1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 /* 26 * Targeted preemption latency for CPU-bound tasks: 27 * 28 * NOTE: this latency value is not the same as the concept of 29 * 'timeslice length' - timeslices in CFS are of variable length 30 * and have no persistent notion like in traditional, time-slice 31 * based scheduling concepts. 32 * 33 * (to see the precise effective timeslice length of your workload, 34 * run vmstat and monitor the context-switches (cs) field) 35 * 36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 37 */ 38 unsigned int sysctl_sched_latency = 6000000ULL; 39 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 40 41 /* 42 * The initial- and re-scaling of tunables is configurable 43 * 44 * Options are: 45 * 46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 49 * 50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 51 */ 52 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 53 54 /* 55 * Minimal preemption granularity for CPU-bound tasks: 56 * 57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 58 */ 59 unsigned int sysctl_sched_min_granularity = 750000ULL; 60 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 61 62 /* 63 * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks. 64 * Applies only when SCHED_IDLE tasks compete with normal tasks. 65 * 66 * (default: 0.75 msec) 67 */ 68 unsigned int sysctl_sched_idle_min_granularity = 750000ULL; 69 70 /* 71 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 72 */ 73 static unsigned int sched_nr_latency = 8; 74 75 /* 76 * After fork, child runs first. If set to 0 (default) then 77 * parent will (try to) run first. 78 */ 79 unsigned int sysctl_sched_child_runs_first __read_mostly; 80 81 /* 82 * SCHED_OTHER wake-up granularity. 83 * 84 * This option delays the preemption effects of decoupled workloads 85 * and reduces their over-scheduling. Synchronous workloads will still 86 * have immediate wakeup/sleep latencies. 87 * 88 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 89 */ 90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 91 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 92 93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 94 95 int sched_thermal_decay_shift; 96 static int __init setup_sched_thermal_decay_shift(char *str) 97 { 98 int _shift = 0; 99 100 if (kstrtoint(str, 0, &_shift)) 101 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 102 103 sched_thermal_decay_shift = clamp(_shift, 0, 10); 104 return 1; 105 } 106 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 107 108 #ifdef CONFIG_SMP 109 /* 110 * For asym packing, by default the lower numbered CPU has higher priority. 111 */ 112 int __weak arch_asym_cpu_priority(int cpu) 113 { 114 return -cpu; 115 } 116 117 /* 118 * The margin used when comparing utilization with CPU capacity. 119 * 120 * (default: ~20%) 121 */ 122 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 123 124 /* 125 * The margin used when comparing CPU capacities. 126 * is 'cap1' noticeably greater than 'cap2' 127 * 128 * (default: ~5%) 129 */ 130 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 131 #endif 132 133 #ifdef CONFIG_CFS_BANDWIDTH 134 /* 135 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 136 * each time a cfs_rq requests quota. 137 * 138 * Note: in the case that the slice exceeds the runtime remaining (either due 139 * to consumption or the quota being specified to be smaller than the slice) 140 * we will always only issue the remaining available time. 141 * 142 * (default: 5 msec, units: microseconds) 143 */ 144 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 145 #endif 146 147 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 148 { 149 lw->weight += inc; 150 lw->inv_weight = 0; 151 } 152 153 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 154 { 155 lw->weight -= dec; 156 lw->inv_weight = 0; 157 } 158 159 static inline void update_load_set(struct load_weight *lw, unsigned long w) 160 { 161 lw->weight = w; 162 lw->inv_weight = 0; 163 } 164 165 /* 166 * Increase the granularity value when there are more CPUs, 167 * because with more CPUs the 'effective latency' as visible 168 * to users decreases. But the relationship is not linear, 169 * so pick a second-best guess by going with the log2 of the 170 * number of CPUs. 171 * 172 * This idea comes from the SD scheduler of Con Kolivas: 173 */ 174 static unsigned int get_update_sysctl_factor(void) 175 { 176 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 177 unsigned int factor; 178 179 switch (sysctl_sched_tunable_scaling) { 180 case SCHED_TUNABLESCALING_NONE: 181 factor = 1; 182 break; 183 case SCHED_TUNABLESCALING_LINEAR: 184 factor = cpus; 185 break; 186 case SCHED_TUNABLESCALING_LOG: 187 default: 188 factor = 1 + ilog2(cpus); 189 break; 190 } 191 192 return factor; 193 } 194 195 static void update_sysctl(void) 196 { 197 unsigned int factor = get_update_sysctl_factor(); 198 199 #define SET_SYSCTL(name) \ 200 (sysctl_##name = (factor) * normalized_sysctl_##name) 201 SET_SYSCTL(sched_min_granularity); 202 SET_SYSCTL(sched_latency); 203 SET_SYSCTL(sched_wakeup_granularity); 204 #undef SET_SYSCTL 205 } 206 207 void __init sched_init_granularity(void) 208 { 209 update_sysctl(); 210 } 211 212 #define WMULT_CONST (~0U) 213 #define WMULT_SHIFT 32 214 215 static void __update_inv_weight(struct load_weight *lw) 216 { 217 unsigned long w; 218 219 if (likely(lw->inv_weight)) 220 return; 221 222 w = scale_load_down(lw->weight); 223 224 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 225 lw->inv_weight = 1; 226 else if (unlikely(!w)) 227 lw->inv_weight = WMULT_CONST; 228 else 229 lw->inv_weight = WMULT_CONST / w; 230 } 231 232 /* 233 * delta_exec * weight / lw.weight 234 * OR 235 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 236 * 237 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 238 * we're guaranteed shift stays positive because inv_weight is guaranteed to 239 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 240 * 241 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 242 * weight/lw.weight <= 1, and therefore our shift will also be positive. 243 */ 244 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 245 { 246 u64 fact = scale_load_down(weight); 247 u32 fact_hi = (u32)(fact >> 32); 248 int shift = WMULT_SHIFT; 249 int fs; 250 251 __update_inv_weight(lw); 252 253 if (unlikely(fact_hi)) { 254 fs = fls(fact_hi); 255 shift -= fs; 256 fact >>= fs; 257 } 258 259 fact = mul_u32_u32(fact, lw->inv_weight); 260 261 fact_hi = (u32)(fact >> 32); 262 if (fact_hi) { 263 fs = fls(fact_hi); 264 shift -= fs; 265 fact >>= fs; 266 } 267 268 return mul_u64_u32_shr(delta_exec, fact, shift); 269 } 270 271 272 const struct sched_class fair_sched_class; 273 274 /************************************************************** 275 * CFS operations on generic schedulable entities: 276 */ 277 278 #ifdef CONFIG_FAIR_GROUP_SCHED 279 280 /* Walk up scheduling entities hierarchy */ 281 #define for_each_sched_entity(se) \ 282 for (; se; se = se->parent) 283 284 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 285 { 286 if (!path) 287 return; 288 289 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg)) 290 autogroup_path(cfs_rq->tg, path, len); 291 else if (cfs_rq && cfs_rq->tg->css.cgroup) 292 cgroup_path(cfs_rq->tg->css.cgroup, path, len); 293 else 294 strlcpy(path, "(null)", len); 295 } 296 297 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 298 { 299 struct rq *rq = rq_of(cfs_rq); 300 int cpu = cpu_of(rq); 301 302 if (cfs_rq->on_list) 303 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 304 305 cfs_rq->on_list = 1; 306 307 /* 308 * Ensure we either appear before our parent (if already 309 * enqueued) or force our parent to appear after us when it is 310 * enqueued. The fact that we always enqueue bottom-up 311 * reduces this to two cases and a special case for the root 312 * cfs_rq. Furthermore, it also means that we will always reset 313 * tmp_alone_branch either when the branch is connected 314 * to a tree or when we reach the top of the tree 315 */ 316 if (cfs_rq->tg->parent && 317 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 318 /* 319 * If parent is already on the list, we add the child 320 * just before. Thanks to circular linked property of 321 * the list, this means to put the child at the tail 322 * of the list that starts by parent. 323 */ 324 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 325 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 326 /* 327 * The branch is now connected to its tree so we can 328 * reset tmp_alone_branch to the beginning of the 329 * list. 330 */ 331 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 332 return true; 333 } 334 335 if (!cfs_rq->tg->parent) { 336 /* 337 * cfs rq without parent should be put 338 * at the tail of the list. 339 */ 340 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 341 &rq->leaf_cfs_rq_list); 342 /* 343 * We have reach the top of a tree so we can reset 344 * tmp_alone_branch to the beginning of the list. 345 */ 346 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 347 return true; 348 } 349 350 /* 351 * The parent has not already been added so we want to 352 * make sure that it will be put after us. 353 * tmp_alone_branch points to the begin of the branch 354 * where we will add parent. 355 */ 356 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 357 /* 358 * update tmp_alone_branch to points to the new begin 359 * of the branch 360 */ 361 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 362 return false; 363 } 364 365 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 366 { 367 if (cfs_rq->on_list) { 368 struct rq *rq = rq_of(cfs_rq); 369 370 /* 371 * With cfs_rq being unthrottled/throttled during an enqueue, 372 * it can happen the tmp_alone_branch points the a leaf that 373 * we finally want to del. In this case, tmp_alone_branch moves 374 * to the prev element but it will point to rq->leaf_cfs_rq_list 375 * at the end of the enqueue. 376 */ 377 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 378 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 379 380 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 381 cfs_rq->on_list = 0; 382 } 383 } 384 385 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 386 { 387 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 388 } 389 390 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 391 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 392 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 393 leaf_cfs_rq_list) 394 395 /* Do the two (enqueued) entities belong to the same group ? */ 396 static inline struct cfs_rq * 397 is_same_group(struct sched_entity *se, struct sched_entity *pse) 398 { 399 if (se->cfs_rq == pse->cfs_rq) 400 return se->cfs_rq; 401 402 return NULL; 403 } 404 405 static inline struct sched_entity *parent_entity(struct sched_entity *se) 406 { 407 return se->parent; 408 } 409 410 static void 411 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 412 { 413 int se_depth, pse_depth; 414 415 /* 416 * preemption test can be made between sibling entities who are in the 417 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 418 * both tasks until we find their ancestors who are siblings of common 419 * parent. 420 */ 421 422 /* First walk up until both entities are at same depth */ 423 se_depth = (*se)->depth; 424 pse_depth = (*pse)->depth; 425 426 while (se_depth > pse_depth) { 427 se_depth--; 428 *se = parent_entity(*se); 429 } 430 431 while (pse_depth > se_depth) { 432 pse_depth--; 433 *pse = parent_entity(*pse); 434 } 435 436 while (!is_same_group(*se, *pse)) { 437 *se = parent_entity(*se); 438 *pse = parent_entity(*pse); 439 } 440 } 441 442 static int tg_is_idle(struct task_group *tg) 443 { 444 return tg->idle > 0; 445 } 446 447 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 448 { 449 return cfs_rq->idle > 0; 450 } 451 452 static int se_is_idle(struct sched_entity *se) 453 { 454 if (entity_is_task(se)) 455 return task_has_idle_policy(task_of(se)); 456 return cfs_rq_is_idle(group_cfs_rq(se)); 457 } 458 459 #else /* !CONFIG_FAIR_GROUP_SCHED */ 460 461 #define for_each_sched_entity(se) \ 462 for (; se; se = NULL) 463 464 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 465 { 466 if (path) 467 strlcpy(path, "(null)", len); 468 } 469 470 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 471 { 472 return true; 473 } 474 475 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 476 { 477 } 478 479 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 480 { 481 } 482 483 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 484 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 485 486 static inline struct sched_entity *parent_entity(struct sched_entity *se) 487 { 488 return NULL; 489 } 490 491 static inline void 492 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 493 { 494 } 495 496 static inline int tg_is_idle(struct task_group *tg) 497 { 498 return 0; 499 } 500 501 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 502 { 503 return 0; 504 } 505 506 static int se_is_idle(struct sched_entity *se) 507 { 508 return 0; 509 } 510 511 #endif /* CONFIG_FAIR_GROUP_SCHED */ 512 513 static __always_inline 514 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 515 516 /************************************************************** 517 * Scheduling class tree data structure manipulation methods: 518 */ 519 520 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 521 { 522 s64 delta = (s64)(vruntime - max_vruntime); 523 if (delta > 0) 524 max_vruntime = vruntime; 525 526 return max_vruntime; 527 } 528 529 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 530 { 531 s64 delta = (s64)(vruntime - min_vruntime); 532 if (delta < 0) 533 min_vruntime = vruntime; 534 535 return min_vruntime; 536 } 537 538 static inline bool entity_before(struct sched_entity *a, 539 struct sched_entity *b) 540 { 541 return (s64)(a->vruntime - b->vruntime) < 0; 542 } 543 544 #define __node_2_se(node) \ 545 rb_entry((node), struct sched_entity, run_node) 546 547 static void update_min_vruntime(struct cfs_rq *cfs_rq) 548 { 549 struct sched_entity *curr = cfs_rq->curr; 550 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 551 552 u64 vruntime = cfs_rq->min_vruntime; 553 554 if (curr) { 555 if (curr->on_rq) 556 vruntime = curr->vruntime; 557 else 558 curr = NULL; 559 } 560 561 if (leftmost) { /* non-empty tree */ 562 struct sched_entity *se = __node_2_se(leftmost); 563 564 if (!curr) 565 vruntime = se->vruntime; 566 else 567 vruntime = min_vruntime(vruntime, se->vruntime); 568 } 569 570 /* ensure we never gain time by being placed backwards. */ 571 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 572 #ifndef CONFIG_64BIT 573 smp_wmb(); 574 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 575 #endif 576 } 577 578 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 579 { 580 return entity_before(__node_2_se(a), __node_2_se(b)); 581 } 582 583 /* 584 * Enqueue an entity into the rb-tree: 585 */ 586 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 587 { 588 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less); 589 } 590 591 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 592 { 593 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 594 } 595 596 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 597 { 598 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 599 600 if (!left) 601 return NULL; 602 603 return __node_2_se(left); 604 } 605 606 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 607 { 608 struct rb_node *next = rb_next(&se->run_node); 609 610 if (!next) 611 return NULL; 612 613 return __node_2_se(next); 614 } 615 616 #ifdef CONFIG_SCHED_DEBUG 617 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 618 { 619 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 620 621 if (!last) 622 return NULL; 623 624 return __node_2_se(last); 625 } 626 627 /************************************************************** 628 * Scheduling class statistics methods: 629 */ 630 631 int sched_update_scaling(void) 632 { 633 unsigned int factor = get_update_sysctl_factor(); 634 635 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 636 sysctl_sched_min_granularity); 637 638 #define WRT_SYSCTL(name) \ 639 (normalized_sysctl_##name = sysctl_##name / (factor)) 640 WRT_SYSCTL(sched_min_granularity); 641 WRT_SYSCTL(sched_latency); 642 WRT_SYSCTL(sched_wakeup_granularity); 643 #undef WRT_SYSCTL 644 645 return 0; 646 } 647 #endif 648 649 /* 650 * delta /= w 651 */ 652 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 653 { 654 if (unlikely(se->load.weight != NICE_0_LOAD)) 655 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 656 657 return delta; 658 } 659 660 /* 661 * The idea is to set a period in which each task runs once. 662 * 663 * When there are too many tasks (sched_nr_latency) we have to stretch 664 * this period because otherwise the slices get too small. 665 * 666 * p = (nr <= nl) ? l : l*nr/nl 667 */ 668 static u64 __sched_period(unsigned long nr_running) 669 { 670 if (unlikely(nr_running > sched_nr_latency)) 671 return nr_running * sysctl_sched_min_granularity; 672 else 673 return sysctl_sched_latency; 674 } 675 676 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq); 677 678 /* 679 * We calculate the wall-time slice from the period by taking a part 680 * proportional to the weight. 681 * 682 * s = p*P[w/rw] 683 */ 684 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 685 { 686 unsigned int nr_running = cfs_rq->nr_running; 687 struct sched_entity *init_se = se; 688 unsigned int min_gran; 689 u64 slice; 690 691 if (sched_feat(ALT_PERIOD)) 692 nr_running = rq_of(cfs_rq)->cfs.h_nr_running; 693 694 slice = __sched_period(nr_running + !se->on_rq); 695 696 for_each_sched_entity(se) { 697 struct load_weight *load; 698 struct load_weight lw; 699 struct cfs_rq *qcfs_rq; 700 701 qcfs_rq = cfs_rq_of(se); 702 load = &qcfs_rq->load; 703 704 if (unlikely(!se->on_rq)) { 705 lw = qcfs_rq->load; 706 707 update_load_add(&lw, se->load.weight); 708 load = &lw; 709 } 710 slice = __calc_delta(slice, se->load.weight, load); 711 } 712 713 if (sched_feat(BASE_SLICE)) { 714 if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq)) 715 min_gran = sysctl_sched_idle_min_granularity; 716 else 717 min_gran = sysctl_sched_min_granularity; 718 719 slice = max_t(u64, slice, min_gran); 720 } 721 722 return slice; 723 } 724 725 /* 726 * We calculate the vruntime slice of a to-be-inserted task. 727 * 728 * vs = s/w 729 */ 730 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 731 { 732 return calc_delta_fair(sched_slice(cfs_rq, se), se); 733 } 734 735 #include "pelt.h" 736 #ifdef CONFIG_SMP 737 738 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 739 static unsigned long task_h_load(struct task_struct *p); 740 static unsigned long capacity_of(int cpu); 741 742 /* Give new sched_entity start runnable values to heavy its load in infant time */ 743 void init_entity_runnable_average(struct sched_entity *se) 744 { 745 struct sched_avg *sa = &se->avg; 746 747 memset(sa, 0, sizeof(*sa)); 748 749 /* 750 * Tasks are initialized with full load to be seen as heavy tasks until 751 * they get a chance to stabilize to their real load level. 752 * Group entities are initialized with zero load to reflect the fact that 753 * nothing has been attached to the task group yet. 754 */ 755 if (entity_is_task(se)) 756 sa->load_avg = scale_load_down(se->load.weight); 757 758 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 759 } 760 761 static void attach_entity_cfs_rq(struct sched_entity *se); 762 763 /* 764 * With new tasks being created, their initial util_avgs are extrapolated 765 * based on the cfs_rq's current util_avg: 766 * 767 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 768 * 769 * However, in many cases, the above util_avg does not give a desired 770 * value. Moreover, the sum of the util_avgs may be divergent, such 771 * as when the series is a harmonic series. 772 * 773 * To solve this problem, we also cap the util_avg of successive tasks to 774 * only 1/2 of the left utilization budget: 775 * 776 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 777 * 778 * where n denotes the nth task and cpu_scale the CPU capacity. 779 * 780 * For example, for a CPU with 1024 of capacity, a simplest series from 781 * the beginning would be like: 782 * 783 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 784 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 785 * 786 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 787 * if util_avg > util_avg_cap. 788 */ 789 void post_init_entity_util_avg(struct task_struct *p) 790 { 791 struct sched_entity *se = &p->se; 792 struct cfs_rq *cfs_rq = cfs_rq_of(se); 793 struct sched_avg *sa = &se->avg; 794 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 795 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 796 797 if (cap > 0) { 798 if (cfs_rq->avg.util_avg != 0) { 799 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 800 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 801 802 if (sa->util_avg > cap) 803 sa->util_avg = cap; 804 } else { 805 sa->util_avg = cap; 806 } 807 } 808 809 sa->runnable_avg = sa->util_avg; 810 811 if (p->sched_class != &fair_sched_class) { 812 /* 813 * For !fair tasks do: 814 * 815 update_cfs_rq_load_avg(now, cfs_rq); 816 attach_entity_load_avg(cfs_rq, se); 817 switched_from_fair(rq, p); 818 * 819 * such that the next switched_to_fair() has the 820 * expected state. 821 */ 822 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 823 return; 824 } 825 826 attach_entity_cfs_rq(se); 827 } 828 829 #else /* !CONFIG_SMP */ 830 void init_entity_runnable_average(struct sched_entity *se) 831 { 832 } 833 void post_init_entity_util_avg(struct task_struct *p) 834 { 835 } 836 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 837 { 838 } 839 #endif /* CONFIG_SMP */ 840 841 /* 842 * Update the current task's runtime statistics. 843 */ 844 static void update_curr(struct cfs_rq *cfs_rq) 845 { 846 struct sched_entity *curr = cfs_rq->curr; 847 u64 now = rq_clock_task(rq_of(cfs_rq)); 848 u64 delta_exec; 849 850 if (unlikely(!curr)) 851 return; 852 853 delta_exec = now - curr->exec_start; 854 if (unlikely((s64)delta_exec <= 0)) 855 return; 856 857 curr->exec_start = now; 858 859 if (schedstat_enabled()) { 860 struct sched_statistics *stats; 861 862 stats = __schedstats_from_se(curr); 863 __schedstat_set(stats->exec_max, 864 max(delta_exec, stats->exec_max)); 865 } 866 867 curr->sum_exec_runtime += delta_exec; 868 schedstat_add(cfs_rq->exec_clock, delta_exec); 869 870 curr->vruntime += calc_delta_fair(delta_exec, curr); 871 update_min_vruntime(cfs_rq); 872 873 if (entity_is_task(curr)) { 874 struct task_struct *curtask = task_of(curr); 875 876 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 877 cgroup_account_cputime(curtask, delta_exec); 878 account_group_exec_runtime(curtask, delta_exec); 879 } 880 881 account_cfs_rq_runtime(cfs_rq, delta_exec); 882 } 883 884 static void update_curr_fair(struct rq *rq) 885 { 886 update_curr(cfs_rq_of(&rq->curr->se)); 887 } 888 889 static inline void 890 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 891 { 892 struct sched_statistics *stats; 893 struct task_struct *p = NULL; 894 895 if (!schedstat_enabled()) 896 return; 897 898 stats = __schedstats_from_se(se); 899 900 if (entity_is_task(se)) 901 p = task_of(se); 902 903 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 904 } 905 906 static inline void 907 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 908 { 909 struct sched_statistics *stats; 910 struct task_struct *p = NULL; 911 912 if (!schedstat_enabled()) 913 return; 914 915 stats = __schedstats_from_se(se); 916 917 /* 918 * When the sched_schedstat changes from 0 to 1, some sched se 919 * maybe already in the runqueue, the se->statistics.wait_start 920 * will be 0.So it will let the delta wrong. We need to avoid this 921 * scenario. 922 */ 923 if (unlikely(!schedstat_val(stats->wait_start))) 924 return; 925 926 if (entity_is_task(se)) 927 p = task_of(se); 928 929 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 930 } 931 932 static inline void 933 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 934 { 935 struct sched_statistics *stats; 936 struct task_struct *tsk = NULL; 937 938 if (!schedstat_enabled()) 939 return; 940 941 stats = __schedstats_from_se(se); 942 943 if (entity_is_task(se)) 944 tsk = task_of(se); 945 946 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 947 } 948 949 /* 950 * Task is being enqueued - update stats: 951 */ 952 static inline void 953 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 954 { 955 if (!schedstat_enabled()) 956 return; 957 958 /* 959 * Are we enqueueing a waiting task? (for current tasks 960 * a dequeue/enqueue event is a NOP) 961 */ 962 if (se != cfs_rq->curr) 963 update_stats_wait_start_fair(cfs_rq, se); 964 965 if (flags & ENQUEUE_WAKEUP) 966 update_stats_enqueue_sleeper_fair(cfs_rq, se); 967 } 968 969 static inline void 970 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 971 { 972 973 if (!schedstat_enabled()) 974 return; 975 976 /* 977 * Mark the end of the wait period if dequeueing a 978 * waiting task: 979 */ 980 if (se != cfs_rq->curr) 981 update_stats_wait_end_fair(cfs_rq, se); 982 983 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 984 struct task_struct *tsk = task_of(se); 985 unsigned int state; 986 987 /* XXX racy against TTWU */ 988 state = READ_ONCE(tsk->__state); 989 if (state & TASK_INTERRUPTIBLE) 990 __schedstat_set(tsk->stats.sleep_start, 991 rq_clock(rq_of(cfs_rq))); 992 if (state & TASK_UNINTERRUPTIBLE) 993 __schedstat_set(tsk->stats.block_start, 994 rq_clock(rq_of(cfs_rq))); 995 } 996 } 997 998 /* 999 * We are picking a new current task - update its stats: 1000 */ 1001 static inline void 1002 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1003 { 1004 /* 1005 * We are starting a new run period: 1006 */ 1007 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1008 } 1009 1010 /************************************************** 1011 * Scheduling class queueing methods: 1012 */ 1013 1014 #ifdef CONFIG_NUMA_BALANCING 1015 /* 1016 * Approximate time to scan a full NUMA task in ms. The task scan period is 1017 * calculated based on the tasks virtual memory size and 1018 * numa_balancing_scan_size. 1019 */ 1020 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1021 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1022 1023 /* Portion of address space to scan in MB */ 1024 unsigned int sysctl_numa_balancing_scan_size = 256; 1025 1026 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1027 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1028 1029 struct numa_group { 1030 refcount_t refcount; 1031 1032 spinlock_t lock; /* nr_tasks, tasks */ 1033 int nr_tasks; 1034 pid_t gid; 1035 int active_nodes; 1036 1037 struct rcu_head rcu; 1038 unsigned long total_faults; 1039 unsigned long max_faults_cpu; 1040 /* 1041 * faults[] array is split into two regions: faults_mem and faults_cpu. 1042 * 1043 * Faults_cpu is used to decide whether memory should move 1044 * towards the CPU. As a consequence, these stats are weighted 1045 * more by CPU use than by memory faults. 1046 */ 1047 unsigned long faults[]; 1048 }; 1049 1050 /* 1051 * For functions that can be called in multiple contexts that permit reading 1052 * ->numa_group (see struct task_struct for locking rules). 1053 */ 1054 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1055 { 1056 return rcu_dereference_check(p->numa_group, p == current || 1057 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1058 } 1059 1060 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1061 { 1062 return rcu_dereference_protected(p->numa_group, p == current); 1063 } 1064 1065 static inline unsigned long group_faults_priv(struct numa_group *ng); 1066 static inline unsigned long group_faults_shared(struct numa_group *ng); 1067 1068 static unsigned int task_nr_scan_windows(struct task_struct *p) 1069 { 1070 unsigned long rss = 0; 1071 unsigned long nr_scan_pages; 1072 1073 /* 1074 * Calculations based on RSS as non-present and empty pages are skipped 1075 * by the PTE scanner and NUMA hinting faults should be trapped based 1076 * on resident pages 1077 */ 1078 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1079 rss = get_mm_rss(p->mm); 1080 if (!rss) 1081 rss = nr_scan_pages; 1082 1083 rss = round_up(rss, nr_scan_pages); 1084 return rss / nr_scan_pages; 1085 } 1086 1087 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1088 #define MAX_SCAN_WINDOW 2560 1089 1090 static unsigned int task_scan_min(struct task_struct *p) 1091 { 1092 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1093 unsigned int scan, floor; 1094 unsigned int windows = 1; 1095 1096 if (scan_size < MAX_SCAN_WINDOW) 1097 windows = MAX_SCAN_WINDOW / scan_size; 1098 floor = 1000 / windows; 1099 1100 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1101 return max_t(unsigned int, floor, scan); 1102 } 1103 1104 static unsigned int task_scan_start(struct task_struct *p) 1105 { 1106 unsigned long smin = task_scan_min(p); 1107 unsigned long period = smin; 1108 struct numa_group *ng; 1109 1110 /* Scale the maximum scan period with the amount of shared memory. */ 1111 rcu_read_lock(); 1112 ng = rcu_dereference(p->numa_group); 1113 if (ng) { 1114 unsigned long shared = group_faults_shared(ng); 1115 unsigned long private = group_faults_priv(ng); 1116 1117 period *= refcount_read(&ng->refcount); 1118 period *= shared + 1; 1119 period /= private + shared + 1; 1120 } 1121 rcu_read_unlock(); 1122 1123 return max(smin, period); 1124 } 1125 1126 static unsigned int task_scan_max(struct task_struct *p) 1127 { 1128 unsigned long smin = task_scan_min(p); 1129 unsigned long smax; 1130 struct numa_group *ng; 1131 1132 /* Watch for min being lower than max due to floor calculations */ 1133 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1134 1135 /* Scale the maximum scan period with the amount of shared memory. */ 1136 ng = deref_curr_numa_group(p); 1137 if (ng) { 1138 unsigned long shared = group_faults_shared(ng); 1139 unsigned long private = group_faults_priv(ng); 1140 unsigned long period = smax; 1141 1142 period *= refcount_read(&ng->refcount); 1143 period *= shared + 1; 1144 period /= private + shared + 1; 1145 1146 smax = max(smax, period); 1147 } 1148 1149 return max(smin, smax); 1150 } 1151 1152 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1153 { 1154 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1155 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1156 } 1157 1158 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1159 { 1160 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1161 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1162 } 1163 1164 /* Shared or private faults. */ 1165 #define NR_NUMA_HINT_FAULT_TYPES 2 1166 1167 /* Memory and CPU locality */ 1168 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1169 1170 /* Averaged statistics, and temporary buffers. */ 1171 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1172 1173 pid_t task_numa_group_id(struct task_struct *p) 1174 { 1175 struct numa_group *ng; 1176 pid_t gid = 0; 1177 1178 rcu_read_lock(); 1179 ng = rcu_dereference(p->numa_group); 1180 if (ng) 1181 gid = ng->gid; 1182 rcu_read_unlock(); 1183 1184 return gid; 1185 } 1186 1187 /* 1188 * The averaged statistics, shared & private, memory & CPU, 1189 * occupy the first half of the array. The second half of the 1190 * array is for current counters, which are averaged into the 1191 * first set by task_numa_placement. 1192 */ 1193 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1194 { 1195 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1196 } 1197 1198 static inline unsigned long task_faults(struct task_struct *p, int nid) 1199 { 1200 if (!p->numa_faults) 1201 return 0; 1202 1203 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1204 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1205 } 1206 1207 static inline unsigned long group_faults(struct task_struct *p, int nid) 1208 { 1209 struct numa_group *ng = deref_task_numa_group(p); 1210 1211 if (!ng) 1212 return 0; 1213 1214 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1215 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1216 } 1217 1218 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1219 { 1220 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1221 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1222 } 1223 1224 static inline unsigned long group_faults_priv(struct numa_group *ng) 1225 { 1226 unsigned long faults = 0; 1227 int node; 1228 1229 for_each_online_node(node) { 1230 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1231 } 1232 1233 return faults; 1234 } 1235 1236 static inline unsigned long group_faults_shared(struct numa_group *ng) 1237 { 1238 unsigned long faults = 0; 1239 int node; 1240 1241 for_each_online_node(node) { 1242 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1243 } 1244 1245 return faults; 1246 } 1247 1248 /* 1249 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1250 * considered part of a numa group's pseudo-interleaving set. Migrations 1251 * between these nodes are slowed down, to allow things to settle down. 1252 */ 1253 #define ACTIVE_NODE_FRACTION 3 1254 1255 static bool numa_is_active_node(int nid, struct numa_group *ng) 1256 { 1257 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1258 } 1259 1260 /* Handle placement on systems where not all nodes are directly connected. */ 1261 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1262 int maxdist, bool task) 1263 { 1264 unsigned long score = 0; 1265 int node; 1266 1267 /* 1268 * All nodes are directly connected, and the same distance 1269 * from each other. No need for fancy placement algorithms. 1270 */ 1271 if (sched_numa_topology_type == NUMA_DIRECT) 1272 return 0; 1273 1274 /* 1275 * This code is called for each node, introducing N^2 complexity, 1276 * which should be ok given the number of nodes rarely exceeds 8. 1277 */ 1278 for_each_online_node(node) { 1279 unsigned long faults; 1280 int dist = node_distance(nid, node); 1281 1282 /* 1283 * The furthest away nodes in the system are not interesting 1284 * for placement; nid was already counted. 1285 */ 1286 if (dist == sched_max_numa_distance || node == nid) 1287 continue; 1288 1289 /* 1290 * On systems with a backplane NUMA topology, compare groups 1291 * of nodes, and move tasks towards the group with the most 1292 * memory accesses. When comparing two nodes at distance 1293 * "hoplimit", only nodes closer by than "hoplimit" are part 1294 * of each group. Skip other nodes. 1295 */ 1296 if (sched_numa_topology_type == NUMA_BACKPLANE && 1297 dist >= maxdist) 1298 continue; 1299 1300 /* Add up the faults from nearby nodes. */ 1301 if (task) 1302 faults = task_faults(p, node); 1303 else 1304 faults = group_faults(p, node); 1305 1306 /* 1307 * On systems with a glueless mesh NUMA topology, there are 1308 * no fixed "groups of nodes". Instead, nodes that are not 1309 * directly connected bounce traffic through intermediate 1310 * nodes; a numa_group can occupy any set of nodes. 1311 * The further away a node is, the less the faults count. 1312 * This seems to result in good task placement. 1313 */ 1314 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1315 faults *= (sched_max_numa_distance - dist); 1316 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1317 } 1318 1319 score += faults; 1320 } 1321 1322 return score; 1323 } 1324 1325 /* 1326 * These return the fraction of accesses done by a particular task, or 1327 * task group, on a particular numa node. The group weight is given a 1328 * larger multiplier, in order to group tasks together that are almost 1329 * evenly spread out between numa nodes. 1330 */ 1331 static inline unsigned long task_weight(struct task_struct *p, int nid, 1332 int dist) 1333 { 1334 unsigned long faults, total_faults; 1335 1336 if (!p->numa_faults) 1337 return 0; 1338 1339 total_faults = p->total_numa_faults; 1340 1341 if (!total_faults) 1342 return 0; 1343 1344 faults = task_faults(p, nid); 1345 faults += score_nearby_nodes(p, nid, dist, true); 1346 1347 return 1000 * faults / total_faults; 1348 } 1349 1350 static inline unsigned long group_weight(struct task_struct *p, int nid, 1351 int dist) 1352 { 1353 struct numa_group *ng = deref_task_numa_group(p); 1354 unsigned long faults, total_faults; 1355 1356 if (!ng) 1357 return 0; 1358 1359 total_faults = ng->total_faults; 1360 1361 if (!total_faults) 1362 return 0; 1363 1364 faults = group_faults(p, nid); 1365 faults += score_nearby_nodes(p, nid, dist, false); 1366 1367 return 1000 * faults / total_faults; 1368 } 1369 1370 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1371 int src_nid, int dst_cpu) 1372 { 1373 struct numa_group *ng = deref_curr_numa_group(p); 1374 int dst_nid = cpu_to_node(dst_cpu); 1375 int last_cpupid, this_cpupid; 1376 1377 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1378 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1379 1380 /* 1381 * Allow first faults or private faults to migrate immediately early in 1382 * the lifetime of a task. The magic number 4 is based on waiting for 1383 * two full passes of the "multi-stage node selection" test that is 1384 * executed below. 1385 */ 1386 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1387 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1388 return true; 1389 1390 /* 1391 * Multi-stage node selection is used in conjunction with a periodic 1392 * migration fault to build a temporal task<->page relation. By using 1393 * a two-stage filter we remove short/unlikely relations. 1394 * 1395 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1396 * a task's usage of a particular page (n_p) per total usage of this 1397 * page (n_t) (in a given time-span) to a probability. 1398 * 1399 * Our periodic faults will sample this probability and getting the 1400 * same result twice in a row, given these samples are fully 1401 * independent, is then given by P(n)^2, provided our sample period 1402 * is sufficiently short compared to the usage pattern. 1403 * 1404 * This quadric squishes small probabilities, making it less likely we 1405 * act on an unlikely task<->page relation. 1406 */ 1407 if (!cpupid_pid_unset(last_cpupid) && 1408 cpupid_to_nid(last_cpupid) != dst_nid) 1409 return false; 1410 1411 /* Always allow migrate on private faults */ 1412 if (cpupid_match_pid(p, last_cpupid)) 1413 return true; 1414 1415 /* A shared fault, but p->numa_group has not been set up yet. */ 1416 if (!ng) 1417 return true; 1418 1419 /* 1420 * Destination node is much more heavily used than the source 1421 * node? Allow migration. 1422 */ 1423 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1424 ACTIVE_NODE_FRACTION) 1425 return true; 1426 1427 /* 1428 * Distribute memory according to CPU & memory use on each node, 1429 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1430 * 1431 * faults_cpu(dst) 3 faults_cpu(src) 1432 * --------------- * - > --------------- 1433 * faults_mem(dst) 4 faults_mem(src) 1434 */ 1435 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1436 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1437 } 1438 1439 /* 1440 * 'numa_type' describes the node at the moment of load balancing. 1441 */ 1442 enum numa_type { 1443 /* The node has spare capacity that can be used to run more tasks. */ 1444 node_has_spare = 0, 1445 /* 1446 * The node is fully used and the tasks don't compete for more CPU 1447 * cycles. Nevertheless, some tasks might wait before running. 1448 */ 1449 node_fully_busy, 1450 /* 1451 * The node is overloaded and can't provide expected CPU cycles to all 1452 * tasks. 1453 */ 1454 node_overloaded 1455 }; 1456 1457 /* Cached statistics for all CPUs within a node */ 1458 struct numa_stats { 1459 unsigned long load; 1460 unsigned long runnable; 1461 unsigned long util; 1462 /* Total compute capacity of CPUs on a node */ 1463 unsigned long compute_capacity; 1464 unsigned int nr_running; 1465 unsigned int weight; 1466 enum numa_type node_type; 1467 int idle_cpu; 1468 }; 1469 1470 static inline bool is_core_idle(int cpu) 1471 { 1472 #ifdef CONFIG_SCHED_SMT 1473 int sibling; 1474 1475 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1476 if (cpu == sibling) 1477 continue; 1478 1479 if (!idle_cpu(sibling)) 1480 return false; 1481 } 1482 #endif 1483 1484 return true; 1485 } 1486 1487 struct task_numa_env { 1488 struct task_struct *p; 1489 1490 int src_cpu, src_nid; 1491 int dst_cpu, dst_nid; 1492 1493 struct numa_stats src_stats, dst_stats; 1494 1495 int imbalance_pct; 1496 int dist; 1497 1498 struct task_struct *best_task; 1499 long best_imp; 1500 int best_cpu; 1501 }; 1502 1503 static unsigned long cpu_load(struct rq *rq); 1504 static unsigned long cpu_runnable(struct rq *rq); 1505 static inline long adjust_numa_imbalance(int imbalance, 1506 int dst_running, int dst_weight); 1507 1508 static inline enum 1509 numa_type numa_classify(unsigned int imbalance_pct, 1510 struct numa_stats *ns) 1511 { 1512 if ((ns->nr_running > ns->weight) && 1513 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1514 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1515 return node_overloaded; 1516 1517 if ((ns->nr_running < ns->weight) || 1518 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1519 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1520 return node_has_spare; 1521 1522 return node_fully_busy; 1523 } 1524 1525 #ifdef CONFIG_SCHED_SMT 1526 /* Forward declarations of select_idle_sibling helpers */ 1527 static inline bool test_idle_cores(int cpu, bool def); 1528 static inline int numa_idle_core(int idle_core, int cpu) 1529 { 1530 if (!static_branch_likely(&sched_smt_present) || 1531 idle_core >= 0 || !test_idle_cores(cpu, false)) 1532 return idle_core; 1533 1534 /* 1535 * Prefer cores instead of packing HT siblings 1536 * and triggering future load balancing. 1537 */ 1538 if (is_core_idle(cpu)) 1539 idle_core = cpu; 1540 1541 return idle_core; 1542 } 1543 #else 1544 static inline int numa_idle_core(int idle_core, int cpu) 1545 { 1546 return idle_core; 1547 } 1548 #endif 1549 1550 /* 1551 * Gather all necessary information to make NUMA balancing placement 1552 * decisions that are compatible with standard load balancer. This 1553 * borrows code and logic from update_sg_lb_stats but sharing a 1554 * common implementation is impractical. 