1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 51 #include <asm/switch_to.h> 52 53 #include <linux/sched/cond_resched.h> 54 55 #include "sched.h" 56 #include "stats.h" 57 #include "autogroup.h" 58 59 /* 60 * Targeted preemption latency for CPU-bound tasks: 61 * 62 * NOTE: this latency value is not the same as the concept of 63 * 'timeslice length' - timeslices in CFS are of variable length 64 * and have no persistent notion like in traditional, time-slice 65 * based scheduling concepts. 66 * 67 * (to see the precise effective timeslice length of your workload, 68 * run vmstat and monitor the context-switches (cs) field) 69 * 70 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 71 */ 72 unsigned int sysctl_sched_latency = 6000000ULL; 73 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 74 75 /* 76 * The initial- and re-scaling of tunables is configurable 77 * 78 * Options are: 79 * 80 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 81 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 82 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 83 * 84 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 85 */ 86 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 87 88 /* 89 * Minimal preemption granularity for CPU-bound tasks: 90 * 91 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 92 */ 93 unsigned int sysctl_sched_min_granularity = 750000ULL; 94 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 95 96 /* 97 * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks. 98 * Applies only when SCHED_IDLE tasks compete with normal tasks. 99 * 100 * (default: 0.75 msec) 101 */ 102 unsigned int sysctl_sched_idle_min_granularity = 750000ULL; 103 104 /* 105 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 106 */ 107 static unsigned int sched_nr_latency = 8; 108 109 /* 110 * After fork, child runs first. If set to 0 (default) then 111 * parent will (try to) run first. 112 */ 113 unsigned int sysctl_sched_child_runs_first __read_mostly; 114 115 /* 116 * SCHED_OTHER wake-up granularity. 117 * 118 * This option delays the preemption effects of decoupled workloads 119 * and reduces their over-scheduling. Synchronous workloads will still 120 * have immediate wakeup/sleep latencies. 121 * 122 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 123 */ 124 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 125 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 126 127 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 128 129 int sched_thermal_decay_shift; 130 static int __init setup_sched_thermal_decay_shift(char *str) 131 { 132 int _shift = 0; 133 134 if (kstrtoint(str, 0, &_shift)) 135 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 136 137 sched_thermal_decay_shift = clamp(_shift, 0, 10); 138 return 1; 139 } 140 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 141 142 #ifdef CONFIG_SMP 143 /* 144 * For asym packing, by default the lower numbered CPU has higher priority. 145 */ 146 int __weak arch_asym_cpu_priority(int cpu) 147 { 148 return -cpu; 149 } 150 151 /* 152 * The margin used when comparing utilization with CPU capacity. 153 * 154 * (default: ~20%) 155 */ 156 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 157 158 /* 159 * The margin used when comparing CPU capacities. 160 * is 'cap1' noticeably greater than 'cap2' 161 * 162 * (default: ~5%) 163 */ 164 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 165 #endif 166 167 #ifdef CONFIG_CFS_BANDWIDTH 168 /* 169 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 170 * each time a cfs_rq requests quota. 171 * 172 * Note: in the case that the slice exceeds the runtime remaining (either due 173 * to consumption or the quota being specified to be smaller than the slice) 174 * we will always only issue the remaining available time. 175 * 176 * (default: 5 msec, units: microseconds) 177 */ 178 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 179 #endif 180 181 #ifdef CONFIG_NUMA_BALANCING 182 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 183 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 184 #endif 185 186 #ifdef CONFIG_SYSCTL 187 static struct ctl_table sched_fair_sysctls[] = { 188 { 189 .procname = "sched_child_runs_first", 190 .data = &sysctl_sched_child_runs_first, 191 .maxlen = sizeof(unsigned int), 192 .mode = 0644, 193 .proc_handler = proc_dointvec, 194 }, 195 #ifdef CONFIG_CFS_BANDWIDTH 196 { 197 .procname = "sched_cfs_bandwidth_slice_us", 198 .data = &sysctl_sched_cfs_bandwidth_slice, 199 .maxlen = sizeof(unsigned int), 200 .mode = 0644, 201 .proc_handler = proc_dointvec_minmax, 202 .extra1 = SYSCTL_ONE, 203 }, 204 #endif 205 #ifdef CONFIG_NUMA_BALANCING 206 { 207 .procname = "numa_balancing_promote_rate_limit_MBps", 208 .data = &sysctl_numa_balancing_promote_rate_limit, 209 .maxlen = sizeof(unsigned int), 210 .mode = 0644, 211 .proc_handler = proc_dointvec_minmax, 212 .extra1 = SYSCTL_ZERO, 213 }, 214 #endif /* CONFIG_NUMA_BALANCING */ 215 {} 216 }; 217 218 static int __init sched_fair_sysctl_init(void) 219 { 220 register_sysctl_init("kernel", sched_fair_sysctls); 221 return 0; 222 } 223 late_initcall(sched_fair_sysctl_init); 224 #endif 225 226 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 227 { 228 lw->weight += inc; 229 lw->inv_weight = 0; 230 } 231 232 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 233 { 234 lw->weight -= dec; 235 lw->inv_weight = 0; 236 } 237 238 static inline void update_load_set(struct load_weight *lw, unsigned long w) 239 { 240 lw->weight = w; 241 lw->inv_weight = 0; 242 } 243 244 /* 245 * Increase the granularity value when there are more CPUs, 246 * because with more CPUs the 'effective latency' as visible 247 * to users decreases. But the relationship is not linear, 248 * so pick a second-best guess by going with the log2 of the 249 * number of CPUs. 250 * 251 * This idea comes from the SD scheduler of Con Kolivas: 252 */ 253 static unsigned int get_update_sysctl_factor(void) 254 { 255 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 256 unsigned int factor; 257 258 switch (sysctl_sched_tunable_scaling) { 259 case SCHED_TUNABLESCALING_NONE: 260 factor = 1; 261 break; 262 case SCHED_TUNABLESCALING_LINEAR: 263 factor = cpus; 264 break; 265 case SCHED_TUNABLESCALING_LOG: 266 default: 267 factor = 1 + ilog2(cpus); 268 break; 269 } 270 271 return factor; 272 } 273 274 static void update_sysctl(void) 275 { 276 unsigned int factor = get_update_sysctl_factor(); 277 278 #define SET_SYSCTL(name) \ 279 (sysctl_##name = (factor) * normalized_sysctl_##name) 280 SET_SYSCTL(sched_min_granularity); 281 SET_SYSCTL(sched_latency); 282 SET_SYSCTL(sched_wakeup_granularity); 283 #undef SET_SYSCTL 284 } 285 286 void __init sched_init_granularity(void) 287 { 288 update_sysctl(); 289 } 290 291 #define WMULT_CONST (~0U) 292 #define WMULT_SHIFT 32 293 294 static void __update_inv_weight(struct load_weight *lw) 295 { 296 unsigned long w; 297 298 if (likely(lw->inv_weight)) 299 return; 300 301 w = scale_load_down(lw->weight); 302 303 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 304 lw->inv_weight = 1; 305 else if (unlikely(!w)) 306 lw->inv_weight = WMULT_CONST; 307 else 308 lw->inv_weight = WMULT_CONST / w; 309 } 310 311 /* 312 * delta_exec * weight / lw.weight 313 * OR 314 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 315 * 316 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 317 * we're guaranteed shift stays positive because inv_weight is guaranteed to 318 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 319 * 320 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 321 * weight/lw.weight <= 1, and therefore our shift will also be positive. 322 */ 323 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 324 { 325 u64 fact = scale_load_down(weight); 326 u32 fact_hi = (u32)(fact >> 32); 327 int shift = WMULT_SHIFT; 328 int fs; 329 330 __update_inv_weight(lw); 331 332 if (unlikely(fact_hi)) { 333 fs = fls(fact_hi); 334 shift -= fs; 335 fact >>= fs; 336 } 337 338 fact = mul_u32_u32(fact, lw->inv_weight); 339 340 fact_hi = (u32)(fact >> 32); 341 if (fact_hi) { 342 fs = fls(fact_hi); 343 shift -= fs; 344 fact >>= fs; 345 } 346 347 return mul_u64_u32_shr(delta_exec, fact, shift); 348 } 349 350 351 const struct sched_class fair_sched_class; 352 353 /************************************************************** 354 * CFS operations on generic schedulable entities: 355 */ 356 357 #ifdef CONFIG_FAIR_GROUP_SCHED 358 359 /* Walk up scheduling entities hierarchy */ 360 #define for_each_sched_entity(se) \ 361 for (; se; se = se->parent) 362 363 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 364 { 365 struct rq *rq = rq_of(cfs_rq); 366 int cpu = cpu_of(rq); 367 368 if (cfs_rq->on_list) 369 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 370 371 cfs_rq->on_list = 1; 372 373 /* 374 * Ensure we either appear before our parent (if already 375 * enqueued) or force our parent to appear after us when it is 376 * enqueued. The fact that we always enqueue bottom-up 377 * reduces this to two cases and a special case for the root 378 * cfs_rq. Furthermore, it also means that we will always reset 379 * tmp_alone_branch either when the branch is connected 380 * to a tree or when we reach the top of the tree 381 */ 382 if (cfs_rq->tg->parent && 383 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 384 /* 385 * If parent is already on the list, we add the child 386 * just before. Thanks to circular linked property of 387 * the list, this means to put the child at the tail 388 * of the list that starts by parent. 389 */ 390 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 391 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 392 /* 393 * The branch is now connected to its tree so we can 394 * reset tmp_alone_branch to the beginning of the 395 * list. 396 */ 397 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 398 return true; 399 } 400 401 if (!cfs_rq->tg->parent) { 402 /* 403 * cfs rq without parent should be put 404 * at the tail of the list. 405 */ 406 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 407 &rq->leaf_cfs_rq_list); 408 /* 409 * We have reach the top of a tree so we can reset 410 * tmp_alone_branch to the beginning of the list. 411 */ 412 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 413 return true; 414 } 415 416 /* 417 * The parent has not already been added so we want to 418 * make sure that it will be put after us. 419 * tmp_alone_branch points to the begin of the branch 420 * where we will add parent. 421 */ 422 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 423 /* 424 * update tmp_alone_branch to points to the new begin 425 * of the branch 426 */ 427 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 428 return false; 429 } 430 431 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 432 { 433 if (cfs_rq->on_list) { 434 struct rq *rq = rq_of(cfs_rq); 435 436 /* 437 * With cfs_rq being unthrottled/throttled during an enqueue, 438 * it can happen the tmp_alone_branch points the a leaf that 439 * we finally want to del. In this case, tmp_alone_branch moves 440 * to the prev element but it will point to rq->leaf_cfs_rq_list 441 * at the end of the enqueue. 442 */ 443 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 444 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 445 446 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 447 cfs_rq->on_list = 0; 448 } 449 } 450 451 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 452 { 453 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 454 } 455 456 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 457 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 458 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 459 leaf_cfs_rq_list) 460 461 /* Do the two (enqueued) entities belong to the same group ? */ 462 static inline struct cfs_rq * 463 is_same_group(struct sched_entity *se, struct sched_entity *pse) 464 { 465 if (se->cfs_rq == pse->cfs_rq) 466 return se->cfs_rq; 467 468 return NULL; 469 } 470 471 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 472 { 473 return se->parent; 474 } 475 476 static void 477 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 478 { 479 int se_depth, pse_depth; 480 481 /* 482 * preemption test can be made between sibling entities who are in the 483 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 484 * both tasks until we find their ancestors who are siblings of common 485 * parent. 486 */ 487 488 /* First walk up until both entities are at same depth */ 489 se_depth = (*se)->depth; 490 pse_depth = (*pse)->depth; 491 492 while (se_depth > pse_depth) { 493 se_depth--; 494 *se = parent_entity(*se); 495 } 496 497 while (pse_depth > se_depth) { 498 pse_depth--; 499 *pse = parent_entity(*pse); 500 } 501 502 while (!is_same_group(*se, *pse)) { 503 *se = parent_entity(*se); 504 *pse = parent_entity(*pse); 505 } 506 } 507 508 static int tg_is_idle(struct task_group *tg) 509 { 510 return tg->idle > 0; 511 } 512 513 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 514 { 515 return cfs_rq->idle > 0; 516 } 517 518 static int se_is_idle(struct sched_entity *se) 519 { 520 if (entity_is_task(se)) 521 return task_has_idle_policy(task_of(se)); 522 return cfs_rq_is_idle(group_cfs_rq(se)); 523 } 524 525 #else /* !CONFIG_FAIR_GROUP_SCHED */ 526 527 #define for_each_sched_entity(se) \ 528 for (; se; se = NULL) 529 530 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 531 { 532 return true; 533 } 534 535 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 536 { 537 } 538 539 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 540 { 541 } 542 543 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 544 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 545 546 static inline struct sched_entity *parent_entity(struct sched_entity *se) 547 { 548 return NULL; 549 } 550 551 static inline void 552 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 553 { 554 } 555 556 static inline int tg_is_idle(struct task_group *tg) 557 { 558 return 0; 559 } 560 561 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 562 { 563 return 0; 564 } 565 566 static int se_is_idle(struct sched_entity *se) 567 { 568 return 0; 569 } 570 571 #endif /* CONFIG_FAIR_GROUP_SCHED */ 572 573 static __always_inline 574 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 575 576 /************************************************************** 577 * Scheduling class tree data structure manipulation methods: 578 */ 579 580 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 581 { 582 s64 delta = (s64)(vruntime - max_vruntime); 583 if (delta > 0) 584 max_vruntime = vruntime; 585 586 return max_vruntime; 587 } 588 589 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 590 { 591 s64 delta = (s64)(vruntime - min_vruntime); 592 if (delta < 0) 593 min_vruntime = vruntime; 594 595 return min_vruntime; 596 } 597 598 static inline bool entity_before(const struct sched_entity *a, 599 const struct sched_entity *b) 600 { 601 return (s64)(a->vruntime - b->vruntime) < 0; 602 } 603 604 #define __node_2_se(node) \ 605 rb_entry((node), struct sched_entity, run_node) 606 607 static void update_min_vruntime(struct cfs_rq *cfs_rq) 608 { 609 struct sched_entity *curr = cfs_rq->curr; 610 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 611 612 u64 vruntime = cfs_rq->min_vruntime; 613 614 if (curr) { 615 if (curr->on_rq) 616 vruntime = curr->vruntime; 617 else 618 curr = NULL; 619 } 620 621 if (leftmost) { /* non-empty tree */ 622 struct sched_entity *se = __node_2_se(leftmost); 623 624 if (!curr) 625 vruntime = se->vruntime; 626 else 627 vruntime = min_vruntime(vruntime, se->vruntime); 628 } 629 630 /* ensure we never gain time by being placed backwards. */ 631 u64_u32_store(cfs_rq->min_vruntime, 632 max_vruntime(cfs_rq->min_vruntime, vruntime)); 633 } 634 635 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 636 { 637 return entity_before(__node_2_se(a), __node_2_se(b)); 638 } 639 640 /* 641 * Enqueue an entity into the rb-tree: 642 */ 643 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 644 { 645 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less); 646 } 647 648 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 649 { 650 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 651 } 652 653 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 654 { 655 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 656 657 if (!left) 658 return NULL; 659 660 return __node_2_se(left); 661 } 662 663 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 664 { 665 struct rb_node *next = rb_next(&se->run_node); 666 667 if (!next) 668 return NULL; 669 670 return __node_2_se(next); 671 } 672 673 #ifdef CONFIG_SCHED_DEBUG 674 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 675 { 676 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 677 678 if (!last) 679 return NULL; 680 681 return __node_2_se(last); 682 } 683 684 /************************************************************** 685 * Scheduling class statistics methods: 686 */ 687 688 int sched_update_scaling(void) 689 { 690 unsigned int factor = get_update_sysctl_factor(); 691 692 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 693 sysctl_sched_min_granularity); 694 695 #define WRT_SYSCTL(name) \ 696 (normalized_sysctl_##name = sysctl_##name / (factor)) 697 WRT_SYSCTL(sched_min_granularity); 698 WRT_SYSCTL(sched_latency); 699 WRT_SYSCTL(sched_wakeup_granularity); 700 #undef WRT_SYSCTL 701 702 return 0; 703 } 704 #endif 705 706 /* 707 * delta /= w 708 */ 709 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 710 { 711 if (unlikely(se->load.weight != NICE_0_LOAD)) 712 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 713 714 return delta; 715 } 716 717 /* 718 * The idea is to set a period in which each task runs once. 719 * 720 * When there are too many tasks (sched_nr_latency) we have to stretch 721 * this period because otherwise the slices get too small. 722 * 723 * p = (nr <= nl) ? l : l*nr/nl 724 */ 725 static u64 __sched_period(unsigned long nr_running) 726 { 727 if (unlikely(nr_running > sched_nr_latency)) 728 return nr_running * sysctl_sched_min_granularity; 729 else 730 return sysctl_sched_latency; 731 } 732 733 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq); 734 735 /* 736 * We calculate the wall-time slice from the period by taking a part 737 * proportional to the weight. 738 * 739 * s = p*P[w/rw] 740 */ 741 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 742 { 743 unsigned int nr_running = cfs_rq->nr_running; 744 struct sched_entity *init_se = se; 745 unsigned int min_gran; 746 u64 slice; 747 748 if (sched_feat(ALT_PERIOD)) 749 nr_running = rq_of(cfs_rq)->cfs.h_nr_running; 750 751 slice = __sched_period(nr_running + !se->on_rq); 752 753 for_each_sched_entity(se) { 754 struct load_weight *load; 755 struct load_weight lw; 756 struct cfs_rq *qcfs_rq; 757 758 qcfs_rq = cfs_rq_of(se); 759 load = &qcfs_rq->load; 760 761 if (unlikely(!se->on_rq)) { 762 lw = qcfs_rq->load; 763 764 update_load_add(&lw, se->load.weight); 765 load = &lw; 766 } 767 slice = __calc_delta(slice, se->load.weight, load); 768 } 769 770 if (sched_feat(BASE_SLICE)) { 771 if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq)) 772 min_gran = sysctl_sched_idle_min_granularity; 773 else 774 min_gran = sysctl_sched_min_granularity; 775 776 slice = max_t(u64, slice, min_gran); 777 } 778 779 return slice; 780 } 781 782 /* 783 * We calculate the vruntime slice of a to-be-inserted task. 784 * 785 * vs = s/w 786 */ 787 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 788 { 789 return calc_delta_fair(sched_slice(cfs_rq, se), se); 790 } 791 792 #include "pelt.h" 793 #ifdef CONFIG_SMP 794 795 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 796 static unsigned long task_h_load(struct task_struct *p); 797 static unsigned long capacity_of(int cpu); 798 799 /* Give new sched_entity start runnable values to heavy its load in infant time */ 800 void init_entity_runnable_average(struct sched_entity *se) 801 { 802 struct sched_avg *sa = &se->avg; 803 804 memset(sa, 0, sizeof(*sa)); 805 806 /* 807 * Tasks are initialized with full load to be seen as heavy tasks until 808 * they get a chance to stabilize to their real load level. 809 * Group entities are initialized with zero load to reflect the fact that 810 * nothing has been attached to the task group yet. 811 */ 812 if (entity_is_task(se)) 813 sa->load_avg = scale_load_down(se->load.weight); 814 815 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 816 } 817 818 /* 819 * With new tasks being created, their initial util_avgs are extrapolated 820 * based on the cfs_rq's current util_avg: 821 * 822 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 823 * 824 * However, in many cases, the above util_avg does not give a desired 825 * value. Moreover, the sum of the util_avgs may be divergent, such 826 * as when the series is a harmonic series. 827 * 828 * To solve this problem, we also cap the util_avg of successive tasks to 829 * only 1/2 of the left utilization budget: 830 * 831 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 832 * 833 * where n denotes the nth task and cpu_scale the CPU capacity. 834 * 835 * For example, for a CPU with 1024 of capacity, a simplest series from 836 * the beginning would be like: 837 * 838 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 839 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 840 * 841 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 842 * if util_avg > util_avg_cap. 843 */ 844 void post_init_entity_util_avg(struct task_struct *p) 845 { 846 struct sched_entity *se = &p->se; 847 struct cfs_rq *cfs_rq = cfs_rq_of(se); 848 struct sched_avg *sa = &se->avg; 849 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 850 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 851 852 if (p->sched_class != &fair_sched_class) { 853 /* 854 * For !fair tasks do: 855 * 856 update_cfs_rq_load_avg(now, cfs_rq); 857 attach_entity_load_avg(cfs_rq, se); 858 switched_from_fair(rq, p); 859 * 860 * such that the next switched_to_fair() has the 861 * expected state. 862 */ 863 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 864 return; 865 } 866 867 if (cap > 0) { 868 if (cfs_rq->avg.util_avg != 0) { 869 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 870 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 871 872 if (sa->util_avg > cap) 873 sa->util_avg = cap; 874 } else { 875 sa->util_avg = cap; 876 } 877 } 878 879 sa->runnable_avg = sa->util_avg; 880 } 881 882 #else /* !CONFIG_SMP */ 883 void init_entity_runnable_average(struct sched_entity *se) 884 { 885 } 886 void post_init_entity_util_avg(struct task_struct *p) 887 { 888 } 889 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 890 { 891 } 892 #endif /* CONFIG_SMP */ 893 894 /* 895 * Update the current task's runtime statistics. 896 */ 897 static void update_curr(struct cfs_rq *cfs_rq) 898 { 899 struct sched_entity *curr = cfs_rq->curr; 900 u64 now = rq_clock_task(rq_of(cfs_rq)); 901 u64 delta_exec; 902 903 if (unlikely(!curr)) 904 return; 905 906 delta_exec = now - curr->exec_start; 907 if (unlikely((s64)delta_exec <= 0)) 908 return; 909 910 curr->exec_start = now; 911 912 if (schedstat_enabled()) { 913 struct sched_statistics *stats; 914 915 stats = __schedstats_from_se(curr); 916 __schedstat_set(stats->exec_max, 917 max(delta_exec, stats->exec_max)); 918 } 919 920 curr->sum_exec_runtime += delta_exec; 921 schedstat_add(cfs_rq->exec_clock, delta_exec); 922 923 curr->vruntime += calc_delta_fair(delta_exec, curr); 924 update_min_vruntime(cfs_rq); 925 926 if (entity_is_task(curr)) { 927 struct task_struct *curtask = task_of(curr); 928 929 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 930 cgroup_account_cputime(curtask, delta_exec); 931 account_group_exec_runtime(curtask, delta_exec); 932 } 933 934 account_cfs_rq_runtime(cfs_rq, delta_exec); 935 } 936 937 static void update_curr_fair(struct rq *rq) 938 { 939 update_curr(cfs_rq_of(&rq->curr->se)); 940 } 941 942 static inline void 943 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 944 { 945 struct sched_statistics *stats; 946 struct task_struct *p = NULL; 947 948 if (!schedstat_enabled()) 949 return; 950 951 stats = __schedstats_from_se(se); 952 953 if (entity_is_task(se)) 954 p = task_of(se); 955 956 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 957 } 958 959 static inline void 960 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 961 { 962 struct sched_statistics *stats; 963 struct task_struct *p = NULL; 964 965 if (!schedstat_enabled()) 966 return; 967 968 stats = __schedstats_from_se(se); 969 970 /* 971 * When the sched_schedstat changes from 0 to 1, some sched se 972 * maybe already in the runqueue, the se->statistics.wait_start 973 * will be 0.So it will let the delta wrong. We need to avoid this 974 * scenario. 975 */ 976 if (unlikely(!schedstat_val(stats->wait_start))) 977 return; 978 979 if (entity_is_task(se)) 980 p = task_of(se); 981 982 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 983 } 984 985 static inline void 986 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 987 { 988 struct sched_statistics *stats; 989 struct task_struct *tsk = NULL; 990 991 if (!schedstat_enabled()) 992 return; 993 994 stats = __schedstats_from_se(se); 995 996 if (entity_is_task(se)) 997 tsk = task_of(se); 998 999 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1000 } 1001 1002 /* 1003 * Task is being enqueued - update stats: 1004 */ 1005 static inline void 1006 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1007 { 1008 if (!schedstat_enabled()) 1009 return; 1010 1011 /* 1012 * Are we enqueueing a waiting task? (for current tasks 1013 * a dequeue/enqueue event is a NOP) 1014 */ 1015 if (se != cfs_rq->curr) 1016 update_stats_wait_start_fair(cfs_rq, se); 1017 1018 if (flags & ENQUEUE_WAKEUP) 1019 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1020 } 1021 1022 static inline void 1023 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1024 { 1025 1026 if (!schedstat_enabled()) 1027 return; 1028 1029 /* 1030 * Mark the end of the wait period if dequeueing a 1031 * waiting task: 1032 */ 1033 if (se != cfs_rq->curr) 1034 update_stats_wait_end_fair(cfs_rq, se); 1035 1036 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1037 struct task_struct *tsk = task_of(se); 1038 unsigned int state; 1039 1040 /* XXX racy against TTWU */ 1041 state = READ_ONCE(tsk->__state); 1042 if (state & TASK_INTERRUPTIBLE) 1043 __schedstat_set(tsk->stats.sleep_start, 1044 rq_clock(rq_of(cfs_rq))); 1045 if (state & TASK_UNINTERRUPTIBLE) 1046 __schedstat_set(tsk->stats.block_start, 1047 rq_clock(rq_of(cfs_rq))); 1048 } 1049 } 1050 1051 /* 1052 * We are picking a new current task - update its stats: 1053 */ 1054 static inline void 1055 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1056 { 1057 /* 1058 * We are starting a new run period: 1059 */ 1060 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1061 } 1062 1063 /************************************************** 1064 * Scheduling class queueing methods: 1065 */ 1066 1067 #ifdef CONFIG_NUMA 1068 #define NUMA_IMBALANCE_MIN 2 1069 1070 static inline long 1071 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1072 { 1073 /* 1074 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1075 * threshold. Above this threshold, individual tasks may be contending 1076 * for both memory bandwidth and any shared HT resources. This is an 1077 * approximation as the number of running tasks may not be related to 1078 * the number of busy CPUs due to sched_setaffinity. 1079 */ 1080 if (dst_running > imb_numa_nr) 1081 return imbalance; 1082 1083 /* 1084 * Allow a small imbalance based on a simple pair of communicating 1085 * tasks that remain local when the destination is lightly loaded. 1086 */ 1087 if (imbalance <= NUMA_IMBALANCE_MIN) 1088 return 0; 1089 1090 return imbalance; 1091 } 1092 #endif /* CONFIG_NUMA */ 1093 1094 #ifdef CONFIG_NUMA_BALANCING 1095 /* 1096 * Approximate time to scan a full NUMA task in ms. The task scan period is 1097 * calculated based on the tasks virtual memory size and 1098 * numa_balancing_scan_size. 1099 */ 1100 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1101 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1102 1103 /* Portion of address space to scan in MB */ 1104 unsigned int sysctl_numa_balancing_scan_size = 256; 1105 1106 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1107 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1108 1109 /* The page with hint page fault latency < threshold in ms is considered hot */ 1110 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1111 1112 struct numa_group { 1113 refcount_t refcount; 1114 1115 spinlock_t lock; /* nr_tasks, tasks */ 1116 int nr_tasks; 1117 pid_t gid; 1118 int active_nodes; 1119 1120 struct rcu_head rcu; 1121 unsigned long total_faults; 1122 unsigned long max_faults_cpu; 1123 /* 1124 * faults[] array is split into two regions: faults_mem and faults_cpu. 1125 * 1126 * Faults_cpu is used to decide whether memory should move 1127 * towards the CPU. As a consequence, these stats are weighted 1128 * more by CPU use than by memory faults. 1129 */ 1130 unsigned long faults[]; 1131 }; 1132 1133 /* 1134 * For functions that can be called in multiple contexts that permit reading 1135 * ->numa_group (see struct task_struct for locking rules). 1136 */ 1137 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1138 { 1139 return rcu_dereference_check(p->numa_group, p == current || 1140 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1141 } 1142 1143 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1144 { 1145 return rcu_dereference_protected(p->numa_group, p == current); 1146 } 1147 1148 static inline unsigned long group_faults_priv(struct numa_group *ng); 1149 static inline unsigned long group_faults_shared(struct numa_group *ng); 1150 1151 static unsigned int task_nr_scan_windows(struct task_struct *p) 1152 { 1153 unsigned long rss = 0; 1154 unsigned long nr_scan_pages; 1155 1156 /* 1157 * Calculations based on RSS as non-present and empty pages are skipped 1158 * by the PTE scanner and NUMA hinting faults should be trapped based 1159 * on resident pages 1160 */ 1161 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1162 rss = get_mm_rss(p->mm); 1163 if (!rss) 1164 rss = nr_scan_pages; 1165 1166 rss = round_up(rss, nr_scan_pages); 1167 return rss / nr_scan_pages; 1168 } 1169 1170 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1171 #define MAX_SCAN_WINDOW 2560 1172 1173 static unsigned int task_scan_min(struct task_struct *p) 1174 { 1175 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1176 unsigned int scan, floor; 1177 unsigned int windows = 1; 1178 1179 if (scan_size < MAX_SCAN_WINDOW) 1180 windows = MAX_SCAN_WINDOW / scan_size; 1181 floor = 1000 / windows; 1182 1183 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1184 return max_t(unsigned int, floor, scan); 1185 } 1186 1187 static unsigned int task_scan_start(struct task_struct *p) 1188 { 1189 unsigned long smin = task_scan_min(p); 1190 unsigned long period = smin; 1191 struct numa_group *ng; 1192 1193 /* Scale the maximum scan period with the amount of shared memory. */ 1194 rcu_read_lock(); 1195 ng = rcu_dereference(p->numa_group); 1196 if (ng) { 1197 unsigned long shared = group_faults_shared(ng); 1198 unsigned long private = group_faults_priv(ng); 1199 1200 period *= refcount_read(&ng->refcount); 1201 period *= shared + 1; 1202 period /= private + shared + 1; 1203 } 1204 rcu_read_unlock(); 1205 1206 return max(smin, period); 1207 } 1208 1209 static unsigned int task_scan_max(struct task_struct *p) 1210 { 1211 unsigned long smin = task_scan_min(p); 1212 unsigned long smax; 1213 struct numa_group *ng; 1214 1215 /* Watch for min being lower than max due to floor calculations */ 1216 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1217 1218 /* Scale the maximum scan period with the amount of shared memory. */ 1219 ng = deref_curr_numa_group(p); 1220 if (ng) { 1221 unsigned long shared = group_faults_shared(ng); 1222 unsigned long private = group_faults_priv(ng); 1223 unsigned long period = smax; 1224 1225 period *= refcount_read(&ng->refcount); 1226 period *= shared + 1; 1227 period /= private + shared + 1; 1228 1229 smax = max(smax, period); 1230 } 1231 1232 return max(smin, smax); 1233 } 1234 1235 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1236 { 1237 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1238 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1239 } 1240 1241 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1242 { 1243 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1244 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1245 } 1246 1247 /* Shared or private faults. */ 1248 #define NR_NUMA_HINT_FAULT_TYPES 2 1249 1250 /* Memory and CPU locality */ 1251 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1252 1253 /* Averaged statistics, and temporary buffers. */ 1254 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1255 1256 pid_t task_numa_group_id(struct task_struct *p) 1257 { 1258 struct numa_group *ng; 1259 pid_t gid = 0; 1260 1261 rcu_read_lock(); 1262 ng = rcu_dereference(p->numa_group); 1263 if (ng) 1264 gid = ng->gid; 1265 rcu_read_unlock(); 1266 1267 return gid; 1268 } 1269 1270 /* 1271 * The averaged statistics, shared & private, memory & CPU, 1272 * occupy the first half of the array. The second half of the 1273 * array is for current counters, which are averaged into the 1274 * first set by task_numa_placement. 1275 */ 1276 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1277 { 1278 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1279 } 1280 1281 static inline unsigned long task_faults(struct task_struct *p, int nid) 1282 { 1283 if (!p->numa_faults) 1284 return 0; 1285 1286 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1287 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1288 } 1289 1290 static inline unsigned long group_faults(struct task_struct *p, int nid) 1291 { 1292 struct numa_group *ng = deref_task_numa_group(p); 1293 1294 if (!ng) 1295 return 0; 1296 1297 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1298 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1299 } 1300 1301 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1302 { 1303 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1304 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1305 } 1306 1307 static inline unsigned long group_faults_priv(struct numa_group *ng) 1308 { 1309 unsigned long faults = 0; 1310 int node; 1311 1312 for_each_online_node(node) { 1313 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1314 } 1315 1316 return faults; 1317 } 1318 1319 static inline unsigned long group_faults_shared(struct numa_group *ng) 1320 { 1321 unsigned long faults = 0; 1322 int node; 1323 1324 for_each_online_node(node) { 1325 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1326 } 1327 1328 return faults; 1329 } 1330 1331 /* 1332 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1333 * considered part of a numa group's pseudo-interleaving set. Migrations 1334 * between these nodes are slowed down, to allow things to settle down. 1335 */ 1336 #define ACTIVE_NODE_FRACTION 3 1337 1338 static bool numa_is_active_node(int nid, struct numa_group *ng) 1339 { 1340 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1341 } 1342 1343 /* Handle placement on systems where not all nodes are directly connected. */ 1344 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1345 int lim_dist, bool task) 1346 { 1347 unsigned long score = 0; 1348 int node, max_dist; 1349 1350 /* 1351 * All nodes are directly connected, and the same distance 1352 * from each other. No need for fancy placement algorithms. 1353 */ 1354 if (sched_numa_topology_type == NUMA_DIRECT) 1355 return 0; 1356 1357 /* sched_max_numa_distance may be changed in parallel. */ 1358 max_dist = READ_ONCE(sched_max_numa_distance); 1359 /* 1360 * This code is called for each node, introducing N^2 complexity, 1361 * which should be ok given the number of nodes rarely exceeds 8. 1362 */ 1363 for_each_online_node(node) { 1364 unsigned long faults; 1365 int dist = node_distance(nid, node); 1366 1367 /* 1368 * The furthest away nodes in the system are not interesting 1369 * for placement; nid was already counted. 1370 */ 1371 if (dist >= max_dist || node == nid) 1372 continue; 1373 1374 /* 1375 * On systems with a backplane NUMA topology, compare groups 1376 * of nodes, and move tasks towards the group with the most 1377 * memory accesses. When comparing two nodes at distance 1378 * "hoplimit", only nodes closer by than "hoplimit" are part 1379 * of each group. Skip other nodes. 1380 */ 1381 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1382 continue; 1383 1384 /* Add up the faults from nearby nodes. */ 1385 if (task) 1386 faults = task_faults(p, node); 1387 else 1388 faults = group_faults(p, node); 1389 1390 /* 1391 * On systems with a glueless mesh NUMA topology, there are 1392 * no fixed "groups of nodes". Instead, nodes that are not 1393 * directly connected bounce traffic through intermediate 1394 * nodes; a numa_group can occupy any set of nodes. 1395 * The further away a node is, the less the faults count. 1396 * This seems to result in good task placement. 1397 */ 1398 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1399 faults *= (max_dist - dist); 1400 faults /= (max_dist - LOCAL_DISTANCE); 1401 } 1402 1403 score += faults; 1404 } 1405 1406 return score; 1407 } 1408 1409 /* 1410 * These return the fraction of accesses done by a particular task, or 1411 * task group, on a particular numa node. The group weight is given a 1412 * larger multiplier, in order to group tasks together that are almost 1413 * evenly spread out between numa nodes. 1414 */ 1415 static inline unsigned long task_weight(struct task_struct *p, int nid, 1416 int dist) 1417 { 1418 unsigned long faults, total_faults; 1419 1420 if (!p->numa_faults) 1421 return 0; 1422 1423 total_faults = p->total_numa_faults; 1424 1425 if (!total_faults) 1426 return 0; 1427 1428 faults = task_faults(p, nid); 1429 faults += score_nearby_nodes(p, nid, dist, true); 1430 1431 return 1000 * faults / total_faults; 1432 } 1433 1434 static inline unsigned long group_weight(struct task_struct *p, int nid, 1435 int dist) 1436 { 1437 struct numa_group *ng = deref_task_numa_group(p); 1438 unsigned long faults, total_faults; 1439 1440 if (!ng) 1441 return 0; 1442 1443 total_faults = ng->total_faults; 1444 1445 if (!total_faults) 1446 return 0; 1447 1448 faults = group_faults(p, nid); 1449 faults += score_nearby_nodes(p, nid, dist, false); 1450 1451 return 1000 * faults / total_faults; 1452 } 1453 1454 /* 1455 * If memory tiering mode is enabled, cpupid of slow memory page is 1456 * used to record scan time instead of CPU and PID. When tiering mode 1457 * is disabled at run time, the scan time (in cpupid) will be 1458 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1459 * access out of array bound. 1460 */ 1461 static inline bool cpupid_valid(int cpupid) 1462 { 1463 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1464 } 1465 1466 /* 1467 * For memory tiering mode, if there are enough free pages (more than 1468 * enough watermark defined here) in fast memory node, to take full 1469 * advantage of fast memory capacity, all recently accessed slow 1470 * memory pages will be migrated to fast memory node without 1471 * considering hot threshold. 1472 */ 1473 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1474 { 1475 int z; 1476 unsigned long enough_wmark; 1477 1478 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1479 pgdat->node_present_pages >> 4); 1480 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1481 struct zone *zone = pgdat->node_zones + z; 1482 1483 if (!populated_zone(zone)) 1484 continue; 1485 1486 if (zone_watermark_ok(zone, 0, 1487 wmark_pages(zone, WMARK_PROMO) + enough_wmark, 1488 ZONE_MOVABLE, 0)) 1489 return true; 1490 } 1491 return false; 1492 } 1493 1494 /* 1495 * For memory tiering mode, when page tables are scanned, the scan 1496 * time will be recorded in struct page in addition to make page 1497 * PROT_NONE for slow memory page. So when the page is accessed, in 1498 * hint page fault handler, the hint page fault latency is calculated 1499 * via, 1500 * 1501 * hint page fault latency = hint page fault time - scan time 1502 * 1503 * The smaller the hint page fault latency, the higher the possibility 1504 * for the page to be hot. 1505 */ 1506 static int numa_hint_fault_latency(struct page *page) 1507 { 1508 int last_time, time; 1509 1510 time = jiffies_to_msecs(jiffies); 1511 last_time = xchg_page_access_time(page, time); 1512 1513 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1514 } 1515 1516 /* 1517 * For memory tiering mode, too high promotion/demotion throughput may 1518 * hurt application latency. So we provide a mechanism to rate limit 1519 * the number of pages that are tried to be promoted. 1520 */ 1521 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1522 unsigned long rate_limit, int nr) 1523 { 1524 unsigned long nr_cand; 1525 unsigned int now, start; 1526 1527 now = jiffies_to_msecs(jiffies); 1528 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1529 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1530 start = pgdat->nbp_rl_start; 1531 if (now - start > MSEC_PER_SEC && 1532 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1533 pgdat->nbp_rl_nr_cand = nr_cand; 1534 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1535 return true; 1536 return false; 1537 } 1538 1539 #define NUMA_MIGRATION_ADJUST_STEPS 16 1540 1541 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1542 unsigned long rate_limit, 1543 unsigned int ref_th) 1544 { 1545 unsigned int now, start, th_period, unit_th, th; 1546 unsigned long nr_cand, ref_cand, diff_cand; 1547 1548 now = jiffies_to_msecs(jiffies); 1549 th_period = sysctl_numa_balancing_scan_period_max; 1550 start = pgdat->nbp_th_start; 1551 if (now - start > th_period && 1552 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1553 ref_cand = rate_limit * 1554 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1555 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1556 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1557 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1558 th = pgdat->nbp_threshold ? : ref_th; 1559 if (diff_cand > ref_cand * 11 / 10) 1560 th = max(th - unit_th, unit_th); 1561 else if (diff_cand < ref_cand * 9 / 10) 1562 th = min(th + unit_th, ref_th * 2); 1563 pgdat->nbp_th_nr_cand = nr_cand; 1564 pgdat->nbp_threshold = th; 1565 } 1566 } 1567 1568 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1569 int src_nid, int dst_cpu) 1570 { 1571 struct numa_group *ng = deref_curr_numa_group(p); 1572 int dst_nid = cpu_to_node(dst_cpu); 1573 int last_cpupid, this_cpupid; 1574 1575 /* 1576 * The pages in slow memory node should be migrated according 1577 * to hot/cold instead of private/shared. 1578 */ 1579 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1580 !node_is_toptier(src_nid)) { 1581 struct pglist_data *pgdat; 1582 unsigned long rate_limit; 1583 unsigned int latency, th, def_th; 1584 1585 pgdat = NODE_DATA(dst_nid); 1586 if (pgdat_free_space_enough(pgdat)) { 1587 /* workload changed, reset hot threshold */ 1588 pgdat->nbp_threshold = 0; 1589 return true; 1590 } 1591 1592 def_th = sysctl_numa_balancing_hot_threshold; 1593 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1594 (20 - PAGE_SHIFT); 1595 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1596 1597 th = pgdat->nbp_threshold ? : def_th; 1598 latency = numa_hint_fault_latency(page); 1599 if (latency >= th) 1600 return false; 1601 1602 return !numa_promotion_rate_limit(pgdat, rate_limit, 1603 thp_nr_pages(page)); 1604 } 1605 1606 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1607 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1608 1609 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1610 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1611 return false; 1612 1613 /* 1614 * Allow first faults or private faults to migrate immediately early in 1615 * the lifetime of a task. The magic number 4 is based on waiting for 1616 * two full passes of the "multi-stage node selection" test that is 1617 * executed below. 1618 */ 1619 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1620 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1621 return true; 1622 1623 /* 1624 * Multi-stage node selection is used in conjunction with a periodic 1625 * migration fault to build a temporal task<->page relation. By using 1626 * a two-stage filter we remove short/unlikely relations. 1627 * 1628 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1629 * a task's usage of a particular page (n_p) per total usage of this 1630 * page (n_t) (in a given time-span) to a probability. 1631 * 1632 * Our periodic faults will sample this probability and getting the 1633 * same result twice in a row, given these samples are fully 1634 * independent, is then given by P(n)^2, provided our sample period 1635 * is sufficiently short compared to the usage pattern. 1636 * 1637 * This quadric squishes small probabilities, making it less likely we 1638 * act on an unlikely task<->page relation. 1639 */ 1640 if (!cpupid_pid_unset(last_cpupid) && 1641 cpupid_to_nid(last_cpupid) != dst_nid) 1642 return false; 1643 1644 /* Always allow migrate on private faults */ 1645 if (cpupid_match_pid(p, last_cpupid)) 1646 return true; 1647 1648 /* A shared fault, but p->numa_group has not been set up yet. */ 1649 if (!ng) 1650 return true; 1651 1652 /* 1653 * Destination node is much more heavily used than the source 1654 * node? Allow migration. 1655 */ 1656 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1657 ACTIVE_NODE_FRACTION) 1658 return true; 1659 1660 /* 1661 * Distribute memory according to CPU & memory use on each node, 1662 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1663 * 1664 * faults_cpu(dst) 3 faults_cpu(src) 1665 * --------------- * - > --------------- 1666 * faults_mem(dst) 4 faults_mem(src) 1667 */ 1668 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1669 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1670 } 1671 1672 /* 1673 * 'numa_type' describes the node at the moment of load balancing. 1674 */ 1675 enum numa_type { 1676 /* The node has spare capacity that can be used to run more tasks. */ 1677 node_has_spare = 0, 1678 /* 1679 * The node is fully used and the tasks don't compete for more CPU 1680 * cycles. Nevertheless, some tasks might wait before running. 1681 */ 1682 node_fully_busy, 1683 /* 1684 * The node is overloaded and can't provide expected CPU cycles to all 1685 * tasks. 