xref: /openbmc/linux/kernel/sched/fair.c (revision abcda807)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 /*
26  * Targeted preemption latency for CPU-bound tasks:
27  *
28  * NOTE: this latency value is not the same as the concept of
29  * 'timeslice length' - timeslices in CFS are of variable length
30  * and have no persistent notion like in traditional, time-slice
31  * based scheduling concepts.
32  *
33  * (to see the precise effective timeslice length of your workload,
34  *  run vmstat and monitor the context-switches (cs) field)
35  *
36  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37  */
38 unsigned int sysctl_sched_latency			= 6000000ULL;
39 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
40 
41 /*
42  * The initial- and re-scaling of tunables is configurable
43  *
44  * Options are:
45  *
46  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
47  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49  *
50  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
51  */
52 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
53 
54 /*
55  * Minimal preemption granularity for CPU-bound tasks:
56  *
57  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58  */
59 unsigned int sysctl_sched_min_granularity			= 750000ULL;
60 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
61 
62 /*
63  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
64  */
65 static unsigned int sched_nr_latency = 8;
66 
67 /*
68  * After fork, child runs first. If set to 0 (default) then
69  * parent will (try to) run first.
70  */
71 unsigned int sysctl_sched_child_runs_first __read_mostly;
72 
73 /*
74  * SCHED_OTHER wake-up granularity.
75  *
76  * This option delays the preemption effects of decoupled workloads
77  * and reduces their over-scheduling. Synchronous workloads will still
78  * have immediate wakeup/sleep latencies.
79  *
80  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
81  */
82 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
83 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
84 
85 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
86 
87 int sched_thermal_decay_shift;
88 static int __init setup_sched_thermal_decay_shift(char *str)
89 {
90 	int _shift = 0;
91 
92 	if (kstrtoint(str, 0, &_shift))
93 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
94 
95 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
96 	return 1;
97 }
98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
99 
100 #ifdef CONFIG_SMP
101 /*
102  * For asym packing, by default the lower numbered CPU has higher priority.
103  */
104 int __weak arch_asym_cpu_priority(int cpu)
105 {
106 	return -cpu;
107 }
108 
109 /*
110  * The margin used when comparing utilization with CPU capacity.
111  *
112  * (default: ~20%)
113  */
114 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
115 
116 #endif
117 
118 #ifdef CONFIG_CFS_BANDWIDTH
119 /*
120  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
121  * each time a cfs_rq requests quota.
122  *
123  * Note: in the case that the slice exceeds the runtime remaining (either due
124  * to consumption or the quota being specified to be smaller than the slice)
125  * we will always only issue the remaining available time.
126  *
127  * (default: 5 msec, units: microseconds)
128  */
129 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
130 #endif
131 
132 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
133 {
134 	lw->weight += inc;
135 	lw->inv_weight = 0;
136 }
137 
138 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
139 {
140 	lw->weight -= dec;
141 	lw->inv_weight = 0;
142 }
143 
144 static inline void update_load_set(struct load_weight *lw, unsigned long w)
145 {
146 	lw->weight = w;
147 	lw->inv_weight = 0;
148 }
149 
150 /*
151  * Increase the granularity value when there are more CPUs,
152  * because with more CPUs the 'effective latency' as visible
153  * to users decreases. But the relationship is not linear,
154  * so pick a second-best guess by going with the log2 of the
155  * number of CPUs.
156  *
157  * This idea comes from the SD scheduler of Con Kolivas:
158  */
159 static unsigned int get_update_sysctl_factor(void)
160 {
161 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
162 	unsigned int factor;
163 
164 	switch (sysctl_sched_tunable_scaling) {
165 	case SCHED_TUNABLESCALING_NONE:
166 		factor = 1;
167 		break;
168 	case SCHED_TUNABLESCALING_LINEAR:
169 		factor = cpus;
170 		break;
171 	case SCHED_TUNABLESCALING_LOG:
172 	default:
173 		factor = 1 + ilog2(cpus);
174 		break;
175 	}
176 
177 	return factor;
178 }
179 
180 static void update_sysctl(void)
181 {
182 	unsigned int factor = get_update_sysctl_factor();
183 
184 #define SET_SYSCTL(name) \
185 	(sysctl_##name = (factor) * normalized_sysctl_##name)
186 	SET_SYSCTL(sched_min_granularity);
187 	SET_SYSCTL(sched_latency);
188 	SET_SYSCTL(sched_wakeup_granularity);
189 #undef SET_SYSCTL
190 }
191 
192 void __init sched_init_granularity(void)
193 {
194 	update_sysctl();
195 }
196 
197 #define WMULT_CONST	(~0U)
198 #define WMULT_SHIFT	32
199 
200 static void __update_inv_weight(struct load_weight *lw)
201 {
202 	unsigned long w;
203 
204 	if (likely(lw->inv_weight))
205 		return;
206 
207 	w = scale_load_down(lw->weight);
208 
209 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
210 		lw->inv_weight = 1;
211 	else if (unlikely(!w))
212 		lw->inv_weight = WMULT_CONST;
213 	else
214 		lw->inv_weight = WMULT_CONST / w;
215 }
216 
217 /*
218  * delta_exec * weight / lw.weight
219  *   OR
220  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
221  *
222  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
223  * we're guaranteed shift stays positive because inv_weight is guaranteed to
224  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
225  *
226  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
227  * weight/lw.weight <= 1, and therefore our shift will also be positive.
228  */
229 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
230 {
231 	u64 fact = scale_load_down(weight);
232 	int shift = WMULT_SHIFT;
233 
234 	__update_inv_weight(lw);
235 
236 	if (unlikely(fact >> 32)) {
237 		while (fact >> 32) {
238 			fact >>= 1;
239 			shift--;
240 		}
241 	}
242 
243 	fact = mul_u32_u32(fact, lw->inv_weight);
244 
245 	while (fact >> 32) {
246 		fact >>= 1;
247 		shift--;
248 	}
249 
250 	return mul_u64_u32_shr(delta_exec, fact, shift);
251 }
252 
253 
254 const struct sched_class fair_sched_class;
255 
256 /**************************************************************
257  * CFS operations on generic schedulable entities:
258  */
259 
260 #ifdef CONFIG_FAIR_GROUP_SCHED
261 static inline struct task_struct *task_of(struct sched_entity *se)
262 {
263 	SCHED_WARN_ON(!entity_is_task(se));
264 	return container_of(se, struct task_struct, se);
265 }
266 
267 /* Walk up scheduling entities hierarchy */
268 #define for_each_sched_entity(se) \
269 		for (; se; se = se->parent)
270 
271 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
272 {
273 	return p->se.cfs_rq;
274 }
275 
276 /* runqueue on which this entity is (to be) queued */
277 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
278 {
279 	return se->cfs_rq;
280 }
281 
282 /* runqueue "owned" by this group */
283 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
284 {
285 	return grp->my_q;
286 }
287 
288 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
289 {
290 	if (!path)
291 		return;
292 
293 	if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
294 		autogroup_path(cfs_rq->tg, path, len);
295 	else if (cfs_rq && cfs_rq->tg->css.cgroup)
296 		cgroup_path(cfs_rq->tg->css.cgroup, path, len);
297 	else
298 		strlcpy(path, "(null)", len);
299 }
300 
301 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302 {
303 	struct rq *rq = rq_of(cfs_rq);
304 	int cpu = cpu_of(rq);
305 
306 	if (cfs_rq->on_list)
307 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
308 
309 	cfs_rq->on_list = 1;
310 
311 	/*
312 	 * Ensure we either appear before our parent (if already
313 	 * enqueued) or force our parent to appear after us when it is
314 	 * enqueued. The fact that we always enqueue bottom-up
315 	 * reduces this to two cases and a special case for the root
316 	 * cfs_rq. Furthermore, it also means that we will always reset
317 	 * tmp_alone_branch either when the branch is connected
318 	 * to a tree or when we reach the top of the tree
319 	 */
320 	if (cfs_rq->tg->parent &&
321 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
322 		/*
323 		 * If parent is already on the list, we add the child
324 		 * just before. Thanks to circular linked property of
325 		 * the list, this means to put the child at the tail
326 		 * of the list that starts by parent.
327 		 */
328 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
329 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
330 		/*
331 		 * The branch is now connected to its tree so we can
332 		 * reset tmp_alone_branch to the beginning of the
333 		 * list.
334 		 */
335 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
336 		return true;
337 	}
338 
339 	if (!cfs_rq->tg->parent) {
340 		/*
341 		 * cfs rq without parent should be put
342 		 * at the tail of the list.
343 		 */
344 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
345 			&rq->leaf_cfs_rq_list);
346 		/*
347 		 * We have reach the top of a tree so we can reset
348 		 * tmp_alone_branch to the beginning of the list.
349 		 */
350 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
351 		return true;
352 	}
353 
354 	/*
355 	 * The parent has not already been added so we want to
356 	 * make sure that it will be put after us.
357 	 * tmp_alone_branch points to the begin of the branch
358 	 * where we will add parent.
359 	 */
360 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
361 	/*
362 	 * update tmp_alone_branch to points to the new begin
363 	 * of the branch
364 	 */
365 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
366 	return false;
367 }
368 
369 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
370 {
371 	if (cfs_rq->on_list) {
372 		struct rq *rq = rq_of(cfs_rq);
373 
374 		/*
375 		 * With cfs_rq being unthrottled/throttled during an enqueue,
376 		 * it can happen the tmp_alone_branch points the a leaf that
377 		 * we finally want to del. In this case, tmp_alone_branch moves
378 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
379 		 * at the end of the enqueue.
380 		 */
381 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
382 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
383 
384 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
385 		cfs_rq->on_list = 0;
386 	}
387 }
388 
389 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
390 {
391 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
392 }
393 
394 /* Iterate thr' all leaf cfs_rq's on a runqueue */
395 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
396 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
397 				 leaf_cfs_rq_list)
398 
399 /* Do the two (enqueued) entities belong to the same group ? */
400 static inline struct cfs_rq *
401 is_same_group(struct sched_entity *se, struct sched_entity *pse)
402 {
403 	if (se->cfs_rq == pse->cfs_rq)
404 		return se->cfs_rq;
405 
406 	return NULL;
407 }
408 
409 static inline struct sched_entity *parent_entity(struct sched_entity *se)
410 {
411 	return se->parent;
412 }
413 
414 static void
415 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
416 {
417 	int se_depth, pse_depth;
418 
419 	/*
420 	 * preemption test can be made between sibling entities who are in the
421 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
422 	 * both tasks until we find their ancestors who are siblings of common
423 	 * parent.
424 	 */
425 
426 	/* First walk up until both entities are at same depth */
427 	se_depth = (*se)->depth;
428 	pse_depth = (*pse)->depth;
429 
430 	while (se_depth > pse_depth) {
431 		se_depth--;
432 		*se = parent_entity(*se);
433 	}
434 
435 	while (pse_depth > se_depth) {
436 		pse_depth--;
437 		*pse = parent_entity(*pse);
438 	}
439 
440 	while (!is_same_group(*se, *pse)) {
441 		*se = parent_entity(*se);
442 		*pse = parent_entity(*pse);
443 	}
444 }
445 
446 #else	/* !CONFIG_FAIR_GROUP_SCHED */
447 
448 static inline struct task_struct *task_of(struct sched_entity *se)
449 {
450 	return container_of(se, struct task_struct, se);
451 }
452 
453 #define for_each_sched_entity(se) \
454 		for (; se; se = NULL)
455 
456 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
457 {
458 	return &task_rq(p)->cfs;
459 }
460 
461 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
462 {
463 	struct task_struct *p = task_of(se);
464 	struct rq *rq = task_rq(p);
465 
466 	return &rq->cfs;
467 }
468 
469 /* runqueue "owned" by this group */
470 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
471 {
472 	return NULL;
473 }
474 
475 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
476 {
477 	if (path)
478 		strlcpy(path, "(null)", len);
479 }
480 
481 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
482 {
483 	return true;
484 }
485 
486 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
487 {
488 }
489 
490 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
491 {
492 }
493 
494 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
495 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
496 
497 static inline struct sched_entity *parent_entity(struct sched_entity *se)
498 {
499 	return NULL;
500 }
501 
502 static inline void
503 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
504 {
505 }
506 
507 #endif	/* CONFIG_FAIR_GROUP_SCHED */
508 
509 static __always_inline
510 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
511 
512 /**************************************************************
513  * Scheduling class tree data structure manipulation methods:
514  */
515 
516 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
517 {
518 	s64 delta = (s64)(vruntime - max_vruntime);
519 	if (delta > 0)
520 		max_vruntime = vruntime;
521 
522 	return max_vruntime;
523 }
524 
525 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
526 {
527 	s64 delta = (s64)(vruntime - min_vruntime);
528 	if (delta < 0)
529 		min_vruntime = vruntime;
530 
531 	return min_vruntime;
532 }
533 
534 static inline int entity_before(struct sched_entity *a,
535 				struct sched_entity *b)
536 {
537 	return (s64)(a->vruntime - b->vruntime) < 0;
538 }
539 
540 static void update_min_vruntime(struct cfs_rq *cfs_rq)
541 {
542 	struct sched_entity *curr = cfs_rq->curr;
543 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
544 
545 	u64 vruntime = cfs_rq->min_vruntime;
546 
547 	if (curr) {
548 		if (curr->on_rq)
549 			vruntime = curr->vruntime;
550 		else
551 			curr = NULL;
552 	}
553 
554 	if (leftmost) { /* non-empty tree */
555 		struct sched_entity *se;
556 		se = rb_entry(leftmost, struct sched_entity, run_node);
557 
558 		if (!curr)
559 			vruntime = se->vruntime;
560 		else
561 			vruntime = min_vruntime(vruntime, se->vruntime);
562 	}
563 
564 	/* ensure we never gain time by being placed backwards. */
565 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
566 #ifndef CONFIG_64BIT
567 	smp_wmb();
568 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
569 #endif
570 }
571 
572 /*
573  * Enqueue an entity into the rb-tree:
574  */
575 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
576 {
577 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
578 	struct rb_node *parent = NULL;
579 	struct sched_entity *entry;
580 	bool leftmost = true;
581 
582 	/*
583 	 * Find the right place in the rbtree:
584 	 */
585 	while (*link) {
586 		parent = *link;
587 		entry = rb_entry(parent, struct sched_entity, run_node);
588 		/*
589 		 * We dont care about collisions. Nodes with
590 		 * the same key stay together.
591 		 */
592 		if (entity_before(se, entry)) {
593 			link = &parent->rb_left;
594 		} else {
595 			link = &parent->rb_right;
596 			leftmost = false;
597 		}
598 	}
599 
600 	rb_link_node(&se->run_node, parent, link);
601 	rb_insert_color_cached(&se->run_node,
602 			       &cfs_rq->tasks_timeline, leftmost);
603 }
604 
605 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
606 {
607 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
608 }
609 
610 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
611 {
612 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
613 
614 	if (!left)
615 		return NULL;
616 
617 	return rb_entry(left, struct sched_entity, run_node);
618 }
619 
620 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
621 {
622 	struct rb_node *next = rb_next(&se->run_node);
623 
624 	if (!next)
625 		return NULL;
626 
627 	return rb_entry(next, struct sched_entity, run_node);
628 }
629 
630 #ifdef CONFIG_SCHED_DEBUG
631 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
632 {
633 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
634 
635 	if (!last)
636 		return NULL;
637 
638 	return rb_entry(last, struct sched_entity, run_node);
639 }
640 
641 /**************************************************************
642  * Scheduling class statistics methods:
643  */
644 
645 int sched_proc_update_handler(struct ctl_table *table, int write,
646 		void *buffer, size_t *lenp, loff_t *ppos)
647 {
648 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
649 	unsigned int factor = get_update_sysctl_factor();
650 
651 	if (ret || !write)
652 		return ret;
653 
654 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
655 					sysctl_sched_min_granularity);
656 
657 #define WRT_SYSCTL(name) \
658 	(normalized_sysctl_##name = sysctl_##name / (factor))
659 	WRT_SYSCTL(sched_min_granularity);
660 	WRT_SYSCTL(sched_latency);
661 	WRT_SYSCTL(sched_wakeup_granularity);
662 #undef WRT_SYSCTL
663 
664 	return 0;
665 }
666 #endif
667 
668 /*
669  * delta /= w
670  */
671 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
672 {
673 	if (unlikely(se->load.weight != NICE_0_LOAD))
674 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
675 
676 	return delta;
677 }
678 
679 /*
680  * The idea is to set a period in which each task runs once.
681  *
682  * When there are too many tasks (sched_nr_latency) we have to stretch
683  * this period because otherwise the slices get too small.
684  *
685  * p = (nr <= nl) ? l : l*nr/nl
686  */
687 static u64 __sched_period(unsigned long nr_running)
688 {
689 	if (unlikely(nr_running > sched_nr_latency))
690 		return nr_running * sysctl_sched_min_granularity;
691 	else
692 		return sysctl_sched_latency;
693 }
694 
695 /*
696  * We calculate the wall-time slice from the period by taking a part
697  * proportional to the weight.
698  *
699  * s = p*P[w/rw]
700  */
701 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
702 {
703 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
704 
705 	for_each_sched_entity(se) {
706 		struct load_weight *load;
707 		struct load_weight lw;
708 
709 		cfs_rq = cfs_rq_of(se);
710 		load = &cfs_rq->load;
711 
712 		if (unlikely(!se->on_rq)) {
713 			lw = cfs_rq->load;
714 
715 			update_load_add(&lw, se->load.weight);
716 			load = &lw;
717 		}
718 		slice = __calc_delta(slice, se->load.weight, load);
719 	}
720 	return slice;
721 }
722 
723 /*
724  * We calculate the vruntime slice of a to-be-inserted task.
725  *
726  * vs = s/w
727  */
728 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
729 {
730 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
731 }
732 
733 #include "pelt.h"
734 #ifdef CONFIG_SMP
735 
736 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
737 static unsigned long task_h_load(struct task_struct *p);
738 static unsigned long capacity_of(int cpu);
739 
740 /* Give new sched_entity start runnable values to heavy its load in infant time */
741 void init_entity_runnable_average(struct sched_entity *se)
742 {
743 	struct sched_avg *sa = &se->avg;
744 
745 	memset(sa, 0, sizeof(*sa));
746 
747 	/*
748 	 * Tasks are initialized with full load to be seen as heavy tasks until
749 	 * they get a chance to stabilize to their real load level.
750 	 * Group entities are initialized with zero load to reflect the fact that
751 	 * nothing has been attached to the task group yet.
752 	 */
753 	if (entity_is_task(se))
754 		sa->load_avg = scale_load_down(se->load.weight);
755 
756 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
757 }
758 
759 static void attach_entity_cfs_rq(struct sched_entity *se);
760 
761 /*
762  * With new tasks being created, their initial util_avgs are extrapolated
763  * based on the cfs_rq's current util_avg:
764  *
765  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
766  *
767  * However, in many cases, the above util_avg does not give a desired
768  * value. Moreover, the sum of the util_avgs may be divergent, such
769  * as when the series is a harmonic series.
770  *
771  * To solve this problem, we also cap the util_avg of successive tasks to
772  * only 1/2 of the left utilization budget:
773  *
774  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
775  *
776  * where n denotes the nth task and cpu_scale the CPU capacity.
777  *
778  * For example, for a CPU with 1024 of capacity, a simplest series from
779  * the beginning would be like:
780  *
781  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
782  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
783  *
784  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
785  * if util_avg > util_avg_cap.
786  */
787 void post_init_entity_util_avg(struct task_struct *p)
788 {
789 	struct sched_entity *se = &p->se;
790 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
791 	struct sched_avg *sa = &se->avg;
792 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
793 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
794 
795 	if (cap > 0) {
796 		if (cfs_rq->avg.util_avg != 0) {
797 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
798 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
799 
800 			if (sa->util_avg > cap)
801 				sa->util_avg = cap;
802 		} else {
803 			sa->util_avg = cap;
804 		}
805 	}
806 
807 	sa->runnable_avg = sa->util_avg;
808 
809 	if (p->sched_class != &fair_sched_class) {
810 		/*
811 		 * For !fair tasks do:
812 		 *
813 		update_cfs_rq_load_avg(now, cfs_rq);
814 		attach_entity_load_avg(cfs_rq, se);
815 		switched_from_fair(rq, p);
816 		 *
817 		 * such that the next switched_to_fair() has the
818 		 * expected state.
819 		 */
820 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
821 		return;
822 	}
823 
824 	attach_entity_cfs_rq(se);
825 }
826 
827 #else /* !CONFIG_SMP */
828 void init_entity_runnable_average(struct sched_entity *se)
829 {
830 }
831 void post_init_entity_util_avg(struct task_struct *p)
832 {
833 }
834 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
835 {
836 }
837 #endif /* CONFIG_SMP */
838 
839 /*
840  * Update the current task's runtime statistics.
841  */
842 static void update_curr(struct cfs_rq *cfs_rq)
843 {
844 	struct sched_entity *curr = cfs_rq->curr;
845 	u64 now = rq_clock_task(rq_of(cfs_rq));
846 	u64 delta_exec;
847 
848 	if (unlikely(!curr))
849 		return;
850 
851 	delta_exec = now - curr->exec_start;
852 	if (unlikely((s64)delta_exec <= 0))
853 		return;
854 
855 	curr->exec_start = now;
856 
857 	schedstat_set(curr->statistics.exec_max,
858 		      max(delta_exec, curr->statistics.exec_max));
859 
860 	curr->sum_exec_runtime += delta_exec;
861 	schedstat_add(cfs_rq->exec_clock, delta_exec);
862 
863 	curr->vruntime += calc_delta_fair(delta_exec, curr);
864 	update_min_vruntime(cfs_rq);
865 
866 	if (entity_is_task(curr)) {
867 		struct task_struct *curtask = task_of(curr);
868 
869 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
870 		cgroup_account_cputime(curtask, delta_exec);
871 		account_group_exec_runtime(curtask, delta_exec);
872 	}
873 
874 	account_cfs_rq_runtime(cfs_rq, delta_exec);
875 }
876 
877 static void update_curr_fair(struct rq *rq)
878 {
879 	update_curr(cfs_rq_of(&rq->curr->se));
880 }
881 
882 static inline void
883 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
884 {
885 	u64 wait_start, prev_wait_start;
886 
887 	if (!schedstat_enabled())
888 		return;
889 
890 	wait_start = rq_clock(rq_of(cfs_rq));
891 	prev_wait_start = schedstat_val(se->statistics.wait_start);
892 
893 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
894 	    likely(wait_start > prev_wait_start))
895 		wait_start -= prev_wait_start;
896 
897 	__schedstat_set(se->statistics.wait_start, wait_start);
898 }
899 
900 static inline void
901 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
902 {
903 	struct task_struct *p;
904 	u64 delta;
905 
906 	if (!schedstat_enabled())
907 		return;
908 
909 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
910 
911 	if (entity_is_task(se)) {
912 		p = task_of(se);
913 		if (task_on_rq_migrating(p)) {
914 			/*
915 			 * Preserve migrating task's wait time so wait_start
916 			 * time stamp can be adjusted to accumulate wait time
917 			 * prior to migration.
918 			 */
919 			__schedstat_set(se->statistics.wait_start, delta);
920 			return;
921 		}
922 		trace_sched_stat_wait(p, delta);
923 	}
924 
925 	__schedstat_set(se->statistics.wait_max,
926 		      max(schedstat_val(se->statistics.wait_max), delta));
927 	__schedstat_inc(se->statistics.wait_count);
928 	__schedstat_add(se->statistics.wait_sum, delta);
929 	__schedstat_set(se->statistics.wait_start, 0);
930 }
931 
932 static inline void
933 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
934 {
935 	struct task_struct *tsk = NULL;
936 	u64 sleep_start, block_start;
937 
938 	if (!schedstat_enabled())
939 		return;
940 
941 	sleep_start = schedstat_val(se->statistics.sleep_start);
942 	block_start = schedstat_val(se->statistics.block_start);
943 
944 	if (entity_is_task(se))
945 		tsk = task_of(se);
946 
947 	if (sleep_start) {
948 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
949 
950 		if ((s64)delta < 0)
951 			delta = 0;
952 
953 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
954 			__schedstat_set(se->statistics.sleep_max, delta);
955 
956 		__schedstat_set(se->statistics.sleep_start, 0);
957 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
958 
959 		if (tsk) {
960 			account_scheduler_latency(tsk, delta >> 10, 1);
961 			trace_sched_stat_sleep(tsk, delta);
962 		}
963 	}
964 	if (block_start) {
965 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
966 
967 		if ((s64)delta < 0)
968 			delta = 0;
969 
970 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
971 			__schedstat_set(se->statistics.block_max, delta);
972 
973 		__schedstat_set(se->statistics.block_start, 0);
974 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
975 
976 		if (tsk) {
977 			if (tsk->in_iowait) {
978 				__schedstat_add(se->statistics.iowait_sum, delta);
979 				__schedstat_inc(se->statistics.iowait_count);
980 				trace_sched_stat_iowait(tsk, delta);
981 			}
982 
983 			trace_sched_stat_blocked(tsk, delta);
984 
985 			/*
986 			 * Blocking time is in units of nanosecs, so shift by
987 			 * 20 to get a milliseconds-range estimation of the
988 			 * amount of time that the task spent sleeping:
989 			 */
990 			if (unlikely(prof_on == SLEEP_PROFILING)) {
991 				profile_hits(SLEEP_PROFILING,
992 						(void *)get_wchan(tsk),
993 						delta >> 20);
994 			}
995 			account_scheduler_latency(tsk, delta >> 10, 0);
996 		}
997 	}
998 }
999 
1000 /*
1001  * Task is being enqueued - update stats:
1002  */
1003 static inline void
1004 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1005 {
1006 	if (!schedstat_enabled())
1007 		return;
1008 
1009 	/*
1010 	 * Are we enqueueing a waiting task? (for current tasks
1011 	 * a dequeue/enqueue event is a NOP)
1012 	 */
1013 	if (se != cfs_rq->curr)
1014 		update_stats_wait_start(cfs_rq, se);
1015 
1016 	if (flags & ENQUEUE_WAKEUP)
1017 		update_stats_enqueue_sleeper(cfs_rq, se);
1018 }
1019 
1020 static inline void
1021 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1022 {
1023 
1024 	if (!schedstat_enabled())
1025 		return;
1026 
1027 	/*
1028 	 * Mark the end of the wait period if dequeueing a
1029 	 * waiting task:
1030 	 */
1031 	if (se != cfs_rq->curr)
1032 		update_stats_wait_end(cfs_rq, se);
1033 
1034 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1035 		struct task_struct *tsk = task_of(se);
1036 
1037 		if (tsk->state & TASK_INTERRUPTIBLE)
1038 			__schedstat_set(se->statistics.sleep_start,
1039 				      rq_clock(rq_of(cfs_rq)));
1040 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1041 			__schedstat_set(se->statistics.block_start,
1042 				      rq_clock(rq_of(cfs_rq)));
1043 	}
1044 }
1045 
1046 /*
1047  * We are picking a new current task - update its stats:
1048  */
1049 static inline void
1050 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1051 {
1052 	/*
1053 	 * We are starting a new run period:
1054 	 */
1055 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1056 }
1057 
1058 /**************************************************
1059  * Scheduling class queueing methods:
1060  */
1061 
1062 #ifdef CONFIG_NUMA_BALANCING
1063 /*
1064  * Approximate time to scan a full NUMA task in ms. The task scan period is
1065  * calculated based on the tasks virtual memory size and
1066  * numa_balancing_scan_size.
1067  */
1068 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1069 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1070 
1071 /* Portion of address space to scan in MB */
1072 unsigned int sysctl_numa_balancing_scan_size = 256;
1073 
1074 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1075 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1076 
1077 struct numa_group {
1078 	refcount_t refcount;
1079 
1080 	spinlock_t lock; /* nr_tasks, tasks */
1081 	int nr_tasks;
1082 	pid_t gid;
1083 	int active_nodes;
1084 
1085 	struct rcu_head rcu;
1086 	unsigned long total_faults;
1087 	unsigned long max_faults_cpu;
1088 	/*
1089 	 * Faults_cpu is used to decide whether memory should move
1090 	 * towards the CPU. As a consequence, these stats are weighted
1091 	 * more by CPU use than by memory faults.
1092 	 */
1093 	unsigned long *faults_cpu;
1094 	unsigned long faults[];
1095 };
1096 
1097 /*
1098  * For functions that can be called in multiple contexts that permit reading
1099  * ->numa_group (see struct task_struct for locking rules).
1100  */
1101 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1102 {
1103 	return rcu_dereference_check(p->numa_group, p == current ||
1104 		(lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1105 }
1106 
1107 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1108 {
1109 	return rcu_dereference_protected(p->numa_group, p == current);
1110 }
1111 
1112 static inline unsigned long group_faults_priv(struct numa_group *ng);
1113 static inline unsigned long group_faults_shared(struct numa_group *ng);
1114 
1115 static unsigned int task_nr_scan_windows(struct task_struct *p)
1116 {
1117 	unsigned long rss = 0;
1118 	unsigned long nr_scan_pages;
1119 
1120 	/*
1121 	 * Calculations based on RSS as non-present and empty pages are skipped
1122 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1123 	 * on resident pages
1124 	 */
1125 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1126 	rss = get_mm_rss(p->mm);
1127 	if (!rss)
1128 		rss = nr_scan_pages;
1129 
1130 	rss = round_up(rss, nr_scan_pages);
1131 	return rss / nr_scan_pages;
1132 }
1133 
1134 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1135 #define MAX_SCAN_WINDOW 2560
1136 
1137 static unsigned int task_scan_min(struct task_struct *p)
1138 {
1139 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1140 	unsigned int scan, floor;
1141 	unsigned int windows = 1;
1142 
1143 	if (scan_size < MAX_SCAN_WINDOW)
1144 		windows = MAX_SCAN_WINDOW / scan_size;
1145 	floor = 1000 / windows;
1146 
1147 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1148 	return max_t(unsigned int, floor, scan);
1149 }
1150 
1151 static unsigned int task_scan_start(struct task_struct *p)
1152 {
1153 	unsigned long smin = task_scan_min(p);
1154 	unsigned long period = smin;
1155 	struct numa_group *ng;
1156 
1157 	/* Scale the maximum scan period with the amount of shared memory. */
1158 	rcu_read_lock();
1159 	ng = rcu_dereference(p->numa_group);
1160 	if (ng) {
1161 		unsigned long shared = group_faults_shared(ng);
1162 		unsigned long private = group_faults_priv(ng);
1163 
1164 		period *= refcount_read(&ng->refcount);
1165 		period *= shared + 1;
1166 		period /= private + shared + 1;
1167 	}
1168 	rcu_read_unlock();
1169 
1170 	return max(smin, period);
1171 }
1172 
1173 static unsigned int task_scan_max(struct task_struct *p)
1174 {
1175 	unsigned long smin = task_scan_min(p);
1176 	unsigned long smax;
1177 	struct numa_group *ng;
1178 
1179 	/* Watch for min being lower than max due to floor calculations */
1180 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1181 
1182 	/* Scale the maximum scan period with the amount of shared memory. */
1183 	ng = deref_curr_numa_group(p);
1184 	if (ng) {
1185 		unsigned long shared = group_faults_shared(ng);
1186 		unsigned long private = group_faults_priv(ng);
1187 		unsigned long period = smax;
1188 
1189 		period *= refcount_read(&ng->refcount);
1190 		period *= shared + 1;
1191 		period /= private + shared + 1;
1192 
1193 		smax = max(smax, period);
1194 	}
1195 
1196 	return max(smin, smax);
1197 }
1198 
1199 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1200 {
1201 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1202 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1203 }
1204 
1205 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1206 {
1207 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1208 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1209 }
1210 
1211 /* Shared or private faults. */
1212 #define NR_NUMA_HINT_FAULT_TYPES 2
1213 
1214 /* Memory and CPU locality */
1215 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1216 
1217 /* Averaged statistics, and temporary buffers. */
1218 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1219 
1220 pid_t task_numa_group_id(struct task_struct *p)
1221 {
1222 	struct numa_group *ng;
1223 	pid_t gid = 0;
1224 
1225 	rcu_read_lock();
1226 	ng = rcu_dereference(p->numa_group);
1227 	if (ng)
1228 		gid = ng->gid;
1229 	rcu_read_unlock();
1230 
1231 	return gid;
1232 }
1233 
1234 /*
1235  * The averaged statistics, shared & private, memory & CPU,
1236  * occupy the first half of the array. The second half of the
1237  * array is for current counters, which are averaged into the
1238  * first set by task_numa_placement.
1239  */
1240 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1241 {
1242 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1243 }
1244 
1245 static inline unsigned long task_faults(struct task_struct *p, int nid)
1246 {
1247 	if (!p->numa_faults)
1248 		return 0;
1249 
1250 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1251 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1252 }
1253 
1254 static inline unsigned long group_faults(struct task_struct *p, int nid)
1255 {
1256 	struct numa_group *ng = deref_task_numa_group(p);
1257 
1258 	if (!ng)
1259 		return 0;
1260 
1261 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1262 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1263 }
1264 
1265 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1266 {
1267 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1268 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1269 }
1270 
1271 static inline unsigned long group_faults_priv(struct numa_group *ng)
1272 {
1273 	unsigned long faults = 0;
1274 	int node;
1275 
1276 	for_each_online_node(node) {
1277 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1278 	}
1279 
1280 	return faults;
1281 }
1282 
1283 static inline unsigned long group_faults_shared(struct numa_group *ng)
1284 {
1285 	unsigned long faults = 0;
1286 	int node;
1287 
1288 	for_each_online_node(node) {
1289 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1290 	}
1291 
1292 	return faults;
1293 }
1294 
1295 /*
1296  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1297  * considered part of a numa group's pseudo-interleaving set. Migrations
1298  * between these nodes are slowed down, to allow things to settle down.
1299  */
1300 #define ACTIVE_NODE_FRACTION 3
1301 
1302 static bool numa_is_active_node(int nid, struct numa_group *ng)
1303 {
1304 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1305 }
1306 
1307 /* Handle placement on systems where not all nodes are directly connected. */
1308 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1309 					int maxdist, bool task)
1310 {
1311 	unsigned long score = 0;
1312 	int node;
1313 
1314 	/*
1315 	 * All nodes are directly connected, and the same distance
1316 	 * from each other. No need for fancy placement algorithms.
1317 	 */
1318 	if (sched_numa_topology_type == NUMA_DIRECT)
1319 		return 0;
1320 
1321 	/*
1322 	 * This code is called for each node, introducing N^2 complexity,
1323 	 * which should be ok given the number of nodes rarely exceeds 8.
1324 	 */
1325 	for_each_online_node(node) {
1326 		unsigned long faults;
1327 		int dist = node_distance(nid, node);
1328 
1329 		/*
1330 		 * The furthest away nodes in the system are not interesting
1331 		 * for placement; nid was already counted.
1332 		 */
1333 		if (dist == sched_max_numa_distance || node == nid)
1334 			continue;
1335 
1336 		/*
1337 		 * On systems with a backplane NUMA topology, compare groups
1338 		 * of nodes, and move tasks towards the group with the most
1339 		 * memory accesses. When comparing two nodes at distance
1340 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1341 		 * of each group. Skip other nodes.
1342 		 */
1343 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1344 					dist >= maxdist)
1345 			continue;
1346 
1347 		/* Add up the faults from nearby nodes. */
1348 		if (task)
1349 			faults = task_faults(p, node);
1350 		else
1351 			faults = group_faults(p, node);
1352 
1353 		/*
1354 		 * On systems with a glueless mesh NUMA topology, there are
1355 		 * no fixed "groups of nodes". Instead, nodes that are not
1356 		 * directly connected bounce traffic through intermediate
1357 		 * nodes; a numa_group can occupy any set of nodes.
1358 		 * The further away a node is, the less the faults count.
1359 		 * This seems to result in good task placement.
1360 		 */
1361 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1362 			faults *= (sched_max_numa_distance - dist);
1363 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1364 		}
1365 
1366 		score += faults;
1367 	}
1368 
1369 	return score;
1370 }
1371 
1372 /*
1373  * These return the fraction of accesses done by a particular task, or
1374  * task group, on a particular numa node.  The group weight is given a
1375  * larger multiplier, in order to group tasks together that are almost
1376  * evenly spread out between numa nodes.
1377  */
1378 static inline unsigned long task_weight(struct task_struct *p, int nid,
1379 					int dist)
1380 {
1381 	unsigned long faults, total_faults;
1382 
1383 	if (!p->numa_faults)
1384 		return 0;
1385 
1386 	total_faults = p->total_numa_faults;
1387 
1388 	if (!total_faults)
1389 		return 0;
1390 
1391 	faults = task_faults(p, nid);
1392 	faults += score_nearby_nodes(p, nid, dist, true);
1393 
1394 	return 1000 * faults / total_faults;
1395 }
1396 
1397 static inline unsigned long group_weight(struct task_struct *p, int nid,
1398 					 int dist)
1399 {
1400 	struct numa_group *ng = deref_task_numa_group(p);
1401 	unsigned long faults, total_faults;
1402 
1403 	if (!ng)
1404 		return 0;
1405 
1406 	total_faults = ng->total_faults;
1407 
1408 	if (!total_faults)
1409 		return 0;
1410 
1411 	faults = group_faults(p, nid);
1412 	faults += score_nearby_nodes(p, nid, dist, false);
1413 
1414 	return 1000 * faults / total_faults;
1415 }
1416 
1417 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1418 				int src_nid, int dst_cpu)
1419 {
1420 	struct numa_group *ng = deref_curr_numa_group(p);
1421 	int dst_nid = cpu_to_node(dst_cpu);
1422 	int last_cpupid, this_cpupid;
1423 
1424 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1425 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1426 
1427 	/*
1428 	 * Allow first faults or private faults to migrate immediately early in
1429 	 * the lifetime of a task. The magic number 4 is based on waiting for
1430 	 * two full passes of the "multi-stage node selection" test that is
1431 	 * executed below.
1432 	 */
1433 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1434 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1435 		return true;
1436 
1437 	/*
1438 	 * Multi-stage node selection is used in conjunction with a periodic
1439 	 * migration fault to build a temporal task<->page relation. By using
1440 	 * a two-stage filter we remove short/unlikely relations.
1441 	 *
1442 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1443 	 * a task's usage of a particular page (n_p) per total usage of this
1444 	 * page (n_t) (in a given time-span) to a probability.
1445 	 *
1446 	 * Our periodic faults will sample this probability and getting the
1447 	 * same result twice in a row, given these samples are fully
1448 	 * independent, is then given by P(n)^2, provided our sample period
1449 	 * is sufficiently short compared to the usage pattern.
1450 	 *
1451 	 * This quadric squishes small probabilities, making it less likely we
1452 	 * act on an unlikely task<->page relation.
1453 	 */
1454 	if (!cpupid_pid_unset(last_cpupid) &&
1455 				cpupid_to_nid(last_cpupid) != dst_nid)
1456 		return false;
1457 
1458 	/* Always allow migrate on private faults */
1459 	if (cpupid_match_pid(p, last_cpupid))
1460 		return true;
1461 
1462 	/* A shared fault, but p->numa_group has not been set up yet. */
1463 	if (!ng)
1464 		return true;
1465 
1466 	/*
1467 	 * Destination node is much more heavily used than the source
1468 	 * node? Allow migration.
1469 	 */
1470 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1471 					ACTIVE_NODE_FRACTION)
1472 		return true;
1473 
1474 	/*
1475 	 * Distribute memory according to CPU & memory use on each node,
1476 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1477 	 *
1478 	 * faults_cpu(dst)   3   faults_cpu(src)
1479 	 * --------------- * - > ---------------
1480 	 * faults_mem(dst)   4   faults_mem(src)
1481 	 */
1482 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1483 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1484 }
1485 
1486 /*
1487  * 'numa_type' describes the node at the moment of load balancing.
1488  */
1489 enum numa_type {
1490 	/* The node has spare capacity that can be used to run more tasks.  */
1491 	node_has_spare = 0,
1492 	/*
1493 	 * The node is fully used and the tasks don't compete for more CPU
1494 	 * cycles. Nevertheless, some tasks might wait before running.
1495 	 */
1496 	node_fully_busy,
1497 	/*
1498 	 * The node is overloaded and can't provide expected CPU cycles to all
1499 	 * tasks.
1500 	 */
1501 	node_overloaded
1502 };
1503 
1504 /* Cached statistics for all CPUs within a node */
1505 struct numa_stats {
1506 	unsigned long load;
1507 	unsigned long runnable;
1508 	unsigned long util;
1509 	/* Total compute capacity of CPUs on a node */
1510 	unsigned long compute_capacity;
1511 	unsigned int nr_running;
1512 	unsigned int weight;
1513 	enum numa_type node_type;
1514 	int idle_cpu;
1515 };
1516 
1517 static inline bool is_core_idle(int cpu)
1518 {
1519 #ifdef CONFIG_SCHED_SMT
1520 	int sibling;
1521 
1522 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1523 		if (cpu == sibling)
1524 			continue;
1525 
1526 		if (!idle_cpu(cpu))
1527 			return false;
1528 	}
1529 #endif
1530 
1531 	return true;
1532 }
1533 
1534 struct task_numa_env {
1535 	struct task_struct *p;
1536 
1537 	int src_cpu, src_nid;
1538 	int dst_cpu, dst_nid;
1539 
1540 	struct numa_stats src_stats, dst_stats;
1541 
1542 	int imbalance_pct;
1543 	int dist;
1544 
1545 	struct task_struct *best_task;
1546 	long best_imp;
1547 	int best_cpu;
1548 };
1549 
1550 static unsigned long cpu_load(struct rq *rq);
1551 static unsigned long cpu_runnable(struct rq *rq);
1552 static unsigned long cpu_util(int cpu);
1553 static inline long adjust_numa_imbalance(int imbalance, int nr_running);
1554 
1555 static inline enum
1556 numa_type numa_classify(unsigned int imbalance_pct,
1557 			 struct numa_stats *ns)
1558 {
1559 	if ((ns->nr_running > ns->weight) &&
1560 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1561 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1562 		return node_overloaded;
1563 
1564 	if ((ns->nr_running < ns->weight) ||
1565 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1566 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1567 		return node_has_spare;
1568 
1569 	return node_fully_busy;
1570 }
1571 
1572 #ifdef CONFIG_SCHED_SMT
1573 /* Forward declarations of select_idle_sibling helpers */
1574 static inline bool test_idle_cores(int cpu, bool def);
1575 static inline int numa_idle_core(int idle_core, int cpu)
1576 {
1577 	if (!static_branch_likely(&sched_smt_present) ||
1578 	    idle_core >= 0 || !test_idle_cores(cpu, false))
1579 		return idle_core;
1580 
1581 	/*
1582 	 * Prefer cores instead of packing HT siblings
1583 	 * and triggering future load balancing.