1555 */ 1556 static void update_numa_stats(struct task_numa_env *env, 1557 struct numa_stats *ns, int nid, 1558 bool find_idle) 1559 { 1560 int cpu, idle_core = -1; 1561 1562 memset(ns, 0, sizeof(*ns)); 1563 ns->idle_cpu = -1; 1564 1565 rcu_read_lock(); 1566 for_each_cpu(cpu, cpumask_of_node(nid)) { 1567 struct rq *rq = cpu_rq(cpu); 1568 1569 ns->load += cpu_load(rq); 1570 ns->runnable += cpu_runnable(rq); 1571 ns->util += cpu_util_cfs(cpu); 1572 ns->nr_running += rq->cfs.h_nr_running; 1573 ns->compute_capacity += capacity_of(cpu); 1574 1575 if (find_idle && !rq->nr_running && idle_cpu(cpu)) { 1576 if (READ_ONCE(rq->numa_migrate_on) || 1577 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1578 continue; 1579 1580 if (ns->idle_cpu == -1) 1581 ns->idle_cpu = cpu; 1582 1583 idle_core = numa_idle_core(idle_core, cpu); 1584 } 1585 } 1586 rcu_read_unlock(); 1587 1588 ns->weight = cpumask_weight(cpumask_of_node(nid)); 1589 1590 ns->node_type = numa_classify(env->imbalance_pct, ns); 1591 1592 if (idle_core >= 0) 1593 ns->idle_cpu = idle_core; 1594 } 1595 1596 static void task_numa_assign(struct task_numa_env *env, 1597 struct task_struct *p, long imp) 1598 { 1599 struct rq *rq = cpu_rq(env->dst_cpu); 1600 1601 /* Check if run-queue part of active NUMA balance. */ 1602 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 1603 int cpu; 1604 int start = env->dst_cpu; 1605 1606 /* Find alternative idle CPU. */ 1607 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) { 1608 if (cpu == env->best_cpu || !idle_cpu(cpu) || 1609 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 1610 continue; 1611 } 1612 1613 env->dst_cpu = cpu; 1614 rq = cpu_rq(env->dst_cpu); 1615 if (!xchg(&rq->numa_migrate_on, 1)) 1616 goto assign; 1617 } 1618 1619 /* Failed to find an alternative idle CPU */ 1620 return; 1621 } 1622 1623 assign: 1624 /* 1625 * Clear previous best_cpu/rq numa-migrate flag, since task now 1626 * found a better CPU to move/swap. 1627 */ 1628 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 1629 rq = cpu_rq(env->best_cpu); 1630 WRITE_ONCE(rq->numa_migrate_on, 0); 1631 } 1632 1633 if (env->best_task) 1634 put_task_struct(env->best_task); 1635 if (p) 1636 get_task_struct(p); 1637 1638 env->best_task = p; 1639 env->best_imp = imp; 1640 env->best_cpu = env->dst_cpu; 1641 } 1642 1643 static bool load_too_imbalanced(long src_load, long dst_load, 1644 struct task_numa_env *env) 1645 { 1646 long imb, old_imb; 1647 long orig_src_load, orig_dst_load; 1648 long src_capacity, dst_capacity; 1649 1650 /* 1651 * The load is corrected for the CPU capacity available on each node. 1652 * 1653 * src_load dst_load 1654 * ------------ vs --------- 1655 * src_capacity dst_capacity 1656 */ 1657 src_capacity = env->src_stats.compute_capacity; 1658 dst_capacity = env->dst_stats.compute_capacity; 1659 1660 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1661 1662 orig_src_load = env->src_stats.load; 1663 orig_dst_load = env->dst_stats.load; 1664 1665 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1666 1667 /* Would this change make things worse? */ 1668 return (imb > old_imb); 1669 } 1670 1671 /* 1672 * Maximum NUMA importance can be 1998 (2*999); 1673 * SMALLIMP @ 30 would be close to 1998/64. 1674 * Used to deter task migration. 1675 */ 1676 #define SMALLIMP 30 1677 1678 /* 1679 * This checks if the overall compute and NUMA accesses of the system would 1680 * be improved if the source tasks was migrated to the target dst_cpu taking 1681 * into account that it might be best if task running on the dst_cpu should 1682 * be exchanged with the source task 1683 */ 1684 static bool task_numa_compare(struct task_numa_env *env, 1685 long taskimp, long groupimp, bool maymove) 1686 { 1687 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1688 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1689 long imp = p_ng ? groupimp : taskimp; 1690 struct task_struct *cur; 1691 long src_load, dst_load; 1692 int dist = env->dist; 1693 long moveimp = imp; 1694 long load; 1695 bool stopsearch = false; 1696 1697 if (READ_ONCE(dst_rq->numa_migrate_on)) 1698 return false; 1699 1700 rcu_read_lock(); 1701 cur = rcu_dereference(dst_rq->curr); 1702 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1703 cur = NULL; 1704 1705 /* 1706 * Because we have preemption enabled we can get migrated around and 1707 * end try selecting ourselves (current == env->p) as a swap candidate. 1708 */ 1709 if (cur == env->p) { 1710 stopsearch = true; 1711 goto unlock; 1712 } 1713 1714 if (!cur) { 1715 if (maymove && moveimp >= env->best_imp) 1716 goto assign; 1717 else 1718 goto unlock; 1719 } 1720 1721 /* Skip this swap candidate if cannot move to the source cpu. */ 1722 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1723 goto unlock; 1724 1725 /* 1726 * Skip this swap candidate if it is not moving to its preferred 1727 * node and the best task is. 1728 */ 1729 if (env->best_task && 1730 env->best_task->numa_preferred_nid == env->src_nid && 1731 cur->numa_preferred_nid != env->src_nid) { 1732 goto unlock; 1733 } 1734 1735 /* 1736 * "imp" is the fault differential for the source task between the 1737 * source and destination node. Calculate the total differential for 1738 * the source task and potential destination task. The more negative 1739 * the value is, the more remote accesses that would be expected to 1740 * be incurred if the tasks were swapped. 1741 * 1742 * If dst and source tasks are in the same NUMA group, or not 1743 * in any group then look only at task weights. 1744 */ 1745 cur_ng = rcu_dereference(cur->numa_group); 1746 if (cur_ng == p_ng) { 1747 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1748 task_weight(cur, env->dst_nid, dist); 1749 /* 1750 * Add some hysteresis to prevent swapping the 1751 * tasks within a group over tiny differences. 1752 */ 1753 if (cur_ng) 1754 imp -= imp / 16; 1755 } else { 1756 /* 1757 * Compare the group weights. If a task is all by itself 1758 * (not part of a group), use the task weight instead. 1759 */ 1760 if (cur_ng && p_ng) 1761 imp += group_weight(cur, env->src_nid, dist) - 1762 group_weight(cur, env->dst_nid, dist); 1763 else 1764 imp += task_weight(cur, env->src_nid, dist) - 1765 task_weight(cur, env->dst_nid, dist); 1766 } 1767 1768 /* Discourage picking a task already on its preferred node */ 1769 if (cur->numa_preferred_nid == env->dst_nid) 1770 imp -= imp / 16; 1771 1772 /* 1773 * Encourage picking a task that moves to its preferred node. 1774 * This potentially makes imp larger than it's maximum of 1775 * 1998 (see SMALLIMP and task_weight for why) but in this 1776 * case, it does not matter. 1777 */ 1778 if (cur->numa_preferred_nid == env->src_nid) 1779 imp += imp / 8; 1780 1781 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1782 imp = moveimp; 1783 cur = NULL; 1784 goto assign; 1785 } 1786 1787 /* 1788 * Prefer swapping with a task moving to its preferred node over a 1789 * task that is not. 1790 */ 1791 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 1792 env->best_task->numa_preferred_nid != env->src_nid) { 1793 goto assign; 1794 } 1795 1796 /* 1797 * If the NUMA importance is less than SMALLIMP, 1798 * task migration might only result in ping pong 1799 * of tasks and also hurt performance due to cache 1800 * misses. 1801 */ 1802 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1803 goto unlock; 1804 1805 /* 1806 * In the overloaded case, try and keep the load balanced. 1807 */ 1808 load = task_h_load(env->p) - task_h_load(cur); 1809 if (!load) 1810 goto assign; 1811 1812 dst_load = env->dst_stats.load + load; 1813 src_load = env->src_stats.load - load; 1814 1815 if (load_too_imbalanced(src_load, dst_load, env)) 1816 goto unlock; 1817 1818 assign: 1819 /* Evaluate an idle CPU for a task numa move. */ 1820 if (!cur) { 1821 int cpu = env->dst_stats.idle_cpu; 1822 1823 /* Nothing cached so current CPU went idle since the search. */ 1824 if (cpu < 0) 1825 cpu = env->dst_cpu; 1826 1827 /* 1828 * If the CPU is no longer truly idle and the previous best CPU 1829 * is, keep using it. 1830 */ 1831 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 1832 idle_cpu(env->best_cpu)) { 1833 cpu = env->best_cpu; 1834 } 1835 1836 env->dst_cpu = cpu; 1837 } 1838 1839 task_numa_assign(env, cur, imp); 1840 1841 /* 1842 * If a move to idle is allowed because there is capacity or load 1843 * balance improves then stop the search. While a better swap 1844 * candidate may exist, a search is not free. 1845 */ 1846 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 1847 stopsearch = true; 1848 1849 /* 1850 * If a swap candidate must be identified and the current best task 1851 * moves its preferred node then stop the search. 1852 */ 1853 if (!maymove && env->best_task && 1854 env->best_task->numa_preferred_nid == env->src_nid) { 1855 stopsearch = true; 1856 } 1857 unlock: 1858 rcu_read_unlock(); 1859 1860 return stopsearch; 1861 } 1862 1863 static void task_numa_find_cpu(struct task_numa_env *env, 1864 long taskimp, long groupimp) 1865 { 1866 bool maymove = false; 1867 int cpu; 1868 1869 /* 1870 * If dst node has spare capacity, then check if there is an 1871 * imbalance that would be overruled by the load balancer. 1872 */ 1873 if (env->dst_stats.node_type == node_has_spare) { 1874 unsigned int imbalance; 1875 int src_running, dst_running; 1876 1877 /* 1878 * Would movement cause an imbalance? Note that if src has 1879 * more running tasks that the imbalance is ignored as the 1880 * move improves the imbalance from the perspective of the 1881 * CPU load balancer. 1882 * */ 1883 src_running = env->src_stats.nr_running - 1; 1884 dst_running = env->dst_stats.nr_running + 1; 1885 imbalance = max(0, dst_running - src_running); 1886 imbalance = adjust_numa_imbalance(imbalance, dst_running, 1887 env->dst_stats.weight); 1888 1889 /* Use idle CPU if there is no imbalance */ 1890 if (!imbalance) { 1891 maymove = true; 1892 if (env->dst_stats.idle_cpu >= 0) { 1893 env->dst_cpu = env->dst_stats.idle_cpu; 1894 task_numa_assign(env, NULL, 0); 1895 return; 1896 } 1897 } 1898 } else { 1899 long src_load, dst_load, load; 1900 /* 1901 * If the improvement from just moving env->p direction is better 1902 * than swapping tasks around, check if a move is possible. 1903 */ 1904 load = task_h_load(env->p); 1905 dst_load = env->dst_stats.load + load; 1906 src_load = env->src_stats.load - load; 1907 maymove = !load_too_imbalanced(src_load, dst_load, env); 1908 } 1909 1910 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1911 /* Skip this CPU if the source task cannot migrate */ 1912 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1913 continue; 1914 1915 env->dst_cpu = cpu; 1916 if (task_numa_compare(env, taskimp, groupimp, maymove)) 1917 break; 1918 } 1919 } 1920 1921 static int task_numa_migrate(struct task_struct *p) 1922 { 1923 struct task_numa_env env = { 1924 .p = p, 1925 1926 .src_cpu = task_cpu(p), 1927 .src_nid = task_node(p), 1928 1929 .imbalance_pct = 112, 1930 1931 .best_task = NULL, 1932 .best_imp = 0, 1933 .best_cpu = -1, 1934 }; 1935 unsigned long taskweight, groupweight; 1936 struct sched_domain *sd; 1937 long taskimp, groupimp; 1938 struct numa_group *ng; 1939 struct rq *best_rq; 1940 int nid, ret, dist; 1941 1942 /* 1943 * Pick the lowest SD_NUMA domain, as that would have the smallest 1944 * imbalance and would be the first to start moving tasks about. 1945 * 1946 * And we want to avoid any moving of tasks about, as that would create 1947 * random movement of tasks -- counter the numa conditions we're trying 1948 * to satisfy here. 1949 */ 1950 rcu_read_lock(); 1951 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1952 if (sd) 1953 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1954 rcu_read_unlock(); 1955 1956 /* 1957 * Cpusets can break the scheduler domain tree into smaller 1958 * balance domains, some of which do not cross NUMA boundaries. 1959 * Tasks that are "trapped" in such domains cannot be migrated 1960 * elsewhere, so there is no point in (re)trying. 1961 */ 1962 if (unlikely(!sd)) { 1963 sched_setnuma(p, task_node(p)); 1964 return -EINVAL; 1965 } 1966 1967 env.dst_nid = p->numa_preferred_nid; 1968 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1969 taskweight = task_weight(p, env.src_nid, dist); 1970 groupweight = group_weight(p, env.src_nid, dist); 1971 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 1972 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1973 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1974 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 1975 1976 /* Try to find a spot on the preferred nid. */ 1977 task_numa_find_cpu(&env, taskimp, groupimp); 1978 1979 /* 1980 * Look at other nodes in these cases: 1981 * - there is no space available on the preferred_nid 1982 * - the task is part of a numa_group that is interleaved across 1983 * multiple NUMA nodes; in order to better consolidate the group, 1984 * we need to check other locations. 1985 */ 1986 ng = deref_curr_numa_group(p); 1987 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 1988 for_each_online_node(nid) { 1989 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1990 continue; 1991 1992 dist = node_distance(env.src_nid, env.dst_nid); 1993 if (sched_numa_topology_type == NUMA_BACKPLANE && 1994 dist != env.dist) { 1995 taskweight = task_weight(p, env.src_nid, dist); 1996 groupweight = group_weight(p, env.src_nid, dist); 1997 } 1998 1999 /* Only consider nodes where both task and groups benefit */ 2000 taskimp = task_weight(p, nid, dist) - taskweight; 2001 groupimp = group_weight(p, nid, dist) - groupweight; 2002 if (taskimp < 0 && groupimp < 0) 2003 continue; 2004 2005 env.dist = dist; 2006 env.dst_nid = nid; 2007 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2008 task_numa_find_cpu(&env, taskimp, groupimp); 2009 } 2010 } 2011 2012 /* 2013 * If the task is part of a workload that spans multiple NUMA nodes, 2014 * and is migrating into one of the workload's active nodes, remember 2015 * this node as the task's preferred numa node, so the workload can 2016 * settle down. 2017 * A task that migrated to a second choice node will be better off 2018 * trying for a better one later. Do not set the preferred node here. 2019 */ 2020 if (ng) { 2021 if (env.best_cpu == -1) 2022 nid = env.src_nid; 2023 else 2024 nid = cpu_to_node(env.best_cpu); 2025 2026 if (nid != p->numa_preferred_nid) 2027 sched_setnuma(p, nid); 2028 } 2029 2030 /* No better CPU than the current one was found. */ 2031 if (env.best_cpu == -1) { 2032 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2033 return -EAGAIN; 2034 } 2035 2036 best_rq = cpu_rq(env.best_cpu); 2037 if (env.best_task == NULL) { 2038 ret = migrate_task_to(p, env.best_cpu); 2039 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2040 if (ret != 0) 2041 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2042 return ret; 2043 } 2044 2045 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2046 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2047 2048 if (ret != 0) 2049 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2050 put_task_struct(env.best_task); 2051 return ret; 2052 } 2053 2054 /* Attempt to migrate a task to a CPU on the preferred node. */ 2055 static void numa_migrate_preferred(struct task_struct *p) 2056 { 2057 unsigned long interval = HZ; 2058 2059 /* This task has no NUMA fault statistics yet */ 2060 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2061 return; 2062 2063 /* Periodically retry migrating the task to the preferred node */ 2064 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2065 p->numa_migrate_retry = jiffies + interval; 2066 2067 /* Success if task is already running on preferred CPU */ 2068 if (task_node(p) == p->numa_preferred_nid) 2069 return; 2070 2071 /* Otherwise, try migrate to a CPU on the preferred node */ 2072 task_numa_migrate(p); 2073 } 2074 2075 /* 2076 * Find out how many nodes the workload is actively running on. Do this by 2077 * tracking the nodes from which NUMA hinting faults are triggered. This can 2078 * be different from the set of nodes where the workload's memory is currently 2079 * located. 2080 */ 2081 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2082 { 2083 unsigned long faults, max_faults = 0; 2084 int nid, active_nodes = 0; 2085 2086 for_each_online_node(nid) { 2087 faults = group_faults_cpu(numa_group, nid); 2088 if (faults > max_faults) 2089 max_faults = faults; 2090 } 2091 2092 for_each_online_node(nid) { 2093 faults = group_faults_cpu(numa_group, nid); 2094 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2095 active_nodes++; 2096 } 2097 2098 numa_group->max_faults_cpu = max_faults; 2099 numa_group->active_nodes = active_nodes; 2100 } 2101 2102 /* 2103 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2104 * increments. The more local the fault statistics are, the higher the scan 2105 * period will be for the next scan window. If local/(local+remote) ratio is 2106 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2107 * the scan period will decrease. Aim for 70% local accesses. 2108 */ 2109 #define NUMA_PERIOD_SLOTS 10 2110 #define NUMA_PERIOD_THRESHOLD 7 2111 2112 /* 2113 * Increase the scan period (slow down scanning) if the majority of 2114 * our memory is already on our local node, or if the majority of 2115 * the page accesses are shared with other processes. 2116 * Otherwise, decrease the scan period. 2117 */ 2118 static void update_task_scan_period(struct task_struct *p, 2119 unsigned long shared, unsigned long private) 2120 { 2121 unsigned int period_slot; 2122 int lr_ratio, ps_ratio; 2123 int diff; 2124 2125 unsigned long remote = p->numa_faults_locality[0]; 2126 unsigned long local = p->numa_faults_locality[1]; 2127 2128 /* 2129 * If there were no record hinting faults then either the task is 2130 * completely idle or all activity is in areas that are not of interest 2131 * to automatic numa balancing. Related to that, if there were failed 2132 * migration then it implies we are migrating too quickly or the local 2133 * node is overloaded. In either case, scan slower 2134 */ 2135 if (local + shared == 0 || p->numa_faults_locality[2]) { 2136 p->numa_scan_period = min(p->numa_scan_period_max, 2137 p->numa_scan_period << 1); 2138 2139 p->mm->numa_next_scan = jiffies + 2140 msecs_to_jiffies(p->numa_scan_period); 2141 2142 return; 2143 } 2144 2145 /* 2146 * Prepare to scale scan period relative to the current period. 2147 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2148 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2149 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2150 */ 2151 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2152 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2153 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2154 2155 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2156 /* 2157 * Most memory accesses are local. There is no need to 2158 * do fast NUMA scanning, since memory is already local. 2159 */ 2160 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2161 if (!slot) 2162 slot = 1; 2163 diff = slot * period_slot; 2164 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2165 /* 2166 * Most memory accesses are shared with other tasks. 2167 * There is no point in continuing fast NUMA scanning, 2168 * since other tasks may just move the memory elsewhere. 2169 */ 2170 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2171 if (!slot) 2172 slot = 1; 2173 diff = slot * period_slot; 2174 } else { 2175 /* 2176 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2177 * yet they are not on the local NUMA node. Speed up 2178 * NUMA scanning to get the memory moved over. 2179 */ 2180 int ratio = max(lr_ratio, ps_ratio); 2181 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2182 } 2183 2184 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2185 task_scan_min(p), task_scan_max(p)); 2186 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2187 } 2188 2189 /* 2190 * Get the fraction of time the task has been running since the last 2191 * NUMA placement cycle. The scheduler keeps similar statistics, but 2192 * decays those on a 32ms period, which is orders of magnitude off 2193 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2194 * stats only if the task is so new there are no NUMA statistics yet. 2195 */ 2196 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2197 { 2198 u64 runtime, delta, now; 2199 /* Use the start of this time slice to avoid calculations. */ 2200 now = p->se.exec_start; 2201 runtime = p->se.sum_exec_runtime; 2202 2203 if (p->last_task_numa_placement) { 2204 delta = runtime - p->last_sum_exec_runtime; 2205 *period = now - p->last_task_numa_placement; 2206 2207 /* Avoid time going backwards, prevent potential divide error: */ 2208 if (unlikely((s64)*period < 0)) 2209 *period = 0; 2210 } else { 2211 delta = p->se.avg.load_sum; 2212 *period = LOAD_AVG_MAX; 2213 } 2214 2215 p->last_sum_exec_runtime = runtime; 2216 p->last_task_numa_placement = now; 2217 2218 return delta; 2219 } 2220 2221 /* 2222 * Determine the preferred nid for a task in a numa_group. This needs to 2223 * be done in a way that produces consistent results with group_weight, 2224 * otherwise workloads might not converge. 2225 */ 2226 static int preferred_group_nid(struct task_struct *p, int nid) 2227 { 2228 nodemask_t nodes; 2229 int dist; 2230 2231 /* Direct connections between all NUMA nodes. */ 2232 if (sched_numa_topology_type == NUMA_DIRECT) 2233 return nid; 2234 2235 /* 2236 * On a system with glueless mesh NUMA topology, group_weight 2237 * scores nodes according to the number of NUMA hinting faults on 2238 * both the node itself, and on nearby nodes. 2239 */ 2240 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2241 unsigned long score, max_score = 0; 2242 int node, max_node = nid; 2243 2244 dist = sched_max_numa_distance; 2245 2246 for_each_online_node(node) { 2247 score = group_weight(p, node, dist); 2248 if (score > max_score) { 2249 max_score = score; 2250 max_node = node; 2251 } 2252 } 2253 return max_node; 2254 } 2255 2256 /* 2257 * Finding the preferred nid in a system with NUMA backplane 2258 * interconnect topology is more involved. The goal is to locate 2259 * tasks from numa_groups near each other in the system, and 2260 * untangle workloads from different sides of the system. This requires 2261 * searching down the hierarchy of node groups, recursively searching 2262 * inside the highest scoring group of nodes. The nodemask tricks 2263 * keep the complexity of the search down. 2264 */ 2265 nodes = node_online_map; 2266 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2267 unsigned long max_faults = 0; 2268 nodemask_t max_group = NODE_MASK_NONE; 2269 int a, b; 2270 2271 /* Are there nodes at this distance from each other? */ 2272 if (!find_numa_distance(dist)) 2273 continue; 2274 2275 for_each_node_mask(a, nodes) { 2276 unsigned long faults = 0; 2277 nodemask_t this_group; 2278 nodes_clear(this_group); 2279 2280 /* Sum group's NUMA faults; includes a==b case. */ 2281 for_each_node_mask(b, nodes) { 2282 if (node_distance(a, b) < dist) { 2283 faults += group_faults(p, b); 2284 node_set(b, this_group); 2285 node_clear(b, nodes); 2286 } 2287 } 2288 2289 /* Remember the top group. */ 2290 if (faults > max_faults) { 2291 max_faults = faults; 2292 max_group = this_group; 2293 /* 2294 * subtle: at the smallest distance there is 2295 * just one node left in each "group", the 2296 * winner is the preferred nid. 2297 */ 2298 nid = a; 2299 } 2300 } 2301 /* Next round, evaluate the nodes within max_group. */ 2302 if (!max_faults) 2303 break; 2304 nodes = max_group; 2305 } 2306 return nid; 2307 } 2308 2309 static void task_numa_placement(struct task_struct *p) 2310 { 2311 int seq, nid, max_nid = NUMA_NO_NODE; 2312 unsigned long max_faults = 0; 2313 unsigned long fault_types[2] = { 0, 0 }; 2314 unsigned long total_faults; 2315 u64 runtime, period; 2316 spinlock_t *group_lock = NULL; 2317 struct numa_group *ng; 2318 2319 /* 2320 * The p->mm->numa_scan_seq field gets updated without 2321 * exclusive access. Use READ_ONCE() here to ensure 2322 * that the field is read in a single access: 2323 */ 2324 seq = READ_ONCE(p->mm->numa_scan_seq); 2325 if (p->numa_scan_seq == seq) 2326 return; 2327 p->numa_scan_seq = seq; 2328 p->numa_scan_period_max = task_scan_max(p); 2329 2330 total_faults = p->numa_faults_locality[0] + 2331 p->numa_faults_locality[1]; 2332 runtime = numa_get_avg_runtime(p, &period); 2333 2334 /* If the task is part of a group prevent parallel updates to group stats */ 2335 ng = deref_curr_numa_group(p); 2336 if (ng) { 2337 group_lock = &ng->lock; 2338 spin_lock_irq(group_lock); 2339 } 2340 2341 /* Find the node with the highest number of faults */ 2342 for_each_online_node(nid) { 2343 /* Keep track of the offsets in numa_faults array */ 2344 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2345 unsigned long faults = 0, group_faults = 0; 2346 int priv; 2347 2348 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2349 long diff, f_diff, f_weight; 2350 2351 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2352 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2353 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2354 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2355 2356 /* Decay existing window, copy faults since last scan */ 2357 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2358 fault_types[priv] += p->numa_faults[membuf_idx]; 2359 p->numa_faults[membuf_idx] = 0; 2360 2361 /* 2362 * Normalize the faults_from, so all tasks in a group 2363 * count according to CPU use, instead of by the raw 2364 * number of faults. Tasks with little runtime have 2365 * little over-all impact on throughput, and thus their 2366 * faults are less important. 2367 */ 2368 f_weight = div64_u64(runtime << 16, period + 1); 2369 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2370 (total_faults + 1); 2371 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2372 p->numa_faults[cpubuf_idx] = 0; 2373 2374 p->numa_faults[mem_idx] += diff; 2375 p->numa_faults[cpu_idx] += f_diff; 2376 faults += p->numa_faults[mem_idx]; 2377 p->total_numa_faults += diff; 2378 if (ng) { 2379 /* 2380 * safe because we can only change our own group 2381 * 2382 * mem_idx represents the offset for a given 2383 * nid and priv in a specific region because it 2384 * is at the beginning of the numa_faults array. 2385 */ 2386 ng->faults[mem_idx] += diff; 2387 ng->faults[cpu_idx] += f_diff; 2388 ng->total_faults += diff; 2389 group_faults += ng->faults[mem_idx]; 2390 } 2391 } 2392 2393 if (!ng) { 2394 if (faults > max_faults) { 2395 max_faults = faults; 2396 max_nid = nid; 2397 } 2398 } else if (group_faults > max_faults) { 2399 max_faults = group_faults; 2400 max_nid = nid; 2401 } 2402 } 2403 2404 if (ng) { 2405 numa_group_count_active_nodes(ng); 2406 spin_unlock_irq(group_lock); 2407 max_nid = preferred_group_nid(p, max_nid); 2408 } 2409 2410 if (max_faults) { 2411 /* Set the new preferred node */ 2412 if (max_nid != p->numa_preferred_nid) 2413 sched_setnuma(p, max_nid); 2414 } 2415 2416 update_task_scan_period(p, fault_types[0], fault_types[1]); 2417 } 2418 2419 static inline int get_numa_group(struct numa_group *grp) 2420 { 2421 return refcount_inc_not_zero(&grp->refcount); 2422 } 2423 2424 static inline void put_numa_group(struct numa_group *grp) 2425 { 2426 if (refcount_dec_and_test(&grp->refcount)) 2427 kfree_rcu(grp, rcu); 2428 } 2429 2430 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2431 int *priv) 2432 { 2433 struct numa_group *grp, *my_grp; 2434 struct task_struct *tsk; 2435 bool join = false; 2436 int cpu = cpupid_to_cpu(cpupid); 2437 int i; 2438 2439 if (unlikely(!deref_curr_numa_group(p))) { 2440 unsigned int size = sizeof(struct numa_group) + 2441 NR_NUMA_HINT_FAULT_STATS * 2442 nr_node_ids * sizeof(unsigned long); 2443 2444 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2445 if (!grp) 2446 return; 2447 2448 refcount_set(&grp->refcount, 1); 2449 grp->active_nodes = 1; 2450 grp->max_faults_cpu = 0; 2451 spin_lock_init(&grp->lock); 2452 grp->gid = p->pid; 2453 2454 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2455 grp->faults[i] = p->numa_faults[i]; 2456 2457 grp->total_faults = p->total_numa_faults; 2458 2459 grp->nr_tasks++; 2460 rcu_assign_pointer(p->numa_group, grp); 2461 } 2462 2463 rcu_read_lock(); 2464 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2465 2466 if (!cpupid_match_pid(tsk, cpupid)) 2467 goto no_join; 2468 2469 grp = rcu_dereference(tsk->numa_group); 2470 if (!grp) 2471 goto no_join; 2472 2473 my_grp = deref_curr_numa_group(p); 2474 if (grp == my_grp) 2475 goto no_join; 2476 2477 /* 2478 * Only join the other group if its bigger; if we're the bigger group, 2479 * the other task will join us. 2480 */ 2481 if (my_grp->nr_tasks > grp->nr_tasks) 2482 goto no_join; 2483 2484 /* 2485 * Tie-break on the grp address. 2486 */ 2487 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2488 goto no_join; 2489 2490 /* Always join threads in the same process. */ 2491 if (tsk->mm == current->mm) 2492 join = true; 2493 2494 /* Simple filter to avoid false positives due to PID collisions */ 2495 if (flags & TNF_SHARED) 2496 join = true; 2497 2498 /* Update priv based on whether false sharing was detected */ 2499 *priv = !join; 2500 2501 if (join && !get_numa_group(grp)) 2502 goto no_join; 2503 2504 rcu_read_unlock(); 2505 2506 if (!join) 2507 return; 2508 2509 BUG_ON(irqs_disabled()); 2510 double_lock_irq(&my_grp->lock, &grp->lock); 2511 2512 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2513 my_grp->faults[i] -= p->numa_faults[i]; 2514 grp->faults[i] += p->numa_faults[i]; 2515 } 2516 my_grp->total_faults -= p->total_numa_faults; 2517 grp->total_faults += p->total_numa_faults; 2518 2519 my_grp->nr_tasks--; 2520 grp->nr_tasks++; 2521 2522 spin_unlock(&my_grp->lock); 2523 spin_unlock_irq(&grp->lock); 2524 2525 rcu_assign_pointer(p->numa_group, grp); 2526 2527 put_numa_group(my_grp); 2528 return; 2529 2530 no_join: 2531 rcu_read_unlock(); 2532 return; 2533 } 2534 2535 /* 2536 * Get rid of NUMA statistics associated with a task (either current or dead). 2537 * If @final is set, the task is dead and has reached refcount zero, so we can 2538 * safely free all relevant data structures. Otherwise, there might be 2539 * concurrent reads from places like load balancing and procfs, and we should 2540 * reset the data back to default state without freeing ->numa_faults. 2541 */ 2542 void task_numa_free(struct task_struct *p, bool final) 2543 { 2544 /* safe: p either is current or is being freed by current */ 2545 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2546 unsigned long *numa_faults = p->numa_faults; 2547 unsigned long flags; 2548 int i; 2549 2550 if (!numa_faults) 2551 return; 2552 2553 if (grp) { 2554 spin_lock_irqsave(&grp->lock, flags); 2555 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2556 grp->faults[i] -= p->numa_faults[i]; 2557 grp->total_faults -= p->total_numa_faults; 2558 2559 grp->nr_tasks--; 2560 spin_unlock_irqrestore(&grp->lock, flags); 2561 RCU_INIT_POINTER(p->numa_group, NULL); 2562 put_numa_group(grp); 2563 } 2564 2565 if (final) { 2566 p->numa_faults = NULL; 2567 kfree(numa_faults); 2568 } else { 2569 p->total_numa_faults = 0; 2570 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2571 numa_faults[i] = 0; 2572 } 2573 } 2574 2575 /* 2576 * Got a PROT_NONE fault for a page on @node. 2577 */ 2578 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2579 { 2580 struct task_struct *p = current; 2581 bool migrated = flags & TNF_MIGRATED; 2582 int cpu_node = task_node(current); 2583 int local = !!(flags & TNF_FAULT_LOCAL); 2584 struct numa_group *ng; 2585 int priv; 2586 2587 if (!static_branch_likely(&sched_numa_balancing)) 2588 return; 2589 2590 /* for example, ksmd faulting in a user's mm */ 2591 if (!p->mm) 2592 return; 2593 2594 /* Allocate buffer to track faults on a per-node basis */ 2595 if (unlikely(!p->numa_faults)) { 2596 int size = sizeof(*p->numa_faults) * 2597 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2598 2599 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2600 if (!p->numa_faults) 2601 return; 2602 2603 p->total_numa_faults = 0; 2604 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2605 } 2606 2607 /* 2608 * First accesses are treated as private, otherwise consider accesses 2609 * to be private if the accessing pid has not changed 2610 */ 2611 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2612 priv = 1; 2613 } else { 2614 priv = cpupid_match_pid(p, last_cpupid); 2615 if (!priv && !(flags & TNF_NO_GROUP)) 2616 task_numa_group(p, last_cpupid, flags, &priv); 2617 } 2618 2619 /* 2620 * If a workload spans multiple NUMA nodes, a shared fault that 2621 * occurs wholly within the set of nodes that the workload is 2622 * actively using should be counted as local. This allows the 2623 * scan rate to slow down when a workload has settled down. 2624 */ 2625 ng = deref_curr_numa_group(p); 2626 if (!priv && !local && ng && ng->active_nodes > 1 && 2627 numa_is_active_node(cpu_node, ng) && 2628 numa_is_active_node(mem_node, ng)) 2629 local = 1; 2630 2631 /* 2632 * Retry to migrate task to preferred node periodically, in case it 2633 * previously failed, or the scheduler moved us. 2634 */ 2635 if (time_after(jiffies, p->numa_migrate_retry)) { 2636 task_numa_placement(p); 2637 numa_migrate_preferred(p); 2638 } 2639 2640 if (migrated) 2641 p->numa_pages_migrated += pages; 2642 if (flags & TNF_MIGRATE_FAIL) 2643 p->numa_faults_locality[2] += pages; 2644 2645 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2646 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2647 p->numa_faults_locality[local] += pages; 2648 } 2649 2650 static void reset_ptenuma_scan(struct task_struct *p) 2651 { 2652 /* 2653 * We only did a read acquisition of the mmap sem, so 2654 * p->mm->numa_scan_seq is written to without exclusive access 2655 * and the update is not guaranteed to be atomic. That's not 2656 * much of an issue though, since this is just used for 2657 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2658 * expensive, to avoid any form of compiler optimizations: 2659 */ 2660 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2661 p->mm->numa_scan_offset = 0; 2662 } 2663 2664 /* 2665 * The expensive part of numa migration is done from task_work context. 2666 * Triggered from task_tick_numa(). 2667 */ 2668 static void task_numa_work(struct callback_head *work) 2669 { 2670 unsigned long migrate, next_scan, now = jiffies; 2671 struct task_struct *p = current; 2672 struct mm_struct *mm = p->mm; 2673 u64 runtime = p->se.sum_exec_runtime; 2674 struct vm_area_struct *vma; 2675 unsigned long start, end; 2676 unsigned long nr_pte_updates = 0; 2677 long pages, virtpages; 2678 2679 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2680 2681 work->next = work; 2682 /* 2683 * Who cares about NUMA placement when they're dying. 2684 * 2685 * NOTE: make sure not to dereference p->mm before this check, 2686 * exit_task_work() happens _after_ exit_mm() so we could be called 2687 * without p->mm even though we still had it when we enqueued this 2688 * work. 2689 */ 2690 if (p->flags & PF_EXITING) 2691 return; 2692 2693 if (!mm->numa_next_scan) { 2694 mm->numa_next_scan = now + 2695 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2696 } 2697 2698 /* 2699 * Enforce maximal scan/migration frequency.. 2700 */ 2701 migrate = mm->numa_next_scan; 2702 if (time_before(now, migrate)) 2703 return; 2704 2705 if (p->numa_scan_period == 0) { 2706 p->numa_scan_period_max = task_scan_max(p); 2707 p->numa_scan_period = task_scan_start(p); 2708 } 2709 2710 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2711 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2712 return; 2713 2714 /* 2715 * Delay this task enough that another task of this mm will likely win 2716 * the next time around. 2717 */ 2718 p->node_stamp += 2 * TICK_NSEC; 2719 2720 start = mm->numa_scan_offset; 2721 pages = sysctl_numa_balancing_scan_size; 2722 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2723 virtpages = pages * 8; /* Scan up to this much virtual space */ 2724 if (!pages) 2725 return; 2726 2727 2728 if (!mmap_read_trylock(mm)) 2729 return; 2730 vma = find_vma(mm, start); 2731 if (!vma) { 2732 reset_ptenuma_scan(p); 2733 start = 0; 2734 vma = mm->mmap; 2735 } 2736 for (; vma; vma = vma->vm_next) { 2737 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2738 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2739 continue; 2740 } 2741 2742 /* 2743 * Shared library pages mapped by multiple processes are not 2744 * migrated as it is expected they are cache replicated. Avoid 2745 * hinting faults in read-only file-backed mappings or the vdso 2746 * as migrating the pages will be of marginal benefit. 2747 */ 2748 if (!vma->vm_mm || 2749 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2750 continue; 2751 2752 /* 2753 * Skip inaccessible VMAs to avoid any confusion between 2754 * PROT_NONE and NUMA hinting ptes 2755 */ 2756 if (!vma_is_accessible(vma)) 2757 continue; 2758 2759 do { 2760 start = max(start, vma->vm_start); 2761 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2762 end = min(end, vma->vm_end); 2763 nr_pte_updates = change_prot_numa(vma, start, end); 2764 2765 /* 2766 * Try to scan sysctl_numa_balancing_size worth of 2767 * hpages that have at least one present PTE that 2768 * is not already pte-numa. If the VMA contains 2769 * areas that are unused or already full of prot_numa 2770 * PTEs, scan up to virtpages, to skip through those 2771 * areas faster. 2772 */ 2773 if (nr_pte_updates) 2774 pages -= (end - start) >> PAGE_SHIFT; 2775 virtpages -= (end - start) >> PAGE_SHIFT; 2776 2777 start = end; 2778 if (pages <= 0 || virtpages <= 0) 2779 goto out; 2780 2781 cond_resched(); 2782 } while (end != vma->vm_end); 2783 } 2784 2785 out: 2786 /* 2787 * It is possible to reach the end of the VMA list but the last few 2788 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2789 * would find the !migratable VMA on the next scan but not reset the 2790 * scanner to the start so check it now. 2791 */ 2792 if (vma) 2793 mm->numa_scan_offset = start; 2794 else 2795 reset_ptenuma_scan(p); 2796 mmap_read_unlock(mm); 2797 2798 /* 2799 * Make sure tasks use at least 32x as much time to run other code 2800 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2801 * Usually update_task_scan_period slows down scanning enough; on an 2802 * overloaded system we need to limit overhead on a per task basis. 2803 */ 2804 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2805 u64 diff = p->se.sum_exec_runtime - runtime; 2806 p->node_stamp += 32 * diff; 2807 } 2808 } 2809 2810 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 2811 { 2812 int mm_users = 0; 2813 struct mm_struct *mm = p->mm; 2814 2815 if (mm) { 2816 mm_users = atomic_read(&mm->mm_users); 2817 if (mm_users == 1) { 2818 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2819 mm->numa_scan_seq = 0; 2820 } 2821 } 2822 p->node_stamp = 0; 2823 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 2824 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2825 /* Protect against double add, see task_tick_numa and task_numa_work */ 2826 p->numa_work.next = &p->numa_work; 2827 p->numa_faults = NULL; 2828 RCU_INIT_POINTER(p->numa_group, NULL); 2829 p->last_task_numa_placement = 0; 2830 p->last_sum_exec_runtime = 0; 2831 2832 init_task_work(&p->numa_work, task_numa_work); 2833 2834 /* New address space, reset the preferred nid */ 2835 if (!(clone_flags & CLONE_VM)) { 2836 p->numa_preferred_nid = NUMA_NO_NODE; 2837 return; 2838 } 2839 2840 /* 2841 * New thread, keep existing numa_preferred_nid which should be copied 2842 * already by arch_dup_task_struct but stagger when scans start. 2843 */ 2844 if (mm) { 2845 unsigned int delay; 2846 2847 delay = min_t(unsigned int, task_scan_max(current), 2848 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 2849 delay += 2 * TICK_NSEC; 2850 p->node_stamp = delay; 2851 } 2852 } 2853 2854 /* 2855 * Drive the periodic memory faults.. 2856 */ 2857 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2858 { 2859 struct callback_head *work = &curr->numa_work; 2860 u64 period, now; 2861 2862 /* 2863 * We don't care about NUMA placement if we don't have memory. 2864 */ 2865 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 2866 return; 2867 2868 /* 2869 * Using runtime rather than walltime has the dual advantage that 2870 * we (mostly) drive the selection from busy threads and that the 2871 * task needs to have done some actual work before we bother with 2872 * NUMA placement. 2873 */ 2874 now = curr->se.sum_exec_runtime; 2875 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2876 2877 if (now > curr->node_stamp + period) { 2878 if (!curr->node_stamp) 2879 curr->numa_scan_period = task_scan_start(curr); 2880 curr->node_stamp += period; 2881 2882 if (!time_before(jiffies, curr->mm->numa_next_scan)) 2883 task_work_add(curr, work, TWA_RESUME); 2884 } 2885 } 2886 2887 static void update_scan_period(struct task_struct *p, int new_cpu) 2888 { 2889 int src_nid = cpu_to_node(task_cpu(p)); 2890 int dst_nid = cpu_to_node(new_cpu); 2891 2892 if (!static_branch_likely(&sched_numa_balancing)) 2893 return; 2894 2895 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2896 return; 2897 2898 if (src_nid == dst_nid) 2899 return; 2900 2901 /* 2902 * Allow resets if faults have been trapped before one scan 2903 * has completed. This is most likely due to a new task that 2904 * is pulled cross-node due to wakeups or load balancing. 2905 */ 2906 if (p->numa_scan_seq) { 2907 /* 2908 * Avoid scan adjustments if moving to the preferred 2909 * node or if the task was not previously running on 2910 * the preferred node. 2911 */ 2912 if (dst_nid == p->numa_preferred_nid || 2913 (p->numa_preferred_nid != NUMA_NO_NODE && 2914 src_nid != p->numa_preferred_nid)) 2915 return; 2916 } 2917 2918 p->numa_scan_period = task_scan_start(p); 2919 } 2920 2921 #else 2922 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2923 { 2924 } 2925 2926 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2927 { 2928 } 2929 2930 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2931 { 2932 } 2933 2934 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2935 { 2936 } 2937 2938 #endif /* CONFIG_NUMA_BALANCING */ 2939 2940 static void 2941 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2942 { 2943 update_load_add(&cfs_rq->load, se->load.weight); 2944 #ifdef CONFIG_SMP 2945 if (entity_is_task(se)) { 2946 struct rq *rq = rq_of(cfs_rq); 2947 2948 account_numa_enqueue(rq, task_of(se)); 2949 list_add(&se->group_node, &rq->cfs_tasks); 2950 } 2951 #endif 2952 cfs_rq->nr_running++; 2953 if (se_is_idle(se)) 2954 cfs_rq->idle_nr_running++; 2955 } 2956 2957 static void 2958 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2959 { 2960 update_load_sub(&cfs_rq->load, se->load.weight); 2961 #ifdef CONFIG_SMP 2962 if (entity_is_task(se)) { 2963 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2964 list_del_init(&se->group_node); 2965 } 2966 #endif 2967 cfs_rq->nr_running--; 2968 if (se_is_idle(se)) 2969 cfs_rq->idle_nr_running--; 2970 } 2971 2972 /* 2973 * Signed add and clamp on underflow. 2974 * 2975 * Explicitly do a load-store to ensure the intermediate value never hits 2976 * memory. This allows lockless observations without ever seeing the negative 2977 * values. 2978 */ 2979 #define add_positive(_ptr, _val) do { \ 2980 typeof(_ptr) ptr = (_ptr); \ 2981 typeof(_val) val = (_val); \ 2982 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2983 \ 2984 res = var + val; \ 2985 \ 2986 if (val < 0 && res > var) \ 2987 res = 0; \ 2988 \ 2989 WRITE_ONCE(*ptr, res); \ 2990 } while (0) 2991 2992 /* 2993 * Unsigned subtract and clamp on underflow. 2994 * 2995 * Explicitly do a load-store to ensure the intermediate value never hits 2996 * memory. This allows lockless observations without ever seeing the negative 2997 * values. 2998 */ 2999 #define sub_positive(_ptr, _val) do { \ 3000 typeof(_ptr) ptr = (_ptr); \ 3001 typeof(*ptr) val = (_val); \ 3002 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3003 res = var - val; \ 3004 if (res > var) \ 3005 res = 0; \ 3006 WRITE_ONCE(*ptr, res); \ 3007 } while (0) 3008 3009 /* 3010 * Remove and clamp on negative, from a local variable. 3011 * 3012 * A variant of sub_positive(), which does not use explicit load-store 3013 * and is thus optimized for local variable updates. 