1686 */ 1687 node_overloaded 1688 }; 1689 1690 /* Cached statistics for all CPUs within a node */ 1691 struct numa_stats { 1692 unsigned long load; 1693 unsigned long runnable; 1694 unsigned long util; 1695 /* Total compute capacity of CPUs on a node */ 1696 unsigned long compute_capacity; 1697 unsigned int nr_running; 1698 unsigned int weight; 1699 enum numa_type node_type; 1700 int idle_cpu; 1701 }; 1702 1703 static inline bool is_core_idle(int cpu) 1704 { 1705 #ifdef CONFIG_SCHED_SMT 1706 int sibling; 1707 1708 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1709 if (cpu == sibling) 1710 continue; 1711 1712 if (!idle_cpu(sibling)) 1713 return false; 1714 } 1715 #endif 1716 1717 return true; 1718 } 1719 1720 struct task_numa_env { 1721 struct task_struct *p; 1722 1723 int src_cpu, src_nid; 1724 int dst_cpu, dst_nid; 1725 int imb_numa_nr; 1726 1727 struct numa_stats src_stats, dst_stats; 1728 1729 int imbalance_pct; 1730 int dist; 1731 1732 struct task_struct *best_task; 1733 long best_imp; 1734 int best_cpu; 1735 }; 1736 1737 static unsigned long cpu_load(struct rq *rq); 1738 static unsigned long cpu_runnable(struct rq *rq); 1739 1740 static inline enum 1741 numa_type numa_classify(unsigned int imbalance_pct, 1742 struct numa_stats *ns) 1743 { 1744 if ((ns->nr_running > ns->weight) && 1745 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1746 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1747 return node_overloaded; 1748 1749 if ((ns->nr_running < ns->weight) || 1750 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1751 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1752 return node_has_spare; 1753 1754 return node_fully_busy; 1755 } 1756 1757 #ifdef CONFIG_SCHED_SMT 1758 /* Forward declarations of select_idle_sibling helpers */ 1759 static inline bool test_idle_cores(int cpu); 1760 static inline int numa_idle_core(int idle_core, int cpu) 1761 { 1762 if (!static_branch_likely(&sched_smt_present) || 1763 idle_core >= 0 || !test_idle_cores(cpu)) 1764 return idle_core; 1765 1766 /* 1767 * Prefer cores instead of packing HT siblings 1768 * and triggering future load balancing. 1769 */ 1770 if (is_core_idle(cpu)) 1771 idle_core = cpu; 1772 1773 return idle_core; 1774 } 1775 #else 1776 static inline int numa_idle_core(int idle_core, int cpu) 1777 { 1778 return idle_core; 1779 } 1780 #endif 1781 1782 /* 1783 * Gather all necessary information to make NUMA balancing placement 1784 * decisions that are compatible with standard load balancer. This 1785 * borrows code and logic from update_sg_lb_stats but sharing a 1786 * common implementation is impractical. 1787 */ 1788 static void update_numa_stats(struct task_numa_env *env, 1789 struct numa_stats *ns, int nid, 1790 bool find_idle) 1791 { 1792 int cpu, idle_core = -1; 1793 1794 memset(ns, 0, sizeof(*ns)); 1795 ns->idle_cpu = -1; 1796 1797 rcu_read_lock(); 1798 for_each_cpu(cpu, cpumask_of_node(nid)) { 1799 struct rq *rq = cpu_rq(cpu); 1800 1801 ns->load += cpu_load(rq); 1802 ns->runnable += cpu_runnable(rq); 1803 ns->util += cpu_util_cfs(cpu); 1804 ns->nr_running += rq->cfs.h_nr_running; 1805 ns->compute_capacity += capacity_of(cpu); 1806 1807 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 1808 if (READ_ONCE(rq->numa_migrate_on) || 1809 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1810 continue; 1811 1812 if (ns->idle_cpu == -1) 1813 ns->idle_cpu = cpu; 1814 1815 idle_core = numa_idle_core(idle_core, cpu); 1816 } 1817 } 1818 rcu_read_unlock(); 1819 1820 ns->weight = cpumask_weight(cpumask_of_node(nid)); 1821 1822 ns->node_type = numa_classify(env->imbalance_pct, ns); 1823 1824 if (idle_core >= 0) 1825 ns->idle_cpu = idle_core; 1826 } 1827 1828 static void task_numa_assign(struct task_numa_env *env, 1829 struct task_struct *p, long imp) 1830 { 1831 struct rq *rq = cpu_rq(env->dst_cpu); 1832 1833 /* Check if run-queue part of active NUMA balance. */ 1834 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 1835 int cpu; 1836 int start = env->dst_cpu; 1837 1838 /* Find alternative idle CPU. */ 1839 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 1840 if (cpu == env->best_cpu || !idle_cpu(cpu) || 1841 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 1842 continue; 1843 } 1844 1845 env->dst_cpu = cpu; 1846 rq = cpu_rq(env->dst_cpu); 1847 if (!xchg(&rq->numa_migrate_on, 1)) 1848 goto assign; 1849 } 1850 1851 /* Failed to find an alternative idle CPU */ 1852 return; 1853 } 1854 1855 assign: 1856 /* 1857 * Clear previous best_cpu/rq numa-migrate flag, since task now 1858 * found a better CPU to move/swap. 1859 */ 1860 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 1861 rq = cpu_rq(env->best_cpu); 1862 WRITE_ONCE(rq->numa_migrate_on, 0); 1863 } 1864 1865 if (env->best_task) 1866 put_task_struct(env->best_task); 1867 if (p) 1868 get_task_struct(p); 1869 1870 env->best_task = p; 1871 env->best_imp = imp; 1872 env->best_cpu = env->dst_cpu; 1873 } 1874 1875 static bool load_too_imbalanced(long src_load, long dst_load, 1876 struct task_numa_env *env) 1877 { 1878 long imb, old_imb; 1879 long orig_src_load, orig_dst_load; 1880 long src_capacity, dst_capacity; 1881 1882 /* 1883 * The load is corrected for the CPU capacity available on each node. 1884 * 1885 * src_load dst_load 1886 * ------------ vs --------- 1887 * src_capacity dst_capacity 1888 */ 1889 src_capacity = env->src_stats.compute_capacity; 1890 dst_capacity = env->dst_stats.compute_capacity; 1891 1892 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1893 1894 orig_src_load = env->src_stats.load; 1895 orig_dst_load = env->dst_stats.load; 1896 1897 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1898 1899 /* Would this change make things worse? */ 1900 return (imb > old_imb); 1901 } 1902 1903 /* 1904 * Maximum NUMA importance can be 1998 (2*999); 1905 * SMALLIMP @ 30 would be close to 1998/64. 1906 * Used to deter task migration. 1907 */ 1908 #define SMALLIMP 30 1909 1910 /* 1911 * This checks if the overall compute and NUMA accesses of the system would 1912 * be improved if the source tasks was migrated to the target dst_cpu taking 1913 * into account that it might be best if task running on the dst_cpu should 1914 * be exchanged with the source task 1915 */ 1916 static bool task_numa_compare(struct task_numa_env *env, 1917 long taskimp, long groupimp, bool maymove) 1918 { 1919 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1920 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1921 long imp = p_ng ? groupimp : taskimp; 1922 struct task_struct *cur; 1923 long src_load, dst_load; 1924 int dist = env->dist; 1925 long moveimp = imp; 1926 long load; 1927 bool stopsearch = false; 1928 1929 if (READ_ONCE(dst_rq->numa_migrate_on)) 1930 return false; 1931 1932 rcu_read_lock(); 1933 cur = rcu_dereference(dst_rq->curr); 1934 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1935 cur = NULL; 1936 1937 /* 1938 * Because we have preemption enabled we can get migrated around and 1939 * end try selecting ourselves (current == env->p) as a swap candidate. 1940 */ 1941 if (cur == env->p) { 1942 stopsearch = true; 1943 goto unlock; 1944 } 1945 1946 if (!cur) { 1947 if (maymove && moveimp >= env->best_imp) 1948 goto assign; 1949 else 1950 goto unlock; 1951 } 1952 1953 /* Skip this swap candidate if cannot move to the source cpu. */ 1954 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1955 goto unlock; 1956 1957 /* 1958 * Skip this swap candidate if it is not moving to its preferred 1959 * node and the best task is. 1960 */ 1961 if (env->best_task && 1962 env->best_task->numa_preferred_nid == env->src_nid && 1963 cur->numa_preferred_nid != env->src_nid) { 1964 goto unlock; 1965 } 1966 1967 /* 1968 * "imp" is the fault differential for the source task between the 1969 * source and destination node. Calculate the total differential for 1970 * the source task and potential destination task. The more negative 1971 * the value is, the more remote accesses that would be expected to 1972 * be incurred if the tasks were swapped. 1973 * 1974 * If dst and source tasks are in the same NUMA group, or not 1975 * in any group then look only at task weights. 1976 */ 1977 cur_ng = rcu_dereference(cur->numa_group); 1978 if (cur_ng == p_ng) { 1979 /* 1980 * Do not swap within a group or between tasks that have 1981 * no group if there is spare capacity. Swapping does 1982 * not address the load imbalance and helps one task at 1983 * the cost of punishing another. 1984 */ 1985 if (env->dst_stats.node_type == node_has_spare) 1986 goto unlock; 1987 1988 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1989 task_weight(cur, env->dst_nid, dist); 1990 /* 1991 * Add some hysteresis to prevent swapping the 1992 * tasks within a group over tiny differences. 1993 */ 1994 if (cur_ng) 1995 imp -= imp / 16; 1996 } else { 1997 /* 1998 * Compare the group weights. If a task is all by itself 1999 * (not part of a group), use the task weight instead. 2000 */ 2001 if (cur_ng && p_ng) 2002 imp += group_weight(cur, env->src_nid, dist) - 2003 group_weight(cur, env->dst_nid, dist); 2004 else 2005 imp += task_weight(cur, env->src_nid, dist) - 2006 task_weight(cur, env->dst_nid, dist); 2007 } 2008 2009 /* Discourage picking a task already on its preferred node */ 2010 if (cur->numa_preferred_nid == env->dst_nid) 2011 imp -= imp / 16; 2012 2013 /* 2014 * Encourage picking a task that moves to its preferred node. 2015 * This potentially makes imp larger than it's maximum of 2016 * 1998 (see SMALLIMP and task_weight for why) but in this 2017 * case, it does not matter. 2018 */ 2019 if (cur->numa_preferred_nid == env->src_nid) 2020 imp += imp / 8; 2021 2022 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2023 imp = moveimp; 2024 cur = NULL; 2025 goto assign; 2026 } 2027 2028 /* 2029 * Prefer swapping with a task moving to its preferred node over a 2030 * task that is not. 2031 */ 2032 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2033 env->best_task->numa_preferred_nid != env->src_nid) { 2034 goto assign; 2035 } 2036 2037 /* 2038 * If the NUMA importance is less than SMALLIMP, 2039 * task migration might only result in ping pong 2040 * of tasks and also hurt performance due to cache 2041 * misses. 2042 */ 2043 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2044 goto unlock; 2045 2046 /* 2047 * In the overloaded case, try and keep the load balanced. 2048 */ 2049 load = task_h_load(env->p) - task_h_load(cur); 2050 if (!load) 2051 goto assign; 2052 2053 dst_load = env->dst_stats.load + load; 2054 src_load = env->src_stats.load - load; 2055 2056 if (load_too_imbalanced(src_load, dst_load, env)) 2057 goto unlock; 2058 2059 assign: 2060 /* Evaluate an idle CPU for a task numa move. */ 2061 if (!cur) { 2062 int cpu = env->dst_stats.idle_cpu; 2063 2064 /* Nothing cached so current CPU went idle since the search. */ 2065 if (cpu < 0) 2066 cpu = env->dst_cpu; 2067 2068 /* 2069 * If the CPU is no longer truly idle and the previous best CPU 2070 * is, keep using it. 2071 */ 2072 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2073 idle_cpu(env->best_cpu)) { 2074 cpu = env->best_cpu; 2075 } 2076 2077 env->dst_cpu = cpu; 2078 } 2079 2080 task_numa_assign(env, cur, imp); 2081 2082 /* 2083 * If a move to idle is allowed because there is capacity or load 2084 * balance improves then stop the search. While a better swap 2085 * candidate may exist, a search is not free. 2086 */ 2087 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2088 stopsearch = true; 2089 2090 /* 2091 * If a swap candidate must be identified and the current best task 2092 * moves its preferred node then stop the search. 2093 */ 2094 if (!maymove && env->best_task && 2095 env->best_task->numa_preferred_nid == env->src_nid) { 2096 stopsearch = true; 2097 } 2098 unlock: 2099 rcu_read_unlock(); 2100 2101 return stopsearch; 2102 } 2103 2104 static void task_numa_find_cpu(struct task_numa_env *env, 2105 long taskimp, long groupimp) 2106 { 2107 bool maymove = false; 2108 int cpu; 2109 2110 /* 2111 * If dst node has spare capacity, then check if there is an 2112 * imbalance that would be overruled by the load balancer. 2113 */ 2114 if (env->dst_stats.node_type == node_has_spare) { 2115 unsigned int imbalance; 2116 int src_running, dst_running; 2117 2118 /* 2119 * Would movement cause an imbalance? Note that if src has 2120 * more running tasks that the imbalance is ignored as the 2121 * move improves the imbalance from the perspective of the 2122 * CPU load balancer. 2123 * */ 2124 src_running = env->src_stats.nr_running - 1; 2125 dst_running = env->dst_stats.nr_running + 1; 2126 imbalance = max(0, dst_running - src_running); 2127 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2128 env->imb_numa_nr); 2129 2130 /* Use idle CPU if there is no imbalance */ 2131 if (!imbalance) { 2132 maymove = true; 2133 if (env->dst_stats.idle_cpu >= 0) { 2134 env->dst_cpu = env->dst_stats.idle_cpu; 2135 task_numa_assign(env, NULL, 0); 2136 return; 2137 } 2138 } 2139 } else { 2140 long src_load, dst_load, load; 2141 /* 2142 * If the improvement from just moving env->p direction is better 2143 * than swapping tasks around, check if a move is possible. 2144 */ 2145 load = task_h_load(env->p); 2146 dst_load = env->dst_stats.load + load; 2147 src_load = env->src_stats.load - load; 2148 maymove = !load_too_imbalanced(src_load, dst_load, env); 2149 } 2150 2151 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2152 /* Skip this CPU if the source task cannot migrate */ 2153 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2154 continue; 2155 2156 env->dst_cpu = cpu; 2157 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2158 break; 2159 } 2160 } 2161 2162 static int task_numa_migrate(struct task_struct *p) 2163 { 2164 struct task_numa_env env = { 2165 .p = p, 2166 2167 .src_cpu = task_cpu(p), 2168 .src_nid = task_node(p), 2169 2170 .imbalance_pct = 112, 2171 2172 .best_task = NULL, 2173 .best_imp = 0, 2174 .best_cpu = -1, 2175 }; 2176 unsigned long taskweight, groupweight; 2177 struct sched_domain *sd; 2178 long taskimp, groupimp; 2179 struct numa_group *ng; 2180 struct rq *best_rq; 2181 int nid, ret, dist; 2182 2183 /* 2184 * Pick the lowest SD_NUMA domain, as that would have the smallest 2185 * imbalance and would be the first to start moving tasks about. 2186 * 2187 * And we want to avoid any moving of tasks about, as that would create 2188 * random movement of tasks -- counter the numa conditions we're trying 2189 * to satisfy here. 2190 */ 2191 rcu_read_lock(); 2192 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2193 if (sd) { 2194 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2195 env.imb_numa_nr = sd->imb_numa_nr; 2196 } 2197 rcu_read_unlock(); 2198 2199 /* 2200 * Cpusets can break the scheduler domain tree into smaller 2201 * balance domains, some of which do not cross NUMA boundaries. 2202 * Tasks that are "trapped" in such domains cannot be migrated 2203 * elsewhere, so there is no point in (re)trying. 2204 */ 2205 if (unlikely(!sd)) { 2206 sched_setnuma(p, task_node(p)); 2207 return -EINVAL; 2208 } 2209 2210 env.dst_nid = p->numa_preferred_nid; 2211 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2212 taskweight = task_weight(p, env.src_nid, dist); 2213 groupweight = group_weight(p, env.src_nid, dist); 2214 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2215 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2216 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2217 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2218 2219 /* Try to find a spot on the preferred nid. */ 2220 task_numa_find_cpu(&env, taskimp, groupimp); 2221 2222 /* 2223 * Look at other nodes in these cases: 2224 * - there is no space available on the preferred_nid 2225 * - the task is part of a numa_group that is interleaved across 2226 * multiple NUMA nodes; in order to better consolidate the group, 2227 * we need to check other locations. 2228 */ 2229 ng = deref_curr_numa_group(p); 2230 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2231 for_each_node_state(nid, N_CPU) { 2232 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2233 continue; 2234 2235 dist = node_distance(env.src_nid, env.dst_nid); 2236 if (sched_numa_topology_type == NUMA_BACKPLANE && 2237 dist != env.dist) { 2238 taskweight = task_weight(p, env.src_nid, dist); 2239 groupweight = group_weight(p, env.src_nid, dist); 2240 } 2241 2242 /* Only consider nodes where both task and groups benefit */ 2243 taskimp = task_weight(p, nid, dist) - taskweight; 2244 groupimp = group_weight(p, nid, dist) - groupweight; 2245 if (taskimp < 0 && groupimp < 0) 2246 continue; 2247 2248 env.dist = dist; 2249 env.dst_nid = nid; 2250 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2251 task_numa_find_cpu(&env, taskimp, groupimp); 2252 } 2253 } 2254 2255 /* 2256 * If the task is part of a workload that spans multiple NUMA nodes, 2257 * and is migrating into one of the workload's active nodes, remember 2258 * this node as the task's preferred numa node, so the workload can 2259 * settle down. 2260 * A task that migrated to a second choice node will be better off 2261 * trying for a better one later. Do not set the preferred node here. 2262 */ 2263 if (ng) { 2264 if (env.best_cpu == -1) 2265 nid = env.src_nid; 2266 else 2267 nid = cpu_to_node(env.best_cpu); 2268 2269 if (nid != p->numa_preferred_nid) 2270 sched_setnuma(p, nid); 2271 } 2272 2273 /* No better CPU than the current one was found. */ 2274 if (env.best_cpu == -1) { 2275 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2276 return -EAGAIN; 2277 } 2278 2279 best_rq = cpu_rq(env.best_cpu); 2280 if (env.best_task == NULL) { 2281 ret = migrate_task_to(p, env.best_cpu); 2282 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2283 if (ret != 0) 2284 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2285 return ret; 2286 } 2287 2288 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2289 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2290 2291 if (ret != 0) 2292 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2293 put_task_struct(env.best_task); 2294 return ret; 2295 } 2296 2297 /* Attempt to migrate a task to a CPU on the preferred node. */ 2298 static void numa_migrate_preferred(struct task_struct *p) 2299 { 2300 unsigned long interval = HZ; 2301 2302 /* This task has no NUMA fault statistics yet */ 2303 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2304 return; 2305 2306 /* Periodically retry migrating the task to the preferred node */ 2307 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2308 p->numa_migrate_retry = jiffies + interval; 2309 2310 /* Success if task is already running on preferred CPU */ 2311 if (task_node(p) == p->numa_preferred_nid) 2312 return; 2313 2314 /* Otherwise, try migrate to a CPU on the preferred node */ 2315 task_numa_migrate(p); 2316 } 2317 2318 /* 2319 * Find out how many nodes the workload is actively running on. Do this by 2320 * tracking the nodes from which NUMA hinting faults are triggered. This can 2321 * be different from the set of nodes where the workload's memory is currently 2322 * located. 2323 */ 2324 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2325 { 2326 unsigned long faults, max_faults = 0; 2327 int nid, active_nodes = 0; 2328 2329 for_each_node_state(nid, N_CPU) { 2330 faults = group_faults_cpu(numa_group, nid); 2331 if (faults > max_faults) 2332 max_faults = faults; 2333 } 2334 2335 for_each_node_state(nid, N_CPU) { 2336 faults = group_faults_cpu(numa_group, nid); 2337 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2338 active_nodes++; 2339 } 2340 2341 numa_group->max_faults_cpu = max_faults; 2342 numa_group->active_nodes = active_nodes; 2343 } 2344 2345 /* 2346 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2347 * increments. The more local the fault statistics are, the higher the scan 2348 * period will be for the next scan window. If local/(local+remote) ratio is 2349 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2350 * the scan period will decrease. Aim for 70% local accesses. 2351 */ 2352 #define NUMA_PERIOD_SLOTS 10 2353 #define NUMA_PERIOD_THRESHOLD 7 2354 2355 /* 2356 * Increase the scan period (slow down scanning) if the majority of 2357 * our memory is already on our local node, or if the majority of 2358 * the page accesses are shared with other processes. 2359 * Otherwise, decrease the scan period. 2360 */ 2361 static void update_task_scan_period(struct task_struct *p, 2362 unsigned long shared, unsigned long private) 2363 { 2364 unsigned int period_slot; 2365 int lr_ratio, ps_ratio; 2366 int diff; 2367 2368 unsigned long remote = p->numa_faults_locality[0]; 2369 unsigned long local = p->numa_faults_locality[1]; 2370 2371 /* 2372 * If there were no record hinting faults then either the task is 2373 * completely idle or all activity is in areas that are not of interest 2374 * to automatic numa balancing. Related to that, if there were failed 2375 * migration then it implies we are migrating too quickly or the local 2376 * node is overloaded. In either case, scan slower 2377 */ 2378 if (local + shared == 0 || p->numa_faults_locality[2]) { 2379 p->numa_scan_period = min(p->numa_scan_period_max, 2380 p->numa_scan_period << 1); 2381 2382 p->mm->numa_next_scan = jiffies + 2383 msecs_to_jiffies(p->numa_scan_period); 2384 2385 return; 2386 } 2387 2388 /* 2389 * Prepare to scale scan period relative to the current period. 2390 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2391 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2392 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2393 */ 2394 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2395 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2396 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2397 2398 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2399 /* 2400 * Most memory accesses are local. There is no need to 2401 * do fast NUMA scanning, since memory is already local. 2402 */ 2403 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2404 if (!slot) 2405 slot = 1; 2406 diff = slot * period_slot; 2407 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2408 /* 2409 * Most memory accesses are shared with other tasks. 2410 * There is no point in continuing fast NUMA scanning, 2411 * since other tasks may just move the memory elsewhere. 2412 */ 2413 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2414 if (!slot) 2415 slot = 1; 2416 diff = slot * period_slot; 2417 } else { 2418 /* 2419 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2420 * yet they are not on the local NUMA node. Speed up 2421 * NUMA scanning to get the memory moved over. 2422 */ 2423 int ratio = max(lr_ratio, ps_ratio); 2424 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2425 } 2426 2427 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2428 task_scan_min(p), task_scan_max(p)); 2429 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2430 } 2431 2432 /* 2433 * Get the fraction of time the task has been running since the last 2434 * NUMA placement cycle. The scheduler keeps similar statistics, but 2435 * decays those on a 32ms period, which is orders of magnitude off 2436 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2437 * stats only if the task is so new there are no NUMA statistics yet. 2438 */ 2439 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2440 { 2441 u64 runtime, delta, now; 2442 /* Use the start of this time slice to avoid calculations. */ 2443 now = p->se.exec_start; 2444 runtime = p->se.sum_exec_runtime; 2445 2446 if (p->last_task_numa_placement) { 2447 delta = runtime - p->last_sum_exec_runtime; 2448 *period = now - p->last_task_numa_placement; 2449 2450 /* Avoid time going backwards, prevent potential divide error: */ 2451 if (unlikely((s64)*period < 0)) 2452 *period = 0; 2453 } else { 2454 delta = p->se.avg.load_sum; 2455 *period = LOAD_AVG_MAX; 2456 } 2457 2458 p->last_sum_exec_runtime = runtime; 2459 p->last_task_numa_placement = now; 2460 2461 return delta; 2462 } 2463 2464 /* 2465 * Determine the preferred nid for a task in a numa_group. This needs to 2466 * be done in a way that produces consistent results with group_weight, 2467 * otherwise workloads might not converge. 2468 */ 2469 static int preferred_group_nid(struct task_struct *p, int nid) 2470 { 2471 nodemask_t nodes; 2472 int dist; 2473 2474 /* Direct connections between all NUMA nodes. */ 2475 if (sched_numa_topology_type == NUMA_DIRECT) 2476 return nid; 2477 2478 /* 2479 * On a system with glueless mesh NUMA topology, group_weight 2480 * scores nodes according to the number of NUMA hinting faults on 2481 * both the node itself, and on nearby nodes. 2482 */ 2483 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2484 unsigned long score, max_score = 0; 2485 int node, max_node = nid; 2486 2487 dist = sched_max_numa_distance; 2488 2489 for_each_node_state(node, N_CPU) { 2490 score = group_weight(p, node, dist); 2491 if (score > max_score) { 2492 max_score = score; 2493 max_node = node; 2494 } 2495 } 2496 return max_node; 2497 } 2498 2499 /* 2500 * Finding the preferred nid in a system with NUMA backplane 2501 * interconnect topology is more involved. The goal is to locate 2502 * tasks from numa_groups near each other in the system, and 2503 * untangle workloads from different sides of the system. This requires 2504 * searching down the hierarchy of node groups, recursively searching 2505 * inside the highest scoring group of nodes. The nodemask tricks 2506 * keep the complexity of the search down. 2507 */ 2508 nodes = node_states[N_CPU]; 2509 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2510 unsigned long max_faults = 0; 2511 nodemask_t max_group = NODE_MASK_NONE; 2512 int a, b; 2513 2514 /* Are there nodes at this distance from each other? */ 2515 if (!find_numa_distance(dist)) 2516 continue; 2517 2518 for_each_node_mask(a, nodes) { 2519 unsigned long faults = 0; 2520 nodemask_t this_group; 2521 nodes_clear(this_group); 2522 2523 /* Sum group's NUMA faults; includes a==b case. */ 2524 for_each_node_mask(b, nodes) { 2525 if (node_distance(a, b) < dist) { 2526 faults += group_faults(p, b); 2527 node_set(b, this_group); 2528 node_clear(b, nodes); 2529 } 2530 } 2531 2532 /* Remember the top group. */ 2533 if (faults > max_faults) { 2534 max_faults = faults; 2535 max_group = this_group; 2536 /* 2537 * subtle: at the smallest distance there is 2538 * just one node left in each "group", the 2539 * winner is the preferred nid. 2540 */ 2541 nid = a; 2542 } 2543 } 2544 /* Next round, evaluate the nodes within max_group. */ 2545 if (!max_faults) 2546 break; 2547 nodes = max_group; 2548 } 2549 return nid; 2550 } 2551 2552 static void task_numa_placement(struct task_struct *p) 2553 { 2554 int seq, nid, max_nid = NUMA_NO_NODE; 2555 unsigned long max_faults = 0; 2556 unsigned long fault_types[2] = { 0, 0 }; 2557 unsigned long total_faults; 2558 u64 runtime, period; 2559 spinlock_t *group_lock = NULL; 2560 struct numa_group *ng; 2561 2562 /* 2563 * The p->mm->numa_scan_seq field gets updated without 2564 * exclusive access. Use READ_ONCE() here to ensure 2565 * that the field is read in a single access: 2566 */ 2567 seq = READ_ONCE(p->mm->numa_scan_seq); 2568 if (p->numa_scan_seq == seq) 2569 return; 2570 p->numa_scan_seq = seq; 2571 p->numa_scan_period_max = task_scan_max(p); 2572 2573 total_faults = p->numa_faults_locality[0] + 2574 p->numa_faults_locality[1]; 2575 runtime = numa_get_avg_runtime(p, &period); 2576 2577 /* If the task is part of a group prevent parallel updates to group stats */ 2578 ng = deref_curr_numa_group(p); 2579 if (ng) { 2580 group_lock = &ng->lock; 2581 spin_lock_irq(group_lock); 2582 } 2583 2584 /* Find the node with the highest number of faults */ 2585 for_each_online_node(nid) { 2586 /* Keep track of the offsets in numa_faults array */ 2587 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2588 unsigned long faults = 0, group_faults = 0; 2589 int priv; 2590 2591 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2592 long diff, f_diff, f_weight; 2593 2594 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2595 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2596 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2597 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2598 2599 /* Decay existing window, copy faults since last scan */ 2600 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2601 fault_types[priv] += p->numa_faults[membuf_idx]; 2602 p->numa_faults[membuf_idx] = 0; 2603 2604 /* 2605 * Normalize the faults_from, so all tasks in a group 2606 * count according to CPU use, instead of by the raw 2607 * number of faults. Tasks with little runtime have 2608 * little over-all impact on throughput, and thus their 2609 * faults are less important. 2610 */ 2611 f_weight = div64_u64(runtime << 16, period + 1); 2612 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2613 (total_faults + 1); 2614 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2615 p->numa_faults[cpubuf_idx] = 0; 2616 2617 p->numa_faults[mem_idx] += diff; 2618 p->numa_faults[cpu_idx] += f_diff; 2619 faults += p->numa_faults[mem_idx]; 2620 p->total_numa_faults += diff; 2621 if (ng) { 2622 /* 2623 * safe because we can only change our own group 2624 * 2625 * mem_idx represents the offset for a given 2626 * nid and priv in a specific region because it 2627 * is at the beginning of the numa_faults array. 2628 */ 2629 ng->faults[mem_idx] += diff; 2630 ng->faults[cpu_idx] += f_diff; 2631 ng->total_faults += diff; 2632 group_faults += ng->faults[mem_idx]; 2633 } 2634 } 2635 2636 if (!ng) { 2637 if (faults > max_faults) { 2638 max_faults = faults; 2639 max_nid = nid; 2640 } 2641 } else if (group_faults > max_faults) { 2642 max_faults = group_faults; 2643 max_nid = nid; 2644 } 2645 } 2646 2647 /* Cannot migrate task to CPU-less node */ 2648 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) { 2649 int near_nid = max_nid; 2650 int distance, near_distance = INT_MAX; 2651 2652 for_each_node_state(nid, N_CPU) { 2653 distance = node_distance(max_nid, nid); 2654 if (distance < near_distance) { 2655 near_nid = nid; 2656 near_distance = distance; 2657 } 2658 } 2659 max_nid = near_nid; 2660 } 2661 2662 if (ng) { 2663 numa_group_count_active_nodes(ng); 2664 spin_unlock_irq(group_lock); 2665 max_nid = preferred_group_nid(p, max_nid); 2666 } 2667 2668 if (max_faults) { 2669 /* Set the new preferred node */ 2670 if (max_nid != p->numa_preferred_nid) 2671 sched_setnuma(p, max_nid); 2672 } 2673 2674 update_task_scan_period(p, fault_types[0], fault_types[1]); 2675 } 2676 2677 static inline int get_numa_group(struct numa_group *grp) 2678 { 2679 return refcount_inc_not_zero(&grp->refcount); 2680 } 2681 2682 static inline void put_numa_group(struct numa_group *grp) 2683 { 2684 if (refcount_dec_and_test(&grp->refcount)) 2685 kfree_rcu(grp, rcu); 2686 } 2687 2688 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2689 int *priv) 2690 { 2691 struct numa_group *grp, *my_grp; 2692 struct task_struct *tsk; 2693 bool join = false; 2694 int cpu = cpupid_to_cpu(cpupid); 2695 int i; 2696 2697 if (unlikely(!deref_curr_numa_group(p))) { 2698 unsigned int size = sizeof(struct numa_group) + 2699 NR_NUMA_HINT_FAULT_STATS * 2700 nr_node_ids * sizeof(unsigned long); 2701 2702 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2703 if (!grp) 2704 return; 2705 2706 refcount_set(&grp->refcount, 1); 2707 grp->active_nodes = 1; 2708 grp->max_faults_cpu = 0; 2709 spin_lock_init(&grp->lock); 2710 grp->gid = p->pid; 2711 2712 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2713 grp->faults[i] = p->numa_faults[i]; 2714 2715 grp->total_faults = p->total_numa_faults; 2716 2717 grp->nr_tasks++; 2718 rcu_assign_pointer(p->numa_group, grp); 2719 } 2720 2721 rcu_read_lock(); 2722 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2723 2724 if (!cpupid_match_pid(tsk, cpupid)) 2725 goto no_join; 2726 2727 grp = rcu_dereference(tsk->numa_group); 2728 if (!grp) 2729 goto no_join; 2730 2731 my_grp = deref_curr_numa_group(p); 2732 if (grp == my_grp) 2733 goto no_join; 2734 2735 /* 2736 * Only join the other group if its bigger; if we're the bigger group, 2737 * the other task will join us. 2738 */ 2739 if (my_grp->nr_tasks > grp->nr_tasks) 2740 goto no_join; 2741 2742 /* 2743 * Tie-break on the grp address. 2744 */ 2745 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2746 goto no_join; 2747 2748 /* Always join threads in the same process. */ 2749 if (tsk->mm == current->mm) 2750 join = true; 2751 2752 /* Simple filter to avoid false positives due to PID collisions */ 2753 if (flags & TNF_SHARED) 2754 join = true; 2755 2756 /* Update priv based on whether false sharing was detected */ 2757 *priv = !join; 2758 2759 if (join && !get_numa_group(grp)) 2760 goto no_join; 2761 2762 rcu_read_unlock(); 2763 2764 if (!join) 2765 return; 2766 2767 WARN_ON_ONCE(irqs_disabled()); 2768 double_lock_irq(&my_grp->lock, &grp->lock); 2769 2770 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2771 my_grp->faults[i] -= p->numa_faults[i]; 2772 grp->faults[i] += p->numa_faults[i]; 2773 } 2774 my_grp->total_faults -= p->total_numa_faults; 2775 grp->total_faults += p->total_numa_faults; 2776 2777 my_grp->nr_tasks--; 2778 grp->nr_tasks++; 2779 2780 spin_unlock(&my_grp->lock); 2781 spin_unlock_irq(&grp->lock); 2782 2783 rcu_assign_pointer(p->numa_group, grp); 2784 2785 put_numa_group(my_grp); 2786 return; 2787 2788 no_join: 2789 rcu_read_unlock(); 2790 return; 2791 } 2792 2793 /* 2794 * Get rid of NUMA statistics associated with a task (either current or dead). 2795 * If @final is set, the task is dead and has reached refcount zero, so we can 2796 * safely free all relevant data structures. Otherwise, there might be 2797 * concurrent reads from places like load balancing and procfs, and we should 2798 * reset the data back to default state without freeing ->numa_faults. 2799 */ 2800 void task_numa_free(struct task_struct *p, bool final) 2801 { 2802 /* safe: p either is current or is being freed by current */ 2803 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2804 unsigned long *numa_faults = p->numa_faults; 2805 unsigned long flags; 2806 int i; 2807 2808 if (!numa_faults) 2809 return; 2810 2811 if (grp) { 2812 spin_lock_irqsave(&grp->lock, flags); 2813 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2814 grp->faults[i] -= p->numa_faults[i]; 2815 grp->total_faults -= p->total_numa_faults; 2816 2817 grp->nr_tasks--; 2818 spin_unlock_irqrestore(&grp->lock, flags); 2819 RCU_INIT_POINTER(p->numa_group, NULL); 2820 put_numa_group(grp); 2821 } 2822 2823 if (final) { 2824 p->numa_faults = NULL; 2825 kfree(numa_faults); 2826 } else { 2827 p->total_numa_faults = 0; 2828 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2829 numa_faults[i] = 0; 2830 } 2831 } 2832 2833 /* 2834 * Got a PROT_NONE fault for a page on @node. 2835 */ 2836 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2837 { 2838 struct task_struct *p = current; 2839 bool migrated = flags & TNF_MIGRATED; 2840 int cpu_node = task_node(current); 2841 int local = !!(flags & TNF_FAULT_LOCAL); 2842 struct numa_group *ng; 2843 int priv; 2844 2845 if (!static_branch_likely(&sched_numa_balancing)) 2846 return; 2847 2848 /* for example, ksmd faulting in a user's mm */ 2849 if (!p->mm) 2850 return; 2851 2852 /* 2853 * NUMA faults statistics are unnecessary for the slow memory 2854 * node for memory tiering mode. 2855 */ 2856 if (!node_is_toptier(mem_node) && 2857 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 2858 !cpupid_valid(last_cpupid))) 2859 return; 2860 2861 /* Allocate buffer to track faults on a per-node basis */ 2862 if (unlikely(!p->numa_faults)) { 2863 int size = sizeof(*p->numa_faults) * 2864 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2865 2866 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2867 if (!p->numa_faults) 2868 return; 2869 2870 p->total_numa_faults = 0; 2871 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2872 } 2873 2874 /* 2875 * First accesses are treated as private, otherwise consider accesses 2876 * to be private if the accessing pid has not changed 2877 */ 2878 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2879 priv = 1; 2880 } else { 2881 priv = cpupid_match_pid(p, last_cpupid); 2882 if (!priv && !(flags & TNF_NO_GROUP)) 2883 task_numa_group(p, last_cpupid, flags, &priv); 2884 } 2885 2886 /* 2887 * If a workload spans multiple NUMA nodes, a shared fault that 2888 * occurs wholly within the set of nodes that the workload is 2889 * actively using should be counted as local. This allows the 2890 * scan rate to slow down when a workload has settled down. 2891 */ 2892 ng = deref_curr_numa_group(p); 2893 if (!priv && !local && ng && ng->active_nodes > 1 && 2894 numa_is_active_node(cpu_node, ng) && 2895 numa_is_active_node(mem_node, ng)) 2896 local = 1; 2897 2898 /* 2899 * Retry to migrate task to preferred node periodically, in case it 2900 * previously failed, or the scheduler moved us. 2901 */ 2902 if (time_after(jiffies, p->numa_migrate_retry)) { 2903 task_numa_placement(p); 2904 numa_migrate_preferred(p); 2905 } 2906 2907 if (migrated) 2908 p->numa_pages_migrated += pages; 2909 if (flags & TNF_MIGRATE_FAIL) 2910 p->numa_faults_locality[2] += pages; 2911 2912 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2913 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2914 p->numa_faults_locality[local] += pages; 2915 } 2916 2917 static void reset_ptenuma_scan(struct task_struct *p) 2918 { 2919 /* 2920 * We only did a read acquisition of the mmap sem, so 2921 * p->mm->numa_scan_seq is written to without exclusive access 2922 * and the update is not guaranteed to be atomic. That's not 2923 * much of an issue though, since this is just used for 2924 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2925 * expensive, to avoid any form of compiler optimizations: 2926 */ 2927 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2928 p->mm->numa_scan_offset = 0; 2929 } 2930 2931 static bool vma_is_accessed(struct vm_area_struct *vma) 2932 { 2933 unsigned long pids; 2934 /* 2935 * Allow unconditional access first two times, so that all the (pages) 2936 * of VMAs get prot_none fault introduced irrespective of accesses. 2937 * This is also done to avoid any side effect of task scanning 2938 * amplifying the unfairness of disjoint set of VMAs' access. 2939 */ 2940 if (READ_ONCE(current->mm->numa_scan_seq) < 2) 2941 return true; 2942 2943 pids = vma->numab_state->access_pids[0] | vma->numab_state->access_pids[1]; 2944 return test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids); 2945 } 2946 2947 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 2948 2949 /* 2950 * The expensive part of numa migration is done from task_work context. 2951 * Triggered from task_tick_numa(). 2952 */ 2953 static void task_numa_work(struct callback_head *work) 2954 { 2955 unsigned long migrate, next_scan, now = jiffies; 2956 struct task_struct *p = current; 2957 struct mm_struct *mm = p->mm; 2958 u64 runtime = p->se.sum_exec_runtime; 2959 struct vm_area_struct *vma; 2960 unsigned long start, end; 2961 unsigned long nr_pte_updates = 0; 2962 long pages, virtpages; 2963 struct vma_iterator vmi; 2964 2965 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2966 2967 work->next = work; 2968 /* 2969 * Who cares about NUMA placement when they're dying. 2970 * 2971 * NOTE: make sure not to dereference p->mm before this check, 2972 * exit_task_work() happens _after_ exit_mm() so we could be called 2973 * without p->mm even though we still had it when we enqueued this 2974 * work. 2975 */ 2976 if (p->flags & PF_EXITING) 2977 return; 2978 2979 if (!mm->numa_next_scan) { 2980 mm->numa_next_scan = now + 2981 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2982 } 2983 2984 /* 2985 * Enforce maximal scan/migration frequency.. 2986 */ 2987 migrate = mm->numa_next_scan; 2988 if (time_before(now, migrate)) 2989 return; 2990 2991 if (p->numa_scan_period == 0) { 2992 p->numa_scan_period_max = task_scan_max(p); 2993 p->numa_scan_period = task_scan_start(p); 2994 } 2995 2996 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2997 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 2998 return; 2999 3000 /* 3001 * Delay this task enough that another task of this mm will likely win 3002 * the next time around. 3003 */ 3004 p->node_stamp += 2 * TICK_NSEC; 3005 3006 start = mm->numa_scan_offset; 3007 pages = sysctl_numa_balancing_scan_size; 3008 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3009 virtpages = pages * 8; /* Scan up to this much virtual space */ 3010 if (!pages) 3011 return; 3012 3013 3014 if (!mmap_read_trylock(mm)) 3015 return; 3016 vma_iter_init(&vmi, mm, start); 3017 vma = vma_next(&vmi); 3018 if (!vma) { 3019 reset_ptenuma_scan(p); 3020 start = 0; 3021 vma_iter_set(&vmi, start); 3022 vma = vma_next(&vmi); 3023 } 3024 3025 do { 3026 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3027 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3028 continue; 3029 } 3030 3031 /* 3032 * Shared library pages mapped by multiple processes are not 3033 * migrated as it is expected they are cache replicated. Avoid 3034 * hinting faults in read-only file-backed mappings or the vdso 3035 * as migrating the pages will be of marginal benefit. 3036 */ 3037 if (!vma->vm_mm || 3038 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 3039 continue; 3040 3041 /* 3042 * Skip inaccessible VMAs to avoid any confusion between 3043 * PROT_NONE and NUMA hinting ptes 3044 */ 3045 if (!vma_is_accessible(vma)) 3046 continue; 3047 3048 /* Initialise new per-VMA NUMAB state. */ 3049 if (!vma->numab_state) { 3050 vma->numab_state = kzalloc(sizeof(struct vma_numab_state), 3051 GFP_KERNEL); 3052 if (!vma->numab_state) 3053 continue; 3054 3055 vma->numab_state->next_scan = now + 3056 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3057 3058 /* Reset happens after 4 times scan delay of scan start */ 3059 vma->numab_state->next_pid_reset = vma->numab_state->next_scan + 3060 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3061 } 3062 3063 /* 3064 * Scanning the VMA's of short lived tasks add more overhead. So 3065 * delay the scan for new VMAs. 3066 */ 3067 if (mm->numa_scan_seq && time_before(jiffies, 3068 vma->numab_state->next_scan)) 3069 continue; 3070 3071 /* Do not scan the VMA if task has not accessed */ 3072 if (!vma_is_accessed(vma)) 3073 continue; 3074 3075 /* 3076 * RESET access PIDs regularly for old VMAs. Resetting after checking 3077 * vma for recent access to avoid clearing PID info before access.. 3078 */ 3079 if (mm->numa_scan_seq && 3080 time_after(jiffies, vma->numab_state->next_pid_reset)) { 3081 vma->numab_state->next_pid_reset = vma->numab_state->next_pid_reset + 3082 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3083 vma->numab_state->access_pids[0] = READ_ONCE(vma->numab_state->access_pids[1]); 3084 vma->numab_state->access_pids[1] = 0; 3085 } 3086 3087 do { 3088 start = max(start, vma->vm_start); 3089 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3090 end = min(end, vma->vm_end); 3091 nr_pte_updates = change_prot_numa(vma, start, end); 3092 3093 /* 3094 * Try to scan sysctl_numa_balancing_size worth of 3095 * hpages that have at least one present PTE that 3096 * is not already pte-numa. If the VMA contains 3097 * areas that are unused or already full of prot_numa 3098 * PTEs, scan up to virtpages, to skip through those 3099 * areas faster. 3100 */ 3101 if (nr_pte_updates) 3102 pages -= (end - start) >> PAGE_SHIFT; 3103 virtpages -= (end - start) >> PAGE_SHIFT; 3104 3105 start = end; 3106 if (pages <= 0 || virtpages <= 0) 3107 goto out; 3108 3109 cond_resched(); 3110 } while (end != vma->vm_end); 3111 } for_each_vma(vmi, vma); 3112 3113 out: 3114 /* 3115 * It is possible to reach the end of the VMA list but the last few 3116 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3117 * would find the !migratable VMA on the next scan but not reset the 3118 * scanner to the start so check it now. 3119 */ 3120 if (vma) 3121 mm->numa_scan_offset = start; 3122 else 3123 reset_ptenuma_scan(p); 3124 mmap_read_unlock(mm); 3125 3126 /* 3127 * Make sure tasks use at least 32x as much time to run other code 3128 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3129 * Usually update_task_scan_period slows down scanning enough; on an 3130 * overloaded system we need to limit overhead on a per task basis. 3131 */ 3132 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3133 u64 diff = p->se.sum_exec_runtime - runtime; 3134 p->node_stamp += 32 * diff; 3135 } 3136 } 3137 3138 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3139 { 3140 int mm_users = 0; 3141 struct mm_struct *mm = p->mm; 3142 3143 if (mm) { 3144 mm_users = atomic_read(&mm->mm_users); 3145 if (mm_users == 1) { 3146 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3147 mm->numa_scan_seq = 0; 3148 } 3149 } 3150 p->node_stamp = 0; 3151 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3152 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3153 p->numa_migrate_retry = 0; 3154 /* Protect against double add, see task_tick_numa and task_numa_work */ 3155 p->numa_work.next = &p->numa_work; 3156 p->numa_faults = NULL; 3157 p->numa_pages_migrated = 0; 3158 p->total_numa_faults = 0; 3159 RCU_INIT_POINTER(p->numa_group, NULL); 3160 p->last_task_numa_placement = 0; 3161 p->last_sum_exec_runtime = 0; 3162 3163 init_task_work(&p->numa_work, task_numa_work); 3164 3165 /* New address space, reset the preferred nid */ 3166 if (!(clone_flags & CLONE_VM)) { 3167 p->numa_preferred_nid = NUMA_NO_NODE; 3168 return; 3169 } 3170 3171 /* 3172 * New thread, keep existing numa_preferred_nid which should be copied 3173 * already by arch_dup_task_struct but stagger when scans start. 3174 */ 3175 if (mm) { 3176 unsigned int delay; 3177 3178 delay = min_t(unsigned int, task_scan_max(current), 3179 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3180 delay += 2 * TICK_NSEC; 3181 p->node_stamp = delay; 3182 } 3183 } 3184 3185 /* 3186 * Drive the periodic memory faults.. 3187 */ 3188 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3189 { 3190 struct callback_head *work = &curr->numa_work; 3191 u64 period, now; 3192 3193 /* 3194 * We don't care about NUMA placement if we don't have memory. 3195 */ 3196 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3197 return; 3198 3199 /* 3200 * Using runtime rather than walltime has the dual advantage that 3201 * we (mostly) drive the selection from busy threads and that the 3202 * task needs to have done some actual work before we bother with 3203 * NUMA placement. 3204 */ 3205 now = curr->se.sum_exec_runtime; 3206 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3207 3208 if (now > curr->node_stamp + period) { 3209 if (!curr->node_stamp) 3210 curr->numa_scan_period = task_scan_start(curr); 3211 curr->node_stamp += period; 3212 3213 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3214 task_work_add(curr, work, TWA_RESUME); 3215 } 3216 } 3217 3218 static void update_scan_period(struct task_struct *p, int new_cpu) 3219 { 3220 int src_nid = cpu_to_node(task_cpu(p)); 3221 int dst_nid = cpu_to_node(new_cpu); 3222 3223 if (!static_branch_likely(&sched_numa_balancing)) 3224 return; 3225 3226 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3227 return; 3228 3229 if (src_nid == dst_nid) 3230 return; 3231 3232 /* 3233 * Allow resets if faults have been trapped before one scan 3234 * has completed. This is most likely due to a new task that 3235 * is pulled cross-node due to wakeups or load balancing. 