1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 21 */ 22 23 #include <linux/latencytop.h> 24 #include <linux/sched.h> 25 #include <linux/cpumask.h> 26 #include <linux/slab.h> 27 #include <linux/profile.h> 28 #include <linux/interrupt.h> 29 #include <linux/mempolicy.h> 30 #include <linux/migrate.h> 31 #include <linux/task_work.h> 32 33 #include <trace/events/sched.h> 34 35 #include "sched.h" 36 37 /* 38 * Targeted preemption latency for CPU-bound tasks: 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 40 * 41 * NOTE: this latency value is not the same as the concept of 42 * 'timeslice length' - timeslices in CFS are of variable length 43 * and have no persistent notion like in traditional, time-slice 44 * based scheduling concepts. 45 * 46 * (to see the precise effective timeslice length of your workload, 47 * run vmstat and monitor the context-switches (cs) field) 48 */ 49 unsigned int sysctl_sched_latency = 6000000ULL; 50 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 51 52 /* 53 * The initial- and re-scaling of tunables is configurable 54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 55 * 56 * Options are: 57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 60 */ 61 enum sched_tunable_scaling sysctl_sched_tunable_scaling 62 = SCHED_TUNABLESCALING_LOG; 63 64 /* 65 * Minimal preemption granularity for CPU-bound tasks: 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 67 */ 68 unsigned int sysctl_sched_min_granularity = 750000ULL; 69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 70 71 /* 72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 73 */ 74 static unsigned int sched_nr_latency = 8; 75 76 /* 77 * After fork, child runs first. If set to 0 (default) then 78 * parent will (try to) run first. 79 */ 80 unsigned int sysctl_sched_child_runs_first __read_mostly; 81 82 /* 83 * SCHED_OTHER wake-up granularity. 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 85 * 86 * This option delays the preemption effects of decoupled workloads 87 * and reduces their over-scheduling. Synchronous workloads will still 88 * have immediate wakeup/sleep latencies. 89 */ 90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 92 93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 94 95 /* 96 * The exponential sliding window over which load is averaged for shares 97 * distribution. 98 * (default: 10msec) 99 */ 100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; 101 102 #ifdef CONFIG_CFS_BANDWIDTH 103 /* 104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 105 * each time a cfs_rq requests quota. 106 * 107 * Note: in the case that the slice exceeds the runtime remaining (either due 108 * to consumption or the quota being specified to be smaller than the slice) 109 * we will always only issue the remaining available time. 110 * 111 * default: 5 msec, units: microseconds 112 */ 113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 114 #endif 115 116 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 117 { 118 lw->weight += inc; 119 lw->inv_weight = 0; 120 } 121 122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 123 { 124 lw->weight -= dec; 125 lw->inv_weight = 0; 126 } 127 128 static inline void update_load_set(struct load_weight *lw, unsigned long w) 129 { 130 lw->weight = w; 131 lw->inv_weight = 0; 132 } 133 134 /* 135 * Increase the granularity value when there are more CPUs, 136 * because with more CPUs the 'effective latency' as visible 137 * to users decreases. But the relationship is not linear, 138 * so pick a second-best guess by going with the log2 of the 139 * number of CPUs. 140 * 141 * This idea comes from the SD scheduler of Con Kolivas: 142 */ 143 static int get_update_sysctl_factor(void) 144 { 145 unsigned int cpus = min_t(int, num_online_cpus(), 8); 146 unsigned int factor; 147 148 switch (sysctl_sched_tunable_scaling) { 149 case SCHED_TUNABLESCALING_NONE: 150 factor = 1; 151 break; 152 case SCHED_TUNABLESCALING_LINEAR: 153 factor = cpus; 154 break; 155 case SCHED_TUNABLESCALING_LOG: 156 default: 157 factor = 1 + ilog2(cpus); 158 break; 159 } 160 161 return factor; 162 } 163 164 static void update_sysctl(void) 165 { 166 unsigned int factor = get_update_sysctl_factor(); 167 168 #define SET_SYSCTL(name) \ 169 (sysctl_##name = (factor) * normalized_sysctl_##name) 170 SET_SYSCTL(sched_min_granularity); 171 SET_SYSCTL(sched_latency); 172 SET_SYSCTL(sched_wakeup_granularity); 173 #undef SET_SYSCTL 174 } 175 176 void sched_init_granularity(void) 177 { 178 update_sysctl(); 179 } 180 181 #define WMULT_CONST (~0U) 182 #define WMULT_SHIFT 32 183 184 static void __update_inv_weight(struct load_weight *lw) 185 { 186 unsigned long w; 187 188 if (likely(lw->inv_weight)) 189 return; 190 191 w = scale_load_down(lw->weight); 192 193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 194 lw->inv_weight = 1; 195 else if (unlikely(!w)) 196 lw->inv_weight = WMULT_CONST; 197 else 198 lw->inv_weight = WMULT_CONST / w; 199 } 200 201 /* 202 * delta_exec * weight / lw.weight 203 * OR 204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 205 * 206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case 207 * we're guaranteed shift stays positive because inv_weight is guaranteed to 208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 209 * 210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 211 * weight/lw.weight <= 1, and therefore our shift will also be positive. 212 */ 213 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 214 { 215 u64 fact = scale_load_down(weight); 216 int shift = WMULT_SHIFT; 217 218 __update_inv_weight(lw); 219 220 if (unlikely(fact >> 32)) { 221 while (fact >> 32) { 222 fact >>= 1; 223 shift--; 224 } 225 } 226 227 /* hint to use a 32x32->64 mul */ 228 fact = (u64)(u32)fact * lw->inv_weight; 229 230 while (fact >> 32) { 231 fact >>= 1; 232 shift--; 233 } 234 235 return mul_u64_u32_shr(delta_exec, fact, shift); 236 } 237 238 239 const struct sched_class fair_sched_class; 240 241 /************************************************************** 242 * CFS operations on generic schedulable entities: 243 */ 244 245 #ifdef CONFIG_FAIR_GROUP_SCHED 246 247 /* cpu runqueue to which this cfs_rq is attached */ 248 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 249 { 250 return cfs_rq->rq; 251 } 252 253 /* An entity is a task if it doesn't "own" a runqueue */ 254 #define entity_is_task(se) (!se->my_q) 255 256 static inline struct task_struct *task_of(struct sched_entity *se) 257 { 258 #ifdef CONFIG_SCHED_DEBUG 259 WARN_ON_ONCE(!entity_is_task(se)); 260 #endif 261 return container_of(se, struct task_struct, se); 262 } 263 264 /* Walk up scheduling entities hierarchy */ 265 #define for_each_sched_entity(se) \ 266 for (; se; se = se->parent) 267 268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 269 { 270 return p->se.cfs_rq; 271 } 272 273 /* runqueue on which this entity is (to be) queued */ 274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 275 { 276 return se->cfs_rq; 277 } 278 279 /* runqueue "owned" by this group */ 280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 281 { 282 return grp->my_q; 283 } 284 285 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 286 int force_update); 287 288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 289 { 290 if (!cfs_rq->on_list) { 291 /* 292 * Ensure we either appear before our parent (if already 293 * enqueued) or force our parent to appear after us when it is 294 * enqueued. The fact that we always enqueue bottom-up 295 * reduces this to two cases. 296 */ 297 if (cfs_rq->tg->parent && 298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { 299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 300 &rq_of(cfs_rq)->leaf_cfs_rq_list); 301 } else { 302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 303 &rq_of(cfs_rq)->leaf_cfs_rq_list); 304 } 305 306 cfs_rq->on_list = 1; 307 /* We should have no load, but we need to update last_decay. */ 308 update_cfs_rq_blocked_load(cfs_rq, 0); 309 } 310 } 311 312 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 313 { 314 if (cfs_rq->on_list) { 315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 316 cfs_rq->on_list = 0; 317 } 318 } 319 320 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 323 324 /* Do the two (enqueued) entities belong to the same group ? */ 325 static inline int 326 is_same_group(struct sched_entity *se, struct sched_entity *pse) 327 { 328 if (se->cfs_rq == pse->cfs_rq) 329 return 1; 330 331 return 0; 332 } 333 334 static inline struct sched_entity *parent_entity(struct sched_entity *se) 335 { 336 return se->parent; 337 } 338 339 /* return depth at which a sched entity is present in the hierarchy */ 340 static inline int depth_se(struct sched_entity *se) 341 { 342 int depth = 0; 343 344 for_each_sched_entity(se) 345 depth++; 346 347 return depth; 348 } 349 350 static void 351 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 352 { 353 int se_depth, pse_depth; 354 355 /* 356 * preemption test can be made between sibling entities who are in the 357 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 358 * both tasks until we find their ancestors who are siblings of common 359 * parent. 360 */ 361 362 /* First walk up until both entities are at same depth */ 363 se_depth = depth_se(*se); 364 pse_depth = depth_se(*pse); 365 366 while (se_depth > pse_depth) { 367 se_depth--; 368 *se = parent_entity(*se); 369 } 370 371 while (pse_depth > se_depth) { 372 pse_depth--; 373 *pse = parent_entity(*pse); 374 } 375 376 while (!is_same_group(*se, *pse)) { 377 *se = parent_entity(*se); 378 *pse = parent_entity(*pse); 379 } 380 } 381 382 #else /* !CONFIG_FAIR_GROUP_SCHED */ 383 384 static inline struct task_struct *task_of(struct sched_entity *se) 385 { 386 return container_of(se, struct task_struct, se); 387 } 388 389 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 390 { 391 return container_of(cfs_rq, struct rq, cfs); 392 } 393 394 #define entity_is_task(se) 1 395 396 #define for_each_sched_entity(se) \ 397 for (; se; se = NULL) 398 399 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 400 { 401 return &task_rq(p)->cfs; 402 } 403 404 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 405 { 406 struct task_struct *p = task_of(se); 407 struct rq *rq = task_rq(p); 408 409 return &rq->cfs; 410 } 411 412 /* runqueue "owned" by this group */ 413 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 414 { 415 return NULL; 416 } 417 418 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 419 { 420 } 421 422 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 423 { 424 } 425 426 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 427 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 428 429 static inline int 430 is_same_group(struct sched_entity *se, struct sched_entity *pse) 431 { 432 return 1; 433 } 434 435 static inline struct sched_entity *parent_entity(struct sched_entity *se) 436 { 437 return NULL; 438 } 439 440 static inline void 441 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 442 { 443 } 444 445 #endif /* CONFIG_FAIR_GROUP_SCHED */ 446 447 static __always_inline 448 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 449 450 /************************************************************** 451 * Scheduling class tree data structure manipulation methods: 452 */ 453 454 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 455 { 456 s64 delta = (s64)(vruntime - max_vruntime); 457 if (delta > 0) 458 max_vruntime = vruntime; 459 460 return max_vruntime; 461 } 462 463 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 464 { 465 s64 delta = (s64)(vruntime - min_vruntime); 466 if (delta < 0) 467 min_vruntime = vruntime; 468 469 return min_vruntime; 470 } 471 472 static inline int entity_before(struct sched_entity *a, 473 struct sched_entity *b) 474 { 475 return (s64)(a->vruntime - b->vruntime) < 0; 476 } 477 478 static void update_min_vruntime(struct cfs_rq *cfs_rq) 479 { 480 u64 vruntime = cfs_rq->min_vruntime; 481 482 if (cfs_rq->curr) 483 vruntime = cfs_rq->curr->vruntime; 484 485 if (cfs_rq->rb_leftmost) { 486 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 487 struct sched_entity, 488 run_node); 489 490 if (!cfs_rq->curr) 491 vruntime = se->vruntime; 492 else 493 vruntime = min_vruntime(vruntime, se->vruntime); 494 } 495 496 /* ensure we never gain time by being placed backwards. */ 497 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 498 #ifndef CONFIG_64BIT 499 smp_wmb(); 500 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 501 #endif 502 } 503 504 /* 505 * Enqueue an entity into the rb-tree: 506 */ 507 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 508 { 509 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 510 struct rb_node *parent = NULL; 511 struct sched_entity *entry; 512 int leftmost = 1; 513 514 /* 515 * Find the right place in the rbtree: 516 */ 517 while (*link) { 518 parent = *link; 519 entry = rb_entry(parent, struct sched_entity, run_node); 520 /* 521 * We dont care about collisions. Nodes with 522 * the same key stay together. 523 */ 524 if (entity_before(se, entry)) { 525 link = &parent->rb_left; 526 } else { 527 link = &parent->rb_right; 528 leftmost = 0; 529 } 530 } 531 532 /* 533 * Maintain a cache of leftmost tree entries (it is frequently 534 * used): 535 */ 536 if (leftmost) 537 cfs_rq->rb_leftmost = &se->run_node; 538 539 rb_link_node(&se->run_node, parent, link); 540 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 541 } 542 543 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 544 { 545 if (cfs_rq->rb_leftmost == &se->run_node) { 546 struct rb_node *next_node; 547 548 next_node = rb_next(&se->run_node); 549 cfs_rq->rb_leftmost = next_node; 550 } 551 552 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 553 } 554 555 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 556 { 557 struct rb_node *left = cfs_rq->rb_leftmost; 558 559 if (!left) 560 return NULL; 561 562 return rb_entry(left, struct sched_entity, run_node); 563 } 564 565 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 566 { 567 struct rb_node *next = rb_next(&se->run_node); 568 569 if (!next) 570 return NULL; 571 572 return rb_entry(next, struct sched_entity, run_node); 573 } 574 575 #ifdef CONFIG_SCHED_DEBUG 576 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 577 { 578 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 579 580 if (!last) 581 return NULL; 582 583 return rb_entry(last, struct sched_entity, run_node); 584 } 585 586 /************************************************************** 587 * Scheduling class statistics methods: 588 */ 589 590 int sched_proc_update_handler(struct ctl_table *table, int write, 591 void __user *buffer, size_t *lenp, 592 loff_t *ppos) 593 { 594 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 595 int factor = get_update_sysctl_factor(); 596 597 if (ret || !write) 598 return ret; 599 600 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 601 sysctl_sched_min_granularity); 602 603 #define WRT_SYSCTL(name) \ 604 (normalized_sysctl_##name = sysctl_##name / (factor)) 605 WRT_SYSCTL(sched_min_granularity); 606 WRT_SYSCTL(sched_latency); 607 WRT_SYSCTL(sched_wakeup_granularity); 608 #undef WRT_SYSCTL 609 610 return 0; 611 } 612 #endif 613 614 /* 615 * delta /= w 616 */ 617 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 618 { 619 if (unlikely(se->load.weight != NICE_0_LOAD)) 620 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 621 622 return delta; 623 } 624 625 /* 626 * The idea is to set a period in which each task runs once. 627 * 628 * When there are too many tasks (sched_nr_latency) we have to stretch 629 * this period because otherwise the slices get too small. 630 * 631 * p = (nr <= nl) ? l : l*nr/nl 632 */ 633 static u64 __sched_period(unsigned long nr_running) 634 { 635 u64 period = sysctl_sched_latency; 636 unsigned long nr_latency = sched_nr_latency; 637 638 if (unlikely(nr_running > nr_latency)) { 639 period = sysctl_sched_min_granularity; 640 period *= nr_running; 641 } 642 643 return period; 644 } 645 646 /* 647 * We calculate the wall-time slice from the period by taking a part 648 * proportional to the weight. 649 * 650 * s = p*P[w/rw] 651 */ 652 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 653 { 654 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 655 656 for_each_sched_entity(se) { 657 struct load_weight *load; 658 struct load_weight lw; 659 660 cfs_rq = cfs_rq_of(se); 661 load = &cfs_rq->load; 662 663 if (unlikely(!se->on_rq)) { 664 lw = cfs_rq->load; 665 666 update_load_add(&lw, se->load.weight); 667 load = &lw; 668 } 669 slice = __calc_delta(slice, se->load.weight, load); 670 } 671 return slice; 672 } 673 674 /* 675 * We calculate the vruntime slice of a to-be-inserted task. 676 * 677 * vs = s/w 678 */ 679 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 680 { 681 return calc_delta_fair(sched_slice(cfs_rq, se), se); 682 } 683 684 #ifdef CONFIG_SMP 685 static unsigned long task_h_load(struct task_struct *p); 686 687 static inline void __update_task_entity_contrib(struct sched_entity *se); 688 689 /* Give new task start runnable values to heavy its load in infant time */ 690 void init_task_runnable_average(struct task_struct *p) 691 { 692 u32 slice; 693 694 p->se.avg.decay_count = 0; 695 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10; 696 p->se.avg.runnable_avg_sum = slice; 697 p->se.avg.runnable_avg_period = slice; 698 __update_task_entity_contrib(&p->se); 699 } 700 #else 701 void init_task_runnable_average(struct task_struct *p) 702 { 703 } 704 #endif 705 706 /* 707 * Update the current task's runtime statistics. 708 */ 709 static void update_curr(struct cfs_rq *cfs_rq) 710 { 711 struct sched_entity *curr = cfs_rq->curr; 712 u64 now = rq_clock_task(rq_of(cfs_rq)); 713 u64 delta_exec; 714 715 if (unlikely(!curr)) 716 return; 717 718 delta_exec = now - curr->exec_start; 719 if (unlikely((s64)delta_exec <= 0)) 720 return; 721 722 curr->exec_start = now; 723 724 schedstat_set(curr->statistics.exec_max, 725 max(delta_exec, curr->statistics.exec_max)); 726 727 curr->sum_exec_runtime += delta_exec; 728 schedstat_add(cfs_rq, exec_clock, delta_exec); 729 730 curr->vruntime += calc_delta_fair(delta_exec, curr); 731 update_min_vruntime(cfs_rq); 732 733 if (entity_is_task(curr)) { 734 struct task_struct *curtask = task_of(curr); 735 736 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 737 cpuacct_charge(curtask, delta_exec); 738 account_group_exec_runtime(curtask, delta_exec); 739 } 740 741 account_cfs_rq_runtime(cfs_rq, delta_exec); 742 } 743 744 static inline void 745 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 746 { 747 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq))); 748 } 749 750 /* 751 * Task is being enqueued - update stats: 752 */ 753 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 754 { 755 /* 756 * Are we enqueueing a waiting task? (for current tasks 757 * a dequeue/enqueue event is a NOP) 758 */ 759 if (se != cfs_rq->curr) 760 update_stats_wait_start(cfs_rq, se); 761 } 762 763 static void 764 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 765 { 766 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, 767 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start)); 768 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); 769 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + 770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 771 #ifdef CONFIG_SCHEDSTATS 772 if (entity_is_task(se)) { 773 trace_sched_stat_wait(task_of(se), 774 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 775 } 776 #endif 777 schedstat_set(se->statistics.wait_start, 0); 778 } 779 780 static inline void 781 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 782 { 783 /* 784 * Mark the end of the wait period if dequeueing a 785 * waiting task: 786 */ 787 if (se != cfs_rq->curr) 788 update_stats_wait_end(cfs_rq, se); 789 } 790 791 /* 792 * We are picking a new current task - update its stats: 793 */ 794 static inline void 795 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 796 { 797 /* 798 * We are starting a new run period: 799 */ 800 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 801 } 802 803 /************************************************** 804 * Scheduling class queueing methods: 805 */ 806 807 #ifdef CONFIG_NUMA_BALANCING 808 /* 809 * Approximate time to scan a full NUMA task in ms. The task scan period is 810 * calculated based on the tasks virtual memory size and 811 * numa_balancing_scan_size. 812 */ 813 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 814 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 815 816 /* Portion of address space to scan in MB */ 817 unsigned int sysctl_numa_balancing_scan_size = 256; 818 819 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 820 unsigned int sysctl_numa_balancing_scan_delay = 1000; 821 822 /* 823 * After skipping a page migration on a shared page, skip N more numa page 824 * migrations unconditionally. This reduces the number of NUMA migrations 825 * in shared memory workloads, and has the effect of pulling tasks towards 826 * where their memory lives, over pulling the memory towards the task. 827 */ 828 unsigned int sysctl_numa_balancing_migrate_deferred = 16; 829 830 static unsigned int task_nr_scan_windows(struct task_struct *p) 831 { 832 unsigned long rss = 0; 833 unsigned long nr_scan_pages; 834 835 /* 836 * Calculations based on RSS as non-present and empty pages are skipped 837 * by the PTE scanner and NUMA hinting faults should be trapped based 838 * on resident pages 839 */ 840 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 841 rss = get_mm_rss(p->mm); 842 if (!rss) 843 rss = nr_scan_pages; 844 845 rss = round_up(rss, nr_scan_pages); 846 return rss / nr_scan_pages; 847 } 848 849 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 850 #define MAX_SCAN_WINDOW 2560 851 852 static unsigned int task_scan_min(struct task_struct *p) 853 { 854 unsigned int scan, floor; 855 unsigned int windows = 1; 856 857 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW) 858 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size; 859 floor = 1000 / windows; 860 861 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 862 return max_t(unsigned int, floor, scan); 863 } 864 865 static unsigned int task_scan_max(struct task_struct *p) 866 { 867 unsigned int smin = task_scan_min(p); 868 unsigned int smax; 869 870 /* Watch for min being lower than max due to floor calculations */ 871 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 872 return max(smin, smax); 873 } 874 875 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 876 { 877 rq->nr_numa_running += (p->numa_preferred_nid != -1); 878 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 879 } 880 881 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 882 { 883 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 884 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 885 } 886 887 struct numa_group { 888 atomic_t refcount; 889 890 spinlock_t lock; /* nr_tasks, tasks */ 891 int nr_tasks; 892 pid_t gid; 893 struct list_head task_list; 894 895 struct rcu_head rcu; 896 unsigned long total_faults; 897 unsigned long faults[0]; 898 }; 899 900 pid_t task_numa_group_id(struct task_struct *p) 901 { 902 return p->numa_group ? p->numa_group->gid : 0; 903 } 904 905 static inline int task_faults_idx(int nid, int priv) 906 { 907 return 2 * nid + priv; 908 } 909 910 static inline unsigned long task_faults(struct task_struct *p, int nid) 911 { 912 if (!p->numa_faults) 913 return 0; 914 915 return p->numa_faults[task_faults_idx(nid, 0)] + 916 p->numa_faults[task_faults_idx(nid, 1)]; 917 } 918 919 static inline unsigned long group_faults(struct task_struct *p, int nid) 920 { 921 if (!p->numa_group) 922 return 0; 923 924 return p->numa_group->faults[task_faults_idx(nid, 0)] + 925 p->numa_group->faults[task_faults_idx(nid, 1)]; 926 } 927 928 /* 929 * These return the fraction of accesses done by a particular task, or 930 * task group, on a particular numa node. The group weight is given a 931 * larger multiplier, in order to group tasks together that are almost 932 * evenly spread out between numa nodes. 933 */ 934 static inline unsigned long task_weight(struct task_struct *p, int nid) 935 { 936 unsigned long total_faults; 937 938 if (!p->numa_faults) 939 return 0; 940 941 total_faults = p->total_numa_faults; 942 943 if (!total_faults) 944 return 0; 945 946 return 1000 * task_faults(p, nid) / total_faults; 947 } 948 949 static inline unsigned long group_weight(struct task_struct *p, int nid) 950 { 951 if (!p->numa_group || !p->numa_group->total_faults) 952 return 0; 953 954 return 1000 * group_faults(p, nid) / p->numa_group->total_faults; 955 } 956 957 static unsigned long weighted_cpuload(const int cpu); 958 static unsigned long source_load(int cpu, int type); 959 static unsigned long target_load(int cpu, int type); 960 static unsigned long power_of(int cpu); 961 static long effective_load(struct task_group *tg, int cpu, long wl, long wg); 962 963 /* Cached statistics for all CPUs within a node */ 964 struct numa_stats { 965 unsigned long nr_running; 966 unsigned long load; 967 968 /* Total compute capacity of CPUs on a node */ 969 unsigned long power; 970 971 /* Approximate capacity in terms of runnable tasks on a node */ 972 unsigned long capacity; 973 int has_capacity; 974 }; 975 976 /* 977 * XXX borrowed from update_sg_lb_stats 978 */ 979 static void update_numa_stats(struct numa_stats *ns, int nid) 980 { 981 int cpu, cpus = 0; 982 983 memset(ns, 0, sizeof(*ns)); 984 for_each_cpu(cpu, cpumask_of_node(nid)) { 985 struct rq *rq = cpu_rq(cpu); 986 987 ns->nr_running += rq->nr_running; 988 ns->load += weighted_cpuload(cpu); 989 ns->power += power_of(cpu); 990 991 cpus++; 992 } 993 994 /* 995 * If we raced with hotplug and there are no CPUs left in our mask 996 * the @ns structure is NULL'ed and task_numa_compare() will 997 * not find this node attractive. 998 * 999 * We'll either bail at !has_capacity, or we'll detect a huge imbalance 1000 * and bail there. 