1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 #include <trace/events/sched.h> 26 27 /* 28 * Targeted preemption latency for CPU-bound tasks: 29 * 30 * NOTE: this latency value is not the same as the concept of 31 * 'timeslice length' - timeslices in CFS are of variable length 32 * and have no persistent notion like in traditional, time-slice 33 * based scheduling concepts. 34 * 35 * (to see the precise effective timeslice length of your workload, 36 * run vmstat and monitor the context-switches (cs) field) 37 * 38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 39 */ 40 unsigned int sysctl_sched_latency = 6000000ULL; 41 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 42 43 /* 44 * The initial- and re-scaling of tunables is configurable 45 * 46 * Options are: 47 * 48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 51 * 52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 53 */ 54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 55 56 /* 57 * Minimal preemption granularity for CPU-bound tasks: 58 * 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 60 */ 61 unsigned int sysctl_sched_min_granularity = 750000ULL; 62 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 63 64 /* 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 66 */ 67 static unsigned int sched_nr_latency = 8; 68 69 /* 70 * After fork, child runs first. If set to 0 (default) then 71 * parent will (try to) run first. 72 */ 73 unsigned int sysctl_sched_child_runs_first __read_mostly; 74 75 /* 76 * SCHED_OTHER wake-up granularity. 77 * 78 * This option delays the preemption effects of decoupled workloads 79 * and reduces their over-scheduling. Synchronous workloads will still 80 * have immediate wakeup/sleep latencies. 81 * 82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 83 */ 84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 85 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 #ifdef CONFIG_SMP 90 /* 91 * For asym packing, by default the lower numbered CPU has higher priority. 92 */ 93 int __weak arch_asym_cpu_priority(int cpu) 94 { 95 return -cpu; 96 } 97 #endif 98 99 #ifdef CONFIG_CFS_BANDWIDTH 100 /* 101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 102 * each time a cfs_rq requests quota. 103 * 104 * Note: in the case that the slice exceeds the runtime remaining (either due 105 * to consumption or the quota being specified to be smaller than the slice) 106 * we will always only issue the remaining available time. 107 * 108 * (default: 5 msec, units: microseconds) 109 */ 110 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 111 #endif 112 113 /* 114 * The margin used when comparing utilization with CPU capacity: 115 * util * margin < capacity * 1024 116 * 117 * (default: ~20%) 118 */ 119 unsigned int capacity_margin = 1280; 120 121 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 122 { 123 lw->weight += inc; 124 lw->inv_weight = 0; 125 } 126 127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 128 { 129 lw->weight -= dec; 130 lw->inv_weight = 0; 131 } 132 133 static inline void update_load_set(struct load_weight *lw, unsigned long w) 134 { 135 lw->weight = w; 136 lw->inv_weight = 0; 137 } 138 139 /* 140 * Increase the granularity value when there are more CPUs, 141 * because with more CPUs the 'effective latency' as visible 142 * to users decreases. But the relationship is not linear, 143 * so pick a second-best guess by going with the log2 of the 144 * number of CPUs. 145 * 146 * This idea comes from the SD scheduler of Con Kolivas: 147 */ 148 static unsigned int get_update_sysctl_factor(void) 149 { 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 151 unsigned int factor; 152 153 switch (sysctl_sched_tunable_scaling) { 154 case SCHED_TUNABLESCALING_NONE: 155 factor = 1; 156 break; 157 case SCHED_TUNABLESCALING_LINEAR: 158 factor = cpus; 159 break; 160 case SCHED_TUNABLESCALING_LOG: 161 default: 162 factor = 1 + ilog2(cpus); 163 break; 164 } 165 166 return factor; 167 } 168 169 static void update_sysctl(void) 170 { 171 unsigned int factor = get_update_sysctl_factor(); 172 173 #define SET_SYSCTL(name) \ 174 (sysctl_##name = (factor) * normalized_sysctl_##name) 175 SET_SYSCTL(sched_min_granularity); 176 SET_SYSCTL(sched_latency); 177 SET_SYSCTL(sched_wakeup_granularity); 178 #undef SET_SYSCTL 179 } 180 181 void sched_init_granularity(void) 182 { 183 update_sysctl(); 184 } 185 186 #define WMULT_CONST (~0U) 187 #define WMULT_SHIFT 32 188 189 static void __update_inv_weight(struct load_weight *lw) 190 { 191 unsigned long w; 192 193 if (likely(lw->inv_weight)) 194 return; 195 196 w = scale_load_down(lw->weight); 197 198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 199 lw->inv_weight = 1; 200 else if (unlikely(!w)) 201 lw->inv_weight = WMULT_CONST; 202 else 203 lw->inv_weight = WMULT_CONST / w; 204 } 205 206 /* 207 * delta_exec * weight / lw.weight 208 * OR 209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 210 * 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 212 * we're guaranteed shift stays positive because inv_weight is guaranteed to 213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 214 * 215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 216 * weight/lw.weight <= 1, and therefore our shift will also be positive. 217 */ 218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 219 { 220 u64 fact = scale_load_down(weight); 221 int shift = WMULT_SHIFT; 222 223 __update_inv_weight(lw); 224 225 if (unlikely(fact >> 32)) { 226 while (fact >> 32) { 227 fact >>= 1; 228 shift--; 229 } 230 } 231 232 /* hint to use a 32x32->64 mul */ 233 fact = (u64)(u32)fact * lw->inv_weight; 234 235 while (fact >> 32) { 236 fact >>= 1; 237 shift--; 238 } 239 240 return mul_u64_u32_shr(delta_exec, fact, shift); 241 } 242 243 244 const struct sched_class fair_sched_class; 245 246 /************************************************************** 247 * CFS operations on generic schedulable entities: 248 */ 249 250 #ifdef CONFIG_FAIR_GROUP_SCHED 251 252 /* cpu runqueue to which this cfs_rq is attached */ 253 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 254 { 255 return cfs_rq->rq; 256 } 257 258 static inline struct task_struct *task_of(struct sched_entity *se) 259 { 260 SCHED_WARN_ON(!entity_is_task(se)); 261 return container_of(se, struct task_struct, se); 262 } 263 264 /* Walk up scheduling entities hierarchy */ 265 #define for_each_sched_entity(se) \ 266 for (; se; se = se->parent) 267 268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 269 { 270 return p->se.cfs_rq; 271 } 272 273 /* runqueue on which this entity is (to be) queued */ 274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 275 { 276 return se->cfs_rq; 277 } 278 279 /* runqueue "owned" by this group */ 280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 281 { 282 return grp->my_q; 283 } 284 285 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 286 { 287 if (!cfs_rq->on_list) { 288 struct rq *rq = rq_of(cfs_rq); 289 int cpu = cpu_of(rq); 290 /* 291 * Ensure we either appear before our parent (if already 292 * enqueued) or force our parent to appear after us when it is 293 * enqueued. The fact that we always enqueue bottom-up 294 * reduces this to two cases and a special case for the root 295 * cfs_rq. Furthermore, it also means that we will always reset 296 * tmp_alone_branch either when the branch is connected 297 * to a tree or when we reach the beg of the tree 298 */ 299 if (cfs_rq->tg->parent && 300 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 301 /* 302 * If parent is already on the list, we add the child 303 * just before. Thanks to circular linked property of 304 * the list, this means to put the child at the tail 305 * of the list that starts by parent. 306 */ 307 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 308 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 309 /* 310 * The branch is now connected to its tree so we can 311 * reset tmp_alone_branch to the beginning of the 312 * list. 313 */ 314 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 315 } else if (!cfs_rq->tg->parent) { 316 /* 317 * cfs rq without parent should be put 318 * at the tail of the list. 319 */ 320 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 321 &rq->leaf_cfs_rq_list); 322 /* 323 * We have reach the beg of a tree so we can reset 324 * tmp_alone_branch to the beginning of the list. 325 */ 326 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 327 } else { 328 /* 329 * The parent has not already been added so we want to 330 * make sure that it will be put after us. 331 * tmp_alone_branch points to the beg of the branch 332 * where we will add parent. 333 */ 334 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 335 rq->tmp_alone_branch); 336 /* 337 * update tmp_alone_branch to points to the new beg 338 * of the branch 339 */ 340 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 341 } 342 343 cfs_rq->on_list = 1; 344 } 345 } 346 347 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 348 { 349 if (cfs_rq->on_list) { 350 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 351 cfs_rq->on_list = 0; 352 } 353 } 354 355 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 356 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 357 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 358 leaf_cfs_rq_list) 359 360 /* Do the two (enqueued) entities belong to the same group ? */ 361 static inline struct cfs_rq * 362 is_same_group(struct sched_entity *se, struct sched_entity *pse) 363 { 364 if (se->cfs_rq == pse->cfs_rq) 365 return se->cfs_rq; 366 367 return NULL; 368 } 369 370 static inline struct sched_entity *parent_entity(struct sched_entity *se) 371 { 372 return se->parent; 373 } 374 375 static void 376 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 377 { 378 int se_depth, pse_depth; 379 380 /* 381 * preemption test can be made between sibling entities who are in the 382 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 383 * both tasks until we find their ancestors who are siblings of common 384 * parent. 385 */ 386 387 /* First walk up until both entities are at same depth */ 388 se_depth = (*se)->depth; 389 pse_depth = (*pse)->depth; 390 391 while (se_depth > pse_depth) { 392 se_depth--; 393 *se = parent_entity(*se); 394 } 395 396 while (pse_depth > se_depth) { 397 pse_depth--; 398 *pse = parent_entity(*pse); 399 } 400 401 while (!is_same_group(*se, *pse)) { 402 *se = parent_entity(*se); 403 *pse = parent_entity(*pse); 404 } 405 } 406 407 #else /* !CONFIG_FAIR_GROUP_SCHED */ 408 409 static inline struct task_struct *task_of(struct sched_entity *se) 410 { 411 return container_of(se, struct task_struct, se); 412 } 413 414 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 415 { 416 return container_of(cfs_rq, struct rq, cfs); 417 } 418 419 420 #define for_each_sched_entity(se) \ 421 for (; se; se = NULL) 422 423 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 424 { 425 return &task_rq(p)->cfs; 426 } 427 428 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 429 { 430 struct task_struct *p = task_of(se); 431 struct rq *rq = task_rq(p); 432 433 return &rq->cfs; 434 } 435 436 /* runqueue "owned" by this group */ 437 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 438 { 439 return NULL; 440 } 441 442 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 443 { 444 } 445 446 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 447 { 448 } 449 450 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 451 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 452 453 static inline struct sched_entity *parent_entity(struct sched_entity *se) 454 { 455 return NULL; 456 } 457 458 static inline void 459 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 460 { 461 } 462 463 #endif /* CONFIG_FAIR_GROUP_SCHED */ 464 465 static __always_inline 466 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 467 468 /************************************************************** 469 * Scheduling class tree data structure manipulation methods: 470 */ 471 472 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 473 { 474 s64 delta = (s64)(vruntime - max_vruntime); 475 if (delta > 0) 476 max_vruntime = vruntime; 477 478 return max_vruntime; 479 } 480 481 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 482 { 483 s64 delta = (s64)(vruntime - min_vruntime); 484 if (delta < 0) 485 min_vruntime = vruntime; 486 487 return min_vruntime; 488 } 489 490 static inline int entity_before(struct sched_entity *a, 491 struct sched_entity *b) 492 { 493 return (s64)(a->vruntime - b->vruntime) < 0; 494 } 495 496 static void update_min_vruntime(struct cfs_rq *cfs_rq) 497 { 498 struct sched_entity *curr = cfs_rq->curr; 499 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 500 501 u64 vruntime = cfs_rq->min_vruntime; 502 503 if (curr) { 504 if (curr->on_rq) 505 vruntime = curr->vruntime; 506 else 507 curr = NULL; 508 } 509 510 if (leftmost) { /* non-empty tree */ 511 struct sched_entity *se; 512 se = rb_entry(leftmost, struct sched_entity, run_node); 513 514 if (!curr) 515 vruntime = se->vruntime; 516 else 517 vruntime = min_vruntime(vruntime, se->vruntime); 518 } 519 520 /* ensure we never gain time by being placed backwards. */ 521 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 522 #ifndef CONFIG_64BIT 523 smp_wmb(); 524 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 525 #endif 526 } 527 528 /* 529 * Enqueue an entity into the rb-tree: 530 */ 531 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 532 { 533 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 534 struct rb_node *parent = NULL; 535 struct sched_entity *entry; 536 bool leftmost = true; 537 538 /* 539 * Find the right place in the rbtree: 540 */ 541 while (*link) { 542 parent = *link; 543 entry = rb_entry(parent, struct sched_entity, run_node); 544 /* 545 * We dont care about collisions. Nodes with 546 * the same key stay together. 547 */ 548 if (entity_before(se, entry)) { 549 link = &parent->rb_left; 550 } else { 551 link = &parent->rb_right; 552 leftmost = false; 553 } 554 } 555 556 rb_link_node(&se->run_node, parent, link); 557 rb_insert_color_cached(&se->run_node, 558 &cfs_rq->tasks_timeline, leftmost); 559 } 560 561 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 562 { 563 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 564 } 565 566 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 567 { 568 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 569 570 if (!left) 571 return NULL; 572 573 return rb_entry(left, struct sched_entity, run_node); 574 } 575 576 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 577 { 578 struct rb_node *next = rb_next(&se->run_node); 579 580 if (!next) 581 return NULL; 582 583 return rb_entry(next, struct sched_entity, run_node); 584 } 585 586 #ifdef CONFIG_SCHED_DEBUG 587 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 588 { 589 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 590 591 if (!last) 592 return NULL; 593 594 return rb_entry(last, struct sched_entity, run_node); 595 } 596 597 /************************************************************** 598 * Scheduling class statistics methods: 599 */ 600 601 int sched_proc_update_handler(struct ctl_table *table, int write, 602 void __user *buffer, size_t *lenp, 603 loff_t *ppos) 604 { 605 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 606 unsigned int factor = get_update_sysctl_factor(); 607 608 if (ret || !write) 609 return ret; 610 611 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 612 sysctl_sched_min_granularity); 613 614 #define WRT_SYSCTL(name) \ 615 (normalized_sysctl_##name = sysctl_##name / (factor)) 616 WRT_SYSCTL(sched_min_granularity); 617 WRT_SYSCTL(sched_latency); 618 WRT_SYSCTL(sched_wakeup_granularity); 619 #undef WRT_SYSCTL 620 621 return 0; 622 } 623 #endif 624 625 /* 626 * delta /= w 627 */ 628 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 629 { 630 if (unlikely(se->load.weight != NICE_0_LOAD)) 631 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 632 633 return delta; 634 } 635 636 /* 637 * The idea is to set a period in which each task runs once. 638 * 639 * When there are too many tasks (sched_nr_latency) we have to stretch 640 * this period because otherwise the slices get too small. 641 * 642 * p = (nr <= nl) ? l : l*nr/nl 643 */ 644 static u64 __sched_period(unsigned long nr_running) 645 { 646 if (unlikely(nr_running > sched_nr_latency)) 647 return nr_running * sysctl_sched_min_granularity; 648 else 649 return sysctl_sched_latency; 650 } 651 652 /* 653 * We calculate the wall-time slice from the period by taking a part 654 * proportional to the weight. 655 * 656 * s = p*P[w/rw] 657 */ 658 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 659 { 660 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 661 662 for_each_sched_entity(se) { 663 struct load_weight *load; 664 struct load_weight lw; 665 666 cfs_rq = cfs_rq_of(se); 667 load = &cfs_rq->load; 668 669 if (unlikely(!se->on_rq)) { 670 lw = cfs_rq->load; 671 672 update_load_add(&lw, se->load.weight); 673 load = &lw; 674 } 675 slice = __calc_delta(slice, se->load.weight, load); 676 } 677 return slice; 678 } 679 680 /* 681 * We calculate the vruntime slice of a to-be-inserted task. 682 * 683 * vs = s/w 684 */ 685 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 686 { 687 return calc_delta_fair(sched_slice(cfs_rq, se), se); 688 } 689 690 #ifdef CONFIG_SMP 691 #include "pelt.h" 692 #include "sched-pelt.h" 693 694 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 695 static unsigned long task_h_load(struct task_struct *p); 696 697 /* Give new sched_entity start runnable values to heavy its load in infant time */ 698 void init_entity_runnable_average(struct sched_entity *se) 699 { 700 struct sched_avg *sa = &se->avg; 701 702 memset(sa, 0, sizeof(*sa)); 703 704 /* 705 * Tasks are intialized with full load to be seen as heavy tasks until 706 * they get a chance to stabilize to their real load level. 707 * Group entities are intialized with zero load to reflect the fact that 708 * nothing has been attached to the task group yet. 709 */ 710 if (entity_is_task(se)) 711 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight); 712 713 se->runnable_weight = se->load.weight; 714 715 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 716 } 717 718 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 719 static void attach_entity_cfs_rq(struct sched_entity *se); 720 721 /* 722 * With new tasks being created, their initial util_avgs are extrapolated 723 * based on the cfs_rq's current util_avg: 724 * 725 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 726 * 727 * However, in many cases, the above util_avg does not give a desired 728 * value. Moreover, the sum of the util_avgs may be divergent, such 729 * as when the series is a harmonic series. 730 * 731 * To solve this problem, we also cap the util_avg of successive tasks to 732 * only 1/2 of the left utilization budget: 733 * 734 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 735 * 736 * where n denotes the nth task and cpu_scale the CPU capacity. 737 * 738 * For example, for a CPU with 1024 of capacity, a simplest series from 739 * the beginning would be like: 740 * 741 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 742 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 743 * 744 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 745 * if util_avg > util_avg_cap. 746 */ 747 void post_init_entity_util_avg(struct sched_entity *se) 748 { 749 struct cfs_rq *cfs_rq = cfs_rq_of(se); 750 struct sched_avg *sa = &se->avg; 751 long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq))); 752 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 753 754 if (cap > 0) { 755 if (cfs_rq->avg.util_avg != 0) { 756 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 757 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 758 759 if (sa->util_avg > cap) 760 sa->util_avg = cap; 761 } else { 762 sa->util_avg = cap; 763 } 764 } 765 766 if (entity_is_task(se)) { 767 struct task_struct *p = task_of(se); 768 if (p->sched_class != &fair_sched_class) { 769 /* 770 * For !fair tasks do: 771 * 772 update_cfs_rq_load_avg(now, cfs_rq); 773 attach_entity_load_avg(cfs_rq, se, 0); 774 switched_from_fair(rq, p); 775 * 776 * such that the next switched_to_fair() has the 777 * expected state. 778 */ 779 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq); 780 return; 781 } 782 } 783 784 attach_entity_cfs_rq(se); 785 } 786 787 #else /* !CONFIG_SMP */ 788 void init_entity_runnable_average(struct sched_entity *se) 789 { 790 } 791 void post_init_entity_util_avg(struct sched_entity *se) 792 { 793 } 794 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 795 { 796 } 797 #endif /* CONFIG_SMP */ 798 799 /* 800 * Update the current task's runtime statistics. 801 */ 802 static void update_curr(struct cfs_rq *cfs_rq) 803 { 804 struct sched_entity *curr = cfs_rq->curr; 805 u64 now = rq_clock_task(rq_of(cfs_rq)); 806 u64 delta_exec; 807 808 if (unlikely(!curr)) 809 return; 810 811 delta_exec = now - curr->exec_start; 812 if (unlikely((s64)delta_exec <= 0)) 813 return; 814 815 curr->exec_start = now; 816 817 schedstat_set(curr->statistics.exec_max, 818 max(delta_exec, curr->statistics.exec_max)); 819 820 curr->sum_exec_runtime += delta_exec; 821 schedstat_add(cfs_rq->exec_clock, delta_exec); 822 823 curr->vruntime += calc_delta_fair(delta_exec, curr); 824 update_min_vruntime(cfs_rq); 825 826 if (entity_is_task(curr)) { 827 struct task_struct *curtask = task_of(curr); 828 829 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 830 cgroup_account_cputime(curtask, delta_exec); 831 account_group_exec_runtime(curtask, delta_exec); 832 } 833 834 account_cfs_rq_runtime(cfs_rq, delta_exec); 835 } 836 837 static void update_curr_fair(struct rq *rq) 838 { 839 update_curr(cfs_rq_of(&rq->curr->se)); 840 } 841 842 static inline void 843 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 844 { 845 u64 wait_start, prev_wait_start; 846 847 if (!schedstat_enabled()) 848 return; 849 850 wait_start = rq_clock(rq_of(cfs_rq)); 851 prev_wait_start = schedstat_val(se->statistics.wait_start); 852 853 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 854 likely(wait_start > prev_wait_start)) 855 wait_start -= prev_wait_start; 856 857 __schedstat_set(se->statistics.wait_start, wait_start); 858 } 859 860 static inline void 861 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 862 { 863 struct task_struct *p; 864 u64 delta; 865 866 if (!schedstat_enabled()) 867 return; 868 869 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 870 871 if (entity_is_task(se)) { 872 p = task_of(se); 873 if (task_on_rq_migrating(p)) { 874 /* 875 * Preserve migrating task's wait time so wait_start 876 * time stamp can be adjusted to accumulate wait time 877 * prior to migration. 878 */ 879 __schedstat_set(se->statistics.wait_start, delta); 880 return; 881 } 882 trace_sched_stat_wait(p, delta); 883 } 884 885 __schedstat_set(se->statistics.wait_max, 886 max(schedstat_val(se->statistics.wait_max), delta)); 887 __schedstat_inc(se->statistics.wait_count); 888 __schedstat_add(se->statistics.wait_sum, delta); 889 __schedstat_set(se->statistics.wait_start, 0); 890 } 891 892 static inline void 893 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 894 { 895 struct task_struct *tsk = NULL; 896 u64 sleep_start, block_start; 897 898 if (!schedstat_enabled()) 899 return; 900 901 sleep_start = schedstat_val(se->statistics.sleep_start); 902 block_start = schedstat_val(se->statistics.block_start); 903 904 if (entity_is_task(se)) 905 tsk = task_of(se); 906 907 if (sleep_start) { 908 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 909 910 if ((s64)delta < 0) 911 delta = 0; 912 913 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 914 __schedstat_set(se->statistics.sleep_max, delta); 915 916 __schedstat_set(se->statistics.sleep_start, 0); 917 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 918 919 if (tsk) { 920 account_scheduler_latency(tsk, delta >> 10, 1); 921 trace_sched_stat_sleep(tsk, delta); 922 } 923 } 924 if (block_start) { 925 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 926 927 if ((s64)delta < 0) 928 delta = 0; 929 930 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 931 __schedstat_set(se->statistics.block_max, delta); 932 933 __schedstat_set(se->statistics.block_start, 0); 934 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 935 936 if (tsk) { 937 if (tsk->in_iowait) { 938 __schedstat_add(se->statistics.iowait_sum, delta); 939 __schedstat_inc(se->statistics.iowait_count); 940 trace_sched_stat_iowait(tsk, delta); 941 } 942 943 trace_sched_stat_blocked(tsk, delta); 944 945 /* 946 * Blocking time is in units of nanosecs, so shift by 947 * 20 to get a milliseconds-range estimation of the 948 * amount of time that the task spent sleeping: 949 */ 950 if (unlikely(prof_on == SLEEP_PROFILING)) { 951 profile_hits(SLEEP_PROFILING, 952 (void *)get_wchan(tsk), 953 delta >> 20); 954 } 955 account_scheduler_latency(tsk, delta >> 10, 0); 956 } 957 } 958 } 959 960 /* 961 * Task is being enqueued - update stats: 962 */ 963 static inline void 964 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 965 { 966 if (!schedstat_enabled()) 967 return; 968 969 /* 970 * Are we enqueueing a waiting task? (for current tasks 971 * a dequeue/enqueue event is a NOP) 972 */ 973 if (se != cfs_rq->curr) 974 update_stats_wait_start(cfs_rq, se); 975 976 if (flags & ENQUEUE_WAKEUP) 977 update_stats_enqueue_sleeper(cfs_rq, se); 978 } 979 980 static inline void 981 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 982 { 983 984 if (!schedstat_enabled()) 985 return; 986 987 /* 988 * Mark the end of the wait period if dequeueing a 989 * waiting task: 990 */ 991 if (se != cfs_rq->curr) 992 update_stats_wait_end(cfs_rq, se); 993 994 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 995 struct task_struct *tsk = task_of(se); 996 997 if (tsk->state & TASK_INTERRUPTIBLE) 998 __schedstat_set(se->statistics.sleep_start, 999 rq_clock(rq_of(cfs_rq))); 1000 if (tsk->state & TASK_UNINTERRUPTIBLE) 1001 __schedstat_set(se->statistics.block_start, 1002 rq_clock(rq_of(cfs_rq))); 1003 } 1004 } 1005 1006 /* 1007 * We are picking a new current task - update its stats: 1008 */ 1009 static inline void 1010 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1011 { 1012 /* 1013 * We are starting a new run period: 1014 */ 1015 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1016 } 1017 1018 /************************************************** 1019 * Scheduling class queueing methods: 1020 */ 1021 1022 #ifdef CONFIG_NUMA_BALANCING 1023 /* 1024 * Approximate time to scan a full NUMA task in ms. The task scan period is 1025 * calculated based on the tasks virtual memory size and 1026 * numa_balancing_scan_size. 1027 */ 1028 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1029 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1030 1031 /* Portion of address space to scan in MB */ 1032 unsigned int sysctl_numa_balancing_scan_size = 256; 1033 1034 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1035 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1036 1037 struct numa_group { 1038 atomic_t refcount; 1039 1040 spinlock_t lock; /* nr_tasks, tasks */ 1041 int nr_tasks; 1042 pid_t gid; 1043 int active_nodes; 1044 1045 struct rcu_head rcu; 1046 unsigned long total_faults; 1047 unsigned long max_faults_cpu; 1048 /* 1049 * Faults_cpu is used to decide whether memory should move 1050 * towards the CPU. As a consequence, these stats are weighted 1051 * more by CPU use than by memory faults. 1052 */ 1053 unsigned long *faults_cpu; 1054 unsigned long faults[0]; 1055 }; 1056 1057 static inline unsigned long group_faults_priv(struct numa_group *ng); 1058 static inline unsigned long group_faults_shared(struct numa_group *ng); 1059 1060 static unsigned int task_nr_scan_windows(struct task_struct *p) 1061 { 1062 unsigned long rss = 0; 1063 unsigned long nr_scan_pages; 1064 1065 /* 1066 * Calculations based on RSS as non-present and empty pages are skipped 1067 * by the PTE scanner and NUMA hinting faults should be trapped based 1068 * on resident pages 1069 */ 1070 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1071 rss = get_mm_rss(p->mm); 1072 if (!rss) 1073 rss = nr_scan_pages; 1074 1075 rss = round_up(rss, nr_scan_pages); 1076 return rss / nr_scan_pages; 1077 } 1078 1079 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1080 #define MAX_SCAN_WINDOW 2560 1081 1082 static unsigned int task_scan_min(struct task_struct *p) 1083 { 1084 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1085 unsigned int scan, floor; 1086 unsigned int windows = 1; 1087 1088 if (scan_size < MAX_SCAN_WINDOW) 1089 windows = MAX_SCAN_WINDOW / scan_size; 1090 floor = 1000 / windows; 1091 1092 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1093 return max_t(unsigned int, floor, scan); 1094 } 1095 1096 static unsigned int task_scan_start(struct task_struct *p) 1097 { 1098 unsigned long smin = task_scan_min(p); 1099 unsigned long period = smin; 1100 1101 /* Scale the maximum scan period with the amount of shared memory. */ 1102 if (p->numa_group) { 1103 struct numa_group *ng = p->numa_group; 1104 unsigned long shared = group_faults_shared(ng); 1105 unsigned long private = group_faults_priv(ng); 1106 1107 period *= atomic_read(&ng->refcount); 1108 period *= shared + 1; 1109 period /= private + shared + 1; 1110 } 1111 1112 return max(smin, period); 1113 } 1114 1115 static unsigned int task_scan_max(struct task_struct *p) 1116 { 1117 unsigned long smin = task_scan_min(p); 1118 unsigned long smax; 1119 1120 /* Watch for min being lower than max due to floor calculations */ 1121 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1122 1123 /* Scale the maximum scan period with the amount of shared memory. */ 1124 if (p->numa_group) { 1125 struct numa_group *ng = p->numa_group; 1126 unsigned long shared = group_faults_shared(ng); 1127 unsigned long private = group_faults_priv(ng); 1128 unsigned long period = smax; 1129 1130 period *= atomic_read(&ng->refcount); 1131 period *= shared + 1; 1132 period /= private + shared + 1; 1133 1134 smax = max(smax, period); 1135 } 1136 1137 return max(smin, smax); 1138 } 1139 1140 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1141 { 1142 int mm_users = 0; 1143 struct mm_struct *mm = p->mm; 1144 1145 if (mm) { 1146 mm_users = atomic_read(&mm->mm_users); 1147 if (mm_users == 1) { 1148 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1149 mm->numa_scan_seq = 0; 1150 } 1151 } 1152 p->node_stamp = 0; 1153 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 1154 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1155 p->numa_work.next = &p->numa_work; 1156 p->numa_faults = NULL; 1157 p->numa_group = NULL; 1158 p->last_task_numa_placement = 0; 1159 p->last_sum_exec_runtime = 0; 1160 1161 /* New address space, reset the preferred nid */ 1162 if (!(clone_flags & CLONE_VM)) { 1163 p->numa_preferred_nid = -1; 1164 return; 1165 } 1166 1167 /* 1168 * New thread, keep existing numa_preferred_nid which should be copied 1169 * already by arch_dup_task_struct but stagger when scans start. 1170 */ 1171 if (mm) { 1172 unsigned int delay; 1173 1174 delay = min_t(unsigned int, task_scan_max(current), 1175 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 1176 delay += 2 * TICK_NSEC; 1177 p->node_stamp = delay; 1178 } 1179 } 1180 1181 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1182 { 1183 rq->nr_numa_running += (p->numa_preferred_nid != -1); 1184 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1185 } 1186 1187 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1188 { 1189 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 1190 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1191 } 1192 1193 /* Shared or private faults. */ 1194 #define NR_NUMA_HINT_FAULT_TYPES 2 1195 1196 /* Memory and CPU locality */ 1197 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1198 1199 /* Averaged statistics, and temporary buffers. */ 1200 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1201 1202 pid_t task_numa_group_id(struct task_struct *p) 1203 { 1204 return p->numa_group ? p->numa_group->gid : 0; 1205 } 1206 1207 /* 1208 * The averaged statistics, shared & private, memory & CPU, 1209 * occupy the first half of the array. The second half of the 1210 * array is for current counters, which are averaged into the 1211 * first set by task_numa_placement. 1212 */ 1213 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1214 { 1215 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1216 } 1217 1218 static inline unsigned long task_faults(struct task_struct *p, int nid) 1219 { 1220 if (!p->numa_faults) 1221 return 0; 1222 1223 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1224 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1225 } 1226 1227 static inline unsigned long group_faults(struct task_struct *p, int nid) 1228 { 1229 if (!p->numa_group) 1230 return 0; 1231 1232 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1233 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1234 } 1235 1236 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1237 { 1238 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1239 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1240 } 1241 1242 static inline unsigned long group_faults_priv(struct numa_group *ng) 1243 { 1244 unsigned long faults = 0; 1245 int node; 1246 1247 for_each_online_node(node) { 1248 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1249 } 1250 1251 return faults; 1252 } 1253 1254 static inline unsigned long group_faults_shared(struct numa_group *ng) 1255 { 1256 unsigned long faults = 0; 1257 int node; 1258 1259 for_each_online_node(node) { 1260 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1261 } 1262 1263 return faults; 1264 } 1265 1266 /* 1267 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1268 * considered part of a numa group's pseudo-interleaving set. Migrations 1269 * between these nodes are slowed down, to allow things to settle down. 1270 */ 1271 #define ACTIVE_NODE_FRACTION 3 1272 1273 static bool numa_is_active_node(int nid, struct numa_group *ng) 1274 { 1275 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1276 } 1277 1278 /* Handle placement on systems where not all nodes are directly connected. */ 1279 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1280 int maxdist, bool task) 1281 { 1282 unsigned long score = 0; 1283 int node; 1284 1285 /* 1286 * All nodes are directly connected, and the same distance 1287 * from each other. No need for fancy placement algorithms. 1288 */ 1289 if (sched_numa_topology_type == NUMA_DIRECT) 1290 return 0; 1291 1292 /* 1293 * This code is called for each node, introducing N^2 complexity, 1294 * which should be ok given the number of nodes rarely exceeds 8. 1295 */ 1296 for_each_online_node(node) { 1297 unsigned long faults; 1298 int dist = node_distance(nid, node); 1299 1300 /* 1301 * The furthest away nodes in the system are not interesting 1302 * for placement; nid was already counted. 1303 */ 1304 if (dist == sched_max_numa_distance || node == nid) 1305 continue; 1306 1307 /* 1308 * On systems with a backplane NUMA topology, compare groups 1309 * of nodes, and move tasks towards the group with the most 1310 * memory accesses. When comparing two nodes at distance 1311 * "hoplimit", only nodes closer by than "hoplimit" are part 1312 * of each group. Skip other nodes. 1313 */ 1314 if (sched_numa_topology_type == NUMA_BACKPLANE && 1315 dist >= maxdist) 1316 continue; 1317 1318 /* Add up the faults from nearby nodes. */ 1319 if (task) 1320 faults = task_faults(p, node); 1321 else 1322 faults = group_faults(p, node); 1323 1324 /* 1325 * On systems with a glueless mesh NUMA topology, there are 1326 * no fixed "groups of nodes". Instead, nodes that are not 1327 * directly connected bounce traffic through intermediate 1328 * nodes; a numa_group can occupy any set of nodes. 1329 * The further away a node is, the less the faults count. 1330 * This seems to result in good task placement. 1331 */ 1332 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1333 faults *= (sched_max_numa_distance - dist); 1334 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1335 } 1336 1337 score += faults; 1338 } 1339 1340 return score; 1341 } 1342 1343 /* 1344 * These return the fraction of accesses done by a particular task, or 1345 * task group, on a particular numa node. The group weight is given a 1346 * larger multiplier, in order to group tasks together that are almost 1347 * evenly spread out between numa nodes. 