1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 21 */ 22 23 #include <linux/latencytop.h> 24 #include <linux/sched.h> 25 #include <linux/cpumask.h> 26 #include <linux/cpuidle.h> 27 #include <linux/slab.h> 28 #include <linux/profile.h> 29 #include <linux/interrupt.h> 30 #include <linux/mempolicy.h> 31 #include <linux/migrate.h> 32 #include <linux/task_work.h> 33 34 #include <trace/events/sched.h> 35 36 #include "sched.h" 37 38 /* 39 * Targeted preemption latency for CPU-bound tasks: 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 41 * 42 * NOTE: this latency value is not the same as the concept of 43 * 'timeslice length' - timeslices in CFS are of variable length 44 * and have no persistent notion like in traditional, time-slice 45 * based scheduling concepts. 46 * 47 * (to see the precise effective timeslice length of your workload, 48 * run vmstat and monitor the context-switches (cs) field) 49 */ 50 unsigned int sysctl_sched_latency = 6000000ULL; 51 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 52 53 /* 54 * The initial- and re-scaling of tunables is configurable 55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 56 * 57 * Options are: 58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 61 */ 62 enum sched_tunable_scaling sysctl_sched_tunable_scaling 63 = SCHED_TUNABLESCALING_LOG; 64 65 /* 66 * Minimal preemption granularity for CPU-bound tasks: 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 68 */ 69 unsigned int sysctl_sched_min_granularity = 750000ULL; 70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 71 72 /* 73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 74 */ 75 static unsigned int sched_nr_latency = 8; 76 77 /* 78 * After fork, child runs first. If set to 0 (default) then 79 * parent will (try to) run first. 80 */ 81 unsigned int sysctl_sched_child_runs_first __read_mostly; 82 83 /* 84 * SCHED_OTHER wake-up granularity. 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 86 * 87 * This option delays the preemption effects of decoupled workloads 88 * and reduces their over-scheduling. Synchronous workloads will still 89 * have immediate wakeup/sleep latencies. 90 */ 91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 93 94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 95 96 /* 97 * The exponential sliding window over which load is averaged for shares 98 * distribution. 99 * (default: 10msec) 100 */ 101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; 102 103 #ifdef CONFIG_CFS_BANDWIDTH 104 /* 105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 106 * each time a cfs_rq requests quota. 107 * 108 * Note: in the case that the slice exceeds the runtime remaining (either due 109 * to consumption or the quota being specified to be smaller than the slice) 110 * we will always only issue the remaining available time. 111 * 112 * default: 5 msec, units: microseconds 113 */ 114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 115 #endif 116 117 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 118 { 119 lw->weight += inc; 120 lw->inv_weight = 0; 121 } 122 123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 124 { 125 lw->weight -= dec; 126 lw->inv_weight = 0; 127 } 128 129 static inline void update_load_set(struct load_weight *lw, unsigned long w) 130 { 131 lw->weight = w; 132 lw->inv_weight = 0; 133 } 134 135 /* 136 * Increase the granularity value when there are more CPUs, 137 * because with more CPUs the 'effective latency' as visible 138 * to users decreases. But the relationship is not linear, 139 * so pick a second-best guess by going with the log2 of the 140 * number of CPUs. 141 * 142 * This idea comes from the SD scheduler of Con Kolivas: 143 */ 144 static unsigned int get_update_sysctl_factor(void) 145 { 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 147 unsigned int factor; 148 149 switch (sysctl_sched_tunable_scaling) { 150 case SCHED_TUNABLESCALING_NONE: 151 factor = 1; 152 break; 153 case SCHED_TUNABLESCALING_LINEAR: 154 factor = cpus; 155 break; 156 case SCHED_TUNABLESCALING_LOG: 157 default: 158 factor = 1 + ilog2(cpus); 159 break; 160 } 161 162 return factor; 163 } 164 165 static void update_sysctl(void) 166 { 167 unsigned int factor = get_update_sysctl_factor(); 168 169 #define SET_SYSCTL(name) \ 170 (sysctl_##name = (factor) * normalized_sysctl_##name) 171 SET_SYSCTL(sched_min_granularity); 172 SET_SYSCTL(sched_latency); 173 SET_SYSCTL(sched_wakeup_granularity); 174 #undef SET_SYSCTL 175 } 176 177 void sched_init_granularity(void) 178 { 179 update_sysctl(); 180 } 181 182 #define WMULT_CONST (~0U) 183 #define WMULT_SHIFT 32 184 185 static void __update_inv_weight(struct load_weight *lw) 186 { 187 unsigned long w; 188 189 if (likely(lw->inv_weight)) 190 return; 191 192 w = scale_load_down(lw->weight); 193 194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 195 lw->inv_weight = 1; 196 else if (unlikely(!w)) 197 lw->inv_weight = WMULT_CONST; 198 else 199 lw->inv_weight = WMULT_CONST / w; 200 } 201 202 /* 203 * delta_exec * weight / lw.weight 204 * OR 205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 206 * 207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case 208 * we're guaranteed shift stays positive because inv_weight is guaranteed to 209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 210 * 211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 212 * weight/lw.weight <= 1, and therefore our shift will also be positive. 213 */ 214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 215 { 216 u64 fact = scale_load_down(weight); 217 int shift = WMULT_SHIFT; 218 219 __update_inv_weight(lw); 220 221 if (unlikely(fact >> 32)) { 222 while (fact >> 32) { 223 fact >>= 1; 224 shift--; 225 } 226 } 227 228 /* hint to use a 32x32->64 mul */ 229 fact = (u64)(u32)fact * lw->inv_weight; 230 231 while (fact >> 32) { 232 fact >>= 1; 233 shift--; 234 } 235 236 return mul_u64_u32_shr(delta_exec, fact, shift); 237 } 238 239 240 const struct sched_class fair_sched_class; 241 242 /************************************************************** 243 * CFS operations on generic schedulable entities: 244 */ 245 246 #ifdef CONFIG_FAIR_GROUP_SCHED 247 248 /* cpu runqueue to which this cfs_rq is attached */ 249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 250 { 251 return cfs_rq->rq; 252 } 253 254 /* An entity is a task if it doesn't "own" a runqueue */ 255 #define entity_is_task(se) (!se->my_q) 256 257 static inline struct task_struct *task_of(struct sched_entity *se) 258 { 259 #ifdef CONFIG_SCHED_DEBUG 260 WARN_ON_ONCE(!entity_is_task(se)); 261 #endif 262 return container_of(se, struct task_struct, se); 263 } 264 265 /* Walk up scheduling entities hierarchy */ 266 #define for_each_sched_entity(se) \ 267 for (; se; se = se->parent) 268 269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 270 { 271 return p->se.cfs_rq; 272 } 273 274 /* runqueue on which this entity is (to be) queued */ 275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 276 { 277 return se->cfs_rq; 278 } 279 280 /* runqueue "owned" by this group */ 281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 282 { 283 return grp->my_q; 284 } 285 286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 287 { 288 if (!cfs_rq->on_list) { 289 /* 290 * Ensure we either appear before our parent (if already 291 * enqueued) or force our parent to appear after us when it is 292 * enqueued. The fact that we always enqueue bottom-up 293 * reduces this to two cases. 294 */ 295 if (cfs_rq->tg->parent && 296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { 297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 298 &rq_of(cfs_rq)->leaf_cfs_rq_list); 299 } else { 300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 301 &rq_of(cfs_rq)->leaf_cfs_rq_list); 302 } 303 304 cfs_rq->on_list = 1; 305 } 306 } 307 308 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 309 { 310 if (cfs_rq->on_list) { 311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 312 cfs_rq->on_list = 0; 313 } 314 } 315 316 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 319 320 /* Do the two (enqueued) entities belong to the same group ? */ 321 static inline struct cfs_rq * 322 is_same_group(struct sched_entity *se, struct sched_entity *pse) 323 { 324 if (se->cfs_rq == pse->cfs_rq) 325 return se->cfs_rq; 326 327 return NULL; 328 } 329 330 static inline struct sched_entity *parent_entity(struct sched_entity *se) 331 { 332 return se->parent; 333 } 334 335 static void 336 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 337 { 338 int se_depth, pse_depth; 339 340 /* 341 * preemption test can be made between sibling entities who are in the 342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 343 * both tasks until we find their ancestors who are siblings of common 344 * parent. 345 */ 346 347 /* First walk up until both entities are at same depth */ 348 se_depth = (*se)->depth; 349 pse_depth = (*pse)->depth; 350 351 while (se_depth > pse_depth) { 352 se_depth--; 353 *se = parent_entity(*se); 354 } 355 356 while (pse_depth > se_depth) { 357 pse_depth--; 358 *pse = parent_entity(*pse); 359 } 360 361 while (!is_same_group(*se, *pse)) { 362 *se = parent_entity(*se); 363 *pse = parent_entity(*pse); 364 } 365 } 366 367 #else /* !CONFIG_FAIR_GROUP_SCHED */ 368 369 static inline struct task_struct *task_of(struct sched_entity *se) 370 { 371 return container_of(se, struct task_struct, se); 372 } 373 374 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 375 { 376 return container_of(cfs_rq, struct rq, cfs); 377 } 378 379 #define entity_is_task(se) 1 380 381 #define for_each_sched_entity(se) \ 382 for (; se; se = NULL) 383 384 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 385 { 386 return &task_rq(p)->cfs; 387 } 388 389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 390 { 391 struct task_struct *p = task_of(se); 392 struct rq *rq = task_rq(p); 393 394 return &rq->cfs; 395 } 396 397 /* runqueue "owned" by this group */ 398 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 399 { 400 return NULL; 401 } 402 403 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 404 { 405 } 406 407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 408 { 409 } 410 411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 413 414 static inline struct sched_entity *parent_entity(struct sched_entity *se) 415 { 416 return NULL; 417 } 418 419 static inline void 420 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 421 { 422 } 423 424 #endif /* CONFIG_FAIR_GROUP_SCHED */ 425 426 static __always_inline 427 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 428 429 /************************************************************** 430 * Scheduling class tree data structure manipulation methods: 431 */ 432 433 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 434 { 435 s64 delta = (s64)(vruntime - max_vruntime); 436 if (delta > 0) 437 max_vruntime = vruntime; 438 439 return max_vruntime; 440 } 441 442 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 443 { 444 s64 delta = (s64)(vruntime - min_vruntime); 445 if (delta < 0) 446 min_vruntime = vruntime; 447 448 return min_vruntime; 449 } 450 451 static inline int entity_before(struct sched_entity *a, 452 struct sched_entity *b) 453 { 454 return (s64)(a->vruntime - b->vruntime) < 0; 455 } 456 457 static void update_min_vruntime(struct cfs_rq *cfs_rq) 458 { 459 u64 vruntime = cfs_rq->min_vruntime; 460 461 if (cfs_rq->curr) 462 vruntime = cfs_rq->curr->vruntime; 463 464 if (cfs_rq->rb_leftmost) { 465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 466 struct sched_entity, 467 run_node); 468 469 if (!cfs_rq->curr) 470 vruntime = se->vruntime; 471 else 472 vruntime = min_vruntime(vruntime, se->vruntime); 473 } 474 475 /* ensure we never gain time by being placed backwards. */ 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 477 #ifndef CONFIG_64BIT 478 smp_wmb(); 479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 480 #endif 481 } 482 483 /* 484 * Enqueue an entity into the rb-tree: 485 */ 486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 487 { 488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 489 struct rb_node *parent = NULL; 490 struct sched_entity *entry; 491 int leftmost = 1; 492 493 /* 494 * Find the right place in the rbtree: 495 */ 496 while (*link) { 497 parent = *link; 498 entry = rb_entry(parent, struct sched_entity, run_node); 499 /* 500 * We dont care about collisions. Nodes with 501 * the same key stay together. 502 */ 503 if (entity_before(se, entry)) { 504 link = &parent->rb_left; 505 } else { 506 link = &parent->rb_right; 507 leftmost = 0; 508 } 509 } 510 511 /* 512 * Maintain a cache of leftmost tree entries (it is frequently 513 * used): 514 */ 515 if (leftmost) 516 cfs_rq->rb_leftmost = &se->run_node; 517 518 rb_link_node(&se->run_node, parent, link); 519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 520 } 521 522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 523 { 524 if (cfs_rq->rb_leftmost == &se->run_node) { 525 struct rb_node *next_node; 526 527 next_node = rb_next(&se->run_node); 528 cfs_rq->rb_leftmost = next_node; 529 } 530 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 532 } 533 534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 535 { 536 struct rb_node *left = cfs_rq->rb_leftmost; 537 538 if (!left) 539 return NULL; 540 541 return rb_entry(left, struct sched_entity, run_node); 542 } 543 544 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 545 { 546 struct rb_node *next = rb_next(&se->run_node); 547 548 if (!next) 549 return NULL; 550 551 return rb_entry(next, struct sched_entity, run_node); 552 } 553 554 #ifdef CONFIG_SCHED_DEBUG 555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 556 { 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 558 559 if (!last) 560 return NULL; 561 562 return rb_entry(last, struct sched_entity, run_node); 563 } 564 565 /************************************************************** 566 * Scheduling class statistics methods: 567 */ 568 569 int sched_proc_update_handler(struct ctl_table *table, int write, 570 void __user *buffer, size_t *lenp, 571 loff_t *ppos) 572 { 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 574 unsigned int factor = get_update_sysctl_factor(); 575 576 if (ret || !write) 577 return ret; 578 579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 580 sysctl_sched_min_granularity); 581 582 #define WRT_SYSCTL(name) \ 583 (normalized_sysctl_##name = sysctl_##name / (factor)) 584 WRT_SYSCTL(sched_min_granularity); 585 WRT_SYSCTL(sched_latency); 586 WRT_SYSCTL(sched_wakeup_granularity); 587 #undef WRT_SYSCTL 588 589 return 0; 590 } 591 #endif 592 593 /* 594 * delta /= w 595 */ 596 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 597 { 598 if (unlikely(se->load.weight != NICE_0_LOAD)) 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 600 601 return delta; 602 } 603 604 /* 605 * The idea is to set a period in which each task runs once. 606 * 607 * When there are too many tasks (sched_nr_latency) we have to stretch 608 * this period because otherwise the slices get too small. 609 * 610 * p = (nr <= nl) ? l : l*nr/nl 611 */ 612 static u64 __sched_period(unsigned long nr_running) 613 { 614 if (unlikely(nr_running > sched_nr_latency)) 615 return nr_running * sysctl_sched_min_granularity; 616 else 617 return sysctl_sched_latency; 618 } 619 620 /* 621 * We calculate the wall-time slice from the period by taking a part 622 * proportional to the weight. 623 * 624 * s = p*P[w/rw] 625 */ 626 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 627 { 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 629 630 for_each_sched_entity(se) { 631 struct load_weight *load; 632 struct load_weight lw; 633 634 cfs_rq = cfs_rq_of(se); 635 load = &cfs_rq->load; 636 637 if (unlikely(!se->on_rq)) { 638 lw = cfs_rq->load; 639 640 update_load_add(&lw, se->load.weight); 641 load = &lw; 642 } 643 slice = __calc_delta(slice, se->load.weight, load); 644 } 645 return slice; 646 } 647 648 /* 649 * We calculate the vruntime slice of a to-be-inserted task. 650 * 651 * vs = s/w 652 */ 653 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 654 { 655 return calc_delta_fair(sched_slice(cfs_rq, se), se); 656 } 657 658 #ifdef CONFIG_SMP 659 static int select_idle_sibling(struct task_struct *p, int cpu); 660 static unsigned long task_h_load(struct task_struct *p); 661 662 /* 663 * We choose a half-life close to 1 scheduling period. 664 * Note: The tables below are dependent on this value. 665 */ 666 #define LOAD_AVG_PERIOD 32 667 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ 668 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */ 669 670 /* Give new sched_entity start runnable values to heavy its load in infant time */ 671 void init_entity_runnable_average(struct sched_entity *se) 672 { 673 struct sched_avg *sa = &se->avg; 674 675 sa->last_update_time = 0; 676 /* 677 * sched_avg's period_contrib should be strictly less then 1024, so 678 * we give it 1023 to make sure it is almost a period (1024us), and 679 * will definitely be update (after enqueue). 680 */ 681 sa->period_contrib = 1023; 682 sa->load_avg = scale_load_down(se->load.weight); 683 sa->load_sum = sa->load_avg * LOAD_AVG_MAX; 684 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE); 685 sa->util_sum = LOAD_AVG_MAX; 686 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 687 } 688 689 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq); 690 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq); 691 #else 692 void init_entity_runnable_average(struct sched_entity *se) 693 { 694 } 695 #endif 696 697 /* 698 * Update the current task's runtime statistics. 699 */ 700 static void update_curr(struct cfs_rq *cfs_rq) 701 { 702 struct sched_entity *curr = cfs_rq->curr; 703 u64 now = rq_clock_task(rq_of(cfs_rq)); 704 u64 delta_exec; 705 706 if (unlikely(!curr)) 707 return; 708 709 delta_exec = now - curr->exec_start; 710 if (unlikely((s64)delta_exec <= 0)) 711 return; 712 713 curr->exec_start = now; 714 715 schedstat_set(curr->statistics.exec_max, 716 max(delta_exec, curr->statistics.exec_max)); 717 718 curr->sum_exec_runtime += delta_exec; 719 schedstat_add(cfs_rq, exec_clock, delta_exec); 720 721 curr->vruntime += calc_delta_fair(delta_exec, curr); 722 update_min_vruntime(cfs_rq); 723 724 if (entity_is_task(curr)) { 725 struct task_struct *curtask = task_of(curr); 726 727 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 728 cpuacct_charge(curtask, delta_exec); 729 account_group_exec_runtime(curtask, delta_exec); 730 } 731 732 account_cfs_rq_runtime(cfs_rq, delta_exec); 733 } 734 735 static void update_curr_fair(struct rq *rq) 736 { 737 update_curr(cfs_rq_of(&rq->curr->se)); 738 } 739 740 static inline void 741 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 742 { 743 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq))); 744 } 745 746 /* 747 * Task is being enqueued - update stats: 748 */ 749 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 750 { 751 /* 752 * Are we enqueueing a waiting task? (for current tasks 753 * a dequeue/enqueue event is a NOP) 754 */ 755 if (se != cfs_rq->curr) 756 update_stats_wait_start(cfs_rq, se); 757 } 758 759 static void 760 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 761 { 762 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, 763 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start)); 764 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); 765 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + 766 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 767 #ifdef CONFIG_SCHEDSTATS 768 if (entity_is_task(se)) { 769 trace_sched_stat_wait(task_of(se), 770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 771 } 772 #endif 773 schedstat_set(se->statistics.wait_start, 0); 774 } 775 776 static inline void 777 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 778 { 779 /* 780 * Mark the end of the wait period if dequeueing a 781 * waiting task: 782 */ 783 if (se != cfs_rq->curr) 784 update_stats_wait_end(cfs_rq, se); 785 } 786 787 /* 788 * We are picking a new current task - update its stats: 789 */ 790 static inline void 791 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 792 { 793 /* 794 * We are starting a new run period: 795 */ 796 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 797 } 798 799 /************************************************** 800 * Scheduling class queueing methods: 801 */ 802 803 #ifdef CONFIG_NUMA_BALANCING 804 /* 805 * Approximate time to scan a full NUMA task in ms. The task scan period is 806 * calculated based on the tasks virtual memory size and 807 * numa_balancing_scan_size. 808 */ 809 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 810 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 811 812 /* Portion of address space to scan in MB */ 813 unsigned int sysctl_numa_balancing_scan_size = 256; 814 815 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 816 unsigned int sysctl_numa_balancing_scan_delay = 1000; 817 818 static unsigned int task_nr_scan_windows(struct task_struct *p) 819 { 820 unsigned long rss = 0; 821 unsigned long nr_scan_pages; 822 823 /* 824 * Calculations based on RSS as non-present and empty pages are skipped 825 * by the PTE scanner and NUMA hinting faults should be trapped based 826 * on resident pages 827 */ 828 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 829 rss = get_mm_rss(p->mm); 830 if (!rss) 831 rss = nr_scan_pages; 832 833 rss = round_up(rss, nr_scan_pages); 834 return rss / nr_scan_pages; 835 } 836 837 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 838 #define MAX_SCAN_WINDOW 2560 839 840 static unsigned int task_scan_min(struct task_struct *p) 841 { 842 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 843 unsigned int scan, floor; 844 unsigned int windows = 1; 845 846 if (scan_size < MAX_SCAN_WINDOW) 847 windows = MAX_SCAN_WINDOW / scan_size; 848 floor = 1000 / windows; 849 850 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 851 return max_t(unsigned int, floor, scan); 852 } 853 854 static unsigned int task_scan_max(struct task_struct *p) 855 { 856 unsigned int smin = task_scan_min(p); 857 unsigned int smax; 858 859 /* Watch for min being lower than max due to floor calculations */ 860 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 861 return max(smin, smax); 862 } 863 864 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 865 { 866 rq->nr_numa_running += (p->numa_preferred_nid != -1); 867 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 868 } 869 870 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 871 { 872 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 873 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 874 } 875 876 struct numa_group { 877 atomic_t refcount; 878 879 spinlock_t lock; /* nr_tasks, tasks */ 880 int nr_tasks; 881 pid_t gid; 882 883 struct rcu_head rcu; 884 nodemask_t active_nodes; 885 unsigned long total_faults; 886 /* 887 * Faults_cpu is used to decide whether memory should move 888 * towards the CPU. As a consequence, these stats are weighted 889 * more by CPU use than by memory faults. 890 */ 891 unsigned long *faults_cpu; 892 unsigned long faults[0]; 893 }; 894 895 /* Shared or private faults. */ 896 #define NR_NUMA_HINT_FAULT_TYPES 2 897 898 /* Memory and CPU locality */ 899 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 900 901 /* Averaged statistics, and temporary buffers. */ 902 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 903 904 pid_t task_numa_group_id(struct task_struct *p) 905 { 906 return p->numa_group ? p->numa_group->gid : 0; 907 } 908 909 /* 910 * The averaged statistics, shared & private, memory & cpu, 911 * occupy the first half of the array. The second half of the 912 * array is for current counters, which are averaged into the 913 * first set by task_numa_placement. 914 */ 915 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 916 { 917 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 918 } 919 920 static inline unsigned long task_faults(struct task_struct *p, int nid) 921 { 922 if (!p->numa_faults) 923 return 0; 924 925 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 926 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 927 } 928 929 static inline unsigned long group_faults(struct task_struct *p, int nid) 930 { 931 if (!p->numa_group) 932 return 0; 933 934 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 935 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 936 } 937 938 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 939 { 940 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 941 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 942 } 943 944 /* Handle placement on systems where not all nodes are directly connected. */ 945 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 946 int maxdist, bool task) 947 { 948 unsigned long score = 0; 949 int node; 950 951 /* 952 * All nodes are directly connected, and the same distance 953 * from each other. No need for fancy placement algorithms. 954 */ 955 if (sched_numa_topology_type == NUMA_DIRECT) 956 return 0; 957 958 /* 959 * This code is called for each node, introducing N^2 complexity, 960 * which should be ok given the number of nodes rarely exceeds 8. 961 */ 962 for_each_online_node(node) { 963 unsigned long faults; 964 int dist = node_distance(nid, node); 965 966 /* 967 * The furthest away nodes in the system are not interesting 968 * for placement; nid was already counted. 969 */ 970 if (dist == sched_max_numa_distance || node == nid) 971 continue; 972 973 /* 974 * On systems with a backplane NUMA topology, compare groups 975 * of nodes, and move tasks towards the group with the most 976 * memory accesses. When comparing two nodes at distance 977 * "hoplimit", only nodes closer by than "hoplimit" are part 978 * of each group. Skip other nodes. 979 */ 980 if (sched_numa_topology_type == NUMA_BACKPLANE && 981 dist > maxdist) 982 continue; 983 984 /* Add up the faults from nearby nodes. */ 985 if (task) 986 faults = task_faults(p, node); 987 else 988 faults = group_faults(p, node); 989 990 /* 991 * On systems with a glueless mesh NUMA topology, there are 992 * no fixed "groups of nodes". Instead, nodes that are not 993 * directly connected bounce traffic through intermediate 994 * nodes; a numa_group can occupy any set of nodes. 995 * The further away a node is, the less the faults count. 996 * This seems to result in good task placement. 997 */ 998 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 999 faults *= (sched_max_numa_distance - dist); 1000 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1001 } 1002 1003 score += faults; 1004 } 1005 1006 return score; 1007 } 1008 1009 /* 1010 * These return the fraction of accesses done by a particular task, or 1011 * task group, on a particular numa node. The group weight is given a 1012 * larger multiplier, in order to group tasks together that are almost 1013 * evenly spread out between numa nodes. 1014 */ 1015 static inline unsigned long task_weight(struct task_struct *p, int nid, 1016 int dist) 1017 { 1018 unsigned long faults, total_faults; 1019 1020 if (!p->numa_faults) 1021 return 0; 1022 1023 total_faults = p->total_numa_faults; 1024 1025 if (!total_faults) 1026 return 0; 1027 1028 faults = task_faults(p, nid); 1029 faults += score_nearby_nodes(p, nid, dist, true); 1030 1031 return 1000 * faults / total_faults; 1032 } 1033 1034 static inline unsigned long group_weight(struct task_struct *p, int nid, 1035 int dist) 1036 { 1037 unsigned long faults, total_faults; 1038 1039 if (!p->numa_group) 1040 return 0; 1041 1042 total_faults = p->numa_group->total_faults; 1043 1044 if (!total_faults) 1045 return 0; 1046 1047 faults = group_faults(p, nid); 1048 faults += score_nearby_nodes(p, nid, dist, false); 1049 1050 return 1000 * faults / total_faults; 1051 } 1052 1053 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1054 int src_nid, int dst_cpu) 1055 { 1056 struct numa_group *ng = p->numa_group; 1057 int dst_nid = cpu_to_node(dst_cpu); 1058 int last_cpupid, this_cpupid; 1059 1060 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1061 1062 /* 1063 * Multi-stage node selection is used in conjunction with a periodic 1064 * migration fault to build a temporal task<->page relation. By using 1065 * a two-stage filter we remove short/unlikely relations. 1066 * 1067 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1068 * a task's usage of a particular page (n_p) per total usage of this 1069 * page (n_t) (in a given time-span) to a probability. 1070 * 1071 * Our periodic faults will sample this probability and getting the 1072 * same result twice in a row, given these samples are fully 1073 * independent, is then given by P(n)^2, provided our sample period 1074 * is sufficiently short compared to the usage pattern. 1075 * 1076 * This quadric squishes small probabilities, making it less likely we 1077 * act on an unlikely task<->page relation. 1078 */ 1079 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1080 if (!cpupid_pid_unset(last_cpupid) && 1081 cpupid_to_nid(last_cpupid) != dst_nid) 1082 return false; 1083 1084 /* Always allow migrate on private faults */ 1085 if (cpupid_match_pid(p, last_cpupid)) 1086 return true; 1087 1088 /* A shared fault, but p->numa_group has not been set up yet. */ 1089 if (!ng) 1090 return true; 1091 1092 /* 1093 * Do not migrate if the destination is not a node that 1094 * is actively used by this numa group. 1095 */ 1096 if (!node_isset(dst_nid, ng->active_nodes)) 1097 return false; 1098 1099 /* 1100 * Source is a node that is not actively used by this 1101 * numa group, while the destination is. Migrate. 1102 */ 1103 if (!node_isset(src_nid, ng->active_nodes)) 1104 return true; 1105 1106 /* 1107 * Both source and destination are nodes in active 1108 * use by this numa group. Maximize memory bandwidth 1109 * by migrating from more heavily used groups, to less 1110 * heavily used ones, spreading the load around. 1111 * Use a 1/4 hysteresis to avoid spurious page movement. 