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
447 {
448 	struct task_struct *p = task_of(se);
449 	struct rq *rq = task_rq(p);
450 
451 	return &rq->cfs;
452 }
453 
454 /* runqueue "owned" by this group */
455 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
456 {
457 	return NULL;
458 }
459 
460 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
461 {
462 }
463 
464 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
465 {
466 }
467 
468 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
469 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
470 
471 static inline struct sched_entity *parent_entity(struct sched_entity *se)
472 {
473 	return NULL;
474 }
475 
476 static inline void
477 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
478 {
479 }
480 
481 #endif	/* CONFIG_FAIR_GROUP_SCHED */
482 
483 static __always_inline
484 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
485 
486 /**************************************************************
487  * Scheduling class tree data structure manipulation methods:
488  */
489 
490 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
491 {
492 	s64 delta = (s64)(vruntime - max_vruntime);
493 	if (delta > 0)
494 		max_vruntime = vruntime;
495 
496 	return max_vruntime;
497 }
498 
499 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
500 {
501 	s64 delta = (s64)(vruntime - min_vruntime);
502 	if (delta < 0)
503 		min_vruntime = vruntime;
504 
505 	return min_vruntime;
506 }
507 
508 static inline int entity_before(struct sched_entity *a,
509 				struct sched_entity *b)
510 {
511 	return (s64)(a->vruntime - b->vruntime) < 0;
512 }
513 
514 static void update_min_vruntime(struct cfs_rq *cfs_rq)
515 {
516 	struct sched_entity *curr = cfs_rq->curr;
517 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
518 
519 	u64 vruntime = cfs_rq->min_vruntime;
520 
521 	if (curr) {
522 		if (curr->on_rq)
523 			vruntime = curr->vruntime;
524 		else
525 			curr = NULL;
526 	}
527 
528 	if (leftmost) { /* non-empty tree */
529 		struct sched_entity *se;
530 		se = rb_entry(leftmost, struct sched_entity, run_node);
531 
532 		if (!curr)
533 			vruntime = se->vruntime;
534 		else
535 			vruntime = min_vruntime(vruntime, se->vruntime);
536 	}
537 
538 	/* ensure we never gain time by being placed backwards. */
539 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
540 #ifndef CONFIG_64BIT
541 	smp_wmb();
542 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
543 #endif
544 }
545 
546 /*
547  * Enqueue an entity into the rb-tree:
548  */
549 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
550 {
551 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
552 	struct rb_node *parent = NULL;
553 	struct sched_entity *entry;
554 	bool leftmost = true;
555 
556 	/*
557 	 * Find the right place in the rbtree:
558 	 */
559 	while (*link) {
560 		parent = *link;
561 		entry = rb_entry(parent, struct sched_entity, run_node);
562 		/*
563 		 * We dont care about collisions. Nodes with
564 		 * the same key stay together.
565 		 */
566 		if (entity_before(se, entry)) {
567 			link = &parent->rb_left;
568 		} else {
569 			link = &parent->rb_right;
570 			leftmost = false;
571 		}
572 	}
573 
574 	rb_link_node(&se->run_node, parent, link);
575 	rb_insert_color_cached(&se->run_node,
576 			       &cfs_rq->tasks_timeline, leftmost);
577 }
578 
579 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
580 {
581 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
582 }
583 
584 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
585 {
586 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
587 
588 	if (!left)
589 		return NULL;
590 
591 	return rb_entry(left, struct sched_entity, run_node);
592 }
593 
594 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
595 {
596 	struct rb_node *next = rb_next(&se->run_node);
597 
598 	if (!next)
599 		return NULL;
600 
601 	return rb_entry(next, struct sched_entity, run_node);
602 }
603 
604 #ifdef CONFIG_SCHED_DEBUG
605 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
606 {
607 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
608 
609 	if (!last)
610 		return NULL;
611 
612 	return rb_entry(last, struct sched_entity, run_node);
613 }
614 
615 /**************************************************************
616  * Scheduling class statistics methods:
617  */
618 
619 int sched_proc_update_handler(struct ctl_table *table, int write,
620 		void __user *buffer, size_t *lenp,
621 		loff_t *ppos)
622 {
623 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
624 	unsigned int factor = get_update_sysctl_factor();
625 
626 	if (ret || !write)
627 		return ret;
628 
629 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
630 					sysctl_sched_min_granularity);
631 
632 #define WRT_SYSCTL(name) \
633 	(normalized_sysctl_##name = sysctl_##name / (factor))
634 	WRT_SYSCTL(sched_min_granularity);
635 	WRT_SYSCTL(sched_latency);
636 	WRT_SYSCTL(sched_wakeup_granularity);
637 #undef WRT_SYSCTL
638 
639 	return 0;
640 }
641 #endif
642 
643 /*
644  * delta /= w
645  */
646 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
647 {
648 	if (unlikely(se->load.weight != NICE_0_LOAD))
649 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
650 
651 	return delta;
652 }
653 
654 /*
655  * The idea is to set a period in which each task runs once.
656  *
657  * When there are too many tasks (sched_nr_latency) we have to stretch
658  * this period because otherwise the slices get too small.
659  *
660  * p = (nr <= nl) ? l : l*nr/nl
661  */
662 static u64 __sched_period(unsigned long nr_running)
663 {
664 	if (unlikely(nr_running > sched_nr_latency))
665 		return nr_running * sysctl_sched_min_granularity;
666 	else
667 		return sysctl_sched_latency;
668 }
669 
670 /*
671  * We calculate the wall-time slice from the period by taking a part
672  * proportional to the weight.
673  *
674  * s = p*P[w/rw]
675  */
676 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
677 {
678 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
679 
680 	for_each_sched_entity(se) {
681 		struct load_weight *load;
682 		struct load_weight lw;
683 
684 		cfs_rq = cfs_rq_of(se);
685 		load = &cfs_rq->load;
686 
687 		if (unlikely(!se->on_rq)) {
688 			lw = cfs_rq->load;
689 
690 			update_load_add(&lw, se->load.weight);
691 			load = &lw;
692 		}
693 		slice = __calc_delta(slice, se->load.weight, load);
694 	}
695 	return slice;
696 }
697 
698 /*
699  * We calculate the vruntime slice of a to-be-inserted task.
700  *
701  * vs = s/w
702  */
703 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
704 {
705 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
706 }
707 
708 #ifdef CONFIG_SMP
709 
710 #include "sched-pelt.h"
711 
712 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
713 static unsigned long task_h_load(struct task_struct *p);
714 
715 /* Give new sched_entity start runnable values to heavy its load in infant time */
716 void init_entity_runnable_average(struct sched_entity *se)
717 {
718 	struct sched_avg *sa = &se->avg;
719 
720 	sa->last_update_time = 0;
721 	/*
722 	 * sched_avg's period_contrib should be strictly less then 1024, so
723 	 * we give it 1023 to make sure it is almost a period (1024us), and
724 	 * will definitely be update (after enqueue).
725 	 */
726 	sa->period_contrib = 1023;
727 	/*
728 	 * Tasks are intialized with full load to be seen as heavy tasks until
729 	 * they get a chance to stabilize to their real load level.
730 	 * Group entities are intialized with zero load to reflect the fact that
731 	 * nothing has been attached to the task group yet.
732 	 */
733 	if (entity_is_task(se))
734 		sa->load_avg = scale_load_down(se->load.weight);
735 	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
736 	/*
737 	 * At this point, util_avg won't be used in select_task_rq_fair anyway
738 	 */
739 	sa->util_avg = 0;
740 	sa->util_sum = 0;
741 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
742 }
743 
744 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
745 static void attach_entity_cfs_rq(struct sched_entity *se);
746 
747 /*
748  * With new tasks being created, their initial util_avgs are extrapolated
749  * based on the cfs_rq's current util_avg:
750  *
751  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
752  *
753  * However, in many cases, the above util_avg does not give a desired
754  * value. Moreover, the sum of the util_avgs may be divergent, such
755  * as when the series is a harmonic series.
756  *
757  * To solve this problem, we also cap the util_avg of successive tasks to
758  * only 1/2 of the left utilization budget:
759  *
760  *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
761  *
762  * where n denotes the nth task.
763  *
764  * For example, a simplest series from the beginning would be like:
765  *
766  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
767  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
768  *
769  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
770  * if util_avg > util_avg_cap.
771  */
772 void post_init_entity_util_avg(struct sched_entity *se)
773 {
774 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
775 	struct sched_avg *sa = &se->avg;
776 	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
777 
778 	if (cap > 0) {
779 		if (cfs_rq->avg.util_avg != 0) {
780 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
781 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
782 
783 			if (sa->util_avg > cap)
784 				sa->util_avg = cap;
785 		} else {
786 			sa->util_avg = cap;
787 		}
788 		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
789 	}
790 
791 	if (entity_is_task(se)) {
792 		struct task_struct *p = task_of(se);
793 		if (p->sched_class != &fair_sched_class) {
794 			/*
795 			 * For !fair tasks do:
796 			 *
797 			update_cfs_rq_load_avg(now, cfs_rq);
798 			attach_entity_load_avg(cfs_rq, se);
799 			switched_from_fair(rq, p);
800 			 *
801 			 * such that the next switched_to_fair() has the
802 			 * expected state.
803 			 */
804 			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
805 			return;
806 		}
807 	}
808 
809 	attach_entity_cfs_rq(se);
810 }
811 
812 #else /* !CONFIG_SMP */
813 void init_entity_runnable_average(struct sched_entity *se)
814 {
815 }
816 void post_init_entity_util_avg(struct sched_entity *se)
817 {
818 }
819 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
820 {
821 }
822 #endif /* CONFIG_SMP */
823 
824 /*
825  * Update the current task's runtime statistics.
826  */
827 static void update_curr(struct cfs_rq *cfs_rq)
828 {
829 	struct sched_entity *curr = cfs_rq->curr;
830 	u64 now = rq_clock_task(rq_of(cfs_rq));
831 	u64 delta_exec;
832 
833 	if (unlikely(!curr))
834 		return;
835 
836 	delta_exec = now - curr->exec_start;
837 	if (unlikely((s64)delta_exec <= 0))
838 		return;
839 
840 	curr->exec_start = now;
841 
842 	schedstat_set(curr->statistics.exec_max,
843 		      max(delta_exec, curr->statistics.exec_max));
844 
845 	curr->sum_exec_runtime += delta_exec;
846 	schedstat_add(cfs_rq->exec_clock, delta_exec);
847 
848 	curr->vruntime += calc_delta_fair(delta_exec, curr);
849 	update_min_vruntime(cfs_rq);
850 
851 	if (entity_is_task(curr)) {
852 		struct task_struct *curtask = task_of(curr);
853 
854 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
855 		cpuacct_charge(curtask, delta_exec);
856 		account_group_exec_runtime(curtask, delta_exec);
857 	}
858 
859 	account_cfs_rq_runtime(cfs_rq, delta_exec);
860 }
861 
862 static void update_curr_fair(struct rq *rq)
863 {
864 	update_curr(cfs_rq_of(&rq->curr->se));
865 }
866 
867 static inline void
868 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
869 {
870 	u64 wait_start, prev_wait_start;
871 
872 	if (!schedstat_enabled())
873 		return;
874 
875 	wait_start = rq_clock(rq_of(cfs_rq));
876 	prev_wait_start = schedstat_val(se->statistics.wait_start);
877 
878 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
879 	    likely(wait_start > prev_wait_start))
880 		wait_start -= prev_wait_start;
881 
882 	schedstat_set(se->statistics.wait_start, wait_start);
883 }
884 
885 static inline void
886 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
887 {
888 	struct task_struct *p;
889 	u64 delta;
890 
891 	if (!schedstat_enabled())
892 		return;
893 
894 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
895 
896 	if (entity_is_task(se)) {
897 		p = task_of(se);
898 		if (task_on_rq_migrating(p)) {
899 			/*
900 			 * Preserve migrating task's wait time so wait_start
901 			 * time stamp can be adjusted to accumulate wait time
902 			 * prior to migration.
903 			 */
904 			schedstat_set(se->statistics.wait_start, delta);
905 			return;
906 		}
907 		trace_sched_stat_wait(p, delta);
908 	}
909 
910 	schedstat_set(se->statistics.wait_max,
911 		      max(schedstat_val(se->statistics.wait_max), delta));
912 	schedstat_inc(se->statistics.wait_count);
913 	schedstat_add(se->statistics.wait_sum, delta);
914 	schedstat_set(se->statistics.wait_start, 0);
915 }
916 
917 static inline void
918 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
919 {
920 	struct task_struct *tsk = NULL;
921 	u64 sleep_start, block_start;
922 
923 	if (!schedstat_enabled())
924 		return;
925 
926 	sleep_start = schedstat_val(se->statistics.sleep_start);
927 	block_start = schedstat_val(se->statistics.block_start);
928 
929 	if (entity_is_task(se))
930 		tsk = task_of(se);
931 
932 	if (sleep_start) {
933 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
934 
935 		if ((s64)delta < 0)
936 			delta = 0;
937 
938 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
939 			schedstat_set(se->statistics.sleep_max, delta);
940 
941 		schedstat_set(se->statistics.sleep_start, 0);
942 		schedstat_add(se->statistics.sum_sleep_runtime, delta);
943 
944 		if (tsk) {
945 			account_scheduler_latency(tsk, delta >> 10, 1);
946 			trace_sched_stat_sleep(tsk, delta);
947 		}
948 	}
949 	if (block_start) {
950 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
951 
952 		if ((s64)delta < 0)
953 			delta = 0;
954 
955 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
956 			schedstat_set(se->statistics.block_max, delta);
957 
958 		schedstat_set(se->statistics.block_start, 0);
959 		schedstat_add(se->statistics.sum_sleep_runtime, delta);
960 
961 		if (tsk) {
962 			if (tsk->in_iowait) {
963 				schedstat_add(se->statistics.iowait_sum, delta);
964 				schedstat_inc(se->statistics.iowait_count);
965 				trace_sched_stat_iowait(tsk, delta);
966 			}
967 
968 			trace_sched_stat_blocked(tsk, delta);
969 
970 			/*
971 			 * Blocking time is in units of nanosecs, so shift by
972 			 * 20 to get a milliseconds-range estimation of the
973 			 * amount of time that the task spent sleeping:
974 			 */
975 			if (unlikely(prof_on == SLEEP_PROFILING)) {
976 				profile_hits(SLEEP_PROFILING,
977 						(void *)get_wchan(tsk),
978 						delta >> 20);
979 			}
980 			account_scheduler_latency(tsk, delta >> 10, 0);
981 		}
982 	}
983 }
984 
985 /*
986  * Task is being enqueued - update stats:
987  */
988 static inline void
989 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
990 {
991 	if (!schedstat_enabled())
992 		return;
993 
994 	/*
995 	 * Are we enqueueing a waiting task? (for current tasks
996 	 * a dequeue/enqueue event is a NOP)
997 	 */
998 	if (se != cfs_rq->curr)
999 		update_stats_wait_start(cfs_rq, se);
1000 
1001 	if (flags & ENQUEUE_WAKEUP)
1002 		update_stats_enqueue_sleeper(cfs_rq, se);
1003 }
1004 
1005 static inline void
1006 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1007 {
1008 
1009 	if (!schedstat_enabled())
1010 		return;
1011 
1012 	/*
1013 	 * Mark the end of the wait period if dequeueing a
1014 	 * waiting task:
1015 	 */
1016 	if (se != cfs_rq->curr)
1017 		update_stats_wait_end(cfs_rq, se);
1018 
1019 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1020 		struct task_struct *tsk = task_of(se);
1021 
1022 		if (tsk->state & TASK_INTERRUPTIBLE)
1023 			schedstat_set(se->statistics.sleep_start,
1024 				      rq_clock(rq_of(cfs_rq)));
1025 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1026 			schedstat_set(se->statistics.block_start,
1027 				      rq_clock(rq_of(cfs_rq)));
1028 	}
1029 }
1030 
1031 /*
1032  * We are picking a new current task - update its stats:
1033  */
1034 static inline void
1035 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1036 {
1037 	/*
1038 	 * We are starting a new run period:
1039 	 */
1040 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1041 }
1042 
1043 /**************************************************
1044  * Scheduling class queueing methods:
1045  */
1046 
1047 #ifdef CONFIG_NUMA_BALANCING
1048 /*
1049  * Approximate time to scan a full NUMA task in ms. The task scan period is
1050  * calculated based on the tasks virtual memory size and
1051  * numa_balancing_scan_size.
1052  */
1053 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1054 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1055 
1056 /* Portion of address space to scan in MB */
1057 unsigned int sysctl_numa_balancing_scan_size = 256;
1058 
1059 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1060 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1061 
1062 struct numa_group {
1063 	atomic_t refcount;
1064 
1065 	spinlock_t lock; /* nr_tasks, tasks */
1066 	int nr_tasks;
1067 	pid_t gid;
1068 	int active_nodes;
1069 
1070 	struct rcu_head rcu;
1071 	unsigned long total_faults;
1072 	unsigned long max_faults_cpu;
1073 	/*
1074 	 * Faults_cpu is used to decide whether memory should move
1075 	 * towards the CPU. As a consequence, these stats are weighted
1076 	 * more by CPU use than by memory faults.
1077 	 */
1078 	unsigned long *faults_cpu;
1079 	unsigned long faults[0];
1080 };
1081 
1082 static inline unsigned long group_faults_priv(struct numa_group *ng);
1083 static inline unsigned long group_faults_shared(struct numa_group *ng);
1084 
1085 static unsigned int task_nr_scan_windows(struct task_struct *p)
1086 {
1087 	unsigned long rss = 0;
1088 	unsigned long nr_scan_pages;
1089 
1090 	/*
1091 	 * Calculations based on RSS as non-present and empty pages are skipped
1092 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1093 	 * on resident pages
1094 	 */
1095 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1096 	rss = get_mm_rss(p->mm);
1097 	if (!rss)
1098 		rss = nr_scan_pages;
1099 
1100 	rss = round_up(rss, nr_scan_pages);
1101 	return rss / nr_scan_pages;
1102 }
1103 
1104 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1105 #define MAX_SCAN_WINDOW 2560
1106 
1107 static unsigned int task_scan_min(struct task_struct *p)
1108 {
1109 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1110 	unsigned int scan, floor;
1111 	unsigned int windows = 1;
1112 
1113 	if (scan_size < MAX_SCAN_WINDOW)
1114 		windows = MAX_SCAN_WINDOW / scan_size;
1115 	floor = 1000 / windows;
1116 
1117 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1118 	return max_t(unsigned int, floor, scan);
1119 }
1120 
1121 static unsigned int task_scan_start(struct task_struct *p)
1122 {
1123 	unsigned long smin = task_scan_min(p);
1124 	unsigned long period = smin;
1125 
1126 	/* Scale the maximum scan period with the amount of shared memory. */
1127 	if (p->numa_group) {
1128 		struct numa_group *ng = p->numa_group;
1129 		unsigned long shared = group_faults_shared(ng);
1130 		unsigned long private = group_faults_priv(ng);
1131 
1132 		period *= atomic_read(&ng->refcount);
1133 		period *= shared + 1;
1134 		period /= private + shared + 1;
1135 	}
1136 
1137 	return max(smin, period);
1138 }
1139 
1140 static unsigned int task_scan_max(struct task_struct *p)
1141 {
1142 	unsigned long smin = task_scan_min(p);
1143 	unsigned long smax;
1144 
1145 	/* Watch for min being lower than max due to floor calculations */
1146 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1147 
1148 	/* Scale the maximum scan period with the amount of shared memory. */
1149 	if (p->numa_group) {
1150 		struct numa_group *ng = p->numa_group;
1151 		unsigned long shared = group_faults_shared(ng);
1152 		unsigned long private = group_faults_priv(ng);
1153 		unsigned long period = smax;
1154 
1155 		period *= atomic_read(&ng->refcount);
1156 		period *= shared + 1;
1157 		period /= private + shared + 1;
1158 
1159 		smax = max(smax, period);
1160 	}
1161 
1162 	return max(smin, smax);
1163 }
1164 
1165 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1166 {
1167 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
1168 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1169 }
1170 
1171 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1172 {
1173 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1174 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1175 }
1176 
1177 /* Shared or private faults. */
1178 #define NR_NUMA_HINT_FAULT_TYPES 2
1179 
1180 /* Memory and CPU locality */
1181 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1182 
1183 /* Averaged statistics, and temporary buffers. */
1184 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1185 
1186 pid_t task_numa_group_id(struct task_struct *p)
1187 {
1188 	return p->numa_group ? p->numa_group->gid : 0;
1189 }
1190 
1191 /*
1192  * The averaged statistics, shared & private, memory & cpu,
1193  * occupy the first half of the array. The second half of the
1194  * array is for current counters, which are averaged into the
1195  * first set by task_numa_placement.
1196  */
1197 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1198 {
1199 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1200 }
1201 
1202 static inline unsigned long task_faults(struct task_struct *p, int nid)
1203 {
1204 	if (!p->numa_faults)
1205 		return 0;
1206 
1207 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1208 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1209 }
1210 
1211 static inline unsigned long group_faults(struct task_struct *p, int nid)
1212 {
1213 	if (!p->numa_group)
1214 		return 0;
1215 
1216 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1217 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1218 }
1219 
1220 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1221 {
1222 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1223 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1224 }
1225 
1226 static inline unsigned long group_faults_priv(struct numa_group *ng)
1227 {
1228 	unsigned long faults = 0;
1229 	int node;
1230 
1231 	for_each_online_node(node) {
1232 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1233 	}
1234 
1235 	return faults;
1236 }
1237 
1238 static inline unsigned long group_faults_shared(struct numa_group *ng)
1239 {
1240 	unsigned long faults = 0;
1241 	int node;
1242 
1243 	for_each_online_node(node) {
1244 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1245 	}
1246 
1247 	return faults;
1248 }
1249 
1250 /*
1251  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1252  * considered part of a numa group's pseudo-interleaving set. Migrations
1253  * between these nodes are slowed down, to allow things to settle down.
1254  */
1255 #define ACTIVE_NODE_FRACTION 3
1256 
1257 static bool numa_is_active_node(int nid, struct numa_group *ng)
1258 {
1259 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1260 }
1261 
1262 /* Handle placement on systems where not all nodes are directly connected. */
1263 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1264 					int maxdist, bool task)
1265 {
1266 	unsigned long score = 0;
1267 	int node;
1268 
1269 	/*
1270 	 * All nodes are directly connected, and the same distance
1271 	 * from each other. No need for fancy placement algorithms.
1272 	 */
1273 	if (sched_numa_topology_type == NUMA_DIRECT)
1274 		return 0;
1275 
1276 	/*
1277 	 * This code is called for each node, introducing N^2 complexity,
1278 	 * which should be ok given the number of nodes rarely exceeds 8.
1279 	 */
1280 	for_each_online_node(node) {
1281 		unsigned long faults;
1282 		int dist = node_distance(nid, node);
1283 
1284 		/*
1285 		 * The furthest away nodes in the system are not interesting
1286 		 * for placement; nid was already counted.
1287 		 */
1288 		if (dist == sched_max_numa_distance || node == nid)
1289 			continue;
1290 
1291 		/*
1292 		 * On systems with a backplane NUMA topology, compare groups
1293 		 * of nodes, and move tasks towards the group with the most
1294 		 * memory accesses. When comparing two nodes at distance
1295 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1296 		 * of each group. Skip other nodes.
1297 		 */
1298 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1299 					dist > maxdist)
1300 			continue;
1301 
1302 		/* Add up the faults from nearby nodes. */
1303 		if (task)
1304 			faults = task_faults(p, node);
1305 		else
1306 			faults = group_faults(p, node);
1307 
1308 		/*
1309 		 * On systems with a glueless mesh NUMA topology, there are
1310 		 * no fixed "groups of nodes". Instead, nodes that are not
1311 		 * directly connected bounce traffic through intermediate
1312 		 * nodes; a numa_group can occupy any set of nodes.
1313 		 * The further away a node is, the less the faults count.
1314 		 * This seems to result in good task placement.
1315 		 */
1316 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1317 			faults *= (sched_max_numa_distance - dist);
1318 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1319 		}
1320 
1321 		score += faults;
1322 	}
1323 
1324 	return score;
1325 }
1326 
1327 /*
1328  * These return the fraction of accesses done by a particular task, or
1329  * task group, on a particular numa node.  The group weight is given a
1330  * larger multiplier, in order to group tasks together that are almost
1331  * evenly spread out between numa nodes.
1332  */
1333 static inline unsigned long task_weight(struct task_struct *p, int nid,
1334 					int dist)
1335 {
1336 	unsigned long faults, total_faults;
1337 
1338 	if (!p->numa_faults)
1339 		return 0;
1340 
1341 	total_faults = p->total_numa_faults;
1342 
1343 	if (!total_faults)
1344 		return 0;
1345 
1346 	faults = task_faults(p, nid);
1347 	faults += score_nearby_nodes(p, nid, dist, true);
1348 
1349 	return 1000 * faults / total_faults;
1350 }
1351 
1352 static inline unsigned long group_weight(struct task_struct *p, int nid,
1353 					 int dist)
1354 {
1355 	unsigned long faults, total_faults;
1356 
1357 	if (!p->numa_group)
1358 		return 0;
1359 
1360 	total_faults = p->numa_group->total_faults;
1361 
1362 	if (!total_faults)
1363 		return 0;
1364 
1365 	faults = group_faults(p, nid);
1366 	faults += score_nearby_nodes(p, nid, dist, false);
1367 
1368 	return 1000 * faults / total_faults;
1369 }
1370 
1371 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1372 				int src_nid, int dst_cpu)
1373 {
1374 	struct numa_group *ng = p->numa_group;
1375 	int dst_nid = cpu_to_node(dst_cpu);
1376 	int last_cpupid, this_cpupid;
1377 
1378 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1379 
1380 	/*
1381 	 * Multi-stage node selection is used in conjunction with a periodic
1382 	 * migration fault to build a temporal task<->page relation. By using
1383 	 * a two-stage filter we remove short/unlikely relations.
1384 	 *
1385 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1386 	 * a task's usage of a particular page (n_p) per total usage of this
1387 	 * page (n_t) (in a given time-span) to a probability.
1388 	 *
1389 	 * Our periodic faults will sample this probability and getting the
1390 	 * same result twice in a row, given these samples are fully
1391 	 * independent, is then given by P(n)^2, provided our sample period
1392 	 * is sufficiently short compared to the usage pattern.
1393 	 *
1394 	 * This quadric squishes small probabilities, making it less likely we
1395 	 * act on an unlikely task<->page relation.
1396 	 */
1397 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1398 	if (!cpupid_pid_unset(last_cpupid) &&
1399 				cpupid_to_nid(last_cpupid) != dst_nid)
1400 		return false;
1401 
1402 	/* Always allow migrate on private faults */
1403 	if (cpupid_match_pid(p, last_cpupid))
1404 		return true;
1405 
1406 	/* A shared fault, but p->numa_group has not been set up yet. */
1407 	if (!ng)
1408 		return true;
1409 
1410 	/*
1411 	 * Destination node is much more heavily used than the source
1412 	 * node? Allow migration.
1413 	 */
1414 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1415 					ACTIVE_NODE_FRACTION)
1416 		return true;
1417 
1418 	/*
1419 	 * Distribute memory according to CPU & memory use on each node,
1420 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1421 	 *
1422 	 * faults_cpu(dst)   3   faults_cpu(src)
1423 	 * --------------- * - > ---------------
1424 	 * faults_mem(dst)   4   faults_mem(src)
1425 	 */
1426 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1427 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1428 }
1429 
1430 static unsigned long weighted_cpuload(struct rq *rq);
1431 static unsigned long source_load(int cpu, int type);
1432 static unsigned long target_load(int cpu, int type);
1433 static unsigned long capacity_of(int cpu);
1434 
1435 /* Cached statistics for all CPUs within a node */
1436 struct numa_stats {
1437 	unsigned long nr_running;
1438 	unsigned long load;
1439 
1440 	/* Total compute capacity of CPUs on a node */
1441 	unsigned long compute_capacity;
1442 
1443 	/* Approximate capacity in terms of runnable tasks on a node */
1444 	unsigned long task_capacity;
1445 	int has_free_capacity;
1446 };
1447 
1448 /*
1449  * XXX borrowed from update_sg_lb_stats
1450  */
1451 static void update_numa_stats(struct numa_stats *ns, int nid)
1452 {
1453 	int smt, cpu, cpus = 0;
1454 	unsigned long capacity;
1455 
1456 	memset(ns, 0, sizeof(*ns));
1457 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1458 		struct rq *rq = cpu_rq(cpu);
1459 
1460 		ns->nr_running += rq->nr_running;
1461 		ns->load += weighted_cpuload(rq);
1462 		ns->compute_capacity += capacity_of(cpu);
1463 
1464 		cpus++;
1465 	}
1466 
1467 	/*
1468 	 * If we raced with hotplug and there are no CPUs left in our mask
1469 	 * the @ns structure is NULL'ed and task_numa_compare() will
1470 	 * not find this node attractive.
1471 	 *
1472 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1473 	 * imbalance and bail there.
1474 	 */
1475 	if (!cpus)
1476 		return;
1477 
1478 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1479 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1480 	capacity = cpus / smt; /* cores */
1481 
1482 	ns->task_capacity = min_t(unsigned, capacity,
1483 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1484 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1485 }
1486 
1487 struct task_numa_env {
1488 	struct task_struct *p;
1489 
1490 	int src_cpu, src_nid;
1491 	int dst_cpu, dst_nid;
1492 
1493 	struct numa_stats src_stats, dst_stats;
1494 
1495 	int imbalance_pct;
1496 	int dist;
1497 
1498 	struct task_struct *best_task;
1499 	long best_imp;
1500 	int best_cpu;
1501 };
1502 
1503 static void task_numa_assign(struct task_numa_env *env,
1504 			     struct task_struct *p, long imp)
1505 {
1506 	if (env->best_task)
1507 		put_task_struct(env->best_task);
1508 	if (p)
1509 		get_task_struct(p);
1510 
1511 	env->best_task = p;
1512 	env->best_imp = imp;
1513 	env->best_cpu = env->dst_cpu;
1514 }
1515 
1516 static bool load_too_imbalanced(long src_load, long dst_load,
1517 				struct task_numa_env *env)
1518 {
1519 	long imb, old_imb;
1520 	long orig_src_load, orig_dst_load;
1521 	long src_capacity, dst_capacity;
1522 
1523 	/*
1524 	 * The load is corrected for the CPU capacity available on each node.
1525 	 *
1526 	 * src_load        dst_load
1527 	 * ------------ vs ---------
1528 	 * src_capacity    dst_capacity
1529 	 */
1530 	src_capacity = env->src_stats.compute_capacity;
1531 	dst_capacity = env->dst_stats.compute_capacity;
1532 
1533 	/* We care about the slope of the imbalance, not the direction. */
1534 	if (dst_load < src_load)
1535 		swap(dst_load, src_load);
1536 
1537 	/* Is the difference below the threshold? */
1538 	imb = dst_load * src_capacity * 100 -
1539 	      src_load * dst_capacity * env->imbalance_pct;
1540 	if (imb <= 0)
1541 		return false;
1542 
1543 	/*
1544 	 * The imbalance is above the allowed threshold.
1545 	 * Compare it with the old imbalance.
1546 	 */
1547 	orig_src_load = env->src_stats.load;
1548 	orig_dst_load = env->dst_stats.load;
1549 
1550 	if (orig_dst_load < orig_src_load)
1551 		swap(orig_dst_load, orig_src_load);
1552 
1553 	old_imb = orig_dst_load * src_capacity * 100 -
1554 		  orig_src_load * dst_capacity * env->imbalance_pct;
1555 
1556 	/* Would this change make things worse? */
1557 	return (imb > old_imb);
1558 }
1559 
1560 /*
1561  * This checks if the overall compute and NUMA accesses of the system would
1562  * be improved if the source tasks was migrated to the target dst_cpu taking
1563  * into account that it might be best if task running on the dst_cpu should
1564  * be exchanged with the source task
1565  */
1566 static void task_numa_compare(struct task_numa_env *env,
1567 			      long taskimp, long groupimp)
1568 {
1569 	struct rq *src_rq = cpu_rq(env->src_cpu);
1570 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1571 	struct task_struct *cur;
1572 	long src_load, dst_load;
1573 	long load;
1574 	long imp = env->p->numa_group ? groupimp : taskimp;
1575 	long moveimp = imp;
1576 	int dist = env->dist;
1577 
1578 	rcu_read_lock();
1579 	cur = task_rcu_dereference(&dst_rq->curr);
1580 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1581 		cur = NULL;
1582 
1583 	/*
1584 	 * Because we have preemption enabled we can get migrated around and
1585 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1586 	 */
1587 	if (cur == env->p)
1588 		goto unlock;
1589 
1590 	/*
1591 	 * "imp" is the fault differential for the source task between the
1592 	 * source and destination node. Calculate the total differential for
1593 	 * the source task and potential destination task. The more negative
1594 	 * the value is, the more rmeote accesses that would be expected to
1595 	 * be incurred if the tasks were swapped.
1596 	 */
1597 	if (cur) {
1598 		/* Skip this swap candidate if cannot move to the source cpu */
1599 		if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1600 			goto unlock;
1601 
1602 		/*
1603 		 * If dst and source tasks are in the same NUMA group, or not
1604 		 * in any group then look only at task weights.
1605 		 */
1606 		if (cur->numa_group == env->p->numa_group) {
1607 			imp = taskimp + task_weight(cur, env->src_nid, dist) -
1608 			      task_weight(cur, env->dst_nid, dist);
1609 			/*
1610 			 * Add some hysteresis to prevent swapping the
1611 			 * tasks within a group over tiny differences.
1612 			 */
1613 			if (cur->numa_group)
1614 				imp -= imp/16;
1615 		} else {
1616 			/*
1617 			 * Compare the group weights. If a task is all by
1618 			 * itself (not part of a group), use the task weight
1619 			 * instead.
1620 			 */
1621 			if (cur->numa_group)
1622 				imp += group_weight(cur, env->src_nid, dist) -
1623 				       group_weight(cur, env->dst_nid, dist);
1624 			else
1625 				imp += task_weight(cur, env->src_nid, dist) -
1626 				       task_weight(cur, env->dst_nid, dist);
1627 		}
1628 	}
1629 
1630 	if (imp <= env->best_imp && moveimp <= env->best_imp)
1631 		goto unlock;
1632 
1633 	if (!cur) {
1634 		/* Is there capacity at our destination? */
1635 		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1636 		    !env->dst_stats.has_free_capacity)
1637 			goto unlock;
1638 
1639 		goto balance;
1640 	}
1641 
1642 	/* Balance doesn't matter much if we're running a task per cpu */
1643 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1644 			dst_rq->nr_running == 1)
1645 		goto assign;
1646 
1647 	/*
1648 	 * In the overloaded case, try and keep the load balanced.
1649 	 */
1650 balance:
1651 	load = task_h_load(env->p);
1652 	dst_load = env->dst_stats.load + load;
1653 	src_load = env->src_stats.load - load;
1654 
1655 	if (moveimp > imp && moveimp > env->best_imp) {
1656 		/*
1657 		 * If the improvement from just moving env->p direction is
1658 		 * better than swapping tasks around, check if a move is
1659 		 * possible. Store a slightly smaller score than moveimp,
1660 		 * so an actually idle CPU will win.