3236 */ 3237 if (p->numa_scan_seq) { 3238 /* 3239 * Avoid scan adjustments if moving to the preferred 3240 * node or if the task was not previously running on 3241 * the preferred node. 3242 */ 3243 if (dst_nid == p->numa_preferred_nid || 3244 (p->numa_preferred_nid != NUMA_NO_NODE && 3245 src_nid != p->numa_preferred_nid)) 3246 return; 3247 } 3248 3249 p->numa_scan_period = task_scan_start(p); 3250 } 3251 3252 #else 3253 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3254 { 3255 } 3256 3257 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3258 { 3259 } 3260 3261 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3262 { 3263 } 3264 3265 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3266 { 3267 } 3268 3269 #endif /* CONFIG_NUMA_BALANCING */ 3270 3271 static void 3272 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3273 { 3274 update_load_add(&cfs_rq->load, se->load.weight); 3275 #ifdef CONFIG_SMP 3276 if (entity_is_task(se)) { 3277 struct rq *rq = rq_of(cfs_rq); 3278 3279 account_numa_enqueue(rq, task_of(se)); 3280 list_add(&se->group_node, &rq->cfs_tasks); 3281 } 3282 #endif 3283 cfs_rq->nr_running++; 3284 if (se_is_idle(se)) 3285 cfs_rq->idle_nr_running++; 3286 } 3287 3288 static void 3289 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3290 { 3291 update_load_sub(&cfs_rq->load, se->load.weight); 3292 #ifdef CONFIG_SMP 3293 if (entity_is_task(se)) { 3294 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3295 list_del_init(&se->group_node); 3296 } 3297 #endif 3298 cfs_rq->nr_running--; 3299 if (se_is_idle(se)) 3300 cfs_rq->idle_nr_running--; 3301 } 3302 3303 /* 3304 * Signed add and clamp on underflow. 3305 * 3306 * Explicitly do a load-store to ensure the intermediate value never hits 3307 * memory. This allows lockless observations without ever seeing the negative 3308 * values. 3309 */ 3310 #define add_positive(_ptr, _val) do { \ 3311 typeof(_ptr) ptr = (_ptr); \ 3312 typeof(_val) val = (_val); \ 3313 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3314 \ 3315 res = var + val; \ 3316 \ 3317 if (val < 0 && res > var) \ 3318 res = 0; \ 3319 \ 3320 WRITE_ONCE(*ptr, res); \ 3321 } while (0) 3322 3323 /* 3324 * Unsigned subtract and clamp on underflow. 3325 * 3326 * Explicitly do a load-store to ensure the intermediate value never hits 3327 * memory. This allows lockless observations without ever seeing the negative 3328 * values. 3329 */ 3330 #define sub_positive(_ptr, _val) do { \ 3331 typeof(_ptr) ptr = (_ptr); \ 3332 typeof(*ptr) val = (_val); \ 3333 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3334 res = var - val; \ 3335 if (res > var) \ 3336 res = 0; \ 3337 WRITE_ONCE(*ptr, res); \ 3338 } while (0) 3339 3340 /* 3341 * Remove and clamp on negative, from a local variable. 3342 * 3343 * A variant of sub_positive(), which does not use explicit load-store 3344 * and is thus optimized for local variable updates. 3345 */ 3346 #define lsub_positive(_ptr, _val) do { \ 3347 typeof(_ptr) ptr = (_ptr); \ 3348 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3349 } while (0) 3350 3351 #ifdef CONFIG_SMP 3352 static inline void 3353 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3354 { 3355 cfs_rq->avg.load_avg += se->avg.load_avg; 3356 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3357 } 3358 3359 static inline void 3360 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3361 { 3362 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3363 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3364 /* See update_cfs_rq_load_avg() */ 3365 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3366 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3367 } 3368 #else 3369 static inline void 3370 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3371 static inline void 3372 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3373 #endif 3374 3375 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3376 unsigned long weight) 3377 { 3378 if (se->on_rq) { 3379 /* commit outstanding execution time */ 3380 if (cfs_rq->curr == se) 3381 update_curr(cfs_rq); 3382 update_load_sub(&cfs_rq->load, se->load.weight); 3383 } 3384 dequeue_load_avg(cfs_rq, se); 3385 3386 update_load_set(&se->load, weight); 3387 3388 #ifdef CONFIG_SMP 3389 do { 3390 u32 divider = get_pelt_divider(&se->avg); 3391 3392 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3393 } while (0); 3394 #endif 3395 3396 enqueue_load_avg(cfs_rq, se); 3397 if (se->on_rq) 3398 update_load_add(&cfs_rq->load, se->load.weight); 3399 3400 } 3401 3402 void reweight_task(struct task_struct *p, int prio) 3403 { 3404 struct sched_entity *se = &p->se; 3405 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3406 struct load_weight *load = &se->load; 3407 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3408 3409 reweight_entity(cfs_rq, se, weight); 3410 load->inv_weight = sched_prio_to_wmult[prio]; 3411 } 3412 3413 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3414 3415 #ifdef CONFIG_FAIR_GROUP_SCHED 3416 #ifdef CONFIG_SMP 3417 /* 3418 * All this does is approximate the hierarchical proportion which includes that 3419 * global sum we all love to hate. 3420 * 3421 * That is, the weight of a group entity, is the proportional share of the 3422 * group weight based on the group runqueue weights. That is: 3423 * 3424 * tg->weight * grq->load.weight 3425 * ge->load.weight = ----------------------------- (1) 3426 * \Sum grq->load.weight 3427 * 3428 * Now, because computing that sum is prohibitively expensive to compute (been 3429 * there, done that) we approximate it with this average stuff. The average 3430 * moves slower and therefore the approximation is cheaper and more stable. 3431 * 3432 * So instead of the above, we substitute: 3433 * 3434 * grq->load.weight -> grq->avg.load_avg (2) 3435 * 3436 * which yields the following: 3437 * 3438 * tg->weight * grq->avg.load_avg 3439 * ge->load.weight = ------------------------------ (3) 3440 * tg->load_avg 3441 * 3442 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3443 * 3444 * That is shares_avg, and it is right (given the approximation (2)). 3445 * 3446 * The problem with it is that because the average is slow -- it was designed 3447 * to be exactly that of course -- this leads to transients in boundary 3448 * conditions. In specific, the case where the group was idle and we start the 3449 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3450 * yielding bad latency etc.. 3451 * 3452 * Now, in that special case (1) reduces to: 3453 * 3454 * tg->weight * grq->load.weight 3455 * ge->load.weight = ----------------------------- = tg->weight (4) 3456 * grp->load.weight 3457 * 3458 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3459 * 3460 * So what we do is modify our approximation (3) to approach (4) in the (near) 3461 * UP case, like: 3462 * 3463 * ge->load.weight = 3464 * 3465 * tg->weight * grq->load.weight 3466 * --------------------------------------------------- (5) 3467 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3468 * 3469 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3470 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3471 * 3472 * 3473 * tg->weight * grq->load.weight 3474 * ge->load.weight = ----------------------------- (6) 3475 * tg_load_avg' 3476 * 3477 * Where: 3478 * 3479 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3480 * max(grq->load.weight, grq->avg.load_avg) 3481 * 3482 * And that is shares_weight and is icky. In the (near) UP case it approaches 3483 * (4) while in the normal case it approaches (3). It consistently 3484 * overestimates the ge->load.weight and therefore: 3485 * 3486 * \Sum ge->load.weight >= tg->weight 3487 * 3488 * hence icky! 3489 */ 3490 static long calc_group_shares(struct cfs_rq *cfs_rq) 3491 { 3492 long tg_weight, tg_shares, load, shares; 3493 struct task_group *tg = cfs_rq->tg; 3494 3495 tg_shares = READ_ONCE(tg->shares); 3496 3497 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3498 3499 tg_weight = atomic_long_read(&tg->load_avg); 3500 3501 /* Ensure tg_weight >= load */ 3502 tg_weight -= cfs_rq->tg_load_avg_contrib; 3503 tg_weight += load; 3504 3505 shares = (tg_shares * load); 3506 if (tg_weight) 3507 shares /= tg_weight; 3508 3509 /* 3510 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3511 * of a group with small tg->shares value. It is a floor value which is 3512 * assigned as a minimum load.weight to the sched_entity representing 3513 * the group on a CPU. 3514 * 3515 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3516 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3517 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3518 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3519 * instead of 0. 3520 */ 3521 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3522 } 3523 #endif /* CONFIG_SMP */ 3524 3525 /* 3526 * Recomputes the group entity based on the current state of its group 3527 * runqueue. 3528 */ 3529 static void update_cfs_group(struct sched_entity *se) 3530 { 3531 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3532 long shares; 3533 3534 if (!gcfs_rq) 3535 return; 3536 3537 if (throttled_hierarchy(gcfs_rq)) 3538 return; 3539 3540 #ifndef CONFIG_SMP 3541 shares = READ_ONCE(gcfs_rq->tg->shares); 3542 3543 if (likely(se->load.weight == shares)) 3544 return; 3545 #else 3546 shares = calc_group_shares(gcfs_rq); 3547 #endif 3548 3549 reweight_entity(cfs_rq_of(se), se, shares); 3550 } 3551 3552 #else /* CONFIG_FAIR_GROUP_SCHED */ 3553 static inline void update_cfs_group(struct sched_entity *se) 3554 { 3555 } 3556 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3557 3558 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3559 { 3560 struct rq *rq = rq_of(cfs_rq); 3561 3562 if (&rq->cfs == cfs_rq) { 3563 /* 3564 * There are a few boundary cases this might miss but it should 3565 * get called often enough that that should (hopefully) not be 3566 * a real problem. 3567 * 3568 * It will not get called when we go idle, because the idle 3569 * thread is a different class (!fair), nor will the utilization 3570 * number include things like RT tasks. 3571 * 3572 * As is, the util number is not freq-invariant (we'd have to 3573 * implement arch_scale_freq_capacity() for that). 3574 * 3575 * See cpu_util_cfs(). 3576 */ 3577 cpufreq_update_util(rq, flags); 3578 } 3579 } 3580 3581 #ifdef CONFIG_SMP 3582 static inline bool load_avg_is_decayed(struct sched_avg *sa) 3583 { 3584 if (sa->load_sum) 3585 return false; 3586 3587 if (sa->util_sum) 3588 return false; 3589 3590 if (sa->runnable_sum) 3591 return false; 3592 3593 /* 3594 * _avg must be null when _sum are null because _avg = _sum / divider 3595 * Make sure that rounding and/or propagation of PELT values never 3596 * break this. 3597 */ 3598 SCHED_WARN_ON(sa->load_avg || 3599 sa->util_avg || 3600 sa->runnable_avg); 3601 3602 return true; 3603 } 3604 3605 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3606 { 3607 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 3608 cfs_rq->last_update_time_copy); 3609 } 3610 #ifdef CONFIG_FAIR_GROUP_SCHED 3611 /* 3612 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 3613 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 3614 * bottom-up, we only have to test whether the cfs_rq before us on the list 3615 * is our child. 3616 * If cfs_rq is not on the list, test whether a child needs its to be added to 3617 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 3618 */ 3619 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 3620 { 3621 struct cfs_rq *prev_cfs_rq; 3622 struct list_head *prev; 3623 3624 if (cfs_rq->on_list) { 3625 prev = cfs_rq->leaf_cfs_rq_list.prev; 3626 } else { 3627 struct rq *rq = rq_of(cfs_rq); 3628 3629 prev = rq->tmp_alone_branch; 3630 } 3631 3632 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 3633 3634 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 3635 } 3636 3637 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 3638 { 3639 if (cfs_rq->load.weight) 3640 return false; 3641 3642 if (!load_avg_is_decayed(&cfs_rq->avg)) 3643 return false; 3644 3645 if (child_cfs_rq_on_list(cfs_rq)) 3646 return false; 3647 3648 return true; 3649 } 3650 3651 /** 3652 * update_tg_load_avg - update the tg's load avg 3653 * @cfs_rq: the cfs_rq whose avg changed 3654 * 3655 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3656 * However, because tg->load_avg is a global value there are performance 3657 * considerations. 3658 * 3659 * In order to avoid having to look at the other cfs_rq's, we use a 3660 * differential update where we store the last value we propagated. This in 3661 * turn allows skipping updates if the differential is 'small'. 3662 * 3663 * Updating tg's load_avg is necessary before update_cfs_share(). 3664 */ 3665 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 3666 { 3667 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3668 3669 /* 3670 * No need to update load_avg for root_task_group as it is not used. 3671 */ 3672 if (cfs_rq->tg == &root_task_group) 3673 return; 3674 3675 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3676 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3677 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3678 } 3679 } 3680 3681 /* 3682 * Called within set_task_rq() right before setting a task's CPU. The 3683 * caller only guarantees p->pi_lock is held; no other assumptions, 3684 * including the state of rq->lock, should be made. 3685 */ 3686 void set_task_rq_fair(struct sched_entity *se, 3687 struct cfs_rq *prev, struct cfs_rq *next) 3688 { 3689 u64 p_last_update_time; 3690 u64 n_last_update_time; 3691 3692 if (!sched_feat(ATTACH_AGE_LOAD)) 3693 return; 3694 3695 /* 3696 * We are supposed to update the task to "current" time, then its up to 3697 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3698 * getting what current time is, so simply throw away the out-of-date 3699 * time. This will result in the wakee task is less decayed, but giving 3700 * the wakee more load sounds not bad. 3701 */ 3702 if (!(se->avg.last_update_time && prev)) 3703 return; 3704 3705 p_last_update_time = cfs_rq_last_update_time(prev); 3706 n_last_update_time = cfs_rq_last_update_time(next); 3707 3708 __update_load_avg_blocked_se(p_last_update_time, se); 3709 se->avg.last_update_time = n_last_update_time; 3710 } 3711 3712 /* 3713 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3714 * propagate its contribution. The key to this propagation is the invariant 3715 * that for each group: 3716 * 3717 * ge->avg == grq->avg (1) 3718 * 3719 * _IFF_ we look at the pure running and runnable sums. Because they 3720 * represent the very same entity, just at different points in the hierarchy. 3721 * 3722 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3723 * and simply copies the running/runnable sum over (but still wrong, because 3724 * the group entity and group rq do not have their PELT windows aligned). 3725 * 3726 * However, update_tg_cfs_load() is more complex. So we have: 3727 * 3728 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3729 * 3730 * And since, like util, the runnable part should be directly transferable, 3731 * the following would _appear_ to be the straight forward approach: 3732 * 3733 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3734 * 3735 * And per (1) we have: 3736 * 3737 * ge->avg.runnable_avg == grq->avg.runnable_avg 3738 * 3739 * Which gives: 3740 * 3741 * ge->load.weight * grq->avg.load_avg 3742 * ge->avg.load_avg = ----------------------------------- (4) 3743 * grq->load.weight 3744 * 3745 * Except that is wrong! 3746 * 3747 * Because while for entities historical weight is not important and we 3748 * really only care about our future and therefore can consider a pure 3749 * runnable sum, runqueues can NOT do this. 3750 * 3751 * We specifically want runqueues to have a load_avg that includes 3752 * historical weights. Those represent the blocked load, the load we expect 3753 * to (shortly) return to us. This only works by keeping the weights as 3754 * integral part of the sum. We therefore cannot decompose as per (3). 3755 * 3756 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3757 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3758 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3759 * runnable section of these tasks overlap (or not). If they were to perfectly 3760 * align the rq as a whole would be runnable 2/3 of the time. If however we 3761 * always have at least 1 runnable task, the rq as a whole is always runnable. 3762 * 3763 * So we'll have to approximate.. :/ 3764 * 3765 * Given the constraint: 3766 * 3767 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3768 * 3769 * We can construct a rule that adds runnable to a rq by assuming minimal 3770 * overlap. 3771 * 3772 * On removal, we'll assume each task is equally runnable; which yields: 3773 * 3774 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3775 * 3776 * XXX: only do this for the part of runnable > running ? 3777 * 3778 */ 3779 static inline void 3780 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3781 { 3782 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 3783 u32 new_sum, divider; 3784 3785 /* Nothing to update */ 3786 if (!delta_avg) 3787 return; 3788 3789 /* 3790 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3791 * See ___update_load_avg() for details. 3792 */ 3793 divider = get_pelt_divider(&cfs_rq->avg); 3794 3795 3796 /* Set new sched_entity's utilization */ 3797 se->avg.util_avg = gcfs_rq->avg.util_avg; 3798 new_sum = se->avg.util_avg * divider; 3799 delta_sum = (long)new_sum - (long)se->avg.util_sum; 3800 se->avg.util_sum = new_sum; 3801 3802 /* Update parent cfs_rq utilization */ 3803 add_positive(&cfs_rq->avg.util_avg, delta_avg); 3804 add_positive(&cfs_rq->avg.util_sum, delta_sum); 3805 3806 /* See update_cfs_rq_load_avg() */ 3807 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 3808 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 3809 } 3810 3811 static inline void 3812 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3813 { 3814 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 3815 u32 new_sum, divider; 3816 3817 /* Nothing to update */ 3818 if (!delta_avg) 3819 return; 3820 3821 /* 3822 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3823 * See ___update_load_avg() for details. 3824 */ 3825 divider = get_pelt_divider(&cfs_rq->avg); 3826 3827 /* Set new sched_entity's runnable */ 3828 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 3829 new_sum = se->avg.runnable_avg * divider; 3830 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 3831 se->avg.runnable_sum = new_sum; 3832 3833 /* Update parent cfs_rq runnable */ 3834 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 3835 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 3836 /* See update_cfs_rq_load_avg() */ 3837 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 3838 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 3839 } 3840 3841 static inline void 3842 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3843 { 3844 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3845 unsigned long load_avg; 3846 u64 load_sum = 0; 3847 s64 delta_sum; 3848 u32 divider; 3849 3850 if (!runnable_sum) 3851 return; 3852 3853 gcfs_rq->prop_runnable_sum = 0; 3854 3855 /* 3856 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3857 * See ___update_load_avg() for details. 3858 */ 3859 divider = get_pelt_divider(&cfs_rq->avg); 3860 3861 if (runnable_sum >= 0) { 3862 /* 3863 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3864 * the CPU is saturated running == runnable. 3865 */ 3866 runnable_sum += se->avg.load_sum; 3867 runnable_sum = min_t(long, runnable_sum, divider); 3868 } else { 3869 /* 3870 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3871 * assuming all tasks are equally runnable. 3872 */ 3873 if (scale_load_down(gcfs_rq->load.weight)) { 3874 load_sum = div_u64(gcfs_rq->avg.load_sum, 3875 scale_load_down(gcfs_rq->load.weight)); 3876 } 3877 3878 /* But make sure to not inflate se's runnable */ 3879 runnable_sum = min(se->avg.load_sum, load_sum); 3880 } 3881 3882 /* 3883 * runnable_sum can't be lower than running_sum 3884 * Rescale running sum to be in the same range as runnable sum 3885 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3886 * runnable_sum is in [0 : LOAD_AVG_MAX] 3887 */ 3888 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3889 runnable_sum = max(runnable_sum, running_sum); 3890 3891 load_sum = se_weight(se) * runnable_sum; 3892 load_avg = div_u64(load_sum, divider); 3893 3894 delta_avg = load_avg - se->avg.load_avg; 3895 if (!delta_avg) 3896 return; 3897 3898 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3899 3900 se->avg.load_sum = runnable_sum; 3901 se->avg.load_avg = load_avg; 3902 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3903 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3904 /* See update_cfs_rq_load_avg() */ 3905 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3906 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3907 } 3908 3909 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3910 { 3911 cfs_rq->propagate = 1; 3912 cfs_rq->prop_runnable_sum += runnable_sum; 3913 } 3914 3915 /* Update task and its cfs_rq load average */ 3916 static inline int propagate_entity_load_avg(struct sched_entity *se) 3917 { 3918 struct cfs_rq *cfs_rq, *gcfs_rq; 3919 3920 if (entity_is_task(se)) 3921 return 0; 3922 3923 gcfs_rq = group_cfs_rq(se); 3924 if (!gcfs_rq->propagate) 3925 return 0; 3926 3927 gcfs_rq->propagate = 0; 3928 3929 cfs_rq = cfs_rq_of(se); 3930 3931 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3932 3933 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3934 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3935 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 3936 3937 trace_pelt_cfs_tp(cfs_rq); 3938 trace_pelt_se_tp(se); 3939 3940 return 1; 3941 } 3942 3943 /* 3944 * Check if we need to update the load and the utilization of a blocked 3945 * group_entity: 3946 */ 3947 static inline bool skip_blocked_update(struct sched_entity *se) 3948 { 3949 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3950 3951 /* 3952 * If sched_entity still have not zero load or utilization, we have to 3953 * decay it: 3954 */ 3955 if (se->avg.load_avg || se->avg.util_avg) 3956 return false; 3957 3958 /* 3959 * If there is a pending propagation, we have to update the load and 3960 * the utilization of the sched_entity: 3961 */ 3962 if (gcfs_rq->propagate) 3963 return false; 3964 3965 /* 3966 * Otherwise, the load and the utilization of the sched_entity is 3967 * already zero and there is no pending propagation, so it will be a 3968 * waste of time to try to decay it: 3969 */ 3970 return true; 3971 } 3972 3973 #else /* CONFIG_FAIR_GROUP_SCHED */ 3974 3975 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 3976 3977 static inline int propagate_entity_load_avg(struct sched_entity *se) 3978 { 3979 return 0; 3980 } 3981 3982 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3983 3984 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3985 3986 #ifdef CONFIG_NO_HZ_COMMON 3987 static inline void migrate_se_pelt_lag(struct sched_entity *se) 3988 { 3989 u64 throttled = 0, now, lut; 3990 struct cfs_rq *cfs_rq; 3991 struct rq *rq; 3992 bool is_idle; 3993 3994 if (load_avg_is_decayed(&se->avg)) 3995 return; 3996 3997 cfs_rq = cfs_rq_of(se); 3998 rq = rq_of(cfs_rq); 3999 4000 rcu_read_lock(); 4001 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4002 rcu_read_unlock(); 4003 4004 /* 4005 * The lag estimation comes with a cost we don't want to pay all the 4006 * time. Hence, limiting to the case where the source CPU is idle and 4007 * we know we are at the greatest risk to have an outdated clock. 4008 */ 4009 if (!is_idle) 4010 return; 4011 4012 /* 4013 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4014 * 4015 * last_update_time (the cfs_rq's last_update_time) 4016 * = cfs_rq_clock_pelt()@cfs_rq_idle 4017 * = rq_clock_pelt()@cfs_rq_idle 4018 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4019 * 4020 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4021 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4022 * 4023 * rq_idle_lag (delta between now and rq's update) 4024 * = sched_clock_cpu() - rq_clock()@rq_idle 4025 * 4026 * We can then write: 4027 * 4028 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4029 * sched_clock_cpu() - rq_clock()@rq_idle 4030 * Where: 4031 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4032 * rq_clock()@rq_idle is rq->clock_idle 4033 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4034 * is cfs_rq->throttled_pelt_idle 4035 */ 4036 4037 #ifdef CONFIG_CFS_BANDWIDTH 4038 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4039 /* The clock has been stopped for throttling */ 4040 if (throttled == U64_MAX) 4041 return; 4042 #endif 4043 now = u64_u32_load(rq->clock_pelt_idle); 4044 /* 4045 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4046 * is observed the old clock_pelt_idle value and the new clock_idle, 4047 * which lead to an underestimation. The opposite would lead to an 4048 * overestimation. 4049 */ 4050 smp_rmb(); 4051 lut = cfs_rq_last_update_time(cfs_rq); 4052 4053 now -= throttled; 4054 if (now < lut) 4055 /* 4056 * cfs_rq->avg.last_update_time is more recent than our 4057 * estimation, let's use it. 4058 */ 4059 now = lut; 4060 else 4061 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4062 4063 __update_load_avg_blocked_se(now, se); 4064 } 4065 #else 4066 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4067 #endif 4068 4069 /** 4070 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4071 * @now: current time, as per cfs_rq_clock_pelt() 4072 * @cfs_rq: cfs_rq to update 4073 * 4074 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4075 * avg. The immediate corollary is that all (fair) tasks must be attached. 4076 * 4077 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4078 * 4079 * Return: true if the load decayed or we removed load. 4080 * 4081 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4082 * call update_tg_load_avg() when this function returns true. 4083 */ 4084 static inline int 4085 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4086 { 4087 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4088 struct sched_avg *sa = &cfs_rq->avg; 4089 int decayed = 0; 4090 4091 if (cfs_rq->removed.nr) { 4092 unsigned long r; 4093 u32 divider = get_pelt_divider(&cfs_rq->avg); 4094 4095 raw_spin_lock(&cfs_rq->removed.lock); 4096 swap(cfs_rq->removed.util_avg, removed_util); 4097 swap(cfs_rq->removed.load_avg, removed_load); 4098 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4099 cfs_rq->removed.nr = 0; 4100 raw_spin_unlock(&cfs_rq->removed.lock); 4101 4102 r = removed_load; 4103 sub_positive(&sa->load_avg, r); 4104 sub_positive(&sa->load_sum, r * divider); 4105 /* See sa->util_sum below */ 4106 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4107 4108 r = removed_util; 4109 sub_positive(&sa->util_avg, r); 4110 sub_positive(&sa->util_sum, r * divider); 4111 /* 4112 * Because of rounding, se->util_sum might ends up being +1 more than 4113 * cfs->util_sum. Although this is not a problem by itself, detaching 4114 * a lot of tasks with the rounding problem between 2 updates of 4115 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4116 * cfs_util_avg is not. 4117 * Check that util_sum is still above its lower bound for the new 4118 * util_avg. Given that period_contrib might have moved since the last 4119 * sync, we are only sure that util_sum must be above or equal to 4120 * util_avg * minimum possible divider 4121 */ 4122 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4123 4124 r = removed_runnable; 4125 sub_positive(&sa->runnable_avg, r); 4126 sub_positive(&sa->runnable_sum, r * divider); 4127 /* See sa->util_sum above */ 4128 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4129 sa->runnable_avg * PELT_MIN_DIVIDER); 4130 4131 /* 4132 * removed_runnable is the unweighted version of removed_load so we 4133 * can use it to estimate removed_load_sum. 4134 */ 4135 add_tg_cfs_propagate(cfs_rq, 4136 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4137 4138 decayed = 1; 4139 } 4140 4141 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4142 u64_u32_store_copy(sa->last_update_time, 4143 cfs_rq->last_update_time_copy, 4144 sa->last_update_time); 4145 return decayed; 4146 } 4147 4148 /** 4149 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4150 * @cfs_rq: cfs_rq to attach to 4151 * @se: sched_entity to attach 4152 * 4153 * Must call update_cfs_rq_load_avg() before this, since we rely on 4154 * cfs_rq->avg.last_update_time being current. 4155 */ 4156 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4157 { 4158 /* 4159 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4160 * See ___update_load_avg() for details. 4161 */ 4162 u32 divider = get_pelt_divider(&cfs_rq->avg); 4163 4164 /* 4165 * When we attach the @se to the @cfs_rq, we must align the decay 4166 * window because without that, really weird and wonderful things can 4167 * happen. 4168 * 4169 * XXX illustrate 4170 */ 4171 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4172 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4173 4174 /* 4175 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4176 * period_contrib. This isn't strictly correct, but since we're 4177 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4178 * _sum a little. 4179 */ 4180 se->avg.util_sum = se->avg.util_avg * divider; 4181 4182 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4183 4184 se->avg.load_sum = se->avg.load_avg * divider; 4185 if (se_weight(se) < se->avg.load_sum) 4186 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4187 else 4188 se->avg.load_sum = 1; 4189 4190 enqueue_load_avg(cfs_rq, se); 4191 cfs_rq->avg.util_avg += se->avg.util_avg; 4192 cfs_rq->avg.util_sum += se->avg.util_sum; 4193 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4194 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4195 4196 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4197 4198 cfs_rq_util_change(cfs_rq, 0); 4199 4200 trace_pelt_cfs_tp(cfs_rq); 4201 } 4202 4203 /** 4204 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4205 * @cfs_rq: cfs_rq to detach from 4206 * @se: sched_entity to detach 4207 * 4208 * Must call update_cfs_rq_load_avg() before this, since we rely on 4209 * cfs_rq->avg.last_update_time being current. 4210 */ 4211 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4212 { 4213 dequeue_load_avg(cfs_rq, se); 4214 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4215 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4216 /* See update_cfs_rq_load_avg() */ 4217 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4218 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4219 4220 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4221 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4222 /* See update_cfs_rq_load_avg() */ 4223 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4224 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4225 4226 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4227 4228 cfs_rq_util_change(cfs_rq, 0); 4229 4230 trace_pelt_cfs_tp(cfs_rq); 4231 } 4232 4233 /* 4234 * Optional action to be done while updating the load average 4235 */ 4236 #define UPDATE_TG 0x1 4237 #define SKIP_AGE_LOAD 0x2 4238 #define DO_ATTACH 0x4 4239 #define DO_DETACH 0x8 4240 4241 /* Update task and its cfs_rq load average */ 4242 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4243 { 4244 u64 now = cfs_rq_clock_pelt(cfs_rq); 4245 int decayed; 4246 4247 /* 4248 * Track task load average for carrying it to new CPU after migrated, and 4249 * track group sched_entity load average for task_h_load calc in migration 4250 */ 4251 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4252 __update_load_avg_se(now, cfs_rq, se); 4253 4254 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4255 decayed |= propagate_entity_load_avg(se); 4256 4257 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4258 4259 /* 4260 * DO_ATTACH means we're here from enqueue_entity(). 4261 * !last_update_time means we've passed through 4262 * migrate_task_rq_fair() indicating we migrated. 4263 * 4264 * IOW we're enqueueing a task on a new CPU. 4265 */ 4266 attach_entity_load_avg(cfs_rq, se); 4267 update_tg_load_avg(cfs_rq); 4268 4269 } else if (flags & DO_DETACH) { 4270 /* 4271 * DO_DETACH means we're here from dequeue_entity() 4272 * and we are migrating task out of the CPU. 4273 */ 4274 detach_entity_load_avg(cfs_rq, se); 4275 update_tg_load_avg(cfs_rq); 4276 } else if (decayed) { 4277 cfs_rq_util_change(cfs_rq, 0); 4278 4279 if (flags & UPDATE_TG) 4280 update_tg_load_avg(cfs_rq); 4281 } 4282 } 4283 4284 /* 4285 * Synchronize entity load avg of dequeued entity without locking 4286 * the previous rq. 4287 */ 4288 static void sync_entity_load_avg(struct sched_entity *se) 4289 { 4290 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4291 u64 last_update_time; 4292 4293 last_update_time = cfs_rq_last_update_time(cfs_rq); 4294 __update_load_avg_blocked_se(last_update_time, se); 4295 } 4296 4297 /* 4298 * Task first catches up with cfs_rq, and then subtract 4299 * itself from the cfs_rq (task must be off the queue now). 4300 */ 4301 static void remove_entity_load_avg(struct sched_entity *se) 4302 { 4303 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4304 unsigned long flags; 4305 4306 /* 4307 * tasks cannot exit without having gone through wake_up_new_task() -> 4308 * enqueue_task_fair() which will have added things to the cfs_rq, 4309 * so we can remove unconditionally. 4310 */ 4311 4312 sync_entity_load_avg(se); 4313 4314 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4315 ++cfs_rq->removed.nr; 4316 cfs_rq->removed.util_avg += se->avg.util_avg; 4317 cfs_rq->removed.load_avg += se->avg.load_avg; 4318 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4319 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4320 } 4321 4322 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4323 { 4324 return cfs_rq->avg.runnable_avg; 4325 } 4326 4327 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4328 { 4329 return cfs_rq->avg.load_avg; 4330 } 4331 4332 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 4333 4334 static inline unsigned long task_util(struct task_struct *p) 4335 { 4336 return READ_ONCE(p->se.avg.util_avg); 4337 } 4338 4339 static inline unsigned long _task_util_est(struct task_struct *p) 4340 { 4341 struct util_est ue = READ_ONCE(p->se.avg.util_est); 4342 4343 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 4344 } 4345 4346 static inline unsigned long task_util_est(struct task_struct *p) 4347 { 4348 return max(task_util(p), _task_util_est(p)); 4349 } 4350 4351 #ifdef CONFIG_UCLAMP_TASK 4352 static inline unsigned long uclamp_task_util(struct task_struct *p, 4353 unsigned long uclamp_min, 4354 unsigned long uclamp_max) 4355 { 4356 return clamp(task_util_est(p), uclamp_min, uclamp_max); 4357 } 4358 #else 4359 static inline unsigned long uclamp_task_util(struct task_struct *p, 4360 unsigned long uclamp_min, 4361 unsigned long uclamp_max) 4362 { 4363 return task_util_est(p); 4364 } 4365 #endif 4366 4367 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4368 struct task_struct *p) 4369 { 4370 unsigned int enqueued; 4371 4372 if (!sched_feat(UTIL_EST)) 4373 return; 4374 4375 /* Update root cfs_rq's estimated utilization */ 4376 enqueued = cfs_rq->avg.util_est.enqueued; 4377 enqueued += _task_util_est(p); 4378 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4379 4380 trace_sched_util_est_cfs_tp(cfs_rq); 4381 } 4382 4383 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4384 struct task_struct *p) 4385 { 4386 unsigned int enqueued; 4387 4388 if (!sched_feat(UTIL_EST)) 4389 return; 4390 4391 /* Update root cfs_rq's estimated utilization */ 4392 enqueued = cfs_rq->avg.util_est.enqueued; 4393 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4394 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4395 4396 trace_sched_util_est_cfs_tp(cfs_rq); 4397 } 4398 4399 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4400 4401 /* 4402 * Check if a (signed) value is within a specified (unsigned) margin, 4403 * based on the observation that: 4404 * 4405 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 4406 * 4407 * NOTE: this only works when value + margin < INT_MAX. 4408 */ 4409 static inline bool within_margin(int value, int margin) 4410 { 4411 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 4412 } 4413 4414 static inline void util_est_update(struct cfs_rq *cfs_rq, 4415 struct task_struct *p, 4416 bool task_sleep) 4417 { 4418 long last_ewma_diff, last_enqueued_diff; 4419 struct util_est ue; 4420 4421 if (!sched_feat(UTIL_EST)) 4422 return; 4423 4424 /* 4425 * Skip update of task's estimated utilization when the task has not 4426 * yet completed an activation, e.g. being migrated. 4427 */ 4428 if (!task_sleep) 4429 return; 4430 4431 /* 4432 * If the PELT values haven't changed since enqueue time, 4433 * skip the util_est update. 4434 */ 4435 ue = p->se.avg.util_est; 4436 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4437 return; 4438 4439 last_enqueued_diff = ue.enqueued; 4440 4441 /* 4442 * Reset EWMA on utilization increases, the moving average is used only 4443 * to smooth utilization decreases. 4444 */ 4445 ue.enqueued = task_util(p); 4446 if (sched_feat(UTIL_EST_FASTUP)) { 4447 if (ue.ewma < ue.enqueued) { 4448 ue.ewma = ue.enqueued; 4449 goto done; 4450 } 4451 } 4452 4453 /* 4454 * Skip update of task's estimated utilization when its members are 4455 * already ~1% close to its last activation value. 4456 */ 4457 last_ewma_diff = ue.enqueued - ue.ewma; 4458 last_enqueued_diff -= ue.enqueued; 4459 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4460 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4461 goto done; 4462 4463 return; 4464 } 4465 4466 /* 4467 * To avoid overestimation of actual task utilization, skip updates if 4468 * we cannot grant there is idle time in this CPU. 4469 */ 4470 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4471 return; 4472 4473 /* 4474 * Update Task's estimated utilization 4475 * 4476 * When *p completes an activation we can consolidate another sample 4477 * of the task size. This is done by storing the current PELT value 4478 * as ue.enqueued and by using this value to update the Exponential 4479 * Weighted Moving Average (EWMA): 4480 * 4481 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4482 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4483 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4484 * = w * ( last_ewma_diff ) + ewma(t-1) 4485 * = w * (last_ewma_diff + ewma(t-1) / w) 4486 * 4487 * Where 'w' is the weight of new samples, which is configured to be 4488 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4489 */ 4490 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4491 ue.ewma += last_ewma_diff; 4492 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4493 done: 4494 ue.enqueued |= UTIL_AVG_UNCHANGED; 4495 WRITE_ONCE(p->se.avg.util_est, ue); 4496 4497 trace_sched_util_est_se_tp(&p->se); 4498 } 4499 4500 static inline int util_fits_cpu(unsigned long util, 4501 unsigned long uclamp_min, 4502 unsigned long uclamp_max, 4503 int cpu) 4504 { 4505 unsigned long capacity_orig, capacity_orig_thermal; 4506 unsigned long capacity = capacity_of(cpu); 4507 bool fits, uclamp_max_fits; 4508 4509 /* 4510 * Check if the real util fits without any uclamp boost/cap applied. 4511 */ 4512 fits = fits_capacity(util, capacity); 4513 4514 if (!uclamp_is_used()) 4515 return fits; 4516 4517 /* 4518 * We must use capacity_orig_of() for comparing against uclamp_min and 4519 * uclamp_max. We only care about capacity pressure (by using 4520 * capacity_of()) for comparing against the real util. 4521 * 4522 * If a task is boosted to 1024 for example, we don't want a tiny 4523 * pressure to skew the check whether it fits a CPU or not. 4524 * 4525 * Similarly if a task is capped to capacity_orig_of(little_cpu), it 4526 * should fit a little cpu even if there's some pressure. 4527 * 4528 * Only exception is for thermal pressure since it has a direct impact 4529 * on available OPP of the system. 4530 * 4531 * We honour it for uclamp_min only as a drop in performance level 4532 * could result in not getting the requested minimum performance level. 4533 * 4534 * For uclamp_max, we can tolerate a drop in performance level as the 4535 * goal is to cap the task. So it's okay if it's getting less. 4536 */ 4537 capacity_orig = capacity_orig_of(cpu); 4538 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu); 4539 4540 /* 4541 * We want to force a task to fit a cpu as implied by uclamp_max. 4542 * But we do have some corner cases to cater for.. 4543 * 4544 * 4545 * C=z 4546 * | ___ 4547 * | C=y | | 4548 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4549 * | C=x | | | | 4550 * | ___ | | | | 4551 * | | | | | | | (util somewhere in this region) 4552 * | | | | | | | 4553 * | | | | | | | 4554 * +---------------------------------------- 4555 * cpu0 cpu1 cpu2 4556 * 4557 * In the above example if a task is capped to a specific performance 4558 * point, y, then when: 4559 * 4560 * * util = 80% of x then it does not fit on cpu0 and should migrate 4561 * to cpu1 4562 * * util = 80% of y then it is forced to fit on cpu1 to honour 4563 * uclamp_max request. 4564 * 4565 * which is what we're enforcing here. A task always fits if 4566 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 4567 * the normal upmigration rules should withhold still. 4568 * 4569 * Only exception is when we are on max capacity, then we need to be 4570 * careful not to block overutilized state. This is so because: 4571 * 4572 * 1. There's no concept of capping at max_capacity! We can't go 4573 * beyond this performance level anyway. 4574 * 2. The system is being saturated when we're operating near 4575 * max capacity, it doesn't make sense to block overutilized. 4576 */ 4577 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 4578 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 4579 fits = fits || uclamp_max_fits; 4580 4581 /* 4582 * 4583 * C=z 4584 * | ___ (region a, capped, util >= uclamp_max) 4585 * | C=y | | 4586 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4587 * | C=x | | | | 4588 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 4589 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 4590 * | | | | | | | 4591 * | | | | | | | (region c, boosted, util < uclamp_min) 4592 * +---------------------------------------- 4593 * cpu0 cpu1 cpu2 4594 * 4595 * a) If util > uclamp_max, then we're capped, we don't care about 4596 * actual fitness value here. We only care if uclamp_max fits 4597 * capacity without taking margin/pressure into account. 4598 * See comment above. 4599 * 4600 * b) If uclamp_min <= util <= uclamp_max, then the normal 4601 * fits_capacity() rules apply. Except we need to ensure that we 4602 * enforce we remain within uclamp_max, see comment above. 4603 * 4604 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 4605 * need to take into account the boosted value fits the CPU without 4606 * taking margin/pressure into account. 4607 * 4608 * Cases (a) and (b) are handled in the 'fits' variable already. We 4609 * just need to consider an extra check for case (c) after ensuring we 4610 * handle the case uclamp_min > uclamp_max. 4611 */ 4612 uclamp_min = min(uclamp_min, uclamp_max); 4613 if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal)) 4614 return -1; 4615 4616 return fits; 4617 } 4618 4619 static inline int task_fits_cpu(struct task_struct *p, int cpu) 4620 { 4621 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 4622 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 4623 unsigned long util = task_util_est(p); 4624 /* 4625 * Return true only if the cpu fully fits the task requirements, which 4626 * include the utilization but also the performance hints. 4627 */ 4628 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 4629 } 4630 4631 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4632 { 4633 if (!sched_asym_cpucap_active()) 4634 return; 4635 4636 if (!p || p->nr_cpus_allowed == 1) { 4637 rq->misfit_task_load = 0; 4638 return; 4639 } 4640 4641 if (task_fits_cpu(p, cpu_of(rq))) { 4642 rq->misfit_task_load = 0; 4643 return; 4644 } 4645 4646 /* 4647 * Make sure that misfit_task_load will not be null even if 4648 * task_h_load() returns 0. 4649 */ 4650 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4651 } 4652 4653 #else /* CONFIG_SMP */ 4654 4655 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4656 { 4657 return true; 4658 } 4659 4660 #define UPDATE_TG 0x0 4661 #define SKIP_AGE_LOAD 0x0 4662 #define DO_ATTACH 0x0 4663 #define DO_DETACH 0x0 4664 4665 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4666 { 4667 cfs_rq_util_change(cfs_rq, 0); 4668 } 4669 4670 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4671 4672 static inline void 4673 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4674 static inline void 4675 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4676 4677 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4678 { 4679 return 0; 4680 } 4681 4682 static inline void 4683 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4684 4685 static inline void 4686 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4687 4688 static inline void 4689 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 4690 bool task_sleep) {} 4691 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4692 4693 #endif /* CONFIG_SMP */ 4694 4695 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4696 { 4697 #ifdef CONFIG_SCHED_DEBUG 4698 s64 d = se->vruntime - cfs_rq->min_vruntime; 4699 4700 if (d < 0) 4701 d = -d; 4702 4703 if (d > 3*sysctl_sched_latency) 4704 schedstat_inc(cfs_rq->nr_spread_over); 4705 #endif 4706 } 4707 4708 static inline bool entity_is_long_sleeper(struct sched_entity *se) 4709 { 4710 struct cfs_rq *cfs_rq; 4711 u64 sleep_time; 4712 4713 if (se->exec_start == 0) 4714 return false; 4715 4716 cfs_rq = cfs_rq_of(se); 4717 4718 sleep_time = rq_clock_task(rq_of(cfs_rq)); 4719 4720 /* Happen while migrating because of clock task divergence */ 4721 if (sleep_time <= se->exec_start) 4722 return false; 4723 4724 sleep_time -= se->exec_start; 4725 if (sleep_time > ((1ULL << 63) / scale_load_down(NICE_0_LOAD))) 4726 return true; 4727 4728 return false; 4729 } 4730 4731 static void 4732 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4733 { 4734 u64 vruntime = cfs_rq->min_vruntime; 4735 4736 /* 4737 * The 'current' period is already promised to the current tasks, 4738 * however the extra weight of the new task will slow them down a 4739 * little, place the new task so that it fits in the slot that 4740 * stays open at the end. 4741 */ 4742 if (initial && sched_feat(START_DEBIT)) 4743 vruntime += sched_vslice(cfs_rq, se); 4744 4745 /* sleeps up to a single latency don't count. */ 4746 if (!initial) { 4747 unsigned long thresh; 4748 4749 if (se_is_idle(se)) 4750 thresh = sysctl_sched_min_granularity; 4751 else 4752 thresh = sysctl_sched_latency; 4753 4754 /* 4755 * Halve their sleep time's effect, to allow 4756 * for a gentler effect of sleepers: 4757 */ 4758 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4759 thresh >>= 1; 4760 4761 vruntime -= thresh; 4762 } 4763 4764 /* 4765 * Pull vruntime of the entity being placed to the base level of 4766 * cfs_rq, to prevent boosting it if placed backwards. 