1112 */ 1113 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4); 1114 } 1115 1116 static unsigned long weighted_cpuload(const int cpu); 1117 static unsigned long source_load(int cpu, int type); 1118 static unsigned long target_load(int cpu, int type); 1119 static unsigned long capacity_of(int cpu); 1120 static long effective_load(struct task_group *tg, int cpu, long wl, long wg); 1121 1122 /* Cached statistics for all CPUs within a node */ 1123 struct numa_stats { 1124 unsigned long nr_running; 1125 unsigned long load; 1126 1127 /* Total compute capacity of CPUs on a node */ 1128 unsigned long compute_capacity; 1129 1130 /* Approximate capacity in terms of runnable tasks on a node */ 1131 unsigned long task_capacity; 1132 int has_free_capacity; 1133 }; 1134 1135 /* 1136 * XXX borrowed from update_sg_lb_stats 1137 */ 1138 static void update_numa_stats(struct numa_stats *ns, int nid) 1139 { 1140 int smt, cpu, cpus = 0; 1141 unsigned long capacity; 1142 1143 memset(ns, 0, sizeof(*ns)); 1144 for_each_cpu(cpu, cpumask_of_node(nid)) { 1145 struct rq *rq = cpu_rq(cpu); 1146 1147 ns->nr_running += rq->nr_running; 1148 ns->load += weighted_cpuload(cpu); 1149 ns->compute_capacity += capacity_of(cpu); 1150 1151 cpus++; 1152 } 1153 1154 /* 1155 * If we raced with hotplug and there are no CPUs left in our mask 1156 * the @ns structure is NULL'ed and task_numa_compare() will 1157 * not find this node attractive. 1158 * 1159 * We'll either bail at !has_free_capacity, or we'll detect a huge 1160 * imbalance and bail there. 1161 */ 1162 if (!cpus) 1163 return; 1164 1165 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ 1166 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); 1167 capacity = cpus / smt; /* cores */ 1168 1169 ns->task_capacity = min_t(unsigned, capacity, 1170 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); 1171 ns->has_free_capacity = (ns->nr_running < ns->task_capacity); 1172 } 1173 1174 struct task_numa_env { 1175 struct task_struct *p; 1176 1177 int src_cpu, src_nid; 1178 int dst_cpu, dst_nid; 1179 1180 struct numa_stats src_stats, dst_stats; 1181 1182 int imbalance_pct; 1183 int dist; 1184 1185 struct task_struct *best_task; 1186 long best_imp; 1187 int best_cpu; 1188 }; 1189 1190 static void task_numa_assign(struct task_numa_env *env, 1191 struct task_struct *p, long imp) 1192 { 1193 if (env->best_task) 1194 put_task_struct(env->best_task); 1195 if (p) 1196 get_task_struct(p); 1197 1198 env->best_task = p; 1199 env->best_imp = imp; 1200 env->best_cpu = env->dst_cpu; 1201 } 1202 1203 static bool load_too_imbalanced(long src_load, long dst_load, 1204 struct task_numa_env *env) 1205 { 1206 long imb, old_imb; 1207 long orig_src_load, orig_dst_load; 1208 long src_capacity, dst_capacity; 1209 1210 /* 1211 * The load is corrected for the CPU capacity available on each node. 1212 * 1213 * src_load dst_load 1214 * ------------ vs --------- 1215 * src_capacity dst_capacity 1216 */ 1217 src_capacity = env->src_stats.compute_capacity; 1218 dst_capacity = env->dst_stats.compute_capacity; 1219 1220 /* We care about the slope of the imbalance, not the direction. */ 1221 if (dst_load < src_load) 1222 swap(dst_load, src_load); 1223 1224 /* Is the difference below the threshold? */ 1225 imb = dst_load * src_capacity * 100 - 1226 src_load * dst_capacity * env->imbalance_pct; 1227 if (imb <= 0) 1228 return false; 1229 1230 /* 1231 * The imbalance is above the allowed threshold. 1232 * Compare it with the old imbalance. 1233 */ 1234 orig_src_load = env->src_stats.load; 1235 orig_dst_load = env->dst_stats.load; 1236 1237 if (orig_dst_load < orig_src_load) 1238 swap(orig_dst_load, orig_src_load); 1239 1240 old_imb = orig_dst_load * src_capacity * 100 - 1241 orig_src_load * dst_capacity * env->imbalance_pct; 1242 1243 /* Would this change make things worse? */ 1244 return (imb > old_imb); 1245 } 1246 1247 /* 1248 * This checks if the overall compute and NUMA accesses of the system would 1249 * be improved if the source tasks was migrated to the target dst_cpu taking 1250 * into account that it might be best if task running on the dst_cpu should 1251 * be exchanged with the source task 1252 */ 1253 static void task_numa_compare(struct task_numa_env *env, 1254 long taskimp, long groupimp) 1255 { 1256 struct rq *src_rq = cpu_rq(env->src_cpu); 1257 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1258 struct task_struct *cur; 1259 long src_load, dst_load; 1260 long load; 1261 long imp = env->p->numa_group ? groupimp : taskimp; 1262 long moveimp = imp; 1263 int dist = env->dist; 1264 1265 rcu_read_lock(); 1266 1267 raw_spin_lock_irq(&dst_rq->lock); 1268 cur = dst_rq->curr; 1269 /* 1270 * No need to move the exiting task, and this ensures that ->curr 1271 * wasn't reaped and thus get_task_struct() in task_numa_assign() 1272 * is safe under RCU read lock. 1273 * Note that rcu_read_lock() itself can't protect from the final 1274 * put_task_struct() after the last schedule(). 1275 */ 1276 if ((cur->flags & PF_EXITING) || is_idle_task(cur)) 1277 cur = NULL; 1278 raw_spin_unlock_irq(&dst_rq->lock); 1279 1280 /* 1281 * Because we have preemption enabled we can get migrated around and 1282 * end try selecting ourselves (current == env->p) as a swap candidate. 1283 */ 1284 if (cur == env->p) 1285 goto unlock; 1286 1287 /* 1288 * "imp" is the fault differential for the source task between the 1289 * source and destination node. Calculate the total differential for 1290 * the source task and potential destination task. The more negative 1291 * the value is, the more rmeote accesses that would be expected to 1292 * be incurred if the tasks were swapped. 1293 */ 1294 if (cur) { 1295 /* Skip this swap candidate if cannot move to the source cpu */ 1296 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur))) 1297 goto unlock; 1298 1299 /* 1300 * If dst and source tasks are in the same NUMA group, or not 1301 * in any group then look only at task weights. 1302 */ 1303 if (cur->numa_group == env->p->numa_group) { 1304 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1305 task_weight(cur, env->dst_nid, dist); 1306 /* 1307 * Add some hysteresis to prevent swapping the 1308 * tasks within a group over tiny differences. 1309 */ 1310 if (cur->numa_group) 1311 imp -= imp/16; 1312 } else { 1313 /* 1314 * Compare the group weights. If a task is all by 1315 * itself (not part of a group), use the task weight 1316 * instead. 1317 */ 1318 if (cur->numa_group) 1319 imp += group_weight(cur, env->src_nid, dist) - 1320 group_weight(cur, env->dst_nid, dist); 1321 else 1322 imp += task_weight(cur, env->src_nid, dist) - 1323 task_weight(cur, env->dst_nid, dist); 1324 } 1325 } 1326 1327 if (imp <= env->best_imp && moveimp <= env->best_imp) 1328 goto unlock; 1329 1330 if (!cur) { 1331 /* Is there capacity at our destination? */ 1332 if (env->src_stats.nr_running <= env->src_stats.task_capacity && 1333 !env->dst_stats.has_free_capacity) 1334 goto unlock; 1335 1336 goto balance; 1337 } 1338 1339 /* Balance doesn't matter much if we're running a task per cpu */ 1340 if (imp > env->best_imp && src_rq->nr_running == 1 && 1341 dst_rq->nr_running == 1) 1342 goto assign; 1343 1344 /* 1345 * In the overloaded case, try and keep the load balanced. 1346 */ 1347 balance: 1348 load = task_h_load(env->p); 1349 dst_load = env->dst_stats.load + load; 1350 src_load = env->src_stats.load - load; 1351 1352 if (moveimp > imp && moveimp > env->best_imp) { 1353 /* 1354 * If the improvement from just moving env->p direction is 1355 * better than swapping tasks around, check if a move is 1356 * possible. Store a slightly smaller score than moveimp, 1357 * so an actually idle CPU will win. 1358 */ 1359 if (!load_too_imbalanced(src_load, dst_load, env)) { 1360 imp = moveimp - 1; 1361 cur = NULL; 1362 goto assign; 1363 } 1364 } 1365 1366 if (imp <= env->best_imp) 1367 goto unlock; 1368 1369 if (cur) { 1370 load = task_h_load(cur); 1371 dst_load -= load; 1372 src_load += load; 1373 } 1374 1375 if (load_too_imbalanced(src_load, dst_load, env)) 1376 goto unlock; 1377 1378 /* 1379 * One idle CPU per node is evaluated for a task numa move. 1380 * Call select_idle_sibling to maybe find a better one. 1381 */ 1382 if (!cur) 1383 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu); 1384 1385 assign: 1386 task_numa_assign(env, cur, imp); 1387 unlock: 1388 rcu_read_unlock(); 1389 } 1390 1391 static void task_numa_find_cpu(struct task_numa_env *env, 1392 long taskimp, long groupimp) 1393 { 1394 int cpu; 1395 1396 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1397 /* Skip this CPU if the source task cannot migrate */ 1398 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p))) 1399 continue; 1400 1401 env->dst_cpu = cpu; 1402 task_numa_compare(env, taskimp, groupimp); 1403 } 1404 } 1405 1406 /* Only move tasks to a NUMA node less busy than the current node. */ 1407 static bool numa_has_capacity(struct task_numa_env *env) 1408 { 1409 struct numa_stats *src = &env->src_stats; 1410 struct numa_stats *dst = &env->dst_stats; 1411 1412 if (src->has_free_capacity && !dst->has_free_capacity) 1413 return false; 1414 1415 /* 1416 * Only consider a task move if the source has a higher load 1417 * than the destination, corrected for CPU capacity on each node. 1418 * 1419 * src->load dst->load 1420 * --------------------- vs --------------------- 1421 * src->compute_capacity dst->compute_capacity 1422 */ 1423 if (src->load * dst->compute_capacity * env->imbalance_pct > 1424 1425 dst->load * src->compute_capacity * 100) 1426 return true; 1427 1428 return false; 1429 } 1430 1431 static int task_numa_migrate(struct task_struct *p) 1432 { 1433 struct task_numa_env env = { 1434 .p = p, 1435 1436 .src_cpu = task_cpu(p), 1437 .src_nid = task_node(p), 1438 1439 .imbalance_pct = 112, 1440 1441 .best_task = NULL, 1442 .best_imp = 0, 1443 .best_cpu = -1 1444 }; 1445 struct sched_domain *sd; 1446 unsigned long taskweight, groupweight; 1447 int nid, ret, dist; 1448 long taskimp, groupimp; 1449 1450 /* 1451 * Pick the lowest SD_NUMA domain, as that would have the smallest 1452 * imbalance and would be the first to start moving tasks about. 1453 * 1454 * And we want to avoid any moving of tasks about, as that would create 1455 * random movement of tasks -- counter the numa conditions we're trying 1456 * to satisfy here. 1457 */ 1458 rcu_read_lock(); 1459 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1460 if (sd) 1461 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1462 rcu_read_unlock(); 1463 1464 /* 1465 * Cpusets can break the scheduler domain tree into smaller 1466 * balance domains, some of which do not cross NUMA boundaries. 1467 * Tasks that are "trapped" in such domains cannot be migrated 1468 * elsewhere, so there is no point in (re)trying. 1469 */ 1470 if (unlikely(!sd)) { 1471 p->numa_preferred_nid = task_node(p); 1472 return -EINVAL; 1473 } 1474 1475 env.dst_nid = p->numa_preferred_nid; 1476 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1477 taskweight = task_weight(p, env.src_nid, dist); 1478 groupweight = group_weight(p, env.src_nid, dist); 1479 update_numa_stats(&env.src_stats, env.src_nid); 1480 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1481 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1482 update_numa_stats(&env.dst_stats, env.dst_nid); 1483 1484 /* Try to find a spot on the preferred nid. */ 1485 if (numa_has_capacity(&env)) 1486 task_numa_find_cpu(&env, taskimp, groupimp); 1487 1488 /* 1489 * Look at other nodes in these cases: 1490 * - there is no space available on the preferred_nid 1491 * - the task is part of a numa_group that is interleaved across 1492 * multiple NUMA nodes; in order to better consolidate the group, 1493 * we need to check other locations. 1494 */ 1495 if (env.best_cpu == -1 || (p->numa_group && 1496 nodes_weight(p->numa_group->active_nodes) > 1)) { 1497 for_each_online_node(nid) { 1498 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1499 continue; 1500 1501 dist = node_distance(env.src_nid, env.dst_nid); 1502 if (sched_numa_topology_type == NUMA_BACKPLANE && 1503 dist != env.dist) { 1504 taskweight = task_weight(p, env.src_nid, dist); 1505 groupweight = group_weight(p, env.src_nid, dist); 1506 } 1507 1508 /* Only consider nodes where both task and groups benefit */ 1509 taskimp = task_weight(p, nid, dist) - taskweight; 1510 groupimp = group_weight(p, nid, dist) - groupweight; 1511 if (taskimp < 0 && groupimp < 0) 1512 continue; 1513 1514 env.dist = dist; 1515 env.dst_nid = nid; 1516 update_numa_stats(&env.dst_stats, env.dst_nid); 1517 if (numa_has_capacity(&env)) 1518 task_numa_find_cpu(&env, taskimp, groupimp); 1519 } 1520 } 1521 1522 /* 1523 * If the task is part of a workload that spans multiple NUMA nodes, 1524 * and is migrating into one of the workload's active nodes, remember 1525 * this node as the task's preferred numa node, so the workload can 1526 * settle down. 1527 * A task that migrated to a second choice node will be better off 1528 * trying for a better one later. Do not set the preferred node here. 1529 */ 1530 if (p->numa_group) { 1531 if (env.best_cpu == -1) 1532 nid = env.src_nid; 1533 else 1534 nid = env.dst_nid; 1535 1536 if (node_isset(nid, p->numa_group->active_nodes)) 1537 sched_setnuma(p, env.dst_nid); 1538 } 1539 1540 /* No better CPU than the current one was found. */ 1541 if (env.best_cpu == -1) 1542 return -EAGAIN; 1543 1544 /* 1545 * Reset the scan period if the task is being rescheduled on an 1546 * alternative node to recheck if the tasks is now properly placed. 1547 */ 1548 p->numa_scan_period = task_scan_min(p); 1549 1550 if (env.best_task == NULL) { 1551 ret = migrate_task_to(p, env.best_cpu); 1552 if (ret != 0) 1553 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1554 return ret; 1555 } 1556 1557 ret = migrate_swap(p, env.best_task); 1558 if (ret != 0) 1559 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1560 put_task_struct(env.best_task); 1561 return ret; 1562 } 1563 1564 /* Attempt to migrate a task to a CPU on the preferred node. */ 1565 static void numa_migrate_preferred(struct task_struct *p) 1566 { 1567 unsigned long interval = HZ; 1568 1569 /* This task has no NUMA fault statistics yet */ 1570 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1571 return; 1572 1573 /* Periodically retry migrating the task to the preferred node */ 1574 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1575 p->numa_migrate_retry = jiffies + interval; 1576 1577 /* Success if task is already running on preferred CPU */ 1578 if (task_node(p) == p->numa_preferred_nid) 1579 return; 1580 1581 /* Otherwise, try migrate to a CPU on the preferred node */ 1582 task_numa_migrate(p); 1583 } 1584 1585 /* 1586 * Find the nodes on which the workload is actively running. We do this by 1587 * tracking the nodes from which NUMA hinting faults are triggered. This can 1588 * be different from the set of nodes where the workload's memory is currently 1589 * located. 1590 * 1591 * The bitmask is used to make smarter decisions on when to do NUMA page 1592 * migrations, To prevent flip-flopping, and excessive page migrations, nodes 1593 * are added when they cause over 6/16 of the maximum number of faults, but 1594 * only removed when they drop below 3/16. 1595 */ 1596 static void update_numa_active_node_mask(struct numa_group *numa_group) 1597 { 1598 unsigned long faults, max_faults = 0; 1599 int nid; 1600 1601 for_each_online_node(nid) { 1602 faults = group_faults_cpu(numa_group, nid); 1603 if (faults > max_faults) 1604 max_faults = faults; 1605 } 1606 1607 for_each_online_node(nid) { 1608 faults = group_faults_cpu(numa_group, nid); 1609 if (!node_isset(nid, numa_group->active_nodes)) { 1610 if (faults > max_faults * 6 / 16) 1611 node_set(nid, numa_group->active_nodes); 1612 } else if (faults < max_faults * 3 / 16) 1613 node_clear(nid, numa_group->active_nodes); 1614 } 1615 } 1616 1617 /* 1618 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1619 * increments. The more local the fault statistics are, the higher the scan 1620 * period will be for the next scan window. If local/(local+remote) ratio is 1621 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1622 * the scan period will decrease. Aim for 70% local accesses. 1623 */ 1624 #define NUMA_PERIOD_SLOTS 10 1625 #define NUMA_PERIOD_THRESHOLD 7 1626 1627 /* 1628 * Increase the scan period (slow down scanning) if the majority of 1629 * our memory is already on our local node, or if the majority of 1630 * the page accesses are shared with other processes. 1631 * Otherwise, decrease the scan period. 1632 */ 1633 static void update_task_scan_period(struct task_struct *p, 1634 unsigned long shared, unsigned long private) 1635 { 1636 unsigned int period_slot; 1637 int ratio; 1638 int diff; 1639 1640 unsigned long remote = p->numa_faults_locality[0]; 1641 unsigned long local = p->numa_faults_locality[1]; 1642 1643 /* 1644 * If there were no record hinting faults then either the task is 1645 * completely idle or all activity is areas that are not of interest 1646 * to automatic numa balancing. Related to that, if there were failed 1647 * migration then it implies we are migrating too quickly or the local 1648 * node is overloaded. In either case, scan slower 1649 */ 1650 if (local + shared == 0 || p->numa_faults_locality[2]) { 1651 p->numa_scan_period = min(p->numa_scan_period_max, 1652 p->numa_scan_period << 1); 1653 1654 p->mm->numa_next_scan = jiffies + 1655 msecs_to_jiffies(p->numa_scan_period); 1656 1657 return; 1658 } 1659 1660 /* 1661 * Prepare to scale scan period relative to the current period. 1662 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1663 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1664 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1665 */ 1666 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1667 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1668 if (ratio >= NUMA_PERIOD_THRESHOLD) { 1669 int slot = ratio - NUMA_PERIOD_THRESHOLD; 1670 if (!slot) 1671 slot = 1; 1672 diff = slot * period_slot; 1673 } else { 1674 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1675 1676 /* 1677 * Scale scan rate increases based on sharing. There is an 1678 * inverse relationship between the degree of sharing and 1679 * the adjustment made to the scanning period. Broadly 1680 * speaking the intent is that there is little point 1681 * scanning faster if shared accesses dominate as it may 1682 * simply bounce migrations uselessly 1683 */ 1684 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1)); 1685 diff = (diff * ratio) / NUMA_PERIOD_SLOTS; 1686 } 1687 1688 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1689 task_scan_min(p), task_scan_max(p)); 1690 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1691 } 1692 1693 /* 1694 * Get the fraction of time the task has been running since the last 1695 * NUMA placement cycle. The scheduler keeps similar statistics, but 1696 * decays those on a 32ms period, which is orders of magnitude off 1697 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 1698 * stats only if the task is so new there are no NUMA statistics yet. 1699 */ 1700 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 1701 { 1702 u64 runtime, delta, now; 1703 /* Use the start of this time slice to avoid calculations. */ 1704 now = p->se.exec_start; 1705 runtime = p->se.sum_exec_runtime; 1706 1707 if (p->last_task_numa_placement) { 1708 delta = runtime - p->last_sum_exec_runtime; 1709 *period = now - p->last_task_numa_placement; 1710 } else { 1711 delta = p->se.avg.load_sum / p->se.load.weight; 1712 *period = LOAD_AVG_MAX; 1713 } 1714 1715 p->last_sum_exec_runtime = runtime; 1716 p->last_task_numa_placement = now; 1717 1718 return delta; 1719 } 1720 1721 /* 1722 * Determine the preferred nid for a task in a numa_group. This needs to 1723 * be done in a way that produces consistent results with group_weight, 1724 * otherwise workloads might not converge. 1725 */ 1726 static int preferred_group_nid(struct task_struct *p, int nid) 1727 { 1728 nodemask_t nodes; 1729 int dist; 1730 1731 /* Direct connections between all NUMA nodes. */ 1732 if (sched_numa_topology_type == NUMA_DIRECT) 1733 return nid; 1734 1735 /* 1736 * On a system with glueless mesh NUMA topology, group_weight 1737 * scores nodes according to the number of NUMA hinting faults on 1738 * both the node itself, and on nearby nodes. 1739 */ 1740 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1741 unsigned long score, max_score = 0; 1742 int node, max_node = nid; 1743 1744 dist = sched_max_numa_distance; 1745 1746 for_each_online_node(node) { 1747 score = group_weight(p, node, dist); 1748 if (score > max_score) { 1749 max_score = score; 1750 max_node = node; 1751 } 1752 } 1753 return max_node; 1754 } 1755 1756 /* 1757 * Finding the preferred nid in a system with NUMA backplane 1758 * interconnect topology is more involved. The goal is to locate 1759 * tasks from numa_groups near each other in the system, and 1760 * untangle workloads from different sides of the system. This requires 1761 * searching down the hierarchy of node groups, recursively searching 1762 * inside the highest scoring group of nodes. The nodemask tricks 1763 * keep the complexity of the search down. 1764 */ 1765 nodes = node_online_map; 1766 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 1767 unsigned long max_faults = 0; 1768 nodemask_t max_group = NODE_MASK_NONE; 1769 int a, b; 1770 1771 /* Are there nodes at this distance from each other? */ 1772 if (!find_numa_distance(dist)) 1773 continue; 1774 1775 for_each_node_mask(a, nodes) { 1776 unsigned long faults = 0; 1777 nodemask_t this_group; 1778 nodes_clear(this_group); 1779 1780 /* Sum group's NUMA faults; includes a==b case. */ 1781 for_each_node_mask(b, nodes) { 1782 if (node_distance(a, b) < dist) { 1783 faults += group_faults(p, b); 1784 node_set(b, this_group); 1785 node_clear(b, nodes); 1786 } 1787 } 1788 1789 /* Remember the top group. */ 1790 if (faults > max_faults) { 1791 max_faults = faults; 1792 max_group = this_group; 1793 /* 1794 * subtle: at the smallest distance there is 1795 * just one node left in each "group", the 1796 * winner is the preferred nid. 1797 */ 1798 nid = a; 1799 } 1800 } 1801 /* Next round, evaluate the nodes within max_group. */ 1802 if (!max_faults) 1803 break; 1804 nodes = max_group; 1805 } 1806 return nid; 1807 } 1808 1809 static void task_numa_placement(struct task_struct *p) 1810 { 1811 int seq, nid, max_nid = -1, max_group_nid = -1; 1812 unsigned long max_faults = 0, max_group_faults = 0; 1813 unsigned long fault_types[2] = { 0, 0 }; 1814 unsigned long total_faults; 1815 u64 runtime, period; 1816 spinlock_t *group_lock = NULL; 1817 1818 /* 1819 * The p->mm->numa_scan_seq field gets updated without 1820 * exclusive access. Use READ_ONCE() here to ensure 1821 * that the field is read in a single access: 1822 */ 1823 seq = READ_ONCE(p->mm->numa_scan_seq); 1824 if (p->numa_scan_seq == seq) 1825 return; 1826 p->numa_scan_seq = seq; 1827 p->numa_scan_period_max = task_scan_max(p); 1828 1829 total_faults = p->numa_faults_locality[0] + 1830 p->numa_faults_locality[1]; 1831 runtime = numa_get_avg_runtime(p, &period); 1832 1833 /* If the task is part of a group prevent parallel updates to group stats */ 1834 if (p->numa_group) { 1835 group_lock = &p->numa_group->lock; 1836 spin_lock_irq(group_lock); 1837 } 1838 1839 /* Find the node with the highest number of faults */ 1840 for_each_online_node(nid) { 1841 /* Keep track of the offsets in numa_faults array */ 1842 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 1843 unsigned long faults = 0, group_faults = 0; 1844 int priv; 1845 1846 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 1847 long diff, f_diff, f_weight; 1848 1849 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 1850 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 1851 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 1852 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 1853 1854 /* Decay existing window, copy faults since last scan */ 1855 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 1856 fault_types[priv] += p->numa_faults[membuf_idx]; 1857 p->numa_faults[membuf_idx] = 0; 1858 1859 /* 1860 * Normalize the faults_from, so all tasks in a group 1861 * count according to CPU use, instead of by the raw 1862 * number of faults. Tasks with little runtime have 1863 * little over-all impact on throughput, and thus their 1864 * faults are less important. 1865 */ 1866 f_weight = div64_u64(runtime << 16, period + 1); 1867 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 1868 (total_faults + 1); 1869 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 1870 p->numa_faults[cpubuf_idx] = 0; 1871 1872 p->numa_faults[mem_idx] += diff; 1873 p->numa_faults[cpu_idx] += f_diff; 1874 faults += p->numa_faults[mem_idx]; 1875 p->total_numa_faults += diff; 1876 if (p->numa_group) { 1877 /* 1878 * safe because we can only change our own group 1879 * 1880 * mem_idx represents the offset for a given 1881 * nid and priv in a specific region because it 1882 * is at the beginning of the numa_faults array. 1883 */ 1884 p->numa_group->faults[mem_idx] += diff; 1885 p->numa_group->faults_cpu[mem_idx] += f_diff; 1886 p->numa_group->total_faults += diff; 1887 group_faults += p->numa_group->faults[mem_idx]; 1888 } 1889 } 1890 1891 if (faults > max_faults) { 1892 max_faults = faults; 1893 max_nid = nid; 1894 } 1895 1896 if (group_faults > max_group_faults) { 1897 max_group_faults = group_faults; 1898 max_group_nid = nid; 1899 } 1900 } 1901 1902 update_task_scan_period(p, fault_types[0], fault_types[1]); 1903 1904 if (p->numa_group) { 1905 update_numa_active_node_mask(p->numa_group); 1906 spin_unlock_irq(group_lock); 1907 max_nid = preferred_group_nid(p, max_group_nid); 1908 } 1909 1910 if (max_faults) { 1911 /* Set the new preferred node */ 1912 if (max_nid != p->numa_preferred_nid) 1913 sched_setnuma(p, max_nid); 1914 1915 if (task_node(p) != p->numa_preferred_nid) 1916 numa_migrate_preferred(p); 1917 } 1918 } 1919 1920 static inline int get_numa_group(struct numa_group *grp) 1921 { 1922 return atomic_inc_not_zero(&grp->refcount); 1923 } 1924 1925 static inline void put_numa_group(struct numa_group *grp) 1926 { 1927 if (atomic_dec_and_test(&grp->refcount)) 1928 kfree_rcu(grp, rcu); 1929 } 1930 1931 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 1932 int *priv) 1933 { 1934 struct numa_group *grp, *my_grp; 1935 struct task_struct *tsk; 1936 bool join = false; 1937 int cpu = cpupid_to_cpu(cpupid); 1938 int i; 1939 1940 if (unlikely(!p->numa_group)) { 1941 unsigned int size = sizeof(struct numa_group) + 1942 4*nr_node_ids*sizeof(unsigned long); 1943 1944 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 1945 if (!grp) 1946 return; 1947 1948 atomic_set(&grp->refcount, 1); 1949 spin_lock_init(&grp->lock); 1950 grp->gid = p->pid; 1951 /* Second half of the array tracks nids where faults happen */ 1952 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 1953 nr_node_ids; 1954 1955 node_set(task_node(current), grp->active_nodes); 1956 1957 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 1958 grp->faults[i] = p->numa_faults[i]; 1959 1960 grp->total_faults = p->total_numa_faults; 1961 1962 grp->nr_tasks++; 1963 rcu_assign_pointer(p->numa_group, grp); 1964 } 1965 1966 rcu_read_lock(); 1967 tsk = READ_ONCE(cpu_rq(cpu)->curr); 1968 1969 if (!cpupid_match_pid(tsk, cpupid)) 1970 goto no_join; 1971 1972 grp = rcu_dereference(tsk->numa_group); 1973 if (!grp) 1974 goto no_join; 1975 1976 my_grp = p->numa_group; 1977 if (grp == my_grp) 1978 goto no_join; 1979 1980 /* 1981 * Only join the other group if its bigger; if we're the bigger group, 1982 * the other task will join us. 1983 */ 1984 if (my_grp->nr_tasks > grp->nr_tasks) 1985 goto no_join; 1986 1987 /* 1988 * Tie-break on the grp address. 1989 */ 1990 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 1991 goto no_join; 1992 1993 /* Always join threads in the same process. */ 1994 if (tsk->mm == current->mm) 1995 join = true; 1996 1997 /* Simple filter to avoid false positives due to PID collisions */ 1998 if (flags & TNF_SHARED) 1999 join = true; 2000 2001 /* Update priv based on whether false sharing was detected */ 2002 *priv = !join; 2003 2004 if (join && !get_numa_group(grp)) 2005 goto no_join; 2006 2007 rcu_read_unlock(); 2008 2009 if (!join) 2010 return; 2011 2012 BUG_ON(irqs_disabled()); 2013 double_lock_irq(&my_grp->lock, &grp->lock); 2014 2015 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2016 my_grp->faults[i] -= p->numa_faults[i]; 2017 grp->faults[i] += p->numa_faults[i]; 2018 } 2019 my_grp->total_faults -= p->total_numa_faults; 2020 grp->total_faults += p->total_numa_faults; 2021 2022 my_grp->nr_tasks--; 2023 grp->nr_tasks++; 2024 2025 spin_unlock(&my_grp->lock); 2026 spin_unlock_irq(&grp->lock); 2027 2028 rcu_assign_pointer(p->numa_group, grp); 2029 2030 put_numa_group(my_grp); 2031 return; 2032 2033 no_join: 2034 rcu_read_unlock(); 2035 return; 2036 } 2037 2038 void task_numa_free(struct task_struct *p) 2039 { 2040 struct numa_group *grp = p->numa_group; 2041 void *numa_faults = p->numa_faults; 2042 unsigned long flags; 2043 int i; 2044 2045 if (grp) { 2046 spin_lock_irqsave(&grp->lock, flags); 2047 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2048 grp->faults[i] -= p->numa_faults[i]; 2049 grp->total_faults -= p->total_numa_faults; 2050 2051 grp->nr_tasks--; 2052 spin_unlock_irqrestore(&grp->lock, flags); 2053 RCU_INIT_POINTER(p->numa_group, NULL); 2054 put_numa_group(grp); 2055 } 2056 2057 p->numa_faults = NULL; 2058 kfree(numa_faults); 2059 } 2060 2061 /* 2062 * Got a PROT_NONE fault for a page on @node. 2063 */ 2064 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2065 { 2066 struct task_struct *p = current; 2067 bool migrated = flags & TNF_MIGRATED; 2068 int cpu_node = task_node(current); 2069 int local = !!(flags & TNF_FAULT_LOCAL); 2070 int priv; 2071 2072 if (!numabalancing_enabled) 2073 return; 2074 2075 /* for example, ksmd faulting in a user's mm */ 2076 if (!p->mm) 2077 return; 2078 2079 /* Allocate buffer to track faults on a per-node basis */ 2080 if (unlikely(!p->numa_faults)) { 2081 int size = sizeof(*p->numa_faults) * 2082 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2083 2084 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2085 if (!p->numa_faults) 2086 return; 2087 2088 p->total_numa_faults = 0; 2089 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2090 } 2091 2092 /* 2093 * First accesses are treated as private, otherwise consider accesses 2094 * to be private if the accessing pid has not changed 2095 */ 2096 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2097 priv = 1; 2098 } else { 2099 priv = cpupid_match_pid(p, last_cpupid); 2100 if (!priv && !