1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 51 #include <asm/switch_to.h> 52 53 #include <linux/sched/cond_resched.h> 54 55 #include "sched.h" 56 #include "stats.h" 57 #include "autogroup.h" 58 59 /* 60 * Targeted preemption latency for CPU-bound tasks: 61 * 62 * NOTE: this latency value is not the same as the concept of 63 * 'timeslice length' - timeslices in CFS are of variable length 64 * and have no persistent notion like in traditional, time-slice 65 * based scheduling concepts. 66 * 67 * (to see the precise effective timeslice length of your workload, 68 * run vmstat and monitor the context-switches (cs) field) 69 * 70 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 71 */ 72 unsigned int sysctl_sched_latency = 6000000ULL; 73 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 74 75 /* 76 * The initial- and re-scaling of tunables is configurable 77 * 78 * Options are: 79 * 80 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 81 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 82 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 83 * 84 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 85 */ 86 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 87 88 /* 89 * Minimal preemption granularity for CPU-bound tasks: 90 * 91 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 92 */ 93 unsigned int sysctl_sched_min_granularity = 750000ULL; 94 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 95 96 /* 97 * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks. 98 * Applies only when SCHED_IDLE tasks compete with normal tasks. 99 * 100 * (default: 0.75 msec) 101 */ 102 unsigned int sysctl_sched_idle_min_granularity = 750000ULL; 103 104 /* 105 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 106 */ 107 static unsigned int sched_nr_latency = 8; 108 109 /* 110 * After fork, child runs first. If set to 0 (default) then 111 * parent will (try to) run first. 112 */ 113 unsigned int sysctl_sched_child_runs_first __read_mostly; 114 115 /* 116 * SCHED_OTHER wake-up granularity. 117 * 118 * This option delays the preemption effects of decoupled workloads 119 * and reduces their over-scheduling. Synchronous workloads will still 120 * have immediate wakeup/sleep latencies. 121 * 122 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 123 */ 124 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 125 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 126 127 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 128 129 int sched_thermal_decay_shift; 130 static int __init setup_sched_thermal_decay_shift(char *str) 131 { 132 int _shift = 0; 133 134 if (kstrtoint(str, 0, &_shift)) 135 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 136 137 sched_thermal_decay_shift = clamp(_shift, 0, 10); 138 return 1; 139 } 140 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 141 142 #ifdef CONFIG_SMP 143 /* 144 * For asym packing, by default the lower numbered CPU has higher priority. 145 */ 146 int __weak arch_asym_cpu_priority(int cpu) 147 { 148 return -cpu; 149 } 150 151 /* 152 * The margin used when comparing utilization with CPU capacity. 153 * 154 * (default: ~20%) 155 */ 156 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 157 158 /* 159 * The margin used when comparing CPU capacities. 160 * is 'cap1' noticeably greater than 'cap2' 161 * 162 * (default: ~5%) 163 */ 164 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 165 #endif 166 167 #ifdef CONFIG_CFS_BANDWIDTH 168 /* 169 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 170 * each time a cfs_rq requests quota. 171 * 172 * Note: in the case that the slice exceeds the runtime remaining (either due 173 * to consumption or the quota being specified to be smaller than the slice) 174 * we will always only issue the remaining available time. 175 * 176 * (default: 5 msec, units: microseconds) 177 */ 178 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 179 #endif 180 181 #ifdef CONFIG_SYSCTL 182 static struct ctl_table sched_fair_sysctls[] = { 183 { 184 .procname = "sched_child_runs_first", 185 .data = &sysctl_sched_child_runs_first, 186 .maxlen = sizeof(unsigned int), 187 .mode = 0644, 188 .proc_handler = proc_dointvec, 189 }, 190 #ifdef CONFIG_CFS_BANDWIDTH 191 { 192 .procname = "sched_cfs_bandwidth_slice_us", 193 .data = &sysctl_sched_cfs_bandwidth_slice, 194 .maxlen = sizeof(unsigned int), 195 .mode = 0644, 196 .proc_handler = proc_dointvec_minmax, 197 .extra1 = SYSCTL_ONE, 198 }, 199 #endif 200 {} 201 }; 202 203 static int __init sched_fair_sysctl_init(void) 204 { 205 register_sysctl_init("kernel", sched_fair_sysctls); 206 return 0; 207 } 208 late_initcall(sched_fair_sysctl_init); 209 #endif 210 211 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 212 { 213 lw->weight += inc; 214 lw->inv_weight = 0; 215 } 216 217 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 218 { 219 lw->weight -= dec; 220 lw->inv_weight = 0; 221 } 222 223 static inline void update_load_set(struct load_weight *lw, unsigned long w) 224 { 225 lw->weight = w; 226 lw->inv_weight = 0; 227 } 228 229 /* 230 * Increase the granularity value when there are more CPUs, 231 * because with more CPUs the 'effective latency' as visible 232 * to users decreases. But the relationship is not linear, 233 * so pick a second-best guess by going with the log2 of the 234 * number of CPUs. 235 * 236 * This idea comes from the SD scheduler of Con Kolivas: 237 */ 238 static unsigned int get_update_sysctl_factor(void) 239 { 240 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 241 unsigned int factor; 242 243 switch (sysctl_sched_tunable_scaling) { 244 case SCHED_TUNABLESCALING_NONE: 245 factor = 1; 246 break; 247 case SCHED_TUNABLESCALING_LINEAR: 248 factor = cpus; 249 break; 250 case SCHED_TUNABLESCALING_LOG: 251 default: 252 factor = 1 + ilog2(cpus); 253 break; 254 } 255 256 return factor; 257 } 258 259 static void update_sysctl(void) 260 { 261 unsigned int factor = get_update_sysctl_factor(); 262 263 #define SET_SYSCTL(name) \ 264 (sysctl_##name = (factor) * normalized_sysctl_##name) 265 SET_SYSCTL(sched_min_granularity); 266 SET_SYSCTL(sched_latency); 267 SET_SYSCTL(sched_wakeup_granularity); 268 #undef SET_SYSCTL 269 } 270 271 void __init sched_init_granularity(void) 272 { 273 update_sysctl(); 274 } 275 276 #define WMULT_CONST (~0U) 277 #define WMULT_SHIFT 32 278 279 static void __update_inv_weight(struct load_weight *lw) 280 { 281 unsigned long w; 282 283 if (likely(lw->inv_weight)) 284 return; 285 286 w = scale_load_down(lw->weight); 287 288 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 289 lw->inv_weight = 1; 290 else if (unlikely(!w)) 291 lw->inv_weight = WMULT_CONST; 292 else 293 lw->inv_weight = WMULT_CONST / w; 294 } 295 296 /* 297 * delta_exec * weight / lw.weight 298 * OR 299 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 300 * 301 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 302 * we're guaranteed shift stays positive because inv_weight is guaranteed to 303 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 304 * 305 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 306 * weight/lw.weight <= 1, and therefore our shift will also be positive. 307 */ 308 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 309 { 310 u64 fact = scale_load_down(weight); 311 u32 fact_hi = (u32)(fact >> 32); 312 int shift = WMULT_SHIFT; 313 int fs; 314 315 __update_inv_weight(lw); 316 317 if (unlikely(fact_hi)) { 318 fs = fls(fact_hi); 319 shift -= fs; 320 fact >>= fs; 321 } 322 323 fact = mul_u32_u32(fact, lw->inv_weight); 324 325 fact_hi = (u32)(fact >> 32); 326 if (fact_hi) { 327 fs = fls(fact_hi); 328 shift -= fs; 329 fact >>= fs; 330 } 331 332 return mul_u64_u32_shr(delta_exec, fact, shift); 333 } 334 335 336 const struct sched_class fair_sched_class; 337 338 /************************************************************** 339 * CFS operations on generic schedulable entities: 340 */ 341 342 #ifdef CONFIG_FAIR_GROUP_SCHED 343 344 /* Walk up scheduling entities hierarchy */ 345 #define for_each_sched_entity(se) \ 346 for (; se; se = se->parent) 347 348 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 349 { 350 struct rq *rq = rq_of(cfs_rq); 351 int cpu = cpu_of(rq); 352 353 if (cfs_rq->on_list) 354 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 355 356 cfs_rq->on_list = 1; 357 358 /* 359 * Ensure we either appear before our parent (if already 360 * enqueued) or force our parent to appear after us when it is 361 * enqueued. The fact that we always enqueue bottom-up 362 * reduces this to two cases and a special case for the root 363 * cfs_rq. Furthermore, it also means that we will always reset 364 * tmp_alone_branch either when the branch is connected 365 * to a tree or when we reach the top of the tree 366 */ 367 if (cfs_rq->tg->parent && 368 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 369 /* 370 * If parent is already on the list, we add the child 371 * just before. Thanks to circular linked property of 372 * the list, this means to put the child at the tail 373 * of the list that starts by parent. 374 */ 375 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 376 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 377 /* 378 * The branch is now connected to its tree so we can 379 * reset tmp_alone_branch to the beginning of the 380 * list. 381 */ 382 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 383 return true; 384 } 385 386 if (!cfs_rq->tg->parent) { 387 /* 388 * cfs rq without parent should be put 389 * at the tail of the list. 390 */ 391 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 392 &rq->leaf_cfs_rq_list); 393 /* 394 * We have reach the top of a tree so we can reset 395 * tmp_alone_branch to the beginning of the list. 396 */ 397 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 398 return true; 399 } 400 401 /* 402 * The parent has not already been added so we want to 403 * make sure that it will be put after us. 404 * tmp_alone_branch points to the begin of the branch 405 * where we will add parent. 406 */ 407 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 408 /* 409 * update tmp_alone_branch to points to the new begin 410 * of the branch 411 */ 412 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 413 return false; 414 } 415 416 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 417 { 418 if (cfs_rq->on_list) { 419 struct rq *rq = rq_of(cfs_rq); 420 421 /* 422 * With cfs_rq being unthrottled/throttled during an enqueue, 423 * it can happen the tmp_alone_branch points the a leaf that 424 * we finally want to del. In this case, tmp_alone_branch moves 425 * to the prev element but it will point to rq->leaf_cfs_rq_list 426 * at the end of the enqueue. 427 */ 428 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 429 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 430 431 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 432 cfs_rq->on_list = 0; 433 } 434 } 435 436 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 437 { 438 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 439 } 440 441 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 442 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 443 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 444 leaf_cfs_rq_list) 445 446 /* Do the two (enqueued) entities belong to the same group ? */ 447 static inline struct cfs_rq * 448 is_same_group(struct sched_entity *se, struct sched_entity *pse) 449 { 450 if (se->cfs_rq == pse->cfs_rq) 451 return se->cfs_rq; 452 453 return NULL; 454 } 455 456 static inline struct sched_entity *parent_entity(struct sched_entity *se) 457 { 458 return se->parent; 459 } 460 461 static void 462 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 463 { 464 int se_depth, pse_depth; 465 466 /* 467 * preemption test can be made between sibling entities who are in the 468 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 469 * both tasks until we find their ancestors who are siblings of common 470 * parent. 471 */ 472 473 /* First walk up until both entities are at same depth */ 474 se_depth = (*se)->depth; 475 pse_depth = (*pse)->depth; 476 477 while (se_depth > pse_depth) { 478 se_depth--; 479 *se = parent_entity(*se); 480 } 481 482 while (pse_depth > se_depth) { 483 pse_depth--; 484 *pse = parent_entity(*pse); 485 } 486 487 while (!is_same_group(*se, *pse)) { 488 *se = parent_entity(*se); 489 *pse = parent_entity(*pse); 490 } 491 } 492 493 static int tg_is_idle(struct task_group *tg) 494 { 495 return tg->idle > 0; 496 } 497 498 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 499 { 500 return cfs_rq->idle > 0; 501 } 502 503 static int se_is_idle(struct sched_entity *se) 504 { 505 if (entity_is_task(se)) 506 return task_has_idle_policy(task_of(se)); 507 return cfs_rq_is_idle(group_cfs_rq(se)); 508 } 509 510 #else /* !CONFIG_FAIR_GROUP_SCHED */ 511 512 #define for_each_sched_entity(se) \ 513 for (; se; se = NULL) 514 515 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 516 { 517 return true; 518 } 519 520 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 521 { 522 } 523 524 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 525 { 526 } 527 528 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 529 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 530 531 static inline struct sched_entity *parent_entity(struct sched_entity *se) 532 { 533 return NULL; 534 } 535 536 static inline void 537 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 538 { 539 } 540 541 static inline int tg_is_idle(struct task_group *tg) 542 { 543 return 0; 544 } 545 546 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 547 { 548 return 0; 549 } 550 551 static int se_is_idle(struct sched_entity *se) 552 { 553 return 0; 554 } 555 556 #endif /* CONFIG_FAIR_GROUP_SCHED */ 557 558 static __always_inline 559 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 560 561 /************************************************************** 562 * Scheduling class tree data structure manipulation methods: 563 */ 564 565 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 566 { 567 s64 delta = (s64)(vruntime - max_vruntime); 568 if (delta > 0) 569 max_vruntime = vruntime; 570 571 return max_vruntime; 572 } 573 574 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 575 { 576 s64 delta = (s64)(vruntime - min_vruntime); 577 if (delta < 0) 578 min_vruntime = vruntime; 579 580 return min_vruntime; 581 } 582 583 static inline bool entity_before(struct sched_entity *a, 584 struct sched_entity *b) 585 { 586 return (s64)(a->vruntime - b->vruntime) < 0; 587 } 588 589 #define __node_2_se(node) \ 590 rb_entry((node), struct sched_entity, run_node) 591 592 static void update_min_vruntime(struct cfs_rq *cfs_rq) 593 { 594 struct sched_entity *curr = cfs_rq->curr; 595 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 596 597 u64 vruntime = cfs_rq->min_vruntime; 598 599 if (curr) { 600 if (curr->on_rq) 601 vruntime = curr->vruntime; 602 else 603 curr = NULL; 604 } 605 606 if (leftmost) { /* non-empty tree */ 607 struct sched_entity *se = __node_2_se(leftmost); 608 609 if (!curr) 610 vruntime = se->vruntime; 611 else 612 vruntime = min_vruntime(vruntime, se->vruntime); 613 } 614 615 /* ensure we never gain time by being placed backwards. */ 616 u64_u32_store(cfs_rq->min_vruntime, 617 max_vruntime(cfs_rq->min_vruntime, vruntime)); 618 } 619 620 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 621 { 622 return entity_before(__node_2_se(a), __node_2_se(b)); 623 } 624 625 /* 626 * Enqueue an entity into the rb-tree: 627 */ 628 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 629 { 630 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less); 631 } 632 633 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 634 { 635 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 636 } 637 638 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 639 { 640 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 641 642 if (!left) 643 return NULL; 644 645 return __node_2_se(left); 646 } 647 648 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 649 { 650 struct rb_node *next = rb_next(&se->run_node); 651 652 if (!next) 653 return NULL; 654 655 return __node_2_se(next); 656 } 657 658 #ifdef CONFIG_SCHED_DEBUG 659 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 660 { 661 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 662 663 if (!last) 664 return NULL; 665 666 return __node_2_se(last); 667 } 668 669 /************************************************************** 670 * Scheduling class statistics methods: 671 */ 672 673 int sched_update_scaling(void) 674 { 675 unsigned int factor = get_update_sysctl_factor(); 676 677 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 678 sysctl_sched_min_granularity); 679 680 #define WRT_SYSCTL(name) \ 681 (normalized_sysctl_##name = sysctl_##name / (factor)) 682 WRT_SYSCTL(sched_min_granularity); 683 WRT_SYSCTL(sched_latency); 684 WRT_SYSCTL(sched_wakeup_granularity); 685 #undef WRT_SYSCTL 686 687 return 0; 688 } 689 #endif 690 691 /* 692 * delta /= w 693 */ 694 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 695 { 696 if (unlikely(se->load.weight != NICE_0_LOAD)) 697 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 698 699 return delta; 700 } 701 702 /* 703 * The idea is to set a period in which each task runs once. 704 * 705 * When there are too many tasks (sched_nr_latency) we have to stretch 706 * this period because otherwise the slices get too small. 707 * 708 * p = (nr <= nl) ? l : l*nr/nl 709 */ 710 static u64 __sched_period(unsigned long nr_running) 711 { 712 if (unlikely(nr_running > sched_nr_latency)) 713 return nr_running * sysctl_sched_min_granularity; 714 else 715 return sysctl_sched_latency; 716 } 717 718 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq); 719 720 /* 721 * We calculate the wall-time slice from the period by taking a part 722 * proportional to the weight. 723 * 724 * s = p*P[w/rw] 725 */ 726 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 727 { 728 unsigned int nr_running = cfs_rq->nr_running; 729 struct sched_entity *init_se = se; 730 unsigned int min_gran; 731 u64 slice; 732 733 if (sched_feat(ALT_PERIOD)) 734 nr_running = rq_of(cfs_rq)->cfs.h_nr_running; 735 736 slice = __sched_period(nr_running + !se->on_rq); 737 738 for_each_sched_entity(se) { 739 struct load_weight *load; 740 struct load_weight lw; 741 struct cfs_rq *qcfs_rq; 742 743 qcfs_rq = cfs_rq_of(se); 744 load = &qcfs_rq->load; 745 746 if (unlikely(!se->on_rq)) { 747 lw = qcfs_rq->load; 748 749 update_load_add(&lw, se->load.weight); 750 load = &lw; 751 } 752 slice = __calc_delta(slice, se->load.weight, load); 753 } 754 755 if (sched_feat(BASE_SLICE)) { 756 if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq)) 757 min_gran = sysctl_sched_idle_min_granularity; 758 else 759 min_gran = sysctl_sched_min_granularity; 760 761 slice = max_t(u64, slice, min_gran); 762 } 763 764 return slice; 765 } 766 767 /* 768 * We calculate the vruntime slice of a to-be-inserted task. 769 * 770 * vs = s/w 771 */ 772 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 773 { 774 return calc_delta_fair(sched_slice(cfs_rq, se), se); 775 } 776 777 #include "pelt.h" 778 #ifdef CONFIG_SMP 779 780 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 781 static unsigned long task_h_load(struct task_struct *p); 782 static unsigned long capacity_of(int cpu); 783 784 /* Give new sched_entity start runnable values to heavy its load in infant time */ 785 void init_entity_runnable_average(struct sched_entity *se) 786 { 787 struct sched_avg *sa = &se->avg; 788 789 memset(sa, 0, sizeof(*sa)); 790 791 /* 792 * Tasks are initialized with full load to be seen as heavy tasks until 793 * they get a chance to stabilize to their real load level. 794 * Group entities are initialized with zero load to reflect the fact that 795 * nothing has been attached to the task group yet. 796 */ 797 if (entity_is_task(se)) 798 sa->load_avg = scale_load_down(se->load.weight); 799 800 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 801 } 802 803 /* 804 * With new tasks being created, their initial util_avgs are extrapolated 805 * based on the cfs_rq's current util_avg: 806 * 807 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 808 * 809 * However, in many cases, the above util_avg does not give a desired 810 * value. Moreover, the sum of the util_avgs may be divergent, such 811 * as when the series is a harmonic series. 812 * 813 * To solve this problem, we also cap the util_avg of successive tasks to 814 * only 1/2 of the left utilization budget: 815 * 816 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 817 * 818 * where n denotes the nth task and cpu_scale the CPU capacity. 819 * 820 * For example, for a CPU with 1024 of capacity, a simplest series from 821 * the beginning would be like: 822 * 823 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 824 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 825 * 826 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 827 * if util_avg > util_avg_cap. 828 */ 829 void post_init_entity_util_avg(struct task_struct *p) 830 { 831 struct sched_entity *se = &p->se; 832 struct cfs_rq *cfs_rq = cfs_rq_of(se); 833 struct sched_avg *sa = &se->avg; 834 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 835 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 836 837 if (p->sched_class != &fair_sched_class) { 838 /* 839 * For !fair tasks do: 840 * 841 update_cfs_rq_load_avg(now, cfs_rq); 842 attach_entity_load_avg(cfs_rq, se); 843 switched_from_fair(rq, p); 844 * 845 * such that the next switched_to_fair() has the 846 * expected state. 847 */ 848 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 849 return; 850 } 851 852 if (cap > 0) { 853 if (cfs_rq->avg.util_avg != 0) { 854 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 855 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 856 857 if (sa->util_avg > cap) 858 sa->util_avg = cap; 859 } else { 860 sa->util_avg = cap; 861 } 862 } 863 864 sa->runnable_avg = sa->util_avg; 865 } 866 867 #else /* !CONFIG_SMP */ 868 void init_entity_runnable_average(struct sched_entity *se) 869 { 870 } 871 void post_init_entity_util_avg(struct task_struct *p) 872 { 873 } 874 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 875 { 876 } 877 #endif /* CONFIG_SMP */ 878 879 /* 880 * Update the current task's runtime statistics. 881 */ 882 static void update_curr(struct cfs_rq *cfs_rq) 883 { 884 struct sched_entity *curr = cfs_rq->curr; 885 u64 now = rq_clock_task(rq_of(cfs_rq)); 886 u64 delta_exec; 887 888 if (unlikely(!curr)) 889 return; 890 891 delta_exec = now - curr->exec_start; 892 if (unlikely((s64)delta_exec <= 0)) 893 return; 894 895 curr->exec_start = now; 896 897 if (schedstat_enabled()) { 898 struct sched_statistics *stats; 899 900 stats = __schedstats_from_se(curr); 901 __schedstat_set(stats->exec_max, 902 max(delta_exec, stats->exec_max)); 903 } 904 905 curr->sum_exec_runtime += delta_exec; 906 schedstat_add(cfs_rq->exec_clock, delta_exec); 907 908 curr->vruntime += calc_delta_fair(delta_exec, curr); 909 update_min_vruntime(cfs_rq); 910 911 if (entity_is_task(curr)) { 912 struct task_struct *curtask = task_of(curr); 913 914 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 915 cgroup_account_cputime(curtask, delta_exec); 916 account_group_exec_runtime(curtask, delta_exec); 917 } 918 919 account_cfs_rq_runtime(cfs_rq, delta_exec); 920 } 921 922 static void update_curr_fair(struct rq *rq) 923 { 924 update_curr(cfs_rq_of(&rq->curr->se)); 925 } 926 927 static inline void 928 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 929 { 930 struct sched_statistics *stats; 931 struct task_struct *p = NULL; 932 933 if (!schedstat_enabled()) 934 return; 935 936 stats = __schedstats_from_se(se); 937 938 if (entity_is_task(se)) 939 p = task_of(se); 940 941 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 942 } 943 944 static inline void 945 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 946 { 947 struct sched_statistics *stats; 948 struct task_struct *p = NULL; 949 950 if (!schedstat_enabled()) 951 return; 952 953 stats = __schedstats_from_se(se); 954 955 /* 956 * When the sched_schedstat changes from 0 to 1, some sched se 957 * maybe already in the runqueue, the se->statistics.wait_start 958 * will be 0.So it will let the delta wrong. We need to avoid this 959 * scenario. 960 */ 961 if (unlikely(!schedstat_val(stats->wait_start))) 962 return; 963 964 if (entity_is_task(se)) 965 p = task_of(se); 966 967 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 968 } 969 970 static inline void 971 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 972 { 973 struct sched_statistics *stats; 974 struct task_struct *tsk = NULL; 975 976 if (!schedstat_enabled()) 977 return; 978 979 stats = __schedstats_from_se(se); 980 981 if (entity_is_task(se)) 982 tsk = task_of(se); 983 984 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 985 } 986 987 /* 988 * Task is being enqueued - update stats: 989 */ 990 static inline void 991 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 992 { 993 if (!schedstat_enabled()) 994 return; 995 996 /* 997 * Are we enqueueing a waiting task? (for current tasks 998 * a dequeue/enqueue event is a NOP) 999 */ 1000 if (se != cfs_rq->curr) 1001 update_stats_wait_start_fair(cfs_rq, se); 1002 1003 if (flags & ENQUEUE_WAKEUP) 1004 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1005 } 1006 1007 static inline void 1008 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1009 { 1010 1011 if (!schedstat_enabled()) 1012 return; 1013 1014 /* 1015 * Mark the end of the wait period if dequeueing a 1016 * waiting task: 1017 */ 1018 if (se != cfs_rq->curr) 1019 update_stats_wait_end_fair(cfs_rq, se); 1020 1021 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1022 struct task_struct *tsk = task_of(se); 1023 unsigned int state; 1024 1025 /* XXX racy against TTWU */ 1026 state = READ_ONCE(tsk->__state); 1027 if (state & TASK_INTERRUPTIBLE) 1028 __schedstat_set(tsk->stats.sleep_start, 1029 rq_clock(rq_of(cfs_rq))); 1030 if (state & TASK_UNINTERRUPTIBLE) 1031 __schedstat_set(tsk->stats.block_start, 1032 rq_clock(rq_of(cfs_rq))); 1033 } 1034 } 1035 1036 /* 1037 * We are picking a new current task - update its stats: 1038 */ 1039 static inline void 1040 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1041 { 1042 /* 1043 * We are starting a new run period: 1044 */ 1045 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1046 } 1047 1048 /************************************************** 1049 * Scheduling class queueing methods: 1050 */ 1051 1052 #ifdef CONFIG_NUMA 1053 #define NUMA_IMBALANCE_MIN 2 1054 1055 static inline long 1056 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1057 { 1058 /* 1059 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1060 * threshold. Above this threshold, individual tasks may be contending 1061 * for both memory bandwidth and any shared HT resources. This is an 1062 * approximation as the number of running tasks may not be related to 1063 * the number of busy CPUs due to sched_setaffinity. 1064 */ 1065 if (dst_running > imb_numa_nr) 1066 return imbalance; 1067 1068 /* 1069 * Allow a small imbalance based on a simple pair of communicating 1070 * tasks that remain local when the destination is lightly loaded. 1071 */ 1072 if (imbalance <= NUMA_IMBALANCE_MIN) 1073 return 0; 1074 1075 return imbalance; 1076 } 1077 #endif /* CONFIG_NUMA */ 1078 1079 #ifdef CONFIG_NUMA_BALANCING 1080 /* 1081 * Approximate time to scan a full NUMA task in ms. The task scan period is 1082 * calculated based on the tasks virtual memory size and 1083 * numa_balancing_scan_size. 1084 */ 1085 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1086 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1087 1088 /* Portion of address space to scan in MB */ 1089 unsigned int sysctl_numa_balancing_scan_size = 256; 1090 1091 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1092 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1093 1094 /* The page with hint page fault latency < threshold in ms is considered hot */ 1095 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1096 1097 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 1098 unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 1099 1100 struct numa_group { 1101 refcount_t refcount; 1102 1103 spinlock_t lock; /* nr_tasks, tasks */ 1104 int nr_tasks; 1105 pid_t gid; 1106 int active_nodes; 1107 1108 struct rcu_head rcu; 1109 unsigned long total_faults; 1110 unsigned long max_faults_cpu; 1111 /* 1112 * faults[] array is split into two regions: faults_mem and faults_cpu. 1113 * 1114 * Faults_cpu is used to decide whether memory should move 1115 * towards the CPU. As a consequence, these stats are weighted 1116 * more by CPU use than by memory faults. 1117 */ 1118 unsigned long faults[]; 1119 }; 1120 1121 /* 1122 * For functions that can be called in multiple contexts that permit reading 1123 * ->numa_group (see struct task_struct for locking rules). 1124 */ 1125 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1126 { 1127 return rcu_dereference_check(p->numa_group, p == current || 1128 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1129 } 1130 1131 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1132 { 1133 return rcu_dereference_protected(p->numa_group, p == current); 1134 } 1135 1136 static inline unsigned long group_faults_priv(struct numa_group *ng); 1137 static inline unsigned long group_faults_shared(struct numa_group *ng); 1138 1139 static unsigned int task_nr_scan_windows(struct task_struct *p) 1140 { 1141 unsigned long rss = 0; 1142 unsigned long nr_scan_pages; 1143 1144 /* 1145 * Calculations based on RSS as non-present and empty pages are skipped 1146 * by the PTE scanner and NUMA hinting faults should be trapped based 1147 * on resident pages 1148 */ 1149 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1150 rss = get_mm_rss(p->mm); 1151 if (!rss) 1152 rss = nr_scan_pages; 1153 1154 rss = round_up(rss, nr_scan_pages); 1155 return rss / nr_scan_pages; 1156 } 1157 1158 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1159 #define MAX_SCAN_WINDOW 2560 1160 1161 static unsigned int task_scan_min(struct task_struct *p) 1162 { 1163 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1164 unsigned int scan, floor; 1165 unsigned int windows = 1; 1166 1167 if (scan_size < MAX_SCAN_WINDOW) 1168 windows = MAX_SCAN_WINDOW / scan_size; 1169 floor = 1000 / windows; 1170 1171 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1172 return max_t(unsigned int, floor, scan); 1173 } 1174 1175 static unsigned int task_scan_start(struct task_struct *p) 1176 { 1177 unsigned long smin = task_scan_min(p); 1178 unsigned long period = smin; 1179 struct numa_group *ng; 1180 1181 /* Scale the maximum scan period with the amount of shared memory. */ 1182 rcu_read_lock(); 1183 ng = rcu_dereference(p->numa_group); 1184 if (ng) { 1185 unsigned long shared = group_faults_shared(ng); 1186 unsigned long private = group_faults_priv(ng); 1187 1188 period *= refcount_read(&ng->refcount); 1189 period *= shared + 1; 1190 period /= private + shared + 1; 1191 } 1192 rcu_read_unlock(); 1193 1194 return max(smin, period); 1195 } 1196 1197 static unsigned int task_scan_max(struct task_struct *p) 1198 { 1199 unsigned long smin = task_scan_min(p); 1200 unsigned long smax; 1201 struct numa_group *ng; 1202 1203 /* Watch for min being lower than max due to floor calculations */ 1204 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1205 1206 /* Scale the maximum scan period with the amount of shared memory. */ 1207 ng = deref_curr_numa_group(p); 1208 if (ng) { 1209 unsigned long shared = group_faults_shared(ng); 1210 unsigned long private = group_faults_priv(ng); 1211 unsigned long period = smax; 1212 1213 period *= refcount_read(&ng->refcount); 1214 period *= shared + 1; 1215 period /= private + shared + 1; 1216 1217 smax = max(smax, period); 1218 } 1219 1220 return max(smin, smax); 1221 } 1222 1223 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1224 { 1225 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1226 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1227 } 1228 1229 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1230 { 1231 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1232 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1233 } 1234 1235 /* Shared or private faults. */ 1236 #define NR_NUMA_HINT_FAULT_TYPES 2 1237 1238 /* Memory and CPU locality */ 1239 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1240 1241 /* Averaged statistics, and temporary buffers. */ 1242 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1243 1244 pid_t task_numa_group_id(struct task_struct *p) 1245 { 1246 struct numa_group *ng; 1247 pid_t gid = 0; 1248 1249 rcu_read_lock(); 1250 ng = rcu_dereference(p->numa_group); 1251 if (ng) 1252 gid = ng->gid; 1253 rcu_read_unlock(); 1254 1255 return gid; 1256 } 1257 1258 /* 1259 * The averaged statistics, shared & private, memory & CPU, 1260 * occupy the first half of the array. The second half of the 1261 * array is for current counters, which are averaged into the 1262 * first set by task_numa_placement. 1263 */ 1264 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1265 { 1266 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1267 } 1268 1269 static inline unsigned long task_faults(struct task_struct *p, int nid) 1270 { 1271 if (!p->numa_faults) 1272 return 0; 1273 1274 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1275 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1276 } 1277 1278 static inline unsigned long group_faults(struct task_struct *p, int nid) 1279 { 1280 struct numa_group *ng = deref_task_numa_group(p); 1281 1282 if (!ng) 1283 return 0; 1284 1285 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1286 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1287 } 1288 1289 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1290 { 1291 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1292 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1293 } 1294 1295 static inline unsigned long group_faults_priv(struct numa_group *ng) 1296 { 1297 unsigned long faults = 0; 1298 int node; 1299 1300 for_each_online_node(node) { 1301 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1302 } 1303 1304 return faults; 1305 } 1306 1307 static inline unsigned long group_faults_shared(struct numa_group *ng) 1308 { 1309 unsigned long faults = 0; 1310 int node; 1311 1312 for_each_online_node(node) { 1313 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1314 } 1315 1316 return faults; 1317 } 1318 1319 /* 1320 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1321 * considered part of a numa group's pseudo-interleaving set. Migrations 1322 * between these nodes are slowed down, to allow things to settle down. 1323 */ 1324 #define ACTIVE_NODE_FRACTION 3 1325 1326 static bool numa_is_active_node(int nid, struct numa_group *ng) 1327 { 1328 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1329 } 1330 1331 /* Handle placement on systems where not all nodes are directly connected. */ 1332 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1333 int lim_dist, bool task) 1334 { 1335 unsigned long score = 0; 1336 int node, max_dist; 1337 1338 /* 1339 * All nodes are directly connected, and the same distance 1340 * from each other. No need for fancy placement algorithms. 1341 */ 1342 if (sched_numa_topology_type == NUMA_DIRECT) 1343 return 0; 1344 1345 /* sched_max_numa_distance may be changed in parallel. */ 1346 max_dist = READ_ONCE(sched_max_numa_distance); 1347 /* 1348 * This code is called for each node, introducing N^2 complexity, 1349 * which should be ok given the number of nodes rarely exceeds 8. 1350 */ 1351 for_each_online_node(node) { 1352 unsigned long faults; 1353 int dist = node_distance(nid, node); 1354 1355 /* 1356 * The furthest away nodes in the system are not interesting 1357 * for placement; nid was already counted. 1358 */ 1359 if (dist >= max_dist || node == nid) 1360 continue; 1361 1362 /* 1363 * On systems with a backplane NUMA topology, compare groups 1364 * of nodes, and move tasks towards the group with the most 1365 * memory accesses. When comparing two nodes at distance 1366 * "hoplimit", only nodes closer by than "hoplimit" are part 1367 * of each group. Skip other nodes. 1368 */ 1369 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1370 continue; 1371 1372 /* Add up the faults from nearby nodes. */ 1373 if (task) 1374 faults = task_faults(p, node); 1375 else 1376 faults = group_faults(p, node); 1377 1378 /* 1379 * On systems with a glueless mesh NUMA topology, there are 1380 * no fixed "groups of nodes". Instead, nodes that are not 1381 * directly connected bounce traffic through intermediate 1382 * nodes; a numa_group can occupy any set of nodes. 1383 * The further away a node is, the less the faults count. 1384 * This seems to result in good task placement. 1385 */ 1386 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1387 faults *= (max_dist - dist); 1388 faults /= (max_dist - LOCAL_DISTANCE); 1389 } 1390 1391 score += faults; 1392 } 1393 1394 return score; 1395 } 1396 1397 /* 1398 * These return the fraction of accesses done by a particular task, or 1399 * task group, on a particular numa node. The group weight is given a 1400 * larger multiplier, in order to group tasks together that are almost 1401 * evenly spread out between numa nodes. 1402 */ 1403 static inline unsigned long task_weight(struct task_struct *p, int nid, 1404 int dist) 1405 { 1406 unsigned long faults, total_faults; 1407 1408 if (!p->numa_faults) 1409 return 0; 1410 1411 total_faults = p->total_numa_faults; 1412 1413 if (!total_faults) 1414 return 0; 1415 1416 faults = task_faults(p, nid); 1417 faults += score_nearby_nodes(p, nid, dist, true); 1418 1419 return 1000 * faults / total_faults; 1420 } 1421 1422 static inline unsigned long group_weight(struct task_struct *p, int nid, 1423 int dist) 1424 { 1425 struct numa_group *ng = deref_task_numa_group(p); 1426 unsigned long faults, total_faults; 1427 1428 if (!ng) 1429 return 0; 1430 1431 total_faults = ng->total_faults; 1432 1433 if (!total_faults) 1434 return 0; 1435 1436 faults = group_faults(p, nid); 1437 faults += score_nearby_nodes(p, nid, dist, false); 1438 1439 return 1000 * faults / total_faults; 1440 } 1441 1442 /* 1443 * If memory tiering mode is enabled, cpupid of slow memory page is 1444 * used to record scan time instead of CPU and PID. When tiering mode 1445 * is disabled at run time, the scan time (in cpupid) will be 1446 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1447 * access out of array bound. 1448 */ 1449 static inline bool cpupid_valid(int cpupid) 1450 { 1451 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1452 } 1453 1454 /* 1455 * For memory tiering mode, if there are enough free pages (more than 1456 * enough watermark defined here) in fast memory node, to take full 1457 * advantage of fast memory capacity, all recently accessed slow 1458 * memory pages will be migrated to fast memory node without 1459 * considering hot threshold. 1460 */ 1461 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1462 { 1463 int z; 1464 unsigned long enough_wmark; 1465 1466 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1467 pgdat->node_present_pages >> 4); 1468 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1469 struct zone *zone = pgdat->node_zones + z; 1470 1471 if (!populated_zone(zone)) 1472 continue; 1473 1474 if (zone_watermark_ok(zone, 0, 1475 wmark_pages(zone, WMARK_PROMO) + enough_wmark, 1476 ZONE_MOVABLE, 0)) 1477 return true; 1478 } 1479 return false; 1480 } 1481 1482 /* 1483 * For memory tiering mode, when page tables are scanned, the scan 1484 * time will be recorded in struct page in addition to make page 1485 * PROT_NONE for slow memory page. So when the page is accessed, in 1486 * hint page fault handler, the hint page fault latency is calculated 1487 * via, 1488 * 1489 * hint page fault latency = hint page fault time - scan time 1490 * 1491 * The smaller the hint page fault latency, the higher the possibility 1492 * for the page to be hot. 1493 */ 1494 static int numa_hint_fault_latency(struct page *page) 1495 { 1496 int last_time, time; 1497 1498 time = jiffies_to_msecs(jiffies); 1499 last_time = xchg_page_access_time(page, time); 1500 1501 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1502 } 1503 1504 /* 1505 * For memory tiering mode, too high promotion/demotion throughput may 1506 * hurt application latency. So we provide a mechanism to rate limit 1507 * the number of pages that are tried to be promoted. 1508 */ 1509 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1510 unsigned long rate_limit, int nr) 1511 { 1512 unsigned long nr_cand; 1513 unsigned int now, start; 1514 1515 now = jiffies_to_msecs(jiffies); 1516 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1517 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1518 start = pgdat->nbp_rl_start; 1519 if (now - start > MSEC_PER_SEC && 1520 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1521 pgdat->nbp_rl_nr_cand = nr_cand; 1522 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1523 return true; 1524 return false; 1525 } 1526 1527 #define NUMA_MIGRATION_ADJUST_STEPS 16 1528 1529 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1530 unsigned long rate_limit, 1531 unsigned int ref_th) 1532 { 1533 unsigned int now, start, th_period, unit_th, th; 1534 unsigned long nr_cand, ref_cand, diff_cand; 1535 1536 now = jiffies_to_msecs(jiffies); 1537 th_period = sysctl_numa_balancing_scan_period_max; 1538 start = pgdat->nbp_th_start; 1539 if (now - start > th_period && 1540 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1541 ref_cand = rate_limit * 1542 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1543 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1544 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1545 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1546 th = pgdat->nbp_threshold ? : ref_th; 1547 if (diff_cand > ref_cand * 11 / 10) 1548 th = max(th - unit_th, unit_th); 1549 else if (diff_cand < ref_cand * 9 / 10) 1550 th = min(th + unit_th, ref_th * 2); 1551 pgdat->nbp_th_nr_cand = nr_cand; 1552 pgdat->nbp_threshold = th; 1553 } 1554 } 1555 1556 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1557 int src_nid, int dst_cpu) 1558 { 1559 struct numa_group *ng = deref_curr_numa_group(p); 1560 int dst_nid = cpu_to_node(dst_cpu); 1561 int last_cpupid, this_cpupid; 1562 1563 /* 1564 * The pages in slow memory node should be migrated according 1565 * to hot/cold instead of private/shared. 1566 */ 1567 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1568 !node_is_toptier(src_nid)) { 1569 struct pglist_data *pgdat; 1570 unsigned long rate_limit; 1571 unsigned int latency, th, def_th; 1572 1573 pgdat = NODE_DATA(dst_nid); 1574 if (pgdat_free_space_enough(pgdat)) { 1575 /* workload changed, reset hot threshold */ 1576 pgdat->nbp_threshold = 0; 1577 return true; 1578 } 1579 1580 def_th = sysctl_numa_balancing_hot_threshold; 1581 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1582 (20 - PAGE_SHIFT); 1583 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1584 1585 th = pgdat->nbp_threshold ? : def_th; 1586 latency = numa_hint_fault_latency(page); 1587 if (latency >= th) 1588 return false; 1589 1590 return !numa_promotion_rate_limit(pgdat, rate_limit, 1591 thp_nr_pages(page)); 1592 } 1593 1594 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1595 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1596 1597 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1598 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1599 return false; 1600 1601 /* 1602 * Allow first faults or private faults to migrate immediately early in 1603 * the lifetime of a task. The magic number 4 is based on waiting for 1604 * two full passes of the "multi-stage node selection" test that is 1605 * executed below. 1606 */ 1607 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1608 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1609 return true; 1610 1611 /* 1612 * Multi-stage node selection is used in conjunction with a periodic 1613 * migration fault to build a temporal task<->page relation. By using 1614 * a two-stage filter we remove short/unlikely relations. 1615 * 1616 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1617 * a task's usage of a particular page (n_p) per total usage of this 1618 * page (n_t) (in a given time-span) to a probability. 1619 * 1620 * Our periodic faults will sample this probability and getting the 1621 * same result twice in a row, given these samples are fully 1622 * independent, is then given by P(n)^2, provided our sample period 1623 * is sufficiently short compared to the usage pattern. 1624 * 1625 * This quadric squishes small probabilities, making it less likely we 1626 * act on an unlikely task<->page relation. 