xref: /openbmc/linux/kernel/sched/fair.c (revision a85e4c52)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 /*
26  * Targeted preemption latency for CPU-bound tasks:
27  *
28  * NOTE: this latency value is not the same as the concept of
29  * 'timeslice length' - timeslices in CFS are of variable length
30  * and have no persistent notion like in traditional, time-slice
31  * based scheduling concepts.
32  *
33  * (to see the precise effective timeslice length of your workload,
34  *  run vmstat and monitor the context-switches (cs) field)
35  *
36  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37  */
38 unsigned int sysctl_sched_latency			= 6000000ULL;
39 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
40 
41 /*
42  * The initial- and re-scaling of tunables is configurable
43  *
44  * Options are:
45  *
46  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
47  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49  *
50  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
51  */
52 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
53 
54 /*
55  * Minimal preemption granularity for CPU-bound tasks:
56  *
57  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58  */
59 unsigned int sysctl_sched_min_granularity			= 750000ULL;
60 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
61 
62 /*
63  * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
64  * Applies only when SCHED_IDLE tasks compete with normal tasks.
65  *
66  * (default: 0.75 msec)
67  */
68 unsigned int sysctl_sched_idle_min_granularity			= 750000ULL;
69 
70 /*
71  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
72  */
73 static unsigned int sched_nr_latency = 8;
74 
75 /*
76  * After fork, child runs first. If set to 0 (default) then
77  * parent will (try to) run first.
78  */
79 unsigned int sysctl_sched_child_runs_first __read_mostly;
80 
81 /*
82  * SCHED_OTHER wake-up granularity.
83  *
84  * This option delays the preemption effects of decoupled workloads
85  * and reduces their over-scheduling. Synchronous workloads will still
86  * have immediate wakeup/sleep latencies.
87  *
88  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
89  */
90 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
91 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
92 
93 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
94 
95 int sched_thermal_decay_shift;
96 static int __init setup_sched_thermal_decay_shift(char *str)
97 {
98 	int _shift = 0;
99 
100 	if (kstrtoint(str, 0, &_shift))
101 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
102 
103 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
104 	return 1;
105 }
106 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
107 
108 #ifdef CONFIG_SMP
109 /*
110  * For asym packing, by default the lower numbered CPU has higher priority.
111  */
112 int __weak arch_asym_cpu_priority(int cpu)
113 {
114 	return -cpu;
115 }
116 
117 /*
118  * The margin used when comparing utilization with CPU capacity.
119  *
120  * (default: ~20%)
121  */
122 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
123 
124 /*
125  * The margin used when comparing CPU capacities.
126  * is 'cap1' noticeably greater than 'cap2'
127  *
128  * (default: ~5%)
129  */
130 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
131 #endif
132 
133 #ifdef CONFIG_CFS_BANDWIDTH
134 /*
135  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
136  * each time a cfs_rq requests quota.
137  *
138  * Note: in the case that the slice exceeds the runtime remaining (either due
139  * to consumption or the quota being specified to be smaller than the slice)
140  * we will always only issue the remaining available time.
141  *
142  * (default: 5 msec, units: microseconds)
143  */
144 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
145 #endif
146 
147 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
148 {
149 	lw->weight += inc;
150 	lw->inv_weight = 0;
151 }
152 
153 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
154 {
155 	lw->weight -= dec;
156 	lw->inv_weight = 0;
157 }
158 
159 static inline void update_load_set(struct load_weight *lw, unsigned long w)
160 {
161 	lw->weight = w;
162 	lw->inv_weight = 0;
163 }
164 
165 /*
166  * Increase the granularity value when there are more CPUs,
167  * because with more CPUs the 'effective latency' as visible
168  * to users decreases. But the relationship is not linear,
169  * so pick a second-best guess by going with the log2 of the
170  * number of CPUs.
171  *
172  * This idea comes from the SD scheduler of Con Kolivas:
173  */
174 static unsigned int get_update_sysctl_factor(void)
175 {
176 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
177 	unsigned int factor;
178 
179 	switch (sysctl_sched_tunable_scaling) {
180 	case SCHED_TUNABLESCALING_NONE:
181 		factor = 1;
182 		break;
183 	case SCHED_TUNABLESCALING_LINEAR:
184 		factor = cpus;
185 		break;
186 	case SCHED_TUNABLESCALING_LOG:
187 	default:
188 		factor = 1 + ilog2(cpus);
189 		break;
190 	}
191 
192 	return factor;
193 }
194 
195 static void update_sysctl(void)
196 {
197 	unsigned int factor = get_update_sysctl_factor();
198 
199 #define SET_SYSCTL(name) \
200 	(sysctl_##name = (factor) * normalized_sysctl_##name)
201 	SET_SYSCTL(sched_min_granularity);
202 	SET_SYSCTL(sched_latency);
203 	SET_SYSCTL(sched_wakeup_granularity);
204 #undef SET_SYSCTL
205 }
206 
207 void __init sched_init_granularity(void)
208 {
209 	update_sysctl();
210 }
211 
212 #define WMULT_CONST	(~0U)
213 #define WMULT_SHIFT	32
214 
215 static void __update_inv_weight(struct load_weight *lw)
216 {
217 	unsigned long w;
218 
219 	if (likely(lw->inv_weight))
220 		return;
221 
222 	w = scale_load_down(lw->weight);
223 
224 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
225 		lw->inv_weight = 1;
226 	else if (unlikely(!w))
227 		lw->inv_weight = WMULT_CONST;
228 	else
229 		lw->inv_weight = WMULT_CONST / w;
230 }
231 
232 /*
233  * delta_exec * weight / lw.weight
234  *   OR
235  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
236  *
237  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
238  * we're guaranteed shift stays positive because inv_weight is guaranteed to
239  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
240  *
241  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
242  * weight/lw.weight <= 1, and therefore our shift will also be positive.
243  */
244 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
245 {
246 	u64 fact = scale_load_down(weight);
247 	u32 fact_hi = (u32)(fact >> 32);
248 	int shift = WMULT_SHIFT;
249 	int fs;
250 
251 	__update_inv_weight(lw);
252 
253 	if (unlikely(fact_hi)) {
254 		fs = fls(fact_hi);
255 		shift -= fs;
256 		fact >>= fs;
257 	}
258 
259 	fact = mul_u32_u32(fact, lw->inv_weight);
260 
261 	fact_hi = (u32)(fact >> 32);
262 	if (fact_hi) {
263 		fs = fls(fact_hi);
264 		shift -= fs;
265 		fact >>= fs;
266 	}
267 
268 	return mul_u64_u32_shr(delta_exec, fact, shift);
269 }
270 
271 
272 const struct sched_class fair_sched_class;
273 
274 /**************************************************************
275  * CFS operations on generic schedulable entities:
276  */
277 
278 #ifdef CONFIG_FAIR_GROUP_SCHED
279 
280 /* Walk up scheduling entities hierarchy */
281 #define for_each_sched_entity(se) \
282 		for (; se; se = se->parent)
283 
284 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
285 {
286 	if (!path)
287 		return;
288 
289 	if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
290 		autogroup_path(cfs_rq->tg, path, len);
291 	else if (cfs_rq && cfs_rq->tg->css.cgroup)
292 		cgroup_path(cfs_rq->tg->css.cgroup, path, len);
293 	else
294 		strlcpy(path, "(null)", len);
295 }
296 
297 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
298 {
299 	struct rq *rq = rq_of(cfs_rq);
300 	int cpu = cpu_of(rq);
301 
302 	if (cfs_rq->on_list)
303 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
304 
305 	cfs_rq->on_list = 1;
306 
307 	/*
308 	 * Ensure we either appear before our parent (if already
309 	 * enqueued) or force our parent to appear after us when it is
310 	 * enqueued. The fact that we always enqueue bottom-up
311 	 * reduces this to two cases and a special case for the root
312 	 * cfs_rq. Furthermore, it also means that we will always reset
313 	 * tmp_alone_branch either when the branch is connected
314 	 * to a tree or when we reach the top of the tree
315 	 */
316 	if (cfs_rq->tg->parent &&
317 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
318 		/*
319 		 * If parent is already on the list, we add the child
320 		 * just before. Thanks to circular linked property of
321 		 * the list, this means to put the child at the tail
322 		 * of the list that starts by parent.
323 		 */
324 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
325 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
326 		/*
327 		 * The branch is now connected to its tree so we can
328 		 * reset tmp_alone_branch to the beginning of the
329 		 * list.
330 		 */
331 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
332 		return true;
333 	}
334 
335 	if (!cfs_rq->tg->parent) {
336 		/*
337 		 * cfs rq without parent should be put
338 		 * at the tail of the list.
339 		 */
340 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
341 			&rq->leaf_cfs_rq_list);
342 		/*
343 		 * We have reach the top of a tree so we can reset
344 		 * tmp_alone_branch to the beginning of the list.
345 		 */
346 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
347 		return true;
348 	}
349 
350 	/*
351 	 * The parent has not already been added so we want to
352 	 * make sure that it will be put after us.
353 	 * tmp_alone_branch points to the begin of the branch
354 	 * where we will add parent.
355 	 */
356 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
357 	/*
358 	 * update tmp_alone_branch to points to the new begin
359 	 * of the branch
360 	 */
361 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
362 	return false;
363 }
364 
365 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
366 {
367 	if (cfs_rq->on_list) {
368 		struct rq *rq = rq_of(cfs_rq);
369 
370 		/*
371 		 * With cfs_rq being unthrottled/throttled during an enqueue,
372 		 * it can happen the tmp_alone_branch points the a leaf that
373 		 * we finally want to del. In this case, tmp_alone_branch moves
374 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
375 		 * at the end of the enqueue.
376 		 */
377 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
378 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
379 
380 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
381 		cfs_rq->on_list = 0;
382 	}
383 }
384 
385 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
386 {
387 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
388 }
389 
390 /* Iterate thr' all leaf cfs_rq's on a runqueue */
391 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
392 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
393 				 leaf_cfs_rq_list)
394 
395 /* Do the two (enqueued) entities belong to the same group ? */
396 static inline struct cfs_rq *
397 is_same_group(struct sched_entity *se, struct sched_entity *pse)
398 {
399 	if (se->cfs_rq == pse->cfs_rq)
400 		return se->cfs_rq;
401 
402 	return NULL;
403 }
404 
405 static inline struct sched_entity *parent_entity(struct sched_entity *se)
406 {
407 	return se->parent;
408 }
409 
410 static void
411 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
412 {
413 	int se_depth, pse_depth;
414 
415 	/*
416 	 * preemption test can be made between sibling entities who are in the
417 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
418 	 * both tasks until we find their ancestors who are siblings of common
419 	 * parent.
420 	 */
421 
422 	/* First walk up until both entities are at same depth */
423 	se_depth = (*se)->depth;
424 	pse_depth = (*pse)->depth;
425 
426 	while (se_depth > pse_depth) {
427 		se_depth--;
428 		*se = parent_entity(*se);
429 	}
430 
431 	while (pse_depth > se_depth) {
432 		pse_depth--;
433 		*pse = parent_entity(*pse);
434 	}
435 
436 	while (!is_same_group(*se, *pse)) {
437 		*se = parent_entity(*se);
438 		*pse = parent_entity(*pse);
439 	}
440 }
441 
442 static int tg_is_idle(struct task_group *tg)
443 {
444 	return tg->idle > 0;
445 }
446 
447 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
448 {
449 	return cfs_rq->idle > 0;
450 }
451 
452 static int se_is_idle(struct sched_entity *se)
453 {
454 	if (entity_is_task(se))
455 		return task_has_idle_policy(task_of(se));
456 	return cfs_rq_is_idle(group_cfs_rq(se));
457 }
458 
459 #else	/* !CONFIG_FAIR_GROUP_SCHED */
460 
461 #define for_each_sched_entity(se) \
462 		for (; se; se = NULL)
463 
464 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
465 {
466 	if (path)
467 		strlcpy(path, "(null)", len);
468 }
469 
470 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
471 {
472 	return true;
473 }
474 
475 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
476 {
477 }
478 
479 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
480 {
481 }
482 
483 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
484 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
485 
486 static inline struct sched_entity *parent_entity(struct sched_entity *se)
487 {
488 	return NULL;
489 }
490 
491 static inline void
492 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
493 {
494 }
495 
496 static inline int tg_is_idle(struct task_group *tg)
497 {
498 	return 0;
499 }
500 
501 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
502 {
503 	return 0;
504 }
505 
506 static int se_is_idle(struct sched_entity *se)
507 {
508 	return 0;
509 }
510 
511 #endif	/* CONFIG_FAIR_GROUP_SCHED */
512 
513 static __always_inline
514 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
515 
516 /**************************************************************
517  * Scheduling class tree data structure manipulation methods:
518  */
519 
520 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
521 {
522 	s64 delta = (s64)(vruntime - max_vruntime);
523 	if (delta > 0)
524 		max_vruntime = vruntime;
525 
526 	return max_vruntime;
527 }
528 
529 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
530 {
531 	s64 delta = (s64)(vruntime - min_vruntime);
532 	if (delta < 0)
533 		min_vruntime = vruntime;
534 
535 	return min_vruntime;
536 }
537 
538 static inline bool entity_before(struct sched_entity *a,
539 				struct sched_entity *b)
540 {
541 	return (s64)(a->vruntime - b->vruntime) < 0;
542 }
543 
544 #define __node_2_se(node) \
545 	rb_entry((node), struct sched_entity, run_node)
546 
547 static void update_min_vruntime(struct cfs_rq *cfs_rq)
548 {
549 	struct sched_entity *curr = cfs_rq->curr;
550 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
551 
552 	u64 vruntime = cfs_rq->min_vruntime;
553 
554 	if (curr) {
555 		if (curr->on_rq)
556 			vruntime = curr->vruntime;
557 		else
558 			curr = NULL;
559 	}
560 
561 	if (leftmost) { /* non-empty tree */
562 		struct sched_entity *se = __node_2_se(leftmost);
563 
564 		if (!curr)
565 			vruntime = se->vruntime;
566 		else
567 			vruntime = min_vruntime(vruntime, se->vruntime);
568 	}
569 
570 	/* ensure we never gain time by being placed backwards. */
571 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
572 #ifndef CONFIG_64BIT
573 	smp_wmb();
574 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
575 #endif
576 }
577 
578 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
579 {
580 	return entity_before(__node_2_se(a), __node_2_se(b));
581 }
582 
583 /*
584  * Enqueue an entity into the rb-tree:
585  */
586 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
587 {
588 	rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
589 }
590 
591 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
592 {
593 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
594 }
595 
596 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
597 {
598 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
599 
600 	if (!left)
601 		return NULL;
602 
603 	return __node_2_se(left);
604 }
605 
606 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
607 {
608 	struct rb_node *next = rb_next(&se->run_node);
609 
610 	if (!next)
611 		return NULL;
612 
613 	return __node_2_se(next);
614 }
615 
616 #ifdef CONFIG_SCHED_DEBUG
617 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
618 {
619 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
620 
621 	if (!last)
622 		return NULL;
623 
624 	return __node_2_se(last);
625 }
626 
627 /**************************************************************
628  * Scheduling class statistics methods:
629  */
630 
631 int sched_update_scaling(void)
632 {
633 	unsigned int factor = get_update_sysctl_factor();
634 
635 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
636 					sysctl_sched_min_granularity);
637 
638 #define WRT_SYSCTL(name) \
639 	(normalized_sysctl_##name = sysctl_##name / (factor))
640 	WRT_SYSCTL(sched_min_granularity);
641 	WRT_SYSCTL(sched_latency);
642 	WRT_SYSCTL(sched_wakeup_granularity);
643 #undef WRT_SYSCTL
644 
645 	return 0;
646 }
647 #endif
648 
649 /*
650  * delta /= w
651  */
652 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
653 {
654 	if (unlikely(se->load.weight != NICE_0_LOAD))
655 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
656 
657 	return delta;
658 }
659 
660 /*
661  * The idea is to set a period in which each task runs once.
662  *
663  * When there are too many tasks (sched_nr_latency) we have to stretch
664  * this period because otherwise the slices get too small.
665  *
666  * p = (nr <= nl) ? l : l*nr/nl
667  */
668 static u64 __sched_period(unsigned long nr_running)
669 {
670 	if (unlikely(nr_running > sched_nr_latency))
671 		return nr_running * sysctl_sched_min_granularity;
672 	else
673 		return sysctl_sched_latency;
674 }
675 
676 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
677 
678 /*
679  * We calculate the wall-time slice from the period by taking a part
680  * proportional to the weight.
681  *
682  * s = p*P[w/rw]
683  */
684 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
685 {
686 	unsigned int nr_running = cfs_rq->nr_running;
687 	struct sched_entity *init_se = se;
688 	unsigned int min_gran;
689 	u64 slice;
690 
691 	if (sched_feat(ALT_PERIOD))
692 		nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
693 
694 	slice = __sched_period(nr_running + !se->on_rq);
695 
696 	for_each_sched_entity(se) {
697 		struct load_weight *load;
698 		struct load_weight lw;
699 		struct cfs_rq *qcfs_rq;
700 
701 		qcfs_rq = cfs_rq_of(se);
702 		load = &qcfs_rq->load;
703 
704 		if (unlikely(!se->on_rq)) {
705 			lw = qcfs_rq->load;
706 
707 			update_load_add(&lw, se->load.weight);
708 			load = &lw;
709 		}
710 		slice = __calc_delta(slice, se->load.weight, load);
711 	}
712 
713 	if (sched_feat(BASE_SLICE)) {
714 		if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
715 			min_gran = sysctl_sched_idle_min_granularity;
716 		else
717 			min_gran = sysctl_sched_min_granularity;
718 
719 		slice = max_t(u64, slice, min_gran);
720 	}
721 
722 	return slice;
723 }
724 
725 /*
726  * We calculate the vruntime slice of a to-be-inserted task.
727  *
728  * vs = s/w
729  */
730 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
731 {
732 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
733 }
734 
735 #include "pelt.h"
736 #ifdef CONFIG_SMP
737 
738 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
739 static unsigned long task_h_load(struct task_struct *p);
740 static unsigned long capacity_of(int cpu);
741 
742 /* Give new sched_entity start runnable values to heavy its load in infant time */
743 void init_entity_runnable_average(struct sched_entity *se)
744 {
745 	struct sched_avg *sa = &se->avg;
746 
747 	memset(sa, 0, sizeof(*sa));
748 
749 	/*
750 	 * Tasks are initialized with full load to be seen as heavy tasks until
751 	 * they get a chance to stabilize to their real load level.
752 	 * Group entities are initialized with zero load to reflect the fact that
753 	 * nothing has been attached to the task group yet.
754 	 */
755 	if (entity_is_task(se))
756 		sa->load_avg = scale_load_down(se->load.weight);
757 
758 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
759 }
760 
761 static void attach_entity_cfs_rq(struct sched_entity *se);
762 
763 /*
764  * With new tasks being created, their initial util_avgs are extrapolated
765  * based on the cfs_rq's current util_avg:
766  *
767  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
768  *
769  * However, in many cases, the above util_avg does not give a desired
770  * value. Moreover, the sum of the util_avgs may be divergent, such
771  * as when the series is a harmonic series.
772  *
773  * To solve this problem, we also cap the util_avg of successive tasks to
774  * only 1/2 of the left utilization budget:
775  *
776  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
777  *
778  * where n denotes the nth task and cpu_scale the CPU capacity.
779  *
780  * For example, for a CPU with 1024 of capacity, a simplest series from
781  * the beginning would be like:
782  *
783  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
784  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
785  *
786  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
787  * if util_avg > util_avg_cap.
788  */
789 void post_init_entity_util_avg(struct task_struct *p)
790 {
791 	struct sched_entity *se = &p->se;
792 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
793 	struct sched_avg *sa = &se->avg;
794 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
795 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
796 
797 	if (cap > 0) {
798 		if (cfs_rq->avg.util_avg != 0) {
799 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
800 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
801 
802 			if (sa->util_avg > cap)
803 				sa->util_avg = cap;
804 		} else {
805 			sa->util_avg = cap;
806 		}
807 	}
808 
809 	sa->runnable_avg = sa->util_avg;
810 
811 	if (p->sched_class != &fair_sched_class) {
812 		/*
813 		 * For !fair tasks do:
814 		 *
815 		update_cfs_rq_load_avg(now, cfs_rq);
816 		attach_entity_load_avg(cfs_rq, se);
817 		switched_from_fair(rq, p);
818 		 *
819 		 * such that the next switched_to_fair() has the
820 		 * expected state.
821 		 */
822 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
823 		return;
824 	}
825 
826 	attach_entity_cfs_rq(se);
827 }
828 
829 #else /* !CONFIG_SMP */
830 void init_entity_runnable_average(struct sched_entity *se)
831 {
832 }
833 void post_init_entity_util_avg(struct task_struct *p)
834 {
835 }
836 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
837 {
838 }
839 #endif /* CONFIG_SMP */
840 
841 /*
842  * Update the current task's runtime statistics.
843  */
844 static void update_curr(struct cfs_rq *cfs_rq)
845 {
846 	struct sched_entity *curr = cfs_rq->curr;
847 	u64 now = rq_clock_task(rq_of(cfs_rq));
848 	u64 delta_exec;
849 
850 	if (unlikely(!curr))
851 		return;
852 
853 	delta_exec = now - curr->exec_start;
854 	if (unlikely((s64)delta_exec <= 0))
855 		return;
856 
857 	curr->exec_start = now;
858 
859 	if (schedstat_enabled()) {
860 		struct sched_statistics *stats;
861 
862 		stats = __schedstats_from_se(curr);
863 		__schedstat_set(stats->exec_max,
864 				max(delta_exec, stats->exec_max));
865 	}
866 
867 	curr->sum_exec_runtime += delta_exec;
868 	schedstat_add(cfs_rq->exec_clock, delta_exec);
869 
870 	curr->vruntime += calc_delta_fair(delta_exec, curr);
871 	update_min_vruntime(cfs_rq);
872 
873 	if (entity_is_task(curr)) {
874 		struct task_struct *curtask = task_of(curr);
875 
876 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
877 		cgroup_account_cputime(curtask, delta_exec);
878 		account_group_exec_runtime(curtask, delta_exec);
879 	}
880 
881 	account_cfs_rq_runtime(cfs_rq, delta_exec);
882 }
883 
884 static void update_curr_fair(struct rq *rq)
885 {
886 	update_curr(cfs_rq_of(&rq->curr->se));
887 }
888 
889 static inline void
890 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
891 {
892 	struct sched_statistics *stats;
893 	struct task_struct *p = NULL;
894 
895 	if (!schedstat_enabled())
896 		return;
897 
898 	stats = __schedstats_from_se(se);
899 
900 	if (entity_is_task(se))
901 		p = task_of(se);
902 
903 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
904 }
905 
906 static inline void
907 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
908 {
909 	struct sched_statistics *stats;
910 	struct task_struct *p = NULL;
911 
912 	if (!schedstat_enabled())
913 		return;
914 
915 	stats = __schedstats_from_se(se);
916 
917 	/*
918 	 * When the sched_schedstat changes from 0 to 1, some sched se
919 	 * maybe already in the runqueue, the se->statistics.wait_start
920 	 * will be 0.So it will let the delta wrong. We need to avoid this
921 	 * scenario.
922 	 */
923 	if (unlikely(!schedstat_val(stats->wait_start)))
924 		return;
925 
926 	if (entity_is_task(se))
927 		p = task_of(se);
928 
929 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
930 }
931 
932 static inline void
933 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
934 {
935 	struct sched_statistics *stats;
936 	struct task_struct *tsk = NULL;
937 
938 	if (!schedstat_enabled())
939 		return;
940 
941 	stats = __schedstats_from_se(se);
942 
943 	if (entity_is_task(se))
944 		tsk = task_of(se);
945 
946 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
947 }
948 
949 /*
950  * Task is being enqueued - update stats:
951  */
952 static inline void
953 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
954 {
955 	if (!schedstat_enabled())
956 		return;
957 
958 	/*
959 	 * Are we enqueueing a waiting task? (for current tasks
960 	 * a dequeue/enqueue event is a NOP)
961 	 */
962 	if (se != cfs_rq->curr)
963 		update_stats_wait_start_fair(cfs_rq, se);
964 
965 	if (flags & ENQUEUE_WAKEUP)
966 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
967 }
968 
969 static inline void
970 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
971 {
972 
973 	if (!schedstat_enabled())
974 		return;
975 
976 	/*
977 	 * Mark the end of the wait period if dequeueing a
978 	 * waiting task:
979 	 */
980 	if (se != cfs_rq->curr)
981 		update_stats_wait_end_fair(cfs_rq, se);
982 
983 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
984 		struct task_struct *tsk = task_of(se);
985 		unsigned int state;
986 
987 		/* XXX racy against TTWU */
988 		state = READ_ONCE(tsk->__state);
989 		if (state & TASK_INTERRUPTIBLE)
990 			__schedstat_set(tsk->stats.sleep_start,
991 				      rq_clock(rq_of(cfs_rq)));
992 		if (state & TASK_UNINTERRUPTIBLE)
993 			__schedstat_set(tsk->stats.block_start,
994 				      rq_clock(rq_of(cfs_rq)));
995 	}
996 }
997 
998 /*
999  * We are picking a new current task - update its stats:
1000  */
1001 static inline void
1002 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1003 {
1004 	/*
1005 	 * We are starting a new run period:
1006 	 */
1007 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1008 }
1009 
1010 /**************************************************
1011  * Scheduling class queueing methods:
1012  */
1013 
1014 #ifdef CONFIG_NUMA_BALANCING
1015 /*
1016  * Approximate time to scan a full NUMA task in ms. The task scan period is
1017  * calculated based on the tasks virtual memory size and
1018  * numa_balancing_scan_size.
1019  */
1020 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1021 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1022 
1023 /* Portion of address space to scan in MB */
1024 unsigned int sysctl_numa_balancing_scan_size = 256;
1025 
1026 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1027 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1028 
1029 struct numa_group {
1030 	refcount_t refcount;
1031 
1032 	spinlock_t lock; /* nr_tasks, tasks */
1033 	int nr_tasks;
1034 	pid_t gid;
1035 	int active_nodes;
1036 
1037 	struct rcu_head rcu;
1038 	unsigned long total_faults;
1039 	unsigned long max_faults_cpu;
1040 	/*
1041 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1042 	 *
1043 	 * Faults_cpu is used to decide whether memory should move
1044 	 * towards the CPU. As a consequence, these stats are weighted
1045 	 * more by CPU use than by memory faults.
1046 	 */
1047 	unsigned long faults[];
1048 };
1049 
1050 /*
1051  * For functions that can be called in multiple contexts that permit reading
1052  * ->numa_group (see struct task_struct for locking rules).
1053  */
1054 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1055 {
1056 	return rcu_dereference_check(p->numa_group, p == current ||
1057 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1058 }
1059 
1060 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1061 {
1062 	return rcu_dereference_protected(p->numa_group, p == current);
1063 }
1064 
1065 static inline unsigned long group_faults_priv(struct numa_group *ng);
1066 static inline unsigned long group_faults_shared(struct numa_group *ng);
1067 
1068 static unsigned int task_nr_scan_windows(struct task_struct *p)
1069 {
1070 	unsigned long rss = 0;
1071 	unsigned long nr_scan_pages;
1072 
1073 	/*
1074 	 * Calculations based on RSS as non-present and empty pages are skipped
1075 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1076 	 * on resident pages
1077 	 */
1078 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1079 	rss = get_mm_rss(p->mm);
1080 	if (!rss)
1081 		rss = nr_scan_pages;
1082 
1083 	rss = round_up(rss, nr_scan_pages);
1084 	return rss / nr_scan_pages;
1085 }
1086 
1087 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1088 #define MAX_SCAN_WINDOW 2560
1089 
1090 static unsigned int task_scan_min(struct task_struct *p)
1091 {
1092 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1093 	unsigned int scan, floor;
1094 	unsigned int windows = 1;
1095 
1096 	if (scan_size < MAX_SCAN_WINDOW)
1097 		windows = MAX_SCAN_WINDOW / scan_size;
1098 	floor = 1000 / windows;
1099 
1100 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1101 	return max_t(unsigned int, floor, scan);
1102 }
1103 
1104 static unsigned int task_scan_start(struct task_struct *p)
1105 {
1106 	unsigned long smin = task_scan_min(p);
1107 	unsigned long period = smin;
1108 	struct numa_group *ng;
1109 
1110 	/* Scale the maximum scan period with the amount of shared memory. */
1111 	rcu_read_lock();
1112 	ng = rcu_dereference(p->numa_group);
1113 	if (ng) {
1114 		unsigned long shared = group_faults_shared(ng);
1115 		unsigned long private = group_faults_priv(ng);
1116 
1117 		period *= refcount_read(&ng->refcount);
1118 		period *= shared + 1;
1119 		period /= private + shared + 1;
1120 	}
1121 	rcu_read_unlock();
1122 
1123 	return max(smin, period);
1124 }
1125 
1126 static unsigned int task_scan_max(struct task_struct *p)
1127 {
1128 	unsigned long smin = task_scan_min(p);
1129 	unsigned long smax;
1130 	struct numa_group *ng;
1131 
1132 	/* Watch for min being lower than max due to floor calculations */
1133 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1134 
1135 	/* Scale the maximum scan period with the amount of shared memory. */
1136 	ng = deref_curr_numa_group(p);
1137 	if (ng) {
1138 		unsigned long shared = group_faults_shared(ng);
1139 		unsigned long private = group_faults_priv(ng);
1140 		unsigned long period = smax;
1141 
1142 		period *= refcount_read(&ng->refcount);
1143 		period *= shared + 1;
1144 		period /= private + shared + 1;
1145 
1146 		smax = max(smax, period);
1147 	}
1148 
1149 	return max(smin, smax);
1150 }
1151 
1152 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1153 {
1154 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1155 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1156 }
1157 
1158 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1159 {
1160 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1161 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1162 }
1163 
1164 /* Shared or private faults. */
1165 #define NR_NUMA_HINT_FAULT_TYPES 2
1166 
1167 /* Memory and CPU locality */
1168 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1169 
1170 /* Averaged statistics, and temporary buffers. */
1171 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1172 
1173 pid_t task_numa_group_id(struct task_struct *p)
1174 {
1175 	struct numa_group *ng;
1176 	pid_t gid = 0;
1177 
1178 	rcu_read_lock();
1179 	ng = rcu_dereference(p->numa_group);
1180 	if (ng)
1181 		gid = ng->gid;
1182 	rcu_read_unlock();
1183 
1184 	return gid;
1185 }
1186 
1187 /*
1188  * The averaged statistics, shared & private, memory & CPU,
1189  * occupy the first half of the array. The second half of the
1190  * array is for current counters, which are averaged into the
1191  * first set by task_numa_placement.
1192  */
1193 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1194 {
1195 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1196 }
1197 
1198 static inline unsigned long task_faults(struct task_struct *p, int nid)
1199 {
1200 	if (!p->numa_faults)
1201 		return 0;
1202 
1203 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1204 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1205 }
1206 
1207 static inline unsigned long group_faults(struct task_struct *p, int nid)
1208 {
1209 	struct numa_group *ng = deref_task_numa_group(p);
1210 
1211 	if (!ng)
1212 		return 0;
1213 
1214 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1215 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1216 }
1217 
1218 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1219 {
1220 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1221 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1222 }
1223 
1224 static inline unsigned long group_faults_priv(struct numa_group *ng)
1225 {
1226 	unsigned long faults = 0;
1227 	int node;
1228 
1229 	for_each_online_node(node) {
1230 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1231 	}
1232 
1233 	return faults;
1234 }
1235 
1236 static inline unsigned long group_faults_shared(struct numa_group *ng)
1237 {
1238 	unsigned long faults = 0;
1239 	int node;
1240 
1241 	for_each_online_node(node) {
1242 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1243 	}
1244 
1245 	return faults;
1246 }
1247 
1248 /*
1249  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1250  * considered part of a numa group's pseudo-interleaving set. Migrations
1251  * between these nodes are slowed down, to allow things to settle down.
1252  */
1253 #define ACTIVE_NODE_FRACTION 3
1254 
1255 static bool numa_is_active_node(int nid, struct numa_group *ng)
1256 {
1257 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1258 }
1259 
1260 /* Handle placement on systems where not all nodes are directly connected. */
1261 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1262 					int maxdist, bool task)
1263 {
1264 	unsigned long score = 0;
1265 	int node;
1266 
1267 	/*
1268 	 * All nodes are directly connected, and the same distance
1269 	 * from each other. No need for fancy placement algorithms.
1270 	 */
1271 	if (sched_numa_topology_type == NUMA_DIRECT)
1272 		return 0;
1273 
1274 	/*
1275 	 * This code is called for each node, introducing N^2 complexity,
1276 	 * which should be ok given the number of nodes rarely exceeds 8.
1277 	 */
1278 	for_each_online_node(node) {
1279 		unsigned long faults;
1280 		int dist = node_distance(nid, node);
1281 
1282 		/*
1283 		 * The furthest away nodes in the system are not interesting
1284 		 * for placement; nid was already counted.
1285 		 */
1286 		if (dist == sched_max_numa_distance || node == nid)
1287 			continue;
1288 
1289 		/*
1290 		 * On systems with a backplane NUMA topology, compare groups
1291 		 * of nodes, and move tasks towards the group with the most
1292 		 * memory accesses. When comparing two nodes at distance
1293 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1294 		 * of each group. Skip other nodes.
1295 		 */
1296 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1297 					dist >= maxdist)
1298 			continue;
1299 
1300 		/* Add up the faults from nearby nodes. */
1301 		if (task)
1302 			faults = task_faults(p, node);
1303 		else
1304 			faults = group_faults(p, node);
1305 
1306 		/*
1307 		 * On systems with a glueless mesh NUMA topology, there are
1308 		 * no fixed "groups of nodes". Instead, nodes that are not
1309 		 * directly connected bounce traffic through intermediate
1310 		 * nodes; a numa_group can occupy any set of nodes.
1311 		 * The further away a node is, the less the faults count.
1312 		 * This seems to result in good task placement.
1313 		 */
1314 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1315 			faults *= (sched_max_numa_distance - dist);
1316 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1317 		}
1318 
1319 		score += faults;
1320 	}
1321 
1322 	return score;
1323 }
1324 
1325 /*
1326  * These return the fraction of accesses done by a particular task, or
1327  * task group, on a particular numa node.  The group weight is given a
1328  * larger multiplier, in order to group tasks together that are almost
1329  * evenly spread out between numa nodes.
1330  */
1331 static inline unsigned long task_weight(struct task_struct *p, int nid,
1332 					int dist)
1333 {
1334 	unsigned long faults, total_faults;
1335 
1336 	if (!p->numa_faults)
1337 		return 0;
1338 
1339 	total_faults = p->total_numa_faults;
1340 
1341 	if (!total_faults)
1342 		return 0;
1343 
1344 	faults = task_faults(p, nid);
1345 	faults += score_nearby_nodes(p, nid, dist, true);
1346 
1347 	return 1000 * faults / total_faults;
1348 }
1349 
1350 static inline unsigned long group_weight(struct task_struct *p, int nid,
1351 					 int dist)
1352 {
1353 	struct numa_group *ng = deref_task_numa_group(p);
1354 	unsigned long faults, total_faults;
1355 
1356 	if (!ng)
1357 		return 0;
1358 
1359 	total_faults = ng->total_faults;
1360 
1361 	if (!total_faults)
1362 		return 0;
1363 
1364 	faults = group_faults(p, nid);
1365 	faults += score_nearby_nodes(p, nid, dist, false);
1366 
1367 	return 1000 * faults / total_faults;
1368 }
1369 
1370 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1371 				int src_nid, int dst_cpu)
1372 {
1373 	struct numa_group *ng = deref_curr_numa_group(p);
1374 	int dst_nid = cpu_to_node(dst_cpu);
1375 	int last_cpupid, this_cpupid;
1376 
1377 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1378 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1379 
1380 	/*
1381 	 * Allow first faults or private faults to migrate immediately early in
1382 	 * the lifetime of a task. The magic number 4 is based on waiting for
1383 	 * two full passes of the "multi-stage node selection" test that is
1384 	 * executed below.
1385 	 */
1386 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1387 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1388 		return true;
1389 
1390 	/*
1391 	 * Multi-stage node selection is used in conjunction with a periodic
1392 	 * migration fault to build a temporal task<->page relation. By using
1393 	 * a two-stage filter we remove short/unlikely relations.
1394 	 *
1395 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1396 	 * a task's usage of a particular page (n_p) per total usage of this
1397 	 * page (n_t) (in a given time-span) to a probability.
1398 	 *
1399 	 * Our periodic faults will sample this probability and getting the
1400 	 * same result twice in a row, given these samples are fully
1401 	 * independent, is then given by P(n)^2, provided our sample period
1402 	 * is sufficiently short compared to the usage pattern.
1403 	 *
1404 	 * This quadric squishes small probabilities, making it less likely we
1405 	 * act on an unlikely task<->page relation.
1406 	 */
1407 	if (!cpupid_pid_unset(last_cpupid) &&
1408 				cpupid_to_nid(last_cpupid) != dst_nid)
1409 		return false;
1410 
1411 	/* Always allow migrate on private faults */
1412 	if (cpupid_match_pid(p, last_cpupid))
1413 		return true;
1414 
1415 	/* A shared fault, but p->numa_group has not been set up yet. */
1416 	if (!ng)
1417 		return true;
1418 
1419 	/*
1420 	 * Destination node is much more heavily used than the source
1421 	 * node? Allow migration.
1422 	 */
1423 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1424 					ACTIVE_NODE_FRACTION)
1425 		return true;
1426 
1427 	/*
1428 	 * Distribute memory according to CPU & memory use on each node,
1429 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1430 	 *
1431 	 * faults_cpu(dst)   3   faults_cpu(src)
1432 	 * --------------- * - > ---------------
1433 	 * faults_mem(dst)   4   faults_mem(src)
1434 	 */
1435 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1436 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1437 }
1438 
1439 /*
1440  * 'numa_type' describes the node at the moment of load balancing.
1441  */
1442 enum numa_type {
1443 	/* The node has spare capacity that can be used to run more tasks.  */
1444 	node_has_spare = 0,
1445 	/*
1446 	 * The node is fully used and the tasks don't compete for more CPU
1447 	 * cycles. Nevertheless, some tasks might wait before running.
1448 	 */
1449 	node_fully_busy,
1450 	/*
1451 	 * The node is overloaded and can't provide expected CPU cycles to all
1452 	 * tasks.
1453 	 */
1454 	node_overloaded
1455 };
1456 
1457 /* Cached statistics for all CPUs within a node */
1458 struct numa_stats {
1459 	unsigned long load;
1460 	unsigned long runnable;
1461 	unsigned long util;
1462 	/* Total compute capacity of CPUs on a node */
1463 	unsigned long compute_capacity;
1464 	unsigned int nr_running;
1465 	unsigned int weight;
1466 	enum numa_type node_type;
1467 	int idle_cpu;
1468 };
1469 
1470 static inline bool is_core_idle(int cpu)
1471 {
1472 #ifdef CONFIG_SCHED_SMT
1473 	int sibling;
1474 
1475 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1476 		if (cpu == sibling)
1477 			continue;
1478 
1479 		if (!idle_cpu(sibling))
1480 			return false;
1481 	}
1482 #endif
1483 
1484 	return true;
1485 }
1486 
1487 struct task_numa_env {
1488 	struct task_struct *p;
1489 
1490 	int src_cpu, src_nid;
1491 	int dst_cpu, dst_nid;
1492 
1493 	struct numa_stats src_stats, dst_stats;
1494 
1495 	int imbalance_pct;
1496 	int dist;
1497 
1498 	struct task_struct *best_task;
1499 	long best_imp;
1500 	int best_cpu;
1501 };
1502 
1503 static unsigned long cpu_load(struct rq *rq);
1504 static unsigned long cpu_runnable(struct rq *rq);
1505 static inline long adjust_numa_imbalance(int imbalance,
1506 					int dst_running, int dst_weight);
1507 
1508 static inline enum
1509 numa_type numa_classify(unsigned int imbalance_pct,
1510 			 struct numa_stats *ns)
1511 {
1512 	if ((ns->nr_running > ns->weight) &&
1513 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1514 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1515 		return node_overloaded;
1516 
1517 	if ((ns->nr_running < ns->weight) ||
1518 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1519 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1520 		return node_has_spare;
1521 
1522 	return node_fully_busy;
1523 }
1524 
1525 #ifdef CONFIG_SCHED_SMT
1526 /* Forward declarations of select_idle_sibling helpers */
1527 static inline bool test_idle_cores(int cpu, bool def);
1528 static inline int numa_idle_core(int idle_core, int cpu)
1529 {
1530 	if (!static_branch_likely(&sched_smt_present) ||
1531 	    idle_core >= 0 || !test_idle_cores(cpu, false))
1532 		return idle_core;
1533 
1534 	/*
1535 	 * Prefer cores instead of packing HT siblings
1536 	 * and triggering future load balancing.
1537 	 */
1538 	if (is_core_idle(cpu))
1539 		idle_core = cpu;
1540 
1541 	return idle_core;
1542 }
1543 #else
1544 static inline int numa_idle_core(int idle_core, int cpu)
1545 {
1546 	return idle_core;
1547 }
1548 #endif
1549 
1550 /*
1551  * Gather all necessary information to make NUMA balancing placement
1552  * decisions that are compatible with standard load balancer. This
1553  * borrows code and logic from update_sg_lb_stats but sharing a
1554  * common implementation is impractical.
1555  */
1556 static void update_numa_stats(struct task_numa_env *env,
1557 			      struct numa_stats *ns, int nid,
1558 			      bool find_idle)
1559 {
1560 	int cpu, idle_core = -1;
1561 
1562 	memset(ns, 0, sizeof(*ns));
1563 	ns->idle_cpu = -1;
1564 
1565 	rcu_read_lock();
1566 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1567 		struct rq *rq = cpu_rq(cpu);
1568 
1569 		ns->load += cpu_load(rq);
1570 		ns->runnable += cpu_runnable(rq);
1571 		ns->util += cpu_util_cfs(cpu);
1572 		ns->nr_running += rq->cfs.h_nr_running;
1573 		ns->compute_capacity += capacity_of(cpu);
1574 
1575 		if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1576 			if (READ_ONCE(rq->numa_migrate_on) ||
1577 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1578 				continue;
1579 
1580 			if (ns->idle_cpu == -1)
1581 				ns->idle_cpu = cpu;
1582 
1583 			idle_core = numa_idle_core(idle_core, cpu);
1584 		}
1585 	}
1586 	rcu_read_unlock();
1587 
1588 	ns->weight = cpumask_weight(cpumask_of_node(nid));
1589 
1590 	ns->node_type = numa_classify(env->imbalance_pct, ns);
1591 
1592 	if (idle_core >= 0)
1593 		ns->idle_cpu = idle_core;
1594 }
1595 
1596 static void task_numa_assign(struct task_numa_env *env,
1597 			     struct task_struct *p, long imp)
1598 {
1599 	struct rq *rq = cpu_rq(env->dst_cpu);
1600 
1601 	/* Check if run-queue part of active NUMA balance. */
1602 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1603 		int cpu;
1604 		int start = env->dst_cpu;
1605 
1606 		/* Find alternative idle CPU. */
1607 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1608 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1609 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1610 				continue;
1611 			}
1612 
1613 			env->dst_cpu = cpu;
1614 			rq = cpu_rq(env->dst_cpu);
1615 			if (!xchg(&rq->numa_migrate_on, 1))
1616 				goto assign;
1617 		}
1618 
1619 		/* Failed to find an alternative idle CPU */
1620 		return;
1621 	}
1622 
1623 assign:
1624 	/*
1625 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1626 	 * found a better CPU to move/swap.
1627 	 */
1628 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1629 		rq = cpu_rq(env->best_cpu);
1630 		WRITE_ONCE(rq->numa_migrate_on, 0);
1631 	}
1632 
1633 	if (env->best_task)
1634 		put_task_struct(env->best_task);
1635 	if (p)
1636 		get_task_struct(p);
1637 
1638 	env->best_task = p;
1639 	env->best_imp = imp;
1640 	env->best_cpu = env->dst_cpu;
1641 }
1642 
1643 static bool load_too_imbalanced(long src_load, long dst_load,
1644 				struct task_numa_env *env)
1645 {
1646 	long imb, old_imb;
1647 	long orig_src_load, orig_dst_load;
1648 	long src_capacity, dst_capacity;
1649 
1650 	/*
1651 	 * The load is corrected for the CPU capacity available on each node.
1652 	 *
1653 	 * src_load        dst_load
1654 	 * ------------ vs ---------
1655 	 * src_capacity    dst_capacity
1656 	 */
1657 	src_capacity = env->src_stats.compute_capacity;
1658 	dst_capacity = env->dst_stats.compute_capacity;
1659 
1660 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1661 
1662 	orig_src_load = env->src_stats.load;
1663 	orig_dst_load = env->dst_stats.load;
1664 
1665 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1666 
1667 	/* Would this change make things worse? */
1668 	return (imb > old_imb);
1669 }
1670 
1671 /*
1672  * Maximum NUMA importance can be 1998 (2*999);
1673  * SMALLIMP @ 30 would be close to 1998/64.