1348 */ 1349 static inline unsigned long task_weight(struct task_struct *p, int nid, 1350 int dist) 1351 { 1352 unsigned long faults, total_faults; 1353 1354 if (!p->numa_faults) 1355 return 0; 1356 1357 total_faults = p->total_numa_faults; 1358 1359 if (!total_faults) 1360 return 0; 1361 1362 faults = task_faults(p, nid); 1363 faults += score_nearby_nodes(p, nid, dist, true); 1364 1365 return 1000 * faults / total_faults; 1366 } 1367 1368 static inline unsigned long group_weight(struct task_struct *p, int nid, 1369 int dist) 1370 { 1371 unsigned long faults, total_faults; 1372 1373 if (!p->numa_group) 1374 return 0; 1375 1376 total_faults = p->numa_group->total_faults; 1377 1378 if (!total_faults) 1379 return 0; 1380 1381 faults = group_faults(p, nid); 1382 faults += score_nearby_nodes(p, nid, dist, false); 1383 1384 return 1000 * faults / total_faults; 1385 } 1386 1387 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1388 int src_nid, int dst_cpu) 1389 { 1390 struct numa_group *ng = p->numa_group; 1391 int dst_nid = cpu_to_node(dst_cpu); 1392 int last_cpupid, this_cpupid; 1393 1394 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1395 1396 /* 1397 * Multi-stage node selection is used in conjunction with a periodic 1398 * migration fault to build a temporal task<->page relation. By using 1399 * a two-stage filter we remove short/unlikely relations. 1400 * 1401 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1402 * a task's usage of a particular page (n_p) per total usage of this 1403 * page (n_t) (in a given time-span) to a probability. 1404 * 1405 * Our periodic faults will sample this probability and getting the 1406 * same result twice in a row, given these samples are fully 1407 * independent, is then given by P(n)^2, provided our sample period 1408 * is sufficiently short compared to the usage pattern. 1409 * 1410 * This quadric squishes small probabilities, making it less likely we 1411 * act on an unlikely task<->page relation. 1412 */ 1413 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1414 if (!cpupid_pid_unset(last_cpupid) && 1415 cpupid_to_nid(last_cpupid) != dst_nid) 1416 return false; 1417 1418 /* Always allow migrate on private faults */ 1419 if (cpupid_match_pid(p, last_cpupid)) 1420 return true; 1421 1422 /* A shared fault, but p->numa_group has not been set up yet. */ 1423 if (!ng) 1424 return true; 1425 1426 /* 1427 * Destination node is much more heavily used than the source 1428 * node? Allow migration. 1429 */ 1430 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1431 ACTIVE_NODE_FRACTION) 1432 return true; 1433 1434 /* 1435 * Distribute memory according to CPU & memory use on each node, 1436 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1437 * 1438 * faults_cpu(dst) 3 faults_cpu(src) 1439 * --------------- * - > --------------- 1440 * faults_mem(dst) 4 faults_mem(src) 1441 */ 1442 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1443 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1444 } 1445 1446 static unsigned long weighted_cpuload(struct rq *rq); 1447 static unsigned long source_load(int cpu, int type); 1448 static unsigned long target_load(int cpu, int type); 1449 static unsigned long capacity_of(int cpu); 1450 1451 /* Cached statistics for all CPUs within a node */ 1452 struct numa_stats { 1453 unsigned long load; 1454 1455 /* Total compute capacity of CPUs on a node */ 1456 unsigned long compute_capacity; 1457 1458 unsigned int nr_running; 1459 }; 1460 1461 /* 1462 * XXX borrowed from update_sg_lb_stats 1463 */ 1464 static void update_numa_stats(struct numa_stats *ns, int nid) 1465 { 1466 int smt, cpu, cpus = 0; 1467 unsigned long capacity; 1468 1469 memset(ns, 0, sizeof(*ns)); 1470 for_each_cpu(cpu, cpumask_of_node(nid)) { 1471 struct rq *rq = cpu_rq(cpu); 1472 1473 ns->nr_running += rq->nr_running; 1474 ns->load += weighted_cpuload(rq); 1475 ns->compute_capacity += capacity_of(cpu); 1476 1477 cpus++; 1478 } 1479 1480 /* 1481 * If we raced with hotplug and there are no CPUs left in our mask 1482 * the @ns structure is NULL'ed and task_numa_compare() will 1483 * not find this node attractive. 1484 * 1485 * We'll detect a huge imbalance and bail there. 1486 */ 1487 if (!cpus) 1488 return; 1489 1490 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ 1491 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); 1492 capacity = cpus / smt; /* cores */ 1493 1494 capacity = min_t(unsigned, capacity, 1495 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); 1496 } 1497 1498 struct task_numa_env { 1499 struct task_struct *p; 1500 1501 int src_cpu, src_nid; 1502 int dst_cpu, dst_nid; 1503 1504 struct numa_stats src_stats, dst_stats; 1505 1506 int imbalance_pct; 1507 int dist; 1508 1509 struct task_struct *best_task; 1510 long best_imp; 1511 int best_cpu; 1512 }; 1513 1514 static void task_numa_assign(struct task_numa_env *env, 1515 struct task_struct *p, long imp) 1516 { 1517 if (env->best_task) 1518 put_task_struct(env->best_task); 1519 if (p) 1520 get_task_struct(p); 1521 1522 env->best_task = p; 1523 env->best_imp = imp; 1524 env->best_cpu = env->dst_cpu; 1525 } 1526 1527 static bool load_too_imbalanced(long src_load, long dst_load, 1528 struct task_numa_env *env) 1529 { 1530 long imb, old_imb; 1531 long orig_src_load, orig_dst_load; 1532 long src_capacity, dst_capacity; 1533 1534 /* 1535 * The load is corrected for the CPU capacity available on each node. 1536 * 1537 * src_load dst_load 1538 * ------------ vs --------- 1539 * src_capacity dst_capacity 1540 */ 1541 src_capacity = env->src_stats.compute_capacity; 1542 dst_capacity = env->dst_stats.compute_capacity; 1543 1544 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1545 1546 orig_src_load = env->src_stats.load; 1547 orig_dst_load = env->dst_stats.load; 1548 1549 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1550 1551 /* Would this change make things worse? */ 1552 return (imb > old_imb); 1553 } 1554 1555 /* 1556 * This checks if the overall compute and NUMA accesses of the system would 1557 * be improved if the source tasks was migrated to the target dst_cpu taking 1558 * into account that it might be best if task running on the dst_cpu should 1559 * be exchanged with the source task 1560 */ 1561 static void task_numa_compare(struct task_numa_env *env, 1562 long taskimp, long groupimp, bool maymove) 1563 { 1564 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1565 struct task_struct *cur; 1566 long src_load, dst_load; 1567 long load; 1568 long imp = env->p->numa_group ? groupimp : taskimp; 1569 long moveimp = imp; 1570 int dist = env->dist; 1571 1572 rcu_read_lock(); 1573 cur = task_rcu_dereference(&dst_rq->curr); 1574 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1575 cur = NULL; 1576 1577 /* 1578 * Because we have preemption enabled we can get migrated around and 1579 * end try selecting ourselves (current == env->p) as a swap candidate. 1580 */ 1581 if (cur == env->p) 1582 goto unlock; 1583 1584 if (!cur) { 1585 if (maymove || imp > env->best_imp) 1586 goto assign; 1587 else 1588 goto unlock; 1589 } 1590 1591 /* 1592 * "imp" is the fault differential for the source task between the 1593 * source and destination node. Calculate the total differential for 1594 * the source task and potential destination task. The more negative 1595 * the value is, the more remote accesses that would be expected to 1596 * be incurred if the tasks were swapped. 1597 */ 1598 /* Skip this swap candidate if cannot move to the source cpu */ 1599 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed)) 1600 goto unlock; 1601 1602 /* 1603 * If dst and source tasks are in the same NUMA group, or not 1604 * in any group then look only at task weights. 1605 */ 1606 if (cur->numa_group == env->p->numa_group) { 1607 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1608 task_weight(cur, env->dst_nid, dist); 1609 /* 1610 * Add some hysteresis to prevent swapping the 1611 * tasks within a group over tiny differences. 1612 */ 1613 if (cur->numa_group) 1614 imp -= imp / 16; 1615 } else { 1616 /* 1617 * Compare the group weights. If a task is all by itself 1618 * (not part of a group), use the task weight instead. 1619 */ 1620 if (cur->numa_group && env->p->numa_group) 1621 imp += group_weight(cur, env->src_nid, dist) - 1622 group_weight(cur, env->dst_nid, dist); 1623 else 1624 imp += task_weight(cur, env->src_nid, dist) - 1625 task_weight(cur, env->dst_nid, dist); 1626 } 1627 1628 if (imp <= env->best_imp) 1629 goto unlock; 1630 1631 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1632 imp = moveimp - 1; 1633 cur = NULL; 1634 goto assign; 1635 } 1636 1637 /* 1638 * In the overloaded case, try and keep the load balanced. 1639 */ 1640 load = task_h_load(env->p) - task_h_load(cur); 1641 if (!load) 1642 goto assign; 1643 1644 dst_load = env->dst_stats.load + load; 1645 src_load = env->src_stats.load - load; 1646 1647 if (load_too_imbalanced(src_load, dst_load, env)) 1648 goto unlock; 1649 1650 assign: 1651 /* 1652 * One idle CPU per node is evaluated for a task numa move. 1653 * Call select_idle_sibling to maybe find a better one. 1654 */ 1655 if (!cur) { 1656 /* 1657 * select_idle_siblings() uses an per-CPU cpumask that 1658 * can be used from IRQ context. 1659 */ 1660 local_irq_disable(); 1661 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1662 env->dst_cpu); 1663 local_irq_enable(); 1664 } 1665 1666 task_numa_assign(env, cur, imp); 1667 unlock: 1668 rcu_read_unlock(); 1669 } 1670 1671 static void task_numa_find_cpu(struct task_numa_env *env, 1672 long taskimp, long groupimp) 1673 { 1674 long src_load, dst_load, load; 1675 bool maymove = false; 1676 int cpu; 1677 1678 load = task_h_load(env->p); 1679 dst_load = env->dst_stats.load + load; 1680 src_load = env->src_stats.load - load; 1681 1682 /* 1683 * If the improvement from just moving env->p direction is better 1684 * than swapping tasks around, check if a move is possible. 1685 */ 1686 maymove = !load_too_imbalanced(src_load, dst_load, env); 1687 1688 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1689 /* Skip this CPU if the source task cannot migrate */ 1690 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed)) 1691 continue; 1692 1693 env->dst_cpu = cpu; 1694 task_numa_compare(env, taskimp, groupimp, maymove); 1695 } 1696 } 1697 1698 static int task_numa_migrate(struct task_struct *p) 1699 { 1700 struct task_numa_env env = { 1701 .p = p, 1702 1703 .src_cpu = task_cpu(p), 1704 .src_nid = task_node(p), 1705 1706 .imbalance_pct = 112, 1707 1708 .best_task = NULL, 1709 .best_imp = 0, 1710 .best_cpu = -1, 1711 }; 1712 struct sched_domain *sd; 1713 unsigned long taskweight, groupweight; 1714 int nid, ret, dist; 1715 long taskimp, groupimp; 1716 1717 /* 1718 * Pick the lowest SD_NUMA domain, as that would have the smallest 1719 * imbalance and would be the first to start moving tasks about. 1720 * 1721 * And we want to avoid any moving of tasks about, as that would create 1722 * random movement of tasks -- counter the numa conditions we're trying 1723 * to satisfy here. 1724 */ 1725 rcu_read_lock(); 1726 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1727 if (sd) 1728 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1729 rcu_read_unlock(); 1730 1731 /* 1732 * Cpusets can break the scheduler domain tree into smaller 1733 * balance domains, some of which do not cross NUMA boundaries. 1734 * Tasks that are "trapped" in such domains cannot be migrated 1735 * elsewhere, so there is no point in (re)trying. 1736 */ 1737 if (unlikely(!sd)) { 1738 sched_setnuma(p, task_node(p)); 1739 return -EINVAL; 1740 } 1741 1742 env.dst_nid = p->numa_preferred_nid; 1743 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1744 taskweight = task_weight(p, env.src_nid, dist); 1745 groupweight = group_weight(p, env.src_nid, dist); 1746 update_numa_stats(&env.src_stats, env.src_nid); 1747 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1748 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1749 update_numa_stats(&env.dst_stats, env.dst_nid); 1750 1751 /* Try to find a spot on the preferred nid. */ 1752 task_numa_find_cpu(&env, taskimp, groupimp); 1753 1754 /* 1755 * Look at other nodes in these cases: 1756 * - there is no space available on the preferred_nid 1757 * - the task is part of a numa_group that is interleaved across 1758 * multiple NUMA nodes; in order to better consolidate the group, 1759 * we need to check other locations. 1760 */ 1761 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { 1762 for_each_online_node(nid) { 1763 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1764 continue; 1765 1766 dist = node_distance(env.src_nid, env.dst_nid); 1767 if (sched_numa_topology_type == NUMA_BACKPLANE && 1768 dist != env.dist) { 1769 taskweight = task_weight(p, env.src_nid, dist); 1770 groupweight = group_weight(p, env.src_nid, dist); 1771 } 1772 1773 /* Only consider nodes where both task and groups benefit */ 1774 taskimp = task_weight(p, nid, dist) - taskweight; 1775 groupimp = group_weight(p, nid, dist) - groupweight; 1776 if (taskimp < 0 && groupimp < 0) 1777 continue; 1778 1779 env.dist = dist; 1780 env.dst_nid = nid; 1781 update_numa_stats(&env.dst_stats, env.dst_nid); 1782 task_numa_find_cpu(&env, taskimp, groupimp); 1783 } 1784 } 1785 1786 /* 1787 * If the task is part of a workload that spans multiple NUMA nodes, 1788 * and is migrating into one of the workload's active nodes, remember 1789 * this node as the task's preferred numa node, so the workload can 1790 * settle down. 1791 * A task that migrated to a second choice node will be better off 1792 * trying for a better one later. Do not set the preferred node here. 1793 */ 1794 if (p->numa_group) { 1795 if (env.best_cpu == -1) 1796 nid = env.src_nid; 1797 else 1798 nid = cpu_to_node(env.best_cpu); 1799 1800 if (nid != p->numa_preferred_nid) 1801 sched_setnuma(p, nid); 1802 } 1803 1804 /* No better CPU than the current one was found. */ 1805 if (env.best_cpu == -1) 1806 return -EAGAIN; 1807 1808 /* 1809 * Reset the scan period if the task is being rescheduled on an 1810 * alternative node to recheck if the tasks is now properly placed. 1811 */ 1812 p->numa_scan_period = task_scan_start(p); 1813 1814 if (env.best_task == NULL) { 1815 ret = migrate_task_to(p, env.best_cpu); 1816 if (ret != 0) 1817 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1818 return ret; 1819 } 1820 1821 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 1822 1823 if (ret != 0) 1824 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1825 put_task_struct(env.best_task); 1826 return ret; 1827 } 1828 1829 /* Attempt to migrate a task to a CPU on the preferred node. */ 1830 static void numa_migrate_preferred(struct task_struct *p) 1831 { 1832 unsigned long interval = HZ; 1833 1834 /* This task has no NUMA fault statistics yet */ 1835 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1836 return; 1837 1838 /* Periodically retry migrating the task to the preferred node */ 1839 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1840 p->numa_migrate_retry = jiffies + interval; 1841 1842 /* Success if task is already running on preferred CPU */ 1843 if (task_node(p) == p->numa_preferred_nid) 1844 return; 1845 1846 /* Otherwise, try migrate to a CPU on the preferred node */ 1847 task_numa_migrate(p); 1848 } 1849 1850 /* 1851 * Find out how many nodes on the workload is actively running on. Do this by 1852 * tracking the nodes from which NUMA hinting faults are triggered. This can 1853 * be different from the set of nodes where the workload's memory is currently 1854 * located. 1855 */ 1856 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1857 { 1858 unsigned long faults, max_faults = 0; 1859 int nid, active_nodes = 0; 1860 1861 for_each_online_node(nid) { 1862 faults = group_faults_cpu(numa_group, nid); 1863 if (faults > max_faults) 1864 max_faults = faults; 1865 } 1866 1867 for_each_online_node(nid) { 1868 faults = group_faults_cpu(numa_group, nid); 1869 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1870 active_nodes++; 1871 } 1872 1873 numa_group->max_faults_cpu = max_faults; 1874 numa_group->active_nodes = active_nodes; 1875 } 1876 1877 /* 1878 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1879 * increments. The more local the fault statistics are, the higher the scan 1880 * period will be for the next scan window. If local/(local+remote) ratio is 1881 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1882 * the scan period will decrease. Aim for 70% local accesses. 1883 */ 1884 #define NUMA_PERIOD_SLOTS 10 1885 #define NUMA_PERIOD_THRESHOLD 7 1886 1887 /* 1888 * Increase the scan period (slow down scanning) if the majority of 1889 * our memory is already on our local node, or if the majority of 1890 * the page accesses are shared with other processes. 1891 * Otherwise, decrease the scan period. 1892 */ 1893 static void update_task_scan_period(struct task_struct *p, 1894 unsigned long shared, unsigned long private) 1895 { 1896 unsigned int period_slot; 1897 int lr_ratio, ps_ratio; 1898 int diff; 1899 1900 unsigned long remote = p->numa_faults_locality[0]; 1901 unsigned long local = p->numa_faults_locality[1]; 1902 1903 /* 1904 * If there were no record hinting faults then either the task is 1905 * completely idle or all activity is areas that are not of interest 1906 * to automatic numa balancing. Related to that, if there were failed 1907 * migration then it implies we are migrating too quickly or the local 1908 * node is overloaded. In either case, scan slower 1909 */ 1910 if (local + shared == 0 || p->numa_faults_locality[2]) { 1911 p->numa_scan_period = min(p->numa_scan_period_max, 1912 p->numa_scan_period << 1); 1913 1914 p->mm->numa_next_scan = jiffies + 1915 msecs_to_jiffies(p->numa_scan_period); 1916 1917 return; 1918 } 1919 1920 /* 1921 * Prepare to scale scan period relative to the current period. 1922 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1923 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1924 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1925 */ 1926 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1927 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1928 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 1929 1930 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 1931 /* 1932 * Most memory accesses are local. There is no need to 1933 * do fast NUMA scanning, since memory is already local. 1934 */ 1935 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 1936 if (!slot) 1937 slot = 1; 1938 diff = slot * period_slot; 1939 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 1940 /* 1941 * Most memory accesses are shared with other tasks. 1942 * There is no point in continuing fast NUMA scanning, 1943 * since other tasks may just move the memory elsewhere. 1944 */ 1945 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 1946 if (!slot) 1947 slot = 1; 1948 diff = slot * period_slot; 1949 } else { 1950 /* 1951 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 1952 * yet they are not on the local NUMA node. Speed up 1953 * NUMA scanning to get the memory moved over. 1954 */ 1955 int ratio = max(lr_ratio, ps_ratio); 1956 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1957 } 1958 1959 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1960 task_scan_min(p), task_scan_max(p)); 1961 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1962 } 1963 1964 /* 1965 * Get the fraction of time the task has been running since the last 1966 * NUMA placement cycle. The scheduler keeps similar statistics, but 1967 * decays those on a 32ms period, which is orders of magnitude off 1968 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 1969 * stats only if the task is so new there are no NUMA statistics yet. 1970 */ 1971 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 1972 { 1973 u64 runtime, delta, now; 1974 /* Use the start of this time slice to avoid calculations. */ 1975 now = p->se.exec_start; 1976 runtime = p->se.sum_exec_runtime; 1977 1978 if (p->last_task_numa_placement) { 1979 delta = runtime - p->last_sum_exec_runtime; 1980 *period = now - p->last_task_numa_placement; 1981 } else { 1982 delta = p->se.avg.load_sum; 1983 *period = LOAD_AVG_MAX; 1984 } 1985 1986 p->last_sum_exec_runtime = runtime; 1987 p->last_task_numa_placement = now; 1988 1989 return delta; 1990 } 1991 1992 /* 1993 * Determine the preferred nid for a task in a numa_group. This needs to 1994 * be done in a way that produces consistent results with group_weight, 1995 * otherwise workloads might not converge. 1996 */ 1997 static int preferred_group_nid(struct task_struct *p, int nid) 1998 { 1999 nodemask_t nodes; 2000 int dist; 2001 2002 /* Direct connections between all NUMA nodes. */ 2003 if (sched_numa_topology_type == NUMA_DIRECT) 2004 return nid; 2005 2006 /* 2007 * On a system with glueless mesh NUMA topology, group_weight 2008 * scores nodes according to the number of NUMA hinting faults on 2009 * both the node itself, and on nearby nodes. 2010 */ 2011 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2012 unsigned long score, max_score = 0; 2013 int node, max_node = nid; 2014 2015 dist = sched_max_numa_distance; 2016 2017 for_each_online_node(node) { 2018 score = group_weight(p, node, dist); 2019 if (score > max_score) { 2020 max_score = score; 2021 max_node = node; 2022 } 2023 } 2024 return max_node; 2025 } 2026 2027 /* 2028 * Finding the preferred nid in a system with NUMA backplane 2029 * interconnect topology is more involved. The goal is to locate 2030 * tasks from numa_groups near each other in the system, and 2031 * untangle workloads from different sides of the system. This requires 2032 * searching down the hierarchy of node groups, recursively searching 2033 * inside the highest scoring group of nodes. The nodemask tricks 2034 * keep the complexity of the search down. 2035 */ 2036 nodes = node_online_map; 2037 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2038 unsigned long max_faults = 0; 2039 nodemask_t max_group = NODE_MASK_NONE; 2040 int a, b; 2041 2042 /* Are there nodes at this distance from each other? */ 2043 if (!find_numa_distance(dist)) 2044 continue; 2045 2046 for_each_node_mask(a, nodes) { 2047 unsigned long faults = 0; 2048 nodemask_t this_group; 2049 nodes_clear(this_group); 2050 2051 /* Sum group's NUMA faults; includes a==b case. */ 2052 for_each_node_mask(b, nodes) { 2053 if (node_distance(a, b) < dist) { 2054 faults += group_faults(p, b); 2055 node_set(b, this_group); 2056 node_clear(b, nodes); 2057 } 2058 } 2059 2060 /* Remember the top group. */ 2061 if (faults > max_faults) { 2062 max_faults = faults; 2063 max_group = this_group; 2064 /* 2065 * subtle: at the smallest distance there is 2066 * just one node left in each "group", the 2067 * winner is the preferred nid. 2068 */ 2069 nid = a; 2070 } 2071 } 2072 /* Next round, evaluate the nodes within max_group. */ 2073 if (!max_faults) 2074 break; 2075 nodes = max_group; 2076 } 2077 return nid; 2078 } 2079 2080 static void task_numa_placement(struct task_struct *p) 2081 { 2082 int seq, nid, max_nid = -1; 2083 unsigned long max_faults = 0; 2084 unsigned long fault_types[2] = { 0, 0 }; 2085 unsigned long total_faults; 2086 u64 runtime, period; 2087 spinlock_t *group_lock = NULL; 2088 2089 /* 2090 * The p->mm->numa_scan_seq field gets updated without 2091 * exclusive access. Use READ_ONCE() here to ensure 2092 * that the field is read in a single access: 2093 */ 2094 seq = READ_ONCE(p->mm->numa_scan_seq); 2095 if (p->numa_scan_seq == seq) 2096 return; 2097 p->numa_scan_seq = seq; 2098 p->numa_scan_period_max = task_scan_max(p); 2099 2100 total_faults = p->numa_faults_locality[0] + 2101 p->numa_faults_locality[1]; 2102 runtime = numa_get_avg_runtime(p, &period); 2103 2104 /* If the task is part of a group prevent parallel updates to group stats */ 2105 if (p->numa_group) { 2106 group_lock = &p->numa_group->lock; 2107 spin_lock_irq(group_lock); 2108 } 2109 2110 /* Find the node with the highest number of faults */ 2111 for_each_online_node(nid) { 2112 /* Keep track of the offsets in numa_faults array */ 2113 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2114 unsigned long faults = 0, group_faults = 0; 2115 int priv; 2116 2117 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2118 long diff, f_diff, f_weight; 2119 2120 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2121 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2122 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2123 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2124 2125 /* Decay existing window, copy faults since last scan */ 2126 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2127 fault_types[priv] += p->numa_faults[membuf_idx]; 2128 p->numa_faults[membuf_idx] = 0; 2129 2130 /* 2131 * Normalize the faults_from, so all tasks in a group 2132 * count according to CPU use, instead of by the raw 2133 * number of faults. Tasks with little runtime have 2134 * little over-all impact on throughput, and thus their 2135 * faults are less important. 2136 */ 2137 f_weight = div64_u64(runtime << 16, period + 1); 2138 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2139 (total_faults + 1); 2140 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2141 p->numa_faults[cpubuf_idx] = 0; 2142 2143 p->numa_faults[mem_idx] += diff; 2144 p->numa_faults[cpu_idx] += f_diff; 2145 faults += p->numa_faults[mem_idx]; 2146 p->total_numa_faults += diff; 2147 if (p->numa_group) { 2148 /* 2149 * safe because we can only change our own group 2150 * 2151 * mem_idx represents the offset for a given 2152 * nid and priv in a specific region because it 2153 * is at the beginning of the numa_faults array. 2154 */ 2155 p->numa_group->faults[mem_idx] += diff; 2156 p->numa_group->faults_cpu[mem_idx] += f_diff; 2157 p->numa_group->total_faults += diff; 2158 group_faults += p->numa_group->faults[mem_idx]; 2159 } 2160 } 2161 2162 if (!p->numa_group) { 2163 if (faults > max_faults) { 2164 max_faults = faults; 2165 max_nid = nid; 2166 } 2167 } else if (group_faults > max_faults) { 2168 max_faults = group_faults; 2169 max_nid = nid; 2170 } 2171 } 2172 2173 if (p->numa_group) { 2174 numa_group_count_active_nodes(p->numa_group); 2175 spin_unlock_irq(group_lock); 2176 max_nid = preferred_group_nid(p, max_nid); 2177 } 2178 2179 if (max_faults) { 2180 /* Set the new preferred node */ 2181 if (max_nid != p->numa_preferred_nid) 2182 sched_setnuma(p, max_nid); 2183 } 2184 2185 update_task_scan_period(p, fault_types[0], fault_types[1]); 2186 } 2187 2188 static inline int get_numa_group(struct numa_group *grp) 2189 { 2190 return atomic_inc_not_zero(&grp->refcount); 2191 } 2192 2193 static inline void put_numa_group(struct numa_group *grp) 2194 { 2195 if (atomic_dec_and_test(&grp->refcount)) 2196 kfree_rcu(grp, rcu); 2197 } 2198 2199 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2200 int *priv) 2201 { 2202 struct numa_group *grp, *my_grp; 2203 struct task_struct *tsk; 2204 bool join = false; 2205 int cpu = cpupid_to_cpu(cpupid); 2206 int i; 2207 2208 if (unlikely(!p->numa_group)) { 2209 unsigned int size = sizeof(struct numa_group) + 2210 4*nr_node_ids*sizeof(unsigned long); 2211 2212 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2213 if (!grp) 2214 return; 2215 2216 atomic_set(&grp->refcount, 1); 2217 grp->active_nodes = 1; 2218 grp->max_faults_cpu = 0; 2219 spin_lock_init(&grp->lock); 2220 grp->gid = p->pid; 2221 /* Second half of the array tracks nids where faults happen */ 2222 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2223 nr_node_ids; 2224 2225 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2226 grp->faults[i] = p->numa_faults[i]; 2227 2228 grp->total_faults = p->total_numa_faults; 2229 2230 grp->nr_tasks++; 2231 rcu_assign_pointer(p->numa_group, grp); 2232 } 2233 2234 rcu_read_lock(); 2235 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2236 2237 if (!cpupid_match_pid(tsk, cpupid)) 2238 goto no_join; 2239 2240 grp = rcu_dereference(tsk->numa_group); 2241 if (!grp) 2242 goto no_join; 2243 2244 my_grp = p->numa_group; 2245 if (grp == my_grp) 2246 goto no_join; 2247 2248 /* 2249 * Only join the other group if its bigger; if we're the bigger group, 2250 * the other task will join us. 2251 */ 2252 if (my_grp->nr_tasks > grp->nr_tasks) 2253 goto no_join; 2254 2255 /* 2256 * Tie-break on the grp address. 2257 */ 2258 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2259 goto no_join; 2260 2261 /* Always join threads in the same process. */ 2262 if (tsk->mm == current->mm) 2263 join = true; 2264 2265 /* Simple filter to avoid false positives due to PID collisions */ 2266 if (flags & TNF_SHARED) 2267 join = true; 2268 2269 /* Update priv based on whether false sharing was detected */ 2270 *priv = !join; 2271 2272 if (join && !get_numa_group(grp)) 2273 goto no_join; 2274 2275 rcu_read_unlock(); 2276 2277 if (!join) 2278 return; 2279 2280 BUG_ON(irqs_disabled()); 2281 double_lock_irq(&my_grp->lock, &grp->lock); 2282 2283 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2284 my_grp->faults[i] -= p->numa_faults[i]; 2285 grp->faults[i] += p->numa_faults[i]; 2286 } 2287 my_grp->total_faults -= p->total_numa_faults; 2288 grp->total_faults += p->total_numa_faults; 2289 2290 my_grp->nr_tasks--; 2291 grp->nr_tasks++; 2292 2293 spin_unlock(&my_grp->lock); 2294 spin_unlock_irq(&grp->lock); 2295 2296 rcu_assign_pointer(p->numa_group, grp); 2297 2298 put_numa_group(my_grp); 2299 return; 2300 2301 no_join: 2302 rcu_read_unlock(); 2303 return; 2304 } 2305 2306 void task_numa_free(struct task_struct *p) 2307 { 2308 struct numa_group *grp = p->numa_group; 2309 void *numa_faults = p->numa_faults; 2310 unsigned long flags; 2311 int i; 2312 2313 if (grp) { 2314 spin_lock_irqsave(&grp->lock, flags); 2315 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2316 grp->faults[i] -= p->numa_faults[i]; 2317 grp->total_faults -= p->total_numa_faults; 2318 2319 grp->nr_tasks--; 2320 spin_unlock_irqrestore(&grp->lock, flags); 2321 RCU_INIT_POINTER(p->numa_group, NULL); 2322 put_numa_group(grp); 2323 } 2324 2325 p->numa_faults = NULL; 2326 kfree(numa_faults); 2327 } 2328 2329 /* 2330 * Got a PROT_NONE fault for a page on @node. 2331 */ 2332 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2333 { 2334 struct task_struct *p = current; 2335 bool migrated = flags & TNF_MIGRATED; 2336 int cpu_node = task_node(current); 2337 int local = !!(flags & TNF_FAULT_LOCAL); 2338 struct numa_group *ng; 2339 int priv; 2340 2341 if (!static_branch_likely(&sched_numa_balancing)) 2342 return; 2343 2344 /* for example, ksmd faulting in a user's mm */ 2345 if (!p->mm) 2346 return; 2347 2348 /* Allocate buffer to track faults on a per-node basis */ 2349 if (unlikely(!p->numa_faults)) { 2350 int size = sizeof(*p->numa_faults) * 2351 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2352 2353 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2354 if (!p->numa_faults) 2355 return; 2356 2357 p->total_numa_faults = 0; 2358 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2359 } 2360 2361 /* 2362 * First accesses are treated as private, otherwise consider accesses 2363 * to be private if the accessing pid has not changed 2364 */ 2365 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2366 priv = 1; 2367 } else { 2368 priv = cpupid_match_pid(p, last_cpupid); 2369 if (!priv && !(flags & TNF_NO_GROUP)) 2370 task_numa_group(p, last_cpupid, flags, &priv); 2371 } 2372 2373 /* 2374 * If a workload spans multiple NUMA nodes, a shared fault that 2375 * occurs wholly within the set of nodes that the workload is 2376 * actively using should be counted as local. This allows the 2377 * scan rate to slow down when a workload has settled down. 2378 */ 2379 ng = p->numa_group; 2380 if (!priv && !local && ng && ng->active_nodes > 1 && 2381 numa_is_active_node(cpu_node, ng) && 2382 numa_is_active_node(mem_node, ng)) 2383 local = 1; 2384 2385 /* 2386 * Retry task to preferred node migration periodically, in case it 2387 * case it previously failed, or the scheduler moved us. 2388 */ 2389 if (time_after(jiffies, p->numa_migrate_retry)) { 2390 task_numa_placement(p); 2391 numa_migrate_preferred(p); 2392 } 2393 2394 if (migrated) 2395 p->numa_pages_migrated += pages; 2396 if (flags & TNF_MIGRATE_FAIL) 2397 p->numa_faults_locality[2] += pages; 2398 2399 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2400 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2401 p->numa_faults_locality[local] += pages; 2402 } 2403 2404 static void reset_ptenuma_scan(struct task_struct *p) 2405 { 2406 /* 2407 * We only did a read acquisition of the mmap sem, so 2408 * p->mm->numa_scan_seq is written to without exclusive access 2409 * and the update is not guaranteed to be atomic. That's not 2410 * much of an issue though, since this is just used for 2411 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2412 * expensive, to avoid any form of compiler optimizations: 2413 */ 2414 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2415 p->mm->numa_scan_offset = 0; 2416 } 2417 2418 /* 2419 * The expensive part of numa migration is done from task_work context. 2420 * Triggered from task_tick_numa(). 2421 */ 2422 void task_numa_work(struct callback_head *work) 2423 { 2424 unsigned long migrate, next_scan, now = jiffies; 2425 struct task_struct *p = current; 2426 struct mm_struct *mm = p->mm; 2427 u64 runtime = p->se.sum_exec_runtime; 2428 struct vm_area_struct *vma; 2429 unsigned long start, end; 2430 unsigned long nr_pte_updates = 0; 2431 long pages, virtpages; 2432 2433 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2434 2435 work->next = work; /* protect against double add */ 2436 /* 2437 * Who cares about NUMA placement when they're dying. 2438 * 2439 * NOTE: make sure not to dereference p->mm before this check, 2440 * exit_task_work() happens _after_ exit_mm() so we could be called 2441 * without p->mm even though we still had it when we enqueued this 2442 * work. 2443 */ 2444 if (p->flags & PF_EXITING) 2445 return; 2446 2447 if (!mm->numa_next_scan) { 2448 mm->numa_next_scan = now + 2449 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2450 } 2451 2452 /* 2453 * Enforce maximal scan/migration frequency.. 2454 */ 2455 migrate = mm->numa_next_scan; 2456 if (time_before(now, migrate)) 2457 return; 2458 2459 if (p->numa_scan_period == 0) { 2460 p->numa_scan_period_max = task_scan_max(p); 2461 p->numa_scan_period = task_scan_start(p); 2462 } 2463 2464 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2465 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2466 return; 2467 2468 /* 2469 * Delay this task enough that another task of this mm will likely win 2470 * the next time around. 2471 */ 2472 p->node_stamp += 2 * TICK_NSEC; 2473 2474 start = mm->numa_scan_offset; 2475 pages = sysctl_numa_balancing_scan_size; 2476 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2477 virtpages = pages * 8; /* Scan up to this much virtual space */ 2478 if (!pages) 2479 return; 2480 2481 2482 if (!down_read_trylock(&mm->mmap_sem)) 2483 return; 2484 vma = find_vma(mm, start); 2485 if (!vma) { 2486 reset_ptenuma_scan(p); 2487 start = 0; 2488 vma = mm->mmap; 2489 } 2490 for (; vma; vma = vma->vm_next) { 2491 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2492 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2493 continue; 2494 } 2495 2496 /* 2497 * Shared library pages mapped by multiple processes are not 2498 * migrated as it is expected they are cache replicated. Avoid 2499 * hinting faults in read-only file-backed mappings or the vdso 2500 * as migrating the pages will be of marginal benefit. 2501 */ 2502 if (!vma->vm_mm || 2503 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2504 continue; 2505 2506 /* 2507 * Skip inaccessible VMAs to avoid any confusion between 2508 * PROT_NONE and NUMA hinting ptes 2509 */ 2510 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2511 continue; 2512 2513 do { 2514 start = max(start, vma->vm_start); 2515 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2516 end = min(end, vma->vm_end); 2517 nr_pte_updates = change_prot_numa(vma, start, end); 2518 2519 /* 2520 * Try to scan sysctl_numa_balancing_size worth of 2521 * hpages that have at least one present PTE that 2522 * is not already pte-numa. If the VMA contains 2523 * areas that are unused or already full of prot_numa 2524 * PTEs, scan up to virtpages, to skip through those 2525 * areas faster. 2526 */ 2527 if (nr_pte_updates) 2528 pages -= (end - start) >> PAGE_SHIFT; 2529 virtpages -= (end - start) >> PAGE_SHIFT; 2530 2531 start = end; 2532 if (pages <= 0 || virtpages <= 0) 2533 goto out; 2534 2535 cond_resched(); 2536 } while (end != vma->vm_end); 2537 } 2538 2539 out: 2540 /* 2541 * It is possible to reach the end of the VMA list but the last few 2542 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2543 * would find the !migratable VMA on the next scan but not reset the 2544 * scanner to the start so check it now. 2545 */ 2546 if (vma) 2547 mm->numa_scan_offset = start; 2548 else 2549 reset_ptenuma_scan(p); 2550 up_read(&mm->mmap_sem); 2551 2552 /* 2553 * Make sure tasks use at least 32x as much time to run other code 2554 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2555 * Usually update_task_scan_period slows down scanning enough; on an 2556 * overloaded system we need to limit overhead on a per task basis. 