1584 	 */
1585 	if (is_core_idle(cpu))
1586 		idle_core = cpu;
1587 
1588 	return idle_core;
1589 }
1590 #else
1591 static inline int numa_idle_core(int idle_core, int cpu)
1592 {
1593 	return idle_core;
1594 }
1595 #endif
1596 
1597 /*
1598  * Gather all necessary information to make NUMA balancing placement
1599  * decisions that are compatible with standard load balancer. This
1600  * borrows code and logic from update_sg_lb_stats but sharing a
1601  * common implementation is impractical.
1602  */
1603 static void update_numa_stats(struct task_numa_env *env,
1604 			      struct numa_stats *ns, int nid,
1605 			      bool find_idle)
1606 {
1607 	int cpu, idle_core = -1;
1608 
1609 	memset(ns, 0, sizeof(*ns));
1610 	ns->idle_cpu = -1;
1611 
1612 	rcu_read_lock();
1613 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1614 		struct rq *rq = cpu_rq(cpu);
1615 
1616 		ns->load += cpu_load(rq);
1617 		ns->runnable += cpu_runnable(rq);
1618 		ns->util += cpu_util(cpu);
1619 		ns->nr_running += rq->cfs.h_nr_running;
1620 		ns->compute_capacity += capacity_of(cpu);
1621 
1622 		if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1623 			if (READ_ONCE(rq->numa_migrate_on) ||
1624 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1625 				continue;
1626 
1627 			if (ns->idle_cpu == -1)
1628 				ns->idle_cpu = cpu;
1629 
1630 			idle_core = numa_idle_core(idle_core, cpu);
1631 		}
1632 	}
1633 	rcu_read_unlock();
1634 
1635 	ns->weight = cpumask_weight(cpumask_of_node(nid));
1636 
1637 	ns->node_type = numa_classify(env->imbalance_pct, ns);
1638 
1639 	if (idle_core >= 0)
1640 		ns->idle_cpu = idle_core;
1641 }
1642 
1643 static void task_numa_assign(struct task_numa_env *env,
1644 			     struct task_struct *p, long imp)
1645 {
1646 	struct rq *rq = cpu_rq(env->dst_cpu);
1647 
1648 	/* Check if run-queue part of active NUMA balance. */
1649 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1650 		int cpu;
1651 		int start = env->dst_cpu;
1652 
1653 		/* Find alternative idle CPU. */
1654 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1655 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1656 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1657 				continue;
1658 			}
1659 
1660 			env->dst_cpu = cpu;
1661 			rq = cpu_rq(env->dst_cpu);
1662 			if (!xchg(&rq->numa_migrate_on, 1))
1663 				goto assign;
1664 		}
1665 
1666 		/* Failed to find an alternative idle CPU */
1667 		return;
1668 	}
1669 
1670 assign:
1671 	/*
1672 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1673 	 * found a better CPU to move/swap.
1674 	 */
1675 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1676 		rq = cpu_rq(env->best_cpu);
1677 		WRITE_ONCE(rq->numa_migrate_on, 0);
1678 	}
1679 
1680 	if (env->best_task)
1681 		put_task_struct(env->best_task);
1682 	if (p)
1683 		get_task_struct(p);
1684 
1685 	env->best_task = p;
1686 	env->best_imp = imp;
1687 	env->best_cpu = env->dst_cpu;
1688 }
1689 
1690 static bool load_too_imbalanced(long src_load, long dst_load,
1691 				struct task_numa_env *env)
1692 {
1693 	long imb, old_imb;
1694 	long orig_src_load, orig_dst_load;
1695 	long src_capacity, dst_capacity;
1696 
1697 	/*
1698 	 * The load is corrected for the CPU capacity available on each node.
1699 	 *
1700 	 * src_load        dst_load
1701 	 * ------------ vs ---------
1702 	 * src_capacity    dst_capacity
1703 	 */
1704 	src_capacity = env->src_stats.compute_capacity;
1705 	dst_capacity = env->dst_stats.compute_capacity;
1706 
1707 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1708 
1709 	orig_src_load = env->src_stats.load;
1710 	orig_dst_load = env->dst_stats.load;
1711 
1712 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1713 
1714 	/* Would this change make things worse? */
1715 	return (imb > old_imb);
1716 }
1717 
1718 /*
1719  * Maximum NUMA importance can be 1998 (2*999);
1720  * SMALLIMP @ 30 would be close to 1998/64.
1721  * Used to deter task migration.
1722  */
1723 #define SMALLIMP	30
1724 
1725 /*
1726  * This checks if the overall compute and NUMA accesses of the system would
1727  * be improved if the source tasks was migrated to the target dst_cpu taking
1728  * into account that it might be best if task running on the dst_cpu should
1729  * be exchanged with the source task
1730  */
1731 static bool task_numa_compare(struct task_numa_env *env,
1732 			      long taskimp, long groupimp, bool maymove)
1733 {
1734 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1735 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1736 	long imp = p_ng ? groupimp : taskimp;
1737 	struct task_struct *cur;
1738 	long src_load, dst_load;
1739 	int dist = env->dist;
1740 	long moveimp = imp;
1741 	long load;
1742 	bool stopsearch = false;
1743 
1744 	if (READ_ONCE(dst_rq->numa_migrate_on))
1745 		return false;
1746 
1747 	rcu_read_lock();
1748 	cur = rcu_dereference(dst_rq->curr);
1749 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1750 		cur = NULL;
1751 
1752 	/*
1753 	 * Because we have preemption enabled we can get migrated around and
1754 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1755 	 */
1756 	if (cur == env->p) {
1757 		stopsearch = true;
1758 		goto unlock;
1759 	}
1760 
1761 	if (!cur) {
1762 		if (maymove && moveimp >= env->best_imp)
1763 			goto assign;
1764 		else
1765 			goto unlock;
1766 	}
1767 
1768 	/* Skip this swap candidate if cannot move to the source cpu. */
1769 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1770 		goto unlock;
1771 
1772 	/*
1773 	 * Skip this swap candidate if it is not moving to its preferred
1774 	 * node and the best task is.
1775 	 */
1776 	if (env->best_task &&
1777 	    env->best_task->numa_preferred_nid == env->src_nid &&
1778 	    cur->numa_preferred_nid != env->src_nid) {
1779 		goto unlock;
1780 	}
1781 
1782 	/*
1783 	 * "imp" is the fault differential for the source task between the
1784 	 * source and destination node. Calculate the total differential for
1785 	 * the source task and potential destination task. The more negative
1786 	 * the value is, the more remote accesses that would be expected to
1787 	 * be incurred if the tasks were swapped.
1788 	 *
1789 	 * If dst and source tasks are in the same NUMA group, or not
1790 	 * in any group then look only at task weights.
1791 	 */
1792 	cur_ng = rcu_dereference(cur->numa_group);
1793 	if (cur_ng == p_ng) {
1794 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1795 		      task_weight(cur, env->dst_nid, dist);
1796 		/*
1797 		 * Add some hysteresis to prevent swapping the
1798 		 * tasks within a group over tiny differences.
1799 		 */
1800 		if (cur_ng)
1801 			imp -= imp / 16;
1802 	} else {
1803 		/*
1804 		 * Compare the group weights. If a task is all by itself
1805 		 * (not part of a group), use the task weight instead.
1806 		 */
1807 		if (cur_ng && p_ng)
1808 			imp += group_weight(cur, env->src_nid, dist) -
1809 			       group_weight(cur, env->dst_nid, dist);
1810 		else
1811 			imp += task_weight(cur, env->src_nid, dist) -
1812 			       task_weight(cur, env->dst_nid, dist);
1813 	}
1814 
1815 	/* Discourage picking a task already on its preferred node */
1816 	if (cur->numa_preferred_nid == env->dst_nid)
1817 		imp -= imp / 16;
1818 
1819 	/*
1820 	 * Encourage picking a task that moves to its preferred node.
1821 	 * This potentially makes imp larger than it's maximum of
1822 	 * 1998 (see SMALLIMP and task_weight for why) but in this
1823 	 * case, it does not matter.
1824 	 */
1825 	if (cur->numa_preferred_nid == env->src_nid)
1826 		imp += imp / 8;
1827 
1828 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1829 		imp = moveimp;
1830 		cur = NULL;
1831 		goto assign;
1832 	}
1833 
1834 	/*
1835 	 * Prefer swapping with a task moving to its preferred node over a
1836 	 * task that is not.
1837 	 */
1838 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1839 	    env->best_task->numa_preferred_nid != env->src_nid) {
1840 		goto assign;
1841 	}
1842 
1843 	/*
1844 	 * If the NUMA importance is less than SMALLIMP,
1845 	 * task migration might only result in ping pong
1846 	 * of tasks and also hurt performance due to cache
1847 	 * misses.
1848 	 */
1849 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1850 		goto unlock;
1851 
1852 	/*
1853 	 * In the overloaded case, try and keep the load balanced.
1854 	 */
1855 	load = task_h_load(env->p) - task_h_load(cur);
1856 	if (!load)
1857 		goto assign;
1858 
1859 	dst_load = env->dst_stats.load + load;
1860 	src_load = env->src_stats.load - load;
1861 
1862 	if (load_too_imbalanced(src_load, dst_load, env))
1863 		goto unlock;
1864 
1865 assign:
1866 	/* Evaluate an idle CPU for a task numa move. */
1867 	if (!cur) {
1868 		int cpu = env->dst_stats.idle_cpu;
1869 
1870 		/* Nothing cached so current CPU went idle since the search. */
1871 		if (cpu < 0)
1872 			cpu = env->dst_cpu;
1873 
1874 		/*
1875 		 * If the CPU is no longer truly idle and the previous best CPU
1876 		 * is, keep using it.
1877 		 */
1878 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1879 		    idle_cpu(env->best_cpu)) {
1880 			cpu = env->best_cpu;
1881 		}
1882 
1883 		env->dst_cpu = cpu;
1884 	}
1885 
1886 	task_numa_assign(env, cur, imp);
1887 
1888 	/*
1889 	 * If a move to idle is allowed because there is capacity or load
1890 	 * balance improves then stop the search. While a better swap
1891 	 * candidate may exist, a search is not free.
1892 	 */
1893 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1894 		stopsearch = true;
1895 
1896 	/*
1897 	 * If a swap candidate must be identified and the current best task
1898 	 * moves its preferred node then stop the search.
1899 	 */
1900 	if (!maymove && env->best_task &&
1901 	    env->best_task->numa_preferred_nid == env->src_nid) {
1902 		stopsearch = true;
1903 	}
1904 unlock:
1905 	rcu_read_unlock();
1906 
1907 	return stopsearch;
1908 }
1909 
1910 static void task_numa_find_cpu(struct task_numa_env *env,
1911 				long taskimp, long groupimp)
1912 {
1913 	bool maymove = false;
1914 	int cpu;
1915 
1916 	/*
1917 	 * If dst node has spare capacity, then check if there is an
1918 	 * imbalance that would be overruled by the load balancer.
1919 	 */
1920 	if (env->dst_stats.node_type == node_has_spare) {
1921 		unsigned int imbalance;
1922 		int src_running, dst_running;
1923 
1924 		/*
1925 		 * Would movement cause an imbalance? Note that if src has
1926 		 * more running tasks that the imbalance is ignored as the
1927 		 * move improves the imbalance from the perspective of the
1928 		 * CPU load balancer.
1929 		 * */
1930 		src_running = env->src_stats.nr_running - 1;
1931 		dst_running = env->dst_stats.nr_running + 1;
1932 		imbalance = max(0, dst_running - src_running);
1933 		imbalance = adjust_numa_imbalance(imbalance, dst_running);
1934 
1935 		/* Use idle CPU if there is no imbalance */
1936 		if (!imbalance) {
1937 			maymove = true;
1938 			if (env->dst_stats.idle_cpu >= 0) {
1939 				env->dst_cpu = env->dst_stats.idle_cpu;
1940 				task_numa_assign(env, NULL, 0);
1941 				return;
1942 			}
1943 		}
1944 	} else {
1945 		long src_load, dst_load, load;
1946 		/*
1947 		 * If the improvement from just moving env->p direction is better
1948 		 * than swapping tasks around, check if a move is possible.
1949 		 */
1950 		load = task_h_load(env->p);
1951 		dst_load = env->dst_stats.load + load;
1952 		src_load = env->src_stats.load - load;
1953 		maymove = !load_too_imbalanced(src_load, dst_load, env);
1954 	}
1955 
1956 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1957 		/* Skip this CPU if the source task cannot migrate */
1958 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1959 			continue;
1960 
1961 		env->dst_cpu = cpu;
1962 		if (task_numa_compare(env, taskimp, groupimp, maymove))
1963 			break;
1964 	}
1965 }
1966 
1967 static int task_numa_migrate(struct task_struct *p)
1968 {
1969 	struct task_numa_env env = {
1970 		.p = p,
1971 
1972 		.src_cpu = task_cpu(p),
1973 		.src_nid = task_node(p),
1974 
1975 		.imbalance_pct = 112,
1976 
1977 		.best_task = NULL,
1978 		.best_imp = 0,
1979 		.best_cpu = -1,
1980 	};
1981 	unsigned long taskweight, groupweight;
1982 	struct sched_domain *sd;
1983 	long taskimp, groupimp;
1984 	struct numa_group *ng;
1985 	struct rq *best_rq;
1986 	int nid, ret, dist;
1987 
1988 	/*
1989 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1990 	 * imbalance and would be the first to start moving tasks about.
1991 	 *
1992 	 * And we want to avoid any moving of tasks about, as that would create
1993 	 * random movement of tasks -- counter the numa conditions we're trying
1994 	 * to satisfy here.
1995 	 */
1996 	rcu_read_lock();
1997 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1998 	if (sd)
1999 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2000 	rcu_read_unlock();
2001 
2002 	/*
2003 	 * Cpusets can break the scheduler domain tree into smaller
2004 	 * balance domains, some of which do not cross NUMA boundaries.
2005 	 * Tasks that are "trapped" in such domains cannot be migrated
2006 	 * elsewhere, so there is no point in (re)trying.
2007 	 */
2008 	if (unlikely(!sd)) {
2009 		sched_setnuma(p, task_node(p));
2010 		return -EINVAL;
2011 	}
2012 
2013 	env.dst_nid = p->numa_preferred_nid;
2014 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2015 	taskweight = task_weight(p, env.src_nid, dist);
2016 	groupweight = group_weight(p, env.src_nid, dist);
2017 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2018 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2019 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2020 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2021 
2022 	/* Try to find a spot on the preferred nid. */
2023 	task_numa_find_cpu(&env, taskimp, groupimp);
2024 
2025 	/*
2026 	 * Look at other nodes in these cases:
2027 	 * - there is no space available on the preferred_nid
2028 	 * - the task is part of a numa_group that is interleaved across
2029 	 *   multiple NUMA nodes; in order to better consolidate the group,
2030 	 *   we need to check other locations.
2031 	 */
2032 	ng = deref_curr_numa_group(p);
2033 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2034 		for_each_online_node(nid) {
2035 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2036 				continue;
2037 
2038 			dist = node_distance(env.src_nid, env.dst_nid);
2039 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2040 						dist != env.dist) {
2041 				taskweight = task_weight(p, env.src_nid, dist);
2042 				groupweight = group_weight(p, env.src_nid, dist);
2043 			}
2044 
2045 			/* Only consider nodes where both task and groups benefit */
2046 			taskimp = task_weight(p, nid, dist) - taskweight;
2047 			groupimp = group_weight(p, nid, dist) - groupweight;
2048 			if (taskimp < 0 && groupimp < 0)
2049 				continue;
2050 
2051 			env.dist = dist;
2052 			env.dst_nid = nid;
2053 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2054 			task_numa_find_cpu(&env, taskimp, groupimp);
2055 		}
2056 	}
2057 
2058 	/*
2059 	 * If the task is part of a workload that spans multiple NUMA nodes,
2060 	 * and is migrating into one of the workload's active nodes, remember
2061 	 * this node as the task's preferred numa node, so the workload can
2062 	 * settle down.
2063 	 * A task that migrated to a second choice node will be better off
2064 	 * trying for a better one later. Do not set the preferred node here.
2065 	 */
2066 	if (ng) {
2067 		if (env.best_cpu == -1)
2068 			nid = env.src_nid;
2069 		else
2070 			nid = cpu_to_node(env.best_cpu);
2071 
2072 		if (nid != p->numa_preferred_nid)
2073 			sched_setnuma(p, nid);
2074 	}
2075 
2076 	/* No better CPU than the current one was found. */
2077 	if (env.best_cpu == -1) {
2078 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2079 		return -EAGAIN;
2080 	}
2081 
2082 	best_rq = cpu_rq(env.best_cpu);
2083 	if (env.best_task == NULL) {
2084 		ret = migrate_task_to(p, env.best_cpu);
2085 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2086 		if (ret != 0)
2087 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2088 		return ret;
2089 	}
2090 
2091 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2092 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2093 
2094 	if (ret != 0)
2095 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2096 	put_task_struct(env.best_task);
2097 	return ret;
2098 }
2099 
2100 /* Attempt to migrate a task to a CPU on the preferred node. */
2101 static void numa_migrate_preferred(struct task_struct *p)
2102 {
2103 	unsigned long interval = HZ;
2104 
2105 	/* This task has no NUMA fault statistics yet */
2106 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2107 		return;
2108 
2109 	/* Periodically retry migrating the task to the preferred node */
2110 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2111 	p->numa_migrate_retry = jiffies + interval;
2112 
2113 	/* Success if task is already running on preferred CPU */
2114 	if (task_node(p) == p->numa_preferred_nid)
2115 		return;
2116 
2117 	/* Otherwise, try migrate to a CPU on the preferred node */
2118 	task_numa_migrate(p);
2119 }
2120 
2121 /*
2122  * Find out how many nodes on the workload is actively running on. Do this by
2123  * tracking the nodes from which NUMA hinting faults are triggered. This can
2124  * be different from the set of nodes where the workload's memory is currently
2125  * located.
2126  */
2127 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2128 {
2129 	unsigned long faults, max_faults = 0;
2130 	int nid, active_nodes = 0;
2131 
2132 	for_each_online_node(nid) {
2133 		faults = group_faults_cpu(numa_group, nid);
2134 		if (faults > max_faults)
2135 			max_faults = faults;
2136 	}
2137 
2138 	for_each_online_node(nid) {
2139 		faults = group_faults_cpu(numa_group, nid);
2140 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2141 			active_nodes++;
2142 	}
2143 
2144 	numa_group->max_faults_cpu = max_faults;
2145 	numa_group->active_nodes = active_nodes;
2146 }
2147 
2148 /*
2149  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2150  * increments. The more local the fault statistics are, the higher the scan
2151  * period will be for the next scan window. If local/(local+remote) ratio is
2152  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2153  * the scan period will decrease. Aim for 70% local accesses.
2154  */
2155 #define NUMA_PERIOD_SLOTS 10
2156 #define NUMA_PERIOD_THRESHOLD 7
2157 
2158 /*
2159  * Increase the scan period (slow down scanning) if the majority of
2160  * our memory is already on our local node, or if the majority of
2161  * the page accesses are shared with other processes.
2162  * Otherwise, decrease the scan period.
2163  */
2164 static void update_task_scan_period(struct task_struct *p,
2165 			unsigned long shared, unsigned long private)
2166 {
2167 	unsigned int period_slot;
2168 	int lr_ratio, ps_ratio;
2169 	int diff;
2170 
2171 	unsigned long remote = p->numa_faults_locality[0];
2172 	unsigned long local = p->numa_faults_locality[1];
2173 
2174 	/*
2175 	 * If there were no record hinting faults then either the task is
2176 	 * completely idle or all activity is areas that are not of interest
2177 	 * to automatic numa balancing. Related to that, if there were failed
2178 	 * migration then it implies we are migrating too quickly or the local
2179 	 * node is overloaded. In either case, scan slower
2180 	 */
2181 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2182 		p->numa_scan_period = min(p->numa_scan_period_max,
2183 			p->numa_scan_period << 1);
2184 
2185 		p->mm->numa_next_scan = jiffies +
2186 			msecs_to_jiffies(p->numa_scan_period);
2187 
2188 		return;
2189 	}
2190 
2191 	/*
2192 	 * Prepare to scale scan period relative to the current period.
2193 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2194 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2195 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2196 	 */
2197 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2198 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2199 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2200 
2201 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2202 		/*
2203 		 * Most memory accesses are local. There is no need to
2204 		 * do fast NUMA scanning, since memory is already local.
2205 		 */
2206 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2207 		if (!slot)
2208 			slot = 1;
2209 		diff = slot * period_slot;
2210 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2211 		/*
2212 		 * Most memory accesses are shared with other tasks.
2213 		 * There is no point in continuing fast NUMA scanning,
2214 		 * since other tasks may just move the memory elsewhere.
2215 		 */
2216 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2217 		if (!slot)
2218 			slot = 1;
2219 		diff = slot * period_slot;
2220 	} else {
2221 		/*
2222 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2223 		 * yet they are not on the local NUMA node. Speed up
2224 		 * NUMA scanning to get the memory moved over.
2225 		 */
2226 		int ratio = max(lr_ratio, ps_ratio);
2227 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2228 	}
2229 
2230 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2231 			task_scan_min(p), task_scan_max(p));
2232 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2233 }
2234 
2235 /*
2236  * Get the fraction of time the task has been running since the last
2237  * NUMA placement cycle. The scheduler keeps similar statistics, but
2238  * decays those on a 32ms period, which is orders of magnitude off
2239  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2240  * stats only if the task is so new there are no NUMA statistics yet.
2241  */
2242 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2243 {
2244 	u64 runtime, delta, now;
2245 	/* Use the start of this time slice to avoid calculations. */
2246 	now = p->se.exec_start;
2247 	runtime = p->se.sum_exec_runtime;
2248 
2249 	if (p->last_task_numa_placement) {
2250 		delta = runtime - p->last_sum_exec_runtime;
2251 		*period = now - p->last_task_numa_placement;
2252 
2253 		/* Avoid time going backwards, prevent potential divide error: */
2254 		if (unlikely((s64)*period < 0))
2255 			*period = 0;
2256 	} else {
2257 		delta = p->se.avg.load_sum;
2258 		*period = LOAD_AVG_MAX;
2259 	}
2260 
2261 	p->last_sum_exec_runtime = runtime;
2262 	p->last_task_numa_placement = now;
2263 
2264 	return delta;
2265 }
2266 
2267 /*
2268  * Determine the preferred nid for a task in a numa_group. This needs to
2269  * be done in a way that produces consistent results with group_weight,
2270  * otherwise workloads might not converge.
2271  */
2272 static int preferred_group_nid(struct task_struct *p, int nid)
2273 {
2274 	nodemask_t nodes;
2275 	int dist;
2276 
2277 	/* Direct connections between all NUMA nodes. */
2278 	if (sched_numa_topology_type == NUMA_DIRECT)
2279 		return nid;
2280 
2281 	/*
2282 	 * On a system with glueless mesh NUMA topology, group_weight
2283 	 * scores nodes according to the number of NUMA hinting faults on
2284 	 * both the node itself, and on nearby nodes.
2285 	 */
2286 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2287 		unsigned long score, max_score = 0;
2288 		int node, max_node = nid;
2289 
2290 		dist = sched_max_numa_distance;
2291 
2292 		for_each_online_node(node) {
2293 			score = group_weight(p, node, dist);
2294 			if (score > max_score) {
2295 				max_score = score;
2296 				max_node = node;
2297 			}
2298 		}
2299 		return max_node;
2300 	}
2301 
2302 	/*
2303 	 * Finding the preferred nid in a system with NUMA backplane
2304 	 * interconnect topology is more involved. The goal is to locate
2305 	 * tasks from numa_groups near each other in the system, and
2306 	 * untangle workloads from different sides of the system. This requires
2307 	 * searching down the hierarchy of node groups, recursively searching
2308 	 * inside the highest scoring group of nodes. The nodemask tricks
2309 	 * keep the complexity of the search down.
2310 	 */
2311 	nodes = node_online_map;
2312 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2313 		unsigned long max_faults = 0;
2314 		nodemask_t max_group = NODE_MASK_NONE;
2315 		int a, b;
2316 
2317 		/* Are there nodes at this distance from each other? */
2318 		if (!find_numa_distance(dist))
2319 			continue;
2320 
2321 		for_each_node_mask(a, nodes) {
2322 			unsigned long faults = 0;
2323 			nodemask_t this_group;
2324 			nodes_clear(this_group);
2325 
2326 			/* Sum group's NUMA faults; includes a==b case. */
2327 			for_each_node_mask(b, nodes) {
2328 				if (node_distance(a, b) < dist) {
2329 					faults += group_faults(p, b);
2330 					node_set(b, this_group);
2331 					node_clear(b, nodes);
2332 				}
2333 			}
2334 
2335 			/* Remember the top group. */
2336 			if (faults > max_faults) {
2337 				max_faults = faults;
2338 				max_group = this_group;
2339 				/*
2340 				 * subtle: at the smallest distance there is
2341 				 * just one node left in each "group", the
2342 				 * winner is the preferred nid.
2343 				 */
2344 				nid = a;
2345 			}
2346 		}
2347 		/* Next round, evaluate the nodes within max_group. */
2348 		if (!max_faults)
2349 			break;
2350 		nodes = max_group;
2351 	}
2352 	return nid;
2353 }
2354 
2355 static void task_numa_placement(struct task_struct *p)
2356 {
2357 	int seq, nid, max_nid = NUMA_NO_NODE;
2358 	unsigned long max_faults = 0;
2359 	unsigned long fault_types[2] = { 0, 0 };
2360 	unsigned long total_faults;
2361 	u64 runtime, period;
2362 	spinlock_t *group_lock = NULL;
2363 	struct numa_group *ng;
2364 
2365 	/*
2366 	 * The p->mm->numa_scan_seq field gets updated without
2367 	 * exclusive access. Use READ_ONCE() here to ensure
2368 	 * that the field is read in a single access:
2369 	 */
2370 	seq = READ_ONCE(p->mm->numa_scan_seq);
2371 	if (p->numa_scan_seq == seq)
2372 		return;
2373 	p->numa_scan_seq = seq;
2374 	p->numa_scan_period_max = task_scan_max(p);
2375 
2376 	total_faults = p->numa_faults_locality[0] +
2377 		       p->numa_faults_locality[1];
2378 	runtime = numa_get_avg_runtime(p, &period);
2379 
2380 	/* If the task is part of a group prevent parallel updates to group stats */
2381 	ng = deref_curr_numa_group(p);
2382 	if (ng) {
2383 		group_lock = &ng->lock;
2384 		spin_lock_irq(group_lock);
2385 	}
2386 
2387 	/* Find the node with the highest number of faults */
2388 	for_each_online_node(nid) {
2389 		/* Keep track of the offsets in numa_faults array */
2390 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2391 		unsigned long faults = 0, group_faults = 0;
2392 		int priv;
2393 
2394 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2395 			long diff, f_diff, f_weight;
2396 
2397 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2398 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2399 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2400 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2401 
2402 			/* Decay existing window, copy faults since last scan */
2403 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2404 			fault_types[priv] += p->numa_faults[membuf_idx];
2405 			p->numa_faults[membuf_idx] = 0;
2406 
2407 			/*
2408 			 * Normalize the faults_from, so all tasks in a group
2409 			 * count according to CPU use, instead of by the raw
2410 			 * number of faults. Tasks with little runtime have
2411 			 * little over-all impact on throughput, and thus their
2412 			 * faults are less important.
2413 			 */
2414 			f_weight = div64_u64(runtime << 16, period + 1);
2415 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2416 				   (total_faults + 1);
2417 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2418 			p->numa_faults[cpubuf_idx] = 0;
2419 
2420 			p->numa_faults[mem_idx] += diff;
2421 			p->numa_faults[cpu_idx] += f_diff;
2422 			faults += p->numa_faults[mem_idx];
2423 			p->total_numa_faults += diff;
2424 			if (ng) {
2425 				/*
2426 				 * safe because we can only change our own group
2427 				 *
2428 				 * mem_idx represents the offset for a given
2429 				 * nid and priv in a specific region because it
2430 				 * is at the beginning of the numa_faults array.
2431 				 */
2432 				ng->faults[mem_idx] += diff;
2433 				ng->faults_cpu[mem_idx] += f_diff;
2434 				ng->total_faults += diff;
2435 				group_faults += ng->faults[mem_idx];
2436 			}
2437 		}
2438 
2439 		if (!ng) {
2440 			if (faults > max_faults) {
2441 				max_faults = faults;
2442 				max_nid = nid;
2443 			}
2444 		} else if (group_faults > max_faults) {
2445 			max_faults = group_faults;
2446 			max_nid = nid;
2447 		}
2448 	}
2449 
2450 	if (ng) {
2451 		numa_group_count_active_nodes(ng);
2452 		spin_unlock_irq(group_lock);
2453 		max_nid = preferred_group_nid(p, max_nid);
2454 	}
2455 
2456 	if (max_faults) {
2457 		/* Set the new preferred node */
2458 		if (max_nid != p->numa_preferred_nid)
2459 			sched_setnuma(p, max_nid);
2460 	}
2461 
2462 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2463 }
2464 
2465 static inline int get_numa_group(struct numa_group *grp)
2466 {
2467 	return refcount_inc_not_zero(&grp->refcount);
2468 }
2469 
2470 static inline void put_numa_group(struct numa_group *grp)
2471 {
2472 	if (refcount_dec_and_test(&grp->refcount))
2473 		kfree_rcu(grp, rcu);
2474 }
2475 
2476 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2477 			int *priv)
2478 {
2479 	struct numa_group *grp, *my_grp;
2480 	struct task_struct *tsk;
2481 	bool join = false;
2482 	int cpu = cpupid_to_cpu(cpupid);
2483 	int i;
2484 
2485 	if (unlikely(!deref_curr_numa_group(p))) {
2486 		unsigned int size = sizeof(struct numa_group) +
2487 				    4*nr_node_ids*sizeof(unsigned long);
2488 
2489 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2490 		if (!grp)
2491 			return;
2492 
2493 		refcount_set(&grp->refcount, 1);
2494 		grp->active_nodes = 1;
2495 		grp->max_faults_cpu = 0;
2496 		spin_lock_init(&grp->lock);
2497 		grp->gid = p->pid;
2498 		/* Second half of the array tracks nids where faults happen */
2499 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2500 						nr_node_ids;
2501 
2502 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2503 			grp->faults[i] = p->numa_faults[i];
2504 
2505 		grp->total_faults = p->total_numa_faults;
2506 
2507 		grp->nr_tasks++;
2508 		rcu_assign_pointer(p->numa_group, grp);
2509 	}
2510 
2511 	rcu_read_lock();
2512 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2513 
2514 	if (!cpupid_match_pid(tsk, cpupid))
2515 		goto no_join;
2516 
2517 	grp = rcu_dereference(tsk->numa_group);
2518 	if (!grp)
2519 		goto no_join;
2520 
2521 	my_grp = deref_curr_numa_group(p);
2522 	if (grp == my_grp)
2523 		goto no_join;
2524 
2525 	/*
2526 	 * Only join the other group if its bigger; if we're the bigger group,
2527 	 * the other task will join us.
2528 	 */
2529 	if (my_grp->nr_tasks > grp->nr_tasks)
2530 		goto no_join;
2531 
2532 	/*
2533 	 * Tie-break on the grp address.
2534 	 */
2535 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2536 		goto no_join;
2537 
2538 	/* Always join threads in the same process. */
2539 	if (tsk->mm == current->mm)
2540 		join = true;
2541 
2542 	/* Simple filter to avoid false positives due to PID collisions */
2543 	if (flags & TNF_SHARED)
2544 		join = true;
2545 
2546 	/* Update priv based on whether false sharing was detected */
2547 	*priv = !join;
2548 
2549 	if (join && !get_numa_group(grp))
2550 		goto no_join;
2551 
2552 	rcu_read_unlock();
2553 
2554 	if (!join)
2555 		return;
2556 
2557 	BUG_ON(irqs_disabled());
2558 	double_lock_irq(&my_grp->lock, &grp->lock);
2559 
2560 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2561 		my_grp->faults[i] -= p->numa_faults[i];
2562 		grp->faults[i] += p->numa_faults[i];
2563 	}
2564 	my_grp->total_faults -= p->total_numa_faults;
2565 	grp->total_faults += p->total_numa_faults;
2566 
2567 	my_grp->nr_tasks--;
2568 	grp->nr_tasks++;
2569 
2570 	spin_unlock(&my_grp->lock);
2571 	spin_unlock_irq(&grp->lock);
2572 
2573 	rcu_assign_pointer(p->numa_group, grp);
2574 
2575 	put_numa_group(my_grp);
2576 	return;
2577 
2578 no_join:
2579 	rcu_read_unlock();
2580 	return;
2581 }
2582 
2583 /*
2584  * Get rid of NUMA staticstics associated with a task (either current or dead).
2585  * If @final is set, the task is dead and has reached refcount zero, so we can
2586  * safely free all relevant data structures. Otherwise, there might be
2587  * concurrent reads from places like load balancing and procfs, and we should
2588  * reset the data back to default state without freeing ->numa_faults.
2589  */
2590 void task_numa_free(struct task_struct *p, bool final)
2591 {
2592 	/* safe: p either is current or is being freed by current */
2593 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2594 	unsigned long *numa_faults = p->numa_faults;
2595 	unsigned long flags;
2596 	int i;
2597 
2598 	if (!numa_faults)
2599 		return;
2600 
2601 	if (grp) {
2602 		spin_lock_irqsave(&grp->lock, flags);
2603 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2604 			grp->faults[i] -= p->numa_faults[i];
2605 		grp->total_faults -= p->total_numa_faults;
2606 
2607 		grp->nr_tasks--;
2608 		spin_unlock_irqrestore(&grp->lock, flags);
2609 		RCU_INIT_POINTER(p->numa_group, NULL);
2610 		put_numa_group(grp);
2611 	}
2612 
2613 	if (final) {
2614 		p->numa_faults = NULL;
2615 		kfree(numa_faults);
2616 	} else {
2617 		p->total_numa_faults = 0;
2618 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2619 			numa_faults[i] = 0;
2620 	}
2621 }
2622 
2623 /*
2624  * Got a PROT_NONE fault for a page on @node.
2625  */
2626 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2627 {
2628 	struct task_struct *p = current;
2629 	bool migrated = flags & TNF_MIGRATED;
2630 	int cpu_node = task_node(current);
2631 	int local = !!(flags & TNF_FAULT_LOCAL);
2632 	struct numa_group *ng;
2633 	int priv;
2634 
2635 	if (!static_branch_likely(&sched_numa_balancing))
2636 		return;
2637 
2638 	/* for example, ksmd faulting in a user's mm */
2639 	if (!p->mm)
2640 		return;
2641 
2642 	/* Allocate buffer to track faults on a per-node basis */
2643 	if (unlikely(!p->numa_faults)) {
2644 		int size = sizeof(*p->numa_faults) *
2645 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2646 
2647 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2648 		if (!p->numa_faults)
2649 			return;
2650 
2651 		p->total_numa_faults = 0;
2652 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2653 	}
2654 
2655 	/*
2656 	 * First accesses are treated as private, otherwise consider accesses
2657 	 * to be private if the accessing pid has not changed
2658 	 */
2659 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2660 		priv = 1;
2661 	} else {
2662 		priv = cpupid_match_pid(p, last_cpupid);
2663 		if (!priv && !(flags & TNF_NO_GROUP))
2664 			task_numa_group(p, last_cpupid, flags, &priv);
2665 	}
2666 
2667 	/*
2668 	 * If a workload spans multiple NUMA nodes, a shared fault that
2669 	 * occurs wholly within the set of nodes that the workload is
2670 	 * actively using should be counted as local. This allows the
2671 	 * scan rate to slow down when a workload has settled down.
2672 	 */
2673 	ng = deref_curr_numa_group(p);
2674 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2675 				numa_is_active_node(cpu_node, ng) &&
2676 				numa_is_active_node(mem_node, ng))
2677 		local = 1;
2678 
2679 	/*
2680 	 * Retry to migrate task to preferred node periodically, in case it
2681 	 * previously failed, or the scheduler moved us.
2682 	 */
2683 	if (time_after(jiffies, p->numa_migrate_retry)) {
2684 		task_numa_placement(p);
2685 		numa_migrate_preferred(p);
2686 	}
2687 
2688 	if (migrated)
2689 		p->numa_pages_migrated += pages;
2690 	if (flags & TNF_MIGRATE_FAIL)
2691 		p->numa_faults_locality[2] += pages;
2692 
2693 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2694 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2695 	p->numa_faults_locality[local] += pages;
2696 }
2697 
2698 static void reset_ptenuma_scan(struct task_struct *p)
2699 {
2700 	/*
2701 	 * We only did a read acquisition of the mmap sem, so
2702 	 * p->mm->numa_scan_seq is written to without exclusive access
2703 	 * and the update is not guaranteed to be atomic. That's not
2704 	 * much of an issue though, since this is just used for
2705 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2706 	 * expensive, to avoid any form of compiler optimizations:
2707 	 */
2708 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2709 	p->mm->numa_scan_offset = 0;
2710 }
2711 
2712 /*
2713  * The expensive part of numa migration is done from task_work context.
2714  * Triggered from task_tick_numa().
2715  */
2716 static void task_numa_work(struct callback_head *work)
2717 {
2718 	unsigned long migrate, next_scan, now = jiffies;
2719 	struct task_struct *p = current;
2720 	struct mm_struct *mm = p->mm;
2721 	u64 runtime = p->se.sum_exec_runtime;
2722 	struct vm_area_struct *vma;
2723 	unsigned long start, end;
2724 	unsigned long nr_pte_updates = 0;
2725 	long pages, virtpages;
2726 
2727 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2728 
2729 	work->next = work;
2730 	/*
2731 	 * Who cares about NUMA placement when they're dying.
2732 	 *
2733 	 * NOTE: make sure not to dereference p->mm before this check,
2734 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2735 	 * without p->mm even though we still had it when we enqueued this
2736 	 * work.
2737 	 */
2738 	if (p->flags & PF_EXITING)
2739 		return;
2740 
2741 	if (!mm->numa_next_scan) {
2742 		mm->numa_next_scan = now +
2743 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2744 	}
2745 
2746 	/*
2747 	 * Enforce maximal scan/migration frequency..
2748 	 */
2749 	migrate = mm->numa_next_scan;
2750 	if (time_before(now, migrate))
2751 		return;
2752 
2753 	if (p->numa_scan_period == 0) {
2754 		p->numa_scan_period_max = task_scan_max(p);
2755 		p->numa_scan_period = task_scan_start(p);
2756 	}
2757 
2758 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2759 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2760 		return;
2761 
2762 	/*
2763 	 * Delay this task enough that another task of this mm will likely win
2764 	 * the next time around.
2765 	 */
2766 	p->node_stamp += 2 * TICK_NSEC;
2767 
2768 	start = mm->numa_scan_offset;
2769 	pages = sysctl_numa_balancing_scan_size;
2770 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2771 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2772 	if (!pages)
2773 		return;
2774 
2775 
2776 	if (!mmap_read_trylock(mm))
2777 		return;
2778 	vma = find_vma(mm, start);
2779 	if (!vma) {
2780 		reset_ptenuma_scan(p);
2781 		start = 0;
2782 		vma = mm->mmap;
2783 	}
2784 	for (; vma; vma = vma->vm_next) {
2785 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2786 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2787 			continue;
2788 		}
2789 
2790 		/*
2791 		 * Shared library pages mapped by multiple processes are not
2792 		 * migrated as it is expected they are cache replicated. Avoid
2793 		 * hinting faults in read-only file-backed mappings or the vdso
2794 		 * as migrating the pages will be of marginal benefit.
2795 		 */
2796 		if (!vma->vm_mm ||
2797 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2798 			continue;
2799 
2800 		/*
2801 		 * Skip inaccessible VMAs to avoid any confusion between
2802 		 * PROT_NONE and NUMA hinting ptes
2803 		 */
2804 		if (!vma_is_accessible(vma))
2805 			continue;
2806 
2807 		do {
2808 			start = max(start, vma->vm_start);
2809 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2810 			end = min(end, vma->vm_end);
2811 			nr_pte_updates = change_prot_numa(vma, start, end);
2812 
2813 			/*
2814 			 * Try to scan sysctl_numa_balancing_size worth of
2815 			 * hpages that have at least one present PTE that
2816 			 * is not already pte-numa. If the VMA contains
2817 			 * areas that are unused or already full of prot_numa
2818 			 * PTEs, scan up to virtpages, to skip through those
2819 			 * areas faster.
2820 			 */
2821 			if (nr_pte_updates)
2822 				pages -= (end - start) >> PAGE_SHIFT;
2823 			virtpages -= (end - start) >> PAGE_SHIFT;
2824 
2825 			start = end;
2826 			if (pages <= 0 || virtpages <= 0)
2827 				goto out;
2828 
2829 			cond_resched();
2830 		} while (end != vma->vm_end);
2831 	}
2832 
2833 out:
2834 	/*
2835 	 * It is possible to reach the end of the VMA list but the last few
2836 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2837 	 * would find the !migratable VMA on the next scan but not reset the
2838 	 * scanner to the start so check it now.
2839 	 */
2840 	if (vma)
2841 		mm->numa_scan_offset = start;
2842 	else
2843 		reset_ptenuma_scan(p);
2844 	mmap_read_unlock(mm);
2845 
2846 	/*
2847 	 * Make sure tasks use at least 32x as much time to run other code
2848 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2849 	 * Usually update_task_scan_period slows down scanning enough; on an
2850 	 * overloaded system we need to limit overhead on a per task basis.
2851 	 */
2852 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2853 		u64 diff = p->se.sum_exec_runtime - runtime;
2854 		p->node_stamp += 32 * diff;
2855 	}
2856 }
2857 
2858 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2859 {
2860 	int mm_users = 0;
2861 	struct mm_struct *mm = p->mm;
2862 
2863 	if (mm) {
2864 		mm_users = atomic_read(&mm->mm_users);
2865 		if (mm_users == 1) {
2866 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2867 			mm->numa_scan_seq = 0;
2868 		}
2869 	}
2870 	p->node_stamp			= 0;
2871 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
2872 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
2873 	/* Protect against double add, see task_tick_numa and task_numa_work */
2874 	p->numa_work.next		= &p->numa_work;
2875 	p->numa_faults			= NULL;
2876 	RCU_INIT_POINTER(p->numa_group, NULL);
2877 	p->last_task_numa_placement	= 0;
2878 	p->last_sum_exec_runtime	= 0;
2879 
2880 	init_task_work(&p->numa_work, task_numa_work);
2881 
2882 	/* New address space, reset the preferred nid */
2883 	if (!(clone_flags & CLONE_VM)) {
2884 		p->numa_preferred_nid = NUMA_NO_NODE;
2885 		return;
2886 	}
2887 
2888 	/*
2889 	 * New thread, keep existing numa_preferred_nid which should be copied
2890 	 * already by arch_dup_task_struct but stagger when scans start.
2891 	 */
2892 	if (mm) {
2893 		unsigned int delay;
2894 
2895 		delay = min_t(unsigned int, task_scan_max(current),
2896 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2897 		delay += 2 * TICK_NSEC;
2898 		p->node_stamp = delay;
2899 	}
2900 }
2901 
2902 /*
2903  * Drive the periodic memory faults..