1661 		 */
1662 		if (!load_too_imbalanced(src_load, dst_load, env)) {
1663 			imp = moveimp - 1;
1664 			cur = NULL;
1665 			goto assign;
1666 		}
1667 	}
1668 
1669 	if (imp <= env->best_imp)
1670 		goto unlock;
1671 
1672 	if (cur) {
1673 		load = task_h_load(cur);
1674 		dst_load -= load;
1675 		src_load += load;
1676 	}
1677 
1678 	if (load_too_imbalanced(src_load, dst_load, env))
1679 		goto unlock;
1680 
1681 	/*
1682 	 * One idle CPU per node is evaluated for a task numa move.
1683 	 * Call select_idle_sibling to maybe find a better one.
1684 	 */
1685 	if (!cur) {
1686 		/*
1687 		 * select_idle_siblings() uses an per-cpu cpumask that
1688 		 * can be used from IRQ context.
1689 		 */
1690 		local_irq_disable();
1691 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1692 						   env->dst_cpu);
1693 		local_irq_enable();
1694 	}
1695 
1696 assign:
1697 	task_numa_assign(env, cur, imp);
1698 unlock:
1699 	rcu_read_unlock();
1700 }
1701 
1702 static void task_numa_find_cpu(struct task_numa_env *env,
1703 				long taskimp, long groupimp)
1704 {
1705 	int cpu;
1706 
1707 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1708 		/* Skip this CPU if the source task cannot migrate */
1709 		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1710 			continue;
1711 
1712 		env->dst_cpu = cpu;
1713 		task_numa_compare(env, taskimp, groupimp);
1714 	}
1715 }
1716 
1717 /* Only move tasks to a NUMA node less busy than the current node. */
1718 static bool numa_has_capacity(struct task_numa_env *env)
1719 {
1720 	struct numa_stats *src = &env->src_stats;
1721 	struct numa_stats *dst = &env->dst_stats;
1722 
1723 	if (src->has_free_capacity && !dst->has_free_capacity)
1724 		return false;
1725 
1726 	/*
1727 	 * Only consider a task move if the source has a higher load
1728 	 * than the destination, corrected for CPU capacity on each node.
1729 	 *
1730 	 *      src->load                dst->load
1731 	 * --------------------- vs ---------------------
1732 	 * src->compute_capacity    dst->compute_capacity
1733 	 */
1734 	if (src->load * dst->compute_capacity * env->imbalance_pct >
1735 
1736 	    dst->load * src->compute_capacity * 100)
1737 		return true;
1738 
1739 	return false;
1740 }
1741 
1742 static int task_numa_migrate(struct task_struct *p)
1743 {
1744 	struct task_numa_env env = {
1745 		.p = p,
1746 
1747 		.src_cpu = task_cpu(p),
1748 		.src_nid = task_node(p),
1749 
1750 		.imbalance_pct = 112,
1751 
1752 		.best_task = NULL,
1753 		.best_imp = 0,
1754 		.best_cpu = -1,
1755 	};
1756 	struct sched_domain *sd;
1757 	unsigned long taskweight, groupweight;
1758 	int nid, ret, dist;
1759 	long taskimp, groupimp;
1760 
1761 	/*
1762 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1763 	 * imbalance and would be the first to start moving tasks about.
1764 	 *
1765 	 * And we want to avoid any moving of tasks about, as that would create
1766 	 * random movement of tasks -- counter the numa conditions we're trying
1767 	 * to satisfy here.
1768 	 */
1769 	rcu_read_lock();
1770 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1771 	if (sd)
1772 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1773 	rcu_read_unlock();
1774 
1775 	/*
1776 	 * Cpusets can break the scheduler domain tree into smaller
1777 	 * balance domains, some of which do not cross NUMA boundaries.
1778 	 * Tasks that are "trapped" in such domains cannot be migrated
1779 	 * elsewhere, so there is no point in (re)trying.
1780 	 */
1781 	if (unlikely(!sd)) {
1782 		p->numa_preferred_nid = task_node(p);
1783 		return -EINVAL;
1784 	}
1785 
1786 	env.dst_nid = p->numa_preferred_nid;
1787 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1788 	taskweight = task_weight(p, env.src_nid, dist);
1789 	groupweight = group_weight(p, env.src_nid, dist);
1790 	update_numa_stats(&env.src_stats, env.src_nid);
1791 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1792 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1793 	update_numa_stats(&env.dst_stats, env.dst_nid);
1794 
1795 	/* Try to find a spot on the preferred nid. */
1796 	if (numa_has_capacity(&env))
1797 		task_numa_find_cpu(&env, taskimp, groupimp);
1798 
1799 	/*
1800 	 * Look at other nodes in these cases:
1801 	 * - there is no space available on the preferred_nid
1802 	 * - the task is part of a numa_group that is interleaved across
1803 	 *   multiple NUMA nodes; in order to better consolidate the group,
1804 	 *   we need to check other locations.
1805 	 */
1806 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1807 		for_each_online_node(nid) {
1808 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1809 				continue;
1810 
1811 			dist = node_distance(env.src_nid, env.dst_nid);
1812 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1813 						dist != env.dist) {
1814 				taskweight = task_weight(p, env.src_nid, dist);
1815 				groupweight = group_weight(p, env.src_nid, dist);
1816 			}
1817 
1818 			/* Only consider nodes where both task and groups benefit */
1819 			taskimp = task_weight(p, nid, dist) - taskweight;
1820 			groupimp = group_weight(p, nid, dist) - groupweight;
1821 			if (taskimp < 0 && groupimp < 0)
1822 				continue;
1823 
1824 			env.dist = dist;
1825 			env.dst_nid = nid;
1826 			update_numa_stats(&env.dst_stats, env.dst_nid);
1827 			if (numa_has_capacity(&env))
1828 				task_numa_find_cpu(&env, taskimp, groupimp);
1829 		}
1830 	}
1831 
1832 	/*
1833 	 * If the task is part of a workload that spans multiple NUMA nodes,
1834 	 * and is migrating into one of the workload's active nodes, remember
1835 	 * this node as the task's preferred numa node, so the workload can
1836 	 * settle down.
1837 	 * A task that migrated to a second choice node will be better off
1838 	 * trying for a better one later. Do not set the preferred node here.
1839 	 */
1840 	if (p->numa_group) {
1841 		struct numa_group *ng = p->numa_group;
1842 
1843 		if (env.best_cpu == -1)
1844 			nid = env.src_nid;
1845 		else
1846 			nid = env.dst_nid;
1847 
1848 		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1849 			sched_setnuma(p, env.dst_nid);
1850 	}
1851 
1852 	/* No better CPU than the current one was found. */
1853 	if (env.best_cpu == -1)
1854 		return -EAGAIN;
1855 
1856 	/*
1857 	 * Reset the scan period if the task is being rescheduled on an
1858 	 * alternative node to recheck if the tasks is now properly placed.
1859 	 */
1860 	p->numa_scan_period = task_scan_start(p);
1861 
1862 	if (env.best_task == NULL) {
1863 		ret = migrate_task_to(p, env.best_cpu);
1864 		if (ret != 0)
1865 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1866 		return ret;
1867 	}
1868 
1869 	ret = migrate_swap(p, env.best_task);
1870 	if (ret != 0)
1871 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1872 	put_task_struct(env.best_task);
1873 	return ret;
1874 }
1875 
1876 /* Attempt to migrate a task to a CPU on the preferred node. */
1877 static void numa_migrate_preferred(struct task_struct *p)
1878 {
1879 	unsigned long interval = HZ;
1880 
1881 	/* This task has no NUMA fault statistics yet */
1882 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1883 		return;
1884 
1885 	/* Periodically retry migrating the task to the preferred node */
1886 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1887 	p->numa_migrate_retry = jiffies + interval;
1888 
1889 	/* Success if task is already running on preferred CPU */
1890 	if (task_node(p) == p->numa_preferred_nid)
1891 		return;
1892 
1893 	/* Otherwise, try migrate to a CPU on the preferred node */
1894 	task_numa_migrate(p);
1895 }
1896 
1897 /*
1898  * Find out how many nodes on the workload is actively running on. Do this by
1899  * tracking the nodes from which NUMA hinting faults are triggered. This can
1900  * be different from the set of nodes where the workload's memory is currently
1901  * located.
1902  */
1903 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1904 {
1905 	unsigned long faults, max_faults = 0;
1906 	int nid, active_nodes = 0;
1907 
1908 	for_each_online_node(nid) {
1909 		faults = group_faults_cpu(numa_group, nid);
1910 		if (faults > max_faults)
1911 			max_faults = faults;
1912 	}
1913 
1914 	for_each_online_node(nid) {
1915 		faults = group_faults_cpu(numa_group, nid);
1916 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1917 			active_nodes++;
1918 	}
1919 
1920 	numa_group->max_faults_cpu = max_faults;
1921 	numa_group->active_nodes = active_nodes;
1922 }
1923 
1924 /*
1925  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1926  * increments. The more local the fault statistics are, the higher the scan
1927  * period will be for the next scan window. If local/(local+remote) ratio is
1928  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1929  * the scan period will decrease. Aim for 70% local accesses.
1930  */
1931 #define NUMA_PERIOD_SLOTS 10
1932 #define NUMA_PERIOD_THRESHOLD 7
1933 
1934 /*
1935  * Increase the scan period (slow down scanning) if the majority of
1936  * our memory is already on our local node, or if the majority of
1937  * the page accesses are shared with other processes.
1938  * Otherwise, decrease the scan period.
1939  */
1940 static void update_task_scan_period(struct task_struct *p,
1941 			unsigned long shared, unsigned long private)
1942 {
1943 	unsigned int period_slot;
1944 	int lr_ratio, ps_ratio;
1945 	int diff;
1946 
1947 	unsigned long remote = p->numa_faults_locality[0];
1948 	unsigned long local = p->numa_faults_locality[1];
1949 
1950 	/*
1951 	 * If there were no record hinting faults then either the task is
1952 	 * completely idle or all activity is areas that are not of interest
1953 	 * to automatic numa balancing. Related to that, if there were failed
1954 	 * migration then it implies we are migrating too quickly or the local
1955 	 * node is overloaded. In either case, scan slower
1956 	 */
1957 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1958 		p->numa_scan_period = min(p->numa_scan_period_max,
1959 			p->numa_scan_period << 1);
1960 
1961 		p->mm->numa_next_scan = jiffies +
1962 			msecs_to_jiffies(p->numa_scan_period);
1963 
1964 		return;
1965 	}
1966 
1967 	/*
1968 	 * Prepare to scale scan period relative to the current period.
1969 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1970 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1971 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1972 	 */
1973 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1974 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1975 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1976 
1977 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1978 		/*
1979 		 * Most memory accesses are local. There is no need to
1980 		 * do fast NUMA scanning, since memory is already local.
1981 		 */
1982 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1983 		if (!slot)
1984 			slot = 1;
1985 		diff = slot * period_slot;
1986 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1987 		/*
1988 		 * Most memory accesses are shared with other tasks.
1989 		 * There is no point in continuing fast NUMA scanning,
1990 		 * since other tasks may just move the memory elsewhere.
1991 		 */
1992 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1993 		if (!slot)
1994 			slot = 1;
1995 		diff = slot * period_slot;
1996 	} else {
1997 		/*
1998 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1999 		 * yet they are not on the local NUMA node. Speed up
2000 		 * NUMA scanning to get the memory moved over.
2001 		 */
2002 		int ratio = max(lr_ratio, ps_ratio);
2003 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2004 	}
2005 
2006 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2007 			task_scan_min(p), task_scan_max(p));
2008 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2009 }
2010 
2011 /*
2012  * Get the fraction of time the task has been running since the last
2013  * NUMA placement cycle. The scheduler keeps similar statistics, but
2014  * decays those on a 32ms period, which is orders of magnitude off
2015  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2016  * stats only if the task is so new there are no NUMA statistics yet.
2017  */
2018 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2019 {
2020 	u64 runtime, delta, now;
2021 	/* Use the start of this time slice to avoid calculations. */
2022 	now = p->se.exec_start;
2023 	runtime = p->se.sum_exec_runtime;
2024 
2025 	if (p->last_task_numa_placement) {
2026 		delta = runtime - p->last_sum_exec_runtime;
2027 		*period = now - p->last_task_numa_placement;
2028 	} else {
2029 		delta = p->se.avg.load_sum / p->se.load.weight;
2030 		*period = LOAD_AVG_MAX;
2031 	}
2032 
2033 	p->last_sum_exec_runtime = runtime;
2034 	p->last_task_numa_placement = now;
2035 
2036 	return delta;
2037 }
2038 
2039 /*
2040  * Determine the preferred nid for a task in a numa_group. This needs to
2041  * be done in a way that produces consistent results with group_weight,
2042  * otherwise workloads might not converge.
2043  */
2044 static int preferred_group_nid(struct task_struct *p, int nid)
2045 {
2046 	nodemask_t nodes;
2047 	int dist;
2048 
2049 	/* Direct connections between all NUMA nodes. */
2050 	if (sched_numa_topology_type == NUMA_DIRECT)
2051 		return nid;
2052 
2053 	/*
2054 	 * On a system with glueless mesh NUMA topology, group_weight
2055 	 * scores nodes according to the number of NUMA hinting faults on
2056 	 * both the node itself, and on nearby nodes.
2057 	 */
2058 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2059 		unsigned long score, max_score = 0;
2060 		int node, max_node = nid;
2061 
2062 		dist = sched_max_numa_distance;
2063 
2064 		for_each_online_node(node) {
2065 			score = group_weight(p, node, dist);
2066 			if (score > max_score) {
2067 				max_score = score;
2068 				max_node = node;
2069 			}
2070 		}
2071 		return max_node;
2072 	}
2073 
2074 	/*
2075 	 * Finding the preferred nid in a system with NUMA backplane
2076 	 * interconnect topology is more involved. The goal is to locate
2077 	 * tasks from numa_groups near each other in the system, and
2078 	 * untangle workloads from different sides of the system. This requires
2079 	 * searching down the hierarchy of node groups, recursively searching
2080 	 * inside the highest scoring group of nodes. The nodemask tricks
2081 	 * keep the complexity of the search down.
2082 	 */
2083 	nodes = node_online_map;
2084 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2085 		unsigned long max_faults = 0;
2086 		nodemask_t max_group = NODE_MASK_NONE;
2087 		int a, b;
2088 
2089 		/* Are there nodes at this distance from each other? */
2090 		if (!find_numa_distance(dist))
2091 			continue;
2092 
2093 		for_each_node_mask(a, nodes) {
2094 			unsigned long faults = 0;
2095 			nodemask_t this_group;
2096 			nodes_clear(this_group);
2097 
2098 			/* Sum group's NUMA faults; includes a==b case. */
2099 			for_each_node_mask(b, nodes) {
2100 				if (node_distance(a, b) < dist) {
2101 					faults += group_faults(p, b);
2102 					node_set(b, this_group);
2103 					node_clear(b, nodes);
2104 				}
2105 			}
2106 
2107 			/* Remember the top group. */
2108 			if (faults > max_faults) {
2109 				max_faults = faults;
2110 				max_group = this_group;
2111 				/*
2112 				 * subtle: at the smallest distance there is
2113 				 * just one node left in each "group", the
2114 				 * winner is the preferred nid.
2115 				 */
2116 				nid = a;
2117 			}
2118 		}
2119 		/* Next round, evaluate the nodes within max_group. */
2120 		if (!max_faults)
2121 			break;
2122 		nodes = max_group;
2123 	}
2124 	return nid;
2125 }
2126 
2127 static void task_numa_placement(struct task_struct *p)
2128 {
2129 	int seq, nid, max_nid = -1, max_group_nid = -1;
2130 	unsigned long max_faults = 0, max_group_faults = 0;
2131 	unsigned long fault_types[2] = { 0, 0 };
2132 	unsigned long total_faults;
2133 	u64 runtime, period;
2134 	spinlock_t *group_lock = NULL;
2135 
2136 	/*
2137 	 * The p->mm->numa_scan_seq field gets updated without
2138 	 * exclusive access. Use READ_ONCE() here to ensure
2139 	 * that the field is read in a single access:
2140 	 */
2141 	seq = READ_ONCE(p->mm->numa_scan_seq);
2142 	if (p->numa_scan_seq == seq)
2143 		return;
2144 	p->numa_scan_seq = seq;
2145 	p->numa_scan_period_max = task_scan_max(p);
2146 
2147 	total_faults = p->numa_faults_locality[0] +
2148 		       p->numa_faults_locality[1];
2149 	runtime = numa_get_avg_runtime(p, &period);
2150 
2151 	/* If the task is part of a group prevent parallel updates to group stats */
2152 	if (p->numa_group) {
2153 		group_lock = &p->numa_group->lock;
2154 		spin_lock_irq(group_lock);
2155 	}
2156 
2157 	/* Find the node with the highest number of faults */
2158 	for_each_online_node(nid) {
2159 		/* Keep track of the offsets in numa_faults array */
2160 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2161 		unsigned long faults = 0, group_faults = 0;
2162 		int priv;
2163 
2164 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2165 			long diff, f_diff, f_weight;
2166 
2167 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2168 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2169 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2170 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2171 
2172 			/* Decay existing window, copy faults since last scan */
2173 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2174 			fault_types[priv] += p->numa_faults[membuf_idx];
2175 			p->numa_faults[membuf_idx] = 0;
2176 
2177 			/*
2178 			 * Normalize the faults_from, so all tasks in a group
2179 			 * count according to CPU use, instead of by the raw
2180 			 * number of faults. Tasks with little runtime have
2181 			 * little over-all impact on throughput, and thus their
2182 			 * faults are less important.
2183 			 */
2184 			f_weight = div64_u64(runtime << 16, period + 1);
2185 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2186 				   (total_faults + 1);
2187 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2188 			p->numa_faults[cpubuf_idx] = 0;
2189 
2190 			p->numa_faults[mem_idx] += diff;
2191 			p->numa_faults[cpu_idx] += f_diff;
2192 			faults += p->numa_faults[mem_idx];
2193 			p->total_numa_faults += diff;
2194 			if (p->numa_group) {
2195 				/*
2196 				 * safe because we can only change our own group
2197 				 *
2198 				 * mem_idx represents the offset for a given
2199 				 * nid and priv in a specific region because it
2200 				 * is at the beginning of the numa_faults array.
2201 				 */
2202 				p->numa_group->faults[mem_idx] += diff;
2203 				p->numa_group->faults_cpu[mem_idx] += f_diff;
2204 				p->numa_group->total_faults += diff;
2205 				group_faults += p->numa_group->faults[mem_idx];
2206 			}
2207 		}
2208 
2209 		if (faults > max_faults) {
2210 			max_faults = faults;
2211 			max_nid = nid;
2212 		}
2213 
2214 		if (group_faults > max_group_faults) {
2215 			max_group_faults = group_faults;
2216 			max_group_nid = nid;
2217 		}
2218 	}
2219 
2220 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2221 
2222 	if (p->numa_group) {
2223 		numa_group_count_active_nodes(p->numa_group);
2224 		spin_unlock_irq(group_lock);
2225 		max_nid = preferred_group_nid(p, max_group_nid);
2226 	}
2227 
2228 	if (max_faults) {
2229 		/* Set the new preferred node */
2230 		if (max_nid != p->numa_preferred_nid)
2231 			sched_setnuma(p, max_nid);
2232 
2233 		if (task_node(p) != p->numa_preferred_nid)
2234 			numa_migrate_preferred(p);
2235 	}
2236 }
2237 
2238 static inline int get_numa_group(struct numa_group *grp)
2239 {
2240 	return atomic_inc_not_zero(&grp->refcount);
2241 }
2242 
2243 static inline void put_numa_group(struct numa_group *grp)
2244 {
2245 	if (atomic_dec_and_test(&grp->refcount))
2246 		kfree_rcu(grp, rcu);
2247 }
2248 
2249 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2250 			int *priv)
2251 {
2252 	struct numa_group *grp, *my_grp;
2253 	struct task_struct *tsk;
2254 	bool join = false;
2255 	int cpu = cpupid_to_cpu(cpupid);
2256 	int i;
2257 
2258 	if (unlikely(!p->numa_group)) {
2259 		unsigned int size = sizeof(struct numa_group) +
2260 				    4*nr_node_ids*sizeof(unsigned long);
2261 
2262 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2263 		if (!grp)
2264 			return;
2265 
2266 		atomic_set(&grp->refcount, 1);
2267 		grp->active_nodes = 1;
2268 		grp->max_faults_cpu = 0;
2269 		spin_lock_init(&grp->lock);
2270 		grp->gid = p->pid;
2271 		/* Second half of the array tracks nids where faults happen */
2272 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2273 						nr_node_ids;
2274 
2275 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2276 			grp->faults[i] = p->numa_faults[i];
2277 
2278 		grp->total_faults = p->total_numa_faults;
2279 
2280 		grp->nr_tasks++;
2281 		rcu_assign_pointer(p->numa_group, grp);
2282 	}
2283 
2284 	rcu_read_lock();
2285 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2286 
2287 	if (!cpupid_match_pid(tsk, cpupid))
2288 		goto no_join;
2289 
2290 	grp = rcu_dereference(tsk->numa_group);
2291 	if (!grp)
2292 		goto no_join;
2293 
2294 	my_grp = p->numa_group;
2295 	if (grp == my_grp)
2296 		goto no_join;
2297 
2298 	/*
2299 	 * Only join the other group if its bigger; if we're the bigger group,
2300 	 * the other task will join us.
2301 	 */
2302 	if (my_grp->nr_tasks > grp->nr_tasks)
2303 		goto no_join;
2304 
2305 	/*
2306 	 * Tie-break on the grp address.
2307 	 */
2308 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2309 		goto no_join;
2310 
2311 	/* Always join threads in the same process. */
2312 	if (tsk->mm == current->mm)
2313 		join = true;
2314 
2315 	/* Simple filter to avoid false positives due to PID collisions */
2316 	if (flags & TNF_SHARED)
2317 		join = true;
2318 
2319 	/* Update priv based on whether false sharing was detected */
2320 	*priv = !join;
2321 
2322 	if (join && !get_numa_group(grp))
2323 		goto no_join;
2324 
2325 	rcu_read_unlock();
2326 
2327 	if (!join)
2328 		return;
2329 
2330 	BUG_ON(irqs_disabled());
2331 	double_lock_irq(&my_grp->lock, &grp->lock);
2332 
2333 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2334 		my_grp->faults[i] -= p->numa_faults[i];
2335 		grp->faults[i] += p->numa_faults[i];
2336 	}
2337 	my_grp->total_faults -= p->total_numa_faults;
2338 	grp->total_faults += p->total_numa_faults;
2339 
2340 	my_grp->nr_tasks--;
2341 	grp->nr_tasks++;
2342 
2343 	spin_unlock(&my_grp->lock);
2344 	spin_unlock_irq(&grp->lock);
2345 
2346 	rcu_assign_pointer(p->numa_group, grp);
2347 
2348 	put_numa_group(my_grp);
2349 	return;
2350 
2351 no_join:
2352 	rcu_read_unlock();
2353 	return;
2354 }
2355 
2356 void task_numa_free(struct task_struct *p)
2357 {
2358 	struct numa_group *grp = p->numa_group;
2359 	void *numa_faults = p->numa_faults;
2360 	unsigned long flags;
2361 	int i;
2362 
2363 	if (grp) {
2364 		spin_lock_irqsave(&grp->lock, flags);
2365 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2366 			grp->faults[i] -= p->numa_faults[i];
2367 		grp->total_faults -= p->total_numa_faults;
2368 
2369 		grp->nr_tasks--;
2370 		spin_unlock_irqrestore(&grp->lock, flags);
2371 		RCU_INIT_POINTER(p->numa_group, NULL);
2372 		put_numa_group(grp);
2373 	}
2374 
2375 	p->numa_faults = NULL;
2376 	kfree(numa_faults);
2377 }
2378 
2379 /*
2380  * Got a PROT_NONE fault for a page on @node.
2381  */
2382 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2383 {
2384 	struct task_struct *p = current;
2385 	bool migrated = flags & TNF_MIGRATED;
2386 	int cpu_node = task_node(current);
2387 	int local = !!(flags & TNF_FAULT_LOCAL);
2388 	struct numa_group *ng;
2389 	int priv;
2390 
2391 	if (!static_branch_likely(&sched_numa_balancing))
2392 		return;
2393 
2394 	/* for example, ksmd faulting in a user's mm */
2395 	if (!p->mm)
2396 		return;
2397 
2398 	/* Allocate buffer to track faults on a per-node basis */
2399 	if (unlikely(!p->numa_faults)) {
2400 		int size = sizeof(*p->numa_faults) *
2401 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2402 
2403 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2404 		if (!p->numa_faults)
2405 			return;
2406 
2407 		p->total_numa_faults = 0;
2408 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2409 	}
2410 
2411 	/*
2412 	 * First accesses are treated as private, otherwise consider accesses
2413 	 * to be private if the accessing pid has not changed
2414 	 */
2415 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2416 		priv = 1;
2417 	} else {
2418 		priv = cpupid_match_pid(p, last_cpupid);
2419 		if (!priv && !(flags & TNF_NO_GROUP))
2420 			task_numa_group(p, last_cpupid, flags, &priv);
2421 	}
2422 
2423 	/*
2424 	 * If a workload spans multiple NUMA nodes, a shared fault that
2425 	 * occurs wholly within the set of nodes that the workload is
2426 	 * actively using should be counted as local. This allows the
2427 	 * scan rate to slow down when a workload has settled down.
2428 	 */
2429 	ng = p->numa_group;
2430 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2431 				numa_is_active_node(cpu_node, ng) &&
2432 				numa_is_active_node(mem_node, ng))
2433 		local = 1;
2434 
2435 	task_numa_placement(p);
2436 
2437 	/*
2438 	 * Retry task to preferred node migration periodically, in case it
2439 	 * case it previously failed, or the scheduler moved us.
2440 	 */
2441 	if (time_after(jiffies, p->numa_migrate_retry))
2442 		numa_migrate_preferred(p);
2443 
2444 	if (migrated)
2445 		p->numa_pages_migrated += pages;
2446 	if (flags & TNF_MIGRATE_FAIL)
2447 		p->numa_faults_locality[2] += pages;
2448 
2449 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2450 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2451 	p->numa_faults_locality[local] += pages;
2452 }
2453 
2454 static void reset_ptenuma_scan(struct task_struct *p)
2455 {
2456 	/*
2457 	 * We only did a read acquisition of the mmap sem, so
2458 	 * p->mm->numa_scan_seq is written to without exclusive access
2459 	 * and the update is not guaranteed to be atomic. That's not
2460 	 * much of an issue though, since this is just used for
2461 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2462 	 * expensive, to avoid any form of compiler optimizations:
2463 	 */
2464 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2465 	p->mm->numa_scan_offset = 0;
2466 }
2467 
2468 /*
2469  * The expensive part of numa migration is done from task_work context.
2470  * Triggered from task_tick_numa().
2471  */
2472 void task_numa_work(struct callback_head *work)
2473 {
2474 	unsigned long migrate, next_scan, now = jiffies;
2475 	struct task_struct *p = current;
2476 	struct mm_struct *mm = p->mm;
2477 	u64 runtime = p->se.sum_exec_runtime;
2478 	struct vm_area_struct *vma;
2479 	unsigned long start, end;
2480 	unsigned long nr_pte_updates = 0;
2481 	long pages, virtpages;
2482 
2483 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2484 
2485 	work->next = work; /* protect against double add */
2486 	/*
2487 	 * Who cares about NUMA placement when they're dying.
2488 	 *
2489 	 * NOTE: make sure not to dereference p->mm before this check,
2490 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2491 	 * without p->mm even though we still had it when we enqueued this
2492 	 * work.
2493 	 */
2494 	if (p->flags & PF_EXITING)
2495 		return;
2496 
2497 	if (!mm->numa_next_scan) {
2498 		mm->numa_next_scan = now +
2499 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2500 	}
2501 
2502 	/*
2503 	 * Enforce maximal scan/migration frequency..
2504 	 */
2505 	migrate = mm->numa_next_scan;
2506 	if (time_before(now, migrate))
2507 		return;
2508 
2509 	if (p->numa_scan_period == 0) {
2510 		p->numa_scan_period_max = task_scan_max(p);
2511 		p->numa_scan_period = task_scan_start(p);
2512 	}
2513 
2514 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2515 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2516 		return;
2517 
2518 	/*
2519 	 * Delay this task enough that another task of this mm will likely win
2520 	 * the next time around.
2521 	 */
2522 	p->node_stamp += 2 * TICK_NSEC;
2523 
2524 	start = mm->numa_scan_offset;
2525 	pages = sysctl_numa_balancing_scan_size;
2526 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2527 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2528 	if (!pages)
2529 		return;
2530 
2531 
2532 	if (!down_read_trylock(&mm->mmap_sem))
2533 		return;
2534 	vma = find_vma(mm, start);
2535 	if (!vma) {
2536 		reset_ptenuma_scan(p);
2537 		start = 0;
2538 		vma = mm->mmap;
2539 	}
2540 	for (; vma; vma = vma->vm_next) {
2541 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2542 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2543 			continue;
2544 		}
2545 
2546 		/*
2547 		 * Shared library pages mapped by multiple processes are not
2548 		 * migrated as it is expected they are cache replicated. Avoid
2549 		 * hinting faults in read-only file-backed mappings or the vdso
2550 		 * as migrating the pages will be of marginal benefit.
2551 		 */
2552 		if (!vma->vm_mm ||
2553 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2554 			continue;
2555 
2556 		/*
2557 		 * Skip inaccessible VMAs to avoid any confusion between
2558 		 * PROT_NONE and NUMA hinting ptes
2559 		 */
2560 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2561 			continue;
2562 
2563 		do {
2564 			start = max(start, vma->vm_start);
2565 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2566 			end = min(end, vma->vm_end);
2567 			nr_pte_updates = change_prot_numa(vma, start, end);
2568 
2569 			/*
2570 			 * Try to scan sysctl_numa_balancing_size worth of
2571 			 * hpages that have at least one present PTE that
2572 			 * is not already pte-numa. If the VMA contains
2573 			 * areas that are unused or already full of prot_numa
2574 			 * PTEs, scan up to virtpages, to skip through those
2575 			 * areas faster.
2576 			 */
2577 			if (nr_pte_updates)
2578 				pages -= (end - start) >> PAGE_SHIFT;
2579 			virtpages -= (end - start) >> PAGE_SHIFT;
2580 
2581 			start = end;
2582 			if (pages <= 0 || virtpages <= 0)
2583 				goto out;
2584 
2585 			cond_resched();
2586 		} while (end != vma->vm_end);
2587 	}
2588 
2589 out:
2590 	/*
2591 	 * It is possible to reach the end of the VMA list but the last few
2592 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2593 	 * would find the !migratable VMA on the next scan but not reset the
2594 	 * scanner to the start so check it now.
2595 	 */
2596 	if (vma)
2597 		mm->numa_scan_offset = start;
2598 	else
2599 		reset_ptenuma_scan(p);
2600 	up_read(&mm->mmap_sem);
2601 
2602 	/*
2603 	 * Make sure tasks use at least 32x as much time to run other code
2604 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2605 	 * Usually update_task_scan_period slows down scanning enough; on an
2606 	 * overloaded system we need to limit overhead on a per task basis.
2607 	 */
2608 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2609 		u64 diff = p->se.sum_exec_runtime - runtime;
2610 		p->node_stamp += 32 * diff;
2611 	}
2612 }
2613 
2614 /*
2615  * Drive the periodic memory faults..
2616  */
2617 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2618 {
2619 	struct callback_head *work = &curr->numa_work;
2620 	u64 period, now;
2621 
2622 	/*
2623 	 * We don't care about NUMA placement if we don't have memory.
2624 	 */
2625 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2626 		return;
2627 
2628 	/*
2629 	 * Using runtime rather than walltime has the dual advantage that
2630 	 * we (mostly) drive the selection from busy threads and that the
2631 	 * task needs to have done some actual work before we bother with
2632 	 * NUMA placement.
2633 	 */
2634 	now = curr->se.sum_exec_runtime;
2635 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2636 
2637 	if (now > curr->node_stamp + period) {
2638 		if (!curr->node_stamp)
2639 			curr->numa_scan_period = task_scan_start(curr);
2640 		curr->node_stamp += period;
2641 
2642 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2643 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2644 			task_work_add(curr, work, true);
2645 		}
2646 	}
2647 }
2648 
2649 #else
2650 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2651 {
2652 }
2653 
2654 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2655 {
2656 }
2657 
2658 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2659 {
2660 }
2661 
2662 #endif /* CONFIG_NUMA_BALANCING */
2663 
2664 static void
2665 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2666 {
2667 	update_load_add(&cfs_rq->load, se->load.weight);
2668 	if (!parent_entity(se))
2669 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2670 #ifdef CONFIG_SMP
2671 	if (entity_is_task(se)) {
2672 		struct rq *rq = rq_of(cfs_rq);
2673 
2674 		account_numa_enqueue(rq, task_of(se));
2675 		list_add(&se->group_node, &rq->cfs_tasks);
2676 	}
2677 #endif
2678 	cfs_rq->nr_running++;
2679 }
2680 
2681 static void
2682 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2683 {
2684 	update_load_sub(&cfs_rq->load, se->load.weight);
2685 	if (!parent_entity(se))
2686 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2687 #ifdef CONFIG_SMP
2688 	if (entity_is_task(se)) {
2689 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2690 		list_del_init(&se->group_node);
2691 	}
2692 #endif
2693 	cfs_rq->nr_running--;
2694 }
2695 
2696 #ifdef CONFIG_FAIR_GROUP_SCHED
2697 # ifdef CONFIG_SMP
2698 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2699 {
2700 	long tg_weight, load, shares;
2701 
2702 	/*
2703 	 * This really should be: cfs_rq->avg.load_avg, but instead we use
2704 	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2705 	 * the shares for small weight interactive tasks.
2706 	 */
2707 	load = scale_load_down(cfs_rq->load.weight);
2708 
2709 	tg_weight = atomic_long_read(&tg->load_avg);
2710 
2711 	/* Ensure tg_weight >= load */
2712 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2713 	tg_weight += load;
2714 
2715 	shares = (tg->shares * load);
2716 	if (tg_weight)
2717 		shares /= tg_weight;
2718 
2719 	/*
2720 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2721 	 * of a group with small tg->shares value. It is a floor value which is
2722 	 * assigned as a minimum load.weight to the sched_entity representing
2723 	 * the group on a CPU.
2724 	 *
2725 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2726 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2727 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2728 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2729 	 * instead of 0.