2557 */ 2558 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2559 u64 diff = p->se.sum_exec_runtime - runtime; 2560 p->node_stamp += 32 * diff; 2561 } 2562 } 2563 2564 /* 2565 * Drive the periodic memory faults.. 2566 */ 2567 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2568 { 2569 struct callback_head *work = &curr->numa_work; 2570 u64 period, now; 2571 2572 /* 2573 * We don't care about NUMA placement if we don't have memory. 2574 */ 2575 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2576 return; 2577 2578 /* 2579 * Using runtime rather than walltime has the dual advantage that 2580 * we (mostly) drive the selection from busy threads and that the 2581 * task needs to have done some actual work before we bother with 2582 * NUMA placement. 2583 */ 2584 now = curr->se.sum_exec_runtime; 2585 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2586 2587 if (now > curr->node_stamp + period) { 2588 if (!curr->node_stamp) 2589 curr->numa_scan_period = task_scan_start(curr); 2590 curr->node_stamp += period; 2591 2592 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2593 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2594 task_work_add(curr, work, true); 2595 } 2596 } 2597 } 2598 2599 #else 2600 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2601 { 2602 } 2603 2604 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2605 { 2606 } 2607 2608 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2609 { 2610 } 2611 2612 #endif /* CONFIG_NUMA_BALANCING */ 2613 2614 static void 2615 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2616 { 2617 update_load_add(&cfs_rq->load, se->load.weight); 2618 if (!parent_entity(se)) 2619 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2620 #ifdef CONFIG_SMP 2621 if (entity_is_task(se)) { 2622 struct rq *rq = rq_of(cfs_rq); 2623 2624 account_numa_enqueue(rq, task_of(se)); 2625 list_add(&se->group_node, &rq->cfs_tasks); 2626 } 2627 #endif 2628 cfs_rq->nr_running++; 2629 } 2630 2631 static void 2632 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2633 { 2634 update_load_sub(&cfs_rq->load, se->load.weight); 2635 if (!parent_entity(se)) 2636 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2637 #ifdef CONFIG_SMP 2638 if (entity_is_task(se)) { 2639 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2640 list_del_init(&se->group_node); 2641 } 2642 #endif 2643 cfs_rq->nr_running--; 2644 } 2645 2646 /* 2647 * Signed add and clamp on underflow. 2648 * 2649 * Explicitly do a load-store to ensure the intermediate value never hits 2650 * memory. This allows lockless observations without ever seeing the negative 2651 * values. 2652 */ 2653 #define add_positive(_ptr, _val) do { \ 2654 typeof(_ptr) ptr = (_ptr); \ 2655 typeof(_val) val = (_val); \ 2656 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2657 \ 2658 res = var + val; \ 2659 \ 2660 if (val < 0 && res > var) \ 2661 res = 0; \ 2662 \ 2663 WRITE_ONCE(*ptr, res); \ 2664 } while (0) 2665 2666 /* 2667 * Unsigned subtract and clamp on underflow. 2668 * 2669 * Explicitly do a load-store to ensure the intermediate value never hits 2670 * memory. This allows lockless observations without ever seeing the negative 2671 * values. 2672 */ 2673 #define sub_positive(_ptr, _val) do { \ 2674 typeof(_ptr) ptr = (_ptr); \ 2675 typeof(*ptr) val = (_val); \ 2676 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2677 res = var - val; \ 2678 if (res > var) \ 2679 res = 0; \ 2680 WRITE_ONCE(*ptr, res); \ 2681 } while (0) 2682 2683 #ifdef CONFIG_SMP 2684 static inline void 2685 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2686 { 2687 cfs_rq->runnable_weight += se->runnable_weight; 2688 2689 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg; 2690 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum; 2691 } 2692 2693 static inline void 2694 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2695 { 2696 cfs_rq->runnable_weight -= se->runnable_weight; 2697 2698 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg); 2699 sub_positive(&cfs_rq->avg.runnable_load_sum, 2700 se_runnable(se) * se->avg.runnable_load_sum); 2701 } 2702 2703 static inline void 2704 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2705 { 2706 cfs_rq->avg.load_avg += se->avg.load_avg; 2707 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 2708 } 2709 2710 static inline void 2711 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2712 { 2713 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 2714 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 2715 } 2716 #else 2717 static inline void 2718 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2719 static inline void 2720 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2721 static inline void 2722 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2723 static inline void 2724 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2725 #endif 2726 2727 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2728 unsigned long weight, unsigned long runnable) 2729 { 2730 if (se->on_rq) { 2731 /* commit outstanding execution time */ 2732 if (cfs_rq->curr == se) 2733 update_curr(cfs_rq); 2734 account_entity_dequeue(cfs_rq, se); 2735 dequeue_runnable_load_avg(cfs_rq, se); 2736 } 2737 dequeue_load_avg(cfs_rq, se); 2738 2739 se->runnable_weight = runnable; 2740 update_load_set(&se->load, weight); 2741 2742 #ifdef CONFIG_SMP 2743 do { 2744 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib; 2745 2746 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 2747 se->avg.runnable_load_avg = 2748 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider); 2749 } while (0); 2750 #endif 2751 2752 enqueue_load_avg(cfs_rq, se); 2753 if (se->on_rq) { 2754 account_entity_enqueue(cfs_rq, se); 2755 enqueue_runnable_load_avg(cfs_rq, se); 2756 } 2757 } 2758 2759 void reweight_task(struct task_struct *p, int prio) 2760 { 2761 struct sched_entity *se = &p->se; 2762 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2763 struct load_weight *load = &se->load; 2764 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 2765 2766 reweight_entity(cfs_rq, se, weight, weight); 2767 load->inv_weight = sched_prio_to_wmult[prio]; 2768 } 2769 2770 #ifdef CONFIG_FAIR_GROUP_SCHED 2771 #ifdef CONFIG_SMP 2772 /* 2773 * All this does is approximate the hierarchical proportion which includes that 2774 * global sum we all love to hate. 2775 * 2776 * That is, the weight of a group entity, is the proportional share of the 2777 * group weight based on the group runqueue weights. That is: 2778 * 2779 * tg->weight * grq->load.weight 2780 * ge->load.weight = ----------------------------- (1) 2781 * \Sum grq->load.weight 2782 * 2783 * Now, because computing that sum is prohibitively expensive to compute (been 2784 * there, done that) we approximate it with this average stuff. The average 2785 * moves slower and therefore the approximation is cheaper and more stable. 2786 * 2787 * So instead of the above, we substitute: 2788 * 2789 * grq->load.weight -> grq->avg.load_avg (2) 2790 * 2791 * which yields the following: 2792 * 2793 * tg->weight * grq->avg.load_avg 2794 * ge->load.weight = ------------------------------ (3) 2795 * tg->load_avg 2796 * 2797 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 2798 * 2799 * That is shares_avg, and it is right (given the approximation (2)). 2800 * 2801 * The problem with it is that because the average is slow -- it was designed 2802 * to be exactly that of course -- this leads to transients in boundary 2803 * conditions. In specific, the case where the group was idle and we start the 2804 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 2805 * yielding bad latency etc.. 2806 * 2807 * Now, in that special case (1) reduces to: 2808 * 2809 * tg->weight * grq->load.weight 2810 * ge->load.weight = ----------------------------- = tg->weight (4) 2811 * grp->load.weight 2812 * 2813 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 2814 * 2815 * So what we do is modify our approximation (3) to approach (4) in the (near) 2816 * UP case, like: 2817 * 2818 * ge->load.weight = 2819 * 2820 * tg->weight * grq->load.weight 2821 * --------------------------------------------------- (5) 2822 * tg->load_avg - grq->avg.load_avg + grq->load.weight 2823 * 2824 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 2825 * we need to use grq->avg.load_avg as its lower bound, which then gives: 2826 * 2827 * 2828 * tg->weight * grq->load.weight 2829 * ge->load.weight = ----------------------------- (6) 2830 * tg_load_avg' 2831 * 2832 * Where: 2833 * 2834 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 2835 * max(grq->load.weight, grq->avg.load_avg) 2836 * 2837 * And that is shares_weight and is icky. In the (near) UP case it approaches 2838 * (4) while in the normal case it approaches (3). It consistently 2839 * overestimates the ge->load.weight and therefore: 2840 * 2841 * \Sum ge->load.weight >= tg->weight 2842 * 2843 * hence icky! 2844 */ 2845 static long calc_group_shares(struct cfs_rq *cfs_rq) 2846 { 2847 long tg_weight, tg_shares, load, shares; 2848 struct task_group *tg = cfs_rq->tg; 2849 2850 tg_shares = READ_ONCE(tg->shares); 2851 2852 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 2853 2854 tg_weight = atomic_long_read(&tg->load_avg); 2855 2856 /* Ensure tg_weight >= load */ 2857 tg_weight -= cfs_rq->tg_load_avg_contrib; 2858 tg_weight += load; 2859 2860 shares = (tg_shares * load); 2861 if (tg_weight) 2862 shares /= tg_weight; 2863 2864 /* 2865 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 2866 * of a group with small tg->shares value. It is a floor value which is 2867 * assigned as a minimum load.weight to the sched_entity representing 2868 * the group on a CPU. 2869 * 2870 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 2871 * on an 8-core system with 8 tasks each runnable on one CPU shares has 2872 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 2873 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 2874 * instead of 0. 2875 */ 2876 return clamp_t(long, shares, MIN_SHARES, tg_shares); 2877 } 2878 2879 /* 2880 * This calculates the effective runnable weight for a group entity based on 2881 * the group entity weight calculated above. 2882 * 2883 * Because of the above approximation (2), our group entity weight is 2884 * an load_avg based ratio (3). This means that it includes blocked load and 2885 * does not represent the runnable weight. 2886 * 2887 * Approximate the group entity's runnable weight per ratio from the group 2888 * runqueue: 2889 * 2890 * grq->avg.runnable_load_avg 2891 * ge->runnable_weight = ge->load.weight * -------------------------- (7) 2892 * grq->avg.load_avg 2893 * 2894 * However, analogous to above, since the avg numbers are slow, this leads to 2895 * transients in the from-idle case. Instead we use: 2896 * 2897 * ge->runnable_weight = ge->load.weight * 2898 * 2899 * max(grq->avg.runnable_load_avg, grq->runnable_weight) 2900 * ----------------------------------------------------- (8) 2901 * max(grq->avg.load_avg, grq->load.weight) 2902 * 2903 * Where these max() serve both to use the 'instant' values to fix the slow 2904 * from-idle and avoid the /0 on to-idle, similar to (6). 2905 */ 2906 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares) 2907 { 2908 long runnable, load_avg; 2909 2910 load_avg = max(cfs_rq->avg.load_avg, 2911 scale_load_down(cfs_rq->load.weight)); 2912 2913 runnable = max(cfs_rq->avg.runnable_load_avg, 2914 scale_load_down(cfs_rq->runnable_weight)); 2915 2916 runnable *= shares; 2917 if (load_avg) 2918 runnable /= load_avg; 2919 2920 return clamp_t(long, runnable, MIN_SHARES, shares); 2921 } 2922 #endif /* CONFIG_SMP */ 2923 2924 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2925 2926 /* 2927 * Recomputes the group entity based on the current state of its group 2928 * runqueue. 2929 */ 2930 static void update_cfs_group(struct sched_entity *se) 2931 { 2932 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 2933 long shares, runnable; 2934 2935 if (!gcfs_rq) 2936 return; 2937 2938 if (throttled_hierarchy(gcfs_rq)) 2939 return; 2940 2941 #ifndef CONFIG_SMP 2942 runnable = shares = READ_ONCE(gcfs_rq->tg->shares); 2943 2944 if (likely(se->load.weight == shares)) 2945 return; 2946 #else 2947 shares = calc_group_shares(gcfs_rq); 2948 runnable = calc_group_runnable(gcfs_rq, shares); 2949 #endif 2950 2951 reweight_entity(cfs_rq_of(se), se, shares, runnable); 2952 } 2953 2954 #else /* CONFIG_FAIR_GROUP_SCHED */ 2955 static inline void update_cfs_group(struct sched_entity *se) 2956 { 2957 } 2958 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2959 2960 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 2961 { 2962 struct rq *rq = rq_of(cfs_rq); 2963 2964 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) { 2965 /* 2966 * There are a few boundary cases this might miss but it should 2967 * get called often enough that that should (hopefully) not be 2968 * a real problem. 2969 * 2970 * It will not get called when we go idle, because the idle 2971 * thread is a different class (!fair), nor will the utilization 2972 * number include things like RT tasks. 2973 * 2974 * As is, the util number is not freq-invariant (we'd have to 2975 * implement arch_scale_freq_capacity() for that). 2976 * 2977 * See cpu_util(). 2978 */ 2979 cpufreq_update_util(rq, flags); 2980 } 2981 } 2982 2983 #ifdef CONFIG_SMP 2984 #ifdef CONFIG_FAIR_GROUP_SCHED 2985 /** 2986 * update_tg_load_avg - update the tg's load avg 2987 * @cfs_rq: the cfs_rq whose avg changed 2988 * @force: update regardless of how small the difference 2989 * 2990 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 2991 * However, because tg->load_avg is a global value there are performance 2992 * considerations. 2993 * 2994 * In order to avoid having to look at the other cfs_rq's, we use a 2995 * differential update where we store the last value we propagated. This in 2996 * turn allows skipping updates if the differential is 'small'. 2997 * 2998 * Updating tg's load_avg is necessary before update_cfs_share(). 2999 */ 3000 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3001 { 3002 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3003 3004 /* 3005 * No need to update load_avg for root_task_group as it is not used. 3006 */ 3007 if (cfs_rq->tg == &root_task_group) 3008 return; 3009 3010 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3011 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3012 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3013 } 3014 } 3015 3016 /* 3017 * Called within set_task_rq() right before setting a task's CPU. The 3018 * caller only guarantees p->pi_lock is held; no other assumptions, 3019 * including the state of rq->lock, should be made. 3020 */ 3021 void set_task_rq_fair(struct sched_entity *se, 3022 struct cfs_rq *prev, struct cfs_rq *next) 3023 { 3024 u64 p_last_update_time; 3025 u64 n_last_update_time; 3026 3027 if (!sched_feat(ATTACH_AGE_LOAD)) 3028 return; 3029 3030 /* 3031 * We are supposed to update the task to "current" time, then its up to 3032 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3033 * getting what current time is, so simply throw away the out-of-date 3034 * time. This will result in the wakee task is less decayed, but giving 3035 * the wakee more load sounds not bad. 3036 */ 3037 if (!(se->avg.last_update_time && prev)) 3038 return; 3039 3040 #ifndef CONFIG_64BIT 3041 { 3042 u64 p_last_update_time_copy; 3043 u64 n_last_update_time_copy; 3044 3045 do { 3046 p_last_update_time_copy = prev->load_last_update_time_copy; 3047 n_last_update_time_copy = next->load_last_update_time_copy; 3048 3049 smp_rmb(); 3050 3051 p_last_update_time = prev->avg.last_update_time; 3052 n_last_update_time = next->avg.last_update_time; 3053 3054 } while (p_last_update_time != p_last_update_time_copy || 3055 n_last_update_time != n_last_update_time_copy); 3056 } 3057 #else 3058 p_last_update_time = prev->avg.last_update_time; 3059 n_last_update_time = next->avg.last_update_time; 3060 #endif 3061 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se); 3062 se->avg.last_update_time = n_last_update_time; 3063 } 3064 3065 3066 /* 3067 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3068 * propagate its contribution. The key to this propagation is the invariant 3069 * that for each group: 3070 * 3071 * ge->avg == grq->avg (1) 3072 * 3073 * _IFF_ we look at the pure running and runnable sums. Because they 3074 * represent the very same entity, just at different points in the hierarchy. 3075 * 3076 * Per the above update_tg_cfs_util() is trivial and simply copies the running 3077 * sum over (but still wrong, because the group entity and group rq do not have 3078 * their PELT windows aligned). 3079 * 3080 * However, update_tg_cfs_runnable() is more complex. So we have: 3081 * 3082 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3083 * 3084 * And since, like util, the runnable part should be directly transferable, 3085 * the following would _appear_ to be the straight forward approach: 3086 * 3087 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3088 * 3089 * And per (1) we have: 3090 * 3091 * ge->avg.runnable_avg == grq->avg.runnable_avg 3092 * 3093 * Which gives: 3094 * 3095 * ge->load.weight * grq->avg.load_avg 3096 * ge->avg.load_avg = ----------------------------------- (4) 3097 * grq->load.weight 3098 * 3099 * Except that is wrong! 3100 * 3101 * Because while for entities historical weight is not important and we 3102 * really only care about our future and therefore can consider a pure 3103 * runnable sum, runqueues can NOT do this. 3104 * 3105 * We specifically want runqueues to have a load_avg that includes 3106 * historical weights. Those represent the blocked load, the load we expect 3107 * to (shortly) return to us. This only works by keeping the weights as 3108 * integral part of the sum. We therefore cannot decompose as per (3). 3109 * 3110 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3111 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3112 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3113 * runnable section of these tasks overlap (or not). If they were to perfectly 3114 * align the rq as a whole would be runnable 2/3 of the time. If however we 3115 * always have at least 1 runnable task, the rq as a whole is always runnable. 3116 * 3117 * So we'll have to approximate.. :/ 3118 * 3119 * Given the constraint: 3120 * 3121 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3122 * 3123 * We can construct a rule that adds runnable to a rq by assuming minimal 3124 * overlap. 3125 * 3126 * On removal, we'll assume each task is equally runnable; which yields: 3127 * 3128 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3129 * 3130 * XXX: only do this for the part of runnable > running ? 3131 * 3132 */ 3133 3134 static inline void 3135 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3136 { 3137 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3138 3139 /* Nothing to update */ 3140 if (!delta) 3141 return; 3142 3143 /* 3144 * The relation between sum and avg is: 3145 * 3146 * LOAD_AVG_MAX - 1024 + sa->period_contrib 3147 * 3148 * however, the PELT windows are not aligned between grq and gse. 3149 */ 3150 3151 /* Set new sched_entity's utilization */ 3152 se->avg.util_avg = gcfs_rq->avg.util_avg; 3153 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3154 3155 /* Update parent cfs_rq utilization */ 3156 add_positive(&cfs_rq->avg.util_avg, delta); 3157 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3158 } 3159 3160 static inline void 3161 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3162 { 3163 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3164 unsigned long runnable_load_avg, load_avg; 3165 u64 runnable_load_sum, load_sum = 0; 3166 s64 delta_sum; 3167 3168 if (!runnable_sum) 3169 return; 3170 3171 gcfs_rq->prop_runnable_sum = 0; 3172 3173 if (runnable_sum >= 0) { 3174 /* 3175 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3176 * the CPU is saturated running == runnable. 3177 */ 3178 runnable_sum += se->avg.load_sum; 3179 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX); 3180 } else { 3181 /* 3182 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3183 * assuming all tasks are equally runnable. 3184 */ 3185 if (scale_load_down(gcfs_rq->load.weight)) { 3186 load_sum = div_s64(gcfs_rq->avg.load_sum, 3187 scale_load_down(gcfs_rq->load.weight)); 3188 } 3189 3190 /* But make sure to not inflate se's runnable */ 3191 runnable_sum = min(se->avg.load_sum, load_sum); 3192 } 3193 3194 /* 3195 * runnable_sum can't be lower than running_sum 3196 * As running sum is scale with CPU capacity wehreas the runnable sum 3197 * is not we rescale running_sum 1st 3198 */ 3199 running_sum = se->avg.util_sum / 3200 arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq))); 3201 runnable_sum = max(runnable_sum, running_sum); 3202 3203 load_sum = (s64)se_weight(se) * runnable_sum; 3204 load_avg = div_s64(load_sum, LOAD_AVG_MAX); 3205 3206 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3207 delta_avg = load_avg - se->avg.load_avg; 3208 3209 se->avg.load_sum = runnable_sum; 3210 se->avg.load_avg = load_avg; 3211 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3212 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3213 3214 runnable_load_sum = (s64)se_runnable(se) * runnable_sum; 3215 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX); 3216 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum; 3217 delta_avg = runnable_load_avg - se->avg.runnable_load_avg; 3218 3219 se->avg.runnable_load_sum = runnable_sum; 3220 se->avg.runnable_load_avg = runnable_load_avg; 3221 3222 if (se->on_rq) { 3223 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg); 3224 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum); 3225 } 3226 } 3227 3228 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3229 { 3230 cfs_rq->propagate = 1; 3231 cfs_rq->prop_runnable_sum += runnable_sum; 3232 } 3233 3234 /* Update task and its cfs_rq load average */ 3235 static inline int propagate_entity_load_avg(struct sched_entity *se) 3236 { 3237 struct cfs_rq *cfs_rq, *gcfs_rq; 3238 3239 if (entity_is_task(se)) 3240 return 0; 3241 3242 gcfs_rq = group_cfs_rq(se); 3243 if (!gcfs_rq->propagate) 3244 return 0; 3245 3246 gcfs_rq->propagate = 0; 3247 3248 cfs_rq = cfs_rq_of(se); 3249 3250 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3251 3252 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3253 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3254 3255 return 1; 3256 } 3257 3258 /* 3259 * Check if we need to update the load and the utilization of a blocked 3260 * group_entity: 3261 */ 3262 static inline bool skip_blocked_update(struct sched_entity *se) 3263 { 3264 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3265 3266 /* 3267 * If sched_entity still have not zero load or utilization, we have to 3268 * decay it: 3269 */ 3270 if (se->avg.load_avg || se->avg.util_avg) 3271 return false; 3272 3273 /* 3274 * If there is a pending propagation, we have to update the load and 3275 * the utilization of the sched_entity: 3276 */ 3277 if (gcfs_rq->propagate) 3278 return false; 3279 3280 /* 3281 * Otherwise, the load and the utilization of the sched_entity is 3282 * already zero and there is no pending propagation, so it will be a 3283 * waste of time to try to decay it: 3284 */ 3285 return true; 3286 } 3287 3288 #else /* CONFIG_FAIR_GROUP_SCHED */ 3289 3290 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3291 3292 static inline int propagate_entity_load_avg(struct sched_entity *se) 3293 { 3294 return 0; 3295 } 3296 3297 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3298 3299 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3300 3301 /** 3302 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3303 * @now: current time, as per cfs_rq_clock_task() 3304 * @cfs_rq: cfs_rq to update 3305 * 3306 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3307 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3308 * post_init_entity_util_avg(). 3309 * 3310 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3311 * 3312 * Returns true if the load decayed or we removed load. 3313 * 3314 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3315 * call update_tg_load_avg() when this function returns true. 3316 */ 3317 static inline int 3318 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3319 { 3320 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0; 3321 struct sched_avg *sa = &cfs_rq->avg; 3322 int decayed = 0; 3323 3324 if (cfs_rq->removed.nr) { 3325 unsigned long r; 3326 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3327 3328 raw_spin_lock(&cfs_rq->removed.lock); 3329 swap(cfs_rq->removed.util_avg, removed_util); 3330 swap(cfs_rq->removed.load_avg, removed_load); 3331 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum); 3332 cfs_rq->removed.nr = 0; 3333 raw_spin_unlock(&cfs_rq->removed.lock); 3334 3335 r = removed_load; 3336 sub_positive(&sa->load_avg, r); 3337 sub_positive(&sa->load_sum, r * divider); 3338 3339 r = removed_util; 3340 sub_positive(&sa->util_avg, r); 3341 sub_positive(&sa->util_sum, r * divider); 3342 3343 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum); 3344 3345 decayed = 1; 3346 } 3347 3348 decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq); 3349 3350 #ifndef CONFIG_64BIT 3351 smp_wmb(); 3352 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3353 #endif 3354 3355 if (decayed) 3356 cfs_rq_util_change(cfs_rq, 0); 3357 3358 return decayed; 3359 } 3360 3361 /** 3362 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3363 * @cfs_rq: cfs_rq to attach to 3364 * @se: sched_entity to attach 3365 * 3366 * Must call update_cfs_rq_load_avg() before this, since we rely on 3367 * cfs_rq->avg.last_update_time being current. 3368 */ 3369 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3370 { 3371 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3372 3373 /* 3374 * When we attach the @se to the @cfs_rq, we must align the decay 3375 * window because without that, really weird and wonderful things can 3376 * happen. 3377 * 3378 * XXX illustrate 3379 */ 3380 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3381 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3382 3383 /* 3384 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3385 * period_contrib. This isn't strictly correct, but since we're 3386 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3387 * _sum a little. 3388 */ 3389 se->avg.util_sum = se->avg.util_avg * divider; 3390 3391 se->avg.load_sum = divider; 3392 if (se_weight(se)) { 3393 se->avg.load_sum = 3394 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3395 } 3396 3397 se->avg.runnable_load_sum = se->avg.load_sum; 3398 3399 enqueue_load_avg(cfs_rq, se); 3400 cfs_rq->avg.util_avg += se->avg.util_avg; 3401 cfs_rq->avg.util_sum += se->avg.util_sum; 3402 3403 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3404 3405 cfs_rq_util_change(cfs_rq, flags); 3406 } 3407 3408 /** 3409 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3410 * @cfs_rq: cfs_rq to detach from 3411 * @se: sched_entity to detach 3412 * 3413 * Must call update_cfs_rq_load_avg() before this, since we rely on 3414 * cfs_rq->avg.last_update_time being current. 3415 */ 3416 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3417 { 3418 dequeue_load_avg(cfs_rq, se); 3419 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3420 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3421 3422 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3423 3424 cfs_rq_util_change(cfs_rq, 0); 3425 } 3426 3427 /* 3428 * Optional action to be done while updating the load average 3429 */ 3430 #define UPDATE_TG 0x1 3431 #define SKIP_AGE_LOAD 0x2 3432 #define DO_ATTACH 0x4 3433 3434 /* Update task and its cfs_rq load average */ 3435 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3436 { 3437 u64 now = cfs_rq_clock_task(cfs_rq); 3438 struct rq *rq = rq_of(cfs_rq); 3439 int cpu = cpu_of(rq); 3440 int decayed; 3441 3442 /* 3443 * Track task load average for carrying it to new CPU after migrated, and 3444 * track group sched_entity load average for task_h_load calc in migration 3445 */ 3446 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3447 __update_load_avg_se(now, cpu, cfs_rq, se); 3448 3449 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3450 decayed |= propagate_entity_load_avg(se); 3451 3452 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3453 3454 /* 3455 * DO_ATTACH means we're here from enqueue_entity(). 3456 * !last_update_time means we've passed through 3457 * migrate_task_rq_fair() indicating we migrated. 3458 * 3459 * IOW we're enqueueing a task on a new CPU. 3460 */ 3461 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION); 3462 update_tg_load_avg(cfs_rq, 0); 3463 3464 } else if (decayed && (flags & UPDATE_TG)) 3465 update_tg_load_avg(cfs_rq, 0); 3466 } 3467 3468 #ifndef CONFIG_64BIT 3469 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3470 { 3471 u64 last_update_time_copy; 3472 u64 last_update_time; 3473 3474 do { 3475 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3476 smp_rmb(); 3477 last_update_time = cfs_rq->avg.last_update_time; 3478 } while (last_update_time != last_update_time_copy); 3479 3480 return last_update_time; 3481 } 3482 #else 3483 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3484 { 3485 return cfs_rq->avg.last_update_time; 3486 } 3487 #endif 3488 3489 /* 3490 * Synchronize entity load avg of dequeued entity without locking 3491 * the previous rq. 3492 */ 3493 void sync_entity_load_avg(struct sched_entity *se) 3494 { 3495 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3496 u64 last_update_time; 3497 3498 last_update_time = cfs_rq_last_update_time(cfs_rq); 3499 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se); 3500 } 3501 3502 /* 3503 * Task first catches up with cfs_rq, and then subtract 3504 * itself from the cfs_rq (task must be off the queue now). 3505 */ 3506 void remove_entity_load_avg(struct sched_entity *se) 3507 { 3508 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3509 unsigned long flags; 3510 3511 /* 3512 * tasks cannot exit without having gone through wake_up_new_task() -> 3513 * post_init_entity_util_avg() which will have added things to the 3514 * cfs_rq, so we can remove unconditionally. 3515 * 3516 * Similarly for groups, they will have passed through 3517 * post_init_entity_util_avg() before unregister_sched_fair_group() 3518 * calls this. 3519 */ 3520 3521 sync_entity_load_avg(se); 3522 3523 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3524 ++cfs_rq->removed.nr; 3525 cfs_rq->removed.util_avg += se->avg.util_avg; 3526 cfs_rq->removed.load_avg += se->avg.load_avg; 3527 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */ 3528 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3529 } 3530 3531 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3532 { 3533 return cfs_rq->avg.runnable_load_avg; 3534 } 3535 3536 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3537 { 3538 return cfs_rq->avg.load_avg; 3539 } 3540 3541 static int idle_balance(struct rq *this_rq, struct rq_flags *rf); 3542 3543 static inline unsigned long task_util(struct task_struct *p) 3544 { 3545 return READ_ONCE(p->se.avg.util_avg); 3546 } 3547 3548 static inline unsigned long _task_util_est(struct task_struct *p) 3549 { 3550 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3551 3552 return max(ue.ewma, ue.enqueued); 3553 } 3554 3555 static inline unsigned long task_util_est(struct task_struct *p) 3556 { 3557 return max(task_util(p), _task_util_est(p)); 3558 } 3559 3560 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3561 struct task_struct *p) 3562 { 3563 unsigned int enqueued; 3564 3565 if (!sched_feat(UTIL_EST)) 3566 return; 3567 3568 /* Update root cfs_rq's estimated utilization */ 3569 enqueued = cfs_rq->avg.util_est.enqueued; 3570 enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED); 3571 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3572 } 3573 3574 /* 3575 * Check if a (signed) value is within a specified (unsigned) margin, 3576 * based on the observation that: 3577 * 3578 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3579 * 3580 * NOTE: this only works when value + maring < INT_MAX. 3581 */ 3582 static inline bool within_margin(int value, int margin) 3583 { 3584 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3585 } 3586 3587 static void 3588 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) 3589 { 3590 long last_ewma_diff; 3591 struct util_est ue; 3592 3593 if (!sched_feat(UTIL_EST)) 3594 return; 3595 3596 /* Update root cfs_rq's estimated utilization */ 3597 ue.enqueued = cfs_rq->avg.util_est.enqueued; 3598 ue.enqueued -= min_t(unsigned int, ue.enqueued, 3599 (_task_util_est(p) | UTIL_AVG_UNCHANGED)); 3600 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); 3601 3602 /* 3603 * Skip update of task's estimated utilization when the task has not 3604 * yet completed an activation, e.g. being migrated. 3605 */ 3606 if (!task_sleep) 3607 return; 3608 3609 /* 3610 * If the PELT values haven't changed since enqueue time, 3611 * skip the util_est update. 3612 */ 3613 ue = p->se.avg.util_est; 3614 if (ue.enqueued & UTIL_AVG_UNCHANGED) 3615 return; 3616 3617 /* 3618 * Skip update of task's estimated utilization when its EWMA is 3619 * already ~1% close to its last activation value. 3620 */ 3621 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); 3622 last_ewma_diff = ue.enqueued - ue.ewma; 3623 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) 3624 return; 3625 3626 /* 3627 * Update Task's estimated utilization 3628 * 3629 * When *p completes an activation we can consolidate another sample 3630 * of the task size. This is done by storing the current PELT value 3631 * as ue.enqueued and by using this value to update the Exponential 3632 * Weighted Moving Average (EWMA): 3633 * 3634 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 3635 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 3636 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 3637 * = w * ( last_ewma_diff ) + ewma(t-1) 3638 * = w * (last_ewma_diff + ewma(t-1) / w) 3639 * 3640 * Where 'w' is the weight of new samples, which is configured to be 3641 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 3642 */ 3643 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 3644 ue.ewma += last_ewma_diff; 3645 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 3646 WRITE_ONCE(p->se.avg.util_est, ue); 3647 } 3648 3649 #else /* CONFIG_SMP */ 3650 3651 #define UPDATE_TG 0x0 3652 #define SKIP_AGE_LOAD 0x0 3653 #define DO_ATTACH 0x0 3654 3655 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 3656 { 3657 cfs_rq_util_change(cfs_rq, 0); 3658 } 3659 3660 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3661 3662 static inline void 3663 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {} 3664 static inline void 3665 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3666 3667 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 3668 { 3669 return 0; 3670 } 3671 3672 static inline void 3673 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 3674 3675 static inline void 3676 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, 3677 bool task_sleep) {} 3678 3679 #endif /* CONFIG_SMP */ 3680 3681 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3682 { 3683 #ifdef CONFIG_SCHED_DEBUG 3684 s64 d = se->vruntime - cfs_rq->min_vruntime; 3685 3686 if (d < 0) 3687 d = -d; 3688 3689 if (d > 3*sysctl_sched_latency) 3690 schedstat_inc(cfs_rq->nr_spread_over); 3691 #endif 3692 } 3693 3694 static void 3695 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3696 { 3697 u64 vruntime = cfs_rq->min_vruntime; 3698 3699 /* 3700 * The 'current' period is already promised to the current tasks, 3701 * however the extra weight of the new task will slow them down a 3702 * little, place the new task so that it fits in the slot that 3703 * stays open at the end. 3704 */ 3705 if (initial && sched_feat(START_DEBIT)) 3706 vruntime += sched_vslice(cfs_rq, se); 3707 3708 /* sleeps up to a single latency don't count. */ 3709 if (!initial) { 3710 unsigned long thresh = sysctl_sched_latency; 3711 3712 /* 3713 * Halve their sleep time's effect, to allow 3714 * for a gentler effect of sleepers: 3715 */ 3716 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3717 thresh >>= 1; 3718 3719 vruntime -= thresh; 3720 } 3721 3722 /* ensure we never gain time by being placed backwards. */ 3723 se->vruntime = max_vruntime(se->vruntime, vruntime); 3724 } 3725 3726 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3727 3728 static inline void check_schedstat_required(void) 3729 { 3730 #ifdef CONFIG_SCHEDSTATS 3731 if (schedstat_enabled()) 3732 return; 3733 3734 /* Force schedstat enabled if a dependent tracepoint is active */ 3735 if (trace_sched_stat_wait_enabled() || 3736 trace_sched_stat_sleep_enabled() || 3737 trace_sched_stat_iowait_enabled() || 3738 trace_sched_stat_blocked_enabled() || 3739 trace_sched_stat_runtime_enabled()) { 3740 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3741 "stat_blocked and stat_runtime require the " 3742 "kernel parameter schedstats=enable or " 3743 "kernel.sched_schedstats=1\n"); 3744 } 3745 #endif 3746 } 3747 3748 3749 /* 3750 * MIGRATION 3751 * 3752 * dequeue 3753 * update_curr() 3754 * update_min_vruntime() 3755 * vruntime -= min_vruntime 3756 * 3757 * enqueue 3758 * update_curr() 3759 * update_min_vruntime() 3760 * vruntime += min_vruntime 3761 * 3762 * this way the vruntime transition between RQs is done when both 3763 * min_vruntime are up-to-date. 3764 * 3765 * WAKEUP (remote) 3766 * 3767 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3768 * vruntime -= min_vruntime 3769 * 3770 * enqueue 3771 * update_curr() 3772 * update_min_vruntime() 3773 * vruntime += min_vruntime 3774 * 3775 * this way we don't have the most up-to-date min_vruntime on the originating 3776 * CPU and an up-to-date min_vruntime on the destination CPU. 3777 */ 3778 3779 static void 3780 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3781 { 3782 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 3783 bool curr = cfs_rq->curr == se; 3784 3785 /* 3786 * If we're the current task, we must renormalise before calling 3787 * update_curr(). 