1001 */ 1002 if (!cpus) 1003 return; 1004 1005 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power; 1006 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE); 1007 ns->has_capacity = (ns->nr_running < ns->capacity); 1008 } 1009 1010 struct task_numa_env { 1011 struct task_struct *p; 1012 1013 int src_cpu, src_nid; 1014 int dst_cpu, dst_nid; 1015 1016 struct numa_stats src_stats, dst_stats; 1017 1018 int imbalance_pct; 1019 1020 struct task_struct *best_task; 1021 long best_imp; 1022 int best_cpu; 1023 }; 1024 1025 static void task_numa_assign(struct task_numa_env *env, 1026 struct task_struct *p, long imp) 1027 { 1028 if (env->best_task) 1029 put_task_struct(env->best_task); 1030 if (p) 1031 get_task_struct(p); 1032 1033 env->best_task = p; 1034 env->best_imp = imp; 1035 env->best_cpu = env->dst_cpu; 1036 } 1037 1038 /* 1039 * This checks if the overall compute and NUMA accesses of the system would 1040 * be improved if the source tasks was migrated to the target dst_cpu taking 1041 * into account that it might be best if task running on the dst_cpu should 1042 * be exchanged with the source task 1043 */ 1044 static void task_numa_compare(struct task_numa_env *env, 1045 long taskimp, long groupimp) 1046 { 1047 struct rq *src_rq = cpu_rq(env->src_cpu); 1048 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1049 struct task_struct *cur; 1050 long dst_load, src_load; 1051 long load; 1052 long imp = (groupimp > 0) ? groupimp : taskimp; 1053 1054 rcu_read_lock(); 1055 cur = ACCESS_ONCE(dst_rq->curr); 1056 if (cur->pid == 0) /* idle */ 1057 cur = NULL; 1058 1059 /* 1060 * "imp" is the fault differential for the source task between the 1061 * source and destination node. Calculate the total differential for 1062 * the source task and potential destination task. The more negative 1063 * the value is, the more rmeote accesses that would be expected to 1064 * be incurred if the tasks were swapped. 1065 */ 1066 if (cur) { 1067 /* Skip this swap candidate if cannot move to the source cpu */ 1068 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur))) 1069 goto unlock; 1070 1071 /* 1072 * If dst and source tasks are in the same NUMA group, or not 1073 * in any group then look only at task weights. 1074 */ 1075 if (cur->numa_group == env->p->numa_group) { 1076 imp = taskimp + task_weight(cur, env->src_nid) - 1077 task_weight(cur, env->dst_nid); 1078 /* 1079 * Add some hysteresis to prevent swapping the 1080 * tasks within a group over tiny differences. 1081 */ 1082 if (cur->numa_group) 1083 imp -= imp/16; 1084 } else { 1085 /* 1086 * Compare the group weights. If a task is all by 1087 * itself (not part of a group), use the task weight 1088 * instead. 1089 */ 1090 if (env->p->numa_group) 1091 imp = groupimp; 1092 else 1093 imp = taskimp; 1094 1095 if (cur->numa_group) 1096 imp += group_weight(cur, env->src_nid) - 1097 group_weight(cur, env->dst_nid); 1098 else 1099 imp += task_weight(cur, env->src_nid) - 1100 task_weight(cur, env->dst_nid); 1101 } 1102 } 1103 1104 if (imp < env->best_imp) 1105 goto unlock; 1106 1107 if (!cur) { 1108 /* Is there capacity at our destination? */ 1109 if (env->src_stats.has_capacity && 1110 !env->dst_stats.has_capacity) 1111 goto unlock; 1112 1113 goto balance; 1114 } 1115 1116 /* Balance doesn't matter much if we're running a task per cpu */ 1117 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1) 1118 goto assign; 1119 1120 /* 1121 * In the overloaded case, try and keep the load balanced. 1122 */ 1123 balance: 1124 dst_load = env->dst_stats.load; 1125 src_load = env->src_stats.load; 1126 1127 /* XXX missing power terms */ 1128 load = task_h_load(env->p); 1129 dst_load += load; 1130 src_load -= load; 1131 1132 if (cur) { 1133 load = task_h_load(cur); 1134 dst_load -= load; 1135 src_load += load; 1136 } 1137 1138 /* make src_load the smaller */ 1139 if (dst_load < src_load) 1140 swap(dst_load, src_load); 1141 1142 if (src_load * env->imbalance_pct < dst_load * 100) 1143 goto unlock; 1144 1145 assign: 1146 task_numa_assign(env, cur, imp); 1147 unlock: 1148 rcu_read_unlock(); 1149 } 1150 1151 static void task_numa_find_cpu(struct task_numa_env *env, 1152 long taskimp, long groupimp) 1153 { 1154 int cpu; 1155 1156 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1157 /* Skip this CPU if the source task cannot migrate */ 1158 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p))) 1159 continue; 1160 1161 env->dst_cpu = cpu; 1162 task_numa_compare(env, taskimp, groupimp); 1163 } 1164 } 1165 1166 static int task_numa_migrate(struct task_struct *p) 1167 { 1168 struct task_numa_env env = { 1169 .p = p, 1170 1171 .src_cpu = task_cpu(p), 1172 .src_nid = task_node(p), 1173 1174 .imbalance_pct = 112, 1175 1176 .best_task = NULL, 1177 .best_imp = 0, 1178 .best_cpu = -1 1179 }; 1180 struct sched_domain *sd; 1181 unsigned long taskweight, groupweight; 1182 int nid, ret; 1183 long taskimp, groupimp; 1184 1185 /* 1186 * Pick the lowest SD_NUMA domain, as that would have the smallest 1187 * imbalance and would be the first to start moving tasks about. 1188 * 1189 * And we want to avoid any moving of tasks about, as that would create 1190 * random movement of tasks -- counter the numa conditions we're trying 1191 * to satisfy here. 1192 */ 1193 rcu_read_lock(); 1194 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1195 if (sd) 1196 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1197 rcu_read_unlock(); 1198 1199 /* 1200 * Cpusets can break the scheduler domain tree into smaller 1201 * balance domains, some of which do not cross NUMA boundaries. 1202 * Tasks that are "trapped" in such domains cannot be migrated 1203 * elsewhere, so there is no point in (re)trying. 1204 */ 1205 if (unlikely(!sd)) { 1206 p->numa_preferred_nid = task_node(p); 1207 return -EINVAL; 1208 } 1209 1210 taskweight = task_weight(p, env.src_nid); 1211 groupweight = group_weight(p, env.src_nid); 1212 update_numa_stats(&env.src_stats, env.src_nid); 1213 env.dst_nid = p->numa_preferred_nid; 1214 taskimp = task_weight(p, env.dst_nid) - taskweight; 1215 groupimp = group_weight(p, env.dst_nid) - groupweight; 1216 update_numa_stats(&env.dst_stats, env.dst_nid); 1217 1218 /* If the preferred nid has capacity, try to use it. */ 1219 if (env.dst_stats.has_capacity) 1220 task_numa_find_cpu(&env, taskimp, groupimp); 1221 1222 /* No space available on the preferred nid. Look elsewhere. */ 1223 if (env.best_cpu == -1) { 1224 for_each_online_node(nid) { 1225 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1226 continue; 1227 1228 /* Only consider nodes where both task and groups benefit */ 1229 taskimp = task_weight(p, nid) - taskweight; 1230 groupimp = group_weight(p, nid) - groupweight; 1231 if (taskimp < 0 && groupimp < 0) 1232 continue; 1233 1234 env.dst_nid = nid; 1235 update_numa_stats(&env.dst_stats, env.dst_nid); 1236 task_numa_find_cpu(&env, taskimp, groupimp); 1237 } 1238 } 1239 1240 /* No better CPU than the current one was found. */ 1241 if (env.best_cpu == -1) 1242 return -EAGAIN; 1243 1244 sched_setnuma(p, env.dst_nid); 1245 1246 /* 1247 * Reset the scan period if the task is being rescheduled on an 1248 * alternative node to recheck if the tasks is now properly placed. 1249 */ 1250 p->numa_scan_period = task_scan_min(p); 1251 1252 if (env.best_task == NULL) { 1253 ret = migrate_task_to(p, env.best_cpu); 1254 if (ret != 0) 1255 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1256 return ret; 1257 } 1258 1259 ret = migrate_swap(p, env.best_task); 1260 if (ret != 0) 1261 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1262 put_task_struct(env.best_task); 1263 return ret; 1264 } 1265 1266 /* Attempt to migrate a task to a CPU on the preferred node. */ 1267 static void numa_migrate_preferred(struct task_struct *p) 1268 { 1269 /* This task has no NUMA fault statistics yet */ 1270 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1271 return; 1272 1273 /* Periodically retry migrating the task to the preferred node */ 1274 p->numa_migrate_retry = jiffies + HZ; 1275 1276 /* Success if task is already running on preferred CPU */ 1277 if (task_node(p) == p->numa_preferred_nid) 1278 return; 1279 1280 /* Otherwise, try migrate to a CPU on the preferred node */ 1281 task_numa_migrate(p); 1282 } 1283 1284 /* 1285 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1286 * increments. The more local the fault statistics are, the higher the scan 1287 * period will be for the next scan window. If local/remote ratio is below 1288 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the 1289 * scan period will decrease 1290 */ 1291 #define NUMA_PERIOD_SLOTS 10 1292 #define NUMA_PERIOD_THRESHOLD 3 1293 1294 /* 1295 * Increase the scan period (slow down scanning) if the majority of 1296 * our memory is already on our local node, or if the majority of 1297 * the page accesses are shared with other processes. 1298 * Otherwise, decrease the scan period. 1299 */ 1300 static void update_task_scan_period(struct task_struct *p, 1301 unsigned long shared, unsigned long private) 1302 { 1303 unsigned int period_slot; 1304 int ratio; 1305 int diff; 1306 1307 unsigned long remote = p->numa_faults_locality[0]; 1308 unsigned long local = p->numa_faults_locality[1]; 1309 1310 /* 1311 * If there were no record hinting faults then either the task is 1312 * completely idle or all activity is areas that are not of interest 1313 * to automatic numa balancing. Scan slower 1314 */ 1315 if (local + shared == 0) { 1316 p->numa_scan_period = min(p->numa_scan_period_max, 1317 p->numa_scan_period << 1); 1318 1319 p->mm->numa_next_scan = jiffies + 1320 msecs_to_jiffies(p->numa_scan_period); 1321 1322 return; 1323 } 1324 1325 /* 1326 * Prepare to scale scan period relative to the current period. 1327 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1328 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1329 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1330 */ 1331 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1332 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1333 if (ratio >= NUMA_PERIOD_THRESHOLD) { 1334 int slot = ratio - NUMA_PERIOD_THRESHOLD; 1335 if (!slot) 1336 slot = 1; 1337 diff = slot * period_slot; 1338 } else { 1339 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1340 1341 /* 1342 * Scale scan rate increases based on sharing. There is an 1343 * inverse relationship between the degree of sharing and 1344 * the adjustment made to the scanning period. Broadly 1345 * speaking the intent is that there is little point 1346 * scanning faster if shared accesses dominate as it may 1347 * simply bounce migrations uselessly 1348 */ 1349 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared)); 1350 diff = (diff * ratio) / NUMA_PERIOD_SLOTS; 1351 } 1352 1353 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1354 task_scan_min(p), task_scan_max(p)); 1355 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1356 } 1357 1358 static void task_numa_placement(struct task_struct *p) 1359 { 1360 int seq, nid, max_nid = -1, max_group_nid = -1; 1361 unsigned long max_faults = 0, max_group_faults = 0; 1362 unsigned long fault_types[2] = { 0, 0 }; 1363 spinlock_t *group_lock = NULL; 1364 1365 seq = ACCESS_ONCE(p->mm->numa_scan_seq); 1366 if (p->numa_scan_seq == seq) 1367 return; 1368 p->numa_scan_seq = seq; 1369 p->numa_scan_period_max = task_scan_max(p); 1370 1371 /* If the task is part of a group prevent parallel updates to group stats */ 1372 if (p->numa_group) { 1373 group_lock = &p->numa_group->lock; 1374 spin_lock(group_lock); 1375 } 1376 1377 /* Find the node with the highest number of faults */ 1378 for_each_online_node(nid) { 1379 unsigned long faults = 0, group_faults = 0; 1380 int priv, i; 1381 1382 for (priv = 0; priv < 2; priv++) { 1383 long diff; 1384 1385 i = task_faults_idx(nid, priv); 1386 diff = -p->numa_faults[i]; 1387 1388 /* Decay existing window, copy faults since last scan */ 1389 p->numa_faults[i] >>= 1; 1390 p->numa_faults[i] += p->numa_faults_buffer[i]; 1391 fault_types[priv] += p->numa_faults_buffer[i]; 1392 p->numa_faults_buffer[i] = 0; 1393 1394 faults += p->numa_faults[i]; 1395 diff += p->numa_faults[i]; 1396 p->total_numa_faults += diff; 1397 if (p->numa_group) { 1398 /* safe because we can only change our own group */ 1399 p->numa_group->faults[i] += diff; 1400 p->numa_group->total_faults += diff; 1401 group_faults += p->numa_group->faults[i]; 1402 } 1403 } 1404 1405 if (faults > max_faults) { 1406 max_faults = faults; 1407 max_nid = nid; 1408 } 1409 1410 if (group_faults > max_group_faults) { 1411 max_group_faults = group_faults; 1412 max_group_nid = nid; 1413 } 1414 } 1415 1416 update_task_scan_period(p, fault_types[0], fault_types[1]); 1417 1418 if (p->numa_group) { 1419 /* 1420 * If the preferred task and group nids are different, 1421 * iterate over the nodes again to find the best place. 1422 */ 1423 if (max_nid != max_group_nid) { 1424 unsigned long weight, max_weight = 0; 1425 1426 for_each_online_node(nid) { 1427 weight = task_weight(p, nid) + group_weight(p, nid); 1428 if (weight > max_weight) { 1429 max_weight = weight; 1430 max_nid = nid; 1431 } 1432 } 1433 } 1434 1435 spin_unlock(group_lock); 1436 } 1437 1438 /* Preferred node as the node with the most faults */ 1439 if (max_faults && max_nid != p->numa_preferred_nid) { 1440 /* Update the preferred nid and migrate task if possible */ 1441 sched_setnuma(p, max_nid); 1442 numa_migrate_preferred(p); 1443 } 1444 } 1445 1446 static inline int get_numa_group(struct numa_group *grp) 1447 { 1448 return atomic_inc_not_zero(&grp->refcount); 1449 } 1450 1451 static inline void put_numa_group(struct numa_group *grp) 1452 { 1453 if (atomic_dec_and_test(&grp->refcount)) 1454 kfree_rcu(grp, rcu); 1455 } 1456 1457 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 1458 int *priv) 1459 { 1460 struct numa_group *grp, *my_grp; 1461 struct task_struct *tsk; 1462 bool join = false; 1463 int cpu = cpupid_to_cpu(cpupid); 1464 int i; 1465 1466 if (unlikely(!p->numa_group)) { 1467 unsigned int size = sizeof(struct numa_group) + 1468 2*nr_node_ids*sizeof(unsigned long); 1469 1470 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 1471 if (!grp) 1472 return; 1473 1474 atomic_set(&grp->refcount, 1); 1475 spin_lock_init(&grp->lock); 1476 INIT_LIST_HEAD(&grp->task_list); 1477 grp->gid = p->pid; 1478 1479 for (i = 0; i < 2*nr_node_ids; i++) 1480 grp->faults[i] = p->numa_faults[i]; 1481 1482 grp->total_faults = p->total_numa_faults; 1483 1484 list_add(&p->numa_entry, &grp->task_list); 1485 grp->nr_tasks++; 1486 rcu_assign_pointer(p->numa_group, grp); 1487 } 1488 1489 rcu_read_lock(); 1490 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr); 1491 1492 if (!cpupid_match_pid(tsk, cpupid)) 1493 goto no_join; 1494 1495 grp = rcu_dereference(tsk->numa_group); 1496 if (!grp) 1497 goto no_join; 1498 1499 my_grp = p->numa_group; 1500 if (grp == my_grp) 1501 goto no_join; 1502 1503 /* 1504 * Only join the other group if its bigger; if we're the bigger group, 1505 * the other task will join us. 1506 */ 1507 if (my_grp->nr_tasks > grp->nr_tasks) 1508 goto no_join; 1509 1510 /* 1511 * Tie-break on the grp address. 1512 */ 1513 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 1514 goto no_join; 1515 1516 /* Always join threads in the same process. */ 1517 if (tsk->mm == current->mm) 1518 join = true; 1519 1520 /* Simple filter to avoid false positives due to PID collisions */ 1521 if (flags & TNF_SHARED) 1522 join = true; 1523 1524 /* Update priv based on whether false sharing was detected */ 1525 *priv = !join; 1526 1527 if (join && !get_numa_group(grp)) 1528 goto no_join; 1529 1530 rcu_read_unlock(); 1531 1532 if (!join) 1533 return; 1534 1535 double_lock(&my_grp->lock, &grp->lock); 1536 1537 for (i = 0; i < 2*nr_node_ids; i++) { 1538 my_grp->faults[i] -= p->numa_faults[i]; 1539 grp->faults[i] += p->numa_faults[i]; 1540 } 1541 my_grp->total_faults -= p->total_numa_faults; 1542 grp->total_faults += p->total_numa_faults; 1543 1544 list_move(&p->numa_entry, &grp->task_list); 1545 my_grp->nr_tasks--; 1546 grp->nr_tasks++; 1547 1548 spin_unlock(&my_grp->lock); 1549 spin_unlock(&grp->lock); 1550 1551 rcu_assign_pointer(p->numa_group, grp); 1552 1553 put_numa_group(my_grp); 1554 return; 1555 1556 no_join: 1557 rcu_read_unlock(); 1558 return; 1559 } 1560 1561 void task_numa_free(struct task_struct *p) 1562 { 1563 struct numa_group *grp = p->numa_group; 1564 int i; 1565 void *numa_faults = p->numa_faults; 1566 1567 if (grp) { 1568 spin_lock(&grp->lock); 1569 for (i = 0; i < 2*nr_node_ids; i++) 1570 grp->faults[i] -= p->numa_faults[i]; 1571 grp->total_faults -= p->total_numa_faults; 1572 1573 list_del(&p->numa_entry); 1574 grp->nr_tasks--; 1575 spin_unlock(&grp->lock); 1576 rcu_assign_pointer(p->numa_group, NULL); 1577 put_numa_group(grp); 1578 } 1579 1580 p->numa_faults = NULL; 1581 p->numa_faults_buffer = NULL; 1582 kfree(numa_faults); 1583 } 1584 1585 /* 1586 * Got a PROT_NONE fault for a page on @node. 1587 */ 1588 void task_numa_fault(int last_cpupid, int node, int pages, int flags) 1589 { 1590 struct task_struct *p = current; 1591 bool migrated = flags & TNF_MIGRATED; 1592 int priv; 1593 1594 if (!numabalancing_enabled) 1595 return; 1596 1597 /* for example, ksmd faulting in a user's mm */ 1598 if (!p->mm) 1599 return; 1600 1601 /* Do not worry about placement if exiting */ 1602 if (p->state == TASK_DEAD) 1603 return; 1604 1605 /* Allocate buffer to track faults on a per-node basis */ 1606 if (unlikely(!p->numa_faults)) { 1607 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids; 1608 1609 /* numa_faults and numa_faults_buffer share the allocation */ 1610 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN); 1611 if (!p->numa_faults) 1612 return; 1613 1614 BUG_ON(p->numa_faults_buffer); 1615 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids); 1616 p->total_numa_faults = 0; 1617 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1618 } 1619 1620 /* 1621 * First accesses are treated as private, otherwise consider accesses 1622 * to be private if the accessing pid has not changed 1623 */ 1624 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 1625 priv = 1; 1626 } else { 1627 priv = cpupid_match_pid(p, last_cpupid); 1628 if (!priv && !(flags & TNF_NO_GROUP)) 1629 task_numa_group(p, last_cpupid, flags, &priv); 1630 } 1631 1632 task_numa_placement(p); 1633 1634 /* 1635 * Retry task to preferred node migration periodically, in case it 1636 * case it previously failed, or the scheduler moved us. 1637 */ 1638 if (time_after(jiffies, p->numa_migrate_retry)) 1639 numa_migrate_preferred(p); 1640 1641 if (migrated) 1642 p->numa_pages_migrated += pages; 1643 1644 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages; 1645 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages; 1646 } 1647 1648 static void reset_ptenuma_scan(struct task_struct *p) 1649 { 1650 ACCESS_ONCE(p->mm->numa_scan_seq)++; 1651 p->mm->numa_scan_offset = 0; 1652 } 1653 1654 /* 1655 * The expensive part of numa migration is done from task_work context. 1656 * Triggered from task_tick_numa(). 1657 */ 1658 void task_numa_work(struct callback_head *work) 1659 { 1660 unsigned long migrate, next_scan, now = jiffies; 1661 struct task_struct *p = current; 1662 struct mm_struct *mm = p->mm; 1663 struct vm_area_struct *vma; 1664 unsigned long start, end; 1665 unsigned long nr_pte_updates = 0; 1666 long pages; 1667 1668 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 1669 1670 work->next = work; /* protect against double add */ 1671 /* 1672 * Who cares about NUMA placement when they're dying. 1673 * 1674 * NOTE: make sure not to dereference p->mm before this check, 1675 * exit_task_work() happens _after_ exit_mm() so we could be called 1676 * without p->mm even though we still had it when we enqueued this 1677 * work. 1678 */ 1679 if (p->flags & PF_EXITING) 1680 return; 1681 1682 if (!mm->numa_next_scan) { 1683 mm->numa_next_scan = now + 1684 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1685 } 1686 1687 /* 1688 * Enforce maximal scan/migration frequency.. 1689 */ 1690 migrate = mm->numa_next_scan; 1691 if (time_before(now, migrate)) 1692 return; 1693 1694 if (p->numa_scan_period == 0) { 1695 p->numa_scan_period_max = task_scan_max(p); 1696 p->numa_scan_period = task_scan_min(p); 1697 } 1698 1699 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 1700 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 1701 return; 1702 1703 /* 1704 * Delay this task enough that another task of this mm will likely win 1705 * the next time around. 1706 */ 1707 p->node_stamp += 2 * TICK_NSEC; 1708 1709 start = mm->numa_scan_offset; 1710 pages = sysctl_numa_balancing_scan_size; 1711 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 1712 if (!pages) 1713 return; 1714 1715 down_read(&mm->mmap_sem); 1716 vma = find_vma(mm, start); 1717 if (!vma) { 1718 reset_ptenuma_scan(p); 1719 start = 0; 1720 vma = mm->mmap; 1721 } 1722 for (; vma; vma = vma->vm_next) { 1723 if (!vma_migratable(vma) || !vma_policy_mof(p, vma)) 1724 continue; 1725 1726 /* 1727 * Shared library pages mapped by multiple processes are not 1728 * migrated as it is expected they are cache replicated. Avoid 1729 * hinting faults in read-only file-backed mappings or the vdso 1730 * as migrating the pages will be of marginal benefit. 1731 */ 1732 if (!vma->vm_mm || 1733 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 1734 continue; 1735 1736 /* 1737 * Skip inaccessible VMAs to avoid any confusion between 1738 * PROT_NONE and NUMA hinting ptes 1739 */ 1740 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 1741 continue; 1742 1743 do { 1744 start = max(start, vma->vm_start); 1745 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 1746 end = min(end, vma->vm_end); 1747 nr_pte_updates += change_prot_numa(vma, start, end); 1748 1749 /* 1750 * Scan sysctl_numa_balancing_scan_size but ensure that 1751 * at least one PTE is updated so that unused virtual 1752 * address space is quickly skipped. 1753 */ 1754 if (nr_pte_updates) 1755 pages -= (end - start) >> PAGE_SHIFT; 1756 1757 start = end; 1758 if (pages <= 0) 1759 goto out; 1760 } while (end != vma->vm_end); 1761 } 1762 1763 out: 1764 /* 1765 * It is possible to reach the end of the VMA list but the last few 1766 * VMAs are not guaranteed to the vma_migratable. If they are not, we 1767 * would find the !migratable VMA on the next scan but not reset the 1768 * scanner to the start so check it now. 1769 */ 1770 if (vma) 1771 mm->numa_scan_offset = start; 1772 else 1773 reset_ptenuma_scan(p); 1774 up_read(&mm->mmap_sem); 1775 } 1776 1777 /* 1778 * Drive the periodic memory faults.. 1779 */ 1780 void task_tick_numa(struct rq *rq, struct task_struct *curr) 1781 { 1782 struct callback_head *work = &curr->numa_work; 1783 u64 period, now; 1784 1785 /* 1786 * We don't care about NUMA placement if we don't have memory. 1787 */ 1788 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 1789 return; 1790 1791 /* 1792 * Using runtime rather than walltime has the dual advantage that 1793 * we (mostly) drive the selection from busy threads and that the 1794 * task needs to have done some actual work before we bother with 1795 * NUMA placement. 1796 */ 1797 now = curr->se.sum_exec_runtime; 1798 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 1799 1800 if (now - curr->node_stamp > period) { 1801 if (!curr->node_stamp) 1802 curr->numa_scan_period = task_scan_min(curr); 1803 curr->node_stamp += period; 1804 1805 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 1806 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 1807 task_work_add(curr, work, true); 1808 } 1809 } 1810 } 1811 #else 1812 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 1813 { 1814 } 1815 1816 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1817 { 1818 } 1819 1820 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1821 { 1822 } 1823 #endif /* CONFIG_NUMA_BALANCING */ 1824 1825 static void 1826 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 1827 { 1828 update_load_add(&cfs_rq->load, se->load.weight); 1829 if (!parent_entity(se)) 1830 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 1831 #ifdef CONFIG_SMP 1832 if (entity_is_task(se)) { 1833 struct rq *rq = rq_of(cfs_rq); 1834 1835 account_numa_enqueue(rq, task_of(se)); 1836 list_add(&se->group_node, &rq->cfs_tasks); 1837 } 1838 #endif 1839 cfs_rq->nr_running++; 1840 } 1841 1842 static void 1843 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 1844 { 1845 update_load_sub(&cfs_rq->load, se->load.weight); 1846 if (!parent_entity(se)) 1847 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 1848 if (entity_is_task(se)) { 1849 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 1850 list_del_init(&se->group_node); 1851 } 1852 cfs_rq->nr_running--; 1853 } 1854 1855 #ifdef CONFIG_FAIR_GROUP_SCHED 1856 # ifdef CONFIG_SMP 1857 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) 1858 { 1859 long tg_weight; 1860 1861 /* 1862 * Use this CPU's actual weight instead of the last load_contribution 1863 * to gain a more accurate current total weight. See 1864 * update_cfs_rq_load_contribution(). 1865 */ 1866 tg_weight = atomic_long_read(&tg->load_avg); 1867 tg_weight -= cfs_rq->tg_load_contrib; 1868 tg_weight += cfs_rq->load.weight; 1869 1870 return tg_weight; 1871 } 1872 1873 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 1874 { 1875 long tg_weight, load, shares; 1876 1877 tg_weight = calc_tg_weight(tg, cfs_rq); 1878 load = cfs_rq->load.weight; 1879 1880 shares = (tg->shares * load); 1881 if (tg_weight) 1882 shares /= tg_weight; 1883 1884 if (shares < MIN_SHARES) 1885 shares = MIN_SHARES; 1886 if (shares > tg->shares) 1887 shares = tg->shares; 1888 1889 return shares; 1890 } 1891 # else /* CONFIG_SMP */ 1892 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 1893 { 1894 return tg->shares; 1895 } 1896 # endif /* CONFIG_SMP */ 1897 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 1898 unsigned long weight) 1899 { 1900 if (se->on_rq) { 1901 /* commit outstanding execution time */ 1902 if (cfs_rq->curr == se) 1903 update_curr(cfs_rq); 1904 account_entity_dequeue(cfs_rq, se); 1905 } 1906 1907 update_load_set(&se->load, weight); 1908 1909 if (se->on_rq) 1910 account_entity_enqueue(cfs_rq, se); 1911 } 1912 1913 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 1914 1915 static void update_cfs_shares(struct cfs_rq *cfs_rq) 1916 { 1917 struct task_group *tg; 1918 struct sched_entity *se; 1919 long shares; 1920 1921 tg = cfs_rq->tg; 1922 se = tg->se[cpu_of(rq_of(cfs_rq))]; 1923 if (!se || throttled_hierarchy(cfs_rq)) 1924 return; 1925 #ifndef CONFIG_SMP 1926 if (likely(se->load.weight == tg->shares)) 1927 return; 1928 #endif 1929 shares = calc_cfs_shares(cfs_rq, tg); 1930 1931 reweight_entity(cfs_rq_of(se), se, shares); 1932 } 1933 #else /* CONFIG_FAIR_GROUP_SCHED */ 1934 static inline void update_cfs_shares(struct cfs_rq *cfs_rq) 1935 { 1936 } 1937 #endif /* CONFIG_FAIR_GROUP_SCHED */ 1938 1939 #ifdef CONFIG_SMP 1940 /* 1941 * We choose a half-life close to 1 scheduling period. 