1674  * Used to deter task migration.
1675  */
1676 #define SMALLIMP	30
1677 
1678 /*
1679  * This checks if the overall compute and NUMA accesses of the system would
1680  * be improved if the source tasks was migrated to the target dst_cpu taking
1681  * into account that it might be best if task running on the dst_cpu should
1682  * be exchanged with the source task
1683  */
1684 static bool task_numa_compare(struct task_numa_env *env,
1685 			      long taskimp, long groupimp, bool maymove)
1686 {
1687 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1688 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1689 	long imp = p_ng ? groupimp : taskimp;
1690 	struct task_struct *cur;
1691 	long src_load, dst_load;
1692 	int dist = env->dist;
1693 	long moveimp = imp;
1694 	long load;
1695 	bool stopsearch = false;
1696 
1697 	if (READ_ONCE(dst_rq->numa_migrate_on))
1698 		return false;
1699 
1700 	rcu_read_lock();
1701 	cur = rcu_dereference(dst_rq->curr);
1702 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1703 		cur = NULL;
1704 
1705 	/*
1706 	 * Because we have preemption enabled we can get migrated around and
1707 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1708 	 */
1709 	if (cur == env->p) {
1710 		stopsearch = true;
1711 		goto unlock;
1712 	}
1713 
1714 	if (!cur) {
1715 		if (maymove && moveimp >= env->best_imp)
1716 			goto assign;
1717 		else
1718 			goto unlock;
1719 	}
1720 
1721 	/* Skip this swap candidate if cannot move to the source cpu. */
1722 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1723 		goto unlock;
1724 
1725 	/*
1726 	 * Skip this swap candidate if it is not moving to its preferred
1727 	 * node and the best task is.
1728 	 */
1729 	if (env->best_task &&
1730 	    env->best_task->numa_preferred_nid == env->src_nid &&
1731 	    cur->numa_preferred_nid != env->src_nid) {
1732 		goto unlock;
1733 	}
1734 
1735 	/*
1736 	 * "imp" is the fault differential for the source task between the
1737 	 * source and destination node. Calculate the total differential for
1738 	 * the source task and potential destination task. The more negative
1739 	 * the value is, the more remote accesses that would be expected to
1740 	 * be incurred if the tasks were swapped.
1741 	 *
1742 	 * If dst and source tasks are in the same NUMA group, or not
1743 	 * in any group then look only at task weights.
1744 	 */
1745 	cur_ng = rcu_dereference(cur->numa_group);
1746 	if (cur_ng == p_ng) {
1747 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1748 		      task_weight(cur, env->dst_nid, dist);
1749 		/*
1750 		 * Add some hysteresis to prevent swapping the
1751 		 * tasks within a group over tiny differences.
1752 		 */
1753 		if (cur_ng)
1754 			imp -= imp / 16;
1755 	} else {
1756 		/*
1757 		 * Compare the group weights. If a task is all by itself
1758 		 * (not part of a group), use the task weight instead.
1759 		 */
1760 		if (cur_ng && p_ng)
1761 			imp += group_weight(cur, env->src_nid, dist) -
1762 			       group_weight(cur, env->dst_nid, dist);
1763 		else
1764 			imp += task_weight(cur, env->src_nid, dist) -
1765 			       task_weight(cur, env->dst_nid, dist);
1766 	}
1767 
1768 	/* Discourage picking a task already on its preferred node */
1769 	if (cur->numa_preferred_nid == env->dst_nid)
1770 		imp -= imp / 16;
1771 
1772 	/*
1773 	 * Encourage picking a task that moves to its preferred node.
1774 	 * This potentially makes imp larger than it's maximum of
1775 	 * 1998 (see SMALLIMP and task_weight for why) but in this
1776 	 * case, it does not matter.
1777 	 */
1778 	if (cur->numa_preferred_nid == env->src_nid)
1779 		imp += imp / 8;
1780 
1781 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1782 		imp = moveimp;
1783 		cur = NULL;
1784 		goto assign;
1785 	}
1786 
1787 	/*
1788 	 * Prefer swapping with a task moving to its preferred node over a
1789 	 * task that is not.
1790 	 */
1791 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1792 	    env->best_task->numa_preferred_nid != env->src_nid) {
1793 		goto assign;
1794 	}
1795 
1796 	/*
1797 	 * If the NUMA importance is less than SMALLIMP,
1798 	 * task migration might only result in ping pong
1799 	 * of tasks and also hurt performance due to cache
1800 	 * misses.
1801 	 */
1802 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1803 		goto unlock;
1804 
1805 	/*
1806 	 * In the overloaded case, try and keep the load balanced.
1807 	 */
1808 	load = task_h_load(env->p) - task_h_load(cur);
1809 	if (!load)
1810 		goto assign;
1811 
1812 	dst_load = env->dst_stats.load + load;
1813 	src_load = env->src_stats.load - load;
1814 
1815 	if (load_too_imbalanced(src_load, dst_load, env))
1816 		goto unlock;
1817 
1818 assign:
1819 	/* Evaluate an idle CPU for a task numa move. */
1820 	if (!cur) {
1821 		int cpu = env->dst_stats.idle_cpu;
1822 
1823 		/* Nothing cached so current CPU went idle since the search. */
1824 		if (cpu < 0)
1825 			cpu = env->dst_cpu;
1826 
1827 		/*
1828 		 * If the CPU is no longer truly idle and the previous best CPU
1829 		 * is, keep using it.
1830 		 */
1831 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1832 		    idle_cpu(env->best_cpu)) {
1833 			cpu = env->best_cpu;
1834 		}
1835 
1836 		env->dst_cpu = cpu;
1837 	}
1838 
1839 	task_numa_assign(env, cur, imp);
1840 
1841 	/*
1842 	 * If a move to idle is allowed because there is capacity or load
1843 	 * balance improves then stop the search. While a better swap
1844 	 * candidate may exist, a search is not free.
1845 	 */
1846 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1847 		stopsearch = true;
1848 
1849 	/*
1850 	 * If a swap candidate must be identified and the current best task
1851 	 * moves its preferred node then stop the search.
1852 	 */
1853 	if (!maymove && env->best_task &&
1854 	    env->best_task->numa_preferred_nid == env->src_nid) {
1855 		stopsearch = true;
1856 	}
1857 unlock:
1858 	rcu_read_unlock();
1859 
1860 	return stopsearch;
1861 }
1862 
1863 static void task_numa_find_cpu(struct task_numa_env *env,
1864 				long taskimp, long groupimp)
1865 {
1866 	bool maymove = false;
1867 	int cpu;
1868 
1869 	/*
1870 	 * If dst node has spare capacity, then check if there is an
1871 	 * imbalance that would be overruled by the load balancer.
1872 	 */
1873 	if (env->dst_stats.node_type == node_has_spare) {
1874 		unsigned int imbalance;
1875 		int src_running, dst_running;
1876 
1877 		/*
1878 		 * Would movement cause an imbalance? Note that if src has
1879 		 * more running tasks that the imbalance is ignored as the
1880 		 * move improves the imbalance from the perspective of the
1881 		 * CPU load balancer.
1882 		 * */
1883 		src_running = env->src_stats.nr_running - 1;
1884 		dst_running = env->dst_stats.nr_running + 1;
1885 		imbalance = max(0, dst_running - src_running);
1886 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
1887 							env->dst_stats.weight);
1888 
1889 		/* Use idle CPU if there is no imbalance */
1890 		if (!imbalance) {
1891 			maymove = true;
1892 			if (env->dst_stats.idle_cpu >= 0) {
1893 				env->dst_cpu = env->dst_stats.idle_cpu;
1894 				task_numa_assign(env, NULL, 0);
1895 				return;
1896 			}
1897 		}
1898 	} else {
1899 		long src_load, dst_load, load;
1900 		/*
1901 		 * If the improvement from just moving env->p direction is better
1902 		 * than swapping tasks around, check if a move is possible.
1903 		 */
1904 		load = task_h_load(env->p);
1905 		dst_load = env->dst_stats.load + load;
1906 		src_load = env->src_stats.load - load;
1907 		maymove = !load_too_imbalanced(src_load, dst_load, env);
1908 	}
1909 
1910 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1911 		/* Skip this CPU if the source task cannot migrate */
1912 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1913 			continue;
1914 
1915 		env->dst_cpu = cpu;
1916 		if (task_numa_compare(env, taskimp, groupimp, maymove))
1917 			break;
1918 	}
1919 }
1920 
1921 static int task_numa_migrate(struct task_struct *p)
1922 {
1923 	struct task_numa_env env = {
1924 		.p = p,
1925 
1926 		.src_cpu = task_cpu(p),
1927 		.src_nid = task_node(p),
1928 
1929 		.imbalance_pct = 112,
1930 
1931 		.best_task = NULL,
1932 		.best_imp = 0,
1933 		.best_cpu = -1,
1934 	};
1935 	unsigned long taskweight, groupweight;
1936 	struct sched_domain *sd;
1937 	long taskimp, groupimp;
1938 	struct numa_group *ng;
1939 	struct rq *best_rq;
1940 	int nid, ret, dist;
1941 
1942 	/*
1943 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1944 	 * imbalance and would be the first to start moving tasks about.
1945 	 *
1946 	 * And we want to avoid any moving of tasks about, as that would create
1947 	 * random movement of tasks -- counter the numa conditions we're trying
1948 	 * to satisfy here.
1949 	 */
1950 	rcu_read_lock();
1951 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1952 	if (sd)
1953 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1954 	rcu_read_unlock();
1955 
1956 	/*
1957 	 * Cpusets can break the scheduler domain tree into smaller
1958 	 * balance domains, some of which do not cross NUMA boundaries.
1959 	 * Tasks that are "trapped" in such domains cannot be migrated
1960 	 * elsewhere, so there is no point in (re)trying.
1961 	 */
1962 	if (unlikely(!sd)) {
1963 		sched_setnuma(p, task_node(p));
1964 		return -EINVAL;
1965 	}
1966 
1967 	env.dst_nid = p->numa_preferred_nid;
1968 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1969 	taskweight = task_weight(p, env.src_nid, dist);
1970 	groupweight = group_weight(p, env.src_nid, dist);
1971 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
1972 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1973 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1974 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
1975 
1976 	/* Try to find a spot on the preferred nid. */
1977 	task_numa_find_cpu(&env, taskimp, groupimp);
1978 
1979 	/*
1980 	 * Look at other nodes in these cases:
1981 	 * - there is no space available on the preferred_nid
1982 	 * - the task is part of a numa_group that is interleaved across
1983 	 *   multiple NUMA nodes; in order to better consolidate the group,
1984 	 *   we need to check other locations.
1985 	 */
1986 	ng = deref_curr_numa_group(p);
1987 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
1988 		for_each_online_node(nid) {
1989 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1990 				continue;
1991 
1992 			dist = node_distance(env.src_nid, env.dst_nid);
1993 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1994 						dist != env.dist) {
1995 				taskweight = task_weight(p, env.src_nid, dist);
1996 				groupweight = group_weight(p, env.src_nid, dist);
1997 			}
1998 
1999 			/* Only consider nodes where both task and groups benefit */
2000 			taskimp = task_weight(p, nid, dist) - taskweight;
2001 			groupimp = group_weight(p, nid, dist) - groupweight;
2002 			if (taskimp < 0 && groupimp < 0)
2003 				continue;
2004 
2005 			env.dist = dist;
2006 			env.dst_nid = nid;
2007 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2008 			task_numa_find_cpu(&env, taskimp, groupimp);
2009 		}
2010 	}
2011 
2012 	/*
2013 	 * If the task is part of a workload that spans multiple NUMA nodes,
2014 	 * and is migrating into one of the workload's active nodes, remember
2015 	 * this node as the task's preferred numa node, so the workload can
2016 	 * settle down.
2017 	 * A task that migrated to a second choice node will be better off
2018 	 * trying for a better one later. Do not set the preferred node here.
2019 	 */
2020 	if (ng) {
2021 		if (env.best_cpu == -1)
2022 			nid = env.src_nid;
2023 		else
2024 			nid = cpu_to_node(env.best_cpu);
2025 
2026 		if (nid != p->numa_preferred_nid)
2027 			sched_setnuma(p, nid);
2028 	}
2029 
2030 	/* No better CPU than the current one was found. */
2031 	if (env.best_cpu == -1) {
2032 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2033 		return -EAGAIN;
2034 	}
2035 
2036 	best_rq = cpu_rq(env.best_cpu);
2037 	if (env.best_task == NULL) {
2038 		ret = migrate_task_to(p, env.best_cpu);
2039 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2040 		if (ret != 0)
2041 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2042 		return ret;
2043 	}
2044 
2045 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2046 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2047 
2048 	if (ret != 0)
2049 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2050 	put_task_struct(env.best_task);
2051 	return ret;
2052 }
2053 
2054 /* Attempt to migrate a task to a CPU on the preferred node. */
2055 static void numa_migrate_preferred(struct task_struct *p)
2056 {
2057 	unsigned long interval = HZ;
2058 
2059 	/* This task has no NUMA fault statistics yet */
2060 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2061 		return;
2062 
2063 	/* Periodically retry migrating the task to the preferred node */
2064 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2065 	p->numa_migrate_retry = jiffies + interval;
2066 
2067 	/* Success if task is already running on preferred CPU */
2068 	if (task_node(p) == p->numa_preferred_nid)
2069 		return;
2070 
2071 	/* Otherwise, try migrate to a CPU on the preferred node */
2072 	task_numa_migrate(p);
2073 }
2074 
2075 /*
2076  * Find out how many nodes the workload is actively running on. Do this by
2077  * tracking the nodes from which NUMA hinting faults are triggered. This can
2078  * be different from the set of nodes where the workload's memory is currently
2079  * located.
2080  */
2081 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2082 {
2083 	unsigned long faults, max_faults = 0;
2084 	int nid, active_nodes = 0;
2085 
2086 	for_each_online_node(nid) {
2087 		faults = group_faults_cpu(numa_group, nid);
2088 		if (faults > max_faults)
2089 			max_faults = faults;
2090 	}
2091 
2092 	for_each_online_node(nid) {
2093 		faults = group_faults_cpu(numa_group, nid);
2094 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2095 			active_nodes++;
2096 	}
2097 
2098 	numa_group->max_faults_cpu = max_faults;
2099 	numa_group->active_nodes = active_nodes;
2100 }
2101 
2102 /*
2103  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2104  * increments. The more local the fault statistics are, the higher the scan
2105  * period will be for the next scan window. If local/(local+remote) ratio is
2106  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2107  * the scan period will decrease. Aim for 70% local accesses.
2108  */
2109 #define NUMA_PERIOD_SLOTS 10
2110 #define NUMA_PERIOD_THRESHOLD 7
2111 
2112 /*
2113  * Increase the scan period (slow down scanning) if the majority of
2114  * our memory is already on our local node, or if the majority of
2115  * the page accesses are shared with other processes.
2116  * Otherwise, decrease the scan period.
2117  */
2118 static void update_task_scan_period(struct task_struct *p,
2119 			unsigned long shared, unsigned long private)
2120 {
2121 	unsigned int period_slot;
2122 	int lr_ratio, ps_ratio;
2123 	int diff;
2124 
2125 	unsigned long remote = p->numa_faults_locality[0];
2126 	unsigned long local = p->numa_faults_locality[1];
2127 
2128 	/*
2129 	 * If there were no record hinting faults then either the task is
2130 	 * completely idle or all activity is in areas that are not of interest
2131 	 * to automatic numa balancing. Related to that, if there were failed
2132 	 * migration then it implies we are migrating too quickly or the local
2133 	 * node is overloaded. In either case, scan slower
2134 	 */
2135 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2136 		p->numa_scan_period = min(p->numa_scan_period_max,
2137 			p->numa_scan_period << 1);
2138 
2139 		p->mm->numa_next_scan = jiffies +
2140 			msecs_to_jiffies(p->numa_scan_period);
2141 
2142 		return;
2143 	}
2144 
2145 	/*
2146 	 * Prepare to scale scan period relative to the current period.
2147 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2148 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2149 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2150 	 */
2151 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2152 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2153 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2154 
2155 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2156 		/*
2157 		 * Most memory accesses are local. There is no need to
2158 		 * do fast NUMA scanning, since memory is already local.
2159 		 */
2160 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2161 		if (!slot)
2162 			slot = 1;
2163 		diff = slot * period_slot;
2164 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2165 		/*
2166 		 * Most memory accesses are shared with other tasks.
2167 		 * There is no point in continuing fast NUMA scanning,
2168 		 * since other tasks may just move the memory elsewhere.
2169 		 */
2170 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2171 		if (!slot)
2172 			slot = 1;
2173 		diff = slot * period_slot;
2174 	} else {
2175 		/*
2176 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2177 		 * yet they are not on the local NUMA node. Speed up
2178 		 * NUMA scanning to get the memory moved over.
2179 		 */
2180 		int ratio = max(lr_ratio, ps_ratio);
2181 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2182 	}
2183 
2184 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2185 			task_scan_min(p), task_scan_max(p));
2186 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2187 }
2188 
2189 /*
2190  * Get the fraction of time the task has been running since the last
2191  * NUMA placement cycle. The scheduler keeps similar statistics, but
2192  * decays those on a 32ms period, which is orders of magnitude off
2193  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2194  * stats only if the task is so new there are no NUMA statistics yet.
2195  */
2196 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2197 {
2198 	u64 runtime, delta, now;
2199 	/* Use the start of this time slice to avoid calculations. */
2200 	now = p->se.exec_start;
2201 	runtime = p->se.sum_exec_runtime;
2202 
2203 	if (p->last_task_numa_placement) {
2204 		delta = runtime - p->last_sum_exec_runtime;
2205 		*period = now - p->last_task_numa_placement;
2206 
2207 		/* Avoid time going backwards, prevent potential divide error: */
2208 		if (unlikely((s64)*period < 0))
2209 			*period = 0;
2210 	} else {
2211 		delta = p->se.avg.load_sum;
2212 		*period = LOAD_AVG_MAX;
2213 	}
2214 
2215 	p->last_sum_exec_runtime = runtime;
2216 	p->last_task_numa_placement = now;
2217 
2218 	return delta;
2219 }
2220 
2221 /*
2222  * Determine the preferred nid for a task in a numa_group. This needs to
2223  * be done in a way that produces consistent results with group_weight,
2224  * otherwise workloads might not converge.
2225  */
2226 static int preferred_group_nid(struct task_struct *p, int nid)
2227 {
2228 	nodemask_t nodes;
2229 	int dist;
2230 
2231 	/* Direct connections between all NUMA nodes. */
2232 	if (sched_numa_topology_type == NUMA_DIRECT)
2233 		return nid;
2234 
2235 	/*
2236 	 * On a system with glueless mesh NUMA topology, group_weight
2237 	 * scores nodes according to the number of NUMA hinting faults on
2238 	 * both the node itself, and on nearby nodes.
2239 	 */
2240 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2241 		unsigned long score, max_score = 0;
2242 		int node, max_node = nid;
2243 
2244 		dist = sched_max_numa_distance;
2245 
2246 		for_each_online_node(node) {
2247 			score = group_weight(p, node, dist);
2248 			if (score > max_score) {
2249 				max_score = score;
2250 				max_node = node;
2251 			}
2252 		}
2253 		return max_node;
2254 	}
2255 
2256 	/*
2257 	 * Finding the preferred nid in a system with NUMA backplane
2258 	 * interconnect topology is more involved. The goal is to locate
2259 	 * tasks from numa_groups near each other in the system, and
2260 	 * untangle workloads from different sides of the system. This requires
2261 	 * searching down the hierarchy of node groups, recursively searching
2262 	 * inside the highest scoring group of nodes. The nodemask tricks
2263 	 * keep the complexity of the search down.
2264 	 */
2265 	nodes = node_online_map;
2266 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2267 		unsigned long max_faults = 0;
2268 		nodemask_t max_group = NODE_MASK_NONE;
2269 		int a, b;
2270 
2271 		/* Are there nodes at this distance from each other? */
2272 		if (!find_numa_distance(dist))
2273 			continue;
2274 
2275 		for_each_node_mask(a, nodes) {
2276 			unsigned long faults = 0;
2277 			nodemask_t this_group;
2278 			nodes_clear(this_group);
2279 
2280 			/* Sum group's NUMA faults; includes a==b case. */
2281 			for_each_node_mask(b, nodes) {
2282 				if (node_distance(a, b) < dist) {
2283 					faults += group_faults(p, b);
2284 					node_set(b, this_group);
2285 					node_clear(b, nodes);
2286 				}
2287 			}
2288 
2289 			/* Remember the top group. */
2290 			if (faults > max_faults) {
2291 				max_faults = faults;
2292 				max_group = this_group;
2293 				/*
2294 				 * subtle: at the smallest distance there is
2295 				 * just one node left in each "group", the
2296 				 * winner is the preferred nid.
2297 				 */
2298 				nid = a;
2299 			}
2300 		}
2301 		/* Next round, evaluate the nodes within max_group. */
2302 		if (!max_faults)
2303 			break;
2304 		nodes = max_group;
2305 	}
2306 	return nid;
2307 }
2308 
2309 static void task_numa_placement(struct task_struct *p)
2310 {
2311 	int seq, nid, max_nid = NUMA_NO_NODE;
2312 	unsigned long max_faults = 0;
2313 	unsigned long fault_types[2] = { 0, 0 };
2314 	unsigned long total_faults;
2315 	u64 runtime, period;
2316 	spinlock_t *group_lock = NULL;
2317 	struct numa_group *ng;
2318 
2319 	/*
2320 	 * The p->mm->numa_scan_seq field gets updated without
2321 	 * exclusive access. Use READ_ONCE() here to ensure
2322 	 * that the field is read in a single access:
2323 	 */
2324 	seq = READ_ONCE(p->mm->numa_scan_seq);
2325 	if (p->numa_scan_seq == seq)
2326 		return;
2327 	p->numa_scan_seq = seq;
2328 	p->numa_scan_period_max = task_scan_max(p);
2329 
2330 	total_faults = p->numa_faults_locality[0] +
2331 		       p->numa_faults_locality[1];
2332 	runtime = numa_get_avg_runtime(p, &period);
2333 
2334 	/* If the task is part of a group prevent parallel updates to group stats */
2335 	ng = deref_curr_numa_group(p);
2336 	if (ng) {
2337 		group_lock = &ng->lock;
2338 		spin_lock_irq(group_lock);
2339 	}
2340 
2341 	/* Find the node with the highest number of faults */
2342 	for_each_online_node(nid) {
2343 		/* Keep track of the offsets in numa_faults array */
2344 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2345 		unsigned long faults = 0, group_faults = 0;
2346 		int priv;
2347 
2348 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2349 			long diff, f_diff, f_weight;
2350 
2351 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2352 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2353 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2354 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2355 
2356 			/* Decay existing window, copy faults since last scan */
2357 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2358 			fault_types[priv] += p->numa_faults[membuf_idx];
2359 			p->numa_faults[membuf_idx] = 0;
2360 
2361 			/*
2362 			 * Normalize the faults_from, so all tasks in a group
2363 			 * count according to CPU use, instead of by the raw
2364 			 * number of faults. Tasks with little runtime have
2365 			 * little over-all impact on throughput, and thus their
2366 			 * faults are less important.
2367 			 */
2368 			f_weight = div64_u64(runtime << 16, period + 1);
2369 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2370 				   (total_faults + 1);
2371 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2372 			p->numa_faults[cpubuf_idx] = 0;
2373 
2374 			p->numa_faults[mem_idx] += diff;
2375 			p->numa_faults[cpu_idx] += f_diff;
2376 			faults += p->numa_faults[mem_idx];
2377 			p->total_numa_faults += diff;
2378 			if (ng) {
2379 				/*
2380 				 * safe because we can only change our own group
2381 				 *
2382 				 * mem_idx represents the offset for a given
2383 				 * nid and priv in a specific region because it
2384 				 * is at the beginning of the numa_faults array.
2385 				 */
2386 				ng->faults[mem_idx] += diff;
2387 				ng->faults[cpu_idx] += f_diff;
2388 				ng->total_faults += diff;
2389 				group_faults += ng->faults[mem_idx];
2390 			}
2391 		}
2392 
2393 		if (!ng) {
2394 			if (faults > max_faults) {
2395 				max_faults = faults;
2396 				max_nid = nid;
2397 			}
2398 		} else if (group_faults > max_faults) {
2399 			max_faults = group_faults;
2400 			max_nid = nid;
2401 		}
2402 	}
2403 
2404 	if (ng) {
2405 		numa_group_count_active_nodes(ng);
2406 		spin_unlock_irq(group_lock);
2407 		max_nid = preferred_group_nid(p, max_nid);
2408 	}
2409 
2410 	if (max_faults) {
2411 		/* Set the new preferred node */
2412 		if (max_nid != p->numa_preferred_nid)
2413 			sched_setnuma(p, max_nid);
2414 	}
2415 
2416 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2417 }
2418 
2419 static inline int get_numa_group(struct numa_group *grp)
2420 {
2421 	return refcount_inc_not_zero(&grp->refcount);
2422 }
2423 
2424 static inline void put_numa_group(struct numa_group *grp)
2425 {
2426 	if (refcount_dec_and_test(&grp->refcount))
2427 		kfree_rcu(grp, rcu);
2428 }
2429 
2430 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2431 			int *priv)
2432 {
2433 	struct numa_group *grp, *my_grp;
2434 	struct task_struct *tsk;
2435 	bool join = false;
2436 	int cpu = cpupid_to_cpu(cpupid);
2437 	int i;
2438 
2439 	if (unlikely(!deref_curr_numa_group(p))) {
2440 		unsigned int size = sizeof(struct numa_group) +
2441 				    NR_NUMA_HINT_FAULT_STATS *
2442 				    nr_node_ids * sizeof(unsigned long);
2443 
2444 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2445 		if (!grp)
2446 			return;
2447 
2448 		refcount_set(&grp->refcount, 1);
2449 		grp->active_nodes = 1;
2450 		grp->max_faults_cpu = 0;
2451 		spin_lock_init(&grp->lock);
2452 		grp->gid = p->pid;
2453 
2454 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2455 			grp->faults[i] = p->numa_faults[i];
2456 
2457 		grp->total_faults = p->total_numa_faults;
2458 
2459 		grp->nr_tasks++;
2460 		rcu_assign_pointer(p->numa_group, grp);
2461 	}
2462 
2463 	rcu_read_lock();
2464 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2465 
2466 	if (!cpupid_match_pid(tsk, cpupid))
2467 		goto no_join;
2468 
2469 	grp = rcu_dereference(tsk->numa_group);
2470 	if (!grp)
2471 		goto no_join;
2472 
2473 	my_grp = deref_curr_numa_group(p);
2474 	if (grp == my_grp)
2475 		goto no_join;
2476 
2477 	/*
2478 	 * Only join the other group if its bigger; if we're the bigger group,
2479 	 * the other task will join us.
2480 	 */
2481 	if (my_grp->nr_tasks > grp->nr_tasks)
2482 		goto no_join;
2483 
2484 	/*
2485 	 * Tie-break on the grp address.
2486 	 */
2487 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2488 		goto no_join;
2489 
2490 	/* Always join threads in the same process. */
2491 	if (tsk->mm == current->mm)
2492 		join = true;
2493 
2494 	/* Simple filter to avoid false positives due to PID collisions */
2495 	if (flags & TNF_SHARED)
2496 		join = true;
2497 
2498 	/* Update priv based on whether false sharing was detected */
2499 	*priv = !join;
2500 
2501 	if (join && !get_numa_group(grp))
2502 		goto no_join;
2503 
2504 	rcu_read_unlock();
2505 
2506 	if (!join)
2507 		return;
2508 
2509 	BUG_ON(irqs_disabled());
2510 	double_lock_irq(&my_grp->lock, &grp->lock);
2511 
2512 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2513 		my_grp->faults[i] -= p->numa_faults[i];
2514 		grp->faults[i] += p->numa_faults[i];
2515 	}
2516 	my_grp->total_faults -= p->total_numa_faults;
2517 	grp->total_faults += p->total_numa_faults;
2518 
2519 	my_grp->nr_tasks--;
2520 	grp->nr_tasks++;
2521 
2522 	spin_unlock(&my_grp->lock);
2523 	spin_unlock_irq(&grp->lock);
2524 
2525 	rcu_assign_pointer(p->numa_group, grp);
2526 
2527 	put_numa_group(my_grp);
2528 	return;
2529 
2530 no_join:
2531 	rcu_read_unlock();
2532 	return;
2533 }
2534 
2535 /*
2536  * Get rid of NUMA statistics associated with a task (either current or dead).
2537  * If @final is set, the task is dead and has reached refcount zero, so we can
2538  * safely free all relevant data structures. Otherwise, there might be
2539  * concurrent reads from places like load balancing and procfs, and we should
2540  * reset the data back to default state without freeing ->numa_faults.
2541  */
2542 void task_numa_free(struct task_struct *p, bool final)
2543 {
2544 	/* safe: p either is current or is being freed by current */
2545 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2546 	unsigned long *numa_faults = p->numa_faults;
2547 	unsigned long flags;
2548 	int i;
2549 
2550 	if (!numa_faults)
2551 		return;
2552 
2553 	if (grp) {
2554 		spin_lock_irqsave(&grp->lock, flags);
2555 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2556 			grp->faults[i] -= p->numa_faults[i];
2557 		grp->total_faults -= p->total_numa_faults;
2558 
2559 		grp->nr_tasks--;
2560 		spin_unlock_irqrestore(&grp->lock, flags);
2561 		RCU_INIT_POINTER(p->numa_group, NULL);
2562 		put_numa_group(grp);
2563 	}
2564 
2565 	if (final) {
2566 		p->numa_faults = NULL;
2567 		kfree(numa_faults);
2568 	} else {
2569 		p->total_numa_faults = 0;
2570 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2571 			numa_faults[i] = 0;
2572 	}
2573 }
2574 
2575 /*
2576  * Got a PROT_NONE fault for a page on @node.
2577  */
2578 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2579 {
2580 	struct task_struct *p = current;
2581 	bool migrated = flags & TNF_MIGRATED;
2582 	int cpu_node = task_node(current);
2583 	int local = !!(flags & TNF_FAULT_LOCAL);
2584 	struct numa_group *ng;
2585 	int priv;
2586 
2587 	if (!static_branch_likely(&sched_numa_balancing))
2588 		return;
2589 
2590 	/* for example, ksmd faulting in a user's mm */
2591 	if (!p->mm)
2592 		return;
2593 
2594 	/* Allocate buffer to track faults on a per-node basis */
2595 	if (unlikely(!p->numa_faults)) {
2596 		int size = sizeof(*p->numa_faults) *
2597 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2598 
2599 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2600 		if (!p->numa_faults)
2601 			return;
2602 
2603 		p->total_numa_faults = 0;
2604 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2605 	}
2606 
2607 	/*
2608 	 * First accesses are treated as private, otherwise consider accesses
2609 	 * to be private if the accessing pid has not changed
2610 	 */
2611 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2612 		priv = 1;
2613 	} else {
2614 		priv = cpupid_match_pid(p, last_cpupid);
2615 		if (!priv && !(flags & TNF_NO_GROUP))
2616 			task_numa_group(p, last_cpupid, flags, &priv);
2617 	}
2618 
2619 	/*
2620 	 * If a workload spans multiple NUMA nodes, a shared fault that
2621 	 * occurs wholly within the set of nodes that the workload is
2622 	 * actively using should be counted as local. This allows the
2623 	 * scan rate to slow down when a workload has settled down.
2624 	 */
2625 	ng = deref_curr_numa_group(p);
2626 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2627 				numa_is_active_node(cpu_node, ng) &&
2628 				numa_is_active_node(mem_node, ng))
2629 		local = 1;
2630 
2631 	/*
2632 	 * Retry to migrate task to preferred node periodically, in case it
2633 	 * previously failed, or the scheduler moved us.
2634 	 */
2635 	if (time_after(jiffies, p->numa_migrate_retry)) {
2636 		task_numa_placement(p);
2637 		numa_migrate_preferred(p);
2638 	}
2639 
2640 	if (migrated)
2641 		p->numa_pages_migrated += pages;
2642 	if (flags & TNF_MIGRATE_FAIL)
2643 		p->numa_faults_locality[2] += pages;
2644 
2645 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2646 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2647 	p->numa_faults_locality[local] += pages;
2648 }
2649 
2650 static void reset_ptenuma_scan(struct task_struct *p)
2651 {
2652 	/*
2653 	 * We only did a read acquisition of the mmap sem, so
2654 	 * p->mm->numa_scan_seq is written to without exclusive access
2655 	 * and the update is not guaranteed to be atomic. That's not
2656 	 * much of an issue though, since this is just used for
2657 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2658 	 * expensive, to avoid any form of compiler optimizations:
2659 	 */
2660 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2661 	p->mm->numa_scan_offset = 0;
2662 }
2663 
2664 /*
2665  * The expensive part of numa migration is done from task_work context.
2666  * Triggered from task_tick_numa().
2667  */
2668 static void task_numa_work(struct callback_head *work)
2669 {
2670 	unsigned long migrate, next_scan, now = jiffies;
2671 	struct task_struct *p = current;
2672 	struct mm_struct *mm = p->mm;
2673 	u64 runtime = p->se.sum_exec_runtime;
2674 	struct vm_area_struct *vma;
2675 	unsigned long start, end;
2676 	unsigned long nr_pte_updates = 0;
2677 	long pages, virtpages;
2678 
2679 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2680 
2681 	work->next = work;
2682 	/*
2683 	 * Who cares about NUMA placement when they're dying.
2684 	 *
2685 	 * NOTE: make sure not to dereference p->mm before this check,
2686 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2687 	 * without p->mm even though we still had it when we enqueued this
2688 	 * work.
2689 	 */
2690 	if (p->flags & PF_EXITING)
2691 		return;
2692 
2693 	if (!mm->numa_next_scan) {
2694 		mm->numa_next_scan = now +
2695 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2696 	}
2697 
2698 	/*
2699 	 * Enforce maximal scan/migration frequency..
2700 	 */
2701 	migrate = mm->numa_next_scan;
2702 	if (time_before(now, migrate))
2703 		return;
2704 
2705 	if (p->numa_scan_period == 0) {
2706 		p->numa_scan_period_max = task_scan_max(p);
2707 		p->numa_scan_period = task_scan_start(p);
2708 	}
2709 
2710 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2711 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2712 		return;
2713 
2714 	/*
2715 	 * Delay this task enough that another task of this mm will likely win
2716 	 * the next time around.
2717 	 */
2718 	p->node_stamp += 2 * TICK_NSEC;
2719 
2720 	start = mm->numa_scan_offset;
2721 	pages = sysctl_numa_balancing_scan_size;
2722 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2723 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2724 	if (!pages)
2725 		return;
2726 
2727 
2728 	if (!mmap_read_trylock(mm))
2729 		return;
2730 	vma = find_vma(mm, start);
2731 	if (!vma) {
2732 		reset_ptenuma_scan(p);
2733 		start = 0;
2734 		vma = mm->mmap;
2735 	}
2736 	for (; vma; vma = vma->vm_next) {
2737 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2738 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2739 			continue;
2740 		}
2741 
2742 		/*
2743 		 * Shared library pages mapped by multiple processes are not
2744 		 * migrated as it is expected they are cache replicated. Avoid
2745 		 * hinting faults in read-only file-backed mappings or the vdso
2746 		 * as migrating the pages will be of marginal benefit.
2747 		 */
2748 		if (!vma->vm_mm ||
2749 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2750 			continue;
2751 
2752 		/*
2753 		 * Skip inaccessible VMAs to avoid any confusion between
2754 		 * PROT_NONE and NUMA hinting ptes
2755 		 */
2756 		if (!vma_is_accessible(vma))
2757 			continue;
2758 
2759 		do {
2760 			start = max(start, vma->vm_start);
2761 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2762 			end = min(end, vma->vm_end);
2763 			nr_pte_updates = change_prot_numa(vma, start, end);
2764 
2765 			/*
2766 			 * Try to scan sysctl_numa_balancing_size worth of
2767 			 * hpages that have at least one present PTE that
2768 			 * is not already pte-numa. If the VMA contains
2769 			 * areas that are unused or already full of prot_numa
2770 			 * PTEs, scan up to virtpages, to skip through those
2771 			 * areas faster.
2772 			 */
2773 			if (nr_pte_updates)
2774 				pages -= (end - start) >> PAGE_SHIFT;
2775 			virtpages -= (end - start) >> PAGE_SHIFT;
2776 
2777 			start = end;
2778 			if (pages <= 0 || virtpages <= 0)
2779 				goto out;
2780 
2781 			cond_resched();
2782 		} while (end != vma->vm_end);
2783 	}
2784 
2785 out:
2786 	/*
2787 	 * It is possible to reach the end of the VMA list but the last few
2788 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2789 	 * would find the !migratable VMA on the next scan but not reset the
2790 	 * scanner to the start so check it now.
2791 	 */
2792 	if (vma)
2793 		mm->numa_scan_offset = start;
2794 	else
2795 		reset_ptenuma_scan(p);
2796 	mmap_read_unlock(mm);
2797 
2798 	/*
2799 	 * Make sure tasks use at least 32x as much time to run other code
2800 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2801 	 * Usually update_task_scan_period slows down scanning enough; on an
2802 	 * overloaded system we need to limit overhead on a per task basis.
2803 	 */
2804 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2805 		u64 diff = p->se.sum_exec_runtime - runtime;
2806 		p->node_stamp += 32 * diff;
2807 	}
2808 }
2809 
2810 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2811 {
2812 	int mm_users = 0;
2813 	struct mm_struct *mm = p->mm;
2814 
2815 	if (mm) {
2816 		mm_users = atomic_read(&mm->mm_users);
2817 		if (mm_users == 1) {
2818 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2819 			mm->numa_scan_seq = 0;
2820 		}
2821 	}
2822 	p->node_stamp			= 0;
2823 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
2824 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
2825 	/* Protect against double add, see task_tick_numa and task_numa_work */
2826 	p->numa_work.next		= &p->numa_work;
2827 	p->numa_faults			= NULL;
2828 	RCU_INIT_POINTER(p->numa_group, NULL);
2829 	p->last_task_numa_placement	= 0;
2830 	p->last_sum_exec_runtime	= 0;
2831 
2832 	init_task_work(&p->numa_work, task_numa_work);
2833 
2834 	/* New address space, reset the preferred nid */
2835 	if (!(clone_flags & CLONE_VM)) {
2836 		p->numa_preferred_nid = NUMA_NO_NODE;
2837 		return;
2838 	}
2839 
2840 	/*
2841 	 * New thread, keep existing numa_preferred_nid which should be copied
2842 	 * already by arch_dup_task_struct but stagger when scans start.
2843 	 */
2844 	if (mm) {
2845 		unsigned int delay;
2846 
2847 		delay = min_t(unsigned int, task_scan_max(current),
2848 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2849 		delay += 2 * TICK_NSEC;
2850 		p->node_stamp = delay;
2851 	}
2852 }
2853 
2854 /*
2855  * Drive the periodic memory faults..
2856  */
2857 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2858 {
2859 	struct callback_head *work = &curr->numa_work;
2860 	u64 period, now;
2861 
2862 	/*
2863 	 * We don't care about NUMA placement if we don't have memory.
2864 	 */
2865 	if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2866 		return;
2867 
2868 	/*
2869 	 * Using runtime rather than walltime has the dual advantage that
2870 	 * we (mostly) drive the selection from busy threads and that the
2871 	 * task needs to have done some actual work before we bother with
2872 	 * NUMA placement.
2873 	 */
2874 	now = curr->se.sum_exec_runtime;
2875 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2876 
2877 	if (now > curr->node_stamp + period) {
2878 		if (!curr->node_stamp)
2879 			curr->numa_scan_period = task_scan_start(curr);
2880 		curr->node_stamp += period;
2881 
2882 		if (!time_before(jiffies, curr->mm->numa_next_scan))
2883 			task_work_add(curr, work, TWA_RESUME);
2884 	}
2885 }
2886 
2887 static void update_scan_period(struct task_struct *p, int new_cpu)
2888 {
2889 	int src_nid = cpu_to_node(task_cpu(p));
2890 	int dst_nid = cpu_to_node(new_cpu);
2891 
2892 	if (!static_branch_likely(&sched_numa_balancing))
2893 		return;
2894 
2895 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2896 		return;
2897 
2898 	if (src_nid == dst_nid)
2899 		return;
2900 
2901 	/*
2902 	 * Allow resets if faults have been trapped before one scan
2903 	 * has completed. This is most likely due to a new task that
2904 	 * is pulled cross-node due to wakeups or load balancing.
2905 	 */
2906 	if (p->numa_scan_seq) {
2907 		/*
2908 		 * Avoid scan adjustments if moving to the preferred
2909 		 * node or if the task was not previously running on
2910 		 * the preferred node.
2911 		 */
2912 		if (dst_nid == p->numa_preferred_nid ||
2913 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2914 			src_nid != p->numa_preferred_nid))
2915 			return;
2916 	}
2917 
2918 	p->numa_scan_period = task_scan_start(p);
2919 }
2920 
2921 #else
2922 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2923 {
2924 }
2925 
2926 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2927 {
2928 }
2929 
2930 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2931 {
2932 }
2933 
2934 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2935 {
2936 }
2937 
2938 #endif /* CONFIG_NUMA_BALANCING */
2939 
2940 static void
2941 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2942 {
2943 	update_load_add(&cfs_rq->load, se->load.weight);
2944 #ifdef CONFIG_SMP
2945 	if (entity_is_task(se)) {
2946 		struct rq *rq = rq_of(cfs_rq);
2947 
2948 		account_numa_enqueue(rq, task_of(se));
2949 		list_add(&se->group_node, &rq->cfs_tasks);
2950 	}
2951 #endif
2952 	cfs_rq->nr_running++;
2953 	if (se_is_idle(se))
2954 		cfs_rq->idle_nr_running++;
2955 }
2956 
2957 static void
2958 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2959 {
2960 	update_load_sub(&cfs_rq->load, se->load.weight);
2961 #ifdef CONFIG_SMP
2962 	if (entity_is_task(se)) {
2963 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2964 		list_del_init(&se->group_node);
2965 	}
2966 #endif
2967 	cfs_rq->nr_running--;
2968 	if (se_is_idle(se))
2969 		cfs_rq->idle_nr_running--;
2970 }
2971 
2972 /*
2973  * Signed add and clamp on underflow.
2974  *
2975  * Explicitly do a load-store to ensure the intermediate value never hits
2976  * memory. This allows lockless observations without ever seeing the negative
2977  * values.
2978  */
2979 #define add_positive(_ptr, _val) do {                           \
2980 	typeof(_ptr) ptr = (_ptr);                              \
2981 	typeof(_val) val = (_val);                              \
2982 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2983 								\
2984 	res = var + val;                                        \
2985 								\
2986 	if (val < 0 && res > var)                               \
2987 		res = 0;                                        \
2988 								\
2989 	WRITE_ONCE(*ptr, res);                                  \
2990 } while (0)
2991 
2992 /*
2993  * Unsigned subtract and clamp on underflow.
2994  *
2995  * Explicitly do a load-store to ensure the intermediate value never hits
2996  * memory. This allows lockless observations without ever seeing the negative
2997  * values.
2998  */
2999 #define sub_positive(_ptr, _val) do {				\
3000 	typeof(_ptr) ptr = (_ptr);				\
3001 	typeof(*ptr) val = (_val);				\
3002 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3003 	res = var - val;					\
3004 	if (res > var)						\
3005 		res = 0;					\
3006 	WRITE_ONCE(*ptr, res);					\
3007 } while (0)
3008 
3009 /*
3010  * Remove and clamp on negative, from a local variable.
3011  *
3012  * A variant of sub_positive(), which does not use explicit load-store
3013  * and is thus optimized for local variable updates.
3014  */
3015 #define lsub_positive(_ptr, _val) do {				\
3016 	typeof(_ptr) ptr = (_ptr);				\
3017 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3018 } while (0)
3019 
3020 #ifdef CONFIG_SMP
3021 static inline void
3022 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3023 {
3024 	cfs_rq->avg.load_avg += se->avg.load_avg;
3025 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3026 }
3027 
3028 static inline void
3029 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3030 {
3031 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3032 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3033 	/* See update_cfs_rq_load_avg() */
3034 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3035 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3036 }
3037 #else
3038 static inline void
3039 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3040 static inline void
3041 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3042 #endif
3043 
3044 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3045 			    unsigned long weight)
3046 {
3047 	if (se->on_rq) {
3048 		/* commit outstanding execution time */
3049 		if (cfs_rq->curr == se)
3050 			update_curr(cfs_rq);
3051 		update_load_sub(&cfs_rq->load, se->load.weight);
3052 	}
3053 	dequeue_load_avg(cfs_rq, se);
3054 
3055 	update_load_set(&se->load, weight);
3056 
3057 #ifdef CONFIG_SMP
3058 	do {
3059 		u32 divider = get_pelt_divider(&se->avg);
3060 
3061 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3062 	} while (0);
3063 #endif
3064 
3065 	enqueue_load_avg(cfs_rq, se);
3066 	if (se->on_rq)
3067 		update_load_add(&cfs_rq->load, se->load.weight);
3068 
3069 }
3070 
3071 void reweight_task(struct task_struct *p, int prio)
3072 {
3073 	struct sched_entity *se = &p->se;
3074 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3075 	struct load_weight *load = &se->load;
3076 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3077 
3078 	reweight_entity(cfs_rq, se, weight);
3079 	load->inv_weight = sched_prio_to_wmult[prio];
3080 }
3081 
3082 #ifdef CONFIG_FAIR_GROUP_SCHED
3083 #ifdef CONFIG_SMP
3084 /*
3085  * All this does is approximate the hierarchical proportion which includes that
3086  * global sum we all love to hate.