3014 */ 3015 #define lsub_positive(_ptr, _val) do { \ 3016 typeof(_ptr) ptr = (_ptr); \ 3017 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3018 } while (0) 3019 3020 #ifdef CONFIG_SMP 3021 static inline void 3022 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3023 { 3024 cfs_rq->avg.load_avg += se->avg.load_avg; 3025 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3026 } 3027 3028 static inline void 3029 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3030 { 3031 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3032 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3033 /* See update_cfs_rq_load_avg() */ 3034 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3035 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3036 } 3037 #else 3038 static inline void 3039 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3040 static inline void 3041 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3042 #endif 3043 3044 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3045 unsigned long weight) 3046 { 3047 if (se->on_rq) { 3048 /* commit outstanding execution time */ 3049 if (cfs_rq->curr == se) 3050 update_curr(cfs_rq); 3051 update_load_sub(&cfs_rq->load, se->load.weight); 3052 } 3053 dequeue_load_avg(cfs_rq, se); 3054 3055 update_load_set(&se->load, weight); 3056 3057 #ifdef CONFIG_SMP 3058 do { 3059 u32 divider = get_pelt_divider(&se->avg); 3060 3061 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3062 } while (0); 3063 #endif 3064 3065 enqueue_load_avg(cfs_rq, se); 3066 if (se->on_rq) 3067 update_load_add(&cfs_rq->load, se->load.weight); 3068 3069 } 3070 3071 void reweight_task(struct task_struct *p, int prio) 3072 { 3073 struct sched_entity *se = &p->se; 3074 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3075 struct load_weight *load = &se->load; 3076 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3077 3078 reweight_entity(cfs_rq, se, weight); 3079 load->inv_weight = sched_prio_to_wmult[prio]; 3080 } 3081 3082 #ifdef CONFIG_FAIR_GROUP_SCHED 3083 #ifdef CONFIG_SMP 3084 /* 3085 * All this does is approximate the hierarchical proportion which includes that 3086 * global sum we all love to hate. 3087 * 3088 * That is, the weight of a group entity, is the proportional share of the 3089 * group weight based on the group runqueue weights. That is: 3090 * 3091 * tg->weight * grq->load.weight 3092 * ge->load.weight = ----------------------------- (1) 3093 * \Sum grq->load.weight 3094 * 3095 * Now, because computing that sum is prohibitively expensive to compute (been 3096 * there, done that) we approximate it with this average stuff. The average 3097 * moves slower and therefore the approximation is cheaper and more stable. 3098 * 3099 * So instead of the above, we substitute: 3100 * 3101 * grq->load.weight -> grq->avg.load_avg (2) 3102 * 3103 * which yields the following: 3104 * 3105 * tg->weight * grq->avg.load_avg 3106 * ge->load.weight = ------------------------------ (3) 3107 * tg->load_avg 3108 * 3109 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3110 * 3111 * That is shares_avg, and it is right (given the approximation (2)). 3112 * 3113 * The problem with it is that because the average is slow -- it was designed 3114 * to be exactly that of course -- this leads to transients in boundary 3115 * conditions. In specific, the case where the group was idle and we start the 3116 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3117 * yielding bad latency etc.. 3118 * 3119 * Now, in that special case (1) reduces to: 3120 * 3121 * tg->weight * grq->load.weight 3122 * ge->load.weight = ----------------------------- = tg->weight (4) 3123 * grp->load.weight 3124 * 3125 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3126 * 3127 * So what we do is modify our approximation (3) to approach (4) in the (near) 3128 * UP case, like: 3129 * 3130 * ge->load.weight = 3131 * 3132 * tg->weight * grq->load.weight 3133 * --------------------------------------------------- (5) 3134 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3135 * 3136 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3137 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3138 * 3139 * 3140 * tg->weight * grq->load.weight 3141 * ge->load.weight = ----------------------------- (6) 3142 * tg_load_avg' 3143 * 3144 * Where: 3145 * 3146 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3147 * max(grq->load.weight, grq->avg.load_avg) 3148 * 3149 * And that is shares_weight and is icky. In the (near) UP case it approaches 3150 * (4) while in the normal case it approaches (3). It consistently 3151 * overestimates the ge->load.weight and therefore: 3152 * 3153 * \Sum ge->load.weight >= tg->weight 3154 * 3155 * hence icky! 3156 */ 3157 static long calc_group_shares(struct cfs_rq *cfs_rq) 3158 { 3159 long tg_weight, tg_shares, load, shares; 3160 struct task_group *tg = cfs_rq->tg; 3161 3162 tg_shares = READ_ONCE(tg->shares); 3163 3164 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3165 3166 tg_weight = atomic_long_read(&tg->load_avg); 3167 3168 /* Ensure tg_weight >= load */ 3169 tg_weight -= cfs_rq->tg_load_avg_contrib; 3170 tg_weight += load; 3171 3172 shares = (tg_shares * load); 3173 if (tg_weight) 3174 shares /= tg_weight; 3175 3176 /* 3177 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3178 * of a group with small tg->shares value. It is a floor value which is 3179 * assigned as a minimum load.weight to the sched_entity representing 3180 * the group on a CPU. 3181 * 3182 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3183 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3184 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3185 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3186 * instead of 0. 3187 */ 3188 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3189 } 3190 #endif /* CONFIG_SMP */ 3191 3192 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3193 3194 /* 3195 * Recomputes the group entity based on the current state of its group 3196 * runqueue. 3197 */ 3198 static void update_cfs_group(struct sched_entity *se) 3199 { 3200 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3201 long shares; 3202 3203 if (!gcfs_rq) 3204 return; 3205 3206 if (throttled_hierarchy(gcfs_rq)) 3207 return; 3208 3209 #ifndef CONFIG_SMP 3210 shares = READ_ONCE(gcfs_rq->tg->shares); 3211 3212 if (likely(se->load.weight == shares)) 3213 return; 3214 #else 3215 shares = calc_group_shares(gcfs_rq); 3216 #endif 3217 3218 reweight_entity(cfs_rq_of(se), se, shares); 3219 } 3220 3221 #else /* CONFIG_FAIR_GROUP_SCHED */ 3222 static inline void update_cfs_group(struct sched_entity *se) 3223 { 3224 } 3225 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3226 3227 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3228 { 3229 struct rq *rq = rq_of(cfs_rq); 3230 3231 if (&rq->cfs == cfs_rq) { 3232 /* 3233 * There are a few boundary cases this might miss but it should 3234 * get called often enough that that should (hopefully) not be 3235 * a real problem. 3236 * 3237 * It will not get called when we go idle, because the idle 3238 * thread is a different class (!fair), nor will the utilization 3239 * number include things like RT tasks. 3240 * 3241 * As is, the util number is not freq-invariant (we'd have to 3242 * implement arch_scale_freq_capacity() for that). 3243 * 3244 * See cpu_util_cfs(). 3245 */ 3246 cpufreq_update_util(rq, flags); 3247 } 3248 } 3249 3250 #ifdef CONFIG_SMP 3251 #ifdef CONFIG_FAIR_GROUP_SCHED 3252 /* 3253 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 3254 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 3255 * bottom-up, we only have to test whether the cfs_rq before us on the list 3256 * is our child. 3257 * If cfs_rq is not on the list, test whether a child needs its to be added to 3258 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 3259 */ 3260 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 3261 { 3262 struct cfs_rq *prev_cfs_rq; 3263 struct list_head *prev; 3264 3265 if (cfs_rq->on_list) { 3266 prev = cfs_rq->leaf_cfs_rq_list.prev; 3267 } else { 3268 struct rq *rq = rq_of(cfs_rq); 3269 3270 prev = rq->tmp_alone_branch; 3271 } 3272 3273 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 3274 3275 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 3276 } 3277 3278 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 3279 { 3280 if (cfs_rq->load.weight) 3281 return false; 3282 3283 if (cfs_rq->avg.load_sum) 3284 return false; 3285 3286 if (cfs_rq->avg.util_sum) 3287 return false; 3288 3289 if (cfs_rq->avg.runnable_sum) 3290 return false; 3291 3292 if (child_cfs_rq_on_list(cfs_rq)) 3293 return false; 3294 3295 /* 3296 * _avg must be null when _sum are null because _avg = _sum / divider 3297 * Make sure that rounding and/or propagation of PELT values never 3298 * break this. 3299 */ 3300 SCHED_WARN_ON(cfs_rq->avg.load_avg || 3301 cfs_rq->avg.util_avg || 3302 cfs_rq->avg.runnable_avg); 3303 3304 return true; 3305 } 3306 3307 /** 3308 * update_tg_load_avg - update the tg's load avg 3309 * @cfs_rq: the cfs_rq whose avg changed 3310 * 3311 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3312 * However, because tg->load_avg is a global value there are performance 3313 * considerations. 3314 * 3315 * In order to avoid having to look at the other cfs_rq's, we use a 3316 * differential update where we store the last value we propagated. This in 3317 * turn allows skipping updates if the differential is 'small'. 3318 * 3319 * Updating tg's load_avg is necessary before update_cfs_share(). 3320 */ 3321 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 3322 { 3323 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3324 3325 /* 3326 * No need to update load_avg for root_task_group as it is not used. 3327 */ 3328 if (cfs_rq->tg == &root_task_group) 3329 return; 3330 3331 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3332 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3333 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3334 } 3335 } 3336 3337 /* 3338 * Called within set_task_rq() right before setting a task's CPU. The 3339 * caller only guarantees p->pi_lock is held; no other assumptions, 3340 * including the state of rq->lock, should be made. 3341 */ 3342 void set_task_rq_fair(struct sched_entity *se, 3343 struct cfs_rq *prev, struct cfs_rq *next) 3344 { 3345 u64 p_last_update_time; 3346 u64 n_last_update_time; 3347 3348 if (!sched_feat(ATTACH_AGE_LOAD)) 3349 return; 3350 3351 /* 3352 * We are supposed to update the task to "current" time, then its up to 3353 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3354 * getting what current time is, so simply throw away the out-of-date 3355 * time. This will result in the wakee task is less decayed, but giving 3356 * the wakee more load sounds not bad. 3357 */ 3358 if (!(se->avg.last_update_time && prev)) 3359 return; 3360 3361 #ifndef CONFIG_64BIT 3362 { 3363 u64 p_last_update_time_copy; 3364 u64 n_last_update_time_copy; 3365 3366 do { 3367 p_last_update_time_copy = prev->load_last_update_time_copy; 3368 n_last_update_time_copy = next->load_last_update_time_copy; 3369 3370 smp_rmb(); 3371 3372 p_last_update_time = prev->avg.last_update_time; 3373 n_last_update_time = next->avg.last_update_time; 3374 3375 } while (p_last_update_time != p_last_update_time_copy || 3376 n_last_update_time != n_last_update_time_copy); 3377 } 3378 #else 3379 p_last_update_time = prev->avg.last_update_time; 3380 n_last_update_time = next->avg.last_update_time; 3381 #endif 3382 __update_load_avg_blocked_se(p_last_update_time, se); 3383 se->avg.last_update_time = n_last_update_time; 3384 } 3385 3386 /* 3387 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3388 * propagate its contribution. The key to this propagation is the invariant 3389 * that for each group: 3390 * 3391 * ge->avg == grq->avg (1) 3392 * 3393 * _IFF_ we look at the pure running and runnable sums. Because they 3394 * represent the very same entity, just at different points in the hierarchy. 3395 * 3396 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3397 * and simply copies the running/runnable sum over (but still wrong, because 3398 * the group entity and group rq do not have their PELT windows aligned). 3399 * 3400 * However, update_tg_cfs_load() is more complex. So we have: 3401 * 3402 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3403 * 3404 * And since, like util, the runnable part should be directly transferable, 3405 * the following would _appear_ to be the straight forward approach: 3406 * 3407 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3408 * 3409 * And per (1) we have: 3410 * 3411 * ge->avg.runnable_avg == grq->avg.runnable_avg 3412 * 3413 * Which gives: 3414 * 3415 * ge->load.weight * grq->avg.load_avg 3416 * ge->avg.load_avg = ----------------------------------- (4) 3417 * grq->load.weight 3418 * 3419 * Except that is wrong! 3420 * 3421 * Because while for entities historical weight is not important and we 3422 * really only care about our future and therefore can consider a pure 3423 * runnable sum, runqueues can NOT do this. 3424 * 3425 * We specifically want runqueues to have a load_avg that includes 3426 * historical weights. Those represent the blocked load, the load we expect 3427 * to (shortly) return to us. This only works by keeping the weights as 3428 * integral part of the sum. We therefore cannot decompose as per (3). 3429 * 3430 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3431 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3432 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3433 * runnable section of these tasks overlap (or not). If they were to perfectly 3434 * align the rq as a whole would be runnable 2/3 of the time. If however we 3435 * always have at least 1 runnable task, the rq as a whole is always runnable. 3436 * 3437 * So we'll have to approximate.. :/ 3438 * 3439 * Given the constraint: 3440 * 3441 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3442 * 3443 * We can construct a rule that adds runnable to a rq by assuming minimal 3444 * overlap. 3445 * 3446 * On removal, we'll assume each task is equally runnable; which yields: 3447 * 3448 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3449 * 3450 * XXX: only do this for the part of runnable > running ? 3451 * 3452 */ 3453 static inline void 3454 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3455 { 3456 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 3457 u32 new_sum, divider; 3458 3459 /* Nothing to update */ 3460 if (!delta_avg) 3461 return; 3462 3463 /* 3464 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3465 * See ___update_load_avg() for details. 3466 */ 3467 divider = get_pelt_divider(&cfs_rq->avg); 3468 3469 3470 /* Set new sched_entity's utilization */ 3471 se->avg.util_avg = gcfs_rq->avg.util_avg; 3472 new_sum = se->avg.util_avg * divider; 3473 delta_sum = (long)new_sum - (long)se->avg.util_sum; 3474 se->avg.util_sum = new_sum; 3475 3476 /* Update parent cfs_rq utilization */ 3477 add_positive(&cfs_rq->avg.util_avg, delta_avg); 3478 add_positive(&cfs_rq->avg.util_sum, delta_sum); 3479 3480 /* See update_cfs_rq_load_avg() */ 3481 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 3482 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 3483 } 3484 3485 static inline void 3486 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3487 { 3488 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 3489 u32 new_sum, divider; 3490 3491 /* Nothing to update */ 3492 if (!delta_avg) 3493 return; 3494 3495 /* 3496 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3497 * See ___update_load_avg() for details. 3498 */ 3499 divider = get_pelt_divider(&cfs_rq->avg); 3500 3501 /* Set new sched_entity's runnable */ 3502 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 3503 new_sum = se->avg.runnable_avg * divider; 3504 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 3505 se->avg.runnable_sum = new_sum; 3506 3507 /* Update parent cfs_rq runnable */ 3508 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 3509 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 3510 /* See update_cfs_rq_load_avg() */ 3511 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 3512 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 3513 } 3514 3515 static inline void 3516 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3517 { 3518 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3519 unsigned long load_avg; 3520 u64 load_sum = 0; 3521 s64 delta_sum; 3522 u32 divider; 3523 3524 if (!runnable_sum) 3525 return; 3526 3527 gcfs_rq->prop_runnable_sum = 0; 3528 3529 /* 3530 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3531 * See ___update_load_avg() for details. 3532 */ 3533 divider = get_pelt_divider(&cfs_rq->avg); 3534 3535 if (runnable_sum >= 0) { 3536 /* 3537 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3538 * the CPU is saturated running == runnable. 3539 */ 3540 runnable_sum += se->avg.load_sum; 3541 runnable_sum = min_t(long, runnable_sum, divider); 3542 } else { 3543 /* 3544 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3545 * assuming all tasks are equally runnable. 3546 */ 3547 if (scale_load_down(gcfs_rq->load.weight)) { 3548 load_sum = div_u64(gcfs_rq->avg.load_sum, 3549 scale_load_down(gcfs_rq->load.weight)); 3550 } 3551 3552 /* But make sure to not inflate se's runnable */ 3553 runnable_sum = min(se->avg.load_sum, load_sum); 3554 } 3555 3556 /* 3557 * runnable_sum can't be lower than running_sum 3558 * Rescale running sum to be in the same range as runnable sum 3559 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3560 * runnable_sum is in [0 : LOAD_AVG_MAX] 3561 */ 3562 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3563 runnable_sum = max(runnable_sum, running_sum); 3564 3565 load_sum = se_weight(se) * runnable_sum; 3566 load_avg = div_u64(load_sum, divider); 3567 3568 delta_avg = load_avg - se->avg.load_avg; 3569 if (!delta_avg) 3570 return; 3571 3572 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3573 3574 se->avg.load_sum = runnable_sum; 3575 se->avg.load_avg = load_avg; 3576 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3577 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3578 /* See update_cfs_rq_load_avg() */ 3579 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3580 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3581 } 3582 3583 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3584 { 3585 cfs_rq->propagate = 1; 3586 cfs_rq->prop_runnable_sum += runnable_sum; 3587 } 3588 3589 /* Update task and its cfs_rq load average */ 3590 static inline int propagate_entity_load_avg(struct sched_entity *se) 3591 { 3592 struct cfs_rq *cfs_rq, *gcfs_rq; 3593 3594 if (entity_is_task(se)) 3595 return 0; 3596 3597 gcfs_rq = group_cfs_rq(se); 3598 if (!gcfs_rq->propagate) 3599 return 0; 3600 3601 gcfs_rq->propagate = 0; 3602 3603 cfs_rq = cfs_rq_of(se); 3604 3605 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3606 3607 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3608 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3609 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 3610 3611 trace_pelt_cfs_tp(cfs_rq); 3612 trace_pelt_se_tp(se); 3613 3614 return 1; 3615 } 3616 3617 /* 3618 * Check if we need to update the load and the utilization of a blocked 3619 * group_entity: 3620 */ 3621 static inline bool skip_blocked_update(struct sched_entity *se) 3622 { 3623 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3624 3625 /* 3626 * If sched_entity still have not zero load or utilization, we have to 3627 * decay it: 3628 */ 3629 if (se->avg.load_avg || se->avg.util_avg) 3630 return false; 3631 3632 /* 3633 * If there is a pending propagation, we have to update the load and 3634 * the utilization of the sched_entity: 3635 */ 3636 if (gcfs_rq->propagate) 3637 return false; 3638 3639 /* 3640 * Otherwise, the load and the utilization of the sched_entity is 3641 * already zero and there is no pending propagation, so it will be a 3642 * waste of time to try to decay it: 3643 */ 3644 return true; 3645 } 3646 3647 #else /* CONFIG_FAIR_GROUP_SCHED */ 3648 3649 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 3650 3651 static inline int propagate_entity_load_avg(struct sched_entity *se) 3652 { 3653 return 0; 3654 } 3655 3656 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3657 3658 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3659 3660 /** 3661 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3662 * @now: current time, as per cfs_rq_clock_pelt() 3663 * @cfs_rq: cfs_rq to update 3664 * 3665 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3666 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3667 * post_init_entity_util_avg(). 3668 * 3669 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3670 * 3671 * Return: true if the load decayed or we removed load. 3672 * 3673 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3674 * call update_tg_load_avg() when this function returns true. 3675 */ 3676 static inline int 3677 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3678 { 3679 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 3680 struct sched_avg *sa = &cfs_rq->avg; 3681 int decayed = 0; 3682 3683 if (cfs_rq->removed.nr) { 3684 unsigned long r; 3685 u32 divider = get_pelt_divider(&cfs_rq->avg); 3686 3687 raw_spin_lock(&cfs_rq->removed.lock); 3688 swap(cfs_rq->removed.util_avg, removed_util); 3689 swap(cfs_rq->removed.load_avg, removed_load); 3690 swap(cfs_rq->removed.runnable_avg, removed_runnable); 3691 cfs_rq->removed.nr = 0; 3692 raw_spin_unlock(&cfs_rq->removed.lock); 3693 3694 r = removed_load; 3695 sub_positive(&sa->load_avg, r); 3696 sub_positive(&sa->load_sum, r * divider); 3697 /* See sa->util_sum below */ 3698 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 3699 3700 r = removed_util; 3701 sub_positive(&sa->util_avg, r); 3702 sub_positive(&sa->util_sum, r * divider); 3703 /* 3704 * Because of rounding, se->util_sum might ends up being +1 more than 3705 * cfs->util_sum. Although this is not a problem by itself, detaching 3706 * a lot of tasks with the rounding problem between 2 updates of 3707 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 3708 * cfs_util_avg is not. 3709 * Check that util_sum is still above its lower bound for the new 3710 * util_avg. Given that period_contrib might have moved since the last 3711 * sync, we are only sure that util_sum must be above or equal to 3712 * util_avg * minimum possible divider 3713 */ 3714 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 3715 3716 r = removed_runnable; 3717 sub_positive(&sa->runnable_avg, r); 3718 sub_positive(&sa->runnable_sum, r * divider); 3719 /* See sa->util_sum above */ 3720 sa->runnable_sum = max_t(u32, sa->runnable_sum, 3721 sa->runnable_avg * PELT_MIN_DIVIDER); 3722 3723 /* 3724 * removed_runnable is the unweighted version of removed_load so we 3725 * can use it to estimate removed_load_sum. 3726 */ 3727 add_tg_cfs_propagate(cfs_rq, 3728 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 3729 3730 decayed = 1; 3731 } 3732 3733 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3734 3735 #ifndef CONFIG_64BIT 3736 smp_wmb(); 3737 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3738 #endif 3739 3740 return decayed; 3741 } 3742 3743 /** 3744 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3745 * @cfs_rq: cfs_rq to attach to 3746 * @se: sched_entity to attach 3747 * 3748 * Must call update_cfs_rq_load_avg() before this, since we rely on 3749 * cfs_rq->avg.last_update_time being current. 3750 */ 3751 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3752 { 3753 /* 3754 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3755 * See ___update_load_avg() for details. 3756 */ 3757 u32 divider = get_pelt_divider(&cfs_rq->avg); 3758 3759 /* 3760 * When we attach the @se to the @cfs_rq, we must align the decay 3761 * window because without that, really weird and wonderful things can 3762 * happen. 3763 * 3764 * XXX illustrate 3765 */ 3766 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3767 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3768 3769 /* 3770 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3771 * period_contrib. This isn't strictly correct, but since we're 3772 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3773 * _sum a little. 3774 */ 3775 se->avg.util_sum = se->avg.util_avg * divider; 3776 3777 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3778 3779 se->avg.load_sum = divider; 3780 if (se_weight(se)) { 3781 se->avg.load_sum = 3782 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3783 } 3784 3785 enqueue_load_avg(cfs_rq, se); 3786 cfs_rq->avg.util_avg += se->avg.util_avg; 3787 cfs_rq->avg.util_sum += se->avg.util_sum; 3788 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 3789 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 3790 3791 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3792 3793 cfs_rq_util_change(cfs_rq, 0); 3794 3795 trace_pelt_cfs_tp(cfs_rq); 3796 } 3797 3798 /** 3799 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3800 * @cfs_rq: cfs_rq to detach from 3801 * @se: sched_entity to detach 3802 * 3803 * Must call update_cfs_rq_load_avg() before this, since we rely on 3804 * cfs_rq->avg.last_update_time being current. 3805 */ 3806 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3807 { 3808 dequeue_load_avg(cfs_rq, se); 3809 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3810 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3811 /* See update_cfs_rq_load_avg() */ 3812 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 3813 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 3814 3815 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 3816 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 3817 /* See update_cfs_rq_load_avg() */ 3818 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 3819 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 3820 3821 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3822 3823 cfs_rq_util_change(cfs_rq, 0); 3824 3825 trace_pelt_cfs_tp(cfs_rq); 3826 } 3827 3828 /* 3829 * Optional action to be done while updating the load average 3830 */ 3831 #define UPDATE_TG 0x1 3832 #define SKIP_AGE_LOAD 0x2 3833 #define DO_ATTACH 0x4 3834 3835 /* Update task and its cfs_rq load average */ 3836 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3837 { 3838 u64 now = cfs_rq_clock_pelt(cfs_rq); 3839 int decayed; 3840 3841 /* 3842 * Track task load average for carrying it to new CPU after migrated, and 3843 * track group sched_entity load average for task_h_load calc in migration 3844 */ 3845 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3846 __update_load_avg_se(now, cfs_rq, se); 3847 3848 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3849 decayed |= propagate_entity_load_avg(se); 3850 3851 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3852 3853 /* 3854 * DO_ATTACH means we're here from enqueue_entity(). 3855 * !last_update_time means we've passed through 3856 * migrate_task_rq_fair() indicating we migrated. 3857 * 3858 * IOW we're enqueueing a task on a new CPU. 3859 */ 3860 attach_entity_load_avg(cfs_rq, se); 3861 update_tg_load_avg(cfs_rq); 3862 3863 } else if (decayed) { 3864 cfs_rq_util_change(cfs_rq, 0); 3865 3866 if (flags & UPDATE_TG) 3867 update_tg_load_avg(cfs_rq); 3868 } 3869 } 3870 3871 #ifndef CONFIG_64BIT 3872 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3873 { 3874 u64 last_update_time_copy; 3875 u64 last_update_time; 3876 3877 do { 3878 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3879 smp_rmb(); 3880 last_update_time = cfs_rq->avg.last_update_time; 3881 } while (last_update_time != last_update_time_copy); 3882 3883 return last_update_time; 3884 } 3885 #else 3886 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3887 { 3888 return cfs_rq->avg.last_update_time; 3889 } 3890 #endif 3891 3892 /* 3893 * Synchronize entity load avg of dequeued entity without locking 3894 * the previous rq. 3895 */ 3896 static void sync_entity_load_avg(struct sched_entity *se) 3897 { 3898 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3899 u64 last_update_time; 3900 3901 last_update_time = cfs_rq_last_update_time(cfs_rq); 3902 __update_load_avg_blocked_se(last_update_time, se); 3903 } 3904 3905 /* 3906 * Task first catches up with cfs_rq, and then subtract 3907 * itself from the cfs_rq (task must be off the queue now). 3908 */ 3909 static void remove_entity_load_avg(struct sched_entity *se) 3910 { 3911 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3912 unsigned long flags; 3913 3914 /* 3915 * tasks cannot exit without having gone through wake_up_new_task() -> 3916 * post_init_entity_util_avg() which will have added things to the 3917 * cfs_rq, so we can remove unconditionally. 3918 */ 3919 3920 sync_entity_load_avg(se); 3921 3922 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3923 ++cfs_rq->removed.nr; 3924 cfs_rq->removed.util_avg += se->avg.util_avg; 3925 cfs_rq->removed.load_avg += se->avg.load_avg; 3926 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 3927 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3928 } 3929 3930 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 3931 { 3932 return cfs_rq->avg.runnable_avg; 3933 } 3934 3935 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3936 { 3937 return cfs_rq->avg.load_avg; 3938 } 3939 3940 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 3941 3942 static inline unsigned long task_util(struct task_struct *p) 3943 { 3944 return READ_ONCE(p->se.avg.util_avg); 3945 } 3946 3947 static inline unsigned long _task_util_est(struct task_struct *p) 3948 { 3949 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3950 3951 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 3952 } 3953 3954 static inline unsigned long task_util_est(struct task_struct *p) 3955 { 3956 return max(task_util(p), _task_util_est(p)); 3957 } 3958 3959 #ifdef CONFIG_UCLAMP_TASK 3960 static inline unsigned long uclamp_task_util(struct task_struct *p) 3961 { 3962 return clamp(task_util_est(p), 3963 uclamp_eff_value(p, UCLAMP_MIN), 3964 uclamp_eff_value(p, UCLAMP_MAX)); 3965 } 3966 #else 3967 static inline unsigned long uclamp_task_util(struct task_struct *p) 3968 { 3969 return task_util_est(p); 3970 } 3971 #endif 3972 3973 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3974 struct task_struct *p) 3975 { 3976 unsigned int enqueued; 3977 3978 if (!sched_feat(UTIL_EST)) 3979 return; 3980 3981 /* Update root cfs_rq's estimated utilization */ 3982 enqueued = cfs_rq->avg.util_est.enqueued; 3983 enqueued += _task_util_est(p); 3984 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3985 3986 trace_sched_util_est_cfs_tp(cfs_rq); 3987 } 3988 3989 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 3990 struct task_struct *p) 3991 { 3992 unsigned int enqueued; 3993 3994 if (!sched_feat(UTIL_EST)) 3995 return; 3996 3997 /* Update root cfs_rq's estimated utilization */ 3998 enqueued = cfs_rq->avg.util_est.enqueued; 3999 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4000 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4001 4002 trace_sched_util_est_cfs_tp(cfs_rq); 4003 } 4004 4005 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4006 4007 /* 4008 * Check if a (signed) value is within a specified (unsigned) margin, 4009 * based on the observation that: 4010 * 4011 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 4012 * 4013 * NOTE: this only works when value + margin < INT_MAX. 4014 */ 4015 static inline bool within_margin(int value, int margin) 4016 { 4017 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 4018 } 4019 4020 static inline void util_est_update(struct cfs_rq *cfs_rq, 4021 struct task_struct *p, 4022 bool task_sleep) 4023 { 4024 long last_ewma_diff, last_enqueued_diff; 4025 struct util_est ue; 4026 4027 if (!sched_feat(UTIL_EST)) 4028 return; 4029 4030 /* 4031 * Skip update of task's estimated utilization when the task has not 4032 * yet completed an activation, e.g. being migrated. 4033 */ 4034 if (!task_sleep) 4035 return; 4036 4037 /* 4038 * If the PELT values haven't changed since enqueue time, 4039 * skip the util_est update. 4040 */ 4041 ue = p->se.avg.util_est; 4042 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4043 return; 4044 4045 last_enqueued_diff = ue.enqueued; 4046 4047 /* 4048 * Reset EWMA on utilization increases, the moving average is used only 4049 * to smooth utilization decreases. 4050 */ 4051 ue.enqueued = task_util(p); 4052 if (sched_feat(UTIL_EST_FASTUP)) { 4053 if (ue.ewma < ue.enqueued) { 4054 ue.ewma = ue.enqueued; 4055 goto done; 4056 } 4057 } 4058 4059 /* 4060 * Skip update of task's estimated utilization when its members are 4061 * already ~1% close to its last activation value. 4062 */ 4063 last_ewma_diff = ue.enqueued - ue.ewma; 4064 last_enqueued_diff -= ue.enqueued; 4065 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4066 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4067 goto done; 4068 4069 return; 4070 } 4071 4072 /* 4073 * To avoid overestimation of actual task utilization, skip updates if 4074 * we cannot grant there is idle time in this CPU. 4075 */ 4076 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4077 return; 4078 4079 /* 4080 * Update Task's estimated utilization 4081 * 4082 * When *p completes an activation we can consolidate another sample 4083 * of the task size. This is done by storing the current PELT value 4084 * as ue.enqueued and by using this value to update the Exponential 4085 * Weighted Moving Average (EWMA): 4086 * 4087 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4088 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4089 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4090 * = w * ( last_ewma_diff ) + ewma(t-1) 4091 * = w * (last_ewma_diff + ewma(t-1) / w) 4092 * 4093 * Where 'w' is the weight of new samples, which is configured to be 4094 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4095 */ 4096 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4097 ue.ewma += last_ewma_diff; 4098 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4099 done: 4100 ue.enqueued |= UTIL_AVG_UNCHANGED; 4101 WRITE_ONCE(p->se.avg.util_est, ue); 4102 4103 trace_sched_util_est_se_tp(&p->se); 4104 } 4105 4106 static inline int task_fits_capacity(struct task_struct *p, 4107 unsigned long capacity) 4108 { 4109 return fits_capacity(uclamp_task_util(p), capacity); 4110 } 4111 4112 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4113 { 4114 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 4115 return; 4116 4117 if (!p || p->nr_cpus_allowed == 1) { 4118 rq->misfit_task_load = 0; 4119 return; 4120 } 4121 4122 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 4123 rq->misfit_task_load = 0; 4124 return; 4125 } 4126 4127 /* 4128 * Make sure that misfit_task_load will not be null even if 4129 * task_h_load() returns 0. 4130 */ 4131 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4132 } 4133 4134 #else /* CONFIG_SMP */ 4135 4136 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4137 { 4138 return true; 4139 } 4140 4141 #define UPDATE_TG 0x0 4142 #define SKIP_AGE_LOAD 0x0 4143 #define DO_ATTACH 0x0 4144 4145 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4146 { 4147 cfs_rq_util_change(cfs_rq, 0); 4148 } 4149 4150 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4151 4152 static inline void 4153 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4154 static inline void 4155 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4156 4157 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4158 { 4159 return 0; 4160 } 4161 4162 static inline void 4163 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4164 4165 static inline void 4166 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4167 4168 static inline void 4169 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 4170 bool task_sleep) {} 4171 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4172 4173 #endif /* CONFIG_SMP */ 4174 4175 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4176 { 4177 #ifdef CONFIG_SCHED_DEBUG 4178 s64 d = se->vruntime - cfs_rq->min_vruntime; 4179 4180 if (d < 0) 4181 d = -d; 4182 4183 if (d > 3*sysctl_sched_latency) 4184 schedstat_inc(cfs_rq->nr_spread_over); 4185 #endif 4186 } 4187 4188 static void 4189 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4190 { 4191 u64 vruntime = cfs_rq->min_vruntime; 4192 4193 /* 4194 * The 'current' period is already promised to the current tasks, 4195 * however the extra weight of the new task will slow them down a 4196 * little, place the new task so that it fits in the slot that 4197 * stays open at the end. 4198 */ 4199 if (initial && sched_feat(START_DEBIT)) 4200 vruntime += sched_vslice(cfs_rq, se); 4201 4202 /* sleeps up to a single latency don't count. */ 4203 if (!initial) { 4204 unsigned long thresh; 4205 4206 if (se_is_idle(se)) 4207 thresh = sysctl_sched_min_granularity; 4208 else 4209 thresh = sysctl_sched_latency; 4210 4211 /* 4212 * Halve their sleep time's effect, to allow 4213 * for a gentler effect of sleepers: 4214 */ 4215 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4216 thresh >>= 1; 4217 4218 vruntime -= thresh; 4219 } 4220 4221 /* ensure we never gain time by being placed backwards. */ 4222 se->vruntime = max_vruntime(se->vruntime, vruntime); 4223 } 4224 4225 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4226 4227 static inline bool cfs_bandwidth_used(void); 4228 4229 /* 4230 * MIGRATION 4231 * 4232 * dequeue 4233 * update_curr() 4234 * update_min_vruntime() 4235 * vruntime -= min_vruntime 4236 * 4237 * enqueue 4238 * update_curr() 4239 * update_min_vruntime() 4240 * vruntime += min_vruntime 4241 * 4242 * this way the vruntime transition between RQs is done when both 4243 * min_vruntime are up-to-date. 4244 * 4245 * WAKEUP (remote) 4246 * 4247 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4248 * vruntime -= min_vruntime 4249 * 4250 * enqueue 4251 * update_curr() 4252 * update_min_vruntime() 4253 * vruntime += min_vruntime 4254 * 4255 * this way we don't have the most up-to-date min_vruntime on the originating 4256 * CPU and an up-to-date min_vruntime on the destination CPU. 4257 */ 4258 4259 static void 4260 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4261 { 4262 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4263 bool curr = cfs_rq->curr == se; 4264 4265 /* 4266 * If we're the current task, we must renormalise before calling 4267 * update_curr(). 4268 */ 4269 if (renorm && curr) 4270 se->vruntime += cfs_rq->min_vruntime; 4271 4272 update_curr(cfs_rq); 4273 4274 /* 4275 * Otherwise, renormalise after, such that we're placed at the current 4276 * moment in time, instead of some random moment in the past. Being 4277 * placed in the past could significantly boost this task to the 4278 * fairness detriment of existing tasks. 4279 */ 4280 if (renorm && !curr) 4281 se->vruntime += cfs_rq->min_vruntime; 4282 4283 /* 4284 * When enqueuing a sched_entity, we must: 4285 * - Update loads to have both entity and cfs_rq synced with now. 4286 * - Add its load to cfs_rq->runnable_avg 4287 * - For group_entity, update its weight to reflect the new share of 4288 * its group cfs_rq 4289 * - Add its new weight to cfs_rq->load.weight 4290 */ 4291 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4292 se_update_runnable(se); 4293 update_cfs_group(se); 4294 account_entity_enqueue(cfs_rq, se); 4295 4296 if (flags & ENQUEUE_WAKEUP) 4297 place_entity(cfs_rq, se, 0); 4298 4299 check_schedstat_required(); 4300 update_stats_enqueue_fair(cfs_rq, se, flags); 4301 check_spread(cfs_rq, se); 4302 if (!curr) 4303 __enqueue_entity(cfs_rq, se); 4304 se->on_rq = 1; 4305 4306 /* 4307 * When bandwidth control is enabled, cfs might have been removed 4308 * because of a parent been throttled but cfs->nr_running > 1. Try to 4309 * add it unconditionally. 4310 */ 4311 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used()) 4312 list_add_leaf_cfs_rq(cfs_rq); 4313 4314 if (cfs_rq->nr_running == 1) 4315 check_enqueue_throttle(cfs_rq); 4316 } 4317 4318 static void __clear_buddies_last(struct sched_entity *se) 4319 { 4320 for_each_sched_entity(se) { 4321 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4322 if (cfs_rq->last != se) 4323 break; 4324 4325 cfs_rq->last = NULL; 4326 } 4327 } 4328 4329 static void __clear_buddies_next(struct sched_entity *se) 4330 { 4331 for_each_sched_entity(se) { 4332 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4333 if (cfs_rq->next != se) 4334 break; 4335 4336 cfs_rq->next = NULL; 4337 } 4338 } 4339 4340 static void __clear_buddies_skip(struct sched_entity *se) 4341 { 4342 for_each_sched_entity(se) { 4343 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4344 if (cfs_rq->skip != se) 4345 break; 4346 4347 cfs_rq->skip = NULL; 4348 } 4349 } 4350 4351 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4352 { 4353 if (cfs_rq->last == se) 4354 __clear_buddies_last(se); 4355 4356 if (cfs_rq->next == se) 4357 __clear_buddies_next(se); 4358 4359 if (cfs_rq->skip == se) 4360 __clear_buddies_skip(se); 4361 } 4362 4363 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4364 4365 static void 4366 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4367 { 4368 /* 4369 * Update run-time statistics of the 'current'. 4370 */ 4371 update_curr(cfs_rq); 4372 4373 /* 4374 * When dequeuing a sched_entity, we must: 4375 * - Update loads to have both entity and cfs_rq synced with now. 4376 * - Subtract its load from the cfs_rq->runnable_avg. 4377 * - Subtract its previous weight from cfs_rq->load.weight. 4378 * - For group entity, update its weight to reflect the new share 4379 * of its group cfs_rq. 4380 */ 4381 update_load_avg(cfs_rq, se, UPDATE_TG); 4382 se_update_runnable(se); 4383 4384 update_stats_dequeue_fair(cfs_rq, se, flags); 4385 4386 clear_buddies(cfs_rq, se); 4387 4388 if (se != cfs_rq->curr) 4389 __dequeue_entity(cfs_rq, se); 4390 se->on_rq = 0; 4391 account_entity_dequeue(cfs_rq, se); 4392 4393 /* 4394 * Normalize after update_curr(); which will also have moved 4395 * min_vruntime if @se is the one holding it back. But before doing 4396 * update_min_vruntime() again, which will discount @se's position and 4397 * can move min_vruntime forward still more. 4398 */ 4399 if (!(flags & DEQUEUE_SLEEP)) 4400 se->vruntime -= cfs_rq->min_vruntime; 4401 4402 /* return excess runtime on last dequeue */ 4403 return_cfs_rq_runtime(cfs_rq); 4404 4405 update_cfs_group(se); 4406 4407 /* 4408 * Now advance min_vruntime if @se was the entity holding it back, 4409 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4410 * put back on, and if we advance min_vruntime, we'll be placed back 4411 * further than we started -- ie. we'll be penalized. 4412 */ 4413 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4414 update_min_vruntime(cfs_rq); 4415 } 4416 4417 /* 4418 * Preempt the current task with a newly woken task if needed: 4419 */ 4420 static void 4421 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4422 { 4423 unsigned long ideal_runtime, delta_exec; 4424 struct sched_entity *se; 4425 s64 delta; 4426 4427 ideal_runtime = sched_slice(cfs_rq, curr); 4428 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4429 if (delta_exec > ideal_runtime) { 4430 resched_curr(rq_of(cfs_rq)); 4431 /* 4432 * The current task ran long enough, ensure it doesn't get 4433 * re-elected due to buddy favours. 4434 */ 4435 clear_buddies(cfs_rq, curr); 4436 return; 4437 } 4438 4439 /* 4440 * Ensure that a task that missed wakeup preemption by a 4441 * narrow margin doesn't have to wait for a full slice. 4442 * This also mitigates buddy induced latencies under load. 4443 */ 4444 if (delta_exec < sysctl_sched_min_granularity) 4445 return; 4446 4447 se = __pick_first_entity(cfs_rq); 4448 delta = curr->vruntime - se->vruntime; 4449 4450 if (delta < 0) 4451 return; 4452 4453 if (delta > ideal_runtime) 4454 resched_curr(rq_of(cfs_rq)); 4455 } 4456 4457 static void 4458 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4459 { 4460 clear_buddies(cfs_rq, se); 4461 4462 /* 'current' is not kept within the tree. */ 4463 if (se->on_rq) { 4464 /* 4465 * Any task has to be enqueued before it get to execute on 4466 * a CPU. So account for the time it spent waiting on the 4467 * runqueue. 