3788 */ 3789 if (renorm && curr) 3790 se->vruntime += cfs_rq->min_vruntime; 3791 3792 update_curr(cfs_rq); 3793 3794 /* 3795 * Otherwise, renormalise after, such that we're placed at the current 3796 * moment in time, instead of some random moment in the past. Being 3797 * placed in the past could significantly boost this task to the 3798 * fairness detriment of existing tasks. 3799 */ 3800 if (renorm && !curr) 3801 se->vruntime += cfs_rq->min_vruntime; 3802 3803 /* 3804 * When enqueuing a sched_entity, we must: 3805 * - Update loads to have both entity and cfs_rq synced with now. 3806 * - Add its load to cfs_rq->runnable_avg 3807 * - For group_entity, update its weight to reflect the new share of 3808 * its group cfs_rq 3809 * - Add its new weight to cfs_rq->load.weight 3810 */ 3811 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 3812 update_cfs_group(se); 3813 enqueue_runnable_load_avg(cfs_rq, se); 3814 account_entity_enqueue(cfs_rq, se); 3815 3816 if (flags & ENQUEUE_WAKEUP) 3817 place_entity(cfs_rq, se, 0); 3818 3819 check_schedstat_required(); 3820 update_stats_enqueue(cfs_rq, se, flags); 3821 check_spread(cfs_rq, se); 3822 if (!curr) 3823 __enqueue_entity(cfs_rq, se); 3824 se->on_rq = 1; 3825 3826 if (cfs_rq->nr_running == 1) { 3827 list_add_leaf_cfs_rq(cfs_rq); 3828 check_enqueue_throttle(cfs_rq); 3829 } 3830 } 3831 3832 static void __clear_buddies_last(struct sched_entity *se) 3833 { 3834 for_each_sched_entity(se) { 3835 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3836 if (cfs_rq->last != se) 3837 break; 3838 3839 cfs_rq->last = NULL; 3840 } 3841 } 3842 3843 static void __clear_buddies_next(struct sched_entity *se) 3844 { 3845 for_each_sched_entity(se) { 3846 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3847 if (cfs_rq->next != se) 3848 break; 3849 3850 cfs_rq->next = NULL; 3851 } 3852 } 3853 3854 static void __clear_buddies_skip(struct sched_entity *se) 3855 { 3856 for_each_sched_entity(se) { 3857 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3858 if (cfs_rq->skip != se) 3859 break; 3860 3861 cfs_rq->skip = NULL; 3862 } 3863 } 3864 3865 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 3866 { 3867 if (cfs_rq->last == se) 3868 __clear_buddies_last(se); 3869 3870 if (cfs_rq->next == se) 3871 __clear_buddies_next(se); 3872 3873 if (cfs_rq->skip == se) 3874 __clear_buddies_skip(se); 3875 } 3876 3877 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3878 3879 static void 3880 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3881 { 3882 /* 3883 * Update run-time statistics of the 'current'. 3884 */ 3885 update_curr(cfs_rq); 3886 3887 /* 3888 * When dequeuing a sched_entity, we must: 3889 * - Update loads to have both entity and cfs_rq synced with now. 3890 * - Substract its load from the cfs_rq->runnable_avg. 3891 * - Substract its previous weight from cfs_rq->load.weight. 3892 * - For group entity, update its weight to reflect the new share 3893 * of its group cfs_rq. 3894 */ 3895 update_load_avg(cfs_rq, se, UPDATE_TG); 3896 dequeue_runnable_load_avg(cfs_rq, se); 3897 3898 update_stats_dequeue(cfs_rq, se, flags); 3899 3900 clear_buddies(cfs_rq, se); 3901 3902 if (se != cfs_rq->curr) 3903 __dequeue_entity(cfs_rq, se); 3904 se->on_rq = 0; 3905 account_entity_dequeue(cfs_rq, se); 3906 3907 /* 3908 * Normalize after update_curr(); which will also have moved 3909 * min_vruntime if @se is the one holding it back. But before doing 3910 * update_min_vruntime() again, which will discount @se's position and 3911 * can move min_vruntime forward still more. 3912 */ 3913 if (!(flags & DEQUEUE_SLEEP)) 3914 se->vruntime -= cfs_rq->min_vruntime; 3915 3916 /* return excess runtime on last dequeue */ 3917 return_cfs_rq_runtime(cfs_rq); 3918 3919 update_cfs_group(se); 3920 3921 /* 3922 * Now advance min_vruntime if @se was the entity holding it back, 3923 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 3924 * put back on, and if we advance min_vruntime, we'll be placed back 3925 * further than we started -- ie. we'll be penalized. 3926 */ 3927 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 3928 update_min_vruntime(cfs_rq); 3929 } 3930 3931 /* 3932 * Preempt the current task with a newly woken task if needed: 3933 */ 3934 static void 3935 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3936 { 3937 unsigned long ideal_runtime, delta_exec; 3938 struct sched_entity *se; 3939 s64 delta; 3940 3941 ideal_runtime = sched_slice(cfs_rq, curr); 3942 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 3943 if (delta_exec > ideal_runtime) { 3944 resched_curr(rq_of(cfs_rq)); 3945 /* 3946 * The current task ran long enough, ensure it doesn't get 3947 * re-elected due to buddy favours. 3948 */ 3949 clear_buddies(cfs_rq, curr); 3950 return; 3951 } 3952 3953 /* 3954 * Ensure that a task that missed wakeup preemption by a 3955 * narrow margin doesn't have to wait for a full slice. 3956 * This also mitigates buddy induced latencies under load. 3957 */ 3958 if (delta_exec < sysctl_sched_min_granularity) 3959 return; 3960 3961 se = __pick_first_entity(cfs_rq); 3962 delta = curr->vruntime - se->vruntime; 3963 3964 if (delta < 0) 3965 return; 3966 3967 if (delta > ideal_runtime) 3968 resched_curr(rq_of(cfs_rq)); 3969 } 3970 3971 static void 3972 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 3973 { 3974 /* 'current' is not kept within the tree. */ 3975 if (se->on_rq) { 3976 /* 3977 * Any task has to be enqueued before it get to execute on 3978 * a CPU. So account for the time it spent waiting on the 3979 * runqueue. 3980 */ 3981 update_stats_wait_end(cfs_rq, se); 3982 __dequeue_entity(cfs_rq, se); 3983 update_load_avg(cfs_rq, se, UPDATE_TG); 3984 } 3985 3986 update_stats_curr_start(cfs_rq, se); 3987 cfs_rq->curr = se; 3988 3989 /* 3990 * Track our maximum slice length, if the CPU's load is at 3991 * least twice that of our own weight (i.e. dont track it 3992 * when there are only lesser-weight tasks around): 3993 */ 3994 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 3995 schedstat_set(se->statistics.slice_max, 3996 max((u64)schedstat_val(se->statistics.slice_max), 3997 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 3998 } 3999 4000 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4001 } 4002 4003 static int 4004 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4005 4006 /* 4007 * Pick the next process, keeping these things in mind, in this order: 4008 * 1) keep things fair between processes/task groups 4009 * 2) pick the "next" process, since someone really wants that to run 4010 * 3) pick the "last" process, for cache locality 4011 * 4) do not run the "skip" process, if something else is available 4012 */ 4013 static struct sched_entity * 4014 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4015 { 4016 struct sched_entity *left = __pick_first_entity(cfs_rq); 4017 struct sched_entity *se; 4018 4019 /* 4020 * If curr is set we have to see if its left of the leftmost entity 4021 * still in the tree, provided there was anything in the tree at all. 4022 */ 4023 if (!left || (curr && entity_before(curr, left))) 4024 left = curr; 4025 4026 se = left; /* ideally we run the leftmost entity */ 4027 4028 /* 4029 * Avoid running the skip buddy, if running something else can 4030 * be done without getting too unfair. 4031 */ 4032 if (cfs_rq->skip == se) { 4033 struct sched_entity *second; 4034 4035 if (se == curr) { 4036 second = __pick_first_entity(cfs_rq); 4037 } else { 4038 second = __pick_next_entity(se); 4039 if (!second || (curr && entity_before(curr, second))) 4040 second = curr; 4041 } 4042 4043 if (second && wakeup_preempt_entity(second, left) < 1) 4044 se = second; 4045 } 4046 4047 /* 4048 * Prefer last buddy, try to return the CPU to a preempted task. 4049 */ 4050 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 4051 se = cfs_rq->last; 4052 4053 /* 4054 * Someone really wants this to run. If it's not unfair, run it. 4055 */ 4056 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 4057 se = cfs_rq->next; 4058 4059 clear_buddies(cfs_rq, se); 4060 4061 return se; 4062 } 4063 4064 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4065 4066 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4067 { 4068 /* 4069 * If still on the runqueue then deactivate_task() 4070 * was not called and update_curr() has to be done: 4071 */ 4072 if (prev->on_rq) 4073 update_curr(cfs_rq); 4074 4075 /* throttle cfs_rqs exceeding runtime */ 4076 check_cfs_rq_runtime(cfs_rq); 4077 4078 check_spread(cfs_rq, prev); 4079 4080 if (prev->on_rq) { 4081 update_stats_wait_start(cfs_rq, prev); 4082 /* Put 'current' back into the tree. */ 4083 __enqueue_entity(cfs_rq, prev); 4084 /* in !on_rq case, update occurred at dequeue */ 4085 update_load_avg(cfs_rq, prev, 0); 4086 } 4087 cfs_rq->curr = NULL; 4088 } 4089 4090 static void 4091 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4092 { 4093 /* 4094 * Update run-time statistics of the 'current'. 4095 */ 4096 update_curr(cfs_rq); 4097 4098 /* 4099 * Ensure that runnable average is periodically updated. 4100 */ 4101 update_load_avg(cfs_rq, curr, UPDATE_TG); 4102 update_cfs_group(curr); 4103 4104 #ifdef CONFIG_SCHED_HRTICK 4105 /* 4106 * queued ticks are scheduled to match the slice, so don't bother 4107 * validating it and just reschedule. 4108 */ 4109 if (queued) { 4110 resched_curr(rq_of(cfs_rq)); 4111 return; 4112 } 4113 /* 4114 * don't let the period tick interfere with the hrtick preemption 4115 */ 4116 if (!sched_feat(DOUBLE_TICK) && 4117 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4118 return; 4119 #endif 4120 4121 if (cfs_rq->nr_running > 1) 4122 check_preempt_tick(cfs_rq, curr); 4123 } 4124 4125 4126 /************************************************** 4127 * CFS bandwidth control machinery 4128 */ 4129 4130 #ifdef CONFIG_CFS_BANDWIDTH 4131 4132 #ifdef HAVE_JUMP_LABEL 4133 static struct static_key __cfs_bandwidth_used; 4134 4135 static inline bool cfs_bandwidth_used(void) 4136 { 4137 return static_key_false(&__cfs_bandwidth_used); 4138 } 4139 4140 void cfs_bandwidth_usage_inc(void) 4141 { 4142 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4143 } 4144 4145 void cfs_bandwidth_usage_dec(void) 4146 { 4147 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4148 } 4149 #else /* HAVE_JUMP_LABEL */ 4150 static bool cfs_bandwidth_used(void) 4151 { 4152 return true; 4153 } 4154 4155 void cfs_bandwidth_usage_inc(void) {} 4156 void cfs_bandwidth_usage_dec(void) {} 4157 #endif /* HAVE_JUMP_LABEL */ 4158 4159 /* 4160 * default period for cfs group bandwidth. 4161 * default: 0.1s, units: nanoseconds 4162 */ 4163 static inline u64 default_cfs_period(void) 4164 { 4165 return 100000000ULL; 4166 } 4167 4168 static inline u64 sched_cfs_bandwidth_slice(void) 4169 { 4170 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4171 } 4172 4173 /* 4174 * Replenish runtime according to assigned quota and update expiration time. 4175 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 4176 * additional synchronization around rq->lock. 4177 * 4178 * requires cfs_b->lock 4179 */ 4180 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4181 { 4182 u64 now; 4183 4184 if (cfs_b->quota == RUNTIME_INF) 4185 return; 4186 4187 now = sched_clock_cpu(smp_processor_id()); 4188 cfs_b->runtime = cfs_b->quota; 4189 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 4190 cfs_b->expires_seq++; 4191 } 4192 4193 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4194 { 4195 return &tg->cfs_bandwidth; 4196 } 4197 4198 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 4199 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4200 { 4201 if (unlikely(cfs_rq->throttle_count)) 4202 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; 4203 4204 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 4205 } 4206 4207 /* returns 0 on failure to allocate runtime */ 4208 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4209 { 4210 struct task_group *tg = cfs_rq->tg; 4211 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4212 u64 amount = 0, min_amount, expires; 4213 int expires_seq; 4214 4215 /* note: this is a positive sum as runtime_remaining <= 0 */ 4216 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4217 4218 raw_spin_lock(&cfs_b->lock); 4219 if (cfs_b->quota == RUNTIME_INF) 4220 amount = min_amount; 4221 else { 4222 start_cfs_bandwidth(cfs_b); 4223 4224 if (cfs_b->runtime > 0) { 4225 amount = min(cfs_b->runtime, min_amount); 4226 cfs_b->runtime -= amount; 4227 cfs_b->idle = 0; 4228 } 4229 } 4230 expires_seq = cfs_b->expires_seq; 4231 expires = cfs_b->runtime_expires; 4232 raw_spin_unlock(&cfs_b->lock); 4233 4234 cfs_rq->runtime_remaining += amount; 4235 /* 4236 * we may have advanced our local expiration to account for allowed 4237 * spread between our sched_clock and the one on which runtime was 4238 * issued. 4239 */ 4240 if (cfs_rq->expires_seq != expires_seq) { 4241 cfs_rq->expires_seq = expires_seq; 4242 cfs_rq->runtime_expires = expires; 4243 } 4244 4245 return cfs_rq->runtime_remaining > 0; 4246 } 4247 4248 /* 4249 * Note: This depends on the synchronization provided by sched_clock and the 4250 * fact that rq->clock snapshots this value. 4251 */ 4252 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4253 { 4254 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4255 4256 /* if the deadline is ahead of our clock, nothing to do */ 4257 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 4258 return; 4259 4260 if (cfs_rq->runtime_remaining < 0) 4261 return; 4262 4263 /* 4264 * If the local deadline has passed we have to consider the 4265 * possibility that our sched_clock is 'fast' and the global deadline 4266 * has not truly expired. 4267 * 4268 * Fortunately we can check determine whether this the case by checking 4269 * whether the global deadline(cfs_b->expires_seq) has advanced. 4270 */ 4271 if (cfs_rq->expires_seq == cfs_b->expires_seq) { 4272 /* extend local deadline, drift is bounded above by 2 ticks */ 4273 cfs_rq->runtime_expires += TICK_NSEC; 4274 } else { 4275 /* global deadline is ahead, expiration has passed */ 4276 cfs_rq->runtime_remaining = 0; 4277 } 4278 } 4279 4280 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4281 { 4282 /* dock delta_exec before expiring quota (as it could span periods) */ 4283 cfs_rq->runtime_remaining -= delta_exec; 4284 expire_cfs_rq_runtime(cfs_rq); 4285 4286 if (likely(cfs_rq->runtime_remaining > 0)) 4287 return; 4288 4289 /* 4290 * if we're unable to extend our runtime we resched so that the active 4291 * hierarchy can be throttled 4292 */ 4293 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4294 resched_curr(rq_of(cfs_rq)); 4295 } 4296 4297 static __always_inline 4298 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4299 { 4300 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4301 return; 4302 4303 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4304 } 4305 4306 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4307 { 4308 return cfs_bandwidth_used() && cfs_rq->throttled; 4309 } 4310 4311 /* check whether cfs_rq, or any parent, is throttled */ 4312 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4313 { 4314 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4315 } 4316 4317 /* 4318 * Ensure that neither of the group entities corresponding to src_cpu or 4319 * dest_cpu are members of a throttled hierarchy when performing group 4320 * load-balance operations. 4321 */ 4322 static inline int throttled_lb_pair(struct task_group *tg, 4323 int src_cpu, int dest_cpu) 4324 { 4325 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4326 4327 src_cfs_rq = tg->cfs_rq[src_cpu]; 4328 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4329 4330 return throttled_hierarchy(src_cfs_rq) || 4331 throttled_hierarchy(dest_cfs_rq); 4332 } 4333 4334 static int tg_unthrottle_up(struct task_group *tg, void *data) 4335 { 4336 struct rq *rq = data; 4337 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4338 4339 cfs_rq->throttle_count--; 4340 if (!cfs_rq->throttle_count) { 4341 /* adjust cfs_rq_clock_task() */ 4342 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4343 cfs_rq->throttled_clock_task; 4344 } 4345 4346 return 0; 4347 } 4348 4349 static int tg_throttle_down(struct task_group *tg, void *data) 4350 { 4351 struct rq *rq = data; 4352 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4353 4354 /* group is entering throttled state, stop time */ 4355 if (!cfs_rq->throttle_count) 4356 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4357 cfs_rq->throttle_count++; 4358 4359 return 0; 4360 } 4361 4362 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4363 { 4364 struct rq *rq = rq_of(cfs_rq); 4365 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4366 struct sched_entity *se; 4367 long task_delta, dequeue = 1; 4368 bool empty; 4369 4370 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4371 4372 /* freeze hierarchy runnable averages while throttled */ 4373 rcu_read_lock(); 4374 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4375 rcu_read_unlock(); 4376 4377 task_delta = cfs_rq->h_nr_running; 4378 for_each_sched_entity(se) { 4379 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4380 /* throttled entity or throttle-on-deactivate */ 4381 if (!se->on_rq) 4382 break; 4383 4384 if (dequeue) 4385 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4386 qcfs_rq->h_nr_running -= task_delta; 4387 4388 if (qcfs_rq->load.weight) 4389 dequeue = 0; 4390 } 4391 4392 if (!se) 4393 sub_nr_running(rq, task_delta); 4394 4395 cfs_rq->throttled = 1; 4396 cfs_rq->throttled_clock = rq_clock(rq); 4397 raw_spin_lock(&cfs_b->lock); 4398 empty = list_empty(&cfs_b->throttled_cfs_rq); 4399 4400 /* 4401 * Add to the _head_ of the list, so that an already-started 4402 * distribute_cfs_runtime will not see us 4403 */ 4404 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4405 4406 /* 4407 * If we're the first throttled task, make sure the bandwidth 4408 * timer is running. 4409 */ 4410 if (empty) 4411 start_cfs_bandwidth(cfs_b); 4412 4413 raw_spin_unlock(&cfs_b->lock); 4414 } 4415 4416 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4417 { 4418 struct rq *rq = rq_of(cfs_rq); 4419 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4420 struct sched_entity *se; 4421 int enqueue = 1; 4422 long task_delta; 4423 4424 se = cfs_rq->tg->se[cpu_of(rq)]; 4425 4426 cfs_rq->throttled = 0; 4427 4428 update_rq_clock(rq); 4429 4430 raw_spin_lock(&cfs_b->lock); 4431 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4432 list_del_rcu(&cfs_rq->throttled_list); 4433 raw_spin_unlock(&cfs_b->lock); 4434 4435 /* update hierarchical throttle state */ 4436 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4437 4438 if (!cfs_rq->load.weight) 4439 return; 4440 4441 task_delta = cfs_rq->h_nr_running; 4442 for_each_sched_entity(se) { 4443 if (se->on_rq) 4444 enqueue = 0; 4445 4446 cfs_rq = cfs_rq_of(se); 4447 if (enqueue) 4448 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4449 cfs_rq->h_nr_running += task_delta; 4450 4451 if (cfs_rq_throttled(cfs_rq)) 4452 break; 4453 } 4454 4455 if (!se) 4456 add_nr_running(rq, task_delta); 4457 4458 /* Determine whether we need to wake up potentially idle CPU: */ 4459 if (rq->curr == rq->idle && rq->cfs.nr_running) 4460 resched_curr(rq); 4461 } 4462 4463 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 4464 u64 remaining, u64 expires) 4465 { 4466 struct cfs_rq *cfs_rq; 4467 u64 runtime; 4468 u64 starting_runtime = remaining; 4469 4470 rcu_read_lock(); 4471 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4472 throttled_list) { 4473 struct rq *rq = rq_of(cfs_rq); 4474 struct rq_flags rf; 4475 4476 rq_lock(rq, &rf); 4477 if (!cfs_rq_throttled(cfs_rq)) 4478 goto next; 4479 4480 runtime = -cfs_rq->runtime_remaining + 1; 4481 if (runtime > remaining) 4482 runtime = remaining; 4483 remaining -= runtime; 4484 4485 cfs_rq->runtime_remaining += runtime; 4486 cfs_rq->runtime_expires = expires; 4487 4488 /* we check whether we're throttled above */ 4489 if (cfs_rq->runtime_remaining > 0) 4490 unthrottle_cfs_rq(cfs_rq); 4491 4492 next: 4493 rq_unlock(rq, &rf); 4494 4495 if (!remaining) 4496 break; 4497 } 4498 rcu_read_unlock(); 4499 4500 return starting_runtime - remaining; 4501 } 4502 4503 /* 4504 * Responsible for refilling a task_group's bandwidth and unthrottling its 4505 * cfs_rqs as appropriate. If there has been no activity within the last 4506 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4507 * used to track this state. 4508 */ 4509 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 4510 { 4511 u64 runtime, runtime_expires; 4512 int throttled; 4513 4514 /* no need to continue the timer with no bandwidth constraint */ 4515 if (cfs_b->quota == RUNTIME_INF) 4516 goto out_deactivate; 4517 4518 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4519 cfs_b->nr_periods += overrun; 4520 4521 /* 4522 * idle depends on !throttled (for the case of a large deficit), and if 4523 * we're going inactive then everything else can be deferred 4524 */ 4525 if (cfs_b->idle && !throttled) 4526 goto out_deactivate; 4527 4528 __refill_cfs_bandwidth_runtime(cfs_b); 4529 4530 if (!throttled) { 4531 /* mark as potentially idle for the upcoming period */ 4532 cfs_b->idle = 1; 4533 return 0; 4534 } 4535 4536 /* account preceding periods in which throttling occurred */ 4537 cfs_b->nr_throttled += overrun; 4538 4539 runtime_expires = cfs_b->runtime_expires; 4540 4541 /* 4542 * This check is repeated as we are holding onto the new bandwidth while 4543 * we unthrottle. This can potentially race with an unthrottled group 4544 * trying to acquire new bandwidth from the global pool. This can result 4545 * in us over-using our runtime if it is all used during this loop, but 4546 * only by limited amounts in that extreme case. 4547 */ 4548 while (throttled && cfs_b->runtime > 0) { 4549 runtime = cfs_b->runtime; 4550 raw_spin_unlock(&cfs_b->lock); 4551 /* we can't nest cfs_b->lock while distributing bandwidth */ 4552 runtime = distribute_cfs_runtime(cfs_b, runtime, 4553 runtime_expires); 4554 raw_spin_lock(&cfs_b->lock); 4555 4556 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4557 4558 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4559 } 4560 4561 /* 4562 * While we are ensured activity in the period following an 4563 * unthrottle, this also covers the case in which the new bandwidth is 4564 * insufficient to cover the existing bandwidth deficit. (Forcing the 4565 * timer to remain active while there are any throttled entities.) 4566 */ 4567 cfs_b->idle = 0; 4568 4569 return 0; 4570 4571 out_deactivate: 4572 return 1; 4573 } 4574 4575 /* a cfs_rq won't donate quota below this amount */ 4576 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4577 /* minimum remaining period time to redistribute slack quota */ 4578 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4579 /* how long we wait to gather additional slack before distributing */ 4580 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4581 4582 /* 4583 * Are we near the end of the current quota period? 4584 * 4585 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4586 * hrtimer base being cleared by hrtimer_start. In the case of 4587 * migrate_hrtimers, base is never cleared, so we are fine. 4588 */ 4589 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4590 { 4591 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4592 u64 remaining; 4593 4594 /* if the call-back is running a quota refresh is already occurring */ 4595 if (hrtimer_callback_running(refresh_timer)) 4596 return 1; 4597 4598 /* is a quota refresh about to occur? */ 4599 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4600 if (remaining < min_expire) 4601 return 1; 4602 4603 return 0; 4604 } 4605 4606 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4607 { 4608 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4609 4610 /* if there's a quota refresh soon don't bother with slack */ 4611 if (runtime_refresh_within(cfs_b, min_left)) 4612 return; 4613 4614 hrtimer_start(&cfs_b->slack_timer, 4615 ns_to_ktime(cfs_bandwidth_slack_period), 4616 HRTIMER_MODE_REL); 4617 } 4618 4619 /* we know any runtime found here is valid as update_curr() precedes return */ 4620 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4621 { 4622 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4623 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4624 4625 if (slack_runtime <= 0) 4626 return; 4627 4628 raw_spin_lock(&cfs_b->lock); 4629 if (cfs_b->quota != RUNTIME_INF && 4630 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 4631 cfs_b->runtime += slack_runtime; 4632 4633 /* we are under rq->lock, defer unthrottling using a timer */ 4634 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4635 !list_empty(&cfs_b->throttled_cfs_rq)) 4636 start_cfs_slack_bandwidth(cfs_b); 4637 } 4638 raw_spin_unlock(&cfs_b->lock); 4639 4640 /* even if it's not valid for return we don't want to try again */ 4641 cfs_rq->runtime_remaining -= slack_runtime; 4642 } 4643 4644 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4645 { 4646 if (!cfs_bandwidth_used()) 4647 return; 4648 4649 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4650 return; 4651 4652 __return_cfs_rq_runtime(cfs_rq); 4653 } 4654 4655 /* 4656 * This is done with a timer (instead of inline with bandwidth return) since 4657 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4658 */ 4659 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4660 { 4661 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4662 u64 expires; 4663 4664 /* confirm we're still not at a refresh boundary */ 4665 raw_spin_lock(&cfs_b->lock); 4666 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4667 raw_spin_unlock(&cfs_b->lock); 4668 return; 4669 } 4670 4671 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4672 runtime = cfs_b->runtime; 4673 4674 expires = cfs_b->runtime_expires; 4675 raw_spin_unlock(&cfs_b->lock); 4676 4677 if (!runtime) 4678 return; 4679 4680 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 4681 4682 raw_spin_lock(&cfs_b->lock); 4683 if (expires == cfs_b->runtime_expires) 4684 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4685 raw_spin_unlock(&cfs_b->lock); 4686 } 4687 4688 /* 4689 * When a group wakes up we want to make sure that its quota is not already 4690 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4691 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4692 */ 4693 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4694 { 4695 if (!cfs_bandwidth_used()) 4696 return; 4697 4698 /* an active group must be handled by the update_curr()->put() path */ 4699 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4700 return; 4701 4702 /* ensure the group is not already throttled */ 4703 if (cfs_rq_throttled(cfs_rq)) 4704 return; 4705 4706 /* update runtime allocation */ 4707 account_cfs_rq_runtime(cfs_rq, 0); 4708 if (cfs_rq->runtime_remaining <= 0) 4709 throttle_cfs_rq(cfs_rq); 4710 } 4711 4712 static void sync_throttle(struct task_group *tg, int cpu) 4713 { 4714 struct cfs_rq *pcfs_rq, *cfs_rq; 4715 4716 if (!cfs_bandwidth_used()) 4717 return; 4718 4719 if (!tg->parent) 4720 return; 4721 4722 cfs_rq = tg->cfs_rq[cpu]; 4723 pcfs_rq = tg->parent->cfs_rq[cpu]; 4724 4725 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4726 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 4727 } 4728 4729 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4730 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4731 { 4732 if (!cfs_bandwidth_used()) 4733 return false; 4734 4735 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4736 return false; 4737 4738 /* 4739 * it's possible for a throttled entity to be forced into a running 4740 * state (e.g. set_curr_task), in this case we're finished. 4741 */ 4742 if (cfs_rq_throttled(cfs_rq)) 4743 return true; 4744 4745 throttle_cfs_rq(cfs_rq); 4746 return true; 4747 } 4748 4749 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4750 { 4751 struct cfs_bandwidth *cfs_b = 4752 container_of(timer, struct cfs_bandwidth, slack_timer); 4753 4754 do_sched_cfs_slack_timer(cfs_b); 4755 4756 return HRTIMER_NORESTART; 4757 } 4758 4759 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4760 { 4761 struct cfs_bandwidth *cfs_b = 4762 container_of(timer, struct cfs_bandwidth, period_timer); 4763 int overrun; 4764 int idle = 0; 4765 4766 raw_spin_lock(&cfs_b->lock); 4767 for (;;) { 4768 overrun = hrtimer_forward_now(timer, cfs_b->period); 4769 if (!overrun) 4770 break; 4771 4772 idle = do_sched_cfs_period_timer(cfs_b, overrun); 4773 } 4774 if (idle) 4775 cfs_b->period_active = 0; 4776 raw_spin_unlock(&cfs_b->lock); 4777 4778 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 4779 } 4780 4781 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4782 { 4783 raw_spin_lock_init(&cfs_b->lock); 4784 cfs_b->runtime = 0; 4785 cfs_b->quota = RUNTIME_INF; 4786 cfs_b->period = ns_to_ktime(default_cfs_period()); 4787 4788 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 4789 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 4790 cfs_b->period_timer.function = sched_cfs_period_timer; 4791 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 4792 cfs_b->slack_timer.function = sched_cfs_slack_timer; 4793 } 4794 4795 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4796 { 4797 cfs_rq->runtime_enabled = 0; 4798 INIT_LIST_HEAD(&cfs_rq->throttled_list); 4799 } 4800 4801 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4802 { 4803 u64 overrun; 4804 4805 lockdep_assert_held(&cfs_b->lock); 4806 4807 if (cfs_b->period_active) 4808 return; 4809 4810 cfs_b->period_active = 1; 4811 overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 4812 cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period); 4813 cfs_b->expires_seq++; 4814 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 4815 } 4816 4817 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4818 { 4819 /* init_cfs_bandwidth() was not called */ 4820 if (!cfs_b->throttled_cfs_rq.next) 4821 return; 4822 4823 hrtimer_cancel(&cfs_b->period_timer); 4824 hrtimer_cancel(&cfs_b->slack_timer); 4825 } 4826 4827 /* 4828 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 4829 * 4830 * The race is harmless, since modifying bandwidth settings of unhooked group 4831 * bits doesn't do much. 4832 */ 4833 4834 /* cpu online calback */ 4835 static void __maybe_unused update_runtime_enabled(struct rq *rq) 4836 { 4837 struct task_group *tg; 4838 4839 lockdep_assert_held(&rq->lock); 4840 4841 rcu_read_lock(); 4842 list_for_each_entry_rcu(tg, &task_groups, list) { 4843 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 4844 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4845 4846 raw_spin_lock(&cfs_b->lock); 4847 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 4848 raw_spin_unlock(&cfs_b->lock); 4849 } 4850 rcu_read_unlock(); 4851 } 4852 4853 /* cpu offline callback */ 4854 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 4855 { 4856 struct task_group *tg; 4857 4858 lockdep_assert_held(&rq->lock); 4859 4860 rcu_read_lock(); 4861 list_for_each_entry_rcu(tg, &task_groups, list) { 4862 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4863 4864 if (!cfs_rq->runtime_enabled) 4865 continue; 4866 4867 /* 4868 * clock_task is not advancing so we just need to make sure 4869 * there's some valid quota amount 4870 */ 4871 cfs_rq->runtime_remaining = 1; 4872 /* 4873 * Offline rq is schedulable till CPU is completely disabled 4874 * in take_cpu_down(), so we prevent new cfs throttling here. 4875 */ 4876 cfs_rq->runtime_enabled = 0; 4877 4878 if (cfs_rq_throttled(cfs_rq)) 4879 unthrottle_cfs_rq(cfs_rq); 4880 } 4881 rcu_read_unlock(); 4882 } 4883 4884 #else /* CONFIG_CFS_BANDWIDTH */ 4885 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4886 { 4887 return rq_clock_task(rq_of(cfs_rq)); 4888 } 4889 4890 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 4891 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 4892 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 4893 static inline void sync_throttle(struct task_group *tg, int cpu) {} 4894 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4895 4896 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4897 { 4898 return 0; 4899 } 4900 4901 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4902 { 4903 return 0; 4904 } 4905 4906 static inline int throttled_lb_pair(struct task_group *tg, 4907 int src_cpu, int dest_cpu) 4908 { 4909 return 0; 4910 } 4911 4912 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4913 4914 #ifdef CONFIG_FAIR_GROUP_SCHED 4915 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4916 #endif 4917 4918 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4919 { 4920 return NULL; 4921 } 4922 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4923 static inline void update_runtime_enabled(struct rq *rq) {} 4924 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 4925 4926 #endif /* CONFIG_CFS_BANDWIDTH */ 4927 4928 /************************************************** 4929 * CFS operations on tasks: 4930 */ 4931 4932 #ifdef CONFIG_SCHED_HRTICK 4933 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 4934 { 4935 struct sched_entity *se = &p->se; 4936 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4937 4938 SCHED_WARN_ON(task_rq(p) != rq); 4939 4940 if (rq->cfs.h_nr_running > 1) { 4941 u64 slice = sched_slice(cfs_rq, se); 4942 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 4943 s64 delta = slice - ran; 4944 4945 if (delta < 0) { 4946 if (rq->curr == p) 4947 resched_curr(rq); 4948 return; 4949 } 4950 hrtick_start(rq, delta); 4951 } 4952 } 4953 4954 /* 4955 * called from enqueue/dequeue and updates the hrtick when the 4956 * current task is from our class and nr_running is low enough 4957 * to matter. 4958 */ 4959 static void hrtick_update(struct rq *rq) 4960 { 4961 struct task_struct *curr = rq->curr; 4962 4963 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 4964 return; 4965 4966 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 4967 hrtick_start_fair(rq, curr); 4968 } 4969 #else /* !CONFIG_SCHED_HRTICK */ 4970 static inline void 4971 hrtick_start_fair(struct rq *rq, struct task_struct *p) 4972 { 4973 } 4974 4975 static inline void hrtick_update(struct rq *rq) 4976 { 4977 } 4978 #endif 4979 4980 /* 4981 * The enqueue_task method is called before nr_running is 4982 * increased. Here we update the fair scheduling stats and 4983 * then put the task into the rbtree: 4984 */ 4985 static void 4986 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4987 { 4988 struct cfs_rq *cfs_rq; 4989 struct sched_entity *se = &p->se; 4990 4991 /* 4992 * The code below (indirectly) updates schedutil which looks at 4993 * the cfs_rq utilization to select a frequency. 4994 * Let's add the task's estimated utilization to the cfs_rq's 4995 * estimated utilization, before we update schedutil. 4996 */ 4997 util_est_enqueue(&rq->cfs, p); 4998 4999 /* 5000 * If in_iowait is set, the code below may not trigger any cpufreq 5001 * utilization updates, so do it here explicitly with the IOWAIT flag 5002 * passed. 5003 */ 5004 if (p->in_iowait) 5005 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5006 5007 for_each_sched_entity(se) { 5008 if (se->on_rq) 5009 break; 5010 cfs_rq = cfs_rq_of(se); 5011 enqueue_entity(cfs_rq, se, flags); 5012 5013 /* 5014 * end evaluation on encountering a throttled cfs_rq 5015 * 5016 * note: in the case of encountering a throttled cfs_rq we will 5017 * post the final h_nr_running increment below. 