1627 */ 1628 if (!cpupid_pid_unset(last_cpupid) && 1629 cpupid_to_nid(last_cpupid) != dst_nid) 1630 return false; 1631 1632 /* Always allow migrate on private faults */ 1633 if (cpupid_match_pid(p, last_cpupid)) 1634 return true; 1635 1636 /* A shared fault, but p->numa_group has not been set up yet. */ 1637 if (!ng) 1638 return true; 1639 1640 /* 1641 * Destination node is much more heavily used than the source 1642 * node? Allow migration. 1643 */ 1644 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1645 ACTIVE_NODE_FRACTION) 1646 return true; 1647 1648 /* 1649 * Distribute memory according to CPU & memory use on each node, 1650 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1651 * 1652 * faults_cpu(dst) 3 faults_cpu(src) 1653 * --------------- * - > --------------- 1654 * faults_mem(dst) 4 faults_mem(src) 1655 */ 1656 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1657 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1658 } 1659 1660 /* 1661 * 'numa_type' describes the node at the moment of load balancing. 1662 */ 1663 enum numa_type { 1664 /* The node has spare capacity that can be used to run more tasks. */ 1665 node_has_spare = 0, 1666 /* 1667 * The node is fully used and the tasks don't compete for more CPU 1668 * cycles. Nevertheless, some tasks might wait before running. 1669 */ 1670 node_fully_busy, 1671 /* 1672 * The node is overloaded and can't provide expected CPU cycles to all 1673 * tasks. 1674 */ 1675 node_overloaded 1676 }; 1677 1678 /* Cached statistics for all CPUs within a node */ 1679 struct numa_stats { 1680 unsigned long load; 1681 unsigned long runnable; 1682 unsigned long util; 1683 /* Total compute capacity of CPUs on a node */ 1684 unsigned long compute_capacity; 1685 unsigned int nr_running; 1686 unsigned int weight; 1687 enum numa_type node_type; 1688 int idle_cpu; 1689 }; 1690 1691 static inline bool is_core_idle(int cpu) 1692 { 1693 #ifdef CONFIG_SCHED_SMT 1694 int sibling; 1695 1696 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1697 if (cpu == sibling) 1698 continue; 1699 1700 if (!idle_cpu(sibling)) 1701 return false; 1702 } 1703 #endif 1704 1705 return true; 1706 } 1707 1708 struct task_numa_env { 1709 struct task_struct *p; 1710 1711 int src_cpu, src_nid; 1712 int dst_cpu, dst_nid; 1713 int imb_numa_nr; 1714 1715 struct numa_stats src_stats, dst_stats; 1716 1717 int imbalance_pct; 1718 int dist; 1719 1720 struct task_struct *best_task; 1721 long best_imp; 1722 int best_cpu; 1723 }; 1724 1725 static unsigned long cpu_load(struct rq *rq); 1726 static unsigned long cpu_runnable(struct rq *rq); 1727 1728 static inline enum 1729 numa_type numa_classify(unsigned int imbalance_pct, 1730 struct numa_stats *ns) 1731 { 1732 if ((ns->nr_running > ns->weight) && 1733 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1734 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1735 return node_overloaded; 1736 1737 if ((ns->nr_running < ns->weight) || 1738 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1739 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1740 return node_has_spare; 1741 1742 return node_fully_busy; 1743 } 1744 1745 #ifdef CONFIG_SCHED_SMT 1746 /* Forward declarations of select_idle_sibling helpers */ 1747 static inline bool test_idle_cores(int cpu); 1748 static inline int numa_idle_core(int idle_core, int cpu) 1749 { 1750 if (!static_branch_likely(&sched_smt_present) || 1751 idle_core >= 0 || !test_idle_cores(cpu)) 1752 return idle_core; 1753 1754 /* 1755 * Prefer cores instead of packing HT siblings 1756 * and triggering future load balancing. 1757 */ 1758 if (is_core_idle(cpu)) 1759 idle_core = cpu; 1760 1761 return idle_core; 1762 } 1763 #else 1764 static inline int numa_idle_core(int idle_core, int cpu) 1765 { 1766 return idle_core; 1767 } 1768 #endif 1769 1770 /* 1771 * Gather all necessary information to make NUMA balancing placement 1772 * decisions that are compatible with standard load balancer. This 1773 * borrows code and logic from update_sg_lb_stats but sharing a 1774 * common implementation is impractical. 1775 */ 1776 static void update_numa_stats(struct task_numa_env *env, 1777 struct numa_stats *ns, int nid, 1778 bool find_idle) 1779 { 1780 int cpu, idle_core = -1; 1781 1782 memset(ns, 0, sizeof(*ns)); 1783 ns->idle_cpu = -1; 1784 1785 rcu_read_lock(); 1786 for_each_cpu(cpu, cpumask_of_node(nid)) { 1787 struct rq *rq = cpu_rq(cpu); 1788 1789 ns->load += cpu_load(rq); 1790 ns->runnable += cpu_runnable(rq); 1791 ns->util += cpu_util_cfs(cpu); 1792 ns->nr_running += rq->cfs.h_nr_running; 1793 ns->compute_capacity += capacity_of(cpu); 1794 1795 if (find_idle && !rq->nr_running && idle_cpu(cpu)) { 1796 if (READ_ONCE(rq->numa_migrate_on) || 1797 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1798 continue; 1799 1800 if (ns->idle_cpu == -1) 1801 ns->idle_cpu = cpu; 1802 1803 idle_core = numa_idle_core(idle_core, cpu); 1804 } 1805 } 1806 rcu_read_unlock(); 1807 1808 ns->weight = cpumask_weight(cpumask_of_node(nid)); 1809 1810 ns->node_type = numa_classify(env->imbalance_pct, ns); 1811 1812 if (idle_core >= 0) 1813 ns->idle_cpu = idle_core; 1814 } 1815 1816 static void task_numa_assign(struct task_numa_env *env, 1817 struct task_struct *p, long imp) 1818 { 1819 struct rq *rq = cpu_rq(env->dst_cpu); 1820 1821 /* Check if run-queue part of active NUMA balance. */ 1822 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 1823 int cpu; 1824 int start = env->dst_cpu; 1825 1826 /* Find alternative idle CPU. */ 1827 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) { 1828 if (cpu == env->best_cpu || !idle_cpu(cpu) || 1829 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 1830 continue; 1831 } 1832 1833 env->dst_cpu = cpu; 1834 rq = cpu_rq(env->dst_cpu); 1835 if (!xchg(&rq->numa_migrate_on, 1)) 1836 goto assign; 1837 } 1838 1839 /* Failed to find an alternative idle CPU */ 1840 return; 1841 } 1842 1843 assign: 1844 /* 1845 * Clear previous best_cpu/rq numa-migrate flag, since task now 1846 * found a better CPU to move/swap. 1847 */ 1848 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 1849 rq = cpu_rq(env->best_cpu); 1850 WRITE_ONCE(rq->numa_migrate_on, 0); 1851 } 1852 1853 if (env->best_task) 1854 put_task_struct(env->best_task); 1855 if (p) 1856 get_task_struct(p); 1857 1858 env->best_task = p; 1859 env->best_imp = imp; 1860 env->best_cpu = env->dst_cpu; 1861 } 1862 1863 static bool load_too_imbalanced(long src_load, long dst_load, 1864 struct task_numa_env *env) 1865 { 1866 long imb, old_imb; 1867 long orig_src_load, orig_dst_load; 1868 long src_capacity, dst_capacity; 1869 1870 /* 1871 * The load is corrected for the CPU capacity available on each node. 1872 * 1873 * src_load dst_load 1874 * ------------ vs --------- 1875 * src_capacity dst_capacity 1876 */ 1877 src_capacity = env->src_stats.compute_capacity; 1878 dst_capacity = env->dst_stats.compute_capacity; 1879 1880 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1881 1882 orig_src_load = env->src_stats.load; 1883 orig_dst_load = env->dst_stats.load; 1884 1885 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1886 1887 /* Would this change make things worse? */ 1888 return (imb > old_imb); 1889 } 1890 1891 /* 1892 * Maximum NUMA importance can be 1998 (2*999); 1893 * SMALLIMP @ 30 would be close to 1998/64. 1894 * Used to deter task migration. 1895 */ 1896 #define SMALLIMP 30 1897 1898 /* 1899 * This checks if the overall compute and NUMA accesses of the system would 1900 * be improved if the source tasks was migrated to the target dst_cpu taking 1901 * into account that it might be best if task running on the dst_cpu should 1902 * be exchanged with the source task 1903 */ 1904 static bool task_numa_compare(struct task_numa_env *env, 1905 long taskimp, long groupimp, bool maymove) 1906 { 1907 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1908 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1909 long imp = p_ng ? groupimp : taskimp; 1910 struct task_struct *cur; 1911 long src_load, dst_load; 1912 int dist = env->dist; 1913 long moveimp = imp; 1914 long load; 1915 bool stopsearch = false; 1916 1917 if (READ_ONCE(dst_rq->numa_migrate_on)) 1918 return false; 1919 1920 rcu_read_lock(); 1921 cur = rcu_dereference(dst_rq->curr); 1922 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1923 cur = NULL; 1924 1925 /* 1926 * Because we have preemption enabled we can get migrated around and 1927 * end try selecting ourselves (current == env->p) as a swap candidate. 1928 */ 1929 if (cur == env->p) { 1930 stopsearch = true; 1931 goto unlock; 1932 } 1933 1934 if (!cur) { 1935 if (maymove && moveimp >= env->best_imp) 1936 goto assign; 1937 else 1938 goto unlock; 1939 } 1940 1941 /* Skip this swap candidate if cannot move to the source cpu. */ 1942 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1943 goto unlock; 1944 1945 /* 1946 * Skip this swap candidate if it is not moving to its preferred 1947 * node and the best task is. 1948 */ 1949 if (env->best_task && 1950 env->best_task->numa_preferred_nid == env->src_nid && 1951 cur->numa_preferred_nid != env->src_nid) { 1952 goto unlock; 1953 } 1954 1955 /* 1956 * "imp" is the fault differential for the source task between the 1957 * source and destination node. Calculate the total differential for 1958 * the source task and potential destination task. The more negative 1959 * the value is, the more remote accesses that would be expected to 1960 * be incurred if the tasks were swapped. 1961 * 1962 * If dst and source tasks are in the same NUMA group, or not 1963 * in any group then look only at task weights. 1964 */ 1965 cur_ng = rcu_dereference(cur->numa_group); 1966 if (cur_ng == p_ng) { 1967 /* 1968 * Do not swap within a group or between tasks that have 1969 * no group if there is spare capacity. Swapping does 1970 * not address the load imbalance and helps one task at 1971 * the cost of punishing another. 1972 */ 1973 if (env->dst_stats.node_type == node_has_spare) 1974 goto unlock; 1975 1976 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1977 task_weight(cur, env->dst_nid, dist); 1978 /* 1979 * Add some hysteresis to prevent swapping the 1980 * tasks within a group over tiny differences. 1981 */ 1982 if (cur_ng) 1983 imp -= imp / 16; 1984 } else { 1985 /* 1986 * Compare the group weights. If a task is all by itself 1987 * (not part of a group), use the task weight instead. 1988 */ 1989 if (cur_ng && p_ng) 1990 imp += group_weight(cur, env->src_nid, dist) - 1991 group_weight(cur, env->dst_nid, dist); 1992 else 1993 imp += task_weight(cur, env->src_nid, dist) - 1994 task_weight(cur, env->dst_nid, dist); 1995 } 1996 1997 /* Discourage picking a task already on its preferred node */ 1998 if (cur->numa_preferred_nid == env->dst_nid) 1999 imp -= imp / 16; 2000 2001 /* 2002 * Encourage picking a task that moves to its preferred node. 2003 * This potentially makes imp larger than it's maximum of 2004 * 1998 (see SMALLIMP and task_weight for why) but in this 2005 * case, it does not matter. 2006 */ 2007 if (cur->numa_preferred_nid == env->src_nid) 2008 imp += imp / 8; 2009 2010 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2011 imp = moveimp; 2012 cur = NULL; 2013 goto assign; 2014 } 2015 2016 /* 2017 * Prefer swapping with a task moving to its preferred node over a 2018 * task that is not. 2019 */ 2020 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2021 env->best_task->numa_preferred_nid != env->src_nid) { 2022 goto assign; 2023 } 2024 2025 /* 2026 * If the NUMA importance is less than SMALLIMP, 2027 * task migration might only result in ping pong 2028 * of tasks and also hurt performance due to cache 2029 * misses. 2030 */ 2031 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2032 goto unlock; 2033 2034 /* 2035 * In the overloaded case, try and keep the load balanced. 2036 */ 2037 load = task_h_load(env->p) - task_h_load(cur); 2038 if (!load) 2039 goto assign; 2040 2041 dst_load = env->dst_stats.load + load; 2042 src_load = env->src_stats.load - load; 2043 2044 if (load_too_imbalanced(src_load, dst_load, env)) 2045 goto unlock; 2046 2047 assign: 2048 /* Evaluate an idle CPU for a task numa move. */ 2049 if (!cur) { 2050 int cpu = env->dst_stats.idle_cpu; 2051 2052 /* Nothing cached so current CPU went idle since the search. */ 2053 if (cpu < 0) 2054 cpu = env->dst_cpu; 2055 2056 /* 2057 * If the CPU is no longer truly idle and the previous best CPU 2058 * is, keep using it. 2059 */ 2060 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2061 idle_cpu(env->best_cpu)) { 2062 cpu = env->best_cpu; 2063 } 2064 2065 env->dst_cpu = cpu; 2066 } 2067 2068 task_numa_assign(env, cur, imp); 2069 2070 /* 2071 * If a move to idle is allowed because there is capacity or load 2072 * balance improves then stop the search. While a better swap 2073 * candidate may exist, a search is not free. 2074 */ 2075 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2076 stopsearch = true; 2077 2078 /* 2079 * If a swap candidate must be identified and the current best task 2080 * moves its preferred node then stop the search. 2081 */ 2082 if (!maymove && env->best_task && 2083 env->best_task->numa_preferred_nid == env->src_nid) { 2084 stopsearch = true; 2085 } 2086 unlock: 2087 rcu_read_unlock(); 2088 2089 return stopsearch; 2090 } 2091 2092 static void task_numa_find_cpu(struct task_numa_env *env, 2093 long taskimp, long groupimp) 2094 { 2095 bool maymove = false; 2096 int cpu; 2097 2098 /* 2099 * If dst node has spare capacity, then check if there is an 2100 * imbalance that would be overruled by the load balancer. 2101 */ 2102 if (env->dst_stats.node_type == node_has_spare) { 2103 unsigned int imbalance; 2104 int src_running, dst_running; 2105 2106 /* 2107 * Would movement cause an imbalance? Note that if src has 2108 * more running tasks that the imbalance is ignored as the 2109 * move improves the imbalance from the perspective of the 2110 * CPU load balancer. 2111 * */ 2112 src_running = env->src_stats.nr_running - 1; 2113 dst_running = env->dst_stats.nr_running + 1; 2114 imbalance = max(0, dst_running - src_running); 2115 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2116 env->imb_numa_nr); 2117 2118 /* Use idle CPU if there is no imbalance */ 2119 if (!imbalance) { 2120 maymove = true; 2121 if (env->dst_stats.idle_cpu >= 0) { 2122 env->dst_cpu = env->dst_stats.idle_cpu; 2123 task_numa_assign(env, NULL, 0); 2124 return; 2125 } 2126 } 2127 } else { 2128 long src_load, dst_load, load; 2129 /* 2130 * If the improvement from just moving env->p direction is better 2131 * than swapping tasks around, check if a move is possible. 2132 */ 2133 load = task_h_load(env->p); 2134 dst_load = env->dst_stats.load + load; 2135 src_load = env->src_stats.load - load; 2136 maymove = !load_too_imbalanced(src_load, dst_load, env); 2137 } 2138 2139 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2140 /* Skip this CPU if the source task cannot migrate */ 2141 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2142 continue; 2143 2144 env->dst_cpu = cpu; 2145 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2146 break; 2147 } 2148 } 2149 2150 static int task_numa_migrate(struct task_struct *p) 2151 { 2152 struct task_numa_env env = { 2153 .p = p, 2154 2155 .src_cpu = task_cpu(p), 2156 .src_nid = task_node(p), 2157 2158 .imbalance_pct = 112, 2159 2160 .best_task = NULL, 2161 .best_imp = 0, 2162 .best_cpu = -1, 2163 }; 2164 unsigned long taskweight, groupweight; 2165 struct sched_domain *sd; 2166 long taskimp, groupimp; 2167 struct numa_group *ng; 2168 struct rq *best_rq; 2169 int nid, ret, dist; 2170 2171 /* 2172 * Pick the lowest SD_NUMA domain, as that would have the smallest 2173 * imbalance and would be the first to start moving tasks about. 2174 * 2175 * And we want to avoid any moving of tasks about, as that would create 2176 * random movement of tasks -- counter the numa conditions we're trying 2177 * to satisfy here. 2178 */ 2179 rcu_read_lock(); 2180 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2181 if (sd) { 2182 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2183 env.imb_numa_nr = sd->imb_numa_nr; 2184 } 2185 rcu_read_unlock(); 2186 2187 /* 2188 * Cpusets can break the scheduler domain tree into smaller 2189 * balance domains, some of which do not cross NUMA boundaries. 2190 * Tasks that are "trapped" in such domains cannot be migrated 2191 * elsewhere, so there is no point in (re)trying. 2192 */ 2193 if (unlikely(!sd)) { 2194 sched_setnuma(p, task_node(p)); 2195 return -EINVAL; 2196 } 2197 2198 env.dst_nid = p->numa_preferred_nid; 2199 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2200 taskweight = task_weight(p, env.src_nid, dist); 2201 groupweight = group_weight(p, env.src_nid, dist); 2202 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2203 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2204 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2205 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2206 2207 /* Try to find a spot on the preferred nid. */ 2208 task_numa_find_cpu(&env, taskimp, groupimp); 2209 2210 /* 2211 * Look at other nodes in these cases: 2212 * - there is no space available on the preferred_nid 2213 * - the task is part of a numa_group that is interleaved across 2214 * multiple NUMA nodes; in order to better consolidate the group, 2215 * we need to check other locations. 2216 */ 2217 ng = deref_curr_numa_group(p); 2218 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2219 for_each_node_state(nid, N_CPU) { 2220 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2221 continue; 2222 2223 dist = node_distance(env.src_nid, env.dst_nid); 2224 if (sched_numa_topology_type == NUMA_BACKPLANE && 2225 dist != env.dist) { 2226 taskweight = task_weight(p, env.src_nid, dist); 2227 groupweight = group_weight(p, env.src_nid, dist); 2228 } 2229 2230 /* Only consider nodes where both task and groups benefit */ 2231 taskimp = task_weight(p, nid, dist) - taskweight; 2232 groupimp = group_weight(p, nid, dist) - groupweight; 2233 if (taskimp < 0 && groupimp < 0) 2234 continue; 2235 2236 env.dist = dist; 2237 env.dst_nid = nid; 2238 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2239 task_numa_find_cpu(&env, taskimp, groupimp); 2240 } 2241 } 2242 2243 /* 2244 * If the task is part of a workload that spans multiple NUMA nodes, 2245 * and is migrating into one of the workload's active nodes, remember 2246 * this node as the task's preferred numa node, so the workload can 2247 * settle down. 2248 * A task that migrated to a second choice node will be better off 2249 * trying for a better one later. Do not set the preferred node here. 2250 */ 2251 if (ng) { 2252 if (env.best_cpu == -1) 2253 nid = env.src_nid; 2254 else 2255 nid = cpu_to_node(env.best_cpu); 2256 2257 if (nid != p->numa_preferred_nid) 2258 sched_setnuma(p, nid); 2259 } 2260 2261 /* No better CPU than the current one was found. */ 2262 if (env.best_cpu == -1) { 2263 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2264 return -EAGAIN; 2265 } 2266 2267 best_rq = cpu_rq(env.best_cpu); 2268 if (env.best_task == NULL) { 2269 ret = migrate_task_to(p, env.best_cpu); 2270 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2271 if (ret != 0) 2272 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2273 return ret; 2274 } 2275 2276 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2277 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2278 2279 if (ret != 0) 2280 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2281 put_task_struct(env.best_task); 2282 return ret; 2283 } 2284 2285 /* Attempt to migrate a task to a CPU on the preferred node. */ 2286 static void numa_migrate_preferred(struct task_struct *p) 2287 { 2288 unsigned long interval = HZ; 2289 2290 /* This task has no NUMA fault statistics yet */ 2291 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2292 return; 2293 2294 /* Periodically retry migrating the task to the preferred node */ 2295 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2296 p->numa_migrate_retry = jiffies + interval; 2297 2298 /* Success if task is already running on preferred CPU */ 2299 if (task_node(p) == p->numa_preferred_nid) 2300 return; 2301 2302 /* Otherwise, try migrate to a CPU on the preferred node */ 2303 task_numa_migrate(p); 2304 } 2305 2306 /* 2307 * Find out how many nodes the workload is actively running on. Do this by 2308 * tracking the nodes from which NUMA hinting faults are triggered. This can 2309 * be different from the set of nodes where the workload's memory is currently 2310 * located. 2311 */ 2312 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2313 { 2314 unsigned long faults, max_faults = 0; 2315 int nid, active_nodes = 0; 2316 2317 for_each_node_state(nid, N_CPU) { 2318 faults = group_faults_cpu(numa_group, nid); 2319 if (faults > max_faults) 2320 max_faults = faults; 2321 } 2322 2323 for_each_node_state(nid, N_CPU) { 2324 faults = group_faults_cpu(numa_group, nid); 2325 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2326 active_nodes++; 2327 } 2328 2329 numa_group->max_faults_cpu = max_faults; 2330 numa_group->active_nodes = active_nodes; 2331 } 2332 2333 /* 2334 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2335 * increments. The more local the fault statistics are, the higher the scan 2336 * period will be for the next scan window. If local/(local+remote) ratio is 2337 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2338 * the scan period will decrease. Aim for 70% local accesses. 2339 */ 2340 #define NUMA_PERIOD_SLOTS 10 2341 #define NUMA_PERIOD_THRESHOLD 7 2342 2343 /* 2344 * Increase the scan period (slow down scanning) if the majority of 2345 * our memory is already on our local node, or if the majority of 2346 * the page accesses are shared with other processes. 2347 * Otherwise, decrease the scan period. 2348 */ 2349 static void update_task_scan_period(struct task_struct *p, 2350 unsigned long shared, unsigned long private) 2351 { 2352 unsigned int period_slot; 2353 int lr_ratio, ps_ratio; 2354 int diff; 2355 2356 unsigned long remote = p->numa_faults_locality[0]; 2357 unsigned long local = p->numa_faults_locality[1]; 2358 2359 /* 2360 * If there were no record hinting faults then either the task is 2361 * completely idle or all activity is in areas that are not of interest 2362 * to automatic numa balancing. Related to that, if there were failed 2363 * migration then it implies we are migrating too quickly or the local 2364 * node is overloaded. In either case, scan slower 2365 */ 2366 if (local + shared == 0 || p->numa_faults_locality[2]) { 2367 p->numa_scan_period = min(p->numa_scan_period_max, 2368 p->numa_scan_period << 1); 2369 2370 p->mm->numa_next_scan = jiffies + 2371 msecs_to_jiffies(p->numa_scan_period); 2372 2373 return; 2374 } 2375 2376 /* 2377 * Prepare to scale scan period relative to the current period. 2378 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2379 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2380 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2381 */ 2382 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2383 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2384 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2385 2386 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2387 /* 2388 * Most memory accesses are local. There is no need to 2389 * do fast NUMA scanning, since memory is already local. 2390 */ 2391 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2392 if (!slot) 2393 slot = 1; 2394 diff = slot * period_slot; 2395 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2396 /* 2397 * Most memory accesses are shared with other tasks. 2398 * There is no point in continuing fast NUMA scanning, 2399 * since other tasks may just move the memory elsewhere. 2400 */ 2401 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2402 if (!slot) 2403 slot = 1; 2404 diff = slot * period_slot; 2405 } else { 2406 /* 2407 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2408 * yet they are not on the local NUMA node. Speed up 2409 * NUMA scanning to get the memory moved over. 2410 */ 2411 int ratio = max(lr_ratio, ps_ratio); 2412 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2413 } 2414 2415 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2416 task_scan_min(p), task_scan_max(p)); 2417 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2418 } 2419 2420 /* 2421 * Get the fraction of time the task has been running since the last 2422 * NUMA placement cycle. The scheduler keeps similar statistics, but 2423 * decays those on a 32ms period, which is orders of magnitude off 2424 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2425 * stats only if the task is so new there are no NUMA statistics yet. 2426 */ 2427 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2428 { 2429 u64 runtime, delta, now; 2430 /* Use the start of this time slice to avoid calculations. */ 2431 now = p->se.exec_start; 2432 runtime = p->se.sum_exec_runtime; 2433 2434 if (p->last_task_numa_placement) { 2435 delta = runtime - p->last_sum_exec_runtime; 2436 *period = now - p->last_task_numa_placement; 2437 2438 /* Avoid time going backwards, prevent potential divide error: */ 2439 if (unlikely((s64)*period < 0)) 2440 *period = 0; 2441 } else { 2442 delta = p->se.avg.load_sum; 2443 *period = LOAD_AVG_MAX; 2444 } 2445 2446 p->last_sum_exec_runtime = runtime; 2447 p->last_task_numa_placement = now; 2448 2449 return delta; 2450 } 2451 2452 /* 2453 * Determine the preferred nid for a task in a numa_group. This needs to 2454 * be done in a way that produces consistent results with group_weight, 2455 * otherwise workloads might not converge. 2456 */ 2457 static int preferred_group_nid(struct task_struct *p, int nid) 2458 { 2459 nodemask_t nodes; 2460 int dist; 2461 2462 /* Direct connections between all NUMA nodes. */ 2463 if (sched_numa_topology_type == NUMA_DIRECT) 2464 return nid; 2465 2466 /* 2467 * On a system with glueless mesh NUMA topology, group_weight 2468 * scores nodes according to the number of NUMA hinting faults on 2469 * both the node itself, and on nearby nodes. 2470 */ 2471 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2472 unsigned long score, max_score = 0; 2473 int node, max_node = nid; 2474 2475 dist = sched_max_numa_distance; 2476 2477 for_each_node_state(node, N_CPU) { 2478 score = group_weight(p, node, dist); 2479 if (score > max_score) { 2480 max_score = score; 2481 max_node = node; 2482 } 2483 } 2484 return max_node; 2485 } 2486 2487 /* 2488 * Finding the preferred nid in a system with NUMA backplane 2489 * interconnect topology is more involved. The goal is to locate 2490 * tasks from numa_groups near each other in the system, and 2491 * untangle workloads from different sides of the system. This requires 2492 * searching down the hierarchy of node groups, recursively searching 2493 * inside the highest scoring group of nodes. The nodemask tricks 2494 * keep the complexity of the search down. 2495 */ 2496 nodes = node_states[N_CPU]; 2497 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2498 unsigned long max_faults = 0; 2499 nodemask_t max_group = NODE_MASK_NONE; 2500 int a, b; 2501 2502 /* Are there nodes at this distance from each other? */ 2503 if (!find_numa_distance(dist)) 2504 continue; 2505 2506 for_each_node_mask(a, nodes) { 2507 unsigned long faults = 0; 2508 nodemask_t this_group; 2509 nodes_clear(this_group); 2510 2511 /* Sum group's NUMA faults; includes a==b case. */ 2512 for_each_node_mask(b, nodes) { 2513 if (node_distance(a, b) < dist) { 2514 faults += group_faults(p, b); 2515 node_set(b, this_group); 2516 node_clear(b, nodes); 2517 } 2518 } 2519 2520 /* Remember the top group. */ 2521 if (faults > max_faults) { 2522 max_faults = faults; 2523 max_group = this_group; 2524 /* 2525 * subtle: at the smallest distance there is 2526 * just one node left in each "group", the 2527 * winner is the preferred nid. 2528 */ 2529 nid = a; 2530 } 2531 } 2532 /* Next round, evaluate the nodes within max_group. */ 2533 if (!max_faults) 2534 break; 2535 nodes = max_group; 2536 } 2537 return nid; 2538 } 2539 2540 static void task_numa_placement(struct task_struct *p) 2541 { 2542 int seq, nid, max_nid = NUMA_NO_NODE; 2543 unsigned long max_faults = 0; 2544 unsigned long fault_types[2] = { 0, 0 }; 2545 unsigned long total_faults; 2546 u64 runtime, period; 2547 spinlock_t *group_lock = NULL; 2548 struct numa_group *ng; 2549 2550 /* 2551 * The p->mm->numa_scan_seq field gets updated without 2552 * exclusive access. Use READ_ONCE() here to ensure 2553 * that the field is read in a single access: 2554 */ 2555 seq = READ_ONCE(p->mm->numa_scan_seq); 2556 if (p->numa_scan_seq == seq) 2557 return; 2558 p->numa_scan_seq = seq; 2559 p->numa_scan_period_max = task_scan_max(p); 2560 2561 total_faults = p->numa_faults_locality[0] + 2562 p->numa_faults_locality[1]; 2563 runtime = numa_get_avg_runtime(p, &period); 2564 2565 /* If the task is part of a group prevent parallel updates to group stats */ 2566 ng = deref_curr_numa_group(p); 2567 if (ng) { 2568 group_lock = &ng->lock; 2569 spin_lock_irq(group_lock); 2570 } 2571 2572 /* Find the node with the highest number of faults */ 2573 for_each_online_node(nid) { 2574 /* Keep track of the offsets in numa_faults array */ 2575 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2576 unsigned long faults = 0, group_faults = 0; 2577 int priv; 2578 2579 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2580 long diff, f_diff, f_weight; 2581 2582 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2583 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2584 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2585 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2586 2587 /* Decay existing window, copy faults since last scan */ 2588 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2589 fault_types[priv] += p->numa_faults[membuf_idx]; 2590 p->numa_faults[membuf_idx] = 0; 2591 2592 /* 2593 * Normalize the faults_from, so all tasks in a group 2594 * count according to CPU use, instead of by the raw 2595 * number of faults. Tasks with little runtime have 2596 * little over-all impact on throughput, and thus their 2597 * faults are less important. 2598 */ 2599 f_weight = div64_u64(runtime << 16, period + 1); 2600 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2601 (total_faults + 1); 2602 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2603 p->numa_faults[cpubuf_idx] = 0; 2604 2605 p->numa_faults[mem_idx] += diff; 2606 p->numa_faults[cpu_idx] += f_diff; 2607 faults += p->numa_faults[mem_idx]; 2608 p->total_numa_faults += diff; 2609 if (ng) { 2610 /* 2611 * safe because we can only change our own group 2612 * 2613 * mem_idx represents the offset for a given 2614 * nid and priv in a specific region because it 2615 * is at the beginning of the numa_faults array. 2616 */ 2617 ng->faults[mem_idx] += diff; 2618 ng->faults[cpu_idx] += f_diff; 2619 ng->total_faults += diff; 2620 group_faults += ng->faults[mem_idx]; 2621 } 2622 } 2623 2624 if (!ng) { 2625 if (faults > max_faults) { 2626 max_faults = faults; 2627 max_nid = nid; 2628 } 2629 } else if (group_faults > max_faults) { 2630 max_faults = group_faults; 2631 max_nid = nid; 2632 } 2633 } 2634 2635 /* Cannot migrate task to CPU-less node */ 2636 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) { 2637 int near_nid = max_nid; 2638 int distance, near_distance = INT_MAX; 2639 2640 for_each_node_state(nid, N_CPU) { 2641 distance = node_distance(max_nid, nid); 2642 if (distance < near_distance) { 2643 near_nid = nid; 2644 near_distance = distance; 2645 } 2646 } 2647 max_nid = near_nid; 2648 } 2649 2650 if (ng) { 2651 numa_group_count_active_nodes(ng); 2652 spin_unlock_irq(group_lock); 2653 max_nid = preferred_group_nid(p, max_nid); 2654 } 2655 2656 if (max_faults) { 2657 /* Set the new preferred node */ 2658 if (max_nid != p->numa_preferred_nid) 2659 sched_setnuma(p, max_nid); 2660 } 2661 2662 update_task_scan_period(p, fault_types[0], fault_types[1]); 2663 } 2664 2665 static inline int get_numa_group(struct numa_group *grp) 2666 { 2667 return refcount_inc_not_zero(&grp->refcount); 2668 } 2669 2670 static inline void put_numa_group(struct numa_group *grp) 2671 { 2672 if (refcount_dec_and_test(&grp->refcount)) 2673 kfree_rcu(grp, rcu); 2674 } 2675 2676 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2677 int *priv) 2678 { 2679 struct numa_group *grp, *my_grp; 2680 struct task_struct *tsk; 2681 bool join = false; 2682 int cpu = cpupid_to_cpu(cpupid); 2683 int i; 2684 2685 if (unlikely(!deref_curr_numa_group(p))) { 2686 unsigned int size = sizeof(struct numa_group) + 2687 NR_NUMA_HINT_FAULT_STATS * 2688 nr_node_ids * sizeof(unsigned long); 2689 2690 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2691 if (!grp) 2692 return; 2693 2694 refcount_set(&grp->refcount, 1); 2695 grp->active_nodes = 1; 2696 grp->max_faults_cpu = 0; 2697 spin_lock_init(&grp->lock); 2698 grp->gid = p->pid; 2699 2700 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2701 grp->faults[i] = p->numa_faults[i]; 2702 2703 grp->total_faults = p->total_numa_faults; 2704 2705 grp->nr_tasks++; 2706 rcu_assign_pointer(p->numa_group, grp); 2707 } 2708 2709 rcu_read_lock(); 2710 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2711 2712 if (!cpupid_match_pid(tsk, cpupid)) 2713 goto no_join; 2714 2715 grp = rcu_dereference(tsk->numa_group); 2716 if (!grp) 2717 goto no_join; 2718 2719 my_grp = deref_curr_numa_group(p); 2720 if (grp == my_grp) 2721 goto no_join; 2722 2723 /* 2724 * Only join the other group if its bigger; if we're the bigger group, 2725 * the other task will join us. 2726 */ 2727 if (my_grp->nr_tasks > grp->nr_tasks) 2728 goto no_join; 2729 2730 /* 2731 * Tie-break on the grp address. 2732 */ 2733 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2734 goto no_join; 2735 2736 /* Always join threads in the same process. */ 2737 if (tsk->mm == current->mm) 2738 join = true; 2739 2740 /* Simple filter to avoid false positives due to PID collisions */ 2741 if (flags & TNF_SHARED) 2742 join = true; 2743 2744 /* Update priv based on whether false sharing was detected */ 2745 *priv = !join; 2746 2747 if (join && !get_numa_group(grp)) 2748 goto no_join; 2749 2750 rcu_read_unlock(); 2751 2752 if (!join) 2753 return; 2754 2755 WARN_ON_ONCE(irqs_disabled()); 2756 double_lock_irq(&my_grp->lock, &grp->lock); 2757 2758 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2759 my_grp->faults[i] -= p->numa_faults[i]; 2760 grp->faults[i] += p->numa_faults[i]; 2761 } 2762 my_grp->total_faults -= p->total_numa_faults; 2763 grp->total_faults += p->total_numa_faults; 2764 2765 my_grp->nr_tasks--; 2766 grp->nr_tasks++; 2767 2768 spin_unlock(&my_grp->lock); 2769 spin_unlock_irq(&grp->lock); 2770 2771 rcu_assign_pointer(p->numa_group, grp); 2772 2773 put_numa_group(my_grp); 2774 return; 2775 2776 no_join: 2777 rcu_read_unlock(); 2778 return; 2779 } 2780 2781 /* 2782 * Get rid of NUMA statistics associated with a task (either current or dead). 2783 * If @final is set, the task is dead and has reached refcount zero, so we can 2784 * safely free all relevant data structures. Otherwise, there might be 2785 * concurrent reads from places like load balancing and procfs, and we should 2786 * reset the data back to default state without freeing ->numa_faults. 2787 */ 2788 void task_numa_free(struct task_struct *p, bool final) 2789 { 2790 /* safe: p either is current or is being freed by current */ 2791 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2792 unsigned long *numa_faults = p->numa_faults; 2793 unsigned long flags; 2794 int i; 2795 2796 if (!numa_faults) 2797 return; 2798 2799 if (grp) { 2800 spin_lock_irqsave(&grp->lock, flags); 2801 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2802 grp->faults[i] -= p->numa_faults[i]; 2803 grp->total_faults -= p->total_numa_faults; 2804 2805 grp->nr_tasks--; 2806 spin_unlock_irqrestore(&grp->lock, flags); 2807 RCU_INIT_POINTER(p->numa_group, NULL); 2808 put_numa_group(grp); 2809 } 2810 2811 if (final) { 2812 p->numa_faults = NULL; 2813 kfree(numa_faults); 2814 } else { 2815 p->total_numa_faults = 0; 2816 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2817 numa_faults[i] = 0; 2818 } 2819 } 2820 2821 /* 2822 * Got a PROT_NONE fault for a page on @node. 2823 */ 2824 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2825 { 2826 struct task_struct *p = current; 2827 bool migrated = flags & TNF_MIGRATED; 2828 int cpu_node = task_node(current); 2829 int local = !!(flags & TNF_FAULT_LOCAL); 2830 struct numa_group *ng; 2831 int priv; 2832 2833 if (!static_branch_likely(&sched_numa_balancing)) 2834 return; 2835 2836 /* for example, ksmd faulting in a user's mm */ 2837 if (!p->mm) 2838 return; 2839 2840 /* 2841 * NUMA faults statistics are unnecessary for the slow memory 2842 * node for memory tiering mode. 2843 */ 2844 if (!node_is_toptier(mem_node) && 2845 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 2846 !cpupid_valid(last_cpupid))) 2847 return; 2848 2849 /* Allocate buffer to track faults on a per-node basis */ 2850 if (unlikely(!p->numa_faults)) { 2851 int size = sizeof(*p->numa_faults) * 2852 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2853 2854 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2855 if (!p->numa_faults) 2856 return; 2857 2858 p->total_numa_faults = 0; 2859 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2860 } 2861 2862 /* 2863 * First accesses are treated as private, otherwise consider accesses 2864 * to be private if the accessing pid has not changed 2865 */ 2866 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2867 priv = 1; 2868 } else { 2869 priv = cpupid_match_pid(p, last_cpupid); 2870 if (!priv && !(flags & TNF_NO_GROUP)) 2871 task_numa_group(p, last_cpupid, flags, &priv); 2872 } 2873 2874 /* 2875 * If a workload spans multiple NUMA nodes, a shared fault that 2876 * occurs wholly within the set of nodes that the workload is 2877 * actively using should be counted as local. This allows the 2878 * scan rate to slow down when a workload has settled down. 2879 */ 2880 ng = deref_curr_numa_group(p); 2881 if (!priv && !local && ng && ng->active_nodes > 1 && 2882 numa_is_active_node(cpu_node, ng) && 2883 numa_is_active_node(mem_node, ng)) 2884 local = 1; 2885 2886 /* 2887 * Retry to migrate task to preferred node periodically, in case it 2888 * previously failed, or the scheduler moved us. 2889 */ 2890 if (time_after(jiffies, p->numa_migrate_retry)) { 2891 task_numa_placement(p); 2892 numa_migrate_preferred(p); 2893 } 2894 2895 if (migrated) 2896 p->numa_pages_migrated += pages; 2897 if (flags & TNF_MIGRATE_FAIL) 2898 p->numa_faults_locality[2] += pages; 2899 2900 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2901 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2902 p->numa_faults_locality[local] += pages; 2903 } 2904 2905 static void reset_ptenuma_scan(struct task_struct *p) 2906 { 2907 /* 2908 * We only did a read acquisition of the mmap sem, so 2909 * p->mm->numa_scan_seq is written to without exclusive access 2910 * and the update is not guaranteed to be atomic. That's not 2911 * much of an issue though, since this is just used for 2912 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2913 * expensive, to avoid any form of compiler optimizations: 2914 */ 2915 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2916 p->mm->numa_scan_offset = 0; 2917 } 2918 2919 /* 2920 * The expensive part of numa migration is done from task_work context. 2921 * Triggered from task_tick_numa(). 2922 */ 2923 static void task_numa_work(struct callback_head *work) 2924 { 2925 unsigned long migrate, next_scan, now = jiffies; 2926 struct task_struct *p = current; 2927 struct mm_struct *mm = p->mm; 2928 u64 runtime = p->se.sum_exec_runtime; 2929 MA_STATE(mas, &mm->mm_mt, 0, 0); 2930 struct vm_area_struct *vma; 2931 unsigned long start, end; 2932 unsigned long nr_pte_updates = 0; 2933 long pages, virtpages; 2934 2935 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2936 2937 work->next = work; 2938 /* 2939 * Who cares about NUMA placement when they're dying. 2940 * 2941 * NOTE: make sure not to dereference p->mm before this check, 2942 * exit_task_work() happens _after_ exit_mm() so we could be called 2943 * without p->mm even though we still had it when we enqueued this 2944 * work. 2945 */ 2946 if (p->flags & PF_EXITING) 2947 return; 2948 2949 if (!mm->numa_next_scan) { 2950 mm->numa_next_scan = now + 2951 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2952 } 2953 2954 /* 2955 * Enforce maximal scan/migration frequency.. 2956 */ 2957 migrate = mm->numa_next_scan; 2958 if (time_before(now, migrate)) 2959 return; 2960 2961 if (p->numa_scan_period == 0) { 2962 p->numa_scan_period_max = task_scan_max(p); 2963 p->numa_scan_period = task_scan_start(p); 2964 } 2965 2966 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2967 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2968 return; 2969 2970 /* 2971 * Delay this task enough that another task of this mm will likely win 2972 * the next time around. 2973 */ 2974 p->node_stamp += 2 * TICK_NSEC; 2975 2976 start = mm->numa_scan_offset; 2977 pages = sysctl_numa_balancing_scan_size; 2978 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2979 virtpages = pages * 8; /* Scan up to this much virtual space */ 2980 if (!pages) 2981 return; 2982 2983 2984 if (!mmap_read_trylock(mm)) 2985 return; 2986 mas_set(&mas, start); 2987 vma = mas_find(&mas, ULONG_MAX); 2988 if (!vma) { 2989 reset_ptenuma_scan(p); 2990 start = 0; 2991 mas_set(&mas, start); 2992 vma = mas_find(&mas, ULONG_MAX); 2993 } 2994 2995 for (; vma; vma = mas_find(&mas, ULONG_MAX)) { 2996 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2997 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2998 continue; 2999 } 3000 3001 /* 3002 * Shared library pages mapped by multiple processes are not 3003 * migrated as it is expected they are cache replicated. Avoid 3004 * hinting faults in read-only file-backed mappings or the vdso 3005 * as migrating the pages will be of marginal benefit. 3006 */ 3007 if (!vma->vm_mm || 3008 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 3009 continue; 3010 3011 /* 3012 * Skip inaccessible VMAs to avoid any confusion between 3013 * PROT_NONE and NUMA hinting ptes 3014 */ 3015 if (!vma_is_accessible(vma)) 3016 continue; 3017 3018 do { 3019 start = max(start, vma->vm_start); 3020 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3021 end = min(end, vma->vm_end); 3022 nr_pte_updates = change_prot_numa(vma, start, end); 3023 3024 /* 3025 * Try to scan sysctl_numa_balancing_size worth of 3026 * hpages that have at least one present PTE that 3027 * is not already pte-numa. If the VMA contains 3028 * areas that are unused or already full of prot_numa 3029 * PTEs, scan up to virtpages, to skip through those 3030 * areas faster. 3031 */ 3032 if (nr_pte_updates) 3033 pages -= (end - start) >> PAGE_SHIFT; 3034 virtpages -= (end - start) >> PAGE_SHIFT; 3035 3036 start = end; 3037 if (pages <= 0 || virtpages <= 0) 3038 goto out; 3039 3040 cond_resched(); 3041 } while (end != vma->vm_end); 3042 } 3043 3044 out: 3045 /* 3046 * It is possible to reach the end of the VMA list but the last few 3047 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3048 * would find the !migratable VMA on the next scan but not reset the 3049 * scanner to the start so check it now. 3050 */ 3051 if (vma) 3052 mm->numa_scan_offset = start; 3053 else 3054 reset_ptenuma_scan(p); 3055 mmap_read_unlock(mm); 3056 3057 /* 3058 * Make sure tasks use at least 32x as much time to run other code 3059 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3060 * Usually update_task_scan_period slows down scanning enough; on an 3061 * overloaded system we need to limit overhead on a per task basis. 3062 */ 3063 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3064 u64 diff = p->se.sum_exec_runtime - runtime; 3065 p->node_stamp += 32 * diff; 3066 } 3067 } 3068 3069 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3070 { 3071 int mm_users = 0; 3072 struct mm_struct *mm = p->mm; 3073 3074 if (mm) { 3075 mm_users = atomic_read(&mm->mm_users); 3076 if (mm_users == 1) { 3077 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3078 mm->numa_scan_seq = 0; 3079 } 3080 } 3081 p->node_stamp = 0; 3082 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3083 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3084 p->numa_migrate_retry = 0; 3085 /* Protect against double add, see task_tick_numa and task_numa_work */ 3086 p->numa_work.next = &p->numa_work; 3087 p->numa_faults = NULL; 3088 p->numa_pages_migrated = 0; 3089 p->total_numa_faults = 0; 3090 RCU_INIT_POINTER(p->numa_group, NULL); 3091 p->last_task_numa_placement = 0; 3092 p->last_sum_exec_runtime = 0; 3093 3094 init_task_work(&p->numa_work, task_numa_work); 3095 3096 /* New address space, reset the preferred nid */ 3097 if (!(clone_flags & CLONE_VM)) { 3098 p->numa_preferred_nid = NUMA_NO_NODE; 3099 return; 3100 } 3101 3102 /* 3103 * New thread, keep existing numa_preferred_nid which should be copied 3104 * already by arch_dup_task_struct but stagger when scans start. 