1942 * Note: The tables below are dependent on this value. 1943 */ 1944 #define LOAD_AVG_PERIOD 32 1945 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ 1946 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */ 1947 1948 /* Precomputed fixed inverse multiplies for multiplication by y^n */ 1949 static const u32 runnable_avg_yN_inv[] = { 1950 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, 1951 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, 1952 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, 1953 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, 1954 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, 1955 0x85aac367, 0x82cd8698, 1956 }; 1957 1958 /* 1959 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent 1960 * over-estimates when re-combining. 1961 */ 1962 static const u32 runnable_avg_yN_sum[] = { 1963 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, 1964 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, 1965 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, 1966 }; 1967 1968 /* 1969 * Approximate: 1970 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 1971 */ 1972 static __always_inline u64 decay_load(u64 val, u64 n) 1973 { 1974 unsigned int local_n; 1975 1976 if (!n) 1977 return val; 1978 else if (unlikely(n > LOAD_AVG_PERIOD * 63)) 1979 return 0; 1980 1981 /* after bounds checking we can collapse to 32-bit */ 1982 local_n = n; 1983 1984 /* 1985 * As y^PERIOD = 1/2, we can combine 1986 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD) 1987 * With a look-up table which covers k^n (n<PERIOD) 1988 * 1989 * To achieve constant time decay_load. 1990 */ 1991 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 1992 val >>= local_n / LOAD_AVG_PERIOD; 1993 local_n %= LOAD_AVG_PERIOD; 1994 } 1995 1996 val *= runnable_avg_yN_inv[local_n]; 1997 /* We don't use SRR here since we always want to round down. */ 1998 return val >> 32; 1999 } 2000 2001 /* 2002 * For updates fully spanning n periods, the contribution to runnable 2003 * average will be: \Sum 1024*y^n 2004 * 2005 * We can compute this reasonably efficiently by combining: 2006 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD} 2007 */ 2008 static u32 __compute_runnable_contrib(u64 n) 2009 { 2010 u32 contrib = 0; 2011 2012 if (likely(n <= LOAD_AVG_PERIOD)) 2013 return runnable_avg_yN_sum[n]; 2014 else if (unlikely(n >= LOAD_AVG_MAX_N)) 2015 return LOAD_AVG_MAX; 2016 2017 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */ 2018 do { 2019 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */ 2020 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD]; 2021 2022 n -= LOAD_AVG_PERIOD; 2023 } while (n > LOAD_AVG_PERIOD); 2024 2025 contrib = decay_load(contrib, n); 2026 return contrib + runnable_avg_yN_sum[n]; 2027 } 2028 2029 /* 2030 * We can represent the historical contribution to runnable average as the 2031 * coefficients of a geometric series. To do this we sub-divide our runnable 2032 * history into segments of approximately 1ms (1024us); label the segment that 2033 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 2034 * 2035 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 2036 * p0 p1 p2 2037 * (now) (~1ms ago) (~2ms ago) 2038 * 2039 * Let u_i denote the fraction of p_i that the entity was runnable. 2040 * 2041 * We then designate the fractions u_i as our co-efficients, yielding the 2042 * following representation of historical load: 2043 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 2044 * 2045 * We choose y based on the with of a reasonably scheduling period, fixing: 2046 * y^32 = 0.5 2047 * 2048 * This means that the contribution to load ~32ms ago (u_32) will be weighted 2049 * approximately half as much as the contribution to load within the last ms 2050 * (u_0). 2051 * 2052 * When a period "rolls over" and we have new u_0`, multiplying the previous 2053 * sum again by y is sufficient to update: 2054 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 2055 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 2056 */ 2057 static __always_inline int __update_entity_runnable_avg(u64 now, 2058 struct sched_avg *sa, 2059 int runnable) 2060 { 2061 u64 delta, periods; 2062 u32 runnable_contrib; 2063 int delta_w, decayed = 0; 2064 2065 delta = now - sa->last_runnable_update; 2066 /* 2067 * This should only happen when time goes backwards, which it 2068 * unfortunately does during sched clock init when we swap over to TSC. 2069 */ 2070 if ((s64)delta < 0) { 2071 sa->last_runnable_update = now; 2072 return 0; 2073 } 2074 2075 /* 2076 * Use 1024ns as the unit of measurement since it's a reasonable 2077 * approximation of 1us and fast to compute. 2078 */ 2079 delta >>= 10; 2080 if (!delta) 2081 return 0; 2082 sa->last_runnable_update = now; 2083 2084 /* delta_w is the amount already accumulated against our next period */ 2085 delta_w = sa->runnable_avg_period % 1024; 2086 if (delta + delta_w >= 1024) { 2087 /* period roll-over */ 2088 decayed = 1; 2089 2090 /* 2091 * Now that we know we're crossing a period boundary, figure 2092 * out how much from delta we need to complete the current 2093 * period and accrue it. 2094 */ 2095 delta_w = 1024 - delta_w; 2096 if (runnable) 2097 sa->runnable_avg_sum += delta_w; 2098 sa->runnable_avg_period += delta_w; 2099 2100 delta -= delta_w; 2101 2102 /* Figure out how many additional periods this update spans */ 2103 periods = delta / 1024; 2104 delta %= 1024; 2105 2106 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum, 2107 periods + 1); 2108 sa->runnable_avg_period = decay_load(sa->runnable_avg_period, 2109 periods + 1); 2110 2111 /* Efficiently calculate \sum (1..n_period) 1024*y^i */ 2112 runnable_contrib = __compute_runnable_contrib(periods); 2113 if (runnable) 2114 sa->runnable_avg_sum += runnable_contrib; 2115 sa->runnable_avg_period += runnable_contrib; 2116 } 2117 2118 /* Remainder of delta accrued against u_0` */ 2119 if (runnable) 2120 sa->runnable_avg_sum += delta; 2121 sa->runnable_avg_period += delta; 2122 2123 return decayed; 2124 } 2125 2126 /* Synchronize an entity's decay with its parenting cfs_rq.*/ 2127 static inline u64 __synchronize_entity_decay(struct sched_entity *se) 2128 { 2129 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2130 u64 decays = atomic64_read(&cfs_rq->decay_counter); 2131 2132 decays -= se->avg.decay_count; 2133 if (!decays) 2134 return 0; 2135 2136 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays); 2137 se->avg.decay_count = 0; 2138 2139 return decays; 2140 } 2141 2142 #ifdef CONFIG_FAIR_GROUP_SCHED 2143 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 2144 int force_update) 2145 { 2146 struct task_group *tg = cfs_rq->tg; 2147 long tg_contrib; 2148 2149 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg; 2150 tg_contrib -= cfs_rq->tg_load_contrib; 2151 2152 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) { 2153 atomic_long_add(tg_contrib, &tg->load_avg); 2154 cfs_rq->tg_load_contrib += tg_contrib; 2155 } 2156 } 2157 2158 /* 2159 * Aggregate cfs_rq runnable averages into an equivalent task_group 2160 * representation for computing load contributions. 2161 */ 2162 static inline void __update_tg_runnable_avg(struct sched_avg *sa, 2163 struct cfs_rq *cfs_rq) 2164 { 2165 struct task_group *tg = cfs_rq->tg; 2166 long contrib; 2167 2168 /* The fraction of a cpu used by this cfs_rq */ 2169 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT, 2170 sa->runnable_avg_period + 1); 2171 contrib -= cfs_rq->tg_runnable_contrib; 2172 2173 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) { 2174 atomic_add(contrib, &tg->runnable_avg); 2175 cfs_rq->tg_runnable_contrib += contrib; 2176 } 2177 } 2178 2179 static inline void __update_group_entity_contrib(struct sched_entity *se) 2180 { 2181 struct cfs_rq *cfs_rq = group_cfs_rq(se); 2182 struct task_group *tg = cfs_rq->tg; 2183 int runnable_avg; 2184 2185 u64 contrib; 2186 2187 contrib = cfs_rq->tg_load_contrib * tg->shares; 2188 se->avg.load_avg_contrib = div_u64(contrib, 2189 atomic_long_read(&tg->load_avg) + 1); 2190 2191 /* 2192 * For group entities we need to compute a correction term in the case 2193 * that they are consuming <1 cpu so that we would contribute the same 2194 * load as a task of equal weight. 2195 * 2196 * Explicitly co-ordinating this measurement would be expensive, but 2197 * fortunately the sum of each cpus contribution forms a usable 2198 * lower-bound on the true value. 2199 * 2200 * Consider the aggregate of 2 contributions. Either they are disjoint 2201 * (and the sum represents true value) or they are disjoint and we are 2202 * understating by the aggregate of their overlap. 2203 * 2204 * Extending this to N cpus, for a given overlap, the maximum amount we 2205 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of 2206 * cpus that overlap for this interval and w_i is the interval width. 2207 * 2208 * On a small machine; the first term is well-bounded which bounds the 2209 * total error since w_i is a subset of the period. Whereas on a 2210 * larger machine, while this first term can be larger, if w_i is the 2211 * of consequential size guaranteed to see n_i*w_i quickly converge to 2212 * our upper bound of 1-cpu. 2213 */ 2214 runnable_avg = atomic_read(&tg->runnable_avg); 2215 if (runnable_avg < NICE_0_LOAD) { 2216 se->avg.load_avg_contrib *= runnable_avg; 2217 se->avg.load_avg_contrib >>= NICE_0_SHIFT; 2218 } 2219 } 2220 #else 2221 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 2222 int force_update) {} 2223 static inline void __update_tg_runnable_avg(struct sched_avg *sa, 2224 struct cfs_rq *cfs_rq) {} 2225 static inline void __update_group_entity_contrib(struct sched_entity *se) {} 2226 #endif 2227 2228 static inline void __update_task_entity_contrib(struct sched_entity *se) 2229 { 2230 u32 contrib; 2231 2232 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */ 2233 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight); 2234 contrib /= (se->avg.runnable_avg_period + 1); 2235 se->avg.load_avg_contrib = scale_load(contrib); 2236 } 2237 2238 /* Compute the current contribution to load_avg by se, return any delta */ 2239 static long __update_entity_load_avg_contrib(struct sched_entity *se) 2240 { 2241 long old_contrib = se->avg.load_avg_contrib; 2242 2243 if (entity_is_task(se)) { 2244 __update_task_entity_contrib(se); 2245 } else { 2246 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se)); 2247 __update_group_entity_contrib(se); 2248 } 2249 2250 return se->avg.load_avg_contrib - old_contrib; 2251 } 2252 2253 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq, 2254 long load_contrib) 2255 { 2256 if (likely(load_contrib < cfs_rq->blocked_load_avg)) 2257 cfs_rq->blocked_load_avg -= load_contrib; 2258 else 2259 cfs_rq->blocked_load_avg = 0; 2260 } 2261 2262 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 2263 2264 /* Update a sched_entity's runnable average */ 2265 static inline void update_entity_load_avg(struct sched_entity *se, 2266 int update_cfs_rq) 2267 { 2268 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2269 long contrib_delta; 2270 u64 now; 2271 2272 /* 2273 * For a group entity we need to use their owned cfs_rq_clock_task() in 2274 * case they are the parent of a throttled hierarchy. 2275 */ 2276 if (entity_is_task(se)) 2277 now = cfs_rq_clock_task(cfs_rq); 2278 else 2279 now = cfs_rq_clock_task(group_cfs_rq(se)); 2280 2281 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq)) 2282 return; 2283 2284 contrib_delta = __update_entity_load_avg_contrib(se); 2285 2286 if (!update_cfs_rq) 2287 return; 2288 2289 if (se->on_rq) 2290 cfs_rq->runnable_load_avg += contrib_delta; 2291 else 2292 subtract_blocked_load_contrib(cfs_rq, -contrib_delta); 2293 } 2294 2295 /* 2296 * Decay the load contributed by all blocked children and account this so that 2297 * their contribution may appropriately discounted when they wake up. 2298 */ 2299 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update) 2300 { 2301 u64 now = cfs_rq_clock_task(cfs_rq) >> 20; 2302 u64 decays; 2303 2304 decays = now - cfs_rq->last_decay; 2305 if (!decays && !force_update) 2306 return; 2307 2308 if (atomic_long_read(&cfs_rq->removed_load)) { 2309 unsigned long removed_load; 2310 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0); 2311 subtract_blocked_load_contrib(cfs_rq, removed_load); 2312 } 2313 2314 if (decays) { 2315 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg, 2316 decays); 2317 atomic64_add(decays, &cfs_rq->decay_counter); 2318 cfs_rq->last_decay = now; 2319 } 2320 2321 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update); 2322 } 2323 2324 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) 2325 { 2326 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable); 2327 __update_tg_runnable_avg(&rq->avg, &rq->cfs); 2328 } 2329 2330 /* Add the load generated by se into cfs_rq's child load-average */ 2331 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 2332 struct sched_entity *se, 2333 int wakeup) 2334 { 2335 /* 2336 * We track migrations using entity decay_count <= 0, on a wake-up 2337 * migration we use a negative decay count to track the remote decays 2338 * accumulated while sleeping. 2339 * 2340 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they 2341 * are seen by enqueue_entity_load_avg() as a migration with an already 2342 * constructed load_avg_contrib. 2343 */ 2344 if (unlikely(se->avg.decay_count <= 0)) { 2345 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq)); 2346 if (se->avg.decay_count) { 2347 /* 2348 * In a wake-up migration we have to approximate the 2349 * time sleeping. This is because we can't synchronize 2350 * clock_task between the two cpus, and it is not 2351 * guaranteed to be read-safe. Instead, we can 2352 * approximate this using our carried decays, which are 2353 * explicitly atomically readable. 2354 */ 2355 se->avg.last_runnable_update -= (-se->avg.decay_count) 2356 << 20; 2357 update_entity_load_avg(se, 0); 2358 /* Indicate that we're now synchronized and on-rq */ 2359 se->avg.decay_count = 0; 2360 } 2361 wakeup = 0; 2362 } else { 2363 __synchronize_entity_decay(se); 2364 } 2365 2366 /* migrated tasks did not contribute to our blocked load */ 2367 if (wakeup) { 2368 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); 2369 update_entity_load_avg(se, 0); 2370 } 2371 2372 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib; 2373 /* we force update consideration on load-balancer moves */ 2374 update_cfs_rq_blocked_load(cfs_rq, !wakeup); 2375 } 2376 2377 /* 2378 * Remove se's load from this cfs_rq child load-average, if the entity is 2379 * transitioning to a blocked state we track its projected decay using 2380 * blocked_load_avg. 2381 */ 2382 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 2383 struct sched_entity *se, 2384 int sleep) 2385 { 2386 update_entity_load_avg(se, 1); 2387 /* we force update consideration on load-balancer moves */ 2388 update_cfs_rq_blocked_load(cfs_rq, !sleep); 2389 2390 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib; 2391 if (sleep) { 2392 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; 2393 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 2394 } /* migrations, e.g. sleep=0 leave decay_count == 0 */ 2395 } 2396 2397 /* 2398 * Update the rq's load with the elapsed running time before entering 2399 * idle. if the last scheduled task is not a CFS task, idle_enter will 2400 * be the only way to update the runnable statistic. 2401 */ 2402 void idle_enter_fair(struct rq *this_rq) 2403 { 2404 update_rq_runnable_avg(this_rq, 1); 2405 } 2406 2407 /* 2408 * Update the rq's load with the elapsed idle time before a task is 2409 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will 2410 * be the only way to update the runnable statistic. 2411 */ 2412 void idle_exit_fair(struct rq *this_rq) 2413 { 2414 update_rq_runnable_avg(this_rq, 0); 2415 } 2416 2417 #else 2418 static inline void update_entity_load_avg(struct sched_entity *se, 2419 int update_cfs_rq) {} 2420 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} 2421 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 2422 struct sched_entity *se, 2423 int wakeup) {} 2424 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 2425 struct sched_entity *se, 2426 int sleep) {} 2427 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 2428 int force_update) {} 2429 #endif 2430 2431 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 2432 { 2433 #ifdef CONFIG_SCHEDSTATS 2434 struct task_struct *tsk = NULL; 2435 2436 if (entity_is_task(se)) 2437 tsk = task_of(se); 2438 2439 if (se->statistics.sleep_start) { 2440 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start; 2441 2442 if ((s64)delta < 0) 2443 delta = 0; 2444 2445 if (unlikely(delta > se->statistics.sleep_max)) 2446 se->statistics.sleep_max = delta; 2447 2448 se->statistics.sleep_start = 0; 2449 se->statistics.sum_sleep_runtime += delta; 2450 2451 if (tsk) { 2452 account_scheduler_latency(tsk, delta >> 10, 1); 2453 trace_sched_stat_sleep(tsk, delta); 2454 } 2455 } 2456 if (se->statistics.block_start) { 2457 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start; 2458 2459 if ((s64)delta < 0) 2460 delta = 0; 2461 2462 if (unlikely(delta > se->statistics.block_max)) 2463 se->statistics.block_max = delta; 2464 2465 se->statistics.block_start = 0; 2466 se->statistics.sum_sleep_runtime += delta; 2467 2468 if (tsk) { 2469 if (tsk->in_iowait) { 2470 se->statistics.iowait_sum += delta; 2471 se->statistics.iowait_count++; 2472 trace_sched_stat_iowait(tsk, delta); 2473 } 2474 2475 trace_sched_stat_blocked(tsk, delta); 2476 2477 /* 2478 * Blocking time is in units of nanosecs, so shift by 2479 * 20 to get a milliseconds-range estimation of the 2480 * amount of time that the task spent sleeping: 2481 */ 2482 if (unlikely(prof_on == SLEEP_PROFILING)) { 2483 profile_hits(SLEEP_PROFILING, 2484 (void *)get_wchan(tsk), 2485 delta >> 20); 2486 } 2487 account_scheduler_latency(tsk, delta >> 10, 0); 2488 } 2489 } 2490 #endif 2491 } 2492 2493 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 2494 { 2495 #ifdef CONFIG_SCHED_DEBUG 2496 s64 d = se->vruntime - cfs_rq->min_vruntime; 2497 2498 if (d < 0) 2499 d = -d; 2500 2501 if (d > 3*sysctl_sched_latency) 2502 schedstat_inc(cfs_rq, nr_spread_over); 2503 #endif 2504 } 2505 2506 static void 2507 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 2508 { 2509 u64 vruntime = cfs_rq->min_vruntime; 2510 2511 /* 2512 * The 'current' period is already promised to the current tasks, 2513 * however the extra weight of the new task will slow them down a 2514 * little, place the new task so that it fits in the slot that 2515 * stays open at the end. 2516 */ 2517 if (initial && sched_feat(START_DEBIT)) 2518 vruntime += sched_vslice(cfs_rq, se); 2519 2520 /* sleeps up to a single latency don't count. */ 2521 if (!initial) { 2522 unsigned long thresh = sysctl_sched_latency; 2523 2524 /* 2525 * Halve their sleep time's effect, to allow 2526 * for a gentler effect of sleepers: 2527 */ 2528 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 2529 thresh >>= 1; 2530 2531 vruntime -= thresh; 2532 } 2533 2534 /* ensure we never gain time by being placed backwards. */ 2535 se->vruntime = max_vruntime(se->vruntime, vruntime); 2536 } 2537 2538 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 2539 2540 static void 2541 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 2542 { 2543 /* 2544 * Update the normalized vruntime before updating min_vruntime 2545 * through calling update_curr(). 2546 */ 2547 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) 2548 se->vruntime += cfs_rq->min_vruntime; 2549 2550 /* 2551 * Update run-time statistics of the 'current'. 2552 */ 2553 update_curr(cfs_rq); 2554 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP); 2555 account_entity_enqueue(cfs_rq, se); 2556 update_cfs_shares(cfs_rq); 2557 2558 if (flags & ENQUEUE_WAKEUP) { 2559 place_entity(cfs_rq, se, 0); 2560 enqueue_sleeper(cfs_rq, se); 2561 } 2562 2563 update_stats_enqueue(cfs_rq, se); 2564 check_spread(cfs_rq, se); 2565 if (se != cfs_rq->curr) 2566 __enqueue_entity(cfs_rq, se); 2567 se->on_rq = 1; 2568 2569 if (cfs_rq->nr_running == 1) { 2570 list_add_leaf_cfs_rq(cfs_rq); 2571 check_enqueue_throttle(cfs_rq); 2572 } 2573 } 2574 2575 static void __clear_buddies_last(struct sched_entity *se) 2576 { 2577 for_each_sched_entity(se) { 2578 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2579 if (cfs_rq->last == se) 2580 cfs_rq->last = NULL; 2581 else 2582 break; 2583 } 2584 } 2585 2586 static void __clear_buddies_next(struct sched_entity *se) 2587 { 2588 for_each_sched_entity(se) { 2589 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2590 if (cfs_rq->next == se) 2591 cfs_rq->next = NULL; 2592 else 2593 break; 2594 } 2595 } 2596 2597 static void __clear_buddies_skip(struct sched_entity *se) 2598 { 2599 for_each_sched_entity(se) { 2600 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2601 if (cfs_rq->skip == se) 2602 cfs_rq->skip = NULL; 2603 else 2604 break; 2605 } 2606 } 2607 2608 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 2609 { 2610 if (cfs_rq->last == se) 2611 __clear_buddies_last(se); 2612 2613 if (cfs_rq->next == se) 2614 __clear_buddies_next(se); 2615 2616 if (cfs_rq->skip == se) 2617 __clear_buddies_skip(se); 2618 } 2619 2620 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 2621 2622 static void 2623 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 2624 { 2625 /* 2626 * Update run-time statistics of the 'current'. 2627 */ 2628 update_curr(cfs_rq); 2629 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP); 2630 2631 update_stats_dequeue(cfs_rq, se); 2632 if (flags & DEQUEUE_SLEEP) { 2633 #ifdef CONFIG_SCHEDSTATS 2634 if (entity_is_task(se)) { 2635 struct task_struct *tsk = task_of(se); 2636 2637 if (tsk->state & TASK_INTERRUPTIBLE) 2638 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq)); 2639 if (tsk->state & TASK_UNINTERRUPTIBLE) 2640 se->statistics.block_start = rq_clock(rq_of(cfs_rq)); 2641 } 2642 #endif 2643 } 2644 2645 clear_buddies(cfs_rq, se); 2646 2647 if (se != cfs_rq->curr) 2648 __dequeue_entity(cfs_rq, se); 2649 se->on_rq = 0; 2650 account_entity_dequeue(cfs_rq, se); 2651 2652 /* 2653 * Normalize the entity after updating the min_vruntime because the 2654 * update can refer to the ->curr item and we need to reflect this 2655 * movement in our normalized position. 2656 */ 2657 if (!(flags & DEQUEUE_SLEEP)) 2658 se->vruntime -= cfs_rq->min_vruntime; 2659 2660 /* return excess runtime on last dequeue */ 2661 return_cfs_rq_runtime(cfs_rq); 2662 2663 update_min_vruntime(cfs_rq); 2664 update_cfs_shares(cfs_rq); 2665 } 2666 2667 /* 2668 * Preempt the current task with a newly woken task if needed: 2669 */ 2670 static void 2671 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 2672 { 2673 unsigned long ideal_runtime, delta_exec; 2674 struct sched_entity *se; 2675 s64 delta; 2676 2677 ideal_runtime = sched_slice(cfs_rq, curr); 2678 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 2679 if (delta_exec > ideal_runtime) { 2680 resched_task(rq_of(cfs_rq)->curr); 2681 /* 2682 * The current task ran long enough, ensure it doesn't get 2683 * re-elected due to buddy favours. 2684 */ 2685 clear_buddies(cfs_rq, curr); 2686 return; 2687 } 2688 2689 /* 2690 * Ensure that a task that missed wakeup preemption by a 2691 * narrow margin doesn't have to wait for a full slice. 2692 * This also mitigates buddy induced latencies under load. 2693 */ 2694 if (delta_exec < sysctl_sched_min_granularity) 2695 return; 2696 2697 se = __pick_first_entity(cfs_rq); 2698 delta = curr->vruntime - se->vruntime; 2699 2700 if (delta < 0) 2701 return; 2702 2703 if (delta > ideal_runtime) 2704 resched_task(rq_of(cfs_rq)->curr); 2705 } 2706 2707 static void 2708 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 2709 { 2710 /* 'current' is not kept within the tree. */ 2711 if (se->on_rq) { 2712 /* 2713 * Any task has to be enqueued before it get to execute on 2714 * a CPU. So account for the time it spent waiting on the 2715 * runqueue. 2716 */ 2717 update_stats_wait_end(cfs_rq, se); 2718 __dequeue_entity(cfs_rq, se); 2719 } 2720 2721 update_stats_curr_start(cfs_rq, se); 2722 cfs_rq->curr = se; 2723 #ifdef CONFIG_SCHEDSTATS 2724 /* 2725 * Track our maximum slice length, if the CPU's load is at 2726 * least twice that of our own weight (i.e. dont track it 2727 * when there are only lesser-weight tasks around): 2728 */ 2729 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 2730 se->statistics.slice_max = max(se->statistics.slice_max, 2731 se->sum_exec_runtime - se->prev_sum_exec_runtime); 2732 } 2733 #endif 2734 se->prev_sum_exec_runtime = se->sum_exec_runtime; 2735 } 2736 2737 static int 2738 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 2739 2740 /* 2741 * Pick the next process, keeping these things in mind, in this order: 2742 * 1) keep things fair between processes/task groups 2743 * 2) pick the "next" process, since someone really wants that to run 2744 * 3) pick the "last" process, for cache locality 2745 * 4) do not run the "skip" process, if something else is available 2746 */ 2747 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) 2748 { 2749 struct sched_entity *se = __pick_first_entity(cfs_rq); 2750 struct sched_entity *left = se; 2751 2752 /* 2753 * Avoid running the skip buddy, if running something else can 2754 * be done without getting too unfair. 2755 */ 2756 if (cfs_rq->skip == se) { 2757 struct sched_entity *second = __pick_next_entity(se); 2758 if (second && wakeup_preempt_entity(second, left) < 1) 2759 se = second; 2760 } 2761 2762 /* 2763 * Prefer last buddy, try to return the CPU to a preempted task. 2764 */ 2765 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 2766 se = cfs_rq->last; 2767 2768 /* 2769 * Someone really wants this to run. If it's not unfair, run it. 2770 */ 2771 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 2772 se = cfs_rq->next; 2773 2774 clear_buddies(cfs_rq, se); 2775 2776 return se; 2777 } 2778 2779 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 2780 2781 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 2782 { 2783 /* 2784 * If still on the runqueue then deactivate_task() 2785 * was not called and update_curr() has to be done: 2786 */ 2787 if (prev->on_rq) 2788 update_curr(cfs_rq); 2789 2790 /* throttle cfs_rqs exceeding runtime */ 2791 check_cfs_rq_runtime(cfs_rq); 2792 2793 check_spread(cfs_rq, prev); 2794 if (prev->on_rq) { 2795 update_stats_wait_start(cfs_rq, prev); 2796 /* Put 'current' back into the tree. */ 2797 __enqueue_entity(cfs_rq, prev); 2798 /* in !on_rq case, update occurred at dequeue */ 2799 update_entity_load_avg(prev, 1); 2800 } 2801 cfs_rq->curr = NULL; 2802 } 2803 2804 static void 2805 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 2806 { 2807 /* 2808 * Update run-time statistics of the 'current'. 