5018 */ 5019 if (cfs_rq_throttled(cfs_rq)) 5020 break; 5021 cfs_rq->h_nr_running++; 5022 5023 flags = ENQUEUE_WAKEUP; 5024 } 5025 5026 for_each_sched_entity(se) { 5027 cfs_rq = cfs_rq_of(se); 5028 cfs_rq->h_nr_running++; 5029 5030 if (cfs_rq_throttled(cfs_rq)) 5031 break; 5032 5033 update_load_avg(cfs_rq, se, UPDATE_TG); 5034 update_cfs_group(se); 5035 } 5036 5037 if (!se) 5038 add_nr_running(rq, 1); 5039 5040 hrtick_update(rq); 5041 } 5042 5043 static void set_next_buddy(struct sched_entity *se); 5044 5045 /* 5046 * The dequeue_task method is called before nr_running is 5047 * decreased. We remove the task from the rbtree and 5048 * update the fair scheduling stats: 5049 */ 5050 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5051 { 5052 struct cfs_rq *cfs_rq; 5053 struct sched_entity *se = &p->se; 5054 int task_sleep = flags & DEQUEUE_SLEEP; 5055 5056 for_each_sched_entity(se) { 5057 cfs_rq = cfs_rq_of(se); 5058 dequeue_entity(cfs_rq, se, flags); 5059 5060 /* 5061 * end evaluation on encountering a throttled cfs_rq 5062 * 5063 * note: in the case of encountering a throttled cfs_rq we will 5064 * post the final h_nr_running decrement below. 5065 */ 5066 if (cfs_rq_throttled(cfs_rq)) 5067 break; 5068 cfs_rq->h_nr_running--; 5069 5070 /* Don't dequeue parent if it has other entities besides us */ 5071 if (cfs_rq->load.weight) { 5072 /* Avoid re-evaluating load for this entity: */ 5073 se = parent_entity(se); 5074 /* 5075 * Bias pick_next to pick a task from this cfs_rq, as 5076 * p is sleeping when it is within its sched_slice. 5077 */ 5078 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5079 set_next_buddy(se); 5080 break; 5081 } 5082 flags |= DEQUEUE_SLEEP; 5083 } 5084 5085 for_each_sched_entity(se) { 5086 cfs_rq = cfs_rq_of(se); 5087 cfs_rq->h_nr_running--; 5088 5089 if (cfs_rq_throttled(cfs_rq)) 5090 break; 5091 5092 update_load_avg(cfs_rq, se, UPDATE_TG); 5093 update_cfs_group(se); 5094 } 5095 5096 if (!se) 5097 sub_nr_running(rq, 1); 5098 5099 util_est_dequeue(&rq->cfs, p, task_sleep); 5100 hrtick_update(rq); 5101 } 5102 5103 #ifdef CONFIG_SMP 5104 5105 /* Working cpumask for: load_balance, load_balance_newidle. */ 5106 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5107 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5108 5109 #ifdef CONFIG_NO_HZ_COMMON 5110 /* 5111 * per rq 'load' arrray crap; XXX kill this. 5112 */ 5113 5114 /* 5115 * The exact cpuload calculated at every tick would be: 5116 * 5117 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load 5118 * 5119 * If a CPU misses updates for n ticks (as it was idle) and update gets 5120 * called on the n+1-th tick when CPU may be busy, then we have: 5121 * 5122 * load_n = (1 - 1/2^i)^n * load_0 5123 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load 5124 * 5125 * decay_load_missed() below does efficient calculation of 5126 * 5127 * load' = (1 - 1/2^i)^n * load 5128 * 5129 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. 5130 * This allows us to precompute the above in said factors, thereby allowing the 5131 * reduction of an arbitrary n in O(log_2 n) steps. (See also 5132 * fixed_power_int()) 5133 * 5134 * The calculation is approximated on a 128 point scale. 5135 */ 5136 #define DEGRADE_SHIFT 7 5137 5138 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 5139 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 5140 { 0, 0, 0, 0, 0, 0, 0, 0 }, 5141 { 64, 32, 8, 0, 0, 0, 0, 0 }, 5142 { 96, 72, 40, 12, 1, 0, 0, 0 }, 5143 { 112, 98, 75, 43, 15, 1, 0, 0 }, 5144 { 120, 112, 98, 76, 45, 16, 2, 0 } 5145 }; 5146 5147 /* 5148 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 5149 * would be when CPU is idle and so we just decay the old load without 5150 * adding any new load. 5151 */ 5152 static unsigned long 5153 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 5154 { 5155 int j = 0; 5156 5157 if (!missed_updates) 5158 return load; 5159 5160 if (missed_updates >= degrade_zero_ticks[idx]) 5161 return 0; 5162 5163 if (idx == 1) 5164 return load >> missed_updates; 5165 5166 while (missed_updates) { 5167 if (missed_updates % 2) 5168 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 5169 5170 missed_updates >>= 1; 5171 j++; 5172 } 5173 return load; 5174 } 5175 5176 static struct { 5177 cpumask_var_t idle_cpus_mask; 5178 atomic_t nr_cpus; 5179 int has_blocked; /* Idle CPUS has blocked load */ 5180 unsigned long next_balance; /* in jiffy units */ 5181 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5182 } nohz ____cacheline_aligned; 5183 5184 #endif /* CONFIG_NO_HZ_COMMON */ 5185 5186 /** 5187 * __cpu_load_update - update the rq->cpu_load[] statistics 5188 * @this_rq: The rq to update statistics for 5189 * @this_load: The current load 5190 * @pending_updates: The number of missed updates 5191 * 5192 * Update rq->cpu_load[] statistics. This function is usually called every 5193 * scheduler tick (TICK_NSEC). 5194 * 5195 * This function computes a decaying average: 5196 * 5197 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load 5198 * 5199 * Because of NOHZ it might not get called on every tick which gives need for 5200 * the @pending_updates argument. 5201 * 5202 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 5203 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load 5204 * = A * (A * load[i]_n-2 + B) + B 5205 * = A * (A * (A * load[i]_n-3 + B) + B) + B 5206 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B 5207 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B 5208 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B 5209 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load 5210 * 5211 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as 5212 * any change in load would have resulted in the tick being turned back on. 5213 * 5214 * For regular NOHZ, this reduces to: 5215 * 5216 * load[i]_n = (1 - 1/2^i)^n * load[i]_0 5217 * 5218 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra 5219 * term. 5220 */ 5221 static void cpu_load_update(struct rq *this_rq, unsigned long this_load, 5222 unsigned long pending_updates) 5223 { 5224 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; 5225 int i, scale; 5226 5227 this_rq->nr_load_updates++; 5228 5229 /* Update our load: */ 5230 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 5231 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 5232 unsigned long old_load, new_load; 5233 5234 /* scale is effectively 1 << i now, and >> i divides by scale */ 5235 5236 old_load = this_rq->cpu_load[i]; 5237 #ifdef CONFIG_NO_HZ_COMMON 5238 old_load = decay_load_missed(old_load, pending_updates - 1, i); 5239 if (tickless_load) { 5240 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); 5241 /* 5242 * old_load can never be a negative value because a 5243 * decayed tickless_load cannot be greater than the 5244 * original tickless_load. 5245 */ 5246 old_load += tickless_load; 5247 } 5248 #endif 5249 new_load = this_load; 5250 /* 5251 * Round up the averaging division if load is increasing. This 5252 * prevents us from getting stuck on 9 if the load is 10, for 5253 * example. 5254 */ 5255 if (new_load > old_load) 5256 new_load += scale - 1; 5257 5258 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 5259 } 5260 } 5261 5262 /* Used instead of source_load when we know the type == 0 */ 5263 static unsigned long weighted_cpuload(struct rq *rq) 5264 { 5265 return cfs_rq_runnable_load_avg(&rq->cfs); 5266 } 5267 5268 #ifdef CONFIG_NO_HZ_COMMON 5269 /* 5270 * There is no sane way to deal with nohz on smp when using jiffies because the 5271 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading 5272 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 5273 * 5274 * Therefore we need to avoid the delta approach from the regular tick when 5275 * possible since that would seriously skew the load calculation. This is why we 5276 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on 5277 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle 5278 * loop exit, nohz_idle_balance, nohz full exit...) 5279 * 5280 * This means we might still be one tick off for nohz periods. 5281 */ 5282 5283 static void cpu_load_update_nohz(struct rq *this_rq, 5284 unsigned long curr_jiffies, 5285 unsigned long load) 5286 { 5287 unsigned long pending_updates; 5288 5289 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 5290 if (pending_updates) { 5291 this_rq->last_load_update_tick = curr_jiffies; 5292 /* 5293 * In the regular NOHZ case, we were idle, this means load 0. 5294 * In the NOHZ_FULL case, we were non-idle, we should consider 5295 * its weighted load. 5296 */ 5297 cpu_load_update(this_rq, load, pending_updates); 5298 } 5299 } 5300 5301 /* 5302 * Called from nohz_idle_balance() to update the load ratings before doing the 5303 * idle balance. 5304 */ 5305 static void cpu_load_update_idle(struct rq *this_rq) 5306 { 5307 /* 5308 * bail if there's load or we're actually up-to-date. 5309 */ 5310 if (weighted_cpuload(this_rq)) 5311 return; 5312 5313 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); 5314 } 5315 5316 /* 5317 * Record CPU load on nohz entry so we know the tickless load to account 5318 * on nohz exit. cpu_load[0] happens then to be updated more frequently 5319 * than other cpu_load[idx] but it should be fine as cpu_load readers 5320 * shouldn't rely into synchronized cpu_load[*] updates. 5321 */ 5322 void cpu_load_update_nohz_start(void) 5323 { 5324 struct rq *this_rq = this_rq(); 5325 5326 /* 5327 * This is all lockless but should be fine. If weighted_cpuload changes 5328 * concurrently we'll exit nohz. And cpu_load write can race with 5329 * cpu_load_update_idle() but both updater would be writing the same. 5330 */ 5331 this_rq->cpu_load[0] = weighted_cpuload(this_rq); 5332 } 5333 5334 /* 5335 * Account the tickless load in the end of a nohz frame. 5336 */ 5337 void cpu_load_update_nohz_stop(void) 5338 { 5339 unsigned long curr_jiffies = READ_ONCE(jiffies); 5340 struct rq *this_rq = this_rq(); 5341 unsigned long load; 5342 struct rq_flags rf; 5343 5344 if (curr_jiffies == this_rq->last_load_update_tick) 5345 return; 5346 5347 load = weighted_cpuload(this_rq); 5348 rq_lock(this_rq, &rf); 5349 update_rq_clock(this_rq); 5350 cpu_load_update_nohz(this_rq, curr_jiffies, load); 5351 rq_unlock(this_rq, &rf); 5352 } 5353 #else /* !CONFIG_NO_HZ_COMMON */ 5354 static inline void cpu_load_update_nohz(struct rq *this_rq, 5355 unsigned long curr_jiffies, 5356 unsigned long load) { } 5357 #endif /* CONFIG_NO_HZ_COMMON */ 5358 5359 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) 5360 { 5361 #ifdef CONFIG_NO_HZ_COMMON 5362 /* See the mess around cpu_load_update_nohz(). */ 5363 this_rq->last_load_update_tick = READ_ONCE(jiffies); 5364 #endif 5365 cpu_load_update(this_rq, load, 1); 5366 } 5367 5368 /* 5369 * Called from scheduler_tick() 5370 */ 5371 void cpu_load_update_active(struct rq *this_rq) 5372 { 5373 unsigned long load = weighted_cpuload(this_rq); 5374 5375 if (tick_nohz_tick_stopped()) 5376 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); 5377 else 5378 cpu_load_update_periodic(this_rq, load); 5379 } 5380 5381 /* 5382 * Return a low guess at the load of a migration-source CPU weighted 5383 * according to the scheduling class and "nice" value. 5384 * 5385 * We want to under-estimate the load of migration sources, to 5386 * balance conservatively. 5387 */ 5388 static unsigned long source_load(int cpu, int type) 5389 { 5390 struct rq *rq = cpu_rq(cpu); 5391 unsigned long total = weighted_cpuload(rq); 5392 5393 if (type == 0 || !sched_feat(LB_BIAS)) 5394 return total; 5395 5396 return min(rq->cpu_load[type-1], total); 5397 } 5398 5399 /* 5400 * Return a high guess at the load of a migration-target CPU weighted 5401 * according to the scheduling class and "nice" value. 5402 */ 5403 static unsigned long target_load(int cpu, int type) 5404 { 5405 struct rq *rq = cpu_rq(cpu); 5406 unsigned long total = weighted_cpuload(rq); 5407 5408 if (type == 0 || !sched_feat(LB_BIAS)) 5409 return total; 5410 5411 return max(rq->cpu_load[type-1], total); 5412 } 5413 5414 static unsigned long capacity_of(int cpu) 5415 { 5416 return cpu_rq(cpu)->cpu_capacity; 5417 } 5418 5419 static unsigned long capacity_orig_of(int cpu) 5420 { 5421 return cpu_rq(cpu)->cpu_capacity_orig; 5422 } 5423 5424 static unsigned long cpu_avg_load_per_task(int cpu) 5425 { 5426 struct rq *rq = cpu_rq(cpu); 5427 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 5428 unsigned long load_avg = weighted_cpuload(rq); 5429 5430 if (nr_running) 5431 return load_avg / nr_running; 5432 5433 return 0; 5434 } 5435 5436 static void record_wakee(struct task_struct *p) 5437 { 5438 /* 5439 * Only decay a single time; tasks that have less then 1 wakeup per 5440 * jiffy will not have built up many flips. 5441 */ 5442 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5443 current->wakee_flips >>= 1; 5444 current->wakee_flip_decay_ts = jiffies; 5445 } 5446 5447 if (current->last_wakee != p) { 5448 current->last_wakee = p; 5449 current->wakee_flips++; 5450 } 5451 } 5452 5453 /* 5454 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5455 * 5456 * A waker of many should wake a different task than the one last awakened 5457 * at a frequency roughly N times higher than one of its wakees. 5458 * 5459 * In order to determine whether we should let the load spread vs consolidating 5460 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5461 * partner, and a factor of lls_size higher frequency in the other. 5462 * 5463 * With both conditions met, we can be relatively sure that the relationship is 5464 * non-monogamous, with partner count exceeding socket size. 5465 * 5466 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5467 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5468 * socket size. 5469 */ 5470 static int wake_wide(struct task_struct *p) 5471 { 5472 unsigned int master = current->wakee_flips; 5473 unsigned int slave = p->wakee_flips; 5474 int factor = this_cpu_read(sd_llc_size); 5475 5476 if (master < slave) 5477 swap(master, slave); 5478 if (slave < factor || master < slave * factor) 5479 return 0; 5480 return 1; 5481 } 5482 5483 /* 5484 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5485 * soonest. For the purpose of speed we only consider the waking and previous 5486 * CPU. 5487 * 5488 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5489 * cache-affine and is (or will be) idle. 5490 * 5491 * wake_affine_weight() - considers the weight to reflect the average 5492 * scheduling latency of the CPUs. This seems to work 5493 * for the overloaded case. 5494 */ 5495 static int 5496 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5497 { 5498 /* 5499 * If this_cpu is idle, it implies the wakeup is from interrupt 5500 * context. Only allow the move if cache is shared. Otherwise an 5501 * interrupt intensive workload could force all tasks onto one 5502 * node depending on the IO topology or IRQ affinity settings. 5503 * 5504 * If the prev_cpu is idle and cache affine then avoid a migration. 5505 * There is no guarantee that the cache hot data from an interrupt 5506 * is more important than cache hot data on the prev_cpu and from 5507 * a cpufreq perspective, it's better to have higher utilisation 5508 * on one CPU. 5509 */ 5510 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5511 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5512 5513 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5514 return this_cpu; 5515 5516 return nr_cpumask_bits; 5517 } 5518 5519 static int 5520 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5521 int this_cpu, int prev_cpu, int sync) 5522 { 5523 s64 this_eff_load, prev_eff_load; 5524 unsigned long task_load; 5525 5526 this_eff_load = target_load(this_cpu, sd->wake_idx); 5527 5528 if (sync) { 5529 unsigned long current_load = task_h_load(current); 5530 5531 if (current_load > this_eff_load) 5532 return this_cpu; 5533 5534 this_eff_load -= current_load; 5535 } 5536 5537 task_load = task_h_load(p); 5538 5539 this_eff_load += task_load; 5540 if (sched_feat(WA_BIAS)) 5541 this_eff_load *= 100; 5542 this_eff_load *= capacity_of(prev_cpu); 5543 5544 prev_eff_load = source_load(prev_cpu, sd->wake_idx); 5545 prev_eff_load -= task_load; 5546 if (sched_feat(WA_BIAS)) 5547 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5548 prev_eff_load *= capacity_of(this_cpu); 5549 5550 /* 5551 * If sync, adjust the weight of prev_eff_load such that if 5552 * prev_eff == this_eff that select_idle_sibling() will consider 5553 * stacking the wakee on top of the waker if no other CPU is 5554 * idle. 5555 */ 5556 if (sync) 5557 prev_eff_load += 1; 5558 5559 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5560 } 5561 5562 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5563 int this_cpu, int prev_cpu, int sync) 5564 { 5565 int target = nr_cpumask_bits; 5566 5567 if (sched_feat(WA_IDLE)) 5568 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5569 5570 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5571 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5572 5573 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5574 if (target == nr_cpumask_bits) 5575 return prev_cpu; 5576 5577 schedstat_inc(sd->ttwu_move_affine); 5578 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5579 return target; 5580 } 5581 5582 static unsigned long cpu_util_wake(int cpu, struct task_struct *p); 5583 5584 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p) 5585 { 5586 return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0); 5587 } 5588 5589 /* 5590 * find_idlest_group finds and returns the least busy CPU group within the 5591 * domain. 5592 * 5593 * Assumes p is allowed on at least one CPU in sd. 5594 */ 5595 static struct sched_group * 5596 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5597 int this_cpu, int sd_flag) 5598 { 5599 struct sched_group *idlest = NULL, *group = sd->groups; 5600 struct sched_group *most_spare_sg = NULL; 5601 unsigned long min_runnable_load = ULONG_MAX; 5602 unsigned long this_runnable_load = ULONG_MAX; 5603 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX; 5604 unsigned long most_spare = 0, this_spare = 0; 5605 int load_idx = sd->forkexec_idx; 5606 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2; 5607 unsigned long imbalance = scale_load_down(NICE_0_LOAD) * 5608 (sd->imbalance_pct-100) / 100; 5609 5610 if (sd_flag & SD_BALANCE_WAKE) 5611 load_idx = sd->wake_idx; 5612 5613 do { 5614 unsigned long load, avg_load, runnable_load; 5615 unsigned long spare_cap, max_spare_cap; 5616 int local_group; 5617 int i; 5618 5619 /* Skip over this group if it has no CPUs allowed */ 5620 if (!cpumask_intersects(sched_group_span(group), 5621 &p->cpus_allowed)) 5622 continue; 5623 5624 local_group = cpumask_test_cpu(this_cpu, 5625 sched_group_span(group)); 5626 5627 /* 5628 * Tally up the load of all CPUs in the group and find 5629 * the group containing the CPU with most spare capacity. 5630 */ 5631 avg_load = 0; 5632 runnable_load = 0; 5633 max_spare_cap = 0; 5634 5635 for_each_cpu(i, sched_group_span(group)) { 5636 /* Bias balancing toward CPUs of our domain */ 5637 if (local_group) 5638 load = source_load(i, load_idx); 5639 else 5640 load = target_load(i, load_idx); 5641 5642 runnable_load += load; 5643 5644 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs); 5645 5646 spare_cap = capacity_spare_wake(i, p); 5647 5648 if (spare_cap > max_spare_cap) 5649 max_spare_cap = spare_cap; 5650 } 5651 5652 /* Adjust by relative CPU capacity of the group */ 5653 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / 5654 group->sgc->capacity; 5655 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) / 5656 group->sgc->capacity; 5657 5658 if (local_group) { 5659 this_runnable_load = runnable_load; 5660 this_avg_load = avg_load; 5661 this_spare = max_spare_cap; 5662 } else { 5663 if (min_runnable_load > (runnable_load + imbalance)) { 5664 /* 5665 * The runnable load is significantly smaller 5666 * so we can pick this new CPU: 5667 */ 5668 min_runnable_load = runnable_load; 5669 min_avg_load = avg_load; 5670 idlest = group; 5671 } else if ((runnable_load < (min_runnable_load + imbalance)) && 5672 (100*min_avg_load > imbalance_scale*avg_load)) { 5673 /* 5674 * The runnable loads are close so take the 5675 * blocked load into account through avg_load: 5676 */ 5677 min_avg_load = avg_load; 5678 idlest = group; 5679 } 5680 5681 if (most_spare < max_spare_cap) { 5682 most_spare = max_spare_cap; 5683 most_spare_sg = group; 5684 } 5685 } 5686 } while (group = group->next, group != sd->groups); 5687 5688 /* 5689 * The cross-over point between using spare capacity or least load 5690 * is too conservative for high utilization tasks on partially 5691 * utilized systems if we require spare_capacity > task_util(p), 5692 * so we allow for some task stuffing by using 5693 * spare_capacity > task_util(p)/2. 5694 * 5695 * Spare capacity can't be used for fork because the utilization has 5696 * not been set yet, we must first select a rq to compute the initial 5697 * utilization. 5698 */ 5699 if (sd_flag & SD_BALANCE_FORK) 5700 goto skip_spare; 5701 5702 if (this_spare > task_util(p) / 2 && 5703 imbalance_scale*this_spare > 100*most_spare) 5704 return NULL; 5705 5706 if (most_spare > task_util(p) / 2) 5707 return most_spare_sg; 5708 5709 skip_spare: 5710 if (!idlest) 5711 return NULL; 5712 5713 /* 5714 * When comparing groups across NUMA domains, it's possible for the 5715 * local domain to be very lightly loaded relative to the remote 5716 * domains but "imbalance" skews the comparison making remote CPUs 5717 * look much more favourable. When considering cross-domain, add 5718 * imbalance to the runnable load on the remote node and consider 5719 * staying local. 5720 */ 5721 if ((sd->flags & SD_NUMA) && 5722 min_runnable_load + imbalance >= this_runnable_load) 5723 return NULL; 5724 5725 if (min_runnable_load > (this_runnable_load + imbalance)) 5726 return NULL; 5727 5728 if ((this_runnable_load < (min_runnable_load + imbalance)) && 5729 (100*this_avg_load < imbalance_scale*min_avg_load)) 5730 return NULL; 5731 5732 return idlest; 5733 } 5734 5735 /* 5736 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 5737 */ 5738 static int 5739 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5740 { 5741 unsigned long load, min_load = ULONG_MAX; 5742 unsigned int min_exit_latency = UINT_MAX; 5743 u64 latest_idle_timestamp = 0; 5744 int least_loaded_cpu = this_cpu; 5745 int shallowest_idle_cpu = -1; 5746 int i; 5747 5748 /* Check if we have any choice: */ 5749 if (group->group_weight == 1) 5750 return cpumask_first(sched_group_span(group)); 5751 5752 /* Traverse only the allowed CPUs */ 5753 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) { 5754 if (available_idle_cpu(i)) { 5755 struct rq *rq = cpu_rq(i); 5756 struct cpuidle_state *idle = idle_get_state(rq); 5757 if (idle && idle->exit_latency < min_exit_latency) { 5758 /* 5759 * We give priority to a CPU whose idle state 5760 * has the smallest exit latency irrespective 5761 * of any idle timestamp. 5762 */ 5763 min_exit_latency = idle->exit_latency; 5764 latest_idle_timestamp = rq->idle_stamp; 5765 shallowest_idle_cpu = i; 5766 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5767 rq->idle_stamp > latest_idle_timestamp) { 5768 /* 5769 * If equal or no active idle state, then 5770 * the most recently idled CPU might have 5771 * a warmer cache. 5772 */ 5773 latest_idle_timestamp = rq->idle_stamp; 5774 shallowest_idle_cpu = i; 5775 } 5776 } else if (shallowest_idle_cpu == -1) { 5777 load = weighted_cpuload(cpu_rq(i)); 5778 if (load < min_load) { 5779 min_load = load; 5780 least_loaded_cpu = i; 5781 } 5782 } 5783 } 5784 5785 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5786 } 5787 5788 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 5789 int cpu, int prev_cpu, int sd_flag) 5790 { 5791 int new_cpu = cpu; 5792 5793 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed)) 5794 return prev_cpu; 5795 5796 /* 5797 * We need task's util for capacity_spare_wake, sync it up to prev_cpu's 5798 * last_update_time. 5799 */ 5800 if (!(sd_flag & SD_BALANCE_FORK)) 5801 sync_entity_load_avg(&p->se); 5802 5803 while (sd) { 5804 struct sched_group *group; 5805 struct sched_domain *tmp; 5806 int weight; 5807 5808 if (!(sd->flags & sd_flag)) { 5809 sd = sd->child; 5810 continue; 5811 } 5812 5813 group = find_idlest_group(sd, p, cpu, sd_flag); 5814 if (!group) { 5815 sd = sd->child; 5816 continue; 5817 } 5818 5819 new_cpu = find_idlest_group_cpu(group, p, cpu); 5820 if (new_cpu == cpu) { 5821 /* Now try balancing at a lower domain level of 'cpu': */ 5822 sd = sd->child; 5823 continue; 5824 } 5825 5826 /* Now try balancing at a lower domain level of 'new_cpu': */ 5827 cpu = new_cpu; 5828 weight = sd->span_weight; 5829 sd = NULL; 5830 for_each_domain(cpu, tmp) { 5831 if (weight <= tmp->span_weight) 5832 break; 5833 if (tmp->flags & sd_flag) 5834 sd = tmp; 5835 } 5836 } 5837 5838 return new_cpu; 5839 } 5840 5841 #ifdef CONFIG_SCHED_SMT 5842 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5843 5844 static inline void set_idle_cores(int cpu, int val) 5845 { 5846 struct sched_domain_shared *sds; 5847 5848 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5849 if (sds) 5850 WRITE_ONCE(sds->has_idle_cores, val); 5851 } 5852 5853 static inline bool test_idle_cores(int cpu, bool def) 5854 { 5855 struct sched_domain_shared *sds; 5856 5857 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5858 if (sds) 5859 return READ_ONCE(sds->has_idle_cores); 5860 5861 return def; 5862 } 5863 5864 /* 5865 * Scans the local SMT mask to see if the entire core is idle, and records this 5866 * information in sd_llc_shared->has_idle_cores. 5867 * 5868 * Since SMT siblings share all cache levels, inspecting this limited remote 5869 * state should be fairly cheap. 5870 */ 5871 void __update_idle_core(struct rq *rq) 5872 { 5873 int core = cpu_of(rq); 5874 int cpu; 5875 5876 rcu_read_lock(); 5877 if (test_idle_cores(core, true)) 5878 goto unlock; 5879 5880 for_each_cpu(cpu, cpu_smt_mask(core)) { 5881 if (cpu == core) 5882 continue; 5883 5884 if (!available_idle_cpu(cpu)) 5885 goto unlock; 5886 } 5887 5888 set_idle_cores(core, 1); 5889 unlock: 5890 rcu_read_unlock(); 5891 } 5892 5893 /* 5894 * Scan the entire LLC domain for idle cores; this dynamically switches off if 5895 * there are no idle cores left in the system; tracked through 5896 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 5897 */ 5898 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5899 { 5900 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 5901 int core, cpu; 5902 5903 if (!static_branch_likely(&sched_smt_present)) 5904 return -1; 5905 5906 if (!test_idle_cores(target, false)) 5907 return -1; 5908 5909 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed); 5910 5911 for_each_cpu_wrap(core, cpus, target) { 5912 bool idle = true; 5913 5914 for_each_cpu(cpu, cpu_smt_mask(core)) { 5915 cpumask_clear_cpu(cpu, cpus); 5916 if (!available_idle_cpu(cpu)) 5917 idle = false; 5918 } 5919 5920 if (idle) 5921 return core; 5922 } 5923 5924 /* 5925 * Failed to find an idle core; stop looking for one. 5926 */ 5927 set_idle_cores(target, 0); 5928 5929 return -1; 5930 } 5931 5932 /* 5933 * Scan the local SMT mask for idle CPUs. 5934 */ 5935 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 5936 { 5937 int cpu; 5938 5939 if (!static_branch_likely(&sched_smt_present)) 5940 return -1; 5941 5942 for_each_cpu(cpu, cpu_smt_mask(target)) { 5943 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 5944 continue; 5945 if (available_idle_cpu(cpu)) 5946 return cpu; 5947 } 5948 5949 return -1; 5950 } 5951 5952 #else /* CONFIG_SCHED_SMT */ 5953 5954 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5955 { 5956 return -1; 5957 } 5958 5959 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 5960 { 5961 return -1; 5962 } 5963 5964 #endif /* CONFIG_SCHED_SMT */ 5965 5966 /* 5967 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 5968 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 5969 * average idle time for this rq (as found in rq->avg_idle). 5970 */ 5971 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 5972 { 5973 struct sched_domain *this_sd; 5974 u64 avg_cost, avg_idle; 5975 u64 time, cost; 5976 s64 delta; 5977 int cpu, nr = INT_MAX; 5978 5979 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 5980 if (!this_sd) 5981 return -1; 5982 5983 /* 5984 * Due to large variance we need a large fuzz factor; hackbench in 5985 * particularly is sensitive here. 5986 */ 5987 avg_idle = this_rq()->avg_idle / 512; 5988 avg_cost = this_sd->avg_scan_cost + 1; 5989 5990 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 5991 return -1; 5992 5993 if (sched_feat(SIS_PROP)) { 5994 u64 span_avg = sd->span_weight * avg_idle; 5995 if (span_avg > 4*avg_cost) 5996 nr = div_u64(span_avg, avg_cost); 5997 else 5998 nr = 4; 5999 } 6000 6001 time = local_clock(); 6002 6003 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) { 6004 if (!--nr) 6005 return -1; 6006 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6007 continue; 6008 if (available_idle_cpu(cpu)) 6009 break; 6010 } 6011 6012 time = local_clock() - time; 6013 cost = this_sd->avg_scan_cost; 6014 delta = (s64)(time - cost) / 8; 6015 this_sd->avg_scan_cost += delta; 6016 6017 return cpu; 6018 } 6019 6020 /* 6021 * Try and locate an idle core/thread in the LLC cache domain. 6022 */ 6023 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6024 { 6025 struct sched_domain *sd; 6026 int i, recent_used_cpu; 6027 6028 if (available_idle_cpu(target)) 6029 return target; 6030 6031 /* 6032 * If the previous CPU is cache affine and idle, don't be stupid: 6033 */ 6034 if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev)) 6035 return prev; 6036 6037 /* Check a recently used CPU as a potential idle candidate: */ 6038 recent_used_cpu = p->recent_used_cpu; 6039 if (recent_used_cpu != prev && 6040 recent_used_cpu != target && 6041 cpus_share_cache(recent_used_cpu, target) && 6042 available_idle_cpu(recent_used_cpu) && 6043 cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) { 6044 /* 6045 * Replace recent_used_cpu with prev as it is a potential 6046 * candidate for the next wake: 6047 */ 6048 p->recent_used_cpu = prev; 6049 return recent_used_cpu; 6050 } 6051 6052 sd = rcu_dereference(per_cpu(sd_llc, target)); 6053 if (!sd) 6054 return target; 6055 6056 i = select_idle_core(p, sd, target); 6057 if ((unsigned)i < nr_cpumask_bits) 6058 return i; 6059 6060 i = select_idle_cpu(p, sd, target); 6061 if ((unsigned)i < nr_cpumask_bits) 6062 return i; 6063 6064 i = select_idle_smt(p, sd, target); 6065 if ((unsigned)i < nr_cpumask_bits) 6066 return i; 6067 6068 return target; 6069 } 6070 6071 /** 6072 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks 6073 * @cpu: the CPU to get the utilization of 6074 * 6075 * The unit of the return value must be the one of capacity so we can compare 6076 * the utilization with the capacity of the CPU that is available for CFS task 6077 * (ie cpu_capacity). 6078 * 6079 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6080 * recent utilization of currently non-runnable tasks on a CPU. It represents 6081 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6082 * capacity_orig is the cpu_capacity available at the highest frequency 6083 * (arch_scale_freq_capacity()). 6084 * The utilization of a CPU converges towards a sum equal to or less than the 6085 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6086 * the running time on this CPU scaled by capacity_curr. 6087 * 6088 * The estimated utilization of a CPU is defined to be the maximum between its 6089 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6090 * currently RUNNABLE on that CPU. 6091 * This allows to properly represent the expected utilization of a CPU which 6092 * has just got a big task running since a long sleep period. At the same time 6093 * however it preserves the benefits of the "blocked utilization" in 6094 * describing the potential for other tasks waking up on the same CPU. 6095 * 6096 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6097 * higher than capacity_orig because of unfortunate rounding in 6098 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6099 * the average stabilizes with the new running time. We need to check that the 6100 * utilization stays within the range of [0..capacity_orig] and cap it if 6101 * necessary. Without utilization capping, a group could be seen as overloaded 6102 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6103 * available capacity. We allow utilization to overshoot capacity_curr (but not 6104 * capacity_orig) as it useful for predicting the capacity required after task 6105 * migrations (scheduler-driven DVFS). 6106 * 6107 * Return: the (estimated) utilization for the specified CPU 6108 */ 6109 static inline unsigned long cpu_util(int cpu) 6110 { 6111 struct cfs_rq *cfs_rq; 6112 unsigned int util; 6113 6114 cfs_rq = &cpu_rq(cpu)->cfs; 6115 util = READ_ONCE(cfs_rq->avg.util_avg); 6116 6117 if (sched_feat(UTIL_EST)) 6118 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6119 6120 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6121 } 6122 6123 /* 6124 * cpu_util_wake: Compute CPU utilization with any contributions from 6125 * the waking task p removed. 6126 */ 6127 static unsigned long cpu_util_wake(int cpu, struct task_struct *p) 6128 { 6129 struct cfs_rq *cfs_rq; 6130 unsigned int util; 6131 6132 /* Task has no contribution or is new */ 6133 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6134 return cpu_util(cpu); 6135 6136 cfs_rq = &cpu_rq(cpu)->cfs; 6137 util = READ_ONCE(cfs_rq->avg.util_avg); 6138 6139 /* Discount task's blocked util from CPU's util */ 6140 util -= min_t(unsigned int, util, task_util(p)); 6141 6142 /* 6143 * Covered cases: 6144 * 6145 * a) if *p is the only task sleeping on this CPU, then: 6146 * cpu_util (== task_util) > util_est (== 0) 6147 * and thus we return: 6148 * cpu_util_wake = (cpu_util - task_util) = 0 6149 * 6150 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6151 * IDLE, then: 6152 * cpu_util >= task_util 6153 * cpu_util > util_est (== 0) 6154 * and thus we discount *p's blocked utilization to return: 6155 * cpu_util_wake = (cpu_util - task_util) >= 0 6156 * 6157 * c) if other tasks are RUNNABLE on that CPU and 6158 * util_est > cpu_util 6159 * then we use util_est since it returns a more restrictive 6160 * estimation of the spare capacity on that CPU, by just 6161 * considering the expected utilization of tasks already 6162 * runnable on that CPU. 6163 * 6164 * Cases a) and b) are covered by the above code, while case c) is 6165 * covered by the following code when estimated utilization is 6166 * enabled. 6167 */ 6168 if (sched_feat(UTIL_EST)) 6169 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6170 6171 /* 6172 * Utilization (estimated) can exceed the CPU capacity, thus let's 6173 * clamp to the maximum CPU capacity to ensure consistency with 6174 * the cpu_util call. 6175 */ 6176 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6177 } 6178 6179 /* 6180 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 6181 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 6182 * 6183 * In that case WAKE_AFFINE doesn't make sense and we'll let 6184 * BALANCE_WAKE sort things out. 6185 */ 6186 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 6187 { 6188 long min_cap, max_cap; 6189 6190 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 6191 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 6192 6193 /* Minimum capacity is close to max, no need to abort wake_affine */ 6194 if (max_cap - min_cap < max_cap >> 3) 6195 return 0; 6196 6197 /* Bring task utilization in sync with prev_cpu */ 6198 sync_entity_load_avg(&p->se); 6199 6200 return min_cap * 1024 < task_util(p) * capacity_margin; 6201 } 6202 6203 /* 6204 * select_task_rq_fair: Select target runqueue for the waking task in domains 6205 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 6206 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6207 * 6208 * Balances load by selecting the idlest CPU in the idlest group, or under 6209 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6210 * 6211 * Returns the target CPU number. 6212 * 6213 * preempt must be disabled. 6214 */ 6215 static int 6216 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 6217 { 6218 struct sched_domain *tmp, *sd = NULL; 6219 int cpu = smp_processor_id(); 6220 int new_cpu = prev_cpu; 6221 int want_affine = 0; 6222 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6223 6224 if (sd_flag & SD_BALANCE_WAKE) { 6225 record_wakee(p); 6226 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) 6227 && cpumask_test_cpu(cpu, &p->cpus_allowed); 6228 } 6229 6230 rcu_read_lock(); 6231 for_each_domain(cpu, tmp) { 6232 if (!(tmp->flags & SD_LOAD_BALANCE)) 6233 break; 6234 6235 /* 6236 * If both 'cpu' and 'prev_cpu' are part of this domain, 6237 * cpu is a valid SD_WAKE_AFFINE target. 