xref: /openbmc/linux/kernel/sched/fair.c (revision 8dfb839c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 #include <trace/events/sched.h>
26 
27 /*
28  * Targeted preemption latency for CPU-bound tasks:
29  *
30  * NOTE: this latency value is not the same as the concept of
31  * 'timeslice length' - timeslices in CFS are of variable length
32  * and have no persistent notion like in traditional, time-slice
33  * based scheduling concepts.
34  *
35  * (to see the precise effective timeslice length of your workload,
36  *  run vmstat and monitor the context-switches (cs) field)
37  *
38  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39  */
40 unsigned int sysctl_sched_latency			= 6000000ULL;
41 unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
42 
43 /*
44  * The initial- and re-scaling of tunables is configurable
45  *
46  * Options are:
47  *
48  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
49  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51  *
52  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53  */
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55 
56 /*
57  * Minimal preemption granularity for CPU-bound tasks:
58  *
59  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60  */
61 unsigned int sysctl_sched_min_granularity		= 750000ULL;
62 unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 
64 /*
65  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66  */
67 static unsigned int sched_nr_latency = 8;
68 
69 /*
70  * After fork, child runs first. If set to 0 (default) then
71  * parent will (try to) run first.
72  */
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
74 
75 /*
76  * SCHED_OTHER wake-up granularity.
77  *
78  * This option delays the preemption effects of decoupled workloads
79  * and reduces their over-scheduling. Synchronous workloads will still
80  * have immediate wakeup/sleep latencies.
81  *
82  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83  */
84 unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
85 unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 #ifdef CONFIG_SMP
90 /*
91  * For asym packing, by default the lower numbered CPU has higher priority.
92  */
93 int __weak arch_asym_cpu_priority(int cpu)
94 {
95 	return -cpu;
96 }
97 #endif
98 
99 #ifdef CONFIG_CFS_BANDWIDTH
100 /*
101  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102  * each time a cfs_rq requests quota.
103  *
104  * Note: in the case that the slice exceeds the runtime remaining (either due
105  * to consumption or the quota being specified to be smaller than the slice)
106  * we will always only issue the remaining available time.
107  *
108  * (default: 5 msec, units: microseconds)
109  */
110 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
111 #endif
112 
113 /*
114  * The margin used when comparing utilization with CPU capacity:
115  * util * margin < capacity * 1024
116  *
117  * (default: ~20%)
118  */
119 unsigned int capacity_margin				= 1280;
120 
121 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 {
123 	lw->weight += inc;
124 	lw->inv_weight = 0;
125 }
126 
127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 {
129 	lw->weight -= dec;
130 	lw->inv_weight = 0;
131 }
132 
133 static inline void update_load_set(struct load_weight *lw, unsigned long w)
134 {
135 	lw->weight = w;
136 	lw->inv_weight = 0;
137 }
138 
139 /*
140  * Increase the granularity value when there are more CPUs,
141  * because with more CPUs the 'effective latency' as visible
142  * to users decreases. But the relationship is not linear,
143  * so pick a second-best guess by going with the log2 of the
144  * number of CPUs.
145  *
146  * This idea comes from the SD scheduler of Con Kolivas:
147  */
148 static unsigned int get_update_sysctl_factor(void)
149 {
150 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 	unsigned int factor;
152 
153 	switch (sysctl_sched_tunable_scaling) {
154 	case SCHED_TUNABLESCALING_NONE:
155 		factor = 1;
156 		break;
157 	case SCHED_TUNABLESCALING_LINEAR:
158 		factor = cpus;
159 		break;
160 	case SCHED_TUNABLESCALING_LOG:
161 	default:
162 		factor = 1 + ilog2(cpus);
163 		break;
164 	}
165 
166 	return factor;
167 }
168 
169 static void update_sysctl(void)
170 {
171 	unsigned int factor = get_update_sysctl_factor();
172 
173 #define SET_SYSCTL(name) \
174 	(sysctl_##name = (factor) * normalized_sysctl_##name)
175 	SET_SYSCTL(sched_min_granularity);
176 	SET_SYSCTL(sched_latency);
177 	SET_SYSCTL(sched_wakeup_granularity);
178 #undef SET_SYSCTL
179 }
180 
181 void sched_init_granularity(void)
182 {
183 	update_sysctl();
184 }
185 
186 #define WMULT_CONST	(~0U)
187 #define WMULT_SHIFT	32
188 
189 static void __update_inv_weight(struct load_weight *lw)
190 {
191 	unsigned long w;
192 
193 	if (likely(lw->inv_weight))
194 		return;
195 
196 	w = scale_load_down(lw->weight);
197 
198 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 		lw->inv_weight = 1;
200 	else if (unlikely(!w))
201 		lw->inv_weight = WMULT_CONST;
202 	else
203 		lw->inv_weight = WMULT_CONST / w;
204 }
205 
206 /*
207  * delta_exec * weight / lw.weight
208  *   OR
209  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210  *
211  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212  * we're guaranteed shift stays positive because inv_weight is guaranteed to
213  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214  *
215  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216  * weight/lw.weight <= 1, and therefore our shift will also be positive.
217  */
218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219 {
220 	u64 fact = scale_load_down(weight);
221 	int shift = WMULT_SHIFT;
222 
223 	__update_inv_weight(lw);
224 
225 	if (unlikely(fact >> 32)) {
226 		while (fact >> 32) {
227 			fact >>= 1;
228 			shift--;
229 		}
230 	}
231 
232 	/* hint to use a 32x32->64 mul */
233 	fact = (u64)(u32)fact * lw->inv_weight;
234 
235 	while (fact >> 32) {
236 		fact >>= 1;
237 		shift--;
238 	}
239 
240 	return mul_u64_u32_shr(delta_exec, fact, shift);
241 }
242 
243 
244 const struct sched_class fair_sched_class;
245 
246 /**************************************************************
247  * CFS operations on generic schedulable entities:
248  */
249 
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 
252 /* cpu runqueue to which this cfs_rq is attached */
253 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
254 {
255 	return cfs_rq->rq;
256 }
257 
258 static inline struct task_struct *task_of(struct sched_entity *se)
259 {
260 	SCHED_WARN_ON(!entity_is_task(se));
261 	return container_of(se, struct task_struct, se);
262 }
263 
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 		for (; se; se = se->parent)
267 
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269 {
270 	return p->se.cfs_rq;
271 }
272 
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275 {
276 	return se->cfs_rq;
277 }
278 
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281 {
282 	return grp->my_q;
283 }
284 
285 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
286 {
287 	if (!cfs_rq->on_list) {
288 		struct rq *rq = rq_of(cfs_rq);
289 		int cpu = cpu_of(rq);
290 		/*
291 		 * Ensure we either appear before our parent (if already
292 		 * enqueued) or force our parent to appear after us when it is
293 		 * enqueued. The fact that we always enqueue bottom-up
294 		 * reduces this to two cases and a special case for the root
295 		 * cfs_rq. Furthermore, it also means that we will always reset
296 		 * tmp_alone_branch either when the branch is connected
297 		 * to a tree or when we reach the beg of the tree
298 		 */
299 		if (cfs_rq->tg->parent &&
300 		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
301 			/*
302 			 * If parent is already on the list, we add the child
303 			 * just before. Thanks to circular linked property of
304 			 * the list, this means to put the child at the tail
305 			 * of the list that starts by parent.
306 			 */
307 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
308 				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
309 			/*
310 			 * The branch is now connected to its tree so we can
311 			 * reset tmp_alone_branch to the beginning of the
312 			 * list.
313 			 */
314 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
315 		} else if (!cfs_rq->tg->parent) {
316 			/*
317 			 * cfs rq without parent should be put
318 			 * at the tail of the list.
319 			 */
320 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
321 				&rq->leaf_cfs_rq_list);
322 			/*
323 			 * We have reach the beg of a tree so we can reset
324 			 * tmp_alone_branch to the beginning of the list.
325 			 */
326 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
327 		} else {
328 			/*
329 			 * The parent has not already been added so we want to
330 			 * make sure that it will be put after us.
331 			 * tmp_alone_branch points to the beg of the branch
332 			 * where we will add parent.
333 			 */
334 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
335 				rq->tmp_alone_branch);
336 			/*
337 			 * update tmp_alone_branch to points to the new beg
338 			 * of the branch
339 			 */
340 			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
341 		}
342 
343 		cfs_rq->on_list = 1;
344 	}
345 }
346 
347 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
348 {
349 	if (cfs_rq->on_list) {
350 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
351 		cfs_rq->on_list = 0;
352 	}
353 }
354 
355 /* Iterate thr' all leaf cfs_rq's on a runqueue */
356 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
357 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
358 				 leaf_cfs_rq_list)
359 
360 /* Do the two (enqueued) entities belong to the same group ? */
361 static inline struct cfs_rq *
362 is_same_group(struct sched_entity *se, struct sched_entity *pse)
363 {
364 	if (se->cfs_rq == pse->cfs_rq)
365 		return se->cfs_rq;
366 
367 	return NULL;
368 }
369 
370 static inline struct sched_entity *parent_entity(struct sched_entity *se)
371 {
372 	return se->parent;
373 }
374 
375 static void
376 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
377 {
378 	int se_depth, pse_depth;
379 
380 	/*
381 	 * preemption test can be made between sibling entities who are in the
382 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
383 	 * both tasks until we find their ancestors who are siblings of common
384 	 * parent.
385 	 */
386 
387 	/* First walk up until both entities are at same depth */
388 	se_depth = (*se)->depth;
389 	pse_depth = (*pse)->depth;
390 
391 	while (se_depth > pse_depth) {
392 		se_depth--;
393 		*se = parent_entity(*se);
394 	}
395 
396 	while (pse_depth > se_depth) {
397 		pse_depth--;
398 		*pse = parent_entity(*pse);
399 	}
400 
401 	while (!is_same_group(*se, *pse)) {
402 		*se = parent_entity(*se);
403 		*pse = parent_entity(*pse);
404 	}
405 }
406 
407 #else	/* !CONFIG_FAIR_GROUP_SCHED */
408 
409 static inline struct task_struct *task_of(struct sched_entity *se)
410 {
411 	return container_of(se, struct task_struct, se);
412 }
413 
414 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
415 {
416 	return container_of(cfs_rq, struct rq, cfs);
417 }
418 
419 
420 #define for_each_sched_entity(se) \
421 		for (; se; se = NULL)
422 
423 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
424 {
425 	return &task_rq(p)->cfs;
426 }
427 
428 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
429 {
430 	struct task_struct *p = task_of(se);
431 	struct rq *rq = task_rq(p);
432 
433 	return &rq->cfs;
434 }
435 
436 /* runqueue "owned" by this group */
437 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
438 {
439 	return NULL;
440 }
441 
442 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
443 {
444 }
445 
446 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
447 {
448 }
449 
450 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
451 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
452 
453 static inline struct sched_entity *parent_entity(struct sched_entity *se)
454 {
455 	return NULL;
456 }
457 
458 static inline void
459 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
460 {
461 }
462 
463 #endif	/* CONFIG_FAIR_GROUP_SCHED */
464 
465 static __always_inline
466 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
467 
468 /**************************************************************
469  * Scheduling class tree data structure manipulation methods:
470  */
471 
472 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
473 {
474 	s64 delta = (s64)(vruntime - max_vruntime);
475 	if (delta > 0)
476 		max_vruntime = vruntime;
477 
478 	return max_vruntime;
479 }
480 
481 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
482 {
483 	s64 delta = (s64)(vruntime - min_vruntime);
484 	if (delta < 0)
485 		min_vruntime = vruntime;
486 
487 	return min_vruntime;
488 }
489 
490 static inline int entity_before(struct sched_entity *a,
491 				struct sched_entity *b)
492 {
493 	return (s64)(a->vruntime - b->vruntime) < 0;
494 }
495 
496 static void update_min_vruntime(struct cfs_rq *cfs_rq)
497 {
498 	struct sched_entity *curr = cfs_rq->curr;
499 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
500 
501 	u64 vruntime = cfs_rq->min_vruntime;
502 
503 	if (curr) {
504 		if (curr->on_rq)
505 			vruntime = curr->vruntime;
506 		else
507 			curr = NULL;
508 	}
509 
510 	if (leftmost) { /* non-empty tree */
511 		struct sched_entity *se;
512 		se = rb_entry(leftmost, struct sched_entity, run_node);
513 
514 		if (!curr)
515 			vruntime = se->vruntime;
516 		else
517 			vruntime = min_vruntime(vruntime, se->vruntime);
518 	}
519 
520 	/* ensure we never gain time by being placed backwards. */
521 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
522 #ifndef CONFIG_64BIT
523 	smp_wmb();
524 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
525 #endif
526 }
527 
528 /*
529  * Enqueue an entity into the rb-tree:
530  */
531 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
532 {
533 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
534 	struct rb_node *parent = NULL;
535 	struct sched_entity *entry;
536 	bool leftmost = true;
537 
538 	/*
539 	 * Find the right place in the rbtree:
540 	 */
541 	while (*link) {
542 		parent = *link;
543 		entry = rb_entry(parent, struct sched_entity, run_node);
544 		/*
545 		 * We dont care about collisions. Nodes with
546 		 * the same key stay together.
547 		 */
548 		if (entity_before(se, entry)) {
549 			link = &parent->rb_left;
550 		} else {
551 			link = &parent->rb_right;
552 			leftmost = false;
553 		}
554 	}
555 
556 	rb_link_node(&se->run_node, parent, link);
557 	rb_insert_color_cached(&se->run_node,
558 			       &cfs_rq->tasks_timeline, leftmost);
559 }
560 
561 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
562 {
563 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
564 }
565 
566 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
567 {
568 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
569 
570 	if (!left)
571 		return NULL;
572 
573 	return rb_entry(left, struct sched_entity, run_node);
574 }
575 
576 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
577 {
578 	struct rb_node *next = rb_next(&se->run_node);
579 
580 	if (!next)
581 		return NULL;
582 
583 	return rb_entry(next, struct sched_entity, run_node);
584 }
585 
586 #ifdef CONFIG_SCHED_DEBUG
587 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
588 {
589 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
590 
591 	if (!last)
592 		return NULL;
593 
594 	return rb_entry(last, struct sched_entity, run_node);
595 }
596 
597 /**************************************************************
598  * Scheduling class statistics methods:
599  */
600 
601 int sched_proc_update_handler(struct ctl_table *table, int write,
602 		void __user *buffer, size_t *lenp,
603 		loff_t *ppos)
604 {
605 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
606 	unsigned int factor = get_update_sysctl_factor();
607 
608 	if (ret || !write)
609 		return ret;
610 
611 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
612 					sysctl_sched_min_granularity);
613 
614 #define WRT_SYSCTL(name) \
615 	(normalized_sysctl_##name = sysctl_##name / (factor))
616 	WRT_SYSCTL(sched_min_granularity);
617 	WRT_SYSCTL(sched_latency);
618 	WRT_SYSCTL(sched_wakeup_granularity);
619 #undef WRT_SYSCTL
620 
621 	return 0;
622 }
623 #endif
624 
625 /*
626  * delta /= w
627  */
628 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
629 {
630 	if (unlikely(se->load.weight != NICE_0_LOAD))
631 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
632 
633 	return delta;
634 }
635 
636 /*
637  * The idea is to set a period in which each task runs once.
638  *
639  * When there are too many tasks (sched_nr_latency) we have to stretch
640  * this period because otherwise the slices get too small.
641  *
642  * p = (nr <= nl) ? l : l*nr/nl
643  */
644 static u64 __sched_period(unsigned long nr_running)
645 {
646 	if (unlikely(nr_running > sched_nr_latency))
647 		return nr_running * sysctl_sched_min_granularity;
648 	else
649 		return sysctl_sched_latency;
650 }
651 
652 /*
653  * We calculate the wall-time slice from the period by taking a part
654  * proportional to the weight.
655  *
656  * s = p*P[w/rw]
657  */
658 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
659 {
660 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
661 
662 	for_each_sched_entity(se) {
663 		struct load_weight *load;
664 		struct load_weight lw;
665 
666 		cfs_rq = cfs_rq_of(se);
667 		load = &cfs_rq->load;
668 
669 		if (unlikely(!se->on_rq)) {
670 			lw = cfs_rq->load;
671 
672 			update_load_add(&lw, se->load.weight);
673 			load = &lw;
674 		}
675 		slice = __calc_delta(slice, se->load.weight, load);
676 	}
677 	return slice;
678 }
679 
680 /*
681  * We calculate the vruntime slice of a to-be-inserted task.
682  *
683  * vs = s/w
684  */
685 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
686 {
687 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
688 }
689 
690 #ifdef CONFIG_SMP
691 #include "pelt.h"
692 #include "sched-pelt.h"
693 
694 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
695 static unsigned long task_h_load(struct task_struct *p);
696 
697 /* Give new sched_entity start runnable values to heavy its load in infant time */
698 void init_entity_runnable_average(struct sched_entity *se)
699 {
700 	struct sched_avg *sa = &se->avg;
701 
702 	memset(sa, 0, sizeof(*sa));
703 
704 	/*
705 	 * Tasks are intialized with full load to be seen as heavy tasks until
706 	 * they get a chance to stabilize to their real load level.
707 	 * Group entities are intialized with zero load to reflect the fact that
708 	 * nothing has been attached to the task group yet.
709 	 */
710 	if (entity_is_task(se))
711 		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
712 
713 	se->runnable_weight = se->load.weight;
714 
715 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
716 }
717 
718 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
719 static void attach_entity_cfs_rq(struct sched_entity *se);
720 
721 /*
722  * With new tasks being created, their initial util_avgs are extrapolated
723  * based on the cfs_rq's current util_avg:
724  *
725  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
726  *
727  * However, in many cases, the above util_avg does not give a desired
728  * value. Moreover, the sum of the util_avgs may be divergent, such
729  * as when the series is a harmonic series.
730  *
731  * To solve this problem, we also cap the util_avg of successive tasks to
732  * only 1/2 of the left utilization budget:
733  *
734  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
735  *
736  * where n denotes the nth task and cpu_scale the CPU capacity.
737  *
738  * For example, for a CPU with 1024 of capacity, a simplest series from
739  * the beginning would be like:
740  *
741  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
742  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
743  *
744  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
745  * if util_avg > util_avg_cap.
746  */
747 void post_init_entity_util_avg(struct sched_entity *se)
748 {
749 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
750 	struct sched_avg *sa = &se->avg;
751 	long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
752 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
753 
754 	if (cap > 0) {
755 		if (cfs_rq->avg.util_avg != 0) {
756 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
757 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
758 
759 			if (sa->util_avg > cap)
760 				sa->util_avg = cap;
761 		} else {
762 			sa->util_avg = cap;
763 		}
764 	}
765 
766 	if (entity_is_task(se)) {
767 		struct task_struct *p = task_of(se);
768 		if (p->sched_class != &fair_sched_class) {
769 			/*
770 			 * For !fair tasks do:
771 			 *
772 			update_cfs_rq_load_avg(now, cfs_rq);
773 			attach_entity_load_avg(cfs_rq, se, 0);
774 			switched_from_fair(rq, p);
775 			 *
776 			 * such that the next switched_to_fair() has the
777 			 * expected state.
778 			 */
779 			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
780 			return;
781 		}
782 	}
783 
784 	attach_entity_cfs_rq(se);
785 }
786 
787 #else /* !CONFIG_SMP */
788 void init_entity_runnable_average(struct sched_entity *se)
789 {
790 }
791 void post_init_entity_util_avg(struct sched_entity *se)
792 {
793 }
794 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
795 {
796 }
797 #endif /* CONFIG_SMP */
798 
799 /*
800  * Update the current task's runtime statistics.
801  */
802 static void update_curr(struct cfs_rq *cfs_rq)
803 {
804 	struct sched_entity *curr = cfs_rq->curr;
805 	u64 now = rq_clock_task(rq_of(cfs_rq));
806 	u64 delta_exec;
807 
808 	if (unlikely(!curr))
809 		return;
810 
811 	delta_exec = now - curr->exec_start;
812 	if (unlikely((s64)delta_exec <= 0))
813 		return;
814 
815 	curr->exec_start = now;
816 
817 	schedstat_set(curr->statistics.exec_max,
818 		      max(delta_exec, curr->statistics.exec_max));
819 
820 	curr->sum_exec_runtime += delta_exec;
821 	schedstat_add(cfs_rq->exec_clock, delta_exec);
822 
823 	curr->vruntime += calc_delta_fair(delta_exec, curr);
824 	update_min_vruntime(cfs_rq);
825 
826 	if (entity_is_task(curr)) {
827 		struct task_struct *curtask = task_of(curr);
828 
829 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
830 		cgroup_account_cputime(curtask, delta_exec);
831 		account_group_exec_runtime(curtask, delta_exec);
832 	}
833 
834 	account_cfs_rq_runtime(cfs_rq, delta_exec);
835 }
836 
837 static void update_curr_fair(struct rq *rq)
838 {
839 	update_curr(cfs_rq_of(&rq->curr->se));
840 }
841 
842 static inline void
843 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
844 {
845 	u64 wait_start, prev_wait_start;
846 
847 	if (!schedstat_enabled())
848 		return;
849 
850 	wait_start = rq_clock(rq_of(cfs_rq));
851 	prev_wait_start = schedstat_val(se->statistics.wait_start);
852 
853 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
854 	    likely(wait_start > prev_wait_start))
855 		wait_start -= prev_wait_start;
856 
857 	__schedstat_set(se->statistics.wait_start, wait_start);
858 }
859 
860 static inline void
861 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
862 {
863 	struct task_struct *p;
864 	u64 delta;
865 
866 	if (!schedstat_enabled())
867 		return;
868 
869 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
870 
871 	if (entity_is_task(se)) {
872 		p = task_of(se);
873 		if (task_on_rq_migrating(p)) {
874 			/*
875 			 * Preserve migrating task's wait time so wait_start
876 			 * time stamp can be adjusted to accumulate wait time
877 			 * prior to migration.
878 			 */
879 			__schedstat_set(se->statistics.wait_start, delta);
880 			return;
881 		}
882 		trace_sched_stat_wait(p, delta);
883 	}
884 
885 	__schedstat_set(se->statistics.wait_max,
886 		      max(schedstat_val(se->statistics.wait_max), delta));
887 	__schedstat_inc(se->statistics.wait_count);
888 	__schedstat_add(se->statistics.wait_sum, delta);
889 	__schedstat_set(se->statistics.wait_start, 0);
890 }
891 
892 static inline void
893 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
894 {
895 	struct task_struct *tsk = NULL;
896 	u64 sleep_start, block_start;
897 
898 	if (!schedstat_enabled())
899 		return;
900 
901 	sleep_start = schedstat_val(se->statistics.sleep_start);
902 	block_start = schedstat_val(se->statistics.block_start);
903 
904 	if (entity_is_task(se))
905 		tsk = task_of(se);
906 
907 	if (sleep_start) {
908 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
909 
910 		if ((s64)delta < 0)
911 			delta = 0;
912 
913 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
914 			__schedstat_set(se->statistics.sleep_max, delta);
915 
916 		__schedstat_set(se->statistics.sleep_start, 0);
917 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
918 
919 		if (tsk) {
920 			account_scheduler_latency(tsk, delta >> 10, 1);
921 			trace_sched_stat_sleep(tsk, delta);
922 		}
923 	}
924 	if (block_start) {
925 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
926 
927 		if ((s64)delta < 0)
928 			delta = 0;
929 
930 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
931 			__schedstat_set(se->statistics.block_max, delta);
932 
933 		__schedstat_set(se->statistics.block_start, 0);
934 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
935 
936 		if (tsk) {
937 			if (tsk->in_iowait) {
938 				__schedstat_add(se->statistics.iowait_sum, delta);
939 				__schedstat_inc(se->statistics.iowait_count);
940 				trace_sched_stat_iowait(tsk, delta);
941 			}
942 
943 			trace_sched_stat_blocked(tsk, delta);
944 
945 			/*
946 			 * Blocking time is in units of nanosecs, so shift by
947 			 * 20 to get a milliseconds-range estimation of the
948 			 * amount of time that the task spent sleeping:
949 			 */
950 			if (unlikely(prof_on == SLEEP_PROFILING)) {
951 				profile_hits(SLEEP_PROFILING,
952 						(void *)get_wchan(tsk),
953 						delta >> 20);
954 			}
955 			account_scheduler_latency(tsk, delta >> 10, 0);
956 		}
957 	}
958 }
959 
960 /*
961  * Task is being enqueued - update stats:
962  */
963 static inline void
964 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
965 {
966 	if (!schedstat_enabled())
967 		return;
968 
969 	/*
970 	 * Are we enqueueing a waiting task? (for current tasks
971 	 * a dequeue/enqueue event is a NOP)
972 	 */
973 	if (se != cfs_rq->curr)
974 		update_stats_wait_start(cfs_rq, se);
975 
976 	if (flags & ENQUEUE_WAKEUP)
977 		update_stats_enqueue_sleeper(cfs_rq, se);
978 }
979 
980 static inline void
981 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
982 {
983 
984 	if (!schedstat_enabled())
985 		return;
986 
987 	/*
988 	 * Mark the end of the wait period if dequeueing a
989 	 * waiting task:
990 	 */
991 	if (se != cfs_rq->curr)
992 		update_stats_wait_end(cfs_rq, se);
993 
994 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
995 		struct task_struct *tsk = task_of(se);
996 
997 		if (tsk->state & TASK_INTERRUPTIBLE)
998 			__schedstat_set(se->statistics.sleep_start,
999 				      rq_clock(rq_of(cfs_rq)));
1000 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1001 			__schedstat_set(se->statistics.block_start,
1002 				      rq_clock(rq_of(cfs_rq)));
1003 	}
1004 }
1005 
1006 /*
1007  * We are picking a new current task - update its stats:
1008  */
1009 static inline void
1010 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1011 {
1012 	/*
1013 	 * We are starting a new run period:
1014 	 */
1015 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1016 }
1017 
1018 /**************************************************
1019  * Scheduling class queueing methods:
1020  */
1021 
1022 #ifdef CONFIG_NUMA_BALANCING
1023 /*
1024  * Approximate time to scan a full NUMA task in ms. The task scan period is
1025  * calculated based on the tasks virtual memory size and
1026  * numa_balancing_scan_size.
1027  */
1028 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1029 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1030 
1031 /* Portion of address space to scan in MB */
1032 unsigned int sysctl_numa_balancing_scan_size = 256;
1033 
1034 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1035 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1036 
1037 struct numa_group {
1038 	atomic_t refcount;
1039 
1040 	spinlock_t lock; /* nr_tasks, tasks */
1041 	int nr_tasks;
1042 	pid_t gid;
1043 	int active_nodes;
1044 
1045 	struct rcu_head rcu;
1046 	unsigned long total_faults;
1047 	unsigned long max_faults_cpu;
1048 	/*
1049 	 * Faults_cpu is used to decide whether memory should move
1050 	 * towards the CPU. As a consequence, these stats are weighted
1051 	 * more by CPU use than by memory faults.
1052 	 */
1053 	unsigned long *faults_cpu;
1054 	unsigned long faults[0];
1055 };
1056 
1057 static inline unsigned long group_faults_priv(struct numa_group *ng);
1058 static inline unsigned long group_faults_shared(struct numa_group *ng);
1059 
1060 static unsigned int task_nr_scan_windows(struct task_struct *p)
1061 {
1062 	unsigned long rss = 0;
1063 	unsigned long nr_scan_pages;
1064 
1065 	/*
1066 	 * Calculations based on RSS as non-present and empty pages are skipped
1067 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1068 	 * on resident pages
1069 	 */
1070 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1071 	rss = get_mm_rss(p->mm);
1072 	if (!rss)
1073 		rss = nr_scan_pages;
1074 
1075 	rss = round_up(rss, nr_scan_pages);
1076 	return rss / nr_scan_pages;
1077 }
1078 
1079 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1080 #define MAX_SCAN_WINDOW 2560
1081 
1082 static unsigned int task_scan_min(struct task_struct *p)
1083 {
1084 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1085 	unsigned int scan, floor;
1086 	unsigned int windows = 1;
1087 
1088 	if (scan_size < MAX_SCAN_WINDOW)
1089 		windows = MAX_SCAN_WINDOW / scan_size;
1090 	floor = 1000 / windows;
1091 
1092 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1093 	return max_t(unsigned int, floor, scan);
1094 }
1095 
1096 static unsigned int task_scan_start(struct task_struct *p)
1097 {
1098 	unsigned long smin = task_scan_min(p);
1099 	unsigned long period = smin;
1100 
1101 	/* Scale the maximum scan period with the amount of shared memory. */
1102 	if (p->numa_group) {
1103 		struct numa_group *ng = p->numa_group;
1104 		unsigned long shared = group_faults_shared(ng);
1105 		unsigned long private = group_faults_priv(ng);
1106 
1107 		period *= atomic_read(&ng->refcount);
1108 		period *= shared + 1;
1109 		period /= private + shared + 1;
1110 	}
1111 
1112 	return max(smin, period);
1113 }
1114 
1115 static unsigned int task_scan_max(struct task_struct *p)
1116 {
1117 	unsigned long smin = task_scan_min(p);
1118 	unsigned long smax;
1119 
1120 	/* Watch for min being lower than max due to floor calculations */
1121 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1122 
1123 	/* Scale the maximum scan period with the amount of shared memory. */
1124 	if (p->numa_group) {
1125 		struct numa_group *ng = p->numa_group;
1126 		unsigned long shared = group_faults_shared(ng);
1127 		unsigned long private = group_faults_priv(ng);
1128 		unsigned long period = smax;
1129 
1130 		period *= atomic_read(&ng->refcount);
1131 		period *= shared + 1;
1132 		period /= private + shared + 1;
1133 
1134 		smax = max(smax, period);
1135 	}
1136 
1137 	return max(smin, smax);
1138 }
1139 
1140 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1141 {
1142 	int mm_users = 0;
1143 	struct mm_struct *mm = p->mm;
1144 
1145 	if (mm) {
1146 		mm_users = atomic_read(&mm->mm_users);
1147 		if (mm_users == 1) {
1148 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1149 			mm->numa_scan_seq = 0;
1150 		}
1151 	}
1152 	p->node_stamp			= 0;
1153 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
1154 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
1155 	p->numa_work.next		= &p->numa_work;
1156 	p->numa_faults			= NULL;
1157 	p->numa_group			= NULL;
1158 	p->last_task_numa_placement	= 0;
1159 	p->last_sum_exec_runtime	= 0;
1160 
1161 	/* New address space, reset the preferred nid */
1162 	if (!(clone_flags & CLONE_VM)) {
1163 		p->numa_preferred_nid = -1;
1164 		return;
1165 	}
1166 
1167 	/*
1168 	 * New thread, keep existing numa_preferred_nid which should be copied
1169 	 * already by arch_dup_task_struct but stagger when scans start.
1170 	 */
1171 	if (mm) {
1172 		unsigned int delay;
1173 
1174 		delay = min_t(unsigned int, task_scan_max(current),
1175 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1176 		delay += 2 * TICK_NSEC;
1177 		p->node_stamp = delay;
1178 	}
1179 }
1180 
1181 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1182 {
1183 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
1184 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1185 }
1186 
1187 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1188 {
1189 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1190 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1191 }
1192 
1193 /* Shared or private faults. */
1194 #define NR_NUMA_HINT_FAULT_TYPES 2
1195 
1196 /* Memory and CPU locality */
1197 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1198 
1199 /* Averaged statistics, and temporary buffers. */
1200 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1201 
1202 pid_t task_numa_group_id(struct task_struct *p)
1203 {
1204 	return p->numa_group ? p->numa_group->gid : 0;
1205 }
1206 
1207 /*
1208  * The averaged statistics, shared & private, memory & CPU,
1209  * occupy the first half of the array. The second half of the
1210  * array is for current counters, which are averaged into the
1211  * first set by task_numa_placement.
1212  */
1213 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1214 {
1215 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1216 }
1217 
1218 static inline unsigned long task_faults(struct task_struct *p, int nid)
1219 {
1220 	if (!p->numa_faults)
1221 		return 0;
1222 
1223 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1224 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1225 }
1226 
1227 static inline unsigned long group_faults(struct task_struct *p, int nid)
1228 {
1229 	if (!p->numa_group)
1230 		return 0;
1231 
1232 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1233 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1234 }
1235 
1236 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1237 {
1238 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1239 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1240 }
1241 
1242 static inline unsigned long group_faults_priv(struct numa_group *ng)
1243 {
1244 	unsigned long faults = 0;
1245 	int node;
1246 
1247 	for_each_online_node(node) {
1248 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1249 	}
1250 
1251 	return faults;
1252 }
1253 
1254 static inline unsigned long group_faults_shared(struct numa_group *ng)
1255 {
1256 	unsigned long faults = 0;
1257 	int node;
1258 
1259 	for_each_online_node(node) {
1260 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1261 	}
1262 
1263 	return faults;
1264 }
1265 
1266 /*
1267  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1268  * considered part of a numa group's pseudo-interleaving set. Migrations
1269  * between these nodes are slowed down, to allow things to settle down.
1270  */
1271 #define ACTIVE_NODE_FRACTION 3
1272 
1273 static bool numa_is_active_node(int nid, struct numa_group *ng)
1274 {
1275 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1276 }
1277 
1278 /* Handle placement on systems where not all nodes are directly connected. */
1279 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1280 					int maxdist, bool task)
1281 {
1282 	unsigned long score = 0;
1283 	int node;
1284 
1285 	/*
1286 	 * All nodes are directly connected, and the same distance
1287 	 * from each other. No need for fancy placement algorithms.
1288 	 */
1289 	if (sched_numa_topology_type == NUMA_DIRECT)
1290 		return 0;
1291 
1292 	/*
1293 	 * This code is called for each node, introducing N^2 complexity,
1294 	 * which should be ok given the number of nodes rarely exceeds 8.
1295 	 */
1296 	for_each_online_node(node) {
1297 		unsigned long faults;
1298 		int dist = node_distance(nid, node);
1299 
1300 		/*
1301 		 * The furthest away nodes in the system are not interesting
1302 		 * for placement; nid was already counted.
1303 		 */
1304 		if (dist == sched_max_numa_distance || node == nid)
1305 			continue;
1306 
1307 		/*
1308 		 * On systems with a backplane NUMA topology, compare groups
1309 		 * of nodes, and move tasks towards the group with the most
1310 		 * memory accesses. When comparing two nodes at distance
1311 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1312 		 * of each group. Skip other nodes.
1313 		 */
1314 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1315 					dist >= maxdist)
1316 			continue;
1317 
1318 		/* Add up the faults from nearby nodes. */
1319 		if (task)
1320 			faults = task_faults(p, node);
1321 		else
1322 			faults = group_faults(p, node);
1323 
1324 		/*
1325 		 * On systems with a glueless mesh NUMA topology, there are
1326 		 * no fixed "groups of nodes". Instead, nodes that are not
1327 		 * directly connected bounce traffic through intermediate
1328 		 * nodes; a numa_group can occupy any set of nodes.
1329 		 * The further away a node is, the less the faults count.
1330 		 * This seems to result in good task placement.
1331 		 */
1332 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1333 			faults *= (sched_max_numa_distance - dist);
1334 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1335 		}
1336 
1337 		score += faults;
1338 	}
1339 
1340 	return score;
1341 }
1342 
1343 /*
1344  * These return the fraction of accesses done by a particular task, or
1345  * task group, on a particular numa node.  The group weight is given a
1346  * larger multiplier, in order to group tasks together that are almost
1347  * evenly spread out between numa nodes.
1348  */
1349 static inline unsigned long task_weight(struct task_struct *p, int nid,
1350 					int dist)
1351 {
1352 	unsigned long faults, total_faults;
1353 
1354 	if (!p->numa_faults)
1355 		return 0;
1356 
1357 	total_faults = p->total_numa_faults;
1358 
1359 	if (!total_faults)
1360 		return 0;
1361 
1362 	faults = task_faults(p, nid);
1363 	faults += score_nearby_nodes(p, nid, dist, true);
1364 
1365 	return 1000 * faults / total_faults;
1366 }
1367 
1368 static inline unsigned long group_weight(struct task_struct *p, int nid,
1369 					 int dist)
1370 {
1371 	unsigned long faults, total_faults;
1372 
1373 	if (!p->numa_group)
1374 		return 0;
1375 
1376 	total_faults = p->numa_group->total_faults;
1377 
1378 	if (!total_faults)
1379 		return 0;
1380 
1381 	faults = group_faults(p, nid);
1382 	faults += score_nearby_nodes(p, nid, dist, false);
1383 
1384 	return 1000 * faults / total_faults;
1385 }
1386 
1387 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1388 				int src_nid, int dst_cpu)
1389 {
1390 	struct numa_group *ng = p->numa_group;
1391 	int dst_nid = cpu_to_node(dst_cpu);
1392 	int last_cpupid, this_cpupid;
1393 
1394 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1395 
1396 	/*
1397 	 * Multi-stage node selection is used in conjunction with a periodic
1398 	 * migration fault to build a temporal task<->page relation. By using
1399 	 * a two-stage filter we remove short/unlikely relations.
1400 	 *
1401 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1402 	 * a task's usage of a particular page (n_p) per total usage of this
1403 	 * page (n_t) (in a given time-span) to a probability.
1404 	 *
1405 	 * Our periodic faults will sample this probability and getting the
1406 	 * same result twice in a row, given these samples are fully
1407 	 * independent, is then given by P(n)^2, provided our sample period
1408 	 * is sufficiently short compared to the usage pattern.
1409 	 *
1410 	 * This quadric squishes small probabilities, making it less likely we
1411 	 * act on an unlikely task<->page relation.
1412 	 */
1413 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1414 	if (!cpupid_pid_unset(last_cpupid) &&
1415 				cpupid_to_nid(last_cpupid) != dst_nid)
1416 		return false;
1417 
1418 	/* Always allow migrate on private faults */
1419 	if (cpupid_match_pid(p, last_cpupid))
1420 		return true;
1421 
1422 	/* A shared fault, but p->numa_group has not been set up yet. */
1423 	if (!ng)
1424 		return true;
1425 
1426 	/*
1427 	 * Destination node is much more heavily used than the source
1428 	 * node? Allow migration.
