1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 #include <trace/events/sched.h> 26 27 /* 28 * Targeted preemption latency for CPU-bound tasks: 29 * 30 * NOTE: this latency value is not the same as the concept of 31 * 'timeslice length' - timeslices in CFS are of variable length 32 * and have no persistent notion like in traditional, time-slice 33 * based scheduling concepts. 34 * 35 * (to see the precise effective timeslice length of your workload, 36 * run vmstat and monitor the context-switches (cs) field) 37 * 38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 39 */ 40 unsigned int sysctl_sched_latency = 6000000ULL; 41 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 42 43 /* 44 * The initial- and re-scaling of tunables is configurable 45 * 46 * Options are: 47 * 48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 51 * 52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 53 */ 54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 55 56 /* 57 * Minimal preemption granularity for CPU-bound tasks: 58 * 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 60 */ 61 unsigned int sysctl_sched_min_granularity = 750000ULL; 62 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 63 64 /* 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 66 */ 67 static unsigned int sched_nr_latency = 8; 68 69 /* 70 * After fork, child runs first. If set to 0 (default) then 71 * parent will (try to) run first. 72 */ 73 unsigned int sysctl_sched_child_runs_first __read_mostly; 74 75 /* 76 * SCHED_OTHER wake-up granularity. 77 * 78 * This option delays the preemption effects of decoupled workloads 79 * and reduces their over-scheduling. Synchronous workloads will still 80 * have immediate wakeup/sleep latencies. 81 * 82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 83 */ 84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 85 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 #ifdef CONFIG_SMP 90 /* 91 * For asym packing, by default the lower numbered CPU has higher priority. 92 */ 93 int __weak arch_asym_cpu_priority(int cpu) 94 { 95 return -cpu; 96 } 97 #endif 98 99 #ifdef CONFIG_CFS_BANDWIDTH 100 /* 101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 102 * each time a cfs_rq requests quota. 103 * 104 * Note: in the case that the slice exceeds the runtime remaining (either due 105 * to consumption or the quota being specified to be smaller than the slice) 106 * we will always only issue the remaining available time. 107 * 108 * (default: 5 msec, units: microseconds) 109 */ 110 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 111 #endif 112 113 /* 114 * The margin used when comparing utilization with CPU capacity: 115 * util * margin < capacity * 1024 116 * 117 * (default: ~20%) 118 */ 119 unsigned int capacity_margin = 1280; 120 121 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 122 { 123 lw->weight += inc; 124 lw->inv_weight = 0; 125 } 126 127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 128 { 129 lw->weight -= dec; 130 lw->inv_weight = 0; 131 } 132 133 static inline void update_load_set(struct load_weight *lw, unsigned long w) 134 { 135 lw->weight = w; 136 lw->inv_weight = 0; 137 } 138 139 /* 140 * Increase the granularity value when there are more CPUs, 141 * because with more CPUs the 'effective latency' as visible 142 * to users decreases. But the relationship is not linear, 143 * so pick a second-best guess by going with the log2 of the 144 * number of CPUs. 145 * 146 * This idea comes from the SD scheduler of Con Kolivas: 147 */ 148 static unsigned int get_update_sysctl_factor(void) 149 { 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 151 unsigned int factor; 152 153 switch (sysctl_sched_tunable_scaling) { 154 case SCHED_TUNABLESCALING_NONE: 155 factor = 1; 156 break; 157 case SCHED_TUNABLESCALING_LINEAR: 158 factor = cpus; 159 break; 160 case SCHED_TUNABLESCALING_LOG: 161 default: 162 factor = 1 + ilog2(cpus); 163 break; 164 } 165 166 return factor; 167 } 168 169 static void update_sysctl(void) 170 { 171 unsigned int factor = get_update_sysctl_factor(); 172 173 #define SET_SYSCTL(name) \ 174 (sysctl_##name = (factor) * normalized_sysctl_##name) 175 SET_SYSCTL(sched_min_granularity); 176 SET_SYSCTL(sched_latency); 177 SET_SYSCTL(sched_wakeup_granularity); 178 #undef SET_SYSCTL 179 } 180 181 void sched_init_granularity(void) 182 { 183 update_sysctl(); 184 } 185 186 #define WMULT_CONST (~0U) 187 #define WMULT_SHIFT 32 188 189 static void __update_inv_weight(struct load_weight *lw) 190 { 191 unsigned long w; 192 193 if (likely(lw->inv_weight)) 194 return; 195 196 w = scale_load_down(lw->weight); 197 198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 199 lw->inv_weight = 1; 200 else if (unlikely(!w)) 201 lw->inv_weight = WMULT_CONST; 202 else 203 lw->inv_weight = WMULT_CONST / w; 204 } 205 206 /* 207 * delta_exec * weight / lw.weight 208 * OR 209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 210 * 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 212 * we're guaranteed shift stays positive because inv_weight is guaranteed to 213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 214 * 215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 216 * weight/lw.weight <= 1, and therefore our shift will also be positive. 217 */ 218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 219 { 220 u64 fact = scale_load_down(weight); 221 int shift = WMULT_SHIFT; 222 223 __update_inv_weight(lw); 224 225 if (unlikely(fact >> 32)) { 226 while (fact >> 32) { 227 fact >>= 1; 228 shift--; 229 } 230 } 231 232 /* hint to use a 32x32->64 mul */ 233 fact = (u64)(u32)fact * lw->inv_weight; 234 235 while (fact >> 32) { 236 fact >>= 1; 237 shift--; 238 } 239 240 return mul_u64_u32_shr(delta_exec, fact, shift); 241 } 242 243 244 const struct sched_class fair_sched_class; 245 246 /************************************************************** 247 * CFS operations on generic schedulable entities: 248 */ 249 250 #ifdef CONFIG_FAIR_GROUP_SCHED 251 252 /* cpu runqueue to which this cfs_rq is attached */ 253 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 254 { 255 return cfs_rq->rq; 256 } 257 258 static inline struct task_struct *task_of(struct sched_entity *se) 259 { 260 SCHED_WARN_ON(!entity_is_task(se)); 261 return container_of(se, struct task_struct, se); 262 } 263 264 /* Walk up scheduling entities hierarchy */ 265 #define for_each_sched_entity(se) \ 266 for (; se; se = se->parent) 267 268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 269 { 270 return p->se.cfs_rq; 271 } 272 273 /* runqueue on which this entity is (to be) queued */ 274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 275 { 276 return se->cfs_rq; 277 } 278 279 /* runqueue "owned" by this group */ 280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 281 { 282 return grp->my_q; 283 } 284 285 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 286 { 287 if (!cfs_rq->on_list) { 288 struct rq *rq = rq_of(cfs_rq); 289 int cpu = cpu_of(rq); 290 /* 291 * Ensure we either appear before our parent (if already 292 * enqueued) or force our parent to appear after us when it is 293 * enqueued. The fact that we always enqueue bottom-up 294 * reduces this to two cases and a special case for the root 295 * cfs_rq. Furthermore, it also means that we will always reset 296 * tmp_alone_branch either when the branch is connected 297 * to a tree or when we reach the beg of the tree 298 */ 299 if (cfs_rq->tg->parent && 300 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 301 /* 302 * If parent is already on the list, we add the child 303 * just before. Thanks to circular linked property of 304 * the list, this means to put the child at the tail 305 * of the list that starts by parent. 306 */ 307 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 308 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 309 /* 310 * The branch is now connected to its tree so we can 311 * reset tmp_alone_branch to the beginning of the 312 * list. 313 */ 314 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 315 } else if (!cfs_rq->tg->parent) { 316 /* 317 * cfs rq without parent should be put 318 * at the tail of the list. 319 */ 320 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 321 &rq->leaf_cfs_rq_list); 322 /* 323 * We have reach the beg of a tree so we can reset 324 * tmp_alone_branch to the beginning of the list. 325 */ 326 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 327 } else { 328 /* 329 * The parent has not already been added so we want to 330 * make sure that it will be put after us. 331 * tmp_alone_branch points to the beg of the branch 332 * where we will add parent. 333 */ 334 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 335 rq->tmp_alone_branch); 336 /* 337 * update tmp_alone_branch to points to the new beg 338 * of the branch 339 */ 340 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 341 } 342 343 cfs_rq->on_list = 1; 344 } 345 } 346 347 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 348 { 349 if (cfs_rq->on_list) { 350 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 351 cfs_rq->on_list = 0; 352 } 353 } 354 355 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 356 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 357 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 358 leaf_cfs_rq_list) 359 360 /* Do the two (enqueued) entities belong to the same group ? */ 361 static inline struct cfs_rq * 362 is_same_group(struct sched_entity *se, struct sched_entity *pse) 363 { 364 if (se->cfs_rq == pse->cfs_rq) 365 return se->cfs_rq; 366 367 return NULL; 368 } 369 370 static inline struct sched_entity *parent_entity(struct sched_entity *se) 371 { 372 return se->parent; 373 } 374 375 static void 376 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 377 { 378 int se_depth, pse_depth; 379 380 /* 381 * preemption test can be made between sibling entities who are in the 382 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 383 * both tasks until we find their ancestors who are siblings of common 384 * parent. 385 */ 386 387 /* First walk up until both entities are at same depth */ 388 se_depth = (*se)->depth; 389 pse_depth = (*pse)->depth; 390 391 while (se_depth > pse_depth) { 392 se_depth--; 393 *se = parent_entity(*se); 394 } 395 396 while (pse_depth > se_depth) { 397 pse_depth--; 398 *pse = parent_entity(*pse); 399 } 400 401 while (!is_same_group(*se, *pse)) { 402 *se = parent_entity(*se); 403 *pse = parent_entity(*pse); 404 } 405 } 406 407 #else /* !CONFIG_FAIR_GROUP_SCHED */ 408 409 static inline struct task_struct *task_of(struct sched_entity *se) 410 { 411 return container_of(se, struct task_struct, se); 412 } 413 414 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 415 { 416 return container_of(cfs_rq, struct rq, cfs); 417 } 418 419 420 #define for_each_sched_entity(se) \ 421 for (; se; se = NULL) 422 423 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 424 { 425 return &task_rq(p)->cfs; 426 } 427 428 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 429 { 430 struct task_struct *p = task_of(se); 431 struct rq *rq = task_rq(p); 432 433 return &rq->cfs; 434 } 435 436 /* runqueue "owned" by this group */ 437 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 438 { 439 return NULL; 440 } 441 442 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 443 { 444 } 445 446 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 447 { 448 } 449 450 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 451 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 452 453 static inline struct sched_entity *parent_entity(struct sched_entity *se) 454 { 455 return NULL; 456 } 457 458 static inline void 459 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 460 { 461 } 462 463 #endif /* CONFIG_FAIR_GROUP_SCHED */ 464 465 static __always_inline 466 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 467 468 /************************************************************** 469 * Scheduling class tree data structure manipulation methods: 470 */ 471 472 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 473 { 474 s64 delta = (s64)(vruntime - max_vruntime); 475 if (delta > 0) 476 max_vruntime = vruntime; 477 478 return max_vruntime; 479 } 480 481 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 482 { 483 s64 delta = (s64)(vruntime - min_vruntime); 484 if (delta < 0) 485 min_vruntime = vruntime; 486 487 return min_vruntime; 488 } 489 490 static inline int entity_before(struct sched_entity *a, 491 struct sched_entity *b) 492 { 493 return (s64)(a->vruntime - b->vruntime) < 0; 494 } 495 496 static void update_min_vruntime(struct cfs_rq *cfs_rq) 497 { 498 struct sched_entity *curr = cfs_rq->curr; 499 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 500 501 u64 vruntime = cfs_rq->min_vruntime; 502 503 if (curr) { 504 if (curr->on_rq) 505 vruntime = curr->vruntime; 506 else 507 curr = NULL; 508 } 509 510 if (leftmost) { /* non-empty tree */ 511 struct sched_entity *se; 512 se = rb_entry(leftmost, struct sched_entity, run_node); 513 514 if (!curr) 515 vruntime = se->vruntime; 516 else 517 vruntime = min_vruntime(vruntime, se->vruntime); 518 } 519 520 /* ensure we never gain time by being placed backwards. */ 521 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 522 #ifndef CONFIG_64BIT 523 smp_wmb(); 524 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 525 #endif 526 } 527 528 /* 529 * Enqueue an entity into the rb-tree: 530 */ 531 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 532 { 533 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 534 struct rb_node *parent = NULL; 535 struct sched_entity *entry; 536 bool leftmost = true; 537 538 /* 539 * Find the right place in the rbtree: 540 */ 541 while (*link) { 542 parent = *link; 543 entry = rb_entry(parent, struct sched_entity, run_node); 544 /* 545 * We dont care about collisions. Nodes with 546 * the same key stay together. 547 */ 548 if (entity_before(se, entry)) { 549 link = &parent->rb_left; 550 } else { 551 link = &parent->rb_right; 552 leftmost = false; 553 } 554 } 555 556 rb_link_node(&se->run_node, parent, link); 557 rb_insert_color_cached(&se->run_node, 558 &cfs_rq->tasks_timeline, leftmost); 559 } 560 561 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 562 { 563 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 564 } 565 566 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 567 { 568 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 569 570 if (!left) 571 return NULL; 572 573 return rb_entry(left, struct sched_entity, run_node); 574 } 575 576 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 577 { 578 struct rb_node *next = rb_next(&se->run_node); 579 580 if (!next) 581 return NULL; 582 583 return rb_entry(next, struct sched_entity, run_node); 584 } 585 586 #ifdef CONFIG_SCHED_DEBUG 587 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 588 { 589 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 590 591 if (!last) 592 return NULL; 593 594 return rb_entry(last, struct sched_entity, run_node); 595 } 596 597 /************************************************************** 598 * Scheduling class statistics methods: 599 */ 600 601 int sched_proc_update_handler(struct ctl_table *table, int write, 602 void __user *buffer, size_t *lenp, 603 loff_t *ppos) 604 { 605 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 606 unsigned int factor = get_update_sysctl_factor(); 607 608 if (ret || !write) 609 return ret; 610 611 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 612 sysctl_sched_min_granularity); 613 614 #define WRT_SYSCTL(name) \ 615 (normalized_sysctl_##name = sysctl_##name / (factor)) 616 WRT_SYSCTL(sched_min_granularity); 617 WRT_SYSCTL(sched_latency); 618 WRT_SYSCTL(sched_wakeup_granularity); 619 #undef WRT_SYSCTL 620 621 return 0; 622 } 623 #endif 624 625 /* 626 * delta /= w 627 */ 628 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 629 { 630 if (unlikely(se->load.weight != NICE_0_LOAD)) 631 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 632 633 return delta; 634 } 635 636 /* 637 * The idea is to set a period in which each task runs once. 638 * 639 * When there are too many tasks (sched_nr_latency) we have to stretch 640 * this period because otherwise the slices get too small. 641 * 642 * p = (nr <= nl) ? l : l*nr/nl 643 */ 644 static u64 __sched_period(unsigned long nr_running) 645 { 646 if (unlikely(nr_running > sched_nr_latency)) 647 return nr_running * sysctl_sched_min_granularity; 648 else 649 return sysctl_sched_latency; 650 } 651 652 /* 653 * We calculate the wall-time slice from the period by taking a part 654 * proportional to the weight. 655 * 656 * s = p*P[w/rw] 657 */ 658 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 659 { 660 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 661 662 for_each_sched_entity(se) { 663 struct load_weight *load; 664 struct load_weight lw; 665 666 cfs_rq = cfs_rq_of(se); 667 load = &cfs_rq->load; 668 669 if (unlikely(!se->on_rq)) { 670 lw = cfs_rq->load; 671 672 update_load_add(&lw, se->load.weight); 673 load = &lw; 674 } 675 slice = __calc_delta(slice, se->load.weight, load); 676 } 677 return slice; 678 } 679 680 /* 681 * We calculate the vruntime slice of a to-be-inserted task. 682 * 683 * vs = s/w 684 */ 685 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 686 { 687 return calc_delta_fair(sched_slice(cfs_rq, se), se); 688 } 689 690 #ifdef CONFIG_SMP 691 #include "pelt.h" 692 #include "sched-pelt.h" 693 694 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 695 static unsigned long task_h_load(struct task_struct *p); 696 697 /* Give new sched_entity start runnable values to heavy its load in infant time */ 698 void init_entity_runnable_average(struct sched_entity *se) 699 { 700 struct sched_avg *sa = &se->avg; 701 702 memset(sa, 0, sizeof(*sa)); 703 704 /* 705 * Tasks are intialized with full load to be seen as heavy tasks until 706 * they get a chance to stabilize to their real load level. 707 * Group entities are intialized with zero load to reflect the fact that 708 * nothing has been attached to the task group yet. 709 */ 710 if (entity_is_task(se)) 711 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight); 712 713 se->runnable_weight = se->load.weight; 714 715 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 716 } 717 718 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 719 static void attach_entity_cfs_rq(struct sched_entity *se); 720 721 /* 722 * With new tasks being created, their initial util_avgs are extrapolated 723 * based on the cfs_rq's current util_avg: 724 * 725 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 726 * 727 * However, in many cases, the above util_avg does not give a desired 728 * value. Moreover, the sum of the util_avgs may be divergent, such 729 * as when the series is a harmonic series. 730 * 731 * To solve this problem, we also cap the util_avg of successive tasks to 732 * only 1/2 of the left utilization budget: 733 * 734 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 735 * 736 * where n denotes the nth task and cpu_scale the CPU capacity. 737 * 738 * For example, for a CPU with 1024 of capacity, a simplest series from 739 * the beginning would be like: 740 * 741 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 742 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 743 * 744 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 745 * if util_avg > util_avg_cap. 746 */ 747 void post_init_entity_util_avg(struct sched_entity *se) 748 { 749 struct cfs_rq *cfs_rq = cfs_rq_of(se); 750 struct sched_avg *sa = &se->avg; 751 long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq))); 752 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 753 754 if (cap > 0) { 755 if (cfs_rq->avg.util_avg != 0) { 756 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 757 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 758 759 if (sa->util_avg > cap) 760 sa->util_avg = cap; 761 } else { 762 sa->util_avg = cap; 763 } 764 } 765 766 if (entity_is_task(se)) { 767 struct task_struct *p = task_of(se); 768 if (p->sched_class != &fair_sched_class) { 769 /* 770 * For !fair tasks do: 771 * 772 update_cfs_rq_load_avg(now, cfs_rq); 773 attach_entity_load_avg(cfs_rq, se, 0); 774 switched_from_fair(rq, p); 775 * 776 * such that the next switched_to_fair() has the 777 * expected state. 778 */ 779 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq); 780 return; 781 } 782 } 783 784 attach_entity_cfs_rq(se); 785 } 786 787 #else /* !CONFIG_SMP */ 788 void init_entity_runnable_average(struct sched_entity *se) 789 { 790 } 791 void post_init_entity_util_avg(struct sched_entity *se) 792 { 793 } 794 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 795 { 796 } 797 #endif /* CONFIG_SMP */ 798 799 /* 800 * Update the current task's runtime statistics. 801 */ 802 static void update_curr(struct cfs_rq *cfs_rq) 803 { 804 struct sched_entity *curr = cfs_rq->curr; 805 u64 now = rq_clock_task(rq_of(cfs_rq)); 806 u64 delta_exec; 807 808 if (unlikely(!curr)) 809 return; 810 811 delta_exec = now - curr->exec_start; 812 if (unlikely((s64)delta_exec <= 0)) 813 return; 814 815 curr->exec_start = now; 816 817 schedstat_set(curr->statistics.exec_max, 818 max(delta_exec, curr->statistics.exec_max)); 819 820 curr->sum_exec_runtime += delta_exec; 821 schedstat_add(cfs_rq->exec_clock, delta_exec); 822 823 curr->vruntime += calc_delta_fair(delta_exec, curr); 824 update_min_vruntime(cfs_rq); 825 826 if (entity_is_task(curr)) { 827 struct task_struct *curtask = task_of(curr); 828 829 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 830 cgroup_account_cputime(curtask, delta_exec); 831 account_group_exec_runtime(curtask, delta_exec); 832 } 833 834 account_cfs_rq_runtime(cfs_rq, delta_exec); 835 } 836 837 static void update_curr_fair(struct rq *rq) 838 { 839 update_curr(cfs_rq_of(&rq->curr->se)); 840 } 841 842 static inline void 843 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 844 { 845 u64 wait_start, prev_wait_start; 846 847 if (!schedstat_enabled()) 848 return; 849 850 wait_start = rq_clock(rq_of(cfs_rq)); 851 prev_wait_start = schedstat_val(se->statistics.wait_start); 852 853 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 854 likely(wait_start > prev_wait_start)) 855 wait_start -= prev_wait_start; 856 857 __schedstat_set(se->statistics.wait_start, wait_start); 858 } 859 860 static inline void 861 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 862 { 863 struct task_struct *p; 864 u64 delta; 865 866 if (!schedstat_enabled()) 867 return; 868 869 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 870 871 if (entity_is_task(se)) { 872 p = task_of(se); 873 if (task_on_rq_migrating(p)) { 874 /* 875 * Preserve migrating task's wait time so wait_start 876 * time stamp can be adjusted to accumulate wait time 877 * prior to migration. 878 */ 879 __schedstat_set(se->statistics.wait_start, delta); 880 return; 881 } 882 trace_sched_stat_wait(p, delta); 883 } 884 885 __schedstat_set(se->statistics.wait_max, 886 max(schedstat_val(se->statistics.wait_max), delta)); 887 __schedstat_inc(se->statistics.wait_count); 888 __schedstat_add(se->statistics.wait_sum, delta); 889 __schedstat_set(se->statistics.wait_start, 0); 890 } 891 892 static inline void 893 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 894 { 895 struct task_struct *tsk = NULL; 896 u64 sleep_start, block_start; 897 898 if (!schedstat_enabled()) 899 return; 900 901 sleep_start = schedstat_val(se->statistics.sleep_start); 902 block_start = schedstat_val(se->statistics.block_start); 903 904 if (entity_is_task(se)) 905 tsk = task_of(se); 906 907 if (sleep_start) { 908 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 909 910 if ((s64)delta < 0) 911 delta = 0; 912 913 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 914 __schedstat_set(se->statistics.sleep_max, delta); 915 916 __schedstat_set(se->statistics.sleep_start, 0); 917 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 918 919 if (tsk) { 920 account_scheduler_latency(tsk, delta >> 10, 1); 921 trace_sched_stat_sleep(tsk, delta); 922 } 923 } 924 if (block_start) { 925 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 926 927 if ((s64)delta < 0) 928 delta = 0; 929 930 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 931 __schedstat_set(se->statistics.block_max, delta); 932 933 __schedstat_set(se->statistics.block_start, 0); 934 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 935 936 if (tsk) { 937 if (tsk->in_iowait) { 938 __schedstat_add(se->statistics.iowait_sum, delta); 939 __schedstat_inc(se->statistics.iowait_count); 940 trace_sched_stat_iowait(tsk, delta); 941 } 942 943 trace_sched_stat_blocked(tsk, delta); 944 945 /* 946 * Blocking time is in units of nanosecs, so shift by 947 * 20 to get a milliseconds-range estimation of the 948 * amount of time that the task spent sleeping: 949 */ 950 if (unlikely(prof_on == SLEEP_PROFILING)) { 951 profile_hits(SLEEP_PROFILING, 952 (void *)get_wchan(tsk), 953 delta >> 20); 954 } 955 account_scheduler_latency(tsk, delta >> 10, 0); 956 } 957 } 958 } 959 960 /* 961 * Task is being enqueued - update stats: 962 */ 963 static inline void 964 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 965 { 966 if (!schedstat_enabled()) 967 return; 968 969 /* 970 * Are we enqueueing a waiting task? (for current tasks 971 * a dequeue/enqueue event is a NOP) 972 */ 973 if (se != cfs_rq->curr) 974 update_stats_wait_start(cfs_rq, se); 975 976 if (flags & ENQUEUE_WAKEUP) 977 update_stats_enqueue_sleeper(cfs_rq, se); 978 } 979 980 static inline void 981 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 982 { 983 984 if (!schedstat_enabled()) 985 return; 986 987 /* 988 * Mark the end of the wait period if dequeueing a 989 * waiting task: 990 */ 991 if (se != cfs_rq->curr) 992 update_stats_wait_end(cfs_rq, se); 993 994 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 995 struct task_struct *tsk = task_of(se); 996 997 if (tsk->state & TASK_INTERRUPTIBLE) 998 __schedstat_set(se->statistics.sleep_start, 999 rq_clock(rq_of(cfs_rq))); 1000 if (tsk->state & TASK_UNINTERRUPTIBLE) 1001 __schedstat_set(se->statistics.block_start, 1002 rq_clock(rq_of(cfs_rq))); 1003 } 1004 } 1005 1006 /* 1007 * We are picking a new current task - update its stats: 1008 */ 1009 static inline void 1010 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1011 { 1012 /* 1013 * We are starting a new run period: 1014 */ 1015 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1016 } 1017 1018 /************************************************** 1019 * Scheduling class queueing methods: 1020 */ 1021 1022 #ifdef CONFIG_NUMA_BALANCING 1023 /* 1024 * Approximate time to scan a full NUMA task in ms. The task scan period is 1025 * calculated based on the tasks virtual memory size and 1026 * numa_balancing_scan_size. 1027 */ 1028 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1029 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1030 1031 /* Portion of address space to scan in MB */ 1032 unsigned int sysctl_numa_balancing_scan_size = 256; 1033 1034 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1035 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1036 1037 struct numa_group { 1038 atomic_t refcount; 1039 1040 spinlock_t lock; /* nr_tasks, tasks */ 1041 int nr_tasks; 1042 pid_t gid; 1043 int active_nodes; 1044 1045 struct rcu_head rcu; 1046 unsigned long total_faults; 1047 unsigned long max_faults_cpu; 1048 /* 1049 * Faults_cpu is used to decide whether memory should move 1050 * towards the CPU. As a consequence, these stats are weighted 1051 * more by CPU use than by memory faults. 1052 */ 1053 unsigned long *faults_cpu; 1054 unsigned long faults[0]; 1055 }; 1056 1057 static inline unsigned long group_faults_priv(struct numa_group *ng); 1058 static inline unsigned long group_faults_shared(struct numa_group *ng); 1059 1060 static unsigned int task_nr_scan_windows(struct task_struct *p) 1061 { 1062 unsigned long rss = 0; 1063 unsigned long nr_scan_pages; 1064 1065 /* 1066 * Calculations based on RSS as non-present and empty pages are skipped 1067 * by the PTE scanner and NUMA hinting faults should be trapped based 1068 * on resident pages 1069 */ 1070 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1071 rss = get_mm_rss(p->mm); 1072 if (!rss) 1073 rss = nr_scan_pages; 1074 1075 rss = round_up(rss, nr_scan_pages); 1076 return rss / nr_scan_pages; 1077 } 1078 1079 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1080 #define MAX_SCAN_WINDOW 2560 1081 1082 static unsigned int task_scan_min(struct task_struct *p) 1083 { 1084 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1085 unsigned int scan, floor; 1086 unsigned int windows = 1; 1087 1088 if (scan_size < MAX_SCAN_WINDOW) 1089 windows = MAX_SCAN_WINDOW / scan_size; 1090 floor = 1000 / windows; 1091 1092 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1093 return max_t(unsigned int, floor, scan); 1094 } 1095 1096 static unsigned int task_scan_start(struct task_struct *p) 1097 { 1098 unsigned long smin = task_scan_min(p); 1099 unsigned long period = smin; 1100 1101 /* Scale the maximum scan period with the amount of shared memory. */ 1102 if (p->numa_group) { 1103 struct numa_group *ng = p->numa_group; 1104 unsigned long shared = group_faults_shared(ng); 1105 unsigned long private = group_faults_priv(ng); 1106 1107 period *= atomic_read(&ng->refcount); 1108 period *= shared + 1; 1109 period /= private + shared + 1; 1110 } 1111 1112 return max(smin, period); 1113 } 1114 1115 static unsigned int task_scan_max(struct task_struct *p) 1116 { 1117 unsigned long smin = task_scan_min(p); 1118 unsigned long smax; 1119 1120 /* Watch for min being lower than max due to floor calculations */ 1121 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1122 1123 /* Scale the maximum scan period with the amount of shared memory. */ 1124 if (p->numa_group) { 1125 struct numa_group *ng = p->numa_group; 1126 unsigned long shared = group_faults_shared(ng); 1127 unsigned long private = group_faults_priv(ng); 1128 unsigned long period = smax; 1129 1130 period *= atomic_read(&ng->refcount); 1131 period *= shared + 1; 1132 period /= private + shared + 1; 1133 1134 smax = max(smax, period); 1135 } 1136 1137 return max(smin, smax); 1138 } 1139 1140 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1141 { 1142 int mm_users = 0; 1143 struct mm_struct *mm = p->mm; 1144 1145 if (mm) { 1146 mm_users = atomic_read(&mm->mm_users); 1147 if (mm_users == 1) { 1148 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1149 mm->numa_scan_seq = 0; 1150 } 1151 } 1152 p->node_stamp = 0; 1153 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 1154 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1155 p->numa_work.next = &p->numa_work; 1156 p->numa_faults = NULL; 1157 p->numa_group = NULL; 1158 p->last_task_numa_placement = 0; 1159 p->last_sum_exec_runtime = 0; 1160 1161 /* New address space, reset the preferred nid */ 1162 if (!(clone_flags & CLONE_VM)) { 1163 p->numa_preferred_nid = -1; 1164 return; 1165 } 1166 1167 /* 1168 * New thread, keep existing numa_preferred_nid which should be copied 1169 * already by arch_dup_task_struct but stagger when scans start. 1170 */ 1171 if (mm) { 1172 unsigned int delay; 1173 1174 delay = min_t(unsigned int, task_scan_max(current), 1175 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 1176 delay += 2 * TICK_NSEC; 1177 p->node_stamp = delay; 1178 } 1179 } 1180 1181 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1182 { 1183 rq->nr_numa_running += (p->numa_preferred_nid != -1); 1184 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1185 } 1186 1187 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1188 { 1189 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 1190 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1191 } 1192 1193 /* Shared or private faults. */ 1194 #define NR_NUMA_HINT_FAULT_TYPES 2 1195 1196 /* Memory and CPU locality */ 1197 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1198 1199 /* Averaged statistics, and temporary buffers. */ 1200 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1201 1202 pid_t task_numa_group_id(struct task_struct *p) 1203 { 1204 return p->numa_group ? p->numa_group->gid : 0; 1205 } 1206 1207 /* 1208 * The averaged statistics, shared & private, memory & CPU, 1209 * occupy the first half of the array. The second half of the 1210 * array is for current counters, which are averaged into the 1211 * first set by task_numa_placement. 1212 */ 1213 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1214 { 1215 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1216 } 1217 1218 static inline unsigned long task_faults(struct task_struct *p, int nid) 1219 { 1220 if (!p->numa_faults) 1221 return 0; 1222 1223 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1224 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1225 } 1226 1227 static inline unsigned long group_faults(struct task_struct *p, int nid) 1228 { 1229 if (!p->numa_group) 1230 return 0; 1231 1232 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1233 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1234 } 1235 1236 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1237 { 1238 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1239 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1240 } 1241 1242 static inline unsigned long group_faults_priv(struct numa_group *ng) 1243 { 1244 unsigned long faults = 0; 1245 int node; 1246 1247 for_each_online_node(node) { 1248 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1249 } 1250 1251 return faults; 1252 } 1253 1254 static inline unsigned long group_faults_shared(struct numa_group *ng) 1255 { 1256 unsigned long faults = 0; 1257 int node; 1258 1259 for_each_online_node(node) { 1260 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1261 } 1262 1263 return faults; 1264 } 1265 1266 /* 1267 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1268 * considered part of a numa group's pseudo-interleaving set. Migrations 1269 * between these nodes are slowed down, to allow things to settle down. 1270 */ 1271 #define ACTIVE_NODE_FRACTION 3 1272 1273 static bool numa_is_active_node(int nid, struct numa_group *ng) 1274 { 1275 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1276 } 1277 1278 /* Handle placement on systems where not all nodes are directly connected. */ 1279 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1280 int maxdist, bool task) 1281 { 1282 unsigned long score = 0; 1283 int node; 1284 1285 /* 1286 * All nodes are directly connected, and the same distance 1287 * from each other. No need for fancy placement algorithms. 1288 */ 1289 if (sched_numa_topology_type == NUMA_DIRECT) 1290 return 0; 1291 1292 /* 1293 * This code is called for each node, introducing N^2 complexity, 1294 * which should be ok given the number of nodes rarely exceeds 8. 1295 */ 1296 for_each_online_node(node) { 1297 unsigned long faults; 1298 int dist = node_distance(nid, node); 1299 1300 /* 1301 * The furthest away nodes in the system are not interesting 1302 * for placement; nid was already counted. 1303 */ 1304 if (dist == sched_max_numa_distance || node == nid) 1305 continue; 1306 1307 /* 1308 * On systems with a backplane NUMA topology, compare groups 1309 * of nodes, and move tasks towards the group with the most 1310 * memory accesses. When comparing two nodes at distance 1311 * "hoplimit", only nodes closer by than "hoplimit" are part 1312 * of each group. Skip other nodes. 1313 */ 1314 if (sched_numa_topology_type == NUMA_BACKPLANE && 1315 dist >= maxdist) 1316 continue; 1317 1318 /* Add up the faults from nearby nodes. */ 1319 if (task) 1320 faults = task_faults(p, node); 1321 else 1322 faults = group_faults(p, node); 1323 1324 /* 1325 * On systems with a glueless mesh NUMA topology, there are 1326 * no fixed "groups of nodes". Instead, nodes that are not 1327 * directly connected bounce traffic through intermediate 1328 * nodes; a numa_group can occupy any set of nodes. 1329 * The further away a node is, the less the faults count. 1330 * This seems to result in good task placement. 1331 */ 1332 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1333 faults *= (sched_max_numa_distance - dist); 1334 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1335 } 1336 1337 score += faults; 1338 } 1339 1340 return score; 1341 } 1342 1343 /* 1344 * These return the fraction of accesses done by a particular task, or 1345 * task group, on a particular numa node. The group weight is given a 1346 * larger multiplier, in order to group tasks together that are almost 1347 * evenly spread out between numa nodes. 