4468 */ 4469 update_stats_wait_end_fair(cfs_rq, se); 4470 __dequeue_entity(cfs_rq, se); 4471 update_load_avg(cfs_rq, se, UPDATE_TG); 4472 } 4473 4474 update_stats_curr_start(cfs_rq, se); 4475 cfs_rq->curr = se; 4476 4477 /* 4478 * Track our maximum slice length, if the CPU's load is at 4479 * least twice that of our own weight (i.e. dont track it 4480 * when there are only lesser-weight tasks around): 4481 */ 4482 if (schedstat_enabled() && 4483 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4484 struct sched_statistics *stats; 4485 4486 stats = __schedstats_from_se(se); 4487 __schedstat_set(stats->slice_max, 4488 max((u64)stats->slice_max, 4489 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4490 } 4491 4492 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4493 } 4494 4495 static int 4496 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4497 4498 /* 4499 * Pick the next process, keeping these things in mind, in this order: 4500 * 1) keep things fair between processes/task groups 4501 * 2) pick the "next" process, since someone really wants that to run 4502 * 3) pick the "last" process, for cache locality 4503 * 4) do not run the "skip" process, if something else is available 4504 */ 4505 static struct sched_entity * 4506 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4507 { 4508 struct sched_entity *left = __pick_first_entity(cfs_rq); 4509 struct sched_entity *se; 4510 4511 /* 4512 * If curr is set we have to see if its left of the leftmost entity 4513 * still in the tree, provided there was anything in the tree at all. 4514 */ 4515 if (!left || (curr && entity_before(curr, left))) 4516 left = curr; 4517 4518 se = left; /* ideally we run the leftmost entity */ 4519 4520 /* 4521 * Avoid running the skip buddy, if running something else can 4522 * be done without getting too unfair. 4523 */ 4524 if (cfs_rq->skip && cfs_rq->skip == se) { 4525 struct sched_entity *second; 4526 4527 if (se == curr) { 4528 second = __pick_first_entity(cfs_rq); 4529 } else { 4530 second = __pick_next_entity(se); 4531 if (!second || (curr && entity_before(curr, second))) 4532 second = curr; 4533 } 4534 4535 if (second && wakeup_preempt_entity(second, left) < 1) 4536 se = second; 4537 } 4538 4539 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) { 4540 /* 4541 * Someone really wants this to run. If it's not unfair, run it. 4542 */ 4543 se = cfs_rq->next; 4544 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) { 4545 /* 4546 * Prefer last buddy, try to return the CPU to a preempted task. 4547 */ 4548 se = cfs_rq->last; 4549 } 4550 4551 return se; 4552 } 4553 4554 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4555 4556 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4557 { 4558 /* 4559 * If still on the runqueue then deactivate_task() 4560 * was not called and update_curr() has to be done: 4561 */ 4562 if (prev->on_rq) 4563 update_curr(cfs_rq); 4564 4565 /* throttle cfs_rqs exceeding runtime */ 4566 check_cfs_rq_runtime(cfs_rq); 4567 4568 check_spread(cfs_rq, prev); 4569 4570 if (prev->on_rq) { 4571 update_stats_wait_start_fair(cfs_rq, prev); 4572 /* Put 'current' back into the tree. */ 4573 __enqueue_entity(cfs_rq, prev); 4574 /* in !on_rq case, update occurred at dequeue */ 4575 update_load_avg(cfs_rq, prev, 0); 4576 } 4577 cfs_rq->curr = NULL; 4578 } 4579 4580 static void 4581 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4582 { 4583 /* 4584 * Update run-time statistics of the 'current'. 4585 */ 4586 update_curr(cfs_rq); 4587 4588 /* 4589 * Ensure that runnable average is periodically updated. 4590 */ 4591 update_load_avg(cfs_rq, curr, UPDATE_TG); 4592 update_cfs_group(curr); 4593 4594 #ifdef CONFIG_SCHED_HRTICK 4595 /* 4596 * queued ticks are scheduled to match the slice, so don't bother 4597 * validating it and just reschedule. 4598 */ 4599 if (queued) { 4600 resched_curr(rq_of(cfs_rq)); 4601 return; 4602 } 4603 /* 4604 * don't let the period tick interfere with the hrtick preemption 4605 */ 4606 if (!sched_feat(DOUBLE_TICK) && 4607 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4608 return; 4609 #endif 4610 4611 if (cfs_rq->nr_running > 1) 4612 check_preempt_tick(cfs_rq, curr); 4613 } 4614 4615 4616 /************************************************** 4617 * CFS bandwidth control machinery 4618 */ 4619 4620 #ifdef CONFIG_CFS_BANDWIDTH 4621 4622 #ifdef CONFIG_JUMP_LABEL 4623 static struct static_key __cfs_bandwidth_used; 4624 4625 static inline bool cfs_bandwidth_used(void) 4626 { 4627 return static_key_false(&__cfs_bandwidth_used); 4628 } 4629 4630 void cfs_bandwidth_usage_inc(void) 4631 { 4632 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4633 } 4634 4635 void cfs_bandwidth_usage_dec(void) 4636 { 4637 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4638 } 4639 #else /* CONFIG_JUMP_LABEL */ 4640 static bool cfs_bandwidth_used(void) 4641 { 4642 return true; 4643 } 4644 4645 void cfs_bandwidth_usage_inc(void) {} 4646 void cfs_bandwidth_usage_dec(void) {} 4647 #endif /* CONFIG_JUMP_LABEL */ 4648 4649 /* 4650 * default period for cfs group bandwidth. 4651 * default: 0.1s, units: nanoseconds 4652 */ 4653 static inline u64 default_cfs_period(void) 4654 { 4655 return 100000000ULL; 4656 } 4657 4658 static inline u64 sched_cfs_bandwidth_slice(void) 4659 { 4660 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4661 } 4662 4663 /* 4664 * Replenish runtime according to assigned quota. We use sched_clock_cpu 4665 * directly instead of rq->clock to avoid adding additional synchronization 4666 * around rq->lock. 4667 * 4668 * requires cfs_b->lock 4669 */ 4670 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4671 { 4672 s64 runtime; 4673 4674 if (unlikely(cfs_b->quota == RUNTIME_INF)) 4675 return; 4676 4677 cfs_b->runtime += cfs_b->quota; 4678 runtime = cfs_b->runtime_snap - cfs_b->runtime; 4679 if (runtime > 0) { 4680 cfs_b->burst_time += runtime; 4681 cfs_b->nr_burst++; 4682 } 4683 4684 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 4685 cfs_b->runtime_snap = cfs_b->runtime; 4686 } 4687 4688 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4689 { 4690 return &tg->cfs_bandwidth; 4691 } 4692 4693 /* returns 0 on failure to allocate runtime */ 4694 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 4695 struct cfs_rq *cfs_rq, u64 target_runtime) 4696 { 4697 u64 min_amount, amount = 0; 4698 4699 lockdep_assert_held(&cfs_b->lock); 4700 4701 /* note: this is a positive sum as runtime_remaining <= 0 */ 4702 min_amount = target_runtime - cfs_rq->runtime_remaining; 4703 4704 if (cfs_b->quota == RUNTIME_INF) 4705 amount = min_amount; 4706 else { 4707 start_cfs_bandwidth(cfs_b); 4708 4709 if (cfs_b->runtime > 0) { 4710 amount = min(cfs_b->runtime, min_amount); 4711 cfs_b->runtime -= amount; 4712 cfs_b->idle = 0; 4713 } 4714 } 4715 4716 cfs_rq->runtime_remaining += amount; 4717 4718 return cfs_rq->runtime_remaining > 0; 4719 } 4720 4721 /* returns 0 on failure to allocate runtime */ 4722 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4723 { 4724 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4725 int ret; 4726 4727 raw_spin_lock(&cfs_b->lock); 4728 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 4729 raw_spin_unlock(&cfs_b->lock); 4730 4731 return ret; 4732 } 4733 4734 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4735 { 4736 /* dock delta_exec before expiring quota (as it could span periods) */ 4737 cfs_rq->runtime_remaining -= delta_exec; 4738 4739 if (likely(cfs_rq->runtime_remaining > 0)) 4740 return; 4741 4742 if (cfs_rq->throttled) 4743 return; 4744 /* 4745 * if we're unable to extend our runtime we resched so that the active 4746 * hierarchy can be throttled 4747 */ 4748 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4749 resched_curr(rq_of(cfs_rq)); 4750 } 4751 4752 static __always_inline 4753 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4754 { 4755 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4756 return; 4757 4758 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4759 } 4760 4761 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4762 { 4763 return cfs_bandwidth_used() && cfs_rq->throttled; 4764 } 4765 4766 /* check whether cfs_rq, or any parent, is throttled */ 4767 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4768 { 4769 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4770 } 4771 4772 /* 4773 * Ensure that neither of the group entities corresponding to src_cpu or 4774 * dest_cpu are members of a throttled hierarchy when performing group 4775 * load-balance operations. 4776 */ 4777 static inline int throttled_lb_pair(struct task_group *tg, 4778 int src_cpu, int dest_cpu) 4779 { 4780 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4781 4782 src_cfs_rq = tg->cfs_rq[src_cpu]; 4783 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4784 4785 return throttled_hierarchy(src_cfs_rq) || 4786 throttled_hierarchy(dest_cfs_rq); 4787 } 4788 4789 static int tg_unthrottle_up(struct task_group *tg, void *data) 4790 { 4791 struct rq *rq = data; 4792 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4793 4794 cfs_rq->throttle_count--; 4795 if (!cfs_rq->throttle_count) { 4796 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4797 cfs_rq->throttled_clock_task; 4798 4799 /* Add cfs_rq with load or one or more already running entities to the list */ 4800 if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running) 4801 list_add_leaf_cfs_rq(cfs_rq); 4802 } 4803 4804 return 0; 4805 } 4806 4807 static int tg_throttle_down(struct task_group *tg, void *data) 4808 { 4809 struct rq *rq = data; 4810 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4811 4812 /* group is entering throttled state, stop time */ 4813 if (!cfs_rq->throttle_count) { 4814 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4815 list_del_leaf_cfs_rq(cfs_rq); 4816 } 4817 cfs_rq->throttle_count++; 4818 4819 return 0; 4820 } 4821 4822 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 4823 { 4824 struct rq *rq = rq_of(cfs_rq); 4825 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4826 struct sched_entity *se; 4827 long task_delta, idle_task_delta, dequeue = 1; 4828 4829 raw_spin_lock(&cfs_b->lock); 4830 /* This will start the period timer if necessary */ 4831 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 4832 /* 4833 * We have raced with bandwidth becoming available, and if we 4834 * actually throttled the timer might not unthrottle us for an 4835 * entire period. We additionally needed to make sure that any 4836 * subsequent check_cfs_rq_runtime calls agree not to throttle 4837 * us, as we may commit to do cfs put_prev+pick_next, so we ask 4838 * for 1ns of runtime rather than just check cfs_b. 4839 */ 4840 dequeue = 0; 4841 } else { 4842 list_add_tail_rcu(&cfs_rq->throttled_list, 4843 &cfs_b->throttled_cfs_rq); 4844 } 4845 raw_spin_unlock(&cfs_b->lock); 4846 4847 if (!dequeue) 4848 return false; /* Throttle no longer required. */ 4849 4850 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4851 4852 /* freeze hierarchy runnable averages while throttled */ 4853 rcu_read_lock(); 4854 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4855 rcu_read_unlock(); 4856 4857 task_delta = cfs_rq->h_nr_running; 4858 idle_task_delta = cfs_rq->idle_h_nr_running; 4859 for_each_sched_entity(se) { 4860 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4861 /* throttled entity or throttle-on-deactivate */ 4862 if (!se->on_rq) 4863 goto done; 4864 4865 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4866 4867 if (cfs_rq_is_idle(group_cfs_rq(se))) 4868 idle_task_delta = cfs_rq->h_nr_running; 4869 4870 qcfs_rq->h_nr_running -= task_delta; 4871 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4872 4873 if (qcfs_rq->load.weight) { 4874 /* Avoid re-evaluating load for this entity: */ 4875 se = parent_entity(se); 4876 break; 4877 } 4878 } 4879 4880 for_each_sched_entity(se) { 4881 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4882 /* throttled entity or throttle-on-deactivate */ 4883 if (!se->on_rq) 4884 goto done; 4885 4886 update_load_avg(qcfs_rq, se, 0); 4887 se_update_runnable(se); 4888 4889 if (cfs_rq_is_idle(group_cfs_rq(se))) 4890 idle_task_delta = cfs_rq->h_nr_running; 4891 4892 qcfs_rq->h_nr_running -= task_delta; 4893 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4894 } 4895 4896 /* At this point se is NULL and we are at root level*/ 4897 sub_nr_running(rq, task_delta); 4898 4899 done: 4900 /* 4901 * Note: distribution will already see us throttled via the 4902 * throttled-list. rq->lock protects completion. 4903 */ 4904 cfs_rq->throttled = 1; 4905 cfs_rq->throttled_clock = rq_clock(rq); 4906 return true; 4907 } 4908 4909 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4910 { 4911 struct rq *rq = rq_of(cfs_rq); 4912 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4913 struct sched_entity *se; 4914 long task_delta, idle_task_delta; 4915 4916 se = cfs_rq->tg->se[cpu_of(rq)]; 4917 4918 cfs_rq->throttled = 0; 4919 4920 update_rq_clock(rq); 4921 4922 raw_spin_lock(&cfs_b->lock); 4923 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4924 list_del_rcu(&cfs_rq->throttled_list); 4925 raw_spin_unlock(&cfs_b->lock); 4926 4927 /* update hierarchical throttle state */ 4928 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4929 4930 /* Nothing to run but something to decay (on_list)? Complete the branch */ 4931 if (!cfs_rq->load.weight) { 4932 if (cfs_rq->on_list) 4933 goto unthrottle_throttle; 4934 return; 4935 } 4936 4937 task_delta = cfs_rq->h_nr_running; 4938 idle_task_delta = cfs_rq->idle_h_nr_running; 4939 for_each_sched_entity(se) { 4940 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4941 4942 if (se->on_rq) 4943 break; 4944 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 4945 4946 if (cfs_rq_is_idle(group_cfs_rq(se))) 4947 idle_task_delta = cfs_rq->h_nr_running; 4948 4949 qcfs_rq->h_nr_running += task_delta; 4950 qcfs_rq->idle_h_nr_running += idle_task_delta; 4951 4952 /* end evaluation on encountering a throttled cfs_rq */ 4953 if (cfs_rq_throttled(qcfs_rq)) 4954 goto unthrottle_throttle; 4955 } 4956 4957 for_each_sched_entity(se) { 4958 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4959 4960 update_load_avg(qcfs_rq, se, UPDATE_TG); 4961 se_update_runnable(se); 4962 4963 if (cfs_rq_is_idle(group_cfs_rq(se))) 4964 idle_task_delta = cfs_rq->h_nr_running; 4965 4966 qcfs_rq->h_nr_running += task_delta; 4967 qcfs_rq->idle_h_nr_running += idle_task_delta; 4968 4969 /* end evaluation on encountering a throttled cfs_rq */ 4970 if (cfs_rq_throttled(qcfs_rq)) 4971 goto unthrottle_throttle; 4972 4973 /* 4974 * One parent has been throttled and cfs_rq removed from the 4975 * list. Add it back to not break the leaf list. 4976 */ 4977 if (throttled_hierarchy(qcfs_rq)) 4978 list_add_leaf_cfs_rq(qcfs_rq); 4979 } 4980 4981 /* At this point se is NULL and we are at root level*/ 4982 add_nr_running(rq, task_delta); 4983 4984 unthrottle_throttle: 4985 /* 4986 * The cfs_rq_throttled() breaks in the above iteration can result in 4987 * incomplete leaf list maintenance, resulting in triggering the 4988 * assertion below. 4989 */ 4990 for_each_sched_entity(se) { 4991 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4992 4993 if (list_add_leaf_cfs_rq(qcfs_rq)) 4994 break; 4995 } 4996 4997 assert_list_leaf_cfs_rq(rq); 4998 4999 /* Determine whether we need to wake up potentially idle CPU: */ 5000 if (rq->curr == rq->idle && rq->cfs.nr_running) 5001 resched_curr(rq); 5002 } 5003 5004 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 5005 { 5006 struct cfs_rq *cfs_rq; 5007 u64 runtime, remaining = 1; 5008 5009 rcu_read_lock(); 5010 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 5011 throttled_list) { 5012 struct rq *rq = rq_of(cfs_rq); 5013 struct rq_flags rf; 5014 5015 rq_lock_irqsave(rq, &rf); 5016 if (!cfs_rq_throttled(cfs_rq)) 5017 goto next; 5018 5019 /* By the above check, this should never be true */ 5020 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 5021 5022 raw_spin_lock(&cfs_b->lock); 5023 runtime = -cfs_rq->runtime_remaining + 1; 5024 if (runtime > cfs_b->runtime) 5025 runtime = cfs_b->runtime; 5026 cfs_b->runtime -= runtime; 5027 remaining = cfs_b->runtime; 5028 raw_spin_unlock(&cfs_b->lock); 5029 5030 cfs_rq->runtime_remaining += runtime; 5031 5032 /* we check whether we're throttled above */ 5033 if (cfs_rq->runtime_remaining > 0) 5034 unthrottle_cfs_rq(cfs_rq); 5035 5036 next: 5037 rq_unlock_irqrestore(rq, &rf); 5038 5039 if (!remaining) 5040 break; 5041 } 5042 rcu_read_unlock(); 5043 } 5044 5045 /* 5046 * Responsible for refilling a task_group's bandwidth and unthrottling its 5047 * cfs_rqs as appropriate. If there has been no activity within the last 5048 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 5049 * used to track this state. 5050 */ 5051 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 5052 { 5053 int throttled; 5054 5055 /* no need to continue the timer with no bandwidth constraint */ 5056 if (cfs_b->quota == RUNTIME_INF) 5057 goto out_deactivate; 5058 5059 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5060 cfs_b->nr_periods += overrun; 5061 5062 /* Refill extra burst quota even if cfs_b->idle */ 5063 __refill_cfs_bandwidth_runtime(cfs_b); 5064 5065 /* 5066 * idle depends on !throttled (for the case of a large deficit), and if 5067 * we're going inactive then everything else can be deferred 5068 */ 5069 if (cfs_b->idle && !throttled) 5070 goto out_deactivate; 5071 5072 if (!throttled) { 5073 /* mark as potentially idle for the upcoming period */ 5074 cfs_b->idle = 1; 5075 return 0; 5076 } 5077 5078 /* account preceding periods in which throttling occurred */ 5079 cfs_b->nr_throttled += overrun; 5080 5081 /* 5082 * This check is repeated as we release cfs_b->lock while we unthrottle. 5083 */ 5084 while (throttled && cfs_b->runtime > 0) { 5085 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5086 /* we can't nest cfs_b->lock while distributing bandwidth */ 5087 distribute_cfs_runtime(cfs_b); 5088 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5089 5090 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5091 } 5092 5093 /* 5094 * While we are ensured activity in the period following an 5095 * unthrottle, this also covers the case in which the new bandwidth is 5096 * insufficient to cover the existing bandwidth deficit. (Forcing the 5097 * timer to remain active while there are any throttled entities.) 5098 */ 5099 cfs_b->idle = 0; 5100 5101 return 0; 5102 5103 out_deactivate: 5104 return 1; 5105 } 5106 5107 /* a cfs_rq won't donate quota below this amount */ 5108 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 5109 /* minimum remaining period time to redistribute slack quota */ 5110 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 5111 /* how long we wait to gather additional slack before distributing */ 5112 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 5113 5114 /* 5115 * Are we near the end of the current quota period? 5116 * 5117 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 5118 * hrtimer base being cleared by hrtimer_start. In the case of 5119 * migrate_hrtimers, base is never cleared, so we are fine. 5120 */ 5121 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5122 { 5123 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5124 s64 remaining; 5125 5126 /* if the call-back is running a quota refresh is already occurring */ 5127 if (hrtimer_callback_running(refresh_timer)) 5128 return 1; 5129 5130 /* is a quota refresh about to occur? */ 5131 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5132 if (remaining < (s64)min_expire) 5133 return 1; 5134 5135 return 0; 5136 } 5137 5138 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5139 { 5140 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5141 5142 /* if there's a quota refresh soon don't bother with slack */ 5143 if (runtime_refresh_within(cfs_b, min_left)) 5144 return; 5145 5146 /* don't push forwards an existing deferred unthrottle */ 5147 if (cfs_b->slack_started) 5148 return; 5149 cfs_b->slack_started = true; 5150 5151 hrtimer_start(&cfs_b->slack_timer, 5152 ns_to_ktime(cfs_bandwidth_slack_period), 5153 HRTIMER_MODE_REL); 5154 } 5155 5156 /* we know any runtime found here is valid as update_curr() precedes return */ 5157 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5158 { 5159 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5160 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5161 5162 if (slack_runtime <= 0) 5163 return; 5164 5165 raw_spin_lock(&cfs_b->lock); 5166 if (cfs_b->quota != RUNTIME_INF) { 5167 cfs_b->runtime += slack_runtime; 5168 5169 /* we are under rq->lock, defer unthrottling using a timer */ 5170 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5171 !list_empty(&cfs_b->throttled_cfs_rq)) 5172 start_cfs_slack_bandwidth(cfs_b); 5173 } 5174 raw_spin_unlock(&cfs_b->lock); 5175 5176 /* even if it's not valid for return we don't want to try again */ 5177 cfs_rq->runtime_remaining -= slack_runtime; 5178 } 5179 5180 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5181 { 5182 if (!cfs_bandwidth_used()) 5183 return; 5184 5185 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5186 return; 5187 5188 __return_cfs_rq_runtime(cfs_rq); 5189 } 5190 5191 /* 5192 * This is done with a timer (instead of inline with bandwidth return) since 5193 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5194 */ 5195 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5196 { 5197 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5198 unsigned long flags; 5199 5200 /* confirm we're still not at a refresh boundary */ 5201 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5202 cfs_b->slack_started = false; 5203 5204 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5205 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5206 return; 5207 } 5208 5209 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5210 runtime = cfs_b->runtime; 5211 5212 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5213 5214 if (!runtime) 5215 return; 5216 5217 distribute_cfs_runtime(cfs_b); 5218 } 5219 5220 /* 5221 * When a group wakes up we want to make sure that its quota is not already 5222 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5223 * runtime as update_curr() throttling can not trigger until it's on-rq. 5224 */ 5225 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5226 { 5227 if (!cfs_bandwidth_used()) 5228 return; 5229 5230 /* an active group must be handled by the update_curr()->put() path */ 5231 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5232 return; 5233 5234 /* ensure the group is not already throttled */ 5235 if (cfs_rq_throttled(cfs_rq)) 5236 return; 5237 5238 /* update runtime allocation */ 5239 account_cfs_rq_runtime(cfs_rq, 0); 5240 if (cfs_rq->runtime_remaining <= 0) 5241 throttle_cfs_rq(cfs_rq); 5242 } 5243 5244 static void sync_throttle(struct task_group *tg, int cpu) 5245 { 5246 struct cfs_rq *pcfs_rq, *cfs_rq; 5247 5248 if (!cfs_bandwidth_used()) 5249 return; 5250 5251 if (!tg->parent) 5252 return; 5253 5254 cfs_rq = tg->cfs_rq[cpu]; 5255 pcfs_rq = tg->parent->cfs_rq[cpu]; 5256 5257 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5258 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 5259 } 5260 5261 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5262 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5263 { 5264 if (!cfs_bandwidth_used()) 5265 return false; 5266 5267 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5268 return false; 5269 5270 /* 5271 * it's possible for a throttled entity to be forced into a running 5272 * state (e.g. set_curr_task), in this case we're finished. 5273 */ 5274 if (cfs_rq_throttled(cfs_rq)) 5275 return true; 5276 5277 return throttle_cfs_rq(cfs_rq); 5278 } 5279 5280 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5281 { 5282 struct cfs_bandwidth *cfs_b = 5283 container_of(timer, struct cfs_bandwidth, slack_timer); 5284 5285 do_sched_cfs_slack_timer(cfs_b); 5286 5287 return HRTIMER_NORESTART; 5288 } 5289 5290 extern const u64 max_cfs_quota_period; 5291 5292 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5293 { 5294 struct cfs_bandwidth *cfs_b = 5295 container_of(timer, struct cfs_bandwidth, period_timer); 5296 unsigned long flags; 5297 int overrun; 5298 int idle = 0; 5299 int count = 0; 5300 5301 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5302 for (;;) { 5303 overrun = hrtimer_forward_now(timer, cfs_b->period); 5304 if (!overrun) 5305 break; 5306 5307 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5308 5309 if (++count > 3) { 5310 u64 new, old = ktime_to_ns(cfs_b->period); 5311 5312 /* 5313 * Grow period by a factor of 2 to avoid losing precision. 5314 * Precision loss in the quota/period ratio can cause __cfs_schedulable 5315 * to fail. 5316 */ 5317 new = old * 2; 5318 if (new < max_cfs_quota_period) { 5319 cfs_b->period = ns_to_ktime(new); 5320 cfs_b->quota *= 2; 5321 cfs_b->burst *= 2; 5322 5323 pr_warn_ratelimited( 5324 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5325 smp_processor_id(), 5326 div_u64(new, NSEC_PER_USEC), 5327 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5328 } else { 5329 pr_warn_ratelimited( 5330 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5331 smp_processor_id(), 5332 div_u64(old, NSEC_PER_USEC), 5333 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5334 } 5335 5336 /* reset count so we don't come right back in here */ 5337 count = 0; 5338 } 5339 } 5340 if (idle) 5341 cfs_b->period_active = 0; 5342 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5343 5344 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5345 } 5346 5347 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5348 { 5349 raw_spin_lock_init(&cfs_b->lock); 5350 cfs_b->runtime = 0; 5351 cfs_b->quota = RUNTIME_INF; 5352 cfs_b->period = ns_to_ktime(default_cfs_period()); 5353 cfs_b->burst = 0; 5354 5355 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5356 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5357 cfs_b->period_timer.function = sched_cfs_period_timer; 5358 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5359 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5360 cfs_b->slack_started = false; 5361 } 5362 5363 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5364 { 5365 cfs_rq->runtime_enabled = 0; 5366 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5367 } 5368 5369 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5370 { 5371 lockdep_assert_held(&cfs_b->lock); 5372 5373 if (cfs_b->period_active) 5374 return; 5375 5376 cfs_b->period_active = 1; 5377 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5378 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5379 } 5380 5381 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5382 { 5383 /* init_cfs_bandwidth() was not called */ 5384 if (!cfs_b->throttled_cfs_rq.next) 5385 return; 5386 5387 hrtimer_cancel(&cfs_b->period_timer); 5388 hrtimer_cancel(&cfs_b->slack_timer); 5389 } 5390 5391 /* 5392 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5393 * 5394 * The race is harmless, since modifying bandwidth settings of unhooked group 5395 * bits doesn't do much. 5396 */ 5397 5398 /* cpu online callback */ 5399 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5400 { 5401 struct task_group *tg; 5402 5403 lockdep_assert_rq_held(rq); 5404 5405 rcu_read_lock(); 5406 list_for_each_entry_rcu(tg, &task_groups, list) { 5407 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5408 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5409 5410 raw_spin_lock(&cfs_b->lock); 5411 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5412 raw_spin_unlock(&cfs_b->lock); 5413 } 5414 rcu_read_unlock(); 5415 } 5416 5417 /* cpu offline callback */ 5418 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5419 { 5420 struct task_group *tg; 5421 5422 lockdep_assert_rq_held(rq); 5423 5424 rcu_read_lock(); 5425 list_for_each_entry_rcu(tg, &task_groups, list) { 5426 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5427 5428 if (!cfs_rq->runtime_enabled) 5429 continue; 5430 5431 /* 5432 * clock_task is not advancing so we just need to make sure 5433 * there's some valid quota amount 5434 */ 5435 cfs_rq->runtime_remaining = 1; 5436 /* 5437 * Offline rq is schedulable till CPU is completely disabled 5438 * in take_cpu_down(), so we prevent new cfs throttling here. 5439 */ 5440 cfs_rq->runtime_enabled = 0; 5441 5442 if (cfs_rq_throttled(cfs_rq)) 5443 unthrottle_cfs_rq(cfs_rq); 5444 } 5445 rcu_read_unlock(); 5446 } 5447 5448 #else /* CONFIG_CFS_BANDWIDTH */ 5449 5450 static inline bool cfs_bandwidth_used(void) 5451 { 5452 return false; 5453 } 5454 5455 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5456 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5457 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5458 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5459 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5460 5461 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5462 { 5463 return 0; 5464 } 5465 5466 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5467 { 5468 return 0; 5469 } 5470 5471 static inline int throttled_lb_pair(struct task_group *tg, 5472 int src_cpu, int dest_cpu) 5473 { 5474 return 0; 5475 } 5476 5477 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5478 5479 #ifdef CONFIG_FAIR_GROUP_SCHED 5480 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5481 #endif 5482 5483 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5484 { 5485 return NULL; 5486 } 5487 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5488 static inline void update_runtime_enabled(struct rq *rq) {} 5489 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5490 5491 #endif /* CONFIG_CFS_BANDWIDTH */ 5492 5493 /************************************************** 5494 * CFS operations on tasks: 5495 */ 5496 5497 #ifdef CONFIG_SCHED_HRTICK 5498 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5499 { 5500 struct sched_entity *se = &p->se; 5501 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5502 5503 SCHED_WARN_ON(task_rq(p) != rq); 5504 5505 if (rq->cfs.h_nr_running > 1) { 5506 u64 slice = sched_slice(cfs_rq, se); 5507 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5508 s64 delta = slice - ran; 5509 5510 if (delta < 0) { 5511 if (task_current(rq, p)) 5512 resched_curr(rq); 5513 return; 5514 } 5515 hrtick_start(rq, delta); 5516 } 5517 } 5518 5519 /* 5520 * called from enqueue/dequeue and updates the hrtick when the 5521 * current task is from our class and nr_running is low enough 5522 * to matter. 5523 */ 5524 static void hrtick_update(struct rq *rq) 5525 { 5526 struct task_struct *curr = rq->curr; 5527 5528 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 5529 return; 5530 5531 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5532 hrtick_start_fair(rq, curr); 5533 } 5534 #else /* !CONFIG_SCHED_HRTICK */ 5535 static inline void 5536 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5537 { 5538 } 5539 5540 static inline void hrtick_update(struct rq *rq) 5541 { 5542 } 5543 #endif 5544 5545 #ifdef CONFIG_SMP 5546 static inline bool cpu_overutilized(int cpu) 5547 { 5548 return !fits_capacity(cpu_util_cfs(cpu), capacity_of(cpu)); 5549 } 5550 5551 static inline void update_overutilized_status(struct rq *rq) 5552 { 5553 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5554 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5555 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5556 } 5557 } 5558 #else 5559 static inline void update_overutilized_status(struct rq *rq) { } 5560 #endif 5561 5562 /* Runqueue only has SCHED_IDLE tasks enqueued */ 5563 static int sched_idle_rq(struct rq *rq) 5564 { 5565 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 5566 rq->nr_running); 5567 } 5568 5569 /* 5570 * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use 5571 * of idle_nr_running, which does not consider idle descendants of normal 5572 * entities. 5573 */ 5574 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq) 5575 { 5576 return cfs_rq->nr_running && 5577 cfs_rq->nr_running == cfs_rq->idle_nr_running; 5578 } 5579 5580 #ifdef CONFIG_SMP 5581 static int sched_idle_cpu(int cpu) 5582 { 5583 return sched_idle_rq(cpu_rq(cpu)); 5584 } 5585 #endif 5586 5587 /* 5588 * The enqueue_task method is called before nr_running is 5589 * increased. Here we update the fair scheduling stats and 5590 * then put the task into the rbtree: 5591 */ 5592 static void 5593 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5594 { 5595 struct cfs_rq *cfs_rq; 5596 struct sched_entity *se = &p->se; 5597 int idle_h_nr_running = task_has_idle_policy(p); 5598 int task_new = !(flags & ENQUEUE_WAKEUP); 5599 5600 /* 5601 * The code below (indirectly) updates schedutil which looks at 5602 * the cfs_rq utilization to select a frequency. 5603 * Let's add the task's estimated utilization to the cfs_rq's 5604 * estimated utilization, before we update schedutil. 5605 */ 5606 util_est_enqueue(&rq->cfs, p); 5607 5608 /* 5609 * If in_iowait is set, the code below may not trigger any cpufreq 5610 * utilization updates, so do it here explicitly with the IOWAIT flag 5611 * passed. 5612 */ 5613 if (p->in_iowait) 5614 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5615 5616 for_each_sched_entity(se) { 5617 if (se->on_rq) 5618 break; 5619 cfs_rq = cfs_rq_of(se); 5620 enqueue_entity(cfs_rq, se, flags); 5621 5622 cfs_rq->h_nr_running++; 5623 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5624 5625 if (cfs_rq_is_idle(cfs_rq)) 5626 idle_h_nr_running = 1; 5627 5628 /* end evaluation on encountering a throttled cfs_rq */ 5629 if (cfs_rq_throttled(cfs_rq)) 5630 goto enqueue_throttle; 5631 5632 flags = ENQUEUE_WAKEUP; 5633 } 5634 5635 for_each_sched_entity(se) { 5636 cfs_rq = cfs_rq_of(se); 5637 5638 update_load_avg(cfs_rq, se, UPDATE_TG); 5639 se_update_runnable(se); 5640 update_cfs_group(se); 5641 5642 cfs_rq->h_nr_running++; 5643 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5644 5645 if (cfs_rq_is_idle(cfs_rq)) 5646 idle_h_nr_running = 1; 5647 5648 /* end evaluation on encountering a throttled cfs_rq */ 5649 if (cfs_rq_throttled(cfs_rq)) 5650 goto enqueue_throttle; 5651 5652 /* 5653 * One parent has been throttled and cfs_rq removed from the 5654 * list. Add it back to not break the leaf list. 5655 */ 5656 if (throttled_hierarchy(cfs_rq)) 5657 list_add_leaf_cfs_rq(cfs_rq); 5658 } 5659 5660 /* At this point se is NULL and we are at root level*/ 5661 add_nr_running(rq, 1); 5662 5663 /* 5664 * Since new tasks are assigned an initial util_avg equal to 5665 * half of the spare capacity of their CPU, tiny tasks have the 5666 * ability to cross the overutilized threshold, which will 5667 * result in the load balancer ruining all the task placement 5668 * done by EAS. As a way to mitigate that effect, do not account 5669 * for the first enqueue operation of new tasks during the 5670 * overutilized flag detection. 5671 * 5672 * A better way of solving this problem would be to wait for 5673 * the PELT signals of tasks to converge before taking them 5674 * into account, but that is not straightforward to implement, 5675 * and the following generally works well enough in practice. 5676 */ 5677 if (!task_new) 5678 update_overutilized_status(rq); 5679 5680 enqueue_throttle: 5681 if (cfs_bandwidth_used()) { 5682 /* 5683 * When bandwidth control is enabled; the cfs_rq_throttled() 5684 * breaks in the above iteration can result in incomplete 5685 * leaf list maintenance, resulting in triggering the assertion 5686 * below. 5687 */ 5688 for_each_sched_entity(se) { 5689 cfs_rq = cfs_rq_of(se); 5690 5691 if (list_add_leaf_cfs_rq(cfs_rq)) 5692 break; 5693 } 5694 } 5695 5696 assert_list_leaf_cfs_rq(rq); 5697 5698 hrtick_update(rq); 5699 } 5700 5701 static void set_next_buddy(struct sched_entity *se); 5702 5703 /* 5704 * The dequeue_task method is called before nr_running is 5705 * decreased. We remove the task from the rbtree and 5706 * update the fair scheduling stats: 5707 */ 5708 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5709 { 5710 struct cfs_rq *cfs_rq; 5711 struct sched_entity *se = &p->se; 5712 int task_sleep = flags & DEQUEUE_SLEEP; 5713 int idle_h_nr_running = task_has_idle_policy(p); 5714 bool was_sched_idle = sched_idle_rq(rq); 5715 5716 util_est_dequeue(&rq->cfs, p); 5717 5718 for_each_sched_entity(se) { 5719 cfs_rq = cfs_rq_of(se); 5720 dequeue_entity(cfs_rq, se, flags); 5721 5722 cfs_rq->h_nr_running--; 5723 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5724 5725 if (cfs_rq_is_idle(cfs_rq)) 5726 idle_h_nr_running = 1; 5727 5728 /* end evaluation on encountering a throttled cfs_rq */ 5729 if (cfs_rq_throttled(cfs_rq)) 5730 goto dequeue_throttle; 5731 5732 /* Don't dequeue parent if it has other entities besides us */ 5733 if (cfs_rq->load.weight) { 5734 /* Avoid re-evaluating load for this entity: */ 5735 se = parent_entity(se); 5736 /* 5737 * Bias pick_next to pick a task from this cfs_rq, as 5738 * p is sleeping when it is within its sched_slice. 5739 */ 5740 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5741 set_next_buddy(se); 5742 break; 5743 } 5744 flags |= DEQUEUE_SLEEP; 5745 } 5746 5747 for_each_sched_entity(se) { 5748 cfs_rq = cfs_rq_of(se); 5749 5750 update_load_avg(cfs_rq, se, UPDATE_TG); 5751 se_update_runnable(se); 5752 update_cfs_group(se); 5753 5754 cfs_rq->h_nr_running--; 5755 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5756 5757 if (cfs_rq_is_idle(cfs_rq)) 5758 idle_h_nr_running = 1; 5759 5760 /* end evaluation on encountering a throttled cfs_rq */ 5761 if (cfs_rq_throttled(cfs_rq)) 5762 goto dequeue_throttle; 5763 5764 } 5765 5766 /* At this point se is NULL and we are at root level*/ 5767 sub_nr_running(rq, 1); 5768 5769 /* balance early to pull high priority tasks */ 5770 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 5771 rq->next_balance = jiffies; 5772 5773 dequeue_throttle: 5774 util_est_update(&rq->cfs, p, task_sleep); 5775 hrtick_update(rq); 5776 } 5777 5778 #ifdef CONFIG_SMP 5779 5780 /* Working cpumask for: load_balance, load_balance_newidle. */ 5781 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5782 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5783 5784 #ifdef CONFIG_NO_HZ_COMMON 5785 5786 static struct { 5787 cpumask_var_t idle_cpus_mask; 5788 atomic_t nr_cpus; 5789 int has_blocked; /* Idle CPUS has blocked load */ 5790 int needs_update; /* Newly idle CPUs need their next_balance collated */ 5791 unsigned long next_balance; /* in jiffy units */ 5792 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5793 } nohz ____cacheline_aligned; 5794 5795 #endif /* CONFIG_NO_HZ_COMMON */ 5796 5797 static unsigned long cpu_load(struct rq *rq) 5798 { 5799 return cfs_rq_load_avg(&rq->cfs); 5800 } 5801 5802 /* 5803 * cpu_load_without - compute CPU load without any contributions from *p 5804 * @cpu: the CPU which load is requested 5805 * @p: the task which load should be discounted 5806 * 5807 * The load of a CPU is defined by the load of tasks currently enqueued on that 5808 * CPU as well as tasks which are currently sleeping after an execution on that 5809 * CPU. 5810 * 5811 * This method returns the load of the specified CPU by discounting the load of 5812 * the specified task, whenever the task is currently contributing to the CPU 5813 * load. 5814 */ 5815 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 5816 { 5817 struct cfs_rq *cfs_rq; 5818 unsigned int load; 5819 5820 /* Task has no contribution or is new */ 5821 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5822 return cpu_load(rq); 5823 5824 cfs_rq = &rq->cfs; 5825 load = READ_ONCE(cfs_rq->avg.load_avg); 5826 5827 /* Discount task's util from CPU's util */ 5828 lsub_positive(&load, task_h_load(p)); 5829 5830 return load; 5831 } 5832 5833 static unsigned long cpu_runnable(struct rq *rq) 5834 { 5835 return cfs_rq_runnable_avg(&rq->cfs); 5836 } 5837 5838 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 5839 { 5840 struct cfs_rq *cfs_rq; 5841 unsigned int runnable; 5842 5843 /* Task has no contribution or is new */ 5844 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5845 return cpu_runnable(rq); 5846 5847 cfs_rq = &rq->cfs; 5848 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 5849 5850 /* Discount task's runnable from CPU's runnable */ 5851 lsub_positive(&runnable, p->se.avg.runnable_avg); 5852 5853 return runnable; 5854 } 5855 5856 static unsigned long capacity_of(int cpu) 5857 { 5858 return cpu_rq(cpu)->cpu_capacity; 5859 } 5860 5861 static void record_wakee(struct task_struct *p) 5862 { 5863 /* 5864 * Only decay a single time; tasks that have less then 1 wakeup per 5865 * jiffy will not have built up many flips. 5866 */ 5867 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5868 current->wakee_flips >>= 1; 5869 current->wakee_flip_decay_ts = jiffies; 5870 } 5871 5872 if (current->last_wakee != p) { 5873 current->last_wakee = p; 5874 current->wakee_flips++; 5875 } 5876 } 5877 5878 /* 5879 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5880 * 5881 * A waker of many should wake a different task than the one last awakened 5882 * at a frequency roughly N times higher than one of its wakees. 5883 * 5884 * In order to determine whether we should let the load spread vs consolidating 5885 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5886 * partner, and a factor of lls_size higher frequency in the other. 5887 * 5888 * With both conditions met, we can be relatively sure that the relationship is 5889 * non-monogamous, with partner count exceeding socket size. 5890 * 5891 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5892 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5893 * socket size. 5894 */ 5895 static int wake_wide(struct task_struct *p) 5896 { 5897 unsigned int master = current->wakee_flips; 5898 unsigned int slave = p->wakee_flips; 5899 int factor = __this_cpu_read(sd_llc_size); 5900 5901 if (master < slave) 5902 swap(master, slave); 5903 if (slave < factor || master < slave * factor) 5904 return 0; 5905 return 1; 5906 } 5907 5908 /* 5909 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5910 * soonest. For the purpose of speed we only consider the waking and previous 5911 * CPU. 5912 * 5913 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5914 * cache-affine and is (or will be) idle. 5915 * 5916 * wake_affine_weight() - considers the weight to reflect the average 5917 * scheduling latency of the CPUs. This seems to work 5918 * for the overloaded case. 5919 */ 5920 static int 5921 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5922 { 5923 /* 5924 * If this_cpu is idle, it implies the wakeup is from interrupt 5925 * context. Only allow the move if cache is shared. Otherwise an 5926 * interrupt intensive workload could force all tasks onto one 5927 * node depending on the IO topology or IRQ affinity settings. 5928 * 5929 * If the prev_cpu is idle and cache affine then avoid a migration. 