1429 	 */
1430 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1431 					ACTIVE_NODE_FRACTION)
1432 		return true;
1433 
1434 	/*
1435 	 * Distribute memory according to CPU & memory use on each node,
1436 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1437 	 *
1438 	 * faults_cpu(dst)   3   faults_cpu(src)
1439 	 * --------------- * - > ---------------
1440 	 * faults_mem(dst)   4   faults_mem(src)
1441 	 */
1442 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1443 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1444 }
1445 
1446 static unsigned long weighted_cpuload(struct rq *rq);
1447 static unsigned long source_load(int cpu, int type);
1448 static unsigned long target_load(int cpu, int type);
1449 static unsigned long capacity_of(int cpu);
1450 
1451 /* Cached statistics for all CPUs within a node */
1452 struct numa_stats {
1453 	unsigned long load;
1454 
1455 	/* Total compute capacity of CPUs on a node */
1456 	unsigned long compute_capacity;
1457 
1458 	unsigned int nr_running;
1459 };
1460 
1461 /*
1462  * XXX borrowed from update_sg_lb_stats
1463  */
1464 static void update_numa_stats(struct numa_stats *ns, int nid)
1465 {
1466 	int smt, cpu, cpus = 0;
1467 	unsigned long capacity;
1468 
1469 	memset(ns, 0, sizeof(*ns));
1470 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1471 		struct rq *rq = cpu_rq(cpu);
1472 
1473 		ns->nr_running += rq->nr_running;
1474 		ns->load += weighted_cpuload(rq);
1475 		ns->compute_capacity += capacity_of(cpu);
1476 
1477 		cpus++;
1478 	}
1479 
1480 	/*
1481 	 * If we raced with hotplug and there are no CPUs left in our mask
1482 	 * the @ns structure is NULL'ed and task_numa_compare() will
1483 	 * not find this node attractive.
1484 	 *
1485 	 * We'll detect a huge imbalance and bail there.
1486 	 */
1487 	if (!cpus)
1488 		return;
1489 
1490 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1491 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1492 	capacity = cpus / smt; /* cores */
1493 
1494 	capacity = min_t(unsigned, capacity,
1495 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1496 }
1497 
1498 struct task_numa_env {
1499 	struct task_struct *p;
1500 
1501 	int src_cpu, src_nid;
1502 	int dst_cpu, dst_nid;
1503 
1504 	struct numa_stats src_stats, dst_stats;
1505 
1506 	int imbalance_pct;
1507 	int dist;
1508 
1509 	struct task_struct *best_task;
1510 	long best_imp;
1511 	int best_cpu;
1512 };
1513 
1514 static void task_numa_assign(struct task_numa_env *env,
1515 			     struct task_struct *p, long imp)
1516 {
1517 	if (env->best_task)
1518 		put_task_struct(env->best_task);
1519 	if (p)
1520 		get_task_struct(p);
1521 
1522 	env->best_task = p;
1523 	env->best_imp = imp;
1524 	env->best_cpu = env->dst_cpu;
1525 }
1526 
1527 static bool load_too_imbalanced(long src_load, long dst_load,
1528 				struct task_numa_env *env)
1529 {
1530 	long imb, old_imb;
1531 	long orig_src_load, orig_dst_load;
1532 	long src_capacity, dst_capacity;
1533 
1534 	/*
1535 	 * The load is corrected for the CPU capacity available on each node.
1536 	 *
1537 	 * src_load        dst_load
1538 	 * ------------ vs ---------
1539 	 * src_capacity    dst_capacity
1540 	 */
1541 	src_capacity = env->src_stats.compute_capacity;
1542 	dst_capacity = env->dst_stats.compute_capacity;
1543 
1544 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1545 
1546 	orig_src_load = env->src_stats.load;
1547 	orig_dst_load = env->dst_stats.load;
1548 
1549 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1550 
1551 	/* Would this change make things worse? */
1552 	return (imb > old_imb);
1553 }
1554 
1555 /*
1556  * This checks if the overall compute and NUMA accesses of the system would
1557  * be improved if the source tasks was migrated to the target dst_cpu taking
1558  * into account that it might be best if task running on the dst_cpu should
1559  * be exchanged with the source task
1560  */
1561 static void task_numa_compare(struct task_numa_env *env,
1562 			      long taskimp, long groupimp, bool maymove)
1563 {
1564 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1565 	struct task_struct *cur;
1566 	long src_load, dst_load;
1567 	long load;
1568 	long imp = env->p->numa_group ? groupimp : taskimp;
1569 	long moveimp = imp;
1570 	int dist = env->dist;
1571 
1572 	rcu_read_lock();
1573 	cur = task_rcu_dereference(&dst_rq->curr);
1574 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1575 		cur = NULL;
1576 
1577 	/*
1578 	 * Because we have preemption enabled we can get migrated around and
1579 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1580 	 */
1581 	if (cur == env->p)
1582 		goto unlock;
1583 
1584 	if (!cur) {
1585 		if (maymove || imp > env->best_imp)
1586 			goto assign;
1587 		else
1588 			goto unlock;
1589 	}
1590 
1591 	/*
1592 	 * "imp" is the fault differential for the source task between the
1593 	 * source and destination node. Calculate the total differential for
1594 	 * the source task and potential destination task. The more negative
1595 	 * the value is, the more remote accesses that would be expected to
1596 	 * be incurred if the tasks were swapped.
1597 	 */
1598 	/* Skip this swap candidate if cannot move to the source cpu */
1599 	if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1600 		goto unlock;
1601 
1602 	/*
1603 	 * If dst and source tasks are in the same NUMA group, or not
1604 	 * in any group then look only at task weights.
1605 	 */
1606 	if (cur->numa_group == env->p->numa_group) {
1607 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1608 		      task_weight(cur, env->dst_nid, dist);
1609 		/*
1610 		 * Add some hysteresis to prevent swapping the
1611 		 * tasks within a group over tiny differences.
1612 		 */
1613 		if (cur->numa_group)
1614 			imp -= imp / 16;
1615 	} else {
1616 		/*
1617 		 * Compare the group weights. If a task is all by itself
1618 		 * (not part of a group), use the task weight instead.
1619 		 */
1620 		if (cur->numa_group && env->p->numa_group)
1621 			imp += group_weight(cur, env->src_nid, dist) -
1622 			       group_weight(cur, env->dst_nid, dist);
1623 		else
1624 			imp += task_weight(cur, env->src_nid, dist) -
1625 			       task_weight(cur, env->dst_nid, dist);
1626 	}
1627 
1628 	if (imp <= env->best_imp)
1629 		goto unlock;
1630 
1631 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1632 		imp = moveimp - 1;
1633 		cur = NULL;
1634 		goto assign;
1635 	}
1636 
1637 	/*
1638 	 * In the overloaded case, try and keep the load balanced.
1639 	 */
1640 	load = task_h_load(env->p) - task_h_load(cur);
1641 	if (!load)
1642 		goto assign;
1643 
1644 	dst_load = env->dst_stats.load + load;
1645 	src_load = env->src_stats.load - load;
1646 
1647 	if (load_too_imbalanced(src_load, dst_load, env))
1648 		goto unlock;
1649 
1650 assign:
1651 	/*
1652 	 * One idle CPU per node is evaluated for a task numa move.
1653 	 * Call select_idle_sibling to maybe find a better one.
1654 	 */
1655 	if (!cur) {
1656 		/*
1657 		 * select_idle_siblings() uses an per-CPU cpumask that
1658 		 * can be used from IRQ context.
1659 		 */
1660 		local_irq_disable();
1661 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1662 						   env->dst_cpu);
1663 		local_irq_enable();
1664 	}
1665 
1666 	task_numa_assign(env, cur, imp);
1667 unlock:
1668 	rcu_read_unlock();
1669 }
1670 
1671 static void task_numa_find_cpu(struct task_numa_env *env,
1672 				long taskimp, long groupimp)
1673 {
1674 	long src_load, dst_load, load;
1675 	bool maymove = false;
1676 	int cpu;
1677 
1678 	load = task_h_load(env->p);
1679 	dst_load = env->dst_stats.load + load;
1680 	src_load = env->src_stats.load - load;
1681 
1682 	/*
1683 	 * If the improvement from just moving env->p direction is better
1684 	 * than swapping tasks around, check if a move is possible.
1685 	 */
1686 	maymove = !load_too_imbalanced(src_load, dst_load, env);
1687 
1688 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1689 		/* Skip this CPU if the source task cannot migrate */
1690 		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1691 			continue;
1692 
1693 		env->dst_cpu = cpu;
1694 		task_numa_compare(env, taskimp, groupimp, maymove);
1695 	}
1696 }
1697 
1698 static int task_numa_migrate(struct task_struct *p)
1699 {
1700 	struct task_numa_env env = {
1701 		.p = p,
1702 
1703 		.src_cpu = task_cpu(p),
1704 		.src_nid = task_node(p),
1705 
1706 		.imbalance_pct = 112,
1707 
1708 		.best_task = NULL,
1709 		.best_imp = 0,
1710 		.best_cpu = -1,
1711 	};
1712 	struct sched_domain *sd;
1713 	unsigned long taskweight, groupweight;
1714 	int nid, ret, dist;
1715 	long taskimp, groupimp;
1716 
1717 	/*
1718 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1719 	 * imbalance and would be the first to start moving tasks about.
1720 	 *
1721 	 * And we want to avoid any moving of tasks about, as that would create
1722 	 * random movement of tasks -- counter the numa conditions we're trying
1723 	 * to satisfy here.
1724 	 */
1725 	rcu_read_lock();
1726 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1727 	if (sd)
1728 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1729 	rcu_read_unlock();
1730 
1731 	/*
1732 	 * Cpusets can break the scheduler domain tree into smaller
1733 	 * balance domains, some of which do not cross NUMA boundaries.
1734 	 * Tasks that are "trapped" in such domains cannot be migrated
1735 	 * elsewhere, so there is no point in (re)trying.
1736 	 */
1737 	if (unlikely(!sd)) {
1738 		sched_setnuma(p, task_node(p));
1739 		return -EINVAL;
1740 	}
1741 
1742 	env.dst_nid = p->numa_preferred_nid;
1743 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1744 	taskweight = task_weight(p, env.src_nid, dist);
1745 	groupweight = group_weight(p, env.src_nid, dist);
1746 	update_numa_stats(&env.src_stats, env.src_nid);
1747 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1748 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1749 	update_numa_stats(&env.dst_stats, env.dst_nid);
1750 
1751 	/* Try to find a spot on the preferred nid. */
1752 	task_numa_find_cpu(&env, taskimp, groupimp);
1753 
1754 	/*
1755 	 * Look at other nodes in these cases:
1756 	 * - there is no space available on the preferred_nid
1757 	 * - the task is part of a numa_group that is interleaved across
1758 	 *   multiple NUMA nodes; in order to better consolidate the group,
1759 	 *   we need to check other locations.
1760 	 */
1761 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1762 		for_each_online_node(nid) {
1763 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1764 				continue;
1765 
1766 			dist = node_distance(env.src_nid, env.dst_nid);
1767 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1768 						dist != env.dist) {
1769 				taskweight = task_weight(p, env.src_nid, dist);
1770 				groupweight = group_weight(p, env.src_nid, dist);
1771 			}
1772 
1773 			/* Only consider nodes where both task and groups benefit */
1774 			taskimp = task_weight(p, nid, dist) - taskweight;
1775 			groupimp = group_weight(p, nid, dist) - groupweight;
1776 			if (taskimp < 0 && groupimp < 0)
1777 				continue;
1778 
1779 			env.dist = dist;
1780 			env.dst_nid = nid;
1781 			update_numa_stats(&env.dst_stats, env.dst_nid);
1782 			task_numa_find_cpu(&env, taskimp, groupimp);
1783 		}
1784 	}
1785 
1786 	/*
1787 	 * If the task is part of a workload that spans multiple NUMA nodes,
1788 	 * and is migrating into one of the workload's active nodes, remember
1789 	 * this node as the task's preferred numa node, so the workload can
1790 	 * settle down.
1791 	 * A task that migrated to a second choice node will be better off
1792 	 * trying for a better one later. Do not set the preferred node here.
1793 	 */
1794 	if (p->numa_group) {
1795 		if (env.best_cpu == -1)
1796 			nid = env.src_nid;
1797 		else
1798 			nid = cpu_to_node(env.best_cpu);
1799 
1800 		if (nid != p->numa_preferred_nid)
1801 			sched_setnuma(p, nid);
1802 	}
1803 
1804 	/* No better CPU than the current one was found. */
1805 	if (env.best_cpu == -1)
1806 		return -EAGAIN;
1807 
1808 	/*
1809 	 * Reset the scan period if the task is being rescheduled on an
1810 	 * alternative node to recheck if the tasks is now properly placed.
1811 	 */
1812 	p->numa_scan_period = task_scan_start(p);
1813 
1814 	if (env.best_task == NULL) {
1815 		ret = migrate_task_to(p, env.best_cpu);
1816 		if (ret != 0)
1817 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1818 		return ret;
1819 	}
1820 
1821 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1822 
1823 	if (ret != 0)
1824 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1825 	put_task_struct(env.best_task);
1826 	return ret;
1827 }
1828 
1829 /* Attempt to migrate a task to a CPU on the preferred node. */
1830 static void numa_migrate_preferred(struct task_struct *p)
1831 {
1832 	unsigned long interval = HZ;
1833 
1834 	/* This task has no NUMA fault statistics yet */
1835 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1836 		return;
1837 
1838 	/* Periodically retry migrating the task to the preferred node */
1839 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1840 	p->numa_migrate_retry = jiffies + interval;
1841 
1842 	/* Success if task is already running on preferred CPU */
1843 	if (task_node(p) == p->numa_preferred_nid)
1844 		return;
1845 
1846 	/* Otherwise, try migrate to a CPU on the preferred node */
1847 	task_numa_migrate(p);
1848 }
1849 
1850 /*
1851  * Find out how many nodes on the workload is actively running on. Do this by
1852  * tracking the nodes from which NUMA hinting faults are triggered. This can
1853  * be different from the set of nodes where the workload's memory is currently
1854  * located.
1855  */
1856 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1857 {
1858 	unsigned long faults, max_faults = 0;
1859 	int nid, active_nodes = 0;
1860 
1861 	for_each_online_node(nid) {
1862 		faults = group_faults_cpu(numa_group, nid);
1863 		if (faults > max_faults)
1864 			max_faults = faults;
1865 	}
1866 
1867 	for_each_online_node(nid) {
1868 		faults = group_faults_cpu(numa_group, nid);
1869 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1870 			active_nodes++;
1871 	}
1872 
1873 	numa_group->max_faults_cpu = max_faults;
1874 	numa_group->active_nodes = active_nodes;
1875 }
1876 
1877 /*
1878  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1879  * increments. The more local the fault statistics are, the higher the scan
1880  * period will be for the next scan window. If local/(local+remote) ratio is
1881  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1882  * the scan period will decrease. Aim for 70% local accesses.
1883  */
1884 #define NUMA_PERIOD_SLOTS 10
1885 #define NUMA_PERIOD_THRESHOLD 7
1886 
1887 /*
1888  * Increase the scan period (slow down scanning) if the majority of
1889  * our memory is already on our local node, or if the majority of
1890  * the page accesses are shared with other processes.
1891  * Otherwise, decrease the scan period.
1892  */
1893 static void update_task_scan_period(struct task_struct *p,
1894 			unsigned long shared, unsigned long private)
1895 {
1896 	unsigned int period_slot;
1897 	int lr_ratio, ps_ratio;
1898 	int diff;
1899 
1900 	unsigned long remote = p->numa_faults_locality[0];
1901 	unsigned long local = p->numa_faults_locality[1];
1902 
1903 	/*
1904 	 * If there were no record hinting faults then either the task is
1905 	 * completely idle or all activity is areas that are not of interest
1906 	 * to automatic numa balancing. Related to that, if there were failed
1907 	 * migration then it implies we are migrating too quickly or the local
1908 	 * node is overloaded. In either case, scan slower
1909 	 */
1910 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1911 		p->numa_scan_period = min(p->numa_scan_period_max,
1912 			p->numa_scan_period << 1);
1913 
1914 		p->mm->numa_next_scan = jiffies +
1915 			msecs_to_jiffies(p->numa_scan_period);
1916 
1917 		return;
1918 	}
1919 
1920 	/*
1921 	 * Prepare to scale scan period relative to the current period.
1922 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1923 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1924 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1925 	 */
1926 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1927 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1928 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1929 
1930 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1931 		/*
1932 		 * Most memory accesses are local. There is no need to
1933 		 * do fast NUMA scanning, since memory is already local.
1934 		 */
1935 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1936 		if (!slot)
1937 			slot = 1;
1938 		diff = slot * period_slot;
1939 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1940 		/*
1941 		 * Most memory accesses are shared with other tasks.
1942 		 * There is no point in continuing fast NUMA scanning,
1943 		 * since other tasks may just move the memory elsewhere.
1944 		 */
1945 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1946 		if (!slot)
1947 			slot = 1;
1948 		diff = slot * period_slot;
1949 	} else {
1950 		/*
1951 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1952 		 * yet they are not on the local NUMA node. Speed up
1953 		 * NUMA scanning to get the memory moved over.
1954 		 */
1955 		int ratio = max(lr_ratio, ps_ratio);
1956 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1957 	}
1958 
1959 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1960 			task_scan_min(p), task_scan_max(p));
1961 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1962 }
1963 
1964 /*
1965  * Get the fraction of time the task has been running since the last
1966  * NUMA placement cycle. The scheduler keeps similar statistics, but
1967  * decays those on a 32ms period, which is orders of magnitude off
1968  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1969  * stats only if the task is so new there are no NUMA statistics yet.
1970  */
1971 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1972 {
1973 	u64 runtime, delta, now;
1974 	/* Use the start of this time slice to avoid calculations. */
1975 	now = p->se.exec_start;
1976 	runtime = p->se.sum_exec_runtime;
1977 
1978 	if (p->last_task_numa_placement) {
1979 		delta = runtime - p->last_sum_exec_runtime;
1980 		*period = now - p->last_task_numa_placement;
1981 	} else {
1982 		delta = p->se.avg.load_sum;
1983 		*period = LOAD_AVG_MAX;
1984 	}
1985 
1986 	p->last_sum_exec_runtime = runtime;
1987 	p->last_task_numa_placement = now;
1988 
1989 	return delta;
1990 }
1991 
1992 /*
1993  * Determine the preferred nid for a task in a numa_group. This needs to
1994  * be done in a way that produces consistent results with group_weight,
1995  * otherwise workloads might not converge.
1996  */
1997 static int preferred_group_nid(struct task_struct *p, int nid)
1998 {
1999 	nodemask_t nodes;
2000 	int dist;
2001 
2002 	/* Direct connections between all NUMA nodes. */
2003 	if (sched_numa_topology_type == NUMA_DIRECT)
2004 		return nid;
2005 
2006 	/*
2007 	 * On a system with glueless mesh NUMA topology, group_weight
2008 	 * scores nodes according to the number of NUMA hinting faults on
2009 	 * both the node itself, and on nearby nodes.
2010 	 */
2011 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2012 		unsigned long score, max_score = 0;
2013 		int node, max_node = nid;
2014 
2015 		dist = sched_max_numa_distance;
2016 
2017 		for_each_online_node(node) {
2018 			score = group_weight(p, node, dist);
2019 			if (score > max_score) {
2020 				max_score = score;
2021 				max_node = node;
2022 			}
2023 		}
2024 		return max_node;
2025 	}
2026 
2027 	/*
2028 	 * Finding the preferred nid in a system with NUMA backplane
2029 	 * interconnect topology is more involved. The goal is to locate
2030 	 * tasks from numa_groups near each other in the system, and
2031 	 * untangle workloads from different sides of the system. This requires
2032 	 * searching down the hierarchy of node groups, recursively searching
2033 	 * inside the highest scoring group of nodes. The nodemask tricks
2034 	 * keep the complexity of the search down.
2035 	 */
2036 	nodes = node_online_map;
2037 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2038 		unsigned long max_faults = 0;
2039 		nodemask_t max_group = NODE_MASK_NONE;
2040 		int a, b;
2041 
2042 		/* Are there nodes at this distance from each other? */
2043 		if (!find_numa_distance(dist))
2044 			continue;
2045 
2046 		for_each_node_mask(a, nodes) {
2047 			unsigned long faults = 0;
2048 			nodemask_t this_group;
2049 			nodes_clear(this_group);
2050 
2051 			/* Sum group's NUMA faults; includes a==b case. */
2052 			for_each_node_mask(b, nodes) {
2053 				if (node_distance(a, b) < dist) {
2054 					faults += group_faults(p, b);
2055 					node_set(b, this_group);
2056 					node_clear(b, nodes);
2057 				}
2058 			}
2059 
2060 			/* Remember the top group. */
2061 			if (faults > max_faults) {
2062 				max_faults = faults;
2063 				max_group = this_group;
2064 				/*
2065 				 * subtle: at the smallest distance there is
2066 				 * just one node left in each "group", the
2067 				 * winner is the preferred nid.
2068 				 */
2069 				nid = a;
2070 			}
2071 		}
2072 		/* Next round, evaluate the nodes within max_group. */
2073 		if (!max_faults)
2074 			break;
2075 		nodes = max_group;
2076 	}
2077 	return nid;
2078 }
2079 
2080 static void task_numa_placement(struct task_struct *p)
2081 {
2082 	int seq, nid, max_nid = -1;
2083 	unsigned long max_faults = 0;
2084 	unsigned long fault_types[2] = { 0, 0 };
2085 	unsigned long total_faults;
2086 	u64 runtime, period;
2087 	spinlock_t *group_lock = NULL;
2088 
2089 	/*
2090 	 * The p->mm->numa_scan_seq field gets updated without
2091 	 * exclusive access. Use READ_ONCE() here to ensure
2092 	 * that the field is read in a single access:
2093 	 */
2094 	seq = READ_ONCE(p->mm->numa_scan_seq);
2095 	if (p->numa_scan_seq == seq)
2096 		return;
2097 	p->numa_scan_seq = seq;
2098 	p->numa_scan_period_max = task_scan_max(p);
2099 
2100 	total_faults = p->numa_faults_locality[0] +
2101 		       p->numa_faults_locality[1];
2102 	runtime = numa_get_avg_runtime(p, &period);
2103 
2104 	/* If the task is part of a group prevent parallel updates to group stats */
2105 	if (p->numa_group) {
2106 		group_lock = &p->numa_group->lock;
2107 		spin_lock_irq(group_lock);
2108 	}
2109 
2110 	/* Find the node with the highest number of faults */
2111 	for_each_online_node(nid) {
2112 		/* Keep track of the offsets in numa_faults array */
2113 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2114 		unsigned long faults = 0, group_faults = 0;
2115 		int priv;
2116 
2117 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2118 			long diff, f_diff, f_weight;
2119 
2120 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2121 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2122 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2123 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2124 
2125 			/* Decay existing window, copy faults since last scan */
2126 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2127 			fault_types[priv] += p->numa_faults[membuf_idx];
2128 			p->numa_faults[membuf_idx] = 0;
2129 
2130 			/*
2131 			 * Normalize the faults_from, so all tasks in a group
2132 			 * count according to CPU use, instead of by the raw
2133 			 * number of faults. Tasks with little runtime have
2134 			 * little over-all impact on throughput, and thus their
2135 			 * faults are less important.
2136 			 */
2137 			f_weight = div64_u64(runtime << 16, period + 1);
2138 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2139 				   (total_faults + 1);
2140 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2141 			p->numa_faults[cpubuf_idx] = 0;
2142 
2143 			p->numa_faults[mem_idx] += diff;
2144 			p->numa_faults[cpu_idx] += f_diff;
2145 			faults += p->numa_faults[mem_idx];
2146 			p->total_numa_faults += diff;
2147 			if (p->numa_group) {
2148 				/*
2149 				 * safe because we can only change our own group
2150 				 *
2151 				 * mem_idx represents the offset for a given
2152 				 * nid and priv in a specific region because it
2153 				 * is at the beginning of the numa_faults array.
2154 				 */
2155 				p->numa_group->faults[mem_idx] += diff;
2156 				p->numa_group->faults_cpu[mem_idx] += f_diff;
2157 				p->numa_group->total_faults += diff;
2158 				group_faults += p->numa_group->faults[mem_idx];
2159 			}
2160 		}
2161 
2162 		if (!p->numa_group) {
2163 			if (faults > max_faults) {
2164 				max_faults = faults;
2165 				max_nid = nid;
2166 			}
2167 		} else if (group_faults > max_faults) {
2168 			max_faults = group_faults;
2169 			max_nid = nid;
2170 		}
2171 	}
2172 
2173 	if (p->numa_group) {
2174 		numa_group_count_active_nodes(p->numa_group);
2175 		spin_unlock_irq(group_lock);
2176 		max_nid = preferred_group_nid(p, max_nid);
2177 	}
2178 
2179 	if (max_faults) {
2180 		/* Set the new preferred node */
2181 		if (max_nid != p->numa_preferred_nid)
2182 			sched_setnuma(p, max_nid);
2183 	}
2184 
2185 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2186 }
2187 
2188 static inline int get_numa_group(struct numa_group *grp)
2189 {
2190 	return atomic_inc_not_zero(&grp->refcount);
2191 }
2192 
2193 static inline void put_numa_group(struct numa_group *grp)
2194 {
2195 	if (atomic_dec_and_test(&grp->refcount))
2196 		kfree_rcu(grp, rcu);
2197 }
2198 
2199 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2200 			int *priv)
2201 {
2202 	struct numa_group *grp, *my_grp;
2203 	struct task_struct *tsk;
2204 	bool join = false;
2205 	int cpu = cpupid_to_cpu(cpupid);
2206 	int i;
2207 
2208 	if (unlikely(!p->numa_group)) {
2209 		unsigned int size = sizeof(struct numa_group) +
2210 				    4*nr_node_ids*sizeof(unsigned long);
2211 
2212 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2213 		if (!grp)
2214 			return;
2215 
2216 		atomic_set(&grp->refcount, 1);
2217 		grp->active_nodes = 1;
2218 		grp->max_faults_cpu = 0;
2219 		spin_lock_init(&grp->lock);
2220 		grp->gid = p->pid;
2221 		/* Second half of the array tracks nids where faults happen */
2222 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2223 						nr_node_ids;
2224 
2225 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2226 			grp->faults[i] = p->numa_faults[i];
2227 
2228 		grp->total_faults = p->total_numa_faults;
2229 
2230 		grp->nr_tasks++;
2231 		rcu_assign_pointer(p->numa_group, grp);
2232 	}
2233 
2234 	rcu_read_lock();
2235 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2236 
2237 	if (!cpupid_match_pid(tsk, cpupid))
2238 		goto no_join;
2239 
2240 	grp = rcu_dereference(tsk->numa_group);
2241 	if (!grp)
2242 		goto no_join;
2243 
2244 	my_grp = p->numa_group;
2245 	if (grp == my_grp)
2246 		goto no_join;
2247 
2248 	/*
2249 	 * Only join the other group if its bigger; if we're the bigger group,
2250 	 * the other task will join us.
2251 	 */
2252 	if (my_grp->nr_tasks > grp->nr_tasks)
2253 		goto no_join;
2254 
2255 	/*
2256 	 * Tie-break on the grp address.
2257 	 */
2258 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2259 		goto no_join;
2260 
2261 	/* Always join threads in the same process. */
2262 	if (tsk->mm == current->mm)
2263 		join = true;
2264 
2265 	/* Simple filter to avoid false positives due to PID collisions */
2266 	if (flags & TNF_SHARED)
2267 		join = true;
2268 
2269 	/* Update priv based on whether false sharing was detected */
2270 	*priv = !join;
2271 
2272 	if (join && !get_numa_group(grp))
2273 		goto no_join;
2274 
2275 	rcu_read_unlock();
2276 
2277 	if (!join)
2278 		return;
2279 
2280 	BUG_ON(irqs_disabled());
2281 	double_lock_irq(&my_grp->lock, &grp->lock);
2282 
2283 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2284 		my_grp->faults[i] -= p->numa_faults[i];
2285 		grp->faults[i] += p->numa_faults[i];
2286 	}
2287 	my_grp->total_faults -= p->total_numa_faults;
2288 	grp->total_faults += p->total_numa_faults;
2289 
2290 	my_grp->nr_tasks--;
2291 	grp->nr_tasks++;
2292 
2293 	spin_unlock(&my_grp->lock);
2294 	spin_unlock_irq(&grp->lock);
2295 
2296 	rcu_assign_pointer(p->numa_group, grp);
2297 
2298 	put_numa_group(my_grp);
2299 	return;
2300 
2301 no_join:
2302 	rcu_read_unlock();
2303 	return;
2304 }
2305 
2306 void task_numa_free(struct task_struct *p)
2307 {
2308 	struct numa_group *grp = p->numa_group;
2309 	void *numa_faults = p->numa_faults;
2310 	unsigned long flags;
2311 	int i;
2312 
2313 	if (grp) {
2314 		spin_lock_irqsave(&grp->lock, flags);
2315 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2316 			grp->faults[i] -= p->numa_faults[i];
2317 		grp->total_faults -= p->total_numa_faults;
2318 
2319 		grp->nr_tasks--;
2320 		spin_unlock_irqrestore(&grp->lock, flags);
2321 		RCU_INIT_POINTER(p->numa_group, NULL);
2322 		put_numa_group(grp);
2323 	}
2324 
2325 	p->numa_faults = NULL;
2326 	kfree(numa_faults);
2327 }
2328 
2329 /*
2330  * Got a PROT_NONE fault for a page on @node.
2331  */
2332 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2333 {
2334 	struct task_struct *p = current;
2335 	bool migrated = flags & TNF_MIGRATED;
2336 	int cpu_node = task_node(current);
2337 	int local = !!(flags & TNF_FAULT_LOCAL);
2338 	struct numa_group *ng;
2339 	int priv;
2340 
2341 	if (!static_branch_likely(&sched_numa_balancing))
2342 		return;
2343 
2344 	/* for example, ksmd faulting in a user's mm */
2345 	if (!p->mm)
2346 		return;
2347 
2348 	/* Allocate buffer to track faults on a per-node basis */
2349 	if (unlikely(!p->numa_faults)) {
2350 		int size = sizeof(*p->numa_faults) *
2351 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2352 
2353 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2354 		if (!p->numa_faults)
2355 			return;
2356 
2357 		p->total_numa_faults = 0;
2358 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2359 	}
2360 
2361 	/*
2362 	 * First accesses are treated as private, otherwise consider accesses
2363 	 * to be private if the accessing pid has not changed
2364 	 */
2365 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2366 		priv = 1;
2367 	} else {
2368 		priv = cpupid_match_pid(p, last_cpupid);
2369 		if (!priv && !(flags & TNF_NO_GROUP))
2370 			task_numa_group(p, last_cpupid, flags, &priv);
2371 	}
2372 
2373 	/*
2374 	 * If a workload spans multiple NUMA nodes, a shared fault that
2375 	 * occurs wholly within the set of nodes that the workload is
2376 	 * actively using should be counted as local. This allows the
2377 	 * scan rate to slow down when a workload has settled down.
2378 	 */
2379 	ng = p->numa_group;
2380 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2381 				numa_is_active_node(cpu_node, ng) &&
2382 				numa_is_active_node(mem_node, ng))
2383 		local = 1;
2384 
2385 	/*
2386 	 * Retry task to preferred node migration periodically, in case it
2387 	 * case it previously failed, or the scheduler moved us.
2388 	 */
2389 	if (time_after(jiffies, p->numa_migrate_retry)) {
2390 		task_numa_placement(p);
2391 		numa_migrate_preferred(p);
2392 	}
2393 
2394 	if (migrated)
2395 		p->numa_pages_migrated += pages;
2396 	if (flags & TNF_MIGRATE_FAIL)
2397 		p->numa_faults_locality[2] += pages;
2398 
2399 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2400 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2401 	p->numa_faults_locality[local] += pages;
2402 }
2403 
2404 static void reset_ptenuma_scan(struct task_struct *p)
2405 {
2406 	/*
2407 	 * We only did a read acquisition of the mmap sem, so
2408 	 * p->mm->numa_scan_seq is written to without exclusive access
2409 	 * and the update is not guaranteed to be atomic. That's not
2410 	 * much of an issue though, since this is just used for
2411 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2412 	 * expensive, to avoid any form of compiler optimizations:
2413 	 */
2414 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2415 	p->mm->numa_scan_offset = 0;
2416 }
2417 
2418 /*
2419  * The expensive part of numa migration is done from task_work context.
2420  * Triggered from task_tick_numa().
2421  */
2422 void task_numa_work(struct callback_head *work)
2423 {
2424 	unsigned long migrate, next_scan, now = jiffies;
2425 	struct task_struct *p = current;
2426 	struct mm_struct *mm = p->mm;
2427 	u64 runtime = p->se.sum_exec_runtime;
2428 	struct vm_area_struct *vma;
2429 	unsigned long start, end;
2430 	unsigned long nr_pte_updates = 0;
2431 	long pages, virtpages;
2432 
2433 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2434 
2435 	work->next = work; /* protect against double add */
2436 	/*
2437 	 * Who cares about NUMA placement when they're dying.
2438 	 *
2439 	 * NOTE: make sure not to dereference p->mm before this check,
2440 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2441 	 * without p->mm even though we still had it when we enqueued this
2442 	 * work.
2443 	 */
2444 	if (p->flags & PF_EXITING)
2445 		return;
2446 
2447 	if (!mm->numa_next_scan) {
2448 		mm->numa_next_scan = now +
2449 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2450 	}
2451 
2452 	/*
2453 	 * Enforce maximal scan/migration frequency..
2454 	 */
2455 	migrate = mm->numa_next_scan;
2456 	if (time_before(now, migrate))
2457 		return;
2458 
2459 	if (p->numa_scan_period == 0) {
2460 		p->numa_scan_period_max = task_scan_max(p);
2461 		p->numa_scan_period = task_scan_start(p);
2462 	}
2463 
2464 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2465 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2466 		return;
2467 
2468 	/*
2469 	 * Delay this task enough that another task of this mm will likely win
2470 	 * the next time around.
2471 	 */
2472 	p->node_stamp += 2 * TICK_NSEC;
2473 
2474 	start = mm->numa_scan_offset;
2475 	pages = sysctl_numa_balancing_scan_size;
2476 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2477 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2478 	if (!pages)
2479 		return;
2480 
2481 
2482 	if (!down_read_trylock(&mm->mmap_sem))
2483 		return;
2484 	vma = find_vma(mm, start);
2485 	if (!vma) {
2486 		reset_ptenuma_scan(p);
2487 		start = 0;
2488 		vma = mm->mmap;
2489 	}
2490 	for (; vma; vma = vma->vm_next) {
2491 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2492 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2493 			continue;
2494 		}
2495 
2496 		/*
2497 		 * Shared library pages mapped by multiple processes are not
2498 		 * migrated as it is expected they are cache replicated. Avoid
2499 		 * hinting faults in read-only file-backed mappings or the vdso
2500 		 * as migrating the pages will be of marginal benefit.
2501 		 */
2502 		if (!vma->vm_mm ||
2503 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2504 			continue;
2505 
2506 		/*
2507 		 * Skip inaccessible VMAs to avoid any confusion between
2508 		 * PROT_NONE and NUMA hinting ptes
2509 		 */
2510 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2511 			continue;
2512 
2513 		do {
2514 			start = max(start, vma->vm_start);
2515 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2516 			end = min(end, vma->vm_end);
2517 			nr_pte_updates = change_prot_numa(vma, start, end);
2518 
2519 			/*
2520 			 * Try to scan sysctl_numa_balancing_size worth of
2521 			 * hpages that have at least one present PTE that
2522 			 * is not already pte-numa. If the VMA contains
2523 			 * areas that are unused or already full of prot_numa
2524 			 * PTEs, scan up to virtpages, to skip through those
2525 			 * areas faster.
2526 			 */
2527 			if (nr_pte_updates)
2528 				pages -= (end - start) >> PAGE_SHIFT;
2529 			virtpages -= (end - start) >> PAGE_SHIFT;
2530 
2531 			start = end;
2532 			if (pages <= 0 || virtpages <= 0)
2533 				goto out;
2534 
2535 			cond_resched();
2536 		} while (end != vma->vm_end);
2537 	}
2538 
2539 out:
2540 	/*
2541 	 * It is possible to reach the end of the VMA list but the last few
2542 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2543 	 * would find the !migratable VMA on the next scan but not reset the
2544 	 * scanner to the start so check it now.
2545 	 */
2546 	if (vma)
2547 		mm->numa_scan_offset = start;
2548 	else
2549 		reset_ptenuma_scan(p);
2550 	up_read(&mm->mmap_sem);
2551 
2552 	/*
2553 	 * Make sure tasks use at least 32x as much time to run other code
2554 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2555 	 * Usually update_task_scan_period slows down scanning enough; on an
2556 	 * overloaded system we need to limit overhead on a per task basis.
2557 	 */
2558 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2559 		u64 diff = p->se.sum_exec_runtime - runtime;
2560 		p->node_stamp += 32 * diff;
2561 	}
2562 }
2563 
2564 /*
2565  * Drive the periodic memory faults..
2566  */
2567 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2568 {
2569 	struct callback_head *work = &curr->numa_work;
2570 	u64 period, now;
2571 
2572 	/*
2573 	 * We don't care about NUMA placement if we don't have memory.
2574 	 */
2575 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2576 		return;
2577 
2578 	/*
2579 	 * Using runtime rather than walltime has the dual advantage that
2580 	 * we (mostly) drive the selection from busy threads and that the
2581 	 * task needs to have done some actual work before we bother with
2582 	 * NUMA placement.
2583 	 */
2584 	now = curr->se.sum_exec_runtime;
2585 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2586 
2587 	if (now > curr->node_stamp + period) {
2588 		if (!curr->node_stamp)
2589 			curr->numa_scan_period = task_scan_start(curr);
2590 		curr->node_stamp += period;
2591 
2592 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2593 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2594 			task_work_add(curr, work, true);
2595 		}
2596 	}
2597 }
2598 
2599 #else
2600 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2601 {
2602 }
2603 
2604 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2605 {
2606 }
2607 
2608 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2609 {
2610 }
2611 
2612 #endif /* CONFIG_NUMA_BALANCING */
2613 
2614 static void
2615 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2616 {
2617 	update_load_add(&cfs_rq->load, se->load.weight);
2618 	if (!parent_entity(se))
2619 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2620 #ifdef CONFIG_SMP
2621 	if (entity_is_task(se)) {
2622 		struct rq *rq = rq_of(cfs_rq);
2623 
2624 		account_numa_enqueue(rq, task_of(se));
2625 		list_add(&se->group_node, &rq->cfs_tasks);
2626 	}
2627 #endif
2628 	cfs_rq->nr_running++;
2629 }
2630 
2631 static void
2632 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2633 {
2634 	update_load_sub(&cfs_rq->load, se->load.weight);
2635 	if (!parent_entity(se))
2636 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2637 #ifdef CONFIG_SMP
2638 	if (entity_is_task(se)) {
2639 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2640 		list_del_init(&se->group_node);
2641 	}
2642 #endif
2643 	cfs_rq->nr_running--;
2644 }
2645 
2646 /*
2647  * Signed add and clamp on underflow.