3105 */ 3106 if (mm) { 3107 unsigned int delay; 3108 3109 delay = min_t(unsigned int, task_scan_max(current), 3110 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3111 delay += 2 * TICK_NSEC; 3112 p->node_stamp = delay; 3113 } 3114 } 3115 3116 /* 3117 * Drive the periodic memory faults.. 3118 */ 3119 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3120 { 3121 struct callback_head *work = &curr->numa_work; 3122 u64 period, now; 3123 3124 /* 3125 * We don't care about NUMA placement if we don't have memory. 3126 */ 3127 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3128 return; 3129 3130 /* 3131 * Using runtime rather than walltime has the dual advantage that 3132 * we (mostly) drive the selection from busy threads and that the 3133 * task needs to have done some actual work before we bother with 3134 * NUMA placement. 3135 */ 3136 now = curr->se.sum_exec_runtime; 3137 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3138 3139 if (now > curr->node_stamp + period) { 3140 if (!curr->node_stamp) 3141 curr->numa_scan_period = task_scan_start(curr); 3142 curr->node_stamp += period; 3143 3144 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3145 task_work_add(curr, work, TWA_RESUME); 3146 } 3147 } 3148 3149 static void update_scan_period(struct task_struct *p, int new_cpu) 3150 { 3151 int src_nid = cpu_to_node(task_cpu(p)); 3152 int dst_nid = cpu_to_node(new_cpu); 3153 3154 if (!static_branch_likely(&sched_numa_balancing)) 3155 return; 3156 3157 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3158 return; 3159 3160 if (src_nid == dst_nid) 3161 return; 3162 3163 /* 3164 * Allow resets if faults have been trapped before one scan 3165 * has completed. This is most likely due to a new task that 3166 * is pulled cross-node due to wakeups or load balancing. 3167 */ 3168 if (p->numa_scan_seq) { 3169 /* 3170 * Avoid scan adjustments if moving to the preferred 3171 * node or if the task was not previously running on 3172 * the preferred node. 3173 */ 3174 if (dst_nid == p->numa_preferred_nid || 3175 (p->numa_preferred_nid != NUMA_NO_NODE && 3176 src_nid != p->numa_preferred_nid)) 3177 return; 3178 } 3179 3180 p->numa_scan_period = task_scan_start(p); 3181 } 3182 3183 #else 3184 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3185 { 3186 } 3187 3188 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3189 { 3190 } 3191 3192 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3193 { 3194 } 3195 3196 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3197 { 3198 } 3199 3200 #endif /* CONFIG_NUMA_BALANCING */ 3201 3202 static void 3203 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3204 { 3205 update_load_add(&cfs_rq->load, se->load.weight); 3206 #ifdef CONFIG_SMP 3207 if (entity_is_task(se)) { 3208 struct rq *rq = rq_of(cfs_rq); 3209 3210 account_numa_enqueue(rq, task_of(se)); 3211 list_add(&se->group_node, &rq->cfs_tasks); 3212 } 3213 #endif 3214 cfs_rq->nr_running++; 3215 if (se_is_idle(se)) 3216 cfs_rq->idle_nr_running++; 3217 } 3218 3219 static void 3220 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3221 { 3222 update_load_sub(&cfs_rq->load, se->load.weight); 3223 #ifdef CONFIG_SMP 3224 if (entity_is_task(se)) { 3225 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3226 list_del_init(&se->group_node); 3227 } 3228 #endif 3229 cfs_rq->nr_running--; 3230 if (se_is_idle(se)) 3231 cfs_rq->idle_nr_running--; 3232 } 3233 3234 /* 3235 * Signed add and clamp on underflow. 3236 * 3237 * Explicitly do a load-store to ensure the intermediate value never hits 3238 * memory. This allows lockless observations without ever seeing the negative 3239 * values. 3240 */ 3241 #define add_positive(_ptr, _val) do { \ 3242 typeof(_ptr) ptr = (_ptr); \ 3243 typeof(_val) val = (_val); \ 3244 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3245 \ 3246 res = var + val; \ 3247 \ 3248 if (val < 0 && res > var) \ 3249 res = 0; \ 3250 \ 3251 WRITE_ONCE(*ptr, res); \ 3252 } while (0) 3253 3254 /* 3255 * Unsigned subtract and clamp on underflow. 3256 * 3257 * Explicitly do a load-store to ensure the intermediate value never hits 3258 * memory. This allows lockless observations without ever seeing the negative 3259 * values. 3260 */ 3261 #define sub_positive(_ptr, _val) do { \ 3262 typeof(_ptr) ptr = (_ptr); \ 3263 typeof(*ptr) val = (_val); \ 3264 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3265 res = var - val; \ 3266 if (res > var) \ 3267 res = 0; \ 3268 WRITE_ONCE(*ptr, res); \ 3269 } while (0) 3270 3271 /* 3272 * Remove and clamp on negative, from a local variable. 3273 * 3274 * A variant of sub_positive(), which does not use explicit load-store 3275 * and is thus optimized for local variable updates. 3276 */ 3277 #define lsub_positive(_ptr, _val) do { \ 3278 typeof(_ptr) ptr = (_ptr); \ 3279 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3280 } while (0) 3281 3282 #ifdef CONFIG_SMP 3283 static inline void 3284 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3285 { 3286 cfs_rq->avg.load_avg += se->avg.load_avg; 3287 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3288 } 3289 3290 static inline void 3291 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3292 { 3293 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3294 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3295 /* See update_cfs_rq_load_avg() */ 3296 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3297 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3298 } 3299 #else 3300 static inline void 3301 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3302 static inline void 3303 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3304 #endif 3305 3306 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3307 unsigned long weight) 3308 { 3309 if (se->on_rq) { 3310 /* commit outstanding execution time */ 3311 if (cfs_rq->curr == se) 3312 update_curr(cfs_rq); 3313 update_load_sub(&cfs_rq->load, se->load.weight); 3314 } 3315 dequeue_load_avg(cfs_rq, se); 3316 3317 update_load_set(&se->load, weight); 3318 3319 #ifdef CONFIG_SMP 3320 do { 3321 u32 divider = get_pelt_divider(&se->avg); 3322 3323 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3324 } while (0); 3325 #endif 3326 3327 enqueue_load_avg(cfs_rq, se); 3328 if (se->on_rq) 3329 update_load_add(&cfs_rq->load, se->load.weight); 3330 3331 } 3332 3333 void reweight_task(struct task_struct *p, int prio) 3334 { 3335 struct sched_entity *se = &p->se; 3336 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3337 struct load_weight *load = &se->load; 3338 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3339 3340 reweight_entity(cfs_rq, se, weight); 3341 load->inv_weight = sched_prio_to_wmult[prio]; 3342 } 3343 3344 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3345 3346 #ifdef CONFIG_FAIR_GROUP_SCHED 3347 #ifdef CONFIG_SMP 3348 /* 3349 * All this does is approximate the hierarchical proportion which includes that 3350 * global sum we all love to hate. 3351 * 3352 * That is, the weight of a group entity, is the proportional share of the 3353 * group weight based on the group runqueue weights. That is: 3354 * 3355 * tg->weight * grq->load.weight 3356 * ge->load.weight = ----------------------------- (1) 3357 * \Sum grq->load.weight 3358 * 3359 * Now, because computing that sum is prohibitively expensive to compute (been 3360 * there, done that) we approximate it with this average stuff. The average 3361 * moves slower and therefore the approximation is cheaper and more stable. 3362 * 3363 * So instead of the above, we substitute: 3364 * 3365 * grq->load.weight -> grq->avg.load_avg (2) 3366 * 3367 * which yields the following: 3368 * 3369 * tg->weight * grq->avg.load_avg 3370 * ge->load.weight = ------------------------------ (3) 3371 * tg->load_avg 3372 * 3373 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3374 * 3375 * That is shares_avg, and it is right (given the approximation (2)). 3376 * 3377 * The problem with it is that because the average is slow -- it was designed 3378 * to be exactly that of course -- this leads to transients in boundary 3379 * conditions. In specific, the case where the group was idle and we start the 3380 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3381 * yielding bad latency etc.. 3382 * 3383 * Now, in that special case (1) reduces to: 3384 * 3385 * tg->weight * grq->load.weight 3386 * ge->load.weight = ----------------------------- = tg->weight (4) 3387 * grp->load.weight 3388 * 3389 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3390 * 3391 * So what we do is modify our approximation (3) to approach (4) in the (near) 3392 * UP case, like: 3393 * 3394 * ge->load.weight = 3395 * 3396 * tg->weight * grq->load.weight 3397 * --------------------------------------------------- (5) 3398 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3399 * 3400 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3401 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3402 * 3403 * 3404 * tg->weight * grq->load.weight 3405 * ge->load.weight = ----------------------------- (6) 3406 * tg_load_avg' 3407 * 3408 * Where: 3409 * 3410 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3411 * max(grq->load.weight, grq->avg.load_avg) 3412 * 3413 * And that is shares_weight and is icky. In the (near) UP case it approaches 3414 * (4) while in the normal case it approaches (3). It consistently 3415 * overestimates the ge->load.weight and therefore: 3416 * 3417 * \Sum ge->load.weight >= tg->weight 3418 * 3419 * hence icky! 3420 */ 3421 static long calc_group_shares(struct cfs_rq *cfs_rq) 3422 { 3423 long tg_weight, tg_shares, load, shares; 3424 struct task_group *tg = cfs_rq->tg; 3425 3426 tg_shares = READ_ONCE(tg->shares); 3427 3428 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3429 3430 tg_weight = atomic_long_read(&tg->load_avg); 3431 3432 /* Ensure tg_weight >= load */ 3433 tg_weight -= cfs_rq->tg_load_avg_contrib; 3434 tg_weight += load; 3435 3436 shares = (tg_shares * load); 3437 if (tg_weight) 3438 shares /= tg_weight; 3439 3440 /* 3441 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3442 * of a group with small tg->shares value. It is a floor value which is 3443 * assigned as a minimum load.weight to the sched_entity representing 3444 * the group on a CPU. 3445 * 3446 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3447 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3448 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3449 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3450 * instead of 0. 3451 */ 3452 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3453 } 3454 #endif /* CONFIG_SMP */ 3455 3456 /* 3457 * Recomputes the group entity based on the current state of its group 3458 * runqueue. 3459 */ 3460 static void update_cfs_group(struct sched_entity *se) 3461 { 3462 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3463 long shares; 3464 3465 if (!gcfs_rq) 3466 return; 3467 3468 if (throttled_hierarchy(gcfs_rq)) 3469 return; 3470 3471 #ifndef CONFIG_SMP 3472 shares = READ_ONCE(gcfs_rq->tg->shares); 3473 3474 if (likely(se->load.weight == shares)) 3475 return; 3476 #else 3477 shares = calc_group_shares(gcfs_rq); 3478 #endif 3479 3480 reweight_entity(cfs_rq_of(se), se, shares); 3481 } 3482 3483 #else /* CONFIG_FAIR_GROUP_SCHED */ 3484 static inline void update_cfs_group(struct sched_entity *se) 3485 { 3486 } 3487 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3488 3489 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3490 { 3491 struct rq *rq = rq_of(cfs_rq); 3492 3493 if (&rq->cfs == cfs_rq) { 3494 /* 3495 * There are a few boundary cases this might miss but it should 3496 * get called often enough that that should (hopefully) not be 3497 * a real problem. 3498 * 3499 * It will not get called when we go idle, because the idle 3500 * thread is a different class (!fair), nor will the utilization 3501 * number include things like RT tasks. 3502 * 3503 * As is, the util number is not freq-invariant (we'd have to 3504 * implement arch_scale_freq_capacity() for that). 3505 * 3506 * See cpu_util_cfs(). 3507 */ 3508 cpufreq_update_util(rq, flags); 3509 } 3510 } 3511 3512 #ifdef CONFIG_SMP 3513 static inline bool load_avg_is_decayed(struct sched_avg *sa) 3514 { 3515 if (sa->load_sum) 3516 return false; 3517 3518 if (sa->util_sum) 3519 return false; 3520 3521 if (sa->runnable_sum) 3522 return false; 3523 3524 /* 3525 * _avg must be null when _sum are null because _avg = _sum / divider 3526 * Make sure that rounding and/or propagation of PELT values never 3527 * break this. 3528 */ 3529 SCHED_WARN_ON(sa->load_avg || 3530 sa->util_avg || 3531 sa->runnable_avg); 3532 3533 return true; 3534 } 3535 3536 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3537 { 3538 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 3539 cfs_rq->last_update_time_copy); 3540 } 3541 #ifdef CONFIG_FAIR_GROUP_SCHED 3542 /* 3543 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 3544 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 3545 * bottom-up, we only have to test whether the cfs_rq before us on the list 3546 * is our child. 3547 * If cfs_rq is not on the list, test whether a child needs its to be added to 3548 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 3549 */ 3550 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 3551 { 3552 struct cfs_rq *prev_cfs_rq; 3553 struct list_head *prev; 3554 3555 if (cfs_rq->on_list) { 3556 prev = cfs_rq->leaf_cfs_rq_list.prev; 3557 } else { 3558 struct rq *rq = rq_of(cfs_rq); 3559 3560 prev = rq->tmp_alone_branch; 3561 } 3562 3563 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 3564 3565 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 3566 } 3567 3568 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 3569 { 3570 if (cfs_rq->load.weight) 3571 return false; 3572 3573 if (!load_avg_is_decayed(&cfs_rq->avg)) 3574 return false; 3575 3576 if (child_cfs_rq_on_list(cfs_rq)) 3577 return false; 3578 3579 return true; 3580 } 3581 3582 /** 3583 * update_tg_load_avg - update the tg's load avg 3584 * @cfs_rq: the cfs_rq whose avg changed 3585 * 3586 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3587 * However, because tg->load_avg is a global value there are performance 3588 * considerations. 3589 * 3590 * In order to avoid having to look at the other cfs_rq's, we use a 3591 * differential update where we store the last value we propagated. This in 3592 * turn allows skipping updates if the differential is 'small'. 3593 * 3594 * Updating tg's load_avg is necessary before update_cfs_share(). 3595 */ 3596 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 3597 { 3598 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3599 3600 /* 3601 * No need to update load_avg for root_task_group as it is not used. 3602 */ 3603 if (cfs_rq->tg == &root_task_group) 3604 return; 3605 3606 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3607 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3608 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3609 } 3610 } 3611 3612 /* 3613 * Called within set_task_rq() right before setting a task's CPU. The 3614 * caller only guarantees p->pi_lock is held; no other assumptions, 3615 * including the state of rq->lock, should be made. 3616 */ 3617 void set_task_rq_fair(struct sched_entity *se, 3618 struct cfs_rq *prev, struct cfs_rq *next) 3619 { 3620 u64 p_last_update_time; 3621 u64 n_last_update_time; 3622 3623 if (!sched_feat(ATTACH_AGE_LOAD)) 3624 return; 3625 3626 /* 3627 * We are supposed to update the task to "current" time, then its up to 3628 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3629 * getting what current time is, so simply throw away the out-of-date 3630 * time. This will result in the wakee task is less decayed, but giving 3631 * the wakee more load sounds not bad. 3632 */ 3633 if (!(se->avg.last_update_time && prev)) 3634 return; 3635 3636 p_last_update_time = cfs_rq_last_update_time(prev); 3637 n_last_update_time = cfs_rq_last_update_time(next); 3638 3639 __update_load_avg_blocked_se(p_last_update_time, se); 3640 se->avg.last_update_time = n_last_update_time; 3641 } 3642 3643 /* 3644 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3645 * propagate its contribution. The key to this propagation is the invariant 3646 * that for each group: 3647 * 3648 * ge->avg == grq->avg (1) 3649 * 3650 * _IFF_ we look at the pure running and runnable sums. Because they 3651 * represent the very same entity, just at different points in the hierarchy. 3652 * 3653 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3654 * and simply copies the running/runnable sum over (but still wrong, because 3655 * the group entity and group rq do not have their PELT windows aligned). 3656 * 3657 * However, update_tg_cfs_load() is more complex. So we have: 3658 * 3659 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3660 * 3661 * And since, like util, the runnable part should be directly transferable, 3662 * the following would _appear_ to be the straight forward approach: 3663 * 3664 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3665 * 3666 * And per (1) we have: 3667 * 3668 * ge->avg.runnable_avg == grq->avg.runnable_avg 3669 * 3670 * Which gives: 3671 * 3672 * ge->load.weight * grq->avg.load_avg 3673 * ge->avg.load_avg = ----------------------------------- (4) 3674 * grq->load.weight 3675 * 3676 * Except that is wrong! 3677 * 3678 * Because while for entities historical weight is not important and we 3679 * really only care about our future and therefore can consider a pure 3680 * runnable sum, runqueues can NOT do this. 3681 * 3682 * We specifically want runqueues to have a load_avg that includes 3683 * historical weights. Those represent the blocked load, the load we expect 3684 * to (shortly) return to us. This only works by keeping the weights as 3685 * integral part of the sum. We therefore cannot decompose as per (3). 3686 * 3687 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3688 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3689 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3690 * runnable section of these tasks overlap (or not). If they were to perfectly 3691 * align the rq as a whole would be runnable 2/3 of the time. If however we 3692 * always have at least 1 runnable task, the rq as a whole is always runnable. 3693 * 3694 * So we'll have to approximate.. :/ 3695 * 3696 * Given the constraint: 3697 * 3698 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3699 * 3700 * We can construct a rule that adds runnable to a rq by assuming minimal 3701 * overlap. 3702 * 3703 * On removal, we'll assume each task is equally runnable; which yields: 3704 * 3705 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3706 * 3707 * XXX: only do this for the part of runnable > running ? 3708 * 3709 */ 3710 static inline void 3711 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3712 { 3713 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 3714 u32 new_sum, divider; 3715 3716 /* Nothing to update */ 3717 if (!delta_avg) 3718 return; 3719 3720 /* 3721 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3722 * See ___update_load_avg() for details. 3723 */ 3724 divider = get_pelt_divider(&cfs_rq->avg); 3725 3726 3727 /* Set new sched_entity's utilization */ 3728 se->avg.util_avg = gcfs_rq->avg.util_avg; 3729 new_sum = se->avg.util_avg * divider; 3730 delta_sum = (long)new_sum - (long)se->avg.util_sum; 3731 se->avg.util_sum = new_sum; 3732 3733 /* Update parent cfs_rq utilization */ 3734 add_positive(&cfs_rq->avg.util_avg, delta_avg); 3735 add_positive(&cfs_rq->avg.util_sum, delta_sum); 3736 3737 /* See update_cfs_rq_load_avg() */ 3738 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 3739 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 3740 } 3741 3742 static inline void 3743 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3744 { 3745 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 3746 u32 new_sum, divider; 3747 3748 /* Nothing to update */ 3749 if (!delta_avg) 3750 return; 3751 3752 /* 3753 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3754 * See ___update_load_avg() for details. 3755 */ 3756 divider = get_pelt_divider(&cfs_rq->avg); 3757 3758 /* Set new sched_entity's runnable */ 3759 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 3760 new_sum = se->avg.runnable_avg * divider; 3761 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 3762 se->avg.runnable_sum = new_sum; 3763 3764 /* Update parent cfs_rq runnable */ 3765 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 3766 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 3767 /* See update_cfs_rq_load_avg() */ 3768 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 3769 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 3770 } 3771 3772 static inline void 3773 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3774 { 3775 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3776 unsigned long load_avg; 3777 u64 load_sum = 0; 3778 s64 delta_sum; 3779 u32 divider; 3780 3781 if (!runnable_sum) 3782 return; 3783 3784 gcfs_rq->prop_runnable_sum = 0; 3785 3786 /* 3787 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3788 * See ___update_load_avg() for details. 3789 */ 3790 divider = get_pelt_divider(&cfs_rq->avg); 3791 3792 if (runnable_sum >= 0) { 3793 /* 3794 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3795 * the CPU is saturated running == runnable. 3796 */ 3797 runnable_sum += se->avg.load_sum; 3798 runnable_sum = min_t(long, runnable_sum, divider); 3799 } else { 3800 /* 3801 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3802 * assuming all tasks are equally runnable. 3803 */ 3804 if (scale_load_down(gcfs_rq->load.weight)) { 3805 load_sum = div_u64(gcfs_rq->avg.load_sum, 3806 scale_load_down(gcfs_rq->load.weight)); 3807 } 3808 3809 /* But make sure to not inflate se's runnable */ 3810 runnable_sum = min(se->avg.load_sum, load_sum); 3811 } 3812 3813 /* 3814 * runnable_sum can't be lower than running_sum 3815 * Rescale running sum to be in the same range as runnable sum 3816 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3817 * runnable_sum is in [0 : LOAD_AVG_MAX] 3818 */ 3819 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3820 runnable_sum = max(runnable_sum, running_sum); 3821 3822 load_sum = se_weight(se) * runnable_sum; 3823 load_avg = div_u64(load_sum, divider); 3824 3825 delta_avg = load_avg - se->avg.load_avg; 3826 if (!delta_avg) 3827 return; 3828 3829 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3830 3831 se->avg.load_sum = runnable_sum; 3832 se->avg.load_avg = load_avg; 3833 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3834 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3835 /* See update_cfs_rq_load_avg() */ 3836 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3837 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3838 } 3839 3840 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3841 { 3842 cfs_rq->propagate = 1; 3843 cfs_rq->prop_runnable_sum += runnable_sum; 3844 } 3845 3846 /* Update task and its cfs_rq load average */ 3847 static inline int propagate_entity_load_avg(struct sched_entity *se) 3848 { 3849 struct cfs_rq *cfs_rq, *gcfs_rq; 3850 3851 if (entity_is_task(se)) 3852 return 0; 3853 3854 gcfs_rq = group_cfs_rq(se); 3855 if (!gcfs_rq->propagate) 3856 return 0; 3857 3858 gcfs_rq->propagate = 0; 3859 3860 cfs_rq = cfs_rq_of(se); 3861 3862 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3863 3864 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3865 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3866 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 3867 3868 trace_pelt_cfs_tp(cfs_rq); 3869 trace_pelt_se_tp(se); 3870 3871 return 1; 3872 } 3873 3874 /* 3875 * Check if we need to update the load and the utilization of a blocked 3876 * group_entity: 3877 */ 3878 static inline bool skip_blocked_update(struct sched_entity *se) 3879 { 3880 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3881 3882 /* 3883 * If sched_entity still have not zero load or utilization, we have to 3884 * decay it: 3885 */ 3886 if (se->avg.load_avg || se->avg.util_avg) 3887 return false; 3888 3889 /* 3890 * If there is a pending propagation, we have to update the load and 3891 * the utilization of the sched_entity: 3892 */ 3893 if (gcfs_rq->propagate) 3894 return false; 3895 3896 /* 3897 * Otherwise, the load and the utilization of the sched_entity is 3898 * already zero and there is no pending propagation, so it will be a 3899 * waste of time to try to decay it: 3900 */ 3901 return true; 3902 } 3903 3904 #else /* CONFIG_FAIR_GROUP_SCHED */ 3905 3906 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 3907 3908 static inline int propagate_entity_load_avg(struct sched_entity *se) 3909 { 3910 return 0; 3911 } 3912 3913 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3914 3915 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3916 3917 #ifdef CONFIG_NO_HZ_COMMON 3918 static inline void migrate_se_pelt_lag(struct sched_entity *se) 3919 { 3920 u64 throttled = 0, now, lut; 3921 struct cfs_rq *cfs_rq; 3922 struct rq *rq; 3923 bool is_idle; 3924 3925 if (load_avg_is_decayed(&se->avg)) 3926 return; 3927 3928 cfs_rq = cfs_rq_of(se); 3929 rq = rq_of(cfs_rq); 3930 3931 rcu_read_lock(); 3932 is_idle = is_idle_task(rcu_dereference(rq->curr)); 3933 rcu_read_unlock(); 3934 3935 /* 3936 * The lag estimation comes with a cost we don't want to pay all the 3937 * time. Hence, limiting to the case where the source CPU is idle and 3938 * we know we are at the greatest risk to have an outdated clock. 3939 */ 3940 if (!is_idle) 3941 return; 3942 3943 /* 3944 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 3945 * 3946 * last_update_time (the cfs_rq's last_update_time) 3947 * = cfs_rq_clock_pelt()@cfs_rq_idle 3948 * = rq_clock_pelt()@cfs_rq_idle 3949 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 3950 * 3951 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 3952 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 3953 * 3954 * rq_idle_lag (delta between now and rq's update) 3955 * = sched_clock_cpu() - rq_clock()@rq_idle 3956 * 3957 * We can then write: 3958 * 3959 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 3960 * sched_clock_cpu() - rq_clock()@rq_idle 3961 * Where: 3962 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 3963 * rq_clock()@rq_idle is rq->clock_idle 3964 * cfs->throttled_clock_pelt_time@cfs_rq_idle 3965 * is cfs_rq->throttled_pelt_idle 3966 */ 3967 3968 #ifdef CONFIG_CFS_BANDWIDTH 3969 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 3970 /* The clock has been stopped for throttling */ 3971 if (throttled == U64_MAX) 3972 return; 3973 #endif 3974 now = u64_u32_load(rq->clock_pelt_idle); 3975 /* 3976 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 3977 * is observed the old clock_pelt_idle value and the new clock_idle, 3978 * which lead to an underestimation. The opposite would lead to an 3979 * overestimation. 3980 */ 3981 smp_rmb(); 3982 lut = cfs_rq_last_update_time(cfs_rq); 3983 3984 now -= throttled; 3985 if (now < lut) 3986 /* 3987 * cfs_rq->avg.last_update_time is more recent than our 3988 * estimation, let's use it. 3989 */ 3990 now = lut; 3991 else 3992 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 3993 3994 __update_load_avg_blocked_se(now, se); 3995 } 3996 #else 3997 static void migrate_se_pelt_lag(struct sched_entity *se) {} 3998 #endif 3999 4000 /** 4001 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4002 * @now: current time, as per cfs_rq_clock_pelt() 4003 * @cfs_rq: cfs_rq to update 4004 * 4005 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4006 * avg. The immediate corollary is that all (fair) tasks must be attached. 4007 * 4008 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4009 * 4010 * Return: true if the load decayed or we removed load. 4011 * 4012 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4013 * call update_tg_load_avg() when this function returns true. 4014 */ 4015 static inline int 4016 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4017 { 4018 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4019 struct sched_avg *sa = &cfs_rq->avg; 4020 int decayed = 0; 4021 4022 if (cfs_rq->removed.nr) { 4023 unsigned long r; 4024 u32 divider = get_pelt_divider(&cfs_rq->avg); 4025 4026 raw_spin_lock(&cfs_rq->removed.lock); 4027 swap(cfs_rq->removed.util_avg, removed_util); 4028 swap(cfs_rq->removed.load_avg, removed_load); 4029 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4030 cfs_rq->removed.nr = 0; 4031 raw_spin_unlock(&cfs_rq->removed.lock); 4032 4033 r = removed_load; 4034 sub_positive(&sa->load_avg, r); 4035 sub_positive(&sa->load_sum, r * divider); 4036 /* See sa->util_sum below */ 4037 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4038 4039 r = removed_util; 4040 sub_positive(&sa->util_avg, r); 4041 sub_positive(&sa->util_sum, r * divider); 4042 /* 4043 * Because of rounding, se->util_sum might ends up being +1 more than 4044 * cfs->util_sum. Although this is not a problem by itself, detaching 4045 * a lot of tasks with the rounding problem between 2 updates of 4046 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4047 * cfs_util_avg is not. 4048 * Check that util_sum is still above its lower bound for the new 4049 * util_avg. Given that period_contrib might have moved since the last 4050 * sync, we are only sure that util_sum must be above or equal to 4051 * util_avg * minimum possible divider 4052 */ 4053 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4054 4055 r = removed_runnable; 4056 sub_positive(&sa->runnable_avg, r); 4057 sub_positive(&sa->runnable_sum, r * divider); 4058 /* See sa->util_sum above */ 4059 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4060 sa->runnable_avg * PELT_MIN_DIVIDER); 4061 4062 /* 4063 * removed_runnable is the unweighted version of removed_load so we 4064 * can use it to estimate removed_load_sum. 4065 */ 4066 add_tg_cfs_propagate(cfs_rq, 4067 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4068 4069 decayed = 1; 4070 } 4071 4072 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4073 u64_u32_store_copy(sa->last_update_time, 4074 cfs_rq->last_update_time_copy, 4075 sa->last_update_time); 4076 return decayed; 4077 } 4078 4079 /** 4080 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4081 * @cfs_rq: cfs_rq to attach to 4082 * @se: sched_entity to attach 4083 * 4084 * Must call update_cfs_rq_load_avg() before this, since we rely on 4085 * cfs_rq->avg.last_update_time being current. 4086 */ 4087 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4088 { 4089 /* 4090 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4091 * See ___update_load_avg() for details. 4092 */ 4093 u32 divider = get_pelt_divider(&cfs_rq->avg); 4094 4095 /* 4096 * When we attach the @se to the @cfs_rq, we must align the decay 4097 * window because without that, really weird and wonderful things can 4098 * happen. 4099 * 4100 * XXX illustrate 4101 */ 4102 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4103 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4104 4105 /* 4106 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4107 * period_contrib. This isn't strictly correct, but since we're 4108 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4109 * _sum a little. 4110 */ 4111 se->avg.util_sum = se->avg.util_avg * divider; 4112 4113 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4114 4115 se->avg.load_sum = se->avg.load_avg * divider; 4116 if (se_weight(se) < se->avg.load_sum) 4117 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4118 else 4119 se->avg.load_sum = 1; 4120 4121 enqueue_load_avg(cfs_rq, se); 4122 cfs_rq->avg.util_avg += se->avg.util_avg; 4123 cfs_rq->avg.util_sum += se->avg.util_sum; 4124 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4125 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4126 4127 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4128 4129 cfs_rq_util_change(cfs_rq, 0); 4130 4131 trace_pelt_cfs_tp(cfs_rq); 4132 } 4133 4134 /** 4135 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4136 * @cfs_rq: cfs_rq to detach from 4137 * @se: sched_entity to detach 4138 * 4139 * Must call update_cfs_rq_load_avg() before this, since we rely on 4140 * cfs_rq->avg.last_update_time being current. 4141 */ 4142 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4143 { 4144 dequeue_load_avg(cfs_rq, se); 4145 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4146 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4147 /* See update_cfs_rq_load_avg() */ 4148 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4149 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4150 4151 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4152 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4153 /* See update_cfs_rq_load_avg() */ 4154 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4155 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4156 4157 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4158 4159 cfs_rq_util_change(cfs_rq, 0); 4160 4161 trace_pelt_cfs_tp(cfs_rq); 4162 } 4163 4164 /* 4165 * Optional action to be done while updating the load average 4166 */ 4167 #define UPDATE_TG 0x1 4168 #define SKIP_AGE_LOAD 0x2 4169 #define DO_ATTACH 0x4 4170 #define DO_DETACH 0x8 4171 4172 /* Update task and its cfs_rq load average */ 4173 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4174 { 4175 u64 now = cfs_rq_clock_pelt(cfs_rq); 4176 int decayed; 4177 4178 /* 4179 * Track task load average for carrying it to new CPU after migrated, and 4180 * track group sched_entity load average for task_h_load calc in migration 4181 */ 4182 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4183 __update_load_avg_se(now, cfs_rq, se); 4184 4185 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4186 decayed |= propagate_entity_load_avg(se); 4187 4188 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4189 4190 /* 4191 * DO_ATTACH means we're here from enqueue_entity(). 4192 * !last_update_time means we've passed through 4193 * migrate_task_rq_fair() indicating we migrated. 4194 * 4195 * IOW we're enqueueing a task on a new CPU. 4196 */ 4197 attach_entity_load_avg(cfs_rq, se); 4198 update_tg_load_avg(cfs_rq); 4199 4200 } else if (flags & DO_DETACH) { 4201 /* 4202 * DO_DETACH means we're here from dequeue_entity() 4203 * and we are migrating task out of the CPU. 4204 */ 4205 detach_entity_load_avg(cfs_rq, se); 4206 update_tg_load_avg(cfs_rq); 4207 } else if (decayed) { 4208 cfs_rq_util_change(cfs_rq, 0); 4209 4210 if (flags & UPDATE_TG) 4211 update_tg_load_avg(cfs_rq); 4212 } 4213 } 4214 4215 /* 4216 * Synchronize entity load avg of dequeued entity without locking 4217 * the previous rq. 4218 */ 4219 static void sync_entity_load_avg(struct sched_entity *se) 4220 { 4221 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4222 u64 last_update_time; 4223 4224 last_update_time = cfs_rq_last_update_time(cfs_rq); 4225 __update_load_avg_blocked_se(last_update_time, se); 4226 } 4227 4228 /* 4229 * Task first catches up with cfs_rq, and then subtract 4230 * itself from the cfs_rq (task must be off the queue now). 4231 */ 4232 static void remove_entity_load_avg(struct sched_entity *se) 4233 { 4234 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4235 unsigned long flags; 4236 4237 /* 4238 * tasks cannot exit without having gone through wake_up_new_task() -> 4239 * enqueue_task_fair() which will have added things to the cfs_rq, 4240 * so we can remove unconditionally. 4241 */ 4242 4243 sync_entity_load_avg(se); 4244 4245 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4246 ++cfs_rq->removed.nr; 4247 cfs_rq->removed.util_avg += se->avg.util_avg; 4248 cfs_rq->removed.load_avg += se->avg.load_avg; 4249 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4250 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4251 } 4252 4253 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4254 { 4255 return cfs_rq->avg.runnable_avg; 4256 } 4257 4258 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4259 { 4260 return cfs_rq->avg.load_avg; 4261 } 4262 4263 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 4264 4265 static inline unsigned long task_util(struct task_struct *p) 4266 { 4267 return READ_ONCE(p->se.avg.util_avg); 4268 } 4269 4270 static inline unsigned long _task_util_est(struct task_struct *p) 4271 { 4272 struct util_est ue = READ_ONCE(p->se.avg.util_est); 4273 4274 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 4275 } 4276 4277 static inline unsigned long task_util_est(struct task_struct *p) 4278 { 4279 return max(task_util(p), _task_util_est(p)); 4280 } 4281 4282 #ifdef CONFIG_UCLAMP_TASK 4283 static inline unsigned long uclamp_task_util(struct task_struct *p) 4284 { 4285 return clamp(task_util_est(p), 4286 uclamp_eff_value(p, UCLAMP_MIN), 4287 uclamp_eff_value(p, UCLAMP_MAX)); 4288 } 4289 #else 4290 static inline unsigned long uclamp_task_util(struct task_struct *p) 4291 { 4292 return task_util_est(p); 4293 } 4294 #endif 4295 4296 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4297 struct task_struct *p) 4298 { 4299 unsigned int enqueued; 4300 4301 if (!sched_feat(UTIL_EST)) 4302 return; 4303 4304 /* Update root cfs_rq's estimated utilization */ 4305 enqueued = cfs_rq->avg.util_est.enqueued; 4306 enqueued += _task_util_est(p); 4307 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4308 4309 trace_sched_util_est_cfs_tp(cfs_rq); 4310 } 4311 4312 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4313 struct task_struct *p) 4314 { 4315 unsigned int enqueued; 4316 4317 if (!sched_feat(UTIL_EST)) 4318 return; 4319 4320 /* Update root cfs_rq's estimated utilization */ 4321 enqueued = cfs_rq->avg.util_est.enqueued; 4322 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4323 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4324 4325 trace_sched_util_est_cfs_tp(cfs_rq); 4326 } 4327 4328 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4329 4330 /* 4331 * Check if a (signed) value is within a specified (unsigned) margin, 4332 * based on the observation that: 4333 * 4334 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 4335 * 4336 * NOTE: this only works when value + margin < INT_MAX. 4337 */ 4338 static inline bool within_margin(int value, int margin) 4339 { 4340 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 4341 } 4342 4343 static inline void util_est_update(struct cfs_rq *cfs_rq, 4344 struct task_struct *p, 4345 bool task_sleep) 4346 { 4347 long last_ewma_diff, last_enqueued_diff; 4348 struct util_est ue; 4349 4350 if (!sched_feat(UTIL_EST)) 4351 return; 4352 4353 /* 4354 * Skip update of task's estimated utilization when the task has not 4355 * yet completed an activation, e.g. being migrated. 4356 */ 4357 if (!task_sleep) 4358 return; 4359 4360 /* 4361 * If the PELT values haven't changed since enqueue time, 4362 * skip the util_est update. 4363 */ 4364 ue = p->se.avg.util_est; 4365 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4366 return; 4367 4368 last_enqueued_diff = ue.enqueued; 4369 4370 /* 4371 * Reset EWMA on utilization increases, the moving average is used only 4372 * to smooth utilization decreases. 4373 */ 4374 ue.enqueued = task_util(p); 4375 if (sched_feat(UTIL_EST_FASTUP)) { 4376 if (ue.ewma < ue.enqueued) { 4377 ue.ewma = ue.enqueued; 4378 goto done; 4379 } 4380 } 4381 4382 /* 4383 * Skip update of task's estimated utilization when its members are 4384 * already ~1% close to its last activation value. 4385 */ 4386 last_ewma_diff = ue.enqueued - ue.ewma; 4387 last_enqueued_diff -= ue.enqueued; 4388 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4389 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4390 goto done; 4391 4392 return; 4393 } 4394 4395 /* 4396 * To avoid overestimation of actual task utilization, skip updates if 4397 * we cannot grant there is idle time in this CPU. 4398 */ 4399 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4400 return; 4401 4402 /* 4403 * Update Task's estimated utilization 4404 * 4405 * When *p completes an activation we can consolidate another sample 4406 * of the task size. This is done by storing the current PELT value 4407 * as ue.enqueued and by using this value to update the Exponential 4408 * Weighted Moving Average (EWMA): 4409 * 4410 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4411 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4412 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4413 * = w * ( last_ewma_diff ) + ewma(t-1) 4414 * = w * (last_ewma_diff + ewma(t-1) / w) 4415 * 4416 * Where 'w' is the weight of new samples, which is configured to be 4417 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4418 */ 4419 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4420 ue.ewma += last_ewma_diff; 4421 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4422 done: 4423 ue.enqueued |= UTIL_AVG_UNCHANGED; 4424 WRITE_ONCE(p->se.avg.util_est, ue); 4425 4426 trace_sched_util_est_se_tp(&p->se); 4427 } 4428 4429 static inline int task_fits_capacity(struct task_struct *p, 4430 unsigned long capacity) 4431 { 4432 return fits_capacity(uclamp_task_util(p), capacity); 4433 } 4434 4435 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4436 { 4437 if (!sched_asym_cpucap_active()) 4438 return; 4439 4440 if (!p || p->nr_cpus_allowed == 1) { 4441 rq->misfit_task_load = 0; 4442 return; 4443 } 4444 4445 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 4446 rq->misfit_task_load = 0; 4447 return; 4448 } 4449 4450 /* 4451 * Make sure that misfit_task_load will not be null even if 4452 * task_h_load() returns 0. 4453 */ 4454 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4455 } 4456 4457 #else /* CONFIG_SMP */ 4458 4459 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4460 { 4461 return true; 4462 } 4463 4464 #define UPDATE_TG 0x0 4465 #define SKIP_AGE_LOAD 0x0 4466 #define DO_ATTACH 0x0 4467 #define DO_DETACH 0x0 4468 4469 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4470 { 4471 cfs_rq_util_change(cfs_rq, 0); 4472 } 4473 4474 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4475 4476 static inline void 4477 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4478 static inline void 4479 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4480 4481 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4482 { 4483 return 0; 4484 } 4485 4486 static inline void 4487 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4488 4489 static inline void 4490 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4491 4492 static inline void 4493 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 4494 bool task_sleep) {} 4495 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4496 4497 #endif /* CONFIG_SMP */ 4498 4499 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4500 { 4501 #ifdef CONFIG_SCHED_DEBUG 4502 s64 d = se->vruntime - cfs_rq->min_vruntime; 4503 4504 if (d < 0) 4505 d = -d; 4506 4507 if (d > 3*sysctl_sched_latency) 4508 schedstat_inc(cfs_rq->nr_spread_over); 4509 #endif 4510 } 4511 4512 static void 4513 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4514 { 4515 u64 vruntime = cfs_rq->min_vruntime; 4516 4517 /* 4518 * The 'current' period is already promised to the current tasks, 4519 * however the extra weight of the new task will slow them down a 4520 * little, place the new task so that it fits in the slot that 4521 * stays open at the end. 4522 */ 4523 if (initial && sched_feat(START_DEBIT)) 4524 vruntime += sched_vslice(cfs_rq, se); 4525 4526 /* sleeps up to a single latency don't count. */ 4527 if (!initial) { 4528 unsigned long thresh; 4529 4530 if (se_is_idle(se)) 4531 thresh = sysctl_sched_min_granularity; 4532 else 4533 thresh = sysctl_sched_latency; 4534 4535 /* 4536 * Halve their sleep time's effect, to allow 4537 * for a gentler effect of sleepers: 4538 */ 4539 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4540 thresh >>= 1; 4541 4542 vruntime -= thresh; 4543 } 4544 4545 /* ensure we never gain time by being placed backwards. */ 4546 se->vruntime = max_vruntime(se->vruntime, vruntime); 4547 } 4548 4549 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4550 4551 static inline bool cfs_bandwidth_used(void); 4552 4553 /* 4554 * MIGRATION 4555 * 4556 * dequeue 4557 * update_curr() 4558 * update_min_vruntime() 4559 * vruntime -= min_vruntime 4560 * 4561 * enqueue 4562 * update_curr() 4563 * update_min_vruntime() 4564 * vruntime += min_vruntime 4565 * 4566 * this way the vruntime transition between RQs is done when both 4567 * min_vruntime are up-to-date. 4568 * 4569 * WAKEUP (remote) 4570 * 4571 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4572 * vruntime -= min_vruntime 4573 * 4574 * enqueue 4575 * update_curr() 4576 * update_min_vruntime() 4577 * vruntime += min_vruntime 4578 * 4579 * this way we don't have the most up-to-date min_vruntime on the originating 4580 * CPU and an up-to-date min_vruntime on the destination CPU. 4581 */ 4582 4583 static void 4584 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4585 { 4586 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4587 bool curr = cfs_rq->curr == se; 4588 4589 /* 4590 * If we're the current task, we must renormalise before calling 4591 * update_curr(). 