xref: /openbmc/linux/kernel/sched/fair.c (revision a5a92abb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 #include <trace/events/sched.h>
26 
27 /*
28  * Targeted preemption latency for CPU-bound tasks:
29  *
30  * NOTE: this latency value is not the same as the concept of
31  * 'timeslice length' - timeslices in CFS are of variable length
32  * and have no persistent notion like in traditional, time-slice
33  * based scheduling concepts.
34  *
35  * (to see the precise effective timeslice length of your workload,
36  *  run vmstat and monitor the context-switches (cs) field)
37  *
38  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39  */
40 unsigned int sysctl_sched_latency			= 6000000ULL;
41 unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
42 
43 /*
44  * The initial- and re-scaling of tunables is configurable
45  *
46  * Options are:
47  *
48  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
49  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51  *
52  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53  */
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55 
56 /*
57  * Minimal preemption granularity for CPU-bound tasks:
58  *
59  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60  */
61 unsigned int sysctl_sched_min_granularity		= 750000ULL;
62 unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 
64 /*
65  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66  */
67 static unsigned int sched_nr_latency = 8;
68 
69 /*
70  * After fork, child runs first. If set to 0 (default) then
71  * parent will (try to) run first.
72  */
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
74 
75 /*
76  * SCHED_OTHER wake-up granularity.
77  *
78  * This option delays the preemption effects of decoupled workloads
79  * and reduces their over-scheduling. Synchronous workloads will still
80  * have immediate wakeup/sleep latencies.
81  *
82  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83  */
84 unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
85 unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 #ifdef CONFIG_SMP
90 /*
91  * For asym packing, by default the lower numbered CPU has higher priority.
92  */
93 int __weak arch_asym_cpu_priority(int cpu)
94 {
95 	return -cpu;
96 }
97 #endif
98 
99 #ifdef CONFIG_CFS_BANDWIDTH
100 /*
101  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102  * each time a cfs_rq requests quota.
103  *
104  * Note: in the case that the slice exceeds the runtime remaining (either due
105  * to consumption or the quota being specified to be smaller than the slice)
106  * we will always only issue the remaining available time.
107  *
108  * (default: 5 msec, units: microseconds)
109  */
110 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
111 #endif
112 
113 /*
114  * The margin used when comparing utilization with CPU capacity:
115  * util * margin < capacity * 1024
116  *
117  * (default: ~20%)
118  */
119 unsigned int capacity_margin				= 1280;
120 
121 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 {
123 	lw->weight += inc;
124 	lw->inv_weight = 0;
125 }
126 
127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 {
129 	lw->weight -= dec;
130 	lw->inv_weight = 0;
131 }
132 
133 static inline void update_load_set(struct load_weight *lw, unsigned long w)
134 {
135 	lw->weight = w;
136 	lw->inv_weight = 0;
137 }
138 
139 /*
140  * Increase the granularity value when there are more CPUs,
141  * because with more CPUs the 'effective latency' as visible
142  * to users decreases. But the relationship is not linear,
143  * so pick a second-best guess by going with the log2 of the
144  * number of CPUs.
145  *
146  * This idea comes from the SD scheduler of Con Kolivas:
147  */
148 static unsigned int get_update_sysctl_factor(void)
149 {
150 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 	unsigned int factor;
152 
153 	switch (sysctl_sched_tunable_scaling) {
154 	case SCHED_TUNABLESCALING_NONE:
155 		factor = 1;
156 		break;
157 	case SCHED_TUNABLESCALING_LINEAR:
158 		factor = cpus;
159 		break;
160 	case SCHED_TUNABLESCALING_LOG:
161 	default:
162 		factor = 1 + ilog2(cpus);
163 		break;
164 	}
165 
166 	return factor;
167 }
168 
169 static void update_sysctl(void)
170 {
171 	unsigned int factor = get_update_sysctl_factor();
172 
173 #define SET_SYSCTL(name) \
174 	(sysctl_##name = (factor) * normalized_sysctl_##name)
175 	SET_SYSCTL(sched_min_granularity);
176 	SET_SYSCTL(sched_latency);
177 	SET_SYSCTL(sched_wakeup_granularity);
178 #undef SET_SYSCTL
179 }
180 
181 void sched_init_granularity(void)
182 {
183 	update_sysctl();
184 }
185 
186 #define WMULT_CONST	(~0U)
187 #define WMULT_SHIFT	32
188 
189 static void __update_inv_weight(struct load_weight *lw)
190 {
191 	unsigned long w;
192 
193 	if (likely(lw->inv_weight))
194 		return;
195 
196 	w = scale_load_down(lw->weight);
197 
198 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 		lw->inv_weight = 1;
200 	else if (unlikely(!w))
201 		lw->inv_weight = WMULT_CONST;
202 	else
203 		lw->inv_weight = WMULT_CONST / w;
204 }
205 
206 /*
207  * delta_exec * weight / lw.weight
208  *   OR
209  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210  *
211  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212  * we're guaranteed shift stays positive because inv_weight is guaranteed to
213  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214  *
215  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216  * weight/lw.weight <= 1, and therefore our shift will also be positive.
217  */
218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219 {
220 	u64 fact = scale_load_down(weight);
221 	int shift = WMULT_SHIFT;
222 
223 	__update_inv_weight(lw);
224 
225 	if (unlikely(fact >> 32)) {
226 		while (fact >> 32) {
227 			fact >>= 1;
228 			shift--;
229 		}
230 	}
231 
232 	/* hint to use a 32x32->64 mul */
233 	fact = (u64)(u32)fact * lw->inv_weight;
234 
235 	while (fact >> 32) {
236 		fact >>= 1;
237 		shift--;
238 	}
239 
240 	return mul_u64_u32_shr(delta_exec, fact, shift);
241 }
242 
243 
244 const struct sched_class fair_sched_class;
245 
246 /**************************************************************
247  * CFS operations on generic schedulable entities:
248  */
249 
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 
252 /* cpu runqueue to which this cfs_rq is attached */
253 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
254 {
255 	return cfs_rq->rq;
256 }
257 
258 /* An entity is a task if it doesn't "own" a runqueue */
259 #define entity_is_task(se)	(!se->my_q)
260 
261 static inline struct task_struct *task_of(struct sched_entity *se)
262 {
263 	SCHED_WARN_ON(!entity_is_task(se));
264 	return container_of(se, struct task_struct, se);
265 }
266 
267 /* Walk up scheduling entities hierarchy */
268 #define for_each_sched_entity(se) \
269 		for (; se; se = se->parent)
270 
271 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
272 {
273 	return p->se.cfs_rq;
274 }
275 
276 /* runqueue on which this entity is (to be) queued */
277 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
278 {
279 	return se->cfs_rq;
280 }
281 
282 /* runqueue "owned" by this group */
283 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
284 {
285 	return grp->my_q;
286 }
287 
288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289 {
290 	if (!cfs_rq->on_list) {
291 		struct rq *rq = rq_of(cfs_rq);
292 		int cpu = cpu_of(rq);
293 		/*
294 		 * Ensure we either appear before our parent (if already
295 		 * enqueued) or force our parent to appear after us when it is
296 		 * enqueued. The fact that we always enqueue bottom-up
297 		 * reduces this to two cases and a special case for the root
298 		 * cfs_rq. Furthermore, it also means that we will always reset
299 		 * tmp_alone_branch either when the branch is connected
300 		 * to a tree or when we reach the beg of the tree
301 		 */
302 		if (cfs_rq->tg->parent &&
303 		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
304 			/*
305 			 * If parent is already on the list, we add the child
306 			 * just before. Thanks to circular linked property of
307 			 * the list, this means to put the child at the tail
308 			 * of the list that starts by parent.
309 			 */
310 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
311 				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
312 			/*
313 			 * The branch is now connected to its tree so we can
314 			 * reset tmp_alone_branch to the beginning of the
315 			 * list.
316 			 */
317 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
318 		} else if (!cfs_rq->tg->parent) {
319 			/*
320 			 * cfs rq without parent should be put
321 			 * at the tail of the list.
322 			 */
323 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 				&rq->leaf_cfs_rq_list);
325 			/*
326 			 * We have reach the beg of a tree so we can reset
327 			 * tmp_alone_branch to the beginning of the list.
328 			 */
329 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
330 		} else {
331 			/*
332 			 * The parent has not already been added so we want to
333 			 * make sure that it will be put after us.
334 			 * tmp_alone_branch points to the beg of the branch
335 			 * where we will add parent.
336 			 */
337 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
338 				rq->tmp_alone_branch);
339 			/*
340 			 * update tmp_alone_branch to points to the new beg
341 			 * of the branch
342 			 */
343 			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
344 		}
345 
346 		cfs_rq->on_list = 1;
347 	}
348 }
349 
350 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
351 {
352 	if (cfs_rq->on_list) {
353 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
354 		cfs_rq->on_list = 0;
355 	}
356 }
357 
358 /* Iterate thr' all leaf cfs_rq's on a runqueue */
359 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
360 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
361 				 leaf_cfs_rq_list)
362 
363 /* Do the two (enqueued) entities belong to the same group ? */
364 static inline struct cfs_rq *
365 is_same_group(struct sched_entity *se, struct sched_entity *pse)
366 {
367 	if (se->cfs_rq == pse->cfs_rq)
368 		return se->cfs_rq;
369 
370 	return NULL;
371 }
372 
373 static inline struct sched_entity *parent_entity(struct sched_entity *se)
374 {
375 	return se->parent;
376 }
377 
378 static void
379 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
380 {
381 	int se_depth, pse_depth;
382 
383 	/*
384 	 * preemption test can be made between sibling entities who are in the
385 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
386 	 * both tasks until we find their ancestors who are siblings of common
387 	 * parent.
388 	 */
389 
390 	/* First walk up until both entities are at same depth */
391 	se_depth = (*se)->depth;
392 	pse_depth = (*pse)->depth;
393 
394 	while (se_depth > pse_depth) {
395 		se_depth--;
396 		*se = parent_entity(*se);
397 	}
398 
399 	while (pse_depth > se_depth) {
400 		pse_depth--;
401 		*pse = parent_entity(*pse);
402 	}
403 
404 	while (!is_same_group(*se, *pse)) {
405 		*se = parent_entity(*se);
406 		*pse = parent_entity(*pse);
407 	}
408 }
409 
410 #else	/* !CONFIG_FAIR_GROUP_SCHED */
411 
412 static inline struct task_struct *task_of(struct sched_entity *se)
413 {
414 	return container_of(se, struct task_struct, se);
415 }
416 
417 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
418 {
419 	return container_of(cfs_rq, struct rq, cfs);
420 }
421 
422 #define entity_is_task(se)	1
423 
424 #define for_each_sched_entity(se) \
425 		for (; se; se = NULL)
426 
427 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
428 {
429 	return &task_rq(p)->cfs;
430 }
431 
432 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
433 {
434 	struct task_struct *p = task_of(se);
435 	struct rq *rq = task_rq(p);
436 
437 	return &rq->cfs;
438 }
439 
440 /* runqueue "owned" by this group */
441 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
442 {
443 	return NULL;
444 }
445 
446 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
447 {
448 }
449 
450 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
451 {
452 }
453 
454 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
455 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
456 
457 static inline struct sched_entity *parent_entity(struct sched_entity *se)
458 {
459 	return NULL;
460 }
461 
462 static inline void
463 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
464 {
465 }
466 
467 #endif	/* CONFIG_FAIR_GROUP_SCHED */
468 
469 static __always_inline
470 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
471 
472 /**************************************************************
473  * Scheduling class tree data structure manipulation methods:
474  */
475 
476 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
477 {
478 	s64 delta = (s64)(vruntime - max_vruntime);
479 	if (delta > 0)
480 		max_vruntime = vruntime;
481 
482 	return max_vruntime;
483 }
484 
485 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
486 {
487 	s64 delta = (s64)(vruntime - min_vruntime);
488 	if (delta < 0)
489 		min_vruntime = vruntime;
490 
491 	return min_vruntime;
492 }
493 
494 static inline int entity_before(struct sched_entity *a,
495 				struct sched_entity *b)
496 {
497 	return (s64)(a->vruntime - b->vruntime) < 0;
498 }
499 
500 static void update_min_vruntime(struct cfs_rq *cfs_rq)
501 {
502 	struct sched_entity *curr = cfs_rq->curr;
503 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
504 
505 	u64 vruntime = cfs_rq->min_vruntime;
506 
507 	if (curr) {
508 		if (curr->on_rq)
509 			vruntime = curr->vruntime;
510 		else
511 			curr = NULL;
512 	}
513 
514 	if (leftmost) { /* non-empty tree */
515 		struct sched_entity *se;
516 		se = rb_entry(leftmost, struct sched_entity, run_node);
517 
518 		if (!curr)
519 			vruntime = se->vruntime;
520 		else
521 			vruntime = min_vruntime(vruntime, se->vruntime);
522 	}
523 
524 	/* ensure we never gain time by being placed backwards. */
525 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
526 #ifndef CONFIG_64BIT
527 	smp_wmb();
528 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
529 #endif
530 }
531 
532 /*
533  * Enqueue an entity into the rb-tree:
534  */
535 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
536 {
537 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
538 	struct rb_node *parent = NULL;
539 	struct sched_entity *entry;
540 	bool leftmost = true;
541 
542 	/*
543 	 * Find the right place in the rbtree:
544 	 */
545 	while (*link) {
546 		parent = *link;
547 		entry = rb_entry(parent, struct sched_entity, run_node);
548 		/*
549 		 * We dont care about collisions. Nodes with
550 		 * the same key stay together.
551 		 */
552 		if (entity_before(se, entry)) {
553 			link = &parent->rb_left;
554 		} else {
555 			link = &parent->rb_right;
556 			leftmost = false;
557 		}
558 	}
559 
560 	rb_link_node(&se->run_node, parent, link);
561 	rb_insert_color_cached(&se->run_node,
562 			       &cfs_rq->tasks_timeline, leftmost);
563 }
564 
565 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
566 {
567 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
568 }
569 
570 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
571 {
572 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
573 
574 	if (!left)
575 		return NULL;
576 
577 	return rb_entry(left, struct sched_entity, run_node);
578 }
579 
580 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
581 {
582 	struct rb_node *next = rb_next(&se->run_node);
583 
584 	if (!next)
585 		return NULL;
586 
587 	return rb_entry(next, struct sched_entity, run_node);
588 }
589 
590 #ifdef CONFIG_SCHED_DEBUG
591 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
592 {
593 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
594 
595 	if (!last)
596 		return NULL;
597 
598 	return rb_entry(last, struct sched_entity, run_node);
599 }
600 
601 /**************************************************************
602  * Scheduling class statistics methods:
603  */
604 
605 int sched_proc_update_handler(struct ctl_table *table, int write,
606 		void __user *buffer, size_t *lenp,
607 		loff_t *ppos)
608 {
609 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
610 	unsigned int factor = get_update_sysctl_factor();
611 
612 	if (ret || !write)
613 		return ret;
614 
615 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
616 					sysctl_sched_min_granularity);
617 
618 #define WRT_SYSCTL(name) \
619 	(normalized_sysctl_##name = sysctl_##name / (factor))
620 	WRT_SYSCTL(sched_min_granularity);
621 	WRT_SYSCTL(sched_latency);
622 	WRT_SYSCTL(sched_wakeup_granularity);
623 #undef WRT_SYSCTL
624 
625 	return 0;
626 }
627 #endif
628 
629 /*
630  * delta /= w
631  */
632 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
633 {
634 	if (unlikely(se->load.weight != NICE_0_LOAD))
635 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
636 
637 	return delta;
638 }
639 
640 /*
641  * The idea is to set a period in which each task runs once.
642  *
643  * When there are too many tasks (sched_nr_latency) we have to stretch
644  * this period because otherwise the slices get too small.
645  *
646  * p = (nr <= nl) ? l : l*nr/nl
647  */
648 static u64 __sched_period(unsigned long nr_running)
649 {
650 	if (unlikely(nr_running > sched_nr_latency))
651 		return nr_running * sysctl_sched_min_granularity;
652 	else
653 		return sysctl_sched_latency;
654 }
655 
656 /*
657  * We calculate the wall-time slice from the period by taking a part
658  * proportional to the weight.
659  *
660  * s = p*P[w/rw]
661  */
662 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
663 {
664 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
665 
666 	for_each_sched_entity(se) {
667 		struct load_weight *load;
668 		struct load_weight lw;
669 
670 		cfs_rq = cfs_rq_of(se);
671 		load = &cfs_rq->load;
672 
673 		if (unlikely(!se->on_rq)) {
674 			lw = cfs_rq->load;
675 
676 			update_load_add(&lw, se->load.weight);
677 			load = &lw;
678 		}
679 		slice = __calc_delta(slice, se->load.weight, load);
680 	}
681 	return slice;
682 }
683 
684 /*
685  * We calculate the vruntime slice of a to-be-inserted task.
686  *
687  * vs = s/w
688  */
689 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
690 {
691 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
692 }
693 
694 #ifdef CONFIG_SMP
695 
696 #include "sched-pelt.h"
697 
698 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
699 static unsigned long task_h_load(struct task_struct *p);
700 
701 /* Give new sched_entity start runnable values to heavy its load in infant time */
702 void init_entity_runnable_average(struct sched_entity *se)
703 {
704 	struct sched_avg *sa = &se->avg;
705 
706 	memset(sa, 0, sizeof(*sa));
707 
708 	/*
709 	 * Tasks are intialized with full load to be seen as heavy tasks until
710 	 * they get a chance to stabilize to their real load level.
711 	 * Group entities are intialized with zero load to reflect the fact that
712 	 * nothing has been attached to the task group yet.
713 	 */
714 	if (entity_is_task(se))
715 		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
716 
717 	se->runnable_weight = se->load.weight;
718 
719 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
720 }
721 
722 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
723 static void attach_entity_cfs_rq(struct sched_entity *se);
724 
725 /*
726  * With new tasks being created, their initial util_avgs are extrapolated
727  * based on the cfs_rq's current util_avg:
728  *
729  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
730  *
731  * However, in many cases, the above util_avg does not give a desired
732  * value. Moreover, the sum of the util_avgs may be divergent, such
733  * as when the series is a harmonic series.
734  *
735  * To solve this problem, we also cap the util_avg of successive tasks to
736  * only 1/2 of the left utilization budget:
737  *
738  *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
739  *
740  * where n denotes the nth task.
741  *
742  * For example, a simplest series from the beginning would be like:
743  *
744  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
745  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
746  *
747  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
748  * if util_avg > util_avg_cap.
749  */
750 void post_init_entity_util_avg(struct sched_entity *se)
751 {
752 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
753 	struct sched_avg *sa = &se->avg;
754 	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
755 
756 	if (cap > 0) {
757 		if (cfs_rq->avg.util_avg != 0) {
758 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
759 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
760 
761 			if (sa->util_avg > cap)
762 				sa->util_avg = cap;
763 		} else {
764 			sa->util_avg = cap;
765 		}
766 	}
767 
768 	if (entity_is_task(se)) {
769 		struct task_struct *p = task_of(se);
770 		if (p->sched_class != &fair_sched_class) {
771 			/*
772 			 * For !fair tasks do:
773 			 *
774 			update_cfs_rq_load_avg(now, cfs_rq);
775 			attach_entity_load_avg(cfs_rq, se, 0);
776 			switched_from_fair(rq, p);
777 			 *
778 			 * such that the next switched_to_fair() has the
779 			 * expected state.
780 			 */
781 			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
782 			return;
783 		}
784 	}
785 
786 	attach_entity_cfs_rq(se);
787 }
788 
789 #else /* !CONFIG_SMP */
790 void init_entity_runnable_average(struct sched_entity *se)
791 {
792 }
793 void post_init_entity_util_avg(struct sched_entity *se)
794 {
795 }
796 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
797 {
798 }
799 #endif /* CONFIG_SMP */
800 
801 /*
802  * Update the current task's runtime statistics.
803  */
804 static void update_curr(struct cfs_rq *cfs_rq)
805 {
806 	struct sched_entity *curr = cfs_rq->curr;
807 	u64 now = rq_clock_task(rq_of(cfs_rq));
808 	u64 delta_exec;
809 
810 	if (unlikely(!curr))
811 		return;
812 
813 	delta_exec = now - curr->exec_start;
814 	if (unlikely((s64)delta_exec <= 0))
815 		return;
816 
817 	curr->exec_start = now;
818 
819 	schedstat_set(curr->statistics.exec_max,
820 		      max(delta_exec, curr->statistics.exec_max));
821 
822 	curr->sum_exec_runtime += delta_exec;
823 	schedstat_add(cfs_rq->exec_clock, delta_exec);
824 
825 	curr->vruntime += calc_delta_fair(delta_exec, curr);
826 	update_min_vruntime(cfs_rq);
827 
828 	if (entity_is_task(curr)) {
829 		struct task_struct *curtask = task_of(curr);
830 
831 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
832 		cgroup_account_cputime(curtask, delta_exec);
833 		account_group_exec_runtime(curtask, delta_exec);
834 	}
835 
836 	account_cfs_rq_runtime(cfs_rq, delta_exec);
837 }
838 
839 static void update_curr_fair(struct rq *rq)
840 {
841 	update_curr(cfs_rq_of(&rq->curr->se));
842 }
843 
844 static inline void
845 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
846 {
847 	u64 wait_start, prev_wait_start;
848 
849 	if (!schedstat_enabled())
850 		return;
851 
852 	wait_start = rq_clock(rq_of(cfs_rq));
853 	prev_wait_start = schedstat_val(se->statistics.wait_start);
854 
855 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
856 	    likely(wait_start > prev_wait_start))
857 		wait_start -= prev_wait_start;
858 
859 	__schedstat_set(se->statistics.wait_start, wait_start);
860 }
861 
862 static inline void
863 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
864 {
865 	struct task_struct *p;
866 	u64 delta;
867 
868 	if (!schedstat_enabled())
869 		return;
870 
871 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
872 
873 	if (entity_is_task(se)) {
874 		p = task_of(se);
875 		if (task_on_rq_migrating(p)) {
876 			/*
877 			 * Preserve migrating task's wait time so wait_start
878 			 * time stamp can be adjusted to accumulate wait time
879 			 * prior to migration.
880 			 */
881 			__schedstat_set(se->statistics.wait_start, delta);
882 			return;
883 		}
884 		trace_sched_stat_wait(p, delta);
885 	}
886 
887 	__schedstat_set(se->statistics.wait_max,
888 		      max(schedstat_val(se->statistics.wait_max), delta));
889 	__schedstat_inc(se->statistics.wait_count);
890 	__schedstat_add(se->statistics.wait_sum, delta);
891 	__schedstat_set(se->statistics.wait_start, 0);
892 }
893 
894 static inline void
895 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
896 {
897 	struct task_struct *tsk = NULL;
898 	u64 sleep_start, block_start;
899 
900 	if (!schedstat_enabled())
901 		return;
902 
903 	sleep_start = schedstat_val(se->statistics.sleep_start);
904 	block_start = schedstat_val(se->statistics.block_start);
905 
906 	if (entity_is_task(se))
907 		tsk = task_of(se);
908 
909 	if (sleep_start) {
910 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
911 
912 		if ((s64)delta < 0)
913 			delta = 0;
914 
915 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
916 			__schedstat_set(se->statistics.sleep_max, delta);
917 
918 		__schedstat_set(se->statistics.sleep_start, 0);
919 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
920 
921 		if (tsk) {
922 			account_scheduler_latency(tsk, delta >> 10, 1);
923 			trace_sched_stat_sleep(tsk, delta);
924 		}
925 	}
926 	if (block_start) {
927 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
928 
929 		if ((s64)delta < 0)
930 			delta = 0;
931 
932 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
933 			__schedstat_set(se->statistics.block_max, delta);
934 
935 		__schedstat_set(se->statistics.block_start, 0);
936 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
937 
938 		if (tsk) {
939 			if (tsk->in_iowait) {
940 				__schedstat_add(se->statistics.iowait_sum, delta);
941 				__schedstat_inc(se->statistics.iowait_count);
942 				trace_sched_stat_iowait(tsk, delta);
943 			}
944 
945 			trace_sched_stat_blocked(tsk, delta);
946 
947 			/*
948 			 * Blocking time is in units of nanosecs, so shift by
949 			 * 20 to get a milliseconds-range estimation of the
950 			 * amount of time that the task spent sleeping:
951 			 */
952 			if (unlikely(prof_on == SLEEP_PROFILING)) {
953 				profile_hits(SLEEP_PROFILING,
954 						(void *)get_wchan(tsk),
955 						delta >> 20);
956 			}
957 			account_scheduler_latency(tsk, delta >> 10, 0);
958 		}
959 	}
960 }
961 
962 /*
963  * Task is being enqueued - update stats:
964  */
965 static inline void
966 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
967 {
968 	if (!schedstat_enabled())
969 		return;
970 
971 	/*
972 	 * Are we enqueueing a waiting task? (for current tasks
973 	 * a dequeue/enqueue event is a NOP)
974 	 */
975 	if (se != cfs_rq->curr)
976 		update_stats_wait_start(cfs_rq, se);
977 
978 	if (flags & ENQUEUE_WAKEUP)
979 		update_stats_enqueue_sleeper(cfs_rq, se);
980 }
981 
982 static inline void
983 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
984 {
985 
986 	if (!schedstat_enabled())
987 		return;
988 
989 	/*
990 	 * Mark the end of the wait period if dequeueing a
991 	 * waiting task:
992 	 */
993 	if (se != cfs_rq->curr)
994 		update_stats_wait_end(cfs_rq, se);
995 
996 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
997 		struct task_struct *tsk = task_of(se);
998 
999 		if (tsk->state & TASK_INTERRUPTIBLE)
1000 			__schedstat_set(se->statistics.sleep_start,
1001 				      rq_clock(rq_of(cfs_rq)));
1002 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1003 			__schedstat_set(se->statistics.block_start,
1004 				      rq_clock(rq_of(cfs_rq)));
1005 	}
1006 }
1007 
1008 /*
1009  * We are picking a new current task - update its stats:
1010  */
1011 static inline void
1012 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1013 {
1014 	/*
1015 	 * We are starting a new run period:
1016 	 */
1017 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1018 }
1019 
1020 /**************************************************
1021  * Scheduling class queueing methods:
1022  */
1023 
1024 #ifdef CONFIG_NUMA_BALANCING
1025 /*
1026  * Approximate time to scan a full NUMA task in ms. The task scan period is
1027  * calculated based on the tasks virtual memory size and
1028  * numa_balancing_scan_size.
1029  */
1030 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1031 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1032 
1033 /* Portion of address space to scan in MB */
1034 unsigned int sysctl_numa_balancing_scan_size = 256;
1035 
1036 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1037 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1038 
1039 struct numa_group {
1040 	atomic_t refcount;
1041 
1042 	spinlock_t lock; /* nr_tasks, tasks */
1043 	int nr_tasks;
1044 	pid_t gid;
1045 	int active_nodes;
1046 
1047 	struct rcu_head rcu;
1048 	unsigned long total_faults;
1049 	unsigned long max_faults_cpu;
1050 	/*
1051 	 * Faults_cpu is used to decide whether memory should move
1052 	 * towards the CPU. As a consequence, these stats are weighted
1053 	 * more by CPU use than by memory faults.
1054 	 */
1055 	unsigned long *faults_cpu;
1056 	unsigned long faults[0];
1057 };
1058 
1059 static inline unsigned long group_faults_priv(struct numa_group *ng);
1060 static inline unsigned long group_faults_shared(struct numa_group *ng);
1061 
1062 static unsigned int task_nr_scan_windows(struct task_struct *p)
1063 {
1064 	unsigned long rss = 0;
1065 	unsigned long nr_scan_pages;
1066 
1067 	/*
1068 	 * Calculations based on RSS as non-present and empty pages are skipped
1069 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1070 	 * on resident pages
1071 	 */
1072 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1073 	rss = get_mm_rss(p->mm);
1074 	if (!rss)
1075 		rss = nr_scan_pages;
1076 
1077 	rss = round_up(rss, nr_scan_pages);
1078 	return rss / nr_scan_pages;
1079 }
1080 
1081 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1082 #define MAX_SCAN_WINDOW 2560
1083 
1084 static unsigned int task_scan_min(struct task_struct *p)
1085 {
1086 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1087 	unsigned int scan, floor;
1088 	unsigned int windows = 1;
1089 
1090 	if (scan_size < MAX_SCAN_WINDOW)
1091 		windows = MAX_SCAN_WINDOW / scan_size;
1092 	floor = 1000 / windows;
1093 
1094 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1095 	return max_t(unsigned int, floor, scan);
1096 }
1097 
1098 static unsigned int task_scan_start(struct task_struct *p)
1099 {
1100 	unsigned long smin = task_scan_min(p);
1101 	unsigned long period = smin;
1102 
1103 	/* Scale the maximum scan period with the amount of shared memory. */
1104 	if (p->numa_group) {
1105 		struct numa_group *ng = p->numa_group;
1106 		unsigned long shared = group_faults_shared(ng);
1107 		unsigned long private = group_faults_priv(ng);
1108 
1109 		period *= atomic_read(&ng->refcount);
1110 		period *= shared + 1;
1111 		period /= private + shared + 1;
1112 	}
1113 
1114 	return max(smin, period);
1115 }
1116 
1117 static unsigned int task_scan_max(struct task_struct *p)
1118 {
1119 	unsigned long smin = task_scan_min(p);
1120 	unsigned long smax;
1121 
1122 	/* Watch for min being lower than max due to floor calculations */
1123 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1124 
1125 	/* Scale the maximum scan period with the amount of shared memory. */
1126 	if (p->numa_group) {
1127 		struct numa_group *ng = p->numa_group;
1128 		unsigned long shared = group_faults_shared(ng);
1129 		unsigned long private = group_faults_priv(ng);
1130 		unsigned long period = smax;
1131 
1132 		period *= atomic_read(&ng->refcount);
1133 		period *= shared + 1;
1134 		period /= private + shared + 1;
1135 
1136 		smax = max(smax, period);
1137 	}
1138 
1139 	return max(smin, smax);
1140 }
1141 
1142 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1143 {
1144 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
1145 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1146 }
1147 
1148 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1149 {
1150 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1151 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1152 }
1153 
1154 /* Shared or private faults. */
1155 #define NR_NUMA_HINT_FAULT_TYPES 2
1156 
1157 /* Memory and CPU locality */
1158 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1159 
1160 /* Averaged statistics, and temporary buffers. */
1161 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1162 
1163 pid_t task_numa_group_id(struct task_struct *p)
1164 {
1165 	return p->numa_group ? p->numa_group->gid : 0;
1166 }
1167 
1168 /*
1169  * The averaged statistics, shared & private, memory & CPU,
1170  * occupy the first half of the array. The second half of the
1171  * array is for current counters, which are averaged into the
1172  * first set by task_numa_placement.
1173  */
1174 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1175 {
1176 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1177 }
1178 
1179 static inline unsigned long task_faults(struct task_struct *p, int nid)
1180 {
1181 	if (!p->numa_faults)
1182 		return 0;
1183 
1184 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1185 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1186 }
1187 
1188 static inline unsigned long group_faults(struct task_struct *p, int nid)
1189 {
1190 	if (!p->numa_group)
1191 		return 0;
1192 
1193 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1194 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1195 }
1196 
1197 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1198 {
1199 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1200 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1201 }
1202 
1203 static inline unsigned long group_faults_priv(struct numa_group *ng)
1204 {
1205 	unsigned long faults = 0;
1206 	int node;
1207 
1208 	for_each_online_node(node) {
1209 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1210 	}
1211 
1212 	return faults;
1213 }
1214 
1215 static inline unsigned long group_faults_shared(struct numa_group *ng)
1216 {
1217 	unsigned long faults = 0;
1218 	int node;
1219 
1220 	for_each_online_node(node) {
1221 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1222 	}
1223 
1224 	return faults;
1225 }
1226 
1227 /*
1228  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1229  * considered part of a numa group's pseudo-interleaving set. Migrations
1230  * between these nodes are slowed down, to allow things to settle down.
1231  */
1232 #define ACTIVE_NODE_FRACTION 3
1233 
1234 static bool numa_is_active_node(int nid, struct numa_group *ng)
1235 {
1236 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1237 }
1238 
1239 /* Handle placement on systems where not all nodes are directly connected. */
1240 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1241 					int maxdist, bool task)
1242 {
1243 	unsigned long score = 0;
1244 	int node;
1245 
1246 	/*
1247 	 * All nodes are directly connected, and the same distance
1248 	 * from each other. No need for fancy placement algorithms.
1249 	 */
1250 	if (sched_numa_topology_type == NUMA_DIRECT)
1251 		return 0;
1252 
1253 	/*
1254 	 * This code is called for each node, introducing N^2 complexity,
1255 	 * which should be ok given the number of nodes rarely exceeds 8.
1256 	 */
1257 	for_each_online_node(node) {
1258 		unsigned long faults;
1259 		int dist = node_distance(nid, node);
1260 
1261 		/*
1262 		 * The furthest away nodes in the system are not interesting
1263 		 * for placement; nid was already counted.
1264 		 */
1265 		if (dist == sched_max_numa_distance || node == nid)
1266 			continue;
1267 
1268 		/*
1269 		 * On systems with a backplane NUMA topology, compare groups
1270 		 * of nodes, and move tasks towards the group with the most
1271 		 * memory accesses. When comparing two nodes at distance
1272 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1273 		 * of each group. Skip other nodes.
1274 		 */
1275 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1276 					dist > maxdist)
1277 			continue;
1278 
1279 		/* Add up the faults from nearby nodes. */
1280 		if (task)
1281 			faults = task_faults(p, node);
1282 		else
1283 			faults = group_faults(p, node);
1284 
1285 		/*
1286 		 * On systems with a glueless mesh NUMA topology, there are
1287 		 * no fixed "groups of nodes". Instead, nodes that are not
1288 		 * directly connected bounce traffic through intermediate
1289 		 * nodes; a numa_group can occupy any set of nodes.
1290 		 * The further away a node is, the less the faults count.
1291 		 * This seems to result in good task placement.
1292 		 */
1293 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1294 			faults *= (sched_max_numa_distance - dist);
1295 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1296 		}
1297 
1298 		score += faults;
1299 	}
1300 
1301 	return score;
1302 }
1303 
1304 /*
1305  * These return the fraction of accesses done by a particular task, or
1306  * task group, on a particular numa node.  The group weight is given a
1307  * larger multiplier, in order to group tasks together that are almost
1308  * evenly spread out between numa nodes.
1309  */
1310 static inline unsigned long task_weight(struct task_struct *p, int nid,
1311 					int dist)
1312 {
1313 	unsigned long faults, total_faults;
1314 
1315 	if (!p->numa_faults)
1316 		return 0;
1317 
1318 	total_faults = p->total_numa_faults;
1319 
1320 	if (!total_faults)
1321 		return 0;
1322 
1323 	faults = task_faults(p, nid);
1324 	faults += score_nearby_nodes(p, nid, dist, true);
1325 
1326 	return 1000 * faults / total_faults;
1327 }
1328 
1329 static inline unsigned long group_weight(struct task_struct *p, int nid,
1330 					 int dist)
1331 {
1332 	unsigned long faults, total_faults;
1333 
1334 	if (!p->numa_group)
1335 		return 0;
1336 
1337 	total_faults = p->numa_group->total_faults;
1338 
1339 	if (!total_faults)
1340 		return 0;
1341 
1342 	faults = group_faults(p, nid);
1343 	faults += score_nearby_nodes(p, nid, dist, false);
1344 
1345 	return 1000 * faults / total_faults;
1346 }
1347 
1348 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1349 				int src_nid, int dst_cpu)
1350 {
1351 	struct numa_group *ng = p->numa_group;
1352 	int dst_nid = cpu_to_node(dst_cpu);
1353 	int last_cpupid, this_cpupid;
1354 
1355 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1356 
1357 	/*
1358 	 * Multi-stage node selection is used in conjunction with a periodic
1359 	 * migration fault to build a temporal task<->page relation. By using
1360 	 * a two-stage filter we remove short/unlikely relations.
1361 	 *
1362 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1363 	 * a task's usage of a particular page (n_p) per total usage of this
1364 	 * page (n_t) (in a given time-span) to a probability.
1365 	 *
1366 	 * Our periodic faults will sample this probability and getting the
1367 	 * same result twice in a row, given these samples are fully
1368 	 * independent, is then given by P(n)^2, provided our sample period
1369 	 * is sufficiently short compared to the usage pattern.
1370 	 *
1371 	 * This quadric squishes small probabilities, making it less likely we
1372 	 * act on an unlikely task<->page relation.
1373 	 */
1374 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1375 	if (!cpupid_pid_unset(last_cpupid) &&
1376 				cpupid_to_nid(last_cpupid) != dst_nid)
1377 		return false;
1378 
1379 	/* Always allow migrate on private faults */
1380 	if (cpupid_match_pid(p, last_cpupid))
1381 		return true;
1382 
1383 	/* A shared fault, but p->numa_group has not been set up yet. */
1384 	if (!ng)
1385 		return true;
1386 
1387 	/*
1388 	 * Destination node is much more heavily used than the source
1389 	 * node? Allow migration.
1390 	 */
1391 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1392 					ACTIVE_NODE_FRACTION)
1393 		return true;
1394 
1395 	/*
1396 	 * Distribute memory according to CPU & memory use on each node,
1397 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1398 	 *
1399 	 * faults_cpu(dst)   3   faults_cpu(src)
1400 	 * --------------- * - > ---------------
1401 	 * faults_mem(dst)   4   faults_mem(src)
1402 	 */
1403 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1404 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1405 }
1406 
1407 static unsigned long weighted_cpuload(struct rq *rq);
1408 static unsigned long source_load(int cpu, int type);
1409 static unsigned long target_load(int cpu, int type);
1410 static unsigned long capacity_of(int cpu);
1411 
1412 /* Cached statistics for all CPUs within a node */
1413 struct numa_stats {
1414 	unsigned long nr_running;
1415 	unsigned long load;
1416 
1417 	/* Total compute capacity of CPUs on a node */
1418 	unsigned long compute_capacity;
1419 
1420 	/* Approximate capacity in terms of runnable tasks on a node */
1421 	unsigned long task_capacity;
1422 	int has_free_capacity;
1423 };
1424 
1425 /*
1426  * XXX borrowed from update_sg_lb_stats
1427  */
1428 static void update_numa_stats(struct numa_stats *ns, int nid)
1429 {
1430 	int smt, cpu, cpus = 0;
1431 	unsigned long capacity;
1432 
1433 	memset(ns, 0, sizeof(*ns));
1434 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1435 		struct rq *rq = cpu_rq(cpu);
1436 
1437 		ns->nr_running += rq->nr_running;
1438 		ns->load += weighted_cpuload(rq);
1439 		ns->compute_capacity += capacity_of(cpu);
1440 
1441 		cpus++;
1442 	}
1443 
1444 	/*
1445 	 * If we raced with hotplug and there are no CPUs left in our mask
1446 	 * the @ns structure is NULL'ed and task_numa_compare() will
1447 	 * not find this node attractive.
1448 	 *
1449 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1450 	 * imbalance and bail there.
1451 	 */
1452 	if (!cpus)
1453 		return;
1454 
1455 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1456 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1457 	capacity = cpus / smt; /* cores */
1458 
1459 	ns->task_capacity = min_t(unsigned, capacity,
1460 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1461 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1462 }
1463 
1464 struct task_numa_env {
1465 	struct task_struct *p;
1466 
1467 	int src_cpu, src_nid;
1468 	int dst_cpu, dst_nid;
1469 
1470 	struct numa_stats src_stats, dst_stats;
1471 
1472 	int imbalance_pct;
1473 	int dist;
1474 
1475 	struct task_struct *best_task;
1476 	long best_imp;
1477 	int best_cpu;
1478 };
1479 
1480 static void task_numa_assign(struct task_numa_env *env,
1481 			     struct task_struct *p, long imp)
1482 {
1483 	if (env->best_task)
1484 		put_task_struct(env->best_task);
1485 	if (p)
1486 		get_task_struct(p);
1487 
1488 	env->best_task = p;
1489 	env->best_imp = imp;
1490 	env->best_cpu = env->dst_cpu;
1491 }
1492 
1493 static bool load_too_imbalanced(long src_load, long dst_load,
1494 				struct task_numa_env *env)
1495 {
1496 	long imb, old_imb;
1497 	long orig_src_load, orig_dst_load;
1498 	long src_capacity, dst_capacity;
1499 
1500 	/*
1501 	 * The load is corrected for the CPU capacity available on each node.