2648  *
2649  * Explicitly do a load-store to ensure the intermediate value never hits
2650  * memory. This allows lockless observations without ever seeing the negative
2651  * values.
2652  */
2653 #define add_positive(_ptr, _val) do {                           \
2654 	typeof(_ptr) ptr = (_ptr);                              \
2655 	typeof(_val) val = (_val);                              \
2656 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2657 								\
2658 	res = var + val;                                        \
2659 								\
2660 	if (val < 0 && res > var)                               \
2661 		res = 0;                                        \
2662 								\
2663 	WRITE_ONCE(*ptr, res);                                  \
2664 } while (0)
2665 
2666 /*
2667  * Unsigned subtract and clamp on underflow.
2668  *
2669  * Explicitly do a load-store to ensure the intermediate value never hits
2670  * memory. This allows lockless observations without ever seeing the negative
2671  * values.
2672  */
2673 #define sub_positive(_ptr, _val) do {				\
2674 	typeof(_ptr) ptr = (_ptr);				\
2675 	typeof(*ptr) val = (_val);				\
2676 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
2677 	res = var - val;					\
2678 	if (res > var)						\
2679 		res = 0;					\
2680 	WRITE_ONCE(*ptr, res);					\
2681 } while (0)
2682 
2683 #ifdef CONFIG_SMP
2684 static inline void
2685 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2686 {
2687 	cfs_rq->runnable_weight += se->runnable_weight;
2688 
2689 	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2690 	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2691 }
2692 
2693 static inline void
2694 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2695 {
2696 	cfs_rq->runnable_weight -= se->runnable_weight;
2697 
2698 	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2699 	sub_positive(&cfs_rq->avg.runnable_load_sum,
2700 		     se_runnable(se) * se->avg.runnable_load_sum);
2701 }
2702 
2703 static inline void
2704 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2705 {
2706 	cfs_rq->avg.load_avg += se->avg.load_avg;
2707 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2708 }
2709 
2710 static inline void
2711 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2712 {
2713 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2714 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2715 }
2716 #else
2717 static inline void
2718 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2719 static inline void
2720 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2721 static inline void
2722 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2723 static inline void
2724 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2725 #endif
2726 
2727 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2728 			    unsigned long weight, unsigned long runnable)
2729 {
2730 	if (se->on_rq) {
2731 		/* commit outstanding execution time */
2732 		if (cfs_rq->curr == se)
2733 			update_curr(cfs_rq);
2734 		account_entity_dequeue(cfs_rq, se);
2735 		dequeue_runnable_load_avg(cfs_rq, se);
2736 	}
2737 	dequeue_load_avg(cfs_rq, se);
2738 
2739 	se->runnable_weight = runnable;
2740 	update_load_set(&se->load, weight);
2741 
2742 #ifdef CONFIG_SMP
2743 	do {
2744 		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2745 
2746 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2747 		se->avg.runnable_load_avg =
2748 			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2749 	} while (0);
2750 #endif
2751 
2752 	enqueue_load_avg(cfs_rq, se);
2753 	if (se->on_rq) {
2754 		account_entity_enqueue(cfs_rq, se);
2755 		enqueue_runnable_load_avg(cfs_rq, se);
2756 	}
2757 }
2758 
2759 void reweight_task(struct task_struct *p, int prio)
2760 {
2761 	struct sched_entity *se = &p->se;
2762 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2763 	struct load_weight *load = &se->load;
2764 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2765 
2766 	reweight_entity(cfs_rq, se, weight, weight);
2767 	load->inv_weight = sched_prio_to_wmult[prio];
2768 }
2769 
2770 #ifdef CONFIG_FAIR_GROUP_SCHED
2771 #ifdef CONFIG_SMP
2772 /*
2773  * All this does is approximate the hierarchical proportion which includes that
2774  * global sum we all love to hate.
2775  *
2776  * That is, the weight of a group entity, is the proportional share of the
2777  * group weight based on the group runqueue weights. That is:
2778  *
2779  *                     tg->weight * grq->load.weight
2780  *   ge->load.weight = -----------------------------               (1)
2781  *			  \Sum grq->load.weight
2782  *
2783  * Now, because computing that sum is prohibitively expensive to compute (been
2784  * there, done that) we approximate it with this average stuff. The average
2785  * moves slower and therefore the approximation is cheaper and more stable.
2786  *
2787  * So instead of the above, we substitute:
2788  *
2789  *   grq->load.weight -> grq->avg.load_avg                         (2)
2790  *
2791  * which yields the following:
2792  *
2793  *                     tg->weight * grq->avg.load_avg
2794  *   ge->load.weight = ------------------------------              (3)
2795  *				tg->load_avg
2796  *
2797  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2798  *
2799  * That is shares_avg, and it is right (given the approximation (2)).
2800  *
2801  * The problem with it is that because the average is slow -- it was designed
2802  * to be exactly that of course -- this leads to transients in boundary
2803  * conditions. In specific, the case where the group was idle and we start the
2804  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2805  * yielding bad latency etc..
2806  *
2807  * Now, in that special case (1) reduces to:
2808  *
2809  *                     tg->weight * grq->load.weight
2810  *   ge->load.weight = ----------------------------- = tg->weight   (4)
2811  *			    grp->load.weight
2812  *
2813  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2814  *
2815  * So what we do is modify our approximation (3) to approach (4) in the (near)
2816  * UP case, like:
2817  *
2818  *   ge->load.weight =
2819  *
2820  *              tg->weight * grq->load.weight
2821  *     ---------------------------------------------------         (5)
2822  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
2823  *
2824  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2825  * we need to use grq->avg.load_avg as its lower bound, which then gives:
2826  *
2827  *
2828  *                     tg->weight * grq->load.weight
2829  *   ge->load.weight = -----------------------------		   (6)
2830  *				tg_load_avg'
2831  *
2832  * Where:
2833  *
2834  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2835  *                  max(grq->load.weight, grq->avg.load_avg)
2836  *
2837  * And that is shares_weight and is icky. In the (near) UP case it approaches
2838  * (4) while in the normal case it approaches (3). It consistently
2839  * overestimates the ge->load.weight and therefore:
2840  *
2841  *   \Sum ge->load.weight >= tg->weight
2842  *
2843  * hence icky!
2844  */
2845 static long calc_group_shares(struct cfs_rq *cfs_rq)
2846 {
2847 	long tg_weight, tg_shares, load, shares;
2848 	struct task_group *tg = cfs_rq->tg;
2849 
2850 	tg_shares = READ_ONCE(tg->shares);
2851 
2852 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2853 
2854 	tg_weight = atomic_long_read(&tg->load_avg);
2855 
2856 	/* Ensure tg_weight >= load */
2857 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2858 	tg_weight += load;
2859 
2860 	shares = (tg_shares * load);
2861 	if (tg_weight)
2862 		shares /= tg_weight;
2863 
2864 	/*
2865 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2866 	 * of a group with small tg->shares value. It is a floor value which is
2867 	 * assigned as a minimum load.weight to the sched_entity representing
2868 	 * the group on a CPU.
2869 	 *
2870 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2871 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2872 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2873 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2874 	 * instead of 0.
2875 	 */
2876 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
2877 }
2878 
2879 /*
2880  * This calculates the effective runnable weight for a group entity based on
2881  * the group entity weight calculated above.
2882  *
2883  * Because of the above approximation (2), our group entity weight is
2884  * an load_avg based ratio (3). This means that it includes blocked load and
2885  * does not represent the runnable weight.
2886  *
2887  * Approximate the group entity's runnable weight per ratio from the group
2888  * runqueue:
2889  *
2890  *					     grq->avg.runnable_load_avg
2891  *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
2892  *						 grq->avg.load_avg
2893  *
2894  * However, analogous to above, since the avg numbers are slow, this leads to
2895  * transients in the from-idle case. Instead we use:
2896  *
2897  *   ge->runnable_weight = ge->load.weight *
2898  *
2899  *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
2900  *		-----------------------------------------------------	(8)
2901  *		      max(grq->avg.load_avg, grq->load.weight)
2902  *
2903  * Where these max() serve both to use the 'instant' values to fix the slow
2904  * from-idle and avoid the /0 on to-idle, similar to (6).
2905  */
2906 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2907 {
2908 	long runnable, load_avg;
2909 
2910 	load_avg = max(cfs_rq->avg.load_avg,
2911 		       scale_load_down(cfs_rq->load.weight));
2912 
2913 	runnable = max(cfs_rq->avg.runnable_load_avg,
2914 		       scale_load_down(cfs_rq->runnable_weight));
2915 
2916 	runnable *= shares;
2917 	if (load_avg)
2918 		runnable /= load_avg;
2919 
2920 	return clamp_t(long, runnable, MIN_SHARES, shares);
2921 }
2922 #endif /* CONFIG_SMP */
2923 
2924 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2925 
2926 /*
2927  * Recomputes the group entity based on the current state of its group
2928  * runqueue.
2929  */
2930 static void update_cfs_group(struct sched_entity *se)
2931 {
2932 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
2933 	long shares, runnable;
2934 
2935 	if (!gcfs_rq)
2936 		return;
2937 
2938 	if (throttled_hierarchy(gcfs_rq))
2939 		return;
2940 
2941 #ifndef CONFIG_SMP
2942 	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
2943 
2944 	if (likely(se->load.weight == shares))
2945 		return;
2946 #else
2947 	shares   = calc_group_shares(gcfs_rq);
2948 	runnable = calc_group_runnable(gcfs_rq, shares);
2949 #endif
2950 
2951 	reweight_entity(cfs_rq_of(se), se, shares, runnable);
2952 }
2953 
2954 #else /* CONFIG_FAIR_GROUP_SCHED */
2955 static inline void update_cfs_group(struct sched_entity *se)
2956 {
2957 }
2958 #endif /* CONFIG_FAIR_GROUP_SCHED */
2959 
2960 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
2961 {
2962 	struct rq *rq = rq_of(cfs_rq);
2963 
2964 	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
2965 		/*
2966 		 * There are a few boundary cases this might miss but it should
2967 		 * get called often enough that that should (hopefully) not be
2968 		 * a real problem.
2969 		 *
2970 		 * It will not get called when we go idle, because the idle
2971 		 * thread is a different class (!fair), nor will the utilization
2972 		 * number include things like RT tasks.
2973 		 *
2974 		 * As is, the util number is not freq-invariant (we'd have to
2975 		 * implement arch_scale_freq_capacity() for that).
2976 		 *
2977 		 * See cpu_util().
2978 		 */
2979 		cpufreq_update_util(rq, flags);
2980 	}
2981 }
2982 
2983 #ifdef CONFIG_SMP
2984 #ifdef CONFIG_FAIR_GROUP_SCHED
2985 /**
2986  * update_tg_load_avg - update the tg's load avg
2987  * @cfs_rq: the cfs_rq whose avg changed
2988  * @force: update regardless of how small the difference
2989  *
2990  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2991  * However, because tg->load_avg is a global value there are performance
2992  * considerations.
2993  *
2994  * In order to avoid having to look at the other cfs_rq's, we use a
2995  * differential update where we store the last value we propagated. This in
2996  * turn allows skipping updates if the differential is 'small'.
2997  *
2998  * Updating tg's load_avg is necessary before update_cfs_share().
2999  */
3000 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3001 {
3002 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3003 
3004 	/*
3005 	 * No need to update load_avg for root_task_group as it is not used.
3006 	 */
3007 	if (cfs_rq->tg == &root_task_group)
3008 		return;
3009 
3010 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3011 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3012 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3013 	}
3014 }
3015 
3016 /*
3017  * Called within set_task_rq() right before setting a task's CPU. The
3018  * caller only guarantees p->pi_lock is held; no other assumptions,
3019  * including the state of rq->lock, should be made.
3020  */
3021 void set_task_rq_fair(struct sched_entity *se,
3022 		      struct cfs_rq *prev, struct cfs_rq *next)
3023 {
3024 	u64 p_last_update_time;
3025 	u64 n_last_update_time;
3026 
3027 	if (!sched_feat(ATTACH_AGE_LOAD))
3028 		return;
3029 
3030 	/*
3031 	 * We are supposed to update the task to "current" time, then its up to
3032 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3033 	 * getting what current time is, so simply throw away the out-of-date
3034 	 * time. This will result in the wakee task is less decayed, but giving
3035 	 * the wakee more load sounds not bad.
3036 	 */
3037 	if (!(se->avg.last_update_time && prev))
3038 		return;
3039 
3040 #ifndef CONFIG_64BIT
3041 	{
3042 		u64 p_last_update_time_copy;
3043 		u64 n_last_update_time_copy;
3044 
3045 		do {
3046 			p_last_update_time_copy = prev->load_last_update_time_copy;
3047 			n_last_update_time_copy = next->load_last_update_time_copy;
3048 
3049 			smp_rmb();
3050 
3051 			p_last_update_time = prev->avg.last_update_time;
3052 			n_last_update_time = next->avg.last_update_time;
3053 
3054 		} while (p_last_update_time != p_last_update_time_copy ||
3055 			 n_last_update_time != n_last_update_time_copy);
3056 	}
3057 #else
3058 	p_last_update_time = prev->avg.last_update_time;
3059 	n_last_update_time = next->avg.last_update_time;
3060 #endif
3061 	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3062 	se->avg.last_update_time = n_last_update_time;
3063 }
3064 
3065 
3066 /*
3067  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3068  * propagate its contribution. The key to this propagation is the invariant
3069  * that for each group:
3070  *
3071  *   ge->avg == grq->avg						(1)
3072  *
3073  * _IFF_ we look at the pure running and runnable sums. Because they
3074  * represent the very same entity, just at different points in the hierarchy.
3075  *
3076  * Per the above update_tg_cfs_util() is trivial and simply copies the running
3077  * sum over (but still wrong, because the group entity and group rq do not have
3078  * their PELT windows aligned).
3079  *
3080  * However, update_tg_cfs_runnable() is more complex. So we have:
3081  *
3082  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3083  *
3084  * And since, like util, the runnable part should be directly transferable,
3085  * the following would _appear_ to be the straight forward approach:
3086  *
3087  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3088  *
3089  * And per (1) we have:
3090  *
3091  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3092  *
3093  * Which gives:
3094  *
3095  *                      ge->load.weight * grq->avg.load_avg
3096  *   ge->avg.load_avg = -----------------------------------		(4)
3097  *                               grq->load.weight
3098  *
3099  * Except that is wrong!
3100  *
3101  * Because while for entities historical weight is not important and we
3102  * really only care about our future and therefore can consider a pure
3103  * runnable sum, runqueues can NOT do this.
3104  *
3105  * We specifically want runqueues to have a load_avg that includes
3106  * historical weights. Those represent the blocked load, the load we expect
3107  * to (shortly) return to us. This only works by keeping the weights as
3108  * integral part of the sum. We therefore cannot decompose as per (3).
3109  *
3110  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3111  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3112  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3113  * runnable section of these tasks overlap (or not). If they were to perfectly
3114  * align the rq as a whole would be runnable 2/3 of the time. If however we
3115  * always have at least 1 runnable task, the rq as a whole is always runnable.
3116  *
3117  * So we'll have to approximate.. :/
3118  *
3119  * Given the constraint:
3120  *
3121  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3122  *
3123  * We can construct a rule that adds runnable to a rq by assuming minimal
3124  * overlap.
3125  *
3126  * On removal, we'll assume each task is equally runnable; which yields:
3127  *
3128  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3129  *
3130  * XXX: only do this for the part of runnable > running ?
3131  *
3132  */
3133 
3134 static inline void
3135 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3136 {
3137 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3138 
3139 	/* Nothing to update */
3140 	if (!delta)
3141 		return;
3142 
3143 	/*
3144 	 * The relation between sum and avg is:
3145 	 *
3146 	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
3147 	 *
3148 	 * however, the PELT windows are not aligned between grq and gse.
3149 	 */
3150 
3151 	/* Set new sched_entity's utilization */
3152 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3153 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3154 
3155 	/* Update parent cfs_rq utilization */
3156 	add_positive(&cfs_rq->avg.util_avg, delta);
3157 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3158 }
3159 
3160 static inline void
3161 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3162 {
3163 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3164 	unsigned long runnable_load_avg, load_avg;
3165 	u64 runnable_load_sum, load_sum = 0;
3166 	s64 delta_sum;
3167 
3168 	if (!runnable_sum)
3169 		return;
3170 
3171 	gcfs_rq->prop_runnable_sum = 0;
3172 
3173 	if (runnable_sum >= 0) {
3174 		/*
3175 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3176 		 * the CPU is saturated running == runnable.
3177 		 */
3178 		runnable_sum += se->avg.load_sum;
3179 		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3180 	} else {
3181 		/*
3182 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3183 		 * assuming all tasks are equally runnable.
3184 		 */
3185 		if (scale_load_down(gcfs_rq->load.weight)) {
3186 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3187 				scale_load_down(gcfs_rq->load.weight));
3188 		}
3189 
3190 		/* But make sure to not inflate se's runnable */
3191 		runnable_sum = min(se->avg.load_sum, load_sum);
3192 	}
3193 
3194 	/*
3195 	 * runnable_sum can't be lower than running_sum
3196 	 * As running sum is scale with CPU capacity wehreas the runnable sum
3197 	 * is not we rescale running_sum 1st
3198 	 */
3199 	running_sum = se->avg.util_sum /
3200 		arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
3201 	runnable_sum = max(runnable_sum, running_sum);
3202 
3203 	load_sum = (s64)se_weight(se) * runnable_sum;
3204 	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3205 
3206 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3207 	delta_avg = load_avg - se->avg.load_avg;
3208 
3209 	se->avg.load_sum = runnable_sum;
3210 	se->avg.load_avg = load_avg;
3211 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3212 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3213 
3214 	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3215 	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3216 	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3217 	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3218 
3219 	se->avg.runnable_load_sum = runnable_sum;
3220 	se->avg.runnable_load_avg = runnable_load_avg;
3221 
3222 	if (se->on_rq) {
3223 		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3224 		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3225 	}
3226 }
3227 
3228 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3229 {
3230 	cfs_rq->propagate = 1;
3231 	cfs_rq->prop_runnable_sum += runnable_sum;
3232 }
3233 
3234 /* Update task and its cfs_rq load average */
3235 static inline int propagate_entity_load_avg(struct sched_entity *se)
3236 {
3237 	struct cfs_rq *cfs_rq, *gcfs_rq;
3238 
3239 	if (entity_is_task(se))
3240 		return 0;
3241 
3242 	gcfs_rq = group_cfs_rq(se);
3243 	if (!gcfs_rq->propagate)
3244 		return 0;
3245 
3246 	gcfs_rq->propagate = 0;
3247 
3248 	cfs_rq = cfs_rq_of(se);
3249 
3250 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3251 
3252 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3253 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3254 
3255 	return 1;
3256 }
3257 
3258 /*
3259  * Check if we need to update the load and the utilization of a blocked
3260  * group_entity:
3261  */
3262 static inline bool skip_blocked_update(struct sched_entity *se)
3263 {
3264 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3265 
3266 	/*
3267 	 * If sched_entity still have not zero load or utilization, we have to
3268 	 * decay it:
3269 	 */
3270 	if (se->avg.load_avg || se->avg.util_avg)
3271 		return false;
3272 
3273 	/*
3274 	 * If there is a pending propagation, we have to update the load and
3275 	 * the utilization of the sched_entity:
3276 	 */
3277 	if (gcfs_rq->propagate)
3278 		return false;
3279 
3280 	/*
3281 	 * Otherwise, the load and the utilization of the sched_entity is
3282 	 * already zero and there is no pending propagation, so it will be a
3283 	 * waste of time to try to decay it:
3284 	 */
3285 	return true;
3286 }
3287 
3288 #else /* CONFIG_FAIR_GROUP_SCHED */
3289 
3290 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3291 
3292 static inline int propagate_entity_load_avg(struct sched_entity *se)
3293 {
3294 	return 0;
3295 }
3296 
3297 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3298 
3299 #endif /* CONFIG_FAIR_GROUP_SCHED */
3300 
3301 /**
3302  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3303  * @now: current time, as per cfs_rq_clock_task()
3304  * @cfs_rq: cfs_rq to update
3305  *
3306  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3307  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3308  * post_init_entity_util_avg().
3309  *
3310  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3311  *
3312  * Returns true if the load decayed or we removed load.
3313  *
3314  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3315  * call update_tg_load_avg() when this function returns true.
3316  */
3317 static inline int
3318 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3319 {
3320 	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3321 	struct sched_avg *sa = &cfs_rq->avg;
3322 	int decayed = 0;
3323 
3324 	if (cfs_rq->removed.nr) {
3325 		unsigned long r;
3326 		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3327 
3328 		raw_spin_lock(&cfs_rq->removed.lock);
3329 		swap(cfs_rq->removed.util_avg, removed_util);
3330 		swap(cfs_rq->removed.load_avg, removed_load);
3331 		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3332 		cfs_rq->removed.nr = 0;
3333 		raw_spin_unlock(&cfs_rq->removed.lock);
3334 
3335 		r = removed_load;
3336 		sub_positive(&sa->load_avg, r);
3337 		sub_positive(&sa->load_sum, r * divider);
3338 
3339 		r = removed_util;
3340 		sub_positive(&sa->util_avg, r);
3341 		sub_positive(&sa->util_sum, r * divider);
3342 
3343 		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3344 
3345 		decayed = 1;
3346 	}
3347 
3348 	decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3349 
3350 #ifndef CONFIG_64BIT
3351 	smp_wmb();
3352 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3353 #endif
3354 
3355 	if (decayed)
3356 		cfs_rq_util_change(cfs_rq, 0);
3357 
3358 	return decayed;
3359 }
3360 
3361 /**
3362  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3363  * @cfs_rq: cfs_rq to attach to
3364  * @se: sched_entity to attach
3365  * @flags: migration hints
3366  *
3367  * Must call update_cfs_rq_load_avg() before this, since we rely on
3368  * cfs_rq->avg.last_update_time being current.
3369  */
3370 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3371 {
3372 	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3373 
3374 	/*
3375 	 * When we attach the @se to the @cfs_rq, we must align the decay
3376 	 * window because without that, really weird and wonderful things can
3377 	 * happen.
3378 	 *
3379 	 * XXX illustrate
3380 	 */
3381 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3382 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3383 
3384 	/*
3385 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3386 	 * period_contrib. This isn't strictly correct, but since we're
3387 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3388 	 * _sum a little.
3389 	 */
3390 	se->avg.util_sum = se->avg.util_avg * divider;
3391 
3392 	se->avg.load_sum = divider;
3393 	if (se_weight(se)) {
3394 		se->avg.load_sum =
3395 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3396 	}
3397 
3398 	se->avg.runnable_load_sum = se->avg.load_sum;
3399 
3400 	enqueue_load_avg(cfs_rq, se);
3401 	cfs_rq->avg.util_avg += se->avg.util_avg;
3402 	cfs_rq->avg.util_sum += se->avg.util_sum;
3403 
3404 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3405 
3406 	cfs_rq_util_change(cfs_rq, flags);
3407 }
3408 
3409 /**
3410  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3411  * @cfs_rq: cfs_rq to detach from
3412  * @se: sched_entity to detach
3413  *
3414  * Must call update_cfs_rq_load_avg() before this, since we rely on
3415  * cfs_rq->avg.last_update_time being current.
3416  */
3417 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3418 {
3419 	dequeue_load_avg(cfs_rq, se);
3420 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3421 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3422 
3423 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3424 
3425 	cfs_rq_util_change(cfs_rq, 0);
3426 }
3427 
3428 /*
3429  * Optional action to be done while updating the load average
3430  */
3431 #define UPDATE_TG	0x1
3432 #define SKIP_AGE_LOAD	0x2
3433 #define DO_ATTACH	0x4
3434 
3435 /* Update task and its cfs_rq load average */
3436 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3437 {
3438 	u64 now = cfs_rq_clock_task(cfs_rq);
3439 	struct rq *rq = rq_of(cfs_rq);
3440 	int cpu = cpu_of(rq);
3441 	int decayed;
3442 
3443 	/*
3444 	 * Track task load average for carrying it to new CPU after migrated, and
3445 	 * track group sched_entity load average for task_h_load calc in migration
3446 	 */
3447 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3448 		__update_load_avg_se(now, cpu, cfs_rq, se);
3449 
3450 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3451 	decayed |= propagate_entity_load_avg(se);
3452 
3453 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3454 
3455 		/*
3456 		 * DO_ATTACH means we're here from enqueue_entity().
3457 		 * !last_update_time means we've passed through
3458 		 * migrate_task_rq_fair() indicating we migrated.
3459 		 *
3460 		 * IOW we're enqueueing a task on a new CPU.
3461 		 */
3462 		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3463 		update_tg_load_avg(cfs_rq, 0);
3464 
3465 	} else if (decayed && (flags & UPDATE_TG))
3466 		update_tg_load_avg(cfs_rq, 0);
3467 }
3468 
3469 #ifndef CONFIG_64BIT
3470 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3471 {
3472 	u64 last_update_time_copy;
3473 	u64 last_update_time;
3474 
3475 	do {
3476 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3477 		smp_rmb();
3478 		last_update_time = cfs_rq->avg.last_update_time;
3479 	} while (last_update_time != last_update_time_copy);
3480 
3481 	return last_update_time;
3482 }
3483 #else
3484 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3485 {
3486 	return cfs_rq->avg.last_update_time;
3487 }
3488 #endif
3489 
3490 /*
3491  * Synchronize entity load avg of dequeued entity without locking
3492  * the previous rq.
3493  */
3494 void sync_entity_load_avg(struct sched_entity *se)
3495 {
3496 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3497 	u64 last_update_time;
3498 
3499 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3500 	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3501 }
3502 
3503 /*
3504  * Task first catches up with cfs_rq, and then subtract
3505  * itself from the cfs_rq (task must be off the queue now).
3506  */
3507 void remove_entity_load_avg(struct sched_entity *se)
3508 {
3509 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3510 	unsigned long flags;
3511 
3512 	/*
3513 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3514 	 * post_init_entity_util_avg() which will have added things to the
3515 	 * cfs_rq, so we can remove unconditionally.
3516 	 *
3517 	 * Similarly for groups, they will have passed through
3518 	 * post_init_entity_util_avg() before unregister_sched_fair_group()
3519 	 * calls this.
3520 	 */
3521 
3522 	sync_entity_load_avg(se);
3523 
3524 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3525 	++cfs_rq->removed.nr;
3526 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3527 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3528 	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3529 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3530 }
3531 
3532 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3533 {
3534 	return cfs_rq->avg.runnable_load_avg;
3535 }
3536 
3537 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3538 {
3539 	return cfs_rq->avg.load_avg;
3540 }
3541 
3542 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3543 
3544 static inline unsigned long task_util(struct task_struct *p)
3545 {
3546 	return READ_ONCE(p->se.avg.util_avg);
3547 }
3548 
3549 static inline unsigned long _task_util_est(struct task_struct *p)
3550 {
3551 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3552 
3553 	return max(ue.ewma, ue.enqueued);
3554 }
3555 
3556 static inline unsigned long task_util_est(struct task_struct *p)
3557 {
3558 	return max(task_util(p), _task_util_est(p));
3559 }
3560 
3561 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3562 				    struct task_struct *p)
3563 {
3564 	unsigned int enqueued;
3565 
3566 	if (!sched_feat(UTIL_EST))
3567 		return;
3568 
3569 	/* Update root cfs_rq's estimated utilization */
3570 	enqueued  = cfs_rq->avg.util_est.enqueued;
3571 	enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED);
3572 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3573 }
3574 
3575 /*
3576  * Check if a (signed) value is within a specified (unsigned) margin,
3577  * based on the observation that:
3578  *
3579  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3580  *
3581  * NOTE: this only works when value + maring < INT_MAX.
3582  */
3583 static inline bool within_margin(int value, int margin)
3584 {
3585 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3586 }
3587 
3588 static void
3589 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3590 {
3591 	long last_ewma_diff;
3592 	struct util_est ue;
3593 
3594 	if (!sched_feat(UTIL_EST))
3595 		return;
3596 
3597 	/* Update root cfs_rq's estimated utilization */
3598 	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3599 	ue.enqueued -= min_t(unsigned int, ue.enqueued,
3600 			     (_task_util_est(p) | UTIL_AVG_UNCHANGED));
3601 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3602 
3603 	/*
3604 	 * Skip update of task's estimated utilization when the task has not
3605 	 * yet completed an activation, e.g. being migrated.
3606 	 */
3607 	if (!task_sleep)
3608 		return;
3609 
3610 	/*
3611 	 * If the PELT values haven't changed since enqueue time,
3612 	 * skip the util_est update.
3613 	 */
3614 	ue = p->se.avg.util_est;
3615 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
3616 		return;
3617 
3618 	/*
3619 	 * Skip update of task's estimated utilization when its EWMA is
3620 	 * already ~1% close to its last activation value.
3621 	 */
3622 	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3623 	last_ewma_diff = ue.enqueued - ue.ewma;
3624 	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3625 		return;
3626 
3627 	/*
3628 	 * Update Task's estimated utilization
3629 	 *
3630 	 * When *p completes an activation we can consolidate another sample
3631 	 * of the task size. This is done by storing the current PELT value
3632 	 * as ue.enqueued and by using this value to update the Exponential
3633 	 * Weighted Moving Average (EWMA):
3634 	 *
3635 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
3636 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
3637 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
3638 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
3639 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
3640 	 *
3641 	 * Where 'w' is the weight of new samples, which is configured to be
3642 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3643 	 */
3644 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3645 	ue.ewma  += last_ewma_diff;
3646 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3647 	WRITE_ONCE(p->se.avg.util_est, ue);
3648 }
3649 
3650 #else /* CONFIG_SMP */
3651 
3652 #define UPDATE_TG	0x0
3653 #define SKIP_AGE_LOAD	0x0
3654 #define DO_ATTACH	0x0
3655 
3656 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3657 {
3658 	cfs_rq_util_change(cfs_rq, 0);
3659 }
3660 
3661 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3662 
3663 static inline void
3664 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3665 static inline void
3666 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3667 
3668 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3669 {
3670 	return 0;
3671 }
3672 
3673 static inline void
3674 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3675 
3676 static inline void
3677 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3678 		 bool task_sleep) {}
3679 
3680 #endif /* CONFIG_SMP */
3681 
3682 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3683 {
3684 #ifdef CONFIG_SCHED_DEBUG
3685 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3686 
3687 	if (d < 0)
3688 		d = -d;
3689 
3690 	if (d > 3*sysctl_sched_latency)
3691 		schedstat_inc(cfs_rq->nr_spread_over);
3692 #endif
3693 }
3694 
3695 static void
3696 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3697 {
3698 	u64 vruntime = cfs_rq->min_vruntime;
3699 
3700 	/*
3701 	 * The 'current' period is already promised to the current tasks,
3702 	 * however the extra weight of the new task will slow them down a
3703 	 * little, place the new task so that it fits in the slot that
3704 	 * stays open at the end.
3705 	 */
3706 	if (initial && sched_feat(START_DEBIT))
3707 		vruntime += sched_vslice(cfs_rq, se);
3708 
3709 	/* sleeps up to a single latency don't count. */
3710 	if (!initial) {
3711 		unsigned long thresh = sysctl_sched_latency;
3712 
3713 		/*
3714 		 * Halve their sleep time's effect, to allow
3715 		 * for a gentler effect of sleepers:
3716 		 */
3717 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3718 			thresh >>= 1;
3719 
3720 		vruntime -= thresh;
3721 	}
3722 
3723 	/* ensure we never gain time by being placed backwards. */
3724 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3725 }
3726 
3727 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3728 
3729 static inline void check_schedstat_required(void)
3730 {
3731 #ifdef CONFIG_SCHEDSTATS
3732 	if (schedstat_enabled())
3733 		return;
3734 
3735 	/* Force schedstat enabled if a dependent tracepoint is active */
3736 	if (trace_sched_stat_wait_enabled()    ||
3737 			trace_sched_stat_sleep_enabled()   ||
3738 			trace_sched_stat_iowait_enabled()  ||
3739 			trace_sched_stat_blocked_enabled() ||
3740 			trace_sched_stat_runtime_enabled())  {
3741 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3742 			     "stat_blocked and stat_runtime require the "
3743 			     "kernel parameter schedstats=enable or "
3744 			     "kernel.sched_schedstats=1\n");
3745 	}
3746 #endif
3747 }
3748 
3749 
3750 /*
3751  * MIGRATION
3752  *
3753  *	dequeue
3754  *	  update_curr()
3755  *	    update_min_vruntime()
3756  *	  vruntime -= min_vruntime
3757  *
3758  *	enqueue
3759  *	  update_curr()
3760  *	    update_min_vruntime()
3761  *	  vruntime += min_vruntime
3762  *
3763  * this way the vruntime transition between RQs is done when both
3764  * min_vruntime are up-to-date.
3765  *
3766  * WAKEUP (remote)
3767  *
3768  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3769  *	  vruntime -= min_vruntime
3770  *
3771  *	enqueue
3772  *	  update_curr()
3773  *	    update_min_vruntime()
3774  *	  vruntime += min_vruntime
3775  *
3776  * this way we don't have the most up-to-date min_vruntime on the originating
3777  * CPU and an up-to-date min_vruntime on the destination CPU.
3778  */
3779 
3780 static void
3781 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3782 {
3783 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3784 	bool curr = cfs_rq->curr == se;
3785 
3786 	/*
3787 	 * If we're the current task, we must renormalise before calling
3788 	 * update_curr().
3789 	 */
3790 	if (renorm && curr)
3791 		se->vruntime += cfs_rq->min_vruntime;
3792 
3793 	update_curr(cfs_rq);
3794 
3795 	/*
3796 	 * Otherwise, renormalise after, such that we're placed at the current
3797 	 * moment in time, instead of some random moment in the past. Being
3798 	 * placed in the past could significantly boost this task to the
3799 	 * fairness detriment of existing tasks.
3800 	 */
3801 	if (renorm && !curr)
3802 		se->vruntime += cfs_rq->min_vruntime;
3803 
3804 	/*
3805 	 * When enqueuing a sched_entity, we must:
3806 	 *   - Update loads to have both entity and cfs_rq synced with now.
3807 	 *   - Add its load to cfs_rq->runnable_avg
3808 	 *   - For group_entity, update its weight to reflect the new share of
3809 	 *     its group cfs_rq
3810 	 *   - Add its new weight to cfs_rq->load.weight
3811 	 */
3812 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3813 	update_cfs_group(se);
3814 	enqueue_runnable_load_avg(cfs_rq, se);
3815 	account_entity_enqueue(cfs_rq, se);
3816 
3817 	if (flags & ENQUEUE_WAKEUP)
3818 		place_entity(cfs_rq, se, 0);
3819 
3820 	check_schedstat_required();
3821 	update_stats_enqueue(cfs_rq, se, flags);
3822 	check_spread(cfs_rq, se);
3823 	if (!curr)
3824 		__enqueue_entity(cfs_rq, se);
3825 	se->on_rq = 1;
3826 
3827 	if (cfs_rq->nr_running == 1) {
3828 		list_add_leaf_cfs_rq(cfs_rq);
3829 		check_enqueue_throttle(cfs_rq);
3830 	}
3831 }
3832 
3833 static void __clear_buddies_last(struct sched_entity *se)
3834 {
3835 	for_each_sched_entity(se) {
3836 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3837 		if (cfs_rq->last != se)
3838 			break;
3839 
3840 		cfs_rq->last = NULL;
3841 	}
3842 }
3843 
3844 static void __clear_buddies_next(struct sched_entity *se)
3845 {
3846 	for_each_sched_entity(se) {
3847 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3848 		if (cfs_rq->next != se)
3849 			break;
3850 
3851 		cfs_rq->next = NULL;
3852 	}
3853 }
3854 
3855 static void __clear_buddies_skip(struct sched_entity *se)
3856 {
3857 	for_each_sched_entity(se) {
3858 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3859 		if (cfs_rq->skip != se)
3860 			break;
3861 
3862 		cfs_rq->skip = NULL;
3863 	}
3864 }
3865 
3866 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3867 {
3868 	if (cfs_rq->last == se)
3869 		__clear_buddies_last(se);
3870 
3871 	if (cfs_rq->next == se)
3872 		__clear_buddies_next(se);
3873 
3874 	if (cfs_rq->skip == se)
3875 		__clear_buddies_skip(se);
3876 }
3877 
3878 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3879 
3880 static void
3881 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3882 {
3883 	/*
3884 	 * Update run-time statistics of the 'current'.
3885 	 */
3886 	update_curr(cfs_rq);
3887 
3888 	/*
3889 	 * When dequeuing a sched_entity, we must:
3890 	 *   - Update loads to have both entity and cfs_rq synced with now.
3891 	 *   - Substract its load from the cfs_rq->runnable_avg.
3892 	 *   - Substract its previous weight from cfs_rq->load.weight.
3893 	 *   - For group entity, update its weight to reflect the new share
3894 	 *     of its group cfs_rq.
3895 	 */
3896 	update_load_avg(cfs_rq, se, UPDATE_TG);
3897 	dequeue_runnable_load_avg(cfs_rq, se);
3898 
3899 	update_stats_dequeue(cfs_rq, se, flags);
3900 
3901 	clear_buddies(cfs_rq, se);
3902 
3903 	if (se != cfs_rq->curr)
3904 		__dequeue_entity(cfs_rq, se);
3905 	se->on_rq = 0;
3906 	account_entity_dequeue(cfs_rq, se);
3907 
3908 	/*
3909 	 * Normalize after update_curr(); which will also have moved
3910 	 * min_vruntime if @se is the one holding it back. But before doing
3911 	 * update_min_vruntime() again, which will discount @se's position and
3912 	 * can move min_vruntime forward still more.
3913 	 */
3914 	if (!(flags & DEQUEUE_SLEEP))
3915 		se->vruntime -= cfs_rq->min_vruntime;
3916 
3917 	/* return excess runtime on last dequeue */
3918 	return_cfs_rq_runtime(cfs_rq);
3919 
3920 	update_cfs_group(se);
3921 
3922 	/*
3923 	 * Now advance min_vruntime if @se was the entity holding it back,
3924 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3925 	 * put back on, and if we advance min_vruntime, we'll be placed back
3926 	 * further than we started -- ie. we'll be penalized.
3927 	 */
3928 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3929 		update_min_vruntime(cfs_rq);
3930 }
3931 
3932 /*
3933  * Preempt the current task with a newly woken task if needed:
3934  */
3935 static void
3936 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3937 {
3938 	unsigned long ideal_runtime, delta_exec;
3939 	struct sched_entity *se;
3940 	s64 delta;
3941 
3942 	ideal_runtime = sched_slice(cfs_rq, curr);
3943 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3944 	if (delta_exec > ideal_runtime) {
3945 		resched_curr(rq_of(cfs_rq));
3946 		/*
3947 		 * The current task ran long enough, ensure it doesn't get
3948 		 * re-elected due to buddy favours.