2730 	 */
2731 	if (shares < MIN_SHARES)
2732 		shares = MIN_SHARES;
2733 	if (shares > tg->shares)
2734 		shares = tg->shares;
2735 
2736 	return shares;
2737 }
2738 # else /* CONFIG_SMP */
2739 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2740 {
2741 	return tg->shares;
2742 }
2743 # endif /* CONFIG_SMP */
2744 
2745 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2746 			    unsigned long weight)
2747 {
2748 	if (se->on_rq) {
2749 		/* commit outstanding execution time */
2750 		if (cfs_rq->curr == se)
2751 			update_curr(cfs_rq);
2752 		account_entity_dequeue(cfs_rq, se);
2753 	}
2754 
2755 	update_load_set(&se->load, weight);
2756 
2757 	if (se->on_rq)
2758 		account_entity_enqueue(cfs_rq, se);
2759 }
2760 
2761 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2762 
2763 static void update_cfs_shares(struct sched_entity *se)
2764 {
2765 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
2766 	struct task_group *tg;
2767 	long shares;
2768 
2769 	if (!cfs_rq)
2770 		return;
2771 
2772 	if (throttled_hierarchy(cfs_rq))
2773 		return;
2774 
2775 	tg = cfs_rq->tg;
2776 
2777 #ifndef CONFIG_SMP
2778 	if (likely(se->load.weight == tg->shares))
2779 		return;
2780 #endif
2781 	shares = calc_cfs_shares(cfs_rq, tg);
2782 
2783 	reweight_entity(cfs_rq_of(se), se, shares);
2784 }
2785 
2786 #else /* CONFIG_FAIR_GROUP_SCHED */
2787 static inline void update_cfs_shares(struct sched_entity *se)
2788 {
2789 }
2790 #endif /* CONFIG_FAIR_GROUP_SCHED */
2791 
2792 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2793 {
2794 	struct rq *rq = rq_of(cfs_rq);
2795 
2796 	if (&rq->cfs == cfs_rq) {
2797 		/*
2798 		 * There are a few boundary cases this might miss but it should
2799 		 * get called often enough that that should (hopefully) not be
2800 		 * a real problem -- added to that it only calls on the local
2801 		 * CPU, so if we enqueue remotely we'll miss an update, but
2802 		 * the next tick/schedule should update.
2803 		 *
2804 		 * It will not get called when we go idle, because the idle
2805 		 * thread is a different class (!fair), nor will the utilization
2806 		 * number include things like RT tasks.
2807 		 *
2808 		 * As is, the util number is not freq-invariant (we'd have to
2809 		 * implement arch_scale_freq_capacity() for that).
2810 		 *
2811 		 * See cpu_util().
2812 		 */
2813 		cpufreq_update_util(rq, 0);
2814 	}
2815 }
2816 
2817 #ifdef CONFIG_SMP
2818 /*
2819  * Approximate:
2820  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2821  */
2822 static u64 decay_load(u64 val, u64 n)
2823 {
2824 	unsigned int local_n;
2825 
2826 	if (unlikely(n > LOAD_AVG_PERIOD * 63))
2827 		return 0;
2828 
2829 	/* after bounds checking we can collapse to 32-bit */
2830 	local_n = n;
2831 
2832 	/*
2833 	 * As y^PERIOD = 1/2, we can combine
2834 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2835 	 * With a look-up table which covers y^n (n<PERIOD)
2836 	 *
2837 	 * To achieve constant time decay_load.
2838 	 */
2839 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2840 		val >>= local_n / LOAD_AVG_PERIOD;
2841 		local_n %= LOAD_AVG_PERIOD;
2842 	}
2843 
2844 	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2845 	return val;
2846 }
2847 
2848 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
2849 {
2850 	u32 c1, c2, c3 = d3; /* y^0 == 1 */
2851 
2852 	/*
2853 	 * c1 = d1 y^p
2854 	 */
2855 	c1 = decay_load((u64)d1, periods);
2856 
2857 	/*
2858 	 *            p-1
2859 	 * c2 = 1024 \Sum y^n
2860 	 *            n=1
2861 	 *
2862 	 *              inf        inf
2863 	 *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
2864 	 *              n=0        n=p
2865 	 */
2866 	c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
2867 
2868 	return c1 + c2 + c3;
2869 }
2870 
2871 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2872 
2873 /*
2874  * Accumulate the three separate parts of the sum; d1 the remainder
2875  * of the last (incomplete) period, d2 the span of full periods and d3
2876  * the remainder of the (incomplete) current period.
2877  *
2878  *           d1          d2           d3
2879  *           ^           ^            ^
2880  *           |           |            |
2881  *         |<->|<----------------->|<--->|
2882  * ... |---x---|------| ... |------|-----x (now)
2883  *
2884  *                           p-1
2885  * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
2886  *                           n=1
2887  *
2888  *    = u y^p +					(Step 1)
2889  *
2890  *                     p-1
2891  *      d1 y^p + 1024 \Sum y^n + d3 y^0		(Step 2)
2892  *                     n=1
2893  */
2894 static __always_inline u32
2895 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
2896 	       unsigned long weight, int running, struct cfs_rq *cfs_rq)
2897 {
2898 	unsigned long scale_freq, scale_cpu;
2899 	u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
2900 	u64 periods;
2901 
2902 	scale_freq = arch_scale_freq_capacity(NULL, cpu);
2903 	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2904 
2905 	delta += sa->period_contrib;
2906 	periods = delta / 1024; /* A period is 1024us (~1ms) */
2907 
2908 	/*
2909 	 * Step 1: decay old *_sum if we crossed period boundaries.
2910 	 */
2911 	if (periods) {
2912 		sa->load_sum = decay_load(sa->load_sum, periods);
2913 		if (cfs_rq) {
2914 			cfs_rq->runnable_load_sum =
2915 				decay_load(cfs_rq->runnable_load_sum, periods);
2916 		}
2917 		sa->util_sum = decay_load((u64)(sa->util_sum), periods);
2918 
2919 		/*
2920 		 * Step 2
2921 		 */
2922 		delta %= 1024;
2923 		contrib = __accumulate_pelt_segments(periods,
2924 				1024 - sa->period_contrib, delta);
2925 	}
2926 	sa->period_contrib = delta;
2927 
2928 	contrib = cap_scale(contrib, scale_freq);
2929 	if (weight) {
2930 		sa->load_sum += weight * contrib;
2931 		if (cfs_rq)
2932 			cfs_rq->runnable_load_sum += weight * contrib;
2933 	}
2934 	if (running)
2935 		sa->util_sum += contrib * scale_cpu;
2936 
2937 	return periods;
2938 }
2939 
2940 /*
2941  * We can represent the historical contribution to runnable average as the
2942  * coefficients of a geometric series.  To do this we sub-divide our runnable
2943  * history into segments of approximately 1ms (1024us); label the segment that
2944  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2945  *
2946  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2947  *      p0            p1           p2
2948  *     (now)       (~1ms ago)  (~2ms ago)
2949  *
2950  * Let u_i denote the fraction of p_i that the entity was runnable.
2951  *
2952  * We then designate the fractions u_i as our co-efficients, yielding the
2953  * following representation of historical load:
2954  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2955  *
2956  * We choose y based on the with of a reasonably scheduling period, fixing:
2957  *   y^32 = 0.5
2958  *
2959  * This means that the contribution to load ~32ms ago (u_32) will be weighted
2960  * approximately half as much as the contribution to load within the last ms
2961  * (u_0).
2962  *
2963  * When a period "rolls over" and we have new u_0`, multiplying the previous
2964  * sum again by y is sufficient to update:
2965  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2966  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2967  */
2968 static __always_inline int
2969 ___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2970 		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2971 {
2972 	u64 delta;
2973 
2974 	delta = now - sa->last_update_time;
2975 	/*
2976 	 * This should only happen when time goes backwards, which it
2977 	 * unfortunately does during sched clock init when we swap over to TSC.
2978 	 */
2979 	if ((s64)delta < 0) {
2980 		sa->last_update_time = now;
2981 		return 0;
2982 	}
2983 
2984 	/*
2985 	 * Use 1024ns as the unit of measurement since it's a reasonable
2986 	 * approximation of 1us and fast to compute.
2987 	 */
2988 	delta >>= 10;
2989 	if (!delta)
2990 		return 0;
2991 
2992 	sa->last_update_time += delta << 10;
2993 
2994 	/*
2995 	 * running is a subset of runnable (weight) so running can't be set if
2996 	 * runnable is clear. But there are some corner cases where the current
2997 	 * se has been already dequeued but cfs_rq->curr still points to it.
2998 	 * This means that weight will be 0 but not running for a sched_entity
2999 	 * but also for a cfs_rq if the latter becomes idle. As an example,
3000 	 * this happens during idle_balance() which calls
3001 	 * update_blocked_averages()
3002 	 */
3003 	if (!weight)
3004 		running = 0;
3005 
3006 	/*
3007 	 * Now we know we crossed measurement unit boundaries. The *_avg
3008 	 * accrues by two steps:
3009 	 *
3010 	 * Step 1: accumulate *_sum since last_update_time. If we haven't
3011 	 * crossed period boundaries, finish.
3012 	 */
3013 	if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
3014 		return 0;
3015 
3016 	/*
3017 	 * Step 2: update *_avg.
3018 	 */
3019 	sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
3020 	if (cfs_rq) {
3021 		cfs_rq->runnable_load_avg =
3022 			div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
3023 	}
3024 	sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib);
3025 
3026 	return 1;
3027 }
3028 
3029 static int
3030 __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
3031 {
3032 	return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
3033 }
3034 
3035 static int
3036 __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
3037 {
3038 	return ___update_load_avg(now, cpu, &se->avg,
3039 				  se->on_rq * scale_load_down(se->load.weight),
3040 				  cfs_rq->curr == se, NULL);
3041 }
3042 
3043 static int
3044 __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
3045 {
3046 	return ___update_load_avg(now, cpu, &cfs_rq->avg,
3047 			scale_load_down(cfs_rq->load.weight),
3048 			cfs_rq->curr != NULL, cfs_rq);
3049 }
3050 
3051 /*
3052  * Signed add and clamp on underflow.
3053  *
3054  * Explicitly do a load-store to ensure the intermediate value never hits
3055  * memory. This allows lockless observations without ever seeing the negative
3056  * values.
3057  */
3058 #define add_positive(_ptr, _val) do {                           \
3059 	typeof(_ptr) ptr = (_ptr);                              \
3060 	typeof(_val) val = (_val);                              \
3061 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3062 								\
3063 	res = var + val;                                        \
3064 								\
3065 	if (val < 0 && res > var)                               \
3066 		res = 0;                                        \
3067 								\
3068 	WRITE_ONCE(*ptr, res);                                  \
3069 } while (0)
3070 
3071 #ifdef CONFIG_FAIR_GROUP_SCHED
3072 /**
3073  * update_tg_load_avg - update the tg's load avg
3074  * @cfs_rq: the cfs_rq whose avg changed
3075  * @force: update regardless of how small the difference
3076  *
3077  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3078  * However, because tg->load_avg is a global value there are performance
3079  * considerations.
3080  *
3081  * In order to avoid having to look at the other cfs_rq's, we use a
3082  * differential update where we store the last value we propagated. This in
3083  * turn allows skipping updates if the differential is 'small'.
3084  *
3085  * Updating tg's load_avg is necessary before update_cfs_share().
3086  */
3087 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3088 {
3089 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3090 
3091 	/*
3092 	 * No need to update load_avg for root_task_group as it is not used.
3093 	 */
3094 	if (cfs_rq->tg == &root_task_group)
3095 		return;
3096 
3097 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3098 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3099 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3100 	}
3101 }
3102 
3103 /*
3104  * Called within set_task_rq() right before setting a task's cpu. The
3105  * caller only guarantees p->pi_lock is held; no other assumptions,
3106  * including the state of rq->lock, should be made.
3107  */
3108 void set_task_rq_fair(struct sched_entity *se,
3109 		      struct cfs_rq *prev, struct cfs_rq *next)
3110 {
3111 	u64 p_last_update_time;
3112 	u64 n_last_update_time;
3113 
3114 	if (!sched_feat(ATTACH_AGE_LOAD))
3115 		return;
3116 
3117 	/*
3118 	 * We are supposed to update the task to "current" time, then its up to
3119 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3120 	 * getting what current time is, so simply throw away the out-of-date
3121 	 * time. This will result in the wakee task is less decayed, but giving
3122 	 * the wakee more load sounds not bad.
3123 	 */
3124 	if (!(se->avg.last_update_time && prev))
3125 		return;
3126 
3127 #ifndef CONFIG_64BIT
3128 	{
3129 		u64 p_last_update_time_copy;
3130 		u64 n_last_update_time_copy;
3131 
3132 		do {
3133 			p_last_update_time_copy = prev->load_last_update_time_copy;
3134 			n_last_update_time_copy = next->load_last_update_time_copy;
3135 
3136 			smp_rmb();
3137 
3138 			p_last_update_time = prev->avg.last_update_time;
3139 			n_last_update_time = next->avg.last_update_time;
3140 
3141 		} while (p_last_update_time != p_last_update_time_copy ||
3142 			 n_last_update_time != n_last_update_time_copy);
3143 	}
3144 #else
3145 	p_last_update_time = prev->avg.last_update_time;
3146 	n_last_update_time = next->avg.last_update_time;
3147 #endif
3148 	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3149 	se->avg.last_update_time = n_last_update_time;
3150 }
3151 
3152 /* Take into account change of utilization of a child task group */
3153 static inline void
3154 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3155 {
3156 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3157 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3158 
3159 	/* Nothing to update */
3160 	if (!delta)
3161 		return;
3162 
3163 	/* Set new sched_entity's utilization */
3164 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3165 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3166 
3167 	/* Update parent cfs_rq utilization */
3168 	add_positive(&cfs_rq->avg.util_avg, delta);
3169 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3170 }
3171 
3172 /* Take into account change of load of a child task group */
3173 static inline void
3174 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3175 {
3176 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3177 	long delta, load = gcfs_rq->avg.load_avg;
3178 
3179 	/*
3180 	 * If the load of group cfs_rq is null, the load of the
3181 	 * sched_entity will also be null so we can skip the formula
3182 	 */
3183 	if (load) {
3184 		long tg_load;
3185 
3186 		/* Get tg's load and ensure tg_load > 0 */
3187 		tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3188 
3189 		/* Ensure tg_load >= load and updated with current load*/
3190 		tg_load -= gcfs_rq->tg_load_avg_contrib;
3191 		tg_load += load;
3192 
3193 		/*
3194 		 * We need to compute a correction term in the case that the
3195 		 * task group is consuming more CPU than a task of equal
3196 		 * weight. A task with a weight equals to tg->shares will have
3197 		 * a load less or equal to scale_load_down(tg->shares).
3198 		 * Similarly, the sched_entities that represent the task group
3199 		 * at parent level, can't have a load higher than
3200 		 * scale_load_down(tg->shares). And the Sum of sched_entities'
3201 		 * load must be <= scale_load_down(tg->shares).
3202 		 */
3203 		if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3204 			/* scale gcfs_rq's load into tg's shares*/
3205 			load *= scale_load_down(gcfs_rq->tg->shares);
3206 			load /= tg_load;
3207 		}
3208 	}
3209 
3210 	delta = load - se->avg.load_avg;
3211 
3212 	/* Nothing to update */
3213 	if (!delta)
3214 		return;
3215 
3216 	/* Set new sched_entity's load */
3217 	se->avg.load_avg = load;
3218 	se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
3219 
3220 	/* Update parent cfs_rq load */
3221 	add_positive(&cfs_rq->avg.load_avg, delta);
3222 	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3223 
3224 	/*
3225 	 * If the sched_entity is already enqueued, we also have to update the
3226 	 * runnable load avg.
3227 	 */
3228 	if (se->on_rq) {
3229 		/* Update parent cfs_rq runnable_load_avg */
3230 		add_positive(&cfs_rq->runnable_load_avg, delta);
3231 		cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3232 	}
3233 }
3234 
3235 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3236 {
3237 	cfs_rq->propagate_avg = 1;
3238 }
3239 
3240 static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3241 {
3242 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
3243 
3244 	if (!cfs_rq->propagate_avg)
3245 		return 0;
3246 
3247 	cfs_rq->propagate_avg = 0;
3248 	return 1;
3249 }
3250 
3251 /* Update task and its cfs_rq load average */
3252 static inline int propagate_entity_load_avg(struct sched_entity *se)
3253 {
3254 	struct cfs_rq *cfs_rq;
3255 
3256 	if (entity_is_task(se))
3257 		return 0;
3258 
3259 	if (!test_and_clear_tg_cfs_propagate(se))
3260 		return 0;
3261 
3262 	cfs_rq = cfs_rq_of(se);
3263 
3264 	set_tg_cfs_propagate(cfs_rq);
3265 
3266 	update_tg_cfs_util(cfs_rq, se);
3267 	update_tg_cfs_load(cfs_rq, se);
3268 
3269 	return 1;
3270 }
3271 
3272 /*
3273  * Check if we need to update the load and the utilization of a blocked
3274  * group_entity:
3275  */
3276 static inline bool skip_blocked_update(struct sched_entity *se)
3277 {
3278 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3279 
3280 	/*
3281 	 * If sched_entity still have not zero load or utilization, we have to
3282 	 * decay it:
3283 	 */
3284 	if (se->avg.load_avg || se->avg.util_avg)
3285 		return false;
3286 
3287 	/*
3288 	 * If there is a pending propagation, we have to update the load and
3289 	 * the utilization of the sched_entity:
3290 	 */
3291 	if (gcfs_rq->propagate_avg)
3292 		return false;
3293 
3294 	/*
3295 	 * Otherwise, the load and the utilization of the sched_entity is
3296 	 * already zero and there is no pending propagation, so it will be a
3297 	 * waste of time to try to decay it:
3298 	 */
3299 	return true;
3300 }
3301 
3302 #else /* CONFIG_FAIR_GROUP_SCHED */
3303 
3304 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3305 
3306 static inline int propagate_entity_load_avg(struct sched_entity *se)
3307 {
3308 	return 0;
3309 }
3310 
3311 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3312 
3313 #endif /* CONFIG_FAIR_GROUP_SCHED */
3314 
3315 /*
3316  * Unsigned subtract and clamp on underflow.
3317  *
3318  * Explicitly do a load-store to ensure the intermediate value never hits
3319  * memory. This allows lockless observations without ever seeing the negative
3320  * values.
3321  */
3322 #define sub_positive(_ptr, _val) do {				\
3323 	typeof(_ptr) ptr = (_ptr);				\
3324 	typeof(*ptr) val = (_val);				\
3325 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3326 	res = var - val;					\
3327 	if (res > var)						\
3328 		res = 0;					\
3329 	WRITE_ONCE(*ptr, res);					\
3330 } while (0)
3331 
3332 /**
3333  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3334  * @now: current time, as per cfs_rq_clock_task()
3335  * @cfs_rq: cfs_rq to update
3336  *
3337  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3338  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3339  * post_init_entity_util_avg().
3340  *
3341  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3342  *
3343  * Returns true if the load decayed or we removed load.
3344  *
3345  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3346  * call update_tg_load_avg() when this function returns true.
3347  */
3348 static inline int
3349 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3350 {
3351 	struct sched_avg *sa = &cfs_rq->avg;
3352 	int decayed, removed_load = 0, removed_util = 0;
3353 
3354 	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3355 		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3356 		sub_positive(&sa->load_avg, r);
3357 		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3358 		removed_load = 1;
3359 		set_tg_cfs_propagate(cfs_rq);
3360 	}
3361 
3362 	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3363 		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3364 		sub_positive(&sa->util_avg, r);
3365 		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3366 		removed_util = 1;
3367 		set_tg_cfs_propagate(cfs_rq);
3368 	}
3369 
3370 	decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3371 
3372 #ifndef CONFIG_64BIT
3373 	smp_wmb();
3374 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3375 #endif
3376 
3377 	if (decayed || removed_util)
3378 		cfs_rq_util_change(cfs_rq);
3379 
3380 	return decayed || removed_load;
3381 }
3382 
3383 /*
3384  * Optional action to be done while updating the load average
3385  */
3386 #define UPDATE_TG	0x1
3387 #define SKIP_AGE_LOAD	0x2
3388 
3389 /* Update task and its cfs_rq load average */
3390 static inline void update_load_avg(struct sched_entity *se, int flags)
3391 {
3392 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3393 	u64 now = cfs_rq_clock_task(cfs_rq);
3394 	struct rq *rq = rq_of(cfs_rq);
3395 	int cpu = cpu_of(rq);
3396 	int decayed;
3397 
3398 	/*
3399 	 * Track task load average for carrying it to new CPU after migrated, and
3400 	 * track group sched_entity load average for task_h_load calc in migration
3401 	 */
3402 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3403 		__update_load_avg_se(now, cpu, cfs_rq, se);
3404 
3405 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3406 	decayed |= propagate_entity_load_avg(se);
3407 
3408 	if (decayed && (flags & UPDATE_TG))
3409 		update_tg_load_avg(cfs_rq, 0);
3410 }
3411 
3412 /**
3413  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3414  * @cfs_rq: cfs_rq to attach to
3415  * @se: sched_entity to attach
3416  *
3417  * Must call update_cfs_rq_load_avg() before this, since we rely on
3418  * cfs_rq->avg.last_update_time being current.
3419  */
3420 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3421 {
3422 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3423 	cfs_rq->avg.load_avg += se->avg.load_avg;
3424 	cfs_rq->avg.load_sum += se->avg.load_sum;
3425 	cfs_rq->avg.util_avg += se->avg.util_avg;
3426 	cfs_rq->avg.util_sum += se->avg.util_sum;
3427 	set_tg_cfs_propagate(cfs_rq);
3428 
3429 	cfs_rq_util_change(cfs_rq);
3430 }
3431 
3432 /**
3433  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3434  * @cfs_rq: cfs_rq to detach from
3435  * @se: sched_entity to detach
3436  *
3437  * Must call update_cfs_rq_load_avg() before this, since we rely on
3438  * cfs_rq->avg.last_update_time being current.
3439  */
3440 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3441 {
3442 
3443 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3444 	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3445 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3446 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3447 	set_tg_cfs_propagate(cfs_rq);
3448 
3449 	cfs_rq_util_change(cfs_rq);
3450 }
3451 
3452 /* Add the load generated by se into cfs_rq's load average */
3453 static inline void
3454 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3455 {
3456 	struct sched_avg *sa = &se->avg;
3457 
3458 	cfs_rq->runnable_load_avg += sa->load_avg;
3459 	cfs_rq->runnable_load_sum += sa->load_sum;
3460 
3461 	if (!sa->last_update_time) {
3462 		attach_entity_load_avg(cfs_rq, se);
3463 		update_tg_load_avg(cfs_rq, 0);
3464 	}
3465 }
3466 
3467 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
3468 static inline void
3469 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3470 {
3471 	cfs_rq->runnable_load_avg =
3472 		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3473 	cfs_rq->runnable_load_sum =
3474 		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3475 }
3476 
3477 #ifndef CONFIG_64BIT
3478 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3479 {
3480 	u64 last_update_time_copy;
3481 	u64 last_update_time;
3482 
3483 	do {
3484 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3485 		smp_rmb();
3486 		last_update_time = cfs_rq->avg.last_update_time;
3487 	} while (last_update_time != last_update_time_copy);
3488 
3489 	return last_update_time;
3490 }
3491 #else
3492 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3493 {
3494 	return cfs_rq->avg.last_update_time;
3495 }
3496 #endif
3497 
3498 /*
3499  * Synchronize entity load avg of dequeued entity without locking
3500  * the previous rq.
3501  */
3502 void sync_entity_load_avg(struct sched_entity *se)
3503 {
3504 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3505 	u64 last_update_time;
3506 
3507 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3508 	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3509 }
3510 
3511 /*
3512  * Task first catches up with cfs_rq, and then subtract
3513  * itself from the cfs_rq (task must be off the queue now).
3514  */
3515 void remove_entity_load_avg(struct sched_entity *se)
3516 {
3517 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3518 
3519 	/*
3520 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3521 	 * post_init_entity_util_avg() which will have added things to the
3522 	 * cfs_rq, so we can remove unconditionally.
3523 	 *
3524 	 * Similarly for groups, they will have passed through
3525 	 * post_init_entity_util_avg() before unregister_sched_fair_group()
3526 	 * calls this.
3527 	 */
3528 
3529 	sync_entity_load_avg(se);
3530 	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3531 	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3532 }
3533 
3534 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3535 {
3536 	return cfs_rq->runnable_load_avg;
3537 }
3538 
3539 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3540 {
3541 	return cfs_rq->avg.load_avg;
3542 }
3543 
3544 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3545 
3546 #else /* CONFIG_SMP */
3547 
3548 static inline int
3549 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3550 {
3551 	return 0;
3552 }
3553 
3554 #define UPDATE_TG	0x0
3555 #define SKIP_AGE_LOAD	0x0
3556 
3557 static inline void update_load_avg(struct sched_entity *se, int not_used1)
3558 {
3559 	cfs_rq_util_change(cfs_rq_of(se));
3560 }
3561 
3562 static inline void
3563 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3564 static inline void
3565 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3566 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3567 
3568 static inline void
3569 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3570 static inline void
3571 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3572 
3573 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3574 {
3575 	return 0;
3576 }
3577 
3578 #endif /* CONFIG_SMP */
3579 
3580 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3581 {
3582 #ifdef CONFIG_SCHED_DEBUG
3583 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3584 
3585 	if (d < 0)
3586 		d = -d;
3587 
3588 	if (d > 3*sysctl_sched_latency)
3589 		schedstat_inc(cfs_rq->nr_spread_over);
3590 #endif
3591 }
3592 
3593 static void
3594 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3595 {
3596 	u64 vruntime = cfs_rq->min_vruntime;
3597 
3598 	/*
3599 	 * The 'current' period is already promised to the current tasks,
3600 	 * however the extra weight of the new task will slow them down a
3601 	 * little, place the new task so that it fits in the slot that
3602 	 * stays open at the end.
3603 	 */
3604 	if (initial && sched_feat(START_DEBIT))
3605 		vruntime += sched_vslice(cfs_rq, se);
3606 
3607 	/* sleeps up to a single latency don't count. */
3608 	if (!initial) {
3609 		unsigned long thresh = sysctl_sched_latency;
3610 
3611 		/*
3612 		 * Halve their sleep time's effect, to allow
3613 		 * for a gentler effect of sleepers:
3614 		 */
3615 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3616 			thresh >>= 1;
3617 
3618 		vruntime -= thresh;
3619 	}
3620 
3621 	/* ensure we never gain time by being placed backwards. */
3622 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3623 }
3624 
3625 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3626 
3627 static inline void check_schedstat_required(void)
3628 {
3629 #ifdef CONFIG_SCHEDSTATS
3630 	if (schedstat_enabled())
3631 		return;
3632 
3633 	/* Force schedstat enabled if a dependent tracepoint is active */
3634 	if (trace_sched_stat_wait_enabled()    ||
3635 			trace_sched_stat_sleep_enabled()   ||
3636 			trace_sched_stat_iowait_enabled()  ||
3637 			trace_sched_stat_blocked_enabled() ||
3638 			trace_sched_stat_runtime_enabled())  {
3639 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3640 			     "stat_blocked and stat_runtime require the "
3641 			     "kernel parameter schedstats=enable or "
3642 			     "kernel.sched_schedstats=1\n");
3643 	}
3644 #endif
3645 }
3646 
3647 
3648 /*
3649  * MIGRATION
3650  *
3651  *	dequeue
3652  *	  update_curr()
3653  *	    update_min_vruntime()
3654  *	  vruntime -= min_vruntime
3655  *
3656  *	enqueue
3657  *	  update_curr()
3658  *	    update_min_vruntime()
3659  *	  vruntime += min_vruntime
3660  *
3661  * this way the vruntime transition between RQs is done when both
3662  * min_vruntime are up-to-date.
3663  *
3664  * WAKEUP (remote)
3665  *
3666  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3667  *	  vruntime -= min_vruntime
3668  *
3669  *	enqueue
3670  *	  update_curr()
3671  *	    update_min_vruntime()
3672  *	  vruntime += min_vruntime
3673  *
3674  * this way we don't have the most up-to-date min_vruntime on the originating
3675  * CPU and an up-to-date min_vruntime on the destination CPU.
3676  */
3677 
3678 static void
3679 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3680 {
3681 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3682 	bool curr = cfs_rq->curr == se;
3683 
3684 	/*
3685 	 * If we're the current task, we must renormalise before calling
3686 	 * update_curr().
3687 	 */
3688 	if (renorm && curr)
3689 		se->vruntime += cfs_rq->min_vruntime;
3690 
3691 	update_curr(cfs_rq);
3692 
3693 	/*
3694 	 * Otherwise, renormalise after, such that we're placed at the current
3695 	 * moment in time, instead of some random moment in the past. Being
3696 	 * placed in the past could significantly boost this task to the
3697 	 * fairness detriment of existing tasks.
3698 	 */
3699 	if (renorm && !curr)
3700 		se->vruntime += cfs_rq->min_vruntime;
3701 
3702 	/*
3703 	 * When enqueuing a sched_entity, we must:
3704 	 *   - Update loads to have both entity and cfs_rq synced with now.
3705 	 *   - Add its load to cfs_rq->runnable_avg
3706 	 *   - For group_entity, update its weight to reflect the new share of
3707 	 *     its group cfs_rq
3708 	 *   - Add its new weight to cfs_rq->load.weight
3709 	 */
3710 	update_load_avg(se, UPDATE_TG);
3711 	enqueue_entity_load_avg(cfs_rq, se);
3712 	update_cfs_shares(se);
3713 	account_entity_enqueue(cfs_rq, se);
3714 
3715 	if (flags & ENQUEUE_WAKEUP)
3716 		place_entity(cfs_rq, se, 0);
3717 
3718 	check_schedstat_required();
3719 	update_stats_enqueue(cfs_rq, se, flags);
3720 	check_spread(cfs_rq, se);
3721 	if (!curr)
3722 		__enqueue_entity(cfs_rq, se);
3723 	se->on_rq = 1;
3724 
3725 	if (cfs_rq->nr_running == 1) {
3726 		list_add_leaf_cfs_rq(cfs_rq);
3727 		check_enqueue_throttle(cfs_rq);
3728 	}
3729 }
3730 
3731 static void __clear_buddies_last(struct sched_entity *se)
3732 {
3733 	for_each_sched_entity(se) {
3734 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3735 		if (cfs_rq->last != se)
3736 			break;
3737 
3738 		cfs_rq->last = NULL;
3739 	}
3740 }
3741 
3742 static void __clear_buddies_next(struct sched_entity *se)
3743 {
3744 	for_each_sched_entity(se) {
3745 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3746 		if (cfs_rq->next != se)
3747 			break;
3748 
3749 		cfs_rq->next = NULL;
3750 	}
3751 }
3752 
3753 static void __clear_buddies_skip(struct sched_entity *se)
3754 {
3755 	for_each_sched_entity(se) {
3756 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3757 		if (cfs_rq->skip != se)
3758 			break;
3759 
3760 		cfs_rq->skip = NULL;
3761 	}
3762 }
3763 
3764 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3765 {
3766 	if (cfs_rq->last == se)
3767 		__clear_buddies_last(se);
3768 
3769 	if (cfs_rq->next == se)
3770 		__clear_buddies_next(se);
3771 
3772 	if (cfs_rq->skip == se)
3773 		__clear_buddies_skip(se);
3774 }
3775 
3776 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3777 
3778 static void
3779 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3780 {
3781 	/*
3782 	 * Update run-time statistics of the 'current'.
3783 	 */
3784 	update_curr(cfs_rq);
3785 
3786 	/*
3787 	 * When dequeuing a sched_entity, we must:
3788 	 *   - Update loads to have both entity and cfs_rq synced with now.
3789 	 *   - Substract its load from the cfs_rq->runnable_avg.
3790 	 *   - Substract its previous weight from cfs_rq->load.weight.
3791 	 *   - For group entity, update its weight to reflect the new share
3792 	 *     of its group cfs_rq.
3793 	 */
3794 	update_load_avg(se, UPDATE_TG);
3795 	dequeue_entity_load_avg(cfs_rq, se);
3796 
3797 	update_stats_dequeue(cfs_rq, se, flags);
3798 
3799 	clear_buddies(cfs_rq, se);
3800 
3801 	if (se != cfs_rq->curr)
3802 		__dequeue_entity(cfs_rq, se);
3803 	se->on_rq = 0;
3804 	account_entity_dequeue(cfs_rq, se);
3805 
3806 	/*
3807 	 * Normalize after update_curr(); which will also have moved
3808 	 * min_vruntime if @se is the one holding it back. But before doing
3809 	 * update_min_vruntime() again, which will discount @se's position and
3810 	 * can move min_vruntime forward still more.
3811 	 */
3812 	if (!(flags & DEQUEUE_SLEEP))
3813 		se->vruntime -= cfs_rq->min_vruntime;
3814 
3815 	/* return excess runtime on last dequeue */
3816 	return_cfs_rq_runtime(cfs_rq);
3817 
3818 	update_cfs_shares(se);
3819 
3820 	/*
3821 	 * Now advance min_vruntime if @se was the entity holding it back,
3822 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3823 	 * put back on, and if we advance min_vruntime, we'll be placed back
3824 	 * further than we started -- ie. we'll be penalized.
3825 	 */
3826 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3827 		update_min_vruntime(cfs_rq);
3828 }
3829 
3830 /*
3831  * Preempt the current task with a newly woken task if needed:
3832  */
3833 static void
3834 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3835 {
3836 	unsigned long ideal_runtime, delta_exec;
3837 	struct sched_entity *se;
3838 	s64 delta;
3839 
3840 	ideal_runtime = sched_slice(cfs_rq, curr);
3841 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3842 	if (delta_exec > ideal_runtime) {
3843 		resched_curr(rq_of(cfs_rq));
3844 		/*
3845 		 * The current task ran long enough, ensure it doesn't get
3846 		 * re-elected due to buddy favours.
3847 		 */
3848 		clear_buddies(cfs_rq, curr);
3849 		return;
3850 	}
3851 
3852 	/*
3853 	 * Ensure that a task that missed wakeup preemption by a
3854 	 * narrow margin doesn't have to wait for a full slice.
3855 	 * This also mitigates buddy induced latencies under load.
3856 	 */
3857 	if (delta_exec < sysctl_sched_min_granularity)
3858 		return;
3859 
3860 	se = __pick_first_entity(cfs_rq);
3861 	delta = curr->vruntime - se->vruntime;
3862 
3863 	if (delta < 0)
3864 		return;
3865 
3866 	if (delta > ideal_runtime)
3867 		resched_curr(rq_of(cfs_rq));
3868 }
3869 
3870 static void
3871 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3872 {
3873 	/* 'current' is not kept within the tree. */
3874 	if (se->on_rq) {
3875 		/*
3876 		 * Any task has to be enqueued before it get to execute on
3877 		 * a CPU. So account for the time it spent waiting on the
3878 		 * runqueue.
3879 		 */
3880 		update_stats_wait_end(cfs_rq, se);
3881 		__dequeue_entity(cfs_rq, se);
3882 		update_load_avg(se, UPDATE_TG);
3883 	}
3884 
3885 	update_stats_curr_start(cfs_rq, se);
3886 	cfs_rq->curr = se;
3887 
3888 	/*
3889 	 * Track our maximum slice length, if the CPU's load is at
3890 	 * least twice that of our own weight (i.e. dont track it
3891 	 * when there are only lesser-weight tasks around):
3892 	 */
3893 	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3894 		schedstat_set(se->statistics.slice_max,
3895 			max((u64)schedstat_val(se->statistics.slice_max),
3896 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
3897 	}
3898 
3899 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3900 }
3901 
3902 static int
3903 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3904 
3905 /*
3906  * Pick the next process, keeping these things in mind, in this order:
3907  * 1) keep things fair between processes/task groups
3908  * 2) pick the "next" process, since someone really wants that to run
3909  * 3) pick the "last" process, for cache locality
3910  * 4) do not run the "skip" process, if something else is available
3911  */
3912 static struct sched_entity *
3913 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3914 {
3915 	struct sched_entity *left = __pick_first_entity(cfs_rq);
3916 	struct sched_entity *se;
3917 
3918 	/*
3919 	 * If curr is set we have to see if its left of the leftmost entity
3920 	 * still in the tree, provided there was anything in the tree at all.
3921 	 */
3922 	if (!left || (curr && entity_before(curr, left)))
3923 		left = curr;
3924 
3925 	se = left; /* ideally we run the leftmost entity */
3926 
3927 	/*
3928 	 * Avoid running the skip buddy, if running something else can
3929 	 * be done without getting too unfair.