1502 	 *
1503 	 * src_load        dst_load
1504 	 * ------------ vs ---------
1505 	 * src_capacity    dst_capacity
1506 	 */
1507 	src_capacity = env->src_stats.compute_capacity;
1508 	dst_capacity = env->dst_stats.compute_capacity;
1509 
1510 	/* We care about the slope of the imbalance, not the direction. */
1511 	if (dst_load < src_load)
1512 		swap(dst_load, src_load);
1513 
1514 	/* Is the difference below the threshold? */
1515 	imb = dst_load * src_capacity * 100 -
1516 	      src_load * dst_capacity * env->imbalance_pct;
1517 	if (imb <= 0)
1518 		return false;
1519 
1520 	/*
1521 	 * The imbalance is above the allowed threshold.
1522 	 * Compare it with the old imbalance.
1523 	 */
1524 	orig_src_load = env->src_stats.load;
1525 	orig_dst_load = env->dst_stats.load;
1526 
1527 	if (orig_dst_load < orig_src_load)
1528 		swap(orig_dst_load, orig_src_load);
1529 
1530 	old_imb = orig_dst_load * src_capacity * 100 -
1531 		  orig_src_load * dst_capacity * env->imbalance_pct;
1532 
1533 	/* Would this change make things worse? */
1534 	return (imb > old_imb);
1535 }
1536 
1537 /*
1538  * This checks if the overall compute and NUMA accesses of the system would
1539  * be improved if the source tasks was migrated to the target dst_cpu taking
1540  * into account that it might be best if task running on the dst_cpu should
1541  * be exchanged with the source task
1542  */
1543 static void task_numa_compare(struct task_numa_env *env,
1544 			      long taskimp, long groupimp)
1545 {
1546 	struct rq *src_rq = cpu_rq(env->src_cpu);
1547 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1548 	struct task_struct *cur;
1549 	long src_load, dst_load;
1550 	long load;
1551 	long imp = env->p->numa_group ? groupimp : taskimp;
1552 	long moveimp = imp;
1553 	int dist = env->dist;
1554 
1555 	rcu_read_lock();
1556 	cur = task_rcu_dereference(&dst_rq->curr);
1557 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1558 		cur = NULL;
1559 
1560 	/*
1561 	 * Because we have preemption enabled we can get migrated around and
1562 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1563 	 */
1564 	if (cur == env->p)
1565 		goto unlock;
1566 
1567 	/*
1568 	 * "imp" is the fault differential for the source task between the
1569 	 * source and destination node. Calculate the total differential for
1570 	 * the source task and potential destination task. The more negative
1571 	 * the value is, the more rmeote accesses that would be expected to
1572 	 * be incurred if the tasks were swapped.
1573 	 */
1574 	if (cur) {
1575 		/* Skip this swap candidate if cannot move to the source CPU: */
1576 		if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1577 			goto unlock;
1578 
1579 		/*
1580 		 * If dst and source tasks are in the same NUMA group, or not
1581 		 * in any group then look only at task weights.
1582 		 */
1583 		if (cur->numa_group == env->p->numa_group) {
1584 			imp = taskimp + task_weight(cur, env->src_nid, dist) -
1585 			      task_weight(cur, env->dst_nid, dist);
1586 			/*
1587 			 * Add some hysteresis to prevent swapping the
1588 			 * tasks within a group over tiny differences.
1589 			 */
1590 			if (cur->numa_group)
1591 				imp -= imp/16;
1592 		} else {
1593 			/*
1594 			 * Compare the group weights. If a task is all by
1595 			 * itself (not part of a group), use the task weight
1596 			 * instead.
1597 			 */
1598 			if (cur->numa_group)
1599 				imp += group_weight(cur, env->src_nid, dist) -
1600 				       group_weight(cur, env->dst_nid, dist);
1601 			else
1602 				imp += task_weight(cur, env->src_nid, dist) -
1603 				       task_weight(cur, env->dst_nid, dist);
1604 		}
1605 	}
1606 
1607 	if (imp <= env->best_imp && moveimp <= env->best_imp)
1608 		goto unlock;
1609 
1610 	if (!cur) {
1611 		/* Is there capacity at our destination? */
1612 		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1613 		    !env->dst_stats.has_free_capacity)
1614 			goto unlock;
1615 
1616 		goto balance;
1617 	}
1618 
1619 	/* Balance doesn't matter much if we're running a task per CPU: */
1620 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1621 			dst_rq->nr_running == 1)
1622 		goto assign;
1623 
1624 	/*
1625 	 * In the overloaded case, try and keep the load balanced.
1626 	 */
1627 balance:
1628 	load = task_h_load(env->p);
1629 	dst_load = env->dst_stats.load + load;
1630 	src_load = env->src_stats.load - load;
1631 
1632 	if (moveimp > imp && moveimp > env->best_imp) {
1633 		/*
1634 		 * If the improvement from just moving env->p direction is
1635 		 * better than swapping tasks around, check if a move is
1636 		 * possible. Store a slightly smaller score than moveimp,
1637 		 * so an actually idle CPU will win.
1638 		 */
1639 		if (!load_too_imbalanced(src_load, dst_load, env)) {
1640 			imp = moveimp - 1;
1641 			cur = NULL;
1642 			goto assign;
1643 		}
1644 	}
1645 
1646 	if (imp <= env->best_imp)
1647 		goto unlock;
1648 
1649 	if (cur) {
1650 		load = task_h_load(cur);
1651 		dst_load -= load;
1652 		src_load += load;
1653 	}
1654 
1655 	if (load_too_imbalanced(src_load, dst_load, env))
1656 		goto unlock;
1657 
1658 	/*
1659 	 * One idle CPU per node is evaluated for a task numa move.
1660 	 * Call select_idle_sibling to maybe find a better one.
1661 	 */
1662 	if (!cur) {
1663 		/*
1664 		 * select_idle_siblings() uses an per-CPU cpumask that
1665 		 * can be used from IRQ context.
1666 		 */
1667 		local_irq_disable();
1668 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1669 						   env->dst_cpu);
1670 		local_irq_enable();
1671 	}
1672 
1673 assign:
1674 	task_numa_assign(env, cur, imp);
1675 unlock:
1676 	rcu_read_unlock();
1677 }
1678 
1679 static void task_numa_find_cpu(struct task_numa_env *env,
1680 				long taskimp, long groupimp)
1681 {
1682 	int cpu;
1683 
1684 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1685 		/* Skip this CPU if the source task cannot migrate */
1686 		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1687 			continue;
1688 
1689 		env->dst_cpu = cpu;
1690 		task_numa_compare(env, taskimp, groupimp);
1691 	}
1692 }
1693 
1694 /* Only move tasks to a NUMA node less busy than the current node. */
1695 static bool numa_has_capacity(struct task_numa_env *env)
1696 {
1697 	struct numa_stats *src = &env->src_stats;
1698 	struct numa_stats *dst = &env->dst_stats;
1699 
1700 	if (src->has_free_capacity && !dst->has_free_capacity)
1701 		return false;
1702 
1703 	/*
1704 	 * Only consider a task move if the source has a higher load
1705 	 * than the destination, corrected for CPU capacity on each node.
1706 	 *
1707 	 *      src->load                dst->load
1708 	 * --------------------- vs ---------------------
1709 	 * src->compute_capacity    dst->compute_capacity
1710 	 */
1711 	if (src->load * dst->compute_capacity * env->imbalance_pct >
1712 
1713 	    dst->load * src->compute_capacity * 100)
1714 		return true;
1715 
1716 	return false;
1717 }
1718 
1719 static int task_numa_migrate(struct task_struct *p)
1720 {
1721 	struct task_numa_env env = {
1722 		.p = p,
1723 
1724 		.src_cpu = task_cpu(p),
1725 		.src_nid = task_node(p),
1726 
1727 		.imbalance_pct = 112,
1728 
1729 		.best_task = NULL,
1730 		.best_imp = 0,
1731 		.best_cpu = -1,
1732 	};
1733 	struct sched_domain *sd;
1734 	unsigned long taskweight, groupweight;
1735 	int nid, ret, dist;
1736 	long taskimp, groupimp;
1737 
1738 	/*
1739 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1740 	 * imbalance and would be the first to start moving tasks about.
1741 	 *
1742 	 * And we want to avoid any moving of tasks about, as that would create
1743 	 * random movement of tasks -- counter the numa conditions we're trying
1744 	 * to satisfy here.
1745 	 */
1746 	rcu_read_lock();
1747 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1748 	if (sd)
1749 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1750 	rcu_read_unlock();
1751 
1752 	/*
1753 	 * Cpusets can break the scheduler domain tree into smaller
1754 	 * balance domains, some of which do not cross NUMA boundaries.
1755 	 * Tasks that are "trapped" in such domains cannot be migrated
1756 	 * elsewhere, so there is no point in (re)trying.
1757 	 */
1758 	if (unlikely(!sd)) {
1759 		p->numa_preferred_nid = task_node(p);
1760 		return -EINVAL;
1761 	}
1762 
1763 	env.dst_nid = p->numa_preferred_nid;
1764 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1765 	taskweight = task_weight(p, env.src_nid, dist);
1766 	groupweight = group_weight(p, env.src_nid, dist);
1767 	update_numa_stats(&env.src_stats, env.src_nid);
1768 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1769 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1770 	update_numa_stats(&env.dst_stats, env.dst_nid);
1771 
1772 	/* Try to find a spot on the preferred nid. */
1773 	if (numa_has_capacity(&env))
1774 		task_numa_find_cpu(&env, taskimp, groupimp);
1775 
1776 	/*
1777 	 * Look at other nodes in these cases:
1778 	 * - there is no space available on the preferred_nid
1779 	 * - the task is part of a numa_group that is interleaved across
1780 	 *   multiple NUMA nodes; in order to better consolidate the group,
1781 	 *   we need to check other locations.
1782 	 */
1783 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1784 		for_each_online_node(nid) {
1785 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1786 				continue;
1787 
1788 			dist = node_distance(env.src_nid, env.dst_nid);
1789 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1790 						dist != env.dist) {
1791 				taskweight = task_weight(p, env.src_nid, dist);
1792 				groupweight = group_weight(p, env.src_nid, dist);
1793 			}
1794 
1795 			/* Only consider nodes where both task and groups benefit */
1796 			taskimp = task_weight(p, nid, dist) - taskweight;
1797 			groupimp = group_weight(p, nid, dist) - groupweight;
1798 			if (taskimp < 0 && groupimp < 0)
1799 				continue;
1800 
1801 			env.dist = dist;
1802 			env.dst_nid = nid;
1803 			update_numa_stats(&env.dst_stats, env.dst_nid);
1804 			if (numa_has_capacity(&env))
1805 				task_numa_find_cpu(&env, taskimp, groupimp);
1806 		}
1807 	}
1808 
1809 	/*
1810 	 * If the task is part of a workload that spans multiple NUMA nodes,
1811 	 * and is migrating into one of the workload's active nodes, remember
1812 	 * this node as the task's preferred numa node, so the workload can
1813 	 * settle down.
1814 	 * A task that migrated to a second choice node will be better off
1815 	 * trying for a better one later. Do not set the preferred node here.
1816 	 */
1817 	if (p->numa_group) {
1818 		struct numa_group *ng = p->numa_group;
1819 
1820 		if (env.best_cpu == -1)
1821 			nid = env.src_nid;
1822 		else
1823 			nid = env.dst_nid;
1824 
1825 		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1826 			sched_setnuma(p, env.dst_nid);
1827 	}
1828 
1829 	/* No better CPU than the current one was found. */
1830 	if (env.best_cpu == -1)
1831 		return -EAGAIN;
1832 
1833 	/*
1834 	 * Reset the scan period if the task is being rescheduled on an
1835 	 * alternative node to recheck if the tasks is now properly placed.
1836 	 */
1837 	p->numa_scan_period = task_scan_start(p);
1838 
1839 	if (env.best_task == NULL) {
1840 		ret = migrate_task_to(p, env.best_cpu);
1841 		if (ret != 0)
1842 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1843 		return ret;
1844 	}
1845 
1846 	ret = migrate_swap(p, env.best_task);
1847 	if (ret != 0)
1848 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1849 	put_task_struct(env.best_task);
1850 	return ret;
1851 }
1852 
1853 /* Attempt to migrate a task to a CPU on the preferred node. */
1854 static void numa_migrate_preferred(struct task_struct *p)
1855 {
1856 	unsigned long interval = HZ;
1857 	unsigned long numa_migrate_retry;
1858 
1859 	/* This task has no NUMA fault statistics yet */
1860 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1861 		return;
1862 
1863 	/* Periodically retry migrating the task to the preferred node */
1864 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1865 	numa_migrate_retry = jiffies + interval;
1866 
1867 	/*
1868 	 * Check that the new retry threshold is after the current one. If
1869 	 * the retry is in the future, it implies that wake_affine has
1870 	 * temporarily asked NUMA balancing to backoff from placement.
1871 	 */
1872 	if (numa_migrate_retry > p->numa_migrate_retry)
1873 		return;
1874 
1875 	/* Safe to try placing the task on the preferred node */
1876 	p->numa_migrate_retry = numa_migrate_retry;
1877 
1878 	/* Success if task is already running on preferred CPU */
1879 	if (task_node(p) == p->numa_preferred_nid)
1880 		return;
1881 
1882 	/* Otherwise, try migrate to a CPU on the preferred node */
1883 	task_numa_migrate(p);
1884 }
1885 
1886 /*
1887  * Find out how many nodes on the workload is actively running on. Do this by
1888  * tracking the nodes from which NUMA hinting faults are triggered. This can
1889  * be different from the set of nodes where the workload's memory is currently
1890  * located.
1891  */
1892 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1893 {
1894 	unsigned long faults, max_faults = 0;
1895 	int nid, active_nodes = 0;
1896 
1897 	for_each_online_node(nid) {
1898 		faults = group_faults_cpu(numa_group, nid);
1899 		if (faults > max_faults)
1900 			max_faults = faults;
1901 	}
1902 
1903 	for_each_online_node(nid) {
1904 		faults = group_faults_cpu(numa_group, nid);
1905 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1906 			active_nodes++;
1907 	}
1908 
1909 	numa_group->max_faults_cpu = max_faults;
1910 	numa_group->active_nodes = active_nodes;
1911 }
1912 
1913 /*
1914  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1915  * increments. The more local the fault statistics are, the higher the scan
1916  * period will be for the next scan window. If local/(local+remote) ratio is
1917  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1918  * the scan period will decrease. Aim for 70% local accesses.
1919  */
1920 #define NUMA_PERIOD_SLOTS 10
1921 #define NUMA_PERIOD_THRESHOLD 7
1922 
1923 /*
1924  * Increase the scan period (slow down scanning) if the majority of
1925  * our memory is already on our local node, or if the majority of
1926  * the page accesses are shared with other processes.
1927  * Otherwise, decrease the scan period.
1928  */
1929 static void update_task_scan_period(struct task_struct *p,
1930 			unsigned long shared, unsigned long private)
1931 {
1932 	unsigned int period_slot;
1933 	int lr_ratio, ps_ratio;
1934 	int diff;
1935 
1936 	unsigned long remote = p->numa_faults_locality[0];
1937 	unsigned long local = p->numa_faults_locality[1];
1938 
1939 	/*
1940 	 * If there were no record hinting faults then either the task is
1941 	 * completely idle or all activity is areas that are not of interest
1942 	 * to automatic numa balancing. Related to that, if there were failed
1943 	 * migration then it implies we are migrating too quickly or the local
1944 	 * node is overloaded. In either case, scan slower
1945 	 */
1946 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1947 		p->numa_scan_period = min(p->numa_scan_period_max,
1948 			p->numa_scan_period << 1);
1949 
1950 		p->mm->numa_next_scan = jiffies +
1951 			msecs_to_jiffies(p->numa_scan_period);
1952 
1953 		return;
1954 	}
1955 
1956 	/*
1957 	 * Prepare to scale scan period relative to the current period.
1958 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1959 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1960 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1961 	 */
1962 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1963 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1964 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1965 
1966 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1967 		/*
1968 		 * Most memory accesses are local. There is no need to
1969 		 * do fast NUMA scanning, since memory is already local.
1970 		 */
1971 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1972 		if (!slot)
1973 			slot = 1;
1974 		diff = slot * period_slot;
1975 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1976 		/*
1977 		 * Most memory accesses are shared with other tasks.
1978 		 * There is no point in continuing fast NUMA scanning,
1979 		 * since other tasks may just move the memory elsewhere.
1980 		 */
1981 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1982 		if (!slot)
1983 			slot = 1;
1984 		diff = slot * period_slot;
1985 	} else {
1986 		/*
1987 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1988 		 * yet they are not on the local NUMA node. Speed up
1989 		 * NUMA scanning to get the memory moved over.
1990 		 */
1991 		int ratio = max(lr_ratio, ps_ratio);
1992 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1993 	}
1994 
1995 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1996 			task_scan_min(p), task_scan_max(p));
1997 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1998 }
1999 
2000 /*
2001  * Get the fraction of time the task has been running since the last
2002  * NUMA placement cycle. The scheduler keeps similar statistics, but
2003  * decays those on a 32ms period, which is orders of magnitude off
2004  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2005  * stats only if the task is so new there are no NUMA statistics yet.
2006  */
2007 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2008 {
2009 	u64 runtime, delta, now;
2010 	/* Use the start of this time slice to avoid calculations. */
2011 	now = p->se.exec_start;
2012 	runtime = p->se.sum_exec_runtime;
2013 
2014 	if (p->last_task_numa_placement) {
2015 		delta = runtime - p->last_sum_exec_runtime;
2016 		*period = now - p->last_task_numa_placement;
2017 	} else {
2018 		delta = p->se.avg.load_sum;
2019 		*period = LOAD_AVG_MAX;
2020 	}
2021 
2022 	p->last_sum_exec_runtime = runtime;
2023 	p->last_task_numa_placement = now;
2024 
2025 	return delta;
2026 }
2027 
2028 /*
2029  * Determine the preferred nid for a task in a numa_group. This needs to
2030  * be done in a way that produces consistent results with group_weight,
2031  * otherwise workloads might not converge.
2032  */
2033 static int preferred_group_nid(struct task_struct *p, int nid)
2034 {
2035 	nodemask_t nodes;
2036 	int dist;
2037 
2038 	/* Direct connections between all NUMA nodes. */
2039 	if (sched_numa_topology_type == NUMA_DIRECT)
2040 		return nid;
2041 
2042 	/*
2043 	 * On a system with glueless mesh NUMA topology, group_weight
2044 	 * scores nodes according to the number of NUMA hinting faults on
2045 	 * both the node itself, and on nearby nodes.
2046 	 */
2047 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2048 		unsigned long score, max_score = 0;
2049 		int node, max_node = nid;
2050 
2051 		dist = sched_max_numa_distance;
2052 
2053 		for_each_online_node(node) {
2054 			score = group_weight(p, node, dist);
2055 			if (score > max_score) {
2056 				max_score = score;
2057 				max_node = node;
2058 			}
2059 		}
2060 		return max_node;
2061 	}
2062 
2063 	/*
2064 	 * Finding the preferred nid in a system with NUMA backplane
2065 	 * interconnect topology is more involved. The goal is to locate
2066 	 * tasks from numa_groups near each other in the system, and
2067 	 * untangle workloads from different sides of the system. This requires
2068 	 * searching down the hierarchy of node groups, recursively searching
2069 	 * inside the highest scoring group of nodes. The nodemask tricks
2070 	 * keep the complexity of the search down.
2071 	 */
2072 	nodes = node_online_map;
2073 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2074 		unsigned long max_faults = 0;
2075 		nodemask_t max_group = NODE_MASK_NONE;
2076 		int a, b;
2077 
2078 		/* Are there nodes at this distance from each other? */
2079 		if (!find_numa_distance(dist))
2080 			continue;
2081 
2082 		for_each_node_mask(a, nodes) {
2083 			unsigned long faults = 0;
2084 			nodemask_t this_group;
2085 			nodes_clear(this_group);
2086 
2087 			/* Sum group's NUMA faults; includes a==b case. */
2088 			for_each_node_mask(b, nodes) {
2089 				if (node_distance(a, b) < dist) {
2090 					faults += group_faults(p, b);
2091 					node_set(b, this_group);
2092 					node_clear(b, nodes);
2093 				}
2094 			}
2095 
2096 			/* Remember the top group. */
2097 			if (faults > max_faults) {
2098 				max_faults = faults;
2099 				max_group = this_group;
2100 				/*
2101 				 * subtle: at the smallest distance there is
2102 				 * just one node left in each "group", the
2103 				 * winner is the preferred nid.
2104 				 */
2105 				nid = a;
2106 			}
2107 		}
2108 		/* Next round, evaluate the nodes within max_group. */
2109 		if (!max_faults)
2110 			break;
2111 		nodes = max_group;
2112 	}
2113 	return nid;
2114 }
2115 
2116 static void task_numa_placement(struct task_struct *p)
2117 {
2118 	int seq, nid, max_nid = -1, max_group_nid = -1;
2119 	unsigned long max_faults = 0, max_group_faults = 0;
2120 	unsigned long fault_types[2] = { 0, 0 };
2121 	unsigned long total_faults;
2122 	u64 runtime, period;
2123 	spinlock_t *group_lock = NULL;
2124 
2125 	/*
2126 	 * The p->mm->numa_scan_seq field gets updated without
2127 	 * exclusive access. Use READ_ONCE() here to ensure
2128 	 * that the field is read in a single access:
2129 	 */
2130 	seq = READ_ONCE(p->mm->numa_scan_seq);
2131 	if (p->numa_scan_seq == seq)
2132 		return;
2133 	p->numa_scan_seq = seq;
2134 	p->numa_scan_period_max = task_scan_max(p);
2135 
2136 	total_faults = p->numa_faults_locality[0] +
2137 		       p->numa_faults_locality[1];
2138 	runtime = numa_get_avg_runtime(p, &period);
2139 
2140 	/* If the task is part of a group prevent parallel updates to group stats */
2141 	if (p->numa_group) {
2142 		group_lock = &p->numa_group->lock;
2143 		spin_lock_irq(group_lock);
2144 	}
2145 
2146 	/* Find the node with the highest number of faults */
2147 	for_each_online_node(nid) {
2148 		/* Keep track of the offsets in numa_faults array */
2149 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2150 		unsigned long faults = 0, group_faults = 0;
2151 		int priv;
2152 
2153 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2154 			long diff, f_diff, f_weight;
2155 
2156 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2157 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2158 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2159 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2160 
2161 			/* Decay existing window, copy faults since last scan */
2162 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2163 			fault_types[priv] += p->numa_faults[membuf_idx];
2164 			p->numa_faults[membuf_idx] = 0;
2165 
2166 			/*
2167 			 * Normalize the faults_from, so all tasks in a group
2168 			 * count according to CPU use, instead of by the raw
2169 			 * number of faults. Tasks with little runtime have
2170 			 * little over-all impact on throughput, and thus their
2171 			 * faults are less important.
2172 			 */
2173 			f_weight = div64_u64(runtime << 16, period + 1);
2174 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2175 				   (total_faults + 1);
2176 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2177 			p->numa_faults[cpubuf_idx] = 0;
2178 
2179 			p->numa_faults[mem_idx] += diff;
2180 			p->numa_faults[cpu_idx] += f_diff;
2181 			faults += p->numa_faults[mem_idx];
2182 			p->total_numa_faults += diff;
2183 			if (p->numa_group) {
2184 				/*
2185 				 * safe because we can only change our own group
2186 				 *
2187 				 * mem_idx represents the offset for a given
2188 				 * nid and priv in a specific region because it
2189 				 * is at the beginning of the numa_faults array.
2190 				 */
2191 				p->numa_group->faults[mem_idx] += diff;
2192 				p->numa_group->faults_cpu[mem_idx] += f_diff;
2193 				p->numa_group->total_faults += diff;
2194 				group_faults += p->numa_group->faults[mem_idx];
2195 			}
2196 		}
2197 
2198 		if (faults > max_faults) {
2199 			max_faults = faults;
2200 			max_nid = nid;
2201 		}
2202 
2203 		if (group_faults > max_group_faults) {
2204 			max_group_faults = group_faults;
2205 			max_group_nid = nid;
2206 		}
2207 	}
2208 
2209 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2210 
2211 	if (p->numa_group) {
2212 		numa_group_count_active_nodes(p->numa_group);
2213 		spin_unlock_irq(group_lock);
2214 		max_nid = preferred_group_nid(p, max_group_nid);
2215 	}
2216 
2217 	if (max_faults) {
2218 		/* Set the new preferred node */
2219 		if (max_nid != p->numa_preferred_nid)
2220 			sched_setnuma(p, max_nid);
2221 
2222 		if (task_node(p) != p->numa_preferred_nid)
2223 			numa_migrate_preferred(p);
2224 	}
2225 }
2226 
2227 static inline int get_numa_group(struct numa_group *grp)
2228 {
2229 	return atomic_inc_not_zero(&grp->refcount);
2230 }
2231 
2232 static inline void put_numa_group(struct numa_group *grp)
2233 {
2234 	if (atomic_dec_and_test(&grp->refcount))
2235 		kfree_rcu(grp, rcu);
2236 }
2237 
2238 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2239 			int *priv)
2240 {
2241 	struct numa_group *grp, *my_grp;
2242 	struct task_struct *tsk;
2243 	bool join = false;
2244 	int cpu = cpupid_to_cpu(cpupid);
2245 	int i;
2246 
2247 	if (unlikely(!p->numa_group)) {
2248 		unsigned int size = sizeof(struct numa_group) +
2249 				    4*nr_node_ids*sizeof(unsigned long);
2250 
2251 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2252 		if (!grp)
2253 			return;
2254 
2255 		atomic_set(&grp->refcount, 1);
2256 		grp->active_nodes = 1;
2257 		grp->max_faults_cpu = 0;
2258 		spin_lock_init(&grp->lock);
2259 		grp->gid = p->pid;
2260 		/* Second half of the array tracks nids where faults happen */
2261 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2262 						nr_node_ids;
2263 
2264 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2265 			grp->faults[i] = p->numa_faults[i];
2266 
2267 		grp->total_faults = p->total_numa_faults;
2268 
2269 		grp->nr_tasks++;
2270 		rcu_assign_pointer(p->numa_group, grp);
2271 	}
2272 
2273 	rcu_read_lock();
2274 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2275 
2276 	if (!cpupid_match_pid(tsk, cpupid))
2277 		goto no_join;
2278 
2279 	grp = rcu_dereference(tsk->numa_group);
2280 	if (!grp)
2281 		goto no_join;
2282 
2283 	my_grp = p->numa_group;
2284 	if (grp == my_grp)
2285 		goto no_join;
2286 
2287 	/*
2288 	 * Only join the other group if its bigger; if we're the bigger group,
2289 	 * the other task will join us.
2290 	 */
2291 	if (my_grp->nr_tasks > grp->nr_tasks)
2292 		goto no_join;
2293 
2294 	/*
2295 	 * Tie-break on the grp address.
2296 	 */
2297 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2298 		goto no_join;
2299 
2300 	/* Always join threads in the same process. */
2301 	if (tsk->mm == current->mm)
2302 		join = true;
2303 
2304 	/* Simple filter to avoid false positives due to PID collisions */
2305 	if (flags & TNF_SHARED)
2306 		join = true;
2307 
2308 	/* Update priv based on whether false sharing was detected */
2309 	*priv = !join;
2310 
2311 	if (join && !get_numa_group(grp))
2312 		goto no_join;
2313 
2314 	rcu_read_unlock();
2315 
2316 	if (!join)
2317 		return;
2318 
2319 	BUG_ON(irqs_disabled());
2320 	double_lock_irq(&my_grp->lock, &grp->lock);
2321 
2322 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2323 		my_grp->faults[i] -= p->numa_faults[i];
2324 		grp->faults[i] += p->numa_faults[i];
2325 	}
2326 	my_grp->total_faults -= p->total_numa_faults;
2327 	grp->total_faults += p->total_numa_faults;
2328 
2329 	my_grp->nr_tasks--;
2330 	grp->nr_tasks++;
2331 
2332 	spin_unlock(&my_grp->lock);
2333 	spin_unlock_irq(&grp->lock);
2334 
2335 	rcu_assign_pointer(p->numa_group, grp);
2336 
2337 	put_numa_group(my_grp);
2338 	return;
2339 
2340 no_join:
2341 	rcu_read_unlock();
2342 	return;
2343 }
2344 
2345 void task_numa_free(struct task_struct *p)
2346 {
2347 	struct numa_group *grp = p->numa_group;
2348 	void *numa_faults = p->numa_faults;
2349 	unsigned long flags;
2350 	int i;
2351 
2352 	if (grp) {
2353 		spin_lock_irqsave(&grp->lock, flags);
2354 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2355 			grp->faults[i] -= p->numa_faults[i];
2356 		grp->total_faults -= p->total_numa_faults;
2357 
2358 		grp->nr_tasks--;
2359 		spin_unlock_irqrestore(&grp->lock, flags);
2360 		RCU_INIT_POINTER(p->numa_group, NULL);
2361 		put_numa_group(grp);
2362 	}
2363 
2364 	p->numa_faults = NULL;
2365 	kfree(numa_faults);
2366 }
2367 
2368 /*
2369  * Got a PROT_NONE fault for a page on @node.
2370  */
2371 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2372 {
2373 	struct task_struct *p = current;
2374 	bool migrated = flags & TNF_MIGRATED;
2375 	int cpu_node = task_node(current);
2376 	int local = !!(flags & TNF_FAULT_LOCAL);
2377 	struct numa_group *ng;
2378 	int priv;
2379 
2380 	if (!static_branch_likely(&sched_numa_balancing))
2381 		return;
2382 
2383 	/* for example, ksmd faulting in a user's mm */
2384 	if (!p->mm)
2385 		return;
2386 
2387 	/* Allocate buffer to track faults on a per-node basis */
2388 	if (unlikely(!p->numa_faults)) {
2389 		int size = sizeof(*p->numa_faults) *
2390 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2391 
2392 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2393 		if (!p->numa_faults)
2394 			return;
2395 
2396 		p->total_numa_faults = 0;
2397 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2398 	}
2399 
2400 	/*
2401 	 * First accesses are treated as private, otherwise consider accesses
2402 	 * to be private if the accessing pid has not changed
2403 	 */
2404 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2405 		priv = 1;
2406 	} else {
2407 		priv = cpupid_match_pid(p, last_cpupid);
2408 		if (!priv && !(flags & TNF_NO_GROUP))
2409 			task_numa_group(p, last_cpupid, flags, &priv);
2410 	}
2411 
2412 	/*
2413 	 * If a workload spans multiple NUMA nodes, a shared fault that
2414 	 * occurs wholly within the set of nodes that the workload is
2415 	 * actively using should be counted as local. This allows the
2416 	 * scan rate to slow down when a workload has settled down.
2417 	 */
2418 	ng = p->numa_group;
2419 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2420 				numa_is_active_node(cpu_node, ng) &&
2421 				numa_is_active_node(mem_node, ng))
2422 		local = 1;
2423 
2424 	task_numa_placement(p);
2425 
2426 	/*
2427 	 * Retry task to preferred node migration periodically, in case it
2428 	 * case it previously failed, or the scheduler moved us.
2429 	 */
2430 	if (time_after(jiffies, p->numa_migrate_retry))
2431 		numa_migrate_preferred(p);
2432 
2433 	if (migrated)
2434 		p->numa_pages_migrated += pages;
2435 	if (flags & TNF_MIGRATE_FAIL)
2436 		p->numa_faults_locality[2] += pages;
2437 
2438 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2439 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2440 	p->numa_faults_locality[local] += pages;
2441 }
2442 
2443 static void reset_ptenuma_scan(struct task_struct *p)
2444 {
2445 	/*
2446 	 * We only did a read acquisition of the mmap sem, so
2447 	 * p->mm->numa_scan_seq is written to without exclusive access
2448 	 * and the update is not guaranteed to be atomic. That's not
2449 	 * much of an issue though, since this is just used for
2450 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2451 	 * expensive, to avoid any form of compiler optimizations:
2452 	 */
2453 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2454 	p->mm->numa_scan_offset = 0;
2455 }
2456 
2457 /*
2458  * The expensive part of numa migration is done from task_work context.
2459  * Triggered from task_tick_numa().
2460  */
2461 void task_numa_work(struct callback_head *work)
2462 {
2463 	unsigned long migrate, next_scan, now = jiffies;
2464 	struct task_struct *p = current;
2465 	struct mm_struct *mm = p->mm;
2466 	u64 runtime = p->se.sum_exec_runtime;
2467 	struct vm_area_struct *vma;
2468 	unsigned long start, end;
2469 	unsigned long nr_pte_updates = 0;
2470 	long pages, virtpages;
2471 
2472 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2473 
2474 	work->next = work; /* protect against double add */
2475 	/*
2476 	 * Who cares about NUMA placement when they're dying.
2477 	 *
2478 	 * NOTE: make sure not to dereference p->mm before this check,
2479 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2480 	 * without p->mm even though we still had it when we enqueued this
2481 	 * work.
2482 	 */
2483 	if (p->flags & PF_EXITING)
2484 		return;
2485 
2486 	if (!mm->numa_next_scan) {
2487 		mm->numa_next_scan = now +
2488 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2489 	}
2490 
2491 	/*
2492 	 * Enforce maximal scan/migration frequency..
2493 	 */
2494 	migrate = mm->numa_next_scan;
2495 	if (time_before(now, migrate))
2496 		return;
2497 
2498 	if (p->numa_scan_period == 0) {
2499 		p->numa_scan_period_max = task_scan_max(p);
2500 		p->numa_scan_period = task_scan_start(p);
2501 	}
2502 
2503 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2504 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2505 		return;
2506 
2507 	/*
2508 	 * Delay this task enough that another task of this mm will likely win
2509 	 * the next time around.
2510 	 */
2511 	p->node_stamp += 2 * TICK_NSEC;
2512 
2513 	start = mm->numa_scan_offset;
2514 	pages = sysctl_numa_balancing_scan_size;
2515 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2516 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2517 	if (!pages)
2518 		return;
2519 
2520 
2521 	if (!down_read_trylock(&mm->mmap_sem))
2522 		return;
2523 	vma = find_vma(mm, start);
2524 	if (!vma) {
2525 		reset_ptenuma_scan(p);
2526 		start = 0;
2527 		vma = mm->mmap;
2528 	}
2529 	for (; vma; vma = vma->vm_next) {
2530 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2531 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2532 			continue;
2533 		}
2534 
2535 		/*
2536 		 * Shared library pages mapped by multiple processes are not
2537 		 * migrated as it is expected they are cache replicated. Avoid
2538 		 * hinting faults in read-only file-backed mappings or the vdso
2539 		 * as migrating the pages will be of marginal benefit.
2540 		 */
2541 		if (!vma->vm_mm ||
2542 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2543 			continue;
2544 
2545 		/*
2546 		 * Skip inaccessible VMAs to avoid any confusion between
2547 		 * PROT_NONE and NUMA hinting ptes
2548 		 */
2549 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2550 			continue;
2551 
2552 		do {
2553 			start = max(start, vma->vm_start);
2554 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2555 			end = min(end, vma->vm_end);
2556 			nr_pte_updates = change_prot_numa(vma, start, end);
2557 
2558 			/*
2559 			 * Try to scan sysctl_numa_balancing_size worth of
2560 			 * hpages that have at least one present PTE that
2561 			 * is not already pte-numa. If the VMA contains
2562 			 * areas that are unused or already full of prot_numa
2563 			 * PTEs, scan up to virtpages, to skip through those
2564 			 * areas faster.
2565 			 */
2566 			if (nr_pte_updates)
2567 				pages -= (end - start) >> PAGE_SHIFT;
2568 			virtpages -= (end - start) >> PAGE_SHIFT;
2569 
2570 			start = end;
2571 			if (pages <= 0 || virtpages <= 0)
2572 				goto out;
2573 
2574 			cond_resched();
2575 		} while (end != vma->vm_end);
2576 	}
2577 
2578 out:
2579 	/*
2580 	 * It is possible to reach the end of the VMA list but the last few
2581 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2582 	 * would find the !migratable VMA on the next scan but not reset the
2583 	 * scanner to the start so check it now.
2584 	 */
2585 	if (vma)
2586 		mm->numa_scan_offset = start;
2587 	else
2588 		reset_ptenuma_scan(p);
2589 	up_read(&mm->mmap_sem);
2590 
2591 	/*
2592 	 * Make sure tasks use at least 32x as much time to run other code
2593 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2594 	 * Usually update_task_scan_period slows down scanning enough; on an
2595 	 * overloaded system we need to limit overhead on a per task basis.
2596 	 */
2597 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2598 		u64 diff = p->se.sum_exec_runtime - runtime;
2599 		p->node_stamp += 32 * diff;
2600 	}
2601 }
2602 
2603 /*
2604  * Drive the periodic memory faults..
2605  */
2606 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2607 {
2608 	struct callback_head *work = &curr->numa_work;
2609 	u64 period, now;
2610 
2611 	/*
2612 	 * We don't care about NUMA placement if we don't have memory.
2613 	 */
2614 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2615 		return;
2616 
2617 	/*
2618 	 * Using runtime rather than walltime has the dual advantage that
2619 	 * we (mostly) drive the selection from busy threads and that the
2620 	 * task needs to have done some actual work before we bother with
2621 	 * NUMA placement.
2622 	 */
2623 	now = curr->se.sum_exec_runtime;
2624 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2625 
2626 	if (now > curr->node_stamp + period) {
2627 		if (!curr->node_stamp)
2628 			curr->numa_scan_period = task_scan_start(curr);
2629 		curr->node_stamp += period;
2630 
2631 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2632 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2633 			task_work_add(curr, work, true);
2634 		}
2635 	}
2636 }
2637 
2638 #else
2639 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2640 {
2641 }
2642 
2643 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2644 {
2645 }
2646 
2647 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2648 {
2649 }
2650 
2651 #endif /* CONFIG_NUMA_BALANCING */
2652 
2653 static void
2654 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2655 {
2656 	update_load_add(&cfs_rq->load, se->load.weight);
2657 	if (!parent_entity(se))
2658 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2659 #ifdef CONFIG_SMP
2660 	if (entity_is_task(se)) {
2661 		struct rq *rq = rq_of(cfs_rq);
2662 
2663 		account_numa_enqueue(rq, task_of(se));
2664 		list_add(&se->group_node, &rq->cfs_tasks);
2665 	}
2666 #endif
2667 	cfs_rq->nr_running++;
2668 }
2669 
2670 static void
2671 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2672 {
2673 	update_load_sub(&cfs_rq->load, se->load.weight);
2674 	if (!parent_entity(se))
2675 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2676 #ifdef CONFIG_SMP
2677 	if (entity_is_task(se)) {
2678 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2679 		list_del_init(&se->group_node);
2680 	}
2681 #endif
2682 	cfs_rq->nr_running--;
2683 }
2684 
2685 /*
2686  * Signed add and clamp on underflow.
2687  *
2688  * Explicitly do a load-store to ensure the intermediate value never hits
2689  * memory. This allows lockless observations without ever seeing the negative
2690  * values.
2691  */
2692 #define add_positive(_ptr, _val) do {                           \
2693 	typeof(_ptr) ptr = (_ptr);                              \
2694 	typeof(_val) val = (_val);                              \
2695 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2696 								\
2697 	res = var + val;                                        \
2698 								\
2699 	if (val < 0 && res > var)                               \
2700 		res = 0;                                        \
2701 								\
2702 	WRITE_ONCE(*ptr, res);                                  \
2703 } while (0)
2704 
2705 /*
2706  * Unsigned subtract and clamp on underflow.
2707  *
2708  * Explicitly do a load-store to ensure the intermediate value never hits
2709  * memory. This allows lockless observations without ever seeing the negative
2710  * values.