3087  *
3088  * That is, the weight of a group entity, is the proportional share of the
3089  * group weight based on the group runqueue weights. That is:
3090  *
3091  *                     tg->weight * grq->load.weight
3092  *   ge->load.weight = -----------------------------               (1)
3093  *                       \Sum grq->load.weight
3094  *
3095  * Now, because computing that sum is prohibitively expensive to compute (been
3096  * there, done that) we approximate it with this average stuff. The average
3097  * moves slower and therefore the approximation is cheaper and more stable.
3098  *
3099  * So instead of the above, we substitute:
3100  *
3101  *   grq->load.weight -> grq->avg.load_avg                         (2)
3102  *
3103  * which yields the following:
3104  *
3105  *                     tg->weight * grq->avg.load_avg
3106  *   ge->load.weight = ------------------------------              (3)
3107  *                             tg->load_avg
3108  *
3109  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3110  *
3111  * That is shares_avg, and it is right (given the approximation (2)).
3112  *
3113  * The problem with it is that because the average is slow -- it was designed
3114  * to be exactly that of course -- this leads to transients in boundary
3115  * conditions. In specific, the case where the group was idle and we start the
3116  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3117  * yielding bad latency etc..
3118  *
3119  * Now, in that special case (1) reduces to:
3120  *
3121  *                     tg->weight * grq->load.weight
3122  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3123  *                         grp->load.weight
3124  *
3125  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3126  *
3127  * So what we do is modify our approximation (3) to approach (4) in the (near)
3128  * UP case, like:
3129  *
3130  *   ge->load.weight =
3131  *
3132  *              tg->weight * grq->load.weight
3133  *     ---------------------------------------------------         (5)
3134  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3135  *
3136  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3137  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3138  *
3139  *
3140  *                     tg->weight * grq->load.weight
3141  *   ge->load.weight = -----------------------------		   (6)
3142  *                             tg_load_avg'
3143  *
3144  * Where:
3145  *
3146  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3147  *                  max(grq->load.weight, grq->avg.load_avg)
3148  *
3149  * And that is shares_weight and is icky. In the (near) UP case it approaches
3150  * (4) while in the normal case it approaches (3). It consistently
3151  * overestimates the ge->load.weight and therefore:
3152  *
3153  *   \Sum ge->load.weight >= tg->weight
3154  *
3155  * hence icky!
3156  */
3157 static long calc_group_shares(struct cfs_rq *cfs_rq)
3158 {
3159 	long tg_weight, tg_shares, load, shares;
3160 	struct task_group *tg = cfs_rq->tg;
3161 
3162 	tg_shares = READ_ONCE(tg->shares);
3163 
3164 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3165 
3166 	tg_weight = atomic_long_read(&tg->load_avg);
3167 
3168 	/* Ensure tg_weight >= load */
3169 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3170 	tg_weight += load;
3171 
3172 	shares = (tg_shares * load);
3173 	if (tg_weight)
3174 		shares /= tg_weight;
3175 
3176 	/*
3177 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3178 	 * of a group with small tg->shares value. It is a floor value which is
3179 	 * assigned as a minimum load.weight to the sched_entity representing
3180 	 * the group on a CPU.
3181 	 *
3182 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3183 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3184 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3185 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3186 	 * instead of 0.
3187 	 */
3188 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3189 }
3190 #endif /* CONFIG_SMP */
3191 
3192 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3193 
3194 /*
3195  * Recomputes the group entity based on the current state of its group
3196  * runqueue.
3197  */
3198 static void update_cfs_group(struct sched_entity *se)
3199 {
3200 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3201 	long shares;
3202 
3203 	if (!gcfs_rq)
3204 		return;
3205 
3206 	if (throttled_hierarchy(gcfs_rq))
3207 		return;
3208 
3209 #ifndef CONFIG_SMP
3210 	shares = READ_ONCE(gcfs_rq->tg->shares);
3211 
3212 	if (likely(se->load.weight == shares))
3213 		return;
3214 #else
3215 	shares   = calc_group_shares(gcfs_rq);
3216 #endif
3217 
3218 	reweight_entity(cfs_rq_of(se), se, shares);
3219 }
3220 
3221 #else /* CONFIG_FAIR_GROUP_SCHED */
3222 static inline void update_cfs_group(struct sched_entity *se)
3223 {
3224 }
3225 #endif /* CONFIG_FAIR_GROUP_SCHED */
3226 
3227 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3228 {
3229 	struct rq *rq = rq_of(cfs_rq);
3230 
3231 	if (&rq->cfs == cfs_rq) {
3232 		/*
3233 		 * There are a few boundary cases this might miss but it should
3234 		 * get called often enough that that should (hopefully) not be
3235 		 * a real problem.
3236 		 *
3237 		 * It will not get called when we go idle, because the idle
3238 		 * thread is a different class (!fair), nor will the utilization
3239 		 * number include things like RT tasks.
3240 		 *
3241 		 * As is, the util number is not freq-invariant (we'd have to
3242 		 * implement arch_scale_freq_capacity() for that).
3243 		 *
3244 		 * See cpu_util_cfs().
3245 		 */
3246 		cpufreq_update_util(rq, flags);
3247 	}
3248 }
3249 
3250 #ifdef CONFIG_SMP
3251 #ifdef CONFIG_FAIR_GROUP_SCHED
3252 /*
3253  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3254  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3255  * bottom-up, we only have to test whether the cfs_rq before us on the list
3256  * is our child.
3257  * If cfs_rq is not on the list, test whether a child needs its to be added to
3258  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
3259  */
3260 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3261 {
3262 	struct cfs_rq *prev_cfs_rq;
3263 	struct list_head *prev;
3264 
3265 	if (cfs_rq->on_list) {
3266 		prev = cfs_rq->leaf_cfs_rq_list.prev;
3267 	} else {
3268 		struct rq *rq = rq_of(cfs_rq);
3269 
3270 		prev = rq->tmp_alone_branch;
3271 	}
3272 
3273 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3274 
3275 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3276 }
3277 
3278 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3279 {
3280 	if (cfs_rq->load.weight)
3281 		return false;
3282 
3283 	if (cfs_rq->avg.load_sum)
3284 		return false;
3285 
3286 	if (cfs_rq->avg.util_sum)
3287 		return false;
3288 
3289 	if (cfs_rq->avg.runnable_sum)
3290 		return false;
3291 
3292 	if (child_cfs_rq_on_list(cfs_rq))
3293 		return false;
3294 
3295 	/*
3296 	 * _avg must be null when _sum are null because _avg = _sum / divider
3297 	 * Make sure that rounding and/or propagation of PELT values never
3298 	 * break this.
3299 	 */
3300 	SCHED_WARN_ON(cfs_rq->avg.load_avg ||
3301 		      cfs_rq->avg.util_avg ||
3302 		      cfs_rq->avg.runnable_avg);
3303 
3304 	return true;
3305 }
3306 
3307 /**
3308  * update_tg_load_avg - update the tg's load avg
3309  * @cfs_rq: the cfs_rq whose avg changed
3310  *
3311  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3312  * However, because tg->load_avg is a global value there are performance
3313  * considerations.
3314  *
3315  * In order to avoid having to look at the other cfs_rq's, we use a
3316  * differential update where we store the last value we propagated. This in
3317  * turn allows skipping updates if the differential is 'small'.
3318  *
3319  * Updating tg's load_avg is necessary before update_cfs_share().
3320  */
3321 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3322 {
3323 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3324 
3325 	/*
3326 	 * No need to update load_avg for root_task_group as it is not used.
3327 	 */
3328 	if (cfs_rq->tg == &root_task_group)
3329 		return;
3330 
3331 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3332 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3333 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3334 	}
3335 }
3336 
3337 /*
3338  * Called within set_task_rq() right before setting a task's CPU. The
3339  * caller only guarantees p->pi_lock is held; no other assumptions,
3340  * including the state of rq->lock, should be made.
3341  */
3342 void set_task_rq_fair(struct sched_entity *se,
3343 		      struct cfs_rq *prev, struct cfs_rq *next)
3344 {
3345 	u64 p_last_update_time;
3346 	u64 n_last_update_time;
3347 
3348 	if (!sched_feat(ATTACH_AGE_LOAD))
3349 		return;
3350 
3351 	/*
3352 	 * We are supposed to update the task to "current" time, then its up to
3353 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3354 	 * getting what current time is, so simply throw away the out-of-date
3355 	 * time. This will result in the wakee task is less decayed, but giving
3356 	 * the wakee more load sounds not bad.
3357 	 */
3358 	if (!(se->avg.last_update_time && prev))
3359 		return;
3360 
3361 #ifndef CONFIG_64BIT
3362 	{
3363 		u64 p_last_update_time_copy;
3364 		u64 n_last_update_time_copy;
3365 
3366 		do {
3367 			p_last_update_time_copy = prev->load_last_update_time_copy;
3368 			n_last_update_time_copy = next->load_last_update_time_copy;
3369 
3370 			smp_rmb();
3371 
3372 			p_last_update_time = prev->avg.last_update_time;
3373 			n_last_update_time = next->avg.last_update_time;
3374 
3375 		} while (p_last_update_time != p_last_update_time_copy ||
3376 			 n_last_update_time != n_last_update_time_copy);
3377 	}
3378 #else
3379 	p_last_update_time = prev->avg.last_update_time;
3380 	n_last_update_time = next->avg.last_update_time;
3381 #endif
3382 	__update_load_avg_blocked_se(p_last_update_time, se);
3383 	se->avg.last_update_time = n_last_update_time;
3384 }
3385 
3386 /*
3387  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3388  * propagate its contribution. The key to this propagation is the invariant
3389  * that for each group:
3390  *
3391  *   ge->avg == grq->avg						(1)
3392  *
3393  * _IFF_ we look at the pure running and runnable sums. Because they
3394  * represent the very same entity, just at different points in the hierarchy.
3395  *
3396  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3397  * and simply copies the running/runnable sum over (but still wrong, because
3398  * the group entity and group rq do not have their PELT windows aligned).
3399  *
3400  * However, update_tg_cfs_load() is more complex. So we have:
3401  *
3402  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3403  *
3404  * And since, like util, the runnable part should be directly transferable,
3405  * the following would _appear_ to be the straight forward approach:
3406  *
3407  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3408  *
3409  * And per (1) we have:
3410  *
3411  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3412  *
3413  * Which gives:
3414  *
3415  *                      ge->load.weight * grq->avg.load_avg
3416  *   ge->avg.load_avg = -----------------------------------		(4)
3417  *                               grq->load.weight
3418  *
3419  * Except that is wrong!
3420  *
3421  * Because while for entities historical weight is not important and we
3422  * really only care about our future and therefore can consider a pure
3423  * runnable sum, runqueues can NOT do this.
3424  *
3425  * We specifically want runqueues to have a load_avg that includes
3426  * historical weights. Those represent the blocked load, the load we expect
3427  * to (shortly) return to us. This only works by keeping the weights as
3428  * integral part of the sum. We therefore cannot decompose as per (3).
3429  *
3430  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3431  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3432  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3433  * runnable section of these tasks overlap (or not). If they were to perfectly
3434  * align the rq as a whole would be runnable 2/3 of the time. If however we
3435  * always have at least 1 runnable task, the rq as a whole is always runnable.
3436  *
3437  * So we'll have to approximate.. :/
3438  *
3439  * Given the constraint:
3440  *
3441  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3442  *
3443  * We can construct a rule that adds runnable to a rq by assuming minimal
3444  * overlap.
3445  *
3446  * On removal, we'll assume each task is equally runnable; which yields:
3447  *
3448  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3449  *
3450  * XXX: only do this for the part of runnable > running ?
3451  *
3452  */
3453 static inline void
3454 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3455 {
3456 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
3457 	u32 new_sum, divider;
3458 
3459 	/* Nothing to update */
3460 	if (!delta_avg)
3461 		return;
3462 
3463 	/*
3464 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3465 	 * See ___update_load_avg() for details.
3466 	 */
3467 	divider = get_pelt_divider(&cfs_rq->avg);
3468 
3469 
3470 	/* Set new sched_entity's utilization */
3471 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3472 	new_sum = se->avg.util_avg * divider;
3473 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
3474 	se->avg.util_sum = new_sum;
3475 
3476 	/* Update parent cfs_rq utilization */
3477 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
3478 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
3479 
3480 	/* See update_cfs_rq_load_avg() */
3481 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
3482 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
3483 }
3484 
3485 static inline void
3486 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3487 {
3488 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3489 	u32 new_sum, divider;
3490 
3491 	/* Nothing to update */
3492 	if (!delta_avg)
3493 		return;
3494 
3495 	/*
3496 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3497 	 * See ___update_load_avg() for details.
3498 	 */
3499 	divider = get_pelt_divider(&cfs_rq->avg);
3500 
3501 	/* Set new sched_entity's runnable */
3502 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3503 	new_sum = se->avg.runnable_avg * divider;
3504 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
3505 	se->avg.runnable_sum = new_sum;
3506 
3507 	/* Update parent cfs_rq runnable */
3508 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
3509 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
3510 	/* See update_cfs_rq_load_avg() */
3511 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
3512 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
3513 }
3514 
3515 static inline void
3516 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3517 {
3518 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3519 	unsigned long load_avg;
3520 	u64 load_sum = 0;
3521 	s64 delta_sum;
3522 	u32 divider;
3523 
3524 	if (!runnable_sum)
3525 		return;
3526 
3527 	gcfs_rq->prop_runnable_sum = 0;
3528 
3529 	/*
3530 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3531 	 * See ___update_load_avg() for details.
3532 	 */
3533 	divider = get_pelt_divider(&cfs_rq->avg);
3534 
3535 	if (runnable_sum >= 0) {
3536 		/*
3537 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3538 		 * the CPU is saturated running == runnable.
3539 		 */
3540 		runnable_sum += se->avg.load_sum;
3541 		runnable_sum = min_t(long, runnable_sum, divider);
3542 	} else {
3543 		/*
3544 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3545 		 * assuming all tasks are equally runnable.
3546 		 */
3547 		if (scale_load_down(gcfs_rq->load.weight)) {
3548 			load_sum = div_u64(gcfs_rq->avg.load_sum,
3549 				scale_load_down(gcfs_rq->load.weight));
3550 		}
3551 
3552 		/* But make sure to not inflate se's runnable */
3553 		runnable_sum = min(se->avg.load_sum, load_sum);
3554 	}
3555 
3556 	/*
3557 	 * runnable_sum can't be lower than running_sum
3558 	 * Rescale running sum to be in the same range as runnable sum
3559 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3560 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3561 	 */
3562 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3563 	runnable_sum = max(runnable_sum, running_sum);
3564 
3565 	load_sum = se_weight(se) * runnable_sum;
3566 	load_avg = div_u64(load_sum, divider);
3567 
3568 	delta_avg = load_avg - se->avg.load_avg;
3569 	if (!delta_avg)
3570 		return;
3571 
3572 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3573 
3574 	se->avg.load_sum = runnable_sum;
3575 	se->avg.load_avg = load_avg;
3576 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3577 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3578 	/* See update_cfs_rq_load_avg() */
3579 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3580 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3581 }
3582 
3583 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3584 {
3585 	cfs_rq->propagate = 1;
3586 	cfs_rq->prop_runnable_sum += runnable_sum;
3587 }
3588 
3589 /* Update task and its cfs_rq load average */
3590 static inline int propagate_entity_load_avg(struct sched_entity *se)
3591 {
3592 	struct cfs_rq *cfs_rq, *gcfs_rq;
3593 
3594 	if (entity_is_task(se))
3595 		return 0;
3596 
3597 	gcfs_rq = group_cfs_rq(se);
3598 	if (!gcfs_rq->propagate)
3599 		return 0;
3600 
3601 	gcfs_rq->propagate = 0;
3602 
3603 	cfs_rq = cfs_rq_of(se);
3604 
3605 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3606 
3607 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3608 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3609 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3610 
3611 	trace_pelt_cfs_tp(cfs_rq);
3612 	trace_pelt_se_tp(se);
3613 
3614 	return 1;
3615 }
3616 
3617 /*
3618  * Check if we need to update the load and the utilization of a blocked
3619  * group_entity:
3620  */
3621 static inline bool skip_blocked_update(struct sched_entity *se)
3622 {
3623 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3624 
3625 	/*
3626 	 * If sched_entity still have not zero load or utilization, we have to
3627 	 * decay it:
3628 	 */
3629 	if (se->avg.load_avg || se->avg.util_avg)
3630 		return false;
3631 
3632 	/*
3633 	 * If there is a pending propagation, we have to update the load and
3634 	 * the utilization of the sched_entity:
3635 	 */
3636 	if (gcfs_rq->propagate)
3637 		return false;
3638 
3639 	/*
3640 	 * Otherwise, the load and the utilization of the sched_entity is
3641 	 * already zero and there is no pending propagation, so it will be a
3642 	 * waste of time to try to decay it:
3643 	 */
3644 	return true;
3645 }
3646 
3647 #else /* CONFIG_FAIR_GROUP_SCHED */
3648 
3649 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3650 
3651 static inline int propagate_entity_load_avg(struct sched_entity *se)
3652 {
3653 	return 0;
3654 }
3655 
3656 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3657 
3658 #endif /* CONFIG_FAIR_GROUP_SCHED */
3659 
3660 /**
3661  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3662  * @now: current time, as per cfs_rq_clock_pelt()
3663  * @cfs_rq: cfs_rq to update
3664  *
3665  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3666  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3667  * post_init_entity_util_avg().
3668  *
3669  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3670  *
3671  * Return: true if the load decayed or we removed load.
3672  *
3673  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3674  * call update_tg_load_avg() when this function returns true.
3675  */
3676 static inline int
3677 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3678 {
3679 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3680 	struct sched_avg *sa = &cfs_rq->avg;
3681 	int decayed = 0;
3682 
3683 	if (cfs_rq->removed.nr) {
3684 		unsigned long r;
3685 		u32 divider = get_pelt_divider(&cfs_rq->avg);
3686 
3687 		raw_spin_lock(&cfs_rq->removed.lock);
3688 		swap(cfs_rq->removed.util_avg, removed_util);
3689 		swap(cfs_rq->removed.load_avg, removed_load);
3690 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
3691 		cfs_rq->removed.nr = 0;
3692 		raw_spin_unlock(&cfs_rq->removed.lock);
3693 
3694 		r = removed_load;
3695 		sub_positive(&sa->load_avg, r);
3696 		sub_positive(&sa->load_sum, r * divider);
3697 		/* See sa->util_sum below */
3698 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
3699 
3700 		r = removed_util;
3701 		sub_positive(&sa->util_avg, r);
3702 		sub_positive(&sa->util_sum, r * divider);
3703 		/*
3704 		 * Because of rounding, se->util_sum might ends up being +1 more than
3705 		 * cfs->util_sum. Although this is not a problem by itself, detaching
3706 		 * a lot of tasks with the rounding problem between 2 updates of
3707 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
3708 		 * cfs_util_avg is not.
3709 		 * Check that util_sum is still above its lower bound for the new
3710 		 * util_avg. Given that period_contrib might have moved since the last
3711 		 * sync, we are only sure that util_sum must be above or equal to
3712 		 *    util_avg * minimum possible divider
3713 		 */
3714 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
3715 
3716 		r = removed_runnable;
3717 		sub_positive(&sa->runnable_avg, r);
3718 		sub_positive(&sa->runnable_sum, r * divider);
3719 		/* See sa->util_sum above */
3720 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
3721 					      sa->runnable_avg * PELT_MIN_DIVIDER);
3722 
3723 		/*
3724 		 * removed_runnable is the unweighted version of removed_load so we
3725 		 * can use it to estimate removed_load_sum.
3726 		 */
3727 		add_tg_cfs_propagate(cfs_rq,
3728 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3729 
3730 		decayed = 1;
3731 	}
3732 
3733 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3734 
3735 #ifndef CONFIG_64BIT
3736 	smp_wmb();
3737 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3738 #endif
3739 
3740 	return decayed;
3741 }
3742 
3743 /**
3744  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3745  * @cfs_rq: cfs_rq to attach to
3746  * @se: sched_entity to attach
3747  *
3748  * Must call update_cfs_rq_load_avg() before this, since we rely on
3749  * cfs_rq->avg.last_update_time being current.
3750  */
3751 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3752 {
3753 	/*
3754 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3755 	 * See ___update_load_avg() for details.
3756 	 */
3757 	u32 divider = get_pelt_divider(&cfs_rq->avg);
3758 
3759 	/*
3760 	 * When we attach the @se to the @cfs_rq, we must align the decay
3761 	 * window because without that, really weird and wonderful things can
3762 	 * happen.
3763 	 *
3764 	 * XXX illustrate
3765 	 */
3766 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3767 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3768 
3769 	/*
3770 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3771 	 * period_contrib. This isn't strictly correct, but since we're
3772 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3773 	 * _sum a little.
3774 	 */
3775 	se->avg.util_sum = se->avg.util_avg * divider;
3776 
3777 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3778 
3779 	se->avg.load_sum = divider;
3780 	if (se_weight(se)) {
3781 		se->avg.load_sum =
3782 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3783 	}
3784 
3785 	enqueue_load_avg(cfs_rq, se);
3786 	cfs_rq->avg.util_avg += se->avg.util_avg;
3787 	cfs_rq->avg.util_sum += se->avg.util_sum;
3788 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3789 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3790 
3791 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3792 
3793 	cfs_rq_util_change(cfs_rq, 0);
3794 
3795 	trace_pelt_cfs_tp(cfs_rq);
3796 }
3797 
3798 /**
3799  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3800  * @cfs_rq: cfs_rq to detach from
3801  * @se: sched_entity to detach
3802  *
3803  * Must call update_cfs_rq_load_avg() before this, since we rely on
3804  * cfs_rq->avg.last_update_time being current.
3805  */
3806 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3807 {
3808 	dequeue_load_avg(cfs_rq, se);
3809 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3810 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3811 	/* See update_cfs_rq_load_avg() */
3812 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
3813 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
3814 
3815 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3816 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
3817 	/* See update_cfs_rq_load_avg() */
3818 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
3819 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
3820 
3821 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3822 
3823 	cfs_rq_util_change(cfs_rq, 0);
3824 
3825 	trace_pelt_cfs_tp(cfs_rq);
3826 }
3827 
3828 /*
3829  * Optional action to be done while updating the load average
3830  */
3831 #define UPDATE_TG	0x1
3832 #define SKIP_AGE_LOAD	0x2
3833 #define DO_ATTACH	0x4
3834 
3835 /* Update task and its cfs_rq load average */
3836 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3837 {
3838 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3839 	int decayed;
3840 
3841 	/*
3842 	 * Track task load average for carrying it to new CPU after migrated, and
3843 	 * track group sched_entity load average for task_h_load calc in migration
3844 	 */
3845 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3846 		__update_load_avg_se(now, cfs_rq, se);
3847 
3848 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3849 	decayed |= propagate_entity_load_avg(se);
3850 
3851 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3852 
3853 		/*
3854 		 * DO_ATTACH means we're here from enqueue_entity().
3855 		 * !last_update_time means we've passed through
3856 		 * migrate_task_rq_fair() indicating we migrated.
3857 		 *
3858 		 * IOW we're enqueueing a task on a new CPU.
3859 		 */
3860 		attach_entity_load_avg(cfs_rq, se);
3861 		update_tg_load_avg(cfs_rq);
3862 
3863 	} else if (decayed) {
3864 		cfs_rq_util_change(cfs_rq, 0);
3865 
3866 		if (flags & UPDATE_TG)
3867 			update_tg_load_avg(cfs_rq);
3868 	}
3869 }
3870 
3871 #ifndef CONFIG_64BIT
3872 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3873 {
3874 	u64 last_update_time_copy;
3875 	u64 last_update_time;
3876 
3877 	do {
3878 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3879 		smp_rmb();
3880 		last_update_time = cfs_rq->avg.last_update_time;
3881 	} while (last_update_time != last_update_time_copy);
3882 
3883 	return last_update_time;
3884 }
3885 #else
3886 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3887 {
3888 	return cfs_rq->avg.last_update_time;
3889 }
3890 #endif
3891 
3892 /*
3893  * Synchronize entity load avg of dequeued entity without locking
3894  * the previous rq.
3895  */
3896 static void sync_entity_load_avg(struct sched_entity *se)
3897 {
3898 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3899 	u64 last_update_time;
3900 
3901 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3902 	__update_load_avg_blocked_se(last_update_time, se);
3903 }
3904 
3905 /*
3906  * Task first catches up with cfs_rq, and then subtract
3907  * itself from the cfs_rq (task must be off the queue now).
3908  */
3909 static void remove_entity_load_avg(struct sched_entity *se)
3910 {
3911 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3912 	unsigned long flags;
3913 
3914 	/*
3915 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3916 	 * post_init_entity_util_avg() which will have added things to the
3917 	 * cfs_rq, so we can remove unconditionally.
3918 	 */
3919 
3920 	sync_entity_load_avg(se);
3921 
3922 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3923 	++cfs_rq->removed.nr;
3924 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3925 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3926 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
3927 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3928 }
3929 
3930 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3931 {
3932 	return cfs_rq->avg.runnable_avg;
3933 }
3934 
3935 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3936 {
3937 	return cfs_rq->avg.load_avg;
3938 }
3939 
3940 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3941 
3942 static inline unsigned long task_util(struct task_struct *p)
3943 {
3944 	return READ_ONCE(p->se.avg.util_avg);
3945 }
3946 
3947 static inline unsigned long _task_util_est(struct task_struct *p)
3948 {
3949 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3950 
3951 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
3952 }
3953 
3954 static inline unsigned long task_util_est(struct task_struct *p)
3955 {
3956 	return max(task_util(p), _task_util_est(p));
3957 }
3958 
3959 #ifdef CONFIG_UCLAMP_TASK
3960 static inline unsigned long uclamp_task_util(struct task_struct *p)
3961 {
3962 	return clamp(task_util_est(p),
3963 		     uclamp_eff_value(p, UCLAMP_MIN),
3964 		     uclamp_eff_value(p, UCLAMP_MAX));
3965 }
3966 #else
3967 static inline unsigned long uclamp_task_util(struct task_struct *p)
3968 {
3969 	return task_util_est(p);
3970 }
3971 #endif
3972 
3973 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3974 				    struct task_struct *p)
3975 {
3976 	unsigned int enqueued;
3977 
3978 	if (!sched_feat(UTIL_EST))
3979 		return;
3980 
3981 	/* Update root cfs_rq's estimated utilization */
3982 	enqueued  = cfs_rq->avg.util_est.enqueued;
3983 	enqueued += _task_util_est(p);
3984 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3985 
3986 	trace_sched_util_est_cfs_tp(cfs_rq);
3987 }
3988 
3989 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
3990 				    struct task_struct *p)
3991 {
3992 	unsigned int enqueued;
3993 
3994 	if (!sched_feat(UTIL_EST))
3995 		return;
3996 
3997 	/* Update root cfs_rq's estimated utilization */
3998 	enqueued  = cfs_rq->avg.util_est.enqueued;
3999 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4000 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4001 
4002 	trace_sched_util_est_cfs_tp(cfs_rq);
4003 }
4004 
4005 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4006 
4007 /*
4008  * Check if a (signed) value is within a specified (unsigned) margin,
4009  * based on the observation that:
4010  *
4011  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4012  *
4013  * NOTE: this only works when value + margin < INT_MAX.
4014  */
4015 static inline bool within_margin(int value, int margin)
4016 {
4017 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4018 }
4019 
4020 static inline void util_est_update(struct cfs_rq *cfs_rq,
4021 				   struct task_struct *p,
4022 				   bool task_sleep)
4023 {
4024 	long last_ewma_diff, last_enqueued_diff;
4025 	struct util_est ue;
4026 
4027 	if (!sched_feat(UTIL_EST))
4028 		return;
4029 
4030 	/*
4031 	 * Skip update of task's estimated utilization when the task has not
4032 	 * yet completed an activation, e.g. being migrated.
4033 	 */
4034 	if (!task_sleep)
4035 		return;
4036 
4037 	/*
4038 	 * If the PELT values haven't changed since enqueue time,
4039 	 * skip the util_est update.
4040 	 */
4041 	ue = p->se.avg.util_est;
4042 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4043 		return;
4044 
4045 	last_enqueued_diff = ue.enqueued;
4046 
4047 	/*
4048 	 * Reset EWMA on utilization increases, the moving average is used only
4049 	 * to smooth utilization decreases.
4050 	 */
4051 	ue.enqueued = task_util(p);
4052 	if (sched_feat(UTIL_EST_FASTUP)) {
4053 		if (ue.ewma < ue.enqueued) {
4054 			ue.ewma = ue.enqueued;
4055 			goto done;
4056 		}
4057 	}
4058 
4059 	/*
4060 	 * Skip update of task's estimated utilization when its members are
4061 	 * already ~1% close to its last activation value.
4062 	 */
4063 	last_ewma_diff = ue.enqueued - ue.ewma;
4064 	last_enqueued_diff -= ue.enqueued;
4065 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4066 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4067 			goto done;
4068 
4069 		return;
4070 	}
4071 
4072 	/*
4073 	 * To avoid overestimation of actual task utilization, skip updates if
4074 	 * we cannot grant there is idle time in this CPU.
4075 	 */
4076 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4077 		return;
4078 
4079 	/*
4080 	 * Update Task's estimated utilization
4081 	 *
4082 	 * When *p completes an activation we can consolidate another sample
4083 	 * of the task size. This is done by storing the current PELT value
4084 	 * as ue.enqueued and by using this value to update the Exponential
4085 	 * Weighted Moving Average (EWMA):
4086 	 *
4087 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4088 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4089 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4090 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4091 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4092 	 *
4093 	 * Where 'w' is the weight of new samples, which is configured to be
4094 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4095 	 */
4096 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4097 	ue.ewma  += last_ewma_diff;
4098 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4099 done:
4100 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4101 	WRITE_ONCE(p->se.avg.util_est, ue);
4102 
4103 	trace_sched_util_est_se_tp(&p->se);
4104 }
4105 
4106 static inline int task_fits_capacity(struct task_struct *p,
4107 				     unsigned long capacity)
4108 {
4109 	return fits_capacity(uclamp_task_util(p), capacity);
4110 }
4111 
4112 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4113 {
4114 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
4115 		return;
4116 
4117 	if (!p || p->nr_cpus_allowed == 1) {
4118 		rq->misfit_task_load = 0;
4119 		return;
4120 	}
4121 
4122 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4123 		rq->misfit_task_load = 0;
4124 		return;
4125 	}
4126 
4127 	/*
4128 	 * Make sure that misfit_task_load will not be null even if
4129 	 * task_h_load() returns 0.
4130 	 */
4131 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4132 }
4133 
4134 #else /* CONFIG_SMP */
4135 
4136 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4137 {
4138 	return true;
4139 }
4140 
4141 #define UPDATE_TG	0x0
4142 #define SKIP_AGE_LOAD	0x0
4143 #define DO_ATTACH	0x0
4144 
4145 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4146 {
4147 	cfs_rq_util_change(cfs_rq, 0);
4148 }
4149 
4150 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4151 
4152 static inline void
4153 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4154 static inline void
4155 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4156 
4157 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4158 {
4159 	return 0;
4160 }
4161 
4162 static inline void
4163 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4164 
4165 static inline void
4166 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4167 
4168 static inline void
4169 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4170 		bool task_sleep) {}
4171 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4172 
4173 #endif /* CONFIG_SMP */
4174 
4175 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4176 {
4177 #ifdef CONFIG_SCHED_DEBUG
4178 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4179 
4180 	if (d < 0)
4181 		d = -d;
4182 
4183 	if (d > 3*sysctl_sched_latency)
4184 		schedstat_inc(cfs_rq->nr_spread_over);
4185 #endif
4186 }
4187 
4188 static void
4189 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4190 {
4191 	u64 vruntime = cfs_rq->min_vruntime;
4192 
4193 	/*
4194 	 * The 'current' period is already promised to the current tasks,
4195 	 * however the extra weight of the new task will slow them down a
4196 	 * little, place the new task so that it fits in the slot that
4197 	 * stays open at the end.
4198 	 */
4199 	if (initial && sched_feat(START_DEBIT))
4200 		vruntime += sched_vslice(cfs_rq, se);
4201 
4202 	/* sleeps up to a single latency don't count. */
4203 	if (!initial) {
4204 		unsigned long thresh;
4205 
4206 		if (se_is_idle(se))
4207 			thresh = sysctl_sched_min_granularity;
4208 		else
4209 			thresh = sysctl_sched_latency;
4210 
4211 		/*
4212 		 * Halve their sleep time's effect, to allow
4213 		 * for a gentler effect of sleepers:
4214 		 */
4215 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4216 			thresh >>= 1;
4217 
4218 		vruntime -= thresh;
4219 	}
4220 
4221 	/* ensure we never gain time by being placed backwards. */
4222 	se->vruntime = max_vruntime(se->vruntime, vruntime);
4223 }
4224 
4225 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4226 
4227 static inline bool cfs_bandwidth_used(void);
4228 
4229 /*
4230  * MIGRATION
4231  *
4232  *	dequeue
4233  *	  update_curr()
4234  *	    update_min_vruntime()
4235  *	  vruntime -= min_vruntime
4236  *
4237  *	enqueue
4238  *	  update_curr()
4239  *	    update_min_vruntime()
4240  *	  vruntime += min_vruntime
4241  *
4242  * this way the vruntime transition between RQs is done when both
4243  * min_vruntime are up-to-date.
4244  *
4245  * WAKEUP (remote)
4246  *
4247  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4248  *	  vruntime -= min_vruntime
4249  *
4250  *	enqueue
4251  *	  update_curr()
4252  *	    update_min_vruntime()
4253  *	  vruntime += min_vruntime
4254  *
4255  * this way we don't have the most up-to-date min_vruntime on the originating
4256  * CPU and an up-to-date min_vruntime on the destination CPU.
4257  */
4258 
4259 static void
4260 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4261 {
4262 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4263 	bool curr = cfs_rq->curr == se;
4264 
4265 	/*
4266 	 * If we're the current task, we must renormalise before calling
4267 	 * update_curr().
4268 	 */
4269 	if (renorm && curr)
4270 		se->vruntime += cfs_rq->min_vruntime;
4271 
4272 	update_curr(cfs_rq);
4273 
4274 	/*
4275 	 * Otherwise, renormalise after, such that we're placed at the current
4276 	 * moment in time, instead of some random moment in the past. Being
4277 	 * placed in the past could significantly boost this task to the
4278 	 * fairness detriment of existing tasks.
4279 	 */
4280 	if (renorm && !curr)
4281 		se->vruntime += cfs_rq->min_vruntime;
4282 
4283 	/*
4284 	 * When enqueuing a sched_entity, we must:
4285 	 *   - Update loads to have both entity and cfs_rq synced with now.
4286 	 *   - Add its load to cfs_rq->runnable_avg
4287 	 *   - For group_entity, update its weight to reflect the new share of
4288 	 *     its group cfs_rq
4289 	 *   - Add its new weight to cfs_rq->load.weight
4290 	 */
4291 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4292 	se_update_runnable(se);
4293 	update_cfs_group(se);
4294 	account_entity_enqueue(cfs_rq, se);
4295 
4296 	if (flags & ENQUEUE_WAKEUP)
4297 		place_entity(cfs_rq, se, 0);
4298 
4299 	check_schedstat_required();
4300 	update_stats_enqueue_fair(cfs_rq, se, flags);
4301 	check_spread(cfs_rq, se);
4302 	if (!curr)
4303 		__enqueue_entity(cfs_rq, se);
4304 	se->on_rq = 1;
4305 
4306 	/*
4307 	 * When bandwidth control is enabled, cfs might have been removed
4308 	 * because of a parent been throttled but cfs->nr_running > 1. Try to
4309 	 * add it unconditionally.
4310 	 */
4311 	if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4312 		list_add_leaf_cfs_rq(cfs_rq);
4313 
4314 	if (cfs_rq->nr_running == 1)
4315 		check_enqueue_throttle(cfs_rq);
4316 }
4317 
4318 static void __clear_buddies_last(struct sched_entity *se)
4319 {
4320 	for_each_sched_entity(se) {
4321 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4322 		if (cfs_rq->last != se)
4323 			break;
4324 
4325 		cfs_rq->last = NULL;
4326 	}
4327 }
4328 
4329 static void __clear_buddies_next(struct sched_entity *se)
4330 {
4331 	for_each_sched_entity(se) {
4332 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4333 		if (cfs_rq->next != se)
4334 			break;
4335 
4336 		cfs_rq->next = NULL;
4337 	}
4338 }
4339 
4340 static void __clear_buddies_skip(struct sched_entity *se)
4341 {
4342 	for_each_sched_entity(se) {
4343 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4344 		if (cfs_rq->skip != se)
4345 			break;
4346 
4347 		cfs_rq->skip = NULL;
4348 	}
4349 }
4350 
4351 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4352 {
4353 	if (cfs_rq->last == se)
4354 		__clear_buddies_last(se);
4355 
4356 	if (cfs_rq->next == se)
4357 		__clear_buddies_next(se);
4358 
4359 	if (cfs_rq->skip == se)
4360 		__clear_buddies_skip(se);
4361 }
4362 
4363 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4364 
4365 static void
4366 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4367 {
4368 	/*
4369 	 * Update run-time statistics of the 'current'.
4370 	 */
4371 	update_curr(cfs_rq);
4372 
4373 	/*
4374 	 * When dequeuing a sched_entity, we must:
4375 	 *   - Update loads to have both entity and cfs_rq synced with now.
4376 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4377 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4378 	 *   - For group entity, update its weight to reflect the new share
4379 	 *     of its group cfs_rq.
4380 	 */
4381 	update_load_avg(cfs_rq, se, UPDATE_TG);
4382 	se_update_runnable(se);
4383 
4384 	update_stats_dequeue_fair(cfs_rq, se, flags);
4385 
4386 	clear_buddies(cfs_rq, se);
4387 
4388 	if (se != cfs_rq->curr)
4389 		__dequeue_entity(cfs_rq, se);
4390 	se->on_rq = 0;
4391 	account_entity_dequeue(cfs_rq, se);
4392 
4393 	/*
4394 	 * Normalize after update_curr(); which will also have moved
4395 	 * min_vruntime if @se is the one holding it back. But before doing
4396 	 * update_min_vruntime() again, which will discount @se's position and
4397 	 * can move min_vruntime forward still more.
4398 	 */
4399 	if (!(flags & DEQUEUE_SLEEP))
4400 		se->vruntime -= cfs_rq->min_vruntime;
4401 
4402 	/* return excess runtime on last dequeue */
4403 	return_cfs_rq_runtime(cfs_rq);
4404 
4405 	update_cfs_group(se);
4406 
4407 	/*
4408 	 * Now advance min_vruntime if @se was the entity holding it back,
4409 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4410 	 * put back on, and if we advance min_vruntime, we'll be placed back
4411 	 * further than we started -- ie. we'll be penalized.
4412 	 */
4413 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4414 		update_min_vruntime(cfs_rq);
4415 }
4416 
4417 /*
4418  * Preempt the current task with a newly woken task if needed:
4419  */
4420 static void
4421 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4422 {
4423 	unsigned long ideal_runtime, delta_exec;
4424 	struct sched_entity *se;
4425 	s64 delta;
4426 
4427 	ideal_runtime = sched_slice(cfs_rq, curr);
4428 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4429 	if (delta_exec > ideal_runtime) {
4430 		resched_curr(rq_of(cfs_rq));
4431 		/*
4432 		 * The current task ran long enough, ensure it doesn't get
4433 		 * re-elected due to buddy favours.
4434 		 */
4435 		clear_buddies(cfs_rq, curr);
4436 		return;
4437 	}
4438 
4439 	/*
4440 	 * Ensure that a task that missed wakeup preemption by a
4441 	 * narrow margin doesn't have to wait for a full slice.
4442 	 * This also mitigates buddy induced latencies under load.
4443 	 */
4444 	if (delta_exec < sysctl_sched_min_granularity)
4445 		return;
4446 
4447 	se = __pick_first_entity(cfs_rq);
4448 	delta = curr->vruntime - se->vruntime;
4449 
4450 	if (delta < 0)
4451 		return;
4452 
4453 	if (delta > ideal_runtime)
4454 		resched_curr(rq_of(cfs_rq));
4455 }
4456 
4457 static void
4458 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4459 {
4460 	clear_buddies(cfs_rq, se);
4461 
4462 	/* 'current' is not kept within the tree. */
4463 	if (se->on_rq) {
4464 		/*
4465 		 * Any task has to be enqueued before it get to execute on
4466 		 * a CPU. So account for the time it spent waiting on the
4467 		 * runqueue.
4468 		 */
4469 		update_stats_wait_end_fair(cfs_rq, se);
4470 		__dequeue_entity(cfs_rq, se);
4471 		update_load_avg(cfs_rq, se, UPDATE_TG);
4472 	}
4473 
4474 	update_stats_curr_start(cfs_rq, se);
4475 	cfs_rq->curr = se;
4476 
4477 	/*
4478 	 * Track our maximum slice length, if the CPU's load is at
4479 	 * least twice that of our own weight (i.e. dont track it
4480 	 * when there are only lesser-weight tasks around):
4481 	 */
4482 	if (schedstat_enabled() &&
4483 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4484 		struct sched_statistics *stats;
4485 
4486 		stats = __schedstats_from_se(se);
4487 		__schedstat_set(stats->slice_max,
4488 				max((u64)stats->slice_max,
4489 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4490 	}
4491 
4492 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4493 }
4494 
4495 static int
4496 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4497 
4498 /*
4499  * Pick the next process, keeping these things in mind, in this order:
4500  * 1) keep things fair between processes/task groups
4501  * 2) pick the "next" process, since someone really wants that to run
4502  * 3) pick the "last" process, for cache locality
4503  * 4) do not run the "skip" process, if something else is available
4504  */
4505 static struct sched_entity *
4506 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4507 {
4508 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4509 	struct sched_entity *se;
4510 
4511 	/*
4512 	 * If curr is set we have to see if its left of the leftmost entity
4513 	 * still in the tree, provided there was anything in the tree at all.
4514 	 */
4515 	if (!left || (curr && entity_before(curr, left)))
4516 		left = curr;
4517 
4518 	se = left; /* ideally we run the leftmost entity */
4519 
4520 	/*
4521 	 * Avoid running the skip buddy, if running something else can
4522 	 * be done without getting too unfair.
4523 	 */
4524 	if (cfs_rq->skip && cfs_rq->skip == se) {
4525 		struct sched_entity *second;
4526 
4527 		if (se == curr) {
4528 			second = __pick_first_entity(cfs_rq);
4529 		} else {
4530 			second = __pick_next_entity(se);
4531 			if (!second || (curr && entity_before(curr, second)))
4532 				second = curr;
4533 		}
4534 
4535 		if (second && wakeup_preempt_entity(second, left) < 1)
4536 			se = second;
4537 	}
4538 
4539 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4540 		/*
4541 		 * Someone really wants this to run. If it's not unfair, run it.
4542 		 */
4543 		se = cfs_rq->next;
4544 	} else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4545 		/*
4546 		 * Prefer last buddy, try to return the CPU to a preempted task.
4547 		 */
4548 		se = cfs_rq->last;
4549 	}
4550 
4551 	return se;
4552 }
4553 
4554 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4555 
4556 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4557 {
4558 	/*
4559 	 * If still on the runqueue then deactivate_task()
4560 	 * was not called and update_curr() has to be done:
4561 	 */
4562 	if (prev->on_rq)
4563 		update_curr(cfs_rq);
4564 
4565 	/* throttle cfs_rqs exceeding runtime */
4566 	check_cfs_rq_runtime(cfs_rq);
4567 
4568 	check_spread(cfs_rq, prev);
4569 
4570 	if (prev->on_rq) {
4571 		update_stats_wait_start_fair(cfs_rq, prev);
4572 		/* Put 'current' back into the tree. */
4573 		__enqueue_entity(cfs_rq, prev);
4574 		/* in !on_rq case, update occurred at dequeue */
4575 		update_load_avg(cfs_rq, prev, 0);
4576 	}
4577 	cfs_rq->curr = NULL;
4578 }
4579 
4580 static void
4581 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4582 {
4583 	/*
4584 	 * Update run-time statistics of the 'current'.
4585 	 */
4586 	update_curr(cfs_rq);
4587 
4588 	/*
4589 	 * Ensure that runnable average is periodically updated.
4590 	 */
4591 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4592 	update_cfs_group(curr);
4593 
4594 #ifdef CONFIG_SCHED_HRTICK
4595 	/*
4596 	 * queued ticks are scheduled to match the slice, so don't bother
4597 	 * validating it and just reschedule.