5930 * There is no guarantee that the cache hot data from an interrupt 5931 * is more important than cache hot data on the prev_cpu and from 5932 * a cpufreq perspective, it's better to have higher utilisation 5933 * on one CPU. 5934 */ 5935 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5936 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5937 5938 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5939 return this_cpu; 5940 5941 if (available_idle_cpu(prev_cpu)) 5942 return prev_cpu; 5943 5944 return nr_cpumask_bits; 5945 } 5946 5947 static int 5948 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5949 int this_cpu, int prev_cpu, int sync) 5950 { 5951 s64 this_eff_load, prev_eff_load; 5952 unsigned long task_load; 5953 5954 this_eff_load = cpu_load(cpu_rq(this_cpu)); 5955 5956 if (sync) { 5957 unsigned long current_load = task_h_load(current); 5958 5959 if (current_load > this_eff_load) 5960 return this_cpu; 5961 5962 this_eff_load -= current_load; 5963 } 5964 5965 task_load = task_h_load(p); 5966 5967 this_eff_load += task_load; 5968 if (sched_feat(WA_BIAS)) 5969 this_eff_load *= 100; 5970 this_eff_load *= capacity_of(prev_cpu); 5971 5972 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 5973 prev_eff_load -= task_load; 5974 if (sched_feat(WA_BIAS)) 5975 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5976 prev_eff_load *= capacity_of(this_cpu); 5977 5978 /* 5979 * If sync, adjust the weight of prev_eff_load such that if 5980 * prev_eff == this_eff that select_idle_sibling() will consider 5981 * stacking the wakee on top of the waker if no other CPU is 5982 * idle. 5983 */ 5984 if (sync) 5985 prev_eff_load += 1; 5986 5987 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5988 } 5989 5990 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5991 int this_cpu, int prev_cpu, int sync) 5992 { 5993 int target = nr_cpumask_bits; 5994 5995 if (sched_feat(WA_IDLE)) 5996 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5997 5998 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5999 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 6000 6001 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 6002 if (target == nr_cpumask_bits) 6003 return prev_cpu; 6004 6005 schedstat_inc(sd->ttwu_move_affine); 6006 schedstat_inc(p->stats.nr_wakeups_affine); 6007 return target; 6008 } 6009 6010 static struct sched_group * 6011 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 6012 6013 /* 6014 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 6015 */ 6016 static int 6017 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 6018 { 6019 unsigned long load, min_load = ULONG_MAX; 6020 unsigned int min_exit_latency = UINT_MAX; 6021 u64 latest_idle_timestamp = 0; 6022 int least_loaded_cpu = this_cpu; 6023 int shallowest_idle_cpu = -1; 6024 int i; 6025 6026 /* Check if we have any choice: */ 6027 if (group->group_weight == 1) 6028 return cpumask_first(sched_group_span(group)); 6029 6030 /* Traverse only the allowed CPUs */ 6031 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 6032 struct rq *rq = cpu_rq(i); 6033 6034 if (!sched_core_cookie_match(rq, p)) 6035 continue; 6036 6037 if (sched_idle_cpu(i)) 6038 return i; 6039 6040 if (available_idle_cpu(i)) { 6041 struct cpuidle_state *idle = idle_get_state(rq); 6042 if (idle && idle->exit_latency < min_exit_latency) { 6043 /* 6044 * We give priority to a CPU whose idle state 6045 * has the smallest exit latency irrespective 6046 * of any idle timestamp. 6047 */ 6048 min_exit_latency = idle->exit_latency; 6049 latest_idle_timestamp = rq->idle_stamp; 6050 shallowest_idle_cpu = i; 6051 } else if ((!idle || idle->exit_latency == min_exit_latency) && 6052 rq->idle_stamp > latest_idle_timestamp) { 6053 /* 6054 * If equal or no active idle state, then 6055 * the most recently idled CPU might have 6056 * a warmer cache. 6057 */ 6058 latest_idle_timestamp = rq->idle_stamp; 6059 shallowest_idle_cpu = i; 6060 } 6061 } else if (shallowest_idle_cpu == -1) { 6062 load = cpu_load(cpu_rq(i)); 6063 if (load < min_load) { 6064 min_load = load; 6065 least_loaded_cpu = i; 6066 } 6067 } 6068 } 6069 6070 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 6071 } 6072 6073 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 6074 int cpu, int prev_cpu, int sd_flag) 6075 { 6076 int new_cpu = cpu; 6077 6078 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 6079 return prev_cpu; 6080 6081 /* 6082 * We need task's util for cpu_util_without, sync it up to 6083 * prev_cpu's last_update_time. 6084 */ 6085 if (!(sd_flag & SD_BALANCE_FORK)) 6086 sync_entity_load_avg(&p->se); 6087 6088 while (sd) { 6089 struct sched_group *group; 6090 struct sched_domain *tmp; 6091 int weight; 6092 6093 if (!(sd->flags & sd_flag)) { 6094 sd = sd->child; 6095 continue; 6096 } 6097 6098 group = find_idlest_group(sd, p, cpu); 6099 if (!group) { 6100 sd = sd->child; 6101 continue; 6102 } 6103 6104 new_cpu = find_idlest_group_cpu(group, p, cpu); 6105 if (new_cpu == cpu) { 6106 /* Now try balancing at a lower domain level of 'cpu': */ 6107 sd = sd->child; 6108 continue; 6109 } 6110 6111 /* Now try balancing at a lower domain level of 'new_cpu': */ 6112 cpu = new_cpu; 6113 weight = sd->span_weight; 6114 sd = NULL; 6115 for_each_domain(cpu, tmp) { 6116 if (weight <= tmp->span_weight) 6117 break; 6118 if (tmp->flags & sd_flag) 6119 sd = tmp; 6120 } 6121 } 6122 6123 return new_cpu; 6124 } 6125 6126 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 6127 { 6128 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 6129 sched_cpu_cookie_match(cpu_rq(cpu), p)) 6130 return cpu; 6131 6132 return -1; 6133 } 6134 6135 #ifdef CONFIG_SCHED_SMT 6136 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6137 EXPORT_SYMBOL_GPL(sched_smt_present); 6138 6139 static inline void set_idle_cores(int cpu, int val) 6140 { 6141 struct sched_domain_shared *sds; 6142 6143 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6144 if (sds) 6145 WRITE_ONCE(sds->has_idle_cores, val); 6146 } 6147 6148 static inline bool test_idle_cores(int cpu, bool def) 6149 { 6150 struct sched_domain_shared *sds; 6151 6152 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6153 if (sds) 6154 return READ_ONCE(sds->has_idle_cores); 6155 6156 return def; 6157 } 6158 6159 /* 6160 * Scans the local SMT mask to see if the entire core is idle, and records this 6161 * information in sd_llc_shared->has_idle_cores. 6162 * 6163 * Since SMT siblings share all cache levels, inspecting this limited remote 6164 * state should be fairly cheap. 6165 */ 6166 void __update_idle_core(struct rq *rq) 6167 { 6168 int core = cpu_of(rq); 6169 int cpu; 6170 6171 rcu_read_lock(); 6172 if (test_idle_cores(core, true)) 6173 goto unlock; 6174 6175 for_each_cpu(cpu, cpu_smt_mask(core)) { 6176 if (cpu == core) 6177 continue; 6178 6179 if (!available_idle_cpu(cpu)) 6180 goto unlock; 6181 } 6182 6183 set_idle_cores(core, 1); 6184 unlock: 6185 rcu_read_unlock(); 6186 } 6187 6188 /* 6189 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6190 * there are no idle cores left in the system; tracked through 6191 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6192 */ 6193 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6194 { 6195 bool idle = true; 6196 int cpu; 6197 6198 if (!static_branch_likely(&sched_smt_present)) 6199 return __select_idle_cpu(core, p); 6200 6201 for_each_cpu(cpu, cpu_smt_mask(core)) { 6202 if (!available_idle_cpu(cpu)) { 6203 idle = false; 6204 if (*idle_cpu == -1) { 6205 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 6206 *idle_cpu = cpu; 6207 break; 6208 } 6209 continue; 6210 } 6211 break; 6212 } 6213 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 6214 *idle_cpu = cpu; 6215 } 6216 6217 if (idle) 6218 return core; 6219 6220 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 6221 return -1; 6222 } 6223 6224 /* 6225 * Scan the local SMT mask for idle CPUs. 6226 */ 6227 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6228 { 6229 int cpu; 6230 6231 for_each_cpu(cpu, cpu_smt_mask(target)) { 6232 if (!cpumask_test_cpu(cpu, p->cpus_ptr) || 6233 !cpumask_test_cpu(cpu, sched_domain_span(sd))) 6234 continue; 6235 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6236 return cpu; 6237 } 6238 6239 return -1; 6240 } 6241 6242 #else /* CONFIG_SCHED_SMT */ 6243 6244 static inline void set_idle_cores(int cpu, int val) 6245 { 6246 } 6247 6248 static inline bool test_idle_cores(int cpu, bool def) 6249 { 6250 return def; 6251 } 6252 6253 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6254 { 6255 return __select_idle_cpu(core, p); 6256 } 6257 6258 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6259 { 6260 return -1; 6261 } 6262 6263 #endif /* CONFIG_SCHED_SMT */ 6264 6265 /* 6266 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6267 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6268 * average idle time for this rq (as found in rq->avg_idle). 6269 */ 6270 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 6271 { 6272 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6273 int i, cpu, idle_cpu = -1, nr = INT_MAX; 6274 struct rq *this_rq = this_rq(); 6275 int this = smp_processor_id(); 6276 struct sched_domain *this_sd; 6277 u64 time = 0; 6278 6279 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6280 if (!this_sd) 6281 return -1; 6282 6283 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6284 6285 if (sched_feat(SIS_PROP) && !has_idle_core) { 6286 u64 avg_cost, avg_idle, span_avg; 6287 unsigned long now = jiffies; 6288 6289 /* 6290 * If we're busy, the assumption that the last idle period 6291 * predicts the future is flawed; age away the remaining 6292 * predicted idle time. 6293 */ 6294 if (unlikely(this_rq->wake_stamp < now)) { 6295 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) { 6296 this_rq->wake_stamp++; 6297 this_rq->wake_avg_idle >>= 1; 6298 } 6299 } 6300 6301 avg_idle = this_rq->wake_avg_idle; 6302 avg_cost = this_sd->avg_scan_cost + 1; 6303 6304 span_avg = sd->span_weight * avg_idle; 6305 if (span_avg > 4*avg_cost) 6306 nr = div_u64(span_avg, avg_cost); 6307 else 6308 nr = 4; 6309 6310 time = cpu_clock(this); 6311 } 6312 6313 for_each_cpu_wrap(cpu, cpus, target + 1) { 6314 if (has_idle_core) { 6315 i = select_idle_core(p, cpu, cpus, &idle_cpu); 6316 if ((unsigned int)i < nr_cpumask_bits) 6317 return i; 6318 6319 } else { 6320 if (!--nr) 6321 return -1; 6322 idle_cpu = __select_idle_cpu(cpu, p); 6323 if ((unsigned int)idle_cpu < nr_cpumask_bits) 6324 break; 6325 } 6326 } 6327 6328 if (has_idle_core) 6329 set_idle_cores(target, false); 6330 6331 if (sched_feat(SIS_PROP) && !has_idle_core) { 6332 time = cpu_clock(this) - time; 6333 6334 /* 6335 * Account for the scan cost of wakeups against the average 6336 * idle time. 6337 */ 6338 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time); 6339 6340 update_avg(&this_sd->avg_scan_cost, time); 6341 } 6342 6343 return idle_cpu; 6344 } 6345 6346 /* 6347 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 6348 * the task fits. If no CPU is big enough, but there are idle ones, try to 6349 * maximize capacity. 6350 */ 6351 static int 6352 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 6353 { 6354 unsigned long task_util, best_cap = 0; 6355 int cpu, best_cpu = -1; 6356 struct cpumask *cpus; 6357 6358 cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6359 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6360 6361 task_util = uclamp_task_util(p); 6362 6363 for_each_cpu_wrap(cpu, cpus, target) { 6364 unsigned long cpu_cap = capacity_of(cpu); 6365 6366 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 6367 continue; 6368 if (fits_capacity(task_util, cpu_cap)) 6369 return cpu; 6370 6371 if (cpu_cap > best_cap) { 6372 best_cap = cpu_cap; 6373 best_cpu = cpu; 6374 } 6375 } 6376 6377 return best_cpu; 6378 } 6379 6380 static inline bool asym_fits_capacity(unsigned long task_util, int cpu) 6381 { 6382 if (static_branch_unlikely(&sched_asym_cpucapacity)) 6383 return fits_capacity(task_util, capacity_of(cpu)); 6384 6385 return true; 6386 } 6387 6388 /* 6389 * Try and locate an idle core/thread in the LLC cache domain. 6390 */ 6391 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6392 { 6393 bool has_idle_core = false; 6394 struct sched_domain *sd; 6395 unsigned long task_util; 6396 int i, recent_used_cpu; 6397 6398 /* 6399 * On asymmetric system, update task utilization because we will check 6400 * that the task fits with cpu's capacity. 6401 */ 6402 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6403 sync_entity_load_avg(&p->se); 6404 task_util = uclamp_task_util(p); 6405 } 6406 6407 /* 6408 * per-cpu select_idle_mask usage 6409 */ 6410 lockdep_assert_irqs_disabled(); 6411 6412 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 6413 asym_fits_capacity(task_util, target)) 6414 return target; 6415 6416 /* 6417 * If the previous CPU is cache affine and idle, don't be stupid: 6418 */ 6419 if (prev != target && cpus_share_cache(prev, target) && 6420 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 6421 asym_fits_capacity(task_util, prev)) 6422 return prev; 6423 6424 /* 6425 * Allow a per-cpu kthread to stack with the wakee if the 6426 * kworker thread and the tasks previous CPUs are the same. 6427 * The assumption is that the wakee queued work for the 6428 * per-cpu kthread that is now complete and the wakeup is 6429 * essentially a sync wakeup. An obvious example of this 6430 * pattern is IO completions. 6431 */ 6432 if (is_per_cpu_kthread(current) && 6433 in_task() && 6434 prev == smp_processor_id() && 6435 this_rq()->nr_running <= 1 && 6436 asym_fits_capacity(task_util, prev)) { 6437 return prev; 6438 } 6439 6440 /* Check a recently used CPU as a potential idle candidate: */ 6441 recent_used_cpu = p->recent_used_cpu; 6442 p->recent_used_cpu = prev; 6443 if (recent_used_cpu != prev && 6444 recent_used_cpu != target && 6445 cpus_share_cache(recent_used_cpu, target) && 6446 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 6447 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) && 6448 asym_fits_capacity(task_util, recent_used_cpu)) { 6449 return recent_used_cpu; 6450 } 6451 6452 /* 6453 * For asymmetric CPU capacity systems, our domain of interest is 6454 * sd_asym_cpucapacity rather than sd_llc. 6455 */ 6456 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6457 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 6458 /* 6459 * On an asymmetric CPU capacity system where an exclusive 6460 * cpuset defines a symmetric island (i.e. one unique 6461 * capacity_orig value through the cpuset), the key will be set 6462 * but the CPUs within that cpuset will not have a domain with 6463 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 6464 * capacity path. 6465 */ 6466 if (sd) { 6467 i = select_idle_capacity(p, sd, target); 6468 return ((unsigned)i < nr_cpumask_bits) ? i : target; 6469 } 6470 } 6471 6472 sd = rcu_dereference(per_cpu(sd_llc, target)); 6473 if (!sd) 6474 return target; 6475 6476 if (sched_smt_active()) { 6477 has_idle_core = test_idle_cores(target, false); 6478 6479 if (!has_idle_core && cpus_share_cache(prev, target)) { 6480 i = select_idle_smt(p, sd, prev); 6481 if ((unsigned int)i < nr_cpumask_bits) 6482 return i; 6483 } 6484 } 6485 6486 i = select_idle_cpu(p, sd, has_idle_core, target); 6487 if ((unsigned)i < nr_cpumask_bits) 6488 return i; 6489 6490 return target; 6491 } 6492 6493 /* 6494 * cpu_util_without: compute cpu utilization without any contributions from *p 6495 * @cpu: the CPU which utilization is requested 6496 * @p: the task which utilization should be discounted 6497 * 6498 * The utilization of a CPU is defined by the utilization of tasks currently 6499 * enqueued on that CPU as well as tasks which are currently sleeping after an 6500 * execution on that CPU. 6501 * 6502 * This method returns the utilization of the specified CPU by discounting the 6503 * utilization of the specified task, whenever the task is currently 6504 * contributing to the CPU utilization. 6505 */ 6506 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6507 { 6508 struct cfs_rq *cfs_rq; 6509 unsigned int util; 6510 6511 /* Task has no contribution or is new */ 6512 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6513 return cpu_util_cfs(cpu); 6514 6515 cfs_rq = &cpu_rq(cpu)->cfs; 6516 util = READ_ONCE(cfs_rq->avg.util_avg); 6517 6518 /* Discount task's util from CPU's util */ 6519 lsub_positive(&util, task_util(p)); 6520 6521 /* 6522 * Covered cases: 6523 * 6524 * a) if *p is the only task sleeping on this CPU, then: 6525 * cpu_util (== task_util) > util_est (== 0) 6526 * and thus we return: 6527 * cpu_util_without = (cpu_util - task_util) = 0 6528 * 6529 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6530 * IDLE, then: 6531 * cpu_util >= task_util 6532 * cpu_util > util_est (== 0) 6533 * and thus we discount *p's blocked utilization to return: 6534 * cpu_util_without = (cpu_util - task_util) >= 0 6535 * 6536 * c) if other tasks are RUNNABLE on that CPU and 6537 * util_est > cpu_util 6538 * then we use util_est since it returns a more restrictive 6539 * estimation of the spare capacity on that CPU, by just 6540 * considering the expected utilization of tasks already 6541 * runnable on that CPU. 6542 * 6543 * Cases a) and b) are covered by the above code, while case c) is 6544 * covered by the following code when estimated utilization is 6545 * enabled. 6546 */ 6547 if (sched_feat(UTIL_EST)) { 6548 unsigned int estimated = 6549 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6550 6551 /* 6552 * Despite the following checks we still have a small window 6553 * for a possible race, when an execl's select_task_rq_fair() 6554 * races with LB's detach_task(): 6555 * 6556 * detach_task() 6557 * p->on_rq = TASK_ON_RQ_MIGRATING; 6558 * ---------------------------------- A 6559 * deactivate_task() \ 6560 * dequeue_task() + RaceTime 6561 * util_est_dequeue() / 6562 * ---------------------------------- B 6563 * 6564 * The additional check on "current == p" it's required to 6565 * properly fix the execl regression and it helps in further 6566 * reducing the chances for the above race. 6567 */ 6568 if (unlikely(task_on_rq_queued(p) || current == p)) 6569 lsub_positive(&estimated, _task_util_est(p)); 6570 6571 util = max(util, estimated); 6572 } 6573 6574 /* 6575 * Utilization (estimated) can exceed the CPU capacity, thus let's 6576 * clamp to the maximum CPU capacity to ensure consistency with 6577 * cpu_util. 6578 */ 6579 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6580 } 6581 6582 /* 6583 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) 6584 * to @dst_cpu. 6585 */ 6586 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6587 { 6588 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6589 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); 6590 6591 /* 6592 * If @p migrates from @cpu to another, remove its contribution. Or, 6593 * if @p migrates from another CPU to @cpu, add its contribution. In 6594 * the other cases, @cpu is not impacted by the migration, so the 6595 * util_avg should already be correct. 6596 */ 6597 if (task_cpu(p) == cpu && dst_cpu != cpu) 6598 lsub_positive(&util, task_util(p)); 6599 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6600 util += task_util(p); 6601 6602 if (sched_feat(UTIL_EST)) { 6603 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6604 6605 /* 6606 * During wake-up, the task isn't enqueued yet and doesn't 6607 * appear in the cfs_rq->avg.util_est.enqueued of any rq, 6608 * so just add it (if needed) to "simulate" what will be 6609 * cpu_util after the task has been enqueued. 6610 */ 6611 if (dst_cpu == cpu) 6612 util_est += _task_util_est(p); 6613 6614 util = max(util, util_est); 6615 } 6616 6617 return min(util, capacity_orig_of(cpu)); 6618 } 6619 6620 /* 6621 * compute_energy(): Estimates the energy that @pd would consume if @p was 6622 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6623 * landscape of @pd's CPUs after the task migration, and uses the Energy Model 6624 * to compute what would be the energy if we decided to actually migrate that 6625 * task. 6626 */ 6627 static long 6628 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6629 { 6630 struct cpumask *pd_mask = perf_domain_span(pd); 6631 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask)); 6632 unsigned long max_util = 0, sum_util = 0; 6633 unsigned long _cpu_cap = cpu_cap; 6634 int cpu; 6635 6636 _cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask)); 6637 6638 /* 6639 * The capacity state of CPUs of the current rd can be driven by CPUs 6640 * of another rd if they belong to the same pd. So, account for the 6641 * utilization of these CPUs too by masking pd with cpu_online_mask 6642 * instead of the rd span. 6643 * 6644 * If an entire pd is outside of the current rd, it will not appear in 6645 * its pd list and will not be accounted by compute_energy(). 6646 */ 6647 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) { 6648 unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu); 6649 unsigned long cpu_util, util_running = util_freq; 6650 struct task_struct *tsk = NULL; 6651 6652 /* 6653 * When @p is placed on @cpu: 6654 * 6655 * util_running = max(cpu_util, cpu_util_est) + 6656 * max(task_util, _task_util_est) 6657 * 6658 * while cpu_util_next is: max(cpu_util + task_util, 6659 * cpu_util_est + _task_util_est) 6660 */ 6661 if (cpu == dst_cpu) { 6662 tsk = p; 6663 util_running = 6664 cpu_util_next(cpu, p, -1) + task_util_est(p); 6665 } 6666 6667 /* 6668 * Busy time computation: utilization clamping is not 6669 * required since the ratio (sum_util / cpu_capacity) 6670 * is already enough to scale the EM reported power 6671 * consumption at the (eventually clamped) cpu_capacity. 6672 */ 6673 cpu_util = effective_cpu_util(cpu, util_running, cpu_cap, 6674 ENERGY_UTIL, NULL); 6675 6676 sum_util += min(cpu_util, _cpu_cap); 6677 6678 /* 6679 * Performance domain frequency: utilization clamping 6680 * must be considered since it affects the selection 6681 * of the performance domain frequency. 6682 * NOTE: in case RT tasks are running, by default the 6683 * FREQUENCY_UTIL's utilization can be max OPP. 6684 */ 6685 cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap, 6686 FREQUENCY_UTIL, tsk); 6687 max_util = max(max_util, min(cpu_util, _cpu_cap)); 6688 } 6689 6690 return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap); 6691 } 6692 6693 /* 6694 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6695 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6696 * spare capacity in each performance domain and uses it as a potential 6697 * candidate to execute the task. Then, it uses the Energy Model to figure 6698 * out which of the CPU candidates is the most energy-efficient. 6699 * 6700 * The rationale for this heuristic is as follows. In a performance domain, 6701 * all the most energy efficient CPU candidates (according to the Energy 6702 * Model) are those for which we'll request a low frequency. When there are 6703 * several CPUs for which the frequency request will be the same, we don't 6704 * have enough data to break the tie between them, because the Energy Model 6705 * only includes active power costs. With this model, if we assume that 6706 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6707 * the maximum spare capacity in a performance domain is guaranteed to be among 6708 * the best candidates of the performance domain. 6709 * 6710 * In practice, it could be preferable from an energy standpoint to pack 6711 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6712 * but that could also hurt our chances to go cluster idle, and we have no 6713 * ways to tell with the current Energy Model if this is actually a good 6714 * idea or not. So, find_energy_efficient_cpu() basically favors 6715 * cluster-packing, and spreading inside a cluster. That should at least be 6716 * a good thing for latency, and this is consistent with the idea that most 6717 * of the energy savings of EAS come from the asymmetry of the system, and 6718 * not so much from breaking the tie between identical CPUs. That's also the 6719 * reason why EAS is enabled in the topology code only for systems where 6720 * SD_ASYM_CPUCAPACITY is set. 6721 * 6722 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6723 * they don't have any useful utilization data yet and it's not possible to 6724 * forecast their impact on energy consumption. Consequently, they will be 6725 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6726 * to be energy-inefficient in some use-cases. The alternative would be to 6727 * bias new tasks towards specific types of CPUs first, or to try to infer 6728 * their util_avg from the parent task, but those heuristics could hurt 6729 * other use-cases too. So, until someone finds a better way to solve this, 6730 * let's keep things simple by re-using the existing slow path. 6731 */ 6732 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6733 { 6734 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 6735 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6736 int cpu, best_energy_cpu = prev_cpu, target = -1; 6737 unsigned long cpu_cap, util, base_energy = 0; 6738 struct sched_domain *sd; 6739 struct perf_domain *pd; 6740 6741 rcu_read_lock(); 6742 pd = rcu_dereference(rd->pd); 6743 if (!pd || READ_ONCE(rd->overutilized)) 6744 goto unlock; 6745 6746 /* 6747 * Energy-aware wake-up happens on the lowest sched_domain starting 6748 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6749 */ 6750 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6751 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6752 sd = sd->parent; 6753 if (!sd) 6754 goto unlock; 6755 6756 target = prev_cpu; 6757 6758 sync_entity_load_avg(&p->se); 6759 if (!task_util_est(p)) 6760 goto unlock; 6761 6762 for (; pd; pd = pd->next) { 6763 unsigned long cur_delta, spare_cap, max_spare_cap = 0; 6764 bool compute_prev_delta = false; 6765 unsigned long base_energy_pd; 6766 int max_spare_cap_cpu = -1; 6767 6768 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6769 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6770 continue; 6771 6772 util = cpu_util_next(cpu, p, cpu); 6773 cpu_cap = capacity_of(cpu); 6774 spare_cap = cpu_cap; 6775 lsub_positive(&spare_cap, util); 6776 6777 /* 6778 * Skip CPUs that cannot satisfy the capacity request. 6779 * IOW, placing the task there would make the CPU 6780 * overutilized. Take uclamp into account to see how 6781 * much capacity we can get out of the CPU; this is 6782 * aligned with sched_cpu_util(). 6783 */ 6784 util = uclamp_rq_util_with(cpu_rq(cpu), util, p); 6785 if (!fits_capacity(util, cpu_cap)) 6786 continue; 6787 6788 if (cpu == prev_cpu) { 6789 /* Always use prev_cpu as a candidate. */ 6790 compute_prev_delta = true; 6791 } else if (spare_cap > max_spare_cap) { 6792 /* 6793 * Find the CPU with the maximum spare capacity 6794 * in the performance domain. 6795 */ 6796 max_spare_cap = spare_cap; 6797 max_spare_cap_cpu = cpu; 6798 } 6799 } 6800 6801 if (max_spare_cap_cpu < 0 && !compute_prev_delta) 6802 continue; 6803 6804 /* Compute the 'base' energy of the pd, without @p */ 6805 base_energy_pd = compute_energy(p, -1, pd); 6806 base_energy += base_energy_pd; 6807 6808 /* Evaluate the energy impact of using prev_cpu. */ 6809 if (compute_prev_delta) { 6810 prev_delta = compute_energy(p, prev_cpu, pd); 6811 if (prev_delta < base_energy_pd) 6812 goto unlock; 6813 prev_delta -= base_energy_pd; 6814 best_delta = min(best_delta, prev_delta); 6815 } 6816 6817 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 6818 if (max_spare_cap_cpu >= 0) { 6819 cur_delta = compute_energy(p, max_spare_cap_cpu, pd); 6820 if (cur_delta < base_energy_pd) 6821 goto unlock; 6822 cur_delta -= base_energy_pd; 6823 if (cur_delta < best_delta) { 6824 best_delta = cur_delta; 6825 best_energy_cpu = max_spare_cap_cpu; 6826 } 6827 } 6828 } 6829 rcu_read_unlock(); 6830 6831 /* 6832 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6833 * least 6% of the energy used by prev_cpu. 6834 */ 6835 if ((prev_delta == ULONG_MAX) || 6836 (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4)) 6837 target = best_energy_cpu; 6838 6839 return target; 6840 6841 unlock: 6842 rcu_read_unlock(); 6843 6844 return target; 6845 } 6846 6847 /* 6848 * select_task_rq_fair: Select target runqueue for the waking task in domains 6849 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 6850 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6851 * 6852 * Balances load by selecting the idlest CPU in the idlest group, or under 6853 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6854 * 6855 * Returns the target CPU number. 6856 */ 6857 static int 6858 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 6859 { 6860 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6861 struct sched_domain *tmp, *sd = NULL; 6862 int cpu = smp_processor_id(); 6863 int new_cpu = prev_cpu; 6864 int want_affine = 0; 6865 /* SD_flags and WF_flags share the first nibble */ 6866 int sd_flag = wake_flags & 0xF; 6867 6868 /* 6869 * required for stable ->cpus_allowed 6870 */ 6871 lockdep_assert_held(&p->pi_lock); 6872 if (wake_flags & WF_TTWU) { 6873 record_wakee(p); 6874 6875 if (sched_energy_enabled()) { 6876 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6877 if (new_cpu >= 0) 6878 return new_cpu; 6879 new_cpu = prev_cpu; 6880 } 6881 6882 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 6883 } 6884 6885 rcu_read_lock(); 6886 for_each_domain(cpu, tmp) { 6887 /* 6888 * If both 'cpu' and 'prev_cpu' are part of this domain, 6889 * cpu is a valid SD_WAKE_AFFINE target. 6890 */ 6891 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6892 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6893 if (cpu != prev_cpu) 6894 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6895 6896 sd = NULL; /* Prefer wake_affine over balance flags */ 6897 break; 6898 } 6899 6900 /* 6901 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 6902 * usually do not have SD_BALANCE_WAKE set. That means wakeup 6903 * will usually go to the fast path. 6904 */ 6905 if (tmp->flags & sd_flag) 6906 sd = tmp; 6907 else if (!want_affine) 6908 break; 6909 } 6910 6911 if (unlikely(sd)) { 6912 /* Slow path */ 6913 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6914 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 6915 /* Fast path */ 6916 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6917 } 6918 rcu_read_unlock(); 6919 6920 return new_cpu; 6921 } 6922 6923 static void detach_entity_cfs_rq(struct sched_entity *se); 6924 6925 /* 6926 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6927 * cfs_rq_of(p) references at time of call are still valid and identify the 6928 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6929 */ 6930 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6931 { 6932 /* 6933 * As blocked tasks retain absolute vruntime the migration needs to 6934 * deal with this by subtracting the old and adding the new 6935 * min_vruntime -- the latter is done by enqueue_entity() when placing 6936 * the task on the new runqueue. 6937 */ 6938 if (READ_ONCE(p->__state) == TASK_WAKING) { 6939 struct sched_entity *se = &p->se; 6940 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6941 u64 min_vruntime; 6942 6943 #ifndef CONFIG_64BIT 6944 u64 min_vruntime_copy; 6945 6946 do { 6947 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6948 smp_rmb(); 6949 min_vruntime = cfs_rq->min_vruntime; 6950 } while (min_vruntime != min_vruntime_copy); 6951 #else 6952 min_vruntime = cfs_rq->min_vruntime; 6953 #endif 6954 6955 se->vruntime -= min_vruntime; 6956 } 6957 6958 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6959 /* 6960 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6961 * rq->lock and can modify state directly. 6962 */ 6963 lockdep_assert_rq_held(task_rq(p)); 6964 detach_entity_cfs_rq(&p->se); 6965 6966 } else { 6967 /* 6968 * We are supposed to update the task to "current" time, then 6969 * its up to date and ready to go to new CPU/cfs_rq. But we 6970 * have difficulty in getting what current time is, so simply 6971 * throw away the out-of-date time. This will result in the 6972 * wakee task is less decayed, but giving the wakee more load 6973 * sounds not bad. 6974 */ 6975 remove_entity_load_avg(&p->se); 6976 } 6977 6978 /* Tell new CPU we are migrated */ 6979 p->se.avg.last_update_time = 0; 6980 6981 /* We have migrated, no longer consider this task hot */ 6982 p->se.exec_start = 0; 6983 6984 update_scan_period(p, new_cpu); 6985 } 6986 6987 static void task_dead_fair(struct task_struct *p) 6988 { 6989 remove_entity_load_avg(&p->se); 6990 } 6991 6992 static int 6993 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6994 { 6995 if (rq->nr_running) 6996 return 1; 6997 6998 return newidle_balance(rq, rf) != 0; 6999 } 7000 #endif /* CONFIG_SMP */ 7001 7002 static unsigned long wakeup_gran(struct sched_entity *se) 7003 { 7004 unsigned long gran = sysctl_sched_wakeup_granularity; 7005 7006 /* 7007 * Since its curr running now, convert the gran from real-time 7008 * to virtual-time in his units. 7009 * 7010 * By using 'se' instead of 'curr' we penalize light tasks, so 7011 * they get preempted easier. That is, if 'se' < 'curr' then 7012 * the resulting gran will be larger, therefore penalizing the 7013 * lighter, if otoh 'se' > 'curr' then the resulting gran will 7014 * be smaller, again penalizing the lighter task. 7015 * 7016 * This is especially important for buddies when the leftmost 7017 * task is higher priority than the buddy. 7018 */ 7019 return calc_delta_fair(gran, se); 7020 } 7021 7022 /* 7023 * Should 'se' preempt 'curr'. 7024 * 7025 * |s1 7026 * |s2 7027 * |s3 7028 * g 7029 * |<--->|c 7030 * 7031 * w(c, s1) = -1 7032 * w(c, s2) = 0 7033 * w(c, s3) = 1 7034 * 7035 */ 7036 static int 7037 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 7038 { 7039 s64 gran, vdiff = curr->vruntime - se->vruntime; 7040 7041 if (vdiff <= 0) 7042 return -1; 7043 7044 gran = wakeup_gran(se); 7045 if (vdiff > gran) 7046 return 1; 7047 7048 return 0; 7049 } 7050 7051 static void set_last_buddy(struct sched_entity *se) 7052 { 7053 for_each_sched_entity(se) { 7054 if (SCHED_WARN_ON(!se->on_rq)) 7055 return; 7056 if (se_is_idle(se)) 7057 return; 7058 cfs_rq_of(se)->last = se; 7059 } 7060 } 7061 7062 static void set_next_buddy(struct sched_entity *se) 7063 { 7064 for_each_sched_entity(se) { 7065 if (SCHED_WARN_ON(!se->on_rq)) 7066 return; 7067 if (se_is_idle(se)) 7068 return; 7069 cfs_rq_of(se)->next = se; 7070 } 7071 } 7072 7073 static void set_skip_buddy(struct sched_entity *se) 7074 { 7075 for_each_sched_entity(se) 7076 cfs_rq_of(se)->skip = se; 7077 } 7078 7079 /* 7080 * Preempt the current task with a newly woken task if needed: 7081 */ 7082 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 7083 { 7084 struct task_struct *curr = rq->curr; 7085 struct sched_entity *se = &curr->se, *pse = &p->se; 7086 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7087 int scale = cfs_rq->nr_running >= sched_nr_latency; 7088 int next_buddy_marked = 0; 7089 int cse_is_idle, pse_is_idle; 7090 7091 if (unlikely(se == pse)) 7092 return; 7093 7094 /* 7095 * This is possible from callers such as attach_tasks(), in which we 7096 * unconditionally check_preempt_curr() after an enqueue (which may have 7097 * lead to a throttle). This both saves work and prevents false 7098 * next-buddy nomination below. 7099 */ 7100 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 7101 return; 7102 7103 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 7104 set_next_buddy(pse); 7105 next_buddy_marked = 1; 7106 } 7107 7108 /* 7109 * We can come here with TIF_NEED_RESCHED already set from new task 7110 * wake up path. 7111 * 7112 * Note: this also catches the edge-case of curr being in a throttled 7113 * group (e.g. via set_curr_task), since update_curr() (in the 7114 * enqueue of curr) will have resulted in resched being set. This 7115 * prevents us from potentially nominating it as a false LAST_BUDDY 7116 * below. 7117 */ 7118 if (test_tsk_need_resched(curr)) 7119 return; 7120 7121 /* Idle tasks are by definition preempted by non-idle tasks. */ 7122 if (unlikely(task_has_idle_policy(curr)) && 7123 likely(!task_has_idle_policy(p))) 7124 goto preempt; 7125 7126 /* 7127 * Batch and idle tasks do not preempt non-idle tasks (their preemption 7128 * is driven by the tick): 7129 */ 7130 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 7131 return; 7132 7133 find_matching_se(&se, &pse); 7134 BUG_ON(!pse); 7135 7136 cse_is_idle = se_is_idle(se); 7137 pse_is_idle = se_is_idle(pse); 7138 7139 /* 7140 * Preempt an idle group in favor of a non-idle group (and don't preempt 7141 * in the inverse case). 7142 */ 7143 if (cse_is_idle && !pse_is_idle) 7144 goto preempt; 7145 if (cse_is_idle != pse_is_idle) 7146 return; 7147 7148 update_curr(cfs_rq_of(se)); 7149 if (wakeup_preempt_entity(se, pse) == 1) { 7150 /* 7151 * Bias pick_next to pick the sched entity that is 7152 * triggering this preemption. 7153 */ 7154 if (!next_buddy_marked) 7155 set_next_buddy(pse); 7156 goto preempt; 7157 } 7158 7159 return; 7160 7161 preempt: 7162 resched_curr(rq); 7163 /* 7164 * Only set the backward buddy when the current task is still 7165 * on the rq. This can happen when a wakeup gets interleaved 7166 * with schedule on the ->pre_schedule() or idle_balance() 7167 * point, either of which can * drop the rq lock. 7168 * 7169 * Also, during early boot the idle thread is in the fair class, 7170 * for obvious reasons its a bad idea to schedule back to it. 7171 */ 7172 if (unlikely(!se->on_rq || curr == rq->idle)) 7173 return; 7174 7175 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 7176 set_last_buddy(se); 7177 } 7178 7179 #ifdef CONFIG_SMP 7180 static struct task_struct *pick_task_fair(struct rq *rq) 7181 { 7182 struct sched_entity *se; 7183 struct cfs_rq *cfs_rq; 7184 7185 again: 7186 cfs_rq = &rq->cfs; 7187 if (!cfs_rq->nr_running) 7188 return NULL; 7189 7190 do { 7191 struct sched_entity *curr = cfs_rq->curr; 7192 7193 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 7194 if (curr) { 7195 if (curr->on_rq) 7196 update_curr(cfs_rq); 7197 else 7198 curr = NULL; 7199 7200 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 7201 goto again; 7202 } 7203 7204 se = pick_next_entity(cfs_rq, curr); 7205 cfs_rq = group_cfs_rq(se); 7206 } while (cfs_rq); 7207 7208 return task_of(se); 7209 } 7210 #endif 7211 7212 struct task_struct * 7213 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7214 { 7215 struct cfs_rq *cfs_rq = &rq->cfs; 7216 struct sched_entity *se; 7217 struct task_struct *p; 7218 int new_tasks; 7219 7220 again: 7221 if (!sched_fair_runnable(rq)) 7222 goto idle; 7223 7224 #ifdef CONFIG_FAIR_GROUP_SCHED 7225 if (!prev || prev->sched_class != &fair_sched_class) 7226 goto simple; 7227 7228 /* 7229 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 7230 * likely that a next task is from the same cgroup as the current. 7231 * 7232 * Therefore attempt to avoid putting and setting the entire cgroup 7233 * hierarchy, only change the part that actually changes. 7234 */ 7235 7236 do { 7237 struct sched_entity *curr = cfs_rq->curr; 7238 7239 /* 7240 * Since we got here without doing put_prev_entity() we also 7241 * have to consider cfs_rq->curr. If it is still a runnable 7242 * entity, update_curr() will update its vruntime, otherwise 7243 * forget we've ever seen it. 7244 */ 7245 if (curr) { 7246 if (curr->on_rq) 7247 update_curr(cfs_rq); 7248 else 7249 curr = NULL; 7250 7251 /* 7252 * This call to check_cfs_rq_runtime() will do the 7253 * throttle and dequeue its entity in the parent(s). 7254 * Therefore the nr_running test will indeed 7255 * be correct. 7256 */ 7257 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 7258 cfs_rq = &rq->cfs; 7259 7260 if (!cfs_rq->nr_running) 7261 goto idle; 7262 7263 goto simple; 7264 } 7265 } 7266 7267 se = pick_next_entity(cfs_rq, curr); 7268 cfs_rq = group_cfs_rq(se); 7269 } while (cfs_rq); 7270 7271 p = task_of(se); 7272 7273 /* 7274 * Since we haven't yet done put_prev_entity and if the selected task 7275 * is a different task than we started out with, try and touch the 7276 * least amount of cfs_rqs. 7277 */ 7278 if (prev != p) { 7279 struct sched_entity *pse = &prev->se; 7280 7281 while (!(cfs_rq = is_same_group(se, pse))) { 7282 int se_depth = se->depth; 7283 int pse_depth = pse->depth; 7284 7285 if (se_depth <= pse_depth) { 7286 put_prev_entity(cfs_rq_of(pse), pse); 7287 pse = parent_entity(pse); 7288 } 7289 if (se_depth >= pse_depth) { 7290 set_next_entity(cfs_rq_of(se), se); 7291 se = parent_entity(se); 7292 } 7293 } 7294 7295 put_prev_entity(cfs_rq, pse); 7296 set_next_entity(cfs_rq, se); 7297 } 7298 7299 goto done; 7300 simple: 7301 #endif 7302 if (prev) 7303 put_prev_task(rq, prev); 7304 7305 do { 7306 se = pick_next_entity(cfs_rq, NULL); 7307 set_next_entity(cfs_rq, se); 7308 cfs_rq = group_cfs_rq(se); 7309 } while (cfs_rq); 7310 7311 p = task_of(se); 7312 7313 done: __maybe_unused; 7314 #ifdef CONFIG_SMP 7315 /* 7316 * Move the next running task to the front of 7317 * the list, so our cfs_tasks list becomes MRU 7318 * one. 7319 */ 7320 list_move(&p->se.group_node, &rq->cfs_tasks); 7321 #endif 7322 7323 if (hrtick_enabled_fair(rq)) 7324 hrtick_start_fair(rq, p); 7325 7326 update_misfit_status(p, rq); 7327 7328 return p; 7329 7330 idle: 7331 if (!rf) 7332 return NULL; 7333 7334 new_tasks = newidle_balance(rq, rf); 7335 7336 /* 7337 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 7338 * possible for any higher priority task to appear. In that case we 7339 * must re-start the pick_next_entity() loop. 7340 */ 7341 if (new_tasks < 0) 7342 return RETRY_TASK; 7343 7344 if (new_tasks > 0) 7345 goto again; 7346 7347 /* 7348 * rq is about to be idle, check if we need to update the 7349 * lost_idle_time of clock_pelt 7350 */ 7351 update_idle_rq_clock_pelt(rq); 7352 7353 return NULL; 7354 } 7355 7356 static struct task_struct *__pick_next_task_fair(struct rq *rq) 7357 { 7358 return pick_next_task_fair(rq, NULL, NULL); 7359 } 7360 7361 /* 7362 * Account for a descheduled task: 7363 */ 7364 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7365 { 7366 struct sched_entity *se = &prev->se; 7367 struct cfs_rq *cfs_rq; 7368 7369 for_each_sched_entity(se) { 7370 cfs_rq = cfs_rq_of(se); 7371 put_prev_entity(cfs_rq, se); 7372 } 7373 } 7374 7375 /* 7376 * sched_yield() is very simple 7377 * 7378 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7379 */ 7380 static void yield_task_fair(struct rq *rq) 7381 { 7382 struct task_struct *curr = rq->curr; 7383 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7384 struct sched_entity *se = &curr->se; 7385 7386 /* 7387 * Are we the only task in the tree? 7388 */ 7389 if (unlikely(rq->nr_running == 1)) 7390 return; 7391 7392 clear_buddies(cfs_rq, se); 7393 7394 if (curr->policy != SCHED_BATCH) { 7395 update_rq_clock(rq); 7396 /* 7397 * Update run-time statistics of the 'current'. 7398 */ 7399 update_curr(cfs_rq); 7400 /* 7401 * Tell update_rq_clock() that we've just updated, 7402 * so we don't do microscopic update in schedule() 7403 * and double the fastpath cost. 7404 */ 7405 rq_clock_skip_update(rq); 7406 } 7407 7408 set_skip_buddy(se); 7409 } 7410 7411 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 7412 { 7413 struct sched_entity *se = &p->se; 7414 7415 /* throttled hierarchies are not runnable */ 7416 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7417 return false; 7418 7419 /* Tell the scheduler that we'd really like pse to run next. */ 7420 set_next_buddy(se); 7421 7422 yield_task_fair(rq); 7423 7424 return true; 7425 } 7426 7427 #ifdef CONFIG_SMP 7428 /************************************************** 7429 * Fair scheduling class load-balancing methods. 7430 * 7431 * BASICS 7432 * 7433 * The purpose of load-balancing is to achieve the same basic fairness the 7434 * per-CPU scheduler provides, namely provide a proportional amount of compute 7435 * time to each task. This is expressed in the following equation: 7436 * 7437 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7438 * 7439 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7440 * W_i,0 is defined as: 7441 * 7442 * W_i,0 = \Sum_j w_i,j (2) 7443 * 7444 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7445 * is derived from the nice value as per sched_prio_to_weight[]. 