2711  */
2712 #define sub_positive(_ptr, _val) do {				\
2713 	typeof(_ptr) ptr = (_ptr);				\
2714 	typeof(*ptr) val = (_val);				\
2715 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
2716 	res = var - val;					\
2717 	if (res > var)						\
2718 		res = 0;					\
2719 	WRITE_ONCE(*ptr, res);					\
2720 } while (0)
2721 
2722 #ifdef CONFIG_SMP
2723 /*
2724  * XXX we want to get rid of these helpers and use the full load resolution.
2725  */
2726 static inline long se_weight(struct sched_entity *se)
2727 {
2728 	return scale_load_down(se->load.weight);
2729 }
2730 
2731 static inline long se_runnable(struct sched_entity *se)
2732 {
2733 	return scale_load_down(se->runnable_weight);
2734 }
2735 
2736 static inline void
2737 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2738 {
2739 	cfs_rq->runnable_weight += se->runnable_weight;
2740 
2741 	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2742 	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2743 }
2744 
2745 static inline void
2746 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2747 {
2748 	cfs_rq->runnable_weight -= se->runnable_weight;
2749 
2750 	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2751 	sub_positive(&cfs_rq->avg.runnable_load_sum,
2752 		     se_runnable(se) * se->avg.runnable_load_sum);
2753 }
2754 
2755 static inline void
2756 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2757 {
2758 	cfs_rq->avg.load_avg += se->avg.load_avg;
2759 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2760 }
2761 
2762 static inline void
2763 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2764 {
2765 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2766 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2767 }
2768 #else
2769 static inline void
2770 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2771 static inline void
2772 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2773 static inline void
2774 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2775 static inline void
2776 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2777 #endif
2778 
2779 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2780 			    unsigned long weight, unsigned long runnable)
2781 {
2782 	if (se->on_rq) {
2783 		/* commit outstanding execution time */
2784 		if (cfs_rq->curr == se)
2785 			update_curr(cfs_rq);
2786 		account_entity_dequeue(cfs_rq, se);
2787 		dequeue_runnable_load_avg(cfs_rq, se);
2788 	}
2789 	dequeue_load_avg(cfs_rq, se);
2790 
2791 	se->runnable_weight = runnable;
2792 	update_load_set(&se->load, weight);
2793 
2794 #ifdef CONFIG_SMP
2795 	do {
2796 		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2797 
2798 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2799 		se->avg.runnable_load_avg =
2800 			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2801 	} while (0);
2802 #endif
2803 
2804 	enqueue_load_avg(cfs_rq, se);
2805 	if (se->on_rq) {
2806 		account_entity_enqueue(cfs_rq, se);
2807 		enqueue_runnable_load_avg(cfs_rq, se);
2808 	}
2809 }
2810 
2811 void reweight_task(struct task_struct *p, int prio)
2812 {
2813 	struct sched_entity *se = &p->se;
2814 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2815 	struct load_weight *load = &se->load;
2816 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2817 
2818 	reweight_entity(cfs_rq, se, weight, weight);
2819 	load->inv_weight = sched_prio_to_wmult[prio];
2820 }
2821 
2822 #ifdef CONFIG_FAIR_GROUP_SCHED
2823 #ifdef CONFIG_SMP
2824 /*
2825  * All this does is approximate the hierarchical proportion which includes that
2826  * global sum we all love to hate.
2827  *
2828  * That is, the weight of a group entity, is the proportional share of the
2829  * group weight based on the group runqueue weights. That is:
2830  *
2831  *                     tg->weight * grq->load.weight
2832  *   ge->load.weight = -----------------------------               (1)
2833  *			  \Sum grq->load.weight
2834  *
2835  * Now, because computing that sum is prohibitively expensive to compute (been
2836  * there, done that) we approximate it with this average stuff. The average
2837  * moves slower and therefore the approximation is cheaper and more stable.
2838  *
2839  * So instead of the above, we substitute:
2840  *
2841  *   grq->load.weight -> grq->avg.load_avg                         (2)
2842  *
2843  * which yields the following:
2844  *
2845  *                     tg->weight * grq->avg.load_avg
2846  *   ge->load.weight = ------------------------------              (3)
2847  *				tg->load_avg
2848  *
2849  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2850  *
2851  * That is shares_avg, and it is right (given the approximation (2)).
2852  *
2853  * The problem with it is that because the average is slow -- it was designed
2854  * to be exactly that of course -- this leads to transients in boundary
2855  * conditions. In specific, the case where the group was idle and we start the
2856  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2857  * yielding bad latency etc..
2858  *
2859  * Now, in that special case (1) reduces to:
2860  *
2861  *                     tg->weight * grq->load.weight
2862  *   ge->load.weight = ----------------------------- = tg->weight   (4)
2863  *			    grp->load.weight
2864  *
2865  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2866  *
2867  * So what we do is modify our approximation (3) to approach (4) in the (near)
2868  * UP case, like:
2869  *
2870  *   ge->load.weight =
2871  *
2872  *              tg->weight * grq->load.weight
2873  *     ---------------------------------------------------         (5)
2874  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
2875  *
2876  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2877  * we need to use grq->avg.load_avg as its lower bound, which then gives:
2878  *
2879  *
2880  *                     tg->weight * grq->load.weight
2881  *   ge->load.weight = -----------------------------		   (6)
2882  *				tg_load_avg'
2883  *
2884  * Where:
2885  *
2886  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2887  *                  max(grq->load.weight, grq->avg.load_avg)
2888  *
2889  * And that is shares_weight and is icky. In the (near) UP case it approaches
2890  * (4) while in the normal case it approaches (3). It consistently
2891  * overestimates the ge->load.weight and therefore:
2892  *
2893  *   \Sum ge->load.weight >= tg->weight
2894  *
2895  * hence icky!
2896  */
2897 static long calc_group_shares(struct cfs_rq *cfs_rq)
2898 {
2899 	long tg_weight, tg_shares, load, shares;
2900 	struct task_group *tg = cfs_rq->tg;
2901 
2902 	tg_shares = READ_ONCE(tg->shares);
2903 
2904 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2905 
2906 	tg_weight = atomic_long_read(&tg->load_avg);
2907 
2908 	/* Ensure tg_weight >= load */
2909 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2910 	tg_weight += load;
2911 
2912 	shares = (tg_shares * load);
2913 	if (tg_weight)
2914 		shares /= tg_weight;
2915 
2916 	/*
2917 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2918 	 * of a group with small tg->shares value. It is a floor value which is
2919 	 * assigned as a minimum load.weight to the sched_entity representing
2920 	 * the group on a CPU.
2921 	 *
2922 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2923 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2924 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2925 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2926 	 * instead of 0.
2927 	 */
2928 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
2929 }
2930 
2931 /*
2932  * This calculates the effective runnable weight for a group entity based on
2933  * the group entity weight calculated above.
2934  *
2935  * Because of the above approximation (2), our group entity weight is
2936  * an load_avg based ratio (3). This means that it includes blocked load and
2937  * does not represent the runnable weight.
2938  *
2939  * Approximate the group entity's runnable weight per ratio from the group
2940  * runqueue:
2941  *
2942  *					     grq->avg.runnable_load_avg
2943  *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
2944  *						 grq->avg.load_avg
2945  *
2946  * However, analogous to above, since the avg numbers are slow, this leads to
2947  * transients in the from-idle case. Instead we use:
2948  *
2949  *   ge->runnable_weight = ge->load.weight *
2950  *
2951  *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
2952  *		-----------------------------------------------------	(8)
2953  *		      max(grq->avg.load_avg, grq->load.weight)
2954  *
2955  * Where these max() serve both to use the 'instant' values to fix the slow
2956  * from-idle and avoid the /0 on to-idle, similar to (6).
2957  */
2958 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2959 {
2960 	long runnable, load_avg;
2961 
2962 	load_avg = max(cfs_rq->avg.load_avg,
2963 		       scale_load_down(cfs_rq->load.weight));
2964 
2965 	runnable = max(cfs_rq->avg.runnable_load_avg,
2966 		       scale_load_down(cfs_rq->runnable_weight));
2967 
2968 	runnable *= shares;
2969 	if (load_avg)
2970 		runnable /= load_avg;
2971 
2972 	return clamp_t(long, runnable, MIN_SHARES, shares);
2973 }
2974 #endif /* CONFIG_SMP */
2975 
2976 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2977 
2978 /*
2979  * Recomputes the group entity based on the current state of its group
2980  * runqueue.
2981  */
2982 static void update_cfs_group(struct sched_entity *se)
2983 {
2984 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
2985 	long shares, runnable;
2986 
2987 	if (!gcfs_rq)
2988 		return;
2989 
2990 	if (throttled_hierarchy(gcfs_rq))
2991 		return;
2992 
2993 #ifndef CONFIG_SMP
2994 	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
2995 
2996 	if (likely(se->load.weight == shares))
2997 		return;
2998 #else
2999 	shares   = calc_group_shares(gcfs_rq);
3000 	runnable = calc_group_runnable(gcfs_rq, shares);
3001 #endif
3002 
3003 	reweight_entity(cfs_rq_of(se), se, shares, runnable);
3004 }
3005 
3006 #else /* CONFIG_FAIR_GROUP_SCHED */
3007 static inline void update_cfs_group(struct sched_entity *se)
3008 {
3009 }
3010 #endif /* CONFIG_FAIR_GROUP_SCHED */
3011 
3012 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3013 {
3014 	struct rq *rq = rq_of(cfs_rq);
3015 
3016 	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3017 		/*
3018 		 * There are a few boundary cases this might miss but it should
3019 		 * get called often enough that that should (hopefully) not be
3020 		 * a real problem.
3021 		 *
3022 		 * It will not get called when we go idle, because the idle
3023 		 * thread is a different class (!fair), nor will the utilization
3024 		 * number include things like RT tasks.
3025 		 *
3026 		 * As is, the util number is not freq-invariant (we'd have to
3027 		 * implement arch_scale_freq_capacity() for that).
3028 		 *
3029 		 * See cpu_util().
3030 		 */
3031 		cpufreq_update_util(rq, flags);
3032 	}
3033 }
3034 
3035 #ifdef CONFIG_SMP
3036 /*
3037  * Approximate:
3038  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
3039  */
3040 static u64 decay_load(u64 val, u64 n)
3041 {
3042 	unsigned int local_n;
3043 
3044 	if (unlikely(n > LOAD_AVG_PERIOD * 63))
3045 		return 0;
3046 
3047 	/* after bounds checking we can collapse to 32-bit */
3048 	local_n = n;
3049 
3050 	/*
3051 	 * As y^PERIOD = 1/2, we can combine
3052 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
3053 	 * With a look-up table which covers y^n (n<PERIOD)
3054 	 *
3055 	 * To achieve constant time decay_load.
3056 	 */
3057 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
3058 		val >>= local_n / LOAD_AVG_PERIOD;
3059 		local_n %= LOAD_AVG_PERIOD;
3060 	}
3061 
3062 	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
3063 	return val;
3064 }
3065 
3066 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
3067 {
3068 	u32 c1, c2, c3 = d3; /* y^0 == 1 */
3069 
3070 	/*
3071 	 * c1 = d1 y^p
3072 	 */
3073 	c1 = decay_load((u64)d1, periods);
3074 
3075 	/*
3076 	 *            p-1
3077 	 * c2 = 1024 \Sum y^n
3078 	 *            n=1
3079 	 *
3080 	 *              inf        inf
3081 	 *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
3082 	 *              n=0        n=p
3083 	 */
3084 	c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
3085 
3086 	return c1 + c2 + c3;
3087 }
3088 
3089 /*
3090  * Accumulate the three separate parts of the sum; d1 the remainder
3091  * of the last (incomplete) period, d2 the span of full periods and d3
3092  * the remainder of the (incomplete) current period.
3093  *
3094  *           d1          d2           d3
3095  *           ^           ^            ^
3096  *           |           |            |
3097  *         |<->|<----------------->|<--->|
3098  * ... |---x---|------| ... |------|-----x (now)
3099  *
3100  *                           p-1
3101  * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
3102  *                           n=1
3103  *
3104  *    = u y^p +					(Step 1)
3105  *
3106  *                     p-1
3107  *      d1 y^p + 1024 \Sum y^n + d3 y^0		(Step 2)
3108  *                     n=1
3109  */
3110 static __always_inline u32
3111 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
3112 	       unsigned long load, unsigned long runnable, int running)
3113 {
3114 	unsigned long scale_freq, scale_cpu;
3115 	u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
3116 	u64 periods;
3117 
3118 	scale_freq = arch_scale_freq_capacity(cpu);
3119 	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
3120 
3121 	delta += sa->period_contrib;
3122 	periods = delta / 1024; /* A period is 1024us (~1ms) */
3123 
3124 	/*
3125 	 * Step 1: decay old *_sum if we crossed period boundaries.
3126 	 */
3127 	if (periods) {
3128 		sa->load_sum = decay_load(sa->load_sum, periods);
3129 		sa->runnable_load_sum =
3130 			decay_load(sa->runnable_load_sum, periods);
3131 		sa->util_sum = decay_load((u64)(sa->util_sum), periods);
3132 
3133 		/*
3134 		 * Step 2
3135 		 */
3136 		delta %= 1024;
3137 		contrib = __accumulate_pelt_segments(periods,
3138 				1024 - sa->period_contrib, delta);
3139 	}
3140 	sa->period_contrib = delta;
3141 
3142 	contrib = cap_scale(contrib, scale_freq);
3143 	if (load)
3144 		sa->load_sum += load * contrib;
3145 	if (runnable)
3146 		sa->runnable_load_sum += runnable * contrib;
3147 	if (running)
3148 		sa->util_sum += contrib * scale_cpu;
3149 
3150 	return periods;
3151 }
3152 
3153 /*
3154  * We can represent the historical contribution to runnable average as the
3155  * coefficients of a geometric series.  To do this we sub-divide our runnable
3156  * history into segments of approximately 1ms (1024us); label the segment that
3157  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
3158  *
3159  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
3160  *      p0            p1           p2
3161  *     (now)       (~1ms ago)  (~2ms ago)
3162  *
3163  * Let u_i denote the fraction of p_i that the entity was runnable.
3164  *
3165  * We then designate the fractions u_i as our co-efficients, yielding the
3166  * following representation of historical load:
3167  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
3168  *
3169  * We choose y based on the with of a reasonably scheduling period, fixing:
3170  *   y^32 = 0.5
3171  *
3172  * This means that the contribution to load ~32ms ago (u_32) will be weighted
3173  * approximately half as much as the contribution to load within the last ms
3174  * (u_0).
3175  *
3176  * When a period "rolls over" and we have new u_0`, multiplying the previous
3177  * sum again by y is sufficient to update:
3178  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
3179  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
3180  */
3181 static __always_inline int
3182 ___update_load_sum(u64 now, int cpu, struct sched_avg *sa,
3183 		  unsigned long load, unsigned long runnable, int running)
3184 {
3185 	u64 delta;
3186 
3187 	delta = now - sa->last_update_time;
3188 	/*
3189 	 * This should only happen when time goes backwards, which it
3190 	 * unfortunately does during sched clock init when we swap over to TSC.
3191 	 */
3192 	if ((s64)delta < 0) {
3193 		sa->last_update_time = now;
3194 		return 0;
3195 	}
3196 
3197 	/*
3198 	 * Use 1024ns as the unit of measurement since it's a reasonable
3199 	 * approximation of 1us and fast to compute.
3200 	 */
3201 	delta >>= 10;
3202 	if (!delta)
3203 		return 0;
3204 
3205 	sa->last_update_time += delta << 10;
3206 
3207 	/*
3208 	 * running is a subset of runnable (weight) so running can't be set if
3209 	 * runnable is clear. But there are some corner cases where the current
3210 	 * se has been already dequeued but cfs_rq->curr still points to it.
3211 	 * This means that weight will be 0 but not running for a sched_entity
3212 	 * but also for a cfs_rq if the latter becomes idle. As an example,
3213 	 * this happens during idle_balance() which calls
3214 	 * update_blocked_averages()
3215 	 */
3216 	if (!load)
3217 		runnable = running = 0;
3218 
3219 	/*
3220 	 * Now we know we crossed measurement unit boundaries. The *_avg
3221 	 * accrues by two steps:
3222 	 *
3223 	 * Step 1: accumulate *_sum since last_update_time. If we haven't
3224 	 * crossed period boundaries, finish.
3225 	 */
3226 	if (!accumulate_sum(delta, cpu, sa, load, runnable, running))
3227 		return 0;
3228 
3229 	return 1;
3230 }
3231 
3232 static __always_inline void
3233 ___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable)
3234 {
3235 	u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3236 
3237 	/*
3238 	 * Step 2: update *_avg.
3239 	 */
3240 	sa->load_avg = div_u64(load * sa->load_sum, divider);
3241 	sa->runnable_load_avg =	div_u64(runnable * sa->runnable_load_sum, divider);
3242 	sa->util_avg = sa->util_sum / divider;
3243 }
3244 
3245 /*
3246  * When a task is dequeued, its estimated utilization should not be update if
3247  * its util_avg has not been updated at least once.
3248  * This flag is used to synchronize util_avg updates with util_est updates.
3249  * We map this information into the LSB bit of the utilization saved at
3250  * dequeue time (i.e. util_est.dequeued).
3251  */
3252 #define UTIL_AVG_UNCHANGED 0x1
3253 
3254 static inline void cfs_se_util_change(struct sched_avg *avg)
3255 {
3256 	unsigned int enqueued;
3257 
3258 	if (!sched_feat(UTIL_EST))
3259 		return;
3260 
3261 	/* Avoid store if the flag has been already set */
3262 	enqueued = avg->util_est.enqueued;
3263 	if (!(enqueued & UTIL_AVG_UNCHANGED))
3264 		return;
3265 
3266 	/* Reset flag to report util_avg has been updated */
3267 	enqueued &= ~UTIL_AVG_UNCHANGED;
3268 	WRITE_ONCE(avg->util_est.enqueued, enqueued);
3269 }
3270 
3271 /*
3272  * sched_entity:
3273  *
3274  *   task:
3275  *     se_runnable() == se_weight()
3276  *
3277  *   group: [ see update_cfs_group() ]
3278  *     se_weight()   = tg->weight * grq->load_avg / tg->load_avg
3279  *     se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg
3280  *
3281  *   load_sum := runnable_sum
3282  *   load_avg = se_weight(se) * runnable_avg
3283  *
3284  *   runnable_load_sum := runnable_sum
3285  *   runnable_load_avg = se_runnable(se) * runnable_avg
3286  *
3287  * XXX collapse load_sum and runnable_load_sum
3288  *
3289  * cfq_rs:
3290  *
3291  *   load_sum = \Sum se_weight(se) * se->avg.load_sum
3292  *   load_avg = \Sum se->avg.load_avg
3293  *
3294  *   runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum
3295  *   runnable_load_avg = \Sum se->avg.runable_load_avg
3296  */
3297 
3298 static int
3299 __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
3300 {
3301 	if (entity_is_task(se))
3302 		se->runnable_weight = se->load.weight;
3303 
3304 	if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) {
3305 		___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
3306 		return 1;
3307 	}
3308 
3309 	return 0;
3310 }
3311 
3312 static int
3313 __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
3314 {
3315 	if (entity_is_task(se))
3316 		se->runnable_weight = se->load.weight;
3317 
3318 	if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq,
3319 				cfs_rq->curr == se)) {
3320 
3321 		___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
3322 		cfs_se_util_change(&se->avg);
3323 		return 1;
3324 	}
3325 
3326 	return 0;
3327 }
3328 
3329 static int
3330 __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
3331 {
3332 	if (___update_load_sum(now, cpu, &cfs_rq->avg,
3333 				scale_load_down(cfs_rq->load.weight),
3334 				scale_load_down(cfs_rq->runnable_weight),
3335 				cfs_rq->curr != NULL)) {
3336 
3337 		___update_load_avg(&cfs_rq->avg, 1, 1);
3338 		return 1;
3339 	}
3340 
3341 	return 0;
3342 }
3343 
3344 #ifdef CONFIG_FAIR_GROUP_SCHED
3345 /**
3346  * update_tg_load_avg - update the tg's load avg
3347  * @cfs_rq: the cfs_rq whose avg changed
3348  * @force: update regardless of how small the difference
3349  *
3350  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3351  * However, because tg->load_avg is a global value there are performance
3352  * considerations.
3353  *
3354  * In order to avoid having to look at the other cfs_rq's, we use a
3355  * differential update where we store the last value we propagated. This in
3356  * turn allows skipping updates if the differential is 'small'.
3357  *
3358  * Updating tg's load_avg is necessary before update_cfs_share().
3359  */
3360 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3361 {
3362 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3363 
3364 	/*
3365 	 * No need to update load_avg for root_task_group as it is not used.
3366 	 */
3367 	if (cfs_rq->tg == &root_task_group)
3368 		return;
3369 
3370 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3371 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3372 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3373 	}
3374 }
3375 
3376 /*
3377  * Called within set_task_rq() right before setting a task's CPU. The
3378  * caller only guarantees p->pi_lock is held; no other assumptions,
3379  * including the state of rq->lock, should be made.
3380  */
3381 void set_task_rq_fair(struct sched_entity *se,
3382 		      struct cfs_rq *prev, struct cfs_rq *next)
3383 {
3384 	u64 p_last_update_time;
3385 	u64 n_last_update_time;
3386 
3387 	if (!sched_feat(ATTACH_AGE_LOAD))
3388 		return;
3389 
3390 	/*
3391 	 * We are supposed to update the task to "current" time, then its up to
3392 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3393 	 * getting what current time is, so simply throw away the out-of-date
3394 	 * time. This will result in the wakee task is less decayed, but giving
3395 	 * the wakee more load sounds not bad.
3396 	 */
3397 	if (!(se->avg.last_update_time && prev))
3398 		return;
3399 
3400 #ifndef CONFIG_64BIT
3401 	{
3402 		u64 p_last_update_time_copy;
3403 		u64 n_last_update_time_copy;
3404 
3405 		do {
3406 			p_last_update_time_copy = prev->load_last_update_time_copy;
3407 			n_last_update_time_copy = next->load_last_update_time_copy;
3408 
3409 			smp_rmb();
3410 
3411 			p_last_update_time = prev->avg.last_update_time;
3412 			n_last_update_time = next->avg.last_update_time;
3413 
3414 		} while (p_last_update_time != p_last_update_time_copy ||
3415 			 n_last_update_time != n_last_update_time_copy);
3416 	}
3417 #else
3418 	p_last_update_time = prev->avg.last_update_time;
3419 	n_last_update_time = next->avg.last_update_time;
3420 #endif
3421 	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3422 	se->avg.last_update_time = n_last_update_time;
3423 }
3424 
3425 
3426 /*
3427  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3428  * propagate its contribution. The key to this propagation is the invariant
3429  * that for each group:
3430  *
3431  *   ge->avg == grq->avg						(1)
3432  *
3433  * _IFF_ we look at the pure running and runnable sums. Because they
3434  * represent the very same entity, just at different points in the hierarchy.
3435  *
3436  * Per the above update_tg_cfs_util() is trivial and simply copies the running
3437  * sum over (but still wrong, because the group entity and group rq do not have
3438  * their PELT windows aligned).
3439  *
3440  * However, update_tg_cfs_runnable() is more complex. So we have:
3441  *
3442  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3443  *
3444  * And since, like util, the runnable part should be directly transferable,
3445  * the following would _appear_ to be the straight forward approach:
3446  *
3447  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3448  *
3449  * And per (1) we have:
3450  *
3451  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3452  *
3453  * Which gives:
3454  *
3455  *                      ge->load.weight * grq->avg.load_avg
3456  *   ge->avg.load_avg = -----------------------------------		(4)
3457  *                               grq->load.weight
3458  *
3459  * Except that is wrong!
3460  *
3461  * Because while for entities historical weight is not important and we
3462  * really only care about our future and therefore can consider a pure
3463  * runnable sum, runqueues can NOT do this.
3464  *
3465  * We specifically want runqueues to have a load_avg that includes
3466  * historical weights. Those represent the blocked load, the load we expect
3467  * to (shortly) return to us. This only works by keeping the weights as
3468  * integral part of the sum. We therefore cannot decompose as per (3).
3469  *
3470  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3471  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3472  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3473  * runnable section of these tasks overlap (or not). If they were to perfectly
3474  * align the rq as a whole would be runnable 2/3 of the time. If however we
3475  * always have at least 1 runnable task, the rq as a whole is always runnable.
3476  *
3477  * So we'll have to approximate.. :/
3478  *
3479  * Given the constraint:
3480  *
3481  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3482  *
3483  * We can construct a rule that adds runnable to a rq by assuming minimal
3484  * overlap.
3485  *
3486  * On removal, we'll assume each task is equally runnable; which yields:
3487  *
3488  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3489  *
3490  * XXX: only do this for the part of runnable > running ?
3491  *
3492  */
3493 
3494 static inline void
3495 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3496 {
3497 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3498 
3499 	/* Nothing to update */
3500 	if (!delta)
3501 		return;
3502 
3503 	/*
3504 	 * The relation between sum and avg is:
3505 	 *
3506 	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
3507 	 *
3508 	 * however, the PELT windows are not aligned between grq and gse.
3509 	 */
3510 
3511 	/* Set new sched_entity's utilization */
3512 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3513 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3514 
3515 	/* Update parent cfs_rq utilization */
3516 	add_positive(&cfs_rq->avg.util_avg, delta);
3517 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3518 }
3519 
3520 static inline void
3521 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3522 {
3523 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3524 	unsigned long runnable_load_avg, load_avg;
3525 	u64 runnable_load_sum, load_sum = 0;
3526 	s64 delta_sum;
3527 
3528 	if (!runnable_sum)
3529 		return;
3530 
3531 	gcfs_rq->prop_runnable_sum = 0;
3532 
3533 	if (runnable_sum >= 0) {
3534 		/*
3535 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3536 		 * the CPU is saturated running == runnable.
3537 		 */
3538 		runnable_sum += se->avg.load_sum;
3539 		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3540 	} else {
3541 		/*
3542 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3543 		 * assuming all tasks are equally runnable.
3544 		 */
3545 		if (scale_load_down(gcfs_rq->load.weight)) {
3546 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3547 				scale_load_down(gcfs_rq->load.weight));
3548 		}
3549 
3550 		/* But make sure to not inflate se's runnable */
3551 		runnable_sum = min(se->avg.load_sum, load_sum);
3552 	}
3553 
3554 	/*
3555 	 * runnable_sum can't be lower than running_sum
3556 	 * As running sum is scale with CPU capacity wehreas the runnable sum
3557 	 * is not we rescale running_sum 1st
3558 	 */
3559 	running_sum = se->avg.util_sum /
3560 		arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
3561 	runnable_sum = max(runnable_sum, running_sum);
3562 
3563 	load_sum = (s64)se_weight(se) * runnable_sum;
3564 	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3565 
3566 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3567 	delta_avg = load_avg - se->avg.load_avg;
3568 
3569 	se->avg.load_sum = runnable_sum;
3570 	se->avg.load_avg = load_avg;
3571 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3572 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3573 
3574 	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3575 	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3576 	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3577 	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3578 
3579 	se->avg.runnable_load_sum = runnable_sum;
3580 	se->avg.runnable_load_avg = runnable_load_avg;
3581 
3582 	if (se->on_rq) {
3583 		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3584 		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3585 	}
3586 }
3587 
3588 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3589 {
3590 	cfs_rq->propagate = 1;
3591 	cfs_rq->prop_runnable_sum += runnable_sum;
3592 }
3593 
3594 /* Update task and its cfs_rq load average */
3595 static inline int propagate_entity_load_avg(struct sched_entity *se)
3596 {
3597 	struct cfs_rq *cfs_rq, *gcfs_rq;
3598 
3599 	if (entity_is_task(se))
3600 		return 0;
3601 
3602 	gcfs_rq = group_cfs_rq(se);
3603 	if (!gcfs_rq->propagate)
3604 		return 0;
3605 
3606 	gcfs_rq->propagate = 0;
3607 
3608 	cfs_rq = cfs_rq_of(se);
3609 
3610 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3611 
3612 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3613 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3614 
3615 	return 1;
3616 }
3617 
3618 /*
3619  * Check if we need to update the load and the utilization of a blocked
3620  * group_entity:
3621  */
3622 static inline bool skip_blocked_update(struct sched_entity *se)
3623 {
3624 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3625 
3626 	/*
3627 	 * If sched_entity still have not zero load or utilization, we have to
3628 	 * decay it:
3629 	 */
3630 	if (se->avg.load_avg || se->avg.util_avg)
3631 		return false;
3632 
3633 	/*
3634 	 * If there is a pending propagation, we have to update the load and
3635 	 * the utilization of the sched_entity:
3636 	 */
3637 	if (gcfs_rq->propagate)
3638 		return false;
3639 
3640 	/*
3641 	 * Otherwise, the load and the utilization of the sched_entity is
3642 	 * already zero and there is no pending propagation, so it will be a
3643 	 * waste of time to try to decay it:
3644 	 */
3645 	return true;
3646 }
3647 
3648 #else /* CONFIG_FAIR_GROUP_SCHED */
3649 
3650 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3651 
3652 static inline int propagate_entity_load_avg(struct sched_entity *se)
3653 {
3654 	return 0;
3655 }
3656 
3657 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3658 
3659 #endif /* CONFIG_FAIR_GROUP_SCHED */
3660 
3661 /**
3662  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3663  * @now: current time, as per cfs_rq_clock_task()
3664  * @cfs_rq: cfs_rq to update
3665  *
3666  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3667  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3668  * post_init_entity_util_avg().
3669  *
3670  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3671  *
3672  * Returns true if the load decayed or we removed load.
3673  *
3674  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3675  * call update_tg_load_avg() when this function returns true.
3676  */
3677 static inline int
3678 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3679 {
3680 	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3681 	struct sched_avg *sa = &cfs_rq->avg;
3682 	int decayed = 0;
3683 
3684 	if (cfs_rq->removed.nr) {
3685 		unsigned long r;
3686 		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3687 
3688 		raw_spin_lock(&cfs_rq->removed.lock);
3689 		swap(cfs_rq->removed.util_avg, removed_util);
3690 		swap(cfs_rq->removed.load_avg, removed_load);
3691 		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3692 		cfs_rq->removed.nr = 0;
3693 		raw_spin_unlock(&cfs_rq->removed.lock);
3694 
3695 		r = removed_load;
3696 		sub_positive(&sa->load_avg, r);
3697 		sub_positive(&sa->load_sum, r * divider);
3698 
3699 		r = removed_util;
3700 		sub_positive(&sa->util_avg, r);
3701 		sub_positive(&sa->util_sum, r * divider);
3702 
3703 		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3704 
3705 		decayed = 1;
3706 	}
3707 
3708 	decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3709 
3710 #ifndef CONFIG_64BIT
3711 	smp_wmb();
3712 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3713 #endif
3714 
3715 	if (decayed)
3716 		cfs_rq_util_change(cfs_rq, 0);
3717 
3718 	return decayed;
3719 }
3720 
3721 /**
3722  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3723  * @cfs_rq: cfs_rq to attach to
3724  * @se: sched_entity to attach
3725  *
3726  * Must call update_cfs_rq_load_avg() before this, since we rely on
3727  * cfs_rq->avg.last_update_time being current.
3728  */
3729 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3730 {
3731 	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3732 
3733 	/*
3734 	 * When we attach the @se to the @cfs_rq, we must align the decay
3735 	 * window because without that, really weird and wonderful things can
3736 	 * happen.
3737 	 *
3738 	 * XXX illustrate
3739 	 */
3740 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3741 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3742 
3743 	/*
3744 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3745 	 * period_contrib. This isn't strictly correct, but since we're
3746 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3747 	 * _sum a little.
3748 	 */
3749 	se->avg.util_sum = se->avg.util_avg * divider;
3750 
3751 	se->avg.load_sum = divider;
3752 	if (se_weight(se)) {
3753 		se->avg.load_sum =
3754 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3755 	}
3756 
3757 	se->avg.runnable_load_sum = se->avg.load_sum;
3758 
3759 	enqueue_load_avg(cfs_rq, se);
3760 	cfs_rq->avg.util_avg += se->avg.util_avg;
3761 	cfs_rq->avg.util_sum += se->avg.util_sum;
3762 
3763 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3764 
3765 	cfs_rq_util_change(cfs_rq, flags);
3766 }
3767 
3768 /**
3769  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3770  * @cfs_rq: cfs_rq to detach from
3771  * @se: sched_entity to detach
3772  *
3773  * Must call update_cfs_rq_load_avg() before this, since we rely on
3774  * cfs_rq->avg.last_update_time being current.
3775  */
3776 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3777 {
3778 	dequeue_load_avg(cfs_rq, se);
3779 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3780 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3781 
3782 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3783 
3784 	cfs_rq_util_change(cfs_rq, 0);
3785 }
3786 
3787 /*
3788  * Optional action to be done while updating the load average
3789  */
3790 #define UPDATE_TG	0x1
3791 #define SKIP_AGE_LOAD	0x2
3792 #define DO_ATTACH	0x4
3793 
3794 /* Update task and its cfs_rq load average */
3795 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3796 {
3797 	u64 now = cfs_rq_clock_task(cfs_rq);
3798 	struct rq *rq = rq_of(cfs_rq);
3799 	int cpu = cpu_of(rq);
3800 	int decayed;
3801 
3802 	/*
3803 	 * Track task load average for carrying it to new CPU after migrated, and
3804 	 * track group sched_entity load average for task_h_load calc in migration
3805 	 */
3806 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3807 		__update_load_avg_se(now, cpu, cfs_rq, se);
3808 
3809 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3810 	decayed |= propagate_entity_load_avg(se);
3811 
3812 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3813 
3814 		/*
3815 		 * DO_ATTACH means we're here from enqueue_entity().
3816 		 * !last_update_time means we've passed through
3817 		 * migrate_task_rq_fair() indicating we migrated.
3818 		 *
3819 		 * IOW we're enqueueing a task on a new CPU.
3820 		 */
3821 		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3822 		update_tg_load_avg(cfs_rq, 0);
3823 
3824 	} else if (decayed && (flags & UPDATE_TG))
3825 		update_tg_load_avg(cfs_rq, 0);
3826 }
3827 
3828 #ifndef CONFIG_64BIT
3829 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3830 {
3831 	u64 last_update_time_copy;
3832 	u64 last_update_time;
3833 
3834 	do {
3835 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3836 		smp_rmb();
3837 		last_update_time = cfs_rq->avg.last_update_time;
3838 	} while (last_update_time != last_update_time_copy);
3839 
3840 	return last_update_time;
3841 }
3842 #else
3843 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3844 {
3845 	return cfs_rq->avg.last_update_time;
3846 }
3847 #endif
3848 
3849 /*
3850  * Synchronize entity load avg of dequeued entity without locking
3851  * the previous rq.
3852  */
3853 void sync_entity_load_avg(struct sched_entity *se)
3854 {
3855 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3856 	u64 last_update_time;
3857 
3858 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3859 	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3860 }
3861 
3862 /*
3863  * Task first catches up with cfs_rq, and then subtract
3864  * itself from the cfs_rq (task must be off the queue now).
3865  */
3866 void remove_entity_load_avg(struct sched_entity *se)
3867 {
3868 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3869 	unsigned long flags;
3870 
3871 	/*
3872 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3873 	 * post_init_entity_util_avg() which will have added things to the
3874 	 * cfs_rq, so we can remove unconditionally.
3875 	 *
3876 	 * Similarly for groups, they will have passed through
3877 	 * post_init_entity_util_avg() before unregister_sched_fair_group()
3878 	 * calls this.
3879 	 */
3880 
3881 	sync_entity_load_avg(se);
3882 
3883 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3884 	++cfs_rq->removed.nr;
3885 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3886 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3887 	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3888 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3889 }
3890 
3891 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3892 {
3893 	return cfs_rq->avg.runnable_load_avg;
3894 }
3895 
3896 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3897 {
3898 	return cfs_rq->avg.load_avg;
3899 }
3900 
3901 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3902 
3903 static inline unsigned long task_util(struct task_struct *p)
3904 {
3905 	return READ_ONCE(p->se.avg.util_avg);
3906 }
3907 
3908 static inline unsigned long _task_util_est(struct task_struct *p)
3909 {
3910 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3911 
3912 	return max(ue.ewma, ue.enqueued);
3913 }
3914 
3915 static inline unsigned long task_util_est(struct task_struct *p)
3916 {
3917 	return max(task_util(p), _task_util_est(p));
3918 }
3919 
3920 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3921 				    struct task_struct *p)
3922 {
3923 	unsigned int enqueued;
3924 
3925 	if (!sched_feat(UTIL_EST))
3926 		return;
3927 
3928 	/* Update root cfs_rq's estimated utilization */
3929 	enqueued  = cfs_rq->avg.util_est.enqueued;
3930 	enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED);
3931 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3932 }
3933 
3934 /*
3935  * Check if a (signed) value is within a specified (unsigned) margin,
3936  * based on the observation that:
3937  *
3938  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3939  *
3940  * NOTE: this only works when value + maring < INT_MAX.
3941  */
3942 static inline bool within_margin(int value, int margin)
3943 {
3944 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3945 }
3946 
3947 static void
3948 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3949 {
3950 	long last_ewma_diff;
3951 	struct util_est ue;
3952 
3953 	if (!sched_feat(UTIL_EST))
3954 		return;
3955 
3956 	/*
3957 	 * Update root cfs_rq's estimated utilization
3958 	 *
3959 	 * If *p is the last task then the root cfs_rq's estimated utilization
3960 	 * of a CPU is 0 by definition.
3961 	 */
3962 	ue.enqueued = 0;
3963 	if (cfs_rq->nr_running) {
3964 		ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3965 		ue.enqueued -= min_t(unsigned int, ue.enqueued,
3966 				     (_task_util_est(p) | UTIL_AVG_UNCHANGED));
3967 	}
3968 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3969 
3970 	/*
3971 	 * Skip update of task's estimated utilization when the task has not
3972 	 * yet completed an activation, e.g. being migrated.
3973 	 */
3974 	if (!task_sleep)
3975 		return;
3976 
3977 	/*
3978 	 * If the PELT values haven't changed since enqueue time,
3979 	 * skip the util_est update.
3980 	 */
3981 	ue = p->se.avg.util_est;
3982 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
3983 		return;
3984 
3985 	/*
3986 	 * Skip update of task's estimated utilization when its EWMA is
3987 	 * already ~1% close to its last activation value.
3988 	 */
3989 	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3990 	last_ewma_diff = ue.enqueued - ue.ewma;
3991 	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3992 		return;
3993 
3994 	/*
3995 	 * Update Task's estimated utilization
3996 	 *
3997 	 * When *p completes an activation we can consolidate another sample
3998 	 * of the task size. This is done by storing the current PELT value
3999 	 * as ue.enqueued and by using this value to update the Exponential
4000 	 * Weighted Moving Average (EWMA):
4001 	 *
4002 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4003 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4004 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4005 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4006 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4007 	 *
4008 	 * Where 'w' is the weight of new samples, which is configured to be
4009 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4010 	 */
4011 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4012 	ue.ewma  += last_ewma_diff;
4013 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4014 	WRITE_ONCE(p->se.avg.util_est, ue);
4015 }
4016 
4017 #else /* CONFIG_SMP */
4018 
4019 static inline int
4020 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4021 {
4022 	return 0;
4023 }
4024 
4025 #define UPDATE_TG	0x0
4026 #define SKIP_AGE_LOAD	0x0
4027 #define DO_ATTACH	0x0
4028 
4029 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4030 {
4031 	cfs_rq_util_change(cfs_rq, 0);
4032 }
4033 
4034 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4035 
4036 static inline void
4037 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
4038 static inline void
4039 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4040 
4041 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
4042 {
4043 	return 0;
4044 }
4045 
4046 static inline void
4047 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4048 
4049 static inline void
4050 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
4051 		 bool task_sleep) {}
4052 
4053 #endif /* CONFIG_SMP */
4054 
4055 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4056 {
4057 #ifdef CONFIG_SCHED_DEBUG
4058 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4059 
4060 	if (d < 0)
4061 		d = -d;
4062 
4063 	if (d > 3*sysctl_sched_latency)
4064 		schedstat_inc(cfs_rq->nr_spread_over);
4065 #endif
4066 }
4067 
4068 static void
4069 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4070 {
4071 	u64 vruntime = cfs_rq->min_vruntime;
4072 
4073 	/*
4074 	 * The 'current' period is already promised to the current tasks,
4075 	 * however the extra weight of the new task will slow them down a
4076 	 * little, place the new task so that it fits in the slot that
4077 	 * stays open at the end.