4592 */ 4593 if (renorm && curr) 4594 se->vruntime += cfs_rq->min_vruntime; 4595 4596 update_curr(cfs_rq); 4597 4598 /* 4599 * Otherwise, renormalise after, such that we're placed at the current 4600 * moment in time, instead of some random moment in the past. Being 4601 * placed in the past could significantly boost this task to the 4602 * fairness detriment of existing tasks. 4603 */ 4604 if (renorm && !curr) 4605 se->vruntime += cfs_rq->min_vruntime; 4606 4607 /* 4608 * When enqueuing a sched_entity, we must: 4609 * - Update loads to have both entity and cfs_rq synced with now. 4610 * - For group_entity, update its runnable_weight to reflect the new 4611 * h_nr_running of its group cfs_rq. 4612 * - For group_entity, update its weight to reflect the new share of 4613 * its group cfs_rq 4614 * - Add its new weight to cfs_rq->load.weight 4615 */ 4616 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4617 se_update_runnable(se); 4618 update_cfs_group(se); 4619 account_entity_enqueue(cfs_rq, se); 4620 4621 if (flags & ENQUEUE_WAKEUP) 4622 place_entity(cfs_rq, se, 0); 4623 4624 check_schedstat_required(); 4625 update_stats_enqueue_fair(cfs_rq, se, flags); 4626 check_spread(cfs_rq, se); 4627 if (!curr) 4628 __enqueue_entity(cfs_rq, se); 4629 se->on_rq = 1; 4630 4631 if (cfs_rq->nr_running == 1) { 4632 check_enqueue_throttle(cfs_rq); 4633 if (!throttled_hierarchy(cfs_rq)) 4634 list_add_leaf_cfs_rq(cfs_rq); 4635 } 4636 } 4637 4638 static void __clear_buddies_last(struct sched_entity *se) 4639 { 4640 for_each_sched_entity(se) { 4641 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4642 if (cfs_rq->last != se) 4643 break; 4644 4645 cfs_rq->last = NULL; 4646 } 4647 } 4648 4649 static void __clear_buddies_next(struct sched_entity *se) 4650 { 4651 for_each_sched_entity(se) { 4652 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4653 if (cfs_rq->next != se) 4654 break; 4655 4656 cfs_rq->next = NULL; 4657 } 4658 } 4659 4660 static void __clear_buddies_skip(struct sched_entity *se) 4661 { 4662 for_each_sched_entity(se) { 4663 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4664 if (cfs_rq->skip != se) 4665 break; 4666 4667 cfs_rq->skip = NULL; 4668 } 4669 } 4670 4671 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4672 { 4673 if (cfs_rq->last == se) 4674 __clear_buddies_last(se); 4675 4676 if (cfs_rq->next == se) 4677 __clear_buddies_next(se); 4678 4679 if (cfs_rq->skip == se) 4680 __clear_buddies_skip(se); 4681 } 4682 4683 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4684 4685 static void 4686 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4687 { 4688 int action = UPDATE_TG; 4689 4690 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 4691 action |= DO_DETACH; 4692 4693 /* 4694 * Update run-time statistics of the 'current'. 4695 */ 4696 update_curr(cfs_rq); 4697 4698 /* 4699 * When dequeuing a sched_entity, we must: 4700 * - Update loads to have both entity and cfs_rq synced with now. 4701 * - For group_entity, update its runnable_weight to reflect the new 4702 * h_nr_running of its group cfs_rq. 4703 * - Subtract its previous weight from cfs_rq->load.weight. 4704 * - For group entity, update its weight to reflect the new share 4705 * of its group cfs_rq. 4706 */ 4707 update_load_avg(cfs_rq, se, action); 4708 se_update_runnable(se); 4709 4710 update_stats_dequeue_fair(cfs_rq, se, flags); 4711 4712 clear_buddies(cfs_rq, se); 4713 4714 if (se != cfs_rq->curr) 4715 __dequeue_entity(cfs_rq, se); 4716 se->on_rq = 0; 4717 account_entity_dequeue(cfs_rq, se); 4718 4719 /* 4720 * Normalize after update_curr(); which will also have moved 4721 * min_vruntime if @se is the one holding it back. But before doing 4722 * update_min_vruntime() again, which will discount @se's position and 4723 * can move min_vruntime forward still more. 4724 */ 4725 if (!(flags & DEQUEUE_SLEEP)) 4726 se->vruntime -= cfs_rq->min_vruntime; 4727 4728 /* return excess runtime on last dequeue */ 4729 return_cfs_rq_runtime(cfs_rq); 4730 4731 update_cfs_group(se); 4732 4733 /* 4734 * Now advance min_vruntime if @se was the entity holding it back, 4735 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4736 * put back on, and if we advance min_vruntime, we'll be placed back 4737 * further than we started -- ie. we'll be penalized. 4738 */ 4739 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4740 update_min_vruntime(cfs_rq); 4741 4742 if (cfs_rq->nr_running == 0) 4743 update_idle_cfs_rq_clock_pelt(cfs_rq); 4744 } 4745 4746 /* 4747 * Preempt the current task with a newly woken task if needed: 4748 */ 4749 static void 4750 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4751 { 4752 unsigned long ideal_runtime, delta_exec; 4753 struct sched_entity *se; 4754 s64 delta; 4755 4756 ideal_runtime = sched_slice(cfs_rq, curr); 4757 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4758 if (delta_exec > ideal_runtime) { 4759 resched_curr(rq_of(cfs_rq)); 4760 /* 4761 * The current task ran long enough, ensure it doesn't get 4762 * re-elected due to buddy favours. 4763 */ 4764 clear_buddies(cfs_rq, curr); 4765 return; 4766 } 4767 4768 /* 4769 * Ensure that a task that missed wakeup preemption by a 4770 * narrow margin doesn't have to wait for a full slice. 4771 * This also mitigates buddy induced latencies under load. 4772 */ 4773 if (delta_exec < sysctl_sched_min_granularity) 4774 return; 4775 4776 se = __pick_first_entity(cfs_rq); 4777 delta = curr->vruntime - se->vruntime; 4778 4779 if (delta < 0) 4780 return; 4781 4782 if (delta > ideal_runtime) 4783 resched_curr(rq_of(cfs_rq)); 4784 } 4785 4786 static void 4787 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4788 { 4789 clear_buddies(cfs_rq, se); 4790 4791 /* 'current' is not kept within the tree. */ 4792 if (se->on_rq) { 4793 /* 4794 * Any task has to be enqueued before it get to execute on 4795 * a CPU. So account for the time it spent waiting on the 4796 * runqueue. 4797 */ 4798 update_stats_wait_end_fair(cfs_rq, se); 4799 __dequeue_entity(cfs_rq, se); 4800 update_load_avg(cfs_rq, se, UPDATE_TG); 4801 } 4802 4803 update_stats_curr_start(cfs_rq, se); 4804 cfs_rq->curr = se; 4805 4806 /* 4807 * Track our maximum slice length, if the CPU's load is at 4808 * least twice that of our own weight (i.e. dont track it 4809 * when there are only lesser-weight tasks around): 4810 */ 4811 if (schedstat_enabled() && 4812 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4813 struct sched_statistics *stats; 4814 4815 stats = __schedstats_from_se(se); 4816 __schedstat_set(stats->slice_max, 4817 max((u64)stats->slice_max, 4818 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4819 } 4820 4821 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4822 } 4823 4824 static int 4825 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4826 4827 /* 4828 * Pick the next process, keeping these things in mind, in this order: 4829 * 1) keep things fair between processes/task groups 4830 * 2) pick the "next" process, since someone really wants that to run 4831 * 3) pick the "last" process, for cache locality 4832 * 4) do not run the "skip" process, if something else is available 4833 */ 4834 static struct sched_entity * 4835 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4836 { 4837 struct sched_entity *left = __pick_first_entity(cfs_rq); 4838 struct sched_entity *se; 4839 4840 /* 4841 * If curr is set we have to see if its left of the leftmost entity 4842 * still in the tree, provided there was anything in the tree at all. 4843 */ 4844 if (!left || (curr && entity_before(curr, left))) 4845 left = curr; 4846 4847 se = left; /* ideally we run the leftmost entity */ 4848 4849 /* 4850 * Avoid running the skip buddy, if running something else can 4851 * be done without getting too unfair. 4852 */ 4853 if (cfs_rq->skip && cfs_rq->skip == se) { 4854 struct sched_entity *second; 4855 4856 if (se == curr) { 4857 second = __pick_first_entity(cfs_rq); 4858 } else { 4859 second = __pick_next_entity(se); 4860 if (!second || (curr && entity_before(curr, second))) 4861 second = curr; 4862 } 4863 4864 if (second && wakeup_preempt_entity(second, left) < 1) 4865 se = second; 4866 } 4867 4868 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) { 4869 /* 4870 * Someone really wants this to run. If it's not unfair, run it. 4871 */ 4872 se = cfs_rq->next; 4873 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) { 4874 /* 4875 * Prefer last buddy, try to return the CPU to a preempted task. 4876 */ 4877 se = cfs_rq->last; 4878 } 4879 4880 return se; 4881 } 4882 4883 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4884 4885 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4886 { 4887 /* 4888 * If still on the runqueue then deactivate_task() 4889 * was not called and update_curr() has to be done: 4890 */ 4891 if (prev->on_rq) 4892 update_curr(cfs_rq); 4893 4894 /* throttle cfs_rqs exceeding runtime */ 4895 check_cfs_rq_runtime(cfs_rq); 4896 4897 check_spread(cfs_rq, prev); 4898 4899 if (prev->on_rq) { 4900 update_stats_wait_start_fair(cfs_rq, prev); 4901 /* Put 'current' back into the tree. */ 4902 __enqueue_entity(cfs_rq, prev); 4903 /* in !on_rq case, update occurred at dequeue */ 4904 update_load_avg(cfs_rq, prev, 0); 4905 } 4906 cfs_rq->curr = NULL; 4907 } 4908 4909 static void 4910 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4911 { 4912 /* 4913 * Update run-time statistics of the 'current'. 4914 */ 4915 update_curr(cfs_rq); 4916 4917 /* 4918 * Ensure that runnable average is periodically updated. 4919 */ 4920 update_load_avg(cfs_rq, curr, UPDATE_TG); 4921 update_cfs_group(curr); 4922 4923 #ifdef CONFIG_SCHED_HRTICK 4924 /* 4925 * queued ticks are scheduled to match the slice, so don't bother 4926 * validating it and just reschedule. 4927 */ 4928 if (queued) { 4929 resched_curr(rq_of(cfs_rq)); 4930 return; 4931 } 4932 /* 4933 * don't let the period tick interfere with the hrtick preemption 4934 */ 4935 if (!sched_feat(DOUBLE_TICK) && 4936 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4937 return; 4938 #endif 4939 4940 if (cfs_rq->nr_running > 1) 4941 check_preempt_tick(cfs_rq, curr); 4942 } 4943 4944 4945 /************************************************** 4946 * CFS bandwidth control machinery 4947 */ 4948 4949 #ifdef CONFIG_CFS_BANDWIDTH 4950 4951 #ifdef CONFIG_JUMP_LABEL 4952 static struct static_key __cfs_bandwidth_used; 4953 4954 static inline bool cfs_bandwidth_used(void) 4955 { 4956 return static_key_false(&__cfs_bandwidth_used); 4957 } 4958 4959 void cfs_bandwidth_usage_inc(void) 4960 { 4961 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4962 } 4963 4964 void cfs_bandwidth_usage_dec(void) 4965 { 4966 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4967 } 4968 #else /* CONFIG_JUMP_LABEL */ 4969 static bool cfs_bandwidth_used(void) 4970 { 4971 return true; 4972 } 4973 4974 void cfs_bandwidth_usage_inc(void) {} 4975 void cfs_bandwidth_usage_dec(void) {} 4976 #endif /* CONFIG_JUMP_LABEL */ 4977 4978 /* 4979 * default period for cfs group bandwidth. 4980 * default: 0.1s, units: nanoseconds 4981 */ 4982 static inline u64 default_cfs_period(void) 4983 { 4984 return 100000000ULL; 4985 } 4986 4987 static inline u64 sched_cfs_bandwidth_slice(void) 4988 { 4989 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4990 } 4991 4992 /* 4993 * Replenish runtime according to assigned quota. We use sched_clock_cpu 4994 * directly instead of rq->clock to avoid adding additional synchronization 4995 * around rq->lock. 4996 * 4997 * requires cfs_b->lock 4998 */ 4999 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5000 { 5001 s64 runtime; 5002 5003 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5004 return; 5005 5006 cfs_b->runtime += cfs_b->quota; 5007 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5008 if (runtime > 0) { 5009 cfs_b->burst_time += runtime; 5010 cfs_b->nr_burst++; 5011 } 5012 5013 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5014 cfs_b->runtime_snap = cfs_b->runtime; 5015 } 5016 5017 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5018 { 5019 return &tg->cfs_bandwidth; 5020 } 5021 5022 /* returns 0 on failure to allocate runtime */ 5023 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5024 struct cfs_rq *cfs_rq, u64 target_runtime) 5025 { 5026 u64 min_amount, amount = 0; 5027 5028 lockdep_assert_held(&cfs_b->lock); 5029 5030 /* note: this is a positive sum as runtime_remaining <= 0 */ 5031 min_amount = target_runtime - cfs_rq->runtime_remaining; 5032 5033 if (cfs_b->quota == RUNTIME_INF) 5034 amount = min_amount; 5035 else { 5036 start_cfs_bandwidth(cfs_b); 5037 5038 if (cfs_b->runtime > 0) { 5039 amount = min(cfs_b->runtime, min_amount); 5040 cfs_b->runtime -= amount; 5041 cfs_b->idle = 0; 5042 } 5043 } 5044 5045 cfs_rq->runtime_remaining += amount; 5046 5047 return cfs_rq->runtime_remaining > 0; 5048 } 5049 5050 /* returns 0 on failure to allocate runtime */ 5051 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5052 { 5053 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5054 int ret; 5055 5056 raw_spin_lock(&cfs_b->lock); 5057 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5058 raw_spin_unlock(&cfs_b->lock); 5059 5060 return ret; 5061 } 5062 5063 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5064 { 5065 /* dock delta_exec before expiring quota (as it could span periods) */ 5066 cfs_rq->runtime_remaining -= delta_exec; 5067 5068 if (likely(cfs_rq->runtime_remaining > 0)) 5069 return; 5070 5071 if (cfs_rq->throttled) 5072 return; 5073 /* 5074 * if we're unable to extend our runtime we resched so that the active 5075 * hierarchy can be throttled 5076 */ 5077 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5078 resched_curr(rq_of(cfs_rq)); 5079 } 5080 5081 static __always_inline 5082 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5083 { 5084 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5085 return; 5086 5087 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5088 } 5089 5090 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5091 { 5092 return cfs_bandwidth_used() && cfs_rq->throttled; 5093 } 5094 5095 /* check whether cfs_rq, or any parent, is throttled */ 5096 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5097 { 5098 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5099 } 5100 5101 /* 5102 * Ensure that neither of the group entities corresponding to src_cpu or 5103 * dest_cpu are members of a throttled hierarchy when performing group 5104 * load-balance operations. 5105 */ 5106 static inline int throttled_lb_pair(struct task_group *tg, 5107 int src_cpu, int dest_cpu) 5108 { 5109 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5110 5111 src_cfs_rq = tg->cfs_rq[src_cpu]; 5112 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5113 5114 return throttled_hierarchy(src_cfs_rq) || 5115 throttled_hierarchy(dest_cfs_rq); 5116 } 5117 5118 static int tg_unthrottle_up(struct task_group *tg, void *data) 5119 { 5120 struct rq *rq = data; 5121 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5122 5123 cfs_rq->throttle_count--; 5124 if (!cfs_rq->throttle_count) { 5125 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5126 cfs_rq->throttled_clock_pelt; 5127 5128 /* Add cfs_rq with load or one or more already running entities to the list */ 5129 if (!cfs_rq_is_decayed(cfs_rq)) 5130 list_add_leaf_cfs_rq(cfs_rq); 5131 } 5132 5133 return 0; 5134 } 5135 5136 static int tg_throttle_down(struct task_group *tg, void *data) 5137 { 5138 struct rq *rq = data; 5139 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5140 5141 /* group is entering throttled state, stop time */ 5142 if (!cfs_rq->throttle_count) { 5143 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5144 list_del_leaf_cfs_rq(cfs_rq); 5145 } 5146 cfs_rq->throttle_count++; 5147 5148 return 0; 5149 } 5150 5151 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5152 { 5153 struct rq *rq = rq_of(cfs_rq); 5154 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5155 struct sched_entity *se; 5156 long task_delta, idle_task_delta, dequeue = 1; 5157 5158 raw_spin_lock(&cfs_b->lock); 5159 /* This will start the period timer if necessary */ 5160 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5161 /* 5162 * We have raced with bandwidth becoming available, and if we 5163 * actually throttled the timer might not unthrottle us for an 5164 * entire period. We additionally needed to make sure that any 5165 * subsequent check_cfs_rq_runtime calls agree not to throttle 5166 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5167 * for 1ns of runtime rather than just check cfs_b. 5168 */ 5169 dequeue = 0; 5170 } else { 5171 list_add_tail_rcu(&cfs_rq->throttled_list, 5172 &cfs_b->throttled_cfs_rq); 5173 } 5174 raw_spin_unlock(&cfs_b->lock); 5175 5176 if (!dequeue) 5177 return false; /* Throttle no longer required. */ 5178 5179 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5180 5181 /* freeze hierarchy runnable averages while throttled */ 5182 rcu_read_lock(); 5183 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5184 rcu_read_unlock(); 5185 5186 task_delta = cfs_rq->h_nr_running; 5187 idle_task_delta = cfs_rq->idle_h_nr_running; 5188 for_each_sched_entity(se) { 5189 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5190 /* throttled entity or throttle-on-deactivate */ 5191 if (!se->on_rq) 5192 goto done; 5193 5194 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 5195 5196 if (cfs_rq_is_idle(group_cfs_rq(se))) 5197 idle_task_delta = cfs_rq->h_nr_running; 5198 5199 qcfs_rq->h_nr_running -= task_delta; 5200 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5201 5202 if (qcfs_rq->load.weight) { 5203 /* Avoid re-evaluating load for this entity: */ 5204 se = parent_entity(se); 5205 break; 5206 } 5207 } 5208 5209 for_each_sched_entity(se) { 5210 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5211 /* throttled entity or throttle-on-deactivate */ 5212 if (!se->on_rq) 5213 goto done; 5214 5215 update_load_avg(qcfs_rq, se, 0); 5216 se_update_runnable(se); 5217 5218 if (cfs_rq_is_idle(group_cfs_rq(se))) 5219 idle_task_delta = cfs_rq->h_nr_running; 5220 5221 qcfs_rq->h_nr_running -= task_delta; 5222 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5223 } 5224 5225 /* At this point se is NULL and we are at root level*/ 5226 sub_nr_running(rq, task_delta); 5227 5228 done: 5229 /* 5230 * Note: distribution will already see us throttled via the 5231 * throttled-list. rq->lock protects completion. 5232 */ 5233 cfs_rq->throttled = 1; 5234 cfs_rq->throttled_clock = rq_clock(rq); 5235 return true; 5236 } 5237 5238 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5239 { 5240 struct rq *rq = rq_of(cfs_rq); 5241 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5242 struct sched_entity *se; 5243 long task_delta, idle_task_delta; 5244 5245 se = cfs_rq->tg->se[cpu_of(rq)]; 5246 5247 cfs_rq->throttled = 0; 5248 5249 update_rq_clock(rq); 5250 5251 raw_spin_lock(&cfs_b->lock); 5252 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5253 list_del_rcu(&cfs_rq->throttled_list); 5254 raw_spin_unlock(&cfs_b->lock); 5255 5256 /* update hierarchical throttle state */ 5257 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5258 5259 if (!cfs_rq->load.weight) { 5260 if (!cfs_rq->on_list) 5261 return; 5262 /* 5263 * Nothing to run but something to decay (on_list)? 5264 * Complete the branch. 5265 */ 5266 for_each_sched_entity(se) { 5267 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5268 break; 5269 } 5270 goto unthrottle_throttle; 5271 } 5272 5273 task_delta = cfs_rq->h_nr_running; 5274 idle_task_delta = cfs_rq->idle_h_nr_running; 5275 for_each_sched_entity(se) { 5276 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5277 5278 if (se->on_rq) 5279 break; 5280 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5281 5282 if (cfs_rq_is_idle(group_cfs_rq(se))) 5283 idle_task_delta = cfs_rq->h_nr_running; 5284 5285 qcfs_rq->h_nr_running += task_delta; 5286 qcfs_rq->idle_h_nr_running += idle_task_delta; 5287 5288 /* end evaluation on encountering a throttled cfs_rq */ 5289 if (cfs_rq_throttled(qcfs_rq)) 5290 goto unthrottle_throttle; 5291 } 5292 5293 for_each_sched_entity(se) { 5294 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5295 5296 update_load_avg(qcfs_rq, se, UPDATE_TG); 5297 se_update_runnable(se); 5298 5299 if (cfs_rq_is_idle(group_cfs_rq(se))) 5300 idle_task_delta = cfs_rq->h_nr_running; 5301 5302 qcfs_rq->h_nr_running += task_delta; 5303 qcfs_rq->idle_h_nr_running += idle_task_delta; 5304 5305 /* end evaluation on encountering a throttled cfs_rq */ 5306 if (cfs_rq_throttled(qcfs_rq)) 5307 goto unthrottle_throttle; 5308 } 5309 5310 /* At this point se is NULL and we are at root level*/ 5311 add_nr_running(rq, task_delta); 5312 5313 unthrottle_throttle: 5314 assert_list_leaf_cfs_rq(rq); 5315 5316 /* Determine whether we need to wake up potentially idle CPU: */ 5317 if (rq->curr == rq->idle && rq->cfs.nr_running) 5318 resched_curr(rq); 5319 } 5320 5321 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 5322 { 5323 struct cfs_rq *cfs_rq; 5324 u64 runtime, remaining = 1; 5325 5326 rcu_read_lock(); 5327 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 5328 throttled_list) { 5329 struct rq *rq = rq_of(cfs_rq); 5330 struct rq_flags rf; 5331 5332 rq_lock_irqsave(rq, &rf); 5333 if (!cfs_rq_throttled(cfs_rq)) 5334 goto next; 5335 5336 /* By the above check, this should never be true */ 5337 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 5338 5339 raw_spin_lock(&cfs_b->lock); 5340 runtime = -cfs_rq->runtime_remaining + 1; 5341 if (runtime > cfs_b->runtime) 5342 runtime = cfs_b->runtime; 5343 cfs_b->runtime -= runtime; 5344 remaining = cfs_b->runtime; 5345 raw_spin_unlock(&cfs_b->lock); 5346 5347 cfs_rq->runtime_remaining += runtime; 5348 5349 /* we check whether we're throttled above */ 5350 if (cfs_rq->runtime_remaining > 0) 5351 unthrottle_cfs_rq(cfs_rq); 5352 5353 next: 5354 rq_unlock_irqrestore(rq, &rf); 5355 5356 if (!remaining) 5357 break; 5358 } 5359 rcu_read_unlock(); 5360 } 5361 5362 /* 5363 * Responsible for refilling a task_group's bandwidth and unthrottling its 5364 * cfs_rqs as appropriate. If there has been no activity within the last 5365 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 5366 * used to track this state. 5367 */ 5368 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 5369 { 5370 int throttled; 5371 5372 /* no need to continue the timer with no bandwidth constraint */ 5373 if (cfs_b->quota == RUNTIME_INF) 5374 goto out_deactivate; 5375 5376 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5377 cfs_b->nr_periods += overrun; 5378 5379 /* Refill extra burst quota even if cfs_b->idle */ 5380 __refill_cfs_bandwidth_runtime(cfs_b); 5381 5382 /* 5383 * idle depends on !throttled (for the case of a large deficit), and if 5384 * we're going inactive then everything else can be deferred 5385 */ 5386 if (cfs_b->idle && !throttled) 5387 goto out_deactivate; 5388 5389 if (!throttled) { 5390 /* mark as potentially idle for the upcoming period */ 5391 cfs_b->idle = 1; 5392 return 0; 5393 } 5394 5395 /* account preceding periods in which throttling occurred */ 5396 cfs_b->nr_throttled += overrun; 5397 5398 /* 5399 * This check is repeated as we release cfs_b->lock while we unthrottle. 5400 */ 5401 while (throttled && cfs_b->runtime > 0) { 5402 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5403 /* we can't nest cfs_b->lock while distributing bandwidth */ 5404 distribute_cfs_runtime(cfs_b); 5405 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5406 5407 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5408 } 5409 5410 /* 5411 * While we are ensured activity in the period following an 5412 * unthrottle, this also covers the case in which the new bandwidth is 5413 * insufficient to cover the existing bandwidth deficit. (Forcing the 5414 * timer to remain active while there are any throttled entities.) 5415 */ 5416 cfs_b->idle = 0; 5417 5418 return 0; 5419 5420 out_deactivate: 5421 return 1; 5422 } 5423 5424 /* a cfs_rq won't donate quota below this amount */ 5425 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 5426 /* minimum remaining period time to redistribute slack quota */ 5427 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 5428 /* how long we wait to gather additional slack before distributing */ 5429 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 5430 5431 /* 5432 * Are we near the end of the current quota period? 5433 * 5434 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 5435 * hrtimer base being cleared by hrtimer_start. In the case of 5436 * migrate_hrtimers, base is never cleared, so we are fine. 5437 */ 5438 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5439 { 5440 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5441 s64 remaining; 5442 5443 /* if the call-back is running a quota refresh is already occurring */ 5444 if (hrtimer_callback_running(refresh_timer)) 5445 return 1; 5446 5447 /* is a quota refresh about to occur? */ 5448 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5449 if (remaining < (s64)min_expire) 5450 return 1; 5451 5452 return 0; 5453 } 5454 5455 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5456 { 5457 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5458 5459 /* if there's a quota refresh soon don't bother with slack */ 5460 if (runtime_refresh_within(cfs_b, min_left)) 5461 return; 5462 5463 /* don't push forwards an existing deferred unthrottle */ 5464 if (cfs_b->slack_started) 5465 return; 5466 cfs_b->slack_started = true; 5467 5468 hrtimer_start(&cfs_b->slack_timer, 5469 ns_to_ktime(cfs_bandwidth_slack_period), 5470 HRTIMER_MODE_REL); 5471 } 5472 5473 /* we know any runtime found here is valid as update_curr() precedes return */ 5474 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5475 { 5476 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5477 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5478 5479 if (slack_runtime <= 0) 5480 return; 5481 5482 raw_spin_lock(&cfs_b->lock); 5483 if (cfs_b->quota != RUNTIME_INF) { 5484 cfs_b->runtime += slack_runtime; 5485 5486 /* we are under rq->lock, defer unthrottling using a timer */ 5487 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5488 !list_empty(&cfs_b->throttled_cfs_rq)) 5489 start_cfs_slack_bandwidth(cfs_b); 5490 } 5491 raw_spin_unlock(&cfs_b->lock); 5492 5493 /* even if it's not valid for return we don't want to try again */ 5494 cfs_rq->runtime_remaining -= slack_runtime; 5495 } 5496 5497 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5498 { 5499 if (!cfs_bandwidth_used()) 5500 return; 5501 5502 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5503 return; 5504 5505 __return_cfs_rq_runtime(cfs_rq); 5506 } 5507 5508 /* 5509 * This is done with a timer (instead of inline with bandwidth return) since 5510 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5511 */ 5512 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5513 { 5514 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5515 unsigned long flags; 5516 5517 /* confirm we're still not at a refresh boundary */ 5518 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5519 cfs_b->slack_started = false; 5520 5521 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5522 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5523 return; 5524 } 5525 5526 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5527 runtime = cfs_b->runtime; 5528 5529 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5530 5531 if (!runtime) 5532 return; 5533 5534 distribute_cfs_runtime(cfs_b); 5535 } 5536 5537 /* 5538 * When a group wakes up we want to make sure that its quota is not already 5539 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5540 * runtime as update_curr() throttling can not trigger until it's on-rq. 5541 */ 5542 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5543 { 5544 if (!cfs_bandwidth_used()) 5545 return; 5546 5547 /* an active group must be handled by the update_curr()->put() path */ 5548 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5549 return; 5550 5551 /* ensure the group is not already throttled */ 5552 if (cfs_rq_throttled(cfs_rq)) 5553 return; 5554 5555 /* update runtime allocation */ 5556 account_cfs_rq_runtime(cfs_rq, 0); 5557 if (cfs_rq->runtime_remaining <= 0) 5558 throttle_cfs_rq(cfs_rq); 5559 } 5560 5561 static void sync_throttle(struct task_group *tg, int cpu) 5562 { 5563 struct cfs_rq *pcfs_rq, *cfs_rq; 5564 5565 if (!cfs_bandwidth_used()) 5566 return; 5567 5568 if (!tg->parent) 5569 return; 5570 5571 cfs_rq = tg->cfs_rq[cpu]; 5572 pcfs_rq = tg->parent->cfs_rq[cpu]; 5573 5574 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5575 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 5576 } 5577 5578 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5579 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5580 { 5581 if (!cfs_bandwidth_used()) 5582 return false; 5583 5584 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5585 return false; 5586 5587 /* 5588 * it's possible for a throttled entity to be forced into a running 5589 * state (e.g. set_curr_task), in this case we're finished. 5590 */ 5591 if (cfs_rq_throttled(cfs_rq)) 5592 return true; 5593 5594 return throttle_cfs_rq(cfs_rq); 5595 } 5596 5597 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5598 { 5599 struct cfs_bandwidth *cfs_b = 5600 container_of(timer, struct cfs_bandwidth, slack_timer); 5601 5602 do_sched_cfs_slack_timer(cfs_b); 5603 5604 return HRTIMER_NORESTART; 5605 } 5606 5607 extern const u64 max_cfs_quota_period; 5608 5609 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5610 { 5611 struct cfs_bandwidth *cfs_b = 5612 container_of(timer, struct cfs_bandwidth, period_timer); 5613 unsigned long flags; 5614 int overrun; 5615 int idle = 0; 5616 int count = 0; 5617 5618 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5619 for (;;) { 5620 overrun = hrtimer_forward_now(timer, cfs_b->period); 5621 if (!overrun) 5622 break; 5623 5624 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5625 5626 if (++count > 3) { 5627 u64 new, old = ktime_to_ns(cfs_b->period); 5628 5629 /* 5630 * Grow period by a factor of 2 to avoid losing precision. 5631 * Precision loss in the quota/period ratio can cause __cfs_schedulable 5632 * to fail. 5633 */ 5634 new = old * 2; 5635 if (new < max_cfs_quota_period) { 5636 cfs_b->period = ns_to_ktime(new); 5637 cfs_b->quota *= 2; 5638 cfs_b->burst *= 2; 5639 5640 pr_warn_ratelimited( 5641 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5642 smp_processor_id(), 5643 div_u64(new, NSEC_PER_USEC), 5644 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5645 } else { 5646 pr_warn_ratelimited( 5647 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5648 smp_processor_id(), 5649 div_u64(old, NSEC_PER_USEC), 5650 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5651 } 5652 5653 /* reset count so we don't come right back in here */ 5654 count = 0; 5655 } 5656 } 5657 if (idle) 5658 cfs_b->period_active = 0; 5659 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5660 5661 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5662 } 5663 5664 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5665 { 5666 raw_spin_lock_init(&cfs_b->lock); 5667 cfs_b->runtime = 0; 5668 cfs_b->quota = RUNTIME_INF; 5669 cfs_b->period = ns_to_ktime(default_cfs_period()); 5670 cfs_b->burst = 0; 5671 5672 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5673 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5674 cfs_b->period_timer.function = sched_cfs_period_timer; 5675 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5676 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5677 cfs_b->slack_started = false; 5678 } 5679 5680 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5681 { 5682 cfs_rq->runtime_enabled = 0; 5683 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5684 } 5685 5686 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5687 { 5688 lockdep_assert_held(&cfs_b->lock); 5689 5690 if (cfs_b->period_active) 5691 return; 5692 5693 cfs_b->period_active = 1; 5694 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5695 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5696 } 5697 5698 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5699 { 5700 /* init_cfs_bandwidth() was not called */ 5701 if (!cfs_b->throttled_cfs_rq.next) 5702 return; 5703 5704 hrtimer_cancel(&cfs_b->period_timer); 5705 hrtimer_cancel(&cfs_b->slack_timer); 5706 } 5707 5708 /* 5709 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5710 * 5711 * The race is harmless, since modifying bandwidth settings of unhooked group 5712 * bits doesn't do much. 5713 */ 5714 5715 /* cpu online callback */ 5716 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5717 { 5718 struct task_group *tg; 5719 5720 lockdep_assert_rq_held(rq); 5721 5722 rcu_read_lock(); 5723 list_for_each_entry_rcu(tg, &task_groups, list) { 5724 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5725 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5726 5727 raw_spin_lock(&cfs_b->lock); 5728 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5729 raw_spin_unlock(&cfs_b->lock); 5730 } 5731 rcu_read_unlock(); 5732 } 5733 5734 /* cpu offline callback */ 5735 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5736 { 5737 struct task_group *tg; 5738 5739 lockdep_assert_rq_held(rq); 5740 5741 rcu_read_lock(); 5742 list_for_each_entry_rcu(tg, &task_groups, list) { 5743 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5744 5745 if (!cfs_rq->runtime_enabled) 5746 continue; 5747 5748 /* 5749 * clock_task is not advancing so we just need to make sure 5750 * there's some valid quota amount 5751 */ 5752 cfs_rq->runtime_remaining = 1; 5753 /* 5754 * Offline rq is schedulable till CPU is completely disabled 5755 * in take_cpu_down(), so we prevent new cfs throttling here. 5756 */ 5757 cfs_rq->runtime_enabled = 0; 5758 5759 if (cfs_rq_throttled(cfs_rq)) 5760 unthrottle_cfs_rq(cfs_rq); 5761 } 5762 rcu_read_unlock(); 5763 } 5764 5765 #else /* CONFIG_CFS_BANDWIDTH */ 5766 5767 static inline bool cfs_bandwidth_used(void) 5768 { 5769 return false; 5770 } 5771 5772 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5773 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5774 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5775 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5776 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5777 5778 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5779 { 5780 return 0; 5781 } 5782 5783 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5784 { 5785 return 0; 5786 } 5787 5788 static inline int throttled_lb_pair(struct task_group *tg, 5789 int src_cpu, int dest_cpu) 5790 { 5791 return 0; 5792 } 5793 5794 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5795 5796 #ifdef CONFIG_FAIR_GROUP_SCHED 5797 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5798 #endif 5799 5800 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5801 { 5802 return NULL; 5803 } 5804 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5805 static inline void update_runtime_enabled(struct rq *rq) {} 5806 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5807 5808 #endif /* CONFIG_CFS_BANDWIDTH */ 5809 5810 /************************************************** 5811 * CFS operations on tasks: 5812 */ 5813 5814 #ifdef CONFIG_SCHED_HRTICK 5815 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5816 { 5817 struct sched_entity *se = &p->se; 5818 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5819 5820 SCHED_WARN_ON(task_rq(p) != rq); 5821 5822 if (rq->cfs.h_nr_running > 1) { 5823 u64 slice = sched_slice(cfs_rq, se); 5824 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5825 s64 delta = slice - ran; 5826 5827 if (delta < 0) { 5828 if (task_current(rq, p)) 5829 resched_curr(rq); 5830 return; 5831 } 5832 hrtick_start(rq, delta); 5833 } 5834 } 5835 5836 /* 5837 * called from enqueue/dequeue and updates the hrtick when the 5838 * current task is from our class and nr_running is low enough 5839 * to matter. 5840 */ 5841 static void hrtick_update(struct rq *rq) 5842 { 5843 struct task_struct *curr = rq->curr; 5844 5845 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 5846 return; 5847 5848 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5849 hrtick_start_fair(rq, curr); 5850 } 5851 #else /* !CONFIG_SCHED_HRTICK */ 5852 static inline void 5853 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5854 { 5855 } 5856 5857 static inline void hrtick_update(struct rq *rq) 5858 { 5859 } 5860 #endif 5861 5862 #ifdef CONFIG_SMP 5863 static inline bool cpu_overutilized(int cpu) 5864 { 5865 return !fits_capacity(cpu_util_cfs(cpu), capacity_of(cpu)); 5866 } 5867 5868 static inline void update_overutilized_status(struct rq *rq) 5869 { 5870 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5871 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5872 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5873 } 5874 } 5875 #else 5876 static inline void update_overutilized_status(struct rq *rq) { } 5877 #endif 5878 5879 /* Runqueue only has SCHED_IDLE tasks enqueued */ 5880 static int sched_idle_rq(struct rq *rq) 5881 { 5882 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 5883 rq->nr_running); 5884 } 5885 5886 /* 5887 * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use 5888 * of idle_nr_running, which does not consider idle descendants of normal 5889 * entities. 5890 */ 5891 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq) 5892 { 5893 return cfs_rq->nr_running && 5894 cfs_rq->nr_running == cfs_rq->idle_nr_running; 5895 } 5896 5897 #ifdef CONFIG_SMP 5898 static int sched_idle_cpu(int cpu) 5899 { 5900 return sched_idle_rq(cpu_rq(cpu)); 5901 } 5902 #endif 5903 5904 /* 5905 * The enqueue_task method is called before nr_running is 5906 * increased. Here we update the fair scheduling stats and 5907 * then put the task into the rbtree: 5908 */ 5909 static void 5910 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5911 { 5912 struct cfs_rq *cfs_rq; 5913 struct sched_entity *se = &p->se; 5914 int idle_h_nr_running = task_has_idle_policy(p); 5915 int task_new = !(flags & ENQUEUE_WAKEUP); 5916 5917 /* 5918 * The code below (indirectly) updates schedutil which looks at 5919 * the cfs_rq utilization to select a frequency. 5920 * Let's add the task's estimated utilization to the cfs_rq's 5921 * estimated utilization, before we update schedutil. 5922 */ 5923 util_est_enqueue(&rq->cfs, p); 5924 5925 /* 5926 * If in_iowait is set, the code below may not trigger any cpufreq 5927 * utilization updates, so do it here explicitly with the IOWAIT flag 5928 * passed. 5929 */ 5930 if (p->in_iowait) 5931 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5932 5933 for_each_sched_entity(se) { 5934 if (se->on_rq) 5935 break; 5936 cfs_rq = cfs_rq_of(se); 5937 enqueue_entity(cfs_rq, se, flags); 5938 5939 cfs_rq->h_nr_running++; 5940 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5941 5942 if (cfs_rq_is_idle(cfs_rq)) 5943 idle_h_nr_running = 1; 5944 5945 /* end evaluation on encountering a throttled cfs_rq */ 5946 if (cfs_rq_throttled(cfs_rq)) 5947 goto enqueue_throttle; 5948 5949 flags = ENQUEUE_WAKEUP; 5950 } 5951 5952 for_each_sched_entity(se) { 5953 cfs_rq = cfs_rq_of(se); 5954 5955 update_load_avg(cfs_rq, se, UPDATE_TG); 5956 se_update_runnable(se); 5957 update_cfs_group(se); 5958 5959 cfs_rq->h_nr_running++; 5960 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5961 5962 if (cfs_rq_is_idle(cfs_rq)) 5963 idle_h_nr_running = 1; 5964 5965 /* end evaluation on encountering a throttled cfs_rq */ 5966 if (cfs_rq_throttled(cfs_rq)) 5967 goto enqueue_throttle; 5968 } 5969 5970 /* At this point se is NULL and we are at root level*/ 5971 add_nr_running(rq, 1); 5972 5973 /* 5974 * Since new tasks are assigned an initial util_avg equal to 5975 * half of the spare capacity of their CPU, tiny tasks have the 5976 * ability to cross the overutilized threshold, which will 5977 * result in the load balancer ruining all the task placement 5978 * done by EAS. As a way to mitigate that effect, do not account 5979 * for the first enqueue operation of new tasks during the 5980 * overutilized flag detection. 5981 * 5982 * A better way of solving this problem would be to wait for 5983 * the PELT signals of tasks to converge before taking them 5984 * into account, but that is not straightforward to implement, 5985 * and the following generally works well enough in practice. 5986 */ 5987 if (!task_new) 5988 update_overutilized_status(rq); 5989 5990 enqueue_throttle: 5991 assert_list_leaf_cfs_rq(rq); 5992 5993 hrtick_update(rq); 5994 } 5995 5996 static void set_next_buddy(struct sched_entity *se); 5997 5998 /* 5999 * The dequeue_task method is called before nr_running is 6000 * decreased. We remove the task from the rbtree and 6001 * update the fair scheduling stats: 6002 */ 6003 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6004 { 6005 struct cfs_rq *cfs_rq; 6006 struct sched_entity *se = &p->se; 6007 int task_sleep = flags & DEQUEUE_SLEEP; 6008 int idle_h_nr_running = task_has_idle_policy(p); 6009 bool was_sched_idle = sched_idle_rq(rq); 6010 6011 util_est_dequeue(&rq->cfs, p); 6012 6013 for_each_sched_entity(se) { 6014 cfs_rq = cfs_rq_of(se); 6015 dequeue_entity(cfs_rq, se, flags); 6016 6017 cfs_rq->h_nr_running--; 6018 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6019 6020 if (cfs_rq_is_idle(cfs_rq)) 6021 idle_h_nr_running = 1; 6022 6023 /* end evaluation on encountering a throttled cfs_rq */ 6024 if (cfs_rq_throttled(cfs_rq)) 6025 goto dequeue_throttle; 6026 6027 /* Don't dequeue parent if it has other entities besides us */ 6028 if (cfs_rq->load.weight) { 6029 /* Avoid re-evaluating load for this entity: */ 6030 se = parent_entity(se); 6031 /* 6032 * Bias pick_next to pick a task from this cfs_rq, as 6033 * p is sleeping when it is within its sched_slice. 6034 */ 6035 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 6036 set_next_buddy(se); 6037 break; 6038 } 6039 flags |= DEQUEUE_SLEEP; 6040 } 6041 6042 for_each_sched_entity(se) { 6043 cfs_rq = cfs_rq_of(se); 6044 6045 update_load_avg(cfs_rq, se, UPDATE_TG); 6046 se_update_runnable(se); 6047 update_cfs_group(se); 6048 6049 cfs_rq->h_nr_running--; 6050 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6051 6052 if (cfs_rq_is_idle(cfs_rq)) 6053 idle_h_nr_running = 1; 6054 6055 /* end evaluation on encountering a throttled cfs_rq */ 6056 if (cfs_rq_throttled(cfs_rq)) 6057 goto dequeue_throttle; 6058 6059 } 6060 6061 /* At this point se is NULL and we are at root level*/ 6062 sub_nr_running(rq, 1); 6063 6064 /* balance early to pull high priority tasks */ 6065 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 6066 rq->next_balance = jiffies; 6067 6068 dequeue_throttle: 6069 util_est_update(&rq->cfs, p, task_sleep); 6070 hrtick_update(rq); 6071 } 6072 6073 #ifdef CONFIG_SMP 6074 6075 /* Working cpumask for: load_balance, load_balance_newidle. */ 6076 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6077 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 6078 6079 #ifdef CONFIG_NO_HZ_COMMON 6080 6081 static struct { 6082 cpumask_var_t idle_cpus_mask; 6083 atomic_t nr_cpus; 6084 int has_blocked; /* Idle CPUS has blocked load */ 6085 int needs_update; /* Newly idle CPUs need their next_balance collated */ 6086 unsigned long next_balance; /* in jiffy units */ 6087 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 6088 } nohz ____cacheline_aligned; 6089 6090 #endif /* CONFIG_NO_HZ_COMMON */ 6091 6092 static unsigned long cpu_load(struct rq *rq) 6093 { 6094 return cfs_rq_load_avg(&rq->cfs); 6095 } 6096 6097 /* 6098 * cpu_load_without - compute CPU load without any contributions from *p 6099 * @cpu: the CPU which load is requested 6100 * @p: the task which load should be discounted 6101 * 6102 * The load of a CPU is defined by the load of tasks currently enqueued on that 6103 * CPU as well as tasks which are currently sleeping after an execution on that 6104 * CPU. 6105 * 6106 * This method returns the load of the specified CPU by discounting the load of 6107 * the specified task, whenever the task is currently contributing to the CPU 6108 * load. 6109 */ 6110 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 6111 { 6112 struct cfs_rq *cfs_rq; 6113 unsigned int load; 6114 6115 /* Task has no contribution or is new */ 6116 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6117 return cpu_load(rq); 6118 6119 cfs_rq = &rq->cfs; 6120 load = READ_ONCE(cfs_rq->avg.load_avg); 6121 6122 /* Discount task's util from CPU's util */ 6123 lsub_positive(&load, task_h_load(p)); 6124 6125 return load; 6126 } 6127 6128 static unsigned long cpu_runnable(struct rq *rq) 6129 { 6130 return cfs_rq_runnable_avg(&rq->cfs); 6131 } 6132 6133 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 6134 { 6135 struct cfs_rq *cfs_rq; 6136 unsigned int runnable; 6137 6138 /* Task has no contribution or is new */ 6139 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6140 return cpu_runnable(rq); 6141 6142 cfs_rq = &rq->cfs; 6143 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 6144 6145 /* Discount task's runnable from CPU's runnable */ 6146 lsub_positive(&runnable, p->se.avg.runnable_avg); 6147 6148 return runnable; 6149 } 6150 6151 static unsigned long capacity_of(int cpu) 6152 { 6153 return cpu_rq(cpu)->cpu_capacity; 6154 } 6155 6156 static void record_wakee(struct task_struct *p) 6157 { 6158 /* 6159 * Only decay a single time; tasks that have less then 1 wakeup per 6160 * jiffy will not have built up many flips. 