4767 * However, min_vruntime can advance much faster than real time, with 4768 * the extreme being when an entity with the minimal weight always runs 4769 * on the cfs_rq. If the waking entity slept for a long time, its 4770 * vruntime difference from min_vruntime may overflow s64 and their 4771 * comparison may get inversed, so ignore the entity's original 4772 * vruntime in that case. 4773 * The maximal vruntime speedup is given by the ratio of normal to 4774 * minimal weight: scale_load_down(NICE_0_LOAD) / MIN_SHARES. 4775 * When placing a migrated waking entity, its exec_start has been set 4776 * from a different rq. In order to take into account a possible 4777 * divergence between new and prev rq's clocks task because of irq and 4778 * stolen time, we take an additional margin. 4779 * So, cutting off on the sleep time of 4780 * 2^63 / scale_load_down(NICE_0_LOAD) ~ 104 days 4781 * should be safe. 4782 */ 4783 if (entity_is_long_sleeper(se)) 4784 se->vruntime = vruntime; 4785 else 4786 se->vruntime = max_vruntime(se->vruntime, vruntime); 4787 } 4788 4789 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4790 4791 static inline bool cfs_bandwidth_used(void); 4792 4793 /* 4794 * MIGRATION 4795 * 4796 * dequeue 4797 * update_curr() 4798 * update_min_vruntime() 4799 * vruntime -= min_vruntime 4800 * 4801 * enqueue 4802 * update_curr() 4803 * update_min_vruntime() 4804 * vruntime += min_vruntime 4805 * 4806 * this way the vruntime transition between RQs is done when both 4807 * min_vruntime are up-to-date. 4808 * 4809 * WAKEUP (remote) 4810 * 4811 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4812 * vruntime -= min_vruntime 4813 * 4814 * enqueue 4815 * update_curr() 4816 * update_min_vruntime() 4817 * vruntime += min_vruntime 4818 * 4819 * this way we don't have the most up-to-date min_vruntime on the originating 4820 * CPU and an up-to-date min_vruntime on the destination CPU. 4821 */ 4822 4823 static void 4824 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4825 { 4826 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4827 bool curr = cfs_rq->curr == se; 4828 4829 /* 4830 * If we're the current task, we must renormalise before calling 4831 * update_curr(). 4832 */ 4833 if (renorm && curr) 4834 se->vruntime += cfs_rq->min_vruntime; 4835 4836 update_curr(cfs_rq); 4837 4838 /* 4839 * Otherwise, renormalise after, such that we're placed at the current 4840 * moment in time, instead of some random moment in the past. Being 4841 * placed in the past could significantly boost this task to the 4842 * fairness detriment of existing tasks. 4843 */ 4844 if (renorm && !curr) 4845 se->vruntime += cfs_rq->min_vruntime; 4846 4847 /* 4848 * When enqueuing a sched_entity, we must: 4849 * - Update loads to have both entity and cfs_rq synced with now. 4850 * - For group_entity, update its runnable_weight to reflect the new 4851 * h_nr_running of its group cfs_rq. 4852 * - For group_entity, update its weight to reflect the new share of 4853 * its group cfs_rq 4854 * - Add its new weight to cfs_rq->load.weight 4855 */ 4856 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4857 se_update_runnable(se); 4858 update_cfs_group(se); 4859 account_entity_enqueue(cfs_rq, se); 4860 4861 if (flags & ENQUEUE_WAKEUP) 4862 place_entity(cfs_rq, se, 0); 4863 /* Entity has migrated, no longer consider this task hot */ 4864 if (flags & ENQUEUE_MIGRATED) 4865 se->exec_start = 0; 4866 4867 check_schedstat_required(); 4868 update_stats_enqueue_fair(cfs_rq, se, flags); 4869 check_spread(cfs_rq, se); 4870 if (!curr) 4871 __enqueue_entity(cfs_rq, se); 4872 se->on_rq = 1; 4873 4874 if (cfs_rq->nr_running == 1) { 4875 check_enqueue_throttle(cfs_rq); 4876 if (!throttled_hierarchy(cfs_rq)) 4877 list_add_leaf_cfs_rq(cfs_rq); 4878 } 4879 } 4880 4881 static void __clear_buddies_last(struct sched_entity *se) 4882 { 4883 for_each_sched_entity(se) { 4884 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4885 if (cfs_rq->last != se) 4886 break; 4887 4888 cfs_rq->last = NULL; 4889 } 4890 } 4891 4892 static void __clear_buddies_next(struct sched_entity *se) 4893 { 4894 for_each_sched_entity(se) { 4895 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4896 if (cfs_rq->next != se) 4897 break; 4898 4899 cfs_rq->next = NULL; 4900 } 4901 } 4902 4903 static void __clear_buddies_skip(struct sched_entity *se) 4904 { 4905 for_each_sched_entity(se) { 4906 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4907 if (cfs_rq->skip != se) 4908 break; 4909 4910 cfs_rq->skip = NULL; 4911 } 4912 } 4913 4914 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4915 { 4916 if (cfs_rq->last == se) 4917 __clear_buddies_last(se); 4918 4919 if (cfs_rq->next == se) 4920 __clear_buddies_next(se); 4921 4922 if (cfs_rq->skip == se) 4923 __clear_buddies_skip(se); 4924 } 4925 4926 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4927 4928 static void 4929 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4930 { 4931 int action = UPDATE_TG; 4932 4933 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 4934 action |= DO_DETACH; 4935 4936 /* 4937 * Update run-time statistics of the 'current'. 4938 */ 4939 update_curr(cfs_rq); 4940 4941 /* 4942 * When dequeuing a sched_entity, we must: 4943 * - Update loads to have both entity and cfs_rq synced with now. 4944 * - For group_entity, update its runnable_weight to reflect the new 4945 * h_nr_running of its group cfs_rq. 4946 * - Subtract its previous weight from cfs_rq->load.weight. 4947 * - For group entity, update its weight to reflect the new share 4948 * of its group cfs_rq. 4949 */ 4950 update_load_avg(cfs_rq, se, action); 4951 se_update_runnable(se); 4952 4953 update_stats_dequeue_fair(cfs_rq, se, flags); 4954 4955 clear_buddies(cfs_rq, se); 4956 4957 if (se != cfs_rq->curr) 4958 __dequeue_entity(cfs_rq, se); 4959 se->on_rq = 0; 4960 account_entity_dequeue(cfs_rq, se); 4961 4962 /* 4963 * Normalize after update_curr(); which will also have moved 4964 * min_vruntime if @se is the one holding it back. But before doing 4965 * update_min_vruntime() again, which will discount @se's position and 4966 * can move min_vruntime forward still more. 4967 */ 4968 if (!(flags & DEQUEUE_SLEEP)) 4969 se->vruntime -= cfs_rq->min_vruntime; 4970 4971 /* return excess runtime on last dequeue */ 4972 return_cfs_rq_runtime(cfs_rq); 4973 4974 update_cfs_group(se); 4975 4976 /* 4977 * Now advance min_vruntime if @se was the entity holding it back, 4978 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4979 * put back on, and if we advance min_vruntime, we'll be placed back 4980 * further than we started -- ie. we'll be penalized. 4981 */ 4982 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4983 update_min_vruntime(cfs_rq); 4984 4985 if (cfs_rq->nr_running == 0) 4986 update_idle_cfs_rq_clock_pelt(cfs_rq); 4987 } 4988 4989 /* 4990 * Preempt the current task with a newly woken task if needed: 4991 */ 4992 static void 4993 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4994 { 4995 unsigned long ideal_runtime, delta_exec; 4996 struct sched_entity *se; 4997 s64 delta; 4998 4999 /* 5000 * When many tasks blow up the sched_period; it is possible that 5001 * sched_slice() reports unusually large results (when many tasks are 5002 * very light for example). Therefore impose a maximum. 5003 */ 5004 ideal_runtime = min_t(u64, sched_slice(cfs_rq, curr), sysctl_sched_latency); 5005 5006 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 5007 if (delta_exec > ideal_runtime) { 5008 resched_curr(rq_of(cfs_rq)); 5009 /* 5010 * The current task ran long enough, ensure it doesn't get 5011 * re-elected due to buddy favours. 5012 */ 5013 clear_buddies(cfs_rq, curr); 5014 return; 5015 } 5016 5017 /* 5018 * Ensure that a task that missed wakeup preemption by a 5019 * narrow margin doesn't have to wait for a full slice. 5020 * This also mitigates buddy induced latencies under load. 5021 */ 5022 if (delta_exec < sysctl_sched_min_granularity) 5023 return; 5024 5025 se = __pick_first_entity(cfs_rq); 5026 delta = curr->vruntime - se->vruntime; 5027 5028 if (delta < 0) 5029 return; 5030 5031 if (delta > ideal_runtime) 5032 resched_curr(rq_of(cfs_rq)); 5033 } 5034 5035 static void 5036 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5037 { 5038 clear_buddies(cfs_rq, se); 5039 5040 /* 'current' is not kept within the tree. */ 5041 if (se->on_rq) { 5042 /* 5043 * Any task has to be enqueued before it get to execute on 5044 * a CPU. So account for the time it spent waiting on the 5045 * runqueue. 5046 */ 5047 update_stats_wait_end_fair(cfs_rq, se); 5048 __dequeue_entity(cfs_rq, se); 5049 update_load_avg(cfs_rq, se, UPDATE_TG); 5050 } 5051 5052 update_stats_curr_start(cfs_rq, se); 5053 cfs_rq->curr = se; 5054 5055 /* 5056 * Track our maximum slice length, if the CPU's load is at 5057 * least twice that of our own weight (i.e. dont track it 5058 * when there are only lesser-weight tasks around): 5059 */ 5060 if (schedstat_enabled() && 5061 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5062 struct sched_statistics *stats; 5063 5064 stats = __schedstats_from_se(se); 5065 __schedstat_set(stats->slice_max, 5066 max((u64)stats->slice_max, 5067 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5068 } 5069 5070 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5071 } 5072 5073 static int 5074 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 5075 5076 /* 5077 * Pick the next process, keeping these things in mind, in this order: 5078 * 1) keep things fair between processes/task groups 5079 * 2) pick the "next" process, since someone really wants that to run 5080 * 3) pick the "last" process, for cache locality 5081 * 4) do not run the "skip" process, if something else is available 5082 */ 5083 static struct sched_entity * 5084 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 5085 { 5086 struct sched_entity *left = __pick_first_entity(cfs_rq); 5087 struct sched_entity *se; 5088 5089 /* 5090 * If curr is set we have to see if its left of the leftmost entity 5091 * still in the tree, provided there was anything in the tree at all. 5092 */ 5093 if (!left || (curr && entity_before(curr, left))) 5094 left = curr; 5095 5096 se = left; /* ideally we run the leftmost entity */ 5097 5098 /* 5099 * Avoid running the skip buddy, if running something else can 5100 * be done without getting too unfair. 5101 */ 5102 if (cfs_rq->skip && cfs_rq->skip == se) { 5103 struct sched_entity *second; 5104 5105 if (se == curr) { 5106 second = __pick_first_entity(cfs_rq); 5107 } else { 5108 second = __pick_next_entity(se); 5109 if (!second || (curr && entity_before(curr, second))) 5110 second = curr; 5111 } 5112 5113 if (second && wakeup_preempt_entity(second, left) < 1) 5114 se = second; 5115 } 5116 5117 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) { 5118 /* 5119 * Someone really wants this to run. If it's not unfair, run it. 5120 */ 5121 se = cfs_rq->next; 5122 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) { 5123 /* 5124 * Prefer last buddy, try to return the CPU to a preempted task. 5125 */ 5126 se = cfs_rq->last; 5127 } 5128 5129 return se; 5130 } 5131 5132 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5133 5134 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5135 { 5136 /* 5137 * If still on the runqueue then deactivate_task() 5138 * was not called and update_curr() has to be done: 5139 */ 5140 if (prev->on_rq) 5141 update_curr(cfs_rq); 5142 5143 /* throttle cfs_rqs exceeding runtime */ 5144 check_cfs_rq_runtime(cfs_rq); 5145 5146 check_spread(cfs_rq, prev); 5147 5148 if (prev->on_rq) { 5149 update_stats_wait_start_fair(cfs_rq, prev); 5150 /* Put 'current' back into the tree. */ 5151 __enqueue_entity(cfs_rq, prev); 5152 /* in !on_rq case, update occurred at dequeue */ 5153 update_load_avg(cfs_rq, prev, 0); 5154 } 5155 cfs_rq->curr = NULL; 5156 } 5157 5158 static void 5159 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5160 { 5161 /* 5162 * Update run-time statistics of the 'current'. 5163 */ 5164 update_curr(cfs_rq); 5165 5166 /* 5167 * Ensure that runnable average is periodically updated. 5168 */ 5169 update_load_avg(cfs_rq, curr, UPDATE_TG); 5170 update_cfs_group(curr); 5171 5172 #ifdef CONFIG_SCHED_HRTICK 5173 /* 5174 * queued ticks are scheduled to match the slice, so don't bother 5175 * validating it and just reschedule. 5176 */ 5177 if (queued) { 5178 resched_curr(rq_of(cfs_rq)); 5179 return; 5180 } 5181 /* 5182 * don't let the period tick interfere with the hrtick preemption 5183 */ 5184 if (!sched_feat(DOUBLE_TICK) && 5185 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 5186 return; 5187 #endif 5188 5189 if (cfs_rq->nr_running > 1) 5190 check_preempt_tick(cfs_rq, curr); 5191 } 5192 5193 5194 /************************************************** 5195 * CFS bandwidth control machinery 5196 */ 5197 5198 #ifdef CONFIG_CFS_BANDWIDTH 5199 5200 #ifdef CONFIG_JUMP_LABEL 5201 static struct static_key __cfs_bandwidth_used; 5202 5203 static inline bool cfs_bandwidth_used(void) 5204 { 5205 return static_key_false(&__cfs_bandwidth_used); 5206 } 5207 5208 void cfs_bandwidth_usage_inc(void) 5209 { 5210 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5211 } 5212 5213 void cfs_bandwidth_usage_dec(void) 5214 { 5215 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5216 } 5217 #else /* CONFIG_JUMP_LABEL */ 5218 static bool cfs_bandwidth_used(void) 5219 { 5220 return true; 5221 } 5222 5223 void cfs_bandwidth_usage_inc(void) {} 5224 void cfs_bandwidth_usage_dec(void) {} 5225 #endif /* CONFIG_JUMP_LABEL */ 5226 5227 /* 5228 * default period for cfs group bandwidth. 5229 * default: 0.1s, units: nanoseconds 5230 */ 5231 static inline u64 default_cfs_period(void) 5232 { 5233 return 100000000ULL; 5234 } 5235 5236 static inline u64 sched_cfs_bandwidth_slice(void) 5237 { 5238 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5239 } 5240 5241 /* 5242 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5243 * directly instead of rq->clock to avoid adding additional synchronization 5244 * around rq->lock. 5245 * 5246 * requires cfs_b->lock 5247 */ 5248 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5249 { 5250 s64 runtime; 5251 5252 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5253 return; 5254 5255 cfs_b->runtime += cfs_b->quota; 5256 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5257 if (runtime > 0) { 5258 cfs_b->burst_time += runtime; 5259 cfs_b->nr_burst++; 5260 } 5261 5262 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5263 cfs_b->runtime_snap = cfs_b->runtime; 5264 } 5265 5266 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5267 { 5268 return &tg->cfs_bandwidth; 5269 } 5270 5271 /* returns 0 on failure to allocate runtime */ 5272 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5273 struct cfs_rq *cfs_rq, u64 target_runtime) 5274 { 5275 u64 min_amount, amount = 0; 5276 5277 lockdep_assert_held(&cfs_b->lock); 5278 5279 /* note: this is a positive sum as runtime_remaining <= 0 */ 5280 min_amount = target_runtime - cfs_rq->runtime_remaining; 5281 5282 if (cfs_b->quota == RUNTIME_INF) 5283 amount = min_amount; 5284 else { 5285 start_cfs_bandwidth(cfs_b); 5286 5287 if (cfs_b->runtime > 0) { 5288 amount = min(cfs_b->runtime, min_amount); 5289 cfs_b->runtime -= amount; 5290 cfs_b->idle = 0; 5291 } 5292 } 5293 5294 cfs_rq->runtime_remaining += amount; 5295 5296 return cfs_rq->runtime_remaining > 0; 5297 } 5298 5299 /* returns 0 on failure to allocate runtime */ 5300 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5301 { 5302 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5303 int ret; 5304 5305 raw_spin_lock(&cfs_b->lock); 5306 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5307 raw_spin_unlock(&cfs_b->lock); 5308 5309 return ret; 5310 } 5311 5312 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5313 { 5314 /* dock delta_exec before expiring quota (as it could span periods) */ 5315 cfs_rq->runtime_remaining -= delta_exec; 5316 5317 if (likely(cfs_rq->runtime_remaining > 0)) 5318 return; 5319 5320 if (cfs_rq->throttled) 5321 return; 5322 /* 5323 * if we're unable to extend our runtime we resched so that the active 5324 * hierarchy can be throttled 5325 */ 5326 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5327 resched_curr(rq_of(cfs_rq)); 5328 } 5329 5330 static __always_inline 5331 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5332 { 5333 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5334 return; 5335 5336 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5337 } 5338 5339 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5340 { 5341 return cfs_bandwidth_used() && cfs_rq->throttled; 5342 } 5343 5344 /* check whether cfs_rq, or any parent, is throttled */ 5345 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5346 { 5347 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5348 } 5349 5350 /* 5351 * Ensure that neither of the group entities corresponding to src_cpu or 5352 * dest_cpu are members of a throttled hierarchy when performing group 5353 * load-balance operations. 5354 */ 5355 static inline int throttled_lb_pair(struct task_group *tg, 5356 int src_cpu, int dest_cpu) 5357 { 5358 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5359 5360 src_cfs_rq = tg->cfs_rq[src_cpu]; 5361 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5362 5363 return throttled_hierarchy(src_cfs_rq) || 5364 throttled_hierarchy(dest_cfs_rq); 5365 } 5366 5367 static int tg_unthrottle_up(struct task_group *tg, void *data) 5368 { 5369 struct rq *rq = data; 5370 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5371 5372 cfs_rq->throttle_count--; 5373 if (!cfs_rq->throttle_count) { 5374 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5375 cfs_rq->throttled_clock_pelt; 5376 5377 /* Add cfs_rq with load or one or more already running entities to the list */ 5378 if (!cfs_rq_is_decayed(cfs_rq)) 5379 list_add_leaf_cfs_rq(cfs_rq); 5380 } 5381 5382 return 0; 5383 } 5384 5385 static int tg_throttle_down(struct task_group *tg, void *data) 5386 { 5387 struct rq *rq = data; 5388 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5389 5390 /* group is entering throttled state, stop time */ 5391 if (!cfs_rq->throttle_count) { 5392 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5393 list_del_leaf_cfs_rq(cfs_rq); 5394 } 5395 cfs_rq->throttle_count++; 5396 5397 return 0; 5398 } 5399 5400 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5401 { 5402 struct rq *rq = rq_of(cfs_rq); 5403 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5404 struct sched_entity *se; 5405 long task_delta, idle_task_delta, dequeue = 1; 5406 5407 raw_spin_lock(&cfs_b->lock); 5408 /* This will start the period timer if necessary */ 5409 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5410 /* 5411 * We have raced with bandwidth becoming available, and if we 5412 * actually throttled the timer might not unthrottle us for an 5413 * entire period. We additionally needed to make sure that any 5414 * subsequent check_cfs_rq_runtime calls agree not to throttle 5415 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5416 * for 1ns of runtime rather than just check cfs_b. 5417 */ 5418 dequeue = 0; 5419 } else { 5420 list_add_tail_rcu(&cfs_rq->throttled_list, 5421 &cfs_b->throttled_cfs_rq); 5422 } 5423 raw_spin_unlock(&cfs_b->lock); 5424 5425 if (!dequeue) 5426 return false; /* Throttle no longer required. */ 5427 5428 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5429 5430 /* freeze hierarchy runnable averages while throttled */ 5431 rcu_read_lock(); 5432 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5433 rcu_read_unlock(); 5434 5435 task_delta = cfs_rq->h_nr_running; 5436 idle_task_delta = cfs_rq->idle_h_nr_running; 5437 for_each_sched_entity(se) { 5438 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5439 /* throttled entity or throttle-on-deactivate */ 5440 if (!se->on_rq) 5441 goto done; 5442 5443 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 5444 5445 if (cfs_rq_is_idle(group_cfs_rq(se))) 5446 idle_task_delta = cfs_rq->h_nr_running; 5447 5448 qcfs_rq->h_nr_running -= task_delta; 5449 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5450 5451 if (qcfs_rq->load.weight) { 5452 /* Avoid re-evaluating load for this entity: */ 5453 se = parent_entity(se); 5454 break; 5455 } 5456 } 5457 5458 for_each_sched_entity(se) { 5459 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5460 /* throttled entity or throttle-on-deactivate */ 5461 if (!se->on_rq) 5462 goto done; 5463 5464 update_load_avg(qcfs_rq, se, 0); 5465 se_update_runnable(se); 5466 5467 if (cfs_rq_is_idle(group_cfs_rq(se))) 5468 idle_task_delta = cfs_rq->h_nr_running; 5469 5470 qcfs_rq->h_nr_running -= task_delta; 5471 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5472 } 5473 5474 /* At this point se is NULL and we are at root level*/ 5475 sub_nr_running(rq, task_delta); 5476 5477 done: 5478 /* 5479 * Note: distribution will already see us throttled via the 5480 * throttled-list. rq->lock protects completion. 5481 */ 5482 cfs_rq->throttled = 1; 5483 cfs_rq->throttled_clock = rq_clock(rq); 5484 return true; 5485 } 5486 5487 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5488 { 5489 struct rq *rq = rq_of(cfs_rq); 5490 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5491 struct sched_entity *se; 5492 long task_delta, idle_task_delta; 5493 5494 se = cfs_rq->tg->se[cpu_of(rq)]; 5495 5496 cfs_rq->throttled = 0; 5497 5498 update_rq_clock(rq); 5499 5500 raw_spin_lock(&cfs_b->lock); 5501 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5502 list_del_rcu(&cfs_rq->throttled_list); 5503 raw_spin_unlock(&cfs_b->lock); 5504 5505 /* update hierarchical throttle state */ 5506 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5507 5508 if (!cfs_rq->load.weight) { 5509 if (!cfs_rq->on_list) 5510 return; 5511 /* 5512 * Nothing to run but something to decay (on_list)? 5513 * Complete the branch. 5514 */ 5515 for_each_sched_entity(se) { 5516 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5517 break; 5518 } 5519 goto unthrottle_throttle; 5520 } 5521 5522 task_delta = cfs_rq->h_nr_running; 5523 idle_task_delta = cfs_rq->idle_h_nr_running; 5524 for_each_sched_entity(se) { 5525 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5526 5527 if (se->on_rq) 5528 break; 5529 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5530 5531 if (cfs_rq_is_idle(group_cfs_rq(se))) 5532 idle_task_delta = cfs_rq->h_nr_running; 5533 5534 qcfs_rq->h_nr_running += task_delta; 5535 qcfs_rq->idle_h_nr_running += idle_task_delta; 5536 5537 /* end evaluation on encountering a throttled cfs_rq */ 5538 if (cfs_rq_throttled(qcfs_rq)) 5539 goto unthrottle_throttle; 5540 } 5541 5542 for_each_sched_entity(se) { 5543 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5544 5545 update_load_avg(qcfs_rq, se, UPDATE_TG); 5546 se_update_runnable(se); 5547 5548 if (cfs_rq_is_idle(group_cfs_rq(se))) 5549 idle_task_delta = cfs_rq->h_nr_running; 5550 5551 qcfs_rq->h_nr_running += task_delta; 5552 qcfs_rq->idle_h_nr_running += idle_task_delta; 5553 5554 /* end evaluation on encountering a throttled cfs_rq */ 5555 if (cfs_rq_throttled(qcfs_rq)) 5556 goto unthrottle_throttle; 5557 } 5558 5559 /* At this point se is NULL and we are at root level*/ 5560 add_nr_running(rq, task_delta); 5561 5562 unthrottle_throttle: 5563 assert_list_leaf_cfs_rq(rq); 5564 5565 /* Determine whether we need to wake up potentially idle CPU: */ 5566 if (rq->curr == rq->idle && rq->cfs.nr_running) 5567 resched_curr(rq); 5568 } 5569 5570 #ifdef CONFIG_SMP 5571 static void __cfsb_csd_unthrottle(void *arg) 5572 { 5573 struct cfs_rq *cursor, *tmp; 5574 struct rq *rq = arg; 5575 struct rq_flags rf; 5576 5577 rq_lock(rq, &rf); 5578 5579 /* 5580 * Since we hold rq lock we're safe from concurrent manipulation of 5581 * the CSD list. However, this RCU critical section annotates the 5582 * fact that we pair with sched_free_group_rcu(), so that we cannot 5583 * race with group being freed in the window between removing it 5584 * from the list and advancing to the next entry in the list. 5585 */ 5586 rcu_read_lock(); 5587 5588 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 5589 throttled_csd_list) { 5590 list_del_init(&cursor->throttled_csd_list); 5591 5592 if (cfs_rq_throttled(cursor)) 5593 unthrottle_cfs_rq(cursor); 5594 } 5595 5596 rcu_read_unlock(); 5597 5598 rq_unlock(rq, &rf); 5599 } 5600 5601 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5602 { 5603 struct rq *rq = rq_of(cfs_rq); 5604 bool first; 5605 5606 if (rq == this_rq()) { 5607 unthrottle_cfs_rq(cfs_rq); 5608 return; 5609 } 5610 5611 /* Already enqueued */ 5612 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 5613 return; 5614 5615 first = list_empty(&rq->cfsb_csd_list); 5616 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 5617 if (first) 5618 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 5619 } 5620 #else 5621 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5622 { 5623 unthrottle_cfs_rq(cfs_rq); 5624 } 5625 #endif 5626 5627 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5628 { 5629 lockdep_assert_rq_held(rq_of(cfs_rq)); 5630 5631 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 5632 cfs_rq->runtime_remaining <= 0)) 5633 return; 5634 5635 __unthrottle_cfs_rq_async(cfs_rq); 5636 } 5637 5638 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 5639 { 5640 struct cfs_rq *local_unthrottle = NULL; 5641 int this_cpu = smp_processor_id(); 5642 u64 runtime, remaining = 1; 5643 bool throttled = false; 5644 struct cfs_rq *cfs_rq; 5645 struct rq_flags rf; 5646 struct rq *rq; 5647 5648 rcu_read_lock(); 5649 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 5650 throttled_list) { 5651 rq = rq_of(cfs_rq); 5652 5653 if (!remaining) { 5654 throttled = true; 5655 break; 5656 } 5657 5658 rq_lock_irqsave(rq, &rf); 5659 if (!cfs_rq_throttled(cfs_rq)) 5660 goto next; 5661 5662 #ifdef CONFIG_SMP 5663 /* Already queued for async unthrottle */ 5664 if (!list_empty(&cfs_rq->throttled_csd_list)) 5665 goto next; 5666 #endif 5667 5668 /* By the above checks, this should never be true */ 5669 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 5670 5671 raw_spin_lock(&cfs_b->lock); 5672 runtime = -cfs_rq->runtime_remaining + 1; 5673 if (runtime > cfs_b->runtime) 5674 runtime = cfs_b->runtime; 5675 cfs_b->runtime -= runtime; 5676 remaining = cfs_b->runtime; 5677 raw_spin_unlock(&cfs_b->lock); 5678 5679 cfs_rq->runtime_remaining += runtime; 5680 5681 /* we check whether we're throttled above */ 5682 if (cfs_rq->runtime_remaining > 0) { 5683 if (cpu_of(rq) != this_cpu || 5684 SCHED_WARN_ON(local_unthrottle)) 5685 unthrottle_cfs_rq_async(cfs_rq); 5686 else 5687 local_unthrottle = cfs_rq; 5688 } else { 5689 throttled = true; 5690 } 5691 5692 next: 5693 rq_unlock_irqrestore(rq, &rf); 5694 } 5695 rcu_read_unlock(); 5696 5697 if (local_unthrottle) { 5698 rq = cpu_rq(this_cpu); 5699 rq_lock_irqsave(rq, &rf); 5700 if (cfs_rq_throttled(local_unthrottle)) 5701 unthrottle_cfs_rq(local_unthrottle); 5702 rq_unlock_irqrestore(rq, &rf); 5703 } 5704 5705 return throttled; 5706 } 5707 5708 /* 5709 * Responsible for refilling a task_group's bandwidth and unthrottling its 5710 * cfs_rqs as appropriate. If there has been no activity within the last 5711 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 5712 * used to track this state. 5713 */ 5714 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 5715 { 5716 int throttled; 5717 5718 /* no need to continue the timer with no bandwidth constraint */ 5719 if (cfs_b->quota == RUNTIME_INF) 5720 goto out_deactivate; 5721 5722 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5723 cfs_b->nr_periods += overrun; 5724 5725 /* Refill extra burst quota even if cfs_b->idle */ 5726 __refill_cfs_bandwidth_runtime(cfs_b); 5727 5728 /* 5729 * idle depends on !throttled (for the case of a large deficit), and if 5730 * we're going inactive then everything else can be deferred 5731 */ 5732 if (cfs_b->idle && !throttled) 5733 goto out_deactivate; 5734 5735 if (!throttled) { 5736 /* mark as potentially idle for the upcoming period */ 5737 cfs_b->idle = 1; 5738 return 0; 5739 } 5740 5741 /* account preceding periods in which throttling occurred */ 5742 cfs_b->nr_throttled += overrun; 5743 5744 /* 5745 * This check is repeated as we release cfs_b->lock while we unthrottle. 5746 */ 5747 while (throttled && cfs_b->runtime > 0) { 5748 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5749 /* we can't nest cfs_b->lock while distributing bandwidth */ 5750 throttled = distribute_cfs_runtime(cfs_b); 5751 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5752 } 5753 5754 /* 5755 * While we are ensured activity in the period following an 5756 * unthrottle, this also covers the case in which the new bandwidth is 5757 * insufficient to cover the existing bandwidth deficit. (Forcing the 5758 * timer to remain active while there are any throttled entities.) 5759 */ 5760 cfs_b->idle = 0; 5761 5762 return 0; 5763 5764 out_deactivate: 5765 return 1; 5766 } 5767 5768 /* a cfs_rq won't donate quota below this amount */ 5769 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 5770 /* minimum remaining period time to redistribute slack quota */ 5771 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 5772 /* how long we wait to gather additional slack before distributing */ 5773 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 5774 5775 /* 5776 * Are we near the end of the current quota period? 5777 * 5778 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 5779 * hrtimer base being cleared by hrtimer_start. In the case of 5780 * migrate_hrtimers, base is never cleared, so we are fine. 5781 */ 5782 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5783 { 5784 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5785 s64 remaining; 5786 5787 /* if the call-back is running a quota refresh is already occurring */ 5788 if (hrtimer_callback_running(refresh_timer)) 5789 return 1; 5790 5791 /* is a quota refresh about to occur? */ 5792 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5793 if (remaining < (s64)min_expire) 5794 return 1; 5795 5796 return 0; 5797 } 5798 5799 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5800 { 5801 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5802 5803 /* if there's a quota refresh soon don't bother with slack */ 5804 if (runtime_refresh_within(cfs_b, min_left)) 5805 return; 5806 5807 /* don't push forwards an existing deferred unthrottle */ 5808 if (cfs_b->slack_started) 5809 return; 5810 cfs_b->slack_started = true; 5811 5812 hrtimer_start(&cfs_b->slack_timer, 5813 ns_to_ktime(cfs_bandwidth_slack_period), 5814 HRTIMER_MODE_REL); 5815 } 5816 5817 /* we know any runtime found here is valid as update_curr() precedes return */ 5818 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5819 { 5820 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5821 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5822 5823 if (slack_runtime <= 0) 5824 return; 5825 5826 raw_spin_lock(&cfs_b->lock); 5827 if (cfs_b->quota != RUNTIME_INF) { 5828 cfs_b->runtime += slack_runtime; 5829 5830 /* we are under rq->lock, defer unthrottling using a timer */ 5831 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5832 !list_empty(&cfs_b->throttled_cfs_rq)) 5833 start_cfs_slack_bandwidth(cfs_b); 5834 } 5835 raw_spin_unlock(&cfs_b->lock); 5836 5837 /* even if it's not valid for return we don't want to try again */ 5838 cfs_rq->runtime_remaining -= slack_runtime; 5839 } 5840 5841 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5842 { 5843 if (!cfs_bandwidth_used()) 5844 return; 5845 5846 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5847 return; 5848 5849 __return_cfs_rq_runtime(cfs_rq); 5850 } 5851 5852 /* 5853 * This is done with a timer (instead of inline with bandwidth return) since 5854 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5855 */ 5856 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5857 { 5858 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5859 unsigned long flags; 5860 5861 /* confirm we're still not at a refresh boundary */ 5862 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5863 cfs_b->slack_started = false; 5864 5865 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5866 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5867 return; 5868 } 5869 5870 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5871 runtime = cfs_b->runtime; 5872 5873 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5874 5875 if (!runtime) 5876 return; 5877 5878 distribute_cfs_runtime(cfs_b); 5879 } 5880 5881 /* 5882 * When a group wakes up we want to make sure that its quota is not already 5883 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5884 * runtime as update_curr() throttling can not trigger until it's on-rq. 5885 */ 5886 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5887 { 5888 if (!cfs_bandwidth_used()) 5889 return; 5890 5891 /* an active group must be handled by the update_curr()->put() path */ 5892 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5893 return; 5894 5895 /* ensure the group is not already throttled */ 5896 if (cfs_rq_throttled(cfs_rq)) 5897 return; 5898 5899 /* update runtime allocation */ 5900 account_cfs_rq_runtime(cfs_rq, 0); 5901 if (cfs_rq->runtime_remaining <= 0) 5902 throttle_cfs_rq(cfs_rq); 5903 } 5904 5905 static void sync_throttle(struct task_group *tg, int cpu) 5906 { 5907 struct cfs_rq *pcfs_rq, *cfs_rq; 5908 5909 if (!cfs_bandwidth_used()) 5910 return; 5911 5912 if (!tg->parent) 5913 return; 5914 5915 cfs_rq = tg->cfs_rq[cpu]; 5916 pcfs_rq = tg->parent->cfs_rq[cpu]; 5917 5918 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5919 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 5920 } 5921 5922 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5923 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5924 { 5925 if (!cfs_bandwidth_used()) 5926 return false; 5927 5928 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5929 return false; 5930 5931 /* 5932 * it's possible for a throttled entity to be forced into a running 5933 * state (e.g. set_curr_task), in this case we're finished. 5934 */ 5935 if (cfs_rq_throttled(cfs_rq)) 5936 return true; 5937 5938 return throttle_cfs_rq(cfs_rq); 5939 } 5940 5941 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5942 { 5943 struct cfs_bandwidth *cfs_b = 5944 container_of(timer, struct cfs_bandwidth, slack_timer); 5945 5946 do_sched_cfs_slack_timer(cfs_b); 5947 5948 return HRTIMER_NORESTART; 5949 } 5950 5951 extern const u64 max_cfs_quota_period; 5952 5953 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5954 { 5955 struct cfs_bandwidth *cfs_b = 5956 container_of(timer, struct cfs_bandwidth, period_timer); 5957 unsigned long flags; 5958 int overrun; 5959 int idle = 0; 5960 int count = 0; 5961 5962 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5963 for (;;) { 5964 overrun = hrtimer_forward_now(timer, cfs_b->period); 5965 if (!overrun) 5966 break; 5967 5968 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5969 5970 if (++count > 3) { 5971 u64 new, old = ktime_to_ns(cfs_b->period); 5972 5973 /* 5974 * Grow period by a factor of 2 to avoid losing precision. 5975 * Precision loss in the quota/period ratio can cause __cfs_schedulable 5976 * to fail. 5977 */ 5978 new = old * 2; 5979 if (new < max_cfs_quota_period) { 5980 cfs_b->period = ns_to_ktime(new); 5981 cfs_b->quota *= 2; 5982 cfs_b->burst *= 2; 5983 5984 pr_warn_ratelimited( 5985 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5986 smp_processor_id(), 5987 div_u64(new, NSEC_PER_USEC), 5988 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5989 } else { 5990 pr_warn_ratelimited( 5991 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5992 smp_processor_id(), 5993 div_u64(old, NSEC_PER_USEC), 5994 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5995 } 5996 5997 /* reset count so we don't come right back in here */ 5998 count = 0; 5999 } 6000 } 6001 if (idle) 6002 cfs_b->period_active = 0; 6003 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6004 6005 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6006 } 6007 6008 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6009 { 6010 raw_spin_lock_init(&cfs_b->lock); 6011 cfs_b->runtime = 0; 6012 cfs_b->quota = RUNTIME_INF; 6013 cfs_b->period = ns_to_ktime(default_cfs_period()); 6014 cfs_b->burst = 0; 6015 6016 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6017 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6018 cfs_b->period_timer.function = sched_cfs_period_timer; 6019 6020 /* Add a random offset so that timers interleave */ 6021 hrtimer_set_expires(&cfs_b->period_timer, 6022 get_random_u32_below(cfs_b->period)); 6023 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6024 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6025 cfs_b->slack_started = false; 6026 } 6027 6028 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6029 { 6030 cfs_rq->runtime_enabled = 0; 6031 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6032 #ifdef CONFIG_SMP 6033 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6034 #endif 6035 } 6036 6037 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6038 { 6039 lockdep_assert_held(&cfs_b->lock); 6040 6041 if (cfs_b->period_active) 6042 return; 6043 6044 cfs_b->period_active = 1; 6045 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6046 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6047 } 6048 6049 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6050 { 6051 int __maybe_unused i; 6052 6053 /* init_cfs_bandwidth() was not called */ 6054 if (!cfs_b->throttled_cfs_rq.next) 6055 return; 6056 6057 hrtimer_cancel(&cfs_b->period_timer); 6058 hrtimer_cancel(&cfs_b->slack_timer); 6059 6060 /* 6061 * It is possible that we still have some cfs_rq's pending on a CSD 6062 * list, though this race is very rare. In order for this to occur, we 6063 * must have raced with the last task leaving the group while there 6064 * exist throttled cfs_rq(s), and the period_timer must have queued the 6065 * CSD item but the remote cpu has not yet processed it. To handle this, 6066 * we can simply flush all pending CSD work inline here. We're 6067 * guaranteed at this point that no additional cfs_rq of this group can 6068 * join a CSD list. 6069 */ 6070 #ifdef CONFIG_SMP 6071 for_each_possible_cpu(i) { 6072 struct rq *rq = cpu_rq(i); 6073 unsigned long flags; 6074 6075 if (list_empty(&rq->cfsb_csd_list)) 6076 continue; 6077 6078 local_irq_save(flags); 6079 __cfsb_csd_unthrottle(rq); 6080 local_irq_restore(flags); 6081 } 6082 #endif 6083 } 6084 6085 /* 6086 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6087 * 6088 * The race is harmless, since modifying bandwidth settings of unhooked group 6089 * bits doesn't do much. 6090 */ 6091 6092 /* cpu online callback */ 6093 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6094 { 6095 struct task_group *tg; 6096 6097 lockdep_assert_rq_held(rq); 6098 6099 rcu_read_lock(); 6100 list_for_each_entry_rcu(tg, &task_groups, list) { 6101 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6102 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6103 6104 raw_spin_lock(&cfs_b->lock); 6105 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6106 raw_spin_unlock(&cfs_b->lock); 6107 } 6108 rcu_read_unlock(); 6109 } 6110 6111 /* cpu offline callback */ 6112 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6113 { 6114 struct task_group *tg; 6115 6116 lockdep_assert_rq_held(rq); 6117 6118 rcu_read_lock(); 6119 list_for_each_entry_rcu(tg, &task_groups, list) { 6120 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6121 6122 if (!cfs_rq->runtime_enabled) 6123 continue; 6124 6125 /* 6126 * clock_task is not advancing so we just need to make sure 6127 * there's some valid quota amount 6128 */ 6129 cfs_rq->runtime_remaining = 1; 6130 /* 6131 * Offline rq is schedulable till CPU is completely disabled 6132 * in take_cpu_down(), so we prevent new cfs throttling here. 6133 */ 6134 cfs_rq->runtime_enabled = 0; 6135 6136 if (cfs_rq_throttled(cfs_rq)) 6137 unthrottle_cfs_rq(cfs_rq); 6138 } 6139 rcu_read_unlock(); 6140 } 6141 6142 #else /* CONFIG_CFS_BANDWIDTH */ 6143 6144 static inline bool cfs_bandwidth_used(void) 6145 { 6146 return false; 6147 } 6148 6149 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6150 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6151 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6152 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6153 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6154 6155 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6156 { 6157 return 0; 6158 } 6159 6160 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6161 { 6162 return 0; 6163 } 6164 6165 static inline int throttled_lb_pair(struct task_group *tg, 6166 int src_cpu, int dest_cpu) 6167 { 6168 return 0; 6169 } 6170 6171 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6172 6173 #ifdef CONFIG_FAIR_GROUP_SCHED 6174 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6175 #endif 6176 6177 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6178 { 6179 return NULL; 6180 } 6181 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6182 static inline void update_runtime_enabled(struct rq *rq) {} 6183 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6184 6185 #endif /* CONFIG_CFS_BANDWIDTH */ 6186 6187 /************************************************** 6188 * CFS operations on tasks: 6189 */ 6190 6191 #ifdef CONFIG_SCHED_HRTICK 6192 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6193 { 6194 struct sched_entity *se = &p->se; 6195 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6196 6197 SCHED_WARN_ON(task_rq(p) != rq); 6198 6199 if (rq->cfs.h_nr_running > 1) { 6200 u64 slice = sched_slice(cfs_rq, se); 6201 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6202 s64 delta = slice - ran; 6203 6204 if (delta < 0) { 6205 if (task_current(rq, p)) 6206 resched_curr(rq); 6207 return; 6208 } 6209 hrtick_start(rq, delta); 6210 } 6211 } 6212 6213 /* 6214 * called from enqueue/dequeue and updates the hrtick when the 6215 * current task is from our class and nr_running is low enough 6216 * to matter. 6217 */ 6218 static void hrtick_update(struct rq *rq) 6219 { 6220 struct task_struct *curr = rq->curr; 6221 6222 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 6223 return; 6224 6225 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 6226 hrtick_start_fair(rq, curr); 6227 } 6228 #else /* !CONFIG_SCHED_HRTICK */ 6229 static inline void 6230 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6231 { 6232 } 6233 6234 static inline void hrtick_update(struct rq *rq) 6235 { 6236 } 6237 #endif 6238 6239 #ifdef CONFIG_SMP 6240 static inline bool cpu_overutilized(int cpu) 6241 { 6242 unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6243 unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6244 6245 /* Return true only if the utilization doesn't fit CPU's capacity */ 6246 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6247 } 6248 6249 static inline void update_overutilized_status(struct rq *rq) 6250 { 6251 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 6252 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 6253 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 6254 } 6255 } 6256 #else 6257 static inline void update_overutilized_status(struct rq *rq) { } 6258 #endif 6259 6260 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6261 static int sched_idle_rq(struct rq *rq) 6262 { 6263 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6264 rq->nr_running); 6265 } 6266 6267 /* 6268 * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use 6269 * of idle_nr_running, which does not consider idle descendants of normal 6270 * entities. 6271 */ 6272 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq) 6273 { 6274 return cfs_rq->nr_running && 6275 cfs_rq->nr_running == cfs_rq->idle_nr_running; 6276 } 6277 6278 #ifdef CONFIG_SMP 6279 static int sched_idle_cpu(int cpu) 6280 { 6281 return sched_idle_rq(cpu_rq(cpu)); 6282 } 6283 #endif 6284 6285 /* 6286 * The enqueue_task method is called before nr_running is 6287 * increased. Here we update the fair scheduling stats and 6288 * then put the task into the rbtree: 6289 */ 6290 static void 6291 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6292 { 6293 struct cfs_rq *cfs_rq; 6294 struct sched_entity *se = &p->se; 6295 int idle_h_nr_running = task_has_idle_policy(p); 6296 int task_new = !(flags & ENQUEUE_WAKEUP); 6297 6298 /* 6299 * The code below (indirectly) updates schedutil which looks at 6300 * the cfs_rq utilization to select a frequency. 6301 * Let's add the task's estimated utilization to the cfs_rq's 6302 * estimated utilization, before we update schedutil. 6303 */ 6304 util_est_enqueue(&rq->cfs, p); 6305 6306 /* 6307 * If in_iowait is set, the code below may not trigger any cpufreq 6308 * utilization updates, so do it here explicitly with the IOWAIT flag 6309 * passed. 6310 */ 6311 if (p->in_iowait) 6312 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6313 6314 for_each_sched_entity(se) { 6315 if (se->on_rq) 6316 break; 6317 cfs_rq = cfs_rq_of(se); 6318 enqueue_entity(cfs_rq, se, flags); 6319 6320 cfs_rq->h_nr_running++; 6321 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6322 6323 if (cfs_rq_is_idle(cfs_rq)) 6324 idle_h_nr_running = 1; 6325 6326 /* end evaluation on encountering a throttled cfs_rq */ 6327 if (cfs_rq_throttled(cfs_rq)) 6328 goto enqueue_throttle; 6329 6330 flags = ENQUEUE_WAKEUP; 6331 } 6332 6333 for_each_sched_entity(se) { 6334 cfs_rq = cfs_rq_of(se); 6335 6336 update_load_avg(cfs_rq, se, UPDATE_TG); 6337 se_update_runnable(se); 6338 update_cfs_group(se); 6339 6340 cfs_rq->h_nr_running++; 6341 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6342 6343 if (cfs_rq_is_idle(cfs_rq)) 6344 idle_h_nr_running = 1; 6345 6346 /* end evaluation on encountering a throttled cfs_rq */ 6347 if (cfs_rq_throttled(cfs_rq)) 6348 goto enqueue_throttle; 6349 } 6350 6351 /* At this point se is NULL and we are at root level*/ 6352 add_nr_running(rq, 1); 6353 6354 /* 6355 * Since new tasks are assigned an initial util_avg equal to 6356 * half of the spare capacity of their CPU, tiny tasks have the 6357 * ability to cross the overutilized threshold, which will 6358 * result in the load balancer ruining all the task placement 6359 * done by EAS. As a way to mitigate that effect, do not account 6360 * for the first enqueue operation of new tasks during the 6361 * overutilized flag detection. 6362 * 6363 * A better way of solving this problem would be to wait for 6364 * the PELT signals of tasks to converge before taking them 6365 * into account, but that is not straightforward to implement, 6366 * and the following generally works well enough in practice. 