4598 	 */
4599 	if (queued) {
4600 		resched_curr(rq_of(cfs_rq));
4601 		return;
4602 	}
4603 	/*
4604 	 * don't let the period tick interfere with the hrtick preemption
4605 	 */
4606 	if (!sched_feat(DOUBLE_TICK) &&
4607 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4608 		return;
4609 #endif
4610 
4611 	if (cfs_rq->nr_running > 1)
4612 		check_preempt_tick(cfs_rq, curr);
4613 }
4614 
4615 
4616 /**************************************************
4617  * CFS bandwidth control machinery
4618  */
4619 
4620 #ifdef CONFIG_CFS_BANDWIDTH
4621 
4622 #ifdef CONFIG_JUMP_LABEL
4623 static struct static_key __cfs_bandwidth_used;
4624 
4625 static inline bool cfs_bandwidth_used(void)
4626 {
4627 	return static_key_false(&__cfs_bandwidth_used);
4628 }
4629 
4630 void cfs_bandwidth_usage_inc(void)
4631 {
4632 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4633 }
4634 
4635 void cfs_bandwidth_usage_dec(void)
4636 {
4637 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4638 }
4639 #else /* CONFIG_JUMP_LABEL */
4640 static bool cfs_bandwidth_used(void)
4641 {
4642 	return true;
4643 }
4644 
4645 void cfs_bandwidth_usage_inc(void) {}
4646 void cfs_bandwidth_usage_dec(void) {}
4647 #endif /* CONFIG_JUMP_LABEL */
4648 
4649 /*
4650  * default period for cfs group bandwidth.
4651  * default: 0.1s, units: nanoseconds
4652  */
4653 static inline u64 default_cfs_period(void)
4654 {
4655 	return 100000000ULL;
4656 }
4657 
4658 static inline u64 sched_cfs_bandwidth_slice(void)
4659 {
4660 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4661 }
4662 
4663 /*
4664  * Replenish runtime according to assigned quota. We use sched_clock_cpu
4665  * directly instead of rq->clock to avoid adding additional synchronization
4666  * around rq->lock.
4667  *
4668  * requires cfs_b->lock
4669  */
4670 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4671 {
4672 	s64 runtime;
4673 
4674 	if (unlikely(cfs_b->quota == RUNTIME_INF))
4675 		return;
4676 
4677 	cfs_b->runtime += cfs_b->quota;
4678 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
4679 	if (runtime > 0) {
4680 		cfs_b->burst_time += runtime;
4681 		cfs_b->nr_burst++;
4682 	}
4683 
4684 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
4685 	cfs_b->runtime_snap = cfs_b->runtime;
4686 }
4687 
4688 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4689 {
4690 	return &tg->cfs_bandwidth;
4691 }
4692 
4693 /* returns 0 on failure to allocate runtime */
4694 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4695 				   struct cfs_rq *cfs_rq, u64 target_runtime)
4696 {
4697 	u64 min_amount, amount = 0;
4698 
4699 	lockdep_assert_held(&cfs_b->lock);
4700 
4701 	/* note: this is a positive sum as runtime_remaining <= 0 */
4702 	min_amount = target_runtime - cfs_rq->runtime_remaining;
4703 
4704 	if (cfs_b->quota == RUNTIME_INF)
4705 		amount = min_amount;
4706 	else {
4707 		start_cfs_bandwidth(cfs_b);
4708 
4709 		if (cfs_b->runtime > 0) {
4710 			amount = min(cfs_b->runtime, min_amount);
4711 			cfs_b->runtime -= amount;
4712 			cfs_b->idle = 0;
4713 		}
4714 	}
4715 
4716 	cfs_rq->runtime_remaining += amount;
4717 
4718 	return cfs_rq->runtime_remaining > 0;
4719 }
4720 
4721 /* returns 0 on failure to allocate runtime */
4722 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4723 {
4724 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4725 	int ret;
4726 
4727 	raw_spin_lock(&cfs_b->lock);
4728 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4729 	raw_spin_unlock(&cfs_b->lock);
4730 
4731 	return ret;
4732 }
4733 
4734 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4735 {
4736 	/* dock delta_exec before expiring quota (as it could span periods) */
4737 	cfs_rq->runtime_remaining -= delta_exec;
4738 
4739 	if (likely(cfs_rq->runtime_remaining > 0))
4740 		return;
4741 
4742 	if (cfs_rq->throttled)
4743 		return;
4744 	/*
4745 	 * if we're unable to extend our runtime we resched so that the active
4746 	 * hierarchy can be throttled
4747 	 */
4748 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4749 		resched_curr(rq_of(cfs_rq));
4750 }
4751 
4752 static __always_inline
4753 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4754 {
4755 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4756 		return;
4757 
4758 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4759 }
4760 
4761 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4762 {
4763 	return cfs_bandwidth_used() && cfs_rq->throttled;
4764 }
4765 
4766 /* check whether cfs_rq, or any parent, is throttled */
4767 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4768 {
4769 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4770 }
4771 
4772 /*
4773  * Ensure that neither of the group entities corresponding to src_cpu or
4774  * dest_cpu are members of a throttled hierarchy when performing group
4775  * load-balance operations.
4776  */
4777 static inline int throttled_lb_pair(struct task_group *tg,
4778 				    int src_cpu, int dest_cpu)
4779 {
4780 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4781 
4782 	src_cfs_rq = tg->cfs_rq[src_cpu];
4783 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4784 
4785 	return throttled_hierarchy(src_cfs_rq) ||
4786 	       throttled_hierarchy(dest_cfs_rq);
4787 }
4788 
4789 static int tg_unthrottle_up(struct task_group *tg, void *data)
4790 {
4791 	struct rq *rq = data;
4792 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4793 
4794 	cfs_rq->throttle_count--;
4795 	if (!cfs_rq->throttle_count) {
4796 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4797 					     cfs_rq->throttled_clock_task;
4798 
4799 		/* Add cfs_rq with load or one or more already running entities to the list */
4800 		if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
4801 			list_add_leaf_cfs_rq(cfs_rq);
4802 	}
4803 
4804 	return 0;
4805 }
4806 
4807 static int tg_throttle_down(struct task_group *tg, void *data)
4808 {
4809 	struct rq *rq = data;
4810 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4811 
4812 	/* group is entering throttled state, stop time */
4813 	if (!cfs_rq->throttle_count) {
4814 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4815 		list_del_leaf_cfs_rq(cfs_rq);
4816 	}
4817 	cfs_rq->throttle_count++;
4818 
4819 	return 0;
4820 }
4821 
4822 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4823 {
4824 	struct rq *rq = rq_of(cfs_rq);
4825 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4826 	struct sched_entity *se;
4827 	long task_delta, idle_task_delta, dequeue = 1;
4828 
4829 	raw_spin_lock(&cfs_b->lock);
4830 	/* This will start the period timer if necessary */
4831 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4832 		/*
4833 		 * We have raced with bandwidth becoming available, and if we
4834 		 * actually throttled the timer might not unthrottle us for an
4835 		 * entire period. We additionally needed to make sure that any
4836 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
4837 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4838 		 * for 1ns of runtime rather than just check cfs_b.
4839 		 */
4840 		dequeue = 0;
4841 	} else {
4842 		list_add_tail_rcu(&cfs_rq->throttled_list,
4843 				  &cfs_b->throttled_cfs_rq);
4844 	}
4845 	raw_spin_unlock(&cfs_b->lock);
4846 
4847 	if (!dequeue)
4848 		return false;  /* Throttle no longer required. */
4849 
4850 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4851 
4852 	/* freeze hierarchy runnable averages while throttled */
4853 	rcu_read_lock();
4854 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4855 	rcu_read_unlock();
4856 
4857 	task_delta = cfs_rq->h_nr_running;
4858 	idle_task_delta = cfs_rq->idle_h_nr_running;
4859 	for_each_sched_entity(se) {
4860 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4861 		/* throttled entity or throttle-on-deactivate */
4862 		if (!se->on_rq)
4863 			goto done;
4864 
4865 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4866 
4867 		if (cfs_rq_is_idle(group_cfs_rq(se)))
4868 			idle_task_delta = cfs_rq->h_nr_running;
4869 
4870 		qcfs_rq->h_nr_running -= task_delta;
4871 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4872 
4873 		if (qcfs_rq->load.weight) {
4874 			/* Avoid re-evaluating load for this entity: */
4875 			se = parent_entity(se);
4876 			break;
4877 		}
4878 	}
4879 
4880 	for_each_sched_entity(se) {
4881 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4882 		/* throttled entity or throttle-on-deactivate */
4883 		if (!se->on_rq)
4884 			goto done;
4885 
4886 		update_load_avg(qcfs_rq, se, 0);
4887 		se_update_runnable(se);
4888 
4889 		if (cfs_rq_is_idle(group_cfs_rq(se)))
4890 			idle_task_delta = cfs_rq->h_nr_running;
4891 
4892 		qcfs_rq->h_nr_running -= task_delta;
4893 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4894 	}
4895 
4896 	/* At this point se is NULL and we are at root level*/
4897 	sub_nr_running(rq, task_delta);
4898 
4899 done:
4900 	/*
4901 	 * Note: distribution will already see us throttled via the
4902 	 * throttled-list.  rq->lock protects completion.
4903 	 */
4904 	cfs_rq->throttled = 1;
4905 	cfs_rq->throttled_clock = rq_clock(rq);
4906 	return true;
4907 }
4908 
4909 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4910 {
4911 	struct rq *rq = rq_of(cfs_rq);
4912 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4913 	struct sched_entity *se;
4914 	long task_delta, idle_task_delta;
4915 
4916 	se = cfs_rq->tg->se[cpu_of(rq)];
4917 
4918 	cfs_rq->throttled = 0;
4919 
4920 	update_rq_clock(rq);
4921 
4922 	raw_spin_lock(&cfs_b->lock);
4923 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4924 	list_del_rcu(&cfs_rq->throttled_list);
4925 	raw_spin_unlock(&cfs_b->lock);
4926 
4927 	/* update hierarchical throttle state */
4928 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4929 
4930 	/* Nothing to run but something to decay (on_list)? Complete the branch */
4931 	if (!cfs_rq->load.weight) {
4932 		if (cfs_rq->on_list)
4933 			goto unthrottle_throttle;
4934 		return;
4935 	}
4936 
4937 	task_delta = cfs_rq->h_nr_running;
4938 	idle_task_delta = cfs_rq->idle_h_nr_running;
4939 	for_each_sched_entity(se) {
4940 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4941 
4942 		if (se->on_rq)
4943 			break;
4944 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
4945 
4946 		if (cfs_rq_is_idle(group_cfs_rq(se)))
4947 			idle_task_delta = cfs_rq->h_nr_running;
4948 
4949 		qcfs_rq->h_nr_running += task_delta;
4950 		qcfs_rq->idle_h_nr_running += idle_task_delta;
4951 
4952 		/* end evaluation on encountering a throttled cfs_rq */
4953 		if (cfs_rq_throttled(qcfs_rq))
4954 			goto unthrottle_throttle;
4955 	}
4956 
4957 	for_each_sched_entity(se) {
4958 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4959 
4960 		update_load_avg(qcfs_rq, se, UPDATE_TG);
4961 		se_update_runnable(se);
4962 
4963 		if (cfs_rq_is_idle(group_cfs_rq(se)))
4964 			idle_task_delta = cfs_rq->h_nr_running;
4965 
4966 		qcfs_rq->h_nr_running += task_delta;
4967 		qcfs_rq->idle_h_nr_running += idle_task_delta;
4968 
4969 		/* end evaluation on encountering a throttled cfs_rq */
4970 		if (cfs_rq_throttled(qcfs_rq))
4971 			goto unthrottle_throttle;
4972 
4973 		/*
4974 		 * One parent has been throttled and cfs_rq removed from the
4975 		 * list. Add it back to not break the leaf list.
4976 		 */
4977 		if (throttled_hierarchy(qcfs_rq))
4978 			list_add_leaf_cfs_rq(qcfs_rq);
4979 	}
4980 
4981 	/* At this point se is NULL and we are at root level*/
4982 	add_nr_running(rq, task_delta);
4983 
4984 unthrottle_throttle:
4985 	/*
4986 	 * The cfs_rq_throttled() breaks in the above iteration can result in
4987 	 * incomplete leaf list maintenance, resulting in triggering the
4988 	 * assertion below.
4989 	 */
4990 	for_each_sched_entity(se) {
4991 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4992 
4993 		if (list_add_leaf_cfs_rq(qcfs_rq))
4994 			break;
4995 	}
4996 
4997 	assert_list_leaf_cfs_rq(rq);
4998 
4999 	/* Determine whether we need to wake up potentially idle CPU: */
5000 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5001 		resched_curr(rq);
5002 }
5003 
5004 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5005 {
5006 	struct cfs_rq *cfs_rq;
5007 	u64 runtime, remaining = 1;
5008 
5009 	rcu_read_lock();
5010 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5011 				throttled_list) {
5012 		struct rq *rq = rq_of(cfs_rq);
5013 		struct rq_flags rf;
5014 
5015 		rq_lock_irqsave(rq, &rf);
5016 		if (!cfs_rq_throttled(cfs_rq))
5017 			goto next;
5018 
5019 		/* By the above check, this should never be true */
5020 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5021 
5022 		raw_spin_lock(&cfs_b->lock);
5023 		runtime = -cfs_rq->runtime_remaining + 1;
5024 		if (runtime > cfs_b->runtime)
5025 			runtime = cfs_b->runtime;
5026 		cfs_b->runtime -= runtime;
5027 		remaining = cfs_b->runtime;
5028 		raw_spin_unlock(&cfs_b->lock);
5029 
5030 		cfs_rq->runtime_remaining += runtime;
5031 
5032 		/* we check whether we're throttled above */
5033 		if (cfs_rq->runtime_remaining > 0)
5034 			unthrottle_cfs_rq(cfs_rq);
5035 
5036 next:
5037 		rq_unlock_irqrestore(rq, &rf);
5038 
5039 		if (!remaining)
5040 			break;
5041 	}
5042 	rcu_read_unlock();
5043 }
5044 
5045 /*
5046  * Responsible for refilling a task_group's bandwidth and unthrottling its
5047  * cfs_rqs as appropriate. If there has been no activity within the last
5048  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5049  * used to track this state.
5050  */
5051 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5052 {
5053 	int throttled;
5054 
5055 	/* no need to continue the timer with no bandwidth constraint */
5056 	if (cfs_b->quota == RUNTIME_INF)
5057 		goto out_deactivate;
5058 
5059 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5060 	cfs_b->nr_periods += overrun;
5061 
5062 	/* Refill extra burst quota even if cfs_b->idle */
5063 	__refill_cfs_bandwidth_runtime(cfs_b);
5064 
5065 	/*
5066 	 * idle depends on !throttled (for the case of a large deficit), and if
5067 	 * we're going inactive then everything else can be deferred
5068 	 */
5069 	if (cfs_b->idle && !throttled)
5070 		goto out_deactivate;
5071 
5072 	if (!throttled) {
5073 		/* mark as potentially idle for the upcoming period */
5074 		cfs_b->idle = 1;
5075 		return 0;
5076 	}
5077 
5078 	/* account preceding periods in which throttling occurred */
5079 	cfs_b->nr_throttled += overrun;
5080 
5081 	/*
5082 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
5083 	 */
5084 	while (throttled && cfs_b->runtime > 0) {
5085 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5086 		/* we can't nest cfs_b->lock while distributing bandwidth */
5087 		distribute_cfs_runtime(cfs_b);
5088 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
5089 
5090 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5091 	}
5092 
5093 	/*
5094 	 * While we are ensured activity in the period following an
5095 	 * unthrottle, this also covers the case in which the new bandwidth is
5096 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
5097 	 * timer to remain active while there are any throttled entities.)
5098 	 */
5099 	cfs_b->idle = 0;
5100 
5101 	return 0;
5102 
5103 out_deactivate:
5104 	return 1;
5105 }
5106 
5107 /* a cfs_rq won't donate quota below this amount */
5108 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5109 /* minimum remaining period time to redistribute slack quota */
5110 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5111 /* how long we wait to gather additional slack before distributing */
5112 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5113 
5114 /*
5115  * Are we near the end of the current quota period?
5116  *
5117  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5118  * hrtimer base being cleared by hrtimer_start. In the case of
5119  * migrate_hrtimers, base is never cleared, so we are fine.
5120  */
5121 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5122 {
5123 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
5124 	s64 remaining;
5125 
5126 	/* if the call-back is running a quota refresh is already occurring */
5127 	if (hrtimer_callback_running(refresh_timer))
5128 		return 1;
5129 
5130 	/* is a quota refresh about to occur? */
5131 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5132 	if (remaining < (s64)min_expire)
5133 		return 1;
5134 
5135 	return 0;
5136 }
5137 
5138 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5139 {
5140 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5141 
5142 	/* if there's a quota refresh soon don't bother with slack */
5143 	if (runtime_refresh_within(cfs_b, min_left))
5144 		return;
5145 
5146 	/* don't push forwards an existing deferred unthrottle */
5147 	if (cfs_b->slack_started)
5148 		return;
5149 	cfs_b->slack_started = true;
5150 
5151 	hrtimer_start(&cfs_b->slack_timer,
5152 			ns_to_ktime(cfs_bandwidth_slack_period),
5153 			HRTIMER_MODE_REL);
5154 }
5155 
5156 /* we know any runtime found here is valid as update_curr() precedes return */
5157 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5158 {
5159 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5160 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5161 
5162 	if (slack_runtime <= 0)
5163 		return;
5164 
5165 	raw_spin_lock(&cfs_b->lock);
5166 	if (cfs_b->quota != RUNTIME_INF) {
5167 		cfs_b->runtime += slack_runtime;
5168 
5169 		/* we are under rq->lock, defer unthrottling using a timer */
5170 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5171 		    !list_empty(&cfs_b->throttled_cfs_rq))
5172 			start_cfs_slack_bandwidth(cfs_b);
5173 	}
5174 	raw_spin_unlock(&cfs_b->lock);
5175 
5176 	/* even if it's not valid for return we don't want to try again */
5177 	cfs_rq->runtime_remaining -= slack_runtime;
5178 }
5179 
5180 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5181 {
5182 	if (!cfs_bandwidth_used())
5183 		return;
5184 
5185 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5186 		return;
5187 
5188 	__return_cfs_rq_runtime(cfs_rq);
5189 }
5190 
5191 /*
5192  * This is done with a timer (instead of inline with bandwidth return) since
5193  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5194  */
5195 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5196 {
5197 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5198 	unsigned long flags;
5199 
5200 	/* confirm we're still not at a refresh boundary */
5201 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5202 	cfs_b->slack_started = false;
5203 
5204 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5205 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5206 		return;
5207 	}
5208 
5209 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5210 		runtime = cfs_b->runtime;
5211 
5212 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5213 
5214 	if (!runtime)
5215 		return;
5216 
5217 	distribute_cfs_runtime(cfs_b);
5218 }
5219 
5220 /*
5221  * When a group wakes up we want to make sure that its quota is not already
5222  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5223  * runtime as update_curr() throttling can not trigger until it's on-rq.
5224  */
5225 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5226 {
5227 	if (!cfs_bandwidth_used())
5228 		return;
5229 
5230 	/* an active group must be handled by the update_curr()->put() path */
5231 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5232 		return;
5233 
5234 	/* ensure the group is not already throttled */
5235 	if (cfs_rq_throttled(cfs_rq))
5236 		return;
5237 
5238 	/* update runtime allocation */
5239 	account_cfs_rq_runtime(cfs_rq, 0);
5240 	if (cfs_rq->runtime_remaining <= 0)
5241 		throttle_cfs_rq(cfs_rq);
5242 }
5243 
5244 static void sync_throttle(struct task_group *tg, int cpu)
5245 {
5246 	struct cfs_rq *pcfs_rq, *cfs_rq;
5247 
5248 	if (!cfs_bandwidth_used())
5249 		return;
5250 
5251 	if (!tg->parent)
5252 		return;
5253 
5254 	cfs_rq = tg->cfs_rq[cpu];
5255 	pcfs_rq = tg->parent->cfs_rq[cpu];
5256 
5257 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5258 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5259 }
5260 
5261 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5262 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5263 {
5264 	if (!cfs_bandwidth_used())
5265 		return false;
5266 
5267 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5268 		return false;
5269 
5270 	/*
5271 	 * it's possible for a throttled entity to be forced into a running
5272 	 * state (e.g. set_curr_task), in this case we're finished.
5273 	 */
5274 	if (cfs_rq_throttled(cfs_rq))
5275 		return true;
5276 
5277 	return throttle_cfs_rq(cfs_rq);
5278 }
5279 
5280 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5281 {
5282 	struct cfs_bandwidth *cfs_b =
5283 		container_of(timer, struct cfs_bandwidth, slack_timer);
5284 
5285 	do_sched_cfs_slack_timer(cfs_b);
5286 
5287 	return HRTIMER_NORESTART;
5288 }
5289 
5290 extern const u64 max_cfs_quota_period;
5291 
5292 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5293 {
5294 	struct cfs_bandwidth *cfs_b =
5295 		container_of(timer, struct cfs_bandwidth, period_timer);
5296 	unsigned long flags;
5297 	int overrun;
5298 	int idle = 0;
5299 	int count = 0;
5300 
5301 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5302 	for (;;) {
5303 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5304 		if (!overrun)
5305 			break;
5306 
5307 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5308 
5309 		if (++count > 3) {
5310 			u64 new, old = ktime_to_ns(cfs_b->period);
5311 
5312 			/*
5313 			 * Grow period by a factor of 2 to avoid losing precision.
5314 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5315 			 * to fail.
5316 			 */
5317 			new = old * 2;
5318 			if (new < max_cfs_quota_period) {
5319 				cfs_b->period = ns_to_ktime(new);
5320 				cfs_b->quota *= 2;
5321 				cfs_b->burst *= 2;
5322 
5323 				pr_warn_ratelimited(
5324 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5325 					smp_processor_id(),
5326 					div_u64(new, NSEC_PER_USEC),
5327 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5328 			} else {
5329 				pr_warn_ratelimited(
5330 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5331 					smp_processor_id(),
5332 					div_u64(old, NSEC_PER_USEC),
5333 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5334 			}
5335 
5336 			/* reset count so we don't come right back in here */
5337 			count = 0;
5338 		}
5339 	}
5340 	if (idle)
5341 		cfs_b->period_active = 0;
5342 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5343 
5344 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5345 }
5346 
5347 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5348 {
5349 	raw_spin_lock_init(&cfs_b->lock);
5350 	cfs_b->runtime = 0;
5351 	cfs_b->quota = RUNTIME_INF;
5352 	cfs_b->period = ns_to_ktime(default_cfs_period());
5353 	cfs_b->burst = 0;
5354 
5355 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5356 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5357 	cfs_b->period_timer.function = sched_cfs_period_timer;
5358 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5359 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5360 	cfs_b->slack_started = false;
5361 }
5362 
5363 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5364 {
5365 	cfs_rq->runtime_enabled = 0;
5366 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5367 }
5368 
5369 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5370 {
5371 	lockdep_assert_held(&cfs_b->lock);
5372 
5373 	if (cfs_b->period_active)
5374 		return;
5375 
5376 	cfs_b->period_active = 1;
5377 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5378 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5379 }
5380 
5381 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5382 {
5383 	/* init_cfs_bandwidth() was not called */
5384 	if (!cfs_b->throttled_cfs_rq.next)
5385 		return;
5386 
5387 	hrtimer_cancel(&cfs_b->period_timer);
5388 	hrtimer_cancel(&cfs_b->slack_timer);
5389 }
5390 
5391 /*
5392  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5393  *
5394  * The race is harmless, since modifying bandwidth settings of unhooked group
5395  * bits doesn't do much.
5396  */
5397 
5398 /* cpu online callback */
5399 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5400 {
5401 	struct task_group *tg;
5402 
5403 	lockdep_assert_rq_held(rq);
5404 
5405 	rcu_read_lock();
5406 	list_for_each_entry_rcu(tg, &task_groups, list) {
5407 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5408 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5409 
5410 		raw_spin_lock(&cfs_b->lock);
5411 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5412 		raw_spin_unlock(&cfs_b->lock);
5413 	}
5414 	rcu_read_unlock();
5415 }
5416 
5417 /* cpu offline callback */
5418 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5419 {
5420 	struct task_group *tg;
5421 
5422 	lockdep_assert_rq_held(rq);
5423 
5424 	rcu_read_lock();
5425 	list_for_each_entry_rcu(tg, &task_groups, list) {
5426 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5427 
5428 		if (!cfs_rq->runtime_enabled)
5429 			continue;
5430 
5431 		/*
5432 		 * clock_task is not advancing so we just need to make sure
5433 		 * there's some valid quota amount
5434 		 */
5435 		cfs_rq->runtime_remaining = 1;
5436 		/*
5437 		 * Offline rq is schedulable till CPU is completely disabled
5438 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5439 		 */
5440 		cfs_rq->runtime_enabled = 0;
5441 
5442 		if (cfs_rq_throttled(cfs_rq))
5443 			unthrottle_cfs_rq(cfs_rq);
5444 	}
5445 	rcu_read_unlock();
5446 }
5447 
5448 #else /* CONFIG_CFS_BANDWIDTH */
5449 
5450 static inline bool cfs_bandwidth_used(void)
5451 {
5452 	return false;
5453 }
5454 
5455 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5456 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5457 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5458 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5459 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5460 
5461 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5462 {
5463 	return 0;
5464 }
5465 
5466 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5467 {
5468 	return 0;
5469 }
5470 
5471 static inline int throttled_lb_pair(struct task_group *tg,
5472 				    int src_cpu, int dest_cpu)
5473 {
5474 	return 0;
5475 }
5476 
5477 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5478 
5479 #ifdef CONFIG_FAIR_GROUP_SCHED
5480 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5481 #endif
5482 
5483 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5484 {
5485 	return NULL;
5486 }
5487 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5488 static inline void update_runtime_enabled(struct rq *rq) {}
5489 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5490 
5491 #endif /* CONFIG_CFS_BANDWIDTH */
5492 
5493 /**************************************************
5494  * CFS operations on tasks:
5495  */
5496 
5497 #ifdef CONFIG_SCHED_HRTICK
5498 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5499 {
5500 	struct sched_entity *se = &p->se;
5501 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5502 
5503 	SCHED_WARN_ON(task_rq(p) != rq);
5504 
5505 	if (rq->cfs.h_nr_running > 1) {
5506 		u64 slice = sched_slice(cfs_rq, se);
5507 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5508 		s64 delta = slice - ran;
5509 
5510 		if (delta < 0) {
5511 			if (task_current(rq, p))
5512 				resched_curr(rq);
5513 			return;
5514 		}
5515 		hrtick_start(rq, delta);
5516 	}
5517 }
5518 
5519 /*
5520  * called from enqueue/dequeue and updates the hrtick when the
5521  * current task is from our class and nr_running is low enough
5522  * to matter.
5523  */
5524 static void hrtick_update(struct rq *rq)
5525 {
5526 	struct task_struct *curr = rq->curr;
5527 
5528 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5529 		return;
5530 
5531 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5532 		hrtick_start_fair(rq, curr);
5533 }
5534 #else /* !CONFIG_SCHED_HRTICK */
5535 static inline void
5536 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5537 {
5538 }
5539 
5540 static inline void hrtick_update(struct rq *rq)
5541 {
5542 }
5543 #endif
5544 
5545 #ifdef CONFIG_SMP
5546 static inline bool cpu_overutilized(int cpu)
5547 {
5548 	return !fits_capacity(cpu_util_cfs(cpu), capacity_of(cpu));
5549 }
5550 
5551 static inline void update_overutilized_status(struct rq *rq)
5552 {
5553 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5554 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5555 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5556 	}
5557 }
5558 #else
5559 static inline void update_overutilized_status(struct rq *rq) { }
5560 #endif
5561 
5562 /* Runqueue only has SCHED_IDLE tasks enqueued */
5563 static int sched_idle_rq(struct rq *rq)
5564 {
5565 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5566 			rq->nr_running);
5567 }
5568 
5569 /*
5570  * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
5571  * of idle_nr_running, which does not consider idle descendants of normal
5572  * entities.
5573  */
5574 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
5575 {
5576 	return cfs_rq->nr_running &&
5577 		cfs_rq->nr_running == cfs_rq->idle_nr_running;
5578 }
5579 
5580 #ifdef CONFIG_SMP
5581 static int sched_idle_cpu(int cpu)
5582 {
5583 	return sched_idle_rq(cpu_rq(cpu));
5584 }
5585 #endif
5586 
5587 /*
5588  * The enqueue_task method is called before nr_running is
5589  * increased. Here we update the fair scheduling stats and
5590  * then put the task into the rbtree:
5591  */
5592 static void
5593 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5594 {
5595 	struct cfs_rq *cfs_rq;
5596 	struct sched_entity *se = &p->se;
5597 	int idle_h_nr_running = task_has_idle_policy(p);
5598 	int task_new = !(flags & ENQUEUE_WAKEUP);
5599 
5600 	/*
5601 	 * The code below (indirectly) updates schedutil which looks at
5602 	 * the cfs_rq utilization to select a frequency.
5603 	 * Let's add the task's estimated utilization to the cfs_rq's
5604 	 * estimated utilization, before we update schedutil.
5605 	 */
5606 	util_est_enqueue(&rq->cfs, p);
5607 
5608 	/*
5609 	 * If in_iowait is set, the code below may not trigger any cpufreq
5610 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5611 	 * passed.
5612 	 */
5613 	if (p->in_iowait)
5614 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5615 
5616 	for_each_sched_entity(se) {
5617 		if (se->on_rq)
5618 			break;
5619 		cfs_rq = cfs_rq_of(se);
5620 		enqueue_entity(cfs_rq, se, flags);
5621 
5622 		cfs_rq->h_nr_running++;
5623 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5624 
5625 		if (cfs_rq_is_idle(cfs_rq))
5626 			idle_h_nr_running = 1;
5627 
5628 		/* end evaluation on encountering a throttled cfs_rq */
5629 		if (cfs_rq_throttled(cfs_rq))
5630 			goto enqueue_throttle;
5631 
5632 		flags = ENQUEUE_WAKEUP;
5633 	}
5634 
5635 	for_each_sched_entity(se) {
5636 		cfs_rq = cfs_rq_of(se);
5637 
5638 		update_load_avg(cfs_rq, se, UPDATE_TG);
5639 		se_update_runnable(se);
5640 		update_cfs_group(se);
5641 
5642 		cfs_rq->h_nr_running++;
5643 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5644 
5645 		if (cfs_rq_is_idle(cfs_rq))
5646 			idle_h_nr_running = 1;
5647 
5648 		/* end evaluation on encountering a throttled cfs_rq */
5649 		if (cfs_rq_throttled(cfs_rq))
5650 			goto enqueue_throttle;
5651 
5652                /*
5653                 * One parent has been throttled and cfs_rq removed from the
5654                 * list. Add it back to not break the leaf list.
5655                 */
5656                if (throttled_hierarchy(cfs_rq))
5657                        list_add_leaf_cfs_rq(cfs_rq);
5658 	}
5659 
5660 	/* At this point se is NULL and we are at root level*/
5661 	add_nr_running(rq, 1);
5662 
5663 	/*
5664 	 * Since new tasks are assigned an initial util_avg equal to
5665 	 * half of the spare capacity of their CPU, tiny tasks have the
5666 	 * ability to cross the overutilized threshold, which will
5667 	 * result in the load balancer ruining all the task placement
5668 	 * done by EAS. As a way to mitigate that effect, do not account
5669 	 * for the first enqueue operation of new tasks during the
5670 	 * overutilized flag detection.
5671 	 *
5672 	 * A better way of solving this problem would be to wait for
5673 	 * the PELT signals of tasks to converge before taking them
5674 	 * into account, but that is not straightforward to implement,
5675 	 * and the following generally works well enough in practice.
5676 	 */
5677 	if (!task_new)
5678 		update_overutilized_status(rq);
5679 
5680 enqueue_throttle:
5681 	if (cfs_bandwidth_used()) {
5682 		/*
5683 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5684 		 * breaks in the above iteration can result in incomplete
5685 		 * leaf list maintenance, resulting in triggering the assertion
5686 		 * below.
5687 		 */
5688 		for_each_sched_entity(se) {
5689 			cfs_rq = cfs_rq_of(se);
5690 
5691 			if (list_add_leaf_cfs_rq(cfs_rq))
5692 				break;
5693 		}
5694 	}
5695 
5696 	assert_list_leaf_cfs_rq(rq);
5697 
5698 	hrtick_update(rq);
5699 }
5700 
5701 static void set_next_buddy(struct sched_entity *se);
5702 
5703 /*
5704  * The dequeue_task method is called before nr_running is
5705  * decreased. We remove the task from the rbtree and
5706  * update the fair scheduling stats:
5707  */
5708 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5709 {
5710 	struct cfs_rq *cfs_rq;
5711 	struct sched_entity *se = &p->se;
5712 	int task_sleep = flags & DEQUEUE_SLEEP;
5713 	int idle_h_nr_running = task_has_idle_policy(p);
5714 	bool was_sched_idle = sched_idle_rq(rq);
5715 
5716 	util_est_dequeue(&rq->cfs, p);
5717 
5718 	for_each_sched_entity(se) {
5719 		cfs_rq = cfs_rq_of(se);
5720 		dequeue_entity(cfs_rq, se, flags);
5721 
5722 		cfs_rq->h_nr_running--;
5723 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5724 
5725 		if (cfs_rq_is_idle(cfs_rq))
5726 			idle_h_nr_running = 1;
5727 
5728 		/* end evaluation on encountering a throttled cfs_rq */
5729 		if (cfs_rq_throttled(cfs_rq))
5730 			goto dequeue_throttle;
5731 
5732 		/* Don't dequeue parent if it has other entities besides us */
5733 		if (cfs_rq->load.weight) {
5734 			/* Avoid re-evaluating load for this entity: */
5735 			se = parent_entity(se);
5736 			/*
5737 			 * Bias pick_next to pick a task from this cfs_rq, as
5738 			 * p is sleeping when it is within its sched_slice.
5739 			 */
5740 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5741 				set_next_buddy(se);
5742 			break;
5743 		}
5744 		flags |= DEQUEUE_SLEEP;
5745 	}
5746 
5747 	for_each_sched_entity(se) {
5748 		cfs_rq = cfs_rq_of(se);
5749 
5750 		update_load_avg(cfs_rq, se, UPDATE_TG);
5751 		se_update_runnable(se);
5752 		update_cfs_group(se);
5753 
5754 		cfs_rq->h_nr_running--;
5755 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5756 
5757 		if (cfs_rq_is_idle(cfs_rq))
5758 			idle_h_nr_running = 1;
5759 
5760 		/* end evaluation on encountering a throttled cfs_rq */
5761 		if (cfs_rq_throttled(cfs_rq))
5762 			goto dequeue_throttle;
5763 
5764 	}
5765 
5766 	/* At this point se is NULL and we are at root level*/
5767 	sub_nr_running(rq, 1);
5768 
5769 	/* balance early to pull high priority tasks */
5770 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5771 		rq->next_balance = jiffies;
5772 
5773 dequeue_throttle:
5774 	util_est_update(&rq->cfs, p, task_sleep);
5775 	hrtick_update(rq);
5776 }
5777 
5778 #ifdef CONFIG_SMP
5779 
5780 /* Working cpumask for: load_balance, load_balance_newidle. */
5781 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5782 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5783 
5784 #ifdef CONFIG_NO_HZ_COMMON
5785 
5786 static struct {
5787 	cpumask_var_t idle_cpus_mask;
5788 	atomic_t nr_cpus;
5789 	int has_blocked;		/* Idle CPUS has blocked load */
5790 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
5791 	unsigned long next_balance;     /* in jiffy units */
5792 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5793 } nohz ____cacheline_aligned;
5794 
5795 #endif /* CONFIG_NO_HZ_COMMON */
5796 
5797 static unsigned long cpu_load(struct rq *rq)
5798 {
5799 	return cfs_rq_load_avg(&rq->cfs);
5800 }
5801 
5802 /*
5803  * cpu_load_without - compute CPU load without any contributions from *p
5804  * @cpu: the CPU which load is requested
5805  * @p: the task which load should be discounted
5806  *
5807  * The load of a CPU is defined by the load of tasks currently enqueued on that
5808  * CPU as well as tasks which are currently sleeping after an execution on that
5809  * CPU.
5810  *
5811  * This method returns the load of the specified CPU by discounting the load of
5812  * the specified task, whenever the task is currently contributing to the CPU
5813  * load.
5814  */
5815 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5816 {
5817 	struct cfs_rq *cfs_rq;
5818 	unsigned int load;
5819 
5820 	/* Task has no contribution or is new */
5821 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5822 		return cpu_load(rq);
5823 
5824 	cfs_rq = &rq->cfs;
5825 	load = READ_ONCE(cfs_rq->avg.load_avg);
5826 
5827 	/* Discount task's util from CPU's util */
5828 	lsub_positive(&load, task_h_load(p));
5829 
5830 	return load;
5831 }
5832 
5833 static unsigned long cpu_runnable(struct rq *rq)
5834 {
5835 	return cfs_rq_runnable_avg(&rq->cfs);
5836 }
5837 
5838 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5839 {
5840 	struct cfs_rq *cfs_rq;
5841 	unsigned int runnable;
5842 
5843 	/* Task has no contribution or is new */
5844 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5845 		return cpu_runnable(rq);
5846 
5847 	cfs_rq = &rq->cfs;
5848 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5849 
5850 	/* Discount task's runnable from CPU's runnable */
5851 	lsub_positive(&runnable, p->se.avg.runnable_avg);
5852 
5853 	return runnable;
5854 }
5855 
5856 static unsigned long capacity_of(int cpu)
5857 {
5858 	return cpu_rq(cpu)->cpu_capacity;
5859 }
5860 
5861 static void record_wakee(struct task_struct *p)
5862 {
5863 	/*
5864 	 * Only decay a single time; tasks that have less then 1 wakeup per
5865 	 * jiffy will not have built up many flips.
5866 	 */
5867 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5868 		current->wakee_flips >>= 1;
5869 		current->wakee_flip_decay_ts = jiffies;
5870 	}
5871 
5872 	if (current->last_wakee != p) {
5873 		current->last_wakee = p;
5874 		current->wakee_flips++;
5875 	}
5876 }
5877 
5878 /*
5879  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5880  *
5881  * A waker of many should wake a different task than the one last awakened
5882  * at a frequency roughly N times higher than one of its wakees.
5883  *
5884  * In order to determine whether we should let the load spread vs consolidating
5885  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5886  * partner, and a factor of lls_size higher frequency in the other.
5887  *
5888  * With both conditions met, we can be relatively sure that the relationship is
5889  * non-monogamous, with partner count exceeding socket size.
5890  *
5891  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5892  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5893  * socket size.
5894  */
5895 static int wake_wide(struct task_struct *p)
5896 {
5897 	unsigned int master = current->wakee_flips;
5898 	unsigned int slave = p->wakee_flips;
5899 	int factor = __this_cpu_read(sd_llc_size);
5900 
5901 	if (master < slave)
5902 		swap(master, slave);
5903 	if (slave < factor || master < slave * factor)
5904 		return 0;
5905 	return 1;
5906 }
5907 
5908 /*
5909  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5910  * soonest. For the purpose of speed we only consider the waking and previous
5911  * CPU.
5912  *
5913  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5914  *			cache-affine and is (or	will be) idle.
5915  *
5916  * wake_affine_weight() - considers the weight to reflect the average
5917  *			  scheduling latency of the CPUs. This seems to work
5918  *			  for the overloaded case.
5919  */
5920 static int
5921 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5922 {
5923 	/*
5924 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5925 	 * context. Only allow the move if cache is shared. Otherwise an
5926 	 * interrupt intensive workload could force all tasks onto one
5927 	 * node depending on the IO topology or IRQ affinity settings.
5928 	 *
5929 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5930 	 * There is no guarantee that the cache hot data from an interrupt
5931 	 * is more important than cache hot data on the prev_cpu and from
5932 	 * a cpufreq perspective, it's better to have higher utilisation
5933 	 * on one CPU.
5934 	 */
5935 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5936 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5937 
5938 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5939 		return this_cpu;
5940 
5941 	if (available_idle_cpu(prev_cpu))
5942 		return prev_cpu;
5943 
5944 	return nr_cpumask_bits;
5945 }
5946 
5947 static int
5948 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5949 		   int this_cpu, int prev_cpu, int sync)
5950 {
5951 	s64 this_eff_load, prev_eff_load;
5952 	unsigned long task_load;
5953 
5954 	this_eff_load = cpu_load(cpu_rq(this_cpu));
5955 
5956 	if (sync) {
5957 		unsigned long current_load = task_h_load(current);
5958 
5959 		if (current_load > this_eff_load)
5960 			return this_cpu;
5961 
5962 		this_eff_load -= current_load;
5963 	}
5964 
5965 	task_load = task_h_load(p);
5966 
5967 	this_eff_load += task_load;
5968 	if (sched_feat(WA_BIAS))
5969 		this_eff_load *= 100;
5970 	this_eff_load *= capacity_of(prev_cpu);
5971 
5972 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5973 	prev_eff_load -= task_load;
5974 	if (sched_feat(WA_BIAS))
5975 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5976 	prev_eff_load *= capacity_of(this_cpu);
5977 
5978 	/*
5979 	 * If sync, adjust the weight of prev_eff_load such that if
5980 	 * prev_eff == this_eff that select_idle_sibling() will consider
5981 	 * stacking the wakee on top of the waker if no other CPU is
5982 	 * idle.
5983 	 */
5984 	if (sync)
5985 		prev_eff_load += 1;
5986 
5987 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5988 }
5989 
5990 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5991 		       int this_cpu, int prev_cpu, int sync)
5992 {
5993 	int target = nr_cpumask_bits;
5994 
5995 	if (sched_feat(WA_IDLE))
5996 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5997 
5998 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5999 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6000 
6001 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
6002 	if (target == nr_cpumask_bits)
6003 		return prev_cpu;
6004 
6005 	schedstat_inc(sd->ttwu_move_affine);
6006 	schedstat_inc(p->stats.nr_wakeups_affine);
6007 	return target;
6008 }
6009 
6010 static struct sched_group *
6011 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6012 
6013 /*
6014  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6015  */
6016 static int
6017 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6018 {
6019 	unsigned long load, min_load = ULONG_MAX;
6020 	unsigned int min_exit_latency = UINT_MAX;
6021 	u64 latest_idle_timestamp = 0;
6022 	int least_loaded_cpu = this_cpu;
6023 	int shallowest_idle_cpu = -1;
6024 	int i;
6025 
6026 	/* Check if we have any choice: */
6027 	if (group->group_weight == 1)
6028 		return cpumask_first(sched_group_span(group));
6029 
6030 	/* Traverse only the allowed CPUs */
6031 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6032 		struct rq *rq = cpu_rq(i);
6033 
6034 		if (!sched_core_cookie_match(rq, p))
6035 			continue;
6036 
6037 		if (sched_idle_cpu(i))
6038 			return i;
6039 
6040 		if (available_idle_cpu(i)) {
6041 			struct cpuidle_state *idle = idle_get_state(rq);
6042 			if (idle && idle->exit_latency < min_exit_latency) {
6043 				/*
6044 				 * We give priority to a CPU whose idle state
6045 				 * has the smallest exit latency irrespective
6046 				 * of any idle timestamp.
6047 				 */
6048 				min_exit_latency = idle->exit_latency;
6049 				latest_idle_timestamp = rq->idle_stamp;
6050 				shallowest_idle_cpu = i;
6051 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
6052 				   rq->idle_stamp > latest_idle_timestamp) {
6053 				/*
6054 				 * If equal or no active idle state, then
6055 				 * the most recently idled CPU might have
6056 				 * a warmer cache.
6057 				 */
6058 				latest_idle_timestamp = rq->idle_stamp;
6059 				shallowest_idle_cpu = i;
6060 			}
6061 		} else if (shallowest_idle_cpu == -1) {
6062 			load = cpu_load(cpu_rq(i));
6063 			if (load < min_load) {
6064 				min_load = load;
6065 				least_loaded_cpu = i;
6066 			}
6067 		}
6068 	}
6069 
6070 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6071 }
6072 
6073 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6074 				  int cpu, int prev_cpu, int sd_flag)
6075 {
6076 	int new_cpu = cpu;
6077 
6078 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6079 		return prev_cpu;
6080 
6081 	/*
6082 	 * We need task's util for cpu_util_without, sync it up to
6083 	 * prev_cpu's last_update_time.