(flags & TNF_NO_GROUP)) 2101 task_numa_group(p, last_cpupid, flags, &priv); 2102 } 2103 2104 /* 2105 * If a workload spans multiple NUMA nodes, a shared fault that 2106 * occurs wholly within the set of nodes that the workload is 2107 * actively using should be counted as local. This allows the 2108 * scan rate to slow down when a workload has settled down. 2109 */ 2110 if (!priv && !local && p->numa_group && 2111 node_isset(cpu_node, p->numa_group->active_nodes) && 2112 node_isset(mem_node, p->numa_group->active_nodes)) 2113 local = 1; 2114 2115 task_numa_placement(p); 2116 2117 /* 2118 * Retry task to preferred node migration periodically, in case it 2119 * case it previously failed, or the scheduler moved us. 2120 */ 2121 if (time_after(jiffies, p->numa_migrate_retry)) 2122 numa_migrate_preferred(p); 2123 2124 if (migrated) 2125 p->numa_pages_migrated += pages; 2126 if (flags & TNF_MIGRATE_FAIL) 2127 p->numa_faults_locality[2] += pages; 2128 2129 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2130 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2131 p->numa_faults_locality[local] += pages; 2132 } 2133 2134 static void reset_ptenuma_scan(struct task_struct *p) 2135 { 2136 /* 2137 * We only did a read acquisition of the mmap sem, so 2138 * p->mm->numa_scan_seq is written to without exclusive access 2139 * and the update is not guaranteed to be atomic. That's not 2140 * much of an issue though, since this is just used for 2141 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2142 * expensive, to avoid any form of compiler optimizations: 2143 */ 2144 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2145 p->mm->numa_scan_offset = 0; 2146 } 2147 2148 /* 2149 * The expensive part of numa migration is done from task_work context. 2150 * Triggered from task_tick_numa(). 2151 */ 2152 void task_numa_work(struct callback_head *work) 2153 { 2154 unsigned long migrate, next_scan, now = jiffies; 2155 struct task_struct *p = current; 2156 struct mm_struct *mm = p->mm; 2157 struct vm_area_struct *vma; 2158 unsigned long start, end; 2159 unsigned long nr_pte_updates = 0; 2160 long pages; 2161 2162 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 2163 2164 work->next = work; /* protect against double add */ 2165 /* 2166 * Who cares about NUMA placement when they're dying. 2167 * 2168 * NOTE: make sure not to dereference p->mm before this check, 2169 * exit_task_work() happens _after_ exit_mm() so we could be called 2170 * without p->mm even though we still had it when we enqueued this 2171 * work. 2172 */ 2173 if (p->flags & PF_EXITING) 2174 return; 2175 2176 if (!mm->numa_next_scan) { 2177 mm->numa_next_scan = now + 2178 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2179 } 2180 2181 /* 2182 * Enforce maximal scan/migration frequency.. 2183 */ 2184 migrate = mm->numa_next_scan; 2185 if (time_before(now, migrate)) 2186 return; 2187 2188 if (p->numa_scan_period == 0) { 2189 p->numa_scan_period_max = task_scan_max(p); 2190 p->numa_scan_period = task_scan_min(p); 2191 } 2192 2193 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2194 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2195 return; 2196 2197 /* 2198 * Delay this task enough that another task of this mm will likely win 2199 * the next time around. 2200 */ 2201 p->node_stamp += 2 * TICK_NSEC; 2202 2203 start = mm->numa_scan_offset; 2204 pages = sysctl_numa_balancing_scan_size; 2205 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2206 if (!pages) 2207 return; 2208 2209 down_read(&mm->mmap_sem); 2210 vma = find_vma(mm, start); 2211 if (!vma) { 2212 reset_ptenuma_scan(p); 2213 start = 0; 2214 vma = mm->mmap; 2215 } 2216 for (; vma; vma = vma->vm_next) { 2217 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2218 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2219 continue; 2220 } 2221 2222 /* 2223 * Shared library pages mapped by multiple processes are not 2224 * migrated as it is expected they are cache replicated. Avoid 2225 * hinting faults in read-only file-backed mappings or the vdso 2226 * as migrating the pages will be of marginal benefit. 2227 */ 2228 if (!vma->vm_mm || 2229 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2230 continue; 2231 2232 /* 2233 * Skip inaccessible VMAs to avoid any confusion between 2234 * PROT_NONE and NUMA hinting ptes 2235 */ 2236 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2237 continue; 2238 2239 do { 2240 start = max(start, vma->vm_start); 2241 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2242 end = min(end, vma->vm_end); 2243 nr_pte_updates += change_prot_numa(vma, start, end); 2244 2245 /* 2246 * Scan sysctl_numa_balancing_scan_size but ensure that 2247 * at least one PTE is updated so that unused virtual 2248 * address space is quickly skipped. 2249 */ 2250 if (nr_pte_updates) 2251 pages -= (end - start) >> PAGE_SHIFT; 2252 2253 start = end; 2254 if (pages <= 0) 2255 goto out; 2256 2257 cond_resched(); 2258 } while (end != vma->vm_end); 2259 } 2260 2261 out: 2262 /* 2263 * It is possible to reach the end of the VMA list but the last few 2264 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2265 * would find the !migratable VMA on the next scan but not reset the 2266 * scanner to the start so check it now. 2267 */ 2268 if (vma) 2269 mm->numa_scan_offset = start; 2270 else 2271 reset_ptenuma_scan(p); 2272 up_read(&mm->mmap_sem); 2273 } 2274 2275 /* 2276 * Drive the periodic memory faults.. 2277 */ 2278 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2279 { 2280 struct callback_head *work = &curr->numa_work; 2281 u64 period, now; 2282 2283 /* 2284 * We don't care about NUMA placement if we don't have memory. 2285 */ 2286 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2287 return; 2288 2289 /* 2290 * Using runtime rather than walltime has the dual advantage that 2291 * we (mostly) drive the selection from busy threads and that the 2292 * task needs to have done some actual work before we bother with 2293 * NUMA placement. 2294 */ 2295 now = curr->se.sum_exec_runtime; 2296 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2297 2298 if (now - curr->node_stamp > period) { 2299 if (!curr->node_stamp) 2300 curr->numa_scan_period = task_scan_min(curr); 2301 curr->node_stamp += period; 2302 2303 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2304 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2305 task_work_add(curr, work, true); 2306 } 2307 } 2308 } 2309 #else 2310 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2311 { 2312 } 2313 2314 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2315 { 2316 } 2317 2318 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2319 { 2320 } 2321 #endif /* CONFIG_NUMA_BALANCING */ 2322 2323 static void 2324 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2325 { 2326 update_load_add(&cfs_rq->load, se->load.weight); 2327 if (!parent_entity(se)) 2328 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2329 #ifdef CONFIG_SMP 2330 if (entity_is_task(se)) { 2331 struct rq *rq = rq_of(cfs_rq); 2332 2333 account_numa_enqueue(rq, task_of(se)); 2334 list_add(&se->group_node, &rq->cfs_tasks); 2335 } 2336 #endif 2337 cfs_rq->nr_running++; 2338 } 2339 2340 static void 2341 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2342 { 2343 update_load_sub(&cfs_rq->load, se->load.weight); 2344 if (!parent_entity(se)) 2345 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2346 if (entity_is_task(se)) { 2347 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2348 list_del_init(&se->group_node); 2349 } 2350 cfs_rq->nr_running--; 2351 } 2352 2353 #ifdef CONFIG_FAIR_GROUP_SCHED 2354 # ifdef CONFIG_SMP 2355 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) 2356 { 2357 long tg_weight; 2358 2359 /* 2360 * Use this CPU's real-time load instead of the last load contribution 2361 * as the updating of the contribution is delayed, and we will use the 2362 * the real-time load to calc the share. See update_tg_load_avg(). 2363 */ 2364 tg_weight = atomic_long_read(&tg->load_avg); 2365 tg_weight -= cfs_rq->tg_load_avg_contrib; 2366 tg_weight += cfs_rq_load_avg(cfs_rq); 2367 2368 return tg_weight; 2369 } 2370 2371 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2372 { 2373 long tg_weight, load, shares; 2374 2375 tg_weight = calc_tg_weight(tg, cfs_rq); 2376 load = cfs_rq_load_avg(cfs_rq); 2377 2378 shares = (tg->shares * load); 2379 if (tg_weight) 2380 shares /= tg_weight; 2381 2382 if (shares < MIN_SHARES) 2383 shares = MIN_SHARES; 2384 if (shares > tg->shares) 2385 shares = tg->shares; 2386 2387 return shares; 2388 } 2389 # else /* CONFIG_SMP */ 2390 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2391 { 2392 return tg->shares; 2393 } 2394 # endif /* CONFIG_SMP */ 2395 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2396 unsigned long weight) 2397 { 2398 if (se->on_rq) { 2399 /* commit outstanding execution time */ 2400 if (cfs_rq->curr == se) 2401 update_curr(cfs_rq); 2402 account_entity_dequeue(cfs_rq, se); 2403 } 2404 2405 update_load_set(&se->load, weight); 2406 2407 if (se->on_rq) 2408 account_entity_enqueue(cfs_rq, se); 2409 } 2410 2411 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2412 2413 static void update_cfs_shares(struct cfs_rq *cfs_rq) 2414 { 2415 struct task_group *tg; 2416 struct sched_entity *se; 2417 long shares; 2418 2419 tg = cfs_rq->tg; 2420 se = tg->se[cpu_of(rq_of(cfs_rq))]; 2421 if (!se || throttled_hierarchy(cfs_rq)) 2422 return; 2423 #ifndef CONFIG_SMP 2424 if (likely(se->load.weight == tg->shares)) 2425 return; 2426 #endif 2427 shares = calc_cfs_shares(cfs_rq, tg); 2428 2429 reweight_entity(cfs_rq_of(se), se, shares); 2430 } 2431 #else /* CONFIG_FAIR_GROUP_SCHED */ 2432 static inline void update_cfs_shares(struct cfs_rq *cfs_rq) 2433 { 2434 } 2435 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2436 2437 #ifdef CONFIG_SMP 2438 /* Precomputed fixed inverse multiplies for multiplication by y^n */ 2439 static const u32 runnable_avg_yN_inv[] = { 2440 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, 2441 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, 2442 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, 2443 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, 2444 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, 2445 0x85aac367, 0x82cd8698, 2446 }; 2447 2448 /* 2449 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent 2450 * over-estimates when re-combining. 2451 */ 2452 static const u32 runnable_avg_yN_sum[] = { 2453 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, 2454 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, 2455 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, 2456 }; 2457 2458 /* 2459 * Approximate: 2460 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 2461 */ 2462 static __always_inline u64 decay_load(u64 val, u64 n) 2463 { 2464 unsigned int local_n; 2465 2466 if (!n) 2467 return val; 2468 else if (unlikely(n > LOAD_AVG_PERIOD * 63)) 2469 return 0; 2470 2471 /* after bounds checking we can collapse to 32-bit */ 2472 local_n = n; 2473 2474 /* 2475 * As y^PERIOD = 1/2, we can combine 2476 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 2477 * With a look-up table which covers y^n (n<PERIOD) 2478 * 2479 * To achieve constant time decay_load. 2480 */ 2481 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 2482 val >>= local_n / LOAD_AVG_PERIOD; 2483 local_n %= LOAD_AVG_PERIOD; 2484 } 2485 2486 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); 2487 return val; 2488 } 2489 2490 /* 2491 * For updates fully spanning n periods, the contribution to runnable 2492 * average will be: \Sum 1024*y^n 2493 * 2494 * We can compute this reasonably efficiently by combining: 2495 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD} 2496 */ 2497 static u32 __compute_runnable_contrib(u64 n) 2498 { 2499 u32 contrib = 0; 2500 2501 if (likely(n <= LOAD_AVG_PERIOD)) 2502 return runnable_avg_yN_sum[n]; 2503 else if (unlikely(n >= LOAD_AVG_MAX_N)) 2504 return LOAD_AVG_MAX; 2505 2506 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */ 2507 do { 2508 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */ 2509 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD]; 2510 2511 n -= LOAD_AVG_PERIOD; 2512 } while (n > LOAD_AVG_PERIOD); 2513 2514 contrib = decay_load(contrib, n); 2515 return contrib + runnable_avg_yN_sum[n]; 2516 } 2517 2518 /* 2519 * We can represent the historical contribution to runnable average as the 2520 * coefficients of a geometric series. To do this we sub-divide our runnable 2521 * history into segments of approximately 1ms (1024us); label the segment that 2522 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 2523 * 2524 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 2525 * p0 p1 p2 2526 * (now) (~1ms ago) (~2ms ago) 2527 * 2528 * Let u_i denote the fraction of p_i that the entity was runnable. 2529 * 2530 * We then designate the fractions u_i as our co-efficients, yielding the 2531 * following representation of historical load: 2532 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 2533 * 2534 * We choose y based on the with of a reasonably scheduling period, fixing: 2535 * y^32 = 0.5 2536 * 2537 * This means that the contribution to load ~32ms ago (u_32) will be weighted 2538 * approximately half as much as the contribution to load within the last ms 2539 * (u_0). 2540 * 2541 * When a period "rolls over" and we have new u_0`, multiplying the previous 2542 * sum again by y is sufficient to update: 2543 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 2544 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 2545 */ 2546 static __always_inline int 2547 __update_load_avg(u64 now, int cpu, struct sched_avg *sa, 2548 unsigned long weight, int running, struct cfs_rq *cfs_rq) 2549 { 2550 u64 delta, periods; 2551 u32 contrib; 2552 int delta_w, decayed = 0; 2553 unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu); 2554 2555 delta = now - sa->last_update_time; 2556 /* 2557 * This should only happen when time goes backwards, which it 2558 * unfortunately does during sched clock init when we swap over to TSC. 2559 */ 2560 if ((s64)delta < 0) { 2561 sa->last_update_time = now; 2562 return 0; 2563 } 2564 2565 /* 2566 * Use 1024ns as the unit of measurement since it's a reasonable 2567 * approximation of 1us and fast to compute. 2568 */ 2569 delta >>= 10; 2570 if (!delta) 2571 return 0; 2572 sa->last_update_time = now; 2573 2574 /* delta_w is the amount already accumulated against our next period */ 2575 delta_w = sa->period_contrib; 2576 if (delta + delta_w >= 1024) { 2577 decayed = 1; 2578 2579 /* how much left for next period will start over, we don't know yet */ 2580 sa->period_contrib = 0; 2581 2582 /* 2583 * Now that we know we're crossing a period boundary, figure 2584 * out how much from delta we need to complete the current 2585 * period and accrue it. 2586 */ 2587 delta_w = 1024 - delta_w; 2588 if (weight) { 2589 sa->load_sum += weight * delta_w; 2590 if (cfs_rq) 2591 cfs_rq->runnable_load_sum += weight * delta_w; 2592 } 2593 if (running) 2594 sa->util_sum += delta_w * scale_freq >> SCHED_CAPACITY_SHIFT; 2595 2596 delta -= delta_w; 2597 2598 /* Figure out how many additional periods this update spans */ 2599 periods = delta / 1024; 2600 delta %= 1024; 2601 2602 sa->load_sum = decay_load(sa->load_sum, periods + 1); 2603 if (cfs_rq) { 2604 cfs_rq->runnable_load_sum = 2605 decay_load(cfs_rq->runnable_load_sum, periods + 1); 2606 } 2607 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1); 2608 2609 /* Efficiently calculate \sum (1..n_period) 1024*y^i */ 2610 contrib = __compute_runnable_contrib(periods); 2611 if (weight) { 2612 sa->load_sum += weight * contrib; 2613 if (cfs_rq) 2614 cfs_rq->runnable_load_sum += weight * contrib; 2615 } 2616 if (running) 2617 sa->util_sum += contrib * scale_freq >> SCHED_CAPACITY_SHIFT; 2618 } 2619 2620 /* Remainder of delta accrued against u_0` */ 2621 if (weight) { 2622 sa->load_sum += weight * delta; 2623 if (cfs_rq) 2624 cfs_rq->runnable_load_sum += weight * delta; 2625 } 2626 if (running) 2627 sa->util_sum += delta * scale_freq >> SCHED_CAPACITY_SHIFT; 2628 2629 sa->period_contrib += delta; 2630 2631 if (decayed) { 2632 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX); 2633 if (cfs_rq) { 2634 cfs_rq->runnable_load_avg = 2635 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX); 2636 } 2637 sa->util_avg = (sa->util_sum << SCHED_LOAD_SHIFT) / LOAD_AVG_MAX; 2638 } 2639 2640 return decayed; 2641 } 2642 2643 #ifdef CONFIG_FAIR_GROUP_SCHED 2644 /* 2645 * Updating tg's load_avg is necessary before update_cfs_share (which is done) 2646 * and effective_load (which is not done because it is too costly). 2647 */ 2648 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 2649 { 2650 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 2651 2652 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 2653 atomic_long_add(delta, &cfs_rq->tg->load_avg); 2654 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 2655 } 2656 } 2657 2658 #else /* CONFIG_FAIR_GROUP_SCHED */ 2659 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 2660 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2661 2662 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 2663 2664 /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */ 2665 static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 2666 { 2667 int decayed; 2668 struct sched_avg *sa = &cfs_rq->avg; 2669 2670 if (atomic_long_read(&cfs_rq->removed_load_avg)) { 2671 long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0); 2672 sa->load_avg = max_t(long, sa->load_avg - r, 0); 2673 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0); 2674 } 2675 2676 if (atomic_long_read(&cfs_rq->removed_util_avg)) { 2677 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0); 2678 sa->util_avg = max_t(long, sa->util_avg - r, 0); 2679 sa->util_sum = max_t(s32, sa->util_sum - 2680 ((r * LOAD_AVG_MAX) >> SCHED_LOAD_SHIFT), 0); 2681 } 2682 2683 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa, 2684 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq); 2685 2686 #ifndef CONFIG_64BIT 2687 smp_wmb(); 2688 cfs_rq->load_last_update_time_copy = sa->last_update_time; 2689 #endif 2690 2691 return decayed; 2692 } 2693 2694 /* Update task and its cfs_rq load average */ 2695 static inline void update_load_avg(struct sched_entity *se, int update_tg) 2696 { 2697 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2698 int cpu = cpu_of(rq_of(cfs_rq)); 2699 u64 now = cfs_rq_clock_task(cfs_rq); 2700 2701 /* 2702 * Track task load average for carrying it to new CPU after migrated, and 2703 * track group sched_entity load average for task_h_load calc in migration 2704 */ 2705 __update_load_avg(now, cpu, &se->avg, 2706 se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL); 2707 2708 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg) 2709 update_tg_load_avg(cfs_rq, 0); 2710 } 2711 2712 /* Add the load generated by se into cfs_rq's load average */ 2713 static inline void 2714 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2715 { 2716 struct sched_avg *sa = &se->avg; 2717 u64 now = cfs_rq_clock_task(cfs_rq); 2718 int migrated = 0, decayed; 2719 2720 if (sa->last_update_time == 0) { 2721 sa->last_update_time = now; 2722 migrated = 1; 2723 } 2724 else { 2725 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa, 2726 se->on_rq * scale_load_down(se->load.weight), 2727 cfs_rq->curr == se, NULL); 2728 } 2729 2730 decayed = update_cfs_rq_load_avg(now, cfs_rq); 2731 2732 cfs_rq->runnable_load_avg += sa->load_avg; 2733 cfs_rq->runnable_load_sum += sa->load_sum; 2734 2735 if (migrated) { 2736 cfs_rq->avg.load_avg += sa->load_avg; 2737 cfs_rq->avg.load_sum += sa->load_sum; 2738 cfs_rq->avg.util_avg += sa->util_avg; 2739 cfs_rq->avg.util_sum += sa->util_sum; 2740 } 2741 2742 if (decayed || migrated) 2743 update_tg_load_avg(cfs_rq, 0); 2744 } 2745 2746 /* Remove the runnable load generated by se from cfs_rq's runnable load average */ 2747 static inline void 2748 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2749 { 2750 update_load_avg(se, 1); 2751 2752 cfs_rq->runnable_load_avg = 2753 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0); 2754 cfs_rq->runnable_load_sum = 2755 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0); 2756 } 2757 2758 /* 2759 * Task first catches up with cfs_rq, and then subtract 2760 * itself from the cfs_rq (task must be off the queue now). 2761 */ 2762 void remove_entity_load_avg(struct sched_entity *se) 2763 { 2764 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2765 u64 last_update_time; 2766 2767 #ifndef CONFIG_64BIT 2768 u64 last_update_time_copy; 2769 2770 do { 2771 last_update_time_copy = cfs_rq->load_last_update_time_copy; 2772 smp_rmb(); 2773 last_update_time = cfs_rq->avg.last_update_time; 2774 } while (last_update_time != last_update_time_copy); 2775 #else 2776 last_update_time = cfs_rq->avg.last_update_time; 2777 #endif 2778 2779 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL); 2780 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg); 2781 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg); 2782 } 2783 2784 /* 2785 * Update the rq's load with the elapsed running time before entering 2786 * idle. if the last scheduled task is not a CFS task, idle_enter will 2787 * be the only way to update the runnable statistic. 2788 */ 2789 void idle_enter_fair(struct rq *this_rq) 2790 { 2791 } 2792 2793 /* 2794 * Update the rq's load with the elapsed idle time before a task is 2795 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will 2796 * be the only way to update the runnable statistic. 2797 */ 2798 void idle_exit_fair(struct rq *this_rq) 2799 { 2800 } 2801 2802 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 2803 { 2804 return cfs_rq->runnable_load_avg; 2805 } 2806 2807 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 2808 { 2809 return cfs_rq->avg.load_avg; 2810 } 2811 2812 static int idle_balance(struct rq *this_rq); 2813 2814 #else /* CONFIG_SMP */ 2815 2816 static inline void update_load_avg(struct sched_entity *se, int update_tg) {} 2817 static inline void 2818 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 2819 static inline void 2820 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 2821 static inline void remove_entity_load_avg(struct sched_entity *se) {} 2822 2823 static inline int idle_balance(struct rq *rq) 2824 { 2825 return 0; 2826 } 2827 2828 #endif /* CONFIG_SMP */ 2829 2830 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 2831 { 2832 #ifdef CONFIG_SCHEDSTATS 2833 struct task_struct *tsk = NULL; 2834 2835 if (entity_is_task(se)) 2836 tsk = task_of(se); 2837 2838 if (se->statistics.sleep_start) { 2839 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start; 2840 2841 if ((s64)delta < 0) 2842 delta = 0; 2843 2844 if (unlikely(delta > se->statistics.sleep_max)) 2845 se->statistics.sleep_max = delta; 2846 2847 se->statistics.sleep_start = 0; 2848 se->statistics.sum_sleep_runtime += delta; 2849 2850 if (tsk) { 2851 account_scheduler_latency(tsk, delta >> 10, 1); 2852 trace_sched_stat_sleep(tsk, delta); 2853 } 2854 } 2855 if (se->statistics.block_start) { 2856 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start; 2857 2858 if ((s64)delta < 0) 2859 delta = 0; 2860 2861 if (unlikely(delta > se->statistics.block_max)) 2862 se->statistics.block_max = delta; 2863 2864 se->statistics.block_start = 0; 2865 se->statistics.sum_sleep_runtime += delta; 2866 2867 if (tsk) { 2868 if (tsk->in_iowait) { 2869 se->statistics.iowait_sum += delta; 2870 se->statistics.iowait_count++; 2871 trace_sched_stat_iowait(tsk, delta); 2872 } 2873 2874 trace_sched_stat_blocked(tsk, delta); 2875 2876 /* 2877 * Blocking time is in units of nanosecs, so shift by 2878 * 20 to get a milliseconds-range estimation of the 2879 * amount of time that the task spent sleeping: 2880 */ 2881 if (unlikely(prof_on == SLEEP_PROFILING)) { 2882 profile_hits(SLEEP_PROFILING, 2883 (void *)get_wchan(tsk), 2884 delta >> 20); 2885 } 2886 account_scheduler_latency(tsk, delta >> 10, 0); 2887 } 2888 } 2889 #endif 2890 } 2891 2892 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 2893 { 2894 #ifdef CONFIG_SCHED_DEBUG 2895 s64 d = se->vruntime - cfs_rq->min_vruntime; 2896 2897 if (d < 0) 2898 d = -d; 2899 2900 if (d > 3*sysctl_sched_latency) 2901 schedstat_inc(cfs_rq, nr_spread_over); 2902 #endif 2903 } 2904 2905 static void 2906 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 2907 { 2908 u64 vruntime = cfs_rq->min_vruntime; 2909 2910 /* 2911 * The 'current' period is already promised to the current tasks, 2912 * however the extra weight of the new task will slow them down a 2913 * little, place the new task so that it fits in the slot that 2914 * stays open at the end. 2915 */ 2916 if (initial && sched_feat(START_DEBIT)) 2917 vruntime += sched_vslice(cfs_rq, se); 2918 2919 /* sleeps up to a single latency don't count. */ 2920 if (!initial) { 2921 unsigned long thresh = sysctl_sched_latency; 2922 2923 /* 2924 * Halve their sleep time's effect, to allow 2925 * for a gentler effect of sleepers: 2926 */ 2927 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 2928 thresh >>= 1; 2929 2930 vruntime -= thresh; 2931 } 2932 2933 /* ensure we never gain time by being placed backwards. */ 2934 se->vruntime = max_vruntime(se->vruntime, vruntime); 2935 } 2936 2937 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 2938 2939 static void 2940 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 2941 { 2942 /* 2943 * Update the normalized vruntime before updating min_vruntime 2944 * through calling update_curr(). 2945 */ 2946 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) 2947 se->vruntime += cfs_rq->min_vruntime; 2948 2949 /* 2950 * Update run-time statistics of the 'current'. 2951 */ 2952 update_curr(cfs_rq); 2953 enqueue_entity_load_avg(cfs_rq, se); 2954 account_entity_enqueue(cfs_rq, se); 2955 update_cfs_shares(cfs_rq); 2956 2957 if (flags & ENQUEUE_WAKEUP) { 2958 place_entity(cfs_rq, se, 0); 2959 enqueue_sleeper(cfs_rq, se); 2960 } 2961 2962 update_stats_enqueue(cfs_rq, se); 2963 check_spread(cfs_rq, se); 2964 if (se != cfs_rq->curr) 2965 __enqueue_entity(cfs_rq, se); 2966 se->on_rq = 1; 2967 2968 if (cfs_rq->nr_running == 1) { 2969 list_add_leaf_cfs_rq(cfs_rq); 2970 check_enqueue_throttle(cfs_rq); 2971 } 2972 } 2973 2974 static void __clear_buddies_last(struct sched_entity *se) 2975 { 2976 for_each_sched_entity(se) { 2977 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2978 if (cfs_rq->last != se) 2979 break; 2980 2981 cfs_rq->last = NULL; 2982 } 2983 } 2984 2985 static void __clear_buddies_next(struct sched_entity *se) 2986 { 2987 for_each_sched_entity(se) { 2988 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2989 if (cfs_rq->next != se) 2990 break; 2991 2992 cfs_rq->next = NULL; 2993 } 2994 } 2995 2996 static void __clear_buddies_skip(struct sched_entity *se) 2997 { 2998 for_each_sched_entity(se) { 2999 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3000 if (cfs_rq->skip != se) 3001 break; 3002 3003 cfs_rq->skip = NULL; 3004 } 3005 } 3006 3007 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 3008 { 3009 if (cfs_rq->last == se) 3010 __clear_buddies_last(se); 3011 3012 if (cfs_rq->next == se) 3013 __clear_buddies_next(se); 3014 3015 if (cfs_rq->skip == se) 3016 __clear_buddies_skip(se); 3017 } 3018 3019 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3020 3021 static void 3022 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3023 { 3024 /* 3025 * Update run-time statistics of the 'current'. 3026 */ 3027 update_curr(cfs_rq); 3028 dequeue_entity_load_avg(cfs_rq, se); 3029 3030 update_stats_dequeue(cfs_rq, se); 3031 if (flags & DEQUEUE_SLEEP) { 3032 #ifdef CONFIG_SCHEDSTATS 3033 if (entity_is_task(se)) { 3034 struct task_struct *tsk = task_of(se); 3035 3036 if (tsk->state & TASK_INTERRUPTIBLE) 3037 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq)); 3038 if (tsk->state & TASK_UNINTERRUPTIBLE) 3039 se->statistics.block_start = rq_clock(rq_of(cfs_rq)); 3040 } 3041 #endif 3042 } 3043 3044 clear_buddies(cfs_rq, se); 3045 3046 if (se != cfs_rq->curr) 3047 __dequeue_entity(cfs_rq, se); 3048 se->on_rq = 0; 3049 account_entity_dequeue(cfs_rq, se); 3050 3051 /* 3052 * Normalize the entity after updating the min_vruntime because the 3053 * update can refer to the ->curr item and we need to reflect this 3054 * movement in our normalized position. 3055 */ 3056 if (!(flags & DEQUEUE_SLEEP)) 3057 se->vruntime -= cfs_rq->min_vruntime; 3058 3059 /* return excess runtime on last dequeue */ 3060 return_cfs_rq_runtime(cfs_rq); 3061 3062 update_min_vruntime(cfs_rq); 3063 update_cfs_shares(cfs_rq); 3064 } 3065 3066 /* 3067 * Preempt the current task with a newly woken task if needed: 3068 */ 3069 static void 3070 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3071 { 3072 unsigned long ideal_runtime, delta_exec; 3073 struct sched_entity *se; 3074 s64 delta; 3075 3076 ideal_runtime = sched_slice(cfs_rq, curr); 3077 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 3078 if (delta_exec > ideal_runtime) { 3079 resched_curr(rq_of(cfs_rq)); 3080 /* 3081 * The current task ran long enough, ensure it doesn't get 3082 * re-elected due to buddy favours. 3083 */ 3084 clear_buddies(cfs_rq, curr); 3085 return; 3086 } 3087 3088 /* 3089 * Ensure that a task that missed wakeup preemption by a 3090 * narrow margin doesn't have to wait for a full slice. 3091 * This also mitigates buddy induced latencies under load. 3092 */ 3093 if (delta_exec < sysctl_sched_min_granularity) 3094 return; 3095 3096 se = __pick_first_entity(cfs_rq); 3097 delta = curr->vruntime - se->vruntime; 3098 3099 if (delta < 0) 3100 return; 3101 3102 if (delta > ideal_runtime) 3103 resched_curr(rq_of(cfs_rq)); 3104 } 3105 3106 static void 3107 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 3108 { 3109 /* 'current' is not kept within the tree. */ 3110 if (se->on_rq) { 3111 /* 3112 * Any task has to be enqueued before it get to execute on 3113 * a CPU. So account for the time it spent waiting on the 3114 * runqueue. 