3930 	 */
3931 	if (cfs_rq->skip == se) {
3932 		struct sched_entity *second;
3933 
3934 		if (se == curr) {
3935 			second = __pick_first_entity(cfs_rq);
3936 		} else {
3937 			second = __pick_next_entity(se);
3938 			if (!second || (curr && entity_before(curr, second)))
3939 				second = curr;
3940 		}
3941 
3942 		if (second && wakeup_preempt_entity(second, left) < 1)
3943 			se = second;
3944 	}
3945 
3946 	/*
3947 	 * Prefer last buddy, try to return the CPU to a preempted task.
3948 	 */
3949 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3950 		se = cfs_rq->last;
3951 
3952 	/*
3953 	 * Someone really wants this to run. If it's not unfair, run it.
3954 	 */
3955 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3956 		se = cfs_rq->next;
3957 
3958 	clear_buddies(cfs_rq, se);
3959 
3960 	return se;
3961 }
3962 
3963 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3964 
3965 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3966 {
3967 	/*
3968 	 * If still on the runqueue then deactivate_task()
3969 	 * was not called and update_curr() has to be done:
3970 	 */
3971 	if (prev->on_rq)
3972 		update_curr(cfs_rq);
3973 
3974 	/* throttle cfs_rqs exceeding runtime */
3975 	check_cfs_rq_runtime(cfs_rq);
3976 
3977 	check_spread(cfs_rq, prev);
3978 
3979 	if (prev->on_rq) {
3980 		update_stats_wait_start(cfs_rq, prev);
3981 		/* Put 'current' back into the tree. */
3982 		__enqueue_entity(cfs_rq, prev);
3983 		/* in !on_rq case, update occurred at dequeue */
3984 		update_load_avg(prev, 0);
3985 	}
3986 	cfs_rq->curr = NULL;
3987 }
3988 
3989 static void
3990 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3991 {
3992 	/*
3993 	 * Update run-time statistics of the 'current'.
3994 	 */
3995 	update_curr(cfs_rq);
3996 
3997 	/*
3998 	 * Ensure that runnable average is periodically updated.
3999 	 */
4000 	update_load_avg(curr, UPDATE_TG);
4001 	update_cfs_shares(curr);
4002 
4003 #ifdef CONFIG_SCHED_HRTICK
4004 	/*
4005 	 * queued ticks are scheduled to match the slice, so don't bother
4006 	 * validating it and just reschedule.
4007 	 */
4008 	if (queued) {
4009 		resched_curr(rq_of(cfs_rq));
4010 		return;
4011 	}
4012 	/*
4013 	 * don't let the period tick interfere with the hrtick preemption
4014 	 */
4015 	if (!sched_feat(DOUBLE_TICK) &&
4016 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4017 		return;
4018 #endif
4019 
4020 	if (cfs_rq->nr_running > 1)
4021 		check_preempt_tick(cfs_rq, curr);
4022 }
4023 
4024 
4025 /**************************************************
4026  * CFS bandwidth control machinery
4027  */
4028 
4029 #ifdef CONFIG_CFS_BANDWIDTH
4030 
4031 #ifdef HAVE_JUMP_LABEL
4032 static struct static_key __cfs_bandwidth_used;
4033 
4034 static inline bool cfs_bandwidth_used(void)
4035 {
4036 	return static_key_false(&__cfs_bandwidth_used);
4037 }
4038 
4039 void cfs_bandwidth_usage_inc(void)
4040 {
4041 	static_key_slow_inc(&__cfs_bandwidth_used);
4042 }
4043 
4044 void cfs_bandwidth_usage_dec(void)
4045 {
4046 	static_key_slow_dec(&__cfs_bandwidth_used);
4047 }
4048 #else /* HAVE_JUMP_LABEL */
4049 static bool cfs_bandwidth_used(void)
4050 {
4051 	return true;
4052 }
4053 
4054 void cfs_bandwidth_usage_inc(void) {}
4055 void cfs_bandwidth_usage_dec(void) {}
4056 #endif /* HAVE_JUMP_LABEL */
4057 
4058 /*
4059  * default period for cfs group bandwidth.
4060  * default: 0.1s, units: nanoseconds
4061  */
4062 static inline u64 default_cfs_period(void)
4063 {
4064 	return 100000000ULL;
4065 }
4066 
4067 static inline u64 sched_cfs_bandwidth_slice(void)
4068 {
4069 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4070 }
4071 
4072 /*
4073  * Replenish runtime according to assigned quota and update expiration time.
4074  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4075  * additional synchronization around rq->lock.
4076  *
4077  * requires cfs_b->lock
4078  */
4079 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4080 {
4081 	u64 now;
4082 
4083 	if (cfs_b->quota == RUNTIME_INF)
4084 		return;
4085 
4086 	now = sched_clock_cpu(smp_processor_id());
4087 	cfs_b->runtime = cfs_b->quota;
4088 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4089 }
4090 
4091 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4092 {
4093 	return &tg->cfs_bandwidth;
4094 }
4095 
4096 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4097 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4098 {
4099 	if (unlikely(cfs_rq->throttle_count))
4100 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4101 
4102 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4103 }
4104 
4105 /* returns 0 on failure to allocate runtime */
4106 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4107 {
4108 	struct task_group *tg = cfs_rq->tg;
4109 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4110 	u64 amount = 0, min_amount, expires;
4111 
4112 	/* note: this is a positive sum as runtime_remaining <= 0 */
4113 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4114 
4115 	raw_spin_lock(&cfs_b->lock);
4116 	if (cfs_b->quota == RUNTIME_INF)
4117 		amount = min_amount;
4118 	else {
4119 		start_cfs_bandwidth(cfs_b);
4120 
4121 		if (cfs_b->runtime > 0) {
4122 			amount = min(cfs_b->runtime, min_amount);
4123 			cfs_b->runtime -= amount;
4124 			cfs_b->idle = 0;
4125 		}
4126 	}
4127 	expires = cfs_b->runtime_expires;
4128 	raw_spin_unlock(&cfs_b->lock);
4129 
4130 	cfs_rq->runtime_remaining += amount;
4131 	/*
4132 	 * we may have advanced our local expiration to account for allowed
4133 	 * spread between our sched_clock and the one on which runtime was
4134 	 * issued.
4135 	 */
4136 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4137 		cfs_rq->runtime_expires = expires;
4138 
4139 	return cfs_rq->runtime_remaining > 0;
4140 }
4141 
4142 /*
4143  * Note: This depends on the synchronization provided by sched_clock and the
4144  * fact that rq->clock snapshots this value.
4145  */
4146 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4147 {
4148 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4149 
4150 	/* if the deadline is ahead of our clock, nothing to do */
4151 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4152 		return;
4153 
4154 	if (cfs_rq->runtime_remaining < 0)
4155 		return;
4156 
4157 	/*
4158 	 * If the local deadline has passed we have to consider the
4159 	 * possibility that our sched_clock is 'fast' and the global deadline
4160 	 * has not truly expired.
4161 	 *
4162 	 * Fortunately we can check determine whether this the case by checking
4163 	 * whether the global deadline has advanced. It is valid to compare
4164 	 * cfs_b->runtime_expires without any locks since we only care about
4165 	 * exact equality, so a partial write will still work.
4166 	 */
4167 
4168 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
4169 		/* extend local deadline, drift is bounded above by 2 ticks */
4170 		cfs_rq->runtime_expires += TICK_NSEC;
4171 	} else {
4172 		/* global deadline is ahead, expiration has passed */
4173 		cfs_rq->runtime_remaining = 0;
4174 	}
4175 }
4176 
4177 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4178 {
4179 	/* dock delta_exec before expiring quota (as it could span periods) */
4180 	cfs_rq->runtime_remaining -= delta_exec;
4181 	expire_cfs_rq_runtime(cfs_rq);
4182 
4183 	if (likely(cfs_rq->runtime_remaining > 0))
4184 		return;
4185 
4186 	/*
4187 	 * if we're unable to extend our runtime we resched so that the active
4188 	 * hierarchy can be throttled
4189 	 */
4190 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4191 		resched_curr(rq_of(cfs_rq));
4192 }
4193 
4194 static __always_inline
4195 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4196 {
4197 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4198 		return;
4199 
4200 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4201 }
4202 
4203 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4204 {
4205 	return cfs_bandwidth_used() && cfs_rq->throttled;
4206 }
4207 
4208 /* check whether cfs_rq, or any parent, is throttled */
4209 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4210 {
4211 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4212 }
4213 
4214 /*
4215  * Ensure that neither of the group entities corresponding to src_cpu or
4216  * dest_cpu are members of a throttled hierarchy when performing group
4217  * load-balance operations.
4218  */
4219 static inline int throttled_lb_pair(struct task_group *tg,
4220 				    int src_cpu, int dest_cpu)
4221 {
4222 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4223 
4224 	src_cfs_rq = tg->cfs_rq[src_cpu];
4225 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4226 
4227 	return throttled_hierarchy(src_cfs_rq) ||
4228 	       throttled_hierarchy(dest_cfs_rq);
4229 }
4230 
4231 /* updated child weight may affect parent so we have to do this bottom up */
4232 static int tg_unthrottle_up(struct task_group *tg, void *data)
4233 {
4234 	struct rq *rq = data;
4235 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4236 
4237 	cfs_rq->throttle_count--;
4238 	if (!cfs_rq->throttle_count) {
4239 		/* adjust cfs_rq_clock_task() */
4240 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4241 					     cfs_rq->throttled_clock_task;
4242 	}
4243 
4244 	return 0;
4245 }
4246 
4247 static int tg_throttle_down(struct task_group *tg, void *data)
4248 {
4249 	struct rq *rq = data;
4250 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4251 
4252 	/* group is entering throttled state, stop time */
4253 	if (!cfs_rq->throttle_count)
4254 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4255 	cfs_rq->throttle_count++;
4256 
4257 	return 0;
4258 }
4259 
4260 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4261 {
4262 	struct rq *rq = rq_of(cfs_rq);
4263 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4264 	struct sched_entity *se;
4265 	long task_delta, dequeue = 1;
4266 	bool empty;
4267 
4268 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4269 
4270 	/* freeze hierarchy runnable averages while throttled */
4271 	rcu_read_lock();
4272 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4273 	rcu_read_unlock();
4274 
4275 	task_delta = cfs_rq->h_nr_running;
4276 	for_each_sched_entity(se) {
4277 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4278 		/* throttled entity or throttle-on-deactivate */
4279 		if (!se->on_rq)
4280 			break;
4281 
4282 		if (dequeue)
4283 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4284 		qcfs_rq->h_nr_running -= task_delta;
4285 
4286 		if (qcfs_rq->load.weight)
4287 			dequeue = 0;
4288 	}
4289 
4290 	if (!se)
4291 		sub_nr_running(rq, task_delta);
4292 
4293 	cfs_rq->throttled = 1;
4294 	cfs_rq->throttled_clock = rq_clock(rq);
4295 	raw_spin_lock(&cfs_b->lock);
4296 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4297 
4298 	/*
4299 	 * Add to the _head_ of the list, so that an already-started
4300 	 * distribute_cfs_runtime will not see us
4301 	 */
4302 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4303 
4304 	/*
4305 	 * If we're the first throttled task, make sure the bandwidth
4306 	 * timer is running.
4307 	 */
4308 	if (empty)
4309 		start_cfs_bandwidth(cfs_b);
4310 
4311 	raw_spin_unlock(&cfs_b->lock);
4312 }
4313 
4314 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4315 {
4316 	struct rq *rq = rq_of(cfs_rq);
4317 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4318 	struct sched_entity *se;
4319 	int enqueue = 1;
4320 	long task_delta;
4321 
4322 	se = cfs_rq->tg->se[cpu_of(rq)];
4323 
4324 	cfs_rq->throttled = 0;
4325 
4326 	update_rq_clock(rq);
4327 
4328 	raw_spin_lock(&cfs_b->lock);
4329 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4330 	list_del_rcu(&cfs_rq->throttled_list);
4331 	raw_spin_unlock(&cfs_b->lock);
4332 
4333 	/* update hierarchical throttle state */
4334 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4335 
4336 	if (!cfs_rq->load.weight)
4337 		return;
4338 
4339 	task_delta = cfs_rq->h_nr_running;
4340 	for_each_sched_entity(se) {
4341 		if (se->on_rq)
4342 			enqueue = 0;
4343 
4344 		cfs_rq = cfs_rq_of(se);
4345 		if (enqueue)
4346 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4347 		cfs_rq->h_nr_running += task_delta;
4348 
4349 		if (cfs_rq_throttled(cfs_rq))
4350 			break;
4351 	}
4352 
4353 	if (!se)
4354 		add_nr_running(rq, task_delta);
4355 
4356 	/* determine whether we need to wake up potentially idle cpu */
4357 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4358 		resched_curr(rq);
4359 }
4360 
4361 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4362 		u64 remaining, u64 expires)
4363 {
4364 	struct cfs_rq *cfs_rq;
4365 	u64 runtime;
4366 	u64 starting_runtime = remaining;
4367 
4368 	rcu_read_lock();
4369 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4370 				throttled_list) {
4371 		struct rq *rq = rq_of(cfs_rq);
4372 		struct rq_flags rf;
4373 
4374 		rq_lock(rq, &rf);
4375 		if (!cfs_rq_throttled(cfs_rq))
4376 			goto next;
4377 
4378 		runtime = -cfs_rq->runtime_remaining + 1;
4379 		if (runtime > remaining)
4380 			runtime = remaining;
4381 		remaining -= runtime;
4382 
4383 		cfs_rq->runtime_remaining += runtime;
4384 		cfs_rq->runtime_expires = expires;
4385 
4386 		/* we check whether we're throttled above */
4387 		if (cfs_rq->runtime_remaining > 0)
4388 			unthrottle_cfs_rq(cfs_rq);
4389 
4390 next:
4391 		rq_unlock(rq, &rf);
4392 
4393 		if (!remaining)
4394 			break;
4395 	}
4396 	rcu_read_unlock();
4397 
4398 	return starting_runtime - remaining;
4399 }
4400 
4401 /*
4402  * Responsible for refilling a task_group's bandwidth and unthrottling its
4403  * cfs_rqs as appropriate. If there has been no activity within the last
4404  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4405  * used to track this state.
4406  */
4407 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4408 {
4409 	u64 runtime, runtime_expires;
4410 	int throttled;
4411 
4412 	/* no need to continue the timer with no bandwidth constraint */
4413 	if (cfs_b->quota == RUNTIME_INF)
4414 		goto out_deactivate;
4415 
4416 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4417 	cfs_b->nr_periods += overrun;
4418 
4419 	/*
4420 	 * idle depends on !throttled (for the case of a large deficit), and if
4421 	 * we're going inactive then everything else can be deferred
4422 	 */
4423 	if (cfs_b->idle && !throttled)
4424 		goto out_deactivate;
4425 
4426 	__refill_cfs_bandwidth_runtime(cfs_b);
4427 
4428 	if (!throttled) {
4429 		/* mark as potentially idle for the upcoming period */
4430 		cfs_b->idle = 1;
4431 		return 0;
4432 	}
4433 
4434 	/* account preceding periods in which throttling occurred */
4435 	cfs_b->nr_throttled += overrun;
4436 
4437 	runtime_expires = cfs_b->runtime_expires;
4438 
4439 	/*
4440 	 * This check is repeated as we are holding onto the new bandwidth while
4441 	 * we unthrottle. This can potentially race with an unthrottled group
4442 	 * trying to acquire new bandwidth from the global pool. This can result
4443 	 * in us over-using our runtime if it is all used during this loop, but
4444 	 * only by limited amounts in that extreme case.
4445 	 */
4446 	while (throttled && cfs_b->runtime > 0) {
4447 		runtime = cfs_b->runtime;
4448 		raw_spin_unlock(&cfs_b->lock);
4449 		/* we can't nest cfs_b->lock while distributing bandwidth */
4450 		runtime = distribute_cfs_runtime(cfs_b, runtime,
4451 						 runtime_expires);
4452 		raw_spin_lock(&cfs_b->lock);
4453 
4454 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4455 
4456 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4457 	}
4458 
4459 	/*
4460 	 * While we are ensured activity in the period following an
4461 	 * unthrottle, this also covers the case in which the new bandwidth is
4462 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4463 	 * timer to remain active while there are any throttled entities.)
4464 	 */
4465 	cfs_b->idle = 0;
4466 
4467 	return 0;
4468 
4469 out_deactivate:
4470 	return 1;
4471 }
4472 
4473 /* a cfs_rq won't donate quota below this amount */
4474 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4475 /* minimum remaining period time to redistribute slack quota */
4476 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4477 /* how long we wait to gather additional slack before distributing */
4478 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4479 
4480 /*
4481  * Are we near the end of the current quota period?
4482  *
4483  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4484  * hrtimer base being cleared by hrtimer_start. In the case of
4485  * migrate_hrtimers, base is never cleared, so we are fine.
4486  */
4487 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4488 {
4489 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4490 	u64 remaining;
4491 
4492 	/* if the call-back is running a quota refresh is already occurring */
4493 	if (hrtimer_callback_running(refresh_timer))
4494 		return 1;
4495 
4496 	/* is a quota refresh about to occur? */
4497 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4498 	if (remaining < min_expire)
4499 		return 1;
4500 
4501 	return 0;
4502 }
4503 
4504 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4505 {
4506 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4507 
4508 	/* if there's a quota refresh soon don't bother with slack */
4509 	if (runtime_refresh_within(cfs_b, min_left))
4510 		return;
4511 
4512 	hrtimer_start(&cfs_b->slack_timer,
4513 			ns_to_ktime(cfs_bandwidth_slack_period),
4514 			HRTIMER_MODE_REL);
4515 }
4516 
4517 /* we know any runtime found here is valid as update_curr() precedes return */
4518 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4519 {
4520 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4521 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4522 
4523 	if (slack_runtime <= 0)
4524 		return;
4525 
4526 	raw_spin_lock(&cfs_b->lock);
4527 	if (cfs_b->quota != RUNTIME_INF &&
4528 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4529 		cfs_b->runtime += slack_runtime;
4530 
4531 		/* we are under rq->lock, defer unthrottling using a timer */
4532 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4533 		    !list_empty(&cfs_b->throttled_cfs_rq))
4534 			start_cfs_slack_bandwidth(cfs_b);
4535 	}
4536 	raw_spin_unlock(&cfs_b->lock);
4537 
4538 	/* even if it's not valid for return we don't want to try again */
4539 	cfs_rq->runtime_remaining -= slack_runtime;
4540 }
4541 
4542 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4543 {
4544 	if (!cfs_bandwidth_used())
4545 		return;
4546 
4547 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4548 		return;
4549 
4550 	__return_cfs_rq_runtime(cfs_rq);
4551 }
4552 
4553 /*
4554  * This is done with a timer (instead of inline with bandwidth return) since
4555  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4556  */
4557 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4558 {
4559 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4560 	u64 expires;
4561 
4562 	/* confirm we're still not at a refresh boundary */
4563 	raw_spin_lock(&cfs_b->lock);
4564 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4565 		raw_spin_unlock(&cfs_b->lock);
4566 		return;
4567 	}
4568 
4569 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4570 		runtime = cfs_b->runtime;
4571 
4572 	expires = cfs_b->runtime_expires;
4573 	raw_spin_unlock(&cfs_b->lock);
4574 
4575 	if (!runtime)
4576 		return;
4577 
4578 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4579 
4580 	raw_spin_lock(&cfs_b->lock);
4581 	if (expires == cfs_b->runtime_expires)
4582 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4583 	raw_spin_unlock(&cfs_b->lock);
4584 }
4585 
4586 /*
4587  * When a group wakes up we want to make sure that its quota is not already
4588  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4589  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4590  */
4591 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4592 {
4593 	if (!cfs_bandwidth_used())
4594 		return;
4595 
4596 	/* an active group must be handled by the update_curr()->put() path */
4597 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4598 		return;
4599 
4600 	/* ensure the group is not already throttled */
4601 	if (cfs_rq_throttled(cfs_rq))
4602 		return;
4603 
4604 	/* update runtime allocation */
4605 	account_cfs_rq_runtime(cfs_rq, 0);
4606 	if (cfs_rq->runtime_remaining <= 0)
4607 		throttle_cfs_rq(cfs_rq);
4608 }
4609 
4610 static void sync_throttle(struct task_group *tg, int cpu)
4611 {
4612 	struct cfs_rq *pcfs_rq, *cfs_rq;
4613 
4614 	if (!cfs_bandwidth_used())
4615 		return;
4616 
4617 	if (!tg->parent)
4618 		return;
4619 
4620 	cfs_rq = tg->cfs_rq[cpu];
4621 	pcfs_rq = tg->parent->cfs_rq[cpu];
4622 
4623 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4624 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4625 }
4626 
4627 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4628 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4629 {
4630 	if (!cfs_bandwidth_used())
4631 		return false;
4632 
4633 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4634 		return false;
4635 
4636 	/*
4637 	 * it's possible for a throttled entity to be forced into a running
4638 	 * state (e.g. set_curr_task), in this case we're finished.
4639 	 */
4640 	if (cfs_rq_throttled(cfs_rq))
4641 		return true;
4642 
4643 	throttle_cfs_rq(cfs_rq);
4644 	return true;
4645 }
4646 
4647 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4648 {
4649 	struct cfs_bandwidth *cfs_b =
4650 		container_of(timer, struct cfs_bandwidth, slack_timer);
4651 
4652 	do_sched_cfs_slack_timer(cfs_b);
4653 
4654 	return HRTIMER_NORESTART;
4655 }
4656 
4657 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4658 {
4659 	struct cfs_bandwidth *cfs_b =
4660 		container_of(timer, struct cfs_bandwidth, period_timer);
4661 	int overrun;
4662 	int idle = 0;
4663 
4664 	raw_spin_lock(&cfs_b->lock);
4665 	for (;;) {
4666 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4667 		if (!overrun)
4668 			break;
4669 
4670 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
4671 	}
4672 	if (idle)
4673 		cfs_b->period_active = 0;
4674 	raw_spin_unlock(&cfs_b->lock);
4675 
4676 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4677 }
4678 
4679 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4680 {
4681 	raw_spin_lock_init(&cfs_b->lock);
4682 	cfs_b->runtime = 0;
4683 	cfs_b->quota = RUNTIME_INF;
4684 	cfs_b->period = ns_to_ktime(default_cfs_period());
4685 
4686 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4687 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4688 	cfs_b->period_timer.function = sched_cfs_period_timer;
4689 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4690 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4691 }
4692 
4693 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4694 {
4695 	cfs_rq->runtime_enabled = 0;
4696 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4697 }
4698 
4699 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4700 {
4701 	lockdep_assert_held(&cfs_b->lock);
4702 
4703 	if (!cfs_b->period_active) {
4704 		cfs_b->period_active = 1;
4705 		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4706 		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4707 	}
4708 }
4709 
4710 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4711 {
4712 	/* init_cfs_bandwidth() was not called */
4713 	if (!cfs_b->throttled_cfs_rq.next)
4714 		return;
4715 
4716 	hrtimer_cancel(&cfs_b->period_timer);
4717 	hrtimer_cancel(&cfs_b->slack_timer);
4718 }
4719 
4720 /*
4721  * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
4722  *
4723  * The race is harmless, since modifying bandwidth settings of unhooked group
4724  * bits doesn't do much.
4725  */
4726 
4727 /* cpu online calback */
4728 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4729 {
4730 	struct task_group *tg;
4731 
4732 	lockdep_assert_held(&rq->lock);
4733 
4734 	rcu_read_lock();
4735 	list_for_each_entry_rcu(tg, &task_groups, list) {
4736 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4737 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4738 
4739 		raw_spin_lock(&cfs_b->lock);
4740 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4741 		raw_spin_unlock(&cfs_b->lock);
4742 	}
4743 	rcu_read_unlock();
4744 }
4745 
4746 /* cpu offline callback */
4747 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4748 {
4749 	struct task_group *tg;
4750 
4751 	lockdep_assert_held(&rq->lock);
4752 
4753 	rcu_read_lock();
4754 	list_for_each_entry_rcu(tg, &task_groups, list) {
4755 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4756 
4757 		if (!cfs_rq->runtime_enabled)
4758 			continue;
4759 
4760 		/*
4761 		 * clock_task is not advancing so we just need to make sure
4762 		 * there's some valid quota amount
4763 		 */
4764 		cfs_rq->runtime_remaining = 1;
4765 		/*
4766 		 * Offline rq is schedulable till cpu is completely disabled
4767 		 * in take_cpu_down(), so we prevent new cfs throttling here.
4768 		 */
4769 		cfs_rq->runtime_enabled = 0;
4770 
4771 		if (cfs_rq_throttled(cfs_rq))
4772 			unthrottle_cfs_rq(cfs_rq);
4773 	}
4774 	rcu_read_unlock();
4775 }
4776 
4777 #else /* CONFIG_CFS_BANDWIDTH */
4778 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4779 {
4780 	return rq_clock_task(rq_of(cfs_rq));
4781 }
4782 
4783 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4784 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4785 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4786 static inline void sync_throttle(struct task_group *tg, int cpu) {}
4787 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4788 
4789 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4790 {
4791 	return 0;
4792 }
4793 
4794 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4795 {
4796 	return 0;
4797 }
4798 
4799 static inline int throttled_lb_pair(struct task_group *tg,
4800 				    int src_cpu, int dest_cpu)
4801 {
4802 	return 0;
4803 }
4804 
4805 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4806 
4807 #ifdef CONFIG_FAIR_GROUP_SCHED
4808 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4809 #endif
4810 
4811 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4812 {
4813 	return NULL;
4814 }
4815 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4816 static inline void update_runtime_enabled(struct rq *rq) {}
4817 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4818 
4819 #endif /* CONFIG_CFS_BANDWIDTH */
4820 
4821 /**************************************************
4822  * CFS operations on tasks:
4823  */
4824 
4825 #ifdef CONFIG_SCHED_HRTICK
4826 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4827 {
4828 	struct sched_entity *se = &p->se;
4829 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4830 
4831 	SCHED_WARN_ON(task_rq(p) != rq);
4832 
4833 	if (rq->cfs.h_nr_running > 1) {
4834 		u64 slice = sched_slice(cfs_rq, se);
4835 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4836 		s64 delta = slice - ran;
4837 
4838 		if (delta < 0) {
4839 			if (rq->curr == p)
4840 				resched_curr(rq);
4841 			return;
4842 		}
4843 		hrtick_start(rq, delta);
4844 	}
4845 }
4846 
4847 /*
4848  * called from enqueue/dequeue and updates the hrtick when the
4849  * current task is from our class and nr_running is low enough
4850  * to matter.
4851  */
4852 static void hrtick_update(struct rq *rq)
4853 {
4854 	struct task_struct *curr = rq->curr;
4855 
4856 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4857 		return;
4858 
4859 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4860 		hrtick_start_fair(rq, curr);
4861 }
4862 #else /* !CONFIG_SCHED_HRTICK */
4863 static inline void
4864 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4865 {
4866 }
4867 
4868 static inline void hrtick_update(struct rq *rq)
4869 {
4870 }
4871 #endif
4872 
4873 /*
4874  * The enqueue_task method is called before nr_running is
4875  * increased. Here we update the fair scheduling stats and
4876  * then put the task into the rbtree:
4877  */
4878 static void
4879 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4880 {
4881 	struct cfs_rq *cfs_rq;
4882 	struct sched_entity *se = &p->se;
4883 
4884 	/*
4885 	 * If in_iowait is set, the code below may not trigger any cpufreq
4886 	 * utilization updates, so do it here explicitly with the IOWAIT flag
4887 	 * passed.
4888 	 */
4889 	if (p->in_iowait)
4890 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
4891 
4892 	for_each_sched_entity(se) {
4893 		if (se->on_rq)
4894 			break;
4895 		cfs_rq = cfs_rq_of(se);
4896 		enqueue_entity(cfs_rq, se, flags);
4897 
4898 		/*
4899 		 * end evaluation on encountering a throttled cfs_rq
4900 		 *
4901 		 * note: in the case of encountering a throttled cfs_rq we will
4902 		 * post the final h_nr_running increment below.
4903 		 */
4904 		if (cfs_rq_throttled(cfs_rq))
4905 			break;
4906 		cfs_rq->h_nr_running++;
4907 
4908 		flags = ENQUEUE_WAKEUP;
4909 	}
4910 
4911 	for_each_sched_entity(se) {
4912 		cfs_rq = cfs_rq_of(se);
4913 		cfs_rq->h_nr_running++;
4914 
4915 		if (cfs_rq_throttled(cfs_rq))
4916 			break;
4917 
4918 		update_load_avg(se, UPDATE_TG);
4919 		update_cfs_shares(se);
4920 	}
4921 
4922 	if (!se)
4923 		add_nr_running(rq, 1);
4924 
4925 	hrtick_update(rq);
4926 }
4927 
4928 static void set_next_buddy(struct sched_entity *se);
4929 
4930 /*
4931  * The dequeue_task method is called before nr_running is
4932  * decreased. We remove the task from the rbtree and
4933  * update the fair scheduling stats:
4934  */
4935 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4936 {
4937 	struct cfs_rq *cfs_rq;
4938 	struct sched_entity *se = &p->se;
4939 	int task_sleep = flags & DEQUEUE_SLEEP;
4940 
4941 	for_each_sched_entity(se) {
4942 		cfs_rq = cfs_rq_of(se);
4943 		dequeue_entity(cfs_rq, se, flags);
4944 
4945 		/*
4946 		 * end evaluation on encountering a throttled cfs_rq
4947 		 *
4948 		 * note: in the case of encountering a throttled cfs_rq we will
4949 		 * post the final h_nr_running decrement below.
4950 		*/
4951 		if (cfs_rq_throttled(cfs_rq))
4952 			break;
4953 		cfs_rq->h_nr_running--;
4954 
4955 		/* Don't dequeue parent if it has other entities besides us */
4956 		if (cfs_rq->load.weight) {
4957 			/* Avoid re-evaluating load for this entity: */
4958 			se = parent_entity(se);
4959 			/*
4960 			 * Bias pick_next to pick a task from this cfs_rq, as
4961 			 * p is sleeping when it is within its sched_slice.
4962 			 */
4963 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4964 				set_next_buddy(se);
4965 			break;
4966 		}
4967 		flags |= DEQUEUE_SLEEP;
4968 	}
4969 
4970 	for_each_sched_entity(se) {
4971 		cfs_rq = cfs_rq_of(se);
4972 		cfs_rq->h_nr_running--;
4973 
4974 		if (cfs_rq_throttled(cfs_rq))
4975 			break;
4976 
4977 		update_load_avg(se, UPDATE_TG);
4978 		update_cfs_shares(se);
4979 	}
4980 
4981 	if (!se)
4982 		sub_nr_running(rq, 1);
4983 
4984 	hrtick_update(rq);
4985 }
4986 
4987 #ifdef CONFIG_SMP
4988 
4989 /* Working cpumask for: load_balance, load_balance_newidle. */
4990 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4991 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4992 
4993 #ifdef CONFIG_NO_HZ_COMMON
4994 /*
4995  * per rq 'load' arrray crap; XXX kill this.
4996  */
4997 
4998 /*
4999  * The exact cpuload calculated at every tick would be:
5000  *
5001  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5002  *
5003  * If a cpu misses updates for n ticks (as it was idle) and update gets
5004  * called on the n+1-th tick when cpu may be busy, then we have:
5005  *
5006  *   load_n   = (1 - 1/2^i)^n * load_0
5007  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5008  *
5009  * decay_load_missed() below does efficient calculation of
5010  *
5011  *   load' = (1 - 1/2^i)^n * load
5012  *
5013  * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5014  * This allows us to precompute the above in said factors, thereby allowing the
5015  * reduction of an arbitrary n in O(log_2 n) steps. (See also
5016  * fixed_power_int())
5017  *
5018  * The calculation is approximated on a 128 point scale.
5019  */
5020 #define DEGRADE_SHIFT		7
5021 
5022 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5023 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5024 	{   0,   0,  0,  0,  0,  0, 0, 0 },
5025 	{  64,  32,  8,  0,  0,  0, 0, 0 },
5026 	{  96,  72, 40, 12,  1,  0, 0, 0 },
5027 	{ 112,  98, 75, 43, 15,  1, 0, 0 },
5028 	{ 120, 112, 98, 76, 45, 16, 2, 0 }
5029 };
5030 
5031 /*
5032  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5033  * would be when CPU is idle and so we just decay the old load without
5034  * adding any new load.
5035  */
5036 static unsigned long
5037 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5038 {
5039 	int j = 0;
5040 
5041 	if (!missed_updates)
5042 		return load;
5043 
5044 	if (missed_updates >= degrade_zero_ticks[idx])
5045 		return 0;
5046 
5047 	if (idx == 1)
5048 		return load >> missed_updates;
5049 
5050 	while (missed_updates) {
5051 		if (missed_updates % 2)
5052 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5053 
5054 		missed_updates >>= 1;
5055 		j++;
5056 	}
5057 	return load;
5058 }
5059 #endif /* CONFIG_NO_HZ_COMMON */
5060 
5061 /**
5062  * __cpu_load_update - update the rq->cpu_load[] statistics
5063  * @this_rq: The rq to update statistics for
5064  * @this_load: The current load
5065  * @pending_updates: The number of missed updates
5066  *
5067  * Update rq->cpu_load[] statistics. This function is usually called every
5068  * scheduler tick (TICK_NSEC).
5069  *
5070  * This function computes a decaying average:
5071  *
5072  *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5073  *
5074  * Because of NOHZ it might not get called on every tick which gives need for
5075  * the @pending_updates argument.
5076  *
5077  *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5078  *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5079  *             = A * (A * load[i]_n-2 + B) + B
5080  *             = A * (A * (A * load[i]_n-3 + B) + B) + B
5081  *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5082  *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5083  *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5084  *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5085  *
5086  * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5087  * any change in load would have resulted in the tick being turned back on.
5088  *
5089  * For regular NOHZ, this reduces to:
5090  *
5091  *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
5092  *
5093  * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5094  * term.
5095  */
5096 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5097 			    unsigned long pending_updates)
5098 {
5099 	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5100 	int i, scale;
5101 
5102 	this_rq->nr_load_updates++;
5103 
5104 	/* Update our load: */
5105 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5106 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5107 		unsigned long old_load, new_load;
5108 
5109 		/* scale is effectively 1 << i now, and >> i divides by scale */
5110 
5111 		old_load = this_rq->cpu_load[i];
5112 #ifdef CONFIG_NO_HZ_COMMON
5113 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5114 		if (tickless_load) {
5115 			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5116 			/*
5117 			 * old_load can never be a negative value because a
5118 			 * decayed tickless_load cannot be greater than the
5119 			 * original tickless_load.
5120 			 */
5121 			old_load += tickless_load;
5122 		}
5123 #endif
5124 		new_load = this_load;
5125 		/*
5126 		 * Round up the averaging division if load is increasing. This
5127 		 * prevents us from getting stuck on 9 if the load is 10, for
5128 		 * example.
