xref: /openbmc/linux/kernel/sched/fair.c (revision 93d90ad7)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22 
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33 
34 #include <trace/events/sched.h>
35 
36 #include "sched.h"
37 
38 /*
39  * Targeted preemption latency for CPU-bound tasks:
40  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41  *
42  * NOTE: this latency value is not the same as the concept of
43  * 'timeslice length' - timeslices in CFS are of variable length
44  * and have no persistent notion like in traditional, time-slice
45  * based scheduling concepts.
46  *
47  * (to see the precise effective timeslice length of your workload,
48  *  run vmstat and monitor the context-switches (cs) field)
49  */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52 
53 /*
54  * The initial- and re-scaling of tunables is configurable
55  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56  *
57  * Options are:
58  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61  */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 	= SCHED_TUNABLESCALING_LOG;
64 
65 /*
66  * Minimal preemption granularity for CPU-bound tasks:
67  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68  */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 
72 /*
73  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74  */
75 static unsigned int sched_nr_latency = 8;
76 
77 /*
78  * After fork, child runs first. If set to 0 (default) then
79  * parent will (try to) run first.
80  */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82 
83 /*
84  * SCHED_OTHER wake-up granularity.
85  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86  *
87  * This option delays the preemption effects of decoupled workloads
88  * and reduces their over-scheduling. Synchronous workloads will still
89  * have immediate wakeup/sleep latencies.
90  */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93 
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95 
96 /*
97  * The exponential sliding  window over which load is averaged for shares
98  * distribution.
99  * (default: 10msec)
100  */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102 
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106  * each time a cfs_rq requests quota.
107  *
108  * Note: in the case that the slice exceeds the runtime remaining (either due
109  * to consumption or the quota being specified to be smaller than the slice)
110  * we will always only issue the remaining available time.
111  *
112  * default: 5 msec, units: microseconds
113   */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116 
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 	lw->weight += inc;
120 	lw->inv_weight = 0;
121 }
122 
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 	lw->weight -= dec;
126 	lw->inv_weight = 0;
127 }
128 
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 	lw->weight = w;
132 	lw->inv_weight = 0;
133 }
134 
135 /*
136  * Increase the granularity value when there are more CPUs,
137  * because with more CPUs the 'effective latency' as visible
138  * to users decreases. But the relationship is not linear,
139  * so pick a second-best guess by going with the log2 of the
140  * number of CPUs.
141  *
142  * This idea comes from the SD scheduler of Con Kolivas:
143  */
144 static int get_update_sysctl_factor(void)
145 {
146 	unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 	unsigned int factor;
148 
149 	switch (sysctl_sched_tunable_scaling) {
150 	case SCHED_TUNABLESCALING_NONE:
151 		factor = 1;
152 		break;
153 	case SCHED_TUNABLESCALING_LINEAR:
154 		factor = cpus;
155 		break;
156 	case SCHED_TUNABLESCALING_LOG:
157 	default:
158 		factor = 1 + ilog2(cpus);
159 		break;
160 	}
161 
162 	return factor;
163 }
164 
165 static void update_sysctl(void)
166 {
167 	unsigned int factor = get_update_sysctl_factor();
168 
169 #define SET_SYSCTL(name) \
170 	(sysctl_##name = (factor) * normalized_sysctl_##name)
171 	SET_SYSCTL(sched_min_granularity);
172 	SET_SYSCTL(sched_latency);
173 	SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176 
177 void sched_init_granularity(void)
178 {
179 	update_sysctl();
180 }
181 
182 #define WMULT_CONST	(~0U)
183 #define WMULT_SHIFT	32
184 
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 	unsigned long w;
188 
189 	if (likely(lw->inv_weight))
190 		return;
191 
192 	w = scale_load_down(lw->weight);
193 
194 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 		lw->inv_weight = 1;
196 	else if (unlikely(!w))
197 		lw->inv_weight = WMULT_CONST;
198 	else
199 		lw->inv_weight = WMULT_CONST / w;
200 }
201 
202 /*
203  * delta_exec * weight / lw.weight
204  *   OR
205  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206  *
207  * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208  * we're guaranteed shift stays positive because inv_weight is guaranteed to
209  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210  *
211  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212  * weight/lw.weight <= 1, and therefore our shift will also be positive.
213  */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 	u64 fact = scale_load_down(weight);
217 	int shift = WMULT_SHIFT;
218 
219 	__update_inv_weight(lw);
220 
221 	if (unlikely(fact >> 32)) {
222 		while (fact >> 32) {
223 			fact >>= 1;
224 			shift--;
225 		}
226 	}
227 
228 	/* hint to use a 32x32->64 mul */
229 	fact = (u64)(u32)fact * lw->inv_weight;
230 
231 	while (fact >> 32) {
232 		fact >>= 1;
233 		shift--;
234 	}
235 
236 	return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238 
239 
240 const struct sched_class fair_sched_class;
241 
242 /**************************************************************
243  * CFS operations on generic schedulable entities:
244  */
245 
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247 
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 	return cfs_rq->rq;
252 }
253 
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se)	(!se->my_q)
256 
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 	WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 	return container_of(se, struct task_struct, se);
263 }
264 
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 		for (; se; se = se->parent)
268 
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 	return p->se.cfs_rq;
272 }
273 
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 	return se->cfs_rq;
278 }
279 
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 	return grp->my_q;
284 }
285 
286 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 				       int force_update);
288 
289 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290 {
291 	if (!cfs_rq->on_list) {
292 		/*
293 		 * Ensure we either appear before our parent (if already
294 		 * enqueued) or force our parent to appear after us when it is
295 		 * enqueued.  The fact that we always enqueue bottom-up
296 		 * reduces this to two cases.
297 		 */
298 		if (cfs_rq->tg->parent &&
299 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302 		} else {
303 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
304 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
305 		}
306 
307 		cfs_rq->on_list = 1;
308 		/* We should have no load, but we need to update last_decay. */
309 		update_cfs_rq_blocked_load(cfs_rq, 0);
310 	}
311 }
312 
313 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314 {
315 	if (cfs_rq->on_list) {
316 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 		cfs_rq->on_list = 0;
318 	}
319 }
320 
321 /* Iterate thr' all leaf cfs_rq's on a runqueue */
322 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324 
325 /* Do the two (enqueued) entities belong to the same group ? */
326 static inline struct cfs_rq *
327 is_same_group(struct sched_entity *se, struct sched_entity *pse)
328 {
329 	if (se->cfs_rq == pse->cfs_rq)
330 		return se->cfs_rq;
331 
332 	return NULL;
333 }
334 
335 static inline struct sched_entity *parent_entity(struct sched_entity *se)
336 {
337 	return se->parent;
338 }
339 
340 static void
341 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342 {
343 	int se_depth, pse_depth;
344 
345 	/*
346 	 * preemption test can be made between sibling entities who are in the
347 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 	 * both tasks until we find their ancestors who are siblings of common
349 	 * parent.
350 	 */
351 
352 	/* First walk up until both entities are at same depth */
353 	se_depth = (*se)->depth;
354 	pse_depth = (*pse)->depth;
355 
356 	while (se_depth > pse_depth) {
357 		se_depth--;
358 		*se = parent_entity(*se);
359 	}
360 
361 	while (pse_depth > se_depth) {
362 		pse_depth--;
363 		*pse = parent_entity(*pse);
364 	}
365 
366 	while (!is_same_group(*se, *pse)) {
367 		*se = parent_entity(*se);
368 		*pse = parent_entity(*pse);
369 	}
370 }
371 
372 #else	/* !CONFIG_FAIR_GROUP_SCHED */
373 
374 static inline struct task_struct *task_of(struct sched_entity *se)
375 {
376 	return container_of(se, struct task_struct, se);
377 }
378 
379 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380 {
381 	return container_of(cfs_rq, struct rq, cfs);
382 }
383 
384 #define entity_is_task(se)	1
385 
386 #define for_each_sched_entity(se) \
387 		for (; se; se = NULL)
388 
389 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
390 {
391 	return &task_rq(p)->cfs;
392 }
393 
394 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395 {
396 	struct task_struct *p = task_of(se);
397 	struct rq *rq = task_rq(p);
398 
399 	return &rq->cfs;
400 }
401 
402 /* runqueue "owned" by this group */
403 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404 {
405 	return NULL;
406 }
407 
408 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409 {
410 }
411 
412 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413 {
414 }
415 
416 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418 
419 static inline struct sched_entity *parent_entity(struct sched_entity *se)
420 {
421 	return NULL;
422 }
423 
424 static inline void
425 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426 {
427 }
428 
429 #endif	/* CONFIG_FAIR_GROUP_SCHED */
430 
431 static __always_inline
432 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
433 
434 /**************************************************************
435  * Scheduling class tree data structure manipulation methods:
436  */
437 
438 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
439 {
440 	s64 delta = (s64)(vruntime - max_vruntime);
441 	if (delta > 0)
442 		max_vruntime = vruntime;
443 
444 	return max_vruntime;
445 }
446 
447 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
448 {
449 	s64 delta = (s64)(vruntime - min_vruntime);
450 	if (delta < 0)
451 		min_vruntime = vruntime;
452 
453 	return min_vruntime;
454 }
455 
456 static inline int entity_before(struct sched_entity *a,
457 				struct sched_entity *b)
458 {
459 	return (s64)(a->vruntime - b->vruntime) < 0;
460 }
461 
462 static void update_min_vruntime(struct cfs_rq *cfs_rq)
463 {
464 	u64 vruntime = cfs_rq->min_vruntime;
465 
466 	if (cfs_rq->curr)
467 		vruntime = cfs_rq->curr->vruntime;
468 
469 	if (cfs_rq->rb_leftmost) {
470 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 						   struct sched_entity,
472 						   run_node);
473 
474 		if (!cfs_rq->curr)
475 			vruntime = se->vruntime;
476 		else
477 			vruntime = min_vruntime(vruntime, se->vruntime);
478 	}
479 
480 	/* ensure we never gain time by being placed backwards. */
481 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
482 #ifndef CONFIG_64BIT
483 	smp_wmb();
484 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485 #endif
486 }
487 
488 /*
489  * Enqueue an entity into the rb-tree:
490  */
491 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
492 {
493 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 	struct rb_node *parent = NULL;
495 	struct sched_entity *entry;
496 	int leftmost = 1;
497 
498 	/*
499 	 * Find the right place in the rbtree:
500 	 */
501 	while (*link) {
502 		parent = *link;
503 		entry = rb_entry(parent, struct sched_entity, run_node);
504 		/*
505 		 * We dont care about collisions. Nodes with
506 		 * the same key stay together.
507 		 */
508 		if (entity_before(se, entry)) {
509 			link = &parent->rb_left;
510 		} else {
511 			link = &parent->rb_right;
512 			leftmost = 0;
513 		}
514 	}
515 
516 	/*
517 	 * Maintain a cache of leftmost tree entries (it is frequently
518 	 * used):
519 	 */
520 	if (leftmost)
521 		cfs_rq->rb_leftmost = &se->run_node;
522 
523 	rb_link_node(&se->run_node, parent, link);
524 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
525 }
526 
527 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
528 {
529 	if (cfs_rq->rb_leftmost == &se->run_node) {
530 		struct rb_node *next_node;
531 
532 		next_node = rb_next(&se->run_node);
533 		cfs_rq->rb_leftmost = next_node;
534 	}
535 
536 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
537 }
538 
539 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
540 {
541 	struct rb_node *left = cfs_rq->rb_leftmost;
542 
543 	if (!left)
544 		return NULL;
545 
546 	return rb_entry(left, struct sched_entity, run_node);
547 }
548 
549 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550 {
551 	struct rb_node *next = rb_next(&se->run_node);
552 
553 	if (!next)
554 		return NULL;
555 
556 	return rb_entry(next, struct sched_entity, run_node);
557 }
558 
559 #ifdef CONFIG_SCHED_DEBUG
560 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
561 {
562 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
563 
564 	if (!last)
565 		return NULL;
566 
567 	return rb_entry(last, struct sched_entity, run_node);
568 }
569 
570 /**************************************************************
571  * Scheduling class statistics methods:
572  */
573 
574 int sched_proc_update_handler(struct ctl_table *table, int write,
575 		void __user *buffer, size_t *lenp,
576 		loff_t *ppos)
577 {
578 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
579 	int factor = get_update_sysctl_factor();
580 
581 	if (ret || !write)
582 		return ret;
583 
584 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 					sysctl_sched_min_granularity);
586 
587 #define WRT_SYSCTL(name) \
588 	(normalized_sysctl_##name = sysctl_##name / (factor))
589 	WRT_SYSCTL(sched_min_granularity);
590 	WRT_SYSCTL(sched_latency);
591 	WRT_SYSCTL(sched_wakeup_granularity);
592 #undef WRT_SYSCTL
593 
594 	return 0;
595 }
596 #endif
597 
598 /*
599  * delta /= w
600  */
601 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
602 {
603 	if (unlikely(se->load.weight != NICE_0_LOAD))
604 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
605 
606 	return delta;
607 }
608 
609 /*
610  * The idea is to set a period in which each task runs once.
611  *
612  * When there are too many tasks (sched_nr_latency) we have to stretch
613  * this period because otherwise the slices get too small.
614  *
615  * p = (nr <= nl) ? l : l*nr/nl
616  */
617 static u64 __sched_period(unsigned long nr_running)
618 {
619 	u64 period = sysctl_sched_latency;
620 	unsigned long nr_latency = sched_nr_latency;
621 
622 	if (unlikely(nr_running > nr_latency)) {
623 		period = sysctl_sched_min_granularity;
624 		period *= nr_running;
625 	}
626 
627 	return period;
628 }
629 
630 /*
631  * We calculate the wall-time slice from the period by taking a part
632  * proportional to the weight.
633  *
634  * s = p*P[w/rw]
635  */
636 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
637 {
638 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
639 
640 	for_each_sched_entity(se) {
641 		struct load_weight *load;
642 		struct load_weight lw;
643 
644 		cfs_rq = cfs_rq_of(se);
645 		load = &cfs_rq->load;
646 
647 		if (unlikely(!se->on_rq)) {
648 			lw = cfs_rq->load;
649 
650 			update_load_add(&lw, se->load.weight);
651 			load = &lw;
652 		}
653 		slice = __calc_delta(slice, se->load.weight, load);
654 	}
655 	return slice;
656 }
657 
658 /*
659  * We calculate the vruntime slice of a to-be-inserted task.
660  *
661  * vs = s/w
662  */
663 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
664 {
665 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
666 }
667 
668 #ifdef CONFIG_SMP
669 static int select_idle_sibling(struct task_struct *p, int cpu);
670 static unsigned long task_h_load(struct task_struct *p);
671 
672 static inline void __update_task_entity_contrib(struct sched_entity *se);
673 
674 /* Give new task start runnable values to heavy its load in infant time */
675 void init_task_runnable_average(struct task_struct *p)
676 {
677 	u32 slice;
678 
679 	p->se.avg.decay_count = 0;
680 	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
681 	p->se.avg.runnable_avg_sum = slice;
682 	p->se.avg.runnable_avg_period = slice;
683 	__update_task_entity_contrib(&p->se);
684 }
685 #else
686 void init_task_runnable_average(struct task_struct *p)
687 {
688 }
689 #endif
690 
691 /*
692  * Update the current task's runtime statistics.
693  */
694 static void update_curr(struct cfs_rq *cfs_rq)
695 {
696 	struct sched_entity *curr = cfs_rq->curr;
697 	u64 now = rq_clock_task(rq_of(cfs_rq));
698 	u64 delta_exec;
699 
700 	if (unlikely(!curr))
701 		return;
702 
703 	delta_exec = now - curr->exec_start;
704 	if (unlikely((s64)delta_exec <= 0))
705 		return;
706 
707 	curr->exec_start = now;
708 
709 	schedstat_set(curr->statistics.exec_max,
710 		      max(delta_exec, curr->statistics.exec_max));
711 
712 	curr->sum_exec_runtime += delta_exec;
713 	schedstat_add(cfs_rq, exec_clock, delta_exec);
714 
715 	curr->vruntime += calc_delta_fair(delta_exec, curr);
716 	update_min_vruntime(cfs_rq);
717 
718 	if (entity_is_task(curr)) {
719 		struct task_struct *curtask = task_of(curr);
720 
721 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
722 		cpuacct_charge(curtask, delta_exec);
723 		account_group_exec_runtime(curtask, delta_exec);
724 	}
725 
726 	account_cfs_rq_runtime(cfs_rq, delta_exec);
727 }
728 
729 static void update_curr_fair(struct rq *rq)
730 {
731 	update_curr(cfs_rq_of(&rq->curr->se));
732 }
733 
734 static inline void
735 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
736 {
737 	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
738 }
739 
740 /*
741  * Task is being enqueued - update stats:
742  */
743 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
744 {
745 	/*
746 	 * Are we enqueueing a waiting task? (for current tasks
747 	 * a dequeue/enqueue event is a NOP)
748 	 */
749 	if (se != cfs_rq->curr)
750 		update_stats_wait_start(cfs_rq, se);
751 }
752 
753 static void
754 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
755 {
756 	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
757 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
758 	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
759 	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
760 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
761 #ifdef CONFIG_SCHEDSTATS
762 	if (entity_is_task(se)) {
763 		trace_sched_stat_wait(task_of(se),
764 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
765 	}
766 #endif
767 	schedstat_set(se->statistics.wait_start, 0);
768 }
769 
770 static inline void
771 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
772 {
773 	/*
774 	 * Mark the end of the wait period if dequeueing a
775 	 * waiting task:
776 	 */
777 	if (se != cfs_rq->curr)
778 		update_stats_wait_end(cfs_rq, se);
779 }
780 
781 /*
782  * We are picking a new current task - update its stats:
783  */
784 static inline void
785 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
786 {
787 	/*
788 	 * We are starting a new run period:
789 	 */
790 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
791 }
792 
793 /**************************************************
794  * Scheduling class queueing methods:
795  */
796 
797 #ifdef CONFIG_NUMA_BALANCING
798 /*
799  * Approximate time to scan a full NUMA task in ms. The task scan period is
800  * calculated based on the tasks virtual memory size and
801  * numa_balancing_scan_size.
802  */
803 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
804 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
805 
806 /* Portion of address space to scan in MB */
807 unsigned int sysctl_numa_balancing_scan_size = 256;
808 
809 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
810 unsigned int sysctl_numa_balancing_scan_delay = 1000;
811 
812 static unsigned int task_nr_scan_windows(struct task_struct *p)
813 {
814 	unsigned long rss = 0;
815 	unsigned long nr_scan_pages;
816 
817 	/*
818 	 * Calculations based on RSS as non-present and empty pages are skipped
819 	 * by the PTE scanner and NUMA hinting faults should be trapped based
820 	 * on resident pages
821 	 */
822 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
823 	rss = get_mm_rss(p->mm);
824 	if (!rss)
825 		rss = nr_scan_pages;
826 
827 	rss = round_up(rss, nr_scan_pages);
828 	return rss / nr_scan_pages;
829 }
830 
831 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
832 #define MAX_SCAN_WINDOW 2560
833 
834 static unsigned int task_scan_min(struct task_struct *p)
835 {
836 	unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
837 	unsigned int scan, floor;
838 	unsigned int windows = 1;
839 
840 	if (scan_size < MAX_SCAN_WINDOW)
841 		windows = MAX_SCAN_WINDOW / scan_size;
842 	floor = 1000 / windows;
843 
844 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
845 	return max_t(unsigned int, floor, scan);
846 }
847 
848 static unsigned int task_scan_max(struct task_struct *p)
849 {
850 	unsigned int smin = task_scan_min(p);
851 	unsigned int smax;
852 
853 	/* Watch for min being lower than max due to floor calculations */
854 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
855 	return max(smin, smax);
856 }
857 
858 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
859 {
860 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
861 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
862 }
863 
864 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
865 {
866 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
867 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
868 }
869 
870 struct numa_group {
871 	atomic_t refcount;
872 
873 	spinlock_t lock; /* nr_tasks, tasks */
874 	int nr_tasks;
875 	pid_t gid;
876 
877 	struct rcu_head rcu;
878 	nodemask_t active_nodes;
879 	unsigned long total_faults;
880 	/*
881 	 * Faults_cpu is used to decide whether memory should move
882 	 * towards the CPU. As a consequence, these stats are weighted
883 	 * more by CPU use than by memory faults.
884 	 */
885 	unsigned long *faults_cpu;
886 	unsigned long faults[0];
887 };
888 
889 /* Shared or private faults. */
890 #define NR_NUMA_HINT_FAULT_TYPES 2
891 
892 /* Memory and CPU locality */
893 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
894 
895 /* Averaged statistics, and temporary buffers. */
896 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
897 
898 pid_t task_numa_group_id(struct task_struct *p)
899 {
900 	return p->numa_group ? p->numa_group->gid : 0;
901 }
902 
903 /*
904  * The averaged statistics, shared & private, memory & cpu,
905  * occupy the first half of the array. The second half of the
906  * array is for current counters, which are averaged into the
907  * first set by task_numa_placement.
908  */
909 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
910 {
911 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
912 }
913 
914 static inline unsigned long task_faults(struct task_struct *p, int nid)
915 {
916 	if (!p->numa_faults)
917 		return 0;
918 
919 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
920 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
921 }
922 
923 static inline unsigned long group_faults(struct task_struct *p, int nid)
924 {
925 	if (!p->numa_group)
926 		return 0;
927 
928 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
929 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
930 }
931 
932 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
933 {
934 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
935 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
936 }
937 
938 /* Handle placement on systems where not all nodes are directly connected. */
939 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
940 					int maxdist, bool task)
941 {
942 	unsigned long score = 0;
943 	int node;
944 
945 	/*
946 	 * All nodes are directly connected, and the same distance
947 	 * from each other. No need for fancy placement algorithms.
948 	 */
949 	if (sched_numa_topology_type == NUMA_DIRECT)
950 		return 0;
951 
952 	/*
953 	 * This code is called for each node, introducing N^2 complexity,
954 	 * which should be ok given the number of nodes rarely exceeds 8.
955 	 */
956 	for_each_online_node(node) {
957 		unsigned long faults;
958 		int dist = node_distance(nid, node);
959 
960 		/*
961 		 * The furthest away nodes in the system are not interesting
962 		 * for placement; nid was already counted.
963 		 */
964 		if (dist == sched_max_numa_distance || node == nid)
965 			continue;
966 
967 		/*
968 		 * On systems with a backplane NUMA topology, compare groups
969 		 * of nodes, and move tasks towards the group with the most
970 		 * memory accesses. When comparing two nodes at distance
971 		 * "hoplimit", only nodes closer by than "hoplimit" are part
972 		 * of each group. Skip other nodes.
973 		 */
974 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
975 					dist > maxdist)
976 			continue;
977 
978 		/* Add up the faults from nearby nodes. */
979 		if (task)
980 			faults = task_faults(p, node);
981 		else
982 			faults = group_faults(p, node);
983 
984 		/*
985 		 * On systems with a glueless mesh NUMA topology, there are
986 		 * no fixed "groups of nodes". Instead, nodes that are not
987 		 * directly connected bounce traffic through intermediate
988 		 * nodes; a numa_group can occupy any set of nodes.
989 		 * The further away a node is, the less the faults count.
990 		 * This seems to result in good task placement.
991 		 */
992 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
993 			faults *= (sched_max_numa_distance - dist);
994 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
995 		}
996 
997 		score += faults;
998 	}
999 
1000 	return score;
1001 }
1002 
1003 /*
1004  * These return the fraction of accesses done by a particular task, or
1005  * task group, on a particular numa node.  The group weight is given a
1006  * larger multiplier, in order to group tasks together that are almost
1007  * evenly spread out between numa nodes.
1008  */
1009 static inline unsigned long task_weight(struct task_struct *p, int nid,
1010 					int dist)
1011 {
1012 	unsigned long faults, total_faults;
1013 
1014 	if (!p->numa_faults)
1015 		return 0;
1016 
1017 	total_faults = p->total_numa_faults;
1018 
1019 	if (!total_faults)
1020 		return 0;
1021 
1022 	faults = task_faults(p, nid);
1023 	faults += score_nearby_nodes(p, nid, dist, true);
1024 
1025 	return 1000 * faults / total_faults;
1026 }
1027 
1028 static inline unsigned long group_weight(struct task_struct *p, int nid,
1029 					 int dist)
1030 {
1031 	unsigned long faults, total_faults;
1032 
1033 	if (!p->numa_group)
1034 		return 0;
1035 
1036 	total_faults = p->numa_group->total_faults;
1037 
1038 	if (!total_faults)
1039 		return 0;
1040 
1041 	faults = group_faults(p, nid);
1042 	faults += score_nearby_nodes(p, nid, dist, false);
1043 
1044 	return 1000 * faults / total_faults;
1045 }
1046 
1047 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1048 				int src_nid, int dst_cpu)
1049 {
1050 	struct numa_group *ng = p->numa_group;
1051 	int dst_nid = cpu_to_node(dst_cpu);
1052 	int last_cpupid, this_cpupid;
1053 
1054 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1055 
1056 	/*
1057 	 * Multi-stage node selection is used in conjunction with a periodic
1058 	 * migration fault to build a temporal task<->page relation. By using
1059 	 * a two-stage filter we remove short/unlikely relations.
1060 	 *
1061 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1062 	 * a task's usage of a particular page (n_p) per total usage of this
1063 	 * page (n_t) (in a given time-span) to a probability.
1064 	 *
1065 	 * Our periodic faults will sample this probability and getting the
1066 	 * same result twice in a row, given these samples are fully
1067 	 * independent, is then given by P(n)^2, provided our sample period
1068 	 * is sufficiently short compared to the usage pattern.
1069 	 *
1070 	 * This quadric squishes small probabilities, making it less likely we
1071 	 * act on an unlikely task<->page relation.
1072 	 */
1073 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1074 	if (!cpupid_pid_unset(last_cpupid) &&
1075 				cpupid_to_nid(last_cpupid) != dst_nid)
1076 		return false;
1077 
1078 	/* Always allow migrate on private faults */
1079 	if (cpupid_match_pid(p, last_cpupid))
1080 		return true;
1081 
1082 	/* A shared fault, but p->numa_group has not been set up yet. */
1083 	if (!ng)
1084 		return true;
1085 
1086 	/*
1087 	 * Do not migrate if the destination is not a node that
1088 	 * is actively used by this numa group.
1089 	 */
1090 	if (!node_isset(dst_nid, ng->active_nodes))
1091 		return false;
1092 
1093 	/*
1094 	 * Source is a node that is not actively used by this
1095 	 * numa group, while the destination is. Migrate.
1096 	 */
1097 	if (!node_isset(src_nid, ng->active_nodes))
1098 		return true;
1099 
1100 	/*
1101 	 * Both source and destination are nodes in active
1102 	 * use by this numa group. Maximize memory bandwidth
1103 	 * by migrating from more heavily used groups, to less
1104 	 * heavily used ones, spreading the load around.
1105 	 * Use a 1/4 hysteresis to avoid spurious page movement.
1106 	 */
1107 	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1108 }
1109 
1110 static unsigned long weighted_cpuload(const int cpu);
1111 static unsigned long source_load(int cpu, int type);
1112 static unsigned long target_load(int cpu, int type);
1113 static unsigned long capacity_of(int cpu);
1114 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1115 
1116 /* Cached statistics for all CPUs within a node */
1117 struct numa_stats {
1118 	unsigned long nr_running;
1119 	unsigned long load;
1120 
1121 	/* Total compute capacity of CPUs on a node */
1122 	unsigned long compute_capacity;
1123 
1124 	/* Approximate capacity in terms of runnable tasks on a node */
1125 	unsigned long task_capacity;
1126 	int has_free_capacity;
1127 };
1128 
1129 /*
1130  * XXX borrowed from update_sg_lb_stats
1131  */
1132 static void update_numa_stats(struct numa_stats *ns, int nid)
1133 {
1134 	int smt, cpu, cpus = 0;
1135 	unsigned long capacity;
1136 
1137 	memset(ns, 0, sizeof(*ns));
1138 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1139 		struct rq *rq = cpu_rq(cpu);
1140 
1141 		ns->nr_running += rq->nr_running;
1142 		ns->load += weighted_cpuload(cpu);
1143 		ns->compute_capacity += capacity_of(cpu);
1144 
1145 		cpus++;
1146 	}
1147 
1148 	/*
1149 	 * If we raced with hotplug and there are no CPUs left in our mask
1150 	 * the @ns structure is NULL'ed and task_numa_compare() will
1151 	 * not find this node attractive.
1152 	 *
1153 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1154 	 * imbalance and bail there.
1155 	 */
1156 	if (!cpus)
1157 		return;
1158 
1159 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1160 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1161 	capacity = cpus / smt; /* cores */
1162 
1163 	ns->task_capacity = min_t(unsigned, capacity,
1164 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1165 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1166 }
1167 
1168 struct task_numa_env {
1169 	struct task_struct *p;
1170 
1171 	int src_cpu, src_nid;
1172 	int dst_cpu, dst_nid;
1173 
1174 	struct numa_stats src_stats, dst_stats;
1175 
1176 	int imbalance_pct;
1177 	int dist;
1178 
1179 	struct task_struct *best_task;
1180 	long best_imp;
1181 	int best_cpu;
1182 };
1183 
1184 static void task_numa_assign(struct task_numa_env *env,
1185 			     struct task_struct *p, long imp)
1186 {
1187 	if (env->best_task)
1188 		put_task_struct(env->best_task);
1189 	if (p)
1190 		get_task_struct(p);
1191 
1192 	env->best_task = p;
1193 	env->best_imp = imp;
1194 	env->best_cpu = env->dst_cpu;
1195 }
1196 
1197 static bool load_too_imbalanced(long src_load, long dst_load,
1198 				struct task_numa_env *env)
1199 {
1200 	long imb, old_imb;
1201 	long orig_src_load, orig_dst_load;
1202 	long src_capacity, dst_capacity;
1203 
1204 	/*
1205 	 * The load is corrected for the CPU capacity available on each node.
1206 	 *
1207 	 * src_load        dst_load
1208 	 * ------------ vs ---------
1209 	 * src_capacity    dst_capacity
1210 	 */
1211 	src_capacity = env->src_stats.compute_capacity;
1212 	dst_capacity = env->dst_stats.compute_capacity;
1213 
1214 	/* We care about the slope of the imbalance, not the direction. */
1215 	if (dst_load < src_load)
1216 		swap(dst_load, src_load);
1217 
1218 	/* Is the difference below the threshold? */
1219 	imb = dst_load * src_capacity * 100 -
1220 	      src_load * dst_capacity * env->imbalance_pct;
1221 	if (imb <= 0)
1222 		return false;
1223 
1224 	/*
1225 	 * The imbalance is above the allowed threshold.
1226 	 * Compare it with the old imbalance.
1227 	 */
1228 	orig_src_load = env->src_stats.load;
1229 	orig_dst_load = env->dst_stats.load;
1230 
1231 	if (orig_dst_load < orig_src_load)
1232 		swap(orig_dst_load, orig_src_load);
1233 
1234 	old_imb = orig_dst_load * src_capacity * 100 -
1235 		  orig_src_load * dst_capacity * env->imbalance_pct;
1236 
1237 	/* Would this change make things worse? */
1238 	return (imb > old_imb);
1239 }
1240 
1241 /*
1242  * This checks if the overall compute and NUMA accesses of the system would
1243  * be improved if the source tasks was migrated to the target dst_cpu taking
1244  * into account that it might be best if task running on the dst_cpu should
1245  * be exchanged with the source task
1246  */
1247 static void task_numa_compare(struct task_numa_env *env,
1248 			      long taskimp, long groupimp)
1249 {
1250 	struct rq *src_rq = cpu_rq(env->src_cpu);
1251 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1252 	struct task_struct *cur;
1253 	long src_load, dst_load;
1254 	long load;
1255 	long imp = env->p->numa_group ? groupimp : taskimp;
1256 	long moveimp = imp;
1257 	int dist = env->dist;
1258 
1259 	rcu_read_lock();
1260 
1261 	raw_spin_lock_irq(&dst_rq->lock);
1262 	cur = dst_rq->curr;
1263 	/*
1264 	 * No need to move the exiting task, and this ensures that ->curr
1265 	 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1266 	 * is safe under RCU read lock.