6084 	 */
6085 	if (!(sd_flag & SD_BALANCE_FORK))
6086 		sync_entity_load_avg(&p->se);
6087 
6088 	while (sd) {
6089 		struct sched_group *group;
6090 		struct sched_domain *tmp;
6091 		int weight;
6092 
6093 		if (!(sd->flags & sd_flag)) {
6094 			sd = sd->child;
6095 			continue;
6096 		}
6097 
6098 		group = find_idlest_group(sd, p, cpu);
6099 		if (!group) {
6100 			sd = sd->child;
6101 			continue;
6102 		}
6103 
6104 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6105 		if (new_cpu == cpu) {
6106 			/* Now try balancing at a lower domain level of 'cpu': */
6107 			sd = sd->child;
6108 			continue;
6109 		}
6110 
6111 		/* Now try balancing at a lower domain level of 'new_cpu': */
6112 		cpu = new_cpu;
6113 		weight = sd->span_weight;
6114 		sd = NULL;
6115 		for_each_domain(cpu, tmp) {
6116 			if (weight <= tmp->span_weight)
6117 				break;
6118 			if (tmp->flags & sd_flag)
6119 				sd = tmp;
6120 		}
6121 	}
6122 
6123 	return new_cpu;
6124 }
6125 
6126 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6127 {
6128 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6129 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
6130 		return cpu;
6131 
6132 	return -1;
6133 }
6134 
6135 #ifdef CONFIG_SCHED_SMT
6136 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6137 EXPORT_SYMBOL_GPL(sched_smt_present);
6138 
6139 static inline void set_idle_cores(int cpu, int val)
6140 {
6141 	struct sched_domain_shared *sds;
6142 
6143 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6144 	if (sds)
6145 		WRITE_ONCE(sds->has_idle_cores, val);
6146 }
6147 
6148 static inline bool test_idle_cores(int cpu, bool def)
6149 {
6150 	struct sched_domain_shared *sds;
6151 
6152 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6153 	if (sds)
6154 		return READ_ONCE(sds->has_idle_cores);
6155 
6156 	return def;
6157 }
6158 
6159 /*
6160  * Scans the local SMT mask to see if the entire core is idle, and records this
6161  * information in sd_llc_shared->has_idle_cores.
6162  *
6163  * Since SMT siblings share all cache levels, inspecting this limited remote
6164  * state should be fairly cheap.
6165  */
6166 void __update_idle_core(struct rq *rq)
6167 {
6168 	int core = cpu_of(rq);
6169 	int cpu;
6170 
6171 	rcu_read_lock();
6172 	if (test_idle_cores(core, true))
6173 		goto unlock;
6174 
6175 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6176 		if (cpu == core)
6177 			continue;
6178 
6179 		if (!available_idle_cpu(cpu))
6180 			goto unlock;
6181 	}
6182 
6183 	set_idle_cores(core, 1);
6184 unlock:
6185 	rcu_read_unlock();
6186 }
6187 
6188 /*
6189  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6190  * there are no idle cores left in the system; tracked through
6191  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6192  */
6193 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6194 {
6195 	bool idle = true;
6196 	int cpu;
6197 
6198 	if (!static_branch_likely(&sched_smt_present))
6199 		return __select_idle_cpu(core, p);
6200 
6201 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6202 		if (!available_idle_cpu(cpu)) {
6203 			idle = false;
6204 			if (*idle_cpu == -1) {
6205 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6206 					*idle_cpu = cpu;
6207 					break;
6208 				}
6209 				continue;
6210 			}
6211 			break;
6212 		}
6213 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6214 			*idle_cpu = cpu;
6215 	}
6216 
6217 	if (idle)
6218 		return core;
6219 
6220 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6221 	return -1;
6222 }
6223 
6224 /*
6225  * Scan the local SMT mask for idle CPUs.
6226  */
6227 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6228 {
6229 	int cpu;
6230 
6231 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6232 		if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6233 		    !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6234 			continue;
6235 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6236 			return cpu;
6237 	}
6238 
6239 	return -1;
6240 }
6241 
6242 #else /* CONFIG_SCHED_SMT */
6243 
6244 static inline void set_idle_cores(int cpu, int val)
6245 {
6246 }
6247 
6248 static inline bool test_idle_cores(int cpu, bool def)
6249 {
6250 	return def;
6251 }
6252 
6253 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6254 {
6255 	return __select_idle_cpu(core, p);
6256 }
6257 
6258 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6259 {
6260 	return -1;
6261 }
6262 
6263 #endif /* CONFIG_SCHED_SMT */
6264 
6265 /*
6266  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6267  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6268  * average idle time for this rq (as found in rq->avg_idle).
6269  */
6270 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6271 {
6272 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6273 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
6274 	struct rq *this_rq = this_rq();
6275 	int this = smp_processor_id();
6276 	struct sched_domain *this_sd;
6277 	u64 time = 0;
6278 
6279 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6280 	if (!this_sd)
6281 		return -1;
6282 
6283 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6284 
6285 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6286 		u64 avg_cost, avg_idle, span_avg;
6287 		unsigned long now = jiffies;
6288 
6289 		/*
6290 		 * If we're busy, the assumption that the last idle period
6291 		 * predicts the future is flawed; age away the remaining
6292 		 * predicted idle time.
6293 		 */
6294 		if (unlikely(this_rq->wake_stamp < now)) {
6295 			while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6296 				this_rq->wake_stamp++;
6297 				this_rq->wake_avg_idle >>= 1;
6298 			}
6299 		}
6300 
6301 		avg_idle = this_rq->wake_avg_idle;
6302 		avg_cost = this_sd->avg_scan_cost + 1;
6303 
6304 		span_avg = sd->span_weight * avg_idle;
6305 		if (span_avg > 4*avg_cost)
6306 			nr = div_u64(span_avg, avg_cost);
6307 		else
6308 			nr = 4;
6309 
6310 		time = cpu_clock(this);
6311 	}
6312 
6313 	for_each_cpu_wrap(cpu, cpus, target + 1) {
6314 		if (has_idle_core) {
6315 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
6316 			if ((unsigned int)i < nr_cpumask_bits)
6317 				return i;
6318 
6319 		} else {
6320 			if (!--nr)
6321 				return -1;
6322 			idle_cpu = __select_idle_cpu(cpu, p);
6323 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
6324 				break;
6325 		}
6326 	}
6327 
6328 	if (has_idle_core)
6329 		set_idle_cores(target, false);
6330 
6331 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6332 		time = cpu_clock(this) - time;
6333 
6334 		/*
6335 		 * Account for the scan cost of wakeups against the average
6336 		 * idle time.
6337 		 */
6338 		this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6339 
6340 		update_avg(&this_sd->avg_scan_cost, time);
6341 	}
6342 
6343 	return idle_cpu;
6344 }
6345 
6346 /*
6347  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6348  * the task fits. If no CPU is big enough, but there are idle ones, try to
6349  * maximize capacity.
6350  */
6351 static int
6352 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6353 {
6354 	unsigned long task_util, best_cap = 0;
6355 	int cpu, best_cpu = -1;
6356 	struct cpumask *cpus;
6357 
6358 	cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6359 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6360 
6361 	task_util = uclamp_task_util(p);
6362 
6363 	for_each_cpu_wrap(cpu, cpus, target) {
6364 		unsigned long cpu_cap = capacity_of(cpu);
6365 
6366 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6367 			continue;
6368 		if (fits_capacity(task_util, cpu_cap))
6369 			return cpu;
6370 
6371 		if (cpu_cap > best_cap) {
6372 			best_cap = cpu_cap;
6373 			best_cpu = cpu;
6374 		}
6375 	}
6376 
6377 	return best_cpu;
6378 }
6379 
6380 static inline bool asym_fits_capacity(unsigned long task_util, int cpu)
6381 {
6382 	if (static_branch_unlikely(&sched_asym_cpucapacity))
6383 		return fits_capacity(task_util, capacity_of(cpu));
6384 
6385 	return true;
6386 }
6387 
6388 /*
6389  * Try and locate an idle core/thread in the LLC cache domain.
6390  */
6391 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6392 {
6393 	bool has_idle_core = false;
6394 	struct sched_domain *sd;
6395 	unsigned long task_util;
6396 	int i, recent_used_cpu;
6397 
6398 	/*
6399 	 * On asymmetric system, update task utilization because we will check
6400 	 * that the task fits with cpu's capacity.
6401 	 */
6402 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6403 		sync_entity_load_avg(&p->se);
6404 		task_util = uclamp_task_util(p);
6405 	}
6406 
6407 	/*
6408 	 * per-cpu select_idle_mask usage
6409 	 */
6410 	lockdep_assert_irqs_disabled();
6411 
6412 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6413 	    asym_fits_capacity(task_util, target))
6414 		return target;
6415 
6416 	/*
6417 	 * If the previous CPU is cache affine and idle, don't be stupid:
6418 	 */
6419 	if (prev != target && cpus_share_cache(prev, target) &&
6420 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6421 	    asym_fits_capacity(task_util, prev))
6422 		return prev;
6423 
6424 	/*
6425 	 * Allow a per-cpu kthread to stack with the wakee if the
6426 	 * kworker thread and the tasks previous CPUs are the same.
6427 	 * The assumption is that the wakee queued work for the
6428 	 * per-cpu kthread that is now complete and the wakeup is
6429 	 * essentially a sync wakeup. An obvious example of this
6430 	 * pattern is IO completions.
6431 	 */
6432 	if (is_per_cpu_kthread(current) &&
6433 	    in_task() &&
6434 	    prev == smp_processor_id() &&
6435 	    this_rq()->nr_running <= 1 &&
6436 	    asym_fits_capacity(task_util, prev)) {
6437 		return prev;
6438 	}
6439 
6440 	/* Check a recently used CPU as a potential idle candidate: */
6441 	recent_used_cpu = p->recent_used_cpu;
6442 	p->recent_used_cpu = prev;
6443 	if (recent_used_cpu != prev &&
6444 	    recent_used_cpu != target &&
6445 	    cpus_share_cache(recent_used_cpu, target) &&
6446 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6447 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6448 	    asym_fits_capacity(task_util, recent_used_cpu)) {
6449 		return recent_used_cpu;
6450 	}
6451 
6452 	/*
6453 	 * For asymmetric CPU capacity systems, our domain of interest is
6454 	 * sd_asym_cpucapacity rather than sd_llc.
6455 	 */
6456 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6457 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6458 		/*
6459 		 * On an asymmetric CPU capacity system where an exclusive
6460 		 * cpuset defines a symmetric island (i.e. one unique
6461 		 * capacity_orig value through the cpuset), the key will be set
6462 		 * but the CPUs within that cpuset will not have a domain with
6463 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6464 		 * capacity path.
6465 		 */
6466 		if (sd) {
6467 			i = select_idle_capacity(p, sd, target);
6468 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
6469 		}
6470 	}
6471 
6472 	sd = rcu_dereference(per_cpu(sd_llc, target));
6473 	if (!sd)
6474 		return target;
6475 
6476 	if (sched_smt_active()) {
6477 		has_idle_core = test_idle_cores(target, false);
6478 
6479 		if (!has_idle_core && cpus_share_cache(prev, target)) {
6480 			i = select_idle_smt(p, sd, prev);
6481 			if ((unsigned int)i < nr_cpumask_bits)
6482 				return i;
6483 		}
6484 	}
6485 
6486 	i = select_idle_cpu(p, sd, has_idle_core, target);
6487 	if ((unsigned)i < nr_cpumask_bits)
6488 		return i;
6489 
6490 	return target;
6491 }
6492 
6493 /*
6494  * cpu_util_without: compute cpu utilization without any contributions from *p
6495  * @cpu: the CPU which utilization is requested
6496  * @p: the task which utilization should be discounted
6497  *
6498  * The utilization of a CPU is defined by the utilization of tasks currently
6499  * enqueued on that CPU as well as tasks which are currently sleeping after an
6500  * execution on that CPU.
6501  *
6502  * This method returns the utilization of the specified CPU by discounting the
6503  * utilization of the specified task, whenever the task is currently
6504  * contributing to the CPU utilization.
6505  */
6506 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6507 {
6508 	struct cfs_rq *cfs_rq;
6509 	unsigned int util;
6510 
6511 	/* Task has no contribution or is new */
6512 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6513 		return cpu_util_cfs(cpu);
6514 
6515 	cfs_rq = &cpu_rq(cpu)->cfs;
6516 	util = READ_ONCE(cfs_rq->avg.util_avg);
6517 
6518 	/* Discount task's util from CPU's util */
6519 	lsub_positive(&util, task_util(p));
6520 
6521 	/*
6522 	 * Covered cases:
6523 	 *
6524 	 * a) if *p is the only task sleeping on this CPU, then:
6525 	 *      cpu_util (== task_util) > util_est (== 0)
6526 	 *    and thus we return:
6527 	 *      cpu_util_without = (cpu_util - task_util) = 0
6528 	 *
6529 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6530 	 *    IDLE, then:
6531 	 *      cpu_util >= task_util
6532 	 *      cpu_util > util_est (== 0)
6533 	 *    and thus we discount *p's blocked utilization to return:
6534 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6535 	 *
6536 	 * c) if other tasks are RUNNABLE on that CPU and
6537 	 *      util_est > cpu_util
6538 	 *    then we use util_est since it returns a more restrictive
6539 	 *    estimation of the spare capacity on that CPU, by just
6540 	 *    considering the expected utilization of tasks already
6541 	 *    runnable on that CPU.
6542 	 *
6543 	 * Cases a) and b) are covered by the above code, while case c) is
6544 	 * covered by the following code when estimated utilization is
6545 	 * enabled.
6546 	 */
6547 	if (sched_feat(UTIL_EST)) {
6548 		unsigned int estimated =
6549 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6550 
6551 		/*
6552 		 * Despite the following checks we still have a small window
6553 		 * for a possible race, when an execl's select_task_rq_fair()
6554 		 * races with LB's detach_task():
6555 		 *
6556 		 *   detach_task()
6557 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6558 		 *     ---------------------------------- A
6559 		 *     deactivate_task()                   \
6560 		 *       dequeue_task()                     + RaceTime
6561 		 *         util_est_dequeue()              /
6562 		 *     ---------------------------------- B
6563 		 *
6564 		 * The additional check on "current == p" it's required to
6565 		 * properly fix the execl regression and it helps in further
6566 		 * reducing the chances for the above race.
6567 		 */
6568 		if (unlikely(task_on_rq_queued(p) || current == p))
6569 			lsub_positive(&estimated, _task_util_est(p));
6570 
6571 		util = max(util, estimated);
6572 	}
6573 
6574 	/*
6575 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6576 	 * clamp to the maximum CPU capacity to ensure consistency with
6577 	 * cpu_util.
6578 	 */
6579 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6580 }
6581 
6582 /*
6583  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6584  * to @dst_cpu.
6585  */
6586 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6587 {
6588 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6589 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6590 
6591 	/*
6592 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6593 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6594 	 * the other cases, @cpu is not impacted by the migration, so the
6595 	 * util_avg should already be correct.
6596 	 */
6597 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6598 		lsub_positive(&util, task_util(p));
6599 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6600 		util += task_util(p);
6601 
6602 	if (sched_feat(UTIL_EST)) {
6603 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6604 
6605 		/*
6606 		 * During wake-up, the task isn't enqueued yet and doesn't
6607 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6608 		 * so just add it (if needed) to "simulate" what will be
6609 		 * cpu_util after the task has been enqueued.
6610 		 */
6611 		if (dst_cpu == cpu)
6612 			util_est += _task_util_est(p);
6613 
6614 		util = max(util, util_est);
6615 	}
6616 
6617 	return min(util, capacity_orig_of(cpu));
6618 }
6619 
6620 /*
6621  * compute_energy(): Estimates the energy that @pd would consume if @p was
6622  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6623  * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6624  * to compute what would be the energy if we decided to actually migrate that
6625  * task.
6626  */
6627 static long
6628 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6629 {
6630 	struct cpumask *pd_mask = perf_domain_span(pd);
6631 	unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6632 	unsigned long max_util = 0, sum_util = 0;
6633 	unsigned long _cpu_cap = cpu_cap;
6634 	int cpu;
6635 
6636 	_cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask));
6637 
6638 	/*
6639 	 * The capacity state of CPUs of the current rd can be driven by CPUs
6640 	 * of another rd if they belong to the same pd. So, account for the
6641 	 * utilization of these CPUs too by masking pd with cpu_online_mask
6642 	 * instead of the rd span.
6643 	 *
6644 	 * If an entire pd is outside of the current rd, it will not appear in
6645 	 * its pd list and will not be accounted by compute_energy().
6646 	 */
6647 	for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6648 		unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6649 		unsigned long cpu_util, util_running = util_freq;
6650 		struct task_struct *tsk = NULL;
6651 
6652 		/*
6653 		 * When @p is placed on @cpu:
6654 		 *
6655 		 * util_running = max(cpu_util, cpu_util_est) +
6656 		 *		  max(task_util, _task_util_est)
6657 		 *
6658 		 * while cpu_util_next is: max(cpu_util + task_util,
6659 		 *			       cpu_util_est + _task_util_est)
6660 		 */
6661 		if (cpu == dst_cpu) {
6662 			tsk = p;
6663 			util_running =
6664 				cpu_util_next(cpu, p, -1) + task_util_est(p);
6665 		}
6666 
6667 		/*
6668 		 * Busy time computation: utilization clamping is not
6669 		 * required since the ratio (sum_util / cpu_capacity)
6670 		 * is already enough to scale the EM reported power
6671 		 * consumption at the (eventually clamped) cpu_capacity.
6672 		 */
6673 		cpu_util = effective_cpu_util(cpu, util_running, cpu_cap,
6674 					      ENERGY_UTIL, NULL);
6675 
6676 		sum_util += min(cpu_util, _cpu_cap);
6677 
6678 		/*
6679 		 * Performance domain frequency: utilization clamping
6680 		 * must be considered since it affects the selection
6681 		 * of the performance domain frequency.
6682 		 * NOTE: in case RT tasks are running, by default the
6683 		 * FREQUENCY_UTIL's utilization can be max OPP.
6684 		 */
6685 		cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
6686 					      FREQUENCY_UTIL, tsk);
6687 		max_util = max(max_util, min(cpu_util, _cpu_cap));
6688 	}
6689 
6690 	return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap);
6691 }
6692 
6693 /*
6694  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6695  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6696  * spare capacity in each performance domain and uses it as a potential
6697  * candidate to execute the task. Then, it uses the Energy Model to figure
6698  * out which of the CPU candidates is the most energy-efficient.
6699  *
6700  * The rationale for this heuristic is as follows. In a performance domain,
6701  * all the most energy efficient CPU candidates (according to the Energy
6702  * Model) are those for which we'll request a low frequency. When there are
6703  * several CPUs for which the frequency request will be the same, we don't
6704  * have enough data to break the tie between them, because the Energy Model
6705  * only includes active power costs. With this model, if we assume that
6706  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6707  * the maximum spare capacity in a performance domain is guaranteed to be among
6708  * the best candidates of the performance domain.
6709  *
6710  * In practice, it could be preferable from an energy standpoint to pack
6711  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6712  * but that could also hurt our chances to go cluster idle, and we have no
6713  * ways to tell with the current Energy Model if this is actually a good
6714  * idea or not. So, find_energy_efficient_cpu() basically favors
6715  * cluster-packing, and spreading inside a cluster. That should at least be
6716  * a good thing for latency, and this is consistent with the idea that most
6717  * of the energy savings of EAS come from the asymmetry of the system, and
6718  * not so much from breaking the tie between identical CPUs. That's also the
6719  * reason why EAS is enabled in the topology code only for systems where
6720  * SD_ASYM_CPUCAPACITY is set.
6721  *
6722  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6723  * they don't have any useful utilization data yet and it's not possible to
6724  * forecast their impact on energy consumption. Consequently, they will be
6725  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6726  * to be energy-inefficient in some use-cases. The alternative would be to
6727  * bias new tasks towards specific types of CPUs first, or to try to infer
6728  * their util_avg from the parent task, but those heuristics could hurt
6729  * other use-cases too. So, until someone finds a better way to solve this,
6730  * let's keep things simple by re-using the existing slow path.
6731  */
6732 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6733 {
6734 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6735 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6736 	int cpu, best_energy_cpu = prev_cpu, target = -1;
6737 	unsigned long cpu_cap, util, base_energy = 0;
6738 	struct sched_domain *sd;
6739 	struct perf_domain *pd;
6740 
6741 	rcu_read_lock();
6742 	pd = rcu_dereference(rd->pd);
6743 	if (!pd || READ_ONCE(rd->overutilized))
6744 		goto unlock;
6745 
6746 	/*
6747 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6748 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6749 	 */
6750 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6751 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6752 		sd = sd->parent;
6753 	if (!sd)
6754 		goto unlock;
6755 
6756 	target = prev_cpu;
6757 
6758 	sync_entity_load_avg(&p->se);
6759 	if (!task_util_est(p))
6760 		goto unlock;
6761 
6762 	for (; pd; pd = pd->next) {
6763 		unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6764 		bool compute_prev_delta = false;
6765 		unsigned long base_energy_pd;
6766 		int max_spare_cap_cpu = -1;
6767 
6768 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6769 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6770 				continue;
6771 
6772 			util = cpu_util_next(cpu, p, cpu);
6773 			cpu_cap = capacity_of(cpu);
6774 			spare_cap = cpu_cap;
6775 			lsub_positive(&spare_cap, util);
6776 
6777 			/*
6778 			 * Skip CPUs that cannot satisfy the capacity request.
6779 			 * IOW, placing the task there would make the CPU
6780 			 * overutilized. Take uclamp into account to see how
6781 			 * much capacity we can get out of the CPU; this is
6782 			 * aligned with sched_cpu_util().
6783 			 */
6784 			util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6785 			if (!fits_capacity(util, cpu_cap))
6786 				continue;
6787 
6788 			if (cpu == prev_cpu) {
6789 				/* Always use prev_cpu as a candidate. */
6790 				compute_prev_delta = true;
6791 			} else if (spare_cap > max_spare_cap) {
6792 				/*
6793 				 * Find the CPU with the maximum spare capacity
6794 				 * in the performance domain.
6795 				 */
6796 				max_spare_cap = spare_cap;
6797 				max_spare_cap_cpu = cpu;
6798 			}
6799 		}
6800 
6801 		if (max_spare_cap_cpu < 0 && !compute_prev_delta)
6802 			continue;
6803 
6804 		/* Compute the 'base' energy of the pd, without @p */
6805 		base_energy_pd = compute_energy(p, -1, pd);
6806 		base_energy += base_energy_pd;
6807 
6808 		/* Evaluate the energy impact of using prev_cpu. */
6809 		if (compute_prev_delta) {
6810 			prev_delta = compute_energy(p, prev_cpu, pd);
6811 			if (prev_delta < base_energy_pd)
6812 				goto unlock;
6813 			prev_delta -= base_energy_pd;
6814 			best_delta = min(best_delta, prev_delta);
6815 		}
6816 
6817 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
6818 		if (max_spare_cap_cpu >= 0) {
6819 			cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6820 			if (cur_delta < base_energy_pd)
6821 				goto unlock;
6822 			cur_delta -= base_energy_pd;
6823 			if (cur_delta < best_delta) {
6824 				best_delta = cur_delta;
6825 				best_energy_cpu = max_spare_cap_cpu;
6826 			}
6827 		}
6828 	}
6829 	rcu_read_unlock();
6830 
6831 	/*
6832 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6833 	 * least 6% of the energy used by prev_cpu.
6834 	 */
6835 	if ((prev_delta == ULONG_MAX) ||
6836 	    (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6837 		target = best_energy_cpu;
6838 
6839 	return target;
6840 
6841 unlock:
6842 	rcu_read_unlock();
6843 
6844 	return target;
6845 }
6846 
6847 /*
6848  * select_task_rq_fair: Select target runqueue for the waking task in domains
6849  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
6850  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6851  *
6852  * Balances load by selecting the idlest CPU in the idlest group, or under
6853  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6854  *
6855  * Returns the target CPU number.
6856  */
6857 static int
6858 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
6859 {
6860 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6861 	struct sched_domain *tmp, *sd = NULL;
6862 	int cpu = smp_processor_id();
6863 	int new_cpu = prev_cpu;
6864 	int want_affine = 0;
6865 	/* SD_flags and WF_flags share the first nibble */
6866 	int sd_flag = wake_flags & 0xF;
6867 
6868 	/*
6869 	 * required for stable ->cpus_allowed
6870 	 */
6871 	lockdep_assert_held(&p->pi_lock);
6872 	if (wake_flags & WF_TTWU) {
6873 		record_wakee(p);
6874 
6875 		if (sched_energy_enabled()) {
6876 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6877 			if (new_cpu >= 0)
6878 				return new_cpu;
6879 			new_cpu = prev_cpu;
6880 		}
6881 
6882 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6883 	}
6884 
6885 	rcu_read_lock();
6886 	for_each_domain(cpu, tmp) {
6887 		/*
6888 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6889 		 * cpu is a valid SD_WAKE_AFFINE target.
6890 		 */
6891 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6892 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6893 			if (cpu != prev_cpu)
6894 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6895 
6896 			sd = NULL; /* Prefer wake_affine over balance flags */
6897 			break;
6898 		}
6899 
6900 		/*
6901 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
6902 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
6903 		 * will usually go to the fast path.
6904 		 */
6905 		if (tmp->flags & sd_flag)
6906 			sd = tmp;
6907 		else if (!want_affine)
6908 			break;
6909 	}
6910 
6911 	if (unlikely(sd)) {
6912 		/* Slow path */
6913 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6914 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
6915 		/* Fast path */
6916 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6917 	}
6918 	rcu_read_unlock();
6919 
6920 	return new_cpu;
6921 }
6922 
6923 static void detach_entity_cfs_rq(struct sched_entity *se);
6924 
6925 /*
6926  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6927  * cfs_rq_of(p) references at time of call are still valid and identify the
6928  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6929  */
6930 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6931 {
6932 	/*
6933 	 * As blocked tasks retain absolute vruntime the migration needs to
6934 	 * deal with this by subtracting the old and adding the new
6935 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6936 	 * the task on the new runqueue.
6937 	 */
6938 	if (READ_ONCE(p->__state) == TASK_WAKING) {
6939 		struct sched_entity *se = &p->se;
6940 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6941 		u64 min_vruntime;
6942 
6943 #ifndef CONFIG_64BIT
6944 		u64 min_vruntime_copy;
6945 
6946 		do {
6947 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6948 			smp_rmb();
6949 			min_vruntime = cfs_rq->min_vruntime;
6950 		} while (min_vruntime != min_vruntime_copy);
6951 #else
6952 		min_vruntime = cfs_rq->min_vruntime;
6953 #endif
6954 
6955 		se->vruntime -= min_vruntime;
6956 	}
6957 
6958 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6959 		/*
6960 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6961 		 * rq->lock and can modify state directly.
6962 		 */
6963 		lockdep_assert_rq_held(task_rq(p));
6964 		detach_entity_cfs_rq(&p->se);
6965 
6966 	} else {
6967 		/*
6968 		 * We are supposed to update the task to "current" time, then
6969 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6970 		 * have difficulty in getting what current time is, so simply
6971 		 * throw away the out-of-date time. This will result in the
6972 		 * wakee task is less decayed, but giving the wakee more load
6973 		 * sounds not bad.
6974 		 */
6975 		remove_entity_load_avg(&p->se);
6976 	}
6977 
6978 	/* Tell new CPU we are migrated */
6979 	p->se.avg.last_update_time = 0;
6980 
6981 	/* We have migrated, no longer consider this task hot */
6982 	p->se.exec_start = 0;
6983 
6984 	update_scan_period(p, new_cpu);
6985 }
6986 
6987 static void task_dead_fair(struct task_struct *p)
6988 {
6989 	remove_entity_load_avg(&p->se);
6990 }
6991 
6992 static int
6993 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6994 {
6995 	if (rq->nr_running)
6996 		return 1;
6997 
6998 	return newidle_balance(rq, rf) != 0;
6999 }
7000 #endif /* CONFIG_SMP */
7001 
7002 static unsigned long wakeup_gran(struct sched_entity *se)
7003 {
7004 	unsigned long gran = sysctl_sched_wakeup_granularity;
7005 
7006 	/*
7007 	 * Since its curr running now, convert the gran from real-time
7008 	 * to virtual-time in his units.
7009 	 *
7010 	 * By using 'se' instead of 'curr' we penalize light tasks, so
7011 	 * they get preempted easier. That is, if 'se' < 'curr' then
7012 	 * the resulting gran will be larger, therefore penalizing the
7013 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7014 	 * be smaller, again penalizing the lighter task.
7015 	 *
7016 	 * This is especially important for buddies when the leftmost
7017 	 * task is higher priority than the buddy.
7018 	 */
7019 	return calc_delta_fair(gran, se);
7020 }
7021 
7022 /*
7023  * Should 'se' preempt 'curr'.
7024  *
7025  *             |s1
7026  *        |s2
7027  *   |s3
7028  *         g
7029  *      |<--->|c
7030  *
7031  *  w(c, s1) = -1
7032  *  w(c, s2) =  0
7033  *  w(c, s3) =  1
7034  *
7035  */
7036 static int
7037 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7038 {
7039 	s64 gran, vdiff = curr->vruntime - se->vruntime;
7040 
7041 	if (vdiff <= 0)
7042 		return -1;
7043 
7044 	gran = wakeup_gran(se);
7045 	if (vdiff > gran)
7046 		return 1;
7047 
7048 	return 0;
7049 }
7050 
7051 static void set_last_buddy(struct sched_entity *se)
7052 {
7053 	for_each_sched_entity(se) {
7054 		if (SCHED_WARN_ON(!se->on_rq))
7055 			return;
7056 		if (se_is_idle(se))
7057 			return;
7058 		cfs_rq_of(se)->last = se;
7059 	}
7060 }
7061 
7062 static void set_next_buddy(struct sched_entity *se)
7063 {
7064 	for_each_sched_entity(se) {
7065 		if (SCHED_WARN_ON(!se->on_rq))
7066 			return;
7067 		if (se_is_idle(se))
7068 			return;
7069 		cfs_rq_of(se)->next = se;
7070 	}
7071 }
7072 
7073 static void set_skip_buddy(struct sched_entity *se)
7074 {
7075 	for_each_sched_entity(se)
7076 		cfs_rq_of(se)->skip = se;
7077 }
7078 
7079 /*
7080  * Preempt the current task with a newly woken task if needed:
7081  */
7082 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7083 {
7084 	struct task_struct *curr = rq->curr;
7085 	struct sched_entity *se = &curr->se, *pse = &p->se;
7086 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7087 	int scale = cfs_rq->nr_running >= sched_nr_latency;
7088 	int next_buddy_marked = 0;
7089 	int cse_is_idle, pse_is_idle;
7090 
7091 	if (unlikely(se == pse))
7092 		return;
7093 
7094 	/*
7095 	 * This is possible from callers such as attach_tasks(), in which we
7096 	 * unconditionally check_preempt_curr() after an enqueue (which may have
7097 	 * lead to a throttle).  This both saves work and prevents false
7098 	 * next-buddy nomination below.
7099 	 */
7100 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7101 		return;
7102 
7103 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7104 		set_next_buddy(pse);
7105 		next_buddy_marked = 1;
7106 	}
7107 
7108 	/*
7109 	 * We can come here with TIF_NEED_RESCHED already set from new task
7110 	 * wake up path.
7111 	 *
7112 	 * Note: this also catches the edge-case of curr being in a throttled
7113 	 * group (e.g. via set_curr_task), since update_curr() (in the
7114 	 * enqueue of curr) will have resulted in resched being set.  This
7115 	 * prevents us from potentially nominating it as a false LAST_BUDDY
7116 	 * below.
7117 	 */
7118 	if (test_tsk_need_resched(curr))
7119 		return;
7120 
7121 	/* Idle tasks are by definition preempted by non-idle tasks. */
7122 	if (unlikely(task_has_idle_policy(curr)) &&
7123 	    likely(!task_has_idle_policy(p)))
7124 		goto preempt;
7125 
7126 	/*
7127 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7128 	 * is driven by the tick):
7129 	 */
7130 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7131 		return;
7132 
7133 	find_matching_se(&se, &pse);
7134 	BUG_ON(!pse);
7135 
7136 	cse_is_idle = se_is_idle(se);
7137 	pse_is_idle = se_is_idle(pse);
7138 
7139 	/*
7140 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
7141 	 * in the inverse case).
7142 	 */
7143 	if (cse_is_idle && !pse_is_idle)
7144 		goto preempt;
7145 	if (cse_is_idle != pse_is_idle)
7146 		return;
7147 
7148 	update_curr(cfs_rq_of(se));
7149 	if (wakeup_preempt_entity(se, pse) == 1) {
7150 		/*
7151 		 * Bias pick_next to pick the sched entity that is
7152 		 * triggering this preemption.
7153 		 */
7154 		if (!next_buddy_marked)
7155 			set_next_buddy(pse);
7156 		goto preempt;
7157 	}
7158 
7159 	return;
7160 
7161 preempt:
7162 	resched_curr(rq);
7163 	/*
7164 	 * Only set the backward buddy when the current task is still
7165 	 * on the rq. This can happen when a wakeup gets interleaved
7166 	 * with schedule on the ->pre_schedule() or idle_balance()
7167 	 * point, either of which can * drop the rq lock.
7168 	 *
7169 	 * Also, during early boot the idle thread is in the fair class,
7170 	 * for obvious reasons its a bad idea to schedule back to it.
7171 	 */
7172 	if (unlikely(!se->on_rq || curr == rq->idle))
7173 		return;
7174 
7175 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7176 		set_last_buddy(se);
7177 }
7178 
7179 #ifdef CONFIG_SMP
7180 static struct task_struct *pick_task_fair(struct rq *rq)
7181 {
7182 	struct sched_entity *se;
7183 	struct cfs_rq *cfs_rq;
7184 
7185 again:
7186 	cfs_rq = &rq->cfs;
7187 	if (!cfs_rq->nr_running)
7188 		return NULL;
7189 
7190 	do {
7191 		struct sched_entity *curr = cfs_rq->curr;
7192 
7193 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7194 		if (curr) {
7195 			if (curr->on_rq)
7196 				update_curr(cfs_rq);
7197 			else
7198 				curr = NULL;
7199 
7200 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7201 				goto again;
7202 		}
7203 
7204 		se = pick_next_entity(cfs_rq, curr);
7205 		cfs_rq = group_cfs_rq(se);
7206 	} while (cfs_rq);
7207 
7208 	return task_of(se);
7209 }
7210 #endif
7211 
7212 struct task_struct *
7213 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7214 {
7215 	struct cfs_rq *cfs_rq = &rq->cfs;
7216 	struct sched_entity *se;
7217 	struct task_struct *p;
7218 	int new_tasks;
7219 
7220 again:
7221 	if (!sched_fair_runnable(rq))
7222 		goto idle;
7223 
7224 #ifdef CONFIG_FAIR_GROUP_SCHED
7225 	if (!prev || prev->sched_class != &fair_sched_class)
7226 		goto simple;
7227 
7228 	/*
7229 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7230 	 * likely that a next task is from the same cgroup as the current.
7231 	 *
7232 	 * Therefore attempt to avoid putting and setting the entire cgroup
7233 	 * hierarchy, only change the part that actually changes.
7234 	 */
7235 
7236 	do {
7237 		struct sched_entity *curr = cfs_rq->curr;
7238 
7239 		/*
7240 		 * Since we got here without doing put_prev_entity() we also
7241 		 * have to consider cfs_rq->curr. If it is still a runnable
7242 		 * entity, update_curr() will update its vruntime, otherwise
7243 		 * forget we've ever seen it.
7244 		 */
7245 		if (curr) {
7246 			if (curr->on_rq)
7247 				update_curr(cfs_rq);
7248 			else
7249 				curr = NULL;
7250 
7251 			/*
7252 			 * This call to check_cfs_rq_runtime() will do the
7253 			 * throttle and dequeue its entity in the parent(s).
7254 			 * Therefore the nr_running test will indeed
7255 			 * be correct.
7256 			 */
7257 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7258 				cfs_rq = &rq->cfs;
7259 
7260 				if (!cfs_rq->nr_running)
7261 					goto idle;
7262 
7263 				goto simple;
7264 			}
7265 		}
7266 
7267 		se = pick_next_entity(cfs_rq, curr);
7268 		cfs_rq = group_cfs_rq(se);
7269 	} while (cfs_rq);
7270 
7271 	p = task_of(se);
7272 
7273 	/*
7274 	 * Since we haven't yet done put_prev_entity and if the selected task
7275 	 * is a different task than we started out with, try and touch the
7276 	 * least amount of cfs_rqs.
7277 	 */
7278 	if (prev != p) {
7279 		struct sched_entity *pse = &prev->se;
7280 
7281 		while (!(cfs_rq = is_same_group(se, pse))) {
7282 			int se_depth = se->depth;
7283 			int pse_depth = pse->depth;
7284 
7285 			if (se_depth <= pse_depth) {
7286 				put_prev_entity(cfs_rq_of(pse), pse);
7287 				pse = parent_entity(pse);
7288 			}
7289 			if (se_depth >= pse_depth) {
7290 				set_next_entity(cfs_rq_of(se), se);
7291 				se = parent_entity(se);
7292 			}
7293 		}
7294 
7295 		put_prev_entity(cfs_rq, pse);
7296 		set_next_entity(cfs_rq, se);
7297 	}
7298 
7299 	goto done;
7300 simple:
7301 #endif
7302 	if (prev)
7303 		put_prev_task(rq, prev);
7304 
7305 	do {
7306 		se = pick_next_entity(cfs_rq, NULL);
7307 		set_next_entity(cfs_rq, se);
7308 		cfs_rq = group_cfs_rq(se);
7309 	} while (cfs_rq);
7310 
7311 	p = task_of(se);
7312 
7313 done: __maybe_unused;
7314 #ifdef CONFIG_SMP
7315 	/*
7316 	 * Move the next running task to the front of
7317 	 * the list, so our cfs_tasks list becomes MRU
7318 	 * one.
7319 	 */
7320 	list_move(&p->se.group_node, &rq->cfs_tasks);
7321 #endif
7322 
7323 	if (hrtick_enabled_fair(rq))
7324 		hrtick_start_fair(rq, p);
7325 
7326 	update_misfit_status(p, rq);
7327 
7328 	return p;
7329 
7330 idle:
7331 	if (!rf)
7332 		return NULL;
7333 
7334 	new_tasks = newidle_balance(rq, rf);
7335 
7336 	/*
7337 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7338 	 * possible for any higher priority task to appear. In that case we
7339 	 * must re-start the pick_next_entity() loop.
7340 	 */
7341 	if (new_tasks < 0)
7342 		return RETRY_TASK;
7343 
7344 	if (new_tasks > 0)
7345 		goto again;
7346 
7347 	/*
7348 	 * rq is about to be idle, check if we need to update the
7349 	 * lost_idle_time of clock_pelt
7350 	 */
7351 	update_idle_rq_clock_pelt(rq);
7352 
7353 	return NULL;
7354 }
7355 
7356 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7357 {
7358 	return pick_next_task_fair(rq, NULL, NULL);
7359 }
7360 
7361 /*
7362  * Account for a descheduled task:
7363  */
7364 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7365 {
7366 	struct sched_entity *se = &prev->se;
7367 	struct cfs_rq *cfs_rq;
7368 
7369 	for_each_sched_entity(se) {
7370 		cfs_rq = cfs_rq_of(se);
7371 		put_prev_entity(cfs_rq, se);
7372 	}
7373 }
7374 
7375 /*
7376  * sched_yield() is very simple
7377  *
7378  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7379  */
7380 static void yield_task_fair(struct rq *rq)
7381 {
7382 	struct task_struct *curr = rq->curr;
7383 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7384 	struct sched_entity *se = &curr->se;
7385 
7386 	/*
7387 	 * Are we the only task in the tree?
7388 	 */
7389 	if (unlikely(rq->nr_running == 1))
7390 		return;
7391 
7392 	clear_buddies(cfs_rq, se);
7393 
7394 	if (curr->policy != SCHED_BATCH) {
7395 		update_rq_clock(rq);
7396 		/*
7397 		 * Update run-time statistics of the 'current'.
7398 		 */
7399 		update_curr(cfs_rq);
7400 		/*
7401 		 * Tell update_rq_clock() that we've just updated,
7402 		 * so we don't do microscopic update in schedule()
7403 		 * and double the fastpath cost.
7404 		 */
7405 		rq_clock_skip_update(rq);
7406 	}
7407 
7408 	set_skip_buddy(se);
7409 }
7410 
7411 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7412 {
7413 	struct sched_entity *se = &p->se;
7414 
7415 	/* throttled hierarchies are not runnable */
7416 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7417 		return false;
7418 
7419 	/* Tell the scheduler that we'd really like pse to run next. */
7420 	set_next_buddy(se);
7421 
7422 	yield_task_fair(rq);
7423 
7424 	return true;
7425 }
7426 
7427 #ifdef CONFIG_SMP
7428 /**************************************************
7429  * Fair scheduling class load-balancing methods.
7430  *
7431  * BASICS
7432  *
7433  * The purpose of load-balancing is to achieve the same basic fairness the
7434  * per-CPU scheduler provides, namely provide a proportional amount of compute
7435  * time to each task. This is expressed in the following equation:
7436  *
7437  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7438  *
7439  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7440  * W_i,0 is defined as:
7441  *
7442  *   W_i,0 = \Sum_j w_i,j                                             (2)
7443  *
7444  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7445  * is derived from the nice value as per sched_prio_to_weight[].
7446  *
7447  * The weight average is an exponential decay average of the instantaneous
7448  * weight:
7449  *
7450  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7451  *
7452  * C_i is the compute capacity of CPU i, typically it is the
7453  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7454  * can also include other factors [XXX].
7455  *
7456  * To achieve this balance we define a measure of imbalance which follows
7457  * directly from (1):
7458  *
7459  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7460  *
7461  * We them move tasks around to minimize the imbalance. In the continuous
7462  * function space it is obvious this converges, in the discrete case we get
7463  * a few fun cases generally called infeasible weight scenarios.
7464  *
7465  * [XXX expand on:
7466  *     - infeasible weights;
7467  *     - local vs global optima in the discrete case. ]
7468  *
7469  *
7470  * SCHED DOMAINS
7471  *
7472  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7473  * for all i,j solution, we create a tree of CPUs that follows the hardware
7474  * topology where each level pairs two lower groups (or better). This results
7475  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7476  * tree to only the first of the previous level and we decrease the frequency
7477  * of load-balance at each level inv. proportional to the number of CPUs in
7478  * the groups.
7479  *
7480  * This yields:
7481  *
7482  *     log_2 n     1     n
7483  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7484  *     i = 0      2^i   2^i
7485  *                               `- size of each group
7486  *         |         |     `- number of CPUs doing load-balance
7487  *         |         `- freq
7488  *         `- sum over all levels
7489  *
7490  * Coupled with a limit on how many tasks we can migrate every balance pass,
7491  * this makes (5) the runtime complexity of the balancer.
7492  *
7493  * An important property here is that each CPU is still (indirectly) connected
7494  * to every other CPU in at most O(log n) steps:
7495  *
7496  * The adjacency matrix of the resulting graph is given by:
7497  *
7498  *             log_2 n
7499  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7500  *             k = 0
7501  *
7502  * And you'll find that:
7503  *
7504  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7505  *
7506  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7507  * The task movement gives a factor of O(m), giving a convergence complexity
7508  * of:
7509  *
7510  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7511  *
7512  *
7513  * WORK CONSERVING
7514  *
7515  * In order to avoid CPUs going idle while there's still work to do, new idle
7516  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7517  * tree itself instead of relying on other CPUs to bring it work.
7518  *
7519  * This adds some complexity to both (5) and (8) but it reduces the total idle
7520  * time.
7521  *
7522  * [XXX more?]
7523  *
7524  *
7525  * CGROUPS
7526  *
7527  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7528  *
7529  *                                s_k,i
7530  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7531  *                                 S_k
7532  *
7533  * Where
7534  *
7535  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7536  *
7537  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7538  *
7539  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7540  * property.
7541  *
7542  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7543  *      rewrite all of this once again.]
7544  */
7545 
7546 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7547 
7548 enum fbq_type { regular, remote, all };
7549 
7550 /*
7551  * 'group_type' describes the group of CPUs at the moment of load balancing.
7552  *
7553  * The enum is ordered by pulling priority, with the group with lowest priority
7554  * first so the group_type can simply be compared when selecting the busiest
7555  * group. See update_sd_pick_busiest().
7556  */
7557 enum group_type {
7558 	/* The group has spare capacity that can be used to run more tasks.  */
7559 	group_has_spare = 0,
7560 	/*
7561 	 * The group is fully used and the tasks don't compete for more CPU
7562 	 * cycles. Nevertheless, some tasks might wait before running.
7563 	 */
7564 	group_fully_busy,
7565 	/*
7566 	 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7567 	 * and must be migrated to a more powerful CPU.
7568 	 */
7569 	group_misfit_task,
7570 	/*
7571 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7572 	 * and the task should be migrated to it instead of running on the
7573 	 * current CPU.
7574 	 */
7575 	group_asym_packing,
7576 	/*
7577 	 * The tasks' affinity constraints previously prevented the scheduler
7578 	 * from balancing the load across the system.
7579 	 */
7580 	group_imbalanced,
7581 	/*
7582 	 * The CPU is overloaded and can't provide expected CPU cycles to all
7583 	 * tasks.