1348 */ 1349 static inline unsigned long task_weight(struct task_struct *p, int nid, 1350 int dist) 1351 { 1352 unsigned long faults, total_faults; 1353 1354 if (!p->numa_faults) 1355 return 0; 1356 1357 total_faults = p->total_numa_faults; 1358 1359 if (!total_faults) 1360 return 0; 1361 1362 faults = task_faults(p, nid); 1363 faults += score_nearby_nodes(p, nid, dist, true); 1364 1365 return 1000 * faults / total_faults; 1366 } 1367 1368 static inline unsigned long group_weight(struct task_struct *p, int nid, 1369 int dist) 1370 { 1371 unsigned long faults, total_faults; 1372 1373 if (!p->numa_group) 1374 return 0; 1375 1376 total_faults = p->numa_group->total_faults; 1377 1378 if (!total_faults) 1379 return 0; 1380 1381 faults = group_faults(p, nid); 1382 faults += score_nearby_nodes(p, nid, dist, false); 1383 1384 return 1000 * faults / total_faults; 1385 } 1386 1387 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1388 int src_nid, int dst_cpu) 1389 { 1390 struct numa_group *ng = p->numa_group; 1391 int dst_nid = cpu_to_node(dst_cpu); 1392 int last_cpupid, this_cpupid; 1393 1394 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1395 1396 /* 1397 * Multi-stage node selection is used in conjunction with a periodic 1398 * migration fault to build a temporal task<->page relation. By using 1399 * a two-stage filter we remove short/unlikely relations. 1400 * 1401 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1402 * a task's usage of a particular page (n_p) per total usage of this 1403 * page (n_t) (in a given time-span) to a probability. 1404 * 1405 * Our periodic faults will sample this probability and getting the 1406 * same result twice in a row, given these samples are fully 1407 * independent, is then given by P(n)^2, provided our sample period 1408 * is sufficiently short compared to the usage pattern. 1409 * 1410 * This quadric squishes small probabilities, making it less likely we 1411 * act on an unlikely task<->page relation. 1412 */ 1413 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1414 if (!cpupid_pid_unset(last_cpupid) && 1415 cpupid_to_nid(last_cpupid) != dst_nid) 1416 return false; 1417 1418 /* Always allow migrate on private faults */ 1419 if (cpupid_match_pid(p, last_cpupid)) 1420 return true; 1421 1422 /* A shared fault, but p->numa_group has not been set up yet. */ 1423 if (!ng) 1424 return true; 1425 1426 /* 1427 * Destination node is much more heavily used than the source 1428 * node? Allow migration. 1429 */ 1430 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1431 ACTIVE_NODE_FRACTION) 1432 return true; 1433 1434 /* 1435 * Distribute memory according to CPU & memory use on each node, 1436 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1437 * 1438 * faults_cpu(dst) 3 faults_cpu(src) 1439 * --------------- * - > --------------- 1440 * faults_mem(dst) 4 faults_mem(src) 1441 */ 1442 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1443 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1444 } 1445 1446 static unsigned long weighted_cpuload(struct rq *rq); 1447 static unsigned long source_load(int cpu, int type); 1448 static unsigned long target_load(int cpu, int type); 1449 static unsigned long capacity_of(int cpu); 1450 1451 /* Cached statistics for all CPUs within a node */ 1452 struct numa_stats { 1453 unsigned long load; 1454 1455 /* Total compute capacity of CPUs on a node */ 1456 unsigned long compute_capacity; 1457 1458 unsigned int nr_running; 1459 }; 1460 1461 /* 1462 * XXX borrowed from update_sg_lb_stats 1463 */ 1464 static void update_numa_stats(struct numa_stats *ns, int nid) 1465 { 1466 int smt, cpu, cpus = 0; 1467 unsigned long capacity; 1468 1469 memset(ns, 0, sizeof(*ns)); 1470 for_each_cpu(cpu, cpumask_of_node(nid)) { 1471 struct rq *rq = cpu_rq(cpu); 1472 1473 ns->nr_running += rq->nr_running; 1474 ns->load += weighted_cpuload(rq); 1475 ns->compute_capacity += capacity_of(cpu); 1476 1477 cpus++; 1478 } 1479 1480 /* 1481 * If we raced with hotplug and there are no CPUs left in our mask 1482 * the @ns structure is NULL'ed and task_numa_compare() will 1483 * not find this node attractive. 1484 * 1485 * We'll detect a huge imbalance and bail there. 1486 */ 1487 if (!cpus) 1488 return; 1489 1490 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ 1491 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); 1492 capacity = cpus / smt; /* cores */ 1493 1494 capacity = min_t(unsigned, capacity, 1495 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); 1496 } 1497 1498 struct task_numa_env { 1499 struct task_struct *p; 1500 1501 int src_cpu, src_nid; 1502 int dst_cpu, dst_nid; 1503 1504 struct numa_stats src_stats, dst_stats; 1505 1506 int imbalance_pct; 1507 int dist; 1508 1509 struct task_struct *best_task; 1510 long best_imp; 1511 int best_cpu; 1512 }; 1513 1514 static void task_numa_assign(struct task_numa_env *env, 1515 struct task_struct *p, long imp) 1516 { 1517 if (env->best_task) 1518 put_task_struct(env->best_task); 1519 if (p) 1520 get_task_struct(p); 1521 1522 env->best_task = p; 1523 env->best_imp = imp; 1524 env->best_cpu = env->dst_cpu; 1525 } 1526 1527 static bool load_too_imbalanced(long src_load, long dst_load, 1528 struct task_numa_env *env) 1529 { 1530 long imb, old_imb; 1531 long orig_src_load, orig_dst_load; 1532 long src_capacity, dst_capacity; 1533 1534 /* 1535 * The load is corrected for the CPU capacity available on each node. 1536 * 1537 * src_load dst_load 1538 * ------------ vs --------- 1539 * src_capacity dst_capacity 1540 */ 1541 src_capacity = env->src_stats.compute_capacity; 1542 dst_capacity = env->dst_stats.compute_capacity; 1543 1544 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1545 1546 orig_src_load = env->src_stats.load; 1547 orig_dst_load = env->dst_stats.load; 1548 1549 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1550 1551 /* Would this change make things worse? */ 1552 return (imb > old_imb); 1553 } 1554 1555 /* 1556 * This checks if the overall compute and NUMA accesses of the system would 1557 * be improved if the source tasks was migrated to the target dst_cpu taking 1558 * into account that it might be best if task running on the dst_cpu should 1559 * be exchanged with the source task 1560 */ 1561 static void task_numa_compare(struct task_numa_env *env, 1562 long taskimp, long groupimp, bool maymove) 1563 { 1564 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1565 struct task_struct *cur; 1566 long src_load, dst_load; 1567 long load; 1568 long imp = env->p->numa_group ? groupimp : taskimp; 1569 long moveimp = imp; 1570 int dist = env->dist; 1571 1572 rcu_read_lock(); 1573 cur = task_rcu_dereference(&dst_rq->curr); 1574 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1575 cur = NULL; 1576 1577 /* 1578 * Because we have preemption enabled we can get migrated around and 1579 * end try selecting ourselves (current == env->p) as a swap candidate. 1580 */ 1581 if (cur == env->p) 1582 goto unlock; 1583 1584 if (!cur) { 1585 if (maymove || imp > env->best_imp) 1586 goto assign; 1587 else 1588 goto unlock; 1589 } 1590 1591 /* 1592 * "imp" is the fault differential for the source task between the 1593 * source and destination node. Calculate the total differential for 1594 * the source task and potential destination task. The more negative 1595 * the value is, the more remote accesses that would be expected to 1596 * be incurred if the tasks were swapped. 1597 */ 1598 /* Skip this swap candidate if cannot move to the source cpu */ 1599 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed)) 1600 goto unlock; 1601 1602 /* 1603 * If dst and source tasks are in the same NUMA group, or not 1604 * in any group then look only at task weights. 1605 */ 1606 if (cur->numa_group == env->p->numa_group) { 1607 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1608 task_weight(cur, env->dst_nid, dist); 1609 /* 1610 * Add some hysteresis to prevent swapping the 1611 * tasks within a group over tiny differences. 1612 */ 1613 if (cur->numa_group) 1614 imp -= imp / 16; 1615 } else { 1616 /* 1617 * Compare the group weights. If a task is all by itself 1618 * (not part of a group), use the task weight instead. 1619 */ 1620 if (cur->numa_group && env->p->numa_group) 1621 imp += group_weight(cur, env->src_nid, dist) - 1622 group_weight(cur, env->dst_nid, dist); 1623 else 1624 imp += task_weight(cur, env->src_nid, dist) - 1625 task_weight(cur, env->dst_nid, dist); 1626 } 1627 1628 if (imp <= env->best_imp) 1629 goto unlock; 1630 1631 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1632 imp = moveimp - 1; 1633 cur = NULL; 1634 goto assign; 1635 } 1636 1637 /* 1638 * In the overloaded case, try and keep the load balanced. 1639 */ 1640 load = task_h_load(env->p) - task_h_load(cur); 1641 if (!load) 1642 goto assign; 1643 1644 dst_load = env->dst_stats.load + load; 1645 src_load = env->src_stats.load - load; 1646 1647 if (load_too_imbalanced(src_load, dst_load, env)) 1648 goto unlock; 1649 1650 assign: 1651 /* 1652 * One idle CPU per node is evaluated for a task numa move. 1653 * Call select_idle_sibling to maybe find a better one. 1654 */ 1655 if (!cur) { 1656 /* 1657 * select_idle_siblings() uses an per-CPU cpumask that 1658 * can be used from IRQ context. 1659 */ 1660 local_irq_disable(); 1661 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1662 env->dst_cpu); 1663 local_irq_enable(); 1664 } 1665 1666 task_numa_assign(env, cur, imp); 1667 unlock: 1668 rcu_read_unlock(); 1669 } 1670 1671 static void task_numa_find_cpu(struct task_numa_env *env, 1672 long taskimp, long groupimp) 1673 { 1674 long src_load, dst_load, load; 1675 bool maymove = false; 1676 int cpu; 1677 1678 load = task_h_load(env->p); 1679 dst_load = env->dst_stats.load + load; 1680 src_load = env->src_stats.load - load; 1681 1682 /* 1683 * If the improvement from just moving env->p direction is better 1684 * than swapping tasks around, check if a move is possible. 1685 */ 1686 maymove = !load_too_imbalanced(src_load, dst_load, env); 1687 1688 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1689 /* Skip this CPU if the source task cannot migrate */ 1690 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed)) 1691 continue; 1692 1693 env->dst_cpu = cpu; 1694 task_numa_compare(env, taskimp, groupimp, maymove); 1695 } 1696 } 1697 1698 static int task_numa_migrate(struct task_struct *p) 1699 { 1700 struct task_numa_env env = { 1701 .p = p, 1702 1703 .src_cpu = task_cpu(p), 1704 .src_nid = task_node(p), 1705 1706 .imbalance_pct = 112, 1707 1708 .best_task = NULL, 1709 .best_imp = 0, 1710 .best_cpu = -1, 1711 }; 1712 struct sched_domain *sd; 1713 unsigned long taskweight, groupweight; 1714 int nid, ret, dist; 1715 long taskimp, groupimp; 1716 1717 /* 1718 * Pick the lowest SD_NUMA domain, as that would have the smallest 1719 * imbalance and would be the first to start moving tasks about. 1720 * 1721 * And we want to avoid any moving of tasks about, as that would create 1722 * random movement of tasks -- counter the numa conditions we're trying 1723 * to satisfy here. 1724 */ 1725 rcu_read_lock(); 1726 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1727 if (sd) 1728 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1729 rcu_read_unlock(); 1730 1731 /* 1732 * Cpusets can break the scheduler domain tree into smaller 1733 * balance domains, some of which do not cross NUMA boundaries. 1734 * Tasks that are "trapped" in such domains cannot be migrated 1735 * elsewhere, so there is no point in (re)trying. 1736 */ 1737 if (unlikely(!sd)) { 1738 sched_setnuma(p, task_node(p)); 1739 return -EINVAL; 1740 } 1741 1742 env.dst_nid = p->numa_preferred_nid; 1743 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1744 taskweight = task_weight(p, env.src_nid, dist); 1745 groupweight = group_weight(p, env.src_nid, dist); 1746 update_numa_stats(&env.src_stats, env.src_nid); 1747 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1748 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1749 update_numa_stats(&env.dst_stats, env.dst_nid); 1750 1751 /* Try to find a spot on the preferred nid. */ 1752 task_numa_find_cpu(&env, taskimp, groupimp); 1753 1754 /* 1755 * Look at other nodes in these cases: 1756 * - there is no space available on the preferred_nid 1757 * - the task is part of a numa_group that is interleaved across 1758 * multiple NUMA nodes; in order to better consolidate the group, 1759 * we need to check other locations. 1760 */ 1761 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { 1762 for_each_online_node(nid) { 1763 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1764 continue; 1765 1766 dist = node_distance(env.src_nid, env.dst_nid); 1767 if (sched_numa_topology_type == NUMA_BACKPLANE && 1768 dist != env.dist) { 1769 taskweight = task_weight(p, env.src_nid, dist); 1770 groupweight = group_weight(p, env.src_nid, dist); 1771 } 1772 1773 /* Only consider nodes where both task and groups benefit */ 1774 taskimp = task_weight(p, nid, dist) - taskweight; 1775 groupimp = group_weight(p, nid, dist) - groupweight; 1776 if (taskimp < 0 && groupimp < 0) 1777 continue; 1778 1779 env.dist = dist; 1780 env.dst_nid = nid; 1781 update_numa_stats(&env.dst_stats, env.dst_nid); 1782 task_numa_find_cpu(&env, taskimp, groupimp); 1783 } 1784 } 1785 1786 /* 1787 * If the task is part of a workload that spans multiple NUMA nodes, 1788 * and is migrating into one of the workload's active nodes, remember 1789 * this node as the task's preferred numa node, so the workload can 1790 * settle down. 1791 * A task that migrated to a second choice node will be better off 1792 * trying for a better one later. Do not set the preferred node here. 1793 */ 1794 if (p->numa_group) { 1795 if (env.best_cpu == -1) 1796 nid = env.src_nid; 1797 else 1798 nid = cpu_to_node(env.best_cpu); 1799 1800 if (nid != p->numa_preferred_nid) 1801 sched_setnuma(p, nid); 1802 } 1803 1804 /* No better CPU than the current one was found. */ 1805 if (env.best_cpu == -1) 1806 return -EAGAIN; 1807 1808 /* 1809 * Reset the scan period if the task is being rescheduled on an 1810 * alternative node to recheck if the tasks is now properly placed. 1811 */ 1812 p->numa_scan_period = task_scan_start(p); 1813 1814 if (env.best_task == NULL) { 1815 ret = migrate_task_to(p, env.best_cpu); 1816 if (ret != 0) 1817 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1818 return ret; 1819 } 1820 1821 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 1822 1823 if (ret != 0) 1824 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1825 put_task_struct(env.best_task); 1826 return ret; 1827 } 1828 1829 /* Attempt to migrate a task to a CPU on the preferred node. */ 1830 static void numa_migrate_preferred(struct task_struct *p) 1831 { 1832 unsigned long interval = HZ; 1833 1834 /* This task has no NUMA fault statistics yet */ 1835 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1836 return; 1837 1838 /* Periodically retry migrating the task to the preferred node */ 1839 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1840 p->numa_migrate_retry = jiffies + interval; 1841 1842 /* Success if task is already running on preferred CPU */ 1843 if (task_node(p) == p->numa_preferred_nid) 1844 return; 1845 1846 /* Otherwise, try migrate to a CPU on the preferred node */ 1847 task_numa_migrate(p); 1848 } 1849 1850 /* 1851 * Find out how many nodes on the workload is actively running on. Do this by 1852 * tracking the nodes from which NUMA hinting faults are triggered. This can 1853 * be different from the set of nodes where the workload's memory is currently 1854 * located. 1855 */ 1856 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1857 { 1858 unsigned long faults, max_faults = 0; 1859 int nid, active_nodes = 0; 1860 1861 for_each_online_node(nid) { 1862 faults = group_faults_cpu(numa_group, nid); 1863 if (faults > max_faults) 1864 max_faults = faults; 1865 } 1866 1867 for_each_online_node(nid) { 1868 faults = group_faults_cpu(numa_group, nid); 1869 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1870 active_nodes++; 1871 } 1872 1873 numa_group->max_faults_cpu = max_faults; 1874 numa_group->active_nodes = active_nodes; 1875 } 1876 1877 /* 1878 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1879 * increments. The more local the fault statistics are, the higher the scan 1880 * period will be for the next scan window. If local/(local+remote) ratio is 1881 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1882 * the scan period will decrease. Aim for 70% local accesses. 1883 */ 1884 #define NUMA_PERIOD_SLOTS 10 1885 #define NUMA_PERIOD_THRESHOLD 7 1886 1887 /* 1888 * Increase the scan period (slow down scanning) if the majority of 1889 * our memory is already on our local node, or if the majority of 1890 * the page accesses are shared with other processes. 1891 * Otherwise, decrease the scan period. 1892 */ 1893 static void update_task_scan_period(struct task_struct *p, 1894 unsigned long shared, unsigned long private) 1895 { 1896 unsigned int period_slot; 1897 int lr_ratio, ps_ratio; 1898 int diff; 1899 1900 unsigned long remote = p->numa_faults_locality[0]; 1901 unsigned long local = p->numa_faults_locality[1]; 1902 1903 /* 1904 * If there were no record hinting faults then either the task is 1905 * completely idle or all activity is areas that are not of interest 1906 * to automatic numa balancing. Related to that, if there were failed 1907 * migration then it implies we are migrating too quickly or the local 1908 * node is overloaded. In either case, scan slower 1909 */ 1910 if (local + shared == 0 || p->numa_faults_locality[2]) { 1911 p->numa_scan_period = min(p->numa_scan_period_max, 1912 p->numa_scan_period << 1); 1913 1914 p->mm->numa_next_scan = jiffies + 1915 msecs_to_jiffies(p->numa_scan_period); 1916 1917 return; 1918 } 1919 1920 /* 1921 * Prepare to scale scan period relative to the current period. 1922 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1923 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1924 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1925 */ 1926 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1927 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1928 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 1929 1930 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 1931 /* 1932 * Most memory accesses are local. There is no need to 1933 * do fast NUMA scanning, since memory is already local. 1934 */ 1935 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 1936 if (!slot) 1937 slot = 1; 1938 diff = slot * period_slot; 1939 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 1940 /* 1941 * Most memory accesses are shared with other tasks. 1942 * There is no point in continuing fast NUMA scanning, 1943 * since other tasks may just move the memory elsewhere. 1944 */ 1945 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 1946 if (!slot) 1947 slot = 1; 1948 diff = slot * period_slot; 1949 } else { 1950 /* 1951 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 1952 * yet they are not on the local NUMA node. Speed up 1953 * NUMA scanning to get the memory moved over. 1954 */ 1955 int ratio = max(lr_ratio, ps_ratio); 1956 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1957 } 1958 1959 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1960 task_scan_min(p), task_scan_max(p)); 1961 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1962 } 1963 1964 /* 1965 * Get the fraction of time the task has been running since the last 1966 * NUMA placement cycle. The scheduler keeps similar statistics, but 1967 * decays those on a 32ms period, which is orders of magnitude off 1968 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 1969 * stats only if the task is so new there are no NUMA statistics yet. 1970 */ 1971 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 1972 { 1973 u64 runtime, delta, now; 1974 /* Use the start of this time slice to avoid calculations. */ 1975 now = p->se.exec_start; 1976 runtime = p->se.sum_exec_runtime; 1977 1978 if (p->last_task_numa_placement) { 1979 delta = runtime - p->last_sum_exec_runtime; 1980 *period = now - p->last_task_numa_placement; 1981 } else { 1982 delta = p->se.avg.load_sum; 1983 *period = LOAD_AVG_MAX; 1984 } 1985 1986 p->last_sum_exec_runtime = runtime; 1987 p->last_task_numa_placement = now; 1988 1989 return delta; 1990 } 1991 1992 /* 1993 * Determine the preferred nid for a task in a numa_group. This needs to 1994 * be done in a way that produces consistent results with group_weight, 1995 * otherwise workloads might not converge. 1996 */ 1997 static int preferred_group_nid(struct task_struct *p, int nid) 1998 { 1999 nodemask_t nodes; 2000 int dist; 2001 2002 /* Direct connections between all NUMA nodes. */ 2003 if (sched_numa_topology_type == NUMA_DIRECT) 2004 return nid; 2005 2006 /* 2007 * On a system with glueless mesh NUMA topology, group_weight 2008 * scores nodes according to the number of NUMA hinting faults on 2009 * both the node itself, and on nearby nodes. 2010 */ 2011 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2012 unsigned long score, max_score = 0; 2013 int node, max_node = nid; 2014 2015 dist = sched_max_numa_distance; 2016 2017 for_each_online_node(node) { 2018 score = group_weight(p, node, dist); 2019 if (score > max_score) { 2020 max_score = score; 2021 max_node = node; 2022 } 2023 } 2024 return max_node; 2025 } 2026 2027 /* 2028 * Finding the preferred nid in a system with NUMA backplane 2029 * interconnect topology is more involved. The goal is to locate 2030 * tasks from numa_groups near each other in the system, and 2031 * untangle workloads from different sides of the system. This requires 2032 * searching down the hierarchy of node groups, recursively searching 2033 * inside the highest scoring group of nodes. The nodemask tricks 2034 * keep the complexity of the search down. 2035 */ 2036 nodes = node_online_map; 2037 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2038 unsigned long max_faults = 0; 2039 nodemask_t max_group = NODE_MASK_NONE; 2040 int a, b; 2041 2042 /* Are there nodes at this distance from each other? */ 2043 if (!find_numa_distance(dist)) 2044 continue; 2045 2046 for_each_node_mask(a, nodes) { 2047 unsigned long faults = 0; 2048 nodemask_t this_group; 2049 nodes_clear(this_group); 2050 2051 /* Sum group's NUMA faults; includes a==b case. */ 2052 for_each_node_mask(b, nodes) { 2053 if (node_distance(a, b) < dist) { 2054 faults += group_faults(p, b); 2055 node_set(b, this_group); 2056 node_clear(b, nodes); 2057 } 2058 } 2059 2060 /* Remember the top group. */ 2061 if (faults > max_faults) { 2062 max_faults = faults; 2063 max_group = this_group; 2064 /* 2065 * subtle: at the smallest distance there is 2066 * just one node left in each "group", the 2067 * winner is the preferred nid. 2068 */ 2069 nid = a; 2070 } 2071 } 2072 /* Next round, evaluate the nodes within max_group. */ 2073 if (!max_faults) 2074 break; 2075 nodes = max_group; 2076 } 2077 return nid; 2078 } 2079 2080 static void task_numa_placement(struct task_struct *p) 2081 { 2082 int seq, nid, max_nid = -1; 2083 unsigned long max_faults = 0; 2084 unsigned long fault_types[2] = { 0, 0 }; 2085 unsigned long total_faults; 2086 u64 runtime, period; 2087 spinlock_t *group_lock = NULL; 2088 2089 /* 2090 * The p->mm->numa_scan_seq field gets updated without 2091 * exclusive access. Use READ_ONCE() here to ensure 2092 * that the field is read in a single access: 2093 */ 2094 seq = READ_ONCE(p->mm->numa_scan_seq); 2095 if (p->numa_scan_seq == seq) 2096 return; 2097 p->numa_scan_seq = seq; 2098 p->numa_scan_period_max = task_scan_max(p); 2099 2100 total_faults = p->numa_faults_locality[0] + 2101 p->numa_faults_locality[1]; 2102 runtime = numa_get_avg_runtime(p, &period); 2103 2104 /* If the task is part of a group prevent parallel updates to group stats */ 2105 if (p->numa_group) { 2106 group_lock = &p->numa_group->lock; 2107 spin_lock_irq(group_lock); 2108 } 2109 2110 /* Find the node with the highest number of faults */ 2111 for_each_online_node(nid) { 2112 /* Keep track of the offsets in numa_faults array */ 2113 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2114 unsigned long faults = 0, group_faults = 0; 2115 int priv; 2116 2117 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2118 long diff, f_diff, f_weight; 2119 2120 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2121 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2122 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2123 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2124 2125 /* Decay existing window, copy faults since last scan */ 2126 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2127 fault_types[priv] += p->numa_faults[membuf_idx]; 2128 p->numa_faults[membuf_idx] = 0; 2129 2130 /* 2131 * Normalize the faults_from, so all tasks in a group 2132 * count according to CPU use, instead of by the raw 2133 * number of faults. Tasks with little runtime have 2134 * little over-all impact on throughput, and thus their 2135 * faults are less important. 2136 */ 2137 f_weight = div64_u64(runtime << 16, period + 1); 2138 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2139 (total_faults + 1); 2140 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2141 p->numa_faults[cpubuf_idx] = 0; 2142 2143 p->numa_faults[mem_idx] += diff; 2144 p->numa_faults[cpu_idx] += f_diff; 2145 faults += p->numa_faults[mem_idx]; 2146 p->total_numa_faults += diff; 2147 if (p->numa_group) { 2148 /* 2149 * safe because we can only change our own group 2150 * 2151 * mem_idx represents the offset for a given 2152 * nid and priv in a specific region because it 2153 * is at the beginning of the numa_faults array. 2154 */ 2155 p->numa_group->faults[mem_idx] += diff; 2156 p->numa_group->faults_cpu[mem_idx] += f_diff; 2157 p->numa_group->total_faults += diff; 2158 group_faults += p->numa_group->faults[mem_idx]; 2159 } 2160 } 2161 2162 if (!p->numa_group) { 2163 if (faults > max_faults) { 2164 max_faults = faults; 2165 max_nid = nid; 2166 } 2167 } else if (group_faults > max_faults) { 2168 max_faults = group_faults; 2169 max_nid = nid; 2170 } 2171 } 2172 2173 if (p->numa_group) { 2174 numa_group_count_active_nodes(p->numa_group); 2175 spin_unlock_irq(group_lock); 2176 max_nid = preferred_group_nid(p, max_nid); 2177 } 2178 2179 if (max_faults) { 2180 /* Set the new preferred node */ 2181 if (max_nid != p->numa_preferred_nid) 2182 sched_setnuma(p, max_nid); 2183 } 2184 2185 update_task_scan_period(p, fault_types[0], fault_types[1]); 2186 } 2187 2188 static inline int get_numa_group(struct numa_group *grp) 2189 { 2190 return atomic_inc_not_zero(&grp->refcount); 2191 } 2192 2193 static inline void put_numa_group(struct numa_group *grp) 2194 { 2195 if (atomic_dec_and_test(&grp->refcount)) 2196 kfree_rcu(grp, rcu); 2197 } 2198 2199 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2200 int *priv) 2201 { 2202 struct numa_group *grp, *my_grp; 2203 struct task_struct *tsk; 2204 bool join = false; 2205 int cpu = cpupid_to_cpu(cpupid); 2206 int i; 2207 2208 if (unlikely(!p->numa_group)) { 2209 unsigned int size = sizeof(struct numa_group) + 2210 4*nr_node_ids*sizeof(unsigned long); 2211 2212 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2213 if (!grp) 2214 return; 2215 2216 atomic_set(&grp->refcount, 1); 2217 grp->active_nodes = 1; 2218 grp->max_faults_cpu = 0; 2219 spin_lock_init(&grp->lock); 2220 grp->gid = p->pid; 2221 /* Second half of the array tracks nids where faults happen */ 2222 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2223 nr_node_ids; 2224 2225 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2226 grp->faults[i] = p->numa_faults[i]; 2227 2228 grp->total_faults = p->total_numa_faults; 2229 2230 grp->nr_tasks++; 2231 rcu_assign_pointer(p->numa_group, grp); 2232 } 2233 2234 rcu_read_lock(); 2235 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2236 2237 if (!cpupid_match_pid(tsk, cpupid)) 2238 goto no_join; 2239 2240 grp = rcu_dereference(tsk->numa_group); 2241 if (!grp) 2242 goto no_join; 2243 2244 my_grp = p->numa_group; 2245 if (grp == my_grp) 2246 goto no_join; 2247 2248 /* 2249 * Only join the other group if its bigger; if we're the bigger group, 2250 * the other task will join us. 2251 */ 2252 if (my_grp->nr_tasks > grp->nr_tasks) 2253 goto no_join; 2254 2255 /* 2256 * Tie-break on the grp address. 2257 */ 2258 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2259 goto no_join; 2260 2261 /* Always join threads in the same process. */ 2262 if (tsk->mm == current->mm) 2263 join = true; 2264 2265 /* Simple filter to avoid false positives due to PID collisions */ 2266 if (flags & TNF_SHARED) 2267 join = true; 2268 2269 /* Update priv based on whether false sharing was detected */ 2270 *priv = !join; 2271 2272 if (join && !get_numa_group(grp)) 2273 goto no_join; 2274 2275 rcu_read_unlock(); 2276 2277 if (!join) 2278 return; 2279 2280 BUG_ON(irqs_disabled()); 2281 double_lock_irq(&my_grp->lock, &grp->lock); 2282 2283 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2284 my_grp->faults[i] -= p->numa_faults[i]; 2285 grp->faults[i] += p->numa_faults[i]; 2286 } 2287 my_grp->total_faults -= p->total_numa_faults; 2288 grp->total_faults += p->total_numa_faults; 2289 2290 my_grp->nr_tasks--; 2291 grp->nr_tasks++; 2292 2293 spin_unlock(&my_grp->lock); 2294 spin_unlock_irq(&grp->lock); 2295 2296 rcu_assign_pointer(p->numa_group, grp); 2297 2298 put_numa_group(my_grp); 2299 return; 2300 2301 no_join: 2302 rcu_read_unlock(); 2303 return; 2304 } 2305 2306 void task_numa_free(struct task_struct *p) 2307 { 2308 struct numa_group *grp = p->numa_group; 2309 void *numa_faults = p->numa_faults; 2310 unsigned long flags; 2311 int i; 2312 2313 if (grp) { 2314 spin_lock_irqsave(&grp->lock, flags); 2315 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2316 grp->faults[i] -= p->numa_faults[i]; 2317 grp->total_faults -= p->total_numa_faults; 2318 2319 grp->nr_tasks--; 2320 spin_unlock_irqrestore(&grp->lock, flags); 2321 RCU_INIT_POINTER(p->numa_group, NULL); 2322 put_numa_group(grp); 2323 } 2324 2325 p->numa_faults = NULL; 2326 kfree(numa_faults); 2327 } 2328 2329 /* 2330 * Got a PROT_NONE fault for a page on @node. 2331 */ 2332 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2333 { 2334 struct task_struct *p = current; 2335 bool migrated = flags & TNF_MIGRATED; 2336 int cpu_node = task_node(current); 2337 int local = !!(flags & TNF_FAULT_LOCAL); 2338 struct numa_group *ng; 2339 int priv; 2340 2341 if (!static_branch_likely(&sched_numa_balancing)) 2342 return; 2343 2344 /* for example, ksmd faulting in a user's mm */ 2345 if (!p->mm) 2346 return; 2347 2348 /* Allocate buffer to track faults on a per-node basis */ 2349 if (unlikely(!p->numa_faults)) { 2350 int size = sizeof(*p->numa_faults) * 2351 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2352 2353 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2354 if (!p->numa_faults) 2355 return; 2356 2357 p->total_numa_faults = 0; 2358 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2359 } 2360 2361 /* 2362 * First accesses are treated as private, otherwise consider accesses 2363 * to be private if the accessing pid has not changed 2364 */ 2365 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2366 priv = 1; 2367 } else { 2368 priv = cpupid_match_pid(p, last_cpupid); 2369 if (!priv && !(flags & TNF_NO_GROUP)) 2370 task_numa_group(p, last_cpupid, flags, &priv); 2371 } 2372 2373 /* 2374 * If a workload spans multiple NUMA nodes, a shared fault that 2375 * occurs wholly within the set of nodes that the workload is 2376 * actively using should be counted as local. This allows the 2377 * scan rate to slow down when a workload has settled down. 2378 */ 2379 ng = p->numa_group; 2380 if (!priv && !local && ng && ng->active_nodes > 1 && 2381 numa_is_active_node(cpu_node, ng) && 2382 numa_is_active_node(mem_node, ng)) 2383 local = 1; 2384 2385 /* 2386 * Retry task to preferred node migration periodically, in case it 2387 * case it previously failed, or the scheduler moved us. 2388 */ 2389 if (time_after(jiffies, p->numa_migrate_retry)) { 2390 task_numa_placement(p); 2391 numa_migrate_preferred(p); 2392 } 2393 2394 if (migrated) 2395 p->numa_pages_migrated += pages; 2396 if (flags & TNF_MIGRATE_FAIL) 2397 p->numa_faults_locality[2] += pages; 2398 2399 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2400 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2401 p->numa_faults_locality[local] += pages; 2402 } 2403 2404 static void reset_ptenuma_scan(struct task_struct *p) 2405 { 2406 /* 2407 * We only did a read acquisition of the mmap sem, so 2408 * p->mm->numa_scan_seq is written to without exclusive access 2409 * and the update is not guaranteed to be atomic. That's not 2410 * much of an issue though, since this is just used for 2411 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2412 * expensive, to avoid any form of compiler optimizations: 2413 */ 2414 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2415 p->mm->numa_scan_offset = 0; 2416 } 2417 2418 /* 2419 * The expensive part of numa migration is done from task_work context. 2420 * Triggered from task_tick_numa(). 2421 */ 2422 void task_numa_work(struct callback_head *work) 2423 { 2424 unsigned long migrate, next_scan, now = jiffies; 2425 struct task_struct *p = current; 2426 struct mm_struct *mm = p->mm; 2427 u64 runtime = p->se.sum_exec_runtime; 2428 struct vm_area_struct *vma; 2429 unsigned long start, end; 2430 unsigned long nr_pte_updates = 0; 2431 long pages, virtpages; 2432 2433 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2434 2435 work->next = work; /* protect against double add */ 2436 /* 2437 * Who cares about NUMA placement when they're dying. 2438 * 2439 * NOTE: make sure not to dereference p->mm before this check, 2440 * exit_task_work() happens _after_ exit_mm() so we could be called 2441 * without p->mm even though we still had it when we enqueued this 2442 * work. 2443 */ 2444 if (p->flags & PF_EXITING) 2445 return; 2446 2447 if (!mm->numa_next_scan) { 2448 mm->numa_next_scan = now + 2449 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2450 } 2451 2452 /* 2453 * Enforce maximal scan/migration frequency.. 2454 */ 2455 migrate = mm->numa_next_scan; 2456 if (time_before(now, migrate)) 2457 return; 2458 2459 if (p->numa_scan_period == 0) { 2460 p->numa_scan_period_max = task_scan_max(p); 2461 p->numa_scan_period = task_scan_start(p); 2462 } 2463 2464 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2465 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2466 return; 2467 2468 /* 2469 * Delay this task enough that another task of this mm will likely win 2470 * the next time around. 2471 */ 2472 p->node_stamp += 2 * TICK_NSEC; 2473 2474 start = mm->numa_scan_offset; 2475 pages = sysctl_numa_balancing_scan_size; 2476 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2477 virtpages = pages * 8; /* Scan up to this much virtual space */ 2478 if (!pages) 2479 return; 2480 2481 2482 if (!down_read_trylock(&mm->mmap_sem)) 2483 return; 2484 vma = find_vma(mm, start); 2485 if (!vma) { 2486 reset_ptenuma_scan(p); 2487 start = 0; 2488 vma = mm->mmap; 2489 } 2490 for (; vma; vma = vma->vm_next) { 2491 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2492 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2493 continue; 2494 } 2495 2496 /* 2497 * Shared library pages mapped by multiple processes are not 2498 * migrated as it is expected they are cache replicated. Avoid 2499 * hinting faults in read-only file-backed mappings or the vdso 2500 * as migrating the pages will be of marginal benefit. 2501 */ 2502 if (!vma->vm_mm || 2503 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2504 continue; 2505 2506 /* 2507 * Skip inaccessible VMAs to avoid any confusion between 2508 * PROT_NONE and NUMA hinting ptes 2509 */ 2510 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2511 continue; 2512 2513 do { 2514 start = max(start, vma->vm_start); 2515 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2516 end = min(end, vma->vm_end); 2517 nr_pte_updates = change_prot_numa(vma, start, end); 2518 2519 /* 2520 * Try to scan sysctl_numa_balancing_size worth of 2521 * hpages that have at least one present PTE that 2522 * is not already pte-numa. If the VMA contains 2523 * areas that are unused or already full of prot_numa 2524 * PTEs, scan up to virtpages, to skip through those 2525 * areas faster. 2526 */ 2527 if (nr_pte_updates) 2528 pages -= (end - start) >> PAGE_SHIFT; 2529 virtpages -= (end - start) >> PAGE_SHIFT; 2530 2531 start = end; 2532 if (pages <= 0 || virtpages <= 0) 2533 goto out; 2534 2535 cond_resched(); 2536 } while (end != vma->vm_end); 2537 } 2538 2539 out: 2540 /* 2541 * It is possible to reach the end of the VMA list but the last few 2542 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2543 * would find the !migratable VMA on the next scan but not reset the 2544 * scanner to the start so check it now. 2545 */ 2546 if (vma) 2547 mm->numa_scan_offset = start; 2548 else 2549 reset_ptenuma_scan(p); 2550 up_read(&mm->mmap_sem); 2551 2552 /* 2553 * Make sure tasks use at least 32x as much time to run other code 2554 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2555 * Usually update_task_scan_period slows down scanning enough; on an 2556 * overloaded system we need to limit overhead on a per task basis. 