3949 		 */
3950 		clear_buddies(cfs_rq, curr);
3951 		return;
3952 	}
3953 
3954 	/*
3955 	 * Ensure that a task that missed wakeup preemption by a
3956 	 * narrow margin doesn't have to wait for a full slice.
3957 	 * This also mitigates buddy induced latencies under load.
3958 	 */
3959 	if (delta_exec < sysctl_sched_min_granularity)
3960 		return;
3961 
3962 	se = __pick_first_entity(cfs_rq);
3963 	delta = curr->vruntime - se->vruntime;
3964 
3965 	if (delta < 0)
3966 		return;
3967 
3968 	if (delta > ideal_runtime)
3969 		resched_curr(rq_of(cfs_rq));
3970 }
3971 
3972 static void
3973 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3974 {
3975 	/* 'current' is not kept within the tree. */
3976 	if (se->on_rq) {
3977 		/*
3978 		 * Any task has to be enqueued before it get to execute on
3979 		 * a CPU. So account for the time it spent waiting on the
3980 		 * runqueue.
3981 		 */
3982 		update_stats_wait_end(cfs_rq, se);
3983 		__dequeue_entity(cfs_rq, se);
3984 		update_load_avg(cfs_rq, se, UPDATE_TG);
3985 	}
3986 
3987 	update_stats_curr_start(cfs_rq, se);
3988 	cfs_rq->curr = se;
3989 
3990 	/*
3991 	 * Track our maximum slice length, if the CPU's load is at
3992 	 * least twice that of our own weight (i.e. dont track it
3993 	 * when there are only lesser-weight tasks around):
3994 	 */
3995 	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3996 		schedstat_set(se->statistics.slice_max,
3997 			max((u64)schedstat_val(se->statistics.slice_max),
3998 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
3999 	}
4000 
4001 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4002 }
4003 
4004 static int
4005 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4006 
4007 /*
4008  * Pick the next process, keeping these things in mind, in this order:
4009  * 1) keep things fair between processes/task groups
4010  * 2) pick the "next" process, since someone really wants that to run
4011  * 3) pick the "last" process, for cache locality
4012  * 4) do not run the "skip" process, if something else is available
4013  */
4014 static struct sched_entity *
4015 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4016 {
4017 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4018 	struct sched_entity *se;
4019 
4020 	/*
4021 	 * If curr is set we have to see if its left of the leftmost entity
4022 	 * still in the tree, provided there was anything in the tree at all.
4023 	 */
4024 	if (!left || (curr && entity_before(curr, left)))
4025 		left = curr;
4026 
4027 	se = left; /* ideally we run the leftmost entity */
4028 
4029 	/*
4030 	 * Avoid running the skip buddy, if running something else can
4031 	 * be done without getting too unfair.
4032 	 */
4033 	if (cfs_rq->skip == se) {
4034 		struct sched_entity *second;
4035 
4036 		if (se == curr) {
4037 			second = __pick_first_entity(cfs_rq);
4038 		} else {
4039 			second = __pick_next_entity(se);
4040 			if (!second || (curr && entity_before(curr, second)))
4041 				second = curr;
4042 		}
4043 
4044 		if (second && wakeup_preempt_entity(second, left) < 1)
4045 			se = second;
4046 	}
4047 
4048 	/*
4049 	 * Prefer last buddy, try to return the CPU to a preempted task.
4050 	 */
4051 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4052 		se = cfs_rq->last;
4053 
4054 	/*
4055 	 * Someone really wants this to run. If it's not unfair, run it.
4056 	 */
4057 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4058 		se = cfs_rq->next;
4059 
4060 	clear_buddies(cfs_rq, se);
4061 
4062 	return se;
4063 }
4064 
4065 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4066 
4067 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4068 {
4069 	/*
4070 	 * If still on the runqueue then deactivate_task()
4071 	 * was not called and update_curr() has to be done:
4072 	 */
4073 	if (prev->on_rq)
4074 		update_curr(cfs_rq);
4075 
4076 	/* throttle cfs_rqs exceeding runtime */
4077 	check_cfs_rq_runtime(cfs_rq);
4078 
4079 	check_spread(cfs_rq, prev);
4080 
4081 	if (prev->on_rq) {
4082 		update_stats_wait_start(cfs_rq, prev);
4083 		/* Put 'current' back into the tree. */
4084 		__enqueue_entity(cfs_rq, prev);
4085 		/* in !on_rq case, update occurred at dequeue */
4086 		update_load_avg(cfs_rq, prev, 0);
4087 	}
4088 	cfs_rq->curr = NULL;
4089 }
4090 
4091 static void
4092 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4093 {
4094 	/*
4095 	 * Update run-time statistics of the 'current'.
4096 	 */
4097 	update_curr(cfs_rq);
4098 
4099 	/*
4100 	 * Ensure that runnable average is periodically updated.
4101 	 */
4102 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4103 	update_cfs_group(curr);
4104 
4105 #ifdef CONFIG_SCHED_HRTICK
4106 	/*
4107 	 * queued ticks are scheduled to match the slice, so don't bother
4108 	 * validating it and just reschedule.
4109 	 */
4110 	if (queued) {
4111 		resched_curr(rq_of(cfs_rq));
4112 		return;
4113 	}
4114 	/*
4115 	 * don't let the period tick interfere with the hrtick preemption
4116 	 */
4117 	if (!sched_feat(DOUBLE_TICK) &&
4118 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4119 		return;
4120 #endif
4121 
4122 	if (cfs_rq->nr_running > 1)
4123 		check_preempt_tick(cfs_rq, curr);
4124 }
4125 
4126 
4127 /**************************************************
4128  * CFS bandwidth control machinery
4129  */
4130 
4131 #ifdef CONFIG_CFS_BANDWIDTH
4132 
4133 #ifdef HAVE_JUMP_LABEL
4134 static struct static_key __cfs_bandwidth_used;
4135 
4136 static inline bool cfs_bandwidth_used(void)
4137 {
4138 	return static_key_false(&__cfs_bandwidth_used);
4139 }
4140 
4141 void cfs_bandwidth_usage_inc(void)
4142 {
4143 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4144 }
4145 
4146 void cfs_bandwidth_usage_dec(void)
4147 {
4148 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4149 }
4150 #else /* HAVE_JUMP_LABEL */
4151 static bool cfs_bandwidth_used(void)
4152 {
4153 	return true;
4154 }
4155 
4156 void cfs_bandwidth_usage_inc(void) {}
4157 void cfs_bandwidth_usage_dec(void) {}
4158 #endif /* HAVE_JUMP_LABEL */
4159 
4160 /*
4161  * default period for cfs group bandwidth.
4162  * default: 0.1s, units: nanoseconds
4163  */
4164 static inline u64 default_cfs_period(void)
4165 {
4166 	return 100000000ULL;
4167 }
4168 
4169 static inline u64 sched_cfs_bandwidth_slice(void)
4170 {
4171 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4172 }
4173 
4174 /*
4175  * Replenish runtime according to assigned quota and update expiration time.
4176  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4177  * additional synchronization around rq->lock.
4178  *
4179  * requires cfs_b->lock
4180  */
4181 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4182 {
4183 	u64 now;
4184 
4185 	if (cfs_b->quota == RUNTIME_INF)
4186 		return;
4187 
4188 	now = sched_clock_cpu(smp_processor_id());
4189 	cfs_b->runtime = cfs_b->quota;
4190 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4191 	cfs_b->expires_seq++;
4192 }
4193 
4194 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4195 {
4196 	return &tg->cfs_bandwidth;
4197 }
4198 
4199 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4200 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4201 {
4202 	if (unlikely(cfs_rq->throttle_count))
4203 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4204 
4205 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4206 }
4207 
4208 /* returns 0 on failure to allocate runtime */
4209 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4210 {
4211 	struct task_group *tg = cfs_rq->tg;
4212 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4213 	u64 amount = 0, min_amount, expires;
4214 	int expires_seq;
4215 
4216 	/* note: this is a positive sum as runtime_remaining <= 0 */
4217 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4218 
4219 	raw_spin_lock(&cfs_b->lock);
4220 	if (cfs_b->quota == RUNTIME_INF)
4221 		amount = min_amount;
4222 	else {
4223 		start_cfs_bandwidth(cfs_b);
4224 
4225 		if (cfs_b->runtime > 0) {
4226 			amount = min(cfs_b->runtime, min_amount);
4227 			cfs_b->runtime -= amount;
4228 			cfs_b->idle = 0;
4229 		}
4230 	}
4231 	expires_seq = cfs_b->expires_seq;
4232 	expires = cfs_b->runtime_expires;
4233 	raw_spin_unlock(&cfs_b->lock);
4234 
4235 	cfs_rq->runtime_remaining += amount;
4236 	/*
4237 	 * we may have advanced our local expiration to account for allowed
4238 	 * spread between our sched_clock and the one on which runtime was
4239 	 * issued.
4240 	 */
4241 	if (cfs_rq->expires_seq != expires_seq) {
4242 		cfs_rq->expires_seq = expires_seq;
4243 		cfs_rq->runtime_expires = expires;
4244 	}
4245 
4246 	return cfs_rq->runtime_remaining > 0;
4247 }
4248 
4249 /*
4250  * Note: This depends on the synchronization provided by sched_clock and the
4251  * fact that rq->clock snapshots this value.
4252  */
4253 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4254 {
4255 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4256 
4257 	/* if the deadline is ahead of our clock, nothing to do */
4258 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4259 		return;
4260 
4261 	if (cfs_rq->runtime_remaining < 0)
4262 		return;
4263 
4264 	/*
4265 	 * If the local deadline has passed we have to consider the
4266 	 * possibility that our sched_clock is 'fast' and the global deadline
4267 	 * has not truly expired.
4268 	 *
4269 	 * Fortunately we can check determine whether this the case by checking
4270 	 * whether the global deadline(cfs_b->expires_seq) has advanced.
4271 	 */
4272 	if (cfs_rq->expires_seq == cfs_b->expires_seq) {
4273 		/* extend local deadline, drift is bounded above by 2 ticks */
4274 		cfs_rq->runtime_expires += TICK_NSEC;
4275 	} else {
4276 		/* global deadline is ahead, expiration has passed */
4277 		cfs_rq->runtime_remaining = 0;
4278 	}
4279 }
4280 
4281 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4282 {
4283 	/* dock delta_exec before expiring quota (as it could span periods) */
4284 	cfs_rq->runtime_remaining -= delta_exec;
4285 	expire_cfs_rq_runtime(cfs_rq);
4286 
4287 	if (likely(cfs_rq->runtime_remaining > 0))
4288 		return;
4289 
4290 	/*
4291 	 * if we're unable to extend our runtime we resched so that the active
4292 	 * hierarchy can be throttled
4293 	 */
4294 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4295 		resched_curr(rq_of(cfs_rq));
4296 }
4297 
4298 static __always_inline
4299 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4300 {
4301 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4302 		return;
4303 
4304 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4305 }
4306 
4307 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4308 {
4309 	return cfs_bandwidth_used() && cfs_rq->throttled;
4310 }
4311 
4312 /* check whether cfs_rq, or any parent, is throttled */
4313 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4314 {
4315 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4316 }
4317 
4318 /*
4319  * Ensure that neither of the group entities corresponding to src_cpu or
4320  * dest_cpu are members of a throttled hierarchy when performing group
4321  * load-balance operations.
4322  */
4323 static inline int throttled_lb_pair(struct task_group *tg,
4324 				    int src_cpu, int dest_cpu)
4325 {
4326 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4327 
4328 	src_cfs_rq = tg->cfs_rq[src_cpu];
4329 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4330 
4331 	return throttled_hierarchy(src_cfs_rq) ||
4332 	       throttled_hierarchy(dest_cfs_rq);
4333 }
4334 
4335 static int tg_unthrottle_up(struct task_group *tg, void *data)
4336 {
4337 	struct rq *rq = data;
4338 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4339 
4340 	cfs_rq->throttle_count--;
4341 	if (!cfs_rq->throttle_count) {
4342 		/* adjust cfs_rq_clock_task() */
4343 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4344 					     cfs_rq->throttled_clock_task;
4345 	}
4346 
4347 	return 0;
4348 }
4349 
4350 static int tg_throttle_down(struct task_group *tg, void *data)
4351 {
4352 	struct rq *rq = data;
4353 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4354 
4355 	/* group is entering throttled state, stop time */
4356 	if (!cfs_rq->throttle_count)
4357 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4358 	cfs_rq->throttle_count++;
4359 
4360 	return 0;
4361 }
4362 
4363 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4364 {
4365 	struct rq *rq = rq_of(cfs_rq);
4366 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4367 	struct sched_entity *se;
4368 	long task_delta, dequeue = 1;
4369 	bool empty;
4370 
4371 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4372 
4373 	/* freeze hierarchy runnable averages while throttled */
4374 	rcu_read_lock();
4375 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4376 	rcu_read_unlock();
4377 
4378 	task_delta = cfs_rq->h_nr_running;
4379 	for_each_sched_entity(se) {
4380 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4381 		/* throttled entity or throttle-on-deactivate */
4382 		if (!se->on_rq)
4383 			break;
4384 
4385 		if (dequeue)
4386 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4387 		qcfs_rq->h_nr_running -= task_delta;
4388 
4389 		if (qcfs_rq->load.weight)
4390 			dequeue = 0;
4391 	}
4392 
4393 	if (!se)
4394 		sub_nr_running(rq, task_delta);
4395 
4396 	cfs_rq->throttled = 1;
4397 	cfs_rq->throttled_clock = rq_clock(rq);
4398 	raw_spin_lock(&cfs_b->lock);
4399 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4400 
4401 	/*
4402 	 * Add to the _head_ of the list, so that an already-started
4403 	 * distribute_cfs_runtime will not see us
4404 	 */
4405 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4406 
4407 	/*
4408 	 * If we're the first throttled task, make sure the bandwidth
4409 	 * timer is running.
4410 	 */
4411 	if (empty)
4412 		start_cfs_bandwidth(cfs_b);
4413 
4414 	raw_spin_unlock(&cfs_b->lock);
4415 }
4416 
4417 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4418 {
4419 	struct rq *rq = rq_of(cfs_rq);
4420 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4421 	struct sched_entity *se;
4422 	int enqueue = 1;
4423 	long task_delta;
4424 
4425 	se = cfs_rq->tg->se[cpu_of(rq)];
4426 
4427 	cfs_rq->throttled = 0;
4428 
4429 	update_rq_clock(rq);
4430 
4431 	raw_spin_lock(&cfs_b->lock);
4432 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4433 	list_del_rcu(&cfs_rq->throttled_list);
4434 	raw_spin_unlock(&cfs_b->lock);
4435 
4436 	/* update hierarchical throttle state */
4437 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4438 
4439 	if (!cfs_rq->load.weight)
4440 		return;
4441 
4442 	task_delta = cfs_rq->h_nr_running;
4443 	for_each_sched_entity(se) {
4444 		if (se->on_rq)
4445 			enqueue = 0;
4446 
4447 		cfs_rq = cfs_rq_of(se);
4448 		if (enqueue)
4449 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4450 		cfs_rq->h_nr_running += task_delta;
4451 
4452 		if (cfs_rq_throttled(cfs_rq))
4453 			break;
4454 	}
4455 
4456 	if (!se)
4457 		add_nr_running(rq, task_delta);
4458 
4459 	/* Determine whether we need to wake up potentially idle CPU: */
4460 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4461 		resched_curr(rq);
4462 }
4463 
4464 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4465 		u64 remaining, u64 expires)
4466 {
4467 	struct cfs_rq *cfs_rq;
4468 	u64 runtime;
4469 	u64 starting_runtime = remaining;
4470 
4471 	rcu_read_lock();
4472 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4473 				throttled_list) {
4474 		struct rq *rq = rq_of(cfs_rq);
4475 		struct rq_flags rf;
4476 
4477 		rq_lock(rq, &rf);
4478 		if (!cfs_rq_throttled(cfs_rq))
4479 			goto next;
4480 
4481 		runtime = -cfs_rq->runtime_remaining + 1;
4482 		if (runtime > remaining)
4483 			runtime = remaining;
4484 		remaining -= runtime;
4485 
4486 		cfs_rq->runtime_remaining += runtime;
4487 		cfs_rq->runtime_expires = expires;
4488 
4489 		/* we check whether we're throttled above */
4490 		if (cfs_rq->runtime_remaining > 0)
4491 			unthrottle_cfs_rq(cfs_rq);
4492 
4493 next:
4494 		rq_unlock(rq, &rf);
4495 
4496 		if (!remaining)
4497 			break;
4498 	}
4499 	rcu_read_unlock();
4500 
4501 	return starting_runtime - remaining;
4502 }
4503 
4504 /*
4505  * Responsible for refilling a task_group's bandwidth and unthrottling its
4506  * cfs_rqs as appropriate. If there has been no activity within the last
4507  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4508  * used to track this state.
4509  */
4510 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4511 {
4512 	u64 runtime, runtime_expires;
4513 	int throttled;
4514 
4515 	/* no need to continue the timer with no bandwidth constraint */
4516 	if (cfs_b->quota == RUNTIME_INF)
4517 		goto out_deactivate;
4518 
4519 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4520 	cfs_b->nr_periods += overrun;
4521 
4522 	/*
4523 	 * idle depends on !throttled (for the case of a large deficit), and if
4524 	 * we're going inactive then everything else can be deferred
4525 	 */
4526 	if (cfs_b->idle && !throttled)
4527 		goto out_deactivate;
4528 
4529 	__refill_cfs_bandwidth_runtime(cfs_b);
4530 
4531 	if (!throttled) {
4532 		/* mark as potentially idle for the upcoming period */
4533 		cfs_b->idle = 1;
4534 		return 0;
4535 	}
4536 
4537 	/* account preceding periods in which throttling occurred */
4538 	cfs_b->nr_throttled += overrun;
4539 
4540 	runtime_expires = cfs_b->runtime_expires;
4541 
4542 	/*
4543 	 * This check is repeated as we are holding onto the new bandwidth while
4544 	 * we unthrottle. This can potentially race with an unthrottled group
4545 	 * trying to acquire new bandwidth from the global pool. This can result
4546 	 * in us over-using our runtime if it is all used during this loop, but
4547 	 * only by limited amounts in that extreme case.
4548 	 */
4549 	while (throttled && cfs_b->runtime > 0) {
4550 		runtime = cfs_b->runtime;
4551 		raw_spin_unlock(&cfs_b->lock);
4552 		/* we can't nest cfs_b->lock while distributing bandwidth */
4553 		runtime = distribute_cfs_runtime(cfs_b, runtime,
4554 						 runtime_expires);
4555 		raw_spin_lock(&cfs_b->lock);
4556 
4557 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4558 
4559 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4560 	}
4561 
4562 	/*
4563 	 * While we are ensured activity in the period following an
4564 	 * unthrottle, this also covers the case in which the new bandwidth is
4565 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4566 	 * timer to remain active while there are any throttled entities.)
4567 	 */
4568 	cfs_b->idle = 0;
4569 
4570 	return 0;
4571 
4572 out_deactivate:
4573 	return 1;
4574 }
4575 
4576 /* a cfs_rq won't donate quota below this amount */
4577 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4578 /* minimum remaining period time to redistribute slack quota */
4579 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4580 /* how long we wait to gather additional slack before distributing */
4581 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4582 
4583 /*
4584  * Are we near the end of the current quota period?
4585  *
4586  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4587  * hrtimer base being cleared by hrtimer_start. In the case of
4588  * migrate_hrtimers, base is never cleared, so we are fine.
4589  */
4590 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4591 {
4592 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4593 	u64 remaining;
4594 
4595 	/* if the call-back is running a quota refresh is already occurring */
4596 	if (hrtimer_callback_running(refresh_timer))
4597 		return 1;
4598 
4599 	/* is a quota refresh about to occur? */
4600 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4601 	if (remaining < min_expire)
4602 		return 1;
4603 
4604 	return 0;
4605 }
4606 
4607 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4608 {
4609 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4610 
4611 	/* if there's a quota refresh soon don't bother with slack */
4612 	if (runtime_refresh_within(cfs_b, min_left))
4613 		return;
4614 
4615 	hrtimer_start(&cfs_b->slack_timer,
4616 			ns_to_ktime(cfs_bandwidth_slack_period),
4617 			HRTIMER_MODE_REL);
4618 }
4619 
4620 /* we know any runtime found here is valid as update_curr() precedes return */
4621 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4622 {
4623 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4624 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4625 
4626 	if (slack_runtime <= 0)
4627 		return;
4628 
4629 	raw_spin_lock(&cfs_b->lock);
4630 	if (cfs_b->quota != RUNTIME_INF &&
4631 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4632 		cfs_b->runtime += slack_runtime;
4633 
4634 		/* we are under rq->lock, defer unthrottling using a timer */
4635 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4636 		    !list_empty(&cfs_b->throttled_cfs_rq))
4637 			start_cfs_slack_bandwidth(cfs_b);
4638 	}
4639 	raw_spin_unlock(&cfs_b->lock);
4640 
4641 	/* even if it's not valid for return we don't want to try again */
4642 	cfs_rq->runtime_remaining -= slack_runtime;
4643 }
4644 
4645 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4646 {
4647 	if (!cfs_bandwidth_used())
4648 		return;
4649 
4650 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4651 		return;
4652 
4653 	__return_cfs_rq_runtime(cfs_rq);
4654 }
4655 
4656 /*
4657  * This is done with a timer (instead of inline with bandwidth return) since
4658  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4659  */
4660 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4661 {
4662 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4663 	u64 expires;
4664 
4665 	/* confirm we're still not at a refresh boundary */
4666 	raw_spin_lock(&cfs_b->lock);
4667 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4668 		raw_spin_unlock(&cfs_b->lock);
4669 		return;
4670 	}
4671 
4672 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4673 		runtime = cfs_b->runtime;
4674 
4675 	expires = cfs_b->runtime_expires;
4676 	raw_spin_unlock(&cfs_b->lock);
4677 
4678 	if (!runtime)
4679 		return;
4680 
4681 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4682 
4683 	raw_spin_lock(&cfs_b->lock);
4684 	if (expires == cfs_b->runtime_expires)
4685 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4686 	raw_spin_unlock(&cfs_b->lock);
4687 }
4688 
4689 /*
4690  * When a group wakes up we want to make sure that its quota is not already
4691  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4692  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4693  */
4694 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4695 {
4696 	if (!cfs_bandwidth_used())
4697 		return;
4698 
4699 	/* an active group must be handled by the update_curr()->put() path */
4700 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4701 		return;
4702 
4703 	/* ensure the group is not already throttled */
4704 	if (cfs_rq_throttled(cfs_rq))
4705 		return;
4706 
4707 	/* update runtime allocation */
4708 	account_cfs_rq_runtime(cfs_rq, 0);
4709 	if (cfs_rq->runtime_remaining <= 0)
4710 		throttle_cfs_rq(cfs_rq);
4711 }
4712 
4713 static void sync_throttle(struct task_group *tg, int cpu)
4714 {
4715 	struct cfs_rq *pcfs_rq, *cfs_rq;
4716 
4717 	if (!cfs_bandwidth_used())
4718 		return;
4719 
4720 	if (!tg->parent)
4721 		return;
4722 
4723 	cfs_rq = tg->cfs_rq[cpu];
4724 	pcfs_rq = tg->parent->cfs_rq[cpu];
4725 
4726 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4727 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4728 }
4729 
4730 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4731 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4732 {
4733 	if (!cfs_bandwidth_used())
4734 		return false;
4735 
4736 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4737 		return false;
4738 
4739 	/*
4740 	 * it's possible for a throttled entity to be forced into a running
4741 	 * state (e.g. set_curr_task), in this case we're finished.
4742 	 */
4743 	if (cfs_rq_throttled(cfs_rq))
4744 		return true;
4745 
4746 	throttle_cfs_rq(cfs_rq);
4747 	return true;
4748 }
4749 
4750 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4751 {
4752 	struct cfs_bandwidth *cfs_b =
4753 		container_of(timer, struct cfs_bandwidth, slack_timer);
4754 
4755 	do_sched_cfs_slack_timer(cfs_b);
4756 
4757 	return HRTIMER_NORESTART;
4758 }
4759 
4760 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4761 {
4762 	struct cfs_bandwidth *cfs_b =
4763 		container_of(timer, struct cfs_bandwidth, period_timer);
4764 	int overrun;
4765 	int idle = 0;
4766 
4767 	raw_spin_lock(&cfs_b->lock);
4768 	for (;;) {
4769 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4770 		if (!overrun)
4771 			break;
4772 
4773 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
4774 	}
4775 	if (idle)
4776 		cfs_b->period_active = 0;
4777 	raw_spin_unlock(&cfs_b->lock);
4778 
4779 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4780 }
4781 
4782 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4783 {
4784 	raw_spin_lock_init(&cfs_b->lock);
4785 	cfs_b->runtime = 0;
4786 	cfs_b->quota = RUNTIME_INF;
4787 	cfs_b->period = ns_to_ktime(default_cfs_period());
4788 
4789 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4790 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4791 	cfs_b->period_timer.function = sched_cfs_period_timer;
4792 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4793 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4794 }
4795 
4796 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4797 {
4798 	cfs_rq->runtime_enabled = 0;
4799 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4800 }
4801 
4802 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4803 {
4804 	u64 overrun;
4805 
4806 	lockdep_assert_held(&cfs_b->lock);
4807 
4808 	if (cfs_b->period_active)
4809 		return;
4810 
4811 	cfs_b->period_active = 1;
4812 	overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4813 	cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
4814 	cfs_b->expires_seq++;
4815 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4816 }
4817 
4818 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4819 {
4820 	/* init_cfs_bandwidth() was not called */
4821 	if (!cfs_b->throttled_cfs_rq.next)
4822 		return;
4823 
4824 	hrtimer_cancel(&cfs_b->period_timer);
4825 	hrtimer_cancel(&cfs_b->slack_timer);
4826 }
4827 
4828 /*
4829  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
4830  *
4831  * The race is harmless, since modifying bandwidth settings of unhooked group
4832  * bits doesn't do much.
4833  */
4834 
4835 /* cpu online calback */
4836 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4837 {
4838 	struct task_group *tg;
4839 
4840 	lockdep_assert_held(&rq->lock);
4841 
4842 	rcu_read_lock();
4843 	list_for_each_entry_rcu(tg, &task_groups, list) {
4844 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4845 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4846 
4847 		raw_spin_lock(&cfs_b->lock);
4848 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4849 		raw_spin_unlock(&cfs_b->lock);
4850 	}
4851 	rcu_read_unlock();
4852 }
4853 
4854 /* cpu offline callback */
4855 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4856 {
4857 	struct task_group *tg;
4858 
4859 	lockdep_assert_held(&rq->lock);
4860 
4861 	rcu_read_lock();
4862 	list_for_each_entry_rcu(tg, &task_groups, list) {
4863 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4864 
4865 		if (!cfs_rq->runtime_enabled)
4866 			continue;
4867 
4868 		/*
4869 		 * clock_task is not advancing so we just need to make sure
4870 		 * there's some valid quota amount
4871 		 */
4872 		cfs_rq->runtime_remaining = 1;
4873 		/*
4874 		 * Offline rq is schedulable till CPU is completely disabled
4875 		 * in take_cpu_down(), so we prevent new cfs throttling here.
4876 		 */
4877 		cfs_rq->runtime_enabled = 0;
4878 
4879 		if (cfs_rq_throttled(cfs_rq))
4880 			unthrottle_cfs_rq(cfs_rq);
4881 	}
4882 	rcu_read_unlock();
4883 }
4884 
4885 #else /* CONFIG_CFS_BANDWIDTH */
4886 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4887 {
4888 	return rq_clock_task(rq_of(cfs_rq));
4889 }
4890 
4891 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4892 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4893 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4894 static inline void sync_throttle(struct task_group *tg, int cpu) {}
4895 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4896 
4897 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4898 {
4899 	return 0;
4900 }
4901 
4902 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4903 {
4904 	return 0;
4905 }
4906 
4907 static inline int throttled_lb_pair(struct task_group *tg,
4908 				    int src_cpu, int dest_cpu)
4909 {
4910 	return 0;
4911 }
4912 
4913 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4914 
4915 #ifdef CONFIG_FAIR_GROUP_SCHED
4916 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4917 #endif
4918 
4919 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4920 {
4921 	return NULL;
4922 }
4923 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4924 static inline void update_runtime_enabled(struct rq *rq) {}
4925 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4926 
4927 #endif /* CONFIG_CFS_BANDWIDTH */
4928 
4929 /**************************************************
4930  * CFS operations on tasks:
4931  */
4932 
4933 #ifdef CONFIG_SCHED_HRTICK
4934 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4935 {
4936 	struct sched_entity *se = &p->se;
4937 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4938 
4939 	SCHED_WARN_ON(task_rq(p) != rq);
4940 
4941 	if (rq->cfs.h_nr_running > 1) {
4942 		u64 slice = sched_slice(cfs_rq, se);
4943 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4944 		s64 delta = slice - ran;
4945 
4946 		if (delta < 0) {
4947 			if (rq->curr == p)
4948 				resched_curr(rq);
4949 			return;
4950 		}
4951 		hrtick_start(rq, delta);
4952 	}
4953 }
4954 
4955 /*
4956  * called from enqueue/dequeue and updates the hrtick when the
4957  * current task is from our class and nr_running is low enough
4958  * to matter.
4959  */
4960 static void hrtick_update(struct rq *rq)
4961 {
4962 	struct task_struct *curr = rq->curr;
4963 
4964 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4965 		return;
4966 
4967 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4968 		hrtick_start_fair(rq, curr);
4969 }
4970 #else /* !CONFIG_SCHED_HRTICK */
4971 static inline void
4972 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4973 {
4974 }
4975 
4976 static inline void hrtick_update(struct rq *rq)
4977 {
4978 }
4979 #endif
4980 
4981 /*
4982  * The enqueue_task method is called before nr_running is
4983  * increased. Here we update the fair scheduling stats and
4984  * then put the task into the rbtree:
4985  */
4986 static void
4987 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4988 {
4989 	struct cfs_rq *cfs_rq;
4990 	struct sched_entity *se = &p->se;
4991 
4992 	/*
4993 	 * The code below (indirectly) updates schedutil which looks at
4994 	 * the cfs_rq utilization to select a frequency.
4995 	 * Let's add the task's estimated utilization to the cfs_rq's
4996 	 * estimated utilization, before we update schedutil.
4997 	 */
4998 	util_est_enqueue(&rq->cfs, p);
4999 
5000 	/*
5001 	 * If in_iowait is set, the code below may not trigger any cpufreq
5002 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5003 	 * passed.
5004 	 */
5005 	if (p->in_iowait)
5006 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5007 
5008 	for_each_sched_entity(se) {
5009 		if (se->on_rq)
5010 			break;
5011 		cfs_rq = cfs_rq_of(se);
5012 		enqueue_entity(cfs_rq, se, flags);
5013 
5014 		/*
5015 		 * end evaluation on encountering a throttled cfs_rq
5016 		 *
5017 		 * note: in the case of encountering a throttled cfs_rq we will
5018 		 * post the final h_nr_running increment below.
5019 		 */
5020 		if (cfs_rq_throttled(cfs_rq))
5021 			break;
5022 		cfs_rq->h_nr_running++;
5023 
5024 		flags = ENQUEUE_WAKEUP;
5025 	}
5026 
5027 	for_each_sched_entity(se) {
5028 		cfs_rq = cfs_rq_of(se);
5029 		cfs_rq->h_nr_running++;
5030 
5031 		if (cfs_rq_throttled(cfs_rq))
5032 			break;
5033 
5034 		update_load_avg(cfs_rq, se, UPDATE_TG);
5035 		update_cfs_group(se);
5036 	}
5037 
5038 	if (!se)
5039 		add_nr_running(rq, 1);
5040 
5041 	hrtick_update(rq);
5042 }
5043 
5044 static void set_next_buddy(struct sched_entity *se);
5045 
5046 /*
5047  * The dequeue_task method is called before nr_running is
5048  * decreased. We remove the task from the rbtree and
5049  * update the fair scheduling stats:
5050  */
5051 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5052 {
5053 	struct cfs_rq *cfs_rq;
5054 	struct sched_entity *se = &p->se;
5055 	int task_sleep = flags & DEQUEUE_SLEEP;
5056 
5057 	for_each_sched_entity(se) {
5058 		cfs_rq = cfs_rq_of(se);
5059 		dequeue_entity(cfs_rq, se, flags);
5060 
5061 		/*
5062 		 * end evaluation on encountering a throttled cfs_rq
5063 		 *
5064 		 * note: in the case of encountering a throttled cfs_rq we will
5065 		 * post the final h_nr_running decrement below.
5066 		*/
5067 		if (cfs_rq_throttled(cfs_rq))
5068 			break;
5069 		cfs_rq->h_nr_running--;
5070 
5071 		/* Don't dequeue parent if it has other entities besides us */
5072 		if (cfs_rq->load.weight) {
5073 			/* Avoid re-evaluating load for this entity: */
5074 			se = parent_entity(se);
5075 			/*
5076 			 * Bias pick_next to pick a task from this cfs_rq, as
5077 			 * p is sleeping when it is within its sched_slice.
5078 			 */
5079 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5080 				set_next_buddy(se);
5081 			break;
5082 		}
5083 		flags |= DEQUEUE_SLEEP;
5084 	}
5085 
5086 	for_each_sched_entity(se) {
5087 		cfs_rq = cfs_rq_of(se);
5088 		cfs_rq->h_nr_running--;
5089 
5090 		if (cfs_rq_throttled(cfs_rq))
5091 			break;
5092 
5093 		update_load_avg(cfs_rq, se, UPDATE_TG);
5094 		update_cfs_group(se);
5095 	}
5096 
5097 	if (!se)
5098 		sub_nr_running(rq, 1);
5099 
5100 	util_est_dequeue(&rq->cfs, p, task_sleep);
5101 	hrtick_update(rq);
5102 }
5103 
5104 #ifdef CONFIG_SMP
5105 
5106 /* Working cpumask for: load_balance, load_balance_newidle. */
5107 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5108 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5109 
5110 #ifdef CONFIG_NO_HZ_COMMON
5111 /*
5112  * per rq 'load' arrray crap; XXX kill this.
5113  */
5114 
5115 /*
5116  * The exact cpuload calculated at every tick would be:
5117  *
5118  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5119  *
5120  * If a CPU misses updates for n ticks (as it was idle) and update gets
5121  * called on the n+1-th tick when CPU may be busy, then we have:
5122  *
5123  *   load_n   = (1 - 1/2^i)^n * load_0
5124  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5125  *
5126  * decay_load_missed() below does efficient calculation of
5127  *
5128  *   load' = (1 - 1/2^i)^n * load
5129  *
5130  * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5131  * This allows us to precompute the above in said factors, thereby allowing the
5132  * reduction of an arbitrary n in O(log_2 n) steps. (See also
5133  * fixed_power_int())
5134  *
5135  * The calculation is approximated on a 128 point scale.
5136  */
5137 #define DEGRADE_SHIFT		7
5138 
5139 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5140 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5141 	{   0,   0,  0,  0,  0,  0, 0, 0 },
5142 	{  64,  32,  8,  0,  0,  0, 0, 0 },
5143 	{  96,  72, 40, 12,  1,  0, 0, 0 },
5144 	{ 112,  98, 75, 43, 15,  1, 0, 0 },
5145 	{ 120, 112, 98, 76, 45, 16, 2, 0 }
5146 };
5147 
5148 /*
5149  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5150  * would be when CPU is idle and so we just decay the old load without
5151  * adding any new load.
5152  */
5153 static unsigned long
5154 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5155 {
5156 	int j = 0;
5157 
5158 	if (!missed_updates)
5159 		return load;
5160 
5161 	if (missed_updates >= degrade_zero_ticks[idx])
5162 		return 0;
5163 
5164 	if (idx == 1)
5165 		return load >> missed_updates;
5166 
5167 	while (missed_updates) {
5168 		if (missed_updates % 2)
5169 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5170 
5171 		missed_updates >>= 1;
5172 		j++;
5173 	}
5174 	return load;
5175 }
5176 
5177 static struct {
5178 	cpumask_var_t idle_cpus_mask;
5179 	atomic_t nr_cpus;
5180 	int has_blocked;		/* Idle CPUS has blocked load */
5181 	unsigned long next_balance;     /* in jiffy units */
5182 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5183 } nohz ____cacheline_aligned;
5184 
5185 #endif /* CONFIG_NO_HZ_COMMON */
5186 
5187 /**
5188  * __cpu_load_update - update the rq->cpu_load[] statistics
5189  * @this_rq: The rq to update statistics for
5190  * @this_load: The current load
5191  * @pending_updates: The number of missed updates
5192  *
5193  * Update rq->cpu_load[] statistics. This function is usually called every
5194  * scheduler tick (TICK_NSEC).
5195  *
5196  * This function computes a decaying average:
5197  *
5198  *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5199  *
5200  * Because of NOHZ it might not get called on every tick which gives need for
5201  * the @pending_updates argument.
5202  *
5203  *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5204  *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5205  *             = A * (A * load[i]_n-2 + B) + B
5206  *             = A * (A * (A * load[i]_n-3 + B) + B) + B
5207  *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5208  *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5209  *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5210  *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5211  *
5212  * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5213  * any change in load would have resulted in the tick being turned back on.
5214  *
5215  * For regular NOHZ, this reduces to:
5216  *
5217  *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
5218  *
5219  * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5220  * term.
5221  */
5222 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5223 			    unsigned long pending_updates)
5224 {
5225 	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5226 	int i, scale;
5227 
5228 	this_rq->nr_load_updates++;
5229 
5230 	/* Update our load: */
5231 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5232 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5233 		unsigned long old_load, new_load;
5234 
5235 		/* scale is effectively 1 << i now, and >> i divides by scale */
5236 
5237 		old_load = this_rq->cpu_load[i];
5238 #ifdef CONFIG_NO_HZ_COMMON
5239 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5240 		if (tickless_load) {
5241 			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5242 			/*
5243 			 * old_load can never be a negative value because a
5244 			 * decayed tickless_load cannot be greater than the
5245 			 * original tickless_load.
5246 			 */
5247 			old_load += tickless_load;
5248 		}
5249 #endif
5250 		new_load = this_load;
5251 		/*
5252 		 * Round up the averaging division if load is increasing. This
5253 		 * prevents us from getting stuck on 9 if the load is 10, for
5254 		 * example.