6367 */ 6368 if (!task_new) 6369 update_overutilized_status(rq); 6370 6371 enqueue_throttle: 6372 assert_list_leaf_cfs_rq(rq); 6373 6374 hrtick_update(rq); 6375 } 6376 6377 static void set_next_buddy(struct sched_entity *se); 6378 6379 /* 6380 * The dequeue_task method is called before nr_running is 6381 * decreased. We remove the task from the rbtree and 6382 * update the fair scheduling stats: 6383 */ 6384 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6385 { 6386 struct cfs_rq *cfs_rq; 6387 struct sched_entity *se = &p->se; 6388 int task_sleep = flags & DEQUEUE_SLEEP; 6389 int idle_h_nr_running = task_has_idle_policy(p); 6390 bool was_sched_idle = sched_idle_rq(rq); 6391 6392 util_est_dequeue(&rq->cfs, p); 6393 6394 for_each_sched_entity(se) { 6395 cfs_rq = cfs_rq_of(se); 6396 dequeue_entity(cfs_rq, se, flags); 6397 6398 cfs_rq->h_nr_running--; 6399 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6400 6401 if (cfs_rq_is_idle(cfs_rq)) 6402 idle_h_nr_running = 1; 6403 6404 /* end evaluation on encountering a throttled cfs_rq */ 6405 if (cfs_rq_throttled(cfs_rq)) 6406 goto dequeue_throttle; 6407 6408 /* Don't dequeue parent if it has other entities besides us */ 6409 if (cfs_rq->load.weight) { 6410 /* Avoid re-evaluating load for this entity: */ 6411 se = parent_entity(se); 6412 /* 6413 * Bias pick_next to pick a task from this cfs_rq, as 6414 * p is sleeping when it is within its sched_slice. 6415 */ 6416 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 6417 set_next_buddy(se); 6418 break; 6419 } 6420 flags |= DEQUEUE_SLEEP; 6421 } 6422 6423 for_each_sched_entity(se) { 6424 cfs_rq = cfs_rq_of(se); 6425 6426 update_load_avg(cfs_rq, se, UPDATE_TG); 6427 se_update_runnable(se); 6428 update_cfs_group(se); 6429 6430 cfs_rq->h_nr_running--; 6431 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6432 6433 if (cfs_rq_is_idle(cfs_rq)) 6434 idle_h_nr_running = 1; 6435 6436 /* end evaluation on encountering a throttled cfs_rq */ 6437 if (cfs_rq_throttled(cfs_rq)) 6438 goto dequeue_throttle; 6439 6440 } 6441 6442 /* At this point se is NULL and we are at root level*/ 6443 sub_nr_running(rq, 1); 6444 6445 /* balance early to pull high priority tasks */ 6446 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 6447 rq->next_balance = jiffies; 6448 6449 dequeue_throttle: 6450 util_est_update(&rq->cfs, p, task_sleep); 6451 hrtick_update(rq); 6452 } 6453 6454 #ifdef CONFIG_SMP 6455 6456 /* Working cpumask for: load_balance, load_balance_newidle. */ 6457 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6458 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 6459 6460 #ifdef CONFIG_NO_HZ_COMMON 6461 6462 static struct { 6463 cpumask_var_t idle_cpus_mask; 6464 atomic_t nr_cpus; 6465 int has_blocked; /* Idle CPUS has blocked load */ 6466 int needs_update; /* Newly idle CPUs need their next_balance collated */ 6467 unsigned long next_balance; /* in jiffy units */ 6468 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 6469 } nohz ____cacheline_aligned; 6470 6471 #endif /* CONFIG_NO_HZ_COMMON */ 6472 6473 static unsigned long cpu_load(struct rq *rq) 6474 { 6475 return cfs_rq_load_avg(&rq->cfs); 6476 } 6477 6478 /* 6479 * cpu_load_without - compute CPU load without any contributions from *p 6480 * @cpu: the CPU which load is requested 6481 * @p: the task which load should be discounted 6482 * 6483 * The load of a CPU is defined by the load of tasks currently enqueued on that 6484 * CPU as well as tasks which are currently sleeping after an execution on that 6485 * CPU. 6486 * 6487 * This method returns the load of the specified CPU by discounting the load of 6488 * the specified task, whenever the task is currently contributing to the CPU 6489 * load. 6490 */ 6491 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 6492 { 6493 struct cfs_rq *cfs_rq; 6494 unsigned int load; 6495 6496 /* Task has no contribution or is new */ 6497 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6498 return cpu_load(rq); 6499 6500 cfs_rq = &rq->cfs; 6501 load = READ_ONCE(cfs_rq->avg.load_avg); 6502 6503 /* Discount task's util from CPU's util */ 6504 lsub_positive(&load, task_h_load(p)); 6505 6506 return load; 6507 } 6508 6509 static unsigned long cpu_runnable(struct rq *rq) 6510 { 6511 return cfs_rq_runnable_avg(&rq->cfs); 6512 } 6513 6514 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 6515 { 6516 struct cfs_rq *cfs_rq; 6517 unsigned int runnable; 6518 6519 /* Task has no contribution or is new */ 6520 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6521 return cpu_runnable(rq); 6522 6523 cfs_rq = &rq->cfs; 6524 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 6525 6526 /* Discount task's runnable from CPU's runnable */ 6527 lsub_positive(&runnable, p->se.avg.runnable_avg); 6528 6529 return runnable; 6530 } 6531 6532 static unsigned long capacity_of(int cpu) 6533 { 6534 return cpu_rq(cpu)->cpu_capacity; 6535 } 6536 6537 static void record_wakee(struct task_struct *p) 6538 { 6539 /* 6540 * Only decay a single time; tasks that have less then 1 wakeup per 6541 * jiffy will not have built up many flips. 6542 */ 6543 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 6544 current->wakee_flips >>= 1; 6545 current->wakee_flip_decay_ts = jiffies; 6546 } 6547 6548 if (current->last_wakee != p) { 6549 current->last_wakee = p; 6550 current->wakee_flips++; 6551 } 6552 } 6553 6554 /* 6555 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 6556 * 6557 * A waker of many should wake a different task than the one last awakened 6558 * at a frequency roughly N times higher than one of its wakees. 6559 * 6560 * In order to determine whether we should let the load spread vs consolidating 6561 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 6562 * partner, and a factor of lls_size higher frequency in the other. 6563 * 6564 * With both conditions met, we can be relatively sure that the relationship is 6565 * non-monogamous, with partner count exceeding socket size. 6566 * 6567 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 6568 * whatever is irrelevant, spread criteria is apparent partner count exceeds 6569 * socket size. 6570 */ 6571 static int wake_wide(struct task_struct *p) 6572 { 6573 unsigned int master = current->wakee_flips; 6574 unsigned int slave = p->wakee_flips; 6575 int factor = __this_cpu_read(sd_llc_size); 6576 6577 if (master < slave) 6578 swap(master, slave); 6579 if (slave < factor || master < slave * factor) 6580 return 0; 6581 return 1; 6582 } 6583 6584 /* 6585 * The purpose of wake_affine() is to quickly determine on which CPU we can run 6586 * soonest. For the purpose of speed we only consider the waking and previous 6587 * CPU. 6588 * 6589 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 6590 * cache-affine and is (or will be) idle. 6591 * 6592 * wake_affine_weight() - considers the weight to reflect the average 6593 * scheduling latency of the CPUs. This seems to work 6594 * for the overloaded case. 6595 */ 6596 static int 6597 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 6598 { 6599 /* 6600 * If this_cpu is idle, it implies the wakeup is from interrupt 6601 * context. Only allow the move if cache is shared. Otherwise an 6602 * interrupt intensive workload could force all tasks onto one 6603 * node depending on the IO topology or IRQ affinity settings. 6604 * 6605 * If the prev_cpu is idle and cache affine then avoid a migration. 6606 * There is no guarantee that the cache hot data from an interrupt 6607 * is more important than cache hot data on the prev_cpu and from 6608 * a cpufreq perspective, it's better to have higher utilisation 6609 * on one CPU. 6610 */ 6611 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 6612 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 6613 6614 if (sync && cpu_rq(this_cpu)->nr_running == 1) 6615 return this_cpu; 6616 6617 if (available_idle_cpu(prev_cpu)) 6618 return prev_cpu; 6619 6620 return nr_cpumask_bits; 6621 } 6622 6623 static int 6624 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 6625 int this_cpu, int prev_cpu, int sync) 6626 { 6627 s64 this_eff_load, prev_eff_load; 6628 unsigned long task_load; 6629 6630 this_eff_load = cpu_load(cpu_rq(this_cpu)); 6631 6632 if (sync) { 6633 unsigned long current_load = task_h_load(current); 6634 6635 if (current_load > this_eff_load) 6636 return this_cpu; 6637 6638 this_eff_load -= current_load; 6639 } 6640 6641 task_load = task_h_load(p); 6642 6643 this_eff_load += task_load; 6644 if (sched_feat(WA_BIAS)) 6645 this_eff_load *= 100; 6646 this_eff_load *= capacity_of(prev_cpu); 6647 6648 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 6649 prev_eff_load -= task_load; 6650 if (sched_feat(WA_BIAS)) 6651 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 6652 prev_eff_load *= capacity_of(this_cpu); 6653 6654 /* 6655 * If sync, adjust the weight of prev_eff_load such that if 6656 * prev_eff == this_eff that select_idle_sibling() will consider 6657 * stacking the wakee on top of the waker if no other CPU is 6658 * idle. 6659 */ 6660 if (sync) 6661 prev_eff_load += 1; 6662 6663 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 6664 } 6665 6666 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 6667 int this_cpu, int prev_cpu, int sync) 6668 { 6669 int target = nr_cpumask_bits; 6670 6671 if (sched_feat(WA_IDLE)) 6672 target = wake_affine_idle(this_cpu, prev_cpu, sync); 6673 6674 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 6675 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 6676 6677 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 6678 if (target != this_cpu) 6679 return prev_cpu; 6680 6681 schedstat_inc(sd->ttwu_move_affine); 6682 schedstat_inc(p->stats.nr_wakeups_affine); 6683 return target; 6684 } 6685 6686 static struct sched_group * 6687 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 6688 6689 /* 6690 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 6691 */ 6692 static int 6693 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 6694 { 6695 unsigned long load, min_load = ULONG_MAX; 6696 unsigned int min_exit_latency = UINT_MAX; 6697 u64 latest_idle_timestamp = 0; 6698 int least_loaded_cpu = this_cpu; 6699 int shallowest_idle_cpu = -1; 6700 int i; 6701 6702 /* Check if we have any choice: */ 6703 if (group->group_weight == 1) 6704 return cpumask_first(sched_group_span(group)); 6705 6706 /* Traverse only the allowed CPUs */ 6707 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 6708 struct rq *rq = cpu_rq(i); 6709 6710 if (!sched_core_cookie_match(rq, p)) 6711 continue; 6712 6713 if (sched_idle_cpu(i)) 6714 return i; 6715 6716 if (available_idle_cpu(i)) { 6717 struct cpuidle_state *idle = idle_get_state(rq); 6718 if (idle && idle->exit_latency < min_exit_latency) { 6719 /* 6720 * We give priority to a CPU whose idle state 6721 * has the smallest exit latency irrespective 6722 * of any idle timestamp. 6723 */ 6724 min_exit_latency = idle->exit_latency; 6725 latest_idle_timestamp = rq->idle_stamp; 6726 shallowest_idle_cpu = i; 6727 } else if ((!idle || idle->exit_latency == min_exit_latency) && 6728 rq->idle_stamp > latest_idle_timestamp) { 6729 /* 6730 * If equal or no active idle state, then 6731 * the most recently idled CPU might have 6732 * a warmer cache. 6733 */ 6734 latest_idle_timestamp = rq->idle_stamp; 6735 shallowest_idle_cpu = i; 6736 } 6737 } else if (shallowest_idle_cpu == -1) { 6738 load = cpu_load(cpu_rq(i)); 6739 if (load < min_load) { 6740 min_load = load; 6741 least_loaded_cpu = i; 6742 } 6743 } 6744 } 6745 6746 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 6747 } 6748 6749 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 6750 int cpu, int prev_cpu, int sd_flag) 6751 { 6752 int new_cpu = cpu; 6753 6754 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 6755 return prev_cpu; 6756 6757 /* 6758 * We need task's util for cpu_util_without, sync it up to 6759 * prev_cpu's last_update_time. 6760 */ 6761 if (!(sd_flag & SD_BALANCE_FORK)) 6762 sync_entity_load_avg(&p->se); 6763 6764 while (sd) { 6765 struct sched_group *group; 6766 struct sched_domain *tmp; 6767 int weight; 6768 6769 if (!(sd->flags & sd_flag)) { 6770 sd = sd->child; 6771 continue; 6772 } 6773 6774 group = find_idlest_group(sd, p, cpu); 6775 if (!group) { 6776 sd = sd->child; 6777 continue; 6778 } 6779 6780 new_cpu = find_idlest_group_cpu(group, p, cpu); 6781 if (new_cpu == cpu) { 6782 /* Now try balancing at a lower domain level of 'cpu': */ 6783 sd = sd->child; 6784 continue; 6785 } 6786 6787 /* Now try balancing at a lower domain level of 'new_cpu': */ 6788 cpu = new_cpu; 6789 weight = sd->span_weight; 6790 sd = NULL; 6791 for_each_domain(cpu, tmp) { 6792 if (weight <= tmp->span_weight) 6793 break; 6794 if (tmp->flags & sd_flag) 6795 sd = tmp; 6796 } 6797 } 6798 6799 return new_cpu; 6800 } 6801 6802 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 6803 { 6804 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 6805 sched_cpu_cookie_match(cpu_rq(cpu), p)) 6806 return cpu; 6807 6808 return -1; 6809 } 6810 6811 #ifdef CONFIG_SCHED_SMT 6812 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6813 EXPORT_SYMBOL_GPL(sched_smt_present); 6814 6815 static inline void set_idle_cores(int cpu, int val) 6816 { 6817 struct sched_domain_shared *sds; 6818 6819 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6820 if (sds) 6821 WRITE_ONCE(sds->has_idle_cores, val); 6822 } 6823 6824 static inline bool test_idle_cores(int cpu) 6825 { 6826 struct sched_domain_shared *sds; 6827 6828 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6829 if (sds) 6830 return READ_ONCE(sds->has_idle_cores); 6831 6832 return false; 6833 } 6834 6835 /* 6836 * Scans the local SMT mask to see if the entire core is idle, and records this 6837 * information in sd_llc_shared->has_idle_cores. 6838 * 6839 * Since SMT siblings share all cache levels, inspecting this limited remote 6840 * state should be fairly cheap. 6841 */ 6842 void __update_idle_core(struct rq *rq) 6843 { 6844 int core = cpu_of(rq); 6845 int cpu; 6846 6847 rcu_read_lock(); 6848 if (test_idle_cores(core)) 6849 goto unlock; 6850 6851 for_each_cpu(cpu, cpu_smt_mask(core)) { 6852 if (cpu == core) 6853 continue; 6854 6855 if (!available_idle_cpu(cpu)) 6856 goto unlock; 6857 } 6858 6859 set_idle_cores(core, 1); 6860 unlock: 6861 rcu_read_unlock(); 6862 } 6863 6864 /* 6865 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6866 * there are no idle cores left in the system; tracked through 6867 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6868 */ 6869 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6870 { 6871 bool idle = true; 6872 int cpu; 6873 6874 for_each_cpu(cpu, cpu_smt_mask(core)) { 6875 if (!available_idle_cpu(cpu)) { 6876 idle = false; 6877 if (*idle_cpu == -1) { 6878 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 6879 *idle_cpu = cpu; 6880 break; 6881 } 6882 continue; 6883 } 6884 break; 6885 } 6886 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 6887 *idle_cpu = cpu; 6888 } 6889 6890 if (idle) 6891 return core; 6892 6893 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 6894 return -1; 6895 } 6896 6897 /* 6898 * Scan the local SMT mask for idle CPUs. 6899 */ 6900 static int select_idle_smt(struct task_struct *p, int target) 6901 { 6902 int cpu; 6903 6904 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 6905 if (cpu == target) 6906 continue; 6907 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6908 return cpu; 6909 } 6910 6911 return -1; 6912 } 6913 6914 #else /* CONFIG_SCHED_SMT */ 6915 6916 static inline void set_idle_cores(int cpu, int val) 6917 { 6918 } 6919 6920 static inline bool test_idle_cores(int cpu) 6921 { 6922 return false; 6923 } 6924 6925 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6926 { 6927 return __select_idle_cpu(core, p); 6928 } 6929 6930 static inline int select_idle_smt(struct task_struct *p, int target) 6931 { 6932 return -1; 6933 } 6934 6935 #endif /* CONFIG_SCHED_SMT */ 6936 6937 /* 6938 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6939 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6940 * average idle time for this rq (as found in rq->avg_idle). 6941 */ 6942 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 6943 { 6944 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 6945 int i, cpu, idle_cpu = -1, nr = INT_MAX; 6946 struct sched_domain_shared *sd_share; 6947 struct rq *this_rq = this_rq(); 6948 int this = smp_processor_id(); 6949 struct sched_domain *this_sd = NULL; 6950 u64 time = 0; 6951 6952 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6953 6954 if (sched_feat(SIS_PROP) && !has_idle_core) { 6955 u64 avg_cost, avg_idle, span_avg; 6956 unsigned long now = jiffies; 6957 6958 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6959 if (!this_sd) 6960 return -1; 6961 6962 /* 6963 * If we're busy, the assumption that the last idle period 6964 * predicts the future is flawed; age away the remaining 6965 * predicted idle time. 6966 */ 6967 if (unlikely(this_rq->wake_stamp < now)) { 6968 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) { 6969 this_rq->wake_stamp++; 6970 this_rq->wake_avg_idle >>= 1; 6971 } 6972 } 6973 6974 avg_idle = this_rq->wake_avg_idle; 6975 avg_cost = this_sd->avg_scan_cost + 1; 6976 6977 span_avg = sd->span_weight * avg_idle; 6978 if (span_avg > 4*avg_cost) 6979 nr = div_u64(span_avg, avg_cost); 6980 else 6981 nr = 4; 6982 6983 time = cpu_clock(this); 6984 } 6985 6986 if (sched_feat(SIS_UTIL)) { 6987 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 6988 if (sd_share) { 6989 /* because !--nr is the condition to stop scan */ 6990 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 6991 /* overloaded LLC is unlikely to have idle cpu/core */ 6992 if (nr == 1) 6993 return -1; 6994 } 6995 } 6996 6997 for_each_cpu_wrap(cpu, cpus, target + 1) { 6998 if (has_idle_core) { 6999 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7000 if ((unsigned int)i < nr_cpumask_bits) 7001 return i; 7002 7003 } else { 7004 if (!--nr) 7005 return -1; 7006 idle_cpu = __select_idle_cpu(cpu, p); 7007 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7008 break; 7009 } 7010 } 7011 7012 if (has_idle_core) 7013 set_idle_cores(target, false); 7014 7015 if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) { 7016 time = cpu_clock(this) - time; 7017 7018 /* 7019 * Account for the scan cost of wakeups against the average 7020 * idle time. 7021 */ 7022 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time); 7023 7024 update_avg(&this_sd->avg_scan_cost, time); 7025 } 7026 7027 return idle_cpu; 7028 } 7029 7030 /* 7031 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7032 * the task fits. If no CPU is big enough, but there are idle ones, try to 7033 * maximize capacity. 7034 */ 7035 static int 7036 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7037 { 7038 unsigned long task_util, util_min, util_max, best_cap = 0; 7039 int fits, best_fits = 0; 7040 int cpu, best_cpu = -1; 7041 struct cpumask *cpus; 7042 7043 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7044 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7045 7046 task_util = task_util_est(p); 7047 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7048 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7049 7050 for_each_cpu_wrap(cpu, cpus, target + 1) { 7051 unsigned long cpu_cap = capacity_of(cpu); 7052 7053 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7054 continue; 7055 7056 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7057 7058 /* This CPU fits with all requirements */ 7059 if (fits > 0) 7060 return cpu; 7061 /* 7062 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7063 * Look for the CPU with best capacity. 7064 */ 7065 else if (fits < 0) 7066 cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu)); 7067 7068 /* 7069 * First, select CPU which fits better (-1 being better than 0). 7070 * Then, select the one with best capacity at same level. 7071 */ 7072 if ((fits < best_fits) || 7073 ((fits == best_fits) && (cpu_cap > best_cap))) { 7074 best_cap = cpu_cap; 7075 best_cpu = cpu; 7076 best_fits = fits; 7077 } 7078 } 7079 7080 return best_cpu; 7081 } 7082 7083 static inline bool asym_fits_cpu(unsigned long util, 7084 unsigned long util_min, 7085 unsigned long util_max, 7086 int cpu) 7087 { 7088 if (sched_asym_cpucap_active()) 7089 /* 7090 * Return true only if the cpu fully fits the task requirements 7091 * which include the utilization and the performance hints. 7092 */ 7093 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7094 7095 return true; 7096 } 7097 7098 /* 7099 * Try and locate an idle core/thread in the LLC cache domain. 7100 */ 7101 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7102 { 7103 bool has_idle_core = false; 7104 struct sched_domain *sd; 7105 unsigned long task_util, util_min, util_max; 7106 int i, recent_used_cpu; 7107 7108 /* 7109 * On asymmetric system, update task utilization because we will check 7110 * that the task fits with cpu's capacity. 7111 */ 7112 if (sched_asym_cpucap_active()) { 7113 sync_entity_load_avg(&p->se); 7114 task_util = task_util_est(p); 7115 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7116 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7117 } 7118 7119 /* 7120 * per-cpu select_rq_mask usage 7121 */ 7122 lockdep_assert_irqs_disabled(); 7123 7124 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7125 asym_fits_cpu(task_util, util_min, util_max, target)) 7126 return target; 7127 7128 /* 7129 * If the previous CPU is cache affine and idle, don't be stupid: 7130 */ 7131 if (prev != target && cpus_share_cache(prev, target) && 7132 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7133 asym_fits_cpu(task_util, util_min, util_max, prev)) 7134 return prev; 7135 7136 /* 7137 * Allow a per-cpu kthread to stack with the wakee if the 7138 * kworker thread and the tasks previous CPUs are the same. 7139 * The assumption is that the wakee queued work for the 7140 * per-cpu kthread that is now complete and the wakeup is 7141 * essentially a sync wakeup. An obvious example of this 7142 * pattern is IO completions. 7143 */ 7144 if (is_per_cpu_kthread(current) && 7145 in_task() && 7146 prev == smp_processor_id() && 7147 this_rq()->nr_running <= 1 && 7148 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7149 return prev; 7150 } 7151 7152 /* Check a recently used CPU as a potential idle candidate: */ 7153 recent_used_cpu = p->recent_used_cpu; 7154 p->recent_used_cpu = prev; 7155 if (recent_used_cpu != prev && 7156 recent_used_cpu != target && 7157 cpus_share_cache(recent_used_cpu, target) && 7158 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7159 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) && 7160 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7161 return recent_used_cpu; 7162 } 7163 7164 /* 7165 * For asymmetric CPU capacity systems, our domain of interest is 7166 * sd_asym_cpucapacity rather than sd_llc. 7167 */ 7168 if (sched_asym_cpucap_active()) { 7169 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7170 /* 7171 * On an asymmetric CPU capacity system where an exclusive 7172 * cpuset defines a symmetric island (i.e. one unique 7173 * capacity_orig value through the cpuset), the key will be set 7174 * but the CPUs within that cpuset will not have a domain with 7175 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7176 * capacity path. 7177 */ 7178 if (sd) { 7179 i = select_idle_capacity(p, sd, target); 7180 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7181 } 7182 } 7183 7184 sd = rcu_dereference(per_cpu(sd_llc, target)); 7185 if (!sd) 7186 return target; 7187 7188 if (sched_smt_active()) { 7189 has_idle_core = test_idle_cores(target); 7190 7191 if (!has_idle_core && cpus_share_cache(prev, target)) { 7192 i = select_idle_smt(p, prev); 7193 if ((unsigned int)i < nr_cpumask_bits) 7194 return i; 7195 } 7196 } 7197 7198 i = select_idle_cpu(p, sd, has_idle_core, target); 7199 if ((unsigned)i < nr_cpumask_bits) 7200 return i; 7201 7202 return target; 7203 } 7204 7205 /* 7206 * Predicts what cpu_util(@cpu) would return if @p was removed from @cpu 7207 * (@dst_cpu = -1) or migrated to @dst_cpu. 7208 */ 7209 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 7210 { 7211 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7212 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7213 7214 /* 7215 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7216 * contribution. If @p migrates from another CPU to @cpu add its 7217 * contribution. In all the other cases @cpu is not impacted by the 7218 * migration so its util_avg is already correct. 7219 */ 7220 if (task_cpu(p) == cpu && dst_cpu != cpu) 7221 lsub_positive(&util, task_util(p)); 7222 else if (task_cpu(p) != cpu && dst_cpu == cpu) 7223 util += task_util(p); 7224 7225 if (sched_feat(UTIL_EST)) { 7226 unsigned long util_est; 7227 7228 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 7229 7230 /* 7231 * During wake-up @p isn't enqueued yet and doesn't contribute 7232 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued. 7233 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 7234 * has been enqueued. 7235 * 7236 * During exec (@dst_cpu = -1) @p is enqueued and does 7237 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued. 7238 * Remove it to "simulate" cpu_util without @p's contribution. 7239 * 7240 * Despite the task_on_rq_queued(@p) check there is still a 7241 * small window for a possible race when an exec 7242 * select_task_rq_fair() races with LB's detach_task(). 7243 * 7244 * detach_task() 7245 * deactivate_task() 7246 * p->on_rq = TASK_ON_RQ_MIGRATING; 7247 * -------------------------------- A 7248 * dequeue_task() \ 7249 * dequeue_task_fair() + Race Time 7250 * util_est_dequeue() / 7251 * -------------------------------- B 7252 * 7253 * The additional check "current == p" is required to further 7254 * reduce the race window. 7255 */ 7256 if (dst_cpu == cpu) 7257 util_est += _task_util_est(p); 7258 else if (unlikely(task_on_rq_queued(p) || current == p)) 7259 lsub_positive(&util_est, _task_util_est(p)); 7260 7261 util = max(util, util_est); 7262 } 7263 7264 return min(util, capacity_orig_of(cpu)); 7265 } 7266 7267 /* 7268 * cpu_util_without: compute cpu utilization without any contributions from *p 7269 * @cpu: the CPU which utilization is requested 7270 * @p: the task which utilization should be discounted 7271 * 7272 * The utilization of a CPU is defined by the utilization of tasks currently 7273 * enqueued on that CPU as well as tasks which are currently sleeping after an 7274 * execution on that CPU. 7275 * 7276 * This method returns the utilization of the specified CPU by discounting the 7277 * utilization of the specified task, whenever the task is currently 7278 * contributing to the CPU utilization. 7279 */ 7280 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 7281 { 7282 /* Task has no contribution or is new */ 7283 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7284 return cpu_util_cfs(cpu); 7285 7286 return cpu_util_next(cpu, p, -1); 7287 } 7288 7289 /* 7290 * energy_env - Utilization landscape for energy estimation. 7291 * @task_busy_time: Utilization contribution by the task for which we test the 7292 * placement. Given by eenv_task_busy_time(). 7293 * @pd_busy_time: Utilization of the whole perf domain without the task 7294 * contribution. Given by eenv_pd_busy_time(). 7295 * @cpu_cap: Maximum CPU capacity for the perf domain. 7296 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 7297 */ 7298 struct energy_env { 7299 unsigned long task_busy_time; 7300 unsigned long pd_busy_time; 7301 unsigned long cpu_cap; 7302 unsigned long pd_cap; 7303 }; 7304 7305 /* 7306 * Compute the task busy time for compute_energy(). This time cannot be 7307 * injected directly into effective_cpu_util() because of the IRQ scaling. 7308 * The latter only makes sense with the most recent CPUs where the task has 7309 * run. 7310 */ 7311 static inline void eenv_task_busy_time(struct energy_env *eenv, 7312 struct task_struct *p, int prev_cpu) 7313 { 7314 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 7315 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 7316 7317 if (unlikely(irq >= max_cap)) 7318 busy_time = max_cap; 7319 else 7320 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 7321 7322 eenv->task_busy_time = busy_time; 7323 } 7324 7325 /* 7326 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 7327 * utilization for each @pd_cpus, it however doesn't take into account 7328 * clamping since the ratio (utilization / cpu_capacity) is already enough to 7329 * scale the EM reported power consumption at the (eventually clamped) 7330 * cpu_capacity. 7331 * 7332 * The contribution of the task @p for which we want to estimate the 7333 * energy cost is removed (by cpu_util_next()) and must be calculated 7334 * separately (see eenv_task_busy_time). This ensures: 7335 * 7336 * - A stable PD utilization, no matter which CPU of that PD we want to place 7337 * the task on. 7338 * 7339 * - A fair comparison between CPUs as the task contribution (task_util()) 7340 * will always be the same no matter which CPU utilization we rely on 7341 * (util_avg or util_est). 7342 * 7343 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 7344 * exceed @eenv->pd_cap. 7345 */ 7346 static inline void eenv_pd_busy_time(struct energy_env *eenv, 7347 struct cpumask *pd_cpus, 7348 struct task_struct *p) 7349 { 7350 unsigned long busy_time = 0; 7351 int cpu; 7352 7353 for_each_cpu(cpu, pd_cpus) { 7354 unsigned long util = cpu_util_next(cpu, p, -1); 7355 7356 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL); 7357 } 7358 7359 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 7360 } 7361 7362 /* 7363 * Compute the maximum utilization for compute_energy() when the task @p 7364 * is placed on the cpu @dst_cpu. 7365 * 7366 * Returns the maximum utilization among @eenv->cpus. This utilization can't 7367 * exceed @eenv->cpu_cap. 7368 */ 7369 static inline unsigned long 7370 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 7371 struct task_struct *p, int dst_cpu) 7372 { 7373 unsigned long max_util = 0; 7374 int cpu; 7375 7376 for_each_cpu(cpu, pd_cpus) { 7377 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 7378 unsigned long util = cpu_util_next(cpu, p, dst_cpu); 7379 unsigned long cpu_util; 7380 7381 /* 7382 * Performance domain frequency: utilization clamping 7383 * must be considered since it affects the selection 7384 * of the performance domain frequency. 7385 * NOTE: in case RT tasks are running, by default the 7386 * FREQUENCY_UTIL's utilization can be max OPP. 7387 */ 7388 cpu_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk); 7389 max_util = max(max_util, cpu_util); 7390 } 7391 7392 return min(max_util, eenv->cpu_cap); 7393 } 7394 7395 /* 7396 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 7397 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 7398 * contribution is ignored. 7399 */ 7400 static inline unsigned long 7401 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 7402 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 7403 { 7404 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 7405 unsigned long busy_time = eenv->pd_busy_time; 7406 7407 if (dst_cpu >= 0) 7408 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 7409 7410 return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 7411 } 7412 7413 /* 7414 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 7415 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 7416 * spare capacity in each performance domain and uses it as a potential 7417 * candidate to execute the task. Then, it uses the Energy Model to figure 7418 * out which of the CPU candidates is the most energy-efficient. 7419 * 7420 * The rationale for this heuristic is as follows. In a performance domain, 7421 * all the most energy efficient CPU candidates (according to the Energy 7422 * Model) are those for which we'll request a low frequency. When there are 7423 * several CPUs for which the frequency request will be the same, we don't 7424 * have enough data to break the tie between them, because the Energy Model 7425 * only includes active power costs. With this model, if we assume that 7426 * frequency requests follow utilization (e.g. using schedutil), the CPU with 7427 * the maximum spare capacity in a performance domain is guaranteed to be among 7428 * the best candidates of the performance domain. 7429 * 7430 * In practice, it could be preferable from an energy standpoint to pack 7431 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 7432 * but that could also hurt our chances to go cluster idle, and we have no 7433 * ways to tell with the current Energy Model if this is actually a good 7434 * idea or not. So, find_energy_efficient_cpu() basically favors 7435 * cluster-packing, and spreading inside a cluster. That should at least be 7436 * a good thing for latency, and this is consistent with the idea that most 7437 * of the energy savings of EAS come from the asymmetry of the system, and 7438 * not so much from breaking the tie between identical CPUs. That's also the 7439 * reason why EAS is enabled in the topology code only for systems where 7440 * SD_ASYM_CPUCAPACITY is set. 7441 * 7442 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 7443 * they don't have any useful utilization data yet and it's not possible to 7444 * forecast their impact on energy consumption. Consequently, they will be 7445 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 7446 * to be energy-inefficient in some use-cases. The alternative would be to 7447 * bias new tasks towards specific types of CPUs first, or to try to infer 7448 * their util_avg from the parent task, but those heuristics could hurt 7449 * other use-cases too. So, until someone finds a better way to solve this, 7450 * let's keep things simple by re-using the existing slow path. 7451 */ 7452 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 7453 { 7454 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7455 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 7456 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 7457 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 7458 struct root_domain *rd = this_rq()->rd; 7459 int cpu, best_energy_cpu, target = -1; 7460 int prev_fits = -1, best_fits = -1; 7461 unsigned long best_thermal_cap = 0; 7462 unsigned long prev_thermal_cap = 0; 7463 struct sched_domain *sd; 7464 struct perf_domain *pd; 7465 struct energy_env eenv; 7466 7467 rcu_read_lock(); 7468 pd = rcu_dereference(rd->pd); 7469 if (!pd || READ_ONCE(rd->overutilized)) 7470 goto unlock; 7471 7472 /* 7473 * Energy-aware wake-up happens on the lowest sched_domain starting 7474 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 7475 */ 7476 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 7477 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 7478 sd = sd->parent; 7479 if (!sd) 7480 goto unlock; 7481 7482 target = prev_cpu; 7483 7484 sync_entity_load_avg(&p->se); 7485 if (!uclamp_task_util(p, p_util_min, p_util_max)) 7486 goto unlock; 7487 7488 eenv_task_busy_time(&eenv, p, prev_cpu); 7489 7490 for (; pd; pd = pd->next) { 7491 unsigned long util_min = p_util_min, util_max = p_util_max; 7492 unsigned long cpu_cap, cpu_thermal_cap, util; 7493 unsigned long cur_delta, max_spare_cap = 0; 7494 unsigned long rq_util_min, rq_util_max; 7495 unsigned long prev_spare_cap = 0; 7496 int max_spare_cap_cpu = -1; 7497 unsigned long base_energy; 7498 int fits, max_fits = -1; 7499 7500 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 7501 7502 if (cpumask_empty(cpus)) 7503 continue; 7504 7505 /* Account thermal pressure for the energy estimation */ 7506 cpu = cpumask_first(cpus); 7507 cpu_thermal_cap = arch_scale_cpu_capacity(cpu); 7508 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu); 7509 7510 eenv.cpu_cap = cpu_thermal_cap; 7511 eenv.pd_cap = 0; 7512 7513 for_each_cpu(cpu, cpus) { 7514 struct rq *rq = cpu_rq(cpu); 7515 7516 eenv.pd_cap += cpu_thermal_cap; 7517 7518 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7519 continue; 7520 7521 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 7522 continue; 7523 7524 util = cpu_util_next(cpu, p, cpu); 7525 cpu_cap = capacity_of(cpu); 7526 7527 /* 7528 * Skip CPUs that cannot satisfy the capacity request. 7529 * IOW, placing the task there would make the CPU 7530 * overutilized. Take uclamp into account to see how 7531 * much capacity we can get out of the CPU; this is 7532 * aligned with sched_cpu_util(). 7533 */ 7534 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 7535 /* 7536 * Open code uclamp_rq_util_with() except for 7537 * the clamp() part. Ie: apply max aggregation 7538 * only. util_fits_cpu() logic requires to 7539 * operate on non clamped util but must use the 7540 * max-aggregated uclamp_{min, max}. 7541 */ 7542 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 7543 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 7544 7545 util_min = max(rq_util_min, p_util_min); 7546 util_max = max(rq_util_max, p_util_max); 7547 } 7548 7549 fits = util_fits_cpu(util, util_min, util_max, cpu); 7550 if (!fits) 7551 continue; 7552 7553 lsub_positive(&cpu_cap, util); 7554 7555 if (cpu == prev_cpu) { 7556 /* Always use prev_cpu as a candidate. */ 7557 prev_spare_cap = cpu_cap; 7558 prev_fits = fits; 7559 } else if ((fits > max_fits) || 7560 ((fits == max_fits) && (cpu_cap > max_spare_cap))) { 7561 /* 7562 * Find the CPU with the maximum spare capacity 7563 * among the remaining CPUs in the performance 7564 * domain. 7565 */ 7566 max_spare_cap = cpu_cap; 7567 max_spare_cap_cpu = cpu; 7568 max_fits = fits; 7569 } 7570 } 7571 7572 if (max_spare_cap_cpu < 0 && prev_spare_cap == 0) 7573 continue; 7574 7575 eenv_pd_busy_time(&eenv, cpus, p); 7576 /* Compute the 'base' energy of the pd, without @p */ 7577 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 7578 7579 /* Evaluate the energy impact of using prev_cpu. */ 7580 if (prev_spare_cap > 0) { 7581 prev_delta = compute_energy(&eenv, pd, cpus, p, 7582 prev_cpu); 7583 /* CPU utilization has changed */ 7584 if (prev_delta < base_energy) 7585 goto unlock; 7586 prev_delta -= base_energy; 7587 prev_thermal_cap = cpu_thermal_cap; 7588 best_delta = min(best_delta, prev_delta); 7589 } 7590 7591 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 7592 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 7593 /* Current best energy cpu fits better */ 7594 if (max_fits < best_fits) 7595 continue; 7596 7597 /* 7598 * Both don't fit performance hint (i.e. uclamp_min) 7599 * but best energy cpu has better capacity. 7600 */ 7601 if ((max_fits < 0) && 7602 (cpu_thermal_cap <= best_thermal_cap)) 7603 continue; 7604 7605 cur_delta = compute_energy(&eenv, pd, cpus, p, 7606 max_spare_cap_cpu); 7607 /* CPU utilization has changed */ 7608 if (cur_delta < base_energy) 7609 goto unlock; 7610 cur_delta -= base_energy; 7611 7612 /* 7613 * Both fit for the task but best energy cpu has lower 7614 * energy impact. 7615 */ 7616 if ((max_fits > 0) && (best_fits > 0) && 7617 (cur_delta >= best_delta)) 7618 continue; 7619 7620 best_delta = cur_delta; 7621 best_energy_cpu = max_spare_cap_cpu; 7622 best_fits = max_fits; 7623 best_thermal_cap = cpu_thermal_cap; 7624 } 7625 } 7626 rcu_read_unlock(); 7627 7628 if ((best_fits > prev_fits) || 7629 ((best_fits > 0) && (best_delta < prev_delta)) || 7630 ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap))) 7631 target = best_energy_cpu; 7632 7633 return target; 7634 7635 unlock: 7636 rcu_read_unlock(); 7637 7638 return target; 7639 } 7640 7641 /* 7642 * select_task_rq_fair: Select target runqueue for the waking task in domains 7643 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 7644 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 7645 * 7646 * Balances load by selecting the idlest CPU in the idlest group, or under 7647 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 7648 * 7649 * Returns the target CPU number. 7650 */ 7651 static int 7652 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 7653 { 7654 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 7655 struct sched_domain *tmp, *sd = NULL; 7656 int cpu = smp_processor_id(); 7657 int new_cpu = prev_cpu; 7658 int want_affine = 0; 7659 /* SD_flags and WF_flags share the first nibble */ 7660 int sd_flag = wake_flags & 0xF; 7661 7662 /* 7663 * required for stable ->cpus_allowed 7664 */ 7665 lockdep_assert_held(&p->pi_lock); 7666 if (wake_flags & WF_TTWU) { 7667 record_wakee(p); 7668 7669 if (sched_energy_enabled()) { 7670 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 7671 if (new_cpu >= 0) 7672 return new_cpu; 7673 new_cpu = prev_cpu; 7674 } 7675 7676 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 7677 } 7678 7679 rcu_read_lock(); 7680 for_each_domain(cpu, tmp) { 7681 /* 7682 * If both 'cpu' and 'prev_cpu' are part of this domain, 7683 * cpu is a valid SD_WAKE_AFFINE target. 7684 */ 7685 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 7686 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 7687 if (cpu != prev_cpu) 7688 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 7689 7690 sd = NULL; /* Prefer wake_affine over balance flags */ 7691 break; 7692 } 7693 7694 /* 7695 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 7696 * usually do not have SD_BALANCE_WAKE set. That means wakeup 7697 * will usually go to the fast path. 7698 */ 7699 if (tmp->flags & sd_flag) 7700 sd = tmp; 7701 else if (!want_affine) 7702 break; 7703 } 7704 7705 if (unlikely(sd)) { 7706 /* Slow path */ 7707 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 7708 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 7709 /* Fast path */ 7710 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 7711 } 7712 rcu_read_unlock(); 7713 7714 return new_cpu; 7715 } 7716 7717 /* 7718 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 7719 * cfs_rq_of(p) references at time of call are still valid and identify the 7720 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 7721 */ 7722 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 7723 { 7724 struct sched_entity *se = &p->se; 7725 7726 /* 7727 * As blocked tasks retain absolute vruntime the migration needs to 7728 * deal with this by subtracting the old and adding the new 7729 * min_vruntime -- the latter is done by enqueue_entity() when placing 7730 * the task on the new runqueue. 7731 */ 7732 if (READ_ONCE(p->__state) == TASK_WAKING) { 7733 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7734 7735 se->vruntime -= u64_u32_load(cfs_rq->min_vruntime); 7736 } 7737 7738 if (!task_on_rq_migrating(p)) { 7739 remove_entity_load_avg(se); 7740 7741 /* 7742 * Here, the task's PELT values have been updated according to 7743 * the current rq's clock. But if that clock hasn't been 7744 * updated in a while, a substantial idle time will be missed, 7745 * leading to an inflation after wake-up on the new rq. 7746 * 7747 * Estimate the missing time from the cfs_rq last_update_time 7748 * and update sched_avg to improve the PELT continuity after 7749 * migration. 7750 */ 7751 migrate_se_pelt_lag(se); 7752 } 7753 7754 /* Tell new CPU we are migrated */ 7755 se->avg.last_update_time = 0; 7756 7757 update_scan_period(p, new_cpu); 7758 } 7759 7760 static void task_dead_fair(struct task_struct *p) 7761 { 7762 remove_entity_load_avg(&p->se); 7763 } 7764 7765 static int 7766 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7767 { 7768 if (rq->nr_running) 7769 return 1; 7770 7771 return newidle_balance(rq, rf) != 0; 7772 } 7773 #endif /* CONFIG_SMP */ 7774 7775 static unsigned long wakeup_gran(struct sched_entity *se) 7776 { 7777 unsigned long gran = sysctl_sched_wakeup_granularity; 7778 7779 /* 7780 * Since its curr running now, convert the gran from real-time 7781 * to virtual-time in his units. 7782 * 7783 * By using 'se' instead of 'curr' we penalize light tasks, so 7784 * they get preempted easier. That is, if 'se' < 'curr' then 7785 * the resulting gran will be larger, therefore penalizing the 7786 * lighter, if otoh 'se' > 'curr' then the resulting gran will 7787 * be smaller, again penalizing the lighter task. 7788 * 7789 * This is especially important for buddies when the leftmost 7790 * task is higher priority than the buddy. 7791 */ 7792 return calc_delta_fair(gran, se); 7793 } 7794 7795 /* 7796 * Should 'se' preempt 'curr'. 7797 * 7798 * |s1 7799 * |s2 7800 * |s3 7801 * g 7802 * |<--->|c 7803 * 7804 * w(c, s1) = -1 7805 * w(c, s2) = 0 7806 * w(c, s3) = 1 7807 * 7808 */ 7809 static int 7810 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 7811 { 7812 s64 gran, vdiff = curr->vruntime - se->vruntime; 7813 7814 if (vdiff <= 0) 7815 return -1; 7816 7817 gran = wakeup_gran(se); 7818 if (vdiff > gran) 7819 return 1; 7820 7821 return 0; 7822 } 7823 7824 static void set_last_buddy(struct sched_entity *se) 7825 { 7826 for_each_sched_entity(se) { 7827 if (SCHED_WARN_ON(!se->on_rq)) 7828 return; 7829 if (se_is_idle(se)) 7830 return; 7831 cfs_rq_of(se)->last = se; 7832 } 7833 } 7834 7835 static void set_next_buddy(struct sched_entity *se) 7836 { 7837 for_each_sched_entity(se) { 7838 if (SCHED_WARN_ON(!se->on_rq)) 7839 return; 7840 if (se_is_idle(se)) 7841 return; 7842 cfs_rq_of(se)->next = se; 7843 } 7844 } 7845 7846 static void set_skip_buddy(struct sched_entity *se) 7847 { 7848 for_each_sched_entity(se) 7849 cfs_rq_of(se)->skip = se; 7850 } 7851 7852 /* 7853 * Preempt the current task with a newly woken task if needed: 7854 */ 7855 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 7856 { 7857 struct task_struct *curr = rq->curr; 7858 struct sched_entity *se = &curr->se, *pse = &p->se; 7859 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7860 int scale = cfs_rq->nr_running >= sched_nr_latency; 7861 int next_buddy_marked = 0; 7862 int cse_is_idle, pse_is_idle; 7863 7864 if (unlikely(se == pse)) 7865 return; 7866 7867 /* 7868 * This is possible from callers such as attach_tasks(), in which we 7869 * unconditionally check_preempt_curr() after an enqueue (which may have 7870 * lead to a throttle). This both saves work and prevents false 7871 * next-buddy nomination below. 7872 */ 7873 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 7874 return; 7875 7876 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 7877 set_next_buddy(pse); 7878 next_buddy_marked = 1; 7879 } 7880 7881 /* 7882 * We can come here with TIF_NEED_RESCHED already set from new task 7883 * wake up path. 7884 * 7885 * Note: this also catches the edge-case of curr being in a throttled 7886 * group (e.g. via set_curr_task), since update_curr() (in the 7887 * enqueue of curr) will have resulted in resched being set. This 7888 * prevents us from potentially nominating it as a false LAST_BUDDY 7889 * below. 7890 */ 7891 if (test_tsk_need_resched(curr)) 7892 return; 7893 7894 /* Idle tasks are by definition preempted by non-idle tasks. */ 7895 if (unlikely(task_has_idle_policy(curr)) && 7896 likely(!task_has_idle_policy(p))) 7897 goto preempt; 7898 7899 /* 7900 * Batch and idle tasks do not preempt non-idle tasks (their preemption 7901 * is driven by the tick): 7902 */ 7903 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 7904 return; 7905 7906 find_matching_se(&se, &pse); 7907 WARN_ON_ONCE(!pse); 7908 7909 cse_is_idle = se_is_idle(se); 7910 pse_is_idle = se_is_idle(pse); 7911 7912 /* 7913 * Preempt an idle group in favor of a non-idle group (and don't preempt 7914 * in the inverse case). 