2557 */ 2558 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2559 u64 diff = p->se.sum_exec_runtime - runtime; 2560 p->node_stamp += 32 * diff; 2561 } 2562 } 2563 2564 /* 2565 * Drive the periodic memory faults.. 2566 */ 2567 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2568 { 2569 struct callback_head *work = &curr->numa_work; 2570 u64 period, now; 2571 2572 /* 2573 * We don't care about NUMA placement if we don't have memory. 2574 */ 2575 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2576 return; 2577 2578 /* 2579 * Using runtime rather than walltime has the dual advantage that 2580 * we (mostly) drive the selection from busy threads and that the 2581 * task needs to have done some actual work before we bother with 2582 * NUMA placement. 2583 */ 2584 now = curr->se.sum_exec_runtime; 2585 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2586 2587 if (now > curr->node_stamp + period) { 2588 if (!curr->node_stamp) 2589 curr->numa_scan_period = task_scan_start(curr); 2590 curr->node_stamp += period; 2591 2592 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2593 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2594 task_work_add(curr, work, true); 2595 } 2596 } 2597 } 2598 2599 #else 2600 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2601 { 2602 } 2603 2604 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2605 { 2606 } 2607 2608 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2609 { 2610 } 2611 2612 #endif /* CONFIG_NUMA_BALANCING */ 2613 2614 static void 2615 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2616 { 2617 update_load_add(&cfs_rq->load, se->load.weight); 2618 if (!parent_entity(se)) 2619 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2620 #ifdef CONFIG_SMP 2621 if (entity_is_task(se)) { 2622 struct rq *rq = rq_of(cfs_rq); 2623 2624 account_numa_enqueue(rq, task_of(se)); 2625 list_add(&se->group_node, &rq->cfs_tasks); 2626 } 2627 #endif 2628 cfs_rq->nr_running++; 2629 } 2630 2631 static void 2632 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2633 { 2634 update_load_sub(&cfs_rq->load, se->load.weight); 2635 if (!parent_entity(se)) 2636 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2637 #ifdef CONFIG_SMP 2638 if (entity_is_task(se)) { 2639 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2640 list_del_init(&se->group_node); 2641 } 2642 #endif 2643 cfs_rq->nr_running--; 2644 } 2645 2646 /* 2647 * Signed add and clamp on underflow. 2648 * 2649 * Explicitly do a load-store to ensure the intermediate value never hits 2650 * memory. This allows lockless observations without ever seeing the negative 2651 * values. 2652 */ 2653 #define add_positive(_ptr, _val) do { \ 2654 typeof(_ptr) ptr = (_ptr); \ 2655 typeof(_val) val = (_val); \ 2656 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2657 \ 2658 res = var + val; \ 2659 \ 2660 if (val < 0 && res > var) \ 2661 res = 0; \ 2662 \ 2663 WRITE_ONCE(*ptr, res); \ 2664 } while (0) 2665 2666 /* 2667 * Unsigned subtract and clamp on underflow. 2668 * 2669 * Explicitly do a load-store to ensure the intermediate value never hits 2670 * memory. This allows lockless observations without ever seeing the negative 2671 * values. 2672 */ 2673 #define sub_positive(_ptr, _val) do { \ 2674 typeof(_ptr) ptr = (_ptr); \ 2675 typeof(*ptr) val = (_val); \ 2676 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2677 res = var - val; \ 2678 if (res > var) \ 2679 res = 0; \ 2680 WRITE_ONCE(*ptr, res); \ 2681 } while (0) 2682 2683 #ifdef CONFIG_SMP 2684 static inline void 2685 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2686 { 2687 cfs_rq->runnable_weight += se->runnable_weight; 2688 2689 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg; 2690 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum; 2691 } 2692 2693 static inline void 2694 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2695 { 2696 cfs_rq->runnable_weight -= se->runnable_weight; 2697 2698 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg); 2699 sub_positive(&cfs_rq->avg.runnable_load_sum, 2700 se_runnable(se) * se->avg.runnable_load_sum); 2701 } 2702 2703 static inline void 2704 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2705 { 2706 cfs_rq->avg.load_avg += se->avg.load_avg; 2707 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 2708 } 2709 2710 static inline void 2711 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2712 { 2713 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 2714 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 2715 } 2716 #else 2717 static inline void 2718 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2719 static inline void 2720 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2721 static inline void 2722 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2723 static inline void 2724 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2725 #endif 2726 2727 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2728 unsigned long weight, unsigned long runnable) 2729 { 2730 if (se->on_rq) { 2731 /* commit outstanding execution time */ 2732 if (cfs_rq->curr == se) 2733 update_curr(cfs_rq); 2734 account_entity_dequeue(cfs_rq, se); 2735 dequeue_runnable_load_avg(cfs_rq, se); 2736 } 2737 dequeue_load_avg(cfs_rq, se); 2738 2739 se->runnable_weight = runnable; 2740 update_load_set(&se->load, weight); 2741 2742 #ifdef CONFIG_SMP 2743 do { 2744 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib; 2745 2746 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 2747 se->avg.runnable_load_avg = 2748 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider); 2749 } while (0); 2750 #endif 2751 2752 enqueue_load_avg(cfs_rq, se); 2753 if (se->on_rq) { 2754 account_entity_enqueue(cfs_rq, se); 2755 enqueue_runnable_load_avg(cfs_rq, se); 2756 } 2757 } 2758 2759 void reweight_task(struct task_struct *p, int prio) 2760 { 2761 struct sched_entity *se = &p->se; 2762 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2763 struct load_weight *load = &se->load; 2764 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 2765 2766 reweight_entity(cfs_rq, se, weight, weight); 2767 load->inv_weight = sched_prio_to_wmult[prio]; 2768 } 2769 2770 #ifdef CONFIG_FAIR_GROUP_SCHED 2771 #ifdef CONFIG_SMP 2772 /* 2773 * All this does is approximate the hierarchical proportion which includes that 2774 * global sum we all love to hate. 2775 * 2776 * That is, the weight of a group entity, is the proportional share of the 2777 * group weight based on the group runqueue weights. That is: 2778 * 2779 * tg->weight * grq->load.weight 2780 * ge->load.weight = ----------------------------- (1) 2781 * \Sum grq->load.weight 2782 * 2783 * Now, because computing that sum is prohibitively expensive to compute (been 2784 * there, done that) we approximate it with this average stuff. The average 2785 * moves slower and therefore the approximation is cheaper and more stable. 2786 * 2787 * So instead of the above, we substitute: 2788 * 2789 * grq->load.weight -> grq->avg.load_avg (2) 2790 * 2791 * which yields the following: 2792 * 2793 * tg->weight * grq->avg.load_avg 2794 * ge->load.weight = ------------------------------ (3) 2795 * tg->load_avg 2796 * 2797 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 2798 * 2799 * That is shares_avg, and it is right (given the approximation (2)). 2800 * 2801 * The problem with it is that because the average is slow -- it was designed 2802 * to be exactly that of course -- this leads to transients in boundary 2803 * conditions. In specific, the case where the group was idle and we start the 2804 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 2805 * yielding bad latency etc.. 2806 * 2807 * Now, in that special case (1) reduces to: 2808 * 2809 * tg->weight * grq->load.weight 2810 * ge->load.weight = ----------------------------- = tg->weight (4) 2811 * grp->load.weight 2812 * 2813 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 2814 * 2815 * So what we do is modify our approximation (3) to approach (4) in the (near) 2816 * UP case, like: 2817 * 2818 * ge->load.weight = 2819 * 2820 * tg->weight * grq->load.weight 2821 * --------------------------------------------------- (5) 2822 * tg->load_avg - grq->avg.load_avg + grq->load.weight 2823 * 2824 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 2825 * we need to use grq->avg.load_avg as its lower bound, which then gives: 2826 * 2827 * 2828 * tg->weight * grq->load.weight 2829 * ge->load.weight = ----------------------------- (6) 2830 * tg_load_avg' 2831 * 2832 * Where: 2833 * 2834 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 2835 * max(grq->load.weight, grq->avg.load_avg) 2836 * 2837 * And that is shares_weight and is icky. In the (near) UP case it approaches 2838 * (4) while in the normal case it approaches (3). It consistently 2839 * overestimates the ge->load.weight and therefore: 2840 * 2841 * \Sum ge->load.weight >= tg->weight 2842 * 2843 * hence icky! 2844 */ 2845 static long calc_group_shares(struct cfs_rq *cfs_rq) 2846 { 2847 long tg_weight, tg_shares, load, shares; 2848 struct task_group *tg = cfs_rq->tg; 2849 2850 tg_shares = READ_ONCE(tg->shares); 2851 2852 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 2853 2854 tg_weight = atomic_long_read(&tg->load_avg); 2855 2856 /* Ensure tg_weight >= load */ 2857 tg_weight -= cfs_rq->tg_load_avg_contrib; 2858 tg_weight += load; 2859 2860 shares = (tg_shares * load); 2861 if (tg_weight) 2862 shares /= tg_weight; 2863 2864 /* 2865 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 2866 * of a group with small tg->shares value. It is a floor value which is 2867 * assigned as a minimum load.weight to the sched_entity representing 2868 * the group on a CPU. 2869 * 2870 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 2871 * on an 8-core system with 8 tasks each runnable on one CPU shares has 2872 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 2873 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 2874 * instead of 0. 2875 */ 2876 return clamp_t(long, shares, MIN_SHARES, tg_shares); 2877 } 2878 2879 /* 2880 * This calculates the effective runnable weight for a group entity based on 2881 * the group entity weight calculated above. 2882 * 2883 * Because of the above approximation (2), our group entity weight is 2884 * an load_avg based ratio (3). This means that it includes blocked load and 2885 * does not represent the runnable weight. 2886 * 2887 * Approximate the group entity's runnable weight per ratio from the group 2888 * runqueue: 2889 * 2890 * grq->avg.runnable_load_avg 2891 * ge->runnable_weight = ge->load.weight * -------------------------- (7) 2892 * grq->avg.load_avg 2893 * 2894 * However, analogous to above, since the avg numbers are slow, this leads to 2895 * transients in the from-idle case. Instead we use: 2896 * 2897 * ge->runnable_weight = ge->load.weight * 2898 * 2899 * max(grq->avg.runnable_load_avg, grq->runnable_weight) 2900 * ----------------------------------------------------- (8) 2901 * max(grq->avg.load_avg, grq->load.weight) 2902 * 2903 * Where these max() serve both to use the 'instant' values to fix the slow 2904 * from-idle and avoid the /0 on to-idle, similar to (6). 2905 */ 2906 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares) 2907 { 2908 long runnable, load_avg; 2909 2910 load_avg = max(cfs_rq->avg.load_avg, 2911 scale_load_down(cfs_rq->load.weight)); 2912 2913 runnable = max(cfs_rq->avg.runnable_load_avg, 2914 scale_load_down(cfs_rq->runnable_weight)); 2915 2916 runnable *= shares; 2917 if (load_avg) 2918 runnable /= load_avg; 2919 2920 return clamp_t(long, runnable, MIN_SHARES, shares); 2921 } 2922 #endif /* CONFIG_SMP */ 2923 2924 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2925 2926 /* 2927 * Recomputes the group entity based on the current state of its group 2928 * runqueue. 2929 */ 2930 static void update_cfs_group(struct sched_entity *se) 2931 { 2932 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 2933 long shares, runnable; 2934 2935 if (!gcfs_rq) 2936 return; 2937 2938 if (throttled_hierarchy(gcfs_rq)) 2939 return; 2940 2941 #ifndef CONFIG_SMP 2942 runnable = shares = READ_ONCE(gcfs_rq->tg->shares); 2943 2944 if (likely(se->load.weight == shares)) 2945 return; 2946 #else 2947 shares = calc_group_shares(gcfs_rq); 2948 runnable = calc_group_runnable(gcfs_rq, shares); 2949 #endif 2950 2951 reweight_entity(cfs_rq_of(se), se, shares, runnable); 2952 } 2953 2954 #else /* CONFIG_FAIR_GROUP_SCHED */ 2955 static inline void update_cfs_group(struct sched_entity *se) 2956 { 2957 } 2958 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2959 2960 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 2961 { 2962 struct rq *rq = rq_of(cfs_rq); 2963 2964 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) { 2965 /* 2966 * There are a few boundary cases this might miss but it should 2967 * get called often enough that that should (hopefully) not be 2968 * a real problem. 2969 * 2970 * It will not get called when we go idle, because the idle 2971 * thread is a different class (!fair), nor will the utilization 2972 * number include things like RT tasks. 2973 * 2974 * As is, the util number is not freq-invariant (we'd have to 2975 * implement arch_scale_freq_capacity() for that). 2976 * 2977 * See cpu_util(). 2978 */ 2979 cpufreq_update_util(rq, flags); 2980 } 2981 } 2982 2983 #ifdef CONFIG_SMP 2984 #ifdef CONFIG_FAIR_GROUP_SCHED 2985 /** 2986 * update_tg_load_avg - update the tg's load avg 2987 * @cfs_rq: the cfs_rq whose avg changed 2988 * @force: update regardless of how small the difference 2989 * 2990 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 2991 * However, because tg->load_avg is a global value there are performance 2992 * considerations. 2993 * 2994 * In order to avoid having to look at the other cfs_rq's, we use a 2995 * differential update where we store the last value we propagated. This in 2996 * turn allows skipping updates if the differential is 'small'. 2997 * 2998 * Updating tg's load_avg is necessary before update_cfs_share(). 2999 */ 3000 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3001 { 3002 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3003 3004 /* 3005 * No need to update load_avg for root_task_group as it is not used. 3006 */ 3007 if (cfs_rq->tg == &root_task_group) 3008 return; 3009 3010 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3011 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3012 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3013 } 3014 } 3015 3016 /* 3017 * Called within set_task_rq() right before setting a task's CPU. The 3018 * caller only guarantees p->pi_lock is held; no other assumptions, 3019 * including the state of rq->lock, should be made. 3020 */ 3021 void set_task_rq_fair(struct sched_entity *se, 3022 struct cfs_rq *prev, struct cfs_rq *next) 3023 { 3024 u64 p_last_update_time; 3025 u64 n_last_update_time; 3026 3027 if (!sched_feat(ATTACH_AGE_LOAD)) 3028 return; 3029 3030 /* 3031 * We are supposed to update the task to "current" time, then its up to 3032 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3033 * getting what current time is, so simply throw away the out-of-date 3034 * time. This will result in the wakee task is less decayed, but giving 3035 * the wakee more load sounds not bad. 3036 */ 3037 if (!(se->avg.last_update_time && prev)) 3038 return; 3039 3040 #ifndef CONFIG_64BIT 3041 { 3042 u64 p_last_update_time_copy; 3043 u64 n_last_update_time_copy; 3044 3045 do { 3046 p_last_update_time_copy = prev->load_last_update_time_copy; 3047 n_last_update_time_copy = next->load_last_update_time_copy; 3048 3049 smp_rmb(); 3050 3051 p_last_update_time = prev->avg.last_update_time; 3052 n_last_update_time = next->avg.last_update_time; 3053 3054 } while (p_last_update_time != p_last_update_time_copy || 3055 n_last_update_time != n_last_update_time_copy); 3056 } 3057 #else 3058 p_last_update_time = prev->avg.last_update_time; 3059 n_last_update_time = next->avg.last_update_time; 3060 #endif 3061 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se); 3062 se->avg.last_update_time = n_last_update_time; 3063 } 3064 3065 3066 /* 3067 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3068 * propagate its contribution. The key to this propagation is the invariant 3069 * that for each group: 3070 * 3071 * ge->avg == grq->avg (1) 3072 * 3073 * _IFF_ we look at the pure running and runnable sums. Because they 3074 * represent the very same entity, just at different points in the hierarchy. 3075 * 3076 * Per the above update_tg_cfs_util() is trivial and simply copies the running 3077 * sum over (but still wrong, because the group entity and group rq do not have 3078 * their PELT windows aligned). 3079 * 3080 * However, update_tg_cfs_runnable() is more complex. So we have: 3081 * 3082 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3083 * 3084 * And since, like util, the runnable part should be directly transferable, 3085 * the following would _appear_ to be the straight forward approach: 3086 * 3087 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3088 * 3089 * And per (1) we have: 3090 * 3091 * ge->avg.runnable_avg == grq->avg.runnable_avg 3092 * 3093 * Which gives: 3094 * 3095 * ge->load.weight * grq->avg.load_avg 3096 * ge->avg.load_avg = ----------------------------------- (4) 3097 * grq->load.weight 3098 * 3099 * Except that is wrong! 3100 * 3101 * Because while for entities historical weight is not important and we 3102 * really only care about our future and therefore can consider a pure 3103 * runnable sum, runqueues can NOT do this. 3104 * 3105 * We specifically want runqueues to have a load_avg that includes 3106 * historical weights. Those represent the blocked load, the load we expect 3107 * to (shortly) return to us. This only works by keeping the weights as 3108 * integral part of the sum. We therefore cannot decompose as per (3). 3109 * 3110 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3111 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3112 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3113 * runnable section of these tasks overlap (or not). If they were to perfectly 3114 * align the rq as a whole would be runnable 2/3 of the time. If however we 3115 * always have at least 1 runnable task, the rq as a whole is always runnable. 3116 * 3117 * So we'll have to approximate.. :/ 3118 * 3119 * Given the constraint: 3120 * 3121 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3122 * 3123 * We can construct a rule that adds runnable to a rq by assuming minimal 3124 * overlap. 3125 * 3126 * On removal, we'll assume each task is equally runnable; which yields: 3127 * 3128 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3129 * 3130 * XXX: only do this for the part of runnable > running ? 3131 * 3132 */ 3133 3134 static inline void 3135 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3136 { 3137 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3138 3139 /* Nothing to update */ 3140 if (!delta) 3141 return; 3142 3143 /* 3144 * The relation between sum and avg is: 3145 * 3146 * LOAD_AVG_MAX - 1024 + sa->period_contrib 3147 * 3148 * however, the PELT windows are not aligned between grq and gse. 3149 */ 3150 3151 /* Set new sched_entity's utilization */ 3152 se->avg.util_avg = gcfs_rq->avg.util_avg; 3153 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3154 3155 /* Update parent cfs_rq utilization */ 3156 add_positive(&cfs_rq->avg.util_avg, delta); 3157 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3158 } 3159 3160 static inline void 3161 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3162 { 3163 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3164 unsigned long runnable_load_avg, load_avg; 3165 u64 runnable_load_sum, load_sum = 0; 3166 s64 delta_sum; 3167 3168 if (!runnable_sum) 3169 return; 3170 3171 gcfs_rq->prop_runnable_sum = 0; 3172 3173 if (runnable_sum >= 0) { 3174 /* 3175 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3176 * the CPU is saturated running == runnable. 3177 */ 3178 runnable_sum += se->avg.load_sum; 3179 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX); 3180 } else { 3181 /* 3182 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3183 * assuming all tasks are equally runnable. 3184 */ 3185 if (scale_load_down(gcfs_rq->load.weight)) { 3186 load_sum = div_s64(gcfs_rq->avg.load_sum, 3187 scale_load_down(gcfs_rq->load.weight)); 3188 } 3189 3190 /* But make sure to not inflate se's runnable */ 3191 runnable_sum = min(se->avg.load_sum, load_sum); 3192 } 3193 3194 /* 3195 * runnable_sum can't be lower than running_sum 3196 * As running sum is scale with CPU capacity wehreas the runnable sum 3197 * is not we rescale running_sum 1st 3198 */ 3199 running_sum = se->avg.util_sum / 3200 arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq))); 3201 runnable_sum = max(runnable_sum, running_sum); 3202 3203 load_sum = (s64)se_weight(se) * runnable_sum; 3204 load_avg = div_s64(load_sum, LOAD_AVG_MAX); 3205 3206 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3207 delta_avg = load_avg - se->avg.load_avg; 3208 3209 se->avg.load_sum = runnable_sum; 3210 se->avg.load_avg = load_avg; 3211 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3212 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3213 3214 runnable_load_sum = (s64)se_runnable(se) * runnable_sum; 3215 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX); 3216 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum; 3217 delta_avg = runnable_load_avg - se->avg.runnable_load_avg; 3218 3219 se->avg.runnable_load_sum = runnable_sum; 3220 se->avg.runnable_load_avg = runnable_load_avg; 3221 3222 if (se->on_rq) { 3223 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg); 3224 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum); 3225 } 3226 } 3227 3228 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3229 { 3230 cfs_rq->propagate = 1; 3231 cfs_rq->prop_runnable_sum += runnable_sum; 3232 } 3233 3234 /* Update task and its cfs_rq load average */ 3235 static inline int propagate_entity_load_avg(struct sched_entity *se) 3236 { 3237 struct cfs_rq *cfs_rq, *gcfs_rq; 3238 3239 if (entity_is_task(se)) 3240 return 0; 3241 3242 gcfs_rq = group_cfs_rq(se); 3243 if (!gcfs_rq->propagate) 3244 return 0; 3245 3246 gcfs_rq->propagate = 0; 3247 3248 cfs_rq = cfs_rq_of(se); 3249 3250 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3251 3252 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3253 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3254 3255 return 1; 3256 } 3257 3258 /* 3259 * Check if we need to update the load and the utilization of a blocked 3260 * group_entity: 3261 */ 3262 static inline bool skip_blocked_update(struct sched_entity *se) 3263 { 3264 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3265 3266 /* 3267 * If sched_entity still have not zero load or utilization, we have to 3268 * decay it: 3269 */ 3270 if (se->avg.load_avg || se->avg.util_avg) 3271 return false; 3272 3273 /* 3274 * If there is a pending propagation, we have to update the load and 3275 * the utilization of the sched_entity: 3276 */ 3277 if (gcfs_rq->propagate) 3278 return false; 3279 3280 /* 3281 * Otherwise, the load and the utilization of the sched_entity is 3282 * already zero and there is no pending propagation, so it will be a 3283 * waste of time to try to decay it: 3284 */ 3285 return true; 3286 } 3287 3288 #else /* CONFIG_FAIR_GROUP_SCHED */ 3289 3290 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3291 3292 static inline int propagate_entity_load_avg(struct sched_entity *se) 3293 { 3294 return 0; 3295 } 3296 3297 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3298 3299 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3300 3301 /** 3302 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3303 * @now: current time, as per cfs_rq_clock_task() 3304 * @cfs_rq: cfs_rq to update 3305 * 3306 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3307 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3308 * post_init_entity_util_avg(). 3309 * 3310 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3311 * 3312 * Returns true if the load decayed or we removed load. 3313 * 3314 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3315 * call update_tg_load_avg() when this function returns true. 3316 */ 3317 static inline int 3318 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3319 { 3320 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0; 3321 struct sched_avg *sa = &cfs_rq->avg; 3322 int decayed = 0; 3323 3324 if (cfs_rq->removed.nr) { 3325 unsigned long r; 3326 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3327 3328 raw_spin_lock(&cfs_rq->removed.lock); 3329 swap(cfs_rq->removed.util_avg, removed_util); 3330 swap(cfs_rq->removed.load_avg, removed_load); 3331 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum); 3332 cfs_rq->removed.nr = 0; 3333 raw_spin_unlock(&cfs_rq->removed.lock); 3334 3335 r = removed_load; 3336 sub_positive(&sa->load_avg, r); 3337 sub_positive(&sa->load_sum, r * divider); 3338 3339 r = removed_util; 3340 sub_positive(&sa->util_avg, r); 3341 sub_positive(&sa->util_sum, r * divider); 3342 3343 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum); 3344 3345 decayed = 1; 3346 } 3347 3348 decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq); 3349 3350 #ifndef CONFIG_64BIT 3351 smp_wmb(); 3352 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3353 #endif 3354 3355 if (decayed) 3356 cfs_rq_util_change(cfs_rq, 0); 3357 3358 return decayed; 3359 } 3360 3361 /** 3362 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3363 * @cfs_rq: cfs_rq to attach to 3364 * @se: sched_entity to attach 3365 * @flags: migration hints 3366 * 3367 * Must call update_cfs_rq_load_avg() before this, since we rely on 3368 * cfs_rq->avg.last_update_time being current. 3369 */ 3370 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3371 { 3372 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3373 3374 /* 3375 * When we attach the @se to the @cfs_rq, we must align the decay 3376 * window because without that, really weird and wonderful things can 3377 * happen. 3378 * 3379 * XXX illustrate 3380 */ 3381 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3382 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3383 3384 /* 3385 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3386 * period_contrib. This isn't strictly correct, but since we're 3387 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3388 * _sum a little. 3389 */ 3390 se->avg.util_sum = se->avg.util_avg * divider; 3391 3392 se->avg.load_sum = divider; 3393 if (se_weight(se)) { 3394 se->avg.load_sum = 3395 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3396 } 3397 3398 se->avg.runnable_load_sum = se->avg.load_sum; 3399 3400 enqueue_load_avg(cfs_rq, se); 3401 cfs_rq->avg.util_avg += se->avg.util_avg; 3402 cfs_rq->avg.util_sum += se->avg.util_sum; 3403 3404 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3405 3406 cfs_rq_util_change(cfs_rq, flags); 3407 } 3408 3409 /** 3410 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3411 * @cfs_rq: cfs_rq to detach from 3412 * @se: sched_entity to detach 3413 * 3414 * Must call update_cfs_rq_load_avg() before this, since we rely on 3415 * cfs_rq->avg.last_update_time being current. 3416 */ 3417 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3418 { 3419 dequeue_load_avg(cfs_rq, se); 3420 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3421 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3422 3423 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3424 3425 cfs_rq_util_change(cfs_rq, 0); 3426 } 3427 3428 /* 3429 * Optional action to be done while updating the load average 3430 */ 3431 #define UPDATE_TG 0x1 3432 #define SKIP_AGE_LOAD 0x2 3433 #define DO_ATTACH 0x4 3434 3435 /* Update task and its cfs_rq load average */ 3436 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3437 { 3438 u64 now = cfs_rq_clock_task(cfs_rq); 3439 struct rq *rq = rq_of(cfs_rq); 3440 int cpu = cpu_of(rq); 3441 int decayed; 3442 3443 /* 3444 * Track task load average for carrying it to new CPU after migrated, and 3445 * track group sched_entity load average for task_h_load calc in migration 3446 */ 3447 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3448 __update_load_avg_se(now, cpu, cfs_rq, se); 3449 3450 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3451 decayed |= propagate_entity_load_avg(se); 3452 3453 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3454 3455 /* 3456 * DO_ATTACH means we're here from enqueue_entity(). 3457 * !last_update_time means we've passed through 3458 * migrate_task_rq_fair() indicating we migrated. 3459 * 3460 * IOW we're enqueueing a task on a new CPU. 3461 */ 3462 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION); 3463 update_tg_load_avg(cfs_rq, 0); 3464 3465 } else if (decayed && (flags & UPDATE_TG)) 3466 update_tg_load_avg(cfs_rq, 0); 3467 } 3468 3469 #ifndef CONFIG_64BIT 3470 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3471 { 3472 u64 last_update_time_copy; 3473 u64 last_update_time; 3474 3475 do { 3476 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3477 smp_rmb(); 3478 last_update_time = cfs_rq->avg.last_update_time; 3479 } while (last_update_time != last_update_time_copy); 3480 3481 return last_update_time; 3482 } 3483 #else 3484 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3485 { 3486 return cfs_rq->avg.last_update_time; 3487 } 3488 #endif 3489 3490 /* 3491 * Synchronize entity load avg of dequeued entity without locking 3492 * the previous rq. 3493 */ 3494 void sync_entity_load_avg(struct sched_entity *se) 3495 { 3496 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3497 u64 last_update_time; 3498 3499 last_update_time = cfs_rq_last_update_time(cfs_rq); 3500 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se); 3501 } 3502 3503 /* 3504 * Task first catches up with cfs_rq, and then subtract 3505 * itself from the cfs_rq (task must be off the queue now). 3506 */ 3507 void remove_entity_load_avg(struct sched_entity *se) 3508 { 3509 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3510 unsigned long flags; 3511 3512 /* 3513 * tasks cannot exit without having gone through wake_up_new_task() -> 3514 * post_init_entity_util_avg() which will have added things to the 3515 * cfs_rq, so we can remove unconditionally. 3516 * 3517 * Similarly for groups, they will have passed through 3518 * post_init_entity_util_avg() before unregister_sched_fair_group() 3519 * calls this. 3520 */ 3521 3522 sync_entity_load_avg(se); 3523 3524 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3525 ++cfs_rq->removed.nr; 3526 cfs_rq->removed.util_avg += se->avg.util_avg; 3527 cfs_rq->removed.load_avg += se->avg.load_avg; 3528 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */ 3529 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3530 } 3531 3532 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3533 { 3534 return cfs_rq->avg.runnable_load_avg; 3535 } 3536 3537 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3538 { 3539 return cfs_rq->avg.load_avg; 3540 } 3541 3542 static int idle_balance(struct rq *this_rq, struct rq_flags *rf); 3543 3544 static inline unsigned long task_util(struct task_struct *p) 3545 { 3546 return READ_ONCE(p->se.avg.util_avg); 3547 } 3548 3549 static inline unsigned long _task_util_est(struct task_struct *p) 3550 { 3551 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3552 3553 return max(ue.ewma, ue.enqueued); 3554 } 3555 3556 static inline unsigned long task_util_est(struct task_struct *p) 3557 { 3558 return max(task_util(p), _task_util_est(p)); 3559 } 3560 3561 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3562 struct task_struct *p) 3563 { 3564 unsigned int enqueued; 3565 3566 if (!sched_feat(UTIL_EST)) 3567 return; 3568 3569 /* Update root cfs_rq's estimated utilization */ 3570 enqueued = cfs_rq->avg.util_est.enqueued; 3571 enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED); 3572 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3573 } 3574 3575 /* 3576 * Check if a (signed) value is within a specified (unsigned) margin, 3577 * based on the observation that: 3578 * 3579 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3580 * 3581 * NOTE: this only works when value + maring < INT_MAX. 3582 */ 3583 static inline bool within_margin(int value, int margin) 3584 { 3585 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3586 } 3587 3588 static void 3589 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) 3590 { 3591 long last_ewma_diff; 3592 struct util_est ue; 3593 3594 if (!sched_feat(UTIL_EST)) 3595 return; 3596 3597 /* Update root cfs_rq's estimated utilization */ 3598 ue.enqueued = cfs_rq->avg.util_est.enqueued; 3599 ue.enqueued -= min_t(unsigned int, ue.enqueued, 3600 (_task_util_est(p) | UTIL_AVG_UNCHANGED)); 3601 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); 3602 3603 /* 3604 * Skip update of task's estimated utilization when the task has not 3605 * yet completed an activation, e.g. being migrated. 3606 */ 3607 if (!task_sleep) 3608 return; 3609 3610 /* 3611 * If the PELT values haven't changed since enqueue time, 3612 * skip the util_est update. 3613 */ 3614 ue = p->se.avg.util_est; 3615 if (ue.enqueued & UTIL_AVG_UNCHANGED) 3616 return; 3617 3618 /* 3619 * Skip update of task's estimated utilization when its EWMA is 3620 * already ~1% close to its last activation value. 3621 */ 3622 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); 3623 last_ewma_diff = ue.enqueued - ue.ewma; 3624 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) 3625 return; 3626 3627 /* 3628 * Update Task's estimated utilization 3629 * 3630 * When *p completes an activation we can consolidate another sample 3631 * of the task size. This is done by storing the current PELT value 3632 * as ue.enqueued and by using this value to update the Exponential 3633 * Weighted Moving Average (EWMA): 3634 * 3635 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 3636 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 3637 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 3638 * = w * ( last_ewma_diff ) + ewma(t-1) 3639 * = w * (last_ewma_diff + ewma(t-1) / w) 3640 * 3641 * Where 'w' is the weight of new samples, which is configured to be 3642 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 3643 */ 3644 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 3645 ue.ewma += last_ewma_diff; 3646 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 3647 WRITE_ONCE(p->se.avg.util_est, ue); 3648 } 3649 3650 #else /* CONFIG_SMP */ 3651 3652 #define UPDATE_TG 0x0 3653 #define SKIP_AGE_LOAD 0x0 3654 #define DO_ATTACH 0x0 3655 3656 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 3657 { 3658 cfs_rq_util_change(cfs_rq, 0); 3659 } 3660 3661 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3662 3663 static inline void 3664 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {} 3665 static inline void 3666 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3667 3668 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 3669 { 3670 return 0; 3671 } 3672 3673 static inline void 3674 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 3675 3676 static inline void 3677 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, 3678 bool task_sleep) {} 3679 3680 #endif /* CONFIG_SMP */ 3681 3682 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3683 { 3684 #ifdef CONFIG_SCHED_DEBUG 3685 s64 d = se->vruntime - cfs_rq->min_vruntime; 3686 3687 if (d < 0) 3688 d = -d; 3689 3690 if (d > 3*sysctl_sched_latency) 3691 schedstat_inc(cfs_rq->nr_spread_over); 3692 #endif 3693 } 3694 3695 static void 3696 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3697 { 3698 u64 vruntime = cfs_rq->min_vruntime; 3699 3700 /* 3701 * The 'current' period is already promised to the current tasks, 3702 * however the extra weight of the new task will slow them down a 3703 * little, place the new task so that it fits in the slot that 3704 * stays open at the end. 3705 */ 3706 if (initial && sched_feat(START_DEBIT)) 3707 vruntime += sched_vslice(cfs_rq, se); 3708 3709 /* sleeps up to a single latency don't count. */ 3710 if (!initial) { 3711 unsigned long thresh = sysctl_sched_latency; 3712 3713 /* 3714 * Halve their sleep time's effect, to allow 3715 * for a gentler effect of sleepers: 3716 */ 3717 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3718 thresh >>= 1; 3719 3720 vruntime -= thresh; 3721 } 3722 3723 /* ensure we never gain time by being placed backwards. */ 3724 se->vruntime = max_vruntime(se->vruntime, vruntime); 3725 } 3726 3727 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3728 3729 static inline void check_schedstat_required(void) 3730 { 3731 #ifdef CONFIG_SCHEDSTATS 3732 if (schedstat_enabled()) 3733 return; 3734 3735 /* Force schedstat enabled if a dependent tracepoint is active */ 3736 if (trace_sched_stat_wait_enabled() || 3737 trace_sched_stat_sleep_enabled() || 3738 trace_sched_stat_iowait_enabled() || 3739 trace_sched_stat_blocked_enabled() || 3740 trace_sched_stat_runtime_enabled()) { 3741 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3742 "stat_blocked and stat_runtime require the " 3743 "kernel parameter schedstats=enable or " 3744 "kernel.sched_schedstats=1\n"); 3745 } 3746 #endif 3747 } 3748 3749 3750 /* 3751 * MIGRATION 3752 * 3753 * dequeue 3754 * update_curr() 3755 * update_min_vruntime() 3756 * vruntime -= min_vruntime 3757 * 3758 * enqueue 3759 * update_curr() 3760 * update_min_vruntime() 3761 * vruntime += min_vruntime 3762 * 3763 * this way the vruntime transition between RQs is done when both 3764 * min_vruntime are up-to-date. 3765 * 3766 * WAKEUP (remote) 3767 * 3768 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3769 * vruntime -= min_vruntime 3770 * 3771 * enqueue 3772 * update_curr() 3773 * update_min_vruntime() 3774 * vruntime += min_vruntime 3775 * 3776 * this way we don't have the most up-to-date min_vruntime on the originating 3777 * CPU and an up-to-date min_vruntime on the destination CPU. 3778 */ 3779 3780 static void 3781 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3782 { 3783 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 3784 bool curr = cfs_rq->curr == se; 3785 3786 /* 3787 * If we're the current task, we must renormalise before calling 3788 * update_curr(). 