4078 	 */
4079 	if (initial && sched_feat(START_DEBIT))
4080 		vruntime += sched_vslice(cfs_rq, se);
4081 
4082 	/* sleeps up to a single latency don't count. */
4083 	if (!initial) {
4084 		unsigned long thresh = sysctl_sched_latency;
4085 
4086 		/*
4087 		 * Halve their sleep time's effect, to allow
4088 		 * for a gentler effect of sleepers:
4089 		 */
4090 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4091 			thresh >>= 1;
4092 
4093 		vruntime -= thresh;
4094 	}
4095 
4096 	/* ensure we never gain time by being placed backwards. */
4097 	se->vruntime = max_vruntime(se->vruntime, vruntime);
4098 }
4099 
4100 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4101 
4102 static inline void check_schedstat_required(void)
4103 {
4104 #ifdef CONFIG_SCHEDSTATS
4105 	if (schedstat_enabled())
4106 		return;
4107 
4108 	/* Force schedstat enabled if a dependent tracepoint is active */
4109 	if (trace_sched_stat_wait_enabled()    ||
4110 			trace_sched_stat_sleep_enabled()   ||
4111 			trace_sched_stat_iowait_enabled()  ||
4112 			trace_sched_stat_blocked_enabled() ||
4113 			trace_sched_stat_runtime_enabled())  {
4114 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4115 			     "stat_blocked and stat_runtime require the "
4116 			     "kernel parameter schedstats=enable or "
4117 			     "kernel.sched_schedstats=1\n");
4118 	}
4119 #endif
4120 }
4121 
4122 
4123 /*
4124  * MIGRATION
4125  *
4126  *	dequeue
4127  *	  update_curr()
4128  *	    update_min_vruntime()
4129  *	  vruntime -= min_vruntime
4130  *
4131  *	enqueue
4132  *	  update_curr()
4133  *	    update_min_vruntime()
4134  *	  vruntime += min_vruntime
4135  *
4136  * this way the vruntime transition between RQs is done when both
4137  * min_vruntime are up-to-date.
4138  *
4139  * WAKEUP (remote)
4140  *
4141  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4142  *	  vruntime -= min_vruntime
4143  *
4144  *	enqueue
4145  *	  update_curr()
4146  *	    update_min_vruntime()
4147  *	  vruntime += min_vruntime
4148  *
4149  * this way we don't have the most up-to-date min_vruntime on the originating
4150  * CPU and an up-to-date min_vruntime on the destination CPU.
4151  */
4152 
4153 static void
4154 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4155 {
4156 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4157 	bool curr = cfs_rq->curr == se;
4158 
4159 	/*
4160 	 * If we're the current task, we must renormalise before calling
4161 	 * update_curr().
4162 	 */
4163 	if (renorm && curr)
4164 		se->vruntime += cfs_rq->min_vruntime;
4165 
4166 	update_curr(cfs_rq);
4167 
4168 	/*
4169 	 * Otherwise, renormalise after, such that we're placed at the current
4170 	 * moment in time, instead of some random moment in the past. Being
4171 	 * placed in the past could significantly boost this task to the
4172 	 * fairness detriment of existing tasks.
4173 	 */
4174 	if (renorm && !curr)
4175 		se->vruntime += cfs_rq->min_vruntime;
4176 
4177 	/*
4178 	 * When enqueuing a sched_entity, we must:
4179 	 *   - Update loads to have both entity and cfs_rq synced with now.
4180 	 *   - Add its load to cfs_rq->runnable_avg
4181 	 *   - For group_entity, update its weight to reflect the new share of
4182 	 *     its group cfs_rq
4183 	 *   - Add its new weight to cfs_rq->load.weight
4184 	 */
4185 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4186 	update_cfs_group(se);
4187 	enqueue_runnable_load_avg(cfs_rq, se);
4188 	account_entity_enqueue(cfs_rq, se);
4189 
4190 	if (flags & ENQUEUE_WAKEUP)
4191 		place_entity(cfs_rq, se, 0);
4192 
4193 	check_schedstat_required();
4194 	update_stats_enqueue(cfs_rq, se, flags);
4195 	check_spread(cfs_rq, se);
4196 	if (!curr)
4197 		__enqueue_entity(cfs_rq, se);
4198 	se->on_rq = 1;
4199 
4200 	if (cfs_rq->nr_running == 1) {
4201 		list_add_leaf_cfs_rq(cfs_rq);
4202 		check_enqueue_throttle(cfs_rq);
4203 	}
4204 }
4205 
4206 static void __clear_buddies_last(struct sched_entity *se)
4207 {
4208 	for_each_sched_entity(se) {
4209 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4210 		if (cfs_rq->last != se)
4211 			break;
4212 
4213 		cfs_rq->last = NULL;
4214 	}
4215 }
4216 
4217 static void __clear_buddies_next(struct sched_entity *se)
4218 {
4219 	for_each_sched_entity(se) {
4220 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4221 		if (cfs_rq->next != se)
4222 			break;
4223 
4224 		cfs_rq->next = NULL;
4225 	}
4226 }
4227 
4228 static void __clear_buddies_skip(struct sched_entity *se)
4229 {
4230 	for_each_sched_entity(se) {
4231 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4232 		if (cfs_rq->skip != se)
4233 			break;
4234 
4235 		cfs_rq->skip = NULL;
4236 	}
4237 }
4238 
4239 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4240 {
4241 	if (cfs_rq->last == se)
4242 		__clear_buddies_last(se);
4243 
4244 	if (cfs_rq->next == se)
4245 		__clear_buddies_next(se);
4246 
4247 	if (cfs_rq->skip == se)
4248 		__clear_buddies_skip(se);
4249 }
4250 
4251 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4252 
4253 static void
4254 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4255 {
4256 	/*
4257 	 * Update run-time statistics of the 'current'.
4258 	 */
4259 	update_curr(cfs_rq);
4260 
4261 	/*
4262 	 * When dequeuing a sched_entity, we must:
4263 	 *   - Update loads to have both entity and cfs_rq synced with now.
4264 	 *   - Substract its load from the cfs_rq->runnable_avg.
4265 	 *   - Substract its previous weight from cfs_rq->load.weight.
4266 	 *   - For group entity, update its weight to reflect the new share
4267 	 *     of its group cfs_rq.
4268 	 */
4269 	update_load_avg(cfs_rq, se, UPDATE_TG);
4270 	dequeue_runnable_load_avg(cfs_rq, se);
4271 
4272 	update_stats_dequeue(cfs_rq, se, flags);
4273 
4274 	clear_buddies(cfs_rq, se);
4275 
4276 	if (se != cfs_rq->curr)
4277 		__dequeue_entity(cfs_rq, se);
4278 	se->on_rq = 0;
4279 	account_entity_dequeue(cfs_rq, se);
4280 
4281 	/*
4282 	 * Normalize after update_curr(); which will also have moved
4283 	 * min_vruntime if @se is the one holding it back. But before doing
4284 	 * update_min_vruntime() again, which will discount @se's position and
4285 	 * can move min_vruntime forward still more.
4286 	 */
4287 	if (!(flags & DEQUEUE_SLEEP))
4288 		se->vruntime -= cfs_rq->min_vruntime;
4289 
4290 	/* return excess runtime on last dequeue */
4291 	return_cfs_rq_runtime(cfs_rq);
4292 
4293 	update_cfs_group(se);
4294 
4295 	/*
4296 	 * Now advance min_vruntime if @se was the entity holding it back,
4297 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4298 	 * put back on, and if we advance min_vruntime, we'll be placed back
4299 	 * further than we started -- ie. we'll be penalized.
4300 	 */
4301 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
4302 		update_min_vruntime(cfs_rq);
4303 }
4304 
4305 /*
4306  * Preempt the current task with a newly woken task if needed:
4307  */
4308 static void
4309 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4310 {
4311 	unsigned long ideal_runtime, delta_exec;
4312 	struct sched_entity *se;
4313 	s64 delta;
4314 
4315 	ideal_runtime = sched_slice(cfs_rq, curr);
4316 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4317 	if (delta_exec > ideal_runtime) {
4318 		resched_curr(rq_of(cfs_rq));
4319 		/*
4320 		 * The current task ran long enough, ensure it doesn't get
4321 		 * re-elected due to buddy favours.
4322 		 */
4323 		clear_buddies(cfs_rq, curr);
4324 		return;
4325 	}
4326 
4327 	/*
4328 	 * Ensure that a task that missed wakeup preemption by a
4329 	 * narrow margin doesn't have to wait for a full slice.
4330 	 * This also mitigates buddy induced latencies under load.
4331 	 */
4332 	if (delta_exec < sysctl_sched_min_granularity)
4333 		return;
4334 
4335 	se = __pick_first_entity(cfs_rq);
4336 	delta = curr->vruntime - se->vruntime;
4337 
4338 	if (delta < 0)
4339 		return;
4340 
4341 	if (delta > ideal_runtime)
4342 		resched_curr(rq_of(cfs_rq));
4343 }
4344 
4345 static void
4346 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4347 {
4348 	/* 'current' is not kept within the tree. */
4349 	if (se->on_rq) {
4350 		/*
4351 		 * Any task has to be enqueued before it get to execute on
4352 		 * a CPU. So account for the time it spent waiting on the
4353 		 * runqueue.
4354 		 */
4355 		update_stats_wait_end(cfs_rq, se);
4356 		__dequeue_entity(cfs_rq, se);
4357 		update_load_avg(cfs_rq, se, UPDATE_TG);
4358 	}
4359 
4360 	update_stats_curr_start(cfs_rq, se);
4361 	cfs_rq->curr = se;
4362 
4363 	/*
4364 	 * Track our maximum slice length, if the CPU's load is at
4365 	 * least twice that of our own weight (i.e. dont track it
4366 	 * when there are only lesser-weight tasks around):
4367 	 */
4368 	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4369 		schedstat_set(se->statistics.slice_max,
4370 			max((u64)schedstat_val(se->statistics.slice_max),
4371 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4372 	}
4373 
4374 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4375 }
4376 
4377 static int
4378 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4379 
4380 /*
4381  * Pick the next process, keeping these things in mind, in this order:
4382  * 1) keep things fair between processes/task groups
4383  * 2) pick the "next" process, since someone really wants that to run
4384  * 3) pick the "last" process, for cache locality
4385  * 4) do not run the "skip" process, if something else is available
4386  */
4387 static struct sched_entity *
4388 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4389 {
4390 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4391 	struct sched_entity *se;
4392 
4393 	/*
4394 	 * If curr is set we have to see if its left of the leftmost entity
4395 	 * still in the tree, provided there was anything in the tree at all.
4396 	 */
4397 	if (!left || (curr && entity_before(curr, left)))
4398 		left = curr;
4399 
4400 	se = left; /* ideally we run the leftmost entity */
4401 
4402 	/*
4403 	 * Avoid running the skip buddy, if running something else can
4404 	 * be done without getting too unfair.
4405 	 */
4406 	if (cfs_rq->skip == se) {
4407 		struct sched_entity *second;
4408 
4409 		if (se == curr) {
4410 			second = __pick_first_entity(cfs_rq);
4411 		} else {
4412 			second = __pick_next_entity(se);
4413 			if (!second || (curr && entity_before(curr, second)))
4414 				second = curr;
4415 		}
4416 
4417 		if (second && wakeup_preempt_entity(second, left) < 1)
4418 			se = second;
4419 	}
4420 
4421 	/*
4422 	 * Prefer last buddy, try to return the CPU to a preempted task.
4423 	 */
4424 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4425 		se = cfs_rq->last;
4426 
4427 	/*
4428 	 * Someone really wants this to run. If it's not unfair, run it.
4429 	 */
4430 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4431 		se = cfs_rq->next;
4432 
4433 	clear_buddies(cfs_rq, se);
4434 
4435 	return se;
4436 }
4437 
4438 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4439 
4440 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4441 {
4442 	/*
4443 	 * If still on the runqueue then deactivate_task()
4444 	 * was not called and update_curr() has to be done:
4445 	 */
4446 	if (prev->on_rq)
4447 		update_curr(cfs_rq);
4448 
4449 	/* throttle cfs_rqs exceeding runtime */
4450 	check_cfs_rq_runtime(cfs_rq);
4451 
4452 	check_spread(cfs_rq, prev);
4453 
4454 	if (prev->on_rq) {
4455 		update_stats_wait_start(cfs_rq, prev);
4456 		/* Put 'current' back into the tree. */
4457 		__enqueue_entity(cfs_rq, prev);
4458 		/* in !on_rq case, update occurred at dequeue */
4459 		update_load_avg(cfs_rq, prev, 0);
4460 	}
4461 	cfs_rq->curr = NULL;
4462 }
4463 
4464 static void
4465 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4466 {
4467 	/*
4468 	 * Update run-time statistics of the 'current'.
4469 	 */
4470 	update_curr(cfs_rq);
4471 
4472 	/*
4473 	 * Ensure that runnable average is periodically updated.
4474 	 */
4475 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4476 	update_cfs_group(curr);
4477 
4478 #ifdef CONFIG_SCHED_HRTICK
4479 	/*
4480 	 * queued ticks are scheduled to match the slice, so don't bother
4481 	 * validating it and just reschedule.
4482 	 */
4483 	if (queued) {
4484 		resched_curr(rq_of(cfs_rq));
4485 		return;
4486 	}
4487 	/*
4488 	 * don't let the period tick interfere with the hrtick preemption
4489 	 */
4490 	if (!sched_feat(DOUBLE_TICK) &&
4491 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4492 		return;
4493 #endif
4494 
4495 	if (cfs_rq->nr_running > 1)
4496 		check_preempt_tick(cfs_rq, curr);
4497 }
4498 
4499 
4500 /**************************************************
4501  * CFS bandwidth control machinery
4502  */
4503 
4504 #ifdef CONFIG_CFS_BANDWIDTH
4505 
4506 #ifdef HAVE_JUMP_LABEL
4507 static struct static_key __cfs_bandwidth_used;
4508 
4509 static inline bool cfs_bandwidth_used(void)
4510 {
4511 	return static_key_false(&__cfs_bandwidth_used);
4512 }
4513 
4514 void cfs_bandwidth_usage_inc(void)
4515 {
4516 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4517 }
4518 
4519 void cfs_bandwidth_usage_dec(void)
4520 {
4521 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4522 }
4523 #else /* HAVE_JUMP_LABEL */
4524 static bool cfs_bandwidth_used(void)
4525 {
4526 	return true;
4527 }
4528 
4529 void cfs_bandwidth_usage_inc(void) {}
4530 void cfs_bandwidth_usage_dec(void) {}
4531 #endif /* HAVE_JUMP_LABEL */
4532 
4533 /*
4534  * default period for cfs group bandwidth.
4535  * default: 0.1s, units: nanoseconds
4536  */
4537 static inline u64 default_cfs_period(void)
4538 {
4539 	return 100000000ULL;
4540 }
4541 
4542 static inline u64 sched_cfs_bandwidth_slice(void)
4543 {
4544 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4545 }
4546 
4547 /*
4548  * Replenish runtime according to assigned quota and update expiration time.
4549  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4550  * additional synchronization around rq->lock.
4551  *
4552  * requires cfs_b->lock
4553  */
4554 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4555 {
4556 	u64 now;
4557 
4558 	if (cfs_b->quota == RUNTIME_INF)
4559 		return;
4560 
4561 	now = sched_clock_cpu(smp_processor_id());
4562 	cfs_b->runtime = cfs_b->quota;
4563 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4564 }
4565 
4566 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4567 {
4568 	return &tg->cfs_bandwidth;
4569 }
4570 
4571 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4572 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4573 {
4574 	if (unlikely(cfs_rq->throttle_count))
4575 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4576 
4577 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4578 }
4579 
4580 /* returns 0 on failure to allocate runtime */
4581 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4582 {
4583 	struct task_group *tg = cfs_rq->tg;
4584 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4585 	u64 amount = 0, min_amount, expires;
4586 
4587 	/* note: this is a positive sum as runtime_remaining <= 0 */
4588 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4589 
4590 	raw_spin_lock(&cfs_b->lock);
4591 	if (cfs_b->quota == RUNTIME_INF)
4592 		amount = min_amount;
4593 	else {
4594 		start_cfs_bandwidth(cfs_b);
4595 
4596 		if (cfs_b->runtime > 0) {
4597 			amount = min(cfs_b->runtime, min_amount);
4598 			cfs_b->runtime -= amount;
4599 			cfs_b->idle = 0;
4600 		}
4601 	}
4602 	expires = cfs_b->runtime_expires;
4603 	raw_spin_unlock(&cfs_b->lock);
4604 
4605 	cfs_rq->runtime_remaining += amount;
4606 	/*
4607 	 * we may have advanced our local expiration to account for allowed
4608 	 * spread between our sched_clock and the one on which runtime was
4609 	 * issued.
4610 	 */
4611 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4612 		cfs_rq->runtime_expires = expires;
4613 
4614 	return cfs_rq->runtime_remaining > 0;
4615 }
4616 
4617 /*
4618  * Note: This depends on the synchronization provided by sched_clock and the
4619  * fact that rq->clock snapshots this value.
4620  */
4621 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4622 {
4623 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4624 
4625 	/* if the deadline is ahead of our clock, nothing to do */
4626 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4627 		return;
4628 
4629 	if (cfs_rq->runtime_remaining < 0)
4630 		return;
4631 
4632 	/*
4633 	 * If the local deadline has passed we have to consider the
4634 	 * possibility that our sched_clock is 'fast' and the global deadline
4635 	 * has not truly expired.
4636 	 *
4637 	 * Fortunately we can check determine whether this the case by checking
4638 	 * whether the global deadline has advanced. It is valid to compare
4639 	 * cfs_b->runtime_expires without any locks since we only care about
4640 	 * exact equality, so a partial write will still work.
4641 	 */
4642 
4643 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
4644 		/* extend local deadline, drift is bounded above by 2 ticks */
4645 		cfs_rq->runtime_expires += TICK_NSEC;
4646 	} else {
4647 		/* global deadline is ahead, expiration has passed */
4648 		cfs_rq->runtime_remaining = 0;
4649 	}
4650 }
4651 
4652 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4653 {
4654 	/* dock delta_exec before expiring quota (as it could span periods) */
4655 	cfs_rq->runtime_remaining -= delta_exec;
4656 	expire_cfs_rq_runtime(cfs_rq);
4657 
4658 	if (likely(cfs_rq->runtime_remaining > 0))
4659 		return;
4660 
4661 	/*
4662 	 * if we're unable to extend our runtime we resched so that the active
4663 	 * hierarchy can be throttled
4664 	 */
4665 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4666 		resched_curr(rq_of(cfs_rq));
4667 }
4668 
4669 static __always_inline
4670 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4671 {
4672 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4673 		return;
4674 
4675 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4676 }
4677 
4678 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4679 {
4680 	return cfs_bandwidth_used() && cfs_rq->throttled;
4681 }
4682 
4683 /* check whether cfs_rq, or any parent, is throttled */
4684 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4685 {
4686 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4687 }
4688 
4689 /*
4690  * Ensure that neither of the group entities corresponding to src_cpu or
4691  * dest_cpu are members of a throttled hierarchy when performing group
4692  * load-balance operations.
4693  */
4694 static inline int throttled_lb_pair(struct task_group *tg,
4695 				    int src_cpu, int dest_cpu)
4696 {
4697 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4698 
4699 	src_cfs_rq = tg->cfs_rq[src_cpu];
4700 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4701 
4702 	return throttled_hierarchy(src_cfs_rq) ||
4703 	       throttled_hierarchy(dest_cfs_rq);
4704 }
4705 
4706 /* updated child weight may affect parent so we have to do this bottom up */
4707 static int tg_unthrottle_up(struct task_group *tg, void *data)
4708 {
4709 	struct rq *rq = data;
4710 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4711 
4712 	cfs_rq->throttle_count--;
4713 	if (!cfs_rq->throttle_count) {
4714 		/* adjust cfs_rq_clock_task() */
4715 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4716 					     cfs_rq->throttled_clock_task;
4717 	}
4718 
4719 	return 0;
4720 }
4721 
4722 static int tg_throttle_down(struct task_group *tg, void *data)
4723 {
4724 	struct rq *rq = data;
4725 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4726 
4727 	/* group is entering throttled state, stop time */
4728 	if (!cfs_rq->throttle_count)
4729 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4730 	cfs_rq->throttle_count++;
4731 
4732 	return 0;
4733 }
4734 
4735 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4736 {
4737 	struct rq *rq = rq_of(cfs_rq);
4738 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4739 	struct sched_entity *se;
4740 	long task_delta, dequeue = 1;
4741 	bool empty;
4742 
4743 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4744 
4745 	/* freeze hierarchy runnable averages while throttled */
4746 	rcu_read_lock();
4747 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4748 	rcu_read_unlock();
4749 
4750 	task_delta = cfs_rq->h_nr_running;
4751 	for_each_sched_entity(se) {
4752 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4753 		/* throttled entity or throttle-on-deactivate */
4754 		if (!se->on_rq)
4755 			break;
4756 
4757 		if (dequeue)
4758 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4759 		qcfs_rq->h_nr_running -= task_delta;
4760 
4761 		if (qcfs_rq->load.weight)
4762 			dequeue = 0;
4763 	}
4764 
4765 	if (!se)
4766 		sub_nr_running(rq, task_delta);
4767 
4768 	cfs_rq->throttled = 1;
4769 	cfs_rq->throttled_clock = rq_clock(rq);
4770 	raw_spin_lock(&cfs_b->lock);
4771 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4772 
4773 	/*
4774 	 * Add to the _head_ of the list, so that an already-started
4775 	 * distribute_cfs_runtime will not see us
4776 	 */
4777 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4778 
4779 	/*
4780 	 * If we're the first throttled task, make sure the bandwidth
4781 	 * timer is running.
4782 	 */
4783 	if (empty)
4784 		start_cfs_bandwidth(cfs_b);
4785 
4786 	raw_spin_unlock(&cfs_b->lock);
4787 }
4788 
4789 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4790 {
4791 	struct rq *rq = rq_of(cfs_rq);
4792 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4793 	struct sched_entity *se;
4794 	int enqueue = 1;
4795 	long task_delta;
4796 
4797 	se = cfs_rq->tg->se[cpu_of(rq)];
4798 
4799 	cfs_rq->throttled = 0;
4800 
4801 	update_rq_clock(rq);
4802 
4803 	raw_spin_lock(&cfs_b->lock);
4804 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4805 	list_del_rcu(&cfs_rq->throttled_list);
4806 	raw_spin_unlock(&cfs_b->lock);
4807 
4808 	/* update hierarchical throttle state */
4809 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4810 
4811 	if (!cfs_rq->load.weight)
4812 		return;
4813 
4814 	task_delta = cfs_rq->h_nr_running;
4815 	for_each_sched_entity(se) {
4816 		if (se->on_rq)
4817 			enqueue = 0;
4818 
4819 		cfs_rq = cfs_rq_of(se);
4820 		if (enqueue)
4821 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4822 		cfs_rq->h_nr_running += task_delta;
4823 
4824 		if (cfs_rq_throttled(cfs_rq))
4825 			break;
4826 	}
4827 
4828 	if (!se)
4829 		add_nr_running(rq, task_delta);
4830 
4831 	/* Determine whether we need to wake up potentially idle CPU: */
4832 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4833 		resched_curr(rq);
4834 }
4835 
4836 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4837 		u64 remaining, u64 expires)
4838 {
4839 	struct cfs_rq *cfs_rq;
4840 	u64 runtime;
4841 	u64 starting_runtime = remaining;
4842 
4843 	rcu_read_lock();
4844 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4845 				throttled_list) {
4846 		struct rq *rq = rq_of(cfs_rq);
4847 		struct rq_flags rf;
4848 
4849 		rq_lock(rq, &rf);
4850 		if (!cfs_rq_throttled(cfs_rq))
4851 			goto next;
4852 
4853 		runtime = -cfs_rq->runtime_remaining + 1;
4854 		if (runtime > remaining)
4855 			runtime = remaining;
4856 		remaining -= runtime;
4857 
4858 		cfs_rq->runtime_remaining += runtime;
4859 		cfs_rq->runtime_expires = expires;
4860 
4861 		/* we check whether we're throttled above */
4862 		if (cfs_rq->runtime_remaining > 0)
4863 			unthrottle_cfs_rq(cfs_rq);
4864 
4865 next:
4866 		rq_unlock(rq, &rf);
4867 
4868 		if (!remaining)
4869 			break;
4870 	}
4871 	rcu_read_unlock();
4872 
4873 	return starting_runtime - remaining;
4874 }
4875 
4876 /*
4877  * Responsible for refilling a task_group's bandwidth and unthrottling its
4878  * cfs_rqs as appropriate. If there has been no activity within the last
4879  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4880  * used to track this state.
4881  */
4882 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4883 {
4884 	u64 runtime, runtime_expires;
4885 	int throttled;
4886 
4887 	/* no need to continue the timer with no bandwidth constraint */
4888 	if (cfs_b->quota == RUNTIME_INF)
4889 		goto out_deactivate;
4890 
4891 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4892 	cfs_b->nr_periods += overrun;
4893 
4894 	/*
4895 	 * idle depends on !throttled (for the case of a large deficit), and if
4896 	 * we're going inactive then everything else can be deferred
4897 	 */
4898 	if (cfs_b->idle && !throttled)
4899 		goto out_deactivate;
4900 
4901 	__refill_cfs_bandwidth_runtime(cfs_b);
4902 
4903 	if (!throttled) {
4904 		/* mark as potentially idle for the upcoming period */
4905 		cfs_b->idle = 1;
4906 		return 0;
4907 	}
4908 
4909 	/* account preceding periods in which throttling occurred */
4910 	cfs_b->nr_throttled += overrun;
4911 
4912 	runtime_expires = cfs_b->runtime_expires;
4913 
4914 	/*
4915 	 * This check is repeated as we are holding onto the new bandwidth while
4916 	 * we unthrottle. This can potentially race with an unthrottled group
4917 	 * trying to acquire new bandwidth from the global pool. This can result
4918 	 * in us over-using our runtime if it is all used during this loop, but
4919 	 * only by limited amounts in that extreme case.
4920 	 */
4921 	while (throttled && cfs_b->runtime > 0) {
4922 		runtime = cfs_b->runtime;
4923 		raw_spin_unlock(&cfs_b->lock);
4924 		/* we can't nest cfs_b->lock while distributing bandwidth */
4925 		runtime = distribute_cfs_runtime(cfs_b, runtime,
4926 						 runtime_expires);
4927 		raw_spin_lock(&cfs_b->lock);
4928 
4929 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4930 
4931 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4932 	}
4933 
4934 	/*
4935 	 * While we are ensured activity in the period following an
4936 	 * unthrottle, this also covers the case in which the new bandwidth is
4937 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4938 	 * timer to remain active while there are any throttled entities.)
4939 	 */
4940 	cfs_b->idle = 0;
4941 
4942 	return 0;
4943 
4944 out_deactivate:
4945 	return 1;
4946 }
4947 
4948 /* a cfs_rq won't donate quota below this amount */
4949 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4950 /* minimum remaining period time to redistribute slack quota */
4951 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4952 /* how long we wait to gather additional slack before distributing */
4953 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4954 
4955 /*
4956  * Are we near the end of the current quota period?
4957  *
4958  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4959  * hrtimer base being cleared by hrtimer_start. In the case of
4960  * migrate_hrtimers, base is never cleared, so we are fine.
4961  */
4962 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4963 {
4964 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4965 	u64 remaining;
4966 
4967 	/* if the call-back is running a quota refresh is already occurring */
4968 	if (hrtimer_callback_running(refresh_timer))
4969 		return 1;
4970 
4971 	/* is a quota refresh about to occur? */
4972 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4973 	if (remaining < min_expire)
4974 		return 1;
4975 
4976 	return 0;
4977 }
4978 
4979 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4980 {
4981 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4982 
4983 	/* if there's a quota refresh soon don't bother with slack */
4984 	if (runtime_refresh_within(cfs_b, min_left))
4985 		return;
4986 
4987 	hrtimer_start(&cfs_b->slack_timer,
4988 			ns_to_ktime(cfs_bandwidth_slack_period),
4989 			HRTIMER_MODE_REL);
4990 }
4991 
4992 /* we know any runtime found here is valid as update_curr() precedes return */
4993 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4994 {
4995 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4996 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4997 
4998 	if (slack_runtime <= 0)
4999 		return;
5000 
5001 	raw_spin_lock(&cfs_b->lock);
5002 	if (cfs_b->quota != RUNTIME_INF &&
5003 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
5004 		cfs_b->runtime += slack_runtime;
5005 
5006 		/* we are under rq->lock, defer unthrottling using a timer */
5007 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5008 		    !list_empty(&cfs_b->throttled_cfs_rq))
5009 			start_cfs_slack_bandwidth(cfs_b);
5010 	}
5011 	raw_spin_unlock(&cfs_b->lock);
5012 
5013 	/* even if it's not valid for return we don't want to try again */
5014 	cfs_rq->runtime_remaining -= slack_runtime;
5015 }
5016 
5017 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5018 {
5019 	if (!cfs_bandwidth_used())
5020 		return;
5021 
5022 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5023 		return;
5024 
5025 	__return_cfs_rq_runtime(cfs_rq);
5026 }
5027 
5028 /*
5029  * This is done with a timer (instead of inline with bandwidth return) since
5030  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5031  */
5032 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5033 {
5034 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5035 	u64 expires;
5036 
5037 	/* confirm we're still not at a refresh boundary */
5038 	raw_spin_lock(&cfs_b->lock);
5039 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5040 		raw_spin_unlock(&cfs_b->lock);
5041 		return;
5042 	}
5043 
5044 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5045 		runtime = cfs_b->runtime;
5046 
5047 	expires = cfs_b->runtime_expires;
5048 	raw_spin_unlock(&cfs_b->lock);
5049 
5050 	if (!runtime)
5051 		return;
5052 
5053 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
5054 
5055 	raw_spin_lock(&cfs_b->lock);
5056 	if (expires == cfs_b->runtime_expires)
5057 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
5058 	raw_spin_unlock(&cfs_b->lock);
5059 }
5060 
5061 /*
5062  * When a group wakes up we want to make sure that its quota is not already
5063  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5064  * runtime as update_curr() throttling can not not trigger until it's on-rq.
5065  */
5066 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5067 {
5068 	if (!cfs_bandwidth_used())
5069 		return;
5070 
5071 	/* an active group must be handled by the update_curr()->put() path */
5072 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5073 		return;
5074 
5075 	/* ensure the group is not already throttled */
5076 	if (cfs_rq_throttled(cfs_rq))
5077 		return;
5078 
5079 	/* update runtime allocation */
5080 	account_cfs_rq_runtime(cfs_rq, 0);
5081 	if (cfs_rq->runtime_remaining <= 0)
5082 		throttle_cfs_rq(cfs_rq);
5083 }
5084 
5085 static void sync_throttle(struct task_group *tg, int cpu)
5086 {
5087 	struct cfs_rq *pcfs_rq, *cfs_rq;
5088 
5089 	if (!cfs_bandwidth_used())
5090 		return;
5091 
5092 	if (!tg->parent)
5093 		return;
5094 
5095 	cfs_rq = tg->cfs_rq[cpu];
5096 	pcfs_rq = tg->parent->cfs_rq[cpu];
5097 
5098 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5099 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5100 }
5101 
5102 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5103 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5104 {
5105 	if (!cfs_bandwidth_used())
5106 		return false;
5107 
5108 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5109 		return false;
5110 
5111 	/*
5112 	 * it's possible for a throttled entity to be forced into a running
5113 	 * state (e.g. set_curr_task), in this case we're finished.
5114 	 */
5115 	if (cfs_rq_throttled(cfs_rq))
5116 		return true;
5117 
5118 	throttle_cfs_rq(cfs_rq);
5119 	return true;
5120 }
5121 
5122 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5123 {
5124 	struct cfs_bandwidth *cfs_b =
5125 		container_of(timer, struct cfs_bandwidth, slack_timer);
5126 
5127 	do_sched_cfs_slack_timer(cfs_b);
5128 
5129 	return HRTIMER_NORESTART;
5130 }
5131 
5132 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5133 {
5134 	struct cfs_bandwidth *cfs_b =
5135 		container_of(timer, struct cfs_bandwidth, period_timer);
5136 	int overrun;
5137 	int idle = 0;
5138 
5139 	raw_spin_lock(&cfs_b->lock);
5140 	for (;;) {
5141 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5142 		if (!overrun)
5143 			break;
5144 
5145 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
5146 	}
5147 	if (idle)
5148 		cfs_b->period_active = 0;
5149 	raw_spin_unlock(&cfs_b->lock);
5150 
5151 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5152 }
5153 
5154 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5155 {
5156 	raw_spin_lock_init(&cfs_b->lock);
5157 	cfs_b->runtime = 0;
5158 	cfs_b->quota = RUNTIME_INF;
5159 	cfs_b->period = ns_to_ktime(default_cfs_period());
5160 
5161 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5162 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5163 	cfs_b->period_timer.function = sched_cfs_period_timer;
5164 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5165 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5166 }
5167 
5168 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5169 {
5170 	cfs_rq->runtime_enabled = 0;
5171 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5172 }
5173 
5174 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5175 {
5176 	lockdep_assert_held(&cfs_b->lock);
5177 
5178 	if (!cfs_b->period_active) {
5179 		cfs_b->period_active = 1;
5180 		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5181 		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5182 	}
5183 }
5184 
5185 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5186 {
5187 	/* init_cfs_bandwidth() was not called */
5188 	if (!cfs_b->throttled_cfs_rq.next)
5189 		return;
5190 
5191 	hrtimer_cancel(&cfs_b->period_timer);
5192 	hrtimer_cancel(&cfs_b->slack_timer);
5193 }
5194 
5195 /*
5196  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5197  *
5198  * The race is harmless, since modifying bandwidth settings of unhooked group
5199  * bits doesn't do much.
5200  */
5201 
5202 /* cpu online calback */
5203 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5204 {
5205 	struct task_group *tg;
5206 
5207 	lockdep_assert_held(&rq->lock);
5208 
5209 	rcu_read_lock();
5210 	list_for_each_entry_rcu(tg, &task_groups, list) {
5211 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5212 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5213 
5214 		raw_spin_lock(&cfs_b->lock);
5215 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5216 		raw_spin_unlock(&cfs_b->lock);
5217 	}
5218 	rcu_read_unlock();
5219 }
5220 
5221 /* cpu offline callback */
5222 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5223 {
5224 	struct task_group *tg;
5225 
5226 	lockdep_assert_held(&rq->lock);
5227 
5228 	rcu_read_lock();
5229 	list_for_each_entry_rcu(tg, &task_groups, list) {
5230 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5231 
5232 		if (!cfs_rq->runtime_enabled)
5233 			continue;
5234 
5235 		/*
5236 		 * clock_task is not advancing so we just need to make sure
5237 		 * there's some valid quota amount
5238 		 */
5239 		cfs_rq->runtime_remaining = 1;
5240 		/*
5241 		 * Offline rq is schedulable till CPU is completely disabled
5242 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5243 		 */
5244 		cfs_rq->runtime_enabled = 0;
5245 
5246 		if (cfs_rq_throttled(cfs_rq))
5247 			unthrottle_cfs_rq(cfs_rq);
5248 	}
5249 	rcu_read_unlock();
5250 }
5251 
5252 #else /* CONFIG_CFS_BANDWIDTH */
5253 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
5254 {
5255 	return rq_clock_task(rq_of(cfs_rq));
5256 }
5257 
5258 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5259 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5260 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5261 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5262 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5263 
5264 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5265 {
5266 	return 0;
5267 }
5268 
5269 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5270 {
5271 	return 0;
5272 }
5273 
5274 static inline int throttled_lb_pair(struct task_group *tg,
5275 				    int src_cpu, int dest_cpu)
5276 {
5277 	return 0;
5278 }
5279 
5280 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5281 
5282 #ifdef CONFIG_FAIR_GROUP_SCHED
5283 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5284 #endif
5285 
5286 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5287 {
5288 	return NULL;
5289 }
5290 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5291 static inline void update_runtime_enabled(struct rq *rq) {}
5292 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5293 
5294 #endif /* CONFIG_CFS_BANDWIDTH */
5295 
5296 /**************************************************
5297  * CFS operations on tasks:
5298  */
5299 
5300 #ifdef CONFIG_SCHED_HRTICK
5301 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5302 {
5303 	struct sched_entity *se = &p->se;
5304 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5305 
5306 	SCHED_WARN_ON(task_rq(p) != rq);
5307 
5308 	if (rq->cfs.h_nr_running > 1) {
5309 		u64 slice = sched_slice(cfs_rq, se);
5310 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5311 		s64 delta = slice - ran;
5312 
5313 		if (delta < 0) {
5314 			if (rq->curr == p)
5315 				resched_curr(rq);
5316 			return;
5317 		}
5318 		hrtick_start(rq, delta);
5319 	}
5320 }
5321 
5322 /*
5323  * called from enqueue/dequeue and updates the hrtick when the
5324  * current task is from our class and nr_running is low enough
5325  * to matter.
5326  */
5327 static void hrtick_update(struct rq *rq)
5328 {
5329 	struct task_struct *curr = rq->curr;
5330 
5331 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5332 		return;
5333 
5334 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5335 		hrtick_start_fair(rq, curr);
5336 }
5337 #else /* !CONFIG_SCHED_HRTICK */
5338 static inline void
5339 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5340 {
5341 }
5342 
5343 static inline void hrtick_update(struct rq *rq)
5344 {
5345 }
5346 #endif
5347 
5348 /*
5349  * The enqueue_task method is called before nr_running is
5350  * increased. Here we update the fair scheduling stats and
5351  * then put the task into the rbtree:
5352  */
5353 static void
5354 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5355 {
5356 	struct cfs_rq *cfs_rq;
5357 	struct sched_entity *se = &p->se;
5358 
5359 	/*
5360 	 * If in_iowait is set, the code below may not trigger any cpufreq
5361 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5362 	 * passed.
5363 	 */
5364 	if (p->in_iowait)
5365 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5366 
5367 	for_each_sched_entity(se) {
5368 		if (se->on_rq)
5369 			break;
5370 		cfs_rq = cfs_rq_of(se);
5371 		enqueue_entity(cfs_rq, se, flags);
5372 
5373 		/*
5374 		 * end evaluation on encountering a throttled cfs_rq
5375 		 *
5376 		 * note: in the case of encountering a throttled cfs_rq we will
5377 		 * post the final h_nr_running increment below.
5378 		 */
5379 		if (cfs_rq_throttled(cfs_rq))
5380 			break;
5381 		cfs_rq->h_nr_running++;
5382 
5383 		flags = ENQUEUE_WAKEUP;
5384 	}
5385 
5386 	for_each_sched_entity(se) {
5387 		cfs_rq = cfs_rq_of(se);
5388 		cfs_rq->h_nr_running++;
5389 
5390 		if (cfs_rq_throttled(cfs_rq))
5391 			break;
5392 
5393 		update_load_avg(cfs_rq, se, UPDATE_TG);
5394 		update_cfs_group(se);
5395 	}
5396 
5397 	if (!se)
5398 		add_nr_running(rq, 1);
5399 
5400 	util_est_enqueue(&rq->cfs, p);
5401 	hrtick_update(rq);
5402 }
5403 
5404 static void set_next_buddy(struct sched_entity *se);
5405 
5406 /*
5407  * The dequeue_task method is called before nr_running is
5408  * decreased. We remove the task from the rbtree and
5409  * update the fair scheduling stats:
5410  */
5411 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5412 {
5413 	struct cfs_rq *cfs_rq;
5414 	struct sched_entity *se = &p->se;
5415 	int task_sleep = flags & DEQUEUE_SLEEP;
5416 
5417 	for_each_sched_entity(se) {
5418 		cfs_rq = cfs_rq_of(se);
5419 		dequeue_entity(cfs_rq, se, flags);
5420 
5421 		/*
5422 		 * end evaluation on encountering a throttled cfs_rq
5423 		 *
5424 		 * note: in the case of encountering a throttled cfs_rq we will
5425 		 * post the final h_nr_running decrement below.