2809 */ 2810 update_curr(cfs_rq); 2811 2812 /* 2813 * Ensure that runnable average is periodically updated. 2814 */ 2815 update_entity_load_avg(curr, 1); 2816 update_cfs_rq_blocked_load(cfs_rq, 1); 2817 update_cfs_shares(cfs_rq); 2818 2819 #ifdef CONFIG_SCHED_HRTICK 2820 /* 2821 * queued ticks are scheduled to match the slice, so don't bother 2822 * validating it and just reschedule. 2823 */ 2824 if (queued) { 2825 resched_task(rq_of(cfs_rq)->curr); 2826 return; 2827 } 2828 /* 2829 * don't let the period tick interfere with the hrtick preemption 2830 */ 2831 if (!sched_feat(DOUBLE_TICK) && 2832 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 2833 return; 2834 #endif 2835 2836 if (cfs_rq->nr_running > 1) 2837 check_preempt_tick(cfs_rq, curr); 2838 } 2839 2840 2841 /************************************************** 2842 * CFS bandwidth control machinery 2843 */ 2844 2845 #ifdef CONFIG_CFS_BANDWIDTH 2846 2847 #ifdef HAVE_JUMP_LABEL 2848 static struct static_key __cfs_bandwidth_used; 2849 2850 static inline bool cfs_bandwidth_used(void) 2851 { 2852 return static_key_false(&__cfs_bandwidth_used); 2853 } 2854 2855 void cfs_bandwidth_usage_inc(void) 2856 { 2857 static_key_slow_inc(&__cfs_bandwidth_used); 2858 } 2859 2860 void cfs_bandwidth_usage_dec(void) 2861 { 2862 static_key_slow_dec(&__cfs_bandwidth_used); 2863 } 2864 #else /* HAVE_JUMP_LABEL */ 2865 static bool cfs_bandwidth_used(void) 2866 { 2867 return true; 2868 } 2869 2870 void cfs_bandwidth_usage_inc(void) {} 2871 void cfs_bandwidth_usage_dec(void) {} 2872 #endif /* HAVE_JUMP_LABEL */ 2873 2874 /* 2875 * default period for cfs group bandwidth. 2876 * default: 0.1s, units: nanoseconds 2877 */ 2878 static inline u64 default_cfs_period(void) 2879 { 2880 return 100000000ULL; 2881 } 2882 2883 static inline u64 sched_cfs_bandwidth_slice(void) 2884 { 2885 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 2886 } 2887 2888 /* 2889 * Replenish runtime according to assigned quota and update expiration time. 2890 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 2891 * additional synchronization around rq->lock. 2892 * 2893 * requires cfs_b->lock 2894 */ 2895 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 2896 { 2897 u64 now; 2898 2899 if (cfs_b->quota == RUNTIME_INF) 2900 return; 2901 2902 now = sched_clock_cpu(smp_processor_id()); 2903 cfs_b->runtime = cfs_b->quota; 2904 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 2905 } 2906 2907 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 2908 { 2909 return &tg->cfs_bandwidth; 2910 } 2911 2912 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 2913 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 2914 { 2915 if (unlikely(cfs_rq->throttle_count)) 2916 return cfs_rq->throttled_clock_task; 2917 2918 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 2919 } 2920 2921 /* returns 0 on failure to allocate runtime */ 2922 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2923 { 2924 struct task_group *tg = cfs_rq->tg; 2925 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 2926 u64 amount = 0, min_amount, expires; 2927 2928 /* note: this is a positive sum as runtime_remaining <= 0 */ 2929 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 2930 2931 raw_spin_lock(&cfs_b->lock); 2932 if (cfs_b->quota == RUNTIME_INF) 2933 amount = min_amount; 2934 else { 2935 /* 2936 * If the bandwidth pool has become inactive, then at least one 2937 * period must have elapsed since the last consumption. 2938 * Refresh the global state and ensure bandwidth timer becomes 2939 * active. 2940 */ 2941 if (!cfs_b->timer_active) { 2942 __refill_cfs_bandwidth_runtime(cfs_b); 2943 __start_cfs_bandwidth(cfs_b); 2944 } 2945 2946 if (cfs_b->runtime > 0) { 2947 amount = min(cfs_b->runtime, min_amount); 2948 cfs_b->runtime -= amount; 2949 cfs_b->idle = 0; 2950 } 2951 } 2952 expires = cfs_b->runtime_expires; 2953 raw_spin_unlock(&cfs_b->lock); 2954 2955 cfs_rq->runtime_remaining += amount; 2956 /* 2957 * we may have advanced our local expiration to account for allowed 2958 * spread between our sched_clock and the one on which runtime was 2959 * issued. 2960 */ 2961 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 2962 cfs_rq->runtime_expires = expires; 2963 2964 return cfs_rq->runtime_remaining > 0; 2965 } 2966 2967 /* 2968 * Note: This depends on the synchronization provided by sched_clock and the 2969 * fact that rq->clock snapshots this value. 2970 */ 2971 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2972 { 2973 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2974 2975 /* if the deadline is ahead of our clock, nothing to do */ 2976 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 2977 return; 2978 2979 if (cfs_rq->runtime_remaining < 0) 2980 return; 2981 2982 /* 2983 * If the local deadline has passed we have to consider the 2984 * possibility that our sched_clock is 'fast' and the global deadline 2985 * has not truly expired. 2986 * 2987 * Fortunately we can check determine whether this the case by checking 2988 * whether the global deadline has advanced. 2989 */ 2990 2991 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) { 2992 /* extend local deadline, drift is bounded above by 2 ticks */ 2993 cfs_rq->runtime_expires += TICK_NSEC; 2994 } else { 2995 /* global deadline is ahead, expiration has passed */ 2996 cfs_rq->runtime_remaining = 0; 2997 } 2998 } 2999 3000 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3001 { 3002 /* dock delta_exec before expiring quota (as it could span periods) */ 3003 cfs_rq->runtime_remaining -= delta_exec; 3004 expire_cfs_rq_runtime(cfs_rq); 3005 3006 if (likely(cfs_rq->runtime_remaining > 0)) 3007 return; 3008 3009 /* 3010 * if we're unable to extend our runtime we resched so that the active 3011 * hierarchy can be throttled 3012 */ 3013 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 3014 resched_task(rq_of(cfs_rq)->curr); 3015 } 3016 3017 static __always_inline 3018 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3019 { 3020 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 3021 return; 3022 3023 __account_cfs_rq_runtime(cfs_rq, delta_exec); 3024 } 3025 3026 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3027 { 3028 return cfs_bandwidth_used() && cfs_rq->throttled; 3029 } 3030 3031 /* check whether cfs_rq, or any parent, is throttled */ 3032 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3033 { 3034 return cfs_bandwidth_used() && cfs_rq->throttle_count; 3035 } 3036 3037 /* 3038 * Ensure that neither of the group entities corresponding to src_cpu or 3039 * dest_cpu are members of a throttled hierarchy when performing group 3040 * load-balance operations. 3041 */ 3042 static inline int throttled_lb_pair(struct task_group *tg, 3043 int src_cpu, int dest_cpu) 3044 { 3045 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 3046 3047 src_cfs_rq = tg->cfs_rq[src_cpu]; 3048 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 3049 3050 return throttled_hierarchy(src_cfs_rq) || 3051 throttled_hierarchy(dest_cfs_rq); 3052 } 3053 3054 /* updated child weight may affect parent so we have to do this bottom up */ 3055 static int tg_unthrottle_up(struct task_group *tg, void *data) 3056 { 3057 struct rq *rq = data; 3058 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3059 3060 cfs_rq->throttle_count--; 3061 #ifdef CONFIG_SMP 3062 if (!cfs_rq->throttle_count) { 3063 /* adjust cfs_rq_clock_task() */ 3064 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 3065 cfs_rq->throttled_clock_task; 3066 } 3067 #endif 3068 3069 return 0; 3070 } 3071 3072 static int tg_throttle_down(struct task_group *tg, void *data) 3073 { 3074 struct rq *rq = data; 3075 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3076 3077 /* group is entering throttled state, stop time */ 3078 if (!cfs_rq->throttle_count) 3079 cfs_rq->throttled_clock_task = rq_clock_task(rq); 3080 cfs_rq->throttle_count++; 3081 3082 return 0; 3083 } 3084 3085 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 3086 { 3087 struct rq *rq = rq_of(cfs_rq); 3088 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3089 struct sched_entity *se; 3090 long task_delta, dequeue = 1; 3091 3092 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 3093 3094 /* freeze hierarchy runnable averages while throttled */ 3095 rcu_read_lock(); 3096 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 3097 rcu_read_unlock(); 3098 3099 task_delta = cfs_rq->h_nr_running; 3100 for_each_sched_entity(se) { 3101 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 3102 /* throttled entity or throttle-on-deactivate */ 3103 if (!se->on_rq) 3104 break; 3105 3106 if (dequeue) 3107 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 3108 qcfs_rq->h_nr_running -= task_delta; 3109 3110 if (qcfs_rq->load.weight) 3111 dequeue = 0; 3112 } 3113 3114 if (!se) 3115 rq->nr_running -= task_delta; 3116 3117 cfs_rq->throttled = 1; 3118 cfs_rq->throttled_clock = rq_clock(rq); 3119 raw_spin_lock(&cfs_b->lock); 3120 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 3121 if (!cfs_b->timer_active) 3122 __start_cfs_bandwidth(cfs_b); 3123 raw_spin_unlock(&cfs_b->lock); 3124 } 3125 3126 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 3127 { 3128 struct rq *rq = rq_of(cfs_rq); 3129 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3130 struct sched_entity *se; 3131 int enqueue = 1; 3132 long task_delta; 3133 3134 se = cfs_rq->tg->se[cpu_of(rq)]; 3135 3136 cfs_rq->throttled = 0; 3137 3138 update_rq_clock(rq); 3139 3140 raw_spin_lock(&cfs_b->lock); 3141 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 3142 list_del_rcu(&cfs_rq->throttled_list); 3143 raw_spin_unlock(&cfs_b->lock); 3144 3145 /* update hierarchical throttle state */ 3146 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 3147 3148 if (!cfs_rq->load.weight) 3149 return; 3150 3151 task_delta = cfs_rq->h_nr_running; 3152 for_each_sched_entity(se) { 3153 if (se->on_rq) 3154 enqueue = 0; 3155 3156 cfs_rq = cfs_rq_of(se); 3157 if (enqueue) 3158 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 3159 cfs_rq->h_nr_running += task_delta; 3160 3161 if (cfs_rq_throttled(cfs_rq)) 3162 break; 3163 } 3164 3165 if (!se) 3166 rq->nr_running += task_delta; 3167 3168 /* determine whether we need to wake up potentially idle cpu */ 3169 if (rq->curr == rq->idle && rq->cfs.nr_running) 3170 resched_task(rq->curr); 3171 } 3172 3173 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 3174 u64 remaining, u64 expires) 3175 { 3176 struct cfs_rq *cfs_rq; 3177 u64 runtime = remaining; 3178 3179 rcu_read_lock(); 3180 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 3181 throttled_list) { 3182 struct rq *rq = rq_of(cfs_rq); 3183 3184 raw_spin_lock(&rq->lock); 3185 if (!cfs_rq_throttled(cfs_rq)) 3186 goto next; 3187 3188 runtime = -cfs_rq->runtime_remaining + 1; 3189 if (runtime > remaining) 3190 runtime = remaining; 3191 remaining -= runtime; 3192 3193 cfs_rq->runtime_remaining += runtime; 3194 cfs_rq->runtime_expires = expires; 3195 3196 /* we check whether we're throttled above */ 3197 if (cfs_rq->runtime_remaining > 0) 3198 unthrottle_cfs_rq(cfs_rq); 3199 3200 next: 3201 raw_spin_unlock(&rq->lock); 3202 3203 if (!remaining) 3204 break; 3205 } 3206 rcu_read_unlock(); 3207 3208 return remaining; 3209 } 3210 3211 /* 3212 * Responsible for refilling a task_group's bandwidth and unthrottling its 3213 * cfs_rqs as appropriate. If there has been no activity within the last 3214 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 3215 * used to track this state. 3216 */ 3217 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 3218 { 3219 u64 runtime, runtime_expires; 3220 int idle = 1, throttled; 3221 3222 raw_spin_lock(&cfs_b->lock); 3223 /* no need to continue the timer with no bandwidth constraint */ 3224 if (cfs_b->quota == RUNTIME_INF) 3225 goto out_unlock; 3226 3227 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 3228 /* idle depends on !throttled (for the case of a large deficit) */ 3229 idle = cfs_b->idle && !throttled; 3230 cfs_b->nr_periods += overrun; 3231 3232 /* if we're going inactive then everything else can be deferred */ 3233 if (idle) 3234 goto out_unlock; 3235 3236 /* 3237 * if we have relooped after returning idle once, we need to update our 3238 * status as actually running, so that other cpus doing 3239 * __start_cfs_bandwidth will stop trying to cancel us. 3240 */ 3241 cfs_b->timer_active = 1; 3242 3243 __refill_cfs_bandwidth_runtime(cfs_b); 3244 3245 if (!throttled) { 3246 /* mark as potentially idle for the upcoming period */ 3247 cfs_b->idle = 1; 3248 goto out_unlock; 3249 } 3250 3251 /* account preceding periods in which throttling occurred */ 3252 cfs_b->nr_throttled += overrun; 3253 3254 /* 3255 * There are throttled entities so we must first use the new bandwidth 3256 * to unthrottle them before making it generally available. This 3257 * ensures that all existing debts will be paid before a new cfs_rq is 3258 * allowed to run. 3259 */ 3260 runtime = cfs_b->runtime; 3261 runtime_expires = cfs_b->runtime_expires; 3262 cfs_b->runtime = 0; 3263 3264 /* 3265 * This check is repeated as we are holding onto the new bandwidth 3266 * while we unthrottle. This can potentially race with an unthrottled 3267 * group trying to acquire new bandwidth from the global pool. 3268 */ 3269 while (throttled && runtime > 0) { 3270 raw_spin_unlock(&cfs_b->lock); 3271 /* we can't nest cfs_b->lock while distributing bandwidth */ 3272 runtime = distribute_cfs_runtime(cfs_b, runtime, 3273 runtime_expires); 3274 raw_spin_lock(&cfs_b->lock); 3275 3276 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 3277 } 3278 3279 /* return (any) remaining runtime */ 3280 cfs_b->runtime = runtime; 3281 /* 3282 * While we are ensured activity in the period following an 3283 * unthrottle, this also covers the case in which the new bandwidth is 3284 * insufficient to cover the existing bandwidth deficit. (Forcing the 3285 * timer to remain active while there are any throttled entities.) 3286 */ 3287 cfs_b->idle = 0; 3288 out_unlock: 3289 if (idle) 3290 cfs_b->timer_active = 0; 3291 raw_spin_unlock(&cfs_b->lock); 3292 3293 return idle; 3294 } 3295 3296 /* a cfs_rq won't donate quota below this amount */ 3297 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 3298 /* minimum remaining period time to redistribute slack quota */ 3299 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 3300 /* how long we wait to gather additional slack before distributing */ 3301 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 3302 3303 /* 3304 * Are we near the end of the current quota period? 3305 * 3306 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 3307 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of 3308 * migrate_hrtimers, base is never cleared, so we are fine. 3309 */ 3310 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 3311 { 3312 struct hrtimer *refresh_timer = &cfs_b->period_timer; 3313 u64 remaining; 3314 3315 /* if the call-back is running a quota refresh is already occurring */ 3316 if (hrtimer_callback_running(refresh_timer)) 3317 return 1; 3318 3319 /* is a quota refresh about to occur? */ 3320 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 3321 if (remaining < min_expire) 3322 return 1; 3323 3324 return 0; 3325 } 3326 3327 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 3328 { 3329 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 3330 3331 /* if there's a quota refresh soon don't bother with slack */ 3332 if (runtime_refresh_within(cfs_b, min_left)) 3333 return; 3334 3335 start_bandwidth_timer(&cfs_b->slack_timer, 3336 ns_to_ktime(cfs_bandwidth_slack_period)); 3337 } 3338 3339 /* we know any runtime found here is valid as update_curr() precedes return */ 3340 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3341 { 3342 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3343 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 3344 3345 if (slack_runtime <= 0) 3346 return; 3347 3348 raw_spin_lock(&cfs_b->lock); 3349 if (cfs_b->quota != RUNTIME_INF && 3350 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 3351 cfs_b->runtime += slack_runtime; 3352 3353 /* we are under rq->lock, defer unthrottling using a timer */ 3354 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 3355 !list_empty(&cfs_b->throttled_cfs_rq)) 3356 start_cfs_slack_bandwidth(cfs_b); 3357 } 3358 raw_spin_unlock(&cfs_b->lock); 3359 3360 /* even if it's not valid for return we don't want to try again */ 3361 cfs_rq->runtime_remaining -= slack_runtime; 3362 } 3363 3364 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3365 { 3366 if (!cfs_bandwidth_used()) 3367 return; 3368 3369 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 3370 return; 3371 3372 __return_cfs_rq_runtime(cfs_rq); 3373 } 3374 3375 /* 3376 * This is done with a timer (instead of inline with bandwidth return) since 3377 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 3378 */ 3379 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 3380 { 3381 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 3382 u64 expires; 3383 3384 /* confirm we're still not at a refresh boundary */ 3385 raw_spin_lock(&cfs_b->lock); 3386 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 3387 raw_spin_unlock(&cfs_b->lock); 3388 return; 3389 } 3390 3391 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) { 3392 runtime = cfs_b->runtime; 3393 cfs_b->runtime = 0; 3394 } 3395 expires = cfs_b->runtime_expires; 3396 raw_spin_unlock(&cfs_b->lock); 3397 3398 if (!runtime) 3399 return; 3400 3401 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 3402 3403 raw_spin_lock(&cfs_b->lock); 3404 if (expires == cfs_b->runtime_expires) 3405 cfs_b->runtime = runtime; 3406 raw_spin_unlock(&cfs_b->lock); 3407 } 3408 3409 /* 3410 * When a group wakes up we want to make sure that its quota is not already 3411 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 3412 * runtime as update_curr() throttling can not not trigger until it's on-rq. 3413 */ 3414 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 3415 { 3416 if (!cfs_bandwidth_used()) 3417 return; 3418 3419 /* an active group must be handled by the update_curr()->put() path */ 3420 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 3421 return; 3422 3423 /* ensure the group is not already throttled */ 3424 if (cfs_rq_throttled(cfs_rq)) 3425 return; 3426 3427 /* update runtime allocation */ 3428 account_cfs_rq_runtime(cfs_rq, 0); 3429 if (cfs_rq->runtime_remaining <= 0) 3430 throttle_cfs_rq(cfs_rq); 3431 } 3432 3433 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 3434 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3435 { 3436 if (!cfs_bandwidth_used()) 3437 return; 3438 3439 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 3440 return; 3441 3442 /* 3443 * it's possible for a throttled entity to be forced into a running 3444 * state (e.g. set_curr_task), in this case we're finished. 3445 */ 3446 if (cfs_rq_throttled(cfs_rq)) 3447 return; 3448 3449 throttle_cfs_rq(cfs_rq); 3450 } 3451 3452 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 3453 { 3454 struct cfs_bandwidth *cfs_b = 3455 container_of(timer, struct cfs_bandwidth, slack_timer); 3456 do_sched_cfs_slack_timer(cfs_b); 3457 3458 return HRTIMER_NORESTART; 3459 } 3460 3461 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 3462 { 3463 struct cfs_bandwidth *cfs_b = 3464 container_of(timer, struct cfs_bandwidth, period_timer); 3465 ktime_t now; 3466 int overrun; 3467 int idle = 0; 3468 3469 for (;;) { 3470 now = hrtimer_cb_get_time(timer); 3471 overrun = hrtimer_forward(timer, now, cfs_b->period); 3472 3473 if (!overrun) 3474 break; 3475 3476 idle = do_sched_cfs_period_timer(cfs_b, overrun); 3477 } 3478 3479 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 3480 } 3481 3482 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3483 { 3484 raw_spin_lock_init(&cfs_b->lock); 3485 cfs_b->runtime = 0; 3486 cfs_b->quota = RUNTIME_INF; 3487 cfs_b->period = ns_to_ktime(default_cfs_period()); 3488 3489 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 3490 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3491 cfs_b->period_timer.function = sched_cfs_period_timer; 3492 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3493 cfs_b->slack_timer.function = sched_cfs_slack_timer; 3494 } 3495 3496 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3497 { 3498 cfs_rq->runtime_enabled = 0; 3499 INIT_LIST_HEAD(&cfs_rq->throttled_list); 3500 } 3501 3502 /* requires cfs_b->lock, may release to reprogram timer */ 3503 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3504 { 3505 /* 3506 * The timer may be active because we're trying to set a new bandwidth 3507 * period or because we're racing with the tear-down path 3508 * (timer_active==0 becomes visible before the hrtimer call-back 3509 * terminates). In either case we ensure that it's re-programmed 3510 */ 3511 while (unlikely(hrtimer_active(&cfs_b->period_timer)) && 3512 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) { 3513 /* bounce the lock to allow do_sched_cfs_period_timer to run */ 3514 raw_spin_unlock(&cfs_b->lock); 3515 cpu_relax(); 3516 raw_spin_lock(&cfs_b->lock); 3517 /* if someone else restarted the timer then we're done */ 3518 if (cfs_b->timer_active) 3519 return; 3520 } 3521 3522 cfs_b->timer_active = 1; 3523 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); 3524 } 3525 3526 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3527 { 3528 hrtimer_cancel(&cfs_b->period_timer); 3529 hrtimer_cancel(&cfs_b->slack_timer); 3530 } 3531 3532 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 3533 { 3534 struct cfs_rq *cfs_rq; 3535 3536 for_each_leaf_cfs_rq(rq, cfs_rq) { 3537 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3538 3539 if (!cfs_rq->runtime_enabled) 3540 continue; 3541 3542 /* 3543 * clock_task is not advancing so we just need to make sure 3544 * there's some valid quota amount 3545 */ 3546 cfs_rq->runtime_remaining = cfs_b->quota; 3547 if (cfs_rq_throttled(cfs_rq)) 3548 unthrottle_cfs_rq(cfs_rq); 3549 } 3550 } 3551 3552 #else /* CONFIG_CFS_BANDWIDTH */ 3553 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 3554 { 3555 return rq_clock_task(rq_of(cfs_rq)); 3556 } 3557 3558 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 3559 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 3560 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 3561 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 3562 3563 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3564 { 3565 return 0; 3566 } 3567 3568 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3569 { 3570 return 0; 3571 } 3572 3573 static inline int throttled_lb_pair(struct task_group *tg, 3574 int src_cpu, int dest_cpu) 3575 { 3576 return 0; 3577 } 3578 3579 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 3580 3581 #ifdef CONFIG_FAIR_GROUP_SCHED 3582 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 3583 #endif 3584 3585 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 3586 { 3587 return NULL; 3588 } 3589 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 3590 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 3591 3592 #endif /* CONFIG_CFS_BANDWIDTH */ 3593 3594 /************************************************** 3595 * CFS operations on tasks: 3596 */ 3597 3598 #ifdef CONFIG_SCHED_HRTICK 3599 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 3600 { 3601 struct sched_entity *se = &p->se; 3602 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3603 3604 WARN_ON(task_rq(p) != rq); 3605 3606 if (cfs_rq->nr_running > 1) { 3607 u64 slice = sched_slice(cfs_rq, se); 3608 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 3609 s64 delta = slice - ran; 3610 3611 if (delta < 0) { 3612 if (rq->curr == p) 3613 resched_task(p); 3614 return; 3615 } 3616 3617 /* 3618 * Don't schedule slices shorter than 10000ns, that just 3619 * doesn't make sense. Rely on vruntime for fairness. 3620 */ 3621 if (rq->curr != p) 3622 delta = max_t(s64, 10000LL, delta); 3623 3624 hrtick_start(rq, delta); 3625 } 3626 } 3627 3628 /* 3629 * called from enqueue/dequeue and updates the hrtick when the 3630 * current task is from our class and nr_running is low enough 3631 * to matter. 3632 */ 3633 static void hrtick_update(struct rq *rq) 3634 { 3635 struct task_struct *curr = rq->curr; 3636 3637 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 3638 return; 3639 3640 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 3641 hrtick_start_fair(rq, curr); 3642 } 3643 #else /* !CONFIG_SCHED_HRTICK */ 3644 static inline void 3645 hrtick_start_fair(struct rq *rq, struct task_struct *p) 3646 { 3647 } 3648 3649 static inline void hrtick_update(struct rq *rq) 3650 { 3651 } 3652 #endif 3653 3654 /* 3655 * The enqueue_task method is called before nr_running is 3656 * increased. Here we update the fair scheduling stats and 3657 * then put the task into the rbtree: 3658 */ 3659 static void 3660 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 3661 { 3662 struct cfs_rq *cfs_rq; 3663 struct sched_entity *se = &p->se; 3664 3665 for_each_sched_entity(se) { 3666 if (se->on_rq) 3667 break; 3668 cfs_rq = cfs_rq_of(se); 3669 enqueue_entity(cfs_rq, se, flags); 3670 3671 /* 3672 * end evaluation on encountering a throttled cfs_rq 3673 * 3674 * note: in the case of encountering a throttled cfs_rq we will 3675 * post the final h_nr_running increment below. 