3789 */ 3790 if (renorm && curr) 3791 se->vruntime += cfs_rq->min_vruntime; 3792 3793 update_curr(cfs_rq); 3794 3795 /* 3796 * Otherwise, renormalise after, such that we're placed at the current 3797 * moment in time, instead of some random moment in the past. Being 3798 * placed in the past could significantly boost this task to the 3799 * fairness detriment of existing tasks. 3800 */ 3801 if (renorm && !curr) 3802 se->vruntime += cfs_rq->min_vruntime; 3803 3804 /* 3805 * When enqueuing a sched_entity, we must: 3806 * - Update loads to have both entity and cfs_rq synced with now. 3807 * - Add its load to cfs_rq->runnable_avg 3808 * - For group_entity, update its weight to reflect the new share of 3809 * its group cfs_rq 3810 * - Add its new weight to cfs_rq->load.weight 3811 */ 3812 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 3813 update_cfs_group(se); 3814 enqueue_runnable_load_avg(cfs_rq, se); 3815 account_entity_enqueue(cfs_rq, se); 3816 3817 if (flags & ENQUEUE_WAKEUP) 3818 place_entity(cfs_rq, se, 0); 3819 3820 check_schedstat_required(); 3821 update_stats_enqueue(cfs_rq, se, flags); 3822 check_spread(cfs_rq, se); 3823 if (!curr) 3824 __enqueue_entity(cfs_rq, se); 3825 se->on_rq = 1; 3826 3827 if (cfs_rq->nr_running == 1) { 3828 list_add_leaf_cfs_rq(cfs_rq); 3829 check_enqueue_throttle(cfs_rq); 3830 } 3831 } 3832 3833 static void __clear_buddies_last(struct sched_entity *se) 3834 { 3835 for_each_sched_entity(se) { 3836 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3837 if (cfs_rq->last != se) 3838 break; 3839 3840 cfs_rq->last = NULL; 3841 } 3842 } 3843 3844 static void __clear_buddies_next(struct sched_entity *se) 3845 { 3846 for_each_sched_entity(se) { 3847 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3848 if (cfs_rq->next != se) 3849 break; 3850 3851 cfs_rq->next = NULL; 3852 } 3853 } 3854 3855 static void __clear_buddies_skip(struct sched_entity *se) 3856 { 3857 for_each_sched_entity(se) { 3858 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3859 if (cfs_rq->skip != se) 3860 break; 3861 3862 cfs_rq->skip = NULL; 3863 } 3864 } 3865 3866 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 3867 { 3868 if (cfs_rq->last == se) 3869 __clear_buddies_last(se); 3870 3871 if (cfs_rq->next == se) 3872 __clear_buddies_next(se); 3873 3874 if (cfs_rq->skip == se) 3875 __clear_buddies_skip(se); 3876 } 3877 3878 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3879 3880 static void 3881 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3882 { 3883 /* 3884 * Update run-time statistics of the 'current'. 3885 */ 3886 update_curr(cfs_rq); 3887 3888 /* 3889 * When dequeuing a sched_entity, we must: 3890 * - Update loads to have both entity and cfs_rq synced with now. 3891 * - Substract its load from the cfs_rq->runnable_avg. 3892 * - Substract its previous weight from cfs_rq->load.weight. 3893 * - For group entity, update its weight to reflect the new share 3894 * of its group cfs_rq. 3895 */ 3896 update_load_avg(cfs_rq, se, UPDATE_TG); 3897 dequeue_runnable_load_avg(cfs_rq, se); 3898 3899 update_stats_dequeue(cfs_rq, se, flags); 3900 3901 clear_buddies(cfs_rq, se); 3902 3903 if (se != cfs_rq->curr) 3904 __dequeue_entity(cfs_rq, se); 3905 se->on_rq = 0; 3906 account_entity_dequeue(cfs_rq, se); 3907 3908 /* 3909 * Normalize after update_curr(); which will also have moved 3910 * min_vruntime if @se is the one holding it back. But before doing 3911 * update_min_vruntime() again, which will discount @se's position and 3912 * can move min_vruntime forward still more. 3913 */ 3914 if (!(flags & DEQUEUE_SLEEP)) 3915 se->vruntime -= cfs_rq->min_vruntime; 3916 3917 /* return excess runtime on last dequeue */ 3918 return_cfs_rq_runtime(cfs_rq); 3919 3920 update_cfs_group(se); 3921 3922 /* 3923 * Now advance min_vruntime if @se was the entity holding it back, 3924 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 3925 * put back on, and if we advance min_vruntime, we'll be placed back 3926 * further than we started -- ie. we'll be penalized. 3927 */ 3928 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 3929 update_min_vruntime(cfs_rq); 3930 } 3931 3932 /* 3933 * Preempt the current task with a newly woken task if needed: 3934 */ 3935 static void 3936 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3937 { 3938 unsigned long ideal_runtime, delta_exec; 3939 struct sched_entity *se; 3940 s64 delta; 3941 3942 ideal_runtime = sched_slice(cfs_rq, curr); 3943 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 3944 if (delta_exec > ideal_runtime) { 3945 resched_curr(rq_of(cfs_rq)); 3946 /* 3947 * The current task ran long enough, ensure it doesn't get 3948 * re-elected due to buddy favours. 3949 */ 3950 clear_buddies(cfs_rq, curr); 3951 return; 3952 } 3953 3954 /* 3955 * Ensure that a task that missed wakeup preemption by a 3956 * narrow margin doesn't have to wait for a full slice. 3957 * This also mitigates buddy induced latencies under load. 3958 */ 3959 if (delta_exec < sysctl_sched_min_granularity) 3960 return; 3961 3962 se = __pick_first_entity(cfs_rq); 3963 delta = curr->vruntime - se->vruntime; 3964 3965 if (delta < 0) 3966 return; 3967 3968 if (delta > ideal_runtime) 3969 resched_curr(rq_of(cfs_rq)); 3970 } 3971 3972 static void 3973 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 3974 { 3975 /* 'current' is not kept within the tree. */ 3976 if (se->on_rq) { 3977 /* 3978 * Any task has to be enqueued before it get to execute on 3979 * a CPU. So account for the time it spent waiting on the 3980 * runqueue. 3981 */ 3982 update_stats_wait_end(cfs_rq, se); 3983 __dequeue_entity(cfs_rq, se); 3984 update_load_avg(cfs_rq, se, UPDATE_TG); 3985 } 3986 3987 update_stats_curr_start(cfs_rq, se); 3988 cfs_rq->curr = se; 3989 3990 /* 3991 * Track our maximum slice length, if the CPU's load is at 3992 * least twice that of our own weight (i.e. dont track it 3993 * when there are only lesser-weight tasks around): 3994 */ 3995 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 3996 schedstat_set(se->statistics.slice_max, 3997 max((u64)schedstat_val(se->statistics.slice_max), 3998 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 3999 } 4000 4001 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4002 } 4003 4004 static int 4005 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4006 4007 /* 4008 * Pick the next process, keeping these things in mind, in this order: 4009 * 1) keep things fair between processes/task groups 4010 * 2) pick the "next" process, since someone really wants that to run 4011 * 3) pick the "last" process, for cache locality 4012 * 4) do not run the "skip" process, if something else is available 4013 */ 4014 static struct sched_entity * 4015 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4016 { 4017 struct sched_entity *left = __pick_first_entity(cfs_rq); 4018 struct sched_entity *se; 4019 4020 /* 4021 * If curr is set we have to see if its left of the leftmost entity 4022 * still in the tree, provided there was anything in the tree at all. 4023 */ 4024 if (!left || (curr && entity_before(curr, left))) 4025 left = curr; 4026 4027 se = left; /* ideally we run the leftmost entity */ 4028 4029 /* 4030 * Avoid running the skip buddy, if running something else can 4031 * be done without getting too unfair. 4032 */ 4033 if (cfs_rq->skip == se) { 4034 struct sched_entity *second; 4035 4036 if (se == curr) { 4037 second = __pick_first_entity(cfs_rq); 4038 } else { 4039 second = __pick_next_entity(se); 4040 if (!second || (curr && entity_before(curr, second))) 4041 second = curr; 4042 } 4043 4044 if (second && wakeup_preempt_entity(second, left) < 1) 4045 se = second; 4046 } 4047 4048 /* 4049 * Prefer last buddy, try to return the CPU to a preempted task. 4050 */ 4051 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 4052 se = cfs_rq->last; 4053 4054 /* 4055 * Someone really wants this to run. If it's not unfair, run it. 4056 */ 4057 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 4058 se = cfs_rq->next; 4059 4060 clear_buddies(cfs_rq, se); 4061 4062 return se; 4063 } 4064 4065 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4066 4067 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4068 { 4069 /* 4070 * If still on the runqueue then deactivate_task() 4071 * was not called and update_curr() has to be done: 4072 */ 4073 if (prev->on_rq) 4074 update_curr(cfs_rq); 4075 4076 /* throttle cfs_rqs exceeding runtime */ 4077 check_cfs_rq_runtime(cfs_rq); 4078 4079 check_spread(cfs_rq, prev); 4080 4081 if (prev->on_rq) { 4082 update_stats_wait_start(cfs_rq, prev); 4083 /* Put 'current' back into the tree. */ 4084 __enqueue_entity(cfs_rq, prev); 4085 /* in !on_rq case, update occurred at dequeue */ 4086 update_load_avg(cfs_rq, prev, 0); 4087 } 4088 cfs_rq->curr = NULL; 4089 } 4090 4091 static void 4092 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4093 { 4094 /* 4095 * Update run-time statistics of the 'current'. 4096 */ 4097 update_curr(cfs_rq); 4098 4099 /* 4100 * Ensure that runnable average is periodically updated. 4101 */ 4102 update_load_avg(cfs_rq, curr, UPDATE_TG); 4103 update_cfs_group(curr); 4104 4105 #ifdef CONFIG_SCHED_HRTICK 4106 /* 4107 * queued ticks are scheduled to match the slice, so don't bother 4108 * validating it and just reschedule. 4109 */ 4110 if (queued) { 4111 resched_curr(rq_of(cfs_rq)); 4112 return; 4113 } 4114 /* 4115 * don't let the period tick interfere with the hrtick preemption 4116 */ 4117 if (!sched_feat(DOUBLE_TICK) && 4118 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4119 return; 4120 #endif 4121 4122 if (cfs_rq->nr_running > 1) 4123 check_preempt_tick(cfs_rq, curr); 4124 } 4125 4126 4127 /************************************************** 4128 * CFS bandwidth control machinery 4129 */ 4130 4131 #ifdef CONFIG_CFS_BANDWIDTH 4132 4133 #ifdef HAVE_JUMP_LABEL 4134 static struct static_key __cfs_bandwidth_used; 4135 4136 static inline bool cfs_bandwidth_used(void) 4137 { 4138 return static_key_false(&__cfs_bandwidth_used); 4139 } 4140 4141 void cfs_bandwidth_usage_inc(void) 4142 { 4143 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4144 } 4145 4146 void cfs_bandwidth_usage_dec(void) 4147 { 4148 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4149 } 4150 #else /* HAVE_JUMP_LABEL */ 4151 static bool cfs_bandwidth_used(void) 4152 { 4153 return true; 4154 } 4155 4156 void cfs_bandwidth_usage_inc(void) {} 4157 void cfs_bandwidth_usage_dec(void) {} 4158 #endif /* HAVE_JUMP_LABEL */ 4159 4160 /* 4161 * default period for cfs group bandwidth. 4162 * default: 0.1s, units: nanoseconds 4163 */ 4164 static inline u64 default_cfs_period(void) 4165 { 4166 return 100000000ULL; 4167 } 4168 4169 static inline u64 sched_cfs_bandwidth_slice(void) 4170 { 4171 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4172 } 4173 4174 /* 4175 * Replenish runtime according to assigned quota and update expiration time. 4176 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 4177 * additional synchronization around rq->lock. 4178 * 4179 * requires cfs_b->lock 4180 */ 4181 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4182 { 4183 u64 now; 4184 4185 if (cfs_b->quota == RUNTIME_INF) 4186 return; 4187 4188 now = sched_clock_cpu(smp_processor_id()); 4189 cfs_b->runtime = cfs_b->quota; 4190 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 4191 cfs_b->expires_seq++; 4192 } 4193 4194 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4195 { 4196 return &tg->cfs_bandwidth; 4197 } 4198 4199 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 4200 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4201 { 4202 if (unlikely(cfs_rq->throttle_count)) 4203 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; 4204 4205 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 4206 } 4207 4208 /* returns 0 on failure to allocate runtime */ 4209 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4210 { 4211 struct task_group *tg = cfs_rq->tg; 4212 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4213 u64 amount = 0, min_amount, expires; 4214 int expires_seq; 4215 4216 /* note: this is a positive sum as runtime_remaining <= 0 */ 4217 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4218 4219 raw_spin_lock(&cfs_b->lock); 4220 if (cfs_b->quota == RUNTIME_INF) 4221 amount = min_amount; 4222 else { 4223 start_cfs_bandwidth(cfs_b); 4224 4225 if (cfs_b->runtime > 0) { 4226 amount = min(cfs_b->runtime, min_amount); 4227 cfs_b->runtime -= amount; 4228 cfs_b->idle = 0; 4229 } 4230 } 4231 expires_seq = cfs_b->expires_seq; 4232 expires = cfs_b->runtime_expires; 4233 raw_spin_unlock(&cfs_b->lock); 4234 4235 cfs_rq->runtime_remaining += amount; 4236 /* 4237 * we may have advanced our local expiration to account for allowed 4238 * spread between our sched_clock and the one on which runtime was 4239 * issued. 4240 */ 4241 if (cfs_rq->expires_seq != expires_seq) { 4242 cfs_rq->expires_seq = expires_seq; 4243 cfs_rq->runtime_expires = expires; 4244 } 4245 4246 return cfs_rq->runtime_remaining > 0; 4247 } 4248 4249 /* 4250 * Note: This depends on the synchronization provided by sched_clock and the 4251 * fact that rq->clock snapshots this value. 4252 */ 4253 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4254 { 4255 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4256 4257 /* if the deadline is ahead of our clock, nothing to do */ 4258 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 4259 return; 4260 4261 if (cfs_rq->runtime_remaining < 0) 4262 return; 4263 4264 /* 4265 * If the local deadline has passed we have to consider the 4266 * possibility that our sched_clock is 'fast' and the global deadline 4267 * has not truly expired. 4268 * 4269 * Fortunately we can check determine whether this the case by checking 4270 * whether the global deadline(cfs_b->expires_seq) has advanced. 4271 */ 4272 if (cfs_rq->expires_seq == cfs_b->expires_seq) { 4273 /* extend local deadline, drift is bounded above by 2 ticks */ 4274 cfs_rq->runtime_expires += TICK_NSEC; 4275 } else { 4276 /* global deadline is ahead, expiration has passed */ 4277 cfs_rq->runtime_remaining = 0; 4278 } 4279 } 4280 4281 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4282 { 4283 /* dock delta_exec before expiring quota (as it could span periods) */ 4284 cfs_rq->runtime_remaining -= delta_exec; 4285 expire_cfs_rq_runtime(cfs_rq); 4286 4287 if (likely(cfs_rq->runtime_remaining > 0)) 4288 return; 4289 4290 /* 4291 * if we're unable to extend our runtime we resched so that the active 4292 * hierarchy can be throttled 4293 */ 4294 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4295 resched_curr(rq_of(cfs_rq)); 4296 } 4297 4298 static __always_inline 4299 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4300 { 4301 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4302 return; 4303 4304 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4305 } 4306 4307 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4308 { 4309 return cfs_bandwidth_used() && cfs_rq->throttled; 4310 } 4311 4312 /* check whether cfs_rq, or any parent, is throttled */ 4313 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4314 { 4315 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4316 } 4317 4318 /* 4319 * Ensure that neither of the group entities corresponding to src_cpu or 4320 * dest_cpu are members of a throttled hierarchy when performing group 4321 * load-balance operations. 4322 */ 4323 static inline int throttled_lb_pair(struct task_group *tg, 4324 int src_cpu, int dest_cpu) 4325 { 4326 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4327 4328 src_cfs_rq = tg->cfs_rq[src_cpu]; 4329 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4330 4331 return throttled_hierarchy(src_cfs_rq) || 4332 throttled_hierarchy(dest_cfs_rq); 4333 } 4334 4335 static int tg_unthrottle_up(struct task_group *tg, void *data) 4336 { 4337 struct rq *rq = data; 4338 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4339 4340 cfs_rq->throttle_count--; 4341 if (!cfs_rq->throttle_count) { 4342 /* adjust cfs_rq_clock_task() */ 4343 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4344 cfs_rq->throttled_clock_task; 4345 } 4346 4347 return 0; 4348 } 4349 4350 static int tg_throttle_down(struct task_group *tg, void *data) 4351 { 4352 struct rq *rq = data; 4353 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4354 4355 /* group is entering throttled state, stop time */ 4356 if (!cfs_rq->throttle_count) 4357 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4358 cfs_rq->throttle_count++; 4359 4360 return 0; 4361 } 4362 4363 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4364 { 4365 struct rq *rq = rq_of(cfs_rq); 4366 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4367 struct sched_entity *se; 4368 long task_delta, dequeue = 1; 4369 bool empty; 4370 4371 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4372 4373 /* freeze hierarchy runnable averages while throttled */ 4374 rcu_read_lock(); 4375 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4376 rcu_read_unlock(); 4377 4378 task_delta = cfs_rq->h_nr_running; 4379 for_each_sched_entity(se) { 4380 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4381 /* throttled entity or throttle-on-deactivate */ 4382 if (!se->on_rq) 4383 break; 4384 4385 if (dequeue) 4386 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4387 qcfs_rq->h_nr_running -= task_delta; 4388 4389 if (qcfs_rq->load.weight) 4390 dequeue = 0; 4391 } 4392 4393 if (!se) 4394 sub_nr_running(rq, task_delta); 4395 4396 cfs_rq->throttled = 1; 4397 cfs_rq->throttled_clock = rq_clock(rq); 4398 raw_spin_lock(&cfs_b->lock); 4399 empty = list_empty(&cfs_b->throttled_cfs_rq); 4400 4401 /* 4402 * Add to the _head_ of the list, so that an already-started 4403 * distribute_cfs_runtime will not see us 4404 */ 4405 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4406 4407 /* 4408 * If we're the first throttled task, make sure the bandwidth 4409 * timer is running. 4410 */ 4411 if (empty) 4412 start_cfs_bandwidth(cfs_b); 4413 4414 raw_spin_unlock(&cfs_b->lock); 4415 } 4416 4417 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4418 { 4419 struct rq *rq = rq_of(cfs_rq); 4420 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4421 struct sched_entity *se; 4422 int enqueue = 1; 4423 long task_delta; 4424 4425 se = cfs_rq->tg->se[cpu_of(rq)]; 4426 4427 cfs_rq->throttled = 0; 4428 4429 update_rq_clock(rq); 4430 4431 raw_spin_lock(&cfs_b->lock); 4432 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4433 list_del_rcu(&cfs_rq->throttled_list); 4434 raw_spin_unlock(&cfs_b->lock); 4435 4436 /* update hierarchical throttle state */ 4437 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4438 4439 if (!cfs_rq->load.weight) 4440 return; 4441 4442 task_delta = cfs_rq->h_nr_running; 4443 for_each_sched_entity(se) { 4444 if (se->on_rq) 4445 enqueue = 0; 4446 4447 cfs_rq = cfs_rq_of(se); 4448 if (enqueue) 4449 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4450 cfs_rq->h_nr_running += task_delta; 4451 4452 if (cfs_rq_throttled(cfs_rq)) 4453 break; 4454 } 4455 4456 if (!se) 4457 add_nr_running(rq, task_delta); 4458 4459 /* Determine whether we need to wake up potentially idle CPU: */ 4460 if (rq->curr == rq->idle && rq->cfs.nr_running) 4461 resched_curr(rq); 4462 } 4463 4464 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 4465 u64 remaining, u64 expires) 4466 { 4467 struct cfs_rq *cfs_rq; 4468 u64 runtime; 4469 u64 starting_runtime = remaining; 4470 4471 rcu_read_lock(); 4472 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4473 throttled_list) { 4474 struct rq *rq = rq_of(cfs_rq); 4475 struct rq_flags rf; 4476 4477 rq_lock(rq, &rf); 4478 if (!cfs_rq_throttled(cfs_rq)) 4479 goto next; 4480 4481 runtime = -cfs_rq->runtime_remaining + 1; 4482 if (runtime > remaining) 4483 runtime = remaining; 4484 remaining -= runtime; 4485 4486 cfs_rq->runtime_remaining += runtime; 4487 cfs_rq->runtime_expires = expires; 4488 4489 /* we check whether we're throttled above */ 4490 if (cfs_rq->runtime_remaining > 0) 4491 unthrottle_cfs_rq(cfs_rq); 4492 4493 next: 4494 rq_unlock(rq, &rf); 4495 4496 if (!remaining) 4497 break; 4498 } 4499 rcu_read_unlock(); 4500 4501 return starting_runtime - remaining; 4502 } 4503 4504 /* 4505 * Responsible for refilling a task_group's bandwidth and unthrottling its 4506 * cfs_rqs as appropriate. If there has been no activity within the last 4507 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4508 * used to track this state. 4509 */ 4510 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 4511 { 4512 u64 runtime, runtime_expires; 4513 int throttled; 4514 4515 /* no need to continue the timer with no bandwidth constraint */ 4516 if (cfs_b->quota == RUNTIME_INF) 4517 goto out_deactivate; 4518 4519 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4520 cfs_b->nr_periods += overrun; 4521 4522 /* 4523 * idle depends on !throttled (for the case of a large deficit), and if 4524 * we're going inactive then everything else can be deferred 4525 */ 4526 if (cfs_b->idle && !throttled) 4527 goto out_deactivate; 4528 4529 __refill_cfs_bandwidth_runtime(cfs_b); 4530 4531 if (!throttled) { 4532 /* mark as potentially idle for the upcoming period */ 4533 cfs_b->idle = 1; 4534 return 0; 4535 } 4536 4537 /* account preceding periods in which throttling occurred */ 4538 cfs_b->nr_throttled += overrun; 4539 4540 runtime_expires = cfs_b->runtime_expires; 4541 4542 /* 4543 * This check is repeated as we are holding onto the new bandwidth while 4544 * we unthrottle. This can potentially race with an unthrottled group 4545 * trying to acquire new bandwidth from the global pool. This can result 4546 * in us over-using our runtime if it is all used during this loop, but 4547 * only by limited amounts in that extreme case. 4548 */ 4549 while (throttled && cfs_b->runtime > 0) { 4550 runtime = cfs_b->runtime; 4551 raw_spin_unlock(&cfs_b->lock); 4552 /* we can't nest cfs_b->lock while distributing bandwidth */ 4553 runtime = distribute_cfs_runtime(cfs_b, runtime, 4554 runtime_expires); 4555 raw_spin_lock(&cfs_b->lock); 4556 4557 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4558 4559 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4560 } 4561 4562 /* 4563 * While we are ensured activity in the period following an 4564 * unthrottle, this also covers the case in which the new bandwidth is 4565 * insufficient to cover the existing bandwidth deficit. (Forcing the 4566 * timer to remain active while there are any throttled entities.) 4567 */ 4568 cfs_b->idle = 0; 4569 4570 return 0; 4571 4572 out_deactivate: 4573 return 1; 4574 } 4575 4576 /* a cfs_rq won't donate quota below this amount */ 4577 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4578 /* minimum remaining period time to redistribute slack quota */ 4579 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4580 /* how long we wait to gather additional slack before distributing */ 4581 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4582 4583 /* 4584 * Are we near the end of the current quota period? 4585 * 4586 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4587 * hrtimer base being cleared by hrtimer_start. In the case of 4588 * migrate_hrtimers, base is never cleared, so we are fine. 4589 */ 4590 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4591 { 4592 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4593 u64 remaining; 4594 4595 /* if the call-back is running a quota refresh is already occurring */ 4596 if (hrtimer_callback_running(refresh_timer)) 4597 return 1; 4598 4599 /* is a quota refresh about to occur? */ 4600 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4601 if (remaining < min_expire) 4602 return 1; 4603 4604 return 0; 4605 } 4606 4607 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4608 { 4609 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4610 4611 /* if there's a quota refresh soon don't bother with slack */ 4612 if (runtime_refresh_within(cfs_b, min_left)) 4613 return; 4614 4615 hrtimer_start(&cfs_b->slack_timer, 4616 ns_to_ktime(cfs_bandwidth_slack_period), 4617 HRTIMER_MODE_REL); 4618 } 4619 4620 /* we know any runtime found here is valid as update_curr() precedes return */ 4621 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4622 { 4623 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4624 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4625 4626 if (slack_runtime <= 0) 4627 return; 4628 4629 raw_spin_lock(&cfs_b->lock); 4630 if (cfs_b->quota != RUNTIME_INF && 4631 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 4632 cfs_b->runtime += slack_runtime; 4633 4634 /* we are under rq->lock, defer unthrottling using a timer */ 4635 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4636 !list_empty(&cfs_b->throttled_cfs_rq)) 4637 start_cfs_slack_bandwidth(cfs_b); 4638 } 4639 raw_spin_unlock(&cfs_b->lock); 4640 4641 /* even if it's not valid for return we don't want to try again */ 4642 cfs_rq->runtime_remaining -= slack_runtime; 4643 } 4644 4645 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4646 { 4647 if (!cfs_bandwidth_used()) 4648 return; 4649 4650 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4651 return; 4652 4653 __return_cfs_rq_runtime(cfs_rq); 4654 } 4655 4656 /* 4657 * This is done with a timer (instead of inline with bandwidth return) since 4658 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4659 */ 4660 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4661 { 4662 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4663 u64 expires; 4664 4665 /* confirm we're still not at a refresh boundary */ 4666 raw_spin_lock(&cfs_b->lock); 4667 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4668 raw_spin_unlock(&cfs_b->lock); 4669 return; 4670 } 4671 4672 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4673 runtime = cfs_b->runtime; 4674 4675 expires = cfs_b->runtime_expires; 4676 raw_spin_unlock(&cfs_b->lock); 4677 4678 if (!runtime) 4679 return; 4680 4681 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 4682 4683 raw_spin_lock(&cfs_b->lock); 4684 if (expires == cfs_b->runtime_expires) 4685 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4686 raw_spin_unlock(&cfs_b->lock); 4687 } 4688 4689 /* 4690 * When a group wakes up we want to make sure that its quota is not already 4691 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4692 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4693 */ 4694 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4695 { 4696 if (!cfs_bandwidth_used()) 4697 return; 4698 4699 /* an active group must be handled by the update_curr()->put() path */ 4700 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4701 return; 4702 4703 /* ensure the group is not already throttled */ 4704 if (cfs_rq_throttled(cfs_rq)) 4705 return; 4706 4707 /* update runtime allocation */ 4708 account_cfs_rq_runtime(cfs_rq, 0); 4709 if (cfs_rq->runtime_remaining <= 0) 4710 throttle_cfs_rq(cfs_rq); 4711 } 4712 4713 static void sync_throttle(struct task_group *tg, int cpu) 4714 { 4715 struct cfs_rq *pcfs_rq, *cfs_rq; 4716 4717 if (!cfs_bandwidth_used()) 4718 return; 4719 4720 if (!tg->parent) 4721 return; 4722 4723 cfs_rq = tg->cfs_rq[cpu]; 4724 pcfs_rq = tg->parent->cfs_rq[cpu]; 4725 4726 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4727 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 4728 } 4729 4730 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4731 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4732 { 4733 if (!cfs_bandwidth_used()) 4734 return false; 4735 4736 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4737 return false; 4738 4739 /* 4740 * it's possible for a throttled entity to be forced into a running 4741 * state (e.g. set_curr_task), in this case we're finished. 4742 */ 4743 if (cfs_rq_throttled(cfs_rq)) 4744 return true; 4745 4746 throttle_cfs_rq(cfs_rq); 4747 return true; 4748 } 4749 4750 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4751 { 4752 struct cfs_bandwidth *cfs_b = 4753 container_of(timer, struct cfs_bandwidth, slack_timer); 4754 4755 do_sched_cfs_slack_timer(cfs_b); 4756 4757 return HRTIMER_NORESTART; 4758 } 4759 4760 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4761 { 4762 struct cfs_bandwidth *cfs_b = 4763 container_of(timer, struct cfs_bandwidth, period_timer); 4764 int overrun; 4765 int idle = 0; 4766 4767 raw_spin_lock(&cfs_b->lock); 4768 for (;;) { 4769 overrun = hrtimer_forward_now(timer, cfs_b->period); 4770 if (!overrun) 4771 break; 4772 4773 idle = do_sched_cfs_period_timer(cfs_b, overrun); 4774 } 4775 if (idle) 4776 cfs_b->period_active = 0; 4777 raw_spin_unlock(&cfs_b->lock); 4778 4779 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 4780 } 4781 4782 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4783 { 4784 raw_spin_lock_init(&cfs_b->lock); 4785 cfs_b->runtime = 0; 4786 cfs_b->quota = RUNTIME_INF; 4787 cfs_b->period = ns_to_ktime(default_cfs_period()); 4788 4789 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 4790 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 4791 cfs_b->period_timer.function = sched_cfs_period_timer; 4792 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 4793 cfs_b->slack_timer.function = sched_cfs_slack_timer; 4794 } 4795 4796 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4797 { 4798 cfs_rq->runtime_enabled = 0; 4799 INIT_LIST_HEAD(&cfs_rq->throttled_list); 4800 } 4801 4802 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4803 { 4804 u64 overrun; 4805 4806 lockdep_assert_held(&cfs_b->lock); 4807 4808 if (cfs_b->period_active) 4809 return; 4810 4811 cfs_b->period_active = 1; 4812 overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 4813 cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period); 4814 cfs_b->expires_seq++; 4815 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 4816 } 4817 4818 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4819 { 4820 /* init_cfs_bandwidth() was not called */ 4821 if (!cfs_b->throttled_cfs_rq.next) 4822 return; 4823 4824 hrtimer_cancel(&cfs_b->period_timer); 4825 hrtimer_cancel(&cfs_b->slack_timer); 4826 } 4827 4828 /* 4829 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 4830 * 4831 * The race is harmless, since modifying bandwidth settings of unhooked group 4832 * bits doesn't do much. 4833 */ 4834 4835 /* cpu online calback */ 4836 static void __maybe_unused update_runtime_enabled(struct rq *rq) 4837 { 4838 struct task_group *tg; 4839 4840 lockdep_assert_held(&rq->lock); 4841 4842 rcu_read_lock(); 4843 list_for_each_entry_rcu(tg, &task_groups, list) { 4844 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 4845 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4846 4847 raw_spin_lock(&cfs_b->lock); 4848 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 4849 raw_spin_unlock(&cfs_b->lock); 4850 } 4851 rcu_read_unlock(); 4852 } 4853 4854 /* cpu offline callback */ 4855 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 4856 { 4857 struct task_group *tg; 4858 4859 lockdep_assert_held(&rq->lock); 4860 4861 rcu_read_lock(); 4862 list_for_each_entry_rcu(tg, &task_groups, list) { 4863 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4864 4865 if (!cfs_rq->runtime_enabled) 4866 continue; 4867 4868 /* 4869 * clock_task is not advancing so we just need to make sure 4870 * there's some valid quota amount 4871 */ 4872 cfs_rq->runtime_remaining = 1; 4873 /* 4874 * Offline rq is schedulable till CPU is completely disabled 4875 * in take_cpu_down(), so we prevent new cfs throttling here. 4876 */ 4877 cfs_rq->runtime_enabled = 0; 4878 4879 if (cfs_rq_throttled(cfs_rq)) 4880 unthrottle_cfs_rq(cfs_rq); 4881 } 4882 rcu_read_unlock(); 4883 } 4884 4885 #else /* CONFIG_CFS_BANDWIDTH */ 4886 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4887 { 4888 return rq_clock_task(rq_of(cfs_rq)); 4889 } 4890 4891 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 4892 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 4893 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 4894 static inline void sync_throttle(struct task_group *tg, int cpu) {} 4895 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4896 4897 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4898 { 4899 return 0; 4900 } 4901 4902 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4903 { 4904 return 0; 4905 } 4906 4907 static inline int throttled_lb_pair(struct task_group *tg, 4908 int src_cpu, int dest_cpu) 4909 { 4910 return 0; 4911 } 4912 4913 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4914 4915 #ifdef CONFIG_FAIR_GROUP_SCHED 4916 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4917 #endif 4918 4919 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4920 { 4921 return NULL; 4922 } 4923 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4924 static inline void update_runtime_enabled(struct rq *rq) {} 4925 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 4926 4927 #endif /* CONFIG_CFS_BANDWIDTH */ 4928 4929 /************************************************** 4930 * CFS operations on tasks: 4931 */ 4932 4933 #ifdef CONFIG_SCHED_HRTICK 4934 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 4935 { 4936 struct sched_entity *se = &p->se; 4937 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4938 4939 SCHED_WARN_ON(task_rq(p) != rq); 4940 4941 if (rq->cfs.h_nr_running > 1) { 4942 u64 slice = sched_slice(cfs_rq, se); 4943 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 4944 s64 delta = slice - ran; 4945 4946 if (delta < 0) { 4947 if (rq->curr == p) 4948 resched_curr(rq); 4949 return; 4950 } 4951 hrtick_start(rq, delta); 4952 } 4953 } 4954 4955 /* 4956 * called from enqueue/dequeue and updates the hrtick when the 4957 * current task is from our class and nr_running is low enough 4958 * to matter. 4959 */ 4960 static void hrtick_update(struct rq *rq) 4961 { 4962 struct task_struct *curr = rq->curr; 4963 4964 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 4965 return; 4966 4967 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 4968 hrtick_start_fair(rq, curr); 4969 } 4970 #else /* !CONFIG_SCHED_HRTICK */ 4971 static inline void 4972 hrtick_start_fair(struct rq *rq, struct task_struct *p) 4973 { 4974 } 4975 4976 static inline void hrtick_update(struct rq *rq) 4977 { 4978 } 4979 #endif 4980 4981 /* 4982 * The enqueue_task method is called before nr_running is 4983 * increased. Here we update the fair scheduling stats and 4984 * then put the task into the rbtree: 4985 */ 4986 static void 4987 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4988 { 4989 struct cfs_rq *cfs_rq; 4990 struct sched_entity *se = &p->se; 4991 4992 /* 4993 * The code below (indirectly) updates schedutil which looks at 4994 * the cfs_rq utilization to select a frequency. 4995 * Let's add the task's estimated utilization to the cfs_rq's 4996 * estimated utilization, before we update schedutil. 4997 */ 4998 util_est_enqueue(&rq->cfs, p); 4999 5000 /* 5001 * If in_iowait is set, the code below may not trigger any cpufreq 5002 * utilization updates, so do it here explicitly with the IOWAIT flag 5003 * passed. 5004 */ 5005 if (p->in_iowait) 5006 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5007 5008 for_each_sched_entity(se) { 5009 if (se->on_rq) 5010 break; 5011 cfs_rq = cfs_rq_of(se); 5012 enqueue_entity(cfs_rq, se, flags); 5013 5014 /* 5015 * end evaluation on encountering a throttled cfs_rq 5016 * 5017 * note: in the case of encountering a throttled cfs_rq we will 5018 * post the final h_nr_running increment below. 