5426 		*/
5427 		if (cfs_rq_throttled(cfs_rq))
5428 			break;
5429 		cfs_rq->h_nr_running--;
5430 
5431 		/* Don't dequeue parent if it has other entities besides us */
5432 		if (cfs_rq->load.weight) {
5433 			/* Avoid re-evaluating load for this entity: */
5434 			se = parent_entity(se);
5435 			/*
5436 			 * Bias pick_next to pick a task from this cfs_rq, as
5437 			 * p is sleeping when it is within its sched_slice.
5438 			 */
5439 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5440 				set_next_buddy(se);
5441 			break;
5442 		}
5443 		flags |= DEQUEUE_SLEEP;
5444 	}
5445 
5446 	for_each_sched_entity(se) {
5447 		cfs_rq = cfs_rq_of(se);
5448 		cfs_rq->h_nr_running--;
5449 
5450 		if (cfs_rq_throttled(cfs_rq))
5451 			break;
5452 
5453 		update_load_avg(cfs_rq, se, UPDATE_TG);
5454 		update_cfs_group(se);
5455 	}
5456 
5457 	if (!se)
5458 		sub_nr_running(rq, 1);
5459 
5460 	util_est_dequeue(&rq->cfs, p, task_sleep);
5461 	hrtick_update(rq);
5462 }
5463 
5464 #ifdef CONFIG_SMP
5465 
5466 /* Working cpumask for: load_balance, load_balance_newidle. */
5467 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5468 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5469 
5470 #ifdef CONFIG_NO_HZ_COMMON
5471 /*
5472  * per rq 'load' arrray crap; XXX kill this.
5473  */
5474 
5475 /*
5476  * The exact cpuload calculated at every tick would be:
5477  *
5478  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5479  *
5480  * If a CPU misses updates for n ticks (as it was idle) and update gets
5481  * called on the n+1-th tick when CPU may be busy, then we have:
5482  *
5483  *   load_n   = (1 - 1/2^i)^n * load_0
5484  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5485  *
5486  * decay_load_missed() below does efficient calculation of
5487  *
5488  *   load' = (1 - 1/2^i)^n * load
5489  *
5490  * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5491  * This allows us to precompute the above in said factors, thereby allowing the
5492  * reduction of an arbitrary n in O(log_2 n) steps. (See also
5493  * fixed_power_int())
5494  *
5495  * The calculation is approximated on a 128 point scale.
5496  */
5497 #define DEGRADE_SHIFT		7
5498 
5499 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5500 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5501 	{   0,   0,  0,  0,  0,  0, 0, 0 },
5502 	{  64,  32,  8,  0,  0,  0, 0, 0 },
5503 	{  96,  72, 40, 12,  1,  0, 0, 0 },
5504 	{ 112,  98, 75, 43, 15,  1, 0, 0 },
5505 	{ 120, 112, 98, 76, 45, 16, 2, 0 }
5506 };
5507 
5508 /*
5509  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5510  * would be when CPU is idle and so we just decay the old load without
5511  * adding any new load.
5512  */
5513 static unsigned long
5514 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5515 {
5516 	int j = 0;
5517 
5518 	if (!missed_updates)
5519 		return load;
5520 
5521 	if (missed_updates >= degrade_zero_ticks[idx])
5522 		return 0;
5523 
5524 	if (idx == 1)
5525 		return load >> missed_updates;
5526 
5527 	while (missed_updates) {
5528 		if (missed_updates % 2)
5529 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5530 
5531 		missed_updates >>= 1;
5532 		j++;
5533 	}
5534 	return load;
5535 }
5536 
5537 static struct {
5538 	cpumask_var_t idle_cpus_mask;
5539 	atomic_t nr_cpus;
5540 	int has_blocked;		/* Idle CPUS has blocked load */
5541 	unsigned long next_balance;     /* in jiffy units */
5542 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5543 } nohz ____cacheline_aligned;
5544 
5545 #endif /* CONFIG_NO_HZ_COMMON */
5546 
5547 /**
5548  * __cpu_load_update - update the rq->cpu_load[] statistics
5549  * @this_rq: The rq to update statistics for
5550  * @this_load: The current load
5551  * @pending_updates: The number of missed updates
5552  *
5553  * Update rq->cpu_load[] statistics. This function is usually called every
5554  * scheduler tick (TICK_NSEC).
5555  *
5556  * This function computes a decaying average:
5557  *
5558  *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5559  *
5560  * Because of NOHZ it might not get called on every tick which gives need for
5561  * the @pending_updates argument.
5562  *
5563  *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5564  *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5565  *             = A * (A * load[i]_n-2 + B) + B
5566  *             = A * (A * (A * load[i]_n-3 + B) + B) + B
5567  *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5568  *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5569  *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5570  *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5571  *
5572  * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5573  * any change in load would have resulted in the tick being turned back on.
5574  *
5575  * For regular NOHZ, this reduces to:
5576  *
5577  *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
5578  *
5579  * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5580  * term.
5581  */
5582 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5583 			    unsigned long pending_updates)
5584 {
5585 	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5586 	int i, scale;
5587 
5588 	this_rq->nr_load_updates++;
5589 
5590 	/* Update our load: */
5591 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5592 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5593 		unsigned long old_load, new_load;
5594 
5595 		/* scale is effectively 1 << i now, and >> i divides by scale */
5596 
5597 		old_load = this_rq->cpu_load[i];
5598 #ifdef CONFIG_NO_HZ_COMMON
5599 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5600 		if (tickless_load) {
5601 			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5602 			/*
5603 			 * old_load can never be a negative value because a
5604 			 * decayed tickless_load cannot be greater than the
5605 			 * original tickless_load.
5606 			 */
5607 			old_load += tickless_load;
5608 		}
5609 #endif
5610 		new_load = this_load;
5611 		/*
5612 		 * Round up the averaging division if load is increasing. This
5613 		 * prevents us from getting stuck on 9 if the load is 10, for
5614 		 * example.
5615 		 */
5616 		if (new_load > old_load)
5617 			new_load += scale - 1;
5618 
5619 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5620 	}
5621 
5622 	sched_avg_update(this_rq);
5623 }
5624 
5625 /* Used instead of source_load when we know the type == 0 */
5626 static unsigned long weighted_cpuload(struct rq *rq)
5627 {
5628 	return cfs_rq_runnable_load_avg(&rq->cfs);
5629 }
5630 
5631 #ifdef CONFIG_NO_HZ_COMMON
5632 /*
5633  * There is no sane way to deal with nohz on smp when using jiffies because the
5634  * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5635  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5636  *
5637  * Therefore we need to avoid the delta approach from the regular tick when
5638  * possible since that would seriously skew the load calculation. This is why we
5639  * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5640  * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5641  * loop exit, nohz_idle_balance, nohz full exit...)
5642  *
5643  * This means we might still be one tick off for nohz periods.
5644  */
5645 
5646 static void cpu_load_update_nohz(struct rq *this_rq,
5647 				 unsigned long curr_jiffies,
5648 				 unsigned long load)
5649 {
5650 	unsigned long pending_updates;
5651 
5652 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5653 	if (pending_updates) {
5654 		this_rq->last_load_update_tick = curr_jiffies;
5655 		/*
5656 		 * In the regular NOHZ case, we were idle, this means load 0.
5657 		 * In the NOHZ_FULL case, we were non-idle, we should consider
5658 		 * its weighted load.
5659 		 */
5660 		cpu_load_update(this_rq, load, pending_updates);
5661 	}
5662 }
5663 
5664 /*
5665  * Called from nohz_idle_balance() to update the load ratings before doing the
5666  * idle balance.
5667  */
5668 static void cpu_load_update_idle(struct rq *this_rq)
5669 {
5670 	/*
5671 	 * bail if there's load or we're actually up-to-date.
5672 	 */
5673 	if (weighted_cpuload(this_rq))
5674 		return;
5675 
5676 	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5677 }
5678 
5679 /*
5680  * Record CPU load on nohz entry so we know the tickless load to account
5681  * on nohz exit. cpu_load[0] happens then to be updated more frequently
5682  * than other cpu_load[idx] but it should be fine as cpu_load readers
5683  * shouldn't rely into synchronized cpu_load[*] updates.
5684  */
5685 void cpu_load_update_nohz_start(void)
5686 {
5687 	struct rq *this_rq = this_rq();
5688 
5689 	/*
5690 	 * This is all lockless but should be fine. If weighted_cpuload changes
5691 	 * concurrently we'll exit nohz. And cpu_load write can race with
5692 	 * cpu_load_update_idle() but both updater would be writing the same.
5693 	 */
5694 	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5695 }
5696 
5697 /*
5698  * Account the tickless load in the end of a nohz frame.
5699  */
5700 void cpu_load_update_nohz_stop(void)
5701 {
5702 	unsigned long curr_jiffies = READ_ONCE(jiffies);
5703 	struct rq *this_rq = this_rq();
5704 	unsigned long load;
5705 	struct rq_flags rf;
5706 
5707 	if (curr_jiffies == this_rq->last_load_update_tick)
5708 		return;
5709 
5710 	load = weighted_cpuload(this_rq);
5711 	rq_lock(this_rq, &rf);
5712 	update_rq_clock(this_rq);
5713 	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5714 	rq_unlock(this_rq, &rf);
5715 }
5716 #else /* !CONFIG_NO_HZ_COMMON */
5717 static inline void cpu_load_update_nohz(struct rq *this_rq,
5718 					unsigned long curr_jiffies,
5719 					unsigned long load) { }
5720 #endif /* CONFIG_NO_HZ_COMMON */
5721 
5722 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5723 {
5724 #ifdef CONFIG_NO_HZ_COMMON
5725 	/* See the mess around cpu_load_update_nohz(). */
5726 	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5727 #endif
5728 	cpu_load_update(this_rq, load, 1);
5729 }
5730 
5731 /*
5732  * Called from scheduler_tick()
5733  */
5734 void cpu_load_update_active(struct rq *this_rq)
5735 {
5736 	unsigned long load = weighted_cpuload(this_rq);
5737 
5738 	if (tick_nohz_tick_stopped())
5739 		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5740 	else
5741 		cpu_load_update_periodic(this_rq, load);
5742 }
5743 
5744 /*
5745  * Return a low guess at the load of a migration-source CPU weighted
5746  * according to the scheduling class and "nice" value.
5747  *
5748  * We want to under-estimate the load of migration sources, to
5749  * balance conservatively.
5750  */
5751 static unsigned long source_load(int cpu, int type)
5752 {
5753 	struct rq *rq = cpu_rq(cpu);
5754 	unsigned long total = weighted_cpuload(rq);
5755 
5756 	if (type == 0 || !sched_feat(LB_BIAS))
5757 		return total;
5758 
5759 	return min(rq->cpu_load[type-1], total);
5760 }
5761 
5762 /*
5763  * Return a high guess at the load of a migration-target CPU weighted
5764  * according to the scheduling class and "nice" value.
5765  */
5766 static unsigned long target_load(int cpu, int type)
5767 {
5768 	struct rq *rq = cpu_rq(cpu);
5769 	unsigned long total = weighted_cpuload(rq);
5770 
5771 	if (type == 0 || !sched_feat(LB_BIAS))
5772 		return total;
5773 
5774 	return max(rq->cpu_load[type-1], total);
5775 }
5776 
5777 static unsigned long capacity_of(int cpu)
5778 {
5779 	return cpu_rq(cpu)->cpu_capacity;
5780 }
5781 
5782 static unsigned long capacity_orig_of(int cpu)
5783 {
5784 	return cpu_rq(cpu)->cpu_capacity_orig;
5785 }
5786 
5787 static unsigned long cpu_avg_load_per_task(int cpu)
5788 {
5789 	struct rq *rq = cpu_rq(cpu);
5790 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5791 	unsigned long load_avg = weighted_cpuload(rq);
5792 
5793 	if (nr_running)
5794 		return load_avg / nr_running;
5795 
5796 	return 0;
5797 }
5798 
5799 static void record_wakee(struct task_struct *p)
5800 {
5801 	/*
5802 	 * Only decay a single time; tasks that have less then 1 wakeup per
5803 	 * jiffy will not have built up many flips.
5804 	 */
5805 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5806 		current->wakee_flips >>= 1;
5807 		current->wakee_flip_decay_ts = jiffies;
5808 	}
5809 
5810 	if (current->last_wakee != p) {
5811 		current->last_wakee = p;
5812 		current->wakee_flips++;
5813 	}
5814 }
5815 
5816 /*
5817  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5818  *
5819  * A waker of many should wake a different task than the one last awakened
5820  * at a frequency roughly N times higher than one of its wakees.
5821  *
5822  * In order to determine whether we should let the load spread vs consolidating
5823  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5824  * partner, and a factor of lls_size higher frequency in the other.
5825  *
5826  * With both conditions met, we can be relatively sure that the relationship is
5827  * non-monogamous, with partner count exceeding socket size.
5828  *
5829  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5830  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5831  * socket size.
5832  */
5833 static int wake_wide(struct task_struct *p)
5834 {
5835 	unsigned int master = current->wakee_flips;
5836 	unsigned int slave = p->wakee_flips;
5837 	int factor = this_cpu_read(sd_llc_size);
5838 
5839 	if (master < slave)
5840 		swap(master, slave);
5841 	if (slave < factor || master < slave * factor)
5842 		return 0;
5843 	return 1;
5844 }
5845 
5846 /*
5847  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5848  * soonest. For the purpose of speed we only consider the waking and previous
5849  * CPU.
5850  *
5851  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5852  *			cache-affine and is (or	will be) idle.
5853  *
5854  * wake_affine_weight() - considers the weight to reflect the average
5855  *			  scheduling latency of the CPUs. This seems to work
5856  *			  for the overloaded case.
5857  */
5858 static int
5859 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5860 {
5861 	/*
5862 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5863 	 * context. Only allow the move if cache is shared. Otherwise an
5864 	 * interrupt intensive workload could force all tasks onto one
5865 	 * node depending on the IO topology or IRQ affinity settings.
5866 	 *
5867 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5868 	 * There is no guarantee that the cache hot data from an interrupt
5869 	 * is more important than cache hot data on the prev_cpu and from
5870 	 * a cpufreq perspective, it's better to have higher utilisation
5871 	 * on one CPU.
5872 	 */
5873 	if (idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5874 		return idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5875 
5876 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5877 		return this_cpu;
5878 
5879 	return nr_cpumask_bits;
5880 }
5881 
5882 static int
5883 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5884 		   int this_cpu, int prev_cpu, int sync)
5885 {
5886 	s64 this_eff_load, prev_eff_load;
5887 	unsigned long task_load;
5888 
5889 	this_eff_load = target_load(this_cpu, sd->wake_idx);
5890 
5891 	if (sync) {
5892 		unsigned long current_load = task_h_load(current);
5893 
5894 		if (current_load > this_eff_load)
5895 			return this_cpu;
5896 
5897 		this_eff_load -= current_load;
5898 	}
5899 
5900 	task_load = task_h_load(p);
5901 
5902 	this_eff_load += task_load;
5903 	if (sched_feat(WA_BIAS))
5904 		this_eff_load *= 100;
5905 	this_eff_load *= capacity_of(prev_cpu);
5906 
5907 	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5908 	prev_eff_load -= task_load;
5909 	if (sched_feat(WA_BIAS))
5910 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5911 	prev_eff_load *= capacity_of(this_cpu);
5912 
5913 	/*
5914 	 * If sync, adjust the weight of prev_eff_load such that if
5915 	 * prev_eff == this_eff that select_idle_sibling() will consider
5916 	 * stacking the wakee on top of the waker if no other CPU is
5917 	 * idle.
5918 	 */
5919 	if (sync)
5920 		prev_eff_load += 1;
5921 
5922 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5923 }
5924 
5925 #ifdef CONFIG_NUMA_BALANCING
5926 static void
5927 update_wa_numa_placement(struct task_struct *p, int prev_cpu, int target)
5928 {
5929 	unsigned long interval;
5930 
5931 	if (!static_branch_likely(&sched_numa_balancing))
5932 		return;
5933 
5934 	/* If balancing has no preference then continue gathering data */
5935 	if (p->numa_preferred_nid == -1)
5936 		return;
5937 
5938 	/*
5939 	 * If the wakeup is not affecting locality then it is neutral from
5940 	 * the perspective of NUMA balacing so continue gathering data.
5941 	 */
5942 	if (cpu_to_node(prev_cpu) == cpu_to_node(target))
5943 		return;
5944 
5945 	/*
5946 	 * Temporarily prevent NUMA balancing trying to place waker/wakee after
5947 	 * wakee has been moved by wake_affine. This will potentially allow
5948 	 * related tasks to converge and update their data placement. The
5949 	 * 4 * numa_scan_period is to allow the two-pass filter to migrate
5950 	 * hot data to the wakers node.
5951 	 */
5952 	interval = max(sysctl_numa_balancing_scan_delay,
5953 			 p->numa_scan_period << 2);
5954 	p->numa_migrate_retry = jiffies + msecs_to_jiffies(interval);
5955 
5956 	interval = max(sysctl_numa_balancing_scan_delay,
5957 			 current->numa_scan_period << 2);
5958 	current->numa_migrate_retry = jiffies + msecs_to_jiffies(interval);
5959 }
5960 #else
5961 static void
5962 update_wa_numa_placement(struct task_struct *p, int prev_cpu, int target)
5963 {
5964 }
5965 #endif
5966 
5967 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5968 		       int this_cpu, int prev_cpu, int sync)
5969 {
5970 	int target = nr_cpumask_bits;
5971 
5972 	if (sched_feat(WA_IDLE))
5973 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5974 
5975 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5976 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5977 
5978 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5979 	if (target == nr_cpumask_bits)
5980 		return prev_cpu;
5981 
5982 	update_wa_numa_placement(p, prev_cpu, target);
5983 	schedstat_inc(sd->ttwu_move_affine);
5984 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5985 	return target;
5986 }
5987 
5988 static unsigned long cpu_util_wake(int cpu, struct task_struct *p);
5989 
5990 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5991 {
5992 	return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0);
5993 }
5994 
5995 /*
5996  * find_idlest_group finds and returns the least busy CPU group within the
5997  * domain.
5998  *
5999  * Assumes p is allowed on at least one CPU in sd.
6000  */
6001 static struct sched_group *
6002 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
6003 		  int this_cpu, int sd_flag)
6004 {
6005 	struct sched_group *idlest = NULL, *group = sd->groups;
6006 	struct sched_group *most_spare_sg = NULL;
6007 	unsigned long min_runnable_load = ULONG_MAX;
6008 	unsigned long this_runnable_load = ULONG_MAX;
6009 	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
6010 	unsigned long most_spare = 0, this_spare = 0;
6011 	int load_idx = sd->forkexec_idx;
6012 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
6013 	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
6014 				(sd->imbalance_pct-100) / 100;
6015 
6016 	if (sd_flag & SD_BALANCE_WAKE)
6017 		load_idx = sd->wake_idx;
6018 
6019 	do {
6020 		unsigned long load, avg_load, runnable_load;
6021 		unsigned long spare_cap, max_spare_cap;
6022 		int local_group;
6023 		int i;
6024 
6025 		/* Skip over this group if it has no CPUs allowed */
6026 		if (!cpumask_intersects(sched_group_span(group),
6027 					&p->cpus_allowed))
6028 			continue;
6029 
6030 		local_group = cpumask_test_cpu(this_cpu,
6031 					       sched_group_span(group));
6032 
6033 		/*
6034 		 * Tally up the load of all CPUs in the group and find
6035 		 * the group containing the CPU with most spare capacity.
6036 		 */
6037 		avg_load = 0;
6038 		runnable_load = 0;
6039 		max_spare_cap = 0;
6040 
6041 		for_each_cpu(i, sched_group_span(group)) {
6042 			/* Bias balancing toward CPUs of our domain */
6043 			if (local_group)
6044 				load = source_load(i, load_idx);
6045 			else
6046 				load = target_load(i, load_idx);
6047 
6048 			runnable_load += load;
6049 
6050 			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6051 
6052 			spare_cap = capacity_spare_wake(i, p);
6053 
6054 			if (spare_cap > max_spare_cap)
6055 				max_spare_cap = spare_cap;
6056 		}
6057 
6058 		/* Adjust by relative CPU capacity of the group */
6059 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
6060 					group->sgc->capacity;
6061 		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
6062 					group->sgc->capacity;
6063 
6064 		if (local_group) {
6065 			this_runnable_load = runnable_load;
6066 			this_avg_load = avg_load;
6067 			this_spare = max_spare_cap;
6068 		} else {
6069 			if (min_runnable_load > (runnable_load + imbalance)) {
6070 				/*
6071 				 * The runnable load is significantly smaller
6072 				 * so we can pick this new CPU:
6073 				 */
6074 				min_runnable_load = runnable_load;
6075 				min_avg_load = avg_load;
6076 				idlest = group;
6077 			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
6078 				   (100*min_avg_load > imbalance_scale*avg_load)) {
6079 				/*
6080 				 * The runnable loads are close so take the
6081 				 * blocked load into account through avg_load:
6082 				 */
6083 				min_avg_load = avg_load;
6084 				idlest = group;
6085 			}
6086 
6087 			if (most_spare < max_spare_cap) {
6088 				most_spare = max_spare_cap;
6089 				most_spare_sg = group;
6090 			}
6091 		}
6092 	} while (group = group->next, group != sd->groups);
6093 
6094 	/*
6095 	 * The cross-over point between using spare capacity or least load
6096 	 * is too conservative for high utilization tasks on partially
6097 	 * utilized systems if we require spare_capacity > task_util(p),
6098 	 * so we allow for some task stuffing by using
6099 	 * spare_capacity > task_util(p)/2.
6100 	 *
6101 	 * Spare capacity can't be used for fork because the utilization has
6102 	 * not been set yet, we must first select a rq to compute the initial
6103 	 * utilization.
6104 	 */
6105 	if (sd_flag & SD_BALANCE_FORK)
6106 		goto skip_spare;
6107 
6108 	if (this_spare > task_util(p) / 2 &&
6109 	    imbalance_scale*this_spare > 100*most_spare)
6110 		return NULL;
6111 
6112 	if (most_spare > task_util(p) / 2)
6113 		return most_spare_sg;
6114 
6115 skip_spare:
6116 	if (!idlest)
6117 		return NULL;
6118 
6119 	/*
6120 	 * When comparing groups across NUMA domains, it's possible for the
6121 	 * local domain to be very lightly loaded relative to the remote
6122 	 * domains but "imbalance" skews the comparison making remote CPUs
6123 	 * look much more favourable. When considering cross-domain, add
6124 	 * imbalance to the runnable load on the remote node and consider
6125 	 * staying local.
6126 	 */
6127 	if ((sd->flags & SD_NUMA) &&
6128 	    min_runnable_load + imbalance >= this_runnable_load)
6129 		return NULL;
6130 
6131 	if (min_runnable_load > (this_runnable_load + imbalance))
6132 		return NULL;
6133 
6134 	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
6135 	     (100*this_avg_load < imbalance_scale*min_avg_load))
6136 		return NULL;
6137 
6138 	return idlest;
6139 }
6140 
6141 /*
6142  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6143  */
6144 static int
6145 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6146 {
6147 	unsigned long load, min_load = ULONG_MAX;
6148 	unsigned int min_exit_latency = UINT_MAX;
6149 	u64 latest_idle_timestamp = 0;
6150 	int least_loaded_cpu = this_cpu;
6151 	int shallowest_idle_cpu = -1;
6152 	int i;
6153 
6154 	/* Check if we have any choice: */
6155 	if (group->group_weight == 1)
6156 		return cpumask_first(sched_group_span(group));
6157 
6158 	/* Traverse only the allowed CPUs */
6159 	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
6160 		if (idle_cpu(i)) {
6161 			struct rq *rq = cpu_rq(i);
6162 			struct cpuidle_state *idle = idle_get_state(rq);
6163 			if (idle && idle->exit_latency < min_exit_latency) {
6164 				/*
6165 				 * We give priority to a CPU whose idle state
6166 				 * has the smallest exit latency irrespective
6167 				 * of any idle timestamp.
6168 				 */
6169 				min_exit_latency = idle->exit_latency;
6170 				latest_idle_timestamp = rq->idle_stamp;
6171 				shallowest_idle_cpu = i;
6172 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
6173 				   rq->idle_stamp > latest_idle_timestamp) {
6174 				/*
6175 				 * If equal or no active idle state, then
6176 				 * the most recently idled CPU might have
6177 				 * a warmer cache.
6178 				 */
6179 				latest_idle_timestamp = rq->idle_stamp;
6180 				shallowest_idle_cpu = i;
6181 			}
6182 		} else if (shallowest_idle_cpu == -1) {
6183 			load = weighted_cpuload(cpu_rq(i));
6184 			if (load < min_load) {
6185 				min_load = load;
6186 				least_loaded_cpu = i;
6187 			}
6188 		}
6189 	}
6190 
6191 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6192 }
6193 
6194 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6195 				  int cpu, int prev_cpu, int sd_flag)
6196 {
6197 	int new_cpu = cpu;
6198 
6199 	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
6200 		return prev_cpu;
6201 
6202 	while (sd) {
6203 		struct sched_group *group;
6204 		struct sched_domain *tmp;
6205 		int weight;
6206 
6207 		if (!(sd->flags & sd_flag)) {
6208 			sd = sd->child;
6209 			continue;
6210 		}
6211 
6212 		group = find_idlest_group(sd, p, cpu, sd_flag);
6213 		if (!group) {
6214 			sd = sd->child;
6215 			continue;
6216 		}
6217 
6218 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6219 		if (new_cpu == cpu) {
6220 			/* Now try balancing at a lower domain level of 'cpu': */
6221 			sd = sd->child;
6222 			continue;
6223 		}
6224 
6225 		/* Now try balancing at a lower domain level of 'new_cpu': */
6226 		cpu = new_cpu;
6227 		weight = sd->span_weight;
6228 		sd = NULL;
6229 		for_each_domain(cpu, tmp) {
6230 			if (weight <= tmp->span_weight)
6231 				break;
6232 			if (tmp->flags & sd_flag)
6233 				sd = tmp;
6234 		}
6235 	}
6236 
6237 	return new_cpu;
6238 }
6239 
6240 #ifdef CONFIG_SCHED_SMT
6241 
6242 static inline void set_idle_cores(int cpu, int val)
6243 {
6244 	struct sched_domain_shared *sds;
6245 
6246 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6247 	if (sds)
6248 		WRITE_ONCE(sds->has_idle_cores, val);
6249 }
6250 
6251 static inline bool test_idle_cores(int cpu, bool def)
6252 {
6253 	struct sched_domain_shared *sds;
6254 
6255 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6256 	if (sds)
6257 		return READ_ONCE(sds->has_idle_cores);
6258 
6259 	return def;
6260 }
6261 
6262 /*
6263  * Scans the local SMT mask to see if the entire core is idle, and records this
6264  * information in sd_llc_shared->has_idle_cores.
6265  *
6266  * Since SMT siblings share all cache levels, inspecting this limited remote
6267  * state should be fairly cheap.
6268  */
6269 void __update_idle_core(struct rq *rq)
6270 {
6271 	int core = cpu_of(rq);
6272 	int cpu;
6273 
6274 	rcu_read_lock();
6275 	if (test_idle_cores(core, true))
6276 		goto unlock;
6277 
6278 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6279 		if (cpu == core)
6280 			continue;
6281 
6282 		if (!idle_cpu(cpu))
6283 			goto unlock;
6284 	}
6285 
6286 	set_idle_cores(core, 1);
6287 unlock:
6288 	rcu_read_unlock();
6289 }
6290 
6291 /*
6292  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6293  * there are no idle cores left in the system; tracked through
6294  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6295  */
6296 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6297 {
6298 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6299 	int core, cpu;
6300 
6301 	if (!static_branch_likely(&sched_smt_present))
6302 		return -1;
6303 
6304 	if (!test_idle_cores(target, false))
6305 		return -1;
6306 
6307 	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
6308 
6309 	for_each_cpu_wrap(core, cpus, target) {
6310 		bool idle = true;
6311 
6312 		for_each_cpu(cpu, cpu_smt_mask(core)) {
6313 			cpumask_clear_cpu(cpu, cpus);
6314 			if (!idle_cpu(cpu))
6315 				idle = false;
6316 		}
6317 
6318 		if (idle)
6319 			return core;
6320 	}
6321 
6322 	/*
6323 	 * Failed to find an idle core; stop looking for one.
6324 	 */
6325 	set_idle_cores(target, 0);
6326 
6327 	return -1;
6328 }
6329 
6330 /*
6331  * Scan the local SMT mask for idle CPUs.
6332  */
6333 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6334 {
6335 	int cpu;
6336 
6337 	if (!static_branch_likely(&sched_smt_present))
6338 		return -1;
6339 
6340 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6341 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6342 			continue;
6343 		if (idle_cpu(cpu))
6344 			return cpu;
6345 	}
6346 
6347 	return -1;
6348 }
6349 
6350 #else /* CONFIG_SCHED_SMT */
6351 
6352 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6353 {
6354 	return -1;
6355 }
6356 
6357 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6358 {
6359 	return -1;
6360 }
6361 
6362 #endif /* CONFIG_SCHED_SMT */
6363 
6364 /*
6365  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6366  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6367  * average idle time for this rq (as found in rq->avg_idle).
6368  */
6369 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6370 {
6371 	struct sched_domain *this_sd;
6372 	u64 avg_cost, avg_idle;
6373 	u64 time, cost;
6374 	s64 delta;
6375 	int cpu, nr = INT_MAX;
6376 
6377 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6378 	if (!this_sd)
6379 		return -1;
6380 
6381 	/*
6382 	 * Due to large variance we need a large fuzz factor; hackbench in
6383 	 * particularly is sensitive here.
6384 	 */
6385 	avg_idle = this_rq()->avg_idle / 512;
6386 	avg_cost = this_sd->avg_scan_cost + 1;
6387 
6388 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6389 		return -1;
6390 
6391 	if (sched_feat(SIS_PROP)) {
6392 		u64 span_avg = sd->span_weight * avg_idle;
6393 		if (span_avg > 4*avg_cost)
6394 			nr = div_u64(span_avg, avg_cost);
6395 		else
6396 			nr = 4;
6397 	}
6398 
6399 	time = local_clock();
6400 
6401 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6402 		if (!--nr)
6403 			return -1;
6404 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6405 			continue;
6406 		if (idle_cpu(cpu))
6407 			break;
6408 	}
6409 
6410 	time = local_clock() - time;
6411 	cost = this_sd->avg_scan_cost;
6412 	delta = (s64)(time - cost) / 8;
6413 	this_sd->avg_scan_cost += delta;
6414 
6415 	return cpu;
6416 }
6417 
6418 /*
6419  * Try and locate an idle core/thread in the LLC cache domain.
6420  */
6421 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6422 {
6423 	struct sched_domain *sd;
6424 	int i, recent_used_cpu;
6425 
6426 	if (idle_cpu(target))
6427 		return target;
6428 
6429 	/*
6430 	 * If the previous CPU is cache affine and idle, don't be stupid:
6431 	 */
6432 	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
6433 		return prev;
6434 
6435 	/* Check a recently used CPU as a potential idle candidate: */
6436 	recent_used_cpu = p->recent_used_cpu;
6437 	if (recent_used_cpu != prev &&
6438 	    recent_used_cpu != target &&
6439 	    cpus_share_cache(recent_used_cpu, target) &&
6440 	    idle_cpu(recent_used_cpu) &&
6441 	    cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6442 		/*
6443 		 * Replace recent_used_cpu with prev as it is a potential
6444 		 * candidate for the next wake:
6445 		 */
6446 		p->recent_used_cpu = prev;
6447 		return recent_used_cpu;
6448 	}
6449 
6450 	sd = rcu_dereference(per_cpu(sd_llc, target));
6451 	if (!sd)
6452 		return target;
6453 
6454 	i = select_idle_core(p, sd, target);
6455 	if ((unsigned)i < nr_cpumask_bits)
6456 		return i;
6457 
6458 	i = select_idle_cpu(p, sd, target);
6459 	if ((unsigned)i < nr_cpumask_bits)
6460 		return i;
6461 
6462 	i = select_idle_smt(p, sd, target);
6463 	if ((unsigned)i < nr_cpumask_bits)
6464 		return i;
6465 
6466 	return target;
6467 }
6468 
6469 /**
6470  * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6471  * @cpu: the CPU to get the utilization of
6472  *
6473  * The unit of the return value must be the one of capacity so we can compare
6474  * the utilization with the capacity of the CPU that is available for CFS task
6475  * (ie cpu_capacity).
6476  *
6477  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6478  * recent utilization of currently non-runnable tasks on a CPU. It represents
6479  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6480  * capacity_orig is the cpu_capacity available at the highest frequency
6481  * (arch_scale_freq_capacity()).
6482  * The utilization of a CPU converges towards a sum equal to or less than the
6483  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6484  * the running time on this CPU scaled by capacity_curr.
6485  *
6486  * The estimated utilization of a CPU is defined to be the maximum between its
6487  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6488  * currently RUNNABLE on that CPU.
6489  * This allows to properly represent the expected utilization of a CPU which
6490  * has just got a big task running since a long sleep period. At the same time
6491  * however it preserves the benefits of the "blocked utilization" in
6492  * describing the potential for other tasks waking up on the same CPU.
6493  *
6494  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6495  * higher than capacity_orig because of unfortunate rounding in
6496  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6497  * the average stabilizes with the new running time. We need to check that the
6498  * utilization stays within the range of [0..capacity_orig] and cap it if
6499  * necessary. Without utilization capping, a group could be seen as overloaded
6500  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6501  * available capacity. We allow utilization to overshoot capacity_curr (but not
6502  * capacity_orig) as it useful for predicting the capacity required after task
6503  * migrations (scheduler-driven DVFS).
6504  *
6505  * Return: the (estimated) utilization for the specified CPU
6506  */
6507 static inline unsigned long cpu_util(int cpu)
6508 {
6509 	struct cfs_rq *cfs_rq;
6510 	unsigned int util;
6511 
6512 	cfs_rq = &cpu_rq(cpu)->cfs;
6513 	util = READ_ONCE(cfs_rq->avg.util_avg);
6514 
6515 	if (sched_feat(UTIL_EST))
6516 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6517 
6518 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6519 }
6520 
6521 /*
6522  * cpu_util_wake: Compute CPU utilization with any contributions from
6523  * the waking task p removed.
6524  */
6525 static unsigned long cpu_util_wake(int cpu, struct task_struct *p)
6526 {
6527 	struct cfs_rq *cfs_rq;
6528 	unsigned int util;
6529 
6530 	/* Task has no contribution or is new */
6531 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6532 		return cpu_util(cpu);
6533 
6534 	cfs_rq = &cpu_rq(cpu)->cfs;
6535 	util = READ_ONCE(cfs_rq->avg.util_avg);
6536 
6537 	/* Discount task's blocked util from CPU's util */
6538 	util -= min_t(unsigned int, util, task_util(p));
6539 
6540 	/*
6541 	 * Covered cases:
6542 	 *
6543 	 * a) if *p is the only task sleeping on this CPU, then:
6544 	 *      cpu_util (== task_util) > util_est (== 0)
6545 	 *    and thus we return:
6546 	 *      cpu_util_wake = (cpu_util - task_util) = 0
6547 	 *
6548 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6549 	 *    IDLE, then:
6550 	 *      cpu_util >= task_util
6551 	 *      cpu_util > util_est (== 0)
6552 	 *    and thus we discount *p's blocked utilization to return:
6553 	 *      cpu_util_wake = (cpu_util - task_util) >= 0
6554 	 *
6555 	 * c) if other tasks are RUNNABLE on that CPU and
6556 	 *      util_est > cpu_util
6557 	 *    then we use util_est since it returns a more restrictive
6558 	 *    estimation of the spare capacity on that CPU, by just
6559 	 *    considering the expected utilization of tasks already
6560 	 *    runnable on that CPU.
6561 	 *
6562 	 * Cases a) and b) are covered by the above code, while case c) is
6563 	 * covered by the following code when estimated utilization is
6564 	 * enabled.
6565 	 */
6566 	if (sched_feat(UTIL_EST))
6567 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6568 
6569 	/*
6570 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6571 	 * clamp to the maximum CPU capacity to ensure consistency with
6572 	 * the cpu_util call.
6573 	 */
6574 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6575 }
6576 
6577 /*
6578  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6579  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6580  *
6581  * In that case WAKE_AFFINE doesn't make sense and we'll let
6582  * BALANCE_WAKE sort things out.
6583  */
6584 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6585 {
6586 	long min_cap, max_cap;
6587 
6588 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6589 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6590 
6591 	/* Minimum capacity is close to max, no need to abort wake_affine */
6592 	if (max_cap - min_cap < max_cap >> 3)
6593 		return 0;
6594 
6595 	/* Bring task utilization in sync with prev_cpu */
6596 	sync_entity_load_avg(&p->se);
6597 
6598 	return min_cap * 1024 < task_util(p) * capacity_margin;
6599 }
6600 
6601 /*
6602  * select_task_rq_fair: Select target runqueue for the waking task in domains
6603  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6604  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6605  *
6606  * Balances load by selecting the idlest CPU in the idlest group, or under
6607  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6608  *
6609  * Returns the target CPU number.
6610  *
6611  * preempt must be disabled.
6612  */
6613 static int
6614 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6615 {
6616 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
6617 	int cpu = smp_processor_id();
6618 	int new_cpu = prev_cpu;
6619 	int want_affine = 0;
6620 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6621 
6622 	if (sd_flag & SD_BALANCE_WAKE) {
6623 		record_wakee(p);
6624 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6625 			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
6626 	}
6627 
6628 	rcu_read_lock();
6629 	for_each_domain(cpu, tmp) {
6630 		if (!(tmp->flags & SD_LOAD_BALANCE))
6631 			break;
6632 
6633 		/*
6634 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6635 		 * cpu is a valid SD_WAKE_AFFINE target.
6636 		 */
6637 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6638 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6639 			affine_sd = tmp;
6640 			break;
6641 		}
6642 
6643 		if (tmp->flags & sd_flag)
6644 			sd = tmp;
6645 		else if (!want_affine)
6646 			break;
6647 	}
6648 
6649 	if (affine_sd) {
6650 		sd = NULL; /* Prefer wake_affine over balance flags */
6651 		if (cpu == prev_cpu)
6652 			goto pick_cpu;
6653 
6654 		new_cpu = wake_affine(affine_sd, p, cpu, prev_cpu, sync);
6655 	}
6656 
6657 	if (sd && !(sd_flag & SD_BALANCE_FORK)) {
6658 		/*
6659 		 * We're going to need the task's util for capacity_spare_wake
6660 		 * in find_idlest_group. Sync it up to prev_cpu's
6661 		 * last_update_time.
6662 		 */
6663 		sync_entity_load_avg(&p->se);
6664 	}
6665 
6666 	if (!sd) {
6667 pick_cpu:
6668 		if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6669 			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6670 
6671 			if (want_affine)
6672 				current->recent_used_cpu = cpu;
6673 		}
6674 	} else {
6675 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6676 	}
6677 	rcu_read_unlock();
6678 
6679 	return new_cpu;
6680 }
6681 
6682 static void detach_entity_cfs_rq(struct sched_entity *se);
6683 
6684 /*
6685  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6686  * cfs_rq_of(p) references at time of call are still valid and identify the
6687  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6688  */
6689 static void migrate_task_rq_fair(struct task_struct *p)
6690 {
6691 	/*
6692 	 * As blocked tasks retain absolute vruntime the migration needs to
6693 	 * deal with this by subtracting the old and adding the new
6694 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6695 	 * the task on the new runqueue.
6696 	 */
6697 	if (p->state == TASK_WAKING) {
6698 		struct sched_entity *se = &p->se;
6699 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6700 		u64 min_vruntime;
6701 
6702 #ifndef CONFIG_64BIT
6703 		u64 min_vruntime_copy;
6704 
6705 		do {
6706 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6707 			smp_rmb();
6708 			min_vruntime = cfs_rq->min_vruntime;
6709 		} while (min_vruntime != min_vruntime_copy);
6710 #else
6711 		min_vruntime = cfs_rq->min_vruntime;
6712 #endif
6713 
6714 		se->vruntime -= min_vruntime;
6715 	}
6716 
6717 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6718 		/*
6719 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6720 		 * rq->lock and can modify state directly.