3115 */ 3116 update_stats_wait_end(cfs_rq, se); 3117 __dequeue_entity(cfs_rq, se); 3118 update_load_avg(se, 1); 3119 } 3120 3121 update_stats_curr_start(cfs_rq, se); 3122 cfs_rq->curr = se; 3123 #ifdef CONFIG_SCHEDSTATS 3124 /* 3125 * Track our maximum slice length, if the CPU's load is at 3126 * least twice that of our own weight (i.e. dont track it 3127 * when there are only lesser-weight tasks around): 3128 */ 3129 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 3130 se->statistics.slice_max = max(se->statistics.slice_max, 3131 se->sum_exec_runtime - se->prev_sum_exec_runtime); 3132 } 3133 #endif 3134 se->prev_sum_exec_runtime = se->sum_exec_runtime; 3135 } 3136 3137 static int 3138 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 3139 3140 /* 3141 * Pick the next process, keeping these things in mind, in this order: 3142 * 1) keep things fair between processes/task groups 3143 * 2) pick the "next" process, since someone really wants that to run 3144 * 3) pick the "last" process, for cache locality 3145 * 4) do not run the "skip" process, if something else is available 3146 */ 3147 static struct sched_entity * 3148 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3149 { 3150 struct sched_entity *left = __pick_first_entity(cfs_rq); 3151 struct sched_entity *se; 3152 3153 /* 3154 * If curr is set we have to see if its left of the leftmost entity 3155 * still in the tree, provided there was anything in the tree at all. 3156 */ 3157 if (!left || (curr && entity_before(curr, left))) 3158 left = curr; 3159 3160 se = left; /* ideally we run the leftmost entity */ 3161 3162 /* 3163 * Avoid running the skip buddy, if running something else can 3164 * be done without getting too unfair. 3165 */ 3166 if (cfs_rq->skip == se) { 3167 struct sched_entity *second; 3168 3169 if (se == curr) { 3170 second = __pick_first_entity(cfs_rq); 3171 } else { 3172 second = __pick_next_entity(se); 3173 if (!second || (curr && entity_before(curr, second))) 3174 second = curr; 3175 } 3176 3177 if (second && wakeup_preempt_entity(second, left) < 1) 3178 se = second; 3179 } 3180 3181 /* 3182 * Prefer last buddy, try to return the CPU to a preempted task. 3183 */ 3184 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 3185 se = cfs_rq->last; 3186 3187 /* 3188 * Someone really wants this to run. If it's not unfair, run it. 3189 */ 3190 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 3191 se = cfs_rq->next; 3192 3193 clear_buddies(cfs_rq, se); 3194 3195 return se; 3196 } 3197 3198 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3199 3200 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 3201 { 3202 /* 3203 * If still on the runqueue then deactivate_task() 3204 * was not called and update_curr() has to be done: 3205 */ 3206 if (prev->on_rq) 3207 update_curr(cfs_rq); 3208 3209 /* throttle cfs_rqs exceeding runtime */ 3210 check_cfs_rq_runtime(cfs_rq); 3211 3212 check_spread(cfs_rq, prev); 3213 if (prev->on_rq) { 3214 update_stats_wait_start(cfs_rq, prev); 3215 /* Put 'current' back into the tree. */ 3216 __enqueue_entity(cfs_rq, prev); 3217 /* in !on_rq case, update occurred at dequeue */ 3218 update_load_avg(prev, 0); 3219 } 3220 cfs_rq->curr = NULL; 3221 } 3222 3223 static void 3224 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 3225 { 3226 /* 3227 * Update run-time statistics of the 'current'. 3228 */ 3229 update_curr(cfs_rq); 3230 3231 /* 3232 * Ensure that runnable average is periodically updated. 3233 */ 3234 update_load_avg(curr, 1); 3235 update_cfs_shares(cfs_rq); 3236 3237 #ifdef CONFIG_SCHED_HRTICK 3238 /* 3239 * queued ticks are scheduled to match the slice, so don't bother 3240 * validating it and just reschedule. 3241 */ 3242 if (queued) { 3243 resched_curr(rq_of(cfs_rq)); 3244 return; 3245 } 3246 /* 3247 * don't let the period tick interfere with the hrtick preemption 3248 */ 3249 if (!sched_feat(DOUBLE_TICK) && 3250 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 3251 return; 3252 #endif 3253 3254 if (cfs_rq->nr_running > 1) 3255 check_preempt_tick(cfs_rq, curr); 3256 } 3257 3258 3259 /************************************************** 3260 * CFS bandwidth control machinery 3261 */ 3262 3263 #ifdef CONFIG_CFS_BANDWIDTH 3264 3265 #ifdef HAVE_JUMP_LABEL 3266 static struct static_key __cfs_bandwidth_used; 3267 3268 static inline bool cfs_bandwidth_used(void) 3269 { 3270 return static_key_false(&__cfs_bandwidth_used); 3271 } 3272 3273 void cfs_bandwidth_usage_inc(void) 3274 { 3275 static_key_slow_inc(&__cfs_bandwidth_used); 3276 } 3277 3278 void cfs_bandwidth_usage_dec(void) 3279 { 3280 static_key_slow_dec(&__cfs_bandwidth_used); 3281 } 3282 #else /* HAVE_JUMP_LABEL */ 3283 static bool cfs_bandwidth_used(void) 3284 { 3285 return true; 3286 } 3287 3288 void cfs_bandwidth_usage_inc(void) {} 3289 void cfs_bandwidth_usage_dec(void) {} 3290 #endif /* HAVE_JUMP_LABEL */ 3291 3292 /* 3293 * default period for cfs group bandwidth. 3294 * default: 0.1s, units: nanoseconds 3295 */ 3296 static inline u64 default_cfs_period(void) 3297 { 3298 return 100000000ULL; 3299 } 3300 3301 static inline u64 sched_cfs_bandwidth_slice(void) 3302 { 3303 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 3304 } 3305 3306 /* 3307 * Replenish runtime according to assigned quota and update expiration time. 3308 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 3309 * additional synchronization around rq->lock. 3310 * 3311 * requires cfs_b->lock 3312 */ 3313 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 3314 { 3315 u64 now; 3316 3317 if (cfs_b->quota == RUNTIME_INF) 3318 return; 3319 3320 now = sched_clock_cpu(smp_processor_id()); 3321 cfs_b->runtime = cfs_b->quota; 3322 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 3323 } 3324 3325 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 3326 { 3327 return &tg->cfs_bandwidth; 3328 } 3329 3330 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 3331 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 3332 { 3333 if (unlikely(cfs_rq->throttle_count)) 3334 return cfs_rq->throttled_clock_task; 3335 3336 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 3337 } 3338 3339 /* returns 0 on failure to allocate runtime */ 3340 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3341 { 3342 struct task_group *tg = cfs_rq->tg; 3343 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 3344 u64 amount = 0, min_amount, expires; 3345 3346 /* note: this is a positive sum as runtime_remaining <= 0 */ 3347 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 3348 3349 raw_spin_lock(&cfs_b->lock); 3350 if (cfs_b->quota == RUNTIME_INF) 3351 amount = min_amount; 3352 else { 3353 start_cfs_bandwidth(cfs_b); 3354 3355 if (cfs_b->runtime > 0) { 3356 amount = min(cfs_b->runtime, min_amount); 3357 cfs_b->runtime -= amount; 3358 cfs_b->idle = 0; 3359 } 3360 } 3361 expires = cfs_b->runtime_expires; 3362 raw_spin_unlock(&cfs_b->lock); 3363 3364 cfs_rq->runtime_remaining += amount; 3365 /* 3366 * we may have advanced our local expiration to account for allowed 3367 * spread between our sched_clock and the one on which runtime was 3368 * issued. 3369 */ 3370 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 3371 cfs_rq->runtime_expires = expires; 3372 3373 return cfs_rq->runtime_remaining > 0; 3374 } 3375 3376 /* 3377 * Note: This depends on the synchronization provided by sched_clock and the 3378 * fact that rq->clock snapshots this value. 3379 */ 3380 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3381 { 3382 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3383 3384 /* if the deadline is ahead of our clock, nothing to do */ 3385 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 3386 return; 3387 3388 if (cfs_rq->runtime_remaining < 0) 3389 return; 3390 3391 /* 3392 * If the local deadline has passed we have to consider the 3393 * possibility that our sched_clock is 'fast' and the global deadline 3394 * has not truly expired. 3395 * 3396 * Fortunately we can check determine whether this the case by checking 3397 * whether the global deadline has advanced. It is valid to compare 3398 * cfs_b->runtime_expires without any locks since we only care about 3399 * exact equality, so a partial write will still work. 3400 */ 3401 3402 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { 3403 /* extend local deadline, drift is bounded above by 2 ticks */ 3404 cfs_rq->runtime_expires += TICK_NSEC; 3405 } else { 3406 /* global deadline is ahead, expiration has passed */ 3407 cfs_rq->runtime_remaining = 0; 3408 } 3409 } 3410 3411 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3412 { 3413 /* dock delta_exec before expiring quota (as it could span periods) */ 3414 cfs_rq->runtime_remaining -= delta_exec; 3415 expire_cfs_rq_runtime(cfs_rq); 3416 3417 if (likely(cfs_rq->runtime_remaining > 0)) 3418 return; 3419 3420 /* 3421 * if we're unable to extend our runtime we resched so that the active 3422 * hierarchy can be throttled 3423 */ 3424 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 3425 resched_curr(rq_of(cfs_rq)); 3426 } 3427 3428 static __always_inline 3429 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3430 { 3431 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 3432 return; 3433 3434 __account_cfs_rq_runtime(cfs_rq, delta_exec); 3435 } 3436 3437 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3438 { 3439 return cfs_bandwidth_used() && cfs_rq->throttled; 3440 } 3441 3442 /* check whether cfs_rq, or any parent, is throttled */ 3443 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3444 { 3445 return cfs_bandwidth_used() && cfs_rq->throttle_count; 3446 } 3447 3448 /* 3449 * Ensure that neither of the group entities corresponding to src_cpu or 3450 * dest_cpu are members of a throttled hierarchy when performing group 3451 * load-balance operations. 3452 */ 3453 static inline int throttled_lb_pair(struct task_group *tg, 3454 int src_cpu, int dest_cpu) 3455 { 3456 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 3457 3458 src_cfs_rq = tg->cfs_rq[src_cpu]; 3459 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 3460 3461 return throttled_hierarchy(src_cfs_rq) || 3462 throttled_hierarchy(dest_cfs_rq); 3463 } 3464 3465 /* updated child weight may affect parent so we have to do this bottom up */ 3466 static int tg_unthrottle_up(struct task_group *tg, void *data) 3467 { 3468 struct rq *rq = data; 3469 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3470 3471 cfs_rq->throttle_count--; 3472 #ifdef CONFIG_SMP 3473 if (!cfs_rq->throttle_count) { 3474 /* adjust cfs_rq_clock_task() */ 3475 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 3476 cfs_rq->throttled_clock_task; 3477 } 3478 #endif 3479 3480 return 0; 3481 } 3482 3483 static int tg_throttle_down(struct task_group *tg, void *data) 3484 { 3485 struct rq *rq = data; 3486 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3487 3488 /* group is entering throttled state, stop time */ 3489 if (!cfs_rq->throttle_count) 3490 cfs_rq->throttled_clock_task = rq_clock_task(rq); 3491 cfs_rq->throttle_count++; 3492 3493 return 0; 3494 } 3495 3496 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 3497 { 3498 struct rq *rq = rq_of(cfs_rq); 3499 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3500 struct sched_entity *se; 3501 long task_delta, dequeue = 1; 3502 bool empty; 3503 3504 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 3505 3506 /* freeze hierarchy runnable averages while throttled */ 3507 rcu_read_lock(); 3508 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 3509 rcu_read_unlock(); 3510 3511 task_delta = cfs_rq->h_nr_running; 3512 for_each_sched_entity(se) { 3513 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 3514 /* throttled entity or throttle-on-deactivate */ 3515 if (!se->on_rq) 3516 break; 3517 3518 if (dequeue) 3519 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 3520 qcfs_rq->h_nr_running -= task_delta; 3521 3522 if (qcfs_rq->load.weight) 3523 dequeue = 0; 3524 } 3525 3526 if (!se) 3527 sub_nr_running(rq, task_delta); 3528 3529 cfs_rq->throttled = 1; 3530 cfs_rq->throttled_clock = rq_clock(rq); 3531 raw_spin_lock(&cfs_b->lock); 3532 empty = list_empty(&cfs_b->throttled_cfs_rq); 3533 3534 /* 3535 * Add to the _head_ of the list, so that an already-started 3536 * distribute_cfs_runtime will not see us 3537 */ 3538 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 3539 3540 /* 3541 * If we're the first throttled task, make sure the bandwidth 3542 * timer is running. 3543 */ 3544 if (empty) 3545 start_cfs_bandwidth(cfs_b); 3546 3547 raw_spin_unlock(&cfs_b->lock); 3548 } 3549 3550 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 3551 { 3552 struct rq *rq = rq_of(cfs_rq); 3553 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3554 struct sched_entity *se; 3555 int enqueue = 1; 3556 long task_delta; 3557 3558 se = cfs_rq->tg->se[cpu_of(rq)]; 3559 3560 cfs_rq->throttled = 0; 3561 3562 update_rq_clock(rq); 3563 3564 raw_spin_lock(&cfs_b->lock); 3565 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 3566 list_del_rcu(&cfs_rq->throttled_list); 3567 raw_spin_unlock(&cfs_b->lock); 3568 3569 /* update hierarchical throttle state */ 3570 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 3571 3572 if (!cfs_rq->load.weight) 3573 return; 3574 3575 task_delta = cfs_rq->h_nr_running; 3576 for_each_sched_entity(se) { 3577 if (se->on_rq) 3578 enqueue = 0; 3579 3580 cfs_rq = cfs_rq_of(se); 3581 if (enqueue) 3582 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 3583 cfs_rq->h_nr_running += task_delta; 3584 3585 if (cfs_rq_throttled(cfs_rq)) 3586 break; 3587 } 3588 3589 if (!se) 3590 add_nr_running(rq, task_delta); 3591 3592 /* determine whether we need to wake up potentially idle cpu */ 3593 if (rq->curr == rq->idle && rq->cfs.nr_running) 3594 resched_curr(rq); 3595 } 3596 3597 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 3598 u64 remaining, u64 expires) 3599 { 3600 struct cfs_rq *cfs_rq; 3601 u64 runtime; 3602 u64 starting_runtime = remaining; 3603 3604 rcu_read_lock(); 3605 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 3606 throttled_list) { 3607 struct rq *rq = rq_of(cfs_rq); 3608 3609 raw_spin_lock(&rq->lock); 3610 if (!cfs_rq_throttled(cfs_rq)) 3611 goto next; 3612 3613 runtime = -cfs_rq->runtime_remaining + 1; 3614 if (runtime > remaining) 3615 runtime = remaining; 3616 remaining -= runtime; 3617 3618 cfs_rq->runtime_remaining += runtime; 3619 cfs_rq->runtime_expires = expires; 3620 3621 /* we check whether we're throttled above */ 3622 if (cfs_rq->runtime_remaining > 0) 3623 unthrottle_cfs_rq(cfs_rq); 3624 3625 next: 3626 raw_spin_unlock(&rq->lock); 3627 3628 if (!remaining) 3629 break; 3630 } 3631 rcu_read_unlock(); 3632 3633 return starting_runtime - remaining; 3634 } 3635 3636 /* 3637 * Responsible for refilling a task_group's bandwidth and unthrottling its 3638 * cfs_rqs as appropriate. If there has been no activity within the last 3639 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 3640 * used to track this state. 3641 */ 3642 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 3643 { 3644 u64 runtime, runtime_expires; 3645 int throttled; 3646 3647 /* no need to continue the timer with no bandwidth constraint */ 3648 if (cfs_b->quota == RUNTIME_INF) 3649 goto out_deactivate; 3650 3651 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 3652 cfs_b->nr_periods += overrun; 3653 3654 /* 3655 * idle depends on !throttled (for the case of a large deficit), and if 3656 * we're going inactive then everything else can be deferred 3657 */ 3658 if (cfs_b->idle && !throttled) 3659 goto out_deactivate; 3660 3661 __refill_cfs_bandwidth_runtime(cfs_b); 3662 3663 if (!throttled) { 3664 /* mark as potentially idle for the upcoming period */ 3665 cfs_b->idle = 1; 3666 return 0; 3667 } 3668 3669 /* account preceding periods in which throttling occurred */ 3670 cfs_b->nr_throttled += overrun; 3671 3672 runtime_expires = cfs_b->runtime_expires; 3673 3674 /* 3675 * This check is repeated as we are holding onto the new bandwidth while 3676 * we unthrottle. This can potentially race with an unthrottled group 3677 * trying to acquire new bandwidth from the global pool. This can result 3678 * in us over-using our runtime if it is all used during this loop, but 3679 * only by limited amounts in that extreme case. 3680 */ 3681 while (throttled && cfs_b->runtime > 0) { 3682 runtime = cfs_b->runtime; 3683 raw_spin_unlock(&cfs_b->lock); 3684 /* we can't nest cfs_b->lock while distributing bandwidth */ 3685 runtime = distribute_cfs_runtime(cfs_b, runtime, 3686 runtime_expires); 3687 raw_spin_lock(&cfs_b->lock); 3688 3689 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 3690 3691 cfs_b->runtime -= min(runtime, cfs_b->runtime); 3692 } 3693 3694 /* 3695 * While we are ensured activity in the period following an 3696 * unthrottle, this also covers the case in which the new bandwidth is 3697 * insufficient to cover the existing bandwidth deficit. (Forcing the 3698 * timer to remain active while there are any throttled entities.) 3699 */ 3700 cfs_b->idle = 0; 3701 3702 return 0; 3703 3704 out_deactivate: 3705 return 1; 3706 } 3707 3708 /* a cfs_rq won't donate quota below this amount */ 3709 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 3710 /* minimum remaining period time to redistribute slack quota */ 3711 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 3712 /* how long we wait to gather additional slack before distributing */ 3713 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 3714 3715 /* 3716 * Are we near the end of the current quota period? 3717 * 3718 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 3719 * hrtimer base being cleared by hrtimer_start. In the case of 3720 * migrate_hrtimers, base is never cleared, so we are fine. 3721 */ 3722 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 3723 { 3724 struct hrtimer *refresh_timer = &cfs_b->period_timer; 3725 u64 remaining; 3726 3727 /* if the call-back is running a quota refresh is already occurring */ 3728 if (hrtimer_callback_running(refresh_timer)) 3729 return 1; 3730 3731 /* is a quota refresh about to occur? */ 3732 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 3733 if (remaining < min_expire) 3734 return 1; 3735 3736 return 0; 3737 } 3738 3739 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 3740 { 3741 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 3742 3743 /* if there's a quota refresh soon don't bother with slack */ 3744 if (runtime_refresh_within(cfs_b, min_left)) 3745 return; 3746 3747 hrtimer_start(&cfs_b->slack_timer, 3748 ns_to_ktime(cfs_bandwidth_slack_period), 3749 HRTIMER_MODE_REL); 3750 } 3751 3752 /* we know any runtime found here is valid as update_curr() precedes return */ 3753 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3754 { 3755 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3756 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 3757 3758 if (slack_runtime <= 0) 3759 return; 3760 3761 raw_spin_lock(&cfs_b->lock); 3762 if (cfs_b->quota != RUNTIME_INF && 3763 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 3764 cfs_b->runtime += slack_runtime; 3765 3766 /* we are under rq->lock, defer unthrottling using a timer */ 3767 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 3768 !list_empty(&cfs_b->throttled_cfs_rq)) 3769 start_cfs_slack_bandwidth(cfs_b); 3770 } 3771 raw_spin_unlock(&cfs_b->lock); 3772 3773 /* even if it's not valid for return we don't want to try again */ 3774 cfs_rq->runtime_remaining -= slack_runtime; 3775 } 3776 3777 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3778 { 3779 if (!cfs_bandwidth_used()) 3780 return; 3781 3782 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 3783 return; 3784 3785 __return_cfs_rq_runtime(cfs_rq); 3786 } 3787 3788 /* 3789 * This is done with a timer (instead of inline with bandwidth return) since 3790 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 3791 */ 3792 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 3793 { 3794 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 3795 u64 expires; 3796 3797 /* confirm we're still not at a refresh boundary */ 3798 raw_spin_lock(&cfs_b->lock); 3799 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 3800 raw_spin_unlock(&cfs_b->lock); 3801 return; 3802 } 3803 3804 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 3805 runtime = cfs_b->runtime; 3806 3807 expires = cfs_b->runtime_expires; 3808 raw_spin_unlock(&cfs_b->lock); 3809 3810 if (!runtime) 3811 return; 3812 3813 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 3814 3815 raw_spin_lock(&cfs_b->lock); 3816 if (expires == cfs_b->runtime_expires) 3817 cfs_b->runtime -= min(runtime, cfs_b->runtime); 3818 raw_spin_unlock(&cfs_b->lock); 3819 } 3820 3821 /* 3822 * When a group wakes up we want to make sure that its quota is not already 3823 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 3824 * runtime as update_curr() throttling can not not trigger until it's on-rq. 3825 */ 3826 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 3827 { 3828 if (!cfs_bandwidth_used()) 3829 return; 3830 3831 /* an active group must be handled by the update_curr()->put() path */ 3832 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 3833 return; 3834 3835 /* ensure the group is not already throttled */ 3836 if (cfs_rq_throttled(cfs_rq)) 3837 return; 3838 3839 /* update runtime allocation */ 3840 account_cfs_rq_runtime(cfs_rq, 0); 3841 if (cfs_rq->runtime_remaining <= 0) 3842 throttle_cfs_rq(cfs_rq); 3843 } 3844 3845 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 3846 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3847 { 3848 if (!cfs_bandwidth_used()) 3849 return false; 3850 3851 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 3852 return false; 3853 3854 /* 3855 * it's possible for a throttled entity to be forced into a running 3856 * state (e.g. set_curr_task), in this case we're finished. 3857 */ 3858 if (cfs_rq_throttled(cfs_rq)) 3859 return true; 3860 3861 throttle_cfs_rq(cfs_rq); 3862 return true; 3863 } 3864 3865 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 3866 { 3867 struct cfs_bandwidth *cfs_b = 3868 container_of(timer, struct cfs_bandwidth, slack_timer); 3869 3870 do_sched_cfs_slack_timer(cfs_b); 3871 3872 return HRTIMER_NORESTART; 3873 } 3874 3875 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 3876 { 3877 struct cfs_bandwidth *cfs_b = 3878 container_of(timer, struct cfs_bandwidth, period_timer); 3879 int overrun; 3880 int idle = 0; 3881 3882 raw_spin_lock(&cfs_b->lock); 3883 for (;;) { 3884 overrun = hrtimer_forward_now(timer, cfs_b->period); 3885 if (!overrun) 3886 break; 3887 3888 idle = do_sched_cfs_period_timer(cfs_b, overrun); 3889 } 3890 if (idle) 3891 cfs_b->period_active = 0; 3892 raw_spin_unlock(&cfs_b->lock); 3893 3894 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 3895 } 3896 3897 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3898 { 3899 raw_spin_lock_init(&cfs_b->lock); 3900 cfs_b->runtime = 0; 3901 cfs_b->quota = RUNTIME_INF; 3902 cfs_b->period = ns_to_ktime(default_cfs_period()); 3903 3904 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 3905 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 3906 cfs_b->period_timer.function = sched_cfs_period_timer; 3907 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3908 cfs_b->slack_timer.function = sched_cfs_slack_timer; 3909 } 3910 3911 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3912 { 3913 cfs_rq->runtime_enabled = 0; 3914 INIT_LIST_HEAD(&cfs_rq->throttled_list); 3915 } 3916 3917 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3918 { 3919 lockdep_assert_held(&cfs_b->lock); 3920 3921 if (!cfs_b->period_active) { 3922 cfs_b->period_active = 1; 3923 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 3924 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 3925 } 3926 } 3927 3928 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3929 { 3930 /* init_cfs_bandwidth() was not called */ 3931 if (!cfs_b->throttled_cfs_rq.next) 3932 return; 3933 3934 hrtimer_cancel(&cfs_b->period_timer); 3935 hrtimer_cancel(&cfs_b->slack_timer); 3936 } 3937 3938 static void __maybe_unused update_runtime_enabled(struct rq *rq) 3939 { 3940 struct cfs_rq *cfs_rq; 3941 3942 for_each_leaf_cfs_rq(rq, cfs_rq) { 3943 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth; 3944 3945 raw_spin_lock(&cfs_b->lock); 3946 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 3947 raw_spin_unlock(&cfs_b->lock); 3948 } 3949 } 3950 3951 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 3952 { 3953 struct cfs_rq *cfs_rq; 3954 3955 for_each_leaf_cfs_rq(rq, cfs_rq) { 3956 if (!cfs_rq->runtime_enabled) 3957 continue; 3958 3959 /* 3960 * clock_task is not advancing so we just need to make sure 3961 * there's some valid quota amount 3962 */ 3963 cfs_rq->runtime_remaining = 1; 3964 /* 3965 * Offline rq is schedulable till cpu is completely disabled 3966 * in take_cpu_down(), so we prevent new cfs throttling here. 3967 */ 3968 cfs_rq->runtime_enabled = 0; 3969 3970 if (cfs_rq_throttled(cfs_rq)) 3971 unthrottle_cfs_rq(cfs_rq); 3972 } 3973 } 3974 3975 #else /* CONFIG_CFS_BANDWIDTH */ 3976 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 3977 { 3978 return rq_clock_task(rq_of(cfs_rq)); 3979 } 3980 3981 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 3982 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 3983 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 3984 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 3985 3986 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3987 { 3988 return 0; 3989 } 3990 3991 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3992 { 3993 return 0; 3994 } 3995 3996 static inline int throttled_lb_pair(struct task_group *tg, 3997 int src_cpu, int dest_cpu) 3998 { 3999 return 0; 4000 } 4001 4002 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4003 4004 #ifdef CONFIG_FAIR_GROUP_SCHED 4005 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4006 #endif 4007 4008 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4009 { 4010 return NULL; 4011 } 4012 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4013 static inline void update_runtime_enabled(struct rq *rq) {} 4014 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 4015 4016 #endif /* CONFIG_CFS_BANDWIDTH */ 4017 4018 /************************************************** 4019 * CFS operations on tasks: 4020 */ 4021 4022 #ifdef CONFIG_SCHED_HRTICK 4023 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 4024 { 4025 struct sched_entity *se = &p->se; 4026 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4027 4028 WARN_ON(task_rq(p) != rq); 4029 4030 if (cfs_rq->nr_running > 1) { 4031 u64 slice = sched_slice(cfs_rq, se); 4032 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 4033 s64 delta = slice - ran; 4034 4035 if (delta < 0) { 4036 if (rq->curr == p) 4037 resched_curr(rq); 4038 return; 4039 } 4040 hrtick_start(rq, delta); 4041 } 4042 } 4043 4044 /* 4045 * called from enqueue/dequeue and updates the hrtick when the 4046 * current task is from our class and nr_running is low enough 4047 * to matter. 4048 */ 4049 static void hrtick_update(struct rq *rq) 4050 { 4051 struct task_struct *curr = rq->curr; 4052 4053 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 4054 return; 4055 4056 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 4057 hrtick_start_fair(rq, curr); 4058 } 4059 #else /* !CONFIG_SCHED_HRTICK */ 4060 static inline void 4061 hrtick_start_fair(struct rq *rq, struct task_struct *p) 4062 { 4063 } 4064 4065 static inline void hrtick_update(struct rq *rq) 4066 { 4067 } 4068 #endif 4069 4070 /* 4071 * The enqueue_task method is called before nr_running is 4072 * increased. Here we update the fair scheduling stats and 4073 * then put the task into the rbtree: 4074 */ 4075 static void 4076 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4077 { 4078 struct cfs_rq *cfs_rq; 4079 struct sched_entity *se = &p->se; 4080 4081 for_each_sched_entity(se) { 4082 if (se->on_rq) 4083 break; 4084 cfs_rq = cfs_rq_of(se); 4085 enqueue_entity(cfs_rq, se, flags); 4086 4087 /* 4088 * end evaluation on encountering a throttled cfs_rq 4089 * 4090 * note: in the case of encountering a throttled cfs_rq we will 4091 * post the final h_nr_running increment below. 4092 */ 4093 if (cfs_rq_throttled(cfs_rq)) 4094 break; 4095 cfs_rq->h_nr_running++; 4096 4097 flags = ENQUEUE_WAKEUP; 4098 } 4099 4100 for_each_sched_entity(se) { 4101 cfs_rq = cfs_rq_of(se); 4102 cfs_rq->h_nr_running++; 4103 4104 if (cfs_rq_throttled(cfs_rq)) 4105 break; 4106 4107 update_load_avg(se, 1); 4108 update_cfs_shares(cfs_rq); 4109 } 4110 4111 if (!se) 4112 add_nr_running(rq, 1); 4113 4114 hrtick_update(rq); 4115 } 4116 4117 static void set_next_buddy(struct sched_entity *se); 4118 4119 /* 4120 * The dequeue_task method is called before nr_running is 4121 * decreased. We remove the task from the rbtree and 4122 * update the fair scheduling stats: 4123 */ 4124 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4125 { 4126 struct cfs_rq *cfs_rq; 4127 struct sched_entity *se = &p->se; 4128 int task_sleep = flags & DEQUEUE_SLEEP; 4129 4130 for_each_sched_entity(se) { 4131 cfs_rq = cfs_rq_of(se); 4132 dequeue_entity(cfs_rq, se, flags); 4133 4134 /* 4135 * end evaluation on encountering a throttled cfs_rq 4136 * 4137 * note: in the case of encountering a throttled cfs_rq we will 4138 * post the final h_nr_running decrement below. 4139 */ 4140 if (cfs_rq_throttled(cfs_rq)) 4141 break; 4142 cfs_rq->h_nr_running--; 4143 4144 /* Don't dequeue parent if it has other entities besides us */ 4145 if (cfs_rq->load.weight) { 4146 /* 4147 * Bias pick_next to pick a task from this cfs_rq, as 4148 * p is sleeping when it is within its sched_slice. 4149 */ 4150 if (task_sleep && parent_entity(se)) 4151 set_next_buddy(parent_entity(se)); 4152 4153 /* avoid re-evaluating load for this entity */ 4154 se = parent_entity(se); 4155 break; 4156 } 4157 flags |= DEQUEUE_SLEEP; 4158 } 4159 4160 for_each_sched_entity(se) { 4161 cfs_rq = cfs_rq_of(se); 4162 cfs_rq->h_nr_running--; 4163 4164 if (cfs_rq_throttled(cfs_rq)) 4165 break; 4166 4167 update_load_avg(se, 1); 4168 update_cfs_shares(cfs_rq); 4169 } 4170 4171 if (!se) 4172 sub_nr_running(rq, 1); 4173 4174 hrtick_update(rq); 4175 } 4176 4177 #ifdef CONFIG_SMP 4178 4179 /* 4180 * per rq 'load' arrray crap; XXX kill this. 4181 */ 4182 4183 /* 4184 * The exact cpuload at various idx values, calculated at every tick would be 4185 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load 4186 * 4187 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called 4188 * on nth tick when cpu may be busy, then we have: 4189 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 4190 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load 4191 * 4192 * decay_load_missed() below does efficient calculation of 4193 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 4194 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load 4195 * 4196 * The calculation is approximated on a 128 point scale. 