3676 */ 3677 if (cfs_rq_throttled(cfs_rq)) 3678 break; 3679 cfs_rq->h_nr_running++; 3680 3681 flags = ENQUEUE_WAKEUP; 3682 } 3683 3684 for_each_sched_entity(se) { 3685 cfs_rq = cfs_rq_of(se); 3686 cfs_rq->h_nr_running++; 3687 3688 if (cfs_rq_throttled(cfs_rq)) 3689 break; 3690 3691 update_cfs_shares(cfs_rq); 3692 update_entity_load_avg(se, 1); 3693 } 3694 3695 if (!se) { 3696 update_rq_runnable_avg(rq, rq->nr_running); 3697 inc_nr_running(rq); 3698 } 3699 hrtick_update(rq); 3700 } 3701 3702 static void set_next_buddy(struct sched_entity *se); 3703 3704 /* 3705 * The dequeue_task method is called before nr_running is 3706 * decreased. We remove the task from the rbtree and 3707 * update the fair scheduling stats: 3708 */ 3709 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 3710 { 3711 struct cfs_rq *cfs_rq; 3712 struct sched_entity *se = &p->se; 3713 int task_sleep = flags & DEQUEUE_SLEEP; 3714 3715 for_each_sched_entity(se) { 3716 cfs_rq = cfs_rq_of(se); 3717 dequeue_entity(cfs_rq, se, flags); 3718 3719 /* 3720 * end evaluation on encountering a throttled cfs_rq 3721 * 3722 * note: in the case of encountering a throttled cfs_rq we will 3723 * post the final h_nr_running decrement below. 3724 */ 3725 if (cfs_rq_throttled(cfs_rq)) 3726 break; 3727 cfs_rq->h_nr_running--; 3728 3729 /* Don't dequeue parent if it has other entities besides us */ 3730 if (cfs_rq->load.weight) { 3731 /* 3732 * Bias pick_next to pick a task from this cfs_rq, as 3733 * p is sleeping when it is within its sched_slice. 3734 */ 3735 if (task_sleep && parent_entity(se)) 3736 set_next_buddy(parent_entity(se)); 3737 3738 /* avoid re-evaluating load for this entity */ 3739 se = parent_entity(se); 3740 break; 3741 } 3742 flags |= DEQUEUE_SLEEP; 3743 } 3744 3745 for_each_sched_entity(se) { 3746 cfs_rq = cfs_rq_of(se); 3747 cfs_rq->h_nr_running--; 3748 3749 if (cfs_rq_throttled(cfs_rq)) 3750 break; 3751 3752 update_cfs_shares(cfs_rq); 3753 update_entity_load_avg(se, 1); 3754 } 3755 3756 if (!se) { 3757 dec_nr_running(rq); 3758 update_rq_runnable_avg(rq, 1); 3759 } 3760 hrtick_update(rq); 3761 } 3762 3763 #ifdef CONFIG_SMP 3764 /* Used instead of source_load when we know the type == 0 */ 3765 static unsigned long weighted_cpuload(const int cpu) 3766 { 3767 return cpu_rq(cpu)->cfs.runnable_load_avg; 3768 } 3769 3770 /* 3771 * Return a low guess at the load of a migration-source cpu weighted 3772 * according to the scheduling class and "nice" value. 3773 * 3774 * We want to under-estimate the load of migration sources, to 3775 * balance conservatively. 3776 */ 3777 static unsigned long source_load(int cpu, int type) 3778 { 3779 struct rq *rq = cpu_rq(cpu); 3780 unsigned long total = weighted_cpuload(cpu); 3781 3782 if (type == 0 || !sched_feat(LB_BIAS)) 3783 return total; 3784 3785 return min(rq->cpu_load[type-1], total); 3786 } 3787 3788 /* 3789 * Return a high guess at the load of a migration-target cpu weighted 3790 * according to the scheduling class and "nice" value. 3791 */ 3792 static unsigned long target_load(int cpu, int type) 3793 { 3794 struct rq *rq = cpu_rq(cpu); 3795 unsigned long total = weighted_cpuload(cpu); 3796 3797 if (type == 0 || !sched_feat(LB_BIAS)) 3798 return total; 3799 3800 return max(rq->cpu_load[type-1], total); 3801 } 3802 3803 static unsigned long power_of(int cpu) 3804 { 3805 return cpu_rq(cpu)->cpu_power; 3806 } 3807 3808 static unsigned long cpu_avg_load_per_task(int cpu) 3809 { 3810 struct rq *rq = cpu_rq(cpu); 3811 unsigned long nr_running = ACCESS_ONCE(rq->nr_running); 3812 unsigned long load_avg = rq->cfs.runnable_load_avg; 3813 3814 if (nr_running) 3815 return load_avg / nr_running; 3816 3817 return 0; 3818 } 3819 3820 static void record_wakee(struct task_struct *p) 3821 { 3822 /* 3823 * Rough decay (wiping) for cost saving, don't worry 3824 * about the boundary, really active task won't care 3825 * about the loss. 3826 */ 3827 if (jiffies > current->wakee_flip_decay_ts + HZ) { 3828 current->wakee_flips = 0; 3829 current->wakee_flip_decay_ts = jiffies; 3830 } 3831 3832 if (current->last_wakee != p) { 3833 current->last_wakee = p; 3834 current->wakee_flips++; 3835 } 3836 } 3837 3838 static void task_waking_fair(struct task_struct *p) 3839 { 3840 struct sched_entity *se = &p->se; 3841 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3842 u64 min_vruntime; 3843 3844 #ifndef CONFIG_64BIT 3845 u64 min_vruntime_copy; 3846 3847 do { 3848 min_vruntime_copy = cfs_rq->min_vruntime_copy; 3849 smp_rmb(); 3850 min_vruntime = cfs_rq->min_vruntime; 3851 } while (min_vruntime != min_vruntime_copy); 3852 #else 3853 min_vruntime = cfs_rq->min_vruntime; 3854 #endif 3855 3856 se->vruntime -= min_vruntime; 3857 record_wakee(p); 3858 } 3859 3860 #ifdef CONFIG_FAIR_GROUP_SCHED 3861 /* 3862 * effective_load() calculates the load change as seen from the root_task_group 3863 * 3864 * Adding load to a group doesn't make a group heavier, but can cause movement 3865 * of group shares between cpus. Assuming the shares were perfectly aligned one 3866 * can calculate the shift in shares. 3867 * 3868 * Calculate the effective load difference if @wl is added (subtracted) to @tg 3869 * on this @cpu and results in a total addition (subtraction) of @wg to the 3870 * total group weight. 3871 * 3872 * Given a runqueue weight distribution (rw_i) we can compute a shares 3873 * distribution (s_i) using: 3874 * 3875 * s_i = rw_i / \Sum rw_j (1) 3876 * 3877 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 3878 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 3879 * shares distribution (s_i): 3880 * 3881 * rw_i = { 2, 4, 1, 0 } 3882 * s_i = { 2/7, 4/7, 1/7, 0 } 3883 * 3884 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 3885 * task used to run on and the CPU the waker is running on), we need to 3886 * compute the effect of waking a task on either CPU and, in case of a sync 3887 * wakeup, compute the effect of the current task going to sleep. 3888 * 3889 * So for a change of @wl to the local @cpu with an overall group weight change 3890 * of @wl we can compute the new shares distribution (s'_i) using: 3891 * 3892 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 3893 * 3894 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 3895 * differences in waking a task to CPU 0. The additional task changes the 3896 * weight and shares distributions like: 3897 * 3898 * rw'_i = { 3, 4, 1, 0 } 3899 * s'_i = { 3/8, 4/8, 1/8, 0 } 3900 * 3901 * We can then compute the difference in effective weight by using: 3902 * 3903 * dw_i = S * (s'_i - s_i) (3) 3904 * 3905 * Where 'S' is the group weight as seen by its parent. 3906 * 3907 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 3908 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 3909 * 4/7) times the weight of the group. 3910 */ 3911 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 3912 { 3913 struct sched_entity *se = tg->se[cpu]; 3914 3915 if (!tg->parent) /* the trivial, non-cgroup case */ 3916 return wl; 3917 3918 for_each_sched_entity(se) { 3919 long w, W; 3920 3921 tg = se->my_q->tg; 3922 3923 /* 3924 * W = @wg + \Sum rw_j 3925 */ 3926 W = wg + calc_tg_weight(tg, se->my_q); 3927 3928 /* 3929 * w = rw_i + @wl 3930 */ 3931 w = se->my_q->load.weight + wl; 3932 3933 /* 3934 * wl = S * s'_i; see (2) 3935 */ 3936 if (W > 0 && w < W) 3937 wl = (w * tg->shares) / W; 3938 else 3939 wl = tg->shares; 3940 3941 /* 3942 * Per the above, wl is the new se->load.weight value; since 3943 * those are clipped to [MIN_SHARES, ...) do so now. See 3944 * calc_cfs_shares(). 3945 */ 3946 if (wl < MIN_SHARES) 3947 wl = MIN_SHARES; 3948 3949 /* 3950 * wl = dw_i = S * (s'_i - s_i); see (3) 3951 */ 3952 wl -= se->load.weight; 3953 3954 /* 3955 * Recursively apply this logic to all parent groups to compute 3956 * the final effective load change on the root group. Since 3957 * only the @tg group gets extra weight, all parent groups can 3958 * only redistribute existing shares. @wl is the shift in shares 3959 * resulting from this level per the above. 3960 */ 3961 wg = 0; 3962 } 3963 3964 return wl; 3965 } 3966 #else 3967 3968 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 3969 { 3970 return wl; 3971 } 3972 3973 #endif 3974 3975 static int wake_wide(struct task_struct *p) 3976 { 3977 int factor = this_cpu_read(sd_llc_size); 3978 3979 /* 3980 * Yeah, it's the switching-frequency, could means many wakee or 3981 * rapidly switch, use factor here will just help to automatically 3982 * adjust the loose-degree, so bigger node will lead to more pull. 3983 */ 3984 if (p->wakee_flips > factor) { 3985 /* 3986 * wakee is somewhat hot, it needs certain amount of cpu 3987 * resource, so if waker is far more hot, prefer to leave 3988 * it alone. 3989 */ 3990 if (current->wakee_flips > (factor * p->wakee_flips)) 3991 return 1; 3992 } 3993 3994 return 0; 3995 } 3996 3997 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 3998 { 3999 s64 this_load, load; 4000 int idx, this_cpu, prev_cpu; 4001 unsigned long tl_per_task; 4002 struct task_group *tg; 4003 unsigned long weight; 4004 int balanced; 4005 4006 /* 4007 * If we wake multiple tasks be careful to not bounce 4008 * ourselves around too much. 4009 */ 4010 if (wake_wide(p)) 4011 return 0; 4012 4013 idx = sd->wake_idx; 4014 this_cpu = smp_processor_id(); 4015 prev_cpu = task_cpu(p); 4016 load = source_load(prev_cpu, idx); 4017 this_load = target_load(this_cpu, idx); 4018 4019 /* 4020 * If sync wakeup then subtract the (maximum possible) 4021 * effect of the currently running task from the load 4022 * of the current CPU: 4023 */ 4024 if (sync) { 4025 tg = task_group(current); 4026 weight = current->se.load.weight; 4027 4028 this_load += effective_load(tg, this_cpu, -weight, -weight); 4029 load += effective_load(tg, prev_cpu, 0, -weight); 4030 } 4031 4032 tg = task_group(p); 4033 weight = p->se.load.weight; 4034 4035 /* 4036 * In low-load situations, where prev_cpu is idle and this_cpu is idle 4037 * due to the sync cause above having dropped this_load to 0, we'll 4038 * always have an imbalance, but there's really nothing you can do 4039 * about that, so that's good too. 4040 * 4041 * Otherwise check if either cpus are near enough in load to allow this 4042 * task to be woken on this_cpu. 4043 */ 4044 if (this_load > 0) { 4045 s64 this_eff_load, prev_eff_load; 4046 4047 this_eff_load = 100; 4048 this_eff_load *= power_of(prev_cpu); 4049 this_eff_load *= this_load + 4050 effective_load(tg, this_cpu, weight, weight); 4051 4052 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 4053 prev_eff_load *= power_of(this_cpu); 4054 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 4055 4056 balanced = this_eff_load <= prev_eff_load; 4057 } else 4058 balanced = true; 4059 4060 /* 4061 * If the currently running task will sleep within 4062 * a reasonable amount of time then attract this newly 4063 * woken task: 4064 */ 4065 if (sync && balanced) 4066 return 1; 4067 4068 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); 4069 tl_per_task = cpu_avg_load_per_task(this_cpu); 4070 4071 if (balanced || 4072 (this_load <= load && 4073 this_load + target_load(prev_cpu, idx) <= tl_per_task)) { 4074 /* 4075 * This domain has SD_WAKE_AFFINE and 4076 * p is cache cold in this domain, and 4077 * there is no bad imbalance. 4078 */ 4079 schedstat_inc(sd, ttwu_move_affine); 4080 schedstat_inc(p, se.statistics.nr_wakeups_affine); 4081 4082 return 1; 4083 } 4084 return 0; 4085 } 4086 4087 /* 4088 * find_idlest_group finds and returns the least busy CPU group within the 4089 * domain. 4090 */ 4091 static struct sched_group * 4092 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 4093 int this_cpu, int sd_flag) 4094 { 4095 struct sched_group *idlest = NULL, *group = sd->groups; 4096 unsigned long min_load = ULONG_MAX, this_load = 0; 4097 int load_idx = sd->forkexec_idx; 4098 int imbalance = 100 + (sd->imbalance_pct-100)/2; 4099 4100 if (sd_flag & SD_BALANCE_WAKE) 4101 load_idx = sd->wake_idx; 4102 4103 do { 4104 unsigned long load, avg_load; 4105 int local_group; 4106 int i; 4107 4108 /* Skip over this group if it has no CPUs allowed */ 4109 if (!cpumask_intersects(sched_group_cpus(group), 4110 tsk_cpus_allowed(p))) 4111 continue; 4112 4113 local_group = cpumask_test_cpu(this_cpu, 4114 sched_group_cpus(group)); 4115 4116 /* Tally up the load of all CPUs in the group */ 4117 avg_load = 0; 4118 4119 for_each_cpu(i, sched_group_cpus(group)) { 4120 /* Bias balancing toward cpus of our domain */ 4121 if (local_group) 4122 load = source_load(i, load_idx); 4123 else 4124 load = target_load(i, load_idx); 4125 4126 avg_load += load; 4127 } 4128 4129 /* Adjust by relative CPU power of the group */ 4130 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power; 4131 4132 if (local_group) { 4133 this_load = avg_load; 4134 } else if (avg_load < min_load) { 4135 min_load = avg_load; 4136 idlest = group; 4137 } 4138 } while (group = group->next, group != sd->groups); 4139 4140 if (!idlest || 100*this_load < imbalance*min_load) 4141 return NULL; 4142 return idlest; 4143 } 4144 4145 /* 4146 * find_idlest_cpu - find the idlest cpu among the cpus in group. 4147 */ 4148 static int 4149 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 4150 { 4151 unsigned long load, min_load = ULONG_MAX; 4152 int idlest = -1; 4153 int i; 4154 4155 /* Traverse only the allowed CPUs */ 4156 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 4157 load = weighted_cpuload(i); 4158 4159 if (load < min_load || (load == min_load && i == this_cpu)) { 4160 min_load = load; 4161 idlest = i; 4162 } 4163 } 4164 4165 return idlest; 4166 } 4167 4168 /* 4169 * Try and locate an idle CPU in the sched_domain. 4170 */ 4171 static int select_idle_sibling(struct task_struct *p, int target) 4172 { 4173 struct sched_domain *sd; 4174 struct sched_group *sg; 4175 int i = task_cpu(p); 4176 4177 if (idle_cpu(target)) 4178 return target; 4179 4180 /* 4181 * If the prevous cpu is cache affine and idle, don't be stupid. 4182 */ 4183 if (i != target && cpus_share_cache(i, target) && idle_cpu(i)) 4184 return i; 4185 4186 /* 4187 * Otherwise, iterate the domains and find an elegible idle cpu. 4188 */ 4189 sd = rcu_dereference(per_cpu(sd_llc, target)); 4190 for_each_lower_domain(sd) { 4191 sg = sd->groups; 4192 do { 4193 if (!cpumask_intersects(sched_group_cpus(sg), 4194 tsk_cpus_allowed(p))) 4195 goto next; 4196 4197 for_each_cpu(i, sched_group_cpus(sg)) { 4198 if (i == target || !idle_cpu(i)) 4199 goto next; 4200 } 4201 4202 target = cpumask_first_and(sched_group_cpus(sg), 4203 tsk_cpus_allowed(p)); 4204 goto done; 4205 next: 4206 sg = sg->next; 4207 } while (sg != sd->groups); 4208 } 4209 done: 4210 return target; 4211 } 4212 4213 /* 4214 * sched_balance_self: balance the current task (running on cpu) in domains 4215 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and 4216 * SD_BALANCE_EXEC. 4217 * 4218 * Balance, ie. select the least loaded group. 4219 * 4220 * Returns the target CPU number, or the same CPU if no balancing is needed. 4221 * 4222 * preempt must be disabled. 4223 */ 4224 static int 4225 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 4226 { 4227 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 4228 int cpu = smp_processor_id(); 4229 int new_cpu = cpu; 4230 int want_affine = 0; 4231 int sync = wake_flags & WF_SYNC; 4232 4233 if (p->nr_cpus_allowed == 1) 4234 return prev_cpu; 4235 4236 if (sd_flag & SD_BALANCE_WAKE) { 4237 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 4238 want_affine = 1; 4239 new_cpu = prev_cpu; 4240 } 4241 4242 rcu_read_lock(); 4243 for_each_domain(cpu, tmp) { 4244 if (!(tmp->flags & SD_LOAD_BALANCE)) 4245 continue; 4246 4247 /* 4248 * If both cpu and prev_cpu are part of this domain, 4249 * cpu is a valid SD_WAKE_AFFINE target. 4250 */ 4251 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 4252 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 4253 affine_sd = tmp; 4254 break; 4255 } 4256 4257 if (tmp->flags & sd_flag) 4258 sd = tmp; 4259 } 4260 4261 if (affine_sd) { 4262 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync)) 4263 prev_cpu = cpu; 4264 4265 new_cpu = select_idle_sibling(p, prev_cpu); 4266 goto unlock; 4267 } 4268 4269 while (sd) { 4270 struct sched_group *group; 4271 int weight; 4272 4273 if (!(sd->flags & sd_flag)) { 4274 sd = sd->child; 4275 continue; 4276 } 4277 4278 group = find_idlest_group(sd, p, cpu, sd_flag); 4279 if (!group) { 4280 sd = sd->child; 4281 continue; 4282 } 4283 4284 new_cpu = find_idlest_cpu(group, p, cpu); 4285 if (new_cpu == -1 || new_cpu == cpu) { 4286 /* Now try balancing at a lower domain level of cpu */ 4287 sd = sd->child; 4288 continue; 4289 } 4290 4291 /* Now try balancing at a lower domain level of new_cpu */ 4292 cpu = new_cpu; 4293 weight = sd->span_weight; 4294 sd = NULL; 4295 for_each_domain(cpu, tmp) { 4296 if (weight <= tmp->span_weight) 4297 break; 4298 if (tmp->flags & sd_flag) 4299 sd = tmp; 4300 } 4301 /* while loop will break here if sd == NULL */ 4302 } 4303 unlock: 4304 rcu_read_unlock(); 4305 4306 return new_cpu; 4307 } 4308 4309 /* 4310 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 4311 * cfs_rq_of(p) references at time of call are still valid and identify the 4312 * previous cpu. However, the caller only guarantees p->pi_lock is held; no 4313 * other assumptions, including the state of rq->lock, should be made. 4314 */ 4315 static void 4316 migrate_task_rq_fair(struct task_struct *p, int next_cpu) 4317 { 4318 struct sched_entity *se = &p->se; 4319 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4320 4321 /* 4322 * Load tracking: accumulate removed load so that it can be processed 4323 * when we next update owning cfs_rq under rq->lock. Tasks contribute 4324 * to blocked load iff they have a positive decay-count. It can never 4325 * be negative here since on-rq tasks have decay-count == 0. 4326 */ 4327 if (se->avg.decay_count) { 4328 se->avg.decay_count = -__synchronize_entity_decay(se); 4329 atomic_long_add(se->avg.load_avg_contrib, 4330 &cfs_rq->removed_load); 4331 } 4332 } 4333 #endif /* CONFIG_SMP */ 4334 4335 static unsigned long 4336 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 4337 { 4338 unsigned long gran = sysctl_sched_wakeup_granularity; 4339 4340 /* 4341 * Since its curr running now, convert the gran from real-time 4342 * to virtual-time in his units. 4343 * 4344 * By using 'se' instead of 'curr' we penalize light tasks, so 4345 * they get preempted easier. That is, if 'se' < 'curr' then 4346 * the resulting gran will be larger, therefore penalizing the 4347 * lighter, if otoh 'se' > 'curr' then the resulting gran will 4348 * be smaller, again penalizing the lighter task. 4349 * 4350 * This is especially important for buddies when the leftmost 4351 * task is higher priority than the buddy. 4352 */ 4353 return calc_delta_fair(gran, se); 4354 } 4355 4356 /* 4357 * Should 'se' preempt 'curr'. 4358 * 4359 * |s1 4360 * |s2 4361 * |s3 4362 * g 4363 * |<--->|c 4364 * 4365 * w(c, s1) = -1 4366 * w(c, s2) = 0 4367 * w(c, s3) = 1 4368 * 4369 */ 4370 static int 4371 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 4372 { 4373 s64 gran, vdiff = curr->vruntime - se->vruntime; 4374 4375 if (vdiff <= 0) 4376 return -1; 4377 4378 gran = wakeup_gran(curr, se); 4379 if (vdiff > gran) 4380 return 1; 4381 4382 return 0; 4383 } 4384 4385 static void set_last_buddy(struct sched_entity *se) 4386 { 4387 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 4388 return; 4389 4390 for_each_sched_entity(se) 4391 cfs_rq_of(se)->last = se; 4392 } 4393 4394 static void set_next_buddy(struct sched_entity *se) 4395 { 4396 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 4397 return; 4398 4399 for_each_sched_entity(se) 4400 cfs_rq_of(se)->next = se; 4401 } 4402 4403 static void set_skip_buddy(struct sched_entity *se) 4404 { 4405 for_each_sched_entity(se) 4406 cfs_rq_of(se)->skip = se; 4407 } 4408 4409 /* 4410 * Preempt the current task with a newly woken task if needed: 4411 */ 4412 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 4413 { 4414 struct task_struct *curr = rq->curr; 4415 struct sched_entity *se = &curr->se, *pse = &p->se; 4416 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 4417 int scale = cfs_rq->nr_running >= sched_nr_latency; 4418 int next_buddy_marked = 0; 4419 4420 if (unlikely(se == pse)) 4421 return; 4422 4423 /* 4424 * This is possible from callers such as move_task(), in which we 4425 * unconditionally check_prempt_curr() after an enqueue (which may have 4426 * lead to a throttle). This both saves work and prevents false 4427 * next-buddy nomination below. 4428 */ 4429 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 4430 return; 4431 4432 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 4433 set_next_buddy(pse); 4434 next_buddy_marked = 1; 4435 } 4436 4437 /* 4438 * We can come here with TIF_NEED_RESCHED already set from new task 4439 * wake up path. 4440 * 4441 * Note: this also catches the edge-case of curr being in a throttled 4442 * group (e.g. via set_curr_task), since update_curr() (in the 4443 * enqueue of curr) will have resulted in resched being set. This 4444 * prevents us from potentially nominating it as a false LAST_BUDDY 4445 * below. 4446 */ 4447 if (test_tsk_need_resched(curr)) 4448 return; 4449 4450 /* Idle tasks are by definition preempted by non-idle tasks. */ 4451 if (unlikely(curr->policy == SCHED_IDLE) && 4452 likely(p->policy != SCHED_IDLE)) 4453 goto preempt; 4454 4455 /* 4456 * Batch and idle tasks do not preempt non-idle tasks (their preemption 4457 * is driven by the tick): 4458 */ 4459 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 4460 return; 4461 4462 find_matching_se(&se, &pse); 4463 update_curr(cfs_rq_of(se)); 4464 BUG_ON(!pse); 4465 if (wakeup_preempt_entity(se, pse) == 1) { 4466 /* 4467 * Bias pick_next to pick the sched entity that is 4468 * triggering this preemption. 4469 */ 4470 if (!next_buddy_marked) 4471 set_next_buddy(pse); 4472 goto preempt; 4473 } 4474 4475 return; 4476 4477 preempt: 4478 resched_task(curr); 4479 /* 4480 * Only set the backward buddy when the current task is still 4481 * on the rq. This can happen when a wakeup gets interleaved 4482 * with schedule on the ->pre_schedule() or idle_balance() 4483 * point, either of which can * drop the rq lock. 4484 * 4485 * Also, during early boot the idle thread is in the fair class, 4486 * for obvious reasons its a bad idea to schedule back to it. 4487 */ 4488 if (unlikely(!se->on_rq || curr == rq->idle)) 4489 return; 4490 4491 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 4492 set_last_buddy(se); 4493 } 4494 4495 static struct task_struct *pick_next_task_fair(struct rq *rq) 4496 { 4497 struct task_struct *p; 4498 struct cfs_rq *cfs_rq = &rq->cfs; 4499 struct sched_entity *se; 4500 4501 if (!cfs_rq->nr_running) 4502 return NULL; 4503 4504 do { 4505 se = pick_next_entity(cfs_rq); 4506 set_next_entity(cfs_rq, se); 4507 cfs_rq = group_cfs_rq(se); 4508 } while (cfs_rq); 4509 4510 p = task_of(se); 4511 if (hrtick_enabled(rq)) 4512 hrtick_start_fair(rq, p); 4513 4514 return p; 4515 } 4516 4517 /* 4518 * Account for a descheduled task: 4519 */ 4520 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 4521 { 4522 struct sched_entity *se = &prev->se; 4523 struct cfs_rq *cfs_rq; 4524 4525 for_each_sched_entity(se) { 4526 cfs_rq = cfs_rq_of(se); 4527 put_prev_entity(cfs_rq, se); 4528 } 4529 } 4530 4531 /* 4532 * sched_yield() is very simple 4533 * 4534 * The magic of dealing with the ->skip buddy is in pick_next_entity. 4535 */ 4536 static void yield_task_fair(struct rq *rq) 4537 { 4538 struct task_struct *curr = rq->curr; 4539 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 4540 struct sched_entity *se = &curr->se; 4541 4542 /* 4543 * Are we the only task in the tree? 4544 */ 4545 if (unlikely(rq->nr_running == 1)) 4546 return; 4547 4548 clear_buddies(cfs_rq, se); 4549 4550 if (curr->policy != SCHED_BATCH) { 4551 update_rq_clock(rq); 4552 /* 4553 * Update run-time statistics of the 'current'. 4554 */ 4555 update_curr(cfs_rq); 4556 /* 4557 * Tell update_rq_clock() that we've just updated, 4558 * so we don't do microscopic update in schedule() 4559 * and double the fastpath cost. 4560 */ 4561 rq->skip_clock_update = 1; 4562 } 4563 4564 set_skip_buddy(se); 4565 } 4566 4567 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 4568 { 4569 struct sched_entity *se = &p->se; 4570 4571 /* throttled hierarchies are not runnable */ 4572 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 4573 return false; 4574 4575 /* Tell the scheduler that we'd really like pse to run next. */ 4576 set_next_buddy(se); 4577 4578 yield_task_fair(rq); 4579 4580 return true; 4581 } 4582 4583 #ifdef CONFIG_SMP 4584 /************************************************** 4585 * Fair scheduling class load-balancing methods. 4586 * 4587 * BASICS 4588 * 4589 * The purpose of load-balancing is to achieve the same basic fairness the 4590 * per-cpu scheduler provides, namely provide a proportional amount of compute 4591 * time to each task. This is expressed in the following equation: 4592 * 4593 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 4594 * 4595 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 4596 * W_i,0 is defined as: 4597 * 4598 * W_i,0 = \Sum_j w_i,j (2) 4599 * 4600 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 4601 * is derived from the nice value as per prio_to_weight[]. 4602 * 4603 * The weight average is an exponential decay average of the instantaneous 4604 * weight: 4605 * 4606 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 4607 * 4608 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the 4609 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 4610 * can also include other factors [XXX]. 4611 * 4612 * To achieve this balance we define a measure of imbalance which follows 4613 * directly from (1): 4614 * 4615 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4) 4616 * 4617 * We them move tasks around to minimize the imbalance. In the continuous 4618 * function space it is obvious this converges, in the discrete case we get 4619 * a few fun cases generally called infeasible weight scenarios. 4620 * 4621 * [XXX expand on: 4622 * - infeasible weights; 4623 * - local vs global optima in the discrete case. ] 4624 * 4625 * 4626 * SCHED DOMAINS 4627 * 4628 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 4629 * for all i,j solution, we create a tree of cpus that follows the hardware 4630 * topology where each level pairs two lower groups (or better). This results 4631 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 4632 * tree to only the first of the previous level and we decrease the frequency 4633 * of load-balance at each level inv. proportional to the number of cpus in 4634 * the groups. 