6161 */ 6162 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 6163 current->wakee_flips >>= 1; 6164 current->wakee_flip_decay_ts = jiffies; 6165 } 6166 6167 if (current->last_wakee != p) { 6168 current->last_wakee = p; 6169 current->wakee_flips++; 6170 } 6171 } 6172 6173 /* 6174 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 6175 * 6176 * A waker of many should wake a different task than the one last awakened 6177 * at a frequency roughly N times higher than one of its wakees. 6178 * 6179 * In order to determine whether we should let the load spread vs consolidating 6180 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 6181 * partner, and a factor of lls_size higher frequency in the other. 6182 * 6183 * With both conditions met, we can be relatively sure that the relationship is 6184 * non-monogamous, with partner count exceeding socket size. 6185 * 6186 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 6187 * whatever is irrelevant, spread criteria is apparent partner count exceeds 6188 * socket size. 6189 */ 6190 static int wake_wide(struct task_struct *p) 6191 { 6192 unsigned int master = current->wakee_flips; 6193 unsigned int slave = p->wakee_flips; 6194 int factor = __this_cpu_read(sd_llc_size); 6195 6196 if (master < slave) 6197 swap(master, slave); 6198 if (slave < factor || master < slave * factor) 6199 return 0; 6200 return 1; 6201 } 6202 6203 /* 6204 * The purpose of wake_affine() is to quickly determine on which CPU we can run 6205 * soonest. For the purpose of speed we only consider the waking and previous 6206 * CPU. 6207 * 6208 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 6209 * cache-affine and is (or will be) idle. 6210 * 6211 * wake_affine_weight() - considers the weight to reflect the average 6212 * scheduling latency of the CPUs. This seems to work 6213 * for the overloaded case. 6214 */ 6215 static int 6216 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 6217 { 6218 /* 6219 * If this_cpu is idle, it implies the wakeup is from interrupt 6220 * context. Only allow the move if cache is shared. Otherwise an 6221 * interrupt intensive workload could force all tasks onto one 6222 * node depending on the IO topology or IRQ affinity settings. 6223 * 6224 * If the prev_cpu is idle and cache affine then avoid a migration. 6225 * There is no guarantee that the cache hot data from an interrupt 6226 * is more important than cache hot data on the prev_cpu and from 6227 * a cpufreq perspective, it's better to have higher utilisation 6228 * on one CPU. 6229 */ 6230 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 6231 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 6232 6233 if (sync && cpu_rq(this_cpu)->nr_running == 1) 6234 return this_cpu; 6235 6236 if (available_idle_cpu(prev_cpu)) 6237 return prev_cpu; 6238 6239 return nr_cpumask_bits; 6240 } 6241 6242 static int 6243 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 6244 int this_cpu, int prev_cpu, int sync) 6245 { 6246 s64 this_eff_load, prev_eff_load; 6247 unsigned long task_load; 6248 6249 this_eff_load = cpu_load(cpu_rq(this_cpu)); 6250 6251 if (sync) { 6252 unsigned long current_load = task_h_load(current); 6253 6254 if (current_load > this_eff_load) 6255 return this_cpu; 6256 6257 this_eff_load -= current_load; 6258 } 6259 6260 task_load = task_h_load(p); 6261 6262 this_eff_load += task_load; 6263 if (sched_feat(WA_BIAS)) 6264 this_eff_load *= 100; 6265 this_eff_load *= capacity_of(prev_cpu); 6266 6267 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 6268 prev_eff_load -= task_load; 6269 if (sched_feat(WA_BIAS)) 6270 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 6271 prev_eff_load *= capacity_of(this_cpu); 6272 6273 /* 6274 * If sync, adjust the weight of prev_eff_load such that if 6275 * prev_eff == this_eff that select_idle_sibling() will consider 6276 * stacking the wakee on top of the waker if no other CPU is 6277 * idle. 6278 */ 6279 if (sync) 6280 prev_eff_load += 1; 6281 6282 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 6283 } 6284 6285 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 6286 int this_cpu, int prev_cpu, int sync) 6287 { 6288 int target = nr_cpumask_bits; 6289 6290 if (sched_feat(WA_IDLE)) 6291 target = wake_affine_idle(this_cpu, prev_cpu, sync); 6292 6293 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 6294 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 6295 6296 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 6297 if (target == nr_cpumask_bits) 6298 return prev_cpu; 6299 6300 schedstat_inc(sd->ttwu_move_affine); 6301 schedstat_inc(p->stats.nr_wakeups_affine); 6302 return target; 6303 } 6304 6305 static struct sched_group * 6306 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 6307 6308 /* 6309 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 6310 */ 6311 static int 6312 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 6313 { 6314 unsigned long load, min_load = ULONG_MAX; 6315 unsigned int min_exit_latency = UINT_MAX; 6316 u64 latest_idle_timestamp = 0; 6317 int least_loaded_cpu = this_cpu; 6318 int shallowest_idle_cpu = -1; 6319 int i; 6320 6321 /* Check if we have any choice: */ 6322 if (group->group_weight == 1) 6323 return cpumask_first(sched_group_span(group)); 6324 6325 /* Traverse only the allowed CPUs */ 6326 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 6327 struct rq *rq = cpu_rq(i); 6328 6329 if (!sched_core_cookie_match(rq, p)) 6330 continue; 6331 6332 if (sched_idle_cpu(i)) 6333 return i; 6334 6335 if (available_idle_cpu(i)) { 6336 struct cpuidle_state *idle = idle_get_state(rq); 6337 if (idle && idle->exit_latency < min_exit_latency) { 6338 /* 6339 * We give priority to a CPU whose idle state 6340 * has the smallest exit latency irrespective 6341 * of any idle timestamp. 6342 */ 6343 min_exit_latency = idle->exit_latency; 6344 latest_idle_timestamp = rq->idle_stamp; 6345 shallowest_idle_cpu = i; 6346 } else if ((!idle || idle->exit_latency == min_exit_latency) && 6347 rq->idle_stamp > latest_idle_timestamp) { 6348 /* 6349 * If equal or no active idle state, then 6350 * the most recently idled CPU might have 6351 * a warmer cache. 6352 */ 6353 latest_idle_timestamp = rq->idle_stamp; 6354 shallowest_idle_cpu = i; 6355 } 6356 } else if (shallowest_idle_cpu == -1) { 6357 load = cpu_load(cpu_rq(i)); 6358 if (load < min_load) { 6359 min_load = load; 6360 least_loaded_cpu = i; 6361 } 6362 } 6363 } 6364 6365 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 6366 } 6367 6368 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 6369 int cpu, int prev_cpu, int sd_flag) 6370 { 6371 int new_cpu = cpu; 6372 6373 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 6374 return prev_cpu; 6375 6376 /* 6377 * We need task's util for cpu_util_without, sync it up to 6378 * prev_cpu's last_update_time. 6379 */ 6380 if (!(sd_flag & SD_BALANCE_FORK)) 6381 sync_entity_load_avg(&p->se); 6382 6383 while (sd) { 6384 struct sched_group *group; 6385 struct sched_domain *tmp; 6386 int weight; 6387 6388 if (!(sd->flags & sd_flag)) { 6389 sd = sd->child; 6390 continue; 6391 } 6392 6393 group = find_idlest_group(sd, p, cpu); 6394 if (!group) { 6395 sd = sd->child; 6396 continue; 6397 } 6398 6399 new_cpu = find_idlest_group_cpu(group, p, cpu); 6400 if (new_cpu == cpu) { 6401 /* Now try balancing at a lower domain level of 'cpu': */ 6402 sd = sd->child; 6403 continue; 6404 } 6405 6406 /* Now try balancing at a lower domain level of 'new_cpu': */ 6407 cpu = new_cpu; 6408 weight = sd->span_weight; 6409 sd = NULL; 6410 for_each_domain(cpu, tmp) { 6411 if (weight <= tmp->span_weight) 6412 break; 6413 if (tmp->flags & sd_flag) 6414 sd = tmp; 6415 } 6416 } 6417 6418 return new_cpu; 6419 } 6420 6421 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 6422 { 6423 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 6424 sched_cpu_cookie_match(cpu_rq(cpu), p)) 6425 return cpu; 6426 6427 return -1; 6428 } 6429 6430 #ifdef CONFIG_SCHED_SMT 6431 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6432 EXPORT_SYMBOL_GPL(sched_smt_present); 6433 6434 static inline void set_idle_cores(int cpu, int val) 6435 { 6436 struct sched_domain_shared *sds; 6437 6438 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6439 if (sds) 6440 WRITE_ONCE(sds->has_idle_cores, val); 6441 } 6442 6443 static inline bool test_idle_cores(int cpu) 6444 { 6445 struct sched_domain_shared *sds; 6446 6447 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6448 if (sds) 6449 return READ_ONCE(sds->has_idle_cores); 6450 6451 return false; 6452 } 6453 6454 /* 6455 * Scans the local SMT mask to see if the entire core is idle, and records this 6456 * information in sd_llc_shared->has_idle_cores. 6457 * 6458 * Since SMT siblings share all cache levels, inspecting this limited remote 6459 * state should be fairly cheap. 6460 */ 6461 void __update_idle_core(struct rq *rq) 6462 { 6463 int core = cpu_of(rq); 6464 int cpu; 6465 6466 rcu_read_lock(); 6467 if (test_idle_cores(core)) 6468 goto unlock; 6469 6470 for_each_cpu(cpu, cpu_smt_mask(core)) { 6471 if (cpu == core) 6472 continue; 6473 6474 if (!available_idle_cpu(cpu)) 6475 goto unlock; 6476 } 6477 6478 set_idle_cores(core, 1); 6479 unlock: 6480 rcu_read_unlock(); 6481 } 6482 6483 /* 6484 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6485 * there are no idle cores left in the system; tracked through 6486 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6487 */ 6488 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6489 { 6490 bool idle = true; 6491 int cpu; 6492 6493 for_each_cpu(cpu, cpu_smt_mask(core)) { 6494 if (!available_idle_cpu(cpu)) { 6495 idle = false; 6496 if (*idle_cpu == -1) { 6497 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 6498 *idle_cpu = cpu; 6499 break; 6500 } 6501 continue; 6502 } 6503 break; 6504 } 6505 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 6506 *idle_cpu = cpu; 6507 } 6508 6509 if (idle) 6510 return core; 6511 6512 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 6513 return -1; 6514 } 6515 6516 /* 6517 * Scan the local SMT mask for idle CPUs. 6518 */ 6519 static int select_idle_smt(struct task_struct *p, int target) 6520 { 6521 int cpu; 6522 6523 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 6524 if (cpu == target) 6525 continue; 6526 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6527 return cpu; 6528 } 6529 6530 return -1; 6531 } 6532 6533 #else /* CONFIG_SCHED_SMT */ 6534 6535 static inline void set_idle_cores(int cpu, int val) 6536 { 6537 } 6538 6539 static inline bool test_idle_cores(int cpu) 6540 { 6541 return false; 6542 } 6543 6544 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6545 { 6546 return __select_idle_cpu(core, p); 6547 } 6548 6549 static inline int select_idle_smt(struct task_struct *p, int target) 6550 { 6551 return -1; 6552 } 6553 6554 #endif /* CONFIG_SCHED_SMT */ 6555 6556 /* 6557 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6558 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6559 * average idle time for this rq (as found in rq->avg_idle). 6560 */ 6561 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 6562 { 6563 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 6564 int i, cpu, idle_cpu = -1, nr = INT_MAX; 6565 struct sched_domain_shared *sd_share; 6566 struct rq *this_rq = this_rq(); 6567 int this = smp_processor_id(); 6568 struct sched_domain *this_sd = NULL; 6569 u64 time = 0; 6570 6571 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6572 6573 if (sched_feat(SIS_PROP) && !has_idle_core) { 6574 u64 avg_cost, avg_idle, span_avg; 6575 unsigned long now = jiffies; 6576 6577 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6578 if (!this_sd) 6579 return -1; 6580 6581 /* 6582 * If we're busy, the assumption that the last idle period 6583 * predicts the future is flawed; age away the remaining 6584 * predicted idle time. 6585 */ 6586 if (unlikely(this_rq->wake_stamp < now)) { 6587 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) { 6588 this_rq->wake_stamp++; 6589 this_rq->wake_avg_idle >>= 1; 6590 } 6591 } 6592 6593 avg_idle = this_rq->wake_avg_idle; 6594 avg_cost = this_sd->avg_scan_cost + 1; 6595 6596 span_avg = sd->span_weight * avg_idle; 6597 if (span_avg > 4*avg_cost) 6598 nr = div_u64(span_avg, avg_cost); 6599 else 6600 nr = 4; 6601 6602 time = cpu_clock(this); 6603 } 6604 6605 if (sched_feat(SIS_UTIL)) { 6606 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 6607 if (sd_share) { 6608 /* because !--nr is the condition to stop scan */ 6609 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 6610 /* overloaded LLC is unlikely to have idle cpu/core */ 6611 if (nr == 1) 6612 return -1; 6613 } 6614 } 6615 6616 for_each_cpu_wrap(cpu, cpus, target + 1) { 6617 if (has_idle_core) { 6618 i = select_idle_core(p, cpu, cpus, &idle_cpu); 6619 if ((unsigned int)i < nr_cpumask_bits) 6620 return i; 6621 6622 } else { 6623 if (!--nr) 6624 return -1; 6625 idle_cpu = __select_idle_cpu(cpu, p); 6626 if ((unsigned int)idle_cpu < nr_cpumask_bits) 6627 break; 6628 } 6629 } 6630 6631 if (has_idle_core) 6632 set_idle_cores(target, false); 6633 6634 if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) { 6635 time = cpu_clock(this) - time; 6636 6637 /* 6638 * Account for the scan cost of wakeups against the average 6639 * idle time. 6640 */ 6641 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time); 6642 6643 update_avg(&this_sd->avg_scan_cost, time); 6644 } 6645 6646 return idle_cpu; 6647 } 6648 6649 /* 6650 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 6651 * the task fits. If no CPU is big enough, but there are idle ones, try to 6652 * maximize capacity. 6653 */ 6654 static int 6655 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 6656 { 6657 unsigned long task_util, best_cap = 0; 6658 int cpu, best_cpu = -1; 6659 struct cpumask *cpus; 6660 6661 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 6662 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6663 6664 task_util = uclamp_task_util(p); 6665 6666 for_each_cpu_wrap(cpu, cpus, target) { 6667 unsigned long cpu_cap = capacity_of(cpu); 6668 6669 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 6670 continue; 6671 if (fits_capacity(task_util, cpu_cap)) 6672 return cpu; 6673 6674 if (cpu_cap > best_cap) { 6675 best_cap = cpu_cap; 6676 best_cpu = cpu; 6677 } 6678 } 6679 6680 return best_cpu; 6681 } 6682 6683 static inline bool asym_fits_capacity(unsigned long task_util, int cpu) 6684 { 6685 if (sched_asym_cpucap_active()) 6686 return fits_capacity(task_util, capacity_of(cpu)); 6687 6688 return true; 6689 } 6690 6691 /* 6692 * Try and locate an idle core/thread in the LLC cache domain. 6693 */ 6694 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6695 { 6696 bool has_idle_core = false; 6697 struct sched_domain *sd; 6698 unsigned long task_util; 6699 int i, recent_used_cpu; 6700 6701 /* 6702 * On asymmetric system, update task utilization because we will check 6703 * that the task fits with cpu's capacity. 6704 */ 6705 if (sched_asym_cpucap_active()) { 6706 sync_entity_load_avg(&p->se); 6707 task_util = uclamp_task_util(p); 6708 } 6709 6710 /* 6711 * per-cpu select_rq_mask usage 6712 */ 6713 lockdep_assert_irqs_disabled(); 6714 6715 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 6716 asym_fits_capacity(task_util, target)) 6717 return target; 6718 6719 /* 6720 * If the previous CPU is cache affine and idle, don't be stupid: 6721 */ 6722 if (prev != target && cpus_share_cache(prev, target) && 6723 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 6724 asym_fits_capacity(task_util, prev)) 6725 return prev; 6726 6727 /* 6728 * Allow a per-cpu kthread to stack with the wakee if the 6729 * kworker thread and the tasks previous CPUs are the same. 6730 * The assumption is that the wakee queued work for the 6731 * per-cpu kthread that is now complete and the wakeup is 6732 * essentially a sync wakeup. An obvious example of this 6733 * pattern is IO completions. 6734 */ 6735 if (is_per_cpu_kthread(current) && 6736 in_task() && 6737 prev == smp_processor_id() && 6738 this_rq()->nr_running <= 1 && 6739 asym_fits_capacity(task_util, prev)) { 6740 return prev; 6741 } 6742 6743 /* Check a recently used CPU as a potential idle candidate: */ 6744 recent_used_cpu = p->recent_used_cpu; 6745 p->recent_used_cpu = prev; 6746 if (recent_used_cpu != prev && 6747 recent_used_cpu != target && 6748 cpus_share_cache(recent_used_cpu, target) && 6749 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 6750 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) && 6751 asym_fits_capacity(task_util, recent_used_cpu)) { 6752 return recent_used_cpu; 6753 } 6754 6755 /* 6756 * For asymmetric CPU capacity systems, our domain of interest is 6757 * sd_asym_cpucapacity rather than sd_llc. 6758 */ 6759 if (sched_asym_cpucap_active()) { 6760 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 6761 /* 6762 * On an asymmetric CPU capacity system where an exclusive 6763 * cpuset defines a symmetric island (i.e. one unique 6764 * capacity_orig value through the cpuset), the key will be set 6765 * but the CPUs within that cpuset will not have a domain with 6766 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 6767 * capacity path. 6768 */ 6769 if (sd) { 6770 i = select_idle_capacity(p, sd, target); 6771 return ((unsigned)i < nr_cpumask_bits) ? i : target; 6772 } 6773 } 6774 6775 sd = rcu_dereference(per_cpu(sd_llc, target)); 6776 if (!sd) 6777 return target; 6778 6779 if (sched_smt_active()) { 6780 has_idle_core = test_idle_cores(target); 6781 6782 if (!has_idle_core && cpus_share_cache(prev, target)) { 6783 i = select_idle_smt(p, prev); 6784 if ((unsigned int)i < nr_cpumask_bits) 6785 return i; 6786 } 6787 } 6788 6789 i = select_idle_cpu(p, sd, has_idle_core, target); 6790 if ((unsigned)i < nr_cpumask_bits) 6791 return i; 6792 6793 return target; 6794 } 6795 6796 /* 6797 * Predicts what cpu_util(@cpu) would return if @p was removed from @cpu 6798 * (@dst_cpu = -1) or migrated to @dst_cpu. 6799 */ 6800 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6801 { 6802 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6803 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 6804 6805 /* 6806 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 6807 * contribution. If @p migrates from another CPU to @cpu add its 6808 * contribution. In all the other cases @cpu is not impacted by the 6809 * migration so its util_avg is already correct. 6810 */ 6811 if (task_cpu(p) == cpu && dst_cpu != cpu) 6812 lsub_positive(&util, task_util(p)); 6813 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6814 util += task_util(p); 6815 6816 if (sched_feat(UTIL_EST)) { 6817 unsigned long util_est; 6818 6819 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6820 6821 /* 6822 * During wake-up @p isn't enqueued yet and doesn't contribute 6823 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued. 6824 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 6825 * has been enqueued. 6826 * 6827 * During exec (@dst_cpu = -1) @p is enqueued and does 6828 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued. 6829 * Remove it to "simulate" cpu_util without @p's contribution. 6830 * 6831 * Despite the task_on_rq_queued(@p) check there is still a 6832 * small window for a possible race when an exec 6833 * select_task_rq_fair() races with LB's detach_task(). 6834 * 6835 * detach_task() 6836 * deactivate_task() 6837 * p->on_rq = TASK_ON_RQ_MIGRATING; 6838 * -------------------------------- A 6839 * dequeue_task() \ 6840 * dequeue_task_fair() + Race Time 6841 * util_est_dequeue() / 6842 * -------------------------------- B 6843 * 6844 * The additional check "current == p" is required to further 6845 * reduce the race window. 6846 */ 6847 if (dst_cpu == cpu) 6848 util_est += _task_util_est(p); 6849 else if (unlikely(task_on_rq_queued(p) || current == p)) 6850 lsub_positive(&util_est, _task_util_est(p)); 6851 6852 util = max(util, util_est); 6853 } 6854 6855 return min(util, capacity_orig_of(cpu)); 6856 } 6857 6858 /* 6859 * cpu_util_without: compute cpu utilization without any contributions from *p 6860 * @cpu: the CPU which utilization is requested 6861 * @p: the task which utilization should be discounted 6862 * 6863 * The utilization of a CPU is defined by the utilization of tasks currently 6864 * enqueued on that CPU as well as tasks which are currently sleeping after an 6865 * execution on that CPU. 6866 * 6867 * This method returns the utilization of the specified CPU by discounting the 6868 * utilization of the specified task, whenever the task is currently 6869 * contributing to the CPU utilization. 6870 */ 6871 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6872 { 6873 /* Task has no contribution or is new */ 6874 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6875 return cpu_util_cfs(cpu); 6876 6877 return cpu_util_next(cpu, p, -1); 6878 } 6879 6880 /* 6881 * energy_env - Utilization landscape for energy estimation. 6882 * @task_busy_time: Utilization contribution by the task for which we test the 6883 * placement. Given by eenv_task_busy_time(). 6884 * @pd_busy_time: Utilization of the whole perf domain without the task 6885 * contribution. Given by eenv_pd_busy_time(). 6886 * @cpu_cap: Maximum CPU capacity for the perf domain. 6887 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 6888 */ 6889 struct energy_env { 6890 unsigned long task_busy_time; 6891 unsigned long pd_busy_time; 6892 unsigned long cpu_cap; 6893 unsigned long pd_cap; 6894 }; 6895 6896 /* 6897 * Compute the task busy time for compute_energy(). This time cannot be 6898 * injected directly into effective_cpu_util() because of the IRQ scaling. 6899 * The latter only makes sense with the most recent CPUs where the task has 6900 * run. 6901 */ 6902 static inline void eenv_task_busy_time(struct energy_env *eenv, 6903 struct task_struct *p, int prev_cpu) 6904 { 6905 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 6906 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 6907 6908 if (unlikely(irq >= max_cap)) 6909 busy_time = max_cap; 6910 else 6911 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 6912 6913 eenv->task_busy_time = busy_time; 6914 } 6915 6916 /* 6917 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 6918 * utilization for each @pd_cpus, it however doesn't take into account 6919 * clamping since the ratio (utilization / cpu_capacity) is already enough to 6920 * scale the EM reported power consumption at the (eventually clamped) 6921 * cpu_capacity. 6922 * 6923 * The contribution of the task @p for which we want to estimate the 6924 * energy cost is removed (by cpu_util_next()) and must be calculated 6925 * separately (see eenv_task_busy_time). This ensures: 6926 * 6927 * - A stable PD utilization, no matter which CPU of that PD we want to place 6928 * the task on. 6929 * 6930 * - A fair comparison between CPUs as the task contribution (task_util()) 6931 * will always be the same no matter which CPU utilization we rely on 6932 * (util_avg or util_est). 6933 * 6934 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 6935 * exceed @eenv->pd_cap. 6936 */ 6937 static inline void eenv_pd_busy_time(struct energy_env *eenv, 6938 struct cpumask *pd_cpus, 6939 struct task_struct *p) 6940 { 6941 unsigned long busy_time = 0; 6942 int cpu; 6943 6944 for_each_cpu(cpu, pd_cpus) { 6945 unsigned long util = cpu_util_next(cpu, p, -1); 6946 6947 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL); 6948 } 6949 6950 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 6951 } 6952 6953 /* 6954 * Compute the maximum utilization for compute_energy() when the task @p 6955 * is placed on the cpu @dst_cpu. 6956 * 6957 * Returns the maximum utilization among @eenv->cpus. This utilization can't 6958 * exceed @eenv->cpu_cap. 6959 */ 6960 static inline unsigned long 6961 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 6962 struct task_struct *p, int dst_cpu) 6963 { 6964 unsigned long max_util = 0; 6965 int cpu; 6966 6967 for_each_cpu(cpu, pd_cpus) { 6968 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 6969 unsigned long util = cpu_util_next(cpu, p, dst_cpu); 6970 unsigned long cpu_util; 6971 6972 /* 6973 * Performance domain frequency: utilization clamping 6974 * must be considered since it affects the selection 6975 * of the performance domain frequency. 6976 * NOTE: in case RT tasks are running, by default the 6977 * FREQUENCY_UTIL's utilization can be max OPP. 6978 */ 6979 cpu_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk); 6980 max_util = max(max_util, cpu_util); 6981 } 6982 6983 return min(max_util, eenv->cpu_cap); 6984 } 6985 6986 /* 6987 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 6988 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 6989 * contribution is ignored. 6990 */ 6991 static inline unsigned long 6992 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 6993 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 6994 { 6995 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 6996 unsigned long busy_time = eenv->pd_busy_time; 6997 6998 if (dst_cpu >= 0) 6999 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 7000 7001 return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 7002 } 7003 7004 /* 7005 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 7006 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 7007 * spare capacity in each performance domain and uses it as a potential 7008 * candidate to execute the task. Then, it uses the Energy Model to figure 7009 * out which of the CPU candidates is the most energy-efficient. 7010 * 7011 * The rationale for this heuristic is as follows. In a performance domain, 7012 * all the most energy efficient CPU candidates (according to the Energy 7013 * Model) are those for which we'll request a low frequency. When there are 7014 * several CPUs for which the frequency request will be the same, we don't 7015 * have enough data to break the tie between them, because the Energy Model 7016 * only includes active power costs. With this model, if we assume that 7017 * frequency requests follow utilization (e.g. using schedutil), the CPU with 7018 * the maximum spare capacity in a performance domain is guaranteed to be among 7019 * the best candidates of the performance domain. 7020 * 7021 * In practice, it could be preferable from an energy standpoint to pack 7022 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 7023 * but that could also hurt our chances to go cluster idle, and we have no 7024 * ways to tell with the current Energy Model if this is actually a good 7025 * idea or not. So, find_energy_efficient_cpu() basically favors 7026 * cluster-packing, and spreading inside a cluster. That should at least be 7027 * a good thing for latency, and this is consistent with the idea that most 7028 * of the energy savings of EAS come from the asymmetry of the system, and 7029 * not so much from breaking the tie between identical CPUs. That's also the 7030 * reason why EAS is enabled in the topology code only for systems where 7031 * SD_ASYM_CPUCAPACITY is set. 7032 * 7033 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 7034 * they don't have any useful utilization data yet and it's not possible to 7035 * forecast their impact on energy consumption. Consequently, they will be 7036 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 7037 * to be energy-inefficient in some use-cases. The alternative would be to 7038 * bias new tasks towards specific types of CPUs first, or to try to infer 7039 * their util_avg from the parent task, but those heuristics could hurt 7040 * other use-cases too. So, until someone finds a better way to solve this, 7041 * let's keep things simple by re-using the existing slow path. 7042 */ 7043 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 7044 { 7045 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7046 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 7047 struct root_domain *rd = this_rq()->rd; 7048 int cpu, best_energy_cpu, target = -1; 7049 struct sched_domain *sd; 7050 struct perf_domain *pd; 7051 struct energy_env eenv; 7052 7053 rcu_read_lock(); 7054 pd = rcu_dereference(rd->pd); 7055 if (!pd || READ_ONCE(rd->overutilized)) 7056 goto unlock; 7057 7058 /* 7059 * Energy-aware wake-up happens on the lowest sched_domain starting 7060 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 7061 */ 7062 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 7063 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 7064 sd = sd->parent; 7065 if (!sd) 7066 goto unlock; 7067 7068 target = prev_cpu; 7069 7070 sync_entity_load_avg(&p->se); 7071 if (!task_util_est(p)) 7072 goto unlock; 7073 7074 eenv_task_busy_time(&eenv, p, prev_cpu); 7075 7076 for (; pd; pd = pd->next) { 7077 unsigned long cpu_cap, cpu_thermal_cap, util; 7078 unsigned long cur_delta, max_spare_cap = 0; 7079 bool compute_prev_delta = false; 7080 int max_spare_cap_cpu = -1; 7081 unsigned long base_energy; 7082 7083 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 7084 7085 if (cpumask_empty(cpus)) 7086 continue; 7087 7088 /* Account thermal pressure for the energy estimation */ 7089 cpu = cpumask_first(cpus); 7090 cpu_thermal_cap = arch_scale_cpu_capacity(cpu); 7091 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu); 7092 7093 eenv.cpu_cap = cpu_thermal_cap; 7094 eenv.pd_cap = 0; 7095 7096 for_each_cpu(cpu, cpus) { 7097 eenv.pd_cap += cpu_thermal_cap; 7098 7099 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7100 continue; 7101 7102 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 7103 continue; 7104 7105 util = cpu_util_next(cpu, p, cpu); 7106 cpu_cap = capacity_of(cpu); 7107 7108 /* 7109 * Skip CPUs that cannot satisfy the capacity request. 7110 * IOW, placing the task there would make the CPU 7111 * overutilized. Take uclamp into account to see how 7112 * much capacity we can get out of the CPU; this is 7113 * aligned with sched_cpu_util(). 7114 */ 7115 util = uclamp_rq_util_with(cpu_rq(cpu), util, p); 7116 if (!fits_capacity(util, cpu_cap)) 7117 continue; 7118 7119 lsub_positive(&cpu_cap, util); 7120 7121 if (cpu == prev_cpu) { 7122 /* Always use prev_cpu as a candidate. */ 7123 compute_prev_delta = true; 7124 } else if (cpu_cap > max_spare_cap) { 7125 /* 7126 * Find the CPU with the maximum spare capacity 7127 * in the performance domain. 7128 */ 7129 max_spare_cap = cpu_cap; 7130 max_spare_cap_cpu = cpu; 7131 } 7132 } 7133 7134 if (max_spare_cap_cpu < 0 && !compute_prev_delta) 7135 continue; 7136 7137 eenv_pd_busy_time(&eenv, cpus, p); 7138 /* Compute the 'base' energy of the pd, without @p */ 7139 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 7140 7141 /* Evaluate the energy impact of using prev_cpu. */ 7142 if (compute_prev_delta) { 7143 prev_delta = compute_energy(&eenv, pd, cpus, p, 7144 prev_cpu); 7145 /* CPU utilization has changed */ 7146 if (prev_delta < base_energy) 7147 goto unlock; 7148 prev_delta -= base_energy; 7149 best_delta = min(best_delta, prev_delta); 7150 } 7151 7152 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 7153 if (max_spare_cap_cpu >= 0) { 7154 cur_delta = compute_energy(&eenv, pd, cpus, p, 7155 max_spare_cap_cpu); 7156 /* CPU utilization has changed */ 7157 if (cur_delta < base_energy) 7158 goto unlock; 7159 cur_delta -= base_energy; 7160 if (cur_delta < best_delta) { 7161 best_delta = cur_delta; 7162 best_energy_cpu = max_spare_cap_cpu; 7163 } 7164 } 7165 } 7166 rcu_read_unlock(); 7167 7168 if (best_delta < prev_delta) 7169 target = best_energy_cpu; 7170 7171 return target; 7172 7173 unlock: 7174 rcu_read_unlock(); 7175 7176 return target; 7177 } 7178 7179 /* 7180 * select_task_rq_fair: Select target runqueue for the waking task in domains 7181 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 7182 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 7183 * 7184 * Balances load by selecting the idlest CPU in the idlest group, or under 7185 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 7186 * 7187 * Returns the target CPU number. 7188 */ 7189 static int 7190 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 7191 { 7192 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 7193 struct sched_domain *tmp, *sd = NULL; 7194 int cpu = smp_processor_id(); 7195 int new_cpu = prev_cpu; 7196 int want_affine = 0; 7197 /* SD_flags and WF_flags share the first nibble */ 7198 int sd_flag = wake_flags & 0xF; 7199 7200 /* 7201 * required for stable ->cpus_allowed 7202 */ 7203 lockdep_assert_held(&p->pi_lock); 7204 if (wake_flags & WF_TTWU) { 7205 record_wakee(p); 7206 7207 if (sched_energy_enabled()) { 7208 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 7209 if (new_cpu >= 0) 7210 return new_cpu; 7211 new_cpu = prev_cpu; 7212 } 7213 7214 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 7215 } 7216 7217 rcu_read_lock(); 7218 for_each_domain(cpu, tmp) { 7219 /* 7220 * If both 'cpu' and 'prev_cpu' are part of this domain, 7221 * cpu is a valid SD_WAKE_AFFINE target. 7222 */ 7223 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 7224 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 7225 if (cpu != prev_cpu) 7226 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 7227 7228 sd = NULL; /* Prefer wake_affine over balance flags */ 7229 break; 7230 } 7231 7232 /* 7233 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 7234 * usually do not have SD_BALANCE_WAKE set. That means wakeup 7235 * will usually go to the fast path. 7236 */ 7237 if (tmp->flags & sd_flag) 7238 sd = tmp; 7239 else if (!want_affine) 7240 break; 7241 } 7242 7243 if (unlikely(sd)) { 7244 /* Slow path */ 7245 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 7246 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 7247 /* Fast path */ 7248 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 7249 } 7250 rcu_read_unlock(); 7251 7252 return new_cpu; 7253 } 7254 7255 /* 7256 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 7257 * cfs_rq_of(p) references at time of call are still valid and identify the 7258 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 7259 */ 7260 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 7261 { 7262 struct sched_entity *se = &p->se; 7263 7264 /* 7265 * As blocked tasks retain absolute vruntime the migration needs to 7266 * deal with this by subtracting the old and adding the new 7267 * min_vruntime -- the latter is done by enqueue_entity() when placing 7268 * the task on the new runqueue. 7269 */ 7270 if (READ_ONCE(p->__state) == TASK_WAKING) { 7271 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7272 7273 se->vruntime -= u64_u32_load(cfs_rq->min_vruntime); 7274 } 7275 7276 if (!task_on_rq_migrating(p)) { 7277 remove_entity_load_avg(se); 7278 7279 /* 7280 * Here, the task's PELT values have been updated according to 7281 * the current rq's clock. But if that clock hasn't been 7282 * updated in a while, a substantial idle time will be missed, 7283 * leading to an inflation after wake-up on the new rq. 7284 * 7285 * Estimate the missing time from the cfs_rq last_update_time 7286 * and update sched_avg to improve the PELT continuity after 7287 * migration. 7288 */ 7289 migrate_se_pelt_lag(se); 7290 } 7291 7292 /* Tell new CPU we are migrated */ 7293 se->avg.last_update_time = 0; 7294 7295 /* We have migrated, no longer consider this task hot */ 7296 se->exec_start = 0; 7297 7298 update_scan_period(p, new_cpu); 7299 } 7300 7301 static void task_dead_fair(struct task_struct *p) 7302 { 7303 remove_entity_load_avg(&p->se); 7304 } 7305 7306 static int 7307 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7308 { 7309 if (rq->nr_running) 7310 return 1; 7311 7312 return newidle_balance(rq, rf) != 0; 7313 } 7314 #endif /* CONFIG_SMP */ 7315 7316 static unsigned long wakeup_gran(struct sched_entity *se) 7317 { 7318 unsigned long gran = sysctl_sched_wakeup_granularity; 7319 7320 /* 7321 * Since its curr running now, convert the gran from real-time 7322 * to virtual-time in his units. 7323 * 7324 * By using 'se' instead of 'curr' we penalize light tasks, so 7325 * they get preempted easier. That is, if 'se' < 'curr' then 7326 * the resulting gran will be larger, therefore penalizing the 7327 * lighter, if otoh 'se' > 'curr' then the resulting gran will 7328 * be smaller, again penalizing the lighter task. 7329 * 7330 * This is especially important for buddies when the leftmost 7331 * task is higher priority than the buddy. 7332 */ 7333 return calc_delta_fair(gran, se); 7334 } 7335 7336 /* 7337 * Should 'se' preempt 'curr'. 7338 * 7339 * |s1 7340 * |s2 7341 * |s3 7342 * g 7343 * |<--->|c 7344 * 7345 * w(c, s1) = -1 7346 * w(c, s2) = 0 7347 * w(c, s3) = 1 7348 * 7349 */ 7350 static int 7351 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 7352 { 7353 s64 gran, vdiff = curr->vruntime - se->vruntime; 7354 7355 if (vdiff <= 0) 7356 return -1; 7357 7358 gran = wakeup_gran(se); 7359 if (vdiff > gran) 7360 return 1; 7361 7362 return 0; 7363 } 7364 7365 static void set_last_buddy(struct sched_entity *se) 7366 { 7367 for_each_sched_entity(se) { 7368 if (SCHED_WARN_ON(!se->on_rq)) 7369 return; 7370 if (se_is_idle(se)) 7371 return; 7372 cfs_rq_of(se)->last = se; 7373 } 7374 } 7375 7376 static void set_next_buddy(struct sched_entity *se) 7377 { 7378 for_each_sched_entity(se) { 7379 if (SCHED_WARN_ON(!se->on_rq)) 7380 return; 7381 if (se_is_idle(se)) 7382 return; 7383 cfs_rq_of(se)->next = se; 7384 } 7385 } 7386 7387 static void set_skip_buddy(struct sched_entity *se) 7388 { 7389 for_each_sched_entity(se) 7390 cfs_rq_of(se)->skip = se; 7391 } 7392 7393 /* 7394 * Preempt the current task with a newly woken task if needed: 7395 */ 7396 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 7397 { 7398 struct task_struct *curr = rq->curr; 7399 struct sched_entity *se = &curr->se, *pse = &p->se; 7400 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7401 int scale = cfs_rq->nr_running >= sched_nr_latency; 7402 int next_buddy_marked = 0; 7403 int cse_is_idle, pse_is_idle; 7404 7405 if (unlikely(se == pse)) 7406 return; 7407 7408 /* 7409 * This is possible from callers such as attach_tasks(), in which we 7410 * unconditionally check_preempt_curr() after an enqueue (which may have 7411 * lead to a throttle). This both saves work and prevents false 7412 * next-buddy nomination below. 7413 */ 7414 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 7415 return; 7416 7417 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 7418 set_next_buddy(pse); 7419 next_buddy_marked = 1; 7420 } 7421 7422 /* 7423 * We can come here with TIF_NEED_RESCHED already set from new task 7424 * wake up path. 7425 * 7426 * Note: this also catches the edge-case of curr being in a throttled 7427 * group (e.g. via set_curr_task), since update_curr() (in the 7428 * enqueue of curr) will have resulted in resched being set. This 7429 * prevents us from potentially nominating it as a false LAST_BUDDY 7430 * below. 7431 */ 7432 if (test_tsk_need_resched(curr)) 7433 return; 7434 7435 /* Idle tasks are by definition preempted by non-idle tasks. */ 7436 if (unlikely(task_has_idle_policy(curr)) && 7437 likely(!task_has_idle_policy(p))) 7438 goto preempt; 7439 7440 /* 7441 * Batch and idle tasks do not preempt non-idle tasks (their preemption 7442 * is driven by the tick): 7443 */ 7444 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 7445 return; 7446 7447 find_matching_se(&se, &pse); 7448 WARN_ON_ONCE(!pse); 7449 7450 cse_is_idle = se_is_idle(se); 7451 pse_is_idle = se_is_idle(pse); 7452 7453 /* 7454 * Preempt an idle group in favor of a non-idle group (and don't preempt 7455 * in the inverse case). 7456 */ 7457 if (cse_is_idle && !pse_is_idle) 7458 goto preempt; 7459 if (cse_is_idle != pse_is_idle) 7460 return; 7461 7462 update_curr(cfs_rq_of(se)); 7463 if (wakeup_preempt_entity(se, pse) == 1) { 7464 /* 7465 * Bias pick_next to pick the sched entity that is 7466 * triggering this preemption. 7467 */ 7468 if (!next_buddy_marked) 7469 set_next_buddy(pse); 7470 goto preempt; 7471 } 7472 7473 return; 7474 7475 preempt: 7476 resched_curr(rq); 7477 /* 7478 * Only set the backward buddy when the current task is still 7479 * on the rq. This can happen when a wakeup gets interleaved 7480 * with schedule on the ->pre_schedule() or idle_balance() 7481 * point, either of which can * drop the rq lock. 7482 * 7483 * Also, during early boot the idle thread is in the fair class, 7484 * for obvious reasons its a bad idea to schedule back to it. 7485 */ 7486 if (unlikely(!se->on_rq || curr == rq->idle)) 7487 return; 7488 7489 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 7490 set_last_buddy(se); 7491 } 7492 7493 #ifdef CONFIG_SMP 7494 static struct task_struct *pick_task_fair(struct rq *rq) 7495 { 7496 struct sched_entity *se; 7497 struct cfs_rq *cfs_rq; 7498 7499 again: 7500 cfs_rq = &rq->cfs; 7501 if (!cfs_rq->nr_running) 7502 return NULL; 7503 7504 do { 7505 struct sched_entity *curr = cfs_rq->curr; 7506 7507 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 7508 if (curr) { 7509 if (curr->on_rq) 7510 update_curr(cfs_rq); 7511 else 7512 curr = NULL; 7513 7514 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 7515 goto again; 7516 } 7517 7518 se = pick_next_entity(cfs_rq, curr); 7519 cfs_rq = group_cfs_rq(se); 7520 } while (cfs_rq); 7521 7522 return task_of(se); 7523 } 7524 #endif 7525 7526 struct task_struct * 7527 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7528 { 7529 struct cfs_rq *cfs_rq = &rq->cfs; 7530 struct sched_entity *se; 7531 struct task_struct *p; 7532 int new_tasks; 7533 7534 again: 7535 if (!sched_fair_runnable(rq)) 7536 goto idle; 7537 7538 #ifdef CONFIG_FAIR_GROUP_SCHED 7539 if (!prev || prev->sched_class != &fair_sched_class) 7540 goto simple; 7541 7542 /* 7543 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 7544 * likely that a next task is from the same cgroup as the current. 7545 * 7546 * Therefore attempt to avoid putting and setting the entire cgroup 7547 * hierarchy, only change the part that actually changes. 7548 */ 7549 7550 do { 7551 struct sched_entity *curr = cfs_rq->curr; 7552 7553 /* 7554 * Since we got here without doing put_prev_entity() we also 7555 * have to consider cfs_rq->curr. If it is still a runnable 7556 * entity, update_curr() will update its vruntime, otherwise 7557 * forget we've ever seen it. 7558 */ 7559 if (curr) { 7560 if (curr->on_rq) 7561 update_curr(cfs_rq); 7562 else 7563 curr = NULL; 7564 7565 /* 7566 * This call to check_cfs_rq_runtime() will do the 7567 * throttle and dequeue its entity in the parent(s). 7568 * Therefore the nr_running test will indeed 7569 * be correct. 7570 */ 7571 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 7572 cfs_rq = &rq->cfs; 7573 7574 if (!cfs_rq->nr_running) 7575 goto idle; 7576 7577 goto simple; 7578 } 7579 } 7580 7581 se = pick_next_entity(cfs_rq, curr); 7582 cfs_rq = group_cfs_rq(se); 7583 } while (cfs_rq); 7584 7585 p = task_of(se); 7586 7587 /* 7588 * Since we haven't yet done put_prev_entity and if the selected task 7589 * is a different task than we started out with, try and touch the 7590 * least amount of cfs_rqs. 7591 */ 7592 if (prev != p) { 7593 struct sched_entity *pse = &prev->se; 7594 7595 while (!