5019 */ 5020 if (cfs_rq_throttled(cfs_rq)) 5021 break; 5022 cfs_rq->h_nr_running++; 5023 5024 flags = ENQUEUE_WAKEUP; 5025 } 5026 5027 for_each_sched_entity(se) { 5028 cfs_rq = cfs_rq_of(se); 5029 cfs_rq->h_nr_running++; 5030 5031 if (cfs_rq_throttled(cfs_rq)) 5032 break; 5033 5034 update_load_avg(cfs_rq, se, UPDATE_TG); 5035 update_cfs_group(se); 5036 } 5037 5038 if (!se) 5039 add_nr_running(rq, 1); 5040 5041 hrtick_update(rq); 5042 } 5043 5044 static void set_next_buddy(struct sched_entity *se); 5045 5046 /* 5047 * The dequeue_task method is called before nr_running is 5048 * decreased. We remove the task from the rbtree and 5049 * update the fair scheduling stats: 5050 */ 5051 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5052 { 5053 struct cfs_rq *cfs_rq; 5054 struct sched_entity *se = &p->se; 5055 int task_sleep = flags & DEQUEUE_SLEEP; 5056 5057 for_each_sched_entity(se) { 5058 cfs_rq = cfs_rq_of(se); 5059 dequeue_entity(cfs_rq, se, flags); 5060 5061 /* 5062 * end evaluation on encountering a throttled cfs_rq 5063 * 5064 * note: in the case of encountering a throttled cfs_rq we will 5065 * post the final h_nr_running decrement below. 5066 */ 5067 if (cfs_rq_throttled(cfs_rq)) 5068 break; 5069 cfs_rq->h_nr_running--; 5070 5071 /* Don't dequeue parent if it has other entities besides us */ 5072 if (cfs_rq->load.weight) { 5073 /* Avoid re-evaluating load for this entity: */ 5074 se = parent_entity(se); 5075 /* 5076 * Bias pick_next to pick a task from this cfs_rq, as 5077 * p is sleeping when it is within its sched_slice. 5078 */ 5079 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5080 set_next_buddy(se); 5081 break; 5082 } 5083 flags |= DEQUEUE_SLEEP; 5084 } 5085 5086 for_each_sched_entity(se) { 5087 cfs_rq = cfs_rq_of(se); 5088 cfs_rq->h_nr_running--; 5089 5090 if (cfs_rq_throttled(cfs_rq)) 5091 break; 5092 5093 update_load_avg(cfs_rq, se, UPDATE_TG); 5094 update_cfs_group(se); 5095 } 5096 5097 if (!se) 5098 sub_nr_running(rq, 1); 5099 5100 util_est_dequeue(&rq->cfs, p, task_sleep); 5101 hrtick_update(rq); 5102 } 5103 5104 #ifdef CONFIG_SMP 5105 5106 /* Working cpumask for: load_balance, load_balance_newidle. */ 5107 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5108 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5109 5110 #ifdef CONFIG_NO_HZ_COMMON 5111 /* 5112 * per rq 'load' arrray crap; XXX kill this. 5113 */ 5114 5115 /* 5116 * The exact cpuload calculated at every tick would be: 5117 * 5118 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load 5119 * 5120 * If a CPU misses updates for n ticks (as it was idle) and update gets 5121 * called on the n+1-th tick when CPU may be busy, then we have: 5122 * 5123 * load_n = (1 - 1/2^i)^n * load_0 5124 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load 5125 * 5126 * decay_load_missed() below does efficient calculation of 5127 * 5128 * load' = (1 - 1/2^i)^n * load 5129 * 5130 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. 5131 * This allows us to precompute the above in said factors, thereby allowing the 5132 * reduction of an arbitrary n in O(log_2 n) steps. (See also 5133 * fixed_power_int()) 5134 * 5135 * The calculation is approximated on a 128 point scale. 5136 */ 5137 #define DEGRADE_SHIFT 7 5138 5139 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 5140 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 5141 { 0, 0, 0, 0, 0, 0, 0, 0 }, 5142 { 64, 32, 8, 0, 0, 0, 0, 0 }, 5143 { 96, 72, 40, 12, 1, 0, 0, 0 }, 5144 { 112, 98, 75, 43, 15, 1, 0, 0 }, 5145 { 120, 112, 98, 76, 45, 16, 2, 0 } 5146 }; 5147 5148 /* 5149 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 5150 * would be when CPU is idle and so we just decay the old load without 5151 * adding any new load. 5152 */ 5153 static unsigned long 5154 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 5155 { 5156 int j = 0; 5157 5158 if (!missed_updates) 5159 return load; 5160 5161 if (missed_updates >= degrade_zero_ticks[idx]) 5162 return 0; 5163 5164 if (idx == 1) 5165 return load >> missed_updates; 5166 5167 while (missed_updates) { 5168 if (missed_updates % 2) 5169 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 5170 5171 missed_updates >>= 1; 5172 j++; 5173 } 5174 return load; 5175 } 5176 5177 static struct { 5178 cpumask_var_t idle_cpus_mask; 5179 atomic_t nr_cpus; 5180 int has_blocked; /* Idle CPUS has blocked load */ 5181 unsigned long next_balance; /* in jiffy units */ 5182 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5183 } nohz ____cacheline_aligned; 5184 5185 #endif /* CONFIG_NO_HZ_COMMON */ 5186 5187 /** 5188 * __cpu_load_update - update the rq->cpu_load[] statistics 5189 * @this_rq: The rq to update statistics for 5190 * @this_load: The current load 5191 * @pending_updates: The number of missed updates 5192 * 5193 * Update rq->cpu_load[] statistics. This function is usually called every 5194 * scheduler tick (TICK_NSEC). 5195 * 5196 * This function computes a decaying average: 5197 * 5198 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load 5199 * 5200 * Because of NOHZ it might not get called on every tick which gives need for 5201 * the @pending_updates argument. 5202 * 5203 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 5204 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load 5205 * = A * (A * load[i]_n-2 + B) + B 5206 * = A * (A * (A * load[i]_n-3 + B) + B) + B 5207 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B 5208 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B 5209 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B 5210 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load 5211 * 5212 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as 5213 * any change in load would have resulted in the tick being turned back on. 5214 * 5215 * For regular NOHZ, this reduces to: 5216 * 5217 * load[i]_n = (1 - 1/2^i)^n * load[i]_0 5218 * 5219 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra 5220 * term. 5221 */ 5222 static void cpu_load_update(struct rq *this_rq, unsigned long this_load, 5223 unsigned long pending_updates) 5224 { 5225 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; 5226 int i, scale; 5227 5228 this_rq->nr_load_updates++; 5229 5230 /* Update our load: */ 5231 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 5232 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 5233 unsigned long old_load, new_load; 5234 5235 /* scale is effectively 1 << i now, and >> i divides by scale */ 5236 5237 old_load = this_rq->cpu_load[i]; 5238 #ifdef CONFIG_NO_HZ_COMMON 5239 old_load = decay_load_missed(old_load, pending_updates - 1, i); 5240 if (tickless_load) { 5241 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); 5242 /* 5243 * old_load can never be a negative value because a 5244 * decayed tickless_load cannot be greater than the 5245 * original tickless_load. 5246 */ 5247 old_load += tickless_load; 5248 } 5249 #endif 5250 new_load = this_load; 5251 /* 5252 * Round up the averaging division if load is increasing. This 5253 * prevents us from getting stuck on 9 if the load is 10, for 5254 * example. 5255 */ 5256 if (new_load > old_load) 5257 new_load += scale - 1; 5258 5259 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 5260 } 5261 } 5262 5263 /* Used instead of source_load when we know the type == 0 */ 5264 static unsigned long weighted_cpuload(struct rq *rq) 5265 { 5266 return cfs_rq_runnable_load_avg(&rq->cfs); 5267 } 5268 5269 #ifdef CONFIG_NO_HZ_COMMON 5270 /* 5271 * There is no sane way to deal with nohz on smp when using jiffies because the 5272 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading 5273 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 5274 * 5275 * Therefore we need to avoid the delta approach from the regular tick when 5276 * possible since that would seriously skew the load calculation. This is why we 5277 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on 5278 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle 5279 * loop exit, nohz_idle_balance, nohz full exit...) 5280 * 5281 * This means we might still be one tick off for nohz periods. 5282 */ 5283 5284 static void cpu_load_update_nohz(struct rq *this_rq, 5285 unsigned long curr_jiffies, 5286 unsigned long load) 5287 { 5288 unsigned long pending_updates; 5289 5290 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 5291 if (pending_updates) { 5292 this_rq->last_load_update_tick = curr_jiffies; 5293 /* 5294 * In the regular NOHZ case, we were idle, this means load 0. 5295 * In the NOHZ_FULL case, we were non-idle, we should consider 5296 * its weighted load. 5297 */ 5298 cpu_load_update(this_rq, load, pending_updates); 5299 } 5300 } 5301 5302 /* 5303 * Called from nohz_idle_balance() to update the load ratings before doing the 5304 * idle balance. 5305 */ 5306 static void cpu_load_update_idle(struct rq *this_rq) 5307 { 5308 /* 5309 * bail if there's load or we're actually up-to-date. 5310 */ 5311 if (weighted_cpuload(this_rq)) 5312 return; 5313 5314 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); 5315 } 5316 5317 /* 5318 * Record CPU load on nohz entry so we know the tickless load to account 5319 * on nohz exit. cpu_load[0] happens then to be updated more frequently 5320 * than other cpu_load[idx] but it should be fine as cpu_load readers 5321 * shouldn't rely into synchronized cpu_load[*] updates. 5322 */ 5323 void cpu_load_update_nohz_start(void) 5324 { 5325 struct rq *this_rq = this_rq(); 5326 5327 /* 5328 * This is all lockless but should be fine. If weighted_cpuload changes 5329 * concurrently we'll exit nohz. And cpu_load write can race with 5330 * cpu_load_update_idle() but both updater would be writing the same. 5331 */ 5332 this_rq->cpu_load[0] = weighted_cpuload(this_rq); 5333 } 5334 5335 /* 5336 * Account the tickless load in the end of a nohz frame. 5337 */ 5338 void cpu_load_update_nohz_stop(void) 5339 { 5340 unsigned long curr_jiffies = READ_ONCE(jiffies); 5341 struct rq *this_rq = this_rq(); 5342 unsigned long load; 5343 struct rq_flags rf; 5344 5345 if (curr_jiffies == this_rq->last_load_update_tick) 5346 return; 5347 5348 load = weighted_cpuload(this_rq); 5349 rq_lock(this_rq, &rf); 5350 update_rq_clock(this_rq); 5351 cpu_load_update_nohz(this_rq, curr_jiffies, load); 5352 rq_unlock(this_rq, &rf); 5353 } 5354 #else /* !CONFIG_NO_HZ_COMMON */ 5355 static inline void cpu_load_update_nohz(struct rq *this_rq, 5356 unsigned long curr_jiffies, 5357 unsigned long load) { } 5358 #endif /* CONFIG_NO_HZ_COMMON */ 5359 5360 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) 5361 { 5362 #ifdef CONFIG_NO_HZ_COMMON 5363 /* See the mess around cpu_load_update_nohz(). */ 5364 this_rq->last_load_update_tick = READ_ONCE(jiffies); 5365 #endif 5366 cpu_load_update(this_rq, load, 1); 5367 } 5368 5369 /* 5370 * Called from scheduler_tick() 5371 */ 5372 void cpu_load_update_active(struct rq *this_rq) 5373 { 5374 unsigned long load = weighted_cpuload(this_rq); 5375 5376 if (tick_nohz_tick_stopped()) 5377 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); 5378 else 5379 cpu_load_update_periodic(this_rq, load); 5380 } 5381 5382 /* 5383 * Return a low guess at the load of a migration-source CPU weighted 5384 * according to the scheduling class and "nice" value. 5385 * 5386 * We want to under-estimate the load of migration sources, to 5387 * balance conservatively. 5388 */ 5389 static unsigned long source_load(int cpu, int type) 5390 { 5391 struct rq *rq = cpu_rq(cpu); 5392 unsigned long total = weighted_cpuload(rq); 5393 5394 if (type == 0 || !sched_feat(LB_BIAS)) 5395 return total; 5396 5397 return min(rq->cpu_load[type-1], total); 5398 } 5399 5400 /* 5401 * Return a high guess at the load of a migration-target CPU weighted 5402 * according to the scheduling class and "nice" value. 5403 */ 5404 static unsigned long target_load(int cpu, int type) 5405 { 5406 struct rq *rq = cpu_rq(cpu); 5407 unsigned long total = weighted_cpuload(rq); 5408 5409 if (type == 0 || !sched_feat(LB_BIAS)) 5410 return total; 5411 5412 return max(rq->cpu_load[type-1], total); 5413 } 5414 5415 static unsigned long capacity_of(int cpu) 5416 { 5417 return cpu_rq(cpu)->cpu_capacity; 5418 } 5419 5420 static unsigned long capacity_orig_of(int cpu) 5421 { 5422 return cpu_rq(cpu)->cpu_capacity_orig; 5423 } 5424 5425 static unsigned long cpu_avg_load_per_task(int cpu) 5426 { 5427 struct rq *rq = cpu_rq(cpu); 5428 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 5429 unsigned long load_avg = weighted_cpuload(rq); 5430 5431 if (nr_running) 5432 return load_avg / nr_running; 5433 5434 return 0; 5435 } 5436 5437 static void record_wakee(struct task_struct *p) 5438 { 5439 /* 5440 * Only decay a single time; tasks that have less then 1 wakeup per 5441 * jiffy will not have built up many flips. 5442 */ 5443 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5444 current->wakee_flips >>= 1; 5445 current->wakee_flip_decay_ts = jiffies; 5446 } 5447 5448 if (current->last_wakee != p) { 5449 current->last_wakee = p; 5450 current->wakee_flips++; 5451 } 5452 } 5453 5454 /* 5455 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5456 * 5457 * A waker of many should wake a different task than the one last awakened 5458 * at a frequency roughly N times higher than one of its wakees. 5459 * 5460 * In order to determine whether we should let the load spread vs consolidating 5461 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5462 * partner, and a factor of lls_size higher frequency in the other. 5463 * 5464 * With both conditions met, we can be relatively sure that the relationship is 5465 * non-monogamous, with partner count exceeding socket size. 5466 * 5467 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5468 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5469 * socket size. 5470 */ 5471 static int wake_wide(struct task_struct *p) 5472 { 5473 unsigned int master = current->wakee_flips; 5474 unsigned int slave = p->wakee_flips; 5475 int factor = this_cpu_read(sd_llc_size); 5476 5477 if (master < slave) 5478 swap(master, slave); 5479 if (slave < factor || master < slave * factor) 5480 return 0; 5481 return 1; 5482 } 5483 5484 /* 5485 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5486 * soonest. For the purpose of speed we only consider the waking and previous 5487 * CPU. 5488 * 5489 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5490 * cache-affine and is (or will be) idle. 5491 * 5492 * wake_affine_weight() - considers the weight to reflect the average 5493 * scheduling latency of the CPUs. This seems to work 5494 * for the overloaded case. 5495 */ 5496 static int 5497 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5498 { 5499 /* 5500 * If this_cpu is idle, it implies the wakeup is from interrupt 5501 * context. Only allow the move if cache is shared. Otherwise an 5502 * interrupt intensive workload could force all tasks onto one 5503 * node depending on the IO topology or IRQ affinity settings. 5504 * 5505 * If the prev_cpu is idle and cache affine then avoid a migration. 5506 * There is no guarantee that the cache hot data from an interrupt 5507 * is more important than cache hot data on the prev_cpu and from 5508 * a cpufreq perspective, it's better to have higher utilisation 5509 * on one CPU. 5510 */ 5511 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5512 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5513 5514 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5515 return this_cpu; 5516 5517 return nr_cpumask_bits; 5518 } 5519 5520 static int 5521 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5522 int this_cpu, int prev_cpu, int sync) 5523 { 5524 s64 this_eff_load, prev_eff_load; 5525 unsigned long task_load; 5526 5527 this_eff_load = target_load(this_cpu, sd->wake_idx); 5528 5529 if (sync) { 5530 unsigned long current_load = task_h_load(current); 5531 5532 if (current_load > this_eff_load) 5533 return this_cpu; 5534 5535 this_eff_load -= current_load; 5536 } 5537 5538 task_load = task_h_load(p); 5539 5540 this_eff_load += task_load; 5541 if (sched_feat(WA_BIAS)) 5542 this_eff_load *= 100; 5543 this_eff_load *= capacity_of(prev_cpu); 5544 5545 prev_eff_load = source_load(prev_cpu, sd->wake_idx); 5546 prev_eff_load -= task_load; 5547 if (sched_feat(WA_BIAS)) 5548 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5549 prev_eff_load *= capacity_of(this_cpu); 5550 5551 /* 5552 * If sync, adjust the weight of prev_eff_load such that if 5553 * prev_eff == this_eff that select_idle_sibling() will consider 5554 * stacking the wakee on top of the waker if no other CPU is 5555 * idle. 5556 */ 5557 if (sync) 5558 prev_eff_load += 1; 5559 5560 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5561 } 5562 5563 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5564 int this_cpu, int prev_cpu, int sync) 5565 { 5566 int target = nr_cpumask_bits; 5567 5568 if (sched_feat(WA_IDLE)) 5569 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5570 5571 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5572 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5573 5574 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5575 if (target == nr_cpumask_bits) 5576 return prev_cpu; 5577 5578 schedstat_inc(sd->ttwu_move_affine); 5579 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5580 return target; 5581 } 5582 5583 static unsigned long cpu_util_wake(int cpu, struct task_struct *p); 5584 5585 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p) 5586 { 5587 return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0); 5588 } 5589 5590 /* 5591 * find_idlest_group finds and returns the least busy CPU group within the 5592 * domain. 5593 * 5594 * Assumes p is allowed on at least one CPU in sd. 5595 */ 5596 static struct sched_group * 5597 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5598 int this_cpu, int sd_flag) 5599 { 5600 struct sched_group *idlest = NULL, *group = sd->groups; 5601 struct sched_group *most_spare_sg = NULL; 5602 unsigned long min_runnable_load = ULONG_MAX; 5603 unsigned long this_runnable_load = ULONG_MAX; 5604 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX; 5605 unsigned long most_spare = 0, this_spare = 0; 5606 int load_idx = sd->forkexec_idx; 5607 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2; 5608 unsigned long imbalance = scale_load_down(NICE_0_LOAD) * 5609 (sd->imbalance_pct-100) / 100; 5610 5611 if (sd_flag & SD_BALANCE_WAKE) 5612 load_idx = sd->wake_idx; 5613 5614 do { 5615 unsigned long load, avg_load, runnable_load; 5616 unsigned long spare_cap, max_spare_cap; 5617 int local_group; 5618 int i; 5619 5620 /* Skip over this group if it has no CPUs allowed */ 5621 if (!cpumask_intersects(sched_group_span(group), 5622 &p->cpus_allowed)) 5623 continue; 5624 5625 local_group = cpumask_test_cpu(this_cpu, 5626 sched_group_span(group)); 5627 5628 /* 5629 * Tally up the load of all CPUs in the group and find 5630 * the group containing the CPU with most spare capacity. 5631 */ 5632 avg_load = 0; 5633 runnable_load = 0; 5634 max_spare_cap = 0; 5635 5636 for_each_cpu(i, sched_group_span(group)) { 5637 /* Bias balancing toward CPUs of our domain */ 5638 if (local_group) 5639 load = source_load(i, load_idx); 5640 else 5641 load = target_load(i, load_idx); 5642 5643 runnable_load += load; 5644 5645 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs); 5646 5647 spare_cap = capacity_spare_wake(i, p); 5648 5649 if (spare_cap > max_spare_cap) 5650 max_spare_cap = spare_cap; 5651 } 5652 5653 /* Adjust by relative CPU capacity of the group */ 5654 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / 5655 group->sgc->capacity; 5656 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) / 5657 group->sgc->capacity; 5658 5659 if (local_group) { 5660 this_runnable_load = runnable_load; 5661 this_avg_load = avg_load; 5662 this_spare = max_spare_cap; 5663 } else { 5664 if (min_runnable_load > (runnable_load + imbalance)) { 5665 /* 5666 * The runnable load is significantly smaller 5667 * so we can pick this new CPU: 5668 */ 5669 min_runnable_load = runnable_load; 5670 min_avg_load = avg_load; 5671 idlest = group; 5672 } else if ((runnable_load < (min_runnable_load + imbalance)) && 5673 (100*min_avg_load > imbalance_scale*avg_load)) { 5674 /* 5675 * The runnable loads are close so take the 5676 * blocked load into account through avg_load: 5677 */ 5678 min_avg_load = avg_load; 5679 idlest = group; 5680 } 5681 5682 if (most_spare < max_spare_cap) { 5683 most_spare = max_spare_cap; 5684 most_spare_sg = group; 5685 } 5686 } 5687 } while (group = group->next, group != sd->groups); 5688 5689 /* 5690 * The cross-over point between using spare capacity or least load 5691 * is too conservative for high utilization tasks on partially 5692 * utilized systems if we require spare_capacity > task_util(p), 5693 * so we allow for some task stuffing by using 5694 * spare_capacity > task_util(p)/2. 5695 * 5696 * Spare capacity can't be used for fork because the utilization has 5697 * not been set yet, we must first select a rq to compute the initial 5698 * utilization. 5699 */ 5700 if (sd_flag & SD_BALANCE_FORK) 5701 goto skip_spare; 5702 5703 if (this_spare > task_util(p) / 2 && 5704 imbalance_scale*this_spare > 100*most_spare) 5705 return NULL; 5706 5707 if (most_spare > task_util(p) / 2) 5708 return most_spare_sg; 5709 5710 skip_spare: 5711 if (!idlest) 5712 return NULL; 5713 5714 /* 5715 * When comparing groups across NUMA domains, it's possible for the 5716 * local domain to be very lightly loaded relative to the remote 5717 * domains but "imbalance" skews the comparison making remote CPUs 5718 * look much more favourable. When considering cross-domain, add 5719 * imbalance to the runnable load on the remote node and consider 5720 * staying local. 5721 */ 5722 if ((sd->flags & SD_NUMA) && 5723 min_runnable_load + imbalance >= this_runnable_load) 5724 return NULL; 5725 5726 if (min_runnable_load > (this_runnable_load + imbalance)) 5727 return NULL; 5728 5729 if ((this_runnable_load < (min_runnable_load + imbalance)) && 5730 (100*this_avg_load < imbalance_scale*min_avg_load)) 5731 return NULL; 5732 5733 return idlest; 5734 } 5735 5736 /* 5737 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 5738 */ 5739 static int 5740 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5741 { 5742 unsigned long load, min_load = ULONG_MAX; 5743 unsigned int min_exit_latency = UINT_MAX; 5744 u64 latest_idle_timestamp = 0; 5745 int least_loaded_cpu = this_cpu; 5746 int shallowest_idle_cpu = -1; 5747 int i; 5748 5749 /* Check if we have any choice: */ 5750 if (group->group_weight == 1) 5751 return cpumask_first(sched_group_span(group)); 5752 5753 /* Traverse only the allowed CPUs */ 5754 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) { 5755 if (available_idle_cpu(i)) { 5756 struct rq *rq = cpu_rq(i); 5757 struct cpuidle_state *idle = idle_get_state(rq); 5758 if (idle && idle->exit_latency < min_exit_latency) { 5759 /* 5760 * We give priority to a CPU whose idle state 5761 * has the smallest exit latency irrespective 5762 * of any idle timestamp. 5763 */ 5764 min_exit_latency = idle->exit_latency; 5765 latest_idle_timestamp = rq->idle_stamp; 5766 shallowest_idle_cpu = i; 5767 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5768 rq->idle_stamp > latest_idle_timestamp) { 5769 /* 5770 * If equal or no active idle state, then 5771 * the most recently idled CPU might have 5772 * a warmer cache. 5773 */ 5774 latest_idle_timestamp = rq->idle_stamp; 5775 shallowest_idle_cpu = i; 5776 } 5777 } else if (shallowest_idle_cpu == -1) { 5778 load = weighted_cpuload(cpu_rq(i)); 5779 if (load < min_load) { 5780 min_load = load; 5781 least_loaded_cpu = i; 5782 } 5783 } 5784 } 5785 5786 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5787 } 5788 5789 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 5790 int cpu, int prev_cpu, int sd_flag) 5791 { 5792 int new_cpu = cpu; 5793 5794 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed)) 5795 return prev_cpu; 5796 5797 /* 5798 * We need task's util for capacity_spare_wake, sync it up to prev_cpu's 5799 * last_update_time. 5800 */ 5801 if (!(sd_flag & SD_BALANCE_FORK)) 5802 sync_entity_load_avg(&p->se); 5803 5804 while (sd) { 5805 struct sched_group *group; 5806 struct sched_domain *tmp; 5807 int weight; 5808 5809 if (!(sd->flags & sd_flag)) { 5810 sd = sd->child; 5811 continue; 5812 } 5813 5814 group = find_idlest_group(sd, p, cpu, sd_flag); 5815 if (!group) { 5816 sd = sd->child; 5817 continue; 5818 } 5819 5820 new_cpu = find_idlest_group_cpu(group, p, cpu); 5821 if (new_cpu == cpu) { 5822 /* Now try balancing at a lower domain level of 'cpu': */ 5823 sd = sd->child; 5824 continue; 5825 } 5826 5827 /* Now try balancing at a lower domain level of 'new_cpu': */ 5828 cpu = new_cpu; 5829 weight = sd->span_weight; 5830 sd = NULL; 5831 for_each_domain(cpu, tmp) { 5832 if (weight <= tmp->span_weight) 5833 break; 5834 if (tmp->flags & sd_flag) 5835 sd = tmp; 5836 } 5837 } 5838 5839 return new_cpu; 5840 } 5841 5842 #ifdef CONFIG_SCHED_SMT 5843 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5844 5845 static inline void set_idle_cores(int cpu, int val) 5846 { 5847 struct sched_domain_shared *sds; 5848 5849 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5850 if (sds) 5851 WRITE_ONCE(sds->has_idle_cores, val); 5852 } 5853 5854 static inline bool test_idle_cores(int cpu, bool def) 5855 { 5856 struct sched_domain_shared *sds; 5857 5858 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5859 if (sds) 5860 return READ_ONCE(sds->has_idle_cores); 5861 5862 return def; 5863 } 5864 5865 /* 5866 * Scans the local SMT mask to see if the entire core is idle, and records this 5867 * information in sd_llc_shared->has_idle_cores. 5868 * 5869 * Since SMT siblings share all cache levels, inspecting this limited remote 5870 * state should be fairly cheap. 5871 */ 5872 void __update_idle_core(struct rq *rq) 5873 { 5874 int core = cpu_of(rq); 5875 int cpu; 5876 5877 rcu_read_lock(); 5878 if (test_idle_cores(core, true)) 5879 goto unlock; 5880 5881 for_each_cpu(cpu, cpu_smt_mask(core)) { 5882 if (cpu == core) 5883 continue; 5884 5885 if (!available_idle_cpu(cpu)) 5886 goto unlock; 5887 } 5888 5889 set_idle_cores(core, 1); 5890 unlock: 5891 rcu_read_unlock(); 5892 } 5893 5894 /* 5895 * Scan the entire LLC domain for idle cores; this dynamically switches off if 5896 * there are no idle cores left in the system; tracked through 5897 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 5898 */ 5899 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5900 { 5901 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 5902 int core, cpu; 5903 5904 if (!static_branch_likely(&sched_smt_present)) 5905 return -1; 5906 5907 if (!test_idle_cores(target, false)) 5908 return -1; 5909 5910 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed); 5911 5912 for_each_cpu_wrap(core, cpus, target) { 5913 bool idle = true; 5914 5915 for_each_cpu(cpu, cpu_smt_mask(core)) { 5916 cpumask_clear_cpu(cpu, cpus); 5917 if (!available_idle_cpu(cpu)) 5918 idle = false; 5919 } 5920 5921 if (idle) 5922 return core; 5923 } 5924 5925 /* 5926 * Failed to find an idle core; stop looking for one. 5927 */ 5928 set_idle_cores(target, 0); 5929 5930 return -1; 5931 } 5932 5933 /* 5934 * Scan the local SMT mask for idle CPUs. 5935 */ 5936 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 5937 { 5938 int cpu; 5939 5940 if (!static_branch_likely(&sched_smt_present)) 5941 return -1; 5942 5943 for_each_cpu(cpu, cpu_smt_mask(target)) { 5944 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 5945 continue; 5946 if (available_idle_cpu(cpu)) 5947 return cpu; 5948 } 5949 5950 return -1; 5951 } 5952 5953 #else /* CONFIG_SCHED_SMT */ 5954 5955 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5956 { 5957 return -1; 5958 } 5959 5960 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 5961 { 5962 return -1; 5963 } 5964 5965 #endif /* CONFIG_SCHED_SMT */ 5966 5967 /* 5968 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 5969 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 5970 * average idle time for this rq (as found in rq->avg_idle). 5971 */ 5972 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 5973 { 5974 struct sched_domain *this_sd; 5975 u64 avg_cost, avg_idle; 5976 u64 time, cost; 5977 s64 delta; 5978 int cpu, nr = INT_MAX; 5979 5980 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 5981 if (!this_sd) 5982 return -1; 5983 5984 /* 5985 * Due to large variance we need a large fuzz factor; hackbench in 5986 * particularly is sensitive here. 5987 */ 5988 avg_idle = this_rq()->avg_idle / 512; 5989 avg_cost = this_sd->avg_scan_cost + 1; 5990 5991 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 5992 return -1; 5993 5994 if (sched_feat(SIS_PROP)) { 5995 u64 span_avg = sd->span_weight * avg_idle; 5996 if (span_avg > 4*avg_cost) 5997 nr = div_u64(span_avg, avg_cost); 5998 else 5999 nr = 4; 6000 } 6001 6002 time = local_clock(); 6003 6004 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) { 6005 if (!--nr) 6006 return -1; 6007 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6008 continue; 6009 if (available_idle_cpu(cpu)) 6010 break; 6011 } 6012 6013 time = local_clock() - time; 6014 cost = this_sd->avg_scan_cost; 6015 delta = (s64)(time - cost) / 8; 6016 this_sd->avg_scan_cost += delta; 6017 6018 return cpu; 6019 } 6020 6021 /* 6022 * Try and locate an idle core/thread in the LLC cache domain. 6023 */ 6024 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6025 { 6026 struct sched_domain *sd; 6027 int i, recent_used_cpu; 6028 6029 if (available_idle_cpu(target)) 6030 return target; 6031 6032 /* 6033 * If the previous CPU is cache affine and idle, don't be stupid: 6034 */ 6035 if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev)) 6036 return prev; 6037 6038 /* Check a recently used CPU as a potential idle candidate: */ 6039 recent_used_cpu = p->recent_used_cpu; 6040 if (recent_used_cpu != prev && 6041 recent_used_cpu != target && 6042 cpus_share_cache(recent_used_cpu, target) && 6043 available_idle_cpu(recent_used_cpu) && 6044 cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) { 6045 /* 6046 * Replace recent_used_cpu with prev as it is a potential 6047 * candidate for the next wake: 6048 */ 6049 p->recent_used_cpu = prev; 6050 return recent_used_cpu; 6051 } 6052 6053 sd = rcu_dereference(per_cpu(sd_llc, target)); 6054 if (!sd) 6055 return target; 6056 6057 i = select_idle_core(p, sd, target); 6058 if ((unsigned)i < nr_cpumask_bits) 6059 return i; 6060 6061 i = select_idle_cpu(p, sd, target); 6062 if ((unsigned)i < nr_cpumask_bits) 6063 return i; 6064 6065 i = select_idle_smt(p, sd, target); 6066 if ((unsigned)i < nr_cpumask_bits) 6067 return i; 6068 6069 return target; 6070 } 6071 6072 /** 6073 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks 6074 * @cpu: the CPU to get the utilization of 6075 * 6076 * The unit of the return value must be the one of capacity so we can compare 6077 * the utilization with the capacity of the CPU that is available for CFS task 6078 * (ie cpu_capacity). 6079 * 6080 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6081 * recent utilization of currently non-runnable tasks on a CPU. It represents 6082 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6083 * capacity_orig is the cpu_capacity available at the highest frequency 6084 * (arch_scale_freq_capacity()). 6085 * The utilization of a CPU converges towards a sum equal to or less than the 6086 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6087 * the running time on this CPU scaled by capacity_curr. 6088 * 6089 * The estimated utilization of a CPU is defined to be the maximum between its 6090 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6091 * currently RUNNABLE on that CPU. 6092 * This allows to properly represent the expected utilization of a CPU which 6093 * has just got a big task running since a long sleep period. At the same time 6094 * however it preserves the benefits of the "blocked utilization" in 6095 * describing the potential for other tasks waking up on the same CPU. 6096 * 6097 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6098 * higher than capacity_orig because of unfortunate rounding in 6099 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6100 * the average stabilizes with the new running time. We need to check that the 6101 * utilization stays within the range of [0..capacity_orig] and cap it if 6102 * necessary. Without utilization capping, a group could be seen as overloaded 6103 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6104 * available capacity. We allow utilization to overshoot capacity_curr (but not 6105 * capacity_orig) as it useful for predicting the capacity required after task 6106 * migrations (scheduler-driven DVFS). 6107 * 6108 * Return: the (estimated) utilization for the specified CPU 6109 */ 6110 static inline unsigned long cpu_util(int cpu) 6111 { 6112 struct cfs_rq *cfs_rq; 6113 unsigned int util; 6114 6115 cfs_rq = &cpu_rq(cpu)->cfs; 6116 util = READ_ONCE(cfs_rq->avg.util_avg); 6117 6118 if (sched_feat(UTIL_EST)) 6119 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6120 6121 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6122 } 6123 6124 /* 6125 * cpu_util_wake: Compute CPU utilization with any contributions from 6126 * the waking task p removed. 6127 */ 6128 static unsigned long cpu_util_wake(int cpu, struct task_struct *p) 6129 { 6130 struct cfs_rq *cfs_rq; 6131 unsigned int util; 6132 6133 /* Task has no contribution or is new */ 6134 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6135 return cpu_util(cpu); 6136 6137 cfs_rq = &cpu_rq(cpu)->cfs; 6138 util = READ_ONCE(cfs_rq->avg.util_avg); 6139 6140 /* Discount task's blocked util from CPU's util */ 6141 util -= min_t(unsigned int, util, task_util(p)); 6142 6143 /* 6144 * Covered cases: 6145 * 6146 * a) if *p is the only task sleeping on this CPU, then: 6147 * cpu_util (== task_util) > util_est (== 0) 6148 * and thus we return: 6149 * cpu_util_wake = (cpu_util - task_util) = 0 6150 * 6151 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6152 * IDLE, then: 6153 * cpu_util >= task_util 6154 * cpu_util > util_est (== 0) 6155 * and thus we discount *p's blocked utilization to return: 6156 * cpu_util_wake = (cpu_util - task_util) >= 0 6157 * 6158 * c) if other tasks are RUNNABLE on that CPU and 6159 * util_est > cpu_util 6160 * then we use util_est since it returns a more restrictive 6161 * estimation of the spare capacity on that CPU, by just 6162 * considering the expected utilization of tasks already 6163 * runnable on that CPU. 6164 * 6165 * Cases a) and b) are covered by the above code, while case c) is 6166 * covered by the following code when estimated utilization is 6167 * enabled. 6168 */ 6169 if (sched_feat(UTIL_EST)) 6170 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6171 6172 /* 6173 * Utilization (estimated) can exceed the CPU capacity, thus let's 6174 * clamp to the maximum CPU capacity to ensure consistency with 6175 * the cpu_util call. 6176 */ 6177 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6178 } 6179 6180 /* 6181 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 6182 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 6183 * 6184 * In that case WAKE_AFFINE doesn't make sense and we'll let 6185 * BALANCE_WAKE sort things out. 6186 */ 6187 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 6188 { 6189 long min_cap, max_cap; 6190 6191 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 6192 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 6193 6194 /* Minimum capacity is close to max, no need to abort wake_affine */ 6195 if (max_cap - min_cap < max_cap >> 3) 6196 return 0; 6197 6198 /* Bring task utilization in sync with prev_cpu */ 6199 sync_entity_load_avg(&p->se); 6200 6201 return min_cap * 1024 < task_util(p) * capacity_margin; 6202 } 6203 6204 /* 6205 * select_task_rq_fair: Select target runqueue for the waking task in domains 6206 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 6207 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6208 * 6209 * Balances load by selecting the idlest CPU in the idlest group, or under 6210 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6211 * 6212 * Returns the target CPU number. 6213 * 6214 * preempt must be disabled. 6215 */ 6216 static int 6217 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 6218 { 6219 struct sched_domain *tmp, *sd = NULL; 6220 int cpu = smp_processor_id(); 6221 int new_cpu = prev_cpu; 6222 int want_affine = 0; 6223 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6224 6225 if (sd_flag & SD_BALANCE_WAKE) { 6226 record_wakee(p); 6227 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) 6228 && cpumask_test_cpu(cpu, &p->cpus_allowed); 6229 } 6230 6231 rcu_read_lock(); 6232 for_each_domain(cpu, tmp) { 6233 if (!(tmp->flags & SD_LOAD_BALANCE)) 6234 break; 6235 6236 /* 6237 * If both 'cpu' and 'prev_cpu' are part of this domain, 6238 * cpu is a valid SD_WAKE_AFFINE target. 