4197 * degrade_zero_ticks is the number of ticks after which load at any 4198 * particular idx is approximated to be zero. 4199 * degrade_factor is a precomputed table, a row for each load idx. 4200 * Each column corresponds to degradation factor for a power of two ticks, 4201 * based on 128 point scale. 4202 * Example: 4203 * row 2, col 3 (=12) says that the degradation at load idx 2 after 4204 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). 4205 * 4206 * With this power of 2 load factors, we can degrade the load n times 4207 * by looking at 1 bits in n and doing as many mult/shift instead of 4208 * n mult/shifts needed by the exact degradation. 4209 */ 4210 #define DEGRADE_SHIFT 7 4211 static const unsigned char 4212 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 4213 static const unsigned char 4214 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 4215 {0, 0, 0, 0, 0, 0, 0, 0}, 4216 {64, 32, 8, 0, 0, 0, 0, 0}, 4217 {96, 72, 40, 12, 1, 0, 0}, 4218 {112, 98, 75, 43, 15, 1, 0}, 4219 {120, 112, 98, 76, 45, 16, 2} }; 4220 4221 /* 4222 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 4223 * would be when CPU is idle and so we just decay the old load without 4224 * adding any new load. 4225 */ 4226 static unsigned long 4227 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 4228 { 4229 int j = 0; 4230 4231 if (!missed_updates) 4232 return load; 4233 4234 if (missed_updates >= degrade_zero_ticks[idx]) 4235 return 0; 4236 4237 if (idx == 1) 4238 return load >> missed_updates; 4239 4240 while (missed_updates) { 4241 if (missed_updates % 2) 4242 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 4243 4244 missed_updates >>= 1; 4245 j++; 4246 } 4247 return load; 4248 } 4249 4250 /* 4251 * Update rq->cpu_load[] statistics. This function is usually called every 4252 * scheduler tick (TICK_NSEC). With tickless idle this will not be called 4253 * every tick. We fix it up based on jiffies. 4254 */ 4255 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load, 4256 unsigned long pending_updates) 4257 { 4258 int i, scale; 4259 4260 this_rq->nr_load_updates++; 4261 4262 /* Update our load: */ 4263 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 4264 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 4265 unsigned long old_load, new_load; 4266 4267 /* scale is effectively 1 << i now, and >> i divides by scale */ 4268 4269 old_load = this_rq->cpu_load[i]; 4270 old_load = decay_load_missed(old_load, pending_updates - 1, i); 4271 new_load = this_load; 4272 /* 4273 * Round up the averaging division if load is increasing. This 4274 * prevents us from getting stuck on 9 if the load is 10, for 4275 * example. 4276 */ 4277 if (new_load > old_load) 4278 new_load += scale - 1; 4279 4280 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 4281 } 4282 4283 sched_avg_update(this_rq); 4284 } 4285 4286 /* Used instead of source_load when we know the type == 0 */ 4287 static unsigned long weighted_cpuload(const int cpu) 4288 { 4289 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs); 4290 } 4291 4292 #ifdef CONFIG_NO_HZ_COMMON 4293 /* 4294 * There is no sane way to deal with nohz on smp when using jiffies because the 4295 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading 4296 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 4297 * 4298 * Therefore we cannot use the delta approach from the regular tick since that 4299 * would seriously skew the load calculation. However we'll make do for those 4300 * updates happening while idle (nohz_idle_balance) or coming out of idle 4301 * (tick_nohz_idle_exit). 4302 * 4303 * This means we might still be one tick off for nohz periods. 4304 */ 4305 4306 /* 4307 * Called from nohz_idle_balance() to update the load ratings before doing the 4308 * idle balance. 4309 */ 4310 static void update_idle_cpu_load(struct rq *this_rq) 4311 { 4312 unsigned long curr_jiffies = READ_ONCE(jiffies); 4313 unsigned long load = weighted_cpuload(cpu_of(this_rq)); 4314 unsigned long pending_updates; 4315 4316 /* 4317 * bail if there's load or we're actually up-to-date. 4318 */ 4319 if (load || curr_jiffies == this_rq->last_load_update_tick) 4320 return; 4321 4322 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 4323 this_rq->last_load_update_tick = curr_jiffies; 4324 4325 __update_cpu_load(this_rq, load, pending_updates); 4326 } 4327 4328 /* 4329 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed. 4330 */ 4331 void update_cpu_load_nohz(void) 4332 { 4333 struct rq *this_rq = this_rq(); 4334 unsigned long curr_jiffies = READ_ONCE(jiffies); 4335 unsigned long pending_updates; 4336 4337 if (curr_jiffies == this_rq->last_load_update_tick) 4338 return; 4339 4340 raw_spin_lock(&this_rq->lock); 4341 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 4342 if (pending_updates) { 4343 this_rq->last_load_update_tick = curr_jiffies; 4344 /* 4345 * We were idle, this means load 0, the current load might be 4346 * !0 due to remote wakeups and the sort. 4347 */ 4348 __update_cpu_load(this_rq, 0, pending_updates); 4349 } 4350 raw_spin_unlock(&this_rq->lock); 4351 } 4352 #endif /* CONFIG_NO_HZ */ 4353 4354 /* 4355 * Called from scheduler_tick() 4356 */ 4357 void update_cpu_load_active(struct rq *this_rq) 4358 { 4359 unsigned long load = weighted_cpuload(cpu_of(this_rq)); 4360 /* 4361 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz(). 4362 */ 4363 this_rq->last_load_update_tick = jiffies; 4364 __update_cpu_load(this_rq, load, 1); 4365 } 4366 4367 /* 4368 * Return a low guess at the load of a migration-source cpu weighted 4369 * according to the scheduling class and "nice" value. 4370 * 4371 * We want to under-estimate the load of migration sources, to 4372 * balance conservatively. 4373 */ 4374 static unsigned long source_load(int cpu, int type) 4375 { 4376 struct rq *rq = cpu_rq(cpu); 4377 unsigned long total = weighted_cpuload(cpu); 4378 4379 if (type == 0 || !sched_feat(LB_BIAS)) 4380 return total; 4381 4382 return min(rq->cpu_load[type-1], total); 4383 } 4384 4385 /* 4386 * Return a high guess at the load of a migration-target cpu weighted 4387 * according to the scheduling class and "nice" value. 4388 */ 4389 static unsigned long target_load(int cpu, int type) 4390 { 4391 struct rq *rq = cpu_rq(cpu); 4392 unsigned long total = weighted_cpuload(cpu); 4393 4394 if (type == 0 || !sched_feat(LB_BIAS)) 4395 return total; 4396 4397 return max(rq->cpu_load[type-1], total); 4398 } 4399 4400 static unsigned long capacity_of(int cpu) 4401 { 4402 return cpu_rq(cpu)->cpu_capacity; 4403 } 4404 4405 static unsigned long capacity_orig_of(int cpu) 4406 { 4407 return cpu_rq(cpu)->cpu_capacity_orig; 4408 } 4409 4410 static unsigned long cpu_avg_load_per_task(int cpu) 4411 { 4412 struct rq *rq = cpu_rq(cpu); 4413 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 4414 unsigned long load_avg = weighted_cpuload(cpu); 4415 4416 if (nr_running) 4417 return load_avg / nr_running; 4418 4419 return 0; 4420 } 4421 4422 static void record_wakee(struct task_struct *p) 4423 { 4424 /* 4425 * Rough decay (wiping) for cost saving, don't worry 4426 * about the boundary, really active task won't care 4427 * about the loss. 4428 */ 4429 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 4430 current->wakee_flips >>= 1; 4431 current->wakee_flip_decay_ts = jiffies; 4432 } 4433 4434 if (current->last_wakee != p) { 4435 current->last_wakee = p; 4436 current->wakee_flips++; 4437 } 4438 } 4439 4440 static void task_waking_fair(struct task_struct *p) 4441 { 4442 struct sched_entity *se = &p->se; 4443 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4444 u64 min_vruntime; 4445 4446 #ifndef CONFIG_64BIT 4447 u64 min_vruntime_copy; 4448 4449 do { 4450 min_vruntime_copy = cfs_rq->min_vruntime_copy; 4451 smp_rmb(); 4452 min_vruntime = cfs_rq->min_vruntime; 4453 } while (min_vruntime != min_vruntime_copy); 4454 #else 4455 min_vruntime = cfs_rq->min_vruntime; 4456 #endif 4457 4458 se->vruntime -= min_vruntime; 4459 record_wakee(p); 4460 } 4461 4462 #ifdef CONFIG_FAIR_GROUP_SCHED 4463 /* 4464 * effective_load() calculates the load change as seen from the root_task_group 4465 * 4466 * Adding load to a group doesn't make a group heavier, but can cause movement 4467 * of group shares between cpus. Assuming the shares were perfectly aligned one 4468 * can calculate the shift in shares. 4469 * 4470 * Calculate the effective load difference if @wl is added (subtracted) to @tg 4471 * on this @cpu and results in a total addition (subtraction) of @wg to the 4472 * total group weight. 4473 * 4474 * Given a runqueue weight distribution (rw_i) we can compute a shares 4475 * distribution (s_i) using: 4476 * 4477 * s_i = rw_i / \Sum rw_j (1) 4478 * 4479 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 4480 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 4481 * shares distribution (s_i): 4482 * 4483 * rw_i = { 2, 4, 1, 0 } 4484 * s_i = { 2/7, 4/7, 1/7, 0 } 4485 * 4486 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 4487 * task used to run on and the CPU the waker is running on), we need to 4488 * compute the effect of waking a task on either CPU and, in case of a sync 4489 * wakeup, compute the effect of the current task going to sleep. 4490 * 4491 * So for a change of @wl to the local @cpu with an overall group weight change 4492 * of @wl we can compute the new shares distribution (s'_i) using: 4493 * 4494 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 4495 * 4496 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 4497 * differences in waking a task to CPU 0. The additional task changes the 4498 * weight and shares distributions like: 4499 * 4500 * rw'_i = { 3, 4, 1, 0 } 4501 * s'_i = { 3/8, 4/8, 1/8, 0 } 4502 * 4503 * We can then compute the difference in effective weight by using: 4504 * 4505 * dw_i = S * (s'_i - s_i) (3) 4506 * 4507 * Where 'S' is the group weight as seen by its parent. 4508 * 4509 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 4510 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 4511 * 4/7) times the weight of the group. 4512 */ 4513 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4514 { 4515 struct sched_entity *se = tg->se[cpu]; 4516 4517 if (!tg->parent) /* the trivial, non-cgroup case */ 4518 return wl; 4519 4520 for_each_sched_entity(se) { 4521 long w, W; 4522 4523 tg = se->my_q->tg; 4524 4525 /* 4526 * W = @wg + \Sum rw_j 4527 */ 4528 W = wg + calc_tg_weight(tg, se->my_q); 4529 4530 /* 4531 * w = rw_i + @wl 4532 */ 4533 w = cfs_rq_load_avg(se->my_q) + wl; 4534 4535 /* 4536 * wl = S * s'_i; see (2) 4537 */ 4538 if (W > 0 && w < W) 4539 wl = (w * (long)tg->shares) / W; 4540 else 4541 wl = tg->shares; 4542 4543 /* 4544 * Per the above, wl is the new se->load.weight value; since 4545 * those are clipped to [MIN_SHARES, ...) do so now. See 4546 * calc_cfs_shares(). 4547 */ 4548 if (wl < MIN_SHARES) 4549 wl = MIN_SHARES; 4550 4551 /* 4552 * wl = dw_i = S * (s'_i - s_i); see (3) 4553 */ 4554 wl -= se->avg.load_avg; 4555 4556 /* 4557 * Recursively apply this logic to all parent groups to compute 4558 * the final effective load change on the root group. Since 4559 * only the @tg group gets extra weight, all parent groups can 4560 * only redistribute existing shares. @wl is the shift in shares 4561 * resulting from this level per the above. 4562 */ 4563 wg = 0; 4564 } 4565 4566 return wl; 4567 } 4568 #else 4569 4570 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4571 { 4572 return wl; 4573 } 4574 4575 #endif 4576 4577 /* 4578 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 4579 * A waker of many should wake a different task than the one last awakened 4580 * at a frequency roughly N times higher than one of its wakees. In order 4581 * to determine whether we should let the load spread vs consolodating to 4582 * shared cache, we look for a minimum 'flip' frequency of llc_size in one 4583 * partner, and a factor of lls_size higher frequency in the other. With 4584 * both conditions met, we can be relatively sure that the relationship is 4585 * non-monogamous, with partner count exceeding socket size. Waker/wakee 4586 * being client/server, worker/dispatcher, interrupt source or whatever is 4587 * irrelevant, spread criteria is apparent partner count exceeds socket size. 4588 */ 4589 static int wake_wide(struct task_struct *p) 4590 { 4591 unsigned int master = current->wakee_flips; 4592 unsigned int slave = p->wakee_flips; 4593 int factor = this_cpu_read(sd_llc_size); 4594 4595 if (master < slave) 4596 swap(master, slave); 4597 if (slave < factor || master < slave * factor) 4598 return 0; 4599 return 1; 4600 } 4601 4602 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 4603 { 4604 s64 this_load, load; 4605 s64 this_eff_load, prev_eff_load; 4606 int idx, this_cpu, prev_cpu; 4607 struct task_group *tg; 4608 unsigned long weight; 4609 int balanced; 4610 4611 idx = sd->wake_idx; 4612 this_cpu = smp_processor_id(); 4613 prev_cpu = task_cpu(p); 4614 load = source_load(prev_cpu, idx); 4615 this_load = target_load(this_cpu, idx); 4616 4617 /* 4618 * If sync wakeup then subtract the (maximum possible) 4619 * effect of the currently running task from the load 4620 * of the current CPU: 4621 */ 4622 if (sync) { 4623 tg = task_group(current); 4624 weight = current->se.avg.load_avg; 4625 4626 this_load += effective_load(tg, this_cpu, -weight, -weight); 4627 load += effective_load(tg, prev_cpu, 0, -weight); 4628 } 4629 4630 tg = task_group(p); 4631 weight = p->se.avg.load_avg; 4632 4633 /* 4634 * In low-load situations, where prev_cpu is idle and this_cpu is idle 4635 * due to the sync cause above having dropped this_load to 0, we'll 4636 * always have an imbalance, but there's really nothing you can do 4637 * about that, so that's good too. 4638 * 4639 * Otherwise check if either cpus are near enough in load to allow this 4640 * task to be woken on this_cpu. 4641 */ 4642 this_eff_load = 100; 4643 this_eff_load *= capacity_of(prev_cpu); 4644 4645 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 4646 prev_eff_load *= capacity_of(this_cpu); 4647 4648 if (this_load > 0) { 4649 this_eff_load *= this_load + 4650 effective_load(tg, this_cpu, weight, weight); 4651 4652 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 4653 } 4654 4655 balanced = this_eff_load <= prev_eff_load; 4656 4657 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); 4658 4659 if (!balanced) 4660 return 0; 4661 4662 schedstat_inc(sd, ttwu_move_affine); 4663 schedstat_inc(p, se.statistics.nr_wakeups_affine); 4664 4665 return 1; 4666 } 4667 4668 /* 4669 * find_idlest_group finds and returns the least busy CPU group within the 4670 * domain. 4671 */ 4672 static struct sched_group * 4673 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 4674 int this_cpu, int sd_flag) 4675 { 4676 struct sched_group *idlest = NULL, *group = sd->groups; 4677 unsigned long min_load = ULONG_MAX, this_load = 0; 4678 int load_idx = sd->forkexec_idx; 4679 int imbalance = 100 + (sd->imbalance_pct-100)/2; 4680 4681 if (sd_flag & SD_BALANCE_WAKE) 4682 load_idx = sd->wake_idx; 4683 4684 do { 4685 unsigned long load, avg_load; 4686 int local_group; 4687 int i; 4688 4689 /* Skip over this group if it has no CPUs allowed */ 4690 if (!cpumask_intersects(sched_group_cpus(group), 4691 tsk_cpus_allowed(p))) 4692 continue; 4693 4694 local_group = cpumask_test_cpu(this_cpu, 4695 sched_group_cpus(group)); 4696 4697 /* Tally up the load of all CPUs in the group */ 4698 avg_load = 0; 4699 4700 for_each_cpu(i, sched_group_cpus(group)) { 4701 /* Bias balancing toward cpus of our domain */ 4702 if (local_group) 4703 load = source_load(i, load_idx); 4704 else 4705 load = target_load(i, load_idx); 4706 4707 avg_load += load; 4708 } 4709 4710 /* Adjust by relative CPU capacity of the group */ 4711 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity; 4712 4713 if (local_group) { 4714 this_load = avg_load; 4715 } else if (avg_load < min_load) { 4716 min_load = avg_load; 4717 idlest = group; 4718 } 4719 } while (group = group->next, group != sd->groups); 4720 4721 if (!idlest || 100*this_load < imbalance*min_load) 4722 return NULL; 4723 return idlest; 4724 } 4725 4726 /* 4727 * find_idlest_cpu - find the idlest cpu among the cpus in group. 4728 */ 4729 static int 4730 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 4731 { 4732 unsigned long load, min_load = ULONG_MAX; 4733 unsigned int min_exit_latency = UINT_MAX; 4734 u64 latest_idle_timestamp = 0; 4735 int least_loaded_cpu = this_cpu; 4736 int shallowest_idle_cpu = -1; 4737 int i; 4738 4739 /* Traverse only the allowed CPUs */ 4740 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 4741 if (idle_cpu(i)) { 4742 struct rq *rq = cpu_rq(i); 4743 struct cpuidle_state *idle = idle_get_state(rq); 4744 if (idle && idle->exit_latency < min_exit_latency) { 4745 /* 4746 * We give priority to a CPU whose idle state 4747 * has the smallest exit latency irrespective 4748 * of any idle timestamp. 4749 */ 4750 min_exit_latency = idle->exit_latency; 4751 latest_idle_timestamp = rq->idle_stamp; 4752 shallowest_idle_cpu = i; 4753 } else if ((!idle || idle->exit_latency == min_exit_latency) && 4754 rq->idle_stamp > latest_idle_timestamp) { 4755 /* 4756 * If equal or no active idle state, then 4757 * the most recently idled CPU might have 4758 * a warmer cache. 4759 */ 4760 latest_idle_timestamp = rq->idle_stamp; 4761 shallowest_idle_cpu = i; 4762 } 4763 } else if (shallowest_idle_cpu == -1) { 4764 load = weighted_cpuload(i); 4765 if (load < min_load || (load == min_load && i == this_cpu)) { 4766 min_load = load; 4767 least_loaded_cpu = i; 4768 } 4769 } 4770 } 4771 4772 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 4773 } 4774 4775 /* 4776 * Try and locate an idle CPU in the sched_domain. 4777 */ 4778 static int select_idle_sibling(struct task_struct *p, int target) 4779 { 4780 struct sched_domain *sd; 4781 struct sched_group *sg; 4782 int i = task_cpu(p); 4783 4784 if (idle_cpu(target)) 4785 return target; 4786 4787 /* 4788 * If the prevous cpu is cache affine and idle, don't be stupid. 4789 */ 4790 if (i != target && cpus_share_cache(i, target) && idle_cpu(i)) 4791 return i; 4792 4793 /* 4794 * Otherwise, iterate the domains and find an elegible idle cpu. 4795 */ 4796 sd = rcu_dereference(per_cpu(sd_llc, target)); 4797 for_each_lower_domain(sd) { 4798 sg = sd->groups; 4799 do { 4800 if (!cpumask_intersects(sched_group_cpus(sg), 4801 tsk_cpus_allowed(p))) 4802 goto next; 4803 4804 for_each_cpu(i, sched_group_cpus(sg)) { 4805 if (i == target || !idle_cpu(i)) 4806 goto next; 4807 } 4808 4809 target = cpumask_first_and(sched_group_cpus(sg), 4810 tsk_cpus_allowed(p)); 4811 goto done; 4812 next: 4813 sg = sg->next; 4814 } while (sg != sd->groups); 4815 } 4816 done: 4817 return target; 4818 } 4819 /* 4820 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS 4821 * tasks. The unit of the return value must be the one of capacity so we can 4822 * compare the usage with the capacity of the CPU that is available for CFS 4823 * task (ie cpu_capacity). 4824 * cfs.avg.util_avg is the sum of running time of runnable tasks on a 4825 * CPU. It represents the amount of utilization of a CPU in the range 4826 * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full 4827 * capacity of the CPU because it's about the running time on this CPU. 4828 * Nevertheless, cfs.avg.util_avg can be higher than SCHED_LOAD_SCALE 4829 * because of unfortunate rounding in util_avg or just 4830 * after migrating tasks until the average stabilizes with the new running 4831 * time. So we need to check that the usage stays into the range 4832 * [0..cpu_capacity_orig] and cap if necessary. 4833 * Without capping the usage, a group could be seen as overloaded (CPU0 usage 4834 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity 4835 */ 4836 static int get_cpu_usage(int cpu) 4837 { 4838 unsigned long usage = cpu_rq(cpu)->cfs.avg.util_avg; 4839 unsigned long capacity = capacity_orig_of(cpu); 4840 4841 if (usage >= SCHED_LOAD_SCALE) 4842 return capacity; 4843 4844 return (usage * capacity) >> SCHED_LOAD_SHIFT; 4845 } 4846 4847 /* 4848 * select_task_rq_fair: Select target runqueue for the waking task in domains 4849 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 4850 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 4851 * 4852 * Balances load by selecting the idlest cpu in the idlest group, or under 4853 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. 4854 * 4855 * Returns the target cpu number. 4856 * 4857 * preempt must be disabled. 4858 */ 4859 static int 4860 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 4861 { 4862 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 4863 int cpu = smp_processor_id(); 4864 int new_cpu = prev_cpu; 4865 int want_affine = 0; 4866 int sync = wake_flags & WF_SYNC; 4867 4868 if (sd_flag & SD_BALANCE_WAKE) 4869 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p)); 4870 4871 rcu_read_lock(); 4872 for_each_domain(cpu, tmp) { 4873 if (!(tmp->flags & SD_LOAD_BALANCE)) 4874 break; 4875 4876 /* 4877 * If both cpu and prev_cpu are part of this domain, 4878 * cpu is a valid SD_WAKE_AFFINE target. 4879 */ 4880 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 4881 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 4882 affine_sd = tmp; 4883 break; 4884 } 4885 4886 if (tmp->flags & sd_flag) 4887 sd = tmp; 4888 else if (!want_affine) 4889 break; 4890 } 4891 4892 if (affine_sd) { 4893 sd = NULL; /* Prefer wake_affine over balance flags */ 4894 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync)) 4895 new_cpu = cpu; 4896 } 4897 4898 if (!sd) { 4899 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */ 4900 new_cpu = select_idle_sibling(p, new_cpu); 4901 4902 } else while (sd) { 4903 struct sched_group *group; 4904 int weight; 4905 4906 if (!(sd->flags & sd_flag)) { 4907 sd = sd->child; 4908 continue; 4909 } 4910 4911 group = find_idlest_group(sd, p, cpu, sd_flag); 4912 if (!group) { 4913 sd = sd->child; 4914 continue; 4915 } 4916 4917 new_cpu = find_idlest_cpu(group, p, cpu); 4918 if (new_cpu == -1 || new_cpu == cpu) { 4919 /* Now try balancing at a lower domain level of cpu */ 4920 sd = sd->child; 4921 continue; 4922 } 4923 4924 /* Now try balancing at a lower domain level of new_cpu */ 4925 cpu = new_cpu; 4926 weight = sd->span_weight; 4927 sd = NULL; 4928 for_each_domain(cpu, tmp) { 4929 if (weight <= tmp->span_weight) 4930 break; 4931 if (tmp->flags & sd_flag) 4932 sd = tmp; 4933 } 4934 /* while loop will break here if sd == NULL */ 4935 } 4936 rcu_read_unlock(); 4937 4938 return new_cpu; 4939 } 4940 4941 /* 4942 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 4943 * cfs_rq_of(p) references at time of call are still valid and identify the 4944 * previous cpu. However, the caller only guarantees p->pi_lock is held; no 4945 * other assumptions, including the state of rq->lock, should be made. 4946 */ 4947 static void migrate_task_rq_fair(struct task_struct *p, int next_cpu) 4948 { 4949 /* 4950 * We are supposed to update the task to "current" time, then its up to date 4951 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting 4952 * what current time is, so simply throw away the out-of-date time. This 4953 * will result in the wakee task is less decayed, but giving the wakee more 4954 * load sounds not bad. 4955 */ 4956 remove_entity_load_avg(&p->se); 4957 4958 /* Tell new CPU we are migrated */ 4959 p->se.avg.last_update_time = 0; 4960 4961 /* We have migrated, no longer consider this task hot */ 4962 p->se.exec_start = 0; 4963 } 4964 4965 static void task_dead_fair(struct task_struct *p) 4966 { 4967 remove_entity_load_avg(&p->se); 4968 } 4969 #endif /* CONFIG_SMP */ 4970 4971 static unsigned long 4972 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 4973 { 4974 unsigned long gran = sysctl_sched_wakeup_granularity; 4975 4976 /* 4977 * Since its curr running now, convert the gran from real-time 4978 * to virtual-time in his units. 4979 * 4980 * By using 'se' instead of 'curr' we penalize light tasks, so 4981 * they get preempted easier. That is, if 'se' < 'curr' then 4982 * the resulting gran will be larger, therefore penalizing the 4983 * lighter, if otoh 'se' > 'curr' then the resulting gran will 4984 * be smaller, again penalizing the lighter task. 4985 * 4986 * This is especially important for buddies when the leftmost 4987 * task is higher priority than the buddy. 4988 */ 4989 return calc_delta_fair(gran, se); 4990 } 4991 4992 /* 4993 * Should 'se' preempt 'curr'. 4994 * 4995 * |s1 4996 * |s2 4997 * |s3 4998 * g 4999 * |<--->|c 5000 * 5001 * w(c, s1) = -1 5002 * w(c, s2) = 0 5003 * w(c, s3) = 1 5004 * 5005 */ 5006 static int 5007 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 5008 { 5009 s64 gran, vdiff = curr->vruntime - se->vruntime; 5010 5011 if (vdiff <= 0) 5012 return -1; 5013 5014 gran = wakeup_gran(curr, se); 5015 if (vdiff > gran) 5016 return 1; 5017 5018 return 0; 5019 } 5020 5021 static void set_last_buddy(struct sched_entity *se) 5022 { 5023 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 5024 return; 5025 5026 for_each_sched_entity(se) 5027 cfs_rq_of(se)->last = se; 5028 } 5029 5030 static void set_next_buddy(struct sched_entity *se) 5031 { 5032 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 5033 return; 5034 5035 for_each_sched_entity(se) 5036 cfs_rq_of(se)->next = se; 5037 } 5038 5039 static void set_skip_buddy(struct sched_entity *se) 5040 { 5041 for_each_sched_entity(se) 5042 cfs_rq_of(se)->skip = se; 5043 } 5044 5045 /* 5046 * Preempt the current task with a newly woken task if needed: 5047 */ 5048 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 5049 { 5050 struct task_struct *curr = rq->curr; 5051 struct sched_entity *se = &curr->se, *pse = &p->se; 5052 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 5053 int scale = cfs_rq->nr_running >= sched_nr_latency; 5054 int next_buddy_marked = 0; 5055 5056 if (unlikely(se == pse)) 5057 return; 5058 5059 /* 5060 * This is possible from callers such as attach_tasks(), in which we 5061 * unconditionally check_prempt_curr() after an enqueue (which may have 5062 * lead to a throttle). This both saves work and prevents false 5063 * next-buddy nomination below. 5064 */ 5065 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 5066 return; 5067 5068 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 5069 set_next_buddy(pse); 5070 next_buddy_marked = 1; 5071 } 5072 5073 /* 5074 * We can come here with TIF_NEED_RESCHED already set from new task 5075 * wake up path. 5076 * 5077 * Note: this also catches the edge-case of curr being in a throttled 5078 * group (e.g. via set_curr_task), since update_curr() (in the 5079 * enqueue of curr) will have resulted in resched being set. This 5080 * prevents us from potentially nominating it as a false LAST_BUDDY 5081 * below. 5082 */ 5083 if (test_tsk_need_resched(curr)) 5084 return; 5085 5086 /* Idle tasks are by definition preempted by non-idle tasks. */ 5087 if (unlikely(curr->policy == SCHED_IDLE) && 5088 likely(p->policy != SCHED_IDLE)) 5089 goto preempt; 5090 5091 /* 5092 * Batch and idle tasks do not preempt non-idle tasks (their preemption 5093 * is driven by the tick): 5094 */ 5095 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 5096 return; 5097 5098 find_matching_se(&se, &pse); 5099 update_curr(cfs_rq_of(se)); 5100 BUG_ON(!pse); 5101 if (wakeup_preempt_entity(se, pse) == 1) { 5102 /* 5103 * Bias pick_next to pick the sched entity that is 5104 * triggering this preemption. 5105 */ 5106 if (!next_buddy_marked) 5107 set_next_buddy(pse); 5108 goto preempt; 5109 } 5110 5111 return; 5112 5113 preempt: 5114 resched_curr(rq); 5115 /* 5116 * Only set the backward buddy when the current task is still 5117 * on the rq. This can happen when a wakeup gets interleaved 5118 * with schedule on the ->pre_schedule() or idle_balance() 5119 * point, either of which can * drop the rq lock. 5120 * 5121 * Also, during early boot the idle thread is in the fair class, 5122 * for obvious reasons its a bad idea to schedule back to it. 5123 */ 5124 if (unlikely(!se->on_rq || curr == rq->idle)) 5125 return; 5126 5127 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 5128 set_last_buddy(se); 5129 } 5130 5131 static struct task_struct * 5132 pick_next_task_fair(struct rq *rq, struct task_struct *prev) 5133 { 5134 struct cfs_rq *cfs_rq = &rq->cfs; 5135 struct sched_entity *se; 5136 struct task_struct *p; 5137 int new_tasks; 5138 5139 again: 5140 #ifdef CONFIG_FAIR_GROUP_SCHED 5141 if (!cfs_rq->nr_running) 5142 goto idle; 5143 5144 if (prev->sched_class != &fair_sched_class) 5145 goto simple; 5146 5147 /* 5148 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 5149 * likely that a next task is from the same cgroup as the current. 5150 * 5151 * Therefore attempt to avoid putting and setting the entire cgroup 5152 * hierarchy, only change the part that actually changes. 5153 */ 5154 5155 do { 5156 struct sched_entity *curr = cfs_rq->curr; 5157 5158 /* 5159 * Since we got here without doing put_prev_entity() we also 5160 * have to consider cfs_rq->curr. If it is still a runnable 5161 * entity, update_curr() will update its vruntime, otherwise 5162 * forget we've ever seen it. 5163 */ 5164 if (curr) { 5165 if (curr->on_rq) 5166 update_curr(cfs_rq); 5167 else 5168 curr = NULL; 5169 5170 /* 5171 * This call to check_cfs_rq_runtime() will do the 5172 * throttle and dequeue its entity in the parent(s). 5173 * Therefore the 'simple' nr_running test will indeed 5174 * be correct. 5175 */ 5176 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 5177 goto simple; 5178 } 5179 5180 se = pick_next_entity(cfs_rq, curr); 5181 cfs_rq = group_cfs_rq(se); 5182 } while (cfs_rq); 5183 5184 p = task_of(se); 5185 5186 /* 5187 * Since we haven't yet done put_prev_entity and if the selected task 5188 * is a different task than we started out with, try and touch the 5189 * least amount of cfs_rqs. 5190 */ 5191 if (prev != p) { 5192 struct sched_entity *pse = &prev->se; 5193 5194 while (!