4635 * 4636 * This yields: 4637 * 4638 * log_2 n 1 n 4639 * \Sum { --- * --- * 2^i } = O(n) (5) 4640 * i = 0 2^i 2^i 4641 * `- size of each group 4642 * | | `- number of cpus doing load-balance 4643 * | `- freq 4644 * `- sum over all levels 4645 * 4646 * Coupled with a limit on how many tasks we can migrate every balance pass, 4647 * this makes (5) the runtime complexity of the balancer. 4648 * 4649 * An important property here is that each CPU is still (indirectly) connected 4650 * to every other cpu in at most O(log n) steps: 4651 * 4652 * The adjacency matrix of the resulting graph is given by: 4653 * 4654 * log_2 n 4655 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 4656 * k = 0 4657 * 4658 * And you'll find that: 4659 * 4660 * A^(log_2 n)_i,j != 0 for all i,j (7) 4661 * 4662 * Showing there's indeed a path between every cpu in at most O(log n) steps. 4663 * The task movement gives a factor of O(m), giving a convergence complexity 4664 * of: 4665 * 4666 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 4667 * 4668 * 4669 * WORK CONSERVING 4670 * 4671 * In order to avoid CPUs going idle while there's still work to do, new idle 4672 * balancing is more aggressive and has the newly idle cpu iterate up the domain 4673 * tree itself instead of relying on other CPUs to bring it work. 4674 * 4675 * This adds some complexity to both (5) and (8) but it reduces the total idle 4676 * time. 4677 * 4678 * [XXX more?] 4679 * 4680 * 4681 * CGROUPS 4682 * 4683 * Cgroups make a horror show out of (2), instead of a simple sum we get: 4684 * 4685 * s_k,i 4686 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 4687 * S_k 4688 * 4689 * Where 4690 * 4691 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 4692 * 4693 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 4694 * 4695 * The big problem is S_k, its a global sum needed to compute a local (W_i) 4696 * property. 4697 * 4698 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 4699 * rewrite all of this once again.] 4700 */ 4701 4702 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 4703 4704 enum fbq_type { regular, remote, all }; 4705 4706 #define LBF_ALL_PINNED 0x01 4707 #define LBF_NEED_BREAK 0x02 4708 #define LBF_DST_PINNED 0x04 4709 #define LBF_SOME_PINNED 0x08 4710 4711 struct lb_env { 4712 struct sched_domain *sd; 4713 4714 struct rq *src_rq; 4715 int src_cpu; 4716 4717 int dst_cpu; 4718 struct rq *dst_rq; 4719 4720 struct cpumask *dst_grpmask; 4721 int new_dst_cpu; 4722 enum cpu_idle_type idle; 4723 long imbalance; 4724 /* The set of CPUs under consideration for load-balancing */ 4725 struct cpumask *cpus; 4726 4727 unsigned int flags; 4728 4729 unsigned int loop; 4730 unsigned int loop_break; 4731 unsigned int loop_max; 4732 4733 enum fbq_type fbq_type; 4734 }; 4735 4736 /* 4737 * move_task - move a task from one runqueue to another runqueue. 4738 * Both runqueues must be locked. 4739 */ 4740 static void move_task(struct task_struct *p, struct lb_env *env) 4741 { 4742 deactivate_task(env->src_rq, p, 0); 4743 set_task_cpu(p, env->dst_cpu); 4744 activate_task(env->dst_rq, p, 0); 4745 check_preempt_curr(env->dst_rq, p, 0); 4746 } 4747 4748 /* 4749 * Is this task likely cache-hot: 4750 */ 4751 static int 4752 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) 4753 { 4754 s64 delta; 4755 4756 if (p->sched_class != &fair_sched_class) 4757 return 0; 4758 4759 if (unlikely(p->policy == SCHED_IDLE)) 4760 return 0; 4761 4762 /* 4763 * Buddy candidates are cache hot: 4764 */ 4765 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && 4766 (&p->se == cfs_rq_of(&p->se)->next || 4767 &p->se == cfs_rq_of(&p->se)->last)) 4768 return 1; 4769 4770 if (sysctl_sched_migration_cost == -1) 4771 return 1; 4772 if (sysctl_sched_migration_cost == 0) 4773 return 0; 4774 4775 delta = now - p->se.exec_start; 4776 4777 return delta < (s64)sysctl_sched_migration_cost; 4778 } 4779 4780 #ifdef CONFIG_NUMA_BALANCING 4781 /* Returns true if the destination node has incurred more faults */ 4782 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env) 4783 { 4784 int src_nid, dst_nid; 4785 4786 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults || 4787 !(env->sd->flags & SD_NUMA)) { 4788 return false; 4789 } 4790 4791 src_nid = cpu_to_node(env->src_cpu); 4792 dst_nid = cpu_to_node(env->dst_cpu); 4793 4794 if (src_nid == dst_nid) 4795 return false; 4796 4797 /* Always encourage migration to the preferred node. */ 4798 if (dst_nid == p->numa_preferred_nid) 4799 return true; 4800 4801 /* If both task and group weight improve, this move is a winner. */ 4802 if (task_weight(p, dst_nid) > task_weight(p, src_nid) && 4803 group_weight(p, dst_nid) > group_weight(p, src_nid)) 4804 return true; 4805 4806 return false; 4807 } 4808 4809 4810 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 4811 { 4812 int src_nid, dst_nid; 4813 4814 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER)) 4815 return false; 4816 4817 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 4818 return false; 4819 4820 src_nid = cpu_to_node(env->src_cpu); 4821 dst_nid = cpu_to_node(env->dst_cpu); 4822 4823 if (src_nid == dst_nid) 4824 return false; 4825 4826 /* Migrating away from the preferred node is always bad. */ 4827 if (src_nid == p->numa_preferred_nid) 4828 return true; 4829 4830 /* If either task or group weight get worse, don't do it. */ 4831 if (task_weight(p, dst_nid) < task_weight(p, src_nid) || 4832 group_weight(p, dst_nid) < group_weight(p, src_nid)) 4833 return true; 4834 4835 return false; 4836 } 4837 4838 #else 4839 static inline bool migrate_improves_locality(struct task_struct *p, 4840 struct lb_env *env) 4841 { 4842 return false; 4843 } 4844 4845 static inline bool migrate_degrades_locality(struct task_struct *p, 4846 struct lb_env *env) 4847 { 4848 return false; 4849 } 4850 #endif 4851 4852 /* 4853 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 4854 */ 4855 static 4856 int can_migrate_task(struct task_struct *p, struct lb_env *env) 4857 { 4858 int tsk_cache_hot = 0; 4859 /* 4860 * We do not migrate tasks that are: 4861 * 1) throttled_lb_pair, or 4862 * 2) cannot be migrated to this CPU due to cpus_allowed, or 4863 * 3) running (obviously), or 4864 * 4) are cache-hot on their current CPU. 4865 */ 4866 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 4867 return 0; 4868 4869 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { 4870 int cpu; 4871 4872 schedstat_inc(p, se.statistics.nr_failed_migrations_affine); 4873 4874 env->flags |= LBF_SOME_PINNED; 4875 4876 /* 4877 * Remember if this task can be migrated to any other cpu in 4878 * our sched_group. We may want to revisit it if we couldn't 4879 * meet load balance goals by pulling other tasks on src_cpu. 4880 * 4881 * Also avoid computing new_dst_cpu if we have already computed 4882 * one in current iteration. 4883 */ 4884 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) 4885 return 0; 4886 4887 /* Prevent to re-select dst_cpu via env's cpus */ 4888 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 4889 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { 4890 env->flags |= LBF_DST_PINNED; 4891 env->new_dst_cpu = cpu; 4892 break; 4893 } 4894 } 4895 4896 return 0; 4897 } 4898 4899 /* Record that we found atleast one task that could run on dst_cpu */ 4900 env->flags &= ~LBF_ALL_PINNED; 4901 4902 if (task_running(env->src_rq, p)) { 4903 schedstat_inc(p, se.statistics.nr_failed_migrations_running); 4904 return 0; 4905 } 4906 4907 /* 4908 * Aggressive migration if: 4909 * 1) destination numa is preferred 4910 * 2) task is cache cold, or 4911 * 3) too many balance attempts have failed. 4912 */ 4913 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd); 4914 if (!tsk_cache_hot) 4915 tsk_cache_hot = migrate_degrades_locality(p, env); 4916 4917 if (migrate_improves_locality(p, env)) { 4918 #ifdef CONFIG_SCHEDSTATS 4919 if (tsk_cache_hot) { 4920 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 4921 schedstat_inc(p, se.statistics.nr_forced_migrations); 4922 } 4923 #endif 4924 return 1; 4925 } 4926 4927 if (!tsk_cache_hot || 4928 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 4929 4930 if (tsk_cache_hot) { 4931 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 4932 schedstat_inc(p, se.statistics.nr_forced_migrations); 4933 } 4934 4935 return 1; 4936 } 4937 4938 schedstat_inc(p, se.statistics.nr_failed_migrations_hot); 4939 return 0; 4940 } 4941 4942 /* 4943 * move_one_task tries to move exactly one task from busiest to this_rq, as 4944 * part of active balancing operations within "domain". 4945 * Returns 1 if successful and 0 otherwise. 4946 * 4947 * Called with both runqueues locked. 4948 */ 4949 static int move_one_task(struct lb_env *env) 4950 { 4951 struct task_struct *p, *n; 4952 4953 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 4954 if (!can_migrate_task(p, env)) 4955 continue; 4956 4957 move_task(p, env); 4958 /* 4959 * Right now, this is only the second place move_task() 4960 * is called, so we can safely collect move_task() 4961 * stats here rather than inside move_task(). 4962 */ 4963 schedstat_inc(env->sd, lb_gained[env->idle]); 4964 return 1; 4965 } 4966 return 0; 4967 } 4968 4969 static const unsigned int sched_nr_migrate_break = 32; 4970 4971 /* 4972 * move_tasks tries to move up to imbalance weighted load from busiest to 4973 * this_rq, as part of a balancing operation within domain "sd". 4974 * Returns 1 if successful and 0 otherwise. 4975 * 4976 * Called with both runqueues locked. 4977 */ 4978 static int move_tasks(struct lb_env *env) 4979 { 4980 struct list_head *tasks = &env->src_rq->cfs_tasks; 4981 struct task_struct *p; 4982 unsigned long load; 4983 int pulled = 0; 4984 4985 if (env->imbalance <= 0) 4986 return 0; 4987 4988 while (!list_empty(tasks)) { 4989 p = list_first_entry(tasks, struct task_struct, se.group_node); 4990 4991 env->loop++; 4992 /* We've more or less seen every task there is, call it quits */ 4993 if (env->loop > env->loop_max) 4994 break; 4995 4996 /* take a breather every nr_migrate tasks */ 4997 if (env->loop > env->loop_break) { 4998 env->loop_break += sched_nr_migrate_break; 4999 env->flags |= LBF_NEED_BREAK; 5000 break; 5001 } 5002 5003 if (!can_migrate_task(p, env)) 5004 goto next; 5005 5006 load = task_h_load(p); 5007 5008 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 5009 goto next; 5010 5011 if ((load / 2) > env->imbalance) 5012 goto next; 5013 5014 move_task(p, env); 5015 pulled++; 5016 env->imbalance -= load; 5017 5018 #ifdef CONFIG_PREEMPT 5019 /* 5020 * NEWIDLE balancing is a source of latency, so preemptible 5021 * kernels will stop after the first task is pulled to minimize 5022 * the critical section. 5023 */ 5024 if (env->idle == CPU_NEWLY_IDLE) 5025 break; 5026 #endif 5027 5028 /* 5029 * We only want to steal up to the prescribed amount of 5030 * weighted load. 5031 */ 5032 if (env->imbalance <= 0) 5033 break; 5034 5035 continue; 5036 next: 5037 list_move_tail(&p->se.group_node, tasks); 5038 } 5039 5040 /* 5041 * Right now, this is one of only two places move_task() is called, 5042 * so we can safely collect move_task() stats here rather than 5043 * inside move_task(). 5044 */ 5045 schedstat_add(env->sd, lb_gained[env->idle], pulled); 5046 5047 return pulled; 5048 } 5049 5050 #ifdef CONFIG_FAIR_GROUP_SCHED 5051 /* 5052 * update tg->load_weight by folding this cpu's load_avg 5053 */ 5054 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu) 5055 { 5056 struct sched_entity *se = tg->se[cpu]; 5057 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 5058 5059 /* throttled entities do not contribute to load */ 5060 if (throttled_hierarchy(cfs_rq)) 5061 return; 5062 5063 update_cfs_rq_blocked_load(cfs_rq, 1); 5064 5065 if (se) { 5066 update_entity_load_avg(se, 1); 5067 /* 5068 * We pivot on our runnable average having decayed to zero for 5069 * list removal. This generally implies that all our children 5070 * have also been removed (modulo rounding error or bandwidth 5071 * control); however, such cases are rare and we can fix these 5072 * at enqueue. 5073 * 5074 * TODO: fix up out-of-order children on enqueue. 5075 */ 5076 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running) 5077 list_del_leaf_cfs_rq(cfs_rq); 5078 } else { 5079 struct rq *rq = rq_of(cfs_rq); 5080 update_rq_runnable_avg(rq, rq->nr_running); 5081 } 5082 } 5083 5084 static void update_blocked_averages(int cpu) 5085 { 5086 struct rq *rq = cpu_rq(cpu); 5087 struct cfs_rq *cfs_rq; 5088 unsigned long flags; 5089 5090 raw_spin_lock_irqsave(&rq->lock, flags); 5091 update_rq_clock(rq); 5092 /* 5093 * Iterates the task_group tree in a bottom up fashion, see 5094 * list_add_leaf_cfs_rq() for details. 5095 */ 5096 for_each_leaf_cfs_rq(rq, cfs_rq) { 5097 /* 5098 * Note: We may want to consider periodically releasing 5099 * rq->lock about these updates so that creating many task 5100 * groups does not result in continually extending hold time. 5101 */ 5102 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu); 5103 } 5104 5105 raw_spin_unlock_irqrestore(&rq->lock, flags); 5106 } 5107 5108 /* 5109 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 5110 * This needs to be done in a top-down fashion because the load of a child 5111 * group is a fraction of its parents load. 5112 */ 5113 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 5114 { 5115 struct rq *rq = rq_of(cfs_rq); 5116 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 5117 unsigned long now = jiffies; 5118 unsigned long load; 5119 5120 if (cfs_rq->last_h_load_update == now) 5121 return; 5122 5123 cfs_rq->h_load_next = NULL; 5124 for_each_sched_entity(se) { 5125 cfs_rq = cfs_rq_of(se); 5126 cfs_rq->h_load_next = se; 5127 if (cfs_rq->last_h_load_update == now) 5128 break; 5129 } 5130 5131 if (!se) { 5132 cfs_rq->h_load = cfs_rq->runnable_load_avg; 5133 cfs_rq->last_h_load_update = now; 5134 } 5135 5136 while ((se = cfs_rq->h_load_next) != NULL) { 5137 load = cfs_rq->h_load; 5138 load = div64_ul(load * se->avg.load_avg_contrib, 5139 cfs_rq->runnable_load_avg + 1); 5140 cfs_rq = group_cfs_rq(se); 5141 cfs_rq->h_load = load; 5142 cfs_rq->last_h_load_update = now; 5143 } 5144 } 5145 5146 static unsigned long task_h_load(struct task_struct *p) 5147 { 5148 struct cfs_rq *cfs_rq = task_cfs_rq(p); 5149 5150 update_cfs_rq_h_load(cfs_rq); 5151 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load, 5152 cfs_rq->runnable_load_avg + 1); 5153 } 5154 #else 5155 static inline void update_blocked_averages(int cpu) 5156 { 5157 } 5158 5159 static unsigned long task_h_load(struct task_struct *p) 5160 { 5161 return p->se.avg.load_avg_contrib; 5162 } 5163 #endif 5164 5165 /********** Helpers for find_busiest_group ************************/ 5166 /* 5167 * sg_lb_stats - stats of a sched_group required for load_balancing 5168 */ 5169 struct sg_lb_stats { 5170 unsigned long avg_load; /*Avg load across the CPUs of the group */ 5171 unsigned long group_load; /* Total load over the CPUs of the group */ 5172 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 5173 unsigned long load_per_task; 5174 unsigned long group_power; 5175 unsigned int sum_nr_running; /* Nr tasks running in the group */ 5176 unsigned int group_capacity; 5177 unsigned int idle_cpus; 5178 unsigned int group_weight; 5179 int group_imb; /* Is there an imbalance in the group ? */ 5180 int group_has_capacity; /* Is there extra capacity in the group? */ 5181 #ifdef CONFIG_NUMA_BALANCING 5182 unsigned int nr_numa_running; 5183 unsigned int nr_preferred_running; 5184 #endif 5185 }; 5186 5187 /* 5188 * sd_lb_stats - Structure to store the statistics of a sched_domain 5189 * during load balancing. 5190 */ 5191 struct sd_lb_stats { 5192 struct sched_group *busiest; /* Busiest group in this sd */ 5193 struct sched_group *local; /* Local group in this sd */ 5194 unsigned long total_load; /* Total load of all groups in sd */ 5195 unsigned long total_pwr; /* Total power of all groups in sd */ 5196 unsigned long avg_load; /* Average load across all groups in sd */ 5197 5198 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 5199 struct sg_lb_stats local_stat; /* Statistics of the local group */ 5200 }; 5201 5202 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 5203 { 5204 /* 5205 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 5206 * local_stat because update_sg_lb_stats() does a full clear/assignment. 5207 * We must however clear busiest_stat::avg_load because 5208 * update_sd_pick_busiest() reads this before assignment. 5209 */ 5210 *sds = (struct sd_lb_stats){ 5211 .busiest = NULL, 5212 .local = NULL, 5213 .total_load = 0UL, 5214 .total_pwr = 0UL, 5215 .busiest_stat = { 5216 .avg_load = 0UL, 5217 }, 5218 }; 5219 } 5220 5221 /** 5222 * get_sd_load_idx - Obtain the load index for a given sched domain. 5223 * @sd: The sched_domain whose load_idx is to be obtained. 5224 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 5225 * 5226 * Return: The load index. 5227 */ 5228 static inline int get_sd_load_idx(struct sched_domain *sd, 5229 enum cpu_idle_type idle) 5230 { 5231 int load_idx; 5232 5233 switch (idle) { 5234 case CPU_NOT_IDLE: 5235 load_idx = sd->busy_idx; 5236 break; 5237 5238 case CPU_NEWLY_IDLE: 5239 load_idx = sd->newidle_idx; 5240 break; 5241 default: 5242 load_idx = sd->idle_idx; 5243 break; 5244 } 5245 5246 return load_idx; 5247 } 5248 5249 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) 5250 { 5251 return SCHED_POWER_SCALE; 5252 } 5253 5254 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) 5255 { 5256 return default_scale_freq_power(sd, cpu); 5257 } 5258 5259 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) 5260 { 5261 unsigned long weight = sd->span_weight; 5262 unsigned long smt_gain = sd->smt_gain; 5263 5264 smt_gain /= weight; 5265 5266 return smt_gain; 5267 } 5268 5269 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) 5270 { 5271 return default_scale_smt_power(sd, cpu); 5272 } 5273 5274 static unsigned long scale_rt_power(int cpu) 5275 { 5276 struct rq *rq = cpu_rq(cpu); 5277 u64 total, available, age_stamp, avg; 5278 5279 /* 5280 * Since we're reading these variables without serialization make sure 5281 * we read them once before doing sanity checks on them. 5282 */ 5283 age_stamp = ACCESS_ONCE(rq->age_stamp); 5284 avg = ACCESS_ONCE(rq->rt_avg); 5285 5286 total = sched_avg_period() + (rq_clock(rq) - age_stamp); 5287 5288 if (unlikely(total < avg)) { 5289 /* Ensures that power won't end up being negative */ 5290 available = 0; 5291 } else { 5292 available = total - avg; 5293 } 5294 5295 if (unlikely((s64)total < SCHED_POWER_SCALE)) 5296 total = SCHED_POWER_SCALE; 5297 5298 total >>= SCHED_POWER_SHIFT; 5299 5300 return div_u64(available, total); 5301 } 5302 5303 static void update_cpu_power(struct sched_domain *sd, int cpu) 5304 { 5305 unsigned long weight = sd->span_weight; 5306 unsigned long power = SCHED_POWER_SCALE; 5307 struct sched_group *sdg = sd->groups; 5308 5309 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { 5310 if (sched_feat(ARCH_POWER)) 5311 power *= arch_scale_smt_power(sd, cpu); 5312 else 5313 power *= default_scale_smt_power(sd, cpu); 5314 5315 power >>= SCHED_POWER_SHIFT; 5316 } 5317 5318 sdg->sgp->power_orig = power; 5319 5320 if (sched_feat(ARCH_POWER)) 5321 power *= arch_scale_freq_power(sd, cpu); 5322 else 5323 power *= default_scale_freq_power(sd, cpu); 5324 5325 power >>= SCHED_POWER_SHIFT; 5326 5327 power *= scale_rt_power(cpu); 5328 power >>= SCHED_POWER_SHIFT; 5329 5330 if (!power) 5331 power = 1; 5332 5333 cpu_rq(cpu)->cpu_power = power; 5334 sdg->sgp->power = power; 5335 } 5336 5337 void update_group_power(struct sched_domain *sd, int cpu) 5338 { 5339 struct sched_domain *child = sd->child; 5340 struct sched_group *group, *sdg = sd->groups; 5341 unsigned long power, power_orig; 5342 unsigned long interval; 5343 5344 interval = msecs_to_jiffies(sd->balance_interval); 5345 interval = clamp(interval, 1UL, max_load_balance_interval); 5346 sdg->sgp->next_update = jiffies + interval; 5347 5348 if (!child) { 5349 update_cpu_power(sd, cpu); 5350 return; 5351 } 5352 5353 power_orig = power = 0; 5354 5355 if (child->flags & SD_OVERLAP) { 5356 /* 5357 * SD_OVERLAP domains cannot assume that child groups 5358 * span the current group. 5359 */ 5360 5361 for_each_cpu(cpu, sched_group_cpus(sdg)) { 5362 struct sched_group_power *sgp; 5363 struct rq *rq = cpu_rq(cpu); 5364 5365 /* 5366 * build_sched_domains() -> init_sched_groups_power() 5367 * gets here before we've attached the domains to the 5368 * runqueues. 5369 * 5370 * Use power_of(), which is set irrespective of domains 5371 * in update_cpu_power(). 5372 * 5373 * This avoids power/power_orig from being 0 and 5374 * causing divide-by-zero issues on boot. 5375 * 5376 * Runtime updates will correct power_orig. 5377 */ 5378 if (unlikely(!rq->sd)) { 5379 power_orig += power_of(cpu); 5380 power += power_of(cpu); 5381 continue; 5382 } 5383 5384 sgp = rq->sd->groups->sgp; 5385 power_orig += sgp->power_orig; 5386 power += sgp->power; 5387 } 5388 } else { 5389 /* 5390 * !SD_OVERLAP domains can assume that child groups 5391 * span the current group. 5392 */ 5393 5394 group = child->groups; 5395 do { 5396 power_orig += group->sgp->power_orig; 5397 power += group->sgp->power; 5398 group = group->next; 5399 } while (group != child->groups); 5400 } 5401 5402 sdg->sgp->power_orig = power_orig; 5403 sdg->sgp->power = power; 5404 } 5405 5406 /* 5407 * Try and fix up capacity for tiny siblings, this is needed when 5408 * things like SD_ASYM_PACKING need f_b_g to select another sibling 5409 * which on its own isn't powerful enough. 5410 * 5411 * See update_sd_pick_busiest() and check_asym_packing(). 5412 */ 5413 static inline int 5414 fix_small_capacity(struct sched_domain *sd, struct sched_group *group) 5415 { 5416 /* 5417 * Only siblings can have significantly less than SCHED_POWER_SCALE 5418 */ 5419 if (!(sd->flags & SD_SHARE_CPUPOWER)) 5420 return 0; 5421 5422 /* 5423 * If ~90% of the cpu_power is still there, we're good. 5424 */ 5425 if (group->sgp->power * 32 > group->sgp->power_orig * 29) 5426 return 1; 5427 5428 return 0; 5429 } 5430 5431 /* 5432 * Group imbalance indicates (and tries to solve) the problem where balancing 5433 * groups is inadequate due to tsk_cpus_allowed() constraints. 5434 * 5435 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 5436 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 5437 * Something like: 5438 * 5439 * { 0 1 2 3 } { 4 5 6 7 } 5440 * * * * * 5441 * 5442 * If we were to balance group-wise we'd place two tasks in the first group and 5443 * two tasks in the second group. Clearly this is undesired as it will overload 5444 * cpu 3 and leave one of the cpus in the second group unused. 5445 * 5446 * The current solution to this issue is detecting the skew in the first group 5447 * by noticing the lower domain failed to reach balance and had difficulty 5448 * moving tasks due to affinity constraints. 5449 * 5450 * When this is so detected; this group becomes a candidate for busiest; see 5451 * update_sd_pick_busiest(). And calculate_imbalance() and 5452 * find_busiest_group() avoid some of the usual balance conditions to allow it 5453 * to create an effective group imbalance. 5454 * 5455 * This is a somewhat tricky proposition since the next run might not find the 5456 * group imbalance and decide the groups need to be balanced again. A most 5457 * subtle and fragile situation. 5458 */ 5459 5460 static inline int sg_imbalanced(struct sched_group *group) 5461 { 5462 return group->sgp->imbalance; 5463 } 5464 5465 /* 5466 * Compute the group capacity. 5467 * 5468 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by 5469 * first dividing out the smt factor and computing the actual number of cores 5470 * and limit power unit capacity with that. 5471 */ 5472 static inline int sg_capacity(struct lb_env *env, struct sched_group *group) 5473 { 5474 unsigned int capacity, smt, cpus; 5475 unsigned int power, power_orig; 5476 5477 power = group->sgp->power; 5478 power_orig = group->sgp->power_orig; 5479 cpus = group->group_weight; 5480 5481 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */ 5482 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig); 5483 capacity = cpus / smt; /* cores */ 5484 5485 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE)); 5486 if (!capacity) 5487 capacity = fix_small_capacity(env->sd, group); 5488 5489 return capacity; 5490 } 5491 5492 /** 5493 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 5494 * @env: The load balancing environment. 5495 * @group: sched_group whose statistics are to be updated. 5496 * @load_idx: Load index of sched_domain of this_cpu for load calc. 5497 * @local_group: Does group contain this_cpu. 5498 * @sgs: variable to hold the statistics for this group. 5499 */ 5500 static inline void update_sg_lb_stats(struct lb_env *env, 5501 struct sched_group *group, int load_idx, 5502 int local_group, struct sg_lb_stats *sgs) 5503 { 5504 unsigned long load; 5505 int i; 5506 5507 memset(sgs, 0, sizeof(*sgs)); 5508 5509 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 5510 struct rq *rq = cpu_rq(i); 5511 5512 /* Bias balancing toward cpus of our domain */ 5513 if (local_group) 5514 load = target_load(i, load_idx); 5515 else 5516 load = source_load(i, load_idx); 5517 5518 sgs->group_load += load; 5519 sgs->sum_nr_running += rq->nr_running; 5520 #ifdef CONFIG_NUMA_BALANCING 5521 sgs->nr_numa_running += rq->nr_numa_running; 5522 sgs->nr_preferred_running += rq->nr_preferred_running; 5523 #endif 5524 sgs->sum_weighted_load += weighted_cpuload(i); 5525 if (idle_cpu(i)) 5526 sgs->idle_cpus++; 5527 } 5528 5529 /* Adjust by relative CPU power of the group */ 5530 sgs->group_power = group->sgp->power; 5531 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power; 5532 5533 if (sgs->sum_nr_running) 5534 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 5535 5536 sgs->group_weight = group->group_weight; 5537 5538 sgs->group_imb = sg_imbalanced(group); 5539 sgs->group_capacity = sg_capacity(env, group); 5540 5541 if (sgs->group_capacity > sgs->sum_nr_running) 5542 sgs->group_has_capacity = 1; 5543 } 5544 5545 /** 5546 * update_sd_pick_busiest - return 1 on busiest group 5547 * @env: The load balancing environment. 5548 * @sds: sched_domain statistics 5549 * @sg: sched_group candidate to be checked for being the busiest 5550 * @sgs: sched_group statistics 5551 * 5552 * Determine if @sg is a busier group than the previously selected 5553 * busiest group. 5554 * 5555 * Return: %true if @sg is a busier group than the previously selected 5556 * busiest group. %false otherwise. 