6238 */ 6239 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6240 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6241 if (cpu != prev_cpu) 6242 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6243 6244 sd = NULL; /* Prefer wake_affine over balance flags */ 6245 break; 6246 } 6247 6248 if (tmp->flags & sd_flag) 6249 sd = tmp; 6250 else if (!want_affine) 6251 break; 6252 } 6253 6254 if (unlikely(sd)) { 6255 /* Slow path */ 6256 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6257 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ 6258 /* Fast path */ 6259 6260 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6261 6262 if (want_affine) 6263 current->recent_used_cpu = cpu; 6264 } 6265 rcu_read_unlock(); 6266 6267 return new_cpu; 6268 } 6269 6270 static void detach_entity_cfs_rq(struct sched_entity *se); 6271 6272 /* 6273 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6274 * cfs_rq_of(p) references at time of call are still valid and identify the 6275 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6276 */ 6277 static void migrate_task_rq_fair(struct task_struct *p) 6278 { 6279 /* 6280 * As blocked tasks retain absolute vruntime the migration needs to 6281 * deal with this by subtracting the old and adding the new 6282 * min_vruntime -- the latter is done by enqueue_entity() when placing 6283 * the task on the new runqueue. 6284 */ 6285 if (p->state == TASK_WAKING) { 6286 struct sched_entity *se = &p->se; 6287 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6288 u64 min_vruntime; 6289 6290 #ifndef CONFIG_64BIT 6291 u64 min_vruntime_copy; 6292 6293 do { 6294 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6295 smp_rmb(); 6296 min_vruntime = cfs_rq->min_vruntime; 6297 } while (min_vruntime != min_vruntime_copy); 6298 #else 6299 min_vruntime = cfs_rq->min_vruntime; 6300 #endif 6301 6302 se->vruntime -= min_vruntime; 6303 } 6304 6305 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6306 /* 6307 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6308 * rq->lock and can modify state directly. 6309 */ 6310 lockdep_assert_held(&task_rq(p)->lock); 6311 detach_entity_cfs_rq(&p->se); 6312 6313 } else { 6314 /* 6315 * We are supposed to update the task to "current" time, then 6316 * its up to date and ready to go to new CPU/cfs_rq. But we 6317 * have difficulty in getting what current time is, so simply 6318 * throw away the out-of-date time. This will result in the 6319 * wakee task is less decayed, but giving the wakee more load 6320 * sounds not bad. 6321 */ 6322 remove_entity_load_avg(&p->se); 6323 } 6324 6325 /* Tell new CPU we are migrated */ 6326 p->se.avg.last_update_time = 0; 6327 6328 /* We have migrated, no longer consider this task hot */ 6329 p->se.exec_start = 0; 6330 } 6331 6332 static void task_dead_fair(struct task_struct *p) 6333 { 6334 remove_entity_load_avg(&p->se); 6335 } 6336 #endif /* CONFIG_SMP */ 6337 6338 static unsigned long wakeup_gran(struct sched_entity *se) 6339 { 6340 unsigned long gran = sysctl_sched_wakeup_granularity; 6341 6342 /* 6343 * Since its curr running now, convert the gran from real-time 6344 * to virtual-time in his units. 6345 * 6346 * By using 'se' instead of 'curr' we penalize light tasks, so 6347 * they get preempted easier. That is, if 'se' < 'curr' then 6348 * the resulting gran will be larger, therefore penalizing the 6349 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6350 * be smaller, again penalizing the lighter task. 6351 * 6352 * This is especially important for buddies when the leftmost 6353 * task is higher priority than the buddy. 6354 */ 6355 return calc_delta_fair(gran, se); 6356 } 6357 6358 /* 6359 * Should 'se' preempt 'curr'. 6360 * 6361 * |s1 6362 * |s2 6363 * |s3 6364 * g 6365 * |<--->|c 6366 * 6367 * w(c, s1) = -1 6368 * w(c, s2) = 0 6369 * w(c, s3) = 1 6370 * 6371 */ 6372 static int 6373 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6374 { 6375 s64 gran, vdiff = curr->vruntime - se->vruntime; 6376 6377 if (vdiff <= 0) 6378 return -1; 6379 6380 gran = wakeup_gran(se); 6381 if (vdiff > gran) 6382 return 1; 6383 6384 return 0; 6385 } 6386 6387 static void set_last_buddy(struct sched_entity *se) 6388 { 6389 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6390 return; 6391 6392 for_each_sched_entity(se) { 6393 if (SCHED_WARN_ON(!se->on_rq)) 6394 return; 6395 cfs_rq_of(se)->last = se; 6396 } 6397 } 6398 6399 static void set_next_buddy(struct sched_entity *se) 6400 { 6401 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6402 return; 6403 6404 for_each_sched_entity(se) { 6405 if (SCHED_WARN_ON(!se->on_rq)) 6406 return; 6407 cfs_rq_of(se)->next = se; 6408 } 6409 } 6410 6411 static void set_skip_buddy(struct sched_entity *se) 6412 { 6413 for_each_sched_entity(se) 6414 cfs_rq_of(se)->skip = se; 6415 } 6416 6417 /* 6418 * Preempt the current task with a newly woken task if needed: 6419 */ 6420 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6421 { 6422 struct task_struct *curr = rq->curr; 6423 struct sched_entity *se = &curr->se, *pse = &p->se; 6424 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6425 int scale = cfs_rq->nr_running >= sched_nr_latency; 6426 int next_buddy_marked = 0; 6427 6428 if (unlikely(se == pse)) 6429 return; 6430 6431 /* 6432 * This is possible from callers such as attach_tasks(), in which we 6433 * unconditionally check_prempt_curr() after an enqueue (which may have 6434 * lead to a throttle). This both saves work and prevents false 6435 * next-buddy nomination below. 6436 */ 6437 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6438 return; 6439 6440 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6441 set_next_buddy(pse); 6442 next_buddy_marked = 1; 6443 } 6444 6445 /* 6446 * We can come here with TIF_NEED_RESCHED already set from new task 6447 * wake up path. 6448 * 6449 * Note: this also catches the edge-case of curr being in a throttled 6450 * group (e.g. via set_curr_task), since update_curr() (in the 6451 * enqueue of curr) will have resulted in resched being set. This 6452 * prevents us from potentially nominating it as a false LAST_BUDDY 6453 * below. 6454 */ 6455 if (test_tsk_need_resched(curr)) 6456 return; 6457 6458 /* Idle tasks are by definition preempted by non-idle tasks. */ 6459 if (unlikely(curr->policy == SCHED_IDLE) && 6460 likely(p->policy != SCHED_IDLE)) 6461 goto preempt; 6462 6463 /* 6464 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6465 * is driven by the tick): 6466 */ 6467 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6468 return; 6469 6470 find_matching_se(&se, &pse); 6471 update_curr(cfs_rq_of(se)); 6472 BUG_ON(!pse); 6473 if (wakeup_preempt_entity(se, pse) == 1) { 6474 /* 6475 * Bias pick_next to pick the sched entity that is 6476 * triggering this preemption. 6477 */ 6478 if (!next_buddy_marked) 6479 set_next_buddy(pse); 6480 goto preempt; 6481 } 6482 6483 return; 6484 6485 preempt: 6486 resched_curr(rq); 6487 /* 6488 * Only set the backward buddy when the current task is still 6489 * on the rq. This can happen when a wakeup gets interleaved 6490 * with schedule on the ->pre_schedule() or idle_balance() 6491 * point, either of which can * drop the rq lock. 6492 * 6493 * Also, during early boot the idle thread is in the fair class, 6494 * for obvious reasons its a bad idea to schedule back to it. 6495 */ 6496 if (unlikely(!se->on_rq || curr == rq->idle)) 6497 return; 6498 6499 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6500 set_last_buddy(se); 6501 } 6502 6503 static struct task_struct * 6504 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6505 { 6506 struct cfs_rq *cfs_rq = &rq->cfs; 6507 struct sched_entity *se; 6508 struct task_struct *p; 6509 int new_tasks; 6510 6511 again: 6512 if (!cfs_rq->nr_running) 6513 goto idle; 6514 6515 #ifdef CONFIG_FAIR_GROUP_SCHED 6516 if (prev->sched_class != &fair_sched_class) 6517 goto simple; 6518 6519 /* 6520 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6521 * likely that a next task is from the same cgroup as the current. 6522 * 6523 * Therefore attempt to avoid putting and setting the entire cgroup 6524 * hierarchy, only change the part that actually changes. 6525 */ 6526 6527 do { 6528 struct sched_entity *curr = cfs_rq->curr; 6529 6530 /* 6531 * Since we got here without doing put_prev_entity() we also 6532 * have to consider cfs_rq->curr. If it is still a runnable 6533 * entity, update_curr() will update its vruntime, otherwise 6534 * forget we've ever seen it. 6535 */ 6536 if (curr) { 6537 if (curr->on_rq) 6538 update_curr(cfs_rq); 6539 else 6540 curr = NULL; 6541 6542 /* 6543 * This call to check_cfs_rq_runtime() will do the 6544 * throttle and dequeue its entity in the parent(s). 6545 * Therefore the nr_running test will indeed 6546 * be correct. 6547 */ 6548 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 6549 cfs_rq = &rq->cfs; 6550 6551 if (!cfs_rq->nr_running) 6552 goto idle; 6553 6554 goto simple; 6555 } 6556 } 6557 6558 se = pick_next_entity(cfs_rq, curr); 6559 cfs_rq = group_cfs_rq(se); 6560 } while (cfs_rq); 6561 6562 p = task_of(se); 6563 6564 /* 6565 * Since we haven't yet done put_prev_entity and if the selected task 6566 * is a different task than we started out with, try and touch the 6567 * least amount of cfs_rqs. 6568 */ 6569 if (prev != p) { 6570 struct sched_entity *pse = &prev->se; 6571 6572 while (!(cfs_rq = is_same_group(se, pse))) { 6573 int se_depth = se->depth; 6574 int pse_depth = pse->depth; 6575 6576 if (se_depth <= pse_depth) { 6577 put_prev_entity(cfs_rq_of(pse), pse); 6578 pse = parent_entity(pse); 6579 } 6580 if (se_depth >= pse_depth) { 6581 set_next_entity(cfs_rq_of(se), se); 6582 se = parent_entity(se); 6583 } 6584 } 6585 6586 put_prev_entity(cfs_rq, pse); 6587 set_next_entity(cfs_rq, se); 6588 } 6589 6590 goto done; 6591 simple: 6592 #endif 6593 6594 put_prev_task(rq, prev); 6595 6596 do { 6597 se = pick_next_entity(cfs_rq, NULL); 6598 set_next_entity(cfs_rq, se); 6599 cfs_rq = group_cfs_rq(se); 6600 } while (cfs_rq); 6601 6602 p = task_of(se); 6603 6604 done: __maybe_unused; 6605 #ifdef CONFIG_SMP 6606 /* 6607 * Move the next running task to the front of 6608 * the list, so our cfs_tasks list becomes MRU 6609 * one. 6610 */ 6611 list_move(&p->se.group_node, &rq->cfs_tasks); 6612 #endif 6613 6614 if (hrtick_enabled(rq)) 6615 hrtick_start_fair(rq, p); 6616 6617 return p; 6618 6619 idle: 6620 new_tasks = idle_balance(rq, rf); 6621 6622 /* 6623 * Because idle_balance() releases (and re-acquires) rq->lock, it is 6624 * possible for any higher priority task to appear. In that case we 6625 * must re-start the pick_next_entity() loop. 6626 */ 6627 if (new_tasks < 0) 6628 return RETRY_TASK; 6629 6630 if (new_tasks > 0) 6631 goto again; 6632 6633 return NULL; 6634 } 6635 6636 /* 6637 * Account for a descheduled task: 6638 */ 6639 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 6640 { 6641 struct sched_entity *se = &prev->se; 6642 struct cfs_rq *cfs_rq; 6643 6644 for_each_sched_entity(se) { 6645 cfs_rq = cfs_rq_of(se); 6646 put_prev_entity(cfs_rq, se); 6647 } 6648 } 6649 6650 /* 6651 * sched_yield() is very simple 6652 * 6653 * The magic of dealing with the ->skip buddy is in pick_next_entity. 6654 */ 6655 static void yield_task_fair(struct rq *rq) 6656 { 6657 struct task_struct *curr = rq->curr; 6658 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6659 struct sched_entity *se = &curr->se; 6660 6661 /* 6662 * Are we the only task in the tree? 6663 */ 6664 if (unlikely(rq->nr_running == 1)) 6665 return; 6666 6667 clear_buddies(cfs_rq, se); 6668 6669 if (curr->policy != SCHED_BATCH) { 6670 update_rq_clock(rq); 6671 /* 6672 * Update run-time statistics of the 'current'. 6673 */ 6674 update_curr(cfs_rq); 6675 /* 6676 * Tell update_rq_clock() that we've just updated, 6677 * so we don't do microscopic update in schedule() 6678 * and double the fastpath cost. 6679 */ 6680 rq_clock_skip_update(rq); 6681 } 6682 6683 set_skip_buddy(se); 6684 } 6685 6686 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 6687 { 6688 struct sched_entity *se = &p->se; 6689 6690 /* throttled hierarchies are not runnable */ 6691 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 6692 return false; 6693 6694 /* Tell the scheduler that we'd really like pse to run next. */ 6695 set_next_buddy(se); 6696 6697 yield_task_fair(rq); 6698 6699 return true; 6700 } 6701 6702 #ifdef CONFIG_SMP 6703 /************************************************** 6704 * Fair scheduling class load-balancing methods. 6705 * 6706 * BASICS 6707 * 6708 * The purpose of load-balancing is to achieve the same basic fairness the 6709 * per-CPU scheduler provides, namely provide a proportional amount of compute 6710 * time to each task. This is expressed in the following equation: 6711 * 6712 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 6713 * 6714 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 6715 * W_i,0 is defined as: 6716 * 6717 * W_i,0 = \Sum_j w_i,j (2) 6718 * 6719 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 6720 * is derived from the nice value as per sched_prio_to_weight[]. 6721 * 6722 * The weight average is an exponential decay average of the instantaneous 6723 * weight: 6724 * 6725 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 6726 * 6727 * C_i is the compute capacity of CPU i, typically it is the 6728 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 6729 * can also include other factors [XXX]. 6730 * 6731 * To achieve this balance we define a measure of imbalance which follows 6732 * directly from (1): 6733 * 6734 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 6735 * 6736 * We them move tasks around to minimize the imbalance. In the continuous 6737 * function space it is obvious this converges, in the discrete case we get 6738 * a few fun cases generally called infeasible weight scenarios. 6739 * 6740 * [XXX expand on: 6741 * - infeasible weights; 6742 * - local vs global optima in the discrete case. ] 6743 * 6744 * 6745 * SCHED DOMAINS 6746 * 6747 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 6748 * for all i,j solution, we create a tree of CPUs that follows the hardware 6749 * topology where each level pairs two lower groups (or better). This results 6750 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 6751 * tree to only the first of the previous level and we decrease the frequency 6752 * of load-balance at each level inv. proportional to the number of CPUs in 6753 * the groups. 6754 * 6755 * This yields: 6756 * 6757 * log_2 n 1 n 6758 * \Sum { --- * --- * 2^i } = O(n) (5) 6759 * i = 0 2^i 2^i 6760 * `- size of each group 6761 * | | `- number of CPUs doing load-balance 6762 * | `- freq 6763 * `- sum over all levels 6764 * 6765 * Coupled with a limit on how many tasks we can migrate every balance pass, 6766 * this makes (5) the runtime complexity of the balancer. 6767 * 6768 * An important property here is that each CPU is still (indirectly) connected 6769 * to every other CPU in at most O(log n) steps: 6770 * 6771 * The adjacency matrix of the resulting graph is given by: 6772 * 6773 * log_2 n 6774 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 6775 * k = 0 6776 * 6777 * And you'll find that: 6778 * 6779 * A^(log_2 n)_i,j != 0 for all i,j (7) 6780 * 6781 * Showing there's indeed a path between every CPU in at most O(log n) steps. 6782 * The task movement gives a factor of O(m), giving a convergence complexity 6783 * of: 6784 * 6785 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 6786 * 6787 * 6788 * WORK CONSERVING 6789 * 6790 * In order to avoid CPUs going idle while there's still work to do, new idle 6791 * balancing is more aggressive and has the newly idle CPU iterate up the domain 6792 * tree itself instead of relying on other CPUs to bring it work. 6793 * 6794 * This adds some complexity to both (5) and (8) but it reduces the total idle 6795 * time. 6796 * 6797 * [XXX more?] 6798 * 6799 * 6800 * CGROUPS 6801 * 6802 * Cgroups make a horror show out of (2), instead of a simple sum we get: 6803 * 6804 * s_k,i 6805 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 6806 * S_k 6807 * 6808 * Where 6809 * 6810 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 6811 * 6812 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 6813 * 6814 * The big problem is S_k, its a global sum needed to compute a local (W_i) 6815 * property. 6816 * 6817 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 6818 * rewrite all of this once again.] 6819 */ 6820 6821 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 6822 6823 enum fbq_type { regular, remote, all }; 6824 6825 #define LBF_ALL_PINNED 0x01 6826 #define LBF_NEED_BREAK 0x02 6827 #define LBF_DST_PINNED 0x04 6828 #define LBF_SOME_PINNED 0x08 6829 #define LBF_NOHZ_STATS 0x10 6830 #define LBF_NOHZ_AGAIN 0x20 6831 6832 struct lb_env { 6833 struct sched_domain *sd; 6834 6835 struct rq *src_rq; 6836 int src_cpu; 6837 6838 int dst_cpu; 6839 struct rq *dst_rq; 6840 6841 struct cpumask *dst_grpmask; 6842 int new_dst_cpu; 6843 enum cpu_idle_type idle; 6844 long imbalance; 6845 /* The set of CPUs under consideration for load-balancing */ 6846 struct cpumask *cpus; 6847 6848 unsigned int flags; 6849 6850 unsigned int loop; 6851 unsigned int loop_break; 6852 unsigned int loop_max; 6853 6854 enum fbq_type fbq_type; 6855 struct list_head tasks; 6856 }; 6857 6858 /* 6859 * Is this task likely cache-hot: 6860 */ 6861 static int task_hot(struct task_struct *p, struct lb_env *env) 6862 { 6863 s64 delta; 6864 6865 lockdep_assert_held(&env->src_rq->lock); 6866 6867 if (p->sched_class != &fair_sched_class) 6868 return 0; 6869 6870 if (unlikely(p->policy == SCHED_IDLE)) 6871 return 0; 6872 6873 /* 6874 * Buddy candidates are cache hot: 6875 */ 6876 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 6877 (&p->se == cfs_rq_of(&p->se)->next || 6878 &p->se == cfs_rq_of(&p->se)->last)) 6879 return 1; 6880 6881 if (sysctl_sched_migration_cost == -1) 6882 return 1; 6883 if (sysctl_sched_migration_cost == 0) 6884 return 0; 6885 6886 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 6887 6888 return delta < (s64)sysctl_sched_migration_cost; 6889 } 6890 6891 #ifdef CONFIG_NUMA_BALANCING 6892 /* 6893 * Returns 1, if task migration degrades locality 6894 * Returns 0, if task migration improves locality i.e migration preferred. 6895 * Returns -1, if task migration is not affected by locality. 6896 */ 6897 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 6898 { 6899 struct numa_group *numa_group = rcu_dereference(p->numa_group); 6900 unsigned long src_weight, dst_weight; 6901 int src_nid, dst_nid, dist; 6902 6903 if (!static_branch_likely(&sched_numa_balancing)) 6904 return -1; 6905 6906 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 6907 return -1; 6908 6909 src_nid = cpu_to_node(env->src_cpu); 6910 dst_nid = cpu_to_node(env->dst_cpu); 6911 6912 if (src_nid == dst_nid) 6913 return -1; 6914 6915 /* Migrating away from the preferred node is always bad. */ 6916 if (src_nid == p->numa_preferred_nid) { 6917 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 6918 return 1; 6919 else 6920 return -1; 6921 } 6922 6923 /* Encourage migration to the preferred node. */ 6924 if (dst_nid == p->numa_preferred_nid) 6925 return 0; 6926 6927 /* Leaving a core idle is often worse than degrading locality. */ 6928 if (env->idle == CPU_IDLE) 6929 return -1; 6930 6931 dist = node_distance(src_nid, dst_nid); 6932 if (numa_group) { 6933 src_weight = group_weight(p, src_nid, dist); 6934 dst_weight = group_weight(p, dst_nid, dist); 6935 } else { 6936 src_weight = task_weight(p, src_nid, dist); 6937 dst_weight = task_weight(p, dst_nid, dist); 6938 } 6939 6940 return dst_weight < src_weight; 6941 } 6942 6943 #else 6944 static inline int migrate_degrades_locality(struct task_struct *p, 6945 struct lb_env *env) 6946 { 6947 return -1; 6948 } 6949 #endif 6950 6951 /* 6952 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 6953 */ 6954 static 6955 int can_migrate_task(struct task_struct *p, struct lb_env *env) 6956 { 6957 int tsk_cache_hot; 6958 6959 lockdep_assert_held(&env->src_rq->lock); 6960 6961 /* 6962 * We do not migrate tasks that are: 6963 * 1) throttled_lb_pair, or 6964 * 2) cannot be migrated to this CPU due to cpus_allowed, or 6965 * 3) running (obviously), or 6966 * 4) are cache-hot on their current CPU. 6967 */ 6968 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 6969 return 0; 6970 6971 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) { 6972 int cpu; 6973 6974 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 6975 6976 env->flags |= LBF_SOME_PINNED; 6977 6978 /* 6979 * Remember if this task can be migrated to any other CPU in 6980 * our sched_group. We may want to revisit it if we couldn't 6981 * meet load balance goals by pulling other tasks on src_cpu. 6982 * 6983 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 6984 * already computed one in current iteration. 6985 */ 6986 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 6987 return 0; 6988 6989 /* Prevent to re-select dst_cpu via env's CPUs: */ 6990 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 6991 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) { 6992 env->flags |= LBF_DST_PINNED; 6993 env->new_dst_cpu = cpu; 6994 break; 6995 } 6996 } 6997 6998 return 0; 6999 } 7000 7001 /* Record that we found atleast one task that could run on dst_cpu */ 7002 env->flags &= ~LBF_ALL_PINNED; 7003 7004 if (task_running(env->src_rq, p)) { 7005 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7006 return 0; 7007 } 7008 7009 /* 7010 * Aggressive migration if: 7011 * 1) destination numa is preferred 7012 * 2) task is cache cold, or 7013 * 3) too many balance attempts have failed. 7014 */ 7015 tsk_cache_hot = migrate_degrades_locality(p, env); 7016 if (tsk_cache_hot == -1) 7017 tsk_cache_hot = task_hot(p, env); 7018 7019 if (tsk_cache_hot <= 0 || 7020 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7021 if (tsk_cache_hot == 1) { 7022 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7023 schedstat_inc(p->se.statistics.nr_forced_migrations); 7024 } 7025 return 1; 7026 } 7027 7028 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7029 return 0; 7030 } 7031 7032 /* 7033 * detach_task() -- detach the task for the migration specified in env 7034 */ 7035 static void detach_task(struct task_struct *p, struct lb_env *env) 7036 { 7037 lockdep_assert_held(&env->src_rq->lock); 7038 7039 p->on_rq = TASK_ON_RQ_MIGRATING; 7040 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7041 set_task_cpu(p, env->dst_cpu); 7042 } 7043 7044 /* 7045 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7046 * part of active balancing operations within "domain". 7047 * 7048 * Returns a task if successful and NULL otherwise. 7049 */ 7050 static struct task_struct *detach_one_task(struct lb_env *env) 7051 { 7052 struct task_struct *p; 7053 7054 lockdep_assert_held(&env->src_rq->lock); 7055 7056 list_for_each_entry_reverse(p, 7057 &env->src_rq->cfs_tasks, se.group_node) { 7058 if (!can_migrate_task(p, env)) 7059 continue; 7060 7061 detach_task(p, env); 7062 7063 /* 7064 * Right now, this is only the second place where 7065 * lb_gained[env->idle] is updated (other is detach_tasks) 7066 * so we can safely collect stats here rather than 7067 * inside detach_tasks(). 7068 */ 7069 schedstat_inc(env->sd->lb_gained[env->idle]); 7070 return p; 7071 } 7072 return NULL; 7073 } 7074 7075 static const unsigned int sched_nr_migrate_break = 32; 7076 7077 /* 7078 * detach_tasks() -- tries to detach up to imbalance weighted load from 7079 * busiest_rq, as part of a balancing operation within domain "sd". 7080 * 7081 * Returns number of detached tasks if successful and 0 otherwise. 7082 */ 7083 static int detach_tasks(struct lb_env *env) 7084 { 7085 struct list_head *tasks = &env->src_rq->cfs_tasks; 7086 struct task_struct *p; 7087 unsigned long load; 7088 int detached = 0; 7089 7090 lockdep_assert_held(&env->src_rq->lock); 7091 7092 if (env->imbalance <= 0) 7093 return 0; 7094 7095 while (!list_empty(tasks)) { 7096 /* 7097 * We don't want to steal all, otherwise we may be treated likewise, 7098 * which could at worst lead to a livelock crash. 7099 */ 7100 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7101 break; 7102 7103 p = list_last_entry(tasks, struct task_struct, se.group_node); 7104 7105 env->loop++; 7106 /* We've more or less seen every task there is, call it quits */ 7107 if (env->loop > env->loop_max) 7108 break; 7109 7110 /* take a breather every nr_migrate tasks */ 7111 if (env->loop > env->loop_break) { 7112 env->loop_break += sched_nr_migrate_break; 7113 env->flags |= LBF_NEED_BREAK; 7114 break; 7115 } 7116 7117 if (!can_migrate_task(p, env)) 7118 goto next; 7119 7120 load = task_h_load(p); 7121 7122 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 7123 goto next; 7124 7125 if ((load / 2) > env->imbalance) 7126 goto next; 7127 7128 detach_task(p, env); 7129 list_add(&p->se.group_node, &env->tasks); 7130 7131 detached++; 7132 env->imbalance -= load; 7133 7134 #ifdef CONFIG_PREEMPT 7135 /* 7136 * NEWIDLE balancing is a source of latency, so preemptible 7137 * kernels will stop after the first task is detached to minimize 7138 * the critical section. 7139 */ 7140 if (env->idle == CPU_NEWLY_IDLE) 7141 break; 7142 #endif 7143 7144 /* 7145 * We only want to steal up to the prescribed amount of 7146 * weighted load. 7147 */ 7148 if (env->imbalance <= 0) 7149 break; 7150 7151 continue; 7152 next: 7153 list_move(&p->se.group_node, tasks); 7154 } 7155 7156 /* 7157 * Right now, this is one of only two places we collect this stat 7158 * so we can safely collect detach_one_task() stats here rather 7159 * than inside detach_one_task(). 7160 */ 7161 schedstat_add(env->sd->lb_gained[env->idle], detached); 7162 7163 return detached; 7164 } 7165 7166 /* 7167 * attach_task() -- attach the task detached by detach_task() to its new rq. 7168 */ 7169 static void attach_task(struct rq *rq, struct task_struct *p) 7170 { 7171 lockdep_assert_held(&rq->lock); 7172 7173 BUG_ON(task_rq(p) != rq); 7174 activate_task(rq, p, ENQUEUE_NOCLOCK); 7175 p->on_rq = TASK_ON_RQ_QUEUED; 7176 check_preempt_curr(rq, p, 0); 7177 } 7178 7179 /* 7180 * attach_one_task() -- attaches the task returned from detach_one_task() to 7181 * its new rq. 7182 */ 7183 static void attach_one_task(struct rq *rq, struct task_struct *p) 7184 { 7185 struct rq_flags rf; 7186 7187 rq_lock(rq, &rf); 7188 update_rq_clock(rq); 7189 attach_task(rq, p); 7190 rq_unlock(rq, &rf); 7191 } 7192 7193 /* 7194 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7195 * new rq. 7196 */ 7197 static void attach_tasks(struct lb_env *env) 7198 { 7199 struct list_head *tasks = &env->tasks; 7200 struct task_struct *p; 7201 struct rq_flags rf; 7202 7203 rq_lock(env->dst_rq, &rf); 7204 update_rq_clock(env->dst_rq); 7205 7206 while (!list_empty(tasks)) { 7207 p = list_first_entry(tasks, struct task_struct, se.group_node); 7208 list_del_init(&p->se.group_node); 7209 7210 attach_task(env->dst_rq, p); 7211 } 7212 7213 rq_unlock(env->dst_rq, &rf); 7214 } 7215 7216 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7217 { 7218 if (cfs_rq->avg.load_avg) 7219 return true; 7220 7221 if (cfs_rq->avg.util_avg) 7222 return true; 7223 7224 return false; 7225 } 7226 7227 static inline bool others_have_blocked(struct rq *rq) 7228 { 7229 if (READ_ONCE(rq->avg_rt.util_avg)) 7230 return true; 7231 7232 if (READ_ONCE(rq->avg_dl.util_avg)) 7233 return true; 7234 7235 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 7236 if (READ_ONCE(rq->avg_irq.util_avg)) 7237 return true; 7238 #endif 7239 7240 return false; 7241 } 7242 7243 #ifdef CONFIG_FAIR_GROUP_SCHED 7244 7245 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7246 { 7247 if (cfs_rq->load.weight) 7248 return false; 7249 7250 if (cfs_rq->avg.load_sum) 7251 return false; 7252 7253 if (cfs_rq->avg.util_sum) 7254 return false; 7255 7256 if (cfs_rq->avg.runnable_load_sum) 7257 return false; 7258 7259 return true; 7260 } 7261 7262 static void update_blocked_averages(int cpu) 7263 { 7264 struct rq *rq = cpu_rq(cpu); 7265 struct cfs_rq *cfs_rq, *pos; 7266 struct rq_flags rf; 7267 bool done = true; 7268 7269 rq_lock_irqsave(rq, &rf); 7270 update_rq_clock(rq); 7271 7272 /* 7273 * Iterates the task_group tree in a bottom up fashion, see 7274 * list_add_leaf_cfs_rq() for details. 7275 */ 7276 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7277 struct sched_entity *se; 7278 7279 /* throttled entities do not contribute to load */ 7280 if (throttled_hierarchy(cfs_rq)) 7281 continue; 7282 7283 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq)) 7284 update_tg_load_avg(cfs_rq, 0); 7285 7286 /* Propagate pending load changes to the parent, if any: */ 7287 se = cfs_rq->tg->se[cpu]; 7288 if (se && !skip_blocked_update(se)) 7289 update_load_avg(cfs_rq_of(se), se, 0); 7290 7291 /* 7292 * There can be a lot of idle CPU cgroups. Don't let fully 7293 * decayed cfs_rqs linger on the list. 7294 */ 7295 if (cfs_rq_is_decayed(cfs_rq)) 7296 list_del_leaf_cfs_rq(cfs_rq); 7297 7298 /* Don't need periodic decay once load/util_avg are null */ 7299 if (cfs_rq_has_blocked(cfs_rq)) 7300 done = false; 7301 } 7302 update_rt_rq_load_avg(rq_clock_task(rq), rq, 0); 7303 update_dl_rq_load_avg(rq_clock_task(rq), rq, 0); 7304 update_irq_load_avg(rq, 0); 7305 /* Don't need periodic decay once load/util_avg are null */ 7306 if (others_have_blocked(rq)) 7307 done = false; 7308 7309 #ifdef CONFIG_NO_HZ_COMMON 7310 rq->last_blocked_load_update_tick = jiffies; 7311 if (done) 7312 rq->has_blocked_load = 0; 7313 #endif 7314 rq_unlock_irqrestore(rq, &rf); 7315 } 7316 7317 /* 7318 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7319 * This needs to be done in a top-down fashion because the load of a child 7320 * group is a fraction of its parents load. 7321 */ 7322 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7323 { 7324 struct rq *rq = rq_of(cfs_rq); 7325 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7326 unsigned long now = jiffies; 7327 unsigned long load; 7328 7329 if (cfs_rq->last_h_load_update == now) 7330 return; 7331 7332 cfs_rq->h_load_next = NULL; 7333 for_each_sched_entity(se) { 7334 cfs_rq = cfs_rq_of(se); 7335 cfs_rq->h_load_next = se; 7336 if (cfs_rq->last_h_load_update == now) 7337 break; 7338 } 7339 7340 if (!se) { 7341 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7342 cfs_rq->last_h_load_update = now; 7343 } 7344 7345 while ((se = cfs_rq->h_load_next) != NULL) { 7346 load = cfs_rq->h_load; 7347 load = div64_ul(load * se->avg.load_avg, 7348 cfs_rq_load_avg(cfs_rq) + 1); 7349 cfs_rq = group_cfs_rq(se); 7350 cfs_rq->h_load = load; 7351 cfs_rq->last_h_load_update = now; 7352 } 7353 } 7354 7355 static unsigned long task_h_load(struct task_struct *p) 7356 { 7357 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7358 7359 update_cfs_rq_h_load(cfs_rq); 7360 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7361 cfs_rq_load_avg(cfs_rq) + 1); 7362 } 7363 #else 7364 static inline void update_blocked_averages(int cpu) 7365 { 7366 struct rq *rq = cpu_rq(cpu); 7367 struct cfs_rq *cfs_rq = &rq->cfs; 7368 struct rq_flags rf; 7369 7370 rq_lock_irqsave(rq, &rf); 7371 update_rq_clock(rq); 7372 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq); 7373 update_rt_rq_load_avg(rq_clock_task(rq), rq, 0); 7374 update_dl_rq_load_avg(rq_clock_task(rq), rq, 0); 7375 update_irq_load_avg(rq, 0); 7376 #ifdef CONFIG_NO_HZ_COMMON 7377 rq->last_blocked_load_update_tick = jiffies; 7378 if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq)) 7379 rq->has_blocked_load = 0; 7380 #endif 7381 rq_unlock_irqrestore(rq, &rf); 7382 } 7383 7384 static unsigned long task_h_load(struct task_struct *p) 7385 { 7386 return p->se.avg.load_avg; 7387 } 7388 #endif 7389 7390 /********** Helpers for find_busiest_group ************************/ 7391 7392 enum group_type { 7393 group_other = 0, 7394 group_imbalanced, 7395 group_overloaded, 7396 }; 7397 7398 /* 7399 * sg_lb_stats - stats of a sched_group required for load_balancing 7400 */ 7401 struct sg_lb_stats { 7402 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7403 unsigned long group_load; /* Total load over the CPUs of the group */ 7404 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 7405 unsigned long load_per_task; 7406 unsigned long group_capacity; 7407 unsigned long group_util; /* Total utilization of the group */ 7408 unsigned int sum_nr_running; /* Nr tasks running in the group */ 7409 unsigned int idle_cpus; 7410 unsigned int group_weight; 7411 enum group_type group_type; 7412 int group_no_capacity; 7413 #ifdef CONFIG_NUMA_BALANCING 7414 unsigned int nr_numa_running; 7415 unsigned int nr_preferred_running; 7416 #endif 7417 }; 7418 7419 /* 7420 * sd_lb_stats - Structure to store the statistics of a sched_domain 7421 * during load balancing. 7422 */ 7423 struct sd_lb_stats { 7424 struct sched_group *busiest; /* Busiest group in this sd */ 7425 struct sched_group *local; /* Local group in this sd */ 7426 unsigned long total_running; 7427 unsigned long total_load; /* Total load of all groups in sd */ 7428 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7429 unsigned long avg_load; /* Average load across all groups in sd */ 7430 7431 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7432 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7433 }; 7434 7435 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7436 { 7437 /* 7438 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7439 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7440 * We must however clear busiest_stat::avg_load because 7441 * update_sd_pick_busiest() reads this before assignment. 7442 */ 7443 *sds = (struct sd_lb_stats){ 7444 .busiest = NULL, 7445 .local = NULL, 7446 .total_running = 0UL, 7447 .total_load = 0UL, 7448 .total_capacity = 0UL, 7449 .busiest_stat = { 7450 .avg_load = 0UL, 7451 .sum_nr_running = 0, 7452 .group_type = group_other, 7453 }, 7454 }; 7455 } 7456 7457 /** 7458 * get_sd_load_idx - Obtain the load index for a given sched domain. 7459 * @sd: The sched_domain whose load_idx is to be obtained. 7460 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 7461 * 7462 * Return: The load index. 7463 */ 7464 static inline int get_sd_load_idx(struct sched_domain *sd, 7465 enum cpu_idle_type idle) 7466 { 7467 int load_idx; 7468 7469 switch (idle) { 7470 case CPU_NOT_IDLE: 7471 load_idx = sd->busy_idx; 7472 break; 7473 7474 case CPU_NEWLY_IDLE: 7475 load_idx = sd->newidle_idx; 7476 break; 7477 default: 7478 load_idx = sd->idle_idx; 7479 break; 7480 } 7481 7482 return load_idx; 7483 } 7484 7485 static unsigned long scale_rt_capacity(int cpu) 7486 { 7487 struct rq *rq = cpu_rq(cpu); 7488 unsigned long max = arch_scale_cpu_capacity(NULL, cpu); 7489 unsigned long used, free; 7490 unsigned long irq; 7491 7492 irq = cpu_util_irq(rq); 7493 7494 if (unlikely(irq >= max)) 7495 return 1; 7496 7497 used = READ_ONCE(rq->avg_rt.util_avg); 7498 used += READ_ONCE(rq->avg_dl.util_avg); 7499 7500 if (unlikely(used >= max)) 7501 return 1; 7502 7503 free = max - used; 7504 7505 return scale_irq_capacity(free, irq, max); 7506 } 7507 7508 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 7509 { 7510 unsigned long capacity = scale_rt_capacity(cpu); 7511 struct sched_group *sdg = sd->groups; 7512 7513 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu); 7514 7515 if (!capacity) 7516 capacity = 1; 7517 7518 cpu_rq(cpu)->cpu_capacity = capacity; 7519 sdg->sgc->capacity = capacity; 7520 sdg->sgc->min_capacity = capacity; 7521 } 7522 7523 void update_group_capacity(struct sched_domain *sd, int cpu) 7524 { 7525 struct sched_domain *child = sd->child; 7526 struct sched_group *group, *sdg = sd->groups; 7527 unsigned long capacity, min_capacity; 7528 unsigned long interval; 7529 7530 interval = msecs_to_jiffies(sd->balance_interval); 7531 interval = clamp(interval, 1UL, max_load_balance_interval); 7532 sdg->sgc->next_update = jiffies + interval; 7533 7534 if (!child) { 7535 update_cpu_capacity(sd, cpu); 7536 return; 7537 } 7538 7539 capacity = 0; 7540 min_capacity = ULONG_MAX; 7541 7542 if (child->flags & SD_OVERLAP) { 7543 /* 7544 * SD_OVERLAP domains cannot assume that child groups 7545 * span the current group. 7546 */ 7547 7548 for_each_cpu(cpu, sched_group_span(sdg)) { 7549 struct sched_group_capacity *sgc; 7550 struct rq *rq = cpu_rq(cpu); 7551 7552 /* 7553 * build_sched_domains() -> init_sched_groups_capacity() 7554 * gets here before we've attached the domains to the 7555 * runqueues. 7556 * 7557 * Use capacity_of(), which is set irrespective of domains 7558 * in update_cpu_capacity(). 7559 * 7560 * This avoids capacity from being 0 and 7561 * causing divide-by-zero issues on boot. 7562 */ 7563 if (unlikely(!rq->sd)) { 7564 capacity += capacity_of(cpu); 7565 } else { 7566 sgc = rq->sd->groups->sgc; 7567 capacity += sgc->capacity; 7568 } 7569 7570 min_capacity = min(capacity, min_capacity); 7571 } 7572 } else { 7573 /* 7574 * !SD_OVERLAP domains can assume that child groups 7575 * span the current group. 