(cfs_rq = is_same_group(se, pse))) { 5195 int se_depth = se->depth; 5196 int pse_depth = pse->depth; 5197 5198 if (se_depth <= pse_depth) { 5199 put_prev_entity(cfs_rq_of(pse), pse); 5200 pse = parent_entity(pse); 5201 } 5202 if (se_depth >= pse_depth) { 5203 set_next_entity(cfs_rq_of(se), se); 5204 se = parent_entity(se); 5205 } 5206 } 5207 5208 put_prev_entity(cfs_rq, pse); 5209 set_next_entity(cfs_rq, se); 5210 } 5211 5212 if (hrtick_enabled(rq)) 5213 hrtick_start_fair(rq, p); 5214 5215 return p; 5216 simple: 5217 cfs_rq = &rq->cfs; 5218 #endif 5219 5220 if (!cfs_rq->nr_running) 5221 goto idle; 5222 5223 put_prev_task(rq, prev); 5224 5225 do { 5226 se = pick_next_entity(cfs_rq, NULL); 5227 set_next_entity(cfs_rq, se); 5228 cfs_rq = group_cfs_rq(se); 5229 } while (cfs_rq); 5230 5231 p = task_of(se); 5232 5233 if (hrtick_enabled(rq)) 5234 hrtick_start_fair(rq, p); 5235 5236 return p; 5237 5238 idle: 5239 /* 5240 * This is OK, because current is on_cpu, which avoids it being picked 5241 * for load-balance and preemption/IRQs are still disabled avoiding 5242 * further scheduler activity on it and we're being very careful to 5243 * re-start the picking loop. 5244 */ 5245 lockdep_unpin_lock(&rq->lock); 5246 new_tasks = idle_balance(rq); 5247 lockdep_pin_lock(&rq->lock); 5248 /* 5249 * Because idle_balance() releases (and re-acquires) rq->lock, it is 5250 * possible for any higher priority task to appear. In that case we 5251 * must re-start the pick_next_entity() loop. 5252 */ 5253 if (new_tasks < 0) 5254 return RETRY_TASK; 5255 5256 if (new_tasks > 0) 5257 goto again; 5258 5259 return NULL; 5260 } 5261 5262 /* 5263 * Account for a descheduled task: 5264 */ 5265 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 5266 { 5267 struct sched_entity *se = &prev->se; 5268 struct cfs_rq *cfs_rq; 5269 5270 for_each_sched_entity(se) { 5271 cfs_rq = cfs_rq_of(se); 5272 put_prev_entity(cfs_rq, se); 5273 } 5274 } 5275 5276 /* 5277 * sched_yield() is very simple 5278 * 5279 * The magic of dealing with the ->skip buddy is in pick_next_entity. 5280 */ 5281 static void yield_task_fair(struct rq *rq) 5282 { 5283 struct task_struct *curr = rq->curr; 5284 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 5285 struct sched_entity *se = &curr->se; 5286 5287 /* 5288 * Are we the only task in the tree? 5289 */ 5290 if (unlikely(rq->nr_running == 1)) 5291 return; 5292 5293 clear_buddies(cfs_rq, se); 5294 5295 if (curr->policy != SCHED_BATCH) { 5296 update_rq_clock(rq); 5297 /* 5298 * Update run-time statistics of the 'current'. 5299 */ 5300 update_curr(cfs_rq); 5301 /* 5302 * Tell update_rq_clock() that we've just updated, 5303 * so we don't do microscopic update in schedule() 5304 * and double the fastpath cost. 5305 */ 5306 rq_clock_skip_update(rq, true); 5307 } 5308 5309 set_skip_buddy(se); 5310 } 5311 5312 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 5313 { 5314 struct sched_entity *se = &p->se; 5315 5316 /* throttled hierarchies are not runnable */ 5317 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 5318 return false; 5319 5320 /* Tell the scheduler that we'd really like pse to run next. */ 5321 set_next_buddy(se); 5322 5323 yield_task_fair(rq); 5324 5325 return true; 5326 } 5327 5328 #ifdef CONFIG_SMP 5329 /************************************************** 5330 * Fair scheduling class load-balancing methods. 5331 * 5332 * BASICS 5333 * 5334 * The purpose of load-balancing is to achieve the same basic fairness the 5335 * per-cpu scheduler provides, namely provide a proportional amount of compute 5336 * time to each task. This is expressed in the following equation: 5337 * 5338 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 5339 * 5340 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 5341 * W_i,0 is defined as: 5342 * 5343 * W_i,0 = \Sum_j w_i,j (2) 5344 * 5345 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 5346 * is derived from the nice value as per prio_to_weight[]. 5347 * 5348 * The weight average is an exponential decay average of the instantaneous 5349 * weight: 5350 * 5351 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 5352 * 5353 * C_i is the compute capacity of cpu i, typically it is the 5354 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 5355 * can also include other factors [XXX]. 5356 * 5357 * To achieve this balance we define a measure of imbalance which follows 5358 * directly from (1): 5359 * 5360 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 5361 * 5362 * We them move tasks around to minimize the imbalance. In the continuous 5363 * function space it is obvious this converges, in the discrete case we get 5364 * a few fun cases generally called infeasible weight scenarios. 5365 * 5366 * [XXX expand on: 5367 * - infeasible weights; 5368 * - local vs global optima in the discrete case. ] 5369 * 5370 * 5371 * SCHED DOMAINS 5372 * 5373 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 5374 * for all i,j solution, we create a tree of cpus that follows the hardware 5375 * topology where each level pairs two lower groups (or better). This results 5376 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 5377 * tree to only the first of the previous level and we decrease the frequency 5378 * of load-balance at each level inv. proportional to the number of cpus in 5379 * the groups. 5380 * 5381 * This yields: 5382 * 5383 * log_2 n 1 n 5384 * \Sum { --- * --- * 2^i } = O(n) (5) 5385 * i = 0 2^i 2^i 5386 * `- size of each group 5387 * | | `- number of cpus doing load-balance 5388 * | `- freq 5389 * `- sum over all levels 5390 * 5391 * Coupled with a limit on how many tasks we can migrate every balance pass, 5392 * this makes (5) the runtime complexity of the balancer. 5393 * 5394 * An important property here is that each CPU is still (indirectly) connected 5395 * to every other cpu in at most O(log n) steps: 5396 * 5397 * The adjacency matrix of the resulting graph is given by: 5398 * 5399 * log_2 n 5400 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 5401 * k = 0 5402 * 5403 * And you'll find that: 5404 * 5405 * A^(log_2 n)_i,j != 0 for all i,j (7) 5406 * 5407 * Showing there's indeed a path between every cpu in at most O(log n) steps. 5408 * The task movement gives a factor of O(m), giving a convergence complexity 5409 * of: 5410 * 5411 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 5412 * 5413 * 5414 * WORK CONSERVING 5415 * 5416 * In order to avoid CPUs going idle while there's still work to do, new idle 5417 * balancing is more aggressive and has the newly idle cpu iterate up the domain 5418 * tree itself instead of relying on other CPUs to bring it work. 5419 * 5420 * This adds some complexity to both (5) and (8) but it reduces the total idle 5421 * time. 5422 * 5423 * [XXX more?] 5424 * 5425 * 5426 * CGROUPS 5427 * 5428 * Cgroups make a horror show out of (2), instead of a simple sum we get: 5429 * 5430 * s_k,i 5431 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 5432 * S_k 5433 * 5434 * Where 5435 * 5436 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 5437 * 5438 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 5439 * 5440 * The big problem is S_k, its a global sum needed to compute a local (W_i) 5441 * property. 5442 * 5443 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 5444 * rewrite all of this once again.] 5445 */ 5446 5447 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 5448 5449 enum fbq_type { regular, remote, all }; 5450 5451 #define LBF_ALL_PINNED 0x01 5452 #define LBF_NEED_BREAK 0x02 5453 #define LBF_DST_PINNED 0x04 5454 #define LBF_SOME_PINNED 0x08 5455 5456 struct lb_env { 5457 struct sched_domain *sd; 5458 5459 struct rq *src_rq; 5460 int src_cpu; 5461 5462 int dst_cpu; 5463 struct rq *dst_rq; 5464 5465 struct cpumask *dst_grpmask; 5466 int new_dst_cpu; 5467 enum cpu_idle_type idle; 5468 long imbalance; 5469 /* The set of CPUs under consideration for load-balancing */ 5470 struct cpumask *cpus; 5471 5472 unsigned int flags; 5473 5474 unsigned int loop; 5475 unsigned int loop_break; 5476 unsigned int loop_max; 5477 5478 enum fbq_type fbq_type; 5479 struct list_head tasks; 5480 }; 5481 5482 /* 5483 * Is this task likely cache-hot: 5484 */ 5485 static int task_hot(struct task_struct *p, struct lb_env *env) 5486 { 5487 s64 delta; 5488 5489 lockdep_assert_held(&env->src_rq->lock); 5490 5491 if (p->sched_class != &fair_sched_class) 5492 return 0; 5493 5494 if (unlikely(p->policy == SCHED_IDLE)) 5495 return 0; 5496 5497 /* 5498 * Buddy candidates are cache hot: 5499 */ 5500 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 5501 (&p->se == cfs_rq_of(&p->se)->next || 5502 &p->se == cfs_rq_of(&p->se)->last)) 5503 return 1; 5504 5505 if (sysctl_sched_migration_cost == -1) 5506 return 1; 5507 if (sysctl_sched_migration_cost == 0) 5508 return 0; 5509 5510 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 5511 5512 return delta < (s64)sysctl_sched_migration_cost; 5513 } 5514 5515 #ifdef CONFIG_NUMA_BALANCING 5516 /* 5517 * Returns 1, if task migration degrades locality 5518 * Returns 0, if task migration improves locality i.e migration preferred. 5519 * Returns -1, if task migration is not affected by locality. 5520 */ 5521 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 5522 { 5523 struct numa_group *numa_group = rcu_dereference(p->numa_group); 5524 unsigned long src_faults, dst_faults; 5525 int src_nid, dst_nid; 5526 5527 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 5528 return -1; 5529 5530 if (!sched_feat(NUMA)) 5531 return -1; 5532 5533 src_nid = cpu_to_node(env->src_cpu); 5534 dst_nid = cpu_to_node(env->dst_cpu); 5535 5536 if (src_nid == dst_nid) 5537 return -1; 5538 5539 /* Migrating away from the preferred node is always bad. */ 5540 if (src_nid == p->numa_preferred_nid) { 5541 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 5542 return 1; 5543 else 5544 return -1; 5545 } 5546 5547 /* Encourage migration to the preferred node. */ 5548 if (dst_nid == p->numa_preferred_nid) 5549 return 0; 5550 5551 if (numa_group) { 5552 src_faults = group_faults(p, src_nid); 5553 dst_faults = group_faults(p, dst_nid); 5554 } else { 5555 src_faults = task_faults(p, src_nid); 5556 dst_faults = task_faults(p, dst_nid); 5557 } 5558 5559 return dst_faults < src_faults; 5560 } 5561 5562 #else 5563 static inline int migrate_degrades_locality(struct task_struct *p, 5564 struct lb_env *env) 5565 { 5566 return -1; 5567 } 5568 #endif 5569 5570 /* 5571 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 5572 */ 5573 static 5574 int can_migrate_task(struct task_struct *p, struct lb_env *env) 5575 { 5576 int tsk_cache_hot; 5577 5578 lockdep_assert_held(&env->src_rq->lock); 5579 5580 /* 5581 * We do not migrate tasks that are: 5582 * 1) throttled_lb_pair, or 5583 * 2) cannot be migrated to this CPU due to cpus_allowed, or 5584 * 3) running (obviously), or 5585 * 4) are cache-hot on their current CPU. 5586 */ 5587 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 5588 return 0; 5589 5590 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { 5591 int cpu; 5592 5593 schedstat_inc(p, se.statistics.nr_failed_migrations_affine); 5594 5595 env->flags |= LBF_SOME_PINNED; 5596 5597 /* 5598 * Remember if this task can be migrated to any other cpu in 5599 * our sched_group. We may want to revisit it if we couldn't 5600 * meet load balance goals by pulling other tasks on src_cpu. 5601 * 5602 * Also avoid computing new_dst_cpu if we have already computed 5603 * one in current iteration. 5604 */ 5605 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) 5606 return 0; 5607 5608 /* Prevent to re-select dst_cpu via env's cpus */ 5609 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 5610 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { 5611 env->flags |= LBF_DST_PINNED; 5612 env->new_dst_cpu = cpu; 5613 break; 5614 } 5615 } 5616 5617 return 0; 5618 } 5619 5620 /* Record that we found atleast one task that could run on dst_cpu */ 5621 env->flags &= ~LBF_ALL_PINNED; 5622 5623 if (task_running(env->src_rq, p)) { 5624 schedstat_inc(p, se.statistics.nr_failed_migrations_running); 5625 return 0; 5626 } 5627 5628 /* 5629 * Aggressive migration if: 5630 * 1) destination numa is preferred 5631 * 2) task is cache cold, or 5632 * 3) too many balance attempts have failed. 5633 */ 5634 tsk_cache_hot = migrate_degrades_locality(p, env); 5635 if (tsk_cache_hot == -1) 5636 tsk_cache_hot = task_hot(p, env); 5637 5638 if (tsk_cache_hot <= 0 || 5639 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 5640 if (tsk_cache_hot == 1) { 5641 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 5642 schedstat_inc(p, se.statistics.nr_forced_migrations); 5643 } 5644 return 1; 5645 } 5646 5647 schedstat_inc(p, se.statistics.nr_failed_migrations_hot); 5648 return 0; 5649 } 5650 5651 /* 5652 * detach_task() -- detach the task for the migration specified in env 5653 */ 5654 static void detach_task(struct task_struct *p, struct lb_env *env) 5655 { 5656 lockdep_assert_held(&env->src_rq->lock); 5657 5658 deactivate_task(env->src_rq, p, 0); 5659 p->on_rq = TASK_ON_RQ_MIGRATING; 5660 set_task_cpu(p, env->dst_cpu); 5661 } 5662 5663 /* 5664 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 5665 * part of active balancing operations within "domain". 5666 * 5667 * Returns a task if successful and NULL otherwise. 5668 */ 5669 static struct task_struct *detach_one_task(struct lb_env *env) 5670 { 5671 struct task_struct *p, *n; 5672 5673 lockdep_assert_held(&env->src_rq->lock); 5674 5675 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 5676 if (!can_migrate_task(p, env)) 5677 continue; 5678 5679 detach_task(p, env); 5680 5681 /* 5682 * Right now, this is only the second place where 5683 * lb_gained[env->idle] is updated (other is detach_tasks) 5684 * so we can safely collect stats here rather than 5685 * inside detach_tasks(). 5686 */ 5687 schedstat_inc(env->sd, lb_gained[env->idle]); 5688 return p; 5689 } 5690 return NULL; 5691 } 5692 5693 static const unsigned int sched_nr_migrate_break = 32; 5694 5695 /* 5696 * detach_tasks() -- tries to detach up to imbalance weighted load from 5697 * busiest_rq, as part of a balancing operation within domain "sd". 5698 * 5699 * Returns number of detached tasks if successful and 0 otherwise. 5700 */ 5701 static int detach_tasks(struct lb_env *env) 5702 { 5703 struct list_head *tasks = &env->src_rq->cfs_tasks; 5704 struct task_struct *p; 5705 unsigned long load; 5706 int detached = 0; 5707 5708 lockdep_assert_held(&env->src_rq->lock); 5709 5710 if (env->imbalance <= 0) 5711 return 0; 5712 5713 while (!list_empty(tasks)) { 5714 /* 5715 * We don't want to steal all, otherwise we may be treated likewise, 5716 * which could at worst lead to a livelock crash. 5717 */ 5718 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 5719 break; 5720 5721 p = list_first_entry(tasks, struct task_struct, se.group_node); 5722 5723 env->loop++; 5724 /* We've more or less seen every task there is, call it quits */ 5725 if (env->loop > env->loop_max) 5726 break; 5727 5728 /* take a breather every nr_migrate tasks */ 5729 if (env->loop > env->loop_break) { 5730 env->loop_break += sched_nr_migrate_break; 5731 env->flags |= LBF_NEED_BREAK; 5732 break; 5733 } 5734 5735 if (!can_migrate_task(p, env)) 5736 goto next; 5737 5738 load = task_h_load(p); 5739 5740 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 5741 goto next; 5742 5743 if ((load / 2) > env->imbalance) 5744 goto next; 5745 5746 detach_task(p, env); 5747 list_add(&p->se.group_node, &env->tasks); 5748 5749 detached++; 5750 env->imbalance -= load; 5751 5752 #ifdef CONFIG_PREEMPT 5753 /* 5754 * NEWIDLE balancing is a source of latency, so preemptible 5755 * kernels will stop after the first task is detached to minimize 5756 * the critical section. 5757 */ 5758 if (env->idle == CPU_NEWLY_IDLE) 5759 break; 5760 #endif 5761 5762 /* 5763 * We only want to steal up to the prescribed amount of 5764 * weighted load. 5765 */ 5766 if (env->imbalance <= 0) 5767 break; 5768 5769 continue; 5770 next: 5771 list_move_tail(&p->se.group_node, tasks); 5772 } 5773 5774 /* 5775 * Right now, this is one of only two places we collect this stat 5776 * so we can safely collect detach_one_task() stats here rather 5777 * than inside detach_one_task(). 5778 */ 5779 schedstat_add(env->sd, lb_gained[env->idle], detached); 5780 5781 return detached; 5782 } 5783 5784 /* 5785 * attach_task() -- attach the task detached by detach_task() to its new rq. 5786 */ 5787 static void attach_task(struct rq *rq, struct task_struct *p) 5788 { 5789 lockdep_assert_held(&rq->lock); 5790 5791 BUG_ON(task_rq(p) != rq); 5792 p->on_rq = TASK_ON_RQ_QUEUED; 5793 activate_task(rq, p, 0); 5794 check_preempt_curr(rq, p, 0); 5795 } 5796 5797 /* 5798 * attach_one_task() -- attaches the task returned from detach_one_task() to 5799 * its new rq. 5800 */ 5801 static void attach_one_task(struct rq *rq, struct task_struct *p) 5802 { 5803 raw_spin_lock(&rq->lock); 5804 attach_task(rq, p); 5805 raw_spin_unlock(&rq->lock); 5806 } 5807 5808 /* 5809 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 5810 * new rq. 5811 */ 5812 static void attach_tasks(struct lb_env *env) 5813 { 5814 struct list_head *tasks = &env->tasks; 5815 struct task_struct *p; 5816 5817 raw_spin_lock(&env->dst_rq->lock); 5818 5819 while (!list_empty(tasks)) { 5820 p = list_first_entry(tasks, struct task_struct, se.group_node); 5821 list_del_init(&p->se.group_node); 5822 5823 attach_task(env->dst_rq, p); 5824 } 5825 5826 raw_spin_unlock(&env->dst_rq->lock); 5827 } 5828 5829 #ifdef CONFIG_FAIR_GROUP_SCHED 5830 static void update_blocked_averages(int cpu) 5831 { 5832 struct rq *rq = cpu_rq(cpu); 5833 struct cfs_rq *cfs_rq; 5834 unsigned long flags; 5835 5836 raw_spin_lock_irqsave(&rq->lock, flags); 5837 update_rq_clock(rq); 5838 5839 /* 5840 * Iterates the task_group tree in a bottom up fashion, see 5841 * list_add_leaf_cfs_rq() for details. 5842 */ 5843 for_each_leaf_cfs_rq(rq, cfs_rq) { 5844 /* throttled entities do not contribute to load */ 5845 if (throttled_hierarchy(cfs_rq)) 5846 continue; 5847 5848 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq)) 5849 update_tg_load_avg(cfs_rq, 0); 5850 } 5851 raw_spin_unlock_irqrestore(&rq->lock, flags); 5852 } 5853 5854 /* 5855 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 5856 * This needs to be done in a top-down fashion because the load of a child 5857 * group is a fraction of its parents load. 5858 */ 5859 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 5860 { 5861 struct rq *rq = rq_of(cfs_rq); 5862 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 5863 unsigned long now = jiffies; 5864 unsigned long load; 5865 5866 if (cfs_rq->last_h_load_update == now) 5867 return; 5868 5869 cfs_rq->h_load_next = NULL; 5870 for_each_sched_entity(se) { 5871 cfs_rq = cfs_rq_of(se); 5872 cfs_rq->h_load_next = se; 5873 if (cfs_rq->last_h_load_update == now) 5874 break; 5875 } 5876 5877 if (!se) { 5878 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 5879 cfs_rq->last_h_load_update = now; 5880 } 5881 5882 while ((se = cfs_rq->h_load_next) != NULL) { 5883 load = cfs_rq->h_load; 5884 load = div64_ul(load * se->avg.load_avg, 5885 cfs_rq_load_avg(cfs_rq) + 1); 5886 cfs_rq = group_cfs_rq(se); 5887 cfs_rq->h_load = load; 5888 cfs_rq->last_h_load_update = now; 5889 } 5890 } 5891 5892 static unsigned long task_h_load(struct task_struct *p) 5893 { 5894 struct cfs_rq *cfs_rq = task_cfs_rq(p); 5895 5896 update_cfs_rq_h_load(cfs_rq); 5897 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 5898 cfs_rq_load_avg(cfs_rq) + 1); 5899 } 5900 #else 5901 static inline void update_blocked_averages(int cpu) 5902 { 5903 struct rq *rq = cpu_rq(cpu); 5904 struct cfs_rq *cfs_rq = &rq->cfs; 5905 unsigned long flags; 5906 5907 raw_spin_lock_irqsave(&rq->lock, flags); 5908 update_rq_clock(rq); 5909 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq); 5910 raw_spin_unlock_irqrestore(&rq->lock, flags); 5911 } 5912 5913 static unsigned long task_h_load(struct task_struct *p) 5914 { 5915 return p->se.avg.load_avg; 5916 } 5917 #endif 5918 5919 /********** Helpers for find_busiest_group ************************/ 5920 5921 enum group_type { 5922 group_other = 0, 5923 group_imbalanced, 5924 group_overloaded, 5925 }; 5926 5927 /* 5928 * sg_lb_stats - stats of a sched_group required for load_balancing 5929 */ 5930 struct sg_lb_stats { 5931 unsigned long avg_load; /*Avg load across the CPUs of the group */ 5932 unsigned long group_load; /* Total load over the CPUs of the group */ 5933 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 5934 unsigned long load_per_task; 5935 unsigned long group_capacity; 5936 unsigned long group_usage; /* Total usage of the group */ 5937 unsigned int sum_nr_running; /* Nr tasks running in the group */ 5938 unsigned int idle_cpus; 5939 unsigned int group_weight; 5940 enum group_type group_type; 5941 int group_no_capacity; 5942 #ifdef CONFIG_NUMA_BALANCING 5943 unsigned int nr_numa_running; 5944 unsigned int nr_preferred_running; 5945 #endif 5946 }; 5947 5948 /* 5949 * sd_lb_stats - Structure to store the statistics of a sched_domain 5950 * during load balancing. 5951 */ 5952 struct sd_lb_stats { 5953 struct sched_group *busiest; /* Busiest group in this sd */ 5954 struct sched_group *local; /* Local group in this sd */ 5955 unsigned long total_load; /* Total load of all groups in sd */ 5956 unsigned long total_capacity; /* Total capacity of all groups in sd */ 5957 unsigned long avg_load; /* Average load across all groups in sd */ 5958 5959 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 5960 struct sg_lb_stats local_stat; /* Statistics of the local group */ 5961 }; 5962 5963 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 5964 { 5965 /* 5966 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 5967 * local_stat because update_sg_lb_stats() does a full clear/assignment. 5968 * We must however clear busiest_stat::avg_load because 5969 * update_sd_pick_busiest() reads this before assignment. 5970 */ 5971 *sds = (struct sd_lb_stats){ 5972 .busiest = NULL, 5973 .local = NULL, 5974 .total_load = 0UL, 5975 .total_capacity = 0UL, 5976 .busiest_stat = { 5977 .avg_load = 0UL, 5978 .sum_nr_running = 0, 5979 .group_type = group_other, 5980 }, 5981 }; 5982 } 5983 5984 /** 5985 * get_sd_load_idx - Obtain the load index for a given sched domain. 5986 * @sd: The sched_domain whose load_idx is to be obtained. 5987 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 5988 * 5989 * Return: The load index. 5990 */ 5991 static inline int get_sd_load_idx(struct sched_domain *sd, 5992 enum cpu_idle_type idle) 5993 { 5994 int load_idx; 5995 5996 switch (idle) { 5997 case CPU_NOT_IDLE: 5998 load_idx = sd->busy_idx; 5999 break; 6000 6001 case CPU_NEWLY_IDLE: 6002 load_idx = sd->newidle_idx; 6003 break; 6004 default: 6005 load_idx = sd->idle_idx; 6006 break; 6007 } 6008 6009 return load_idx; 6010 } 6011 6012 static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu) 6013 { 6014 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1)) 6015 return sd->smt_gain / sd->span_weight; 6016 6017 return SCHED_CAPACITY_SCALE; 6018 } 6019 6020 unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu) 6021 { 6022 return default_scale_cpu_capacity(sd, cpu); 6023 } 6024 6025 static unsigned long scale_rt_capacity(int cpu) 6026 { 6027 struct rq *rq = cpu_rq(cpu); 6028 u64 total, used, age_stamp, avg; 6029 s64 delta; 6030 6031 /* 6032 * Since we're reading these variables without serialization make sure 6033 * we read them once before doing sanity checks on them. 6034 */ 6035 age_stamp = READ_ONCE(rq->age_stamp); 6036 avg = READ_ONCE(rq->rt_avg); 6037 delta = __rq_clock_broken(rq) - age_stamp; 6038 6039 if (unlikely(delta < 0)) 6040 delta = 0; 6041 6042 total = sched_avg_period() + delta; 6043 6044 used = div_u64(avg, total); 6045 6046 if (likely(used < SCHED_CAPACITY_SCALE)) 6047 return SCHED_CAPACITY_SCALE - used; 6048 6049 return 1; 6050 } 6051 6052 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 6053 { 6054 unsigned long capacity = SCHED_CAPACITY_SCALE; 6055 struct sched_group *sdg = sd->groups; 6056 6057 if (sched_feat(ARCH_CAPACITY)) 6058 capacity *= arch_scale_cpu_capacity(sd, cpu); 6059 else 6060 capacity *= default_scale_cpu_capacity(sd, cpu); 6061 6062 capacity >>= SCHED_CAPACITY_SHIFT; 6063 6064 cpu_rq(cpu)->cpu_capacity_orig = capacity; 6065 6066 capacity *= scale_rt_capacity(cpu); 6067 capacity >>= SCHED_CAPACITY_SHIFT; 6068 6069 if (!capacity) 6070 capacity = 1; 6071 6072 cpu_rq(cpu)->cpu_capacity = capacity; 6073 sdg->sgc->capacity = capacity; 6074 } 6075 6076 void update_group_capacity(struct sched_domain *sd, int cpu) 6077 { 6078 struct sched_domain *child = sd->child; 6079 struct sched_group *group, *sdg = sd->groups; 6080 unsigned long capacity; 6081 unsigned long interval; 6082 6083 interval = msecs_to_jiffies(sd->balance_interval); 6084 interval = clamp(interval, 1UL, max_load_balance_interval); 6085 sdg->sgc->next_update = jiffies + interval; 6086 6087 if (!child) { 6088 update_cpu_capacity(sd, cpu); 6089 return; 6090 } 6091 6092 capacity = 0; 6093 6094 if (child->flags & SD_OVERLAP) { 6095 /* 6096 * SD_OVERLAP domains cannot assume that child groups 6097 * span the current group. 6098 */ 6099 6100 for_each_cpu(cpu, sched_group_cpus(sdg)) { 6101 struct sched_group_capacity *sgc; 6102 struct rq *rq = cpu_rq(cpu); 6103 6104 /* 6105 * build_sched_domains() -> init_sched_groups_capacity() 6106 * gets here before we've attached the domains to the 6107 * runqueues. 6108 * 6109 * Use capacity_of(), which is set irrespective of domains 6110 * in update_cpu_capacity(). 6111 * 6112 * This avoids capacity from being 0 and 6113 * causing divide-by-zero issues on boot. 6114 */ 6115 if (unlikely(!rq->sd)) { 6116 capacity += capacity_of(cpu); 6117 continue; 6118 } 6119 6120 sgc = rq->sd->groups->sgc; 6121 capacity += sgc->capacity; 6122 } 6123 } else { 6124 /* 6125 * !SD_OVERLAP domains can assume that child groups 6126 * span the current group. 6127 */ 6128 6129 group = child->groups; 6130 do { 6131 capacity += group->sgc->capacity; 6132 group = group->next; 6133 } while (group != child->groups); 6134 } 6135 6136 sdg->sgc->capacity = capacity; 6137 } 6138 6139 /* 6140 * Check whether the capacity of the rq has been noticeably reduced by side 6141 * activity. The imbalance_pct is used for the threshold. 6142 * Return true is the capacity is reduced 6143 */ 6144 static inline int 6145 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 6146 { 6147 return ((rq->cpu_capacity * sd->imbalance_pct) < 6148 (rq->cpu_capacity_orig * 100)); 6149 } 6150 6151 /* 6152 * Group imbalance indicates (and tries to solve) the problem where balancing 6153 * groups is inadequate due to tsk_cpus_allowed() constraints. 6154 * 6155 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 6156 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 6157 * Something like: 6158 * 6159 * { 0 1 2 3 } { 4 5 6 7 } 6160 * * * * * 6161 * 6162 * If we were to balance group-wise we'd place two tasks in the first group and 6163 * two tasks in the second group. Clearly this is undesired as it will overload 6164 * cpu 3 and leave one of the cpus in the second group unused. 6165 * 6166 * The current solution to this issue is detecting the skew in the first group 6167 * by noticing the lower domain failed to reach balance and had difficulty 6168 * moving tasks due to affinity constraints. 6169 * 6170 * When this is so detected; this group becomes a candidate for busiest; see 6171 * update_sd_pick_busiest(). And calculate_imbalance() and 6172 * find_busiest_group() avoid some of the usual balance conditions to allow it 6173 * to create an effective group imbalance. 6174 * 6175 * This is a somewhat tricky proposition since the next run might not find the 6176 * group imbalance and decide the groups need to be balanced again. A most 6177 * subtle and fragile situation. 6178 */ 6179 6180 static inline int sg_imbalanced(struct sched_group *group) 6181 { 6182 return group->sgc->imbalance; 6183 } 6184 6185 /* 6186 * group_has_capacity returns true if the group has spare capacity that could 6187 * be used by some tasks. 6188 * We consider that a group has spare capacity if the * number of task is 6189 * smaller than the number of CPUs or if the usage is lower than the available 6190 * capacity for CFS tasks. 6191 * For the latter, we use a threshold to stabilize the state, to take into 6192 * account the variance of the tasks' load and to return true if the available 6193 * capacity in meaningful for the load balancer. 6194 * As an example, an available capacity of 1% can appear but it doesn't make 6195 * any benefit for the load balance. 6196 */ 6197 static inline bool 6198 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 6199 { 6200 if (sgs->sum_nr_running < sgs->group_weight) 6201 return true; 6202 6203 if ((sgs->group_capacity * 100) > 6204 (sgs->group_usage * env->sd->imbalance_pct)) 6205 return true; 6206 6207 return false; 6208 } 6209 6210 /* 6211 * group_is_overloaded returns true if the group has more tasks than it can 6212 * handle. 6213 * group_is_overloaded is not equals to !group_has_capacity because a group 6214 * with the exact right number of tasks, has no more spare capacity but is not 6215 * overloaded so both group_has_capacity and group_is_overloaded return 6216 * false. 6217 */ 6218 static inline bool 6219 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 6220 { 6221 if (sgs->sum_nr_running <= sgs->group_weight) 6222 return false; 6223 6224 if ((sgs->group_capacity * 100) < 6225 (sgs->group_usage * env->sd->imbalance_pct)) 6226 return true; 6227 6228 return false; 6229 } 6230 6231 static enum group_type group_classify(struct lb_env *env, 6232 struct sched_group *group, 6233 struct sg_lb_stats *sgs) 6234 { 6235 if (sgs->group_no_capacity) 6236 return group_overloaded; 6237 6238 if (sg_imbalanced(group)) 6239 return group_imbalanced; 6240 6241 return group_other; 6242 } 6243 6244 /** 6245 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 6246 * @env: The load balancing environment. 6247 * @group: sched_group whose statistics are to be updated. 6248 * @load_idx: Load index of sched_domain of this_cpu for load calc. 6249 * @local_group: Does group contain this_cpu. 6250 * @sgs: variable to hold the statistics for this group. 