6239 */ 6240 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6241 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6242 if (cpu != prev_cpu) 6243 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6244 6245 sd = NULL; /* Prefer wake_affine over balance flags */ 6246 break; 6247 } 6248 6249 if (tmp->flags & sd_flag) 6250 sd = tmp; 6251 else if (!want_affine) 6252 break; 6253 } 6254 6255 if (unlikely(sd)) { 6256 /* Slow path */ 6257 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6258 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ 6259 /* Fast path */ 6260 6261 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6262 6263 if (want_affine) 6264 current->recent_used_cpu = cpu; 6265 } 6266 rcu_read_unlock(); 6267 6268 return new_cpu; 6269 } 6270 6271 static void detach_entity_cfs_rq(struct sched_entity *se); 6272 6273 /* 6274 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6275 * cfs_rq_of(p) references at time of call are still valid and identify the 6276 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6277 */ 6278 static void migrate_task_rq_fair(struct task_struct *p) 6279 { 6280 /* 6281 * As blocked tasks retain absolute vruntime the migration needs to 6282 * deal with this by subtracting the old and adding the new 6283 * min_vruntime -- the latter is done by enqueue_entity() when placing 6284 * the task on the new runqueue. 6285 */ 6286 if (p->state == TASK_WAKING) { 6287 struct sched_entity *se = &p->se; 6288 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6289 u64 min_vruntime; 6290 6291 #ifndef CONFIG_64BIT 6292 u64 min_vruntime_copy; 6293 6294 do { 6295 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6296 smp_rmb(); 6297 min_vruntime = cfs_rq->min_vruntime; 6298 } while (min_vruntime != min_vruntime_copy); 6299 #else 6300 min_vruntime = cfs_rq->min_vruntime; 6301 #endif 6302 6303 se->vruntime -= min_vruntime; 6304 } 6305 6306 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6307 /* 6308 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6309 * rq->lock and can modify state directly. 6310 */ 6311 lockdep_assert_held(&task_rq(p)->lock); 6312 detach_entity_cfs_rq(&p->se); 6313 6314 } else { 6315 /* 6316 * We are supposed to update the task to "current" time, then 6317 * its up to date and ready to go to new CPU/cfs_rq. But we 6318 * have difficulty in getting what current time is, so simply 6319 * throw away the out-of-date time. This will result in the 6320 * wakee task is less decayed, but giving the wakee more load 6321 * sounds not bad. 6322 */ 6323 remove_entity_load_avg(&p->se); 6324 } 6325 6326 /* Tell new CPU we are migrated */ 6327 p->se.avg.last_update_time = 0; 6328 6329 /* We have migrated, no longer consider this task hot */ 6330 p->se.exec_start = 0; 6331 } 6332 6333 static void task_dead_fair(struct task_struct *p) 6334 { 6335 remove_entity_load_avg(&p->se); 6336 } 6337 #endif /* CONFIG_SMP */ 6338 6339 static unsigned long wakeup_gran(struct sched_entity *se) 6340 { 6341 unsigned long gran = sysctl_sched_wakeup_granularity; 6342 6343 /* 6344 * Since its curr running now, convert the gran from real-time 6345 * to virtual-time in his units. 6346 * 6347 * By using 'se' instead of 'curr' we penalize light tasks, so 6348 * they get preempted easier. That is, if 'se' < 'curr' then 6349 * the resulting gran will be larger, therefore penalizing the 6350 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6351 * be smaller, again penalizing the lighter task. 6352 * 6353 * This is especially important for buddies when the leftmost 6354 * task is higher priority than the buddy. 6355 */ 6356 return calc_delta_fair(gran, se); 6357 } 6358 6359 /* 6360 * Should 'se' preempt 'curr'. 6361 * 6362 * |s1 6363 * |s2 6364 * |s3 6365 * g 6366 * |<--->|c 6367 * 6368 * w(c, s1) = -1 6369 * w(c, s2) = 0 6370 * w(c, s3) = 1 6371 * 6372 */ 6373 static int 6374 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6375 { 6376 s64 gran, vdiff = curr->vruntime - se->vruntime; 6377 6378 if (vdiff <= 0) 6379 return -1; 6380 6381 gran = wakeup_gran(se); 6382 if (vdiff > gran) 6383 return 1; 6384 6385 return 0; 6386 } 6387 6388 static void set_last_buddy(struct sched_entity *se) 6389 { 6390 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6391 return; 6392 6393 for_each_sched_entity(se) { 6394 if (SCHED_WARN_ON(!se->on_rq)) 6395 return; 6396 cfs_rq_of(se)->last = se; 6397 } 6398 } 6399 6400 static void set_next_buddy(struct sched_entity *se) 6401 { 6402 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6403 return; 6404 6405 for_each_sched_entity(se) { 6406 if (SCHED_WARN_ON(!se->on_rq)) 6407 return; 6408 cfs_rq_of(se)->next = se; 6409 } 6410 } 6411 6412 static void set_skip_buddy(struct sched_entity *se) 6413 { 6414 for_each_sched_entity(se) 6415 cfs_rq_of(se)->skip = se; 6416 } 6417 6418 /* 6419 * Preempt the current task with a newly woken task if needed: 6420 */ 6421 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6422 { 6423 struct task_struct *curr = rq->curr; 6424 struct sched_entity *se = &curr->se, *pse = &p->se; 6425 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6426 int scale = cfs_rq->nr_running >= sched_nr_latency; 6427 int next_buddy_marked = 0; 6428 6429 if (unlikely(se == pse)) 6430 return; 6431 6432 /* 6433 * This is possible from callers such as attach_tasks(), in which we 6434 * unconditionally check_prempt_curr() after an enqueue (which may have 6435 * lead to a throttle). This both saves work and prevents false 6436 * next-buddy nomination below. 6437 */ 6438 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6439 return; 6440 6441 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6442 set_next_buddy(pse); 6443 next_buddy_marked = 1; 6444 } 6445 6446 /* 6447 * We can come here with TIF_NEED_RESCHED already set from new task 6448 * wake up path. 6449 * 6450 * Note: this also catches the edge-case of curr being in a throttled 6451 * group (e.g. via set_curr_task), since update_curr() (in the 6452 * enqueue of curr) will have resulted in resched being set. This 6453 * prevents us from potentially nominating it as a false LAST_BUDDY 6454 * below. 6455 */ 6456 if (test_tsk_need_resched(curr)) 6457 return; 6458 6459 /* Idle tasks are by definition preempted by non-idle tasks. */ 6460 if (unlikely(curr->policy == SCHED_IDLE) && 6461 likely(p->policy != SCHED_IDLE)) 6462 goto preempt; 6463 6464 /* 6465 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6466 * is driven by the tick): 6467 */ 6468 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6469 return; 6470 6471 find_matching_se(&se, &pse); 6472 update_curr(cfs_rq_of(se)); 6473 BUG_ON(!pse); 6474 if (wakeup_preempt_entity(se, pse) == 1) { 6475 /* 6476 * Bias pick_next to pick the sched entity that is 6477 * triggering this preemption. 6478 */ 6479 if (!next_buddy_marked) 6480 set_next_buddy(pse); 6481 goto preempt; 6482 } 6483 6484 return; 6485 6486 preempt: 6487 resched_curr(rq); 6488 /* 6489 * Only set the backward buddy when the current task is still 6490 * on the rq. This can happen when a wakeup gets interleaved 6491 * with schedule on the ->pre_schedule() or idle_balance() 6492 * point, either of which can * drop the rq lock. 6493 * 6494 * Also, during early boot the idle thread is in the fair class, 6495 * for obvious reasons its a bad idea to schedule back to it. 6496 */ 6497 if (unlikely(!se->on_rq || curr == rq->idle)) 6498 return; 6499 6500 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6501 set_last_buddy(se); 6502 } 6503 6504 static struct task_struct * 6505 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6506 { 6507 struct cfs_rq *cfs_rq = &rq->cfs; 6508 struct sched_entity *se; 6509 struct task_struct *p; 6510 int new_tasks; 6511 6512 again: 6513 if (!cfs_rq->nr_running) 6514 goto idle; 6515 6516 #ifdef CONFIG_FAIR_GROUP_SCHED 6517 if (prev->sched_class != &fair_sched_class) 6518 goto simple; 6519 6520 /* 6521 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6522 * likely that a next task is from the same cgroup as the current. 6523 * 6524 * Therefore attempt to avoid putting and setting the entire cgroup 6525 * hierarchy, only change the part that actually changes. 6526 */ 6527 6528 do { 6529 struct sched_entity *curr = cfs_rq->curr; 6530 6531 /* 6532 * Since we got here without doing put_prev_entity() we also 6533 * have to consider cfs_rq->curr. If it is still a runnable 6534 * entity, update_curr() will update its vruntime, otherwise 6535 * forget we've ever seen it. 6536 */ 6537 if (curr) { 6538 if (curr->on_rq) 6539 update_curr(cfs_rq); 6540 else 6541 curr = NULL; 6542 6543 /* 6544 * This call to check_cfs_rq_runtime() will do the 6545 * throttle and dequeue its entity in the parent(s). 6546 * Therefore the nr_running test will indeed 6547 * be correct. 6548 */ 6549 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 6550 cfs_rq = &rq->cfs; 6551 6552 if (!cfs_rq->nr_running) 6553 goto idle; 6554 6555 goto simple; 6556 } 6557 } 6558 6559 se = pick_next_entity(cfs_rq, curr); 6560 cfs_rq = group_cfs_rq(se); 6561 } while (cfs_rq); 6562 6563 p = task_of(se); 6564 6565 /* 6566 * Since we haven't yet done put_prev_entity and if the selected task 6567 * is a different task than we started out with, try and touch the 6568 * least amount of cfs_rqs. 6569 */ 6570 if (prev != p) { 6571 struct sched_entity *pse = &prev->se; 6572 6573 while (!(cfs_rq = is_same_group(se, pse))) { 6574 int se_depth = se->depth; 6575 int pse_depth = pse->depth; 6576 6577 if (se_depth <= pse_depth) { 6578 put_prev_entity(cfs_rq_of(pse), pse); 6579 pse = parent_entity(pse); 6580 } 6581 if (se_depth >= pse_depth) { 6582 set_next_entity(cfs_rq_of(se), se); 6583 se = parent_entity(se); 6584 } 6585 } 6586 6587 put_prev_entity(cfs_rq, pse); 6588 set_next_entity(cfs_rq, se); 6589 } 6590 6591 goto done; 6592 simple: 6593 #endif 6594 6595 put_prev_task(rq, prev); 6596 6597 do { 6598 se = pick_next_entity(cfs_rq, NULL); 6599 set_next_entity(cfs_rq, se); 6600 cfs_rq = group_cfs_rq(se); 6601 } while (cfs_rq); 6602 6603 p = task_of(se); 6604 6605 done: __maybe_unused; 6606 #ifdef CONFIG_SMP 6607 /* 6608 * Move the next running task to the front of 6609 * the list, so our cfs_tasks list becomes MRU 6610 * one. 6611 */ 6612 list_move(&p->se.group_node, &rq->cfs_tasks); 6613 #endif 6614 6615 if (hrtick_enabled(rq)) 6616 hrtick_start_fair(rq, p); 6617 6618 return p; 6619 6620 idle: 6621 new_tasks = idle_balance(rq, rf); 6622 6623 /* 6624 * Because idle_balance() releases (and re-acquires) rq->lock, it is 6625 * possible for any higher priority task to appear. In that case we 6626 * must re-start the pick_next_entity() loop. 6627 */ 6628 if (new_tasks < 0) 6629 return RETRY_TASK; 6630 6631 if (new_tasks > 0) 6632 goto again; 6633 6634 return NULL; 6635 } 6636 6637 /* 6638 * Account for a descheduled task: 6639 */ 6640 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 6641 { 6642 struct sched_entity *se = &prev->se; 6643 struct cfs_rq *cfs_rq; 6644 6645 for_each_sched_entity(se) { 6646 cfs_rq = cfs_rq_of(se); 6647 put_prev_entity(cfs_rq, se); 6648 } 6649 } 6650 6651 /* 6652 * sched_yield() is very simple 6653 * 6654 * The magic of dealing with the ->skip buddy is in pick_next_entity. 6655 */ 6656 static void yield_task_fair(struct rq *rq) 6657 { 6658 struct task_struct *curr = rq->curr; 6659 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6660 struct sched_entity *se = &curr->se; 6661 6662 /* 6663 * Are we the only task in the tree? 6664 */ 6665 if (unlikely(rq->nr_running == 1)) 6666 return; 6667 6668 clear_buddies(cfs_rq, se); 6669 6670 if (curr->policy != SCHED_BATCH) { 6671 update_rq_clock(rq); 6672 /* 6673 * Update run-time statistics of the 'current'. 6674 */ 6675 update_curr(cfs_rq); 6676 /* 6677 * Tell update_rq_clock() that we've just updated, 6678 * so we don't do microscopic update in schedule() 6679 * and double the fastpath cost. 6680 */ 6681 rq_clock_skip_update(rq); 6682 } 6683 6684 set_skip_buddy(se); 6685 } 6686 6687 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 6688 { 6689 struct sched_entity *se = &p->se; 6690 6691 /* throttled hierarchies are not runnable */ 6692 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 6693 return false; 6694 6695 /* Tell the scheduler that we'd really like pse to run next. */ 6696 set_next_buddy(se); 6697 6698 yield_task_fair(rq); 6699 6700 return true; 6701 } 6702 6703 #ifdef CONFIG_SMP 6704 /************************************************** 6705 * Fair scheduling class load-balancing methods. 6706 * 6707 * BASICS 6708 * 6709 * The purpose of load-balancing is to achieve the same basic fairness the 6710 * per-CPU scheduler provides, namely provide a proportional amount of compute 6711 * time to each task. This is expressed in the following equation: 6712 * 6713 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 6714 * 6715 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 6716 * W_i,0 is defined as: 6717 * 6718 * W_i,0 = \Sum_j w_i,j (2) 6719 * 6720 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 6721 * is derived from the nice value as per sched_prio_to_weight[]. 6722 * 6723 * The weight average is an exponential decay average of the instantaneous 6724 * weight: 6725 * 6726 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 6727 * 6728 * C_i is the compute capacity of CPU i, typically it is the 6729 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 6730 * can also include other factors [XXX]. 6731 * 6732 * To achieve this balance we define a measure of imbalance which follows 6733 * directly from (1): 6734 * 6735 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 6736 * 6737 * We them move tasks around to minimize the imbalance. In the continuous 6738 * function space it is obvious this converges, in the discrete case we get 6739 * a few fun cases generally called infeasible weight scenarios. 6740 * 6741 * [XXX expand on: 6742 * - infeasible weights; 6743 * - local vs global optima in the discrete case. ] 6744 * 6745 * 6746 * SCHED DOMAINS 6747 * 6748 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 6749 * for all i,j solution, we create a tree of CPUs that follows the hardware 6750 * topology where each level pairs two lower groups (or better). This results 6751 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 6752 * tree to only the first of the previous level and we decrease the frequency 6753 * of load-balance at each level inv. proportional to the number of CPUs in 6754 * the groups. 6755 * 6756 * This yields: 6757 * 6758 * log_2 n 1 n 6759 * \Sum { --- * --- * 2^i } = O(n) (5) 6760 * i = 0 2^i 2^i 6761 * `- size of each group 6762 * | | `- number of CPUs doing load-balance 6763 * | `- freq 6764 * `- sum over all levels 6765 * 6766 * Coupled with a limit on how many tasks we can migrate every balance pass, 6767 * this makes (5) the runtime complexity of the balancer. 6768 * 6769 * An important property here is that each CPU is still (indirectly) connected 6770 * to every other CPU in at most O(log n) steps: 6771 * 6772 * The adjacency matrix of the resulting graph is given by: 6773 * 6774 * log_2 n 6775 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 6776 * k = 0 6777 * 6778 * And you'll find that: 6779 * 6780 * A^(log_2 n)_i,j != 0 for all i,j (7) 6781 * 6782 * Showing there's indeed a path between every CPU in at most O(log n) steps. 6783 * The task movement gives a factor of O(m), giving a convergence complexity 6784 * of: 6785 * 6786 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 6787 * 6788 * 6789 * WORK CONSERVING 6790 * 6791 * In order to avoid CPUs going idle while there's still work to do, new idle 6792 * balancing is more aggressive and has the newly idle CPU iterate up the domain 6793 * tree itself instead of relying on other CPUs to bring it work. 6794 * 6795 * This adds some complexity to both (5) and (8) but it reduces the total idle 6796 * time. 6797 * 6798 * [XXX more?] 6799 * 6800 * 6801 * CGROUPS 6802 * 6803 * Cgroups make a horror show out of (2), instead of a simple sum we get: 6804 * 6805 * s_k,i 6806 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 6807 * S_k 6808 * 6809 * Where 6810 * 6811 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 6812 * 6813 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 6814 * 6815 * The big problem is S_k, its a global sum needed to compute a local (W_i) 6816 * property. 6817 * 6818 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 6819 * rewrite all of this once again.] 6820 */ 6821 6822 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 6823 6824 enum fbq_type { regular, remote, all }; 6825 6826 #define LBF_ALL_PINNED 0x01 6827 #define LBF_NEED_BREAK 0x02 6828 #define LBF_DST_PINNED 0x04 6829 #define LBF_SOME_PINNED 0x08 6830 #define LBF_NOHZ_STATS 0x10 6831 #define LBF_NOHZ_AGAIN 0x20 6832 6833 struct lb_env { 6834 struct sched_domain *sd; 6835 6836 struct rq *src_rq; 6837 int src_cpu; 6838 6839 int dst_cpu; 6840 struct rq *dst_rq; 6841 6842 struct cpumask *dst_grpmask; 6843 int new_dst_cpu; 6844 enum cpu_idle_type idle; 6845 long imbalance; 6846 /* The set of CPUs under consideration for load-balancing */ 6847 struct cpumask *cpus; 6848 6849 unsigned int flags; 6850 6851 unsigned int loop; 6852 unsigned int loop_break; 6853 unsigned int loop_max; 6854 6855 enum fbq_type fbq_type; 6856 struct list_head tasks; 6857 }; 6858 6859 /* 6860 * Is this task likely cache-hot: 6861 */ 6862 static int task_hot(struct task_struct *p, struct lb_env *env) 6863 { 6864 s64 delta; 6865 6866 lockdep_assert_held(&env->src_rq->lock); 6867 6868 if (p->sched_class != &fair_sched_class) 6869 return 0; 6870 6871 if (unlikely(p->policy == SCHED_IDLE)) 6872 return 0; 6873 6874 /* 6875 * Buddy candidates are cache hot: 6876 */ 6877 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 6878 (&p->se == cfs_rq_of(&p->se)->next || 6879 &p->se == cfs_rq_of(&p->se)->last)) 6880 return 1; 6881 6882 if (sysctl_sched_migration_cost == -1) 6883 return 1; 6884 if (sysctl_sched_migration_cost == 0) 6885 return 0; 6886 6887 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 6888 6889 return delta < (s64)sysctl_sched_migration_cost; 6890 } 6891 6892 #ifdef CONFIG_NUMA_BALANCING 6893 /* 6894 * Returns 1, if task migration degrades locality 6895 * Returns 0, if task migration improves locality i.e migration preferred. 6896 * Returns -1, if task migration is not affected by locality. 6897 */ 6898 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 6899 { 6900 struct numa_group *numa_group = rcu_dereference(p->numa_group); 6901 unsigned long src_weight, dst_weight; 6902 int src_nid, dst_nid, dist; 6903 6904 if (!static_branch_likely(&sched_numa_balancing)) 6905 return -1; 6906 6907 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 6908 return -1; 6909 6910 src_nid = cpu_to_node(env->src_cpu); 6911 dst_nid = cpu_to_node(env->dst_cpu); 6912 6913 if (src_nid == dst_nid) 6914 return -1; 6915 6916 /* Migrating away from the preferred node is always bad. */ 6917 if (src_nid == p->numa_preferred_nid) { 6918 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 6919 return 1; 6920 else 6921 return -1; 6922 } 6923 6924 /* Encourage migration to the preferred node. */ 6925 if (dst_nid == p->numa_preferred_nid) 6926 return 0; 6927 6928 /* Leaving a core idle is often worse than degrading locality. */ 6929 if (env->idle == CPU_IDLE) 6930 return -1; 6931 6932 dist = node_distance(src_nid, dst_nid); 6933 if (numa_group) { 6934 src_weight = group_weight(p, src_nid, dist); 6935 dst_weight = group_weight(p, dst_nid, dist); 6936 } else { 6937 src_weight = task_weight(p, src_nid, dist); 6938 dst_weight = task_weight(p, dst_nid, dist); 6939 } 6940 6941 return dst_weight < src_weight; 6942 } 6943 6944 #else 6945 static inline int migrate_degrades_locality(struct task_struct *p, 6946 struct lb_env *env) 6947 { 6948 return -1; 6949 } 6950 #endif 6951 6952 /* 6953 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 6954 */ 6955 static 6956 int can_migrate_task(struct task_struct *p, struct lb_env *env) 6957 { 6958 int tsk_cache_hot; 6959 6960 lockdep_assert_held(&env->src_rq->lock); 6961 6962 /* 6963 * We do not migrate tasks that are: 6964 * 1) throttled_lb_pair, or 6965 * 2) cannot be migrated to this CPU due to cpus_allowed, or 6966 * 3) running (obviously), or 6967 * 4) are cache-hot on their current CPU. 6968 */ 6969 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 6970 return 0; 6971 6972 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) { 6973 int cpu; 6974 6975 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 6976 6977 env->flags |= LBF_SOME_PINNED; 6978 6979 /* 6980 * Remember if this task can be migrated to any other CPU in 6981 * our sched_group. We may want to revisit it if we couldn't 6982 * meet load balance goals by pulling other tasks on src_cpu. 6983 * 6984 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 6985 * already computed one in current iteration. 6986 */ 6987 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 6988 return 0; 6989 6990 /* Prevent to re-select dst_cpu via env's CPUs: */ 6991 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 6992 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) { 6993 env->flags |= LBF_DST_PINNED; 6994 env->new_dst_cpu = cpu; 6995 break; 6996 } 6997 } 6998 6999 return 0; 7000 } 7001 7002 /* Record that we found atleast one task that could run on dst_cpu */ 7003 env->flags &= ~LBF_ALL_PINNED; 7004 7005 if (task_running(env->src_rq, p)) { 7006 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7007 return 0; 7008 } 7009 7010 /* 7011 * Aggressive migration if: 7012 * 1) destination numa is preferred 7013 * 2) task is cache cold, or 7014 * 3) too many balance attempts have failed. 7015 */ 7016 tsk_cache_hot = migrate_degrades_locality(p, env); 7017 if (tsk_cache_hot == -1) 7018 tsk_cache_hot = task_hot(p, env); 7019 7020 if (tsk_cache_hot <= 0 || 7021 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7022 if (tsk_cache_hot == 1) { 7023 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7024 schedstat_inc(p->se.statistics.nr_forced_migrations); 7025 } 7026 return 1; 7027 } 7028 7029 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7030 return 0; 7031 } 7032 7033 /* 7034 * detach_task() -- detach the task for the migration specified in env 7035 */ 7036 static void detach_task(struct task_struct *p, struct lb_env *env) 7037 { 7038 lockdep_assert_held(&env->src_rq->lock); 7039 7040 p->on_rq = TASK_ON_RQ_MIGRATING; 7041 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7042 set_task_cpu(p, env->dst_cpu); 7043 } 7044 7045 /* 7046 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7047 * part of active balancing operations within "domain". 7048 * 7049 * Returns a task if successful and NULL otherwise. 7050 */ 7051 static struct task_struct *detach_one_task(struct lb_env *env) 7052 { 7053 struct task_struct *p; 7054 7055 lockdep_assert_held(&env->src_rq->lock); 7056 7057 list_for_each_entry_reverse(p, 7058 &env->src_rq->cfs_tasks, se.group_node) { 7059 if (!can_migrate_task(p, env)) 7060 continue; 7061 7062 detach_task(p, env); 7063 7064 /* 7065 * Right now, this is only the second place where 7066 * lb_gained[env->idle] is updated (other is detach_tasks) 7067 * so we can safely collect stats here rather than 7068 * inside detach_tasks(). 7069 */ 7070 schedstat_inc(env->sd->lb_gained[env->idle]); 7071 return p; 7072 } 7073 return NULL; 7074 } 7075 7076 static const unsigned int sched_nr_migrate_break = 32; 7077 7078 /* 7079 * detach_tasks() -- tries to detach up to imbalance weighted load from 7080 * busiest_rq, as part of a balancing operation within domain "sd". 7081 * 7082 * Returns number of detached tasks if successful and 0 otherwise. 7083 */ 7084 static int detach_tasks(struct lb_env *env) 7085 { 7086 struct list_head *tasks = &env->src_rq->cfs_tasks; 7087 struct task_struct *p; 7088 unsigned long load; 7089 int detached = 0; 7090 7091 lockdep_assert_held(&env->src_rq->lock); 7092 7093 if (env->imbalance <= 0) 7094 return 0; 7095 7096 while (!list_empty(tasks)) { 7097 /* 7098 * We don't want to steal all, otherwise we may be treated likewise, 7099 * which could at worst lead to a livelock crash. 7100 */ 7101 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7102 break; 7103 7104 p = list_last_entry(tasks, struct task_struct, se.group_node); 7105 7106 env->loop++; 7107 /* We've more or less seen every task there is, call it quits */ 7108 if (env->loop > env->loop_max) 7109 break; 7110 7111 /* take a breather every nr_migrate tasks */ 7112 if (env->loop > env->loop_break) { 7113 env->loop_break += sched_nr_migrate_break; 7114 env->flags |= LBF_NEED_BREAK; 7115 break; 7116 } 7117 7118 if (!can_migrate_task(p, env)) 7119 goto next; 7120 7121 load = task_h_load(p); 7122 7123 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 7124 goto next; 7125 7126 if ((load / 2) > env->imbalance) 7127 goto next; 7128 7129 detach_task(p, env); 7130 list_add(&p->se.group_node, &env->tasks); 7131 7132 detached++; 7133 env->imbalance -= load; 7134 7135 #ifdef CONFIG_PREEMPT 7136 /* 7137 * NEWIDLE balancing is a source of latency, so preemptible 7138 * kernels will stop after the first task is detached to minimize 7139 * the critical section. 7140 */ 7141 if (env->idle == CPU_NEWLY_IDLE) 7142 break; 7143 #endif 7144 7145 /* 7146 * We only want to steal up to the prescribed amount of 7147 * weighted load. 7148 */ 7149 if (env->imbalance <= 0) 7150 break; 7151 7152 continue; 7153 next: 7154 list_move(&p->se.group_node, tasks); 7155 } 7156 7157 /* 7158 * Right now, this is one of only two places we collect this stat 7159 * so we can safely collect detach_one_task() stats here rather 7160 * than inside detach_one_task(). 7161 */ 7162 schedstat_add(env->sd->lb_gained[env->idle], detached); 7163 7164 return detached; 7165 } 7166 7167 /* 7168 * attach_task() -- attach the task detached by detach_task() to its new rq. 7169 */ 7170 static void attach_task(struct rq *rq, struct task_struct *p) 7171 { 7172 lockdep_assert_held(&rq->lock); 7173 7174 BUG_ON(task_rq(p) != rq); 7175 activate_task(rq, p, ENQUEUE_NOCLOCK); 7176 p->on_rq = TASK_ON_RQ_QUEUED; 7177 check_preempt_curr(rq, p, 0); 7178 } 7179 7180 /* 7181 * attach_one_task() -- attaches the task returned from detach_one_task() to 7182 * its new rq. 7183 */ 7184 static void attach_one_task(struct rq *rq, struct task_struct *p) 7185 { 7186 struct rq_flags rf; 7187 7188 rq_lock(rq, &rf); 7189 update_rq_clock(rq); 7190 attach_task(rq, p); 7191 rq_unlock(rq, &rf); 7192 } 7193 7194 /* 7195 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7196 * new rq. 7197 */ 7198 static void attach_tasks(struct lb_env *env) 7199 { 7200 struct list_head *tasks = &env->tasks; 7201 struct task_struct *p; 7202 struct rq_flags rf; 7203 7204 rq_lock(env->dst_rq, &rf); 7205 update_rq_clock(env->dst_rq); 7206 7207 while (!list_empty(tasks)) { 7208 p = list_first_entry(tasks, struct task_struct, se.group_node); 7209 list_del_init(&p->se.group_node); 7210 7211 attach_task(env->dst_rq, p); 7212 } 7213 7214 rq_unlock(env->dst_rq, &rf); 7215 } 7216 7217 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7218 { 7219 if (cfs_rq->avg.load_avg) 7220 return true; 7221 7222 if (cfs_rq->avg.util_avg) 7223 return true; 7224 7225 return false; 7226 } 7227 7228 static inline bool others_have_blocked(struct rq *rq) 7229 { 7230 if (READ_ONCE(rq->avg_rt.util_avg)) 7231 return true; 7232 7233 if (READ_ONCE(rq->avg_dl.util_avg)) 7234 return true; 7235 7236 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 7237 if (READ_ONCE(rq->avg_irq.util_avg)) 7238 return true; 7239 #endif 7240 7241 return false; 7242 } 7243 7244 #ifdef CONFIG_FAIR_GROUP_SCHED 7245 7246 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7247 { 7248 if (cfs_rq->load.weight) 7249 return false; 7250 7251 if (cfs_rq->avg.load_sum) 7252 return false; 7253 7254 if (cfs_rq->avg.util_sum) 7255 return false; 7256 7257 if (cfs_rq->avg.runnable_load_sum) 7258 return false; 7259 7260 return true; 7261 } 7262 7263 static void update_blocked_averages(int cpu) 7264 { 7265 struct rq *rq = cpu_rq(cpu); 7266 struct cfs_rq *cfs_rq, *pos; 7267 const struct sched_class *curr_class; 7268 struct rq_flags rf; 7269 bool done = true; 7270 7271 rq_lock_irqsave(rq, &rf); 7272 update_rq_clock(rq); 7273 7274 /* 7275 * Iterates the task_group tree in a bottom up fashion, see 7276 * list_add_leaf_cfs_rq() for details. 7277 */ 7278 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7279 struct sched_entity *se; 7280 7281 /* throttled entities do not contribute to load */ 7282 if (throttled_hierarchy(cfs_rq)) 7283 continue; 7284 7285 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq)) 7286 update_tg_load_avg(cfs_rq, 0); 7287 7288 /* Propagate pending load changes to the parent, if any: */ 7289 se = cfs_rq->tg->se[cpu]; 7290 if (se && !skip_blocked_update(se)) 7291 update_load_avg(cfs_rq_of(se), se, 0); 7292 7293 /* 7294 * There can be a lot of idle CPU cgroups. Don't let fully 7295 * decayed cfs_rqs linger on the list. 7296 */ 7297 if (cfs_rq_is_decayed(cfs_rq)) 7298 list_del_leaf_cfs_rq(cfs_rq); 7299 7300 /* Don't need periodic decay once load/util_avg are null */ 7301 if (cfs_rq_has_blocked(cfs_rq)) 7302 done = false; 7303 } 7304 7305 curr_class = rq->curr->sched_class; 7306 update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class); 7307 update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class); 7308 update_irq_load_avg(rq, 0); 7309 /* Don't need periodic decay once load/util_avg are null */ 7310 if (others_have_blocked(rq)) 7311 done = false; 7312 7313 #ifdef CONFIG_NO_HZ_COMMON 7314 rq->last_blocked_load_update_tick = jiffies; 7315 if (done) 7316 rq->has_blocked_load = 0; 7317 #endif 7318 rq_unlock_irqrestore(rq, &rf); 7319 } 7320 7321 /* 7322 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7323 * This needs to be done in a top-down fashion because the load of a child 7324 * group is a fraction of its parents load. 7325 */ 7326 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7327 { 7328 struct rq *rq = rq_of(cfs_rq); 7329 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7330 unsigned long now = jiffies; 7331 unsigned long load; 7332 7333 if (cfs_rq->last_h_load_update == now) 7334 return; 7335 7336 cfs_rq->h_load_next = NULL; 7337 for_each_sched_entity(se) { 7338 cfs_rq = cfs_rq_of(se); 7339 cfs_rq->h_load_next = se; 7340 if (cfs_rq->last_h_load_update == now) 7341 break; 7342 } 7343 7344 if (!se) { 7345 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7346 cfs_rq->last_h_load_update = now; 7347 } 7348 7349 while ((se = cfs_rq->h_load_next) != NULL) { 7350 load = cfs_rq->h_load; 7351 load = div64_ul(load * se->avg.load_avg, 7352 cfs_rq_load_avg(cfs_rq) + 1); 7353 cfs_rq = group_cfs_rq(se); 7354 cfs_rq->h_load = load; 7355 cfs_rq->last_h_load_update = now; 7356 } 7357 } 7358 7359 static unsigned long task_h_load(struct task_struct *p) 7360 { 7361 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7362 7363 update_cfs_rq_h_load(cfs_rq); 7364 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7365 cfs_rq_load_avg(cfs_rq) + 1); 7366 } 7367 #else 7368 static inline void update_blocked_averages(int cpu) 7369 { 7370 struct rq *rq = cpu_rq(cpu); 7371 struct cfs_rq *cfs_rq = &rq->cfs; 7372 const struct sched_class *curr_class; 7373 struct rq_flags rf; 7374 7375 rq_lock_irqsave(rq, &rf); 7376 update_rq_clock(rq); 7377 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq); 7378 7379 curr_class = rq->curr->sched_class; 7380 update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class); 7381 update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class); 7382 update_irq_load_avg(rq, 0); 7383 #ifdef CONFIG_NO_HZ_COMMON 7384 rq->last_blocked_load_update_tick = jiffies; 7385 if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq)) 7386 rq->has_blocked_load = 0; 7387 #endif 7388 rq_unlock_irqrestore(rq, &rf); 7389 } 7390 7391 static unsigned long task_h_load(struct task_struct *p) 7392 { 7393 return p->se.avg.load_avg; 7394 } 7395 #endif 7396 7397 /********** Helpers for find_busiest_group ************************/ 7398 7399 enum group_type { 7400 group_other = 0, 7401 group_imbalanced, 7402 group_overloaded, 7403 }; 7404 7405 /* 7406 * sg_lb_stats - stats of a sched_group required for load_balancing 7407 */ 7408 struct sg_lb_stats { 7409 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7410 unsigned long group_load; /* Total load over the CPUs of the group */ 7411 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 7412 unsigned long load_per_task; 7413 unsigned long group_capacity; 7414 unsigned long group_util; /* Total utilization of the group */ 7415 unsigned int sum_nr_running; /* Nr tasks running in the group */ 7416 unsigned int idle_cpus; 7417 unsigned int group_weight; 7418 enum group_type group_type; 7419 int group_no_capacity; 7420 #ifdef CONFIG_NUMA_BALANCING 7421 unsigned int nr_numa_running; 7422 unsigned int nr_preferred_running; 7423 #endif 7424 }; 7425 7426 /* 7427 * sd_lb_stats - Structure to store the statistics of a sched_domain 7428 * during load balancing. 7429 */ 7430 struct sd_lb_stats { 7431 struct sched_group *busiest; /* Busiest group in this sd */ 7432 struct sched_group *local; /* Local group in this sd */ 7433 unsigned long total_running; 7434 unsigned long total_load; /* Total load of all groups in sd */ 7435 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7436 unsigned long avg_load; /* Average load across all groups in sd */ 7437 7438 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7439 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7440 }; 7441 7442 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7443 { 7444 /* 7445 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7446 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7447 * We must however clear busiest_stat::avg_load because 7448 * update_sd_pick_busiest() reads this before assignment. 7449 */ 7450 *sds = (struct sd_lb_stats){ 7451 .busiest = NULL, 7452 .local = NULL, 7453 .total_running = 0UL, 7454 .total_load = 0UL, 7455 .total_capacity = 0UL, 7456 .busiest_stat = { 7457 .avg_load = 0UL, 7458 .sum_nr_running = 0, 7459 .group_type = group_other, 7460 }, 7461 }; 7462 } 7463 7464 /** 7465 * get_sd_load_idx - Obtain the load index for a given sched domain. 7466 * @sd: The sched_domain whose load_idx is to be obtained. 7467 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 7468 * 7469 * Return: The load index. 7470 */ 7471 static inline int get_sd_load_idx(struct sched_domain *sd, 7472 enum cpu_idle_type idle) 7473 { 7474 int load_idx; 7475 7476 switch (idle) { 7477 case CPU_NOT_IDLE: 7478 load_idx = sd->busy_idx; 7479 break; 7480 7481 case CPU_NEWLY_IDLE: 7482 load_idx = sd->newidle_idx; 7483 break; 7484 default: 7485 load_idx = sd->idle_idx; 7486 break; 7487 } 7488 7489 return load_idx; 7490 } 7491 7492 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu) 7493 { 7494 struct rq *rq = cpu_rq(cpu); 7495 unsigned long max = arch_scale_cpu_capacity(sd, cpu); 7496 unsigned long used, free; 7497 unsigned long irq; 7498 7499 irq = cpu_util_irq(rq); 7500 7501 if (unlikely(irq >= max)) 7502 return 1; 7503 7504 used = READ_ONCE(rq->avg_rt.util_avg); 7505 used += READ_ONCE(rq->avg_dl.util_avg); 7506 7507 if (unlikely(used >= max)) 7508 return 1; 7509 7510 free = max - used; 7511 7512 return scale_irq_capacity(free, irq, max); 7513 } 7514 7515 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 7516 { 7517 unsigned long capacity = scale_rt_capacity(sd, cpu); 7518 struct sched_group *sdg = sd->groups; 7519 7520 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu); 7521 7522 if (!capacity) 7523 capacity = 1; 7524 7525 cpu_rq(cpu)->cpu_capacity = capacity; 7526 sdg->sgc->capacity = capacity; 7527 sdg->sgc->min_capacity = capacity; 7528 } 7529 7530 void update_group_capacity(struct sched_domain *sd, int cpu) 7531 { 7532 struct sched_domain *child = sd->child; 7533 struct sched_group *group, *sdg = sd->groups; 7534 unsigned long capacity, min_capacity; 7535 unsigned long interval; 7536 7537 interval = msecs_to_jiffies(sd->balance_interval); 7538 interval = clamp(interval, 1UL, max_load_balance_interval); 7539 sdg->sgc->next_update = jiffies + interval; 7540 7541 if (!child) { 7542 update_cpu_capacity(sd, cpu); 7543 return; 7544 } 7545 7546 capacity = 0; 7547 min_capacity = ULONG_MAX; 7548 7549 if (child->flags & SD_OVERLAP) { 7550 /* 7551 * SD_OVERLAP domains cannot assume that child groups 7552 * span the current group. 7553 */ 7554 7555 for_each_cpu(cpu, sched_group_span(sdg)) { 7556 struct sched_group_capacity *sgc; 7557 struct rq *rq = cpu_rq(cpu); 7558 7559 /* 7560 * build_sched_domains() -> init_sched_groups_capacity() 7561 * gets here before we've attached the domains to the 7562 * runqueues. 7563 * 7564 * Use capacity_of(), which is set irrespective of domains 7565 * in update_cpu_capacity(). 7566 * 7567 * This avoids capacity from being 0 and 7568 * causing divide-by-zero issues on boot. 7569 */ 7570 if (unlikely(!rq->sd)) { 7571 capacity += capacity_of(cpu); 7572 } else { 7573 sgc = rq->sd->groups->sgc; 7574 capacity += sgc->capacity; 7575 } 7576 7577 min_capacity = min(capacity, min_capacity); 7578 } 7579 } else { 7580 /* 7581 * !SD_OVERLAP domains can assume that child groups 7582 * span the current group. 