7446 * 7447 * The weight average is an exponential decay average of the instantaneous 7448 * weight: 7449 * 7450 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7451 * 7452 * C_i is the compute capacity of CPU i, typically it is the 7453 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7454 * can also include other factors [XXX]. 7455 * 7456 * To achieve this balance we define a measure of imbalance which follows 7457 * directly from (1): 7458 * 7459 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7460 * 7461 * We them move tasks around to minimize the imbalance. In the continuous 7462 * function space it is obvious this converges, in the discrete case we get 7463 * a few fun cases generally called infeasible weight scenarios. 7464 * 7465 * [XXX expand on: 7466 * - infeasible weights; 7467 * - local vs global optima in the discrete case. ] 7468 * 7469 * 7470 * SCHED DOMAINS 7471 * 7472 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7473 * for all i,j solution, we create a tree of CPUs that follows the hardware 7474 * topology where each level pairs two lower groups (or better). This results 7475 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7476 * tree to only the first of the previous level and we decrease the frequency 7477 * of load-balance at each level inv. proportional to the number of CPUs in 7478 * the groups. 7479 * 7480 * This yields: 7481 * 7482 * log_2 n 1 n 7483 * \Sum { --- * --- * 2^i } = O(n) (5) 7484 * i = 0 2^i 2^i 7485 * `- size of each group 7486 * | | `- number of CPUs doing load-balance 7487 * | `- freq 7488 * `- sum over all levels 7489 * 7490 * Coupled with a limit on how many tasks we can migrate every balance pass, 7491 * this makes (5) the runtime complexity of the balancer. 7492 * 7493 * An important property here is that each CPU is still (indirectly) connected 7494 * to every other CPU in at most O(log n) steps: 7495 * 7496 * The adjacency matrix of the resulting graph is given by: 7497 * 7498 * log_2 n 7499 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7500 * k = 0 7501 * 7502 * And you'll find that: 7503 * 7504 * A^(log_2 n)_i,j != 0 for all i,j (7) 7505 * 7506 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7507 * The task movement gives a factor of O(m), giving a convergence complexity 7508 * of: 7509 * 7510 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7511 * 7512 * 7513 * WORK CONSERVING 7514 * 7515 * In order to avoid CPUs going idle while there's still work to do, new idle 7516 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7517 * tree itself instead of relying on other CPUs to bring it work. 7518 * 7519 * This adds some complexity to both (5) and (8) but it reduces the total idle 7520 * time. 7521 * 7522 * [XXX more?] 7523 * 7524 * 7525 * CGROUPS 7526 * 7527 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7528 * 7529 * s_k,i 7530 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7531 * S_k 7532 * 7533 * Where 7534 * 7535 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7536 * 7537 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7538 * 7539 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7540 * property. 7541 * 7542 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7543 * rewrite all of this once again.] 7544 */ 7545 7546 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7547 7548 enum fbq_type { regular, remote, all }; 7549 7550 /* 7551 * 'group_type' describes the group of CPUs at the moment of load balancing. 7552 * 7553 * The enum is ordered by pulling priority, with the group with lowest priority 7554 * first so the group_type can simply be compared when selecting the busiest 7555 * group. See update_sd_pick_busiest(). 7556 */ 7557 enum group_type { 7558 /* The group has spare capacity that can be used to run more tasks. */ 7559 group_has_spare = 0, 7560 /* 7561 * The group is fully used and the tasks don't compete for more CPU 7562 * cycles. Nevertheless, some tasks might wait before running. 7563 */ 7564 group_fully_busy, 7565 /* 7566 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity 7567 * and must be migrated to a more powerful CPU. 7568 */ 7569 group_misfit_task, 7570 /* 7571 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 7572 * and the task should be migrated to it instead of running on the 7573 * current CPU. 7574 */ 7575 group_asym_packing, 7576 /* 7577 * The tasks' affinity constraints previously prevented the scheduler 7578 * from balancing the load across the system. 7579 */ 7580 group_imbalanced, 7581 /* 7582 * The CPU is overloaded and can't provide expected CPU cycles to all 7583 * tasks. 7584 */ 7585 group_overloaded 7586 }; 7587 7588 enum migration_type { 7589 migrate_load = 0, 7590 migrate_util, 7591 migrate_task, 7592 migrate_misfit 7593 }; 7594 7595 #define LBF_ALL_PINNED 0x01 7596 #define LBF_NEED_BREAK 0x02 7597 #define LBF_DST_PINNED 0x04 7598 #define LBF_SOME_PINNED 0x08 7599 #define LBF_ACTIVE_LB 0x10 7600 7601 struct lb_env { 7602 struct sched_domain *sd; 7603 7604 struct rq *src_rq; 7605 int src_cpu; 7606 7607 int dst_cpu; 7608 struct rq *dst_rq; 7609 7610 struct cpumask *dst_grpmask; 7611 int new_dst_cpu; 7612 enum cpu_idle_type idle; 7613 long imbalance; 7614 /* The set of CPUs under consideration for load-balancing */ 7615 struct cpumask *cpus; 7616 7617 unsigned int flags; 7618 7619 unsigned int loop; 7620 unsigned int loop_break; 7621 unsigned int loop_max; 7622 7623 enum fbq_type fbq_type; 7624 enum migration_type migration_type; 7625 struct list_head tasks; 7626 }; 7627 7628 /* 7629 * Is this task likely cache-hot: 7630 */ 7631 static int task_hot(struct task_struct *p, struct lb_env *env) 7632 { 7633 s64 delta; 7634 7635 lockdep_assert_rq_held(env->src_rq); 7636 7637 if (p->sched_class != &fair_sched_class) 7638 return 0; 7639 7640 if (unlikely(task_has_idle_policy(p))) 7641 return 0; 7642 7643 /* SMT siblings share cache */ 7644 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 7645 return 0; 7646 7647 /* 7648 * Buddy candidates are cache hot: 7649 */ 7650 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7651 (&p->se == cfs_rq_of(&p->se)->next || 7652 &p->se == cfs_rq_of(&p->se)->last)) 7653 return 1; 7654 7655 if (sysctl_sched_migration_cost == -1) 7656 return 1; 7657 7658 /* 7659 * Don't migrate task if the task's cookie does not match 7660 * with the destination CPU's core cookie. 7661 */ 7662 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 7663 return 1; 7664 7665 if (sysctl_sched_migration_cost == 0) 7666 return 0; 7667 7668 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7669 7670 return delta < (s64)sysctl_sched_migration_cost; 7671 } 7672 7673 #ifdef CONFIG_NUMA_BALANCING 7674 /* 7675 * Returns 1, if task migration degrades locality 7676 * Returns 0, if task migration improves locality i.e migration preferred. 7677 * Returns -1, if task migration is not affected by locality. 7678 */ 7679 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7680 { 7681 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7682 unsigned long src_weight, dst_weight; 7683 int src_nid, dst_nid, dist; 7684 7685 if (!static_branch_likely(&sched_numa_balancing)) 7686 return -1; 7687 7688 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7689 return -1; 7690 7691 src_nid = cpu_to_node(env->src_cpu); 7692 dst_nid = cpu_to_node(env->dst_cpu); 7693 7694 if (src_nid == dst_nid) 7695 return -1; 7696 7697 /* Migrating away from the preferred node is always bad. */ 7698 if (src_nid == p->numa_preferred_nid) { 7699 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7700 return 1; 7701 else 7702 return -1; 7703 } 7704 7705 /* Encourage migration to the preferred node. */ 7706 if (dst_nid == p->numa_preferred_nid) 7707 return 0; 7708 7709 /* Leaving a core idle is often worse than degrading locality. */ 7710 if (env->idle == CPU_IDLE) 7711 return -1; 7712 7713 dist = node_distance(src_nid, dst_nid); 7714 if (numa_group) { 7715 src_weight = group_weight(p, src_nid, dist); 7716 dst_weight = group_weight(p, dst_nid, dist); 7717 } else { 7718 src_weight = task_weight(p, src_nid, dist); 7719 dst_weight = task_weight(p, dst_nid, dist); 7720 } 7721 7722 return dst_weight < src_weight; 7723 } 7724 7725 #else 7726 static inline int migrate_degrades_locality(struct task_struct *p, 7727 struct lb_env *env) 7728 { 7729 return -1; 7730 } 7731 #endif 7732 7733 /* 7734 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7735 */ 7736 static 7737 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7738 { 7739 int tsk_cache_hot; 7740 7741 lockdep_assert_rq_held(env->src_rq); 7742 7743 /* 7744 * We do not migrate tasks that are: 7745 * 1) throttled_lb_pair, or 7746 * 2) cannot be migrated to this CPU due to cpus_ptr, or 7747 * 3) running (obviously), or 7748 * 4) are cache-hot on their current CPU. 7749 */ 7750 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7751 return 0; 7752 7753 /* Disregard pcpu kthreads; they are where they need to be. */ 7754 if (kthread_is_per_cpu(p)) 7755 return 0; 7756 7757 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 7758 int cpu; 7759 7760 schedstat_inc(p->stats.nr_failed_migrations_affine); 7761 7762 env->flags |= LBF_SOME_PINNED; 7763 7764 /* 7765 * Remember if this task can be migrated to any other CPU in 7766 * our sched_group. We may want to revisit it if we couldn't 7767 * meet load balance goals by pulling other tasks on src_cpu. 7768 * 7769 * Avoid computing new_dst_cpu 7770 * - for NEWLY_IDLE 7771 * - if we have already computed one in current iteration 7772 * - if it's an active balance 7773 */ 7774 if (env->idle == CPU_NEWLY_IDLE || 7775 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 7776 return 0; 7777 7778 /* Prevent to re-select dst_cpu via env's CPUs: */ 7779 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7780 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 7781 env->flags |= LBF_DST_PINNED; 7782 env->new_dst_cpu = cpu; 7783 break; 7784 } 7785 } 7786 7787 return 0; 7788 } 7789 7790 /* Record that we found at least one task that could run on dst_cpu */ 7791 env->flags &= ~LBF_ALL_PINNED; 7792 7793 if (task_running(env->src_rq, p)) { 7794 schedstat_inc(p->stats.nr_failed_migrations_running); 7795 return 0; 7796 } 7797 7798 /* 7799 * Aggressive migration if: 7800 * 1) active balance 7801 * 2) destination numa is preferred 7802 * 3) task is cache cold, or 7803 * 4) too many balance attempts have failed. 7804 */ 7805 if (env->flags & LBF_ACTIVE_LB) 7806 return 1; 7807 7808 tsk_cache_hot = migrate_degrades_locality(p, env); 7809 if (tsk_cache_hot == -1) 7810 tsk_cache_hot = task_hot(p, env); 7811 7812 if (tsk_cache_hot <= 0 || 7813 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7814 if (tsk_cache_hot == 1) { 7815 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7816 schedstat_inc(p->stats.nr_forced_migrations); 7817 } 7818 return 1; 7819 } 7820 7821 schedstat_inc(p->stats.nr_failed_migrations_hot); 7822 return 0; 7823 } 7824 7825 /* 7826 * detach_task() -- detach the task for the migration specified in env 7827 */ 7828 static void detach_task(struct task_struct *p, struct lb_env *env) 7829 { 7830 lockdep_assert_rq_held(env->src_rq); 7831 7832 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7833 set_task_cpu(p, env->dst_cpu); 7834 } 7835 7836 /* 7837 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7838 * part of active balancing operations within "domain". 7839 * 7840 * Returns a task if successful and NULL otherwise. 7841 */ 7842 static struct task_struct *detach_one_task(struct lb_env *env) 7843 { 7844 struct task_struct *p; 7845 7846 lockdep_assert_rq_held(env->src_rq); 7847 7848 list_for_each_entry_reverse(p, 7849 &env->src_rq->cfs_tasks, se.group_node) { 7850 if (!can_migrate_task(p, env)) 7851 continue; 7852 7853 detach_task(p, env); 7854 7855 /* 7856 * Right now, this is only the second place where 7857 * lb_gained[env->idle] is updated (other is detach_tasks) 7858 * so we can safely collect stats here rather than 7859 * inside detach_tasks(). 7860 */ 7861 schedstat_inc(env->sd->lb_gained[env->idle]); 7862 return p; 7863 } 7864 return NULL; 7865 } 7866 7867 static const unsigned int sched_nr_migrate_break = 32; 7868 7869 /* 7870 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 7871 * busiest_rq, as part of a balancing operation within domain "sd". 7872 * 7873 * Returns number of detached tasks if successful and 0 otherwise. 7874 */ 7875 static int detach_tasks(struct lb_env *env) 7876 { 7877 struct list_head *tasks = &env->src_rq->cfs_tasks; 7878 unsigned long util, load; 7879 struct task_struct *p; 7880 int detached = 0; 7881 7882 lockdep_assert_rq_held(env->src_rq); 7883 7884 /* 7885 * Source run queue has been emptied by another CPU, clear 7886 * LBF_ALL_PINNED flag as we will not test any task. 7887 */ 7888 if (env->src_rq->nr_running <= 1) { 7889 env->flags &= ~LBF_ALL_PINNED; 7890 return 0; 7891 } 7892 7893 if (env->imbalance <= 0) 7894 return 0; 7895 7896 while (!list_empty(tasks)) { 7897 /* 7898 * We don't want to steal all, otherwise we may be treated likewise, 7899 * which could at worst lead to a livelock crash. 7900 */ 7901 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7902 break; 7903 7904 p = list_last_entry(tasks, struct task_struct, se.group_node); 7905 7906 env->loop++; 7907 /* We've more or less seen every task there is, call it quits */ 7908 if (env->loop > env->loop_max) 7909 break; 7910 7911 /* take a breather every nr_migrate tasks */ 7912 if (env->loop > env->loop_break) { 7913 env->loop_break += sched_nr_migrate_break; 7914 env->flags |= LBF_NEED_BREAK; 7915 break; 7916 } 7917 7918 if (!can_migrate_task(p, env)) 7919 goto next; 7920 7921 switch (env->migration_type) { 7922 case migrate_load: 7923 /* 7924 * Depending of the number of CPUs and tasks and the 7925 * cgroup hierarchy, task_h_load() can return a null 7926 * value. Make sure that env->imbalance decreases 7927 * otherwise detach_tasks() will stop only after 7928 * detaching up to loop_max tasks. 7929 */ 7930 load = max_t(unsigned long, task_h_load(p), 1); 7931 7932 if (sched_feat(LB_MIN) && 7933 load < 16 && !env->sd->nr_balance_failed) 7934 goto next; 7935 7936 /* 7937 * Make sure that we don't migrate too much load. 7938 * Nevertheless, let relax the constraint if 7939 * scheduler fails to find a good waiting task to 7940 * migrate. 7941 */ 7942 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 7943 goto next; 7944 7945 env->imbalance -= load; 7946 break; 7947 7948 case migrate_util: 7949 util = task_util_est(p); 7950 7951 if (util > env->imbalance) 7952 goto next; 7953 7954 env->imbalance -= util; 7955 break; 7956 7957 case migrate_task: 7958 env->imbalance--; 7959 break; 7960 7961 case migrate_misfit: 7962 /* This is not a misfit task */ 7963 if (task_fits_capacity(p, capacity_of(env->src_cpu))) 7964 goto next; 7965 7966 env->imbalance = 0; 7967 break; 7968 } 7969 7970 detach_task(p, env); 7971 list_add(&p->se.group_node, &env->tasks); 7972 7973 detached++; 7974 7975 #ifdef CONFIG_PREEMPTION 7976 /* 7977 * NEWIDLE balancing is a source of latency, so preemptible 7978 * kernels will stop after the first task is detached to minimize 7979 * the critical section. 7980 */ 7981 if (env->idle == CPU_NEWLY_IDLE) 7982 break; 7983 #endif 7984 7985 /* 7986 * We only want to steal up to the prescribed amount of 7987 * load/util/tasks. 7988 */ 7989 if (env->imbalance <= 0) 7990 break; 7991 7992 continue; 7993 next: 7994 list_move(&p->se.group_node, tasks); 7995 } 7996 7997 /* 7998 * Right now, this is one of only two places we collect this stat 7999 * so we can safely collect detach_one_task() stats here rather 8000 * than inside detach_one_task(). 8001 */ 8002 schedstat_add(env->sd->lb_gained[env->idle], detached); 8003 8004 return detached; 8005 } 8006 8007 /* 8008 * attach_task() -- attach the task detached by detach_task() to its new rq. 8009 */ 8010 static void attach_task(struct rq *rq, struct task_struct *p) 8011 { 8012 lockdep_assert_rq_held(rq); 8013 8014 BUG_ON(task_rq(p) != rq); 8015 activate_task(rq, p, ENQUEUE_NOCLOCK); 8016 check_preempt_curr(rq, p, 0); 8017 } 8018 8019 /* 8020 * attach_one_task() -- attaches the task returned from detach_one_task() to 8021 * its new rq. 8022 */ 8023 static void attach_one_task(struct rq *rq, struct task_struct *p) 8024 { 8025 struct rq_flags rf; 8026 8027 rq_lock(rq, &rf); 8028 update_rq_clock(rq); 8029 attach_task(rq, p); 8030 rq_unlock(rq, &rf); 8031 } 8032 8033 /* 8034 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 8035 * new rq. 8036 */ 8037 static void attach_tasks(struct lb_env *env) 8038 { 8039 struct list_head *tasks = &env->tasks; 8040 struct task_struct *p; 8041 struct rq_flags rf; 8042 8043 rq_lock(env->dst_rq, &rf); 8044 update_rq_clock(env->dst_rq); 8045 8046 while (!list_empty(tasks)) { 8047 p = list_first_entry(tasks, struct task_struct, se.group_node); 8048 list_del_init(&p->se.group_node); 8049 8050 attach_task(env->dst_rq, p); 8051 } 8052 8053 rq_unlock(env->dst_rq, &rf); 8054 } 8055 8056 #ifdef CONFIG_NO_HZ_COMMON 8057 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 8058 { 8059 if (cfs_rq->avg.load_avg) 8060 return true; 8061 8062 if (cfs_rq->avg.util_avg) 8063 return true; 8064 8065 return false; 8066 } 8067 8068 static inline bool others_have_blocked(struct rq *rq) 8069 { 8070 if (READ_ONCE(rq->avg_rt.util_avg)) 8071 return true; 8072 8073 if (READ_ONCE(rq->avg_dl.util_avg)) 8074 return true; 8075 8076 if (thermal_load_avg(rq)) 8077 return true; 8078 8079 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 8080 if (READ_ONCE(rq->avg_irq.util_avg)) 8081 return true; 8082 #endif 8083 8084 return false; 8085 } 8086 8087 static inline void update_blocked_load_tick(struct rq *rq) 8088 { 8089 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 8090 } 8091 8092 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 8093 { 8094 if (!has_blocked) 8095 rq->has_blocked_load = 0; 8096 } 8097 #else 8098 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 8099 static inline bool others_have_blocked(struct rq *rq) { return false; } 8100 static inline void update_blocked_load_tick(struct rq *rq) {} 8101 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 8102 #endif 8103 8104 static bool __update_blocked_others(struct rq *rq, bool *done) 8105 { 8106 const struct sched_class *curr_class; 8107 u64 now = rq_clock_pelt(rq); 8108 unsigned long thermal_pressure; 8109 bool decayed; 8110 8111 /* 8112 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 8113 * DL and IRQ signals have been updated before updating CFS. 8114 */ 8115 curr_class = rq->curr->sched_class; 8116 8117 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 8118 8119 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 8120 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 8121 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 8122 update_irq_load_avg(rq, 0); 8123 8124 if (others_have_blocked(rq)) 8125 *done = false; 8126 8127 return decayed; 8128 } 8129 8130 #ifdef CONFIG_FAIR_GROUP_SCHED 8131 8132 static bool __update_blocked_fair(struct rq *rq, bool *done) 8133 { 8134 struct cfs_rq *cfs_rq, *pos; 8135 bool decayed = false; 8136 int cpu = cpu_of(rq); 8137 8138 /* 8139 * Iterates the task_group tree in a bottom up fashion, see 8140 * list_add_leaf_cfs_rq() for details. 8141 */ 8142 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 8143 struct sched_entity *se; 8144 8145 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 8146 update_tg_load_avg(cfs_rq); 8147 8148 if (cfs_rq == &rq->cfs) 8149 decayed = true; 8150 } 8151 8152 /* Propagate pending load changes to the parent, if any: */ 8153 se = cfs_rq->tg->se[cpu]; 8154 if (se && !skip_blocked_update(se)) 8155 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 8156 8157 /* 8158 * There can be a lot of idle CPU cgroups. Don't let fully 8159 * decayed cfs_rqs linger on the list. 8160 */ 8161 if (cfs_rq_is_decayed(cfs_rq)) 8162 list_del_leaf_cfs_rq(cfs_rq); 8163 8164 /* Don't need periodic decay once load/util_avg are null */ 8165 if (cfs_rq_has_blocked(cfs_rq)) 8166 *done = false; 8167 } 8168 8169 return decayed; 8170 } 8171 8172 /* 8173 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 8174 * This needs to be done in a top-down fashion because the load of a child 8175 * group is a fraction of its parents load. 8176 */ 8177 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 8178 { 8179 struct rq *rq = rq_of(cfs_rq); 8180 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 8181 unsigned long now = jiffies; 8182 unsigned long load; 8183 8184 if (cfs_rq->last_h_load_update == now) 8185 return; 8186 8187 WRITE_ONCE(cfs_rq->h_load_next, NULL); 8188 for_each_sched_entity(se) { 8189 cfs_rq = cfs_rq_of(se); 8190 WRITE_ONCE(cfs_rq->h_load_next, se); 8191 if (cfs_rq->last_h_load_update == now) 8192 break; 8193 } 8194 8195 if (!se) { 8196 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 8197 cfs_rq->last_h_load_update = now; 8198 } 8199 8200 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 8201 load = cfs_rq->h_load; 8202 load = div64_ul(load * se->avg.load_avg, 8203 cfs_rq_load_avg(cfs_rq) + 1); 8204 cfs_rq = group_cfs_rq(se); 8205 cfs_rq->h_load = load; 8206 cfs_rq->last_h_load_update = now; 8207 } 8208 } 8209 8210 static unsigned long task_h_load(struct task_struct *p) 8211 { 8212 struct cfs_rq *cfs_rq = task_cfs_rq(p); 8213 8214 update_cfs_rq_h_load(cfs_rq); 8215 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 8216 cfs_rq_load_avg(cfs_rq) + 1); 8217 } 8218 #else 8219 static bool __update_blocked_fair(struct rq *rq, bool *done) 8220 { 8221 struct cfs_rq *cfs_rq = &rq->cfs; 8222 bool decayed; 8223 8224 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 8225 if (cfs_rq_has_blocked(cfs_rq)) 8226 *done = false; 8227 8228 return decayed; 8229 } 8230 8231 static unsigned long task_h_load(struct task_struct *p) 8232 { 8233 return p->se.avg.load_avg; 8234 } 8235 #endif 8236 8237 static void update_blocked_averages(int cpu) 8238 { 8239 bool decayed = false, done = true; 8240 struct rq *rq = cpu_rq(cpu); 8241 struct rq_flags rf; 8242 8243 rq_lock_irqsave(rq, &rf); 8244 update_blocked_load_tick(rq); 8245 update_rq_clock(rq); 8246 8247 decayed |= __update_blocked_others(rq, &done); 8248 decayed |= __update_blocked_fair(rq, &done); 8249 8250 update_blocked_load_status(rq, !done); 8251 if (decayed) 8252 cpufreq_update_util(rq, 0); 8253 rq_unlock_irqrestore(rq, &rf); 8254 } 8255 8256 /********** Helpers for find_busiest_group ************************/ 8257 8258 /* 8259 * sg_lb_stats - stats of a sched_group required for load_balancing 8260 */ 8261 struct sg_lb_stats { 8262 unsigned long avg_load; /*Avg load across the CPUs of the group */ 8263 unsigned long group_load; /* Total load over the CPUs of the group */ 8264 unsigned long group_capacity; 8265 unsigned long group_util; /* Total utilization over the CPUs of the group */ 8266 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 8267 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 8268 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 8269 unsigned int idle_cpus; 8270 unsigned int group_weight; 8271 enum group_type group_type; 8272 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 8273 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 8274 #ifdef CONFIG_NUMA_BALANCING 8275 unsigned int nr_numa_running; 8276 unsigned int nr_preferred_running; 8277 #endif 8278 }; 8279 8280 /* 8281 * sd_lb_stats - Structure to store the statistics of a sched_domain 8282 * during load balancing. 8283 */ 8284 struct sd_lb_stats { 8285 struct sched_group *busiest; /* Busiest group in this sd */ 8286 struct sched_group *local; /* Local group in this sd */ 8287 unsigned long total_load; /* Total load of all groups in sd */ 8288 unsigned long total_capacity; /* Total capacity of all groups in sd */ 8289 unsigned long avg_load; /* Average load across all groups in sd */ 8290 unsigned int prefer_sibling; /* tasks should go to sibling first */ 8291 8292 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 8293 struct sg_lb_stats local_stat; /* Statistics of the local group */ 8294 }; 8295 8296 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 8297 { 8298 /* 8299 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 8300 * local_stat because update_sg_lb_stats() does a full clear/assignment. 8301 * We must however set busiest_stat::group_type and 8302 * busiest_stat::idle_cpus to the worst busiest group because 8303 * update_sd_pick_busiest() reads these before assignment. 8304 */ 8305 *sds = (struct sd_lb_stats){ 8306 .busiest = NULL, 8307 .local = NULL, 8308 .total_load = 0UL, 8309 .total_capacity = 0UL, 8310 .busiest_stat = { 8311 .idle_cpus = UINT_MAX, 8312 .group_type = group_has_spare, 8313 }, 8314 }; 8315 } 8316 8317 static unsigned long scale_rt_capacity(int cpu) 8318 { 8319 struct rq *rq = cpu_rq(cpu); 8320 unsigned long max = arch_scale_cpu_capacity(cpu); 8321 unsigned long used, free; 8322 unsigned long irq; 8323 8324 irq = cpu_util_irq(rq); 8325 8326 if (unlikely(irq >= max)) 8327 return 1; 8328 8329 /* 8330 * avg_rt.util_avg and avg_dl.util_avg track binary signals 8331 * (running and not running) with weights 0 and 1024 respectively. 8332 * avg_thermal.load_avg tracks thermal pressure and the weighted 8333 * average uses the actual delta max capacity(load). 8334 */ 8335 used = READ_ONCE(rq->avg_rt.util_avg); 8336 used += READ_ONCE(rq->avg_dl.util_avg); 8337 used += thermal_load_avg(rq); 8338 8339 if (unlikely(used >= max)) 8340 return 1; 8341 8342 free = max - used; 8343 8344 return scale_irq_capacity(free, irq, max); 8345 } 8346 8347 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 8348 { 8349 unsigned long capacity = scale_rt_capacity(cpu); 8350 struct sched_group *sdg = sd->groups; 8351 8352 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 8353 8354 if (!capacity) 8355 capacity = 1; 8356 8357 cpu_rq(cpu)->cpu_capacity = capacity; 8358 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 8359 8360 sdg->sgc->capacity = capacity; 8361 sdg->sgc->min_capacity = capacity; 8362 sdg->sgc->max_capacity = capacity; 8363 } 8364 8365 void update_group_capacity(struct sched_domain *sd, int cpu) 8366 { 8367 struct sched_domain *child = sd->child; 8368 struct sched_group *group, *sdg = sd->groups; 8369 unsigned long capacity, min_capacity, max_capacity; 8370 unsigned long interval; 8371 8372 interval = msecs_to_jiffies(sd->balance_interval); 8373 interval = clamp(interval, 1UL, max_load_balance_interval); 8374 sdg->sgc->next_update = jiffies + interval; 8375 8376 if (!child) { 8377 update_cpu_capacity(sd, cpu); 8378 return; 8379 } 8380 8381 capacity = 0; 8382 min_capacity = ULONG_MAX; 8383 max_capacity = 0; 8384 8385 if (child->flags & SD_OVERLAP) { 8386 /* 8387 * SD_OVERLAP domains cannot assume that child groups 8388 * span the current group. 8389 */ 8390 8391 for_each_cpu(cpu, sched_group_span(sdg)) { 8392 unsigned long cpu_cap = capacity_of(cpu); 8393 8394 capacity += cpu_cap; 8395 min_capacity = min(cpu_cap, min_capacity); 8396 max_capacity = max(cpu_cap, max_capacity); 8397 } 8398 } else { 8399 /* 8400 * !SD_OVERLAP domains can assume that child groups 8401 * span the current group. 8402 */ 8403 8404 group = child->groups; 8405 do { 8406 struct sched_group_capacity *sgc = group->sgc; 8407 8408 capacity += sgc->capacity; 8409 min_capacity = min(sgc->min_capacity, min_capacity); 8410 max_capacity = max(sgc->max_capacity, max_capacity); 8411 group = group->next; 8412 } while (group != child->groups); 8413 } 8414 8415 sdg->sgc->capacity = capacity; 8416 sdg->sgc->min_capacity = min_capacity; 8417 sdg->sgc->max_capacity = max_capacity; 8418 } 8419 8420 /* 8421 * Check whether the capacity of the rq has been noticeably reduced by side 8422 * activity. The imbalance_pct is used for the threshold. 8423 * Return true is the capacity is reduced 8424 */ 8425 static inline int 8426 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 8427 { 8428 return ((rq->cpu_capacity * sd->imbalance_pct) < 8429 (rq->cpu_capacity_orig * 100)); 8430 } 8431 8432 /* 8433 * Check whether a rq has a misfit task and if it looks like we can actually 8434 * help that task: we can migrate the task to a CPU of higher capacity, or 8435 * the task's current CPU is heavily pressured. 8436 */ 8437 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 8438 { 8439 return rq->misfit_task_load && 8440 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 8441 check_cpu_capacity(rq, sd)); 8442 } 8443 8444 /* 8445 * Group imbalance indicates (and tries to solve) the problem where balancing 8446 * groups is inadequate due to ->cpus_ptr constraints. 8447 * 8448 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 8449 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 8450 * Something like: 8451 * 8452 * { 0 1 2 3 } { 4 5 6 7 } 8453 * * * * * 8454 * 8455 * If we were to balance group-wise we'd place two tasks in the first group and 8456 * two tasks in the second group. Clearly this is undesired as it will overload 8457 * cpu 3 and leave one of the CPUs in the second group unused. 8458 * 8459 * The current solution to this issue is detecting the skew in the first group 8460 * by noticing the lower domain failed to reach balance and had difficulty 8461 * moving tasks due to affinity constraints. 8462 * 8463 * When this is so detected; this group becomes a candidate for busiest; see 8464 * update_sd_pick_busiest(). And calculate_imbalance() and 8465 * find_busiest_group() avoid some of the usual balance conditions to allow it 8466 * to create an effective group imbalance. 8467 * 8468 * This is a somewhat tricky proposition since the next run might not find the 8469 * group imbalance and decide the groups need to be balanced again. A most 8470 * subtle and fragile situation. 8471 */ 8472 8473 static inline int sg_imbalanced(struct sched_group *group) 8474 { 8475 return group->sgc->imbalance; 8476 } 8477 8478 /* 8479 * group_has_capacity returns true if the group has spare capacity that could 8480 * be used by some tasks. 8481 * We consider that a group has spare capacity if the * number of task is 8482 * smaller than the number of CPUs or if the utilization is lower than the 8483 * available capacity for CFS tasks. 8484 * For the latter, we use a threshold to stabilize the state, to take into 8485 * account the variance of the tasks' load and to return true if the available 8486 * capacity in meaningful for the load balancer. 8487 * As an example, an available capacity of 1% can appear but it doesn't make 8488 * any benefit for the load balance. 8489 */ 8490 static inline bool 8491 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8492 { 8493 if (sgs->sum_nr_running < sgs->group_weight) 8494 return true; 8495 8496 if ((sgs->group_capacity * imbalance_pct) < 8497 (sgs->group_runnable * 100)) 8498 return false; 8499 8500 if ((sgs->group_capacity * 100) > 8501 (sgs->group_util * imbalance_pct)) 8502 return true; 8503 8504 return false; 8505 } 8506 8507 /* 8508 * group_is_overloaded returns true if the group has more tasks than it can 8509 * handle. 8510 * group_is_overloaded is not equals to !group_has_capacity because a group 8511 * with the exact right number of tasks, has no more spare capacity but is not 8512 * overloaded so both group_has_capacity and group_is_overloaded return 8513 * false. 8514 */ 8515 static inline bool 8516 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8517 { 8518 if (sgs->sum_nr_running <= sgs->group_weight) 8519 return false; 8520 8521 if ((sgs->group_capacity * 100) < 8522 (sgs->group_util * imbalance_pct)) 8523 return true; 8524 8525 if ((sgs->group_capacity * imbalance_pct) < 8526 (sgs->group_runnable * 100)) 8527 return true; 8528 8529 return false; 8530 } 8531 8532 static inline enum 8533 group_type group_classify(unsigned int imbalance_pct, 8534 struct sched_group *group, 8535 struct sg_lb_stats *sgs) 8536 { 8537 if (group_is_overloaded(imbalance_pct, sgs)) 8538 return group_overloaded; 8539 8540 if (sg_imbalanced(group)) 8541 return group_imbalanced; 8542 8543 if (sgs->group_asym_packing) 8544 return group_asym_packing; 8545 8546 if (sgs->group_misfit_task_load) 8547 return group_misfit_task; 8548 8549 if (!group_has_capacity(imbalance_pct, sgs)) 8550 return group_fully_busy; 8551 8552 return group_has_spare; 8553 } 8554 8555 /** 8556 * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks 8557 * @dst_cpu: Destination CPU of the load balancing 8558 * @sds: Load-balancing data with statistics of the local group 8559 * @sgs: Load-balancing statistics of the candidate busiest group 8560 * @sg: The candidate busiest group 8561 * 8562 * Check the state of the SMT siblings of both @sds::local and @sg and decide 8563 * if @dst_cpu can pull tasks. 8564 * 8565 * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of 8566 * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks 8567 * only if @dst_cpu has higher priority. 8568 * 8569 * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more 8570 * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority. 8571 * Bigger imbalances in the number of busy CPUs will be dealt with in 8572 * update_sd_pick_busiest(). 8573 * 8574 * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings 8575 * of @dst_cpu are idle and @sg has lower priority. 8576 * 8577 * Return: true if @dst_cpu can pull tasks, false otherwise. 8578 */ 8579 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds, 8580 struct sg_lb_stats *sgs, 8581 struct sched_group *sg) 8582 { 8583 #ifdef CONFIG_SCHED_SMT 8584 bool local_is_smt, sg_is_smt; 8585 int sg_busy_cpus; 8586 8587 local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY; 8588 sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY; 8589 8590 sg_busy_cpus = sgs->group_weight - sgs->idle_cpus; 8591 8592 if (!local_is_smt) { 8593 /* 8594 * If we are here, @dst_cpu is idle and does not have SMT 8595 * siblings. Pull tasks if candidate group has two or more 8596 * busy CPUs. 8597 */ 8598 if (sg_busy_cpus >= 2) /* implies sg_is_smt */ 8599 return true; 8600 8601 /* 8602 * @dst_cpu does not have SMT siblings. @sg may have SMT 8603 * siblings and only one is busy. In such case, @dst_cpu 8604 * can help if it has higher priority and is idle (i.e., 8605 * it has no running tasks). 8606 */ 8607 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 8608 } 8609 8610 /* @dst_cpu has SMT siblings. */ 8611 8612 if (sg_is_smt) { 8613 int local_busy_cpus = sds->local->group_weight - 8614 sds->local_stat.idle_cpus; 8615 int busy_cpus_delta = sg_busy_cpus - local_busy_cpus; 8616 8617 if (busy_cpus_delta == 1) 8618 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 8619 8620 return false; 8621 } 8622 8623 /* 8624 * @sg does not have SMT siblings. Ensure that @sds::local does not end 8625 * up with more than one busy SMT sibling and only pull tasks if there 8626 * are not busy CPUs (i.e., no CPU has running tasks). 8627 */ 8628 if (!sds->local_stat.sum_nr_running) 8629 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 8630 8631 return false; 8632 #else 8633 /* Always return false so that callers deal with non-SMT cases. */ 8634 return false; 8635 #endif 8636 } 8637 8638 static inline bool 8639 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs, 8640 struct sched_group *group) 8641 { 8642 /* Only do SMT checks if either local or candidate have SMT siblings */ 8643 if ((sds->local->flags & SD_SHARE_CPUCAPACITY) || 8644 (group->flags & SD_SHARE_CPUCAPACITY)) 8645 return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group); 8646 8647 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu); 8648 } 8649 8650 /** 8651 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8652 * @env: The load balancing environment. 8653 * @sds: Load-balancing data with statistics of the local group. 8654 * @group: sched_group whose statistics are to be updated. 8655 * @sgs: variable to hold the statistics for this group. 8656 * @sg_status: Holds flag indicating the status of the sched_group 8657 */ 8658 static inline void update_sg_lb_stats(struct lb_env *env, 8659 struct sd_lb_stats *sds, 8660 struct sched_group *group, 8661 struct sg_lb_stats *sgs, 8662 int *sg_status) 8663 { 8664 int i, nr_running, local_group; 8665 8666 memset(sgs, 0, sizeof(*sgs)); 8667 8668 local_group = group == sds->local; 8669 8670 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8671 struct rq *rq = cpu_rq(i); 8672 8673 sgs->group_load += cpu_load(rq); 8674 sgs->group_util += cpu_util_cfs(i); 8675 sgs->group_runnable += cpu_runnable(rq); 8676 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 8677 8678 nr_running = rq->nr_running; 8679 sgs->sum_nr_running += nr_running; 8680 8681 if (nr_running > 1) 8682 *sg_status |= SG_OVERLOAD; 8683 8684 if (cpu_overutilized(i)) 8685 *sg_status |= SG_OVERUTILIZED; 8686 8687 #ifdef CONFIG_NUMA_BALANCING 8688 sgs->nr_numa_running += rq->nr_numa_running; 8689 sgs->nr_preferred_running += rq->nr_preferred_running; 8690 #endif 8691 /* 8692 * No need to call idle_cpu() if nr_running is not 0 8693 */ 8694 if (!nr_running && idle_cpu(i)) { 8695 sgs->idle_cpus++; 8696 /* Idle cpu can't have misfit task */ 8697 continue; 8698 } 8699 8700 if (local_group) 8701 continue; 8702 8703 /* Check for a misfit task on the cpu */ 8704 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8705 sgs->group_misfit_task_load < rq->misfit_task_load) { 8706 sgs->group_misfit_task_load = rq->misfit_task_load; 8707 *sg_status |= SG_OVERLOAD; 8708 } 8709 } 8710 8711 sgs->group_capacity = group->sgc->capacity; 8712 8713 sgs->group_weight = group->group_weight; 8714 8715 /* Check if dst CPU is idle and preferred to this group */ 8716 if (!local_group && env->sd->flags & SD_ASYM_PACKING && 8717 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running && 8718 sched_asym(env, sds, sgs, group)) { 8719 sgs->group_asym_packing = 1; 8720 } 8721 8722 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 8723 8724 /* Computing avg_load makes sense only when group is overloaded */ 8725 if (sgs->group_type == group_overloaded) 8726 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8727 sgs->group_capacity; 8728 } 8729 8730 /** 8731 * update_sd_pick_busiest - return 1 on busiest group 8732 * @env: The load balancing environment. 8733 * @sds: sched_domain statistics 8734 * @sg: sched_group candidate to be checked for being the busiest 8735 * @sgs: sched_group statistics 8736 * 8737 * Determine if @sg is a busier group than the previously selected 8738 * busiest group. 8739 * 8740 * Return: %true if @sg is a busier group than the previously selected 8741 * busiest group. %false otherwise. 8742 */ 8743 static bool update_sd_pick_busiest(struct lb_env *env, 8744 struct sd_lb_stats *sds, 8745 struct sched_group *sg, 8746 struct sg_lb_stats *sgs) 8747 { 8748 struct sg_lb_stats *busiest = &sds->busiest_stat; 8749 8750 /* Make sure that there is at least one task to pull */ 8751 if (!sgs->sum_h_nr_running) 8752 return false; 8753 8754 /* 8755 * Don't try to pull misfit tasks we can't help. 8756 * We can use max_capacity here as reduction in capacity on some 8757 * CPUs in the group should either be possible to resolve 8758 * internally or be covered by avg_load imbalance (eventually). 8759 */ 8760 if (sgs->group_type == group_misfit_task && 8761 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 8762 sds->local_stat.group_type != group_has_spare)) 8763 return false; 8764 8765 if (sgs->group_type > busiest->group_type) 8766 return true; 8767 8768 if (sgs->group_type < busiest->group_type) 8769 return false; 8770 8771 /* 8772 * The candidate and the current busiest group are the same type of 8773 * group. Let check which one is the busiest according to the type. 8774 */ 8775 8776 switch (sgs->group_type) { 8777 case group_overloaded: 8778 /* Select the overloaded group with highest avg_load. */ 8779 if (sgs->avg_load <= busiest->avg_load) 8780 return false; 8781 break; 8782 8783 case group_imbalanced: 8784 /* 8785 * Select the 1st imbalanced group as we don't have any way to 8786 * choose one more than another. 8787 */ 8788 return false; 8789 8790 case group_asym_packing: 8791 /* Prefer to move from lowest priority CPU's work */ 8792 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 8793 return false; 8794 break; 8795 8796 case group_misfit_task: 8797 /* 8798 * If we have more than one misfit sg go with the biggest 8799 * misfit. 8800 */ 8801 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8802 return false; 8803 break; 8804 8805 case group_fully_busy: 8806 /* 8807 * Select the fully busy group with highest avg_load. In 8808 * theory, there is no need to pull task from such kind of 8809 * group because tasks have all compute capacity that they need 8810 * but we can still improve the overall throughput by reducing 8811 * contention when accessing shared HW resources. 8812 * 8813 * XXX for now avg_load is not computed and always 0 so we 8814 * select the 1st one. 8815 */ 8816 if (sgs->avg_load <= busiest->avg_load) 8817 return false; 8818 break; 8819 8820 case group_has_spare: 8821 /* 8822 * Select not overloaded group with lowest number of idle cpus 8823 * and highest number of running tasks. We could also compare 8824 * the spare capacity which is more stable but it can end up 8825 * that the group has less spare capacity but finally more idle 8826 * CPUs which means less opportunity to pull tasks. 8827 */ 8828 if (sgs->idle_cpus > busiest->idle_cpus) 8829 return false; 8830 else if ((sgs->idle_cpus == busiest->idle_cpus) && 8831 (sgs->sum_nr_running <= busiest->sum_nr_running)) 8832 return false; 8833 8834 break; 8835 } 8836 8837 /* 8838 * Candidate sg has no more than one task per CPU and has higher 8839 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 8840 * throughput. Maximize throughput, power/energy consequences are not 8841 * considered. 8842 */ 8843 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 8844 (sgs->group_type <= group_fully_busy) && 8845 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 8846 return false; 8847 8848 return true; 8849 } 8850 8851 #ifdef CONFIG_NUMA_BALANCING 8852 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8853 { 8854 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 8855 return regular; 8856 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 8857 return remote; 8858 return all; 8859 } 8860 8861 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8862 { 8863 if (rq->nr_running > rq->nr_numa_running) 8864 return regular; 8865 if (rq->nr_running > rq->nr_preferred_running) 8866 return remote; 8867 return all; 8868 } 8869 #else 8870 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8871 { 8872 return all; 8873 } 8874 8875 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8876 { 8877 return regular; 8878 } 8879 #endif /* CONFIG_NUMA_BALANCING */ 8880 8881 8882 struct sg_lb_stats; 8883 8884 /* 8885 * task_running_on_cpu - return 1 if @p is running on @cpu. 8886 */ 8887 8888 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 8889 { 8890 /* Task has no contribution or is new */ 8891 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8892 return 0; 8893 8894 if (task_on_rq_queued(p)) 8895 return 1; 8896 8897 return 0; 8898 } 8899 8900 /** 8901 * idle_cpu_without - would a given CPU be idle without p ? 8902 * @cpu: the processor on which idleness is tested. 8903 * @p: task which should be ignored. 8904 * 8905 * Return: 1 if the CPU would be idle. 0 otherwise. 