5129 		 */
5130 		if (new_load > old_load)
5131 			new_load += scale - 1;
5132 
5133 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5134 	}
5135 
5136 	sched_avg_update(this_rq);
5137 }
5138 
5139 /* Used instead of source_load when we know the type == 0 */
5140 static unsigned long weighted_cpuload(struct rq *rq)
5141 {
5142 	return cfs_rq_runnable_load_avg(&rq->cfs);
5143 }
5144 
5145 #ifdef CONFIG_NO_HZ_COMMON
5146 /*
5147  * There is no sane way to deal with nohz on smp when using jiffies because the
5148  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5149  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5150  *
5151  * Therefore we need to avoid the delta approach from the regular tick when
5152  * possible since that would seriously skew the load calculation. This is why we
5153  * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5154  * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5155  * loop exit, nohz_idle_balance, nohz full exit...)
5156  *
5157  * This means we might still be one tick off for nohz periods.
5158  */
5159 
5160 static void cpu_load_update_nohz(struct rq *this_rq,
5161 				 unsigned long curr_jiffies,
5162 				 unsigned long load)
5163 {
5164 	unsigned long pending_updates;
5165 
5166 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5167 	if (pending_updates) {
5168 		this_rq->last_load_update_tick = curr_jiffies;
5169 		/*
5170 		 * In the regular NOHZ case, we were idle, this means load 0.
5171 		 * In the NOHZ_FULL case, we were non-idle, we should consider
5172 		 * its weighted load.
5173 		 */
5174 		cpu_load_update(this_rq, load, pending_updates);
5175 	}
5176 }
5177 
5178 /*
5179  * Called from nohz_idle_balance() to update the load ratings before doing the
5180  * idle balance.
5181  */
5182 static void cpu_load_update_idle(struct rq *this_rq)
5183 {
5184 	/*
5185 	 * bail if there's load or we're actually up-to-date.
5186 	 */
5187 	if (weighted_cpuload(this_rq))
5188 		return;
5189 
5190 	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5191 }
5192 
5193 /*
5194  * Record CPU load on nohz entry so we know the tickless load to account
5195  * on nohz exit. cpu_load[0] happens then to be updated more frequently
5196  * than other cpu_load[idx] but it should be fine as cpu_load readers
5197  * shouldn't rely into synchronized cpu_load[*] updates.
5198  */
5199 void cpu_load_update_nohz_start(void)
5200 {
5201 	struct rq *this_rq = this_rq();
5202 
5203 	/*
5204 	 * This is all lockless but should be fine. If weighted_cpuload changes
5205 	 * concurrently we'll exit nohz. And cpu_load write can race with
5206 	 * cpu_load_update_idle() but both updater would be writing the same.
5207 	 */
5208 	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5209 }
5210 
5211 /*
5212  * Account the tickless load in the end of a nohz frame.
5213  */
5214 void cpu_load_update_nohz_stop(void)
5215 {
5216 	unsigned long curr_jiffies = READ_ONCE(jiffies);
5217 	struct rq *this_rq = this_rq();
5218 	unsigned long load;
5219 	struct rq_flags rf;
5220 
5221 	if (curr_jiffies == this_rq->last_load_update_tick)
5222 		return;
5223 
5224 	load = weighted_cpuload(this_rq);
5225 	rq_lock(this_rq, &rf);
5226 	update_rq_clock(this_rq);
5227 	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5228 	rq_unlock(this_rq, &rf);
5229 }
5230 #else /* !CONFIG_NO_HZ_COMMON */
5231 static inline void cpu_load_update_nohz(struct rq *this_rq,
5232 					unsigned long curr_jiffies,
5233 					unsigned long load) { }
5234 #endif /* CONFIG_NO_HZ_COMMON */
5235 
5236 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5237 {
5238 #ifdef CONFIG_NO_HZ_COMMON
5239 	/* See the mess around cpu_load_update_nohz(). */
5240 	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5241 #endif
5242 	cpu_load_update(this_rq, load, 1);
5243 }
5244 
5245 /*
5246  * Called from scheduler_tick()
5247  */
5248 void cpu_load_update_active(struct rq *this_rq)
5249 {
5250 	unsigned long load = weighted_cpuload(this_rq);
5251 
5252 	if (tick_nohz_tick_stopped())
5253 		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5254 	else
5255 		cpu_load_update_periodic(this_rq, load);
5256 }
5257 
5258 /*
5259  * Return a low guess at the load of a migration-source cpu weighted
5260  * according to the scheduling class and "nice" value.
5261  *
5262  * We want to under-estimate the load of migration sources, to
5263  * balance conservatively.
5264  */
5265 static unsigned long source_load(int cpu, int type)
5266 {
5267 	struct rq *rq = cpu_rq(cpu);
5268 	unsigned long total = weighted_cpuload(rq);
5269 
5270 	if (type == 0 || !sched_feat(LB_BIAS))
5271 		return total;
5272 
5273 	return min(rq->cpu_load[type-1], total);
5274 }
5275 
5276 /*
5277  * Return a high guess at the load of a migration-target cpu weighted
5278  * according to the scheduling class and "nice" value.
5279  */
5280 static unsigned long target_load(int cpu, int type)
5281 {
5282 	struct rq *rq = cpu_rq(cpu);
5283 	unsigned long total = weighted_cpuload(rq);
5284 
5285 	if (type == 0 || !sched_feat(LB_BIAS))
5286 		return total;
5287 
5288 	return max(rq->cpu_load[type-1], total);
5289 }
5290 
5291 static unsigned long capacity_of(int cpu)
5292 {
5293 	return cpu_rq(cpu)->cpu_capacity;
5294 }
5295 
5296 static unsigned long capacity_orig_of(int cpu)
5297 {
5298 	return cpu_rq(cpu)->cpu_capacity_orig;
5299 }
5300 
5301 static unsigned long cpu_avg_load_per_task(int cpu)
5302 {
5303 	struct rq *rq = cpu_rq(cpu);
5304 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5305 	unsigned long load_avg = weighted_cpuload(rq);
5306 
5307 	if (nr_running)
5308 		return load_avg / nr_running;
5309 
5310 	return 0;
5311 }
5312 
5313 static void record_wakee(struct task_struct *p)
5314 {
5315 	/*
5316 	 * Only decay a single time; tasks that have less then 1 wakeup per
5317 	 * jiffy will not have built up many flips.
5318 	 */
5319 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5320 		current->wakee_flips >>= 1;
5321 		current->wakee_flip_decay_ts = jiffies;
5322 	}
5323 
5324 	if (current->last_wakee != p) {
5325 		current->last_wakee = p;
5326 		current->wakee_flips++;
5327 	}
5328 }
5329 
5330 /*
5331  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5332  *
5333  * A waker of many should wake a different task than the one last awakened
5334  * at a frequency roughly N times higher than one of its wakees.
5335  *
5336  * In order to determine whether we should let the load spread vs consolidating
5337  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5338  * partner, and a factor of lls_size higher frequency in the other.
5339  *
5340  * With both conditions met, we can be relatively sure that the relationship is
5341  * non-monogamous, with partner count exceeding socket size.
5342  *
5343  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5344  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5345  * socket size.
5346  */
5347 static int wake_wide(struct task_struct *p)
5348 {
5349 	unsigned int master = current->wakee_flips;
5350 	unsigned int slave = p->wakee_flips;
5351 	int factor = this_cpu_read(sd_llc_size);
5352 
5353 	if (master < slave)
5354 		swap(master, slave);
5355 	if (slave < factor || master < slave * factor)
5356 		return 0;
5357 	return 1;
5358 }
5359 
5360 /*
5361  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5362  * soonest. For the purpose of speed we only consider the waking and previous
5363  * CPU.
5364  *
5365  * wake_affine_idle() - only considers 'now', it check if the waking CPU is (or
5366  *			will be) idle.
5367  *
5368  * wake_affine_weight() - considers the weight to reflect the average
5369  *			  scheduling latency of the CPUs. This seems to work
5370  *			  for the overloaded case.
5371  */
5372 
5373 static bool
5374 wake_affine_idle(struct sched_domain *sd, struct task_struct *p,
5375 		 int this_cpu, int prev_cpu, int sync)
5376 {
5377 	if (idle_cpu(this_cpu))
5378 		return true;
5379 
5380 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5381 		return true;
5382 
5383 	return false;
5384 }
5385 
5386 static bool
5387 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5388 		   int this_cpu, int prev_cpu, int sync)
5389 {
5390 	s64 this_eff_load, prev_eff_load;
5391 	unsigned long task_load;
5392 
5393 	this_eff_load = target_load(this_cpu, sd->wake_idx);
5394 	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5395 
5396 	if (sync) {
5397 		unsigned long current_load = task_h_load(current);
5398 
5399 		if (current_load > this_eff_load)
5400 			return true;
5401 
5402 		this_eff_load -= current_load;
5403 	}
5404 
5405 	task_load = task_h_load(p);
5406 
5407 	this_eff_load += task_load;
5408 	if (sched_feat(WA_BIAS))
5409 		this_eff_load *= 100;
5410 	this_eff_load *= capacity_of(prev_cpu);
5411 
5412 	prev_eff_load -= task_load;
5413 	if (sched_feat(WA_BIAS))
5414 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5415 	prev_eff_load *= capacity_of(this_cpu);
5416 
5417 	return this_eff_load <= prev_eff_load;
5418 }
5419 
5420 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5421 		       int prev_cpu, int sync)
5422 {
5423 	int this_cpu = smp_processor_id();
5424 	bool affine = false;
5425 
5426 	if (sched_feat(WA_IDLE) && !affine)
5427 		affine = wake_affine_idle(sd, p, this_cpu, prev_cpu, sync);
5428 
5429 	if (sched_feat(WA_WEIGHT) && !affine)
5430 		affine = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5431 
5432 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5433 	if (affine) {
5434 		schedstat_inc(sd->ttwu_move_affine);
5435 		schedstat_inc(p->se.statistics.nr_wakeups_affine);
5436 	}
5437 
5438 	return affine;
5439 }
5440 
5441 static inline int task_util(struct task_struct *p);
5442 static int cpu_util_wake(int cpu, struct task_struct *p);
5443 
5444 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5445 {
5446 	return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5447 }
5448 
5449 /*
5450  * find_idlest_group finds and returns the least busy CPU group within the
5451  * domain.
5452  */
5453 static struct sched_group *
5454 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5455 		  int this_cpu, int sd_flag)
5456 {
5457 	struct sched_group *idlest = NULL, *group = sd->groups;
5458 	struct sched_group *most_spare_sg = NULL;
5459 	unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5460 	unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
5461 	unsigned long most_spare = 0, this_spare = 0;
5462 	int load_idx = sd->forkexec_idx;
5463 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5464 	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5465 				(sd->imbalance_pct-100) / 100;
5466 
5467 	if (sd_flag & SD_BALANCE_WAKE)
5468 		load_idx = sd->wake_idx;
5469 
5470 	do {
5471 		unsigned long load, avg_load, runnable_load;
5472 		unsigned long spare_cap, max_spare_cap;
5473 		int local_group;
5474 		int i;
5475 
5476 		/* Skip over this group if it has no CPUs allowed */
5477 		if (!cpumask_intersects(sched_group_span(group),
5478 					&p->cpus_allowed))
5479 			continue;
5480 
5481 		local_group = cpumask_test_cpu(this_cpu,
5482 					       sched_group_span(group));
5483 
5484 		/*
5485 		 * Tally up the load of all CPUs in the group and find
5486 		 * the group containing the CPU with most spare capacity.
5487 		 */
5488 		avg_load = 0;
5489 		runnable_load = 0;
5490 		max_spare_cap = 0;
5491 
5492 		for_each_cpu(i, sched_group_span(group)) {
5493 			/* Bias balancing toward cpus of our domain */
5494 			if (local_group)
5495 				load = source_load(i, load_idx);
5496 			else
5497 				load = target_load(i, load_idx);
5498 
5499 			runnable_load += load;
5500 
5501 			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5502 
5503 			spare_cap = capacity_spare_wake(i, p);
5504 
5505 			if (spare_cap > max_spare_cap)
5506 				max_spare_cap = spare_cap;
5507 		}
5508 
5509 		/* Adjust by relative CPU capacity of the group */
5510 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5511 					group->sgc->capacity;
5512 		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5513 					group->sgc->capacity;
5514 
5515 		if (local_group) {
5516 			this_runnable_load = runnable_load;
5517 			this_avg_load = avg_load;
5518 			this_spare = max_spare_cap;
5519 		} else {
5520 			if (min_runnable_load > (runnable_load + imbalance)) {
5521 				/*
5522 				 * The runnable load is significantly smaller
5523 				 * so we can pick this new cpu
5524 				 */
5525 				min_runnable_load = runnable_load;
5526 				min_avg_load = avg_load;
5527 				idlest = group;
5528 			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
5529 				   (100*min_avg_load > imbalance_scale*avg_load)) {
5530 				/*
5531 				 * The runnable loads are close so take the
5532 				 * blocked load into account through avg_load.
5533 				 */
5534 				min_avg_load = avg_load;
5535 				idlest = group;
5536 			}
5537 
5538 			if (most_spare < max_spare_cap) {
5539 				most_spare = max_spare_cap;
5540 				most_spare_sg = group;
5541 			}
5542 		}
5543 	} while (group = group->next, group != sd->groups);
5544 
5545 	/*
5546 	 * The cross-over point between using spare capacity or least load
5547 	 * is too conservative for high utilization tasks on partially
5548 	 * utilized systems if we require spare_capacity > task_util(p),
5549 	 * so we allow for some task stuffing by using
5550 	 * spare_capacity > task_util(p)/2.
5551 	 *
5552 	 * Spare capacity can't be used for fork because the utilization has
5553 	 * not been set yet, we must first select a rq to compute the initial
5554 	 * utilization.
5555 	 */
5556 	if (sd_flag & SD_BALANCE_FORK)
5557 		goto skip_spare;
5558 
5559 	if (this_spare > task_util(p) / 2 &&
5560 	    imbalance_scale*this_spare > 100*most_spare)
5561 		return NULL;
5562 
5563 	if (most_spare > task_util(p) / 2)
5564 		return most_spare_sg;
5565 
5566 skip_spare:
5567 	if (!idlest)
5568 		return NULL;
5569 
5570 	if (min_runnable_load > (this_runnable_load + imbalance))
5571 		return NULL;
5572 
5573 	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5574 	     (100*this_avg_load < imbalance_scale*min_avg_load))
5575 		return NULL;
5576 
5577 	return idlest;
5578 }
5579 
5580 /*
5581  * find_idlest_cpu - find the idlest cpu among the cpus in group.
5582  */
5583 static int
5584 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5585 {
5586 	unsigned long load, min_load = ULONG_MAX;
5587 	unsigned int min_exit_latency = UINT_MAX;
5588 	u64 latest_idle_timestamp = 0;
5589 	int least_loaded_cpu = this_cpu;
5590 	int shallowest_idle_cpu = -1;
5591 	int i;
5592 
5593 	/* Check if we have any choice: */
5594 	if (group->group_weight == 1)
5595 		return cpumask_first(sched_group_span(group));
5596 
5597 	/* Traverse only the allowed CPUs */
5598 	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5599 		if (idle_cpu(i)) {
5600 			struct rq *rq = cpu_rq(i);
5601 			struct cpuidle_state *idle = idle_get_state(rq);
5602 			if (idle && idle->exit_latency < min_exit_latency) {
5603 				/*
5604 				 * We give priority to a CPU whose idle state
5605 				 * has the smallest exit latency irrespective
5606 				 * of any idle timestamp.
5607 				 */
5608 				min_exit_latency = idle->exit_latency;
5609 				latest_idle_timestamp = rq->idle_stamp;
5610 				shallowest_idle_cpu = i;
5611 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5612 				   rq->idle_stamp > latest_idle_timestamp) {
5613 				/*
5614 				 * If equal or no active idle state, then
5615 				 * the most recently idled CPU might have
5616 				 * a warmer cache.
5617 				 */
5618 				latest_idle_timestamp = rq->idle_stamp;
5619 				shallowest_idle_cpu = i;
5620 			}
5621 		} else if (shallowest_idle_cpu == -1) {
5622 			load = weighted_cpuload(cpu_rq(i));
5623 			if (load < min_load || (load == min_load && i == this_cpu)) {
5624 				min_load = load;
5625 				least_loaded_cpu = i;
5626 			}
5627 		}
5628 	}
5629 
5630 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5631 }
5632 
5633 #ifdef CONFIG_SCHED_SMT
5634 
5635 static inline void set_idle_cores(int cpu, int val)
5636 {
5637 	struct sched_domain_shared *sds;
5638 
5639 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5640 	if (sds)
5641 		WRITE_ONCE(sds->has_idle_cores, val);
5642 }
5643 
5644 static inline bool test_idle_cores(int cpu, bool def)
5645 {
5646 	struct sched_domain_shared *sds;
5647 
5648 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5649 	if (sds)
5650 		return READ_ONCE(sds->has_idle_cores);
5651 
5652 	return def;
5653 }
5654 
5655 /*
5656  * Scans the local SMT mask to see if the entire core is idle, and records this
5657  * information in sd_llc_shared->has_idle_cores.
5658  *
5659  * Since SMT siblings share all cache levels, inspecting this limited remote
5660  * state should be fairly cheap.
5661  */
5662 void __update_idle_core(struct rq *rq)
5663 {
5664 	int core = cpu_of(rq);
5665 	int cpu;
5666 
5667 	rcu_read_lock();
5668 	if (test_idle_cores(core, true))
5669 		goto unlock;
5670 
5671 	for_each_cpu(cpu, cpu_smt_mask(core)) {
5672 		if (cpu == core)
5673 			continue;
5674 
5675 		if (!idle_cpu(cpu))
5676 			goto unlock;
5677 	}
5678 
5679 	set_idle_cores(core, 1);
5680 unlock:
5681 	rcu_read_unlock();
5682 }
5683 
5684 /*
5685  * Scan the entire LLC domain for idle cores; this dynamically switches off if
5686  * there are no idle cores left in the system; tracked through
5687  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5688  */
5689 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5690 {
5691 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5692 	int core, cpu;
5693 
5694 	if (!static_branch_likely(&sched_smt_present))
5695 		return -1;
5696 
5697 	if (!test_idle_cores(target, false))
5698 		return -1;
5699 
5700 	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5701 
5702 	for_each_cpu_wrap(core, cpus, target) {
5703 		bool idle = true;
5704 
5705 		for_each_cpu(cpu, cpu_smt_mask(core)) {
5706 			cpumask_clear_cpu(cpu, cpus);
5707 			if (!idle_cpu(cpu))
5708 				idle = false;
5709 		}
5710 
5711 		if (idle)
5712 			return core;
5713 	}
5714 
5715 	/*
5716 	 * Failed to find an idle core; stop looking for one.
5717 	 */
5718 	set_idle_cores(target, 0);
5719 
5720 	return -1;
5721 }
5722 
5723 /*
5724  * Scan the local SMT mask for idle CPUs.
5725  */
5726 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5727 {
5728 	int cpu;
5729 
5730 	if (!static_branch_likely(&sched_smt_present))
5731 		return -1;
5732 
5733 	for_each_cpu(cpu, cpu_smt_mask(target)) {
5734 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5735 			continue;
5736 		if (idle_cpu(cpu))
5737 			return cpu;
5738 	}
5739 
5740 	return -1;
5741 }
5742 
5743 #else /* CONFIG_SCHED_SMT */
5744 
5745 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5746 {
5747 	return -1;
5748 }
5749 
5750 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5751 {
5752 	return -1;
5753 }
5754 
5755 #endif /* CONFIG_SCHED_SMT */
5756 
5757 /*
5758  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5759  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5760  * average idle time for this rq (as found in rq->avg_idle).
5761  */
5762 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5763 {
5764 	struct sched_domain *this_sd;
5765 	u64 avg_cost, avg_idle;
5766 	u64 time, cost;
5767 	s64 delta;
5768 	int cpu, nr = INT_MAX;
5769 
5770 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5771 	if (!this_sd)
5772 		return -1;
5773 
5774 	/*
5775 	 * Due to large variance we need a large fuzz factor; hackbench in
5776 	 * particularly is sensitive here.
5777 	 */
5778 	avg_idle = this_rq()->avg_idle / 512;
5779 	avg_cost = this_sd->avg_scan_cost + 1;
5780 
5781 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
5782 		return -1;
5783 
5784 	if (sched_feat(SIS_PROP)) {
5785 		u64 span_avg = sd->span_weight * avg_idle;
5786 		if (span_avg > 4*avg_cost)
5787 			nr = div_u64(span_avg, avg_cost);
5788 		else
5789 			nr = 4;
5790 	}
5791 
5792 	time = local_clock();
5793 
5794 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
5795 		if (!--nr)
5796 			return -1;
5797 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5798 			continue;
5799 		if (idle_cpu(cpu))
5800 			break;
5801 	}
5802 
5803 	time = local_clock() - time;
5804 	cost = this_sd->avg_scan_cost;
5805 	delta = (s64)(time - cost) / 8;
5806 	this_sd->avg_scan_cost += delta;
5807 
5808 	return cpu;
5809 }
5810 
5811 /*
5812  * Try and locate an idle core/thread in the LLC cache domain.
5813  */
5814 static int select_idle_sibling(struct task_struct *p, int prev, int target)
5815 {
5816 	struct sched_domain *sd;
5817 	int i;
5818 
5819 	if (idle_cpu(target))
5820 		return target;
5821 
5822 	/*
5823 	 * If the previous cpu is cache affine and idle, don't be stupid.
5824 	 */
5825 	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5826 		return prev;
5827 
5828 	sd = rcu_dereference(per_cpu(sd_llc, target));
5829 	if (!sd)
5830 		return target;
5831 
5832 	i = select_idle_core(p, sd, target);
5833 	if ((unsigned)i < nr_cpumask_bits)
5834 		return i;
5835 
5836 	i = select_idle_cpu(p, sd, target);
5837 	if ((unsigned)i < nr_cpumask_bits)
5838 		return i;
5839 
5840 	i = select_idle_smt(p, sd, target);
5841 	if ((unsigned)i < nr_cpumask_bits)
5842 		return i;
5843 
5844 	return target;
5845 }
5846 
5847 /*
5848  * cpu_util returns the amount of capacity of a CPU that is used by CFS
5849  * tasks. The unit of the return value must be the one of capacity so we can
5850  * compare the utilization with the capacity of the CPU that is available for
5851  * CFS task (ie cpu_capacity).
5852  *
5853  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5854  * recent utilization of currently non-runnable tasks on a CPU. It represents
5855  * the amount of utilization of a CPU in the range [0..capacity_orig] where
5856  * capacity_orig is the cpu_capacity available at the highest frequency
5857  * (arch_scale_freq_capacity()).
5858  * The utilization of a CPU converges towards a sum equal to or less than the
5859  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5860  * the running time on this CPU scaled by capacity_curr.
5861  *
5862  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5863  * higher than capacity_orig because of unfortunate rounding in
5864  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5865  * the average stabilizes with the new running time. We need to check that the
5866  * utilization stays within the range of [0..capacity_orig] and cap it if
5867  * necessary. Without utilization capping, a group could be seen as overloaded
5868  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5869  * available capacity. We allow utilization to overshoot capacity_curr (but not
5870  * capacity_orig) as it useful for predicting the capacity required after task
5871  * migrations (scheduler-driven DVFS).
5872  */
5873 static int cpu_util(int cpu)
5874 {
5875 	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5876 	unsigned long capacity = capacity_orig_of(cpu);
5877 
5878 	return (util >= capacity) ? capacity : util;
5879 }
5880 
5881 static inline int task_util(struct task_struct *p)
5882 {
5883 	return p->se.avg.util_avg;
5884 }
5885 
5886 /*
5887  * cpu_util_wake: Compute cpu utilization with any contributions from
5888  * the waking task p removed.
5889  */
5890 static int cpu_util_wake(int cpu, struct task_struct *p)
5891 {
5892 	unsigned long util, capacity;
5893 
5894 	/* Task has no contribution or is new */
5895 	if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
5896 		return cpu_util(cpu);
5897 
5898 	capacity = capacity_orig_of(cpu);
5899 	util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
5900 
5901 	return (util >= capacity) ? capacity : util;
5902 }
5903 
5904 /*
5905  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5906  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5907  *
5908  * In that case WAKE_AFFINE doesn't make sense and we'll let
5909  * BALANCE_WAKE sort things out.
5910  */
5911 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5912 {
5913 	long min_cap, max_cap;
5914 
5915 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5916 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5917 
5918 	/* Minimum capacity is close to max, no need to abort wake_affine */
5919 	if (max_cap - min_cap < max_cap >> 3)
5920 		return 0;
5921 
5922 	/* Bring task utilization in sync with prev_cpu */
5923 	sync_entity_load_avg(&p->se);
5924 
5925 	return min_cap * 1024 < task_util(p) * capacity_margin;
5926 }
5927 
5928 /*
5929  * select_task_rq_fair: Select target runqueue for the waking task in domains
5930  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5931  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5932  *
5933  * Balances load by selecting the idlest cpu in the idlest group, or under
5934  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5935  *
5936  * Returns the target cpu number.
5937  *
5938  * preempt must be disabled.
5939  */
5940 static int
5941 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5942 {
5943 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5944 	int cpu = smp_processor_id();
5945 	int new_cpu = prev_cpu;
5946 	int want_affine = 0;
5947 	int sync = wake_flags & WF_SYNC;
5948 
5949 	if (sd_flag & SD_BALANCE_WAKE) {
5950 		record_wakee(p);
5951 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
5952 			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
5953 	}
5954 
5955 	rcu_read_lock();
5956 	for_each_domain(cpu, tmp) {
5957 		if (!(tmp->flags & SD_LOAD_BALANCE))
5958 			break;
5959 
5960 		/*
5961 		 * If both cpu and prev_cpu are part of this domain,
5962 		 * cpu is a valid SD_WAKE_AFFINE target.
5963 		 */
5964 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5965 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5966 			affine_sd = tmp;
5967 			break;
5968 		}
5969 
5970 		if (tmp->flags & sd_flag)
5971 			sd = tmp;
5972 		else if (!want_affine)
5973 			break;
5974 	}
5975 
5976 	if (affine_sd) {
5977 		sd = NULL; /* Prefer wake_affine over balance flags */
5978 		if (cpu == prev_cpu)
5979 			goto pick_cpu;
5980 
5981 		if (wake_affine(affine_sd, p, prev_cpu, sync))
5982 			new_cpu = cpu;
5983 	}
5984 
5985 	if (!sd) {
5986  pick_cpu:
5987 		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5988 			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
5989 
5990 	} else while (sd) {
5991 		struct sched_group *group;
5992 		int weight;
5993 
5994 		if (!(sd->flags & sd_flag)) {
5995 			sd = sd->child;
5996 			continue;
5997 		}
5998 
5999 		group = find_idlest_group(sd, p, cpu, sd_flag);
6000 		if (!group) {
6001 			sd = sd->child;
6002 			continue;
6003 		}
6004 
6005 		new_cpu = find_idlest_cpu(group, p, cpu);
6006 		if (new_cpu == -1 || new_cpu == cpu) {
6007 			/* Now try balancing at a lower domain level of cpu */
6008 			sd = sd->child;
6009 			continue;
6010 		}
6011 
6012 		/* Now try balancing at a lower domain level of new_cpu */
6013 		cpu = new_cpu;
6014 		weight = sd->span_weight;
6015 		sd = NULL;
6016 		for_each_domain(cpu, tmp) {
6017 			if (weight <= tmp->span_weight)
6018 				break;
6019 			if (tmp->flags & sd_flag)
6020 				sd = tmp;
6021 		}
6022 		/* while loop will break here if sd == NULL */
6023 	}
6024 	rcu_read_unlock();
6025 
6026 	return new_cpu;
6027 }
6028 
6029 /*
6030  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6031  * cfs_rq_of(p) references at time of call are still valid and identify the
6032  * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6033  */
6034 static void migrate_task_rq_fair(struct task_struct *p)
6035 {
6036 	/*
6037 	 * As blocked tasks retain absolute vruntime the migration needs to
6038 	 * deal with this by subtracting the old and adding the new
6039 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6040 	 * the task on the new runqueue.
6041 	 */
6042 	if (p->state == TASK_WAKING) {
6043 		struct sched_entity *se = &p->se;
6044 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6045 		u64 min_vruntime;
6046 
6047 #ifndef CONFIG_64BIT
6048 		u64 min_vruntime_copy;
6049 
6050 		do {
6051 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6052 			smp_rmb();
6053 			min_vruntime = cfs_rq->min_vruntime;
6054 		} while (min_vruntime != min_vruntime_copy);
6055 #else
6056 		min_vruntime = cfs_rq->min_vruntime;
6057 #endif
6058 
6059 		se->vruntime -= min_vruntime;
6060 	}
6061 
6062 	/*
6063 	 * We are supposed to update the task to "current" time, then its up to date
6064 	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
6065 	 * what current time is, so simply throw away the out-of-date time. This
6066 	 * will result in the wakee task is less decayed, but giving the wakee more
6067 	 * load sounds not bad.
6068 	 */
6069 	remove_entity_load_avg(&p->se);
6070 
6071 	/* Tell new CPU we are migrated */
6072 	p->se.avg.last_update_time = 0;
6073 
6074 	/* We have migrated, no longer consider this task hot */
6075 	p->se.exec_start = 0;
6076 }
6077 
6078 static void task_dead_fair(struct task_struct *p)
6079 {
6080 	remove_entity_load_avg(&p->se);
6081 }
6082 #endif /* CONFIG_SMP */
6083 
6084 static unsigned long
6085 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
6086 {
6087 	unsigned long gran = sysctl_sched_wakeup_granularity;
6088 
6089 	/*
6090 	 * Since its curr running now, convert the gran from real-time
6091 	 * to virtual-time in his units.
6092 	 *
6093 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6094 	 * they get preempted easier. That is, if 'se' < 'curr' then
6095 	 * the resulting gran will be larger, therefore penalizing the
6096 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6097 	 * be smaller, again penalizing the lighter task.
6098 	 *
6099 	 * This is especially important for buddies when the leftmost
6100 	 * task is higher priority than the buddy.
6101 	 */
6102 	return calc_delta_fair(gran, se);
6103 }
6104 
6105 /*
6106  * Should 'se' preempt 'curr'.
6107  *
6108  *             |s1
6109  *        |s2
6110  *   |s3
6111  *         g
6112  *      |<--->|c
6113  *
6114  *  w(c, s1) = -1
6115  *  w(c, s2) =  0
6116  *  w(c, s3) =  1
6117  *
6118  */
6119 static int
6120 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6121 {
6122 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6123 
6124 	if (vdiff <= 0)
6125 		return -1;
6126 
6127 	gran = wakeup_gran(curr, se);
6128 	if (vdiff > gran)
6129 		return 1;
6130 
6131 	return 0;
6132 }
6133 
6134 static void set_last_buddy(struct sched_entity *se)
6135 {
6136 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6137 		return;
6138 
6139 	for_each_sched_entity(se) {
6140 		if (SCHED_WARN_ON(!se->on_rq))
6141 			return;
6142 		cfs_rq_of(se)->last = se;
6143 	}
6144 }
6145 
6146 static void set_next_buddy(struct sched_entity *se)
6147 {
6148 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6149 		return;
6150 
6151 	for_each_sched_entity(se) {
6152 		if (SCHED_WARN_ON(!se->on_rq))
6153 			return;
6154 		cfs_rq_of(se)->next = se;
6155 	}
6156 }
6157 
6158 static void set_skip_buddy(struct sched_entity *se)
6159 {
6160 	for_each_sched_entity(se)
6161 		cfs_rq_of(se)->skip = se;
6162 }
6163 
6164 /*
6165  * Preempt the current task with a newly woken task if needed:
6166  */
6167 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6168 {
6169 	struct task_struct *curr = rq->curr;
6170 	struct sched_entity *se = &curr->se, *pse = &p->se;
6171 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6172 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6173 	int next_buddy_marked = 0;
6174 
6175 	if (unlikely(se == pse))
6176 		return;
6177 
6178 	/*
6179 	 * This is possible from callers such as attach_tasks(), in which we
6180 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6181 	 * lead to a throttle).  This both saves work and prevents false
6182 	 * next-buddy nomination below.
6183 	 */
6184 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6185 		return;
6186 
6187 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6188 		set_next_buddy(pse);
6189 		next_buddy_marked = 1;
6190 	}
6191 
6192 	/*
6193 	 * We can come here with TIF_NEED_RESCHED already set from new task
6194 	 * wake up path.
6195 	 *
6196 	 * Note: this also catches the edge-case of curr being in a throttled
6197 	 * group (e.g. via set_curr_task), since update_curr() (in the
6198 	 * enqueue of curr) will have resulted in resched being set.  This
6199 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6200 	 * below.
6201 	 */
6202 	if (test_tsk_need_resched(curr))
6203 		return;
6204 
6205 	/* Idle tasks are by definition preempted by non-idle tasks. */
6206 	if (unlikely(curr->policy == SCHED_IDLE) &&
6207 	    likely(p->policy != SCHED_IDLE))
6208 		goto preempt;
6209 
6210 	/*
6211 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6212 	 * is driven by the tick):
6213 	 */
6214 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6215 		return;
6216 
6217 	find_matching_se(&se, &pse);
6218 	update_curr(cfs_rq_of(se));
6219 	BUG_ON(!pse);
6220 	if (wakeup_preempt_entity(se, pse) == 1) {
6221 		/*
6222 		 * Bias pick_next to pick the sched entity that is
6223 		 * triggering this preemption.
6224 		 */
6225 		if (!next_buddy_marked)
6226 			set_next_buddy(pse);
6227 		goto preempt;
6228 	}
6229 
6230 	return;
6231 
6232 preempt:
6233 	resched_curr(rq);
6234 	/*
6235 	 * Only set the backward buddy when the current task is still
6236 	 * on the rq. This can happen when a wakeup gets interleaved
6237 	 * with schedule on the ->pre_schedule() or idle_balance()
6238 	 * point, either of which can * drop the rq lock.
6239 	 *
6240 	 * Also, during early boot the idle thread is in the fair class,
6241 	 * for obvious reasons its a bad idea to schedule back to it.
6242 	 */
6243 	if (unlikely(!se->on_rq || curr == rq->idle))
6244 		return;
6245 
6246 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6247 		set_last_buddy(se);
6248 }
6249 
6250 static struct task_struct *
6251 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6252 {
6253 	struct cfs_rq *cfs_rq = &rq->cfs;
6254 	struct sched_entity *se;
6255 	struct task_struct *p;
6256 	int new_tasks;
6257 
6258 again:
6259 	if (!cfs_rq->nr_running)
6260 		goto idle;
6261 
6262 #ifdef CONFIG_FAIR_GROUP_SCHED
6263 	if (prev->sched_class != &fair_sched_class)
6264 		goto simple;
6265 
6266 	/*
6267 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6268 	 * likely that a next task is from the same cgroup as the current.
6269 	 *
6270 	 * Therefore attempt to avoid putting and setting the entire cgroup
6271 	 * hierarchy, only change the part that actually changes.
6272 	 */
6273 
6274 	do {
6275 		struct sched_entity *curr = cfs_rq->curr;
6276 
6277 		/*
6278 		 * Since we got here without doing put_prev_entity() we also
6279 		 * have to consider cfs_rq->curr. If it is still a runnable
6280 		 * entity, update_curr() will update its vruntime, otherwise
6281 		 * forget we've ever seen it.
6282 		 */
6283 		if (curr) {
6284 			if (curr->on_rq)
6285 				update_curr(cfs_rq);
6286 			else
6287 				curr = NULL;
6288 
6289 			/*
6290 			 * This call to check_cfs_rq_runtime() will do the
6291 			 * throttle and dequeue its entity in the parent(s).
6292 			 * Therefore the nr_running test will indeed
6293 			 * be correct.