5557 */ 5558 static bool update_sd_pick_busiest(struct lb_env *env, 5559 struct sd_lb_stats *sds, 5560 struct sched_group *sg, 5561 struct sg_lb_stats *sgs) 5562 { 5563 if (sgs->avg_load <= sds->busiest_stat.avg_load) 5564 return false; 5565 5566 if (sgs->sum_nr_running > sgs->group_capacity) 5567 return true; 5568 5569 if (sgs->group_imb) 5570 return true; 5571 5572 /* 5573 * ASYM_PACKING needs to move all the work to the lowest 5574 * numbered CPUs in the group, therefore mark all groups 5575 * higher than ourself as busy. 5576 */ 5577 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running && 5578 env->dst_cpu < group_first_cpu(sg)) { 5579 if (!sds->busiest) 5580 return true; 5581 5582 if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) 5583 return true; 5584 } 5585 5586 return false; 5587 } 5588 5589 #ifdef CONFIG_NUMA_BALANCING 5590 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 5591 { 5592 if (sgs->sum_nr_running > sgs->nr_numa_running) 5593 return regular; 5594 if (sgs->sum_nr_running > sgs->nr_preferred_running) 5595 return remote; 5596 return all; 5597 } 5598 5599 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 5600 { 5601 if (rq->nr_running > rq->nr_numa_running) 5602 return regular; 5603 if (rq->nr_running > rq->nr_preferred_running) 5604 return remote; 5605 return all; 5606 } 5607 #else 5608 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 5609 { 5610 return all; 5611 } 5612 5613 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 5614 { 5615 return regular; 5616 } 5617 #endif /* CONFIG_NUMA_BALANCING */ 5618 5619 /** 5620 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 5621 * @env: The load balancing environment. 5622 * @sds: variable to hold the statistics for this sched_domain. 5623 */ 5624 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 5625 { 5626 struct sched_domain *child = env->sd->child; 5627 struct sched_group *sg = env->sd->groups; 5628 struct sg_lb_stats tmp_sgs; 5629 int load_idx, prefer_sibling = 0; 5630 5631 if (child && child->flags & SD_PREFER_SIBLING) 5632 prefer_sibling = 1; 5633 5634 load_idx = get_sd_load_idx(env->sd, env->idle); 5635 5636 do { 5637 struct sg_lb_stats *sgs = &tmp_sgs; 5638 int local_group; 5639 5640 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 5641 if (local_group) { 5642 sds->local = sg; 5643 sgs = &sds->local_stat; 5644 5645 if (env->idle != CPU_NEWLY_IDLE || 5646 time_after_eq(jiffies, sg->sgp->next_update)) 5647 update_group_power(env->sd, env->dst_cpu); 5648 } 5649 5650 update_sg_lb_stats(env, sg, load_idx, local_group, sgs); 5651 5652 if (local_group) 5653 goto next_group; 5654 5655 /* 5656 * In case the child domain prefers tasks go to siblings 5657 * first, lower the sg capacity to one so that we'll try 5658 * and move all the excess tasks away. We lower the capacity 5659 * of a group only if the local group has the capacity to fit 5660 * these excess tasks, i.e. nr_running < group_capacity. The 5661 * extra check prevents the case where you always pull from the 5662 * heaviest group when it is already under-utilized (possible 5663 * with a large weight task outweighs the tasks on the system). 5664 */ 5665 if (prefer_sibling && sds->local && 5666 sds->local_stat.group_has_capacity) 5667 sgs->group_capacity = min(sgs->group_capacity, 1U); 5668 5669 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 5670 sds->busiest = sg; 5671 sds->busiest_stat = *sgs; 5672 } 5673 5674 next_group: 5675 /* Now, start updating sd_lb_stats */ 5676 sds->total_load += sgs->group_load; 5677 sds->total_pwr += sgs->group_power; 5678 5679 sg = sg->next; 5680 } while (sg != env->sd->groups); 5681 5682 if (env->sd->flags & SD_NUMA) 5683 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 5684 } 5685 5686 /** 5687 * check_asym_packing - Check to see if the group is packed into the 5688 * sched doman. 5689 * 5690 * This is primarily intended to used at the sibling level. Some 5691 * cores like POWER7 prefer to use lower numbered SMT threads. In the 5692 * case of POWER7, it can move to lower SMT modes only when higher 5693 * threads are idle. When in lower SMT modes, the threads will 5694 * perform better since they share less core resources. Hence when we 5695 * have idle threads, we want them to be the higher ones. 5696 * 5697 * This packing function is run on idle threads. It checks to see if 5698 * the busiest CPU in this domain (core in the P7 case) has a higher 5699 * CPU number than the packing function is being run on. Here we are 5700 * assuming lower CPU number will be equivalent to lower a SMT thread 5701 * number. 5702 * 5703 * Return: 1 when packing is required and a task should be moved to 5704 * this CPU. The amount of the imbalance is returned in *imbalance. 5705 * 5706 * @env: The load balancing environment. 5707 * @sds: Statistics of the sched_domain which is to be packed 5708 */ 5709 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 5710 { 5711 int busiest_cpu; 5712 5713 if (!(env->sd->flags & SD_ASYM_PACKING)) 5714 return 0; 5715 5716 if (!sds->busiest) 5717 return 0; 5718 5719 busiest_cpu = group_first_cpu(sds->busiest); 5720 if (env->dst_cpu > busiest_cpu) 5721 return 0; 5722 5723 env->imbalance = DIV_ROUND_CLOSEST( 5724 sds->busiest_stat.avg_load * sds->busiest_stat.group_power, 5725 SCHED_POWER_SCALE); 5726 5727 return 1; 5728 } 5729 5730 /** 5731 * fix_small_imbalance - Calculate the minor imbalance that exists 5732 * amongst the groups of a sched_domain, during 5733 * load balancing. 5734 * @env: The load balancing environment. 5735 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 5736 */ 5737 static inline 5738 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 5739 { 5740 unsigned long tmp, pwr_now = 0, pwr_move = 0; 5741 unsigned int imbn = 2; 5742 unsigned long scaled_busy_load_per_task; 5743 struct sg_lb_stats *local, *busiest; 5744 5745 local = &sds->local_stat; 5746 busiest = &sds->busiest_stat; 5747 5748 if (!local->sum_nr_running) 5749 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 5750 else if (busiest->load_per_task > local->load_per_task) 5751 imbn = 1; 5752 5753 scaled_busy_load_per_task = 5754 (busiest->load_per_task * SCHED_POWER_SCALE) / 5755 busiest->group_power; 5756 5757 if (busiest->avg_load + scaled_busy_load_per_task >= 5758 local->avg_load + (scaled_busy_load_per_task * imbn)) { 5759 env->imbalance = busiest->load_per_task; 5760 return; 5761 } 5762 5763 /* 5764 * OK, we don't have enough imbalance to justify moving tasks, 5765 * however we may be able to increase total CPU power used by 5766 * moving them. 5767 */ 5768 5769 pwr_now += busiest->group_power * 5770 min(busiest->load_per_task, busiest->avg_load); 5771 pwr_now += local->group_power * 5772 min(local->load_per_task, local->avg_load); 5773 pwr_now /= SCHED_POWER_SCALE; 5774 5775 /* Amount of load we'd subtract */ 5776 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) / 5777 busiest->group_power; 5778 if (busiest->avg_load > tmp) { 5779 pwr_move += busiest->group_power * 5780 min(busiest->load_per_task, 5781 busiest->avg_load - tmp); 5782 } 5783 5784 /* Amount of load we'd add */ 5785 if (busiest->avg_load * busiest->group_power < 5786 busiest->load_per_task * SCHED_POWER_SCALE) { 5787 tmp = (busiest->avg_load * busiest->group_power) / 5788 local->group_power; 5789 } else { 5790 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) / 5791 local->group_power; 5792 } 5793 pwr_move += local->group_power * 5794 min(local->load_per_task, local->avg_load + tmp); 5795 pwr_move /= SCHED_POWER_SCALE; 5796 5797 /* Move if we gain throughput */ 5798 if (pwr_move > pwr_now) 5799 env->imbalance = busiest->load_per_task; 5800 } 5801 5802 /** 5803 * calculate_imbalance - Calculate the amount of imbalance present within the 5804 * groups of a given sched_domain during load balance. 5805 * @env: load balance environment 5806 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 5807 */ 5808 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 5809 { 5810 unsigned long max_pull, load_above_capacity = ~0UL; 5811 struct sg_lb_stats *local, *busiest; 5812 5813 local = &sds->local_stat; 5814 busiest = &sds->busiest_stat; 5815 5816 if (busiest->group_imb) { 5817 /* 5818 * In the group_imb case we cannot rely on group-wide averages 5819 * to ensure cpu-load equilibrium, look at wider averages. XXX 5820 */ 5821 busiest->load_per_task = 5822 min(busiest->load_per_task, sds->avg_load); 5823 } 5824 5825 /* 5826 * In the presence of smp nice balancing, certain scenarios can have 5827 * max load less than avg load(as we skip the groups at or below 5828 * its cpu_power, while calculating max_load..) 5829 */ 5830 if (busiest->avg_load <= sds->avg_load || 5831 local->avg_load >= sds->avg_load) { 5832 env->imbalance = 0; 5833 return fix_small_imbalance(env, sds); 5834 } 5835 5836 if (!busiest->group_imb) { 5837 /* 5838 * Don't want to pull so many tasks that a group would go idle. 5839 * Except of course for the group_imb case, since then we might 5840 * have to drop below capacity to reach cpu-load equilibrium. 5841 */ 5842 load_above_capacity = 5843 (busiest->sum_nr_running - busiest->group_capacity); 5844 5845 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE); 5846 load_above_capacity /= busiest->group_power; 5847 } 5848 5849 /* 5850 * We're trying to get all the cpus to the average_load, so we don't 5851 * want to push ourselves above the average load, nor do we wish to 5852 * reduce the max loaded cpu below the average load. At the same time, 5853 * we also don't want to reduce the group load below the group capacity 5854 * (so that we can implement power-savings policies etc). Thus we look 5855 * for the minimum possible imbalance. 5856 */ 5857 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 5858 5859 /* How much load to actually move to equalise the imbalance */ 5860 env->imbalance = min( 5861 max_pull * busiest->group_power, 5862 (sds->avg_load - local->avg_load) * local->group_power 5863 ) / SCHED_POWER_SCALE; 5864 5865 /* 5866 * if *imbalance is less than the average load per runnable task 5867 * there is no guarantee that any tasks will be moved so we'll have 5868 * a think about bumping its value to force at least one task to be 5869 * moved 5870 */ 5871 if (env->imbalance < busiest->load_per_task) 5872 return fix_small_imbalance(env, sds); 5873 } 5874 5875 /******* find_busiest_group() helpers end here *********************/ 5876 5877 /** 5878 * find_busiest_group - Returns the busiest group within the sched_domain 5879 * if there is an imbalance. If there isn't an imbalance, and 5880 * the user has opted for power-savings, it returns a group whose 5881 * CPUs can be put to idle by rebalancing those tasks elsewhere, if 5882 * such a group exists. 5883 * 5884 * Also calculates the amount of weighted load which should be moved 5885 * to restore balance. 5886 * 5887 * @env: The load balancing environment. 5888 * 5889 * Return: - The busiest group if imbalance exists. 5890 * - If no imbalance and user has opted for power-savings balance, 5891 * return the least loaded group whose CPUs can be 5892 * put to idle by rebalancing its tasks onto our group. 5893 */ 5894 static struct sched_group *find_busiest_group(struct lb_env *env) 5895 { 5896 struct sg_lb_stats *local, *busiest; 5897 struct sd_lb_stats sds; 5898 5899 init_sd_lb_stats(&sds); 5900 5901 /* 5902 * Compute the various statistics relavent for load balancing at 5903 * this level. 5904 */ 5905 update_sd_lb_stats(env, &sds); 5906 local = &sds.local_stat; 5907 busiest = &sds.busiest_stat; 5908 5909 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) && 5910 check_asym_packing(env, &sds)) 5911 return sds.busiest; 5912 5913 /* There is no busy sibling group to pull tasks from */ 5914 if (!sds.busiest || busiest->sum_nr_running == 0) 5915 goto out_balanced; 5916 5917 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr; 5918 5919 /* 5920 * If the busiest group is imbalanced the below checks don't 5921 * work because they assume all things are equal, which typically 5922 * isn't true due to cpus_allowed constraints and the like. 5923 */ 5924 if (busiest->group_imb) 5925 goto force_balance; 5926 5927 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 5928 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity && 5929 !busiest->group_has_capacity) 5930 goto force_balance; 5931 5932 /* 5933 * If the local group is more busy than the selected busiest group 5934 * don't try and pull any tasks. 5935 */ 5936 if (local->avg_load >= busiest->avg_load) 5937 goto out_balanced; 5938 5939 /* 5940 * Don't pull any tasks if this group is already above the domain 5941 * average load. 5942 */ 5943 if (local->avg_load >= sds.avg_load) 5944 goto out_balanced; 5945 5946 if (env->idle == CPU_IDLE) { 5947 /* 5948 * This cpu is idle. If the busiest group load doesn't 5949 * have more tasks than the number of available cpu's and 5950 * there is no imbalance between this and busiest group 5951 * wrt to idle cpu's, it is balanced. 5952 */ 5953 if ((local->idle_cpus < busiest->idle_cpus) && 5954 busiest->sum_nr_running <= busiest->group_weight) 5955 goto out_balanced; 5956 } else { 5957 /* 5958 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 5959 * imbalance_pct to be conservative. 5960 */ 5961 if (100 * busiest->avg_load <= 5962 env->sd->imbalance_pct * local->avg_load) 5963 goto out_balanced; 5964 } 5965 5966 force_balance: 5967 /* Looks like there is an imbalance. Compute it */ 5968 calculate_imbalance(env, &sds); 5969 return sds.busiest; 5970 5971 out_balanced: 5972 env->imbalance = 0; 5973 return NULL; 5974 } 5975 5976 /* 5977 * find_busiest_queue - find the busiest runqueue among the cpus in group. 5978 */ 5979 static struct rq *find_busiest_queue(struct lb_env *env, 5980 struct sched_group *group) 5981 { 5982 struct rq *busiest = NULL, *rq; 5983 unsigned long busiest_load = 0, busiest_power = 1; 5984 int i; 5985 5986 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 5987 unsigned long power, capacity, wl; 5988 enum fbq_type rt; 5989 5990 rq = cpu_rq(i); 5991 rt = fbq_classify_rq(rq); 5992 5993 /* 5994 * We classify groups/runqueues into three groups: 5995 * - regular: there are !numa tasks 5996 * - remote: there are numa tasks that run on the 'wrong' node 5997 * - all: there is no distinction 5998 * 5999 * In order to avoid migrating ideally placed numa tasks, 6000 * ignore those when there's better options. 6001 * 6002 * If we ignore the actual busiest queue to migrate another 6003 * task, the next balance pass can still reduce the busiest 6004 * queue by moving tasks around inside the node. 6005 * 6006 * If we cannot move enough load due to this classification 6007 * the next pass will adjust the group classification and 6008 * allow migration of more tasks. 6009 * 6010 * Both cases only affect the total convergence complexity. 6011 */ 6012 if (rt > env->fbq_type) 6013 continue; 6014 6015 power = power_of(i); 6016 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE); 6017 if (!capacity) 6018 capacity = fix_small_capacity(env->sd, group); 6019 6020 wl = weighted_cpuload(i); 6021 6022 /* 6023 * When comparing with imbalance, use weighted_cpuload() 6024 * which is not scaled with the cpu power. 6025 */ 6026 if (capacity && rq->nr_running == 1 && wl > env->imbalance) 6027 continue; 6028 6029 /* 6030 * For the load comparisons with the other cpu's, consider 6031 * the weighted_cpuload() scaled with the cpu power, so that 6032 * the load can be moved away from the cpu that is potentially 6033 * running at a lower capacity. 6034 * 6035 * Thus we're looking for max(wl_i / power_i), crosswise 6036 * multiplication to rid ourselves of the division works out 6037 * to: wl_i * power_j > wl_j * power_i; where j is our 6038 * previous maximum. 6039 */ 6040 if (wl * busiest_power > busiest_load * power) { 6041 busiest_load = wl; 6042 busiest_power = power; 6043 busiest = rq; 6044 } 6045 } 6046 6047 return busiest; 6048 } 6049 6050 /* 6051 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 6052 * so long as it is large enough. 6053 */ 6054 #define MAX_PINNED_INTERVAL 512 6055 6056 /* Working cpumask for load_balance and load_balance_newidle. */ 6057 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6058 6059 static int need_active_balance(struct lb_env *env) 6060 { 6061 struct sched_domain *sd = env->sd; 6062 6063 if (env->idle == CPU_NEWLY_IDLE) { 6064 6065 /* 6066 * ASYM_PACKING needs to force migrate tasks from busy but 6067 * higher numbered CPUs in order to pack all tasks in the 6068 * lowest numbered CPUs. 6069 */ 6070 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) 6071 return 1; 6072 } 6073 6074 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 6075 } 6076 6077 static int active_load_balance_cpu_stop(void *data); 6078 6079 static int should_we_balance(struct lb_env *env) 6080 { 6081 struct sched_group *sg = env->sd->groups; 6082 struct cpumask *sg_cpus, *sg_mask; 6083 int cpu, balance_cpu = -1; 6084 6085 /* 6086 * In the newly idle case, we will allow all the cpu's 6087 * to do the newly idle load balance. 6088 */ 6089 if (env->idle == CPU_NEWLY_IDLE) 6090 return 1; 6091 6092 sg_cpus = sched_group_cpus(sg); 6093 sg_mask = sched_group_mask(sg); 6094 /* Try to find first idle cpu */ 6095 for_each_cpu_and(cpu, sg_cpus, env->cpus) { 6096 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) 6097 continue; 6098 6099 balance_cpu = cpu; 6100 break; 6101 } 6102 6103 if (balance_cpu == -1) 6104 balance_cpu = group_balance_cpu(sg); 6105 6106 /* 6107 * First idle cpu or the first cpu(busiest) in this sched group 6108 * is eligible for doing load balancing at this and above domains. 6109 */ 6110 return balance_cpu == env->dst_cpu; 6111 } 6112 6113 /* 6114 * Check this_cpu to ensure it is balanced within domain. Attempt to move 6115 * tasks if there is an imbalance. 6116 */ 6117 static int load_balance(int this_cpu, struct rq *this_rq, 6118 struct sched_domain *sd, enum cpu_idle_type idle, 6119 int *continue_balancing) 6120 { 6121 int ld_moved, cur_ld_moved, active_balance = 0; 6122 struct sched_domain *sd_parent = sd->parent; 6123 struct sched_group *group; 6124 struct rq *busiest; 6125 unsigned long flags; 6126 struct cpumask *cpus = __get_cpu_var(load_balance_mask); 6127 6128 struct lb_env env = { 6129 .sd = sd, 6130 .dst_cpu = this_cpu, 6131 .dst_rq = this_rq, 6132 .dst_grpmask = sched_group_cpus(sd->groups), 6133 .idle = idle, 6134 .loop_break = sched_nr_migrate_break, 6135 .cpus = cpus, 6136 .fbq_type = all, 6137 }; 6138 6139 /* 6140 * For NEWLY_IDLE load_balancing, we don't need to consider 6141 * other cpus in our group 6142 */ 6143 if (idle == CPU_NEWLY_IDLE) 6144 env.dst_grpmask = NULL; 6145 6146 cpumask_copy(cpus, cpu_active_mask); 6147 6148 schedstat_inc(sd, lb_count[idle]); 6149 6150 redo: 6151 if (!should_we_balance(&env)) { 6152 *continue_balancing = 0; 6153 goto out_balanced; 6154 } 6155 6156 group = find_busiest_group(&env); 6157 if (!group) { 6158 schedstat_inc(sd, lb_nobusyg[idle]); 6159 goto out_balanced; 6160 } 6161 6162 busiest = find_busiest_queue(&env, group); 6163 if (!busiest) { 6164 schedstat_inc(sd, lb_nobusyq[idle]); 6165 goto out_balanced; 6166 } 6167 6168 BUG_ON(busiest == env.dst_rq); 6169 6170 schedstat_add(sd, lb_imbalance[idle], env.imbalance); 6171 6172 ld_moved = 0; 6173 if (busiest->nr_running > 1) { 6174 /* 6175 * Attempt to move tasks. If find_busiest_group has found 6176 * an imbalance but busiest->nr_running <= 1, the group is 6177 * still unbalanced. ld_moved simply stays zero, so it is 6178 * correctly treated as an imbalance. 6179 */ 6180 env.flags |= LBF_ALL_PINNED; 6181 env.src_cpu = busiest->cpu; 6182 env.src_rq = busiest; 6183 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 6184 6185 more_balance: 6186 local_irq_save(flags); 6187 double_rq_lock(env.dst_rq, busiest); 6188 6189 /* 6190 * cur_ld_moved - load moved in current iteration 6191 * ld_moved - cumulative load moved across iterations 6192 */ 6193 cur_ld_moved = move_tasks(&env); 6194 ld_moved += cur_ld_moved; 6195 double_rq_unlock(env.dst_rq, busiest); 6196 local_irq_restore(flags); 6197 6198 /* 6199 * some other cpu did the load balance for us. 6200 */ 6201 if (cur_ld_moved && env.dst_cpu != smp_processor_id()) 6202 resched_cpu(env.dst_cpu); 6203 6204 if (env.flags & LBF_NEED_BREAK) { 6205 env.flags &= ~LBF_NEED_BREAK; 6206 goto more_balance; 6207 } 6208 6209 /* 6210 * Revisit (affine) tasks on src_cpu that couldn't be moved to 6211 * us and move them to an alternate dst_cpu in our sched_group 6212 * where they can run. The upper limit on how many times we 6213 * iterate on same src_cpu is dependent on number of cpus in our 6214 * sched_group. 6215 * 6216 * This changes load balance semantics a bit on who can move 6217 * load to a given_cpu. In addition to the given_cpu itself 6218 * (or a ilb_cpu acting on its behalf where given_cpu is 6219 * nohz-idle), we now have balance_cpu in a position to move 6220 * load to given_cpu. In rare situations, this may cause 6221 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 6222 * _independently_ and at _same_ time to move some load to 6223 * given_cpu) causing exceess load to be moved to given_cpu. 6224 * This however should not happen so much in practice and 6225 * moreover subsequent load balance cycles should correct the 6226 * excess load moved. 6227 */ 6228 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 6229 6230 /* Prevent to re-select dst_cpu via env's cpus */ 6231 cpumask_clear_cpu(env.dst_cpu, env.cpus); 6232 6233 env.dst_rq = cpu_rq(env.new_dst_cpu); 6234 env.dst_cpu = env.new_dst_cpu; 6235 env.flags &= ~LBF_DST_PINNED; 6236 env.loop = 0; 6237 env.loop_break = sched_nr_migrate_break; 6238 6239 /* 6240 * Go back to "more_balance" rather than "redo" since we 6241 * need to continue with same src_cpu. 6242 */ 6243 goto more_balance; 6244 } 6245 6246 /* 6247 * We failed to reach balance because of affinity. 6248 */ 6249 if (sd_parent) { 6250 int *group_imbalance = &sd_parent->groups->sgp->imbalance; 6251 6252 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) { 6253 *group_imbalance = 1; 6254 } else if (*group_imbalance) 6255 *group_imbalance = 0; 6256 } 6257 6258 /* All tasks on this runqueue were pinned by CPU affinity */ 6259 if (unlikely(env.flags & LBF_ALL_PINNED)) { 6260 cpumask_clear_cpu(cpu_of(busiest), cpus); 6261 if (!cpumask_empty(cpus)) { 6262 env.loop = 0; 6263 env.loop_break = sched_nr_migrate_break; 6264 goto redo; 6265 } 6266 goto out_balanced; 6267 } 6268 } 6269 6270 if (!ld_moved) { 6271 schedstat_inc(sd, lb_failed[idle]); 6272 /* 6273 * Increment the failure counter only on periodic balance. 6274 * We do not want newidle balance, which can be very 6275 * frequent, pollute the failure counter causing 6276 * excessive cache_hot migrations and active balances. 6277 */ 6278 if (idle != CPU_NEWLY_IDLE) 6279 sd->nr_balance_failed++; 6280 6281 if (need_active_balance(&env)) { 6282 raw_spin_lock_irqsave(&busiest->lock, flags); 6283 6284 /* don't kick the active_load_balance_cpu_stop, 6285 * if the curr task on busiest cpu can't be 6286 * moved to this_cpu 6287 */ 6288 if (!cpumask_test_cpu(this_cpu, 6289 tsk_cpus_allowed(busiest->curr))) { 6290 raw_spin_unlock_irqrestore(&busiest->lock, 6291 flags); 6292 env.flags |= LBF_ALL_PINNED; 6293 goto out_one_pinned; 6294 } 6295 6296 /* 6297 * ->active_balance synchronizes accesses to 6298 * ->active_balance_work. Once set, it's cleared 6299 * only after active load balance is finished. 6300 */ 6301 if (!busiest->active_balance) { 6302 busiest->active_balance = 1; 6303 busiest->push_cpu = this_cpu; 6304 active_balance = 1; 6305 } 6306 raw_spin_unlock_irqrestore(&busiest->lock, flags); 6307 6308 if (active_balance) { 6309 stop_one_cpu_nowait(cpu_of(busiest), 6310 active_load_balance_cpu_stop, busiest, 6311 &busiest->active_balance_work); 6312 } 6313 6314 /* 6315 * We've kicked active balancing, reset the failure 6316 * counter. 6317 */ 6318 sd->nr_balance_failed = sd->cache_nice_tries+1; 6319 } 6320 } else 6321 sd->nr_balance_failed = 0; 6322 6323 if (likely(!active_balance)) { 6324 /* We were unbalanced, so reset the balancing interval */ 6325 sd->balance_interval = sd->min_interval; 6326 } else { 6327 /* 6328 * If we've begun active balancing, start to back off. This 6329 * case may not be covered by the all_pinned logic if there 6330 * is only 1 task on the busy runqueue (because we don't call 6331 * move_tasks). 6332 */ 6333 if (sd->balance_interval < sd->max_interval) 6334 sd->balance_interval *= 2; 6335 } 6336 6337 goto out; 6338 6339 out_balanced: 6340 schedstat_inc(sd, lb_balanced[idle]); 6341 6342 sd->nr_balance_failed = 0; 6343 6344 out_one_pinned: 6345 /* tune up the balancing interval */ 6346 if (((env.flags & LBF_ALL_PINNED) && 6347 sd->balance_interval < MAX_PINNED_INTERVAL) || 6348 (sd->balance_interval < sd->max_interval)) 6349 sd->balance_interval *= 2; 6350 6351 ld_moved = 0; 6352 out: 6353 return ld_moved; 6354 } 6355 6356 /* 6357 * idle_balance is called by schedule() if this_cpu is about to become 6358 * idle. Attempts to pull tasks from other CPUs. 6359 */ 6360 void idle_balance(int this_cpu, struct rq *this_rq) 6361 { 6362 struct sched_domain *sd; 6363 int pulled_task = 0; 6364 unsigned long next_balance = jiffies + HZ; 6365 u64 curr_cost = 0; 6366 6367 this_rq->idle_stamp = rq_clock(this_rq); 6368 6369 if (this_rq->avg_idle < sysctl_sched_migration_cost) 6370 return; 6371 6372 /* 6373 * Drop the rq->lock, but keep IRQ/preempt disabled. 6374 */ 6375 raw_spin_unlock(&this_rq->lock); 6376 6377 update_blocked_averages(this_cpu); 6378 rcu_read_lock(); 6379 for_each_domain(this_cpu, sd) { 6380 unsigned long interval; 6381 int continue_balancing = 1; 6382 u64 t0, domain_cost; 6383 6384 if (!(sd->flags & SD_LOAD_BALANCE)) 6385 continue; 6386 6387 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 6388 break; 6389 6390 if (sd->flags & SD_BALANCE_NEWIDLE) { 6391 t0 = sched_clock_cpu(this_cpu); 6392 6393 /* If we've pulled tasks over stop searching: */ 6394 pulled_task = load_balance(this_cpu, this_rq, 6395 sd, CPU_NEWLY_IDLE, 6396 &continue_balancing); 6397 6398 domain_cost = sched_clock_cpu(this_cpu) - t0; 6399 if (domain_cost > sd->max_newidle_lb_cost) 6400 sd->max_newidle_lb_cost = domain_cost; 6401 6402 curr_cost += domain_cost; 6403 } 6404 6405 interval = msecs_to_jiffies(sd->balance_interval); 6406 if (time_after(next_balance, sd->last_balance + interval)) 6407 next_balance = sd->last_balance + interval; 6408 if (pulled_task) { 6409 this_rq->idle_stamp = 0; 6410 break; 6411 } 6412 } 6413 rcu_read_unlock(); 6414 6415 raw_spin_lock(&this_rq->lock); 6416 6417 if (pulled_task || time_after(jiffies, this_rq->next_balance)) { 6418 /* 6419 * We are going idle. next_balance may be set based on 6420 * a busy processor. So reset next_balance. 