1267 	 * Note that rcu_read_lock() itself can't protect from the final
1268 	 * put_task_struct() after the last schedule().
1269 	 */
1270 	if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1271 		cur = NULL;
1272 	raw_spin_unlock_irq(&dst_rq->lock);
1273 
1274 	/*
1275 	 * Because we have preemption enabled we can get migrated around and
1276 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1277 	 */
1278 	if (cur == env->p)
1279 		goto unlock;
1280 
1281 	/*
1282 	 * "imp" is the fault differential for the source task between the
1283 	 * source and destination node. Calculate the total differential for
1284 	 * the source task and potential destination task. The more negative
1285 	 * the value is, the more rmeote accesses that would be expected to
1286 	 * be incurred if the tasks were swapped.
1287 	 */
1288 	if (cur) {
1289 		/* Skip this swap candidate if cannot move to the source cpu */
1290 		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1291 			goto unlock;
1292 
1293 		/*
1294 		 * If dst and source tasks are in the same NUMA group, or not
1295 		 * in any group then look only at task weights.
1296 		 */
1297 		if (cur->numa_group == env->p->numa_group) {
1298 			imp = taskimp + task_weight(cur, env->src_nid, dist) -
1299 			      task_weight(cur, env->dst_nid, dist);
1300 			/*
1301 			 * Add some hysteresis to prevent swapping the
1302 			 * tasks within a group over tiny differences.
1303 			 */
1304 			if (cur->numa_group)
1305 				imp -= imp/16;
1306 		} else {
1307 			/*
1308 			 * Compare the group weights. If a task is all by
1309 			 * itself (not part of a group), use the task weight
1310 			 * instead.
1311 			 */
1312 			if (cur->numa_group)
1313 				imp += group_weight(cur, env->src_nid, dist) -
1314 				       group_weight(cur, env->dst_nid, dist);
1315 			else
1316 				imp += task_weight(cur, env->src_nid, dist) -
1317 				       task_weight(cur, env->dst_nid, dist);
1318 		}
1319 	}
1320 
1321 	if (imp <= env->best_imp && moveimp <= env->best_imp)
1322 		goto unlock;
1323 
1324 	if (!cur) {
1325 		/* Is there capacity at our destination? */
1326 		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1327 		    !env->dst_stats.has_free_capacity)
1328 			goto unlock;
1329 
1330 		goto balance;
1331 	}
1332 
1333 	/* Balance doesn't matter much if we're running a task per cpu */
1334 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1335 			dst_rq->nr_running == 1)
1336 		goto assign;
1337 
1338 	/*
1339 	 * In the overloaded case, try and keep the load balanced.
1340 	 */
1341 balance:
1342 	load = task_h_load(env->p);
1343 	dst_load = env->dst_stats.load + load;
1344 	src_load = env->src_stats.load - load;
1345 
1346 	if (moveimp > imp && moveimp > env->best_imp) {
1347 		/*
1348 		 * If the improvement from just moving env->p direction is
1349 		 * better than swapping tasks around, check if a move is
1350 		 * possible. Store a slightly smaller score than moveimp,
1351 		 * so an actually idle CPU will win.
1352 		 */
1353 		if (!load_too_imbalanced(src_load, dst_load, env)) {
1354 			imp = moveimp - 1;
1355 			cur = NULL;
1356 			goto assign;
1357 		}
1358 	}
1359 
1360 	if (imp <= env->best_imp)
1361 		goto unlock;
1362 
1363 	if (cur) {
1364 		load = task_h_load(cur);
1365 		dst_load -= load;
1366 		src_load += load;
1367 	}
1368 
1369 	if (load_too_imbalanced(src_load, dst_load, env))
1370 		goto unlock;
1371 
1372 	/*
1373 	 * One idle CPU per node is evaluated for a task numa move.
1374 	 * Call select_idle_sibling to maybe find a better one.
1375 	 */
1376 	if (!cur)
1377 		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1378 
1379 assign:
1380 	task_numa_assign(env, cur, imp);
1381 unlock:
1382 	rcu_read_unlock();
1383 }
1384 
1385 static void task_numa_find_cpu(struct task_numa_env *env,
1386 				long taskimp, long groupimp)
1387 {
1388 	int cpu;
1389 
1390 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1391 		/* Skip this CPU if the source task cannot migrate */
1392 		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1393 			continue;
1394 
1395 		env->dst_cpu = cpu;
1396 		task_numa_compare(env, taskimp, groupimp);
1397 	}
1398 }
1399 
1400 static int task_numa_migrate(struct task_struct *p)
1401 {
1402 	struct task_numa_env env = {
1403 		.p = p,
1404 
1405 		.src_cpu = task_cpu(p),
1406 		.src_nid = task_node(p),
1407 
1408 		.imbalance_pct = 112,
1409 
1410 		.best_task = NULL,
1411 		.best_imp = 0,
1412 		.best_cpu = -1
1413 	};
1414 	struct sched_domain *sd;
1415 	unsigned long taskweight, groupweight;
1416 	int nid, ret, dist;
1417 	long taskimp, groupimp;
1418 
1419 	/*
1420 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1421 	 * imbalance and would be the first to start moving tasks about.
1422 	 *
1423 	 * And we want to avoid any moving of tasks about, as that would create
1424 	 * random movement of tasks -- counter the numa conditions we're trying
1425 	 * to satisfy here.
1426 	 */
1427 	rcu_read_lock();
1428 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1429 	if (sd)
1430 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1431 	rcu_read_unlock();
1432 
1433 	/*
1434 	 * Cpusets can break the scheduler domain tree into smaller
1435 	 * balance domains, some of which do not cross NUMA boundaries.
1436 	 * Tasks that are "trapped" in such domains cannot be migrated
1437 	 * elsewhere, so there is no point in (re)trying.
1438 	 */
1439 	if (unlikely(!sd)) {
1440 		p->numa_preferred_nid = task_node(p);
1441 		return -EINVAL;
1442 	}
1443 
1444 	env.dst_nid = p->numa_preferred_nid;
1445 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1446 	taskweight = task_weight(p, env.src_nid, dist);
1447 	groupweight = group_weight(p, env.src_nid, dist);
1448 	update_numa_stats(&env.src_stats, env.src_nid);
1449 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1450 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1451 	update_numa_stats(&env.dst_stats, env.dst_nid);
1452 
1453 	/* Try to find a spot on the preferred nid. */
1454 	task_numa_find_cpu(&env, taskimp, groupimp);
1455 
1456 	/*
1457 	 * Look at other nodes in these cases:
1458 	 * - there is no space available on the preferred_nid
1459 	 * - the task is part of a numa_group that is interleaved across
1460 	 *   multiple NUMA nodes; in order to better consolidate the group,
1461 	 *   we need to check other locations.
1462 	 */
1463 	if (env.best_cpu == -1 || (p->numa_group &&
1464 			nodes_weight(p->numa_group->active_nodes) > 1)) {
1465 		for_each_online_node(nid) {
1466 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1467 				continue;
1468 
1469 			dist = node_distance(env.src_nid, env.dst_nid);
1470 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1471 						dist != env.dist) {
1472 				taskweight = task_weight(p, env.src_nid, dist);
1473 				groupweight = group_weight(p, env.src_nid, dist);
1474 			}
1475 
1476 			/* Only consider nodes where both task and groups benefit */
1477 			taskimp = task_weight(p, nid, dist) - taskweight;
1478 			groupimp = group_weight(p, nid, dist) - groupweight;
1479 			if (taskimp < 0 && groupimp < 0)
1480 				continue;
1481 
1482 			env.dist = dist;
1483 			env.dst_nid = nid;
1484 			update_numa_stats(&env.dst_stats, env.dst_nid);
1485 			task_numa_find_cpu(&env, taskimp, groupimp);
1486 		}
1487 	}
1488 
1489 	/*
1490 	 * If the task is part of a workload that spans multiple NUMA nodes,
1491 	 * and is migrating into one of the workload's active nodes, remember
1492 	 * this node as the task's preferred numa node, so the workload can
1493 	 * settle down.
1494 	 * A task that migrated to a second choice node will be better off
1495 	 * trying for a better one later. Do not set the preferred node here.
1496 	 */
1497 	if (p->numa_group) {
1498 		if (env.best_cpu == -1)
1499 			nid = env.src_nid;
1500 		else
1501 			nid = env.dst_nid;
1502 
1503 		if (node_isset(nid, p->numa_group->active_nodes))
1504 			sched_setnuma(p, env.dst_nid);
1505 	}
1506 
1507 	/* No better CPU than the current one was found. */
1508 	if (env.best_cpu == -1)
1509 		return -EAGAIN;
1510 
1511 	/*
1512 	 * Reset the scan period if the task is being rescheduled on an
1513 	 * alternative node to recheck if the tasks is now properly placed.
1514 	 */
1515 	p->numa_scan_period = task_scan_min(p);
1516 
1517 	if (env.best_task == NULL) {
1518 		ret = migrate_task_to(p, env.best_cpu);
1519 		if (ret != 0)
1520 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1521 		return ret;
1522 	}
1523 
1524 	ret = migrate_swap(p, env.best_task);
1525 	if (ret != 0)
1526 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1527 	put_task_struct(env.best_task);
1528 	return ret;
1529 }
1530 
1531 /* Attempt to migrate a task to a CPU on the preferred node. */
1532 static void numa_migrate_preferred(struct task_struct *p)
1533 {
1534 	unsigned long interval = HZ;
1535 
1536 	/* This task has no NUMA fault statistics yet */
1537 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1538 		return;
1539 
1540 	/* Periodically retry migrating the task to the preferred node */
1541 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1542 	p->numa_migrate_retry = jiffies + interval;
1543 
1544 	/* Success if task is already running on preferred CPU */
1545 	if (task_node(p) == p->numa_preferred_nid)
1546 		return;
1547 
1548 	/* Otherwise, try migrate to a CPU on the preferred node */
1549 	task_numa_migrate(p);
1550 }
1551 
1552 /*
1553  * Find the nodes on which the workload is actively running. We do this by
1554  * tracking the nodes from which NUMA hinting faults are triggered. This can
1555  * be different from the set of nodes where the workload's memory is currently
1556  * located.
1557  *
1558  * The bitmask is used to make smarter decisions on when to do NUMA page
1559  * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1560  * are added when they cause over 6/16 of the maximum number of faults, but
1561  * only removed when they drop below 3/16.
1562  */
1563 static void update_numa_active_node_mask(struct numa_group *numa_group)
1564 {
1565 	unsigned long faults, max_faults = 0;
1566 	int nid;
1567 
1568 	for_each_online_node(nid) {
1569 		faults = group_faults_cpu(numa_group, nid);
1570 		if (faults > max_faults)
1571 			max_faults = faults;
1572 	}
1573 
1574 	for_each_online_node(nid) {
1575 		faults = group_faults_cpu(numa_group, nid);
1576 		if (!node_isset(nid, numa_group->active_nodes)) {
1577 			if (faults > max_faults * 6 / 16)
1578 				node_set(nid, numa_group->active_nodes);
1579 		} else if (faults < max_faults * 3 / 16)
1580 			node_clear(nid, numa_group->active_nodes);
1581 	}
1582 }
1583 
1584 /*
1585  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1586  * increments. The more local the fault statistics are, the higher the scan
1587  * period will be for the next scan window. If local/(local+remote) ratio is
1588  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1589  * the scan period will decrease. Aim for 70% local accesses.
1590  */
1591 #define NUMA_PERIOD_SLOTS 10
1592 #define NUMA_PERIOD_THRESHOLD 7
1593 
1594 /*
1595  * Increase the scan period (slow down scanning) if the majority of
1596  * our memory is already on our local node, or if the majority of
1597  * the page accesses are shared with other processes.
1598  * Otherwise, decrease the scan period.
1599  */
1600 static void update_task_scan_period(struct task_struct *p,
1601 			unsigned long shared, unsigned long private)
1602 {
1603 	unsigned int period_slot;
1604 	int ratio;
1605 	int diff;
1606 
1607 	unsigned long remote = p->numa_faults_locality[0];
1608 	unsigned long local = p->numa_faults_locality[1];
1609 
1610 	/*
1611 	 * If there were no record hinting faults then either the task is
1612 	 * completely idle or all activity is areas that are not of interest
1613 	 * to automatic numa balancing. Scan slower
1614 	 */
1615 	if (local + shared == 0) {
1616 		p->numa_scan_period = min(p->numa_scan_period_max,
1617 			p->numa_scan_period << 1);
1618 
1619 		p->mm->numa_next_scan = jiffies +
1620 			msecs_to_jiffies(p->numa_scan_period);
1621 
1622 		return;
1623 	}
1624 
1625 	/*
1626 	 * Prepare to scale scan period relative to the current period.
1627 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1628 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1629 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1630 	 */
1631 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1632 	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1633 	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1634 		int slot = ratio - NUMA_PERIOD_THRESHOLD;
1635 		if (!slot)
1636 			slot = 1;
1637 		diff = slot * period_slot;
1638 	} else {
1639 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1640 
1641 		/*
1642 		 * Scale scan rate increases based on sharing. There is an
1643 		 * inverse relationship between the degree of sharing and
1644 		 * the adjustment made to the scanning period. Broadly
1645 		 * speaking the intent is that there is little point
1646 		 * scanning faster if shared accesses dominate as it may
1647 		 * simply bounce migrations uselessly
1648 		 */
1649 		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1650 		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1651 	}
1652 
1653 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1654 			task_scan_min(p), task_scan_max(p));
1655 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1656 }
1657 
1658 /*
1659  * Get the fraction of time the task has been running since the last
1660  * NUMA placement cycle. The scheduler keeps similar statistics, but
1661  * decays those on a 32ms period, which is orders of magnitude off
1662  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1663  * stats only if the task is so new there are no NUMA statistics yet.
1664  */
1665 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1666 {
1667 	u64 runtime, delta, now;
1668 	/* Use the start of this time slice to avoid calculations. */
1669 	now = p->se.exec_start;
1670 	runtime = p->se.sum_exec_runtime;
1671 
1672 	if (p->last_task_numa_placement) {
1673 		delta = runtime - p->last_sum_exec_runtime;
1674 		*period = now - p->last_task_numa_placement;
1675 	} else {
1676 		delta = p->se.avg.runnable_avg_sum;
1677 		*period = p->se.avg.runnable_avg_period;
1678 	}
1679 
1680 	p->last_sum_exec_runtime = runtime;
1681 	p->last_task_numa_placement = now;
1682 
1683 	return delta;
1684 }
1685 
1686 /*
1687  * Determine the preferred nid for a task in a numa_group. This needs to
1688  * be done in a way that produces consistent results with group_weight,
1689  * otherwise workloads might not converge.
1690  */
1691 static int preferred_group_nid(struct task_struct *p, int nid)
1692 {
1693 	nodemask_t nodes;
1694 	int dist;
1695 
1696 	/* Direct connections between all NUMA nodes. */
1697 	if (sched_numa_topology_type == NUMA_DIRECT)
1698 		return nid;
1699 
1700 	/*
1701 	 * On a system with glueless mesh NUMA topology, group_weight
1702 	 * scores nodes according to the number of NUMA hinting faults on
1703 	 * both the node itself, and on nearby nodes.
1704 	 */
1705 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1706 		unsigned long score, max_score = 0;
1707 		int node, max_node = nid;
1708 
1709 		dist = sched_max_numa_distance;
1710 
1711 		for_each_online_node(node) {
1712 			score = group_weight(p, node, dist);
1713 			if (score > max_score) {
1714 				max_score = score;
1715 				max_node = node;
1716 			}
1717 		}
1718 		return max_node;
1719 	}
1720 
1721 	/*
1722 	 * Finding the preferred nid in a system with NUMA backplane
1723 	 * interconnect topology is more involved. The goal is to locate
1724 	 * tasks from numa_groups near each other in the system, and
1725 	 * untangle workloads from different sides of the system. This requires
1726 	 * searching down the hierarchy of node groups, recursively searching
1727 	 * inside the highest scoring group of nodes. The nodemask tricks
1728 	 * keep the complexity of the search down.
1729 	 */
1730 	nodes = node_online_map;
1731 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1732 		unsigned long max_faults = 0;
1733 		nodemask_t max_group;
1734 		int a, b;
1735 
1736 		/* Are there nodes at this distance from each other? */
1737 		if (!find_numa_distance(dist))
1738 			continue;
1739 
1740 		for_each_node_mask(a, nodes) {
1741 			unsigned long faults = 0;
1742 			nodemask_t this_group;
1743 			nodes_clear(this_group);
1744 
1745 			/* Sum group's NUMA faults; includes a==b case. */
1746 			for_each_node_mask(b, nodes) {
1747 				if (node_distance(a, b) < dist) {
1748 					faults += group_faults(p, b);
1749 					node_set(b, this_group);
1750 					node_clear(b, nodes);
1751 				}
1752 			}
1753 
1754 			/* Remember the top group. */
1755 			if (faults > max_faults) {
1756 				max_faults = faults;
1757 				max_group = this_group;
1758 				/*
1759 				 * subtle: at the smallest distance there is
1760 				 * just one node left in each "group", the
1761 				 * winner is the preferred nid.
1762 				 */
1763 				nid = a;
1764 			}
1765 		}
1766 		/* Next round, evaluate the nodes within max_group. */
1767 		nodes = max_group;
1768 	}
1769 	return nid;
1770 }
1771 
1772 static void task_numa_placement(struct task_struct *p)
1773 {
1774 	int seq, nid, max_nid = -1, max_group_nid = -1;
1775 	unsigned long max_faults = 0, max_group_faults = 0;
1776 	unsigned long fault_types[2] = { 0, 0 };
1777 	unsigned long total_faults;
1778 	u64 runtime, period;
1779 	spinlock_t *group_lock = NULL;
1780 
1781 	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1782 	if (p->numa_scan_seq == seq)
1783 		return;
1784 	p->numa_scan_seq = seq;
1785 	p->numa_scan_period_max = task_scan_max(p);
1786 
1787 	total_faults = p->numa_faults_locality[0] +
1788 		       p->numa_faults_locality[1];
1789 	runtime = numa_get_avg_runtime(p, &period);
1790 
1791 	/* If the task is part of a group prevent parallel updates to group stats */
1792 	if (p->numa_group) {
1793 		group_lock = &p->numa_group->lock;
1794 		spin_lock_irq(group_lock);
1795 	}
1796 
1797 	/* Find the node with the highest number of faults */
1798 	for_each_online_node(nid) {
1799 		/* Keep track of the offsets in numa_faults array */
1800 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1801 		unsigned long faults = 0, group_faults = 0;
1802 		int priv;
1803 
1804 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1805 			long diff, f_diff, f_weight;
1806 
1807 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1808 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1809 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1810 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1811 
1812 			/* Decay existing window, copy faults since last scan */
1813 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1814 			fault_types[priv] += p->numa_faults[membuf_idx];
1815 			p->numa_faults[membuf_idx] = 0;
1816 
1817 			/*
1818 			 * Normalize the faults_from, so all tasks in a group
1819 			 * count according to CPU use, instead of by the raw
1820 			 * number of faults. Tasks with little runtime have
1821 			 * little over-all impact on throughput, and thus their
1822 			 * faults are less important.
1823 			 */
1824 			f_weight = div64_u64(runtime << 16, period + 1);
1825 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1826 				   (total_faults + 1);
1827 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1828 			p->numa_faults[cpubuf_idx] = 0;
1829 
1830 			p->numa_faults[mem_idx] += diff;
1831 			p->numa_faults[cpu_idx] += f_diff;
1832 			faults += p->numa_faults[mem_idx];
1833 			p->total_numa_faults += diff;
1834 			if (p->numa_group) {
1835 				/*
1836 				 * safe because we can only change our own group
1837 				 *
1838 				 * mem_idx represents the offset for a given
1839 				 * nid and priv in a specific region because it
1840 				 * is at the beginning of the numa_faults array.
1841 				 */
1842 				p->numa_group->faults[mem_idx] += diff;
1843 				p->numa_group->faults_cpu[mem_idx] += f_diff;
1844 				p->numa_group->total_faults += diff;
1845 				group_faults += p->numa_group->faults[mem_idx];
1846 			}
1847 		}
1848 
1849 		if (faults > max_faults) {
1850 			max_faults = faults;
1851 			max_nid = nid;
1852 		}
1853 
1854 		if (group_faults > max_group_faults) {
1855 			max_group_faults = group_faults;
1856 			max_group_nid = nid;
1857 		}
1858 	}
1859 
1860 	update_task_scan_period(p, fault_types[0], fault_types[1]);
1861 
1862 	if (p->numa_group) {
1863 		update_numa_active_node_mask(p->numa_group);
1864 		spin_unlock_irq(group_lock);
1865 		max_nid = preferred_group_nid(p, max_group_nid);
1866 	}
1867 
1868 	if (max_faults) {
1869 		/* Set the new preferred node */
1870 		if (max_nid != p->numa_preferred_nid)
1871 			sched_setnuma(p, max_nid);
1872 
1873 		if (task_node(p) != p->numa_preferred_nid)
1874 			numa_migrate_preferred(p);
1875 	}
1876 }
1877 
1878 static inline int get_numa_group(struct numa_group *grp)
1879 {
1880 	return atomic_inc_not_zero(&grp->refcount);
1881 }
1882 
1883 static inline void put_numa_group(struct numa_group *grp)
1884 {
1885 	if (atomic_dec_and_test(&grp->refcount))
1886 		kfree_rcu(grp, rcu);
1887 }
1888 
1889 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1890 			int *priv)
1891 {
1892 	struct numa_group *grp, *my_grp;
1893 	struct task_struct *tsk;
1894 	bool join = false;
1895 	int cpu = cpupid_to_cpu(cpupid);
1896 	int i;
1897 
1898 	if (unlikely(!p->numa_group)) {
1899 		unsigned int size = sizeof(struct numa_group) +
1900 				    4*nr_node_ids*sizeof(unsigned long);
1901 
1902 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1903 		if (!grp)
1904 			return;
1905 
1906 		atomic_set(&grp->refcount, 1);
1907 		spin_lock_init(&grp->lock);
1908 		grp->gid = p->pid;
1909 		/* Second half of the array tracks nids where faults happen */
1910 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1911 						nr_node_ids;
1912 
1913 		node_set(task_node(current), grp->active_nodes);
1914 
1915 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1916 			grp->faults[i] = p->numa_faults[i];
1917 
1918 		grp->total_faults = p->total_numa_faults;
1919 
1920 		grp->nr_tasks++;
1921 		rcu_assign_pointer(p->numa_group, grp);
1922 	}
1923 
1924 	rcu_read_lock();
1925 	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1926 
1927 	if (!cpupid_match_pid(tsk, cpupid))
1928 		goto no_join;
1929 
1930 	grp = rcu_dereference(tsk->numa_group);
1931 	if (!grp)
1932 		goto no_join;
1933 
1934 	my_grp = p->numa_group;
1935 	if (grp == my_grp)
1936 		goto no_join;
1937 
1938 	/*
1939 	 * Only join the other group if its bigger; if we're the bigger group,
1940 	 * the other task will join us.
1941 	 */
1942 	if (my_grp->nr_tasks > grp->nr_tasks)
1943 		goto no_join;
1944 
1945 	/*
1946 	 * Tie-break on the grp address.
1947 	 */
1948 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1949 		goto no_join;
1950 
1951 	/* Always join threads in the same process. */
1952 	if (tsk->mm == current->mm)
1953 		join = true;
1954 
1955 	/* Simple filter to avoid false positives due to PID collisions */
1956 	if (flags & TNF_SHARED)
1957 		join = true;
1958 
1959 	/* Update priv based on whether false sharing was detected */
1960 	*priv = !join;
1961 
1962 	if (join && !get_numa_group(grp))
1963 		goto no_join;
1964 
1965 	rcu_read_unlock();
1966 
1967 	if (!join)
1968 		return;
1969 
1970 	BUG_ON(irqs_disabled());
1971 	double_lock_irq(&my_grp->lock, &grp->lock);
1972 
1973 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1974 		my_grp->faults[i] -= p->numa_faults[i];
1975 		grp->faults[i] += p->numa_faults[i];
1976 	}
1977 	my_grp->total_faults -= p->total_numa_faults;
1978 	grp->total_faults += p->total_numa_faults;
1979 
1980 	my_grp->nr_tasks--;
1981 	grp->nr_tasks++;
1982 
1983 	spin_unlock(&my_grp->lock);
1984 	spin_unlock_irq(&grp->lock);
1985 
1986 	rcu_assign_pointer(p->numa_group, grp);
1987 
1988 	put_numa_group(my_grp);
1989 	return;
1990 
1991 no_join:
1992 	rcu_read_unlock();
1993 	return;
1994 }
1995 
1996 void task_numa_free(struct task_struct *p)
1997 {
1998 	struct numa_group *grp = p->numa_group;
1999 	void *numa_faults = p->numa_faults;
2000 	unsigned long flags;
2001 	int i;
2002 
2003 	if (grp) {
2004 		spin_lock_irqsave(&grp->lock, flags);
2005 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2006 			grp->faults[i] -= p->numa_faults[i];
2007 		grp->total_faults -= p->total_numa_faults;
2008 
2009 		grp->nr_tasks--;
2010 		spin_unlock_irqrestore(&grp->lock, flags);
2011 		RCU_INIT_POINTER(p->numa_group, NULL);
2012 		put_numa_group(grp);
2013 	}
2014 
2015 	p->numa_faults = NULL;
2016 	kfree(numa_faults);
2017 }
2018 
2019 /*
2020  * Got a PROT_NONE fault for a page on @node.
2021  */
2022 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2023 {
2024 	struct task_struct *p = current;
2025 	bool migrated = flags & TNF_MIGRATED;
2026 	int cpu_node = task_node(current);
2027 	int local = !!(flags & TNF_FAULT_LOCAL);
2028 	int priv;
2029 
2030 	if (!numabalancing_enabled)
2031 		return;
2032 
2033 	/* for example, ksmd faulting in a user's mm */
2034 	if (!p->mm)
2035 		return;
2036 
2037 	/* Allocate buffer to track faults on a per-node basis */
2038 	if (unlikely(!p->numa_faults)) {
2039 		int size = sizeof(*p->numa_faults) *
2040 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2041 
2042 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2043 		if (!p->numa_faults)
2044 			return;
2045 
2046 		p->total_numa_faults = 0;
2047 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2048 	}
2049 
2050 	/*
2051 	 * First accesses are treated as private, otherwise consider accesses
2052 	 * to be private if the accessing pid has not changed
2053 	 */
2054 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2055 		priv = 1;
2056 	} else {
2057 		priv = cpupid_match_pid(p, last_cpupid);
2058 		if (!priv && !(flags & TNF_NO_GROUP))
2059 			task_numa_group(p, last_cpupid, flags, &priv);
2060 	}
2061 
2062 	/*
2063 	 * If a workload spans multiple NUMA nodes, a shared fault that
2064 	 * occurs wholly within the set of nodes that the workload is
2065 	 * actively using should be counted as local. This allows the
2066 	 * scan rate to slow down when a workload has settled down.
2067 	 */
2068 	if (!priv && !local && p->numa_group &&
2069 			node_isset(cpu_node, p->numa_group->active_nodes) &&
2070 			node_isset(mem_node, p->numa_group->active_nodes))
2071 		local = 1;
2072 
2073 	task_numa_placement(p);
2074 
2075 	/*
2076 	 * Retry task to preferred node migration periodically, in case it
2077 	 * case it previously failed, or the scheduler moved us.
2078 	 */
2079 	if (time_after(jiffies, p->numa_migrate_retry))
2080 		numa_migrate_preferred(p);
2081 
2082 	if (migrated)
2083 		p->numa_pages_migrated += pages;
2084 
2085 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2086 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2087 	p->numa_faults_locality[local] += pages;
2088 }
2089 
2090 static void reset_ptenuma_scan(struct task_struct *p)
2091 {
2092 	ACCESS_ONCE(p->mm->numa_scan_seq)++;
2093 	p->mm->numa_scan_offset = 0;
2094 }
2095 
2096 /*
2097  * The expensive part of numa migration is done from task_work context.
2098  * Triggered from task_tick_numa().
2099  */
2100 void task_numa_work(struct callback_head *work)
2101 {
2102 	unsigned long migrate, next_scan, now = jiffies;
2103 	struct task_struct *p = current;
2104 	struct mm_struct *mm = p->mm;
2105 	struct vm_area_struct *vma;
2106 	unsigned long start, end;
2107 	unsigned long nr_pte_updates = 0;
2108 	long pages;
2109 
2110 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2111 
2112 	work->next = work; /* protect against double add */
2113 	/*
2114 	 * Who cares about NUMA placement when they're dying.
2115 	 *
2116 	 * NOTE: make sure not to dereference p->mm before this check,
2117 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2118 	 * without p->mm even though we still had it when we enqueued this
2119 	 * work.
2120 	 */
2121 	if (p->flags & PF_EXITING)
2122 		return;
2123 
2124 	if (!mm->numa_next_scan) {
2125 		mm->numa_next_scan = now +
2126 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2127 	}
2128 
2129 	/*
2130 	 * Enforce maximal scan/migration frequency..
2131 	 */
2132 	migrate = mm->numa_next_scan;
2133 	if (time_before(now, migrate))
2134 		return;
2135 
2136 	if (p->numa_scan_period == 0) {
2137 		p->numa_scan_period_max = task_scan_max(p);
2138 		p->numa_scan_period = task_scan_min(p);
2139 	}
2140 
2141 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2142 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2143 		return;
2144 
2145 	/*
2146 	 * Delay this task enough that another task of this mm will likely win
2147 	 * the next time around.
2148 	 */
2149 	p->node_stamp += 2 * TICK_NSEC;
2150 
2151 	start = mm->numa_scan_offset;
2152 	pages = sysctl_numa_balancing_scan_size;
2153 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2154 	if (!pages)
2155 		return;
2156 
2157 	down_read(&mm->mmap_sem);
2158 	vma = find_vma(mm, start);
2159 	if (!vma) {
2160 		reset_ptenuma_scan(p);
2161 		start = 0;
2162 		vma = mm->mmap;
2163 	}
2164 	for (; vma; vma = vma->vm_next) {
2165 		if (!vma_migratable(vma) || !vma_policy_mof(vma))
2166 			continue;
2167 
2168 		/*
2169 		 * Shared library pages mapped by multiple processes are not
2170 		 * migrated as it is expected they are cache replicated. Avoid
2171 		 * hinting faults in read-only file-backed mappings or the vdso
2172 		 * as migrating the pages will be of marginal benefit.
2173 		 */
2174 		if (!vma->vm_mm ||
2175 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2176 			continue;
2177 
2178 		/*
2179 		 * Skip inaccessible VMAs to avoid any confusion between
2180 		 * PROT_NONE and NUMA hinting ptes
2181 		 */
2182 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2183 			continue;
2184 
2185 		do {
2186 			start = max(start, vma->vm_start);
2187 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2188 			end = min(end, vma->vm_end);
2189 			nr_pte_updates += change_prot_numa(vma, start, end);
2190 
2191 			/*
2192 			 * Scan sysctl_numa_balancing_scan_size but ensure that
2193 			 * at least one PTE is updated so that unused virtual
2194 			 * address space is quickly skipped.