2904  */
2905 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2906 {
2907 	struct callback_head *work = &curr->numa_work;
2908 	u64 period, now;
2909 
2910 	/*
2911 	 * We don't care about NUMA placement if we don't have memory.
2912 	 */
2913 	if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2914 		return;
2915 
2916 	/*
2917 	 * Using runtime rather than walltime has the dual advantage that
2918 	 * we (mostly) drive the selection from busy threads and that the
2919 	 * task needs to have done some actual work before we bother with
2920 	 * NUMA placement.
2921 	 */
2922 	now = curr->se.sum_exec_runtime;
2923 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2924 
2925 	if (now > curr->node_stamp + period) {
2926 		if (!curr->node_stamp)
2927 			curr->numa_scan_period = task_scan_start(curr);
2928 		curr->node_stamp += period;
2929 
2930 		if (!time_before(jiffies, curr->mm->numa_next_scan))
2931 			task_work_add(curr, work, TWA_RESUME);
2932 	}
2933 }
2934 
2935 static void update_scan_period(struct task_struct *p, int new_cpu)
2936 {
2937 	int src_nid = cpu_to_node(task_cpu(p));
2938 	int dst_nid = cpu_to_node(new_cpu);
2939 
2940 	if (!static_branch_likely(&sched_numa_balancing))
2941 		return;
2942 
2943 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2944 		return;
2945 
2946 	if (src_nid == dst_nid)
2947 		return;
2948 
2949 	/*
2950 	 * Allow resets if faults have been trapped before one scan
2951 	 * has completed. This is most likely due to a new task that
2952 	 * is pulled cross-node due to wakeups or load balancing.
2953 	 */
2954 	if (p->numa_scan_seq) {
2955 		/*
2956 		 * Avoid scan adjustments if moving to the preferred
2957 		 * node or if the task was not previously running on
2958 		 * the preferred node.
2959 		 */
2960 		if (dst_nid == p->numa_preferred_nid ||
2961 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2962 			src_nid != p->numa_preferred_nid))
2963 			return;
2964 	}
2965 
2966 	p->numa_scan_period = task_scan_start(p);
2967 }
2968 
2969 #else
2970 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2971 {
2972 }
2973 
2974 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2975 {
2976 }
2977 
2978 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2979 {
2980 }
2981 
2982 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2983 {
2984 }
2985 
2986 #endif /* CONFIG_NUMA_BALANCING */
2987 
2988 static void
2989 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2990 {
2991 	update_load_add(&cfs_rq->load, se->load.weight);
2992 #ifdef CONFIG_SMP
2993 	if (entity_is_task(se)) {
2994 		struct rq *rq = rq_of(cfs_rq);
2995 
2996 		account_numa_enqueue(rq, task_of(se));
2997 		list_add(&se->group_node, &rq->cfs_tasks);
2998 	}
2999 #endif
3000 	cfs_rq->nr_running++;
3001 }
3002 
3003 static void
3004 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3005 {
3006 	update_load_sub(&cfs_rq->load, se->load.weight);
3007 #ifdef CONFIG_SMP
3008 	if (entity_is_task(se)) {
3009 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3010 		list_del_init(&se->group_node);
3011 	}
3012 #endif
3013 	cfs_rq->nr_running--;
3014 }
3015 
3016 /*
3017  * Signed add and clamp on underflow.
3018  *
3019  * Explicitly do a load-store to ensure the intermediate value never hits
3020  * memory. This allows lockless observations without ever seeing the negative
3021  * values.
3022  */
3023 #define add_positive(_ptr, _val) do {                           \
3024 	typeof(_ptr) ptr = (_ptr);                              \
3025 	typeof(_val) val = (_val);                              \
3026 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3027 								\
3028 	res = var + val;                                        \
3029 								\
3030 	if (val < 0 && res > var)                               \
3031 		res = 0;                                        \
3032 								\
3033 	WRITE_ONCE(*ptr, res);                                  \
3034 } while (0)
3035 
3036 /*
3037  * Unsigned subtract and clamp on underflow.
3038  *
3039  * Explicitly do a load-store to ensure the intermediate value never hits
3040  * memory. This allows lockless observations without ever seeing the negative
3041  * values.
3042  */
3043 #define sub_positive(_ptr, _val) do {				\
3044 	typeof(_ptr) ptr = (_ptr);				\
3045 	typeof(*ptr) val = (_val);				\
3046 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3047 	res = var - val;					\
3048 	if (res > var)						\
3049 		res = 0;					\
3050 	WRITE_ONCE(*ptr, res);					\
3051 } while (0)
3052 
3053 /*
3054  * Remove and clamp on negative, from a local variable.
3055  *
3056  * A variant of sub_positive(), which does not use explicit load-store
3057  * and is thus optimized for local variable updates.
3058  */
3059 #define lsub_positive(_ptr, _val) do {				\
3060 	typeof(_ptr) ptr = (_ptr);				\
3061 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3062 } while (0)
3063 
3064 #ifdef CONFIG_SMP
3065 static inline void
3066 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3067 {
3068 	cfs_rq->avg.load_avg += se->avg.load_avg;
3069 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3070 }
3071 
3072 static inline void
3073 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3074 {
3075 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3076 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3077 }
3078 #else
3079 static inline void
3080 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3081 static inline void
3082 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3083 #endif
3084 
3085 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3086 			    unsigned long weight)
3087 {
3088 	if (se->on_rq) {
3089 		/* commit outstanding execution time */
3090 		if (cfs_rq->curr == se)
3091 			update_curr(cfs_rq);
3092 		update_load_sub(&cfs_rq->load, se->load.weight);
3093 	}
3094 	dequeue_load_avg(cfs_rq, se);
3095 
3096 	update_load_set(&se->load, weight);
3097 
3098 #ifdef CONFIG_SMP
3099 	do {
3100 		u32 divider = get_pelt_divider(&se->avg);
3101 
3102 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3103 	} while (0);
3104 #endif
3105 
3106 	enqueue_load_avg(cfs_rq, se);
3107 	if (se->on_rq)
3108 		update_load_add(&cfs_rq->load, se->load.weight);
3109 
3110 }
3111 
3112 void reweight_task(struct task_struct *p, int prio)
3113 {
3114 	struct sched_entity *se = &p->se;
3115 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3116 	struct load_weight *load = &se->load;
3117 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3118 
3119 	reweight_entity(cfs_rq, se, weight);
3120 	load->inv_weight = sched_prio_to_wmult[prio];
3121 }
3122 
3123 #ifdef CONFIG_FAIR_GROUP_SCHED
3124 #ifdef CONFIG_SMP
3125 /*
3126  * All this does is approximate the hierarchical proportion which includes that
3127  * global sum we all love to hate.
3128  *
3129  * That is, the weight of a group entity, is the proportional share of the
3130  * group weight based on the group runqueue weights. That is:
3131  *
3132  *                     tg->weight * grq->load.weight
3133  *   ge->load.weight = -----------------------------               (1)
3134  *			  \Sum grq->load.weight
3135  *
3136  * Now, because computing that sum is prohibitively expensive to compute (been
3137  * there, done that) we approximate it with this average stuff. The average
3138  * moves slower and therefore the approximation is cheaper and more stable.
3139  *
3140  * So instead of the above, we substitute:
3141  *
3142  *   grq->load.weight -> grq->avg.load_avg                         (2)
3143  *
3144  * which yields the following:
3145  *
3146  *                     tg->weight * grq->avg.load_avg
3147  *   ge->load.weight = ------------------------------              (3)
3148  *				tg->load_avg
3149  *
3150  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3151  *
3152  * That is shares_avg, and it is right (given the approximation (2)).
3153  *
3154  * The problem with it is that because the average is slow -- it was designed
3155  * to be exactly that of course -- this leads to transients in boundary
3156  * conditions. In specific, the case where the group was idle and we start the
3157  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3158  * yielding bad latency etc..
3159  *
3160  * Now, in that special case (1) reduces to:
3161  *
3162  *                     tg->weight * grq->load.weight
3163  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3164  *			    grp->load.weight
3165  *
3166  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3167  *
3168  * So what we do is modify our approximation (3) to approach (4) in the (near)
3169  * UP case, like:
3170  *
3171  *   ge->load.weight =
3172  *
3173  *              tg->weight * grq->load.weight
3174  *     ---------------------------------------------------         (5)
3175  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3176  *
3177  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3178  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3179  *
3180  *
3181  *                     tg->weight * grq->load.weight
3182  *   ge->load.weight = -----------------------------		   (6)
3183  *				tg_load_avg'
3184  *
3185  * Where:
3186  *
3187  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3188  *                  max(grq->load.weight, grq->avg.load_avg)
3189  *
3190  * And that is shares_weight and is icky. In the (near) UP case it approaches
3191  * (4) while in the normal case it approaches (3). It consistently
3192  * overestimates the ge->load.weight and therefore:
3193  *
3194  *   \Sum ge->load.weight >= tg->weight
3195  *
3196  * hence icky!
3197  */
3198 static long calc_group_shares(struct cfs_rq *cfs_rq)
3199 {
3200 	long tg_weight, tg_shares, load, shares;
3201 	struct task_group *tg = cfs_rq->tg;
3202 
3203 	tg_shares = READ_ONCE(tg->shares);
3204 
3205 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3206 
3207 	tg_weight = atomic_long_read(&tg->load_avg);
3208 
3209 	/* Ensure tg_weight >= load */
3210 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3211 	tg_weight += load;
3212 
3213 	shares = (tg_shares * load);
3214 	if (tg_weight)
3215 		shares /= tg_weight;
3216 
3217 	/*
3218 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3219 	 * of a group with small tg->shares value. It is a floor value which is
3220 	 * assigned as a minimum load.weight to the sched_entity representing
3221 	 * the group on a CPU.
3222 	 *
3223 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3224 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3225 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3226 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3227 	 * instead of 0.
3228 	 */
3229 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3230 }
3231 #endif /* CONFIG_SMP */
3232 
3233 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3234 
3235 /*
3236  * Recomputes the group entity based on the current state of its group
3237  * runqueue.
3238  */
3239 static void update_cfs_group(struct sched_entity *se)
3240 {
3241 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3242 	long shares;
3243 
3244 	if (!gcfs_rq)
3245 		return;
3246 
3247 	if (throttled_hierarchy(gcfs_rq))
3248 		return;
3249 
3250 #ifndef CONFIG_SMP
3251 	shares = READ_ONCE(gcfs_rq->tg->shares);
3252 
3253 	if (likely(se->load.weight == shares))
3254 		return;
3255 #else
3256 	shares   = calc_group_shares(gcfs_rq);
3257 #endif
3258 
3259 	reweight_entity(cfs_rq_of(se), se, shares);
3260 }
3261 
3262 #else /* CONFIG_FAIR_GROUP_SCHED */
3263 static inline void update_cfs_group(struct sched_entity *se)
3264 {
3265 }
3266 #endif /* CONFIG_FAIR_GROUP_SCHED */
3267 
3268 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3269 {
3270 	struct rq *rq = rq_of(cfs_rq);
3271 
3272 	if (&rq->cfs == cfs_rq) {
3273 		/*
3274 		 * There are a few boundary cases this might miss but it should
3275 		 * get called often enough that that should (hopefully) not be
3276 		 * a real problem.
3277 		 *
3278 		 * It will not get called when we go idle, because the idle
3279 		 * thread is a different class (!fair), nor will the utilization
3280 		 * number include things like RT tasks.
3281 		 *
3282 		 * As is, the util number is not freq-invariant (we'd have to
3283 		 * implement arch_scale_freq_capacity() for that).
3284 		 *
3285 		 * See cpu_util().
3286 		 */
3287 		cpufreq_update_util(rq, flags);
3288 	}
3289 }
3290 
3291 #ifdef CONFIG_SMP
3292 #ifdef CONFIG_FAIR_GROUP_SCHED
3293 /**
3294  * update_tg_load_avg - update the tg's load avg
3295  * @cfs_rq: the cfs_rq whose avg changed
3296  *
3297  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3298  * However, because tg->load_avg is a global value there are performance
3299  * considerations.
3300  *
3301  * In order to avoid having to look at the other cfs_rq's, we use a
3302  * differential update where we store the last value we propagated. This in
3303  * turn allows skipping updates if the differential is 'small'.
3304  *
3305  * Updating tg's load_avg is necessary before update_cfs_share().
3306  */
3307 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3308 {
3309 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3310 
3311 	/*
3312 	 * No need to update load_avg for root_task_group as it is not used.
3313 	 */
3314 	if (cfs_rq->tg == &root_task_group)
3315 		return;
3316 
3317 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3318 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3319 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3320 	}
3321 }
3322 
3323 /*
3324  * Called within set_task_rq() right before setting a task's CPU. The
3325  * caller only guarantees p->pi_lock is held; no other assumptions,
3326  * including the state of rq->lock, should be made.
3327  */
3328 void set_task_rq_fair(struct sched_entity *se,
3329 		      struct cfs_rq *prev, struct cfs_rq *next)
3330 {
3331 	u64 p_last_update_time;
3332 	u64 n_last_update_time;
3333 
3334 	if (!sched_feat(ATTACH_AGE_LOAD))
3335 		return;
3336 
3337 	/*
3338 	 * We are supposed to update the task to "current" time, then its up to
3339 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3340 	 * getting what current time is, so simply throw away the out-of-date
3341 	 * time. This will result in the wakee task is less decayed, but giving
3342 	 * the wakee more load sounds not bad.
3343 	 */
3344 	if (!(se->avg.last_update_time && prev))
3345 		return;
3346 
3347 #ifndef CONFIG_64BIT
3348 	{
3349 		u64 p_last_update_time_copy;
3350 		u64 n_last_update_time_copy;
3351 
3352 		do {
3353 			p_last_update_time_copy = prev->load_last_update_time_copy;
3354 			n_last_update_time_copy = next->load_last_update_time_copy;
3355 
3356 			smp_rmb();
3357 
3358 			p_last_update_time = prev->avg.last_update_time;
3359 			n_last_update_time = next->avg.last_update_time;
3360 
3361 		} while (p_last_update_time != p_last_update_time_copy ||
3362 			 n_last_update_time != n_last_update_time_copy);
3363 	}
3364 #else
3365 	p_last_update_time = prev->avg.last_update_time;
3366 	n_last_update_time = next->avg.last_update_time;
3367 #endif
3368 	__update_load_avg_blocked_se(p_last_update_time, se);
3369 	se->avg.last_update_time = n_last_update_time;
3370 }
3371 
3372 
3373 /*
3374  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3375  * propagate its contribution. The key to this propagation is the invariant
3376  * that for each group:
3377  *
3378  *   ge->avg == grq->avg						(1)
3379  *
3380  * _IFF_ we look at the pure running and runnable sums. Because they
3381  * represent the very same entity, just at different points in the hierarchy.
3382  *
3383  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3384  * and simply copies the running/runnable sum over (but still wrong, because
3385  * the group entity and group rq do not have their PELT windows aligned).
3386  *
3387  * However, update_tg_cfs_load() is more complex. So we have:
3388  *
3389  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3390  *
3391  * And since, like util, the runnable part should be directly transferable,
3392  * the following would _appear_ to be the straight forward approach:
3393  *
3394  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3395  *
3396  * And per (1) we have:
3397  *
3398  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3399  *
3400  * Which gives:
3401  *
3402  *                      ge->load.weight * grq->avg.load_avg
3403  *   ge->avg.load_avg = -----------------------------------		(4)
3404  *                               grq->load.weight
3405  *
3406  * Except that is wrong!
3407  *
3408  * Because while for entities historical weight is not important and we
3409  * really only care about our future and therefore can consider a pure
3410  * runnable sum, runqueues can NOT do this.
3411  *
3412  * We specifically want runqueues to have a load_avg that includes
3413  * historical weights. Those represent the blocked load, the load we expect
3414  * to (shortly) return to us. This only works by keeping the weights as
3415  * integral part of the sum. We therefore cannot decompose as per (3).
3416  *
3417  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3418  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3419  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3420  * runnable section of these tasks overlap (or not). If they were to perfectly
3421  * align the rq as a whole would be runnable 2/3 of the time. If however we
3422  * always have at least 1 runnable task, the rq as a whole is always runnable.
3423  *
3424  * So we'll have to approximate.. :/
3425  *
3426  * Given the constraint:
3427  *
3428  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3429  *
3430  * We can construct a rule that adds runnable to a rq by assuming minimal
3431  * overlap.
3432  *
3433  * On removal, we'll assume each task is equally runnable; which yields:
3434  *
3435  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3436  *
3437  * XXX: only do this for the part of runnable > running ?
3438  *
3439  */
3440 
3441 static inline void
3442 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3443 {
3444 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3445 	u32 divider;
3446 
3447 	/* Nothing to update */
3448 	if (!delta)
3449 		return;
3450 
3451 	/*
3452 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3453 	 * See ___update_load_avg() for details.
3454 	 */
3455 	divider = get_pelt_divider(&cfs_rq->avg);
3456 
3457 	/* Set new sched_entity's utilization */
3458 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3459 	se->avg.util_sum = se->avg.util_avg * divider;
3460 
3461 	/* Update parent cfs_rq utilization */
3462 	add_positive(&cfs_rq->avg.util_avg, delta);
3463 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3464 }
3465 
3466 static inline void
3467 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3468 {
3469 	long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3470 	u32 divider;
3471 
3472 	/* Nothing to update */
3473 	if (!delta)
3474 		return;
3475 
3476 	/*
3477 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3478 	 * See ___update_load_avg() for details.
3479 	 */
3480 	divider = get_pelt_divider(&cfs_rq->avg);
3481 
3482 	/* Set new sched_entity's runnable */
3483 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3484 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3485 
3486 	/* Update parent cfs_rq runnable */
3487 	add_positive(&cfs_rq->avg.runnable_avg, delta);
3488 	cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3489 }
3490 
3491 static inline void
3492 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3493 {
3494 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3495 	unsigned long load_avg;
3496 	u64 load_sum = 0;
3497 	s64 delta_sum;
3498 	u32 divider;
3499 
3500 	if (!runnable_sum)
3501 		return;
3502 
3503 	gcfs_rq->prop_runnable_sum = 0;
3504 
3505 	/*
3506 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3507 	 * See ___update_load_avg() for details.
3508 	 */
3509 	divider = get_pelt_divider(&cfs_rq->avg);
3510 
3511 	if (runnable_sum >= 0) {
3512 		/*
3513 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3514 		 * the CPU is saturated running == runnable.
3515 		 */
3516 		runnable_sum += se->avg.load_sum;
3517 		runnable_sum = min_t(long, runnable_sum, divider);
3518 	} else {
3519 		/*
3520 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3521 		 * assuming all tasks are equally runnable.
3522 		 */
3523 		if (scale_load_down(gcfs_rq->load.weight)) {
3524 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3525 				scale_load_down(gcfs_rq->load.weight));
3526 		}
3527 
3528 		/* But make sure to not inflate se's runnable */
3529 		runnable_sum = min(se->avg.load_sum, load_sum);
3530 	}
3531 
3532 	/*
3533 	 * runnable_sum can't be lower than running_sum
3534 	 * Rescale running sum to be in the same range as runnable sum
3535 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3536 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3537 	 */
3538 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3539 	runnable_sum = max(runnable_sum, running_sum);
3540 
3541 	load_sum = (s64)se_weight(se) * runnable_sum;
3542 	load_avg = div_s64(load_sum, divider);
3543 
3544 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3545 	delta_avg = load_avg - se->avg.load_avg;
3546 
3547 	se->avg.load_sum = runnable_sum;
3548 	se->avg.load_avg = load_avg;
3549 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3550 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3551 }
3552 
3553 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3554 {
3555 	cfs_rq->propagate = 1;
3556 	cfs_rq->prop_runnable_sum += runnable_sum;
3557 }
3558 
3559 /* Update task and its cfs_rq load average */
3560 static inline int propagate_entity_load_avg(struct sched_entity *se)
3561 {
3562 	struct cfs_rq *cfs_rq, *gcfs_rq;
3563 
3564 	if (entity_is_task(se))
3565 		return 0;
3566 
3567 	gcfs_rq = group_cfs_rq(se);
3568 	if (!gcfs_rq->propagate)
3569 		return 0;
3570 
3571 	gcfs_rq->propagate = 0;
3572 
3573 	cfs_rq = cfs_rq_of(se);
3574 
3575 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3576 
3577 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3578 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3579 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3580 
3581 	trace_pelt_cfs_tp(cfs_rq);
3582 	trace_pelt_se_tp(se);
3583 
3584 	return 1;
3585 }
3586 
3587 /*
3588  * Check if we need to update the load and the utilization of a blocked
3589  * group_entity:
3590  */
3591 static inline bool skip_blocked_update(struct sched_entity *se)
3592 {
3593 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3594 
3595 	/*
3596 	 * If sched_entity still have not zero load or utilization, we have to
3597 	 * decay it:
3598 	 */
3599 	if (se->avg.load_avg || se->avg.util_avg)
3600 		return false;
3601 
3602 	/*
3603 	 * If there is a pending propagation, we have to update the load and
3604 	 * the utilization of the sched_entity:
3605 	 */
3606 	if (gcfs_rq->propagate)
3607 		return false;
3608 
3609 	/*
3610 	 * Otherwise, the load and the utilization of the sched_entity is
3611 	 * already zero and there is no pending propagation, so it will be a
3612 	 * waste of time to try to decay it:
3613 	 */
3614 	return true;
3615 }
3616 
3617 #else /* CONFIG_FAIR_GROUP_SCHED */
3618 
3619 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3620 
3621 static inline int propagate_entity_load_avg(struct sched_entity *se)
3622 {
3623 	return 0;
3624 }
3625 
3626 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3627 
3628 #endif /* CONFIG_FAIR_GROUP_SCHED */
3629 
3630 /**
3631  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3632  * @now: current time, as per cfs_rq_clock_pelt()
3633  * @cfs_rq: cfs_rq to update
3634  *
3635  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3636  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3637  * post_init_entity_util_avg().
3638  *
3639  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3640  *
3641  * Returns true if the load decayed or we removed load.
3642  *
3643  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3644  * call update_tg_load_avg() when this function returns true.
3645  */
3646 static inline int
3647 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3648 {
3649 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3650 	struct sched_avg *sa = &cfs_rq->avg;
3651 	int decayed = 0;
3652 
3653 	if (cfs_rq->removed.nr) {
3654 		unsigned long r;
3655 		u32 divider = get_pelt_divider(&cfs_rq->avg);
3656 
3657 		raw_spin_lock(&cfs_rq->removed.lock);
3658 		swap(cfs_rq->removed.util_avg, removed_util);
3659 		swap(cfs_rq->removed.load_avg, removed_load);
3660 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
3661 		cfs_rq->removed.nr = 0;
3662 		raw_spin_unlock(&cfs_rq->removed.lock);
3663 
3664 		r = removed_load;
3665 		sub_positive(&sa->load_avg, r);
3666 		sub_positive(&sa->load_sum, r * divider);
3667 
3668 		r = removed_util;
3669 		sub_positive(&sa->util_avg, r);
3670 		sub_positive(&sa->util_sum, r * divider);
3671 
3672 		r = removed_runnable;
3673 		sub_positive(&sa->runnable_avg, r);
3674 		sub_positive(&sa->runnable_sum, r * divider);
3675 
3676 		/*
3677 		 * removed_runnable is the unweighted version of removed_load so we
3678 		 * can use it to estimate removed_load_sum.
3679 		 */
3680 		add_tg_cfs_propagate(cfs_rq,
3681 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3682 
3683 		decayed = 1;
3684 	}
3685 
3686 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3687 
3688 #ifndef CONFIG_64BIT
3689 	smp_wmb();
3690 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3691 #endif
3692 
3693 	return decayed;
3694 }
3695 
3696 /**
3697  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3698  * @cfs_rq: cfs_rq to attach to
3699  * @se: sched_entity to attach
3700  *
3701  * Must call update_cfs_rq_load_avg() before this, since we rely on
3702  * cfs_rq->avg.last_update_time being current.
3703  */
3704 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3705 {
3706 	/*
3707 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3708 	 * See ___update_load_avg() for details.
3709 	 */
3710 	u32 divider = get_pelt_divider(&cfs_rq->avg);
3711 
3712 	/*
3713 	 * When we attach the @se to the @cfs_rq, we must align the decay
3714 	 * window because without that, really weird and wonderful things can
3715 	 * happen.
3716 	 *
3717 	 * XXX illustrate
3718 	 */
3719 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3720 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3721 
3722 	/*
3723 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3724 	 * period_contrib. This isn't strictly correct, but since we're
3725 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3726 	 * _sum a little.
3727 	 */
3728 	se->avg.util_sum = se->avg.util_avg * divider;
3729 
3730 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3731 
3732 	se->avg.load_sum = divider;
3733 	if (se_weight(se)) {
3734 		se->avg.load_sum =
3735 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3736 	}
3737 
3738 	enqueue_load_avg(cfs_rq, se);
3739 	cfs_rq->avg.util_avg += se->avg.util_avg;
3740 	cfs_rq->avg.util_sum += se->avg.util_sum;
3741 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3742 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3743 
3744 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3745 
3746 	cfs_rq_util_change(cfs_rq, 0);
3747 
3748 	trace_pelt_cfs_tp(cfs_rq);
3749 }
3750 
3751 /**
3752  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3753  * @cfs_rq: cfs_rq to detach from
3754  * @se: sched_entity to detach
3755  *
3756  * Must call update_cfs_rq_load_avg() before this, since we rely on
3757  * cfs_rq->avg.last_update_time being current.
3758  */
3759 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3760 {
3761 	dequeue_load_avg(cfs_rq, se);
3762 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3763 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3764 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3765 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
3766 
3767 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3768 
3769 	cfs_rq_util_change(cfs_rq, 0);
3770 
3771 	trace_pelt_cfs_tp(cfs_rq);
3772 }
3773 
3774 /*
3775  * Optional action to be done while updating the load average
3776  */
3777 #define UPDATE_TG	0x1
3778 #define SKIP_AGE_LOAD	0x2
3779 #define DO_ATTACH	0x4
3780 
3781 /* Update task and its cfs_rq load average */
3782 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3783 {
3784 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3785 	int decayed;
3786 
3787 	/*
3788 	 * Track task load average for carrying it to new CPU after migrated, and
3789 	 * track group sched_entity load average for task_h_load calc in migration
3790 	 */
3791 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3792 		__update_load_avg_se(now, cfs_rq, se);
3793 
3794 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3795 	decayed |= propagate_entity_load_avg(se);
3796 
3797 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3798 
3799 		/*
3800 		 * DO_ATTACH means we're here from enqueue_entity().
3801 		 * !last_update_time means we've passed through
3802 		 * migrate_task_rq_fair() indicating we migrated.
3803 		 *
3804 		 * IOW we're enqueueing a task on a new CPU.
3805 		 */
3806 		attach_entity_load_avg(cfs_rq, se);
3807 		update_tg_load_avg(cfs_rq);
3808 
3809 	} else if (decayed) {
3810 		cfs_rq_util_change(cfs_rq, 0);
3811 
3812 		if (flags & UPDATE_TG)
3813 			update_tg_load_avg(cfs_rq);
3814 	}
3815 }
3816 
3817 #ifndef CONFIG_64BIT
3818 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3819 {
3820 	u64 last_update_time_copy;
3821 	u64 last_update_time;
3822 
3823 	do {
3824 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3825 		smp_rmb();
3826 		last_update_time = cfs_rq->avg.last_update_time;
3827 	} while (last_update_time != last_update_time_copy);
3828 
3829 	return last_update_time;
3830 }
3831 #else
3832 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3833 {
3834 	return cfs_rq->avg.last_update_time;
3835 }
3836 #endif
3837 
3838 /*
3839  * Synchronize entity load avg of dequeued entity without locking
3840  * the previous rq.
3841  */
3842 static void sync_entity_load_avg(struct sched_entity *se)
3843 {
3844 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3845 	u64 last_update_time;
3846 
3847 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3848 	__update_load_avg_blocked_se(last_update_time, se);
3849 }
3850 
3851 /*
3852  * Task first catches up with cfs_rq, and then subtract
3853  * itself from the cfs_rq (task must be off the queue now).
3854  */
3855 static void remove_entity_load_avg(struct sched_entity *se)
3856 {
3857 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3858 	unsigned long flags;
3859 
3860 	/*
3861 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3862 	 * post_init_entity_util_avg() which will have added things to the
3863 	 * cfs_rq, so we can remove unconditionally.
3864 	 */
3865 
3866 	sync_entity_load_avg(se);
3867 
3868 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3869 	++cfs_rq->removed.nr;
3870 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3871 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3872 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
3873 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3874 }
3875 
3876 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3877 {
3878 	return cfs_rq->avg.runnable_avg;
3879 }
3880 
3881 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3882 {
3883 	return cfs_rq->avg.load_avg;
3884 }
3885 
3886 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3887 
3888 static inline unsigned long task_util(struct task_struct *p)
3889 {
3890 	return READ_ONCE(p->se.avg.util_avg);
3891 }
3892 
3893 static inline unsigned long _task_util_est(struct task_struct *p)
3894 {
3895 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3896 
3897 	return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3898 }
3899 
3900 static inline unsigned long task_util_est(struct task_struct *p)
3901 {
3902 	return max(task_util(p), _task_util_est(p));
3903 }
3904 
3905 #ifdef CONFIG_UCLAMP_TASK
3906 static inline unsigned long uclamp_task_util(struct task_struct *p)
3907 {
3908 	return clamp(task_util_est(p),
3909 		     uclamp_eff_value(p, UCLAMP_MIN),
3910 		     uclamp_eff_value(p, UCLAMP_MAX));
3911 }
3912 #else
3913 static inline unsigned long uclamp_task_util(struct task_struct *p)
3914 {
3915 	return task_util_est(p);
3916 }
3917 #endif
3918 
3919 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3920 				    struct task_struct *p)
3921 {
3922 	unsigned int enqueued;
3923 
3924 	if (!sched_feat(UTIL_EST))
3925 		return;
3926 
3927 	/* Update root cfs_rq's estimated utilization */
3928 	enqueued  = cfs_rq->avg.util_est.enqueued;
3929 	enqueued += _task_util_est(p);
3930 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3931 
3932 	trace_sched_util_est_cfs_tp(cfs_rq);
3933 }
3934 
3935 /*
3936  * Check if a (signed) value is within a specified (unsigned) margin,
3937  * based on the observation that:
3938  *
3939  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3940  *
3941  * NOTE: this only works when value + maring < INT_MAX.
3942  */
3943 static inline bool within_margin(int value, int margin)
3944 {
3945 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3946 }
3947 
3948 static void
3949 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3950 {
3951 	long last_ewma_diff;
3952 	struct util_est ue;
3953 	int cpu;
3954 
3955 	if (!sched_feat(UTIL_EST))
3956 		return;
3957 
3958 	/* Update root cfs_rq's estimated utilization */
3959 	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3960 	ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3961 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3962 
3963 	trace_sched_util_est_cfs_tp(cfs_rq);
3964 
3965 	/*
3966 	 * Skip update of task's estimated utilization when the task has not
3967 	 * yet completed an activation, e.g. being migrated.
3968 	 */
3969 	if (!task_sleep)
3970 		return;
3971 
3972 	/*
3973 	 * If the PELT values haven't changed since enqueue time,
3974 	 * skip the util_est update.
3975 	 */
3976 	ue = p->se.avg.util_est;
3977 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
3978 		return;
3979 
3980 	/*
3981 	 * Reset EWMA on utilization increases, the moving average is used only
3982 	 * to smooth utilization decreases.
3983 	 */
3984 	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3985 	if (sched_feat(UTIL_EST_FASTUP)) {
3986 		if (ue.ewma < ue.enqueued) {
3987 			ue.ewma = ue.enqueued;
3988 			goto done;
3989 		}
3990 	}
3991 
3992 	/*
3993 	 * Skip update of task's estimated utilization when its EWMA is
3994 	 * already ~1% close to its last activation value.
3995 	 */
3996 	last_ewma_diff = ue.enqueued - ue.ewma;
3997 	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3998 		return;
3999 
4000 	/*
4001 	 * To avoid overestimation of actual task utilization, skip updates if
4002 	 * we cannot grant there is idle time in this CPU.
4003 	 */
4004 	cpu = cpu_of(rq_of(cfs_rq));
4005 	if (task_util(p) > capacity_orig_of(cpu))
4006 		return;
4007 
4008 	/*
4009 	 * Update Task's estimated utilization
4010 	 *
4011 	 * When *p completes an activation we can consolidate another sample
4012 	 * of the task size. This is done by storing the current PELT value
4013 	 * as ue.enqueued and by using this value to update the Exponential
4014 	 * Weighted Moving Average (EWMA):
4015 	 *
4016 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4017 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4018 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4019 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4020 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4021 	 *
4022 	 * Where 'w' is the weight of new samples, which is configured to be
4023 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4024 	 */
4025 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4026 	ue.ewma  += last_ewma_diff;
4027 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4028 done:
4029 	WRITE_ONCE(p->se.avg.util_est, ue);
4030 
4031 	trace_sched_util_est_se_tp(&p->se);
4032 }
4033 
4034 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4035 {
4036 	return fits_capacity(uclamp_task_util(p), capacity);
4037 }
4038 
4039 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4040 {
4041 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
4042 		return;
4043 
4044 	if (!p) {
4045 		rq->misfit_task_load = 0;
4046 		return;
4047 	}
4048 
4049 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4050 		rq->misfit_task_load = 0;
4051 		return;
4052 	}
4053 
4054 	/*
4055 	 * Make sure that misfit_task_load will not be null even if
4056 	 * task_h_load() returns 0.
4057 	 */
4058 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4059 }
4060 
4061 #else /* CONFIG_SMP */
4062 
4063 #define UPDATE_TG	0x0
4064 #define SKIP_AGE_LOAD	0x0
4065 #define DO_ATTACH	0x0
4066 
4067 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4068 {
4069 	cfs_rq_util_change(cfs_rq, 0);
4070 }
4071 
4072 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4073 
4074 static inline void
4075 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4076 static inline void
4077 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4078 
4079 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4080 {
4081 	return 0;
4082 }
4083 
4084 static inline void
4085 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4086 
4087 static inline void
4088 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
4089 		 bool task_sleep) {}
4090 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4091 
4092 #endif /* CONFIG_SMP */
4093 
4094 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4095 {
4096 #ifdef CONFIG_SCHED_DEBUG
4097 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4098 
4099 	if (d < 0)
4100 		d = -d;
4101 
4102 	if (d > 3*sysctl_sched_latency)
4103 		schedstat_inc(cfs_rq->nr_spread_over);
4104 #endif
4105 }
4106 
4107 static void
4108 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4109 {
4110 	u64 vruntime = cfs_rq->min_vruntime;
4111 
4112 	/*
4113 	 * The 'current' period is already promised to the current tasks,
4114 	 * however the extra weight of the new task will slow them down a
4115 	 * little, place the new task so that it fits in the slot that
4116 	 * stays open at the end.
4117 	 */
4118 	if (initial && sched_feat(START_DEBIT))
4119 		vruntime += sched_vslice(cfs_rq, se);
4120 
4121 	/* sleeps up to a single latency don't count. */
4122 	if (!initial) {
4123 		unsigned long thresh = sysctl_sched_latency;
4124 
4125 		/*
4126 		 * Halve their sleep time's effect, to allow
4127 		 * for a gentler effect of sleepers:
4128 		 */
4129 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4130 			thresh >>= 1;
4131 
4132 		vruntime -= thresh;
4133 	}
4134 
4135 	/* ensure we never gain time by being placed backwards. */
4136 	se->vruntime = max_vruntime(se->vruntime, vruntime);
4137 }
4138 
4139 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4140 
4141 static inline void check_schedstat_required(void)
4142 {
4143 #ifdef CONFIG_SCHEDSTATS
4144 	if (schedstat_enabled())
4145 		return;
4146 
4147 	/* Force schedstat enabled if a dependent tracepoint is active */
4148 	if (trace_sched_stat_wait_enabled()    ||
4149 			trace_sched_stat_sleep_enabled()   ||
4150 			trace_sched_stat_iowait_enabled()  ||
4151 			trace_sched_stat_blocked_enabled() ||
4152 			trace_sched_stat_runtime_enabled())  {
4153 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4154 			     "stat_blocked and stat_runtime require the "
4155 			     "kernel parameter schedstats=enable or "
4156 			     "kernel.sched_schedstats=1\n");
4157 	}
4158 #endif
4159 }
4160 
4161 static inline bool cfs_bandwidth_used(void);
4162 
4163 /*
4164  * MIGRATION
4165  *
4166  *	dequeue
4167  *	  update_curr()
4168  *	    update_min_vruntime()
4169  *	  vruntime -= min_vruntime
4170  *
4171  *	enqueue
4172  *	  update_curr()
4173  *	    update_min_vruntime()
4174  *	  vruntime += min_vruntime
4175  *
4176  * this way the vruntime transition between RQs is done when both
4177  * min_vruntime are up-to-date.
4178  *
4179  * WAKEUP (remote)
4180  *
4181  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4182  *	  vruntime -= min_vruntime
4183  *
4184  *	enqueue
4185  *	  update_curr()
4186  *	    update_min_vruntime()
4187  *	  vruntime += min_vruntime
4188  *
4189  * this way we don't have the most up-to-date min_vruntime on the originating
4190  * CPU and an up-to-date min_vruntime on the destination CPU.
4191  */
4192 
4193 static void
4194 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4195 {
4196 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4197 	bool curr = cfs_rq->curr == se;
4198 
4199 	/*
4200 	 * If we're the current task, we must renormalise before calling
4201 	 * update_curr().
4202 	 */
4203 	if (renorm && curr)
4204 		se->vruntime += cfs_rq->min_vruntime;
4205 
4206 	update_curr(cfs_rq);
4207 
4208 	/*
4209 	 * Otherwise, renormalise after, such that we're placed at the current
4210 	 * moment in time, instead of some random moment in the past. Being
4211 	 * placed in the past could significantly boost this task to the
4212 	 * fairness detriment of existing tasks.
4213 	 */
4214 	if (renorm && !curr)
4215 		se->vruntime += cfs_rq->min_vruntime;
4216 
4217 	/*
4218 	 * When enqueuing a sched_entity, we must:
4219 	 *   - Update loads to have both entity and cfs_rq synced with now.
4220 	 *   - Add its load to cfs_rq->runnable_avg
4221 	 *   - For group_entity, update its weight to reflect the new share of
4222 	 *     its group cfs_rq
4223 	 *   - Add its new weight to cfs_rq->load.weight
4224 	 */
4225 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4226 	se_update_runnable(se);
4227 	update_cfs_group(se);
4228 	account_entity_enqueue(cfs_rq, se);
4229 
4230 	if (flags & ENQUEUE_WAKEUP)
4231 		place_entity(cfs_rq, se, 0);
4232 
4233 	check_schedstat_required();
4234 	update_stats_enqueue(cfs_rq, se, flags);
4235 	check_spread(cfs_rq, se);
4236 	if (!curr)
4237 		__enqueue_entity(cfs_rq, se);
4238 	se->on_rq = 1;
4239 
4240 	/*
4241 	 * When bandwidth control is enabled, cfs might have been removed
4242 	 * because of a parent been throttled but cfs->nr_running > 1. Try to
4243 	 * add it unconditionnally.
4244 	 */
4245 	if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4246 		list_add_leaf_cfs_rq(cfs_rq);
4247 
4248 	if (cfs_rq->nr_running == 1)
4249 		check_enqueue_throttle(cfs_rq);
4250 }
4251 
4252 static void __clear_buddies_last(struct sched_entity *se)
4253 {
4254 	for_each_sched_entity(se) {
4255 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4256 		if (cfs_rq->last != se)
4257 			break;
4258 
4259 		cfs_rq->last = NULL;
4260 	}
4261 }
4262 
4263 static void __clear_buddies_next(struct sched_entity *se)
4264 {
4265 	for_each_sched_entity(se) {
4266 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4267 		if (cfs_rq->next != se)
4268 			break;
4269 
4270 		cfs_rq->next = NULL;
4271 	}
4272 }
4273 
4274 static void __clear_buddies_skip(struct sched_entity *se)
4275 {
4276 	for_each_sched_entity(se) {
4277 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4278 		if (cfs_rq->skip != se)
4279 			break;
4280 
4281 		cfs_rq->skip = NULL;
4282 	}
4283 }
4284 
4285 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4286 {
4287 	if (cfs_rq->last == se)
4288 		__clear_buddies_last(se);
4289 
4290 	if (cfs_rq->next == se)
4291 		__clear_buddies_next(se);
4292 
4293 	if (cfs_rq->skip == se)
4294 		__clear_buddies_skip(se);
4295 }
4296 
4297 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4298 
4299 static void
4300 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4301 {
4302 	/*
4303 	 * Update run-time statistics of the 'current'.
4304 	 */
4305 	update_curr(cfs_rq);
4306 
4307 	/*
4308 	 * When dequeuing a sched_entity, we must:
4309 	 *   - Update loads to have both entity and cfs_rq synced with now.
4310 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4311 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4312 	 *   - For group entity, update its weight to reflect the new share
4313 	 *     of its group cfs_rq.
4314 	 */
4315 	update_load_avg(cfs_rq, se, UPDATE_TG);
4316 	se_update_runnable(se);
4317 
4318 	update_stats_dequeue(cfs_rq, se, flags);
4319 
4320 	clear_buddies(cfs_rq, se);
4321 
4322 	if (se != cfs_rq->curr)
4323 		__dequeue_entity(cfs_rq, se);
4324 	se->on_rq = 0;
4325 	account_entity_dequeue(cfs_rq, se);
4326 
4327 	/*
4328 	 * Normalize after update_curr(); which will also have moved
4329 	 * min_vruntime if @se is the one holding it back. But before doing
4330 	 * update_min_vruntime() again, which will discount @se's position and
4331 	 * can move min_vruntime forward still more.
4332 	 */
4333 	if (!(flags & DEQUEUE_SLEEP))
4334 		se->vruntime -= cfs_rq->min_vruntime;
4335 
4336 	/* return excess runtime on last dequeue */
4337 	return_cfs_rq_runtime(cfs_rq);
4338 
4339 	update_cfs_group(se);
4340 
4341 	/*
4342 	 * Now advance min_vruntime if @se was the entity holding it back,
4343 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4344 	 * put back on, and if we advance min_vruntime, we'll be placed back
4345 	 * further than we started -- ie. we'll be penalized.
4346 	 */
4347 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4348 		update_min_vruntime(cfs_rq);
4349 }
4350 
4351 /*
4352  * Preempt the current task with a newly woken task if needed:
4353  */
4354 static void
4355 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4356 {
4357 	unsigned long ideal_runtime, delta_exec;
4358 	struct sched_entity *se;
4359 	s64 delta;
4360 
4361 	ideal_runtime = sched_slice(cfs_rq, curr);
4362 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4363 	if (delta_exec > ideal_runtime) {
4364 		resched_curr(rq_of(cfs_rq));
4365 		/*
4366 		 * The current task ran long enough, ensure it doesn't get
4367 		 * re-elected due to buddy favours.