7583 */ 7584 7585 group = child->groups; 7586 do { 7587 struct sched_group_capacity *sgc = group->sgc; 7588 7589 capacity += sgc->capacity; 7590 min_capacity = min(sgc->min_capacity, min_capacity); 7591 group = group->next; 7592 } while (group != child->groups); 7593 } 7594 7595 sdg->sgc->capacity = capacity; 7596 sdg->sgc->min_capacity = min_capacity; 7597 } 7598 7599 /* 7600 * Check whether the capacity of the rq has been noticeably reduced by side 7601 * activity. The imbalance_pct is used for the threshold. 7602 * Return true is the capacity is reduced 7603 */ 7604 static inline int 7605 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 7606 { 7607 return ((rq->cpu_capacity * sd->imbalance_pct) < 7608 (rq->cpu_capacity_orig * 100)); 7609 } 7610 7611 /* 7612 * Group imbalance indicates (and tries to solve) the problem where balancing 7613 * groups is inadequate due to ->cpus_allowed constraints. 7614 * 7615 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 7616 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 7617 * Something like: 7618 * 7619 * { 0 1 2 3 } { 4 5 6 7 } 7620 * * * * * 7621 * 7622 * If we were to balance group-wise we'd place two tasks in the first group and 7623 * two tasks in the second group. Clearly this is undesired as it will overload 7624 * cpu 3 and leave one of the CPUs in the second group unused. 7625 * 7626 * The current solution to this issue is detecting the skew in the first group 7627 * by noticing the lower domain failed to reach balance and had difficulty 7628 * moving tasks due to affinity constraints. 7629 * 7630 * When this is so detected; this group becomes a candidate for busiest; see 7631 * update_sd_pick_busiest(). And calculate_imbalance() and 7632 * find_busiest_group() avoid some of the usual balance conditions to allow it 7633 * to create an effective group imbalance. 7634 * 7635 * This is a somewhat tricky proposition since the next run might not find the 7636 * group imbalance and decide the groups need to be balanced again. A most 7637 * subtle and fragile situation. 7638 */ 7639 7640 static inline int sg_imbalanced(struct sched_group *group) 7641 { 7642 return group->sgc->imbalance; 7643 } 7644 7645 /* 7646 * group_has_capacity returns true if the group has spare capacity that could 7647 * be used by some tasks. 7648 * We consider that a group has spare capacity if the * number of task is 7649 * smaller than the number of CPUs or if the utilization is lower than the 7650 * available capacity for CFS tasks. 7651 * For the latter, we use a threshold to stabilize the state, to take into 7652 * account the variance of the tasks' load and to return true if the available 7653 * capacity in meaningful for the load balancer. 7654 * As an example, an available capacity of 1% can appear but it doesn't make 7655 * any benefit for the load balance. 7656 */ 7657 static inline bool 7658 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 7659 { 7660 if (sgs->sum_nr_running < sgs->group_weight) 7661 return true; 7662 7663 if ((sgs->group_capacity * 100) > 7664 (sgs->group_util * env->sd->imbalance_pct)) 7665 return true; 7666 7667 return false; 7668 } 7669 7670 /* 7671 * group_is_overloaded returns true if the group has more tasks than it can 7672 * handle. 7673 * group_is_overloaded is not equals to !group_has_capacity because a group 7674 * with the exact right number of tasks, has no more spare capacity but is not 7675 * overloaded so both group_has_capacity and group_is_overloaded return 7676 * false. 7677 */ 7678 static inline bool 7679 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 7680 { 7681 if (sgs->sum_nr_running <= sgs->group_weight) 7682 return false; 7683 7684 if ((sgs->group_capacity * 100) < 7685 (sgs->group_util * env->sd->imbalance_pct)) 7686 return true; 7687 7688 return false; 7689 } 7690 7691 /* 7692 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller 7693 * per-CPU capacity than sched_group ref. 7694 */ 7695 static inline bool 7696 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7697 { 7698 return sg->sgc->min_capacity * capacity_margin < 7699 ref->sgc->min_capacity * 1024; 7700 } 7701 7702 static inline enum 7703 group_type group_classify(struct sched_group *group, 7704 struct sg_lb_stats *sgs) 7705 { 7706 if (sgs->group_no_capacity) 7707 return group_overloaded; 7708 7709 if (sg_imbalanced(group)) 7710 return group_imbalanced; 7711 7712 return group_other; 7713 } 7714 7715 static bool update_nohz_stats(struct rq *rq, bool force) 7716 { 7717 #ifdef CONFIG_NO_HZ_COMMON 7718 unsigned int cpu = rq->cpu; 7719 7720 if (!rq->has_blocked_load) 7721 return false; 7722 7723 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 7724 return false; 7725 7726 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) 7727 return true; 7728 7729 update_blocked_averages(cpu); 7730 7731 return rq->has_blocked_load; 7732 #else 7733 return false; 7734 #endif 7735 } 7736 7737 /** 7738 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 7739 * @env: The load balancing environment. 7740 * @group: sched_group whose statistics are to be updated. 7741 * @load_idx: Load index of sched_domain of this_cpu for load calc. 7742 * @local_group: Does group contain this_cpu. 7743 * @sgs: variable to hold the statistics for this group. 7744 * @overload: Indicate more than one runnable task for any CPU. 7745 */ 7746 static inline void update_sg_lb_stats(struct lb_env *env, 7747 struct sched_group *group, int load_idx, 7748 int local_group, struct sg_lb_stats *sgs, 7749 bool *overload) 7750 { 7751 unsigned long load; 7752 int i, nr_running; 7753 7754 memset(sgs, 0, sizeof(*sgs)); 7755 7756 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 7757 struct rq *rq = cpu_rq(i); 7758 7759 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) 7760 env->flags |= LBF_NOHZ_AGAIN; 7761 7762 /* Bias balancing toward CPUs of our domain: */ 7763 if (local_group) 7764 load = target_load(i, load_idx); 7765 else 7766 load = source_load(i, load_idx); 7767 7768 sgs->group_load += load; 7769 sgs->group_util += cpu_util(i); 7770 sgs->sum_nr_running += rq->cfs.h_nr_running; 7771 7772 nr_running = rq->nr_running; 7773 if (nr_running > 1) 7774 *overload = true; 7775 7776 #ifdef CONFIG_NUMA_BALANCING 7777 sgs->nr_numa_running += rq->nr_numa_running; 7778 sgs->nr_preferred_running += rq->nr_preferred_running; 7779 #endif 7780 sgs->sum_weighted_load += weighted_cpuload(rq); 7781 /* 7782 * No need to call idle_cpu() if nr_running is not 0 7783 */ 7784 if (!nr_running && idle_cpu(i)) 7785 sgs->idle_cpus++; 7786 } 7787 7788 /* Adjust by relative CPU capacity of the group */ 7789 sgs->group_capacity = group->sgc->capacity; 7790 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 7791 7792 if (sgs->sum_nr_running) 7793 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 7794 7795 sgs->group_weight = group->group_weight; 7796 7797 sgs->group_no_capacity = group_is_overloaded(env, sgs); 7798 sgs->group_type = group_classify(group, sgs); 7799 } 7800 7801 /** 7802 * update_sd_pick_busiest - return 1 on busiest group 7803 * @env: The load balancing environment. 7804 * @sds: sched_domain statistics 7805 * @sg: sched_group candidate to be checked for being the busiest 7806 * @sgs: sched_group statistics 7807 * 7808 * Determine if @sg is a busier group than the previously selected 7809 * busiest group. 7810 * 7811 * Return: %true if @sg is a busier group than the previously selected 7812 * busiest group. %false otherwise. 7813 */ 7814 static bool update_sd_pick_busiest(struct lb_env *env, 7815 struct sd_lb_stats *sds, 7816 struct sched_group *sg, 7817 struct sg_lb_stats *sgs) 7818 { 7819 struct sg_lb_stats *busiest = &sds->busiest_stat; 7820 7821 if (sgs->group_type > busiest->group_type) 7822 return true; 7823 7824 if (sgs->group_type < busiest->group_type) 7825 return false; 7826 7827 if (sgs->avg_load <= busiest->avg_load) 7828 return false; 7829 7830 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) 7831 goto asym_packing; 7832 7833 /* 7834 * Candidate sg has no more than one task per CPU and 7835 * has higher per-CPU capacity. Migrating tasks to less 7836 * capable CPUs may harm throughput. Maximize throughput, 7837 * power/energy consequences are not considered. 7838 */ 7839 if (sgs->sum_nr_running <= sgs->group_weight && 7840 group_smaller_cpu_capacity(sds->local, sg)) 7841 return false; 7842 7843 asym_packing: 7844 /* This is the busiest node in its class. */ 7845 if (!(env->sd->flags & SD_ASYM_PACKING)) 7846 return true; 7847 7848 /* No ASYM_PACKING if target CPU is already busy */ 7849 if (env->idle == CPU_NOT_IDLE) 7850 return true; 7851 /* 7852 * ASYM_PACKING needs to move all the work to the highest 7853 * prority CPUs in the group, therefore mark all groups 7854 * of lower priority than ourself as busy. 7855 */ 7856 if (sgs->sum_nr_running && 7857 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) { 7858 if (!sds->busiest) 7859 return true; 7860 7861 /* Prefer to move from lowest priority CPU's work */ 7862 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu, 7863 sg->asym_prefer_cpu)) 7864 return true; 7865 } 7866 7867 return false; 7868 } 7869 7870 #ifdef CONFIG_NUMA_BALANCING 7871 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 7872 { 7873 if (sgs->sum_nr_running > sgs->nr_numa_running) 7874 return regular; 7875 if (sgs->sum_nr_running > sgs->nr_preferred_running) 7876 return remote; 7877 return all; 7878 } 7879 7880 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 7881 { 7882 if (rq->nr_running > rq->nr_numa_running) 7883 return regular; 7884 if (rq->nr_running > rq->nr_preferred_running) 7885 return remote; 7886 return all; 7887 } 7888 #else 7889 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 7890 { 7891 return all; 7892 } 7893 7894 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 7895 { 7896 return regular; 7897 } 7898 #endif /* CONFIG_NUMA_BALANCING */ 7899 7900 /** 7901 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 7902 * @env: The load balancing environment. 7903 * @sds: variable to hold the statistics for this sched_domain. 7904 */ 7905 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 7906 { 7907 struct sched_domain *child = env->sd->child; 7908 struct sched_group *sg = env->sd->groups; 7909 struct sg_lb_stats *local = &sds->local_stat; 7910 struct sg_lb_stats tmp_sgs; 7911 int load_idx, prefer_sibling = 0; 7912 bool overload = false; 7913 7914 if (child && child->flags & SD_PREFER_SIBLING) 7915 prefer_sibling = 1; 7916 7917 #ifdef CONFIG_NO_HZ_COMMON 7918 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) 7919 env->flags |= LBF_NOHZ_STATS; 7920 #endif 7921 7922 load_idx = get_sd_load_idx(env->sd, env->idle); 7923 7924 do { 7925 struct sg_lb_stats *sgs = &tmp_sgs; 7926 int local_group; 7927 7928 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 7929 if (local_group) { 7930 sds->local = sg; 7931 sgs = local; 7932 7933 if (env->idle != CPU_NEWLY_IDLE || 7934 time_after_eq(jiffies, sg->sgc->next_update)) 7935 update_group_capacity(env->sd, env->dst_cpu); 7936 } 7937 7938 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 7939 &overload); 7940 7941 if (local_group) 7942 goto next_group; 7943 7944 /* 7945 * In case the child domain prefers tasks go to siblings 7946 * first, lower the sg capacity so that we'll try 7947 * and move all the excess tasks away. We lower the capacity 7948 * of a group only if the local group has the capacity to fit 7949 * these excess tasks. The extra check prevents the case where 7950 * you always pull from the heaviest group when it is already 7951 * under-utilized (possible with a large weight task outweighs 7952 * the tasks on the system). 7953 */ 7954 if (prefer_sibling && sds->local && 7955 group_has_capacity(env, local) && 7956 (sgs->sum_nr_running > local->sum_nr_running + 1)) { 7957 sgs->group_no_capacity = 1; 7958 sgs->group_type = group_classify(sg, sgs); 7959 } 7960 7961 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 7962 sds->busiest = sg; 7963 sds->busiest_stat = *sgs; 7964 } 7965 7966 next_group: 7967 /* Now, start updating sd_lb_stats */ 7968 sds->total_running += sgs->sum_nr_running; 7969 sds->total_load += sgs->group_load; 7970 sds->total_capacity += sgs->group_capacity; 7971 7972 sg = sg->next; 7973 } while (sg != env->sd->groups); 7974 7975 #ifdef CONFIG_NO_HZ_COMMON 7976 if ((env->flags & LBF_NOHZ_AGAIN) && 7977 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { 7978 7979 WRITE_ONCE(nohz.next_blocked, 7980 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); 7981 } 7982 #endif 7983 7984 if (env->sd->flags & SD_NUMA) 7985 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 7986 7987 if (!env->sd->parent) { 7988 /* update overload indicator if we are at root domain */ 7989 if (env->dst_rq->rd->overload != overload) 7990 env->dst_rq->rd->overload = overload; 7991 } 7992 } 7993 7994 /** 7995 * check_asym_packing - Check to see if the group is packed into the 7996 * sched domain. 7997 * 7998 * This is primarily intended to used at the sibling level. Some 7999 * cores like POWER7 prefer to use lower numbered SMT threads. In the 8000 * case of POWER7, it can move to lower SMT modes only when higher 8001 * threads are idle. When in lower SMT modes, the threads will 8002 * perform better since they share less core resources. Hence when we 8003 * have idle threads, we want them to be the higher ones. 8004 * 8005 * This packing function is run on idle threads. It checks to see if 8006 * the busiest CPU in this domain (core in the P7 case) has a higher 8007 * CPU number than the packing function is being run on. Here we are 8008 * assuming lower CPU number will be equivalent to lower a SMT thread 8009 * number. 8010 * 8011 * Return: 1 when packing is required and a task should be moved to 8012 * this CPU. The amount of the imbalance is returned in env->imbalance. 8013 * 8014 * @env: The load balancing environment. 8015 * @sds: Statistics of the sched_domain which is to be packed 8016 */ 8017 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 8018 { 8019 int busiest_cpu; 8020 8021 if (!(env->sd->flags & SD_ASYM_PACKING)) 8022 return 0; 8023 8024 if (env->idle == CPU_NOT_IDLE) 8025 return 0; 8026 8027 if (!sds->busiest) 8028 return 0; 8029 8030 busiest_cpu = sds->busiest->asym_prefer_cpu; 8031 if (sched_asym_prefer(busiest_cpu, env->dst_cpu)) 8032 return 0; 8033 8034 env->imbalance = DIV_ROUND_CLOSEST( 8035 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 8036 SCHED_CAPACITY_SCALE); 8037 8038 return 1; 8039 } 8040 8041 /** 8042 * fix_small_imbalance - Calculate the minor imbalance that exists 8043 * amongst the groups of a sched_domain, during 8044 * load balancing. 8045 * @env: The load balancing environment. 8046 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 8047 */ 8048 static inline 8049 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8050 { 8051 unsigned long tmp, capa_now = 0, capa_move = 0; 8052 unsigned int imbn = 2; 8053 unsigned long scaled_busy_load_per_task; 8054 struct sg_lb_stats *local, *busiest; 8055 8056 local = &sds->local_stat; 8057 busiest = &sds->busiest_stat; 8058 8059 if (!local->sum_nr_running) 8060 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 8061 else if (busiest->load_per_task > local->load_per_task) 8062 imbn = 1; 8063 8064 scaled_busy_load_per_task = 8065 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8066 busiest->group_capacity; 8067 8068 if (busiest->avg_load + scaled_busy_load_per_task >= 8069 local->avg_load + (scaled_busy_load_per_task * imbn)) { 8070 env->imbalance = busiest->load_per_task; 8071 return; 8072 } 8073 8074 /* 8075 * OK, we don't have enough imbalance to justify moving tasks, 8076 * however we may be able to increase total CPU capacity used by 8077 * moving them. 8078 */ 8079 8080 capa_now += busiest->group_capacity * 8081 min(busiest->load_per_task, busiest->avg_load); 8082 capa_now += local->group_capacity * 8083 min(local->load_per_task, local->avg_load); 8084 capa_now /= SCHED_CAPACITY_SCALE; 8085 8086 /* Amount of load we'd subtract */ 8087 if (busiest->avg_load > scaled_busy_load_per_task) { 8088 capa_move += busiest->group_capacity * 8089 min(busiest->load_per_task, 8090 busiest->avg_load - scaled_busy_load_per_task); 8091 } 8092 8093 /* Amount of load we'd add */ 8094 if (busiest->avg_load * busiest->group_capacity < 8095 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 8096 tmp = (busiest->avg_load * busiest->group_capacity) / 8097 local->group_capacity; 8098 } else { 8099 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8100 local->group_capacity; 8101 } 8102 capa_move += local->group_capacity * 8103 min(local->load_per_task, local->avg_load + tmp); 8104 capa_move /= SCHED_CAPACITY_SCALE; 8105 8106 /* Move if we gain throughput */ 8107 if (capa_move > capa_now) 8108 env->imbalance = busiest->load_per_task; 8109 } 8110 8111 /** 8112 * calculate_imbalance - Calculate the amount of imbalance present within the 8113 * groups of a given sched_domain during load balance. 8114 * @env: load balance environment 8115 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 8116 */ 8117 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8118 { 8119 unsigned long max_pull, load_above_capacity = ~0UL; 8120 struct sg_lb_stats *local, *busiest; 8121 8122 local = &sds->local_stat; 8123 busiest = &sds->busiest_stat; 8124 8125 if (busiest->group_type == group_imbalanced) { 8126 /* 8127 * In the group_imb case we cannot rely on group-wide averages 8128 * to ensure CPU-load equilibrium, look at wider averages. XXX 8129 */ 8130 busiest->load_per_task = 8131 min(busiest->load_per_task, sds->avg_load); 8132 } 8133 8134 /* 8135 * Avg load of busiest sg can be less and avg load of local sg can 8136 * be greater than avg load across all sgs of sd because avg load 8137 * factors in sg capacity and sgs with smaller group_type are 8138 * skipped when updating the busiest sg: 8139 */ 8140 if (busiest->avg_load <= sds->avg_load || 8141 local->avg_load >= sds->avg_load) { 8142 env->imbalance = 0; 8143 return fix_small_imbalance(env, sds); 8144 } 8145 8146 /* 8147 * If there aren't any idle CPUs, avoid creating some. 8148 */ 8149 if (busiest->group_type == group_overloaded && 8150 local->group_type == group_overloaded) { 8151 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 8152 if (load_above_capacity > busiest->group_capacity) { 8153 load_above_capacity -= busiest->group_capacity; 8154 load_above_capacity *= scale_load_down(NICE_0_LOAD); 8155 load_above_capacity /= busiest->group_capacity; 8156 } else 8157 load_above_capacity = ~0UL; 8158 } 8159 8160 /* 8161 * We're trying to get all the CPUs to the average_load, so we don't 8162 * want to push ourselves above the average load, nor do we wish to 8163 * reduce the max loaded CPU below the average load. At the same time, 8164 * we also don't want to reduce the group load below the group 8165 * capacity. Thus we look for the minimum possible imbalance. 8166 */ 8167 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 8168 8169 /* How much load to actually move to equalise the imbalance */ 8170 env->imbalance = min( 8171 max_pull * busiest->group_capacity, 8172 (sds->avg_load - local->avg_load) * local->group_capacity 8173 ) / SCHED_CAPACITY_SCALE; 8174 8175 /* 8176 * if *imbalance is less than the average load per runnable task 8177 * there is no guarantee that any tasks will be moved so we'll have 8178 * a think about bumping its value to force at least one task to be 8179 * moved 8180 */ 8181 if (env->imbalance < busiest->load_per_task) 8182 return fix_small_imbalance(env, sds); 8183 } 8184 8185 /******* find_busiest_group() helpers end here *********************/ 8186 8187 /** 8188 * find_busiest_group - Returns the busiest group within the sched_domain 8189 * if there is an imbalance. 8190 * 8191 * Also calculates the amount of weighted load which should be moved 8192 * to restore balance. 8193 * 8194 * @env: The load balancing environment. 8195 * 8196 * Return: - The busiest group if imbalance exists. 8197 */ 8198 static struct sched_group *find_busiest_group(struct lb_env *env) 8199 { 8200 struct sg_lb_stats *local, *busiest; 8201 struct sd_lb_stats sds; 8202 8203 init_sd_lb_stats(&sds); 8204 8205 /* 8206 * Compute the various statistics relavent for load balancing at 8207 * this level. 8208 */ 8209 update_sd_lb_stats(env, &sds); 8210 local = &sds.local_stat; 8211 busiest = &sds.busiest_stat; 8212 8213 /* ASYM feature bypasses nice load balance check */ 8214 if (check_asym_packing(env, &sds)) 8215 return sds.busiest; 8216 8217 /* There is no busy sibling group to pull tasks from */ 8218 if (!sds.busiest || busiest->sum_nr_running == 0) 8219 goto out_balanced; 8220 8221 /* XXX broken for overlapping NUMA groups */ 8222 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 8223 / sds.total_capacity; 8224 8225 /* 8226 * If the busiest group is imbalanced the below checks don't 8227 * work because they assume all things are equal, which typically 8228 * isn't true due to cpus_allowed constraints and the like. 8229 */ 8230 if (busiest->group_type == group_imbalanced) 8231 goto force_balance; 8232 8233 /* 8234 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group 8235 * capacities from resulting in underutilization due to avg_load. 8236 */ 8237 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) && 8238 busiest->group_no_capacity) 8239 goto force_balance; 8240 8241 /* 8242 * If the local group is busier than the selected busiest group 8243 * don't try and pull any tasks. 8244 */ 8245 if (local->avg_load >= busiest->avg_load) 8246 goto out_balanced; 8247 8248 /* 8249 * Don't pull any tasks if this group is already above the domain 8250 * average load. 8251 */ 8252 if (local->avg_load >= sds.avg_load) 8253 goto out_balanced; 8254 8255 if (env->idle == CPU_IDLE) { 8256 /* 8257 * This CPU is idle. If the busiest group is not overloaded 8258 * and there is no imbalance between this and busiest group 8259 * wrt idle CPUs, it is balanced. The imbalance becomes 8260 * significant if the diff is greater than 1 otherwise we 8261 * might end up to just move the imbalance on another group 8262 */ 8263 if ((busiest->group_type != group_overloaded) && 8264 (local->idle_cpus <= (busiest->idle_cpus + 1))) 8265 goto out_balanced; 8266 } else { 8267 /* 8268 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 8269 * imbalance_pct to be conservative. 8270 */ 8271 if (100 * busiest->avg_load <= 8272 env->sd->imbalance_pct * local->avg_load) 8273 goto out_balanced; 8274 } 8275 8276 force_balance: 8277 /* Looks like there is an imbalance. Compute it */ 8278 calculate_imbalance(env, &sds); 8279 return env->imbalance ? sds.busiest : NULL; 8280 8281 out_balanced: 8282 env->imbalance = 0; 8283 return NULL; 8284 } 8285 8286 /* 8287 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 8288 */ 8289 static struct rq *find_busiest_queue(struct lb_env *env, 8290 struct sched_group *group) 8291 { 8292 struct rq *busiest = NULL, *rq; 8293 unsigned long busiest_load = 0, busiest_capacity = 1; 8294 int i; 8295 8296 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8297 unsigned long capacity, wl; 8298 enum fbq_type rt; 8299 8300 rq = cpu_rq(i); 8301 rt = fbq_classify_rq(rq); 8302 8303 /* 8304 * We classify groups/runqueues into three groups: 8305 * - regular: there are !numa tasks 8306 * - remote: there are numa tasks that run on the 'wrong' node 8307 * - all: there is no distinction 8308 * 8309 * In order to avoid migrating ideally placed numa tasks, 8310 * ignore those when there's better options. 8311 * 8312 * If we ignore the actual busiest queue to migrate another 8313 * task, the next balance pass can still reduce the busiest 8314 * queue by moving tasks around inside the node. 8315 * 8316 * If we cannot move enough load due to this classification 8317 * the next pass will adjust the group classification and 8318 * allow migration of more tasks. 8319 * 8320 * Both cases only affect the total convergence complexity. 8321 */ 8322 if (rt > env->fbq_type) 8323 continue; 8324 8325 capacity = capacity_of(i); 8326 8327 wl = weighted_cpuload(rq); 8328 8329 /* 8330 * When comparing with imbalance, use weighted_cpuload() 8331 * which is not scaled with the CPU capacity. 8332 */ 8333 8334 if (rq->nr_running == 1 && wl > env->imbalance && 8335 !check_cpu_capacity(rq, env->sd)) 8336 continue; 8337 8338 /* 8339 * For the load comparisons with the other CPU's, consider 8340 * the weighted_cpuload() scaled with the CPU capacity, so 8341 * that the load can be moved away from the CPU that is 8342 * potentially running at a lower capacity. 8343 * 8344 * Thus we're looking for max(wl_i / capacity_i), crosswise 8345 * multiplication to rid ourselves of the division works out 8346 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 8347 * our previous maximum. 8348 */ 8349 if (wl * busiest_capacity > busiest_load * capacity) { 8350 busiest_load = wl; 8351 busiest_capacity = capacity; 8352 busiest = rq; 8353 } 8354 } 8355 8356 return busiest; 8357 } 8358 8359 /* 8360 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 8361 * so long as it is large enough. 8362 */ 8363 #define MAX_PINNED_INTERVAL 512 8364 8365 static int need_active_balance(struct lb_env *env) 8366 { 8367 struct sched_domain *sd = env->sd; 8368 8369 if (env->idle == CPU_NEWLY_IDLE) { 8370 8371 /* 8372 * ASYM_PACKING needs to force migrate tasks from busy but 8373 * lower priority CPUs in order to pack all tasks in the 8374 * highest priority CPUs. 8375 */ 8376 if ((sd->flags & SD_ASYM_PACKING) && 8377 sched_asym_prefer(env->dst_cpu, env->src_cpu)) 8378 return 1; 8379 } 8380 8381 /* 8382 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 8383 * It's worth migrating the task if the src_cpu's capacity is reduced 8384 * because of other sched_class or IRQs if more capacity stays 8385 * available on dst_cpu. 8386 */ 8387 if ((env->idle != CPU_NOT_IDLE) && 8388 (env->src_rq->cfs.h_nr_running == 1)) { 8389 if ((check_cpu_capacity(env->src_rq, sd)) && 8390 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 8391 return 1; 8392 } 8393 8394 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 8395 } 8396 8397 static int active_load_balance_cpu_stop(void *data); 8398 8399 static int should_we_balance(struct lb_env *env) 8400 { 8401 struct sched_group *sg = env->sd->groups; 8402 int cpu, balance_cpu = -1; 8403 8404 /* 8405 * Ensure the balancing environment is consistent; can happen 8406 * when the softirq triggers 'during' hotplug. 8407 */ 8408 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 8409 return 0; 8410 8411 /* 8412 * In the newly idle case, we will allow all the CPUs 8413 * to do the newly idle load balance. 8414 */ 8415 if (env->idle == CPU_NEWLY_IDLE) 8416 return 1; 8417 8418 /* Try to find first idle CPU */ 8419 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 8420 if (!idle_cpu(cpu)) 8421 continue; 8422 8423 balance_cpu = cpu; 8424 break; 8425 } 8426 8427 if (balance_cpu == -1) 8428 balance_cpu = group_balance_cpu(sg); 8429 8430 /* 8431 * First idle CPU or the first CPU(busiest) in this sched group 8432 * is eligible for doing load balancing at this and above domains. 8433 */ 8434 return balance_cpu == env->dst_cpu; 8435 } 8436 8437 /* 8438 * Check this_cpu to ensure it is balanced within domain. Attempt to move 8439 * tasks if there is an imbalance. 8440 */ 8441 static int load_balance(int this_cpu, struct rq *this_rq, 8442 struct sched_domain *sd, enum cpu_idle_type idle, 8443 int *continue_balancing) 8444 { 8445 int ld_moved, cur_ld_moved, active_balance = 0; 8446 struct sched_domain *sd_parent = sd->parent; 8447 struct sched_group *group; 8448 struct rq *busiest; 8449 struct rq_flags rf; 8450 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 8451 8452 struct lb_env env = { 8453 .sd = sd, 8454 .dst_cpu = this_cpu, 8455 .dst_rq = this_rq, 8456 .dst_grpmask = sched_group_span(sd->groups), 8457 .idle = idle, 8458 .loop_break = sched_nr_migrate_break, 8459 .cpus = cpus, 8460 .fbq_type = all, 8461 .tasks = LIST_HEAD_INIT(env.tasks), 8462 }; 8463 8464 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 8465 8466 schedstat_inc(sd->lb_count[idle]); 8467 8468 redo: 8469 if (!should_we_balance(&env)) { 8470 *continue_balancing = 0; 8471 goto out_balanced; 8472 } 8473 8474 group = find_busiest_group(&env); 8475 if (!group) { 8476 schedstat_inc(sd->lb_nobusyg[idle]); 8477 goto out_balanced; 8478 } 8479 8480 busiest = find_busiest_queue(&env, group); 8481 if (!busiest) { 8482 schedstat_inc(sd->lb_nobusyq[idle]); 8483 goto out_balanced; 8484 } 8485 8486 BUG_ON(busiest == env.dst_rq); 8487 8488 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 8489 8490 env.src_cpu = busiest->cpu; 8491 env.src_rq = busiest; 8492 8493 ld_moved = 0; 8494 if (busiest->nr_running > 1) { 8495 /* 8496 * Attempt to move tasks. If find_busiest_group has found 8497 * an imbalance but busiest->nr_running <= 1, the group is 8498 * still unbalanced. ld_moved simply stays zero, so it is 8499 * correctly treated as an imbalance. 8500 */ 8501 env.flags |= LBF_ALL_PINNED; 8502 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 8503 8504 more_balance: 8505 rq_lock_irqsave(busiest, &rf); 8506 update_rq_clock(busiest); 8507 8508 /* 8509 * cur_ld_moved - load moved in current iteration 8510 * ld_moved - cumulative load moved across iterations 8511 */ 8512 cur_ld_moved = detach_tasks(&env); 8513 8514 /* 8515 * We've detached some tasks from busiest_rq. Every 8516 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 8517 * unlock busiest->lock, and we are able to be sure 8518 * that nobody can manipulate the tasks in parallel. 8519 * See task_rq_lock() family for the details. 8520 */ 8521 8522 rq_unlock(busiest, &rf); 8523 8524 if (cur_ld_moved) { 8525 attach_tasks(&env); 8526 ld_moved += cur_ld_moved; 8527 } 8528 8529 local_irq_restore(rf.flags); 8530 8531 if (env.flags & LBF_NEED_BREAK) { 8532 env.flags &= ~LBF_NEED_BREAK; 8533 goto more_balance; 8534 } 8535 8536 /* 8537 * Revisit (affine) tasks on src_cpu that couldn't be moved to 8538 * us and move them to an alternate dst_cpu in our sched_group 8539 * where they can run. The upper limit on how many times we 8540 * iterate on same src_cpu is dependent on number of CPUs in our 8541 * sched_group. 8542 * 8543 * This changes load balance semantics a bit on who can move 8544 * load to a given_cpu. In addition to the given_cpu itself 8545 * (or a ilb_cpu acting on its behalf where given_cpu is 8546 * nohz-idle), we now have balance_cpu in a position to move 8547 * load to given_cpu. In rare situations, this may cause 8548 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 8549 * _independently_ and at _same_ time to move some load to 8550 * given_cpu) causing exceess load to be moved to given_cpu. 8551 * This however should not happen so much in practice and 8552 * moreover subsequent load balance cycles should correct the 8553 * excess load moved. 8554 */ 8555 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 8556 8557 /* Prevent to re-select dst_cpu via env's CPUs */ 8558 cpumask_clear_cpu(env.dst_cpu, env.cpus); 8559 8560 env.dst_rq = cpu_rq(env.new_dst_cpu); 8561 env.dst_cpu = env.new_dst_cpu; 8562 env.flags &= ~LBF_DST_PINNED; 8563 env.loop = 0; 8564 env.loop_break = sched_nr_migrate_break; 8565 8566 /* 8567 * Go back to "more_balance" rather than "redo" since we 8568 * need to continue with same src_cpu. 8569 */ 8570 goto more_balance; 8571 } 8572 8573 /* 8574 * We failed to reach balance because of affinity. 8575 */ 8576 if (sd_parent) { 8577 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8578 8579 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 8580 *group_imbalance = 1; 8581 } 8582 8583 /* All tasks on this runqueue were pinned by CPU affinity */ 8584 if (unlikely(env.flags & LBF_ALL_PINNED)) { 8585 cpumask_clear_cpu(cpu_of(busiest), cpus); 8586 /* 8587 * Attempting to continue load balancing at the current 8588 * sched_domain level only makes sense if there are 8589 * active CPUs remaining as possible busiest CPUs to 8590 * pull load from which are not contained within the 8591 * destination group that is receiving any migrated 8592 * load. 8593 */ 8594 if (!cpumask_subset(cpus, env.dst_grpmask)) { 8595 env.loop = 0; 8596 env.loop_break = sched_nr_migrate_break; 8597 goto redo; 8598 } 8599 goto out_all_pinned; 8600 } 8601 } 8602 8603 if (!ld_moved) { 8604 schedstat_inc(sd->lb_failed[idle]); 8605 /* 8606 * Increment the failure counter only on periodic balance. 8607 * We do not want newidle balance, which can be very 8608 * frequent, pollute the failure counter causing 8609 * excessive cache_hot migrations and active balances. 8610 */ 8611 if (idle != CPU_NEWLY_IDLE) 8612 sd->nr_balance_failed++; 8613 8614 if (need_active_balance(&env)) { 8615 unsigned long flags; 8616 8617 raw_spin_lock_irqsave(&busiest->lock, flags); 8618 8619 /* 8620 * Don't kick the active_load_balance_cpu_stop, 8621 * if the curr task on busiest CPU can't be 8622 * moved to this_cpu: 8623 */ 8624 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { 8625 raw_spin_unlock_irqrestore(&busiest->lock, 8626 flags); 8627 env.flags |= LBF_ALL_PINNED; 8628 goto out_one_pinned; 8629 } 8630 8631 /* 8632 * ->active_balance synchronizes accesses to 8633 * ->active_balance_work. Once set, it's cleared 8634 * only after active load balance is finished. 8635 */ 8636 if (!busiest->active_balance) { 8637 busiest->active_balance = 1; 8638 busiest->push_cpu = this_cpu; 8639 active_balance = 1; 8640 } 8641 raw_spin_unlock_irqrestore(&busiest->lock, flags); 8642 8643 if (active_balance) { 8644 stop_one_cpu_nowait(cpu_of(busiest), 8645 active_load_balance_cpu_stop, busiest, 8646 &busiest->active_balance_work); 8647 } 8648 8649 /* We've kicked active balancing, force task migration. */ 8650 sd->nr_balance_failed = sd->cache_nice_tries+1; 8651 } 8652 } else 8653 sd->nr_balance_failed = 0; 8654 8655 if (likely(!active_balance)) { 8656 /* We were unbalanced, so reset the balancing interval */ 8657 sd->balance_interval = sd->min_interval; 8658 } else { 8659 /* 8660 * If we've begun active balancing, start to back off. This 8661 * case may not be covered by the all_pinned logic if there 8662 * is only 1 task on the busy runqueue (because we don't call 8663 * detach_tasks). 8664 */ 8665 if (sd->balance_interval < sd->max_interval) 8666 sd->balance_interval *= 2; 8667 } 8668 8669 goto out; 8670 8671 out_balanced: 8672 /* 8673 * We reach balance although we may have faced some affinity 8674 * constraints. Clear the imbalance flag if it was set. 8675 */ 8676 if (sd_parent) { 8677 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8678 8679 if (*group_imbalance) 8680 *group_imbalance = 0; 8681 } 8682 8683 out_all_pinned: 8684 /* 8685 * We reach balance because all tasks are pinned at this level so 8686 * we can't migrate them. Let the imbalance flag set so parent level 8687 * can try to migrate them. 8688 */ 8689 schedstat_inc(sd->lb_balanced[idle]); 8690 8691 sd->nr_balance_failed = 0; 8692 8693 out_one_pinned: 8694 /* tune up the balancing interval */ 8695 if (((env.flags & LBF_ALL_PINNED) && 8696 sd->balance_interval < MAX_PINNED_INTERVAL) || 8697 (sd->balance_interval < sd->max_interval)) 8698 sd->balance_interval *= 2; 8699 8700 ld_moved = 0; 8701 out: 8702 return ld_moved; 8703 } 8704 8705 static inline unsigned long 8706 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 8707 { 8708 unsigned long interval = sd->balance_interval; 8709 8710 if (cpu_busy) 8711 interval *= sd->busy_factor; 8712 8713 /* scale ms to jiffies */ 8714 interval = msecs_to_jiffies(interval); 8715 interval = clamp(interval, 1UL, max_load_balance_interval); 8716 8717 return interval; 8718 } 8719 8720 static inline void 8721 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 8722 { 8723 unsigned long interval, next; 8724 8725 /* used by idle balance, so cpu_busy = 0 */ 8726 interval = get_sd_balance_interval(sd, 0); 8727 next = sd->last_balance + interval; 8728 8729 if (time_after(*next_balance, next)) 8730 *next_balance = next; 8731 } 8732 8733 /* 8734 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 8735 * running tasks off the busiest CPU onto idle CPUs. It requires at 8736 * least 1 task to be running on each physical CPU where possible, and 8737 * avoids physical / logical imbalances. 8738 */ 8739 static int active_load_balance_cpu_stop(void *data) 8740 { 8741 struct rq *busiest_rq = data; 8742 int busiest_cpu = cpu_of(busiest_rq); 8743 int target_cpu = busiest_rq->push_cpu; 8744 struct rq *target_rq = cpu_rq(target_cpu); 8745 struct sched_domain *sd; 8746 struct task_struct *p = NULL; 8747 struct rq_flags rf; 8748 8749 rq_lock_irq(busiest_rq, &rf); 8750 /* 8751 * Between queueing the stop-work and running it is a hole in which 8752 * CPUs can become inactive. We should not move tasks from or to 8753 * inactive CPUs. 8754 */ 8755 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 8756 goto out_unlock; 8757 8758 /* Make sure the requested CPU hasn't gone down in the meantime: */ 8759 if (unlikely(busiest_cpu != smp_processor_id() || 8760 !busiest_rq->active_balance)) 8761 goto out_unlock; 8762 8763 /* Is there any task to move? */ 8764 if (busiest_rq->nr_running <= 1) 8765 goto out_unlock; 8766 8767 /* 8768 * This condition is "impossible", if it occurs 8769 * we need to fix it. Originally reported by 8770 * Bjorn Helgaas on a 128-CPU setup. 