5255 		 */
5256 		if (new_load > old_load)
5257 			new_load += scale - 1;
5258 
5259 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5260 	}
5261 }
5262 
5263 /* Used instead of source_load when we know the type == 0 */
5264 static unsigned long weighted_cpuload(struct rq *rq)
5265 {
5266 	return cfs_rq_runnable_load_avg(&rq->cfs);
5267 }
5268 
5269 #ifdef CONFIG_NO_HZ_COMMON
5270 /*
5271  * There is no sane way to deal with nohz on smp when using jiffies because the
5272  * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5273  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5274  *
5275  * Therefore we need to avoid the delta approach from the regular tick when
5276  * possible since that would seriously skew the load calculation. This is why we
5277  * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5278  * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5279  * loop exit, nohz_idle_balance, nohz full exit...)
5280  *
5281  * This means we might still be one tick off for nohz periods.
5282  */
5283 
5284 static void cpu_load_update_nohz(struct rq *this_rq,
5285 				 unsigned long curr_jiffies,
5286 				 unsigned long load)
5287 {
5288 	unsigned long pending_updates;
5289 
5290 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5291 	if (pending_updates) {
5292 		this_rq->last_load_update_tick = curr_jiffies;
5293 		/*
5294 		 * In the regular NOHZ case, we were idle, this means load 0.
5295 		 * In the NOHZ_FULL case, we were non-idle, we should consider
5296 		 * its weighted load.
5297 		 */
5298 		cpu_load_update(this_rq, load, pending_updates);
5299 	}
5300 }
5301 
5302 /*
5303  * Called from nohz_idle_balance() to update the load ratings before doing the
5304  * idle balance.
5305  */
5306 static void cpu_load_update_idle(struct rq *this_rq)
5307 {
5308 	/*
5309 	 * bail if there's load or we're actually up-to-date.
5310 	 */
5311 	if (weighted_cpuload(this_rq))
5312 		return;
5313 
5314 	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5315 }
5316 
5317 /*
5318  * Record CPU load on nohz entry so we know the tickless load to account
5319  * on nohz exit. cpu_load[0] happens then to be updated more frequently
5320  * than other cpu_load[idx] but it should be fine as cpu_load readers
5321  * shouldn't rely into synchronized cpu_load[*] updates.
5322  */
5323 void cpu_load_update_nohz_start(void)
5324 {
5325 	struct rq *this_rq = this_rq();
5326 
5327 	/*
5328 	 * This is all lockless but should be fine. If weighted_cpuload changes
5329 	 * concurrently we'll exit nohz. And cpu_load write can race with
5330 	 * cpu_load_update_idle() but both updater would be writing the same.
5331 	 */
5332 	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5333 }
5334 
5335 /*
5336  * Account the tickless load in the end of a nohz frame.
5337  */
5338 void cpu_load_update_nohz_stop(void)
5339 {
5340 	unsigned long curr_jiffies = READ_ONCE(jiffies);
5341 	struct rq *this_rq = this_rq();
5342 	unsigned long load;
5343 	struct rq_flags rf;
5344 
5345 	if (curr_jiffies == this_rq->last_load_update_tick)
5346 		return;
5347 
5348 	load = weighted_cpuload(this_rq);
5349 	rq_lock(this_rq, &rf);
5350 	update_rq_clock(this_rq);
5351 	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5352 	rq_unlock(this_rq, &rf);
5353 }
5354 #else /* !CONFIG_NO_HZ_COMMON */
5355 static inline void cpu_load_update_nohz(struct rq *this_rq,
5356 					unsigned long curr_jiffies,
5357 					unsigned long load) { }
5358 #endif /* CONFIG_NO_HZ_COMMON */
5359 
5360 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5361 {
5362 #ifdef CONFIG_NO_HZ_COMMON
5363 	/* See the mess around cpu_load_update_nohz(). */
5364 	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5365 #endif
5366 	cpu_load_update(this_rq, load, 1);
5367 }
5368 
5369 /*
5370  * Called from scheduler_tick()
5371  */
5372 void cpu_load_update_active(struct rq *this_rq)
5373 {
5374 	unsigned long load = weighted_cpuload(this_rq);
5375 
5376 	if (tick_nohz_tick_stopped())
5377 		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5378 	else
5379 		cpu_load_update_periodic(this_rq, load);
5380 }
5381 
5382 /*
5383  * Return a low guess at the load of a migration-source CPU weighted
5384  * according to the scheduling class and "nice" value.
5385  *
5386  * We want to under-estimate the load of migration sources, to
5387  * balance conservatively.
5388  */
5389 static unsigned long source_load(int cpu, int type)
5390 {
5391 	struct rq *rq = cpu_rq(cpu);
5392 	unsigned long total = weighted_cpuload(rq);
5393 
5394 	if (type == 0 || !sched_feat(LB_BIAS))
5395 		return total;
5396 
5397 	return min(rq->cpu_load[type-1], total);
5398 }
5399 
5400 /*
5401  * Return a high guess at the load of a migration-target CPU weighted
5402  * according to the scheduling class and "nice" value.
5403  */
5404 static unsigned long target_load(int cpu, int type)
5405 {
5406 	struct rq *rq = cpu_rq(cpu);
5407 	unsigned long total = weighted_cpuload(rq);
5408 
5409 	if (type == 0 || !sched_feat(LB_BIAS))
5410 		return total;
5411 
5412 	return max(rq->cpu_load[type-1], total);
5413 }
5414 
5415 static unsigned long capacity_of(int cpu)
5416 {
5417 	return cpu_rq(cpu)->cpu_capacity;
5418 }
5419 
5420 static unsigned long capacity_orig_of(int cpu)
5421 {
5422 	return cpu_rq(cpu)->cpu_capacity_orig;
5423 }
5424 
5425 static unsigned long cpu_avg_load_per_task(int cpu)
5426 {
5427 	struct rq *rq = cpu_rq(cpu);
5428 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5429 	unsigned long load_avg = weighted_cpuload(rq);
5430 
5431 	if (nr_running)
5432 		return load_avg / nr_running;
5433 
5434 	return 0;
5435 }
5436 
5437 static void record_wakee(struct task_struct *p)
5438 {
5439 	/*
5440 	 * Only decay a single time; tasks that have less then 1 wakeup per
5441 	 * jiffy will not have built up many flips.
5442 	 */
5443 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5444 		current->wakee_flips >>= 1;
5445 		current->wakee_flip_decay_ts = jiffies;
5446 	}
5447 
5448 	if (current->last_wakee != p) {
5449 		current->last_wakee = p;
5450 		current->wakee_flips++;
5451 	}
5452 }
5453 
5454 /*
5455  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5456  *
5457  * A waker of many should wake a different task than the one last awakened
5458  * at a frequency roughly N times higher than one of its wakees.
5459  *
5460  * In order to determine whether we should let the load spread vs consolidating
5461  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5462  * partner, and a factor of lls_size higher frequency in the other.
5463  *
5464  * With both conditions met, we can be relatively sure that the relationship is
5465  * non-monogamous, with partner count exceeding socket size.
5466  *
5467  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5468  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5469  * socket size.
5470  */
5471 static int wake_wide(struct task_struct *p)
5472 {
5473 	unsigned int master = current->wakee_flips;
5474 	unsigned int slave = p->wakee_flips;
5475 	int factor = this_cpu_read(sd_llc_size);
5476 
5477 	if (master < slave)
5478 		swap(master, slave);
5479 	if (slave < factor || master < slave * factor)
5480 		return 0;
5481 	return 1;
5482 }
5483 
5484 /*
5485  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5486  * soonest. For the purpose of speed we only consider the waking and previous
5487  * CPU.
5488  *
5489  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5490  *			cache-affine and is (or	will be) idle.
5491  *
5492  * wake_affine_weight() - considers the weight to reflect the average
5493  *			  scheduling latency of the CPUs. This seems to work
5494  *			  for the overloaded case.
5495  */
5496 static int
5497 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5498 {
5499 	/*
5500 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5501 	 * context. Only allow the move if cache is shared. Otherwise an
5502 	 * interrupt intensive workload could force all tasks onto one
5503 	 * node depending on the IO topology or IRQ affinity settings.
5504 	 *
5505 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5506 	 * There is no guarantee that the cache hot data from an interrupt
5507 	 * is more important than cache hot data on the prev_cpu and from
5508 	 * a cpufreq perspective, it's better to have higher utilisation
5509 	 * on one CPU.
5510 	 */
5511 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5512 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5513 
5514 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5515 		return this_cpu;
5516 
5517 	return nr_cpumask_bits;
5518 }
5519 
5520 static int
5521 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5522 		   int this_cpu, int prev_cpu, int sync)
5523 {
5524 	s64 this_eff_load, prev_eff_load;
5525 	unsigned long task_load;
5526 
5527 	this_eff_load = target_load(this_cpu, sd->wake_idx);
5528 
5529 	if (sync) {
5530 		unsigned long current_load = task_h_load(current);
5531 
5532 		if (current_load > this_eff_load)
5533 			return this_cpu;
5534 
5535 		this_eff_load -= current_load;
5536 	}
5537 
5538 	task_load = task_h_load(p);
5539 
5540 	this_eff_load += task_load;
5541 	if (sched_feat(WA_BIAS))
5542 		this_eff_load *= 100;
5543 	this_eff_load *= capacity_of(prev_cpu);
5544 
5545 	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5546 	prev_eff_load -= task_load;
5547 	if (sched_feat(WA_BIAS))
5548 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5549 	prev_eff_load *= capacity_of(this_cpu);
5550 
5551 	/*
5552 	 * If sync, adjust the weight of prev_eff_load such that if
5553 	 * prev_eff == this_eff that select_idle_sibling() will consider
5554 	 * stacking the wakee on top of the waker if no other CPU is
5555 	 * idle.
5556 	 */
5557 	if (sync)
5558 		prev_eff_load += 1;
5559 
5560 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5561 }
5562 
5563 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5564 		       int this_cpu, int prev_cpu, int sync)
5565 {
5566 	int target = nr_cpumask_bits;
5567 
5568 	if (sched_feat(WA_IDLE))
5569 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5570 
5571 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5572 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5573 
5574 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5575 	if (target == nr_cpumask_bits)
5576 		return prev_cpu;
5577 
5578 	schedstat_inc(sd->ttwu_move_affine);
5579 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5580 	return target;
5581 }
5582 
5583 static unsigned long cpu_util_wake(int cpu, struct task_struct *p);
5584 
5585 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5586 {
5587 	return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0);
5588 }
5589 
5590 /*
5591  * find_idlest_group finds and returns the least busy CPU group within the
5592  * domain.
5593  *
5594  * Assumes p is allowed on at least one CPU in sd.
5595  */
5596 static struct sched_group *
5597 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5598 		  int this_cpu, int sd_flag)
5599 {
5600 	struct sched_group *idlest = NULL, *group = sd->groups;
5601 	struct sched_group *most_spare_sg = NULL;
5602 	unsigned long min_runnable_load = ULONG_MAX;
5603 	unsigned long this_runnable_load = ULONG_MAX;
5604 	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5605 	unsigned long most_spare = 0, this_spare = 0;
5606 	int load_idx = sd->forkexec_idx;
5607 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5608 	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5609 				(sd->imbalance_pct-100) / 100;
5610 
5611 	if (sd_flag & SD_BALANCE_WAKE)
5612 		load_idx = sd->wake_idx;
5613 
5614 	do {
5615 		unsigned long load, avg_load, runnable_load;
5616 		unsigned long spare_cap, max_spare_cap;
5617 		int local_group;
5618 		int i;
5619 
5620 		/* Skip over this group if it has no CPUs allowed */
5621 		if (!cpumask_intersects(sched_group_span(group),
5622 					&p->cpus_allowed))
5623 			continue;
5624 
5625 		local_group = cpumask_test_cpu(this_cpu,
5626 					       sched_group_span(group));
5627 
5628 		/*
5629 		 * Tally up the load of all CPUs in the group and find
5630 		 * the group containing the CPU with most spare capacity.
5631 		 */
5632 		avg_load = 0;
5633 		runnable_load = 0;
5634 		max_spare_cap = 0;
5635 
5636 		for_each_cpu(i, sched_group_span(group)) {
5637 			/* Bias balancing toward CPUs of our domain */
5638 			if (local_group)
5639 				load = source_load(i, load_idx);
5640 			else
5641 				load = target_load(i, load_idx);
5642 
5643 			runnable_load += load;
5644 
5645 			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5646 
5647 			spare_cap = capacity_spare_wake(i, p);
5648 
5649 			if (spare_cap > max_spare_cap)
5650 				max_spare_cap = spare_cap;
5651 		}
5652 
5653 		/* Adjust by relative CPU capacity of the group */
5654 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5655 					group->sgc->capacity;
5656 		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5657 					group->sgc->capacity;
5658 
5659 		if (local_group) {
5660 			this_runnable_load = runnable_load;
5661 			this_avg_load = avg_load;
5662 			this_spare = max_spare_cap;
5663 		} else {
5664 			if (min_runnable_load > (runnable_load + imbalance)) {
5665 				/*
5666 				 * The runnable load is significantly smaller
5667 				 * so we can pick this new CPU:
5668 				 */
5669 				min_runnable_load = runnable_load;
5670 				min_avg_load = avg_load;
5671 				idlest = group;
5672 			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
5673 				   (100*min_avg_load > imbalance_scale*avg_load)) {
5674 				/*
5675 				 * The runnable loads are close so take the
5676 				 * blocked load into account through avg_load:
5677 				 */
5678 				min_avg_load = avg_load;
5679 				idlest = group;
5680 			}
5681 
5682 			if (most_spare < max_spare_cap) {
5683 				most_spare = max_spare_cap;
5684 				most_spare_sg = group;
5685 			}
5686 		}
5687 	} while (group = group->next, group != sd->groups);
5688 
5689 	/*
5690 	 * The cross-over point between using spare capacity or least load
5691 	 * is too conservative for high utilization tasks on partially
5692 	 * utilized systems if we require spare_capacity > task_util(p),
5693 	 * so we allow for some task stuffing by using
5694 	 * spare_capacity > task_util(p)/2.
5695 	 *
5696 	 * Spare capacity can't be used for fork because the utilization has
5697 	 * not been set yet, we must first select a rq to compute the initial
5698 	 * utilization.
5699 	 */
5700 	if (sd_flag & SD_BALANCE_FORK)
5701 		goto skip_spare;
5702 
5703 	if (this_spare > task_util(p) / 2 &&
5704 	    imbalance_scale*this_spare > 100*most_spare)
5705 		return NULL;
5706 
5707 	if (most_spare > task_util(p) / 2)
5708 		return most_spare_sg;
5709 
5710 skip_spare:
5711 	if (!idlest)
5712 		return NULL;
5713 
5714 	/*
5715 	 * When comparing groups across NUMA domains, it's possible for the
5716 	 * local domain to be very lightly loaded relative to the remote
5717 	 * domains but "imbalance" skews the comparison making remote CPUs
5718 	 * look much more favourable. When considering cross-domain, add
5719 	 * imbalance to the runnable load on the remote node and consider
5720 	 * staying local.
5721 	 */
5722 	if ((sd->flags & SD_NUMA) &&
5723 	    min_runnable_load + imbalance >= this_runnable_load)
5724 		return NULL;
5725 
5726 	if (min_runnable_load > (this_runnable_load + imbalance))
5727 		return NULL;
5728 
5729 	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5730 	     (100*this_avg_load < imbalance_scale*min_avg_load))
5731 		return NULL;
5732 
5733 	return idlest;
5734 }
5735 
5736 /*
5737  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5738  */
5739 static int
5740 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5741 {
5742 	unsigned long load, min_load = ULONG_MAX;
5743 	unsigned int min_exit_latency = UINT_MAX;
5744 	u64 latest_idle_timestamp = 0;
5745 	int least_loaded_cpu = this_cpu;
5746 	int shallowest_idle_cpu = -1;
5747 	int i;
5748 
5749 	/* Check if we have any choice: */
5750 	if (group->group_weight == 1)
5751 		return cpumask_first(sched_group_span(group));
5752 
5753 	/* Traverse only the allowed CPUs */
5754 	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5755 		if (available_idle_cpu(i)) {
5756 			struct rq *rq = cpu_rq(i);
5757 			struct cpuidle_state *idle = idle_get_state(rq);
5758 			if (idle && idle->exit_latency < min_exit_latency) {
5759 				/*
5760 				 * We give priority to a CPU whose idle state
5761 				 * has the smallest exit latency irrespective
5762 				 * of any idle timestamp.
5763 				 */
5764 				min_exit_latency = idle->exit_latency;
5765 				latest_idle_timestamp = rq->idle_stamp;
5766 				shallowest_idle_cpu = i;
5767 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5768 				   rq->idle_stamp > latest_idle_timestamp) {
5769 				/*
5770 				 * If equal or no active idle state, then
5771 				 * the most recently idled CPU might have
5772 				 * a warmer cache.
5773 				 */
5774 				latest_idle_timestamp = rq->idle_stamp;
5775 				shallowest_idle_cpu = i;
5776 			}
5777 		} else if (shallowest_idle_cpu == -1) {
5778 			load = weighted_cpuload(cpu_rq(i));
5779 			if (load < min_load) {
5780 				min_load = load;
5781 				least_loaded_cpu = i;
5782 			}
5783 		}
5784 	}
5785 
5786 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5787 }
5788 
5789 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5790 				  int cpu, int prev_cpu, int sd_flag)
5791 {
5792 	int new_cpu = cpu;
5793 
5794 	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
5795 		return prev_cpu;
5796 
5797 	/*
5798 	 * We need task's util for capacity_spare_wake, sync it up to prev_cpu's
5799 	 * last_update_time.
5800 	 */
5801 	if (!(sd_flag & SD_BALANCE_FORK))
5802 		sync_entity_load_avg(&p->se);
5803 
5804 	while (sd) {
5805 		struct sched_group *group;
5806 		struct sched_domain *tmp;
5807 		int weight;
5808 
5809 		if (!(sd->flags & sd_flag)) {
5810 			sd = sd->child;
5811 			continue;
5812 		}
5813 
5814 		group = find_idlest_group(sd, p, cpu, sd_flag);
5815 		if (!group) {
5816 			sd = sd->child;
5817 			continue;
5818 		}
5819 
5820 		new_cpu = find_idlest_group_cpu(group, p, cpu);
5821 		if (new_cpu == cpu) {
5822 			/* Now try balancing at a lower domain level of 'cpu': */
5823 			sd = sd->child;
5824 			continue;
5825 		}
5826 
5827 		/* Now try balancing at a lower domain level of 'new_cpu': */
5828 		cpu = new_cpu;
5829 		weight = sd->span_weight;
5830 		sd = NULL;
5831 		for_each_domain(cpu, tmp) {
5832 			if (weight <= tmp->span_weight)
5833 				break;
5834 			if (tmp->flags & sd_flag)
5835 				sd = tmp;
5836 		}
5837 	}
5838 
5839 	return new_cpu;
5840 }
5841 
5842 #ifdef CONFIG_SCHED_SMT
5843 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5844 
5845 static inline void set_idle_cores(int cpu, int val)
5846 {
5847 	struct sched_domain_shared *sds;
5848 
5849 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5850 	if (sds)
5851 		WRITE_ONCE(sds->has_idle_cores, val);
5852 }
5853 
5854 static inline bool test_idle_cores(int cpu, bool def)
5855 {
5856 	struct sched_domain_shared *sds;
5857 
5858 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5859 	if (sds)
5860 		return READ_ONCE(sds->has_idle_cores);
5861 
5862 	return def;
5863 }
5864 
5865 /*
5866  * Scans the local SMT mask to see if the entire core is idle, and records this
5867  * information in sd_llc_shared->has_idle_cores.
5868  *
5869  * Since SMT siblings share all cache levels, inspecting this limited remote
5870  * state should be fairly cheap.
5871  */
5872 void __update_idle_core(struct rq *rq)
5873 {
5874 	int core = cpu_of(rq);
5875 	int cpu;
5876 
5877 	rcu_read_lock();
5878 	if (test_idle_cores(core, true))
5879 		goto unlock;
5880 
5881 	for_each_cpu(cpu, cpu_smt_mask(core)) {
5882 		if (cpu == core)
5883 			continue;
5884 
5885 		if (!available_idle_cpu(cpu))
5886 			goto unlock;
5887 	}
5888 
5889 	set_idle_cores(core, 1);
5890 unlock:
5891 	rcu_read_unlock();
5892 }
5893 
5894 /*
5895  * Scan the entire LLC domain for idle cores; this dynamically switches off if
5896  * there are no idle cores left in the system; tracked through
5897  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5898  */
5899 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5900 {
5901 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5902 	int core, cpu;
5903 
5904 	if (!static_branch_likely(&sched_smt_present))
5905 		return -1;
5906 
5907 	if (!test_idle_cores(target, false))
5908 		return -1;
5909 
5910 	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5911 
5912 	for_each_cpu_wrap(core, cpus, target) {
5913 		bool idle = true;
5914 
5915 		for_each_cpu(cpu, cpu_smt_mask(core)) {
5916 			cpumask_clear_cpu(cpu, cpus);
5917 			if (!available_idle_cpu(cpu))
5918 				idle = false;
5919 		}
5920 
5921 		if (idle)
5922 			return core;
5923 	}
5924 
5925 	/*
5926 	 * Failed to find an idle core; stop looking for one.
5927 	 */
5928 	set_idle_cores(target, 0);
5929 
5930 	return -1;
5931 }
5932 
5933 /*
5934  * Scan the local SMT mask for idle CPUs.
5935  */
5936 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5937 {
5938 	int cpu;
5939 
5940 	if (!static_branch_likely(&sched_smt_present))
5941 		return -1;
5942 
5943 	for_each_cpu(cpu, cpu_smt_mask(target)) {
5944 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5945 			continue;
5946 		if (available_idle_cpu(cpu))
5947 			return cpu;
5948 	}
5949 
5950 	return -1;
5951 }
5952 
5953 #else /* CONFIG_SCHED_SMT */
5954 
5955 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5956 {
5957 	return -1;
5958 }
5959 
5960 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5961 {
5962 	return -1;
5963 }
5964 
5965 #endif /* CONFIG_SCHED_SMT */
5966 
5967 /*
5968  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5969  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5970  * average idle time for this rq (as found in rq->avg_idle).
5971  */
5972 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5973 {
5974 	struct sched_domain *this_sd;
5975 	u64 avg_cost, avg_idle;
5976 	u64 time, cost;
5977 	s64 delta;
5978 	int cpu, nr = INT_MAX;
5979 
5980 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5981 	if (!this_sd)
5982 		return -1;
5983 
5984 	/*
5985 	 * Due to large variance we need a large fuzz factor; hackbench in
5986 	 * particularly is sensitive here.
5987 	 */
5988 	avg_idle = this_rq()->avg_idle / 512;
5989 	avg_cost = this_sd->avg_scan_cost + 1;
5990 
5991 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
5992 		return -1;
5993 
5994 	if (sched_feat(SIS_PROP)) {
5995 		u64 span_avg = sd->span_weight * avg_idle;
5996 		if (span_avg > 4*avg_cost)
5997 			nr = div_u64(span_avg, avg_cost);
5998 		else
5999 			nr = 4;
6000 	}
6001 
6002 	time = local_clock();
6003 
6004 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6005 		if (!--nr)
6006 			return -1;
6007 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6008 			continue;
6009 		if (available_idle_cpu(cpu))
6010 			break;
6011 	}
6012 
6013 	time = local_clock() - time;
6014 	cost = this_sd->avg_scan_cost;
6015 	delta = (s64)(time - cost) / 8;
6016 	this_sd->avg_scan_cost += delta;
6017 
6018 	return cpu;
6019 }
6020 
6021 /*
6022  * Try and locate an idle core/thread in the LLC cache domain.
6023  */
6024 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6025 {
6026 	struct sched_domain *sd;
6027 	int i, recent_used_cpu;
6028 
6029 	if (available_idle_cpu(target))
6030 		return target;
6031 
6032 	/*
6033 	 * If the previous CPU is cache affine and idle, don't be stupid:
6034 	 */
6035 	if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
6036 		return prev;
6037 
6038 	/* Check a recently used CPU as a potential idle candidate: */
6039 	recent_used_cpu = p->recent_used_cpu;
6040 	if (recent_used_cpu != prev &&
6041 	    recent_used_cpu != target &&
6042 	    cpus_share_cache(recent_used_cpu, target) &&
6043 	    available_idle_cpu(recent_used_cpu) &&
6044 	    cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6045 		/*
6046 		 * Replace recent_used_cpu with prev as it is a potential
6047 		 * candidate for the next wake:
6048 		 */
6049 		p->recent_used_cpu = prev;
6050 		return recent_used_cpu;
6051 	}
6052 
6053 	sd = rcu_dereference(per_cpu(sd_llc, target));
6054 	if (!sd)
6055 		return target;
6056 
6057 	i = select_idle_core(p, sd, target);
6058 	if ((unsigned)i < nr_cpumask_bits)
6059 		return i;
6060 
6061 	i = select_idle_cpu(p, sd, target);
6062 	if ((unsigned)i < nr_cpumask_bits)
6063 		return i;
6064 
6065 	i = select_idle_smt(p, sd, target);
6066 	if ((unsigned)i < nr_cpumask_bits)
6067 		return i;
6068 
6069 	return target;
6070 }
6071 
6072 /**
6073  * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6074  * @cpu: the CPU to get the utilization of
6075  *
6076  * The unit of the return value must be the one of capacity so we can compare
6077  * the utilization with the capacity of the CPU that is available for CFS task
6078  * (ie cpu_capacity).
6079  *
6080  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6081  * recent utilization of currently non-runnable tasks on a CPU. It represents
6082  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6083  * capacity_orig is the cpu_capacity available at the highest frequency
6084  * (arch_scale_freq_capacity()).
6085  * The utilization of a CPU converges towards a sum equal to or less than the
6086  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6087  * the running time on this CPU scaled by capacity_curr.
6088  *
6089  * The estimated utilization of a CPU is defined to be the maximum between its
6090  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6091  * currently RUNNABLE on that CPU.
6092  * This allows to properly represent the expected utilization of a CPU which
6093  * has just got a big task running since a long sleep period. At the same time
6094  * however it preserves the benefits of the "blocked utilization" in
6095  * describing the potential for other tasks waking up on the same CPU.
6096  *
6097  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6098  * higher than capacity_orig because of unfortunate rounding in
6099  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6100  * the average stabilizes with the new running time. We need to check that the
6101  * utilization stays within the range of [0..capacity_orig] and cap it if
6102  * necessary. Without utilization capping, a group could be seen as overloaded
6103  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6104  * available capacity. We allow utilization to overshoot capacity_curr (but not
6105  * capacity_orig) as it useful for predicting the capacity required after task
6106  * migrations (scheduler-driven DVFS).
6107  *
6108  * Return: the (estimated) utilization for the specified CPU
6109  */
6110 static inline unsigned long cpu_util(int cpu)
6111 {
6112 	struct cfs_rq *cfs_rq;
6113 	unsigned int util;
6114 
6115 	cfs_rq = &cpu_rq(cpu)->cfs;
6116 	util = READ_ONCE(cfs_rq->avg.util_avg);
6117 
6118 	if (sched_feat(UTIL_EST))
6119 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6120 
6121 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6122 }
6123 
6124 /*
6125  * cpu_util_wake: Compute CPU utilization with any contributions from
6126  * the waking task p removed.
6127  */
6128 static unsigned long cpu_util_wake(int cpu, struct task_struct *p)
6129 {
6130 	struct cfs_rq *cfs_rq;
6131 	unsigned int util;
6132 
6133 	/* Task has no contribution or is new */
6134 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6135 		return cpu_util(cpu);
6136 
6137 	cfs_rq = &cpu_rq(cpu)->cfs;
6138 	util = READ_ONCE(cfs_rq->avg.util_avg);
6139 
6140 	/* Discount task's blocked util from CPU's util */
6141 	util -= min_t(unsigned int, util, task_util(p));
6142 
6143 	/*
6144 	 * Covered cases:
6145 	 *
6146 	 * a) if *p is the only task sleeping on this CPU, then:
6147 	 *      cpu_util (== task_util) > util_est (== 0)
6148 	 *    and thus we return:
6149 	 *      cpu_util_wake = (cpu_util - task_util) = 0
6150 	 *
6151 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6152 	 *    IDLE, then:
6153 	 *      cpu_util >= task_util
6154 	 *      cpu_util > util_est (== 0)
6155 	 *    and thus we discount *p's blocked utilization to return:
6156 	 *      cpu_util_wake = (cpu_util - task_util) >= 0
6157 	 *
6158 	 * c) if other tasks are RUNNABLE on that CPU and
6159 	 *      util_est > cpu_util
6160 	 *    then we use util_est since it returns a more restrictive
6161 	 *    estimation of the spare capacity on that CPU, by just
6162 	 *    considering the expected utilization of tasks already
6163 	 *    runnable on that CPU.
6164 	 *
6165 	 * Cases a) and b) are covered by the above code, while case c) is
6166 	 * covered by the following code when estimated utilization is
6167 	 * enabled.
6168 	 */
6169 	if (sched_feat(UTIL_EST))
6170 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6171 
6172 	/*
6173 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6174 	 * clamp to the maximum CPU capacity to ensure consistency with
6175 	 * the cpu_util call.
6176 	 */
6177 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6178 }
6179 
6180 /*
6181  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6182  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6183  *
6184  * In that case WAKE_AFFINE doesn't make sense and we'll let
6185  * BALANCE_WAKE sort things out.
6186  */
6187 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6188 {
6189 	long min_cap, max_cap;
6190 
6191 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6192 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6193 
6194 	/* Minimum capacity is close to max, no need to abort wake_affine */
6195 	if (max_cap - min_cap < max_cap >> 3)
6196 		return 0;
6197 
6198 	/* Bring task utilization in sync with prev_cpu */
6199 	sync_entity_load_avg(&p->se);
6200 
6201 	return min_cap * 1024 < task_util(p) * capacity_margin;
6202 }
6203 
6204 /*
6205  * select_task_rq_fair: Select target runqueue for the waking task in domains
6206  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6207  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6208  *
6209  * Balances load by selecting the idlest CPU in the idlest group, or under
6210  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6211  *
6212  * Returns the target CPU number.
6213  *
6214  * preempt must be disabled.
6215  */
6216 static int
6217 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6218 {
6219 	struct sched_domain *tmp, *sd = NULL;
6220 	int cpu = smp_processor_id();
6221 	int new_cpu = prev_cpu;
6222 	int want_affine = 0;
6223 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6224 
6225 	if (sd_flag & SD_BALANCE_WAKE) {
6226 		record_wakee(p);
6227 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6228 			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
6229 	}
6230 
6231 	rcu_read_lock();
6232 	for_each_domain(cpu, tmp) {
6233 		if (!(tmp->flags & SD_LOAD_BALANCE))
6234 			break;
6235 
6236 		/*
6237 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6238 		 * cpu is a valid SD_WAKE_AFFINE target.
6239 		 */
6240 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6241 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6242 			if (cpu != prev_cpu)
6243 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6244 
6245 			sd = NULL; /* Prefer wake_affine over balance flags */
6246 			break;
6247 		}
6248 
6249 		if (tmp->flags & sd_flag)
6250 			sd = tmp;
6251 		else if (!want_affine)
6252 			break;
6253 	}
6254 
6255 	if (unlikely(sd)) {
6256 		/* Slow path */
6257 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6258 	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6259 		/* Fast path */
6260 
6261 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6262 
6263 		if (want_affine)
6264 			current->recent_used_cpu = cpu;
6265 	}
6266 	rcu_read_unlock();
6267 
6268 	return new_cpu;
6269 }
6270 
6271 static void detach_entity_cfs_rq(struct sched_entity *se);
6272 
6273 /*
6274  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6275  * cfs_rq_of(p) references at time of call are still valid and identify the
6276  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6277  */
6278 static void migrate_task_rq_fair(struct task_struct *p)
6279 {
6280 	/*
6281 	 * As blocked tasks retain absolute vruntime the migration needs to
6282 	 * deal with this by subtracting the old and adding the new
6283 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6284 	 * the task on the new runqueue.
6285 	 */
6286 	if (p->state == TASK_WAKING) {
6287 		struct sched_entity *se = &p->se;
6288 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6289 		u64 min_vruntime;
6290 
6291 #ifndef CONFIG_64BIT
6292 		u64 min_vruntime_copy;
6293 
6294 		do {
6295 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6296 			smp_rmb();
6297 			min_vruntime = cfs_rq->min_vruntime;
6298 		} while (min_vruntime != min_vruntime_copy);
6299 #else
6300 		min_vruntime = cfs_rq->min_vruntime;
6301 #endif
6302 
6303 		se->vruntime -= min_vruntime;
6304 	}
6305 
6306 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6307 		/*
6308 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6309 		 * rq->lock and can modify state directly.
6310 		 */
6311 		lockdep_assert_held(&task_rq(p)->lock);
6312 		detach_entity_cfs_rq(&p->se);
6313 
6314 	} else {
6315 		/*
6316 		 * We are supposed to update the task to "current" time, then
6317 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6318 		 * have difficulty in getting what current time is, so simply
6319 		 * throw away the out-of-date time. This will result in the
6320 		 * wakee task is less decayed, but giving the wakee more load
6321 		 * sounds not bad.
6322 		 */
6323 		remove_entity_load_avg(&p->se);
6324 	}
6325 
6326 	/* Tell new CPU we are migrated */
6327 	p->se.avg.last_update_time = 0;
6328 
6329 	/* We have migrated, no longer consider this task hot */
6330 	p->se.exec_start = 0;
6331 }
6332 
6333 static void task_dead_fair(struct task_struct *p)
6334 {
6335 	remove_entity_load_avg(&p->se);
6336 }
6337 #endif /* CONFIG_SMP */
6338 
6339 static unsigned long wakeup_gran(struct sched_entity *se)
6340 {
6341 	unsigned long gran = sysctl_sched_wakeup_granularity;
6342 
6343 	/*
6344 	 * Since its curr running now, convert the gran from real-time
6345 	 * to virtual-time in his units.
6346 	 *
6347 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6348 	 * they get preempted easier. That is, if 'se' < 'curr' then
6349 	 * the resulting gran will be larger, therefore penalizing the
6350 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6351 	 * be smaller, again penalizing the lighter task.
6352 	 *
6353 	 * This is especially important for buddies when the leftmost
6354 	 * task is higher priority than the buddy.
6355 	 */
6356 	return calc_delta_fair(gran, se);
6357 }
6358 
6359 /*
6360  * Should 'se' preempt 'curr'.
6361  *
6362  *             |s1
6363  *        |s2
6364  *   |s3
6365  *         g
6366  *      |<--->|c
6367  *
6368  *  w(c, s1) = -1
6369  *  w(c, s2) =  0
6370  *  w(c, s3) =  1
6371  *
6372  */
6373 static int
6374 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6375 {
6376 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6377 
6378 	if (vdiff <= 0)
6379 		return -1;
6380 
6381 	gran = wakeup_gran(se);
6382 	if (vdiff > gran)
6383 		return 1;
6384 
6385 	return 0;
6386 }
6387 
6388 static void set_last_buddy(struct sched_entity *se)
6389 {
6390 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6391 		return;
6392 
6393 	for_each_sched_entity(se) {
6394 		if (SCHED_WARN_ON(!se->on_rq))
6395 			return;
6396 		cfs_rq_of(se)->last = se;
6397 	}
6398 }
6399 
6400 static void set_next_buddy(struct sched_entity *se)
6401 {
6402 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6403 		return;
6404 
6405 	for_each_sched_entity(se) {
6406 		if (SCHED_WARN_ON(!se->on_rq))
6407 			return;
6408 		cfs_rq_of(se)->next = se;
6409 	}
6410 }
6411 
6412 static void set_skip_buddy(struct sched_entity *se)
6413 {
6414 	for_each_sched_entity(se)
6415 		cfs_rq_of(se)->skip = se;
6416 }
6417 
6418 /*
6419  * Preempt the current task with a newly woken task if needed:
6420  */
6421 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6422 {
6423 	struct task_struct *curr = rq->curr;
6424 	struct sched_entity *se = &curr->se, *pse = &p->se;
6425 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6426 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6427 	int next_buddy_marked = 0;
6428 
6429 	if (unlikely(se == pse))
6430 		return;
6431 
6432 	/*
6433 	 * This is possible from callers such as attach_tasks(), in which we
6434 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6435 	 * lead to a throttle).  This both saves work and prevents false
6436 	 * next-buddy nomination below.
6437 	 */
6438 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6439 		return;
6440 
6441 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6442 		set_next_buddy(pse);
6443 		next_buddy_marked = 1;
6444 	}
6445 
6446 	/*
6447 	 * We can come here with TIF_NEED_RESCHED already set from new task
6448 	 * wake up path.
6449 	 *
6450 	 * Note: this also catches the edge-case of curr being in a throttled
6451 	 * group (e.g. via set_curr_task), since update_curr() (in the
6452 	 * enqueue of curr) will have resulted in resched being set.  This
6453 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6454 	 * below.
6455 	 */
6456 	if (test_tsk_need_resched(curr))
6457 		return;
6458 
6459 	/* Idle tasks are by definition preempted by non-idle tasks. */
6460 	if (unlikely(curr->policy == SCHED_IDLE) &&
6461 	    likely(p->policy != SCHED_IDLE))
6462 		goto preempt;
6463 
6464 	/*
6465 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6466 	 * is driven by the tick):
6467 	 */
6468 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6469 		return;
6470 
6471 	find_matching_se(&se, &pse);
6472 	update_curr(cfs_rq_of(se));
6473 	BUG_ON(!pse);
6474 	if (wakeup_preempt_entity(se, pse) == 1) {
6475 		/*
6476 		 * Bias pick_next to pick the sched entity that is
6477 		 * triggering this preemption.
6478 		 */
6479 		if (!next_buddy_marked)
6480 			set_next_buddy(pse);
6481 		goto preempt;
6482 	}
6483 
6484 	return;
6485 
6486 preempt:
6487 	resched_curr(rq);
6488 	/*
6489 	 * Only set the backward buddy when the current task is still
6490 	 * on the rq. This can happen when a wakeup gets interleaved
6491 	 * with schedule on the ->pre_schedule() or idle_balance()
6492 	 * point, either of which can * drop the rq lock.
6493 	 *
6494 	 * Also, during early boot the idle thread is in the fair class,
6495 	 * for obvious reasons its a bad idea to schedule back to it.