4368 		 */
4369 		clear_buddies(cfs_rq, curr);
4370 		return;
4371 	}
4372 
4373 	/*
4374 	 * Ensure that a task that missed wakeup preemption by a
4375 	 * narrow margin doesn't have to wait for a full slice.
4376 	 * This also mitigates buddy induced latencies under load.
4377 	 */
4378 	if (delta_exec < sysctl_sched_min_granularity)
4379 		return;
4380 
4381 	se = __pick_first_entity(cfs_rq);
4382 	delta = curr->vruntime - se->vruntime;
4383 
4384 	if (delta < 0)
4385 		return;
4386 
4387 	if (delta > ideal_runtime)
4388 		resched_curr(rq_of(cfs_rq));
4389 }
4390 
4391 static void
4392 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4393 {
4394 	/* 'current' is not kept within the tree. */
4395 	if (se->on_rq) {
4396 		/*
4397 		 * Any task has to be enqueued before it get to execute on
4398 		 * a CPU. So account for the time it spent waiting on the
4399 		 * runqueue.
4400 		 */
4401 		update_stats_wait_end(cfs_rq, se);
4402 		__dequeue_entity(cfs_rq, se);
4403 		update_load_avg(cfs_rq, se, UPDATE_TG);
4404 	}
4405 
4406 	update_stats_curr_start(cfs_rq, se);
4407 	cfs_rq->curr = se;
4408 
4409 	/*
4410 	 * Track our maximum slice length, if the CPU's load is at
4411 	 * least twice that of our own weight (i.e. dont track it
4412 	 * when there are only lesser-weight tasks around):
4413 	 */
4414 	if (schedstat_enabled() &&
4415 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4416 		schedstat_set(se->statistics.slice_max,
4417 			max((u64)schedstat_val(se->statistics.slice_max),
4418 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4419 	}
4420 
4421 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4422 }
4423 
4424 static int
4425 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4426 
4427 /*
4428  * Pick the next process, keeping these things in mind, in this order:
4429  * 1) keep things fair between processes/task groups
4430  * 2) pick the "next" process, since someone really wants that to run
4431  * 3) pick the "last" process, for cache locality
4432  * 4) do not run the "skip" process, if something else is available
4433  */
4434 static struct sched_entity *
4435 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4436 {
4437 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4438 	struct sched_entity *se;
4439 
4440 	/*
4441 	 * If curr is set we have to see if its left of the leftmost entity
4442 	 * still in the tree, provided there was anything in the tree at all.
4443 	 */
4444 	if (!left || (curr && entity_before(curr, left)))
4445 		left = curr;
4446 
4447 	se = left; /* ideally we run the leftmost entity */
4448 
4449 	/*
4450 	 * Avoid running the skip buddy, if running something else can
4451 	 * be done without getting too unfair.
4452 	 */
4453 	if (cfs_rq->skip == se) {
4454 		struct sched_entity *second;
4455 
4456 		if (se == curr) {
4457 			second = __pick_first_entity(cfs_rq);
4458 		} else {
4459 			second = __pick_next_entity(se);
4460 			if (!second || (curr && entity_before(curr, second)))
4461 				second = curr;
4462 		}
4463 
4464 		if (second && wakeup_preempt_entity(second, left) < 1)
4465 			se = second;
4466 	}
4467 
4468 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4469 		/*
4470 		 * Someone really wants this to run. If it's not unfair, run it.
4471 		 */
4472 		se = cfs_rq->next;
4473 	} else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4474 		/*
4475 		 * Prefer last buddy, try to return the CPU to a preempted task.
4476 		 */
4477 		se = cfs_rq->last;
4478 	}
4479 
4480 	clear_buddies(cfs_rq, se);
4481 
4482 	return se;
4483 }
4484 
4485 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4486 
4487 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4488 {
4489 	/*
4490 	 * If still on the runqueue then deactivate_task()
4491 	 * was not called and update_curr() has to be done:
4492 	 */
4493 	if (prev->on_rq)
4494 		update_curr(cfs_rq);
4495 
4496 	/* throttle cfs_rqs exceeding runtime */
4497 	check_cfs_rq_runtime(cfs_rq);
4498 
4499 	check_spread(cfs_rq, prev);
4500 
4501 	if (prev->on_rq) {
4502 		update_stats_wait_start(cfs_rq, prev);
4503 		/* Put 'current' back into the tree. */
4504 		__enqueue_entity(cfs_rq, prev);
4505 		/* in !on_rq case, update occurred at dequeue */
4506 		update_load_avg(cfs_rq, prev, 0);
4507 	}
4508 	cfs_rq->curr = NULL;
4509 }
4510 
4511 static void
4512 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4513 {
4514 	/*
4515 	 * Update run-time statistics of the 'current'.
4516 	 */
4517 	update_curr(cfs_rq);
4518 
4519 	/*
4520 	 * Ensure that runnable average is periodically updated.
4521 	 */
4522 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4523 	update_cfs_group(curr);
4524 
4525 #ifdef CONFIG_SCHED_HRTICK
4526 	/*
4527 	 * queued ticks are scheduled to match the slice, so don't bother
4528 	 * validating it and just reschedule.
4529 	 */
4530 	if (queued) {
4531 		resched_curr(rq_of(cfs_rq));
4532 		return;
4533 	}
4534 	/*
4535 	 * don't let the period tick interfere with the hrtick preemption
4536 	 */
4537 	if (!sched_feat(DOUBLE_TICK) &&
4538 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4539 		return;
4540 #endif
4541 
4542 	if (cfs_rq->nr_running > 1)
4543 		check_preempt_tick(cfs_rq, curr);
4544 }
4545 
4546 
4547 /**************************************************
4548  * CFS bandwidth control machinery
4549  */
4550 
4551 #ifdef CONFIG_CFS_BANDWIDTH
4552 
4553 #ifdef CONFIG_JUMP_LABEL
4554 static struct static_key __cfs_bandwidth_used;
4555 
4556 static inline bool cfs_bandwidth_used(void)
4557 {
4558 	return static_key_false(&__cfs_bandwidth_used);
4559 }
4560 
4561 void cfs_bandwidth_usage_inc(void)
4562 {
4563 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4564 }
4565 
4566 void cfs_bandwidth_usage_dec(void)
4567 {
4568 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4569 }
4570 #else /* CONFIG_JUMP_LABEL */
4571 static bool cfs_bandwidth_used(void)
4572 {
4573 	return true;
4574 }
4575 
4576 void cfs_bandwidth_usage_inc(void) {}
4577 void cfs_bandwidth_usage_dec(void) {}
4578 #endif /* CONFIG_JUMP_LABEL */
4579 
4580 /*
4581  * default period for cfs group bandwidth.
4582  * default: 0.1s, units: nanoseconds
4583  */
4584 static inline u64 default_cfs_period(void)
4585 {
4586 	return 100000000ULL;
4587 }
4588 
4589 static inline u64 sched_cfs_bandwidth_slice(void)
4590 {
4591 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4592 }
4593 
4594 /*
4595  * Replenish runtime according to assigned quota. We use sched_clock_cpu
4596  * directly instead of rq->clock to avoid adding additional synchronization
4597  * around rq->lock.
4598  *
4599  * requires cfs_b->lock
4600  */
4601 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4602 {
4603 	if (cfs_b->quota != RUNTIME_INF)
4604 		cfs_b->runtime = cfs_b->quota;
4605 }
4606 
4607 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4608 {
4609 	return &tg->cfs_bandwidth;
4610 }
4611 
4612 /* returns 0 on failure to allocate runtime */
4613 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4614 				   struct cfs_rq *cfs_rq, u64 target_runtime)
4615 {
4616 	u64 min_amount, amount = 0;
4617 
4618 	lockdep_assert_held(&cfs_b->lock);
4619 
4620 	/* note: this is a positive sum as runtime_remaining <= 0 */
4621 	min_amount = target_runtime - cfs_rq->runtime_remaining;
4622 
4623 	if (cfs_b->quota == RUNTIME_INF)
4624 		amount = min_amount;
4625 	else {
4626 		start_cfs_bandwidth(cfs_b);
4627 
4628 		if (cfs_b->runtime > 0) {
4629 			amount = min(cfs_b->runtime, min_amount);
4630 			cfs_b->runtime -= amount;
4631 			cfs_b->idle = 0;
4632 		}
4633 	}
4634 
4635 	cfs_rq->runtime_remaining += amount;
4636 
4637 	return cfs_rq->runtime_remaining > 0;
4638 }
4639 
4640 /* returns 0 on failure to allocate runtime */
4641 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4642 {
4643 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4644 	int ret;
4645 
4646 	raw_spin_lock(&cfs_b->lock);
4647 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4648 	raw_spin_unlock(&cfs_b->lock);
4649 
4650 	return ret;
4651 }
4652 
4653 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4654 {
4655 	/* dock delta_exec before expiring quota (as it could span periods) */
4656 	cfs_rq->runtime_remaining -= delta_exec;
4657 
4658 	if (likely(cfs_rq->runtime_remaining > 0))
4659 		return;
4660 
4661 	if (cfs_rq->throttled)
4662 		return;
4663 	/*
4664 	 * if we're unable to extend our runtime we resched so that the active
4665 	 * hierarchy can be throttled
4666 	 */
4667 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4668 		resched_curr(rq_of(cfs_rq));
4669 }
4670 
4671 static __always_inline
4672 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4673 {
4674 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4675 		return;
4676 
4677 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4678 }
4679 
4680 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4681 {
4682 	return cfs_bandwidth_used() && cfs_rq->throttled;
4683 }
4684 
4685 /* check whether cfs_rq, or any parent, is throttled */
4686 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4687 {
4688 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4689 }
4690 
4691 /*
4692  * Ensure that neither of the group entities corresponding to src_cpu or
4693  * dest_cpu are members of a throttled hierarchy when performing group
4694  * load-balance operations.
4695  */
4696 static inline int throttled_lb_pair(struct task_group *tg,
4697 				    int src_cpu, int dest_cpu)
4698 {
4699 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4700 
4701 	src_cfs_rq = tg->cfs_rq[src_cpu];
4702 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4703 
4704 	return throttled_hierarchy(src_cfs_rq) ||
4705 	       throttled_hierarchy(dest_cfs_rq);
4706 }
4707 
4708 static int tg_unthrottle_up(struct task_group *tg, void *data)
4709 {
4710 	struct rq *rq = data;
4711 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4712 
4713 	cfs_rq->throttle_count--;
4714 	if (!cfs_rq->throttle_count) {
4715 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4716 					     cfs_rq->throttled_clock_task;
4717 
4718 		/* Add cfs_rq with already running entity in the list */
4719 		if (cfs_rq->nr_running >= 1)
4720 			list_add_leaf_cfs_rq(cfs_rq);
4721 	}
4722 
4723 	return 0;
4724 }
4725 
4726 static int tg_throttle_down(struct task_group *tg, void *data)
4727 {
4728 	struct rq *rq = data;
4729 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4730 
4731 	/* group is entering throttled state, stop time */
4732 	if (!cfs_rq->throttle_count) {
4733 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4734 		list_del_leaf_cfs_rq(cfs_rq);
4735 	}
4736 	cfs_rq->throttle_count++;
4737 
4738 	return 0;
4739 }
4740 
4741 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4742 {
4743 	struct rq *rq = rq_of(cfs_rq);
4744 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4745 	struct sched_entity *se;
4746 	long task_delta, idle_task_delta, dequeue = 1;
4747 
4748 	raw_spin_lock(&cfs_b->lock);
4749 	/* This will start the period timer if necessary */
4750 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4751 		/*
4752 		 * We have raced with bandwidth becoming available, and if we
4753 		 * actually throttled the timer might not unthrottle us for an
4754 		 * entire period. We additionally needed to make sure that any
4755 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
4756 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4757 		 * for 1ns of runtime rather than just check cfs_b.
4758 		 */
4759 		dequeue = 0;
4760 	} else {
4761 		list_add_tail_rcu(&cfs_rq->throttled_list,
4762 				  &cfs_b->throttled_cfs_rq);
4763 	}
4764 	raw_spin_unlock(&cfs_b->lock);
4765 
4766 	if (!dequeue)
4767 		return false;  /* Throttle no longer required. */
4768 
4769 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4770 
4771 	/* freeze hierarchy runnable averages while throttled */
4772 	rcu_read_lock();
4773 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4774 	rcu_read_unlock();
4775 
4776 	task_delta = cfs_rq->h_nr_running;
4777 	idle_task_delta = cfs_rq->idle_h_nr_running;
4778 	for_each_sched_entity(se) {
4779 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4780 		/* throttled entity or throttle-on-deactivate */
4781 		if (!se->on_rq)
4782 			break;
4783 
4784 		if (dequeue) {
4785 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4786 		} else {
4787 			update_load_avg(qcfs_rq, se, 0);
4788 			se_update_runnable(se);
4789 		}
4790 
4791 		qcfs_rq->h_nr_running -= task_delta;
4792 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4793 
4794 		if (qcfs_rq->load.weight)
4795 			dequeue = 0;
4796 	}
4797 
4798 	if (!se)
4799 		sub_nr_running(rq, task_delta);
4800 
4801 	/*
4802 	 * Note: distribution will already see us throttled via the
4803 	 * throttled-list.  rq->lock protects completion.
4804 	 */
4805 	cfs_rq->throttled = 1;
4806 	cfs_rq->throttled_clock = rq_clock(rq);
4807 	return true;
4808 }
4809 
4810 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4811 {
4812 	struct rq *rq = rq_of(cfs_rq);
4813 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4814 	struct sched_entity *se;
4815 	long task_delta, idle_task_delta;
4816 
4817 	se = cfs_rq->tg->se[cpu_of(rq)];
4818 
4819 	cfs_rq->throttled = 0;
4820 
4821 	update_rq_clock(rq);
4822 
4823 	raw_spin_lock(&cfs_b->lock);
4824 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4825 	list_del_rcu(&cfs_rq->throttled_list);
4826 	raw_spin_unlock(&cfs_b->lock);
4827 
4828 	/* update hierarchical throttle state */
4829 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4830 
4831 	if (!cfs_rq->load.weight)
4832 		return;
4833 
4834 	task_delta = cfs_rq->h_nr_running;
4835 	idle_task_delta = cfs_rq->idle_h_nr_running;
4836 	for_each_sched_entity(se) {
4837 		if (se->on_rq)
4838 			break;
4839 		cfs_rq = cfs_rq_of(se);
4840 		enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4841 
4842 		cfs_rq->h_nr_running += task_delta;
4843 		cfs_rq->idle_h_nr_running += idle_task_delta;
4844 
4845 		/* end evaluation on encountering a throttled cfs_rq */
4846 		if (cfs_rq_throttled(cfs_rq))
4847 			goto unthrottle_throttle;
4848 	}
4849 
4850 	for_each_sched_entity(se) {
4851 		cfs_rq = cfs_rq_of(se);
4852 
4853 		update_load_avg(cfs_rq, se, UPDATE_TG);
4854 		se_update_runnable(se);
4855 
4856 		cfs_rq->h_nr_running += task_delta;
4857 		cfs_rq->idle_h_nr_running += idle_task_delta;
4858 
4859 
4860 		/* end evaluation on encountering a throttled cfs_rq */
4861 		if (cfs_rq_throttled(cfs_rq))
4862 			goto unthrottle_throttle;
4863 
4864 		/*
4865 		 * One parent has been throttled and cfs_rq removed from the
4866 		 * list. Add it back to not break the leaf list.
4867 		 */
4868 		if (throttled_hierarchy(cfs_rq))
4869 			list_add_leaf_cfs_rq(cfs_rq);
4870 	}
4871 
4872 	/* At this point se is NULL and we are at root level*/
4873 	add_nr_running(rq, task_delta);
4874 
4875 unthrottle_throttle:
4876 	/*
4877 	 * The cfs_rq_throttled() breaks in the above iteration can result in
4878 	 * incomplete leaf list maintenance, resulting in triggering the
4879 	 * assertion below.
4880 	 */
4881 	for_each_sched_entity(se) {
4882 		cfs_rq = cfs_rq_of(se);
4883 
4884 		if (list_add_leaf_cfs_rq(cfs_rq))
4885 			break;
4886 	}
4887 
4888 	assert_list_leaf_cfs_rq(rq);
4889 
4890 	/* Determine whether we need to wake up potentially idle CPU: */
4891 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4892 		resched_curr(rq);
4893 }
4894 
4895 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
4896 {
4897 	struct cfs_rq *cfs_rq;
4898 	u64 runtime, remaining = 1;
4899 
4900 	rcu_read_lock();
4901 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4902 				throttled_list) {
4903 		struct rq *rq = rq_of(cfs_rq);
4904 		struct rq_flags rf;
4905 
4906 		rq_lock_irqsave(rq, &rf);
4907 		if (!cfs_rq_throttled(cfs_rq))
4908 			goto next;
4909 
4910 		/* By the above check, this should never be true */
4911 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4912 
4913 		raw_spin_lock(&cfs_b->lock);
4914 		runtime = -cfs_rq->runtime_remaining + 1;
4915 		if (runtime > cfs_b->runtime)
4916 			runtime = cfs_b->runtime;
4917 		cfs_b->runtime -= runtime;
4918 		remaining = cfs_b->runtime;
4919 		raw_spin_unlock(&cfs_b->lock);
4920 
4921 		cfs_rq->runtime_remaining += runtime;
4922 
4923 		/* we check whether we're throttled above */
4924 		if (cfs_rq->runtime_remaining > 0)
4925 			unthrottle_cfs_rq(cfs_rq);
4926 
4927 next:
4928 		rq_unlock_irqrestore(rq, &rf);
4929 
4930 		if (!remaining)
4931 			break;
4932 	}
4933 	rcu_read_unlock();
4934 }
4935 
4936 /*
4937  * Responsible for refilling a task_group's bandwidth and unthrottling its
4938  * cfs_rqs as appropriate. If there has been no activity within the last
4939  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4940  * used to track this state.
4941  */
4942 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4943 {
4944 	int throttled;
4945 
4946 	/* no need to continue the timer with no bandwidth constraint */
4947 	if (cfs_b->quota == RUNTIME_INF)
4948 		goto out_deactivate;
4949 
4950 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4951 	cfs_b->nr_periods += overrun;
4952 
4953 	/*
4954 	 * idle depends on !throttled (for the case of a large deficit), and if
4955 	 * we're going inactive then everything else can be deferred
4956 	 */
4957 	if (cfs_b->idle && !throttled)
4958 		goto out_deactivate;
4959 
4960 	__refill_cfs_bandwidth_runtime(cfs_b);
4961 
4962 	if (!throttled) {
4963 		/* mark as potentially idle for the upcoming period */
4964 		cfs_b->idle = 1;
4965 		return 0;
4966 	}
4967 
4968 	/* account preceding periods in which throttling occurred */
4969 	cfs_b->nr_throttled += overrun;
4970 
4971 	/*
4972 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
4973 	 */
4974 	while (throttled && cfs_b->runtime > 0) {
4975 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4976 		/* we can't nest cfs_b->lock while distributing bandwidth */
4977 		distribute_cfs_runtime(cfs_b);
4978 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
4979 
4980 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4981 	}
4982 
4983 	/*
4984 	 * While we are ensured activity in the period following an
4985 	 * unthrottle, this also covers the case in which the new bandwidth is
4986 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4987 	 * timer to remain active while there are any throttled entities.)
4988 	 */
4989 	cfs_b->idle = 0;
4990 
4991 	return 0;
4992 
4993 out_deactivate:
4994 	return 1;
4995 }
4996 
4997 /* a cfs_rq won't donate quota below this amount */
4998 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4999 /* minimum remaining period time to redistribute slack quota */
5000 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5001 /* how long we wait to gather additional slack before distributing */
5002 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5003 
5004 /*
5005  * Are we near the end of the current quota period?
5006  *
5007  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5008  * hrtimer base being cleared by hrtimer_start. In the case of
5009  * migrate_hrtimers, base is never cleared, so we are fine.
5010  */
5011 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5012 {
5013 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
5014 	u64 remaining;
5015 
5016 	/* if the call-back is running a quota refresh is already occurring */
5017 	if (hrtimer_callback_running(refresh_timer))
5018 		return 1;
5019 
5020 	/* is a quota refresh about to occur? */
5021 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5022 	if (remaining < min_expire)
5023 		return 1;
5024 
5025 	return 0;
5026 }
5027 
5028 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5029 {
5030 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5031 
5032 	/* if there's a quota refresh soon don't bother with slack */
5033 	if (runtime_refresh_within(cfs_b, min_left))
5034 		return;
5035 
5036 	/* don't push forwards an existing deferred unthrottle */
5037 	if (cfs_b->slack_started)
5038 		return;
5039 	cfs_b->slack_started = true;
5040 
5041 	hrtimer_start(&cfs_b->slack_timer,
5042 			ns_to_ktime(cfs_bandwidth_slack_period),
5043 			HRTIMER_MODE_REL);
5044 }
5045 
5046 /* we know any runtime found here is valid as update_curr() precedes return */
5047 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5048 {
5049 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5050 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5051 
5052 	if (slack_runtime <= 0)
5053 		return;
5054 
5055 	raw_spin_lock(&cfs_b->lock);
5056 	if (cfs_b->quota != RUNTIME_INF) {
5057 		cfs_b->runtime += slack_runtime;
5058 
5059 		/* we are under rq->lock, defer unthrottling using a timer */
5060 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5061 		    !list_empty(&cfs_b->throttled_cfs_rq))
5062 			start_cfs_slack_bandwidth(cfs_b);
5063 	}
5064 	raw_spin_unlock(&cfs_b->lock);
5065 
5066 	/* even if it's not valid for return we don't want to try again */
5067 	cfs_rq->runtime_remaining -= slack_runtime;
5068 }
5069 
5070 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5071 {
5072 	if (!cfs_bandwidth_used())
5073 		return;
5074 
5075 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5076 		return;
5077 
5078 	__return_cfs_rq_runtime(cfs_rq);
5079 }
5080 
5081 /*
5082  * This is done with a timer (instead of inline with bandwidth return) since
5083  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5084  */
5085 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5086 {
5087 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5088 	unsigned long flags;
5089 
5090 	/* confirm we're still not at a refresh boundary */
5091 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5092 	cfs_b->slack_started = false;
5093 
5094 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5095 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5096 		return;
5097 	}
5098 
5099 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5100 		runtime = cfs_b->runtime;
5101 
5102 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5103 
5104 	if (!runtime)
5105 		return;
5106 
5107 	distribute_cfs_runtime(cfs_b);
5108 
5109 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5110 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5111 }
5112 
5113 /*
5114  * When a group wakes up we want to make sure that its quota is not already
5115  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5116  * runtime as update_curr() throttling can not not trigger until it's on-rq.
5117  */
5118 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5119 {
5120 	if (!cfs_bandwidth_used())
5121 		return;
5122 
5123 	/* an active group must be handled by the update_curr()->put() path */
5124 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5125 		return;
5126 
5127 	/* ensure the group is not already throttled */
5128 	if (cfs_rq_throttled(cfs_rq))
5129 		return;
5130 
5131 	/* update runtime allocation */
5132 	account_cfs_rq_runtime(cfs_rq, 0);
5133 	if (cfs_rq->runtime_remaining <= 0)
5134 		throttle_cfs_rq(cfs_rq);
5135 }
5136 
5137 static void sync_throttle(struct task_group *tg, int cpu)
5138 {
5139 	struct cfs_rq *pcfs_rq, *cfs_rq;
5140 
5141 	if (!cfs_bandwidth_used())
5142 		return;
5143 
5144 	if (!tg->parent)
5145 		return;
5146 
5147 	cfs_rq = tg->cfs_rq[cpu];
5148 	pcfs_rq = tg->parent->cfs_rq[cpu];
5149 
5150 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5151 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5152 }
5153 
5154 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5155 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5156 {
5157 	if (!cfs_bandwidth_used())
5158 		return false;
5159 
5160 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5161 		return false;
5162 
5163 	/*
5164 	 * it's possible for a throttled entity to be forced into a running
5165 	 * state (e.g. set_curr_task), in this case we're finished.
5166 	 */
5167 	if (cfs_rq_throttled(cfs_rq))
5168 		return true;
5169 
5170 	return throttle_cfs_rq(cfs_rq);
5171 }
5172 
5173 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5174 {
5175 	struct cfs_bandwidth *cfs_b =
5176 		container_of(timer, struct cfs_bandwidth, slack_timer);
5177 
5178 	do_sched_cfs_slack_timer(cfs_b);
5179 
5180 	return HRTIMER_NORESTART;
5181 }
5182 
5183 extern const u64 max_cfs_quota_period;
5184 
5185 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5186 {
5187 	struct cfs_bandwidth *cfs_b =
5188 		container_of(timer, struct cfs_bandwidth, period_timer);
5189 	unsigned long flags;
5190 	int overrun;
5191 	int idle = 0;
5192 	int count = 0;
5193 
5194 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5195 	for (;;) {
5196 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5197 		if (!overrun)
5198 			break;
5199 
5200 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5201 
5202 		if (++count > 3) {
5203 			u64 new, old = ktime_to_ns(cfs_b->period);
5204 
5205 			/*
5206 			 * Grow period by a factor of 2 to avoid losing precision.
5207 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5208 			 * to fail.
5209 			 */
5210 			new = old * 2;
5211 			if (new < max_cfs_quota_period) {
5212 				cfs_b->period = ns_to_ktime(new);
5213 				cfs_b->quota *= 2;
5214 
5215 				pr_warn_ratelimited(
5216 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5217 					smp_processor_id(),
5218 					div_u64(new, NSEC_PER_USEC),
5219 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5220 			} else {
5221 				pr_warn_ratelimited(
5222 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5223 					smp_processor_id(),
5224 					div_u64(old, NSEC_PER_USEC),
5225 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5226 			}
5227 
5228 			/* reset count so we don't come right back in here */
5229 			count = 0;
5230 		}
5231 	}
5232 	if (idle)
5233 		cfs_b->period_active = 0;
5234 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5235 
5236 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5237 }
5238 
5239 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5240 {
5241 	raw_spin_lock_init(&cfs_b->lock);
5242 	cfs_b->runtime = 0;
5243 	cfs_b->quota = RUNTIME_INF;
5244 	cfs_b->period = ns_to_ktime(default_cfs_period());
5245 
5246 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5247 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5248 	cfs_b->period_timer.function = sched_cfs_period_timer;
5249 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5250 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5251 	cfs_b->slack_started = false;
5252 }
5253 
5254 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5255 {
5256 	cfs_rq->runtime_enabled = 0;
5257 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5258 }
5259 
5260 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5261 {
5262 	lockdep_assert_held(&cfs_b->lock);
5263 
5264 	if (cfs_b->period_active)
5265 		return;
5266 
5267 	cfs_b->period_active = 1;
5268 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5269 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5270 }
5271 
5272 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5273 {
5274 	/* init_cfs_bandwidth() was not called */
5275 	if (!cfs_b->throttled_cfs_rq.next)
5276 		return;
5277 
5278 	hrtimer_cancel(&cfs_b->period_timer);
5279 	hrtimer_cancel(&cfs_b->slack_timer);
5280 }
5281 
5282 /*
5283  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5284  *
5285  * The race is harmless, since modifying bandwidth settings of unhooked group
5286  * bits doesn't do much.
5287  */
5288 
5289 /* cpu online calback */
5290 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5291 {
5292 	struct task_group *tg;
5293 
5294 	lockdep_assert_held(&rq->lock);
5295 
5296 	rcu_read_lock();
5297 	list_for_each_entry_rcu(tg, &task_groups, list) {
5298 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5299 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5300 
5301 		raw_spin_lock(&cfs_b->lock);
5302 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5303 		raw_spin_unlock(&cfs_b->lock);
5304 	}
5305 	rcu_read_unlock();
5306 }
5307 
5308 /* cpu offline callback */
5309 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5310 {
5311 	struct task_group *tg;
5312 
5313 	lockdep_assert_held(&rq->lock);
5314 
5315 	rcu_read_lock();
5316 	list_for_each_entry_rcu(tg, &task_groups, list) {
5317 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5318 
5319 		if (!cfs_rq->runtime_enabled)
5320 			continue;
5321 
5322 		/*
5323 		 * clock_task is not advancing so we just need to make sure
5324 		 * there's some valid quota amount
5325 		 */
5326 		cfs_rq->runtime_remaining = 1;
5327 		/*
5328 		 * Offline rq is schedulable till CPU is completely disabled
5329 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5330 		 */
5331 		cfs_rq->runtime_enabled = 0;
5332 
5333 		if (cfs_rq_throttled(cfs_rq))
5334 			unthrottle_cfs_rq(cfs_rq);
5335 	}
5336 	rcu_read_unlock();
5337 }
5338 
5339 #else /* CONFIG_CFS_BANDWIDTH */
5340 
5341 static inline bool cfs_bandwidth_used(void)
5342 {
5343 	return false;
5344 }
5345 
5346 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5347 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5348 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5349 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5350 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5351 
5352 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5353 {
5354 	return 0;
5355 }
5356 
5357 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5358 {
5359 	return 0;
5360 }
5361 
5362 static inline int throttled_lb_pair(struct task_group *tg,
5363 				    int src_cpu, int dest_cpu)
5364 {
5365 	return 0;
5366 }
5367 
5368 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5369 
5370 #ifdef CONFIG_FAIR_GROUP_SCHED
5371 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5372 #endif
5373 
5374 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5375 {
5376 	return NULL;
5377 }
5378 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5379 static inline void update_runtime_enabled(struct rq *rq) {}
5380 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5381 
5382 #endif /* CONFIG_CFS_BANDWIDTH */
5383 
5384 /**************************************************
5385  * CFS operations on tasks:
5386  */
5387 
5388 #ifdef CONFIG_SCHED_HRTICK
5389 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5390 {
5391 	struct sched_entity *se = &p->se;
5392 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5393 
5394 	SCHED_WARN_ON(task_rq(p) != rq);
5395 
5396 	if (rq->cfs.h_nr_running > 1) {
5397 		u64 slice = sched_slice(cfs_rq, se);
5398 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5399 		s64 delta = slice - ran;
5400 
5401 		if (delta < 0) {
5402 			if (rq->curr == p)
5403 				resched_curr(rq);
5404 			return;
5405 		}
5406 		hrtick_start(rq, delta);
5407 	}
5408 }
5409 
5410 /*
5411  * called from enqueue/dequeue and updates the hrtick when the
5412  * current task is from our class and nr_running is low enough
5413  * to matter.
5414  */
5415 static void hrtick_update(struct rq *rq)
5416 {
5417 	struct task_struct *curr = rq->curr;
5418 
5419 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5420 		return;
5421 
5422 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5423 		hrtick_start_fair(rq, curr);
5424 }
5425 #else /* !CONFIG_SCHED_HRTICK */
5426 static inline void
5427 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5428 {
5429 }
5430 
5431 static inline void hrtick_update(struct rq *rq)
5432 {
5433 }
5434 #endif
5435 
5436 #ifdef CONFIG_SMP
5437 static inline unsigned long cpu_util(int cpu);
5438 
5439 static inline bool cpu_overutilized(int cpu)
5440 {
5441 	return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5442 }
5443 
5444 static inline void update_overutilized_status(struct rq *rq)
5445 {
5446 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5447 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5448 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5449 	}
5450 }
5451 #else
5452 static inline void update_overutilized_status(struct rq *rq) { }
5453 #endif
5454 
5455 /* Runqueue only has SCHED_IDLE tasks enqueued */
5456 static int sched_idle_rq(struct rq *rq)
5457 {
5458 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5459 			rq->nr_running);
5460 }
5461 
5462 #ifdef CONFIG_SMP
5463 static int sched_idle_cpu(int cpu)
5464 {
5465 	return sched_idle_rq(cpu_rq(cpu));
5466 }
5467 #endif
5468 
5469 /*
5470  * The enqueue_task method is called before nr_running is
5471  * increased. Here we update the fair scheduling stats and
5472  * then put the task into the rbtree:
5473  */
5474 static void
5475 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5476 {
5477 	struct cfs_rq *cfs_rq;
5478 	struct sched_entity *se = &p->se;
5479 	int idle_h_nr_running = task_has_idle_policy(p);
5480 
5481 	/*
5482 	 * The code below (indirectly) updates schedutil which looks at
5483 	 * the cfs_rq utilization to select a frequency.
5484 	 * Let's add the task's estimated utilization to the cfs_rq's
5485 	 * estimated utilization, before we update schedutil.
5486 	 */
5487 	util_est_enqueue(&rq->cfs, p);
5488 
5489 	/*
5490 	 * If in_iowait is set, the code below may not trigger any cpufreq
5491 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5492 	 * passed.
5493 	 */
5494 	if (p->in_iowait)
5495 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5496 
5497 	for_each_sched_entity(se) {
5498 		if (se->on_rq)
5499 			break;
5500 		cfs_rq = cfs_rq_of(se);
5501 		enqueue_entity(cfs_rq, se, flags);
5502 
5503 		cfs_rq->h_nr_running++;
5504 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5505 
5506 		/* end evaluation on encountering a throttled cfs_rq */
5507 		if (cfs_rq_throttled(cfs_rq))
5508 			goto enqueue_throttle;
5509 
5510 		flags = ENQUEUE_WAKEUP;
5511 	}
5512 
5513 	for_each_sched_entity(se) {
5514 		cfs_rq = cfs_rq_of(se);
5515 
5516 		update_load_avg(cfs_rq, se, UPDATE_TG);
5517 		se_update_runnable(se);
5518 		update_cfs_group(se);
5519 
5520 		cfs_rq->h_nr_running++;
5521 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5522 
5523 		/* end evaluation on encountering a throttled cfs_rq */
5524 		if (cfs_rq_throttled(cfs_rq))
5525 			goto enqueue_throttle;
5526 
5527                /*
5528                 * One parent has been throttled and cfs_rq removed from the
5529                 * list. Add it back to not break the leaf list.
5530                 */
5531                if (throttled_hierarchy(cfs_rq))
5532                        list_add_leaf_cfs_rq(cfs_rq);
5533 	}
5534 
5535 	/* At this point se is NULL and we are at root level*/
5536 	add_nr_running(rq, 1);
5537 
5538 	/*
5539 	 * Since new tasks are assigned an initial util_avg equal to
5540 	 * half of the spare capacity of their CPU, tiny tasks have the
5541 	 * ability to cross the overutilized threshold, which will
5542 	 * result in the load balancer ruining all the task placement
5543 	 * done by EAS. As a way to mitigate that effect, do not account
5544 	 * for the first enqueue operation of new tasks during the
5545 	 * overutilized flag detection.
5546 	 *
5547 	 * A better way of solving this problem would be to wait for
5548 	 * the PELT signals of tasks to converge before taking them
5549 	 * into account, but that is not straightforward to implement,
5550 	 * and the following generally works well enough in practice.
5551 	 */
5552 	if (flags & ENQUEUE_WAKEUP)
5553 		update_overutilized_status(rq);
5554 
5555 enqueue_throttle:
5556 	if (cfs_bandwidth_used()) {
5557 		/*
5558 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5559 		 * breaks in the above iteration can result in incomplete
5560 		 * leaf list maintenance, resulting in triggering the assertion
5561 		 * below.
5562 		 */
5563 		for_each_sched_entity(se) {
5564 			cfs_rq = cfs_rq_of(se);
5565 
5566 			if (list_add_leaf_cfs_rq(cfs_rq))
5567 				break;
5568 		}
5569 	}
5570 
5571 	assert_list_leaf_cfs_rq(rq);
5572 
5573 	hrtick_update(rq);
5574 }
5575 
5576 static void set_next_buddy(struct sched_entity *se);
5577 
5578 /*
5579  * The dequeue_task method is called before nr_running is
5580  * decreased. We remove the task from the rbtree and
5581  * update the fair scheduling stats:
5582  */
5583 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5584 {
5585 	struct cfs_rq *cfs_rq;
5586 	struct sched_entity *se = &p->se;
5587 	int task_sleep = flags & DEQUEUE_SLEEP;
5588 	int idle_h_nr_running = task_has_idle_policy(p);
5589 	bool was_sched_idle = sched_idle_rq(rq);
5590 
5591 	for_each_sched_entity(se) {
5592 		cfs_rq = cfs_rq_of(se);
5593 		dequeue_entity(cfs_rq, se, flags);
5594 
5595 		cfs_rq->h_nr_running--;
5596 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5597 
5598 		/* end evaluation on encountering a throttled cfs_rq */
5599 		if (cfs_rq_throttled(cfs_rq))
5600 			goto dequeue_throttle;
5601 
5602 		/* Don't dequeue parent if it has other entities besides us */
5603 		if (cfs_rq->load.weight) {
5604 			/* Avoid re-evaluating load for this entity: */
5605 			se = parent_entity(se);
5606 			/*
5607 			 * Bias pick_next to pick a task from this cfs_rq, as
5608 			 * p is sleeping when it is within its sched_slice.
5609 			 */
5610 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5611 				set_next_buddy(se);
5612 			break;
5613 		}
5614 		flags |= DEQUEUE_SLEEP;
5615 	}
5616 
5617 	for_each_sched_entity(se) {
5618 		cfs_rq = cfs_rq_of(se);
5619 
5620 		update_load_avg(cfs_rq, se, UPDATE_TG);
5621 		se_update_runnable(se);
5622 		update_cfs_group(se);
5623 
5624 		cfs_rq->h_nr_running--;
5625 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5626 
5627 		/* end evaluation on encountering a throttled cfs_rq */
5628 		if (cfs_rq_throttled(cfs_rq))
5629 			goto dequeue_throttle;
5630 
5631 	}
5632 
5633 	/* At this point se is NULL and we are at root level*/
5634 	sub_nr_running(rq, 1);
5635 
5636 	/* balance early to pull high priority tasks */
5637 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5638 		rq->next_balance = jiffies;
5639 
5640 dequeue_throttle:
5641 	util_est_dequeue(&rq->cfs, p, task_sleep);
5642 	hrtick_update(rq);
5643 }
5644 
5645 #ifdef CONFIG_SMP
5646 
5647 /* Working cpumask for: load_balance, load_balance_newidle. */
5648 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5649 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5650 
5651 #ifdef CONFIG_NO_HZ_COMMON
5652 
5653 static struct {
5654 	cpumask_var_t idle_cpus_mask;
5655 	atomic_t nr_cpus;
5656 	int has_blocked;		/* Idle CPUS has blocked load */
5657 	unsigned long next_balance;     /* in jiffy units */
5658 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5659 } nohz ____cacheline_aligned;
5660 
5661 #endif /* CONFIG_NO_HZ_COMMON */
5662 
5663 static unsigned long cpu_load(struct rq *rq)
5664 {
5665 	return cfs_rq_load_avg(&rq->cfs);
5666 }
5667 
5668 /*
5669  * cpu_load_without - compute CPU load without any contributions from *p
5670  * @cpu: the CPU which load is requested
5671  * @p: the task which load should be discounted
5672  *
5673  * The load of a CPU is defined by the load of tasks currently enqueued on that
5674  * CPU as well as tasks which are currently sleeping after an execution on that
5675  * CPU.
5676  *
5677  * This method returns the load of the specified CPU by discounting the load of
5678  * the specified task, whenever the task is currently contributing to the CPU
5679  * load.
5680  */
5681 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5682 {
5683 	struct cfs_rq *cfs_rq;
5684 	unsigned int load;
5685 
5686 	/* Task has no contribution or is new */
5687 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5688 		return cpu_load(rq);
5689 
5690 	cfs_rq = &rq->cfs;
5691 	load = READ_ONCE(cfs_rq->avg.load_avg);
5692 
5693 	/* Discount task's util from CPU's util */
5694 	lsub_positive(&load, task_h_load(p));
5695 
5696 	return load;
5697 }
5698 
5699 static unsigned long cpu_runnable(struct rq *rq)
5700 {
5701 	return cfs_rq_runnable_avg(&rq->cfs);
5702 }
5703 
5704 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5705 {
5706 	struct cfs_rq *cfs_rq;
5707 	unsigned int runnable;
5708 
5709 	/* Task has no contribution or is new */
5710 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5711 		return cpu_runnable(rq);
5712 
5713 	cfs_rq = &rq->cfs;
5714 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5715 
5716 	/* Discount task's runnable from CPU's runnable */
5717 	lsub_positive(&runnable, p->se.avg.runnable_avg);
5718 
5719 	return runnable;
5720 }
5721 
5722 static unsigned long capacity_of(int cpu)
5723 {
5724 	return cpu_rq(cpu)->cpu_capacity;
5725 }
5726 
5727 static void record_wakee(struct task_struct *p)
5728 {
5729 	/*
5730 	 * Only decay a single time; tasks that have less then 1 wakeup per
5731 	 * jiffy will not have built up many flips.
5732 	 */
5733 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5734 		current->wakee_flips >>= 1;
5735 		current->wakee_flip_decay_ts = jiffies;
5736 	}
5737 
5738 	if (current->last_wakee != p) {
5739 		current->last_wakee = p;
5740 		current->wakee_flips++;
5741 	}
5742 }
5743 
5744 /*
5745  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5746  *
5747  * A waker of many should wake a different task than the one last awakened
5748  * at a frequency roughly N times higher than one of its wakees.
5749  *
5750  * In order to determine whether we should let the load spread vs consolidating
5751  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5752  * partner, and a factor of lls_size higher frequency in the other.
5753  *
5754  * With both conditions met, we can be relatively sure that the relationship is
5755  * non-monogamous, with partner count exceeding socket size.
5756  *
5757  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5758  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5759  * socket size.
5760  */
5761 static int wake_wide(struct task_struct *p)
5762 {
5763 	unsigned int master = current->wakee_flips;
5764 	unsigned int slave = p->wakee_flips;
5765 	int factor = __this_cpu_read(sd_llc_size);
5766 
5767 	if (master < slave)
5768 		swap(master, slave);
5769 	if (slave < factor || master < slave * factor)
5770 		return 0;
5771 	return 1;
5772 }
5773 
5774 /*
5775  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5776  * soonest. For the purpose of speed we only consider the waking and previous
5777  * CPU.
5778  *
5779  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5780  *			cache-affine and is (or	will be) idle.
5781  *
5782  * wake_affine_weight() - considers the weight to reflect the average
5783  *			  scheduling latency of the CPUs. This seems to work
5784  *			  for the overloaded case.
5785  */
5786 static int
5787 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5788 {
5789 	/*
5790 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5791 	 * context. Only allow the move if cache is shared. Otherwise an
5792 	 * interrupt intensive workload could force all tasks onto one
5793 	 * node depending on the IO topology or IRQ affinity settings.
5794 	 *
5795 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5796 	 * There is no guarantee that the cache hot data from an interrupt
5797 	 * is more important than cache hot data on the prev_cpu and from
5798 	 * a cpufreq perspective, it's better to have higher utilisation
5799 	 * on one CPU.