(cfs_rq = is_same_group(se, pse))) { 7596 int se_depth = se->depth; 7597 int pse_depth = pse->depth; 7598 7599 if (se_depth <= pse_depth) { 7600 put_prev_entity(cfs_rq_of(pse), pse); 7601 pse = parent_entity(pse); 7602 } 7603 if (se_depth >= pse_depth) { 7604 set_next_entity(cfs_rq_of(se), se); 7605 se = parent_entity(se); 7606 } 7607 } 7608 7609 put_prev_entity(cfs_rq, pse); 7610 set_next_entity(cfs_rq, se); 7611 } 7612 7613 goto done; 7614 simple: 7615 #endif 7616 if (prev) 7617 put_prev_task(rq, prev); 7618 7619 do { 7620 se = pick_next_entity(cfs_rq, NULL); 7621 set_next_entity(cfs_rq, se); 7622 cfs_rq = group_cfs_rq(se); 7623 } while (cfs_rq); 7624 7625 p = task_of(se); 7626 7627 done: __maybe_unused; 7628 #ifdef CONFIG_SMP 7629 /* 7630 * Move the next running task to the front of 7631 * the list, so our cfs_tasks list becomes MRU 7632 * one. 7633 */ 7634 list_move(&p->se.group_node, &rq->cfs_tasks); 7635 #endif 7636 7637 if (hrtick_enabled_fair(rq)) 7638 hrtick_start_fair(rq, p); 7639 7640 update_misfit_status(p, rq); 7641 7642 return p; 7643 7644 idle: 7645 if (!rf) 7646 return NULL; 7647 7648 new_tasks = newidle_balance(rq, rf); 7649 7650 /* 7651 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 7652 * possible for any higher priority task to appear. In that case we 7653 * must re-start the pick_next_entity() loop. 7654 */ 7655 if (new_tasks < 0) 7656 return RETRY_TASK; 7657 7658 if (new_tasks > 0) 7659 goto again; 7660 7661 /* 7662 * rq is about to be idle, check if we need to update the 7663 * lost_idle_time of clock_pelt 7664 */ 7665 update_idle_rq_clock_pelt(rq); 7666 7667 return NULL; 7668 } 7669 7670 static struct task_struct *__pick_next_task_fair(struct rq *rq) 7671 { 7672 return pick_next_task_fair(rq, NULL, NULL); 7673 } 7674 7675 /* 7676 * Account for a descheduled task: 7677 */ 7678 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7679 { 7680 struct sched_entity *se = &prev->se; 7681 struct cfs_rq *cfs_rq; 7682 7683 for_each_sched_entity(se) { 7684 cfs_rq = cfs_rq_of(se); 7685 put_prev_entity(cfs_rq, se); 7686 } 7687 } 7688 7689 /* 7690 * sched_yield() is very simple 7691 * 7692 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7693 */ 7694 static void yield_task_fair(struct rq *rq) 7695 { 7696 struct task_struct *curr = rq->curr; 7697 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7698 struct sched_entity *se = &curr->se; 7699 7700 /* 7701 * Are we the only task in the tree? 7702 */ 7703 if (unlikely(rq->nr_running == 1)) 7704 return; 7705 7706 clear_buddies(cfs_rq, se); 7707 7708 if (curr->policy != SCHED_BATCH) { 7709 update_rq_clock(rq); 7710 /* 7711 * Update run-time statistics of the 'current'. 7712 */ 7713 update_curr(cfs_rq); 7714 /* 7715 * Tell update_rq_clock() that we've just updated, 7716 * so we don't do microscopic update in schedule() 7717 * and double the fastpath cost. 7718 */ 7719 rq_clock_skip_update(rq); 7720 } 7721 7722 set_skip_buddy(se); 7723 } 7724 7725 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 7726 { 7727 struct sched_entity *se = &p->se; 7728 7729 /* throttled hierarchies are not runnable */ 7730 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7731 return false; 7732 7733 /* Tell the scheduler that we'd really like pse to run next. */ 7734 set_next_buddy(se); 7735 7736 yield_task_fair(rq); 7737 7738 return true; 7739 } 7740 7741 #ifdef CONFIG_SMP 7742 /************************************************** 7743 * Fair scheduling class load-balancing methods. 7744 * 7745 * BASICS 7746 * 7747 * The purpose of load-balancing is to achieve the same basic fairness the 7748 * per-CPU scheduler provides, namely provide a proportional amount of compute 7749 * time to each task. This is expressed in the following equation: 7750 * 7751 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7752 * 7753 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7754 * W_i,0 is defined as: 7755 * 7756 * W_i,0 = \Sum_j w_i,j (2) 7757 * 7758 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7759 * is derived from the nice value as per sched_prio_to_weight[]. 7760 * 7761 * The weight average is an exponential decay average of the instantaneous 7762 * weight: 7763 * 7764 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7765 * 7766 * C_i is the compute capacity of CPU i, typically it is the 7767 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7768 * can also include other factors [XXX]. 7769 * 7770 * To achieve this balance we define a measure of imbalance which follows 7771 * directly from (1): 7772 * 7773 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7774 * 7775 * We them move tasks around to minimize the imbalance. In the continuous 7776 * function space it is obvious this converges, in the discrete case we get 7777 * a few fun cases generally called infeasible weight scenarios. 7778 * 7779 * [XXX expand on: 7780 * - infeasible weights; 7781 * - local vs global optima in the discrete case. ] 7782 * 7783 * 7784 * SCHED DOMAINS 7785 * 7786 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7787 * for all i,j solution, we create a tree of CPUs that follows the hardware 7788 * topology where each level pairs two lower groups (or better). This results 7789 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7790 * tree to only the first of the previous level and we decrease the frequency 7791 * of load-balance at each level inv. proportional to the number of CPUs in 7792 * the groups. 7793 * 7794 * This yields: 7795 * 7796 * log_2 n 1 n 7797 * \Sum { --- * --- * 2^i } = O(n) (5) 7798 * i = 0 2^i 2^i 7799 * `- size of each group 7800 * | | `- number of CPUs doing load-balance 7801 * | `- freq 7802 * `- sum over all levels 7803 * 7804 * Coupled with a limit on how many tasks we can migrate every balance pass, 7805 * this makes (5) the runtime complexity of the balancer. 7806 * 7807 * An important property here is that each CPU is still (indirectly) connected 7808 * to every other CPU in at most O(log n) steps: 7809 * 7810 * The adjacency matrix of the resulting graph is given by: 7811 * 7812 * log_2 n 7813 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7814 * k = 0 7815 * 7816 * And you'll find that: 7817 * 7818 * A^(log_2 n)_i,j != 0 for all i,j (7) 7819 * 7820 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7821 * The task movement gives a factor of O(m), giving a convergence complexity 7822 * of: 7823 * 7824 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7825 * 7826 * 7827 * WORK CONSERVING 7828 * 7829 * In order to avoid CPUs going idle while there's still work to do, new idle 7830 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7831 * tree itself instead of relying on other CPUs to bring it work. 7832 * 7833 * This adds some complexity to both (5) and (8) but it reduces the total idle 7834 * time. 7835 * 7836 * [XXX more?] 7837 * 7838 * 7839 * CGROUPS 7840 * 7841 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7842 * 7843 * s_k,i 7844 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7845 * S_k 7846 * 7847 * Where 7848 * 7849 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7850 * 7851 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7852 * 7853 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7854 * property. 7855 * 7856 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7857 * rewrite all of this once again.] 7858 */ 7859 7860 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7861 7862 enum fbq_type { regular, remote, all }; 7863 7864 /* 7865 * 'group_type' describes the group of CPUs at the moment of load balancing. 7866 * 7867 * The enum is ordered by pulling priority, with the group with lowest priority 7868 * first so the group_type can simply be compared when selecting the busiest 7869 * group. See update_sd_pick_busiest(). 7870 */ 7871 enum group_type { 7872 /* The group has spare capacity that can be used to run more tasks. */ 7873 group_has_spare = 0, 7874 /* 7875 * The group is fully used and the tasks don't compete for more CPU 7876 * cycles. Nevertheless, some tasks might wait before running. 7877 */ 7878 group_fully_busy, 7879 /* 7880 * One task doesn't fit with CPU's capacity and must be migrated to a 7881 * more powerful CPU. 7882 */ 7883 group_misfit_task, 7884 /* 7885 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 7886 * and the task should be migrated to it instead of running on the 7887 * current CPU. 7888 */ 7889 group_asym_packing, 7890 /* 7891 * The tasks' affinity constraints previously prevented the scheduler 7892 * from balancing the load across the system. 7893 */ 7894 group_imbalanced, 7895 /* 7896 * The CPU is overloaded and can't provide expected CPU cycles to all 7897 * tasks. 7898 */ 7899 group_overloaded 7900 }; 7901 7902 enum migration_type { 7903 migrate_load = 0, 7904 migrate_util, 7905 migrate_task, 7906 migrate_misfit 7907 }; 7908 7909 #define LBF_ALL_PINNED 0x01 7910 #define LBF_NEED_BREAK 0x02 7911 #define LBF_DST_PINNED 0x04 7912 #define LBF_SOME_PINNED 0x08 7913 #define LBF_ACTIVE_LB 0x10 7914 7915 struct lb_env { 7916 struct sched_domain *sd; 7917 7918 struct rq *src_rq; 7919 int src_cpu; 7920 7921 int dst_cpu; 7922 struct rq *dst_rq; 7923 7924 struct cpumask *dst_grpmask; 7925 int new_dst_cpu; 7926 enum cpu_idle_type idle; 7927 long imbalance; 7928 /* The set of CPUs under consideration for load-balancing */ 7929 struct cpumask *cpus; 7930 7931 unsigned int flags; 7932 7933 unsigned int loop; 7934 unsigned int loop_break; 7935 unsigned int loop_max; 7936 7937 enum fbq_type fbq_type; 7938 enum migration_type migration_type; 7939 struct list_head tasks; 7940 }; 7941 7942 /* 7943 * Is this task likely cache-hot: 7944 */ 7945 static int task_hot(struct task_struct *p, struct lb_env *env) 7946 { 7947 s64 delta; 7948 7949 lockdep_assert_rq_held(env->src_rq); 7950 7951 if (p->sched_class != &fair_sched_class) 7952 return 0; 7953 7954 if (unlikely(task_has_idle_policy(p))) 7955 return 0; 7956 7957 /* SMT siblings share cache */ 7958 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 7959 return 0; 7960 7961 /* 7962 * Buddy candidates are cache hot: 7963 */ 7964 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7965 (&p->se == cfs_rq_of(&p->se)->next || 7966 &p->se == cfs_rq_of(&p->se)->last)) 7967 return 1; 7968 7969 if (sysctl_sched_migration_cost == -1) 7970 return 1; 7971 7972 /* 7973 * Don't migrate task if the task's cookie does not match 7974 * with the destination CPU's core cookie. 7975 */ 7976 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 7977 return 1; 7978 7979 if (sysctl_sched_migration_cost == 0) 7980 return 0; 7981 7982 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7983 7984 return delta < (s64)sysctl_sched_migration_cost; 7985 } 7986 7987 #ifdef CONFIG_NUMA_BALANCING 7988 /* 7989 * Returns 1, if task migration degrades locality 7990 * Returns 0, if task migration improves locality i.e migration preferred. 7991 * Returns -1, if task migration is not affected by locality. 7992 */ 7993 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7994 { 7995 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7996 unsigned long src_weight, dst_weight; 7997 int src_nid, dst_nid, dist; 7998 7999 if (!static_branch_likely(&sched_numa_balancing)) 8000 return -1; 8001 8002 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 8003 return -1; 8004 8005 src_nid = cpu_to_node(env->src_cpu); 8006 dst_nid = cpu_to_node(env->dst_cpu); 8007 8008 if (src_nid == dst_nid) 8009 return -1; 8010 8011 /* Migrating away from the preferred node is always bad. */ 8012 if (src_nid == p->numa_preferred_nid) { 8013 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 8014 return 1; 8015 else 8016 return -1; 8017 } 8018 8019 /* Encourage migration to the preferred node. */ 8020 if (dst_nid == p->numa_preferred_nid) 8021 return 0; 8022 8023 /* Leaving a core idle is often worse than degrading locality. */ 8024 if (env->idle == CPU_IDLE) 8025 return -1; 8026 8027 dist = node_distance(src_nid, dst_nid); 8028 if (numa_group) { 8029 src_weight = group_weight(p, src_nid, dist); 8030 dst_weight = group_weight(p, dst_nid, dist); 8031 } else { 8032 src_weight = task_weight(p, src_nid, dist); 8033 dst_weight = task_weight(p, dst_nid, dist); 8034 } 8035 8036 return dst_weight < src_weight; 8037 } 8038 8039 #else 8040 static inline int migrate_degrades_locality(struct task_struct *p, 8041 struct lb_env *env) 8042 { 8043 return -1; 8044 } 8045 #endif 8046 8047 /* 8048 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 8049 */ 8050 static 8051 int can_migrate_task(struct task_struct *p, struct lb_env *env) 8052 { 8053 int tsk_cache_hot; 8054 8055 lockdep_assert_rq_held(env->src_rq); 8056 8057 /* 8058 * We do not migrate tasks that are: 8059 * 1) throttled_lb_pair, or 8060 * 2) cannot be migrated to this CPU due to cpus_ptr, or 8061 * 3) running (obviously), or 8062 * 4) are cache-hot on their current CPU. 8063 */ 8064 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 8065 return 0; 8066 8067 /* Disregard pcpu kthreads; they are where they need to be. */ 8068 if (kthread_is_per_cpu(p)) 8069 return 0; 8070 8071 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 8072 int cpu; 8073 8074 schedstat_inc(p->stats.nr_failed_migrations_affine); 8075 8076 env->flags |= LBF_SOME_PINNED; 8077 8078 /* 8079 * Remember if this task can be migrated to any other CPU in 8080 * our sched_group. We may want to revisit it if we couldn't 8081 * meet load balance goals by pulling other tasks on src_cpu. 8082 * 8083 * Avoid computing new_dst_cpu 8084 * - for NEWLY_IDLE 8085 * - if we have already computed one in current iteration 8086 * - if it's an active balance 8087 */ 8088 if (env->idle == CPU_NEWLY_IDLE || 8089 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 8090 return 0; 8091 8092 /* Prevent to re-select dst_cpu via env's CPUs: */ 8093 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 8094 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 8095 env->flags |= LBF_DST_PINNED; 8096 env->new_dst_cpu = cpu; 8097 break; 8098 } 8099 } 8100 8101 return 0; 8102 } 8103 8104 /* Record that we found at least one task that could run on dst_cpu */ 8105 env->flags &= ~LBF_ALL_PINNED; 8106 8107 if (task_on_cpu(env->src_rq, p)) { 8108 schedstat_inc(p->stats.nr_failed_migrations_running); 8109 return 0; 8110 } 8111 8112 /* 8113 * Aggressive migration if: 8114 * 1) active balance 8115 * 2) destination numa is preferred 8116 * 3) task is cache cold, or 8117 * 4) too many balance attempts have failed. 8118 */ 8119 if (env->flags & LBF_ACTIVE_LB) 8120 return 1; 8121 8122 tsk_cache_hot = migrate_degrades_locality(p, env); 8123 if (tsk_cache_hot == -1) 8124 tsk_cache_hot = task_hot(p, env); 8125 8126 if (tsk_cache_hot <= 0 || 8127 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 8128 if (tsk_cache_hot == 1) { 8129 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 8130 schedstat_inc(p->stats.nr_forced_migrations); 8131 } 8132 return 1; 8133 } 8134 8135 schedstat_inc(p->stats.nr_failed_migrations_hot); 8136 return 0; 8137 } 8138 8139 /* 8140 * detach_task() -- detach the task for the migration specified in env 8141 */ 8142 static void detach_task(struct task_struct *p, struct lb_env *env) 8143 { 8144 lockdep_assert_rq_held(env->src_rq); 8145 8146 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 8147 set_task_cpu(p, env->dst_cpu); 8148 } 8149 8150 /* 8151 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 8152 * part of active balancing operations within "domain". 8153 * 8154 * Returns a task if successful and NULL otherwise. 8155 */ 8156 static struct task_struct *detach_one_task(struct lb_env *env) 8157 { 8158 struct task_struct *p; 8159 8160 lockdep_assert_rq_held(env->src_rq); 8161 8162 list_for_each_entry_reverse(p, 8163 &env->src_rq->cfs_tasks, se.group_node) { 8164 if (!can_migrate_task(p, env)) 8165 continue; 8166 8167 detach_task(p, env); 8168 8169 /* 8170 * Right now, this is only the second place where 8171 * lb_gained[env->idle] is updated (other is detach_tasks) 8172 * so we can safely collect stats here rather than 8173 * inside detach_tasks(). 8174 */ 8175 schedstat_inc(env->sd->lb_gained[env->idle]); 8176 return p; 8177 } 8178 return NULL; 8179 } 8180 8181 /* 8182 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 8183 * busiest_rq, as part of a balancing operation within domain "sd". 8184 * 8185 * Returns number of detached tasks if successful and 0 otherwise. 8186 */ 8187 static int detach_tasks(struct lb_env *env) 8188 { 8189 struct list_head *tasks = &env->src_rq->cfs_tasks; 8190 unsigned long util, load; 8191 struct task_struct *p; 8192 int detached = 0; 8193 8194 lockdep_assert_rq_held(env->src_rq); 8195 8196 /* 8197 * Source run queue has been emptied by another CPU, clear 8198 * LBF_ALL_PINNED flag as we will not test any task. 8199 */ 8200 if (env->src_rq->nr_running <= 1) { 8201 env->flags &= ~LBF_ALL_PINNED; 8202 return 0; 8203 } 8204 8205 if (env->imbalance <= 0) 8206 return 0; 8207 8208 while (!list_empty(tasks)) { 8209 /* 8210 * We don't want to steal all, otherwise we may be treated likewise, 8211 * which could at worst lead to a livelock crash. 8212 */ 8213 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 8214 break; 8215 8216 env->loop++; 8217 /* 8218 * We've more or less seen every task there is, call it quits 8219 * unless we haven't found any movable task yet. 8220 */ 8221 if (env->loop > env->loop_max && 8222 !(env->flags & LBF_ALL_PINNED)) 8223 break; 8224 8225 /* take a breather every nr_migrate tasks */ 8226 if (env->loop > env->loop_break) { 8227 env->loop_break += SCHED_NR_MIGRATE_BREAK; 8228 env->flags |= LBF_NEED_BREAK; 8229 break; 8230 } 8231 8232 p = list_last_entry(tasks, struct task_struct, se.group_node); 8233 8234 if (!can_migrate_task(p, env)) 8235 goto next; 8236 8237 switch (env->migration_type) { 8238 case migrate_load: 8239 /* 8240 * Depending of the number of CPUs and tasks and the 8241 * cgroup hierarchy, task_h_load() can return a null 8242 * value. Make sure that env->imbalance decreases 8243 * otherwise detach_tasks() will stop only after 8244 * detaching up to loop_max tasks. 8245 */ 8246 load = max_t(unsigned long, task_h_load(p), 1); 8247 8248 if (sched_feat(LB_MIN) && 8249 load < 16 && !env->sd->nr_balance_failed) 8250 goto next; 8251 8252 /* 8253 * Make sure that we don't migrate too much load. 8254 * Nevertheless, let relax the constraint if 8255 * scheduler fails to find a good waiting task to 8256 * migrate. 8257 */ 8258 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 8259 goto next; 8260 8261 env->imbalance -= load; 8262 break; 8263 8264 case migrate_util: 8265 util = task_util_est(p); 8266 8267 if (util > env->imbalance) 8268 goto next; 8269 8270 env->imbalance -= util; 8271 break; 8272 8273 case migrate_task: 8274 env->imbalance--; 8275 break; 8276 8277 case migrate_misfit: 8278 /* This is not a misfit task */ 8279 if (task_fits_capacity(p, capacity_of(env->src_cpu))) 8280 goto next; 8281 8282 env->imbalance = 0; 8283 break; 8284 } 8285 8286 detach_task(p, env); 8287 list_add(&p->se.group_node, &env->tasks); 8288 8289 detached++; 8290 8291 #ifdef CONFIG_PREEMPTION 8292 /* 8293 * NEWIDLE balancing is a source of latency, so preemptible 8294 * kernels will stop after the first task is detached to minimize 8295 * the critical section. 8296 */ 8297 if (env->idle == CPU_NEWLY_IDLE) 8298 break; 8299 #endif 8300 8301 /* 8302 * We only want to steal up to the prescribed amount of 8303 * load/util/tasks. 8304 */ 8305 if (env->imbalance <= 0) 8306 break; 8307 8308 continue; 8309 next: 8310 list_move(&p->se.group_node, tasks); 8311 } 8312 8313 /* 8314 * Right now, this is one of only two places we collect this stat 8315 * so we can safely collect detach_one_task() stats here rather 8316 * than inside detach_one_task(). 8317 */ 8318 schedstat_add(env->sd->lb_gained[env->idle], detached); 8319 8320 return detached; 8321 } 8322 8323 /* 8324 * attach_task() -- attach the task detached by detach_task() to its new rq. 8325 */ 8326 static void attach_task(struct rq *rq, struct task_struct *p) 8327 { 8328 lockdep_assert_rq_held(rq); 8329 8330 WARN_ON_ONCE(task_rq(p) != rq); 8331 activate_task(rq, p, ENQUEUE_NOCLOCK); 8332 check_preempt_curr(rq, p, 0); 8333 } 8334 8335 /* 8336 * attach_one_task() -- attaches the task returned from detach_one_task() to 8337 * its new rq. 8338 */ 8339 static void attach_one_task(struct rq *rq, struct task_struct *p) 8340 { 8341 struct rq_flags rf; 8342 8343 rq_lock(rq, &rf); 8344 update_rq_clock(rq); 8345 attach_task(rq, p); 8346 rq_unlock(rq, &rf); 8347 } 8348 8349 /* 8350 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 8351 * new rq. 8352 */ 8353 static void attach_tasks(struct lb_env *env) 8354 { 8355 struct list_head *tasks = &env->tasks; 8356 struct task_struct *p; 8357 struct rq_flags rf; 8358 8359 rq_lock(env->dst_rq, &rf); 8360 update_rq_clock(env->dst_rq); 8361 8362 while (!list_empty(tasks)) { 8363 p = list_first_entry(tasks, struct task_struct, se.group_node); 8364 list_del_init(&p->se.group_node); 8365 8366 attach_task(env->dst_rq, p); 8367 } 8368 8369 rq_unlock(env->dst_rq, &rf); 8370 } 8371 8372 #ifdef CONFIG_NO_HZ_COMMON 8373 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 8374 { 8375 if (cfs_rq->avg.load_avg) 8376 return true; 8377 8378 if (cfs_rq->avg.util_avg) 8379 return true; 8380 8381 return false; 8382 } 8383 8384 static inline bool others_have_blocked(struct rq *rq) 8385 { 8386 if (READ_ONCE(rq->avg_rt.util_avg)) 8387 return true; 8388 8389 if (READ_ONCE(rq->avg_dl.util_avg)) 8390 return true; 8391 8392 if (thermal_load_avg(rq)) 8393 return true; 8394 8395 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 8396 if (READ_ONCE(rq->avg_irq.util_avg)) 8397 return true; 8398 #endif 8399 8400 return false; 8401 } 8402 8403 static inline void update_blocked_load_tick(struct rq *rq) 8404 { 8405 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 8406 } 8407 8408 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 8409 { 8410 if (!has_blocked) 8411 rq->has_blocked_load = 0; 8412 } 8413 #else 8414 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 8415 static inline bool others_have_blocked(struct rq *rq) { return false; } 8416 static inline void update_blocked_load_tick(struct rq *rq) {} 8417 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 8418 #endif 8419 8420 static bool __update_blocked_others(struct rq *rq, bool *done) 8421 { 8422 const struct sched_class *curr_class; 8423 u64 now = rq_clock_pelt(rq); 8424 unsigned long thermal_pressure; 8425 bool decayed; 8426 8427 /* 8428 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 8429 * DL and IRQ signals have been updated before updating CFS. 8430 */ 8431 curr_class = rq->curr->sched_class; 8432 8433 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 8434 8435 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 8436 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 8437 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 8438 update_irq_load_avg(rq, 0); 8439 8440 if (others_have_blocked(rq)) 8441 *done = false; 8442 8443 return decayed; 8444 } 8445 8446 #ifdef CONFIG_FAIR_GROUP_SCHED 8447 8448 static bool __update_blocked_fair(struct rq *rq, bool *done) 8449 { 8450 struct cfs_rq *cfs_rq, *pos; 8451 bool decayed = false; 8452 int cpu = cpu_of(rq); 8453 8454 /* 8455 * Iterates the task_group tree in a bottom up fashion, see 8456 * list_add_leaf_cfs_rq() for details. 8457 */ 8458 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 8459 struct sched_entity *se; 8460 8461 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 8462 update_tg_load_avg(cfs_rq); 8463 8464 if (cfs_rq->nr_running == 0) 8465 update_idle_cfs_rq_clock_pelt(cfs_rq); 8466 8467 if (cfs_rq == &rq->cfs) 8468 decayed = true; 8469 } 8470 8471 /* Propagate pending load changes to the parent, if any: */ 8472 se = cfs_rq->tg->se[cpu]; 8473 if (se && !skip_blocked_update(se)) 8474 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 8475 8476 /* 8477 * There can be a lot of idle CPU cgroups. Don't let fully 8478 * decayed cfs_rqs linger on the list. 8479 */ 8480 if (cfs_rq_is_decayed(cfs_rq)) 8481 list_del_leaf_cfs_rq(cfs_rq); 8482 8483 /* Don't need periodic decay once load/util_avg are null */ 8484 if (cfs_rq_has_blocked(cfs_rq)) 8485 *done = false; 8486 } 8487 8488 return decayed; 8489 } 8490 8491 /* 8492 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 8493 * This needs to be done in a top-down fashion because the load of a child 8494 * group is a fraction of its parents load. 8495 */ 8496 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 8497 { 8498 struct rq *rq = rq_of(cfs_rq); 8499 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 8500 unsigned long now = jiffies; 8501 unsigned long load; 8502 8503 if (cfs_rq->last_h_load_update == now) 8504 return; 8505 8506 WRITE_ONCE(cfs_rq->h_load_next, NULL); 8507 for_each_sched_entity(se) { 8508 cfs_rq = cfs_rq_of(se); 8509 WRITE_ONCE(cfs_rq->h_load_next, se); 8510 if (cfs_rq->last_h_load_update == now) 8511 break; 8512 } 8513 8514 if (!se) { 8515 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 8516 cfs_rq->last_h_load_update = now; 8517 } 8518 8519 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 8520 load = cfs_rq->h_load; 8521 load = div64_ul(load * se->avg.load_avg, 8522 cfs_rq_load_avg(cfs_rq) + 1); 8523 cfs_rq = group_cfs_rq(se); 8524 cfs_rq->h_load = load; 8525 cfs_rq->last_h_load_update = now; 8526 } 8527 } 8528 8529 static unsigned long task_h_load(struct task_struct *p) 8530 { 8531 struct cfs_rq *cfs_rq = task_cfs_rq(p); 8532 8533 update_cfs_rq_h_load(cfs_rq); 8534 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 8535 cfs_rq_load_avg(cfs_rq) + 1); 8536 } 8537 #else 8538 static bool __update_blocked_fair(struct rq *rq, bool *done) 8539 { 8540 struct cfs_rq *cfs_rq = &rq->cfs; 8541 bool decayed; 8542 8543 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 8544 if (cfs_rq_has_blocked(cfs_rq)) 8545 *done = false; 8546 8547 return decayed; 8548 } 8549 8550 static unsigned long task_h_load(struct task_struct *p) 8551 { 8552 return p->se.avg.load_avg; 8553 } 8554 #endif 8555 8556 static void update_blocked_averages(int cpu) 8557 { 8558 bool decayed = false, done = true; 8559 struct rq *rq = cpu_rq(cpu); 8560 struct rq_flags rf; 8561 8562 rq_lock_irqsave(rq, &rf); 8563 update_blocked_load_tick(rq); 8564 update_rq_clock(rq); 8565 8566 decayed |= __update_blocked_others(rq, &done); 8567 decayed |= __update_blocked_fair(rq, &done); 8568 8569 update_blocked_load_status(rq, !done); 8570 if (decayed) 8571 cpufreq_update_util(rq, 0); 8572 rq_unlock_irqrestore(rq, &rf); 8573 } 8574 8575 /********** Helpers for find_busiest_group ************************/ 8576 8577 /* 8578 * sg_lb_stats - stats of a sched_group required for load_balancing 8579 */ 8580 struct sg_lb_stats { 8581 unsigned long avg_load; /*Avg load across the CPUs of the group */ 8582 unsigned long group_load; /* Total load over the CPUs of the group */ 8583 unsigned long group_capacity; 8584 unsigned long group_util; /* Total utilization over the CPUs of the group */ 8585 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 8586 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 8587 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 8588 unsigned int idle_cpus; 8589 unsigned int group_weight; 8590 enum group_type group_type; 8591 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 8592 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 8593 #ifdef CONFIG_NUMA_BALANCING 8594 unsigned int nr_numa_running; 8595 unsigned int nr_preferred_running; 8596 #endif 8597 }; 8598 8599 /* 8600 * sd_lb_stats - Structure to store the statistics of a sched_domain 8601 * during load balancing. 8602 */ 8603 struct sd_lb_stats { 8604 struct sched_group *busiest; /* Busiest group in this sd */ 8605 struct sched_group *local; /* Local group in this sd */ 8606 unsigned long total_load; /* Total load of all groups in sd */ 8607 unsigned long total_capacity; /* Total capacity of all groups in sd */ 8608 unsigned long avg_load; /* Average load across all groups in sd */ 8609 unsigned int prefer_sibling; /* tasks should go to sibling first */ 8610 8611 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 8612 struct sg_lb_stats local_stat; /* Statistics of the local group */ 8613 }; 8614 8615 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 8616 { 8617 /* 8618 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 8619 * local_stat because update_sg_lb_stats() does a full clear/assignment. 8620 * We must however set busiest_stat::group_type and 8621 * busiest_stat::idle_cpus to the worst busiest group because 8622 * update_sd_pick_busiest() reads these before assignment. 8623 */ 8624 *sds = (struct sd_lb_stats){ 8625 .busiest = NULL, 8626 .local = NULL, 8627 .total_load = 0UL, 8628 .total_capacity = 0UL, 8629 .busiest_stat = { 8630 .idle_cpus = UINT_MAX, 8631 .group_type = group_has_spare, 8632 }, 8633 }; 8634 } 8635 8636 static unsigned long scale_rt_capacity(int cpu) 8637 { 8638 struct rq *rq = cpu_rq(cpu); 8639 unsigned long max = arch_scale_cpu_capacity(cpu); 8640 unsigned long used, free; 8641 unsigned long irq; 8642 8643 irq = cpu_util_irq(rq); 8644 8645 if (unlikely(irq >= max)) 8646 return 1; 8647 8648 /* 8649 * avg_rt.util_avg and avg_dl.util_avg track binary signals 8650 * (running and not running) with weights 0 and 1024 respectively. 8651 * avg_thermal.load_avg tracks thermal pressure and the weighted 8652 * average uses the actual delta max capacity(load). 8653 */ 8654 used = READ_ONCE(rq->avg_rt.util_avg); 8655 used += READ_ONCE(rq->avg_dl.util_avg); 8656 used += thermal_load_avg(rq); 8657 8658 if (unlikely(used >= max)) 8659 return 1; 8660 8661 free = max - used; 8662 8663 return scale_irq_capacity(free, irq, max); 8664 } 8665 8666 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 8667 { 8668 unsigned long capacity = scale_rt_capacity(cpu); 8669 struct sched_group *sdg = sd->groups; 8670 8671 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 8672 8673 if (!capacity) 8674 capacity = 1; 8675 8676 cpu_rq(cpu)->cpu_capacity = capacity; 8677 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 8678 8679 sdg->sgc->capacity = capacity; 8680 sdg->sgc->min_capacity = capacity; 8681 sdg->sgc->max_capacity = capacity; 8682 } 8683 8684 void update_group_capacity(struct sched_domain *sd, int cpu) 8685 { 8686 struct sched_domain *child = sd->child; 8687 struct sched_group *group, *sdg = sd->groups; 8688 unsigned long capacity, min_capacity, max_capacity; 8689 unsigned long interval; 8690 8691 interval = msecs_to_jiffies(sd->balance_interval); 8692 interval = clamp(interval, 1UL, max_load_balance_interval); 8693 sdg->sgc->next_update = jiffies + interval; 8694 8695 if (!child) { 8696 update_cpu_capacity(sd, cpu); 8697 return; 8698 } 8699 8700 capacity = 0; 8701 min_capacity = ULONG_MAX; 8702 max_capacity = 0; 8703 8704 if (child->flags & SD_OVERLAP) { 8705 /* 8706 * SD_OVERLAP domains cannot assume that child groups 8707 * span the current group. 8708 */ 8709 8710 for_each_cpu(cpu, sched_group_span(sdg)) { 8711 unsigned long cpu_cap = capacity_of(cpu); 8712 8713 capacity += cpu_cap; 8714 min_capacity = min(cpu_cap, min_capacity); 8715 max_capacity = max(cpu_cap, max_capacity); 8716 } 8717 } else { 8718 /* 8719 * !SD_OVERLAP domains can assume that child groups 8720 * span the current group. 8721 */ 8722 8723 group = child->groups; 8724 do { 8725 struct sched_group_capacity *sgc = group->sgc; 8726 8727 capacity += sgc->capacity; 8728 min_capacity = min(sgc->min_capacity, min_capacity); 8729 max_capacity = max(sgc->max_capacity, max_capacity); 8730 group = group->next; 8731 } while (group != child->groups); 8732 } 8733 8734 sdg->sgc->capacity = capacity; 8735 sdg->sgc->min_capacity = min_capacity; 8736 sdg->sgc->max_capacity = max_capacity; 8737 } 8738 8739 /* 8740 * Check whether the capacity of the rq has been noticeably reduced by side 8741 * activity. The imbalance_pct is used for the threshold. 8742 * Return true is the capacity is reduced 8743 */ 8744 static inline int 8745 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 8746 { 8747 return ((rq->cpu_capacity * sd->imbalance_pct) < 8748 (rq->cpu_capacity_orig * 100)); 8749 } 8750 8751 /* 8752 * Check whether a rq has a misfit task and if it looks like we can actually 8753 * help that task: we can migrate the task to a CPU of higher capacity, or 8754 * the task's current CPU is heavily pressured. 8755 */ 8756 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 8757 { 8758 return rq->misfit_task_load && 8759 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 8760 check_cpu_capacity(rq, sd)); 8761 } 8762 8763 /* 8764 * Group imbalance indicates (and tries to solve) the problem where balancing 8765 * groups is inadequate due to ->cpus_ptr constraints. 8766 * 8767 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 8768 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 8769 * Something like: 8770 * 8771 * { 0 1 2 3 } { 4 5 6 7 } 8772 * * * * * 8773 * 8774 * If we were to balance group-wise we'd place two tasks in the first group and 8775 * two tasks in the second group. Clearly this is undesired as it will overload 8776 * cpu 3 and leave one of the CPUs in the second group unused. 8777 * 8778 * The current solution to this issue is detecting the skew in the first group 8779 * by noticing the lower domain failed to reach balance and had difficulty 8780 * moving tasks due to affinity constraints. 8781 * 8782 * When this is so detected; this group becomes a candidate for busiest; see 8783 * update_sd_pick_busiest(). And calculate_imbalance() and 8784 * find_busiest_group() avoid some of the usual balance conditions to allow it 8785 * to create an effective group imbalance. 8786 * 8787 * This is a somewhat tricky proposition since the next run might not find the 8788 * group imbalance and decide the groups need to be balanced again. A most 8789 * subtle and fragile situation. 8790 */ 8791 8792 static inline int sg_imbalanced(struct sched_group *group) 8793 { 8794 return group->sgc->imbalance; 8795 } 8796 8797 /* 8798 * group_has_capacity returns true if the group has spare capacity that could 8799 * be used by some tasks. 8800 * We consider that a group has spare capacity if the number of task is 8801 * smaller than the number of CPUs or if the utilization is lower than the 8802 * available capacity for CFS tasks. 8803 * For the latter, we use a threshold to stabilize the state, to take into 8804 * account the variance of the tasks' load and to return true if the available 8805 * capacity in meaningful for the load balancer. 8806 * As an example, an available capacity of 1% can appear but it doesn't make 8807 * any benefit for the load balance. 8808 */ 8809 static inline bool 8810 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8811 { 8812 if (sgs->sum_nr_running < sgs->group_weight) 8813 return true; 8814 8815 if ((sgs->group_capacity * imbalance_pct) < 8816 (sgs->group_runnable * 100)) 8817 return false; 8818 8819 if ((sgs->group_capacity * 100) > 8820 (sgs->group_util * imbalance_pct)) 8821 return true; 8822 8823 return false; 8824 } 8825 8826 /* 8827 * group_is_overloaded returns true if the group has more tasks than it can 8828 * handle. 8829 * group_is_overloaded is not equals to !group_has_capacity because a group 8830 * with the exact right number of tasks, has no more spare capacity but is not 8831 * overloaded so both group_has_capacity and group_is_overloaded return 8832 * false. 8833 */ 8834 static inline bool 8835 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8836 { 8837 if (sgs->sum_nr_running <= sgs->group_weight) 8838 return false; 8839 8840 if ((sgs->group_capacity * 100) < 8841 (sgs->group_util * imbalance_pct)) 8842 return true; 8843 8844 if ((sgs->group_capacity * imbalance_pct) < 8845 (sgs->group_runnable * 100)) 8846 return true; 8847 8848 return false; 8849 } 8850 8851 static inline enum 8852 group_type group_classify(unsigned int imbalance_pct, 8853 struct sched_group *group, 8854 struct sg_lb_stats *sgs) 8855 { 8856 if (group_is_overloaded(imbalance_pct, sgs)) 8857 return group_overloaded; 8858 8859 if (sg_imbalanced(group)) 8860 return group_imbalanced; 8861 8862 if (sgs->group_asym_packing) 8863 return group_asym_packing; 8864 8865 if (sgs->group_misfit_task_load) 8866 return group_misfit_task; 8867 8868 if (!group_has_capacity(imbalance_pct, sgs)) 8869 return group_fully_busy; 8870 8871 return group_has_spare; 8872 } 8873 8874 /** 8875 * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks 8876 * @dst_cpu: Destination CPU of the load balancing 8877 * @sds: Load-balancing data with statistics of the local group 8878 * @sgs: Load-balancing statistics of the candidate busiest group 8879 * @sg: The candidate busiest group 8880 * 8881 * Check the state of the SMT siblings of both @sds::local and @sg and decide 8882 * if @dst_cpu can pull tasks. 8883 * 8884 * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of 8885 * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks 8886 * only if @dst_cpu has higher priority. 8887 * 8888 * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more 8889 * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority. 8890 * Bigger imbalances in the number of busy CPUs will be dealt with in 8891 * update_sd_pick_busiest(). 8892 * 8893 * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings 8894 * of @dst_cpu are idle and @sg has lower priority. 8895 * 8896 * Return: true if @dst_cpu can pull tasks, false otherwise. 8897 */ 8898 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds, 8899 struct sg_lb_stats *sgs, 8900 struct sched_group *sg) 8901 { 8902 #ifdef CONFIG_SCHED_SMT 8903 bool local_is_smt, sg_is_smt; 8904 int sg_busy_cpus; 8905 8906 local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY; 8907 sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY; 8908 8909 sg_busy_cpus = sgs->group_weight - sgs->idle_cpus; 8910 8911 if (!local_is_smt) { 8912 /* 8913 * If we are here, @dst_cpu is idle and does not have SMT 8914 * siblings. Pull tasks if candidate group has two or more 8915 * busy CPUs. 8916 */ 8917 if (sg_busy_cpus >= 2) /* implies sg_is_smt */ 8918 return true; 8919 8920 /* 8921 * @dst_cpu does not have SMT siblings. @sg may have SMT 8922 * siblings and only one is busy. In such case, @dst_cpu 8923 * can help if it has higher priority and is idle (i.e., 8924 * it has no running tasks). 8925 */ 8926 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 8927 } 8928 8929 /* @dst_cpu has SMT siblings. */ 8930 8931 if (sg_is_smt) { 8932 int local_busy_cpus = sds->local->group_weight - 8933 sds->local_stat.idle_cpus; 8934 int busy_cpus_delta = sg_busy_cpus - local_busy_cpus; 8935 8936 if (busy_cpus_delta == 1) 8937 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 8938 8939 return false; 8940 } 8941 8942 /* 8943 * @sg does not have SMT siblings. Ensure that @sds::local does not end 8944 * up with more than one busy SMT sibling and only pull tasks if there 8945 * are not busy CPUs (i.e., no CPU has running tasks). 8946 */ 8947 if (!sds->local_stat.sum_nr_running) 8948 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 8949 8950 return false; 8951 #else 8952 /* Always return false so that callers deal with non-SMT cases. */ 8953 return false; 8954 #endif 8955 } 8956 8957 static inline bool 8958 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs, 8959 struct sched_group *group) 8960 { 8961 /* Only do SMT checks if either local or candidate have SMT siblings */ 8962 if ((sds->local->flags & SD_SHARE_CPUCAPACITY) || 8963 (group->flags & SD_SHARE_CPUCAPACITY)) 8964 return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group); 8965 8966 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu); 8967 } 8968 8969 static inline bool 8970 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 8971 { 8972 /* 8973 * When there is more than 1 task, the group_overloaded case already 8974 * takes care of cpu with reduced capacity 8975 */ 8976 if (rq->cfs.h_nr_running != 1) 8977 return false; 8978 8979 return check_cpu_capacity(rq, sd); 8980 } 8981 8982 /** 8983 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8984 * @env: The load balancing environment. 8985 * @sds: Load-balancing data with statistics of the local group. 8986 * @group: sched_group whose statistics are to be updated. 8987 * @sgs: variable to hold the statistics for this group. 8988 * @sg_status: Holds flag indicating the status of the sched_group 8989 */ 8990 static inline void update_sg_lb_stats(struct lb_env *env, 8991 struct sd_lb_stats *sds, 8992 struct sched_group *group, 8993 struct sg_lb_stats *sgs, 8994 int *sg_status) 8995 { 8996 int i, nr_running, local_group; 8997 8998 memset(sgs, 0, sizeof(*sgs)); 8999 9000 local_group = group == sds->local; 9001 9002 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9003 struct rq *rq = cpu_rq(i); 9004 unsigned long load = cpu_load(rq); 9005 9006 sgs->group_load += load; 9007 sgs->group_util += cpu_util_cfs(i); 9008 sgs->group_runnable += cpu_runnable(rq); 9009 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 9010 9011 nr_running = rq->nr_running; 9012 sgs->sum_nr_running += nr_running; 9013 9014 if (nr_running > 1) 9015 *sg_status |= SG_OVERLOAD; 9016 9017 if (cpu_overutilized(i)) 9018 *sg_status |= SG_OVERUTILIZED; 9019 9020 #ifdef CONFIG_NUMA_BALANCING 9021 sgs->nr_numa_running += rq->nr_numa_running; 9022 sgs->nr_preferred_running += rq->nr_preferred_running; 9023 #endif 9024 /* 9025 * No need to call idle_cpu() if nr_running is not 0 9026 */ 9027 if (!nr_running && idle_cpu(i)) { 9028 sgs->idle_cpus++; 9029 /* Idle cpu can't have misfit task */ 9030 continue; 9031 } 9032 9033 if (local_group) 9034 continue; 9035 9036 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9037 /* Check for a misfit task on the cpu */ 9038 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 9039 sgs->group_misfit_task_load = rq->misfit_task_load; 9040 *sg_status |= SG_OVERLOAD; 9041 } 9042 } else if ((env->idle != CPU_NOT_IDLE) && 9043 sched_reduced_capacity(rq, env->sd)) { 9044 /* Check for a task running on a CPU with reduced capacity */ 9045 if (sgs->group_misfit_task_load < load) 9046 sgs->group_misfit_task_load = load; 9047 } 9048 } 9049 9050 sgs->group_capacity = group->sgc->capacity; 9051 9052 sgs->group_weight = group->group_weight; 9053 9054 /* Check if dst CPU is idle and preferred to this group */ 9055 if (!local_group && env->sd->flags & SD_ASYM_PACKING && 9056 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running && 9057 sched_asym(env, sds, sgs, group)) { 9058 sgs->group_asym_packing = 1; 9059 } 9060 9061 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 9062 9063 /* Computing avg_load makes sense only when group is overloaded */ 9064 if (sgs->group_type == group_overloaded) 9065 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9066 sgs->group_capacity; 9067 } 9068 9069 /** 9070 * update_sd_pick_busiest - return 1 on busiest group 9071 * @env: The load balancing environment. 9072 * @sds: sched_domain statistics 9073 * @sg: sched_group candidate to be checked for being the busiest 9074 * @sgs: sched_group statistics 9075 * 9076 * Determine if @sg is a busier group than the previously selected 9077 * busiest group. 9078 * 9079 * Return: %true if @sg is a busier group than the previously selected 9080 * busiest group. %false otherwise. 9081 */ 9082 static bool update_sd_pick_busiest(struct lb_env *env, 9083 struct sd_lb_stats *sds, 9084 struct sched_group *sg, 9085 struct sg_lb_stats *sgs) 9086 { 9087 struct sg_lb_stats *busiest = &sds->busiest_stat; 9088 9089 /* Make sure that there is at least one task to pull */ 9090 if (!sgs->sum_h_nr_running) 9091 return false; 9092 9093 /* 9094 * Don't try to pull misfit tasks we can't help. 9095 * We can use max_capacity here as reduction in capacity on some 9096 * CPUs in the group should either be possible to resolve 9097 * internally or be covered by avg_load imbalance (eventually). 9098 */ 9099 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9100 (sgs->group_type == group_misfit_task) && 9101 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 9102 sds->local_stat.group_type != group_has_spare)) 9103 return false; 9104 9105 if (sgs->group_type > busiest->group_type) 9106 return true; 9107 9108 if (sgs->group_type < busiest->group_type) 9109 return false; 9110 9111 /* 9112 * The candidate and the current busiest group are the same type of 9113 * group. Let check which one is the busiest according to the type. 9114 */ 9115 9116 switch (sgs->group_type) { 9117 case group_overloaded: 9118 /* Select the overloaded group with highest avg_load. */ 9119 if (sgs->avg_load <= busiest->avg_load) 9120 return false; 9121 break; 9122 9123 case group_imbalanced: 9124 /* 9125 * Select the 1st imbalanced group as we don't have any way to 9126 * choose one more than another. 9127 */ 9128 return false; 9129 9130 case group_asym_packing: 9131 /* Prefer to move from lowest priority CPU's work */ 9132 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 9133 return false; 9134 break; 9135 9136 case group_misfit_task: 9137 /* 9138 * If we have more than one misfit sg go with the biggest 9139 * misfit. 9140 */ 9141 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 9142 return false; 9143 break; 9144 9145 case group_fully_busy: 9146 /* 9147 * Select the fully busy group with highest avg_load. In 9148 * theory, there is no need to pull task from such kind of 9149 * group because tasks have all compute capacity that they need 9150 * but we can still improve the overall throughput by reducing 9151 * contention when accessing shared HW resources. 9152 * 9153 * XXX for now avg_load is not computed and always 0 so we 9154 * select the 1st one. 9155 */ 9156 if (sgs->avg_load <= busiest->avg_load) 9157 return false; 9158 break; 9159 9160 case group_has_spare: 9161 /* 9162 * Select not overloaded group with lowest number of idle cpus 9163 * and highest number of running tasks. We could also compare 9164 * the spare capacity which is more stable but it can end up 9165 * that the group has less spare capacity but finally more idle 9166 * CPUs which means less opportunity to pull tasks. 