2195 			 */
2196 			if (nr_pte_updates)
2197 				pages -= (end - start) >> PAGE_SHIFT;
2198 
2199 			start = end;
2200 			if (pages <= 0)
2201 				goto out;
2202 
2203 			cond_resched();
2204 		} while (end != vma->vm_end);
2205 	}
2206 
2207 out:
2208 	/*
2209 	 * It is possible to reach the end of the VMA list but the last few
2210 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2211 	 * would find the !migratable VMA on the next scan but not reset the
2212 	 * scanner to the start so check it now.
2213 	 */
2214 	if (vma)
2215 		mm->numa_scan_offset = start;
2216 	else
2217 		reset_ptenuma_scan(p);
2218 	up_read(&mm->mmap_sem);
2219 }
2220 
2221 /*
2222  * Drive the periodic memory faults..
2223  */
2224 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2225 {
2226 	struct callback_head *work = &curr->numa_work;
2227 	u64 period, now;
2228 
2229 	/*
2230 	 * We don't care about NUMA placement if we don't have memory.
2231 	 */
2232 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2233 		return;
2234 
2235 	/*
2236 	 * Using runtime rather than walltime has the dual advantage that
2237 	 * we (mostly) drive the selection from busy threads and that the
2238 	 * task needs to have done some actual work before we bother with
2239 	 * NUMA placement.
2240 	 */
2241 	now = curr->se.sum_exec_runtime;
2242 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2243 
2244 	if (now - curr->node_stamp > period) {
2245 		if (!curr->node_stamp)
2246 			curr->numa_scan_period = task_scan_min(curr);
2247 		curr->node_stamp += period;
2248 
2249 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2250 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2251 			task_work_add(curr, work, true);
2252 		}
2253 	}
2254 }
2255 #else
2256 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2257 {
2258 }
2259 
2260 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2261 {
2262 }
2263 
2264 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2265 {
2266 }
2267 #endif /* CONFIG_NUMA_BALANCING */
2268 
2269 static void
2270 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2271 {
2272 	update_load_add(&cfs_rq->load, se->load.weight);
2273 	if (!parent_entity(se))
2274 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2275 #ifdef CONFIG_SMP
2276 	if (entity_is_task(se)) {
2277 		struct rq *rq = rq_of(cfs_rq);
2278 
2279 		account_numa_enqueue(rq, task_of(se));
2280 		list_add(&se->group_node, &rq->cfs_tasks);
2281 	}
2282 #endif
2283 	cfs_rq->nr_running++;
2284 }
2285 
2286 static void
2287 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2288 {
2289 	update_load_sub(&cfs_rq->load, se->load.weight);
2290 	if (!parent_entity(se))
2291 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2292 	if (entity_is_task(se)) {
2293 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2294 		list_del_init(&se->group_node);
2295 	}
2296 	cfs_rq->nr_running--;
2297 }
2298 
2299 #ifdef CONFIG_FAIR_GROUP_SCHED
2300 # ifdef CONFIG_SMP
2301 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2302 {
2303 	long tg_weight;
2304 
2305 	/*
2306 	 * Use this CPU's actual weight instead of the last load_contribution
2307 	 * to gain a more accurate current total weight. See
2308 	 * update_cfs_rq_load_contribution().
2309 	 */
2310 	tg_weight = atomic_long_read(&tg->load_avg);
2311 	tg_weight -= cfs_rq->tg_load_contrib;
2312 	tg_weight += cfs_rq->load.weight;
2313 
2314 	return tg_weight;
2315 }
2316 
2317 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2318 {
2319 	long tg_weight, load, shares;
2320 
2321 	tg_weight = calc_tg_weight(tg, cfs_rq);
2322 	load = cfs_rq->load.weight;
2323 
2324 	shares = (tg->shares * load);
2325 	if (tg_weight)
2326 		shares /= tg_weight;
2327 
2328 	if (shares < MIN_SHARES)
2329 		shares = MIN_SHARES;
2330 	if (shares > tg->shares)
2331 		shares = tg->shares;
2332 
2333 	return shares;
2334 }
2335 # else /* CONFIG_SMP */
2336 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2337 {
2338 	return tg->shares;
2339 }
2340 # endif /* CONFIG_SMP */
2341 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2342 			    unsigned long weight)
2343 {
2344 	if (se->on_rq) {
2345 		/* commit outstanding execution time */
2346 		if (cfs_rq->curr == se)
2347 			update_curr(cfs_rq);
2348 		account_entity_dequeue(cfs_rq, se);
2349 	}
2350 
2351 	update_load_set(&se->load, weight);
2352 
2353 	if (se->on_rq)
2354 		account_entity_enqueue(cfs_rq, se);
2355 }
2356 
2357 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2358 
2359 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2360 {
2361 	struct task_group *tg;
2362 	struct sched_entity *se;
2363 	long shares;
2364 
2365 	tg = cfs_rq->tg;
2366 	se = tg->se[cpu_of(rq_of(cfs_rq))];
2367 	if (!se || throttled_hierarchy(cfs_rq))
2368 		return;
2369 #ifndef CONFIG_SMP
2370 	if (likely(se->load.weight == tg->shares))
2371 		return;
2372 #endif
2373 	shares = calc_cfs_shares(cfs_rq, tg);
2374 
2375 	reweight_entity(cfs_rq_of(se), se, shares);
2376 }
2377 #else /* CONFIG_FAIR_GROUP_SCHED */
2378 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2379 {
2380 }
2381 #endif /* CONFIG_FAIR_GROUP_SCHED */
2382 
2383 #ifdef CONFIG_SMP
2384 /*
2385  * We choose a half-life close to 1 scheduling period.
2386  * Note: The tables below are dependent on this value.
2387  */
2388 #define LOAD_AVG_PERIOD 32
2389 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2390 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2391 
2392 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2393 static const u32 runnable_avg_yN_inv[] = {
2394 	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2395 	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2396 	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2397 	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2398 	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2399 	0x85aac367, 0x82cd8698,
2400 };
2401 
2402 /*
2403  * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2404  * over-estimates when re-combining.
2405  */
2406 static const u32 runnable_avg_yN_sum[] = {
2407 	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2408 	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2409 	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2410 };
2411 
2412 /*
2413  * Approximate:
2414  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2415  */
2416 static __always_inline u64 decay_load(u64 val, u64 n)
2417 {
2418 	unsigned int local_n;
2419 
2420 	if (!n)
2421 		return val;
2422 	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2423 		return 0;
2424 
2425 	/* after bounds checking we can collapse to 32-bit */
2426 	local_n = n;
2427 
2428 	/*
2429 	 * As y^PERIOD = 1/2, we can combine
2430 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2431 	 * With a look-up table which covers y^n (n<PERIOD)
2432 	 *
2433 	 * To achieve constant time decay_load.
2434 	 */
2435 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2436 		val >>= local_n / LOAD_AVG_PERIOD;
2437 		local_n %= LOAD_AVG_PERIOD;
2438 	}
2439 
2440 	val *= runnable_avg_yN_inv[local_n];
2441 	/* We don't use SRR here since we always want to round down. */
2442 	return val >> 32;
2443 }
2444 
2445 /*
2446  * For updates fully spanning n periods, the contribution to runnable
2447  * average will be: \Sum 1024*y^n
2448  *
2449  * We can compute this reasonably efficiently by combining:
2450  *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2451  */
2452 static u32 __compute_runnable_contrib(u64 n)
2453 {
2454 	u32 contrib = 0;
2455 
2456 	if (likely(n <= LOAD_AVG_PERIOD))
2457 		return runnable_avg_yN_sum[n];
2458 	else if (unlikely(n >= LOAD_AVG_MAX_N))
2459 		return LOAD_AVG_MAX;
2460 
2461 	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2462 	do {
2463 		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2464 		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2465 
2466 		n -= LOAD_AVG_PERIOD;
2467 	} while (n > LOAD_AVG_PERIOD);
2468 
2469 	contrib = decay_load(contrib, n);
2470 	return contrib + runnable_avg_yN_sum[n];
2471 }
2472 
2473 /*
2474  * We can represent the historical contribution to runnable average as the
2475  * coefficients of a geometric series.  To do this we sub-divide our runnable
2476  * history into segments of approximately 1ms (1024us); label the segment that
2477  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2478  *
2479  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2480  *      p0            p1           p2
2481  *     (now)       (~1ms ago)  (~2ms ago)
2482  *
2483  * Let u_i denote the fraction of p_i that the entity was runnable.
2484  *
2485  * We then designate the fractions u_i as our co-efficients, yielding the
2486  * following representation of historical load:
2487  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2488  *
2489  * We choose y based on the with of a reasonably scheduling period, fixing:
2490  *   y^32 = 0.5
2491  *
2492  * This means that the contribution to load ~32ms ago (u_32) will be weighted
2493  * approximately half as much as the contribution to load within the last ms
2494  * (u_0).
2495  *
2496  * When a period "rolls over" and we have new u_0`, multiplying the previous
2497  * sum again by y is sufficient to update:
2498  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2499  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2500  */
2501 static __always_inline int __update_entity_runnable_avg(u64 now,
2502 							struct sched_avg *sa,
2503 							int runnable)
2504 {
2505 	u64 delta, periods;
2506 	u32 runnable_contrib;
2507 	int delta_w, decayed = 0;
2508 
2509 	delta = now - sa->last_runnable_update;
2510 	/*
2511 	 * This should only happen when time goes backwards, which it
2512 	 * unfortunately does during sched clock init when we swap over to TSC.
2513 	 */
2514 	if ((s64)delta < 0) {
2515 		sa->last_runnable_update = now;
2516 		return 0;
2517 	}
2518 
2519 	/*
2520 	 * Use 1024ns as the unit of measurement since it's a reasonable
2521 	 * approximation of 1us and fast to compute.
2522 	 */
2523 	delta >>= 10;
2524 	if (!delta)
2525 		return 0;
2526 	sa->last_runnable_update = now;
2527 
2528 	/* delta_w is the amount already accumulated against our next period */
2529 	delta_w = sa->runnable_avg_period % 1024;
2530 	if (delta + delta_w >= 1024) {
2531 		/* period roll-over */
2532 		decayed = 1;
2533 
2534 		/*
2535 		 * Now that we know we're crossing a period boundary, figure
2536 		 * out how much from delta we need to complete the current
2537 		 * period and accrue it.
2538 		 */
2539 		delta_w = 1024 - delta_w;
2540 		if (runnable)
2541 			sa->runnable_avg_sum += delta_w;
2542 		sa->runnable_avg_period += delta_w;
2543 
2544 		delta -= delta_w;
2545 
2546 		/* Figure out how many additional periods this update spans */
2547 		periods = delta / 1024;
2548 		delta %= 1024;
2549 
2550 		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2551 						  periods + 1);
2552 		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2553 						     periods + 1);
2554 
2555 		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2556 		runnable_contrib = __compute_runnable_contrib(periods);
2557 		if (runnable)
2558 			sa->runnable_avg_sum += runnable_contrib;
2559 		sa->runnable_avg_period += runnable_contrib;
2560 	}
2561 
2562 	/* Remainder of delta accrued against u_0` */
2563 	if (runnable)
2564 		sa->runnable_avg_sum += delta;
2565 	sa->runnable_avg_period += delta;
2566 
2567 	return decayed;
2568 }
2569 
2570 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2571 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2572 {
2573 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2574 	u64 decays = atomic64_read(&cfs_rq->decay_counter);
2575 
2576 	decays -= se->avg.decay_count;
2577 	if (!decays)
2578 		return 0;
2579 
2580 	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2581 	se->avg.decay_count = 0;
2582 
2583 	return decays;
2584 }
2585 
2586 #ifdef CONFIG_FAIR_GROUP_SCHED
2587 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2588 						 int force_update)
2589 {
2590 	struct task_group *tg = cfs_rq->tg;
2591 	long tg_contrib;
2592 
2593 	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2594 	tg_contrib -= cfs_rq->tg_load_contrib;
2595 
2596 	if (!tg_contrib)
2597 		return;
2598 
2599 	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2600 		atomic_long_add(tg_contrib, &tg->load_avg);
2601 		cfs_rq->tg_load_contrib += tg_contrib;
2602 	}
2603 }
2604 
2605 /*
2606  * Aggregate cfs_rq runnable averages into an equivalent task_group
2607  * representation for computing load contributions.
2608  */
2609 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2610 						  struct cfs_rq *cfs_rq)
2611 {
2612 	struct task_group *tg = cfs_rq->tg;
2613 	long contrib;
2614 
2615 	/* The fraction of a cpu used by this cfs_rq */
2616 	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2617 			  sa->runnable_avg_period + 1);
2618 	contrib -= cfs_rq->tg_runnable_contrib;
2619 
2620 	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2621 		atomic_add(contrib, &tg->runnable_avg);
2622 		cfs_rq->tg_runnable_contrib += contrib;
2623 	}
2624 }
2625 
2626 static inline void __update_group_entity_contrib(struct sched_entity *se)
2627 {
2628 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
2629 	struct task_group *tg = cfs_rq->tg;
2630 	int runnable_avg;
2631 
2632 	u64 contrib;
2633 
2634 	contrib = cfs_rq->tg_load_contrib * tg->shares;
2635 	se->avg.load_avg_contrib = div_u64(contrib,
2636 				     atomic_long_read(&tg->load_avg) + 1);
2637 
2638 	/*
2639 	 * For group entities we need to compute a correction term in the case
2640 	 * that they are consuming <1 cpu so that we would contribute the same
2641 	 * load as a task of equal weight.
2642 	 *
2643 	 * Explicitly co-ordinating this measurement would be expensive, but
2644 	 * fortunately the sum of each cpus contribution forms a usable
2645 	 * lower-bound on the true value.
2646 	 *
2647 	 * Consider the aggregate of 2 contributions.  Either they are disjoint
2648 	 * (and the sum represents true value) or they are disjoint and we are
2649 	 * understating by the aggregate of their overlap.
2650 	 *
2651 	 * Extending this to N cpus, for a given overlap, the maximum amount we
2652 	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2653 	 * cpus that overlap for this interval and w_i is the interval width.
2654 	 *
2655 	 * On a small machine; the first term is well-bounded which bounds the
2656 	 * total error since w_i is a subset of the period.  Whereas on a
2657 	 * larger machine, while this first term can be larger, if w_i is the
2658 	 * of consequential size guaranteed to see n_i*w_i quickly converge to
2659 	 * our upper bound of 1-cpu.
2660 	 */
2661 	runnable_avg = atomic_read(&tg->runnable_avg);
2662 	if (runnable_avg < NICE_0_LOAD) {
2663 		se->avg.load_avg_contrib *= runnable_avg;
2664 		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2665 	}
2666 }
2667 
2668 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2669 {
2670 	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2671 	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
2672 }
2673 #else /* CONFIG_FAIR_GROUP_SCHED */
2674 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2675 						 int force_update) {}
2676 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2677 						  struct cfs_rq *cfs_rq) {}
2678 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2679 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2680 #endif /* CONFIG_FAIR_GROUP_SCHED */
2681 
2682 static inline void __update_task_entity_contrib(struct sched_entity *se)
2683 {
2684 	u32 contrib;
2685 
2686 	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2687 	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2688 	contrib /= (se->avg.runnable_avg_period + 1);
2689 	se->avg.load_avg_contrib = scale_load(contrib);
2690 }
2691 
2692 /* Compute the current contribution to load_avg by se, return any delta */
2693 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2694 {
2695 	long old_contrib = se->avg.load_avg_contrib;
2696 
2697 	if (entity_is_task(se)) {
2698 		__update_task_entity_contrib(se);
2699 	} else {
2700 		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2701 		__update_group_entity_contrib(se);
2702 	}
2703 
2704 	return se->avg.load_avg_contrib - old_contrib;
2705 }
2706 
2707 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2708 						 long load_contrib)
2709 {
2710 	if (likely(load_contrib < cfs_rq->blocked_load_avg))
2711 		cfs_rq->blocked_load_avg -= load_contrib;
2712 	else
2713 		cfs_rq->blocked_load_avg = 0;
2714 }
2715 
2716 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2717 
2718 /* Update a sched_entity's runnable average */
2719 static inline void update_entity_load_avg(struct sched_entity *se,
2720 					  int update_cfs_rq)
2721 {
2722 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2723 	long contrib_delta;
2724 	u64 now;
2725 
2726 	/*
2727 	 * For a group entity we need to use their owned cfs_rq_clock_task() in
2728 	 * case they are the parent of a throttled hierarchy.
2729 	 */
2730 	if (entity_is_task(se))
2731 		now = cfs_rq_clock_task(cfs_rq);
2732 	else
2733 		now = cfs_rq_clock_task(group_cfs_rq(se));
2734 
2735 	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2736 		return;
2737 
2738 	contrib_delta = __update_entity_load_avg_contrib(se);
2739 
2740 	if (!update_cfs_rq)
2741 		return;
2742 
2743 	if (se->on_rq)
2744 		cfs_rq->runnable_load_avg += contrib_delta;
2745 	else
2746 		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2747 }
2748 
2749 /*
2750  * Decay the load contributed by all blocked children and account this so that
2751  * their contribution may appropriately discounted when they wake up.
2752  */
2753 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2754 {
2755 	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2756 	u64 decays;
2757 
2758 	decays = now - cfs_rq->last_decay;
2759 	if (!decays && !force_update)
2760 		return;
2761 
2762 	if (atomic_long_read(&cfs_rq->removed_load)) {
2763 		unsigned long removed_load;
2764 		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2765 		subtract_blocked_load_contrib(cfs_rq, removed_load);
2766 	}
2767 
2768 	if (decays) {
2769 		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2770 						      decays);
2771 		atomic64_add(decays, &cfs_rq->decay_counter);
2772 		cfs_rq->last_decay = now;
2773 	}
2774 
2775 	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2776 }
2777 
2778 /* Add the load generated by se into cfs_rq's child load-average */
2779 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2780 						  struct sched_entity *se,
2781 						  int wakeup)
2782 {
2783 	/*
2784 	 * We track migrations using entity decay_count <= 0, on a wake-up
2785 	 * migration we use a negative decay count to track the remote decays
2786 	 * accumulated while sleeping.
2787 	 *
2788 	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2789 	 * are seen by enqueue_entity_load_avg() as a migration with an already
2790 	 * constructed load_avg_contrib.
2791 	 */
2792 	if (unlikely(se->avg.decay_count <= 0)) {
2793 		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2794 		if (se->avg.decay_count) {
2795 			/*
2796 			 * In a wake-up migration we have to approximate the
2797 			 * time sleeping.  This is because we can't synchronize
2798 			 * clock_task between the two cpus, and it is not
2799 			 * guaranteed to be read-safe.  Instead, we can
2800 			 * approximate this using our carried decays, which are
2801 			 * explicitly atomically readable.
2802 			 */
2803 			se->avg.last_runnable_update -= (-se->avg.decay_count)
2804 							<< 20;
2805 			update_entity_load_avg(se, 0);
2806 			/* Indicate that we're now synchronized and on-rq */
2807 			se->avg.decay_count = 0;
2808 		}
2809 		wakeup = 0;
2810 	} else {
2811 		__synchronize_entity_decay(se);
2812 	}
2813 
2814 	/* migrated tasks did not contribute to our blocked load */
2815 	if (wakeup) {
2816 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2817 		update_entity_load_avg(se, 0);
2818 	}
2819 
2820 	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2821 	/* we force update consideration on load-balancer moves */
2822 	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2823 }
2824 
2825 /*
2826  * Remove se's load from this cfs_rq child load-average, if the entity is
2827  * transitioning to a blocked state we track its projected decay using
2828  * blocked_load_avg.
2829  */
2830 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2831 						  struct sched_entity *se,
2832 						  int sleep)
2833 {
2834 	update_entity_load_avg(se, 1);
2835 	/* we force update consideration on load-balancer moves */
2836 	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2837 
2838 	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2839 	if (sleep) {
2840 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2841 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2842 	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2843 }
2844 
2845 /*
2846  * Update the rq's load with the elapsed running time before entering
2847  * idle. if the last scheduled task is not a CFS task, idle_enter will
2848  * be the only way to update the runnable statistic.
2849  */
2850 void idle_enter_fair(struct rq *this_rq)
2851 {
2852 	update_rq_runnable_avg(this_rq, 1);
2853 }
2854 
2855 /*
2856  * Update the rq's load with the elapsed idle time before a task is
2857  * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2858  * be the only way to update the runnable statistic.
2859  */
2860 void idle_exit_fair(struct rq *this_rq)
2861 {
2862 	update_rq_runnable_avg(this_rq, 0);
2863 }
2864 
2865 static int idle_balance(struct rq *this_rq);
2866 
2867 #else /* CONFIG_SMP */
2868 
2869 static inline void update_entity_load_avg(struct sched_entity *se,
2870 					  int update_cfs_rq) {}
2871 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2872 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2873 					   struct sched_entity *se,
2874 					   int wakeup) {}
2875 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2876 					   struct sched_entity *se,
2877 					   int sleep) {}
2878 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2879 					      int force_update) {}
2880 
2881 static inline int idle_balance(struct rq *rq)
2882 {
2883 	return 0;
2884 }
2885 
2886 #endif /* CONFIG_SMP */
2887 
2888 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2889 {
2890 #ifdef CONFIG_SCHEDSTATS
2891 	struct task_struct *tsk = NULL;
2892 
2893 	if (entity_is_task(se))
2894 		tsk = task_of(se);
2895 
2896 	if (se->statistics.sleep_start) {
2897 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2898 
2899 		if ((s64)delta < 0)
2900 			delta = 0;
2901 
2902 		if (unlikely(delta > se->statistics.sleep_max))
2903 			se->statistics.sleep_max = delta;
2904 
2905 		se->statistics.sleep_start = 0;
2906 		se->statistics.sum_sleep_runtime += delta;
2907 
2908 		if (tsk) {
2909 			account_scheduler_latency(tsk, delta >> 10, 1);
2910 			trace_sched_stat_sleep(tsk, delta);
2911 		}
2912 	}
2913 	if (se->statistics.block_start) {
2914 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2915 
2916 		if ((s64)delta < 0)
2917 			delta = 0;
2918 
2919 		if (unlikely(delta > se->statistics.block_max))
2920 			se->statistics.block_max = delta;
2921 
2922 		se->statistics.block_start = 0;
2923 		se->statistics.sum_sleep_runtime += delta;
2924 
2925 		if (tsk) {
2926 			if (tsk->in_iowait) {
2927 				se->statistics.iowait_sum += delta;
2928 				se->statistics.iowait_count++;
2929 				trace_sched_stat_iowait(tsk, delta);
2930 			}
2931 
2932 			trace_sched_stat_blocked(tsk, delta);
2933 
2934 			/*
2935 			 * Blocking time is in units of nanosecs, so shift by
2936 			 * 20 to get a milliseconds-range estimation of the
2937 			 * amount of time that the task spent sleeping:
2938 			 */
2939 			if (unlikely(prof_on == SLEEP_PROFILING)) {
2940 				profile_hits(SLEEP_PROFILING,
2941 						(void *)get_wchan(tsk),
2942 						delta >> 20);
2943 			}
2944 			account_scheduler_latency(tsk, delta >> 10, 0);
2945 		}
2946 	}
2947 #endif
2948 }
2949 
2950 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2951 {
2952 #ifdef CONFIG_SCHED_DEBUG
2953 	s64 d = se->vruntime - cfs_rq->min_vruntime;
2954 
2955 	if (d < 0)
2956 		d = -d;
2957 
2958 	if (d > 3*sysctl_sched_latency)
2959 		schedstat_inc(cfs_rq, nr_spread_over);
2960 #endif
2961 }
2962 
2963 static void
2964 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2965 {
2966 	u64 vruntime = cfs_rq->min_vruntime;
2967 
2968 	/*
2969 	 * The 'current' period is already promised to the current tasks,
2970 	 * however the extra weight of the new task will slow them down a
2971 	 * little, place the new task so that it fits in the slot that
2972 	 * stays open at the end.
2973 	 */
2974 	if (initial && sched_feat(START_DEBIT))
2975 		vruntime += sched_vslice(cfs_rq, se);
2976 
2977 	/* sleeps up to a single latency don't count. */
2978 	if (!initial) {
2979 		unsigned long thresh = sysctl_sched_latency;
2980 
2981 		/*
2982 		 * Halve their sleep time's effect, to allow
2983 		 * for a gentler effect of sleepers:
2984 		 */
2985 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
2986 			thresh >>= 1;
2987 
2988 		vruntime -= thresh;
2989 	}
2990 
2991 	/* ensure we never gain time by being placed backwards. */
2992 	se->vruntime = max_vruntime(se->vruntime, vruntime);
2993 }
2994 
2995 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2996 
2997 static void
2998 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2999 {
3000 	/*
3001 	 * Update the normalized vruntime before updating min_vruntime
3002 	 * through calling update_curr().
3003 	 */
3004 	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3005 		se->vruntime += cfs_rq->min_vruntime;
3006 
3007 	/*
3008 	 * Update run-time statistics of the 'current'.
3009 	 */
3010 	update_curr(cfs_rq);
3011 	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
3012 	account_entity_enqueue(cfs_rq, se);
3013 	update_cfs_shares(cfs_rq);
3014 
3015 	if (flags & ENQUEUE_WAKEUP) {
3016 		place_entity(cfs_rq, se, 0);
3017 		enqueue_sleeper(cfs_rq, se);
3018 	}
3019 
3020 	update_stats_enqueue(cfs_rq, se);
3021 	check_spread(cfs_rq, se);
3022 	if (se != cfs_rq->curr)
3023 		__enqueue_entity(cfs_rq, se);
3024 	se->on_rq = 1;
3025 
3026 	if (cfs_rq->nr_running == 1) {
3027 		list_add_leaf_cfs_rq(cfs_rq);
3028 		check_enqueue_throttle(cfs_rq);
3029 	}
3030 }
3031 
3032 static void __clear_buddies_last(struct sched_entity *se)
3033 {
3034 	for_each_sched_entity(se) {
3035 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3036 		if (cfs_rq->last != se)
3037 			break;
3038 
3039 		cfs_rq->last = NULL;
3040 	}
3041 }
3042 
3043 static void __clear_buddies_next(struct sched_entity *se)
3044 {
3045 	for_each_sched_entity(se) {
3046 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3047 		if (cfs_rq->next != se)
3048 			break;
3049 
3050 		cfs_rq->next = NULL;
3051 	}
3052 }
3053 
3054 static void __clear_buddies_skip(struct sched_entity *se)
3055 {
3056 	for_each_sched_entity(se) {
3057 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3058 		if (cfs_rq->skip != se)
3059 			break;
3060 
3061 		cfs_rq->skip = NULL;
3062 	}
3063 }
3064 
3065 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3066 {
3067 	if (cfs_rq->last == se)
3068 		__clear_buddies_last(se);
3069 
3070 	if (cfs_rq->next == se)
3071 		__clear_buddies_next(se);
3072 
3073 	if (cfs_rq->skip == se)
3074 		__clear_buddies_skip(se);
3075 }
3076 
3077 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3078 
3079 static void
3080 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3081 {
3082 	/*
3083 	 * Update run-time statistics of the 'current'.
3084 	 */
3085 	update_curr(cfs_rq);
3086 	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
3087 
3088 	update_stats_dequeue(cfs_rq, se);
3089 	if (flags & DEQUEUE_SLEEP) {
3090 #ifdef CONFIG_SCHEDSTATS
3091 		if (entity_is_task(se)) {
3092 			struct task_struct *tsk = task_of(se);
3093 
3094 			if (tsk->state & TASK_INTERRUPTIBLE)
3095 				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3096 			if (tsk->state & TASK_UNINTERRUPTIBLE)
3097 				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3098 		}
3099 #endif
3100 	}
3101 
3102 	clear_buddies(cfs_rq, se);
3103 
3104 	if (se != cfs_rq->curr)
3105 		__dequeue_entity(cfs_rq, se);
3106 	se->on_rq = 0;
3107 	account_entity_dequeue(cfs_rq, se);
3108 
3109 	/*
3110 	 * Normalize the entity after updating the min_vruntime because the
3111 	 * update can refer to the ->curr item and we need to reflect this
3112 	 * movement in our normalized position.
3113 	 */
3114 	if (!(flags & DEQUEUE_SLEEP))
3115 		se->vruntime -= cfs_rq->min_vruntime;
3116 
3117 	/* return excess runtime on last dequeue */
3118 	return_cfs_rq_runtime(cfs_rq);
3119 
3120 	update_min_vruntime(cfs_rq);
3121 	update_cfs_shares(cfs_rq);
3122 }
3123 
3124 /*
3125  * Preempt the current task with a newly woken task if needed:
3126  */
3127 static void
3128 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3129 {
3130 	unsigned long ideal_runtime, delta_exec;
3131 	struct sched_entity *se;
3132 	s64 delta;
3133 
3134 	ideal_runtime = sched_slice(cfs_rq, curr);
3135 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3136 	if (delta_exec > ideal_runtime) {
3137 		resched_curr(rq_of(cfs_rq));
3138 		/*
3139 		 * The current task ran long enough, ensure it doesn't get
3140 		 * re-elected due to buddy favours.
3141 		 */
3142 		clear_buddies(cfs_rq, curr);
3143 		return;
3144 	}
3145 
3146 	/*
3147 	 * Ensure that a task that missed wakeup preemption by a
3148 	 * narrow margin doesn't have to wait for a full slice.
3149 	 * This also mitigates buddy induced latencies under load.
3150 	 */
3151 	if (delta_exec < sysctl_sched_min_granularity)
3152 		return;
3153 
3154 	se = __pick_first_entity(cfs_rq);
3155 	delta = curr->vruntime - se->vruntime;
3156 
3157 	if (delta < 0)
3158 		return;
3159 
3160 	if (delta > ideal_runtime)
3161 		resched_curr(rq_of(cfs_rq));
3162 }
3163 
3164 static void
3165 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3166 {
3167 	/* 'current' is not kept within the tree. */
3168 	if (se->on_rq) {
3169 		/*
3170 		 * Any task has to be enqueued before it get to execute on
3171 		 * a CPU. So account for the time it spent waiting on the
3172 		 * runqueue.
3173 		 */
3174 		update_stats_wait_end(cfs_rq, se);
3175 		__dequeue_entity(cfs_rq, se);
3176 	}
3177 
3178 	update_stats_curr_start(cfs_rq, se);
3179 	cfs_rq->curr = se;
3180 #ifdef CONFIG_SCHEDSTATS
3181 	/*
3182 	 * Track our maximum slice length, if the CPU's load is at
3183 	 * least twice that of our own weight (i.e. dont track it
3184 	 * when there are only lesser-weight tasks around):
3185 	 */
3186 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3187 		se->statistics.slice_max = max(se->statistics.slice_max,
3188 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
3189 	}
3190 #endif
3191 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3192 }
3193 
3194 static int
3195 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3196 
3197 /*
3198  * Pick the next process, keeping these things in mind, in this order:
3199  * 1) keep things fair between processes/task groups
3200  * 2) pick the "next" process, since someone really wants that to run
3201  * 3) pick the "last" process, for cache locality
3202  * 4) do not run the "skip" process, if something else is available
3203  */
3204 static struct sched_entity *
3205 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3206 {
3207 	struct sched_entity *left = __pick_first_entity(cfs_rq);
3208 	struct sched_entity *se;
3209 
3210 	/*
3211 	 * If curr is set we have to see if its left of the leftmost entity
3212 	 * still in the tree, provided there was anything in the tree at all.