5800 	 */
5801 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5802 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5803 
5804 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5805 		return this_cpu;
5806 
5807 	return nr_cpumask_bits;
5808 }
5809 
5810 static int
5811 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5812 		   int this_cpu, int prev_cpu, int sync)
5813 {
5814 	s64 this_eff_load, prev_eff_load;
5815 	unsigned long task_load;
5816 
5817 	this_eff_load = cpu_load(cpu_rq(this_cpu));
5818 
5819 	if (sync) {
5820 		unsigned long current_load = task_h_load(current);
5821 
5822 		if (current_load > this_eff_load)
5823 			return this_cpu;
5824 
5825 		this_eff_load -= current_load;
5826 	}
5827 
5828 	task_load = task_h_load(p);
5829 
5830 	this_eff_load += task_load;
5831 	if (sched_feat(WA_BIAS))
5832 		this_eff_load *= 100;
5833 	this_eff_load *= capacity_of(prev_cpu);
5834 
5835 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5836 	prev_eff_load -= task_load;
5837 	if (sched_feat(WA_BIAS))
5838 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5839 	prev_eff_load *= capacity_of(this_cpu);
5840 
5841 	/*
5842 	 * If sync, adjust the weight of prev_eff_load such that if
5843 	 * prev_eff == this_eff that select_idle_sibling() will consider
5844 	 * stacking the wakee on top of the waker if no other CPU is
5845 	 * idle.
5846 	 */
5847 	if (sync)
5848 		prev_eff_load += 1;
5849 
5850 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5851 }
5852 
5853 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5854 		       int this_cpu, int prev_cpu, int sync)
5855 {
5856 	int target = nr_cpumask_bits;
5857 
5858 	if (sched_feat(WA_IDLE))
5859 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5860 
5861 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5862 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5863 
5864 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5865 	if (target == nr_cpumask_bits)
5866 		return prev_cpu;
5867 
5868 	schedstat_inc(sd->ttwu_move_affine);
5869 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5870 	return target;
5871 }
5872 
5873 static struct sched_group *
5874 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
5875 
5876 /*
5877  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5878  */
5879 static int
5880 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5881 {
5882 	unsigned long load, min_load = ULONG_MAX;
5883 	unsigned int min_exit_latency = UINT_MAX;
5884 	u64 latest_idle_timestamp = 0;
5885 	int least_loaded_cpu = this_cpu;
5886 	int shallowest_idle_cpu = -1;
5887 	int i;
5888 
5889 	/* Check if we have any choice: */
5890 	if (group->group_weight == 1)
5891 		return cpumask_first(sched_group_span(group));
5892 
5893 	/* Traverse only the allowed CPUs */
5894 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5895 		if (sched_idle_cpu(i))
5896 			return i;
5897 
5898 		if (available_idle_cpu(i)) {
5899 			struct rq *rq = cpu_rq(i);
5900 			struct cpuidle_state *idle = idle_get_state(rq);
5901 			if (idle && idle->exit_latency < min_exit_latency) {
5902 				/*
5903 				 * We give priority to a CPU whose idle state
5904 				 * has the smallest exit latency irrespective
5905 				 * of any idle timestamp.
5906 				 */
5907 				min_exit_latency = idle->exit_latency;
5908 				latest_idle_timestamp = rq->idle_stamp;
5909 				shallowest_idle_cpu = i;
5910 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5911 				   rq->idle_stamp > latest_idle_timestamp) {
5912 				/*
5913 				 * If equal or no active idle state, then
5914 				 * the most recently idled CPU might have
5915 				 * a warmer cache.
5916 				 */
5917 				latest_idle_timestamp = rq->idle_stamp;
5918 				shallowest_idle_cpu = i;
5919 			}
5920 		} else if (shallowest_idle_cpu == -1) {
5921 			load = cpu_load(cpu_rq(i));
5922 			if (load < min_load) {
5923 				min_load = load;
5924 				least_loaded_cpu = i;
5925 			}
5926 		}
5927 	}
5928 
5929 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5930 }
5931 
5932 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5933 				  int cpu, int prev_cpu, int sd_flag)
5934 {
5935 	int new_cpu = cpu;
5936 
5937 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
5938 		return prev_cpu;
5939 
5940 	/*
5941 	 * We need task's util for cpu_util_without, sync it up to
5942 	 * prev_cpu's last_update_time.
5943 	 */
5944 	if (!(sd_flag & SD_BALANCE_FORK))
5945 		sync_entity_load_avg(&p->se);
5946 
5947 	while (sd) {
5948 		struct sched_group *group;
5949 		struct sched_domain *tmp;
5950 		int weight;
5951 
5952 		if (!(sd->flags & sd_flag)) {
5953 			sd = sd->child;
5954 			continue;
5955 		}
5956 
5957 		group = find_idlest_group(sd, p, cpu);
5958 		if (!group) {
5959 			sd = sd->child;
5960 			continue;
5961 		}
5962 
5963 		new_cpu = find_idlest_group_cpu(group, p, cpu);
5964 		if (new_cpu == cpu) {
5965 			/* Now try balancing at a lower domain level of 'cpu': */
5966 			sd = sd->child;
5967 			continue;
5968 		}
5969 
5970 		/* Now try balancing at a lower domain level of 'new_cpu': */
5971 		cpu = new_cpu;
5972 		weight = sd->span_weight;
5973 		sd = NULL;
5974 		for_each_domain(cpu, tmp) {
5975 			if (weight <= tmp->span_weight)
5976 				break;
5977 			if (tmp->flags & sd_flag)
5978 				sd = tmp;
5979 		}
5980 	}
5981 
5982 	return new_cpu;
5983 }
5984 
5985 #ifdef CONFIG_SCHED_SMT
5986 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5987 EXPORT_SYMBOL_GPL(sched_smt_present);
5988 
5989 static inline void set_idle_cores(int cpu, int val)
5990 {
5991 	struct sched_domain_shared *sds;
5992 
5993 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5994 	if (sds)
5995 		WRITE_ONCE(sds->has_idle_cores, val);
5996 }
5997 
5998 static inline bool test_idle_cores(int cpu, bool def)
5999 {
6000 	struct sched_domain_shared *sds;
6001 
6002 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6003 	if (sds)
6004 		return READ_ONCE(sds->has_idle_cores);
6005 
6006 	return def;
6007 }
6008 
6009 /*
6010  * Scans the local SMT mask to see if the entire core is idle, and records this
6011  * information in sd_llc_shared->has_idle_cores.
6012  *
6013  * Since SMT siblings share all cache levels, inspecting this limited remote
6014  * state should be fairly cheap.
6015  */
6016 void __update_idle_core(struct rq *rq)
6017 {
6018 	int core = cpu_of(rq);
6019 	int cpu;
6020 
6021 	rcu_read_lock();
6022 	if (test_idle_cores(core, true))
6023 		goto unlock;
6024 
6025 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6026 		if (cpu == core)
6027 			continue;
6028 
6029 		if (!available_idle_cpu(cpu))
6030 			goto unlock;
6031 	}
6032 
6033 	set_idle_cores(core, 1);
6034 unlock:
6035 	rcu_read_unlock();
6036 }
6037 
6038 /*
6039  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6040  * there are no idle cores left in the system; tracked through
6041  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6042  */
6043 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6044 {
6045 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6046 	int core, cpu;
6047 
6048 	if (!static_branch_likely(&sched_smt_present))
6049 		return -1;
6050 
6051 	if (!test_idle_cores(target, false))
6052 		return -1;
6053 
6054 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6055 
6056 	for_each_cpu_wrap(core, cpus, target) {
6057 		bool idle = true;
6058 
6059 		for_each_cpu(cpu, cpu_smt_mask(core)) {
6060 			if (!available_idle_cpu(cpu)) {
6061 				idle = false;
6062 				break;
6063 			}
6064 		}
6065 		cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6066 
6067 		if (idle)
6068 			return core;
6069 	}
6070 
6071 	/*
6072 	 * Failed to find an idle core; stop looking for one.
6073 	 */
6074 	set_idle_cores(target, 0);
6075 
6076 	return -1;
6077 }
6078 
6079 /*
6080  * Scan the local SMT mask for idle CPUs.
6081  */
6082 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6083 {
6084 	int cpu;
6085 
6086 	if (!static_branch_likely(&sched_smt_present))
6087 		return -1;
6088 
6089 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6090 		if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6091 		    !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6092 			continue;
6093 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6094 			return cpu;
6095 	}
6096 
6097 	return -1;
6098 }
6099 
6100 #else /* CONFIG_SCHED_SMT */
6101 
6102 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6103 {
6104 	return -1;
6105 }
6106 
6107 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6108 {
6109 	return -1;
6110 }
6111 
6112 #endif /* CONFIG_SCHED_SMT */
6113 
6114 /*
6115  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6116  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6117  * average idle time for this rq (as found in rq->avg_idle).
6118  */
6119 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6120 {
6121 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6122 	struct sched_domain *this_sd;
6123 	u64 avg_cost, avg_idle;
6124 	u64 time;
6125 	int this = smp_processor_id();
6126 	int cpu, nr = INT_MAX;
6127 
6128 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6129 	if (!this_sd)
6130 		return -1;
6131 
6132 	/*
6133 	 * Due to large variance we need a large fuzz factor; hackbench in
6134 	 * particularly is sensitive here.
6135 	 */
6136 	avg_idle = this_rq()->avg_idle / 512;
6137 	avg_cost = this_sd->avg_scan_cost + 1;
6138 
6139 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6140 		return -1;
6141 
6142 	if (sched_feat(SIS_PROP)) {
6143 		u64 span_avg = sd->span_weight * avg_idle;
6144 		if (span_avg > 4*avg_cost)
6145 			nr = div_u64(span_avg, avg_cost);
6146 		else
6147 			nr = 4;
6148 	}
6149 
6150 	time = cpu_clock(this);
6151 
6152 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6153 
6154 	for_each_cpu_wrap(cpu, cpus, target) {
6155 		if (!--nr)
6156 			return -1;
6157 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6158 			break;
6159 	}
6160 
6161 	time = cpu_clock(this) - time;
6162 	update_avg(&this_sd->avg_scan_cost, time);
6163 
6164 	return cpu;
6165 }
6166 
6167 /*
6168  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6169  * the task fits. If no CPU is big enough, but there are idle ones, try to
6170  * maximize capacity.
6171  */
6172 static int
6173 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6174 {
6175 	unsigned long best_cap = 0;
6176 	int cpu, best_cpu = -1;
6177 	struct cpumask *cpus;
6178 
6179 	sync_entity_load_avg(&p->se);
6180 
6181 	cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6182 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6183 
6184 	for_each_cpu_wrap(cpu, cpus, target) {
6185 		unsigned long cpu_cap = capacity_of(cpu);
6186 
6187 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6188 			continue;
6189 		if (task_fits_capacity(p, cpu_cap))
6190 			return cpu;
6191 
6192 		if (cpu_cap > best_cap) {
6193 			best_cap = cpu_cap;
6194 			best_cpu = cpu;
6195 		}
6196 	}
6197 
6198 	return best_cpu;
6199 }
6200 
6201 /*
6202  * Try and locate an idle core/thread in the LLC cache domain.
6203  */
6204 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6205 {
6206 	struct sched_domain *sd;
6207 	int i, recent_used_cpu;
6208 
6209 	/*
6210 	 * For asymmetric CPU capacity systems, our domain of interest is
6211 	 * sd_asym_cpucapacity rather than sd_llc.
6212 	 */
6213 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6214 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6215 		/*
6216 		 * On an asymmetric CPU capacity system where an exclusive
6217 		 * cpuset defines a symmetric island (i.e. one unique
6218 		 * capacity_orig value through the cpuset), the key will be set
6219 		 * but the CPUs within that cpuset will not have a domain with
6220 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6221 		 * capacity path.
6222 		 */
6223 		if (!sd)
6224 			goto symmetric;
6225 
6226 		i = select_idle_capacity(p, sd, target);
6227 		return ((unsigned)i < nr_cpumask_bits) ? i : target;
6228 	}
6229 
6230 symmetric:
6231 	if (available_idle_cpu(target) || sched_idle_cpu(target))
6232 		return target;
6233 
6234 	/*
6235 	 * If the previous CPU is cache affine and idle, don't be stupid:
6236 	 */
6237 	if (prev != target && cpus_share_cache(prev, target) &&
6238 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)))
6239 		return prev;
6240 
6241 	/*
6242 	 * Allow a per-cpu kthread to stack with the wakee if the
6243 	 * kworker thread and the tasks previous CPUs are the same.
6244 	 * The assumption is that the wakee queued work for the
6245 	 * per-cpu kthread that is now complete and the wakeup is
6246 	 * essentially a sync wakeup. An obvious example of this
6247 	 * pattern is IO completions.
6248 	 */
6249 	if (is_per_cpu_kthread(current) &&
6250 	    prev == smp_processor_id() &&
6251 	    this_rq()->nr_running <= 1) {
6252 		return prev;
6253 	}
6254 
6255 	/* Check a recently used CPU as a potential idle candidate: */
6256 	recent_used_cpu = p->recent_used_cpu;
6257 	if (recent_used_cpu != prev &&
6258 	    recent_used_cpu != target &&
6259 	    cpus_share_cache(recent_used_cpu, target) &&
6260 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6261 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
6262 		/*
6263 		 * Replace recent_used_cpu with prev as it is a potential
6264 		 * candidate for the next wake:
6265 		 */
6266 		p->recent_used_cpu = prev;
6267 		return recent_used_cpu;
6268 	}
6269 
6270 	sd = rcu_dereference(per_cpu(sd_llc, target));
6271 	if (!sd)
6272 		return target;
6273 
6274 	i = select_idle_core(p, sd, target);
6275 	if ((unsigned)i < nr_cpumask_bits)
6276 		return i;
6277 
6278 	i = select_idle_cpu(p, sd, target);
6279 	if ((unsigned)i < nr_cpumask_bits)
6280 		return i;
6281 
6282 	i = select_idle_smt(p, sd, target);
6283 	if ((unsigned)i < nr_cpumask_bits)
6284 		return i;
6285 
6286 	return target;
6287 }
6288 
6289 /**
6290  * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6291  * @cpu: the CPU to get the utilization of
6292  *
6293  * The unit of the return value must be the one of capacity so we can compare
6294  * the utilization with the capacity of the CPU that is available for CFS task
6295  * (ie cpu_capacity).
6296  *
6297  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6298  * recent utilization of currently non-runnable tasks on a CPU. It represents
6299  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6300  * capacity_orig is the cpu_capacity available at the highest frequency
6301  * (arch_scale_freq_capacity()).
6302  * The utilization of a CPU converges towards a sum equal to or less than the
6303  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6304  * the running time on this CPU scaled by capacity_curr.
6305  *
6306  * The estimated utilization of a CPU is defined to be the maximum between its
6307  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6308  * currently RUNNABLE on that CPU.
6309  * This allows to properly represent the expected utilization of a CPU which
6310  * has just got a big task running since a long sleep period. At the same time
6311  * however it preserves the benefits of the "blocked utilization" in
6312  * describing the potential for other tasks waking up on the same CPU.
6313  *
6314  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6315  * higher than capacity_orig because of unfortunate rounding in
6316  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6317  * the average stabilizes with the new running time. We need to check that the
6318  * utilization stays within the range of [0..capacity_orig] and cap it if
6319  * necessary. Without utilization capping, a group could be seen as overloaded
6320  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6321  * available capacity. We allow utilization to overshoot capacity_curr (but not
6322  * capacity_orig) as it useful for predicting the capacity required after task
6323  * migrations (scheduler-driven DVFS).
6324  *
6325  * Return: the (estimated) utilization for the specified CPU
6326  */
6327 static inline unsigned long cpu_util(int cpu)
6328 {
6329 	struct cfs_rq *cfs_rq;
6330 	unsigned int util;
6331 
6332 	cfs_rq = &cpu_rq(cpu)->cfs;
6333 	util = READ_ONCE(cfs_rq->avg.util_avg);
6334 
6335 	if (sched_feat(UTIL_EST))
6336 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6337 
6338 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6339 }
6340 
6341 /*
6342  * cpu_util_without: compute cpu utilization without any contributions from *p
6343  * @cpu: the CPU which utilization is requested
6344  * @p: the task which utilization should be discounted
6345  *
6346  * The utilization of a CPU is defined by the utilization of tasks currently
6347  * enqueued on that CPU as well as tasks which are currently sleeping after an
6348  * execution on that CPU.
6349  *
6350  * This method returns the utilization of the specified CPU by discounting the
6351  * utilization of the specified task, whenever the task is currently
6352  * contributing to the CPU utilization.
6353  */
6354 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6355 {
6356 	struct cfs_rq *cfs_rq;
6357 	unsigned int util;
6358 
6359 	/* Task has no contribution or is new */
6360 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6361 		return cpu_util(cpu);
6362 
6363 	cfs_rq = &cpu_rq(cpu)->cfs;
6364 	util = READ_ONCE(cfs_rq->avg.util_avg);
6365 
6366 	/* Discount task's util from CPU's util */
6367 	lsub_positive(&util, task_util(p));
6368 
6369 	/*
6370 	 * Covered cases:
6371 	 *
6372 	 * a) if *p is the only task sleeping on this CPU, then:
6373 	 *      cpu_util (== task_util) > util_est (== 0)
6374 	 *    and thus we return:
6375 	 *      cpu_util_without = (cpu_util - task_util) = 0
6376 	 *
6377 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6378 	 *    IDLE, then:
6379 	 *      cpu_util >= task_util
6380 	 *      cpu_util > util_est (== 0)
6381 	 *    and thus we discount *p's blocked utilization to return:
6382 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6383 	 *
6384 	 * c) if other tasks are RUNNABLE on that CPU and
6385 	 *      util_est > cpu_util
6386 	 *    then we use util_est since it returns a more restrictive
6387 	 *    estimation of the spare capacity on that CPU, by just
6388 	 *    considering the expected utilization of tasks already
6389 	 *    runnable on that CPU.
6390 	 *
6391 	 * Cases a) and b) are covered by the above code, while case c) is
6392 	 * covered by the following code when estimated utilization is
6393 	 * enabled.
6394 	 */
6395 	if (sched_feat(UTIL_EST)) {
6396 		unsigned int estimated =
6397 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6398 
6399 		/*
6400 		 * Despite the following checks we still have a small window
6401 		 * for a possible race, when an execl's select_task_rq_fair()
6402 		 * races with LB's detach_task():
6403 		 *
6404 		 *   detach_task()
6405 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6406 		 *     ---------------------------------- A
6407 		 *     deactivate_task()                   \
6408 		 *       dequeue_task()                     + RaceTime
6409 		 *         util_est_dequeue()              /
6410 		 *     ---------------------------------- B
6411 		 *
6412 		 * The additional check on "current == p" it's required to
6413 		 * properly fix the execl regression and it helps in further
6414 		 * reducing the chances for the above race.
6415 		 */
6416 		if (unlikely(task_on_rq_queued(p) || current == p))
6417 			lsub_positive(&estimated, _task_util_est(p));
6418 
6419 		util = max(util, estimated);
6420 	}
6421 
6422 	/*
6423 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6424 	 * clamp to the maximum CPU capacity to ensure consistency with
6425 	 * the cpu_util call.
6426 	 */
6427 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6428 }
6429 
6430 /*
6431  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6432  * to @dst_cpu.
6433  */
6434 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6435 {
6436 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6437 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6438 
6439 	/*
6440 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6441 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6442 	 * the other cases, @cpu is not impacted by the migration, so the
6443 	 * util_avg should already be correct.
6444 	 */
6445 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6446 		sub_positive(&util, task_util(p));
6447 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6448 		util += task_util(p);
6449 
6450 	if (sched_feat(UTIL_EST)) {
6451 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6452 
6453 		/*
6454 		 * During wake-up, the task isn't enqueued yet and doesn't
6455 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6456 		 * so just add it (if needed) to "simulate" what will be
6457 		 * cpu_util() after the task has been enqueued.
6458 		 */
6459 		if (dst_cpu == cpu)
6460 			util_est += _task_util_est(p);
6461 
6462 		util = max(util, util_est);
6463 	}
6464 
6465 	return min(util, capacity_orig_of(cpu));
6466 }
6467 
6468 /*
6469  * compute_energy(): Estimates the energy that @pd would consume if @p was
6470  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6471  * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6472  * to compute what would be the energy if we decided to actually migrate that
6473  * task.
6474  */
6475 static long
6476 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6477 {
6478 	struct cpumask *pd_mask = perf_domain_span(pd);
6479 	unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6480 	unsigned long max_util = 0, sum_util = 0;
6481 	int cpu;
6482 
6483 	/*
6484 	 * The capacity state of CPUs of the current rd can be driven by CPUs
6485 	 * of another rd if they belong to the same pd. So, account for the
6486 	 * utilization of these CPUs too by masking pd with cpu_online_mask
6487 	 * instead of the rd span.
6488 	 *
6489 	 * If an entire pd is outside of the current rd, it will not appear in
6490 	 * its pd list and will not be accounted by compute_energy().
6491 	 */
6492 	for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6493 		unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6494 		struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
6495 
6496 		/*
6497 		 * Busy time computation: utilization clamping is not
6498 		 * required since the ratio (sum_util / cpu_capacity)
6499 		 * is already enough to scale the EM reported power
6500 		 * consumption at the (eventually clamped) cpu_capacity.
6501 		 */
6502 		sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6503 					       ENERGY_UTIL, NULL);
6504 
6505 		/*
6506 		 * Performance domain frequency: utilization clamping
6507 		 * must be considered since it affects the selection
6508 		 * of the performance domain frequency.
6509 		 * NOTE: in case RT tasks are running, by default the
6510 		 * FREQUENCY_UTIL's utilization can be max OPP.
6511 		 */
6512 		cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6513 					      FREQUENCY_UTIL, tsk);
6514 		max_util = max(max_util, cpu_util);
6515 	}
6516 
6517 	return em_cpu_energy(pd->em_pd, max_util, sum_util);
6518 }
6519 
6520 /*
6521  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6522  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6523  * spare capacity in each performance domain and uses it as a potential
6524  * candidate to execute the task. Then, it uses the Energy Model to figure
6525  * out which of the CPU candidates is the most energy-efficient.
6526  *
6527  * The rationale for this heuristic is as follows. In a performance domain,
6528  * all the most energy efficient CPU candidates (according to the Energy
6529  * Model) are those for which we'll request a low frequency. When there are
6530  * several CPUs for which the frequency request will be the same, we don't
6531  * have enough data to break the tie between them, because the Energy Model
6532  * only includes active power costs. With this model, if we assume that
6533  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6534  * the maximum spare capacity in a performance domain is guaranteed to be among
6535  * the best candidates of the performance domain.
6536  *
6537  * In practice, it could be preferable from an energy standpoint to pack
6538  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6539  * but that could also hurt our chances to go cluster idle, and we have no
6540  * ways to tell with the current Energy Model if this is actually a good
6541  * idea or not. So, find_energy_efficient_cpu() basically favors
6542  * cluster-packing, and spreading inside a cluster. That should at least be
6543  * a good thing for latency, and this is consistent with the idea that most
6544  * of the energy savings of EAS come from the asymmetry of the system, and
6545  * not so much from breaking the tie between identical CPUs. That's also the
6546  * reason why EAS is enabled in the topology code only for systems where
6547  * SD_ASYM_CPUCAPACITY is set.
6548  *
6549  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6550  * they don't have any useful utilization data yet and it's not possible to
6551  * forecast their impact on energy consumption. Consequently, they will be
6552  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6553  * to be energy-inefficient in some use-cases. The alternative would be to
6554  * bias new tasks towards specific types of CPUs first, or to try to infer
6555  * their util_avg from the parent task, but those heuristics could hurt
6556  * other use-cases too. So, until someone finds a better way to solve this,
6557  * let's keep things simple by re-using the existing slow path.
6558  */
6559 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6560 {
6561 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6562 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6563 	unsigned long cpu_cap, util, base_energy = 0;
6564 	int cpu, best_energy_cpu = prev_cpu;
6565 	struct sched_domain *sd;
6566 	struct perf_domain *pd;
6567 
6568 	rcu_read_lock();
6569 	pd = rcu_dereference(rd->pd);
6570 	if (!pd || READ_ONCE(rd->overutilized))
6571 		goto fail;
6572 
6573 	/*
6574 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6575 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6576 	 */
6577 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6578 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6579 		sd = sd->parent;
6580 	if (!sd)
6581 		goto fail;
6582 
6583 	sync_entity_load_avg(&p->se);
6584 	if (!task_util_est(p))
6585 		goto unlock;
6586 
6587 	for (; pd; pd = pd->next) {
6588 		unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6589 		unsigned long base_energy_pd;
6590 		int max_spare_cap_cpu = -1;
6591 
6592 		/* Compute the 'base' energy of the pd, without @p */
6593 		base_energy_pd = compute_energy(p, -1, pd);
6594 		base_energy += base_energy_pd;
6595 
6596 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6597 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6598 				continue;
6599 
6600 			util = cpu_util_next(cpu, p, cpu);
6601 			cpu_cap = capacity_of(cpu);
6602 			spare_cap = cpu_cap;
6603 			lsub_positive(&spare_cap, util);
6604 
6605 			/*
6606 			 * Skip CPUs that cannot satisfy the capacity request.
6607 			 * IOW, placing the task there would make the CPU
6608 			 * overutilized. Take uclamp into account to see how
6609 			 * much capacity we can get out of the CPU; this is
6610 			 * aligned with schedutil_cpu_util().
6611 			 */
6612 			util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6613 			if (!fits_capacity(util, cpu_cap))
6614 				continue;
6615 
6616 			/* Always use prev_cpu as a candidate. */
6617 			if (cpu == prev_cpu) {
6618 				prev_delta = compute_energy(p, prev_cpu, pd);
6619 				prev_delta -= base_energy_pd;
6620 				best_delta = min(best_delta, prev_delta);
6621 			}
6622 
6623 			/*
6624 			 * Find the CPU with the maximum spare capacity in
6625 			 * the performance domain
6626 			 */
6627 			if (spare_cap > max_spare_cap) {
6628 				max_spare_cap = spare_cap;
6629 				max_spare_cap_cpu = cpu;
6630 			}
6631 		}
6632 
6633 		/* Evaluate the energy impact of using this CPU. */
6634 		if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
6635 			cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6636 			cur_delta -= base_energy_pd;
6637 			if (cur_delta < best_delta) {
6638 				best_delta = cur_delta;
6639 				best_energy_cpu = max_spare_cap_cpu;
6640 			}
6641 		}
6642 	}
6643 unlock:
6644 	rcu_read_unlock();
6645 
6646 	/*
6647 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6648 	 * least 6% of the energy used by prev_cpu.
6649 	 */
6650 	if (prev_delta == ULONG_MAX)
6651 		return best_energy_cpu;
6652 
6653 	if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6654 		return best_energy_cpu;
6655 
6656 	return prev_cpu;
6657 
6658 fail:
6659 	rcu_read_unlock();
6660 
6661 	return -1;
6662 }
6663 
6664 /*
6665  * select_task_rq_fair: Select target runqueue for the waking task in domains
6666  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6667  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6668  *
6669  * Balances load by selecting the idlest CPU in the idlest group, or under
6670  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6671  *
6672  * Returns the target CPU number.
6673  *
6674  * preempt must be disabled.
6675  */
6676 static int
6677 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6678 {
6679 	struct sched_domain *tmp, *sd = NULL;
6680 	int cpu = smp_processor_id();
6681 	int new_cpu = prev_cpu;
6682 	int want_affine = 0;
6683 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6684 
6685 	if (sd_flag & SD_BALANCE_WAKE) {
6686 		record_wakee(p);
6687 
6688 		if (sched_energy_enabled()) {
6689 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6690 			if (new_cpu >= 0)
6691 				return new_cpu;
6692 			new_cpu = prev_cpu;
6693 		}
6694 
6695 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6696 	}
6697 
6698 	rcu_read_lock();
6699 	for_each_domain(cpu, tmp) {
6700 		/*
6701 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6702 		 * cpu is a valid SD_WAKE_AFFINE target.
6703 		 */
6704 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6705 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6706 			if (cpu != prev_cpu)
6707 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6708 
6709 			sd = NULL; /* Prefer wake_affine over balance flags */
6710 			break;
6711 		}
6712 
6713 		if (tmp->flags & sd_flag)
6714 			sd = tmp;
6715 		else if (!want_affine)
6716 			break;
6717 	}
6718 
6719 	if (unlikely(sd)) {
6720 		/* Slow path */
6721 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6722 	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6723 		/* Fast path */
6724 
6725 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6726 
6727 		if (want_affine)
6728 			current->recent_used_cpu = cpu;
6729 	}
6730 	rcu_read_unlock();
6731 
6732 	return new_cpu;
6733 }
6734 
6735 static void detach_entity_cfs_rq(struct sched_entity *se);
6736 
6737 /*
6738  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6739  * cfs_rq_of(p) references at time of call are still valid and identify the
6740  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6741  */
6742 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6743 {
6744 	/*
6745 	 * As blocked tasks retain absolute vruntime the migration needs to
6746 	 * deal with this by subtracting the old and adding the new
6747 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6748 	 * the task on the new runqueue.
6749 	 */
6750 	if (p->state == TASK_WAKING) {
6751 		struct sched_entity *se = &p->se;
6752 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6753 		u64 min_vruntime;
6754 
6755 #ifndef CONFIG_64BIT
6756 		u64 min_vruntime_copy;
6757 
6758 		do {
6759 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6760 			smp_rmb();
6761 			min_vruntime = cfs_rq->min_vruntime;
6762 		} while (min_vruntime != min_vruntime_copy);
6763 #else
6764 		min_vruntime = cfs_rq->min_vruntime;
6765 #endif
6766 
6767 		se->vruntime -= min_vruntime;
6768 	}
6769 
6770 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6771 		/*
6772 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6773 		 * rq->lock and can modify state directly.
6774 		 */
6775 		lockdep_assert_held(&task_rq(p)->lock);
6776 		detach_entity_cfs_rq(&p->se);
6777 
6778 	} else {
6779 		/*
6780 		 * We are supposed to update the task to "current" time, then
6781 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6782 		 * have difficulty in getting what current time is, so simply
6783 		 * throw away the out-of-date time. This will result in the
6784 		 * wakee task is less decayed, but giving the wakee more load
6785 		 * sounds not bad.
6786 		 */
6787 		remove_entity_load_avg(&p->se);
6788 	}
6789 
6790 	/* Tell new CPU we are migrated */
6791 	p->se.avg.last_update_time = 0;
6792 
6793 	/* We have migrated, no longer consider this task hot */
6794 	p->se.exec_start = 0;
6795 
6796 	update_scan_period(p, new_cpu);
6797 }
6798 
6799 static void task_dead_fair(struct task_struct *p)
6800 {
6801 	remove_entity_load_avg(&p->se);
6802 }
6803 
6804 static int
6805 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6806 {
6807 	if (rq->nr_running)
6808 		return 1;
6809 
6810 	return newidle_balance(rq, rf) != 0;
6811 }
6812 #endif /* CONFIG_SMP */
6813 
6814 static unsigned long wakeup_gran(struct sched_entity *se)
6815 {
6816 	unsigned long gran = sysctl_sched_wakeup_granularity;
6817 
6818 	/*
6819 	 * Since its curr running now, convert the gran from real-time
6820 	 * to virtual-time in his units.
6821 	 *
6822 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6823 	 * they get preempted easier. That is, if 'se' < 'curr' then
6824 	 * the resulting gran will be larger, therefore penalizing the
6825 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6826 	 * be smaller, again penalizing the lighter task.
6827 	 *
6828 	 * This is especially important for buddies when the leftmost
6829 	 * task is higher priority than the buddy.
6830 	 */
6831 	return calc_delta_fair(gran, se);
6832 }
6833 
6834 /*
6835  * Should 'se' preempt 'curr'.
6836  *
6837  *             |s1
6838  *        |s2
6839  *   |s3
6840  *         g
6841  *      |<--->|c
6842  *
6843  *  w(c, s1) = -1
6844  *  w(c, s2) =  0
6845  *  w(c, s3) =  1
6846  *
6847  */
6848 static int
6849 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6850 {
6851 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6852 
6853 	if (vdiff <= 0)
6854 		return -1;
6855 
6856 	gran = wakeup_gran(se);
6857 	if (vdiff > gran)
6858 		return 1;
6859 
6860 	return 0;
6861 }
6862 
6863 static void set_last_buddy(struct sched_entity *se)
6864 {
6865 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6866 		return;
6867 
6868 	for_each_sched_entity(se) {
6869 		if (SCHED_WARN_ON(!se->on_rq))
6870 			return;
6871 		cfs_rq_of(se)->last = se;
6872 	}
6873 }
6874 
6875 static void set_next_buddy(struct sched_entity *se)
6876 {
6877 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6878 		return;
6879 
6880 	for_each_sched_entity(se) {
6881 		if (SCHED_WARN_ON(!se->on_rq))
6882 			return;
6883 		cfs_rq_of(se)->next = se;
6884 	}
6885 }
6886 
6887 static void set_skip_buddy(struct sched_entity *se)
6888 {
6889 	for_each_sched_entity(se)
6890 		cfs_rq_of(se)->skip = se;
6891 }
6892 
6893 /*
6894  * Preempt the current task with a newly woken task if needed:
6895  */
6896 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6897 {
6898 	struct task_struct *curr = rq->curr;
6899 	struct sched_entity *se = &curr->se, *pse = &p->se;
6900 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6901 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6902 	int next_buddy_marked = 0;
6903 
6904 	if (unlikely(se == pse))
6905 		return;
6906 
6907 	/*
6908 	 * This is possible from callers such as attach_tasks(), in which we
6909 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6910 	 * lead to a throttle).  This both saves work and prevents false
6911 	 * next-buddy nomination below.
6912 	 */
6913 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6914 		return;
6915 
6916 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6917 		set_next_buddy(pse);
6918 		next_buddy_marked = 1;
6919 	}
6920 
6921 	/*
6922 	 * We can come here with TIF_NEED_RESCHED already set from new task
6923 	 * wake up path.
6924 	 *
6925 	 * Note: this also catches the edge-case of curr being in a throttled
6926 	 * group (e.g. via set_curr_task), since update_curr() (in the
6927 	 * enqueue of curr) will have resulted in resched being set.  This
6928 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6929 	 * below.
6930 	 */
6931 	if (test_tsk_need_resched(curr))
6932 		return;
6933 
6934 	/* Idle tasks are by definition preempted by non-idle tasks. */
6935 	if (unlikely(task_has_idle_policy(curr)) &&
6936 	    likely(!task_has_idle_policy(p)))
6937 		goto preempt;
6938 
6939 	/*
6940 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6941 	 * is driven by the tick):
6942 	 */
6943 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6944 		return;
6945 
6946 	find_matching_se(&se, &pse);
6947 	update_curr(cfs_rq_of(se));
6948 	BUG_ON(!pse);
6949 	if (wakeup_preempt_entity(se, pse) == 1) {
6950 		/*
6951 		 * Bias pick_next to pick the sched entity that is
6952 		 * triggering this preemption.
6953 		 */
6954 		if (!next_buddy_marked)
6955 			set_next_buddy(pse);
6956 		goto preempt;
6957 	}
6958 
6959 	return;
6960 
6961 preempt:
6962 	resched_curr(rq);
6963 	/*
6964 	 * Only set the backward buddy when the current task is still
6965 	 * on the rq. This can happen when a wakeup gets interleaved
6966 	 * with schedule on the ->pre_schedule() or idle_balance()
6967 	 * point, either of which can * drop the rq lock.
6968 	 *
6969 	 * Also, during early boot the idle thread is in the fair class,
6970 	 * for obvious reasons its a bad idea to schedule back to it.
6971 	 */
6972 	if (unlikely(!se->on_rq || curr == rq->idle))
6973 		return;
6974 
6975 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6976 		set_last_buddy(se);
6977 }
6978 
6979 struct task_struct *
6980 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6981 {
6982 	struct cfs_rq *cfs_rq = &rq->cfs;
6983 	struct sched_entity *se;
6984 	struct task_struct *p;
6985 	int new_tasks;
6986 
6987 again:
6988 	if (!sched_fair_runnable(rq))
6989 		goto idle;
6990 
6991 #ifdef CONFIG_FAIR_GROUP_SCHED
6992 	if (!prev || prev->sched_class != &fair_sched_class)
6993 		goto simple;
6994 
6995 	/*
6996 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6997 	 * likely that a next task is from the same cgroup as the current.
6998 	 *
6999 	 * Therefore attempt to avoid putting and setting the entire cgroup
7000 	 * hierarchy, only change the part that actually changes.
7001 	 */
7002 
7003 	do {
7004 		struct sched_entity *curr = cfs_rq->curr;
7005 
7006 		/*
7007 		 * Since we got here without doing put_prev_entity() we also
7008 		 * have to consider cfs_rq->curr. If it is still a runnable
7009 		 * entity, update_curr() will update its vruntime, otherwise
7010 		 * forget we've ever seen it.
7011 		 */
7012 		if (curr) {
7013 			if (curr->on_rq)
7014 				update_curr(cfs_rq);
7015 			else
7016 				curr = NULL;
7017 
7018 			/*
7019 			 * This call to check_cfs_rq_runtime() will do the
7020 			 * throttle and dequeue its entity in the parent(s).
7021 			 * Therefore the nr_running test will indeed
7022 			 * be correct.
7023 			 */
7024 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7025 				cfs_rq = &rq->cfs;
7026 
7027 				if (!cfs_rq->nr_running)
7028 					goto idle;
7029 
7030 				goto simple;
7031 			}
7032 		}
7033 
7034 		se = pick_next_entity(cfs_rq, curr);
7035 		cfs_rq = group_cfs_rq(se);
7036 	} while (cfs_rq);
7037 
7038 	p = task_of(se);
7039 
7040 	/*
7041 	 * Since we haven't yet done put_prev_entity and if the selected task
7042 	 * is a different task than we started out with, try and touch the
7043 	 * least amount of cfs_rqs.
7044 	 */
7045 	if (prev != p) {
7046 		struct sched_entity *pse = &prev->se;
7047 
7048 		while (!(cfs_rq = is_same_group(se, pse))) {
7049 			int se_depth = se->depth;
7050 			int pse_depth = pse->depth;
7051 
7052 			if (se_depth <= pse_depth) {
7053 				put_prev_entity(cfs_rq_of(pse), pse);
7054 				pse = parent_entity(pse);
7055 			}
7056 			if (se_depth >= pse_depth) {
7057 				set_next_entity(cfs_rq_of(se), se);
7058 				se = parent_entity(se);
7059 			}
7060 		}
7061 
7062 		put_prev_entity(cfs_rq, pse);
7063 		set_next_entity(cfs_rq, se);
7064 	}
7065 
7066 	goto done;
7067 simple:
7068 #endif
7069 	if (prev)
7070 		put_prev_task(rq, prev);
7071 
7072 	do {
7073 		se = pick_next_entity(cfs_rq, NULL);
7074 		set_next_entity(cfs_rq, se);
7075 		cfs_rq = group_cfs_rq(se);
7076 	} while (cfs_rq);
7077 
7078 	p = task_of(se);
7079 
7080 done: __maybe_unused;
7081 #ifdef CONFIG_SMP
7082 	/*
7083 	 * Move the next running task to the front of
7084 	 * the list, so our cfs_tasks list becomes MRU
7085 	 * one.
7086 	 */
7087 	list_move(&p->se.group_node, &rq->cfs_tasks);
7088 #endif
7089 
7090 	if (hrtick_enabled(rq))
7091 		hrtick_start_fair(rq, p);
7092 
7093 	update_misfit_status(p, rq);
7094 
7095 	return p;
7096 
7097 idle:
7098 	if (!rf)
7099 		return NULL;
7100 
7101 	new_tasks = newidle_balance(rq, rf);
7102 
7103 	/*
7104 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7105 	 * possible for any higher priority task to appear. In that case we
7106 	 * must re-start the pick_next_entity() loop.
7107 	 */
7108 	if (new_tasks < 0)
7109 		return RETRY_TASK;
7110 
7111 	if (new_tasks > 0)
7112 		goto again;
7113 
7114 	/*
7115 	 * rq is about to be idle, check if we need to update the
7116 	 * lost_idle_time of clock_pelt
7117 	 */
7118 	update_idle_rq_clock_pelt(rq);
7119 
7120 	return NULL;
7121 }
7122 
7123 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7124 {
7125 	return pick_next_task_fair(rq, NULL, NULL);
7126 }
7127 
7128 /*
7129  * Account for a descheduled task:
7130  */
7131 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7132 {
7133 	struct sched_entity *se = &prev->se;
7134 	struct cfs_rq *cfs_rq;
7135 
7136 	for_each_sched_entity(se) {
7137 		cfs_rq = cfs_rq_of(se);
7138 		put_prev_entity(cfs_rq, se);
7139 	}
7140 }
7141 
7142 /*
7143  * sched_yield() is very simple
7144  *
7145  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7146  */
7147 static void yield_task_fair(struct rq *rq)
7148 {
7149 	struct task_struct *curr = rq->curr;
7150 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7151 	struct sched_entity *se = &curr->se;
7152 
7153 	/*
7154 	 * Are we the only task in the tree?
7155 	 */
7156 	if (unlikely(rq->nr_running == 1))
7157 		return;
7158 
7159 	clear_buddies(cfs_rq, se);
7160 
7161 	if (curr->policy != SCHED_BATCH) {
7162 		update_rq_clock(rq);
7163 		/*
7164 		 * Update run-time statistics of the 'current'.
7165 		 */
7166 		update_curr(cfs_rq);
7167 		/*
7168 		 * Tell update_rq_clock() that we've just updated,
7169 		 * so we don't do microscopic update in schedule()
7170 		 * and double the fastpath cost.
7171 		 */
7172 		rq_clock_skip_update(rq);
7173 	}
7174 
7175 	set_skip_buddy(se);
7176 }
7177 
7178 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7179 {
7180 	struct sched_entity *se = &p->se;
7181 
7182 	/* throttled hierarchies are not runnable */
7183 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7184 		return false;
7185 
7186 	/* Tell the scheduler that we'd really like pse to run next. */
7187 	set_next_buddy(se);
7188 
7189 	yield_task_fair(rq);
7190 
7191 	return true;
7192 }
7193 
7194 #ifdef CONFIG_SMP
7195 /**************************************************
7196  * Fair scheduling class load-balancing methods.
7197  *
7198  * BASICS
7199  *
7200  * The purpose of load-balancing is to achieve the same basic fairness the
7201  * per-CPU scheduler provides, namely provide a proportional amount of compute
7202  * time to each task. This is expressed in the following equation:
7203  *
7204  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7205  *
7206  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7207  * W_i,0 is defined as:
7208  *
7209  *   W_i,0 = \Sum_j w_i,j                                             (2)
7210  *
7211  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7212  * is derived from the nice value as per sched_prio_to_weight[].
7213  *
7214  * The weight average is an exponential decay average of the instantaneous
7215  * weight:
7216  *
7217  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7218  *
7219  * C_i is the compute capacity of CPU i, typically it is the
7220  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7221  * can also include other factors [XXX].