6721 		 */
6722 		lockdep_assert_held(&task_rq(p)->lock);
6723 		detach_entity_cfs_rq(&p->se);
6724 
6725 	} else {
6726 		/*
6727 		 * We are supposed to update the task to "current" time, then
6728 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6729 		 * have difficulty in getting what current time is, so simply
6730 		 * throw away the out-of-date time. This will result in the
6731 		 * wakee task is less decayed, but giving the wakee more load
6732 		 * sounds not bad.
6733 		 */
6734 		remove_entity_load_avg(&p->se);
6735 	}
6736 
6737 	/* Tell new CPU we are migrated */
6738 	p->se.avg.last_update_time = 0;
6739 
6740 	/* We have migrated, no longer consider this task hot */
6741 	p->se.exec_start = 0;
6742 }
6743 
6744 static void task_dead_fair(struct task_struct *p)
6745 {
6746 	remove_entity_load_avg(&p->se);
6747 }
6748 #endif /* CONFIG_SMP */
6749 
6750 static unsigned long wakeup_gran(struct sched_entity *se)
6751 {
6752 	unsigned long gran = sysctl_sched_wakeup_granularity;
6753 
6754 	/*
6755 	 * Since its curr running now, convert the gran from real-time
6756 	 * to virtual-time in his units.
6757 	 *
6758 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6759 	 * they get preempted easier. That is, if 'se' < 'curr' then
6760 	 * the resulting gran will be larger, therefore penalizing the
6761 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6762 	 * be smaller, again penalizing the lighter task.
6763 	 *
6764 	 * This is especially important for buddies when the leftmost
6765 	 * task is higher priority than the buddy.
6766 	 */
6767 	return calc_delta_fair(gran, se);
6768 }
6769 
6770 /*
6771  * Should 'se' preempt 'curr'.
6772  *
6773  *             |s1
6774  *        |s2
6775  *   |s3
6776  *         g
6777  *      |<--->|c
6778  *
6779  *  w(c, s1) = -1
6780  *  w(c, s2) =  0
6781  *  w(c, s3) =  1
6782  *
6783  */
6784 static int
6785 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6786 {
6787 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6788 
6789 	if (vdiff <= 0)
6790 		return -1;
6791 
6792 	gran = wakeup_gran(se);
6793 	if (vdiff > gran)
6794 		return 1;
6795 
6796 	return 0;
6797 }
6798 
6799 static void set_last_buddy(struct sched_entity *se)
6800 {
6801 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6802 		return;
6803 
6804 	for_each_sched_entity(se) {
6805 		if (SCHED_WARN_ON(!se->on_rq))
6806 			return;
6807 		cfs_rq_of(se)->last = se;
6808 	}
6809 }
6810 
6811 static void set_next_buddy(struct sched_entity *se)
6812 {
6813 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6814 		return;
6815 
6816 	for_each_sched_entity(se) {
6817 		if (SCHED_WARN_ON(!se->on_rq))
6818 			return;
6819 		cfs_rq_of(se)->next = se;
6820 	}
6821 }
6822 
6823 static void set_skip_buddy(struct sched_entity *se)
6824 {
6825 	for_each_sched_entity(se)
6826 		cfs_rq_of(se)->skip = se;
6827 }
6828 
6829 /*
6830  * Preempt the current task with a newly woken task if needed:
6831  */
6832 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6833 {
6834 	struct task_struct *curr = rq->curr;
6835 	struct sched_entity *se = &curr->se, *pse = &p->se;
6836 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6837 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6838 	int next_buddy_marked = 0;
6839 
6840 	if (unlikely(se == pse))
6841 		return;
6842 
6843 	/*
6844 	 * This is possible from callers such as attach_tasks(), in which we
6845 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6846 	 * lead to a throttle).  This both saves work and prevents false
6847 	 * next-buddy nomination below.
6848 	 */
6849 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6850 		return;
6851 
6852 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6853 		set_next_buddy(pse);
6854 		next_buddy_marked = 1;
6855 	}
6856 
6857 	/*
6858 	 * We can come here with TIF_NEED_RESCHED already set from new task
6859 	 * wake up path.
6860 	 *
6861 	 * Note: this also catches the edge-case of curr being in a throttled
6862 	 * group (e.g. via set_curr_task), since update_curr() (in the
6863 	 * enqueue of curr) will have resulted in resched being set.  This
6864 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6865 	 * below.
6866 	 */
6867 	if (test_tsk_need_resched(curr))
6868 		return;
6869 
6870 	/* Idle tasks are by definition preempted by non-idle tasks. */
6871 	if (unlikely(curr->policy == SCHED_IDLE) &&
6872 	    likely(p->policy != SCHED_IDLE))
6873 		goto preempt;
6874 
6875 	/*
6876 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6877 	 * is driven by the tick):
6878 	 */
6879 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6880 		return;
6881 
6882 	find_matching_se(&se, &pse);
6883 	update_curr(cfs_rq_of(se));
6884 	BUG_ON(!pse);
6885 	if (wakeup_preempt_entity(se, pse) == 1) {
6886 		/*
6887 		 * Bias pick_next to pick the sched entity that is
6888 		 * triggering this preemption.
6889 		 */
6890 		if (!next_buddy_marked)
6891 			set_next_buddy(pse);
6892 		goto preempt;
6893 	}
6894 
6895 	return;
6896 
6897 preempt:
6898 	resched_curr(rq);
6899 	/*
6900 	 * Only set the backward buddy when the current task is still
6901 	 * on the rq. This can happen when a wakeup gets interleaved
6902 	 * with schedule on the ->pre_schedule() or idle_balance()
6903 	 * point, either of which can * drop the rq lock.
6904 	 *
6905 	 * Also, during early boot the idle thread is in the fair class,
6906 	 * for obvious reasons its a bad idea to schedule back to it.
6907 	 */
6908 	if (unlikely(!se->on_rq || curr == rq->idle))
6909 		return;
6910 
6911 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6912 		set_last_buddy(se);
6913 }
6914 
6915 static struct task_struct *
6916 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6917 {
6918 	struct cfs_rq *cfs_rq = &rq->cfs;
6919 	struct sched_entity *se;
6920 	struct task_struct *p;
6921 	int new_tasks;
6922 
6923 again:
6924 	if (!cfs_rq->nr_running)
6925 		goto idle;
6926 
6927 #ifdef CONFIG_FAIR_GROUP_SCHED
6928 	if (prev->sched_class != &fair_sched_class)
6929 		goto simple;
6930 
6931 	/*
6932 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6933 	 * likely that a next task is from the same cgroup as the current.
6934 	 *
6935 	 * Therefore attempt to avoid putting and setting the entire cgroup
6936 	 * hierarchy, only change the part that actually changes.
6937 	 */
6938 
6939 	do {
6940 		struct sched_entity *curr = cfs_rq->curr;
6941 
6942 		/*
6943 		 * Since we got here without doing put_prev_entity() we also
6944 		 * have to consider cfs_rq->curr. If it is still a runnable
6945 		 * entity, update_curr() will update its vruntime, otherwise
6946 		 * forget we've ever seen it.
6947 		 */
6948 		if (curr) {
6949 			if (curr->on_rq)
6950 				update_curr(cfs_rq);
6951 			else
6952 				curr = NULL;
6953 
6954 			/*
6955 			 * This call to check_cfs_rq_runtime() will do the
6956 			 * throttle and dequeue its entity in the parent(s).
6957 			 * Therefore the nr_running test will indeed
6958 			 * be correct.
6959 			 */
6960 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6961 				cfs_rq = &rq->cfs;
6962 
6963 				if (!cfs_rq->nr_running)
6964 					goto idle;
6965 
6966 				goto simple;
6967 			}
6968 		}
6969 
6970 		se = pick_next_entity(cfs_rq, curr);
6971 		cfs_rq = group_cfs_rq(se);
6972 	} while (cfs_rq);
6973 
6974 	p = task_of(se);
6975 
6976 	/*
6977 	 * Since we haven't yet done put_prev_entity and if the selected task
6978 	 * is a different task than we started out with, try and touch the
6979 	 * least amount of cfs_rqs.
6980 	 */
6981 	if (prev != p) {
6982 		struct sched_entity *pse = &prev->se;
6983 
6984 		while (!(cfs_rq = is_same_group(se, pse))) {
6985 			int se_depth = se->depth;
6986 			int pse_depth = pse->depth;
6987 
6988 			if (se_depth <= pse_depth) {
6989 				put_prev_entity(cfs_rq_of(pse), pse);
6990 				pse = parent_entity(pse);
6991 			}
6992 			if (se_depth >= pse_depth) {
6993 				set_next_entity(cfs_rq_of(se), se);
6994 				se = parent_entity(se);
6995 			}
6996 		}
6997 
6998 		put_prev_entity(cfs_rq, pse);
6999 		set_next_entity(cfs_rq, se);
7000 	}
7001 
7002 	goto done;
7003 simple:
7004 #endif
7005 
7006 	put_prev_task(rq, prev);
7007 
7008 	do {
7009 		se = pick_next_entity(cfs_rq, NULL);
7010 		set_next_entity(cfs_rq, se);
7011 		cfs_rq = group_cfs_rq(se);
7012 	} while (cfs_rq);
7013 
7014 	p = task_of(se);
7015 
7016 done: __maybe_unused;
7017 #ifdef CONFIG_SMP
7018 	/*
7019 	 * Move the next running task to the front of
7020 	 * the list, so our cfs_tasks list becomes MRU
7021 	 * one.
7022 	 */
7023 	list_move(&p->se.group_node, &rq->cfs_tasks);
7024 #endif
7025 
7026 	if (hrtick_enabled(rq))
7027 		hrtick_start_fair(rq, p);
7028 
7029 	return p;
7030 
7031 idle:
7032 	new_tasks = idle_balance(rq, rf);
7033 
7034 	/*
7035 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
7036 	 * possible for any higher priority task to appear. In that case we
7037 	 * must re-start the pick_next_entity() loop.
7038 	 */
7039 	if (new_tasks < 0)
7040 		return RETRY_TASK;
7041 
7042 	if (new_tasks > 0)
7043 		goto again;
7044 
7045 	return NULL;
7046 }
7047 
7048 /*
7049  * Account for a descheduled task:
7050  */
7051 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7052 {
7053 	struct sched_entity *se = &prev->se;
7054 	struct cfs_rq *cfs_rq;
7055 
7056 	for_each_sched_entity(se) {
7057 		cfs_rq = cfs_rq_of(se);
7058 		put_prev_entity(cfs_rq, se);
7059 	}
7060 }
7061 
7062 /*
7063  * sched_yield() is very simple
7064  *
7065  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7066  */
7067 static void yield_task_fair(struct rq *rq)
7068 {
7069 	struct task_struct *curr = rq->curr;
7070 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7071 	struct sched_entity *se = &curr->se;
7072 
7073 	/*
7074 	 * Are we the only task in the tree?
7075 	 */
7076 	if (unlikely(rq->nr_running == 1))
7077 		return;
7078 
7079 	clear_buddies(cfs_rq, se);
7080 
7081 	if (curr->policy != SCHED_BATCH) {
7082 		update_rq_clock(rq);
7083 		/*
7084 		 * Update run-time statistics of the 'current'.
7085 		 */
7086 		update_curr(cfs_rq);
7087 		/*
7088 		 * Tell update_rq_clock() that we've just updated,
7089 		 * so we don't do microscopic update in schedule()
7090 		 * and double the fastpath cost.
7091 		 */
7092 		rq_clock_skip_update(rq);
7093 	}
7094 
7095 	set_skip_buddy(se);
7096 }
7097 
7098 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
7099 {
7100 	struct sched_entity *se = &p->se;
7101 
7102 	/* throttled hierarchies are not runnable */
7103 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7104 		return false;
7105 
7106 	/* Tell the scheduler that we'd really like pse to run next. */
7107 	set_next_buddy(se);
7108 
7109 	yield_task_fair(rq);
7110 
7111 	return true;
7112 }
7113 
7114 #ifdef CONFIG_SMP
7115 /**************************************************
7116  * Fair scheduling class load-balancing methods.
7117  *
7118  * BASICS
7119  *
7120  * The purpose of load-balancing is to achieve the same basic fairness the
7121  * per-CPU scheduler provides, namely provide a proportional amount of compute
7122  * time to each task. This is expressed in the following equation:
7123  *
7124  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7125  *
7126  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7127  * W_i,0 is defined as:
7128  *
7129  *   W_i,0 = \Sum_j w_i,j                                             (2)
7130  *
7131  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7132  * is derived from the nice value as per sched_prio_to_weight[].
7133  *
7134  * The weight average is an exponential decay average of the instantaneous
7135  * weight:
7136  *
7137  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7138  *
7139  * C_i is the compute capacity of CPU i, typically it is the
7140  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7141  * can also include other factors [XXX].
7142  *
7143  * To achieve this balance we define a measure of imbalance which follows
7144  * directly from (1):
7145  *
7146  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7147  *
7148  * We them move tasks around to minimize the imbalance. In the continuous
7149  * function space it is obvious this converges, in the discrete case we get
7150  * a few fun cases generally called infeasible weight scenarios.
7151  *
7152  * [XXX expand on:
7153  *     - infeasible weights;
7154  *     - local vs global optima in the discrete case. ]
7155  *
7156  *
7157  * SCHED DOMAINS
7158  *
7159  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7160  * for all i,j solution, we create a tree of CPUs that follows the hardware
7161  * topology where each level pairs two lower groups (or better). This results
7162  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7163  * tree to only the first of the previous level and we decrease the frequency
7164  * of load-balance at each level inv. proportional to the number of CPUs in
7165  * the groups.
7166  *
7167  * This yields:
7168  *
7169  *     log_2 n     1     n
7170  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7171  *     i = 0      2^i   2^i
7172  *                               `- size of each group
7173  *         |         |     `- number of CPUs doing load-balance
7174  *         |         `- freq
7175  *         `- sum over all levels
7176  *
7177  * Coupled with a limit on how many tasks we can migrate every balance pass,
7178  * this makes (5) the runtime complexity of the balancer.
7179  *
7180  * An important property here is that each CPU is still (indirectly) connected
7181  * to every other CPU in at most O(log n) steps:
7182  *
7183  * The adjacency matrix of the resulting graph is given by:
7184  *
7185  *             log_2 n
7186  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7187  *             k = 0
7188  *
7189  * And you'll find that:
7190  *
7191  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7192  *
7193  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7194  * The task movement gives a factor of O(m), giving a convergence complexity
7195  * of:
7196  *
7197  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7198  *
7199  *
7200  * WORK CONSERVING
7201  *
7202  * In order to avoid CPUs going idle while there's still work to do, new idle
7203  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7204  * tree itself instead of relying on other CPUs to bring it work.
7205  *
7206  * This adds some complexity to both (5) and (8) but it reduces the total idle
7207  * time.
7208  *
7209  * [XXX more?]
7210  *
7211  *
7212  * CGROUPS
7213  *
7214  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7215  *
7216  *                                s_k,i
7217  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7218  *                                 S_k
7219  *
7220  * Where
7221  *
7222  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7223  *
7224  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7225  *
7226  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7227  * property.
7228  *
7229  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7230  *      rewrite all of this once again.]
7231  */
7232 
7233 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7234 
7235 enum fbq_type { regular, remote, all };
7236 
7237 #define LBF_ALL_PINNED	0x01
7238 #define LBF_NEED_BREAK	0x02
7239 #define LBF_DST_PINNED  0x04
7240 #define LBF_SOME_PINNED	0x08
7241 #define LBF_NOHZ_STATS	0x10
7242 #define LBF_NOHZ_AGAIN	0x20
7243 
7244 struct lb_env {
7245 	struct sched_domain	*sd;
7246 
7247 	struct rq		*src_rq;
7248 	int			src_cpu;
7249 
7250 	int			dst_cpu;
7251 	struct rq		*dst_rq;
7252 
7253 	struct cpumask		*dst_grpmask;
7254 	int			new_dst_cpu;
7255 	enum cpu_idle_type	idle;
7256 	long			imbalance;
7257 	/* The set of CPUs under consideration for load-balancing */
7258 	struct cpumask		*cpus;
7259 
7260 	unsigned int		flags;
7261 
7262 	unsigned int		loop;
7263 	unsigned int		loop_break;
7264 	unsigned int		loop_max;
7265 
7266 	enum fbq_type		fbq_type;
7267 	struct list_head	tasks;
7268 };
7269 
7270 /*
7271  * Is this task likely cache-hot:
7272  */
7273 static int task_hot(struct task_struct *p, struct lb_env *env)
7274 {
7275 	s64 delta;
7276 
7277 	lockdep_assert_held(&env->src_rq->lock);
7278 
7279 	if (p->sched_class != &fair_sched_class)
7280 		return 0;
7281 
7282 	if (unlikely(p->policy == SCHED_IDLE))
7283 		return 0;
7284 
7285 	/*
7286 	 * Buddy candidates are cache hot:
7287 	 */
7288 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7289 			(&p->se == cfs_rq_of(&p->se)->next ||
7290 			 &p->se == cfs_rq_of(&p->se)->last))
7291 		return 1;
7292 
7293 	if (sysctl_sched_migration_cost == -1)
7294 		return 1;
7295 	if (sysctl_sched_migration_cost == 0)
7296 		return 0;
7297 
7298 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7299 
7300 	return delta < (s64)sysctl_sched_migration_cost;
7301 }
7302 
7303 #ifdef CONFIG_NUMA_BALANCING
7304 /*
7305  * Returns 1, if task migration degrades locality
7306  * Returns 0, if task migration improves locality i.e migration preferred.
7307  * Returns -1, if task migration is not affected by locality.
7308  */
7309 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7310 {
7311 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7312 	unsigned long src_faults, dst_faults;
7313 	int src_nid, dst_nid;
7314 
7315 	if (!static_branch_likely(&sched_numa_balancing))
7316 		return -1;
7317 
7318 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7319 		return -1;
7320 
7321 	src_nid = cpu_to_node(env->src_cpu);
7322 	dst_nid = cpu_to_node(env->dst_cpu);
7323 
7324 	if (src_nid == dst_nid)
7325 		return -1;
7326 
7327 	/* Migrating away from the preferred node is always bad. */
7328 	if (src_nid == p->numa_preferred_nid) {
7329 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7330 			return 1;
7331 		else
7332 			return -1;
7333 	}
7334 
7335 	/* Encourage migration to the preferred node. */
7336 	if (dst_nid == p->numa_preferred_nid)
7337 		return 0;
7338 
7339 	/* Leaving a core idle is often worse than degrading locality. */
7340 	if (env->idle != CPU_NOT_IDLE)
7341 		return -1;
7342 
7343 	if (numa_group) {
7344 		src_faults = group_faults(p, src_nid);
7345 		dst_faults = group_faults(p, dst_nid);
7346 	} else {
7347 		src_faults = task_faults(p, src_nid);
7348 		dst_faults = task_faults(p, dst_nid);
7349 	}
7350 
7351 	return dst_faults < src_faults;
7352 }
7353 
7354 #else
7355 static inline int migrate_degrades_locality(struct task_struct *p,
7356 					     struct lb_env *env)
7357 {
7358 	return -1;
7359 }
7360 #endif
7361 
7362 /*
7363  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7364  */
7365 static
7366 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7367 {
7368 	int tsk_cache_hot;
7369 
7370 	lockdep_assert_held(&env->src_rq->lock);
7371 
7372 	/*
7373 	 * We do not migrate tasks that are:
7374 	 * 1) throttled_lb_pair, or
7375 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7376 	 * 3) running (obviously), or
7377 	 * 4) are cache-hot on their current CPU.
7378 	 */
7379 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7380 		return 0;
7381 
7382 	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7383 		int cpu;
7384 
7385 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7386 
7387 		env->flags |= LBF_SOME_PINNED;
7388 
7389 		/*
7390 		 * Remember if this task can be migrated to any other CPU in
7391 		 * our sched_group. We may want to revisit it if we couldn't
7392 		 * meet load balance goals by pulling other tasks on src_cpu.
7393 		 *
7394 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7395 		 * already computed one in current iteration.
7396 		 */
7397 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7398 			return 0;
7399 
7400 		/* Prevent to re-select dst_cpu via env's CPUs: */
7401 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7402 			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7403 				env->flags |= LBF_DST_PINNED;
7404 				env->new_dst_cpu = cpu;
7405 				break;
7406 			}
7407 		}
7408 
7409 		return 0;
7410 	}
7411 
7412 	/* Record that we found atleast one task that could run on dst_cpu */
7413 	env->flags &= ~LBF_ALL_PINNED;
7414 
7415 	if (task_running(env->src_rq, p)) {
7416 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7417 		return 0;
7418 	}
7419 
7420 	/*
7421 	 * Aggressive migration if:
7422 	 * 1) destination numa is preferred
7423 	 * 2) task is cache cold, or
7424 	 * 3) too many balance attempts have failed.
7425 	 */
7426 	tsk_cache_hot = migrate_degrades_locality(p, env);
7427 	if (tsk_cache_hot == -1)
7428 		tsk_cache_hot = task_hot(p, env);
7429 
7430 	if (tsk_cache_hot <= 0 ||
7431 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7432 		if (tsk_cache_hot == 1) {
7433 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7434 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7435 		}
7436 		return 1;
7437 	}
7438 
7439 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7440 	return 0;
7441 }
7442 
7443 /*
7444  * detach_task() -- detach the task for the migration specified in env
7445  */
7446 static void detach_task(struct task_struct *p, struct lb_env *env)
7447 {
7448 	lockdep_assert_held(&env->src_rq->lock);
7449 
7450 	p->on_rq = TASK_ON_RQ_MIGRATING;
7451 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7452 	set_task_cpu(p, env->dst_cpu);
7453 }
7454 
7455 /*
7456  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7457  * part of active balancing operations within "domain".
7458  *
7459  * Returns a task if successful and NULL otherwise.
7460  */
7461 static struct task_struct *detach_one_task(struct lb_env *env)
7462 {
7463 	struct task_struct *p;
7464 
7465 	lockdep_assert_held(&env->src_rq->lock);
7466 
7467 	list_for_each_entry_reverse(p,
7468 			&env->src_rq->cfs_tasks, se.group_node) {
7469 		if (!can_migrate_task(p, env))
7470 			continue;
7471 
7472 		detach_task(p, env);
7473 
7474 		/*
7475 		 * Right now, this is only the second place where
7476 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7477 		 * so we can safely collect stats here rather than
7478 		 * inside detach_tasks().
7479 		 */
7480 		schedstat_inc(env->sd->lb_gained[env->idle]);
7481 		return p;
7482 	}
7483 	return NULL;
7484 }
7485 
7486 static const unsigned int sched_nr_migrate_break = 32;
7487 
7488 /*
7489  * detach_tasks() -- tries to detach up to imbalance weighted load from
7490  * busiest_rq, as part of a balancing operation within domain "sd".
7491  *
7492  * Returns number of detached tasks if successful and 0 otherwise.
7493  */
7494 static int detach_tasks(struct lb_env *env)
7495 {
7496 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7497 	struct task_struct *p;
7498 	unsigned long load;
7499 	int detached = 0;
7500 
7501 	lockdep_assert_held(&env->src_rq->lock);
7502 
7503 	if (env->imbalance <= 0)
7504 		return 0;
7505 
7506 	while (!list_empty(tasks)) {
7507 		/*
7508 		 * We don't want to steal all, otherwise we may be treated likewise,
7509 		 * which could at worst lead to a livelock crash.
7510 		 */
7511 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7512 			break;
7513 
7514 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7515 
7516 		env->loop++;
7517 		/* We've more or less seen every task there is, call it quits */
7518 		if (env->loop > env->loop_max)
7519 			break;
7520 
7521 		/* take a breather every nr_migrate tasks */
7522 		if (env->loop > env->loop_break) {
7523 			env->loop_break += sched_nr_migrate_break;
7524 			env->flags |= LBF_NEED_BREAK;
7525 			break;
7526 		}
7527 
7528 		if (!can_migrate_task(p, env))
7529 			goto next;
7530 
7531 		load = task_h_load(p);
7532 
7533 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7534 			goto next;
7535 
7536 		if ((load / 2) > env->imbalance)
7537 			goto next;
7538 
7539 		detach_task(p, env);
7540 		list_add(&p->se.group_node, &env->tasks);
7541 
7542 		detached++;
7543 		env->imbalance -= load;
7544 
7545 #ifdef CONFIG_PREEMPT
7546 		/*
7547 		 * NEWIDLE balancing is a source of latency, so preemptible
7548 		 * kernels will stop after the first task is detached to minimize
7549 		 * the critical section.
7550 		 */
7551 		if (env->idle == CPU_NEWLY_IDLE)
7552 			break;
7553 #endif
7554 
7555 		/*
7556 		 * We only want to steal up to the prescribed amount of
7557 		 * weighted load.
7558 		 */
7559 		if (env->imbalance <= 0)
7560 			break;
7561 
7562 		continue;
7563 next:
7564 		list_move(&p->se.group_node, tasks);
7565 	}
7566 
7567 	/*
7568 	 * Right now, this is one of only two places we collect this stat
7569 	 * so we can safely collect detach_one_task() stats here rather
7570 	 * than inside detach_one_task().
7571 	 */
7572 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7573 
7574 	return detached;
7575 }
7576 
7577 /*
7578  * attach_task() -- attach the task detached by detach_task() to its new rq.
7579  */
7580 static void attach_task(struct rq *rq, struct task_struct *p)
7581 {
7582 	lockdep_assert_held(&rq->lock);
7583 
7584 	BUG_ON(task_rq(p) != rq);
7585 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7586 	p->on_rq = TASK_ON_RQ_QUEUED;
7587 	check_preempt_curr(rq, p, 0);
7588 }
7589 
7590 /*
7591  * attach_one_task() -- attaches the task returned from detach_one_task() to
7592  * its new rq.
7593  */
7594 static void attach_one_task(struct rq *rq, struct task_struct *p)
7595 {
7596 	struct rq_flags rf;
7597 
7598 	rq_lock(rq, &rf);
7599 	update_rq_clock(rq);
7600 	attach_task(rq, p);
7601 	rq_unlock(rq, &rf);
7602 }
7603 
7604 /*
7605  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7606  * new rq.
7607  */
7608 static void attach_tasks(struct lb_env *env)
7609 {
7610 	struct list_head *tasks = &env->tasks;
7611 	struct task_struct *p;
7612 	struct rq_flags rf;
7613 
7614 	rq_lock(env->dst_rq, &rf);
7615 	update_rq_clock(env->dst_rq);
7616 
7617 	while (!list_empty(tasks)) {
7618 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7619 		list_del_init(&p->se.group_node);
7620 
7621 		attach_task(env->dst_rq, p);
7622 	}
7623 
7624 	rq_unlock(env->dst_rq, &rf);
7625 }
7626 
7627 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7628 {
7629 	if (cfs_rq->avg.load_avg)
7630 		return true;
7631 
7632 	if (cfs_rq->avg.util_avg)
7633 		return true;
7634 
7635 	return false;
7636 }
7637 
7638 #ifdef CONFIG_FAIR_GROUP_SCHED
7639 
7640 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7641 {
7642 	if (cfs_rq->load.weight)
7643 		return false;
7644 
7645 	if (cfs_rq->avg.load_sum)
7646 		return false;
7647 
7648 	if (cfs_rq->avg.util_sum)
7649 		return false;
7650 
7651 	if (cfs_rq->avg.runnable_load_sum)
7652 		return false;
7653 
7654 	return true;
7655 }
7656 
7657 static void update_blocked_averages(int cpu)
7658 {
7659 	struct rq *rq = cpu_rq(cpu);
7660 	struct cfs_rq *cfs_rq, *pos;
7661 	struct rq_flags rf;
7662 	bool done = true;
7663 
7664 	rq_lock_irqsave(rq, &rf);
7665 	update_rq_clock(rq);
7666 
7667 	/*
7668 	 * Iterates the task_group tree in a bottom up fashion, see
7669 	 * list_add_leaf_cfs_rq() for details.
7670 	 */
7671 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7672 		struct sched_entity *se;
7673 
7674 		/* throttled entities do not contribute to load */
7675 		if (throttled_hierarchy(cfs_rq))
7676 			continue;
7677 
7678 		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7679 			update_tg_load_avg(cfs_rq, 0);
7680 
7681 		/* Propagate pending load changes to the parent, if any: */
7682 		se = cfs_rq->tg->se[cpu];
7683 		if (se && !skip_blocked_update(se))
7684 			update_load_avg(cfs_rq_of(se), se, 0);
7685 
7686 		/*
7687 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7688 		 * decayed cfs_rqs linger on the list.
7689 		 */
7690 		if (cfs_rq_is_decayed(cfs_rq))
7691 			list_del_leaf_cfs_rq(cfs_rq);
7692 
7693 		/* Don't need periodic decay once load/util_avg are null */
7694 		if (cfs_rq_has_blocked(cfs_rq))
7695 			done = false;
7696 	}
7697 
7698 #ifdef CONFIG_NO_HZ_COMMON
7699 	rq->last_blocked_load_update_tick = jiffies;
7700 	if (done)
7701 		rq->has_blocked_load = 0;
7702 #endif
7703 	rq_unlock_irqrestore(rq, &rf);
7704 }
7705 
7706 /*
7707  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7708  * This needs to be done in a top-down fashion because the load of a child
7709  * group is a fraction of its parents load.
7710  */
7711 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7712 {
7713 	struct rq *rq = rq_of(cfs_rq);
7714 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7715 	unsigned long now = jiffies;
7716 	unsigned long load;
7717 
7718 	if (cfs_rq->last_h_load_update == now)
7719 		return;
7720 
7721 	cfs_rq->h_load_next = NULL;
7722 	for_each_sched_entity(se) {
7723 		cfs_rq = cfs_rq_of(se);
7724 		cfs_rq->h_load_next = se;
7725 		if (cfs_rq->last_h_load_update == now)
7726 			break;
7727 	}
7728 
7729 	if (!se) {
7730 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7731 		cfs_rq->last_h_load_update = now;
7732 	}
7733 
7734 	while ((se = cfs_rq->h_load_next) != NULL) {
7735 		load = cfs_rq->h_load;
7736 		load = div64_ul(load * se->avg.load_avg,
7737 			cfs_rq_load_avg(cfs_rq) + 1);
7738 		cfs_rq = group_cfs_rq(se);
7739 		cfs_rq->h_load = load;
7740 		cfs_rq->last_h_load_update = now;
7741 	}
7742 }
7743 
7744 static unsigned long task_h_load(struct task_struct *p)
7745 {
7746 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7747 
7748 	update_cfs_rq_h_load(cfs_rq);
7749 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7750 			cfs_rq_load_avg(cfs_rq) + 1);
7751 }
7752 #else
7753 static inline void update_blocked_averages(int cpu)
7754 {
7755 	struct rq *rq = cpu_rq(cpu);
7756 	struct cfs_rq *cfs_rq = &rq->cfs;
7757 	struct rq_flags rf;
7758 
7759 	rq_lock_irqsave(rq, &rf);
7760 	update_rq_clock(rq);
7761 	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7762 #ifdef CONFIG_NO_HZ_COMMON
7763 	rq->last_blocked_load_update_tick = jiffies;
7764 	if (!cfs_rq_has_blocked(cfs_rq))
7765 		rq->has_blocked_load = 0;
7766 #endif
7767 	rq_unlock_irqrestore(rq, &rf);
7768 }
7769 
7770 static unsigned long task_h_load(struct task_struct *p)
7771 {
7772 	return p->se.avg.load_avg;
7773 }
7774 #endif
7775 
7776 /********** Helpers for find_busiest_group ************************/
7777 
7778 enum group_type {
7779 	group_other = 0,
7780 	group_imbalanced,
7781 	group_overloaded,
7782 };
7783 
7784 /*
7785  * sg_lb_stats - stats of a sched_group required for load_balancing
7786  */
7787 struct sg_lb_stats {
7788 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7789 	unsigned long group_load; /* Total load over the CPUs of the group */
7790 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7791 	unsigned long load_per_task;
7792 	unsigned long group_capacity;
7793 	unsigned long group_util; /* Total utilization of the group */
7794 	unsigned int sum_nr_running; /* Nr tasks running in the group */
7795 	unsigned int idle_cpus;
7796 	unsigned int group_weight;
7797 	enum group_type group_type;
7798 	int group_no_capacity;
7799 #ifdef CONFIG_NUMA_BALANCING
7800 	unsigned int nr_numa_running;
7801 	unsigned int nr_preferred_running;
7802 #endif
7803 };
7804 
7805 /*
7806  * sd_lb_stats - Structure to store the statistics of a sched_domain
7807  *		 during load balancing.
7808  */
7809 struct sd_lb_stats {
7810 	struct sched_group *busiest;	/* Busiest group in this sd */
7811 	struct sched_group *local;	/* Local group in this sd */
7812 	unsigned long total_running;
7813 	unsigned long total_load;	/* Total load of all groups in sd */
7814 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7815 	unsigned long avg_load;	/* Average load across all groups in sd */
7816 
7817 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7818 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7819 };
7820 
7821 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7822 {
7823 	/*
7824 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7825 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7826 	 * We must however clear busiest_stat::avg_load because
7827 	 * update_sd_pick_busiest() reads this before assignment.
7828 	 */
7829 	*sds = (struct sd_lb_stats){
7830 		.busiest = NULL,
7831 		.local = NULL,
7832 		.total_running = 0UL,
7833 		.total_load = 0UL,
7834 		.total_capacity = 0UL,
7835 		.busiest_stat = {
7836 			.avg_load = 0UL,
7837 			.sum_nr_running = 0,
7838 			.group_type = group_other,
7839 		},
7840 	};
7841 }
7842 
7843 /**
7844  * get_sd_load_idx - Obtain the load index for a given sched domain.
7845  * @sd: The sched_domain whose load_idx is to be obtained.
7846  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7847  *
7848  * Return: The load index.
7849  */
7850 static inline int get_sd_load_idx(struct sched_domain *sd,
7851 					enum cpu_idle_type idle)
7852 {
7853 	int load_idx;
7854 
7855 	switch (idle) {
7856 	case CPU_NOT_IDLE:
7857 		load_idx = sd->busy_idx;
7858 		break;
7859 
7860 	case CPU_NEWLY_IDLE:
7861 		load_idx = sd->newidle_idx;
7862 		break;
7863 	default:
7864 		load_idx = sd->idle_idx;
7865 		break;
7866 	}
7867 
7868 	return load_idx;
7869 }
7870 
7871 static unsigned long scale_rt_capacity(int cpu)
7872 {
7873 	struct rq *rq = cpu_rq(cpu);
7874 	u64 total, used, age_stamp, avg;
7875 	s64 delta;
7876 
7877 	/*
7878 	 * Since we're reading these variables without serialization make sure
7879 	 * we read them once before doing sanity checks on them.
7880 	 */
7881 	age_stamp = READ_ONCE(rq->age_stamp);
7882 	avg = READ_ONCE(rq->rt_avg);
7883 	delta = __rq_clock_broken(rq) - age_stamp;
7884 
7885 	if (unlikely(delta < 0))
7886 		delta = 0;
7887 
7888 	total = sched_avg_period() + delta;
7889 
7890 	used = div_u64(avg, total);
7891 
7892 	if (likely(used < SCHED_CAPACITY_SCALE))
7893 		return SCHED_CAPACITY_SCALE - used;
7894 
7895 	return 1;
7896 }
7897 
7898 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7899 {
7900 	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7901 	struct sched_group *sdg = sd->groups;
7902 
7903 	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7904 
7905 	capacity *= scale_rt_capacity(cpu);
7906 	capacity >>= SCHED_CAPACITY_SHIFT;
7907 
7908 	if (!capacity)
7909 		capacity = 1;
7910 
7911 	cpu_rq(cpu)->cpu_capacity = capacity;
7912 	sdg->sgc->capacity = capacity;
7913 	sdg->sgc->min_capacity = capacity;
7914 }
7915 
7916 void update_group_capacity(struct sched_domain *sd, int cpu)
7917 {
7918 	struct sched_domain *child = sd->child;
7919 	struct sched_group *group, *sdg = sd->groups;
7920 	unsigned long capacity, min_capacity;
7921 	unsigned long interval;
7922 
7923 	interval = msecs_to_jiffies(sd->balance_interval);
7924 	interval = clamp(interval, 1UL, max_load_balance_interval);
7925 	sdg->sgc->next_update = jiffies + interval;
7926 
7927 	if (!child) {
7928 		update_cpu_capacity(sd, cpu);
7929 		return;
7930 	}
7931 
7932 	capacity = 0;
7933 	min_capacity = ULONG_MAX;
7934 
7935 	if (child->flags & SD_OVERLAP) {
7936 		/*
7937 		 * SD_OVERLAP domains cannot assume that child groups
7938 		 * span the current group.
7939 		 */
7940 
7941 		for_each_cpu(cpu, sched_group_span(sdg)) {
7942 			struct sched_group_capacity *sgc;
7943 			struct rq *rq = cpu_rq(cpu);
7944 
7945 			/*
7946 			 * build_sched_domains() -> init_sched_groups_capacity()
7947 			 * gets here before we've attached the domains to the
7948 			 * runqueues.
7949 			 *
7950 			 * Use capacity_of(), which is set irrespective of domains
7951 			 * in update_cpu_capacity().
7952 			 *
7953 			 * This avoids capacity from being 0 and
7954 			 * causing divide-by-zero issues on boot.
7955 			 */
7956 			if (unlikely(!rq->sd)) {
7957 				capacity += capacity_of(cpu);
7958 			} else {
7959 				sgc = rq->sd->groups->sgc;
7960 				capacity += sgc->capacity;
7961 			}
7962 
7963 			min_capacity = min(capacity, min_capacity);
7964 		}
7965 	} else  {
7966 		/*
7967 		 * !SD_OVERLAP domains can assume that child groups
7968 		 * span the current group.
7969 		 */
7970 
7971 		group = child->groups;
7972 		do {
7973 			struct sched_group_capacity *sgc = group->sgc;
7974 
7975 			capacity += sgc->capacity;
7976 			min_capacity = min(sgc->min_capacity, min_capacity);
7977 			group = group->next;
7978 		} while (group != child->groups);
7979 	}
7980 
7981 	sdg->sgc->capacity = capacity;
7982 	sdg->sgc->min_capacity = min_capacity;
7983 }
7984 
7985 /*
7986  * Check whether the capacity of the rq has been noticeably reduced by side
7987  * activity. The imbalance_pct is used for the threshold.
7988  * Return true is the capacity is reduced
7989  */
7990 static inline int
7991 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7992 {
7993 	return ((rq->cpu_capacity * sd->imbalance_pct) <
7994 				(rq->cpu_capacity_orig * 100));
7995 }
7996 
7997 /*
7998  * Group imbalance indicates (and tries to solve) the problem where balancing
7999  * groups is inadequate due to ->cpus_allowed constraints.
8000  *
8001  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8002  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8003  * Something like:
8004  *
8005  *	{ 0 1 2 3 } { 4 5 6 7 }
8006  *	        *     * * *
8007  *
8008  * If we were to balance group-wise we'd place two tasks in the first group and
8009  * two tasks in the second group. Clearly this is undesired as it will overload
8010  * cpu 3 and leave one of the CPUs in the second group unused.
8011  *
8012  * The current solution to this issue is detecting the skew in the first group
8013  * by noticing the lower domain failed to reach balance and had difficulty
8014  * moving tasks due to affinity constraints.
8015  *
8016  * When this is so detected; this group becomes a candidate for busiest; see
8017  * update_sd_pick_busiest(). And calculate_imbalance() and
8018  * find_busiest_group() avoid some of the usual balance conditions to allow it
8019  * to create an effective group imbalance.
8020  *
8021  * This is a somewhat tricky proposition since the next run might not find the
8022  * group imbalance and decide the groups need to be balanced again. A most
8023  * subtle and fragile situation.