7915 */ 7916 if (cse_is_idle && !pse_is_idle) 7917 goto preempt; 7918 if (cse_is_idle != pse_is_idle) 7919 return; 7920 7921 update_curr(cfs_rq_of(se)); 7922 if (wakeup_preempt_entity(se, pse) == 1) { 7923 /* 7924 * Bias pick_next to pick the sched entity that is 7925 * triggering this preemption. 7926 */ 7927 if (!next_buddy_marked) 7928 set_next_buddy(pse); 7929 goto preempt; 7930 } 7931 7932 return; 7933 7934 preempt: 7935 resched_curr(rq); 7936 /* 7937 * Only set the backward buddy when the current task is still 7938 * on the rq. This can happen when a wakeup gets interleaved 7939 * with schedule on the ->pre_schedule() or idle_balance() 7940 * point, either of which can * drop the rq lock. 7941 * 7942 * Also, during early boot the idle thread is in the fair class, 7943 * for obvious reasons its a bad idea to schedule back to it. 7944 */ 7945 if (unlikely(!se->on_rq || curr == rq->idle)) 7946 return; 7947 7948 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 7949 set_last_buddy(se); 7950 } 7951 7952 #ifdef CONFIG_SMP 7953 static struct task_struct *pick_task_fair(struct rq *rq) 7954 { 7955 struct sched_entity *se; 7956 struct cfs_rq *cfs_rq; 7957 7958 again: 7959 cfs_rq = &rq->cfs; 7960 if (!cfs_rq->nr_running) 7961 return NULL; 7962 7963 do { 7964 struct sched_entity *curr = cfs_rq->curr; 7965 7966 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 7967 if (curr) { 7968 if (curr->on_rq) 7969 update_curr(cfs_rq); 7970 else 7971 curr = NULL; 7972 7973 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 7974 goto again; 7975 } 7976 7977 se = pick_next_entity(cfs_rq, curr); 7978 cfs_rq = group_cfs_rq(se); 7979 } while (cfs_rq); 7980 7981 return task_of(se); 7982 } 7983 #endif 7984 7985 struct task_struct * 7986 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7987 { 7988 struct cfs_rq *cfs_rq = &rq->cfs; 7989 struct sched_entity *se; 7990 struct task_struct *p; 7991 int new_tasks; 7992 7993 again: 7994 if (!sched_fair_runnable(rq)) 7995 goto idle; 7996 7997 #ifdef CONFIG_FAIR_GROUP_SCHED 7998 if (!prev || prev->sched_class != &fair_sched_class) 7999 goto simple; 8000 8001 /* 8002 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8003 * likely that a next task is from the same cgroup as the current. 8004 * 8005 * Therefore attempt to avoid putting and setting the entire cgroup 8006 * hierarchy, only change the part that actually changes. 8007 */ 8008 8009 do { 8010 struct sched_entity *curr = cfs_rq->curr; 8011 8012 /* 8013 * Since we got here without doing put_prev_entity() we also 8014 * have to consider cfs_rq->curr. If it is still a runnable 8015 * entity, update_curr() will update its vruntime, otherwise 8016 * forget we've ever seen it. 8017 */ 8018 if (curr) { 8019 if (curr->on_rq) 8020 update_curr(cfs_rq); 8021 else 8022 curr = NULL; 8023 8024 /* 8025 * This call to check_cfs_rq_runtime() will do the 8026 * throttle and dequeue its entity in the parent(s). 8027 * Therefore the nr_running test will indeed 8028 * be correct. 8029 */ 8030 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 8031 cfs_rq = &rq->cfs; 8032 8033 if (!cfs_rq->nr_running) 8034 goto idle; 8035 8036 goto simple; 8037 } 8038 } 8039 8040 se = pick_next_entity(cfs_rq, curr); 8041 cfs_rq = group_cfs_rq(se); 8042 } while (cfs_rq); 8043 8044 p = task_of(se); 8045 8046 /* 8047 * Since we haven't yet done put_prev_entity and if the selected task 8048 * is a different task than we started out with, try and touch the 8049 * least amount of cfs_rqs. 8050 */ 8051 if (prev != p) { 8052 struct sched_entity *pse = &prev->se; 8053 8054 while (!(cfs_rq = is_same_group(se, pse))) { 8055 int se_depth = se->depth; 8056 int pse_depth = pse->depth; 8057 8058 if (se_depth <= pse_depth) { 8059 put_prev_entity(cfs_rq_of(pse), pse); 8060 pse = parent_entity(pse); 8061 } 8062 if (se_depth >= pse_depth) { 8063 set_next_entity(cfs_rq_of(se), se); 8064 se = parent_entity(se); 8065 } 8066 } 8067 8068 put_prev_entity(cfs_rq, pse); 8069 set_next_entity(cfs_rq, se); 8070 } 8071 8072 goto done; 8073 simple: 8074 #endif 8075 if (prev) 8076 put_prev_task(rq, prev); 8077 8078 do { 8079 se = pick_next_entity(cfs_rq, NULL); 8080 set_next_entity(cfs_rq, se); 8081 cfs_rq = group_cfs_rq(se); 8082 } while (cfs_rq); 8083 8084 p = task_of(se); 8085 8086 done: __maybe_unused; 8087 #ifdef CONFIG_SMP 8088 /* 8089 * Move the next running task to the front of 8090 * the list, so our cfs_tasks list becomes MRU 8091 * one. 8092 */ 8093 list_move(&p->se.group_node, &rq->cfs_tasks); 8094 #endif 8095 8096 if (hrtick_enabled_fair(rq)) 8097 hrtick_start_fair(rq, p); 8098 8099 update_misfit_status(p, rq); 8100 8101 return p; 8102 8103 idle: 8104 if (!rf) 8105 return NULL; 8106 8107 new_tasks = newidle_balance(rq, rf); 8108 8109 /* 8110 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 8111 * possible for any higher priority task to appear. In that case we 8112 * must re-start the pick_next_entity() loop. 8113 */ 8114 if (new_tasks < 0) 8115 return RETRY_TASK; 8116 8117 if (new_tasks > 0) 8118 goto again; 8119 8120 /* 8121 * rq is about to be idle, check if we need to update the 8122 * lost_idle_time of clock_pelt 8123 */ 8124 update_idle_rq_clock_pelt(rq); 8125 8126 return NULL; 8127 } 8128 8129 static struct task_struct *__pick_next_task_fair(struct rq *rq) 8130 { 8131 return pick_next_task_fair(rq, NULL, NULL); 8132 } 8133 8134 /* 8135 * Account for a descheduled task: 8136 */ 8137 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 8138 { 8139 struct sched_entity *se = &prev->se; 8140 struct cfs_rq *cfs_rq; 8141 8142 for_each_sched_entity(se) { 8143 cfs_rq = cfs_rq_of(se); 8144 put_prev_entity(cfs_rq, se); 8145 } 8146 } 8147 8148 /* 8149 * sched_yield() is very simple 8150 * 8151 * The magic of dealing with the ->skip buddy is in pick_next_entity. 8152 */ 8153 static void yield_task_fair(struct rq *rq) 8154 { 8155 struct task_struct *curr = rq->curr; 8156 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8157 struct sched_entity *se = &curr->se; 8158 8159 /* 8160 * Are we the only task in the tree? 8161 */ 8162 if (unlikely(rq->nr_running == 1)) 8163 return; 8164 8165 clear_buddies(cfs_rq, se); 8166 8167 if (curr->policy != SCHED_BATCH) { 8168 update_rq_clock(rq); 8169 /* 8170 * Update run-time statistics of the 'current'. 8171 */ 8172 update_curr(cfs_rq); 8173 /* 8174 * Tell update_rq_clock() that we've just updated, 8175 * so we don't do microscopic update in schedule() 8176 * and double the fastpath cost. 8177 */ 8178 rq_clock_skip_update(rq); 8179 } 8180 8181 set_skip_buddy(se); 8182 } 8183 8184 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 8185 { 8186 struct sched_entity *se = &p->se; 8187 8188 /* throttled hierarchies are not runnable */ 8189 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 8190 return false; 8191 8192 /* Tell the scheduler that we'd really like pse to run next. */ 8193 set_next_buddy(se); 8194 8195 yield_task_fair(rq); 8196 8197 return true; 8198 } 8199 8200 #ifdef CONFIG_SMP 8201 /************************************************** 8202 * Fair scheduling class load-balancing methods. 8203 * 8204 * BASICS 8205 * 8206 * The purpose of load-balancing is to achieve the same basic fairness the 8207 * per-CPU scheduler provides, namely provide a proportional amount of compute 8208 * time to each task. This is expressed in the following equation: 8209 * 8210 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 8211 * 8212 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 8213 * W_i,0 is defined as: 8214 * 8215 * W_i,0 = \Sum_j w_i,j (2) 8216 * 8217 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 8218 * is derived from the nice value as per sched_prio_to_weight[]. 8219 * 8220 * The weight average is an exponential decay average of the instantaneous 8221 * weight: 8222 * 8223 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 8224 * 8225 * C_i is the compute capacity of CPU i, typically it is the 8226 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 8227 * can also include other factors [XXX]. 8228 * 8229 * To achieve this balance we define a measure of imbalance which follows 8230 * directly from (1): 8231 * 8232 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 8233 * 8234 * We them move tasks around to minimize the imbalance. In the continuous 8235 * function space it is obvious this converges, in the discrete case we get 8236 * a few fun cases generally called infeasible weight scenarios. 8237 * 8238 * [XXX expand on: 8239 * - infeasible weights; 8240 * - local vs global optima in the discrete case. ] 8241 * 8242 * 8243 * SCHED DOMAINS 8244 * 8245 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 8246 * for all i,j solution, we create a tree of CPUs that follows the hardware 8247 * topology where each level pairs two lower groups (or better). This results 8248 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 8249 * tree to only the first of the previous level and we decrease the frequency 8250 * of load-balance at each level inv. proportional to the number of CPUs in 8251 * the groups. 8252 * 8253 * This yields: 8254 * 8255 * log_2 n 1 n 8256 * \Sum { --- * --- * 2^i } = O(n) (5) 8257 * i = 0 2^i 2^i 8258 * `- size of each group 8259 * | | `- number of CPUs doing load-balance 8260 * | `- freq 8261 * `- sum over all levels 8262 * 8263 * Coupled with a limit on how many tasks we can migrate every balance pass, 8264 * this makes (5) the runtime complexity of the balancer. 8265 * 8266 * An important property here is that each CPU is still (indirectly) connected 8267 * to every other CPU in at most O(log n) steps: 8268 * 8269 * The adjacency matrix of the resulting graph is given by: 8270 * 8271 * log_2 n 8272 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 8273 * k = 0 8274 * 8275 * And you'll find that: 8276 * 8277 * A^(log_2 n)_i,j != 0 for all i,j (7) 8278 * 8279 * Showing there's indeed a path between every CPU in at most O(log n) steps. 8280 * The task movement gives a factor of O(m), giving a convergence complexity 8281 * of: 8282 * 8283 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 8284 * 8285 * 8286 * WORK CONSERVING 8287 * 8288 * In order to avoid CPUs going idle while there's still work to do, new idle 8289 * balancing is more aggressive and has the newly idle CPU iterate up the domain 8290 * tree itself instead of relying on other CPUs to bring it work. 8291 * 8292 * This adds some complexity to both (5) and (8) but it reduces the total idle 8293 * time. 8294 * 8295 * [XXX more?] 8296 * 8297 * 8298 * CGROUPS 8299 * 8300 * Cgroups make a horror show out of (2), instead of a simple sum we get: 8301 * 8302 * s_k,i 8303 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 8304 * S_k 8305 * 8306 * Where 8307 * 8308 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 8309 * 8310 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 8311 * 8312 * The big problem is S_k, its a global sum needed to compute a local (W_i) 8313 * property. 8314 * 8315 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 8316 * rewrite all of this once again.] 8317 */ 8318 8319 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 8320 8321 enum fbq_type { regular, remote, all }; 8322 8323 /* 8324 * 'group_type' describes the group of CPUs at the moment of load balancing. 8325 * 8326 * The enum is ordered by pulling priority, with the group with lowest priority 8327 * first so the group_type can simply be compared when selecting the busiest 8328 * group. See update_sd_pick_busiest(). 8329 */ 8330 enum group_type { 8331 /* The group has spare capacity that can be used to run more tasks. */ 8332 group_has_spare = 0, 8333 /* 8334 * The group is fully used and the tasks don't compete for more CPU 8335 * cycles. Nevertheless, some tasks might wait before running. 8336 */ 8337 group_fully_busy, 8338 /* 8339 * One task doesn't fit with CPU's capacity and must be migrated to a 8340 * more powerful CPU. 8341 */ 8342 group_misfit_task, 8343 /* 8344 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 8345 * and the task should be migrated to it instead of running on the 8346 * current CPU. 8347 */ 8348 group_asym_packing, 8349 /* 8350 * The tasks' affinity constraints previously prevented the scheduler 8351 * from balancing the load across the system. 8352 */ 8353 group_imbalanced, 8354 /* 8355 * The CPU is overloaded and can't provide expected CPU cycles to all 8356 * tasks. 8357 */ 8358 group_overloaded 8359 }; 8360 8361 enum migration_type { 8362 migrate_load = 0, 8363 migrate_util, 8364 migrate_task, 8365 migrate_misfit 8366 }; 8367 8368 #define LBF_ALL_PINNED 0x01 8369 #define LBF_NEED_BREAK 0x02 8370 #define LBF_DST_PINNED 0x04 8371 #define LBF_SOME_PINNED 0x08 8372 #define LBF_ACTIVE_LB 0x10 8373 8374 struct lb_env { 8375 struct sched_domain *sd; 8376 8377 struct rq *src_rq; 8378 int src_cpu; 8379 8380 int dst_cpu; 8381 struct rq *dst_rq; 8382 8383 struct cpumask *dst_grpmask; 8384 int new_dst_cpu; 8385 enum cpu_idle_type idle; 8386 long imbalance; 8387 /* The set of CPUs under consideration for load-balancing */ 8388 struct cpumask *cpus; 8389 8390 unsigned int flags; 8391 8392 unsigned int loop; 8393 unsigned int loop_break; 8394 unsigned int loop_max; 8395 8396 enum fbq_type fbq_type; 8397 enum migration_type migration_type; 8398 struct list_head tasks; 8399 }; 8400 8401 /* 8402 * Is this task likely cache-hot: 8403 */ 8404 static int task_hot(struct task_struct *p, struct lb_env *env) 8405 { 8406 s64 delta; 8407 8408 lockdep_assert_rq_held(env->src_rq); 8409 8410 if (p->sched_class != &fair_sched_class) 8411 return 0; 8412 8413 if (unlikely(task_has_idle_policy(p))) 8414 return 0; 8415 8416 /* SMT siblings share cache */ 8417 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 8418 return 0; 8419 8420 /* 8421 * Buddy candidates are cache hot: 8422 */ 8423 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 8424 (&p->se == cfs_rq_of(&p->se)->next || 8425 &p->se == cfs_rq_of(&p->se)->last)) 8426 return 1; 8427 8428 if (sysctl_sched_migration_cost == -1) 8429 return 1; 8430 8431 /* 8432 * Don't migrate task if the task's cookie does not match 8433 * with the destination CPU's core cookie. 8434 */ 8435 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 8436 return 1; 8437 8438 if (sysctl_sched_migration_cost == 0) 8439 return 0; 8440 8441 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 8442 8443 return delta < (s64)sysctl_sched_migration_cost; 8444 } 8445 8446 #ifdef CONFIG_NUMA_BALANCING 8447 /* 8448 * Returns 1, if task migration degrades locality 8449 * Returns 0, if task migration improves locality i.e migration preferred. 8450 * Returns -1, if task migration is not affected by locality. 8451 */ 8452 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 8453 { 8454 struct numa_group *numa_group = rcu_dereference(p->numa_group); 8455 unsigned long src_weight, dst_weight; 8456 int src_nid, dst_nid, dist; 8457 8458 if (!static_branch_likely(&sched_numa_balancing)) 8459 return -1; 8460 8461 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 8462 return -1; 8463 8464 src_nid = cpu_to_node(env->src_cpu); 8465 dst_nid = cpu_to_node(env->dst_cpu); 8466 8467 if (src_nid == dst_nid) 8468 return -1; 8469 8470 /* Migrating away from the preferred node is always bad. */ 8471 if (src_nid == p->numa_preferred_nid) { 8472 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 8473 return 1; 8474 else 8475 return -1; 8476 } 8477 8478 /* Encourage migration to the preferred node. */ 8479 if (dst_nid == p->numa_preferred_nid) 8480 return 0; 8481 8482 /* Leaving a core idle is often worse than degrading locality. */ 8483 if (env->idle == CPU_IDLE) 8484 return -1; 8485 8486 dist = node_distance(src_nid, dst_nid); 8487 if (numa_group) { 8488 src_weight = group_weight(p, src_nid, dist); 8489 dst_weight = group_weight(p, dst_nid, dist); 8490 } else { 8491 src_weight = task_weight(p, src_nid, dist); 8492 dst_weight = task_weight(p, dst_nid, dist); 8493 } 8494 8495 return dst_weight < src_weight; 8496 } 8497 8498 #else 8499 static inline int migrate_degrades_locality(struct task_struct *p, 8500 struct lb_env *env) 8501 { 8502 return -1; 8503 } 8504 #endif 8505 8506 /* 8507 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 8508 */ 8509 static 8510 int can_migrate_task(struct task_struct *p, struct lb_env *env) 8511 { 8512 int tsk_cache_hot; 8513 8514 lockdep_assert_rq_held(env->src_rq); 8515 8516 /* 8517 * We do not migrate tasks that are: 8518 * 1) throttled_lb_pair, or 8519 * 2) cannot be migrated to this CPU due to cpus_ptr, or 8520 * 3) running (obviously), or 8521 * 4) are cache-hot on their current CPU. 8522 */ 8523 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 8524 return 0; 8525 8526 /* Disregard pcpu kthreads; they are where they need to be. */ 8527 if (kthread_is_per_cpu(p)) 8528 return 0; 8529 8530 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 8531 int cpu; 8532 8533 schedstat_inc(p->stats.nr_failed_migrations_affine); 8534 8535 env->flags |= LBF_SOME_PINNED; 8536 8537 /* 8538 * Remember if this task can be migrated to any other CPU in 8539 * our sched_group. We may want to revisit it if we couldn't 8540 * meet load balance goals by pulling other tasks on src_cpu. 8541 * 8542 * Avoid computing new_dst_cpu 8543 * - for NEWLY_IDLE 8544 * - if we have already computed one in current iteration 8545 * - if it's an active balance 8546 */ 8547 if (env->idle == CPU_NEWLY_IDLE || 8548 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 8549 return 0; 8550 8551 /* Prevent to re-select dst_cpu via env's CPUs: */ 8552 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 8553 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 8554 env->flags |= LBF_DST_PINNED; 8555 env->new_dst_cpu = cpu; 8556 break; 8557 } 8558 } 8559 8560 return 0; 8561 } 8562 8563 /* Record that we found at least one task that could run on dst_cpu */ 8564 env->flags &= ~LBF_ALL_PINNED; 8565 8566 if (task_on_cpu(env->src_rq, p)) { 8567 schedstat_inc(p->stats.nr_failed_migrations_running); 8568 return 0; 8569 } 8570 8571 /* 8572 * Aggressive migration if: 8573 * 1) active balance 8574 * 2) destination numa is preferred 8575 * 3) task is cache cold, or 8576 * 4) too many balance attempts have failed. 8577 */ 8578 if (env->flags & LBF_ACTIVE_LB) 8579 return 1; 8580 8581 tsk_cache_hot = migrate_degrades_locality(p, env); 8582 if (tsk_cache_hot == -1) 8583 tsk_cache_hot = task_hot(p, env); 8584 8585 if (tsk_cache_hot <= 0 || 8586 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 8587 if (tsk_cache_hot == 1) { 8588 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 8589 schedstat_inc(p->stats.nr_forced_migrations); 8590 } 8591 return 1; 8592 } 8593 8594 schedstat_inc(p->stats.nr_failed_migrations_hot); 8595 return 0; 8596 } 8597 8598 /* 8599 * detach_task() -- detach the task for the migration specified in env 8600 */ 8601 static void detach_task(struct task_struct *p, struct lb_env *env) 8602 { 8603 lockdep_assert_rq_held(env->src_rq); 8604 8605 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 8606 set_task_cpu(p, env->dst_cpu); 8607 } 8608 8609 /* 8610 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 8611 * part of active balancing operations within "domain". 8612 * 8613 * Returns a task if successful and NULL otherwise. 8614 */ 8615 static struct task_struct *detach_one_task(struct lb_env *env) 8616 { 8617 struct task_struct *p; 8618 8619 lockdep_assert_rq_held(env->src_rq); 8620 8621 list_for_each_entry_reverse(p, 8622 &env->src_rq->cfs_tasks, se.group_node) { 8623 if (!can_migrate_task(p, env)) 8624 continue; 8625 8626 detach_task(p, env); 8627 8628 /* 8629 * Right now, this is only the second place where 8630 * lb_gained[env->idle] is updated (other is detach_tasks) 8631 * so we can safely collect stats here rather than 8632 * inside detach_tasks(). 8633 */ 8634 schedstat_inc(env->sd->lb_gained[env->idle]); 8635 return p; 8636 } 8637 return NULL; 8638 } 8639 8640 /* 8641 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 8642 * busiest_rq, as part of a balancing operation within domain "sd". 8643 * 8644 * Returns number of detached tasks if successful and 0 otherwise. 8645 */ 8646 static int detach_tasks(struct lb_env *env) 8647 { 8648 struct list_head *tasks = &env->src_rq->cfs_tasks; 8649 unsigned long util, load; 8650 struct task_struct *p; 8651 int detached = 0; 8652 8653 lockdep_assert_rq_held(env->src_rq); 8654 8655 /* 8656 * Source run queue has been emptied by another CPU, clear 8657 * LBF_ALL_PINNED flag as we will not test any task. 8658 */ 8659 if (env->src_rq->nr_running <= 1) { 8660 env->flags &= ~LBF_ALL_PINNED; 8661 return 0; 8662 } 8663 8664 if (env->imbalance <= 0) 8665 return 0; 8666 8667 while (!list_empty(tasks)) { 8668 /* 8669 * We don't want to steal all, otherwise we may be treated likewise, 8670 * which could at worst lead to a livelock crash. 8671 */ 8672 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 8673 break; 8674 8675 env->loop++; 8676 /* 8677 * We've more or less seen every task there is, call it quits 8678 * unless we haven't found any movable task yet. 8679 */ 8680 if (env->loop > env->loop_max && 8681 !(env->flags & LBF_ALL_PINNED)) 8682 break; 8683 8684 /* take a breather every nr_migrate tasks */ 8685 if (env->loop > env->loop_break) { 8686 env->loop_break += SCHED_NR_MIGRATE_BREAK; 8687 env->flags |= LBF_NEED_BREAK; 8688 break; 8689 } 8690 8691 p = list_last_entry(tasks, struct task_struct, se.group_node); 8692 8693 if (!can_migrate_task(p, env)) 8694 goto next; 8695 8696 switch (env->migration_type) { 8697 case migrate_load: 8698 /* 8699 * Depending of the number of CPUs and tasks and the 8700 * cgroup hierarchy, task_h_load() can return a null 8701 * value. Make sure that env->imbalance decreases 8702 * otherwise detach_tasks() will stop only after 8703 * detaching up to loop_max tasks. 8704 */ 8705 load = max_t(unsigned long, task_h_load(p), 1); 8706 8707 if (sched_feat(LB_MIN) && 8708 load < 16 && !env->sd->nr_balance_failed) 8709 goto next; 8710 8711 /* 8712 * Make sure that we don't migrate too much load. 8713 * Nevertheless, let relax the constraint if 8714 * scheduler fails to find a good waiting task to 8715 * migrate. 8716 */ 8717 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 8718 goto next; 8719 8720 env->imbalance -= load; 8721 break; 8722 8723 case migrate_util: 8724 util = task_util_est(p); 8725 8726 if (util > env->imbalance) 8727 goto next; 8728 8729 env->imbalance -= util; 8730 break; 8731 8732 case migrate_task: 8733 env->imbalance--; 8734 break; 8735 8736 case migrate_misfit: 8737 /* This is not a misfit task */ 8738 if (task_fits_cpu(p, env->src_cpu)) 8739 goto next; 8740 8741 env->imbalance = 0; 8742 break; 8743 } 8744 8745 detach_task(p, env); 8746 list_add(&p->se.group_node, &env->tasks); 8747 8748 detached++; 8749 8750 #ifdef CONFIG_PREEMPTION 8751 /* 8752 * NEWIDLE balancing is a source of latency, so preemptible 8753 * kernels will stop after the first task is detached to minimize 8754 * the critical section. 8755 */ 8756 if (env->idle == CPU_NEWLY_IDLE) 8757 break; 8758 #endif 8759 8760 /* 8761 * We only want to steal up to the prescribed amount of 8762 * load/util/tasks. 8763 */ 8764 if (env->imbalance <= 0) 8765 break; 8766 8767 continue; 8768 next: 8769 list_move(&p->se.group_node, tasks); 8770 } 8771 8772 /* 8773 * Right now, this is one of only two places we collect this stat 8774 * so we can safely collect detach_one_task() stats here rather 8775 * than inside detach_one_task(). 8776 */ 8777 schedstat_add(env->sd->lb_gained[env->idle], detached); 8778 8779 return detached; 8780 } 8781 8782 /* 8783 * attach_task() -- attach the task detached by detach_task() to its new rq. 8784 */ 8785 static void attach_task(struct rq *rq, struct task_struct *p) 8786 { 8787 lockdep_assert_rq_held(rq); 8788 8789 WARN_ON_ONCE(task_rq(p) != rq); 8790 activate_task(rq, p, ENQUEUE_NOCLOCK); 8791 check_preempt_curr(rq, p, 0); 8792 } 8793 8794 /* 8795 * attach_one_task() -- attaches the task returned from detach_one_task() to 8796 * its new rq. 8797 */ 8798 static void attach_one_task(struct rq *rq, struct task_struct *p) 8799 { 8800 struct rq_flags rf; 8801 8802 rq_lock(rq, &rf); 8803 update_rq_clock(rq); 8804 attach_task(rq, p); 8805 rq_unlock(rq, &rf); 8806 } 8807 8808 /* 8809 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 8810 * new rq. 8811 */ 8812 static void attach_tasks(struct lb_env *env) 8813 { 8814 struct list_head *tasks = &env->tasks; 8815 struct task_struct *p; 8816 struct rq_flags rf; 8817 8818 rq_lock(env->dst_rq, &rf); 8819 update_rq_clock(env->dst_rq); 8820 8821 while (!list_empty(tasks)) { 8822 p = list_first_entry(tasks, struct task_struct, se.group_node); 8823 list_del_init(&p->se.group_node); 8824 8825 attach_task(env->dst_rq, p); 8826 } 8827 8828 rq_unlock(env->dst_rq, &rf); 8829 } 8830 8831 #ifdef CONFIG_NO_HZ_COMMON 8832 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 8833 { 8834 if (cfs_rq->avg.load_avg) 8835 return true; 8836 8837 if (cfs_rq->avg.util_avg) 8838 return true; 8839 8840 return false; 8841 } 8842 8843 static inline bool others_have_blocked(struct rq *rq) 8844 { 8845 if (READ_ONCE(rq->avg_rt.util_avg)) 8846 return true; 8847 8848 if (READ_ONCE(rq->avg_dl.util_avg)) 8849 return true; 8850 8851 if (thermal_load_avg(rq)) 8852 return true; 8853 8854 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 8855 if (READ_ONCE(rq->avg_irq.util_avg)) 8856 return true; 8857 #endif 8858 8859 return false; 8860 } 8861 8862 static inline void update_blocked_load_tick(struct rq *rq) 8863 { 8864 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 8865 } 8866 8867 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 8868 { 8869 if (!has_blocked) 8870 rq->has_blocked_load = 0; 8871 } 8872 #else 8873 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 8874 static inline bool others_have_blocked(struct rq *rq) { return false; } 8875 static inline void update_blocked_load_tick(struct rq *rq) {} 8876 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 8877 #endif 8878 8879 static bool __update_blocked_others(struct rq *rq, bool *done) 8880 { 8881 const struct sched_class *curr_class; 8882 u64 now = rq_clock_pelt(rq); 8883 unsigned long thermal_pressure; 8884 bool decayed; 8885 8886 /* 8887 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 8888 * DL and IRQ signals have been updated before updating CFS. 8889 */ 8890 curr_class = rq->curr->sched_class; 8891 8892 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 8893 8894 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 8895 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 8896 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 8897 update_irq_load_avg(rq, 0); 8898 8899 if (others_have_blocked(rq)) 8900 *done = false; 8901 8902 return decayed; 8903 } 8904 8905 #ifdef CONFIG_FAIR_GROUP_SCHED 8906 8907 static bool __update_blocked_fair(struct rq *rq, bool *done) 8908 { 8909 struct cfs_rq *cfs_rq, *pos; 8910 bool decayed = false; 8911 int cpu = cpu_of(rq); 8912 8913 /* 8914 * Iterates the task_group tree in a bottom up fashion, see 8915 * list_add_leaf_cfs_rq() for details. 8916 */ 8917 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 8918 struct sched_entity *se; 8919 8920 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 8921 update_tg_load_avg(cfs_rq); 8922 8923 if (cfs_rq->nr_running == 0) 8924 update_idle_cfs_rq_clock_pelt(cfs_rq); 8925 8926 if (cfs_rq == &rq->cfs) 8927 decayed = true; 8928 } 8929 8930 /* Propagate pending load changes to the parent, if any: */ 8931 se = cfs_rq->tg->se[cpu]; 8932 if (se && !skip_blocked_update(se)) 8933 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 8934 8935 /* 8936 * There can be a lot of idle CPU cgroups. Don't let fully 8937 * decayed cfs_rqs linger on the list. 8938 */ 8939 if (cfs_rq_is_decayed(cfs_rq)) 8940 list_del_leaf_cfs_rq(cfs_rq); 8941 8942 /* Don't need periodic decay once load/util_avg are null */ 8943 if (cfs_rq_has_blocked(cfs_rq)) 8944 *done = false; 8945 } 8946 8947 return decayed; 8948 } 8949 8950 /* 8951 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 8952 * This needs to be done in a top-down fashion because the load of a child 8953 * group is a fraction of its parents load. 8954 */ 8955 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 8956 { 8957 struct rq *rq = rq_of(cfs_rq); 8958 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 8959 unsigned long now = jiffies; 8960 unsigned long load; 8961 8962 if (cfs_rq->last_h_load_update == now) 8963 return; 8964 8965 WRITE_ONCE(cfs_rq->h_load_next, NULL); 8966 for_each_sched_entity(se) { 8967 cfs_rq = cfs_rq_of(se); 8968 WRITE_ONCE(cfs_rq->h_load_next, se); 8969 if (cfs_rq->last_h_load_update == now) 8970 break; 8971 } 8972 8973 if (!se) { 8974 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 8975 cfs_rq->last_h_load_update = now; 8976 } 8977 8978 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 8979 load = cfs_rq->h_load; 8980 load = div64_ul(load * se->avg.load_avg, 8981 cfs_rq_load_avg(cfs_rq) + 1); 8982 cfs_rq = group_cfs_rq(se); 8983 cfs_rq->h_load = load; 8984 cfs_rq->last_h_load_update = now; 8985 } 8986 } 8987 8988 static unsigned long task_h_load(struct task_struct *p) 8989 { 8990 struct cfs_rq *cfs_rq = task_cfs_rq(p); 8991 8992 update_cfs_rq_h_load(cfs_rq); 8993 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 8994 cfs_rq_load_avg(cfs_rq) + 1); 8995 } 8996 #else 8997 static bool __update_blocked_fair(struct rq *rq, bool *done) 8998 { 8999 struct cfs_rq *cfs_rq = &rq->cfs; 9000 bool decayed; 9001 9002 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9003 if (cfs_rq_has_blocked(cfs_rq)) 9004 *done = false; 9005 9006 return decayed; 9007 } 9008 9009 static unsigned long task_h_load(struct task_struct *p) 9010 { 9011 return p->se.avg.load_avg; 9012 } 9013 #endif 9014 9015 static void update_blocked_averages(int cpu) 9016 { 9017 bool decayed = false, done = true; 9018 struct rq *rq = cpu_rq(cpu); 9019 struct rq_flags rf; 9020 9021 rq_lock_irqsave(rq, &rf); 9022 update_blocked_load_tick(rq); 9023 update_rq_clock(rq); 9024 9025 decayed |= __update_blocked_others(rq, &done); 9026 decayed |= __update_blocked_fair(rq, &done); 9027 9028 update_blocked_load_status(rq, !done); 9029 if (decayed) 9030 cpufreq_update_util(rq, 0); 9031 rq_unlock_irqrestore(rq, &rf); 9032 } 9033 9034 /********** Helpers for find_busiest_group ************************/ 9035 9036 /* 9037 * sg_lb_stats - stats of a sched_group required for load_balancing 9038 */ 9039 struct sg_lb_stats { 9040 unsigned long avg_load; /*Avg load across the CPUs of the group */ 9041 unsigned long group_load; /* Total load over the CPUs of the group */ 9042 unsigned long group_capacity; 9043 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9044 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9045 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 9046 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9047 unsigned int idle_cpus; 9048 unsigned int group_weight; 9049 enum group_type group_type; 9050 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9051 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9052 #ifdef CONFIG_NUMA_BALANCING 9053 unsigned int nr_numa_running; 9054 unsigned int nr_preferred_running; 9055 #endif 9056 }; 9057 9058 /* 9059 * sd_lb_stats - Structure to store the statistics of a sched_domain 9060 * during load balancing. 9061 */ 9062 struct sd_lb_stats { 9063 struct sched_group *busiest; /* Busiest group in this sd */ 9064 struct sched_group *local; /* Local group in this sd */ 9065 unsigned long total_load; /* Total load of all groups in sd */ 9066 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9067 unsigned long avg_load; /* Average load across all groups in sd */ 9068 unsigned int prefer_sibling; /* tasks should go to sibling first */ 9069 9070 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 9071 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9072 }; 9073 9074 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9075 { 9076 /* 9077 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9078 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9079 * We must however set busiest_stat::group_type and 9080 * busiest_stat::idle_cpus to the worst busiest group because 9081 * update_sd_pick_busiest() reads these before assignment. 9082 */ 9083 *sds = (struct sd_lb_stats){ 9084 .busiest = NULL, 9085 .local = NULL, 9086 .total_load = 0UL, 9087 .total_capacity = 0UL, 9088 .busiest_stat = { 9089 .idle_cpus = UINT_MAX, 9090 .group_type = group_has_spare, 9091 }, 9092 }; 9093 } 9094 9095 static unsigned long scale_rt_capacity(int cpu) 9096 { 9097 struct rq *rq = cpu_rq(cpu); 9098 unsigned long max = arch_scale_cpu_capacity(cpu); 9099 unsigned long used, free; 9100 unsigned long irq; 9101 9102 irq = cpu_util_irq(rq); 9103 9104 if (unlikely(irq >= max)) 9105 return 1; 9106 9107 /* 9108 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9109 * (running and not running) with weights 0 and 1024 respectively. 9110 * avg_thermal.load_avg tracks thermal pressure and the weighted 9111 * average uses the actual delta max capacity(load). 9112 */ 9113 used = READ_ONCE(rq->avg_rt.util_avg); 9114 used += READ_ONCE(rq->avg_dl.util_avg); 9115 used += thermal_load_avg(rq); 9116 9117 if (unlikely(used >= max)) 9118 return 1; 9119 9120 free = max - used; 9121 9122 return scale_irq_capacity(free, irq, max); 9123 } 9124 9125 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9126 { 9127 unsigned long capacity = scale_rt_capacity(cpu); 9128 struct sched_group *sdg = sd->groups; 9129 9130 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 9131 9132 if (!capacity) 9133 capacity = 1; 9134 9135 cpu_rq(cpu)->cpu_capacity = capacity; 9136 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9137 9138 sdg->sgc->capacity = capacity; 9139 sdg->sgc->min_capacity = capacity; 9140 sdg->sgc->max_capacity = capacity; 9141 } 9142 9143 void update_group_capacity(struct sched_domain *sd, int cpu) 9144 { 9145 struct sched_domain *child = sd->child; 9146 struct sched_group *group, *sdg = sd->groups; 9147 unsigned long capacity, min_capacity, max_capacity; 9148 unsigned long interval; 9149 9150 interval = msecs_to_jiffies(sd->balance_interval); 9151 interval = clamp(interval, 1UL, max_load_balance_interval); 9152 sdg->sgc->next_update = jiffies + interval; 9153 9154 if (!child) { 9155 update_cpu_capacity(sd, cpu); 9156 return; 9157 } 9158 9159 capacity = 0; 9160 min_capacity = ULONG_MAX; 9161 max_capacity = 0; 9162 9163 if (child->flags & SD_OVERLAP) { 9164 /* 9165 * SD_OVERLAP domains cannot assume that child groups 9166 * span the current group. 9167 */ 9168 9169 for_each_cpu(cpu, sched_group_span(sdg)) { 9170 unsigned long cpu_cap = capacity_of(cpu); 9171 9172 capacity += cpu_cap; 9173 min_capacity = min(cpu_cap, min_capacity); 9174 max_capacity = max(cpu_cap, max_capacity); 9175 } 9176 } else { 9177 /* 9178 * !SD_OVERLAP domains can assume that child groups 9179 * span the current group. 9180 */ 9181 9182 group = child->groups; 9183 do { 9184 struct sched_group_capacity *sgc = group->sgc; 9185 9186 capacity += sgc->capacity; 9187 min_capacity = min(sgc->min_capacity, min_capacity); 9188 max_capacity = max(sgc->max_capacity, max_capacity); 9189 group = group->next; 9190 } while (group != child->groups); 9191 } 9192 9193 sdg->sgc->capacity = capacity; 9194 sdg->sgc->min_capacity = min_capacity; 9195 sdg->sgc->max_capacity = max_capacity; 9196 } 9197 9198 /* 9199 * Check whether the capacity of the rq has been noticeably reduced by side 9200 * activity. The imbalance_pct is used for the threshold. 9201 * Return true is the capacity is reduced 9202 */ 9203 static inline int 9204 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 9205 { 9206 return ((rq->cpu_capacity * sd->imbalance_pct) < 9207 (rq->cpu_capacity_orig * 100)); 9208 } 9209 9210 /* 9211 * Check whether a rq has a misfit task and if it looks like we can actually 9212 * help that task: we can migrate the task to a CPU of higher capacity, or 9213 * the task's current CPU is heavily pressured. 9214 */ 9215 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 9216 { 9217 return rq->misfit_task_load && 9218 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 9219 check_cpu_capacity(rq, sd)); 9220 } 9221 9222 /* 9223 * Group imbalance indicates (and tries to solve) the problem where balancing 9224 * groups is inadequate due to ->cpus_ptr constraints. 9225 * 9226 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 9227 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 9228 * Something like: 9229 * 9230 * { 0 1 2 3 } { 4 5 6 7 } 9231 * * * * * 9232 * 9233 * If we were to balance group-wise we'd place two tasks in the first group and 9234 * two tasks in the second group. Clearly this is undesired as it will overload 9235 * cpu 3 and leave one of the CPUs in the second group unused. 9236 * 9237 * The current solution to this issue is detecting the skew in the first group 9238 * by noticing the lower domain failed to reach balance and had difficulty 9239 * moving tasks due to affinity constraints. 9240 * 9241 * When this is so detected; this group becomes a candidate for busiest; see 9242 * update_sd_pick_busiest(). And calculate_imbalance() and 9243 * find_busiest_group() avoid some of the usual balance conditions to allow it 9244 * to create an effective group imbalance. 9245 * 9246 * This is a somewhat tricky proposition since the next run might not find the 9247 * group imbalance and decide the groups need to be balanced again. A most 9248 * subtle and fragile situation. 9249 */ 9250 9251 static inline int sg_imbalanced(struct sched_group *group) 9252 { 9253 return group->sgc->imbalance; 9254 } 9255 9256 /* 9257 * group_has_capacity returns true if the group has spare capacity that could 9258 * be used by some tasks. 9259 * We consider that a group has spare capacity if the number of task is 9260 * smaller than the number of CPUs or if the utilization is lower than the 9261 * available capacity for CFS tasks. 9262 * For the latter, we use a threshold to stabilize the state, to take into 9263 * account the variance of the tasks' load and to return true if the available 9264 * capacity in meaningful for the load balancer. 9265 * As an example, an available capacity of 1% can appear but it doesn't make 9266 * any benefit for the load balance. 9267 */ 9268 static inline bool 9269 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9270 { 9271 if (sgs->sum_nr_running < sgs->group_weight) 9272 return true; 9273 9274 if ((sgs->group_capacity * imbalance_pct) < 9275 (sgs->group_runnable * 100)) 9276 return false; 9277 9278 if ((sgs->group_capacity * 100) > 9279 (sgs->group_util * imbalance_pct)) 9280 return true; 9281 9282 return false; 9283 } 9284 9285 /* 9286 * group_is_overloaded returns true if the group has more tasks than it can 9287 * handle. 9288 * group_is_overloaded is not equals to !group_has_capacity because a group 9289 * with the exact right number of tasks, has no more spare capacity but is not 9290 * overloaded so both group_has_capacity and group_is_overloaded return 9291 * false. 9292 */ 9293 static inline bool 9294 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9295 { 9296 if (sgs->sum_nr_running <= sgs->group_weight) 9297 return false; 9298 9299 if ((sgs->group_capacity * 100) < 9300 (sgs->group_util * imbalance_pct)) 9301 return true; 9302 9303 if ((sgs->group_capacity * imbalance_pct) < 9304 (sgs->group_runnable * 100)) 9305 return true; 9306 9307 return false; 9308 } 9309 9310 static inline enum 9311 group_type group_classify(unsigned int imbalance_pct, 9312 struct sched_group *group, 9313 struct sg_lb_stats *sgs) 9314 { 9315 if (group_is_overloaded(imbalance_pct, sgs)) 9316 return group_overloaded; 9317 9318 if (sg_imbalanced(group)) 9319 return group_imbalanced; 9320 9321 if (sgs->group_asym_packing) 9322 return group_asym_packing; 9323 9324 if (sgs->group_misfit_task_load) 9325 return group_misfit_task; 9326 9327 if (!group_has_capacity(imbalance_pct, sgs)) 9328 return group_fully_busy; 9329 9330 return group_has_spare; 9331 } 9332 9333 /** 9334 * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks 9335 * @dst_cpu: Destination CPU of the load balancing 9336 * @sds: Load-balancing data with statistics of the local group 9337 * @sgs: Load-balancing statistics of the candidate busiest group 9338 * @sg: The candidate busiest group 9339 * 9340 * Check the state of the SMT siblings of both @sds::local and @sg and decide 9341 * if @dst_cpu can pull tasks. 9342 * 9343 * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of 9344 * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks 9345 * only if @dst_cpu has higher priority. 9346 * 9347 * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more 9348 * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority. 9349 * Bigger imbalances in the number of busy CPUs will be dealt with in 9350 * update_sd_pick_busiest(). 9351 * 9352 * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings 9353 * of @dst_cpu are idle and @sg has lower priority. 9354 * 9355 * Return: true if @dst_cpu can pull tasks, false otherwise. 9356 */ 9357 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds, 9358 struct sg_lb_stats *sgs, 9359 struct sched_group *sg) 9360 { 9361 #ifdef CONFIG_SCHED_SMT 9362 bool local_is_smt, sg_is_smt; 9363 int sg_busy_cpus; 9364 9365 local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY; 9366 sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY; 9367 9368 sg_busy_cpus = sgs->group_weight - sgs->idle_cpus; 9369 9370 if (!local_is_smt) { 9371 /* 9372 * If we are here, @dst_cpu is idle and does not have SMT 9373 * siblings. Pull tasks if candidate group has two or more 9374 * busy CPUs. 9375 */ 9376 if (sg_busy_cpus >= 2) /* implies sg_is_smt */ 9377 return true; 9378 9379 /* 9380 * @dst_cpu does not have SMT siblings. @sg may have SMT 9381 * siblings and only one is busy. In such case, @dst_cpu 9382 * can help if it has higher priority and is idle (i.e., 9383 * it has no running tasks). 9384 */ 9385 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 9386 } 9387 9388 /* @dst_cpu has SMT siblings. */ 9389 9390 if (sg_is_smt) { 9391 int local_busy_cpus = sds->local->group_weight - 9392 sds->local_stat.idle_cpus; 9393 int busy_cpus_delta = sg_busy_cpus - local_busy_cpus; 9394 9395 if (busy_cpus_delta == 1) 9396 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 9397 9398 return false; 9399 } 9400 9401 /* 9402 * @sg does not have SMT siblings. Ensure that @sds::local does not end 9403 * up with more than one busy SMT sibling and only pull tasks if there 9404 * are not busy CPUs (i.e., no CPU has running tasks). 9405 */ 9406 if (!sds->local_stat.sum_nr_running) 9407 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 9408 9409 return false; 9410 #else 9411 /* Always return false so that callers deal with non-SMT cases. */ 9412 return false; 9413 #endif 9414 } 9415 9416 static inline bool 9417 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs, 9418 struct sched_group *group) 9419 { 9420 /* Only do SMT checks if either local or candidate have SMT siblings */ 9421 if ((sds->local->flags & SD_SHARE_CPUCAPACITY) || 9422 (group->flags & SD_SHARE_CPUCAPACITY)) 9423 return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group); 9424 9425 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu); 9426 } 9427 9428 static inline bool 9429 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 9430 { 9431 /* 9432 * When there is more than 1 task, the group_overloaded case already 9433 * takes care of cpu with reduced capacity 9434 */ 9435 if (rq->cfs.h_nr_running != 1) 9436 return false; 9437 9438 return check_cpu_capacity(rq, sd); 9439 } 9440 9441 /** 9442 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 9443 * @env: The load balancing environment. 9444 * @sds: Load-balancing data with statistics of the local group. 9445 * @group: sched_group whose statistics are to be updated. 9446 * @sgs: variable to hold the statistics for this group. 9447 * @sg_status: Holds flag indicating the status of the sched_group 9448 */ 9449 static inline void update_sg_lb_stats(struct lb_env *env, 9450 struct sd_lb_stats *sds, 9451 struct sched_group *group, 9452 struct sg_lb_stats *sgs, 9453 int *sg_status) 9454 { 9455 int i, nr_running, local_group; 9456 9457 memset(sgs, 0, sizeof(*sgs)); 9458 9459 local_group = group == sds->local; 9460 9461 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9462 struct rq *rq = cpu_rq(i); 9463 unsigned long load = cpu_load(rq); 9464 9465 sgs->group_load += load; 9466 sgs->group_util += cpu_util_cfs(i); 9467 sgs->group_runnable += cpu_runnable(rq); 9468 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 9469 9470 nr_running = rq->nr_running; 9471 sgs->sum_nr_running += nr_running; 9472 9473 if (nr_running > 1) 9474 *sg_status |= SG_OVERLOAD; 9475 9476 if (cpu_overutilized(i)) 9477 *sg_status |= SG_OVERUTILIZED; 9478 9479 #ifdef CONFIG_NUMA_BALANCING 9480 sgs->nr_numa_running += rq->nr_numa_running; 9481 sgs->nr_preferred_running += rq->nr_preferred_running; 9482 #endif 9483 /* 9484 * No need to call idle_cpu() if nr_running is not 0 9485 */ 9486 if (!nr_running && idle_cpu(i)) { 9487 sgs->idle_cpus++; 9488 /* Idle cpu can't have misfit task */ 9489 continue; 9490 } 9491 9492 if (local_group) 9493 continue; 9494 9495 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9496 /* Check for a misfit task on the cpu */ 9497 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 9498 sgs->group_misfit_task_load = rq->misfit_task_load; 9499 *sg_status |= SG_OVERLOAD; 9500 } 9501 } else if ((env->idle != CPU_NOT_IDLE) && 9502 sched_reduced_capacity(rq, env->sd)) { 9503 /* Check for a task running on a CPU with reduced capacity */ 9504 if (sgs->group_misfit_task_load < load) 9505 sgs->group_misfit_task_load = load; 9506 } 9507 } 9508 9509 sgs->group_capacity = group->sgc->capacity; 9510 9511 sgs->group_weight = group->group_weight; 9512 9513 /* Check if dst CPU is idle and preferred to this group */ 9514 if (!local_group && env->sd->flags & SD_ASYM_PACKING && 9515 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running && 9516 sched_asym(env, sds, sgs, group)) { 9517 sgs->group_asym_packing = 1; 9518 } 9519 9520 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 9521 9522 /* Computing avg_load makes sense only when group is overloaded */ 9523 if (sgs->group_type == group_overloaded) 9524 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9525 sgs->group_capacity; 9526 } 9527 9528 /** 9529 * update_sd_pick_busiest - return 1 on busiest group 9530 * @env: The load balancing environment. 9531 * @sds: sched_domain statistics 9532 * @sg: sched_group candidate to be checked for being the busiest 9533 * @sgs: sched_group statistics 9534 * 9535 * Determine if @sg is a busier group than the previously selected 9536 * busiest group. 9537 * 9538 * Return: %true if @sg is a busier group than the previously selected 9539 * busiest group. %false otherwise. 