6496 	 */
6497 	if (unlikely(!se->on_rq || curr == rq->idle))
6498 		return;
6499 
6500 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6501 		set_last_buddy(se);
6502 }
6503 
6504 static struct task_struct *
6505 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6506 {
6507 	struct cfs_rq *cfs_rq = &rq->cfs;
6508 	struct sched_entity *se;
6509 	struct task_struct *p;
6510 	int new_tasks;
6511 
6512 again:
6513 	if (!cfs_rq->nr_running)
6514 		goto idle;
6515 
6516 #ifdef CONFIG_FAIR_GROUP_SCHED
6517 	if (prev->sched_class != &fair_sched_class)
6518 		goto simple;
6519 
6520 	/*
6521 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6522 	 * likely that a next task is from the same cgroup as the current.
6523 	 *
6524 	 * Therefore attempt to avoid putting and setting the entire cgroup
6525 	 * hierarchy, only change the part that actually changes.
6526 	 */
6527 
6528 	do {
6529 		struct sched_entity *curr = cfs_rq->curr;
6530 
6531 		/*
6532 		 * Since we got here without doing put_prev_entity() we also
6533 		 * have to consider cfs_rq->curr. If it is still a runnable
6534 		 * entity, update_curr() will update its vruntime, otherwise
6535 		 * forget we've ever seen it.
6536 		 */
6537 		if (curr) {
6538 			if (curr->on_rq)
6539 				update_curr(cfs_rq);
6540 			else
6541 				curr = NULL;
6542 
6543 			/*
6544 			 * This call to check_cfs_rq_runtime() will do the
6545 			 * throttle and dequeue its entity in the parent(s).
6546 			 * Therefore the nr_running test will indeed
6547 			 * be correct.
6548 			 */
6549 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6550 				cfs_rq = &rq->cfs;
6551 
6552 				if (!cfs_rq->nr_running)
6553 					goto idle;
6554 
6555 				goto simple;
6556 			}
6557 		}
6558 
6559 		se = pick_next_entity(cfs_rq, curr);
6560 		cfs_rq = group_cfs_rq(se);
6561 	} while (cfs_rq);
6562 
6563 	p = task_of(se);
6564 
6565 	/*
6566 	 * Since we haven't yet done put_prev_entity and if the selected task
6567 	 * is a different task than we started out with, try and touch the
6568 	 * least amount of cfs_rqs.
6569 	 */
6570 	if (prev != p) {
6571 		struct sched_entity *pse = &prev->se;
6572 
6573 		while (!(cfs_rq = is_same_group(se, pse))) {
6574 			int se_depth = se->depth;
6575 			int pse_depth = pse->depth;
6576 
6577 			if (se_depth <= pse_depth) {
6578 				put_prev_entity(cfs_rq_of(pse), pse);
6579 				pse = parent_entity(pse);
6580 			}
6581 			if (se_depth >= pse_depth) {
6582 				set_next_entity(cfs_rq_of(se), se);
6583 				se = parent_entity(se);
6584 			}
6585 		}
6586 
6587 		put_prev_entity(cfs_rq, pse);
6588 		set_next_entity(cfs_rq, se);
6589 	}
6590 
6591 	goto done;
6592 simple:
6593 #endif
6594 
6595 	put_prev_task(rq, prev);
6596 
6597 	do {
6598 		se = pick_next_entity(cfs_rq, NULL);
6599 		set_next_entity(cfs_rq, se);
6600 		cfs_rq = group_cfs_rq(se);
6601 	} while (cfs_rq);
6602 
6603 	p = task_of(se);
6604 
6605 done: __maybe_unused;
6606 #ifdef CONFIG_SMP
6607 	/*
6608 	 * Move the next running task to the front of
6609 	 * the list, so our cfs_tasks list becomes MRU
6610 	 * one.
6611 	 */
6612 	list_move(&p->se.group_node, &rq->cfs_tasks);
6613 #endif
6614 
6615 	if (hrtick_enabled(rq))
6616 		hrtick_start_fair(rq, p);
6617 
6618 	return p;
6619 
6620 idle:
6621 	new_tasks = idle_balance(rq, rf);
6622 
6623 	/*
6624 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6625 	 * possible for any higher priority task to appear. In that case we
6626 	 * must re-start the pick_next_entity() loop.
6627 	 */
6628 	if (new_tasks < 0)
6629 		return RETRY_TASK;
6630 
6631 	if (new_tasks > 0)
6632 		goto again;
6633 
6634 	return NULL;
6635 }
6636 
6637 /*
6638  * Account for a descheduled task:
6639  */
6640 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6641 {
6642 	struct sched_entity *se = &prev->se;
6643 	struct cfs_rq *cfs_rq;
6644 
6645 	for_each_sched_entity(se) {
6646 		cfs_rq = cfs_rq_of(se);
6647 		put_prev_entity(cfs_rq, se);
6648 	}
6649 }
6650 
6651 /*
6652  * sched_yield() is very simple
6653  *
6654  * The magic of dealing with the ->skip buddy is in pick_next_entity.
6655  */
6656 static void yield_task_fair(struct rq *rq)
6657 {
6658 	struct task_struct *curr = rq->curr;
6659 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6660 	struct sched_entity *se = &curr->se;
6661 
6662 	/*
6663 	 * Are we the only task in the tree?
6664 	 */
6665 	if (unlikely(rq->nr_running == 1))
6666 		return;
6667 
6668 	clear_buddies(cfs_rq, se);
6669 
6670 	if (curr->policy != SCHED_BATCH) {
6671 		update_rq_clock(rq);
6672 		/*
6673 		 * Update run-time statistics of the 'current'.
6674 		 */
6675 		update_curr(cfs_rq);
6676 		/*
6677 		 * Tell update_rq_clock() that we've just updated,
6678 		 * so we don't do microscopic update in schedule()
6679 		 * and double the fastpath cost.
6680 		 */
6681 		rq_clock_skip_update(rq);
6682 	}
6683 
6684 	set_skip_buddy(se);
6685 }
6686 
6687 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6688 {
6689 	struct sched_entity *se = &p->se;
6690 
6691 	/* throttled hierarchies are not runnable */
6692 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6693 		return false;
6694 
6695 	/* Tell the scheduler that we'd really like pse to run next. */
6696 	set_next_buddy(se);
6697 
6698 	yield_task_fair(rq);
6699 
6700 	return true;
6701 }
6702 
6703 #ifdef CONFIG_SMP
6704 /**************************************************
6705  * Fair scheduling class load-balancing methods.
6706  *
6707  * BASICS
6708  *
6709  * The purpose of load-balancing is to achieve the same basic fairness the
6710  * per-CPU scheduler provides, namely provide a proportional amount of compute
6711  * time to each task. This is expressed in the following equation:
6712  *
6713  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
6714  *
6715  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
6716  * W_i,0 is defined as:
6717  *
6718  *   W_i,0 = \Sum_j w_i,j                                             (2)
6719  *
6720  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
6721  * is derived from the nice value as per sched_prio_to_weight[].
6722  *
6723  * The weight average is an exponential decay average of the instantaneous
6724  * weight:
6725  *
6726  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
6727  *
6728  * C_i is the compute capacity of CPU i, typically it is the
6729  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6730  * can also include other factors [XXX].
6731  *
6732  * To achieve this balance we define a measure of imbalance which follows
6733  * directly from (1):
6734  *
6735  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
6736  *
6737  * We them move tasks around to minimize the imbalance. In the continuous
6738  * function space it is obvious this converges, in the discrete case we get
6739  * a few fun cases generally called infeasible weight scenarios.
6740  *
6741  * [XXX expand on:
6742  *     - infeasible weights;
6743  *     - local vs global optima in the discrete case. ]
6744  *
6745  *
6746  * SCHED DOMAINS
6747  *
6748  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6749  * for all i,j solution, we create a tree of CPUs that follows the hardware
6750  * topology where each level pairs two lower groups (or better). This results
6751  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
6752  * tree to only the first of the previous level and we decrease the frequency
6753  * of load-balance at each level inv. proportional to the number of CPUs in
6754  * the groups.
6755  *
6756  * This yields:
6757  *
6758  *     log_2 n     1     n
6759  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
6760  *     i = 0      2^i   2^i
6761  *                               `- size of each group
6762  *         |         |     `- number of CPUs doing load-balance
6763  *         |         `- freq
6764  *         `- sum over all levels
6765  *
6766  * Coupled with a limit on how many tasks we can migrate every balance pass,
6767  * this makes (5) the runtime complexity of the balancer.
6768  *
6769  * An important property here is that each CPU is still (indirectly) connected
6770  * to every other CPU in at most O(log n) steps:
6771  *
6772  * The adjacency matrix of the resulting graph is given by:
6773  *
6774  *             log_2 n
6775  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
6776  *             k = 0
6777  *
6778  * And you'll find that:
6779  *
6780  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
6781  *
6782  * Showing there's indeed a path between every CPU in at most O(log n) steps.
6783  * The task movement gives a factor of O(m), giving a convergence complexity
6784  * of:
6785  *
6786  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
6787  *
6788  *
6789  * WORK CONSERVING
6790  *
6791  * In order to avoid CPUs going idle while there's still work to do, new idle
6792  * balancing is more aggressive and has the newly idle CPU iterate up the domain
6793  * tree itself instead of relying on other CPUs to bring it work.
6794  *
6795  * This adds some complexity to both (5) and (8) but it reduces the total idle
6796  * time.
6797  *
6798  * [XXX more?]
6799  *
6800  *
6801  * CGROUPS
6802  *
6803  * Cgroups make a horror show out of (2), instead of a simple sum we get:
6804  *
6805  *                                s_k,i
6806  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
6807  *                                 S_k
6808  *
6809  * Where
6810  *
6811  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
6812  *
6813  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
6814  *
6815  * The big problem is S_k, its a global sum needed to compute a local (W_i)
6816  * property.
6817  *
6818  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6819  *      rewrite all of this once again.]
6820  */
6821 
6822 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6823 
6824 enum fbq_type { regular, remote, all };
6825 
6826 #define LBF_ALL_PINNED	0x01
6827 #define LBF_NEED_BREAK	0x02
6828 #define LBF_DST_PINNED  0x04
6829 #define LBF_SOME_PINNED	0x08
6830 #define LBF_NOHZ_STATS	0x10
6831 #define LBF_NOHZ_AGAIN	0x20
6832 
6833 struct lb_env {
6834 	struct sched_domain	*sd;
6835 
6836 	struct rq		*src_rq;
6837 	int			src_cpu;
6838 
6839 	int			dst_cpu;
6840 	struct rq		*dst_rq;
6841 
6842 	struct cpumask		*dst_grpmask;
6843 	int			new_dst_cpu;
6844 	enum cpu_idle_type	idle;
6845 	long			imbalance;
6846 	/* The set of CPUs under consideration for load-balancing */
6847 	struct cpumask		*cpus;
6848 
6849 	unsigned int		flags;
6850 
6851 	unsigned int		loop;
6852 	unsigned int		loop_break;
6853 	unsigned int		loop_max;
6854 
6855 	enum fbq_type		fbq_type;
6856 	struct list_head	tasks;
6857 };
6858 
6859 /*
6860  * Is this task likely cache-hot:
6861  */
6862 static int task_hot(struct task_struct *p, struct lb_env *env)
6863 {
6864 	s64 delta;
6865 
6866 	lockdep_assert_held(&env->src_rq->lock);
6867 
6868 	if (p->sched_class != &fair_sched_class)
6869 		return 0;
6870 
6871 	if (unlikely(p->policy == SCHED_IDLE))
6872 		return 0;
6873 
6874 	/*
6875 	 * Buddy candidates are cache hot:
6876 	 */
6877 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6878 			(&p->se == cfs_rq_of(&p->se)->next ||
6879 			 &p->se == cfs_rq_of(&p->se)->last))
6880 		return 1;
6881 
6882 	if (sysctl_sched_migration_cost == -1)
6883 		return 1;
6884 	if (sysctl_sched_migration_cost == 0)
6885 		return 0;
6886 
6887 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6888 
6889 	return delta < (s64)sysctl_sched_migration_cost;
6890 }
6891 
6892 #ifdef CONFIG_NUMA_BALANCING
6893 /*
6894  * Returns 1, if task migration degrades locality
6895  * Returns 0, if task migration improves locality i.e migration preferred.
6896  * Returns -1, if task migration is not affected by locality.
6897  */
6898 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6899 {
6900 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6901 	unsigned long src_weight, dst_weight;
6902 	int src_nid, dst_nid, dist;
6903 
6904 	if (!static_branch_likely(&sched_numa_balancing))
6905 		return -1;
6906 
6907 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6908 		return -1;
6909 
6910 	src_nid = cpu_to_node(env->src_cpu);
6911 	dst_nid = cpu_to_node(env->dst_cpu);
6912 
6913 	if (src_nid == dst_nid)
6914 		return -1;
6915 
6916 	/* Migrating away from the preferred node is always bad. */
6917 	if (src_nid == p->numa_preferred_nid) {
6918 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6919 			return 1;
6920 		else
6921 			return -1;
6922 	}
6923 
6924 	/* Encourage migration to the preferred node. */
6925 	if (dst_nid == p->numa_preferred_nid)
6926 		return 0;
6927 
6928 	/* Leaving a core idle is often worse than degrading locality. */
6929 	if (env->idle == CPU_IDLE)
6930 		return -1;
6931 
6932 	dist = node_distance(src_nid, dst_nid);
6933 	if (numa_group) {
6934 		src_weight = group_weight(p, src_nid, dist);
6935 		dst_weight = group_weight(p, dst_nid, dist);
6936 	} else {
6937 		src_weight = task_weight(p, src_nid, dist);
6938 		dst_weight = task_weight(p, dst_nid, dist);
6939 	}
6940 
6941 	return dst_weight < src_weight;
6942 }
6943 
6944 #else
6945 static inline int migrate_degrades_locality(struct task_struct *p,
6946 					     struct lb_env *env)
6947 {
6948 	return -1;
6949 }
6950 #endif
6951 
6952 /*
6953  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6954  */
6955 static
6956 int can_migrate_task(struct task_struct *p, struct lb_env *env)
6957 {
6958 	int tsk_cache_hot;
6959 
6960 	lockdep_assert_held(&env->src_rq->lock);
6961 
6962 	/*
6963 	 * We do not migrate tasks that are:
6964 	 * 1) throttled_lb_pair, or
6965 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6966 	 * 3) running (obviously), or
6967 	 * 4) are cache-hot on their current CPU.
6968 	 */
6969 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6970 		return 0;
6971 
6972 	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
6973 		int cpu;
6974 
6975 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6976 
6977 		env->flags |= LBF_SOME_PINNED;
6978 
6979 		/*
6980 		 * Remember if this task can be migrated to any other CPU in
6981 		 * our sched_group. We may want to revisit it if we couldn't
6982 		 * meet load balance goals by pulling other tasks on src_cpu.
6983 		 *
6984 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
6985 		 * already computed one in current iteration.
6986 		 */
6987 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
6988 			return 0;
6989 
6990 		/* Prevent to re-select dst_cpu via env's CPUs: */
6991 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6992 			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6993 				env->flags |= LBF_DST_PINNED;
6994 				env->new_dst_cpu = cpu;
6995 				break;
6996 			}
6997 		}
6998 
6999 		return 0;
7000 	}
7001 
7002 	/* Record that we found atleast one task that could run on dst_cpu */
7003 	env->flags &= ~LBF_ALL_PINNED;
7004 
7005 	if (task_running(env->src_rq, p)) {
7006 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7007 		return 0;
7008 	}
7009 
7010 	/*
7011 	 * Aggressive migration if:
7012 	 * 1) destination numa is preferred
7013 	 * 2) task is cache cold, or
7014 	 * 3) too many balance attempts have failed.
7015 	 */
7016 	tsk_cache_hot = migrate_degrades_locality(p, env);
7017 	if (tsk_cache_hot == -1)
7018 		tsk_cache_hot = task_hot(p, env);
7019 
7020 	if (tsk_cache_hot <= 0 ||
7021 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7022 		if (tsk_cache_hot == 1) {
7023 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7024 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7025 		}
7026 		return 1;
7027 	}
7028 
7029 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7030 	return 0;
7031 }
7032 
7033 /*
7034  * detach_task() -- detach the task for the migration specified in env
7035  */
7036 static void detach_task(struct task_struct *p, struct lb_env *env)
7037 {
7038 	lockdep_assert_held(&env->src_rq->lock);
7039 
7040 	p->on_rq = TASK_ON_RQ_MIGRATING;
7041 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7042 	set_task_cpu(p, env->dst_cpu);
7043 }
7044 
7045 /*
7046  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7047  * part of active balancing operations within "domain".
7048  *
7049  * Returns a task if successful and NULL otherwise.
7050  */
7051 static struct task_struct *detach_one_task(struct lb_env *env)
7052 {
7053 	struct task_struct *p;
7054 
7055 	lockdep_assert_held(&env->src_rq->lock);
7056 
7057 	list_for_each_entry_reverse(p,
7058 			&env->src_rq->cfs_tasks, se.group_node) {
7059 		if (!can_migrate_task(p, env))
7060 			continue;
7061 
7062 		detach_task(p, env);
7063 
7064 		/*
7065 		 * Right now, this is only the second place where
7066 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7067 		 * so we can safely collect stats here rather than
7068 		 * inside detach_tasks().
7069 		 */
7070 		schedstat_inc(env->sd->lb_gained[env->idle]);
7071 		return p;
7072 	}
7073 	return NULL;
7074 }
7075 
7076 static const unsigned int sched_nr_migrate_break = 32;
7077 
7078 /*
7079  * detach_tasks() -- tries to detach up to imbalance weighted load from
7080  * busiest_rq, as part of a balancing operation within domain "sd".
7081  *
7082  * Returns number of detached tasks if successful and 0 otherwise.
7083  */
7084 static int detach_tasks(struct lb_env *env)
7085 {
7086 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7087 	struct task_struct *p;
7088 	unsigned long load;
7089 	int detached = 0;
7090 
7091 	lockdep_assert_held(&env->src_rq->lock);
7092 
7093 	if (env->imbalance <= 0)
7094 		return 0;
7095 
7096 	while (!list_empty(tasks)) {
7097 		/*
7098 		 * We don't want to steal all, otherwise we may be treated likewise,
7099 		 * which could at worst lead to a livelock crash.
7100 		 */
7101 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7102 			break;
7103 
7104 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7105 
7106 		env->loop++;
7107 		/* We've more or less seen every task there is, call it quits */
7108 		if (env->loop > env->loop_max)
7109 			break;
7110 
7111 		/* take a breather every nr_migrate tasks */
7112 		if (env->loop > env->loop_break) {
7113 			env->loop_break += sched_nr_migrate_break;
7114 			env->flags |= LBF_NEED_BREAK;
7115 			break;
7116 		}
7117 
7118 		if (!can_migrate_task(p, env))
7119 			goto next;
7120 
7121 		load = task_h_load(p);
7122 
7123 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7124 			goto next;
7125 
7126 		if ((load / 2) > env->imbalance)
7127 			goto next;
7128 
7129 		detach_task(p, env);
7130 		list_add(&p->se.group_node, &env->tasks);
7131 
7132 		detached++;
7133 		env->imbalance -= load;
7134 
7135 #ifdef CONFIG_PREEMPT
7136 		/*
7137 		 * NEWIDLE balancing is a source of latency, so preemptible
7138 		 * kernels will stop after the first task is detached to minimize
7139 		 * the critical section.
7140 		 */
7141 		if (env->idle == CPU_NEWLY_IDLE)
7142 			break;
7143 #endif
7144 
7145 		/*
7146 		 * We only want to steal up to the prescribed amount of
7147 		 * weighted load.
7148 		 */
7149 		if (env->imbalance <= 0)
7150 			break;
7151 
7152 		continue;
7153 next:
7154 		list_move(&p->se.group_node, tasks);
7155 	}
7156 
7157 	/*
7158 	 * Right now, this is one of only two places we collect this stat
7159 	 * so we can safely collect detach_one_task() stats here rather
7160 	 * than inside detach_one_task().
7161 	 */
7162 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7163 
7164 	return detached;
7165 }
7166 
7167 /*
7168  * attach_task() -- attach the task detached by detach_task() to its new rq.
7169  */
7170 static void attach_task(struct rq *rq, struct task_struct *p)
7171 {
7172 	lockdep_assert_held(&rq->lock);
7173 
7174 	BUG_ON(task_rq(p) != rq);
7175 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7176 	p->on_rq = TASK_ON_RQ_QUEUED;
7177 	check_preempt_curr(rq, p, 0);
7178 }
7179 
7180 /*
7181  * attach_one_task() -- attaches the task returned from detach_one_task() to
7182  * its new rq.
7183  */
7184 static void attach_one_task(struct rq *rq, struct task_struct *p)
7185 {
7186 	struct rq_flags rf;
7187 
7188 	rq_lock(rq, &rf);
7189 	update_rq_clock(rq);
7190 	attach_task(rq, p);
7191 	rq_unlock(rq, &rf);
7192 }
7193 
7194 /*
7195  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7196  * new rq.
7197  */
7198 static void attach_tasks(struct lb_env *env)
7199 {
7200 	struct list_head *tasks = &env->tasks;
7201 	struct task_struct *p;
7202 	struct rq_flags rf;
7203 
7204 	rq_lock(env->dst_rq, &rf);
7205 	update_rq_clock(env->dst_rq);
7206 
7207 	while (!list_empty(tasks)) {
7208 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7209 		list_del_init(&p->se.group_node);
7210 
7211 		attach_task(env->dst_rq, p);
7212 	}
7213 
7214 	rq_unlock(env->dst_rq, &rf);
7215 }
7216 
7217 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7218 {
7219 	if (cfs_rq->avg.load_avg)
7220 		return true;
7221 
7222 	if (cfs_rq->avg.util_avg)
7223 		return true;
7224 
7225 	return false;
7226 }
7227 
7228 static inline bool others_have_blocked(struct rq *rq)
7229 {
7230 	if (READ_ONCE(rq->avg_rt.util_avg))
7231 		return true;
7232 
7233 	if (READ_ONCE(rq->avg_dl.util_avg))
7234 		return true;
7235 
7236 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
7237 	if (READ_ONCE(rq->avg_irq.util_avg))
7238 		return true;
7239 #endif
7240 
7241 	return false;
7242 }
7243 
7244 #ifdef CONFIG_FAIR_GROUP_SCHED
7245 
7246 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7247 {
7248 	if (cfs_rq->load.weight)
7249 		return false;
7250 
7251 	if (cfs_rq->avg.load_sum)
7252 		return false;
7253 
7254 	if (cfs_rq->avg.util_sum)
7255 		return false;
7256 
7257 	if (cfs_rq->avg.runnable_load_sum)
7258 		return false;
7259 
7260 	return true;
7261 }
7262 
7263 static void update_blocked_averages(int cpu)
7264 {
7265 	struct rq *rq = cpu_rq(cpu);
7266 	struct cfs_rq *cfs_rq, *pos;
7267 	const struct sched_class *curr_class;
7268 	struct rq_flags rf;
7269 	bool done = true;
7270 
7271 	rq_lock_irqsave(rq, &rf);
7272 	update_rq_clock(rq);
7273 
7274 	/*
7275 	 * Iterates the task_group tree in a bottom up fashion, see
7276 	 * list_add_leaf_cfs_rq() for details.
7277 	 */
7278 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7279 		struct sched_entity *se;
7280 
7281 		/* throttled entities do not contribute to load */
7282 		if (throttled_hierarchy(cfs_rq))
7283 			continue;
7284 
7285 		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7286 			update_tg_load_avg(cfs_rq, 0);
7287 
7288 		/* Propagate pending load changes to the parent, if any: */
7289 		se = cfs_rq->tg->se[cpu];
7290 		if (se && !skip_blocked_update(se))
7291 			update_load_avg(cfs_rq_of(se), se, 0);
7292 
7293 		/*
7294 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7295 		 * decayed cfs_rqs linger on the list.
7296 		 */
7297 		if (cfs_rq_is_decayed(cfs_rq))
7298 			list_del_leaf_cfs_rq(cfs_rq);
7299 
7300 		/* Don't need periodic decay once load/util_avg are null */
7301 		if (cfs_rq_has_blocked(cfs_rq))
7302 			done = false;
7303 	}
7304 
7305 	curr_class = rq->curr->sched_class;
7306 	update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
7307 	update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7308 	update_irq_load_avg(rq, 0);
7309 	/* Don't need periodic decay once load/util_avg are null */
7310 	if (others_have_blocked(rq))
7311 		done = false;
7312 
7313 #ifdef CONFIG_NO_HZ_COMMON
7314 	rq->last_blocked_load_update_tick = jiffies;
7315 	if (done)
7316 		rq->has_blocked_load = 0;
7317 #endif
7318 	rq_unlock_irqrestore(rq, &rf);
7319 }
7320 
7321 /*
7322  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7323  * This needs to be done in a top-down fashion because the load of a child
7324  * group is a fraction of its parents load.
7325  */
7326 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7327 {
7328 	struct rq *rq = rq_of(cfs_rq);
7329 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7330 	unsigned long now = jiffies;
7331 	unsigned long load;
7332 
7333 	if (cfs_rq->last_h_load_update == now)
7334 		return;
7335 
7336 	cfs_rq->h_load_next = NULL;
7337 	for_each_sched_entity(se) {
7338 		cfs_rq = cfs_rq_of(se);
7339 		cfs_rq->h_load_next = se;
7340 		if (cfs_rq->last_h_load_update == now)
7341 			break;
7342 	}
7343 
7344 	if (!se) {
7345 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7346 		cfs_rq->last_h_load_update = now;
7347 	}
7348 
7349 	while ((se = cfs_rq->h_load_next) != NULL) {
7350 		load = cfs_rq->h_load;
7351 		load = div64_ul(load * se->avg.load_avg,
7352 			cfs_rq_load_avg(cfs_rq) + 1);
7353 		cfs_rq = group_cfs_rq(se);
7354 		cfs_rq->h_load = load;
7355 		cfs_rq->last_h_load_update = now;
7356 	}
7357 }
7358 
7359 static unsigned long task_h_load(struct task_struct *p)
7360 {
7361 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7362 
7363 	update_cfs_rq_h_load(cfs_rq);
7364 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7365 			cfs_rq_load_avg(cfs_rq) + 1);
7366 }
7367 #else
7368 static inline void update_blocked_averages(int cpu)
7369 {
7370 	struct rq *rq = cpu_rq(cpu);
7371 	struct cfs_rq *cfs_rq = &rq->cfs;
7372 	const struct sched_class *curr_class;
7373 	struct rq_flags rf;
7374 
7375 	rq_lock_irqsave(rq, &rf);
7376 	update_rq_clock(rq);
7377 	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7378 
7379 	curr_class = rq->curr->sched_class;
7380 	update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
7381 	update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7382 	update_irq_load_avg(rq, 0);
7383 #ifdef CONFIG_NO_HZ_COMMON
7384 	rq->last_blocked_load_update_tick = jiffies;
7385 	if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
7386 		rq->has_blocked_load = 0;
7387 #endif
7388 	rq_unlock_irqrestore(rq, &rf);
7389 }
7390 
7391 static unsigned long task_h_load(struct task_struct *p)
7392 {
7393 	return p->se.avg.load_avg;
7394 }
7395 #endif
7396 
7397 /********** Helpers for find_busiest_group ************************/
7398 
7399 enum group_type {
7400 	group_other = 0,
7401 	group_imbalanced,
7402 	group_overloaded,
7403 };
7404 
7405 /*
7406  * sg_lb_stats - stats of a sched_group required for load_balancing
7407  */
7408 struct sg_lb_stats {
7409 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7410 	unsigned long group_load; /* Total load over the CPUs of the group */
7411 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7412 	unsigned long load_per_task;
7413 	unsigned long group_capacity;
7414 	unsigned long group_util; /* Total utilization of the group */
7415 	unsigned int sum_nr_running; /* Nr tasks running in the group */
7416 	unsigned int idle_cpus;
7417 	unsigned int group_weight;
7418 	enum group_type group_type;
7419 	int group_no_capacity;
7420 #ifdef CONFIG_NUMA_BALANCING
7421 	unsigned int nr_numa_running;
7422 	unsigned int nr_preferred_running;
7423 #endif
7424 };
7425 
7426 /*
7427  * sd_lb_stats - Structure to store the statistics of a sched_domain
7428  *		 during load balancing.
7429  */
7430 struct sd_lb_stats {
7431 	struct sched_group *busiest;	/* Busiest group in this sd */
7432 	struct sched_group *local;	/* Local group in this sd */
7433 	unsigned long total_running;
7434 	unsigned long total_load;	/* Total load of all groups in sd */
7435 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7436 	unsigned long avg_load;	/* Average load across all groups in sd */
7437 
7438 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7439 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7440 };
7441 
7442 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7443 {
7444 	/*
7445 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7446 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7447 	 * We must however clear busiest_stat::avg_load because
7448 	 * update_sd_pick_busiest() reads this before assignment.
7449 	 */
7450 	*sds = (struct sd_lb_stats){
7451 		.busiest = NULL,
7452 		.local = NULL,
7453 		.total_running = 0UL,
7454 		.total_load = 0UL,
7455 		.total_capacity = 0UL,
7456 		.busiest_stat = {
7457 			.avg_load = 0UL,
7458 			.sum_nr_running = 0,
7459 			.group_type = group_other,
7460 		},
7461 	};
7462 }
7463 
7464 /**
7465  * get_sd_load_idx - Obtain the load index for a given sched domain.
7466  * @sd: The sched_domain whose load_idx is to be obtained.
7467  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7468  *
7469  * Return: The load index.
7470  */
7471 static inline int get_sd_load_idx(struct sched_domain *sd,
7472 					enum cpu_idle_type idle)
7473 {
7474 	int load_idx;
7475 
7476 	switch (idle) {
7477 	case CPU_NOT_IDLE:
7478 		load_idx = sd->busy_idx;
7479 		break;
7480 
7481 	case CPU_NEWLY_IDLE:
7482 		load_idx = sd->newidle_idx;
7483 		break;
7484 	default:
7485 		load_idx = sd->idle_idx;
7486 		break;
7487 	}
7488 
7489 	return load_idx;
7490 }
7491 
7492 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7493 {
7494 	struct rq *rq = cpu_rq(cpu);
7495 	unsigned long max = arch_scale_cpu_capacity(sd, cpu);
7496 	unsigned long used, free;
7497 	unsigned long irq;
7498 
7499 	irq = cpu_util_irq(rq);
7500 
7501 	if (unlikely(irq >= max))
7502 		return 1;
7503 
7504 	used = READ_ONCE(rq->avg_rt.util_avg);
7505 	used += READ_ONCE(rq->avg_dl.util_avg);
7506 
7507 	if (unlikely(used >= max))
7508 		return 1;
7509 
7510 	free = max - used;
7511 
7512 	return scale_irq_capacity(free, irq, max);
7513 }
7514 
7515 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7516 {
7517 	unsigned long capacity = scale_rt_capacity(sd, cpu);
7518 	struct sched_group *sdg = sd->groups;
7519 
7520 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
7521 
7522 	if (!capacity)
7523 		capacity = 1;
7524 
7525 	cpu_rq(cpu)->cpu_capacity = capacity;
7526 	sdg->sgc->capacity = capacity;
7527 	sdg->sgc->min_capacity = capacity;
7528 }
7529 
7530 void update_group_capacity(struct sched_domain *sd, int cpu)
7531 {
7532 	struct sched_domain *child = sd->child;
7533 	struct sched_group *group, *sdg = sd->groups;
7534 	unsigned long capacity, min_capacity;
7535 	unsigned long interval;
7536 
7537 	interval = msecs_to_jiffies(sd->balance_interval);
7538 	interval = clamp(interval, 1UL, max_load_balance_interval);
7539 	sdg->sgc->next_update = jiffies + interval;
7540 
7541 	if (!child) {
7542 		update_cpu_capacity(sd, cpu);
7543 		return;
7544 	}
7545 
7546 	capacity = 0;
7547 	min_capacity = ULONG_MAX;
7548 
7549 	if (child->flags & SD_OVERLAP) {
7550 		/*
7551 		 * SD_OVERLAP domains cannot assume that child groups
7552 		 * span the current group.
7553 		 */
7554 
7555 		for_each_cpu(cpu, sched_group_span(sdg)) {
7556 			struct sched_group_capacity *sgc;
7557 			struct rq *rq = cpu_rq(cpu);
7558 
7559 			/*
7560 			 * build_sched_domains() -> init_sched_groups_capacity()
7561 			 * gets here before we've attached the domains to the
7562 			 * runqueues.
7563 			 *
7564 			 * Use capacity_of(), which is set irrespective of domains
7565 			 * in update_cpu_capacity().
7566 			 *
7567 			 * This avoids capacity from being 0 and
7568 			 * causing divide-by-zero issues on boot.
7569 			 */
7570 			if (unlikely(!rq->sd)) {
7571 				capacity += capacity_of(cpu);
7572 			} else {
7573 				sgc = rq->sd->groups->sgc;
7574 				capacity += sgc->capacity;
7575 			}
7576 
7577 			min_capacity = min(capacity, min_capacity);
7578 		}
7579 	} else  {
7580 		/*
7581 		 * !SD_OVERLAP domains can assume that child groups
7582 		 * span the current group.
7583 		 */
7584 
7585 		group = child->groups;
7586 		do {
7587 			struct sched_group_capacity *sgc = group->sgc;
7588 
7589 			capacity += sgc->capacity;
7590 			min_capacity = min(sgc->min_capacity, min_capacity);
7591 			group = group->next;
7592 		} while (group != child->groups);
7593 	}
7594 
7595 	sdg->sgc->capacity = capacity;
7596 	sdg->sgc->min_capacity = min_capacity;
7597 }
7598 
7599 /*
7600  * Check whether the capacity of the rq has been noticeably reduced by side
7601  * activity. The imbalance_pct is used for the threshold.
7602  * Return true is the capacity is reduced
7603  */
7604 static inline int
7605 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7606 {
7607 	return ((rq->cpu_capacity * sd->imbalance_pct) <
7608 				(rq->cpu_capacity_orig * 100));
7609 }
7610 
7611 /*
7612  * Group imbalance indicates (and tries to solve) the problem where balancing
7613  * groups is inadequate due to ->cpus_allowed constraints.
7614  *
7615  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7616  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7617  * Something like:
7618  *
7619  *	{ 0 1 2 3 } { 4 5 6 7 }
7620  *	        *     * * *
7621  *
7622  * If we were to balance group-wise we'd place two tasks in the first group and
7623  * two tasks in the second group. Clearly this is undesired as it will overload
7624  * cpu 3 and leave one of the CPUs in the second group unused.
7625  *
7626  * The current solution to this issue is detecting the skew in the first group
7627  * by noticing the lower domain failed to reach balance and had difficulty
7628  * moving tasks due to affinity constraints.
7629  *
7630  * When this is so detected; this group becomes a candidate for busiest; see
7631  * update_sd_pick_busiest(). And calculate_imbalance() and
7632  * find_busiest_group() avoid some of the usual balance conditions to allow it
7633  * to create an effective group imbalance.
7634  *
7635  * This is a somewhat tricky proposition since the next run might not find the
7636  * group imbalance and decide the groups need to be balanced again. A most
7637  * subtle and fragile situation.
7638  */
7639 
7640 static inline int sg_imbalanced(struct sched_group *group)
7641 {
7642 	return group->sgc->imbalance;
7643 }
7644 
7645 /*
7646  * group_has_capacity returns true if the group has spare capacity that could
7647  * be used by some tasks.
7648  * We consider that a group has spare capacity if the  * number of task is
7649  * smaller than the number of CPUs or if the utilization is lower than the
7650  * available capacity for CFS tasks.
7651  * For the latter, we use a threshold to stabilize the state, to take into
7652  * account the variance of the tasks' load and to return true if the available
7653  * capacity in meaningful for the load balancer.
7654  * As an example, an available capacity of 1% can appear but it doesn't make
7655  * any benefit for the load balance.
7656  */
7657 static inline bool
7658 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7659 {
7660 	if (sgs->sum_nr_running < sgs->group_weight)
7661 		return true;
7662 
7663 	if ((sgs->group_capacity * 100) >
7664 			(sgs->group_util * env->sd->imbalance_pct))
7665 		return true;
7666 
7667 	return false;
7668 }
7669 
7670 /*
7671  *  group_is_overloaded returns true if the group has more tasks than it can
7672  *  handle.
7673  *  group_is_overloaded is not equals to !group_has_capacity because a group
7674  *  with the exact right number of tasks, has no more spare capacity but is not
7675  *  overloaded so both group_has_capacity and group_is_overloaded return
7676  *  false.
7677  */
7678 static inline bool
7679 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7680 {
7681 	if (sgs->sum_nr_running <= sgs->group_weight)
7682 		return false;
7683 
7684 	if ((sgs->group_capacity * 100) <
7685 			(sgs->group_util * env->sd->imbalance_pct))
7686 		return true;
7687 
7688 	return false;
7689 }
7690 
7691 /*
7692  * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7693  * per-CPU capacity than sched_group ref.
7694  */
7695 static inline bool
7696 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7697 {
7698 	return sg->sgc->min_capacity * capacity_margin <
7699 						ref->sgc->min_capacity * 1024;
7700 }
7701 
7702 static inline enum
7703 group_type group_classify(struct sched_group *group,
7704 			  struct sg_lb_stats *sgs)
7705 {
7706 	if (sgs->group_no_capacity)
7707 		return group_overloaded;
7708 
7709 	if (sg_imbalanced(group))
7710 		return group_imbalanced;
7711 
7712 	return group_other;
7713 }
7714 
7715 static bool update_nohz_stats(struct rq *rq, bool force)
7716 {
7717 #ifdef CONFIG_NO_HZ_COMMON
7718 	unsigned int cpu = rq->cpu;
7719 
7720 	if (!rq->has_blocked_load)
7721 		return false;
7722 
7723 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
7724 		return false;
7725 
7726 	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
7727 		return true;
7728 
7729 	update_blocked_averages(cpu);
7730 
7731 	return rq->has_blocked_load;
7732 #else
7733 	return false;
7734 #endif
7735 }
7736 
7737 /**
7738  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7739  * @env: The load balancing environment.
7740  * @group: sched_group whose statistics are to be updated.
7741  * @load_idx: Load index of sched_domain of this_cpu for load calc.
7742  * @local_group: Does group contain this_cpu.
7743  * @sgs: variable to hold the statistics for this group.
7744  * @overload: Indicate more than one runnable task for any CPU.