7576 */ 7577 7578 group = child->groups; 7579 do { 7580 struct sched_group_capacity *sgc = group->sgc; 7581 7582 capacity += sgc->capacity; 7583 min_capacity = min(sgc->min_capacity, min_capacity); 7584 group = group->next; 7585 } while (group != child->groups); 7586 } 7587 7588 sdg->sgc->capacity = capacity; 7589 sdg->sgc->min_capacity = min_capacity; 7590 } 7591 7592 /* 7593 * Check whether the capacity of the rq has been noticeably reduced by side 7594 * activity. The imbalance_pct is used for the threshold. 7595 * Return true is the capacity is reduced 7596 */ 7597 static inline int 7598 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 7599 { 7600 return ((rq->cpu_capacity * sd->imbalance_pct) < 7601 (rq->cpu_capacity_orig * 100)); 7602 } 7603 7604 /* 7605 * Group imbalance indicates (and tries to solve) the problem where balancing 7606 * groups is inadequate due to ->cpus_allowed constraints. 7607 * 7608 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 7609 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 7610 * Something like: 7611 * 7612 * { 0 1 2 3 } { 4 5 6 7 } 7613 * * * * * 7614 * 7615 * If we were to balance group-wise we'd place two tasks in the first group and 7616 * two tasks in the second group. Clearly this is undesired as it will overload 7617 * cpu 3 and leave one of the CPUs in the second group unused. 7618 * 7619 * The current solution to this issue is detecting the skew in the first group 7620 * by noticing the lower domain failed to reach balance and had difficulty 7621 * moving tasks due to affinity constraints. 7622 * 7623 * When this is so detected; this group becomes a candidate for busiest; see 7624 * update_sd_pick_busiest(). And calculate_imbalance() and 7625 * find_busiest_group() avoid some of the usual balance conditions to allow it 7626 * to create an effective group imbalance. 7627 * 7628 * This is a somewhat tricky proposition since the next run might not find the 7629 * group imbalance and decide the groups need to be balanced again. A most 7630 * subtle and fragile situation. 7631 */ 7632 7633 static inline int sg_imbalanced(struct sched_group *group) 7634 { 7635 return group->sgc->imbalance; 7636 } 7637 7638 /* 7639 * group_has_capacity returns true if the group has spare capacity that could 7640 * be used by some tasks. 7641 * We consider that a group has spare capacity if the * number of task is 7642 * smaller than the number of CPUs or if the utilization is lower than the 7643 * available capacity for CFS tasks. 7644 * For the latter, we use a threshold to stabilize the state, to take into 7645 * account the variance of the tasks' load and to return true if the available 7646 * capacity in meaningful for the load balancer. 7647 * As an example, an available capacity of 1% can appear but it doesn't make 7648 * any benefit for the load balance. 7649 */ 7650 static inline bool 7651 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 7652 { 7653 if (sgs->sum_nr_running < sgs->group_weight) 7654 return true; 7655 7656 if ((sgs->group_capacity * 100) > 7657 (sgs->group_util * env->sd->imbalance_pct)) 7658 return true; 7659 7660 return false; 7661 } 7662 7663 /* 7664 * group_is_overloaded returns true if the group has more tasks than it can 7665 * handle. 7666 * group_is_overloaded is not equals to !group_has_capacity because a group 7667 * with the exact right number of tasks, has no more spare capacity but is not 7668 * overloaded so both group_has_capacity and group_is_overloaded return 7669 * false. 7670 */ 7671 static inline bool 7672 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 7673 { 7674 if (sgs->sum_nr_running <= sgs->group_weight) 7675 return false; 7676 7677 if ((sgs->group_capacity * 100) < 7678 (sgs->group_util * env->sd->imbalance_pct)) 7679 return true; 7680 7681 return false; 7682 } 7683 7684 /* 7685 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller 7686 * per-CPU capacity than sched_group ref. 7687 */ 7688 static inline bool 7689 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7690 { 7691 return sg->sgc->min_capacity * capacity_margin < 7692 ref->sgc->min_capacity * 1024; 7693 } 7694 7695 static inline enum 7696 group_type group_classify(struct sched_group *group, 7697 struct sg_lb_stats *sgs) 7698 { 7699 if (sgs->group_no_capacity) 7700 return group_overloaded; 7701 7702 if (sg_imbalanced(group)) 7703 return group_imbalanced; 7704 7705 return group_other; 7706 } 7707 7708 static bool update_nohz_stats(struct rq *rq, bool force) 7709 { 7710 #ifdef CONFIG_NO_HZ_COMMON 7711 unsigned int cpu = rq->cpu; 7712 7713 if (!rq->has_blocked_load) 7714 return false; 7715 7716 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 7717 return false; 7718 7719 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) 7720 return true; 7721 7722 update_blocked_averages(cpu); 7723 7724 return rq->has_blocked_load; 7725 #else 7726 return false; 7727 #endif 7728 } 7729 7730 /** 7731 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 7732 * @env: The load balancing environment. 7733 * @group: sched_group whose statistics are to be updated. 7734 * @load_idx: Load index of sched_domain of this_cpu for load calc. 7735 * @local_group: Does group contain this_cpu. 7736 * @sgs: variable to hold the statistics for this group. 7737 * @overload: Indicate more than one runnable task for any CPU. 7738 */ 7739 static inline void update_sg_lb_stats(struct lb_env *env, 7740 struct sched_group *group, int load_idx, 7741 int local_group, struct sg_lb_stats *sgs, 7742 bool *overload) 7743 { 7744 unsigned long load; 7745 int i, nr_running; 7746 7747 memset(sgs, 0, sizeof(*sgs)); 7748 7749 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 7750 struct rq *rq = cpu_rq(i); 7751 7752 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) 7753 env->flags |= LBF_NOHZ_AGAIN; 7754 7755 /* Bias balancing toward CPUs of our domain: */ 7756 if (local_group) 7757 load = target_load(i, load_idx); 7758 else 7759 load = source_load(i, load_idx); 7760 7761 sgs->group_load += load; 7762 sgs->group_util += cpu_util(i); 7763 sgs->sum_nr_running += rq->cfs.h_nr_running; 7764 7765 nr_running = rq->nr_running; 7766 if (nr_running > 1) 7767 *overload = true; 7768 7769 #ifdef CONFIG_NUMA_BALANCING 7770 sgs->nr_numa_running += rq->nr_numa_running; 7771 sgs->nr_preferred_running += rq->nr_preferred_running; 7772 #endif 7773 sgs->sum_weighted_load += weighted_cpuload(rq); 7774 /* 7775 * No need to call idle_cpu() if nr_running is not 0 7776 */ 7777 if (!nr_running && idle_cpu(i)) 7778 sgs->idle_cpus++; 7779 } 7780 7781 /* Adjust by relative CPU capacity of the group */ 7782 sgs->group_capacity = group->sgc->capacity; 7783 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 7784 7785 if (sgs->sum_nr_running) 7786 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 7787 7788 sgs->group_weight = group->group_weight; 7789 7790 sgs->group_no_capacity = group_is_overloaded(env, sgs); 7791 sgs->group_type = group_classify(group, sgs); 7792 } 7793 7794 /** 7795 * update_sd_pick_busiest - return 1 on busiest group 7796 * @env: The load balancing environment. 7797 * @sds: sched_domain statistics 7798 * @sg: sched_group candidate to be checked for being the busiest 7799 * @sgs: sched_group statistics 7800 * 7801 * Determine if @sg is a busier group than the previously selected 7802 * busiest group. 7803 * 7804 * Return: %true if @sg is a busier group than the previously selected 7805 * busiest group. %false otherwise. 7806 */ 7807 static bool update_sd_pick_busiest(struct lb_env *env, 7808 struct sd_lb_stats *sds, 7809 struct sched_group *sg, 7810 struct sg_lb_stats *sgs) 7811 { 7812 struct sg_lb_stats *busiest = &sds->busiest_stat; 7813 7814 if (sgs->group_type > busiest->group_type) 7815 return true; 7816 7817 if (sgs->group_type < busiest->group_type) 7818 return false; 7819 7820 if (sgs->avg_load <= busiest->avg_load) 7821 return false; 7822 7823 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) 7824 goto asym_packing; 7825 7826 /* 7827 * Candidate sg has no more than one task per CPU and 7828 * has higher per-CPU capacity. Migrating tasks to less 7829 * capable CPUs may harm throughput. Maximize throughput, 7830 * power/energy consequences are not considered. 7831 */ 7832 if (sgs->sum_nr_running <= sgs->group_weight && 7833 group_smaller_cpu_capacity(sds->local, sg)) 7834 return false; 7835 7836 asym_packing: 7837 /* This is the busiest node in its class. */ 7838 if (!(env->sd->flags & SD_ASYM_PACKING)) 7839 return true; 7840 7841 /* No ASYM_PACKING if target CPU is already busy */ 7842 if (env->idle == CPU_NOT_IDLE) 7843 return true; 7844 /* 7845 * ASYM_PACKING needs to move all the work to the highest 7846 * prority CPUs in the group, therefore mark all groups 7847 * of lower priority than ourself as busy. 7848 */ 7849 if (sgs->sum_nr_running && 7850 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) { 7851 if (!sds->busiest) 7852 return true; 7853 7854 /* Prefer to move from lowest priority CPU's work */ 7855 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu, 7856 sg->asym_prefer_cpu)) 7857 return true; 7858 } 7859 7860 return false; 7861 } 7862 7863 #ifdef CONFIG_NUMA_BALANCING 7864 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 7865 { 7866 if (sgs->sum_nr_running > sgs->nr_numa_running) 7867 return regular; 7868 if (sgs->sum_nr_running > sgs->nr_preferred_running) 7869 return remote; 7870 return all; 7871 } 7872 7873 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 7874 { 7875 if (rq->nr_running > rq->nr_numa_running) 7876 return regular; 7877 if (rq->nr_running > rq->nr_preferred_running) 7878 return remote; 7879 return all; 7880 } 7881 #else 7882 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 7883 { 7884 return all; 7885 } 7886 7887 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 7888 { 7889 return regular; 7890 } 7891 #endif /* CONFIG_NUMA_BALANCING */ 7892 7893 /** 7894 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 7895 * @env: The load balancing environment. 7896 * @sds: variable to hold the statistics for this sched_domain. 7897 */ 7898 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 7899 { 7900 struct sched_domain *child = env->sd->child; 7901 struct sched_group *sg = env->sd->groups; 7902 struct sg_lb_stats *local = &sds->local_stat; 7903 struct sg_lb_stats tmp_sgs; 7904 int load_idx, prefer_sibling = 0; 7905 bool overload = false; 7906 7907 if (child && child->flags & SD_PREFER_SIBLING) 7908 prefer_sibling = 1; 7909 7910 #ifdef CONFIG_NO_HZ_COMMON 7911 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) 7912 env->flags |= LBF_NOHZ_STATS; 7913 #endif 7914 7915 load_idx = get_sd_load_idx(env->sd, env->idle); 7916 7917 do { 7918 struct sg_lb_stats *sgs = &tmp_sgs; 7919 int local_group; 7920 7921 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 7922 if (local_group) { 7923 sds->local = sg; 7924 sgs = local; 7925 7926 if (env->idle != CPU_NEWLY_IDLE || 7927 time_after_eq(jiffies, sg->sgc->next_update)) 7928 update_group_capacity(env->sd, env->dst_cpu); 7929 } 7930 7931 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 7932 &overload); 7933 7934 if (local_group) 7935 goto next_group; 7936 7937 /* 7938 * In case the child domain prefers tasks go to siblings 7939 * first, lower the sg capacity so that we'll try 7940 * and move all the excess tasks away. We lower the capacity 7941 * of a group only if the local group has the capacity to fit 7942 * these excess tasks. The extra check prevents the case where 7943 * you always pull from the heaviest group when it is already 7944 * under-utilized (possible with a large weight task outweighs 7945 * the tasks on the system). 7946 */ 7947 if (prefer_sibling && sds->local && 7948 group_has_capacity(env, local) && 7949 (sgs->sum_nr_running > local->sum_nr_running + 1)) { 7950 sgs->group_no_capacity = 1; 7951 sgs->group_type = group_classify(sg, sgs); 7952 } 7953 7954 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 7955 sds->busiest = sg; 7956 sds->busiest_stat = *sgs; 7957 } 7958 7959 next_group: 7960 /* Now, start updating sd_lb_stats */ 7961 sds->total_running += sgs->sum_nr_running; 7962 sds->total_load += sgs->group_load; 7963 sds->total_capacity += sgs->group_capacity; 7964 7965 sg = sg->next; 7966 } while (sg != env->sd->groups); 7967 7968 #ifdef CONFIG_NO_HZ_COMMON 7969 if ((env->flags & LBF_NOHZ_AGAIN) && 7970 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { 7971 7972 WRITE_ONCE(nohz.next_blocked, 7973 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); 7974 } 7975 #endif 7976 7977 if (env->sd->flags & SD_NUMA) 7978 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 7979 7980 if (!env->sd->parent) { 7981 /* update overload indicator if we are at root domain */ 7982 if (env->dst_rq->rd->overload != overload) 7983 env->dst_rq->rd->overload = overload; 7984 } 7985 } 7986 7987 /** 7988 * check_asym_packing - Check to see if the group is packed into the 7989 * sched domain. 7990 * 7991 * This is primarily intended to used at the sibling level. Some 7992 * cores like POWER7 prefer to use lower numbered SMT threads. In the 7993 * case of POWER7, it can move to lower SMT modes only when higher 7994 * threads are idle. When in lower SMT modes, the threads will 7995 * perform better since they share less core resources. Hence when we 7996 * have idle threads, we want them to be the higher ones. 7997 * 7998 * This packing function is run on idle threads. It checks to see if 7999 * the busiest CPU in this domain (core in the P7 case) has a higher 8000 * CPU number than the packing function is being run on. Here we are 8001 * assuming lower CPU number will be equivalent to lower a SMT thread 8002 * number. 8003 * 8004 * Return: 1 when packing is required and a task should be moved to 8005 * this CPU. The amount of the imbalance is returned in env->imbalance. 8006 * 8007 * @env: The load balancing environment. 8008 * @sds: Statistics of the sched_domain which is to be packed 8009 */ 8010 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 8011 { 8012 int busiest_cpu; 8013 8014 if (!(env->sd->flags & SD_ASYM_PACKING)) 8015 return 0; 8016 8017 if (env->idle == CPU_NOT_IDLE) 8018 return 0; 8019 8020 if (!sds->busiest) 8021 return 0; 8022 8023 busiest_cpu = sds->busiest->asym_prefer_cpu; 8024 if (sched_asym_prefer(busiest_cpu, env->dst_cpu)) 8025 return 0; 8026 8027 env->imbalance = DIV_ROUND_CLOSEST( 8028 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 8029 SCHED_CAPACITY_SCALE); 8030 8031 return 1; 8032 } 8033 8034 /** 8035 * fix_small_imbalance - Calculate the minor imbalance that exists 8036 * amongst the groups of a sched_domain, during 8037 * load balancing. 8038 * @env: The load balancing environment. 8039 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 8040 */ 8041 static inline 8042 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8043 { 8044 unsigned long tmp, capa_now = 0, capa_move = 0; 8045 unsigned int imbn = 2; 8046 unsigned long scaled_busy_load_per_task; 8047 struct sg_lb_stats *local, *busiest; 8048 8049 local = &sds->local_stat; 8050 busiest = &sds->busiest_stat; 8051 8052 if (!local->sum_nr_running) 8053 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 8054 else if (busiest->load_per_task > local->load_per_task) 8055 imbn = 1; 8056 8057 scaled_busy_load_per_task = 8058 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8059 busiest->group_capacity; 8060 8061 if (busiest->avg_load + scaled_busy_load_per_task >= 8062 local->avg_load + (scaled_busy_load_per_task * imbn)) { 8063 env->imbalance = busiest->load_per_task; 8064 return; 8065 } 8066 8067 /* 8068 * OK, we don't have enough imbalance to justify moving tasks, 8069 * however we may be able to increase total CPU capacity used by 8070 * moving them. 8071 */ 8072 8073 capa_now += busiest->group_capacity * 8074 min(busiest->load_per_task, busiest->avg_load); 8075 capa_now += local->group_capacity * 8076 min(local->load_per_task, local->avg_load); 8077 capa_now /= SCHED_CAPACITY_SCALE; 8078 8079 /* Amount of load we'd subtract */ 8080 if (busiest->avg_load > scaled_busy_load_per_task) { 8081 capa_move += busiest->group_capacity * 8082 min(busiest->load_per_task, 8083 busiest->avg_load - scaled_busy_load_per_task); 8084 } 8085 8086 /* Amount of load we'd add */ 8087 if (busiest->avg_load * busiest->group_capacity < 8088 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 8089 tmp = (busiest->avg_load * busiest->group_capacity) / 8090 local->group_capacity; 8091 } else { 8092 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8093 local->group_capacity; 8094 } 8095 capa_move += local->group_capacity * 8096 min(local->load_per_task, local->avg_load + tmp); 8097 capa_move /= SCHED_CAPACITY_SCALE; 8098 8099 /* Move if we gain throughput */ 8100 if (capa_move > capa_now) 8101 env->imbalance = busiest->load_per_task; 8102 } 8103 8104 /** 8105 * calculate_imbalance - Calculate the amount of imbalance present within the 8106 * groups of a given sched_domain during load balance. 8107 * @env: load balance environment 8108 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 8109 */ 8110 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8111 { 8112 unsigned long max_pull, load_above_capacity = ~0UL; 8113 struct sg_lb_stats *local, *busiest; 8114 8115 local = &sds->local_stat; 8116 busiest = &sds->busiest_stat; 8117 8118 if (busiest->group_type == group_imbalanced) { 8119 /* 8120 * In the group_imb case we cannot rely on group-wide averages 8121 * to ensure CPU-load equilibrium, look at wider averages. XXX 8122 */ 8123 busiest->load_per_task = 8124 min(busiest->load_per_task, sds->avg_load); 8125 } 8126 8127 /* 8128 * Avg load of busiest sg can be less and avg load of local sg can 8129 * be greater than avg load across all sgs of sd because avg load 8130 * factors in sg capacity and sgs with smaller group_type are 8131 * skipped when updating the busiest sg: 8132 */ 8133 if (busiest->avg_load <= sds->avg_load || 8134 local->avg_load >= sds->avg_load) { 8135 env->imbalance = 0; 8136 return fix_small_imbalance(env, sds); 8137 } 8138 8139 /* 8140 * If there aren't any idle CPUs, avoid creating some. 8141 */ 8142 if (busiest->group_type == group_overloaded && 8143 local->group_type == group_overloaded) { 8144 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 8145 if (load_above_capacity > busiest->group_capacity) { 8146 load_above_capacity -= busiest->group_capacity; 8147 load_above_capacity *= scale_load_down(NICE_0_LOAD); 8148 load_above_capacity /= busiest->group_capacity; 8149 } else 8150 load_above_capacity = ~0UL; 8151 } 8152 8153 /* 8154 * We're trying to get all the CPUs to the average_load, so we don't 8155 * want to push ourselves above the average load, nor do we wish to 8156 * reduce the max loaded CPU below the average load. At the same time, 8157 * we also don't want to reduce the group load below the group 8158 * capacity. Thus we look for the minimum possible imbalance. 8159 */ 8160 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 8161 8162 /* How much load to actually move to equalise the imbalance */ 8163 env->imbalance = min( 8164 max_pull * busiest->group_capacity, 8165 (sds->avg_load - local->avg_load) * local->group_capacity 8166 ) / SCHED_CAPACITY_SCALE; 8167 8168 /* 8169 * if *imbalance is less than the average load per runnable task 8170 * there is no guarantee that any tasks will be moved so we'll have 8171 * a think about bumping its value to force at least one task to be 8172 * moved 8173 */ 8174 if (env->imbalance < busiest->load_per_task) 8175 return fix_small_imbalance(env, sds); 8176 } 8177 8178 /******* find_busiest_group() helpers end here *********************/ 8179 8180 /** 8181 * find_busiest_group - Returns the busiest group within the sched_domain 8182 * if there is an imbalance. 8183 * 8184 * Also calculates the amount of weighted load which should be moved 8185 * to restore balance. 8186 * 8187 * @env: The load balancing environment. 8188 * 8189 * Return: - The busiest group if imbalance exists. 8190 */ 8191 static struct sched_group *find_busiest_group(struct lb_env *env) 8192 { 8193 struct sg_lb_stats *local, *busiest; 8194 struct sd_lb_stats sds; 8195 8196 init_sd_lb_stats(&sds); 8197 8198 /* 8199 * Compute the various statistics relavent for load balancing at 8200 * this level. 8201 */ 8202 update_sd_lb_stats(env, &sds); 8203 local = &sds.local_stat; 8204 busiest = &sds.busiest_stat; 8205 8206 /* ASYM feature bypasses nice load balance check */ 8207 if (check_asym_packing(env, &sds)) 8208 return sds.busiest; 8209 8210 /* There is no busy sibling group to pull tasks from */ 8211 if (!sds.busiest || busiest->sum_nr_running == 0) 8212 goto out_balanced; 8213 8214 /* XXX broken for overlapping NUMA groups */ 8215 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 8216 / sds.total_capacity; 8217 8218 /* 8219 * If the busiest group is imbalanced the below checks don't 8220 * work because they assume all things are equal, which typically 8221 * isn't true due to cpus_allowed constraints and the like. 8222 */ 8223 if (busiest->group_type == group_imbalanced) 8224 goto force_balance; 8225 8226 /* 8227 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group 8228 * capacities from resulting in underutilization due to avg_load. 8229 */ 8230 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) && 8231 busiest->group_no_capacity) 8232 goto force_balance; 8233 8234 /* 8235 * If the local group is busier than the selected busiest group 8236 * don't try and pull any tasks. 8237 */ 8238 if (local->avg_load >= busiest->avg_load) 8239 goto out_balanced; 8240 8241 /* 8242 * Don't pull any tasks if this group is already above the domain 8243 * average load. 8244 */ 8245 if (local->avg_load >= sds.avg_load) 8246 goto out_balanced; 8247 8248 if (env->idle == CPU_IDLE) { 8249 /* 8250 * This CPU is idle. If the busiest group is not overloaded 8251 * and there is no imbalance between this and busiest group 8252 * wrt idle CPUs, it is balanced. The imbalance becomes 8253 * significant if the diff is greater than 1 otherwise we 8254 * might end up to just move the imbalance on another group 8255 */ 8256 if ((busiest->group_type != group_overloaded) && 8257 (local->idle_cpus <= (busiest->idle_cpus + 1))) 8258 goto out_balanced; 8259 } else { 8260 /* 8261 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 8262 * imbalance_pct to be conservative. 8263 */ 8264 if (100 * busiest->avg_load <= 8265 env->sd->imbalance_pct * local->avg_load) 8266 goto out_balanced; 8267 } 8268 8269 force_balance: 8270 /* Looks like there is an imbalance. Compute it */ 8271 calculate_imbalance(env, &sds); 8272 return sds.busiest; 8273 8274 out_balanced: 8275 env->imbalance = 0; 8276 return NULL; 8277 } 8278 8279 /* 8280 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 8281 */ 8282 static struct rq *find_busiest_queue(struct lb_env *env, 8283 struct sched_group *group) 8284 { 8285 struct rq *busiest = NULL, *rq; 8286 unsigned long busiest_load = 0, busiest_capacity = 1; 8287 int i; 8288 8289 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8290 unsigned long capacity, wl; 8291 enum fbq_type rt; 8292 8293 rq = cpu_rq(i); 8294 rt = fbq_classify_rq(rq); 8295 8296 /* 8297 * We classify groups/runqueues into three groups: 8298 * - regular: there are !numa tasks 8299 * - remote: there are numa tasks that run on the 'wrong' node 8300 * - all: there is no distinction 8301 * 8302 * In order to avoid migrating ideally placed numa tasks, 8303 * ignore those when there's better options. 8304 * 8305 * If we ignore the actual busiest queue to migrate another 8306 * task, the next balance pass can still reduce the busiest 8307 * queue by moving tasks around inside the node. 8308 * 8309 * If we cannot move enough load due to this classification 8310 * the next pass will adjust the group classification and 8311 * allow migration of more tasks. 8312 * 8313 * Both cases only affect the total convergence complexity. 8314 */ 8315 if (rt > env->fbq_type) 8316 continue; 8317 8318 capacity = capacity_of(i); 8319 8320 wl = weighted_cpuload(rq); 8321 8322 /* 8323 * When comparing with imbalance, use weighted_cpuload() 8324 * which is not scaled with the CPU capacity. 8325 */ 8326 8327 if (rq->nr_running == 1 && wl > env->imbalance && 8328 !check_cpu_capacity(rq, env->sd)) 8329 continue; 8330 8331 /* 8332 * For the load comparisons with the other CPU's, consider 8333 * the weighted_cpuload() scaled with the CPU capacity, so 8334 * that the load can be moved away from the CPU that is 8335 * potentially running at a lower capacity. 8336 * 8337 * Thus we're looking for max(wl_i / capacity_i), crosswise 8338 * multiplication to rid ourselves of the division works out 8339 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 8340 * our previous maximum. 8341 */ 8342 if (wl * busiest_capacity > busiest_load * capacity) { 8343 busiest_load = wl; 8344 busiest_capacity = capacity; 8345 busiest = rq; 8346 } 8347 } 8348 8349 return busiest; 8350 } 8351 8352 /* 8353 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 8354 * so long as it is large enough. 8355 */ 8356 #define MAX_PINNED_INTERVAL 512 8357 8358 static int need_active_balance(struct lb_env *env) 8359 { 8360 struct sched_domain *sd = env->sd; 8361 8362 if (env->idle == CPU_NEWLY_IDLE) { 8363 8364 /* 8365 * ASYM_PACKING needs to force migrate tasks from busy but 8366 * lower priority CPUs in order to pack all tasks in the 8367 * highest priority CPUs. 8368 */ 8369 if ((sd->flags & SD_ASYM_PACKING) && 8370 sched_asym_prefer(env->dst_cpu, env->src_cpu)) 8371 return 1; 8372 } 8373 8374 /* 8375 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 8376 * It's worth migrating the task if the src_cpu's capacity is reduced 8377 * because of other sched_class or IRQs if more capacity stays 8378 * available on dst_cpu. 8379 */ 8380 if ((env->idle != CPU_NOT_IDLE) && 8381 (env->src_rq->cfs.h_nr_running == 1)) { 8382 if ((check_cpu_capacity(env->src_rq, sd)) && 8383 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 8384 return 1; 8385 } 8386 8387 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 8388 } 8389 8390 static int active_load_balance_cpu_stop(void *data); 8391 8392 static int should_we_balance(struct lb_env *env) 8393 { 8394 struct sched_group *sg = env->sd->groups; 8395 int cpu, balance_cpu = -1; 8396 8397 /* 8398 * Ensure the balancing environment is consistent; can happen 8399 * when the softirq triggers 'during' hotplug. 8400 */ 8401 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 8402 return 0; 8403 8404 /* 8405 * In the newly idle case, we will allow all the CPUs 8406 * to do the newly idle load balance. 8407 */ 8408 if (env->idle == CPU_NEWLY_IDLE) 8409 return 1; 8410 8411 /* Try to find first idle CPU */ 8412 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 8413 if (!idle_cpu(cpu)) 8414 continue; 8415 8416 balance_cpu = cpu; 8417 break; 8418 } 8419 8420 if (balance_cpu == -1) 8421 balance_cpu = group_balance_cpu(sg); 8422 8423 /* 8424 * First idle CPU or the first CPU(busiest) in this sched group 8425 * is eligible for doing load balancing at this and above domains. 8426 */ 8427 return balance_cpu == env->dst_cpu; 8428 } 8429 8430 /* 8431 * Check this_cpu to ensure it is balanced within domain. Attempt to move 8432 * tasks if there is an imbalance. 8433 */ 8434 static int load_balance(int this_cpu, struct rq *this_rq, 8435 struct sched_domain *sd, enum cpu_idle_type idle, 8436 int *continue_balancing) 8437 { 8438 int ld_moved, cur_ld_moved, active_balance = 0; 8439 struct sched_domain *sd_parent = sd->parent; 8440 struct sched_group *group; 8441 struct rq *busiest; 8442 struct rq_flags rf; 8443 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 8444 8445 struct lb_env env = { 8446 .sd = sd, 8447 .dst_cpu = this_cpu, 8448 .dst_rq = this_rq, 8449 .dst_grpmask = sched_group_span(sd->groups), 8450 .idle = idle, 8451 .loop_break = sched_nr_migrate_break, 8452 .cpus = cpus, 8453 .fbq_type = all, 8454 .tasks = LIST_HEAD_INIT(env.tasks), 8455 }; 8456 8457 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 8458 8459 schedstat_inc(sd->lb_count[idle]); 8460 8461 redo: 8462 if (!should_we_balance(&env)) { 8463 *continue_balancing = 0; 8464 goto out_balanced; 8465 } 8466 8467 group = find_busiest_group(&env); 8468 if (!group) { 8469 schedstat_inc(sd->lb_nobusyg[idle]); 8470 goto out_balanced; 8471 } 8472 8473 busiest = find_busiest_queue(&env, group); 8474 if (!busiest) { 8475 schedstat_inc(sd->lb_nobusyq[idle]); 8476 goto out_balanced; 8477 } 8478 8479 BUG_ON(busiest == env.dst_rq); 8480 8481 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 8482 8483 env.src_cpu = busiest->cpu; 8484 env.src_rq = busiest; 8485 8486 ld_moved = 0; 8487 if (busiest->nr_running > 1) { 8488 /* 8489 * Attempt to move tasks. If find_busiest_group has found 8490 * an imbalance but busiest->nr_running <= 1, the group is 8491 * still unbalanced. ld_moved simply stays zero, so it is 8492 * correctly treated as an imbalance. 8493 */ 8494 env.flags |= LBF_ALL_PINNED; 8495 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 8496 8497 more_balance: 8498 rq_lock_irqsave(busiest, &rf); 8499 update_rq_clock(busiest); 8500 8501 /* 8502 * cur_ld_moved - load moved in current iteration 8503 * ld_moved - cumulative load moved across iterations 8504 */ 8505 cur_ld_moved = detach_tasks(&env); 8506 8507 /* 8508 * We've detached some tasks from busiest_rq. Every 8509 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 8510 * unlock busiest->lock, and we are able to be sure 8511 * that nobody can manipulate the tasks in parallel. 8512 * See task_rq_lock() family for the details. 8513 */ 8514 8515 rq_unlock(busiest, &rf); 8516 8517 if (cur_ld_moved) { 8518 attach_tasks(&env); 8519 ld_moved += cur_ld_moved; 8520 } 8521 8522 local_irq_restore(rf.flags); 8523 8524 if (env.flags & LBF_NEED_BREAK) { 8525 env.flags &= ~LBF_NEED_BREAK; 8526 goto more_balance; 8527 } 8528 8529 /* 8530 * Revisit (affine) tasks on src_cpu that couldn't be moved to 8531 * us and move them to an alternate dst_cpu in our sched_group 8532 * where they can run. The upper limit on how many times we 8533 * iterate on same src_cpu is dependent on number of CPUs in our 8534 * sched_group. 8535 * 8536 * This changes load balance semantics a bit on who can move 8537 * load to a given_cpu. In addition to the given_cpu itself 8538 * (or a ilb_cpu acting on its behalf where given_cpu is 8539 * nohz-idle), we now have balance_cpu in a position to move 8540 * load to given_cpu. In rare situations, this may cause 8541 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 8542 * _independently_ and at _same_ time to move some load to 8543 * given_cpu) causing exceess load to be moved to given_cpu. 8544 * This however should not happen so much in practice and 8545 * moreover subsequent load balance cycles should correct the 8546 * excess load moved. 8547 */ 8548 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 8549 8550 /* Prevent to re-select dst_cpu via env's CPUs */ 8551 cpumask_clear_cpu(env.dst_cpu, env.cpus); 8552 8553 env.dst_rq = cpu_rq(env.new_dst_cpu); 8554 env.dst_cpu = env.new_dst_cpu; 8555 env.flags &= ~LBF_DST_PINNED; 8556 env.loop = 0; 8557 env.loop_break = sched_nr_migrate_break; 8558 8559 /* 8560 * Go back to "more_balance" rather than "redo" since we 8561 * need to continue with same src_cpu. 8562 */ 8563 goto more_balance; 8564 } 8565 8566 /* 8567 * We failed to reach balance because of affinity. 8568 */ 8569 if (sd_parent) { 8570 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8571 8572 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 8573 *group_imbalance = 1; 8574 } 8575 8576 /* All tasks on this runqueue were pinned by CPU affinity */ 8577 if (unlikely(env.flags & LBF_ALL_PINNED)) { 8578 cpumask_clear_cpu(cpu_of(busiest), cpus); 8579 /* 8580 * Attempting to continue load balancing at the current 8581 * sched_domain level only makes sense if there are 8582 * active CPUs remaining as possible busiest CPUs to 8583 * pull load from which are not contained within the 8584 * destination group that is receiving any migrated 8585 * load. 8586 */ 8587 if (!cpumask_subset(cpus, env.dst_grpmask)) { 8588 env.loop = 0; 8589 env.loop_break = sched_nr_migrate_break; 8590 goto redo; 8591 } 8592 goto out_all_pinned; 8593 } 8594 } 8595 8596 if (!ld_moved) { 8597 schedstat_inc(sd->lb_failed[idle]); 8598 /* 8599 * Increment the failure counter only on periodic balance. 8600 * We do not want newidle balance, which can be very 8601 * frequent, pollute the failure counter causing 8602 * excessive cache_hot migrations and active balances. 8603 */ 8604 if (idle != CPU_NEWLY_IDLE) 8605 sd->nr_balance_failed++; 8606 8607 if (need_active_balance(&env)) { 8608 unsigned long flags; 8609 8610 raw_spin_lock_irqsave(&busiest->lock, flags); 8611 8612 /* 8613 * Don't kick the active_load_balance_cpu_stop, 8614 * if the curr task on busiest CPU can't be 8615 * moved to this_cpu: 8616 */ 8617 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { 8618 raw_spin_unlock_irqrestore(&busiest->lock, 8619 flags); 8620 env.flags |= LBF_ALL_PINNED; 8621 goto out_one_pinned; 8622 } 8623 8624 /* 8625 * ->active_balance synchronizes accesses to 8626 * ->active_balance_work. Once set, it's cleared 8627 * only after active load balance is finished. 8628 */ 8629 if (!busiest->active_balance) { 8630 busiest->active_balance = 1; 8631 busiest->push_cpu = this_cpu; 8632 active_balance = 1; 8633 } 8634 raw_spin_unlock_irqrestore(&busiest->lock, flags); 8635 8636 if (active_balance) { 8637 stop_one_cpu_nowait(cpu_of(busiest), 8638 active_load_balance_cpu_stop, busiest, 8639 &busiest->active_balance_work); 8640 } 8641 8642 /* We've kicked active balancing, force task migration. */ 8643 sd->nr_balance_failed = sd->cache_nice_tries+1; 8644 } 8645 } else 8646 sd->nr_balance_failed = 0; 8647 8648 if (likely(!active_balance)) { 8649 /* We were unbalanced, so reset the balancing interval */ 8650 sd->balance_interval = sd->min_interval; 8651 } else { 8652 /* 8653 * If we've begun active balancing, start to back off. This 8654 * case may not be covered by the all_pinned logic if there 8655 * is only 1 task on the busy runqueue (because we don't call 8656 * detach_tasks). 8657 */ 8658 if (sd->balance_interval < sd->max_interval) 8659 sd->balance_interval *= 2; 8660 } 8661 8662 goto out; 8663 8664 out_balanced: 8665 /* 8666 * We reach balance although we may have faced some affinity 8667 * constraints. Clear the imbalance flag if it was set. 8668 */ 8669 if (sd_parent) { 8670 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8671 8672 if (*group_imbalance) 8673 *group_imbalance = 0; 8674 } 8675 8676 out_all_pinned: 8677 /* 8678 * We reach balance because all tasks are pinned at this level so 8679 * we can't migrate them. Let the imbalance flag set so parent level 8680 * can try to migrate them. 8681 */ 8682 schedstat_inc(sd->lb_balanced[idle]); 8683 8684 sd->nr_balance_failed = 0; 8685 8686 out_one_pinned: 8687 /* tune up the balancing interval */ 8688 if (((env.flags & LBF_ALL_PINNED) && 8689 sd->balance_interval < MAX_PINNED_INTERVAL) || 8690 (sd->balance_interval < sd->max_interval)) 8691 sd->balance_interval *= 2; 8692 8693 ld_moved = 0; 8694 out: 8695 return ld_moved; 8696 } 8697 8698 static inline unsigned long 8699 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 8700 { 8701 unsigned long interval = sd->balance_interval; 8702 8703 if (cpu_busy) 8704 interval *= sd->busy_factor; 8705 8706 /* scale ms to jiffies */ 8707 interval = msecs_to_jiffies(interval); 8708 interval = clamp(interval, 1UL, max_load_balance_interval); 8709 8710 return interval; 8711 } 8712 8713 static inline void 8714 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 8715 { 8716 unsigned long interval, next; 8717 8718 /* used by idle balance, so cpu_busy = 0 */ 8719 interval = get_sd_balance_interval(sd, 0); 8720 next = sd->last_balance + interval; 8721 8722 if (time_after(*next_balance, next)) 8723 *next_balance = next; 8724 } 8725 8726 /* 8727 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 8728 * running tasks off the busiest CPU onto idle CPUs. It requires at 8729 * least 1 task to be running on each physical CPU where possible, and 8730 * avoids physical / logical imbalances. 8731 */ 8732 static int active_load_balance_cpu_stop(void *data) 8733 { 8734 struct rq *busiest_rq = data; 8735 int busiest_cpu = cpu_of(busiest_rq); 8736 int target_cpu = busiest_rq->push_cpu; 8737 struct rq *target_rq = cpu_rq(target_cpu); 8738 struct sched_domain *sd; 8739 struct task_struct *p = NULL; 8740 struct rq_flags rf; 8741 8742 rq_lock_irq(busiest_rq, &rf); 8743 /* 8744 * Between queueing the stop-work and running it is a hole in which 8745 * CPUs can become inactive. We should not move tasks from or to 8746 * inactive CPUs. 8747 */ 8748 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 8749 goto out_unlock; 8750 8751 /* Make sure the requested CPU hasn't gone down in the meantime: */ 8752 if (unlikely(busiest_cpu != smp_processor_id() || 8753 !busiest_rq->active_balance)) 8754 goto out_unlock; 8755 8756 /* Is there any task to move? */ 8757 if (busiest_rq->nr_running <= 1) 8758 goto out_unlock; 8759 8760 /* 8761 * This condition is "impossible", if it occurs 8762 * we need to fix it. Originally reported by 8763 * Bjorn Helgaas on a 128-CPU setup. 