6251 * @overload: Indicate more than one runnable task for any CPU. 6252 */ 6253 static inline void update_sg_lb_stats(struct lb_env *env, 6254 struct sched_group *group, int load_idx, 6255 int local_group, struct sg_lb_stats *sgs, 6256 bool *overload) 6257 { 6258 unsigned long load; 6259 int i; 6260 6261 memset(sgs, 0, sizeof(*sgs)); 6262 6263 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 6264 struct rq *rq = cpu_rq(i); 6265 6266 /* Bias balancing toward cpus of our domain */ 6267 if (local_group) 6268 load = target_load(i, load_idx); 6269 else 6270 load = source_load(i, load_idx); 6271 6272 sgs->group_load += load; 6273 sgs->group_usage += get_cpu_usage(i); 6274 sgs->sum_nr_running += rq->cfs.h_nr_running; 6275 6276 if (rq->nr_running > 1) 6277 *overload = true; 6278 6279 #ifdef CONFIG_NUMA_BALANCING 6280 sgs->nr_numa_running += rq->nr_numa_running; 6281 sgs->nr_preferred_running += rq->nr_preferred_running; 6282 #endif 6283 sgs->sum_weighted_load += weighted_cpuload(i); 6284 if (idle_cpu(i)) 6285 sgs->idle_cpus++; 6286 } 6287 6288 /* Adjust by relative CPU capacity of the group */ 6289 sgs->group_capacity = group->sgc->capacity; 6290 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 6291 6292 if (sgs->sum_nr_running) 6293 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 6294 6295 sgs->group_weight = group->group_weight; 6296 6297 sgs->group_no_capacity = group_is_overloaded(env, sgs); 6298 sgs->group_type = group_classify(env, group, sgs); 6299 } 6300 6301 /** 6302 * update_sd_pick_busiest - return 1 on busiest group 6303 * @env: The load balancing environment. 6304 * @sds: sched_domain statistics 6305 * @sg: sched_group candidate to be checked for being the busiest 6306 * @sgs: sched_group statistics 6307 * 6308 * Determine if @sg is a busier group than the previously selected 6309 * busiest group. 6310 * 6311 * Return: %true if @sg is a busier group than the previously selected 6312 * busiest group. %false otherwise. 6313 */ 6314 static bool update_sd_pick_busiest(struct lb_env *env, 6315 struct sd_lb_stats *sds, 6316 struct sched_group *sg, 6317 struct sg_lb_stats *sgs) 6318 { 6319 struct sg_lb_stats *busiest = &sds->busiest_stat; 6320 6321 if (sgs->group_type > busiest->group_type) 6322 return true; 6323 6324 if (sgs->group_type < busiest->group_type) 6325 return false; 6326 6327 if (sgs->avg_load <= busiest->avg_load) 6328 return false; 6329 6330 /* This is the busiest node in its class. */ 6331 if (!(env->sd->flags & SD_ASYM_PACKING)) 6332 return true; 6333 6334 /* 6335 * ASYM_PACKING needs to move all the work to the lowest 6336 * numbered CPUs in the group, therefore mark all groups 6337 * higher than ourself as busy. 6338 */ 6339 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) { 6340 if (!sds->busiest) 6341 return true; 6342 6343 if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) 6344 return true; 6345 } 6346 6347 return false; 6348 } 6349 6350 #ifdef CONFIG_NUMA_BALANCING 6351 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 6352 { 6353 if (sgs->sum_nr_running > sgs->nr_numa_running) 6354 return regular; 6355 if (sgs->sum_nr_running > sgs->nr_preferred_running) 6356 return remote; 6357 return all; 6358 } 6359 6360 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 6361 { 6362 if (rq->nr_running > rq->nr_numa_running) 6363 return regular; 6364 if (rq->nr_running > rq->nr_preferred_running) 6365 return remote; 6366 return all; 6367 } 6368 #else 6369 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 6370 { 6371 return all; 6372 } 6373 6374 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 6375 { 6376 return regular; 6377 } 6378 #endif /* CONFIG_NUMA_BALANCING */ 6379 6380 /** 6381 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 6382 * @env: The load balancing environment. 6383 * @sds: variable to hold the statistics for this sched_domain. 6384 */ 6385 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 6386 { 6387 struct sched_domain *child = env->sd->child; 6388 struct sched_group *sg = env->sd->groups; 6389 struct sg_lb_stats tmp_sgs; 6390 int load_idx, prefer_sibling = 0; 6391 bool overload = false; 6392 6393 if (child && child->flags & SD_PREFER_SIBLING) 6394 prefer_sibling = 1; 6395 6396 load_idx = get_sd_load_idx(env->sd, env->idle); 6397 6398 do { 6399 struct sg_lb_stats *sgs = &tmp_sgs; 6400 int local_group; 6401 6402 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 6403 if (local_group) { 6404 sds->local = sg; 6405 sgs = &sds->local_stat; 6406 6407 if (env->idle != CPU_NEWLY_IDLE || 6408 time_after_eq(jiffies, sg->sgc->next_update)) 6409 update_group_capacity(env->sd, env->dst_cpu); 6410 } 6411 6412 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 6413 &overload); 6414 6415 if (local_group) 6416 goto next_group; 6417 6418 /* 6419 * In case the child domain prefers tasks go to siblings 6420 * first, lower the sg capacity so that we'll try 6421 * and move all the excess tasks away. We lower the capacity 6422 * of a group only if the local group has the capacity to fit 6423 * these excess tasks. The extra check prevents the case where 6424 * you always pull from the heaviest group when it is already 6425 * under-utilized (possible with a large weight task outweighs 6426 * the tasks on the system). 6427 */ 6428 if (prefer_sibling && sds->local && 6429 group_has_capacity(env, &sds->local_stat) && 6430 (sgs->sum_nr_running > 1)) { 6431 sgs->group_no_capacity = 1; 6432 sgs->group_type = group_overloaded; 6433 } 6434 6435 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 6436 sds->busiest = sg; 6437 sds->busiest_stat = *sgs; 6438 } 6439 6440 next_group: 6441 /* Now, start updating sd_lb_stats */ 6442 sds->total_load += sgs->group_load; 6443 sds->total_capacity += sgs->group_capacity; 6444 6445 sg = sg->next; 6446 } while (sg != env->sd->groups); 6447 6448 if (env->sd->flags & SD_NUMA) 6449 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 6450 6451 if (!env->sd->parent) { 6452 /* update overload indicator if we are at root domain */ 6453 if (env->dst_rq->rd->overload != overload) 6454 env->dst_rq->rd->overload = overload; 6455 } 6456 6457 } 6458 6459 /** 6460 * check_asym_packing - Check to see if the group is packed into the 6461 * sched doman. 6462 * 6463 * This is primarily intended to used at the sibling level. Some 6464 * cores like POWER7 prefer to use lower numbered SMT threads. In the 6465 * case of POWER7, it can move to lower SMT modes only when higher 6466 * threads are idle. When in lower SMT modes, the threads will 6467 * perform better since they share less core resources. Hence when we 6468 * have idle threads, we want them to be the higher ones. 6469 * 6470 * This packing function is run on idle threads. It checks to see if 6471 * the busiest CPU in this domain (core in the P7 case) has a higher 6472 * CPU number than the packing function is being run on. Here we are 6473 * assuming lower CPU number will be equivalent to lower a SMT thread 6474 * number. 6475 * 6476 * Return: 1 when packing is required and a task should be moved to 6477 * this CPU. The amount of the imbalance is returned in *imbalance. 6478 * 6479 * @env: The load balancing environment. 6480 * @sds: Statistics of the sched_domain which is to be packed 6481 */ 6482 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 6483 { 6484 int busiest_cpu; 6485 6486 if (!(env->sd->flags & SD_ASYM_PACKING)) 6487 return 0; 6488 6489 if (!sds->busiest) 6490 return 0; 6491 6492 busiest_cpu = group_first_cpu(sds->busiest); 6493 if (env->dst_cpu > busiest_cpu) 6494 return 0; 6495 6496 env->imbalance = DIV_ROUND_CLOSEST( 6497 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 6498 SCHED_CAPACITY_SCALE); 6499 6500 return 1; 6501 } 6502 6503 /** 6504 * fix_small_imbalance - Calculate the minor imbalance that exists 6505 * amongst the groups of a sched_domain, during 6506 * load balancing. 6507 * @env: The load balancing environment. 6508 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 6509 */ 6510 static inline 6511 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 6512 { 6513 unsigned long tmp, capa_now = 0, capa_move = 0; 6514 unsigned int imbn = 2; 6515 unsigned long scaled_busy_load_per_task; 6516 struct sg_lb_stats *local, *busiest; 6517 6518 local = &sds->local_stat; 6519 busiest = &sds->busiest_stat; 6520 6521 if (!local->sum_nr_running) 6522 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 6523 else if (busiest->load_per_task > local->load_per_task) 6524 imbn = 1; 6525 6526 scaled_busy_load_per_task = 6527 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 6528 busiest->group_capacity; 6529 6530 if (busiest->avg_load + scaled_busy_load_per_task >= 6531 local->avg_load + (scaled_busy_load_per_task * imbn)) { 6532 env->imbalance = busiest->load_per_task; 6533 return; 6534 } 6535 6536 /* 6537 * OK, we don't have enough imbalance to justify moving tasks, 6538 * however we may be able to increase total CPU capacity used by 6539 * moving them. 6540 */ 6541 6542 capa_now += busiest->group_capacity * 6543 min(busiest->load_per_task, busiest->avg_load); 6544 capa_now += local->group_capacity * 6545 min(local->load_per_task, local->avg_load); 6546 capa_now /= SCHED_CAPACITY_SCALE; 6547 6548 /* Amount of load we'd subtract */ 6549 if (busiest->avg_load > scaled_busy_load_per_task) { 6550 capa_move += busiest->group_capacity * 6551 min(busiest->load_per_task, 6552 busiest->avg_load - scaled_busy_load_per_task); 6553 } 6554 6555 /* Amount of load we'd add */ 6556 if (busiest->avg_load * busiest->group_capacity < 6557 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 6558 tmp = (busiest->avg_load * busiest->group_capacity) / 6559 local->group_capacity; 6560 } else { 6561 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 6562 local->group_capacity; 6563 } 6564 capa_move += local->group_capacity * 6565 min(local->load_per_task, local->avg_load + tmp); 6566 capa_move /= SCHED_CAPACITY_SCALE; 6567 6568 /* Move if we gain throughput */ 6569 if (capa_move > capa_now) 6570 env->imbalance = busiest->load_per_task; 6571 } 6572 6573 /** 6574 * calculate_imbalance - Calculate the amount of imbalance present within the 6575 * groups of a given sched_domain during load balance. 6576 * @env: load balance environment 6577 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 6578 */ 6579 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 6580 { 6581 unsigned long max_pull, load_above_capacity = ~0UL; 6582 struct sg_lb_stats *local, *busiest; 6583 6584 local = &sds->local_stat; 6585 busiest = &sds->busiest_stat; 6586 6587 if (busiest->group_type == group_imbalanced) { 6588 /* 6589 * In the group_imb case we cannot rely on group-wide averages 6590 * to ensure cpu-load equilibrium, look at wider averages. XXX 6591 */ 6592 busiest->load_per_task = 6593 min(busiest->load_per_task, sds->avg_load); 6594 } 6595 6596 /* 6597 * In the presence of smp nice balancing, certain scenarios can have 6598 * max load less than avg load(as we skip the groups at or below 6599 * its cpu_capacity, while calculating max_load..) 6600 */ 6601 if (busiest->avg_load <= sds->avg_load || 6602 local->avg_load >= sds->avg_load) { 6603 env->imbalance = 0; 6604 return fix_small_imbalance(env, sds); 6605 } 6606 6607 /* 6608 * If there aren't any idle cpus, avoid creating some. 6609 */ 6610 if (busiest->group_type == group_overloaded && 6611 local->group_type == group_overloaded) { 6612 load_above_capacity = busiest->sum_nr_running * 6613 SCHED_LOAD_SCALE; 6614 if (load_above_capacity > busiest->group_capacity) 6615 load_above_capacity -= busiest->group_capacity; 6616 else 6617 load_above_capacity = ~0UL; 6618 } 6619 6620 /* 6621 * We're trying to get all the cpus to the average_load, so we don't 6622 * want to push ourselves above the average load, nor do we wish to 6623 * reduce the max loaded cpu below the average load. At the same time, 6624 * we also don't want to reduce the group load below the group capacity 6625 * (so that we can implement power-savings policies etc). Thus we look 6626 * for the minimum possible imbalance. 6627 */ 6628 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 6629 6630 /* How much load to actually move to equalise the imbalance */ 6631 env->imbalance = min( 6632 max_pull * busiest->group_capacity, 6633 (sds->avg_load - local->avg_load) * local->group_capacity 6634 ) / SCHED_CAPACITY_SCALE; 6635 6636 /* 6637 * if *imbalance is less than the average load per runnable task 6638 * there is no guarantee that any tasks will be moved so we'll have 6639 * a think about bumping its value to force at least one task to be 6640 * moved 6641 */ 6642 if (env->imbalance < busiest->load_per_task) 6643 return fix_small_imbalance(env, sds); 6644 } 6645 6646 /******* find_busiest_group() helpers end here *********************/ 6647 6648 /** 6649 * find_busiest_group - Returns the busiest group within the sched_domain 6650 * if there is an imbalance. If there isn't an imbalance, and 6651 * the user has opted for power-savings, it returns a group whose 6652 * CPUs can be put to idle by rebalancing those tasks elsewhere, if 6653 * such a group exists. 6654 * 6655 * Also calculates the amount of weighted load which should be moved 6656 * to restore balance. 6657 * 6658 * @env: The load balancing environment. 6659 * 6660 * Return: - The busiest group if imbalance exists. 6661 * - If no imbalance and user has opted for power-savings balance, 6662 * return the least loaded group whose CPUs can be 6663 * put to idle by rebalancing its tasks onto our group. 6664 */ 6665 static struct sched_group *find_busiest_group(struct lb_env *env) 6666 { 6667 struct sg_lb_stats *local, *busiest; 6668 struct sd_lb_stats sds; 6669 6670 init_sd_lb_stats(&sds); 6671 6672 /* 6673 * Compute the various statistics relavent for load balancing at 6674 * this level. 6675 */ 6676 update_sd_lb_stats(env, &sds); 6677 local = &sds.local_stat; 6678 busiest = &sds.busiest_stat; 6679 6680 /* ASYM feature bypasses nice load balance check */ 6681 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) && 6682 check_asym_packing(env, &sds)) 6683 return sds.busiest; 6684 6685 /* There is no busy sibling group to pull tasks from */ 6686 if (!sds.busiest || busiest->sum_nr_running == 0) 6687 goto out_balanced; 6688 6689 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 6690 / sds.total_capacity; 6691 6692 /* 6693 * If the busiest group is imbalanced the below checks don't 6694 * work because they assume all things are equal, which typically 6695 * isn't true due to cpus_allowed constraints and the like. 6696 */ 6697 if (busiest->group_type == group_imbalanced) 6698 goto force_balance; 6699 6700 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 6701 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) && 6702 busiest->group_no_capacity) 6703 goto force_balance; 6704 6705 /* 6706 * If the local group is busier than the selected busiest group 6707 * don't try and pull any tasks. 6708 */ 6709 if (local->avg_load >= busiest->avg_load) 6710 goto out_balanced; 6711 6712 /* 6713 * Don't pull any tasks if this group is already above the domain 6714 * average load. 6715 */ 6716 if (local->avg_load >= sds.avg_load) 6717 goto out_balanced; 6718 6719 if (env->idle == CPU_IDLE) { 6720 /* 6721 * This cpu is idle. If the busiest group is not overloaded 6722 * and there is no imbalance between this and busiest group 6723 * wrt idle cpus, it is balanced. The imbalance becomes 6724 * significant if the diff is greater than 1 otherwise we 6725 * might end up to just move the imbalance on another group 6726 */ 6727 if ((busiest->group_type != group_overloaded) && 6728 (local->idle_cpus <= (busiest->idle_cpus + 1))) 6729 goto out_balanced; 6730 } else { 6731 /* 6732 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 6733 * imbalance_pct to be conservative. 6734 */ 6735 if (100 * busiest->avg_load <= 6736 env->sd->imbalance_pct * local->avg_load) 6737 goto out_balanced; 6738 } 6739 6740 force_balance: 6741 /* Looks like there is an imbalance. Compute it */ 6742 calculate_imbalance(env, &sds); 6743 return sds.busiest; 6744 6745 out_balanced: 6746 env->imbalance = 0; 6747 return NULL; 6748 } 6749 6750 /* 6751 * find_busiest_queue - find the busiest runqueue among the cpus in group. 6752 */ 6753 static struct rq *find_busiest_queue(struct lb_env *env, 6754 struct sched_group *group) 6755 { 6756 struct rq *busiest = NULL, *rq; 6757 unsigned long busiest_load = 0, busiest_capacity = 1; 6758 int i; 6759 6760 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 6761 unsigned long capacity, wl; 6762 enum fbq_type rt; 6763 6764 rq = cpu_rq(i); 6765 rt = fbq_classify_rq(rq); 6766 6767 /* 6768 * We classify groups/runqueues into three groups: 6769 * - regular: there are !numa tasks 6770 * - remote: there are numa tasks that run on the 'wrong' node 6771 * - all: there is no distinction 6772 * 6773 * In order to avoid migrating ideally placed numa tasks, 6774 * ignore those when there's better options. 6775 * 6776 * If we ignore the actual busiest queue to migrate another 6777 * task, the next balance pass can still reduce the busiest 6778 * queue by moving tasks around inside the node. 6779 * 6780 * If we cannot move enough load due to this classification 6781 * the next pass will adjust the group classification and 6782 * allow migration of more tasks. 6783 * 6784 * Both cases only affect the total convergence complexity. 6785 */ 6786 if (rt > env->fbq_type) 6787 continue; 6788 6789 capacity = capacity_of(i); 6790 6791 wl = weighted_cpuload(i); 6792 6793 /* 6794 * When comparing with imbalance, use weighted_cpuload() 6795 * which is not scaled with the cpu capacity. 6796 */ 6797 6798 if (rq->nr_running == 1 && wl > env->imbalance && 6799 !check_cpu_capacity(rq, env->sd)) 6800 continue; 6801 6802 /* 6803 * For the load comparisons with the other cpu's, consider 6804 * the weighted_cpuload() scaled with the cpu capacity, so 6805 * that the load can be moved away from the cpu that is 6806 * potentially running at a lower capacity. 6807 * 6808 * Thus we're looking for max(wl_i / capacity_i), crosswise 6809 * multiplication to rid ourselves of the division works out 6810 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 6811 * our previous maximum. 6812 */ 6813 if (wl * busiest_capacity > busiest_load * capacity) { 6814 busiest_load = wl; 6815 busiest_capacity = capacity; 6816 busiest = rq; 6817 } 6818 } 6819 6820 return busiest; 6821 } 6822 6823 /* 6824 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 6825 * so long as it is large enough. 6826 */ 6827 #define MAX_PINNED_INTERVAL 512 6828 6829 /* Working cpumask for load_balance and load_balance_newidle. */ 6830 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6831 6832 static int need_active_balance(struct lb_env *env) 6833 { 6834 struct sched_domain *sd = env->sd; 6835 6836 if (env->idle == CPU_NEWLY_IDLE) { 6837 6838 /* 6839 * ASYM_PACKING needs to force migrate tasks from busy but 6840 * higher numbered CPUs in order to pack all tasks in the 6841 * lowest numbered CPUs. 6842 */ 6843 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) 6844 return 1; 6845 } 6846 6847 /* 6848 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 6849 * It's worth migrating the task if the src_cpu's capacity is reduced 6850 * because of other sched_class or IRQs if more capacity stays 6851 * available on dst_cpu. 6852 */ 6853 if ((env->idle != CPU_NOT_IDLE) && 6854 (env->src_rq->cfs.h_nr_running == 1)) { 6855 if ((check_cpu_capacity(env->src_rq, sd)) && 6856 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 6857 return 1; 6858 } 6859 6860 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 6861 } 6862 6863 static int active_load_balance_cpu_stop(void *data); 6864 6865 static int should_we_balance(struct lb_env *env) 6866 { 6867 struct sched_group *sg = env->sd->groups; 6868 struct cpumask *sg_cpus, *sg_mask; 6869 int cpu, balance_cpu = -1; 6870 6871 /* 6872 * In the newly idle case, we will allow all the cpu's 6873 * to do the newly idle load balance. 6874 */ 6875 if (env->idle == CPU_NEWLY_IDLE) 6876 return 1; 6877 6878 sg_cpus = sched_group_cpus(sg); 6879 sg_mask = sched_group_mask(sg); 6880 /* Try to find first idle cpu */ 6881 for_each_cpu_and(cpu, sg_cpus, env->cpus) { 6882 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) 6883 continue; 6884 6885 balance_cpu = cpu; 6886 break; 6887 } 6888 6889 if (balance_cpu == -1) 6890 balance_cpu = group_balance_cpu(sg); 6891 6892 /* 6893 * First idle cpu or the first cpu(busiest) in this sched group 6894 * is eligible for doing load balancing at this and above domains. 6895 */ 6896 return balance_cpu == env->dst_cpu; 6897 } 6898 6899 /* 6900 * Check this_cpu to ensure it is balanced within domain. Attempt to move 6901 * tasks if there is an imbalance. 6902 */ 6903 static int load_balance(int this_cpu, struct rq *this_rq, 6904 struct sched_domain *sd, enum cpu_idle_type idle, 6905 int *continue_balancing) 6906 { 6907 int ld_moved, cur_ld_moved, active_balance = 0; 6908 struct sched_domain *sd_parent = sd->parent; 6909 struct sched_group *group; 6910 struct rq *busiest; 6911 unsigned long flags; 6912 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 6913 6914 struct lb_env env = { 6915 .sd = sd, 6916 .dst_cpu = this_cpu, 6917 .dst_rq = this_rq, 6918 .dst_grpmask = sched_group_cpus(sd->groups), 6919 .idle = idle, 6920 .loop_break = sched_nr_migrate_break, 6921 .cpus = cpus, 6922 .fbq_type = all, 6923 .tasks = LIST_HEAD_INIT(env.tasks), 6924 }; 6925 6926 /* 6927 * For NEWLY_IDLE load_balancing, we don't need to consider 6928 * other cpus in our group 6929 */ 6930 if (idle == CPU_NEWLY_IDLE) 6931 env.dst_grpmask = NULL; 6932 6933 cpumask_copy(cpus, cpu_active_mask); 6934 6935 schedstat_inc(sd, lb_count[idle]); 6936 6937 redo: 6938 if (!should_we_balance(&env)) { 6939 *continue_balancing = 0; 6940 goto out_balanced; 6941 } 6942 6943 group = find_busiest_group(&env); 6944 if (!group) { 6945 schedstat_inc(sd, lb_nobusyg[idle]); 6946 goto out_balanced; 6947 } 6948 6949 busiest = find_busiest_queue(&env, group); 6950 if (!busiest) { 6951 schedstat_inc(sd, lb_nobusyq[idle]); 6952 goto out_balanced; 6953 } 6954 6955 BUG_ON(busiest == env.dst_rq); 6956 6957 schedstat_add(sd, lb_imbalance[idle], env.imbalance); 6958 6959 env.src_cpu = busiest->cpu; 6960 env.src_rq = busiest; 6961 6962 ld_moved = 0; 6963 if (busiest->nr_running > 1) { 6964 /* 6965 * Attempt to move tasks. If find_busiest_group has found 6966 * an imbalance but busiest->nr_running <= 1, the group is 6967 * still unbalanced. ld_moved simply stays zero, so it is 6968 * correctly treated as an imbalance. 6969 */ 6970 env.flags |= LBF_ALL_PINNED; 6971 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 6972 6973 more_balance: 6974 raw_spin_lock_irqsave(&busiest->lock, flags); 6975 6976 /* 6977 * cur_ld_moved - load moved in current iteration 6978 * ld_moved - cumulative load moved across iterations 6979 */ 6980 cur_ld_moved = detach_tasks(&env); 6981 6982 /* 6983 * We've detached some tasks from busiest_rq. Every 6984 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 6985 * unlock busiest->lock, and we are able to be sure 6986 * that nobody can manipulate the tasks in parallel. 6987 * See task_rq_lock() family for the details. 6988 */ 6989 6990 raw_spin_unlock(&busiest->lock); 6991 6992 if (cur_ld_moved) { 6993 attach_tasks(&env); 6994 ld_moved += cur_ld_moved; 6995 } 6996 6997 local_irq_restore(flags); 6998 6999 if (env.flags & LBF_NEED_BREAK) { 7000 env.flags &= ~LBF_NEED_BREAK; 7001 goto more_balance; 7002 } 7003 7004 /* 7005 * Revisit (affine) tasks on src_cpu that couldn't be moved to 7006 * us and move them to an alternate dst_cpu in our sched_group 7007 * where they can run. The upper limit on how many times we 7008 * iterate on same src_cpu is dependent on number of cpus in our 7009 * sched_group. 7010 * 7011 * This changes load balance semantics a bit on who can move 7012 * load to a given_cpu. In addition to the given_cpu itself 7013 * (or a ilb_cpu acting on its behalf where given_cpu is 7014 * nohz-idle), we now have balance_cpu in a position to move 7015 * load to given_cpu. In rare situations, this may cause 7016 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 7017 * _independently_ and at _same_ time to move some load to 7018 * given_cpu) causing exceess load to be moved to given_cpu. 7019 * This however should not happen so much in practice and 7020 * moreover subsequent load balance cycles should correct the 7021 * excess load moved. 7022 */ 7023 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 7024 7025 /* Prevent to re-select dst_cpu via env's cpus */ 7026 cpumask_clear_cpu(env.dst_cpu, env.cpus); 7027 7028 env.dst_rq = cpu_rq(env.new_dst_cpu); 7029 env.dst_cpu = env.new_dst_cpu; 7030 env.flags &= ~LBF_DST_PINNED; 7031 env.loop = 0; 7032 env.loop_break = sched_nr_migrate_break; 7033 7034 /* 7035 * Go back to "more_balance" rather than "redo" since we 7036 * need to continue with same src_cpu. 7037 */ 7038 goto more_balance; 7039 } 7040 7041 /* 7042 * We failed to reach balance because of affinity. 7043 */ 7044 if (sd_parent) { 7045 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 7046 7047 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 7048 *group_imbalance = 1; 7049 } 7050 7051 /* All tasks on this runqueue were pinned by CPU affinity */ 7052 if (unlikely(env.flags & LBF_ALL_PINNED)) { 7053 cpumask_clear_cpu(cpu_of(busiest), cpus); 7054 if (!cpumask_empty(cpus)) { 7055 env.loop = 0; 7056 env.loop_break = sched_nr_migrate_break; 7057 goto redo; 7058 } 7059 goto out_all_pinned; 7060 } 7061 } 7062 7063 if (!ld_moved) { 7064 schedstat_inc(sd, lb_failed[idle]); 7065 /* 7066 * Increment the failure counter only on periodic balance. 7067 * We do not want newidle balance, which can be very 7068 * frequent, pollute the failure counter causing 7069 * excessive cache_hot migrations and active balances. 7070 */ 7071 if (idle != CPU_NEWLY_IDLE) 7072 sd->nr_balance_failed++; 7073 7074 if (need_active_balance(&env)) { 7075 raw_spin_lock_irqsave(&busiest->lock, flags); 7076 7077 /* don't kick the active_load_balance_cpu_stop, 7078 * if the curr task on busiest cpu can't be 7079 * moved to this_cpu 7080 */ 7081 if (!cpumask_test_cpu(this_cpu, 7082 tsk_cpus_allowed(busiest->curr))) { 7083 raw_spin_unlock_irqrestore(&busiest->lock, 7084 flags); 7085 env.flags |= LBF_ALL_PINNED; 7086 goto out_one_pinned; 7087 } 7088 7089 /* 7090 * ->active_balance synchronizes accesses to 7091 * ->active_balance_work. Once set, it's cleared 7092 * only after active load balance is finished. 7093 */ 7094 if (!busiest->active_balance) { 7095 busiest->active_balance = 1; 7096 busiest->push_cpu = this_cpu; 7097 active_balance = 1; 7098 } 7099 raw_spin_unlock_irqrestore(&busiest->lock, flags); 7100 7101 if (active_balance) { 7102 stop_one_cpu_nowait(cpu_of(busiest), 7103 active_load_balance_cpu_stop, busiest, 7104 &busiest->active_balance_work); 7105 } 7106 7107 /* 7108 * We've kicked active balancing, reset the failure 7109 * counter. 7110 */ 7111 sd->nr_balance_failed = sd->cache_nice_tries+1; 7112 } 7113 } else 7114 sd->nr_balance_failed = 0; 7115 7116 if (likely(!active_balance)) { 7117 /* We were unbalanced, so reset the balancing interval */ 7118 sd->balance_interval = sd->min_interval; 7119 } else { 7120 /* 7121 * If we've begun active balancing, start to back off. This 7122 * case may not be covered by the all_pinned logic if there 7123 * is only 1 task on the busy runqueue (because we don't call 7124 * detach_tasks). 7125 */ 7126 if (sd->balance_interval < sd->max_interval) 7127 sd->balance_interval *= 2; 7128 } 7129 7130 goto out; 7131 7132 out_balanced: 7133 /* 7134 * We reach balance although we may have faced some affinity 7135 * constraints. Clear the imbalance flag if it was set. 7136 */ 7137 if (sd_parent) { 7138 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 7139 7140 if (*group_imbalance) 7141 *group_imbalance = 0; 7142 } 7143 7144 out_all_pinned: 7145 /* 7146 * We reach balance because all tasks are pinned at this level so 7147 * we can't migrate them. Let the imbalance flag set so parent level 7148 * can try to migrate them. 7149 */ 7150 schedstat_inc(sd, lb_balanced[idle]); 7151 7152 sd->nr_balance_failed = 0; 7153 7154 out_one_pinned: 7155 /* tune up the balancing interval */ 7156 if (((env.flags & LBF_ALL_PINNED) && 7157 sd->balance_interval < MAX_PINNED_INTERVAL) || 7158 (sd->balance_interval < sd->max_interval)) 7159 sd->balance_interval *= 2; 7160 7161 ld_moved = 0; 7162 out: 7163 return ld_moved; 7164 } 7165 7166 static inline unsigned long 7167 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 7168 { 7169 unsigned long interval = sd->balance_interval; 7170 7171 if (cpu_busy) 7172 interval *= sd->busy_factor; 7173 7174 /* scale ms to jiffies */ 7175 interval = msecs_to_jiffies(interval); 7176 interval = clamp(interval, 1UL, max_load_balance_interval); 7177 7178 return interval; 7179 } 7180 7181 static inline void 7182 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance) 7183 { 7184 unsigned long interval, next; 7185 7186 interval = get_sd_balance_interval(sd, cpu_busy); 7187 next = sd->last_balance + interval; 7188 7189 if (time_after(*next_balance, next)) 7190 *next_balance = next; 7191 } 7192 7193 /* 7194 * idle_balance is called by schedule() if this_cpu is about to become 7195 * idle. Attempts to pull tasks from other CPUs. 7196 */ 7197 static int idle_balance(struct rq *this_rq) 7198 { 7199 unsigned long next_balance = jiffies + HZ; 7200 int this_cpu = this_rq->cpu; 7201 struct sched_domain *sd; 7202 int pulled_task = 0; 7203 u64 curr_cost = 0; 7204 7205 idle_enter_fair(this_rq); 7206 7207 /* 7208 * We must set idle_stamp _before_ calling idle_balance(), such that we 7209 * measure the duration of idle_balance() as idle time. 7210 */ 7211 this_rq->idle_stamp = rq_clock(this_rq); 7212 7213 if (this_rq->avg_idle < sysctl_sched_migration_cost || 7214 !this_rq->rd->overload) { 7215 rcu_read_lock(); 7216 sd = rcu_dereference_check_sched_domain(this_rq->sd); 7217 if (sd) 7218 update_next_balance(sd, 0, &next_balance); 7219 rcu_read_unlock(); 7220 7221 goto out; 7222 } 7223 7224 raw_spin_unlock(&this_rq->lock); 7225 7226 update_blocked_averages(this_cpu); 7227 rcu_read_lock(); 7228 for_each_domain(this_cpu, sd) { 7229 int continue_balancing = 1; 7230 u64 t0, domain_cost; 7231 7232 if (!