6294 			 */
6295 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6296 				cfs_rq = &rq->cfs;
6297 
6298 				if (!cfs_rq->nr_running)
6299 					goto idle;
6300 
6301 				goto simple;
6302 			}
6303 		}
6304 
6305 		se = pick_next_entity(cfs_rq, curr);
6306 		cfs_rq = group_cfs_rq(se);
6307 	} while (cfs_rq);
6308 
6309 	p = task_of(se);
6310 
6311 	/*
6312 	 * Since we haven't yet done put_prev_entity and if the selected task
6313 	 * is a different task than we started out with, try and touch the
6314 	 * least amount of cfs_rqs.
6315 	 */
6316 	if (prev != p) {
6317 		struct sched_entity *pse = &prev->se;
6318 
6319 		while (!(cfs_rq = is_same_group(se, pse))) {
6320 			int se_depth = se->depth;
6321 			int pse_depth = pse->depth;
6322 
6323 			if (se_depth <= pse_depth) {
6324 				put_prev_entity(cfs_rq_of(pse), pse);
6325 				pse = parent_entity(pse);
6326 			}
6327 			if (se_depth >= pse_depth) {
6328 				set_next_entity(cfs_rq_of(se), se);
6329 				se = parent_entity(se);
6330 			}
6331 		}
6332 
6333 		put_prev_entity(cfs_rq, pse);
6334 		set_next_entity(cfs_rq, se);
6335 	}
6336 
6337 	if (hrtick_enabled(rq))
6338 		hrtick_start_fair(rq, p);
6339 
6340 	return p;
6341 simple:
6342 #endif
6343 
6344 	put_prev_task(rq, prev);
6345 
6346 	do {
6347 		se = pick_next_entity(cfs_rq, NULL);
6348 		set_next_entity(cfs_rq, se);
6349 		cfs_rq = group_cfs_rq(se);
6350 	} while (cfs_rq);
6351 
6352 	p = task_of(se);
6353 
6354 	if (hrtick_enabled(rq))
6355 		hrtick_start_fair(rq, p);
6356 
6357 	return p;
6358 
6359 idle:
6360 	new_tasks = idle_balance(rq, rf);
6361 
6362 	/*
6363 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6364 	 * possible for any higher priority task to appear. In that case we
6365 	 * must re-start the pick_next_entity() loop.
6366 	 */
6367 	if (new_tasks < 0)
6368 		return RETRY_TASK;
6369 
6370 	if (new_tasks > 0)
6371 		goto again;
6372 
6373 	return NULL;
6374 }
6375 
6376 /*
6377  * Account for a descheduled task:
6378  */
6379 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6380 {
6381 	struct sched_entity *se = &prev->se;
6382 	struct cfs_rq *cfs_rq;
6383 
6384 	for_each_sched_entity(se) {
6385 		cfs_rq = cfs_rq_of(se);
6386 		put_prev_entity(cfs_rq, se);
6387 	}
6388 }
6389 
6390 /*
6391  * sched_yield() is very simple
6392  *
6393  * The magic of dealing with the ->skip buddy is in pick_next_entity.
6394  */
6395 static void yield_task_fair(struct rq *rq)
6396 {
6397 	struct task_struct *curr = rq->curr;
6398 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6399 	struct sched_entity *se = &curr->se;
6400 
6401 	/*
6402 	 * Are we the only task in the tree?
6403 	 */
6404 	if (unlikely(rq->nr_running == 1))
6405 		return;
6406 
6407 	clear_buddies(cfs_rq, se);
6408 
6409 	if (curr->policy != SCHED_BATCH) {
6410 		update_rq_clock(rq);
6411 		/*
6412 		 * Update run-time statistics of the 'current'.
6413 		 */
6414 		update_curr(cfs_rq);
6415 		/*
6416 		 * Tell update_rq_clock() that we've just updated,
6417 		 * so we don't do microscopic update in schedule()
6418 		 * and double the fastpath cost.
6419 		 */
6420 		rq_clock_skip_update(rq, true);
6421 	}
6422 
6423 	set_skip_buddy(se);
6424 }
6425 
6426 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6427 {
6428 	struct sched_entity *se = &p->se;
6429 
6430 	/* throttled hierarchies are not runnable */
6431 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6432 		return false;
6433 
6434 	/* Tell the scheduler that we'd really like pse to run next. */
6435 	set_next_buddy(se);
6436 
6437 	yield_task_fair(rq);
6438 
6439 	return true;
6440 }
6441 
6442 #ifdef CONFIG_SMP
6443 /**************************************************
6444  * Fair scheduling class load-balancing methods.
6445  *
6446  * BASICS
6447  *
6448  * The purpose of load-balancing is to achieve the same basic fairness the
6449  * per-cpu scheduler provides, namely provide a proportional amount of compute
6450  * time to each task. This is expressed in the following equation:
6451  *
6452  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
6453  *
6454  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6455  * W_i,0 is defined as:
6456  *
6457  *   W_i,0 = \Sum_j w_i,j                                             (2)
6458  *
6459  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6460  * is derived from the nice value as per sched_prio_to_weight[].
6461  *
6462  * The weight average is an exponential decay average of the instantaneous
6463  * weight:
6464  *
6465  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
6466  *
6467  * C_i is the compute capacity of cpu i, typically it is the
6468  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6469  * can also include other factors [XXX].
6470  *
6471  * To achieve this balance we define a measure of imbalance which follows
6472  * directly from (1):
6473  *
6474  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
6475  *
6476  * We them move tasks around to minimize the imbalance. In the continuous
6477  * function space it is obvious this converges, in the discrete case we get
6478  * a few fun cases generally called infeasible weight scenarios.
6479  *
6480  * [XXX expand on:
6481  *     - infeasible weights;
6482  *     - local vs global optima in the discrete case. ]
6483  *
6484  *
6485  * SCHED DOMAINS
6486  *
6487  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6488  * for all i,j solution, we create a tree of cpus that follows the hardware
6489  * topology where each level pairs two lower groups (or better). This results
6490  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6491  * tree to only the first of the previous level and we decrease the frequency
6492  * of load-balance at each level inv. proportional to the number of cpus in
6493  * the groups.
6494  *
6495  * This yields:
6496  *
6497  *     log_2 n     1     n
6498  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
6499  *     i = 0      2^i   2^i
6500  *                               `- size of each group
6501  *         |         |     `- number of cpus doing load-balance
6502  *         |         `- freq
6503  *         `- sum over all levels
6504  *
6505  * Coupled with a limit on how many tasks we can migrate every balance pass,
6506  * this makes (5) the runtime complexity of the balancer.
6507  *
6508  * An important property here is that each CPU is still (indirectly) connected
6509  * to every other cpu in at most O(log n) steps:
6510  *
6511  * The adjacency matrix of the resulting graph is given by:
6512  *
6513  *             log_2 n
6514  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
6515  *             k = 0
6516  *
6517  * And you'll find that:
6518  *
6519  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
6520  *
6521  * Showing there's indeed a path between every cpu in at most O(log n) steps.
6522  * The task movement gives a factor of O(m), giving a convergence complexity
6523  * of:
6524  *
6525  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
6526  *
6527  *
6528  * WORK CONSERVING
6529  *
6530  * In order to avoid CPUs going idle while there's still work to do, new idle
6531  * balancing is more aggressive and has the newly idle cpu iterate up the domain
6532  * tree itself instead of relying on other CPUs to bring it work.
6533  *
6534  * This adds some complexity to both (5) and (8) but it reduces the total idle
6535  * time.
6536  *
6537  * [XXX more?]
6538  *
6539  *
6540  * CGROUPS
6541  *
6542  * Cgroups make a horror show out of (2), instead of a simple sum we get:
6543  *
6544  *                                s_k,i
6545  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
6546  *                                 S_k
6547  *
6548  * Where
6549  *
6550  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
6551  *
6552  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6553  *
6554  * The big problem is S_k, its a global sum needed to compute a local (W_i)
6555  * property.
6556  *
6557  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6558  *      rewrite all of this once again.]
6559  */
6560 
6561 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6562 
6563 enum fbq_type { regular, remote, all };
6564 
6565 #define LBF_ALL_PINNED	0x01
6566 #define LBF_NEED_BREAK	0x02
6567 #define LBF_DST_PINNED  0x04
6568 #define LBF_SOME_PINNED	0x08
6569 
6570 struct lb_env {
6571 	struct sched_domain	*sd;
6572 
6573 	struct rq		*src_rq;
6574 	int			src_cpu;
6575 
6576 	int			dst_cpu;
6577 	struct rq		*dst_rq;
6578 
6579 	struct cpumask		*dst_grpmask;
6580 	int			new_dst_cpu;
6581 	enum cpu_idle_type	idle;
6582 	long			imbalance;
6583 	/* The set of CPUs under consideration for load-balancing */
6584 	struct cpumask		*cpus;
6585 
6586 	unsigned int		flags;
6587 
6588 	unsigned int		loop;
6589 	unsigned int		loop_break;
6590 	unsigned int		loop_max;
6591 
6592 	enum fbq_type		fbq_type;
6593 	struct list_head	tasks;
6594 };
6595 
6596 /*
6597  * Is this task likely cache-hot:
6598  */
6599 static int task_hot(struct task_struct *p, struct lb_env *env)
6600 {
6601 	s64 delta;
6602 
6603 	lockdep_assert_held(&env->src_rq->lock);
6604 
6605 	if (p->sched_class != &fair_sched_class)
6606 		return 0;
6607 
6608 	if (unlikely(p->policy == SCHED_IDLE))
6609 		return 0;
6610 
6611 	/*
6612 	 * Buddy candidates are cache hot:
6613 	 */
6614 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6615 			(&p->se == cfs_rq_of(&p->se)->next ||
6616 			 &p->se == cfs_rq_of(&p->se)->last))
6617 		return 1;
6618 
6619 	if (sysctl_sched_migration_cost == -1)
6620 		return 1;
6621 	if (sysctl_sched_migration_cost == 0)
6622 		return 0;
6623 
6624 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6625 
6626 	return delta < (s64)sysctl_sched_migration_cost;
6627 }
6628 
6629 #ifdef CONFIG_NUMA_BALANCING
6630 /*
6631  * Returns 1, if task migration degrades locality
6632  * Returns 0, if task migration improves locality i.e migration preferred.
6633  * Returns -1, if task migration is not affected by locality.
6634  */
6635 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6636 {
6637 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6638 	unsigned long src_faults, dst_faults;
6639 	int src_nid, dst_nid;
6640 
6641 	if (!static_branch_likely(&sched_numa_balancing))
6642 		return -1;
6643 
6644 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6645 		return -1;
6646 
6647 	src_nid = cpu_to_node(env->src_cpu);
6648 	dst_nid = cpu_to_node(env->dst_cpu);
6649 
6650 	if (src_nid == dst_nid)
6651 		return -1;
6652 
6653 	/* Migrating away from the preferred node is always bad. */
6654 	if (src_nid == p->numa_preferred_nid) {
6655 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6656 			return 1;
6657 		else
6658 			return -1;
6659 	}
6660 
6661 	/* Encourage migration to the preferred node. */
6662 	if (dst_nid == p->numa_preferred_nid)
6663 		return 0;
6664 
6665 	/* Leaving a core idle is often worse than degrading locality. */
6666 	if (env->idle != CPU_NOT_IDLE)
6667 		return -1;
6668 
6669 	if (numa_group) {
6670 		src_faults = group_faults(p, src_nid);
6671 		dst_faults = group_faults(p, dst_nid);
6672 	} else {
6673 		src_faults = task_faults(p, src_nid);
6674 		dst_faults = task_faults(p, dst_nid);
6675 	}
6676 
6677 	return dst_faults < src_faults;
6678 }
6679 
6680 #else
6681 static inline int migrate_degrades_locality(struct task_struct *p,
6682 					     struct lb_env *env)
6683 {
6684 	return -1;
6685 }
6686 #endif
6687 
6688 /*
6689  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6690  */
6691 static
6692 int can_migrate_task(struct task_struct *p, struct lb_env *env)
6693 {
6694 	int tsk_cache_hot;
6695 
6696 	lockdep_assert_held(&env->src_rq->lock);
6697 
6698 	/*
6699 	 * We do not migrate tasks that are:
6700 	 * 1) throttled_lb_pair, or
6701 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6702 	 * 3) running (obviously), or
6703 	 * 4) are cache-hot on their current CPU.
6704 	 */
6705 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6706 		return 0;
6707 
6708 	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
6709 		int cpu;
6710 
6711 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6712 
6713 		env->flags |= LBF_SOME_PINNED;
6714 
6715 		/*
6716 		 * Remember if this task can be migrated to any other cpu in
6717 		 * our sched_group. We may want to revisit it if we couldn't
6718 		 * meet load balance goals by pulling other tasks on src_cpu.
6719 		 *
6720 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
6721 		 * already computed one in current iteration.
6722 		 */
6723 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
6724 			return 0;
6725 
6726 		/* Prevent to re-select dst_cpu via env's cpus */
6727 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6728 			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6729 				env->flags |= LBF_DST_PINNED;
6730 				env->new_dst_cpu = cpu;
6731 				break;
6732 			}
6733 		}
6734 
6735 		return 0;
6736 	}
6737 
6738 	/* Record that we found atleast one task that could run on dst_cpu */
6739 	env->flags &= ~LBF_ALL_PINNED;
6740 
6741 	if (task_running(env->src_rq, p)) {
6742 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6743 		return 0;
6744 	}
6745 
6746 	/*
6747 	 * Aggressive migration if:
6748 	 * 1) destination numa is preferred
6749 	 * 2) task is cache cold, or
6750 	 * 3) too many balance attempts have failed.
6751 	 */
6752 	tsk_cache_hot = migrate_degrades_locality(p, env);
6753 	if (tsk_cache_hot == -1)
6754 		tsk_cache_hot = task_hot(p, env);
6755 
6756 	if (tsk_cache_hot <= 0 ||
6757 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6758 		if (tsk_cache_hot == 1) {
6759 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6760 			schedstat_inc(p->se.statistics.nr_forced_migrations);
6761 		}
6762 		return 1;
6763 	}
6764 
6765 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
6766 	return 0;
6767 }
6768 
6769 /*
6770  * detach_task() -- detach the task for the migration specified in env
6771  */
6772 static void detach_task(struct task_struct *p, struct lb_env *env)
6773 {
6774 	lockdep_assert_held(&env->src_rq->lock);
6775 
6776 	p->on_rq = TASK_ON_RQ_MIGRATING;
6777 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
6778 	set_task_cpu(p, env->dst_cpu);
6779 }
6780 
6781 /*
6782  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6783  * part of active balancing operations within "domain".
6784  *
6785  * Returns a task if successful and NULL otherwise.
6786  */
6787 static struct task_struct *detach_one_task(struct lb_env *env)
6788 {
6789 	struct task_struct *p, *n;
6790 
6791 	lockdep_assert_held(&env->src_rq->lock);
6792 
6793 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
6794 		if (!can_migrate_task(p, env))
6795 			continue;
6796 
6797 		detach_task(p, env);
6798 
6799 		/*
6800 		 * Right now, this is only the second place where
6801 		 * lb_gained[env->idle] is updated (other is detach_tasks)
6802 		 * so we can safely collect stats here rather than
6803 		 * inside detach_tasks().
6804 		 */
6805 		schedstat_inc(env->sd->lb_gained[env->idle]);
6806 		return p;
6807 	}
6808 	return NULL;
6809 }
6810 
6811 static const unsigned int sched_nr_migrate_break = 32;
6812 
6813 /*
6814  * detach_tasks() -- tries to detach up to imbalance weighted load from
6815  * busiest_rq, as part of a balancing operation within domain "sd".
6816  *
6817  * Returns number of detached tasks if successful and 0 otherwise.
6818  */
6819 static int detach_tasks(struct lb_env *env)
6820 {
6821 	struct list_head *tasks = &env->src_rq->cfs_tasks;
6822 	struct task_struct *p;
6823 	unsigned long load;
6824 	int detached = 0;
6825 
6826 	lockdep_assert_held(&env->src_rq->lock);
6827 
6828 	if (env->imbalance <= 0)
6829 		return 0;
6830 
6831 	while (!list_empty(tasks)) {
6832 		/*
6833 		 * We don't want to steal all, otherwise we may be treated likewise,
6834 		 * which could at worst lead to a livelock crash.
6835 		 */
6836 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6837 			break;
6838 
6839 		p = list_first_entry(tasks, struct task_struct, se.group_node);
6840 
6841 		env->loop++;
6842 		/* We've more or less seen every task there is, call it quits */
6843 		if (env->loop > env->loop_max)
6844 			break;
6845 
6846 		/* take a breather every nr_migrate tasks */
6847 		if (env->loop > env->loop_break) {
6848 			env->loop_break += sched_nr_migrate_break;
6849 			env->flags |= LBF_NEED_BREAK;
6850 			break;
6851 		}
6852 
6853 		if (!can_migrate_task(p, env))
6854 			goto next;
6855 
6856 		load = task_h_load(p);
6857 
6858 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6859 			goto next;
6860 
6861 		if ((load / 2) > env->imbalance)
6862 			goto next;
6863 
6864 		detach_task(p, env);
6865 		list_add(&p->se.group_node, &env->tasks);
6866 
6867 		detached++;
6868 		env->imbalance -= load;
6869 
6870 #ifdef CONFIG_PREEMPT
6871 		/*
6872 		 * NEWIDLE balancing is a source of latency, so preemptible
6873 		 * kernels will stop after the first task is detached to minimize
6874 		 * the critical section.
6875 		 */
6876 		if (env->idle == CPU_NEWLY_IDLE)
6877 			break;
6878 #endif
6879 
6880 		/*
6881 		 * We only want to steal up to the prescribed amount of
6882 		 * weighted load.
6883 		 */
6884 		if (env->imbalance <= 0)
6885 			break;
6886 
6887 		continue;
6888 next:
6889 		list_move_tail(&p->se.group_node, tasks);
6890 	}
6891 
6892 	/*
6893 	 * Right now, this is one of only two places we collect this stat
6894 	 * so we can safely collect detach_one_task() stats here rather
6895 	 * than inside detach_one_task().
6896 	 */
6897 	schedstat_add(env->sd->lb_gained[env->idle], detached);
6898 
6899 	return detached;
6900 }
6901 
6902 /*
6903  * attach_task() -- attach the task detached by detach_task() to its new rq.
6904  */
6905 static void attach_task(struct rq *rq, struct task_struct *p)
6906 {
6907 	lockdep_assert_held(&rq->lock);
6908 
6909 	BUG_ON(task_rq(p) != rq);
6910 	activate_task(rq, p, ENQUEUE_NOCLOCK);
6911 	p->on_rq = TASK_ON_RQ_QUEUED;
6912 	check_preempt_curr(rq, p, 0);
6913 }
6914 
6915 /*
6916  * attach_one_task() -- attaches the task returned from detach_one_task() to
6917  * its new rq.
6918  */
6919 static void attach_one_task(struct rq *rq, struct task_struct *p)
6920 {
6921 	struct rq_flags rf;
6922 
6923 	rq_lock(rq, &rf);
6924 	update_rq_clock(rq);
6925 	attach_task(rq, p);
6926 	rq_unlock(rq, &rf);
6927 }
6928 
6929 /*
6930  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6931  * new rq.
6932  */
6933 static void attach_tasks(struct lb_env *env)
6934 {
6935 	struct list_head *tasks = &env->tasks;
6936 	struct task_struct *p;
6937 	struct rq_flags rf;
6938 
6939 	rq_lock(env->dst_rq, &rf);
6940 	update_rq_clock(env->dst_rq);
6941 
6942 	while (!list_empty(tasks)) {
6943 		p = list_first_entry(tasks, struct task_struct, se.group_node);
6944 		list_del_init(&p->se.group_node);
6945 
6946 		attach_task(env->dst_rq, p);
6947 	}
6948 
6949 	rq_unlock(env->dst_rq, &rf);
6950 }
6951 
6952 #ifdef CONFIG_FAIR_GROUP_SCHED
6953 
6954 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
6955 {
6956 	if (cfs_rq->load.weight)
6957 		return false;
6958 
6959 	if (cfs_rq->avg.load_sum)
6960 		return false;
6961 
6962 	if (cfs_rq->avg.util_sum)
6963 		return false;
6964 
6965 	if (cfs_rq->runnable_load_sum)
6966 		return false;
6967 
6968 	return true;
6969 }
6970 
6971 static void update_blocked_averages(int cpu)
6972 {
6973 	struct rq *rq = cpu_rq(cpu);
6974 	struct cfs_rq *cfs_rq, *pos;
6975 	struct rq_flags rf;
6976 
6977 	rq_lock_irqsave(rq, &rf);
6978 	update_rq_clock(rq);
6979 
6980 	/*
6981 	 * Iterates the task_group tree in a bottom up fashion, see
6982 	 * list_add_leaf_cfs_rq() for details.
6983 	 */
6984 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
6985 		struct sched_entity *se;
6986 
6987 		/* throttled entities do not contribute to load */
6988 		if (throttled_hierarchy(cfs_rq))
6989 			continue;
6990 
6991 		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
6992 			update_tg_load_avg(cfs_rq, 0);
6993 
6994 		/* Propagate pending load changes to the parent, if any: */
6995 		se = cfs_rq->tg->se[cpu];
6996 		if (se && !skip_blocked_update(se))
6997 			update_load_avg(se, 0);
6998 
6999 		/*
7000 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7001 		 * decayed cfs_rqs linger on the list.
7002 		 */
7003 		if (cfs_rq_is_decayed(cfs_rq))
7004 			list_del_leaf_cfs_rq(cfs_rq);
7005 	}
7006 	rq_unlock_irqrestore(rq, &rf);
7007 }
7008 
7009 /*
7010  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7011  * This needs to be done in a top-down fashion because the load of a child
7012  * group is a fraction of its parents load.
7013  */
7014 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7015 {
7016 	struct rq *rq = rq_of(cfs_rq);
7017 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7018 	unsigned long now = jiffies;
7019 	unsigned long load;
7020 
7021 	if (cfs_rq->last_h_load_update == now)
7022 		return;
7023 
7024 	cfs_rq->h_load_next = NULL;
7025 	for_each_sched_entity(se) {
7026 		cfs_rq = cfs_rq_of(se);
7027 		cfs_rq->h_load_next = se;
7028 		if (cfs_rq->last_h_load_update == now)
7029 			break;
7030 	}
7031 
7032 	if (!se) {
7033 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7034 		cfs_rq->last_h_load_update = now;
7035 	}
7036 
7037 	while ((se = cfs_rq->h_load_next) != NULL) {
7038 		load = cfs_rq->h_load;
7039 		load = div64_ul(load * se->avg.load_avg,
7040 			cfs_rq_load_avg(cfs_rq) + 1);
7041 		cfs_rq = group_cfs_rq(se);
7042 		cfs_rq->h_load = load;
7043 		cfs_rq->last_h_load_update = now;
7044 	}
7045 }
7046 
7047 static unsigned long task_h_load(struct task_struct *p)
7048 {
7049 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7050 
7051 	update_cfs_rq_h_load(cfs_rq);
7052 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7053 			cfs_rq_load_avg(cfs_rq) + 1);
7054 }
7055 #else
7056 static inline void update_blocked_averages(int cpu)
7057 {
7058 	struct rq *rq = cpu_rq(cpu);
7059 	struct cfs_rq *cfs_rq = &rq->cfs;
7060 	struct rq_flags rf;
7061 
7062 	rq_lock_irqsave(rq, &rf);
7063 	update_rq_clock(rq);
7064 	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7065 	rq_unlock_irqrestore(rq, &rf);
7066 }
7067 
7068 static unsigned long task_h_load(struct task_struct *p)
7069 {
7070 	return p->se.avg.load_avg;
7071 }
7072 #endif
7073 
7074 /********** Helpers for find_busiest_group ************************/
7075 
7076 enum group_type {
7077 	group_other = 0,
7078 	group_imbalanced,
7079 	group_overloaded,
7080 };
7081 
7082 /*
7083  * sg_lb_stats - stats of a sched_group required for load_balancing
7084  */
7085 struct sg_lb_stats {
7086 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7087 	unsigned long group_load; /* Total load over the CPUs of the group */
7088 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7089 	unsigned long load_per_task;
7090 	unsigned long group_capacity;
7091 	unsigned long group_util; /* Total utilization of the group */
7092 	unsigned int sum_nr_running; /* Nr tasks running in the group */
7093 	unsigned int idle_cpus;
7094 	unsigned int group_weight;
7095 	enum group_type group_type;
7096 	int group_no_capacity;
7097 #ifdef CONFIG_NUMA_BALANCING
7098 	unsigned int nr_numa_running;
7099 	unsigned int nr_preferred_running;
7100 #endif
7101 };
7102 
7103 /*
7104  * sd_lb_stats - Structure to store the statistics of a sched_domain
7105  *		 during load balancing.
7106  */
7107 struct sd_lb_stats {
7108 	struct sched_group *busiest;	/* Busiest group in this sd */
7109 	struct sched_group *local;	/* Local group in this sd */
7110 	unsigned long total_running;
7111 	unsigned long total_load;	/* Total load of all groups in sd */
7112 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7113 	unsigned long avg_load;	/* Average load across all groups in sd */
7114 
7115 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7116 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7117 };
7118 
7119 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7120 {
7121 	/*
7122 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7123 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7124 	 * We must however clear busiest_stat::avg_load because
7125 	 * update_sd_pick_busiest() reads this before assignment.
7126 	 */
7127 	*sds = (struct sd_lb_stats){
7128 		.busiest = NULL,
7129 		.local = NULL,
7130 		.total_running = 0UL,
7131 		.total_load = 0UL,
7132 		.total_capacity = 0UL,
7133 		.busiest_stat = {
7134 			.avg_load = 0UL,
7135 			.sum_nr_running = 0,
7136 			.group_type = group_other,
7137 		},
7138 	};
7139 }
7140 
7141 /**
7142  * get_sd_load_idx - Obtain the load index for a given sched domain.
7143  * @sd: The sched_domain whose load_idx is to be obtained.
7144  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7145  *
7146  * Return: The load index.
7147  */
7148 static inline int get_sd_load_idx(struct sched_domain *sd,
7149 					enum cpu_idle_type idle)
7150 {
7151 	int load_idx;
7152 
7153 	switch (idle) {
7154 	case CPU_NOT_IDLE:
7155 		load_idx = sd->busy_idx;
7156 		break;
7157 
7158 	case CPU_NEWLY_IDLE:
7159 		load_idx = sd->newidle_idx;
7160 		break;
7161 	default:
7162 		load_idx = sd->idle_idx;
7163 		break;
7164 	}
7165 
7166 	return load_idx;
7167 }
7168 
7169 static unsigned long scale_rt_capacity(int cpu)
7170 {
7171 	struct rq *rq = cpu_rq(cpu);
7172 	u64 total, used, age_stamp, avg;
7173 	s64 delta;
7174 
7175 	/*
7176 	 * Since we're reading these variables without serialization make sure
7177 	 * we read them once before doing sanity checks on them.
7178 	 */
7179 	age_stamp = READ_ONCE(rq->age_stamp);
7180 	avg = READ_ONCE(rq->rt_avg);
7181 	delta = __rq_clock_broken(rq) - age_stamp;
7182 
7183 	if (unlikely(delta < 0))
7184 		delta = 0;
7185 
7186 	total = sched_avg_period() + delta;
7187 
7188 	used = div_u64(avg, total);
7189 
7190 	if (likely(used < SCHED_CAPACITY_SCALE))
7191 		return SCHED_CAPACITY_SCALE - used;
7192 
7193 	return 1;
7194 }
7195 
7196 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7197 {
7198 	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7199 	struct sched_group *sdg = sd->groups;
7200 
7201 	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7202 
7203 	capacity *= scale_rt_capacity(cpu);
7204 	capacity >>= SCHED_CAPACITY_SHIFT;
7205 
7206 	if (!capacity)
7207 		capacity = 1;
7208 
7209 	cpu_rq(cpu)->cpu_capacity = capacity;
7210 	sdg->sgc->capacity = capacity;
7211 	sdg->sgc->min_capacity = capacity;
7212 }
7213 
7214 void update_group_capacity(struct sched_domain *sd, int cpu)
7215 {
7216 	struct sched_domain *child = sd->child;
7217 	struct sched_group *group, *sdg = sd->groups;
7218 	unsigned long capacity, min_capacity;
7219 	unsigned long interval;
7220 
7221 	interval = msecs_to_jiffies(sd->balance_interval);
7222 	interval = clamp(interval, 1UL, max_load_balance_interval);
7223 	sdg->sgc->next_update = jiffies + interval;
7224 
7225 	if (!child) {
7226 		update_cpu_capacity(sd, cpu);
7227 		return;
7228 	}
7229 
7230 	capacity = 0;
7231 	min_capacity = ULONG_MAX;
7232 
7233 	if (child->flags & SD_OVERLAP) {
7234 		/*
7235 		 * SD_OVERLAP domains cannot assume that child groups
7236 		 * span the current group.
7237 		 */
7238 
7239 		for_each_cpu(cpu, sched_group_span(sdg)) {
7240 			struct sched_group_capacity *sgc;
7241 			struct rq *rq = cpu_rq(cpu);
7242 
7243 			/*
7244 			 * build_sched_domains() -> init_sched_groups_capacity()
7245 			 * gets here before we've attached the domains to the
7246 			 * runqueues.
7247 			 *
7248 			 * Use capacity_of(), which is set irrespective of domains
7249 			 * in update_cpu_capacity().
7250 			 *
7251 			 * This avoids capacity from being 0 and
7252 			 * causing divide-by-zero issues on boot.
7253 			 */
7254 			if (unlikely(!rq->sd)) {
7255 				capacity += capacity_of(cpu);
7256 			} else {
7257 				sgc = rq->sd->groups->sgc;
7258 				capacity += sgc->capacity;
7259 			}
7260 
7261 			min_capacity = min(capacity, min_capacity);
7262 		}
7263 	} else  {
7264 		/*
7265 		 * !SD_OVERLAP domains can assume that child groups
7266 		 * span the current group.
7267 		 */
7268 
7269 		group = child->groups;
7270 		do {
7271 			struct sched_group_capacity *sgc = group->sgc;
7272 
7273 			capacity += sgc->capacity;
7274 			min_capacity = min(sgc->min_capacity, min_capacity);
7275 			group = group->next;
7276 		} while (group != child->groups);
7277 	}
7278 
7279 	sdg->sgc->capacity = capacity;
7280 	sdg->sgc->min_capacity = min_capacity;
7281 }
7282 
7283 /*
7284  * Check whether the capacity of the rq has been noticeably reduced by side
7285  * activity. The imbalance_pct is used for the threshold.
7286  * Return true is the capacity is reduced
7287  */
7288 static inline int
7289 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7290 {
7291 	return ((rq->cpu_capacity * sd->imbalance_pct) <
7292 				(rq->cpu_capacity_orig * 100));
7293 }
7294 
7295 /*
7296  * Group imbalance indicates (and tries to solve) the problem where balancing
7297  * groups is inadequate due to ->cpus_allowed constraints.
7298  *
7299  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7300  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7301  * Something like:
7302  *
7303  *	{ 0 1 2 3 } { 4 5 6 7 }
7304  *	        *     * * *
7305  *
7306  * If we were to balance group-wise we'd place two tasks in the first group and
7307  * two tasks in the second group. Clearly this is undesired as it will overload
7308  * cpu 3 and leave one of the cpus in the second group unused.
7309  *
7310  * The current solution to this issue is detecting the skew in the first group
7311  * by noticing the lower domain failed to reach balance and had difficulty
7312  * moving tasks due to affinity constraints.
7313  *
7314  * When this is so detected; this group becomes a candidate for busiest; see
7315  * update_sd_pick_busiest(). And calculate_imbalance() and
7316  * find_busiest_group() avoid some of the usual balance conditions to allow it
7317  * to create an effective group imbalance.
7318  *
7319  * This is a somewhat tricky proposition since the next run might not find the
7320  * group imbalance and decide the groups need to be balanced again. A most
7321  * subtle and fragile situation.
7322  */
7323 
7324 static inline int sg_imbalanced(struct sched_group *group)
7325 {
7326 	return group->sgc->imbalance;
7327 }
7328 
7329 /*
7330  * group_has_capacity returns true if the group has spare capacity that could
7331  * be used by some tasks.
7332  * We consider that a group has spare capacity if the  * number of task is
7333  * smaller than the number of CPUs or if the utilization is lower than the
7334  * available capacity for CFS tasks.
7335  * For the latter, we use a threshold to stabilize the state, to take into
7336  * account the variance of the tasks' load and to return true if the available
7337  * capacity in meaningful for the load balancer.
7338  * As an example, an available capacity of 1% can appear but it doesn't make
7339  * any benefit for the load balance.
7340  */
7341 static inline bool
7342 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7343 {
7344 	if (sgs->sum_nr_running < sgs->group_weight)
7345 		return true;
7346 
7347 	if ((sgs->group_capacity * 100) >
7348 			(sgs->group_util * env->sd->imbalance_pct))
7349 		return true;
7350 
7351 	return false;
7352 }
7353 
7354 /*
7355  *  group_is_overloaded returns true if the group has more tasks than it can
7356  *  handle.
7357  *  group_is_overloaded is not equals to !group_has_capacity because a group
7358  *  with the exact right number of tasks, has no more spare capacity but is not
7359  *  overloaded so both group_has_capacity and group_is_overloaded return
7360  *  false.
7361  */
7362 static inline bool
7363 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7364 {
7365 	if (sgs->sum_nr_running <= sgs->group_weight)
7366 		return false;
7367 
7368 	if ((sgs->group_capacity * 100) <
7369 			(sgs->group_util * env->sd->imbalance_pct))
7370 		return true;
7371 
7372 	return false;
7373 }
7374 
7375 /*
7376  * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7377  * per-CPU capacity than sched_group ref.
7378  */
7379 static inline bool
7380 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7381 {
7382 	return sg->sgc->min_capacity * capacity_margin <
7383 						ref->sgc->min_capacity * 1024;
7384 }
7385 
7386 static inline enum
7387 group_type group_classify(struct sched_group *group,
7388 			  struct sg_lb_stats *sgs)
7389 {
7390 	if (sgs->group_no_capacity)
7391 		return group_overloaded;
7392 
7393 	if (sg_imbalanced(group))
7394 		return group_imbalanced;
7395 
7396 	return group_other;
7397 }
7398 
7399 /**
7400  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7401  * @env: The load balancing environment.
7402  * @group: sched_group whose statistics are to be updated.
7403  * @load_idx: Load index of sched_domain of this_cpu for load calc.
7404  * @local_group: Does group contain this_cpu.
7405  * @sgs: variable to hold the statistics for this group.
7406  * @overload: Indicate more than one runnable task for any CPU.