8024  */
8025 
8026 static inline int sg_imbalanced(struct sched_group *group)
8027 {
8028 	return group->sgc->imbalance;
8029 }
8030 
8031 /*
8032  * group_has_capacity returns true if the group has spare capacity that could
8033  * be used by some tasks.
8034  * We consider that a group has spare capacity if the  * number of task is
8035  * smaller than the number of CPUs or if the utilization is lower than the
8036  * available capacity for CFS tasks.
8037  * For the latter, we use a threshold to stabilize the state, to take into
8038  * account the variance of the tasks' load and to return true if the available
8039  * capacity in meaningful for the load balancer.
8040  * As an example, an available capacity of 1% can appear but it doesn't make
8041  * any benefit for the load balance.
8042  */
8043 static inline bool
8044 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
8045 {
8046 	if (sgs->sum_nr_running < sgs->group_weight)
8047 		return true;
8048 
8049 	if ((sgs->group_capacity * 100) >
8050 			(sgs->group_util * env->sd->imbalance_pct))
8051 		return true;
8052 
8053 	return false;
8054 }
8055 
8056 /*
8057  *  group_is_overloaded returns true if the group has more tasks than it can
8058  *  handle.
8059  *  group_is_overloaded is not equals to !group_has_capacity because a group
8060  *  with the exact right number of tasks, has no more spare capacity but is not
8061  *  overloaded so both group_has_capacity and group_is_overloaded return
8062  *  false.
8063  */
8064 static inline bool
8065 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
8066 {
8067 	if (sgs->sum_nr_running <= sgs->group_weight)
8068 		return false;
8069 
8070 	if ((sgs->group_capacity * 100) <
8071 			(sgs->group_util * env->sd->imbalance_pct))
8072 		return true;
8073 
8074 	return false;
8075 }
8076 
8077 /*
8078  * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
8079  * per-CPU capacity than sched_group ref.
8080  */
8081 static inline bool
8082 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8083 {
8084 	return sg->sgc->min_capacity * capacity_margin <
8085 						ref->sgc->min_capacity * 1024;
8086 }
8087 
8088 static inline enum
8089 group_type group_classify(struct sched_group *group,
8090 			  struct sg_lb_stats *sgs)
8091 {
8092 	if (sgs->group_no_capacity)
8093 		return group_overloaded;
8094 
8095 	if (sg_imbalanced(group))
8096 		return group_imbalanced;
8097 
8098 	return group_other;
8099 }
8100 
8101 static bool update_nohz_stats(struct rq *rq, bool force)
8102 {
8103 #ifdef CONFIG_NO_HZ_COMMON
8104 	unsigned int cpu = rq->cpu;
8105 
8106 	if (!rq->has_blocked_load)
8107 		return false;
8108 
8109 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8110 		return false;
8111 
8112 	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8113 		return true;
8114 
8115 	update_blocked_averages(cpu);
8116 
8117 	return rq->has_blocked_load;
8118 #else
8119 	return false;
8120 #endif
8121 }
8122 
8123 /**
8124  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8125  * @env: The load balancing environment.
8126  * @group: sched_group whose statistics are to be updated.
8127  * @load_idx: Load index of sched_domain of this_cpu for load calc.
8128  * @local_group: Does group contain this_cpu.
8129  * @sgs: variable to hold the statistics for this group.
8130  * @overload: Indicate more than one runnable task for any CPU.
8131  */
8132 static inline void update_sg_lb_stats(struct lb_env *env,
8133 			struct sched_group *group, int load_idx,
8134 			int local_group, struct sg_lb_stats *sgs,
8135 			bool *overload)
8136 {
8137 	unsigned long load;
8138 	int i, nr_running;
8139 
8140 	memset(sgs, 0, sizeof(*sgs));
8141 
8142 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8143 		struct rq *rq = cpu_rq(i);
8144 
8145 		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8146 			env->flags |= LBF_NOHZ_AGAIN;
8147 
8148 		/* Bias balancing toward CPUs of our domain: */
8149 		if (local_group)
8150 			load = target_load(i, load_idx);
8151 		else
8152 			load = source_load(i, load_idx);
8153 
8154 		sgs->group_load += load;
8155 		sgs->group_util += cpu_util(i);
8156 		sgs->sum_nr_running += rq->cfs.h_nr_running;
8157 
8158 		nr_running = rq->nr_running;
8159 		if (nr_running > 1)
8160 			*overload = true;
8161 
8162 #ifdef CONFIG_NUMA_BALANCING
8163 		sgs->nr_numa_running += rq->nr_numa_running;
8164 		sgs->nr_preferred_running += rq->nr_preferred_running;
8165 #endif
8166 		sgs->sum_weighted_load += weighted_cpuload(rq);
8167 		/*
8168 		 * No need to call idle_cpu() if nr_running is not 0
8169 		 */
8170 		if (!nr_running && idle_cpu(i))
8171 			sgs->idle_cpus++;
8172 	}
8173 
8174 	/* Adjust by relative CPU capacity of the group */
8175 	sgs->group_capacity = group->sgc->capacity;
8176 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
8177 
8178 	if (sgs->sum_nr_running)
8179 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
8180 
8181 	sgs->group_weight = group->group_weight;
8182 
8183 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
8184 	sgs->group_type = group_classify(group, sgs);
8185 }
8186 
8187 /**
8188  * update_sd_pick_busiest - return 1 on busiest group
8189  * @env: The load balancing environment.
8190  * @sds: sched_domain statistics
8191  * @sg: sched_group candidate to be checked for being the busiest
8192  * @sgs: sched_group statistics
8193  *
8194  * Determine if @sg is a busier group than the previously selected
8195  * busiest group.
8196  *
8197  * Return: %true if @sg is a busier group than the previously selected
8198  * busiest group. %false otherwise.
8199  */
8200 static bool update_sd_pick_busiest(struct lb_env *env,
8201 				   struct sd_lb_stats *sds,
8202 				   struct sched_group *sg,
8203 				   struct sg_lb_stats *sgs)
8204 {
8205 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8206 
8207 	if (sgs->group_type > busiest->group_type)
8208 		return true;
8209 
8210 	if (sgs->group_type < busiest->group_type)
8211 		return false;
8212 
8213 	if (sgs->avg_load <= busiest->avg_load)
8214 		return false;
8215 
8216 	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8217 		goto asym_packing;
8218 
8219 	/*
8220 	 * Candidate sg has no more than one task per CPU and
8221 	 * has higher per-CPU capacity. Migrating tasks to less
8222 	 * capable CPUs may harm throughput. Maximize throughput,
8223 	 * power/energy consequences are not considered.
8224 	 */
8225 	if (sgs->sum_nr_running <= sgs->group_weight &&
8226 	    group_smaller_cpu_capacity(sds->local, sg))
8227 		return false;
8228 
8229 asym_packing:
8230 	/* This is the busiest node in its class. */
8231 	if (!(env->sd->flags & SD_ASYM_PACKING))
8232 		return true;
8233 
8234 	/* No ASYM_PACKING if target CPU is already busy */
8235 	if (env->idle == CPU_NOT_IDLE)
8236 		return true;
8237 	/*
8238 	 * ASYM_PACKING needs to move all the work to the highest
8239 	 * prority CPUs in the group, therefore mark all groups
8240 	 * of lower priority than ourself as busy.
8241 	 */
8242 	if (sgs->sum_nr_running &&
8243 	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
8244 		if (!sds->busiest)
8245 			return true;
8246 
8247 		/* Prefer to move from lowest priority CPU's work */
8248 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8249 				      sg->asym_prefer_cpu))
8250 			return true;
8251 	}
8252 
8253 	return false;
8254 }
8255 
8256 #ifdef CONFIG_NUMA_BALANCING
8257 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8258 {
8259 	if (sgs->sum_nr_running > sgs->nr_numa_running)
8260 		return regular;
8261 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
8262 		return remote;
8263 	return all;
8264 }
8265 
8266 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8267 {
8268 	if (rq->nr_running > rq->nr_numa_running)
8269 		return regular;
8270 	if (rq->nr_running > rq->nr_preferred_running)
8271 		return remote;
8272 	return all;
8273 }
8274 #else
8275 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8276 {
8277 	return all;
8278 }
8279 
8280 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8281 {
8282 	return regular;
8283 }
8284 #endif /* CONFIG_NUMA_BALANCING */
8285 
8286 /**
8287  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8288  * @env: The load balancing environment.
8289  * @sds: variable to hold the statistics for this sched_domain.
8290  */
8291 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8292 {
8293 	struct sched_domain *child = env->sd->child;
8294 	struct sched_group *sg = env->sd->groups;
8295 	struct sg_lb_stats *local = &sds->local_stat;
8296 	struct sg_lb_stats tmp_sgs;
8297 	int load_idx, prefer_sibling = 0;
8298 	bool overload = false;
8299 
8300 	if (child && child->flags & SD_PREFER_SIBLING)
8301 		prefer_sibling = 1;
8302 
8303 #ifdef CONFIG_NO_HZ_COMMON
8304 	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8305 		env->flags |= LBF_NOHZ_STATS;
8306 #endif
8307 
8308 	load_idx = get_sd_load_idx(env->sd, env->idle);
8309 
8310 	do {
8311 		struct sg_lb_stats *sgs = &tmp_sgs;
8312 		int local_group;
8313 
8314 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8315 		if (local_group) {
8316 			sds->local = sg;
8317 			sgs = local;
8318 
8319 			if (env->idle != CPU_NEWLY_IDLE ||
8320 			    time_after_eq(jiffies, sg->sgc->next_update))
8321 				update_group_capacity(env->sd, env->dst_cpu);
8322 		}
8323 
8324 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
8325 						&overload);
8326 
8327 		if (local_group)
8328 			goto next_group;
8329 
8330 		/*
8331 		 * In case the child domain prefers tasks go to siblings
8332 		 * first, lower the sg capacity so that we'll try
8333 		 * and move all the excess tasks away. We lower the capacity
8334 		 * of a group only if the local group has the capacity to fit
8335 		 * these excess tasks. The extra check prevents the case where
8336 		 * you always pull from the heaviest group when it is already
8337 		 * under-utilized (possible with a large weight task outweighs
8338 		 * the tasks on the system).
8339 		 */
8340 		if (prefer_sibling && sds->local &&
8341 		    group_has_capacity(env, local) &&
8342 		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8343 			sgs->group_no_capacity = 1;
8344 			sgs->group_type = group_classify(sg, sgs);
8345 		}
8346 
8347 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8348 			sds->busiest = sg;
8349 			sds->busiest_stat = *sgs;
8350 		}
8351 
8352 next_group:
8353 		/* Now, start updating sd_lb_stats */
8354 		sds->total_running += sgs->sum_nr_running;
8355 		sds->total_load += sgs->group_load;
8356 		sds->total_capacity += sgs->group_capacity;
8357 
8358 		sg = sg->next;
8359 	} while (sg != env->sd->groups);
8360 
8361 #ifdef CONFIG_NO_HZ_COMMON
8362 	if ((env->flags & LBF_NOHZ_AGAIN) &&
8363 	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8364 
8365 		WRITE_ONCE(nohz.next_blocked,
8366 			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8367 	}
8368 #endif
8369 
8370 	if (env->sd->flags & SD_NUMA)
8371 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8372 
8373 	if (!env->sd->parent) {
8374 		/* update overload indicator if we are at root domain */
8375 		if (env->dst_rq->rd->overload != overload)
8376 			env->dst_rq->rd->overload = overload;
8377 	}
8378 }
8379 
8380 /**
8381  * check_asym_packing - Check to see if the group is packed into the
8382  *			sched domain.
8383  *
8384  * This is primarily intended to used at the sibling level.  Some
8385  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
8386  * case of POWER7, it can move to lower SMT modes only when higher
8387  * threads are idle.  When in lower SMT modes, the threads will
8388  * perform better since they share less core resources.  Hence when we
8389  * have idle threads, we want them to be the higher ones.
8390  *
8391  * This packing function is run on idle threads.  It checks to see if
8392  * the busiest CPU in this domain (core in the P7 case) has a higher
8393  * CPU number than the packing function is being run on.  Here we are
8394  * assuming lower CPU number will be equivalent to lower a SMT thread
8395  * number.
8396  *
8397  * Return: 1 when packing is required and a task should be moved to
8398  * this CPU.  The amount of the imbalance is returned in env->imbalance.
8399  *
8400  * @env: The load balancing environment.
8401  * @sds: Statistics of the sched_domain which is to be packed
8402  */
8403 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8404 {
8405 	int busiest_cpu;
8406 
8407 	if (!(env->sd->flags & SD_ASYM_PACKING))
8408 		return 0;
8409 
8410 	if (env->idle == CPU_NOT_IDLE)
8411 		return 0;
8412 
8413 	if (!sds->busiest)
8414 		return 0;
8415 
8416 	busiest_cpu = sds->busiest->asym_prefer_cpu;
8417 	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8418 		return 0;
8419 
8420 	env->imbalance = DIV_ROUND_CLOSEST(
8421 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8422 		SCHED_CAPACITY_SCALE);
8423 
8424 	return 1;
8425 }
8426 
8427 /**
8428  * fix_small_imbalance - Calculate the minor imbalance that exists
8429  *			amongst the groups of a sched_domain, during
8430  *			load balancing.
8431  * @env: The load balancing environment.
8432  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8433  */
8434 static inline
8435 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8436 {
8437 	unsigned long tmp, capa_now = 0, capa_move = 0;
8438 	unsigned int imbn = 2;
8439 	unsigned long scaled_busy_load_per_task;
8440 	struct sg_lb_stats *local, *busiest;
8441 
8442 	local = &sds->local_stat;
8443 	busiest = &sds->busiest_stat;
8444 
8445 	if (!local->sum_nr_running)
8446 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8447 	else if (busiest->load_per_task > local->load_per_task)
8448 		imbn = 1;
8449 
8450 	scaled_busy_load_per_task =
8451 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8452 		busiest->group_capacity;
8453 
8454 	if (busiest->avg_load + scaled_busy_load_per_task >=
8455 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
8456 		env->imbalance = busiest->load_per_task;
8457 		return;
8458 	}
8459 
8460 	/*
8461 	 * OK, we don't have enough imbalance to justify moving tasks,
8462 	 * however we may be able to increase total CPU capacity used by
8463 	 * moving them.
8464 	 */
8465 
8466 	capa_now += busiest->group_capacity *
8467 			min(busiest->load_per_task, busiest->avg_load);
8468 	capa_now += local->group_capacity *
8469 			min(local->load_per_task, local->avg_load);
8470 	capa_now /= SCHED_CAPACITY_SCALE;
8471 
8472 	/* Amount of load we'd subtract */
8473 	if (busiest->avg_load > scaled_busy_load_per_task) {
8474 		capa_move += busiest->group_capacity *
8475 			    min(busiest->load_per_task,
8476 				busiest->avg_load - scaled_busy_load_per_task);
8477 	}
8478 
8479 	/* Amount of load we'd add */
8480 	if (busiest->avg_load * busiest->group_capacity <
8481 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8482 		tmp = (busiest->avg_load * busiest->group_capacity) /
8483 		      local->group_capacity;
8484 	} else {
8485 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8486 		      local->group_capacity;
8487 	}
8488 	capa_move += local->group_capacity *
8489 		    min(local->load_per_task, local->avg_load + tmp);
8490 	capa_move /= SCHED_CAPACITY_SCALE;
8491 
8492 	/* Move if we gain throughput */
8493 	if (capa_move > capa_now)
8494 		env->imbalance = busiest->load_per_task;
8495 }
8496 
8497 /**
8498  * calculate_imbalance - Calculate the amount of imbalance present within the
8499  *			 groups of a given sched_domain during load balance.
8500  * @env: load balance environment
8501  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8502  */
8503 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8504 {
8505 	unsigned long max_pull, load_above_capacity = ~0UL;
8506 	struct sg_lb_stats *local, *busiest;
8507 
8508 	local = &sds->local_stat;
8509 	busiest = &sds->busiest_stat;
8510 
8511 	if (busiest->group_type == group_imbalanced) {
8512 		/*
8513 		 * In the group_imb case we cannot rely on group-wide averages
8514 		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8515 		 */
8516 		busiest->load_per_task =
8517 			min(busiest->load_per_task, sds->avg_load);
8518 	}
8519 
8520 	/*
8521 	 * Avg load of busiest sg can be less and avg load of local sg can
8522 	 * be greater than avg load across all sgs of sd because avg load
8523 	 * factors in sg capacity and sgs with smaller group_type are
8524 	 * skipped when updating the busiest sg:
8525 	 */
8526 	if (busiest->avg_load <= sds->avg_load ||
8527 	    local->avg_load >= sds->avg_load) {
8528 		env->imbalance = 0;
8529 		return fix_small_imbalance(env, sds);
8530 	}
8531 
8532 	/*
8533 	 * If there aren't any idle CPUs, avoid creating some.
8534 	 */
8535 	if (busiest->group_type == group_overloaded &&
8536 	    local->group_type   == group_overloaded) {
8537 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8538 		if (load_above_capacity > busiest->group_capacity) {
8539 			load_above_capacity -= busiest->group_capacity;
8540 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8541 			load_above_capacity /= busiest->group_capacity;
8542 		} else
8543 			load_above_capacity = ~0UL;
8544 	}
8545 
8546 	/*
8547 	 * We're trying to get all the CPUs to the average_load, so we don't
8548 	 * want to push ourselves above the average load, nor do we wish to
8549 	 * reduce the max loaded CPU below the average load. At the same time,
8550 	 * we also don't want to reduce the group load below the group
8551 	 * capacity. Thus we look for the minimum possible imbalance.
8552 	 */
8553 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8554 
8555 	/* How much load to actually move to equalise the imbalance */
8556 	env->imbalance = min(
8557 		max_pull * busiest->group_capacity,
8558 		(sds->avg_load - local->avg_load) * local->group_capacity
8559 	) / SCHED_CAPACITY_SCALE;
8560 
8561 	/*
8562 	 * if *imbalance is less than the average load per runnable task
8563 	 * there is no guarantee that any tasks will be moved so we'll have
8564 	 * a think about bumping its value to force at least one task to be
8565 	 * moved
8566 	 */
8567 	if (env->imbalance < busiest->load_per_task)
8568 		return fix_small_imbalance(env, sds);
8569 }
8570 
8571 /******* find_busiest_group() helpers end here *********************/
8572 
8573 /**
8574  * find_busiest_group - Returns the busiest group within the sched_domain
8575  * if there is an imbalance.
8576  *
8577  * Also calculates the amount of weighted load which should be moved
8578  * to restore balance.
8579  *
8580  * @env: The load balancing environment.
8581  *
8582  * Return:	- The busiest group if imbalance exists.
8583  */
8584 static struct sched_group *find_busiest_group(struct lb_env *env)
8585 {
8586 	struct sg_lb_stats *local, *busiest;
8587 	struct sd_lb_stats sds;
8588 
8589 	init_sd_lb_stats(&sds);
8590 
8591 	/*
8592 	 * Compute the various statistics relavent for load balancing at
8593 	 * this level.
8594 	 */
8595 	update_sd_lb_stats(env, &sds);
8596 	local = &sds.local_stat;
8597 	busiest = &sds.busiest_stat;
8598 
8599 	/* ASYM feature bypasses nice load balance check */
8600 	if (check_asym_packing(env, &sds))
8601 		return sds.busiest;
8602 
8603 	/* There is no busy sibling group to pull tasks from */
8604 	if (!sds.busiest || busiest->sum_nr_running == 0)
8605 		goto out_balanced;
8606 
8607 	/* XXX broken for overlapping NUMA groups */
8608 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8609 						/ sds.total_capacity;
8610 
8611 	/*
8612 	 * If the busiest group is imbalanced the below checks don't
8613 	 * work because they assume all things are equal, which typically
8614 	 * isn't true due to cpus_allowed constraints and the like.
8615 	 */
8616 	if (busiest->group_type == group_imbalanced)
8617 		goto force_balance;
8618 
8619 	/*
8620 	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8621 	 * capacities from resulting in underutilization due to avg_load.
8622 	 */
8623 	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8624 	    busiest->group_no_capacity)
8625 		goto force_balance;
8626 
8627 	/*
8628 	 * If the local group is busier than the selected busiest group
8629 	 * don't try and pull any tasks.
8630 	 */
8631 	if (local->avg_load >= busiest->avg_load)
8632 		goto out_balanced;
8633 
8634 	/*
8635 	 * Don't pull any tasks if this group is already above the domain
8636 	 * average load.
8637 	 */
8638 	if (local->avg_load >= sds.avg_load)
8639 		goto out_balanced;
8640 
8641 	if (env->idle == CPU_IDLE) {
8642 		/*
8643 		 * This CPU is idle. If the busiest group is not overloaded
8644 		 * and there is no imbalance between this and busiest group
8645 		 * wrt idle CPUs, it is balanced. The imbalance becomes
8646 		 * significant if the diff is greater than 1 otherwise we
8647 		 * might end up to just move the imbalance on another group
8648 		 */
8649 		if ((busiest->group_type != group_overloaded) &&
8650 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8651 			goto out_balanced;
8652 	} else {
8653 		/*
8654 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8655 		 * imbalance_pct to be conservative.
8656 		 */
8657 		if (100 * busiest->avg_load <=
8658 				env->sd->imbalance_pct * local->avg_load)
8659 			goto out_balanced;
8660 	}
8661 
8662 force_balance:
8663 	/* Looks like there is an imbalance. Compute it */
8664 	calculate_imbalance(env, &sds);
8665 	return sds.busiest;
8666 
8667 out_balanced:
8668 	env->imbalance = 0;
8669 	return NULL;
8670 }
8671 
8672 /*
8673  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8674  */
8675 static struct rq *find_busiest_queue(struct lb_env *env,
8676 				     struct sched_group *group)
8677 {
8678 	struct rq *busiest = NULL, *rq;
8679 	unsigned long busiest_load = 0, busiest_capacity = 1;
8680 	int i;
8681 
8682 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8683 		unsigned long capacity, wl;
8684 		enum fbq_type rt;
8685 
8686 		rq = cpu_rq(i);
8687 		rt = fbq_classify_rq(rq);
8688 
8689 		/*
8690 		 * We classify groups/runqueues into three groups:
8691 		 *  - regular: there are !numa tasks
8692 		 *  - remote:  there are numa tasks that run on the 'wrong' node
8693 		 *  - all:     there is no distinction
8694 		 *
8695 		 * In order to avoid migrating ideally placed numa tasks,
8696 		 * ignore those when there's better options.
8697 		 *
8698 		 * If we ignore the actual busiest queue to migrate another
8699 		 * task, the next balance pass can still reduce the busiest
8700 		 * queue by moving tasks around inside the node.
8701 		 *
8702 		 * If we cannot move enough load due to this classification
8703 		 * the next pass will adjust the group classification and
8704 		 * allow migration of more tasks.
8705 		 *
8706 		 * Both cases only affect the total convergence complexity.
8707 		 */
8708 		if (rt > env->fbq_type)
8709 			continue;
8710 
8711 		capacity = capacity_of(i);
8712 
8713 		wl = weighted_cpuload(rq);
8714 
8715 		/*
8716 		 * When comparing with imbalance, use weighted_cpuload()
8717 		 * which is not scaled with the CPU capacity.
8718 		 */
8719 
8720 		if (rq->nr_running == 1 && wl > env->imbalance &&
8721 		    !check_cpu_capacity(rq, env->sd))
8722 			continue;
8723 
8724 		/*
8725 		 * For the load comparisons with the other CPU's, consider
8726 		 * the weighted_cpuload() scaled with the CPU capacity, so
8727 		 * that the load can be moved away from the CPU that is
8728 		 * potentially running at a lower capacity.
8729 		 *
8730 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8731 		 * multiplication to rid ourselves of the division works out
8732 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
8733 		 * our previous maximum.
8734 		 */
8735 		if (wl * busiest_capacity > busiest_load * capacity) {
8736 			busiest_load = wl;
8737 			busiest_capacity = capacity;
8738 			busiest = rq;
8739 		}
8740 	}
8741 
8742 	return busiest;
8743 }
8744 
8745 /*
8746  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8747  * so long as it is large enough.
8748  */
8749 #define MAX_PINNED_INTERVAL	512
8750 
8751 static int need_active_balance(struct lb_env *env)
8752 {
8753 	struct sched_domain *sd = env->sd;
8754 
8755 	if (env->idle == CPU_NEWLY_IDLE) {
8756 
8757 		/*
8758 		 * ASYM_PACKING needs to force migrate tasks from busy but
8759 		 * lower priority CPUs in order to pack all tasks in the
8760 		 * highest priority CPUs.
8761 		 */
8762 		if ((sd->flags & SD_ASYM_PACKING) &&
8763 		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8764 			return 1;
8765 	}
8766 
8767 	/*
8768 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8769 	 * It's worth migrating the task if the src_cpu's capacity is reduced
8770 	 * because of other sched_class or IRQs if more capacity stays
8771 	 * available on dst_cpu.
8772 	 */
8773 	if ((env->idle != CPU_NOT_IDLE) &&
8774 	    (env->src_rq->cfs.h_nr_running == 1)) {
8775 		if ((check_cpu_capacity(env->src_rq, sd)) &&
8776 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8777 			return 1;
8778 	}
8779 
8780 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8781 }
8782 
8783 static int active_load_balance_cpu_stop(void *data);
8784 
8785 static int should_we_balance(struct lb_env *env)
8786 {
8787 	struct sched_group *sg = env->sd->groups;
8788 	int cpu, balance_cpu = -1;
8789 
8790 	/*
8791 	 * Ensure the balancing environment is consistent; can happen
8792 	 * when the softirq triggers 'during' hotplug.
8793 	 */
8794 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8795 		return 0;
8796 
8797 	/*
8798 	 * In the newly idle case, we will allow all the CPUs
8799 	 * to do the newly idle load balance.
8800 	 */
8801 	if (env->idle == CPU_NEWLY_IDLE)
8802 		return 1;
8803 
8804 	/* Try to find first idle CPU */
8805 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8806 		if (!idle_cpu(cpu))
8807 			continue;
8808 
8809 		balance_cpu = cpu;
8810 		break;
8811 	}
8812 
8813 	if (balance_cpu == -1)
8814 		balance_cpu = group_balance_cpu(sg);
8815 
8816 	/*
8817 	 * First idle CPU or the first CPU(busiest) in this sched group
8818 	 * is eligible for doing load balancing at this and above domains.
8819 	 */
8820 	return balance_cpu == env->dst_cpu;
8821 }
8822 
8823 /*
8824  * Check this_cpu to ensure it is balanced within domain. Attempt to move
8825  * tasks if there is an imbalance.
8826  */
8827 static int load_balance(int this_cpu, struct rq *this_rq,
8828 			struct sched_domain *sd, enum cpu_idle_type idle,
8829 			int *continue_balancing)
8830 {
8831 	int ld_moved, cur_ld_moved, active_balance = 0;
8832 	struct sched_domain *sd_parent = sd->parent;
8833 	struct sched_group *group;
8834 	struct rq *busiest;
8835 	struct rq_flags rf;
8836 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8837 
8838 	struct lb_env env = {
8839 		.sd		= sd,
8840 		.dst_cpu	= this_cpu,
8841 		.dst_rq		= this_rq,
8842 		.dst_grpmask    = sched_group_span(sd->groups),
8843 		.idle		= idle,
8844 		.loop_break	= sched_nr_migrate_break,
8845 		.cpus		= cpus,
8846 		.fbq_type	= all,
8847 		.tasks		= LIST_HEAD_INIT(env.tasks),
8848 	};
8849 
8850 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8851 
8852 	schedstat_inc(sd->lb_count[idle]);
8853 
8854 redo:
8855 	if (!should_we_balance(&env)) {
8856 		*continue_balancing = 0;
8857 		goto out_balanced;
8858 	}
8859 
8860 	group = find_busiest_group(&env);
8861 	if (!group) {
8862 		schedstat_inc(sd->lb_nobusyg[idle]);
8863 		goto out_balanced;
8864 	}
8865 
8866 	busiest = find_busiest_queue(&env, group);
8867 	if (!busiest) {
8868 		schedstat_inc(sd->lb_nobusyq[idle]);
8869 		goto out_balanced;
8870 	}
8871 
8872 	BUG_ON(busiest == env.dst_rq);
8873 
8874 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8875 
8876 	env.src_cpu = busiest->cpu;
8877 	env.src_rq = busiest;
8878 
8879 	ld_moved = 0;
8880 	if (busiest->nr_running > 1) {
8881 		/*
8882 		 * Attempt to move tasks. If find_busiest_group has found
8883 		 * an imbalance but busiest->nr_running <= 1, the group is
8884 		 * still unbalanced. ld_moved simply stays zero, so it is
8885 		 * correctly treated as an imbalance.
8886 		 */
8887 		env.flags |= LBF_ALL_PINNED;
8888 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8889 
8890 more_balance:
8891 		rq_lock_irqsave(busiest, &rf);
8892 		update_rq_clock(busiest);
8893 
8894 		/*
8895 		 * cur_ld_moved - load moved in current iteration
8896 		 * ld_moved     - cumulative load moved across iterations
8897 		 */
8898 		cur_ld_moved = detach_tasks(&env);
8899 
8900 		/*
8901 		 * We've detached some tasks from busiest_rq. Every
8902 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8903 		 * unlock busiest->lock, and we are able to be sure
8904 		 * that nobody can manipulate the tasks in parallel.
8905 		 * See task_rq_lock() family for the details.
8906 		 */
8907 
8908 		rq_unlock(busiest, &rf);
8909 
8910 		if (cur_ld_moved) {
8911 			attach_tasks(&env);
8912 			ld_moved += cur_ld_moved;
8913 		}
8914 
8915 		local_irq_restore(rf.flags);
8916 
8917 		if (env.flags & LBF_NEED_BREAK) {
8918 			env.flags &= ~LBF_NEED_BREAK;
8919 			goto more_balance;
8920 		}
8921 
8922 		/*
8923 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8924 		 * us and move them to an alternate dst_cpu in our sched_group
8925 		 * where they can run. The upper limit on how many times we
8926 		 * iterate on same src_cpu is dependent on number of CPUs in our
8927 		 * sched_group.
8928 		 *
8929 		 * This changes load balance semantics a bit on who can move
8930 		 * load to a given_cpu. In addition to the given_cpu itself
8931 		 * (or a ilb_cpu acting on its behalf where given_cpu is
8932 		 * nohz-idle), we now have balance_cpu in a position to move
8933 		 * load to given_cpu. In rare situations, this may cause
8934 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8935 		 * _independently_ and at _same_ time to move some load to
8936 		 * given_cpu) causing exceess load to be moved to given_cpu.
8937 		 * This however should not happen so much in practice and
8938 		 * moreover subsequent load balance cycles should correct the
8939 		 * excess load moved.
8940 		 */
8941 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8942 
8943 			/* Prevent to re-select dst_cpu via env's CPUs */
8944 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
8945 
8946 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8947 			env.dst_cpu	 = env.new_dst_cpu;
8948 			env.flags	&= ~LBF_DST_PINNED;
8949 			env.loop	 = 0;
8950 			env.loop_break	 = sched_nr_migrate_break;
8951 
8952 			/*
8953 			 * Go back to "more_balance" rather than "redo" since we
8954 			 * need to continue with same src_cpu.
8955 			 */
8956 			goto more_balance;
8957 		}
8958 
8959 		/*
8960 		 * We failed to reach balance because of affinity.
8961 		 */
8962 		if (sd_parent) {
8963 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8964 
8965 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8966 				*group_imbalance = 1;
8967 		}
8968 
8969 		/* All tasks on this runqueue were pinned by CPU affinity */
8970 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8971 			cpumask_clear_cpu(cpu_of(busiest), cpus);
8972 			/*
8973 			 * Attempting to continue load balancing at the current
8974 			 * sched_domain level only makes sense if there are
8975 			 * active CPUs remaining as possible busiest CPUs to
8976 			 * pull load from which are not contained within the
8977 			 * destination group that is receiving any migrated
8978 			 * load.
8979 			 */
8980 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8981 				env.loop = 0;
8982 				env.loop_break = sched_nr_migrate_break;
8983 				goto redo;
8984 			}
8985 			goto out_all_pinned;
8986 		}
8987 	}
8988 
8989 	if (!ld_moved) {
8990 		schedstat_inc(sd->lb_failed[idle]);
8991 		/*
8992 		 * Increment the failure counter only on periodic balance.
8993 		 * We do not want newidle balance, which can be very
8994 		 * frequent, pollute the failure counter causing
8995 		 * excessive cache_hot migrations and active balances.
8996 		 */
8997 		if (idle != CPU_NEWLY_IDLE)
8998 			sd->nr_balance_failed++;
8999 
9000 		if (need_active_balance(&env)) {
9001 			unsigned long flags;
9002 
9003 			raw_spin_lock_irqsave(&busiest->lock, flags);
9004 
9005 			/*
9006 			 * Don't kick the active_load_balance_cpu_stop,
9007 			 * if the curr task on busiest CPU can't be
9008 			 * moved to this_cpu:
9009 			 */
9010 			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
9011 				raw_spin_unlock_irqrestore(&busiest->lock,
9012 							    flags);
9013 				env.flags |= LBF_ALL_PINNED;
9014 				goto out_one_pinned;
9015 			}
9016 
9017 			/*
9018 			 * ->active_balance synchronizes accesses to
9019 			 * ->active_balance_work.  Once set, it's cleared
9020 			 * only after active load balance is finished.
9021 			 */
9022 			if (!busiest->active_balance) {
9023 				busiest->active_balance = 1;
9024 				busiest->push_cpu = this_cpu;
9025 				active_balance = 1;
9026 			}
9027 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
9028 
9029 			if (active_balance) {
9030 				stop_one_cpu_nowait(cpu_of(busiest),
9031 					active_load_balance_cpu_stop, busiest,
9032 					&busiest->active_balance_work);
9033 			}
9034 
9035 			/* We've kicked active balancing, force task migration. */
9036 			sd->nr_balance_failed = sd->cache_nice_tries+1;
9037 		}
9038 	} else
9039 		sd->nr_balance_failed = 0;
9040 
9041 	if (likely(!active_balance)) {
9042 		/* We were unbalanced, so reset the balancing interval */
9043 		sd->balance_interval = sd->min_interval;
9044 	} else {
9045 		/*
9046 		 * If we've begun active balancing, start to back off. This
9047 		 * case may not be covered by the all_pinned logic if there
9048 		 * is only 1 task on the busy runqueue (because we don't call
9049 		 * detach_tasks).
9050 		 */
9051 		if (sd->balance_interval < sd->max_interval)
9052 			sd->balance_interval *= 2;
9053 	}
9054 
9055 	goto out;
9056 
9057 out_balanced:
9058 	/*
9059 	 * We reach balance although we may have faced some affinity
9060 	 * constraints. Clear the imbalance flag if it was set.
9061 	 */
9062 	if (sd_parent) {
9063 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9064 
9065 		if (*group_imbalance)
9066 			*group_imbalance = 0;
9067 	}
9068 
9069 out_all_pinned:
9070 	/*
9071 	 * We reach balance because all tasks are pinned at this level so
9072 	 * we can't migrate them. Let the imbalance flag set so parent level
9073 	 * can try to migrate them.
9074 	 */
9075 	schedstat_inc(sd->lb_balanced[idle]);
9076 
9077 	sd->nr_balance_failed = 0;
9078 
9079 out_one_pinned:
9080 	/* tune up the balancing interval */
9081 	if (((env.flags & LBF_ALL_PINNED) &&
9082 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
9083 			(sd->balance_interval < sd->max_interval))
9084 		sd->balance_interval *= 2;
9085 
9086 	ld_moved = 0;
9087 out:
9088 	return ld_moved;
9089 }
9090 
9091 static inline unsigned long
9092 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9093 {
9094 	unsigned long interval = sd->balance_interval;
9095 
9096 	if (cpu_busy)
9097 		interval *= sd->busy_factor;
9098 
9099 	/* scale ms to jiffies */
9100 	interval = msecs_to_jiffies(interval);
9101 	interval = clamp(interval, 1UL, max_load_balance_interval);
9102 
9103 	return interval;
9104 }
9105 
9106 static inline void
9107 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9108 {
9109 	unsigned long interval, next;
9110 
9111 	/* used by idle balance, so cpu_busy = 0 */
9112 	interval = get_sd_balance_interval(sd, 0);
9113 	next = sd->last_balance + interval;
9114 
9115 	if (time_after(*next_balance, next))
9116 		*next_balance = next;
9117 }
9118 
9119 /*
9120  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9121  * running tasks off the busiest CPU onto idle CPUs. It requires at
9122  * least 1 task to be running on each physical CPU where possible, and
9123  * avoids physical / logical imbalances.
9124  */
9125 static int active_load_balance_cpu_stop(void *data)
9126 {
9127 	struct rq *busiest_rq = data;
9128 	int busiest_cpu = cpu_of(busiest_rq);
9129 	int target_cpu = busiest_rq->push_cpu;
9130 	struct rq *target_rq = cpu_rq(target_cpu);
9131 	struct sched_domain *sd;
9132 	struct task_struct *p = NULL;
9133 	struct rq_flags rf;
9134 
9135 	rq_lock_irq(busiest_rq, &rf);
9136 	/*
9137 	 * Between queueing the stop-work and running it is a hole in which
9138 	 * CPUs can become inactive. We should not move tasks from or to
9139 	 * inactive CPUs.
9140 	 */
9141 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9142 		goto out_unlock;
9143 
9144 	/* Make sure the requested CPU hasn't gone down in the meantime: */
9145 	if (unlikely(busiest_cpu != smp_processor_id() ||
9146 		     !busiest_rq->active_balance))
9147 		goto out_unlock;
9148 
9149 	/* Is there any task to move? */
9150 	if (busiest_rq->nr_running <= 1)
9151 		goto out_unlock;
9152 
9153 	/*
9154 	 * This condition is "impossible", if it occurs
9155 	 * we need to fix it. Originally reported by
9156 	 * Bjorn Helgaas on a 128-CPU setup.
9157 	 */
9158 	BUG_ON(busiest_rq == target_rq);
9159 
9160 	/* Search for an sd spanning us and the target CPU. */
9161 	rcu_read_lock();
9162 	for_each_domain(target_cpu, sd) {
9163 		if ((sd->flags & SD_LOAD_BALANCE) &&
9164 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9165 				break;
9166 	}
9167 
9168 	if (likely(sd)) {
9169 		struct lb_env env = {
9170 			.sd		= sd,
9171 			.dst_cpu	= target_cpu,
9172 			.dst_rq		= target_rq,
9173 			.src_cpu	= busiest_rq->cpu,
9174 			.src_rq		= busiest_rq,
9175 			.idle		= CPU_IDLE,
9176 			/*
9177 			 * can_migrate_task() doesn't need to compute new_dst_cpu
9178 			 * for active balancing. Since we have CPU_IDLE, but no
9179 			 * @dst_grpmask we need to make that test go away with lying
9180 			 * about DST_PINNED.
9181 			 */
9182 			.flags		= LBF_DST_PINNED,
9183 		};
9184 
9185 		schedstat_inc(sd->alb_count);
9186 		update_rq_clock(busiest_rq);
9187 
9188 		p = detach_one_task(&env);
9189 		if (p) {
9190 			schedstat_inc(sd->alb_pushed);
9191 			/* Active balancing done, reset the failure counter. */
9192 			sd->nr_balance_failed = 0;
9193 		} else {
9194 			schedstat_inc(sd->alb_failed);
9195 		}
9196 	}
9197 	rcu_read_unlock();
9198 out_unlock:
9199 	busiest_rq->active_balance = 0;
9200 	rq_unlock(busiest_rq, &rf);
9201 
9202 	if (p)
9203 		attach_one_task(target_rq, p);
9204 
9205 	local_irq_enable();
9206 
9207 	return 0;
9208 }
9209 
9210 static DEFINE_SPINLOCK(balancing);
9211 
9212 /*
9213  * Scale the max load_balance interval with the number of CPUs in the system.
9214  * This trades load-balance latency on larger machines for less cross talk.
9215  */
9216 void update_max_interval(void)
9217 {
9218 	max_load_balance_interval = HZ*num_online_cpus()/10;
9219 }
9220 
9221 /*
9222  * It checks each scheduling domain to see if it is due to be balanced,
9223  * and initiates a balancing operation if so.