3213 	 */
3214 	if (!left || (curr && entity_before(curr, left)))
3215 		left = curr;
3216 
3217 	se = left; /* ideally we run the leftmost entity */
3218 
3219 	/*
3220 	 * Avoid running the skip buddy, if running something else can
3221 	 * be done without getting too unfair.
3222 	 */
3223 	if (cfs_rq->skip == se) {
3224 		struct sched_entity *second;
3225 
3226 		if (se == curr) {
3227 			second = __pick_first_entity(cfs_rq);
3228 		} else {
3229 			second = __pick_next_entity(se);
3230 			if (!second || (curr && entity_before(curr, second)))
3231 				second = curr;
3232 		}
3233 
3234 		if (second && wakeup_preempt_entity(second, left) < 1)
3235 			se = second;
3236 	}
3237 
3238 	/*
3239 	 * Prefer last buddy, try to return the CPU to a preempted task.
3240 	 */
3241 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3242 		se = cfs_rq->last;
3243 
3244 	/*
3245 	 * Someone really wants this to run. If it's not unfair, run it.
3246 	 */
3247 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3248 		se = cfs_rq->next;
3249 
3250 	clear_buddies(cfs_rq, se);
3251 
3252 	return se;
3253 }
3254 
3255 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3256 
3257 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3258 {
3259 	/*
3260 	 * If still on the runqueue then deactivate_task()
3261 	 * was not called and update_curr() has to be done:
3262 	 */
3263 	if (prev->on_rq)
3264 		update_curr(cfs_rq);
3265 
3266 	/* throttle cfs_rqs exceeding runtime */
3267 	check_cfs_rq_runtime(cfs_rq);
3268 
3269 	check_spread(cfs_rq, prev);
3270 	if (prev->on_rq) {
3271 		update_stats_wait_start(cfs_rq, prev);
3272 		/* Put 'current' back into the tree. */
3273 		__enqueue_entity(cfs_rq, prev);
3274 		/* in !on_rq case, update occurred at dequeue */
3275 		update_entity_load_avg(prev, 1);
3276 	}
3277 	cfs_rq->curr = NULL;
3278 }
3279 
3280 static void
3281 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3282 {
3283 	/*
3284 	 * Update run-time statistics of the 'current'.
3285 	 */
3286 	update_curr(cfs_rq);
3287 
3288 	/*
3289 	 * Ensure that runnable average is periodically updated.
3290 	 */
3291 	update_entity_load_avg(curr, 1);
3292 	update_cfs_rq_blocked_load(cfs_rq, 1);
3293 	update_cfs_shares(cfs_rq);
3294 
3295 #ifdef CONFIG_SCHED_HRTICK
3296 	/*
3297 	 * queued ticks are scheduled to match the slice, so don't bother
3298 	 * validating it and just reschedule.
3299 	 */
3300 	if (queued) {
3301 		resched_curr(rq_of(cfs_rq));
3302 		return;
3303 	}
3304 	/*
3305 	 * don't let the period tick interfere with the hrtick preemption
3306 	 */
3307 	if (!sched_feat(DOUBLE_TICK) &&
3308 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3309 		return;
3310 #endif
3311 
3312 	if (cfs_rq->nr_running > 1)
3313 		check_preempt_tick(cfs_rq, curr);
3314 }
3315 
3316 
3317 /**************************************************
3318  * CFS bandwidth control machinery
3319  */
3320 
3321 #ifdef CONFIG_CFS_BANDWIDTH
3322 
3323 #ifdef HAVE_JUMP_LABEL
3324 static struct static_key __cfs_bandwidth_used;
3325 
3326 static inline bool cfs_bandwidth_used(void)
3327 {
3328 	return static_key_false(&__cfs_bandwidth_used);
3329 }
3330 
3331 void cfs_bandwidth_usage_inc(void)
3332 {
3333 	static_key_slow_inc(&__cfs_bandwidth_used);
3334 }
3335 
3336 void cfs_bandwidth_usage_dec(void)
3337 {
3338 	static_key_slow_dec(&__cfs_bandwidth_used);
3339 }
3340 #else /* HAVE_JUMP_LABEL */
3341 static bool cfs_bandwidth_used(void)
3342 {
3343 	return true;
3344 }
3345 
3346 void cfs_bandwidth_usage_inc(void) {}
3347 void cfs_bandwidth_usage_dec(void) {}
3348 #endif /* HAVE_JUMP_LABEL */
3349 
3350 /*
3351  * default period for cfs group bandwidth.
3352  * default: 0.1s, units: nanoseconds
3353  */
3354 static inline u64 default_cfs_period(void)
3355 {
3356 	return 100000000ULL;
3357 }
3358 
3359 static inline u64 sched_cfs_bandwidth_slice(void)
3360 {
3361 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3362 }
3363 
3364 /*
3365  * Replenish runtime according to assigned quota and update expiration time.
3366  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3367  * additional synchronization around rq->lock.
3368  *
3369  * requires cfs_b->lock
3370  */
3371 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3372 {
3373 	u64 now;
3374 
3375 	if (cfs_b->quota == RUNTIME_INF)
3376 		return;
3377 
3378 	now = sched_clock_cpu(smp_processor_id());
3379 	cfs_b->runtime = cfs_b->quota;
3380 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3381 }
3382 
3383 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3384 {
3385 	return &tg->cfs_bandwidth;
3386 }
3387 
3388 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3389 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3390 {
3391 	if (unlikely(cfs_rq->throttle_count))
3392 		return cfs_rq->throttled_clock_task;
3393 
3394 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3395 }
3396 
3397 /* returns 0 on failure to allocate runtime */
3398 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3399 {
3400 	struct task_group *tg = cfs_rq->tg;
3401 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3402 	u64 amount = 0, min_amount, expires;
3403 
3404 	/* note: this is a positive sum as runtime_remaining <= 0 */
3405 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3406 
3407 	raw_spin_lock(&cfs_b->lock);
3408 	if (cfs_b->quota == RUNTIME_INF)
3409 		amount = min_amount;
3410 	else {
3411 		/*
3412 		 * If the bandwidth pool has become inactive, then at least one
3413 		 * period must have elapsed since the last consumption.
3414 		 * Refresh the global state and ensure bandwidth timer becomes
3415 		 * active.
3416 		 */
3417 		if (!cfs_b->timer_active) {
3418 			__refill_cfs_bandwidth_runtime(cfs_b);
3419 			__start_cfs_bandwidth(cfs_b, false);
3420 		}
3421 
3422 		if (cfs_b->runtime > 0) {
3423 			amount = min(cfs_b->runtime, min_amount);
3424 			cfs_b->runtime -= amount;
3425 			cfs_b->idle = 0;
3426 		}
3427 	}
3428 	expires = cfs_b->runtime_expires;
3429 	raw_spin_unlock(&cfs_b->lock);
3430 
3431 	cfs_rq->runtime_remaining += amount;
3432 	/*
3433 	 * we may have advanced our local expiration to account for allowed
3434 	 * spread between our sched_clock and the one on which runtime was
3435 	 * issued.
3436 	 */
3437 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3438 		cfs_rq->runtime_expires = expires;
3439 
3440 	return cfs_rq->runtime_remaining > 0;
3441 }
3442 
3443 /*
3444  * Note: This depends on the synchronization provided by sched_clock and the
3445  * fact that rq->clock snapshots this value.
3446  */
3447 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3448 {
3449 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3450 
3451 	/* if the deadline is ahead of our clock, nothing to do */
3452 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3453 		return;
3454 
3455 	if (cfs_rq->runtime_remaining < 0)
3456 		return;
3457 
3458 	/*
3459 	 * If the local deadline has passed we have to consider the
3460 	 * possibility that our sched_clock is 'fast' and the global deadline
3461 	 * has not truly expired.
3462 	 *
3463 	 * Fortunately we can check determine whether this the case by checking
3464 	 * whether the global deadline has advanced. It is valid to compare
3465 	 * cfs_b->runtime_expires without any locks since we only care about
3466 	 * exact equality, so a partial write will still work.
3467 	 */
3468 
3469 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3470 		/* extend local deadline, drift is bounded above by 2 ticks */
3471 		cfs_rq->runtime_expires += TICK_NSEC;
3472 	} else {
3473 		/* global deadline is ahead, expiration has passed */
3474 		cfs_rq->runtime_remaining = 0;
3475 	}
3476 }
3477 
3478 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3479 {
3480 	/* dock delta_exec before expiring quota (as it could span periods) */
3481 	cfs_rq->runtime_remaining -= delta_exec;
3482 	expire_cfs_rq_runtime(cfs_rq);
3483 
3484 	if (likely(cfs_rq->runtime_remaining > 0))
3485 		return;
3486 
3487 	/*
3488 	 * if we're unable to extend our runtime we resched so that the active
3489 	 * hierarchy can be throttled
3490 	 */
3491 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3492 		resched_curr(rq_of(cfs_rq));
3493 }
3494 
3495 static __always_inline
3496 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3497 {
3498 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3499 		return;
3500 
3501 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
3502 }
3503 
3504 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3505 {
3506 	return cfs_bandwidth_used() && cfs_rq->throttled;
3507 }
3508 
3509 /* check whether cfs_rq, or any parent, is throttled */
3510 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3511 {
3512 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3513 }
3514 
3515 /*
3516  * Ensure that neither of the group entities corresponding to src_cpu or
3517  * dest_cpu are members of a throttled hierarchy when performing group
3518  * load-balance operations.
3519  */
3520 static inline int throttled_lb_pair(struct task_group *tg,
3521 				    int src_cpu, int dest_cpu)
3522 {
3523 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3524 
3525 	src_cfs_rq = tg->cfs_rq[src_cpu];
3526 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
3527 
3528 	return throttled_hierarchy(src_cfs_rq) ||
3529 	       throttled_hierarchy(dest_cfs_rq);
3530 }
3531 
3532 /* updated child weight may affect parent so we have to do this bottom up */
3533 static int tg_unthrottle_up(struct task_group *tg, void *data)
3534 {
3535 	struct rq *rq = data;
3536 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3537 
3538 	cfs_rq->throttle_count--;
3539 #ifdef CONFIG_SMP
3540 	if (!cfs_rq->throttle_count) {
3541 		/* adjust cfs_rq_clock_task() */
3542 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3543 					     cfs_rq->throttled_clock_task;
3544 	}
3545 #endif
3546 
3547 	return 0;
3548 }
3549 
3550 static int tg_throttle_down(struct task_group *tg, void *data)
3551 {
3552 	struct rq *rq = data;
3553 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3554 
3555 	/* group is entering throttled state, stop time */
3556 	if (!cfs_rq->throttle_count)
3557 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3558 	cfs_rq->throttle_count++;
3559 
3560 	return 0;
3561 }
3562 
3563 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3564 {
3565 	struct rq *rq = rq_of(cfs_rq);
3566 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3567 	struct sched_entity *se;
3568 	long task_delta, dequeue = 1;
3569 
3570 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3571 
3572 	/* freeze hierarchy runnable averages while throttled */
3573 	rcu_read_lock();
3574 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3575 	rcu_read_unlock();
3576 
3577 	task_delta = cfs_rq->h_nr_running;
3578 	for_each_sched_entity(se) {
3579 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3580 		/* throttled entity or throttle-on-deactivate */
3581 		if (!se->on_rq)
3582 			break;
3583 
3584 		if (dequeue)
3585 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3586 		qcfs_rq->h_nr_running -= task_delta;
3587 
3588 		if (qcfs_rq->load.weight)
3589 			dequeue = 0;
3590 	}
3591 
3592 	if (!se)
3593 		sub_nr_running(rq, task_delta);
3594 
3595 	cfs_rq->throttled = 1;
3596 	cfs_rq->throttled_clock = rq_clock(rq);
3597 	raw_spin_lock(&cfs_b->lock);
3598 	/*
3599 	 * Add to the _head_ of the list, so that an already-started
3600 	 * distribute_cfs_runtime will not see us
3601 	 */
3602 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3603 	if (!cfs_b->timer_active)
3604 		__start_cfs_bandwidth(cfs_b, false);
3605 	raw_spin_unlock(&cfs_b->lock);
3606 }
3607 
3608 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3609 {
3610 	struct rq *rq = rq_of(cfs_rq);
3611 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3612 	struct sched_entity *se;
3613 	int enqueue = 1;
3614 	long task_delta;
3615 
3616 	se = cfs_rq->tg->se[cpu_of(rq)];
3617 
3618 	cfs_rq->throttled = 0;
3619 
3620 	update_rq_clock(rq);
3621 
3622 	raw_spin_lock(&cfs_b->lock);
3623 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3624 	list_del_rcu(&cfs_rq->throttled_list);
3625 	raw_spin_unlock(&cfs_b->lock);
3626 
3627 	/* update hierarchical throttle state */
3628 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3629 
3630 	if (!cfs_rq->load.weight)
3631 		return;
3632 
3633 	task_delta = cfs_rq->h_nr_running;
3634 	for_each_sched_entity(se) {
3635 		if (se->on_rq)
3636 			enqueue = 0;
3637 
3638 		cfs_rq = cfs_rq_of(se);
3639 		if (enqueue)
3640 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3641 		cfs_rq->h_nr_running += task_delta;
3642 
3643 		if (cfs_rq_throttled(cfs_rq))
3644 			break;
3645 	}
3646 
3647 	if (!se)
3648 		add_nr_running(rq, task_delta);
3649 
3650 	/* determine whether we need to wake up potentially idle cpu */
3651 	if (rq->curr == rq->idle && rq->cfs.nr_running)
3652 		resched_curr(rq);
3653 }
3654 
3655 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3656 		u64 remaining, u64 expires)
3657 {
3658 	struct cfs_rq *cfs_rq;
3659 	u64 runtime;
3660 	u64 starting_runtime = remaining;
3661 
3662 	rcu_read_lock();
3663 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3664 				throttled_list) {
3665 		struct rq *rq = rq_of(cfs_rq);
3666 
3667 		raw_spin_lock(&rq->lock);
3668 		if (!cfs_rq_throttled(cfs_rq))
3669 			goto next;
3670 
3671 		runtime = -cfs_rq->runtime_remaining + 1;
3672 		if (runtime > remaining)
3673 			runtime = remaining;
3674 		remaining -= runtime;
3675 
3676 		cfs_rq->runtime_remaining += runtime;
3677 		cfs_rq->runtime_expires = expires;
3678 
3679 		/* we check whether we're throttled above */
3680 		if (cfs_rq->runtime_remaining > 0)
3681 			unthrottle_cfs_rq(cfs_rq);
3682 
3683 next:
3684 		raw_spin_unlock(&rq->lock);
3685 
3686 		if (!remaining)
3687 			break;
3688 	}
3689 	rcu_read_unlock();
3690 
3691 	return starting_runtime - remaining;
3692 }
3693 
3694 /*
3695  * Responsible for refilling a task_group's bandwidth and unthrottling its
3696  * cfs_rqs as appropriate. If there has been no activity within the last
3697  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3698  * used to track this state.
3699  */
3700 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3701 {
3702 	u64 runtime, runtime_expires;
3703 	int throttled;
3704 
3705 	/* no need to continue the timer with no bandwidth constraint */
3706 	if (cfs_b->quota == RUNTIME_INF)
3707 		goto out_deactivate;
3708 
3709 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3710 	cfs_b->nr_periods += overrun;
3711 
3712 	/*
3713 	 * idle depends on !throttled (for the case of a large deficit), and if
3714 	 * we're going inactive then everything else can be deferred
3715 	 */
3716 	if (cfs_b->idle && !throttled)
3717 		goto out_deactivate;
3718 
3719 	/*
3720 	 * if we have relooped after returning idle once, we need to update our
3721 	 * status as actually running, so that other cpus doing
3722 	 * __start_cfs_bandwidth will stop trying to cancel us.
3723 	 */
3724 	cfs_b->timer_active = 1;
3725 
3726 	__refill_cfs_bandwidth_runtime(cfs_b);
3727 
3728 	if (!throttled) {
3729 		/* mark as potentially idle for the upcoming period */
3730 		cfs_b->idle = 1;
3731 		return 0;
3732 	}
3733 
3734 	/* account preceding periods in which throttling occurred */
3735 	cfs_b->nr_throttled += overrun;
3736 
3737 	runtime_expires = cfs_b->runtime_expires;
3738 
3739 	/*
3740 	 * This check is repeated as we are holding onto the new bandwidth while
3741 	 * we unthrottle. This can potentially race with an unthrottled group
3742 	 * trying to acquire new bandwidth from the global pool. This can result
3743 	 * in us over-using our runtime if it is all used during this loop, but
3744 	 * only by limited amounts in that extreme case.
3745 	 */
3746 	while (throttled && cfs_b->runtime > 0) {
3747 		runtime = cfs_b->runtime;
3748 		raw_spin_unlock(&cfs_b->lock);
3749 		/* we can't nest cfs_b->lock while distributing bandwidth */
3750 		runtime = distribute_cfs_runtime(cfs_b, runtime,
3751 						 runtime_expires);
3752 		raw_spin_lock(&cfs_b->lock);
3753 
3754 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3755 
3756 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3757 	}
3758 
3759 	/*
3760 	 * While we are ensured activity in the period following an
3761 	 * unthrottle, this also covers the case in which the new bandwidth is
3762 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
3763 	 * timer to remain active while there are any throttled entities.)
3764 	 */
3765 	cfs_b->idle = 0;
3766 
3767 	return 0;
3768 
3769 out_deactivate:
3770 	cfs_b->timer_active = 0;
3771 	return 1;
3772 }
3773 
3774 /* a cfs_rq won't donate quota below this amount */
3775 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3776 /* minimum remaining period time to redistribute slack quota */
3777 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3778 /* how long we wait to gather additional slack before distributing */
3779 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3780 
3781 /*
3782  * Are we near the end of the current quota period?
3783  *
3784  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3785  * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3786  * migrate_hrtimers, base is never cleared, so we are fine.
3787  */
3788 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3789 {
3790 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
3791 	u64 remaining;
3792 
3793 	/* if the call-back is running a quota refresh is already occurring */
3794 	if (hrtimer_callback_running(refresh_timer))
3795 		return 1;
3796 
3797 	/* is a quota refresh about to occur? */
3798 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3799 	if (remaining < min_expire)
3800 		return 1;
3801 
3802 	return 0;
3803 }
3804 
3805 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3806 {
3807 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3808 
3809 	/* if there's a quota refresh soon don't bother with slack */
3810 	if (runtime_refresh_within(cfs_b, min_left))
3811 		return;
3812 
3813 	start_bandwidth_timer(&cfs_b->slack_timer,
3814 				ns_to_ktime(cfs_bandwidth_slack_period));
3815 }
3816 
3817 /* we know any runtime found here is valid as update_curr() precedes return */
3818 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3819 {
3820 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3821 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3822 
3823 	if (slack_runtime <= 0)
3824 		return;
3825 
3826 	raw_spin_lock(&cfs_b->lock);
3827 	if (cfs_b->quota != RUNTIME_INF &&
3828 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3829 		cfs_b->runtime += slack_runtime;
3830 
3831 		/* we are under rq->lock, defer unthrottling using a timer */
3832 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3833 		    !list_empty(&cfs_b->throttled_cfs_rq))
3834 			start_cfs_slack_bandwidth(cfs_b);
3835 	}
3836 	raw_spin_unlock(&cfs_b->lock);
3837 
3838 	/* even if it's not valid for return we don't want to try again */
3839 	cfs_rq->runtime_remaining -= slack_runtime;
3840 }
3841 
3842 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3843 {
3844 	if (!cfs_bandwidth_used())
3845 		return;
3846 
3847 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3848 		return;
3849 
3850 	__return_cfs_rq_runtime(cfs_rq);
3851 }
3852 
3853 /*
3854  * This is done with a timer (instead of inline with bandwidth return) since
3855  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3856  */
3857 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3858 {
3859 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3860 	u64 expires;
3861 
3862 	/* confirm we're still not at a refresh boundary */
3863 	raw_spin_lock(&cfs_b->lock);
3864 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3865 		raw_spin_unlock(&cfs_b->lock);
3866 		return;
3867 	}
3868 
3869 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3870 		runtime = cfs_b->runtime;
3871 
3872 	expires = cfs_b->runtime_expires;
3873 	raw_spin_unlock(&cfs_b->lock);
3874 
3875 	if (!runtime)
3876 		return;
3877 
3878 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3879 
3880 	raw_spin_lock(&cfs_b->lock);
3881 	if (expires == cfs_b->runtime_expires)
3882 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3883 	raw_spin_unlock(&cfs_b->lock);
3884 }
3885 
3886 /*
3887  * When a group wakes up we want to make sure that its quota is not already
3888  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3889  * runtime as update_curr() throttling can not not trigger until it's on-rq.
3890  */
3891 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3892 {
3893 	if (!cfs_bandwidth_used())
3894 		return;
3895 
3896 	/* an active group must be handled by the update_curr()->put() path */
3897 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3898 		return;
3899 
3900 	/* ensure the group is not already throttled */
3901 	if (cfs_rq_throttled(cfs_rq))
3902 		return;
3903 
3904 	/* update runtime allocation */
3905 	account_cfs_rq_runtime(cfs_rq, 0);
3906 	if (cfs_rq->runtime_remaining <= 0)
3907 		throttle_cfs_rq(cfs_rq);
3908 }
3909 
3910 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3911 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3912 {
3913 	if (!cfs_bandwidth_used())
3914 		return false;
3915 
3916 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3917 		return false;
3918 
3919 	/*
3920 	 * it's possible for a throttled entity to be forced into a running
3921 	 * state (e.g. set_curr_task), in this case we're finished.
3922 	 */
3923 	if (cfs_rq_throttled(cfs_rq))
3924 		return true;
3925 
3926 	throttle_cfs_rq(cfs_rq);
3927 	return true;
3928 }
3929 
3930 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3931 {
3932 	struct cfs_bandwidth *cfs_b =
3933 		container_of(timer, struct cfs_bandwidth, slack_timer);
3934 	do_sched_cfs_slack_timer(cfs_b);
3935 
3936 	return HRTIMER_NORESTART;
3937 }
3938 
3939 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3940 {
3941 	struct cfs_bandwidth *cfs_b =
3942 		container_of(timer, struct cfs_bandwidth, period_timer);
3943 	ktime_t now;
3944 	int overrun;
3945 	int idle = 0;
3946 
3947 	raw_spin_lock(&cfs_b->lock);
3948 	for (;;) {
3949 		now = hrtimer_cb_get_time(timer);
3950 		overrun = hrtimer_forward(timer, now, cfs_b->period);
3951 
3952 		if (!overrun)
3953 			break;
3954 
3955 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
3956 	}
3957 	raw_spin_unlock(&cfs_b->lock);
3958 
3959 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3960 }
3961 
3962 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3963 {
3964 	raw_spin_lock_init(&cfs_b->lock);
3965 	cfs_b->runtime = 0;
3966 	cfs_b->quota = RUNTIME_INF;
3967 	cfs_b->period = ns_to_ktime(default_cfs_period());
3968 
3969 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3970 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3971 	cfs_b->period_timer.function = sched_cfs_period_timer;
3972 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3973 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
3974 }
3975 
3976 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3977 {
3978 	cfs_rq->runtime_enabled = 0;
3979 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
3980 }
3981 
3982 /* requires cfs_b->lock, may release to reprogram timer */
3983 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3984 {
3985 	/*
3986 	 * The timer may be active because we're trying to set a new bandwidth
3987 	 * period or because we're racing with the tear-down path
3988 	 * (timer_active==0 becomes visible before the hrtimer call-back
3989 	 * terminates).  In either case we ensure that it's re-programmed
3990 	 */
3991 	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3992 	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3993 		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3994 		raw_spin_unlock(&cfs_b->lock);
3995 		cpu_relax();
3996 		raw_spin_lock(&cfs_b->lock);
3997 		/* if someone else restarted the timer then we're done */
3998 		if (!force && cfs_b->timer_active)
3999 			return;
4000 	}
4001 
4002 	cfs_b->timer_active = 1;
4003 	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
4004 }
4005 
4006 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4007 {
4008 	/* init_cfs_bandwidth() was not called */
4009 	if (!cfs_b->throttled_cfs_rq.next)
4010 		return;
4011 
4012 	hrtimer_cancel(&cfs_b->period_timer);
4013 	hrtimer_cancel(&cfs_b->slack_timer);
4014 }
4015 
4016 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4017 {
4018 	struct cfs_rq *cfs_rq;
4019 
4020 	for_each_leaf_cfs_rq(rq, cfs_rq) {
4021 		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4022 
4023 		raw_spin_lock(&cfs_b->lock);
4024 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4025 		raw_spin_unlock(&cfs_b->lock);
4026 	}
4027 }
4028 
4029 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4030 {
4031 	struct cfs_rq *cfs_rq;
4032 
4033 	for_each_leaf_cfs_rq(rq, cfs_rq) {
4034 		if (!cfs_rq->runtime_enabled)
4035 			continue;
4036 
4037 		/*
4038 		 * clock_task is not advancing so we just need to make sure
4039 		 * there's some valid quota amount
4040 		 */
4041 		cfs_rq->runtime_remaining = 1;
4042 		/*
4043 		 * Offline rq is schedulable till cpu is completely disabled
4044 		 * in take_cpu_down(), so we prevent new cfs throttling here.
4045 		 */
4046 		cfs_rq->runtime_enabled = 0;
4047 
4048 		if (cfs_rq_throttled(cfs_rq))
4049 			unthrottle_cfs_rq(cfs_rq);
4050 	}
4051 }
4052 
4053 #else /* CONFIG_CFS_BANDWIDTH */
4054 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4055 {
4056 	return rq_clock_task(rq_of(cfs_rq));
4057 }
4058 
4059 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4060 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4061 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4062 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4063 
4064 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4065 {
4066 	return 0;
4067 }
4068 
4069 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4070 {
4071 	return 0;
4072 }
4073 
4074 static inline int throttled_lb_pair(struct task_group *tg,
4075 				    int src_cpu, int dest_cpu)
4076 {
4077 	return 0;
4078 }
4079 
4080 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4081 
4082 #ifdef CONFIG_FAIR_GROUP_SCHED
4083 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4084 #endif
4085 
4086 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4087 {
4088 	return NULL;
4089 }
4090 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4091 static inline void update_runtime_enabled(struct rq *rq) {}
4092 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4093 
4094 #endif /* CONFIG_CFS_BANDWIDTH */
4095 
4096 /**************************************************
4097  * CFS operations on tasks:
4098  */
4099 
4100 #ifdef CONFIG_SCHED_HRTICK
4101 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4102 {
4103 	struct sched_entity *se = &p->se;
4104 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4105 
4106 	WARN_ON(task_rq(p) != rq);
4107 
4108 	if (cfs_rq->nr_running > 1) {
4109 		u64 slice = sched_slice(cfs_rq, se);
4110 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4111 		s64 delta = slice - ran;
4112 
4113 		if (delta < 0) {
4114 			if (rq->curr == p)
4115 				resched_curr(rq);
4116 			return;
4117 		}
4118 		hrtick_start(rq, delta);
4119 	}
4120 }
4121 
4122 /*
4123  * called from enqueue/dequeue and updates the hrtick when the
4124  * current task is from our class and nr_running is low enough
4125  * to matter.
4126  */
4127 static void hrtick_update(struct rq *rq)
4128 {
4129 	struct task_struct *curr = rq->curr;
4130 
4131 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4132 		return;
4133 
4134 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4135 		hrtick_start_fair(rq, curr);
4136 }
4137 #else /* !CONFIG_SCHED_HRTICK */
4138 static inline void
4139 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4140 {
4141 }
4142 
4143 static inline void hrtick_update(struct rq *rq)
4144 {
4145 }
4146 #endif
4147 
4148 /*
4149  * The enqueue_task method is called before nr_running is
4150  * increased. Here we update the fair scheduling stats and
4151  * then put the task into the rbtree:
4152  */
4153 static void
4154 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4155 {
4156 	struct cfs_rq *cfs_rq;
4157 	struct sched_entity *se = &p->se;
4158 
4159 	for_each_sched_entity(se) {
4160 		if (se->on_rq)
4161 			break;
4162 		cfs_rq = cfs_rq_of(se);
4163 		enqueue_entity(cfs_rq, se, flags);
4164 
4165 		/*
4166 		 * end evaluation on encountering a throttled cfs_rq
4167 		 *
4168 		 * note: in the case of encountering a throttled cfs_rq we will
4169 		 * post the final h_nr_running increment below.
4170 		*/
4171 		if (cfs_rq_throttled(cfs_rq))
4172 			break;
4173 		cfs_rq->h_nr_running++;
4174 
4175 		flags = ENQUEUE_WAKEUP;
4176 	}
4177 
4178 	for_each_sched_entity(se) {
4179 		cfs_rq = cfs_rq_of(se);
4180 		cfs_rq->h_nr_running++;
4181 
4182 		if (cfs_rq_throttled(cfs_rq))
4183 			break;
4184 
4185 		update_cfs_shares(cfs_rq);
4186 		update_entity_load_avg(se, 1);
4187 	}
4188 
4189 	if (!se) {
4190 		update_rq_runnable_avg(rq, rq->nr_running);
4191 		add_nr_running(rq, 1);
4192 	}
4193 	hrtick_update(rq);
4194 }
4195 
4196 static void set_next_buddy(struct sched_entity *se);
4197 
4198 /*
4199  * The dequeue_task method is called before nr_running is
4200  * decreased. We remove the task from the rbtree and
4201  * update the fair scheduling stats:
4202  */
4203 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4204 {
4205 	struct cfs_rq *cfs_rq;
4206 	struct sched_entity *se = &p->se;
4207 	int task_sleep = flags & DEQUEUE_SLEEP;
4208 
4209 	for_each_sched_entity(se) {
4210 		cfs_rq = cfs_rq_of(se);
4211 		dequeue_entity(cfs_rq, se, flags);
4212 
4213 		/*
4214 		 * end evaluation on encountering a throttled cfs_rq
4215 		 *
4216 		 * note: in the case of encountering a throttled cfs_rq we will
4217 		 * post the final h_nr_running decrement below.
4218 		*/
4219 		if (cfs_rq_throttled(cfs_rq))
4220 			break;
4221 		cfs_rq->h_nr_running--;
4222 
4223 		/* Don't dequeue parent if it has other entities besides us */
4224 		if (cfs_rq->load.weight) {
4225 			/*
4226 			 * Bias pick_next to pick a task from this cfs_rq, as
4227 			 * p is sleeping when it is within its sched_slice.
4228 			 */
4229 			if (task_sleep && parent_entity(se))
4230 				set_next_buddy(parent_entity(se));
4231 
4232 			/* avoid re-evaluating load for this entity */
4233 			se = parent_entity(se);
4234 			break;
4235 		}
4236 		flags |= DEQUEUE_SLEEP;
4237 	}
4238 
4239 	for_each_sched_entity(se) {
4240 		cfs_rq = cfs_rq_of(se);
4241 		cfs_rq->h_nr_running--;
4242 
4243 		if (cfs_rq_throttled(cfs_rq))
4244 			break;
4245 
4246 		update_cfs_shares(cfs_rq);
4247 		update_entity_load_avg(se, 1);
4248 	}
4249 
4250 	if (!se) {
4251 		sub_nr_running(rq, 1);
4252 		update_rq_runnable_avg(rq, 1);
4253 	}
4254 	hrtick_update(rq);
4255 }
4256 
4257 #ifdef CONFIG_SMP
4258 /* Used instead of source_load when we know the type == 0 */
4259 static unsigned long weighted_cpuload(const int cpu)
4260 {
4261 	return cpu_rq(cpu)->cfs.runnable_load_avg;
4262 }
4263 
4264 /*
4265  * Return a low guess at the load of a migration-source cpu weighted
4266  * according to the scheduling class and "nice" value.