7222  *
7223  * To achieve this balance we define a measure of imbalance which follows
7224  * directly from (1):
7225  *
7226  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7227  *
7228  * We them move tasks around to minimize the imbalance. In the continuous
7229  * function space it is obvious this converges, in the discrete case we get
7230  * a few fun cases generally called infeasible weight scenarios.
7231  *
7232  * [XXX expand on:
7233  *     - infeasible weights;
7234  *     - local vs global optima in the discrete case. ]
7235  *
7236  *
7237  * SCHED DOMAINS
7238  *
7239  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7240  * for all i,j solution, we create a tree of CPUs that follows the hardware
7241  * topology where each level pairs two lower groups (or better). This results
7242  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7243  * tree to only the first of the previous level and we decrease the frequency
7244  * of load-balance at each level inv. proportional to the number of CPUs in
7245  * the groups.
7246  *
7247  * This yields:
7248  *
7249  *     log_2 n     1     n
7250  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7251  *     i = 0      2^i   2^i
7252  *                               `- size of each group
7253  *         |         |     `- number of CPUs doing load-balance
7254  *         |         `- freq
7255  *         `- sum over all levels
7256  *
7257  * Coupled with a limit on how many tasks we can migrate every balance pass,
7258  * this makes (5) the runtime complexity of the balancer.
7259  *
7260  * An important property here is that each CPU is still (indirectly) connected
7261  * to every other CPU in at most O(log n) steps:
7262  *
7263  * The adjacency matrix of the resulting graph is given by:
7264  *
7265  *             log_2 n
7266  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7267  *             k = 0
7268  *
7269  * And you'll find that:
7270  *
7271  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7272  *
7273  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7274  * The task movement gives a factor of O(m), giving a convergence complexity
7275  * of:
7276  *
7277  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7278  *
7279  *
7280  * WORK CONSERVING
7281  *
7282  * In order to avoid CPUs going idle while there's still work to do, new idle
7283  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7284  * tree itself instead of relying on other CPUs to bring it work.
7285  *
7286  * This adds some complexity to both (5) and (8) but it reduces the total idle
7287  * time.
7288  *
7289  * [XXX more?]
7290  *
7291  *
7292  * CGROUPS
7293  *
7294  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7295  *
7296  *                                s_k,i
7297  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7298  *                                 S_k
7299  *
7300  * Where
7301  *
7302  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7303  *
7304  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7305  *
7306  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7307  * property.
7308  *
7309  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7310  *      rewrite all of this once again.]
7311  */
7312 
7313 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7314 
7315 enum fbq_type { regular, remote, all };
7316 
7317 /*
7318  * 'group_type' describes the group of CPUs at the moment of load balancing.
7319  *
7320  * The enum is ordered by pulling priority, with the group with lowest priority
7321  * first so the group_type can simply be compared when selecting the busiest
7322  * group. See update_sd_pick_busiest().
7323  */
7324 enum group_type {
7325 	/* The group has spare capacity that can be used to run more tasks.  */
7326 	group_has_spare = 0,
7327 	/*
7328 	 * The group is fully used and the tasks don't compete for more CPU
7329 	 * cycles. Nevertheless, some tasks might wait before running.
7330 	 */
7331 	group_fully_busy,
7332 	/*
7333 	 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7334 	 * and must be migrated to a more powerful CPU.
7335 	 */
7336 	group_misfit_task,
7337 	/*
7338 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7339 	 * and the task should be migrated to it instead of running on the
7340 	 * current CPU.
7341 	 */
7342 	group_asym_packing,
7343 	/*
7344 	 * The tasks' affinity constraints previously prevented the scheduler
7345 	 * from balancing the load across the system.
7346 	 */
7347 	group_imbalanced,
7348 	/*
7349 	 * The CPU is overloaded and can't provide expected CPU cycles to all
7350 	 * tasks.
7351 	 */
7352 	group_overloaded
7353 };
7354 
7355 enum migration_type {
7356 	migrate_load = 0,
7357 	migrate_util,
7358 	migrate_task,
7359 	migrate_misfit
7360 };
7361 
7362 #define LBF_ALL_PINNED	0x01
7363 #define LBF_NEED_BREAK	0x02
7364 #define LBF_DST_PINNED  0x04
7365 #define LBF_SOME_PINNED	0x08
7366 #define LBF_NOHZ_STATS	0x10
7367 #define LBF_NOHZ_AGAIN	0x20
7368 
7369 struct lb_env {
7370 	struct sched_domain	*sd;
7371 
7372 	struct rq		*src_rq;
7373 	int			src_cpu;
7374 
7375 	int			dst_cpu;
7376 	struct rq		*dst_rq;
7377 
7378 	struct cpumask		*dst_grpmask;
7379 	int			new_dst_cpu;
7380 	enum cpu_idle_type	idle;
7381 	long			imbalance;
7382 	/* The set of CPUs under consideration for load-balancing */
7383 	struct cpumask		*cpus;
7384 
7385 	unsigned int		flags;
7386 
7387 	unsigned int		loop;
7388 	unsigned int		loop_break;
7389 	unsigned int		loop_max;
7390 
7391 	enum fbq_type		fbq_type;
7392 	enum migration_type	migration_type;
7393 	struct list_head	tasks;
7394 };
7395 
7396 /*
7397  * Is this task likely cache-hot:
7398  */
7399 static int task_hot(struct task_struct *p, struct lb_env *env)
7400 {
7401 	s64 delta;
7402 
7403 	lockdep_assert_held(&env->src_rq->lock);
7404 
7405 	if (p->sched_class != &fair_sched_class)
7406 		return 0;
7407 
7408 	if (unlikely(task_has_idle_policy(p)))
7409 		return 0;
7410 
7411 	/* SMT siblings share cache */
7412 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7413 		return 0;
7414 
7415 	/*
7416 	 * Buddy candidates are cache hot:
7417 	 */
7418 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7419 			(&p->se == cfs_rq_of(&p->se)->next ||
7420 			 &p->se == cfs_rq_of(&p->se)->last))
7421 		return 1;
7422 
7423 	if (sysctl_sched_migration_cost == -1)
7424 		return 1;
7425 	if (sysctl_sched_migration_cost == 0)
7426 		return 0;
7427 
7428 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7429 
7430 	return delta < (s64)sysctl_sched_migration_cost;
7431 }
7432 
7433 #ifdef CONFIG_NUMA_BALANCING
7434 /*
7435  * Returns 1, if task migration degrades locality
7436  * Returns 0, if task migration improves locality i.e migration preferred.
7437  * Returns -1, if task migration is not affected by locality.
7438  */
7439 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7440 {
7441 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7442 	unsigned long src_weight, dst_weight;
7443 	int src_nid, dst_nid, dist;
7444 
7445 	if (!static_branch_likely(&sched_numa_balancing))
7446 		return -1;
7447 
7448 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7449 		return -1;
7450 
7451 	src_nid = cpu_to_node(env->src_cpu);
7452 	dst_nid = cpu_to_node(env->dst_cpu);
7453 
7454 	if (src_nid == dst_nid)
7455 		return -1;
7456 
7457 	/* Migrating away from the preferred node is always bad. */
7458 	if (src_nid == p->numa_preferred_nid) {
7459 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7460 			return 1;
7461 		else
7462 			return -1;
7463 	}
7464 
7465 	/* Encourage migration to the preferred node. */
7466 	if (dst_nid == p->numa_preferred_nid)
7467 		return 0;
7468 
7469 	/* Leaving a core idle is often worse than degrading locality. */
7470 	if (env->idle == CPU_IDLE)
7471 		return -1;
7472 
7473 	dist = node_distance(src_nid, dst_nid);
7474 	if (numa_group) {
7475 		src_weight = group_weight(p, src_nid, dist);
7476 		dst_weight = group_weight(p, dst_nid, dist);
7477 	} else {
7478 		src_weight = task_weight(p, src_nid, dist);
7479 		dst_weight = task_weight(p, dst_nid, dist);
7480 	}
7481 
7482 	return dst_weight < src_weight;
7483 }
7484 
7485 #else
7486 static inline int migrate_degrades_locality(struct task_struct *p,
7487 					     struct lb_env *env)
7488 {
7489 	return -1;
7490 }
7491 #endif
7492 
7493 /*
7494  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7495  */
7496 static
7497 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7498 {
7499 	int tsk_cache_hot;
7500 
7501 	lockdep_assert_held(&env->src_rq->lock);
7502 
7503 	/*
7504 	 * We do not migrate tasks that are:
7505 	 * 1) throttled_lb_pair, or
7506 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7507 	 * 3) running (obviously), or
7508 	 * 4) are cache-hot on their current CPU.
7509 	 */
7510 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7511 		return 0;
7512 
7513 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7514 		int cpu;
7515 
7516 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7517 
7518 		env->flags |= LBF_SOME_PINNED;
7519 
7520 		/*
7521 		 * Remember if this task can be migrated to any other CPU in
7522 		 * our sched_group. We may want to revisit it if we couldn't
7523 		 * meet load balance goals by pulling other tasks on src_cpu.
7524 		 *
7525 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7526 		 * already computed one in current iteration.
7527 		 */
7528 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7529 			return 0;
7530 
7531 		/* Prevent to re-select dst_cpu via env's CPUs: */
7532 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7533 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7534 				env->flags |= LBF_DST_PINNED;
7535 				env->new_dst_cpu = cpu;
7536 				break;
7537 			}
7538 		}
7539 
7540 		return 0;
7541 	}
7542 
7543 	/* Record that we found atleast one task that could run on dst_cpu */
7544 	env->flags &= ~LBF_ALL_PINNED;
7545 
7546 	if (task_running(env->src_rq, p)) {
7547 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7548 		return 0;
7549 	}
7550 
7551 	/*
7552 	 * Aggressive migration if:
7553 	 * 1) destination numa is preferred
7554 	 * 2) task is cache cold, or
7555 	 * 3) too many balance attempts have failed.
7556 	 */
7557 	tsk_cache_hot = migrate_degrades_locality(p, env);
7558 	if (tsk_cache_hot == -1)
7559 		tsk_cache_hot = task_hot(p, env);
7560 
7561 	if (tsk_cache_hot <= 0 ||
7562 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7563 		if (tsk_cache_hot == 1) {
7564 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7565 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7566 		}
7567 		return 1;
7568 	}
7569 
7570 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7571 	return 0;
7572 }
7573 
7574 /*
7575  * detach_task() -- detach the task for the migration specified in env
7576  */
7577 static void detach_task(struct task_struct *p, struct lb_env *env)
7578 {
7579 	lockdep_assert_held(&env->src_rq->lock);
7580 
7581 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7582 	set_task_cpu(p, env->dst_cpu);
7583 }
7584 
7585 /*
7586  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7587  * part of active balancing operations within "domain".
7588  *
7589  * Returns a task if successful and NULL otherwise.
7590  */
7591 static struct task_struct *detach_one_task(struct lb_env *env)
7592 {
7593 	struct task_struct *p;
7594 
7595 	lockdep_assert_held(&env->src_rq->lock);
7596 
7597 	list_for_each_entry_reverse(p,
7598 			&env->src_rq->cfs_tasks, se.group_node) {
7599 		if (!can_migrate_task(p, env))
7600 			continue;
7601 
7602 		detach_task(p, env);
7603 
7604 		/*
7605 		 * Right now, this is only the second place where
7606 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7607 		 * so we can safely collect stats here rather than
7608 		 * inside detach_tasks().
7609 		 */
7610 		schedstat_inc(env->sd->lb_gained[env->idle]);
7611 		return p;
7612 	}
7613 	return NULL;
7614 }
7615 
7616 static const unsigned int sched_nr_migrate_break = 32;
7617 
7618 /*
7619  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7620  * busiest_rq, as part of a balancing operation within domain "sd".
7621  *
7622  * Returns number of detached tasks if successful and 0 otherwise.
7623  */
7624 static int detach_tasks(struct lb_env *env)
7625 {
7626 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7627 	unsigned long util, load;
7628 	struct task_struct *p;
7629 	int detached = 0;
7630 
7631 	lockdep_assert_held(&env->src_rq->lock);
7632 
7633 	if (env->imbalance <= 0)
7634 		return 0;
7635 
7636 	while (!list_empty(tasks)) {
7637 		/*
7638 		 * We don't want to steal all, otherwise we may be treated likewise,
7639 		 * which could at worst lead to a livelock crash.
7640 		 */
7641 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7642 			break;
7643 
7644 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7645 
7646 		env->loop++;
7647 		/* We've more or less seen every task there is, call it quits */
7648 		if (env->loop > env->loop_max)
7649 			break;
7650 
7651 		/* take a breather every nr_migrate tasks */
7652 		if (env->loop > env->loop_break) {
7653 			env->loop_break += sched_nr_migrate_break;
7654 			env->flags |= LBF_NEED_BREAK;
7655 			break;
7656 		}
7657 
7658 		if (!can_migrate_task(p, env))
7659 			goto next;
7660 
7661 		switch (env->migration_type) {
7662 		case migrate_load:
7663 			/*
7664 			 * Depending of the number of CPUs and tasks and the
7665 			 * cgroup hierarchy, task_h_load() can return a null
7666 			 * value. Make sure that env->imbalance decreases
7667 			 * otherwise detach_tasks() will stop only after
7668 			 * detaching up to loop_max tasks.
7669 			 */
7670 			load = max_t(unsigned long, task_h_load(p), 1);
7671 
7672 			if (sched_feat(LB_MIN) &&
7673 			    load < 16 && !env->sd->nr_balance_failed)
7674 				goto next;
7675 
7676 			/*
7677 			 * Make sure that we don't migrate too much load.
7678 			 * Nevertheless, let relax the constraint if
7679 			 * scheduler fails to find a good waiting task to
7680 			 * migrate.
7681 			 */
7682 
7683 			if ((load >> env->sd->nr_balance_failed) > env->imbalance)
7684 				goto next;
7685 
7686 			env->imbalance -= load;
7687 			break;
7688 
7689 		case migrate_util:
7690 			util = task_util_est(p);
7691 
7692 			if (util > env->imbalance)
7693 				goto next;
7694 
7695 			env->imbalance -= util;
7696 			break;
7697 
7698 		case migrate_task:
7699 			env->imbalance--;
7700 			break;
7701 
7702 		case migrate_misfit:
7703 			/* This is not a misfit task */
7704 			if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7705 				goto next;
7706 
7707 			env->imbalance = 0;
7708 			break;
7709 		}
7710 
7711 		detach_task(p, env);
7712 		list_add(&p->se.group_node, &env->tasks);
7713 
7714 		detached++;
7715 
7716 #ifdef CONFIG_PREEMPTION
7717 		/*
7718 		 * NEWIDLE balancing is a source of latency, so preemptible
7719 		 * kernels will stop after the first task is detached to minimize
7720 		 * the critical section.
7721 		 */
7722 		if (env->idle == CPU_NEWLY_IDLE)
7723 			break;
7724 #endif
7725 
7726 		/*
7727 		 * We only want to steal up to the prescribed amount of
7728 		 * load/util/tasks.
7729 		 */
7730 		if (env->imbalance <= 0)
7731 			break;
7732 
7733 		continue;
7734 next:
7735 		list_move(&p->se.group_node, tasks);
7736 	}
7737 
7738 	/*
7739 	 * Right now, this is one of only two places we collect this stat
7740 	 * so we can safely collect detach_one_task() stats here rather
7741 	 * than inside detach_one_task().
7742 	 */
7743 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7744 
7745 	return detached;
7746 }
7747 
7748 /*
7749  * attach_task() -- attach the task detached by detach_task() to its new rq.
7750  */
7751 static void attach_task(struct rq *rq, struct task_struct *p)
7752 {
7753 	lockdep_assert_held(&rq->lock);
7754 
7755 	BUG_ON(task_rq(p) != rq);
7756 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7757 	check_preempt_curr(rq, p, 0);
7758 }
7759 
7760 /*
7761  * attach_one_task() -- attaches the task returned from detach_one_task() to
7762  * its new rq.
7763  */
7764 static void attach_one_task(struct rq *rq, struct task_struct *p)
7765 {
7766 	struct rq_flags rf;
7767 
7768 	rq_lock(rq, &rf);
7769 	update_rq_clock(rq);
7770 	attach_task(rq, p);
7771 	rq_unlock(rq, &rf);
7772 }
7773 
7774 /*
7775  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7776  * new rq.
7777  */
7778 static void attach_tasks(struct lb_env *env)
7779 {
7780 	struct list_head *tasks = &env->tasks;
7781 	struct task_struct *p;
7782 	struct rq_flags rf;
7783 
7784 	rq_lock(env->dst_rq, &rf);
7785 	update_rq_clock(env->dst_rq);
7786 
7787 	while (!list_empty(tasks)) {
7788 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7789 		list_del_init(&p->se.group_node);
7790 
7791 		attach_task(env->dst_rq, p);
7792 	}
7793 
7794 	rq_unlock(env->dst_rq, &rf);
7795 }
7796 
7797 #ifdef CONFIG_NO_HZ_COMMON
7798 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7799 {
7800 	if (cfs_rq->avg.load_avg)
7801 		return true;
7802 
7803 	if (cfs_rq->avg.util_avg)
7804 		return true;
7805 
7806 	return false;
7807 }
7808 
7809 static inline bool others_have_blocked(struct rq *rq)
7810 {
7811 	if (READ_ONCE(rq->avg_rt.util_avg))
7812 		return true;
7813 
7814 	if (READ_ONCE(rq->avg_dl.util_avg))
7815 		return true;
7816 
7817 	if (thermal_load_avg(rq))
7818 		return true;
7819 
7820 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7821 	if (READ_ONCE(rq->avg_irq.util_avg))
7822 		return true;
7823 #endif
7824 
7825 	return false;
7826 }
7827 
7828 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7829 {
7830 	rq->last_blocked_load_update_tick = jiffies;
7831 
7832 	if (!has_blocked)
7833 		rq->has_blocked_load = 0;
7834 }
7835 #else
7836 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7837 static inline bool others_have_blocked(struct rq *rq) { return false; }
7838 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7839 #endif
7840 
7841 static bool __update_blocked_others(struct rq *rq, bool *done)
7842 {
7843 	const struct sched_class *curr_class;
7844 	u64 now = rq_clock_pelt(rq);
7845 	unsigned long thermal_pressure;
7846 	bool decayed;
7847 
7848 	/*
7849 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7850 	 * DL and IRQ signals have been updated before updating CFS.
7851 	 */
7852 	curr_class = rq->curr->sched_class;
7853 
7854 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
7855 
7856 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7857 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
7858 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
7859 		  update_irq_load_avg(rq, 0);
7860 
7861 	if (others_have_blocked(rq))
7862 		*done = false;
7863 
7864 	return decayed;
7865 }
7866 
7867 #ifdef CONFIG_FAIR_GROUP_SCHED
7868 
7869 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7870 {
7871 	if (cfs_rq->load.weight)
7872 		return false;
7873 
7874 	if (cfs_rq->avg.load_sum)
7875 		return false;
7876 
7877 	if (cfs_rq->avg.util_sum)
7878 		return false;
7879 
7880 	if (cfs_rq->avg.runnable_sum)
7881 		return false;
7882 
7883 	return true;
7884 }
7885 
7886 static bool __update_blocked_fair(struct rq *rq, bool *done)
7887 {
7888 	struct cfs_rq *cfs_rq, *pos;
7889 	bool decayed = false;
7890 	int cpu = cpu_of(rq);
7891 
7892 	/*
7893 	 * Iterates the task_group tree in a bottom up fashion, see
7894 	 * list_add_leaf_cfs_rq() for details.
7895 	 */
7896 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7897 		struct sched_entity *se;
7898 
7899 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
7900 			update_tg_load_avg(cfs_rq);
7901 
7902 			if (cfs_rq == &rq->cfs)
7903 				decayed = true;
7904 		}
7905 
7906 		/* Propagate pending load changes to the parent, if any: */
7907 		se = cfs_rq->tg->se[cpu];
7908 		if (se && !skip_blocked_update(se))
7909 			update_load_avg(cfs_rq_of(se), se, 0);
7910 
7911 		/*
7912 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7913 		 * decayed cfs_rqs linger on the list.
7914 		 */
7915 		if (cfs_rq_is_decayed(cfs_rq))
7916 			list_del_leaf_cfs_rq(cfs_rq);
7917 
7918 		/* Don't need periodic decay once load/util_avg are null */
7919 		if (cfs_rq_has_blocked(cfs_rq))
7920 			*done = false;
7921 	}
7922 
7923 	return decayed;
7924 }
7925 
7926 /*
7927  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7928  * This needs to be done in a top-down fashion because the load of a child
7929  * group is a fraction of its parents load.
7930  */
7931 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7932 {
7933 	struct rq *rq = rq_of(cfs_rq);
7934 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7935 	unsigned long now = jiffies;
7936 	unsigned long load;
7937 
7938 	if (cfs_rq->last_h_load_update == now)
7939 		return;
7940 
7941 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
7942 	for_each_sched_entity(se) {
7943 		cfs_rq = cfs_rq_of(se);
7944 		WRITE_ONCE(cfs_rq->h_load_next, se);
7945 		if (cfs_rq->last_h_load_update == now)
7946 			break;
7947 	}
7948 
7949 	if (!se) {
7950 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7951 		cfs_rq->last_h_load_update = now;
7952 	}
7953 
7954 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7955 		load = cfs_rq->h_load;
7956 		load = div64_ul(load * se->avg.load_avg,
7957 			cfs_rq_load_avg(cfs_rq) + 1);
7958 		cfs_rq = group_cfs_rq(se);
7959 		cfs_rq->h_load = load;
7960 		cfs_rq->last_h_load_update = now;
7961 	}
7962 }
7963 
7964 static unsigned long task_h_load(struct task_struct *p)
7965 {
7966 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7967 
7968 	update_cfs_rq_h_load(cfs_rq);
7969 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7970 			cfs_rq_load_avg(cfs_rq) + 1);
7971 }
7972 #else
7973 static bool __update_blocked_fair(struct rq *rq, bool *done)
7974 {
7975 	struct cfs_rq *cfs_rq = &rq->cfs;
7976 	bool decayed;
7977 
7978 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7979 	if (cfs_rq_has_blocked(cfs_rq))
7980 		*done = false;
7981 
7982 	return decayed;
7983 }
7984 
7985 static unsigned long task_h_load(struct task_struct *p)
7986 {
7987 	return p->se.avg.load_avg;
7988 }
7989 #endif
7990 
7991 static void update_blocked_averages(int cpu)
7992 {
7993 	bool decayed = false, done = true;
7994 	struct rq *rq = cpu_rq(cpu);
7995 	struct rq_flags rf;
7996 
7997 	rq_lock_irqsave(rq, &rf);
7998 	update_rq_clock(rq);
7999 
8000 	decayed |= __update_blocked_others(rq, &done);
8001 	decayed |= __update_blocked_fair(rq, &done);
8002 
8003 	update_blocked_load_status(rq, !done);
8004 	if (decayed)
8005 		cpufreq_update_util(rq, 0);
8006 	rq_unlock_irqrestore(rq, &rf);
8007 }
8008 
8009 /********** Helpers for find_busiest_group ************************/
8010 
8011 /*
8012  * sg_lb_stats - stats of a sched_group required for load_balancing
8013  */
8014 struct sg_lb_stats {
8015 	unsigned long avg_load; /*Avg load across the CPUs of the group */
8016 	unsigned long group_load; /* Total load over the CPUs of the group */
8017 	unsigned long group_capacity;
8018 	unsigned long group_util; /* Total utilization over the CPUs of the group */
8019 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8020 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
8021 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8022 	unsigned int idle_cpus;
8023 	unsigned int group_weight;
8024 	enum group_type group_type;
8025 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8026 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8027 #ifdef CONFIG_NUMA_BALANCING
8028 	unsigned int nr_numa_running;
8029 	unsigned int nr_preferred_running;
8030 #endif
8031 };
8032 
8033 /*
8034  * sd_lb_stats - Structure to store the statistics of a sched_domain
8035  *		 during load balancing.
8036  */
8037 struct sd_lb_stats {
8038 	struct sched_group *busiest;	/* Busiest group in this sd */
8039 	struct sched_group *local;	/* Local group in this sd */
8040 	unsigned long total_load;	/* Total load of all groups in sd */
8041 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
8042 	unsigned long avg_load;	/* Average load across all groups in sd */
8043 	unsigned int prefer_sibling; /* tasks should go to sibling first */
8044 
8045 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8046 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
8047 };
8048 
8049 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8050 {
8051 	/*
8052 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8053 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8054 	 * We must however set busiest_stat::group_type and
8055 	 * busiest_stat::idle_cpus to the worst busiest group because
8056 	 * update_sd_pick_busiest() reads these before assignment.
8057 	 */
8058 	*sds = (struct sd_lb_stats){
8059 		.busiest = NULL,
8060 		.local = NULL,
8061 		.total_load = 0UL,
8062 		.total_capacity = 0UL,
8063 		.busiest_stat = {
8064 			.idle_cpus = UINT_MAX,
8065 			.group_type = group_has_spare,
8066 		},
8067 	};
8068 }
8069 
8070 static unsigned long scale_rt_capacity(int cpu)
8071 {
8072 	struct rq *rq = cpu_rq(cpu);
8073 	unsigned long max = arch_scale_cpu_capacity(cpu);
8074 	unsigned long used, free;
8075 	unsigned long irq;
8076 
8077 	irq = cpu_util_irq(rq);
8078 
8079 	if (unlikely(irq >= max))
8080 		return 1;
8081 
8082 	/*
8083 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8084 	 * (running and not running) with weights 0 and 1024 respectively.
8085 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
8086 	 * average uses the actual delta max capacity(load).
8087 	 */
8088 	used = READ_ONCE(rq->avg_rt.util_avg);
8089 	used += READ_ONCE(rq->avg_dl.util_avg);
8090 	used += thermal_load_avg(rq);
8091 
8092 	if (unlikely(used >= max))
8093 		return 1;
8094 
8095 	free = max - used;
8096 
8097 	return scale_irq_capacity(free, irq, max);
8098 }
8099 
8100 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8101 {
8102 	unsigned long capacity = scale_rt_capacity(cpu);
8103 	struct sched_group *sdg = sd->groups;
8104 
8105 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8106 
8107 	if (!capacity)
8108 		capacity = 1;
8109 
8110 	cpu_rq(cpu)->cpu_capacity = capacity;
8111 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8112 
8113 	sdg->sgc->capacity = capacity;
8114 	sdg->sgc->min_capacity = capacity;
8115 	sdg->sgc->max_capacity = capacity;
8116 }
8117 
8118 void update_group_capacity(struct sched_domain *sd, int cpu)
8119 {
8120 	struct sched_domain *child = sd->child;
8121 	struct sched_group *group, *sdg = sd->groups;
8122 	unsigned long capacity, min_capacity, max_capacity;
8123 	unsigned long interval;
8124 
8125 	interval = msecs_to_jiffies(sd->balance_interval);
8126 	interval = clamp(interval, 1UL, max_load_balance_interval);
8127 	sdg->sgc->next_update = jiffies + interval;
8128 
8129 	if (!child) {
8130 		update_cpu_capacity(sd, cpu);
8131 		return;
8132 	}
8133 
8134 	capacity = 0;
8135 	min_capacity = ULONG_MAX;
8136 	max_capacity = 0;
8137 
8138 	if (child->flags & SD_OVERLAP) {
8139 		/*
8140 		 * SD_OVERLAP domains cannot assume that child groups
8141 		 * span the current group.
8142 		 */
8143 
8144 		for_each_cpu(cpu, sched_group_span(sdg)) {
8145 			unsigned long cpu_cap = capacity_of(cpu);
8146 
8147 			capacity += cpu_cap;
8148 			min_capacity = min(cpu_cap, min_capacity);
8149 			max_capacity = max(cpu_cap, max_capacity);
8150 		}
8151 	} else  {
8152 		/*
8153 		 * !SD_OVERLAP domains can assume that child groups
8154 		 * span the current group.
8155 		 */
8156 
8157 		group = child->groups;
8158 		do {
8159 			struct sched_group_capacity *sgc = group->sgc;
8160 
8161 			capacity += sgc->capacity;
8162 			min_capacity = min(sgc->min_capacity, min_capacity);
8163 			max_capacity = max(sgc->max_capacity, max_capacity);
8164 			group = group->next;
8165 		} while (group != child->groups);
8166 	}
8167 
8168 	sdg->sgc->capacity = capacity;
8169 	sdg->sgc->min_capacity = min_capacity;
8170 	sdg->sgc->max_capacity = max_capacity;
8171 }
8172 
8173 /*
8174  * Check whether the capacity of the rq has been noticeably reduced by side
8175  * activity. The imbalance_pct is used for the threshold.
8176  * Return true is the capacity is reduced
8177  */
8178 static inline int
8179 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8180 {
8181 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8182 				(rq->cpu_capacity_orig * 100));
8183 }
8184 
8185 /*
8186  * Check whether a rq has a misfit task and if it looks like we can actually
8187  * help that task: we can migrate the task to a CPU of higher capacity, or
8188  * the task's current CPU is heavily pressured.
8189  */
8190 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8191 {
8192 	return rq->misfit_task_load &&
8193 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8194 		 check_cpu_capacity(rq, sd));
8195 }
8196 
8197 /*
8198  * Group imbalance indicates (and tries to solve) the problem where balancing
8199  * groups is inadequate due to ->cpus_ptr constraints.
8200  *
8201  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8202  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8203  * Something like:
8204  *
8205  *	{ 0 1 2 3 } { 4 5 6 7 }
8206  *	        *     * * *
8207  *
8208  * If we were to balance group-wise we'd place two tasks in the first group and
8209  * two tasks in the second group. Clearly this is undesired as it will overload
8210  * cpu 3 and leave one of the CPUs in the second group unused.
8211  *
8212  * The current solution to this issue is detecting the skew in the first group
8213  * by noticing the lower domain failed to reach balance and had difficulty
8214  * moving tasks due to affinity constraints.
8215  *
8216  * When this is so detected; this group becomes a candidate for busiest; see
8217  * update_sd_pick_busiest(). And calculate_imbalance() and
8218  * find_busiest_group() avoid some of the usual balance conditions to allow it
8219  * to create an effective group imbalance.
8220  *
8221  * This is a somewhat tricky proposition since the next run might not find the
8222  * group imbalance and decide the groups need to be balanced again. A most
8223  * subtle and fragile situation.
8224  */
8225 
8226 static inline int sg_imbalanced(struct sched_group *group)
8227 {
8228 	return group->sgc->imbalance;
8229 }
8230 
8231 /*
8232  * group_has_capacity returns true if the group has spare capacity that could
8233  * be used by some tasks.
8234  * We consider that a group has spare capacity if the  * number of task is
8235  * smaller than the number of CPUs or if the utilization is lower than the
8236  * available capacity for CFS tasks.
8237  * For the latter, we use a threshold to stabilize the state, to take into
8238  * account the variance of the tasks' load and to return true if the available
8239  * capacity in meaningful for the load balancer.
8240  * As an example, an available capacity of 1% can appear but it doesn't make
8241  * any benefit for the load balance.
8242  */
8243 static inline bool
8244 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8245 {
8246 	if (sgs->sum_nr_running < sgs->group_weight)
8247 		return true;
8248 
8249 	if ((sgs->group_capacity * imbalance_pct) <
8250 			(sgs->group_runnable * 100))
8251 		return false;
8252 
8253 	if ((sgs->group_capacity * 100) >
8254 			(sgs->group_util * imbalance_pct))
8255 		return true;
8256 
8257 	return false;
8258 }
8259 
8260 /*
8261  *  group_is_overloaded returns true if the group has more tasks than it can
8262  *  handle.
8263  *  group_is_overloaded is not equals to !group_has_capacity because a group
8264  *  with the exact right number of tasks, has no more spare capacity but is not
8265  *  overloaded so both group_has_capacity and group_is_overloaded return
8266  *  false.
8267  */
8268 static inline bool
8269 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8270 {
8271 	if (sgs->sum_nr_running <= sgs->group_weight)
8272 		return false;
8273 
8274 	if ((sgs->group_capacity * 100) <
8275 			(sgs->group_util * imbalance_pct))
8276 		return true;
8277 
8278 	if ((sgs->group_capacity * imbalance_pct) <
8279 			(sgs->group_runnable * 100))
8280 		return true;
8281 
8282 	return false;
8283 }
8284 
8285 /*
8286  * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8287  * per-CPU capacity than sched_group ref.
8288  */
8289 static inline bool
8290 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8291 {
8292 	return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
8293 }
8294 
8295 /*
8296  * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8297  * per-CPU capacity_orig than sched_group ref.
8298  */
8299 static inline bool
8300 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8301 {
8302 	return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
8303 }
8304 
8305 static inline enum
8306 group_type group_classify(unsigned int imbalance_pct,
8307 			  struct sched_group *group,
8308 			  struct sg_lb_stats *sgs)
8309 {
8310 	if (group_is_overloaded(imbalance_pct, sgs))
8311 		return group_overloaded;
8312 
8313 	if (sg_imbalanced(group))
8314 		return group_imbalanced;
8315 
8316 	if (sgs->group_asym_packing)
8317 		return group_asym_packing;
8318 
8319 	if (sgs->group_misfit_task_load)
8320 		return group_misfit_task;
8321 
8322 	if (!group_has_capacity(imbalance_pct, sgs))
8323 		return group_fully_busy;
8324 
8325 	return group_has_spare;
8326 }
8327 
8328 static bool update_nohz_stats(struct rq *rq, bool force)
8329 {
8330 #ifdef CONFIG_NO_HZ_COMMON
8331 	unsigned int cpu = rq->cpu;
8332 
8333 	if (!rq->has_blocked_load)
8334 		return false;
8335 
8336 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8337 		return false;
8338 
8339 	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8340 		return true;
8341 
8342 	update_blocked_averages(cpu);
8343 
8344 	return rq->has_blocked_load;
8345 #else
8346 	return false;
8347 #endif
8348 }
8349 
8350 /**
8351  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8352  * @env: The load balancing environment.
8353  * @group: sched_group whose statistics are to be updated.
8354  * @sgs: variable to hold the statistics for this group.
8355  * @sg_status: Holds flag indicating the status of the sched_group
8356  */
8357 static inline void update_sg_lb_stats(struct lb_env *env,
8358 				      struct sched_group *group,
8359 				      struct sg_lb_stats *sgs,
8360 				      int *sg_status)
8361 {
8362 	int i, nr_running, local_group;
8363 
8364 	memset(sgs, 0, sizeof(*sgs));
8365 
8366 	local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8367 
8368 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8369 		struct rq *rq = cpu_rq(i);
8370 
8371 		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8372 			env->flags |= LBF_NOHZ_AGAIN;
8373 
8374 		sgs->group_load += cpu_load(rq);
8375 		sgs->group_util += cpu_util(i);
8376 		sgs->group_runnable += cpu_runnable(rq);
8377 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8378 
8379 		nr_running = rq->nr_running;
8380 		sgs->sum_nr_running += nr_running;
8381 
8382 		if (nr_running > 1)
8383 			*sg_status |= SG_OVERLOAD;
8384 
8385 		if (cpu_overutilized(i))
8386 			*sg_status |= SG_OVERUTILIZED;
8387 
8388 #ifdef CONFIG_NUMA_BALANCING
8389 		sgs->nr_numa_running += rq->nr_numa_running;
8390 		sgs->nr_preferred_running += rq->nr_preferred_running;
8391 #endif
8392 		/*
8393 		 * No need to call idle_cpu() if nr_running is not 0
8394 		 */
8395 		if (!nr_running && idle_cpu(i)) {
8396 			sgs->idle_cpus++;
8397 			/* Idle cpu can't have misfit task */
8398 			continue;
8399 		}
8400 
8401 		if (local_group)
8402 			continue;
8403 
8404 		/* Check for a misfit task on the cpu */
8405 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8406 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8407 			sgs->group_misfit_task_load = rq->misfit_task_load;
8408 			*sg_status |= SG_OVERLOAD;
8409 		}
8410 	}
8411 
8412 	/* Check if dst CPU is idle and preferred to this group */
8413 	if (env->sd->flags & SD_ASYM_PACKING &&
8414 	    env->idle != CPU_NOT_IDLE &&
8415 	    sgs->sum_h_nr_running &&
8416 	    sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8417 		sgs->group_asym_packing = 1;
8418 	}
8419 
8420 	sgs->group_capacity = group->sgc->capacity;
8421 
8422 	sgs->group_weight = group->group_weight;
8423 
8424 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8425 
8426 	/* Computing avg_load makes sense only when group is overloaded */
8427 	if (sgs->group_type == group_overloaded)
8428 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8429 				sgs->group_capacity;
8430 }
8431 
8432 /**
8433  * update_sd_pick_busiest - return 1 on busiest group
8434  * @env: The load balancing environment.
8435  * @sds: sched_domain statistics
8436  * @sg: sched_group candidate to be checked for being the busiest
8437  * @sgs: sched_group statistics
8438  *
8439  * Determine if @sg is a busier group than the previously selected
8440  * busiest group.
8441  *
8442  * Return: %true if @sg is a busier group than the previously selected
8443  * busiest group. %false otherwise.
8444  */
8445 static bool update_sd_pick_busiest(struct lb_env *env,
8446 				   struct sd_lb_stats *sds,
8447 				   struct sched_group *sg,
8448 				   struct sg_lb_stats *sgs)
8449 {
8450 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8451 
8452 	/* Make sure that there is at least one task to pull */
8453 	if (!sgs->sum_h_nr_running)
8454 		return false;
8455 
8456 	/*
8457 	 * Don't try to pull misfit tasks we can't help.
8458 	 * We can use max_capacity here as reduction in capacity on some
8459 	 * CPUs in the group should either be possible to resolve
8460 	 * internally or be covered by avg_load imbalance (eventually).
8461 	 */
8462 	if (sgs->group_type == group_misfit_task &&
8463 	    (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8464 	     sds->local_stat.group_type != group_has_spare))
8465 		return false;
8466 
8467 	if (sgs->group_type > busiest->group_type)
8468 		return true;
8469 
8470 	if (sgs->group_type < busiest->group_type)
8471 		return false;
8472 
8473 	/*
8474 	 * The candidate and the current busiest group are the same type of
8475 	 * group. Let check which one is the busiest according to the type.
8476 	 */
8477 
8478 	switch (sgs->group_type) {
8479 	case group_overloaded:
8480 		/* Select the overloaded group with highest avg_load. */
8481 		if (sgs->avg_load <= busiest->avg_load)
8482 			return false;
8483 		break;
8484 
8485 	case group_imbalanced:
8486 		/*
8487 		 * Select the 1st imbalanced group as we don't have any way to
8488 		 * choose one more than another.
8489 		 */
8490 		return false;
8491 
8492 	case group_asym_packing:
8493 		/* Prefer to move from lowest priority CPU's work */
8494 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8495 			return false;
8496 		break;
8497 
8498 	case group_misfit_task:
8499 		/*
8500 		 * If we have more than one misfit sg go with the biggest
8501 		 * misfit.
8502 		 */
8503 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8504 			return false;
8505 		break;
8506 
8507 	case group_fully_busy:
8508 		/*
8509 		 * Select the fully busy group with highest avg_load. In
8510 		 * theory, there is no need to pull task from such kind of
8511 		 * group because tasks have all compute capacity that they need
8512 		 * but we can still improve the overall throughput by reducing
8513 		 * contention when accessing shared HW resources.
8514 		 *
8515 		 * XXX for now avg_load is not computed and always 0 so we
8516 		 * select the 1st one.
8517 		 */
8518 		if (sgs->avg_load <= busiest->avg_load)
8519 			return false;
8520 		break;
8521 
8522 	case group_has_spare:
8523 		/*
8524 		 * Select not overloaded group with lowest number of idle cpus
8525 		 * and highest number of running tasks. We could also compare
8526 		 * the spare capacity which is more stable but it can end up
8527 		 * that the group has less spare capacity but finally more idle
8528 		 * CPUs which means less opportunity to pull tasks.
8529 		 */
8530 		if (sgs->idle_cpus > busiest->idle_cpus)
8531 			return false;
8532 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8533 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
8534 			return false;
8535 
8536 		break;
8537 	}
8538 
8539 	/*
8540 	 * Candidate sg has no more than one task per CPU and has higher
8541 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8542 	 * throughput. Maximize throughput, power/energy consequences are not
8543 	 * considered.
8544 	 */
8545 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8546 	    (sgs->group_type <= group_fully_busy) &&
8547 	    (group_smaller_min_cpu_capacity(sds->local, sg)))
8548 		return false;
8549 
8550 	return true;
8551 }
8552 
8553 #ifdef CONFIG_NUMA_BALANCING
8554 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8555 {
8556 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8557 		return regular;
8558 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8559 		return remote;
8560 	return all;
8561 }
8562 
8563 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8564 {
8565 	if (rq->nr_running > rq->nr_numa_running)
8566 		return regular;
8567 	if (rq->nr_running > rq->nr_preferred_running)
8568 		return remote;
8569 	return all;
8570 }
8571 #else
8572 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8573 {
8574 	return all;
8575 }
8576 
8577 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8578 {
8579 	return regular;
8580 }
8581 #endif /* CONFIG_NUMA_BALANCING */
8582 
8583 
8584 struct sg_lb_stats;
8585 
8586 /*
8587  * task_running_on_cpu - return 1 if @p is running on @cpu.
8588  */
8589 
8590 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8591 {
8592 	/* Task has no contribution or is new */
8593 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8594 		return 0;
8595 
8596 	if (task_on_rq_queued(p))
8597 		return 1;
8598 
8599 	return 0;
8600 }
8601 
8602 /**
8603  * idle_cpu_without - would a given CPU be idle without p ?
8604  * @cpu: the processor on which idleness is tested.
8605  * @p: task which should be ignored.
8606  *
8607  * Return: 1 if the CPU would be idle. 0 otherwise.
8608  */
8609 static int idle_cpu_without(int cpu, struct task_struct *p)
8610 {
8611 	struct rq *rq = cpu_rq(cpu);
8612 
8613 	if (rq->curr != rq->idle && rq->curr != p)
8614 		return 0;
8615 
8616 	/*
8617 	 * rq->nr_running can't be used but an updated version without the
8618 	 * impact of p on cpu must be used instead. The updated nr_running
8619 	 * be computed and tested before calling idle_cpu_without().
8620 	 */
8621 
8622 #ifdef CONFIG_SMP
8623 	if (rq->ttwu_pending)
8624 		return 0;
8625 #endif
8626 
8627 	return 1;
8628 }
8629 
8630 /*
8631  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8632  * @sd: The sched_domain level to look for idlest group.
8633  * @group: sched_group whose statistics are to be updated.
8634  * @sgs: variable to hold the statistics for this group.
8635  * @p: The task for which we look for the idlest group/CPU.