9224  *
9225  * Balancing parameters are set up in init_sched_domains.
9226  */
9227 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9228 {
9229 	int continue_balancing = 1;
9230 	int cpu = rq->cpu;
9231 	unsigned long interval;
9232 	struct sched_domain *sd;
9233 	/* Earliest time when we have to do rebalance again */
9234 	unsigned long next_balance = jiffies + 60*HZ;
9235 	int update_next_balance = 0;
9236 	int need_serialize, need_decay = 0;
9237 	u64 max_cost = 0;
9238 
9239 	rcu_read_lock();
9240 	for_each_domain(cpu, sd) {
9241 		/*
9242 		 * Decay the newidle max times here because this is a regular
9243 		 * visit to all the domains. Decay ~1% per second.
9244 		 */
9245 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9246 			sd->max_newidle_lb_cost =
9247 				(sd->max_newidle_lb_cost * 253) / 256;
9248 			sd->next_decay_max_lb_cost = jiffies + HZ;
9249 			need_decay = 1;
9250 		}
9251 		max_cost += sd->max_newidle_lb_cost;
9252 
9253 		if (!(sd->flags & SD_LOAD_BALANCE))
9254 			continue;
9255 
9256 		/*
9257 		 * Stop the load balance at this level. There is another
9258 		 * CPU in our sched group which is doing load balancing more
9259 		 * actively.
9260 		 */
9261 		if (!continue_balancing) {
9262 			if (need_decay)
9263 				continue;
9264 			break;
9265 		}
9266 
9267 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9268 
9269 		need_serialize = sd->flags & SD_SERIALIZE;
9270 		if (need_serialize) {
9271 			if (!spin_trylock(&balancing))
9272 				goto out;
9273 		}
9274 
9275 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
9276 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9277 				/*
9278 				 * The LBF_DST_PINNED logic could have changed
9279 				 * env->dst_cpu, so we can't know our idle
9280 				 * state even if we migrated tasks. Update it.
9281 				 */
9282 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9283 			}
9284 			sd->last_balance = jiffies;
9285 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9286 		}
9287 		if (need_serialize)
9288 			spin_unlock(&balancing);
9289 out:
9290 		if (time_after(next_balance, sd->last_balance + interval)) {
9291 			next_balance = sd->last_balance + interval;
9292 			update_next_balance = 1;
9293 		}
9294 	}
9295 	if (need_decay) {
9296 		/*
9297 		 * Ensure the rq-wide value also decays but keep it at a
9298 		 * reasonable floor to avoid funnies with rq->avg_idle.
9299 		 */
9300 		rq->max_idle_balance_cost =
9301 			max((u64)sysctl_sched_migration_cost, max_cost);
9302 	}
9303 	rcu_read_unlock();
9304 
9305 	/*
9306 	 * next_balance will be updated only when there is a need.
9307 	 * When the cpu is attached to null domain for ex, it will not be
9308 	 * updated.
9309 	 */
9310 	if (likely(update_next_balance)) {
9311 		rq->next_balance = next_balance;
9312 
9313 #ifdef CONFIG_NO_HZ_COMMON
9314 		/*
9315 		 * If this CPU has been elected to perform the nohz idle
9316 		 * balance. Other idle CPUs have already rebalanced with
9317 		 * nohz_idle_balance() and nohz.next_balance has been
9318 		 * updated accordingly. This CPU is now running the idle load
9319 		 * balance for itself and we need to update the
9320 		 * nohz.next_balance accordingly.
9321 		 */
9322 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9323 			nohz.next_balance = rq->next_balance;
9324 #endif
9325 	}
9326 }
9327 
9328 static inline int on_null_domain(struct rq *rq)
9329 {
9330 	return unlikely(!rcu_dereference_sched(rq->sd));
9331 }
9332 
9333 #ifdef CONFIG_NO_HZ_COMMON
9334 /*
9335  * idle load balancing details
9336  * - When one of the busy CPUs notice that there may be an idle rebalancing
9337  *   needed, they will kick the idle load balancer, which then does idle
9338  *   load balancing for all the idle CPUs.
9339  */
9340 
9341 static inline int find_new_ilb(void)
9342 {
9343 	int ilb = cpumask_first(nohz.idle_cpus_mask);
9344 
9345 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
9346 		return ilb;
9347 
9348 	return nr_cpu_ids;
9349 }
9350 
9351 /*
9352  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
9353  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
9354  * CPU (if there is one).
9355  */
9356 static void kick_ilb(unsigned int flags)
9357 {
9358 	int ilb_cpu;
9359 
9360 	nohz.next_balance++;
9361 
9362 	ilb_cpu = find_new_ilb();
9363 
9364 	if (ilb_cpu >= nr_cpu_ids)
9365 		return;
9366 
9367 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
9368 	if (flags & NOHZ_KICK_MASK)
9369 		return;
9370 
9371 	/*
9372 	 * Use smp_send_reschedule() instead of resched_cpu().
9373 	 * This way we generate a sched IPI on the target CPU which
9374 	 * is idle. And the softirq performing nohz idle load balance
9375 	 * will be run before returning from the IPI.
9376 	 */
9377 	smp_send_reschedule(ilb_cpu);
9378 }
9379 
9380 /*
9381  * Current heuristic for kicking the idle load balancer in the presence
9382  * of an idle cpu in the system.
9383  *   - This rq has more than one task.
9384  *   - This rq has at least one CFS task and the capacity of the CPU is
9385  *     significantly reduced because of RT tasks or IRQs.
9386  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
9387  *     multiple busy cpu.
9388  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9389  *     domain span are idle.
9390  */
9391 static void nohz_balancer_kick(struct rq *rq)
9392 {
9393 	unsigned long now = jiffies;
9394 	struct sched_domain_shared *sds;
9395 	struct sched_domain *sd;
9396 	int nr_busy, i, cpu = rq->cpu;
9397 	unsigned int flags = 0;
9398 
9399 	if (unlikely(rq->idle_balance))
9400 		return;
9401 
9402 	/*
9403 	 * We may be recently in ticked or tickless idle mode. At the first
9404 	 * busy tick after returning from idle, we will update the busy stats.
9405 	 */
9406 	nohz_balance_exit_idle(rq);
9407 
9408 	/*
9409 	 * None are in tickless mode and hence no need for NOHZ idle load
9410 	 * balancing.
9411 	 */
9412 	if (likely(!atomic_read(&nohz.nr_cpus)))
9413 		return;
9414 
9415 	if (READ_ONCE(nohz.has_blocked) &&
9416 	    time_after(now, READ_ONCE(nohz.next_blocked)))
9417 		flags = NOHZ_STATS_KICK;
9418 
9419 	if (time_before(now, nohz.next_balance))
9420 		goto out;
9421 
9422 	if (rq->nr_running >= 2) {
9423 		flags = NOHZ_KICK_MASK;
9424 		goto out;
9425 	}
9426 
9427 	rcu_read_lock();
9428 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9429 	if (sds) {
9430 		/*
9431 		 * XXX: write a coherent comment on why we do this.
9432 		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9433 		 */
9434 		nr_busy = atomic_read(&sds->nr_busy_cpus);
9435 		if (nr_busy > 1) {
9436 			flags = NOHZ_KICK_MASK;
9437 			goto unlock;
9438 		}
9439 
9440 	}
9441 
9442 	sd = rcu_dereference(rq->sd);
9443 	if (sd) {
9444 		if ((rq->cfs.h_nr_running >= 1) &&
9445 				check_cpu_capacity(rq, sd)) {
9446 			flags = NOHZ_KICK_MASK;
9447 			goto unlock;
9448 		}
9449 	}
9450 
9451 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
9452 	if (sd) {
9453 		for_each_cpu(i, sched_domain_span(sd)) {
9454 			if (i == cpu ||
9455 			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9456 				continue;
9457 
9458 			if (sched_asym_prefer(i, cpu)) {
9459 				flags = NOHZ_KICK_MASK;
9460 				goto unlock;
9461 			}
9462 		}
9463 	}
9464 unlock:
9465 	rcu_read_unlock();
9466 out:
9467 	if (flags)
9468 		kick_ilb(flags);
9469 }
9470 
9471 static void set_cpu_sd_state_busy(int cpu)
9472 {
9473 	struct sched_domain *sd;
9474 
9475 	rcu_read_lock();
9476 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9477 
9478 	if (!sd || !sd->nohz_idle)
9479 		goto unlock;
9480 	sd->nohz_idle = 0;
9481 
9482 	atomic_inc(&sd->shared->nr_busy_cpus);
9483 unlock:
9484 	rcu_read_unlock();
9485 }
9486 
9487 void nohz_balance_exit_idle(struct rq *rq)
9488 {
9489 	SCHED_WARN_ON(rq != this_rq());
9490 
9491 	if (likely(!rq->nohz_tick_stopped))
9492 		return;
9493 
9494 	rq->nohz_tick_stopped = 0;
9495 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9496 	atomic_dec(&nohz.nr_cpus);
9497 
9498 	set_cpu_sd_state_busy(rq->cpu);
9499 }
9500 
9501 static void set_cpu_sd_state_idle(int cpu)
9502 {
9503 	struct sched_domain *sd;
9504 
9505 	rcu_read_lock();
9506 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9507 
9508 	if (!sd || sd->nohz_idle)
9509 		goto unlock;
9510 	sd->nohz_idle = 1;
9511 
9512 	atomic_dec(&sd->shared->nr_busy_cpus);
9513 unlock:
9514 	rcu_read_unlock();
9515 }
9516 
9517 /*
9518  * This routine will record that the CPU is going idle with tick stopped.
9519  * This info will be used in performing idle load balancing in the future.
9520  */
9521 void nohz_balance_enter_idle(int cpu)
9522 {
9523 	struct rq *rq = cpu_rq(cpu);
9524 
9525 	SCHED_WARN_ON(cpu != smp_processor_id());
9526 
9527 	/* If this CPU is going down, then nothing needs to be done: */
9528 	if (!cpu_active(cpu))
9529 		return;
9530 
9531 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9532 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9533 		return;
9534 
9535 	/*
9536 	 * Can be set safely without rq->lock held
9537 	 * If a clear happens, it will have evaluated last additions because
9538 	 * rq->lock is held during the check and the clear
9539 	 */
9540 	rq->has_blocked_load = 1;
9541 
9542 	/*
9543 	 * The tick is still stopped but load could have been added in the
9544 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
9545 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9546 	 * of nohz.has_blocked can only happen after checking the new load
9547 	 */
9548 	if (rq->nohz_tick_stopped)
9549 		goto out;
9550 
9551 	/* If we're a completely isolated CPU, we don't play: */
9552 	if (on_null_domain(rq))
9553 		return;
9554 
9555 	rq->nohz_tick_stopped = 1;
9556 
9557 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9558 	atomic_inc(&nohz.nr_cpus);
9559 
9560 	/*
9561 	 * Ensures that if nohz_idle_balance() fails to observe our
9562 	 * @idle_cpus_mask store, it must observe the @has_blocked
9563 	 * store.
9564 	 */
9565 	smp_mb__after_atomic();
9566 
9567 	set_cpu_sd_state_idle(cpu);
9568 
9569 out:
9570 	/*
9571 	 * Each time a cpu enter idle, we assume that it has blocked load and
9572 	 * enable the periodic update of the load of idle cpus
9573 	 */
9574 	WRITE_ONCE(nohz.has_blocked, 1);
9575 }
9576 
9577 /*
9578  * Internal function that runs load balance for all idle cpus. The load balance
9579  * can be a simple update of blocked load or a complete load balance with
9580  * tasks movement depending of flags.
9581  * The function returns false if the loop has stopped before running
9582  * through all idle CPUs.
9583  */
9584 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9585 			       enum cpu_idle_type idle)
9586 {
9587 	/* Earliest time when we have to do rebalance again */
9588 	unsigned long now = jiffies;
9589 	unsigned long next_balance = now + 60*HZ;
9590 	bool has_blocked_load = false;
9591 	int update_next_balance = 0;
9592 	int this_cpu = this_rq->cpu;
9593 	int balance_cpu;
9594 	int ret = false;
9595 	struct rq *rq;
9596 
9597 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9598 
9599 	/*
9600 	 * We assume there will be no idle load after this update and clear
9601 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9602 	 * set the has_blocked flag and trig another update of idle load.
9603 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9604 	 * setting the flag, we are sure to not clear the state and not
9605 	 * check the load of an idle cpu.
9606 	 */
9607 	WRITE_ONCE(nohz.has_blocked, 0);
9608 
9609 	/*
9610 	 * Ensures that if we miss the CPU, we must see the has_blocked
9611 	 * store from nohz_balance_enter_idle().
9612 	 */
9613 	smp_mb();
9614 
9615 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9616 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9617 			continue;
9618 
9619 		/*
9620 		 * If this CPU gets work to do, stop the load balancing
9621 		 * work being done for other CPUs. Next load
9622 		 * balancing owner will pick it up.
9623 		 */
9624 		if (need_resched()) {
9625 			has_blocked_load = true;
9626 			goto abort;
9627 		}
9628 
9629 		rq = cpu_rq(balance_cpu);
9630 
9631 		has_blocked_load |= update_nohz_stats(rq, true);
9632 
9633 		/*
9634 		 * If time for next balance is due,
9635 		 * do the balance.
9636 		 */
9637 		if (time_after_eq(jiffies, rq->next_balance)) {
9638 			struct rq_flags rf;
9639 
9640 			rq_lock_irqsave(rq, &rf);
9641 			update_rq_clock(rq);
9642 			cpu_load_update_idle(rq);
9643 			rq_unlock_irqrestore(rq, &rf);
9644 
9645 			if (flags & NOHZ_BALANCE_KICK)
9646 				rebalance_domains(rq, CPU_IDLE);
9647 		}
9648 
9649 		if (time_after(next_balance, rq->next_balance)) {
9650 			next_balance = rq->next_balance;
9651 			update_next_balance = 1;
9652 		}
9653 	}
9654 
9655 	/* Newly idle CPU doesn't need an update */
9656 	if (idle != CPU_NEWLY_IDLE) {
9657 		update_blocked_averages(this_cpu);
9658 		has_blocked_load |= this_rq->has_blocked_load;
9659 	}
9660 
9661 	if (flags & NOHZ_BALANCE_KICK)
9662 		rebalance_domains(this_rq, CPU_IDLE);
9663 
9664 	WRITE_ONCE(nohz.next_blocked,
9665 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9666 
9667 	/* The full idle balance loop has been done */
9668 	ret = true;
9669 
9670 abort:
9671 	/* There is still blocked load, enable periodic update */
9672 	if (has_blocked_load)
9673 		WRITE_ONCE(nohz.has_blocked, 1);
9674 
9675 	/*
9676 	 * next_balance will be updated only when there is a need.
9677 	 * When the CPU is attached to null domain for ex, it will not be
9678 	 * updated.
9679 	 */
9680 	if (likely(update_next_balance))
9681 		nohz.next_balance = next_balance;
9682 
9683 	return ret;
9684 }
9685 
9686 /*
9687  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9688  * rebalancing for all the cpus for whom scheduler ticks are stopped.
9689  */
9690 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9691 {
9692 	int this_cpu = this_rq->cpu;
9693 	unsigned int flags;
9694 
9695 	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9696 		return false;
9697 
9698 	if (idle != CPU_IDLE) {
9699 		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9700 		return false;
9701 	}
9702 
9703 	/*
9704 	 * barrier, pairs with nohz_balance_enter_idle(), ensures ...
9705 	 */
9706 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9707 	if (!(flags & NOHZ_KICK_MASK))
9708 		return false;
9709 
9710 	_nohz_idle_balance(this_rq, flags, idle);
9711 
9712 	return true;
9713 }
9714 
9715 static void nohz_newidle_balance(struct rq *this_rq)
9716 {
9717 	int this_cpu = this_rq->cpu;
9718 
9719 	/*
9720 	 * This CPU doesn't want to be disturbed by scheduler
9721 	 * housekeeping
9722 	 */
9723 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9724 		return;
9725 
9726 	/* Will wake up very soon. No time for doing anything else*/
9727 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
9728 		return;
9729 
9730 	/* Don't need to update blocked load of idle CPUs*/
9731 	if (!READ_ONCE(nohz.has_blocked) ||
9732 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9733 		return;
9734 
9735 	raw_spin_unlock(&this_rq->lock);
9736 	/*
9737 	 * This CPU is going to be idle and blocked load of idle CPUs
9738 	 * need to be updated. Run the ilb locally as it is a good
9739 	 * candidate for ilb instead of waking up another idle CPU.
9740 	 * Kick an normal ilb if we failed to do the update.
9741 	 */
9742 	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9743 		kick_ilb(NOHZ_STATS_KICK);
9744 	raw_spin_lock(&this_rq->lock);
9745 }
9746 
9747 #else /* !CONFIG_NO_HZ_COMMON */
9748 static inline void nohz_balancer_kick(struct rq *rq) { }
9749 
9750 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9751 {
9752 	return false;
9753 }
9754 
9755 static inline void nohz_newidle_balance(struct rq *this_rq) { }
9756 #endif /* CONFIG_NO_HZ_COMMON */
9757 
9758 /*
9759  * idle_balance is called by schedule() if this_cpu is about to become
9760  * idle. Attempts to pull tasks from other CPUs.
9761  */
9762 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9763 {
9764 	unsigned long next_balance = jiffies + HZ;
9765 	int this_cpu = this_rq->cpu;
9766 	struct sched_domain *sd;
9767 	int pulled_task = 0;
9768 	u64 curr_cost = 0;
9769 
9770 	/*
9771 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
9772 	 * measure the duration of idle_balance() as idle time.
9773 	 */
9774 	this_rq->idle_stamp = rq_clock(this_rq);
9775 
9776 	/*
9777 	 * Do not pull tasks towards !active CPUs...
9778 	 */
9779 	if (!cpu_active(this_cpu))
9780 		return 0;
9781 
9782 	/*
9783 	 * This is OK, because current is on_cpu, which avoids it being picked
9784 	 * for load-balance and preemption/IRQs are still disabled avoiding
9785 	 * further scheduler activity on it and we're being very careful to
9786 	 * re-start the picking loop.
9787 	 */
9788 	rq_unpin_lock(this_rq, rf);
9789 
9790 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
9791 	    !this_rq->rd->overload) {
9792 
9793 		rcu_read_lock();
9794 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
9795 		if (sd)
9796 			update_next_balance(sd, &next_balance);
9797 		rcu_read_unlock();
9798 
9799 		nohz_newidle_balance(this_rq);
9800 
9801 		goto out;
9802 	}
9803 
9804 	raw_spin_unlock(&this_rq->lock);
9805 
9806 	update_blocked_averages(this_cpu);
9807 	rcu_read_lock();
9808 	for_each_domain(this_cpu, sd) {
9809 		int continue_balancing = 1;
9810 		u64 t0, domain_cost;
9811 
9812 		if (!(sd->flags & SD_LOAD_BALANCE))
9813 			continue;
9814 
9815 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9816 			update_next_balance(sd, &next_balance);
9817 			break;
9818 		}
9819 
9820 		if (sd->flags & SD_BALANCE_NEWIDLE) {
9821 			t0 = sched_clock_cpu(this_cpu);
9822 
9823 			pulled_task = load_balance(this_cpu, this_rq,
9824 						   sd, CPU_NEWLY_IDLE,
9825 						   &continue_balancing);
9826 
9827 			domain_cost = sched_clock_cpu(this_cpu) - t0;
9828 			if (domain_cost > sd->max_newidle_lb_cost)
9829 				sd->max_newidle_lb_cost = domain_cost;
9830 
9831 			curr_cost += domain_cost;
9832 		}
9833 
9834 		update_next_balance(sd, &next_balance);
9835 
9836 		/*
9837 		 * Stop searching for tasks to pull if there are
9838 		 * now runnable tasks on this rq.
9839 		 */
9840 		if (pulled_task || this_rq->nr_running > 0)
9841 			break;
9842 	}
9843 	rcu_read_unlock();
9844 
9845 	raw_spin_lock(&this_rq->lock);
9846 
9847 	if (curr_cost > this_rq->max_idle_balance_cost)
9848 		this_rq->max_idle_balance_cost = curr_cost;
9849 
9850 	/*
9851 	 * While browsing the domains, we released the rq lock, a task could
9852 	 * have been enqueued in the meantime. Since we're not going idle,
9853 	 * pretend we pulled a task.
9854 	 */
9855 	if (this_rq->cfs.h_nr_running && !pulled_task)
9856 		pulled_task = 1;
9857 
9858 out:
9859 	/* Move the next balance forward */
9860 	if (time_after(this_rq->next_balance, next_balance))
9861 		this_rq->next_balance = next_balance;
9862 
9863 	/* Is there a task of a high priority class? */
9864 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9865 		pulled_task = -1;
9866 
9867 	if (pulled_task)
9868 		this_rq->idle_stamp = 0;
9869 
9870 	rq_repin_lock(this_rq, rf);
9871 
9872 	return pulled_task;
9873 }
9874 
9875 /*
9876  * run_rebalance_domains is triggered when needed from the scheduler tick.
9877  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9878  */
9879 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9880 {
9881 	struct rq *this_rq = this_rq();
9882 	enum cpu_idle_type idle = this_rq->idle_balance ?
9883 						CPU_IDLE : CPU_NOT_IDLE;
9884 
9885 	/*
9886 	 * If this CPU has a pending nohz_balance_kick, then do the
9887 	 * balancing on behalf of the other idle CPUs whose ticks are
9888 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9889 	 * give the idle CPUs a chance to load balance. Else we may
9890 	 * load balance only within the local sched_domain hierarchy
9891 	 * and abort nohz_idle_balance altogether if we pull some load.
9892 	 */
9893 	if (nohz_idle_balance(this_rq, idle))
9894 		return;
9895 
9896 	/* normal load balance */
9897 	update_blocked_averages(this_rq->cpu);
9898 	rebalance_domains(this_rq, idle);
9899 }
9900 
9901 /*
9902  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9903  */
9904 void trigger_load_balance(struct rq *rq)
9905 {
9906 	/* Don't need to rebalance while attached to NULL domain */
9907 	if (unlikely(on_null_domain(rq)))
9908 		return;
9909 
9910 	if (time_after_eq(jiffies, rq->next_balance))
9911 		raise_softirq(SCHED_SOFTIRQ);
9912 
9913 	nohz_balancer_kick(rq);
9914 }
9915 
9916 static void rq_online_fair(struct rq *rq)
9917 {
9918 	update_sysctl();
9919 
9920 	update_runtime_enabled(rq);
9921 }
9922 
9923 static void rq_offline_fair(struct rq *rq)
9924 {
9925 	update_sysctl();
9926 
9927 	/* Ensure any throttled groups are reachable by pick_next_task */
9928 	unthrottle_offline_cfs_rqs(rq);
9929 }
9930 
9931 #endif /* CONFIG_SMP */
9932 
9933 /*
9934  * scheduler tick hitting a task of our scheduling class.
9935  *
9936  * NOTE: This function can be called remotely by the tick offload that
9937  * goes along full dynticks. Therefore no local assumption can be made
9938  * and everything must be accessed through the @rq and @curr passed in
9939  * parameters.
9940  */
9941 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9942 {
9943 	struct cfs_rq *cfs_rq;
9944 	struct sched_entity *se = &curr->se;
9945 
9946 	for_each_sched_entity(se) {
9947 		cfs_rq = cfs_rq_of(se);
9948 		entity_tick(cfs_rq, se, queued);
9949 	}
9950 
9951 	if (static_branch_unlikely(&sched_numa_balancing))
9952 		task_tick_numa(rq, curr);
9953 }
9954 
9955 /*
9956  * called on fork with the child task as argument from the parent's context
9957  *  - child not yet on the tasklist
9958  *  - preemption disabled
9959  */
9960 static void task_fork_fair(struct task_struct *p)
9961 {
9962 	struct cfs_rq *cfs_rq;
9963 	struct sched_entity *se = &p->se, *curr;
9964 	struct rq *rq = this_rq();
9965 	struct rq_flags rf;
9966 
9967 	rq_lock(rq, &rf);
9968 	update_rq_clock(rq);
9969 
9970 	cfs_rq = task_cfs_rq(current);
9971 	curr = cfs_rq->curr;
9972 	if (curr) {
9973 		update_curr(cfs_rq);
9974 		se->vruntime = curr->vruntime;
9975 	}
9976 	place_entity(cfs_rq, se, 1);
9977 
9978 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9979 		/*
9980 		 * Upon rescheduling, sched_class::put_prev_task() will place
9981 		 * 'current' within the tree based on its new key value.
9982 		 */
9983 		swap(curr->vruntime, se->vruntime);
9984 		resched_curr(rq);
9985 	}
9986 
9987 	se->vruntime -= cfs_rq->min_vruntime;
9988 	rq_unlock(rq, &rf);
9989 }
9990 
9991 /*
9992  * Priority of the task has changed. Check to see if we preempt
9993  * the current task.
9994  */
9995 static void
9996 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9997 {
9998 	if (!task_on_rq_queued(p))
9999 		return;
10000 
10001 	/*
10002 	 * Reschedule if we are currently running on this runqueue and
10003 	 * our priority decreased, or if we are not currently running on
10004 	 * this runqueue and our priority is higher than the current's
10005 	 */
10006 	if (rq->curr == p) {
10007 		if (p->prio > oldprio)
10008 			resched_curr(rq);
10009 	} else
10010 		check_preempt_curr(rq, p, 0);
10011 }
10012 
10013 static inline bool vruntime_normalized(struct task_struct *p)
10014 {
10015 	struct sched_entity *se = &p->se;
10016 
10017 	/*
10018 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10019 	 * the dequeue_entity(.flags=0) will already have normalized the
10020 	 * vruntime.
10021 	 */
10022 	if (p->on_rq)
10023 		return true;
10024 
10025 	/*
10026 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
10027 	 * But there are some cases where it has already been normalized:
10028 	 *
10029 	 * - A forked child which is waiting for being woken up by
10030 	 *   wake_up_new_task().
10031 	 * - A task which has been woken up by try_to_wake_up() and
10032 	 *   waiting for actually being woken up by sched_ttwu_pending().
10033 	 */
10034 	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
10035 		return true;
10036 
10037 	return false;
10038 }
10039 
10040 #ifdef CONFIG_FAIR_GROUP_SCHED
10041 /*
10042  * Propagate the changes of the sched_entity across the tg tree to make it
10043  * visible to the root
10044  */
10045 static void propagate_entity_cfs_rq(struct sched_entity *se)
10046 {
10047 	struct cfs_rq *cfs_rq;
10048 
10049 	/* Start to propagate at parent */
10050 	se = se->parent;
10051 
10052 	for_each_sched_entity(se) {
10053 		cfs_rq = cfs_rq_of(se);
10054 
10055 		if (cfs_rq_throttled(cfs_rq))
10056 			break;
10057 
10058 		update_load_avg(cfs_rq, se, UPDATE_TG);
10059 	}
10060 }
10061 #else
10062 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10063 #endif
10064 
10065 static void detach_entity_cfs_rq(struct sched_entity *se)
10066 {
10067 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10068 
10069 	/* Catch up with the cfs_rq and remove our load when we leave */
10070 	update_load_avg(cfs_rq, se, 0);
10071 	detach_entity_load_avg(cfs_rq, se);
10072 	update_tg_load_avg(cfs_rq, false);
10073 	propagate_entity_cfs_rq(se);
10074 }
10075 
10076 static void attach_entity_cfs_rq(struct sched_entity *se)
10077 {
10078 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10079 
10080 #ifdef CONFIG_FAIR_GROUP_SCHED
10081 	/*
10082 	 * Since the real-depth could have been changed (only FAIR
10083 	 * class maintain depth value), reset depth properly.
10084 	 */
10085 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10086 #endif
10087 
10088 	/* Synchronize entity with its cfs_rq */
10089 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10090 	attach_entity_load_avg(cfs_rq, se, 0);
10091 	update_tg_load_avg(cfs_rq, false);
10092 	propagate_entity_cfs_rq(se);
10093 }
10094 
10095 static void detach_task_cfs_rq(struct task_struct *p)
10096 {
10097 	struct sched_entity *se = &p->se;
10098 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10099 
10100 	if (!vruntime_normalized(p)) {
10101 		/*
10102 		 * Fix up our vruntime so that the current sleep doesn't
10103 		 * cause 'unlimited' sleep bonus.
10104 		 */
10105 		place_entity(cfs_rq, se, 0);
10106 		se->vruntime -= cfs_rq->min_vruntime;
10107 	}
10108 
10109 	detach_entity_cfs_rq(se);
10110 }
10111 
10112 static void attach_task_cfs_rq(struct task_struct *p)
10113 {
10114 	struct sched_entity *se = &p->se;
10115 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10116 
10117 	attach_entity_cfs_rq(se);
10118 
10119 	if (!vruntime_normalized(p))
10120 		se->vruntime += cfs_rq->min_vruntime;
10121 }
10122 
10123 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10124 {
10125 	detach_task_cfs_rq(p);
10126 }
10127 
10128 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10129 {
10130 	attach_task_cfs_rq(p);
10131 
10132 	if (task_on_rq_queued(p)) {
10133 		/*
10134 		 * We were most likely switched from sched_rt, so
10135 		 * kick off the schedule if running, otherwise just see
10136 		 * if we can still preempt the current task.
10137 		 */
10138 		if (rq->curr == p)
10139 			resched_curr(rq);
10140 		else
10141 			check_preempt_curr(rq, p, 0);
10142 	}
10143 }
10144 
10145 /* Account for a task changing its policy or group.
10146  *
10147  * This routine is mostly called to set cfs_rq->curr field when a task
10148  * migrates between groups/classes.
10149  */
10150 static void set_curr_task_fair(struct rq *rq)
10151 {
10152 	struct sched_entity *se = &rq->curr->se;
10153 
10154 	for_each_sched_entity(se) {
10155 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
10156 
10157 		set_next_entity(cfs_rq, se);
10158 		/* ensure bandwidth has been allocated on our new cfs_rq */
10159 		account_cfs_rq_runtime(cfs_rq, 0);
10160 	}
10161 }
10162 
10163 void init_cfs_rq(struct cfs_rq *cfs_rq)
10164 {
10165 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10166 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10167 #ifndef CONFIG_64BIT
10168 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10169 #endif
10170 #ifdef CONFIG_SMP
10171 	raw_spin_lock_init(&cfs_rq->removed.lock);
10172 #endif
10173 }
10174 
10175 #ifdef CONFIG_FAIR_GROUP_SCHED
10176 static void task_set_group_fair(struct task_struct *p)
10177 {
10178 	struct sched_entity *se = &p->se;
10179 
10180 	set_task_rq(p, task_cpu(p));
10181 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10182 }
10183 
10184 static void task_move_group_fair(struct task_struct *p)
10185 {
10186 	detach_task_cfs_rq(p);
10187 	set_task_rq(p, task_cpu(p));
10188 
10189 #ifdef CONFIG_SMP
10190 	/* Tell se's cfs_rq has been changed -- migrated */
10191 	p->se.avg.last_update_time = 0;
10192 #endif
10193 	attach_task_cfs_rq(p);
10194 }
10195 
10196 static void task_change_group_fair(struct task_struct *p, int type)
10197 {
10198 	switch (type) {
10199 	case TASK_SET_GROUP:
10200 		task_set_group_fair(p);
10201 		break;
10202 
10203 	case TASK_MOVE_GROUP:
10204 		task_move_group_fair(p);
10205 		break;
10206 	}
10207 }
10208 
10209 void free_fair_sched_group(struct task_group *tg)
10210 {
10211 	int i;
10212 
10213 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10214 
10215 	for_each_possible_cpu(i) {
10216 		if (tg->cfs_rq)
10217 			kfree(tg->cfs_rq[i]);
10218 		if (tg->se)
10219 			kfree(tg->se[i]);
10220 	}
10221 
10222 	kfree(tg->cfs_rq);
10223 	kfree(tg->se);
10224 }
10225 
10226 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10227 {
10228 	struct sched_entity *se;
10229 	struct cfs_rq *cfs_rq;
10230 	int i;
10231 
10232 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
10233 	if (!tg->cfs_rq)
10234 		goto err;
10235 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
10236 	if (!tg->se)
10237 		goto err;
10238 
10239 	tg->shares = NICE_0_LOAD;
10240 
10241 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10242 
10243 	for_each_possible_cpu(i) {
10244 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10245 				      GFP_KERNEL, cpu_to_node(i));
10246 		if (!cfs_rq)
10247 			goto err;
10248 
10249 		se = kzalloc_node(sizeof(struct sched_entity),
10250 				  GFP_KERNEL, cpu_to_node(i));
10251 		if (!se)
10252 			goto err_free_rq;
10253 
10254 		init_cfs_rq(cfs_rq);
10255 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10256 		init_entity_runnable_average(se);
10257 	}
10258 
10259 	return 1;
10260 
10261 err_free_rq:
10262 	kfree(cfs_rq);
10263 err:
10264 	return 0;
10265 }
10266 
10267 void online_fair_sched_group(struct task_group *tg)
10268 {
10269 	struct sched_entity *se;
10270 	struct rq *rq;
10271 	int i;
10272 
10273 	for_each_possible_cpu(i) {
10274 		rq = cpu_rq(i);
10275 		se = tg->se[i];
10276 
10277 		raw_spin_lock_irq(&rq->lock);
10278 		update_rq_clock(rq);
10279 		attach_entity_cfs_rq(se);
10280 		sync_throttle(tg, i);
10281 		raw_spin_unlock_irq(&rq->lock);
10282 	}
10283 }
10284 
10285 void unregister_fair_sched_group(struct task_group *tg)
10286 {
10287 	unsigned long flags;
10288 	struct rq *rq;
10289 	int cpu;
10290 
10291 	for_each_possible_cpu(cpu) {
10292 		if (tg->se[cpu])
10293 			remove_entity_load_avg(tg->se[cpu]);
10294 
10295 		/*
10296 		 * Only empty task groups can be destroyed; so we can speculatively
10297 		 * check on_list without danger of it being re-added.
10298 		 */
10299 		if (!tg->cfs_rq[cpu]->on_list)
10300 			continue;
10301 
10302 		rq = cpu_rq(cpu);
10303 
10304 		raw_spin_lock_irqsave(&rq->lock, flags);
10305 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10306 		raw_spin_unlock_irqrestore(&rq->lock, flags);
10307 	}
10308 }
10309 
10310 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10311 			struct sched_entity *se, int cpu,
10312 			struct sched_entity *parent)
10313 {
10314 	struct rq *rq = cpu_rq(cpu);
10315 
10316 	cfs_rq->tg = tg;
10317 	cfs_rq->rq = rq;
10318 	init_cfs_rq_runtime(cfs_rq);
10319 
10320 	tg->cfs_rq[cpu] = cfs_rq;
10321 	tg->se[cpu] = se;
10322 
10323 	/* se could be NULL for root_task_group */
10324 	if (!se)
10325 		return;
10326 
10327 	if (!parent) {
10328 		se->cfs_rq = &rq->cfs;
10329 		se->depth = 0;
10330 	} else {
10331 		se->cfs_rq = parent->my_q;
10332 		se->depth = parent->depth + 1;
10333 	}
10334 
10335 	se->my_q = cfs_rq;
10336 	/* guarantee group entities always have weight */
10337 	update_load_set(&se->load, NICE_0_LOAD);
10338 	se->parent = parent;
10339 }
10340 
10341 static DEFINE_MUTEX(shares_mutex);
10342 
10343 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10344 {
10345 	int i;
10346 
10347 	/*
10348 	 * We can't change the weight of the root cgroup.
10349 	 */
10350 	if (!tg->se[0])
10351 		return -EINVAL;
10352 
10353 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10354 
10355 	mutex_lock(&shares_mutex);
10356 	if (tg->shares == shares)
10357 		goto done;
10358 
10359 	tg->shares = shares;
10360 	for_each_possible_cpu(i) {
10361 		struct rq *rq = cpu_rq(i);
10362 		struct sched_entity *se = tg->se[i];
10363 		struct rq_flags rf;
10364 
10365 		/* Propagate contribution to hierarchy */
10366 		rq_lock_irqsave(rq, &rf);
10367 		update_rq_clock(rq);
10368 		for_each_sched_entity(se) {
10369 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10370 			update_cfs_group(se);
10371 		}
10372 		rq_unlock_irqrestore(rq, &rf);
10373 	}
10374 
10375 done:
10376 	mutex_unlock(&shares_mutex);
10377 	return 0;
10378 }
10379 #else /* CONFIG_FAIR_GROUP_SCHED */
10380 
10381 void free_fair_sched_group(struct task_group *tg) { }
10382 
10383 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10384 {
10385 	return 1;
10386 }
10387 
10388 void online_fair_sched_group(struct task_group *tg) { }
10389 
10390 void unregister_fair_sched_group(struct task_group *tg) { }
10391 
10392 #endif /* CONFIG_FAIR_GROUP_SCHED */
10393 
10394 
10395 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10396 {
10397 	struct sched_entity *se = &task->se;
10398 	unsigned int rr_interval = 0;
10399 
10400 	/*
10401 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10402 	 * idle runqueue:
10403 	 */
10404 	if (rq->cfs.load.weight)
10405 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10406 
10407 	return rr_interval;
10408 }
10409 
10410 /*
10411  * All the scheduling class methods:
10412  */
10413 const struct sched_class fair_sched_class = {
10414 	.next			= &idle_sched_class,
10415 	.enqueue_task		= enqueue_task_fair,
10416 	.dequeue_task		= dequeue_task_fair,
10417 	.yield_task		= yield_task_fair,
10418 	.yield_to_task		= yield_to_task_fair,
10419 
10420 	.check_preempt_curr	= check_preempt_wakeup,
10421 
10422 	.pick_next_task		= pick_next_task_fair,
10423 	.put_prev_task		= put_prev_task_fair,
10424 
10425 #ifdef CONFIG_SMP
10426 	.select_task_rq		= select_task_rq_fair,
10427 	.migrate_task_rq	= migrate_task_rq_fair,
10428 
10429 	.rq_online		= rq_online_fair,
10430 	.rq_offline		= rq_offline_fair,
10431 
10432 	.task_dead		= task_dead_fair,
10433 	.set_cpus_allowed	= set_cpus_allowed_common,
10434 #endif
10435 
10436 	.set_curr_task          = set_curr_task_fair,
10437 	.task_tick		= task_tick_fair,
10438 	.task_fork		= task_fork_fair,
10439 
10440 	.prio_changed		= prio_changed_fair,
10441 	.switched_from		= switched_from_fair,
10442 	.switched_to		= switched_to_fair,
10443 
10444 	.get_rr_interval	= get_rr_interval_fair,
10445 
10446 	.update_curr		= update_curr_fair,
10447 
10448 #ifdef CONFIG_FAIR_GROUP_SCHED
10449 	.task_change_group	= task_change_group_fair,
10450 #endif
10451 };
10452 
10453 #ifdef CONFIG_SCHED_DEBUG
10454 void print_cfs_stats(struct seq_file *m, int cpu)
10455 {
10456 	struct cfs_rq *cfs_rq, *pos;
10457 
10458 	rcu_read_lock();
10459 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10460 		print_cfs_rq(m, cpu, cfs_rq);
10461 	rcu_read_unlock();
10462 }
10463 
10464 #ifdef CONFIG_NUMA_BALANCING
10465 void show_numa_stats(struct task_struct *p, struct seq_file *m)
10466 {
10467 	int node;
10468 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10469 
10470 	for_each_online_node(node) {
10471 		if (p->numa_faults) {
10472 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10473 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10474 		}
10475 		if (p->numa_group) {
10476 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10477 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10478 		}
10479 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10480 	}
10481 }
10482 #endif /* CONFIG_NUMA_BALANCING */
10483 #endif /* CONFIG_SCHED_DEBUG */
10484 
10485 __init void init_sched_fair_class(void)
10486 {
10487 #ifdef CONFIG_SMP
10488 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10489 
10490 #ifdef CONFIG_NO_HZ_COMMON
10491 	nohz.next_balance = jiffies;
10492 	nohz.next_blocked = jiffies;
10493 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10494 #endif
10495 #endif /* SMP */
10496 
10497 }
10498