8771 */ 8772 BUG_ON(busiest_rq == target_rq); 8773 8774 /* Search for an sd spanning us and the target CPU. */ 8775 rcu_read_lock(); 8776 for_each_domain(target_cpu, sd) { 8777 if ((sd->flags & SD_LOAD_BALANCE) && 8778 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 8779 break; 8780 } 8781 8782 if (likely(sd)) { 8783 struct lb_env env = { 8784 .sd = sd, 8785 .dst_cpu = target_cpu, 8786 .dst_rq = target_rq, 8787 .src_cpu = busiest_rq->cpu, 8788 .src_rq = busiest_rq, 8789 .idle = CPU_IDLE, 8790 /* 8791 * can_migrate_task() doesn't need to compute new_dst_cpu 8792 * for active balancing. Since we have CPU_IDLE, but no 8793 * @dst_grpmask we need to make that test go away with lying 8794 * about DST_PINNED. 8795 */ 8796 .flags = LBF_DST_PINNED, 8797 }; 8798 8799 schedstat_inc(sd->alb_count); 8800 update_rq_clock(busiest_rq); 8801 8802 p = detach_one_task(&env); 8803 if (p) { 8804 schedstat_inc(sd->alb_pushed); 8805 /* Active balancing done, reset the failure counter. */ 8806 sd->nr_balance_failed = 0; 8807 } else { 8808 schedstat_inc(sd->alb_failed); 8809 } 8810 } 8811 rcu_read_unlock(); 8812 out_unlock: 8813 busiest_rq->active_balance = 0; 8814 rq_unlock(busiest_rq, &rf); 8815 8816 if (p) 8817 attach_one_task(target_rq, p); 8818 8819 local_irq_enable(); 8820 8821 return 0; 8822 } 8823 8824 static DEFINE_SPINLOCK(balancing); 8825 8826 /* 8827 * Scale the max load_balance interval with the number of CPUs in the system. 8828 * This trades load-balance latency on larger machines for less cross talk. 8829 */ 8830 void update_max_interval(void) 8831 { 8832 max_load_balance_interval = HZ*num_online_cpus()/10; 8833 } 8834 8835 /* 8836 * It checks each scheduling domain to see if it is due to be balanced, 8837 * and initiates a balancing operation if so. 8838 * 8839 * Balancing parameters are set up in init_sched_domains. 8840 */ 8841 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 8842 { 8843 int continue_balancing = 1; 8844 int cpu = rq->cpu; 8845 unsigned long interval; 8846 struct sched_domain *sd; 8847 /* Earliest time when we have to do rebalance again */ 8848 unsigned long next_balance = jiffies + 60*HZ; 8849 int update_next_balance = 0; 8850 int need_serialize, need_decay = 0; 8851 u64 max_cost = 0; 8852 8853 rcu_read_lock(); 8854 for_each_domain(cpu, sd) { 8855 /* 8856 * Decay the newidle max times here because this is a regular 8857 * visit to all the domains. Decay ~1% per second. 8858 */ 8859 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 8860 sd->max_newidle_lb_cost = 8861 (sd->max_newidle_lb_cost * 253) / 256; 8862 sd->next_decay_max_lb_cost = jiffies + HZ; 8863 need_decay = 1; 8864 } 8865 max_cost += sd->max_newidle_lb_cost; 8866 8867 if (!(sd->flags & SD_LOAD_BALANCE)) 8868 continue; 8869 8870 /* 8871 * Stop the load balance at this level. There is another 8872 * CPU in our sched group which is doing load balancing more 8873 * actively. 8874 */ 8875 if (!continue_balancing) { 8876 if (need_decay) 8877 continue; 8878 break; 8879 } 8880 8881 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 8882 8883 need_serialize = sd->flags & SD_SERIALIZE; 8884 if (need_serialize) { 8885 if (!spin_trylock(&balancing)) 8886 goto out; 8887 } 8888 8889 if (time_after_eq(jiffies, sd->last_balance + interval)) { 8890 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 8891 /* 8892 * The LBF_DST_PINNED logic could have changed 8893 * env->dst_cpu, so we can't know our idle 8894 * state even if we migrated tasks. Update it. 8895 */ 8896 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 8897 } 8898 sd->last_balance = jiffies; 8899 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 8900 } 8901 if (need_serialize) 8902 spin_unlock(&balancing); 8903 out: 8904 if (time_after(next_balance, sd->last_balance + interval)) { 8905 next_balance = sd->last_balance + interval; 8906 update_next_balance = 1; 8907 } 8908 } 8909 if (need_decay) { 8910 /* 8911 * Ensure the rq-wide value also decays but keep it at a 8912 * reasonable floor to avoid funnies with rq->avg_idle. 8913 */ 8914 rq->max_idle_balance_cost = 8915 max((u64)sysctl_sched_migration_cost, max_cost); 8916 } 8917 rcu_read_unlock(); 8918 8919 /* 8920 * next_balance will be updated only when there is a need. 8921 * When the cpu is attached to null domain for ex, it will not be 8922 * updated. 8923 */ 8924 if (likely(update_next_balance)) { 8925 rq->next_balance = next_balance; 8926 8927 #ifdef CONFIG_NO_HZ_COMMON 8928 /* 8929 * If this CPU has been elected to perform the nohz idle 8930 * balance. Other idle CPUs have already rebalanced with 8931 * nohz_idle_balance() and nohz.next_balance has been 8932 * updated accordingly. This CPU is now running the idle load 8933 * balance for itself and we need to update the 8934 * nohz.next_balance accordingly. 8935 */ 8936 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 8937 nohz.next_balance = rq->next_balance; 8938 #endif 8939 } 8940 } 8941 8942 static inline int on_null_domain(struct rq *rq) 8943 { 8944 return unlikely(!rcu_dereference_sched(rq->sd)); 8945 } 8946 8947 #ifdef CONFIG_NO_HZ_COMMON 8948 /* 8949 * idle load balancing details 8950 * - When one of the busy CPUs notice that there may be an idle rebalancing 8951 * needed, they will kick the idle load balancer, which then does idle 8952 * load balancing for all the idle CPUs. 8953 */ 8954 8955 static inline int find_new_ilb(void) 8956 { 8957 int ilb = cpumask_first(nohz.idle_cpus_mask); 8958 8959 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 8960 return ilb; 8961 8962 return nr_cpu_ids; 8963 } 8964 8965 /* 8966 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 8967 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 8968 * CPU (if there is one). 8969 */ 8970 static void kick_ilb(unsigned int flags) 8971 { 8972 int ilb_cpu; 8973 8974 nohz.next_balance++; 8975 8976 ilb_cpu = find_new_ilb(); 8977 8978 if (ilb_cpu >= nr_cpu_ids) 8979 return; 8980 8981 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 8982 if (flags & NOHZ_KICK_MASK) 8983 return; 8984 8985 /* 8986 * Use smp_send_reschedule() instead of resched_cpu(). 8987 * This way we generate a sched IPI on the target CPU which 8988 * is idle. And the softirq performing nohz idle load balance 8989 * will be run before returning from the IPI. 8990 */ 8991 smp_send_reschedule(ilb_cpu); 8992 } 8993 8994 /* 8995 * Current heuristic for kicking the idle load balancer in the presence 8996 * of an idle cpu in the system. 8997 * - This rq has more than one task. 8998 * - This rq has at least one CFS task and the capacity of the CPU is 8999 * significantly reduced because of RT tasks or IRQs. 9000 * - At parent of LLC scheduler domain level, this cpu's scheduler group has 9001 * multiple busy cpu. 9002 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 9003 * domain span are idle. 9004 */ 9005 static void nohz_balancer_kick(struct rq *rq) 9006 { 9007 unsigned long now = jiffies; 9008 struct sched_domain_shared *sds; 9009 struct sched_domain *sd; 9010 int nr_busy, i, cpu = rq->cpu; 9011 unsigned int flags = 0; 9012 9013 if (unlikely(rq->idle_balance)) 9014 return; 9015 9016 /* 9017 * We may be recently in ticked or tickless idle mode. At the first 9018 * busy tick after returning from idle, we will update the busy stats. 9019 */ 9020 nohz_balance_exit_idle(rq); 9021 9022 /* 9023 * None are in tickless mode and hence no need for NOHZ idle load 9024 * balancing. 9025 */ 9026 if (likely(!atomic_read(&nohz.nr_cpus))) 9027 return; 9028 9029 if (READ_ONCE(nohz.has_blocked) && 9030 time_after(now, READ_ONCE(nohz.next_blocked))) 9031 flags = NOHZ_STATS_KICK; 9032 9033 if (time_before(now, nohz.next_balance)) 9034 goto out; 9035 9036 if (rq->nr_running >= 2) { 9037 flags = NOHZ_KICK_MASK; 9038 goto out; 9039 } 9040 9041 rcu_read_lock(); 9042 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 9043 if (sds) { 9044 /* 9045 * XXX: write a coherent comment on why we do this. 9046 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com 9047 */ 9048 nr_busy = atomic_read(&sds->nr_busy_cpus); 9049 if (nr_busy > 1) { 9050 flags = NOHZ_KICK_MASK; 9051 goto unlock; 9052 } 9053 9054 } 9055 9056 sd = rcu_dereference(rq->sd); 9057 if (sd) { 9058 if ((rq->cfs.h_nr_running >= 1) && 9059 check_cpu_capacity(rq, sd)) { 9060 flags = NOHZ_KICK_MASK; 9061 goto unlock; 9062 } 9063 } 9064 9065 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 9066 if (sd) { 9067 for_each_cpu(i, sched_domain_span(sd)) { 9068 if (i == cpu || 9069 !cpumask_test_cpu(i, nohz.idle_cpus_mask)) 9070 continue; 9071 9072 if (sched_asym_prefer(i, cpu)) { 9073 flags = NOHZ_KICK_MASK; 9074 goto unlock; 9075 } 9076 } 9077 } 9078 unlock: 9079 rcu_read_unlock(); 9080 out: 9081 if (flags) 9082 kick_ilb(flags); 9083 } 9084 9085 static void set_cpu_sd_state_busy(int cpu) 9086 { 9087 struct sched_domain *sd; 9088 9089 rcu_read_lock(); 9090 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9091 9092 if (!sd || !sd->nohz_idle) 9093 goto unlock; 9094 sd->nohz_idle = 0; 9095 9096 atomic_inc(&sd->shared->nr_busy_cpus); 9097 unlock: 9098 rcu_read_unlock(); 9099 } 9100 9101 void nohz_balance_exit_idle(struct rq *rq) 9102 { 9103 SCHED_WARN_ON(rq != this_rq()); 9104 9105 if (likely(!rq->nohz_tick_stopped)) 9106 return; 9107 9108 rq->nohz_tick_stopped = 0; 9109 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 9110 atomic_dec(&nohz.nr_cpus); 9111 9112 set_cpu_sd_state_busy(rq->cpu); 9113 } 9114 9115 static void set_cpu_sd_state_idle(int cpu) 9116 { 9117 struct sched_domain *sd; 9118 9119 rcu_read_lock(); 9120 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9121 9122 if (!sd || sd->nohz_idle) 9123 goto unlock; 9124 sd->nohz_idle = 1; 9125 9126 atomic_dec(&sd->shared->nr_busy_cpus); 9127 unlock: 9128 rcu_read_unlock(); 9129 } 9130 9131 /* 9132 * This routine will record that the CPU is going idle with tick stopped. 9133 * This info will be used in performing idle load balancing in the future. 9134 */ 9135 void nohz_balance_enter_idle(int cpu) 9136 { 9137 struct rq *rq = cpu_rq(cpu); 9138 9139 SCHED_WARN_ON(cpu != smp_processor_id()); 9140 9141 /* If this CPU is going down, then nothing needs to be done: */ 9142 if (!cpu_active(cpu)) 9143 return; 9144 9145 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 9146 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 9147 return; 9148 9149 /* 9150 * Can be set safely without rq->lock held 9151 * If a clear happens, it will have evaluated last additions because 9152 * rq->lock is held during the check and the clear 9153 */ 9154 rq->has_blocked_load = 1; 9155 9156 /* 9157 * The tick is still stopped but load could have been added in the 9158 * meantime. We set the nohz.has_blocked flag to trig a check of the 9159 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 9160 * of nohz.has_blocked can only happen after checking the new load 9161 */ 9162 if (rq->nohz_tick_stopped) 9163 goto out; 9164 9165 /* If we're a completely isolated CPU, we don't play: */ 9166 if (on_null_domain(rq)) 9167 return; 9168 9169 rq->nohz_tick_stopped = 1; 9170 9171 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 9172 atomic_inc(&nohz.nr_cpus); 9173 9174 /* 9175 * Ensures that if nohz_idle_balance() fails to observe our 9176 * @idle_cpus_mask store, it must observe the @has_blocked 9177 * store. 9178 */ 9179 smp_mb__after_atomic(); 9180 9181 set_cpu_sd_state_idle(cpu); 9182 9183 out: 9184 /* 9185 * Each time a cpu enter idle, we assume that it has blocked load and 9186 * enable the periodic update of the load of idle cpus 9187 */ 9188 WRITE_ONCE(nohz.has_blocked, 1); 9189 } 9190 9191 /* 9192 * Internal function that runs load balance for all idle cpus. The load balance 9193 * can be a simple update of blocked load or a complete load balance with 9194 * tasks movement depending of flags. 9195 * The function returns false if the loop has stopped before running 9196 * through all idle CPUs. 9197 */ 9198 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 9199 enum cpu_idle_type idle) 9200 { 9201 /* Earliest time when we have to do rebalance again */ 9202 unsigned long now = jiffies; 9203 unsigned long next_balance = now + 60*HZ; 9204 bool has_blocked_load = false; 9205 int update_next_balance = 0; 9206 int this_cpu = this_rq->cpu; 9207 int balance_cpu; 9208 int ret = false; 9209 struct rq *rq; 9210 9211 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 9212 9213 /* 9214 * We assume there will be no idle load after this update and clear 9215 * the has_blocked flag. If a cpu enters idle in the mean time, it will 9216 * set the has_blocked flag and trig another update of idle load. 9217 * Because a cpu that becomes idle, is added to idle_cpus_mask before 9218 * setting the flag, we are sure to not clear the state and not 9219 * check the load of an idle cpu. 9220 */ 9221 WRITE_ONCE(nohz.has_blocked, 0); 9222 9223 /* 9224 * Ensures that if we miss the CPU, we must see the has_blocked 9225 * store from nohz_balance_enter_idle(). 9226 */ 9227 smp_mb(); 9228 9229 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 9230 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 9231 continue; 9232 9233 /* 9234 * If this CPU gets work to do, stop the load balancing 9235 * work being done for other CPUs. Next load 9236 * balancing owner will pick it up. 9237 */ 9238 if (need_resched()) { 9239 has_blocked_load = true; 9240 goto abort; 9241 } 9242 9243 rq = cpu_rq(balance_cpu); 9244 9245 has_blocked_load |= update_nohz_stats(rq, true); 9246 9247 /* 9248 * If time for next balance is due, 9249 * do the balance. 9250 */ 9251 if (time_after_eq(jiffies, rq->next_balance)) { 9252 struct rq_flags rf; 9253 9254 rq_lock_irqsave(rq, &rf); 9255 update_rq_clock(rq); 9256 cpu_load_update_idle(rq); 9257 rq_unlock_irqrestore(rq, &rf); 9258 9259 if (flags & NOHZ_BALANCE_KICK) 9260 rebalance_domains(rq, CPU_IDLE); 9261 } 9262 9263 if (time_after(next_balance, rq->next_balance)) { 9264 next_balance = rq->next_balance; 9265 update_next_balance = 1; 9266 } 9267 } 9268 9269 /* Newly idle CPU doesn't need an update */ 9270 if (idle != CPU_NEWLY_IDLE) { 9271 update_blocked_averages(this_cpu); 9272 has_blocked_load |= this_rq->has_blocked_load; 9273 } 9274 9275 if (flags & NOHZ_BALANCE_KICK) 9276 rebalance_domains(this_rq, CPU_IDLE); 9277 9278 WRITE_ONCE(nohz.next_blocked, 9279 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 9280 9281 /* The full idle balance loop has been done */ 9282 ret = true; 9283 9284 abort: 9285 /* There is still blocked load, enable periodic update */ 9286 if (has_blocked_load) 9287 WRITE_ONCE(nohz.has_blocked, 1); 9288 9289 /* 9290 * next_balance will be updated only when there is a need. 9291 * When the CPU is attached to null domain for ex, it will not be 9292 * updated. 9293 */ 9294 if (likely(update_next_balance)) 9295 nohz.next_balance = next_balance; 9296 9297 return ret; 9298 } 9299 9300 /* 9301 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 9302 * rebalancing for all the cpus for whom scheduler ticks are stopped. 9303 */ 9304 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9305 { 9306 int this_cpu = this_rq->cpu; 9307 unsigned int flags; 9308 9309 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK)) 9310 return false; 9311 9312 if (idle != CPU_IDLE) { 9313 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9314 return false; 9315 } 9316 9317 /* 9318 * barrier, pairs with nohz_balance_enter_idle(), ensures ... 9319 */ 9320 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9321 if (!(flags & NOHZ_KICK_MASK)) 9322 return false; 9323 9324 _nohz_idle_balance(this_rq, flags, idle); 9325 9326 return true; 9327 } 9328 9329 static void nohz_newidle_balance(struct rq *this_rq) 9330 { 9331 int this_cpu = this_rq->cpu; 9332 9333 /* 9334 * This CPU doesn't want to be disturbed by scheduler 9335 * housekeeping 9336 */ 9337 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 9338 return; 9339 9340 /* Will wake up very soon. No time for doing anything else*/ 9341 if (this_rq->avg_idle < sysctl_sched_migration_cost) 9342 return; 9343 9344 /* Don't need to update blocked load of idle CPUs*/ 9345 if (!READ_ONCE(nohz.has_blocked) || 9346 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 9347 return; 9348 9349 raw_spin_unlock(&this_rq->lock); 9350 /* 9351 * This CPU is going to be idle and blocked load of idle CPUs 9352 * need to be updated. Run the ilb locally as it is a good 9353 * candidate for ilb instead of waking up another idle CPU. 9354 * Kick an normal ilb if we failed to do the update. 9355 */ 9356 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) 9357 kick_ilb(NOHZ_STATS_KICK); 9358 raw_spin_lock(&this_rq->lock); 9359 } 9360 9361 #else /* !CONFIG_NO_HZ_COMMON */ 9362 static inline void nohz_balancer_kick(struct rq *rq) { } 9363 9364 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9365 { 9366 return false; 9367 } 9368 9369 static inline void nohz_newidle_balance(struct rq *this_rq) { } 9370 #endif /* CONFIG_NO_HZ_COMMON */ 9371 9372 /* 9373 * idle_balance is called by schedule() if this_cpu is about to become 9374 * idle. Attempts to pull tasks from other CPUs. 9375 */ 9376 static int idle_balance(struct rq *this_rq, struct rq_flags *rf) 9377 { 9378 unsigned long next_balance = jiffies + HZ; 9379 int this_cpu = this_rq->cpu; 9380 struct sched_domain *sd; 9381 int pulled_task = 0; 9382 u64 curr_cost = 0; 9383 9384 /* 9385 * We must set idle_stamp _before_ calling idle_balance(), such that we 9386 * measure the duration of idle_balance() as idle time. 9387 */ 9388 this_rq->idle_stamp = rq_clock(this_rq); 9389 9390 /* 9391 * Do not pull tasks towards !active CPUs... 9392 */ 9393 if (!cpu_active(this_cpu)) 9394 return 0; 9395 9396 /* 9397 * This is OK, because current is on_cpu, which avoids it being picked 9398 * for load-balance and preemption/IRQs are still disabled avoiding 9399 * further scheduler activity on it and we're being very careful to 9400 * re-start the picking loop. 9401 */ 9402 rq_unpin_lock(this_rq, rf); 9403 9404 if (this_rq->avg_idle < sysctl_sched_migration_cost || 9405 !this_rq->rd->overload) { 9406 9407 rcu_read_lock(); 9408 sd = rcu_dereference_check_sched_domain(this_rq->sd); 9409 if (sd) 9410 update_next_balance(sd, &next_balance); 9411 rcu_read_unlock(); 9412 9413 nohz_newidle_balance(this_rq); 9414 9415 goto out; 9416 } 9417 9418 raw_spin_unlock(&this_rq->lock); 9419 9420 update_blocked_averages(this_cpu); 9421 rcu_read_lock(); 9422 for_each_domain(this_cpu, sd) { 9423 int continue_balancing = 1; 9424 u64 t0, domain_cost; 9425 9426 if (!(sd->flags & SD_LOAD_BALANCE)) 9427 continue; 9428 9429 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 9430 update_next_balance(sd, &next_balance); 9431 break; 9432 } 9433 9434 if (sd->flags & SD_BALANCE_NEWIDLE) { 9435 t0 = sched_clock_cpu(this_cpu); 9436 9437 pulled_task = load_balance(this_cpu, this_rq, 9438 sd, CPU_NEWLY_IDLE, 9439 &continue_balancing); 9440 9441 domain_cost = sched_clock_cpu(this_cpu) - t0; 9442 if (domain_cost > sd->max_newidle_lb_cost) 9443 sd->max_newidle_lb_cost = domain_cost; 9444 9445 curr_cost += domain_cost; 9446 } 9447 9448 update_next_balance(sd, &next_balance); 9449 9450 /* 9451 * Stop searching for tasks to pull if there are 9452 * now runnable tasks on this rq. 9453 */ 9454 if (pulled_task || this_rq->nr_running > 0) 9455 break; 9456 } 9457 rcu_read_unlock(); 9458 9459 raw_spin_lock(&this_rq->lock); 9460 9461 if (curr_cost > this_rq->max_idle_balance_cost) 9462 this_rq->max_idle_balance_cost = curr_cost; 9463 9464 out: 9465 /* 9466 * While browsing the domains, we released the rq lock, a task could 9467 * have been enqueued in the meantime. Since we're not going idle, 9468 * pretend we pulled a task. 9469 */ 9470 if (this_rq->cfs.h_nr_running && !pulled_task) 9471 pulled_task = 1; 9472 9473 /* Move the next balance forward */ 9474 if (time_after(this_rq->next_balance, next_balance)) 9475 this_rq->next_balance = next_balance; 9476 9477 /* Is there a task of a high priority class? */ 9478 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 9479 pulled_task = -1; 9480 9481 if (pulled_task) 9482 this_rq->idle_stamp = 0; 9483 9484 rq_repin_lock(this_rq, rf); 9485 9486 return pulled_task; 9487 } 9488 9489 /* 9490 * run_rebalance_domains is triggered when needed from the scheduler tick. 9491 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 9492 */ 9493 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 9494 { 9495 struct rq *this_rq = this_rq(); 9496 enum cpu_idle_type idle = this_rq->idle_balance ? 9497 CPU_IDLE : CPU_NOT_IDLE; 9498 9499 /* 9500 * If this CPU has a pending nohz_balance_kick, then do the 9501 * balancing on behalf of the other idle CPUs whose ticks are 9502 * stopped. Do nohz_idle_balance *before* rebalance_domains to 9503 * give the idle CPUs a chance to load balance. Else we may 9504 * load balance only within the local sched_domain hierarchy 9505 * and abort nohz_idle_balance altogether if we pull some load. 9506 */ 9507 if (nohz_idle_balance(this_rq, idle)) 9508 return; 9509 9510 /* normal load balance */ 9511 update_blocked_averages(this_rq->cpu); 9512 rebalance_domains(this_rq, idle); 9513 } 9514 9515 /* 9516 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 9517 */ 9518 void trigger_load_balance(struct rq *rq) 9519 { 9520 /* Don't need to rebalance while attached to NULL domain */ 9521 if (unlikely(on_null_domain(rq))) 9522 return; 9523 9524 if (time_after_eq(jiffies, rq->next_balance)) 9525 raise_softirq(SCHED_SOFTIRQ); 9526 9527 nohz_balancer_kick(rq); 9528 } 9529 9530 static void rq_online_fair(struct rq *rq) 9531 { 9532 update_sysctl(); 9533 9534 update_runtime_enabled(rq); 9535 } 9536 9537 static void rq_offline_fair(struct rq *rq) 9538 { 9539 update_sysctl(); 9540 9541 /* Ensure any throttled groups are reachable by pick_next_task */ 9542 unthrottle_offline_cfs_rqs(rq); 9543 } 9544 9545 #endif /* CONFIG_SMP */ 9546 9547 /* 9548 * scheduler tick hitting a task of our scheduling class. 9549 * 9550 * NOTE: This function can be called remotely by the tick offload that 9551 * goes along full dynticks. Therefore no local assumption can be made 9552 * and everything must be accessed through the @rq and @curr passed in 9553 * parameters. 9554 */ 9555 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 9556 { 9557 struct cfs_rq *cfs_rq; 9558 struct sched_entity *se = &curr->se; 9559 9560 for_each_sched_entity(se) { 9561 cfs_rq = cfs_rq_of(se); 9562 entity_tick(cfs_rq, se, queued); 9563 } 9564 9565 if (static_branch_unlikely(&sched_numa_balancing)) 9566 task_tick_numa(rq, curr); 9567 } 9568 9569 /* 9570 * called on fork with the child task as argument from the parent's context 9571 * - child not yet on the tasklist 9572 * - preemption disabled 9573 */ 9574 static void task_fork_fair(struct task_struct *p) 9575 { 9576 struct cfs_rq *cfs_rq; 9577 struct sched_entity *se = &p->se, *curr; 9578 struct rq *rq = this_rq(); 9579 struct rq_flags rf; 9580 9581 rq_lock(rq, &rf); 9582 update_rq_clock(rq); 9583 9584 cfs_rq = task_cfs_rq(current); 9585 curr = cfs_rq->curr; 9586 if (curr) { 9587 update_curr(cfs_rq); 9588 se->vruntime = curr->vruntime; 9589 } 9590 place_entity(cfs_rq, se, 1); 9591 9592 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 9593 /* 9594 * Upon rescheduling, sched_class::put_prev_task() will place 9595 * 'current' within the tree based on its new key value. 9596 */ 9597 swap(curr->vruntime, se->vruntime); 9598 resched_curr(rq); 9599 } 9600 9601 se->vruntime -= cfs_rq->min_vruntime; 9602 rq_unlock(rq, &rf); 9603 } 9604 9605 /* 9606 * Priority of the task has changed. Check to see if we preempt 9607 * the current task. 9608 */ 9609 static void 9610 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 9611 { 9612 if (!task_on_rq_queued(p)) 9613 return; 9614 9615 /* 9616 * Reschedule if we are currently running on this runqueue and 9617 * our priority decreased, or if we are not currently running on 9618 * this runqueue and our priority is higher than the current's 9619 */ 9620 if (rq->curr == p) { 9621 if (p->prio > oldprio) 9622 resched_curr(rq); 9623 } else 9624 check_preempt_curr(rq, p, 0); 9625 } 9626 9627 static inline bool vruntime_normalized(struct task_struct *p) 9628 { 9629 struct sched_entity *se = &p->se; 9630 9631 /* 9632 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 9633 * the dequeue_entity(.flags=0) will already have normalized the 9634 * vruntime. 9635 */ 9636 if (p->on_rq) 9637 return true; 9638 9639 /* 9640 * When !on_rq, vruntime of the task has usually NOT been normalized. 9641 * But there are some cases where it has already been normalized: 9642 * 9643 * - A forked child which is waiting for being woken up by 9644 * wake_up_new_task(). 9645 * - A task which has been woken up by try_to_wake_up() and 9646 * waiting for actually being woken up by sched_ttwu_pending(). 9647 */ 9648 if (!se->sum_exec_runtime || 9649 (p->state == TASK_WAKING && p->sched_remote_wakeup)) 9650 return true; 9651 9652 return false; 9653 } 9654 9655 #ifdef CONFIG_FAIR_GROUP_SCHED 9656 /* 9657 * Propagate the changes of the sched_entity across the tg tree to make it 9658 * visible to the root 9659 */ 9660 static void propagate_entity_cfs_rq(struct sched_entity *se) 9661 { 9662 struct cfs_rq *cfs_rq; 9663 9664 /* Start to propagate at parent */ 9665 se = se->parent; 9666 9667 for_each_sched_entity(se) { 9668 cfs_rq = cfs_rq_of(se); 9669 9670 if (cfs_rq_throttled(cfs_rq)) 9671 break; 9672 9673 update_load_avg(cfs_rq, se, UPDATE_TG); 9674 } 9675 } 9676 #else 9677 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 9678 #endif 9679 9680 static void detach_entity_cfs_rq(struct sched_entity *se) 9681 { 9682 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9683 9684 /* Catch up with the cfs_rq and remove our load when we leave */ 9685 update_load_avg(cfs_rq, se, 0); 9686 detach_entity_load_avg(cfs_rq, se); 9687 update_tg_load_avg(cfs_rq, false); 9688 propagate_entity_cfs_rq(se); 9689 } 9690 9691 static void attach_entity_cfs_rq(struct sched_entity *se) 9692 { 9693 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9694 9695 #ifdef CONFIG_FAIR_GROUP_SCHED 9696 /* 9697 * Since the real-depth could have been changed (only FAIR 9698 * class maintain depth value), reset depth properly. 9699 */ 9700 se->depth = se->parent ? se->parent->depth + 1 : 0; 9701 #endif 9702 9703 /* Synchronize entity with its cfs_rq */ 9704 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 9705 attach_entity_load_avg(cfs_rq, se, 0); 9706 update_tg_load_avg(cfs_rq, false); 9707 propagate_entity_cfs_rq(se); 9708 } 9709 9710 static void detach_task_cfs_rq(struct task_struct *p) 9711 { 9712 struct sched_entity *se = &p->se; 9713 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9714 9715 if (!vruntime_normalized(p)) { 9716 /* 9717 * Fix up our vruntime so that the current sleep doesn't 9718 * cause 'unlimited' sleep bonus. 9719 */ 9720 place_entity(cfs_rq, se, 0); 9721 se->vruntime -= cfs_rq->min_vruntime; 9722 } 9723 9724 detach_entity_cfs_rq(se); 9725 } 9726 9727 static void attach_task_cfs_rq(struct task_struct *p) 9728 { 9729 struct sched_entity *se = &p->se; 9730 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9731 9732 attach_entity_cfs_rq(se); 9733 9734 if (!vruntime_normalized(p)) 9735 se->vruntime += cfs_rq->min_vruntime; 9736 } 9737 9738 static void switched_from_fair(struct rq *rq, struct task_struct *p) 9739 { 9740 detach_task_cfs_rq(p); 9741 } 9742 9743 static void switched_to_fair(struct rq *rq, struct task_struct *p) 9744 { 9745 attach_task_cfs_rq(p); 9746 9747 if (task_on_rq_queued(p)) { 9748 /* 9749 * We were most likely switched from sched_rt, so 9750 * kick off the schedule if running, otherwise just see 9751 * if we can still preempt the current task. 9752 */ 9753 if (rq->curr == p) 9754 resched_curr(rq); 9755 else 9756 check_preempt_curr(rq, p, 0); 9757 } 9758 } 9759 9760 /* Account for a task changing its policy or group. 9761 * 9762 * This routine is mostly called to set cfs_rq->curr field when a task 9763 * migrates between groups/classes. 9764 */ 9765 static void set_curr_task_fair(struct rq *rq) 9766 { 9767 struct sched_entity *se = &rq->curr->se; 9768 9769 for_each_sched_entity(se) { 9770 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9771 9772 set_next_entity(cfs_rq, se); 9773 /* ensure bandwidth has been allocated on our new cfs_rq */ 9774 account_cfs_rq_runtime(cfs_rq, 0); 9775 } 9776 } 9777 9778 void init_cfs_rq(struct cfs_rq *cfs_rq) 9779 { 9780 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 9781 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 9782 #ifndef CONFIG_64BIT 9783 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 9784 #endif 9785 #ifdef CONFIG_SMP 9786 raw_spin_lock_init(&cfs_rq->removed.lock); 9787 #endif 9788 } 9789 9790 #ifdef CONFIG_FAIR_GROUP_SCHED 9791 static void task_set_group_fair(struct task_struct *p) 9792 { 9793 struct sched_entity *se = &p->se; 9794 9795 set_task_rq(p, task_cpu(p)); 9796 se->depth = se->parent ? se->parent->depth + 1 : 0; 9797 } 9798 9799 static void task_move_group_fair(struct task_struct *p) 9800 { 9801 detach_task_cfs_rq(p); 9802 set_task_rq(p, task_cpu(p)); 9803 9804 #ifdef CONFIG_SMP 9805 /* Tell se's cfs_rq has been changed -- migrated */ 9806 p->se.avg.last_update_time = 0; 9807 #endif 9808 attach_task_cfs_rq(p); 9809 } 9810 9811 static void task_change_group_fair(struct task_struct *p, int type) 9812 { 9813 switch (type) { 9814 case TASK_SET_GROUP: 9815 task_set_group_fair(p); 9816 break; 9817 9818 case TASK_MOVE_GROUP: 9819 task_move_group_fair(p); 9820 break; 9821 } 9822 } 9823 9824 void free_fair_sched_group(struct task_group *tg) 9825 { 9826 int i; 9827 9828 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 9829 9830 for_each_possible_cpu(i) { 9831 if (tg->cfs_rq) 9832 kfree(tg->cfs_rq[i]); 9833 if (tg->se) 9834 kfree(tg->se[i]); 9835 } 9836 9837 kfree(tg->cfs_rq); 9838 kfree(tg->se); 9839 } 9840 9841 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 9842 { 9843 struct sched_entity *se; 9844 struct cfs_rq *cfs_rq; 9845 int i; 9846 9847 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 9848 if (!tg->cfs_rq) 9849 goto err; 9850 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 9851 if (!tg->se) 9852 goto err; 9853 9854 tg->shares = NICE_0_LOAD; 9855 9856 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 9857 9858 for_each_possible_cpu(i) { 9859 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 9860 GFP_KERNEL, cpu_to_node(i)); 9861 if (!cfs_rq) 9862 goto err; 9863 9864 se = kzalloc_node(sizeof(struct sched_entity), 9865 GFP_KERNEL, cpu_to_node(i)); 9866 if (!se) 9867 goto err_free_rq; 9868 9869 init_cfs_rq(cfs_rq); 9870 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 9871 init_entity_runnable_average(se); 9872 } 9873 9874 return 1; 9875 9876 err_free_rq: 9877 kfree(cfs_rq); 9878 err: 9879 return 0; 9880 } 9881 9882 void online_fair_sched_group(struct task_group *tg) 9883 { 9884 struct sched_entity *se; 9885 struct rq *rq; 9886 int i; 9887 9888 for_each_possible_cpu(i) { 9889 rq = cpu_rq(i); 9890 se = tg->se[i]; 9891 9892 raw_spin_lock_irq(&rq->lock); 9893 update_rq_clock(rq); 9894 attach_entity_cfs_rq(se); 9895 sync_throttle(tg, i); 9896 raw_spin_unlock_irq(&rq->lock); 9897 } 9898 } 9899 9900 void unregister_fair_sched_group(struct task_group *tg) 9901 { 9902 unsigned long flags; 9903 struct rq *rq; 9904 int cpu; 9905 9906 for_each_possible_cpu(cpu) { 9907 if (tg->se[cpu]) 9908 remove_entity_load_avg(tg->se[cpu]); 9909 9910 /* 9911 * Only empty task groups can be destroyed; so we can speculatively 9912 * check on_list without danger of it being re-added. 9913 */ 9914 if (!tg->cfs_rq[cpu]->on_list) 9915 continue; 9916 9917 rq = cpu_rq(cpu); 9918 9919 raw_spin_lock_irqsave(&rq->lock, flags); 9920 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 9921 raw_spin_unlock_irqrestore(&rq->lock, flags); 9922 } 9923 } 9924 9925 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 9926 struct sched_entity *se, int cpu, 9927 struct sched_entity *parent) 9928 { 9929 struct rq *rq = cpu_rq(cpu); 9930 9931 cfs_rq->tg = tg; 9932 cfs_rq->rq = rq; 9933 init_cfs_rq_runtime(cfs_rq); 9934 9935 tg->cfs_rq[cpu] = cfs_rq; 9936 tg->se[cpu] = se; 9937 9938 /* se could be NULL for root_task_group */ 9939 if (!se) 9940 return; 9941 9942 if (!parent) { 9943 se->cfs_rq = &rq->cfs; 9944 se->depth = 0; 9945 } else { 9946 se->cfs_rq = parent->my_q; 9947 se->depth = parent->depth + 1; 9948 } 9949 9950 se->my_q = cfs_rq; 9951 /* guarantee group entities always have weight */ 9952 update_load_set(&se->load, NICE_0_LOAD); 9953 se->parent = parent; 9954 } 9955 9956 static DEFINE_MUTEX(shares_mutex); 9957 9958 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 9959 { 9960 int i; 9961 9962 /* 9963 * We can't change the weight of the root cgroup. 9964 */ 9965 if (!tg->se[0]) 9966 return -EINVAL; 9967 9968 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 9969 9970 mutex_lock(&shares_mutex); 9971 if (tg->shares == shares) 9972 goto done; 9973 9974 tg->shares = shares; 9975 for_each_possible_cpu(i) { 9976 struct rq *rq = cpu_rq(i); 9977 struct sched_entity *se = tg->se[i]; 9978 struct rq_flags rf; 9979 9980 /* Propagate contribution to hierarchy */ 9981 rq_lock_irqsave(rq, &rf); 9982 update_rq_clock(rq); 9983 for_each_sched_entity(se) { 9984 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9985 update_cfs_group(se); 9986 } 9987 rq_unlock_irqrestore(rq, &rf); 9988 } 9989 9990 done: 9991 mutex_unlock(&shares_mutex); 9992 return 0; 9993 } 9994 #else /* CONFIG_FAIR_GROUP_SCHED */ 9995 9996 void free_fair_sched_group(struct task_group *tg) { } 9997 9998 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 9999 { 10000 return 1; 10001 } 10002 10003 void online_fair_sched_group(struct task_group *tg) { } 10004 10005 void unregister_fair_sched_group(struct task_group *tg) { } 10006 10007 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10008 10009 10010 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 10011 { 10012 struct sched_entity *se = &task->se; 10013 unsigned int rr_interval = 0; 10014 10015 /* 10016 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 10017 * idle runqueue: 10018 */ 10019 if (rq->cfs.load.weight) 10020 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 10021 10022 return rr_interval; 10023 } 10024 10025 /* 10026 * All the scheduling class methods: 10027 */ 10028 const struct sched_class fair_sched_class = { 10029 .next = &idle_sched_class, 10030 .enqueue_task = enqueue_task_fair, 10031 .dequeue_task = dequeue_task_fair, 10032 .yield_task = yield_task_fair, 10033 .yield_to_task = yield_to_task_fair, 10034 10035 .check_preempt_curr = check_preempt_wakeup, 10036 10037 .pick_next_task = pick_next_task_fair, 10038 .put_prev_task = put_prev_task_fair, 10039 10040 #ifdef CONFIG_SMP 10041 .select_task_rq = select_task_rq_fair, 10042 .migrate_task_rq = migrate_task_rq_fair, 10043 10044 .rq_online = rq_online_fair, 10045 .rq_offline = rq_offline_fair, 10046 10047 .task_dead = task_dead_fair, 10048 .set_cpus_allowed = set_cpus_allowed_common, 10049 #endif 10050 10051 .set_curr_task = set_curr_task_fair, 10052 .task_tick = task_tick_fair, 10053 .task_fork = task_fork_fair, 10054 10055 .prio_changed = prio_changed_fair, 10056 .switched_from = switched_from_fair, 10057 .switched_to = switched_to_fair, 10058 10059 .get_rr_interval = get_rr_interval_fair, 10060 10061 .update_curr = update_curr_fair, 10062 10063 #ifdef CONFIG_FAIR_GROUP_SCHED 10064 .task_change_group = task_change_group_fair, 10065 #endif 10066 }; 10067 10068 #ifdef CONFIG_SCHED_DEBUG 10069 void print_cfs_stats(struct seq_file *m, int cpu) 10070 { 10071 struct cfs_rq *cfs_rq, *pos; 10072 10073 rcu_read_lock(); 10074 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 10075 print_cfs_rq(m, cpu, cfs_rq); 10076 rcu_read_unlock(); 10077 } 10078 10079 #ifdef CONFIG_NUMA_BALANCING 10080 void show_numa_stats(struct task_struct *p, struct seq_file *m) 10081 { 10082 int node; 10083 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 10084 10085 for_each_online_node(node) { 10086 if (p->numa_faults) { 10087 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 10088 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 10089 } 10090 if (p->numa_group) { 10091 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 10092 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 10093 } 10094 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 10095 } 10096 } 10097 #endif /* CONFIG_NUMA_BALANCING */ 10098 #endif /* CONFIG_SCHED_DEBUG */ 10099 10100 __init void init_sched_fair_class(void) 10101 { 10102 #ifdef CONFIG_SMP 10103 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 10104 10105 #ifdef CONFIG_NO_HZ_COMMON 10106 nohz.next_balance = jiffies; 10107 nohz.next_blocked = jiffies; 10108 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 10109 #endif 10110 #endif /* SMP */ 10111 10112 } 10113