9540 */ 9541 static bool update_sd_pick_busiest(struct lb_env *env, 9542 struct sd_lb_stats *sds, 9543 struct sched_group *sg, 9544 struct sg_lb_stats *sgs) 9545 { 9546 struct sg_lb_stats *busiest = &sds->busiest_stat; 9547 9548 /* Make sure that there is at least one task to pull */ 9549 if (!sgs->sum_h_nr_running) 9550 return false; 9551 9552 /* 9553 * Don't try to pull misfit tasks we can't help. 9554 * We can use max_capacity here as reduction in capacity on some 9555 * CPUs in the group should either be possible to resolve 9556 * internally or be covered by avg_load imbalance (eventually). 9557 */ 9558 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9559 (sgs->group_type == group_misfit_task) && 9560 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 9561 sds->local_stat.group_type != group_has_spare)) 9562 return false; 9563 9564 if (sgs->group_type > busiest->group_type) 9565 return true; 9566 9567 if (sgs->group_type < busiest->group_type) 9568 return false; 9569 9570 /* 9571 * The candidate and the current busiest group are the same type of 9572 * group. Let check which one is the busiest according to the type. 9573 */ 9574 9575 switch (sgs->group_type) { 9576 case group_overloaded: 9577 /* Select the overloaded group with highest avg_load. */ 9578 if (sgs->avg_load <= busiest->avg_load) 9579 return false; 9580 break; 9581 9582 case group_imbalanced: 9583 /* 9584 * Select the 1st imbalanced group as we don't have any way to 9585 * choose one more than another. 9586 */ 9587 return false; 9588 9589 case group_asym_packing: 9590 /* Prefer to move from lowest priority CPU's work */ 9591 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 9592 return false; 9593 break; 9594 9595 case group_misfit_task: 9596 /* 9597 * If we have more than one misfit sg go with the biggest 9598 * misfit. 9599 */ 9600 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 9601 return false; 9602 break; 9603 9604 case group_fully_busy: 9605 /* 9606 * Select the fully busy group with highest avg_load. In 9607 * theory, there is no need to pull task from such kind of 9608 * group because tasks have all compute capacity that they need 9609 * but we can still improve the overall throughput by reducing 9610 * contention when accessing shared HW resources. 9611 * 9612 * XXX for now avg_load is not computed and always 0 so we 9613 * select the 1st one. 9614 */ 9615 if (sgs->avg_load <= busiest->avg_load) 9616 return false; 9617 break; 9618 9619 case group_has_spare: 9620 /* 9621 * Select not overloaded group with lowest number of idle cpus 9622 * and highest number of running tasks. We could also compare 9623 * the spare capacity which is more stable but it can end up 9624 * that the group has less spare capacity but finally more idle 9625 * CPUs which means less opportunity to pull tasks. 9626 */ 9627 if (sgs->idle_cpus > busiest->idle_cpus) 9628 return false; 9629 else if ((sgs->idle_cpus == busiest->idle_cpus) && 9630 (sgs->sum_nr_running <= busiest->sum_nr_running)) 9631 return false; 9632 9633 break; 9634 } 9635 9636 /* 9637 * Candidate sg has no more than one task per CPU and has higher 9638 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 9639 * throughput. Maximize throughput, power/energy consequences are not 9640 * considered. 9641 */ 9642 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9643 (sgs->group_type <= group_fully_busy) && 9644 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 9645 return false; 9646 9647 return true; 9648 } 9649 9650 #ifdef CONFIG_NUMA_BALANCING 9651 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9652 { 9653 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 9654 return regular; 9655 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 9656 return remote; 9657 return all; 9658 } 9659 9660 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 9661 { 9662 if (rq->nr_running > rq->nr_numa_running) 9663 return regular; 9664 if (rq->nr_running > rq->nr_preferred_running) 9665 return remote; 9666 return all; 9667 } 9668 #else 9669 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9670 { 9671 return all; 9672 } 9673 9674 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 9675 { 9676 return regular; 9677 } 9678 #endif /* CONFIG_NUMA_BALANCING */ 9679 9680 9681 struct sg_lb_stats; 9682 9683 /* 9684 * task_running_on_cpu - return 1 if @p is running on @cpu. 9685 */ 9686 9687 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 9688 { 9689 /* Task has no contribution or is new */ 9690 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 9691 return 0; 9692 9693 if (task_on_rq_queued(p)) 9694 return 1; 9695 9696 return 0; 9697 } 9698 9699 /** 9700 * idle_cpu_without - would a given CPU be idle without p ? 9701 * @cpu: the processor on which idleness is tested. 9702 * @p: task which should be ignored. 9703 * 9704 * Return: 1 if the CPU would be idle. 0 otherwise. 9705 */ 9706 static int idle_cpu_without(int cpu, struct task_struct *p) 9707 { 9708 struct rq *rq = cpu_rq(cpu); 9709 9710 if (rq->curr != rq->idle && rq->curr != p) 9711 return 0; 9712 9713 /* 9714 * rq->nr_running can't be used but an updated version without the 9715 * impact of p on cpu must be used instead. The updated nr_running 9716 * be computed and tested before calling idle_cpu_without(). 9717 */ 9718 9719 #ifdef CONFIG_SMP 9720 if (rq->ttwu_pending) 9721 return 0; 9722 #endif 9723 9724 return 1; 9725 } 9726 9727 /* 9728 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 9729 * @sd: The sched_domain level to look for idlest group. 9730 * @group: sched_group whose statistics are to be updated. 9731 * @sgs: variable to hold the statistics for this group. 9732 * @p: The task for which we look for the idlest group/CPU. 9733 */ 9734 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 9735 struct sched_group *group, 9736 struct sg_lb_stats *sgs, 9737 struct task_struct *p) 9738 { 9739 int i, nr_running; 9740 9741 memset(sgs, 0, sizeof(*sgs)); 9742 9743 /* Assume that task can't fit any CPU of the group */ 9744 if (sd->flags & SD_ASYM_CPUCAPACITY) 9745 sgs->group_misfit_task_load = 1; 9746 9747 for_each_cpu(i, sched_group_span(group)) { 9748 struct rq *rq = cpu_rq(i); 9749 unsigned int local; 9750 9751 sgs->group_load += cpu_load_without(rq, p); 9752 sgs->group_util += cpu_util_without(i, p); 9753 sgs->group_runnable += cpu_runnable_without(rq, p); 9754 local = task_running_on_cpu(i, p); 9755 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 9756 9757 nr_running = rq->nr_running - local; 9758 sgs->sum_nr_running += nr_running; 9759 9760 /* 9761 * No need to call idle_cpu_without() if nr_running is not 0 9762 */ 9763 if (!nr_running && idle_cpu_without(i, p)) 9764 sgs->idle_cpus++; 9765 9766 /* Check if task fits in the CPU */ 9767 if (sd->flags & SD_ASYM_CPUCAPACITY && 9768 sgs->group_misfit_task_load && 9769 task_fits_cpu(p, i)) 9770 sgs->group_misfit_task_load = 0; 9771 9772 } 9773 9774 sgs->group_capacity = group->sgc->capacity; 9775 9776 sgs->group_weight = group->group_weight; 9777 9778 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 9779 9780 /* 9781 * Computing avg_load makes sense only when group is fully busy or 9782 * overloaded 9783 */ 9784 if (sgs->group_type == group_fully_busy || 9785 sgs->group_type == group_overloaded) 9786 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9787 sgs->group_capacity; 9788 } 9789 9790 static bool update_pick_idlest(struct sched_group *idlest, 9791 struct sg_lb_stats *idlest_sgs, 9792 struct sched_group *group, 9793 struct sg_lb_stats *sgs) 9794 { 9795 if (sgs->group_type < idlest_sgs->group_type) 9796 return true; 9797 9798 if (sgs->group_type > idlest_sgs->group_type) 9799 return false; 9800 9801 /* 9802 * The candidate and the current idlest group are the same type of 9803 * group. Let check which one is the idlest according to the type. 9804 */ 9805 9806 switch (sgs->group_type) { 9807 case group_overloaded: 9808 case group_fully_busy: 9809 /* Select the group with lowest avg_load. */ 9810 if (idlest_sgs->avg_load <= sgs->avg_load) 9811 return false; 9812 break; 9813 9814 case group_imbalanced: 9815 case group_asym_packing: 9816 /* Those types are not used in the slow wakeup path */ 9817 return false; 9818 9819 case group_misfit_task: 9820 /* Select group with the highest max capacity */ 9821 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 9822 return false; 9823 break; 9824 9825 case group_has_spare: 9826 /* Select group with most idle CPUs */ 9827 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 9828 return false; 9829 9830 /* Select group with lowest group_util */ 9831 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 9832 idlest_sgs->group_util <= sgs->group_util) 9833 return false; 9834 9835 break; 9836 } 9837 9838 return true; 9839 } 9840 9841 /* 9842 * find_idlest_group() finds and returns the least busy CPU group within the 9843 * domain. 9844 * 9845 * Assumes p is allowed on at least one CPU in sd. 9846 */ 9847 static struct sched_group * 9848 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 9849 { 9850 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 9851 struct sg_lb_stats local_sgs, tmp_sgs; 9852 struct sg_lb_stats *sgs; 9853 unsigned long imbalance; 9854 struct sg_lb_stats idlest_sgs = { 9855 .avg_load = UINT_MAX, 9856 .group_type = group_overloaded, 9857 }; 9858 9859 do { 9860 int local_group; 9861 9862 /* Skip over this group if it has no CPUs allowed */ 9863 if (!cpumask_intersects(sched_group_span(group), 9864 p->cpus_ptr)) 9865 continue; 9866 9867 /* Skip over this group if no cookie matched */ 9868 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 9869 continue; 9870 9871 local_group = cpumask_test_cpu(this_cpu, 9872 sched_group_span(group)); 9873 9874 if (local_group) { 9875 sgs = &local_sgs; 9876 local = group; 9877 } else { 9878 sgs = &tmp_sgs; 9879 } 9880 9881 update_sg_wakeup_stats(sd, group, sgs, p); 9882 9883 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 9884 idlest = group; 9885 idlest_sgs = *sgs; 9886 } 9887 9888 } while (group = group->next, group != sd->groups); 9889 9890 9891 /* There is no idlest group to push tasks to */ 9892 if (!idlest) 9893 return NULL; 9894 9895 /* The local group has been skipped because of CPU affinity */ 9896 if (!local) 9897 return idlest; 9898 9899 /* 9900 * If the local group is idler than the selected idlest group 9901 * don't try and push the task. 9902 */ 9903 if (local_sgs.group_type < idlest_sgs.group_type) 9904 return NULL; 9905 9906 /* 9907 * If the local group is busier than the selected idlest group 9908 * try and push the task. 9909 */ 9910 if (local_sgs.group_type > idlest_sgs.group_type) 9911 return idlest; 9912 9913 switch (local_sgs.group_type) { 9914 case group_overloaded: 9915 case group_fully_busy: 9916 9917 /* Calculate allowed imbalance based on load */ 9918 imbalance = scale_load_down(NICE_0_LOAD) * 9919 (sd->imbalance_pct-100) / 100; 9920 9921 /* 9922 * When comparing groups across NUMA domains, it's possible for 9923 * the local domain to be very lightly loaded relative to the 9924 * remote domains but "imbalance" skews the comparison making 9925 * remote CPUs look much more favourable. When considering 9926 * cross-domain, add imbalance to the load on the remote node 9927 * and consider staying local. 9928 */ 9929 9930 if ((sd->flags & SD_NUMA) && 9931 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 9932 return NULL; 9933 9934 /* 9935 * If the local group is less loaded than the selected 9936 * idlest group don't try and push any tasks. 9937 */ 9938 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 9939 return NULL; 9940 9941 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 9942 return NULL; 9943 break; 9944 9945 case group_imbalanced: 9946 case group_asym_packing: 9947 /* Those type are not used in the slow wakeup path */ 9948 return NULL; 9949 9950 case group_misfit_task: 9951 /* Select group with the highest max capacity */ 9952 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 9953 return NULL; 9954 break; 9955 9956 case group_has_spare: 9957 #ifdef CONFIG_NUMA 9958 if (sd->flags & SD_NUMA) { 9959 int imb_numa_nr = sd->imb_numa_nr; 9960 #ifdef CONFIG_NUMA_BALANCING 9961 int idlest_cpu; 9962 /* 9963 * If there is spare capacity at NUMA, try to select 9964 * the preferred node 9965 */ 9966 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 9967 return NULL; 9968 9969 idlest_cpu = cpumask_first(sched_group_span(idlest)); 9970 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 9971 return idlest; 9972 #endif /* CONFIG_NUMA_BALANCING */ 9973 /* 9974 * Otherwise, keep the task close to the wakeup source 9975 * and improve locality if the number of running tasks 9976 * would remain below threshold where an imbalance is 9977 * allowed while accounting for the possibility the 9978 * task is pinned to a subset of CPUs. If there is a 9979 * real need of migration, periodic load balance will 9980 * take care of it. 9981 */ 9982 if (p->nr_cpus_allowed != NR_CPUS) { 9983 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 9984 9985 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 9986 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 9987 } 9988 9989 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 9990 if (!adjust_numa_imbalance(imbalance, 9991 local_sgs.sum_nr_running + 1, 9992 imb_numa_nr)) { 9993 return NULL; 9994 } 9995 } 9996 #endif /* CONFIG_NUMA */ 9997 9998 /* 9999 * Select group with highest number of idle CPUs. We could also 10000 * compare the utilization which is more stable but it can end 10001 * up that the group has less spare capacity but finally more 10002 * idle CPUs which means more opportunity to run task. 10003 */ 10004 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10005 return NULL; 10006 break; 10007 } 10008 10009 return idlest; 10010 } 10011 10012 static void update_idle_cpu_scan(struct lb_env *env, 10013 unsigned long sum_util) 10014 { 10015 struct sched_domain_shared *sd_share; 10016 int llc_weight, pct; 10017 u64 x, y, tmp; 10018 /* 10019 * Update the number of CPUs to scan in LLC domain, which could 10020 * be used as a hint in select_idle_cpu(). The update of sd_share 10021 * could be expensive because it is within a shared cache line. 10022 * So the write of this hint only occurs during periodic load 10023 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10024 * can fire way more frequently than the former. 10025 */ 10026 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10027 return; 10028 10029 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10030 if (env->sd->span_weight != llc_weight) 10031 return; 10032 10033 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10034 if (!sd_share) 10035 return; 10036 10037 /* 10038 * The number of CPUs to search drops as sum_util increases, when 10039 * sum_util hits 85% or above, the scan stops. 10040 * The reason to choose 85% as the threshold is because this is the 10041 * imbalance_pct(117) when a LLC sched group is overloaded. 10042 * 10043 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10044 * and y'= y / SCHED_CAPACITY_SCALE 10045 * 10046 * x is the ratio of sum_util compared to the CPU capacity: 10047 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10048 * y' is the ratio of CPUs to be scanned in the LLC domain, 10049 * and the number of CPUs to scan is calculated by: 10050 * 10051 * nr_scan = llc_weight * y' [2] 10052 * 10053 * When x hits the threshold of overloaded, AKA, when 10054 * x = 100 / pct, y drops to 0. According to [1], 10055 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10056 * 10057 * Scale x by SCHED_CAPACITY_SCALE: 10058 * x' = sum_util / llc_weight; [3] 10059 * 10060 * and finally [1] becomes: 10061 * y = SCHED_CAPACITY_SCALE - 10062 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10063 * 10064 */ 10065 /* equation [3] */ 10066 x = sum_util; 10067 do_div(x, llc_weight); 10068 10069 /* equation [4] */ 10070 pct = env->sd->imbalance_pct; 10071 tmp = x * x * pct * pct; 10072 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10073 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10074 y = SCHED_CAPACITY_SCALE - tmp; 10075 10076 /* equation [2] */ 10077 y *= llc_weight; 10078 do_div(y, SCHED_CAPACITY_SCALE); 10079 if ((int)y != sd_share->nr_idle_scan) 10080 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10081 } 10082 10083 /** 10084 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 10085 * @env: The load balancing environment. 10086 * @sds: variable to hold the statistics for this sched_domain. 10087 */ 10088 10089 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 10090 { 10091 struct sched_domain *child = env->sd->child; 10092 struct sched_group *sg = env->sd->groups; 10093 struct sg_lb_stats *local = &sds->local_stat; 10094 struct sg_lb_stats tmp_sgs; 10095 unsigned long sum_util = 0; 10096 int sg_status = 0; 10097 10098 do { 10099 struct sg_lb_stats *sgs = &tmp_sgs; 10100 int local_group; 10101 10102 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10103 if (local_group) { 10104 sds->local = sg; 10105 sgs = local; 10106 10107 if (env->idle != CPU_NEWLY_IDLE || 10108 time_after_eq(jiffies, sg->sgc->next_update)) 10109 update_group_capacity(env->sd, env->dst_cpu); 10110 } 10111 10112 update_sg_lb_stats(env, sds, sg, sgs, &sg_status); 10113 10114 if (local_group) 10115 goto next_group; 10116 10117 10118 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 10119 sds->busiest = sg; 10120 sds->busiest_stat = *sgs; 10121 } 10122 10123 next_group: 10124 /* Now, start updating sd_lb_stats */ 10125 sds->total_load += sgs->group_load; 10126 sds->total_capacity += sgs->group_capacity; 10127 10128 sum_util += sgs->group_util; 10129 sg = sg->next; 10130 } while (sg != env->sd->groups); 10131 10132 /* Tag domain that child domain prefers tasks go to siblings first */ 10133 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 10134 10135 10136 if (env->sd->flags & SD_NUMA) 10137 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 10138 10139 if (!env->sd->parent) { 10140 struct root_domain *rd = env->dst_rq->rd; 10141 10142 /* update overload indicator if we are at root domain */ 10143 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 10144 10145 /* Update over-utilization (tipping point, U >= 0) indicator */ 10146 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 10147 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 10148 } else if (sg_status & SG_OVERUTILIZED) { 10149 struct root_domain *rd = env->dst_rq->rd; 10150 10151 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 10152 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 10153 } 10154 10155 update_idle_cpu_scan(env, sum_util); 10156 } 10157 10158 /** 10159 * calculate_imbalance - Calculate the amount of imbalance present within the 10160 * groups of a given sched_domain during load balance. 10161 * @env: load balance environment 10162 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 10163 */ 10164 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 10165 { 10166 struct sg_lb_stats *local, *busiest; 10167 10168 local = &sds->local_stat; 10169 busiest = &sds->busiest_stat; 10170 10171 if (busiest->group_type == group_misfit_task) { 10172 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10173 /* Set imbalance to allow misfit tasks to be balanced. */ 10174 env->migration_type = migrate_misfit; 10175 env->imbalance = 1; 10176 } else { 10177 /* 10178 * Set load imbalance to allow moving task from cpu 10179 * with reduced capacity. 10180 */ 10181 env->migration_type = migrate_load; 10182 env->imbalance = busiest->group_misfit_task_load; 10183 } 10184 return; 10185 } 10186 10187 if (busiest->group_type == group_asym_packing) { 10188 /* 10189 * In case of asym capacity, we will try to migrate all load to 10190 * the preferred CPU. 10191 */ 10192 env->migration_type = migrate_task; 10193 env->imbalance = busiest->sum_h_nr_running; 10194 return; 10195 } 10196 10197 if (busiest->group_type == group_imbalanced) { 10198 /* 10199 * In the group_imb case we cannot rely on group-wide averages 10200 * to ensure CPU-load equilibrium, try to move any task to fix 10201 * the imbalance. The next load balance will take care of 10202 * balancing back the system. 10203 */ 10204 env->migration_type = migrate_task; 10205 env->imbalance = 1; 10206 return; 10207 } 10208 10209 /* 10210 * Try to use spare capacity of local group without overloading it or 10211 * emptying busiest. 10212 */ 10213 if (local->group_type == group_has_spare) { 10214 if ((busiest->group_type > group_fully_busy) && 10215 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 10216 /* 10217 * If busiest is overloaded, try to fill spare 10218 * capacity. This might end up creating spare capacity 10219 * in busiest or busiest still being overloaded but 10220 * there is no simple way to directly compute the 10221 * amount of load to migrate in order to balance the 10222 * system. 10223 */ 10224 env->migration_type = migrate_util; 10225 env->imbalance = max(local->group_capacity, local->group_util) - 10226 local->group_util; 10227 10228 /* 10229 * In some cases, the group's utilization is max or even 10230 * higher than capacity because of migrations but the 10231 * local CPU is (newly) idle. There is at least one 10232 * waiting task in this overloaded busiest group. Let's 10233 * try to pull it. 10234 */ 10235 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 10236 env->migration_type = migrate_task; 10237 env->imbalance = 1; 10238 } 10239 10240 return; 10241 } 10242 10243 if (busiest->group_weight == 1 || sds->prefer_sibling) { 10244 unsigned int nr_diff = busiest->sum_nr_running; 10245 /* 10246 * When prefer sibling, evenly spread running tasks on 10247 * groups. 10248 */ 10249 env->migration_type = migrate_task; 10250 lsub_positive(&nr_diff, local->sum_nr_running); 10251 env->imbalance = nr_diff; 10252 } else { 10253 10254 /* 10255 * If there is no overload, we just want to even the number of 10256 * idle cpus. 10257 */ 10258 env->migration_type = migrate_task; 10259 env->imbalance = max_t(long, 0, 10260 (local->idle_cpus - busiest->idle_cpus)); 10261 } 10262 10263 #ifdef CONFIG_NUMA 10264 /* Consider allowing a small imbalance between NUMA groups */ 10265 if (env->sd->flags & SD_NUMA) { 10266 env->imbalance = adjust_numa_imbalance(env->imbalance, 10267 local->sum_nr_running + 1, 10268 env->sd->imb_numa_nr); 10269 } 10270 #endif 10271 10272 /* Number of tasks to move to restore balance */ 10273 env->imbalance >>= 1; 10274 10275 return; 10276 } 10277 10278 /* 10279 * Local is fully busy but has to take more load to relieve the 10280 * busiest group 10281 */ 10282 if (local->group_type < group_overloaded) { 10283 /* 10284 * Local will become overloaded so the avg_load metrics are 10285 * finally needed. 10286 */ 10287 10288 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 10289 local->group_capacity; 10290 10291 /* 10292 * If the local group is more loaded than the selected 10293 * busiest group don't try to pull any tasks. 10294 */ 10295 if (local->avg_load >= busiest->avg_load) { 10296 env->imbalance = 0; 10297 return; 10298 } 10299 10300 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 10301 sds->total_capacity; 10302 10303 /* 10304 * If the local group is more loaded than the average system 10305 * load, don't try to pull any tasks. 10306 */ 10307 if (local->avg_load >= sds->avg_load) { 10308 env->imbalance = 0; 10309 return; 10310 } 10311 10312 } 10313 10314 /* 10315 * Both group are or will become overloaded and we're trying to get all 10316 * the CPUs to the average_load, so we don't want to push ourselves 10317 * above the average load, nor do we wish to reduce the max loaded CPU 10318 * below the average load. At the same time, we also don't want to 10319 * reduce the group load below the group capacity. Thus we look for 10320 * the minimum possible imbalance. 10321 */ 10322 env->migration_type = migrate_load; 10323 env->imbalance = min( 10324 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 10325 (sds->avg_load - local->avg_load) * local->group_capacity 10326 ) / SCHED_CAPACITY_SCALE; 10327 } 10328 10329 /******* find_busiest_group() helpers end here *********************/ 10330 10331 /* 10332 * Decision matrix according to the local and busiest group type: 10333 * 10334 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 10335 * has_spare nr_idle balanced N/A N/A balanced balanced 10336 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 10337 * misfit_task force N/A N/A N/A N/A N/A 10338 * asym_packing force force N/A N/A force force 10339 * imbalanced force force N/A N/A force force 10340 * overloaded force force N/A N/A force avg_load 10341 * 10342 * N/A : Not Applicable because already filtered while updating 10343 * statistics. 10344 * balanced : The system is balanced for these 2 groups. 10345 * force : Calculate the imbalance as load migration is probably needed. 10346 * avg_load : Only if imbalance is significant enough. 10347 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 10348 * different in groups. 10349 */ 10350 10351 /** 10352 * find_busiest_group - Returns the busiest group within the sched_domain 10353 * if there is an imbalance. 10354 * @env: The load balancing environment. 10355 * 10356 * Also calculates the amount of runnable load which should be moved 10357 * to restore balance. 10358 * 10359 * Return: - The busiest group if imbalance exists. 10360 */ 10361 static struct sched_group *find_busiest_group(struct lb_env *env) 10362 { 10363 struct sg_lb_stats *local, *busiest; 10364 struct sd_lb_stats sds; 10365 10366 init_sd_lb_stats(&sds); 10367 10368 /* 10369 * Compute the various statistics relevant for load balancing at 10370 * this level. 10371 */ 10372 update_sd_lb_stats(env, &sds); 10373 10374 /* There is no busy sibling group to pull tasks from */ 10375 if (!sds.busiest) 10376 goto out_balanced; 10377 10378 busiest = &sds.busiest_stat; 10379 10380 /* Misfit tasks should be dealt with regardless of the avg load */ 10381 if (busiest->group_type == group_misfit_task) 10382 goto force_balance; 10383 10384 if (sched_energy_enabled()) { 10385 struct root_domain *rd = env->dst_rq->rd; 10386 10387 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 10388 goto out_balanced; 10389 } 10390 10391 /* ASYM feature bypasses nice load balance check */ 10392 if (busiest->group_type == group_asym_packing) 10393 goto force_balance; 10394 10395 /* 10396 * If the busiest group is imbalanced the below checks don't 10397 * work because they assume all things are equal, which typically 10398 * isn't true due to cpus_ptr constraints and the like. 10399 */ 10400 if (busiest->group_type == group_imbalanced) 10401 goto force_balance; 10402 10403 local = &sds.local_stat; 10404 /* 10405 * If the local group is busier than the selected busiest group 10406 * don't try and pull any tasks. 10407 */ 10408 if (local->group_type > busiest->group_type) 10409 goto out_balanced; 10410 10411 /* 10412 * When groups are overloaded, use the avg_load to ensure fairness 10413 * between tasks. 10414 */ 10415 if (local->group_type == group_overloaded) { 10416 /* 10417 * If the local group is more loaded than the selected 10418 * busiest group don't try to pull any tasks. 10419 */ 10420 if (local->avg_load >= busiest->avg_load) 10421 goto out_balanced; 10422 10423 /* XXX broken for overlapping NUMA groups */ 10424 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 10425 sds.total_capacity; 10426 10427 /* 10428 * Don't pull any tasks if this group is already above the 10429 * domain average load. 10430 */ 10431 if (local->avg_load >= sds.avg_load) 10432 goto out_balanced; 10433 10434 /* 10435 * If the busiest group is more loaded, use imbalance_pct to be 10436 * conservative. 10437 */ 10438 if (100 * busiest->avg_load <= 10439 env->sd->imbalance_pct * local->avg_load) 10440 goto out_balanced; 10441 } 10442 10443 /* Try to move all excess tasks to child's sibling domain */ 10444 if (sds.prefer_sibling && local->group_type == group_has_spare && 10445 busiest->sum_nr_running > local->sum_nr_running + 1) 10446 goto force_balance; 10447 10448 if (busiest->group_type != group_overloaded) { 10449 if (env->idle == CPU_NOT_IDLE) 10450 /* 10451 * If the busiest group is not overloaded (and as a 10452 * result the local one too) but this CPU is already 10453 * busy, let another idle CPU try to pull task. 10454 */ 10455 goto out_balanced; 10456 10457 if (busiest->group_weight > 1 && 10458 local->idle_cpus <= (busiest->idle_cpus + 1)) 10459 /* 10460 * If the busiest group is not overloaded 10461 * and there is no imbalance between this and busiest 10462 * group wrt idle CPUs, it is balanced. The imbalance 10463 * becomes significant if the diff is greater than 1 10464 * otherwise we might end up to just move the imbalance 10465 * on another group. Of course this applies only if 10466 * there is more than 1 CPU per group. 10467 */ 10468 goto out_balanced; 10469 10470 if (busiest->sum_h_nr_running == 1) 10471 /* 10472 * busiest doesn't have any tasks waiting to run 10473 */ 10474 goto out_balanced; 10475 } 10476 10477 force_balance: 10478 /* Looks like there is an imbalance. Compute it */ 10479 calculate_imbalance(env, &sds); 10480 return env->imbalance ? sds.busiest : NULL; 10481 10482 out_balanced: 10483 env->imbalance = 0; 10484 return NULL; 10485 } 10486 10487 /* 10488 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 10489 */ 10490 static struct rq *find_busiest_queue(struct lb_env *env, 10491 struct sched_group *group) 10492 { 10493 struct rq *busiest = NULL, *rq; 10494 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 10495 unsigned int busiest_nr = 0; 10496 int i; 10497 10498 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10499 unsigned long capacity, load, util; 10500 unsigned int nr_running; 10501 enum fbq_type rt; 10502 10503 rq = cpu_rq(i); 10504 rt = fbq_classify_rq(rq); 10505 10506 /* 10507 * We classify groups/runqueues into three groups: 10508 * - regular: there are !numa tasks 10509 * - remote: there are numa tasks that run on the 'wrong' node 10510 * - all: there is no distinction 10511 * 10512 * In order to avoid migrating ideally placed numa tasks, 10513 * ignore those when there's better options. 10514 * 10515 * If we ignore the actual busiest queue to migrate another 10516 * task, the next balance pass can still reduce the busiest 10517 * queue by moving tasks around inside the node. 10518 * 10519 * If we cannot move enough load due to this classification 10520 * the next pass will adjust the group classification and 10521 * allow migration of more tasks. 10522 * 10523 * Both cases only affect the total convergence complexity. 10524 */ 10525 if (rt > env->fbq_type) 10526 continue; 10527 10528 nr_running = rq->cfs.h_nr_running; 10529 if (!nr_running) 10530 continue; 10531 10532 capacity = capacity_of(i); 10533 10534 /* 10535 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 10536 * eventually lead to active_balancing high->low capacity. 10537 * Higher per-CPU capacity is considered better than balancing 10538 * average load. 10539 */ 10540 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 10541 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 10542 nr_running == 1) 10543 continue; 10544 10545 /* Make sure we only pull tasks from a CPU of lower priority */ 10546 if ((env->sd->flags & SD_ASYM_PACKING) && 10547 sched_asym_prefer(i, env->dst_cpu) && 10548 nr_running == 1) 10549 continue; 10550 10551 switch (env->migration_type) { 10552 case migrate_load: 10553 /* 10554 * When comparing with load imbalance, use cpu_load() 10555 * which is not scaled with the CPU capacity. 10556 */ 10557 load = cpu_load(rq); 10558 10559 if (nr_running == 1 && load > env->imbalance && 10560 !check_cpu_capacity(rq, env->sd)) 10561 break; 10562 10563 /* 10564 * For the load comparisons with the other CPUs, 10565 * consider the cpu_load() scaled with the CPU 10566 * capacity, so that the load can be moved away 10567 * from the CPU that is potentially running at a 10568 * lower capacity. 10569 * 10570 * Thus we're looking for max(load_i / capacity_i), 10571 * crosswise multiplication to rid ourselves of the 10572 * division works out to: 10573 * load_i * capacity_j > load_j * capacity_i; 10574 * where j is our previous maximum. 10575 */ 10576 if (load * busiest_capacity > busiest_load * capacity) { 10577 busiest_load = load; 10578 busiest_capacity = capacity; 10579 busiest = rq; 10580 } 10581 break; 10582 10583 case migrate_util: 10584 util = cpu_util_cfs(i); 10585 10586 /* 10587 * Don't try to pull utilization from a CPU with one 10588 * running task. Whatever its utilization, we will fail 10589 * detach the task. 10590 */ 10591 if (nr_running <= 1) 10592 continue; 10593 10594 if (busiest_util < util) { 10595 busiest_util = util; 10596 busiest = rq; 10597 } 10598 break; 10599 10600 case migrate_task: 10601 if (busiest_nr < nr_running) { 10602 busiest_nr = nr_running; 10603 busiest = rq; 10604 } 10605 break; 10606 10607 case migrate_misfit: 10608 /* 10609 * For ASYM_CPUCAPACITY domains with misfit tasks we 10610 * simply seek the "biggest" misfit task. 10611 */ 10612 if (rq->misfit_task_load > busiest_load) { 10613 busiest_load = rq->misfit_task_load; 10614 busiest = rq; 10615 } 10616 10617 break; 10618 10619 } 10620 } 10621 10622 return busiest; 10623 } 10624 10625 /* 10626 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 10627 * so long as it is large enough. 10628 */ 10629 #define MAX_PINNED_INTERVAL 512 10630 10631 static inline bool 10632 asym_active_balance(struct lb_env *env) 10633 { 10634 /* 10635 * ASYM_PACKING needs to force migrate tasks from busy but 10636 * lower priority CPUs in order to pack all tasks in the 10637 * highest priority CPUs. 10638 */ 10639 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 10640 sched_asym_prefer(env->dst_cpu, env->src_cpu); 10641 } 10642 10643 static inline bool 10644 imbalanced_active_balance(struct lb_env *env) 10645 { 10646 struct sched_domain *sd = env->sd; 10647 10648 /* 10649 * The imbalanced case includes the case of pinned tasks preventing a fair 10650 * distribution of the load on the system but also the even distribution of the 10651 * threads on a system with spare capacity 10652 */ 10653 if ((env->migration_type == migrate_task) && 10654 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 10655 return 1; 10656 10657 return 0; 10658 } 10659 10660 static int need_active_balance(struct lb_env *env) 10661 { 10662 struct sched_domain *sd = env->sd; 10663 10664 if (asym_active_balance(env)) 10665 return 1; 10666 10667 if (imbalanced_active_balance(env)) 10668 return 1; 10669 10670 /* 10671 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 10672 * It's worth migrating the task if the src_cpu's capacity is reduced 10673 * because of other sched_class or IRQs if more capacity stays 10674 * available on dst_cpu. 10675 */ 10676 if ((env->idle != CPU_NOT_IDLE) && 10677 (env->src_rq->cfs.h_nr_running == 1)) { 10678 if ((check_cpu_capacity(env->src_rq, sd)) && 10679 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 10680 return 1; 10681 } 10682 10683 if (env->migration_type == migrate_misfit) 10684 return 1; 10685 10686 return 0; 10687 } 10688 10689 static int active_load_balance_cpu_stop(void *data); 10690 10691 static int should_we_balance(struct lb_env *env) 10692 { 10693 struct sched_group *sg = env->sd->groups; 10694 int cpu; 10695 10696 /* 10697 * Ensure the balancing environment is consistent; can happen 10698 * when the softirq triggers 'during' hotplug. 10699 */ 10700 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 10701 return 0; 10702 10703 /* 10704 * In the newly idle case, we will allow all the CPUs 10705 * to do the newly idle load balance. 10706 * 10707 * However, we bail out if we already have tasks or a wakeup pending, 10708 * to optimize wakeup latency. 10709 */ 10710 if (env->idle == CPU_NEWLY_IDLE) { 10711 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 10712 return 0; 10713 return 1; 10714 } 10715 10716 /* Try to find first idle CPU */ 10717 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 10718 if (!idle_cpu(cpu)) 10719 continue; 10720 10721 /* Are we the first idle CPU? */ 10722 return cpu == env->dst_cpu; 10723 } 10724 10725 /* Are we the first CPU of this group ? */ 10726 return group_balance_cpu(sg) == env->dst_cpu; 10727 } 10728 10729 /* 10730 * Check this_cpu to ensure it is balanced within domain. Attempt to move 10731 * tasks if there is an imbalance. 10732 */ 10733 static int load_balance(int this_cpu, struct rq *this_rq, 10734 struct sched_domain *sd, enum cpu_idle_type idle, 10735 int *continue_balancing) 10736 { 10737 int ld_moved, cur_ld_moved, active_balance = 0; 10738 struct sched_domain *sd_parent = sd->parent; 10739 struct sched_group *group; 10740 struct rq *busiest; 10741 struct rq_flags rf; 10742 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 10743 struct lb_env env = { 10744 .sd = sd, 10745 .dst_cpu = this_cpu, 10746 .dst_rq = this_rq, 10747 .dst_grpmask = sched_group_span(sd->groups), 10748 .idle = idle, 10749 .loop_break = SCHED_NR_MIGRATE_BREAK, 10750 .cpus = cpus, 10751 .fbq_type = all, 10752 .tasks = LIST_HEAD_INIT(env.tasks), 10753 }; 10754 10755 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 10756 10757 schedstat_inc(sd->lb_count[idle]); 10758 10759 redo: 10760 if (!should_we_balance(&env)) { 10761 *continue_balancing = 0; 10762 goto out_balanced; 10763 } 10764 10765 group = find_busiest_group(&env); 10766 if (!group) { 10767 schedstat_inc(sd->lb_nobusyg[idle]); 10768 goto out_balanced; 10769 } 10770 10771 busiest = find_busiest_queue(&env, group); 10772 if (!busiest) { 10773 schedstat_inc(sd->lb_nobusyq[idle]); 10774 goto out_balanced; 10775 } 10776 10777 WARN_ON_ONCE(busiest == env.dst_rq); 10778 10779 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 10780 10781 env.src_cpu = busiest->cpu; 10782 env.src_rq = busiest; 10783 10784 ld_moved = 0; 10785 /* Clear this flag as soon as we find a pullable task */ 10786 env.flags |= LBF_ALL_PINNED; 10787 if (busiest->nr_running > 1) { 10788 /* 10789 * Attempt to move tasks. If find_busiest_group has found 10790 * an imbalance but busiest->nr_running <= 1, the group is 10791 * still unbalanced. ld_moved simply stays zero, so it is 10792 * correctly treated as an imbalance. 10793 */ 10794 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 10795 10796 more_balance: 10797 rq_lock_irqsave(busiest, &rf); 10798 update_rq_clock(busiest); 10799 10800 /* 10801 * cur_ld_moved - load moved in current iteration 10802 * ld_moved - cumulative load moved across iterations 10803 */ 10804 cur_ld_moved = detach_tasks(&env); 10805 10806 /* 10807 * We've detached some tasks from busiest_rq. Every 10808 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 10809 * unlock busiest->lock, and we are able to be sure 10810 * that nobody can manipulate the tasks in parallel. 10811 * See task_rq_lock() family for the details. 10812 */ 10813 10814 rq_unlock(busiest, &rf); 10815 10816 if (cur_ld_moved) { 10817 attach_tasks(&env); 10818 ld_moved += cur_ld_moved; 10819 } 10820 10821 local_irq_restore(rf.flags); 10822 10823 if (env.flags & LBF_NEED_BREAK) { 10824 env.flags &= ~LBF_NEED_BREAK; 10825 /* Stop if we tried all running tasks */ 10826 if (env.loop < busiest->nr_running) 10827 goto more_balance; 10828 } 10829 10830 /* 10831 * Revisit (affine) tasks on src_cpu that couldn't be moved to 10832 * us and move them to an alternate dst_cpu in our sched_group 10833 * where they can run. The upper limit on how many times we 10834 * iterate on same src_cpu is dependent on number of CPUs in our 10835 * sched_group. 10836 * 10837 * This changes load balance semantics a bit on who can move 10838 * load to a given_cpu. In addition to the given_cpu itself 10839 * (or a ilb_cpu acting on its behalf where given_cpu is 10840 * nohz-idle), we now have balance_cpu in a position to move 10841 * load to given_cpu. In rare situations, this may cause 10842 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 10843 * _independently_ and at _same_ time to move some load to 10844 * given_cpu) causing excess load to be moved to given_cpu. 10845 * This however should not happen so much in practice and 10846 * moreover subsequent load balance cycles should correct the 10847 * excess load moved. 10848 */ 10849 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 10850 10851 /* Prevent to re-select dst_cpu via env's CPUs */ 10852 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 10853 10854 env.dst_rq = cpu_rq(env.new_dst_cpu); 10855 env.dst_cpu = env.new_dst_cpu; 10856 env.flags &= ~LBF_DST_PINNED; 10857 env.loop = 0; 10858 env.loop_break = SCHED_NR_MIGRATE_BREAK; 10859 10860 /* 10861 * Go back to "more_balance" rather than "redo" since we 10862 * need to continue with same src_cpu. 10863 */ 10864 goto more_balance; 10865 } 10866 10867 /* 10868 * We failed to reach balance because of affinity. 10869 */ 10870 if (sd_parent) { 10871 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 10872 10873 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 10874 *group_imbalance = 1; 10875 } 10876 10877 /* All tasks on this runqueue were pinned by CPU affinity */ 10878 if (unlikely(env.flags & LBF_ALL_PINNED)) { 10879 __cpumask_clear_cpu(cpu_of(busiest), cpus); 10880 /* 10881 * Attempting to continue load balancing at the current 10882 * sched_domain level only makes sense if there are 10883 * active CPUs remaining as possible busiest CPUs to 10884 * pull load from which are not contained within the 10885 * destination group that is receiving any migrated 10886 * load. 10887 */ 10888 if (!cpumask_subset(cpus, env.dst_grpmask)) { 10889 env.loop = 0; 10890 env.loop_break = SCHED_NR_MIGRATE_BREAK; 10891 goto redo; 10892 } 10893 goto out_all_pinned; 10894 } 10895 } 10896 10897 if (!ld_moved) { 10898 schedstat_inc(sd->lb_failed[idle]); 10899 /* 10900 * Increment the failure counter only on periodic balance. 10901 * We do not want newidle balance, which can be very 10902 * frequent, pollute the failure counter causing 10903 * excessive cache_hot migrations and active balances. 10904 */ 10905 if (idle != CPU_NEWLY_IDLE) 10906 sd->nr_balance_failed++; 10907 10908 if (need_active_balance(&env)) { 10909 unsigned long flags; 10910 10911 raw_spin_rq_lock_irqsave(busiest, flags); 10912 10913 /* 10914 * Don't kick the active_load_balance_cpu_stop, 10915 * if the curr task on busiest CPU can't be 10916 * moved to this_cpu: 10917 */ 10918 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 10919 raw_spin_rq_unlock_irqrestore(busiest, flags); 10920 goto out_one_pinned; 10921 } 10922 10923 /* Record that we found at least one task that could run on this_cpu */ 10924 env.flags &= ~LBF_ALL_PINNED; 10925 10926 /* 10927 * ->active_balance synchronizes accesses to 10928 * ->active_balance_work. Once set, it's cleared 10929 * only after active load balance is finished. 10930 */ 10931 if (!busiest->active_balance) { 10932 busiest->active_balance = 1; 10933 busiest->push_cpu = this_cpu; 10934 active_balance = 1; 10935 } 10936 raw_spin_rq_unlock_irqrestore(busiest, flags); 10937 10938 if (active_balance) { 10939 stop_one_cpu_nowait(cpu_of(busiest), 10940 active_load_balance_cpu_stop, busiest, 10941 &busiest->active_balance_work); 10942 } 10943 } 10944 } else { 10945 sd->nr_balance_failed = 0; 10946 } 10947 10948 if (likely(!active_balance) || need_active_balance(&env)) { 10949 /* We were unbalanced, so reset the balancing interval */ 10950 sd->balance_interval = sd->min_interval; 10951 } 10952 10953 goto out; 10954 10955 out_balanced: 10956 /* 10957 * We reach balance although we may have faced some affinity 10958 * constraints. Clear the imbalance flag only if other tasks got 10959 * a chance to move and fix the imbalance. 10960 */ 10961 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 10962 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 10963 10964 if (*group_imbalance) 10965 *group_imbalance = 0; 10966 } 10967 10968 out_all_pinned: 10969 /* 10970 * We reach balance because all tasks are pinned at this level so 10971 * we can't migrate them. Let the imbalance flag set so parent level 10972 * can try to migrate them. 10973 */ 10974 schedstat_inc(sd->lb_balanced[idle]); 10975 10976 sd->nr_balance_failed = 0; 10977 10978 out_one_pinned: 10979 ld_moved = 0; 10980 10981 /* 10982 * newidle_balance() disregards balance intervals, so we could 10983 * repeatedly reach this code, which would lead to balance_interval 10984 * skyrocketing in a short amount of time. Skip the balance_interval 10985 * increase logic to avoid that. 10986 */ 10987 if (env.idle == CPU_NEWLY_IDLE) 10988 goto out; 10989 10990 /* tune up the balancing interval */ 10991 if ((env.flags & LBF_ALL_PINNED && 10992 sd->balance_interval < MAX_PINNED_INTERVAL) || 10993 sd->balance_interval < sd->max_interval) 10994 sd->balance_interval *= 2; 10995 out: 10996 return ld_moved; 10997 } 10998 10999 static inline unsigned long 11000 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11001 { 11002 unsigned long interval = sd->balance_interval; 11003 11004 if (cpu_busy) 11005 interval *= sd->busy_factor; 11006 11007 /* scale ms to jiffies */ 11008 interval = msecs_to_jiffies(interval); 11009 11010 /* 11011 * Reduce likelihood of busy balancing at higher domains racing with 11012 * balancing at lower domains by preventing their balancing periods 11013 * from being multiples of each other. 11014 */ 11015 if (cpu_busy) 11016 interval -= 1; 11017 11018 interval = clamp(interval, 1UL, max_load_balance_interval); 11019 11020 return interval; 11021 } 11022 11023 static inline void 11024 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 11025 { 11026 unsigned long interval, next; 11027 11028 /* used by idle balance, so cpu_busy = 0 */ 11029 interval = get_sd_balance_interval(sd, 0); 11030 next = sd->last_balance + interval; 11031 11032 if (time_after(*next_balance, next)) 11033 *next_balance = next; 11034 } 11035 11036 /* 11037 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 11038 * running tasks off the busiest CPU onto idle CPUs. It requires at 11039 * least 1 task to be running on each physical CPU where possible, and 11040 * avoids physical / logical imbalances. 11041 */ 11042 static int active_load_balance_cpu_stop(void *data) 11043 { 11044 struct rq *busiest_rq = data; 11045 int busiest_cpu = cpu_of(busiest_rq); 11046 int target_cpu = busiest_rq->push_cpu; 11047 struct rq *target_rq = cpu_rq(target_cpu); 11048 struct sched_domain *sd; 11049 struct task_struct *p = NULL; 11050 struct rq_flags rf; 11051 11052 rq_lock_irq(busiest_rq, &rf); 11053 /* 11054 * Between queueing the stop-work and running it is a hole in which 11055 * CPUs can become inactive. We should not move tasks from or to 11056 * inactive CPUs. 11057 */ 11058 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 11059 goto out_unlock; 11060 11061 /* Make sure the requested CPU hasn't gone down in the meantime: */ 11062 if (unlikely(busiest_cpu != smp_processor_id() || 11063 !busiest_rq->active_balance)) 11064 goto out_unlock; 11065 11066 /* Is there any task to move? */ 11067 if (busiest_rq->nr_running <= 1) 11068 goto out_unlock; 11069 11070 /* 11071 * This condition is "impossible", if it occurs 11072 * we need to fix it. Originally reported by 11073 * Bjorn Helgaas on a 128-CPU setup. 