8764 */ 8765 BUG_ON(busiest_rq == target_rq); 8766 8767 /* Search for an sd spanning us and the target CPU. */ 8768 rcu_read_lock(); 8769 for_each_domain(target_cpu, sd) { 8770 if ((sd->flags & SD_LOAD_BALANCE) && 8771 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 8772 break; 8773 } 8774 8775 if (likely(sd)) { 8776 struct lb_env env = { 8777 .sd = sd, 8778 .dst_cpu = target_cpu, 8779 .dst_rq = target_rq, 8780 .src_cpu = busiest_rq->cpu, 8781 .src_rq = busiest_rq, 8782 .idle = CPU_IDLE, 8783 /* 8784 * can_migrate_task() doesn't need to compute new_dst_cpu 8785 * for active balancing. Since we have CPU_IDLE, but no 8786 * @dst_grpmask we need to make that test go away with lying 8787 * about DST_PINNED. 8788 */ 8789 .flags = LBF_DST_PINNED, 8790 }; 8791 8792 schedstat_inc(sd->alb_count); 8793 update_rq_clock(busiest_rq); 8794 8795 p = detach_one_task(&env); 8796 if (p) { 8797 schedstat_inc(sd->alb_pushed); 8798 /* Active balancing done, reset the failure counter. */ 8799 sd->nr_balance_failed = 0; 8800 } else { 8801 schedstat_inc(sd->alb_failed); 8802 } 8803 } 8804 rcu_read_unlock(); 8805 out_unlock: 8806 busiest_rq->active_balance = 0; 8807 rq_unlock(busiest_rq, &rf); 8808 8809 if (p) 8810 attach_one_task(target_rq, p); 8811 8812 local_irq_enable(); 8813 8814 return 0; 8815 } 8816 8817 static DEFINE_SPINLOCK(balancing); 8818 8819 /* 8820 * Scale the max load_balance interval with the number of CPUs in the system. 8821 * This trades load-balance latency on larger machines for less cross talk. 8822 */ 8823 void update_max_interval(void) 8824 { 8825 max_load_balance_interval = HZ*num_online_cpus()/10; 8826 } 8827 8828 /* 8829 * It checks each scheduling domain to see if it is due to be balanced, 8830 * and initiates a balancing operation if so. 8831 * 8832 * Balancing parameters are set up in init_sched_domains. 8833 */ 8834 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 8835 { 8836 int continue_balancing = 1; 8837 int cpu = rq->cpu; 8838 unsigned long interval; 8839 struct sched_domain *sd; 8840 /* Earliest time when we have to do rebalance again */ 8841 unsigned long next_balance = jiffies + 60*HZ; 8842 int update_next_balance = 0; 8843 int need_serialize, need_decay = 0; 8844 u64 max_cost = 0; 8845 8846 rcu_read_lock(); 8847 for_each_domain(cpu, sd) { 8848 /* 8849 * Decay the newidle max times here because this is a regular 8850 * visit to all the domains. Decay ~1% per second. 8851 */ 8852 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 8853 sd->max_newidle_lb_cost = 8854 (sd->max_newidle_lb_cost * 253) / 256; 8855 sd->next_decay_max_lb_cost = jiffies + HZ; 8856 need_decay = 1; 8857 } 8858 max_cost += sd->max_newidle_lb_cost; 8859 8860 if (!(sd->flags & SD_LOAD_BALANCE)) 8861 continue; 8862 8863 /* 8864 * Stop the load balance at this level. There is another 8865 * CPU in our sched group which is doing load balancing more 8866 * actively. 8867 */ 8868 if (!continue_balancing) { 8869 if (need_decay) 8870 continue; 8871 break; 8872 } 8873 8874 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 8875 8876 need_serialize = sd->flags & SD_SERIALIZE; 8877 if (need_serialize) { 8878 if (!spin_trylock(&balancing)) 8879 goto out; 8880 } 8881 8882 if (time_after_eq(jiffies, sd->last_balance + interval)) { 8883 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 8884 /* 8885 * The LBF_DST_PINNED logic could have changed 8886 * env->dst_cpu, so we can't know our idle 8887 * state even if we migrated tasks. Update it. 8888 */ 8889 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 8890 } 8891 sd->last_balance = jiffies; 8892 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 8893 } 8894 if (need_serialize) 8895 spin_unlock(&balancing); 8896 out: 8897 if (time_after(next_balance, sd->last_balance + interval)) { 8898 next_balance = sd->last_balance + interval; 8899 update_next_balance = 1; 8900 } 8901 } 8902 if (need_decay) { 8903 /* 8904 * Ensure the rq-wide value also decays but keep it at a 8905 * reasonable floor to avoid funnies with rq->avg_idle. 8906 */ 8907 rq->max_idle_balance_cost = 8908 max((u64)sysctl_sched_migration_cost, max_cost); 8909 } 8910 rcu_read_unlock(); 8911 8912 /* 8913 * next_balance will be updated only when there is a need. 8914 * When the cpu is attached to null domain for ex, it will not be 8915 * updated. 8916 */ 8917 if (likely(update_next_balance)) { 8918 rq->next_balance = next_balance; 8919 8920 #ifdef CONFIG_NO_HZ_COMMON 8921 /* 8922 * If this CPU has been elected to perform the nohz idle 8923 * balance. Other idle CPUs have already rebalanced with 8924 * nohz_idle_balance() and nohz.next_balance has been 8925 * updated accordingly. This CPU is now running the idle load 8926 * balance for itself and we need to update the 8927 * nohz.next_balance accordingly. 8928 */ 8929 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 8930 nohz.next_balance = rq->next_balance; 8931 #endif 8932 } 8933 } 8934 8935 static inline int on_null_domain(struct rq *rq) 8936 { 8937 return unlikely(!rcu_dereference_sched(rq->sd)); 8938 } 8939 8940 #ifdef CONFIG_NO_HZ_COMMON 8941 /* 8942 * idle load balancing details 8943 * - When one of the busy CPUs notice that there may be an idle rebalancing 8944 * needed, they will kick the idle load balancer, which then does idle 8945 * load balancing for all the idle CPUs. 8946 */ 8947 8948 static inline int find_new_ilb(void) 8949 { 8950 int ilb = cpumask_first(nohz.idle_cpus_mask); 8951 8952 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 8953 return ilb; 8954 8955 return nr_cpu_ids; 8956 } 8957 8958 /* 8959 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 8960 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 8961 * CPU (if there is one). 8962 */ 8963 static void kick_ilb(unsigned int flags) 8964 { 8965 int ilb_cpu; 8966 8967 nohz.next_balance++; 8968 8969 ilb_cpu = find_new_ilb(); 8970 8971 if (ilb_cpu >= nr_cpu_ids) 8972 return; 8973 8974 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 8975 if (flags & NOHZ_KICK_MASK) 8976 return; 8977 8978 /* 8979 * Use smp_send_reschedule() instead of resched_cpu(). 8980 * This way we generate a sched IPI on the target CPU which 8981 * is idle. And the softirq performing nohz idle load balance 8982 * will be run before returning from the IPI. 8983 */ 8984 smp_send_reschedule(ilb_cpu); 8985 } 8986 8987 /* 8988 * Current heuristic for kicking the idle load balancer in the presence 8989 * of an idle cpu in the system. 8990 * - This rq has more than one task. 8991 * - This rq has at least one CFS task and the capacity of the CPU is 8992 * significantly reduced because of RT tasks or IRQs. 8993 * - At parent of LLC scheduler domain level, this cpu's scheduler group has 8994 * multiple busy cpu. 8995 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 8996 * domain span are idle. 8997 */ 8998 static void nohz_balancer_kick(struct rq *rq) 8999 { 9000 unsigned long now = jiffies; 9001 struct sched_domain_shared *sds; 9002 struct sched_domain *sd; 9003 int nr_busy, i, cpu = rq->cpu; 9004 unsigned int flags = 0; 9005 9006 if (unlikely(rq->idle_balance)) 9007 return; 9008 9009 /* 9010 * We may be recently in ticked or tickless idle mode. At the first 9011 * busy tick after returning from idle, we will update the busy stats. 9012 */ 9013 nohz_balance_exit_idle(rq); 9014 9015 /* 9016 * None are in tickless mode and hence no need for NOHZ idle load 9017 * balancing. 9018 */ 9019 if (likely(!atomic_read(&nohz.nr_cpus))) 9020 return; 9021 9022 if (READ_ONCE(nohz.has_blocked) && 9023 time_after(now, READ_ONCE(nohz.next_blocked))) 9024 flags = NOHZ_STATS_KICK; 9025 9026 if (time_before(now, nohz.next_balance)) 9027 goto out; 9028 9029 if (rq->nr_running >= 2) { 9030 flags = NOHZ_KICK_MASK; 9031 goto out; 9032 } 9033 9034 rcu_read_lock(); 9035 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 9036 if (sds) { 9037 /* 9038 * XXX: write a coherent comment on why we do this. 9039 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com 9040 */ 9041 nr_busy = atomic_read(&sds->nr_busy_cpus); 9042 if (nr_busy > 1) { 9043 flags = NOHZ_KICK_MASK; 9044 goto unlock; 9045 } 9046 9047 } 9048 9049 sd = rcu_dereference(rq->sd); 9050 if (sd) { 9051 if ((rq->cfs.h_nr_running >= 1) && 9052 check_cpu_capacity(rq, sd)) { 9053 flags = NOHZ_KICK_MASK; 9054 goto unlock; 9055 } 9056 } 9057 9058 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 9059 if (sd) { 9060 for_each_cpu(i, sched_domain_span(sd)) { 9061 if (i == cpu || 9062 !cpumask_test_cpu(i, nohz.idle_cpus_mask)) 9063 continue; 9064 9065 if (sched_asym_prefer(i, cpu)) { 9066 flags = NOHZ_KICK_MASK; 9067 goto unlock; 9068 } 9069 } 9070 } 9071 unlock: 9072 rcu_read_unlock(); 9073 out: 9074 if (flags) 9075 kick_ilb(flags); 9076 } 9077 9078 static void set_cpu_sd_state_busy(int cpu) 9079 { 9080 struct sched_domain *sd; 9081 9082 rcu_read_lock(); 9083 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9084 9085 if (!sd || !sd->nohz_idle) 9086 goto unlock; 9087 sd->nohz_idle = 0; 9088 9089 atomic_inc(&sd->shared->nr_busy_cpus); 9090 unlock: 9091 rcu_read_unlock(); 9092 } 9093 9094 void nohz_balance_exit_idle(struct rq *rq) 9095 { 9096 SCHED_WARN_ON(rq != this_rq()); 9097 9098 if (likely(!rq->nohz_tick_stopped)) 9099 return; 9100 9101 rq->nohz_tick_stopped = 0; 9102 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 9103 atomic_dec(&nohz.nr_cpus); 9104 9105 set_cpu_sd_state_busy(rq->cpu); 9106 } 9107 9108 static void set_cpu_sd_state_idle(int cpu) 9109 { 9110 struct sched_domain *sd; 9111 9112 rcu_read_lock(); 9113 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9114 9115 if (!sd || sd->nohz_idle) 9116 goto unlock; 9117 sd->nohz_idle = 1; 9118 9119 atomic_dec(&sd->shared->nr_busy_cpus); 9120 unlock: 9121 rcu_read_unlock(); 9122 } 9123 9124 /* 9125 * This routine will record that the CPU is going idle with tick stopped. 9126 * This info will be used in performing idle load balancing in the future. 9127 */ 9128 void nohz_balance_enter_idle(int cpu) 9129 { 9130 struct rq *rq = cpu_rq(cpu); 9131 9132 SCHED_WARN_ON(cpu != smp_processor_id()); 9133 9134 /* If this CPU is going down, then nothing needs to be done: */ 9135 if (!cpu_active(cpu)) 9136 return; 9137 9138 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 9139 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 9140 return; 9141 9142 /* 9143 * Can be set safely without rq->lock held 9144 * If a clear happens, it will have evaluated last additions because 9145 * rq->lock is held during the check and the clear 9146 */ 9147 rq->has_blocked_load = 1; 9148 9149 /* 9150 * The tick is still stopped but load could have been added in the 9151 * meantime. We set the nohz.has_blocked flag to trig a check of the 9152 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 9153 * of nohz.has_blocked can only happen after checking the new load 9154 */ 9155 if (rq->nohz_tick_stopped) 9156 goto out; 9157 9158 /* If we're a completely isolated CPU, we don't play: */ 9159 if (on_null_domain(rq)) 9160 return; 9161 9162 rq->nohz_tick_stopped = 1; 9163 9164 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 9165 atomic_inc(&nohz.nr_cpus); 9166 9167 /* 9168 * Ensures that if nohz_idle_balance() fails to observe our 9169 * @idle_cpus_mask store, it must observe the @has_blocked 9170 * store. 9171 */ 9172 smp_mb__after_atomic(); 9173 9174 set_cpu_sd_state_idle(cpu); 9175 9176 out: 9177 /* 9178 * Each time a cpu enter idle, we assume that it has blocked load and 9179 * enable the periodic update of the load of idle cpus 9180 */ 9181 WRITE_ONCE(nohz.has_blocked, 1); 9182 } 9183 9184 /* 9185 * Internal function that runs load balance for all idle cpus. The load balance 9186 * can be a simple update of blocked load or a complete load balance with 9187 * tasks movement depending of flags. 9188 * The function returns false if the loop has stopped before running 9189 * through all idle CPUs. 9190 */ 9191 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 9192 enum cpu_idle_type idle) 9193 { 9194 /* Earliest time when we have to do rebalance again */ 9195 unsigned long now = jiffies; 9196 unsigned long next_balance = now + 60*HZ; 9197 bool has_blocked_load = false; 9198 int update_next_balance = 0; 9199 int this_cpu = this_rq->cpu; 9200 int balance_cpu; 9201 int ret = false; 9202 struct rq *rq; 9203 9204 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 9205 9206 /* 9207 * We assume there will be no idle load after this update and clear 9208 * the has_blocked flag. If a cpu enters idle in the mean time, it will 9209 * set the has_blocked flag and trig another update of idle load. 9210 * Because a cpu that becomes idle, is added to idle_cpus_mask before 9211 * setting the flag, we are sure to not clear the state and not 9212 * check the load of an idle cpu. 9213 */ 9214 WRITE_ONCE(nohz.has_blocked, 0); 9215 9216 /* 9217 * Ensures that if we miss the CPU, we must see the has_blocked 9218 * store from nohz_balance_enter_idle(). 9219 */ 9220 smp_mb(); 9221 9222 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 9223 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 9224 continue; 9225 9226 /* 9227 * If this CPU gets work to do, stop the load balancing 9228 * work being done for other CPUs. Next load 9229 * balancing owner will pick it up. 9230 */ 9231 if (need_resched()) { 9232 has_blocked_load = true; 9233 goto abort; 9234 } 9235 9236 rq = cpu_rq(balance_cpu); 9237 9238 has_blocked_load |= update_nohz_stats(rq, true); 9239 9240 /* 9241 * If time for next balance is due, 9242 * do the balance. 9243 */ 9244 if (time_after_eq(jiffies, rq->next_balance)) { 9245 struct rq_flags rf; 9246 9247 rq_lock_irqsave(rq, &rf); 9248 update_rq_clock(rq); 9249 cpu_load_update_idle(rq); 9250 rq_unlock_irqrestore(rq, &rf); 9251 9252 if (flags & NOHZ_BALANCE_KICK) 9253 rebalance_domains(rq, CPU_IDLE); 9254 } 9255 9256 if (time_after(next_balance, rq->next_balance)) { 9257 next_balance = rq->next_balance; 9258 update_next_balance = 1; 9259 } 9260 } 9261 9262 /* Newly idle CPU doesn't need an update */ 9263 if (idle != CPU_NEWLY_IDLE) { 9264 update_blocked_averages(this_cpu); 9265 has_blocked_load |= this_rq->has_blocked_load; 9266 } 9267 9268 if (flags & NOHZ_BALANCE_KICK) 9269 rebalance_domains(this_rq, CPU_IDLE); 9270 9271 WRITE_ONCE(nohz.next_blocked, 9272 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 9273 9274 /* The full idle balance loop has been done */ 9275 ret = true; 9276 9277 abort: 9278 /* There is still blocked load, enable periodic update */ 9279 if (has_blocked_load) 9280 WRITE_ONCE(nohz.has_blocked, 1); 9281 9282 /* 9283 * next_balance will be updated only when there is a need. 9284 * When the CPU is attached to null domain for ex, it will not be 9285 * updated. 9286 */ 9287 if (likely(update_next_balance)) 9288 nohz.next_balance = next_balance; 9289 9290 return ret; 9291 } 9292 9293 /* 9294 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 9295 * rebalancing for all the cpus for whom scheduler ticks are stopped. 9296 */ 9297 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9298 { 9299 int this_cpu = this_rq->cpu; 9300 unsigned int flags; 9301 9302 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK)) 9303 return false; 9304 9305 if (idle != CPU_IDLE) { 9306 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9307 return false; 9308 } 9309 9310 /* 9311 * barrier, pairs with nohz_balance_enter_idle(), ensures ... 9312 */ 9313 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9314 if (!(flags & NOHZ_KICK_MASK)) 9315 return false; 9316 9317 _nohz_idle_balance(this_rq, flags, idle); 9318 9319 return true; 9320 } 9321 9322 static void nohz_newidle_balance(struct rq *this_rq) 9323 { 9324 int this_cpu = this_rq->cpu; 9325 9326 /* 9327 * This CPU doesn't want to be disturbed by scheduler 9328 * housekeeping 9329 */ 9330 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 9331 return; 9332 9333 /* Will wake up very soon. No time for doing anything else*/ 9334 if (this_rq->avg_idle < sysctl_sched_migration_cost) 9335 return; 9336 9337 /* Don't need to update blocked load of idle CPUs*/ 9338 if (!READ_ONCE(nohz.has_blocked) || 9339 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 9340 return; 9341 9342 raw_spin_unlock(&this_rq->lock); 9343 /* 9344 * This CPU is going to be idle and blocked load of idle CPUs 9345 * need to be updated. Run the ilb locally as it is a good 9346 * candidate for ilb instead of waking up another idle CPU. 9347 * Kick an normal ilb if we failed to do the update. 9348 */ 9349 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) 9350 kick_ilb(NOHZ_STATS_KICK); 9351 raw_spin_lock(&this_rq->lock); 9352 } 9353 9354 #else /* !CONFIG_NO_HZ_COMMON */ 9355 static inline void nohz_balancer_kick(struct rq *rq) { } 9356 9357 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9358 { 9359 return false; 9360 } 9361 9362 static inline void nohz_newidle_balance(struct rq *this_rq) { } 9363 #endif /* CONFIG_NO_HZ_COMMON */ 9364 9365 /* 9366 * idle_balance is called by schedule() if this_cpu is about to become 9367 * idle. Attempts to pull tasks from other CPUs. 9368 */ 9369 static int idle_balance(struct rq *this_rq, struct rq_flags *rf) 9370 { 9371 unsigned long next_balance = jiffies + HZ; 9372 int this_cpu = this_rq->cpu; 9373 struct sched_domain *sd; 9374 int pulled_task = 0; 9375 u64 curr_cost = 0; 9376 9377 /* 9378 * We must set idle_stamp _before_ calling idle_balance(), such that we 9379 * measure the duration of idle_balance() as idle time. 9380 */ 9381 this_rq->idle_stamp = rq_clock(this_rq); 9382 9383 /* 9384 * Do not pull tasks towards !active CPUs... 9385 */ 9386 if (!cpu_active(this_cpu)) 9387 return 0; 9388 9389 /* 9390 * This is OK, because current is on_cpu, which avoids it being picked 9391 * for load-balance and preemption/IRQs are still disabled avoiding 9392 * further scheduler activity on it and we're being very careful to 9393 * re-start the picking loop. 9394 */ 9395 rq_unpin_lock(this_rq, rf); 9396 9397 if (this_rq->avg_idle < sysctl_sched_migration_cost || 9398 !this_rq->rd->overload) { 9399 9400 rcu_read_lock(); 9401 sd = rcu_dereference_check_sched_domain(this_rq->sd); 9402 if (sd) 9403 update_next_balance(sd, &next_balance); 9404 rcu_read_unlock(); 9405 9406 nohz_newidle_balance(this_rq); 9407 9408 goto out; 9409 } 9410 9411 raw_spin_unlock(&this_rq->lock); 9412 9413 update_blocked_averages(this_cpu); 9414 rcu_read_lock(); 9415 for_each_domain(this_cpu, sd) { 9416 int continue_balancing = 1; 9417 u64 t0, domain_cost; 9418 9419 if (!(sd->flags & SD_LOAD_BALANCE)) 9420 continue; 9421 9422 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 9423 update_next_balance(sd, &next_balance); 9424 break; 9425 } 9426 9427 if (sd->flags & SD_BALANCE_NEWIDLE) { 9428 t0 = sched_clock_cpu(this_cpu); 9429 9430 pulled_task = load_balance(this_cpu, this_rq, 9431 sd, CPU_NEWLY_IDLE, 9432 &continue_balancing); 9433 9434 domain_cost = sched_clock_cpu(this_cpu) - t0; 9435 if (domain_cost > sd->max_newidle_lb_cost) 9436 sd->max_newidle_lb_cost = domain_cost; 9437 9438 curr_cost += domain_cost; 9439 } 9440 9441 update_next_balance(sd, &next_balance); 9442 9443 /* 9444 * Stop searching for tasks to pull if there are 9445 * now runnable tasks on this rq. 9446 */ 9447 if (pulled_task || this_rq->nr_running > 0) 9448 break; 9449 } 9450 rcu_read_unlock(); 9451 9452 raw_spin_lock(&this_rq->lock); 9453 9454 if (curr_cost > this_rq->max_idle_balance_cost) 9455 this_rq->max_idle_balance_cost = curr_cost; 9456 9457 out: 9458 /* 9459 * While browsing the domains, we released the rq lock, a task could 9460 * have been enqueued in the meantime. Since we're not going idle, 9461 * pretend we pulled a task. 9462 */ 9463 if (this_rq->cfs.h_nr_running && !pulled_task) 9464 pulled_task = 1; 9465 9466 /* Move the next balance forward */ 9467 if (time_after(this_rq->next_balance, next_balance)) 9468 this_rq->next_balance = next_balance; 9469 9470 /* Is there a task of a high priority class? */ 9471 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 9472 pulled_task = -1; 9473 9474 if (pulled_task) 9475 this_rq->idle_stamp = 0; 9476 9477 rq_repin_lock(this_rq, rf); 9478 9479 return pulled_task; 9480 } 9481 9482 /* 9483 * run_rebalance_domains is triggered when needed from the scheduler tick. 9484 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 9485 */ 9486 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 9487 { 9488 struct rq *this_rq = this_rq(); 9489 enum cpu_idle_type idle = this_rq->idle_balance ? 9490 CPU_IDLE : CPU_NOT_IDLE; 9491 9492 /* 9493 * If this CPU has a pending nohz_balance_kick, then do the 9494 * balancing on behalf of the other idle CPUs whose ticks are 9495 * stopped. Do nohz_idle_balance *before* rebalance_domains to 9496 * give the idle CPUs a chance to load balance. Else we may 9497 * load balance only within the local sched_domain hierarchy 9498 * and abort nohz_idle_balance altogether if we pull some load. 9499 */ 9500 if (nohz_idle_balance(this_rq, idle)) 9501 return; 9502 9503 /* normal load balance */ 9504 update_blocked_averages(this_rq->cpu); 9505 rebalance_domains(this_rq, idle); 9506 } 9507 9508 /* 9509 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 9510 */ 9511 void trigger_load_balance(struct rq *rq) 9512 { 9513 /* Don't need to rebalance while attached to NULL domain */ 9514 if (unlikely(on_null_domain(rq))) 9515 return; 9516 9517 if (time_after_eq(jiffies, rq->next_balance)) 9518 raise_softirq(SCHED_SOFTIRQ); 9519 9520 nohz_balancer_kick(rq); 9521 } 9522 9523 static void rq_online_fair(struct rq *rq) 9524 { 9525 update_sysctl(); 9526 9527 update_runtime_enabled(rq); 9528 } 9529 9530 static void rq_offline_fair(struct rq *rq) 9531 { 9532 update_sysctl(); 9533 9534 /* Ensure any throttled groups are reachable by pick_next_task */ 9535 unthrottle_offline_cfs_rqs(rq); 9536 } 9537 9538 #endif /* CONFIG_SMP */ 9539 9540 /* 9541 * scheduler tick hitting a task of our scheduling class. 9542 * 9543 * NOTE: This function can be called remotely by the tick offload that 9544 * goes along full dynticks. Therefore no local assumption can be made 9545 * and everything must be accessed through the @rq and @curr passed in 9546 * parameters. 9547 */ 9548 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 9549 { 9550 struct cfs_rq *cfs_rq; 9551 struct sched_entity *se = &curr->se; 9552 9553 for_each_sched_entity(se) { 9554 cfs_rq = cfs_rq_of(se); 9555 entity_tick(cfs_rq, se, queued); 9556 } 9557 9558 if (static_branch_unlikely(&sched_numa_balancing)) 9559 task_tick_numa(rq, curr); 9560 } 9561 9562 /* 9563 * called on fork with the child task as argument from the parent's context 9564 * - child not yet on the tasklist 9565 * - preemption disabled 9566 */ 9567 static void task_fork_fair(struct task_struct *p) 9568 { 9569 struct cfs_rq *cfs_rq; 9570 struct sched_entity *se = &p->se, *curr; 9571 struct rq *rq = this_rq(); 9572 struct rq_flags rf; 9573 9574 rq_lock(rq, &rf); 9575 update_rq_clock(rq); 9576 9577 cfs_rq = task_cfs_rq(current); 9578 curr = cfs_rq->curr; 9579 if (curr) { 9580 update_curr(cfs_rq); 9581 se->vruntime = curr->vruntime; 9582 } 9583 place_entity(cfs_rq, se, 1); 9584 9585 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 9586 /* 9587 * Upon rescheduling, sched_class::put_prev_task() will place 9588 * 'current' within the tree based on its new key value. 9589 */ 9590 swap(curr->vruntime, se->vruntime); 9591 resched_curr(rq); 9592 } 9593 9594 se->vruntime -= cfs_rq->min_vruntime; 9595 rq_unlock(rq, &rf); 9596 } 9597 9598 /* 9599 * Priority of the task has changed. Check to see if we preempt 9600 * the current task. 9601 */ 9602 static void 9603 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 9604 { 9605 if (!task_on_rq_queued(p)) 9606 return; 9607 9608 /* 9609 * Reschedule if we are currently running on this runqueue and 9610 * our priority decreased, or if we are not currently running on 9611 * this runqueue and our priority is higher than the current's 9612 */ 9613 if (rq->curr == p) { 9614 if (p->prio > oldprio) 9615 resched_curr(rq); 9616 } else 9617 check_preempt_curr(rq, p, 0); 9618 } 9619 9620 static inline bool vruntime_normalized(struct task_struct *p) 9621 { 9622 struct sched_entity *se = &p->se; 9623 9624 /* 9625 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 9626 * the dequeue_entity(.flags=0) will already have normalized the 9627 * vruntime. 9628 */ 9629 if (p->on_rq) 9630 return true; 9631 9632 /* 9633 * When !on_rq, vruntime of the task has usually NOT been normalized. 9634 * But there are some cases where it has already been normalized: 9635 * 9636 * - A forked child which is waiting for being woken up by 9637 * wake_up_new_task(). 9638 * - A task which has been woken up by try_to_wake_up() and 9639 * waiting for actually being woken up by sched_ttwu_pending(). 9640 */ 9641 if (!se->sum_exec_runtime || p->state == TASK_WAKING) 9642 return true; 9643 9644 return false; 9645 } 9646 9647 #ifdef CONFIG_FAIR_GROUP_SCHED 9648 /* 9649 * Propagate the changes of the sched_entity across the tg tree to make it 9650 * visible to the root 9651 */ 9652 static void propagate_entity_cfs_rq(struct sched_entity *se) 9653 { 9654 struct cfs_rq *cfs_rq; 9655 9656 /* Start to propagate at parent */ 9657 se = se->parent; 9658 9659 for_each_sched_entity(se) { 9660 cfs_rq = cfs_rq_of(se); 9661 9662 if (cfs_rq_throttled(cfs_rq)) 9663 break; 9664 9665 update_load_avg(cfs_rq, se, UPDATE_TG); 9666 } 9667 } 9668 #else 9669 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 9670 #endif 9671 9672 static void detach_entity_cfs_rq(struct sched_entity *se) 9673 { 9674 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9675 9676 /* Catch up with the cfs_rq and remove our load when we leave */ 9677 update_load_avg(cfs_rq, se, 0); 9678 detach_entity_load_avg(cfs_rq, se); 9679 update_tg_load_avg(cfs_rq, false); 9680 propagate_entity_cfs_rq(se); 9681 } 9682 9683 static void attach_entity_cfs_rq(struct sched_entity *se) 9684 { 9685 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9686 9687 #ifdef CONFIG_FAIR_GROUP_SCHED 9688 /* 9689 * Since the real-depth could have been changed (only FAIR 9690 * class maintain depth value), reset depth properly. 9691 */ 9692 se->depth = se->parent ? se->parent->depth + 1 : 0; 9693 #endif 9694 9695 /* Synchronize entity with its cfs_rq */ 9696 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 9697 attach_entity_load_avg(cfs_rq, se, 0); 9698 update_tg_load_avg(cfs_rq, false); 9699 propagate_entity_cfs_rq(se); 9700 } 9701 9702 static void detach_task_cfs_rq(struct task_struct *p) 9703 { 9704 struct sched_entity *se = &p->se; 9705 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9706 9707 if (!vruntime_normalized(p)) { 9708 /* 9709 * Fix up our vruntime so that the current sleep doesn't 9710 * cause 'unlimited' sleep bonus. 9711 */ 9712 place_entity(cfs_rq, se, 0); 9713 se->vruntime -= cfs_rq->min_vruntime; 9714 } 9715 9716 detach_entity_cfs_rq(se); 9717 } 9718 9719 static void attach_task_cfs_rq(struct task_struct *p) 9720 { 9721 struct sched_entity *se = &p->se; 9722 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9723 9724 attach_entity_cfs_rq(se); 9725 9726 if (!vruntime_normalized(p)) 9727 se->vruntime += cfs_rq->min_vruntime; 9728 } 9729 9730 static void switched_from_fair(struct rq *rq, struct task_struct *p) 9731 { 9732 detach_task_cfs_rq(p); 9733 } 9734 9735 static void switched_to_fair(struct rq *rq, struct task_struct *p) 9736 { 9737 attach_task_cfs_rq(p); 9738 9739 if (task_on_rq_queued(p)) { 9740 /* 9741 * We were most likely switched from sched_rt, so 9742 * kick off the schedule if running, otherwise just see 9743 * if we can still preempt the current task. 9744 */ 9745 if (rq->curr == p) 9746 resched_curr(rq); 9747 else 9748 check_preempt_curr(rq, p, 0); 9749 } 9750 } 9751 9752 /* Account for a task changing its policy or group. 9753 * 9754 * This routine is mostly called to set cfs_rq->curr field when a task 9755 * migrates between groups/classes. 9756 */ 9757 static void set_curr_task_fair(struct rq *rq) 9758 { 9759 struct sched_entity *se = &rq->curr->se; 9760 9761 for_each_sched_entity(se) { 9762 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9763 9764 set_next_entity(cfs_rq, se); 9765 /* ensure bandwidth has been allocated on our new cfs_rq */ 9766 account_cfs_rq_runtime(cfs_rq, 0); 9767 } 9768 } 9769 9770 void init_cfs_rq(struct cfs_rq *cfs_rq) 9771 { 9772 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 9773 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 9774 #ifndef CONFIG_64BIT 9775 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 9776 #endif 9777 #ifdef CONFIG_SMP 9778 raw_spin_lock_init(&cfs_rq->removed.lock); 9779 #endif 9780 } 9781 9782 #ifdef CONFIG_FAIR_GROUP_SCHED 9783 static void task_set_group_fair(struct task_struct *p) 9784 { 9785 struct sched_entity *se = &p->se; 9786 9787 set_task_rq(p, task_cpu(p)); 9788 se->depth = se->parent ? se->parent->depth + 1 : 0; 9789 } 9790 9791 static void task_move_group_fair(struct task_struct *p) 9792 { 9793 detach_task_cfs_rq(p); 9794 set_task_rq(p, task_cpu(p)); 9795 9796 #ifdef CONFIG_SMP 9797 /* Tell se's cfs_rq has been changed -- migrated */ 9798 p->se.avg.last_update_time = 0; 9799 #endif 9800 attach_task_cfs_rq(p); 9801 } 9802 9803 static void task_change_group_fair(struct task_struct *p, int type) 9804 { 9805 switch (type) { 9806 case TASK_SET_GROUP: 9807 task_set_group_fair(p); 9808 break; 9809 9810 case TASK_MOVE_GROUP: 9811 task_move_group_fair(p); 9812 break; 9813 } 9814 } 9815 9816 void free_fair_sched_group(struct task_group *tg) 9817 { 9818 int i; 9819 9820 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 9821 9822 for_each_possible_cpu(i) { 9823 if (tg->cfs_rq) 9824 kfree(tg->cfs_rq[i]); 9825 if (tg->se) 9826 kfree(tg->se[i]); 9827 } 9828 9829 kfree(tg->cfs_rq); 9830 kfree(tg->se); 9831 } 9832 9833 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 9834 { 9835 struct sched_entity *se; 9836 struct cfs_rq *cfs_rq; 9837 int i; 9838 9839 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 9840 if (!tg->cfs_rq) 9841 goto err; 9842 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 9843 if (!tg->se) 9844 goto err; 9845 9846 tg->shares = NICE_0_LOAD; 9847 9848 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 9849 9850 for_each_possible_cpu(i) { 9851 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 9852 GFP_KERNEL, cpu_to_node(i)); 9853 if (!cfs_rq) 9854 goto err; 9855 9856 se = kzalloc_node(sizeof(struct sched_entity), 9857 GFP_KERNEL, cpu_to_node(i)); 9858 if (!se) 9859 goto err_free_rq; 9860 9861 init_cfs_rq(cfs_rq); 9862 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 9863 init_entity_runnable_average(se); 9864 } 9865 9866 return 1; 9867 9868 err_free_rq: 9869 kfree(cfs_rq); 9870 err: 9871 return 0; 9872 } 9873 9874 void online_fair_sched_group(struct task_group *tg) 9875 { 9876 struct sched_entity *se; 9877 struct rq *rq; 9878 int i; 9879 9880 for_each_possible_cpu(i) { 9881 rq = cpu_rq(i); 9882 se = tg->se[i]; 9883 9884 raw_spin_lock_irq(&rq->lock); 9885 update_rq_clock(rq); 9886 attach_entity_cfs_rq(se); 9887 sync_throttle(tg, i); 9888 raw_spin_unlock_irq(&rq->lock); 9889 } 9890 } 9891 9892 void unregister_fair_sched_group(struct task_group *tg) 9893 { 9894 unsigned long flags; 9895 struct rq *rq; 9896 int cpu; 9897 9898 for_each_possible_cpu(cpu) { 9899 if (tg->se[cpu]) 9900 remove_entity_load_avg(tg->se[cpu]); 9901 9902 /* 9903 * Only empty task groups can be destroyed; so we can speculatively 9904 * check on_list without danger of it being re-added. 9905 */ 9906 if (!tg->cfs_rq[cpu]->on_list) 9907 continue; 9908 9909 rq = cpu_rq(cpu); 9910 9911 raw_spin_lock_irqsave(&rq->lock, flags); 9912 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 9913 raw_spin_unlock_irqrestore(&rq->lock, flags); 9914 } 9915 } 9916 9917 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 9918 struct sched_entity *se, int cpu, 9919 struct sched_entity *parent) 9920 { 9921 struct rq *rq = cpu_rq(cpu); 9922 9923 cfs_rq->tg = tg; 9924 cfs_rq->rq = rq; 9925 init_cfs_rq_runtime(cfs_rq); 9926 9927 tg->cfs_rq[cpu] = cfs_rq; 9928 tg->se[cpu] = se; 9929 9930 /* se could be NULL for root_task_group */ 9931 if (!se) 9932 return; 9933 9934 if (!parent) { 9935 se->cfs_rq = &rq->cfs; 9936 se->depth = 0; 9937 } else { 9938 se->cfs_rq = parent->my_q; 9939 se->depth = parent->depth + 1; 9940 } 9941 9942 se->my_q = cfs_rq; 9943 /* guarantee group entities always have weight */ 9944 update_load_set(&se->load, NICE_0_LOAD); 9945 se->parent = parent; 9946 } 9947 9948 static DEFINE_MUTEX(shares_mutex); 9949 9950 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 9951 { 9952 int i; 9953 9954 /* 9955 * We can't change the weight of the root cgroup. 9956 */ 9957 if (!tg->se[0]) 9958 return -EINVAL; 9959 9960 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 9961 9962 mutex_lock(&shares_mutex); 9963 if (tg->shares == shares) 9964 goto done; 9965 9966 tg->shares = shares; 9967 for_each_possible_cpu(i) { 9968 struct rq *rq = cpu_rq(i); 9969 struct sched_entity *se = tg->se[i]; 9970 struct rq_flags rf; 9971 9972 /* Propagate contribution to hierarchy */ 9973 rq_lock_irqsave(rq, &rf); 9974 update_rq_clock(rq); 9975 for_each_sched_entity(se) { 9976 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9977 update_cfs_group(se); 9978 } 9979 rq_unlock_irqrestore(rq, &rf); 9980 } 9981 9982 done: 9983 mutex_unlock(&shares_mutex); 9984 return 0; 9985 } 9986 #else /* CONFIG_FAIR_GROUP_SCHED */ 9987 9988 void free_fair_sched_group(struct task_group *tg) { } 9989 9990 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 9991 { 9992 return 1; 9993 } 9994 9995 void online_fair_sched_group(struct task_group *tg) { } 9996 9997 void unregister_fair_sched_group(struct task_group *tg) { } 9998 9999 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10000 10001 10002 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 10003 { 10004 struct sched_entity *se = &task->se; 10005 unsigned int rr_interval = 0; 10006 10007 /* 10008 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 10009 * idle runqueue: 10010 */ 10011 if (rq->cfs.load.weight) 10012 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 10013 10014 return rr_interval; 10015 } 10016 10017 /* 10018 * All the scheduling class methods: 10019 */ 10020 const struct sched_class fair_sched_class = { 10021 .next = &idle_sched_class, 10022 .enqueue_task = enqueue_task_fair, 10023 .dequeue_task = dequeue_task_fair, 10024 .yield_task = yield_task_fair, 10025 .yield_to_task = yield_to_task_fair, 10026 10027 .check_preempt_curr = check_preempt_wakeup, 10028 10029 .pick_next_task = pick_next_task_fair, 10030 .put_prev_task = put_prev_task_fair, 10031 10032 #ifdef CONFIG_SMP 10033 .select_task_rq = select_task_rq_fair, 10034 .migrate_task_rq = migrate_task_rq_fair, 10035 10036 .rq_online = rq_online_fair, 10037 .rq_offline = rq_offline_fair, 10038 10039 .task_dead = task_dead_fair, 10040 .set_cpus_allowed = set_cpus_allowed_common, 10041 #endif 10042 10043 .set_curr_task = set_curr_task_fair, 10044 .task_tick = task_tick_fair, 10045 .task_fork = task_fork_fair, 10046 10047 .prio_changed = prio_changed_fair, 10048 .switched_from = switched_from_fair, 10049 .switched_to = switched_to_fair, 10050 10051 .get_rr_interval = get_rr_interval_fair, 10052 10053 .update_curr = update_curr_fair, 10054 10055 #ifdef CONFIG_FAIR_GROUP_SCHED 10056 .task_change_group = task_change_group_fair, 10057 #endif 10058 }; 10059 10060 #ifdef CONFIG_SCHED_DEBUG 10061 void print_cfs_stats(struct seq_file *m, int cpu) 10062 { 10063 struct cfs_rq *cfs_rq, *pos; 10064 10065 rcu_read_lock(); 10066 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 10067 print_cfs_rq(m, cpu, cfs_rq); 10068 rcu_read_unlock(); 10069 } 10070 10071 #ifdef CONFIG_NUMA_BALANCING 10072 void show_numa_stats(struct task_struct *p, struct seq_file *m) 10073 { 10074 int node; 10075 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 10076 10077 for_each_online_node(node) { 10078 if (p->numa_faults) { 10079 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 10080 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 10081 } 10082 if (p->numa_group) { 10083 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 10084 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 10085 } 10086 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 10087 } 10088 } 10089 #endif /* CONFIG_NUMA_BALANCING */ 10090 #endif /* CONFIG_SCHED_DEBUG */ 10091 10092 __init void init_sched_fair_class(void) 10093 { 10094 #ifdef CONFIG_SMP 10095 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 10096 10097 #ifdef CONFIG_NO_HZ_COMMON 10098 nohz.next_balance = jiffies; 10099 nohz.next_blocked = jiffies; 10100 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 10101 #endif 10102 #endif /* SMP */ 10103 10104 } 10105