8636  */
8637 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8638 					  struct sched_group *group,
8639 					  struct sg_lb_stats *sgs,
8640 					  struct task_struct *p)
8641 {
8642 	int i, nr_running;
8643 
8644 	memset(sgs, 0, sizeof(*sgs));
8645 
8646 	for_each_cpu(i, sched_group_span(group)) {
8647 		struct rq *rq = cpu_rq(i);
8648 		unsigned int local;
8649 
8650 		sgs->group_load += cpu_load_without(rq, p);
8651 		sgs->group_util += cpu_util_without(i, p);
8652 		sgs->group_runnable += cpu_runnable_without(rq, p);
8653 		local = task_running_on_cpu(i, p);
8654 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8655 
8656 		nr_running = rq->nr_running - local;
8657 		sgs->sum_nr_running += nr_running;
8658 
8659 		/*
8660 		 * No need to call idle_cpu_without() if nr_running is not 0
8661 		 */
8662 		if (!nr_running && idle_cpu_without(i, p))
8663 			sgs->idle_cpus++;
8664 
8665 	}
8666 
8667 	/* Check if task fits in the group */
8668 	if (sd->flags & SD_ASYM_CPUCAPACITY &&
8669 	    !task_fits_capacity(p, group->sgc->max_capacity)) {
8670 		sgs->group_misfit_task_load = 1;
8671 	}
8672 
8673 	sgs->group_capacity = group->sgc->capacity;
8674 
8675 	sgs->group_weight = group->group_weight;
8676 
8677 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8678 
8679 	/*
8680 	 * Computing avg_load makes sense only when group is fully busy or
8681 	 * overloaded
8682 	 */
8683 	if (sgs->group_type == group_fully_busy ||
8684 		sgs->group_type == group_overloaded)
8685 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8686 				sgs->group_capacity;
8687 }
8688 
8689 static bool update_pick_idlest(struct sched_group *idlest,
8690 			       struct sg_lb_stats *idlest_sgs,
8691 			       struct sched_group *group,
8692 			       struct sg_lb_stats *sgs)
8693 {
8694 	if (sgs->group_type < idlest_sgs->group_type)
8695 		return true;
8696 
8697 	if (sgs->group_type > idlest_sgs->group_type)
8698 		return false;
8699 
8700 	/*
8701 	 * The candidate and the current idlest group are the same type of
8702 	 * group. Let check which one is the idlest according to the type.
8703 	 */
8704 
8705 	switch (sgs->group_type) {
8706 	case group_overloaded:
8707 	case group_fully_busy:
8708 		/* Select the group with lowest avg_load. */
8709 		if (idlest_sgs->avg_load <= sgs->avg_load)
8710 			return false;
8711 		break;
8712 
8713 	case group_imbalanced:
8714 	case group_asym_packing:
8715 		/* Those types are not used in the slow wakeup path */
8716 		return false;
8717 
8718 	case group_misfit_task:
8719 		/* Select group with the highest max capacity */
8720 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8721 			return false;
8722 		break;
8723 
8724 	case group_has_spare:
8725 		/* Select group with most idle CPUs */
8726 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
8727 			return false;
8728 
8729 		/* Select group with lowest group_util */
8730 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8731 			idlest_sgs->group_util <= sgs->group_util)
8732 			return false;
8733 
8734 		break;
8735 	}
8736 
8737 	return true;
8738 }
8739 
8740 /*
8741  * find_idlest_group() finds and returns the least busy CPU group within the
8742  * domain.
8743  *
8744  * Assumes p is allowed on at least one CPU in sd.
8745  */
8746 static struct sched_group *
8747 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
8748 {
8749 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8750 	struct sg_lb_stats local_sgs, tmp_sgs;
8751 	struct sg_lb_stats *sgs;
8752 	unsigned long imbalance;
8753 	struct sg_lb_stats idlest_sgs = {
8754 			.avg_load = UINT_MAX,
8755 			.group_type = group_overloaded,
8756 	};
8757 
8758 	imbalance = scale_load_down(NICE_0_LOAD) *
8759 				(sd->imbalance_pct-100) / 100;
8760 
8761 	do {
8762 		int local_group;
8763 
8764 		/* Skip over this group if it has no CPUs allowed */
8765 		if (!cpumask_intersects(sched_group_span(group),
8766 					p->cpus_ptr))
8767 			continue;
8768 
8769 		local_group = cpumask_test_cpu(this_cpu,
8770 					       sched_group_span(group));
8771 
8772 		if (local_group) {
8773 			sgs = &local_sgs;
8774 			local = group;
8775 		} else {
8776 			sgs = &tmp_sgs;
8777 		}
8778 
8779 		update_sg_wakeup_stats(sd, group, sgs, p);
8780 
8781 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8782 			idlest = group;
8783 			idlest_sgs = *sgs;
8784 		}
8785 
8786 	} while (group = group->next, group != sd->groups);
8787 
8788 
8789 	/* There is no idlest group to push tasks to */
8790 	if (!idlest)
8791 		return NULL;
8792 
8793 	/* The local group has been skipped because of CPU affinity */
8794 	if (!local)
8795 		return idlest;
8796 
8797 	/*
8798 	 * If the local group is idler than the selected idlest group
8799 	 * don't try and push the task.
8800 	 */
8801 	if (local_sgs.group_type < idlest_sgs.group_type)
8802 		return NULL;
8803 
8804 	/*
8805 	 * If the local group is busier than the selected idlest group
8806 	 * try and push the task.
8807 	 */
8808 	if (local_sgs.group_type > idlest_sgs.group_type)
8809 		return idlest;
8810 
8811 	switch (local_sgs.group_type) {
8812 	case group_overloaded:
8813 	case group_fully_busy:
8814 		/*
8815 		 * When comparing groups across NUMA domains, it's possible for
8816 		 * the local domain to be very lightly loaded relative to the
8817 		 * remote domains but "imbalance" skews the comparison making
8818 		 * remote CPUs look much more favourable. When considering
8819 		 * cross-domain, add imbalance to the load on the remote node
8820 		 * and consider staying local.
8821 		 */
8822 
8823 		if ((sd->flags & SD_NUMA) &&
8824 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8825 			return NULL;
8826 
8827 		/*
8828 		 * If the local group is less loaded than the selected
8829 		 * idlest group don't try and push any tasks.
8830 		 */
8831 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8832 			return NULL;
8833 
8834 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8835 			return NULL;
8836 		break;
8837 
8838 	case group_imbalanced:
8839 	case group_asym_packing:
8840 		/* Those type are not used in the slow wakeup path */
8841 		return NULL;
8842 
8843 	case group_misfit_task:
8844 		/* Select group with the highest max capacity */
8845 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8846 			return NULL;
8847 		break;
8848 
8849 	case group_has_spare:
8850 		if (sd->flags & SD_NUMA) {
8851 #ifdef CONFIG_NUMA_BALANCING
8852 			int idlest_cpu;
8853 			/*
8854 			 * If there is spare capacity at NUMA, try to select
8855 			 * the preferred node
8856 			 */
8857 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8858 				return NULL;
8859 
8860 			idlest_cpu = cpumask_first(sched_group_span(idlest));
8861 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8862 				return idlest;
8863 #endif
8864 			/*
8865 			 * Otherwise, keep the task on this node to stay close
8866 			 * its wakeup source and improve locality. If there is
8867 			 * a real need of migration, periodic load balance will
8868 			 * take care of it.
8869 			 */
8870 			if (local_sgs.idle_cpus)
8871 				return NULL;
8872 		}
8873 
8874 		/*
8875 		 * Select group with highest number of idle CPUs. We could also
8876 		 * compare the utilization which is more stable but it can end
8877 		 * up that the group has less spare capacity but finally more
8878 		 * idle CPUs which means more opportunity to run task.
8879 		 */
8880 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8881 			return NULL;
8882 		break;
8883 	}
8884 
8885 	return idlest;
8886 }
8887 
8888 /**
8889  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8890  * @env: The load balancing environment.
8891  * @sds: variable to hold the statistics for this sched_domain.
8892  */
8893 
8894 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8895 {
8896 	struct sched_domain *child = env->sd->child;
8897 	struct sched_group *sg = env->sd->groups;
8898 	struct sg_lb_stats *local = &sds->local_stat;
8899 	struct sg_lb_stats tmp_sgs;
8900 	int sg_status = 0;
8901 
8902 #ifdef CONFIG_NO_HZ_COMMON
8903 	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8904 		env->flags |= LBF_NOHZ_STATS;
8905 #endif
8906 
8907 	do {
8908 		struct sg_lb_stats *sgs = &tmp_sgs;
8909 		int local_group;
8910 
8911 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8912 		if (local_group) {
8913 			sds->local = sg;
8914 			sgs = local;
8915 
8916 			if (env->idle != CPU_NEWLY_IDLE ||
8917 			    time_after_eq(jiffies, sg->sgc->next_update))
8918 				update_group_capacity(env->sd, env->dst_cpu);
8919 		}
8920 
8921 		update_sg_lb_stats(env, sg, sgs, &sg_status);
8922 
8923 		if (local_group)
8924 			goto next_group;
8925 
8926 
8927 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8928 			sds->busiest = sg;
8929 			sds->busiest_stat = *sgs;
8930 		}
8931 
8932 next_group:
8933 		/* Now, start updating sd_lb_stats */
8934 		sds->total_load += sgs->group_load;
8935 		sds->total_capacity += sgs->group_capacity;
8936 
8937 		sg = sg->next;
8938 	} while (sg != env->sd->groups);
8939 
8940 	/* Tag domain that child domain prefers tasks go to siblings first */
8941 	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8942 
8943 #ifdef CONFIG_NO_HZ_COMMON
8944 	if ((env->flags & LBF_NOHZ_AGAIN) &&
8945 	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8946 
8947 		WRITE_ONCE(nohz.next_blocked,
8948 			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8949 	}
8950 #endif
8951 
8952 	if (env->sd->flags & SD_NUMA)
8953 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8954 
8955 	if (!env->sd->parent) {
8956 		struct root_domain *rd = env->dst_rq->rd;
8957 
8958 		/* update overload indicator if we are at root domain */
8959 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8960 
8961 		/* Update over-utilization (tipping point, U >= 0) indicator */
8962 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8963 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
8964 	} else if (sg_status & SG_OVERUTILIZED) {
8965 		struct root_domain *rd = env->dst_rq->rd;
8966 
8967 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8968 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
8969 	}
8970 }
8971 
8972 static inline long adjust_numa_imbalance(int imbalance, int nr_running)
8973 {
8974 	unsigned int imbalance_min;
8975 
8976 	/*
8977 	 * Allow a small imbalance based on a simple pair of communicating
8978 	 * tasks that remain local when the source domain is almost idle.
8979 	 */
8980 	imbalance_min = 2;
8981 	if (nr_running <= imbalance_min)
8982 		return 0;
8983 
8984 	return imbalance;
8985 }
8986 
8987 /**
8988  * calculate_imbalance - Calculate the amount of imbalance present within the
8989  *			 groups of a given sched_domain during load balance.
8990  * @env: load balance environment
8991  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8992  */
8993 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8994 {
8995 	struct sg_lb_stats *local, *busiest;
8996 
8997 	local = &sds->local_stat;
8998 	busiest = &sds->busiest_stat;
8999 
9000 	if (busiest->group_type == group_misfit_task) {
9001 		/* Set imbalance to allow misfit tasks to be balanced. */
9002 		env->migration_type = migrate_misfit;
9003 		env->imbalance = 1;
9004 		return;
9005 	}
9006 
9007 	if (busiest->group_type == group_asym_packing) {
9008 		/*
9009 		 * In case of asym capacity, we will try to migrate all load to
9010 		 * the preferred CPU.
9011 		 */
9012 		env->migration_type = migrate_task;
9013 		env->imbalance = busiest->sum_h_nr_running;
9014 		return;
9015 	}
9016 
9017 	if (busiest->group_type == group_imbalanced) {
9018 		/*
9019 		 * In the group_imb case we cannot rely on group-wide averages
9020 		 * to ensure CPU-load equilibrium, try to move any task to fix
9021 		 * the imbalance. The next load balance will take care of
9022 		 * balancing back the system.
9023 		 */
9024 		env->migration_type = migrate_task;
9025 		env->imbalance = 1;
9026 		return;
9027 	}
9028 
9029 	/*
9030 	 * Try to use spare capacity of local group without overloading it or
9031 	 * emptying busiest.
9032 	 */
9033 	if (local->group_type == group_has_spare) {
9034 		if (busiest->group_type > group_fully_busy) {
9035 			/*
9036 			 * If busiest is overloaded, try to fill spare
9037 			 * capacity. This might end up creating spare capacity
9038 			 * in busiest or busiest still being overloaded but
9039 			 * there is no simple way to directly compute the
9040 			 * amount of load to migrate in order to balance the
9041 			 * system.
9042 			 */
9043 			env->migration_type = migrate_util;
9044 			env->imbalance = max(local->group_capacity, local->group_util) -
9045 					 local->group_util;
9046 
9047 			/*
9048 			 * In some cases, the group's utilization is max or even
9049 			 * higher than capacity because of migrations but the
9050 			 * local CPU is (newly) idle. There is at least one
9051 			 * waiting task in this overloaded busiest group. Let's
9052 			 * try to pull it.
9053 			 */
9054 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9055 				env->migration_type = migrate_task;
9056 				env->imbalance = 1;
9057 			}
9058 
9059 			return;
9060 		}
9061 
9062 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
9063 			unsigned int nr_diff = busiest->sum_nr_running;
9064 			/*
9065 			 * When prefer sibling, evenly spread running tasks on
9066 			 * groups.
9067 			 */
9068 			env->migration_type = migrate_task;
9069 			lsub_positive(&nr_diff, local->sum_nr_running);
9070 			env->imbalance = nr_diff >> 1;
9071 		} else {
9072 
9073 			/*
9074 			 * If there is no overload, we just want to even the number of
9075 			 * idle cpus.
9076 			 */
9077 			env->migration_type = migrate_task;
9078 			env->imbalance = max_t(long, 0, (local->idle_cpus -
9079 						 busiest->idle_cpus) >> 1);
9080 		}
9081 
9082 		/* Consider allowing a small imbalance between NUMA groups */
9083 		if (env->sd->flags & SD_NUMA)
9084 			env->imbalance = adjust_numa_imbalance(env->imbalance,
9085 						busiest->sum_nr_running);
9086 
9087 		return;
9088 	}
9089 
9090 	/*
9091 	 * Local is fully busy but has to take more load to relieve the
9092 	 * busiest group
9093 	 */
9094 	if (local->group_type < group_overloaded) {
9095 		/*
9096 		 * Local will become overloaded so the avg_load metrics are
9097 		 * finally needed.
9098 		 */
9099 
9100 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9101 				  local->group_capacity;
9102 
9103 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9104 				sds->total_capacity;
9105 		/*
9106 		 * If the local group is more loaded than the selected
9107 		 * busiest group don't try to pull any tasks.
9108 		 */
9109 		if (local->avg_load >= busiest->avg_load) {
9110 			env->imbalance = 0;
9111 			return;
9112 		}
9113 	}
9114 
9115 	/*
9116 	 * Both group are or will become overloaded and we're trying to get all
9117 	 * the CPUs to the average_load, so we don't want to push ourselves
9118 	 * above the average load, nor do we wish to reduce the max loaded CPU
9119 	 * below the average load. At the same time, we also don't want to
9120 	 * reduce the group load below the group capacity. Thus we look for
9121 	 * the minimum possible imbalance.
9122 	 */
9123 	env->migration_type = migrate_load;
9124 	env->imbalance = min(
9125 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9126 		(sds->avg_load - local->avg_load) * local->group_capacity
9127 	) / SCHED_CAPACITY_SCALE;
9128 }
9129 
9130 /******* find_busiest_group() helpers end here *********************/
9131 
9132 /*
9133  * Decision matrix according to the local and busiest group type:
9134  *
9135  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9136  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
9137  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
9138  * misfit_task      force     N/A        N/A    N/A  force      force
9139  * asym_packing     force     force      N/A    N/A  force      force
9140  * imbalanced       force     force      N/A    N/A  force      force
9141  * overloaded       force     force      N/A    N/A  force      avg_load
9142  *
9143  * N/A :      Not Applicable because already filtered while updating
9144  *            statistics.
9145  * balanced : The system is balanced for these 2 groups.
9146  * force :    Calculate the imbalance as load migration is probably needed.
9147  * avg_load : Only if imbalance is significant enough.
9148  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
9149  *            different in groups.
9150  */
9151 
9152 /**
9153  * find_busiest_group - Returns the busiest group within the sched_domain
9154  * if there is an imbalance.
9155  *
9156  * Also calculates the amount of runnable load which should be moved
9157  * to restore balance.
9158  *
9159  * @env: The load balancing environment.
9160  *
9161  * Return:	- The busiest group if imbalance exists.
9162  */
9163 static struct sched_group *find_busiest_group(struct lb_env *env)
9164 {
9165 	struct sg_lb_stats *local, *busiest;
9166 	struct sd_lb_stats sds;
9167 
9168 	init_sd_lb_stats(&sds);
9169 
9170 	/*
9171 	 * Compute the various statistics relevant for load balancing at
9172 	 * this level.
9173 	 */
9174 	update_sd_lb_stats(env, &sds);
9175 
9176 	if (sched_energy_enabled()) {
9177 		struct root_domain *rd = env->dst_rq->rd;
9178 
9179 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9180 			goto out_balanced;
9181 	}
9182 
9183 	local = &sds.local_stat;
9184 	busiest = &sds.busiest_stat;
9185 
9186 	/* There is no busy sibling group to pull tasks from */
9187 	if (!sds.busiest)
9188 		goto out_balanced;
9189 
9190 	/* Misfit tasks should be dealt with regardless of the avg load */
9191 	if (busiest->group_type == group_misfit_task)
9192 		goto force_balance;
9193 
9194 	/* ASYM feature bypasses nice load balance check */
9195 	if (busiest->group_type == group_asym_packing)
9196 		goto force_balance;
9197 
9198 	/*
9199 	 * If the busiest group is imbalanced the below checks don't
9200 	 * work because they assume all things are equal, which typically
9201 	 * isn't true due to cpus_ptr constraints and the like.
9202 	 */
9203 	if (busiest->group_type == group_imbalanced)
9204 		goto force_balance;
9205 
9206 	/*
9207 	 * If the local group is busier than the selected busiest group
9208 	 * don't try and pull any tasks.
9209 	 */
9210 	if (local->group_type > busiest->group_type)
9211 		goto out_balanced;
9212 
9213 	/*
9214 	 * When groups are overloaded, use the avg_load to ensure fairness
9215 	 * between tasks.
9216 	 */
9217 	if (local->group_type == group_overloaded) {
9218 		/*
9219 		 * If the local group is more loaded than the selected
9220 		 * busiest group don't try to pull any tasks.
9221 		 */
9222 		if (local->avg_load >= busiest->avg_load)
9223 			goto out_balanced;
9224 
9225 		/* XXX broken for overlapping NUMA groups */
9226 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9227 				sds.total_capacity;
9228 
9229 		/*
9230 		 * Don't pull any tasks if this group is already above the
9231 		 * domain average load.
9232 		 */
9233 		if (local->avg_load >= sds.avg_load)
9234 			goto out_balanced;
9235 
9236 		/*
9237 		 * If the busiest group is more loaded, use imbalance_pct to be
9238 		 * conservative.
9239 		 */
9240 		if (100 * busiest->avg_load <=
9241 				env->sd->imbalance_pct * local->avg_load)
9242 			goto out_balanced;
9243 	}
9244 
9245 	/* Try to move all excess tasks to child's sibling domain */
9246 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
9247 	    busiest->sum_nr_running > local->sum_nr_running + 1)
9248 		goto force_balance;
9249 
9250 	if (busiest->group_type != group_overloaded) {
9251 		if (env->idle == CPU_NOT_IDLE)
9252 			/*
9253 			 * If the busiest group is not overloaded (and as a
9254 			 * result the local one too) but this CPU is already
9255 			 * busy, let another idle CPU try to pull task.
9256 			 */
9257 			goto out_balanced;
9258 
9259 		if (busiest->group_weight > 1 &&
9260 		    local->idle_cpus <= (busiest->idle_cpus + 1))
9261 			/*
9262 			 * If the busiest group is not overloaded
9263 			 * and there is no imbalance between this and busiest
9264 			 * group wrt idle CPUs, it is balanced. The imbalance
9265 			 * becomes significant if the diff is greater than 1
9266 			 * otherwise we might end up to just move the imbalance
9267 			 * on another group. Of course this applies only if
9268 			 * there is more than 1 CPU per group.
9269 			 */
9270 			goto out_balanced;
9271 
9272 		if (busiest->sum_h_nr_running == 1)
9273 			/*
9274 			 * busiest doesn't have any tasks waiting to run
9275 			 */
9276 			goto out_balanced;
9277 	}
9278 
9279 force_balance:
9280 	/* Looks like there is an imbalance. Compute it */
9281 	calculate_imbalance(env, &sds);
9282 	return env->imbalance ? sds.busiest : NULL;
9283 
9284 out_balanced:
9285 	env->imbalance = 0;
9286 	return NULL;
9287 }
9288 
9289 /*
9290  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9291  */
9292 static struct rq *find_busiest_queue(struct lb_env *env,
9293 				     struct sched_group *group)
9294 {
9295 	struct rq *busiest = NULL, *rq;
9296 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9297 	unsigned int busiest_nr = 0;
9298 	int i;
9299 
9300 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9301 		unsigned long capacity, load, util;
9302 		unsigned int nr_running;
9303 		enum fbq_type rt;
9304 
9305 		rq = cpu_rq(i);
9306 		rt = fbq_classify_rq(rq);
9307 
9308 		/*
9309 		 * We classify groups/runqueues into three groups:
9310 		 *  - regular: there are !numa tasks
9311 		 *  - remote:  there are numa tasks that run on the 'wrong' node
9312 		 *  - all:     there is no distinction
9313 		 *
9314 		 * In order to avoid migrating ideally placed numa tasks,
9315 		 * ignore those when there's better options.
9316 		 *
9317 		 * If we ignore the actual busiest queue to migrate another
9318 		 * task, the next balance pass can still reduce the busiest
9319 		 * queue by moving tasks around inside the node.
9320 		 *
9321 		 * If we cannot move enough load due to this classification
9322 		 * the next pass will adjust the group classification and
9323 		 * allow migration of more tasks.
9324 		 *
9325 		 * Both cases only affect the total convergence complexity.
9326 		 */
9327 		if (rt > env->fbq_type)
9328 			continue;
9329 
9330 		capacity = capacity_of(i);
9331 		nr_running = rq->cfs.h_nr_running;
9332 
9333 		/*
9334 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9335 		 * eventually lead to active_balancing high->low capacity.
9336 		 * Higher per-CPU capacity is considered better than balancing
9337 		 * average load.
9338 		 */
9339 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9340 		    capacity_of(env->dst_cpu) < capacity &&
9341 		    nr_running == 1)
9342 			continue;
9343 
9344 		switch (env->migration_type) {
9345 		case migrate_load:
9346 			/*
9347 			 * When comparing with load imbalance, use cpu_load()
9348 			 * which is not scaled with the CPU capacity.
9349 			 */
9350 			load = cpu_load(rq);
9351 
9352 			if (nr_running == 1 && load > env->imbalance &&
9353 			    !check_cpu_capacity(rq, env->sd))
9354 				break;
9355 
9356 			/*
9357 			 * For the load comparisons with the other CPUs,
9358 			 * consider the cpu_load() scaled with the CPU
9359 			 * capacity, so that the load can be moved away
9360 			 * from the CPU that is potentially running at a
9361 			 * lower capacity.
9362 			 *
9363 			 * Thus we're looking for max(load_i / capacity_i),
9364 			 * crosswise multiplication to rid ourselves of the
9365 			 * division works out to:
9366 			 * load_i * capacity_j > load_j * capacity_i;
9367 			 * where j is our previous maximum.
9368 			 */
9369 			if (load * busiest_capacity > busiest_load * capacity) {
9370 				busiest_load = load;
9371 				busiest_capacity = capacity;
9372 				busiest = rq;
9373 			}
9374 			break;
9375 
9376 		case migrate_util:
9377 			util = cpu_util(cpu_of(rq));
9378 
9379 			/*
9380 			 * Don't try to pull utilization from a CPU with one
9381 			 * running task. Whatever its utilization, we will fail
9382 			 * detach the task.
9383 			 */
9384 			if (nr_running <= 1)
9385 				continue;
9386 
9387 			if (busiest_util < util) {
9388 				busiest_util = util;
9389 				busiest = rq;
9390 			}
9391 			break;
9392 
9393 		case migrate_task:
9394 			if (busiest_nr < nr_running) {
9395 				busiest_nr = nr_running;
9396 				busiest = rq;
9397 			}
9398 			break;
9399 
9400 		case migrate_misfit:
9401 			/*
9402 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
9403 			 * simply seek the "biggest" misfit task.
9404 			 */
9405 			if (rq->misfit_task_load > busiest_load) {
9406 				busiest_load = rq->misfit_task_load;
9407 				busiest = rq;
9408 			}
9409 
9410 			break;
9411 
9412 		}
9413 	}
9414 
9415 	return busiest;
9416 }
9417 
9418 /*
9419  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9420  * so long as it is large enough.
9421  */
9422 #define MAX_PINNED_INTERVAL	512
9423 
9424 static inline bool
9425 asym_active_balance(struct lb_env *env)
9426 {
9427 	/*
9428 	 * ASYM_PACKING needs to force migrate tasks from busy but
9429 	 * lower priority CPUs in order to pack all tasks in the
9430 	 * highest priority CPUs.
9431 	 */
9432 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9433 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
9434 }
9435 
9436 static inline bool
9437 voluntary_active_balance(struct lb_env *env)
9438 {
9439 	struct sched_domain *sd = env->sd;
9440 
9441 	if (asym_active_balance(env))
9442 		return 1;
9443 
9444 	/*
9445 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9446 	 * It's worth migrating the task if the src_cpu's capacity is reduced
9447 	 * because of other sched_class or IRQs if more capacity stays
9448 	 * available on dst_cpu.
9449 	 */
9450 	if ((env->idle != CPU_NOT_IDLE) &&
9451 	    (env->src_rq->cfs.h_nr_running == 1)) {
9452 		if ((check_cpu_capacity(env->src_rq, sd)) &&
9453 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9454 			return 1;
9455 	}
9456 
9457 	if (env->migration_type == migrate_misfit)
9458 		return 1;
9459 
9460 	return 0;
9461 }
9462 
9463 static int need_active_balance(struct lb_env *env)
9464 {
9465 	struct sched_domain *sd = env->sd;
9466 
9467 	if (voluntary_active_balance(env))
9468 		return 1;
9469 
9470 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9471 }
9472 
9473 static int active_load_balance_cpu_stop(void *data);
9474 
9475 static int should_we_balance(struct lb_env *env)
9476 {
9477 	struct sched_group *sg = env->sd->groups;
9478 	int cpu;
9479 
9480 	/*
9481 	 * Ensure the balancing environment is consistent; can happen
9482 	 * when the softirq triggers 'during' hotplug.
9483 	 */
9484 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9485 		return 0;
9486 
9487 	/*
9488 	 * In the newly idle case, we will allow all the CPUs
9489 	 * to do the newly idle load balance.
9490 	 */
9491 	if (env->idle == CPU_NEWLY_IDLE)
9492 		return 1;
9493 
9494 	/* Try to find first idle CPU */
9495 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9496 		if (!idle_cpu(cpu))
9497 			continue;
9498 
9499 		/* Are we the first idle CPU? */
9500 		return cpu == env->dst_cpu;
9501 	}
9502 
9503 	/* Are we the first CPU of this group ? */
9504 	return group_balance_cpu(sg) == env->dst_cpu;
9505 }
9506 
9507 /*
9508  * Check this_cpu to ensure it is balanced within domain. Attempt to move
9509  * tasks if there is an imbalance.
9510  */
9511 static int load_balance(int this_cpu, struct rq *this_rq,
9512 			struct sched_domain *sd, enum cpu_idle_type idle,
9513 			int *continue_balancing)
9514 {
9515 	int ld_moved, cur_ld_moved, active_balance = 0;
9516 	struct sched_domain *sd_parent = sd->parent;
9517 	struct sched_group *group;
9518 	struct rq *busiest;
9519 	struct rq_flags rf;
9520 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9521 
9522 	struct lb_env env = {
9523 		.sd		= sd,
9524 		.dst_cpu	= this_cpu,
9525 		.dst_rq		= this_rq,
9526 		.dst_grpmask    = sched_group_span(sd->groups),
9527 		.idle		= idle,
9528 		.loop_break	= sched_nr_migrate_break,
9529 		.cpus		= cpus,
9530 		.fbq_type	= all,
9531 		.tasks		= LIST_HEAD_INIT(env.tasks),
9532 	};
9533 
9534 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9535 
9536 	schedstat_inc(sd->lb_count[idle]);
9537 
9538 redo:
9539 	if (!should_we_balance(&env)) {
9540 		*continue_balancing = 0;
9541 		goto out_balanced;
9542 	}
9543 
9544 	group = find_busiest_group(&env);
9545 	if (!group) {
9546 		schedstat_inc(sd->lb_nobusyg[idle]);
9547 		goto out_balanced;
9548 	}
9549 
9550 	busiest = find_busiest_queue(&env, group);
9551 	if (!busiest) {
9552 		schedstat_inc(sd->lb_nobusyq[idle]);
9553 		goto out_balanced;
9554 	}
9555 
9556 	BUG_ON(busiest == env.dst_rq);
9557 
9558 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9559 
9560 	env.src_cpu = busiest->cpu;
9561 	env.src_rq = busiest;
9562 
9563 	ld_moved = 0;
9564 	if (busiest->nr_running > 1) {
9565 		/*
9566 		 * Attempt to move tasks. If find_busiest_group has found
9567 		 * an imbalance but busiest->nr_running <= 1, the group is
9568 		 * still unbalanced. ld_moved simply stays zero, so it is
9569 		 * correctly treated as an imbalance.
9570 		 */
9571 		env.flags |= LBF_ALL_PINNED;
9572 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
9573 
9574 more_balance:
9575 		rq_lock_irqsave(busiest, &rf);
9576 		update_rq_clock(busiest);
9577 
9578 		/*
9579 		 * cur_ld_moved - load moved in current iteration
9580 		 * ld_moved     - cumulative load moved across iterations
9581 		 */
9582 		cur_ld_moved = detach_tasks(&env);
9583 
9584 		/*
9585 		 * We've detached some tasks from busiest_rq. Every
9586 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9587 		 * unlock busiest->lock, and we are able to be sure
9588 		 * that nobody can manipulate the tasks in parallel.
9589 		 * See task_rq_lock() family for the details.
9590 		 */
9591 
9592 		rq_unlock(busiest, &rf);
9593 
9594 		if (cur_ld_moved) {
9595 			attach_tasks(&env);
9596 			ld_moved += cur_ld_moved;
9597 		}
9598 
9599 		local_irq_restore(rf.flags);
9600 
9601 		if (env.flags & LBF_NEED_BREAK) {
9602 			env.flags &= ~LBF_NEED_BREAK;
9603 			goto more_balance;
9604 		}
9605 
9606 		/*
9607 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9608 		 * us and move them to an alternate dst_cpu in our sched_group
9609 		 * where they can run. The upper limit on how many times we
9610 		 * iterate on same src_cpu is dependent on number of CPUs in our
9611 		 * sched_group.
9612 		 *
9613 		 * This changes load balance semantics a bit on who can move
9614 		 * load to a given_cpu. In addition to the given_cpu itself
9615 		 * (or a ilb_cpu acting on its behalf where given_cpu is
9616 		 * nohz-idle), we now have balance_cpu in a position to move
9617 		 * load to given_cpu. In rare situations, this may cause
9618 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9619 		 * _independently_ and at _same_ time to move some load to
9620 		 * given_cpu) causing exceess load to be moved to given_cpu.
9621 		 * This however should not happen so much in practice and
9622 		 * moreover subsequent load balance cycles should correct the
9623 		 * excess load moved.
9624 		 */
9625 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9626 
9627 			/* Prevent to re-select dst_cpu via env's CPUs */
9628 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
9629 
9630 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
9631 			env.dst_cpu	 = env.new_dst_cpu;
9632 			env.flags	&= ~LBF_DST_PINNED;
9633 			env.loop	 = 0;
9634 			env.loop_break	 = sched_nr_migrate_break;
9635 
9636 			/*
9637 			 * Go back to "more_balance" rather than "redo" since we
9638 			 * need to continue with same src_cpu.
9639 			 */
9640 			goto more_balance;
9641 		}
9642 
9643 		/*
9644 		 * We failed to reach balance because of affinity.
9645 		 */
9646 		if (sd_parent) {
9647 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9648 
9649 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9650 				*group_imbalance = 1;
9651 		}
9652 
9653 		/* All tasks on this runqueue were pinned by CPU affinity */
9654 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
9655 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
9656 			/*
9657 			 * Attempting to continue load balancing at the current
9658 			 * sched_domain level only makes sense if there are
9659 			 * active CPUs remaining as possible busiest CPUs to
9660 			 * pull load from which are not contained within the
9661 			 * destination group that is receiving any migrated
9662 			 * load.
9663 			 */
9664 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
9665 				env.loop = 0;
9666 				env.loop_break = sched_nr_migrate_break;
9667 				goto redo;
9668 			}
9669 			goto out_all_pinned;
9670 		}
9671 	}
9672 
9673 	if (!ld_moved) {
9674 		schedstat_inc(sd->lb_failed[idle]);
9675 		/*
9676 		 * Increment the failure counter only on periodic balance.
9677 		 * We do not want newidle balance, which can be very
9678 		 * frequent, pollute the failure counter causing
9679 		 * excessive cache_hot migrations and active balances.
9680 		 */
9681 		if (idle != CPU_NEWLY_IDLE)
9682 			sd->nr_balance_failed++;
9683 
9684 		if (need_active_balance(&env)) {
9685 			unsigned long flags;
9686 
9687 			raw_spin_lock_irqsave(&busiest->lock, flags);
9688 
9689 			/*
9690 			 * Don't kick the active_load_balance_cpu_stop,
9691 			 * if the curr task on busiest CPU can't be
9692 			 * moved to this_cpu:
9693 			 */
9694 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9695 				raw_spin_unlock_irqrestore(&busiest->lock,
9696 							    flags);
9697 				env.flags |= LBF_ALL_PINNED;
9698 				goto out_one_pinned;
9699 			}
9700 
9701 			/*
9702 			 * ->active_balance synchronizes accesses to
9703 			 * ->active_balance_work.  Once set, it's cleared
9704 			 * only after active load balance is finished.
9705 			 */
9706 			if (!busiest->active_balance) {
9707 				busiest->active_balance = 1;
9708 				busiest->push_cpu = this_cpu;
9709 				active_balance = 1;
9710 			}
9711 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
9712 
9713 			if (active_balance) {
9714 				stop_one_cpu_nowait(cpu_of(busiest),
9715 					active_load_balance_cpu_stop, busiest,
9716 					&busiest->active_balance_work);
9717 			}
9718 
9719 			/* We've kicked active balancing, force task migration. */
9720 			sd->nr_balance_failed = sd->cache_nice_tries+1;
9721 		}
9722 	} else
9723 		sd->nr_balance_failed = 0;
9724 
9725 	if (likely(!active_balance) || voluntary_active_balance(&env)) {
9726 		/* We were unbalanced, so reset the balancing interval */
9727 		sd->balance_interval = sd->min_interval;
9728 	} else {
9729 		/*
9730 		 * If we've begun active balancing, start to back off. This
9731 		 * case may not be covered by the all_pinned logic if there
9732 		 * is only 1 task on the busy runqueue (because we don't call
9733 		 * detach_tasks).
9734 		 */
9735 		if (sd->balance_interval < sd->max_interval)
9736 			sd->balance_interval *= 2;
9737 	}
9738 
9739 	goto out;
9740 
9741 out_balanced:
9742 	/*
9743 	 * We reach balance although we may have faced some affinity
9744 	 * constraints. Clear the imbalance flag only if other tasks got
9745 	 * a chance to move and fix the imbalance.
9746 	 */
9747 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9748 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9749 
9750 		if (*group_imbalance)
9751 			*group_imbalance = 0;
9752 	}
9753 
9754 out_all_pinned:
9755 	/*
9756 	 * We reach balance because all tasks are pinned at this level so
9757 	 * we can't migrate them. Let the imbalance flag set so parent level
9758 	 * can try to migrate them.
9759 	 */
9760 	schedstat_inc(sd->lb_balanced[idle]);
9761 
9762 	sd->nr_balance_failed = 0;
9763 
9764 out_one_pinned:
9765 	ld_moved = 0;
9766 
9767 	/*
9768 	 * newidle_balance() disregards balance intervals, so we could
9769 	 * repeatedly reach this code, which would lead to balance_interval
9770 	 * skyrocketting in a short amount of time. Skip the balance_interval
9771 	 * increase logic to avoid that.
9772 	 */
9773 	if (env.idle == CPU_NEWLY_IDLE)
9774 		goto out;
9775 
9776 	/* tune up the balancing interval */
9777 	if ((env.flags & LBF_ALL_PINNED &&
9778 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
9779 	    sd->balance_interval < sd->max_interval)
9780 		sd->balance_interval *= 2;
9781 out:
9782 	return ld_moved;
9783 }
9784 
9785 static inline unsigned long
9786 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9787 {
9788 	unsigned long interval = sd->balance_interval;
9789 
9790 	if (cpu_busy)
9791 		interval *= sd->busy_factor;
9792 
9793 	/* scale ms to jiffies */
9794 	interval = msecs_to_jiffies(interval);
9795 
9796 	/*
9797 	 * Reduce likelihood of busy balancing at higher domains racing with
9798 	 * balancing at lower domains by preventing their balancing periods
9799 	 * from being multiples of each other.
9800 	 */
9801 	if (cpu_busy)
9802 		interval -= 1;
9803 
9804 	interval = clamp(interval, 1UL, max_load_balance_interval);
9805 
9806 	return interval;
9807 }
9808 
9809 static inline void
9810 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9811 {
9812 	unsigned long interval, next;
9813 
9814 	/* used by idle balance, so cpu_busy = 0 */
9815 	interval = get_sd_balance_interval(sd, 0);
9816 	next = sd->last_balance + interval;
9817 
9818 	if (time_after(*next_balance, next))
9819 		*next_balance = next;
9820 }
9821 
9822 /*
9823  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9824  * running tasks off the busiest CPU onto idle CPUs. It requires at
9825  * least 1 task to be running on each physical CPU where possible, and
9826  * avoids physical / logical imbalances.
9827  */
9828 static int active_load_balance_cpu_stop(void *data)
9829 {
9830 	struct rq *busiest_rq = data;
9831 	int busiest_cpu = cpu_of(busiest_rq);
9832 	int target_cpu = busiest_rq->push_cpu;
9833 	struct rq *target_rq = cpu_rq(target_cpu);
9834 	struct sched_domain *sd;
9835 	struct task_struct *p = NULL;
9836 	struct rq_flags rf;
9837 
9838 	rq_lock_irq(busiest_rq, &rf);
9839 	/*
9840 	 * Between queueing the stop-work and running it is a hole in which
9841 	 * CPUs can become inactive. We should not move tasks from or to
9842 	 * inactive CPUs.
9843 	 */
9844 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9845 		goto out_unlock;
9846 
9847 	/* Make sure the requested CPU hasn't gone down in the meantime: */
9848 	if (unlikely(busiest_cpu != smp_processor_id() ||
9849 		     !busiest_rq->active_balance))
9850 		goto out_unlock;
9851 
9852 	/* Is there any task to move? */
9853 	if (busiest_rq->nr_running <= 1)
9854 		goto out_unlock;
9855 
9856 	/*
9857 	 * This condition is "impossible", if it occurs
9858 	 * we need to fix it. Originally reported by
9859 	 * Bjorn Helgaas on a 128-CPU setup.
9860 	 */
9861 	BUG_ON(busiest_rq == target_rq);
9862 
9863 	/* Search for an sd spanning us and the target CPU. */
9864 	rcu_read_lock();
9865 	for_each_domain(target_cpu, sd) {
9866 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9867 			break;
9868 	}
9869 
9870 	if (likely(sd)) {
9871 		struct lb_env env = {
9872 			.sd		= sd,
9873 			.dst_cpu	= target_cpu,
9874 			.dst_rq		= target_rq,
9875 			.src_cpu	= busiest_rq->cpu,
9876 			.src_rq		= busiest_rq,
9877 			.idle		= CPU_IDLE,
9878 			/*
9879 			 * can_migrate_task() doesn't need to compute new_dst_cpu
9880 			 * for active balancing. Since we have CPU_IDLE, but no
9881 			 * @dst_grpmask we need to make that test go away with lying
9882 			 * about DST_PINNED.
9883 			 */
9884 			.flags		= LBF_DST_PINNED,
9885 		};
9886 
9887 		schedstat_inc(sd->alb_count);
9888 		update_rq_clock(busiest_rq);
9889 
9890 		p = detach_one_task(&env);
9891 		if (p) {
9892 			schedstat_inc(sd->alb_pushed);
9893 			/* Active balancing done, reset the failure counter. */
9894 			sd->nr_balance_failed = 0;
9895 		} else {
9896 			schedstat_inc(sd->alb_failed);
9897 		}
9898 	}
9899 	rcu_read_unlock();
9900 out_unlock:
9901 	busiest_rq->active_balance = 0;
9902 	rq_unlock(busiest_rq, &rf);
9903 
9904 	if (p)
9905 		attach_one_task(target_rq, p);
9906 
9907 	local_irq_enable();
9908 
9909 	return 0;
9910 }
9911 
9912 static DEFINE_SPINLOCK(balancing);
9913 
9914 /*
9915  * Scale the max load_balance interval with the number of CPUs in the system.
9916  * This trades load-balance latency on larger machines for less cross talk.
9917  */
9918 void update_max_interval(void)
9919 {
9920 	max_load_balance_interval = HZ*num_online_cpus()/10;
9921 }
9922 
9923 /*
9924  * It checks each scheduling domain to see if it is due to be balanced,
9925  * and initiates a balancing operation if so.
9926  *
9927  * Balancing parameters are set up in init_sched_domains.
9928  */
9929 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9930 {
9931 	int continue_balancing = 1;
9932 	int cpu = rq->cpu;
9933 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
9934 	unsigned long interval;
9935 	struct sched_domain *sd;
9936 	/* Earliest time when we have to do rebalance again */
9937 	unsigned long next_balance = jiffies + 60*HZ;
9938 	int update_next_balance = 0;
9939 	int need_serialize, need_decay = 0;
9940 	u64 max_cost = 0;
9941 
9942 	rcu_read_lock();
9943 	for_each_domain(cpu, sd) {
9944 		/*
9945 		 * Decay the newidle max times here because this is a regular
9946 		 * visit to all the domains. Decay ~1% per second.
9947 		 */
9948 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9949 			sd->max_newidle_lb_cost =
9950 				(sd->max_newidle_lb_cost * 253) / 256;
9951 			sd->next_decay_max_lb_cost = jiffies + HZ;
9952 			need_decay = 1;
9953 		}
9954 		max_cost += sd->max_newidle_lb_cost;
9955 
9956 		/*
9957 		 * Stop the load balance at this level. There is another
9958 		 * CPU in our sched group which is doing load balancing more
9959 		 * actively.