9167 */ 9168 if (sgs->idle_cpus > busiest->idle_cpus) 9169 return false; 9170 else if ((sgs->idle_cpus == busiest->idle_cpus) && 9171 (sgs->sum_nr_running <= busiest->sum_nr_running)) 9172 return false; 9173 9174 break; 9175 } 9176 9177 /* 9178 * Candidate sg has no more than one task per CPU and has higher 9179 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 9180 * throughput. Maximize throughput, power/energy consequences are not 9181 * considered. 9182 */ 9183 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9184 (sgs->group_type <= group_fully_busy) && 9185 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 9186 return false; 9187 9188 return true; 9189 } 9190 9191 #ifdef CONFIG_NUMA_BALANCING 9192 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9193 { 9194 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 9195 return regular; 9196 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 9197 return remote; 9198 return all; 9199 } 9200 9201 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 9202 { 9203 if (rq->nr_running > rq->nr_numa_running) 9204 return regular; 9205 if (rq->nr_running > rq->nr_preferred_running) 9206 return remote; 9207 return all; 9208 } 9209 #else 9210 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9211 { 9212 return all; 9213 } 9214 9215 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 9216 { 9217 return regular; 9218 } 9219 #endif /* CONFIG_NUMA_BALANCING */ 9220 9221 9222 struct sg_lb_stats; 9223 9224 /* 9225 * task_running_on_cpu - return 1 if @p is running on @cpu. 9226 */ 9227 9228 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 9229 { 9230 /* Task has no contribution or is new */ 9231 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 9232 return 0; 9233 9234 if (task_on_rq_queued(p)) 9235 return 1; 9236 9237 return 0; 9238 } 9239 9240 /** 9241 * idle_cpu_without - would a given CPU be idle without p ? 9242 * @cpu: the processor on which idleness is tested. 9243 * @p: task which should be ignored. 9244 * 9245 * Return: 1 if the CPU would be idle. 0 otherwise. 9246 */ 9247 static int idle_cpu_without(int cpu, struct task_struct *p) 9248 { 9249 struct rq *rq = cpu_rq(cpu); 9250 9251 if (rq->curr != rq->idle && rq->curr != p) 9252 return 0; 9253 9254 /* 9255 * rq->nr_running can't be used but an updated version without the 9256 * impact of p on cpu must be used instead. The updated nr_running 9257 * be computed and tested before calling idle_cpu_without(). 9258 */ 9259 9260 #ifdef CONFIG_SMP 9261 if (rq->ttwu_pending) 9262 return 0; 9263 #endif 9264 9265 return 1; 9266 } 9267 9268 /* 9269 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 9270 * @sd: The sched_domain level to look for idlest group. 9271 * @group: sched_group whose statistics are to be updated. 9272 * @sgs: variable to hold the statistics for this group. 9273 * @p: The task for which we look for the idlest group/CPU. 9274 */ 9275 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 9276 struct sched_group *group, 9277 struct sg_lb_stats *sgs, 9278 struct task_struct *p) 9279 { 9280 int i, nr_running; 9281 9282 memset(sgs, 0, sizeof(*sgs)); 9283 9284 for_each_cpu(i, sched_group_span(group)) { 9285 struct rq *rq = cpu_rq(i); 9286 unsigned int local; 9287 9288 sgs->group_load += cpu_load_without(rq, p); 9289 sgs->group_util += cpu_util_without(i, p); 9290 sgs->group_runnable += cpu_runnable_without(rq, p); 9291 local = task_running_on_cpu(i, p); 9292 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 9293 9294 nr_running = rq->nr_running - local; 9295 sgs->sum_nr_running += nr_running; 9296 9297 /* 9298 * No need to call idle_cpu_without() if nr_running is not 0 9299 */ 9300 if (!nr_running && idle_cpu_without(i, p)) 9301 sgs->idle_cpus++; 9302 9303 } 9304 9305 /* Check if task fits in the group */ 9306 if (sd->flags & SD_ASYM_CPUCAPACITY && 9307 !task_fits_capacity(p, group->sgc->max_capacity)) { 9308 sgs->group_misfit_task_load = 1; 9309 } 9310 9311 sgs->group_capacity = group->sgc->capacity; 9312 9313 sgs->group_weight = group->group_weight; 9314 9315 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 9316 9317 /* 9318 * Computing avg_load makes sense only when group is fully busy or 9319 * overloaded 9320 */ 9321 if (sgs->group_type == group_fully_busy || 9322 sgs->group_type == group_overloaded) 9323 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9324 sgs->group_capacity; 9325 } 9326 9327 static bool update_pick_idlest(struct sched_group *idlest, 9328 struct sg_lb_stats *idlest_sgs, 9329 struct sched_group *group, 9330 struct sg_lb_stats *sgs) 9331 { 9332 if (sgs->group_type < idlest_sgs->group_type) 9333 return true; 9334 9335 if (sgs->group_type > idlest_sgs->group_type) 9336 return false; 9337 9338 /* 9339 * The candidate and the current idlest group are the same type of 9340 * group. Let check which one is the idlest according to the type. 9341 */ 9342 9343 switch (sgs->group_type) { 9344 case group_overloaded: 9345 case group_fully_busy: 9346 /* Select the group with lowest avg_load. */ 9347 if (idlest_sgs->avg_load <= sgs->avg_load) 9348 return false; 9349 break; 9350 9351 case group_imbalanced: 9352 case group_asym_packing: 9353 /* Those types are not used in the slow wakeup path */ 9354 return false; 9355 9356 case group_misfit_task: 9357 /* Select group with the highest max capacity */ 9358 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 9359 return false; 9360 break; 9361 9362 case group_has_spare: 9363 /* Select group with most idle CPUs */ 9364 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 9365 return false; 9366 9367 /* Select group with lowest group_util */ 9368 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 9369 idlest_sgs->group_util <= sgs->group_util) 9370 return false; 9371 9372 break; 9373 } 9374 9375 return true; 9376 } 9377 9378 /* 9379 * find_idlest_group() finds and returns the least busy CPU group within the 9380 * domain. 9381 * 9382 * Assumes p is allowed on at least one CPU in sd. 9383 */ 9384 static struct sched_group * 9385 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 9386 { 9387 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 9388 struct sg_lb_stats local_sgs, tmp_sgs; 9389 struct sg_lb_stats *sgs; 9390 unsigned long imbalance; 9391 struct sg_lb_stats idlest_sgs = { 9392 .avg_load = UINT_MAX, 9393 .group_type = group_overloaded, 9394 }; 9395 9396 do { 9397 int local_group; 9398 9399 /* Skip over this group if it has no CPUs allowed */ 9400 if (!cpumask_intersects(sched_group_span(group), 9401 p->cpus_ptr)) 9402 continue; 9403 9404 /* Skip over this group if no cookie matched */ 9405 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 9406 continue; 9407 9408 local_group = cpumask_test_cpu(this_cpu, 9409 sched_group_span(group)); 9410 9411 if (local_group) { 9412 sgs = &local_sgs; 9413 local = group; 9414 } else { 9415 sgs = &tmp_sgs; 9416 } 9417 9418 update_sg_wakeup_stats(sd, group, sgs, p); 9419 9420 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 9421 idlest = group; 9422 idlest_sgs = *sgs; 9423 } 9424 9425 } while (group = group->next, group != sd->groups); 9426 9427 9428 /* There is no idlest group to push tasks to */ 9429 if (!idlest) 9430 return NULL; 9431 9432 /* The local group has been skipped because of CPU affinity */ 9433 if (!local) 9434 return idlest; 9435 9436 /* 9437 * If the local group is idler than the selected idlest group 9438 * don't try and push the task. 9439 */ 9440 if (local_sgs.group_type < idlest_sgs.group_type) 9441 return NULL; 9442 9443 /* 9444 * If the local group is busier than the selected idlest group 9445 * try and push the task. 9446 */ 9447 if (local_sgs.group_type > idlest_sgs.group_type) 9448 return idlest; 9449 9450 switch (local_sgs.group_type) { 9451 case group_overloaded: 9452 case group_fully_busy: 9453 9454 /* Calculate allowed imbalance based on load */ 9455 imbalance = scale_load_down(NICE_0_LOAD) * 9456 (sd->imbalance_pct-100) / 100; 9457 9458 /* 9459 * When comparing groups across NUMA domains, it's possible for 9460 * the local domain to be very lightly loaded relative to the 9461 * remote domains but "imbalance" skews the comparison making 9462 * remote CPUs look much more favourable. When considering 9463 * cross-domain, add imbalance to the load on the remote node 9464 * and consider staying local. 9465 */ 9466 9467 if ((sd->flags & SD_NUMA) && 9468 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 9469 return NULL; 9470 9471 /* 9472 * If the local group is less loaded than the selected 9473 * idlest group don't try and push any tasks. 9474 */ 9475 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 9476 return NULL; 9477 9478 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 9479 return NULL; 9480 break; 9481 9482 case group_imbalanced: 9483 case group_asym_packing: 9484 /* Those type are not used in the slow wakeup path */ 9485 return NULL; 9486 9487 case group_misfit_task: 9488 /* Select group with the highest max capacity */ 9489 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 9490 return NULL; 9491 break; 9492 9493 case group_has_spare: 9494 #ifdef CONFIG_NUMA 9495 if (sd->flags & SD_NUMA) { 9496 int imb_numa_nr = sd->imb_numa_nr; 9497 #ifdef CONFIG_NUMA_BALANCING 9498 int idlest_cpu; 9499 /* 9500 * If there is spare capacity at NUMA, try to select 9501 * the preferred node 9502 */ 9503 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 9504 return NULL; 9505 9506 idlest_cpu = cpumask_first(sched_group_span(idlest)); 9507 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 9508 return idlest; 9509 #endif /* CONFIG_NUMA_BALANCING */ 9510 /* 9511 * Otherwise, keep the task close to the wakeup source 9512 * and improve locality if the number of running tasks 9513 * would remain below threshold where an imbalance is 9514 * allowed while accounting for the possibility the 9515 * task is pinned to a subset of CPUs. If there is a 9516 * real need of migration, periodic load balance will 9517 * take care of it. 9518 */ 9519 if (p->nr_cpus_allowed != NR_CPUS) { 9520 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 9521 9522 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 9523 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 9524 } 9525 9526 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 9527 if (!adjust_numa_imbalance(imbalance, 9528 local_sgs.sum_nr_running + 1, 9529 imb_numa_nr)) { 9530 return NULL; 9531 } 9532 } 9533 #endif /* CONFIG_NUMA */ 9534 9535 /* 9536 * Select group with highest number of idle CPUs. We could also 9537 * compare the utilization which is more stable but it can end 9538 * up that the group has less spare capacity but finally more 9539 * idle CPUs which means more opportunity to run task. 9540 */ 9541 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 9542 return NULL; 9543 break; 9544 } 9545 9546 return idlest; 9547 } 9548 9549 static void update_idle_cpu_scan(struct lb_env *env, 9550 unsigned long sum_util) 9551 { 9552 struct sched_domain_shared *sd_share; 9553 int llc_weight, pct; 9554 u64 x, y, tmp; 9555 /* 9556 * Update the number of CPUs to scan in LLC domain, which could 9557 * be used as a hint in select_idle_cpu(). The update of sd_share 9558 * could be expensive because it is within a shared cache line. 9559 * So the write of this hint only occurs during periodic load 9560 * balancing, rather than CPU_NEWLY_IDLE, because the latter 9561 * can fire way more frequently than the former. 9562 */ 9563 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 9564 return; 9565 9566 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 9567 if (env->sd->span_weight != llc_weight) 9568 return; 9569 9570 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 9571 if (!sd_share) 9572 return; 9573 9574 /* 9575 * The number of CPUs to search drops as sum_util increases, when 9576 * sum_util hits 85% or above, the scan stops. 9577 * The reason to choose 85% as the threshold is because this is the 9578 * imbalance_pct(117) when a LLC sched group is overloaded. 9579 * 9580 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 9581 * and y'= y / SCHED_CAPACITY_SCALE 9582 * 9583 * x is the ratio of sum_util compared to the CPU capacity: 9584 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 9585 * y' is the ratio of CPUs to be scanned in the LLC domain, 9586 * and the number of CPUs to scan is calculated by: 9587 * 9588 * nr_scan = llc_weight * y' [2] 9589 * 9590 * When x hits the threshold of overloaded, AKA, when 9591 * x = 100 / pct, y drops to 0. According to [1], 9592 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 9593 * 9594 * Scale x by SCHED_CAPACITY_SCALE: 9595 * x' = sum_util / llc_weight; [3] 9596 * 9597 * and finally [1] becomes: 9598 * y = SCHED_CAPACITY_SCALE - 9599 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 9600 * 9601 */ 9602 /* equation [3] */ 9603 x = sum_util; 9604 do_div(x, llc_weight); 9605 9606 /* equation [4] */ 9607 pct = env->sd->imbalance_pct; 9608 tmp = x * x * pct * pct; 9609 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 9610 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 9611 y = SCHED_CAPACITY_SCALE - tmp; 9612 9613 /* equation [2] */ 9614 y *= llc_weight; 9615 do_div(y, SCHED_CAPACITY_SCALE); 9616 if ((int)y != sd_share->nr_idle_scan) 9617 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 9618 } 9619 9620 /** 9621 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 9622 * @env: The load balancing environment. 9623 * @sds: variable to hold the statistics for this sched_domain. 9624 */ 9625 9626 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 9627 { 9628 struct sched_domain *child = env->sd->child; 9629 struct sched_group *sg = env->sd->groups; 9630 struct sg_lb_stats *local = &sds->local_stat; 9631 struct sg_lb_stats tmp_sgs; 9632 unsigned long sum_util = 0; 9633 int sg_status = 0; 9634 9635 do { 9636 struct sg_lb_stats *sgs = &tmp_sgs; 9637 int local_group; 9638 9639 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 9640 if (local_group) { 9641 sds->local = sg; 9642 sgs = local; 9643 9644 if (env->idle != CPU_NEWLY_IDLE || 9645 time_after_eq(jiffies, sg->sgc->next_update)) 9646 update_group_capacity(env->sd, env->dst_cpu); 9647 } 9648 9649 update_sg_lb_stats(env, sds, sg, sgs, &sg_status); 9650 9651 if (local_group) 9652 goto next_group; 9653 9654 9655 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 9656 sds->busiest = sg; 9657 sds->busiest_stat = *sgs; 9658 } 9659 9660 next_group: 9661 /* Now, start updating sd_lb_stats */ 9662 sds->total_load += sgs->group_load; 9663 sds->total_capacity += sgs->group_capacity; 9664 9665 sum_util += sgs->group_util; 9666 sg = sg->next; 9667 } while (sg != env->sd->groups); 9668 9669 /* Tag domain that child domain prefers tasks go to siblings first */ 9670 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 9671 9672 9673 if (env->sd->flags & SD_NUMA) 9674 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 9675 9676 if (!env->sd->parent) { 9677 struct root_domain *rd = env->dst_rq->rd; 9678 9679 /* update overload indicator if we are at root domain */ 9680 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 9681 9682 /* Update over-utilization (tipping point, U >= 0) indicator */ 9683 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 9684 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 9685 } else if (sg_status & SG_OVERUTILIZED) { 9686 struct root_domain *rd = env->dst_rq->rd; 9687 9688 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 9689 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 9690 } 9691 9692 update_idle_cpu_scan(env, sum_util); 9693 } 9694 9695 /** 9696 * calculate_imbalance - Calculate the amount of imbalance present within the 9697 * groups of a given sched_domain during load balance. 9698 * @env: load balance environment 9699 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 9700 */ 9701 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 9702 { 9703 struct sg_lb_stats *local, *busiest; 9704 9705 local = &sds->local_stat; 9706 busiest = &sds->busiest_stat; 9707 9708 if (busiest->group_type == group_misfit_task) { 9709 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9710 /* Set imbalance to allow misfit tasks to be balanced. */ 9711 env->migration_type = migrate_misfit; 9712 env->imbalance = 1; 9713 } else { 9714 /* 9715 * Set load imbalance to allow moving task from cpu 9716 * with reduced capacity. 9717 */ 9718 env->migration_type = migrate_load; 9719 env->imbalance = busiest->group_misfit_task_load; 9720 } 9721 return; 9722 } 9723 9724 if (busiest->group_type == group_asym_packing) { 9725 /* 9726 * In case of asym capacity, we will try to migrate all load to 9727 * the preferred CPU. 9728 */ 9729 env->migration_type = migrate_task; 9730 env->imbalance = busiest->sum_h_nr_running; 9731 return; 9732 } 9733 9734 if (busiest->group_type == group_imbalanced) { 9735 /* 9736 * In the group_imb case we cannot rely on group-wide averages 9737 * to ensure CPU-load equilibrium, try to move any task to fix 9738 * the imbalance. The next load balance will take care of 9739 * balancing back the system. 9740 */ 9741 env->migration_type = migrate_task; 9742 env->imbalance = 1; 9743 return; 9744 } 9745 9746 /* 9747 * Try to use spare capacity of local group without overloading it or 9748 * emptying busiest. 9749 */ 9750 if (local->group_type == group_has_spare) { 9751 if ((busiest->group_type > group_fully_busy) && 9752 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 9753 /* 9754 * If busiest is overloaded, try to fill spare 9755 * capacity. This might end up creating spare capacity 9756 * in busiest or busiest still being overloaded but 9757 * there is no simple way to directly compute the 9758 * amount of load to migrate in order to balance the 9759 * system. 9760 */ 9761 env->migration_type = migrate_util; 9762 env->imbalance = max(local->group_capacity, local->group_util) - 9763 local->group_util; 9764 9765 /* 9766 * In some cases, the group's utilization is max or even 9767 * higher than capacity because of migrations but the 9768 * local CPU is (newly) idle. There is at least one 9769 * waiting task in this overloaded busiest group. Let's 9770 * try to pull it. 9771 */ 9772 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 9773 env->migration_type = migrate_task; 9774 env->imbalance = 1; 9775 } 9776 9777 return; 9778 } 9779 9780 if (busiest->group_weight == 1 || sds->prefer_sibling) { 9781 unsigned int nr_diff = busiest->sum_nr_running; 9782 /* 9783 * When prefer sibling, evenly spread running tasks on 9784 * groups. 9785 */ 9786 env->migration_type = migrate_task; 9787 lsub_positive(&nr_diff, local->sum_nr_running); 9788 env->imbalance = nr_diff; 9789 } else { 9790 9791 /* 9792 * If there is no overload, we just want to even the number of 9793 * idle cpus. 9794 */ 9795 env->migration_type = migrate_task; 9796 env->imbalance = max_t(long, 0, 9797 (local->idle_cpus - busiest->idle_cpus)); 9798 } 9799 9800 #ifdef CONFIG_NUMA 9801 /* Consider allowing a small imbalance between NUMA groups */ 9802 if (env->sd->flags & SD_NUMA) { 9803 env->imbalance = adjust_numa_imbalance(env->imbalance, 9804 local->sum_nr_running + 1, 9805 env->sd->imb_numa_nr); 9806 } 9807 #endif 9808 9809 /* Number of tasks to move to restore balance */ 9810 env->imbalance >>= 1; 9811 9812 return; 9813 } 9814 9815 /* 9816 * Local is fully busy but has to take more load to relieve the 9817 * busiest group 9818 */ 9819 if (local->group_type < group_overloaded) { 9820 /* 9821 * Local will become overloaded so the avg_load metrics are 9822 * finally needed. 9823 */ 9824 9825 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 9826 local->group_capacity; 9827 9828 /* 9829 * If the local group is more loaded than the selected 9830 * busiest group don't try to pull any tasks. 9831 */ 9832 if (local->avg_load >= busiest->avg_load) { 9833 env->imbalance = 0; 9834 return; 9835 } 9836 9837 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 9838 sds->total_capacity; 9839 } 9840 9841 /* 9842 * Both group are or will become overloaded and we're trying to get all 9843 * the CPUs to the average_load, so we don't want to push ourselves 9844 * above the average load, nor do we wish to reduce the max loaded CPU 9845 * below the average load. At the same time, we also don't want to 9846 * reduce the group load below the group capacity. Thus we look for 9847 * the minimum possible imbalance. 9848 */ 9849 env->migration_type = migrate_load; 9850 env->imbalance = min( 9851 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 9852 (sds->avg_load - local->avg_load) * local->group_capacity 9853 ) / SCHED_CAPACITY_SCALE; 9854 } 9855 9856 /******* find_busiest_group() helpers end here *********************/ 9857 9858 /* 9859 * Decision matrix according to the local and busiest group type: 9860 * 9861 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 9862 * has_spare nr_idle balanced N/A N/A balanced balanced 9863 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 9864 * misfit_task force N/A N/A N/A N/A N/A 9865 * asym_packing force force N/A N/A force force 9866 * imbalanced force force N/A N/A force force 9867 * overloaded force force N/A N/A force avg_load 9868 * 9869 * N/A : Not Applicable because already filtered while updating 9870 * statistics. 9871 * balanced : The system is balanced for these 2 groups. 9872 * force : Calculate the imbalance as load migration is probably needed. 9873 * avg_load : Only if imbalance is significant enough. 9874 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 9875 * different in groups. 9876 */ 9877 9878 /** 9879 * find_busiest_group - Returns the busiest group within the sched_domain 9880 * if there is an imbalance. 9881 * @env: The load balancing environment. 9882 * 9883 * Also calculates the amount of runnable load which should be moved 9884 * to restore balance. 9885 * 9886 * Return: - The busiest group if imbalance exists. 9887 */ 9888 static struct sched_group *find_busiest_group(struct lb_env *env) 9889 { 9890 struct sg_lb_stats *local, *busiest; 9891 struct sd_lb_stats sds; 9892 9893 init_sd_lb_stats(&sds); 9894 9895 /* 9896 * Compute the various statistics relevant for load balancing at 9897 * this level. 9898 */ 9899 update_sd_lb_stats(env, &sds); 9900 9901 if (sched_energy_enabled()) { 9902 struct root_domain *rd = env->dst_rq->rd; 9903 9904 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 9905 goto out_balanced; 9906 } 9907 9908 local = &sds.local_stat; 9909 busiest = &sds.busiest_stat; 9910 9911 /* There is no busy sibling group to pull tasks from */ 9912 if (!sds.busiest) 9913 goto out_balanced; 9914 9915 /* Misfit tasks should be dealt with regardless of the avg load */ 9916 if (busiest->group_type == group_misfit_task) 9917 goto force_balance; 9918 9919 /* ASYM feature bypasses nice load balance check */ 9920 if (busiest->group_type == group_asym_packing) 9921 goto force_balance; 9922 9923 /* 9924 * If the busiest group is imbalanced the below checks don't 9925 * work because they assume all things are equal, which typically 9926 * isn't true due to cpus_ptr constraints and the like. 9927 */ 9928 if (busiest->group_type == group_imbalanced) 9929 goto force_balance; 9930 9931 /* 9932 * If the local group is busier than the selected busiest group 9933 * don't try and pull any tasks. 9934 */ 9935 if (local->group_type > busiest->group_type) 9936 goto out_balanced; 9937 9938 /* 9939 * When groups are overloaded, use the avg_load to ensure fairness 9940 * between tasks. 9941 */ 9942 if (local->group_type == group_overloaded) { 9943 /* 9944 * If the local group is more loaded than the selected 9945 * busiest group don't try to pull any tasks. 9946 */ 9947 if (local->avg_load >= busiest->avg_load) 9948 goto out_balanced; 9949 9950 /* XXX broken for overlapping NUMA groups */ 9951 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 9952 sds.total_capacity; 9953 9954 /* 9955 * Don't pull any tasks if this group is already above the 9956 * domain average load. 9957 */ 9958 if (local->avg_load >= sds.avg_load) 9959 goto out_balanced; 9960 9961 /* 9962 * If the busiest group is more loaded, use imbalance_pct to be 9963 * conservative. 9964 */ 9965 if (100 * busiest->avg_load <= 9966 env->sd->imbalance_pct * local->avg_load) 9967 goto out_balanced; 9968 } 9969 9970 /* Try to move all excess tasks to child's sibling domain */ 9971 if (sds.prefer_sibling && local->group_type == group_has_spare && 9972 busiest->sum_nr_running > local->sum_nr_running + 1) 9973 goto force_balance; 9974 9975 if (busiest->group_type != group_overloaded) { 9976 if (env->idle == CPU_NOT_IDLE) 9977 /* 9978 * If the busiest group is not overloaded (and as a 9979 * result the local one too) but this CPU is already 9980 * busy, let another idle CPU try to pull task. 9981 */ 9982 goto out_balanced; 9983 9984 if (busiest->group_weight > 1 && 9985 local->idle_cpus <= (busiest->idle_cpus + 1)) 9986 /* 9987 * If the busiest group is not overloaded 9988 * and there is no imbalance between this and busiest 9989 * group wrt idle CPUs, it is balanced. The imbalance 9990 * becomes significant if the diff is greater than 1 9991 * otherwise we might end up to just move the imbalance 9992 * on another group. Of course this applies only if 9993 * there is more than 1 CPU per group. 9994 */ 9995 goto out_balanced; 9996 9997 if (busiest->sum_h_nr_running == 1) 9998 /* 9999 * busiest doesn't have any tasks waiting to run 10000 */ 10001 goto out_balanced; 10002 } 10003 10004 force_balance: 10005 /* Looks like there is an imbalance. Compute it */ 10006 calculate_imbalance(env, &sds); 10007 return env->imbalance ? sds.busiest : NULL; 10008 10009 out_balanced: 10010 env->imbalance = 0; 10011 return NULL; 10012 } 10013 10014 /* 10015 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 10016 */ 10017 static struct rq *find_busiest_queue(struct lb_env *env, 10018 struct sched_group *group) 10019 { 10020 struct rq *busiest = NULL, *rq; 10021 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 10022 unsigned int busiest_nr = 0; 10023 int i; 10024 10025 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10026 unsigned long capacity, load, util; 10027 unsigned int nr_running; 10028 enum fbq_type rt; 10029 10030 rq = cpu_rq(i); 10031 rt = fbq_classify_rq(rq); 10032 10033 /* 10034 * We classify groups/runqueues into three groups: 10035 * - regular: there are !numa tasks 10036 * - remote: there are numa tasks that run on the 'wrong' node 10037 * - all: there is no distinction 10038 * 10039 * In order to avoid migrating ideally placed numa tasks, 10040 * ignore those when there's better options. 10041 * 10042 * If we ignore the actual busiest queue to migrate another 10043 * task, the next balance pass can still reduce the busiest 10044 * queue by moving tasks around inside the node. 10045 * 10046 * If we cannot move enough load due to this classification 10047 * the next pass will adjust the group classification and 10048 * allow migration of more tasks. 10049 * 10050 * Both cases only affect the total convergence complexity. 10051 */ 10052 if (rt > env->fbq_type) 10053 continue; 10054 10055 nr_running = rq->cfs.h_nr_running; 10056 if (!nr_running) 10057 continue; 10058 10059 capacity = capacity_of(i); 10060 10061 /* 10062 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 10063 * eventually lead to active_balancing high->low capacity. 10064 * Higher per-CPU capacity is considered better than balancing 10065 * average load. 10066 */ 10067 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 10068 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 10069 nr_running == 1) 10070 continue; 10071 10072 /* Make sure we only pull tasks from a CPU of lower priority */ 10073 if ((env->sd->flags & SD_ASYM_PACKING) && 10074 sched_asym_prefer(i, env->dst_cpu) && 10075 nr_running == 1) 10076 continue; 10077 10078 switch (env->migration_type) { 10079 case migrate_load: 10080 /* 10081 * When comparing with load imbalance, use cpu_load() 10082 * which is not scaled with the CPU capacity. 10083 */ 10084 load = cpu_load(rq); 10085 10086 if (nr_running == 1 && load > env->imbalance && 10087 !check_cpu_capacity(rq, env->sd)) 10088 break; 10089 10090 /* 10091 * For the load comparisons with the other CPUs, 10092 * consider the cpu_load() scaled with the CPU 10093 * capacity, so that the load can be moved away 10094 * from the CPU that is potentially running at a 10095 * lower capacity. 10096 * 10097 * Thus we're looking for max(load_i / capacity_i), 10098 * crosswise multiplication to rid ourselves of the 10099 * division works out to: 10100 * load_i * capacity_j > load_j * capacity_i; 10101 * where j is our previous maximum. 10102 */ 10103 if (load * busiest_capacity > busiest_load * capacity) { 10104 busiest_load = load; 10105 busiest_capacity = capacity; 10106 busiest = rq; 10107 } 10108 break; 10109 10110 case migrate_util: 10111 util = cpu_util_cfs(i); 10112 10113 /* 10114 * Don't try to pull utilization from a CPU with one 10115 * running task. Whatever its utilization, we will fail 10116 * detach the task. 10117 */ 10118 if (nr_running <= 1) 10119 continue; 10120 10121 if (busiest_util < util) { 10122 busiest_util = util; 10123 busiest = rq; 10124 } 10125 break; 10126 10127 case migrate_task: 10128 if (busiest_nr < nr_running) { 10129 busiest_nr = nr_running; 10130 busiest = rq; 10131 } 10132 break; 10133 10134 case migrate_misfit: 10135 /* 10136 * For ASYM_CPUCAPACITY domains with misfit tasks we 10137 * simply seek the "biggest" misfit task. 10138 */ 10139 if (rq->misfit_task_load > busiest_load) { 10140 busiest_load = rq->misfit_task_load; 10141 busiest = rq; 10142 } 10143 10144 break; 10145 10146 } 10147 } 10148 10149 return busiest; 10150 } 10151 10152 /* 10153 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 10154 * so long as it is large enough. 10155 */ 10156 #define MAX_PINNED_INTERVAL 512 10157 10158 static inline bool 10159 asym_active_balance(struct lb_env *env) 10160 { 10161 /* 10162 * ASYM_PACKING needs to force migrate tasks from busy but 10163 * lower priority CPUs in order to pack all tasks in the 10164 * highest priority CPUs. 10165 */ 10166 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 10167 sched_asym_prefer(env->dst_cpu, env->src_cpu); 10168 } 10169 10170 static inline bool 10171 imbalanced_active_balance(struct lb_env *env) 10172 { 10173 struct sched_domain *sd = env->sd; 10174 10175 /* 10176 * The imbalanced case includes the case of pinned tasks preventing a fair 10177 * distribution of the load on the system but also the even distribution of the 10178 * threads on a system with spare capacity 10179 */ 10180 if ((env->migration_type == migrate_task) && 10181 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 10182 return 1; 10183 10184 return 0; 10185 } 10186 10187 static int need_active_balance(struct lb_env *env) 10188 { 10189 struct sched_domain *sd = env->sd; 10190 10191 if (asym_active_balance(env)) 10192 return 1; 10193 10194 if (imbalanced_active_balance(env)) 10195 return 1; 10196 10197 /* 10198 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 10199 * It's worth migrating the task if the src_cpu's capacity is reduced 10200 * because of other sched_class or IRQs if more capacity stays 10201 * available on dst_cpu. 10202 */ 10203 if ((env->idle != CPU_NOT_IDLE) && 10204 (env->src_rq->cfs.h_nr_running == 1)) { 10205 if ((check_cpu_capacity(env->src_rq, sd)) && 10206 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 10207 return 1; 10208 } 10209 10210 if (env->migration_type == migrate_misfit) 10211 return 1; 10212 10213 return 0; 10214 } 10215 10216 static int active_load_balance_cpu_stop(void *data); 10217 10218 static int should_we_balance(struct lb_env *env) 10219 { 10220 struct sched_group *sg = env->sd->groups; 10221 int cpu; 10222 10223 /* 10224 * Ensure the balancing environment is consistent; can happen 10225 * when the softirq triggers 'during' hotplug. 10226 */ 10227 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 10228 return 0; 10229 10230 /* 10231 * In the newly idle case, we will allow all the CPUs 10232 * to do the newly idle load balance. 10233 * 10234 * However, we bail out if we already have tasks or a wakeup pending, 10235 * to optimize wakeup latency. 10236 */ 10237 if (env->idle == CPU_NEWLY_IDLE) { 10238 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 10239 return 0; 10240 return 1; 10241 } 10242 10243 /* Try to find first idle CPU */ 10244 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 10245 if (!idle_cpu(cpu)) 10246 continue; 10247 10248 /* Are we the first idle CPU? */ 10249 return cpu == env->dst_cpu; 10250 } 10251 10252 /* Are we the first CPU of this group ? */ 10253 return group_balance_cpu(sg) == env->dst_cpu; 10254 } 10255 10256 /* 10257 * Check this_cpu to ensure it is balanced within domain. Attempt to move 10258 * tasks if there is an imbalance. 10259 */ 10260 static int load_balance(int this_cpu, struct rq *this_rq, 10261 struct sched_domain *sd, enum cpu_idle_type idle, 10262 int *continue_balancing) 10263 { 10264 int ld_moved, cur_ld_moved, active_balance = 0; 10265 struct sched_domain *sd_parent = sd->parent; 10266 struct sched_group *group; 10267 struct rq *busiest; 10268 struct rq_flags rf; 10269 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 10270 struct lb_env env = { 10271 .sd = sd, 10272 .dst_cpu = this_cpu, 10273 .dst_rq = this_rq, 10274 .dst_grpmask = sched_group_span(sd->groups), 10275 .idle = idle, 10276 .loop_break = SCHED_NR_MIGRATE_BREAK, 10277 .cpus = cpus, 10278 .fbq_type = all, 10279 .tasks = LIST_HEAD_INIT(env.tasks), 10280 }; 10281 10282 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 10283 10284 schedstat_inc(sd->lb_count[idle]); 10285 10286 redo: 10287 if (!should_we_balance(&env)) { 10288 *continue_balancing = 0; 10289 goto out_balanced; 10290 } 10291 10292 group = find_busiest_group(&env); 10293 if (!group) { 10294 schedstat_inc(sd->lb_nobusyg[idle]); 10295 goto out_balanced; 10296 } 10297 10298 busiest = find_busiest_queue(&env, group); 10299 if (!busiest) { 10300 schedstat_inc(sd->lb_nobusyq[idle]); 10301 goto out_balanced; 10302 } 10303 10304 WARN_ON_ONCE(busiest == env.dst_rq); 10305 10306 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 10307 10308 env.src_cpu = busiest->cpu; 10309 env.src_rq = busiest; 10310 10311 ld_moved = 0; 10312 /* Clear this flag as soon as we find a pullable task */ 10313 env.flags |= LBF_ALL_PINNED; 10314 if (busiest->nr_running > 1) { 10315 /* 10316 * Attempt to move tasks. If find_busiest_group has found 10317 * an imbalance but busiest->nr_running <= 1, the group is 10318 * still unbalanced. ld_moved simply stays zero, so it is 10319 * correctly treated as an imbalance. 10320 */ 10321 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 10322 10323 more_balance: 10324 rq_lock_irqsave(busiest, &rf); 10325 update_rq_clock(busiest); 10326 10327 /* 10328 * cur_ld_moved - load moved in current iteration 10329 * ld_moved - cumulative load moved across iterations 10330 */ 10331 cur_ld_moved = detach_tasks(&env); 10332 10333 /* 10334 * We've detached some tasks from busiest_rq. Every 10335 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 10336 * unlock busiest->lock, and we are able to be sure 10337 * that nobody can manipulate the tasks in parallel. 10338 * See task_rq_lock() family for the details. 10339 */ 10340 10341 rq_unlock(busiest, &rf); 10342 10343 if (cur_ld_moved) { 10344 attach_tasks(&env); 10345 ld_moved += cur_ld_moved; 10346 } 10347 10348 local_irq_restore(rf.flags); 10349 10350 if (env.flags & LBF_NEED_BREAK) { 10351 env.flags &= ~LBF_NEED_BREAK; 10352 /* Stop if we tried all running tasks */ 10353 if (env.loop < busiest->nr_running) 10354 goto more_balance; 10355 } 10356 10357 /* 10358 * Revisit (affine) tasks on src_cpu that couldn't be moved to 10359 * us and move them to an alternate dst_cpu in our sched_group 10360 * where they can run. The upper limit on how many times we 10361 * iterate on same src_cpu is dependent on number of CPUs in our 10362 * sched_group. 10363 * 10364 * This changes load balance semantics a bit on who can move 10365 * load to a given_cpu. In addition to the given_cpu itself 10366 * (or a ilb_cpu acting on its behalf where given_cpu is 10367 * nohz-idle), we now have balance_cpu in a position to move 10368 * load to given_cpu. In rare situations, this may cause 10369 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 10370 * _independently_ and at _same_ time to move some load to 10371 * given_cpu) causing excess load to be moved to given_cpu. 10372 * This however should not happen so much in practice and 10373 * moreover subsequent load balance cycles should correct the 10374 * excess load moved. 10375 */ 10376 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 10377 10378 /* Prevent to re-select dst_cpu via env's CPUs */ 10379 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 10380 10381 env.dst_rq = cpu_rq(env.new_dst_cpu); 10382 env.dst_cpu = env.new_dst_cpu; 10383 env.flags &= ~LBF_DST_PINNED; 10384 env.loop = 0; 10385 env.loop_break = SCHED_NR_MIGRATE_BREAK; 10386 10387 /* 10388 * Go back to "more_balance" rather than "redo" since we 10389 * need to continue with same src_cpu. 10390 */ 10391 goto more_balance; 10392 } 10393 10394 /* 10395 * We failed to reach balance because of affinity. 10396 */ 10397 if (sd_parent) { 10398 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 10399 10400 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 10401 *group_imbalance = 1; 10402 } 10403 10404 /* All tasks on this runqueue were pinned by CPU affinity */ 10405 if (unlikely(env.flags & LBF_ALL_PINNED)) { 10406 __cpumask_clear_cpu(cpu_of(busiest), cpus); 10407 /* 10408 * Attempting to continue load balancing at the current 10409 * sched_domain level only makes sense if there are 10410 * active CPUs remaining as possible busiest CPUs to 10411 * pull load from which are not contained within the 10412 * destination group that is receiving any migrated 10413 * load. 10414 */ 10415 if (!cpumask_subset(cpus, env.dst_grpmask)) { 10416 env.loop = 0; 10417 env.loop_break = SCHED_NR_MIGRATE_BREAK; 10418 goto redo; 10419 } 10420 goto out_all_pinned; 10421 } 10422 } 10423 10424 if (!ld_moved) { 10425 schedstat_inc(sd->lb_failed[idle]); 10426 /* 10427 * Increment the failure counter only on periodic balance. 10428 * We do not want newidle balance, which can be very 10429 * frequent, pollute the failure counter causing 10430 * excessive cache_hot migrations and active balances. 10431 */ 10432 if (idle != CPU_NEWLY_IDLE) 10433 sd->nr_balance_failed++; 10434 10435 if (need_active_balance(&env)) { 10436 unsigned long flags; 10437 10438 raw_spin_rq_lock_irqsave(busiest, flags); 10439 10440 /* 10441 * Don't kick the active_load_balance_cpu_stop, 10442 * if the curr task on busiest CPU can't be 10443 * moved to this_cpu: 10444 */ 10445 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 10446 raw_spin_rq_unlock_irqrestore(busiest, flags); 10447 goto out_one_pinned; 10448 } 10449 10450 /* Record that we found at least one task that could run on this_cpu */ 10451 env.flags &= ~LBF_ALL_PINNED; 10452 10453 /* 10454 * ->active_balance synchronizes accesses to 10455 * ->active_balance_work. Once set, it's cleared 10456 * only after active load balance is finished. 10457 */ 10458 if (!busiest->active_balance) { 10459 busiest->active_balance = 1; 10460 busiest->push_cpu = this_cpu; 10461 active_balance = 1; 10462 } 10463 raw_spin_rq_unlock_irqrestore(busiest, flags); 10464 10465 if (active_balance) { 10466 stop_one_cpu_nowait(cpu_of(busiest), 10467 active_load_balance_cpu_stop, busiest, 10468 &busiest->active_balance_work); 10469 } 10470 } 10471 } else { 10472 sd->nr_balance_failed = 0; 10473 } 10474 10475 if (likely(!active_balance) || need_active_balance(&env)) { 10476 /* We were unbalanced, so reset the balancing interval */ 10477 sd->balance_interval = sd->min_interval; 10478 } 10479 10480 goto out; 10481 10482 out_balanced: 10483 /* 10484 * We reach balance although we may have faced some affinity 10485 * constraints. Clear the imbalance flag only if other tasks got 10486 * a chance to move and fix the imbalance. 10487 */ 10488 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 10489 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 10490 10491 if (*group_imbalance) 10492 *group_imbalance = 0; 10493 } 10494 10495 out_all_pinned: 10496 /* 10497 * We reach balance because all tasks are pinned at this level so 10498 * we can't migrate them. Let the imbalance flag set so parent level 10499 * can try to migrate them. 10500 */ 10501 schedstat_inc(sd->lb_balanced[idle]); 10502 10503 sd->nr_balance_failed = 0; 10504 10505 out_one_pinned: 10506 ld_moved = 0; 10507 10508 /* 10509 * newidle_balance() disregards balance intervals, so we could 10510 * repeatedly reach this code, which would lead to balance_interval 10511 * skyrocketing in a short amount of time. Skip the balance_interval 10512 * increase logic to avoid that. 10513 */ 10514 if (env.idle == CPU_NEWLY_IDLE) 10515 goto out; 10516 10517 /* tune up the balancing interval */ 10518 if ((env.flags & LBF_ALL_PINNED && 10519 sd->balance_interval < MAX_PINNED_INTERVAL) || 10520 sd->balance_interval < sd->max_interval) 10521 sd->balance_interval *= 2; 10522 out: 10523 return ld_moved; 10524 } 10525 10526 static inline unsigned long 10527 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 10528 { 10529 unsigned long interval = sd->balance_interval; 10530 10531 if (cpu_busy) 10532 interval *= sd->busy_factor; 10533 10534 /* scale ms to jiffies */ 10535 interval = msecs_to_jiffies(interval); 10536 10537 /* 10538 * Reduce likelihood of busy balancing at higher domains racing with 10539 * balancing at lower domains by preventing their balancing periods 10540 * from being multiples of each other. 10541 */ 10542 if (cpu_busy) 10543 interval -= 1; 10544 10545 interval = clamp(interval, 1UL, max_load_balance_interval); 10546 10547 return interval; 10548 } 10549 10550 static inline void 10551 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 10552 { 10553 unsigned long interval, next; 10554 10555 /* used by idle balance, so cpu_busy = 0 */ 10556 interval = get_sd_balance_interval(sd, 0); 10557 next = sd->last_balance + interval; 10558 10559 if (time_after(*next_balance, next)) 10560 *next_balance = next; 10561 } 10562 10563 /* 10564 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 10565 * running tasks off the busiest CPU onto idle CPUs. It requires at 10566 * least 1 task to be running on each physical CPU where possible, and 10567 * avoids physical / logical imbalances. 10568 */ 10569 static int active_load_balance_cpu_stop(void *data) 10570 { 10571 struct rq *busiest_rq = data; 10572 int busiest_cpu = cpu_of(busiest_rq); 10573 int target_cpu = busiest_rq->push_cpu; 10574 struct rq *target_rq = cpu_rq(target_cpu); 10575 struct sched_domain *sd; 10576 struct task_struct *p = NULL; 10577 struct rq_flags rf; 10578 10579 rq_lock_irq(busiest_rq, &rf); 10580 /* 10581 * Between queueing the stop-work and running it is a hole in which 10582 * CPUs can become inactive. We should not move tasks from or to 10583 * inactive CPUs. 10584 */ 10585 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 10586 goto out_unlock; 10587 10588 /* Make sure the requested CPU hasn't gone down in the meantime: */ 10589 if (unlikely(busiest_cpu != smp_processor_id() || 10590 !busiest_rq->active_balance)) 10591 goto out_unlock; 10592 10593 /* Is there any task to move? */ 10594 if (busiest_rq->nr_running <= 1) 10595 goto out_unlock; 10596 10597 /* 10598 * This condition is "impossible", if it occurs 10599 * we need to fix it. Originally reported by 10600 * Bjorn Helgaas on a 128-CPU setup. 10601 */ 10602 WARN_ON_ONCE(busiest_rq == target_rq); 10603 10604 /* Search for an sd spanning us and the target CPU. */ 10605 rcu_read_lock(); 10606 for_each_domain(target_cpu, sd) { 10607 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 10608 break; 10609 } 10610 10611 if (likely(sd)) { 10612 struct lb_env env = { 10613 .sd = sd, 10614 .dst_cpu = target_cpu, 10615 .dst_rq = target_rq, 10616 .src_cpu = busiest_rq->cpu, 10617 .src_rq = busiest_rq, 10618 .idle = CPU_IDLE, 10619 .flags = LBF_ACTIVE_LB, 10620 }; 10621 10622 schedstat_inc(sd->alb_count); 10623 update_rq_clock(busiest_rq); 10624 10625 p = detach_one_task(&env); 10626 if (p) { 10627 schedstat_inc(sd->alb_pushed); 10628 /* Active balancing done, reset the failure counter. */ 10629 sd->nr_balance_failed = 0; 10630 } else { 10631 schedstat_inc(sd->alb_failed); 10632 } 10633 } 10634 rcu_read_unlock(); 10635 out_unlock: 10636 busiest_rq->active_balance = 0; 10637 rq_unlock(busiest_rq, &rf); 10638 10639 if (p) 10640 attach_one_task(target_rq, p); 10641 10642 local_irq_enable(); 10643 10644 return 0; 10645 } 10646 10647 static DEFINE_SPINLOCK(balancing); 10648 10649 /* 10650 * Scale the max load_balance interval with the number of CPUs in the system. 