7407  */
7408 static inline void update_sg_lb_stats(struct lb_env *env,
7409 			struct sched_group *group, int load_idx,
7410 			int local_group, struct sg_lb_stats *sgs,
7411 			bool *overload)
7412 {
7413 	unsigned long load;
7414 	int i, nr_running;
7415 
7416 	memset(sgs, 0, sizeof(*sgs));
7417 
7418 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7419 		struct rq *rq = cpu_rq(i);
7420 
7421 		/* Bias balancing toward cpus of our domain */
7422 		if (local_group)
7423 			load = target_load(i, load_idx);
7424 		else
7425 			load = source_load(i, load_idx);
7426 
7427 		sgs->group_load += load;
7428 		sgs->group_util += cpu_util(i);
7429 		sgs->sum_nr_running += rq->cfs.h_nr_running;
7430 
7431 		nr_running = rq->nr_running;
7432 		if (nr_running > 1)
7433 			*overload = true;
7434 
7435 #ifdef CONFIG_NUMA_BALANCING
7436 		sgs->nr_numa_running += rq->nr_numa_running;
7437 		sgs->nr_preferred_running += rq->nr_preferred_running;
7438 #endif
7439 		sgs->sum_weighted_load += weighted_cpuload(rq);
7440 		/*
7441 		 * No need to call idle_cpu() if nr_running is not 0
7442 		 */
7443 		if (!nr_running && idle_cpu(i))
7444 			sgs->idle_cpus++;
7445 	}
7446 
7447 	/* Adjust by relative CPU capacity of the group */
7448 	sgs->group_capacity = group->sgc->capacity;
7449 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7450 
7451 	if (sgs->sum_nr_running)
7452 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7453 
7454 	sgs->group_weight = group->group_weight;
7455 
7456 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7457 	sgs->group_type = group_classify(group, sgs);
7458 }
7459 
7460 /**
7461  * update_sd_pick_busiest - return 1 on busiest group
7462  * @env: The load balancing environment.
7463  * @sds: sched_domain statistics
7464  * @sg: sched_group candidate to be checked for being the busiest
7465  * @sgs: sched_group statistics
7466  *
7467  * Determine if @sg is a busier group than the previously selected
7468  * busiest group.
7469  *
7470  * Return: %true if @sg is a busier group than the previously selected
7471  * busiest group. %false otherwise.
7472  */
7473 static bool update_sd_pick_busiest(struct lb_env *env,
7474 				   struct sd_lb_stats *sds,
7475 				   struct sched_group *sg,
7476 				   struct sg_lb_stats *sgs)
7477 {
7478 	struct sg_lb_stats *busiest = &sds->busiest_stat;
7479 
7480 	if (sgs->group_type > busiest->group_type)
7481 		return true;
7482 
7483 	if (sgs->group_type < busiest->group_type)
7484 		return false;
7485 
7486 	if (sgs->avg_load <= busiest->avg_load)
7487 		return false;
7488 
7489 	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7490 		goto asym_packing;
7491 
7492 	/*
7493 	 * Candidate sg has no more than one task per CPU and
7494 	 * has higher per-CPU capacity. Migrating tasks to less
7495 	 * capable CPUs may harm throughput. Maximize throughput,
7496 	 * power/energy consequences are not considered.
7497 	 */
7498 	if (sgs->sum_nr_running <= sgs->group_weight &&
7499 	    group_smaller_cpu_capacity(sds->local, sg))
7500 		return false;
7501 
7502 asym_packing:
7503 	/* This is the busiest node in its class. */
7504 	if (!(env->sd->flags & SD_ASYM_PACKING))
7505 		return true;
7506 
7507 	/* No ASYM_PACKING if target cpu is already busy */
7508 	if (env->idle == CPU_NOT_IDLE)
7509 		return true;
7510 	/*
7511 	 * ASYM_PACKING needs to move all the work to the highest
7512 	 * prority CPUs in the group, therefore mark all groups
7513 	 * of lower priority than ourself as busy.
7514 	 */
7515 	if (sgs->sum_nr_running &&
7516 	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7517 		if (!sds->busiest)
7518 			return true;
7519 
7520 		/* Prefer to move from lowest priority cpu's work */
7521 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7522 				      sg->asym_prefer_cpu))
7523 			return true;
7524 	}
7525 
7526 	return false;
7527 }
7528 
7529 #ifdef CONFIG_NUMA_BALANCING
7530 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7531 {
7532 	if (sgs->sum_nr_running > sgs->nr_numa_running)
7533 		return regular;
7534 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
7535 		return remote;
7536 	return all;
7537 }
7538 
7539 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7540 {
7541 	if (rq->nr_running > rq->nr_numa_running)
7542 		return regular;
7543 	if (rq->nr_running > rq->nr_preferred_running)
7544 		return remote;
7545 	return all;
7546 }
7547 #else
7548 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7549 {
7550 	return all;
7551 }
7552 
7553 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7554 {
7555 	return regular;
7556 }
7557 #endif /* CONFIG_NUMA_BALANCING */
7558 
7559 /**
7560  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7561  * @env: The load balancing environment.
7562  * @sds: variable to hold the statistics for this sched_domain.
7563  */
7564 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7565 {
7566 	struct sched_domain *child = env->sd->child;
7567 	struct sched_group *sg = env->sd->groups;
7568 	struct sg_lb_stats *local = &sds->local_stat;
7569 	struct sg_lb_stats tmp_sgs;
7570 	int load_idx, prefer_sibling = 0;
7571 	bool overload = false;
7572 
7573 	if (child && child->flags & SD_PREFER_SIBLING)
7574 		prefer_sibling = 1;
7575 
7576 	load_idx = get_sd_load_idx(env->sd, env->idle);
7577 
7578 	do {
7579 		struct sg_lb_stats *sgs = &tmp_sgs;
7580 		int local_group;
7581 
7582 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
7583 		if (local_group) {
7584 			sds->local = sg;
7585 			sgs = local;
7586 
7587 			if (env->idle != CPU_NEWLY_IDLE ||
7588 			    time_after_eq(jiffies, sg->sgc->next_update))
7589 				update_group_capacity(env->sd, env->dst_cpu);
7590 		}
7591 
7592 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7593 						&overload);
7594 
7595 		if (local_group)
7596 			goto next_group;
7597 
7598 		/*
7599 		 * In case the child domain prefers tasks go to siblings
7600 		 * first, lower the sg capacity so that we'll try
7601 		 * and move all the excess tasks away. We lower the capacity
7602 		 * of a group only if the local group has the capacity to fit
7603 		 * these excess tasks. The extra check prevents the case where
7604 		 * you always pull from the heaviest group when it is already
7605 		 * under-utilized (possible with a large weight task outweighs
7606 		 * the tasks on the system).
7607 		 */
7608 		if (prefer_sibling && sds->local &&
7609 		    group_has_capacity(env, local) &&
7610 		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
7611 			sgs->group_no_capacity = 1;
7612 			sgs->group_type = group_classify(sg, sgs);
7613 		}
7614 
7615 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7616 			sds->busiest = sg;
7617 			sds->busiest_stat = *sgs;
7618 		}
7619 
7620 next_group:
7621 		/* Now, start updating sd_lb_stats */
7622 		sds->total_running += sgs->sum_nr_running;
7623 		sds->total_load += sgs->group_load;
7624 		sds->total_capacity += sgs->group_capacity;
7625 
7626 		sg = sg->next;
7627 	} while (sg != env->sd->groups);
7628 
7629 	if (env->sd->flags & SD_NUMA)
7630 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7631 
7632 	if (!env->sd->parent) {
7633 		/* update overload indicator if we are at root domain */
7634 		if (env->dst_rq->rd->overload != overload)
7635 			env->dst_rq->rd->overload = overload;
7636 	}
7637 }
7638 
7639 /**
7640  * check_asym_packing - Check to see if the group is packed into the
7641  *			sched domain.
7642  *
7643  * This is primarily intended to used at the sibling level.  Some
7644  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
7645  * case of POWER7, it can move to lower SMT modes only when higher
7646  * threads are idle.  When in lower SMT modes, the threads will
7647  * perform better since they share less core resources.  Hence when we
7648  * have idle threads, we want them to be the higher ones.
7649  *
7650  * This packing function is run on idle threads.  It checks to see if
7651  * the busiest CPU in this domain (core in the P7 case) has a higher
7652  * CPU number than the packing function is being run on.  Here we are
7653  * assuming lower CPU number will be equivalent to lower a SMT thread
7654  * number.
7655  *
7656  * Return: 1 when packing is required and a task should be moved to
7657  * this CPU.  The amount of the imbalance is returned in env->imbalance.
7658  *
7659  * @env: The load balancing environment.
7660  * @sds: Statistics of the sched_domain which is to be packed
7661  */
7662 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7663 {
7664 	int busiest_cpu;
7665 
7666 	if (!(env->sd->flags & SD_ASYM_PACKING))
7667 		return 0;
7668 
7669 	if (env->idle == CPU_NOT_IDLE)
7670 		return 0;
7671 
7672 	if (!sds->busiest)
7673 		return 0;
7674 
7675 	busiest_cpu = sds->busiest->asym_prefer_cpu;
7676 	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
7677 		return 0;
7678 
7679 	env->imbalance = DIV_ROUND_CLOSEST(
7680 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7681 		SCHED_CAPACITY_SCALE);
7682 
7683 	return 1;
7684 }
7685 
7686 /**
7687  * fix_small_imbalance - Calculate the minor imbalance that exists
7688  *			amongst the groups of a sched_domain, during
7689  *			load balancing.
7690  * @env: The load balancing environment.
7691  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
7692  */
7693 static inline
7694 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7695 {
7696 	unsigned long tmp, capa_now = 0, capa_move = 0;
7697 	unsigned int imbn = 2;
7698 	unsigned long scaled_busy_load_per_task;
7699 	struct sg_lb_stats *local, *busiest;
7700 
7701 	local = &sds->local_stat;
7702 	busiest = &sds->busiest_stat;
7703 
7704 	if (!local->sum_nr_running)
7705 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7706 	else if (busiest->load_per_task > local->load_per_task)
7707 		imbn = 1;
7708 
7709 	scaled_busy_load_per_task =
7710 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7711 		busiest->group_capacity;
7712 
7713 	if (busiest->avg_load + scaled_busy_load_per_task >=
7714 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
7715 		env->imbalance = busiest->load_per_task;
7716 		return;
7717 	}
7718 
7719 	/*
7720 	 * OK, we don't have enough imbalance to justify moving tasks,
7721 	 * however we may be able to increase total CPU capacity used by
7722 	 * moving them.
7723 	 */
7724 
7725 	capa_now += busiest->group_capacity *
7726 			min(busiest->load_per_task, busiest->avg_load);
7727 	capa_now += local->group_capacity *
7728 			min(local->load_per_task, local->avg_load);
7729 	capa_now /= SCHED_CAPACITY_SCALE;
7730 
7731 	/* Amount of load we'd subtract */
7732 	if (busiest->avg_load > scaled_busy_load_per_task) {
7733 		capa_move += busiest->group_capacity *
7734 			    min(busiest->load_per_task,
7735 				busiest->avg_load - scaled_busy_load_per_task);
7736 	}
7737 
7738 	/* Amount of load we'd add */
7739 	if (busiest->avg_load * busiest->group_capacity <
7740 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7741 		tmp = (busiest->avg_load * busiest->group_capacity) /
7742 		      local->group_capacity;
7743 	} else {
7744 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7745 		      local->group_capacity;
7746 	}
7747 	capa_move += local->group_capacity *
7748 		    min(local->load_per_task, local->avg_load + tmp);
7749 	capa_move /= SCHED_CAPACITY_SCALE;
7750 
7751 	/* Move if we gain throughput */
7752 	if (capa_move > capa_now)
7753 		env->imbalance = busiest->load_per_task;
7754 }
7755 
7756 /**
7757  * calculate_imbalance - Calculate the amount of imbalance present within the
7758  *			 groups of a given sched_domain during load balance.
7759  * @env: load balance environment
7760  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
7761  */
7762 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7763 {
7764 	unsigned long max_pull, load_above_capacity = ~0UL;
7765 	struct sg_lb_stats *local, *busiest;
7766 
7767 	local = &sds->local_stat;
7768 	busiest = &sds->busiest_stat;
7769 
7770 	if (busiest->group_type == group_imbalanced) {
7771 		/*
7772 		 * In the group_imb case we cannot rely on group-wide averages
7773 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
7774 		 */
7775 		busiest->load_per_task =
7776 			min(busiest->load_per_task, sds->avg_load);
7777 	}
7778 
7779 	/*
7780 	 * Avg load of busiest sg can be less and avg load of local sg can
7781 	 * be greater than avg load across all sgs of sd because avg load
7782 	 * factors in sg capacity and sgs with smaller group_type are
7783 	 * skipped when updating the busiest sg:
7784 	 */
7785 	if (busiest->avg_load <= sds->avg_load ||
7786 	    local->avg_load >= sds->avg_load) {
7787 		env->imbalance = 0;
7788 		return fix_small_imbalance(env, sds);
7789 	}
7790 
7791 	/*
7792 	 * If there aren't any idle cpus, avoid creating some.
7793 	 */
7794 	if (busiest->group_type == group_overloaded &&
7795 	    local->group_type   == group_overloaded) {
7796 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7797 		if (load_above_capacity > busiest->group_capacity) {
7798 			load_above_capacity -= busiest->group_capacity;
7799 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
7800 			load_above_capacity /= busiest->group_capacity;
7801 		} else
7802 			load_above_capacity = ~0UL;
7803 	}
7804 
7805 	/*
7806 	 * We're trying to get all the cpus to the average_load, so we don't
7807 	 * want to push ourselves above the average load, nor do we wish to
7808 	 * reduce the max loaded cpu below the average load. At the same time,
7809 	 * we also don't want to reduce the group load below the group
7810 	 * capacity. Thus we look for the minimum possible imbalance.
7811 	 */
7812 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7813 
7814 	/* How much load to actually move to equalise the imbalance */
7815 	env->imbalance = min(
7816 		max_pull * busiest->group_capacity,
7817 		(sds->avg_load - local->avg_load) * local->group_capacity
7818 	) / SCHED_CAPACITY_SCALE;
7819 
7820 	/*
7821 	 * if *imbalance is less than the average load per runnable task
7822 	 * there is no guarantee that any tasks will be moved so we'll have
7823 	 * a think about bumping its value to force at least one task to be
7824 	 * moved
7825 	 */
7826 	if (env->imbalance < busiest->load_per_task)
7827 		return fix_small_imbalance(env, sds);
7828 }
7829 
7830 /******* find_busiest_group() helpers end here *********************/
7831 
7832 /**
7833  * find_busiest_group - Returns the busiest group within the sched_domain
7834  * if there is an imbalance.
7835  *
7836  * Also calculates the amount of weighted load which should be moved
7837  * to restore balance.
7838  *
7839  * @env: The load balancing environment.
7840  *
7841  * Return:	- The busiest group if imbalance exists.
7842  */
7843 static struct sched_group *find_busiest_group(struct lb_env *env)
7844 {
7845 	struct sg_lb_stats *local, *busiest;
7846 	struct sd_lb_stats sds;
7847 
7848 	init_sd_lb_stats(&sds);
7849 
7850 	/*
7851 	 * Compute the various statistics relavent for load balancing at
7852 	 * this level.
7853 	 */
7854 	update_sd_lb_stats(env, &sds);
7855 	local = &sds.local_stat;
7856 	busiest = &sds.busiest_stat;
7857 
7858 	/* ASYM feature bypasses nice load balance check */
7859 	if (check_asym_packing(env, &sds))
7860 		return sds.busiest;
7861 
7862 	/* There is no busy sibling group to pull tasks from */
7863 	if (!sds.busiest || busiest->sum_nr_running == 0)
7864 		goto out_balanced;
7865 
7866 	/* XXX broken for overlapping NUMA groups */
7867 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7868 						/ sds.total_capacity;
7869 
7870 	/*
7871 	 * If the busiest group is imbalanced the below checks don't
7872 	 * work because they assume all things are equal, which typically
7873 	 * isn't true due to cpus_allowed constraints and the like.
7874 	 */
7875 	if (busiest->group_type == group_imbalanced)
7876 		goto force_balance;
7877 
7878 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7879 	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7880 	    busiest->group_no_capacity)
7881 		goto force_balance;
7882 
7883 	/*
7884 	 * If the local group is busier than the selected busiest group
7885 	 * don't try and pull any tasks.
7886 	 */
7887 	if (local->avg_load >= busiest->avg_load)
7888 		goto out_balanced;
7889 
7890 	/*
7891 	 * Don't pull any tasks if this group is already above the domain
7892 	 * average load.
7893 	 */
7894 	if (local->avg_load >= sds.avg_load)
7895 		goto out_balanced;
7896 
7897 	if (env->idle == CPU_IDLE) {
7898 		/*
7899 		 * This cpu is idle. If the busiest group is not overloaded
7900 		 * and there is no imbalance between this and busiest group
7901 		 * wrt idle cpus, it is balanced. The imbalance becomes
7902 		 * significant if the diff is greater than 1 otherwise we
7903 		 * might end up to just move the imbalance on another group
7904 		 */
7905 		if ((busiest->group_type != group_overloaded) &&
7906 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7907 			goto out_balanced;
7908 	} else {
7909 		/*
7910 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7911 		 * imbalance_pct to be conservative.
7912 		 */
7913 		if (100 * busiest->avg_load <=
7914 				env->sd->imbalance_pct * local->avg_load)
7915 			goto out_balanced;
7916 	}
7917 
7918 force_balance:
7919 	/* Looks like there is an imbalance. Compute it */
7920 	calculate_imbalance(env, &sds);
7921 	return sds.busiest;
7922 
7923 out_balanced:
7924 	env->imbalance = 0;
7925 	return NULL;
7926 }
7927 
7928 /*
7929  * find_busiest_queue - find the busiest runqueue among the cpus in group.
7930  */
7931 static struct rq *find_busiest_queue(struct lb_env *env,
7932 				     struct sched_group *group)
7933 {
7934 	struct rq *busiest = NULL, *rq;
7935 	unsigned long busiest_load = 0, busiest_capacity = 1;
7936 	int i;
7937 
7938 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7939 		unsigned long capacity, wl;
7940 		enum fbq_type rt;
7941 
7942 		rq = cpu_rq(i);
7943 		rt = fbq_classify_rq(rq);
7944 
7945 		/*
7946 		 * We classify groups/runqueues into three groups:
7947 		 *  - regular: there are !numa tasks
7948 		 *  - remote:  there are numa tasks that run on the 'wrong' node
7949 		 *  - all:     there is no distinction
7950 		 *
7951 		 * In order to avoid migrating ideally placed numa tasks,
7952 		 * ignore those when there's better options.
7953 		 *
7954 		 * If we ignore the actual busiest queue to migrate another
7955 		 * task, the next balance pass can still reduce the busiest
7956 		 * queue by moving tasks around inside the node.
7957 		 *
7958 		 * If we cannot move enough load due to this classification
7959 		 * the next pass will adjust the group classification and
7960 		 * allow migration of more tasks.
7961 		 *
7962 		 * Both cases only affect the total convergence complexity.
7963 		 */
7964 		if (rt > env->fbq_type)
7965 			continue;
7966 
7967 		capacity = capacity_of(i);
7968 
7969 		wl = weighted_cpuload(rq);
7970 
7971 		/*
7972 		 * When comparing with imbalance, use weighted_cpuload()
7973 		 * which is not scaled with the cpu capacity.
7974 		 */
7975 
7976 		if (rq->nr_running == 1 && wl > env->imbalance &&
7977 		    !check_cpu_capacity(rq, env->sd))
7978 			continue;
7979 
7980 		/*
7981 		 * For the load comparisons with the other cpu's, consider
7982 		 * the weighted_cpuload() scaled with the cpu capacity, so
7983 		 * that the load can be moved away from the cpu that is
7984 		 * potentially running at a lower capacity.
7985 		 *
7986 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7987 		 * multiplication to rid ourselves of the division works out
7988 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
7989 		 * our previous maximum.
7990 		 */
7991 		if (wl * busiest_capacity > busiest_load * capacity) {
7992 			busiest_load = wl;
7993 			busiest_capacity = capacity;
7994 			busiest = rq;
7995 		}
7996 	}
7997 
7998 	return busiest;
7999 }
8000 
8001 /*
8002  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8003  * so long as it is large enough.
8004  */
8005 #define MAX_PINNED_INTERVAL	512
8006 
8007 static int need_active_balance(struct lb_env *env)
8008 {
8009 	struct sched_domain *sd = env->sd;
8010 
8011 	if (env->idle == CPU_NEWLY_IDLE) {
8012 
8013 		/*
8014 		 * ASYM_PACKING needs to force migrate tasks from busy but
8015 		 * lower priority CPUs in order to pack all tasks in the
8016 		 * highest priority CPUs.
8017 		 */
8018 		if ((sd->flags & SD_ASYM_PACKING) &&
8019 		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8020 			return 1;
8021 	}
8022 
8023 	/*
8024 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8025 	 * It's worth migrating the task if the src_cpu's capacity is reduced
8026 	 * because of other sched_class or IRQs if more capacity stays
8027 	 * available on dst_cpu.
8028 	 */
8029 	if ((env->idle != CPU_NOT_IDLE) &&
8030 	    (env->src_rq->cfs.h_nr_running == 1)) {
8031 		if ((check_cpu_capacity(env->src_rq, sd)) &&
8032 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8033 			return 1;
8034 	}
8035 
8036 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8037 }
8038 
8039 static int active_load_balance_cpu_stop(void *data);
8040 
8041 static int should_we_balance(struct lb_env *env)
8042 {
8043 	struct sched_group *sg = env->sd->groups;
8044 	int cpu, balance_cpu = -1;
8045 
8046 	/*
8047 	 * Ensure the balancing environment is consistent; can happen
8048 	 * when the softirq triggers 'during' hotplug.
8049 	 */
8050 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8051 		return 0;
8052 
8053 	/*
8054 	 * In the newly idle case, we will allow all the cpu's
8055 	 * to do the newly idle load balance.
8056 	 */
8057 	if (env->idle == CPU_NEWLY_IDLE)
8058 		return 1;
8059 
8060 	/* Try to find first idle cpu */
8061 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8062 		if (!idle_cpu(cpu))
8063 			continue;
8064 
8065 		balance_cpu = cpu;
8066 		break;
8067 	}
8068 
8069 	if (balance_cpu == -1)
8070 		balance_cpu = group_balance_cpu(sg);
8071 
8072 	/*
8073 	 * First idle cpu or the first cpu(busiest) in this sched group
8074 	 * is eligible for doing load balancing at this and above domains.
8075 	 */
8076 	return balance_cpu == env->dst_cpu;
8077 }
8078 
8079 /*
8080  * Check this_cpu to ensure it is balanced within domain. Attempt to move
8081  * tasks if there is an imbalance.
8082  */
8083 static int load_balance(int this_cpu, struct rq *this_rq,
8084 			struct sched_domain *sd, enum cpu_idle_type idle,
8085 			int *continue_balancing)
8086 {
8087 	int ld_moved, cur_ld_moved, active_balance = 0;
8088 	struct sched_domain *sd_parent = sd->parent;
8089 	struct sched_group *group;
8090 	struct rq *busiest;
8091 	struct rq_flags rf;
8092 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8093 
8094 	struct lb_env env = {
8095 		.sd		= sd,
8096 		.dst_cpu	= this_cpu,
8097 		.dst_rq		= this_rq,
8098 		.dst_grpmask    = sched_group_span(sd->groups),
8099 		.idle		= idle,
8100 		.loop_break	= sched_nr_migrate_break,
8101 		.cpus		= cpus,
8102 		.fbq_type	= all,
8103 		.tasks		= LIST_HEAD_INIT(env.tasks),
8104 	};
8105 
8106 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8107 
8108 	schedstat_inc(sd->lb_count[idle]);
8109 
8110 redo:
8111 	if (!should_we_balance(&env)) {
8112 		*continue_balancing = 0;
8113 		goto out_balanced;
8114 	}
8115 
8116 	group = find_busiest_group(&env);
8117 	if (!group) {
8118 		schedstat_inc(sd->lb_nobusyg[idle]);
8119 		goto out_balanced;
8120 	}
8121 
8122 	busiest = find_busiest_queue(&env, group);
8123 	if (!busiest) {
8124 		schedstat_inc(sd->lb_nobusyq[idle]);
8125 		goto out_balanced;
8126 	}
8127 
8128 	BUG_ON(busiest == env.dst_rq);
8129 
8130 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8131 
8132 	env.src_cpu = busiest->cpu;
8133 	env.src_rq = busiest;
8134 
8135 	ld_moved = 0;
8136 	if (busiest->nr_running > 1) {
8137 		/*
8138 		 * Attempt to move tasks. If find_busiest_group has found
8139 		 * an imbalance but busiest->nr_running <= 1, the group is
8140 		 * still unbalanced. ld_moved simply stays zero, so it is
8141 		 * correctly treated as an imbalance.
8142 		 */
8143 		env.flags |= LBF_ALL_PINNED;
8144 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8145 
8146 more_balance:
8147 		rq_lock_irqsave(busiest, &rf);
8148 		update_rq_clock(busiest);
8149 
8150 		/*
8151 		 * cur_ld_moved - load moved in current iteration
8152 		 * ld_moved     - cumulative load moved across iterations
8153 		 */
8154 		cur_ld_moved = detach_tasks(&env);
8155 
8156 		/*
8157 		 * We've detached some tasks from busiest_rq. Every
8158 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8159 		 * unlock busiest->lock, and we are able to be sure
8160 		 * that nobody can manipulate the tasks in parallel.
8161 		 * See task_rq_lock() family for the details.
8162 		 */
8163 
8164 		rq_unlock(busiest, &rf);
8165 
8166 		if (cur_ld_moved) {
8167 			attach_tasks(&env);
8168 			ld_moved += cur_ld_moved;
8169 		}
8170 
8171 		local_irq_restore(rf.flags);
8172 
8173 		if (env.flags & LBF_NEED_BREAK) {
8174 			env.flags &= ~LBF_NEED_BREAK;
8175 			goto more_balance;
8176 		}
8177 
8178 		/*
8179 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8180 		 * us and move them to an alternate dst_cpu in our sched_group
8181 		 * where they can run. The upper limit on how many times we
8182 		 * iterate on same src_cpu is dependent on number of cpus in our
8183 		 * sched_group.
8184 		 *
8185 		 * This changes load balance semantics a bit on who can move
8186 		 * load to a given_cpu. In addition to the given_cpu itself
8187 		 * (or a ilb_cpu acting on its behalf where given_cpu is
8188 		 * nohz-idle), we now have balance_cpu in a position to move
8189 		 * load to given_cpu. In rare situations, this may cause
8190 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8191 		 * _independently_ and at _same_ time to move some load to
8192 		 * given_cpu) causing exceess load to be moved to given_cpu.
8193 		 * This however should not happen so much in practice and
8194 		 * moreover subsequent load balance cycles should correct the
8195 		 * excess load moved.
8196 		 */
8197 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8198 
8199 			/* Prevent to re-select dst_cpu via env's cpus */
8200 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
8201 
8202 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8203 			env.dst_cpu	 = env.new_dst_cpu;
8204 			env.flags	&= ~LBF_DST_PINNED;
8205 			env.loop	 = 0;
8206 			env.loop_break	 = sched_nr_migrate_break;
8207 
8208 			/*
8209 			 * Go back to "more_balance" rather than "redo" since we
8210 			 * need to continue with same src_cpu.
8211 			 */
8212 			goto more_balance;
8213 		}
8214 
8215 		/*
8216 		 * We failed to reach balance because of affinity.
8217 		 */
8218 		if (sd_parent) {
8219 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8220 
8221 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8222 				*group_imbalance = 1;
8223 		}
8224 
8225 		/* All tasks on this runqueue were pinned by CPU affinity */
8226 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8227 			cpumask_clear_cpu(cpu_of(busiest), cpus);
8228 			/*
8229 			 * Attempting to continue load balancing at the current
8230 			 * sched_domain level only makes sense if there are
8231 			 * active CPUs remaining as possible busiest CPUs to
8232 			 * pull load from which are not contained within the
8233 			 * destination group that is receiving any migrated
8234 			 * load.
8235 			 */
8236 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8237 				env.loop = 0;
8238 				env.loop_break = sched_nr_migrate_break;
8239 				goto redo;
8240 			}
8241 			goto out_all_pinned;
8242 		}
8243 	}
8244 
8245 	if (!ld_moved) {
8246 		schedstat_inc(sd->lb_failed[idle]);
8247 		/*
8248 		 * Increment the failure counter only on periodic balance.
8249 		 * We do not want newidle balance, which can be very
8250 		 * frequent, pollute the failure counter causing
8251 		 * excessive cache_hot migrations and active balances.
8252 		 */
8253 		if (idle != CPU_NEWLY_IDLE)
8254 			sd->nr_balance_failed++;
8255 
8256 		if (need_active_balance(&env)) {
8257 			unsigned long flags;
8258 
8259 			raw_spin_lock_irqsave(&busiest->lock, flags);
8260 
8261 			/* don't kick the active_load_balance_cpu_stop,
8262 			 * if the curr task on busiest cpu can't be
8263 			 * moved to this_cpu
8264 			 */
8265 			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8266 				raw_spin_unlock_irqrestore(&busiest->lock,
8267 							    flags);
8268 				env.flags |= LBF_ALL_PINNED;
8269 				goto out_one_pinned;
8270 			}
8271 
8272 			/*
8273 			 * ->active_balance synchronizes accesses to
8274 			 * ->active_balance_work.  Once set, it's cleared
8275 			 * only after active load balance is finished.
8276 			 */
8277 			if (!busiest->active_balance) {
8278 				busiest->active_balance = 1;
8279 				busiest->push_cpu = this_cpu;
8280 				active_balance = 1;
8281 			}
8282 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8283 
8284 			if (active_balance) {
8285 				stop_one_cpu_nowait(cpu_of(busiest),
8286 					active_load_balance_cpu_stop, busiest,
8287 					&busiest->active_balance_work);
8288 			}
8289 
8290 			/* We've kicked active balancing, force task migration. */
8291 			sd->nr_balance_failed = sd->cache_nice_tries+1;
8292 		}
8293 	} else
8294 		sd->nr_balance_failed = 0;
8295 
8296 	if (likely(!active_balance)) {
8297 		/* We were unbalanced, so reset the balancing interval */
8298 		sd->balance_interval = sd->min_interval;
8299 	} else {
8300 		/*
8301 		 * If we've begun active balancing, start to back off. This
8302 		 * case may not be covered by the all_pinned logic if there
8303 		 * is only 1 task on the busy runqueue (because we don't call
8304 		 * detach_tasks).
8305 		 */
8306 		if (sd->balance_interval < sd->max_interval)
8307 			sd->balance_interval *= 2;
8308 	}
8309 
8310 	goto out;
8311 
8312 out_balanced:
8313 	/*
8314 	 * We reach balance although we may have faced some affinity
8315 	 * constraints. Clear the imbalance flag if it was set.
8316 	 */
8317 	if (sd_parent) {
8318 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8319 
8320 		if (*group_imbalance)
8321 			*group_imbalance = 0;
8322 	}
8323 
8324 out_all_pinned:
8325 	/*
8326 	 * We reach balance because all tasks are pinned at this level so
8327 	 * we can't migrate them. Let the imbalance flag set so parent level
8328 	 * can try to migrate them.
8329 	 */
8330 	schedstat_inc(sd->lb_balanced[idle]);
8331 
8332 	sd->nr_balance_failed = 0;
8333 
8334 out_one_pinned:
8335 	/* tune up the balancing interval */
8336 	if (((env.flags & LBF_ALL_PINNED) &&
8337 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8338 			(sd->balance_interval < sd->max_interval))
8339 		sd->balance_interval *= 2;
8340 
8341 	ld_moved = 0;
8342 out:
8343 	return ld_moved;
8344 }
8345 
8346 static inline unsigned long
8347 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8348 {
8349 	unsigned long interval = sd->balance_interval;
8350 
8351 	if (cpu_busy)
8352 		interval *= sd->busy_factor;
8353 
8354 	/* scale ms to jiffies */
8355 	interval = msecs_to_jiffies(interval);
8356 	interval = clamp(interval, 1UL, max_load_balance_interval);
8357 
8358 	return interval;
8359 }
8360 
8361 static inline void
8362 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8363 {
8364 	unsigned long interval, next;
8365 
8366 	/* used by idle balance, so cpu_busy = 0 */
8367 	interval = get_sd_balance_interval(sd, 0);
8368 	next = sd->last_balance + interval;
8369 
8370 	if (time_after(*next_balance, next))
8371 		*next_balance = next;
8372 }
8373 
8374 /*
8375  * idle_balance is called by schedule() if this_cpu is about to become
8376  * idle. Attempts to pull tasks from other CPUs.
8377  */
8378 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8379 {
8380 	unsigned long next_balance = jiffies + HZ;
8381 	int this_cpu = this_rq->cpu;
8382 	struct sched_domain *sd;
8383 	int pulled_task = 0;
8384 	u64 curr_cost = 0;
8385 
8386 	/*
8387 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
8388 	 * measure the duration of idle_balance() as idle time.
8389 	 */
8390 	this_rq->idle_stamp = rq_clock(this_rq);
8391 
8392 	/*
8393 	 * Do not pull tasks towards !active CPUs...
8394 	 */
8395 	if (!cpu_active(this_cpu))
8396 		return 0;
8397 
8398 	/*
8399 	 * This is OK, because current is on_cpu, which avoids it being picked
8400 	 * for load-balance and preemption/IRQs are still disabled avoiding
8401 	 * further scheduler activity on it and we're being very careful to
8402 	 * re-start the picking loop.
8403 	 */
8404 	rq_unpin_lock(this_rq, rf);
8405 
8406 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8407 	    !this_rq->rd->overload) {
8408 		rcu_read_lock();
8409 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
8410 		if (sd)
8411 			update_next_balance(sd, &next_balance);
8412 		rcu_read_unlock();
8413 
8414 		goto out;
8415 	}
8416 
8417 	raw_spin_unlock(&this_rq->lock);
8418 
8419 	update_blocked_averages(this_cpu);
8420 	rcu_read_lock();
8421 	for_each_domain(this_cpu, sd) {
8422 		int continue_balancing = 1;
8423 		u64 t0, domain_cost;
8424 
8425 		if (!(sd->flags & SD_LOAD_BALANCE))
8426 			continue;
8427 
8428 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8429 			update_next_balance(sd, &next_balance);
8430 			break;
8431 		}
8432 
8433 		if (sd->flags & SD_BALANCE_NEWIDLE) {
8434 			t0 = sched_clock_cpu(this_cpu);
8435 
8436 			pulled_task = load_balance(this_cpu, this_rq,
8437 						   sd, CPU_NEWLY_IDLE,
8438 						   &continue_balancing);
8439 
8440 			domain_cost = sched_clock_cpu(this_cpu) - t0;
8441 			if (domain_cost > sd->max_newidle_lb_cost)
8442 				sd->max_newidle_lb_cost = domain_cost;
8443 
8444 			curr_cost += domain_cost;
8445 		}
8446 
8447 		update_next_balance(sd, &next_balance);
8448 
8449 		/*
8450 		 * Stop searching for tasks to pull if there are
8451 		 * now runnable tasks on this rq.
8452 		 */
8453 		if (pulled_task || this_rq->nr_running > 0)
8454 			break;
8455 	}
8456 	rcu_read_unlock();
8457 
8458 	raw_spin_lock(&this_rq->lock);
8459 
8460 	if (curr_cost > this_rq->max_idle_balance_cost)
8461 		this_rq->max_idle_balance_cost = curr_cost;
8462 
8463 	/*
8464 	 * While browsing the domains, we released the rq lock, a task could
8465 	 * have been enqueued in the meantime. Since we're not going idle,
8466 	 * pretend we pulled a task.