7745  */
7746 static inline void update_sg_lb_stats(struct lb_env *env,
7747 			struct sched_group *group, int load_idx,
7748 			int local_group, struct sg_lb_stats *sgs,
7749 			bool *overload)
7750 {
7751 	unsigned long load;
7752 	int i, nr_running;
7753 
7754 	memset(sgs, 0, sizeof(*sgs));
7755 
7756 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7757 		struct rq *rq = cpu_rq(i);
7758 
7759 		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
7760 			env->flags |= LBF_NOHZ_AGAIN;
7761 
7762 		/* Bias balancing toward CPUs of our domain: */
7763 		if (local_group)
7764 			load = target_load(i, load_idx);
7765 		else
7766 			load = source_load(i, load_idx);
7767 
7768 		sgs->group_load += load;
7769 		sgs->group_util += cpu_util(i);
7770 		sgs->sum_nr_running += rq->cfs.h_nr_running;
7771 
7772 		nr_running = rq->nr_running;
7773 		if (nr_running > 1)
7774 			*overload = true;
7775 
7776 #ifdef CONFIG_NUMA_BALANCING
7777 		sgs->nr_numa_running += rq->nr_numa_running;
7778 		sgs->nr_preferred_running += rq->nr_preferred_running;
7779 #endif
7780 		sgs->sum_weighted_load += weighted_cpuload(rq);
7781 		/*
7782 		 * No need to call idle_cpu() if nr_running is not 0
7783 		 */
7784 		if (!nr_running && idle_cpu(i))
7785 			sgs->idle_cpus++;
7786 	}
7787 
7788 	/* Adjust by relative CPU capacity of the group */
7789 	sgs->group_capacity = group->sgc->capacity;
7790 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7791 
7792 	if (sgs->sum_nr_running)
7793 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7794 
7795 	sgs->group_weight = group->group_weight;
7796 
7797 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7798 	sgs->group_type = group_classify(group, sgs);
7799 }
7800 
7801 /**
7802  * update_sd_pick_busiest - return 1 on busiest group
7803  * @env: The load balancing environment.
7804  * @sds: sched_domain statistics
7805  * @sg: sched_group candidate to be checked for being the busiest
7806  * @sgs: sched_group statistics
7807  *
7808  * Determine if @sg is a busier group than the previously selected
7809  * busiest group.
7810  *
7811  * Return: %true if @sg is a busier group than the previously selected
7812  * busiest group. %false otherwise.
7813  */
7814 static bool update_sd_pick_busiest(struct lb_env *env,
7815 				   struct sd_lb_stats *sds,
7816 				   struct sched_group *sg,
7817 				   struct sg_lb_stats *sgs)
7818 {
7819 	struct sg_lb_stats *busiest = &sds->busiest_stat;
7820 
7821 	if (sgs->group_type > busiest->group_type)
7822 		return true;
7823 
7824 	if (sgs->group_type < busiest->group_type)
7825 		return false;
7826 
7827 	if (sgs->avg_load <= busiest->avg_load)
7828 		return false;
7829 
7830 	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7831 		goto asym_packing;
7832 
7833 	/*
7834 	 * Candidate sg has no more than one task per CPU and
7835 	 * has higher per-CPU capacity. Migrating tasks to less
7836 	 * capable CPUs may harm throughput. Maximize throughput,
7837 	 * power/energy consequences are not considered.
7838 	 */
7839 	if (sgs->sum_nr_running <= sgs->group_weight &&
7840 	    group_smaller_cpu_capacity(sds->local, sg))
7841 		return false;
7842 
7843 asym_packing:
7844 	/* This is the busiest node in its class. */
7845 	if (!(env->sd->flags & SD_ASYM_PACKING))
7846 		return true;
7847 
7848 	/* No ASYM_PACKING if target CPU is already busy */
7849 	if (env->idle == CPU_NOT_IDLE)
7850 		return true;
7851 	/*
7852 	 * ASYM_PACKING needs to move all the work to the highest
7853 	 * prority CPUs in the group, therefore mark all groups
7854 	 * of lower priority than ourself as busy.
7855 	 */
7856 	if (sgs->sum_nr_running &&
7857 	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7858 		if (!sds->busiest)
7859 			return true;
7860 
7861 		/* Prefer to move from lowest priority CPU's work */
7862 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7863 				      sg->asym_prefer_cpu))
7864 			return true;
7865 	}
7866 
7867 	return false;
7868 }
7869 
7870 #ifdef CONFIG_NUMA_BALANCING
7871 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7872 {
7873 	if (sgs->sum_nr_running > sgs->nr_numa_running)
7874 		return regular;
7875 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
7876 		return remote;
7877 	return all;
7878 }
7879 
7880 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7881 {
7882 	if (rq->nr_running > rq->nr_numa_running)
7883 		return regular;
7884 	if (rq->nr_running > rq->nr_preferred_running)
7885 		return remote;
7886 	return all;
7887 }
7888 #else
7889 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7890 {
7891 	return all;
7892 }
7893 
7894 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7895 {
7896 	return regular;
7897 }
7898 #endif /* CONFIG_NUMA_BALANCING */
7899 
7900 /**
7901  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7902  * @env: The load balancing environment.
7903  * @sds: variable to hold the statistics for this sched_domain.
7904  */
7905 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7906 {
7907 	struct sched_domain *child = env->sd->child;
7908 	struct sched_group *sg = env->sd->groups;
7909 	struct sg_lb_stats *local = &sds->local_stat;
7910 	struct sg_lb_stats tmp_sgs;
7911 	int load_idx, prefer_sibling = 0;
7912 	bool overload = false;
7913 
7914 	if (child && child->flags & SD_PREFER_SIBLING)
7915 		prefer_sibling = 1;
7916 
7917 #ifdef CONFIG_NO_HZ_COMMON
7918 	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
7919 		env->flags |= LBF_NOHZ_STATS;
7920 #endif
7921 
7922 	load_idx = get_sd_load_idx(env->sd, env->idle);
7923 
7924 	do {
7925 		struct sg_lb_stats *sgs = &tmp_sgs;
7926 		int local_group;
7927 
7928 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
7929 		if (local_group) {
7930 			sds->local = sg;
7931 			sgs = local;
7932 
7933 			if (env->idle != CPU_NEWLY_IDLE ||
7934 			    time_after_eq(jiffies, sg->sgc->next_update))
7935 				update_group_capacity(env->sd, env->dst_cpu);
7936 		}
7937 
7938 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7939 						&overload);
7940 
7941 		if (local_group)
7942 			goto next_group;
7943 
7944 		/*
7945 		 * In case the child domain prefers tasks go to siblings
7946 		 * first, lower the sg capacity so that we'll try
7947 		 * and move all the excess tasks away. We lower the capacity
7948 		 * of a group only if the local group has the capacity to fit
7949 		 * these excess tasks. The extra check prevents the case where
7950 		 * you always pull from the heaviest group when it is already
7951 		 * under-utilized (possible with a large weight task outweighs
7952 		 * the tasks on the system).
7953 		 */
7954 		if (prefer_sibling && sds->local &&
7955 		    group_has_capacity(env, local) &&
7956 		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
7957 			sgs->group_no_capacity = 1;
7958 			sgs->group_type = group_classify(sg, sgs);
7959 		}
7960 
7961 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7962 			sds->busiest = sg;
7963 			sds->busiest_stat = *sgs;
7964 		}
7965 
7966 next_group:
7967 		/* Now, start updating sd_lb_stats */
7968 		sds->total_running += sgs->sum_nr_running;
7969 		sds->total_load += sgs->group_load;
7970 		sds->total_capacity += sgs->group_capacity;
7971 
7972 		sg = sg->next;
7973 	} while (sg != env->sd->groups);
7974 
7975 #ifdef CONFIG_NO_HZ_COMMON
7976 	if ((env->flags & LBF_NOHZ_AGAIN) &&
7977 	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
7978 
7979 		WRITE_ONCE(nohz.next_blocked,
7980 			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
7981 	}
7982 #endif
7983 
7984 	if (env->sd->flags & SD_NUMA)
7985 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7986 
7987 	if (!env->sd->parent) {
7988 		/* update overload indicator if we are at root domain */
7989 		if (env->dst_rq->rd->overload != overload)
7990 			env->dst_rq->rd->overload = overload;
7991 	}
7992 }
7993 
7994 /**
7995  * check_asym_packing - Check to see if the group is packed into the
7996  *			sched domain.
7997  *
7998  * This is primarily intended to used at the sibling level.  Some
7999  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
8000  * case of POWER7, it can move to lower SMT modes only when higher
8001  * threads are idle.  When in lower SMT modes, the threads will
8002  * perform better since they share less core resources.  Hence when we
8003  * have idle threads, we want them to be the higher ones.
8004  *
8005  * This packing function is run on idle threads.  It checks to see if
8006  * the busiest CPU in this domain (core in the P7 case) has a higher
8007  * CPU number than the packing function is being run on.  Here we are
8008  * assuming lower CPU number will be equivalent to lower a SMT thread
8009  * number.
8010  *
8011  * Return: 1 when packing is required and a task should be moved to
8012  * this CPU.  The amount of the imbalance is returned in env->imbalance.
8013  *
8014  * @env: The load balancing environment.
8015  * @sds: Statistics of the sched_domain which is to be packed
8016  */
8017 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8018 {
8019 	int busiest_cpu;
8020 
8021 	if (!(env->sd->flags & SD_ASYM_PACKING))
8022 		return 0;
8023 
8024 	if (env->idle == CPU_NOT_IDLE)
8025 		return 0;
8026 
8027 	if (!sds->busiest)
8028 		return 0;
8029 
8030 	busiest_cpu = sds->busiest->asym_prefer_cpu;
8031 	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8032 		return 0;
8033 
8034 	env->imbalance = DIV_ROUND_CLOSEST(
8035 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8036 		SCHED_CAPACITY_SCALE);
8037 
8038 	return 1;
8039 }
8040 
8041 /**
8042  * fix_small_imbalance - Calculate the minor imbalance that exists
8043  *			amongst the groups of a sched_domain, during
8044  *			load balancing.
8045  * @env: The load balancing environment.
8046  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8047  */
8048 static inline
8049 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8050 {
8051 	unsigned long tmp, capa_now = 0, capa_move = 0;
8052 	unsigned int imbn = 2;
8053 	unsigned long scaled_busy_load_per_task;
8054 	struct sg_lb_stats *local, *busiest;
8055 
8056 	local = &sds->local_stat;
8057 	busiest = &sds->busiest_stat;
8058 
8059 	if (!local->sum_nr_running)
8060 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8061 	else if (busiest->load_per_task > local->load_per_task)
8062 		imbn = 1;
8063 
8064 	scaled_busy_load_per_task =
8065 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8066 		busiest->group_capacity;
8067 
8068 	if (busiest->avg_load + scaled_busy_load_per_task >=
8069 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
8070 		env->imbalance = busiest->load_per_task;
8071 		return;
8072 	}
8073 
8074 	/*
8075 	 * OK, we don't have enough imbalance to justify moving tasks,
8076 	 * however we may be able to increase total CPU capacity used by
8077 	 * moving them.
8078 	 */
8079 
8080 	capa_now += busiest->group_capacity *
8081 			min(busiest->load_per_task, busiest->avg_load);
8082 	capa_now += local->group_capacity *
8083 			min(local->load_per_task, local->avg_load);
8084 	capa_now /= SCHED_CAPACITY_SCALE;
8085 
8086 	/* Amount of load we'd subtract */
8087 	if (busiest->avg_load > scaled_busy_load_per_task) {
8088 		capa_move += busiest->group_capacity *
8089 			    min(busiest->load_per_task,
8090 				busiest->avg_load - scaled_busy_load_per_task);
8091 	}
8092 
8093 	/* Amount of load we'd add */
8094 	if (busiest->avg_load * busiest->group_capacity <
8095 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8096 		tmp = (busiest->avg_load * busiest->group_capacity) /
8097 		      local->group_capacity;
8098 	} else {
8099 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8100 		      local->group_capacity;
8101 	}
8102 	capa_move += local->group_capacity *
8103 		    min(local->load_per_task, local->avg_load + tmp);
8104 	capa_move /= SCHED_CAPACITY_SCALE;
8105 
8106 	/* Move if we gain throughput */
8107 	if (capa_move > capa_now)
8108 		env->imbalance = busiest->load_per_task;
8109 }
8110 
8111 /**
8112  * calculate_imbalance - Calculate the amount of imbalance present within the
8113  *			 groups of a given sched_domain during load balance.
8114  * @env: load balance environment
8115  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8116  */
8117 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8118 {
8119 	unsigned long max_pull, load_above_capacity = ~0UL;
8120 	struct sg_lb_stats *local, *busiest;
8121 
8122 	local = &sds->local_stat;
8123 	busiest = &sds->busiest_stat;
8124 
8125 	if (busiest->group_type == group_imbalanced) {
8126 		/*
8127 		 * In the group_imb case we cannot rely on group-wide averages
8128 		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8129 		 */
8130 		busiest->load_per_task =
8131 			min(busiest->load_per_task, sds->avg_load);
8132 	}
8133 
8134 	/*
8135 	 * Avg load of busiest sg can be less and avg load of local sg can
8136 	 * be greater than avg load across all sgs of sd because avg load
8137 	 * factors in sg capacity and sgs with smaller group_type are
8138 	 * skipped when updating the busiest sg:
8139 	 */
8140 	if (busiest->avg_load <= sds->avg_load ||
8141 	    local->avg_load >= sds->avg_load) {
8142 		env->imbalance = 0;
8143 		return fix_small_imbalance(env, sds);
8144 	}
8145 
8146 	/*
8147 	 * If there aren't any idle CPUs, avoid creating some.
8148 	 */
8149 	if (busiest->group_type == group_overloaded &&
8150 	    local->group_type   == group_overloaded) {
8151 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8152 		if (load_above_capacity > busiest->group_capacity) {
8153 			load_above_capacity -= busiest->group_capacity;
8154 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8155 			load_above_capacity /= busiest->group_capacity;
8156 		} else
8157 			load_above_capacity = ~0UL;
8158 	}
8159 
8160 	/*
8161 	 * We're trying to get all the CPUs to the average_load, so we don't
8162 	 * want to push ourselves above the average load, nor do we wish to
8163 	 * reduce the max loaded CPU below the average load. At the same time,
8164 	 * we also don't want to reduce the group load below the group
8165 	 * capacity. Thus we look for the minimum possible imbalance.
8166 	 */
8167 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8168 
8169 	/* How much load to actually move to equalise the imbalance */
8170 	env->imbalance = min(
8171 		max_pull * busiest->group_capacity,
8172 		(sds->avg_load - local->avg_load) * local->group_capacity
8173 	) / SCHED_CAPACITY_SCALE;
8174 
8175 	/*
8176 	 * if *imbalance is less than the average load per runnable task
8177 	 * there is no guarantee that any tasks will be moved so we'll have
8178 	 * a think about bumping its value to force at least one task to be
8179 	 * moved
8180 	 */
8181 	if (env->imbalance < busiest->load_per_task)
8182 		return fix_small_imbalance(env, sds);
8183 }
8184 
8185 /******* find_busiest_group() helpers end here *********************/
8186 
8187 /**
8188  * find_busiest_group - Returns the busiest group within the sched_domain
8189  * if there is an imbalance.
8190  *
8191  * Also calculates the amount of weighted load which should be moved
8192  * to restore balance.
8193  *
8194  * @env: The load balancing environment.
8195  *
8196  * Return:	- The busiest group if imbalance exists.
8197  */
8198 static struct sched_group *find_busiest_group(struct lb_env *env)
8199 {
8200 	struct sg_lb_stats *local, *busiest;
8201 	struct sd_lb_stats sds;
8202 
8203 	init_sd_lb_stats(&sds);
8204 
8205 	/*
8206 	 * Compute the various statistics relavent for load balancing at
8207 	 * this level.
8208 	 */
8209 	update_sd_lb_stats(env, &sds);
8210 	local = &sds.local_stat;
8211 	busiest = &sds.busiest_stat;
8212 
8213 	/* ASYM feature bypasses nice load balance check */
8214 	if (check_asym_packing(env, &sds))
8215 		return sds.busiest;
8216 
8217 	/* There is no busy sibling group to pull tasks from */
8218 	if (!sds.busiest || busiest->sum_nr_running == 0)
8219 		goto out_balanced;
8220 
8221 	/* XXX broken for overlapping NUMA groups */
8222 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8223 						/ sds.total_capacity;
8224 
8225 	/*
8226 	 * If the busiest group is imbalanced the below checks don't
8227 	 * work because they assume all things are equal, which typically
8228 	 * isn't true due to cpus_allowed constraints and the like.
8229 	 */
8230 	if (busiest->group_type == group_imbalanced)
8231 		goto force_balance;
8232 
8233 	/*
8234 	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8235 	 * capacities from resulting in underutilization due to avg_load.
8236 	 */
8237 	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8238 	    busiest->group_no_capacity)
8239 		goto force_balance;
8240 
8241 	/*
8242 	 * If the local group is busier than the selected busiest group
8243 	 * don't try and pull any tasks.
8244 	 */
8245 	if (local->avg_load >= busiest->avg_load)
8246 		goto out_balanced;
8247 
8248 	/*
8249 	 * Don't pull any tasks if this group is already above the domain
8250 	 * average load.
8251 	 */
8252 	if (local->avg_load >= sds.avg_load)
8253 		goto out_balanced;
8254 
8255 	if (env->idle == CPU_IDLE) {
8256 		/*
8257 		 * This CPU is idle. If the busiest group is not overloaded
8258 		 * and there is no imbalance between this and busiest group
8259 		 * wrt idle CPUs, it is balanced. The imbalance becomes
8260 		 * significant if the diff is greater than 1 otherwise we
8261 		 * might end up to just move the imbalance on another group
8262 		 */
8263 		if ((busiest->group_type != group_overloaded) &&
8264 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8265 			goto out_balanced;
8266 	} else {
8267 		/*
8268 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8269 		 * imbalance_pct to be conservative.
8270 		 */
8271 		if (100 * busiest->avg_load <=
8272 				env->sd->imbalance_pct * local->avg_load)
8273 			goto out_balanced;
8274 	}
8275 
8276 force_balance:
8277 	/* Looks like there is an imbalance. Compute it */
8278 	calculate_imbalance(env, &sds);
8279 	return env->imbalance ? sds.busiest : NULL;
8280 
8281 out_balanced:
8282 	env->imbalance = 0;
8283 	return NULL;
8284 }
8285 
8286 /*
8287  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8288  */
8289 static struct rq *find_busiest_queue(struct lb_env *env,
8290 				     struct sched_group *group)
8291 {
8292 	struct rq *busiest = NULL, *rq;
8293 	unsigned long busiest_load = 0, busiest_capacity = 1;
8294 	int i;
8295 
8296 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8297 		unsigned long capacity, wl;
8298 		enum fbq_type rt;
8299 
8300 		rq = cpu_rq(i);
8301 		rt = fbq_classify_rq(rq);
8302 
8303 		/*
8304 		 * We classify groups/runqueues into three groups:
8305 		 *  - regular: there are !numa tasks
8306 		 *  - remote:  there are numa tasks that run on the 'wrong' node
8307 		 *  - all:     there is no distinction
8308 		 *
8309 		 * In order to avoid migrating ideally placed numa tasks,
8310 		 * ignore those when there's better options.
8311 		 *
8312 		 * If we ignore the actual busiest queue to migrate another
8313 		 * task, the next balance pass can still reduce the busiest
8314 		 * queue by moving tasks around inside the node.
8315 		 *
8316 		 * If we cannot move enough load due to this classification
8317 		 * the next pass will adjust the group classification and
8318 		 * allow migration of more tasks.
8319 		 *
8320 		 * Both cases only affect the total convergence complexity.
8321 		 */
8322 		if (rt > env->fbq_type)
8323 			continue;
8324 
8325 		capacity = capacity_of(i);
8326 
8327 		wl = weighted_cpuload(rq);
8328 
8329 		/*
8330 		 * When comparing with imbalance, use weighted_cpuload()
8331 		 * which is not scaled with the CPU capacity.
8332 		 */
8333 
8334 		if (rq->nr_running == 1 && wl > env->imbalance &&
8335 		    !check_cpu_capacity(rq, env->sd))
8336 			continue;
8337 
8338 		/*
8339 		 * For the load comparisons with the other CPU's, consider
8340 		 * the weighted_cpuload() scaled with the CPU capacity, so
8341 		 * that the load can be moved away from the CPU that is
8342 		 * potentially running at a lower capacity.
8343 		 *
8344 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8345 		 * multiplication to rid ourselves of the division works out
8346 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
8347 		 * our previous maximum.
8348 		 */
8349 		if (wl * busiest_capacity > busiest_load * capacity) {
8350 			busiest_load = wl;
8351 			busiest_capacity = capacity;
8352 			busiest = rq;
8353 		}
8354 	}
8355 
8356 	return busiest;
8357 }
8358 
8359 /*
8360  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8361  * so long as it is large enough.
8362  */
8363 #define MAX_PINNED_INTERVAL	512
8364 
8365 static int need_active_balance(struct lb_env *env)
8366 {
8367 	struct sched_domain *sd = env->sd;
8368 
8369 	if (env->idle == CPU_NEWLY_IDLE) {
8370 
8371 		/*
8372 		 * ASYM_PACKING needs to force migrate tasks from busy but
8373 		 * lower priority CPUs in order to pack all tasks in the
8374 		 * highest priority CPUs.
8375 		 */
8376 		if ((sd->flags & SD_ASYM_PACKING) &&
8377 		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8378 			return 1;
8379 	}
8380 
8381 	/*
8382 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8383 	 * It's worth migrating the task if the src_cpu's capacity is reduced
8384 	 * because of other sched_class or IRQs if more capacity stays
8385 	 * available on dst_cpu.
8386 	 */
8387 	if ((env->idle != CPU_NOT_IDLE) &&
8388 	    (env->src_rq->cfs.h_nr_running == 1)) {
8389 		if ((check_cpu_capacity(env->src_rq, sd)) &&
8390 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8391 			return 1;
8392 	}
8393 
8394 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8395 }
8396 
8397 static int active_load_balance_cpu_stop(void *data);
8398 
8399 static int should_we_balance(struct lb_env *env)
8400 {
8401 	struct sched_group *sg = env->sd->groups;
8402 	int cpu, balance_cpu = -1;
8403 
8404 	/*
8405 	 * Ensure the balancing environment is consistent; can happen
8406 	 * when the softirq triggers 'during' hotplug.
8407 	 */
8408 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8409 		return 0;
8410 
8411 	/*
8412 	 * In the newly idle case, we will allow all the CPUs
8413 	 * to do the newly idle load balance.
8414 	 */
8415 	if (env->idle == CPU_NEWLY_IDLE)
8416 		return 1;
8417 
8418 	/* Try to find first idle CPU */
8419 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8420 		if (!idle_cpu(cpu))
8421 			continue;
8422 
8423 		balance_cpu = cpu;
8424 		break;
8425 	}
8426 
8427 	if (balance_cpu == -1)
8428 		balance_cpu = group_balance_cpu(sg);
8429 
8430 	/*
8431 	 * First idle CPU or the first CPU(busiest) in this sched group
8432 	 * is eligible for doing load balancing at this and above domains.
8433 	 */
8434 	return balance_cpu == env->dst_cpu;
8435 }
8436 
8437 /*
8438  * Check this_cpu to ensure it is balanced within domain. Attempt to move
8439  * tasks if there is an imbalance.
8440  */
8441 static int load_balance(int this_cpu, struct rq *this_rq,
8442 			struct sched_domain *sd, enum cpu_idle_type idle,
8443 			int *continue_balancing)
8444 {
8445 	int ld_moved, cur_ld_moved, active_balance = 0;
8446 	struct sched_domain *sd_parent = sd->parent;
8447 	struct sched_group *group;
8448 	struct rq *busiest;
8449 	struct rq_flags rf;
8450 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8451 
8452 	struct lb_env env = {
8453 		.sd		= sd,
8454 		.dst_cpu	= this_cpu,
8455 		.dst_rq		= this_rq,
8456 		.dst_grpmask    = sched_group_span(sd->groups),
8457 		.idle		= idle,
8458 		.loop_break	= sched_nr_migrate_break,
8459 		.cpus		= cpus,
8460 		.fbq_type	= all,
8461 		.tasks		= LIST_HEAD_INIT(env.tasks),
8462 	};
8463 
8464 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8465 
8466 	schedstat_inc(sd->lb_count[idle]);
8467 
8468 redo:
8469 	if (!should_we_balance(&env)) {
8470 		*continue_balancing = 0;
8471 		goto out_balanced;
8472 	}
8473 
8474 	group = find_busiest_group(&env);
8475 	if (!group) {
8476 		schedstat_inc(sd->lb_nobusyg[idle]);
8477 		goto out_balanced;
8478 	}
8479 
8480 	busiest = find_busiest_queue(&env, group);
8481 	if (!busiest) {
8482 		schedstat_inc(sd->lb_nobusyq[idle]);
8483 		goto out_balanced;
8484 	}
8485 
8486 	BUG_ON(busiest == env.dst_rq);
8487 
8488 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8489 
8490 	env.src_cpu = busiest->cpu;
8491 	env.src_rq = busiest;
8492 
8493 	ld_moved = 0;
8494 	if (busiest->nr_running > 1) {
8495 		/*
8496 		 * Attempt to move tasks. If find_busiest_group has found
8497 		 * an imbalance but busiest->nr_running <= 1, the group is
8498 		 * still unbalanced. ld_moved simply stays zero, so it is
8499 		 * correctly treated as an imbalance.
8500 		 */
8501 		env.flags |= LBF_ALL_PINNED;
8502 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8503 
8504 more_balance:
8505 		rq_lock_irqsave(busiest, &rf);
8506 		update_rq_clock(busiest);
8507 
8508 		/*
8509 		 * cur_ld_moved - load moved in current iteration
8510 		 * ld_moved     - cumulative load moved across iterations
8511 		 */
8512 		cur_ld_moved = detach_tasks(&env);
8513 
8514 		/*
8515 		 * We've detached some tasks from busiest_rq. Every
8516 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8517 		 * unlock busiest->lock, and we are able to be sure
8518 		 * that nobody can manipulate the tasks in parallel.
8519 		 * See task_rq_lock() family for the details.
8520 		 */
8521 
8522 		rq_unlock(busiest, &rf);
8523 
8524 		if (cur_ld_moved) {
8525 			attach_tasks(&env);
8526 			ld_moved += cur_ld_moved;
8527 		}
8528 
8529 		local_irq_restore(rf.flags);
8530 
8531 		if (env.flags & LBF_NEED_BREAK) {
8532 			env.flags &= ~LBF_NEED_BREAK;
8533 			goto more_balance;
8534 		}
8535 
8536 		/*
8537 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8538 		 * us and move them to an alternate dst_cpu in our sched_group
8539 		 * where they can run. The upper limit on how many times we
8540 		 * iterate on same src_cpu is dependent on number of CPUs in our
8541 		 * sched_group.
8542 		 *
8543 		 * This changes load balance semantics a bit on who can move
8544 		 * load to a given_cpu. In addition to the given_cpu itself
8545 		 * (or a ilb_cpu acting on its behalf where given_cpu is
8546 		 * nohz-idle), we now have balance_cpu in a position to move
8547 		 * load to given_cpu. In rare situations, this may cause
8548 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8549 		 * _independently_ and at _same_ time to move some load to
8550 		 * given_cpu) causing exceess load to be moved to given_cpu.
8551 		 * This however should not happen so much in practice and
8552 		 * moreover subsequent load balance cycles should correct the
8553 		 * excess load moved.
8554 		 */
8555 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8556 
8557 			/* Prevent to re-select dst_cpu via env's CPUs */
8558 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
8559 
8560 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8561 			env.dst_cpu	 = env.new_dst_cpu;
8562 			env.flags	&= ~LBF_DST_PINNED;
8563 			env.loop	 = 0;
8564 			env.loop_break	 = sched_nr_migrate_break;
8565 
8566 			/*
8567 			 * Go back to "more_balance" rather than "redo" since we
8568 			 * need to continue with same src_cpu.
8569 			 */
8570 			goto more_balance;
8571 		}
8572 
8573 		/*
8574 		 * We failed to reach balance because of affinity.
8575 		 */
8576 		if (sd_parent) {
8577 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8578 
8579 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8580 				*group_imbalance = 1;
8581 		}
8582 
8583 		/* All tasks on this runqueue were pinned by CPU affinity */
8584 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8585 			cpumask_clear_cpu(cpu_of(busiest), cpus);
8586 			/*
8587 			 * Attempting to continue load balancing at the current
8588 			 * sched_domain level only makes sense if there are
8589 			 * active CPUs remaining as possible busiest CPUs to
8590 			 * pull load from which are not contained within the
8591 			 * destination group that is receiving any migrated
8592 			 * load.
8593 			 */
8594 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8595 				env.loop = 0;
8596 				env.loop_break = sched_nr_migrate_break;
8597 				goto redo;
8598 			}
8599 			goto out_all_pinned;
8600 		}
8601 	}
8602 
8603 	if (!ld_moved) {
8604 		schedstat_inc(sd->lb_failed[idle]);
8605 		/*
8606 		 * Increment the failure counter only on periodic balance.
8607 		 * We do not want newidle balance, which can be very
8608 		 * frequent, pollute the failure counter causing
8609 		 * excessive cache_hot migrations and active balances.
8610 		 */
8611 		if (idle != CPU_NEWLY_IDLE)
8612 			sd->nr_balance_failed++;
8613 
8614 		if (need_active_balance(&env)) {
8615 			unsigned long flags;
8616 
8617 			raw_spin_lock_irqsave(&busiest->lock, flags);
8618 
8619 			/*
8620 			 * Don't kick the active_load_balance_cpu_stop,
8621 			 * if the curr task on busiest CPU can't be
8622 			 * moved to this_cpu:
8623 			 */
8624 			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8625 				raw_spin_unlock_irqrestore(&busiest->lock,
8626 							    flags);
8627 				env.flags |= LBF_ALL_PINNED;
8628 				goto out_one_pinned;
8629 			}
8630 
8631 			/*
8632 			 * ->active_balance synchronizes accesses to
8633 			 * ->active_balance_work.  Once set, it's cleared
8634 			 * only after active load balance is finished.
8635 			 */
8636 			if (!busiest->active_balance) {
8637 				busiest->active_balance = 1;
8638 				busiest->push_cpu = this_cpu;
8639 				active_balance = 1;
8640 			}
8641 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8642 
8643 			if (active_balance) {
8644 				stop_one_cpu_nowait(cpu_of(busiest),
8645 					active_load_balance_cpu_stop, busiest,
8646 					&busiest->active_balance_work);
8647 			}
8648 
8649 			/* We've kicked active balancing, force task migration. */
8650 			sd->nr_balance_failed = sd->cache_nice_tries+1;
8651 		}
8652 	} else
8653 		sd->nr_balance_failed = 0;
8654 
8655 	if (likely(!active_balance)) {
8656 		/* We were unbalanced, so reset the balancing interval */
8657 		sd->balance_interval = sd->min_interval;
8658 	} else {
8659 		/*
8660 		 * If we've begun active balancing, start to back off. This
8661 		 * case may not be covered by the all_pinned logic if there
8662 		 * is only 1 task on the busy runqueue (because we don't call
8663 		 * detach_tasks).
8664 		 */
8665 		if (sd->balance_interval < sd->max_interval)
8666 			sd->balance_interval *= 2;
8667 	}
8668 
8669 	goto out;
8670 
8671 out_balanced:
8672 	/*
8673 	 * We reach balance although we may have faced some affinity
8674 	 * constraints. Clear the imbalance flag if it was set.
8675 	 */
8676 	if (sd_parent) {
8677 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8678 
8679 		if (*group_imbalance)
8680 			*group_imbalance = 0;
8681 	}
8682 
8683 out_all_pinned:
8684 	/*
8685 	 * We reach balance because all tasks are pinned at this level so
8686 	 * we can't migrate them. Let the imbalance flag set so parent level
8687 	 * can try to migrate them.
8688 	 */
8689 	schedstat_inc(sd->lb_balanced[idle]);
8690 
8691 	sd->nr_balance_failed = 0;
8692 
8693 out_one_pinned:
8694 	/* tune up the balancing interval */
8695 	if (((env.flags & LBF_ALL_PINNED) &&
8696 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8697 			(sd->balance_interval < sd->max_interval))
8698 		sd->balance_interval *= 2;
8699 
8700 	ld_moved = 0;
8701 out:
8702 	return ld_moved;
8703 }
8704 
8705 static inline unsigned long
8706 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8707 {
8708 	unsigned long interval = sd->balance_interval;
8709 
8710 	if (cpu_busy)
8711 		interval *= sd->busy_factor;
8712 
8713 	/* scale ms to jiffies */
8714 	interval = msecs_to_jiffies(interval);
8715 	interval = clamp(interval, 1UL, max_load_balance_interval);
8716 
8717 	return interval;
8718 }
8719 
8720 static inline void
8721 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8722 {
8723 	unsigned long interval, next;
8724 
8725 	/* used by idle balance, so cpu_busy = 0 */
8726 	interval = get_sd_balance_interval(sd, 0);
8727 	next = sd->last_balance + interval;
8728 
8729 	if (time_after(*next_balance, next))
8730 		*next_balance = next;
8731 }
8732 
8733 /*
8734  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
8735  * running tasks off the busiest CPU onto idle CPUs. It requires at
8736  * least 1 task to be running on each physical CPU where possible, and
8737  * avoids physical / logical imbalances.
8738  */
8739 static int active_load_balance_cpu_stop(void *data)
8740 {
8741 	struct rq *busiest_rq = data;
8742 	int busiest_cpu = cpu_of(busiest_rq);
8743 	int target_cpu = busiest_rq->push_cpu;
8744 	struct rq *target_rq = cpu_rq(target_cpu);
8745 	struct sched_domain *sd;
8746 	struct task_struct *p = NULL;
8747 	struct rq_flags rf;
8748 
8749 	rq_lock_irq(busiest_rq, &rf);
8750 	/*
8751 	 * Between queueing the stop-work and running it is a hole in which
8752 	 * CPUs can become inactive. We should not move tasks from or to
8753 	 * inactive CPUs.
8754 	 */
8755 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
8756 		goto out_unlock;
8757 
8758 	/* Make sure the requested CPU hasn't gone down in the meantime: */
8759 	if (unlikely(busiest_cpu != smp_processor_id() ||
8760 		     !busiest_rq->active_balance))
8761 		goto out_unlock;
8762 
8763 	/* Is there any task to move? */
8764 	if (busiest_rq->nr_running <= 1)
8765 		goto out_unlock;
8766 
8767 	/*
8768 	 * This condition is "impossible", if it occurs
8769 	 * we need to fix it. Originally reported by
8770 	 * Bjorn Helgaas on a 128-CPU setup.
8771 	 */
8772 	BUG_ON(busiest_rq == target_rq);
8773 
8774 	/* Search for an sd spanning us and the target CPU. */
8775 	rcu_read_lock();
8776 	for_each_domain(target_cpu, sd) {
8777 		if ((sd->flags & SD_LOAD_BALANCE) &&
8778 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8779 				break;
8780 	}
8781 
8782 	if (likely(sd)) {
8783 		struct lb_env env = {
8784 			.sd		= sd,
8785 			.dst_cpu	= target_cpu,
8786 			.dst_rq		= target_rq,
8787 			.src_cpu	= busiest_rq->cpu,
8788 			.src_rq		= busiest_rq,
8789 			.idle		= CPU_IDLE,
8790 			/*
8791 			 * can_migrate_task() doesn't need to compute new_dst_cpu
8792 			 * for active balancing. Since we have CPU_IDLE, but no
8793 			 * @dst_grpmask we need to make that test go away with lying
8794 			 * about DST_PINNED.
8795 			 */
8796 			.flags		= LBF_DST_PINNED,
8797 		};
8798 
8799 		schedstat_inc(sd->alb_count);
8800 		update_rq_clock(busiest_rq);
8801 
8802 		p = detach_one_task(&env);
8803 		if (p) {
8804 			schedstat_inc(sd->alb_pushed);
8805 			/* Active balancing done, reset the failure counter. */
8806 			sd->nr_balance_failed = 0;
8807 		} else {
8808 			schedstat_inc(sd->alb_failed);
8809 		}
8810 	}
8811 	rcu_read_unlock();
8812 out_unlock:
8813 	busiest_rq->active_balance = 0;
8814 	rq_unlock(busiest_rq, &rf);
8815 
8816 	if (p)
8817 		attach_one_task(target_rq, p);
8818 
8819 	local_irq_enable();
8820 
8821 	return 0;
8822 }
8823 
8824 static DEFINE_SPINLOCK(balancing);
8825 
8826 /*
8827  * Scale the max load_balance interval with the number of CPUs in the system.
8828  * This trades load-balance latency on larger machines for less cross talk.
8829  */
8830 void update_max_interval(void)
8831 {
8832 	max_load_balance_interval = HZ*num_online_cpus()/10;
8833 }
8834 
8835 /*
8836  * It checks each scheduling domain to see if it is due to be balanced,
8837  * and initiates a balancing operation if so.
8838  *
8839  * Balancing parameters are set up in init_sched_domains.
8840  */
8841 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8842 {
8843 	int continue_balancing = 1;
8844 	int cpu = rq->cpu;
8845 	unsigned long interval;
8846 	struct sched_domain *sd;
8847 	/* Earliest time when we have to do rebalance again */
8848 	unsigned long next_balance = jiffies + 60*HZ;
8849 	int update_next_balance = 0;
8850 	int need_serialize, need_decay = 0;
8851 	u64 max_cost = 0;
8852 
8853 	rcu_read_lock();
8854 	for_each_domain(cpu, sd) {
8855 		/*
8856 		 * Decay the newidle max times here because this is a regular
8857 		 * visit to all the domains. Decay ~1% per second.
8858 		 */
8859 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8860 			sd->max_newidle_lb_cost =
8861 				(sd->max_newidle_lb_cost * 253) / 256;
8862 			sd->next_decay_max_lb_cost = jiffies + HZ;
8863 			need_decay = 1;
8864 		}
8865 		max_cost += sd->max_newidle_lb_cost;
8866 
8867 		if (!(sd->flags & SD_LOAD_BALANCE))
8868 			continue;
8869 
8870 		/*
8871 		 * Stop the load balance at this level. There is another
8872 		 * CPU in our sched group which is doing load balancing more
8873 		 * actively.
8874 		 */
8875 		if (!continue_balancing) {
8876 			if (need_decay)
8877 				continue;
8878 			break;
8879 		}
8880 
8881 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8882 
8883 		need_serialize = sd->flags & SD_SERIALIZE;
8884 		if (need_serialize) {
8885 			if (!spin_trylock(&balancing))
8886 				goto out;
8887 		}
8888 
8889 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8890 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8891 				/*
8892 				 * The LBF_DST_PINNED logic could have changed
8893 				 * env->dst_cpu, so we can't know our idle
8894 				 * state even if we migrated tasks. Update it.