(sd->flags & SD_LOAD_BALANCE)) 7233 continue; 7234 7235 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 7236 update_next_balance(sd, 0, &next_balance); 7237 break; 7238 } 7239 7240 if (sd->flags & SD_BALANCE_NEWIDLE) { 7241 t0 = sched_clock_cpu(this_cpu); 7242 7243 pulled_task = load_balance(this_cpu, this_rq, 7244 sd, CPU_NEWLY_IDLE, 7245 &continue_balancing); 7246 7247 domain_cost = sched_clock_cpu(this_cpu) - t0; 7248 if (domain_cost > sd->max_newidle_lb_cost) 7249 sd->max_newidle_lb_cost = domain_cost; 7250 7251 curr_cost += domain_cost; 7252 } 7253 7254 update_next_balance(sd, 0, &next_balance); 7255 7256 /* 7257 * Stop searching for tasks to pull if there are 7258 * now runnable tasks on this rq. 7259 */ 7260 if (pulled_task || this_rq->nr_running > 0) 7261 break; 7262 } 7263 rcu_read_unlock(); 7264 7265 raw_spin_lock(&this_rq->lock); 7266 7267 if (curr_cost > this_rq->max_idle_balance_cost) 7268 this_rq->max_idle_balance_cost = curr_cost; 7269 7270 /* 7271 * While browsing the domains, we released the rq lock, a task could 7272 * have been enqueued in the meantime. Since we're not going idle, 7273 * pretend we pulled a task. 7274 */ 7275 if (this_rq->cfs.h_nr_running && !pulled_task) 7276 pulled_task = 1; 7277 7278 out: 7279 /* Move the next balance forward */ 7280 if (time_after(this_rq->next_balance, next_balance)) 7281 this_rq->next_balance = next_balance; 7282 7283 /* Is there a task of a high priority class? */ 7284 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 7285 pulled_task = -1; 7286 7287 if (pulled_task) { 7288 idle_exit_fair(this_rq); 7289 this_rq->idle_stamp = 0; 7290 } 7291 7292 return pulled_task; 7293 } 7294 7295 /* 7296 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 7297 * running tasks off the busiest CPU onto idle CPUs. It requires at 7298 * least 1 task to be running on each physical CPU where possible, and 7299 * avoids physical / logical imbalances. 7300 */ 7301 static int active_load_balance_cpu_stop(void *data) 7302 { 7303 struct rq *busiest_rq = data; 7304 int busiest_cpu = cpu_of(busiest_rq); 7305 int target_cpu = busiest_rq->push_cpu; 7306 struct rq *target_rq = cpu_rq(target_cpu); 7307 struct sched_domain *sd; 7308 struct task_struct *p = NULL; 7309 7310 raw_spin_lock_irq(&busiest_rq->lock); 7311 7312 /* make sure the requested cpu hasn't gone down in the meantime */ 7313 if (unlikely(busiest_cpu != smp_processor_id() || 7314 !busiest_rq->active_balance)) 7315 goto out_unlock; 7316 7317 /* Is there any task to move? */ 7318 if (busiest_rq->nr_running <= 1) 7319 goto out_unlock; 7320 7321 /* 7322 * This condition is "impossible", if it occurs 7323 * we need to fix it. Originally reported by 7324 * Bjorn Helgaas on a 128-cpu setup. 7325 */ 7326 BUG_ON(busiest_rq == target_rq); 7327 7328 /* Search for an sd spanning us and the target CPU. */ 7329 rcu_read_lock(); 7330 for_each_domain(target_cpu, sd) { 7331 if ((sd->flags & SD_LOAD_BALANCE) && 7332 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 7333 break; 7334 } 7335 7336 if (likely(sd)) { 7337 struct lb_env env = { 7338 .sd = sd, 7339 .dst_cpu = target_cpu, 7340 .dst_rq = target_rq, 7341 .src_cpu = busiest_rq->cpu, 7342 .src_rq = busiest_rq, 7343 .idle = CPU_IDLE, 7344 }; 7345 7346 schedstat_inc(sd, alb_count); 7347 7348 p = detach_one_task(&env); 7349 if (p) 7350 schedstat_inc(sd, alb_pushed); 7351 else 7352 schedstat_inc(sd, alb_failed); 7353 } 7354 rcu_read_unlock(); 7355 out_unlock: 7356 busiest_rq->active_balance = 0; 7357 raw_spin_unlock(&busiest_rq->lock); 7358 7359 if (p) 7360 attach_one_task(target_rq, p); 7361 7362 local_irq_enable(); 7363 7364 return 0; 7365 } 7366 7367 static inline int on_null_domain(struct rq *rq) 7368 { 7369 return unlikely(!rcu_dereference_sched(rq->sd)); 7370 } 7371 7372 #ifdef CONFIG_NO_HZ_COMMON 7373 /* 7374 * idle load balancing details 7375 * - When one of the busy CPUs notice that there may be an idle rebalancing 7376 * needed, they will kick the idle load balancer, which then does idle 7377 * load balancing for all the idle CPUs. 7378 */ 7379 static struct { 7380 cpumask_var_t idle_cpus_mask; 7381 atomic_t nr_cpus; 7382 unsigned long next_balance; /* in jiffy units */ 7383 } nohz ____cacheline_aligned; 7384 7385 static inline int find_new_ilb(void) 7386 { 7387 int ilb = cpumask_first(nohz.idle_cpus_mask); 7388 7389 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 7390 return ilb; 7391 7392 return nr_cpu_ids; 7393 } 7394 7395 /* 7396 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 7397 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 7398 * CPU (if there is one). 7399 */ 7400 static void nohz_balancer_kick(void) 7401 { 7402 int ilb_cpu; 7403 7404 nohz.next_balance++; 7405 7406 ilb_cpu = find_new_ilb(); 7407 7408 if (ilb_cpu >= nr_cpu_ids) 7409 return; 7410 7411 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 7412 return; 7413 /* 7414 * Use smp_send_reschedule() instead of resched_cpu(). 7415 * This way we generate a sched IPI on the target cpu which 7416 * is idle. And the softirq performing nohz idle load balance 7417 * will be run before returning from the IPI. 7418 */ 7419 smp_send_reschedule(ilb_cpu); 7420 return; 7421 } 7422 7423 static inline void nohz_balance_exit_idle(int cpu) 7424 { 7425 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 7426 /* 7427 * Completely isolated CPUs don't ever set, so we must test. 7428 */ 7429 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { 7430 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 7431 atomic_dec(&nohz.nr_cpus); 7432 } 7433 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 7434 } 7435 } 7436 7437 static inline void set_cpu_sd_state_busy(void) 7438 { 7439 struct sched_domain *sd; 7440 int cpu = smp_processor_id(); 7441 7442 rcu_read_lock(); 7443 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7444 7445 if (!sd || !sd->nohz_idle) 7446 goto unlock; 7447 sd->nohz_idle = 0; 7448 7449 atomic_inc(&sd->groups->sgc->nr_busy_cpus); 7450 unlock: 7451 rcu_read_unlock(); 7452 } 7453 7454 void set_cpu_sd_state_idle(void) 7455 { 7456 struct sched_domain *sd; 7457 int cpu = smp_processor_id(); 7458 7459 rcu_read_lock(); 7460 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7461 7462 if (!sd || sd->nohz_idle) 7463 goto unlock; 7464 sd->nohz_idle = 1; 7465 7466 atomic_dec(&sd->groups->sgc->nr_busy_cpus); 7467 unlock: 7468 rcu_read_unlock(); 7469 } 7470 7471 /* 7472 * This routine will record that the cpu is going idle with tick stopped. 7473 * This info will be used in performing idle load balancing in the future. 7474 */ 7475 void nohz_balance_enter_idle(int cpu) 7476 { 7477 /* 7478 * If this cpu is going down, then nothing needs to be done. 7479 */ 7480 if (!cpu_active(cpu)) 7481 return; 7482 7483 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 7484 return; 7485 7486 /* 7487 * If we're a completely isolated CPU, we don't play. 7488 */ 7489 if (on_null_domain(cpu_rq(cpu))) 7490 return; 7491 7492 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 7493 atomic_inc(&nohz.nr_cpus); 7494 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 7495 } 7496 7497 static int sched_ilb_notifier(struct notifier_block *nfb, 7498 unsigned long action, void *hcpu) 7499 { 7500 switch (action & ~CPU_TASKS_FROZEN) { 7501 case CPU_DYING: 7502 nohz_balance_exit_idle(smp_processor_id()); 7503 return NOTIFY_OK; 7504 default: 7505 return NOTIFY_DONE; 7506 } 7507 } 7508 #endif 7509 7510 static DEFINE_SPINLOCK(balancing); 7511 7512 /* 7513 * Scale the max load_balance interval with the number of CPUs in the system. 7514 * This trades load-balance latency on larger machines for less cross talk. 7515 */ 7516 void update_max_interval(void) 7517 { 7518 max_load_balance_interval = HZ*num_online_cpus()/10; 7519 } 7520 7521 /* 7522 * It checks each scheduling domain to see if it is due to be balanced, 7523 * and initiates a balancing operation if so. 7524 * 7525 * Balancing parameters are set up in init_sched_domains. 7526 */ 7527 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 7528 { 7529 int continue_balancing = 1; 7530 int cpu = rq->cpu; 7531 unsigned long interval; 7532 struct sched_domain *sd; 7533 /* Earliest time when we have to do rebalance again */ 7534 unsigned long next_balance = jiffies + 60*HZ; 7535 int update_next_balance = 0; 7536 int need_serialize, need_decay = 0; 7537 u64 max_cost = 0; 7538 7539 update_blocked_averages(cpu); 7540 7541 rcu_read_lock(); 7542 for_each_domain(cpu, sd) { 7543 /* 7544 * Decay the newidle max times here because this is a regular 7545 * visit to all the domains. Decay ~1% per second. 7546 */ 7547 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 7548 sd->max_newidle_lb_cost = 7549 (sd->max_newidle_lb_cost * 253) / 256; 7550 sd->next_decay_max_lb_cost = jiffies + HZ; 7551 need_decay = 1; 7552 } 7553 max_cost += sd->max_newidle_lb_cost; 7554 7555 if (!(sd->flags & SD_LOAD_BALANCE)) 7556 continue; 7557 7558 /* 7559 * Stop the load balance at this level. There is another 7560 * CPU in our sched group which is doing load balancing more 7561 * actively. 7562 */ 7563 if (!continue_balancing) { 7564 if (need_decay) 7565 continue; 7566 break; 7567 } 7568 7569 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 7570 7571 need_serialize = sd->flags & SD_SERIALIZE; 7572 if (need_serialize) { 7573 if (!spin_trylock(&balancing)) 7574 goto out; 7575 } 7576 7577 if (time_after_eq(jiffies, sd->last_balance + interval)) { 7578 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 7579 /* 7580 * The LBF_DST_PINNED logic could have changed 7581 * env->dst_cpu, so we can't know our idle 7582 * state even if we migrated tasks. Update it. 7583 */ 7584 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 7585 } 7586 sd->last_balance = jiffies; 7587 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 7588 } 7589 if (need_serialize) 7590 spin_unlock(&balancing); 7591 out: 7592 if (time_after(next_balance, sd->last_balance + interval)) { 7593 next_balance = sd->last_balance + interval; 7594 update_next_balance = 1; 7595 } 7596 } 7597 if (need_decay) { 7598 /* 7599 * Ensure the rq-wide value also decays but keep it at a 7600 * reasonable floor to avoid funnies with rq->avg_idle. 7601 */ 7602 rq->max_idle_balance_cost = 7603 max((u64)sysctl_sched_migration_cost, max_cost); 7604 } 7605 rcu_read_unlock(); 7606 7607 /* 7608 * next_balance will be updated only when there is a need. 7609 * When the cpu is attached to null domain for ex, it will not be 7610 * updated. 7611 */ 7612 if (likely(update_next_balance)) 7613 rq->next_balance = next_balance; 7614 } 7615 7616 #ifdef CONFIG_NO_HZ_COMMON 7617 /* 7618 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 7619 * rebalancing for all the cpus for whom scheduler ticks are stopped. 7620 */ 7621 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 7622 { 7623 int this_cpu = this_rq->cpu; 7624 struct rq *rq; 7625 int balance_cpu; 7626 7627 if (idle != CPU_IDLE || 7628 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 7629 goto end; 7630 7631 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 7632 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 7633 continue; 7634 7635 /* 7636 * If this cpu gets work to do, stop the load balancing 7637 * work being done for other cpus. Next load 7638 * balancing owner will pick it up. 7639 */ 7640 if (need_resched()) 7641 break; 7642 7643 rq = cpu_rq(balance_cpu); 7644 7645 /* 7646 * If time for next balance is due, 7647 * do the balance. 7648 */ 7649 if (time_after_eq(jiffies, rq->next_balance)) { 7650 raw_spin_lock_irq(&rq->lock); 7651 update_rq_clock(rq); 7652 update_idle_cpu_load(rq); 7653 raw_spin_unlock_irq(&rq->lock); 7654 rebalance_domains(rq, CPU_IDLE); 7655 } 7656 7657 if (time_after(this_rq->next_balance, rq->next_balance)) 7658 this_rq->next_balance = rq->next_balance; 7659 } 7660 nohz.next_balance = this_rq->next_balance; 7661 end: 7662 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 7663 } 7664 7665 /* 7666 * Current heuristic for kicking the idle load balancer in the presence 7667 * of an idle cpu in the system. 7668 * - This rq has more than one task. 7669 * - This rq has at least one CFS task and the capacity of the CPU is 7670 * significantly reduced because of RT tasks or IRQs. 7671 * - At parent of LLC scheduler domain level, this cpu's scheduler group has 7672 * multiple busy cpu. 7673 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 7674 * domain span are idle. 7675 */ 7676 static inline bool nohz_kick_needed(struct rq *rq) 7677 { 7678 unsigned long now = jiffies; 7679 struct sched_domain *sd; 7680 struct sched_group_capacity *sgc; 7681 int nr_busy, cpu = rq->cpu; 7682 bool kick = false; 7683 7684 if (unlikely(rq->idle_balance)) 7685 return false; 7686 7687 /* 7688 * We may be recently in ticked or tickless idle mode. At the first 7689 * busy tick after returning from idle, we will update the busy stats. 7690 */ 7691 set_cpu_sd_state_busy(); 7692 nohz_balance_exit_idle(cpu); 7693 7694 /* 7695 * None are in tickless mode and hence no need for NOHZ idle load 7696 * balancing. 7697 */ 7698 if (likely(!atomic_read(&nohz.nr_cpus))) 7699 return false; 7700 7701 if (time_before(now, nohz.next_balance)) 7702 return false; 7703 7704 if (rq->nr_running >= 2) 7705 return true; 7706 7707 rcu_read_lock(); 7708 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7709 if (sd) { 7710 sgc = sd->groups->sgc; 7711 nr_busy = atomic_read(&sgc->nr_busy_cpus); 7712 7713 if (nr_busy > 1) { 7714 kick = true; 7715 goto unlock; 7716 } 7717 7718 } 7719 7720 sd = rcu_dereference(rq->sd); 7721 if (sd) { 7722 if ((rq->cfs.h_nr_running >= 1) && 7723 check_cpu_capacity(rq, sd)) { 7724 kick = true; 7725 goto unlock; 7726 } 7727 } 7728 7729 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 7730 if (sd && (cpumask_first_and(nohz.idle_cpus_mask, 7731 sched_domain_span(sd)) < cpu)) { 7732 kick = true; 7733 goto unlock; 7734 } 7735 7736 unlock: 7737 rcu_read_unlock(); 7738 return kick; 7739 } 7740 #else 7741 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } 7742 #endif 7743 7744 /* 7745 * run_rebalance_domains is triggered when needed from the scheduler tick. 7746 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 7747 */ 7748 static void run_rebalance_domains(struct softirq_action *h) 7749 { 7750 struct rq *this_rq = this_rq(); 7751 enum cpu_idle_type idle = this_rq->idle_balance ? 7752 CPU_IDLE : CPU_NOT_IDLE; 7753 7754 /* 7755 * If this cpu has a pending nohz_balance_kick, then do the 7756 * balancing on behalf of the other idle cpus whose ticks are 7757 * stopped. Do nohz_idle_balance *before* rebalance_domains to 7758 * give the idle cpus a chance to load balance. Else we may 7759 * load balance only within the local sched_domain hierarchy 7760 * and abort nohz_idle_balance altogether if we pull some load. 7761 */ 7762 nohz_idle_balance(this_rq, idle); 7763 rebalance_domains(this_rq, idle); 7764 } 7765 7766 /* 7767 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 7768 */ 7769 void trigger_load_balance(struct rq *rq) 7770 { 7771 /* Don't need to rebalance while attached to NULL domain */ 7772 if (unlikely(on_null_domain(rq))) 7773 return; 7774 7775 if (time_after_eq(jiffies, rq->next_balance)) 7776 raise_softirq(SCHED_SOFTIRQ); 7777 #ifdef CONFIG_NO_HZ_COMMON 7778 if (nohz_kick_needed(rq)) 7779 nohz_balancer_kick(); 7780 #endif 7781 } 7782 7783 static void rq_online_fair(struct rq *rq) 7784 { 7785 update_sysctl(); 7786 7787 update_runtime_enabled(rq); 7788 } 7789 7790 static void rq_offline_fair(struct rq *rq) 7791 { 7792 update_sysctl(); 7793 7794 /* Ensure any throttled groups are reachable by pick_next_task */ 7795 unthrottle_offline_cfs_rqs(rq); 7796 } 7797 7798 #endif /* CONFIG_SMP */ 7799 7800 /* 7801 * scheduler tick hitting a task of our scheduling class: 7802 */ 7803 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 7804 { 7805 struct cfs_rq *cfs_rq; 7806 struct sched_entity *se = &curr->se; 7807 7808 for_each_sched_entity(se) { 7809 cfs_rq = cfs_rq_of(se); 7810 entity_tick(cfs_rq, se, queued); 7811 } 7812 7813 if (numabalancing_enabled) 7814 task_tick_numa(rq, curr); 7815 } 7816 7817 /* 7818 * called on fork with the child task as argument from the parent's context 7819 * - child not yet on the tasklist 7820 * - preemption disabled 7821 */ 7822 static void task_fork_fair(struct task_struct *p) 7823 { 7824 struct cfs_rq *cfs_rq; 7825 struct sched_entity *se = &p->se, *curr; 7826 int this_cpu = smp_processor_id(); 7827 struct rq *rq = this_rq(); 7828 unsigned long flags; 7829 7830 raw_spin_lock_irqsave(&rq->lock, flags); 7831 7832 update_rq_clock(rq); 7833 7834 cfs_rq = task_cfs_rq(current); 7835 curr = cfs_rq->curr; 7836 7837 /* 7838 * Not only the cpu but also the task_group of the parent might have 7839 * been changed after parent->se.parent,cfs_rq were copied to 7840 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those 7841 * of child point to valid ones. 7842 */ 7843 rcu_read_lock(); 7844 __set_task_cpu(p, this_cpu); 7845 rcu_read_unlock(); 7846 7847 update_curr(cfs_rq); 7848 7849 if (curr) 7850 se->vruntime = curr->vruntime; 7851 place_entity(cfs_rq, se, 1); 7852 7853 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 7854 /* 7855 * Upon rescheduling, sched_class::put_prev_task() will place 7856 * 'current' within the tree based on its new key value. 7857 */ 7858 swap(curr->vruntime, se->vruntime); 7859 resched_curr(rq); 7860 } 7861 7862 se->vruntime -= cfs_rq->min_vruntime; 7863 7864 raw_spin_unlock_irqrestore(&rq->lock, flags); 7865 } 7866 7867 /* 7868 * Priority of the task has changed. Check to see if we preempt 7869 * the current task. 7870 */ 7871 static void 7872 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 7873 { 7874 if (!task_on_rq_queued(p)) 7875 return; 7876 7877 /* 7878 * Reschedule if we are currently running on this runqueue and 7879 * our priority decreased, or if we are not currently running on 7880 * this runqueue and our priority is higher than the current's 7881 */ 7882 if (rq->curr == p) { 7883 if (p->prio > oldprio) 7884 resched_curr(rq); 7885 } else 7886 check_preempt_curr(rq, p, 0); 7887 } 7888 7889 static void switched_from_fair(struct rq *rq, struct task_struct *p) 7890 { 7891 struct sched_entity *se = &p->se; 7892 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7893 7894 /* 7895 * Ensure the task's vruntime is normalized, so that when it's 7896 * switched back to the fair class the enqueue_entity(.flags=0) will 7897 * do the right thing. 7898 * 7899 * If it's queued, then the dequeue_entity(.flags=0) will already 7900 * have normalized the vruntime, if it's !queued, then only when 7901 * the task is sleeping will it still have non-normalized vruntime. 7902 */ 7903 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) { 7904 /* 7905 * Fix up our vruntime so that the current sleep doesn't 7906 * cause 'unlimited' sleep bonus. 7907 */ 7908 place_entity(cfs_rq, se, 0); 7909 se->vruntime -= cfs_rq->min_vruntime; 7910 } 7911 7912 #ifdef CONFIG_SMP 7913 /* Catch up with the cfs_rq and remove our load when we leave */ 7914 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq), &se->avg, 7915 se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL); 7916 7917 cfs_rq->avg.load_avg = 7918 max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0); 7919 cfs_rq->avg.load_sum = 7920 max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0); 7921 cfs_rq->avg.util_avg = 7922 max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0); 7923 cfs_rq->avg.util_sum = 7924 max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0); 7925 #endif 7926 } 7927 7928 /* 7929 * We switched to the sched_fair class. 7930 */ 7931 static void switched_to_fair(struct rq *rq, struct task_struct *p) 7932 { 7933 struct sched_entity *se = &p->se; 7934 7935 #ifdef CONFIG_FAIR_GROUP_SCHED 7936 /* 7937 * Since the real-depth could have been changed (only FAIR 7938 * class maintain depth value), reset depth properly. 7939 */ 7940 se->depth = se->parent ? se->parent->depth + 1 : 0; 7941 #endif 7942 7943 if (!task_on_rq_queued(p)) { 7944 7945 /* 7946 * Ensure the task has a non-normalized vruntime when it is switched 7947 * back to the fair class with !queued, so that enqueue_entity() at 7948 * wake-up time will do the right thing. 7949 * 7950 * If it's queued, then the enqueue_entity(.flags=0) makes the task 7951 * has non-normalized vruntime, if it's !queued, then it still has 7952 * normalized vruntime. 7953 */ 7954 if (p->state != TASK_RUNNING) 7955 se->vruntime += cfs_rq_of(se)->min_vruntime; 7956 return; 7957 } 7958 7959 /* 7960 * We were most likely switched from sched_rt, so 7961 * kick off the schedule if running, otherwise just see 7962 * if we can still preempt the current task. 7963 */ 7964 if (rq->curr == p) 7965 resched_curr(rq); 7966 else 7967 check_preempt_curr(rq, p, 0); 7968 } 7969 7970 /* Account for a task changing its policy or group. 7971 * 7972 * This routine is mostly called to set cfs_rq->curr field when a task 7973 * migrates between groups/classes. 7974 */ 7975 static void set_curr_task_fair(struct rq *rq) 7976 { 7977 struct sched_entity *se = &rq->curr->se; 7978 7979 for_each_sched_entity(se) { 7980 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7981 7982 set_next_entity(cfs_rq, se); 7983 /* ensure bandwidth has been allocated on our new cfs_rq */ 7984 account_cfs_rq_runtime(cfs_rq, 0); 7985 } 7986 } 7987 7988 void init_cfs_rq(struct cfs_rq *cfs_rq) 7989 { 7990 cfs_rq->tasks_timeline = RB_ROOT; 7991 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 7992 #ifndef CONFIG_64BIT 7993 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 7994 #endif 7995 #ifdef CONFIG_SMP 7996 atomic_long_set(&cfs_rq->removed_load_avg, 0); 7997 atomic_long_set(&cfs_rq->removed_util_avg, 0); 7998 #endif 7999 } 8000 8001 #ifdef CONFIG_FAIR_GROUP_SCHED 8002 static void task_move_group_fair(struct task_struct *p, int queued) 8003 { 8004 struct sched_entity *se = &p->se; 8005 struct cfs_rq *cfs_rq; 8006 8007 /* 8008 * If the task was not on the rq at the time of this cgroup movement 8009 * it must have been asleep, sleeping tasks keep their ->vruntime 8010 * absolute on their old rq until wakeup (needed for the fair sleeper 8011 * bonus in place_entity()). 8012 * 8013 * If it was on the rq, we've just 'preempted' it, which does convert 8014 * ->vruntime to a relative base. 8015 * 8016 * Make sure both cases convert their relative position when migrating 8017 * to another cgroup's rq. This does somewhat interfere with the 8018 * fair sleeper stuff for the first placement, but who cares. 8019 */ 8020 /* 8021 * When !queued, vruntime of the task has usually NOT been normalized. 8022 * But there are some cases where it has already been normalized: 8023 * 8024 * - Moving a forked child which is waiting for being woken up by 8025 * wake_up_new_task(). 8026 * - Moving a task which has been woken up by try_to_wake_up() and 8027 * waiting for actually being woken up by sched_ttwu_pending(). 8028 * 8029 * To prevent boost or penalty in the new cfs_rq caused by delta 8030 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. 8031 */ 8032 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING)) 8033 queued = 1; 8034 8035 if (!queued) 8036 se->vruntime -= cfs_rq_of(se)->min_vruntime; 8037 set_task_rq(p, task_cpu(p)); 8038 se->depth = se->parent ? se->parent->depth + 1 : 0; 8039 if (!queued) { 8040 cfs_rq = cfs_rq_of(se); 8041 se->vruntime += cfs_rq->min_vruntime; 8042 8043 #ifdef CONFIG_SMP 8044 /* Virtually synchronize task with its new cfs_rq */ 8045 p->se.avg.last_update_time = cfs_rq->avg.last_update_time; 8046 cfs_rq->avg.load_avg += p->se.avg.load_avg; 8047 cfs_rq->avg.load_sum += p->se.avg.load_sum; 8048 cfs_rq->avg.util_avg += p->se.avg.util_avg; 8049 cfs_rq->avg.util_sum += p->se.avg.util_sum; 8050 #endif 8051 } 8052 } 8053 8054 void free_fair_sched_group(struct task_group *tg) 8055 { 8056 int i; 8057 8058 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 8059 8060 for_each_possible_cpu(i) { 8061 if (tg->cfs_rq) 8062 kfree(tg->cfs_rq[i]); 8063 if (tg->se) { 8064 if (tg->se[i]) 8065 remove_entity_load_avg(tg->se[i]); 8066 kfree(tg->se[i]); 8067 } 8068 } 8069 8070 kfree(tg->cfs_rq); 8071 kfree(tg->se); 8072 } 8073 8074 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 8075 { 8076 struct cfs_rq *cfs_rq; 8077 struct sched_entity *se; 8078 int i; 8079 8080 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 8081 if (!tg->cfs_rq) 8082 goto err; 8083 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 8084 if (!tg->se) 8085 goto err; 8086 8087 tg->shares = NICE_0_LOAD; 8088 8089 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 8090 8091 for_each_possible_cpu(i) { 8092 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 8093 GFP_KERNEL, cpu_to_node(i)); 8094 if (!cfs_rq) 8095 goto err; 8096 8097 se = kzalloc_node(sizeof(struct sched_entity), 8098 GFP_KERNEL, cpu_to_node(i)); 8099 if (!se) 8100 goto err_free_rq; 8101 8102 init_cfs_rq(cfs_rq); 8103 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 8104 init_entity_runnable_average(se); 8105 } 8106 8107 return 1; 8108 8109 err_free_rq: 8110 kfree(cfs_rq); 8111 err: 8112 return 0; 8113 } 8114 8115 void unregister_fair_sched_group(struct task_group *tg, int cpu) 8116 { 8117 struct rq *rq = cpu_rq(cpu); 8118 unsigned long flags; 8119 8120 /* 8121 * Only empty task groups can be destroyed; so we can speculatively 8122 * check on_list without danger of it being re-added. 8123 */ 8124 if (!tg->cfs_rq[cpu]->on_list) 8125 return; 8126 8127 raw_spin_lock_irqsave(&rq->lock, flags); 8128 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 8129 raw_spin_unlock_irqrestore(&rq->lock, flags); 8130 } 8131 8132 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 8133 struct sched_entity *se, int cpu, 8134 struct sched_entity *parent) 8135 { 8136 struct rq *rq = cpu_rq(cpu); 8137 8138 cfs_rq->tg = tg; 8139 cfs_rq->rq = rq; 8140 init_cfs_rq_runtime(cfs_rq); 8141 8142 tg->cfs_rq[cpu] = cfs_rq; 8143 tg->se[cpu] = se; 8144 8145 /* se could be NULL for root_task_group */ 8146 if (!se) 8147 return; 8148 8149 if (!parent) { 8150 se->cfs_rq = &rq->cfs; 8151 se->depth = 0; 8152 } else { 8153 se->cfs_rq = parent->my_q; 8154 se->depth = parent->depth + 1; 8155 } 8156 8157 se->my_q = cfs_rq; 8158 /* guarantee group entities always have weight */ 8159 update_load_set(&se->load, NICE_0_LOAD); 8160 se->parent = parent; 8161 } 8162 8163 static DEFINE_MUTEX(shares_mutex); 8164 8165 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 8166 { 8167 int i; 8168 unsigned long flags; 8169 8170 /* 8171 * We can't change the weight of the root cgroup. 8172 */ 8173 if (!tg->se[0]) 8174 return -EINVAL; 8175 8176 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 8177 8178 mutex_lock(&shares_mutex); 8179 if (tg->shares == shares) 8180 goto done; 8181 8182 tg->shares = shares; 8183 for_each_possible_cpu(i) { 8184 struct rq *rq = cpu_rq(i); 8185 struct sched_entity *se; 8186 8187 se = tg->se[i]; 8188 /* Propagate contribution to hierarchy */ 8189 raw_spin_lock_irqsave(&rq->lock, flags); 8190 8191 /* Possible calls to update_curr() need rq clock */ 8192 update_rq_clock(rq); 8193 for_each_sched_entity(se) 8194 update_cfs_shares(group_cfs_rq(se)); 8195 raw_spin_unlock_irqrestore(&rq->lock, flags); 8196 } 8197 8198 done: 8199 mutex_unlock(&shares_mutex); 8200 return 0; 8201 } 8202 #else /* CONFIG_FAIR_GROUP_SCHED */ 8203 8204 void free_fair_sched_group(struct task_group *tg) { } 8205 8206 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 8207 { 8208 return 1; 8209 } 8210 8211 void unregister_fair_sched_group(struct task_group *tg, int cpu) { } 8212 8213 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8214 8215 8216 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 8217 { 8218 struct sched_entity *se = &task->se; 8219 unsigned int rr_interval = 0; 8220 8221 /* 8222 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 8223 * idle runqueue: 8224 */ 8225 if (rq->cfs.load.weight) 8226 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 8227 8228 return rr_interval; 8229 } 8230 8231 /* 8232 * All the scheduling class methods: 8233 */ 8234 const struct sched_class fair_sched_class = { 8235 .next = &idle_sched_class, 8236 .enqueue_task = enqueue_task_fair, 8237 .dequeue_task = dequeue_task_fair, 8238 .yield_task = yield_task_fair, 8239 .yield_to_task = yield_to_task_fair, 8240 8241 .check_preempt_curr = check_preempt_wakeup, 8242 8243 .pick_next_task = pick_next_task_fair, 8244 .put_prev_task = put_prev_task_fair, 8245 8246 #ifdef CONFIG_SMP 8247 .select_task_rq = select_task_rq_fair, 8248 .migrate_task_rq = migrate_task_rq_fair, 8249 8250 .rq_online = rq_online_fair, 8251 .rq_offline = rq_offline_fair, 8252 8253 .task_waking = task_waking_fair, 8254 .task_dead = task_dead_fair, 8255 .set_cpus_allowed = set_cpus_allowed_common, 8256 #endif 8257 8258 .set_curr_task = set_curr_task_fair, 8259 .task_tick = task_tick_fair, 8260 .task_fork = task_fork_fair, 8261 8262 .prio_changed = prio_changed_fair, 8263 .switched_from = switched_from_fair, 8264 .switched_to = switched_to_fair, 8265 8266 .get_rr_interval = get_rr_interval_fair, 8267 8268 .update_curr = update_curr_fair, 8269 8270 #ifdef CONFIG_FAIR_GROUP_SCHED 8271 .task_move_group = task_move_group_fair, 8272 #endif 8273 }; 8274 8275 #ifdef CONFIG_SCHED_DEBUG 8276 void print_cfs_stats(struct seq_file *m, int cpu) 8277 { 8278 struct cfs_rq *cfs_rq; 8279 8280 rcu_read_lock(); 8281 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 8282 print_cfs_rq(m, cpu, cfs_rq); 8283 rcu_read_unlock(); 8284 } 8285 8286 #ifdef CONFIG_NUMA_BALANCING 8287 void show_numa_stats(struct task_struct *p, struct seq_file *m) 8288 { 8289 int node; 8290 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 8291 8292 for_each_online_node(node) { 8293 if (p->numa_faults) { 8294 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 8295 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 8296 } 8297 if (p->numa_group) { 8298 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 8299 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 8300 } 8301 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 8302 } 8303 } 8304 #endif /* CONFIG_NUMA_BALANCING */ 8305 #endif /* CONFIG_SCHED_DEBUG */ 8306 8307 __init void init_sched_fair_class(void) 8308 { 8309 #ifdef CONFIG_SMP 8310 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 8311 8312 #ifdef CONFIG_NO_HZ_COMMON 8313 nohz.next_balance = jiffies; 8314 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 8315 cpu_notifier(sched_ilb_notifier, 0); 8316 #endif 8317 #endif /* SMP */ 8318 8319 } 8320