8906 */ 8907 static int idle_cpu_without(int cpu, struct task_struct *p) 8908 { 8909 struct rq *rq = cpu_rq(cpu); 8910 8911 if (rq->curr != rq->idle && rq->curr != p) 8912 return 0; 8913 8914 /* 8915 * rq->nr_running can't be used but an updated version without the 8916 * impact of p on cpu must be used instead. The updated nr_running 8917 * be computed and tested before calling idle_cpu_without(). 8918 */ 8919 8920 #ifdef CONFIG_SMP 8921 if (rq->ttwu_pending) 8922 return 0; 8923 #endif 8924 8925 return 1; 8926 } 8927 8928 /* 8929 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 8930 * @sd: The sched_domain level to look for idlest group. 8931 * @group: sched_group whose statistics are to be updated. 8932 * @sgs: variable to hold the statistics for this group. 8933 * @p: The task for which we look for the idlest group/CPU. 8934 */ 8935 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 8936 struct sched_group *group, 8937 struct sg_lb_stats *sgs, 8938 struct task_struct *p) 8939 { 8940 int i, nr_running; 8941 8942 memset(sgs, 0, sizeof(*sgs)); 8943 8944 for_each_cpu(i, sched_group_span(group)) { 8945 struct rq *rq = cpu_rq(i); 8946 unsigned int local; 8947 8948 sgs->group_load += cpu_load_without(rq, p); 8949 sgs->group_util += cpu_util_without(i, p); 8950 sgs->group_runnable += cpu_runnable_without(rq, p); 8951 local = task_running_on_cpu(i, p); 8952 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 8953 8954 nr_running = rq->nr_running - local; 8955 sgs->sum_nr_running += nr_running; 8956 8957 /* 8958 * No need to call idle_cpu_without() if nr_running is not 0 8959 */ 8960 if (!nr_running && idle_cpu_without(i, p)) 8961 sgs->idle_cpus++; 8962 8963 } 8964 8965 /* Check if task fits in the group */ 8966 if (sd->flags & SD_ASYM_CPUCAPACITY && 8967 !task_fits_capacity(p, group->sgc->max_capacity)) { 8968 sgs->group_misfit_task_load = 1; 8969 } 8970 8971 sgs->group_capacity = group->sgc->capacity; 8972 8973 sgs->group_weight = group->group_weight; 8974 8975 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 8976 8977 /* 8978 * Computing avg_load makes sense only when group is fully busy or 8979 * overloaded 8980 */ 8981 if (sgs->group_type == group_fully_busy || 8982 sgs->group_type == group_overloaded) 8983 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8984 sgs->group_capacity; 8985 } 8986 8987 static bool update_pick_idlest(struct sched_group *idlest, 8988 struct sg_lb_stats *idlest_sgs, 8989 struct sched_group *group, 8990 struct sg_lb_stats *sgs) 8991 { 8992 if (sgs->group_type < idlest_sgs->group_type) 8993 return true; 8994 8995 if (sgs->group_type > idlest_sgs->group_type) 8996 return false; 8997 8998 /* 8999 * The candidate and the current idlest group are the same type of 9000 * group. Let check which one is the idlest according to the type. 9001 */ 9002 9003 switch (sgs->group_type) { 9004 case group_overloaded: 9005 case group_fully_busy: 9006 /* Select the group with lowest avg_load. */ 9007 if (idlest_sgs->avg_load <= sgs->avg_load) 9008 return false; 9009 break; 9010 9011 case group_imbalanced: 9012 case group_asym_packing: 9013 /* Those types are not used in the slow wakeup path */ 9014 return false; 9015 9016 case group_misfit_task: 9017 /* Select group with the highest max capacity */ 9018 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 9019 return false; 9020 break; 9021 9022 case group_has_spare: 9023 /* Select group with most idle CPUs */ 9024 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 9025 return false; 9026 9027 /* Select group with lowest group_util */ 9028 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 9029 idlest_sgs->group_util <= sgs->group_util) 9030 return false; 9031 9032 break; 9033 } 9034 9035 return true; 9036 } 9037 9038 /* 9039 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain. 9040 * This is an approximation as the number of running tasks may not be 9041 * related to the number of busy CPUs due to sched_setaffinity. 9042 */ 9043 static inline bool allow_numa_imbalance(int dst_running, int dst_weight) 9044 { 9045 return (dst_running < (dst_weight >> 2)); 9046 } 9047 9048 /* 9049 * find_idlest_group() finds and returns the least busy CPU group within the 9050 * domain. 9051 * 9052 * Assumes p is allowed on at least one CPU in sd. 9053 */ 9054 static struct sched_group * 9055 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 9056 { 9057 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 9058 struct sg_lb_stats local_sgs, tmp_sgs; 9059 struct sg_lb_stats *sgs; 9060 unsigned long imbalance; 9061 struct sg_lb_stats idlest_sgs = { 9062 .avg_load = UINT_MAX, 9063 .group_type = group_overloaded, 9064 }; 9065 9066 do { 9067 int local_group; 9068 9069 /* Skip over this group if it has no CPUs allowed */ 9070 if (!cpumask_intersects(sched_group_span(group), 9071 p->cpus_ptr)) 9072 continue; 9073 9074 /* Skip over this group if no cookie matched */ 9075 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 9076 continue; 9077 9078 local_group = cpumask_test_cpu(this_cpu, 9079 sched_group_span(group)); 9080 9081 if (local_group) { 9082 sgs = &local_sgs; 9083 local = group; 9084 } else { 9085 sgs = &tmp_sgs; 9086 } 9087 9088 update_sg_wakeup_stats(sd, group, sgs, p); 9089 9090 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 9091 idlest = group; 9092 idlest_sgs = *sgs; 9093 } 9094 9095 } while (group = group->next, group != sd->groups); 9096 9097 9098 /* There is no idlest group to push tasks to */ 9099 if (!idlest) 9100 return NULL; 9101 9102 /* The local group has been skipped because of CPU affinity */ 9103 if (!local) 9104 return idlest; 9105 9106 /* 9107 * If the local group is idler than the selected idlest group 9108 * don't try and push the task. 9109 */ 9110 if (local_sgs.group_type < idlest_sgs.group_type) 9111 return NULL; 9112 9113 /* 9114 * If the local group is busier than the selected idlest group 9115 * try and push the task. 9116 */ 9117 if (local_sgs.group_type > idlest_sgs.group_type) 9118 return idlest; 9119 9120 switch (local_sgs.group_type) { 9121 case group_overloaded: 9122 case group_fully_busy: 9123 9124 /* Calculate allowed imbalance based on load */ 9125 imbalance = scale_load_down(NICE_0_LOAD) * 9126 (sd->imbalance_pct-100) / 100; 9127 9128 /* 9129 * When comparing groups across NUMA domains, it's possible for 9130 * the local domain to be very lightly loaded relative to the 9131 * remote domains but "imbalance" skews the comparison making 9132 * remote CPUs look much more favourable. When considering 9133 * cross-domain, add imbalance to the load on the remote node 9134 * and consider staying local. 9135 */ 9136 9137 if ((sd->flags & SD_NUMA) && 9138 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 9139 return NULL; 9140 9141 /* 9142 * If the local group is less loaded than the selected 9143 * idlest group don't try and push any tasks. 9144 */ 9145 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 9146 return NULL; 9147 9148 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 9149 return NULL; 9150 break; 9151 9152 case group_imbalanced: 9153 case group_asym_packing: 9154 /* Those type are not used in the slow wakeup path */ 9155 return NULL; 9156 9157 case group_misfit_task: 9158 /* Select group with the highest max capacity */ 9159 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 9160 return NULL; 9161 break; 9162 9163 case group_has_spare: 9164 if (sd->flags & SD_NUMA) { 9165 #ifdef CONFIG_NUMA_BALANCING 9166 int idlest_cpu; 9167 /* 9168 * If there is spare capacity at NUMA, try to select 9169 * the preferred node 9170 */ 9171 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 9172 return NULL; 9173 9174 idlest_cpu = cpumask_first(sched_group_span(idlest)); 9175 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 9176 return idlest; 9177 #endif 9178 /* 9179 * Otherwise, keep the task on this node to stay close 9180 * its wakeup source and improve locality. If there is 9181 * a real need of migration, periodic load balance will 9182 * take care of it. 9183 */ 9184 if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight)) 9185 return NULL; 9186 } 9187 9188 /* 9189 * Select group with highest number of idle CPUs. We could also 9190 * compare the utilization which is more stable but it can end 9191 * up that the group has less spare capacity but finally more 9192 * idle CPUs which means more opportunity to run task. 9193 */ 9194 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 9195 return NULL; 9196 break; 9197 } 9198 9199 return idlest; 9200 } 9201 9202 /** 9203 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 9204 * @env: The load balancing environment. 9205 * @sds: variable to hold the statistics for this sched_domain. 9206 */ 9207 9208 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 9209 { 9210 struct sched_domain *child = env->sd->child; 9211 struct sched_group *sg = env->sd->groups; 9212 struct sg_lb_stats *local = &sds->local_stat; 9213 struct sg_lb_stats tmp_sgs; 9214 int sg_status = 0; 9215 9216 do { 9217 struct sg_lb_stats *sgs = &tmp_sgs; 9218 int local_group; 9219 9220 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 9221 if (local_group) { 9222 sds->local = sg; 9223 sgs = local; 9224 9225 if (env->idle != CPU_NEWLY_IDLE || 9226 time_after_eq(jiffies, sg->sgc->next_update)) 9227 update_group_capacity(env->sd, env->dst_cpu); 9228 } 9229 9230 update_sg_lb_stats(env, sds, sg, sgs, &sg_status); 9231 9232 if (local_group) 9233 goto next_group; 9234 9235 9236 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 9237 sds->busiest = sg; 9238 sds->busiest_stat = *sgs; 9239 } 9240 9241 next_group: 9242 /* Now, start updating sd_lb_stats */ 9243 sds->total_load += sgs->group_load; 9244 sds->total_capacity += sgs->group_capacity; 9245 9246 sg = sg->next; 9247 } while (sg != env->sd->groups); 9248 9249 /* Tag domain that child domain prefers tasks go to siblings first */ 9250 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 9251 9252 9253 if (env->sd->flags & SD_NUMA) 9254 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 9255 9256 if (!env->sd->parent) { 9257 struct root_domain *rd = env->dst_rq->rd; 9258 9259 /* update overload indicator if we are at root domain */ 9260 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 9261 9262 /* Update over-utilization (tipping point, U >= 0) indicator */ 9263 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 9264 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 9265 } else if (sg_status & SG_OVERUTILIZED) { 9266 struct root_domain *rd = env->dst_rq->rd; 9267 9268 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 9269 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 9270 } 9271 } 9272 9273 #define NUMA_IMBALANCE_MIN 2 9274 9275 static inline long adjust_numa_imbalance(int imbalance, 9276 int dst_running, int dst_weight) 9277 { 9278 if (!allow_numa_imbalance(dst_running, dst_weight)) 9279 return imbalance; 9280 9281 /* 9282 * Allow a small imbalance based on a simple pair of communicating 9283 * tasks that remain local when the destination is lightly loaded. 9284 */ 9285 if (imbalance <= NUMA_IMBALANCE_MIN) 9286 return 0; 9287 9288 return imbalance; 9289 } 9290 9291 /** 9292 * calculate_imbalance - Calculate the amount of imbalance present within the 9293 * groups of a given sched_domain during load balance. 9294 * @env: load balance environment 9295 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 9296 */ 9297 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 9298 { 9299 struct sg_lb_stats *local, *busiest; 9300 9301 local = &sds->local_stat; 9302 busiest = &sds->busiest_stat; 9303 9304 if (busiest->group_type == group_misfit_task) { 9305 /* Set imbalance to allow misfit tasks to be balanced. */ 9306 env->migration_type = migrate_misfit; 9307 env->imbalance = 1; 9308 return; 9309 } 9310 9311 if (busiest->group_type == group_asym_packing) { 9312 /* 9313 * In case of asym capacity, we will try to migrate all load to 9314 * the preferred CPU. 9315 */ 9316 env->migration_type = migrate_task; 9317 env->imbalance = busiest->sum_h_nr_running; 9318 return; 9319 } 9320 9321 if (busiest->group_type == group_imbalanced) { 9322 /* 9323 * In the group_imb case we cannot rely on group-wide averages 9324 * to ensure CPU-load equilibrium, try to move any task to fix 9325 * the imbalance. The next load balance will take care of 9326 * balancing back the system. 9327 */ 9328 env->migration_type = migrate_task; 9329 env->imbalance = 1; 9330 return; 9331 } 9332 9333 /* 9334 * Try to use spare capacity of local group without overloading it or 9335 * emptying busiest. 9336 */ 9337 if (local->group_type == group_has_spare) { 9338 if ((busiest->group_type > group_fully_busy) && 9339 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 9340 /* 9341 * If busiest is overloaded, try to fill spare 9342 * capacity. This might end up creating spare capacity 9343 * in busiest or busiest still being overloaded but 9344 * there is no simple way to directly compute the 9345 * amount of load to migrate in order to balance the 9346 * system. 9347 */ 9348 env->migration_type = migrate_util; 9349 env->imbalance = max(local->group_capacity, local->group_util) - 9350 local->group_util; 9351 9352 /* 9353 * In some cases, the group's utilization is max or even 9354 * higher than capacity because of migrations but the 9355 * local CPU is (newly) idle. There is at least one 9356 * waiting task in this overloaded busiest group. Let's 9357 * try to pull it. 9358 */ 9359 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 9360 env->migration_type = migrate_task; 9361 env->imbalance = 1; 9362 } 9363 9364 return; 9365 } 9366 9367 if (busiest->group_weight == 1 || sds->prefer_sibling) { 9368 unsigned int nr_diff = busiest->sum_nr_running; 9369 /* 9370 * When prefer sibling, evenly spread running tasks on 9371 * groups. 9372 */ 9373 env->migration_type = migrate_task; 9374 lsub_positive(&nr_diff, local->sum_nr_running); 9375 env->imbalance = nr_diff >> 1; 9376 } else { 9377 9378 /* 9379 * If there is no overload, we just want to even the number of 9380 * idle cpus. 9381 */ 9382 env->migration_type = migrate_task; 9383 env->imbalance = max_t(long, 0, (local->idle_cpus - 9384 busiest->idle_cpus) >> 1); 9385 } 9386 9387 /* Consider allowing a small imbalance between NUMA groups */ 9388 if (env->sd->flags & SD_NUMA) { 9389 env->imbalance = adjust_numa_imbalance(env->imbalance, 9390 busiest->sum_nr_running, busiest->group_weight); 9391 } 9392 9393 return; 9394 } 9395 9396 /* 9397 * Local is fully busy but has to take more load to relieve the 9398 * busiest group 9399 */ 9400 if (local->group_type < group_overloaded) { 9401 /* 9402 * Local will become overloaded so the avg_load metrics are 9403 * finally needed. 9404 */ 9405 9406 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 9407 local->group_capacity; 9408 9409 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 9410 sds->total_capacity; 9411 /* 9412 * If the local group is more loaded than the selected 9413 * busiest group don't try to pull any tasks. 9414 */ 9415 if (local->avg_load >= busiest->avg_load) { 9416 env->imbalance = 0; 9417 return; 9418 } 9419 } 9420 9421 /* 9422 * Both group are or will become overloaded and we're trying to get all 9423 * the CPUs to the average_load, so we don't want to push ourselves 9424 * above the average load, nor do we wish to reduce the max loaded CPU 9425 * below the average load. At the same time, we also don't want to 9426 * reduce the group load below the group capacity. Thus we look for 9427 * the minimum possible imbalance. 9428 */ 9429 env->migration_type = migrate_load; 9430 env->imbalance = min( 9431 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 9432 (sds->avg_load - local->avg_load) * local->group_capacity 9433 ) / SCHED_CAPACITY_SCALE; 9434 } 9435 9436 /******* find_busiest_group() helpers end here *********************/ 9437 9438 /* 9439 * Decision matrix according to the local and busiest group type: 9440 * 9441 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 9442 * has_spare nr_idle balanced N/A N/A balanced balanced 9443 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 9444 * misfit_task force N/A N/A N/A force force 9445 * asym_packing force force N/A N/A force force 9446 * imbalanced force force N/A N/A force force 9447 * overloaded force force N/A N/A force avg_load 9448 * 9449 * N/A : Not Applicable because already filtered while updating 9450 * statistics. 9451 * balanced : The system is balanced for these 2 groups. 9452 * force : Calculate the imbalance as load migration is probably needed. 9453 * avg_load : Only if imbalance is significant enough. 9454 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 9455 * different in groups. 9456 */ 9457 9458 /** 9459 * find_busiest_group - Returns the busiest group within the sched_domain 9460 * if there is an imbalance. 9461 * @env: The load balancing environment. 9462 * 9463 * Also calculates the amount of runnable load which should be moved 9464 * to restore balance. 9465 * 9466 * Return: - The busiest group if imbalance exists. 9467 */ 9468 static struct sched_group *find_busiest_group(struct lb_env *env) 9469 { 9470 struct sg_lb_stats *local, *busiest; 9471 struct sd_lb_stats sds; 9472 9473 init_sd_lb_stats(&sds); 9474 9475 /* 9476 * Compute the various statistics relevant for load balancing at 9477 * this level. 9478 */ 9479 update_sd_lb_stats(env, &sds); 9480 9481 if (sched_energy_enabled()) { 9482 struct root_domain *rd = env->dst_rq->rd; 9483 9484 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 9485 goto out_balanced; 9486 } 9487 9488 local = &sds.local_stat; 9489 busiest = &sds.busiest_stat; 9490 9491 /* There is no busy sibling group to pull tasks from */ 9492 if (!sds.busiest) 9493 goto out_balanced; 9494 9495 /* Misfit tasks should be dealt with regardless of the avg load */ 9496 if (busiest->group_type == group_misfit_task) 9497 goto force_balance; 9498 9499 /* ASYM feature bypasses nice load balance check */ 9500 if (busiest->group_type == group_asym_packing) 9501 goto force_balance; 9502 9503 /* 9504 * If the busiest group is imbalanced the below checks don't 9505 * work because they assume all things are equal, which typically 9506 * isn't true due to cpus_ptr constraints and the like. 9507 */ 9508 if (busiest->group_type == group_imbalanced) 9509 goto force_balance; 9510 9511 /* 9512 * If the local group is busier than the selected busiest group 9513 * don't try and pull any tasks. 9514 */ 9515 if (local->group_type > busiest->group_type) 9516 goto out_balanced; 9517 9518 /* 9519 * When groups are overloaded, use the avg_load to ensure fairness 9520 * between tasks. 9521 */ 9522 if (local->group_type == group_overloaded) { 9523 /* 9524 * If the local group is more loaded than the selected 9525 * busiest group don't try to pull any tasks. 9526 */ 9527 if (local->avg_load >= busiest->avg_load) 9528 goto out_balanced; 9529 9530 /* XXX broken for overlapping NUMA groups */ 9531 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 9532 sds.total_capacity; 9533 9534 /* 9535 * Don't pull any tasks if this group is already above the 9536 * domain average load. 9537 */ 9538 if (local->avg_load >= sds.avg_load) 9539 goto out_balanced; 9540 9541 /* 9542 * If the busiest group is more loaded, use imbalance_pct to be 9543 * conservative. 9544 */ 9545 if (100 * busiest->avg_load <= 9546 env->sd->imbalance_pct * local->avg_load) 9547 goto out_balanced; 9548 } 9549 9550 /* Try to move all excess tasks to child's sibling domain */ 9551 if (sds.prefer_sibling && local->group_type == group_has_spare && 9552 busiest->sum_nr_running > local->sum_nr_running + 1) 9553 goto force_balance; 9554 9555 if (busiest->group_type != group_overloaded) { 9556 if (env->idle == CPU_NOT_IDLE) 9557 /* 9558 * If the busiest group is not overloaded (and as a 9559 * result the local one too) but this CPU is already 9560 * busy, let another idle CPU try to pull task. 9561 */ 9562 goto out_balanced; 9563 9564 if (busiest->group_weight > 1 && 9565 local->idle_cpus <= (busiest->idle_cpus + 1)) 9566 /* 9567 * If the busiest group is not overloaded 9568 * and there is no imbalance between this and busiest 9569 * group wrt idle CPUs, it is balanced. The imbalance 9570 * becomes significant if the diff is greater than 1 9571 * otherwise we might end up to just move the imbalance 9572 * on another group. Of course this applies only if 9573 * there is more than 1 CPU per group. 9574 */ 9575 goto out_balanced; 9576 9577 if (busiest->sum_h_nr_running == 1) 9578 /* 9579 * busiest doesn't have any tasks waiting to run 9580 */ 9581 goto out_balanced; 9582 } 9583 9584 force_balance: 9585 /* Looks like there is an imbalance. Compute it */ 9586 calculate_imbalance(env, &sds); 9587 return env->imbalance ? sds.busiest : NULL; 9588 9589 out_balanced: 9590 env->imbalance = 0; 9591 return NULL; 9592 } 9593 9594 /* 9595 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 9596 */ 9597 static struct rq *find_busiest_queue(struct lb_env *env, 9598 struct sched_group *group) 9599 { 9600 struct rq *busiest = NULL, *rq; 9601 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 9602 unsigned int busiest_nr = 0; 9603 int i; 9604 9605 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9606 unsigned long capacity, load, util; 9607 unsigned int nr_running; 9608 enum fbq_type rt; 9609 9610 rq = cpu_rq(i); 9611 rt = fbq_classify_rq(rq); 9612 9613 /* 9614 * We classify groups/runqueues into three groups: 9615 * - regular: there are !numa tasks 9616 * - remote: there are numa tasks that run on the 'wrong' node 9617 * - all: there is no distinction 9618 * 9619 * In order to avoid migrating ideally placed numa tasks, 9620 * ignore those when there's better options. 9621 * 9622 * If we ignore the actual busiest queue to migrate another 9623 * task, the next balance pass can still reduce the busiest 9624 * queue by moving tasks around inside the node. 9625 * 9626 * If we cannot move enough load due to this classification 9627 * the next pass will adjust the group classification and 9628 * allow migration of more tasks. 9629 * 9630 * Both cases only affect the total convergence complexity. 9631 */ 9632 if (rt > env->fbq_type) 9633 continue; 9634 9635 nr_running = rq->cfs.h_nr_running; 9636 if (!nr_running) 9637 continue; 9638 9639 capacity = capacity_of(i); 9640 9641 /* 9642 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 9643 * eventually lead to active_balancing high->low capacity. 9644 * Higher per-CPU capacity is considered better than balancing 9645 * average load. 9646 */ 9647 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 9648 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 9649 nr_running == 1) 9650 continue; 9651 9652 /* Make sure we only pull tasks from a CPU of lower priority */ 9653 if ((env->sd->flags & SD_ASYM_PACKING) && 9654 sched_asym_prefer(i, env->dst_cpu) && 9655 nr_running == 1) 9656 continue; 9657 9658 switch (env->migration_type) { 9659 case migrate_load: 9660 /* 9661 * When comparing with load imbalance, use cpu_load() 9662 * which is not scaled with the CPU capacity. 9663 */ 9664 load = cpu_load(rq); 9665 9666 if (nr_running == 1 && load > env->imbalance && 9667 !check_cpu_capacity(rq, env->sd)) 9668 break; 9669 9670 /* 9671 * For the load comparisons with the other CPUs, 9672 * consider the cpu_load() scaled with the CPU 9673 * capacity, so that the load can be moved away 9674 * from the CPU that is potentially running at a 9675 * lower capacity. 9676 * 9677 * Thus we're looking for max(load_i / capacity_i), 9678 * crosswise multiplication to rid ourselves of the 9679 * division works out to: 9680 * load_i * capacity_j > load_j * capacity_i; 9681 * where j is our previous maximum. 9682 */ 9683 if (load * busiest_capacity > busiest_load * capacity) { 9684 busiest_load = load; 9685 busiest_capacity = capacity; 9686 busiest = rq; 9687 } 9688 break; 9689 9690 case migrate_util: 9691 util = cpu_util_cfs(i); 9692 9693 /* 9694 * Don't try to pull utilization from a CPU with one 9695 * running task. Whatever its utilization, we will fail 9696 * detach the task. 9697 */ 9698 if (nr_running <= 1) 9699 continue; 9700 9701 if (busiest_util < util) { 9702 busiest_util = util; 9703 busiest = rq; 9704 } 9705 break; 9706 9707 case migrate_task: 9708 if (busiest_nr < nr_running) { 9709 busiest_nr = nr_running; 9710 busiest = rq; 9711 } 9712 break; 9713 9714 case migrate_misfit: 9715 /* 9716 * For ASYM_CPUCAPACITY domains with misfit tasks we 9717 * simply seek the "biggest" misfit task. 9718 */ 9719 if (rq->misfit_task_load > busiest_load) { 9720 busiest_load = rq->misfit_task_load; 9721 busiest = rq; 9722 } 9723 9724 break; 9725 9726 } 9727 } 9728 9729 return busiest; 9730 } 9731 9732 /* 9733 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 9734 * so long as it is large enough. 9735 */ 9736 #define MAX_PINNED_INTERVAL 512 9737 9738 static inline bool 9739 asym_active_balance(struct lb_env *env) 9740 { 9741 /* 9742 * ASYM_PACKING needs to force migrate tasks from busy but 9743 * lower priority CPUs in order to pack all tasks in the 9744 * highest priority CPUs. 9745 */ 9746 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 9747 sched_asym_prefer(env->dst_cpu, env->src_cpu); 9748 } 9749 9750 static inline bool 9751 imbalanced_active_balance(struct lb_env *env) 9752 { 9753 struct sched_domain *sd = env->sd; 9754 9755 /* 9756 * The imbalanced case includes the case of pinned tasks preventing a fair 9757 * distribution of the load on the system but also the even distribution of the 9758 * threads on a system with spare capacity 9759 */ 9760 if ((env->migration_type == migrate_task) && 9761 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 9762 return 1; 9763 9764 return 0; 9765 } 9766 9767 static int need_active_balance(struct lb_env *env) 9768 { 9769 struct sched_domain *sd = env->sd; 9770 9771 if (asym_active_balance(env)) 9772 return 1; 9773 9774 if (imbalanced_active_balance(env)) 9775 return 1; 9776 9777 /* 9778 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 9779 * It's worth migrating the task if the src_cpu's capacity is reduced 9780 * because of other sched_class or IRQs if more capacity stays 9781 * available on dst_cpu. 9782 */ 9783 if ((env->idle != CPU_NOT_IDLE) && 9784 (env->src_rq->cfs.h_nr_running == 1)) { 9785 if ((check_cpu_capacity(env->src_rq, sd)) && 9786 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 9787 return 1; 9788 } 9789 9790 if (env->migration_type == migrate_misfit) 9791 return 1; 9792 9793 return 0; 9794 } 9795 9796 static int active_load_balance_cpu_stop(void *data); 9797 9798 static int should_we_balance(struct lb_env *env) 9799 { 9800 struct sched_group *sg = env->sd->groups; 9801 int cpu; 9802 9803 /* 9804 * Ensure the balancing environment is consistent; can happen 9805 * when the softirq triggers 'during' hotplug. 9806 */ 9807 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 9808 return 0; 9809 9810 /* 9811 * In the newly idle case, we will allow all the CPUs 9812 * to do the newly idle load balance. 9813 */ 9814 if (env->idle == CPU_NEWLY_IDLE) 9815 return 1; 9816 9817 /* Try to find first idle CPU */ 9818 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 9819 if (!idle_cpu(cpu)) 9820 continue; 9821 9822 /* Are we the first idle CPU? */ 9823 return cpu == env->dst_cpu; 9824 } 9825 9826 /* Are we the first CPU of this group ? */ 9827 return group_balance_cpu(sg) == env->dst_cpu; 9828 } 9829 9830 /* 9831 * Check this_cpu to ensure it is balanced within domain. Attempt to move 9832 * tasks if there is an imbalance. 9833 */ 9834 static int load_balance(int this_cpu, struct rq *this_rq, 9835 struct sched_domain *sd, enum cpu_idle_type idle, 9836 int *continue_balancing) 9837 { 9838 int ld_moved, cur_ld_moved, active_balance = 0; 9839 struct sched_domain *sd_parent = sd->parent; 9840 struct sched_group *group; 9841 struct rq *busiest; 9842 struct rq_flags rf; 9843 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 9844 9845 struct lb_env env = { 9846 .sd = sd, 9847 .dst_cpu = this_cpu, 9848 .dst_rq = this_rq, 9849 .dst_grpmask = sched_group_span(sd->groups), 9850 .idle = idle, 9851 .loop_break = sched_nr_migrate_break, 9852 .cpus = cpus, 9853 .fbq_type = all, 9854 .tasks = LIST_HEAD_INIT(env.tasks), 9855 }; 9856 9857 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 9858 9859 schedstat_inc(sd->lb_count[idle]); 9860 9861 redo: 9862 if (!should_we_balance(&env)) { 9863 *continue_balancing = 0; 9864 goto out_balanced; 9865 } 9866 9867 group = find_busiest_group(&env); 9868 if (!group) { 9869 schedstat_inc(sd->lb_nobusyg[idle]); 9870 goto out_balanced; 9871 } 9872 9873 busiest = find_busiest_queue(&env, group); 9874 if (!busiest) { 9875 schedstat_inc(sd->lb_nobusyq[idle]); 9876 goto out_balanced; 9877 } 9878 9879 BUG_ON(busiest == env.dst_rq); 9880 9881 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 9882 9883 env.src_cpu = busiest->cpu; 9884 env.src_rq = busiest; 9885 9886 ld_moved = 0; 9887 /* Clear this flag as soon as we find a pullable task */ 9888 env.flags |= LBF_ALL_PINNED; 9889 if (busiest->nr_running > 1) { 9890 /* 9891 * Attempt to move tasks. If find_busiest_group has found 9892 * an imbalance but busiest->nr_running <= 1, the group is 9893 * still unbalanced. ld_moved simply stays zero, so it is 9894 * correctly treated as an imbalance. 9895 */ 9896 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 9897 9898 more_balance: 9899 rq_lock_irqsave(busiest, &rf); 9900 update_rq_clock(busiest); 9901 9902 /* 9903 * cur_ld_moved - load moved in current iteration 9904 * ld_moved - cumulative load moved across iterations 9905 */ 9906 cur_ld_moved = detach_tasks(&env); 9907 9908 /* 9909 * We've detached some tasks from busiest_rq. Every 9910 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 9911 * unlock busiest->lock, and we are able to be sure 9912 * that nobody can manipulate the tasks in parallel. 9913 * See task_rq_lock() family for the details. 9914 */ 9915 9916 rq_unlock(busiest, &rf); 9917 9918 if (cur_ld_moved) { 9919 attach_tasks(&env); 9920 ld_moved += cur_ld_moved; 9921 } 9922 9923 local_irq_restore(rf.flags); 9924 9925 if (env.flags & LBF_NEED_BREAK) { 9926 env.flags &= ~LBF_NEED_BREAK; 9927 goto more_balance; 9928 } 9929 9930 /* 9931 * Revisit (affine) tasks on src_cpu that couldn't be moved to 9932 * us and move them to an alternate dst_cpu in our sched_group 9933 * where they can run. The upper limit on how many times we 9934 * iterate on same src_cpu is dependent on number of CPUs in our 9935 * sched_group. 9936 * 9937 * This changes load balance semantics a bit on who can move 9938 * load to a given_cpu. In addition to the given_cpu itself 9939 * (or a ilb_cpu acting on its behalf where given_cpu is 9940 * nohz-idle), we now have balance_cpu in a position to move 9941 * load to given_cpu. In rare situations, this may cause 9942 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 9943 * _independently_ and at _same_ time to move some load to 9944 * given_cpu) causing excess load to be moved to given_cpu. 9945 * This however should not happen so much in practice and 9946 * moreover subsequent load balance cycles should correct the 9947 * excess load moved. 9948 */ 9949 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 9950 9951 /* Prevent to re-select dst_cpu via env's CPUs */ 9952 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 9953 9954 env.dst_rq = cpu_rq(env.new_dst_cpu); 9955 env.dst_cpu = env.new_dst_cpu; 9956 env.flags &= ~LBF_DST_PINNED; 9957 env.loop = 0; 9958 env.loop_break = sched_nr_migrate_break; 9959 9960 /* 9961 * Go back to "more_balance" rather than "redo" since we 9962 * need to continue with same src_cpu. 9963 */ 9964 goto more_balance; 9965 } 9966 9967 /* 9968 * We failed to reach balance because of affinity. 9969 */ 9970 if (sd_parent) { 9971 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9972 9973 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 9974 *group_imbalance = 1; 9975 } 9976 9977 /* All tasks on this runqueue were pinned by CPU affinity */ 9978 if (unlikely(env.flags & LBF_ALL_PINNED)) { 9979 __cpumask_clear_cpu(cpu_of(busiest), cpus); 9980 /* 9981 * Attempting to continue load balancing at the current 9982 * sched_domain level only makes sense if there are 9983 * active CPUs remaining as possible busiest CPUs to 9984 * pull load from which are not contained within the 9985 * destination group that is receiving any migrated 9986 * load. 9987 */ 9988 if (!cpumask_subset(cpus, env.dst_grpmask)) { 9989 env.loop = 0; 9990 env.loop_break = sched_nr_migrate_break; 9991 goto redo; 9992 } 9993 goto out_all_pinned; 9994 } 9995 } 9996 9997 if (!ld_moved) { 9998 schedstat_inc(sd->lb_failed[idle]); 9999 /* 10000 * Increment the failure counter only on periodic balance. 10001 * We do not want newidle balance, which can be very 10002 * frequent, pollute the failure counter causing 10003 * excessive cache_hot migrations and active balances. 10004 */ 10005 if (idle != CPU_NEWLY_IDLE) 10006 sd->nr_balance_failed++; 10007 10008 if (need_active_balance(&env)) { 10009 unsigned long flags; 10010 10011 raw_spin_rq_lock_irqsave(busiest, flags); 10012 10013 /* 10014 * Don't kick the active_load_balance_cpu_stop, 10015 * if the curr task on busiest CPU can't be 10016 * moved to this_cpu: 10017 */ 10018 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 10019 raw_spin_rq_unlock_irqrestore(busiest, flags); 10020 goto out_one_pinned; 10021 } 10022 10023 /* Record that we found at least one task that could run on this_cpu */ 10024 env.flags &= ~LBF_ALL_PINNED; 10025 10026 /* 10027 * ->active_balance synchronizes accesses to 10028 * ->active_balance_work. Once set, it's cleared 10029 * only after active load balance is finished. 10030 */ 10031 if (!busiest->active_balance) { 10032 busiest->active_balance = 1; 10033 busiest->push_cpu = this_cpu; 10034 active_balance = 1; 10035 } 10036 raw_spin_rq_unlock_irqrestore(busiest, flags); 10037 10038 if (active_balance) { 10039 stop_one_cpu_nowait(cpu_of(busiest), 10040 active_load_balance_cpu_stop, busiest, 10041 &busiest->active_balance_work); 10042 } 10043 } 10044 } else { 10045 sd->nr_balance_failed = 0; 10046 } 10047 10048 if (likely(!active_balance) || need_active_balance(&env)) { 10049 /* We were unbalanced, so reset the balancing interval */ 10050 sd->balance_interval = sd->min_interval; 10051 } 10052 10053 goto out; 10054 10055 out_balanced: 10056 /* 10057 * We reach balance although we may have faced some affinity 10058 * constraints. Clear the imbalance flag only if other tasks got 10059 * a chance to move and fix the imbalance. 10060 */ 10061 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 10062 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 10063 10064 if (*group_imbalance) 10065 *group_imbalance = 0; 10066 } 10067 10068 out_all_pinned: 10069 /* 10070 * We reach balance because all tasks are pinned at this level so 10071 * we can't migrate them. Let the imbalance flag set so parent level 10072 * can try to migrate them. 10073 */ 10074 schedstat_inc(sd->lb_balanced[idle]); 10075 10076 sd->nr_balance_failed = 0; 10077 10078 out_one_pinned: 10079 ld_moved = 0; 10080 10081 /* 10082 * newidle_balance() disregards balance intervals, so we could 10083 * repeatedly reach this code, which would lead to balance_interval 10084 * skyrocketing in a short amount of time. Skip the balance_interval 10085 * increase logic to avoid that. 10086 */ 10087 if (env.idle == CPU_NEWLY_IDLE) 10088 goto out; 10089 10090 /* tune up the balancing interval */ 10091 if ((env.flags & LBF_ALL_PINNED && 10092 sd->balance_interval < MAX_PINNED_INTERVAL) || 10093 sd->balance_interval < sd->max_interval) 10094 sd->balance_interval *= 2; 10095 out: 10096 return ld_moved; 10097 } 10098 10099 static inline unsigned long 10100 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 10101 { 10102 unsigned long interval = sd->balance_interval; 10103 10104 if (cpu_busy) 10105 interval *= sd->busy_factor; 10106 10107 /* scale ms to jiffies */ 10108 interval = msecs_to_jiffies(interval); 10109 10110 /* 10111 * Reduce likelihood of busy balancing at higher domains racing with 10112 * balancing at lower domains by preventing their balancing periods 10113 * from being multiples of each other. 10114 */ 10115 if (cpu_busy) 10116 interval -= 1; 10117 10118 interval = clamp(interval, 1UL, max_load_balance_interval); 10119 10120 return interval; 10121 } 10122 10123 static inline void 10124 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 10125 { 10126 unsigned long interval, next; 10127 10128 /* used by idle balance, so cpu_busy = 0 */ 10129 interval = get_sd_balance_interval(sd, 0); 10130 next = sd->last_balance + interval; 10131 10132 if (time_after(*next_balance, next)) 10133 *next_balance = next; 10134 } 10135 10136 /* 10137 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 10138 * running tasks off the busiest CPU onto idle CPUs. It requires at 10139 * least 1 task to be running on each physical CPU where possible, and 10140 * avoids physical / logical imbalances. 10141 */ 10142 static int active_load_balance_cpu_stop(void *data) 10143 { 10144 struct rq *busiest_rq = data; 10145 int busiest_cpu = cpu_of(busiest_rq); 10146 int target_cpu = busiest_rq->push_cpu; 10147 struct rq *target_rq = cpu_rq(target_cpu); 10148 struct sched_domain *sd; 10149 struct task_struct *p = NULL; 10150 struct rq_flags rf; 10151 10152 rq_lock_irq(busiest_rq, &rf); 10153 /* 10154 * Between queueing the stop-work and running it is a hole in which 10155 * CPUs can become inactive. We should not move tasks from or to 10156 * inactive CPUs. 10157 */ 10158 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 10159 goto out_unlock; 10160 10161 /* Make sure the requested CPU hasn't gone down in the meantime: */ 10162 if (unlikely(busiest_cpu != smp_processor_id() || 10163 !busiest_rq->active_balance)) 10164 goto out_unlock; 10165 10166 /* Is there any task to move? */ 10167 if (busiest_rq->nr_running <= 1) 10168 goto out_unlock; 10169 10170 /* 10171 * This condition is "impossible", if it occurs 10172 * we need to fix it. Originally reported by 10173 * Bjorn Helgaas on a 128-CPU setup. 10174 */ 10175 BUG_ON(busiest_rq == target_rq); 10176 10177 /* Search for an sd spanning us and the target CPU. */ 10178 rcu_read_lock(); 10179 for_each_domain(target_cpu, sd) { 10180 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 10181 break; 10182 } 10183 10184 if (likely(sd)) { 10185 struct lb_env env = { 10186 .sd = sd, 10187 .dst_cpu = target_cpu, 10188 .dst_rq = target_rq, 10189 .src_cpu = busiest_rq->cpu, 10190 .src_rq = busiest_rq, 10191 .idle = CPU_IDLE, 10192 .flags = LBF_ACTIVE_LB, 10193 }; 10194 10195 schedstat_inc(sd->alb_count); 10196 update_rq_clock(busiest_rq); 10197 10198 p = detach_one_task(&env); 10199 if (p) { 10200 schedstat_inc(sd->alb_pushed); 10201 /* Active balancing done, reset the failure counter. */ 10202 sd->nr_balance_failed = 0; 10203 } else { 10204 schedstat_inc(sd->alb_failed); 10205 } 10206 } 10207 rcu_read_unlock(); 10208 out_unlock: 10209 busiest_rq->active_balance = 0; 10210 rq_unlock(busiest_rq, &rf); 10211 10212 if (p) 10213 attach_one_task(target_rq, p); 10214 10215 local_irq_enable(); 10216 10217 return 0; 10218 } 10219 10220 static DEFINE_SPINLOCK(balancing); 10221 10222 /* 10223 * Scale the max load_balance interval with the number of CPUs in the system. 10224 * This trades load-balance latency on larger machines for less cross talk. 10225 */ 10226 void update_max_interval(void) 10227 { 10228 max_load_balance_interval = HZ*num_online_cpus()/10; 10229 } 10230 10231 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 10232 { 10233 if (cost > sd->max_newidle_lb_cost) { 10234 /* 10235 * Track max cost of a domain to make sure to not delay the 10236 * next wakeup on the CPU. 10237 */ 10238 sd->max_newidle_lb_cost = cost; 10239 sd->last_decay_max_lb_cost = jiffies; 10240 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 10241 /* 10242 * Decay the newidle max times by ~1% per second to ensure that 10243 * it is not outdated and the current max cost is actually 10244 * shorter. 10245 */ 10246 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 10247 sd->last_decay_max_lb_cost = jiffies; 10248 10249 return true; 10250 } 10251 10252 return false; 10253 } 10254 10255 /* 10256 * It checks each scheduling domain to see if it is due to be balanced, 10257 * and initiates a balancing operation if so. 10258 * 10259 * Balancing parameters are set up in init_sched_domains. 10260 */ 10261 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 10262 { 10263 int continue_balancing = 1; 10264 int cpu = rq->cpu; 10265 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10266 unsigned long interval; 10267 struct sched_domain *sd; 10268 /* Earliest time when we have to do rebalance again */ 10269 unsigned long next_balance = jiffies + 60*HZ; 10270 int update_next_balance = 0; 10271 int need_serialize, need_decay = 0; 10272 u64 max_cost = 0; 10273 10274 rcu_read_lock(); 10275 for_each_domain(cpu, sd) { 10276 /* 10277 * Decay the newidle max times here because this is a regular 10278 * visit to all the domains. 10279 */ 10280 need_decay = update_newidle_cost(sd, 0); 10281 max_cost += sd->max_newidle_lb_cost; 10282 10283 /* 10284 * Stop the load balance at this level. There is another 10285 * CPU in our sched group which is doing load balancing more 10286 * actively. 10287 */ 10288 if (!continue_balancing) { 10289 if (need_decay) 10290 continue; 10291 break; 10292 } 10293 10294 interval = get_sd_balance_interval(sd, busy); 10295 10296 need_serialize = sd->flags & SD_SERIALIZE; 10297 if (need_serialize) { 10298 if (!spin_trylock(&balancing)) 10299 goto out; 10300 } 10301 10302 if (time_after_eq(jiffies, sd->last_balance + interval)) { 10303 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 10304 /* 10305 * The LBF_DST_PINNED logic could have changed 10306 * env->dst_cpu, so we can't know our idle 10307 * state even if we migrated tasks. Update it. 10308 */ 10309 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 10310 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10311 } 10312 sd->last_balance = jiffies; 10313 interval = get_sd_balance_interval(sd, busy); 10314 } 10315 if (need_serialize) 10316 spin_unlock(&balancing); 10317 out: 10318 if (time_after(next_balance, sd->last_balance + interval)) { 10319 next_balance = sd->last_balance + interval; 10320 update_next_balance = 1; 10321 } 10322 } 10323 if (need_decay) { 10324 /* 10325 * Ensure the rq-wide value also decays but keep it at a 10326 * reasonable floor to avoid funnies with rq->avg_idle. 10327 */ 10328 rq->max_idle_balance_cost = 10329 max((u64)sysctl_sched_migration_cost, max_cost); 10330 } 10331 rcu_read_unlock(); 10332 10333 /* 10334 * next_balance will be updated only when there is a need. 10335 * When the cpu is attached to null domain for ex, it will not be 10336 * updated. 10337 */ 10338 if (likely(update_next_balance)) 10339 rq->next_balance = next_balance; 10340 10341 } 10342 10343 static inline int on_null_domain(struct rq *rq) 10344 { 10345 return unlikely(!rcu_dereference_sched(rq->sd)); 10346 } 10347 10348 #ifdef CONFIG_NO_HZ_COMMON 10349 /* 10350 * idle load balancing details 10351 * - When one of the busy CPUs notice that there may be an idle rebalancing 10352 * needed, they will kick the idle load balancer, which then does idle 10353 * load balancing for all the idle CPUs. 10354 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set 10355 * anywhere yet. 10356 */ 10357 10358 static inline int find_new_ilb(void) 10359 { 10360 int ilb; 10361 const struct cpumask *hk_mask; 10362 10363 hk_mask = housekeeping_cpumask(HK_FLAG_MISC); 10364 10365 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) { 10366 10367 if (ilb == smp_processor_id()) 10368 continue; 10369 10370 if (idle_cpu(ilb)) 10371 return ilb; 10372 } 10373 10374 return nr_cpu_ids; 10375 } 10376 10377 /* 10378 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 10379 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one). 