4267  *
4268  * We want to under-estimate the load of migration sources, to
4269  * balance conservatively.
4270  */
4271 static unsigned long source_load(int cpu, int type)
4272 {
4273 	struct rq *rq = cpu_rq(cpu);
4274 	unsigned long total = weighted_cpuload(cpu);
4275 
4276 	if (type == 0 || !sched_feat(LB_BIAS))
4277 		return total;
4278 
4279 	return min(rq->cpu_load[type-1], total);
4280 }
4281 
4282 /*
4283  * Return a high guess at the load of a migration-target cpu weighted
4284  * according to the scheduling class and "nice" value.
4285  */
4286 static unsigned long target_load(int cpu, int type)
4287 {
4288 	struct rq *rq = cpu_rq(cpu);
4289 	unsigned long total = weighted_cpuload(cpu);
4290 
4291 	if (type == 0 || !sched_feat(LB_BIAS))
4292 		return total;
4293 
4294 	return max(rq->cpu_load[type-1], total);
4295 }
4296 
4297 static unsigned long capacity_of(int cpu)
4298 {
4299 	return cpu_rq(cpu)->cpu_capacity;
4300 }
4301 
4302 static unsigned long cpu_avg_load_per_task(int cpu)
4303 {
4304 	struct rq *rq = cpu_rq(cpu);
4305 	unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
4306 	unsigned long load_avg = rq->cfs.runnable_load_avg;
4307 
4308 	if (nr_running)
4309 		return load_avg / nr_running;
4310 
4311 	return 0;
4312 }
4313 
4314 static void record_wakee(struct task_struct *p)
4315 {
4316 	/*
4317 	 * Rough decay (wiping) for cost saving, don't worry
4318 	 * about the boundary, really active task won't care
4319 	 * about the loss.
4320 	 */
4321 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4322 		current->wakee_flips >>= 1;
4323 		current->wakee_flip_decay_ts = jiffies;
4324 	}
4325 
4326 	if (current->last_wakee != p) {
4327 		current->last_wakee = p;
4328 		current->wakee_flips++;
4329 	}
4330 }
4331 
4332 static void task_waking_fair(struct task_struct *p)
4333 {
4334 	struct sched_entity *se = &p->se;
4335 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4336 	u64 min_vruntime;
4337 
4338 #ifndef CONFIG_64BIT
4339 	u64 min_vruntime_copy;
4340 
4341 	do {
4342 		min_vruntime_copy = cfs_rq->min_vruntime_copy;
4343 		smp_rmb();
4344 		min_vruntime = cfs_rq->min_vruntime;
4345 	} while (min_vruntime != min_vruntime_copy);
4346 #else
4347 	min_vruntime = cfs_rq->min_vruntime;
4348 #endif
4349 
4350 	se->vruntime -= min_vruntime;
4351 	record_wakee(p);
4352 }
4353 
4354 #ifdef CONFIG_FAIR_GROUP_SCHED
4355 /*
4356  * effective_load() calculates the load change as seen from the root_task_group
4357  *
4358  * Adding load to a group doesn't make a group heavier, but can cause movement
4359  * of group shares between cpus. Assuming the shares were perfectly aligned one
4360  * can calculate the shift in shares.
4361  *
4362  * Calculate the effective load difference if @wl is added (subtracted) to @tg
4363  * on this @cpu and results in a total addition (subtraction) of @wg to the
4364  * total group weight.
4365  *
4366  * Given a runqueue weight distribution (rw_i) we can compute a shares
4367  * distribution (s_i) using:
4368  *
4369  *   s_i = rw_i / \Sum rw_j						(1)
4370  *
4371  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4372  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4373  * shares distribution (s_i):
4374  *
4375  *   rw_i = {   2,   4,   1,   0 }
4376  *   s_i  = { 2/7, 4/7, 1/7,   0 }
4377  *
4378  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4379  * task used to run on and the CPU the waker is running on), we need to
4380  * compute the effect of waking a task on either CPU and, in case of a sync
4381  * wakeup, compute the effect of the current task going to sleep.
4382  *
4383  * So for a change of @wl to the local @cpu with an overall group weight change
4384  * of @wl we can compute the new shares distribution (s'_i) using:
4385  *
4386  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
4387  *
4388  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4389  * differences in waking a task to CPU 0. The additional task changes the
4390  * weight and shares distributions like:
4391  *
4392  *   rw'_i = {   3,   4,   1,   0 }
4393  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
4394  *
4395  * We can then compute the difference in effective weight by using:
4396  *
4397  *   dw_i = S * (s'_i - s_i)						(3)
4398  *
4399  * Where 'S' is the group weight as seen by its parent.
4400  *
4401  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4402  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4403  * 4/7) times the weight of the group.
4404  */
4405 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4406 {
4407 	struct sched_entity *se = tg->se[cpu];
4408 
4409 	if (!tg->parent)	/* the trivial, non-cgroup case */
4410 		return wl;
4411 
4412 	for_each_sched_entity(se) {
4413 		long w, W;
4414 
4415 		tg = se->my_q->tg;
4416 
4417 		/*
4418 		 * W = @wg + \Sum rw_j
4419 		 */
4420 		W = wg + calc_tg_weight(tg, se->my_q);
4421 
4422 		/*
4423 		 * w = rw_i + @wl
4424 		 */
4425 		w = se->my_q->load.weight + wl;
4426 
4427 		/*
4428 		 * wl = S * s'_i; see (2)
4429 		 */
4430 		if (W > 0 && w < W)
4431 			wl = (w * (long)tg->shares) / W;
4432 		else
4433 			wl = tg->shares;
4434 
4435 		/*
4436 		 * Per the above, wl is the new se->load.weight value; since
4437 		 * those are clipped to [MIN_SHARES, ...) do so now. See
4438 		 * calc_cfs_shares().
4439 		 */
4440 		if (wl < MIN_SHARES)
4441 			wl = MIN_SHARES;
4442 
4443 		/*
4444 		 * wl = dw_i = S * (s'_i - s_i); see (3)
4445 		 */
4446 		wl -= se->load.weight;
4447 
4448 		/*
4449 		 * Recursively apply this logic to all parent groups to compute
4450 		 * the final effective load change on the root group. Since
4451 		 * only the @tg group gets extra weight, all parent groups can
4452 		 * only redistribute existing shares. @wl is the shift in shares
4453 		 * resulting from this level per the above.
4454 		 */
4455 		wg = 0;
4456 	}
4457 
4458 	return wl;
4459 }
4460 #else
4461 
4462 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4463 {
4464 	return wl;
4465 }
4466 
4467 #endif
4468 
4469 static int wake_wide(struct task_struct *p)
4470 {
4471 	int factor = this_cpu_read(sd_llc_size);
4472 
4473 	/*
4474 	 * Yeah, it's the switching-frequency, could means many wakee or
4475 	 * rapidly switch, use factor here will just help to automatically
4476 	 * adjust the loose-degree, so bigger node will lead to more pull.
4477 	 */
4478 	if (p->wakee_flips > factor) {
4479 		/*
4480 		 * wakee is somewhat hot, it needs certain amount of cpu
4481 		 * resource, so if waker is far more hot, prefer to leave
4482 		 * it alone.
4483 		 */
4484 		if (current->wakee_flips > (factor * p->wakee_flips))
4485 			return 1;
4486 	}
4487 
4488 	return 0;
4489 }
4490 
4491 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4492 {
4493 	s64 this_load, load;
4494 	s64 this_eff_load, prev_eff_load;
4495 	int idx, this_cpu, prev_cpu;
4496 	struct task_group *tg;
4497 	unsigned long weight;
4498 	int balanced;
4499 
4500 	/*
4501 	 * If we wake multiple tasks be careful to not bounce
4502 	 * ourselves around too much.
4503 	 */
4504 	if (wake_wide(p))
4505 		return 0;
4506 
4507 	idx	  = sd->wake_idx;
4508 	this_cpu  = smp_processor_id();
4509 	prev_cpu  = task_cpu(p);
4510 	load	  = source_load(prev_cpu, idx);
4511 	this_load = target_load(this_cpu, idx);
4512 
4513 	/*
4514 	 * If sync wakeup then subtract the (maximum possible)
4515 	 * effect of the currently running task from the load
4516 	 * of the current CPU:
4517 	 */
4518 	if (sync) {
4519 		tg = task_group(current);
4520 		weight = current->se.load.weight;
4521 
4522 		this_load += effective_load(tg, this_cpu, -weight, -weight);
4523 		load += effective_load(tg, prev_cpu, 0, -weight);
4524 	}
4525 
4526 	tg = task_group(p);
4527 	weight = p->se.load.weight;
4528 
4529 	/*
4530 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4531 	 * due to the sync cause above having dropped this_load to 0, we'll
4532 	 * always have an imbalance, but there's really nothing you can do
4533 	 * about that, so that's good too.
4534 	 *
4535 	 * Otherwise check if either cpus are near enough in load to allow this
4536 	 * task to be woken on this_cpu.
4537 	 */
4538 	this_eff_load = 100;
4539 	this_eff_load *= capacity_of(prev_cpu);
4540 
4541 	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4542 	prev_eff_load *= capacity_of(this_cpu);
4543 
4544 	if (this_load > 0) {
4545 		this_eff_load *= this_load +
4546 			effective_load(tg, this_cpu, weight, weight);
4547 
4548 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4549 	}
4550 
4551 	balanced = this_eff_load <= prev_eff_load;
4552 
4553 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4554 
4555 	if (!balanced)
4556 		return 0;
4557 
4558 	schedstat_inc(sd, ttwu_move_affine);
4559 	schedstat_inc(p, se.statistics.nr_wakeups_affine);
4560 
4561 	return 1;
4562 }
4563 
4564 /*
4565  * find_idlest_group finds and returns the least busy CPU group within the
4566  * domain.
4567  */
4568 static struct sched_group *
4569 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4570 		  int this_cpu, int sd_flag)
4571 {
4572 	struct sched_group *idlest = NULL, *group = sd->groups;
4573 	unsigned long min_load = ULONG_MAX, this_load = 0;
4574 	int load_idx = sd->forkexec_idx;
4575 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4576 
4577 	if (sd_flag & SD_BALANCE_WAKE)
4578 		load_idx = sd->wake_idx;
4579 
4580 	do {
4581 		unsigned long load, avg_load;
4582 		int local_group;
4583 		int i;
4584 
4585 		/* Skip over this group if it has no CPUs allowed */
4586 		if (!cpumask_intersects(sched_group_cpus(group),
4587 					tsk_cpus_allowed(p)))
4588 			continue;
4589 
4590 		local_group = cpumask_test_cpu(this_cpu,
4591 					       sched_group_cpus(group));
4592 
4593 		/* Tally up the load of all CPUs in the group */
4594 		avg_load = 0;
4595 
4596 		for_each_cpu(i, sched_group_cpus(group)) {
4597 			/* Bias balancing toward cpus of our domain */
4598 			if (local_group)
4599 				load = source_load(i, load_idx);
4600 			else
4601 				load = target_load(i, load_idx);
4602 
4603 			avg_load += load;
4604 		}
4605 
4606 		/* Adjust by relative CPU capacity of the group */
4607 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4608 
4609 		if (local_group) {
4610 			this_load = avg_load;
4611 		} else if (avg_load < min_load) {
4612 			min_load = avg_load;
4613 			idlest = group;
4614 		}
4615 	} while (group = group->next, group != sd->groups);
4616 
4617 	if (!idlest || 100*this_load < imbalance*min_load)
4618 		return NULL;
4619 	return idlest;
4620 }
4621 
4622 /*
4623  * find_idlest_cpu - find the idlest cpu among the cpus in group.
4624  */
4625 static int
4626 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4627 {
4628 	unsigned long load, min_load = ULONG_MAX;
4629 	unsigned int min_exit_latency = UINT_MAX;
4630 	u64 latest_idle_timestamp = 0;
4631 	int least_loaded_cpu = this_cpu;
4632 	int shallowest_idle_cpu = -1;
4633 	int i;
4634 
4635 	/* Traverse only the allowed CPUs */
4636 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4637 		if (idle_cpu(i)) {
4638 			struct rq *rq = cpu_rq(i);
4639 			struct cpuidle_state *idle = idle_get_state(rq);
4640 			if (idle && idle->exit_latency < min_exit_latency) {
4641 				/*
4642 				 * We give priority to a CPU whose idle state
4643 				 * has the smallest exit latency irrespective
4644 				 * of any idle timestamp.
4645 				 */
4646 				min_exit_latency = idle->exit_latency;
4647 				latest_idle_timestamp = rq->idle_stamp;
4648 				shallowest_idle_cpu = i;
4649 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
4650 				   rq->idle_stamp > latest_idle_timestamp) {
4651 				/*
4652 				 * If equal or no active idle state, then
4653 				 * the most recently idled CPU might have
4654 				 * a warmer cache.
4655 				 */
4656 				latest_idle_timestamp = rq->idle_stamp;
4657 				shallowest_idle_cpu = i;
4658 			}
4659 		} else if (shallowest_idle_cpu == -1) {
4660 			load = weighted_cpuload(i);
4661 			if (load < min_load || (load == min_load && i == this_cpu)) {
4662 				min_load = load;
4663 				least_loaded_cpu = i;
4664 			}
4665 		}
4666 	}
4667 
4668 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4669 }
4670 
4671 /*
4672  * Try and locate an idle CPU in the sched_domain.
4673  */
4674 static int select_idle_sibling(struct task_struct *p, int target)
4675 {
4676 	struct sched_domain *sd;
4677 	struct sched_group *sg;
4678 	int i = task_cpu(p);
4679 
4680 	if (idle_cpu(target))
4681 		return target;
4682 
4683 	/*
4684 	 * If the prevous cpu is cache affine and idle, don't be stupid.
4685 	 */
4686 	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4687 		return i;
4688 
4689 	/*
4690 	 * Otherwise, iterate the domains and find an elegible idle cpu.
4691 	 */
4692 	sd = rcu_dereference(per_cpu(sd_llc, target));
4693 	for_each_lower_domain(sd) {
4694 		sg = sd->groups;
4695 		do {
4696 			if (!cpumask_intersects(sched_group_cpus(sg),
4697 						tsk_cpus_allowed(p)))
4698 				goto next;
4699 
4700 			for_each_cpu(i, sched_group_cpus(sg)) {
4701 				if (i == target || !idle_cpu(i))
4702 					goto next;
4703 			}
4704 
4705 			target = cpumask_first_and(sched_group_cpus(sg),
4706 					tsk_cpus_allowed(p));
4707 			goto done;
4708 next:
4709 			sg = sg->next;
4710 		} while (sg != sd->groups);
4711 	}
4712 done:
4713 	return target;
4714 }
4715 
4716 /*
4717  * select_task_rq_fair: Select target runqueue for the waking task in domains
4718  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4719  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4720  *
4721  * Balances load by selecting the idlest cpu in the idlest group, or under
4722  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4723  *
4724  * Returns the target cpu number.
4725  *
4726  * preempt must be disabled.
4727  */
4728 static int
4729 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4730 {
4731 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4732 	int cpu = smp_processor_id();
4733 	int new_cpu = cpu;
4734 	int want_affine = 0;
4735 	int sync = wake_flags & WF_SYNC;
4736 
4737 	if (sd_flag & SD_BALANCE_WAKE)
4738 		want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4739 
4740 	rcu_read_lock();
4741 	for_each_domain(cpu, tmp) {
4742 		if (!(tmp->flags & SD_LOAD_BALANCE))
4743 			continue;
4744 
4745 		/*
4746 		 * If both cpu and prev_cpu are part of this domain,
4747 		 * cpu is a valid SD_WAKE_AFFINE target.
4748 		 */
4749 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4750 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4751 			affine_sd = tmp;
4752 			break;
4753 		}
4754 
4755 		if (tmp->flags & sd_flag)
4756 			sd = tmp;
4757 	}
4758 
4759 	if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4760 		prev_cpu = cpu;
4761 
4762 	if (sd_flag & SD_BALANCE_WAKE) {
4763 		new_cpu = select_idle_sibling(p, prev_cpu);
4764 		goto unlock;
4765 	}
4766 
4767 	while (sd) {
4768 		struct sched_group *group;
4769 		int weight;
4770 
4771 		if (!(sd->flags & sd_flag)) {
4772 			sd = sd->child;
4773 			continue;
4774 		}
4775 
4776 		group = find_idlest_group(sd, p, cpu, sd_flag);
4777 		if (!group) {
4778 			sd = sd->child;
4779 			continue;
4780 		}
4781 
4782 		new_cpu = find_idlest_cpu(group, p, cpu);
4783 		if (new_cpu == -1 || new_cpu == cpu) {
4784 			/* Now try balancing at a lower domain level of cpu */
4785 			sd = sd->child;
4786 			continue;
4787 		}
4788 
4789 		/* Now try balancing at a lower domain level of new_cpu */
4790 		cpu = new_cpu;
4791 		weight = sd->span_weight;
4792 		sd = NULL;
4793 		for_each_domain(cpu, tmp) {
4794 			if (weight <= tmp->span_weight)
4795 				break;
4796 			if (tmp->flags & sd_flag)
4797 				sd = tmp;
4798 		}
4799 		/* while loop will break here if sd == NULL */
4800 	}
4801 unlock:
4802 	rcu_read_unlock();
4803 
4804 	return new_cpu;
4805 }
4806 
4807 /*
4808  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4809  * cfs_rq_of(p) references at time of call are still valid and identify the
4810  * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
4811  * other assumptions, including the state of rq->lock, should be made.
4812  */
4813 static void
4814 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4815 {
4816 	struct sched_entity *se = &p->se;
4817 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4818 
4819 	/*
4820 	 * Load tracking: accumulate removed load so that it can be processed
4821 	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
4822 	 * to blocked load iff they have a positive decay-count.  It can never
4823 	 * be negative here since on-rq tasks have decay-count == 0.
4824 	 */
4825 	if (se->avg.decay_count) {
4826 		se->avg.decay_count = -__synchronize_entity_decay(se);
4827 		atomic_long_add(se->avg.load_avg_contrib,
4828 						&cfs_rq->removed_load);
4829 	}
4830 
4831 	/* We have migrated, no longer consider this task hot */
4832 	se->exec_start = 0;
4833 }
4834 #endif /* CONFIG_SMP */
4835 
4836 static unsigned long
4837 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4838 {
4839 	unsigned long gran = sysctl_sched_wakeup_granularity;
4840 
4841 	/*
4842 	 * Since its curr running now, convert the gran from real-time
4843 	 * to virtual-time in his units.
4844 	 *
4845 	 * By using 'se' instead of 'curr' we penalize light tasks, so
4846 	 * they get preempted easier. That is, if 'se' < 'curr' then
4847 	 * the resulting gran will be larger, therefore penalizing the
4848 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4849 	 * be smaller, again penalizing the lighter task.
4850 	 *
4851 	 * This is especially important for buddies when the leftmost
4852 	 * task is higher priority than the buddy.
4853 	 */
4854 	return calc_delta_fair(gran, se);
4855 }
4856 
4857 /*
4858  * Should 'se' preempt 'curr'.
4859  *
4860  *             |s1
4861  *        |s2
4862  *   |s3
4863  *         g
4864  *      |<--->|c
4865  *
4866  *  w(c, s1) = -1
4867  *  w(c, s2) =  0
4868  *  w(c, s3) =  1
4869  *
4870  */
4871 static int
4872 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4873 {
4874 	s64 gran, vdiff = curr->vruntime - se->vruntime;
4875 
4876 	if (vdiff <= 0)
4877 		return -1;
4878 
4879 	gran = wakeup_gran(curr, se);
4880 	if (vdiff > gran)
4881 		return 1;
4882 
4883 	return 0;
4884 }
4885 
4886 static void set_last_buddy(struct sched_entity *se)
4887 {
4888 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4889 		return;
4890 
4891 	for_each_sched_entity(se)
4892 		cfs_rq_of(se)->last = se;
4893 }
4894 
4895 static void set_next_buddy(struct sched_entity *se)
4896 {
4897 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4898 		return;
4899 
4900 	for_each_sched_entity(se)
4901 		cfs_rq_of(se)->next = se;
4902 }
4903 
4904 static void set_skip_buddy(struct sched_entity *se)
4905 {
4906 	for_each_sched_entity(se)
4907 		cfs_rq_of(se)->skip = se;
4908 }
4909 
4910 /*
4911  * Preempt the current task with a newly woken task if needed:
4912  */
4913 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4914 {
4915 	struct task_struct *curr = rq->curr;
4916 	struct sched_entity *se = &curr->se, *pse = &p->se;
4917 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4918 	int scale = cfs_rq->nr_running >= sched_nr_latency;
4919 	int next_buddy_marked = 0;
4920 
4921 	if (unlikely(se == pse))
4922 		return;
4923 
4924 	/*
4925 	 * This is possible from callers such as attach_tasks(), in which we
4926 	 * unconditionally check_prempt_curr() after an enqueue (which may have
4927 	 * lead to a throttle).  This both saves work and prevents false
4928 	 * next-buddy nomination below.
4929 	 */
4930 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4931 		return;
4932 
4933 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4934 		set_next_buddy(pse);
4935 		next_buddy_marked = 1;
4936 	}
4937 
4938 	/*
4939 	 * We can come here with TIF_NEED_RESCHED already set from new task
4940 	 * wake up path.
4941 	 *
4942 	 * Note: this also catches the edge-case of curr being in a throttled
4943 	 * group (e.g. via set_curr_task), since update_curr() (in the
4944 	 * enqueue of curr) will have resulted in resched being set.  This
4945 	 * prevents us from potentially nominating it as a false LAST_BUDDY
4946 	 * below.
4947 	 */
4948 	if (test_tsk_need_resched(curr))
4949 		return;
4950 
4951 	/* Idle tasks are by definition preempted by non-idle tasks. */
4952 	if (unlikely(curr->policy == SCHED_IDLE) &&
4953 	    likely(p->policy != SCHED_IDLE))
4954 		goto preempt;
4955 
4956 	/*
4957 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4958 	 * is driven by the tick):
4959 	 */
4960 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4961 		return;
4962 
4963 	find_matching_se(&se, &pse);
4964 	update_curr(cfs_rq_of(se));
4965 	BUG_ON(!pse);
4966 	if (wakeup_preempt_entity(se, pse) == 1) {
4967 		/*
4968 		 * Bias pick_next to pick the sched entity that is
4969 		 * triggering this preemption.
4970 		 */
4971 		if (!next_buddy_marked)
4972 			set_next_buddy(pse);
4973 		goto preempt;
4974 	}
4975 
4976 	return;
4977 
4978 preempt:
4979 	resched_curr(rq);
4980 	/*
4981 	 * Only set the backward buddy when the current task is still
4982 	 * on the rq. This can happen when a wakeup gets interleaved
4983 	 * with schedule on the ->pre_schedule() or idle_balance()
4984 	 * point, either of which can * drop the rq lock.
4985 	 *
4986 	 * Also, during early boot the idle thread is in the fair class,
4987 	 * for obvious reasons its a bad idea to schedule back to it.
4988 	 */
4989 	if (unlikely(!se->on_rq || curr == rq->idle))
4990 		return;
4991 
4992 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4993 		set_last_buddy(se);
4994 }
4995 
4996 static struct task_struct *
4997 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4998 {
4999 	struct cfs_rq *cfs_rq = &rq->cfs;
5000 	struct sched_entity *se;
5001 	struct task_struct *p;
5002 	int new_tasks;
5003 
5004 again:
5005 #ifdef CONFIG_FAIR_GROUP_SCHED
5006 	if (!cfs_rq->nr_running)
5007 		goto idle;
5008 
5009 	if (prev->sched_class != &fair_sched_class)
5010 		goto simple;
5011 
5012 	/*
5013 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5014 	 * likely that a next task is from the same cgroup as the current.
5015 	 *
5016 	 * Therefore attempt to avoid putting and setting the entire cgroup
5017 	 * hierarchy, only change the part that actually changes.
5018 	 */
5019 
5020 	do {
5021 		struct sched_entity *curr = cfs_rq->curr;
5022 
5023 		/*
5024 		 * Since we got here without doing put_prev_entity() we also
5025 		 * have to consider cfs_rq->curr. If it is still a runnable
5026 		 * entity, update_curr() will update its vruntime, otherwise
5027 		 * forget we've ever seen it.
5028 		 */
5029 		if (curr && curr->on_rq)
5030 			update_curr(cfs_rq);
5031 		else
5032 			curr = NULL;
5033 
5034 		/*
5035 		 * This call to check_cfs_rq_runtime() will do the throttle and
5036 		 * dequeue its entity in the parent(s). Therefore the 'simple'
5037 		 * nr_running test will indeed be correct.
5038 		 */
5039 		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5040 			goto simple;
5041 
5042 		se = pick_next_entity(cfs_rq, curr);
5043 		cfs_rq = group_cfs_rq(se);
5044 	} while (cfs_rq);
5045 
5046 	p = task_of(se);
5047 
5048 	/*
5049 	 * Since we haven't yet done put_prev_entity and if the selected task
5050 	 * is a different task than we started out with, try and touch the
5051 	 * least amount of cfs_rqs.
5052 	 */
5053 	if (prev != p) {
5054 		struct sched_entity *pse = &prev->se;
5055 
5056 		while (!(cfs_rq = is_same_group(se, pse))) {
5057 			int se_depth = se->depth;
5058 			int pse_depth = pse->depth;
5059 
5060 			if (se_depth <= pse_depth) {
5061 				put_prev_entity(cfs_rq_of(pse), pse);
5062 				pse = parent_entity(pse);
5063 			}
5064 			if (se_depth >= pse_depth) {
5065 				set_next_entity(cfs_rq_of(se), se);
5066 				se = parent_entity(se);
5067 			}
5068 		}
5069 
5070 		put_prev_entity(cfs_rq, pse);
5071 		set_next_entity(cfs_rq, se);
5072 	}
5073 
5074 	if (hrtick_enabled(rq))
5075 		hrtick_start_fair(rq, p);
5076 
5077 	return p;
5078 simple:
5079 	cfs_rq = &rq->cfs;
5080 #endif
5081 
5082 	if (!cfs_rq->nr_running)
5083 		goto idle;
5084 
5085 	put_prev_task(rq, prev);
5086 
5087 	do {
5088 		se = pick_next_entity(cfs_rq, NULL);
5089 		set_next_entity(cfs_rq, se);
5090 		cfs_rq = group_cfs_rq(se);
5091 	} while (cfs_rq);
5092 
5093 	p = task_of(se);
5094 
5095 	if (hrtick_enabled(rq))
5096 		hrtick_start_fair(rq, p);
5097 
5098 	return p;
5099 
5100 idle:
5101 	new_tasks = idle_balance(rq);
5102 	/*
5103 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5104 	 * possible for any higher priority task to appear. In that case we
5105 	 * must re-start the pick_next_entity() loop.
5106 	 */
5107 	if (new_tasks < 0)
5108 		return RETRY_TASK;
5109 
5110 	if (new_tasks > 0)
5111 		goto again;
5112 
5113 	return NULL;
5114 }
5115 
5116 /*
5117  * Account for a descheduled task:
5118  */
5119 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5120 {
5121 	struct sched_entity *se = &prev->se;
5122 	struct cfs_rq *cfs_rq;
5123 
5124 	for_each_sched_entity(se) {
5125 		cfs_rq = cfs_rq_of(se);
5126 		put_prev_entity(cfs_rq, se);
5127 	}
5128 }
5129 
5130 /*
5131  * sched_yield() is very simple
5132  *
5133  * The magic of dealing with the ->skip buddy is in pick_next_entity.
5134  */
5135 static void yield_task_fair(struct rq *rq)
5136 {
5137 	struct task_struct *curr = rq->curr;
5138 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5139 	struct sched_entity *se = &curr->se;
5140 
5141 	/*
5142 	 * Are we the only task in the tree?
5143 	 */
5144 	if (unlikely(rq->nr_running == 1))
5145 		return;
5146 
5147 	clear_buddies(cfs_rq, se);
5148 
5149 	if (curr->policy != SCHED_BATCH) {
5150 		update_rq_clock(rq);
5151 		/*
5152 		 * Update run-time statistics of the 'current'.
5153 		 */
5154 		update_curr(cfs_rq);
5155 		/*
5156 		 * Tell update_rq_clock() that we've just updated,
5157 		 * so we don't do microscopic update in schedule()
5158 		 * and double the fastpath cost.
5159 		 */
5160 		 rq->skip_clock_update = 1;
5161 	}
5162 
5163 	set_skip_buddy(se);
5164 }
5165 
5166 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5167 {
5168 	struct sched_entity *se = &p->se;
5169 
5170 	/* throttled hierarchies are not runnable */
5171 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5172 		return false;
5173 
5174 	/* Tell the scheduler that we'd really like pse to run next. */
5175 	set_next_buddy(se);
5176 
5177 	yield_task_fair(rq);
5178 
5179 	return true;
5180 }
5181 
5182 #ifdef CONFIG_SMP
5183 /**************************************************
5184  * Fair scheduling class load-balancing methods.
5185  *
5186  * BASICS
5187  *
5188  * The purpose of load-balancing is to achieve the same basic fairness the
5189  * per-cpu scheduler provides, namely provide a proportional amount of compute
5190  * time to each task. This is expressed in the following equation:
5191  *
5192  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
5193  *
5194  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5195  * W_i,0 is defined as:
5196  *
5197  *   W_i,0 = \Sum_j w_i,j                                             (2)
5198  *
5199  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5200  * is derived from the nice value as per prio_to_weight[].
5201  *
5202  * The weight average is an exponential decay average of the instantaneous
5203  * weight:
5204  *
5205  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
5206  *
5207  * C_i is the compute capacity of cpu i, typically it is the
5208  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5209  * can also include other factors [XXX].
5210  *
5211  * To achieve this balance we define a measure of imbalance which follows
5212  * directly from (1):
5213  *
5214  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
5215  *
5216  * We them move tasks around to minimize the imbalance. In the continuous
5217  * function space it is obvious this converges, in the discrete case we get
5218  * a few fun cases generally called infeasible weight scenarios.
5219  *
5220  * [XXX expand on:
5221  *     - infeasible weights;
5222  *     - local vs global optima in the discrete case. ]
5223  *
5224  *
5225  * SCHED DOMAINS
5226  *
5227  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5228  * for all i,j solution, we create a tree of cpus that follows the hardware
5229  * topology where each level pairs two lower groups (or better). This results
5230  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5231  * tree to only the first of the previous level and we decrease the frequency
5232  * of load-balance at each level inv. proportional to the number of cpus in
5233  * the groups.
5234  *
5235  * This yields:
5236  *
5237  *     log_2 n     1     n
5238  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
5239  *     i = 0      2^i   2^i
5240  *                               `- size of each group
5241  *         |         |     `- number of cpus doing load-balance
5242  *         |         `- freq
5243  *         `- sum over all levels
5244  *
5245  * Coupled with a limit on how many tasks we can migrate every balance pass,
5246  * this makes (5) the runtime complexity of the balancer.
5247  *
5248  * An important property here is that each CPU is still (indirectly) connected
5249  * to every other cpu in at most O(log n) steps:
5250  *
5251  * The adjacency matrix of the resulting graph is given by:
5252  *
5253  *             log_2 n
5254  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
5255  *             k = 0
5256  *
5257  * And you'll find that:
5258  *
5259  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
5260  *
5261  * Showing there's indeed a path between every cpu in at most O(log n) steps.