8467 	 */
8468 	if (this_rq->cfs.h_nr_running && !pulled_task)
8469 		pulled_task = 1;
8470 
8471 out:
8472 	/* Move the next balance forward */
8473 	if (time_after(this_rq->next_balance, next_balance))
8474 		this_rq->next_balance = next_balance;
8475 
8476 	/* Is there a task of a high priority class? */
8477 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8478 		pulled_task = -1;
8479 
8480 	if (pulled_task)
8481 		this_rq->idle_stamp = 0;
8482 
8483 	rq_repin_lock(this_rq, rf);
8484 
8485 	return pulled_task;
8486 }
8487 
8488 /*
8489  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8490  * running tasks off the busiest CPU onto idle CPUs. It requires at
8491  * least 1 task to be running on each physical CPU where possible, and
8492  * avoids physical / logical imbalances.
8493  */
8494 static int active_load_balance_cpu_stop(void *data)
8495 {
8496 	struct rq *busiest_rq = data;
8497 	int busiest_cpu = cpu_of(busiest_rq);
8498 	int target_cpu = busiest_rq->push_cpu;
8499 	struct rq *target_rq = cpu_rq(target_cpu);
8500 	struct sched_domain *sd;
8501 	struct task_struct *p = NULL;
8502 	struct rq_flags rf;
8503 
8504 	rq_lock_irq(busiest_rq, &rf);
8505 	/*
8506 	 * Between queueing the stop-work and running it is a hole in which
8507 	 * CPUs can become inactive. We should not move tasks from or to
8508 	 * inactive CPUs.
8509 	 */
8510 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
8511 		goto out_unlock;
8512 
8513 	/* make sure the requested cpu hasn't gone down in the meantime */
8514 	if (unlikely(busiest_cpu != smp_processor_id() ||
8515 		     !busiest_rq->active_balance))
8516 		goto out_unlock;
8517 
8518 	/* Is there any task to move? */
8519 	if (busiest_rq->nr_running <= 1)
8520 		goto out_unlock;
8521 
8522 	/*
8523 	 * This condition is "impossible", if it occurs
8524 	 * we need to fix it. Originally reported by
8525 	 * Bjorn Helgaas on a 128-cpu setup.
8526 	 */
8527 	BUG_ON(busiest_rq == target_rq);
8528 
8529 	/* Search for an sd spanning us and the target CPU. */
8530 	rcu_read_lock();
8531 	for_each_domain(target_cpu, sd) {
8532 		if ((sd->flags & SD_LOAD_BALANCE) &&
8533 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8534 				break;
8535 	}
8536 
8537 	if (likely(sd)) {
8538 		struct lb_env env = {
8539 			.sd		= sd,
8540 			.dst_cpu	= target_cpu,
8541 			.dst_rq		= target_rq,
8542 			.src_cpu	= busiest_rq->cpu,
8543 			.src_rq		= busiest_rq,
8544 			.idle		= CPU_IDLE,
8545 			/*
8546 			 * can_migrate_task() doesn't need to compute new_dst_cpu
8547 			 * for active balancing. Since we have CPU_IDLE, but no
8548 			 * @dst_grpmask we need to make that test go away with lying
8549 			 * about DST_PINNED.
8550 			 */
8551 			.flags		= LBF_DST_PINNED,
8552 		};
8553 
8554 		schedstat_inc(sd->alb_count);
8555 		update_rq_clock(busiest_rq);
8556 
8557 		p = detach_one_task(&env);
8558 		if (p) {
8559 			schedstat_inc(sd->alb_pushed);
8560 			/* Active balancing done, reset the failure counter. */
8561 			sd->nr_balance_failed = 0;
8562 		} else {
8563 			schedstat_inc(sd->alb_failed);
8564 		}
8565 	}
8566 	rcu_read_unlock();
8567 out_unlock:
8568 	busiest_rq->active_balance = 0;
8569 	rq_unlock(busiest_rq, &rf);
8570 
8571 	if (p)
8572 		attach_one_task(target_rq, p);
8573 
8574 	local_irq_enable();
8575 
8576 	return 0;
8577 }
8578 
8579 static inline int on_null_domain(struct rq *rq)
8580 {
8581 	return unlikely(!rcu_dereference_sched(rq->sd));
8582 }
8583 
8584 #ifdef CONFIG_NO_HZ_COMMON
8585 /*
8586  * idle load balancing details
8587  * - When one of the busy CPUs notice that there may be an idle rebalancing
8588  *   needed, they will kick the idle load balancer, which then does idle
8589  *   load balancing for all the idle CPUs.
8590  */
8591 static struct {
8592 	cpumask_var_t idle_cpus_mask;
8593 	atomic_t nr_cpus;
8594 	unsigned long next_balance;     /* in jiffy units */
8595 } nohz ____cacheline_aligned;
8596 
8597 static inline int find_new_ilb(void)
8598 {
8599 	int ilb = cpumask_first(nohz.idle_cpus_mask);
8600 
8601 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
8602 		return ilb;
8603 
8604 	return nr_cpu_ids;
8605 }
8606 
8607 /*
8608  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8609  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8610  * CPU (if there is one).
8611  */
8612 static void nohz_balancer_kick(void)
8613 {
8614 	int ilb_cpu;
8615 
8616 	nohz.next_balance++;
8617 
8618 	ilb_cpu = find_new_ilb();
8619 
8620 	if (ilb_cpu >= nr_cpu_ids)
8621 		return;
8622 
8623 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8624 		return;
8625 	/*
8626 	 * Use smp_send_reschedule() instead of resched_cpu().
8627 	 * This way we generate a sched IPI on the target cpu which
8628 	 * is idle. And the softirq performing nohz idle load balance
8629 	 * will be run before returning from the IPI.
8630 	 */
8631 	smp_send_reschedule(ilb_cpu);
8632 	return;
8633 }
8634 
8635 void nohz_balance_exit_idle(unsigned int cpu)
8636 {
8637 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8638 		/*
8639 		 * Completely isolated CPUs don't ever set, so we must test.
8640 		 */
8641 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8642 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8643 			atomic_dec(&nohz.nr_cpus);
8644 		}
8645 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8646 	}
8647 }
8648 
8649 static inline void set_cpu_sd_state_busy(void)
8650 {
8651 	struct sched_domain *sd;
8652 	int cpu = smp_processor_id();
8653 
8654 	rcu_read_lock();
8655 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
8656 
8657 	if (!sd || !sd->nohz_idle)
8658 		goto unlock;
8659 	sd->nohz_idle = 0;
8660 
8661 	atomic_inc(&sd->shared->nr_busy_cpus);
8662 unlock:
8663 	rcu_read_unlock();
8664 }
8665 
8666 void set_cpu_sd_state_idle(void)
8667 {
8668 	struct sched_domain *sd;
8669 	int cpu = smp_processor_id();
8670 
8671 	rcu_read_lock();
8672 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
8673 
8674 	if (!sd || sd->nohz_idle)
8675 		goto unlock;
8676 	sd->nohz_idle = 1;
8677 
8678 	atomic_dec(&sd->shared->nr_busy_cpus);
8679 unlock:
8680 	rcu_read_unlock();
8681 }
8682 
8683 /*
8684  * This routine will record that the cpu is going idle with tick stopped.
8685  * This info will be used in performing idle load balancing in the future.
8686  */
8687 void nohz_balance_enter_idle(int cpu)
8688 {
8689 	/*
8690 	 * If this cpu is going down, then nothing needs to be done.
8691 	 */
8692 	if (!cpu_active(cpu))
8693 		return;
8694 
8695 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
8696 	if (!is_housekeeping_cpu(cpu))
8697 		return;
8698 
8699 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8700 		return;
8701 
8702 	/*
8703 	 * If we're a completely isolated CPU, we don't play.
8704 	 */
8705 	if (on_null_domain(cpu_rq(cpu)))
8706 		return;
8707 
8708 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8709 	atomic_inc(&nohz.nr_cpus);
8710 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8711 }
8712 #endif
8713 
8714 static DEFINE_SPINLOCK(balancing);
8715 
8716 /*
8717  * Scale the max load_balance interval with the number of CPUs in the system.
8718  * This trades load-balance latency on larger machines for less cross talk.
8719  */
8720 void update_max_interval(void)
8721 {
8722 	max_load_balance_interval = HZ*num_online_cpus()/10;
8723 }
8724 
8725 /*
8726  * It checks each scheduling domain to see if it is due to be balanced,
8727  * and initiates a balancing operation if so.
8728  *
8729  * Balancing parameters are set up in init_sched_domains.
8730  */
8731 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8732 {
8733 	int continue_balancing = 1;
8734 	int cpu = rq->cpu;
8735 	unsigned long interval;
8736 	struct sched_domain *sd;
8737 	/* Earliest time when we have to do rebalance again */
8738 	unsigned long next_balance = jiffies + 60*HZ;
8739 	int update_next_balance = 0;
8740 	int need_serialize, need_decay = 0;
8741 	u64 max_cost = 0;
8742 
8743 	update_blocked_averages(cpu);
8744 
8745 	rcu_read_lock();
8746 	for_each_domain(cpu, sd) {
8747 		/*
8748 		 * Decay the newidle max times here because this is a regular
8749 		 * visit to all the domains. Decay ~1% per second.
8750 		 */
8751 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8752 			sd->max_newidle_lb_cost =
8753 				(sd->max_newidle_lb_cost * 253) / 256;
8754 			sd->next_decay_max_lb_cost = jiffies + HZ;
8755 			need_decay = 1;
8756 		}
8757 		max_cost += sd->max_newidle_lb_cost;
8758 
8759 		if (!(sd->flags & SD_LOAD_BALANCE))
8760 			continue;
8761 
8762 		/*
8763 		 * Stop the load balance at this level. There is another
8764 		 * CPU in our sched group which is doing load balancing more
8765 		 * actively.
8766 		 */
8767 		if (!continue_balancing) {
8768 			if (need_decay)
8769 				continue;
8770 			break;
8771 		}
8772 
8773 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8774 
8775 		need_serialize = sd->flags & SD_SERIALIZE;
8776 		if (need_serialize) {
8777 			if (!spin_trylock(&balancing))
8778 				goto out;
8779 		}
8780 
8781 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8782 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8783 				/*
8784 				 * The LBF_DST_PINNED logic could have changed
8785 				 * env->dst_cpu, so we can't know our idle
8786 				 * state even if we migrated tasks. Update it.
8787 				 */
8788 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8789 			}
8790 			sd->last_balance = jiffies;
8791 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8792 		}
8793 		if (need_serialize)
8794 			spin_unlock(&balancing);
8795 out:
8796 		if (time_after(next_balance, sd->last_balance + interval)) {
8797 			next_balance = sd->last_balance + interval;
8798 			update_next_balance = 1;
8799 		}
8800 	}
8801 	if (need_decay) {
8802 		/*
8803 		 * Ensure the rq-wide value also decays but keep it at a
8804 		 * reasonable floor to avoid funnies with rq->avg_idle.
8805 		 */
8806 		rq->max_idle_balance_cost =
8807 			max((u64)sysctl_sched_migration_cost, max_cost);
8808 	}
8809 	rcu_read_unlock();
8810 
8811 	/*
8812 	 * next_balance will be updated only when there is a need.
8813 	 * When the cpu is attached to null domain for ex, it will not be
8814 	 * updated.
8815 	 */
8816 	if (likely(update_next_balance)) {
8817 		rq->next_balance = next_balance;
8818 
8819 #ifdef CONFIG_NO_HZ_COMMON
8820 		/*
8821 		 * If this CPU has been elected to perform the nohz idle
8822 		 * balance. Other idle CPUs have already rebalanced with
8823 		 * nohz_idle_balance() and nohz.next_balance has been
8824 		 * updated accordingly. This CPU is now running the idle load
8825 		 * balance for itself and we need to update the
8826 		 * nohz.next_balance accordingly.
8827 		 */
8828 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8829 			nohz.next_balance = rq->next_balance;
8830 #endif
8831 	}
8832 }
8833 
8834 #ifdef CONFIG_NO_HZ_COMMON
8835 /*
8836  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8837  * rebalancing for all the cpus for whom scheduler ticks are stopped.
8838  */
8839 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8840 {
8841 	int this_cpu = this_rq->cpu;
8842 	struct rq *rq;
8843 	int balance_cpu;
8844 	/* Earliest time when we have to do rebalance again */
8845 	unsigned long next_balance = jiffies + 60*HZ;
8846 	int update_next_balance = 0;
8847 
8848 	if (idle != CPU_IDLE ||
8849 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8850 		goto end;
8851 
8852 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8853 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8854 			continue;
8855 
8856 		/*
8857 		 * If this cpu gets work to do, stop the load balancing
8858 		 * work being done for other cpus. Next load
8859 		 * balancing owner will pick it up.
8860 		 */
8861 		if (need_resched())
8862 			break;
8863 
8864 		rq = cpu_rq(balance_cpu);
8865 
8866 		/*
8867 		 * If time for next balance is due,
8868 		 * do the balance.
8869 		 */
8870 		if (time_after_eq(jiffies, rq->next_balance)) {
8871 			struct rq_flags rf;
8872 
8873 			rq_lock_irq(rq, &rf);
8874 			update_rq_clock(rq);
8875 			cpu_load_update_idle(rq);
8876 			rq_unlock_irq(rq, &rf);
8877 
8878 			rebalance_domains(rq, CPU_IDLE);
8879 		}
8880 
8881 		if (time_after(next_balance, rq->next_balance)) {
8882 			next_balance = rq->next_balance;
8883 			update_next_balance = 1;
8884 		}
8885 	}
8886 
8887 	/*
8888 	 * next_balance will be updated only when there is a need.
8889 	 * When the CPU is attached to null domain for ex, it will not be
8890 	 * updated.
8891 	 */
8892 	if (likely(update_next_balance))
8893 		nohz.next_balance = next_balance;
8894 end:
8895 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8896 }
8897 
8898 /*
8899  * Current heuristic for kicking the idle load balancer in the presence
8900  * of an idle cpu in the system.
8901  *   - This rq has more than one task.
8902  *   - This rq has at least one CFS task and the capacity of the CPU is
8903  *     significantly reduced because of RT tasks or IRQs.
8904  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
8905  *     multiple busy cpu.
8906  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8907  *     domain span are idle.
8908  */
8909 static inline bool nohz_kick_needed(struct rq *rq)
8910 {
8911 	unsigned long now = jiffies;
8912 	struct sched_domain_shared *sds;
8913 	struct sched_domain *sd;
8914 	int nr_busy, i, cpu = rq->cpu;
8915 	bool kick = false;
8916 
8917 	if (unlikely(rq->idle_balance))
8918 		return false;
8919 
8920        /*
8921 	* We may be recently in ticked or tickless idle mode. At the first
8922 	* busy tick after returning from idle, we will update the busy stats.
8923 	*/
8924 	set_cpu_sd_state_busy();
8925 	nohz_balance_exit_idle(cpu);
8926 
8927 	/*
8928 	 * None are in tickless mode and hence no need for NOHZ idle load
8929 	 * balancing.
8930 	 */
8931 	if (likely(!atomic_read(&nohz.nr_cpus)))
8932 		return false;
8933 
8934 	if (time_before(now, nohz.next_balance))
8935 		return false;
8936 
8937 	if (rq->nr_running >= 2)
8938 		return true;
8939 
8940 	rcu_read_lock();
8941 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8942 	if (sds) {
8943 		/*
8944 		 * XXX: write a coherent comment on why we do this.
8945 		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8946 		 */
8947 		nr_busy = atomic_read(&sds->nr_busy_cpus);
8948 		if (nr_busy > 1) {
8949 			kick = true;
8950 			goto unlock;
8951 		}
8952 
8953 	}
8954 
8955 	sd = rcu_dereference(rq->sd);
8956 	if (sd) {
8957 		if ((rq->cfs.h_nr_running >= 1) &&
8958 				check_cpu_capacity(rq, sd)) {
8959 			kick = true;
8960 			goto unlock;
8961 		}
8962 	}
8963 
8964 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
8965 	if (sd) {
8966 		for_each_cpu(i, sched_domain_span(sd)) {
8967 			if (i == cpu ||
8968 			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
8969 				continue;
8970 
8971 			if (sched_asym_prefer(i, cpu)) {
8972 				kick = true;
8973 				goto unlock;
8974 			}
8975 		}
8976 	}
8977 unlock:
8978 	rcu_read_unlock();
8979 	return kick;
8980 }
8981 #else
8982 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8983 #endif
8984 
8985 /*
8986  * run_rebalance_domains is triggered when needed from the scheduler tick.
8987  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8988  */
8989 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
8990 {
8991 	struct rq *this_rq = this_rq();
8992 	enum cpu_idle_type idle = this_rq->idle_balance ?
8993 						CPU_IDLE : CPU_NOT_IDLE;
8994 
8995 	/*
8996 	 * If this cpu has a pending nohz_balance_kick, then do the
8997 	 * balancing on behalf of the other idle cpus whose ticks are
8998 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8999 	 * give the idle cpus a chance to load balance. Else we may
9000 	 * load balance only within the local sched_domain hierarchy
9001 	 * and abort nohz_idle_balance altogether if we pull some load.
9002 	 */
9003 	nohz_idle_balance(this_rq, idle);
9004 	rebalance_domains(this_rq, idle);
9005 }
9006 
9007 /*
9008  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9009  */
9010 void trigger_load_balance(struct rq *rq)
9011 {
9012 	/* Don't need to rebalance while attached to NULL domain */
9013 	if (unlikely(on_null_domain(rq)))
9014 		return;
9015 
9016 	if (time_after_eq(jiffies, rq->next_balance))
9017 		raise_softirq(SCHED_SOFTIRQ);
9018 #ifdef CONFIG_NO_HZ_COMMON
9019 	if (nohz_kick_needed(rq))
9020 		nohz_balancer_kick();
9021 #endif
9022 }
9023 
9024 static void rq_online_fair(struct rq *rq)
9025 {
9026 	update_sysctl();
9027 
9028 	update_runtime_enabled(rq);
9029 }
9030 
9031 static void rq_offline_fair(struct rq *rq)
9032 {
9033 	update_sysctl();
9034 
9035 	/* Ensure any throttled groups are reachable by pick_next_task */
9036 	unthrottle_offline_cfs_rqs(rq);
9037 }
9038 
9039 #endif /* CONFIG_SMP */
9040 
9041 /*
9042  * scheduler tick hitting a task of our scheduling class:
9043  */
9044 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9045 {
9046 	struct cfs_rq *cfs_rq;
9047 	struct sched_entity *se = &curr->se;
9048 
9049 	for_each_sched_entity(se) {
9050 		cfs_rq = cfs_rq_of(se);
9051 		entity_tick(cfs_rq, se, queued);
9052 	}
9053 
9054 	if (static_branch_unlikely(&sched_numa_balancing))
9055 		task_tick_numa(rq, curr);
9056 }
9057 
9058 /*
9059  * called on fork with the child task as argument from the parent's context
9060  *  - child not yet on the tasklist
9061  *  - preemption disabled
9062  */
9063 static void task_fork_fair(struct task_struct *p)
9064 {
9065 	struct cfs_rq *cfs_rq;
9066 	struct sched_entity *se = &p->se, *curr;
9067 	struct rq *rq = this_rq();
9068 	struct rq_flags rf;
9069 
9070 	rq_lock(rq, &rf);
9071 	update_rq_clock(rq);
9072 
9073 	cfs_rq = task_cfs_rq(current);
9074 	curr = cfs_rq->curr;
9075 	if (curr) {
9076 		update_curr(cfs_rq);
9077 		se->vruntime = curr->vruntime;
9078 	}
9079 	place_entity(cfs_rq, se, 1);
9080 
9081 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9082 		/*
9083 		 * Upon rescheduling, sched_class::put_prev_task() will place
9084 		 * 'current' within the tree based on its new key value.
9085 		 */
9086 		swap(curr->vruntime, se->vruntime);
9087 		resched_curr(rq);
9088 	}
9089 
9090 	se->vruntime -= cfs_rq->min_vruntime;
9091 	rq_unlock(rq, &rf);
9092 }
9093 
9094 /*
9095  * Priority of the task has changed. Check to see if we preempt
9096  * the current task.
9097  */
9098 static void
9099 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9100 {
9101 	if (!task_on_rq_queued(p))
9102 		return;
9103 
9104 	/*
9105 	 * Reschedule if we are currently running on this runqueue and
9106 	 * our priority decreased, or if we are not currently running on
9107 	 * this runqueue and our priority is higher than the current's
9108 	 */
9109 	if (rq->curr == p) {
9110 		if (p->prio > oldprio)
9111 			resched_curr(rq);
9112 	} else
9113 		check_preempt_curr(rq, p, 0);
9114 }
9115 
9116 static inline bool vruntime_normalized(struct task_struct *p)
9117 {
9118 	struct sched_entity *se = &p->se;
9119 
9120 	/*
9121 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9122 	 * the dequeue_entity(.flags=0) will already have normalized the
9123 	 * vruntime.
9124 	 */
9125 	if (p->on_rq)
9126 		return true;
9127 
9128 	/*
9129 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
9130 	 * But there are some cases where it has already been normalized:
9131 	 *
9132 	 * - A forked child which is waiting for being woken up by
9133 	 *   wake_up_new_task().
9134 	 * - A task which has been woken up by try_to_wake_up() and
9135 	 *   waiting for actually being woken up by sched_ttwu_pending().
9136 	 */
9137 	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9138 		return true;
9139 
9140 	return false;
9141 }
9142 
9143 #ifdef CONFIG_FAIR_GROUP_SCHED
9144 /*
9145  * Propagate the changes of the sched_entity across the tg tree to make it
9146  * visible to the root
9147  */
9148 static void propagate_entity_cfs_rq(struct sched_entity *se)
9149 {
9150 	struct cfs_rq *cfs_rq;
9151 
9152 	/* Start to propagate at parent */
9153 	se = se->parent;
9154 
9155 	for_each_sched_entity(se) {
9156 		cfs_rq = cfs_rq_of(se);
9157 
9158 		if (cfs_rq_throttled(cfs_rq))
9159 			break;
9160 
9161 		update_load_avg(se, UPDATE_TG);
9162 	}
9163 }
9164 #else
9165 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9166 #endif
9167 
9168 static void detach_entity_cfs_rq(struct sched_entity *se)
9169 {
9170 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9171 
9172 	/* Catch up with the cfs_rq and remove our load when we leave */
9173 	update_load_avg(se, 0);
9174 	detach_entity_load_avg(cfs_rq, se);
9175 	update_tg_load_avg(cfs_rq, false);
9176 	propagate_entity_cfs_rq(se);
9177 }
9178 
9179 static void attach_entity_cfs_rq(struct sched_entity *se)
9180 {
9181 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9182 
9183 #ifdef CONFIG_FAIR_GROUP_SCHED
9184 	/*
9185 	 * Since the real-depth could have been changed (only FAIR
9186 	 * class maintain depth value), reset depth properly.
9187 	 */
9188 	se->depth = se->parent ? se->parent->depth + 1 : 0;
9189 #endif
9190 
9191 	/* Synchronize entity with its cfs_rq */
9192 	update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9193 	attach_entity_load_avg(cfs_rq, se);
9194 	update_tg_load_avg(cfs_rq, false);
9195 	propagate_entity_cfs_rq(se);
9196 }
9197 
9198 static void detach_task_cfs_rq(struct task_struct *p)
9199 {
9200 	struct sched_entity *se = &p->se;
9201 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9202 
9203 	if (!vruntime_normalized(p)) {
9204 		/*
9205 		 * Fix up our vruntime so that the current sleep doesn't
9206 		 * cause 'unlimited' sleep bonus.
9207 		 */
9208 		place_entity(cfs_rq, se, 0);
9209 		se->vruntime -= cfs_rq->min_vruntime;
9210 	}
9211 
9212 	detach_entity_cfs_rq(se);
9213 }
9214 
9215 static void attach_task_cfs_rq(struct task_struct *p)
9216 {
9217 	struct sched_entity *se = &p->se;
9218 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9219 
9220 	attach_entity_cfs_rq(se);
9221 
9222 	if (!vruntime_normalized(p))
9223 		se->vruntime += cfs_rq->min_vruntime;
9224 }
9225 
9226 static void switched_from_fair(struct rq *rq, struct task_struct *p)
9227 {
9228 	detach_task_cfs_rq(p);
9229 }
9230 
9231 static void switched_to_fair(struct rq *rq, struct task_struct *p)
9232 {
9233 	attach_task_cfs_rq(p);
9234 
9235 	if (task_on_rq_queued(p)) {
9236 		/*
9237 		 * We were most likely switched from sched_rt, so
9238 		 * kick off the schedule if running, otherwise just see
9239 		 * if we can still preempt the current task.
9240 		 */
9241 		if (rq->curr == p)
9242 			resched_curr(rq);
9243 		else
9244 			check_preempt_curr(rq, p, 0);
9245 	}
9246 }
9247 
9248 /* Account for a task changing its policy or group.
9249  *
9250  * This routine is mostly called to set cfs_rq->curr field when a task
9251  * migrates between groups/classes.
9252  */
9253 static void set_curr_task_fair(struct rq *rq)
9254 {
9255 	struct sched_entity *se = &rq->curr->se;
9256 
9257 	for_each_sched_entity(se) {
9258 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
9259 
9260 		set_next_entity(cfs_rq, se);
9261 		/* ensure bandwidth has been allocated on our new cfs_rq */
9262 		account_cfs_rq_runtime(cfs_rq, 0);
9263 	}
9264 }
9265 
9266 void init_cfs_rq(struct cfs_rq *cfs_rq)
9267 {
9268 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
9269 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9270 #ifndef CONFIG_64BIT
9271 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9272 #endif
9273 #ifdef CONFIG_SMP
9274 #ifdef CONFIG_FAIR_GROUP_SCHED
9275 	cfs_rq->propagate_avg = 0;
9276 #endif
9277 	atomic_long_set(&cfs_rq->removed_load_avg, 0);
9278 	atomic_long_set(&cfs_rq->removed_util_avg, 0);
9279 #endif
9280 }
9281 
9282 #ifdef CONFIG_FAIR_GROUP_SCHED
9283 static void task_set_group_fair(struct task_struct *p)
9284 {
9285 	struct sched_entity *se = &p->se;
9286 
9287 	set_task_rq(p, task_cpu(p));
9288 	se->depth = se->parent ? se->parent->depth + 1 : 0;
9289 }
9290 
9291 static void task_move_group_fair(struct task_struct *p)
9292 {
9293 	detach_task_cfs_rq(p);
9294 	set_task_rq(p, task_cpu(p));
9295 
9296 #ifdef CONFIG_SMP
9297 	/* Tell se's cfs_rq has been changed -- migrated */
9298 	p->se.avg.last_update_time = 0;
9299 #endif
9300 	attach_task_cfs_rq(p);
9301 }
9302 
9303 static void task_change_group_fair(struct task_struct *p, int type)
9304 {
9305 	switch (type) {
9306 	case TASK_SET_GROUP:
9307 		task_set_group_fair(p);
9308 		break;
9309 
9310 	case TASK_MOVE_GROUP:
9311 		task_move_group_fair(p);
9312 		break;
9313 	}
9314 }
9315 
9316 void free_fair_sched_group(struct task_group *tg)
9317 {
9318 	int i;
9319 
9320 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9321 
9322 	for_each_possible_cpu(i) {
9323 		if (tg->cfs_rq)
9324 			kfree(tg->cfs_rq[i]);
9325 		if (tg->se)
9326 			kfree(tg->se[i]);
9327 	}
9328 
9329 	kfree(tg->cfs_rq);
9330 	kfree(tg->se);
9331 }
9332 
9333 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9334 {
9335 	struct sched_entity *se;
9336 	struct cfs_rq *cfs_rq;
9337 	int i;
9338 
9339 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9340 	if (!tg->cfs_rq)
9341 		goto err;
9342 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9343 	if (!tg->se)
9344 		goto err;
9345 
9346 	tg->shares = NICE_0_LOAD;
9347 
9348 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9349 
9350 	for_each_possible_cpu(i) {
9351 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9352 				      GFP_KERNEL, cpu_to_node(i));
9353 		if (!cfs_rq)
9354 			goto err;
9355 
9356 		se = kzalloc_node(sizeof(struct sched_entity),
9357 				  GFP_KERNEL, cpu_to_node(i));
9358 		if (!se)
9359 			goto err_free_rq;
9360 
9361 		init_cfs_rq(cfs_rq);
9362 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9363 		init_entity_runnable_average(se);
9364 	}
9365 
9366 	return 1;
9367 
9368 err_free_rq:
9369 	kfree(cfs_rq);
9370 err:
9371 	return 0;
9372 }
9373 
9374 void online_fair_sched_group(struct task_group *tg)
9375 {
9376 	struct sched_entity *se;
9377 	struct rq *rq;
9378 	int i;
9379 
9380 	for_each_possible_cpu(i) {
9381 		rq = cpu_rq(i);
9382 		se = tg->se[i];
9383 
9384 		raw_spin_lock_irq(&rq->lock);
9385 		update_rq_clock(rq);
9386 		attach_entity_cfs_rq(se);
9387 		sync_throttle(tg, i);
9388 		raw_spin_unlock_irq(&rq->lock);
9389 	}
9390 }
9391 
9392 void unregister_fair_sched_group(struct task_group *tg)
9393 {
9394 	unsigned long flags;
9395 	struct rq *rq;
9396 	int cpu;
9397 
9398 	for_each_possible_cpu(cpu) {
9399 		if (tg->se[cpu])
9400 			remove_entity_load_avg(tg->se[cpu]);
9401 
9402 		/*
9403 		 * Only empty task groups can be destroyed; so we can speculatively
9404 		 * check on_list without danger of it being re-added.
9405 		 */
9406 		if (!tg->cfs_rq[cpu]->on_list)
9407 			continue;
9408 
9409 		rq = cpu_rq(cpu);
9410 
9411 		raw_spin_lock_irqsave(&rq->lock, flags);
9412 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9413 		raw_spin_unlock_irqrestore(&rq->lock, flags);
9414 	}
9415 }
9416 
9417 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9418 			struct sched_entity *se, int cpu,
9419 			struct sched_entity *parent)
9420 {
9421 	struct rq *rq = cpu_rq(cpu);
9422 
9423 	cfs_rq->tg = tg;
9424 	cfs_rq->rq = rq;
9425 	init_cfs_rq_runtime(cfs_rq);
9426 
9427 	tg->cfs_rq[cpu] = cfs_rq;
9428 	tg->se[cpu] = se;
9429 
9430 	/* se could be NULL for root_task_group */
9431 	if (!se)
9432 		return;
9433 
9434 	if (!parent) {
9435 		se->cfs_rq = &rq->cfs;
9436 		se->depth = 0;
9437 	} else {
9438 		se->cfs_rq = parent->my_q;
9439 		se->depth = parent->depth + 1;
9440 	}
9441 
9442 	se->my_q = cfs_rq;
9443 	/* guarantee group entities always have weight */
9444 	update_load_set(&se->load, NICE_0_LOAD);
9445 	se->parent = parent;
9446 }
9447 
9448 static DEFINE_MUTEX(shares_mutex);
9449 
9450 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9451 {
9452 	int i;
9453 
9454 	/*
9455 	 * We can't change the weight of the root cgroup.
9456 	 */
9457 	if (!tg->se[0])
9458 		return -EINVAL;
9459 
9460 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9461 
9462 	mutex_lock(&shares_mutex);
9463 	if (tg->shares == shares)
9464 		goto done;
9465 
9466 	tg->shares = shares;
9467 	for_each_possible_cpu(i) {
9468 		struct rq *rq = cpu_rq(i);
9469 		struct sched_entity *se = tg->se[i];
9470 		struct rq_flags rf;
9471 
9472 		/* Propagate contribution to hierarchy */
9473 		rq_lock_irqsave(rq, &rf);
9474 		update_rq_clock(rq);
9475 		for_each_sched_entity(se) {
9476 			update_load_avg(se, UPDATE_TG);
9477 			update_cfs_shares(se);
9478 		}
9479 		rq_unlock_irqrestore(rq, &rf);
9480 	}
9481 
9482 done:
9483 	mutex_unlock(&shares_mutex);
9484 	return 0;
9485 }
9486 #else /* CONFIG_FAIR_GROUP_SCHED */
9487 
9488 void free_fair_sched_group(struct task_group *tg) { }
9489 
9490 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9491 {
9492 	return 1;
9493 }
9494 
9495 void online_fair_sched_group(struct task_group *tg) { }
9496 
9497 void unregister_fair_sched_group(struct task_group *tg) { }
9498 
9499 #endif /* CONFIG_FAIR_GROUP_SCHED */
9500 
9501 
9502 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9503 {
9504 	struct sched_entity *se = &task->se;
9505 	unsigned int rr_interval = 0;
9506 
9507 	/*
9508 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9509 	 * idle runqueue:
9510 	 */
9511 	if (rq->cfs.load.weight)
9512 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9513 
9514 	return rr_interval;
9515 }
9516 
9517 /*
9518  * All the scheduling class methods:
9519  */
9520 const struct sched_class fair_sched_class = {
9521 	.next			= &idle_sched_class,
9522 	.enqueue_task		= enqueue_task_fair,
9523 	.dequeue_task		= dequeue_task_fair,
9524 	.yield_task		= yield_task_fair,
9525 	.yield_to_task		= yield_to_task_fair,
9526 
9527 	.check_preempt_curr	= check_preempt_wakeup,
9528 
9529 	.pick_next_task		= pick_next_task_fair,
9530 	.put_prev_task		= put_prev_task_fair,
9531 
9532 #ifdef CONFIG_SMP
9533 	.select_task_rq		= select_task_rq_fair,
9534 	.migrate_task_rq	= migrate_task_rq_fair,
9535 
9536 	.rq_online		= rq_online_fair,
9537 	.rq_offline		= rq_offline_fair,
9538 
9539 	.task_dead		= task_dead_fair,
9540 	.set_cpus_allowed	= set_cpus_allowed_common,
9541 #endif
9542 
9543 	.set_curr_task          = set_curr_task_fair,
9544 	.task_tick		= task_tick_fair,
9545 	.task_fork		= task_fork_fair,
9546 
9547 	.prio_changed		= prio_changed_fair,
9548 	.switched_from		= switched_from_fair,
9549 	.switched_to		= switched_to_fair,
9550 
9551 	.get_rr_interval	= get_rr_interval_fair,
9552 
9553 	.update_curr		= update_curr_fair,
9554 
9555 #ifdef CONFIG_FAIR_GROUP_SCHED
9556 	.task_change_group	= task_change_group_fair,
9557 #endif
9558 };
9559 
9560 #ifdef CONFIG_SCHED_DEBUG
9561 void print_cfs_stats(struct seq_file *m, int cpu)
9562 {
9563 	struct cfs_rq *cfs_rq, *pos;
9564 
9565 	rcu_read_lock();
9566 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
9567 		print_cfs_rq(m, cpu, cfs_rq);
9568 	rcu_read_unlock();
9569 }
9570 
9571 #ifdef CONFIG_NUMA_BALANCING
9572 void show_numa_stats(struct task_struct *p, struct seq_file *m)
9573 {
9574 	int node;
9575 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9576 
9577 	for_each_online_node(node) {
9578 		if (p->numa_faults) {
9579 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9580 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9581 		}
9582 		if (p->numa_group) {
9583 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9584 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9585 		}
9586 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9587 	}
9588 }
9589 #endif /* CONFIG_NUMA_BALANCING */
9590 #endif /* CONFIG_SCHED_DEBUG */
9591 
9592 __init void init_sched_fair_class(void)
9593 {
9594 #ifdef CONFIG_SMP
9595 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9596 
9597 #ifdef CONFIG_NO_HZ_COMMON
9598 	nohz.next_balance = jiffies;
9599 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
9600 #endif
9601 #endif /* SMP */
9602 
9603 }
9604