8895 				 */
8896 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8897 			}
8898 			sd->last_balance = jiffies;
8899 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8900 		}
8901 		if (need_serialize)
8902 			spin_unlock(&balancing);
8903 out:
8904 		if (time_after(next_balance, sd->last_balance + interval)) {
8905 			next_balance = sd->last_balance + interval;
8906 			update_next_balance = 1;
8907 		}
8908 	}
8909 	if (need_decay) {
8910 		/*
8911 		 * Ensure the rq-wide value also decays but keep it at a
8912 		 * reasonable floor to avoid funnies with rq->avg_idle.
8913 		 */
8914 		rq->max_idle_balance_cost =
8915 			max((u64)sysctl_sched_migration_cost, max_cost);
8916 	}
8917 	rcu_read_unlock();
8918 
8919 	/*
8920 	 * next_balance will be updated only when there is a need.
8921 	 * When the cpu is attached to null domain for ex, it will not be
8922 	 * updated.
8923 	 */
8924 	if (likely(update_next_balance)) {
8925 		rq->next_balance = next_balance;
8926 
8927 #ifdef CONFIG_NO_HZ_COMMON
8928 		/*
8929 		 * If this CPU has been elected to perform the nohz idle
8930 		 * balance. Other idle CPUs have already rebalanced with
8931 		 * nohz_idle_balance() and nohz.next_balance has been
8932 		 * updated accordingly. This CPU is now running the idle load
8933 		 * balance for itself and we need to update the
8934 		 * nohz.next_balance accordingly.
8935 		 */
8936 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8937 			nohz.next_balance = rq->next_balance;
8938 #endif
8939 	}
8940 }
8941 
8942 static inline int on_null_domain(struct rq *rq)
8943 {
8944 	return unlikely(!rcu_dereference_sched(rq->sd));
8945 }
8946 
8947 #ifdef CONFIG_NO_HZ_COMMON
8948 /*
8949  * idle load balancing details
8950  * - When one of the busy CPUs notice that there may be an idle rebalancing
8951  *   needed, they will kick the idle load balancer, which then does idle
8952  *   load balancing for all the idle CPUs.
8953  */
8954 
8955 static inline int find_new_ilb(void)
8956 {
8957 	int ilb = cpumask_first(nohz.idle_cpus_mask);
8958 
8959 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
8960 		return ilb;
8961 
8962 	return nr_cpu_ids;
8963 }
8964 
8965 /*
8966  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8967  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8968  * CPU (if there is one).
8969  */
8970 static void kick_ilb(unsigned int flags)
8971 {
8972 	int ilb_cpu;
8973 
8974 	nohz.next_balance++;
8975 
8976 	ilb_cpu = find_new_ilb();
8977 
8978 	if (ilb_cpu >= nr_cpu_ids)
8979 		return;
8980 
8981 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
8982 	if (flags & NOHZ_KICK_MASK)
8983 		return;
8984 
8985 	/*
8986 	 * Use smp_send_reschedule() instead of resched_cpu().
8987 	 * This way we generate a sched IPI on the target CPU which
8988 	 * is idle. And the softirq performing nohz idle load balance
8989 	 * will be run before returning from the IPI.
8990 	 */
8991 	smp_send_reschedule(ilb_cpu);
8992 }
8993 
8994 /*
8995  * Current heuristic for kicking the idle load balancer in the presence
8996  * of an idle cpu in the system.
8997  *   - This rq has more than one task.
8998  *   - This rq has at least one CFS task and the capacity of the CPU is
8999  *     significantly reduced because of RT tasks or IRQs.
9000  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
9001  *     multiple busy cpu.
9002  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9003  *     domain span are idle.
9004  */
9005 static void nohz_balancer_kick(struct rq *rq)
9006 {
9007 	unsigned long now = jiffies;
9008 	struct sched_domain_shared *sds;
9009 	struct sched_domain *sd;
9010 	int nr_busy, i, cpu = rq->cpu;
9011 	unsigned int flags = 0;
9012 
9013 	if (unlikely(rq->idle_balance))
9014 		return;
9015 
9016 	/*
9017 	 * We may be recently in ticked or tickless idle mode. At the first
9018 	 * busy tick after returning from idle, we will update the busy stats.
9019 	 */
9020 	nohz_balance_exit_idle(rq);
9021 
9022 	/*
9023 	 * None are in tickless mode and hence no need for NOHZ idle load
9024 	 * balancing.
9025 	 */
9026 	if (likely(!atomic_read(&nohz.nr_cpus)))
9027 		return;
9028 
9029 	if (READ_ONCE(nohz.has_blocked) &&
9030 	    time_after(now, READ_ONCE(nohz.next_blocked)))
9031 		flags = NOHZ_STATS_KICK;
9032 
9033 	if (time_before(now, nohz.next_balance))
9034 		goto out;
9035 
9036 	if (rq->nr_running >= 2) {
9037 		flags = NOHZ_KICK_MASK;
9038 		goto out;
9039 	}
9040 
9041 	rcu_read_lock();
9042 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9043 	if (sds) {
9044 		/*
9045 		 * XXX: write a coherent comment on why we do this.
9046 		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9047 		 */
9048 		nr_busy = atomic_read(&sds->nr_busy_cpus);
9049 		if (nr_busy > 1) {
9050 			flags = NOHZ_KICK_MASK;
9051 			goto unlock;
9052 		}
9053 
9054 	}
9055 
9056 	sd = rcu_dereference(rq->sd);
9057 	if (sd) {
9058 		if ((rq->cfs.h_nr_running >= 1) &&
9059 				check_cpu_capacity(rq, sd)) {
9060 			flags = NOHZ_KICK_MASK;
9061 			goto unlock;
9062 		}
9063 	}
9064 
9065 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
9066 	if (sd) {
9067 		for_each_cpu(i, sched_domain_span(sd)) {
9068 			if (i == cpu ||
9069 			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9070 				continue;
9071 
9072 			if (sched_asym_prefer(i, cpu)) {
9073 				flags = NOHZ_KICK_MASK;
9074 				goto unlock;
9075 			}
9076 		}
9077 	}
9078 unlock:
9079 	rcu_read_unlock();
9080 out:
9081 	if (flags)
9082 		kick_ilb(flags);
9083 }
9084 
9085 static void set_cpu_sd_state_busy(int cpu)
9086 {
9087 	struct sched_domain *sd;
9088 
9089 	rcu_read_lock();
9090 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9091 
9092 	if (!sd || !sd->nohz_idle)
9093 		goto unlock;
9094 	sd->nohz_idle = 0;
9095 
9096 	atomic_inc(&sd->shared->nr_busy_cpus);
9097 unlock:
9098 	rcu_read_unlock();
9099 }
9100 
9101 void nohz_balance_exit_idle(struct rq *rq)
9102 {
9103 	SCHED_WARN_ON(rq != this_rq());
9104 
9105 	if (likely(!rq->nohz_tick_stopped))
9106 		return;
9107 
9108 	rq->nohz_tick_stopped = 0;
9109 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9110 	atomic_dec(&nohz.nr_cpus);
9111 
9112 	set_cpu_sd_state_busy(rq->cpu);
9113 }
9114 
9115 static void set_cpu_sd_state_idle(int cpu)
9116 {
9117 	struct sched_domain *sd;
9118 
9119 	rcu_read_lock();
9120 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9121 
9122 	if (!sd || sd->nohz_idle)
9123 		goto unlock;
9124 	sd->nohz_idle = 1;
9125 
9126 	atomic_dec(&sd->shared->nr_busy_cpus);
9127 unlock:
9128 	rcu_read_unlock();
9129 }
9130 
9131 /*
9132  * This routine will record that the CPU is going idle with tick stopped.
9133  * This info will be used in performing idle load balancing in the future.
9134  */
9135 void nohz_balance_enter_idle(int cpu)
9136 {
9137 	struct rq *rq = cpu_rq(cpu);
9138 
9139 	SCHED_WARN_ON(cpu != smp_processor_id());
9140 
9141 	/* If this CPU is going down, then nothing needs to be done: */
9142 	if (!cpu_active(cpu))
9143 		return;
9144 
9145 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9146 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9147 		return;
9148 
9149 	/*
9150 	 * Can be set safely without rq->lock held
9151 	 * If a clear happens, it will have evaluated last additions because
9152 	 * rq->lock is held during the check and the clear
9153 	 */
9154 	rq->has_blocked_load = 1;
9155 
9156 	/*
9157 	 * The tick is still stopped but load could have been added in the
9158 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
9159 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9160 	 * of nohz.has_blocked can only happen after checking the new load
9161 	 */
9162 	if (rq->nohz_tick_stopped)
9163 		goto out;
9164 
9165 	/* If we're a completely isolated CPU, we don't play: */
9166 	if (on_null_domain(rq))
9167 		return;
9168 
9169 	rq->nohz_tick_stopped = 1;
9170 
9171 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9172 	atomic_inc(&nohz.nr_cpus);
9173 
9174 	/*
9175 	 * Ensures that if nohz_idle_balance() fails to observe our
9176 	 * @idle_cpus_mask store, it must observe the @has_blocked
9177 	 * store.
9178 	 */
9179 	smp_mb__after_atomic();
9180 
9181 	set_cpu_sd_state_idle(cpu);
9182 
9183 out:
9184 	/*
9185 	 * Each time a cpu enter idle, we assume that it has blocked load and
9186 	 * enable the periodic update of the load of idle cpus
9187 	 */
9188 	WRITE_ONCE(nohz.has_blocked, 1);
9189 }
9190 
9191 /*
9192  * Internal function that runs load balance for all idle cpus. The load balance
9193  * can be a simple update of blocked load or a complete load balance with
9194  * tasks movement depending of flags.
9195  * The function returns false if the loop has stopped before running
9196  * through all idle CPUs.
9197  */
9198 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9199 			       enum cpu_idle_type idle)
9200 {
9201 	/* Earliest time when we have to do rebalance again */
9202 	unsigned long now = jiffies;
9203 	unsigned long next_balance = now + 60*HZ;
9204 	bool has_blocked_load = false;
9205 	int update_next_balance = 0;
9206 	int this_cpu = this_rq->cpu;
9207 	int balance_cpu;
9208 	int ret = false;
9209 	struct rq *rq;
9210 
9211 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9212 
9213 	/*
9214 	 * We assume there will be no idle load after this update and clear
9215 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9216 	 * set the has_blocked flag and trig another update of idle load.
9217 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9218 	 * setting the flag, we are sure to not clear the state and not
9219 	 * check the load of an idle cpu.
9220 	 */
9221 	WRITE_ONCE(nohz.has_blocked, 0);
9222 
9223 	/*
9224 	 * Ensures that if we miss the CPU, we must see the has_blocked
9225 	 * store from nohz_balance_enter_idle().
9226 	 */
9227 	smp_mb();
9228 
9229 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9230 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9231 			continue;
9232 
9233 		/*
9234 		 * If this CPU gets work to do, stop the load balancing
9235 		 * work being done for other CPUs. Next load
9236 		 * balancing owner will pick it up.
9237 		 */
9238 		if (need_resched()) {
9239 			has_blocked_load = true;
9240 			goto abort;
9241 		}
9242 
9243 		rq = cpu_rq(balance_cpu);
9244 
9245 		has_blocked_load |= update_nohz_stats(rq, true);
9246 
9247 		/*
9248 		 * If time for next balance is due,
9249 		 * do the balance.
9250 		 */
9251 		if (time_after_eq(jiffies, rq->next_balance)) {
9252 			struct rq_flags rf;
9253 
9254 			rq_lock_irqsave(rq, &rf);
9255 			update_rq_clock(rq);
9256 			cpu_load_update_idle(rq);
9257 			rq_unlock_irqrestore(rq, &rf);
9258 
9259 			if (flags & NOHZ_BALANCE_KICK)
9260 				rebalance_domains(rq, CPU_IDLE);
9261 		}
9262 
9263 		if (time_after(next_balance, rq->next_balance)) {
9264 			next_balance = rq->next_balance;
9265 			update_next_balance = 1;
9266 		}
9267 	}
9268 
9269 	/* Newly idle CPU doesn't need an update */
9270 	if (idle != CPU_NEWLY_IDLE) {
9271 		update_blocked_averages(this_cpu);
9272 		has_blocked_load |= this_rq->has_blocked_load;
9273 	}
9274 
9275 	if (flags & NOHZ_BALANCE_KICK)
9276 		rebalance_domains(this_rq, CPU_IDLE);
9277 
9278 	WRITE_ONCE(nohz.next_blocked,
9279 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9280 
9281 	/* The full idle balance loop has been done */
9282 	ret = true;
9283 
9284 abort:
9285 	/* There is still blocked load, enable periodic update */
9286 	if (has_blocked_load)
9287 		WRITE_ONCE(nohz.has_blocked, 1);
9288 
9289 	/*
9290 	 * next_balance will be updated only when there is a need.
9291 	 * When the CPU is attached to null domain for ex, it will not be
9292 	 * updated.
9293 	 */
9294 	if (likely(update_next_balance))
9295 		nohz.next_balance = next_balance;
9296 
9297 	return ret;
9298 }
9299 
9300 /*
9301  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9302  * rebalancing for all the cpus for whom scheduler ticks are stopped.
9303  */
9304 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9305 {
9306 	int this_cpu = this_rq->cpu;
9307 	unsigned int flags;
9308 
9309 	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9310 		return false;
9311 
9312 	if (idle != CPU_IDLE) {
9313 		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9314 		return false;
9315 	}
9316 
9317 	/*
9318 	 * barrier, pairs with nohz_balance_enter_idle(), ensures ...
9319 	 */
9320 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9321 	if (!(flags & NOHZ_KICK_MASK))
9322 		return false;
9323 
9324 	_nohz_idle_balance(this_rq, flags, idle);
9325 
9326 	return true;
9327 }
9328 
9329 static void nohz_newidle_balance(struct rq *this_rq)
9330 {
9331 	int this_cpu = this_rq->cpu;
9332 
9333 	/*
9334 	 * This CPU doesn't want to be disturbed by scheduler
9335 	 * housekeeping
9336 	 */
9337 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9338 		return;
9339 
9340 	/* Will wake up very soon. No time for doing anything else*/
9341 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
9342 		return;
9343 
9344 	/* Don't need to update blocked load of idle CPUs*/
9345 	if (!READ_ONCE(nohz.has_blocked) ||
9346 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9347 		return;
9348 
9349 	raw_spin_unlock(&this_rq->lock);
9350 	/*
9351 	 * This CPU is going to be idle and blocked load of idle CPUs
9352 	 * need to be updated. Run the ilb locally as it is a good
9353 	 * candidate for ilb instead of waking up another idle CPU.
9354 	 * Kick an normal ilb if we failed to do the update.
9355 	 */
9356 	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9357 		kick_ilb(NOHZ_STATS_KICK);
9358 	raw_spin_lock(&this_rq->lock);
9359 }
9360 
9361 #else /* !CONFIG_NO_HZ_COMMON */
9362 static inline void nohz_balancer_kick(struct rq *rq) { }
9363 
9364 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9365 {
9366 	return false;
9367 }
9368 
9369 static inline void nohz_newidle_balance(struct rq *this_rq) { }
9370 #endif /* CONFIG_NO_HZ_COMMON */
9371 
9372 /*
9373  * idle_balance is called by schedule() if this_cpu is about to become
9374  * idle. Attempts to pull tasks from other CPUs.
9375  */
9376 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9377 {
9378 	unsigned long next_balance = jiffies + HZ;
9379 	int this_cpu = this_rq->cpu;
9380 	struct sched_domain *sd;
9381 	int pulled_task = 0;
9382 	u64 curr_cost = 0;
9383 
9384 	/*
9385 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
9386 	 * measure the duration of idle_balance() as idle time.
9387 	 */
9388 	this_rq->idle_stamp = rq_clock(this_rq);
9389 
9390 	/*
9391 	 * Do not pull tasks towards !active CPUs...
9392 	 */
9393 	if (!cpu_active(this_cpu))
9394 		return 0;
9395 
9396 	/*
9397 	 * This is OK, because current is on_cpu, which avoids it being picked
9398 	 * for load-balance and preemption/IRQs are still disabled avoiding
9399 	 * further scheduler activity on it and we're being very careful to
9400 	 * re-start the picking loop.
9401 	 */
9402 	rq_unpin_lock(this_rq, rf);
9403 
9404 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
9405 	    !this_rq->rd->overload) {
9406 
9407 		rcu_read_lock();
9408 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
9409 		if (sd)
9410 			update_next_balance(sd, &next_balance);
9411 		rcu_read_unlock();
9412 
9413 		nohz_newidle_balance(this_rq);
9414 
9415 		goto out;
9416 	}
9417 
9418 	raw_spin_unlock(&this_rq->lock);
9419 
9420 	update_blocked_averages(this_cpu);
9421 	rcu_read_lock();
9422 	for_each_domain(this_cpu, sd) {
9423 		int continue_balancing = 1;
9424 		u64 t0, domain_cost;
9425 
9426 		if (!(sd->flags & SD_LOAD_BALANCE))
9427 			continue;
9428 
9429 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9430 			update_next_balance(sd, &next_balance);
9431 			break;
9432 		}
9433 
9434 		if (sd->flags & SD_BALANCE_NEWIDLE) {
9435 			t0 = sched_clock_cpu(this_cpu);
9436 
9437 			pulled_task = load_balance(this_cpu, this_rq,
9438 						   sd, CPU_NEWLY_IDLE,
9439 						   &continue_balancing);
9440 
9441 			domain_cost = sched_clock_cpu(this_cpu) - t0;
9442 			if (domain_cost > sd->max_newidle_lb_cost)
9443 				sd->max_newidle_lb_cost = domain_cost;
9444 
9445 			curr_cost += domain_cost;
9446 		}
9447 
9448 		update_next_balance(sd, &next_balance);
9449 
9450 		/*
9451 		 * Stop searching for tasks to pull if there are
9452 		 * now runnable tasks on this rq.
9453 		 */
9454 		if (pulled_task || this_rq->nr_running > 0)
9455 			break;
9456 	}
9457 	rcu_read_unlock();
9458 
9459 	raw_spin_lock(&this_rq->lock);
9460 
9461 	if (curr_cost > this_rq->max_idle_balance_cost)
9462 		this_rq->max_idle_balance_cost = curr_cost;
9463 
9464 out:
9465 	/*
9466 	 * While browsing the domains, we released the rq lock, a task could
9467 	 * have been enqueued in the meantime. Since we're not going idle,
9468 	 * pretend we pulled a task.
9469 	 */
9470 	if (this_rq->cfs.h_nr_running && !pulled_task)
9471 		pulled_task = 1;
9472 
9473 	/* Move the next balance forward */
9474 	if (time_after(this_rq->next_balance, next_balance))
9475 		this_rq->next_balance = next_balance;
9476 
9477 	/* Is there a task of a high priority class? */
9478 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9479 		pulled_task = -1;
9480 
9481 	if (pulled_task)
9482 		this_rq->idle_stamp = 0;
9483 
9484 	rq_repin_lock(this_rq, rf);
9485 
9486 	return pulled_task;
9487 }
9488 
9489 /*
9490  * run_rebalance_domains is triggered when needed from the scheduler tick.
9491  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9492  */
9493 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9494 {
9495 	struct rq *this_rq = this_rq();
9496 	enum cpu_idle_type idle = this_rq->idle_balance ?
9497 						CPU_IDLE : CPU_NOT_IDLE;
9498 
9499 	/*
9500 	 * If this CPU has a pending nohz_balance_kick, then do the
9501 	 * balancing on behalf of the other idle CPUs whose ticks are
9502 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9503 	 * give the idle CPUs a chance to load balance. Else we may
9504 	 * load balance only within the local sched_domain hierarchy
9505 	 * and abort nohz_idle_balance altogether if we pull some load.
9506 	 */
9507 	if (nohz_idle_balance(this_rq, idle))
9508 		return;
9509 
9510 	/* normal load balance */
9511 	update_blocked_averages(this_rq->cpu);
9512 	rebalance_domains(this_rq, idle);
9513 }
9514 
9515 /*
9516  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9517  */
9518 void trigger_load_balance(struct rq *rq)
9519 {
9520 	/* Don't need to rebalance while attached to NULL domain */
9521 	if (unlikely(on_null_domain(rq)))
9522 		return;
9523 
9524 	if (time_after_eq(jiffies, rq->next_balance))
9525 		raise_softirq(SCHED_SOFTIRQ);
9526 
9527 	nohz_balancer_kick(rq);
9528 }
9529 
9530 static void rq_online_fair(struct rq *rq)
9531 {
9532 	update_sysctl();
9533 
9534 	update_runtime_enabled(rq);
9535 }
9536 
9537 static void rq_offline_fair(struct rq *rq)
9538 {
9539 	update_sysctl();
9540 
9541 	/* Ensure any throttled groups are reachable by pick_next_task */
9542 	unthrottle_offline_cfs_rqs(rq);
9543 }
9544 
9545 #endif /* CONFIG_SMP */
9546 
9547 /*
9548  * scheduler tick hitting a task of our scheduling class.
9549  *
9550  * NOTE: This function can be called remotely by the tick offload that
9551  * goes along full dynticks. Therefore no local assumption can be made
9552  * and everything must be accessed through the @rq and @curr passed in
9553  * parameters.
9554  */
9555 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9556 {
9557 	struct cfs_rq *cfs_rq;
9558 	struct sched_entity *se = &curr->se;
9559 
9560 	for_each_sched_entity(se) {
9561 		cfs_rq = cfs_rq_of(se);
9562 		entity_tick(cfs_rq, se, queued);
9563 	}
9564 
9565 	if (static_branch_unlikely(&sched_numa_balancing))
9566 		task_tick_numa(rq, curr);
9567 }
9568 
9569 /*
9570  * called on fork with the child task as argument from the parent's context
9571  *  - child not yet on the tasklist
9572  *  - preemption disabled
9573  */
9574 static void task_fork_fair(struct task_struct *p)
9575 {
9576 	struct cfs_rq *cfs_rq;
9577 	struct sched_entity *se = &p->se, *curr;
9578 	struct rq *rq = this_rq();
9579 	struct rq_flags rf;
9580 
9581 	rq_lock(rq, &rf);
9582 	update_rq_clock(rq);
9583 
9584 	cfs_rq = task_cfs_rq(current);
9585 	curr = cfs_rq->curr;
9586 	if (curr) {
9587 		update_curr(cfs_rq);
9588 		se->vruntime = curr->vruntime;
9589 	}
9590 	place_entity(cfs_rq, se, 1);
9591 
9592 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9593 		/*
9594 		 * Upon rescheduling, sched_class::put_prev_task() will place
9595 		 * 'current' within the tree based on its new key value.
9596 		 */
9597 		swap(curr->vruntime, se->vruntime);
9598 		resched_curr(rq);
9599 	}
9600 
9601 	se->vruntime -= cfs_rq->min_vruntime;
9602 	rq_unlock(rq, &rf);
9603 }
9604 
9605 /*
9606  * Priority of the task has changed. Check to see if we preempt
9607  * the current task.
9608  */
9609 static void
9610 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9611 {
9612 	if (!task_on_rq_queued(p))
9613 		return;
9614 
9615 	/*
9616 	 * Reschedule if we are currently running on this runqueue and
9617 	 * our priority decreased, or if we are not currently running on
9618 	 * this runqueue and our priority is higher than the current's
9619 	 */
9620 	if (rq->curr == p) {
9621 		if (p->prio > oldprio)
9622 			resched_curr(rq);
9623 	} else
9624 		check_preempt_curr(rq, p, 0);
9625 }
9626 
9627 static inline bool vruntime_normalized(struct task_struct *p)
9628 {
9629 	struct sched_entity *se = &p->se;
9630 
9631 	/*
9632 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9633 	 * the dequeue_entity(.flags=0) will already have normalized the
9634 	 * vruntime.
9635 	 */
9636 	if (p->on_rq)
9637 		return true;
9638 
9639 	/*
9640 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
9641 	 * But there are some cases where it has already been normalized:
9642 	 *
9643 	 * - A forked child which is waiting for being woken up by
9644 	 *   wake_up_new_task().
9645 	 * - A task which has been woken up by try_to_wake_up() and
9646 	 *   waiting for actually being woken up by sched_ttwu_pending().
9647 	 */
9648 	if (!se->sum_exec_runtime ||
9649 	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
9650 		return true;
9651 
9652 	return false;
9653 }
9654 
9655 #ifdef CONFIG_FAIR_GROUP_SCHED
9656 /*
9657  * Propagate the changes of the sched_entity across the tg tree to make it
9658  * visible to the root
9659  */
9660 static void propagate_entity_cfs_rq(struct sched_entity *se)
9661 {
9662 	struct cfs_rq *cfs_rq;
9663 
9664 	/* Start to propagate at parent */
9665 	se = se->parent;
9666 
9667 	for_each_sched_entity(se) {
9668 		cfs_rq = cfs_rq_of(se);
9669 
9670 		if (cfs_rq_throttled(cfs_rq))
9671 			break;
9672 
9673 		update_load_avg(cfs_rq, se, UPDATE_TG);
9674 	}
9675 }
9676 #else
9677 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9678 #endif
9679 
9680 static void detach_entity_cfs_rq(struct sched_entity *se)
9681 {
9682 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9683 
9684 	/* Catch up with the cfs_rq and remove our load when we leave */
9685 	update_load_avg(cfs_rq, se, 0);
9686 	detach_entity_load_avg(cfs_rq, se);
9687 	update_tg_load_avg(cfs_rq, false);
9688 	propagate_entity_cfs_rq(se);
9689 }
9690 
9691 static void attach_entity_cfs_rq(struct sched_entity *se)
9692 {
9693 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9694 
9695 #ifdef CONFIG_FAIR_GROUP_SCHED
9696 	/*
9697 	 * Since the real-depth could have been changed (only FAIR
9698 	 * class maintain depth value), reset depth properly.
9699 	 */
9700 	se->depth = se->parent ? se->parent->depth + 1 : 0;
9701 #endif
9702 
9703 	/* Synchronize entity with its cfs_rq */
9704 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9705 	attach_entity_load_avg(cfs_rq, se, 0);
9706 	update_tg_load_avg(cfs_rq, false);
9707 	propagate_entity_cfs_rq(se);
9708 }
9709 
9710 static void detach_task_cfs_rq(struct task_struct *p)
9711 {
9712 	struct sched_entity *se = &p->se;
9713 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9714 
9715 	if (!vruntime_normalized(p)) {
9716 		/*
9717 		 * Fix up our vruntime so that the current sleep doesn't
9718 		 * cause 'unlimited' sleep bonus.
9719 		 */
9720 		place_entity(cfs_rq, se, 0);
9721 		se->vruntime -= cfs_rq->min_vruntime;
9722 	}
9723 
9724 	detach_entity_cfs_rq(se);
9725 }
9726 
9727 static void attach_task_cfs_rq(struct task_struct *p)
9728 {
9729 	struct sched_entity *se = &p->se;
9730 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9731 
9732 	attach_entity_cfs_rq(se);
9733 
9734 	if (!vruntime_normalized(p))
9735 		se->vruntime += cfs_rq->min_vruntime;
9736 }
9737 
9738 static void switched_from_fair(struct rq *rq, struct task_struct *p)
9739 {
9740 	detach_task_cfs_rq(p);
9741 }
9742 
9743 static void switched_to_fair(struct rq *rq, struct task_struct *p)
9744 {
9745 	attach_task_cfs_rq(p);
9746 
9747 	if (task_on_rq_queued(p)) {
9748 		/*
9749 		 * We were most likely switched from sched_rt, so
9750 		 * kick off the schedule if running, otherwise just see
9751 		 * if we can still preempt the current task.
9752 		 */
9753 		if (rq->curr == p)
9754 			resched_curr(rq);
9755 		else
9756 			check_preempt_curr(rq, p, 0);
9757 	}
9758 }
9759 
9760 /* Account for a task changing its policy or group.
9761  *
9762  * This routine is mostly called to set cfs_rq->curr field when a task
9763  * migrates between groups/classes.
9764  */
9765 static void set_curr_task_fair(struct rq *rq)
9766 {
9767 	struct sched_entity *se = &rq->curr->se;
9768 
9769 	for_each_sched_entity(se) {
9770 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
9771 
9772 		set_next_entity(cfs_rq, se);
9773 		/* ensure bandwidth has been allocated on our new cfs_rq */
9774 		account_cfs_rq_runtime(cfs_rq, 0);
9775 	}
9776 }
9777 
9778 void init_cfs_rq(struct cfs_rq *cfs_rq)
9779 {
9780 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
9781 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9782 #ifndef CONFIG_64BIT
9783 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9784 #endif
9785 #ifdef CONFIG_SMP
9786 	raw_spin_lock_init(&cfs_rq->removed.lock);
9787 #endif
9788 }
9789 
9790 #ifdef CONFIG_FAIR_GROUP_SCHED
9791 static void task_set_group_fair(struct task_struct *p)
9792 {
9793 	struct sched_entity *se = &p->se;
9794 
9795 	set_task_rq(p, task_cpu(p));
9796 	se->depth = se->parent ? se->parent->depth + 1 : 0;
9797 }
9798 
9799 static void task_move_group_fair(struct task_struct *p)
9800 {
9801 	detach_task_cfs_rq(p);
9802 	set_task_rq(p, task_cpu(p));
9803 
9804 #ifdef CONFIG_SMP
9805 	/* Tell se's cfs_rq has been changed -- migrated */
9806 	p->se.avg.last_update_time = 0;
9807 #endif
9808 	attach_task_cfs_rq(p);
9809 }
9810 
9811 static void task_change_group_fair(struct task_struct *p, int type)
9812 {
9813 	switch (type) {
9814 	case TASK_SET_GROUP:
9815 		task_set_group_fair(p);
9816 		break;
9817 
9818 	case TASK_MOVE_GROUP:
9819 		task_move_group_fair(p);
9820 		break;
9821 	}
9822 }
9823 
9824 void free_fair_sched_group(struct task_group *tg)
9825 {
9826 	int i;
9827 
9828 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9829 
9830 	for_each_possible_cpu(i) {
9831 		if (tg->cfs_rq)
9832 			kfree(tg->cfs_rq[i]);
9833 		if (tg->se)
9834 			kfree(tg->se[i]);
9835 	}
9836 
9837 	kfree(tg->cfs_rq);
9838 	kfree(tg->se);
9839 }
9840 
9841 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9842 {
9843 	struct sched_entity *se;
9844 	struct cfs_rq *cfs_rq;
9845 	int i;
9846 
9847 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
9848 	if (!tg->cfs_rq)
9849 		goto err;
9850 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
9851 	if (!tg->se)
9852 		goto err;
9853 
9854 	tg->shares = NICE_0_LOAD;
9855 
9856 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9857 
9858 	for_each_possible_cpu(i) {
9859 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9860 				      GFP_KERNEL, cpu_to_node(i));
9861 		if (!cfs_rq)
9862 			goto err;
9863 
9864 		se = kzalloc_node(sizeof(struct sched_entity),
9865 				  GFP_KERNEL, cpu_to_node(i));
9866 		if (!se)
9867 			goto err_free_rq;
9868 
9869 		init_cfs_rq(cfs_rq);
9870 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9871 		init_entity_runnable_average(se);
9872 	}
9873 
9874 	return 1;
9875 
9876 err_free_rq:
9877 	kfree(cfs_rq);
9878 err:
9879 	return 0;
9880 }
9881 
9882 void online_fair_sched_group(struct task_group *tg)
9883 {
9884 	struct sched_entity *se;
9885 	struct rq *rq;
9886 	int i;
9887 
9888 	for_each_possible_cpu(i) {
9889 		rq = cpu_rq(i);
9890 		se = tg->se[i];
9891 
9892 		raw_spin_lock_irq(&rq->lock);
9893 		update_rq_clock(rq);
9894 		attach_entity_cfs_rq(se);
9895 		sync_throttle(tg, i);
9896 		raw_spin_unlock_irq(&rq->lock);
9897 	}
9898 }
9899 
9900 void unregister_fair_sched_group(struct task_group *tg)
9901 {
9902 	unsigned long flags;
9903 	struct rq *rq;
9904 	int cpu;
9905 
9906 	for_each_possible_cpu(cpu) {
9907 		if (tg->se[cpu])
9908 			remove_entity_load_avg(tg->se[cpu]);
9909 
9910 		/*
9911 		 * Only empty task groups can be destroyed; so we can speculatively
9912 		 * check on_list without danger of it being re-added.
9913 		 */
9914 		if (!tg->cfs_rq[cpu]->on_list)
9915 			continue;
9916 
9917 		rq = cpu_rq(cpu);
9918 
9919 		raw_spin_lock_irqsave(&rq->lock, flags);
9920 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9921 		raw_spin_unlock_irqrestore(&rq->lock, flags);
9922 	}
9923 }
9924 
9925 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9926 			struct sched_entity *se, int cpu,
9927 			struct sched_entity *parent)
9928 {
9929 	struct rq *rq = cpu_rq(cpu);
9930 
9931 	cfs_rq->tg = tg;
9932 	cfs_rq->rq = rq;
9933 	init_cfs_rq_runtime(cfs_rq);
9934 
9935 	tg->cfs_rq[cpu] = cfs_rq;
9936 	tg->se[cpu] = se;
9937 
9938 	/* se could be NULL for root_task_group */
9939 	if (!se)
9940 		return;
9941 
9942 	if (!parent) {
9943 		se->cfs_rq = &rq->cfs;
9944 		se->depth = 0;
9945 	} else {
9946 		se->cfs_rq = parent->my_q;
9947 		se->depth = parent->depth + 1;
9948 	}
9949 
9950 	se->my_q = cfs_rq;
9951 	/* guarantee group entities always have weight */
9952 	update_load_set(&se->load, NICE_0_LOAD);
9953 	se->parent = parent;
9954 }
9955 
9956 static DEFINE_MUTEX(shares_mutex);
9957 
9958 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9959 {
9960 	int i;
9961 
9962 	/*
9963 	 * We can't change the weight of the root cgroup.
9964 	 */
9965 	if (!tg->se[0])
9966 		return -EINVAL;
9967 
9968 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9969 
9970 	mutex_lock(&shares_mutex);
9971 	if (tg->shares == shares)
9972 		goto done;
9973 
9974 	tg->shares = shares;
9975 	for_each_possible_cpu(i) {
9976 		struct rq *rq = cpu_rq(i);
9977 		struct sched_entity *se = tg->se[i];
9978 		struct rq_flags rf;
9979 
9980 		/* Propagate contribution to hierarchy */
9981 		rq_lock_irqsave(rq, &rf);
9982 		update_rq_clock(rq);
9983 		for_each_sched_entity(se) {
9984 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9985 			update_cfs_group(se);
9986 		}
9987 		rq_unlock_irqrestore(rq, &rf);
9988 	}
9989 
9990 done:
9991 	mutex_unlock(&shares_mutex);
9992 	return 0;
9993 }
9994 #else /* CONFIG_FAIR_GROUP_SCHED */
9995 
9996 void free_fair_sched_group(struct task_group *tg) { }
9997 
9998 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9999 {
10000 	return 1;
10001 }
10002 
10003 void online_fair_sched_group(struct task_group *tg) { }
10004 
10005 void unregister_fair_sched_group(struct task_group *tg) { }
10006 
10007 #endif /* CONFIG_FAIR_GROUP_SCHED */
10008 
10009 
10010 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10011 {
10012 	struct sched_entity *se = &task->se;
10013 	unsigned int rr_interval = 0;
10014 
10015 	/*
10016 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10017 	 * idle runqueue:
10018 	 */
10019 	if (rq->cfs.load.weight)
10020 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10021 
10022 	return rr_interval;
10023 }
10024 
10025 /*
10026  * All the scheduling class methods:
10027  */
10028 const struct sched_class fair_sched_class = {
10029 	.next			= &idle_sched_class,
10030 	.enqueue_task		= enqueue_task_fair,
10031 	.dequeue_task		= dequeue_task_fair,
10032 	.yield_task		= yield_task_fair,
10033 	.yield_to_task		= yield_to_task_fair,
10034 
10035 	.check_preempt_curr	= check_preempt_wakeup,
10036 
10037 	.pick_next_task		= pick_next_task_fair,
10038 	.put_prev_task		= put_prev_task_fair,
10039 
10040 #ifdef CONFIG_SMP
10041 	.select_task_rq		= select_task_rq_fair,
10042 	.migrate_task_rq	= migrate_task_rq_fair,
10043 
10044 	.rq_online		= rq_online_fair,
10045 	.rq_offline		= rq_offline_fair,
10046 
10047 	.task_dead		= task_dead_fair,
10048 	.set_cpus_allowed	= set_cpus_allowed_common,
10049 #endif
10050 
10051 	.set_curr_task          = set_curr_task_fair,
10052 	.task_tick		= task_tick_fair,
10053 	.task_fork		= task_fork_fair,
10054 
10055 	.prio_changed		= prio_changed_fair,
10056 	.switched_from		= switched_from_fair,
10057 	.switched_to		= switched_to_fair,
10058 
10059 	.get_rr_interval	= get_rr_interval_fair,
10060 
10061 	.update_curr		= update_curr_fair,
10062 
10063 #ifdef CONFIG_FAIR_GROUP_SCHED
10064 	.task_change_group	= task_change_group_fair,
10065 #endif
10066 };
10067 
10068 #ifdef CONFIG_SCHED_DEBUG
10069 void print_cfs_stats(struct seq_file *m, int cpu)
10070 {
10071 	struct cfs_rq *cfs_rq, *pos;
10072 
10073 	rcu_read_lock();
10074 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10075 		print_cfs_rq(m, cpu, cfs_rq);
10076 	rcu_read_unlock();
10077 }
10078 
10079 #ifdef CONFIG_NUMA_BALANCING
10080 void show_numa_stats(struct task_struct *p, struct seq_file *m)
10081 {
10082 	int node;
10083 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10084 
10085 	for_each_online_node(node) {
10086 		if (p->numa_faults) {
10087 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10088 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10089 		}
10090 		if (p->numa_group) {
10091 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10092 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10093 		}
10094 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10095 	}
10096 }
10097 #endif /* CONFIG_NUMA_BALANCING */
10098 #endif /* CONFIG_SCHED_DEBUG */
10099 
10100 __init void init_sched_fair_class(void)
10101 {
10102 #ifdef CONFIG_SMP
10103 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10104 
10105 #ifdef CONFIG_NO_HZ_COMMON
10106 	nohz.next_balance = jiffies;
10107 	nohz.next_blocked = jiffies;
10108 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10109 #endif
10110 #endif /* SMP */
10111 
10112 }
10113