5262  * The task movement gives a factor of O(m), giving a convergence complexity
5263  * of:
5264  *
5265  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
5266  *
5267  *
5268  * WORK CONSERVING
5269  *
5270  * In order to avoid CPUs going idle while there's still work to do, new idle
5271  * balancing is more aggressive and has the newly idle cpu iterate up the domain
5272  * tree itself instead of relying on other CPUs to bring it work.
5273  *
5274  * This adds some complexity to both (5) and (8) but it reduces the total idle
5275  * time.
5276  *
5277  * [XXX more?]
5278  *
5279  *
5280  * CGROUPS
5281  *
5282  * Cgroups make a horror show out of (2), instead of a simple sum we get:
5283  *
5284  *                                s_k,i
5285  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
5286  *                                 S_k
5287  *
5288  * Where
5289  *
5290  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
5291  *
5292  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5293  *
5294  * The big problem is S_k, its a global sum needed to compute a local (W_i)
5295  * property.
5296  *
5297  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5298  *      rewrite all of this once again.]
5299  */
5300 
5301 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5302 
5303 enum fbq_type { regular, remote, all };
5304 
5305 #define LBF_ALL_PINNED	0x01
5306 #define LBF_NEED_BREAK	0x02
5307 #define LBF_DST_PINNED  0x04
5308 #define LBF_SOME_PINNED	0x08
5309 
5310 struct lb_env {
5311 	struct sched_domain	*sd;
5312 
5313 	struct rq		*src_rq;
5314 	int			src_cpu;
5315 
5316 	int			dst_cpu;
5317 	struct rq		*dst_rq;
5318 
5319 	struct cpumask		*dst_grpmask;
5320 	int			new_dst_cpu;
5321 	enum cpu_idle_type	idle;
5322 	long			imbalance;
5323 	/* The set of CPUs under consideration for load-balancing */
5324 	struct cpumask		*cpus;
5325 
5326 	unsigned int		flags;
5327 
5328 	unsigned int		loop;
5329 	unsigned int		loop_break;
5330 	unsigned int		loop_max;
5331 
5332 	enum fbq_type		fbq_type;
5333 	struct list_head	tasks;
5334 };
5335 
5336 /*
5337  * Is this task likely cache-hot:
5338  */
5339 static int task_hot(struct task_struct *p, struct lb_env *env)
5340 {
5341 	s64 delta;
5342 
5343 	lockdep_assert_held(&env->src_rq->lock);
5344 
5345 	if (p->sched_class != &fair_sched_class)
5346 		return 0;
5347 
5348 	if (unlikely(p->policy == SCHED_IDLE))
5349 		return 0;
5350 
5351 	/*
5352 	 * Buddy candidates are cache hot:
5353 	 */
5354 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5355 			(&p->se == cfs_rq_of(&p->se)->next ||
5356 			 &p->se == cfs_rq_of(&p->se)->last))
5357 		return 1;
5358 
5359 	if (sysctl_sched_migration_cost == -1)
5360 		return 1;
5361 	if (sysctl_sched_migration_cost == 0)
5362 		return 0;
5363 
5364 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5365 
5366 	return delta < (s64)sysctl_sched_migration_cost;
5367 }
5368 
5369 #ifdef CONFIG_NUMA_BALANCING
5370 /* Returns true if the destination node has incurred more faults */
5371 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5372 {
5373 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5374 	int src_nid, dst_nid;
5375 
5376 	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
5377 	    !(env->sd->flags & SD_NUMA)) {
5378 		return false;
5379 	}
5380 
5381 	src_nid = cpu_to_node(env->src_cpu);
5382 	dst_nid = cpu_to_node(env->dst_cpu);
5383 
5384 	if (src_nid == dst_nid)
5385 		return false;
5386 
5387 	if (numa_group) {
5388 		/* Task is already in the group's interleave set. */
5389 		if (node_isset(src_nid, numa_group->active_nodes))
5390 			return false;
5391 
5392 		/* Task is moving into the group's interleave set. */
5393 		if (node_isset(dst_nid, numa_group->active_nodes))
5394 			return true;
5395 
5396 		return group_faults(p, dst_nid) > group_faults(p, src_nid);
5397 	}
5398 
5399 	/* Encourage migration to the preferred node. */
5400 	if (dst_nid == p->numa_preferred_nid)
5401 		return true;
5402 
5403 	return task_faults(p, dst_nid) > task_faults(p, src_nid);
5404 }
5405 
5406 
5407 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5408 {
5409 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5410 	int src_nid, dst_nid;
5411 
5412 	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5413 		return false;
5414 
5415 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5416 		return false;
5417 
5418 	src_nid = cpu_to_node(env->src_cpu);
5419 	dst_nid = cpu_to_node(env->dst_cpu);
5420 
5421 	if (src_nid == dst_nid)
5422 		return false;
5423 
5424 	if (numa_group) {
5425 		/* Task is moving within/into the group's interleave set. */
5426 		if (node_isset(dst_nid, numa_group->active_nodes))
5427 			return false;
5428 
5429 		/* Task is moving out of the group's interleave set. */
5430 		if (node_isset(src_nid, numa_group->active_nodes))
5431 			return true;
5432 
5433 		return group_faults(p, dst_nid) < group_faults(p, src_nid);
5434 	}
5435 
5436 	/* Migrating away from the preferred node is always bad. */
5437 	if (src_nid == p->numa_preferred_nid)
5438 		return true;
5439 
5440 	return task_faults(p, dst_nid) < task_faults(p, src_nid);
5441 }
5442 
5443 #else
5444 static inline bool migrate_improves_locality(struct task_struct *p,
5445 					     struct lb_env *env)
5446 {
5447 	return false;
5448 }
5449 
5450 static inline bool migrate_degrades_locality(struct task_struct *p,
5451 					     struct lb_env *env)
5452 {
5453 	return false;
5454 }
5455 #endif
5456 
5457 /*
5458  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5459  */
5460 static
5461 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5462 {
5463 	int tsk_cache_hot = 0;
5464 
5465 	lockdep_assert_held(&env->src_rq->lock);
5466 
5467 	/*
5468 	 * We do not migrate tasks that are:
5469 	 * 1) throttled_lb_pair, or
5470 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5471 	 * 3) running (obviously), or
5472 	 * 4) are cache-hot on their current CPU.
5473 	 */
5474 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5475 		return 0;
5476 
5477 	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5478 		int cpu;
5479 
5480 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5481 
5482 		env->flags |= LBF_SOME_PINNED;
5483 
5484 		/*
5485 		 * Remember if this task can be migrated to any other cpu in
5486 		 * our sched_group. We may want to revisit it if we couldn't
5487 		 * meet load balance goals by pulling other tasks on src_cpu.
5488 		 *
5489 		 * Also avoid computing new_dst_cpu if we have already computed
5490 		 * one in current iteration.
5491 		 */
5492 		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5493 			return 0;
5494 
5495 		/* Prevent to re-select dst_cpu via env's cpus */
5496 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5497 			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5498 				env->flags |= LBF_DST_PINNED;
5499 				env->new_dst_cpu = cpu;
5500 				break;
5501 			}
5502 		}
5503 
5504 		return 0;
5505 	}
5506 
5507 	/* Record that we found atleast one task that could run on dst_cpu */
5508 	env->flags &= ~LBF_ALL_PINNED;
5509 
5510 	if (task_running(env->src_rq, p)) {
5511 		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5512 		return 0;
5513 	}
5514 
5515 	/*
5516 	 * Aggressive migration if:
5517 	 * 1) destination numa is preferred
5518 	 * 2) task is cache cold, or
5519 	 * 3) too many balance attempts have failed.
5520 	 */
5521 	tsk_cache_hot = task_hot(p, env);
5522 	if (!tsk_cache_hot)
5523 		tsk_cache_hot = migrate_degrades_locality(p, env);
5524 
5525 	if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5526 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5527 		if (tsk_cache_hot) {
5528 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5529 			schedstat_inc(p, se.statistics.nr_forced_migrations);
5530 		}
5531 		return 1;
5532 	}
5533 
5534 	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5535 	return 0;
5536 }
5537 
5538 /*
5539  * detach_task() -- detach the task for the migration specified in env
5540  */
5541 static void detach_task(struct task_struct *p, struct lb_env *env)
5542 {
5543 	lockdep_assert_held(&env->src_rq->lock);
5544 
5545 	deactivate_task(env->src_rq, p, 0);
5546 	p->on_rq = TASK_ON_RQ_MIGRATING;
5547 	set_task_cpu(p, env->dst_cpu);
5548 }
5549 
5550 /*
5551  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5552  * part of active balancing operations within "domain".
5553  *
5554  * Returns a task if successful and NULL otherwise.
5555  */
5556 static struct task_struct *detach_one_task(struct lb_env *env)
5557 {
5558 	struct task_struct *p, *n;
5559 
5560 	lockdep_assert_held(&env->src_rq->lock);
5561 
5562 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5563 		if (!can_migrate_task(p, env))
5564 			continue;
5565 
5566 		detach_task(p, env);
5567 
5568 		/*
5569 		 * Right now, this is only the second place where
5570 		 * lb_gained[env->idle] is updated (other is detach_tasks)
5571 		 * so we can safely collect stats here rather than
5572 		 * inside detach_tasks().
5573 		 */
5574 		schedstat_inc(env->sd, lb_gained[env->idle]);
5575 		return p;
5576 	}
5577 	return NULL;
5578 }
5579 
5580 static const unsigned int sched_nr_migrate_break = 32;
5581 
5582 /*
5583  * detach_tasks() -- tries to detach up to imbalance weighted load from
5584  * busiest_rq, as part of a balancing operation within domain "sd".
5585  *
5586  * Returns number of detached tasks if successful and 0 otherwise.
5587  */
5588 static int detach_tasks(struct lb_env *env)
5589 {
5590 	struct list_head *tasks = &env->src_rq->cfs_tasks;
5591 	struct task_struct *p;
5592 	unsigned long load;
5593 	int detached = 0;
5594 
5595 	lockdep_assert_held(&env->src_rq->lock);
5596 
5597 	if (env->imbalance <= 0)
5598 		return 0;
5599 
5600 	while (!list_empty(tasks)) {
5601 		p = list_first_entry(tasks, struct task_struct, se.group_node);
5602 
5603 		env->loop++;
5604 		/* We've more or less seen every task there is, call it quits */
5605 		if (env->loop > env->loop_max)
5606 			break;
5607 
5608 		/* take a breather every nr_migrate tasks */
5609 		if (env->loop > env->loop_break) {
5610 			env->loop_break += sched_nr_migrate_break;
5611 			env->flags |= LBF_NEED_BREAK;
5612 			break;
5613 		}
5614 
5615 		if (!can_migrate_task(p, env))
5616 			goto next;
5617 
5618 		load = task_h_load(p);
5619 
5620 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5621 			goto next;
5622 
5623 		if ((load / 2) > env->imbalance)
5624 			goto next;
5625 
5626 		detach_task(p, env);
5627 		list_add(&p->se.group_node, &env->tasks);
5628 
5629 		detached++;
5630 		env->imbalance -= load;
5631 
5632 #ifdef CONFIG_PREEMPT
5633 		/*
5634 		 * NEWIDLE balancing is a source of latency, so preemptible
5635 		 * kernels will stop after the first task is detached to minimize
5636 		 * the critical section.
5637 		 */
5638 		if (env->idle == CPU_NEWLY_IDLE)
5639 			break;
5640 #endif
5641 
5642 		/*
5643 		 * We only want to steal up to the prescribed amount of
5644 		 * weighted load.
5645 		 */
5646 		if (env->imbalance <= 0)
5647 			break;
5648 
5649 		continue;
5650 next:
5651 		list_move_tail(&p->se.group_node, tasks);
5652 	}
5653 
5654 	/*
5655 	 * Right now, this is one of only two places we collect this stat
5656 	 * so we can safely collect detach_one_task() stats here rather
5657 	 * than inside detach_one_task().
5658 	 */
5659 	schedstat_add(env->sd, lb_gained[env->idle], detached);
5660 
5661 	return detached;
5662 }
5663 
5664 /*
5665  * attach_task() -- attach the task detached by detach_task() to its new rq.
5666  */
5667 static void attach_task(struct rq *rq, struct task_struct *p)
5668 {
5669 	lockdep_assert_held(&rq->lock);
5670 
5671 	BUG_ON(task_rq(p) != rq);
5672 	p->on_rq = TASK_ON_RQ_QUEUED;
5673 	activate_task(rq, p, 0);
5674 	check_preempt_curr(rq, p, 0);
5675 }
5676 
5677 /*
5678  * attach_one_task() -- attaches the task returned from detach_one_task() to
5679  * its new rq.
5680  */
5681 static void attach_one_task(struct rq *rq, struct task_struct *p)
5682 {
5683 	raw_spin_lock(&rq->lock);
5684 	attach_task(rq, p);
5685 	raw_spin_unlock(&rq->lock);
5686 }
5687 
5688 /*
5689  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5690  * new rq.
5691  */
5692 static void attach_tasks(struct lb_env *env)
5693 {
5694 	struct list_head *tasks = &env->tasks;
5695 	struct task_struct *p;
5696 
5697 	raw_spin_lock(&env->dst_rq->lock);
5698 
5699 	while (!list_empty(tasks)) {
5700 		p = list_first_entry(tasks, struct task_struct, se.group_node);
5701 		list_del_init(&p->se.group_node);
5702 
5703 		attach_task(env->dst_rq, p);
5704 	}
5705 
5706 	raw_spin_unlock(&env->dst_rq->lock);
5707 }
5708 
5709 #ifdef CONFIG_FAIR_GROUP_SCHED
5710 /*
5711  * update tg->load_weight by folding this cpu's load_avg
5712  */
5713 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5714 {
5715 	struct sched_entity *se = tg->se[cpu];
5716 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5717 
5718 	/* throttled entities do not contribute to load */
5719 	if (throttled_hierarchy(cfs_rq))
5720 		return;
5721 
5722 	update_cfs_rq_blocked_load(cfs_rq, 1);
5723 
5724 	if (se) {
5725 		update_entity_load_avg(se, 1);
5726 		/*
5727 		 * We pivot on our runnable average having decayed to zero for
5728 		 * list removal.  This generally implies that all our children
5729 		 * have also been removed (modulo rounding error or bandwidth
5730 		 * control); however, such cases are rare and we can fix these
5731 		 * at enqueue.
5732 		 *
5733 		 * TODO: fix up out-of-order children on enqueue.
5734 		 */
5735 		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5736 			list_del_leaf_cfs_rq(cfs_rq);
5737 	} else {
5738 		struct rq *rq = rq_of(cfs_rq);
5739 		update_rq_runnable_avg(rq, rq->nr_running);
5740 	}
5741 }
5742 
5743 static void update_blocked_averages(int cpu)
5744 {
5745 	struct rq *rq = cpu_rq(cpu);
5746 	struct cfs_rq *cfs_rq;
5747 	unsigned long flags;
5748 
5749 	raw_spin_lock_irqsave(&rq->lock, flags);
5750 	update_rq_clock(rq);
5751 	/*
5752 	 * Iterates the task_group tree in a bottom up fashion, see
5753 	 * list_add_leaf_cfs_rq() for details.
5754 	 */
5755 	for_each_leaf_cfs_rq(rq, cfs_rq) {
5756 		/*
5757 		 * Note: We may want to consider periodically releasing
5758 		 * rq->lock about these updates so that creating many task
5759 		 * groups does not result in continually extending hold time.
5760 		 */
5761 		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5762 	}
5763 
5764 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5765 }
5766 
5767 /*
5768  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5769  * This needs to be done in a top-down fashion because the load of a child
5770  * group is a fraction of its parents load.
5771  */
5772 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5773 {
5774 	struct rq *rq = rq_of(cfs_rq);
5775 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5776 	unsigned long now = jiffies;
5777 	unsigned long load;
5778 
5779 	if (cfs_rq->last_h_load_update == now)
5780 		return;
5781 
5782 	cfs_rq->h_load_next = NULL;
5783 	for_each_sched_entity(se) {
5784 		cfs_rq = cfs_rq_of(se);
5785 		cfs_rq->h_load_next = se;
5786 		if (cfs_rq->last_h_load_update == now)
5787 			break;
5788 	}
5789 
5790 	if (!se) {
5791 		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5792 		cfs_rq->last_h_load_update = now;
5793 	}
5794 
5795 	while ((se = cfs_rq->h_load_next) != NULL) {
5796 		load = cfs_rq->h_load;
5797 		load = div64_ul(load * se->avg.load_avg_contrib,
5798 				cfs_rq->runnable_load_avg + 1);
5799 		cfs_rq = group_cfs_rq(se);
5800 		cfs_rq->h_load = load;
5801 		cfs_rq->last_h_load_update = now;
5802 	}
5803 }
5804 
5805 static unsigned long task_h_load(struct task_struct *p)
5806 {
5807 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
5808 
5809 	update_cfs_rq_h_load(cfs_rq);
5810 	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5811 			cfs_rq->runnable_load_avg + 1);
5812 }
5813 #else
5814 static inline void update_blocked_averages(int cpu)
5815 {
5816 }
5817 
5818 static unsigned long task_h_load(struct task_struct *p)
5819 {
5820 	return p->se.avg.load_avg_contrib;
5821 }
5822 #endif
5823 
5824 /********** Helpers for find_busiest_group ************************/
5825 
5826 enum group_type {
5827 	group_other = 0,
5828 	group_imbalanced,
5829 	group_overloaded,
5830 };
5831 
5832 /*
5833  * sg_lb_stats - stats of a sched_group required for load_balancing
5834  */
5835 struct sg_lb_stats {
5836 	unsigned long avg_load; /*Avg load across the CPUs of the group */
5837 	unsigned long group_load; /* Total load over the CPUs of the group */
5838 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5839 	unsigned long load_per_task;
5840 	unsigned long group_capacity;
5841 	unsigned int sum_nr_running; /* Nr tasks running in the group */
5842 	unsigned int group_capacity_factor;
5843 	unsigned int idle_cpus;
5844 	unsigned int group_weight;
5845 	enum group_type group_type;
5846 	int group_has_free_capacity;
5847 #ifdef CONFIG_NUMA_BALANCING
5848 	unsigned int nr_numa_running;
5849 	unsigned int nr_preferred_running;
5850 #endif
5851 };
5852 
5853 /*
5854  * sd_lb_stats - Structure to store the statistics of a sched_domain
5855  *		 during load balancing.
5856  */
5857 struct sd_lb_stats {
5858 	struct sched_group *busiest;	/* Busiest group in this sd */
5859 	struct sched_group *local;	/* Local group in this sd */
5860 	unsigned long total_load;	/* Total load of all groups in sd */
5861 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
5862 	unsigned long avg_load;	/* Average load across all groups in sd */
5863 
5864 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5865 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
5866 };
5867 
5868 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5869 {
5870 	/*
5871 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5872 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5873 	 * We must however clear busiest_stat::avg_load because
5874 	 * update_sd_pick_busiest() reads this before assignment.
5875 	 */
5876 	*sds = (struct sd_lb_stats){
5877 		.busiest = NULL,
5878 		.local = NULL,
5879 		.total_load = 0UL,
5880 		.total_capacity = 0UL,
5881 		.busiest_stat = {
5882 			.avg_load = 0UL,
5883 			.sum_nr_running = 0,
5884 			.group_type = group_other,
5885 		},
5886 	};
5887 }
5888 
5889 /**
5890  * get_sd_load_idx - Obtain the load index for a given sched domain.
5891  * @sd: The sched_domain whose load_idx is to be obtained.
5892  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5893  *
5894  * Return: The load index.
5895  */
5896 static inline int get_sd_load_idx(struct sched_domain *sd,
5897 					enum cpu_idle_type idle)
5898 {
5899 	int load_idx;
5900 
5901 	switch (idle) {
5902 	case CPU_NOT_IDLE:
5903 		load_idx = sd->busy_idx;
5904 		break;
5905 
5906 	case CPU_NEWLY_IDLE:
5907 		load_idx = sd->newidle_idx;
5908 		break;
5909 	default:
5910 		load_idx = sd->idle_idx;
5911 		break;
5912 	}
5913 
5914 	return load_idx;
5915 }
5916 
5917 static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
5918 {
5919 	return SCHED_CAPACITY_SCALE;
5920 }
5921 
5922 unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
5923 {
5924 	return default_scale_capacity(sd, cpu);
5925 }
5926 
5927 static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5928 {
5929 	if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
5930 		return sd->smt_gain / sd->span_weight;
5931 
5932 	return SCHED_CAPACITY_SCALE;
5933 }
5934 
5935 unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5936 {
5937 	return default_scale_cpu_capacity(sd, cpu);
5938 }
5939 
5940 static unsigned long scale_rt_capacity(int cpu)
5941 {
5942 	struct rq *rq = cpu_rq(cpu);
5943 	u64 total, available, age_stamp, avg;
5944 	s64 delta;
5945 
5946 	/*
5947 	 * Since we're reading these variables without serialization make sure
5948 	 * we read them once before doing sanity checks on them.
5949 	 */
5950 	age_stamp = ACCESS_ONCE(rq->age_stamp);
5951 	avg = ACCESS_ONCE(rq->rt_avg);
5952 
5953 	delta = rq_clock(rq) - age_stamp;
5954 	if (unlikely(delta < 0))
5955 		delta = 0;
5956 
5957 	total = sched_avg_period() + delta;
5958 
5959 	if (unlikely(total < avg)) {
5960 		/* Ensures that capacity won't end up being negative */
5961 		available = 0;
5962 	} else {
5963 		available = total - avg;
5964 	}
5965 
5966 	if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5967 		total = SCHED_CAPACITY_SCALE;
5968 
5969 	total >>= SCHED_CAPACITY_SHIFT;
5970 
5971 	return div_u64(available, total);
5972 }
5973 
5974 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
5975 {
5976 	unsigned long capacity = SCHED_CAPACITY_SCALE;
5977 	struct sched_group *sdg = sd->groups;
5978 
5979 	if (sched_feat(ARCH_CAPACITY))
5980 		capacity *= arch_scale_cpu_capacity(sd, cpu);
5981 	else
5982 		capacity *= default_scale_cpu_capacity(sd, cpu);
5983 
5984 	capacity >>= SCHED_CAPACITY_SHIFT;
5985 
5986 	sdg->sgc->capacity_orig = capacity;
5987 
5988 	if (sched_feat(ARCH_CAPACITY))
5989 		capacity *= arch_scale_freq_capacity(sd, cpu);
5990 	else
5991 		capacity *= default_scale_capacity(sd, cpu);
5992 
5993 	capacity >>= SCHED_CAPACITY_SHIFT;
5994 
5995 	capacity *= scale_rt_capacity(cpu);
5996 	capacity >>= SCHED_CAPACITY_SHIFT;
5997 
5998 	if (!capacity)
5999 		capacity = 1;
6000 
6001 	cpu_rq(cpu)->cpu_capacity = capacity;
6002 	sdg->sgc->capacity = capacity;
6003 }
6004 
6005 void update_group_capacity(struct sched_domain *sd, int cpu)
6006 {
6007 	struct sched_domain *child = sd->child;
6008 	struct sched_group *group, *sdg = sd->groups;
6009 	unsigned long capacity, capacity_orig;
6010 	unsigned long interval;
6011 
6012 	interval = msecs_to_jiffies(sd->balance_interval);
6013 	interval = clamp(interval, 1UL, max_load_balance_interval);
6014 	sdg->sgc->next_update = jiffies + interval;
6015 
6016 	if (!child) {
6017 		update_cpu_capacity(sd, cpu);
6018 		return;
6019 	}
6020 
6021 	capacity_orig = capacity = 0;
6022 
6023 	if (child->flags & SD_OVERLAP) {
6024 		/*
6025 		 * SD_OVERLAP domains cannot assume that child groups
6026 		 * span the current group.
6027 		 */
6028 
6029 		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6030 			struct sched_group_capacity *sgc;
6031 			struct rq *rq = cpu_rq(cpu);
6032 
6033 			/*
6034 			 * build_sched_domains() -> init_sched_groups_capacity()
6035 			 * gets here before we've attached the domains to the
6036 			 * runqueues.
6037 			 *
6038 			 * Use capacity_of(), which is set irrespective of domains
6039 			 * in update_cpu_capacity().
6040 			 *
6041 			 * This avoids capacity/capacity_orig from being 0 and
6042 			 * causing divide-by-zero issues on boot.
6043 			 *
6044 			 * Runtime updates will correct capacity_orig.
6045 			 */
6046 			if (unlikely(!rq->sd)) {
6047 				capacity_orig += capacity_of(cpu);
6048 				capacity += capacity_of(cpu);
6049 				continue;
6050 			}
6051 
6052 			sgc = rq->sd->groups->sgc;
6053 			capacity_orig += sgc->capacity_orig;
6054 			capacity += sgc->capacity;
6055 		}
6056 	} else  {
6057 		/*
6058 		 * !SD_OVERLAP domains can assume that child groups
6059 		 * span the current group.
6060 		 */
6061 
6062 		group = child->groups;
6063 		do {
6064 			capacity_orig += group->sgc->capacity_orig;
6065 			capacity += group->sgc->capacity;
6066 			group = group->next;
6067 		} while (group != child->groups);
6068 	}
6069 
6070 	sdg->sgc->capacity_orig = capacity_orig;
6071 	sdg->sgc->capacity = capacity;
6072 }
6073 
6074 /*
6075  * Try and fix up capacity for tiny siblings, this is needed when
6076  * things like SD_ASYM_PACKING need f_b_g to select another sibling
6077  * which on its own isn't powerful enough.
6078  *
6079  * See update_sd_pick_busiest() and check_asym_packing().
6080  */
6081 static inline int
6082 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
6083 {
6084 	/*
6085 	 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
6086 	 */
6087 	if (!(sd->flags & SD_SHARE_CPUCAPACITY))
6088 		return 0;
6089 
6090 	/*
6091 	 * If ~90% of the cpu_capacity is still there, we're good.
6092 	 */
6093 	if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
6094 		return 1;
6095 
6096 	return 0;
6097 }
6098 
6099 /*
6100  * Group imbalance indicates (and tries to solve) the problem where balancing
6101  * groups is inadequate due to tsk_cpus_allowed() constraints.
6102  *
6103  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6104  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6105  * Something like:
6106  *
6107  * 	{ 0 1 2 3 } { 4 5 6 7 }
6108  * 	        *     * * *
6109  *
6110  * If we were to balance group-wise we'd place two tasks in the first group and
6111  * two tasks in the second group. Clearly this is undesired as it will overload
6112  * cpu 3 and leave one of the cpus in the second group unused.
6113  *
6114  * The current solution to this issue is detecting the skew in the first group
6115  * by noticing the lower domain failed to reach balance and had difficulty
6116  * moving tasks due to affinity constraints.
6117  *
6118  * When this is so detected; this group becomes a candidate for busiest; see
6119  * update_sd_pick_busiest(). And calculate_imbalance() and
6120  * find_busiest_group() avoid some of the usual balance conditions to allow it
6121  * to create an effective group imbalance.
6122  *
6123  * This is a somewhat tricky proposition since the next run might not find the
6124  * group imbalance and decide the groups need to be balanced again. A most
6125  * subtle and fragile situation.
6126  */
6127 
6128 static inline int sg_imbalanced(struct sched_group *group)
6129 {
6130 	return group->sgc->imbalance;
6131 }
6132 
6133 /*
6134  * Compute the group capacity factor.
6135  *
6136  * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
6137  * first dividing out the smt factor and computing the actual number of cores
6138  * and limit unit capacity with that.
6139  */
6140 static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
6141 {
6142 	unsigned int capacity_factor, smt, cpus;
6143 	unsigned int capacity, capacity_orig;
6144 
6145 	capacity = group->sgc->capacity;
6146 	capacity_orig = group->sgc->capacity_orig;
6147 	cpus = group->group_weight;
6148 
6149 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
6150 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
6151 	capacity_factor = cpus / smt; /* cores */
6152 
6153 	capacity_factor = min_t(unsigned,
6154 		capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
6155 	if (!capacity_factor)
6156 		capacity_factor = fix_small_capacity(env->sd, group);
6157 
6158 	return capacity_factor;
6159 }
6160 
6161 static enum group_type
6162 group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
6163 {
6164 	if (sgs->sum_nr_running > sgs->group_capacity_factor)
6165 		return group_overloaded;
6166 
6167 	if (sg_imbalanced(group))
6168 		return group_imbalanced;
6169 
6170 	return group_other;
6171 }
6172 
6173 /**
6174  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6175  * @env: The load balancing environment.
6176  * @group: sched_group whose statistics are to be updated.
6177  * @load_idx: Load index of sched_domain of this_cpu for load calc.
6178  * @local_group: Does group contain this_cpu.
6179  * @sgs: variable to hold the statistics for this group.
6180  * @overload: Indicate more than one runnable task for any CPU.
6181  */
6182 static inline void update_sg_lb_stats(struct lb_env *env,
6183 			struct sched_group *group, int load_idx,
6184 			int local_group, struct sg_lb_stats *sgs,
6185 			bool *overload)
6186 {
6187 	unsigned long load;
6188 	int i;
6189 
6190 	memset(sgs, 0, sizeof(*sgs));
6191 
6192 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6193 		struct rq *rq = cpu_rq(i);
6194 
6195 		/* Bias balancing toward cpus of our domain */
6196 		if (local_group)
6197 			load = target_load(i, load_idx);
6198 		else
6199 			load = source_load(i, load_idx);
6200 
6201 		sgs->group_load += load;
6202 		sgs->sum_nr_running += rq->cfs.h_nr_running;
6203 
6204 		if (rq->nr_running > 1)
6205 			*overload = true;
6206 
6207 #ifdef CONFIG_NUMA_BALANCING
6208 		sgs->nr_numa_running += rq->nr_numa_running;
6209 		sgs->nr_preferred_running += rq->nr_preferred_running;
6210 #endif
6211 		sgs->sum_weighted_load += weighted_cpuload(i);
6212 		if (idle_cpu(i))
6213 			sgs->idle_cpus++;
6214 	}
6215 
6216 	/* Adjust by relative CPU capacity of the group */
6217 	sgs->group_capacity = group->sgc->capacity;
6218 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6219 
6220 	if (sgs->sum_nr_running)
6221 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6222 
6223 	sgs->group_weight = group->group_weight;
6224 	sgs->group_capacity_factor = sg_capacity_factor(env, group);
6225 	sgs->group_type = group_classify(group, sgs);
6226 
6227 	if (sgs->group_capacity_factor > sgs->sum_nr_running)
6228 		sgs->group_has_free_capacity = 1;
6229 }
6230 
6231 /**
6232  * update_sd_pick_busiest - return 1 on busiest group
6233  * @env: The load balancing environment.
6234  * @sds: sched_domain statistics
6235  * @sg: sched_group candidate to be checked for being the busiest
6236  * @sgs: sched_group statistics
6237  *
6238  * Determine if @sg is a busier group than the previously selected
6239  * busiest group.
6240  *
6241  * Return: %true if @sg is a busier group than the previously selected
6242  * busiest group. %false otherwise.