9960 		 */
9961 		if (!continue_balancing) {
9962 			if (need_decay)
9963 				continue;
9964 			break;
9965 		}
9966 
9967 		interval = get_sd_balance_interval(sd, busy);
9968 
9969 		need_serialize = sd->flags & SD_SERIALIZE;
9970 		if (need_serialize) {
9971 			if (!spin_trylock(&balancing))
9972 				goto out;
9973 		}
9974 
9975 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
9976 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9977 				/*
9978 				 * The LBF_DST_PINNED logic could have changed
9979 				 * env->dst_cpu, so we can't know our idle
9980 				 * state even if we migrated tasks. Update it.
9981 				 */
9982 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9983 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
9984 			}
9985 			sd->last_balance = jiffies;
9986 			interval = get_sd_balance_interval(sd, busy);
9987 		}
9988 		if (need_serialize)
9989 			spin_unlock(&balancing);
9990 out:
9991 		if (time_after(next_balance, sd->last_balance + interval)) {
9992 			next_balance = sd->last_balance + interval;
9993 			update_next_balance = 1;
9994 		}
9995 	}
9996 	if (need_decay) {
9997 		/*
9998 		 * Ensure the rq-wide value also decays but keep it at a
9999 		 * reasonable floor to avoid funnies with rq->avg_idle.
10000 		 */
10001 		rq->max_idle_balance_cost =
10002 			max((u64)sysctl_sched_migration_cost, max_cost);
10003 	}
10004 	rcu_read_unlock();
10005 
10006 	/*
10007 	 * next_balance will be updated only when there is a need.
10008 	 * When the cpu is attached to null domain for ex, it will not be
10009 	 * updated.
10010 	 */
10011 	if (likely(update_next_balance)) {
10012 		rq->next_balance = next_balance;
10013 
10014 #ifdef CONFIG_NO_HZ_COMMON
10015 		/*
10016 		 * If this CPU has been elected to perform the nohz idle
10017 		 * balance. Other idle CPUs have already rebalanced with
10018 		 * nohz_idle_balance() and nohz.next_balance has been
10019 		 * updated accordingly. This CPU is now running the idle load
10020 		 * balance for itself and we need to update the
10021 		 * nohz.next_balance accordingly.
10022 		 */
10023 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
10024 			nohz.next_balance = rq->next_balance;
10025 #endif
10026 	}
10027 }
10028 
10029 static inline int on_null_domain(struct rq *rq)
10030 {
10031 	return unlikely(!rcu_dereference_sched(rq->sd));
10032 }
10033 
10034 #ifdef CONFIG_NO_HZ_COMMON
10035 /*
10036  * idle load balancing details
10037  * - When one of the busy CPUs notice that there may be an idle rebalancing
10038  *   needed, they will kick the idle load balancer, which then does idle
10039  *   load balancing for all the idle CPUs.
10040  * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10041  *   anywhere yet.
10042  */
10043 
10044 static inline int find_new_ilb(void)
10045 {
10046 	int ilb;
10047 
10048 	for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10049 			      housekeeping_cpumask(HK_FLAG_MISC)) {
10050 		if (idle_cpu(ilb))
10051 			return ilb;
10052 	}
10053 
10054 	return nr_cpu_ids;
10055 }
10056 
10057 /*
10058  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10059  * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10060  */
10061 static void kick_ilb(unsigned int flags)
10062 {
10063 	int ilb_cpu;
10064 
10065 	/*
10066 	 * Increase nohz.next_balance only when if full ilb is triggered but
10067 	 * not if we only update stats.
10068 	 */
10069 	if (flags & NOHZ_BALANCE_KICK)
10070 		nohz.next_balance = jiffies+1;
10071 
10072 	ilb_cpu = find_new_ilb();
10073 
10074 	if (ilb_cpu >= nr_cpu_ids)
10075 		return;
10076 
10077 	/*
10078 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10079 	 * the first flag owns it; cleared by nohz_csd_func().
10080 	 */
10081 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10082 	if (flags & NOHZ_KICK_MASK)
10083 		return;
10084 
10085 	/*
10086 	 * This way we generate an IPI on the target CPU which
10087 	 * is idle. And the softirq performing nohz idle load balance
10088 	 * will be run before returning from the IPI.
10089 	 */
10090 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10091 }
10092 
10093 /*
10094  * Current decision point for kicking the idle load balancer in the presence
10095  * of idle CPUs in the system.
10096  */
10097 static void nohz_balancer_kick(struct rq *rq)
10098 {
10099 	unsigned long now = jiffies;
10100 	struct sched_domain_shared *sds;
10101 	struct sched_domain *sd;
10102 	int nr_busy, i, cpu = rq->cpu;
10103 	unsigned int flags = 0;
10104 
10105 	if (unlikely(rq->idle_balance))
10106 		return;
10107 
10108 	/*
10109 	 * We may be recently in ticked or tickless idle mode. At the first
10110 	 * busy tick after returning from idle, we will update the busy stats.
10111 	 */
10112 	nohz_balance_exit_idle(rq);
10113 
10114 	/*
10115 	 * None are in tickless mode and hence no need for NOHZ idle load
10116 	 * balancing.
10117 	 */
10118 	if (likely(!atomic_read(&nohz.nr_cpus)))
10119 		return;
10120 
10121 	if (READ_ONCE(nohz.has_blocked) &&
10122 	    time_after(now, READ_ONCE(nohz.next_blocked)))
10123 		flags = NOHZ_STATS_KICK;
10124 
10125 	if (time_before(now, nohz.next_balance))
10126 		goto out;
10127 
10128 	if (rq->nr_running >= 2) {
10129 		flags = NOHZ_KICK_MASK;
10130 		goto out;
10131 	}
10132 
10133 	rcu_read_lock();
10134 
10135 	sd = rcu_dereference(rq->sd);
10136 	if (sd) {
10137 		/*
10138 		 * If there's a CFS task and the current CPU has reduced
10139 		 * capacity; kick the ILB to see if there's a better CPU to run
10140 		 * on.
10141 		 */
10142 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10143 			flags = NOHZ_KICK_MASK;
10144 			goto unlock;
10145 		}
10146 	}
10147 
10148 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10149 	if (sd) {
10150 		/*
10151 		 * When ASYM_PACKING; see if there's a more preferred CPU
10152 		 * currently idle; in which case, kick the ILB to move tasks
10153 		 * around.
10154 		 */
10155 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10156 			if (sched_asym_prefer(i, cpu)) {
10157 				flags = NOHZ_KICK_MASK;
10158 				goto unlock;
10159 			}
10160 		}
10161 	}
10162 
10163 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10164 	if (sd) {
10165 		/*
10166 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10167 		 * to run the misfit task on.
10168 		 */
10169 		if (check_misfit_status(rq, sd)) {
10170 			flags = NOHZ_KICK_MASK;
10171 			goto unlock;
10172 		}
10173 
10174 		/*
10175 		 * For asymmetric systems, we do not want to nicely balance
10176 		 * cache use, instead we want to embrace asymmetry and only
10177 		 * ensure tasks have enough CPU capacity.
10178 		 *
10179 		 * Skip the LLC logic because it's not relevant in that case.
10180 		 */
10181 		goto unlock;
10182 	}
10183 
10184 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10185 	if (sds) {
10186 		/*
10187 		 * If there is an imbalance between LLC domains (IOW we could
10188 		 * increase the overall cache use), we need some less-loaded LLC
10189 		 * domain to pull some load. Likewise, we may need to spread
10190 		 * load within the current LLC domain (e.g. packed SMT cores but
10191 		 * other CPUs are idle). We can't really know from here how busy
10192 		 * the others are - so just get a nohz balance going if it looks
10193 		 * like this LLC domain has tasks we could move.
10194 		 */
10195 		nr_busy = atomic_read(&sds->nr_busy_cpus);
10196 		if (nr_busy > 1) {
10197 			flags = NOHZ_KICK_MASK;
10198 			goto unlock;
10199 		}
10200 	}
10201 unlock:
10202 	rcu_read_unlock();
10203 out:
10204 	if (flags)
10205 		kick_ilb(flags);
10206 }
10207 
10208 static void set_cpu_sd_state_busy(int cpu)
10209 {
10210 	struct sched_domain *sd;
10211 
10212 	rcu_read_lock();
10213 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10214 
10215 	if (!sd || !sd->nohz_idle)
10216 		goto unlock;
10217 	sd->nohz_idle = 0;
10218 
10219 	atomic_inc(&sd->shared->nr_busy_cpus);
10220 unlock:
10221 	rcu_read_unlock();
10222 }
10223 
10224 void nohz_balance_exit_idle(struct rq *rq)
10225 {
10226 	SCHED_WARN_ON(rq != this_rq());
10227 
10228 	if (likely(!rq->nohz_tick_stopped))
10229 		return;
10230 
10231 	rq->nohz_tick_stopped = 0;
10232 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10233 	atomic_dec(&nohz.nr_cpus);
10234 
10235 	set_cpu_sd_state_busy(rq->cpu);
10236 }
10237 
10238 static void set_cpu_sd_state_idle(int cpu)
10239 {
10240 	struct sched_domain *sd;
10241 
10242 	rcu_read_lock();
10243 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10244 
10245 	if (!sd || sd->nohz_idle)
10246 		goto unlock;
10247 	sd->nohz_idle = 1;
10248 
10249 	atomic_dec(&sd->shared->nr_busy_cpus);
10250 unlock:
10251 	rcu_read_unlock();
10252 }
10253 
10254 /*
10255  * This routine will record that the CPU is going idle with tick stopped.
10256  * This info will be used in performing idle load balancing in the future.
10257  */
10258 void nohz_balance_enter_idle(int cpu)
10259 {
10260 	struct rq *rq = cpu_rq(cpu);
10261 
10262 	SCHED_WARN_ON(cpu != smp_processor_id());
10263 
10264 	/* If this CPU is going down, then nothing needs to be done: */
10265 	if (!cpu_active(cpu))
10266 		return;
10267 
10268 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
10269 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10270 		return;
10271 
10272 	/*
10273 	 * Can be set safely without rq->lock held
10274 	 * If a clear happens, it will have evaluated last additions because
10275 	 * rq->lock is held during the check and the clear
10276 	 */
10277 	rq->has_blocked_load = 1;
10278 
10279 	/*
10280 	 * The tick is still stopped but load could have been added in the
10281 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
10282 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10283 	 * of nohz.has_blocked can only happen after checking the new load
10284 	 */
10285 	if (rq->nohz_tick_stopped)
10286 		goto out;
10287 
10288 	/* If we're a completely isolated CPU, we don't play: */
10289 	if (on_null_domain(rq))
10290 		return;
10291 
10292 	rq->nohz_tick_stopped = 1;
10293 
10294 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10295 	atomic_inc(&nohz.nr_cpus);
10296 
10297 	/*
10298 	 * Ensures that if nohz_idle_balance() fails to observe our
10299 	 * @idle_cpus_mask store, it must observe the @has_blocked
10300 	 * store.
10301 	 */
10302 	smp_mb__after_atomic();
10303 
10304 	set_cpu_sd_state_idle(cpu);
10305 
10306 out:
10307 	/*
10308 	 * Each time a cpu enter idle, we assume that it has blocked load and
10309 	 * enable the periodic update of the load of idle cpus
10310 	 */
10311 	WRITE_ONCE(nohz.has_blocked, 1);
10312 }
10313 
10314 /*
10315  * Internal function that runs load balance for all idle cpus. The load balance
10316  * can be a simple update of blocked load or a complete load balance with
10317  * tasks movement depending of flags.
10318  * The function returns false if the loop has stopped before running
10319  * through all idle CPUs.
10320  */
10321 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10322 			       enum cpu_idle_type idle)
10323 {
10324 	/* Earliest time when we have to do rebalance again */
10325 	unsigned long now = jiffies;
10326 	unsigned long next_balance = now + 60*HZ;
10327 	bool has_blocked_load = false;
10328 	int update_next_balance = 0;
10329 	int this_cpu = this_rq->cpu;
10330 	int balance_cpu;
10331 	int ret = false;
10332 	struct rq *rq;
10333 
10334 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10335 
10336 	/*
10337 	 * We assume there will be no idle load after this update and clear
10338 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10339 	 * set the has_blocked flag and trig another update of idle load.
10340 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10341 	 * setting the flag, we are sure to not clear the state and not
10342 	 * check the load of an idle cpu.
10343 	 */
10344 	WRITE_ONCE(nohz.has_blocked, 0);
10345 
10346 	/*
10347 	 * Ensures that if we miss the CPU, we must see the has_blocked
10348 	 * store from nohz_balance_enter_idle().
10349 	 */
10350 	smp_mb();
10351 
10352 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
10353 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
10354 			continue;
10355 
10356 		/*
10357 		 * If this CPU gets work to do, stop the load balancing
10358 		 * work being done for other CPUs. Next load
10359 		 * balancing owner will pick it up.
10360 		 */
10361 		if (need_resched()) {
10362 			has_blocked_load = true;
10363 			goto abort;
10364 		}
10365 
10366 		rq = cpu_rq(balance_cpu);
10367 
10368 		has_blocked_load |= update_nohz_stats(rq, true);
10369 
10370 		/*
10371 		 * If time for next balance is due,
10372 		 * do the balance.
10373 		 */
10374 		if (time_after_eq(jiffies, rq->next_balance)) {
10375 			struct rq_flags rf;
10376 
10377 			rq_lock_irqsave(rq, &rf);
10378 			update_rq_clock(rq);
10379 			rq_unlock_irqrestore(rq, &rf);
10380 
10381 			if (flags & NOHZ_BALANCE_KICK)
10382 				rebalance_domains(rq, CPU_IDLE);
10383 		}
10384 
10385 		if (time_after(next_balance, rq->next_balance)) {
10386 			next_balance = rq->next_balance;
10387 			update_next_balance = 1;
10388 		}
10389 	}
10390 
10391 	/*
10392 	 * next_balance will be updated only when there is a need.
10393 	 * When the CPU is attached to null domain for ex, it will not be
10394 	 * updated.
10395 	 */
10396 	if (likely(update_next_balance))
10397 		nohz.next_balance = next_balance;
10398 
10399 	/* Newly idle CPU doesn't need an update */
10400 	if (idle != CPU_NEWLY_IDLE) {
10401 		update_blocked_averages(this_cpu);
10402 		has_blocked_load |= this_rq->has_blocked_load;
10403 	}
10404 
10405 	if (flags & NOHZ_BALANCE_KICK)
10406 		rebalance_domains(this_rq, CPU_IDLE);
10407 
10408 	WRITE_ONCE(nohz.next_blocked,
10409 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10410 
10411 	/* The full idle balance loop has been done */
10412 	ret = true;
10413 
10414 abort:
10415 	/* There is still blocked load, enable periodic update */
10416 	if (has_blocked_load)
10417 		WRITE_ONCE(nohz.has_blocked, 1);
10418 
10419 	return ret;
10420 }
10421 
10422 /*
10423  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10424  * rebalancing for all the cpus for whom scheduler ticks are stopped.
10425  */
10426 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10427 {
10428 	unsigned int flags = this_rq->nohz_idle_balance;
10429 
10430 	if (!flags)
10431 		return false;
10432 
10433 	this_rq->nohz_idle_balance = 0;
10434 
10435 	if (idle != CPU_IDLE)
10436 		return false;
10437 
10438 	_nohz_idle_balance(this_rq, flags, idle);
10439 
10440 	return true;
10441 }
10442 
10443 static void nohz_newidle_balance(struct rq *this_rq)
10444 {
10445 	int this_cpu = this_rq->cpu;
10446 
10447 	/*
10448 	 * This CPU doesn't want to be disturbed by scheduler
10449 	 * housekeeping
10450 	 */
10451 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10452 		return;
10453 
10454 	/* Will wake up very soon. No time for doing anything else*/
10455 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
10456 		return;
10457 
10458 	/* Don't need to update blocked load of idle CPUs*/
10459 	if (!READ_ONCE(nohz.has_blocked) ||
10460 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10461 		return;
10462 
10463 	raw_spin_unlock(&this_rq->lock);
10464 	/*
10465 	 * This CPU is going to be idle and blocked load of idle CPUs
10466 	 * need to be updated. Run the ilb locally as it is a good
10467 	 * candidate for ilb instead of waking up another idle CPU.
10468 	 * Kick an normal ilb if we failed to do the update.
10469 	 */
10470 	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10471 		kick_ilb(NOHZ_STATS_KICK);
10472 	raw_spin_lock(&this_rq->lock);
10473 }
10474 
10475 #else /* !CONFIG_NO_HZ_COMMON */
10476 static inline void nohz_balancer_kick(struct rq *rq) { }
10477 
10478 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10479 {
10480 	return false;
10481 }
10482 
10483 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10484 #endif /* CONFIG_NO_HZ_COMMON */
10485 
10486 /*
10487  * idle_balance is called by schedule() if this_cpu is about to become
10488  * idle. Attempts to pull tasks from other CPUs.
10489  *
10490  * Returns:
10491  *   < 0 - we released the lock and there are !fair tasks present
10492  *     0 - failed, no new tasks
10493  *   > 0 - success, new (fair) tasks present
10494  */
10495 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10496 {
10497 	unsigned long next_balance = jiffies + HZ;
10498 	int this_cpu = this_rq->cpu;
10499 	struct sched_domain *sd;
10500 	int pulled_task = 0;
10501 	u64 curr_cost = 0;
10502 
10503 	update_misfit_status(NULL, this_rq);
10504 	/*
10505 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
10506 	 * measure the duration of idle_balance() as idle time.
10507 	 */
10508 	this_rq->idle_stamp = rq_clock(this_rq);
10509 
10510 	/*
10511 	 * Do not pull tasks towards !active CPUs...
10512 	 */
10513 	if (!cpu_active(this_cpu))
10514 		return 0;
10515 
10516 	/*
10517 	 * This is OK, because current is on_cpu, which avoids it being picked
10518 	 * for load-balance and preemption/IRQs are still disabled avoiding
10519 	 * further scheduler activity on it and we're being very careful to
10520 	 * re-start the picking loop.
10521 	 */
10522 	rq_unpin_lock(this_rq, rf);
10523 
10524 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10525 	    !READ_ONCE(this_rq->rd->overload)) {
10526 
10527 		rcu_read_lock();
10528 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
10529 		if (sd)
10530 			update_next_balance(sd, &next_balance);
10531 		rcu_read_unlock();
10532 
10533 		nohz_newidle_balance(this_rq);
10534 
10535 		goto out;
10536 	}
10537 
10538 	raw_spin_unlock(&this_rq->lock);
10539 
10540 	update_blocked_averages(this_cpu);
10541 	rcu_read_lock();
10542 	for_each_domain(this_cpu, sd) {
10543 		int continue_balancing = 1;
10544 		u64 t0, domain_cost;
10545 
10546 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10547 			update_next_balance(sd, &next_balance);
10548 			break;
10549 		}
10550 
10551 		if (sd->flags & SD_BALANCE_NEWIDLE) {
10552 			t0 = sched_clock_cpu(this_cpu);
10553 
10554 			pulled_task = load_balance(this_cpu, this_rq,
10555 						   sd, CPU_NEWLY_IDLE,
10556 						   &continue_balancing);
10557 
10558 			domain_cost = sched_clock_cpu(this_cpu) - t0;
10559 			if (domain_cost > sd->max_newidle_lb_cost)
10560 				sd->max_newidle_lb_cost = domain_cost;
10561 
10562 			curr_cost += domain_cost;
10563 		}
10564 
10565 		update_next_balance(sd, &next_balance);
10566 
10567 		/*
10568 		 * Stop searching for tasks to pull if there are
10569 		 * now runnable tasks on this rq.
10570 		 */
10571 		if (pulled_task || this_rq->nr_running > 0)
10572 			break;
10573 	}
10574 	rcu_read_unlock();
10575 
10576 	raw_spin_lock(&this_rq->lock);
10577 
10578 	if (curr_cost > this_rq->max_idle_balance_cost)
10579 		this_rq->max_idle_balance_cost = curr_cost;
10580 
10581 out:
10582 	/*
10583 	 * While browsing the domains, we released the rq lock, a task could
10584 	 * have been enqueued in the meantime. Since we're not going idle,
10585 	 * pretend we pulled a task.
10586 	 */
10587 	if (this_rq->cfs.h_nr_running && !pulled_task)
10588 		pulled_task = 1;
10589 
10590 	/* Move the next balance forward */
10591 	if (time_after(this_rq->next_balance, next_balance))
10592 		this_rq->next_balance = next_balance;
10593 
10594 	/* Is there a task of a high priority class? */
10595 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10596 		pulled_task = -1;
10597 
10598 	if (pulled_task)
10599 		this_rq->idle_stamp = 0;
10600 
10601 	rq_repin_lock(this_rq, rf);
10602 
10603 	return pulled_task;
10604 }
10605 
10606 /*
10607  * run_rebalance_domains is triggered when needed from the scheduler tick.
10608  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10609  */
10610 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10611 {
10612 	struct rq *this_rq = this_rq();
10613 	enum cpu_idle_type idle = this_rq->idle_balance ?
10614 						CPU_IDLE : CPU_NOT_IDLE;
10615 
10616 	/*
10617 	 * If this CPU has a pending nohz_balance_kick, then do the
10618 	 * balancing on behalf of the other idle CPUs whose ticks are
10619 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10620 	 * give the idle CPUs a chance to load balance. Else we may
10621 	 * load balance only within the local sched_domain hierarchy
10622 	 * and abort nohz_idle_balance altogether if we pull some load.
10623 	 */
10624 	if (nohz_idle_balance(this_rq, idle))
10625 		return;
10626 
10627 	/* normal load balance */
10628 	update_blocked_averages(this_rq->cpu);
10629 	rebalance_domains(this_rq, idle);
10630 }
10631 
10632 /*
10633  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10634  */
10635 void trigger_load_balance(struct rq *rq)
10636 {
10637 	/* Don't need to rebalance while attached to NULL domain */
10638 	if (unlikely(on_null_domain(rq)))
10639 		return;
10640 
10641 	if (time_after_eq(jiffies, rq->next_balance))
10642 		raise_softirq(SCHED_SOFTIRQ);
10643 
10644 	nohz_balancer_kick(rq);
10645 }
10646 
10647 static void rq_online_fair(struct rq *rq)
10648 {
10649 	update_sysctl();
10650 
10651 	update_runtime_enabled(rq);
10652 }
10653 
10654 static void rq_offline_fair(struct rq *rq)
10655 {
10656 	update_sysctl();
10657 
10658 	/* Ensure any throttled groups are reachable by pick_next_task */
10659 	unthrottle_offline_cfs_rqs(rq);
10660 }
10661 
10662 #endif /* CONFIG_SMP */
10663 
10664 /*
10665  * scheduler tick hitting a task of our scheduling class.
10666  *
10667  * NOTE: This function can be called remotely by the tick offload that
10668  * goes along full dynticks. Therefore no local assumption can be made
10669  * and everything must be accessed through the @rq and @curr passed in
10670  * parameters.
10671  */
10672 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10673 {
10674 	struct cfs_rq *cfs_rq;
10675 	struct sched_entity *se = &curr->se;
10676 
10677 	for_each_sched_entity(se) {
10678 		cfs_rq = cfs_rq_of(se);
10679 		entity_tick(cfs_rq, se, queued);
10680 	}
10681 
10682 	if (static_branch_unlikely(&sched_numa_balancing))
10683 		task_tick_numa(rq, curr);
10684 
10685 	update_misfit_status(curr, rq);
10686 	update_overutilized_status(task_rq(curr));
10687 }
10688 
10689 /*
10690  * called on fork with the child task as argument from the parent's context
10691  *  - child not yet on the tasklist
10692  *  - preemption disabled
10693  */
10694 static void task_fork_fair(struct task_struct *p)
10695 {
10696 	struct cfs_rq *cfs_rq;
10697 	struct sched_entity *se = &p->se, *curr;
10698 	struct rq *rq = this_rq();
10699 	struct rq_flags rf;
10700 
10701 	rq_lock(rq, &rf);
10702 	update_rq_clock(rq);
10703 
10704 	cfs_rq = task_cfs_rq(current);
10705 	curr = cfs_rq->curr;
10706 	if (curr) {
10707 		update_curr(cfs_rq);
10708 		se->vruntime = curr->vruntime;
10709 	}
10710 	place_entity(cfs_rq, se, 1);
10711 
10712 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10713 		/*
10714 		 * Upon rescheduling, sched_class::put_prev_task() will place
10715 		 * 'current' within the tree based on its new key value.
10716 		 */
10717 		swap(curr->vruntime, se->vruntime);
10718 		resched_curr(rq);
10719 	}
10720 
10721 	se->vruntime -= cfs_rq->min_vruntime;
10722 	rq_unlock(rq, &rf);
10723 }
10724 
10725 /*
10726  * Priority of the task has changed. Check to see if we preempt
10727  * the current task.
10728  */
10729 static void
10730 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10731 {
10732 	if (!task_on_rq_queued(p))
10733 		return;
10734 
10735 	if (rq->cfs.nr_running == 1)
10736 		return;
10737 
10738 	/*
10739 	 * Reschedule if we are currently running on this runqueue and
10740 	 * our priority decreased, or if we are not currently running on
10741 	 * this runqueue and our priority is higher than the current's
10742 	 */
10743 	if (rq->curr == p) {
10744 		if (p->prio > oldprio)
10745 			resched_curr(rq);
10746 	} else
10747 		check_preempt_curr(rq, p, 0);
10748 }
10749 
10750 static inline bool vruntime_normalized(struct task_struct *p)
10751 {
10752 	struct sched_entity *se = &p->se;
10753 
10754 	/*
10755 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10756 	 * the dequeue_entity(.flags=0) will already have normalized the
10757 	 * vruntime.
10758 	 */
10759 	if (p->on_rq)
10760 		return true;
10761 
10762 	/*
10763 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
10764 	 * But there are some cases where it has already been normalized:
10765 	 *
10766 	 * - A forked child which is waiting for being woken up by
10767 	 *   wake_up_new_task().
10768 	 * - A task which has been woken up by try_to_wake_up() and
10769 	 *   waiting for actually being woken up by sched_ttwu_pending().
10770 	 */
10771 	if (!se->sum_exec_runtime ||
10772 	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
10773 		return true;
10774 
10775 	return false;
10776 }
10777 
10778 #ifdef CONFIG_FAIR_GROUP_SCHED
10779 /*
10780  * Propagate the changes of the sched_entity across the tg tree to make it
10781  * visible to the root
10782  */
10783 static void propagate_entity_cfs_rq(struct sched_entity *se)
10784 {
10785 	struct cfs_rq *cfs_rq;
10786 
10787 	/* Start to propagate at parent */
10788 	se = se->parent;
10789 
10790 	for_each_sched_entity(se) {
10791 		cfs_rq = cfs_rq_of(se);
10792 
10793 		if (cfs_rq_throttled(cfs_rq))
10794 			break;
10795 
10796 		update_load_avg(cfs_rq, se, UPDATE_TG);
10797 	}
10798 }
10799 #else
10800 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10801 #endif
10802 
10803 static void detach_entity_cfs_rq(struct sched_entity *se)
10804 {
10805 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10806 
10807 	/* Catch up with the cfs_rq and remove our load when we leave */
10808 	update_load_avg(cfs_rq, se, 0);
10809 	detach_entity_load_avg(cfs_rq, se);
10810 	update_tg_load_avg(cfs_rq);
10811 	propagate_entity_cfs_rq(se);
10812 }
10813 
10814 static void attach_entity_cfs_rq(struct sched_entity *se)
10815 {
10816 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10817 
10818 #ifdef CONFIG_FAIR_GROUP_SCHED
10819 	/*
10820 	 * Since the real-depth could have been changed (only FAIR
10821 	 * class maintain depth value), reset depth properly.
10822 	 */
10823 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10824 #endif
10825 
10826 	/* Synchronize entity with its cfs_rq */
10827 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10828 	attach_entity_load_avg(cfs_rq, se);
10829 	update_tg_load_avg(cfs_rq);
10830 	propagate_entity_cfs_rq(se);
10831 }
10832 
10833 static void detach_task_cfs_rq(struct task_struct *p)
10834 {
10835 	struct sched_entity *se = &p->se;
10836 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10837 
10838 	if (!vruntime_normalized(p)) {
10839 		/*
10840 		 * Fix up our vruntime so that the current sleep doesn't
10841 		 * cause 'unlimited' sleep bonus.
10842 		 */
10843 		place_entity(cfs_rq, se, 0);
10844 		se->vruntime -= cfs_rq->min_vruntime;
10845 	}
10846 
10847 	detach_entity_cfs_rq(se);
10848 }
10849 
10850 static void attach_task_cfs_rq(struct task_struct *p)
10851 {
10852 	struct sched_entity *se = &p->se;
10853 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10854 
10855 	attach_entity_cfs_rq(se);
10856 
10857 	if (!vruntime_normalized(p))
10858 		se->vruntime += cfs_rq->min_vruntime;
10859 }
10860 
10861 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10862 {
10863 	detach_task_cfs_rq(p);
10864 }
10865 
10866 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10867 {
10868 	attach_task_cfs_rq(p);
10869 
10870 	if (task_on_rq_queued(p)) {
10871 		/*
10872 		 * We were most likely switched from sched_rt, so
10873 		 * kick off the schedule if running, otherwise just see
10874 		 * if we can still preempt the current task.
10875 		 */
10876 		if (rq->curr == p)
10877 			resched_curr(rq);
10878 		else
10879 			check_preempt_curr(rq, p, 0);
10880 	}
10881 }
10882 
10883 /* Account for a task changing its policy or group.
10884  *
10885  * This routine is mostly called to set cfs_rq->curr field when a task
10886  * migrates between groups/classes.
10887  */
10888 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
10889 {
10890 	struct sched_entity *se = &p->se;
10891 
10892 #ifdef CONFIG_SMP
10893 	if (task_on_rq_queued(p)) {
10894 		/*
10895 		 * Move the next running task to the front of the list, so our
10896 		 * cfs_tasks list becomes MRU one.
10897 		 */
10898 		list_move(&se->group_node, &rq->cfs_tasks);
10899 	}
10900 #endif
10901 
10902 	for_each_sched_entity(se) {
10903 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
10904 
10905 		set_next_entity(cfs_rq, se);
10906 		/* ensure bandwidth has been allocated on our new cfs_rq */
10907 		account_cfs_rq_runtime(cfs_rq, 0);
10908 	}
10909 }
10910 
10911 void init_cfs_rq(struct cfs_rq *cfs_rq)
10912 {
10913 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10914 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10915 #ifndef CONFIG_64BIT
10916 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10917 #endif
10918 #ifdef CONFIG_SMP
10919 	raw_spin_lock_init(&cfs_rq->removed.lock);
10920 #endif
10921 }
10922 
10923 #ifdef CONFIG_FAIR_GROUP_SCHED
10924 static void task_set_group_fair(struct task_struct *p)
10925 {
10926 	struct sched_entity *se = &p->se;
10927 
10928 	set_task_rq(p, task_cpu(p));
10929 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10930 }
10931 
10932 static void task_move_group_fair(struct task_struct *p)
10933 {
10934 	detach_task_cfs_rq(p);
10935 	set_task_rq(p, task_cpu(p));
10936 
10937 #ifdef CONFIG_SMP
10938 	/* Tell se's cfs_rq has been changed -- migrated */
10939 	p->se.avg.last_update_time = 0;
10940 #endif
10941 	attach_task_cfs_rq(p);
10942 }
10943 
10944 static void task_change_group_fair(struct task_struct *p, int type)
10945 {
10946 	switch (type) {
10947 	case TASK_SET_GROUP:
10948 		task_set_group_fair(p);
10949 		break;
10950 
10951 	case TASK_MOVE_GROUP:
10952 		task_move_group_fair(p);
10953 		break;
10954 	}
10955 }
10956 
10957 void free_fair_sched_group(struct task_group *tg)
10958 {
10959 	int i;
10960 
10961 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10962 
10963 	for_each_possible_cpu(i) {
10964 		if (tg->cfs_rq)
10965 			kfree(tg->cfs_rq[i]);
10966 		if (tg->se)
10967 			kfree(tg->se[i]);
10968 	}
10969 
10970 	kfree(tg->cfs_rq);
10971 	kfree(tg->se);
10972 }
10973 
10974 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10975 {
10976 	struct sched_entity *se;
10977 	struct cfs_rq *cfs_rq;
10978 	int i;
10979 
10980 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10981 	if (!tg->cfs_rq)
10982 		goto err;
10983 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10984 	if (!tg->se)
10985 		goto err;
10986 
10987 	tg->shares = NICE_0_LOAD;
10988 
10989 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10990 
10991 	for_each_possible_cpu(i) {
10992 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10993 				      GFP_KERNEL, cpu_to_node(i));
10994 		if (!cfs_rq)
10995 			goto err;
10996 
10997 		se = kzalloc_node(sizeof(struct sched_entity),
10998 				  GFP_KERNEL, cpu_to_node(i));
10999 		if (!se)
11000 			goto err_free_rq;
11001 
11002 		init_cfs_rq(cfs_rq);
11003 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11004 		init_entity_runnable_average(se);
11005 	}
11006 
11007 	return 1;
11008 
11009 err_free_rq:
11010 	kfree(cfs_rq);
11011 err:
11012 	return 0;
11013 }
11014 
11015 void online_fair_sched_group(struct task_group *tg)
11016 {
11017 	struct sched_entity *se;
11018 	struct rq_flags rf;
11019 	struct rq *rq;
11020 	int i;
11021 
11022 	for_each_possible_cpu(i) {
11023 		rq = cpu_rq(i);
11024 		se = tg->se[i];
11025 		rq_lock_irq(rq, &rf);
11026 		update_rq_clock(rq);
11027 		attach_entity_cfs_rq(se);
11028 		sync_throttle(tg, i);
11029 		rq_unlock_irq(rq, &rf);
11030 	}
11031 }
11032 
11033 void unregister_fair_sched_group(struct task_group *tg)
11034 {
11035 	unsigned long flags;
11036 	struct rq *rq;
11037 	int cpu;
11038 
11039 	for_each_possible_cpu(cpu) {
11040 		if (tg->se[cpu])
11041 			remove_entity_load_avg(tg->se[cpu]);
11042 
11043 		/*
11044 		 * Only empty task groups can be destroyed; so we can speculatively
11045 		 * check on_list without danger of it being re-added.
11046 		 */
11047 		if (!tg->cfs_rq[cpu]->on_list)
11048 			continue;
11049 
11050 		rq = cpu_rq(cpu);
11051 
11052 		raw_spin_lock_irqsave(&rq->lock, flags);
11053 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11054 		raw_spin_unlock_irqrestore(&rq->lock, flags);
11055 	}
11056 }
11057 
11058 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11059 			struct sched_entity *se, int cpu,
11060 			struct sched_entity *parent)
11061 {
11062 	struct rq *rq = cpu_rq(cpu);
11063 
11064 	cfs_rq->tg = tg;
11065 	cfs_rq->rq = rq;
11066 	init_cfs_rq_runtime(cfs_rq);
11067 
11068 	tg->cfs_rq[cpu] = cfs_rq;
11069 	tg->se[cpu] = se;
11070 
11071 	/* se could be NULL for root_task_group */
11072 	if (!se)
11073 		return;
11074 
11075 	if (!parent) {
11076 		se->cfs_rq = &rq->cfs;
11077 		se->depth = 0;
11078 	} else {
11079 		se->cfs_rq = parent->my_q;
11080 		se->depth = parent->depth + 1;
11081 	}
11082 
11083 	se->my_q = cfs_rq;
11084 	/* guarantee group entities always have weight */
11085 	update_load_set(&se->load, NICE_0_LOAD);
11086 	se->parent = parent;
11087 }
11088 
11089 static DEFINE_MUTEX(shares_mutex);
11090 
11091 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11092 {
11093 	int i;
11094 
11095 	/*
11096 	 * We can't change the weight of the root cgroup.
11097 	 */
11098 	if (!tg->se[0])
11099 		return -EINVAL;
11100 
11101 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11102 
11103 	mutex_lock(&shares_mutex);
11104 	if (tg->shares == shares)
11105 		goto done;
11106 
11107 	tg->shares = shares;
11108 	for_each_possible_cpu(i) {
11109 		struct rq *rq = cpu_rq(i);
11110 		struct sched_entity *se = tg->se[i];
11111 		struct rq_flags rf;
11112 
11113 		/* Propagate contribution to hierarchy */
11114 		rq_lock_irqsave(rq, &rf);
11115 		update_rq_clock(rq);
11116 		for_each_sched_entity(se) {
11117 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11118 			update_cfs_group(se);
11119 		}
11120 		rq_unlock_irqrestore(rq, &rf);
11121 	}
11122 
11123 done:
11124 	mutex_unlock(&shares_mutex);
11125 	return 0;
11126 }
11127 #else /* CONFIG_FAIR_GROUP_SCHED */
11128 
11129 void free_fair_sched_group(struct task_group *tg) { }
11130 
11131 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11132 {
11133 	return 1;
11134 }
11135 
11136 void online_fair_sched_group(struct task_group *tg) { }
11137 
11138 void unregister_fair_sched_group(struct task_group *tg) { }
11139 
11140 #endif /* CONFIG_FAIR_GROUP_SCHED */
11141 
11142 
11143 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11144 {
11145 	struct sched_entity *se = &task->se;
11146 	unsigned int rr_interval = 0;
11147 
11148 	/*
11149 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11150 	 * idle runqueue:
11151 	 */
11152 	if (rq->cfs.load.weight)
11153 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11154 
11155 	return rr_interval;
11156 }
11157 
11158 /*
11159  * All the scheduling class methods:
11160  */
11161 const struct sched_class fair_sched_class
11162 	__section("__fair_sched_class") = {
11163 	.enqueue_task		= enqueue_task_fair,
11164 	.dequeue_task		= dequeue_task_fair,
11165 	.yield_task		= yield_task_fair,
11166 	.yield_to_task		= yield_to_task_fair,
11167 
11168 	.check_preempt_curr	= check_preempt_wakeup,
11169 
11170 	.pick_next_task		= __pick_next_task_fair,
11171 	.put_prev_task		= put_prev_task_fair,
11172 	.set_next_task          = set_next_task_fair,
11173 
11174 #ifdef CONFIG_SMP
11175 	.balance		= balance_fair,
11176 	.select_task_rq		= select_task_rq_fair,
11177 	.migrate_task_rq	= migrate_task_rq_fair,
11178 
11179 	.rq_online		= rq_online_fair,
11180 	.rq_offline		= rq_offline_fair,
11181 
11182 	.task_dead		= task_dead_fair,
11183 	.set_cpus_allowed	= set_cpus_allowed_common,
11184 #endif
11185 
11186 	.task_tick		= task_tick_fair,
11187 	.task_fork		= task_fork_fair,
11188 
11189 	.prio_changed		= prio_changed_fair,
11190 	.switched_from		= switched_from_fair,
11191 	.switched_to		= switched_to_fair,
11192 
11193 	.get_rr_interval	= get_rr_interval_fair,
11194 
11195 	.update_curr		= update_curr_fair,
11196 
11197 #ifdef CONFIG_FAIR_GROUP_SCHED
11198 	.task_change_group	= task_change_group_fair,
11199 #endif
11200 
11201 #ifdef CONFIG_UCLAMP_TASK
11202 	.uclamp_enabled		= 1,
11203 #endif
11204 };
11205 
11206 #ifdef CONFIG_SCHED_DEBUG
11207 void print_cfs_stats(struct seq_file *m, int cpu)
11208 {
11209 	struct cfs_rq *cfs_rq, *pos;
11210 
11211 	rcu_read_lock();
11212 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11213 		print_cfs_rq(m, cpu, cfs_rq);
11214 	rcu_read_unlock();
11215 }
11216 
11217 #ifdef CONFIG_NUMA_BALANCING
11218 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11219 {
11220 	int node;
11221 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11222 	struct numa_group *ng;
11223 
11224 	rcu_read_lock();
11225 	ng = rcu_dereference(p->numa_group);
11226 	for_each_online_node(node) {
11227 		if (p->numa_faults) {
11228 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11229 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11230 		}
11231 		if (ng) {
11232 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11233 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11234 		}
11235 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11236 	}
11237 	rcu_read_unlock();
11238 }
11239 #endif /* CONFIG_NUMA_BALANCING */
11240 #endif /* CONFIG_SCHED_DEBUG */
11241 
11242 __init void init_sched_fair_class(void)
11243 {
11244 #ifdef CONFIG_SMP
11245 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11246 
11247 #ifdef CONFIG_NO_HZ_COMMON
11248 	nohz.next_balance = jiffies;
11249 	nohz.next_blocked = jiffies;
11250 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11251 #endif
11252 #endif /* SMP */
11253 
11254 }
11255 
11256 /*
11257  * Helper functions to facilitate extracting info from tracepoints.
11258  */
11259 
11260 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11261 {
11262 #ifdef CONFIG_SMP
11263 	return cfs_rq ? &cfs_rq->avg : NULL;
11264 #else
11265 	return NULL;
11266 #endif
11267 }
11268 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11269 
11270 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11271 {
11272 	if (!cfs_rq) {
11273 		if (str)
11274 			strlcpy(str, "(null)", len);
11275 		else
11276 			return NULL;
11277 	}
11278 
11279 	cfs_rq_tg_path(cfs_rq, str, len);
11280 	return str;
11281 }
11282 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11283 
11284 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11285 {
11286 	return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11287 }
11288 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11289 
11290 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11291 {
11292 #ifdef CONFIG_SMP
11293 	return rq ? &rq->avg_rt : NULL;
11294 #else
11295 	return NULL;
11296 #endif
11297 }
11298 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11299 
11300 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11301 {
11302 #ifdef CONFIG_SMP
11303 	return rq ? &rq->avg_dl : NULL;
11304 #else
11305 	return NULL;
11306 #endif
11307 }
11308 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11309 
11310 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11311 {
11312 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11313 	return rq ? &rq->avg_irq : NULL;
11314 #else
11315 	return NULL;
11316 #endif
11317 }
11318 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11319 
11320 int sched_trace_rq_cpu(struct rq *rq)
11321 {
11322 	return rq ? cpu_of(rq) : -1;
11323 }
11324 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11325 
11326 int sched_trace_rq_cpu_capacity(struct rq *rq)
11327 {
11328 	return rq ?
11329 #ifdef CONFIG_SMP
11330 		rq->cpu_capacity
11331 #else
11332 		SCHED_CAPACITY_SCALE
11333 #endif
11334 		: -1;
11335 }
11336 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11337 
11338 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11339 {
11340 #ifdef CONFIG_SMP
11341 	return rd ? rd->span : NULL;
11342 #else
11343 	return NULL;
11344 #endif
11345 }
11346 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11347 
11348 int sched_trace_rq_nr_running(struct rq *rq)
11349 {
11350         return rq ? rq->nr_running : -1;
11351 }
11352 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);
11353