11074 */ 11075 WARN_ON_ONCE(busiest_rq == target_rq); 11076 11077 /* Search for an sd spanning us and the target CPU. */ 11078 rcu_read_lock(); 11079 for_each_domain(target_cpu, sd) { 11080 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 11081 break; 11082 } 11083 11084 if (likely(sd)) { 11085 struct lb_env env = { 11086 .sd = sd, 11087 .dst_cpu = target_cpu, 11088 .dst_rq = target_rq, 11089 .src_cpu = busiest_rq->cpu, 11090 .src_rq = busiest_rq, 11091 .idle = CPU_IDLE, 11092 .flags = LBF_ACTIVE_LB, 11093 }; 11094 11095 schedstat_inc(sd->alb_count); 11096 update_rq_clock(busiest_rq); 11097 11098 p = detach_one_task(&env); 11099 if (p) { 11100 schedstat_inc(sd->alb_pushed); 11101 /* Active balancing done, reset the failure counter. */ 11102 sd->nr_balance_failed = 0; 11103 } else { 11104 schedstat_inc(sd->alb_failed); 11105 } 11106 } 11107 rcu_read_unlock(); 11108 out_unlock: 11109 busiest_rq->active_balance = 0; 11110 rq_unlock(busiest_rq, &rf); 11111 11112 if (p) 11113 attach_one_task(target_rq, p); 11114 11115 local_irq_enable(); 11116 11117 return 0; 11118 } 11119 11120 static DEFINE_SPINLOCK(balancing); 11121 11122 /* 11123 * Scale the max load_balance interval with the number of CPUs in the system. 11124 * This trades load-balance latency on larger machines for less cross talk. 11125 */ 11126 void update_max_interval(void) 11127 { 11128 max_load_balance_interval = HZ*num_online_cpus()/10; 11129 } 11130 11131 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 11132 { 11133 if (cost > sd->max_newidle_lb_cost) { 11134 /* 11135 * Track max cost of a domain to make sure to not delay the 11136 * next wakeup on the CPU. 11137 */ 11138 sd->max_newidle_lb_cost = cost; 11139 sd->last_decay_max_lb_cost = jiffies; 11140 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 11141 /* 11142 * Decay the newidle max times by ~1% per second to ensure that 11143 * it is not outdated and the current max cost is actually 11144 * shorter. 11145 */ 11146 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 11147 sd->last_decay_max_lb_cost = jiffies; 11148 11149 return true; 11150 } 11151 11152 return false; 11153 } 11154 11155 /* 11156 * It checks each scheduling domain to see if it is due to be balanced, 11157 * and initiates a balancing operation if so. 11158 * 11159 * Balancing parameters are set up in init_sched_domains. 11160 */ 11161 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 11162 { 11163 int continue_balancing = 1; 11164 int cpu = rq->cpu; 11165 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11166 unsigned long interval; 11167 struct sched_domain *sd; 11168 /* Earliest time when we have to do rebalance again */ 11169 unsigned long next_balance = jiffies + 60*HZ; 11170 int update_next_balance = 0; 11171 int need_serialize, need_decay = 0; 11172 u64 max_cost = 0; 11173 11174 rcu_read_lock(); 11175 for_each_domain(cpu, sd) { 11176 /* 11177 * Decay the newidle max times here because this is a regular 11178 * visit to all the domains. 11179 */ 11180 need_decay = update_newidle_cost(sd, 0); 11181 max_cost += sd->max_newidle_lb_cost; 11182 11183 /* 11184 * Stop the load balance at this level. There is another 11185 * CPU in our sched group which is doing load balancing more 11186 * actively. 11187 */ 11188 if (!continue_balancing) { 11189 if (need_decay) 11190 continue; 11191 break; 11192 } 11193 11194 interval = get_sd_balance_interval(sd, busy); 11195 11196 need_serialize = sd->flags & SD_SERIALIZE; 11197 if (need_serialize) { 11198 if (!spin_trylock(&balancing)) 11199 goto out; 11200 } 11201 11202 if (time_after_eq(jiffies, sd->last_balance + interval)) { 11203 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 11204 /* 11205 * The LBF_DST_PINNED logic could have changed 11206 * env->dst_cpu, so we can't know our idle 11207 * state even if we migrated tasks. Update it. 11208 */ 11209 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 11210 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11211 } 11212 sd->last_balance = jiffies; 11213 interval = get_sd_balance_interval(sd, busy); 11214 } 11215 if (need_serialize) 11216 spin_unlock(&balancing); 11217 out: 11218 if (time_after(next_balance, sd->last_balance + interval)) { 11219 next_balance = sd->last_balance + interval; 11220 update_next_balance = 1; 11221 } 11222 } 11223 if (need_decay) { 11224 /* 11225 * Ensure the rq-wide value also decays but keep it at a 11226 * reasonable floor to avoid funnies with rq->avg_idle. 11227 */ 11228 rq->max_idle_balance_cost = 11229 max((u64)sysctl_sched_migration_cost, max_cost); 11230 } 11231 rcu_read_unlock(); 11232 11233 /* 11234 * next_balance will be updated only when there is a need. 11235 * When the cpu is attached to null domain for ex, it will not be 11236 * updated. 11237 */ 11238 if (likely(update_next_balance)) 11239 rq->next_balance = next_balance; 11240 11241 } 11242 11243 static inline int on_null_domain(struct rq *rq) 11244 { 11245 return unlikely(!rcu_dereference_sched(rq->sd)); 11246 } 11247 11248 #ifdef CONFIG_NO_HZ_COMMON 11249 /* 11250 * idle load balancing details 11251 * - When one of the busy CPUs notice that there may be an idle rebalancing 11252 * needed, they will kick the idle load balancer, which then does idle 11253 * load balancing for all the idle CPUs. 11254 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set 11255 * anywhere yet. 11256 */ 11257 11258 static inline int find_new_ilb(void) 11259 { 11260 int ilb; 11261 const struct cpumask *hk_mask; 11262 11263 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 11264 11265 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) { 11266 11267 if (ilb == smp_processor_id()) 11268 continue; 11269 11270 if (idle_cpu(ilb)) 11271 return ilb; 11272 } 11273 11274 return nr_cpu_ids; 11275 } 11276 11277 /* 11278 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 11279 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 11280 */ 11281 static void kick_ilb(unsigned int flags) 11282 { 11283 int ilb_cpu; 11284 11285 /* 11286 * Increase nohz.next_balance only when if full ilb is triggered but 11287 * not if we only update stats. 11288 */ 11289 if (flags & NOHZ_BALANCE_KICK) 11290 nohz.next_balance = jiffies+1; 11291 11292 ilb_cpu = find_new_ilb(); 11293 11294 if (ilb_cpu >= nr_cpu_ids) 11295 return; 11296 11297 /* 11298 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 11299 * the first flag owns it; cleared by nohz_csd_func(). 11300 */ 11301 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 11302 if (flags & NOHZ_KICK_MASK) 11303 return; 11304 11305 /* 11306 * This way we generate an IPI on the target CPU which 11307 * is idle. And the softirq performing nohz idle load balance 11308 * will be run before returning from the IPI. 11309 */ 11310 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 11311 } 11312 11313 /* 11314 * Current decision point for kicking the idle load balancer in the presence 11315 * of idle CPUs in the system. 11316 */ 11317 static void nohz_balancer_kick(struct rq *rq) 11318 { 11319 unsigned long now = jiffies; 11320 struct sched_domain_shared *sds; 11321 struct sched_domain *sd; 11322 int nr_busy, i, cpu = rq->cpu; 11323 unsigned int flags = 0; 11324 11325 if (unlikely(rq->idle_balance)) 11326 return; 11327 11328 /* 11329 * We may be recently in ticked or tickless idle mode. At the first 11330 * busy tick after returning from idle, we will update the busy stats. 11331 */ 11332 nohz_balance_exit_idle(rq); 11333 11334 /* 11335 * None are in tickless mode and hence no need for NOHZ idle load 11336 * balancing. 11337 */ 11338 if (likely(!atomic_read(&nohz.nr_cpus))) 11339 return; 11340 11341 if (READ_ONCE(nohz.has_blocked) && 11342 time_after(now, READ_ONCE(nohz.next_blocked))) 11343 flags = NOHZ_STATS_KICK; 11344 11345 if (time_before(now, nohz.next_balance)) 11346 goto out; 11347 11348 if (rq->nr_running >= 2) { 11349 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11350 goto out; 11351 } 11352 11353 rcu_read_lock(); 11354 11355 sd = rcu_dereference(rq->sd); 11356 if (sd) { 11357 /* 11358 * If there's a CFS task and the current CPU has reduced 11359 * capacity; kick the ILB to see if there's a better CPU to run 11360 * on. 11361 */ 11362 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 11363 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11364 goto unlock; 11365 } 11366 } 11367 11368 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 11369 if (sd) { 11370 /* 11371 * When ASYM_PACKING; see if there's a more preferred CPU 11372 * currently idle; in which case, kick the ILB to move tasks 11373 * around. 11374 */ 11375 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 11376 if (sched_asym_prefer(i, cpu)) { 11377 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11378 goto unlock; 11379 } 11380 } 11381 } 11382 11383 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 11384 if (sd) { 11385 /* 11386 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 11387 * to run the misfit task on. 11388 */ 11389 if (check_misfit_status(rq, sd)) { 11390 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11391 goto unlock; 11392 } 11393 11394 /* 11395 * For asymmetric systems, we do not want to nicely balance 11396 * cache use, instead we want to embrace asymmetry and only 11397 * ensure tasks have enough CPU capacity. 11398 * 11399 * Skip the LLC logic because it's not relevant in that case. 11400 */ 11401 goto unlock; 11402 } 11403 11404 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 11405 if (sds) { 11406 /* 11407 * If there is an imbalance between LLC domains (IOW we could 11408 * increase the overall cache use), we need some less-loaded LLC 11409 * domain to pull some load. Likewise, we may need to spread 11410 * load within the current LLC domain (e.g. packed SMT cores but 11411 * other CPUs are idle). We can't really know from here how busy 11412 * the others are - so just get a nohz balance going if it looks 11413 * like this LLC domain has tasks we could move. 11414 */ 11415 nr_busy = atomic_read(&sds->nr_busy_cpus); 11416 if (nr_busy > 1) { 11417 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11418 goto unlock; 11419 } 11420 } 11421 unlock: 11422 rcu_read_unlock(); 11423 out: 11424 if (READ_ONCE(nohz.needs_update)) 11425 flags |= NOHZ_NEXT_KICK; 11426 11427 if (flags) 11428 kick_ilb(flags); 11429 } 11430 11431 static void set_cpu_sd_state_busy(int cpu) 11432 { 11433 struct sched_domain *sd; 11434 11435 rcu_read_lock(); 11436 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11437 11438 if (!sd || !sd->nohz_idle) 11439 goto unlock; 11440 sd->nohz_idle = 0; 11441 11442 atomic_inc(&sd->shared->nr_busy_cpus); 11443 unlock: 11444 rcu_read_unlock(); 11445 } 11446 11447 void nohz_balance_exit_idle(struct rq *rq) 11448 { 11449 SCHED_WARN_ON(rq != this_rq()); 11450 11451 if (likely(!rq->nohz_tick_stopped)) 11452 return; 11453 11454 rq->nohz_tick_stopped = 0; 11455 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 11456 atomic_dec(&nohz.nr_cpus); 11457 11458 set_cpu_sd_state_busy(rq->cpu); 11459 } 11460 11461 static void set_cpu_sd_state_idle(int cpu) 11462 { 11463 struct sched_domain *sd; 11464 11465 rcu_read_lock(); 11466 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11467 11468 if (!sd || sd->nohz_idle) 11469 goto unlock; 11470 sd->nohz_idle = 1; 11471 11472 atomic_dec(&sd->shared->nr_busy_cpus); 11473 unlock: 11474 rcu_read_unlock(); 11475 } 11476 11477 /* 11478 * This routine will record that the CPU is going idle with tick stopped. 11479 * This info will be used in performing idle load balancing in the future. 11480 */ 11481 void nohz_balance_enter_idle(int cpu) 11482 { 11483 struct rq *rq = cpu_rq(cpu); 11484 11485 SCHED_WARN_ON(cpu != smp_processor_id()); 11486 11487 /* If this CPU is going down, then nothing needs to be done: */ 11488 if (!cpu_active(cpu)) 11489 return; 11490 11491 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 11492 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 11493 return; 11494 11495 /* 11496 * Can be set safely without rq->lock held 11497 * If a clear happens, it will have evaluated last additions because 11498 * rq->lock is held during the check and the clear 11499 */ 11500 rq->has_blocked_load = 1; 11501 11502 /* 11503 * The tick is still stopped but load could have been added in the 11504 * meantime. We set the nohz.has_blocked flag to trig a check of the 11505 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 11506 * of nohz.has_blocked can only happen after checking the new load 11507 */ 11508 if (rq->nohz_tick_stopped) 11509 goto out; 11510 11511 /* If we're a completely isolated CPU, we don't play: */ 11512 if (on_null_domain(rq)) 11513 return; 11514 11515 rq->nohz_tick_stopped = 1; 11516 11517 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 11518 atomic_inc(&nohz.nr_cpus); 11519 11520 /* 11521 * Ensures that if nohz_idle_balance() fails to observe our 11522 * @idle_cpus_mask store, it must observe the @has_blocked 11523 * and @needs_update stores. 11524 */ 11525 smp_mb__after_atomic(); 11526 11527 set_cpu_sd_state_idle(cpu); 11528 11529 WRITE_ONCE(nohz.needs_update, 1); 11530 out: 11531 /* 11532 * Each time a cpu enter idle, we assume that it has blocked load and 11533 * enable the periodic update of the load of idle cpus 11534 */ 11535 WRITE_ONCE(nohz.has_blocked, 1); 11536 } 11537 11538 static bool update_nohz_stats(struct rq *rq) 11539 { 11540 unsigned int cpu = rq->cpu; 11541 11542 if (!rq->has_blocked_load) 11543 return false; 11544 11545 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 11546 return false; 11547 11548 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 11549 return true; 11550 11551 update_blocked_averages(cpu); 11552 11553 return rq->has_blocked_load; 11554 } 11555 11556 /* 11557 * Internal function that runs load balance for all idle cpus. The load balance 11558 * can be a simple update of blocked load or a complete load balance with 11559 * tasks movement depending of flags. 11560 */ 11561 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 11562 { 11563 /* Earliest time when we have to do rebalance again */ 11564 unsigned long now = jiffies; 11565 unsigned long next_balance = now + 60*HZ; 11566 bool has_blocked_load = false; 11567 int update_next_balance = 0; 11568 int this_cpu = this_rq->cpu; 11569 int balance_cpu; 11570 struct rq *rq; 11571 11572 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 11573 11574 /* 11575 * We assume there will be no idle load after this update and clear 11576 * the has_blocked flag. If a cpu enters idle in the mean time, it will 11577 * set the has_blocked flag and trigger another update of idle load. 11578 * Because a cpu that becomes idle, is added to idle_cpus_mask before 11579 * setting the flag, we are sure to not clear the state and not 11580 * check the load of an idle cpu. 11581 * 11582 * Same applies to idle_cpus_mask vs needs_update. 11583 */ 11584 if (flags & NOHZ_STATS_KICK) 11585 WRITE_ONCE(nohz.has_blocked, 0); 11586 if (flags & NOHZ_NEXT_KICK) 11587 WRITE_ONCE(nohz.needs_update, 0); 11588 11589 /* 11590 * Ensures that if we miss the CPU, we must see the has_blocked 11591 * store from nohz_balance_enter_idle(). 11592 */ 11593 smp_mb(); 11594 11595 /* 11596 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 11597 * chance for other idle cpu to pull load. 11598 */ 11599 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 11600 if (!idle_cpu(balance_cpu)) 11601 continue; 11602 11603 /* 11604 * If this CPU gets work to do, stop the load balancing 11605 * work being done for other CPUs. Next load 11606 * balancing owner will pick it up. 11607 */ 11608 if (need_resched()) { 11609 if (flags & NOHZ_STATS_KICK) 11610 has_blocked_load = true; 11611 if (flags & NOHZ_NEXT_KICK) 11612 WRITE_ONCE(nohz.needs_update, 1); 11613 goto abort; 11614 } 11615 11616 rq = cpu_rq(balance_cpu); 11617 11618 if (flags & NOHZ_STATS_KICK) 11619 has_blocked_load |= update_nohz_stats(rq); 11620 11621 /* 11622 * If time for next balance is due, 11623 * do the balance. 11624 */ 11625 if (time_after_eq(jiffies, rq->next_balance)) { 11626 struct rq_flags rf; 11627 11628 rq_lock_irqsave(rq, &rf); 11629 update_rq_clock(rq); 11630 rq_unlock_irqrestore(rq, &rf); 11631 11632 if (flags & NOHZ_BALANCE_KICK) 11633 rebalance_domains(rq, CPU_IDLE); 11634 } 11635 11636 if (time_after(next_balance, rq->next_balance)) { 11637 next_balance = rq->next_balance; 11638 update_next_balance = 1; 11639 } 11640 } 11641 11642 /* 11643 * next_balance will be updated only when there is a need. 11644 * When the CPU is attached to null domain for ex, it will not be 11645 * updated. 11646 */ 11647 if (likely(update_next_balance)) 11648 nohz.next_balance = next_balance; 11649 11650 if (flags & NOHZ_STATS_KICK) 11651 WRITE_ONCE(nohz.next_blocked, 11652 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 11653 11654 abort: 11655 /* There is still blocked load, enable periodic update */ 11656 if (has_blocked_load) 11657 WRITE_ONCE(nohz.has_blocked, 1); 11658 } 11659 11660 /* 11661 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 11662 * rebalancing for all the cpus for whom scheduler ticks are stopped. 11663 */ 11664 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 11665 { 11666 unsigned int flags = this_rq->nohz_idle_balance; 11667 11668 if (!flags) 11669 return false; 11670 11671 this_rq->nohz_idle_balance = 0; 11672 11673 if (idle != CPU_IDLE) 11674 return false; 11675 11676 _nohz_idle_balance(this_rq, flags); 11677 11678 return true; 11679 } 11680 11681 /* 11682 * Check if we need to run the ILB for updating blocked load before entering 11683 * idle state. 11684 */ 11685 void nohz_run_idle_balance(int cpu) 11686 { 11687 unsigned int flags; 11688 11689 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 11690 11691 /* 11692 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 11693 * (ie NOHZ_STATS_KICK set) and will do the same. 11694 */ 11695 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 11696 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 11697 } 11698 11699 static void nohz_newidle_balance(struct rq *this_rq) 11700 { 11701 int this_cpu = this_rq->cpu; 11702 11703 /* 11704 * This CPU doesn't want to be disturbed by scheduler 11705 * housekeeping 11706 */ 11707 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 11708 return; 11709 11710 /* Will wake up very soon. No time for doing anything else*/ 11711 if (this_rq->avg_idle < sysctl_sched_migration_cost) 11712 return; 11713 11714 /* Don't need to update blocked load of idle CPUs*/ 11715 if (!READ_ONCE(nohz.has_blocked) || 11716 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 11717 return; 11718 11719 /* 11720 * Set the need to trigger ILB in order to update blocked load 11721 * before entering idle state. 11722 */ 11723 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 11724 } 11725 11726 #else /* !CONFIG_NO_HZ_COMMON */ 11727 static inline void nohz_balancer_kick(struct rq *rq) { } 11728 11729 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 11730 { 11731 return false; 11732 } 11733 11734 static inline void nohz_newidle_balance(struct rq *this_rq) { } 11735 #endif /* CONFIG_NO_HZ_COMMON */ 11736 11737 /* 11738 * newidle_balance is called by schedule() if this_cpu is about to become 11739 * idle. Attempts to pull tasks from other CPUs. 11740 * 11741 * Returns: 11742 * < 0 - we released the lock and there are !fair tasks present 11743 * 0 - failed, no new tasks 11744 * > 0 - success, new (fair) tasks present 11745 */ 11746 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 11747 { 11748 unsigned long next_balance = jiffies + HZ; 11749 int this_cpu = this_rq->cpu; 11750 u64 t0, t1, curr_cost = 0; 11751 struct sched_domain *sd; 11752 int pulled_task = 0; 11753 11754 update_misfit_status(NULL, this_rq); 11755 11756 /* 11757 * There is a task waiting to run. No need to search for one. 11758 * Return 0; the task will be enqueued when switching to idle. 11759 */ 11760 if (this_rq->ttwu_pending) 11761 return 0; 11762 11763 /* 11764 * We must set idle_stamp _before_ calling idle_balance(), such that we 11765 * measure the duration of idle_balance() as idle time. 11766 */ 11767 this_rq->idle_stamp = rq_clock(this_rq); 11768 11769 /* 11770 * Do not pull tasks towards !active CPUs... 11771 */ 11772 if (!cpu_active(this_cpu)) 11773 return 0; 11774 11775 /* 11776 * This is OK, because current is on_cpu, which avoids it being picked 11777 * for load-balance and preemption/IRQs are still disabled avoiding 11778 * further scheduler activity on it and we're being very careful to 11779 * re-start the picking loop. 11780 */ 11781 rq_unpin_lock(this_rq, rf); 11782 11783 rcu_read_lock(); 11784 sd = rcu_dereference_check_sched_domain(this_rq->sd); 11785 11786 if (!READ_ONCE(this_rq->rd->overload) || 11787 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 11788 11789 if (sd) 11790 update_next_balance(sd, &next_balance); 11791 rcu_read_unlock(); 11792 11793 goto out; 11794 } 11795 rcu_read_unlock(); 11796 11797 raw_spin_rq_unlock(this_rq); 11798 11799 t0 = sched_clock_cpu(this_cpu); 11800 update_blocked_averages(this_cpu); 11801 11802 rcu_read_lock(); 11803 for_each_domain(this_cpu, sd) { 11804 int continue_balancing = 1; 11805 u64 domain_cost; 11806 11807 update_next_balance(sd, &next_balance); 11808 11809 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 11810 break; 11811 11812 if (sd->flags & SD_BALANCE_NEWIDLE) { 11813 11814 pulled_task = load_balance(this_cpu, this_rq, 11815 sd, CPU_NEWLY_IDLE, 11816 &continue_balancing); 11817 11818 t1 = sched_clock_cpu(this_cpu); 11819 domain_cost = t1 - t0; 11820 update_newidle_cost(sd, domain_cost); 11821 11822 curr_cost += domain_cost; 11823 t0 = t1; 11824 } 11825 11826 /* 11827 * Stop searching for tasks to pull if there are 11828 * now runnable tasks on this rq. 11829 */ 11830 if (pulled_task || this_rq->nr_running > 0 || 11831 this_rq->ttwu_pending) 11832 break; 11833 } 11834 rcu_read_unlock(); 11835 11836 raw_spin_rq_lock(this_rq); 11837 11838 if (curr_cost > this_rq->max_idle_balance_cost) 11839 this_rq->max_idle_balance_cost = curr_cost; 11840 11841 /* 11842 * While browsing the domains, we released the rq lock, a task could 11843 * have been enqueued in the meantime. Since we're not going idle, 11844 * pretend we pulled a task. 11845 */ 11846 if (this_rq->cfs.h_nr_running && !pulled_task) 11847 pulled_task = 1; 11848 11849 /* Is there a task of a high priority class? */ 11850 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 11851 pulled_task = -1; 11852 11853 out: 11854 /* Move the next balance forward */ 11855 if (time_after(this_rq->next_balance, next_balance)) 11856 this_rq->next_balance = next_balance; 11857 11858 if (pulled_task) 11859 this_rq->idle_stamp = 0; 11860 else 11861 nohz_newidle_balance(this_rq); 11862 11863 rq_repin_lock(this_rq, rf); 11864 11865 return pulled_task; 11866 } 11867 11868 /* 11869 * run_rebalance_domains is triggered when needed from the scheduler tick. 11870 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 11871 */ 11872 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 11873 { 11874 struct rq *this_rq = this_rq(); 11875 enum cpu_idle_type idle = this_rq->idle_balance ? 11876 CPU_IDLE : CPU_NOT_IDLE; 11877 11878 /* 11879 * If this CPU has a pending nohz_balance_kick, then do the 11880 * balancing on behalf of the other idle CPUs whose ticks are 11881 * stopped. Do nohz_idle_balance *before* rebalance_domains to 11882 * give the idle CPUs a chance to load balance. Else we may 11883 * load balance only within the local sched_domain hierarchy 11884 * and abort nohz_idle_balance altogether if we pull some load. 11885 */ 11886 if (nohz_idle_balance(this_rq, idle)) 11887 return; 11888 11889 /* normal load balance */ 11890 update_blocked_averages(this_rq->cpu); 11891 rebalance_domains(this_rq, idle); 11892 } 11893 11894 /* 11895 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 11896 */ 11897 void trigger_load_balance(struct rq *rq) 11898 { 11899 /* 11900 * Don't need to rebalance while attached to NULL domain or 11901 * runqueue CPU is not active 11902 */ 11903 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 11904 return; 11905 11906 if (time_after_eq(jiffies, rq->next_balance)) 11907 raise_softirq(SCHED_SOFTIRQ); 11908 11909 nohz_balancer_kick(rq); 11910 } 11911 11912 static void rq_online_fair(struct rq *rq) 11913 { 11914 update_sysctl(); 11915 11916 update_runtime_enabled(rq); 11917 } 11918 11919 static void rq_offline_fair(struct rq *rq) 11920 { 11921 update_sysctl(); 11922 11923 /* Ensure any throttled groups are reachable by pick_next_task */ 11924 unthrottle_offline_cfs_rqs(rq); 11925 } 11926 11927 #endif /* CONFIG_SMP */ 11928 11929 #ifdef CONFIG_SCHED_CORE 11930 static inline bool 11931 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 11932 { 11933 u64 slice = sched_slice(cfs_rq_of(se), se); 11934 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 11935 11936 return (rtime * min_nr_tasks > slice); 11937 } 11938 11939 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 11940 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 11941 { 11942 if (!sched_core_enabled(rq)) 11943 return; 11944 11945 /* 11946 * If runqueue has only one task which used up its slice and 11947 * if the sibling is forced idle, then trigger schedule to 11948 * give forced idle task a chance. 11949 * 11950 * sched_slice() considers only this active rq and it gets the 11951 * whole slice. But during force idle, we have siblings acting 11952 * like a single runqueue and hence we need to consider runnable 11953 * tasks on this CPU and the forced idle CPU. Ideally, we should 11954 * go through the forced idle rq, but that would be a perf hit. 11955 * We can assume that the forced idle CPU has at least 11956 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 11957 * if we need to give up the CPU. 11958 */ 11959 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 11960 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 11961 resched_curr(rq); 11962 } 11963 11964 /* 11965 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 11966 */ 11967 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 11968 bool forceidle) 11969 { 11970 for_each_sched_entity(se) { 11971 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11972 11973 if (forceidle) { 11974 if (cfs_rq->forceidle_seq == fi_seq) 11975 break; 11976 cfs_rq->forceidle_seq = fi_seq; 11977 } 11978 11979 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 11980 } 11981 } 11982 11983 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 11984 { 11985 struct sched_entity *se = &p->se; 11986 11987 if (p->sched_class != &fair_sched_class) 11988 return; 11989 11990 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 11991 } 11992 11993 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 11994 bool in_fi) 11995 { 11996 struct rq *rq = task_rq(a); 11997 const struct sched_entity *sea = &a->se; 11998 const struct sched_entity *seb = &b->se; 11999 struct cfs_rq *cfs_rqa; 12000 struct cfs_rq *cfs_rqb; 12001 s64 delta; 12002 12003 SCHED_WARN_ON(task_rq(b)->core != rq->core); 12004 12005 #ifdef CONFIG_FAIR_GROUP_SCHED 12006 /* 12007 * Find an se in the hierarchy for tasks a and b, such that the se's 12008 * are immediate siblings. 12009 */ 12010 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 12011 int sea_depth = sea->depth; 12012 int seb_depth = seb->depth; 12013 12014 if (sea_depth >= seb_depth) 12015 sea = parent_entity(sea); 12016 if (sea_depth <= seb_depth) 12017 seb = parent_entity(seb); 12018 } 12019 12020 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 12021 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 12022 12023 cfs_rqa = sea->cfs_rq; 12024 cfs_rqb = seb->cfs_rq; 12025 #else 12026 cfs_rqa = &task_rq(a)->cfs; 12027 cfs_rqb = &task_rq(b)->cfs; 12028 #endif 12029 12030 /* 12031 * Find delta after normalizing se's vruntime with its cfs_rq's 12032 * min_vruntime_fi, which would have been updated in prior calls 12033 * to se_fi_update(). 12034 */ 12035 delta = (s64)(sea->vruntime - seb->vruntime) + 12036 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 12037 12038 return delta > 0; 12039 } 12040 12041 static int task_is_throttled_fair(struct task_struct *p, int cpu) 12042 { 12043 struct cfs_rq *cfs_rq; 12044 12045 #ifdef CONFIG_FAIR_GROUP_SCHED 12046 cfs_rq = task_group(p)->cfs_rq[cpu]; 12047 #else 12048 cfs_rq = &cpu_rq(cpu)->cfs; 12049 #endif 12050 return throttled_hierarchy(cfs_rq); 12051 } 12052 #else 12053 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 12054 #endif 12055 12056 /* 12057 * scheduler tick hitting a task of our scheduling class. 12058 * 12059 * NOTE: This function can be called remotely by the tick offload that 12060 * goes along full dynticks. Therefore no local assumption can be made 12061 * and everything must be accessed through the @rq and @curr passed in 12062 * parameters. 12063 */ 12064 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 12065 { 12066 struct cfs_rq *cfs_rq; 12067 struct sched_entity *se = &curr->se; 12068 12069 for_each_sched_entity(se) { 12070 cfs_rq = cfs_rq_of(se); 12071 entity_tick(cfs_rq, se, queued); 12072 } 12073 12074 if (static_branch_unlikely(&sched_numa_balancing)) 12075 task_tick_numa(rq, curr); 12076 12077 update_misfit_status(curr, rq); 12078 update_overutilized_status(task_rq(curr)); 12079 12080 task_tick_core(rq, curr); 12081 } 12082 12083 /* 12084 * called on fork with the child task as argument from the parent's context 12085 * - child not yet on the tasklist 12086 * - preemption disabled 12087 */ 12088 static void task_fork_fair(struct task_struct *p) 12089 { 12090 struct cfs_rq *cfs_rq; 12091 struct sched_entity *se = &p->se, *curr; 12092 struct rq *rq = this_rq(); 12093 struct rq_flags rf; 12094 12095 rq_lock(rq, &rf); 12096 update_rq_clock(rq); 12097 12098 cfs_rq = task_cfs_rq(current); 12099 curr = cfs_rq->curr; 12100 if (curr) { 12101 update_curr(cfs_rq); 12102 se->vruntime = curr->vruntime; 12103 } 12104 place_entity(cfs_rq, se, 1); 12105 12106 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 12107 /* 12108 * Upon rescheduling, sched_class::put_prev_task() will place 12109 * 'current' within the tree based on its new key value. 12110 */ 12111 swap(curr->vruntime, se->vruntime); 12112 resched_curr(rq); 12113 } 12114 12115 se->vruntime -= cfs_rq->min_vruntime; 12116 rq_unlock(rq, &rf); 12117 } 12118 12119 /* 12120 * Priority of the task has changed. Check to see if we preempt 12121 * the current task. 12122 */ 12123 static void 12124 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 12125 { 12126 if (!task_on_rq_queued(p)) 12127 return; 12128 12129 if (rq->cfs.nr_running == 1) 12130 return; 12131 12132 /* 12133 * Reschedule if we are currently running on this runqueue and 12134 * our priority decreased, or if we are not currently running on 12135 * this runqueue and our priority is higher than the current's 12136 */ 12137 if (task_current(rq, p)) { 12138 if (p->prio > oldprio) 12139 resched_curr(rq); 12140 } else 12141 check_preempt_curr(rq, p, 0); 12142 } 12143 12144 static inline bool vruntime_normalized(struct task_struct *p) 12145 { 12146 struct sched_entity *se = &p->se; 12147 12148 /* 12149 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 12150 * the dequeue_entity(.flags=0) will already have normalized the 12151 * vruntime. 12152 */ 12153 if (p->on_rq) 12154 return true; 12155 12156 /* 12157 * When !on_rq, vruntime of the task has usually NOT been normalized. 12158 * But there are some cases where it has already been normalized: 12159 * 12160 * - A forked child which is waiting for being woken up by 12161 * wake_up_new_task(). 12162 * - A task which has been woken up by try_to_wake_up() and 12163 * waiting for actually being woken up by sched_ttwu_pending(). 12164 */ 12165 if (!se->sum_exec_runtime || 12166 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup)) 12167 return true; 12168 12169 return false; 12170 } 12171 12172 #ifdef CONFIG_FAIR_GROUP_SCHED 12173 /* 12174 * Propagate the changes of the sched_entity across the tg tree to make it 12175 * visible to the root 12176 */ 12177 static void propagate_entity_cfs_rq(struct sched_entity *se) 12178 { 12179 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12180 12181 if (cfs_rq_throttled(cfs_rq)) 12182 return; 12183 12184 if (!throttled_hierarchy(cfs_rq)) 12185 list_add_leaf_cfs_rq(cfs_rq); 12186 12187 /* Start to propagate at parent */ 12188 se = se->parent; 12189 12190 for_each_sched_entity(se) { 12191 cfs_rq = cfs_rq_of(se); 12192 12193 update_load_avg(cfs_rq, se, UPDATE_TG); 12194 12195 if (cfs_rq_throttled(cfs_rq)) 12196 break; 12197 12198 if (!throttled_hierarchy(cfs_rq)) 12199 list_add_leaf_cfs_rq(cfs_rq); 12200 } 12201 } 12202 #else 12203 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 12204 #endif 12205 12206 static void detach_entity_cfs_rq(struct sched_entity *se) 12207 { 12208 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12209 12210 #ifdef CONFIG_SMP 12211 /* 12212 * In case the task sched_avg hasn't been attached: 12213 * - A forked task which hasn't been woken up by wake_up_new_task(). 12214 * - A task which has been woken up by try_to_wake_up() but is 12215 * waiting for actually being woken up by sched_ttwu_pending(). 12216 */ 12217 if (!se->avg.last_update_time) 12218 return; 12219 #endif 12220 12221 /* Catch up with the cfs_rq and remove our load when we leave */ 12222 update_load_avg(cfs_rq, se, 0); 12223 detach_entity_load_avg(cfs_rq, se); 12224 update_tg_load_avg(cfs_rq); 12225 propagate_entity_cfs_rq(se); 12226 } 12227 12228 static void attach_entity_cfs_rq(struct sched_entity *se) 12229 { 12230 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12231 12232 /* Synchronize entity with its cfs_rq */ 12233 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 12234 attach_entity_load_avg(cfs_rq, se); 12235 update_tg_load_avg(cfs_rq); 12236 propagate_entity_cfs_rq(se); 12237 } 12238 12239 static void detach_task_cfs_rq(struct task_struct *p) 12240 { 12241 struct sched_entity *se = &p->se; 12242 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12243 12244 if (!vruntime_normalized(p)) { 12245 /* 12246 * Fix up our vruntime so that the current sleep doesn't 12247 * cause 'unlimited' sleep bonus. 12248 */ 12249 place_entity(cfs_rq, se, 0); 12250 se->vruntime -= cfs_rq->min_vruntime; 12251 } 12252 12253 detach_entity_cfs_rq(se); 12254 } 12255 12256 static void attach_task_cfs_rq(struct task_struct *p) 12257 { 12258 struct sched_entity *se = &p->se; 12259 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12260 12261 attach_entity_cfs_rq(se); 12262 12263 if (!vruntime_normalized(p)) 12264 se->vruntime += cfs_rq->min_vruntime; 12265 } 12266 12267 static void switched_from_fair(struct rq *rq, struct task_struct *p) 12268 { 12269 detach_task_cfs_rq(p); 12270 } 12271 12272 static void switched_to_fair(struct rq *rq, struct task_struct *p) 12273 { 12274 attach_task_cfs_rq(p); 12275 12276 if (task_on_rq_queued(p)) { 12277 /* 12278 * We were most likely switched from sched_rt, so 12279 * kick off the schedule if running, otherwise just see 12280 * if we can still preempt the current task. 12281 */ 12282 if (task_current(rq, p)) 12283 resched_curr(rq); 12284 else 12285 check_preempt_curr(rq, p, 0); 12286 } 12287 } 12288 12289 /* Account for a task changing its policy or group. 12290 * 12291 * This routine is mostly called to set cfs_rq->curr field when a task 12292 * migrates between groups/classes. 12293 */ 12294 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 12295 { 12296 struct sched_entity *se = &p->se; 12297 12298 #ifdef CONFIG_SMP 12299 if (task_on_rq_queued(p)) { 12300 /* 12301 * Move the next running task to the front of the list, so our 12302 * cfs_tasks list becomes MRU one. 12303 */ 12304 list_move(&se->group_node, &rq->cfs_tasks); 12305 } 12306 #endif 12307 12308 for_each_sched_entity(se) { 12309 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12310 12311 set_next_entity(cfs_rq, se); 12312 /* ensure bandwidth has been allocated on our new cfs_rq */ 12313 account_cfs_rq_runtime(cfs_rq, 0); 12314 } 12315 } 12316 12317 void init_cfs_rq(struct cfs_rq *cfs_rq) 12318 { 12319 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 12320 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20))); 12321 #ifdef CONFIG_SMP 12322 raw_spin_lock_init(&cfs_rq->removed.lock); 12323 #endif 12324 } 12325 12326 #ifdef CONFIG_FAIR_GROUP_SCHED 12327 static void task_change_group_fair(struct task_struct *p) 12328 { 12329 /* 12330 * We couldn't detach or attach a forked task which 12331 * hasn't been woken up by wake_up_new_task(). 12332 */ 12333 if (READ_ONCE(p->__state) == TASK_NEW) 12334 return; 12335 12336 detach_task_cfs_rq(p); 12337 12338 #ifdef CONFIG_SMP 12339 /* Tell se's cfs_rq has been changed -- migrated */ 12340 p->se.avg.last_update_time = 0; 12341 #endif 12342 set_task_rq(p, task_cpu(p)); 12343 attach_task_cfs_rq(p); 12344 } 12345 12346 void free_fair_sched_group(struct task_group *tg) 12347 { 12348 int i; 12349 12350 for_each_possible_cpu(i) { 12351 if (tg->cfs_rq) 12352 kfree(tg->cfs_rq[i]); 12353 if (tg->se) 12354 kfree(tg->se[i]); 12355 } 12356 12357 kfree(tg->cfs_rq); 12358 kfree(tg->se); 12359 } 12360 12361 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12362 { 12363 struct sched_entity *se; 12364 struct cfs_rq *cfs_rq; 12365 int i; 12366 12367 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 12368 if (!tg->cfs_rq) 12369 goto err; 12370 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 12371 if (!tg->se) 12372 goto err; 12373 12374 tg->shares = NICE_0_LOAD; 12375 12376 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12377 12378 for_each_possible_cpu(i) { 12379 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 12380 GFP_KERNEL, cpu_to_node(i)); 12381 if (!cfs_rq) 12382 goto err; 12383 12384 se = kzalloc_node(sizeof(struct sched_entity_stats), 12385 GFP_KERNEL, cpu_to_node(i)); 12386 if (!se) 12387 goto err_free_rq; 12388 12389 init_cfs_rq(cfs_rq); 12390 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 12391 init_entity_runnable_average(se); 12392 } 12393 12394 return 1; 12395 12396 err_free_rq: 12397 kfree(cfs_rq); 12398 err: 12399 return 0; 12400 } 12401 12402 void online_fair_sched_group(struct task_group *tg) 12403 { 12404 struct sched_entity *se; 12405 struct rq_flags rf; 12406 struct rq *rq; 12407 int i; 12408 12409 for_each_possible_cpu(i) { 12410 rq = cpu_rq(i); 12411 se = tg->se[i]; 12412 rq_lock_irq(rq, &rf); 12413 update_rq_clock(rq); 12414 attach_entity_cfs_rq(se); 12415 sync_throttle(tg, i); 12416 rq_unlock_irq(rq, &rf); 12417 } 12418 } 12419 12420 void unregister_fair_sched_group(struct task_group *tg) 12421 { 12422 unsigned long flags; 12423 struct rq *rq; 12424 int cpu; 12425 12426 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12427 12428 for_each_possible_cpu(cpu) { 12429 if (tg->se[cpu]) 12430 remove_entity_load_avg(tg->se[cpu]); 12431 12432 /* 12433 * Only empty task groups can be destroyed; so we can speculatively 12434 * check on_list without danger of it being re-added. 12435 */ 12436 if (!tg->cfs_rq[cpu]->on_list) 12437 continue; 12438 12439 rq = cpu_rq(cpu); 12440 12441 raw_spin_rq_lock_irqsave(rq, flags); 12442 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 12443 raw_spin_rq_unlock_irqrestore(rq, flags); 12444 } 12445 } 12446 12447 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 12448 struct sched_entity *se, int cpu, 12449 struct sched_entity *parent) 12450 { 12451 struct rq *rq = cpu_rq(cpu); 12452 12453 cfs_rq->tg = tg; 12454 cfs_rq->rq = rq; 12455 init_cfs_rq_runtime(cfs_rq); 12456 12457 tg->cfs_rq[cpu] = cfs_rq; 12458 tg->se[cpu] = se; 12459 12460 /* se could be NULL for root_task_group */ 12461 if (!se) 12462 return; 12463 12464 if (!parent) { 12465 se->cfs_rq = &rq->cfs; 12466 se->depth = 0; 12467 } else { 12468 se->cfs_rq = parent->my_q; 12469 se->depth = parent->depth + 1; 12470 } 12471 12472 se->my_q = cfs_rq; 12473 /* guarantee group entities always have weight */ 12474 update_load_set(&se->load, NICE_0_LOAD); 12475 se->parent = parent; 12476 } 12477 12478 static DEFINE_MUTEX(shares_mutex); 12479 12480 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 12481 { 12482 int i; 12483 12484 lockdep_assert_held(&shares_mutex); 12485 12486 /* 12487 * We can't change the weight of the root cgroup. 12488 */ 12489 if (!tg->se[0]) 12490 return -EINVAL; 12491 12492 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 12493 12494 if (tg->shares == shares) 12495 return 0; 12496 12497 tg->shares = shares; 12498 for_each_possible_cpu(i) { 12499 struct rq *rq = cpu_rq(i); 12500 struct sched_entity *se = tg->se[i]; 12501 struct rq_flags rf; 12502 12503 /* Propagate contribution to hierarchy */ 12504 rq_lock_irqsave(rq, &rf); 12505 update_rq_clock(rq); 12506 for_each_sched_entity(se) { 12507 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 12508 update_cfs_group(se); 12509 } 12510 rq_unlock_irqrestore(rq, &rf); 12511 } 12512 12513 return 0; 12514 } 12515 12516 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 12517 { 12518 int ret; 12519 12520 mutex_lock(&shares_mutex); 12521 if (tg_is_idle(tg)) 12522 ret = -EINVAL; 12523 else 12524 ret = __sched_group_set_shares(tg, shares); 12525 mutex_unlock(&shares_mutex); 12526 12527 return ret; 12528 } 12529 12530 int sched_group_set_idle(struct task_group *tg, long idle) 12531 { 12532 int i; 12533 12534 if (tg == &root_task_group) 12535 return -EINVAL; 12536 12537 if (idle < 0 || idle > 1) 12538 return -EINVAL; 12539 12540 mutex_lock(&shares_mutex); 12541 12542 if (tg->idle == idle) { 12543 mutex_unlock(&shares_mutex); 12544 return 0; 12545 } 12546 12547 tg->idle = idle; 12548 12549 for_each_possible_cpu(i) { 12550 struct rq *rq = cpu_rq(i); 12551 struct sched_entity *se = tg->se[i]; 12552 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 12553 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 12554 long idle_task_delta; 12555 struct rq_flags rf; 12556 12557 rq_lock_irqsave(rq, &rf); 12558 12559 grp_cfs_rq->idle = idle; 12560 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 12561 goto next_cpu; 12562 12563 if (se->on_rq) { 12564 parent_cfs_rq = cfs_rq_of(se); 12565 if (cfs_rq_is_idle(grp_cfs_rq)) 12566 parent_cfs_rq->idle_nr_running++; 12567 else 12568 parent_cfs_rq->idle_nr_running--; 12569 } 12570 12571 idle_task_delta = grp_cfs_rq->h_nr_running - 12572 grp_cfs_rq->idle_h_nr_running; 12573 if (!cfs_rq_is_idle(grp_cfs_rq)) 12574 idle_task_delta *= -1; 12575 12576 for_each_sched_entity(se) { 12577 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12578 12579 if (!se->on_rq) 12580 break; 12581 12582 cfs_rq->idle_h_nr_running += idle_task_delta; 12583 12584 /* Already accounted at parent level and above. */ 12585 if (cfs_rq_is_idle(cfs_rq)) 12586 break; 12587 } 12588 12589 next_cpu: 12590 rq_unlock_irqrestore(rq, &rf); 12591 } 12592 12593 /* Idle groups have minimum weight. */ 12594 if (tg_is_idle(tg)) 12595 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 12596 else 12597 __sched_group_set_shares(tg, NICE_0_LOAD); 12598 12599 mutex_unlock(&shares_mutex); 12600 return 0; 12601 } 12602 12603 #else /* CONFIG_FAIR_GROUP_SCHED */ 12604 12605 void free_fair_sched_group(struct task_group *tg) { } 12606 12607 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12608 { 12609 return 1; 12610 } 12611 12612 void online_fair_sched_group(struct task_group *tg) { } 12613 12614 void unregister_fair_sched_group(struct task_group *tg) { } 12615 12616 #endif /* CONFIG_FAIR_GROUP_SCHED */ 12617 12618 12619 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 12620 { 12621 struct sched_entity *se = &task->se; 12622 unsigned int rr_interval = 0; 12623 12624 /* 12625 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 12626 * idle runqueue: 12627 */ 12628 if (rq->cfs.load.weight) 12629 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 12630 12631 return rr_interval; 12632 } 12633 12634 /* 12635 * All the scheduling class methods: 12636 */ 12637 DEFINE_SCHED_CLASS(fair) = { 12638 12639 .enqueue_task = enqueue_task_fair, 12640 .dequeue_task = dequeue_task_fair, 12641 .yield_task = yield_task_fair, 12642 .yield_to_task = yield_to_task_fair, 12643 12644 .check_preempt_curr = check_preempt_wakeup, 12645 12646 .pick_next_task = __pick_next_task_fair, 12647 .put_prev_task = put_prev_task_fair, 12648 .set_next_task = set_next_task_fair, 12649 12650 #ifdef CONFIG_SMP 12651 .balance = balance_fair, 12652 .pick_task = pick_task_fair, 12653 .select_task_rq = select_task_rq_fair, 12654 .migrate_task_rq = migrate_task_rq_fair, 12655 12656 .rq_online = rq_online_fair, 12657 .rq_offline = rq_offline_fair, 12658 12659 .task_dead = task_dead_fair, 12660 .set_cpus_allowed = set_cpus_allowed_common, 12661 #endif 12662 12663 .task_tick = task_tick_fair, 12664 .task_fork = task_fork_fair, 12665 12666 .prio_changed = prio_changed_fair, 12667 .switched_from = switched_from_fair, 12668 .switched_to = switched_to_fair, 12669 12670 .get_rr_interval = get_rr_interval_fair, 12671 12672 .update_curr = update_curr_fair, 12673 12674 #ifdef CONFIG_FAIR_GROUP_SCHED 12675 .task_change_group = task_change_group_fair, 12676 #endif 12677 12678 #ifdef CONFIG_SCHED_CORE 12679 .task_is_throttled = task_is_throttled_fair, 12680 #endif 12681 12682 #ifdef CONFIG_UCLAMP_TASK 12683 .uclamp_enabled = 1, 12684 #endif 12685 }; 12686 12687 #ifdef CONFIG_SCHED_DEBUG 12688 void print_cfs_stats(struct seq_file *m, int cpu) 12689 { 12690 struct cfs_rq *cfs_rq, *pos; 12691 12692 rcu_read_lock(); 12693 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 12694 print_cfs_rq(m, cpu, cfs_rq); 12695 rcu_read_unlock(); 12696 } 12697 12698 #ifdef CONFIG_NUMA_BALANCING 12699 void show_numa_stats(struct task_struct *p, struct seq_file *m) 12700 { 12701 int node; 12702 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 12703 struct numa_group *ng; 12704 12705 rcu_read_lock(); 12706 ng = rcu_dereference(p->numa_group); 12707 for_each_online_node(node) { 12708 if (p->numa_faults) { 12709 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 12710 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 12711 } 12712 if (ng) { 12713 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 12714 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 12715 } 12716 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 12717 } 12718 rcu_read_unlock(); 12719 } 12720 #endif /* CONFIG_NUMA_BALANCING */ 12721 #endif /* CONFIG_SCHED_DEBUG */ 12722 12723 __init void init_sched_fair_class(void) 12724 { 12725 #ifdef CONFIG_SMP 12726 int i; 12727 12728 for_each_possible_cpu(i) { 12729 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 12730 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 12731 12732 #ifdef CONFIG_CFS_BANDWIDTH 12733 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 12734 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 12735 #endif 12736 } 12737 12738 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 12739 12740 #ifdef CONFIG_NO_HZ_COMMON 12741 nohz.next_balance = jiffies; 12742 nohz.next_blocked = jiffies; 12743 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 12744 #endif 12745 #endif /* SMP */ 12746 12747 } 12748