6243  */
6244 static bool update_sd_pick_busiest(struct lb_env *env,
6245 				   struct sd_lb_stats *sds,
6246 				   struct sched_group *sg,
6247 				   struct sg_lb_stats *sgs)
6248 {
6249 	struct sg_lb_stats *busiest = &sds->busiest_stat;
6250 
6251 	if (sgs->group_type > busiest->group_type)
6252 		return true;
6253 
6254 	if (sgs->group_type < busiest->group_type)
6255 		return false;
6256 
6257 	if (sgs->avg_load <= busiest->avg_load)
6258 		return false;
6259 
6260 	/* This is the busiest node in its class. */
6261 	if (!(env->sd->flags & SD_ASYM_PACKING))
6262 		return true;
6263 
6264 	/*
6265 	 * ASYM_PACKING needs to move all the work to the lowest
6266 	 * numbered CPUs in the group, therefore mark all groups
6267 	 * higher than ourself as busy.
6268 	 */
6269 	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6270 		if (!sds->busiest)
6271 			return true;
6272 
6273 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6274 			return true;
6275 	}
6276 
6277 	return false;
6278 }
6279 
6280 #ifdef CONFIG_NUMA_BALANCING
6281 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6282 {
6283 	if (sgs->sum_nr_running > sgs->nr_numa_running)
6284 		return regular;
6285 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
6286 		return remote;
6287 	return all;
6288 }
6289 
6290 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6291 {
6292 	if (rq->nr_running > rq->nr_numa_running)
6293 		return regular;
6294 	if (rq->nr_running > rq->nr_preferred_running)
6295 		return remote;
6296 	return all;
6297 }
6298 #else
6299 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6300 {
6301 	return all;
6302 }
6303 
6304 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6305 {
6306 	return regular;
6307 }
6308 #endif /* CONFIG_NUMA_BALANCING */
6309 
6310 /**
6311  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6312  * @env: The load balancing environment.
6313  * @sds: variable to hold the statistics for this sched_domain.
6314  */
6315 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6316 {
6317 	struct sched_domain *child = env->sd->child;
6318 	struct sched_group *sg = env->sd->groups;
6319 	struct sg_lb_stats tmp_sgs;
6320 	int load_idx, prefer_sibling = 0;
6321 	bool overload = false;
6322 
6323 	if (child && child->flags & SD_PREFER_SIBLING)
6324 		prefer_sibling = 1;
6325 
6326 	load_idx = get_sd_load_idx(env->sd, env->idle);
6327 
6328 	do {
6329 		struct sg_lb_stats *sgs = &tmp_sgs;
6330 		int local_group;
6331 
6332 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6333 		if (local_group) {
6334 			sds->local = sg;
6335 			sgs = &sds->local_stat;
6336 
6337 			if (env->idle != CPU_NEWLY_IDLE ||
6338 			    time_after_eq(jiffies, sg->sgc->next_update))
6339 				update_group_capacity(env->sd, env->dst_cpu);
6340 		}
6341 
6342 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6343 						&overload);
6344 
6345 		if (local_group)
6346 			goto next_group;
6347 
6348 		/*
6349 		 * In case the child domain prefers tasks go to siblings
6350 		 * first, lower the sg capacity factor to one so that we'll try
6351 		 * and move all the excess tasks away. We lower the capacity
6352 		 * of a group only if the local group has the capacity to fit
6353 		 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6354 		 * extra check prevents the case where you always pull from the
6355 		 * heaviest group when it is already under-utilized (possible
6356 		 * with a large weight task outweighs the tasks on the system).
6357 		 */
6358 		if (prefer_sibling && sds->local &&
6359 		    sds->local_stat.group_has_free_capacity) {
6360 			sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6361 			sgs->group_type = group_classify(sg, sgs);
6362 		}
6363 
6364 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6365 			sds->busiest = sg;
6366 			sds->busiest_stat = *sgs;
6367 		}
6368 
6369 next_group:
6370 		/* Now, start updating sd_lb_stats */
6371 		sds->total_load += sgs->group_load;
6372 		sds->total_capacity += sgs->group_capacity;
6373 
6374 		sg = sg->next;
6375 	} while (sg != env->sd->groups);
6376 
6377 	if (env->sd->flags & SD_NUMA)
6378 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6379 
6380 	if (!env->sd->parent) {
6381 		/* update overload indicator if we are at root domain */
6382 		if (env->dst_rq->rd->overload != overload)
6383 			env->dst_rq->rd->overload = overload;
6384 	}
6385 
6386 }
6387 
6388 /**
6389  * check_asym_packing - Check to see if the group is packed into the
6390  *			sched doman.
6391  *
6392  * This is primarily intended to used at the sibling level.  Some
6393  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
6394  * case of POWER7, it can move to lower SMT modes only when higher
6395  * threads are idle.  When in lower SMT modes, the threads will
6396  * perform better since they share less core resources.  Hence when we
6397  * have idle threads, we want them to be the higher ones.
6398  *
6399  * This packing function is run on idle threads.  It checks to see if
6400  * the busiest CPU in this domain (core in the P7 case) has a higher
6401  * CPU number than the packing function is being run on.  Here we are
6402  * assuming lower CPU number will be equivalent to lower a SMT thread
6403  * number.
6404  *
6405  * Return: 1 when packing is required and a task should be moved to
6406  * this CPU.  The amount of the imbalance is returned in *imbalance.
6407  *
6408  * @env: The load balancing environment.
6409  * @sds: Statistics of the sched_domain which is to be packed
6410  */
6411 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6412 {
6413 	int busiest_cpu;
6414 
6415 	if (!(env->sd->flags & SD_ASYM_PACKING))
6416 		return 0;
6417 
6418 	if (!sds->busiest)
6419 		return 0;
6420 
6421 	busiest_cpu = group_first_cpu(sds->busiest);
6422 	if (env->dst_cpu > busiest_cpu)
6423 		return 0;
6424 
6425 	env->imbalance = DIV_ROUND_CLOSEST(
6426 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6427 		SCHED_CAPACITY_SCALE);
6428 
6429 	return 1;
6430 }
6431 
6432 /**
6433  * fix_small_imbalance - Calculate the minor imbalance that exists
6434  *			amongst the groups of a sched_domain, during
6435  *			load balancing.
6436  * @env: The load balancing environment.
6437  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6438  */
6439 static inline
6440 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6441 {
6442 	unsigned long tmp, capa_now = 0, capa_move = 0;
6443 	unsigned int imbn = 2;
6444 	unsigned long scaled_busy_load_per_task;
6445 	struct sg_lb_stats *local, *busiest;
6446 
6447 	local = &sds->local_stat;
6448 	busiest = &sds->busiest_stat;
6449 
6450 	if (!local->sum_nr_running)
6451 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6452 	else if (busiest->load_per_task > local->load_per_task)
6453 		imbn = 1;
6454 
6455 	scaled_busy_load_per_task =
6456 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6457 		busiest->group_capacity;
6458 
6459 	if (busiest->avg_load + scaled_busy_load_per_task >=
6460 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
6461 		env->imbalance = busiest->load_per_task;
6462 		return;
6463 	}
6464 
6465 	/*
6466 	 * OK, we don't have enough imbalance to justify moving tasks,
6467 	 * however we may be able to increase total CPU capacity used by
6468 	 * moving them.
6469 	 */
6470 
6471 	capa_now += busiest->group_capacity *
6472 			min(busiest->load_per_task, busiest->avg_load);
6473 	capa_now += local->group_capacity *
6474 			min(local->load_per_task, local->avg_load);
6475 	capa_now /= SCHED_CAPACITY_SCALE;
6476 
6477 	/* Amount of load we'd subtract */
6478 	if (busiest->avg_load > scaled_busy_load_per_task) {
6479 		capa_move += busiest->group_capacity *
6480 			    min(busiest->load_per_task,
6481 				busiest->avg_load - scaled_busy_load_per_task);
6482 	}
6483 
6484 	/* Amount of load we'd add */
6485 	if (busiest->avg_load * busiest->group_capacity <
6486 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6487 		tmp = (busiest->avg_load * busiest->group_capacity) /
6488 		      local->group_capacity;
6489 	} else {
6490 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6491 		      local->group_capacity;
6492 	}
6493 	capa_move += local->group_capacity *
6494 		    min(local->load_per_task, local->avg_load + tmp);
6495 	capa_move /= SCHED_CAPACITY_SCALE;
6496 
6497 	/* Move if we gain throughput */
6498 	if (capa_move > capa_now)
6499 		env->imbalance = busiest->load_per_task;
6500 }
6501 
6502 /**
6503  * calculate_imbalance - Calculate the amount of imbalance present within the
6504  *			 groups of a given sched_domain during load balance.
6505  * @env: load balance environment
6506  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6507  */
6508 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6509 {
6510 	unsigned long max_pull, load_above_capacity = ~0UL;
6511 	struct sg_lb_stats *local, *busiest;
6512 
6513 	local = &sds->local_stat;
6514 	busiest = &sds->busiest_stat;
6515 
6516 	if (busiest->group_type == group_imbalanced) {
6517 		/*
6518 		 * In the group_imb case we cannot rely on group-wide averages
6519 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
6520 		 */
6521 		busiest->load_per_task =
6522 			min(busiest->load_per_task, sds->avg_load);
6523 	}
6524 
6525 	/*
6526 	 * In the presence of smp nice balancing, certain scenarios can have
6527 	 * max load less than avg load(as we skip the groups at or below
6528 	 * its cpu_capacity, while calculating max_load..)
6529 	 */
6530 	if (busiest->avg_load <= sds->avg_load ||
6531 	    local->avg_load >= sds->avg_load) {
6532 		env->imbalance = 0;
6533 		return fix_small_imbalance(env, sds);
6534 	}
6535 
6536 	/*
6537 	 * If there aren't any idle cpus, avoid creating some.
6538 	 */
6539 	if (busiest->group_type == group_overloaded &&
6540 	    local->group_type   == group_overloaded) {
6541 		load_above_capacity =
6542 			(busiest->sum_nr_running - busiest->group_capacity_factor);
6543 
6544 		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6545 		load_above_capacity /= busiest->group_capacity;
6546 	}
6547 
6548 	/*
6549 	 * We're trying to get all the cpus to the average_load, so we don't
6550 	 * want to push ourselves above the average load, nor do we wish to
6551 	 * reduce the max loaded cpu below the average load. At the same time,
6552 	 * we also don't want to reduce the group load below the group capacity
6553 	 * (so that we can implement power-savings policies etc). Thus we look
6554 	 * for the minimum possible imbalance.
6555 	 */
6556 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6557 
6558 	/* How much load to actually move to equalise the imbalance */
6559 	env->imbalance = min(
6560 		max_pull * busiest->group_capacity,
6561 		(sds->avg_load - local->avg_load) * local->group_capacity
6562 	) / SCHED_CAPACITY_SCALE;
6563 
6564 	/*
6565 	 * if *imbalance is less than the average load per runnable task
6566 	 * there is no guarantee that any tasks will be moved so we'll have
6567 	 * a think about bumping its value to force at least one task to be
6568 	 * moved
6569 	 */
6570 	if (env->imbalance < busiest->load_per_task)
6571 		return fix_small_imbalance(env, sds);
6572 }
6573 
6574 /******* find_busiest_group() helpers end here *********************/
6575 
6576 /**
6577  * find_busiest_group - Returns the busiest group within the sched_domain
6578  * if there is an imbalance. If there isn't an imbalance, and
6579  * the user has opted for power-savings, it returns a group whose
6580  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6581  * such a group exists.
6582  *
6583  * Also calculates the amount of weighted load which should be moved
6584  * to restore balance.
6585  *
6586  * @env: The load balancing environment.
6587  *
6588  * Return:	- The busiest group if imbalance exists.
6589  *		- If no imbalance and user has opted for power-savings balance,
6590  *		   return the least loaded group whose CPUs can be
6591  *		   put to idle by rebalancing its tasks onto our group.
6592  */
6593 static struct sched_group *find_busiest_group(struct lb_env *env)
6594 {
6595 	struct sg_lb_stats *local, *busiest;
6596 	struct sd_lb_stats sds;
6597 
6598 	init_sd_lb_stats(&sds);
6599 
6600 	/*
6601 	 * Compute the various statistics relavent for load balancing at
6602 	 * this level.
6603 	 */
6604 	update_sd_lb_stats(env, &sds);
6605 	local = &sds.local_stat;
6606 	busiest = &sds.busiest_stat;
6607 
6608 	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6609 	    check_asym_packing(env, &sds))
6610 		return sds.busiest;
6611 
6612 	/* There is no busy sibling group to pull tasks from */
6613 	if (!sds.busiest || busiest->sum_nr_running == 0)
6614 		goto out_balanced;
6615 
6616 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6617 						/ sds.total_capacity;
6618 
6619 	/*
6620 	 * If the busiest group is imbalanced the below checks don't
6621 	 * work because they assume all things are equal, which typically
6622 	 * isn't true due to cpus_allowed constraints and the like.
6623 	 */
6624 	if (busiest->group_type == group_imbalanced)
6625 		goto force_balance;
6626 
6627 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6628 	if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6629 	    !busiest->group_has_free_capacity)
6630 		goto force_balance;
6631 
6632 	/*
6633 	 * If the local group is busier than the selected busiest group
6634 	 * don't try and pull any tasks.
6635 	 */
6636 	if (local->avg_load >= busiest->avg_load)
6637 		goto out_balanced;
6638 
6639 	/*
6640 	 * Don't pull any tasks if this group is already above the domain
6641 	 * average load.
6642 	 */
6643 	if (local->avg_load >= sds.avg_load)
6644 		goto out_balanced;
6645 
6646 	if (env->idle == CPU_IDLE) {
6647 		/*
6648 		 * This cpu is idle. If the busiest group is not overloaded
6649 		 * and there is no imbalance between this and busiest group
6650 		 * wrt idle cpus, it is balanced. The imbalance becomes
6651 		 * significant if the diff is greater than 1 otherwise we
6652 		 * might end up to just move the imbalance on another group
6653 		 */
6654 		if ((busiest->group_type != group_overloaded) &&
6655 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
6656 			goto out_balanced;
6657 	} else {
6658 		/*
6659 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6660 		 * imbalance_pct to be conservative.
6661 		 */
6662 		if (100 * busiest->avg_load <=
6663 				env->sd->imbalance_pct * local->avg_load)
6664 			goto out_balanced;
6665 	}
6666 
6667 force_balance:
6668 	/* Looks like there is an imbalance. Compute it */
6669 	calculate_imbalance(env, &sds);
6670 	return sds.busiest;
6671 
6672 out_balanced:
6673 	env->imbalance = 0;
6674 	return NULL;
6675 }
6676 
6677 /*
6678  * find_busiest_queue - find the busiest runqueue among the cpus in group.
6679  */
6680 static struct rq *find_busiest_queue(struct lb_env *env,
6681 				     struct sched_group *group)
6682 {
6683 	struct rq *busiest = NULL, *rq;
6684 	unsigned long busiest_load = 0, busiest_capacity = 1;
6685 	int i;
6686 
6687 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6688 		unsigned long capacity, capacity_factor, wl;
6689 		enum fbq_type rt;
6690 
6691 		rq = cpu_rq(i);
6692 		rt = fbq_classify_rq(rq);
6693 
6694 		/*
6695 		 * We classify groups/runqueues into three groups:
6696 		 *  - regular: there are !numa tasks
6697 		 *  - remote:  there are numa tasks that run on the 'wrong' node
6698 		 *  - all:     there is no distinction
6699 		 *
6700 		 * In order to avoid migrating ideally placed numa tasks,
6701 		 * ignore those when there's better options.
6702 		 *
6703 		 * If we ignore the actual busiest queue to migrate another
6704 		 * task, the next balance pass can still reduce the busiest
6705 		 * queue by moving tasks around inside the node.
6706 		 *
6707 		 * If we cannot move enough load due to this classification
6708 		 * the next pass will adjust the group classification and
6709 		 * allow migration of more tasks.
6710 		 *
6711 		 * Both cases only affect the total convergence complexity.
6712 		 */
6713 		if (rt > env->fbq_type)
6714 			continue;
6715 
6716 		capacity = capacity_of(i);
6717 		capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6718 		if (!capacity_factor)
6719 			capacity_factor = fix_small_capacity(env->sd, group);
6720 
6721 		wl = weighted_cpuload(i);
6722 
6723 		/*
6724 		 * When comparing with imbalance, use weighted_cpuload()
6725 		 * which is not scaled with the cpu capacity.
6726 		 */
6727 		if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6728 			continue;
6729 
6730 		/*
6731 		 * For the load comparisons with the other cpu's, consider
6732 		 * the weighted_cpuload() scaled with the cpu capacity, so
6733 		 * that the load can be moved away from the cpu that is
6734 		 * potentially running at a lower capacity.
6735 		 *
6736 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
6737 		 * multiplication to rid ourselves of the division works out
6738 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
6739 		 * our previous maximum.
6740 		 */
6741 		if (wl * busiest_capacity > busiest_load * capacity) {
6742 			busiest_load = wl;
6743 			busiest_capacity = capacity;
6744 			busiest = rq;
6745 		}
6746 	}
6747 
6748 	return busiest;
6749 }
6750 
6751 /*
6752  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6753  * so long as it is large enough.
6754  */
6755 #define MAX_PINNED_INTERVAL	512
6756 
6757 /* Working cpumask for load_balance and load_balance_newidle. */
6758 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6759 
6760 static int need_active_balance(struct lb_env *env)
6761 {
6762 	struct sched_domain *sd = env->sd;
6763 
6764 	if (env->idle == CPU_NEWLY_IDLE) {
6765 
6766 		/*
6767 		 * ASYM_PACKING needs to force migrate tasks from busy but
6768 		 * higher numbered CPUs in order to pack all tasks in the
6769 		 * lowest numbered CPUs.
6770 		 */
6771 		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6772 			return 1;
6773 	}
6774 
6775 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6776 }
6777 
6778 static int active_load_balance_cpu_stop(void *data);
6779 
6780 static int should_we_balance(struct lb_env *env)
6781 {
6782 	struct sched_group *sg = env->sd->groups;
6783 	struct cpumask *sg_cpus, *sg_mask;
6784 	int cpu, balance_cpu = -1;
6785 
6786 	/*
6787 	 * In the newly idle case, we will allow all the cpu's
6788 	 * to do the newly idle load balance.
6789 	 */
6790 	if (env->idle == CPU_NEWLY_IDLE)
6791 		return 1;
6792 
6793 	sg_cpus = sched_group_cpus(sg);
6794 	sg_mask = sched_group_mask(sg);
6795 	/* Try to find first idle cpu */
6796 	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6797 		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6798 			continue;
6799 
6800 		balance_cpu = cpu;
6801 		break;
6802 	}
6803 
6804 	if (balance_cpu == -1)
6805 		balance_cpu = group_balance_cpu(sg);
6806 
6807 	/*
6808 	 * First idle cpu or the first cpu(busiest) in this sched group
6809 	 * is eligible for doing load balancing at this and above domains.
6810 	 */
6811 	return balance_cpu == env->dst_cpu;
6812 }
6813 
6814 /*
6815  * Check this_cpu to ensure it is balanced within domain. Attempt to move
6816  * tasks if there is an imbalance.
6817  */
6818 static int load_balance(int this_cpu, struct rq *this_rq,
6819 			struct sched_domain *sd, enum cpu_idle_type idle,
6820 			int *continue_balancing)
6821 {
6822 	int ld_moved, cur_ld_moved, active_balance = 0;
6823 	struct sched_domain *sd_parent = sd->parent;
6824 	struct sched_group *group;
6825 	struct rq *busiest;
6826 	unsigned long flags;
6827 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6828 
6829 	struct lb_env env = {
6830 		.sd		= sd,
6831 		.dst_cpu	= this_cpu,
6832 		.dst_rq		= this_rq,
6833 		.dst_grpmask    = sched_group_cpus(sd->groups),
6834 		.idle		= idle,
6835 		.loop_break	= sched_nr_migrate_break,
6836 		.cpus		= cpus,
6837 		.fbq_type	= all,
6838 		.tasks		= LIST_HEAD_INIT(env.tasks),
6839 	};
6840 
6841 	/*
6842 	 * For NEWLY_IDLE load_balancing, we don't need to consider
6843 	 * other cpus in our group
6844 	 */
6845 	if (idle == CPU_NEWLY_IDLE)
6846 		env.dst_grpmask = NULL;
6847 
6848 	cpumask_copy(cpus, cpu_active_mask);
6849 
6850 	schedstat_inc(sd, lb_count[idle]);
6851 
6852 redo:
6853 	if (!should_we_balance(&env)) {
6854 		*continue_balancing = 0;
6855 		goto out_balanced;
6856 	}
6857 
6858 	group = find_busiest_group(&env);
6859 	if (!group) {
6860 		schedstat_inc(sd, lb_nobusyg[idle]);
6861 		goto out_balanced;
6862 	}
6863 
6864 	busiest = find_busiest_queue(&env, group);
6865 	if (!busiest) {
6866 		schedstat_inc(sd, lb_nobusyq[idle]);
6867 		goto out_balanced;
6868 	}
6869 
6870 	BUG_ON(busiest == env.dst_rq);
6871 
6872 	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6873 
6874 	ld_moved = 0;
6875 	if (busiest->nr_running > 1) {
6876 		/*
6877 		 * Attempt to move tasks. If find_busiest_group has found
6878 		 * an imbalance but busiest->nr_running <= 1, the group is
6879 		 * still unbalanced. ld_moved simply stays zero, so it is
6880 		 * correctly treated as an imbalance.
6881 		 */
6882 		env.flags |= LBF_ALL_PINNED;
6883 		env.src_cpu   = busiest->cpu;
6884 		env.src_rq    = busiest;
6885 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6886 
6887 more_balance:
6888 		raw_spin_lock_irqsave(&busiest->lock, flags);
6889 
6890 		/*
6891 		 * cur_ld_moved - load moved in current iteration
6892 		 * ld_moved     - cumulative load moved across iterations
6893 		 */
6894 		cur_ld_moved = detach_tasks(&env);
6895 
6896 		/*
6897 		 * We've detached some tasks from busiest_rq. Every
6898 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6899 		 * unlock busiest->lock, and we are able to be sure
6900 		 * that nobody can manipulate the tasks in parallel.
6901 		 * See task_rq_lock() family for the details.
6902 		 */
6903 
6904 		raw_spin_unlock(&busiest->lock);
6905 
6906 		if (cur_ld_moved) {
6907 			attach_tasks(&env);
6908 			ld_moved += cur_ld_moved;
6909 		}
6910 
6911 		local_irq_restore(flags);
6912 
6913 		if (env.flags & LBF_NEED_BREAK) {
6914 			env.flags &= ~LBF_NEED_BREAK;
6915 			goto more_balance;
6916 		}
6917 
6918 		/*
6919 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6920 		 * us and move them to an alternate dst_cpu in our sched_group
6921 		 * where they can run. The upper limit on how many times we
6922 		 * iterate on same src_cpu is dependent on number of cpus in our
6923 		 * sched_group.
6924 		 *
6925 		 * This changes load balance semantics a bit on who can move
6926 		 * load to a given_cpu. In addition to the given_cpu itself
6927 		 * (or a ilb_cpu acting on its behalf where given_cpu is
6928 		 * nohz-idle), we now have balance_cpu in a position to move
6929 		 * load to given_cpu. In rare situations, this may cause
6930 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6931 		 * _independently_ and at _same_ time to move some load to
6932 		 * given_cpu) causing exceess load to be moved to given_cpu.
6933 		 * This however should not happen so much in practice and
6934 		 * moreover subsequent load balance cycles should correct the
6935 		 * excess load moved.
6936 		 */
6937 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6938 
6939 			/* Prevent to re-select dst_cpu via env's cpus */
6940 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
6941 
6942 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6943 			env.dst_cpu	 = env.new_dst_cpu;
6944 			env.flags	&= ~LBF_DST_PINNED;
6945 			env.loop	 = 0;
6946 			env.loop_break	 = sched_nr_migrate_break;
6947 
6948 			/*
6949 			 * Go back to "more_balance" rather than "redo" since we
6950 			 * need to continue with same src_cpu.
6951 			 */
6952 			goto more_balance;
6953 		}
6954 
6955 		/*
6956 		 * We failed to reach balance because of affinity.
6957 		 */
6958 		if (sd_parent) {
6959 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6960 
6961 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6962 				*group_imbalance = 1;
6963 		}
6964 
6965 		/* All tasks on this runqueue were pinned by CPU affinity */
6966 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6967 			cpumask_clear_cpu(cpu_of(busiest), cpus);
6968 			if (!cpumask_empty(cpus)) {
6969 				env.loop = 0;
6970 				env.loop_break = sched_nr_migrate_break;
6971 				goto redo;
6972 			}
6973 			goto out_all_pinned;
6974 		}
6975 	}
6976 
6977 	if (!ld_moved) {
6978 		schedstat_inc(sd, lb_failed[idle]);
6979 		/*
6980 		 * Increment the failure counter only on periodic balance.
6981 		 * We do not want newidle balance, which can be very
6982 		 * frequent, pollute the failure counter causing
6983 		 * excessive cache_hot migrations and active balances.
6984 		 */
6985 		if (idle != CPU_NEWLY_IDLE)
6986 			sd->nr_balance_failed++;
6987 
6988 		if (need_active_balance(&env)) {
6989 			raw_spin_lock_irqsave(&busiest->lock, flags);
6990 
6991 			/* don't kick the active_load_balance_cpu_stop,
6992 			 * if the curr task on busiest cpu can't be
6993 			 * moved to this_cpu
6994 			 */
6995 			if (!cpumask_test_cpu(this_cpu,
6996 					tsk_cpus_allowed(busiest->curr))) {
6997 				raw_spin_unlock_irqrestore(&busiest->lock,
6998 							    flags);
6999 				env.flags |= LBF_ALL_PINNED;
7000 				goto out_one_pinned;
7001 			}
7002 
7003 			/*
7004 			 * ->active_balance synchronizes accesses to
7005 			 * ->active_balance_work.  Once set, it's cleared
7006 			 * only after active load balance is finished.
7007 			 */
7008 			if (!busiest->active_balance) {
7009 				busiest->active_balance = 1;
7010 				busiest->push_cpu = this_cpu;
7011 				active_balance = 1;
7012 			}
7013 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7014 
7015 			if (active_balance) {
7016 				stop_one_cpu_nowait(cpu_of(busiest),
7017 					active_load_balance_cpu_stop, busiest,
7018 					&busiest->active_balance_work);
7019 			}
7020 
7021 			/*
7022 			 * We've kicked active balancing, reset the failure
7023 			 * counter.
7024 			 */
7025 			sd->nr_balance_failed = sd->cache_nice_tries+1;
7026 		}
7027 	} else
7028 		sd->nr_balance_failed = 0;
7029 
7030 	if (likely(!active_balance)) {
7031 		/* We were unbalanced, so reset the balancing interval */
7032 		sd->balance_interval = sd->min_interval;
7033 	} else {
7034 		/*
7035 		 * If we've begun active balancing, start to back off. This
7036 		 * case may not be covered by the all_pinned logic if there
7037 		 * is only 1 task on the busy runqueue (because we don't call
7038 		 * detach_tasks).
7039 		 */
7040 		if (sd->balance_interval < sd->max_interval)
7041 			sd->balance_interval *= 2;
7042 	}
7043 
7044 	goto out;
7045 
7046 out_balanced:
7047 	/*
7048 	 * We reach balance although we may have faced some affinity
7049 	 * constraints. Clear the imbalance flag if it was set.
7050 	 */
7051 	if (sd_parent) {
7052 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7053 
7054 		if (*group_imbalance)
7055 			*group_imbalance = 0;
7056 	}
7057 
7058 out_all_pinned:
7059 	/*
7060 	 * We reach balance because all tasks are pinned at this level so
7061 	 * we can't migrate them. Let the imbalance flag set so parent level
7062 	 * can try to migrate them.
7063 	 */
7064 	schedstat_inc(sd, lb_balanced[idle]);
7065 
7066 	sd->nr_balance_failed = 0;
7067 
7068 out_one_pinned:
7069 	/* tune up the balancing interval */
7070 	if (((env.flags & LBF_ALL_PINNED) &&
7071 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7072 			(sd->balance_interval < sd->max_interval))
7073 		sd->balance_interval *= 2;
7074 
7075 	ld_moved = 0;
7076 out:
7077 	return ld_moved;
7078 }
7079 
7080 static inline unsigned long
7081 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7082 {
7083 	unsigned long interval = sd->balance_interval;
7084 
7085 	if (cpu_busy)
7086 		interval *= sd->busy_factor;
7087 
7088 	/* scale ms to jiffies */
7089 	interval = msecs_to_jiffies(interval);
7090 	interval = clamp(interval, 1UL, max_load_balance_interval);
7091 
7092 	return interval;
7093 }
7094 
7095 static inline void
7096 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7097 {
7098 	unsigned long interval, next;
7099 
7100 	interval = get_sd_balance_interval(sd, cpu_busy);
7101 	next = sd->last_balance + interval;
7102 
7103 	if (time_after(*next_balance, next))
7104 		*next_balance = next;
7105 }
7106 
7107 /*
7108  * idle_balance is called by schedule() if this_cpu is about to become
7109  * idle. Attempts to pull tasks from other CPUs.
7110  */
7111 static int idle_balance(struct rq *this_rq)
7112 {
7113 	unsigned long next_balance = jiffies + HZ;
7114 	int this_cpu = this_rq->cpu;
7115 	struct sched_domain *sd;
7116 	int pulled_task = 0;
7117 	u64 curr_cost = 0;
7118 
7119 	idle_enter_fair(this_rq);
7120 
7121 	/*
7122 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
7123 	 * measure the duration of idle_balance() as idle time.
7124 	 */
7125 	this_rq->idle_stamp = rq_clock(this_rq);
7126 
7127 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7128 	    !this_rq->rd->overload) {
7129 		rcu_read_lock();
7130 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
7131 		if (sd)
7132 			update_next_balance(sd, 0, &next_balance);
7133 		rcu_read_unlock();
7134 
7135 		goto out;
7136 	}
7137 
7138 	/*
7139 	 * Drop the rq->lock, but keep IRQ/preempt disabled.
7140 	 */
7141 	raw_spin_unlock(&this_rq->lock);
7142 
7143 	update_blocked_averages(this_cpu);
7144 	rcu_read_lock();
7145 	for_each_domain(this_cpu, sd) {
7146 		int continue_balancing = 1;
7147 		u64 t0, domain_cost;
7148 
7149 		if (!(sd->flags & SD_LOAD_BALANCE))
7150 			continue;
7151 
7152 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7153 			update_next_balance(sd, 0, &next_balance);
7154 			break;
7155 		}
7156 
7157 		if (sd->flags & SD_BALANCE_NEWIDLE) {
7158 			t0 = sched_clock_cpu(this_cpu);
7159 
7160 			pulled_task = load_balance(this_cpu, this_rq,
7161 						   sd, CPU_NEWLY_IDLE,
7162 						   &continue_balancing);
7163 
7164 			domain_cost = sched_clock_cpu(this_cpu) - t0;
7165 			if (domain_cost > sd->max_newidle_lb_cost)
7166 				sd->max_newidle_lb_cost = domain_cost;
7167 
7168 			curr_cost += domain_cost;
7169 		}
7170 
7171 		update_next_balance(sd, 0, &next_balance);
7172 
7173 		/*
7174 		 * Stop searching for tasks to pull if there are
7175 		 * now runnable tasks on this rq.
7176 		 */
7177 		if (pulled_task || this_rq->nr_running > 0)
7178 			break;
7179 	}
7180 	rcu_read_unlock();
7181 
7182 	raw_spin_lock(&this_rq->lock);
7183 
7184 	if (curr_cost > this_rq->max_idle_balance_cost)
7185 		this_rq->max_idle_balance_cost = curr_cost;
7186 
7187 	/*
7188 	 * While browsing the domains, we released the rq lock, a task could
7189 	 * have been enqueued in the meantime. Since we're not going idle,
7190 	 * pretend we pulled a task.