10380 */ 10381 static void kick_ilb(unsigned int flags) 10382 { 10383 int ilb_cpu; 10384 10385 /* 10386 * Increase nohz.next_balance only when if full ilb is triggered but 10387 * not if we only update stats. 10388 */ 10389 if (flags & NOHZ_BALANCE_KICK) 10390 nohz.next_balance = jiffies+1; 10391 10392 ilb_cpu = find_new_ilb(); 10393 10394 if (ilb_cpu >= nr_cpu_ids) 10395 return; 10396 10397 /* 10398 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 10399 * the first flag owns it; cleared by nohz_csd_func(). 10400 */ 10401 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 10402 if (flags & NOHZ_KICK_MASK) 10403 return; 10404 10405 /* 10406 * This way we generate an IPI on the target CPU which 10407 * is idle. And the softirq performing nohz idle load balance 10408 * will be run before returning from the IPI. 10409 */ 10410 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 10411 } 10412 10413 /* 10414 * Current decision point for kicking the idle load balancer in the presence 10415 * of idle CPUs in the system. 10416 */ 10417 static void nohz_balancer_kick(struct rq *rq) 10418 { 10419 unsigned long now = jiffies; 10420 struct sched_domain_shared *sds; 10421 struct sched_domain *sd; 10422 int nr_busy, i, cpu = rq->cpu; 10423 unsigned int flags = 0; 10424 10425 if (unlikely(rq->idle_balance)) 10426 return; 10427 10428 /* 10429 * We may be recently in ticked or tickless idle mode. At the first 10430 * busy tick after returning from idle, we will update the busy stats. 10431 */ 10432 nohz_balance_exit_idle(rq); 10433 10434 /* 10435 * None are in tickless mode and hence no need for NOHZ idle load 10436 * balancing. 10437 */ 10438 if (likely(!atomic_read(&nohz.nr_cpus))) 10439 return; 10440 10441 if (READ_ONCE(nohz.has_blocked) && 10442 time_after(now, READ_ONCE(nohz.next_blocked))) 10443 flags = NOHZ_STATS_KICK; 10444 10445 if (time_before(now, nohz.next_balance)) 10446 goto out; 10447 10448 if (rq->nr_running >= 2) { 10449 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10450 goto out; 10451 } 10452 10453 rcu_read_lock(); 10454 10455 sd = rcu_dereference(rq->sd); 10456 if (sd) { 10457 /* 10458 * If there's a CFS task and the current CPU has reduced 10459 * capacity; kick the ILB to see if there's a better CPU to run 10460 * on. 10461 */ 10462 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 10463 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10464 goto unlock; 10465 } 10466 } 10467 10468 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 10469 if (sd) { 10470 /* 10471 * When ASYM_PACKING; see if there's a more preferred CPU 10472 * currently idle; in which case, kick the ILB to move tasks 10473 * around. 10474 */ 10475 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 10476 if (sched_asym_prefer(i, cpu)) { 10477 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10478 goto unlock; 10479 } 10480 } 10481 } 10482 10483 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 10484 if (sd) { 10485 /* 10486 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 10487 * to run the misfit task on. 10488 */ 10489 if (check_misfit_status(rq, sd)) { 10490 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10491 goto unlock; 10492 } 10493 10494 /* 10495 * For asymmetric systems, we do not want to nicely balance 10496 * cache use, instead we want to embrace asymmetry and only 10497 * ensure tasks have enough CPU capacity. 10498 * 10499 * Skip the LLC logic because it's not relevant in that case. 10500 */ 10501 goto unlock; 10502 } 10503 10504 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 10505 if (sds) { 10506 /* 10507 * If there is an imbalance between LLC domains (IOW we could 10508 * increase the overall cache use), we need some less-loaded LLC 10509 * domain to pull some load. Likewise, we may need to spread 10510 * load within the current LLC domain (e.g. packed SMT cores but 10511 * other CPUs are idle). We can't really know from here how busy 10512 * the others are - so just get a nohz balance going if it looks 10513 * like this LLC domain has tasks we could move. 10514 */ 10515 nr_busy = atomic_read(&sds->nr_busy_cpus); 10516 if (nr_busy > 1) { 10517 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10518 goto unlock; 10519 } 10520 } 10521 unlock: 10522 rcu_read_unlock(); 10523 out: 10524 if (READ_ONCE(nohz.needs_update)) 10525 flags |= NOHZ_NEXT_KICK; 10526 10527 if (flags) 10528 kick_ilb(flags); 10529 } 10530 10531 static void set_cpu_sd_state_busy(int cpu) 10532 { 10533 struct sched_domain *sd; 10534 10535 rcu_read_lock(); 10536 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10537 10538 if (!sd || !sd->nohz_idle) 10539 goto unlock; 10540 sd->nohz_idle = 0; 10541 10542 atomic_inc(&sd->shared->nr_busy_cpus); 10543 unlock: 10544 rcu_read_unlock(); 10545 } 10546 10547 void nohz_balance_exit_idle(struct rq *rq) 10548 { 10549 SCHED_WARN_ON(rq != this_rq()); 10550 10551 if (likely(!rq->nohz_tick_stopped)) 10552 return; 10553 10554 rq->nohz_tick_stopped = 0; 10555 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 10556 atomic_dec(&nohz.nr_cpus); 10557 10558 set_cpu_sd_state_busy(rq->cpu); 10559 } 10560 10561 static void set_cpu_sd_state_idle(int cpu) 10562 { 10563 struct sched_domain *sd; 10564 10565 rcu_read_lock(); 10566 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10567 10568 if (!sd || sd->nohz_idle) 10569 goto unlock; 10570 sd->nohz_idle = 1; 10571 10572 atomic_dec(&sd->shared->nr_busy_cpus); 10573 unlock: 10574 rcu_read_unlock(); 10575 } 10576 10577 /* 10578 * This routine will record that the CPU is going idle with tick stopped. 10579 * This info will be used in performing idle load balancing in the future. 10580 */ 10581 void nohz_balance_enter_idle(int cpu) 10582 { 10583 struct rq *rq = cpu_rq(cpu); 10584 10585 SCHED_WARN_ON(cpu != smp_processor_id()); 10586 10587 /* If this CPU is going down, then nothing needs to be done: */ 10588 if (!cpu_active(cpu)) 10589 return; 10590 10591 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 10592 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 10593 return; 10594 10595 /* 10596 * Can be set safely without rq->lock held 10597 * If a clear happens, it will have evaluated last additions because 10598 * rq->lock is held during the check and the clear 10599 */ 10600 rq->has_blocked_load = 1; 10601 10602 /* 10603 * The tick is still stopped but load could have been added in the 10604 * meantime. We set the nohz.has_blocked flag to trig a check of the 10605 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 10606 * of nohz.has_blocked can only happen after checking the new load 10607 */ 10608 if (rq->nohz_tick_stopped) 10609 goto out; 10610 10611 /* If we're a completely isolated CPU, we don't play: */ 10612 if (on_null_domain(rq)) 10613 return; 10614 10615 rq->nohz_tick_stopped = 1; 10616 10617 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 10618 atomic_inc(&nohz.nr_cpus); 10619 10620 /* 10621 * Ensures that if nohz_idle_balance() fails to observe our 10622 * @idle_cpus_mask store, it must observe the @has_blocked 10623 * and @needs_update stores. 10624 */ 10625 smp_mb__after_atomic(); 10626 10627 set_cpu_sd_state_idle(cpu); 10628 10629 WRITE_ONCE(nohz.needs_update, 1); 10630 out: 10631 /* 10632 * Each time a cpu enter idle, we assume that it has blocked load and 10633 * enable the periodic update of the load of idle cpus 10634 */ 10635 WRITE_ONCE(nohz.has_blocked, 1); 10636 } 10637 10638 static bool update_nohz_stats(struct rq *rq) 10639 { 10640 unsigned int cpu = rq->cpu; 10641 10642 if (!rq->has_blocked_load) 10643 return false; 10644 10645 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 10646 return false; 10647 10648 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 10649 return true; 10650 10651 update_blocked_averages(cpu); 10652 10653 return rq->has_blocked_load; 10654 } 10655 10656 /* 10657 * Internal function that runs load balance for all idle cpus. The load balance 10658 * can be a simple update of blocked load or a complete load balance with 10659 * tasks movement depending of flags. 10660 */ 10661 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 10662 enum cpu_idle_type idle) 10663 { 10664 /* Earliest time when we have to do rebalance again */ 10665 unsigned long now = jiffies; 10666 unsigned long next_balance = now + 60*HZ; 10667 bool has_blocked_load = false; 10668 int update_next_balance = 0; 10669 int this_cpu = this_rq->cpu; 10670 int balance_cpu; 10671 struct rq *rq; 10672 10673 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 10674 10675 /* 10676 * We assume there will be no idle load after this update and clear 10677 * the has_blocked flag. If a cpu enters idle in the mean time, it will 10678 * set the has_blocked flag and trigger another update of idle load. 10679 * Because a cpu that becomes idle, is added to idle_cpus_mask before 10680 * setting the flag, we are sure to not clear the state and not 10681 * check the load of an idle cpu. 10682 * 10683 * Same applies to idle_cpus_mask vs needs_update. 10684 */ 10685 if (flags & NOHZ_STATS_KICK) 10686 WRITE_ONCE(nohz.has_blocked, 0); 10687 if (flags & NOHZ_NEXT_KICK) 10688 WRITE_ONCE(nohz.needs_update, 0); 10689 10690 /* 10691 * Ensures that if we miss the CPU, we must see the has_blocked 10692 * store from nohz_balance_enter_idle(). 10693 */ 10694 smp_mb(); 10695 10696 /* 10697 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 10698 * chance for other idle cpu to pull load. 10699 */ 10700 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 10701 if (!idle_cpu(balance_cpu)) 10702 continue; 10703 10704 /* 10705 * If this CPU gets work to do, stop the load balancing 10706 * work being done for other CPUs. Next load 10707 * balancing owner will pick it up. 10708 */ 10709 if (need_resched()) { 10710 if (flags & NOHZ_STATS_KICK) 10711 has_blocked_load = true; 10712 if (flags & NOHZ_NEXT_KICK) 10713 WRITE_ONCE(nohz.needs_update, 1); 10714 goto abort; 10715 } 10716 10717 rq = cpu_rq(balance_cpu); 10718 10719 if (flags & NOHZ_STATS_KICK) 10720 has_blocked_load |= update_nohz_stats(rq); 10721 10722 /* 10723 * If time for next balance is due, 10724 * do the balance. 10725 */ 10726 if (time_after_eq(jiffies, rq->next_balance)) { 10727 struct rq_flags rf; 10728 10729 rq_lock_irqsave(rq, &rf); 10730 update_rq_clock(rq); 10731 rq_unlock_irqrestore(rq, &rf); 10732 10733 if (flags & NOHZ_BALANCE_KICK) 10734 rebalance_domains(rq, CPU_IDLE); 10735 } 10736 10737 if (time_after(next_balance, rq->next_balance)) { 10738 next_balance = rq->next_balance; 10739 update_next_balance = 1; 10740 } 10741 } 10742 10743 /* 10744 * next_balance will be updated only when there is a need. 10745 * When the CPU is attached to null domain for ex, it will not be 10746 * updated. 10747 */ 10748 if (likely(update_next_balance)) 10749 nohz.next_balance = next_balance; 10750 10751 if (flags & NOHZ_STATS_KICK) 10752 WRITE_ONCE(nohz.next_blocked, 10753 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 10754 10755 abort: 10756 /* There is still blocked load, enable periodic update */ 10757 if (has_blocked_load) 10758 WRITE_ONCE(nohz.has_blocked, 1); 10759 } 10760 10761 /* 10762 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 10763 * rebalancing for all the cpus for whom scheduler ticks are stopped. 10764 */ 10765 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10766 { 10767 unsigned int flags = this_rq->nohz_idle_balance; 10768 10769 if (!flags) 10770 return false; 10771 10772 this_rq->nohz_idle_balance = 0; 10773 10774 if (idle != CPU_IDLE) 10775 return false; 10776 10777 _nohz_idle_balance(this_rq, flags, idle); 10778 10779 return true; 10780 } 10781 10782 /* 10783 * Check if we need to run the ILB for updating blocked load before entering 10784 * idle state. 10785 */ 10786 void nohz_run_idle_balance(int cpu) 10787 { 10788 unsigned int flags; 10789 10790 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 10791 10792 /* 10793 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 10794 * (ie NOHZ_STATS_KICK set) and will do the same. 10795 */ 10796 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 10797 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE); 10798 } 10799 10800 static void nohz_newidle_balance(struct rq *this_rq) 10801 { 10802 int this_cpu = this_rq->cpu; 10803 10804 /* 10805 * This CPU doesn't want to be disturbed by scheduler 10806 * housekeeping 10807 */ 10808 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 10809 return; 10810 10811 /* Will wake up very soon. No time for doing anything else*/ 10812 if (this_rq->avg_idle < sysctl_sched_migration_cost) 10813 return; 10814 10815 /* Don't need to update blocked load of idle CPUs*/ 10816 if (!READ_ONCE(nohz.has_blocked) || 10817 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 10818 return; 10819 10820 /* 10821 * Set the need to trigger ILB in order to update blocked load 10822 * before entering idle state. 10823 */ 10824 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 10825 } 10826 10827 #else /* !CONFIG_NO_HZ_COMMON */ 10828 static inline void nohz_balancer_kick(struct rq *rq) { } 10829 10830 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10831 { 10832 return false; 10833 } 10834 10835 static inline void nohz_newidle_balance(struct rq *this_rq) { } 10836 #endif /* CONFIG_NO_HZ_COMMON */ 10837 10838 /* 10839 * newidle_balance is called by schedule() if this_cpu is about to become 10840 * idle. Attempts to pull tasks from other CPUs. 10841 * 10842 * Returns: 10843 * < 0 - we released the lock and there are !fair tasks present 10844 * 0 - failed, no new tasks 10845 * > 0 - success, new (fair) tasks present 10846 */ 10847 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 10848 { 10849 unsigned long next_balance = jiffies + HZ; 10850 int this_cpu = this_rq->cpu; 10851 u64 t0, t1, curr_cost = 0; 10852 struct sched_domain *sd; 10853 int pulled_task = 0; 10854 10855 update_misfit_status(NULL, this_rq); 10856 10857 /* 10858 * There is a task waiting to run. No need to search for one. 10859 * Return 0; the task will be enqueued when switching to idle. 10860 */ 10861 if (this_rq->ttwu_pending) 10862 return 0; 10863 10864 /* 10865 * We must set idle_stamp _before_ calling idle_balance(), such that we 10866 * measure the duration of idle_balance() as idle time. 10867 */ 10868 this_rq->idle_stamp = rq_clock(this_rq); 10869 10870 /* 10871 * Do not pull tasks towards !active CPUs... 10872 */ 10873 if (!cpu_active(this_cpu)) 10874 return 0; 10875 10876 /* 10877 * This is OK, because current is on_cpu, which avoids it being picked 10878 * for load-balance and preemption/IRQs are still disabled avoiding 10879 * further scheduler activity on it and we're being very careful to 10880 * re-start the picking loop. 10881 */ 10882 rq_unpin_lock(this_rq, rf); 10883 10884 rcu_read_lock(); 10885 sd = rcu_dereference_check_sched_domain(this_rq->sd); 10886 10887 if (!READ_ONCE(this_rq->rd->overload) || 10888 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 10889 10890 if (sd) 10891 update_next_balance(sd, &next_balance); 10892 rcu_read_unlock(); 10893 10894 goto out; 10895 } 10896 rcu_read_unlock(); 10897 10898 raw_spin_rq_unlock(this_rq); 10899 10900 t0 = sched_clock_cpu(this_cpu); 10901 update_blocked_averages(this_cpu); 10902 10903 rcu_read_lock(); 10904 for_each_domain(this_cpu, sd) { 10905 int continue_balancing = 1; 10906 u64 domain_cost; 10907 10908 update_next_balance(sd, &next_balance); 10909 10910 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 10911 break; 10912 10913 if (sd->flags & SD_BALANCE_NEWIDLE) { 10914 10915 pulled_task = load_balance(this_cpu, this_rq, 10916 sd, CPU_NEWLY_IDLE, 10917 &continue_balancing); 10918 10919 t1 = sched_clock_cpu(this_cpu); 10920 domain_cost = t1 - t0; 10921 update_newidle_cost(sd, domain_cost); 10922 10923 curr_cost += domain_cost; 10924 t0 = t1; 10925 } 10926 10927 /* 10928 * Stop searching for tasks to pull if there are 10929 * now runnable tasks on this rq. 10930 */ 10931 if (pulled_task || this_rq->nr_running > 0 || 10932 this_rq->ttwu_pending) 10933 break; 10934 } 10935 rcu_read_unlock(); 10936 10937 raw_spin_rq_lock(this_rq); 10938 10939 if (curr_cost > this_rq->max_idle_balance_cost) 10940 this_rq->max_idle_balance_cost = curr_cost; 10941 10942 /* 10943 * While browsing the domains, we released the rq lock, a task could 10944 * have been enqueued in the meantime. Since we're not going idle, 10945 * pretend we pulled a task. 10946 */ 10947 if (this_rq->cfs.h_nr_running && !pulled_task) 10948 pulled_task = 1; 10949 10950 /* Is there a task of a high priority class? */ 10951 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 10952 pulled_task = -1; 10953 10954 out: 10955 /* Move the next balance forward */ 10956 if (time_after(this_rq->next_balance, next_balance)) 10957 this_rq->next_balance = next_balance; 10958 10959 if (pulled_task) 10960 this_rq->idle_stamp = 0; 10961 else 10962 nohz_newidle_balance(this_rq); 10963 10964 rq_repin_lock(this_rq, rf); 10965 10966 return pulled_task; 10967 } 10968 10969 /* 10970 * run_rebalance_domains is triggered when needed from the scheduler tick. 10971 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 10972 */ 10973 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 10974 { 10975 struct rq *this_rq = this_rq(); 10976 enum cpu_idle_type idle = this_rq->idle_balance ? 10977 CPU_IDLE : CPU_NOT_IDLE; 10978 10979 /* 10980 * If this CPU has a pending nohz_balance_kick, then do the 10981 * balancing on behalf of the other idle CPUs whose ticks are 10982 * stopped. Do nohz_idle_balance *before* rebalance_domains to 10983 * give the idle CPUs a chance to load balance. Else we may 10984 * load balance only within the local sched_domain hierarchy 10985 * and abort nohz_idle_balance altogether if we pull some load. 10986 */ 10987 if (nohz_idle_balance(this_rq, idle)) 10988 return; 10989 10990 /* normal load balance */ 10991 update_blocked_averages(this_rq->cpu); 10992 rebalance_domains(this_rq, idle); 10993 } 10994 10995 /* 10996 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 10997 */ 10998 void trigger_load_balance(struct rq *rq) 10999 { 11000 /* 11001 * Don't need to rebalance while attached to NULL domain or 11002 * runqueue CPU is not active 11003 */ 11004 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 11005 return; 11006 11007 if (time_after_eq(jiffies, rq->next_balance)) 11008 raise_softirq(SCHED_SOFTIRQ); 11009 11010 nohz_balancer_kick(rq); 11011 } 11012 11013 static void rq_online_fair(struct rq *rq) 11014 { 11015 update_sysctl(); 11016 11017 update_runtime_enabled(rq); 11018 } 11019 11020 static void rq_offline_fair(struct rq *rq) 11021 { 11022 update_sysctl(); 11023 11024 /* Ensure any throttled groups are reachable by pick_next_task */ 11025 unthrottle_offline_cfs_rqs(rq); 11026 } 11027 11028 #endif /* CONFIG_SMP */ 11029 11030 #ifdef CONFIG_SCHED_CORE 11031 static inline bool 11032 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 11033 { 11034 u64 slice = sched_slice(cfs_rq_of(se), se); 11035 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 11036 11037 return (rtime * min_nr_tasks > slice); 11038 } 11039 11040 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 11041 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 11042 { 11043 if (!sched_core_enabled(rq)) 11044 return; 11045 11046 /* 11047 * If runqueue has only one task which used up its slice and 11048 * if the sibling is forced idle, then trigger schedule to 11049 * give forced idle task a chance. 11050 * 11051 * sched_slice() considers only this active rq and it gets the 11052 * whole slice. But during force idle, we have siblings acting 11053 * like a single runqueue and hence we need to consider runnable 11054 * tasks on this CPU and the forced idle CPU. Ideally, we should 11055 * go through the forced idle rq, but that would be a perf hit. 11056 * We can assume that the forced idle CPU has at least 11057 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 11058 * if we need to give up the CPU. 11059 */ 11060 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 11061 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 11062 resched_curr(rq); 11063 } 11064 11065 /* 11066 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 11067 */ 11068 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle) 11069 { 11070 for_each_sched_entity(se) { 11071 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11072 11073 if (forceidle) { 11074 if (cfs_rq->forceidle_seq == fi_seq) 11075 break; 11076 cfs_rq->forceidle_seq = fi_seq; 11077 } 11078 11079 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 11080 } 11081 } 11082 11083 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 11084 { 11085 struct sched_entity *se = &p->se; 11086 11087 if (p->sched_class != &fair_sched_class) 11088 return; 11089 11090 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 11091 } 11092 11093 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 11094 { 11095 struct rq *rq = task_rq(a); 11096 struct sched_entity *sea = &a->se; 11097 struct sched_entity *seb = &b->se; 11098 struct cfs_rq *cfs_rqa; 11099 struct cfs_rq *cfs_rqb; 11100 s64 delta; 11101 11102 SCHED_WARN_ON(task_rq(b)->core != rq->core); 11103 11104 #ifdef CONFIG_FAIR_GROUP_SCHED 11105 /* 11106 * Find an se in the hierarchy for tasks a and b, such that the se's 11107 * are immediate siblings. 11108 */ 11109 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 11110 int sea_depth = sea->depth; 11111 int seb_depth = seb->depth; 11112 11113 if (sea_depth >= seb_depth) 11114 sea = parent_entity(sea); 11115 if (sea_depth <= seb_depth) 11116 seb = parent_entity(seb); 11117 } 11118 11119 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 11120 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 11121 11122 cfs_rqa = sea->cfs_rq; 11123 cfs_rqb = seb->cfs_rq; 11124 #else 11125 cfs_rqa = &task_rq(a)->cfs; 11126 cfs_rqb = &task_rq(b)->cfs; 11127 #endif 11128 11129 /* 11130 * Find delta after normalizing se's vruntime with its cfs_rq's 11131 * min_vruntime_fi, which would have been updated in prior calls 11132 * to se_fi_update(). 11133 */ 11134 delta = (s64)(sea->vruntime - seb->vruntime) + 11135 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 11136 11137 return delta > 0; 11138 } 11139 #else 11140 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 11141 #endif 11142 11143 /* 11144 * scheduler tick hitting a task of our scheduling class. 11145 * 11146 * NOTE: This function can be called remotely by the tick offload that 11147 * goes along full dynticks. Therefore no local assumption can be made 11148 * and everything must be accessed through the @rq and @curr passed in 11149 * parameters. 11150 */ 11151 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 11152 { 11153 struct cfs_rq *cfs_rq; 11154 struct sched_entity *se = &curr->se; 11155 11156 for_each_sched_entity(se) { 11157 cfs_rq = cfs_rq_of(se); 11158 entity_tick(cfs_rq, se, queued); 11159 } 11160 11161 if (static_branch_unlikely(&sched_numa_balancing)) 11162 task_tick_numa(rq, curr); 11163 11164 update_misfit_status(curr, rq); 11165 update_overutilized_status(task_rq(curr)); 11166 11167 task_tick_core(rq, curr); 11168 } 11169 11170 /* 11171 * called on fork with the child task as argument from the parent's context 11172 * - child not yet on the tasklist 11173 * - preemption disabled 11174 */ 11175 static void task_fork_fair(struct task_struct *p) 11176 { 11177 struct cfs_rq *cfs_rq; 11178 struct sched_entity *se = &p->se, *curr; 11179 struct rq *rq = this_rq(); 11180 struct rq_flags rf; 11181 11182 rq_lock(rq, &rf); 11183 update_rq_clock(rq); 11184 11185 cfs_rq = task_cfs_rq(current); 11186 curr = cfs_rq->curr; 11187 if (curr) { 11188 update_curr(cfs_rq); 11189 se->vruntime = curr->vruntime; 11190 } 11191 place_entity(cfs_rq, se, 1); 11192 11193 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 11194 /* 11195 * Upon rescheduling, sched_class::put_prev_task() will place 11196 * 'current' within the tree based on its new key value. 11197 */ 11198 swap(curr->vruntime, se->vruntime); 11199 resched_curr(rq); 11200 } 11201 11202 se->vruntime -= cfs_rq->min_vruntime; 11203 rq_unlock(rq, &rf); 11204 } 11205 11206 /* 11207 * Priority of the task has changed. Check to see if we preempt 11208 * the current task. 11209 */ 11210 static void 11211 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 11212 { 11213 if (!task_on_rq_queued(p)) 11214 return; 11215 11216 if (rq->cfs.nr_running == 1) 11217 return; 11218 11219 /* 11220 * Reschedule if we are currently running on this runqueue and 11221 * our priority decreased, or if we are not currently running on 11222 * this runqueue and our priority is higher than the current's 11223 */ 11224 if (task_current(rq, p)) { 11225 if (p->prio > oldprio) 11226 resched_curr(rq); 11227 } else 11228 check_preempt_curr(rq, p, 0); 11229 } 11230 11231 static inline bool vruntime_normalized(struct task_struct *p) 11232 { 11233 struct sched_entity *se = &p->se; 11234 11235 /* 11236 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 11237 * the dequeue_entity(.flags=0) will already have normalized the 11238 * vruntime. 11239 */ 11240 if (p->on_rq) 11241 return true; 11242 11243 /* 11244 * When !on_rq, vruntime of the task has usually NOT been normalized. 11245 * But there are some cases where it has already been normalized: 11246 * 11247 * - A forked child which is waiting for being woken up by 11248 * wake_up_new_task(). 11249 * - A task which has been woken up by try_to_wake_up() and 11250 * waiting for actually being woken up by sched_ttwu_pending(). 11251 */ 11252 if (!se->sum_exec_runtime || 11253 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup)) 11254 return true; 11255 11256 return false; 11257 } 11258 11259 #ifdef CONFIG_FAIR_GROUP_SCHED 11260 /* 11261 * Propagate the changes of the sched_entity across the tg tree to make it 11262 * visible to the root 11263 */ 11264 static void propagate_entity_cfs_rq(struct sched_entity *se) 11265 { 11266 struct cfs_rq *cfs_rq; 11267 11268 list_add_leaf_cfs_rq(cfs_rq_of(se)); 11269 11270 /* Start to propagate at parent */ 11271 se = se->parent; 11272 11273 for_each_sched_entity(se) { 11274 cfs_rq = cfs_rq_of(se); 11275 11276 if (!cfs_rq_throttled(cfs_rq)){ 11277 update_load_avg(cfs_rq, se, UPDATE_TG); 11278 list_add_leaf_cfs_rq(cfs_rq); 11279 continue; 11280 } 11281 11282 if (list_add_leaf_cfs_rq(cfs_rq)) 11283 break; 11284 } 11285 } 11286 #else 11287 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 11288 #endif 11289 11290 static void detach_entity_cfs_rq(struct sched_entity *se) 11291 { 11292 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11293 11294 /* Catch up with the cfs_rq and remove our load when we leave */ 11295 update_load_avg(cfs_rq, se, 0); 11296 detach_entity_load_avg(cfs_rq, se); 11297 update_tg_load_avg(cfs_rq); 11298 propagate_entity_cfs_rq(se); 11299 } 11300 11301 static void attach_entity_cfs_rq(struct sched_entity *se) 11302 { 11303 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11304 11305 #ifdef CONFIG_FAIR_GROUP_SCHED 11306 /* 11307 * Since the real-depth could have been changed (only FAIR 11308 * class maintain depth value), reset depth properly. 11309 */ 11310 se->depth = se->parent ? se->parent->depth + 1 : 0; 11311 #endif 11312 11313 /* Synchronize entity with its cfs_rq */ 11314 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 11315 attach_entity_load_avg(cfs_rq, se); 11316 update_tg_load_avg(cfs_rq); 11317 propagate_entity_cfs_rq(se); 11318 } 11319 11320 static void detach_task_cfs_rq(struct task_struct *p) 11321 { 11322 struct sched_entity *se = &p->se; 11323 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11324 11325 if (!vruntime_normalized(p)) { 11326 /* 11327 * Fix up our vruntime so that the current sleep doesn't 11328 * cause 'unlimited' sleep bonus. 11329 */ 11330 place_entity(cfs_rq, se, 0); 11331 se->vruntime -= cfs_rq->min_vruntime; 11332 } 11333 11334 detach_entity_cfs_rq(se); 11335 } 11336 11337 static void attach_task_cfs_rq(struct task_struct *p) 11338 { 11339 struct sched_entity *se = &p->se; 11340 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11341 11342 attach_entity_cfs_rq(se); 11343 11344 if (!vruntime_normalized(p)) 11345 se->vruntime += cfs_rq->min_vruntime; 11346 } 11347 11348 static void switched_from_fair(struct rq *rq, struct task_struct *p) 11349 { 11350 detach_task_cfs_rq(p); 11351 } 11352 11353 static void switched_to_fair(struct rq *rq, struct task_struct *p) 11354 { 11355 attach_task_cfs_rq(p); 11356 11357 if (task_on_rq_queued(p)) { 11358 /* 11359 * We were most likely switched from sched_rt, so 11360 * kick off the schedule if running, otherwise just see 11361 * if we can still preempt the current task. 11362 */ 11363 if (task_current(rq, p)) 11364 resched_curr(rq); 11365 else 11366 check_preempt_curr(rq, p, 0); 11367 } 11368 } 11369 11370 /* Account for a task changing its policy or group. 11371 * 11372 * This routine is mostly called to set cfs_rq->curr field when a task 11373 * migrates between groups/classes. 11374 */ 11375 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 11376 { 11377 struct sched_entity *se = &p->se; 11378 11379 #ifdef CONFIG_SMP 11380 if (task_on_rq_queued(p)) { 11381 /* 11382 * Move the next running task to the front of the list, so our 11383 * cfs_tasks list becomes MRU one. 11384 */ 11385 list_move(&se->group_node, &rq->cfs_tasks); 11386 } 11387 #endif 11388 11389 for_each_sched_entity(se) { 11390 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11391 11392 set_next_entity(cfs_rq, se); 11393 /* ensure bandwidth has been allocated on our new cfs_rq */ 11394 account_cfs_rq_runtime(cfs_rq, 0); 11395 } 11396 } 11397 11398 void init_cfs_rq(struct cfs_rq *cfs_rq) 11399 { 11400 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 11401 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 11402 #ifndef CONFIG_64BIT 11403 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 11404 #endif 11405 #ifdef CONFIG_SMP 11406 raw_spin_lock_init(&cfs_rq->removed.lock); 11407 #endif 11408 } 11409 11410 #ifdef CONFIG_FAIR_GROUP_SCHED 11411 static void task_set_group_fair(struct task_struct *p) 11412 { 11413 struct sched_entity *se = &p->se; 11414 11415 set_task_rq(p, task_cpu(p)); 11416 se->depth = se->parent ? se->parent->depth + 1 : 0; 11417 } 11418 11419 static void task_move_group_fair(struct task_struct *p) 11420 { 11421 detach_task_cfs_rq(p); 11422 set_task_rq(p, task_cpu(p)); 11423 11424 #ifdef CONFIG_SMP 11425 /* Tell se's cfs_rq has been changed -- migrated */ 11426 p->se.avg.last_update_time = 0; 11427 #endif 11428 attach_task_cfs_rq(p); 11429 } 11430 11431 static void task_change_group_fair(struct task_struct *p, int type) 11432 { 11433 switch (type) { 11434 case TASK_SET_GROUP: 11435 task_set_group_fair(p); 11436 break; 11437 11438 case TASK_MOVE_GROUP: 11439 task_move_group_fair(p); 11440 break; 11441 } 11442 } 11443 11444 void free_fair_sched_group(struct task_group *tg) 11445 { 11446 int i; 11447 11448 for_each_possible_cpu(i) { 11449 if (tg->cfs_rq) 11450 kfree(tg->cfs_rq[i]); 11451 if (tg->se) 11452 kfree(tg->se[i]); 11453 } 11454 11455 kfree(tg->cfs_rq); 11456 kfree(tg->se); 11457 } 11458 11459 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11460 { 11461 struct sched_entity *se; 11462 struct cfs_rq *cfs_rq; 11463 int i; 11464 11465 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 11466 if (!tg->cfs_rq) 11467 goto err; 11468 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 11469 if (!tg->se) 11470 goto err; 11471 11472 tg->shares = NICE_0_LOAD; 11473 11474 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11475 11476 for_each_possible_cpu(i) { 11477 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 11478 GFP_KERNEL, cpu_to_node(i)); 11479 if (!cfs_rq) 11480 goto err; 11481 11482 se = kzalloc_node(sizeof(struct sched_entity_stats), 11483 GFP_KERNEL, cpu_to_node(i)); 11484 if (!se) 11485 goto err_free_rq; 11486 11487 init_cfs_rq(cfs_rq); 11488 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 11489 init_entity_runnable_average(se); 11490 } 11491 11492 return 1; 11493 11494 err_free_rq: 11495 kfree(cfs_rq); 11496 err: 11497 return 0; 11498 } 11499 11500 void online_fair_sched_group(struct task_group *tg) 11501 { 11502 struct sched_entity *se; 11503 struct rq_flags rf; 11504 struct rq *rq; 11505 int i; 11506 11507 for_each_possible_cpu(i) { 11508 rq = cpu_rq(i); 11509 se = tg->se[i]; 11510 rq_lock_irq(rq, &rf); 11511 update_rq_clock(rq); 11512 attach_entity_cfs_rq(se); 11513 sync_throttle(tg, i); 11514 rq_unlock_irq(rq, &rf); 11515 } 11516 } 11517 11518 void unregister_fair_sched_group(struct task_group *tg) 11519 { 11520 unsigned long flags; 11521 struct rq *rq; 11522 int cpu; 11523 11524 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11525 11526 for_each_possible_cpu(cpu) { 11527 if (tg->se[cpu]) 11528 remove_entity_load_avg(tg->se[cpu]); 11529 11530 /* 11531 * Only empty task groups can be destroyed; so we can speculatively 11532 * check on_list without danger of it being re-added. 11533 */ 11534 if (!tg->cfs_rq[cpu]->on_list) 11535 continue; 11536 11537 rq = cpu_rq(cpu); 11538 11539 raw_spin_rq_lock_irqsave(rq, flags); 11540 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 11541 raw_spin_rq_unlock_irqrestore(rq, flags); 11542 } 11543 } 11544 11545 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 11546 struct sched_entity *se, int cpu, 11547 struct sched_entity *parent) 11548 { 11549 struct rq *rq = cpu_rq(cpu); 11550 11551 cfs_rq->tg = tg; 11552 cfs_rq->rq = rq; 11553 init_cfs_rq_runtime(cfs_rq); 11554 11555 tg->cfs_rq[cpu] = cfs_rq; 11556 tg->se[cpu] = se; 11557 11558 /* se could be NULL for root_task_group */ 11559 if (!se) 11560 return; 11561 11562 if (!parent) { 11563 se->cfs_rq = &rq->cfs; 11564 se->depth = 0; 11565 } else { 11566 se->cfs_rq = parent->my_q; 11567 se->depth = parent->depth + 1; 11568 } 11569 11570 se->my_q = cfs_rq; 11571 /* guarantee group entities always have weight */ 11572 update_load_set(&se->load, NICE_0_LOAD); 11573 se->parent = parent; 11574 } 11575 11576 static DEFINE_MUTEX(shares_mutex); 11577 11578 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 11579 { 11580 int i; 11581 11582 lockdep_assert_held(&shares_mutex); 11583 11584 /* 11585 * We can't change the weight of the root cgroup. 11586 */ 11587 if (!tg->se[0]) 11588 return -EINVAL; 11589 11590 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 11591 11592 if (tg->shares == shares) 11593 return 0; 11594 11595 tg->shares = shares; 11596 for_each_possible_cpu(i) { 11597 struct rq *rq = cpu_rq(i); 11598 struct sched_entity *se = tg->se[i]; 11599 struct rq_flags rf; 11600 11601 /* Propagate contribution to hierarchy */ 11602 rq_lock_irqsave(rq, &rf); 11603 update_rq_clock(rq); 11604 for_each_sched_entity(se) { 11605 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 11606 update_cfs_group(se); 11607 } 11608 rq_unlock_irqrestore(rq, &rf); 11609 } 11610 11611 return 0; 11612 } 11613 11614 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 11615 { 11616 int ret; 11617 11618 mutex_lock(&shares_mutex); 11619 if (tg_is_idle(tg)) 11620 ret = -EINVAL; 11621 else 11622 ret = __sched_group_set_shares(tg, shares); 11623 mutex_unlock(&shares_mutex); 11624 11625 return ret; 11626 } 11627 11628 int sched_group_set_idle(struct task_group *tg, long idle) 11629 { 11630 int i; 11631 11632 if (tg == &root_task_group) 11633 return -EINVAL; 11634 11635 if (idle < 0 || idle > 1) 11636 return -EINVAL; 11637 11638 mutex_lock(&shares_mutex); 11639 11640 if (tg->idle == idle) { 11641 mutex_unlock(&shares_mutex); 11642 return 0; 11643 } 11644 11645 tg->idle = idle; 11646 11647 for_each_possible_cpu(i) { 11648 struct rq *rq = cpu_rq(i); 11649 struct sched_entity *se = tg->se[i]; 11650 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 11651 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 11652 long idle_task_delta; 11653 struct rq_flags rf; 11654 11655 rq_lock_irqsave(rq, &rf); 11656 11657 grp_cfs_rq->idle = idle; 11658 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 11659 goto next_cpu; 11660 11661 if (se->on_rq) { 11662 parent_cfs_rq = cfs_rq_of(se); 11663 if (cfs_rq_is_idle(grp_cfs_rq)) 11664 parent_cfs_rq->idle_nr_running++; 11665 else 11666 parent_cfs_rq->idle_nr_running--; 11667 } 11668 11669 idle_task_delta = grp_cfs_rq->h_nr_running - 11670 grp_cfs_rq->idle_h_nr_running; 11671 if (!cfs_rq_is_idle(grp_cfs_rq)) 11672 idle_task_delta *= -1; 11673 11674 for_each_sched_entity(se) { 11675 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11676 11677 if (!se->on_rq) 11678 break; 11679 11680 cfs_rq->idle_h_nr_running += idle_task_delta; 11681 11682 /* Already accounted at parent level and above. */ 11683 if (cfs_rq_is_idle(cfs_rq)) 11684 break; 11685 } 11686 11687 next_cpu: 11688 rq_unlock_irqrestore(rq, &rf); 11689 } 11690 11691 /* Idle groups have minimum weight. */ 11692 if (tg_is_idle(tg)) 11693 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 11694 else 11695 __sched_group_set_shares(tg, NICE_0_LOAD); 11696 11697 mutex_unlock(&shares_mutex); 11698 return 0; 11699 } 11700 11701 #else /* CONFIG_FAIR_GROUP_SCHED */ 11702 11703 void free_fair_sched_group(struct task_group *tg) { } 11704 11705 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11706 { 11707 return 1; 11708 } 11709 11710 void online_fair_sched_group(struct task_group *tg) { } 11711 11712 void unregister_fair_sched_group(struct task_group *tg) { } 11713 11714 #endif /* CONFIG_FAIR_GROUP_SCHED */ 11715 11716 11717 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 11718 { 11719 struct sched_entity *se = &task->se; 11720 unsigned int rr_interval = 0; 11721 11722 /* 11723 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 11724 * idle runqueue: 11725 */ 11726 if (rq->cfs.load.weight) 11727 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 11728 11729 return rr_interval; 11730 } 11731 11732 /* 11733 * All the scheduling class methods: 11734 */ 11735 DEFINE_SCHED_CLASS(fair) = { 11736 11737 .enqueue_task = enqueue_task_fair, 11738 .dequeue_task = dequeue_task_fair, 11739 .yield_task = yield_task_fair, 11740 .yield_to_task = yield_to_task_fair, 11741 11742 .check_preempt_curr = check_preempt_wakeup, 11743 11744 .pick_next_task = __pick_next_task_fair, 11745 .put_prev_task = put_prev_task_fair, 11746 .set_next_task = set_next_task_fair, 11747 11748 #ifdef CONFIG_SMP 11749 .balance = balance_fair, 11750 .pick_task = pick_task_fair, 11751 .select_task_rq = select_task_rq_fair, 11752 .migrate_task_rq = migrate_task_rq_fair, 11753 11754 .rq_online = rq_online_fair, 11755 .rq_offline = rq_offline_fair, 11756 11757 .task_dead = task_dead_fair, 11758 .set_cpus_allowed = set_cpus_allowed_common, 11759 #endif 11760 11761 .task_tick = task_tick_fair, 11762 .task_fork = task_fork_fair, 11763 11764 .prio_changed = prio_changed_fair, 11765 .switched_from = switched_from_fair, 11766 .switched_to = switched_to_fair, 11767 11768 .get_rr_interval = get_rr_interval_fair, 11769 11770 .update_curr = update_curr_fair, 11771 11772 #ifdef CONFIG_FAIR_GROUP_SCHED 11773 .task_change_group = task_change_group_fair, 11774 #endif 11775 11776 #ifdef CONFIG_UCLAMP_TASK 11777 .uclamp_enabled = 1, 11778 #endif 11779 }; 11780 11781 #ifdef CONFIG_SCHED_DEBUG 11782 void print_cfs_stats(struct seq_file *m, int cpu) 11783 { 11784 struct cfs_rq *cfs_rq, *pos; 11785 11786 rcu_read_lock(); 11787 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 11788 print_cfs_rq(m, cpu, cfs_rq); 11789 rcu_read_unlock(); 11790 } 11791 11792 #ifdef CONFIG_NUMA_BALANCING 11793 void show_numa_stats(struct task_struct *p, struct seq_file *m) 11794 { 11795 int node; 11796 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 11797 struct numa_group *ng; 11798 11799 rcu_read_lock(); 11800 ng = rcu_dereference(p->numa_group); 11801 for_each_online_node(node) { 11802 if (p->numa_faults) { 11803 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 11804 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 11805 } 11806 if (ng) { 11807 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 11808 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 11809 } 11810 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 11811 } 11812 rcu_read_unlock(); 11813 } 11814 #endif /* CONFIG_NUMA_BALANCING */ 11815 #endif /* CONFIG_SCHED_DEBUG */ 11816 11817 __init void init_sched_fair_class(void) 11818 { 11819 #ifdef CONFIG_SMP 11820 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 11821 11822 #ifdef CONFIG_NO_HZ_COMMON 11823 nohz.next_balance = jiffies; 11824 nohz.next_blocked = jiffies; 11825 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 11826 #endif 11827 #endif /* SMP */ 11828 11829 } 11830 11831 /* 11832 * Helper functions to facilitate extracting info from tracepoints. 11833 */ 11834 11835 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq) 11836 { 11837 #ifdef CONFIG_SMP 11838 return cfs_rq ? &cfs_rq->avg : NULL; 11839 #else 11840 return NULL; 11841 #endif 11842 } 11843 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg); 11844 11845 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len) 11846 { 11847 if (!cfs_rq) { 11848 if (str) 11849 strlcpy(str, "(null)", len); 11850 else 11851 return NULL; 11852 } 11853 11854 cfs_rq_tg_path(cfs_rq, str, len); 11855 return str; 11856 } 11857 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path); 11858 11859 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq) 11860 { 11861 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1; 11862 } 11863 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu); 11864 11865 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq) 11866 { 11867 #ifdef CONFIG_SMP 11868 return rq ? &rq->avg_rt : NULL; 11869 #else 11870 return NULL; 11871 #endif 11872 } 11873 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt); 11874 11875 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq) 11876 { 11877 #ifdef CONFIG_SMP 11878 return rq ? &rq->avg_dl : NULL; 11879 #else 11880 return NULL; 11881 #endif 11882 } 11883 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl); 11884 11885 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq) 11886 { 11887 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ) 11888 return rq ? &rq->avg_irq : NULL; 11889 #else 11890 return NULL; 11891 #endif 11892 } 11893 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq); 11894 11895 int sched_trace_rq_cpu(struct rq *rq) 11896 { 11897 return rq ? cpu_of(rq) : -1; 11898 } 11899 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu); 11900 11901 int sched_trace_rq_cpu_capacity(struct rq *rq) 11902 { 11903 return rq ? 11904 #ifdef CONFIG_SMP 11905 rq->cpu_capacity 11906 #else 11907 SCHED_CAPACITY_SCALE 11908 #endif 11909 : -1; 11910 } 11911 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity); 11912 11913 const struct cpumask *sched_trace_rd_span(struct root_domain *rd) 11914 { 11915 #ifdef CONFIG_SMP 11916 return rd ? rd->span : NULL; 11917 #else 11918 return NULL; 11919 #endif 11920 } 11921 EXPORT_SYMBOL_GPL(sched_trace_rd_span); 11922 11923 int sched_trace_rq_nr_running(struct rq *rq) 11924 { 11925 return rq ? rq->nr_running : -1; 11926 } 11927 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running); 11928