7584 	 */
7585 	group_overloaded
7586 };
7587 
7588 enum migration_type {
7589 	migrate_load = 0,
7590 	migrate_util,
7591 	migrate_task,
7592 	migrate_misfit
7593 };
7594 
7595 #define LBF_ALL_PINNED	0x01
7596 #define LBF_NEED_BREAK	0x02
7597 #define LBF_DST_PINNED  0x04
7598 #define LBF_SOME_PINNED	0x08
7599 #define LBF_ACTIVE_LB	0x10
7600 
7601 struct lb_env {
7602 	struct sched_domain	*sd;
7603 
7604 	struct rq		*src_rq;
7605 	int			src_cpu;
7606 
7607 	int			dst_cpu;
7608 	struct rq		*dst_rq;
7609 
7610 	struct cpumask		*dst_grpmask;
7611 	int			new_dst_cpu;
7612 	enum cpu_idle_type	idle;
7613 	long			imbalance;
7614 	/* The set of CPUs under consideration for load-balancing */
7615 	struct cpumask		*cpus;
7616 
7617 	unsigned int		flags;
7618 
7619 	unsigned int		loop;
7620 	unsigned int		loop_break;
7621 	unsigned int		loop_max;
7622 
7623 	enum fbq_type		fbq_type;
7624 	enum migration_type	migration_type;
7625 	struct list_head	tasks;
7626 };
7627 
7628 /*
7629  * Is this task likely cache-hot:
7630  */
7631 static int task_hot(struct task_struct *p, struct lb_env *env)
7632 {
7633 	s64 delta;
7634 
7635 	lockdep_assert_rq_held(env->src_rq);
7636 
7637 	if (p->sched_class != &fair_sched_class)
7638 		return 0;
7639 
7640 	if (unlikely(task_has_idle_policy(p)))
7641 		return 0;
7642 
7643 	/* SMT siblings share cache */
7644 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7645 		return 0;
7646 
7647 	/*
7648 	 * Buddy candidates are cache hot:
7649 	 */
7650 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7651 			(&p->se == cfs_rq_of(&p->se)->next ||
7652 			 &p->se == cfs_rq_of(&p->se)->last))
7653 		return 1;
7654 
7655 	if (sysctl_sched_migration_cost == -1)
7656 		return 1;
7657 
7658 	/*
7659 	 * Don't migrate task if the task's cookie does not match
7660 	 * with the destination CPU's core cookie.
7661 	 */
7662 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
7663 		return 1;
7664 
7665 	if (sysctl_sched_migration_cost == 0)
7666 		return 0;
7667 
7668 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7669 
7670 	return delta < (s64)sysctl_sched_migration_cost;
7671 }
7672 
7673 #ifdef CONFIG_NUMA_BALANCING
7674 /*
7675  * Returns 1, if task migration degrades locality
7676  * Returns 0, if task migration improves locality i.e migration preferred.
7677  * Returns -1, if task migration is not affected by locality.
7678  */
7679 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7680 {
7681 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7682 	unsigned long src_weight, dst_weight;
7683 	int src_nid, dst_nid, dist;
7684 
7685 	if (!static_branch_likely(&sched_numa_balancing))
7686 		return -1;
7687 
7688 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7689 		return -1;
7690 
7691 	src_nid = cpu_to_node(env->src_cpu);
7692 	dst_nid = cpu_to_node(env->dst_cpu);
7693 
7694 	if (src_nid == dst_nid)
7695 		return -1;
7696 
7697 	/* Migrating away from the preferred node is always bad. */
7698 	if (src_nid == p->numa_preferred_nid) {
7699 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7700 			return 1;
7701 		else
7702 			return -1;
7703 	}
7704 
7705 	/* Encourage migration to the preferred node. */
7706 	if (dst_nid == p->numa_preferred_nid)
7707 		return 0;
7708 
7709 	/* Leaving a core idle is often worse than degrading locality. */
7710 	if (env->idle == CPU_IDLE)
7711 		return -1;
7712 
7713 	dist = node_distance(src_nid, dst_nid);
7714 	if (numa_group) {
7715 		src_weight = group_weight(p, src_nid, dist);
7716 		dst_weight = group_weight(p, dst_nid, dist);
7717 	} else {
7718 		src_weight = task_weight(p, src_nid, dist);
7719 		dst_weight = task_weight(p, dst_nid, dist);
7720 	}
7721 
7722 	return dst_weight < src_weight;
7723 }
7724 
7725 #else
7726 static inline int migrate_degrades_locality(struct task_struct *p,
7727 					     struct lb_env *env)
7728 {
7729 	return -1;
7730 }
7731 #endif
7732 
7733 /*
7734  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7735  */
7736 static
7737 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7738 {
7739 	int tsk_cache_hot;
7740 
7741 	lockdep_assert_rq_held(env->src_rq);
7742 
7743 	/*
7744 	 * We do not migrate tasks that are:
7745 	 * 1) throttled_lb_pair, or
7746 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7747 	 * 3) running (obviously), or
7748 	 * 4) are cache-hot on their current CPU.
7749 	 */
7750 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7751 		return 0;
7752 
7753 	/* Disregard pcpu kthreads; they are where they need to be. */
7754 	if (kthread_is_per_cpu(p))
7755 		return 0;
7756 
7757 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7758 		int cpu;
7759 
7760 		schedstat_inc(p->stats.nr_failed_migrations_affine);
7761 
7762 		env->flags |= LBF_SOME_PINNED;
7763 
7764 		/*
7765 		 * Remember if this task can be migrated to any other CPU in
7766 		 * our sched_group. We may want to revisit it if we couldn't
7767 		 * meet load balance goals by pulling other tasks on src_cpu.
7768 		 *
7769 		 * Avoid computing new_dst_cpu
7770 		 * - for NEWLY_IDLE
7771 		 * - if we have already computed one in current iteration
7772 		 * - if it's an active balance
7773 		 */
7774 		if (env->idle == CPU_NEWLY_IDLE ||
7775 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
7776 			return 0;
7777 
7778 		/* Prevent to re-select dst_cpu via env's CPUs: */
7779 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7780 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7781 				env->flags |= LBF_DST_PINNED;
7782 				env->new_dst_cpu = cpu;
7783 				break;
7784 			}
7785 		}
7786 
7787 		return 0;
7788 	}
7789 
7790 	/* Record that we found at least one task that could run on dst_cpu */
7791 	env->flags &= ~LBF_ALL_PINNED;
7792 
7793 	if (task_running(env->src_rq, p)) {
7794 		schedstat_inc(p->stats.nr_failed_migrations_running);
7795 		return 0;
7796 	}
7797 
7798 	/*
7799 	 * Aggressive migration if:
7800 	 * 1) active balance
7801 	 * 2) destination numa is preferred
7802 	 * 3) task is cache cold, or
7803 	 * 4) too many balance attempts have failed.
7804 	 */
7805 	if (env->flags & LBF_ACTIVE_LB)
7806 		return 1;
7807 
7808 	tsk_cache_hot = migrate_degrades_locality(p, env);
7809 	if (tsk_cache_hot == -1)
7810 		tsk_cache_hot = task_hot(p, env);
7811 
7812 	if (tsk_cache_hot <= 0 ||
7813 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7814 		if (tsk_cache_hot == 1) {
7815 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7816 			schedstat_inc(p->stats.nr_forced_migrations);
7817 		}
7818 		return 1;
7819 	}
7820 
7821 	schedstat_inc(p->stats.nr_failed_migrations_hot);
7822 	return 0;
7823 }
7824 
7825 /*
7826  * detach_task() -- detach the task for the migration specified in env
7827  */
7828 static void detach_task(struct task_struct *p, struct lb_env *env)
7829 {
7830 	lockdep_assert_rq_held(env->src_rq);
7831 
7832 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7833 	set_task_cpu(p, env->dst_cpu);
7834 }
7835 
7836 /*
7837  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7838  * part of active balancing operations within "domain".
7839  *
7840  * Returns a task if successful and NULL otherwise.
7841  */
7842 static struct task_struct *detach_one_task(struct lb_env *env)
7843 {
7844 	struct task_struct *p;
7845 
7846 	lockdep_assert_rq_held(env->src_rq);
7847 
7848 	list_for_each_entry_reverse(p,
7849 			&env->src_rq->cfs_tasks, se.group_node) {
7850 		if (!can_migrate_task(p, env))
7851 			continue;
7852 
7853 		detach_task(p, env);
7854 
7855 		/*
7856 		 * Right now, this is only the second place where
7857 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7858 		 * so we can safely collect stats here rather than
7859 		 * inside detach_tasks().
7860 		 */
7861 		schedstat_inc(env->sd->lb_gained[env->idle]);
7862 		return p;
7863 	}
7864 	return NULL;
7865 }
7866 
7867 static const unsigned int sched_nr_migrate_break = 32;
7868 
7869 /*
7870  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7871  * busiest_rq, as part of a balancing operation within domain "sd".
7872  *
7873  * Returns number of detached tasks if successful and 0 otherwise.
7874  */
7875 static int detach_tasks(struct lb_env *env)
7876 {
7877 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7878 	unsigned long util, load;
7879 	struct task_struct *p;
7880 	int detached = 0;
7881 
7882 	lockdep_assert_rq_held(env->src_rq);
7883 
7884 	/*
7885 	 * Source run queue has been emptied by another CPU, clear
7886 	 * LBF_ALL_PINNED flag as we will not test any task.
7887 	 */
7888 	if (env->src_rq->nr_running <= 1) {
7889 		env->flags &= ~LBF_ALL_PINNED;
7890 		return 0;
7891 	}
7892 
7893 	if (env->imbalance <= 0)
7894 		return 0;
7895 
7896 	while (!list_empty(tasks)) {
7897 		/*
7898 		 * We don't want to steal all, otherwise we may be treated likewise,
7899 		 * which could at worst lead to a livelock crash.
7900 		 */
7901 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7902 			break;
7903 
7904 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7905 
7906 		env->loop++;
7907 		/* We've more or less seen every task there is, call it quits */
7908 		if (env->loop > env->loop_max)
7909 			break;
7910 
7911 		/* take a breather every nr_migrate tasks */
7912 		if (env->loop > env->loop_break) {
7913 			env->loop_break += sched_nr_migrate_break;
7914 			env->flags |= LBF_NEED_BREAK;
7915 			break;
7916 		}
7917 
7918 		if (!can_migrate_task(p, env))
7919 			goto next;
7920 
7921 		switch (env->migration_type) {
7922 		case migrate_load:
7923 			/*
7924 			 * Depending of the number of CPUs and tasks and the
7925 			 * cgroup hierarchy, task_h_load() can return a null
7926 			 * value. Make sure that env->imbalance decreases
7927 			 * otherwise detach_tasks() will stop only after
7928 			 * detaching up to loop_max tasks.
7929 			 */
7930 			load = max_t(unsigned long, task_h_load(p), 1);
7931 
7932 			if (sched_feat(LB_MIN) &&
7933 			    load < 16 && !env->sd->nr_balance_failed)
7934 				goto next;
7935 
7936 			/*
7937 			 * Make sure that we don't migrate too much load.
7938 			 * Nevertheless, let relax the constraint if
7939 			 * scheduler fails to find a good waiting task to
7940 			 * migrate.
7941 			 */
7942 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
7943 				goto next;
7944 
7945 			env->imbalance -= load;
7946 			break;
7947 
7948 		case migrate_util:
7949 			util = task_util_est(p);
7950 
7951 			if (util > env->imbalance)
7952 				goto next;
7953 
7954 			env->imbalance -= util;
7955 			break;
7956 
7957 		case migrate_task:
7958 			env->imbalance--;
7959 			break;
7960 
7961 		case migrate_misfit:
7962 			/* This is not a misfit task */
7963 			if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7964 				goto next;
7965 
7966 			env->imbalance = 0;
7967 			break;
7968 		}
7969 
7970 		detach_task(p, env);
7971 		list_add(&p->se.group_node, &env->tasks);
7972 
7973 		detached++;
7974 
7975 #ifdef CONFIG_PREEMPTION
7976 		/*
7977 		 * NEWIDLE balancing is a source of latency, so preemptible
7978 		 * kernels will stop after the first task is detached to minimize
7979 		 * the critical section.
7980 		 */
7981 		if (env->idle == CPU_NEWLY_IDLE)
7982 			break;
7983 #endif
7984 
7985 		/*
7986 		 * We only want to steal up to the prescribed amount of
7987 		 * load/util/tasks.
7988 		 */
7989 		if (env->imbalance <= 0)
7990 			break;
7991 
7992 		continue;
7993 next:
7994 		list_move(&p->se.group_node, tasks);
7995 	}
7996 
7997 	/*
7998 	 * Right now, this is one of only two places we collect this stat
7999 	 * so we can safely collect detach_one_task() stats here rather
8000 	 * than inside detach_one_task().
8001 	 */
8002 	schedstat_add(env->sd->lb_gained[env->idle], detached);
8003 
8004 	return detached;
8005 }
8006 
8007 /*
8008  * attach_task() -- attach the task detached by detach_task() to its new rq.
8009  */
8010 static void attach_task(struct rq *rq, struct task_struct *p)
8011 {
8012 	lockdep_assert_rq_held(rq);
8013 
8014 	BUG_ON(task_rq(p) != rq);
8015 	activate_task(rq, p, ENQUEUE_NOCLOCK);
8016 	check_preempt_curr(rq, p, 0);
8017 }
8018 
8019 /*
8020  * attach_one_task() -- attaches the task returned from detach_one_task() to
8021  * its new rq.
8022  */
8023 static void attach_one_task(struct rq *rq, struct task_struct *p)
8024 {
8025 	struct rq_flags rf;
8026 
8027 	rq_lock(rq, &rf);
8028 	update_rq_clock(rq);
8029 	attach_task(rq, p);
8030 	rq_unlock(rq, &rf);
8031 }
8032 
8033 /*
8034  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8035  * new rq.
8036  */
8037 static void attach_tasks(struct lb_env *env)
8038 {
8039 	struct list_head *tasks = &env->tasks;
8040 	struct task_struct *p;
8041 	struct rq_flags rf;
8042 
8043 	rq_lock(env->dst_rq, &rf);
8044 	update_rq_clock(env->dst_rq);
8045 
8046 	while (!list_empty(tasks)) {
8047 		p = list_first_entry(tasks, struct task_struct, se.group_node);
8048 		list_del_init(&p->se.group_node);
8049 
8050 		attach_task(env->dst_rq, p);
8051 	}
8052 
8053 	rq_unlock(env->dst_rq, &rf);
8054 }
8055 
8056 #ifdef CONFIG_NO_HZ_COMMON
8057 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8058 {
8059 	if (cfs_rq->avg.load_avg)
8060 		return true;
8061 
8062 	if (cfs_rq->avg.util_avg)
8063 		return true;
8064 
8065 	return false;
8066 }
8067 
8068 static inline bool others_have_blocked(struct rq *rq)
8069 {
8070 	if (READ_ONCE(rq->avg_rt.util_avg))
8071 		return true;
8072 
8073 	if (READ_ONCE(rq->avg_dl.util_avg))
8074 		return true;
8075 
8076 	if (thermal_load_avg(rq))
8077 		return true;
8078 
8079 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8080 	if (READ_ONCE(rq->avg_irq.util_avg))
8081 		return true;
8082 #endif
8083 
8084 	return false;
8085 }
8086 
8087 static inline void update_blocked_load_tick(struct rq *rq)
8088 {
8089 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8090 }
8091 
8092 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8093 {
8094 	if (!has_blocked)
8095 		rq->has_blocked_load = 0;
8096 }
8097 #else
8098 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8099 static inline bool others_have_blocked(struct rq *rq) { return false; }
8100 static inline void update_blocked_load_tick(struct rq *rq) {}
8101 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8102 #endif
8103 
8104 static bool __update_blocked_others(struct rq *rq, bool *done)
8105 {
8106 	const struct sched_class *curr_class;
8107 	u64 now = rq_clock_pelt(rq);
8108 	unsigned long thermal_pressure;
8109 	bool decayed;
8110 
8111 	/*
8112 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8113 	 * DL and IRQ signals have been updated before updating CFS.
8114 	 */
8115 	curr_class = rq->curr->sched_class;
8116 
8117 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8118 
8119 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8120 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8121 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8122 		  update_irq_load_avg(rq, 0);
8123 
8124 	if (others_have_blocked(rq))
8125 		*done = false;
8126 
8127 	return decayed;
8128 }
8129 
8130 #ifdef CONFIG_FAIR_GROUP_SCHED
8131 
8132 static bool __update_blocked_fair(struct rq *rq, bool *done)
8133 {
8134 	struct cfs_rq *cfs_rq, *pos;
8135 	bool decayed = false;
8136 	int cpu = cpu_of(rq);
8137 
8138 	/*
8139 	 * Iterates the task_group tree in a bottom up fashion, see
8140 	 * list_add_leaf_cfs_rq() for details.
8141 	 */
8142 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8143 		struct sched_entity *se;
8144 
8145 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8146 			update_tg_load_avg(cfs_rq);
8147 
8148 			if (cfs_rq == &rq->cfs)
8149 				decayed = true;
8150 		}
8151 
8152 		/* Propagate pending load changes to the parent, if any: */
8153 		se = cfs_rq->tg->se[cpu];
8154 		if (se && !skip_blocked_update(se))
8155 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8156 
8157 		/*
8158 		 * There can be a lot of idle CPU cgroups.  Don't let fully
8159 		 * decayed cfs_rqs linger on the list.
8160 		 */
8161 		if (cfs_rq_is_decayed(cfs_rq))
8162 			list_del_leaf_cfs_rq(cfs_rq);
8163 
8164 		/* Don't need periodic decay once load/util_avg are null */
8165 		if (cfs_rq_has_blocked(cfs_rq))
8166 			*done = false;
8167 	}
8168 
8169 	return decayed;
8170 }
8171 
8172 /*
8173  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8174  * This needs to be done in a top-down fashion because the load of a child
8175  * group is a fraction of its parents load.
8176  */
8177 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8178 {
8179 	struct rq *rq = rq_of(cfs_rq);
8180 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8181 	unsigned long now = jiffies;
8182 	unsigned long load;
8183 
8184 	if (cfs_rq->last_h_load_update == now)
8185 		return;
8186 
8187 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
8188 	for_each_sched_entity(se) {
8189 		cfs_rq = cfs_rq_of(se);
8190 		WRITE_ONCE(cfs_rq->h_load_next, se);
8191 		if (cfs_rq->last_h_load_update == now)
8192 			break;
8193 	}
8194 
8195 	if (!se) {
8196 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8197 		cfs_rq->last_h_load_update = now;
8198 	}
8199 
8200 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8201 		load = cfs_rq->h_load;
8202 		load = div64_ul(load * se->avg.load_avg,
8203 			cfs_rq_load_avg(cfs_rq) + 1);
8204 		cfs_rq = group_cfs_rq(se);
8205 		cfs_rq->h_load = load;
8206 		cfs_rq->last_h_load_update = now;
8207 	}
8208 }
8209 
8210 static unsigned long task_h_load(struct task_struct *p)
8211 {
8212 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
8213 
8214 	update_cfs_rq_h_load(cfs_rq);
8215 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8216 			cfs_rq_load_avg(cfs_rq) + 1);
8217 }
8218 #else
8219 static bool __update_blocked_fair(struct rq *rq, bool *done)
8220 {
8221 	struct cfs_rq *cfs_rq = &rq->cfs;
8222 	bool decayed;
8223 
8224 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8225 	if (cfs_rq_has_blocked(cfs_rq))
8226 		*done = false;
8227 
8228 	return decayed;
8229 }
8230 
8231 static unsigned long task_h_load(struct task_struct *p)
8232 {
8233 	return p->se.avg.load_avg;
8234 }
8235 #endif
8236 
8237 static void update_blocked_averages(int cpu)
8238 {
8239 	bool decayed = false, done = true;
8240 	struct rq *rq = cpu_rq(cpu);
8241 	struct rq_flags rf;
8242 
8243 	rq_lock_irqsave(rq, &rf);
8244 	update_blocked_load_tick(rq);
8245 	update_rq_clock(rq);
8246 
8247 	decayed |= __update_blocked_others(rq, &done);
8248 	decayed |= __update_blocked_fair(rq, &done);
8249 
8250 	update_blocked_load_status(rq, !done);
8251 	if (decayed)
8252 		cpufreq_update_util(rq, 0);
8253 	rq_unlock_irqrestore(rq, &rf);
8254 }
8255 
8256 /********** Helpers for find_busiest_group ************************/
8257 
8258 /*
8259  * sg_lb_stats - stats of a sched_group required for load_balancing
8260  */
8261 struct sg_lb_stats {
8262 	unsigned long avg_load; /*Avg load across the CPUs of the group */
8263 	unsigned long group_load; /* Total load over the CPUs of the group */
8264 	unsigned long group_capacity;
8265 	unsigned long group_util; /* Total utilization over the CPUs of the group */
8266 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8267 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
8268 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8269 	unsigned int idle_cpus;
8270 	unsigned int group_weight;
8271 	enum group_type group_type;
8272 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8273 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8274 #ifdef CONFIG_NUMA_BALANCING
8275 	unsigned int nr_numa_running;
8276 	unsigned int nr_preferred_running;
8277 #endif
8278 };
8279 
8280 /*
8281  * sd_lb_stats - Structure to store the statistics of a sched_domain
8282  *		 during load balancing.
8283  */
8284 struct sd_lb_stats {
8285 	struct sched_group *busiest;	/* Busiest group in this sd */
8286 	struct sched_group *local;	/* Local group in this sd */
8287 	unsigned long total_load;	/* Total load of all groups in sd */
8288 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
8289 	unsigned long avg_load;	/* Average load across all groups in sd */
8290 	unsigned int prefer_sibling; /* tasks should go to sibling first */
8291 
8292 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8293 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
8294 };
8295 
8296 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8297 {
8298 	/*
8299 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8300 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8301 	 * We must however set busiest_stat::group_type and
8302 	 * busiest_stat::idle_cpus to the worst busiest group because
8303 	 * update_sd_pick_busiest() reads these before assignment.
8304 	 */
8305 	*sds = (struct sd_lb_stats){
8306 		.busiest = NULL,
8307 		.local = NULL,
8308 		.total_load = 0UL,
8309 		.total_capacity = 0UL,
8310 		.busiest_stat = {
8311 			.idle_cpus = UINT_MAX,
8312 			.group_type = group_has_spare,
8313 		},
8314 	};
8315 }
8316 
8317 static unsigned long scale_rt_capacity(int cpu)
8318 {
8319 	struct rq *rq = cpu_rq(cpu);
8320 	unsigned long max = arch_scale_cpu_capacity(cpu);
8321 	unsigned long used, free;
8322 	unsigned long irq;
8323 
8324 	irq = cpu_util_irq(rq);
8325 
8326 	if (unlikely(irq >= max))
8327 		return 1;
8328 
8329 	/*
8330 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8331 	 * (running and not running) with weights 0 and 1024 respectively.
8332 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
8333 	 * average uses the actual delta max capacity(load).
8334 	 */
8335 	used = READ_ONCE(rq->avg_rt.util_avg);
8336 	used += READ_ONCE(rq->avg_dl.util_avg);
8337 	used += thermal_load_avg(rq);
8338 
8339 	if (unlikely(used >= max))
8340 		return 1;
8341 
8342 	free = max - used;
8343 
8344 	return scale_irq_capacity(free, irq, max);
8345 }
8346 
8347 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8348 {
8349 	unsigned long capacity = scale_rt_capacity(cpu);
8350 	struct sched_group *sdg = sd->groups;
8351 
8352 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8353 
8354 	if (!capacity)
8355 		capacity = 1;
8356 
8357 	cpu_rq(cpu)->cpu_capacity = capacity;
8358 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8359 
8360 	sdg->sgc->capacity = capacity;
8361 	sdg->sgc->min_capacity = capacity;
8362 	sdg->sgc->max_capacity = capacity;
8363 }
8364 
8365 void update_group_capacity(struct sched_domain *sd, int cpu)
8366 {
8367 	struct sched_domain *child = sd->child;
8368 	struct sched_group *group, *sdg = sd->groups;
8369 	unsigned long capacity, min_capacity, max_capacity;
8370 	unsigned long interval;
8371 
8372 	interval = msecs_to_jiffies(sd->balance_interval);
8373 	interval = clamp(interval, 1UL, max_load_balance_interval);
8374 	sdg->sgc->next_update = jiffies + interval;
8375 
8376 	if (!child) {
8377 		update_cpu_capacity(sd, cpu);
8378 		return;
8379 	}
8380 
8381 	capacity = 0;
8382 	min_capacity = ULONG_MAX;
8383 	max_capacity = 0;
8384 
8385 	if (child->flags & SD_OVERLAP) {
8386 		/*
8387 		 * SD_OVERLAP domains cannot assume that child groups
8388 		 * span the current group.
8389 		 */
8390 
8391 		for_each_cpu(cpu, sched_group_span(sdg)) {
8392 			unsigned long cpu_cap = capacity_of(cpu);
8393 
8394 			capacity += cpu_cap;
8395 			min_capacity = min(cpu_cap, min_capacity);
8396 			max_capacity = max(cpu_cap, max_capacity);
8397 		}
8398 	} else  {
8399 		/*
8400 		 * !SD_OVERLAP domains can assume that child groups
8401 		 * span the current group.
8402 		 */
8403 
8404 		group = child->groups;
8405 		do {
8406 			struct sched_group_capacity *sgc = group->sgc;
8407 
8408 			capacity += sgc->capacity;
8409 			min_capacity = min(sgc->min_capacity, min_capacity);
8410 			max_capacity = max(sgc->max_capacity, max_capacity);
8411 			group = group->next;
8412 		} while (group != child->groups);
8413 	}
8414 
8415 	sdg->sgc->capacity = capacity;
8416 	sdg->sgc->min_capacity = min_capacity;
8417 	sdg->sgc->max_capacity = max_capacity;
8418 }
8419 
8420 /*
8421  * Check whether the capacity of the rq has been noticeably reduced by side
8422  * activity. The imbalance_pct is used for the threshold.
8423  * Return true is the capacity is reduced
8424  */
8425 static inline int
8426 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8427 {
8428 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8429 				(rq->cpu_capacity_orig * 100));
8430 }
8431 
8432 /*
8433  * Check whether a rq has a misfit task and if it looks like we can actually
8434  * help that task: we can migrate the task to a CPU of higher capacity, or
8435  * the task's current CPU is heavily pressured.
8436  */
8437 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8438 {
8439 	return rq->misfit_task_load &&
8440 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8441 		 check_cpu_capacity(rq, sd));
8442 }
8443 
8444 /*
8445  * Group imbalance indicates (and tries to solve) the problem where balancing
8446  * groups is inadequate due to ->cpus_ptr constraints.
8447  *
8448  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8449  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8450  * Something like:
8451  *
8452  *	{ 0 1 2 3 } { 4 5 6 7 }
8453  *	        *     * * *
8454  *
8455  * If we were to balance group-wise we'd place two tasks in the first group and
8456  * two tasks in the second group. Clearly this is undesired as it will overload
8457  * cpu 3 and leave one of the CPUs in the second group unused.
8458  *
8459  * The current solution to this issue is detecting the skew in the first group
8460  * by noticing the lower domain failed to reach balance and had difficulty
8461  * moving tasks due to affinity constraints.
8462  *
8463  * When this is so detected; this group becomes a candidate for busiest; see
8464  * update_sd_pick_busiest(). And calculate_imbalance() and
8465  * find_busiest_group() avoid some of the usual balance conditions to allow it
8466  * to create an effective group imbalance.
8467  *
8468  * This is a somewhat tricky proposition since the next run might not find the
8469  * group imbalance and decide the groups need to be balanced again. A most
8470  * subtle and fragile situation.
8471  */
8472 
8473 static inline int sg_imbalanced(struct sched_group *group)
8474 {
8475 	return group->sgc->imbalance;
8476 }
8477 
8478 /*
8479  * group_has_capacity returns true if the group has spare capacity that could
8480  * be used by some tasks.
8481  * We consider that a group has spare capacity if the  * number of task is
8482  * smaller than the number of CPUs or if the utilization is lower than the
8483  * available capacity for CFS tasks.
8484  * For the latter, we use a threshold to stabilize the state, to take into
8485  * account the variance of the tasks' load and to return true if the available
8486  * capacity in meaningful for the load balancer.
8487  * As an example, an available capacity of 1% can appear but it doesn't make
8488  * any benefit for the load balance.
8489  */
8490 static inline bool
8491 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8492 {
8493 	if (sgs->sum_nr_running < sgs->group_weight)
8494 		return true;
8495 
8496 	if ((sgs->group_capacity * imbalance_pct) <
8497 			(sgs->group_runnable * 100))
8498 		return false;
8499 
8500 	if ((sgs->group_capacity * 100) >
8501 			(sgs->group_util * imbalance_pct))
8502 		return true;
8503 
8504 	return false;
8505 }
8506 
8507 /*
8508  *  group_is_overloaded returns true if the group has more tasks than it can
8509  *  handle.
8510  *  group_is_overloaded is not equals to !group_has_capacity because a group
8511  *  with the exact right number of tasks, has no more spare capacity but is not
8512  *  overloaded so both group_has_capacity and group_is_overloaded return
8513  *  false.
8514  */
8515 static inline bool
8516 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8517 {
8518 	if (sgs->sum_nr_running <= sgs->group_weight)
8519 		return false;
8520 
8521 	if ((sgs->group_capacity * 100) <
8522 			(sgs->group_util * imbalance_pct))
8523 		return true;
8524 
8525 	if ((sgs->group_capacity * imbalance_pct) <
8526 			(sgs->group_runnable * 100))
8527 		return true;
8528 
8529 	return false;
8530 }
8531 
8532 static inline enum
8533 group_type group_classify(unsigned int imbalance_pct,
8534 			  struct sched_group *group,
8535 			  struct sg_lb_stats *sgs)
8536 {
8537 	if (group_is_overloaded(imbalance_pct, sgs))
8538 		return group_overloaded;
8539 
8540 	if (sg_imbalanced(group))
8541 		return group_imbalanced;
8542 
8543 	if (sgs->group_asym_packing)
8544 		return group_asym_packing;
8545 
8546 	if (sgs->group_misfit_task_load)
8547 		return group_misfit_task;
8548 
8549 	if (!group_has_capacity(imbalance_pct, sgs))
8550 		return group_fully_busy;
8551 
8552 	return group_has_spare;
8553 }
8554 
8555 /**
8556  * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks
8557  * @dst_cpu:	Destination CPU of the load balancing
8558  * @sds:	Load-balancing data with statistics of the local group
8559  * @sgs:	Load-balancing statistics of the candidate busiest group
8560  * @sg:		The candidate busiest group
8561  *
8562  * Check the state of the SMT siblings of both @sds::local and @sg and decide
8563  * if @dst_cpu can pull tasks.
8564  *
8565  * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of
8566  * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks
8567  * only if @dst_cpu has higher priority.
8568  *
8569  * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more
8570  * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority.
8571  * Bigger imbalances in the number of busy CPUs will be dealt with in
8572  * update_sd_pick_busiest().
8573  *
8574  * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings
8575  * of @dst_cpu are idle and @sg has lower priority.
8576  *
8577  * Return: true if @dst_cpu can pull tasks, false otherwise.
8578  */
8579 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds,
8580 				    struct sg_lb_stats *sgs,
8581 				    struct sched_group *sg)
8582 {
8583 #ifdef CONFIG_SCHED_SMT
8584 	bool local_is_smt, sg_is_smt;
8585 	int sg_busy_cpus;
8586 
8587 	local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY;
8588 	sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY;
8589 
8590 	sg_busy_cpus = sgs->group_weight - sgs->idle_cpus;
8591 
8592 	if (!local_is_smt) {
8593 		/*
8594 		 * If we are here, @dst_cpu is idle and does not have SMT
8595 		 * siblings. Pull tasks if candidate group has two or more
8596 		 * busy CPUs.
8597 		 */
8598 		if (sg_busy_cpus >= 2) /* implies sg_is_smt */
8599 			return true;
8600 
8601 		/*
8602 		 * @dst_cpu does not have SMT siblings. @sg may have SMT
8603 		 * siblings and only one is busy. In such case, @dst_cpu
8604 		 * can help if it has higher priority and is idle (i.e.,
8605 		 * it has no running tasks).
8606 		 */
8607 		return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8608 	}
8609 
8610 	/* @dst_cpu has SMT siblings. */
8611 
8612 	if (sg_is_smt) {
8613 		int local_busy_cpus = sds->local->group_weight -
8614 				      sds->local_stat.idle_cpus;
8615 		int busy_cpus_delta = sg_busy_cpus - local_busy_cpus;
8616 
8617 		if (busy_cpus_delta == 1)
8618 			return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8619 
8620 		return false;
8621 	}
8622 
8623 	/*
8624 	 * @sg does not have SMT siblings. Ensure that @sds::local does not end
8625 	 * up with more than one busy SMT sibling and only pull tasks if there
8626 	 * are not busy CPUs (i.e., no CPU has running tasks).
8627 	 */
8628 	if (!sds->local_stat.sum_nr_running)
8629 		return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8630 
8631 	return false;
8632 #else
8633 	/* Always return false so that callers deal with non-SMT cases. */
8634 	return false;
8635 #endif
8636 }
8637 
8638 static inline bool
8639 sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
8640 	   struct sched_group *group)
8641 {
8642 	/* Only do SMT checks if either local or candidate have SMT siblings */
8643 	if ((sds->local->flags & SD_SHARE_CPUCAPACITY) ||
8644 	    (group->flags & SD_SHARE_CPUCAPACITY))
8645 		return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group);
8646 
8647 	return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
8648 }
8649 
8650 /**
8651  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8652  * @env: The load balancing environment.
8653  * @sds: Load-balancing data with statistics of the local group.
8654  * @group: sched_group whose statistics are to be updated.
8655  * @sgs: variable to hold the statistics for this group.
8656  * @sg_status: Holds flag indicating the status of the sched_group
8657  */
8658 static inline void update_sg_lb_stats(struct lb_env *env,
8659 				      struct sd_lb_stats *sds,
8660 				      struct sched_group *group,
8661 				      struct sg_lb_stats *sgs,
8662 				      int *sg_status)
8663 {
8664 	int i, nr_running, local_group;
8665 
8666 	memset(sgs, 0, sizeof(*sgs));
8667 
8668 	local_group = group == sds->local;
8669 
8670 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8671 		struct rq *rq = cpu_rq(i);
8672 
8673 		sgs->group_load += cpu_load(rq);
8674 		sgs->group_util += cpu_util_cfs(i);
8675 		sgs->group_runnable += cpu_runnable(rq);
8676 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8677 
8678 		nr_running = rq->nr_running;
8679 		sgs->sum_nr_running += nr_running;
8680 
8681 		if (nr_running > 1)
8682 			*sg_status |= SG_OVERLOAD;
8683 
8684 		if (cpu_overutilized(i))
8685 			*sg_status |= SG_OVERUTILIZED;
8686 
8687 #ifdef CONFIG_NUMA_BALANCING
8688 		sgs->nr_numa_running += rq->nr_numa_running;
8689 		sgs->nr_preferred_running += rq->nr_preferred_running;
8690 #endif
8691 		/*
8692 		 * No need to call idle_cpu() if nr_running is not 0
8693 		 */
8694 		if (!nr_running && idle_cpu(i)) {
8695 			sgs->idle_cpus++;
8696 			/* Idle cpu can't have misfit task */
8697 			continue;
8698 		}
8699 
8700 		if (local_group)
8701 			continue;
8702 
8703 		/* Check for a misfit task on the cpu */
8704 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8705 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8706 			sgs->group_misfit_task_load = rq->misfit_task_load;
8707 			*sg_status |= SG_OVERLOAD;
8708 		}
8709 	}
8710 
8711 	sgs->group_capacity = group->sgc->capacity;
8712 
8713 	sgs->group_weight = group->group_weight;
8714 
8715 	/* Check if dst CPU is idle and preferred to this group */
8716 	if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
8717 	    env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
8718 	    sched_asym(env, sds, sgs, group)) {
8719 		sgs->group_asym_packing = 1;
8720 	}
8721 
8722 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8723 
8724 	/* Computing avg_load makes sense only when group is overloaded */
8725 	if (sgs->group_type == group_overloaded)
8726 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8727 				sgs->group_capacity;
8728 }
8729 
8730 /**
8731  * update_sd_pick_busiest - return 1 on busiest group
8732  * @env: The load balancing environment.
8733  * @sds: sched_domain statistics
8734  * @sg: sched_group candidate to be checked for being the busiest
8735  * @sgs: sched_group statistics
8736  *
8737  * Determine if @sg is a busier group than the previously selected
8738  * busiest group.
8739  *
8740  * Return: %true if @sg is a busier group than the previously selected
8741  * busiest group. %false otherwise.
8742  */
8743 static bool update_sd_pick_busiest(struct lb_env *env,
8744 				   struct sd_lb_stats *sds,
8745 				   struct sched_group *sg,
8746 				   struct sg_lb_stats *sgs)
8747 {
8748 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8749 
8750 	/* Make sure that there is at least one task to pull */
8751 	if (!sgs->sum_h_nr_running)
8752 		return false;
8753 
8754 	/*
8755 	 * Don't try to pull misfit tasks we can't help.
8756 	 * We can use max_capacity here as reduction in capacity on some
8757 	 * CPUs in the group should either be possible to resolve
8758 	 * internally or be covered by avg_load imbalance (eventually).
8759 	 */
8760 	if (sgs->group_type == group_misfit_task &&
8761 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
8762 	     sds->local_stat.group_type != group_has_spare))
8763 		return false;
8764 
8765 	if (sgs->group_type > busiest->group_type)
8766 		return true;
8767 
8768 	if (sgs->group_type < busiest->group_type)
8769 		return false;
8770 
8771 	/*
8772 	 * The candidate and the current busiest group are the same type of
8773 	 * group. Let check which one is the busiest according to the type.
8774 	 */
8775 
8776 	switch (sgs->group_type) {
8777 	case group_overloaded:
8778 		/* Select the overloaded group with highest avg_load. */
8779 		if (sgs->avg_load <= busiest->avg_load)
8780 			return false;
8781 		break;
8782 
8783 	case group_imbalanced:
8784 		/*
8785 		 * Select the 1st imbalanced group as we don't have any way to
8786 		 * choose one more than another.
8787 		 */
8788 		return false;
8789 
8790 	case group_asym_packing:
8791 		/* Prefer to move from lowest priority CPU's work */
8792 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8793 			return false;
8794 		break;
8795 
8796 	case group_misfit_task:
8797 		/*
8798 		 * If we have more than one misfit sg go with the biggest
8799 		 * misfit.
8800 		 */
8801 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8802 			return false;
8803 		break;
8804 
8805 	case group_fully_busy:
8806 		/*
8807 		 * Select the fully busy group with highest avg_load. In
8808 		 * theory, there is no need to pull task from such kind of
8809 		 * group because tasks have all compute capacity that they need
8810 		 * but we can still improve the overall throughput by reducing
8811 		 * contention when accessing shared HW resources.
8812 		 *
8813 		 * XXX for now avg_load is not computed and always 0 so we
8814 		 * select the 1st one.
8815 		 */
8816 		if (sgs->avg_load <= busiest->avg_load)
8817 			return false;
8818 		break;
8819 
8820 	case group_has_spare:
8821 		/*
8822 		 * Select not overloaded group with lowest number of idle cpus
8823 		 * and highest number of running tasks. We could also compare
8824 		 * the spare capacity which is more stable but it can end up
8825 		 * that the group has less spare capacity but finally more idle
8826 		 * CPUs which means less opportunity to pull tasks.
8827 		 */
8828 		if (sgs->idle_cpus > busiest->idle_cpus)
8829 			return false;
8830 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8831 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
8832 			return false;
8833 
8834 		break;
8835 	}
8836 
8837 	/*
8838 	 * Candidate sg has no more than one task per CPU and has higher
8839 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8840 	 * throughput. Maximize throughput, power/energy consequences are not
8841 	 * considered.
8842 	 */
8843 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8844 	    (sgs->group_type <= group_fully_busy) &&
8845 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
8846 		return false;
8847 
8848 	return true;
8849 }
8850 
8851 #ifdef CONFIG_NUMA_BALANCING
8852 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8853 {
8854 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8855 		return regular;
8856 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8857 		return remote;
8858 	return all;
8859 }
8860 
8861 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8862 {
8863 	if (rq->nr_running > rq->nr_numa_running)
8864 		return regular;
8865 	if (rq->nr_running > rq->nr_preferred_running)
8866 		return remote;
8867 	return all;
8868 }
8869 #else
8870 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8871 {
8872 	return all;
8873 }
8874 
8875 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8876 {
8877 	return regular;
8878 }
8879 #endif /* CONFIG_NUMA_BALANCING */
8880 
8881 
8882 struct sg_lb_stats;
8883 
8884 /*
8885  * task_running_on_cpu - return 1 if @p is running on @cpu.
8886  */
8887 
8888 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8889 {
8890 	/* Task has no contribution or is new */
8891 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8892 		return 0;
8893 
8894 	if (task_on_rq_queued(p))
8895 		return 1;
8896 
8897 	return 0;
8898 }
8899 
8900 /**
8901  * idle_cpu_without - would a given CPU be idle without p ?
8902  * @cpu: the processor on which idleness is tested.
8903  * @p: task which should be ignored.
8904  *
8905  * Return: 1 if the CPU would be idle. 0 otherwise.
8906  */
8907 static int idle_cpu_without(int cpu, struct task_struct *p)
8908 {
8909 	struct rq *rq = cpu_rq(cpu);
8910 
8911 	if (rq->curr != rq->idle && rq->curr != p)
8912 		return 0;
8913 
8914 	/*
8915 	 * rq->nr_running can't be used but an updated version without the
8916 	 * impact of p on cpu must be used instead. The updated nr_running
8917 	 * be computed and tested before calling idle_cpu_without().
8918 	 */
8919 
8920 #ifdef CONFIG_SMP
8921 	if (rq->ttwu_pending)
8922 		return 0;
8923 #endif
8924 
8925 	return 1;
8926 }
8927 
8928 /*
8929  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8930  * @sd: The sched_domain level to look for idlest group.
8931  * @group: sched_group whose statistics are to be updated.
8932  * @sgs: variable to hold the statistics for this group.
8933  * @p: The task for which we look for the idlest group/CPU.
8934  */
8935 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8936 					  struct sched_group *group,
8937 					  struct sg_lb_stats *sgs,
8938 					  struct task_struct *p)
8939 {
8940 	int i, nr_running;
8941 
8942 	memset(sgs, 0, sizeof(*sgs));
8943 
8944 	for_each_cpu(i, sched_group_span(group)) {
8945 		struct rq *rq = cpu_rq(i);
8946 		unsigned int local;
8947 
8948 		sgs->group_load += cpu_load_without(rq, p);
8949 		sgs->group_util += cpu_util_without(i, p);
8950 		sgs->group_runnable += cpu_runnable_without(rq, p);
8951 		local = task_running_on_cpu(i, p);
8952 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8953 
8954 		nr_running = rq->nr_running - local;
8955 		sgs->sum_nr_running += nr_running;
8956 
8957 		/*
8958 		 * No need to call idle_cpu_without() if nr_running is not 0
8959 		 */
8960 		if (!nr_running && idle_cpu_without(i, p))
8961 			sgs->idle_cpus++;
8962 
8963 	}
8964 
8965 	/* Check if task fits in the group */
8966 	if (sd->flags & SD_ASYM_CPUCAPACITY &&
8967 	    !task_fits_capacity(p, group->sgc->max_capacity)) {
8968 		sgs->group_misfit_task_load = 1;
8969 	}
8970 
8971 	sgs->group_capacity = group->sgc->capacity;
8972 
8973 	sgs->group_weight = group->group_weight;
8974 
8975 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8976 
8977 	/*
8978 	 * Computing avg_load makes sense only when group is fully busy or
8979 	 * overloaded
8980 	 */
8981 	if (sgs->group_type == group_fully_busy ||
8982 		sgs->group_type == group_overloaded)
8983 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8984 				sgs->group_capacity;
8985 }
8986 
8987 static bool update_pick_idlest(struct sched_group *idlest,
8988 			       struct sg_lb_stats *idlest_sgs,
8989 			       struct sched_group *group,
8990 			       struct sg_lb_stats *sgs)
8991 {
8992 	if (sgs->group_type < idlest_sgs->group_type)
8993 		return true;
8994 
8995 	if (sgs->group_type > idlest_sgs->group_type)
8996 		return false;
8997 
8998 	/*
8999 	 * The candidate and the current idlest group are the same type of
9000 	 * group. Let check which one is the idlest according to the type.
9001 	 */
9002 
9003 	switch (sgs->group_type) {
9004 	case group_overloaded:
9005 	case group_fully_busy:
9006 		/* Select the group with lowest avg_load. */
9007 		if (idlest_sgs->avg_load <= sgs->avg_load)
9008 			return false;
9009 		break;
9010 
9011 	case group_imbalanced:
9012 	case group_asym_packing:
9013 		/* Those types are not used in the slow wakeup path */
9014 		return false;
9015 
9016 	case group_misfit_task:
9017 		/* Select group with the highest max capacity */
9018 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
9019 			return false;
9020 		break;
9021 
9022 	case group_has_spare:
9023 		/* Select group with most idle CPUs */
9024 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
9025 			return false;
9026 
9027 		/* Select group with lowest group_util */
9028 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
9029 			idlest_sgs->group_util <= sgs->group_util)
9030 			return false;
9031 
9032 		break;
9033 	}
9034 
9035 	return true;
9036 }
9037 
9038 /*
9039  * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
9040  * This is an approximation as the number of running tasks may not be
9041  * related to the number of busy CPUs due to sched_setaffinity.