7191 	 */
7192 	if (this_rq->cfs.h_nr_running && !pulled_task)
7193 		pulled_task = 1;
7194 
7195 out:
7196 	/* Move the next balance forward */
7197 	if (time_after(this_rq->next_balance, next_balance))
7198 		this_rq->next_balance = next_balance;
7199 
7200 	/* Is there a task of a high priority class? */
7201 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7202 		pulled_task = -1;
7203 
7204 	if (pulled_task) {
7205 		idle_exit_fair(this_rq);
7206 		this_rq->idle_stamp = 0;
7207 	}
7208 
7209 	return pulled_task;
7210 }
7211 
7212 /*
7213  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7214  * running tasks off the busiest CPU onto idle CPUs. It requires at
7215  * least 1 task to be running on each physical CPU where possible, and
7216  * avoids physical / logical imbalances.
7217  */
7218 static int active_load_balance_cpu_stop(void *data)
7219 {
7220 	struct rq *busiest_rq = data;
7221 	int busiest_cpu = cpu_of(busiest_rq);
7222 	int target_cpu = busiest_rq->push_cpu;
7223 	struct rq *target_rq = cpu_rq(target_cpu);
7224 	struct sched_domain *sd;
7225 	struct task_struct *p = NULL;
7226 
7227 	raw_spin_lock_irq(&busiest_rq->lock);
7228 
7229 	/* make sure the requested cpu hasn't gone down in the meantime */
7230 	if (unlikely(busiest_cpu != smp_processor_id() ||
7231 		     !busiest_rq->active_balance))
7232 		goto out_unlock;
7233 
7234 	/* Is there any task to move? */
7235 	if (busiest_rq->nr_running <= 1)
7236 		goto out_unlock;
7237 
7238 	/*
7239 	 * This condition is "impossible", if it occurs
7240 	 * we need to fix it. Originally reported by
7241 	 * Bjorn Helgaas on a 128-cpu setup.
7242 	 */
7243 	BUG_ON(busiest_rq == target_rq);
7244 
7245 	/* Search for an sd spanning us and the target CPU. */
7246 	rcu_read_lock();
7247 	for_each_domain(target_cpu, sd) {
7248 		if ((sd->flags & SD_LOAD_BALANCE) &&
7249 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7250 				break;
7251 	}
7252 
7253 	if (likely(sd)) {
7254 		struct lb_env env = {
7255 			.sd		= sd,
7256 			.dst_cpu	= target_cpu,
7257 			.dst_rq		= target_rq,
7258 			.src_cpu	= busiest_rq->cpu,
7259 			.src_rq		= busiest_rq,
7260 			.idle		= CPU_IDLE,
7261 		};
7262 
7263 		schedstat_inc(sd, alb_count);
7264 
7265 		p = detach_one_task(&env);
7266 		if (p)
7267 			schedstat_inc(sd, alb_pushed);
7268 		else
7269 			schedstat_inc(sd, alb_failed);
7270 	}
7271 	rcu_read_unlock();
7272 out_unlock:
7273 	busiest_rq->active_balance = 0;
7274 	raw_spin_unlock(&busiest_rq->lock);
7275 
7276 	if (p)
7277 		attach_one_task(target_rq, p);
7278 
7279 	local_irq_enable();
7280 
7281 	return 0;
7282 }
7283 
7284 static inline int on_null_domain(struct rq *rq)
7285 {
7286 	return unlikely(!rcu_dereference_sched(rq->sd));
7287 }
7288 
7289 #ifdef CONFIG_NO_HZ_COMMON
7290 /*
7291  * idle load balancing details
7292  * - When one of the busy CPUs notice that there may be an idle rebalancing
7293  *   needed, they will kick the idle load balancer, which then does idle
7294  *   load balancing for all the idle CPUs.
7295  */
7296 static struct {
7297 	cpumask_var_t idle_cpus_mask;
7298 	atomic_t nr_cpus;
7299 	unsigned long next_balance;     /* in jiffy units */
7300 } nohz ____cacheline_aligned;
7301 
7302 static inline int find_new_ilb(void)
7303 {
7304 	int ilb = cpumask_first(nohz.idle_cpus_mask);
7305 
7306 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
7307 		return ilb;
7308 
7309 	return nr_cpu_ids;
7310 }
7311 
7312 /*
7313  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7314  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7315  * CPU (if there is one).
7316  */
7317 static void nohz_balancer_kick(void)
7318 {
7319 	int ilb_cpu;
7320 
7321 	nohz.next_balance++;
7322 
7323 	ilb_cpu = find_new_ilb();
7324 
7325 	if (ilb_cpu >= nr_cpu_ids)
7326 		return;
7327 
7328 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7329 		return;
7330 	/*
7331 	 * Use smp_send_reschedule() instead of resched_cpu().
7332 	 * This way we generate a sched IPI on the target cpu which
7333 	 * is idle. And the softirq performing nohz idle load balance
7334 	 * will be run before returning from the IPI.
7335 	 */
7336 	smp_send_reschedule(ilb_cpu);
7337 	return;
7338 }
7339 
7340 static inline void nohz_balance_exit_idle(int cpu)
7341 {
7342 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7343 		/*
7344 		 * Completely isolated CPUs don't ever set, so we must test.
7345 		 */
7346 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7347 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7348 			atomic_dec(&nohz.nr_cpus);
7349 		}
7350 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7351 	}
7352 }
7353 
7354 static inline void set_cpu_sd_state_busy(void)
7355 {
7356 	struct sched_domain *sd;
7357 	int cpu = smp_processor_id();
7358 
7359 	rcu_read_lock();
7360 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7361 
7362 	if (!sd || !sd->nohz_idle)
7363 		goto unlock;
7364 	sd->nohz_idle = 0;
7365 
7366 	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7367 unlock:
7368 	rcu_read_unlock();
7369 }
7370 
7371 void set_cpu_sd_state_idle(void)
7372 {
7373 	struct sched_domain *sd;
7374 	int cpu = smp_processor_id();
7375 
7376 	rcu_read_lock();
7377 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7378 
7379 	if (!sd || sd->nohz_idle)
7380 		goto unlock;
7381 	sd->nohz_idle = 1;
7382 
7383 	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7384 unlock:
7385 	rcu_read_unlock();
7386 }
7387 
7388 /*
7389  * This routine will record that the cpu is going idle with tick stopped.
7390  * This info will be used in performing idle load balancing in the future.
7391  */
7392 void nohz_balance_enter_idle(int cpu)
7393 {
7394 	/*
7395 	 * If this cpu is going down, then nothing needs to be done.
7396 	 */
7397 	if (!cpu_active(cpu))
7398 		return;
7399 
7400 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7401 		return;
7402 
7403 	/*
7404 	 * If we're a completely isolated CPU, we don't play.
7405 	 */
7406 	if (on_null_domain(cpu_rq(cpu)))
7407 		return;
7408 
7409 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7410 	atomic_inc(&nohz.nr_cpus);
7411 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7412 }
7413 
7414 static int sched_ilb_notifier(struct notifier_block *nfb,
7415 					unsigned long action, void *hcpu)
7416 {
7417 	switch (action & ~CPU_TASKS_FROZEN) {
7418 	case CPU_DYING:
7419 		nohz_balance_exit_idle(smp_processor_id());
7420 		return NOTIFY_OK;
7421 	default:
7422 		return NOTIFY_DONE;
7423 	}
7424 }
7425 #endif
7426 
7427 static DEFINE_SPINLOCK(balancing);
7428 
7429 /*
7430  * Scale the max load_balance interval with the number of CPUs in the system.
7431  * This trades load-balance latency on larger machines for less cross talk.
7432  */
7433 void update_max_interval(void)
7434 {
7435 	max_load_balance_interval = HZ*num_online_cpus()/10;
7436 }
7437 
7438 /*
7439  * It checks each scheduling domain to see if it is due to be balanced,
7440  * and initiates a balancing operation if so.
7441  *
7442  * Balancing parameters are set up in init_sched_domains.
7443  */
7444 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7445 {
7446 	int continue_balancing = 1;
7447 	int cpu = rq->cpu;
7448 	unsigned long interval;
7449 	struct sched_domain *sd;
7450 	/* Earliest time when we have to do rebalance again */
7451 	unsigned long next_balance = jiffies + 60*HZ;
7452 	int update_next_balance = 0;
7453 	int need_serialize, need_decay = 0;
7454 	u64 max_cost = 0;
7455 
7456 	update_blocked_averages(cpu);
7457 
7458 	rcu_read_lock();
7459 	for_each_domain(cpu, sd) {
7460 		/*
7461 		 * Decay the newidle max times here because this is a regular
7462 		 * visit to all the domains. Decay ~1% per second.
7463 		 */
7464 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7465 			sd->max_newidle_lb_cost =
7466 				(sd->max_newidle_lb_cost * 253) / 256;
7467 			sd->next_decay_max_lb_cost = jiffies + HZ;
7468 			need_decay = 1;
7469 		}
7470 		max_cost += sd->max_newidle_lb_cost;
7471 
7472 		if (!(sd->flags & SD_LOAD_BALANCE))
7473 			continue;
7474 
7475 		/*
7476 		 * Stop the load balance at this level. There is another
7477 		 * CPU in our sched group which is doing load balancing more
7478 		 * actively.
7479 		 */
7480 		if (!continue_balancing) {
7481 			if (need_decay)
7482 				continue;
7483 			break;
7484 		}
7485 
7486 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7487 
7488 		need_serialize = sd->flags & SD_SERIALIZE;
7489 		if (need_serialize) {
7490 			if (!spin_trylock(&balancing))
7491 				goto out;
7492 		}
7493 
7494 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7495 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7496 				/*
7497 				 * The LBF_DST_PINNED logic could have changed
7498 				 * env->dst_cpu, so we can't know our idle
7499 				 * state even if we migrated tasks. Update it.
7500 				 */
7501 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7502 			}
7503 			sd->last_balance = jiffies;
7504 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7505 		}
7506 		if (need_serialize)
7507 			spin_unlock(&balancing);
7508 out:
7509 		if (time_after(next_balance, sd->last_balance + interval)) {
7510 			next_balance = sd->last_balance + interval;
7511 			update_next_balance = 1;
7512 		}
7513 	}
7514 	if (need_decay) {
7515 		/*
7516 		 * Ensure the rq-wide value also decays but keep it at a
7517 		 * reasonable floor to avoid funnies with rq->avg_idle.
7518 		 */
7519 		rq->max_idle_balance_cost =
7520 			max((u64)sysctl_sched_migration_cost, max_cost);
7521 	}
7522 	rcu_read_unlock();
7523 
7524 	/*
7525 	 * next_balance will be updated only when there is a need.
7526 	 * When the cpu is attached to null domain for ex, it will not be
7527 	 * updated.
7528 	 */
7529 	if (likely(update_next_balance))
7530 		rq->next_balance = next_balance;
7531 }
7532 
7533 #ifdef CONFIG_NO_HZ_COMMON
7534 /*
7535  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7536  * rebalancing for all the cpus for whom scheduler ticks are stopped.
7537  */
7538 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7539 {
7540 	int this_cpu = this_rq->cpu;
7541 	struct rq *rq;
7542 	int balance_cpu;
7543 
7544 	if (idle != CPU_IDLE ||
7545 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7546 		goto end;
7547 
7548 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7549 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7550 			continue;
7551 
7552 		/*
7553 		 * If this cpu gets work to do, stop the load balancing
7554 		 * work being done for other cpus. Next load
7555 		 * balancing owner will pick it up.
7556 		 */
7557 		if (need_resched())
7558 			break;
7559 
7560 		rq = cpu_rq(balance_cpu);
7561 
7562 		/*
7563 		 * If time for next balance is due,
7564 		 * do the balance.
7565 		 */
7566 		if (time_after_eq(jiffies, rq->next_balance)) {
7567 			raw_spin_lock_irq(&rq->lock);
7568 			update_rq_clock(rq);
7569 			update_idle_cpu_load(rq);
7570 			raw_spin_unlock_irq(&rq->lock);
7571 			rebalance_domains(rq, CPU_IDLE);
7572 		}
7573 
7574 		if (time_after(this_rq->next_balance, rq->next_balance))
7575 			this_rq->next_balance = rq->next_balance;
7576 	}
7577 	nohz.next_balance = this_rq->next_balance;
7578 end:
7579 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7580 }
7581 
7582 /*
7583  * Current heuristic for kicking the idle load balancer in the presence
7584  * of an idle cpu is the system.
7585  *   - This rq has more than one task.
7586  *   - At any scheduler domain level, this cpu's scheduler group has multiple
7587  *     busy cpu's exceeding the group's capacity.
7588  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7589  *     domain span are idle.
7590  */
7591 static inline int nohz_kick_needed(struct rq *rq)
7592 {
7593 	unsigned long now = jiffies;
7594 	struct sched_domain *sd;
7595 	struct sched_group_capacity *sgc;
7596 	int nr_busy, cpu = rq->cpu;
7597 
7598 	if (unlikely(rq->idle_balance))
7599 		return 0;
7600 
7601        /*
7602 	* We may be recently in ticked or tickless idle mode. At the first
7603 	* busy tick after returning from idle, we will update the busy stats.
7604 	*/
7605 	set_cpu_sd_state_busy();
7606 	nohz_balance_exit_idle(cpu);
7607 
7608 	/*
7609 	 * None are in tickless mode and hence no need for NOHZ idle load
7610 	 * balancing.
7611 	 */
7612 	if (likely(!atomic_read(&nohz.nr_cpus)))
7613 		return 0;
7614 
7615 	if (time_before(now, nohz.next_balance))
7616 		return 0;
7617 
7618 	if (rq->nr_running >= 2)
7619 		goto need_kick;
7620 
7621 	rcu_read_lock();
7622 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7623 
7624 	if (sd) {
7625 		sgc = sd->groups->sgc;
7626 		nr_busy = atomic_read(&sgc->nr_busy_cpus);
7627 
7628 		if (nr_busy > 1)
7629 			goto need_kick_unlock;
7630 	}
7631 
7632 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
7633 
7634 	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7635 				  sched_domain_span(sd)) < cpu))
7636 		goto need_kick_unlock;
7637 
7638 	rcu_read_unlock();
7639 	return 0;
7640 
7641 need_kick_unlock:
7642 	rcu_read_unlock();
7643 need_kick:
7644 	return 1;
7645 }
7646 #else
7647 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7648 #endif
7649 
7650 /*
7651  * run_rebalance_domains is triggered when needed from the scheduler tick.
7652  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7653  */
7654 static void run_rebalance_domains(struct softirq_action *h)
7655 {
7656 	struct rq *this_rq = this_rq();
7657 	enum cpu_idle_type idle = this_rq->idle_balance ?
7658 						CPU_IDLE : CPU_NOT_IDLE;
7659 
7660 	rebalance_domains(this_rq, idle);
7661 
7662 	/*
7663 	 * If this cpu has a pending nohz_balance_kick, then do the
7664 	 * balancing on behalf of the other idle cpus whose ticks are
7665 	 * stopped.
7666 	 */
7667 	nohz_idle_balance(this_rq, idle);
7668 }
7669 
7670 /*
7671  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7672  */
7673 void trigger_load_balance(struct rq *rq)
7674 {
7675 	/* Don't need to rebalance while attached to NULL domain */
7676 	if (unlikely(on_null_domain(rq)))
7677 		return;
7678 
7679 	if (time_after_eq(jiffies, rq->next_balance))
7680 		raise_softirq(SCHED_SOFTIRQ);
7681 #ifdef CONFIG_NO_HZ_COMMON
7682 	if (nohz_kick_needed(rq))
7683 		nohz_balancer_kick();
7684 #endif
7685 }
7686 
7687 static void rq_online_fair(struct rq *rq)
7688 {
7689 	update_sysctl();
7690 
7691 	update_runtime_enabled(rq);
7692 }
7693 
7694 static void rq_offline_fair(struct rq *rq)
7695 {
7696 	update_sysctl();
7697 
7698 	/* Ensure any throttled groups are reachable by pick_next_task */
7699 	unthrottle_offline_cfs_rqs(rq);
7700 }
7701 
7702 #endif /* CONFIG_SMP */
7703 
7704 /*
7705  * scheduler tick hitting a task of our scheduling class:
7706  */
7707 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7708 {
7709 	struct cfs_rq *cfs_rq;
7710 	struct sched_entity *se = &curr->se;
7711 
7712 	for_each_sched_entity(se) {
7713 		cfs_rq = cfs_rq_of(se);
7714 		entity_tick(cfs_rq, se, queued);
7715 	}
7716 
7717 	if (numabalancing_enabled)
7718 		task_tick_numa(rq, curr);
7719 
7720 	update_rq_runnable_avg(rq, 1);
7721 }
7722 
7723 /*
7724  * called on fork with the child task as argument from the parent's context
7725  *  - child not yet on the tasklist
7726  *  - preemption disabled
7727  */
7728 static void task_fork_fair(struct task_struct *p)
7729 {
7730 	struct cfs_rq *cfs_rq;
7731 	struct sched_entity *se = &p->se, *curr;
7732 	int this_cpu = smp_processor_id();
7733 	struct rq *rq = this_rq();
7734 	unsigned long flags;
7735 
7736 	raw_spin_lock_irqsave(&rq->lock, flags);
7737 
7738 	update_rq_clock(rq);
7739 
7740 	cfs_rq = task_cfs_rq(current);
7741 	curr = cfs_rq->curr;
7742 
7743 	/*
7744 	 * Not only the cpu but also the task_group of the parent might have
7745 	 * been changed after parent->se.parent,cfs_rq were copied to
7746 	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7747 	 * of child point to valid ones.
7748 	 */
7749 	rcu_read_lock();
7750 	__set_task_cpu(p, this_cpu);
7751 	rcu_read_unlock();
7752 
7753 	update_curr(cfs_rq);
7754 
7755 	if (curr)
7756 		se->vruntime = curr->vruntime;
7757 	place_entity(cfs_rq, se, 1);
7758 
7759 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7760 		/*
7761 		 * Upon rescheduling, sched_class::put_prev_task() will place
7762 		 * 'current' within the tree based on its new key value.
7763 		 */
7764 		swap(curr->vruntime, se->vruntime);
7765 		resched_curr(rq);
7766 	}
7767 
7768 	se->vruntime -= cfs_rq->min_vruntime;
7769 
7770 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7771 }
7772 
7773 /*
7774  * Priority of the task has changed. Check to see if we preempt
7775  * the current task.
7776  */
7777 static void
7778 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7779 {
7780 	if (!task_on_rq_queued(p))
7781 		return;
7782 
7783 	/*
7784 	 * Reschedule if we are currently running on this runqueue and
7785 	 * our priority decreased, or if we are not currently running on
7786 	 * this runqueue and our priority is higher than the current's
7787 	 */
7788 	if (rq->curr == p) {
7789 		if (p->prio > oldprio)
7790 			resched_curr(rq);
7791 	} else
7792 		check_preempt_curr(rq, p, 0);
7793 }
7794 
7795 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7796 {
7797 	struct sched_entity *se = &p->se;
7798 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
7799 
7800 	/*
7801 	 * Ensure the task's vruntime is normalized, so that when it's
7802 	 * switched back to the fair class the enqueue_entity(.flags=0) will
7803 	 * do the right thing.
7804 	 *
7805 	 * If it's queued, then the dequeue_entity(.flags=0) will already
7806 	 * have normalized the vruntime, if it's !queued, then only when
7807 	 * the task is sleeping will it still have non-normalized vruntime.
7808 	 */
7809 	if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
7810 		/*
7811 		 * Fix up our vruntime so that the current sleep doesn't
7812 		 * cause 'unlimited' sleep bonus.
7813 		 */
7814 		place_entity(cfs_rq, se, 0);
7815 		se->vruntime -= cfs_rq->min_vruntime;
7816 	}
7817 
7818 #ifdef CONFIG_SMP
7819 	/*
7820 	* Remove our load from contribution when we leave sched_fair
7821 	* and ensure we don't carry in an old decay_count if we
7822 	* switch back.
7823 	*/
7824 	if (se->avg.decay_count) {
7825 		__synchronize_entity_decay(se);
7826 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7827 	}
7828 #endif
7829 }
7830 
7831 /*
7832  * We switched to the sched_fair class.
7833  */
7834 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7835 {
7836 #ifdef CONFIG_FAIR_GROUP_SCHED
7837 	struct sched_entity *se = &p->se;
7838 	/*
7839 	 * Since the real-depth could have been changed (only FAIR
7840 	 * class maintain depth value), reset depth properly.
7841 	 */
7842 	se->depth = se->parent ? se->parent->depth + 1 : 0;
7843 #endif
7844 	if (!task_on_rq_queued(p))
7845 		return;
7846 
7847 	/*
7848 	 * We were most likely switched from sched_rt, so
7849 	 * kick off the schedule if running, otherwise just see
7850 	 * if we can still preempt the current task.
7851 	 */
7852 	if (rq->curr == p)
7853 		resched_curr(rq);
7854 	else
7855 		check_preempt_curr(rq, p, 0);
7856 }
7857 
7858 /* Account for a task changing its policy or group.
7859  *
7860  * This routine is mostly called to set cfs_rq->curr field when a task
7861  * migrates between groups/classes.
7862  */
7863 static void set_curr_task_fair(struct rq *rq)
7864 {
7865 	struct sched_entity *se = &rq->curr->se;
7866 
7867 	for_each_sched_entity(se) {
7868 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7869 
7870 		set_next_entity(cfs_rq, se);
7871 		/* ensure bandwidth has been allocated on our new cfs_rq */
7872 		account_cfs_rq_runtime(cfs_rq, 0);
7873 	}
7874 }
7875 
7876 void init_cfs_rq(struct cfs_rq *cfs_rq)
7877 {
7878 	cfs_rq->tasks_timeline = RB_ROOT;
7879 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7880 #ifndef CONFIG_64BIT
7881 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7882 #endif
7883 #ifdef CONFIG_SMP
7884 	atomic64_set(&cfs_rq->decay_counter, 1);
7885 	atomic_long_set(&cfs_rq->removed_load, 0);
7886 #endif
7887 }
7888 
7889 #ifdef CONFIG_FAIR_GROUP_SCHED
7890 static void task_move_group_fair(struct task_struct *p, int queued)
7891 {
7892 	struct sched_entity *se = &p->se;
7893 	struct cfs_rq *cfs_rq;
7894 
7895 	/*
7896 	 * If the task was not on the rq at the time of this cgroup movement
7897 	 * it must have been asleep, sleeping tasks keep their ->vruntime
7898 	 * absolute on their old rq until wakeup (needed for the fair sleeper
7899 	 * bonus in place_entity()).
7900 	 *
7901 	 * If it was on the rq, we've just 'preempted' it, which does convert
7902 	 * ->vruntime to a relative base.
7903 	 *
7904 	 * Make sure both cases convert their relative position when migrating
7905 	 * to another cgroup's rq. This does somewhat interfere with the
7906 	 * fair sleeper stuff for the first placement, but who cares.
7907 	 */
7908 	/*
7909 	 * When !queued, vruntime of the task has usually NOT been normalized.
7910 	 * But there are some cases where it has already been normalized:
7911 	 *
7912 	 * - Moving a forked child which is waiting for being woken up by
7913 	 *   wake_up_new_task().
7914 	 * - Moving a task which has been woken up by try_to_wake_up() and
7915 	 *   waiting for actually being woken up by sched_ttwu_pending().
7916 	 *
7917 	 * To prevent boost or penalty in the new cfs_rq caused by delta
7918 	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7919 	 */
7920 	if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7921 		queued = 1;
7922 
7923 	if (!queued)
7924 		se->vruntime -= cfs_rq_of(se)->min_vruntime;
7925 	set_task_rq(p, task_cpu(p));
7926 	se->depth = se->parent ? se->parent->depth + 1 : 0;
7927 	if (!queued) {
7928 		cfs_rq = cfs_rq_of(se);
7929 		se->vruntime += cfs_rq->min_vruntime;
7930 #ifdef CONFIG_SMP
7931 		/*
7932 		 * migrate_task_rq_fair() will have removed our previous
7933 		 * contribution, but we must synchronize for ongoing future
7934 		 * decay.
7935 		 */
7936 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7937 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7938 #endif
7939 	}
7940 }
7941 
7942 void free_fair_sched_group(struct task_group *tg)
7943 {
7944 	int i;
7945 
7946 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7947 
7948 	for_each_possible_cpu(i) {
7949 		if (tg->cfs_rq)
7950 			kfree(tg->cfs_rq[i]);
7951 		if (tg->se)
7952 			kfree(tg->se[i]);
7953 	}
7954 
7955 	kfree(tg->cfs_rq);
7956 	kfree(tg->se);
7957 }
7958 
7959 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7960 {
7961 	struct cfs_rq *cfs_rq;
7962 	struct sched_entity *se;
7963 	int i;
7964 
7965 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7966 	if (!tg->cfs_rq)
7967 		goto err;
7968 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7969 	if (!tg->se)
7970 		goto err;
7971 
7972 	tg->shares = NICE_0_LOAD;
7973 
7974 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7975 
7976 	for_each_possible_cpu(i) {
7977 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7978 				      GFP_KERNEL, cpu_to_node(i));
7979 		if (!cfs_rq)
7980 			goto err;
7981 
7982 		se = kzalloc_node(sizeof(struct sched_entity),
7983 				  GFP_KERNEL, cpu_to_node(i));
7984 		if (!se)
7985 			goto err_free_rq;
7986 
7987 		init_cfs_rq(cfs_rq);
7988 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7989 	}
7990 
7991 	return 1;
7992 
7993 err_free_rq:
7994 	kfree(cfs_rq);
7995 err:
7996 	return 0;
7997 }
7998 
7999 void unregister_fair_sched_group(struct task_group *tg, int cpu)
8000 {
8001 	struct rq *rq = cpu_rq(cpu);
8002 	unsigned long flags;
8003 
8004 	/*
8005 	* Only empty task groups can be destroyed; so we can speculatively
8006 	* check on_list without danger of it being re-added.
8007 	*/
8008 	if (!tg->cfs_rq[cpu]->on_list)
8009 		return;
8010 
8011 	raw_spin_lock_irqsave(&rq->lock, flags);
8012 	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8013 	raw_spin_unlock_irqrestore(&rq->lock, flags);
8014 }
8015 
8016 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8017 			struct sched_entity *se, int cpu,
8018 			struct sched_entity *parent)
8019 {
8020 	struct rq *rq = cpu_rq(cpu);
8021 
8022 	cfs_rq->tg = tg;
8023 	cfs_rq->rq = rq;
8024 	init_cfs_rq_runtime(cfs_rq);
8025 
8026 	tg->cfs_rq[cpu] = cfs_rq;
8027 	tg->se[cpu] = se;
8028 
8029 	/* se could be NULL for root_task_group */
8030 	if (!se)
8031 		return;
8032 
8033 	if (!parent) {
8034 		se->cfs_rq = &rq->cfs;
8035 		se->depth = 0;
8036 	} else {
8037 		se->cfs_rq = parent->my_q;
8038 		se->depth = parent->depth + 1;
8039 	}
8040 
8041 	se->my_q = cfs_rq;
8042 	/* guarantee group entities always have weight */
8043 	update_load_set(&se->load, NICE_0_LOAD);
8044 	se->parent = parent;
8045 }
8046 
8047 static DEFINE_MUTEX(shares_mutex);
8048 
8049 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8050 {
8051 	int i;
8052 	unsigned long flags;
8053 
8054 	/*
8055 	 * We can't change the weight of the root cgroup.
8056 	 */
8057 	if (!tg->se[0])
8058 		return -EINVAL;
8059 
8060 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8061 
8062 	mutex_lock(&shares_mutex);
8063 	if (tg->shares == shares)
8064 		goto done;
8065 
8066 	tg->shares = shares;
8067 	for_each_possible_cpu(i) {
8068 		struct rq *rq = cpu_rq(i);
8069 		struct sched_entity *se;
8070 
8071 		se = tg->se[i];
8072 		/* Propagate contribution to hierarchy */
8073 		raw_spin_lock_irqsave(&rq->lock, flags);
8074 
8075 		/* Possible calls to update_curr() need rq clock */
8076 		update_rq_clock(rq);
8077 		for_each_sched_entity(se)
8078 			update_cfs_shares(group_cfs_rq(se));
8079 		raw_spin_unlock_irqrestore(&rq->lock, flags);
8080 	}
8081 
8082 done:
8083 	mutex_unlock(&shares_mutex);
8084 	return 0;
8085 }
8086 #else /* CONFIG_FAIR_GROUP_SCHED */
8087 
8088 void free_fair_sched_group(struct task_group *tg) { }
8089 
8090 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8091 {
8092 	return 1;
8093 }
8094 
8095 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8096 
8097 #endif /* CONFIG_FAIR_GROUP_SCHED */
8098 
8099 
8100 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8101 {
8102 	struct sched_entity *se = &task->se;
8103 	unsigned int rr_interval = 0;
8104 
8105 	/*
8106 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8107 	 * idle runqueue:
8108 	 */
8109 	if (rq->cfs.load.weight)
8110 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8111 
8112 	return rr_interval;
8113 }
8114 
8115 /*
8116  * All the scheduling class methods:
8117  */
8118 const struct sched_class fair_sched_class = {
8119 	.next			= &idle_sched_class,
8120 	.enqueue_task		= enqueue_task_fair,
8121 	.dequeue_task		= dequeue_task_fair,
8122 	.yield_task		= yield_task_fair,
8123 	.yield_to_task		= yield_to_task_fair,
8124 
8125 	.check_preempt_curr	= check_preempt_wakeup,
8126 
8127 	.pick_next_task		= pick_next_task_fair,
8128 	.put_prev_task		= put_prev_task_fair,
8129 
8130 #ifdef CONFIG_SMP
8131 	.select_task_rq		= select_task_rq_fair,
8132 	.migrate_task_rq	= migrate_task_rq_fair,
8133 
8134 	.rq_online		= rq_online_fair,
8135 	.rq_offline		= rq_offline_fair,
8136 
8137 	.task_waking		= task_waking_fair,
8138 #endif
8139 
8140 	.set_curr_task          = set_curr_task_fair,
8141 	.task_tick		= task_tick_fair,
8142 	.task_fork		= task_fork_fair,
8143 
8144 	.prio_changed		= prio_changed_fair,
8145 	.switched_from		= switched_from_fair,
8146 	.switched_to		= switched_to_fair,
8147 
8148 	.get_rr_interval	= get_rr_interval_fair,
8149 
8150 	.update_curr		= update_curr_fair,
8151 
8152 #ifdef CONFIG_FAIR_GROUP_SCHED
8153 	.task_move_group	= task_move_group_fair,
8154 #endif
8155 };
8156 
8157 #ifdef CONFIG_SCHED_DEBUG
8158 void print_cfs_stats(struct seq_file *m, int cpu)
8159 {
8160 	struct cfs_rq *cfs_rq;
8161 
8162 	rcu_read_lock();
8163 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8164 		print_cfs_rq(m, cpu, cfs_rq);
8165 	rcu_read_unlock();
8166 }
8167 #endif
8168 
8169 __init void init_sched_fair_class(void)
8170 {
8171 #ifdef CONFIG_SMP
8172 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8173 
8174 #ifdef CONFIG_NO_HZ_COMMON
8175 	nohz.next_balance = jiffies;
8176 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8177 	cpu_notifier(sched_ilb_notifier, 0);
8178 #endif
8179 #endif /* SMP */
8180 
8181 }
8182