6421 */ 6422 this_rq->next_balance = next_balance; 6423 } 6424 6425 if (curr_cost > this_rq->max_idle_balance_cost) 6426 this_rq->max_idle_balance_cost = curr_cost; 6427 } 6428 6429 /* 6430 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 6431 * running tasks off the busiest CPU onto idle CPUs. It requires at 6432 * least 1 task to be running on each physical CPU where possible, and 6433 * avoids physical / logical imbalances. 6434 */ 6435 static int active_load_balance_cpu_stop(void *data) 6436 { 6437 struct rq *busiest_rq = data; 6438 int busiest_cpu = cpu_of(busiest_rq); 6439 int target_cpu = busiest_rq->push_cpu; 6440 struct rq *target_rq = cpu_rq(target_cpu); 6441 struct sched_domain *sd; 6442 6443 raw_spin_lock_irq(&busiest_rq->lock); 6444 6445 /* make sure the requested cpu hasn't gone down in the meantime */ 6446 if (unlikely(busiest_cpu != smp_processor_id() || 6447 !busiest_rq->active_balance)) 6448 goto out_unlock; 6449 6450 /* Is there any task to move? */ 6451 if (busiest_rq->nr_running <= 1) 6452 goto out_unlock; 6453 6454 /* 6455 * This condition is "impossible", if it occurs 6456 * we need to fix it. Originally reported by 6457 * Bjorn Helgaas on a 128-cpu setup. 6458 */ 6459 BUG_ON(busiest_rq == target_rq); 6460 6461 /* move a task from busiest_rq to target_rq */ 6462 double_lock_balance(busiest_rq, target_rq); 6463 6464 /* Search for an sd spanning us and the target CPU. */ 6465 rcu_read_lock(); 6466 for_each_domain(target_cpu, sd) { 6467 if ((sd->flags & SD_LOAD_BALANCE) && 6468 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 6469 break; 6470 } 6471 6472 if (likely(sd)) { 6473 struct lb_env env = { 6474 .sd = sd, 6475 .dst_cpu = target_cpu, 6476 .dst_rq = target_rq, 6477 .src_cpu = busiest_rq->cpu, 6478 .src_rq = busiest_rq, 6479 .idle = CPU_IDLE, 6480 }; 6481 6482 schedstat_inc(sd, alb_count); 6483 6484 if (move_one_task(&env)) 6485 schedstat_inc(sd, alb_pushed); 6486 else 6487 schedstat_inc(sd, alb_failed); 6488 } 6489 rcu_read_unlock(); 6490 double_unlock_balance(busiest_rq, target_rq); 6491 out_unlock: 6492 busiest_rq->active_balance = 0; 6493 raw_spin_unlock_irq(&busiest_rq->lock); 6494 return 0; 6495 } 6496 6497 #ifdef CONFIG_NO_HZ_COMMON 6498 /* 6499 * idle load balancing details 6500 * - When one of the busy CPUs notice that there may be an idle rebalancing 6501 * needed, they will kick the idle load balancer, which then does idle 6502 * load balancing for all the idle CPUs. 6503 */ 6504 static struct { 6505 cpumask_var_t idle_cpus_mask; 6506 atomic_t nr_cpus; 6507 unsigned long next_balance; /* in jiffy units */ 6508 } nohz ____cacheline_aligned; 6509 6510 static inline int find_new_ilb(void) 6511 { 6512 int ilb = cpumask_first(nohz.idle_cpus_mask); 6513 6514 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 6515 return ilb; 6516 6517 return nr_cpu_ids; 6518 } 6519 6520 /* 6521 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 6522 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 6523 * CPU (if there is one). 6524 */ 6525 static void nohz_balancer_kick(void) 6526 { 6527 int ilb_cpu; 6528 6529 nohz.next_balance++; 6530 6531 ilb_cpu = find_new_ilb(); 6532 6533 if (ilb_cpu >= nr_cpu_ids) 6534 return; 6535 6536 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 6537 return; 6538 /* 6539 * Use smp_send_reschedule() instead of resched_cpu(). 6540 * This way we generate a sched IPI on the target cpu which 6541 * is idle. And the softirq performing nohz idle load balance 6542 * will be run before returning from the IPI. 6543 */ 6544 smp_send_reschedule(ilb_cpu); 6545 return; 6546 } 6547 6548 static inline void nohz_balance_exit_idle(int cpu) 6549 { 6550 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 6551 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 6552 atomic_dec(&nohz.nr_cpus); 6553 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 6554 } 6555 } 6556 6557 static inline void set_cpu_sd_state_busy(void) 6558 { 6559 struct sched_domain *sd; 6560 int cpu = smp_processor_id(); 6561 6562 rcu_read_lock(); 6563 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 6564 6565 if (!sd || !sd->nohz_idle) 6566 goto unlock; 6567 sd->nohz_idle = 0; 6568 6569 atomic_inc(&sd->groups->sgp->nr_busy_cpus); 6570 unlock: 6571 rcu_read_unlock(); 6572 } 6573 6574 void set_cpu_sd_state_idle(void) 6575 { 6576 struct sched_domain *sd; 6577 int cpu = smp_processor_id(); 6578 6579 rcu_read_lock(); 6580 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 6581 6582 if (!sd || sd->nohz_idle) 6583 goto unlock; 6584 sd->nohz_idle = 1; 6585 6586 atomic_dec(&sd->groups->sgp->nr_busy_cpus); 6587 unlock: 6588 rcu_read_unlock(); 6589 } 6590 6591 /* 6592 * This routine will record that the cpu is going idle with tick stopped. 6593 * This info will be used in performing idle load balancing in the future. 6594 */ 6595 void nohz_balance_enter_idle(int cpu) 6596 { 6597 /* 6598 * If this cpu is going down, then nothing needs to be done. 6599 */ 6600 if (!cpu_active(cpu)) 6601 return; 6602 6603 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 6604 return; 6605 6606 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 6607 atomic_inc(&nohz.nr_cpus); 6608 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 6609 } 6610 6611 static int sched_ilb_notifier(struct notifier_block *nfb, 6612 unsigned long action, void *hcpu) 6613 { 6614 switch (action & ~CPU_TASKS_FROZEN) { 6615 case CPU_DYING: 6616 nohz_balance_exit_idle(smp_processor_id()); 6617 return NOTIFY_OK; 6618 default: 6619 return NOTIFY_DONE; 6620 } 6621 } 6622 #endif 6623 6624 static DEFINE_SPINLOCK(balancing); 6625 6626 /* 6627 * Scale the max load_balance interval with the number of CPUs in the system. 6628 * This trades load-balance latency on larger machines for less cross talk. 6629 */ 6630 void update_max_interval(void) 6631 { 6632 max_load_balance_interval = HZ*num_online_cpus()/10; 6633 } 6634 6635 /* 6636 * It checks each scheduling domain to see if it is due to be balanced, 6637 * and initiates a balancing operation if so. 6638 * 6639 * Balancing parameters are set up in init_sched_domains. 6640 */ 6641 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 6642 { 6643 int continue_balancing = 1; 6644 int cpu = rq->cpu; 6645 unsigned long interval; 6646 struct sched_domain *sd; 6647 /* Earliest time when we have to do rebalance again */ 6648 unsigned long next_balance = jiffies + 60*HZ; 6649 int update_next_balance = 0; 6650 int need_serialize, need_decay = 0; 6651 u64 max_cost = 0; 6652 6653 update_blocked_averages(cpu); 6654 6655 rcu_read_lock(); 6656 for_each_domain(cpu, sd) { 6657 /* 6658 * Decay the newidle max times here because this is a regular 6659 * visit to all the domains. Decay ~1% per second. 6660 */ 6661 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 6662 sd->max_newidle_lb_cost = 6663 (sd->max_newidle_lb_cost * 253) / 256; 6664 sd->next_decay_max_lb_cost = jiffies + HZ; 6665 need_decay = 1; 6666 } 6667 max_cost += sd->max_newidle_lb_cost; 6668 6669 if (!(sd->flags & SD_LOAD_BALANCE)) 6670 continue; 6671 6672 /* 6673 * Stop the load balance at this level. There is another 6674 * CPU in our sched group which is doing load balancing more 6675 * actively. 6676 */ 6677 if (!continue_balancing) { 6678 if (need_decay) 6679 continue; 6680 break; 6681 } 6682 6683 interval = sd->balance_interval; 6684 if (idle != CPU_IDLE) 6685 interval *= sd->busy_factor; 6686 6687 /* scale ms to jiffies */ 6688 interval = msecs_to_jiffies(interval); 6689 interval = clamp(interval, 1UL, max_load_balance_interval); 6690 6691 need_serialize = sd->flags & SD_SERIALIZE; 6692 6693 if (need_serialize) { 6694 if (!spin_trylock(&balancing)) 6695 goto out; 6696 } 6697 6698 if (time_after_eq(jiffies, sd->last_balance + interval)) { 6699 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 6700 /* 6701 * The LBF_DST_PINNED logic could have changed 6702 * env->dst_cpu, so we can't know our idle 6703 * state even if we migrated tasks. Update it. 6704 */ 6705 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 6706 } 6707 sd->last_balance = jiffies; 6708 } 6709 if (need_serialize) 6710 spin_unlock(&balancing); 6711 out: 6712 if (time_after(next_balance, sd->last_balance + interval)) { 6713 next_balance = sd->last_balance + interval; 6714 update_next_balance = 1; 6715 } 6716 } 6717 if (need_decay) { 6718 /* 6719 * Ensure the rq-wide value also decays but keep it at a 6720 * reasonable floor to avoid funnies with rq->avg_idle. 6721 */ 6722 rq->max_idle_balance_cost = 6723 max((u64)sysctl_sched_migration_cost, max_cost); 6724 } 6725 rcu_read_unlock(); 6726 6727 /* 6728 * next_balance will be updated only when there is a need. 6729 * When the cpu is attached to null domain for ex, it will not be 6730 * updated. 6731 */ 6732 if (likely(update_next_balance)) 6733 rq->next_balance = next_balance; 6734 } 6735 6736 #ifdef CONFIG_NO_HZ_COMMON 6737 /* 6738 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 6739 * rebalancing for all the cpus for whom scheduler ticks are stopped. 6740 */ 6741 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 6742 { 6743 int this_cpu = this_rq->cpu; 6744 struct rq *rq; 6745 int balance_cpu; 6746 6747 if (idle != CPU_IDLE || 6748 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 6749 goto end; 6750 6751 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 6752 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 6753 continue; 6754 6755 /* 6756 * If this cpu gets work to do, stop the load balancing 6757 * work being done for other cpus. Next load 6758 * balancing owner will pick it up. 6759 */ 6760 if (need_resched()) 6761 break; 6762 6763 rq = cpu_rq(balance_cpu); 6764 6765 raw_spin_lock_irq(&rq->lock); 6766 update_rq_clock(rq); 6767 update_idle_cpu_load(rq); 6768 raw_spin_unlock_irq(&rq->lock); 6769 6770 rebalance_domains(rq, CPU_IDLE); 6771 6772 if (time_after(this_rq->next_balance, rq->next_balance)) 6773 this_rq->next_balance = rq->next_balance; 6774 } 6775 nohz.next_balance = this_rq->next_balance; 6776 end: 6777 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 6778 } 6779 6780 /* 6781 * Current heuristic for kicking the idle load balancer in the presence 6782 * of an idle cpu is the system. 6783 * - This rq has more than one task. 6784 * - At any scheduler domain level, this cpu's scheduler group has multiple 6785 * busy cpu's exceeding the group's power. 6786 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 6787 * domain span are idle. 6788 */ 6789 static inline int nohz_kick_needed(struct rq *rq) 6790 { 6791 unsigned long now = jiffies; 6792 struct sched_domain *sd; 6793 struct sched_group_power *sgp; 6794 int nr_busy, cpu = rq->cpu; 6795 6796 if (unlikely(rq->idle_balance)) 6797 return 0; 6798 6799 /* 6800 * We may be recently in ticked or tickless idle mode. At the first 6801 * busy tick after returning from idle, we will update the busy stats. 6802 */ 6803 set_cpu_sd_state_busy(); 6804 nohz_balance_exit_idle(cpu); 6805 6806 /* 6807 * None are in tickless mode and hence no need for NOHZ idle load 6808 * balancing. 6809 */ 6810 if (likely(!atomic_read(&nohz.nr_cpus))) 6811 return 0; 6812 6813 if (time_before(now, nohz.next_balance)) 6814 return 0; 6815 6816 if (rq->nr_running >= 2) 6817 goto need_kick; 6818 6819 rcu_read_lock(); 6820 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 6821 6822 if (sd) { 6823 sgp = sd->groups->sgp; 6824 nr_busy = atomic_read(&sgp->nr_busy_cpus); 6825 6826 if (nr_busy > 1) 6827 goto need_kick_unlock; 6828 } 6829 6830 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 6831 6832 if (sd && (cpumask_first_and(nohz.idle_cpus_mask, 6833 sched_domain_span(sd)) < cpu)) 6834 goto need_kick_unlock; 6835 6836 rcu_read_unlock(); 6837 return 0; 6838 6839 need_kick_unlock: 6840 rcu_read_unlock(); 6841 need_kick: 6842 return 1; 6843 } 6844 #else 6845 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } 6846 #endif 6847 6848 /* 6849 * run_rebalance_domains is triggered when needed from the scheduler tick. 6850 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 6851 */ 6852 static void run_rebalance_domains(struct softirq_action *h) 6853 { 6854 struct rq *this_rq = this_rq(); 6855 enum cpu_idle_type idle = this_rq->idle_balance ? 6856 CPU_IDLE : CPU_NOT_IDLE; 6857 6858 rebalance_domains(this_rq, idle); 6859 6860 /* 6861 * If this cpu has a pending nohz_balance_kick, then do the 6862 * balancing on behalf of the other idle cpus whose ticks are 6863 * stopped. 6864 */ 6865 nohz_idle_balance(this_rq, idle); 6866 } 6867 6868 static inline int on_null_domain(struct rq *rq) 6869 { 6870 return !rcu_dereference_sched(rq->sd); 6871 } 6872 6873 /* 6874 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 6875 */ 6876 void trigger_load_balance(struct rq *rq) 6877 { 6878 /* Don't need to rebalance while attached to NULL domain */ 6879 if (unlikely(on_null_domain(rq))) 6880 return; 6881 6882 if (time_after_eq(jiffies, rq->next_balance)) 6883 raise_softirq(SCHED_SOFTIRQ); 6884 #ifdef CONFIG_NO_HZ_COMMON 6885 if (nohz_kick_needed(rq)) 6886 nohz_balancer_kick(); 6887 #endif 6888 } 6889 6890 static void rq_online_fair(struct rq *rq) 6891 { 6892 update_sysctl(); 6893 } 6894 6895 static void rq_offline_fair(struct rq *rq) 6896 { 6897 update_sysctl(); 6898 6899 /* Ensure any throttled groups are reachable by pick_next_task */ 6900 unthrottle_offline_cfs_rqs(rq); 6901 } 6902 6903 #endif /* CONFIG_SMP */ 6904 6905 /* 6906 * scheduler tick hitting a task of our scheduling class: 6907 */ 6908 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 6909 { 6910 struct cfs_rq *cfs_rq; 6911 struct sched_entity *se = &curr->se; 6912 6913 for_each_sched_entity(se) { 6914 cfs_rq = cfs_rq_of(se); 6915 entity_tick(cfs_rq, se, queued); 6916 } 6917 6918 if (numabalancing_enabled) 6919 task_tick_numa(rq, curr); 6920 6921 update_rq_runnable_avg(rq, 1); 6922 } 6923 6924 /* 6925 * called on fork with the child task as argument from the parent's context 6926 * - child not yet on the tasklist 6927 * - preemption disabled 6928 */ 6929 static void task_fork_fair(struct task_struct *p) 6930 { 6931 struct cfs_rq *cfs_rq; 6932 struct sched_entity *se = &p->se, *curr; 6933 int this_cpu = smp_processor_id(); 6934 struct rq *rq = this_rq(); 6935 unsigned long flags; 6936 6937 raw_spin_lock_irqsave(&rq->lock, flags); 6938 6939 update_rq_clock(rq); 6940 6941 cfs_rq = task_cfs_rq(current); 6942 curr = cfs_rq->curr; 6943 6944 /* 6945 * Not only the cpu but also the task_group of the parent might have 6946 * been changed after parent->se.parent,cfs_rq were copied to 6947 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those 6948 * of child point to valid ones. 6949 */ 6950 rcu_read_lock(); 6951 __set_task_cpu(p, this_cpu); 6952 rcu_read_unlock(); 6953 6954 update_curr(cfs_rq); 6955 6956 if (curr) 6957 se->vruntime = curr->vruntime; 6958 place_entity(cfs_rq, se, 1); 6959 6960 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 6961 /* 6962 * Upon rescheduling, sched_class::put_prev_task() will place 6963 * 'current' within the tree based on its new key value. 6964 */ 6965 swap(curr->vruntime, se->vruntime); 6966 resched_task(rq->curr); 6967 } 6968 6969 se->vruntime -= cfs_rq->min_vruntime; 6970 6971 raw_spin_unlock_irqrestore(&rq->lock, flags); 6972 } 6973 6974 /* 6975 * Priority of the task has changed. Check to see if we preempt 6976 * the current task. 6977 */ 6978 static void 6979 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 6980 { 6981 if (!p->se.on_rq) 6982 return; 6983 6984 /* 6985 * Reschedule if we are currently running on this runqueue and 6986 * our priority decreased, or if we are not currently running on 6987 * this runqueue and our priority is higher than the current's 6988 */ 6989 if (rq->curr == p) { 6990 if (p->prio > oldprio) 6991 resched_task(rq->curr); 6992 } else 6993 check_preempt_curr(rq, p, 0); 6994 } 6995 6996 static void switched_from_fair(struct rq *rq, struct task_struct *p) 6997 { 6998 struct sched_entity *se = &p->se; 6999 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7000 7001 /* 7002 * Ensure the task's vruntime is normalized, so that when its 7003 * switched back to the fair class the enqueue_entity(.flags=0) will 7004 * do the right thing. 7005 * 7006 * If it was on_rq, then the dequeue_entity(.flags=0) will already 7007 * have normalized the vruntime, if it was !on_rq, then only when 7008 * the task is sleeping will it still have non-normalized vruntime. 7009 */ 7010 if (!se->on_rq && p->state != TASK_RUNNING) { 7011 /* 7012 * Fix up our vruntime so that the current sleep doesn't 7013 * cause 'unlimited' sleep bonus. 7014 */ 7015 place_entity(cfs_rq, se, 0); 7016 se->vruntime -= cfs_rq->min_vruntime; 7017 } 7018 7019 #ifdef CONFIG_SMP 7020 /* 7021 * Remove our load from contribution when we leave sched_fair 7022 * and ensure we don't carry in an old decay_count if we 7023 * switch back. 7024 */ 7025 if (se->avg.decay_count) { 7026 __synchronize_entity_decay(se); 7027 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); 7028 } 7029 #endif 7030 } 7031 7032 /* 7033 * We switched to the sched_fair class. 7034 */ 7035 static void switched_to_fair(struct rq *rq, struct task_struct *p) 7036 { 7037 if (!p->se.on_rq) 7038 return; 7039 7040 /* 7041 * We were most likely switched from sched_rt, so 7042 * kick off the schedule if running, otherwise just see 7043 * if we can still preempt the current task. 7044 */ 7045 if (rq->curr == p) 7046 resched_task(rq->curr); 7047 else 7048 check_preempt_curr(rq, p, 0); 7049 } 7050 7051 /* Account for a task changing its policy or group. 7052 * 7053 * This routine is mostly called to set cfs_rq->curr field when a task 7054 * migrates between groups/classes. 7055 */ 7056 static void set_curr_task_fair(struct rq *rq) 7057 { 7058 struct sched_entity *se = &rq->curr->se; 7059 7060 for_each_sched_entity(se) { 7061 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7062 7063 set_next_entity(cfs_rq, se); 7064 /* ensure bandwidth has been allocated on our new cfs_rq */ 7065 account_cfs_rq_runtime(cfs_rq, 0); 7066 } 7067 } 7068 7069 void init_cfs_rq(struct cfs_rq *cfs_rq) 7070 { 7071 cfs_rq->tasks_timeline = RB_ROOT; 7072 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 7073 #ifndef CONFIG_64BIT 7074 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 7075 #endif 7076 #ifdef CONFIG_SMP 7077 atomic64_set(&cfs_rq->decay_counter, 1); 7078 atomic_long_set(&cfs_rq->removed_load, 0); 7079 #endif 7080 } 7081 7082 #ifdef CONFIG_FAIR_GROUP_SCHED 7083 static void task_move_group_fair(struct task_struct *p, int on_rq) 7084 { 7085 struct cfs_rq *cfs_rq; 7086 /* 7087 * If the task was not on the rq at the time of this cgroup movement 7088 * it must have been asleep, sleeping tasks keep their ->vruntime 7089 * absolute on their old rq until wakeup (needed for the fair sleeper 7090 * bonus in place_entity()). 7091 * 7092 * If it was on the rq, we've just 'preempted' it, which does convert 7093 * ->vruntime to a relative base. 7094 * 7095 * Make sure both cases convert their relative position when migrating 7096 * to another cgroup's rq. This does somewhat interfere with the 7097 * fair sleeper stuff for the first placement, but who cares. 7098 */ 7099 /* 7100 * When !on_rq, vruntime of the task has usually NOT been normalized. 7101 * But there are some cases where it has already been normalized: 7102 * 7103 * - Moving a forked child which is waiting for being woken up by 7104 * wake_up_new_task(). 7105 * - Moving a task which has been woken up by try_to_wake_up() and 7106 * waiting for actually being woken up by sched_ttwu_pending(). 7107 * 7108 * To prevent boost or penalty in the new cfs_rq caused by delta 7109 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. 7110 */ 7111 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING)) 7112 on_rq = 1; 7113 7114 if (!on_rq) 7115 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime; 7116 set_task_rq(p, task_cpu(p)); 7117 if (!on_rq) { 7118 cfs_rq = cfs_rq_of(&p->se); 7119 p->se.vruntime += cfs_rq->min_vruntime; 7120 #ifdef CONFIG_SMP 7121 /* 7122 * migrate_task_rq_fair() will have removed our previous 7123 * contribution, but we must synchronize for ongoing future 7124 * decay. 7125 */ 7126 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 7127 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib; 7128 #endif 7129 } 7130 } 7131 7132 void free_fair_sched_group(struct task_group *tg) 7133 { 7134 int i; 7135 7136 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 7137 7138 for_each_possible_cpu(i) { 7139 if (tg->cfs_rq) 7140 kfree(tg->cfs_rq[i]); 7141 if (tg->se) 7142 kfree(tg->se[i]); 7143 } 7144 7145 kfree(tg->cfs_rq); 7146 kfree(tg->se); 7147 } 7148 7149 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 7150 { 7151 struct cfs_rq *cfs_rq; 7152 struct sched_entity *se; 7153 int i; 7154 7155 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 7156 if (!tg->cfs_rq) 7157 goto err; 7158 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 7159 if (!tg->se) 7160 goto err; 7161 7162 tg->shares = NICE_0_LOAD; 7163 7164 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 7165 7166 for_each_possible_cpu(i) { 7167 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 7168 GFP_KERNEL, cpu_to_node(i)); 7169 if (!cfs_rq) 7170 goto err; 7171 7172 se = kzalloc_node(sizeof(struct sched_entity), 7173 GFP_KERNEL, cpu_to_node(i)); 7174 if (!se) 7175 goto err_free_rq; 7176 7177 init_cfs_rq(cfs_rq); 7178 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 7179 } 7180 7181 return 1; 7182 7183 err_free_rq: 7184 kfree(cfs_rq); 7185 err: 7186 return 0; 7187 } 7188 7189 void unregister_fair_sched_group(struct task_group *tg, int cpu) 7190 { 7191 struct rq *rq = cpu_rq(cpu); 7192 unsigned long flags; 7193 7194 /* 7195 * Only empty task groups can be destroyed; so we can speculatively 7196 * check on_list without danger of it being re-added. 7197 */ 7198 if (!tg->cfs_rq[cpu]->on_list) 7199 return; 7200 7201 raw_spin_lock_irqsave(&rq->lock, flags); 7202 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 7203 raw_spin_unlock_irqrestore(&rq->lock, flags); 7204 } 7205 7206 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 7207 struct sched_entity *se, int cpu, 7208 struct sched_entity *parent) 7209 { 7210 struct rq *rq = cpu_rq(cpu); 7211 7212 cfs_rq->tg = tg; 7213 cfs_rq->rq = rq; 7214 init_cfs_rq_runtime(cfs_rq); 7215 7216 tg->cfs_rq[cpu] = cfs_rq; 7217 tg->se[cpu] = se; 7218 7219 /* se could be NULL for root_task_group */ 7220 if (!se) 7221 return; 7222 7223 if (!parent) 7224 se->cfs_rq = &rq->cfs; 7225 else 7226 se->cfs_rq = parent->my_q; 7227 7228 se->my_q = cfs_rq; 7229 /* guarantee group entities always have weight */ 7230 update_load_set(&se->load, NICE_0_LOAD); 7231 se->parent = parent; 7232 } 7233 7234 static DEFINE_MUTEX(shares_mutex); 7235 7236 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 7237 { 7238 int i; 7239 unsigned long flags; 7240 7241 /* 7242 * We can't change the weight of the root cgroup. 7243 */ 7244 if (!tg->se[0]) 7245 return -EINVAL; 7246 7247 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 7248 7249 mutex_lock(&shares_mutex); 7250 if (tg->shares == shares) 7251 goto done; 7252 7253 tg->shares = shares; 7254 for_each_possible_cpu(i) { 7255 struct rq *rq = cpu_rq(i); 7256 struct sched_entity *se; 7257 7258 se = tg->se[i]; 7259 /* Propagate contribution to hierarchy */ 7260 raw_spin_lock_irqsave(&rq->lock, flags); 7261 7262 /* Possible calls to update_curr() need rq clock */ 7263 update_rq_clock(rq); 7264 for_each_sched_entity(se) 7265 update_cfs_shares(group_cfs_rq(se)); 7266 raw_spin_unlock_irqrestore(&rq->lock, flags); 7267 } 7268 7269 done: 7270 mutex_unlock(&shares_mutex); 7271 return 0; 7272 } 7273 #else /* CONFIG_FAIR_GROUP_SCHED */ 7274 7275 void free_fair_sched_group(struct task_group *tg) { } 7276 7277 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 7278 { 7279 return 1; 7280 } 7281 7282 void unregister_fair_sched_group(struct task_group *tg, int cpu) { } 7283 7284 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7285 7286 7287 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 7288 { 7289 struct sched_entity *se = &task->se; 7290 unsigned int rr_interval = 0; 7291 7292 /* 7293 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 7294 * idle runqueue: 7295 */ 7296 if (rq->cfs.load.weight) 7297 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 7298 7299 return rr_interval; 7300 } 7301 7302 /* 7303 * All the scheduling class methods: 7304 */ 7305 const struct sched_class fair_sched_class = { 7306 .next = &idle_sched_class, 7307 .enqueue_task = enqueue_task_fair, 7308 .dequeue_task = dequeue_task_fair, 7309 .yield_task = yield_task_fair, 7310 .yield_to_task = yield_to_task_fair, 7311 7312 .check_preempt_curr = check_preempt_wakeup, 7313 7314 .pick_next_task = pick_next_task_fair, 7315 .put_prev_task = put_prev_task_fair, 7316 7317 #ifdef CONFIG_SMP 7318 .select_task_rq = select_task_rq_fair, 7319 .migrate_task_rq = migrate_task_rq_fair, 7320 7321 .rq_online = rq_online_fair, 7322 .rq_offline = rq_offline_fair, 7323 7324 .task_waking = task_waking_fair, 7325 #endif 7326 7327 .set_curr_task = set_curr_task_fair, 7328 .task_tick = task_tick_fair, 7329 .task_fork = task_fork_fair, 7330 7331 .prio_changed = prio_changed_fair, 7332 .switched_from = switched_from_fair, 7333 .switched_to = switched_to_fair, 7334 7335 .get_rr_interval = get_rr_interval_fair, 7336 7337 #ifdef CONFIG_FAIR_GROUP_SCHED 7338 .task_move_group = task_move_group_fair, 7339 #endif 7340 }; 7341 7342 #ifdef CONFIG_SCHED_DEBUG 7343 void print_cfs_stats(struct seq_file *m, int cpu) 7344 { 7345 struct cfs_rq *cfs_rq; 7346 7347 rcu_read_lock(); 7348 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 7349 print_cfs_rq(m, cpu, cfs_rq); 7350 rcu_read_unlock(); 7351 } 7352 #endif 7353 7354 __init void init_sched_fair_class(void) 7355 { 7356 #ifdef CONFIG_SMP 7357 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 7358 7359 #ifdef CONFIG_NO_HZ_COMMON 7360 nohz.next_balance = jiffies; 7361 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 7362 cpu_notifier(sched_ilb_notifier, 0); 7363 #endif 7364 #endif /* SMP */ 7365 7366 } 7367