9042  */
9043 static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
9044 {
9045 	return (dst_running < (dst_weight >> 2));
9046 }
9047 
9048 /*
9049  * find_idlest_group() finds and returns the least busy CPU group within the
9050  * domain.
9051  *
9052  * Assumes p is allowed on at least one CPU in sd.
9053  */
9054 static struct sched_group *
9055 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9056 {
9057 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9058 	struct sg_lb_stats local_sgs, tmp_sgs;
9059 	struct sg_lb_stats *sgs;
9060 	unsigned long imbalance;
9061 	struct sg_lb_stats idlest_sgs = {
9062 			.avg_load = UINT_MAX,
9063 			.group_type = group_overloaded,
9064 	};
9065 
9066 	do {
9067 		int local_group;
9068 
9069 		/* Skip over this group if it has no CPUs allowed */
9070 		if (!cpumask_intersects(sched_group_span(group),
9071 					p->cpus_ptr))
9072 			continue;
9073 
9074 		/* Skip over this group if no cookie matched */
9075 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9076 			continue;
9077 
9078 		local_group = cpumask_test_cpu(this_cpu,
9079 					       sched_group_span(group));
9080 
9081 		if (local_group) {
9082 			sgs = &local_sgs;
9083 			local = group;
9084 		} else {
9085 			sgs = &tmp_sgs;
9086 		}
9087 
9088 		update_sg_wakeup_stats(sd, group, sgs, p);
9089 
9090 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9091 			idlest = group;
9092 			idlest_sgs = *sgs;
9093 		}
9094 
9095 	} while (group = group->next, group != sd->groups);
9096 
9097 
9098 	/* There is no idlest group to push tasks to */
9099 	if (!idlest)
9100 		return NULL;
9101 
9102 	/* The local group has been skipped because of CPU affinity */
9103 	if (!local)
9104 		return idlest;
9105 
9106 	/*
9107 	 * If the local group is idler than the selected idlest group
9108 	 * don't try and push the task.
9109 	 */
9110 	if (local_sgs.group_type < idlest_sgs.group_type)
9111 		return NULL;
9112 
9113 	/*
9114 	 * If the local group is busier than the selected idlest group
9115 	 * try and push the task.
9116 	 */
9117 	if (local_sgs.group_type > idlest_sgs.group_type)
9118 		return idlest;
9119 
9120 	switch (local_sgs.group_type) {
9121 	case group_overloaded:
9122 	case group_fully_busy:
9123 
9124 		/* Calculate allowed imbalance based on load */
9125 		imbalance = scale_load_down(NICE_0_LOAD) *
9126 				(sd->imbalance_pct-100) / 100;
9127 
9128 		/*
9129 		 * When comparing groups across NUMA domains, it's possible for
9130 		 * the local domain to be very lightly loaded relative to the
9131 		 * remote domains but "imbalance" skews the comparison making
9132 		 * remote CPUs look much more favourable. When considering
9133 		 * cross-domain, add imbalance to the load on the remote node
9134 		 * and consider staying local.
9135 		 */
9136 
9137 		if ((sd->flags & SD_NUMA) &&
9138 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9139 			return NULL;
9140 
9141 		/*
9142 		 * If the local group is less loaded than the selected
9143 		 * idlest group don't try and push any tasks.
9144 		 */
9145 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9146 			return NULL;
9147 
9148 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9149 			return NULL;
9150 		break;
9151 
9152 	case group_imbalanced:
9153 	case group_asym_packing:
9154 		/* Those type are not used in the slow wakeup path */
9155 		return NULL;
9156 
9157 	case group_misfit_task:
9158 		/* Select group with the highest max capacity */
9159 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9160 			return NULL;
9161 		break;
9162 
9163 	case group_has_spare:
9164 		if (sd->flags & SD_NUMA) {
9165 #ifdef CONFIG_NUMA_BALANCING
9166 			int idlest_cpu;
9167 			/*
9168 			 * If there is spare capacity at NUMA, try to select
9169 			 * the preferred node
9170 			 */
9171 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9172 				return NULL;
9173 
9174 			idlest_cpu = cpumask_first(sched_group_span(idlest));
9175 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9176 				return idlest;
9177 #endif
9178 			/*
9179 			 * Otherwise, keep the task on this node to stay close
9180 			 * its wakeup source and improve locality. If there is
9181 			 * a real need of migration, periodic load balance will
9182 			 * take care of it.
9183 			 */
9184 			if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
9185 				return NULL;
9186 		}
9187 
9188 		/*
9189 		 * Select group with highest number of idle CPUs. We could also
9190 		 * compare the utilization which is more stable but it can end
9191 		 * up that the group has less spare capacity but finally more
9192 		 * idle CPUs which means more opportunity to run task.
9193 		 */
9194 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9195 			return NULL;
9196 		break;
9197 	}
9198 
9199 	return idlest;
9200 }
9201 
9202 /**
9203  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9204  * @env: The load balancing environment.
9205  * @sds: variable to hold the statistics for this sched_domain.
9206  */
9207 
9208 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9209 {
9210 	struct sched_domain *child = env->sd->child;
9211 	struct sched_group *sg = env->sd->groups;
9212 	struct sg_lb_stats *local = &sds->local_stat;
9213 	struct sg_lb_stats tmp_sgs;
9214 	int sg_status = 0;
9215 
9216 	do {
9217 		struct sg_lb_stats *sgs = &tmp_sgs;
9218 		int local_group;
9219 
9220 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9221 		if (local_group) {
9222 			sds->local = sg;
9223 			sgs = local;
9224 
9225 			if (env->idle != CPU_NEWLY_IDLE ||
9226 			    time_after_eq(jiffies, sg->sgc->next_update))
9227 				update_group_capacity(env->sd, env->dst_cpu);
9228 		}
9229 
9230 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
9231 
9232 		if (local_group)
9233 			goto next_group;
9234 
9235 
9236 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9237 			sds->busiest = sg;
9238 			sds->busiest_stat = *sgs;
9239 		}
9240 
9241 next_group:
9242 		/* Now, start updating sd_lb_stats */
9243 		sds->total_load += sgs->group_load;
9244 		sds->total_capacity += sgs->group_capacity;
9245 
9246 		sg = sg->next;
9247 	} while (sg != env->sd->groups);
9248 
9249 	/* Tag domain that child domain prefers tasks go to siblings first */
9250 	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9251 
9252 
9253 	if (env->sd->flags & SD_NUMA)
9254 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9255 
9256 	if (!env->sd->parent) {
9257 		struct root_domain *rd = env->dst_rq->rd;
9258 
9259 		/* update overload indicator if we are at root domain */
9260 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9261 
9262 		/* Update over-utilization (tipping point, U >= 0) indicator */
9263 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9264 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9265 	} else if (sg_status & SG_OVERUTILIZED) {
9266 		struct root_domain *rd = env->dst_rq->rd;
9267 
9268 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9269 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9270 	}
9271 }
9272 
9273 #define NUMA_IMBALANCE_MIN 2
9274 
9275 static inline long adjust_numa_imbalance(int imbalance,
9276 				int dst_running, int dst_weight)
9277 {
9278 	if (!allow_numa_imbalance(dst_running, dst_weight))
9279 		return imbalance;
9280 
9281 	/*
9282 	 * Allow a small imbalance based on a simple pair of communicating
9283 	 * tasks that remain local when the destination is lightly loaded.
9284 	 */
9285 	if (imbalance <= NUMA_IMBALANCE_MIN)
9286 		return 0;
9287 
9288 	return imbalance;
9289 }
9290 
9291 /**
9292  * calculate_imbalance - Calculate the amount of imbalance present within the
9293  *			 groups of a given sched_domain during load balance.
9294  * @env: load balance environment
9295  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9296  */
9297 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9298 {
9299 	struct sg_lb_stats *local, *busiest;
9300 
9301 	local = &sds->local_stat;
9302 	busiest = &sds->busiest_stat;
9303 
9304 	if (busiest->group_type == group_misfit_task) {
9305 		/* Set imbalance to allow misfit tasks to be balanced. */
9306 		env->migration_type = migrate_misfit;
9307 		env->imbalance = 1;
9308 		return;
9309 	}
9310 
9311 	if (busiest->group_type == group_asym_packing) {
9312 		/*
9313 		 * In case of asym capacity, we will try to migrate all load to
9314 		 * the preferred CPU.
9315 		 */
9316 		env->migration_type = migrate_task;
9317 		env->imbalance = busiest->sum_h_nr_running;
9318 		return;
9319 	}
9320 
9321 	if (busiest->group_type == group_imbalanced) {
9322 		/*
9323 		 * In the group_imb case we cannot rely on group-wide averages
9324 		 * to ensure CPU-load equilibrium, try to move any task to fix
9325 		 * the imbalance. The next load balance will take care of
9326 		 * balancing back the system.
9327 		 */
9328 		env->migration_type = migrate_task;
9329 		env->imbalance = 1;
9330 		return;
9331 	}
9332 
9333 	/*
9334 	 * Try to use spare capacity of local group without overloading it or
9335 	 * emptying busiest.
9336 	 */
9337 	if (local->group_type == group_has_spare) {
9338 		if ((busiest->group_type > group_fully_busy) &&
9339 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9340 			/*
9341 			 * If busiest is overloaded, try to fill spare
9342 			 * capacity. This might end up creating spare capacity
9343 			 * in busiest or busiest still being overloaded but
9344 			 * there is no simple way to directly compute the
9345 			 * amount of load to migrate in order to balance the
9346 			 * system.
9347 			 */
9348 			env->migration_type = migrate_util;
9349 			env->imbalance = max(local->group_capacity, local->group_util) -
9350 					 local->group_util;
9351 
9352 			/*
9353 			 * In some cases, the group's utilization is max or even
9354 			 * higher than capacity because of migrations but the
9355 			 * local CPU is (newly) idle. There is at least one
9356 			 * waiting task in this overloaded busiest group. Let's
9357 			 * try to pull it.
9358 			 */
9359 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9360 				env->migration_type = migrate_task;
9361 				env->imbalance = 1;
9362 			}
9363 
9364 			return;
9365 		}
9366 
9367 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
9368 			unsigned int nr_diff = busiest->sum_nr_running;
9369 			/*
9370 			 * When prefer sibling, evenly spread running tasks on
9371 			 * groups.
9372 			 */
9373 			env->migration_type = migrate_task;
9374 			lsub_positive(&nr_diff, local->sum_nr_running);
9375 			env->imbalance = nr_diff >> 1;
9376 		} else {
9377 
9378 			/*
9379 			 * If there is no overload, we just want to even the number of
9380 			 * idle cpus.
9381 			 */
9382 			env->migration_type = migrate_task;
9383 			env->imbalance = max_t(long, 0, (local->idle_cpus -
9384 						 busiest->idle_cpus) >> 1);
9385 		}
9386 
9387 		/* Consider allowing a small imbalance between NUMA groups */
9388 		if (env->sd->flags & SD_NUMA) {
9389 			env->imbalance = adjust_numa_imbalance(env->imbalance,
9390 				busiest->sum_nr_running, busiest->group_weight);
9391 		}
9392 
9393 		return;
9394 	}
9395 
9396 	/*
9397 	 * Local is fully busy but has to take more load to relieve the
9398 	 * busiest group
9399 	 */
9400 	if (local->group_type < group_overloaded) {
9401 		/*
9402 		 * Local will become overloaded so the avg_load metrics are
9403 		 * finally needed.
9404 		 */
9405 
9406 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9407 				  local->group_capacity;
9408 
9409 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9410 				sds->total_capacity;
9411 		/*
9412 		 * If the local group is more loaded than the selected
9413 		 * busiest group don't try to pull any tasks.
9414 		 */
9415 		if (local->avg_load >= busiest->avg_load) {
9416 			env->imbalance = 0;
9417 			return;
9418 		}
9419 	}
9420 
9421 	/*
9422 	 * Both group are or will become overloaded and we're trying to get all
9423 	 * the CPUs to the average_load, so we don't want to push ourselves
9424 	 * above the average load, nor do we wish to reduce the max loaded CPU
9425 	 * below the average load. At the same time, we also don't want to
9426 	 * reduce the group load below the group capacity. Thus we look for
9427 	 * the minimum possible imbalance.
9428 	 */
9429 	env->migration_type = migrate_load;
9430 	env->imbalance = min(
9431 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9432 		(sds->avg_load - local->avg_load) * local->group_capacity
9433 	) / SCHED_CAPACITY_SCALE;
9434 }
9435 
9436 /******* find_busiest_group() helpers end here *********************/
9437 
9438 /*
9439  * Decision matrix according to the local and busiest group type:
9440  *
9441  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9442  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
9443  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
9444  * misfit_task      force     N/A        N/A    N/A  force      force
9445  * asym_packing     force     force      N/A    N/A  force      force
9446  * imbalanced       force     force      N/A    N/A  force      force
9447  * overloaded       force     force      N/A    N/A  force      avg_load
9448  *
9449  * N/A :      Not Applicable because already filtered while updating
9450  *            statistics.
9451  * balanced : The system is balanced for these 2 groups.
9452  * force :    Calculate the imbalance as load migration is probably needed.
9453  * avg_load : Only if imbalance is significant enough.
9454  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
9455  *            different in groups.
9456  */
9457 
9458 /**
9459  * find_busiest_group - Returns the busiest group within the sched_domain
9460  * if there is an imbalance.
9461  * @env: The load balancing environment.
9462  *
9463  * Also calculates the amount of runnable load which should be moved
9464  * to restore balance.
9465  *
9466  * Return:	- The busiest group if imbalance exists.
9467  */
9468 static struct sched_group *find_busiest_group(struct lb_env *env)
9469 {
9470 	struct sg_lb_stats *local, *busiest;
9471 	struct sd_lb_stats sds;
9472 
9473 	init_sd_lb_stats(&sds);
9474 
9475 	/*
9476 	 * Compute the various statistics relevant for load balancing at
9477 	 * this level.
9478 	 */
9479 	update_sd_lb_stats(env, &sds);
9480 
9481 	if (sched_energy_enabled()) {
9482 		struct root_domain *rd = env->dst_rq->rd;
9483 
9484 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9485 			goto out_balanced;
9486 	}
9487 
9488 	local = &sds.local_stat;
9489 	busiest = &sds.busiest_stat;
9490 
9491 	/* There is no busy sibling group to pull tasks from */
9492 	if (!sds.busiest)
9493 		goto out_balanced;
9494 
9495 	/* Misfit tasks should be dealt with regardless of the avg load */
9496 	if (busiest->group_type == group_misfit_task)
9497 		goto force_balance;
9498 
9499 	/* ASYM feature bypasses nice load balance check */
9500 	if (busiest->group_type == group_asym_packing)
9501 		goto force_balance;
9502 
9503 	/*
9504 	 * If the busiest group is imbalanced the below checks don't
9505 	 * work because they assume all things are equal, which typically
9506 	 * isn't true due to cpus_ptr constraints and the like.
9507 	 */
9508 	if (busiest->group_type == group_imbalanced)
9509 		goto force_balance;
9510 
9511 	/*
9512 	 * If the local group is busier than the selected busiest group
9513 	 * don't try and pull any tasks.
9514 	 */
9515 	if (local->group_type > busiest->group_type)
9516 		goto out_balanced;
9517 
9518 	/*
9519 	 * When groups are overloaded, use the avg_load to ensure fairness
9520 	 * between tasks.
9521 	 */
9522 	if (local->group_type == group_overloaded) {
9523 		/*
9524 		 * If the local group is more loaded than the selected
9525 		 * busiest group don't try to pull any tasks.
9526 		 */
9527 		if (local->avg_load >= busiest->avg_load)
9528 			goto out_balanced;
9529 
9530 		/* XXX broken for overlapping NUMA groups */
9531 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9532 				sds.total_capacity;
9533 
9534 		/*
9535 		 * Don't pull any tasks if this group is already above the
9536 		 * domain average load.
9537 		 */
9538 		if (local->avg_load >= sds.avg_load)
9539 			goto out_balanced;
9540 
9541 		/*
9542 		 * If the busiest group is more loaded, use imbalance_pct to be
9543 		 * conservative.
9544 		 */
9545 		if (100 * busiest->avg_load <=
9546 				env->sd->imbalance_pct * local->avg_load)
9547 			goto out_balanced;
9548 	}
9549 
9550 	/* Try to move all excess tasks to child's sibling domain */
9551 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
9552 	    busiest->sum_nr_running > local->sum_nr_running + 1)
9553 		goto force_balance;
9554 
9555 	if (busiest->group_type != group_overloaded) {
9556 		if (env->idle == CPU_NOT_IDLE)
9557 			/*
9558 			 * If the busiest group is not overloaded (and as a
9559 			 * result the local one too) but this CPU is already
9560 			 * busy, let another idle CPU try to pull task.
9561 			 */
9562 			goto out_balanced;
9563 
9564 		if (busiest->group_weight > 1 &&
9565 		    local->idle_cpus <= (busiest->idle_cpus + 1))
9566 			/*
9567 			 * If the busiest group is not overloaded
9568 			 * and there is no imbalance between this and busiest
9569 			 * group wrt idle CPUs, it is balanced. The imbalance
9570 			 * becomes significant if the diff is greater than 1
9571 			 * otherwise we might end up to just move the imbalance
9572 			 * on another group. Of course this applies only if
9573 			 * there is more than 1 CPU per group.
9574 			 */
9575 			goto out_balanced;
9576 
9577 		if (busiest->sum_h_nr_running == 1)
9578 			/*
9579 			 * busiest doesn't have any tasks waiting to run
9580 			 */
9581 			goto out_balanced;
9582 	}
9583 
9584 force_balance:
9585 	/* Looks like there is an imbalance. Compute it */
9586 	calculate_imbalance(env, &sds);
9587 	return env->imbalance ? sds.busiest : NULL;
9588 
9589 out_balanced:
9590 	env->imbalance = 0;
9591 	return NULL;
9592 }
9593 
9594 /*
9595  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9596  */
9597 static struct rq *find_busiest_queue(struct lb_env *env,
9598 				     struct sched_group *group)
9599 {
9600 	struct rq *busiest = NULL, *rq;
9601 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9602 	unsigned int busiest_nr = 0;
9603 	int i;
9604 
9605 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9606 		unsigned long capacity, load, util;
9607 		unsigned int nr_running;
9608 		enum fbq_type rt;
9609 
9610 		rq = cpu_rq(i);
9611 		rt = fbq_classify_rq(rq);
9612 
9613 		/*
9614 		 * We classify groups/runqueues into three groups:
9615 		 *  - regular: there are !numa tasks
9616 		 *  - remote:  there are numa tasks that run on the 'wrong' node
9617 		 *  - all:     there is no distinction
9618 		 *
9619 		 * In order to avoid migrating ideally placed numa tasks,
9620 		 * ignore those when there's better options.
9621 		 *
9622 		 * If we ignore the actual busiest queue to migrate another
9623 		 * task, the next balance pass can still reduce the busiest
9624 		 * queue by moving tasks around inside the node.
9625 		 *
9626 		 * If we cannot move enough load due to this classification
9627 		 * the next pass will adjust the group classification and
9628 		 * allow migration of more tasks.
9629 		 *
9630 		 * Both cases only affect the total convergence complexity.
9631 		 */
9632 		if (rt > env->fbq_type)
9633 			continue;
9634 
9635 		nr_running = rq->cfs.h_nr_running;
9636 		if (!nr_running)
9637 			continue;
9638 
9639 		capacity = capacity_of(i);
9640 
9641 		/*
9642 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9643 		 * eventually lead to active_balancing high->low capacity.
9644 		 * Higher per-CPU capacity is considered better than balancing
9645 		 * average load.
9646 		 */
9647 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9648 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
9649 		    nr_running == 1)
9650 			continue;
9651 
9652 		/* Make sure we only pull tasks from a CPU of lower priority */
9653 		if ((env->sd->flags & SD_ASYM_PACKING) &&
9654 		    sched_asym_prefer(i, env->dst_cpu) &&
9655 		    nr_running == 1)
9656 			continue;
9657 
9658 		switch (env->migration_type) {
9659 		case migrate_load:
9660 			/*
9661 			 * When comparing with load imbalance, use cpu_load()
9662 			 * which is not scaled with the CPU capacity.
9663 			 */
9664 			load = cpu_load(rq);
9665 
9666 			if (nr_running == 1 && load > env->imbalance &&
9667 			    !check_cpu_capacity(rq, env->sd))
9668 				break;
9669 
9670 			/*
9671 			 * For the load comparisons with the other CPUs,
9672 			 * consider the cpu_load() scaled with the CPU
9673 			 * capacity, so that the load can be moved away
9674 			 * from the CPU that is potentially running at a
9675 			 * lower capacity.
9676 			 *
9677 			 * Thus we're looking for max(load_i / capacity_i),
9678 			 * crosswise multiplication to rid ourselves of the
9679 			 * division works out to:
9680 			 * load_i * capacity_j > load_j * capacity_i;
9681 			 * where j is our previous maximum.
9682 			 */
9683 			if (load * busiest_capacity > busiest_load * capacity) {
9684 				busiest_load = load;
9685 				busiest_capacity = capacity;
9686 				busiest = rq;
9687 			}
9688 			break;
9689 
9690 		case migrate_util:
9691 			util = cpu_util_cfs(i);
9692 
9693 			/*
9694 			 * Don't try to pull utilization from a CPU with one
9695 			 * running task. Whatever its utilization, we will fail
9696 			 * detach the task.
9697 			 */
9698 			if (nr_running <= 1)
9699 				continue;
9700 
9701 			if (busiest_util < util) {
9702 				busiest_util = util;
9703 				busiest = rq;
9704 			}
9705 			break;
9706 
9707 		case migrate_task:
9708 			if (busiest_nr < nr_running) {
9709 				busiest_nr = nr_running;
9710 				busiest = rq;
9711 			}
9712 			break;
9713 
9714 		case migrate_misfit:
9715 			/*
9716 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
9717 			 * simply seek the "biggest" misfit task.
9718 			 */
9719 			if (rq->misfit_task_load > busiest_load) {
9720 				busiest_load = rq->misfit_task_load;
9721 				busiest = rq;
9722 			}
9723 
9724 			break;
9725 
9726 		}
9727 	}
9728 
9729 	return busiest;
9730 }
9731 
9732 /*
9733  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9734  * so long as it is large enough.
9735  */
9736 #define MAX_PINNED_INTERVAL	512
9737 
9738 static inline bool
9739 asym_active_balance(struct lb_env *env)
9740 {
9741 	/*
9742 	 * ASYM_PACKING needs to force migrate tasks from busy but
9743 	 * lower priority CPUs in order to pack all tasks in the
9744 	 * highest priority CPUs.
9745 	 */
9746 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9747 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
9748 }
9749 
9750 static inline bool
9751 imbalanced_active_balance(struct lb_env *env)
9752 {
9753 	struct sched_domain *sd = env->sd;
9754 
9755 	/*
9756 	 * The imbalanced case includes the case of pinned tasks preventing a fair
9757 	 * distribution of the load on the system but also the even distribution of the
9758 	 * threads on a system with spare capacity
9759 	 */
9760 	if ((env->migration_type == migrate_task) &&
9761 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
9762 		return 1;
9763 
9764 	return 0;
9765 }
9766 
9767 static int need_active_balance(struct lb_env *env)
9768 {
9769 	struct sched_domain *sd = env->sd;
9770 
9771 	if (asym_active_balance(env))
9772 		return 1;
9773 
9774 	if (imbalanced_active_balance(env))
9775 		return 1;
9776 
9777 	/*
9778 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9779 	 * It's worth migrating the task if the src_cpu's capacity is reduced
9780 	 * because of other sched_class or IRQs if more capacity stays
9781 	 * available on dst_cpu.
9782 	 */
9783 	if ((env->idle != CPU_NOT_IDLE) &&
9784 	    (env->src_rq->cfs.h_nr_running == 1)) {
9785 		if ((check_cpu_capacity(env->src_rq, sd)) &&
9786 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9787 			return 1;
9788 	}
9789 
9790 	if (env->migration_type == migrate_misfit)
9791 		return 1;
9792 
9793 	return 0;
9794 }
9795 
9796 static int active_load_balance_cpu_stop(void *data);
9797 
9798 static int should_we_balance(struct lb_env *env)
9799 {
9800 	struct sched_group *sg = env->sd->groups;
9801 	int cpu;
9802 
9803 	/*
9804 	 * Ensure the balancing environment is consistent; can happen
9805 	 * when the softirq triggers 'during' hotplug.
9806 	 */
9807 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9808 		return 0;
9809 
9810 	/*
9811 	 * In the newly idle case, we will allow all the CPUs
9812 	 * to do the newly idle load balance.
9813 	 */
9814 	if (env->idle == CPU_NEWLY_IDLE)
9815 		return 1;
9816 
9817 	/* Try to find first idle CPU */
9818 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9819 		if (!idle_cpu(cpu))
9820 			continue;
9821 
9822 		/* Are we the first idle CPU? */
9823 		return cpu == env->dst_cpu;
9824 	}
9825 
9826 	/* Are we the first CPU of this group ? */
9827 	return group_balance_cpu(sg) == env->dst_cpu;
9828 }
9829 
9830 /*
9831  * Check this_cpu to ensure it is balanced within domain. Attempt to move
9832  * tasks if there is an imbalance.
9833  */
9834 static int load_balance(int this_cpu, struct rq *this_rq,
9835 			struct sched_domain *sd, enum cpu_idle_type idle,
9836 			int *continue_balancing)
9837 {
9838 	int ld_moved, cur_ld_moved, active_balance = 0;
9839 	struct sched_domain *sd_parent = sd->parent;
9840 	struct sched_group *group;
9841 	struct rq *busiest;
9842 	struct rq_flags rf;
9843 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9844 
9845 	struct lb_env env = {
9846 		.sd		= sd,
9847 		.dst_cpu	= this_cpu,
9848 		.dst_rq		= this_rq,
9849 		.dst_grpmask    = sched_group_span(sd->groups),
9850 		.idle		= idle,
9851 		.loop_break	= sched_nr_migrate_break,
9852 		.cpus		= cpus,
9853 		.fbq_type	= all,
9854 		.tasks		= LIST_HEAD_INIT(env.tasks),
9855 	};
9856 
9857 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9858 
9859 	schedstat_inc(sd->lb_count[idle]);
9860 
9861 redo:
9862 	if (!should_we_balance(&env)) {
9863 		*continue_balancing = 0;
9864 		goto out_balanced;
9865 	}
9866 
9867 	group = find_busiest_group(&env);
9868 	if (!group) {
9869 		schedstat_inc(sd->lb_nobusyg[idle]);
9870 		goto out_balanced;
9871 	}
9872 
9873 	busiest = find_busiest_queue(&env, group);
9874 	if (!busiest) {
9875 		schedstat_inc(sd->lb_nobusyq[idle]);
9876 		goto out_balanced;
9877 	}
9878 
9879 	BUG_ON(busiest == env.dst_rq);
9880 
9881 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9882 
9883 	env.src_cpu = busiest->cpu;
9884 	env.src_rq = busiest;
9885 
9886 	ld_moved = 0;
9887 	/* Clear this flag as soon as we find a pullable task */
9888 	env.flags |= LBF_ALL_PINNED;
9889 	if (busiest->nr_running > 1) {
9890 		/*
9891 		 * Attempt to move tasks. If find_busiest_group has found
9892 		 * an imbalance but busiest->nr_running <= 1, the group is
9893 		 * still unbalanced. ld_moved simply stays zero, so it is
9894 		 * correctly treated as an imbalance.
9895 		 */
9896 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
9897 
9898 more_balance:
9899 		rq_lock_irqsave(busiest, &rf);
9900 		update_rq_clock(busiest);
9901 
9902 		/*
9903 		 * cur_ld_moved - load moved in current iteration
9904 		 * ld_moved     - cumulative load moved across iterations
9905 		 */
9906 		cur_ld_moved = detach_tasks(&env);
9907 
9908 		/*
9909 		 * We've detached some tasks from busiest_rq. Every
9910 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9911 		 * unlock busiest->lock, and we are able to be sure
9912 		 * that nobody can manipulate the tasks in parallel.
9913 		 * See task_rq_lock() family for the details.
9914 		 */
9915 
9916 		rq_unlock(busiest, &rf);
9917 
9918 		if (cur_ld_moved) {
9919 			attach_tasks(&env);
9920 			ld_moved += cur_ld_moved;
9921 		}
9922 
9923 		local_irq_restore(rf.flags);
9924 
9925 		if (env.flags & LBF_NEED_BREAK) {
9926 			env.flags &= ~LBF_NEED_BREAK;
9927 			goto more_balance;
9928 		}
9929 
9930 		/*
9931 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9932 		 * us and move them to an alternate dst_cpu in our sched_group
9933 		 * where they can run. The upper limit on how many times we
9934 		 * iterate on same src_cpu is dependent on number of CPUs in our
9935 		 * sched_group.
9936 		 *
9937 		 * This changes load balance semantics a bit on who can move
9938 		 * load to a given_cpu. In addition to the given_cpu itself
9939 		 * (or a ilb_cpu acting on its behalf where given_cpu is
9940 		 * nohz-idle), we now have balance_cpu in a position to move
9941 		 * load to given_cpu. In rare situations, this may cause
9942 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9943 		 * _independently_ and at _same_ time to move some load to
9944 		 * given_cpu) causing excess load to be moved to given_cpu.
9945 		 * This however should not happen so much in practice and
9946 		 * moreover subsequent load balance cycles should correct the
9947 		 * excess load moved.
9948 		 */
9949 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9950 
9951 			/* Prevent to re-select dst_cpu via env's CPUs */
9952 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
9953 
9954 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
9955 			env.dst_cpu	 = env.new_dst_cpu;
9956 			env.flags	&= ~LBF_DST_PINNED;
9957 			env.loop	 = 0;
9958 			env.loop_break	 = sched_nr_migrate_break;
9959 
9960 			/*
9961 			 * Go back to "more_balance" rather than "redo" since we
9962 			 * need to continue with same src_cpu.
9963 			 */
9964 			goto more_balance;
9965 		}
9966 
9967 		/*
9968 		 * We failed to reach balance because of affinity.
9969 		 */
9970 		if (sd_parent) {
9971 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9972 
9973 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9974 				*group_imbalance = 1;
9975 		}
9976 
9977 		/* All tasks on this runqueue were pinned by CPU affinity */
9978 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
9979 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
9980 			/*
9981 			 * Attempting to continue load balancing at the current
9982 			 * sched_domain level only makes sense if there are
9983 			 * active CPUs remaining as possible busiest CPUs to
9984 			 * pull load from which are not contained within the
9985 			 * destination group that is receiving any migrated
9986 			 * load.
9987 			 */
9988 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
9989 				env.loop = 0;
9990 				env.loop_break = sched_nr_migrate_break;
9991 				goto redo;
9992 			}
9993 			goto out_all_pinned;
9994 		}
9995 	}
9996 
9997 	if (!ld_moved) {
9998 		schedstat_inc(sd->lb_failed[idle]);
9999 		/*
10000 		 * Increment the failure counter only on periodic balance.
10001 		 * We do not want newidle balance, which can be very
10002 		 * frequent, pollute the failure counter causing
10003 		 * excessive cache_hot migrations and active balances.
10004 		 */
10005 		if (idle != CPU_NEWLY_IDLE)
10006 			sd->nr_balance_failed++;
10007 
10008 		if (need_active_balance(&env)) {
10009 			unsigned long flags;
10010 
10011 			raw_spin_rq_lock_irqsave(busiest, flags);
10012 
10013 			/*
10014 			 * Don't kick the active_load_balance_cpu_stop,
10015 			 * if the curr task on busiest CPU can't be
10016 			 * moved to this_cpu:
10017 			 */
10018 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
10019 				raw_spin_rq_unlock_irqrestore(busiest, flags);
10020 				goto out_one_pinned;
10021 			}
10022 
10023 			/* Record that we found at least one task that could run on this_cpu */
10024 			env.flags &= ~LBF_ALL_PINNED;
10025 
10026 			/*
10027 			 * ->active_balance synchronizes accesses to
10028 			 * ->active_balance_work.  Once set, it's cleared
10029 			 * only after active load balance is finished.
10030 			 */
10031 			if (!busiest->active_balance) {
10032 				busiest->active_balance = 1;
10033 				busiest->push_cpu = this_cpu;
10034 				active_balance = 1;
10035 			}
10036 			raw_spin_rq_unlock_irqrestore(busiest, flags);
10037 
10038 			if (active_balance) {
10039 				stop_one_cpu_nowait(cpu_of(busiest),
10040 					active_load_balance_cpu_stop, busiest,
10041 					&busiest->active_balance_work);
10042 			}
10043 		}
10044 	} else {
10045 		sd->nr_balance_failed = 0;
10046 	}
10047 
10048 	if (likely(!active_balance) || need_active_balance(&env)) {
10049 		/* We were unbalanced, so reset the balancing interval */
10050 		sd->balance_interval = sd->min_interval;
10051 	}
10052 
10053 	goto out;
10054 
10055 out_balanced:
10056 	/*
10057 	 * We reach balance although we may have faced some affinity
10058 	 * constraints. Clear the imbalance flag only if other tasks got
10059 	 * a chance to move and fix the imbalance.
10060 	 */
10061 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10062 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10063 
10064 		if (*group_imbalance)
10065 			*group_imbalance = 0;
10066 	}
10067 
10068 out_all_pinned:
10069 	/*
10070 	 * We reach balance because all tasks are pinned at this level so
10071 	 * we can't migrate them. Let the imbalance flag set so parent level
10072 	 * can try to migrate them.
10073 	 */
10074 	schedstat_inc(sd->lb_balanced[idle]);
10075 
10076 	sd->nr_balance_failed = 0;
10077 
10078 out_one_pinned:
10079 	ld_moved = 0;
10080 
10081 	/*
10082 	 * newidle_balance() disregards balance intervals, so we could
10083 	 * repeatedly reach this code, which would lead to balance_interval
10084 	 * skyrocketing in a short amount of time. Skip the balance_interval
10085 	 * increase logic to avoid that.
10086 	 */
10087 	if (env.idle == CPU_NEWLY_IDLE)
10088 		goto out;
10089 
10090 	/* tune up the balancing interval */
10091 	if ((env.flags & LBF_ALL_PINNED &&
10092 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
10093 	    sd->balance_interval < sd->max_interval)
10094 		sd->balance_interval *= 2;
10095 out:
10096 	return ld_moved;
10097 }
10098 
10099 static inline unsigned long
10100 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10101 {
10102 	unsigned long interval = sd->balance_interval;
10103 
10104 	if (cpu_busy)
10105 		interval *= sd->busy_factor;
10106 
10107 	/* scale ms to jiffies */
10108 	interval = msecs_to_jiffies(interval);
10109 
10110 	/*
10111 	 * Reduce likelihood of busy balancing at higher domains racing with
10112 	 * balancing at lower domains by preventing their balancing periods
10113 	 * from being multiples of each other.
10114 	 */
10115 	if (cpu_busy)
10116 		interval -= 1;
10117 
10118 	interval = clamp(interval, 1UL, max_load_balance_interval);
10119 
10120 	return interval;
10121 }
10122 
10123 static inline void
10124 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10125 {
10126 	unsigned long interval, next;
10127 
10128 	/* used by idle balance, so cpu_busy = 0 */
10129 	interval = get_sd_balance_interval(sd, 0);
10130 	next = sd->last_balance + interval;
10131 
10132 	if (time_after(*next_balance, next))
10133 		*next_balance = next;
10134 }
10135 
10136 /*
10137  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10138  * running tasks off the busiest CPU onto idle CPUs. It requires at
10139  * least 1 task to be running on each physical CPU where possible, and
10140  * avoids physical / logical imbalances.
10141  */
10142 static int active_load_balance_cpu_stop(void *data)
10143 {
10144 	struct rq *busiest_rq = data;
10145 	int busiest_cpu = cpu_of(busiest_rq);
10146 	int target_cpu = busiest_rq->push_cpu;
10147 	struct rq *target_rq = cpu_rq(target_cpu);
10148 	struct sched_domain *sd;
10149 	struct task_struct *p = NULL;
10150 	struct rq_flags rf;
10151 
10152 	rq_lock_irq(busiest_rq, &rf);
10153 	/*
10154 	 * Between queueing the stop-work and running it is a hole in which
10155 	 * CPUs can become inactive. We should not move tasks from or to
10156 	 * inactive CPUs.
10157 	 */
10158 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10159 		goto out_unlock;
10160 
10161 	/* Make sure the requested CPU hasn't gone down in the meantime: */
10162 	if (unlikely(busiest_cpu != smp_processor_id() ||
10163 		     !busiest_rq->active_balance))
10164 		goto out_unlock;
10165 
10166 	/* Is there any task to move? */
10167 	if (busiest_rq->nr_running <= 1)
10168 		goto out_unlock;
10169 
10170 	/*
10171 	 * This condition is "impossible", if it occurs
10172 	 * we need to fix it. Originally reported by
10173 	 * Bjorn Helgaas on a 128-CPU setup.
10174 	 */
10175 	BUG_ON(busiest_rq == target_rq);
10176 
10177 	/* Search for an sd spanning us and the target CPU. */
10178 	rcu_read_lock();
10179 	for_each_domain(target_cpu, sd) {
10180 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10181 			break;
10182 	}
10183 
10184 	if (likely(sd)) {
10185 		struct lb_env env = {
10186 			.sd		= sd,
10187 			.dst_cpu	= target_cpu,
10188 			.dst_rq		= target_rq,
10189 			.src_cpu	= busiest_rq->cpu,
10190 			.src_rq		= busiest_rq,
10191 			.idle		= CPU_IDLE,
10192 			.flags		= LBF_ACTIVE_LB,
10193 		};
10194 
10195 		schedstat_inc(sd->alb_count);
10196 		update_rq_clock(busiest_rq);
10197 
10198 		p = detach_one_task(&env);
10199 		if (p) {
10200 			schedstat_inc(sd->alb_pushed);
10201 			/* Active balancing done, reset the failure counter. */
10202 			sd->nr_balance_failed = 0;
10203 		} else {
10204 			schedstat_inc(sd->alb_failed);
10205 		}
10206 	}
10207 	rcu_read_unlock();
10208 out_unlock:
10209 	busiest_rq->active_balance = 0;
10210 	rq_unlock(busiest_rq, &rf);
10211 
10212 	if (p)
10213 		attach_one_task(target_rq, p);
10214 
10215 	local_irq_enable();
10216 
10217 	return 0;
10218 }
10219 
10220 static DEFINE_SPINLOCK(balancing);
10221 
10222 /*
10223  * Scale the max load_balance interval with the number of CPUs in the system.
10224  * This trades load-balance latency on larger machines for less cross talk.
10225  */
10226 void update_max_interval(void)
10227 {
10228 	max_load_balance_interval = HZ*num_online_cpus()/10;
10229 }
10230 
10231 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
10232 {
10233 	if (cost > sd->max_newidle_lb_cost) {
10234 		/*
10235 		 * Track max cost of a domain to make sure to not delay the
10236 		 * next wakeup on the CPU.
10237 		 */
10238 		sd->max_newidle_lb_cost = cost;
10239 		sd->last_decay_max_lb_cost = jiffies;
10240 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
10241 		/*
10242 		 * Decay the newidle max times by ~1% per second to ensure that
10243 		 * it is not outdated and the current max cost is actually
10244 		 * shorter.
10245 		 */
10246 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
10247 		sd->last_decay_max_lb_cost = jiffies;
10248 
10249 		return true;
10250 	}
10251 
10252 	return false;
10253 }
10254 
10255 /*
10256  * It checks each scheduling domain to see if it is due to be balanced,
10257  * and initiates a balancing operation if so.
10258  *
10259  * Balancing parameters are set up in init_sched_domains.
10260  */
10261 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10262 {
10263 	int continue_balancing = 1;
10264 	int cpu = rq->cpu;
10265 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10266 	unsigned long interval;
10267 	struct sched_domain *sd;
10268 	/* Earliest time when we have to do rebalance again */
10269 	unsigned long next_balance = jiffies + 60*HZ;
10270 	int update_next_balance = 0;
10271 	int need_serialize, need_decay = 0;
10272 	u64 max_cost = 0;
10273 
10274 	rcu_read_lock();
10275 	for_each_domain(cpu, sd) {
10276 		/*
10277 		 * Decay the newidle max times here because this is a regular
10278 		 * visit to all the domains.
10279 		 */
10280 		need_decay = update_newidle_cost(sd, 0);
10281 		max_cost += sd->max_newidle_lb_cost;
10282 
10283 		/*
10284 		 * Stop the load balance at this level. There is another
10285 		 * CPU in our sched group which is doing load balancing more
10286 		 * actively.
10287 		 */
10288 		if (!continue_balancing) {
10289 			if (need_decay)
10290 				continue;
10291 			break;
10292 		}
10293 
10294 		interval = get_sd_balance_interval(sd, busy);
10295 
10296 		need_serialize = sd->flags & SD_SERIALIZE;
10297 		if (need_serialize) {
10298 			if (!spin_trylock(&balancing))
10299 				goto out;
10300 		}
10301 
10302 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
10303 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10304 				/*
10305 				 * The LBF_DST_PINNED logic could have changed
10306 				 * env->dst_cpu, so we can't know our idle
10307 				 * state even if we migrated tasks. Update it.
10308 				 */
10309 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10310 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10311 			}
10312 			sd->last_balance = jiffies;
10313 			interval = get_sd_balance_interval(sd, busy);
10314 		}
10315 		if (need_serialize)
10316 			spin_unlock(&balancing);
10317 out:
10318 		if (time_after(next_balance, sd->last_balance + interval)) {
10319 			next_balance = sd->last_balance + interval;
10320 			update_next_balance = 1;
10321 		}
10322 	}
10323 	if (need_decay) {
10324 		/*
10325 		 * Ensure the rq-wide value also decays but keep it at a
10326 		 * reasonable floor to avoid funnies with rq->avg_idle.
10327 		 */
10328 		rq->max_idle_balance_cost =
10329 			max((u64)sysctl_sched_migration_cost, max_cost);
10330 	}
10331 	rcu_read_unlock();
10332 
10333 	/*
10334 	 * next_balance will be updated only when there is a need.
10335 	 * When the cpu is attached to null domain for ex, it will not be
10336 	 * updated.
10337 	 */
10338 	if (likely(update_next_balance))
10339 		rq->next_balance = next_balance;
10340 
10341 }
10342 
10343 static inline int on_null_domain(struct rq *rq)
10344 {
10345 	return unlikely(!rcu_dereference_sched(rq->sd));
10346 }
10347 
10348 #ifdef CONFIG_NO_HZ_COMMON
10349 /*
10350  * idle load balancing details
10351  * - When one of the busy CPUs notice that there may be an idle rebalancing
10352  *   needed, they will kick the idle load balancer, which then does idle
10353  *   load balancing for all the idle CPUs.
10354  * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10355  *   anywhere yet.
10356  */
10357 
10358 static inline int find_new_ilb(void)
10359 {
10360 	int ilb;
10361 	const struct cpumask *hk_mask;
10362 
10363 	hk_mask = housekeeping_cpumask(HK_FLAG_MISC);
10364 
10365 	for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
10366 
10367 		if (ilb == smp_processor_id())
10368 			continue;
10369 
10370 		if (idle_cpu(ilb))
10371 			return ilb;
10372 	}
10373 
10374 	return nr_cpu_ids;
10375 }
10376 
10377 /*
10378  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10379  * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10380  */
10381 static void kick_ilb(unsigned int flags)
10382 {
10383 	int ilb_cpu;
10384 
10385 	/*
10386 	 * Increase nohz.next_balance only when if full ilb is triggered but
10387 	 * not if we only update stats.
10388 	 */
10389 	if (flags & NOHZ_BALANCE_KICK)
10390 		nohz.next_balance = jiffies+1;
10391 
10392 	ilb_cpu = find_new_ilb();
10393 
10394 	if (ilb_cpu >= nr_cpu_ids)
10395 		return;
10396 
10397 	/*
10398 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10399 	 * the first flag owns it; cleared by nohz_csd_func().
10400 	 */
10401 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10402 	if (flags & NOHZ_KICK_MASK)
10403 		return;
10404 
10405 	/*
10406 	 * This way we generate an IPI on the target CPU which
10407 	 * is idle. And the softirq performing nohz idle load balance
10408 	 * will be run before returning from the IPI.
10409 	 */
10410 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10411 }
10412 
10413 /*
10414  * Current decision point for kicking the idle load balancer in the presence
10415  * of idle CPUs in the system.
10416  */
10417 static void nohz_balancer_kick(struct rq *rq)
10418 {
10419 	unsigned long now = jiffies;
10420 	struct sched_domain_shared *sds;
10421 	struct sched_domain *sd;
10422 	int nr_busy, i, cpu = rq->cpu;
10423 	unsigned int flags = 0;
10424 
10425 	if (unlikely(rq->idle_balance))
10426 		return;
10427 
10428 	/*
10429 	 * We may be recently in ticked or tickless idle mode. At the first
10430 	 * busy tick after returning from idle, we will update the busy stats.