10651 * This trades load-balance latency on larger machines for less cross talk. 10652 */ 10653 void update_max_interval(void) 10654 { 10655 max_load_balance_interval = HZ*num_online_cpus()/10; 10656 } 10657 10658 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 10659 { 10660 if (cost > sd->max_newidle_lb_cost) { 10661 /* 10662 * Track max cost of a domain to make sure to not delay the 10663 * next wakeup on the CPU. 10664 */ 10665 sd->max_newidle_lb_cost = cost; 10666 sd->last_decay_max_lb_cost = jiffies; 10667 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 10668 /* 10669 * Decay the newidle max times by ~1% per second to ensure that 10670 * it is not outdated and the current max cost is actually 10671 * shorter. 10672 */ 10673 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 10674 sd->last_decay_max_lb_cost = jiffies; 10675 10676 return true; 10677 } 10678 10679 return false; 10680 } 10681 10682 /* 10683 * It checks each scheduling domain to see if it is due to be balanced, 10684 * and initiates a balancing operation if so. 10685 * 10686 * Balancing parameters are set up in init_sched_domains. 10687 */ 10688 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 10689 { 10690 int continue_balancing = 1; 10691 int cpu = rq->cpu; 10692 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10693 unsigned long interval; 10694 struct sched_domain *sd; 10695 /* Earliest time when we have to do rebalance again */ 10696 unsigned long next_balance = jiffies + 60*HZ; 10697 int update_next_balance = 0; 10698 int need_serialize, need_decay = 0; 10699 u64 max_cost = 0; 10700 10701 rcu_read_lock(); 10702 for_each_domain(cpu, sd) { 10703 /* 10704 * Decay the newidle max times here because this is a regular 10705 * visit to all the domains. 10706 */ 10707 need_decay = update_newidle_cost(sd, 0); 10708 max_cost += sd->max_newidle_lb_cost; 10709 10710 /* 10711 * Stop the load balance at this level. There is another 10712 * CPU in our sched group which is doing load balancing more 10713 * actively. 10714 */ 10715 if (!continue_balancing) { 10716 if (need_decay) 10717 continue; 10718 break; 10719 } 10720 10721 interval = get_sd_balance_interval(sd, busy); 10722 10723 need_serialize = sd->flags & SD_SERIALIZE; 10724 if (need_serialize) { 10725 if (!spin_trylock(&balancing)) 10726 goto out; 10727 } 10728 10729 if (time_after_eq(jiffies, sd->last_balance + interval)) { 10730 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 10731 /* 10732 * The LBF_DST_PINNED logic could have changed 10733 * env->dst_cpu, so we can't know our idle 10734 * state even if we migrated tasks. Update it. 10735 */ 10736 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 10737 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10738 } 10739 sd->last_balance = jiffies; 10740 interval = get_sd_balance_interval(sd, busy); 10741 } 10742 if (need_serialize) 10743 spin_unlock(&balancing); 10744 out: 10745 if (time_after(next_balance, sd->last_balance + interval)) { 10746 next_balance = sd->last_balance + interval; 10747 update_next_balance = 1; 10748 } 10749 } 10750 if (need_decay) { 10751 /* 10752 * Ensure the rq-wide value also decays but keep it at a 10753 * reasonable floor to avoid funnies with rq->avg_idle. 10754 */ 10755 rq->max_idle_balance_cost = 10756 max((u64)sysctl_sched_migration_cost, max_cost); 10757 } 10758 rcu_read_unlock(); 10759 10760 /* 10761 * next_balance will be updated only when there is a need. 10762 * When the cpu is attached to null domain for ex, it will not be 10763 * updated. 10764 */ 10765 if (likely(update_next_balance)) 10766 rq->next_balance = next_balance; 10767 10768 } 10769 10770 static inline int on_null_domain(struct rq *rq) 10771 { 10772 return unlikely(!rcu_dereference_sched(rq->sd)); 10773 } 10774 10775 #ifdef CONFIG_NO_HZ_COMMON 10776 /* 10777 * idle load balancing details 10778 * - When one of the busy CPUs notice that there may be an idle rebalancing 10779 * needed, they will kick the idle load balancer, which then does idle 10780 * load balancing for all the idle CPUs. 10781 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set 10782 * anywhere yet. 10783 */ 10784 10785 static inline int find_new_ilb(void) 10786 { 10787 int ilb; 10788 const struct cpumask *hk_mask; 10789 10790 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 10791 10792 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) { 10793 10794 if (ilb == smp_processor_id()) 10795 continue; 10796 10797 if (idle_cpu(ilb)) 10798 return ilb; 10799 } 10800 10801 return nr_cpu_ids; 10802 } 10803 10804 /* 10805 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 10806 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 10807 */ 10808 static void kick_ilb(unsigned int flags) 10809 { 10810 int ilb_cpu; 10811 10812 /* 10813 * Increase nohz.next_balance only when if full ilb is triggered but 10814 * not if we only update stats. 10815 */ 10816 if (flags & NOHZ_BALANCE_KICK) 10817 nohz.next_balance = jiffies+1; 10818 10819 ilb_cpu = find_new_ilb(); 10820 10821 if (ilb_cpu >= nr_cpu_ids) 10822 return; 10823 10824 /* 10825 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 10826 * the first flag owns it; cleared by nohz_csd_func(). 10827 */ 10828 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 10829 if (flags & NOHZ_KICK_MASK) 10830 return; 10831 10832 /* 10833 * This way we generate an IPI on the target CPU which 10834 * is idle. And the softirq performing nohz idle load balance 10835 * will be run before returning from the IPI. 10836 */ 10837 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 10838 } 10839 10840 /* 10841 * Current decision point for kicking the idle load balancer in the presence 10842 * of idle CPUs in the system. 10843 */ 10844 static void nohz_balancer_kick(struct rq *rq) 10845 { 10846 unsigned long now = jiffies; 10847 struct sched_domain_shared *sds; 10848 struct sched_domain *sd; 10849 int nr_busy, i, cpu = rq->cpu; 10850 unsigned int flags = 0; 10851 10852 if (unlikely(rq->idle_balance)) 10853 return; 10854 10855 /* 10856 * We may be recently in ticked or tickless idle mode. At the first 10857 * busy tick after returning from idle, we will update the busy stats. 10858 */ 10859 nohz_balance_exit_idle(rq); 10860 10861 /* 10862 * None are in tickless mode and hence no need for NOHZ idle load 10863 * balancing. 10864 */ 10865 if (likely(!atomic_read(&nohz.nr_cpus))) 10866 return; 10867 10868 if (READ_ONCE(nohz.has_blocked) && 10869 time_after(now, READ_ONCE(nohz.next_blocked))) 10870 flags = NOHZ_STATS_KICK; 10871 10872 if (time_before(now, nohz.next_balance)) 10873 goto out; 10874 10875 if (rq->nr_running >= 2) { 10876 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10877 goto out; 10878 } 10879 10880 rcu_read_lock(); 10881 10882 sd = rcu_dereference(rq->sd); 10883 if (sd) { 10884 /* 10885 * If there's a CFS task and the current CPU has reduced 10886 * capacity; kick the ILB to see if there's a better CPU to run 10887 * on. 10888 */ 10889 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 10890 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10891 goto unlock; 10892 } 10893 } 10894 10895 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 10896 if (sd) { 10897 /* 10898 * When ASYM_PACKING; see if there's a more preferred CPU 10899 * currently idle; in which case, kick the ILB to move tasks 10900 * around. 10901 */ 10902 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 10903 if (sched_asym_prefer(i, cpu)) { 10904 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10905 goto unlock; 10906 } 10907 } 10908 } 10909 10910 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 10911 if (sd) { 10912 /* 10913 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 10914 * to run the misfit task on. 10915 */ 10916 if (check_misfit_status(rq, sd)) { 10917 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10918 goto unlock; 10919 } 10920 10921 /* 10922 * For asymmetric systems, we do not want to nicely balance 10923 * cache use, instead we want to embrace asymmetry and only 10924 * ensure tasks have enough CPU capacity. 10925 * 10926 * Skip the LLC logic because it's not relevant in that case. 10927 */ 10928 goto unlock; 10929 } 10930 10931 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 10932 if (sds) { 10933 /* 10934 * If there is an imbalance between LLC domains (IOW we could 10935 * increase the overall cache use), we need some less-loaded LLC 10936 * domain to pull some load. Likewise, we may need to spread 10937 * load within the current LLC domain (e.g. packed SMT cores but 10938 * other CPUs are idle). We can't really know from here how busy 10939 * the others are - so just get a nohz balance going if it looks 10940 * like this LLC domain has tasks we could move. 10941 */ 10942 nr_busy = atomic_read(&sds->nr_busy_cpus); 10943 if (nr_busy > 1) { 10944 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10945 goto unlock; 10946 } 10947 } 10948 unlock: 10949 rcu_read_unlock(); 10950 out: 10951 if (READ_ONCE(nohz.needs_update)) 10952 flags |= NOHZ_NEXT_KICK; 10953 10954 if (flags) 10955 kick_ilb(flags); 10956 } 10957 10958 static void set_cpu_sd_state_busy(int cpu) 10959 { 10960 struct sched_domain *sd; 10961 10962 rcu_read_lock(); 10963 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10964 10965 if (!sd || !sd->nohz_idle) 10966 goto unlock; 10967 sd->nohz_idle = 0; 10968 10969 atomic_inc(&sd->shared->nr_busy_cpus); 10970 unlock: 10971 rcu_read_unlock(); 10972 } 10973 10974 void nohz_balance_exit_idle(struct rq *rq) 10975 { 10976 SCHED_WARN_ON(rq != this_rq()); 10977 10978 if (likely(!rq->nohz_tick_stopped)) 10979 return; 10980 10981 rq->nohz_tick_stopped = 0; 10982 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 10983 atomic_dec(&nohz.nr_cpus); 10984 10985 set_cpu_sd_state_busy(rq->cpu); 10986 } 10987 10988 static void set_cpu_sd_state_idle(int cpu) 10989 { 10990 struct sched_domain *sd; 10991 10992 rcu_read_lock(); 10993 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10994 10995 if (!sd || sd->nohz_idle) 10996 goto unlock; 10997 sd->nohz_idle = 1; 10998 10999 atomic_dec(&sd->shared->nr_busy_cpus); 11000 unlock: 11001 rcu_read_unlock(); 11002 } 11003 11004 /* 11005 * This routine will record that the CPU is going idle with tick stopped. 11006 * This info will be used in performing idle load balancing in the future. 11007 */ 11008 void nohz_balance_enter_idle(int cpu) 11009 { 11010 struct rq *rq = cpu_rq(cpu); 11011 11012 SCHED_WARN_ON(cpu != smp_processor_id()); 11013 11014 /* If this CPU is going down, then nothing needs to be done: */ 11015 if (!cpu_active(cpu)) 11016 return; 11017 11018 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 11019 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 11020 return; 11021 11022 /* 11023 * Can be set safely without rq->lock held 11024 * If a clear happens, it will have evaluated last additions because 11025 * rq->lock is held during the check and the clear 11026 */ 11027 rq->has_blocked_load = 1; 11028 11029 /* 11030 * The tick is still stopped but load could have been added in the 11031 * meantime. We set the nohz.has_blocked flag to trig a check of the 11032 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 11033 * of nohz.has_blocked can only happen after checking the new load 11034 */ 11035 if (rq->nohz_tick_stopped) 11036 goto out; 11037 11038 /* If we're a completely isolated CPU, we don't play: */ 11039 if (on_null_domain(rq)) 11040 return; 11041 11042 rq->nohz_tick_stopped = 1; 11043 11044 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 11045 atomic_inc(&nohz.nr_cpus); 11046 11047 /* 11048 * Ensures that if nohz_idle_balance() fails to observe our 11049 * @idle_cpus_mask store, it must observe the @has_blocked 11050 * and @needs_update stores. 11051 */ 11052 smp_mb__after_atomic(); 11053 11054 set_cpu_sd_state_idle(cpu); 11055 11056 WRITE_ONCE(nohz.needs_update, 1); 11057 out: 11058 /* 11059 * Each time a cpu enter idle, we assume that it has blocked load and 11060 * enable the periodic update of the load of idle cpus 11061 */ 11062 WRITE_ONCE(nohz.has_blocked, 1); 11063 } 11064 11065 static bool update_nohz_stats(struct rq *rq) 11066 { 11067 unsigned int cpu = rq->cpu; 11068 11069 if (!rq->has_blocked_load) 11070 return false; 11071 11072 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 11073 return false; 11074 11075 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 11076 return true; 11077 11078 update_blocked_averages(cpu); 11079 11080 return rq->has_blocked_load; 11081 } 11082 11083 /* 11084 * Internal function that runs load balance for all idle cpus. The load balance 11085 * can be a simple update of blocked load or a complete load balance with 11086 * tasks movement depending of flags. 11087 */ 11088 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 11089 { 11090 /* Earliest time when we have to do rebalance again */ 11091 unsigned long now = jiffies; 11092 unsigned long next_balance = now + 60*HZ; 11093 bool has_blocked_load = false; 11094 int update_next_balance = 0; 11095 int this_cpu = this_rq->cpu; 11096 int balance_cpu; 11097 struct rq *rq; 11098 11099 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 11100 11101 /* 11102 * We assume there will be no idle load after this update and clear 11103 * the has_blocked flag. If a cpu enters idle in the mean time, it will 11104 * set the has_blocked flag and trigger another update of idle load. 11105 * Because a cpu that becomes idle, is added to idle_cpus_mask before 11106 * setting the flag, we are sure to not clear the state and not 11107 * check the load of an idle cpu. 11108 * 11109 * Same applies to idle_cpus_mask vs needs_update. 11110 */ 11111 if (flags & NOHZ_STATS_KICK) 11112 WRITE_ONCE(nohz.has_blocked, 0); 11113 if (flags & NOHZ_NEXT_KICK) 11114 WRITE_ONCE(nohz.needs_update, 0); 11115 11116 /* 11117 * Ensures that if we miss the CPU, we must see the has_blocked 11118 * store from nohz_balance_enter_idle(). 11119 */ 11120 smp_mb(); 11121 11122 /* 11123 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 11124 * chance for other idle cpu to pull load. 11125 */ 11126 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 11127 if (!idle_cpu(balance_cpu)) 11128 continue; 11129 11130 /* 11131 * If this CPU gets work to do, stop the load balancing 11132 * work being done for other CPUs. Next load 11133 * balancing owner will pick it up. 11134 */ 11135 if (need_resched()) { 11136 if (flags & NOHZ_STATS_KICK) 11137 has_blocked_load = true; 11138 if (flags & NOHZ_NEXT_KICK) 11139 WRITE_ONCE(nohz.needs_update, 1); 11140 goto abort; 11141 } 11142 11143 rq = cpu_rq(balance_cpu); 11144 11145 if (flags & NOHZ_STATS_KICK) 11146 has_blocked_load |= update_nohz_stats(rq); 11147 11148 /* 11149 * If time for next balance is due, 11150 * do the balance. 11151 */ 11152 if (time_after_eq(jiffies, rq->next_balance)) { 11153 struct rq_flags rf; 11154 11155 rq_lock_irqsave(rq, &rf); 11156 update_rq_clock(rq); 11157 rq_unlock_irqrestore(rq, &rf); 11158 11159 if (flags & NOHZ_BALANCE_KICK) 11160 rebalance_domains(rq, CPU_IDLE); 11161 } 11162 11163 if (time_after(next_balance, rq->next_balance)) { 11164 next_balance = rq->next_balance; 11165 update_next_balance = 1; 11166 } 11167 } 11168 11169 /* 11170 * next_balance will be updated only when there is a need. 11171 * When the CPU is attached to null domain for ex, it will not be 11172 * updated. 11173 */ 11174 if (likely(update_next_balance)) 11175 nohz.next_balance = next_balance; 11176 11177 if (flags & NOHZ_STATS_KICK) 11178 WRITE_ONCE(nohz.next_blocked, 11179 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 11180 11181 abort: 11182 /* There is still blocked load, enable periodic update */ 11183 if (has_blocked_load) 11184 WRITE_ONCE(nohz.has_blocked, 1); 11185 } 11186 11187 /* 11188 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 11189 * rebalancing for all the cpus for whom scheduler ticks are stopped. 11190 */ 11191 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 11192 { 11193 unsigned int flags = this_rq->nohz_idle_balance; 11194 11195 if (!flags) 11196 return false; 11197 11198 this_rq->nohz_idle_balance = 0; 11199 11200 if (idle != CPU_IDLE) 11201 return false; 11202 11203 _nohz_idle_balance(this_rq, flags); 11204 11205 return true; 11206 } 11207 11208 /* 11209 * Check if we need to run the ILB for updating blocked load before entering 11210 * idle state. 11211 */ 11212 void nohz_run_idle_balance(int cpu) 11213 { 11214 unsigned int flags; 11215 11216 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 11217 11218 /* 11219 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 11220 * (ie NOHZ_STATS_KICK set) and will do the same. 11221 */ 11222 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 11223 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 11224 } 11225 11226 static void nohz_newidle_balance(struct rq *this_rq) 11227 { 11228 int this_cpu = this_rq->cpu; 11229 11230 /* 11231 * This CPU doesn't want to be disturbed by scheduler 11232 * housekeeping 11233 */ 11234 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 11235 return; 11236 11237 /* Will wake up very soon. No time for doing anything else*/ 11238 if (this_rq->avg_idle < sysctl_sched_migration_cost) 11239 return; 11240 11241 /* Don't need to update blocked load of idle CPUs*/ 11242 if (!READ_ONCE(nohz.has_blocked) || 11243 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 11244 return; 11245 11246 /* 11247 * Set the need to trigger ILB in order to update blocked load 11248 * before entering idle state. 11249 */ 11250 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 11251 } 11252 11253 #else /* !CONFIG_NO_HZ_COMMON */ 11254 static inline void nohz_balancer_kick(struct rq *rq) { } 11255 11256 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 11257 { 11258 return false; 11259 } 11260 11261 static inline void nohz_newidle_balance(struct rq *this_rq) { } 11262 #endif /* CONFIG_NO_HZ_COMMON */ 11263 11264 /* 11265 * newidle_balance is called by schedule() if this_cpu is about to become 11266 * idle. Attempts to pull tasks from other CPUs. 11267 * 11268 * Returns: 11269 * < 0 - we released the lock and there are !fair tasks present 11270 * 0 - failed, no new tasks 11271 * > 0 - success, new (fair) tasks present 11272 */ 11273 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 11274 { 11275 unsigned long next_balance = jiffies + HZ; 11276 int this_cpu = this_rq->cpu; 11277 u64 t0, t1, curr_cost = 0; 11278 struct sched_domain *sd; 11279 int pulled_task = 0; 11280 11281 update_misfit_status(NULL, this_rq); 11282 11283 /* 11284 * There is a task waiting to run. No need to search for one. 11285 * Return 0; the task will be enqueued when switching to idle. 11286 */ 11287 if (this_rq->ttwu_pending) 11288 return 0; 11289 11290 /* 11291 * We must set idle_stamp _before_ calling idle_balance(), such that we 11292 * measure the duration of idle_balance() as idle time. 11293 */ 11294 this_rq->idle_stamp = rq_clock(this_rq); 11295 11296 /* 11297 * Do not pull tasks towards !active CPUs... 11298 */ 11299 if (!cpu_active(this_cpu)) 11300 return 0; 11301 11302 /* 11303 * This is OK, because current is on_cpu, which avoids it being picked 11304 * for load-balance and preemption/IRQs are still disabled avoiding 11305 * further scheduler activity on it and we're being very careful to 11306 * re-start the picking loop. 11307 */ 11308 rq_unpin_lock(this_rq, rf); 11309 11310 rcu_read_lock(); 11311 sd = rcu_dereference_check_sched_domain(this_rq->sd); 11312 11313 if (!READ_ONCE(this_rq->rd->overload) || 11314 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 11315 11316 if (sd) 11317 update_next_balance(sd, &next_balance); 11318 rcu_read_unlock(); 11319 11320 goto out; 11321 } 11322 rcu_read_unlock(); 11323 11324 raw_spin_rq_unlock(this_rq); 11325 11326 t0 = sched_clock_cpu(this_cpu); 11327 update_blocked_averages(this_cpu); 11328 11329 rcu_read_lock(); 11330 for_each_domain(this_cpu, sd) { 11331 int continue_balancing = 1; 11332 u64 domain_cost; 11333 11334 update_next_balance(sd, &next_balance); 11335 11336 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 11337 break; 11338 11339 if (sd->flags & SD_BALANCE_NEWIDLE) { 11340 11341 pulled_task = load_balance(this_cpu, this_rq, 11342 sd, CPU_NEWLY_IDLE, 11343 &continue_balancing); 11344 11345 t1 = sched_clock_cpu(this_cpu); 11346 domain_cost = t1 - t0; 11347 update_newidle_cost(sd, domain_cost); 11348 11349 curr_cost += domain_cost; 11350 t0 = t1; 11351 } 11352 11353 /* 11354 * Stop searching for tasks to pull if there are 11355 * now runnable tasks on this rq. 11356 */ 11357 if (pulled_task || this_rq->nr_running > 0 || 11358 this_rq->ttwu_pending) 11359 break; 11360 } 11361 rcu_read_unlock(); 11362 11363 raw_spin_rq_lock(this_rq); 11364 11365 if (curr_cost > this_rq->max_idle_balance_cost) 11366 this_rq->max_idle_balance_cost = curr_cost; 11367 11368 /* 11369 * While browsing the domains, we released the rq lock, a task could 11370 * have been enqueued in the meantime. Since we're not going idle, 11371 * pretend we pulled a task. 11372 */ 11373 if (this_rq->cfs.h_nr_running && !pulled_task) 11374 pulled_task = 1; 11375 11376 /* Is there a task of a high priority class? */ 11377 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 11378 pulled_task = -1; 11379 11380 out: 11381 /* Move the next balance forward */ 11382 if (time_after(this_rq->next_balance, next_balance)) 11383 this_rq->next_balance = next_balance; 11384 11385 if (pulled_task) 11386 this_rq->idle_stamp = 0; 11387 else 11388 nohz_newidle_balance(this_rq); 11389 11390 rq_repin_lock(this_rq, rf); 11391 11392 return pulled_task; 11393 } 11394 11395 /* 11396 * run_rebalance_domains is triggered when needed from the scheduler tick. 11397 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 11398 */ 11399 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 11400 { 11401 struct rq *this_rq = this_rq(); 11402 enum cpu_idle_type idle = this_rq->idle_balance ? 11403 CPU_IDLE : CPU_NOT_IDLE; 11404 11405 /* 11406 * If this CPU has a pending nohz_balance_kick, then do the 11407 * balancing on behalf of the other idle CPUs whose ticks are 11408 * stopped. Do nohz_idle_balance *before* rebalance_domains to 11409 * give the idle CPUs a chance to load balance. Else we may 11410 * load balance only within the local sched_domain hierarchy 11411 * and abort nohz_idle_balance altogether if we pull some load. 11412 */ 11413 if (nohz_idle_balance(this_rq, idle)) 11414 return; 11415 11416 /* normal load balance */ 11417 update_blocked_averages(this_rq->cpu); 11418 rebalance_domains(this_rq, idle); 11419 } 11420 11421 /* 11422 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 11423 */ 11424 void trigger_load_balance(struct rq *rq) 11425 { 11426 /* 11427 * Don't need to rebalance while attached to NULL domain or 11428 * runqueue CPU is not active 11429 */ 11430 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 11431 return; 11432 11433 if (time_after_eq(jiffies, rq->next_balance)) 11434 raise_softirq(SCHED_SOFTIRQ); 11435 11436 nohz_balancer_kick(rq); 11437 } 11438 11439 static void rq_online_fair(struct rq *rq) 11440 { 11441 update_sysctl(); 11442 11443 update_runtime_enabled(rq); 11444 } 11445 11446 static void rq_offline_fair(struct rq *rq) 11447 { 11448 update_sysctl(); 11449 11450 /* Ensure any throttled groups are reachable by pick_next_task */ 11451 unthrottle_offline_cfs_rqs(rq); 11452 } 11453 11454 #endif /* CONFIG_SMP */ 11455 11456 #ifdef CONFIG_SCHED_CORE 11457 static inline bool 11458 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 11459 { 11460 u64 slice = sched_slice(cfs_rq_of(se), se); 11461 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 11462 11463 return (rtime * min_nr_tasks > slice); 11464 } 11465 11466 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 11467 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 11468 { 11469 if (!sched_core_enabled(rq)) 11470 return; 11471 11472 /* 11473 * If runqueue has only one task which used up its slice and 11474 * if the sibling is forced idle, then trigger schedule to 11475 * give forced idle task a chance. 11476 * 11477 * sched_slice() considers only this active rq and it gets the 11478 * whole slice. But during force idle, we have siblings acting 11479 * like a single runqueue and hence we need to consider runnable 11480 * tasks on this CPU and the forced idle CPU. Ideally, we should 11481 * go through the forced idle rq, but that would be a perf hit. 11482 * We can assume that the forced idle CPU has at least 11483 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 11484 * if we need to give up the CPU. 11485 */ 11486 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 11487 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 11488 resched_curr(rq); 11489 } 11490 11491 /* 11492 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 11493 */ 11494 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle) 11495 { 11496 for_each_sched_entity(se) { 11497 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11498 11499 if (forceidle) { 11500 if (cfs_rq->forceidle_seq == fi_seq) 11501 break; 11502 cfs_rq->forceidle_seq = fi_seq; 11503 } 11504 11505 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 11506 } 11507 } 11508 11509 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 11510 { 11511 struct sched_entity *se = &p->se; 11512 11513 if (p->sched_class != &fair_sched_class) 11514 return; 11515 11516 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 11517 } 11518 11519 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 11520 { 11521 struct rq *rq = task_rq(a); 11522 struct sched_entity *sea = &a->se; 11523 struct sched_entity *seb = &b->se; 11524 struct cfs_rq *cfs_rqa; 11525 struct cfs_rq *cfs_rqb; 11526 s64 delta; 11527 11528 SCHED_WARN_ON(task_rq(b)->core != rq->core); 11529 11530 #ifdef CONFIG_FAIR_GROUP_SCHED 11531 /* 11532 * Find an se in the hierarchy for tasks a and b, such that the se's 11533 * are immediate siblings. 11534 */ 11535 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 11536 int sea_depth = sea->depth; 11537 int seb_depth = seb->depth; 11538 11539 if (sea_depth >= seb_depth) 11540 sea = parent_entity(sea); 11541 if (sea_depth <= seb_depth) 11542 seb = parent_entity(seb); 11543 } 11544 11545 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 11546 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 11547 11548 cfs_rqa = sea->cfs_rq; 11549 cfs_rqb = seb->cfs_rq; 11550 #else 11551 cfs_rqa = &task_rq(a)->cfs; 11552 cfs_rqb = &task_rq(b)->cfs; 11553 #endif 11554 11555 /* 11556 * Find delta after normalizing se's vruntime with its cfs_rq's 11557 * min_vruntime_fi, which would have been updated in prior calls 11558 * to se_fi_update(). 11559 */ 11560 delta = (s64)(sea->vruntime - seb->vruntime) + 11561 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 11562 11563 return delta > 0; 11564 } 11565 #else 11566 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 11567 #endif 11568 11569 /* 11570 * scheduler tick hitting a task of our scheduling class. 11571 * 11572 * NOTE: This function can be called remotely by the tick offload that 11573 * goes along full dynticks. Therefore no local assumption can be made 11574 * and everything must be accessed through the @rq and @curr passed in 11575 * parameters. 11576 */ 11577 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 11578 { 11579 struct cfs_rq *cfs_rq; 11580 struct sched_entity *se = &curr->se; 11581 11582 for_each_sched_entity(se) { 11583 cfs_rq = cfs_rq_of(se); 11584 entity_tick(cfs_rq, se, queued); 11585 } 11586 11587 if (static_branch_unlikely(&sched_numa_balancing)) 11588 task_tick_numa(rq, curr); 11589 11590 update_misfit_status(curr, rq); 11591 update_overutilized_status(task_rq(curr)); 11592 11593 task_tick_core(rq, curr); 11594 } 11595 11596 /* 11597 * called on fork with the child task as argument from the parent's context 11598 * - child not yet on the tasklist 11599 * - preemption disabled 11600 */ 11601 static void task_fork_fair(struct task_struct *p) 11602 { 11603 struct cfs_rq *cfs_rq; 11604 struct sched_entity *se = &p->se, *curr; 11605 struct rq *rq = this_rq(); 11606 struct rq_flags rf; 11607 11608 rq_lock(rq, &rf); 11609 update_rq_clock(rq); 11610 11611 cfs_rq = task_cfs_rq(current); 11612 curr = cfs_rq->curr; 11613 if (curr) { 11614 update_curr(cfs_rq); 11615 se->vruntime = curr->vruntime; 11616 } 11617 place_entity(cfs_rq, se, 1); 11618 11619 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 11620 /* 11621 * Upon rescheduling, sched_class::put_prev_task() will place 11622 * 'current' within the tree based on its new key value. 11623 */ 11624 swap(curr->vruntime, se->vruntime); 11625 resched_curr(rq); 11626 } 11627 11628 se->vruntime -= cfs_rq->min_vruntime; 11629 rq_unlock(rq, &rf); 11630 } 11631 11632 /* 11633 * Priority of the task has changed. Check to see if we preempt 11634 * the current task. 11635 */ 11636 static void 11637 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 11638 { 11639 if (!task_on_rq_queued(p)) 11640 return; 11641 11642 if (rq->cfs.nr_running == 1) 11643 return; 11644 11645 /* 11646 * Reschedule if we are currently running on this runqueue and 11647 * our priority decreased, or if we are not currently running on 11648 * this runqueue and our priority is higher than the current's 11649 */ 11650 if (task_current(rq, p)) { 11651 if (p->prio > oldprio) 11652 resched_curr(rq); 11653 } else 11654 check_preempt_curr(rq, p, 0); 11655 } 11656 11657 static inline bool vruntime_normalized(struct task_struct *p) 11658 { 11659 struct sched_entity *se = &p->se; 11660 11661 /* 11662 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 11663 * the dequeue_entity(.flags=0) will already have normalized the 11664 * vruntime. 11665 */ 11666 if (p->on_rq) 11667 return true; 11668 11669 /* 11670 * When !on_rq, vruntime of the task has usually NOT been normalized. 11671 * But there are some cases where it has already been normalized: 11672 * 11673 * - A forked child which is waiting for being woken up by 11674 * wake_up_new_task(). 11675 * - A task which has been woken up by try_to_wake_up() and 11676 * waiting for actually being woken up by sched_ttwu_pending(). 11677 */ 11678 if (!se->sum_exec_runtime || 11679 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup)) 11680 return true; 11681 11682 return false; 11683 } 11684 11685 #ifdef CONFIG_FAIR_GROUP_SCHED 11686 /* 11687 * Propagate the changes of the sched_entity across the tg tree to make it 11688 * visible to the root 11689 */ 11690 static void propagate_entity_cfs_rq(struct sched_entity *se) 11691 { 11692 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11693 11694 if (cfs_rq_throttled(cfs_rq)) 11695 return; 11696 11697 if (!throttled_hierarchy(cfs_rq)) 11698 list_add_leaf_cfs_rq(cfs_rq); 11699 11700 /* Start to propagate at parent */ 11701 se = se->parent; 11702 11703 for_each_sched_entity(se) { 11704 cfs_rq = cfs_rq_of(se); 11705 11706 update_load_avg(cfs_rq, se, UPDATE_TG); 11707 11708 if (cfs_rq_throttled(cfs_rq)) 11709 break; 11710 11711 if (!throttled_hierarchy(cfs_rq)) 11712 list_add_leaf_cfs_rq(cfs_rq); 11713 } 11714 } 11715 #else 11716 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 11717 #endif 11718 11719 static void detach_entity_cfs_rq(struct sched_entity *se) 11720 { 11721 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11722 11723 #ifdef CONFIG_SMP 11724 /* 11725 * In case the task sched_avg hasn't been attached: 11726 * - A forked task which hasn't been woken up by wake_up_new_task(). 11727 * - A task which has been woken up by try_to_wake_up() but is 11728 * waiting for actually being woken up by sched_ttwu_pending(). 11729 */ 11730 if (!se->avg.last_update_time) 11731 return; 11732 #endif 11733 11734 /* Catch up with the cfs_rq and remove our load when we leave */ 11735 update_load_avg(cfs_rq, se, 0); 11736 detach_entity_load_avg(cfs_rq, se); 11737 update_tg_load_avg(cfs_rq); 11738 propagate_entity_cfs_rq(se); 11739 } 11740 11741 static void attach_entity_cfs_rq(struct sched_entity *se) 11742 { 11743 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11744 11745 /* Synchronize entity with its cfs_rq */ 11746 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 11747 attach_entity_load_avg(cfs_rq, se); 11748 update_tg_load_avg(cfs_rq); 11749 propagate_entity_cfs_rq(se); 11750 } 11751 11752 static void detach_task_cfs_rq(struct task_struct *p) 11753 { 11754 struct sched_entity *se = &p->se; 11755 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11756 11757 if (!vruntime_normalized(p)) { 11758 /* 11759 * Fix up our vruntime so that the current sleep doesn't 11760 * cause 'unlimited' sleep bonus. 11761 */ 11762 place_entity(cfs_rq, se, 0); 11763 se->vruntime -= cfs_rq->min_vruntime; 11764 } 11765 11766 detach_entity_cfs_rq(se); 11767 } 11768 11769 static void attach_task_cfs_rq(struct task_struct *p) 11770 { 11771 struct sched_entity *se = &p->se; 11772 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11773 11774 attach_entity_cfs_rq(se); 11775 11776 if (!vruntime_normalized(p)) 11777 se->vruntime += cfs_rq->min_vruntime; 11778 } 11779 11780 static void switched_from_fair(struct rq *rq, struct task_struct *p) 11781 { 11782 detach_task_cfs_rq(p); 11783 } 11784 11785 static void switched_to_fair(struct rq *rq, struct task_struct *p) 11786 { 11787 attach_task_cfs_rq(p); 11788 11789 if (task_on_rq_queued(p)) { 11790 /* 11791 * We were most likely switched from sched_rt, so 11792 * kick off the schedule if running, otherwise just see 11793 * if we can still preempt the current task. 11794 */ 11795 if (task_current(rq, p)) 11796 resched_curr(rq); 11797 else 11798 check_preempt_curr(rq, p, 0); 11799 } 11800 } 11801 11802 /* Account for a task changing its policy or group. 11803 * 11804 * This routine is mostly called to set cfs_rq->curr field when a task 11805 * migrates between groups/classes. 11806 */ 11807 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 11808 { 11809 struct sched_entity *se = &p->se; 11810 11811 #ifdef CONFIG_SMP 11812 if (task_on_rq_queued(p)) { 11813 /* 11814 * Move the next running task to the front of the list, so our 11815 * cfs_tasks list becomes MRU one. 11816 */ 11817 list_move(&se->group_node, &rq->cfs_tasks); 11818 } 11819 #endif 11820 11821 for_each_sched_entity(se) { 11822 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11823 11824 set_next_entity(cfs_rq, se); 11825 /* ensure bandwidth has been allocated on our new cfs_rq */ 11826 account_cfs_rq_runtime(cfs_rq, 0); 11827 } 11828 } 11829 11830 void init_cfs_rq(struct cfs_rq *cfs_rq) 11831 { 11832 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 11833 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20))); 11834 #ifdef CONFIG_SMP 11835 raw_spin_lock_init(&cfs_rq->removed.lock); 11836 #endif 11837 } 11838 11839 #ifdef CONFIG_FAIR_GROUP_SCHED 11840 static void task_change_group_fair(struct task_struct *p) 11841 { 11842 /* 11843 * We couldn't detach or attach a forked task which 11844 * hasn't been woken up by wake_up_new_task(). 11845 */ 11846 if (READ_ONCE(p->__state) == TASK_NEW) 11847 return; 11848 11849 detach_task_cfs_rq(p); 11850 11851 #ifdef CONFIG_SMP 11852 /* Tell se's cfs_rq has been changed -- migrated */ 11853 p->se.avg.last_update_time = 0; 11854 #endif 11855 set_task_rq(p, task_cpu(p)); 11856 attach_task_cfs_rq(p); 11857 } 11858 11859 void free_fair_sched_group(struct task_group *tg) 11860 { 11861 int i; 11862 11863 for_each_possible_cpu(i) { 11864 if (tg->cfs_rq) 11865 kfree(tg->cfs_rq[i]); 11866 if (tg->se) 11867 kfree(tg->se[i]); 11868 } 11869 11870 kfree(tg->cfs_rq); 11871 kfree(tg->se); 11872 } 11873 11874 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11875 { 11876 struct sched_entity *se; 11877 struct cfs_rq *cfs_rq; 11878 int i; 11879 11880 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 11881 if (!tg->cfs_rq) 11882 goto err; 11883 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 11884 if (!tg->se) 11885 goto err; 11886 11887 tg->shares = NICE_0_LOAD; 11888 11889 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11890 11891 for_each_possible_cpu(i) { 11892 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 11893 GFP_KERNEL, cpu_to_node(i)); 11894 if (!cfs_rq) 11895 goto err; 11896 11897 se = kzalloc_node(sizeof(struct sched_entity_stats), 11898 GFP_KERNEL, cpu_to_node(i)); 11899 if (!se) 11900 goto err_free_rq; 11901 11902 init_cfs_rq(cfs_rq); 11903 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 11904 init_entity_runnable_average(se); 11905 } 11906 11907 return 1; 11908 11909 err_free_rq: 11910 kfree(cfs_rq); 11911 err: 11912 return 0; 11913 } 11914 11915 void online_fair_sched_group(struct task_group *tg) 11916 { 11917 struct sched_entity *se; 11918 struct rq_flags rf; 11919 struct rq *rq; 11920 int i; 11921 11922 for_each_possible_cpu(i) { 11923 rq = cpu_rq(i); 11924 se = tg->se[i]; 11925 rq_lock_irq(rq, &rf); 11926 update_rq_clock(rq); 11927 attach_entity_cfs_rq(se); 11928 sync_throttle(tg, i); 11929 rq_unlock_irq(rq, &rf); 11930 } 11931 } 11932 11933 void unregister_fair_sched_group(struct task_group *tg) 11934 { 11935 unsigned long flags; 11936 struct rq *rq; 11937 int cpu; 11938 11939 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11940 11941 for_each_possible_cpu(cpu) { 11942 if (tg->se[cpu]) 11943 remove_entity_load_avg(tg->se[cpu]); 11944 11945 /* 11946 * Only empty task groups can be destroyed; so we can speculatively 11947 * check on_list without danger of it being re-added. 11948 */ 11949 if (!tg->cfs_rq[cpu]->on_list) 11950 continue; 11951 11952 rq = cpu_rq(cpu); 11953 11954 raw_spin_rq_lock_irqsave(rq, flags); 11955 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 11956 raw_spin_rq_unlock_irqrestore(rq, flags); 11957 } 11958 } 11959 11960 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 11961 struct sched_entity *se, int cpu, 11962 struct sched_entity *parent) 11963 { 11964 struct rq *rq = cpu_rq(cpu); 11965 11966 cfs_rq->tg = tg; 11967 cfs_rq->rq = rq; 11968 init_cfs_rq_runtime(cfs_rq); 11969 11970 tg->cfs_rq[cpu] = cfs_rq; 11971 tg->se[cpu] = se; 11972 11973 /* se could be NULL for root_task_group */ 11974 if (!se) 11975 return; 11976 11977 if (!parent) { 11978 se->cfs_rq = &rq->cfs; 11979 se->depth = 0; 11980 } else { 11981 se->cfs_rq = parent->my_q; 11982 se->depth = parent->depth + 1; 11983 } 11984 11985 se->my_q = cfs_rq; 11986 /* guarantee group entities always have weight */ 11987 update_load_set(&se->load, NICE_0_LOAD); 11988 se->parent = parent; 11989 } 11990 11991 static DEFINE_MUTEX(shares_mutex); 11992 11993 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 11994 { 11995 int i; 11996 11997 lockdep_assert_held(&shares_mutex); 11998 11999 /* 12000 * We can't change the weight of the root cgroup. 12001 */ 12002 if (!tg->se[0]) 12003 return -EINVAL; 12004 12005 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 12006 12007 if (tg->shares == shares) 12008 return 0; 12009 12010 tg->shares = shares; 12011 for_each_possible_cpu(i) { 12012 struct rq *rq = cpu_rq(i); 12013 struct sched_entity *se = tg->se[i]; 12014 struct rq_flags rf; 12015 12016 /* Propagate contribution to hierarchy */ 12017 rq_lock_irqsave(rq, &rf); 12018 update_rq_clock(rq); 12019 for_each_sched_entity(se) { 12020 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 12021 update_cfs_group(se); 12022 } 12023 rq_unlock_irqrestore(rq, &rf); 12024 } 12025 12026 return 0; 12027 } 12028 12029 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 12030 { 12031 int ret; 12032 12033 mutex_lock(&shares_mutex); 12034 if (tg_is_idle(tg)) 12035 ret = -EINVAL; 12036 else 12037 ret = __sched_group_set_shares(tg, shares); 12038 mutex_unlock(&shares_mutex); 12039 12040 return ret; 12041 } 12042 12043 int sched_group_set_idle(struct task_group *tg, long idle) 12044 { 12045 int i; 12046 12047 if (tg == &root_task_group) 12048 return -EINVAL; 12049 12050 if (idle < 0 || idle > 1) 12051 return -EINVAL; 12052 12053 mutex_lock(&shares_mutex); 12054 12055 if (tg->idle == idle) { 12056 mutex_unlock(&shares_mutex); 12057 return 0; 12058 } 12059 12060 tg->idle = idle; 12061 12062 for_each_possible_cpu(i) { 12063 struct rq *rq = cpu_rq(i); 12064 struct sched_entity *se = tg->se[i]; 12065 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 12066 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 12067 long idle_task_delta; 12068 struct rq_flags rf; 12069 12070 rq_lock_irqsave(rq, &rf); 12071 12072 grp_cfs_rq->idle = idle; 12073 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 12074 goto next_cpu; 12075 12076 if (se->on_rq) { 12077 parent_cfs_rq = cfs_rq_of(se); 12078 if (cfs_rq_is_idle(grp_cfs_rq)) 12079 parent_cfs_rq->idle_nr_running++; 12080 else 12081 parent_cfs_rq->idle_nr_running--; 12082 } 12083 12084 idle_task_delta = grp_cfs_rq->h_nr_running - 12085 grp_cfs_rq->idle_h_nr_running; 12086 if (!cfs_rq_is_idle(grp_cfs_rq)) 12087 idle_task_delta *= -1; 12088 12089 for_each_sched_entity(se) { 12090 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12091 12092 if (!se->on_rq) 12093 break; 12094 12095 cfs_rq->idle_h_nr_running += idle_task_delta; 12096 12097 /* Already accounted at parent level and above. */ 12098 if (cfs_rq_is_idle(cfs_rq)) 12099 break; 12100 } 12101 12102 next_cpu: 12103 rq_unlock_irqrestore(rq, &rf); 12104 } 12105 12106 /* Idle groups have minimum weight. */ 12107 if (tg_is_idle(tg)) 12108 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 12109 else 12110 __sched_group_set_shares(tg, NICE_0_LOAD); 12111 12112 mutex_unlock(&shares_mutex); 12113 return 0; 12114 } 12115 12116 #else /* CONFIG_FAIR_GROUP_SCHED */ 12117 12118 void free_fair_sched_group(struct task_group *tg) { } 12119 12120 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12121 { 12122 return 1; 12123 } 12124 12125 void online_fair_sched_group(struct task_group *tg) { } 12126 12127 void unregister_fair_sched_group(struct task_group *tg) { } 12128 12129 #endif /* CONFIG_FAIR_GROUP_SCHED */ 12130 12131 12132 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 12133 { 12134 struct sched_entity *se = &task->se; 12135 unsigned int rr_interval = 0; 12136 12137 /* 12138 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 12139 * idle runqueue: 12140 */ 12141 if (rq->cfs.load.weight) 12142 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 12143 12144 return rr_interval; 12145 } 12146 12147 /* 12148 * All the scheduling class methods: 12149 */ 12150 DEFINE_SCHED_CLASS(fair) = { 12151 12152 .enqueue_task = enqueue_task_fair, 12153 .dequeue_task = dequeue_task_fair, 12154 .yield_task = yield_task_fair, 12155 .yield_to_task = yield_to_task_fair, 12156 12157 .check_preempt_curr = check_preempt_wakeup, 12158 12159 .pick_next_task = __pick_next_task_fair, 12160 .put_prev_task = put_prev_task_fair, 12161 .set_next_task = set_next_task_fair, 12162 12163 #ifdef CONFIG_SMP 12164 .balance = balance_fair, 12165 .pick_task = pick_task_fair, 12166 .select_task_rq = select_task_rq_fair, 12167 .migrate_task_rq = migrate_task_rq_fair, 12168 12169 .rq_online = rq_online_fair, 12170 .rq_offline = rq_offline_fair, 12171 12172 .task_dead = task_dead_fair, 12173 .set_cpus_allowed = set_cpus_allowed_common, 12174 #endif 12175 12176 .task_tick = task_tick_fair, 12177 .task_fork = task_fork_fair, 12178 12179 .prio_changed = prio_changed_fair, 12180 .switched_from = switched_from_fair, 12181 .switched_to = switched_to_fair, 12182 12183 .get_rr_interval = get_rr_interval_fair, 12184 12185 .update_curr = update_curr_fair, 12186 12187 #ifdef CONFIG_FAIR_GROUP_SCHED 12188 .task_change_group = task_change_group_fair, 12189 #endif 12190 12191 #ifdef CONFIG_UCLAMP_TASK 12192 .uclamp_enabled = 1, 12193 #endif 12194 }; 12195 12196 #ifdef CONFIG_SCHED_DEBUG 12197 void print_cfs_stats(struct seq_file *m, int cpu) 12198 { 12199 struct cfs_rq *cfs_rq, *pos; 12200 12201 rcu_read_lock(); 12202 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 12203 print_cfs_rq(m, cpu, cfs_rq); 12204 rcu_read_unlock(); 12205 } 12206 12207 #ifdef CONFIG_NUMA_BALANCING 12208 void show_numa_stats(struct task_struct *p, struct seq_file *m) 12209 { 12210 int node; 12211 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 12212 struct numa_group *ng; 12213 12214 rcu_read_lock(); 12215 ng = rcu_dereference(p->numa_group); 12216 for_each_online_node(node) { 12217 if (p->numa_faults) { 12218 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 12219 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 12220 } 12221 if (ng) { 12222 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 12223 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 12224 } 12225 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 12226 } 12227 rcu_read_unlock(); 12228 } 12229 #endif /* CONFIG_NUMA_BALANCING */ 12230 #endif /* CONFIG_SCHED_DEBUG */ 12231 12232 __init void init_sched_fair_class(void) 12233 { 12234 #ifdef CONFIG_SMP 12235 int i; 12236 12237 for_each_possible_cpu(i) { 12238 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 12239 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 12240 } 12241 12242 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 12243 12244 #ifdef CONFIG_NO_HZ_COMMON 12245 nohz.next_balance = jiffies; 12246 nohz.next_blocked = jiffies; 12247 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 12248 #endif 12249 #endif /* SMP */ 12250 12251 } 12252