10431 	 */
10432 	nohz_balance_exit_idle(rq);
10433 
10434 	/*
10435 	 * None are in tickless mode and hence no need for NOHZ idle load
10436 	 * balancing.
10437 	 */
10438 	if (likely(!atomic_read(&nohz.nr_cpus)))
10439 		return;
10440 
10441 	if (READ_ONCE(nohz.has_blocked) &&
10442 	    time_after(now, READ_ONCE(nohz.next_blocked)))
10443 		flags = NOHZ_STATS_KICK;
10444 
10445 	if (time_before(now, nohz.next_balance))
10446 		goto out;
10447 
10448 	if (rq->nr_running >= 2) {
10449 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10450 		goto out;
10451 	}
10452 
10453 	rcu_read_lock();
10454 
10455 	sd = rcu_dereference(rq->sd);
10456 	if (sd) {
10457 		/*
10458 		 * If there's a CFS task and the current CPU has reduced
10459 		 * capacity; kick the ILB to see if there's a better CPU to run
10460 		 * on.
10461 		 */
10462 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10463 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10464 			goto unlock;
10465 		}
10466 	}
10467 
10468 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10469 	if (sd) {
10470 		/*
10471 		 * When ASYM_PACKING; see if there's a more preferred CPU
10472 		 * currently idle; in which case, kick the ILB to move tasks
10473 		 * around.
10474 		 */
10475 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10476 			if (sched_asym_prefer(i, cpu)) {
10477 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10478 				goto unlock;
10479 			}
10480 		}
10481 	}
10482 
10483 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10484 	if (sd) {
10485 		/*
10486 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10487 		 * to run the misfit task on.
10488 		 */
10489 		if (check_misfit_status(rq, sd)) {
10490 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10491 			goto unlock;
10492 		}
10493 
10494 		/*
10495 		 * For asymmetric systems, we do not want to nicely balance
10496 		 * cache use, instead we want to embrace asymmetry and only
10497 		 * ensure tasks have enough CPU capacity.
10498 		 *
10499 		 * Skip the LLC logic because it's not relevant in that case.
10500 		 */
10501 		goto unlock;
10502 	}
10503 
10504 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10505 	if (sds) {
10506 		/*
10507 		 * If there is an imbalance between LLC domains (IOW we could
10508 		 * increase the overall cache use), we need some less-loaded LLC
10509 		 * domain to pull some load. Likewise, we may need to spread
10510 		 * load within the current LLC domain (e.g. packed SMT cores but
10511 		 * other CPUs are idle). We can't really know from here how busy
10512 		 * the others are - so just get a nohz balance going if it looks
10513 		 * like this LLC domain has tasks we could move.
10514 		 */
10515 		nr_busy = atomic_read(&sds->nr_busy_cpus);
10516 		if (nr_busy > 1) {
10517 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10518 			goto unlock;
10519 		}
10520 	}
10521 unlock:
10522 	rcu_read_unlock();
10523 out:
10524 	if (READ_ONCE(nohz.needs_update))
10525 		flags |= NOHZ_NEXT_KICK;
10526 
10527 	if (flags)
10528 		kick_ilb(flags);
10529 }
10530 
10531 static void set_cpu_sd_state_busy(int cpu)
10532 {
10533 	struct sched_domain *sd;
10534 
10535 	rcu_read_lock();
10536 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10537 
10538 	if (!sd || !sd->nohz_idle)
10539 		goto unlock;
10540 	sd->nohz_idle = 0;
10541 
10542 	atomic_inc(&sd->shared->nr_busy_cpus);
10543 unlock:
10544 	rcu_read_unlock();
10545 }
10546 
10547 void nohz_balance_exit_idle(struct rq *rq)
10548 {
10549 	SCHED_WARN_ON(rq != this_rq());
10550 
10551 	if (likely(!rq->nohz_tick_stopped))
10552 		return;
10553 
10554 	rq->nohz_tick_stopped = 0;
10555 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10556 	atomic_dec(&nohz.nr_cpus);
10557 
10558 	set_cpu_sd_state_busy(rq->cpu);
10559 }
10560 
10561 static void set_cpu_sd_state_idle(int cpu)
10562 {
10563 	struct sched_domain *sd;
10564 
10565 	rcu_read_lock();
10566 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10567 
10568 	if (!sd || sd->nohz_idle)
10569 		goto unlock;
10570 	sd->nohz_idle = 1;
10571 
10572 	atomic_dec(&sd->shared->nr_busy_cpus);
10573 unlock:
10574 	rcu_read_unlock();
10575 }
10576 
10577 /*
10578  * This routine will record that the CPU is going idle with tick stopped.
10579  * This info will be used in performing idle load balancing in the future.
10580  */
10581 void nohz_balance_enter_idle(int cpu)
10582 {
10583 	struct rq *rq = cpu_rq(cpu);
10584 
10585 	SCHED_WARN_ON(cpu != smp_processor_id());
10586 
10587 	/* If this CPU is going down, then nothing needs to be done: */
10588 	if (!cpu_active(cpu))
10589 		return;
10590 
10591 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
10592 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10593 		return;
10594 
10595 	/*
10596 	 * Can be set safely without rq->lock held
10597 	 * If a clear happens, it will have evaluated last additions because
10598 	 * rq->lock is held during the check and the clear
10599 	 */
10600 	rq->has_blocked_load = 1;
10601 
10602 	/*
10603 	 * The tick is still stopped but load could have been added in the
10604 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
10605 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10606 	 * of nohz.has_blocked can only happen after checking the new load
10607 	 */
10608 	if (rq->nohz_tick_stopped)
10609 		goto out;
10610 
10611 	/* If we're a completely isolated CPU, we don't play: */
10612 	if (on_null_domain(rq))
10613 		return;
10614 
10615 	rq->nohz_tick_stopped = 1;
10616 
10617 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10618 	atomic_inc(&nohz.nr_cpus);
10619 
10620 	/*
10621 	 * Ensures that if nohz_idle_balance() fails to observe our
10622 	 * @idle_cpus_mask store, it must observe the @has_blocked
10623 	 * and @needs_update stores.
10624 	 */
10625 	smp_mb__after_atomic();
10626 
10627 	set_cpu_sd_state_idle(cpu);
10628 
10629 	WRITE_ONCE(nohz.needs_update, 1);
10630 out:
10631 	/*
10632 	 * Each time a cpu enter idle, we assume that it has blocked load and
10633 	 * enable the periodic update of the load of idle cpus
10634 	 */
10635 	WRITE_ONCE(nohz.has_blocked, 1);
10636 }
10637 
10638 static bool update_nohz_stats(struct rq *rq)
10639 {
10640 	unsigned int cpu = rq->cpu;
10641 
10642 	if (!rq->has_blocked_load)
10643 		return false;
10644 
10645 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10646 		return false;
10647 
10648 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10649 		return true;
10650 
10651 	update_blocked_averages(cpu);
10652 
10653 	return rq->has_blocked_load;
10654 }
10655 
10656 /*
10657  * Internal function that runs load balance for all idle cpus. The load balance
10658  * can be a simple update of blocked load or a complete load balance with
10659  * tasks movement depending of flags.
10660  */
10661 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10662 			       enum cpu_idle_type idle)
10663 {
10664 	/* Earliest time when we have to do rebalance again */
10665 	unsigned long now = jiffies;
10666 	unsigned long next_balance = now + 60*HZ;
10667 	bool has_blocked_load = false;
10668 	int update_next_balance = 0;
10669 	int this_cpu = this_rq->cpu;
10670 	int balance_cpu;
10671 	struct rq *rq;
10672 
10673 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10674 
10675 	/*
10676 	 * We assume there will be no idle load after this update and clear
10677 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10678 	 * set the has_blocked flag and trigger another update of idle load.
10679 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10680 	 * setting the flag, we are sure to not clear the state and not
10681 	 * check the load of an idle cpu.
10682 	 *
10683 	 * Same applies to idle_cpus_mask vs needs_update.
10684 	 */
10685 	if (flags & NOHZ_STATS_KICK)
10686 		WRITE_ONCE(nohz.has_blocked, 0);
10687 	if (flags & NOHZ_NEXT_KICK)
10688 		WRITE_ONCE(nohz.needs_update, 0);
10689 
10690 	/*
10691 	 * Ensures that if we miss the CPU, we must see the has_blocked
10692 	 * store from nohz_balance_enter_idle().
10693 	 */
10694 	smp_mb();
10695 
10696 	/*
10697 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10698 	 * chance for other idle cpu to pull load.
10699 	 */
10700 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
10701 		if (!idle_cpu(balance_cpu))
10702 			continue;
10703 
10704 		/*
10705 		 * If this CPU gets work to do, stop the load balancing
10706 		 * work being done for other CPUs. Next load
10707 		 * balancing owner will pick it up.
10708 		 */
10709 		if (need_resched()) {
10710 			if (flags & NOHZ_STATS_KICK)
10711 				has_blocked_load = true;
10712 			if (flags & NOHZ_NEXT_KICK)
10713 				WRITE_ONCE(nohz.needs_update, 1);
10714 			goto abort;
10715 		}
10716 
10717 		rq = cpu_rq(balance_cpu);
10718 
10719 		if (flags & NOHZ_STATS_KICK)
10720 			has_blocked_load |= update_nohz_stats(rq);
10721 
10722 		/*
10723 		 * If time for next balance is due,
10724 		 * do the balance.
10725 		 */
10726 		if (time_after_eq(jiffies, rq->next_balance)) {
10727 			struct rq_flags rf;
10728 
10729 			rq_lock_irqsave(rq, &rf);
10730 			update_rq_clock(rq);
10731 			rq_unlock_irqrestore(rq, &rf);
10732 
10733 			if (flags & NOHZ_BALANCE_KICK)
10734 				rebalance_domains(rq, CPU_IDLE);
10735 		}
10736 
10737 		if (time_after(next_balance, rq->next_balance)) {
10738 			next_balance = rq->next_balance;
10739 			update_next_balance = 1;
10740 		}
10741 	}
10742 
10743 	/*
10744 	 * next_balance will be updated only when there is a need.
10745 	 * When the CPU is attached to null domain for ex, it will not be
10746 	 * updated.
10747 	 */
10748 	if (likely(update_next_balance))
10749 		nohz.next_balance = next_balance;
10750 
10751 	if (flags & NOHZ_STATS_KICK)
10752 		WRITE_ONCE(nohz.next_blocked,
10753 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10754 
10755 abort:
10756 	/* There is still blocked load, enable periodic update */
10757 	if (has_blocked_load)
10758 		WRITE_ONCE(nohz.has_blocked, 1);
10759 }
10760 
10761 /*
10762  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10763  * rebalancing for all the cpus for whom scheduler ticks are stopped.
10764  */
10765 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10766 {
10767 	unsigned int flags = this_rq->nohz_idle_balance;
10768 
10769 	if (!flags)
10770 		return false;
10771 
10772 	this_rq->nohz_idle_balance = 0;
10773 
10774 	if (idle != CPU_IDLE)
10775 		return false;
10776 
10777 	_nohz_idle_balance(this_rq, flags, idle);
10778 
10779 	return true;
10780 }
10781 
10782 /*
10783  * Check if we need to run the ILB for updating blocked load before entering
10784  * idle state.
10785  */
10786 void nohz_run_idle_balance(int cpu)
10787 {
10788 	unsigned int flags;
10789 
10790 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10791 
10792 	/*
10793 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10794 	 * (ie NOHZ_STATS_KICK set) and will do the same.
10795 	 */
10796 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10797 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10798 }
10799 
10800 static void nohz_newidle_balance(struct rq *this_rq)
10801 {
10802 	int this_cpu = this_rq->cpu;
10803 
10804 	/*
10805 	 * This CPU doesn't want to be disturbed by scheduler
10806 	 * housekeeping
10807 	 */
10808 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10809 		return;
10810 
10811 	/* Will wake up very soon. No time for doing anything else*/
10812 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
10813 		return;
10814 
10815 	/* Don't need to update blocked load of idle CPUs*/
10816 	if (!READ_ONCE(nohz.has_blocked) ||
10817 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10818 		return;
10819 
10820 	/*
10821 	 * Set the need to trigger ILB in order to update blocked load
10822 	 * before entering idle state.
10823 	 */
10824 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
10825 }
10826 
10827 #else /* !CONFIG_NO_HZ_COMMON */
10828 static inline void nohz_balancer_kick(struct rq *rq) { }
10829 
10830 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10831 {
10832 	return false;
10833 }
10834 
10835 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10836 #endif /* CONFIG_NO_HZ_COMMON */
10837 
10838 /*
10839  * newidle_balance is called by schedule() if this_cpu is about to become
10840  * idle. Attempts to pull tasks from other CPUs.
10841  *
10842  * Returns:
10843  *   < 0 - we released the lock and there are !fair tasks present
10844  *     0 - failed, no new tasks
10845  *   > 0 - success, new (fair) tasks present
10846  */
10847 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10848 {
10849 	unsigned long next_balance = jiffies + HZ;
10850 	int this_cpu = this_rq->cpu;
10851 	u64 t0, t1, curr_cost = 0;
10852 	struct sched_domain *sd;
10853 	int pulled_task = 0;
10854 
10855 	update_misfit_status(NULL, this_rq);
10856 
10857 	/*
10858 	 * There is a task waiting to run. No need to search for one.
10859 	 * Return 0; the task will be enqueued when switching to idle.
10860 	 */
10861 	if (this_rq->ttwu_pending)
10862 		return 0;
10863 
10864 	/*
10865 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
10866 	 * measure the duration of idle_balance() as idle time.
10867 	 */
10868 	this_rq->idle_stamp = rq_clock(this_rq);
10869 
10870 	/*
10871 	 * Do not pull tasks towards !active CPUs...
10872 	 */
10873 	if (!cpu_active(this_cpu))
10874 		return 0;
10875 
10876 	/*
10877 	 * This is OK, because current is on_cpu, which avoids it being picked
10878 	 * for load-balance and preemption/IRQs are still disabled avoiding
10879 	 * further scheduler activity on it and we're being very careful to
10880 	 * re-start the picking loop.
10881 	 */
10882 	rq_unpin_lock(this_rq, rf);
10883 
10884 	rcu_read_lock();
10885 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
10886 
10887 	if (!READ_ONCE(this_rq->rd->overload) ||
10888 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
10889 
10890 		if (sd)
10891 			update_next_balance(sd, &next_balance);
10892 		rcu_read_unlock();
10893 
10894 		goto out;
10895 	}
10896 	rcu_read_unlock();
10897 
10898 	raw_spin_rq_unlock(this_rq);
10899 
10900 	t0 = sched_clock_cpu(this_cpu);
10901 	update_blocked_averages(this_cpu);
10902 
10903 	rcu_read_lock();
10904 	for_each_domain(this_cpu, sd) {
10905 		int continue_balancing = 1;
10906 		u64 domain_cost;
10907 
10908 		update_next_balance(sd, &next_balance);
10909 
10910 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
10911 			break;
10912 
10913 		if (sd->flags & SD_BALANCE_NEWIDLE) {
10914 
10915 			pulled_task = load_balance(this_cpu, this_rq,
10916 						   sd, CPU_NEWLY_IDLE,
10917 						   &continue_balancing);
10918 
10919 			t1 = sched_clock_cpu(this_cpu);
10920 			domain_cost = t1 - t0;
10921 			update_newidle_cost(sd, domain_cost);
10922 
10923 			curr_cost += domain_cost;
10924 			t0 = t1;
10925 		}
10926 
10927 		/*
10928 		 * Stop searching for tasks to pull if there are
10929 		 * now runnable tasks on this rq.
10930 		 */
10931 		if (pulled_task || this_rq->nr_running > 0 ||
10932 		    this_rq->ttwu_pending)
10933 			break;
10934 	}
10935 	rcu_read_unlock();
10936 
10937 	raw_spin_rq_lock(this_rq);
10938 
10939 	if (curr_cost > this_rq->max_idle_balance_cost)
10940 		this_rq->max_idle_balance_cost = curr_cost;
10941 
10942 	/*
10943 	 * While browsing the domains, we released the rq lock, a task could
10944 	 * have been enqueued in the meantime. Since we're not going idle,
10945 	 * pretend we pulled a task.
10946 	 */
10947 	if (this_rq->cfs.h_nr_running && !pulled_task)
10948 		pulled_task = 1;
10949 
10950 	/* Is there a task of a high priority class? */
10951 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10952 		pulled_task = -1;
10953 
10954 out:
10955 	/* Move the next balance forward */
10956 	if (time_after(this_rq->next_balance, next_balance))
10957 		this_rq->next_balance = next_balance;
10958 
10959 	if (pulled_task)
10960 		this_rq->idle_stamp = 0;
10961 	else
10962 		nohz_newidle_balance(this_rq);
10963 
10964 	rq_repin_lock(this_rq, rf);
10965 
10966 	return pulled_task;
10967 }
10968 
10969 /*
10970  * run_rebalance_domains is triggered when needed from the scheduler tick.
10971  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10972  */
10973 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10974 {
10975 	struct rq *this_rq = this_rq();
10976 	enum cpu_idle_type idle = this_rq->idle_balance ?
10977 						CPU_IDLE : CPU_NOT_IDLE;
10978 
10979 	/*
10980 	 * If this CPU has a pending nohz_balance_kick, then do the
10981 	 * balancing on behalf of the other idle CPUs whose ticks are
10982 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10983 	 * give the idle CPUs a chance to load balance. Else we may
10984 	 * load balance only within the local sched_domain hierarchy
10985 	 * and abort nohz_idle_balance altogether if we pull some load.
10986 	 */
10987 	if (nohz_idle_balance(this_rq, idle))
10988 		return;
10989 
10990 	/* normal load balance */
10991 	update_blocked_averages(this_rq->cpu);
10992 	rebalance_domains(this_rq, idle);
10993 }
10994 
10995 /*
10996  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10997  */
10998 void trigger_load_balance(struct rq *rq)
10999 {
11000 	/*
11001 	 * Don't need to rebalance while attached to NULL domain or
11002 	 * runqueue CPU is not active
11003 	 */
11004 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
11005 		return;
11006 
11007 	if (time_after_eq(jiffies, rq->next_balance))
11008 		raise_softirq(SCHED_SOFTIRQ);
11009 
11010 	nohz_balancer_kick(rq);
11011 }
11012 
11013 static void rq_online_fair(struct rq *rq)
11014 {
11015 	update_sysctl();
11016 
11017 	update_runtime_enabled(rq);
11018 }
11019 
11020 static void rq_offline_fair(struct rq *rq)
11021 {
11022 	update_sysctl();
11023 
11024 	/* Ensure any throttled groups are reachable by pick_next_task */
11025 	unthrottle_offline_cfs_rqs(rq);
11026 }
11027 
11028 #endif /* CONFIG_SMP */
11029 
11030 #ifdef CONFIG_SCHED_CORE
11031 static inline bool
11032 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
11033 {
11034 	u64 slice = sched_slice(cfs_rq_of(se), se);
11035 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
11036 
11037 	return (rtime * min_nr_tasks > slice);
11038 }
11039 
11040 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
11041 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
11042 {
11043 	if (!sched_core_enabled(rq))
11044 		return;
11045 
11046 	/*
11047 	 * If runqueue has only one task which used up its slice and
11048 	 * if the sibling is forced idle, then trigger schedule to
11049 	 * give forced idle task a chance.
11050 	 *
11051 	 * sched_slice() considers only this active rq and it gets the
11052 	 * whole slice. But during force idle, we have siblings acting
11053 	 * like a single runqueue and hence we need to consider runnable
11054 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
11055 	 * go through the forced idle rq, but that would be a perf hit.
11056 	 * We can assume that the forced idle CPU has at least
11057 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
11058 	 * if we need to give up the CPU.
11059 	 */
11060 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
11061 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
11062 		resched_curr(rq);
11063 }
11064 
11065 /*
11066  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
11067  */
11068 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
11069 {
11070 	for_each_sched_entity(se) {
11071 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11072 
11073 		if (forceidle) {
11074 			if (cfs_rq->forceidle_seq == fi_seq)
11075 				break;
11076 			cfs_rq->forceidle_seq = fi_seq;
11077 		}
11078 
11079 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
11080 	}
11081 }
11082 
11083 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
11084 {
11085 	struct sched_entity *se = &p->se;
11086 
11087 	if (p->sched_class != &fair_sched_class)
11088 		return;
11089 
11090 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11091 }
11092 
11093 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
11094 {
11095 	struct rq *rq = task_rq(a);
11096 	struct sched_entity *sea = &a->se;
11097 	struct sched_entity *seb = &b->se;
11098 	struct cfs_rq *cfs_rqa;
11099 	struct cfs_rq *cfs_rqb;
11100 	s64 delta;
11101 
11102 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
11103 
11104 #ifdef CONFIG_FAIR_GROUP_SCHED
11105 	/*
11106 	 * Find an se in the hierarchy for tasks a and b, such that the se's
11107 	 * are immediate siblings.
11108 	 */
11109 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11110 		int sea_depth = sea->depth;
11111 		int seb_depth = seb->depth;
11112 
11113 		if (sea_depth >= seb_depth)
11114 			sea = parent_entity(sea);
11115 		if (sea_depth <= seb_depth)
11116 			seb = parent_entity(seb);
11117 	}
11118 
11119 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
11120 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
11121 
11122 	cfs_rqa = sea->cfs_rq;
11123 	cfs_rqb = seb->cfs_rq;
11124 #else
11125 	cfs_rqa = &task_rq(a)->cfs;
11126 	cfs_rqb = &task_rq(b)->cfs;
11127 #endif
11128 
11129 	/*
11130 	 * Find delta after normalizing se's vruntime with its cfs_rq's
11131 	 * min_vruntime_fi, which would have been updated in prior calls
11132 	 * to se_fi_update().
11133 	 */
11134 	delta = (s64)(sea->vruntime - seb->vruntime) +
11135 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
11136 
11137 	return delta > 0;
11138 }
11139 #else
11140 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
11141 #endif
11142 
11143 /*
11144  * scheduler tick hitting a task of our scheduling class.
11145  *
11146  * NOTE: This function can be called remotely by the tick offload that
11147  * goes along full dynticks. Therefore no local assumption can be made
11148  * and everything must be accessed through the @rq and @curr passed in
11149  * parameters.
11150  */
11151 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11152 {
11153 	struct cfs_rq *cfs_rq;
11154 	struct sched_entity *se = &curr->se;
11155 
11156 	for_each_sched_entity(se) {
11157 		cfs_rq = cfs_rq_of(se);
11158 		entity_tick(cfs_rq, se, queued);
11159 	}
11160 
11161 	if (static_branch_unlikely(&sched_numa_balancing))
11162 		task_tick_numa(rq, curr);
11163 
11164 	update_misfit_status(curr, rq);
11165 	update_overutilized_status(task_rq(curr));
11166 
11167 	task_tick_core(rq, curr);
11168 }
11169 
11170 /*
11171  * called on fork with the child task as argument from the parent's context
11172  *  - child not yet on the tasklist
11173  *  - preemption disabled
11174  */
11175 static void task_fork_fair(struct task_struct *p)
11176 {
11177 	struct cfs_rq *cfs_rq;
11178 	struct sched_entity *se = &p->se, *curr;
11179 	struct rq *rq = this_rq();
11180 	struct rq_flags rf;
11181 
11182 	rq_lock(rq, &rf);
11183 	update_rq_clock(rq);
11184 
11185 	cfs_rq = task_cfs_rq(current);
11186 	curr = cfs_rq->curr;
11187 	if (curr) {
11188 		update_curr(cfs_rq);
11189 		se->vruntime = curr->vruntime;
11190 	}
11191 	place_entity(cfs_rq, se, 1);
11192 
11193 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11194 		/*
11195 		 * Upon rescheduling, sched_class::put_prev_task() will place
11196 		 * 'current' within the tree based on its new key value.
11197 		 */
11198 		swap(curr->vruntime, se->vruntime);
11199 		resched_curr(rq);
11200 	}
11201 
11202 	se->vruntime -= cfs_rq->min_vruntime;
11203 	rq_unlock(rq, &rf);
11204 }
11205 
11206 /*
11207  * Priority of the task has changed. Check to see if we preempt
11208  * the current task.
11209  */
11210 static void
11211 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11212 {
11213 	if (!task_on_rq_queued(p))
11214 		return;
11215 
11216 	if (rq->cfs.nr_running == 1)
11217 		return;
11218 
11219 	/*
11220 	 * Reschedule if we are currently running on this runqueue and
11221 	 * our priority decreased, or if we are not currently running on
11222 	 * this runqueue and our priority is higher than the current's
11223 	 */
11224 	if (task_current(rq, p)) {
11225 		if (p->prio > oldprio)
11226 			resched_curr(rq);
11227 	} else
11228 		check_preempt_curr(rq, p, 0);
11229 }
11230 
11231 static inline bool vruntime_normalized(struct task_struct *p)
11232 {
11233 	struct sched_entity *se = &p->se;
11234 
11235 	/*
11236 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11237 	 * the dequeue_entity(.flags=0) will already have normalized the
11238 	 * vruntime.
11239 	 */
11240 	if (p->on_rq)
11241 		return true;
11242 
11243 	/*
11244 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
11245 	 * But there are some cases where it has already been normalized:
11246 	 *
11247 	 * - A forked child which is waiting for being woken up by
11248 	 *   wake_up_new_task().
11249 	 * - A task which has been woken up by try_to_wake_up() and
11250 	 *   waiting for actually being woken up by sched_ttwu_pending().
11251 	 */
11252 	if (!se->sum_exec_runtime ||
11253 	    (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
11254 		return true;
11255 
11256 	return false;
11257 }
11258 
11259 #ifdef CONFIG_FAIR_GROUP_SCHED
11260 /*
11261  * Propagate the changes of the sched_entity across the tg tree to make it
11262  * visible to the root
11263  */
11264 static void propagate_entity_cfs_rq(struct sched_entity *se)
11265 {
11266 	struct cfs_rq *cfs_rq;
11267 
11268 	list_add_leaf_cfs_rq(cfs_rq_of(se));
11269 
11270 	/* Start to propagate at parent */
11271 	se = se->parent;
11272 
11273 	for_each_sched_entity(se) {
11274 		cfs_rq = cfs_rq_of(se);
11275 
11276 		if (!cfs_rq_throttled(cfs_rq)){
11277 			update_load_avg(cfs_rq, se, UPDATE_TG);
11278 			list_add_leaf_cfs_rq(cfs_rq);
11279 			continue;
11280 		}
11281 
11282 		if (list_add_leaf_cfs_rq(cfs_rq))
11283 			break;
11284 	}
11285 }
11286 #else
11287 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11288 #endif
11289 
11290 static void detach_entity_cfs_rq(struct sched_entity *se)
11291 {
11292 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11293 
11294 	/* Catch up with the cfs_rq and remove our load when we leave */
11295 	update_load_avg(cfs_rq, se, 0);
11296 	detach_entity_load_avg(cfs_rq, se);
11297 	update_tg_load_avg(cfs_rq);
11298 	propagate_entity_cfs_rq(se);
11299 }
11300 
11301 static void attach_entity_cfs_rq(struct sched_entity *se)
11302 {
11303 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11304 
11305 #ifdef CONFIG_FAIR_GROUP_SCHED
11306 	/*
11307 	 * Since the real-depth could have been changed (only FAIR
11308 	 * class maintain depth value), reset depth properly.
11309 	 */
11310 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11311 #endif
11312 
11313 	/* Synchronize entity with its cfs_rq */
11314 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11315 	attach_entity_load_avg(cfs_rq, se);
11316 	update_tg_load_avg(cfs_rq);
11317 	propagate_entity_cfs_rq(se);
11318 }
11319 
11320 static void detach_task_cfs_rq(struct task_struct *p)
11321 {
11322 	struct sched_entity *se = &p->se;
11323 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11324 
11325 	if (!vruntime_normalized(p)) {
11326 		/*
11327 		 * Fix up our vruntime so that the current sleep doesn't
11328 		 * cause 'unlimited' sleep bonus.
11329 		 */
11330 		place_entity(cfs_rq, se, 0);
11331 		se->vruntime -= cfs_rq->min_vruntime;
11332 	}
11333 
11334 	detach_entity_cfs_rq(se);
11335 }
11336 
11337 static void attach_task_cfs_rq(struct task_struct *p)
11338 {
11339 	struct sched_entity *se = &p->se;
11340 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11341 
11342 	attach_entity_cfs_rq(se);
11343 
11344 	if (!vruntime_normalized(p))
11345 		se->vruntime += cfs_rq->min_vruntime;
11346 }
11347 
11348 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11349 {
11350 	detach_task_cfs_rq(p);
11351 }
11352 
11353 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11354 {
11355 	attach_task_cfs_rq(p);
11356 
11357 	if (task_on_rq_queued(p)) {
11358 		/*
11359 		 * We were most likely switched from sched_rt, so
11360 		 * kick off the schedule if running, otherwise just see
11361 		 * if we can still preempt the current task.
11362 		 */
11363 		if (task_current(rq, p))
11364 			resched_curr(rq);
11365 		else
11366 			check_preempt_curr(rq, p, 0);
11367 	}
11368 }
11369 
11370 /* Account for a task changing its policy or group.
11371  *
11372  * This routine is mostly called to set cfs_rq->curr field when a task
11373  * migrates between groups/classes.
11374  */
11375 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11376 {
11377 	struct sched_entity *se = &p->se;
11378 
11379 #ifdef CONFIG_SMP
11380 	if (task_on_rq_queued(p)) {
11381 		/*
11382 		 * Move the next running task to the front of the list, so our
11383 		 * cfs_tasks list becomes MRU one.
11384 		 */
11385 		list_move(&se->group_node, &rq->cfs_tasks);
11386 	}
11387 #endif
11388 
11389 	for_each_sched_entity(se) {
11390 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11391 
11392 		set_next_entity(cfs_rq, se);
11393 		/* ensure bandwidth has been allocated on our new cfs_rq */
11394 		account_cfs_rq_runtime(cfs_rq, 0);
11395 	}
11396 }
11397 
11398 void init_cfs_rq(struct cfs_rq *cfs_rq)
11399 {
11400 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11401 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11402 #ifndef CONFIG_64BIT
11403 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11404 #endif
11405 #ifdef CONFIG_SMP
11406 	raw_spin_lock_init(&cfs_rq->removed.lock);
11407 #endif
11408 }
11409 
11410 #ifdef CONFIG_FAIR_GROUP_SCHED
11411 static void task_set_group_fair(struct task_struct *p)
11412 {
11413 	struct sched_entity *se = &p->se;
11414 
11415 	set_task_rq(p, task_cpu(p));
11416 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11417 }
11418 
11419 static void task_move_group_fair(struct task_struct *p)
11420 {
11421 	detach_task_cfs_rq(p);
11422 	set_task_rq(p, task_cpu(p));
11423 
11424 #ifdef CONFIG_SMP
11425 	/* Tell se's cfs_rq has been changed -- migrated */
11426 	p->se.avg.last_update_time = 0;
11427 #endif
11428 	attach_task_cfs_rq(p);
11429 }
11430 
11431 static void task_change_group_fair(struct task_struct *p, int type)
11432 {
11433 	switch (type) {
11434 	case TASK_SET_GROUP:
11435 		task_set_group_fair(p);
11436 		break;
11437 
11438 	case TASK_MOVE_GROUP:
11439 		task_move_group_fair(p);
11440 		break;
11441 	}
11442 }
11443 
11444 void free_fair_sched_group(struct task_group *tg)
11445 {
11446 	int i;
11447 
11448 	for_each_possible_cpu(i) {
11449 		if (tg->cfs_rq)
11450 			kfree(tg->cfs_rq[i]);
11451 		if (tg->se)
11452 			kfree(tg->se[i]);
11453 	}
11454 
11455 	kfree(tg->cfs_rq);
11456 	kfree(tg->se);
11457 }
11458 
11459 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11460 {
11461 	struct sched_entity *se;
11462 	struct cfs_rq *cfs_rq;
11463 	int i;
11464 
11465 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11466 	if (!tg->cfs_rq)
11467 		goto err;
11468 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11469 	if (!tg->se)
11470 		goto err;
11471 
11472 	tg->shares = NICE_0_LOAD;
11473 
11474 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11475 
11476 	for_each_possible_cpu(i) {
11477 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11478 				      GFP_KERNEL, cpu_to_node(i));
11479 		if (!cfs_rq)
11480 			goto err;
11481 
11482 		se = kzalloc_node(sizeof(struct sched_entity_stats),
11483 				  GFP_KERNEL, cpu_to_node(i));
11484 		if (!se)
11485 			goto err_free_rq;
11486 
11487 		init_cfs_rq(cfs_rq);
11488 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11489 		init_entity_runnable_average(se);
11490 	}
11491 
11492 	return 1;
11493 
11494 err_free_rq:
11495 	kfree(cfs_rq);
11496 err:
11497 	return 0;
11498 }
11499 
11500 void online_fair_sched_group(struct task_group *tg)
11501 {
11502 	struct sched_entity *se;
11503 	struct rq_flags rf;
11504 	struct rq *rq;
11505 	int i;
11506 
11507 	for_each_possible_cpu(i) {
11508 		rq = cpu_rq(i);
11509 		se = tg->se[i];
11510 		rq_lock_irq(rq, &rf);
11511 		update_rq_clock(rq);
11512 		attach_entity_cfs_rq(se);
11513 		sync_throttle(tg, i);
11514 		rq_unlock_irq(rq, &rf);
11515 	}
11516 }
11517 
11518 void unregister_fair_sched_group(struct task_group *tg)
11519 {
11520 	unsigned long flags;
11521 	struct rq *rq;
11522 	int cpu;
11523 
11524 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11525 
11526 	for_each_possible_cpu(cpu) {
11527 		if (tg->se[cpu])
11528 			remove_entity_load_avg(tg->se[cpu]);
11529 
11530 		/*
11531 		 * Only empty task groups can be destroyed; so we can speculatively
11532 		 * check on_list without danger of it being re-added.
11533 		 */
11534 		if (!tg->cfs_rq[cpu]->on_list)
11535 			continue;
11536 
11537 		rq = cpu_rq(cpu);
11538 
11539 		raw_spin_rq_lock_irqsave(rq, flags);
11540 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11541 		raw_spin_rq_unlock_irqrestore(rq, flags);
11542 	}
11543 }
11544 
11545 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11546 			struct sched_entity *se, int cpu,
11547 			struct sched_entity *parent)
11548 {
11549 	struct rq *rq = cpu_rq(cpu);
11550 
11551 	cfs_rq->tg = tg;
11552 	cfs_rq->rq = rq;
11553 	init_cfs_rq_runtime(cfs_rq);
11554 
11555 	tg->cfs_rq[cpu] = cfs_rq;
11556 	tg->se[cpu] = se;
11557 
11558 	/* se could be NULL for root_task_group */
11559 	if (!se)
11560 		return;
11561 
11562 	if (!parent) {
11563 		se->cfs_rq = &rq->cfs;
11564 		se->depth = 0;
11565 	} else {
11566 		se->cfs_rq = parent->my_q;
11567 		se->depth = parent->depth + 1;
11568 	}
11569 
11570 	se->my_q = cfs_rq;
11571 	/* guarantee group entities always have weight */
11572 	update_load_set(&se->load, NICE_0_LOAD);
11573 	se->parent = parent;
11574 }
11575 
11576 static DEFINE_MUTEX(shares_mutex);
11577 
11578 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
11579 {
11580 	int i;
11581 
11582 	lockdep_assert_held(&shares_mutex);
11583 
11584 	/*
11585 	 * We can't change the weight of the root cgroup.
11586 	 */
11587 	if (!tg->se[0])
11588 		return -EINVAL;
11589 
11590 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11591 
11592 	if (tg->shares == shares)
11593 		return 0;
11594 
11595 	tg->shares = shares;
11596 	for_each_possible_cpu(i) {
11597 		struct rq *rq = cpu_rq(i);
11598 		struct sched_entity *se = tg->se[i];
11599 		struct rq_flags rf;
11600 
11601 		/* Propagate contribution to hierarchy */
11602 		rq_lock_irqsave(rq, &rf);
11603 		update_rq_clock(rq);
11604 		for_each_sched_entity(se) {
11605 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11606 			update_cfs_group(se);
11607 		}
11608 		rq_unlock_irqrestore(rq, &rf);
11609 	}
11610 
11611 	return 0;
11612 }
11613 
11614 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11615 {
11616 	int ret;
11617 
11618 	mutex_lock(&shares_mutex);
11619 	if (tg_is_idle(tg))
11620 		ret = -EINVAL;
11621 	else
11622 		ret = __sched_group_set_shares(tg, shares);
11623 	mutex_unlock(&shares_mutex);
11624 
11625 	return ret;
11626 }
11627 
11628 int sched_group_set_idle(struct task_group *tg, long idle)
11629 {
11630 	int i;
11631 
11632 	if (tg == &root_task_group)
11633 		return -EINVAL;
11634 
11635 	if (idle < 0 || idle > 1)
11636 		return -EINVAL;
11637 
11638 	mutex_lock(&shares_mutex);
11639 
11640 	if (tg->idle == idle) {
11641 		mutex_unlock(&shares_mutex);
11642 		return 0;
11643 	}
11644 
11645 	tg->idle = idle;
11646 
11647 	for_each_possible_cpu(i) {
11648 		struct rq *rq = cpu_rq(i);
11649 		struct sched_entity *se = tg->se[i];
11650 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
11651 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
11652 		long idle_task_delta;
11653 		struct rq_flags rf;
11654 
11655 		rq_lock_irqsave(rq, &rf);
11656 
11657 		grp_cfs_rq->idle = idle;
11658 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
11659 			goto next_cpu;
11660 
11661 		if (se->on_rq) {
11662 			parent_cfs_rq = cfs_rq_of(se);
11663 			if (cfs_rq_is_idle(grp_cfs_rq))
11664 				parent_cfs_rq->idle_nr_running++;
11665 			else
11666 				parent_cfs_rq->idle_nr_running--;
11667 		}
11668 
11669 		idle_task_delta = grp_cfs_rq->h_nr_running -
11670 				  grp_cfs_rq->idle_h_nr_running;
11671 		if (!cfs_rq_is_idle(grp_cfs_rq))
11672 			idle_task_delta *= -1;
11673 
11674 		for_each_sched_entity(se) {
11675 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
11676 
11677 			if (!se->on_rq)
11678 				break;
11679 
11680 			cfs_rq->idle_h_nr_running += idle_task_delta;
11681 
11682 			/* Already accounted at parent level and above. */
11683 			if (cfs_rq_is_idle(cfs_rq))
11684 				break;
11685 		}
11686 
11687 next_cpu:
11688 		rq_unlock_irqrestore(rq, &rf);
11689 	}
11690 
11691 	/* Idle groups have minimum weight. */
11692 	if (tg_is_idle(tg))
11693 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
11694 	else
11695 		__sched_group_set_shares(tg, NICE_0_LOAD);
11696 
11697 	mutex_unlock(&shares_mutex);
11698 	return 0;
11699 }
11700 
11701 #else /* CONFIG_FAIR_GROUP_SCHED */
11702 
11703 void free_fair_sched_group(struct task_group *tg) { }
11704 
11705 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11706 {
11707 	return 1;
11708 }
11709 
11710 void online_fair_sched_group(struct task_group *tg) { }
11711 
11712 void unregister_fair_sched_group(struct task_group *tg) { }
11713 
11714 #endif /* CONFIG_FAIR_GROUP_SCHED */
11715 
11716 
11717 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11718 {
11719 	struct sched_entity *se = &task->se;
11720 	unsigned int rr_interval = 0;
11721 
11722 	/*
11723 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11724 	 * idle runqueue:
11725 	 */
11726 	if (rq->cfs.load.weight)
11727 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11728 
11729 	return rr_interval;
11730 }
11731 
11732 /*
11733  * All the scheduling class methods:
11734  */
11735 DEFINE_SCHED_CLASS(fair) = {
11736 
11737 	.enqueue_task		= enqueue_task_fair,
11738 	.dequeue_task		= dequeue_task_fair,
11739 	.yield_task		= yield_task_fair,
11740 	.yield_to_task		= yield_to_task_fair,
11741 
11742 	.check_preempt_curr	= check_preempt_wakeup,
11743 
11744 	.pick_next_task		= __pick_next_task_fair,
11745 	.put_prev_task		= put_prev_task_fair,
11746 	.set_next_task          = set_next_task_fair,
11747 
11748 #ifdef CONFIG_SMP
11749 	.balance		= balance_fair,
11750 	.pick_task		= pick_task_fair,
11751 	.select_task_rq		= select_task_rq_fair,
11752 	.migrate_task_rq	= migrate_task_rq_fair,
11753 
11754 	.rq_online		= rq_online_fair,
11755 	.rq_offline		= rq_offline_fair,
11756 
11757 	.task_dead		= task_dead_fair,
11758 	.set_cpus_allowed	= set_cpus_allowed_common,
11759 #endif
11760 
11761 	.task_tick		= task_tick_fair,
11762 	.task_fork		= task_fork_fair,
11763 
11764 	.prio_changed		= prio_changed_fair,
11765 	.switched_from		= switched_from_fair,
11766 	.switched_to		= switched_to_fair,
11767 
11768 	.get_rr_interval	= get_rr_interval_fair,
11769 
11770 	.update_curr		= update_curr_fair,
11771 
11772 #ifdef CONFIG_FAIR_GROUP_SCHED
11773 	.task_change_group	= task_change_group_fair,
11774 #endif
11775 
11776 #ifdef CONFIG_UCLAMP_TASK
11777 	.uclamp_enabled		= 1,
11778 #endif
11779 };
11780 
11781 #ifdef CONFIG_SCHED_DEBUG
11782 void print_cfs_stats(struct seq_file *m, int cpu)
11783 {
11784 	struct cfs_rq *cfs_rq, *pos;
11785 
11786 	rcu_read_lock();
11787 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11788 		print_cfs_rq(m, cpu, cfs_rq);
11789 	rcu_read_unlock();
11790 }
11791 
11792 #ifdef CONFIG_NUMA_BALANCING
11793 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11794 {
11795 	int node;
11796 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11797 	struct numa_group *ng;
11798 
11799 	rcu_read_lock();
11800 	ng = rcu_dereference(p->numa_group);
11801 	for_each_online_node(node) {
11802 		if (p->numa_faults) {
11803 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11804 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11805 		}
11806 		if (ng) {
11807 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11808 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11809 		}
11810 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11811 	}
11812 	rcu_read_unlock();
11813 }
11814 #endif /* CONFIG_NUMA_BALANCING */
11815 #endif /* CONFIG_SCHED_DEBUG */
11816 
11817 __init void init_sched_fair_class(void)
11818 {
11819 #ifdef CONFIG_SMP
11820 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11821 
11822 #ifdef CONFIG_NO_HZ_COMMON
11823 	nohz.next_balance = jiffies;
11824 	nohz.next_blocked = jiffies;
11825 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11826 #endif
11827 #endif /* SMP */
11828 
11829 }
11830 
11831 /*
11832  * Helper functions to facilitate extracting info from tracepoints.
11833  */
11834 
11835 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11836 {
11837 #ifdef CONFIG_SMP
11838 	return cfs_rq ? &cfs_rq->avg : NULL;
11839 #else
11840 	return NULL;
11841 #endif
11842 }
11843 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11844 
11845 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11846 {
11847 	if (!cfs_rq) {
11848 		if (str)
11849 			strlcpy(str, "(null)", len);
11850 		else
11851 			return NULL;
11852 	}
11853 
11854 	cfs_rq_tg_path(cfs_rq, str, len);
11855 	return str;
11856 }
11857 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11858 
11859 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11860 {
11861 	return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11862 }
11863 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11864 
11865 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11866 {
11867 #ifdef CONFIG_SMP
11868 	return rq ? &rq->avg_rt : NULL;
11869 #else
11870 	return NULL;
11871 #endif
11872 }
11873 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11874 
11875 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11876 {
11877 #ifdef CONFIG_SMP
11878 	return rq ? &rq->avg_dl : NULL;
11879 #else
11880 	return NULL;
11881 #endif
11882 }
11883 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11884 
11885 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11886 {
11887 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11888 	return rq ? &rq->avg_irq : NULL;
11889 #else
11890 	return NULL;
11891 #endif
11892 }
11893 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11894 
11895 int sched_trace_rq_cpu(struct rq *rq)
11896 {
11897 	return rq ? cpu_of(rq) : -1;
11898 }
11899 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11900 
11901 int sched_trace_rq_cpu_capacity(struct rq *rq)
11902 {
11903 	return rq ?
11904 #ifdef CONFIG_SMP
11905 		rq->cpu_capacity
11906 #else
11907 		SCHED_CAPACITY_SCALE
11908 #endif
11909 		: -1;
11910 }
11911 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11912 
11913 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11914 {
11915 #ifdef CONFIG_SMP
11916 	return rd ? rd->span : NULL;
11917 #else
11918 	return NULL;
11919 #endif
11920 }
11921 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11922 
11923 int sched_trace_rq_nr_running(struct rq *rq)
11924 {
11925         return rq ? rq->nr_running : -1;
11926 }
11927 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);
11928